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ABSTRACT 

Coordinated locomotor behavior is critical for the survival and propagation of an individual 

and is modulated by internal and external sensory inputs. The microbiota regulates host 

metabolism, which is closely intertwined with motor behavior. However, little is known 

regarding influences by the gut microbiome on host locomotion, or the pathways involved. 

The work presented in this thesis examines microbial regulation of locomotor behavior from 

both bacterial and host perspectives. Removal of the microbiota results in hyperactivity in 

female D. melanogaster, which is reversible through colonization with specific bacteria or 

administration of bacterial-derived products, including xylose isomerase (Xi) from 

Lactobacillus brevis. We found that Xi modulates host speed via sugar metabolism and 

octopamine signaling in flies. Additionally, aspects of microbial regulation of host 

locomotion appear to be conserved in mice. This work suggests that microbial modulation 

of host physiology extends beyond local intestinal effects to locomotor behavior through 

alterations in energy-related pathways. 
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OVERVIEW OF DROSOPHILA MELANOGASTER 
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1.1 INTRODUCTION 

 In order to understand host-microbe interactions, it is important to consider the microbial 

species and metabolites that influence the host in addition to the corresponding pathways that 

mediate these effects. A limited microbial community and the ability to perform high-throughput 

genetic screens facilitate this type of examination into both sides of host-microbe interactions. The 

microbiome of vinegar fruit fly Drosophila melanogaster contains 5-20 bacterial species in 

laboratory strains. Therefore, along with its genetic tractability and ease of behavioral 

methodology1,2, it is uniquely positioned for examining host-microbe interactions.  

1.2 A BRIEF DESCRIPTION OF D. MELANOGASTER 

Drosophila melanogaster originated in sub-Saharan Africa and is commonly associated 

with rotting fruit and fermented beverages3,4. This ability to survive and reproduce on sources 

commonly produced by humans is thought to contribute to the dispersal of D. melanogaster4. The 

developmental period of D. melanogaster is relatively quick compared to mice and humans, with 

only 9-10 days needed to go from an egg to a sexually mature adult4. During its life cycle, D. 

melanogaster metamorphoses from a larval stage into its adult form, undergoing eclosion, or the 

emergence of a pupa to an adult, in this time period. Once in its adult stage, its average life span 

is between 34 to 53 days5. 

Although D. melanogaster was first described by Johann Wilhelm Meigen in 1830, the 

first reported cultivation in the laboratory was in the 1900s by Harvard entomologist Charles 

Woodworth3,4. In the laboratory, flies are grown on standardized media that usually contain mold 

inhibitors along with antibiotics3. However, there is a large variability in the specific ingredients 

used in fly media recipes leading recent researchers to develop chemically defined media that have 

produced more consistent experimental results6,7. In addition to this difference in food from the 

natural environment, D. melanogaster is also reared at a constant temperature and humidity in the 

laboratory.  

In part due to its adaptability, short life cycle, and widely available genetic toolkits, D. 

melanogaster has become a model organism used throughout biology. The utilization of D. 
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melanogaster has led to major breakthroughs, from the work of Thomas Hunt Morgan in genetics 

to studies by Jeffrey C. Hall, Michael Rosbash, and Michael W. Young in circadian rhythms.     

1.3 LINKS BETWEEN THE INTESTINE AND CENTRAL BRAIN IN ARTHROPODS 

Arthropods have an open circulatory system, which contains hemolymph8. Separating the 

circulatory system and the lumen of the gastrointestinal tract are epithelial cells, the peritrophic 

matrix in the midgut, and the cuticle in the foregut and hindgut9. Molecules that pass through or 

are transported across these barriers can enter the body cavity, or hemocoel8. As invertebrates lack 

a true endothelium with intercellular junctions, the hemocoel only restricts the hemolymph through 

the extracellular matrix lining the vessels8.  

Changes in the gastrointestinal tract can also impact neurological function through their 

effects on the enteroendocrine cells (EECs) and neurons that innervate the gut. Similar to 

vertebrates, stem cells in the adult fly gastrointestinal tract give rise to EECs in addition to 

enterocytes10,11. Gustatory receptors are expressed by EECs in the midgut, which may relay 

information about changes in nutrient levels to the central nervous system12. In addition to 

signaling through EECs, information can be relayed from the gastrointestinal tract through immune 

pathways in the epithelial layer, such as the IMD pathway13,14. Neuronal innervation of the adult 

fly gastrointestinal tract comes from the stomatogastric nervous system (SGS), the corpus 

cardiacum, and the central nervous system9. Sensory neurons innervate predominantly the anterior 

and posterior regions of the intestine with their cell bodies predicted to reside primarily in the 

stomatogastric ganglia9. The functions of these intestinal innervating neurons span from 

facilitating peristalsis to sensing nutrient and fluid levels15–18. Recently, two neuroendocrine 

peptides and their receptors have been described as gut-brain peptides with expression in both the 

brain and gastrointestinal tract: CCHamide-1,  CCHamide-2, and Diuretic hormone 44 (Dh44) 

along with its receptors17,19. Although the exact function of CCHamide-1 has not been fully 

enumerated, CCHamide-2 has been found to affect food intake and locomotor behavior19. Neurons 

that produce Dh44 act as nutritive sugar sensors, responding to sugar levels in the hemolymph 

independent of taste17. The hemolymph, EECs, and enteric neurons link the complex milieu within 

the gastrointestinal tract to other body sites throughout the organism, including the central nervous 

system. 
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1.4 THE MICROBIOME OF DROSOPHILA 

A mixture of bacteria, viruses, and fungi reside inside of the gastrointestinal tract, and 

collectively constitute the gut microbiota. The microbiota of laboratory-reared D. melanogaster 

contains between 5 – 20 different bacterial species, with the most common commensals from the 

Lactobacillus and Acetobacter genera1. When compared to that of mice and humans, the bacterial 

community of D. melanogaster is relatively limited; however, many of these core commensals are 

found in mammals, including Lactobacillus plantarum and Lactobacillus brevis1,20. The four 

dominant bacterial species identified in laboratory strains of D. melanogaster are: L. plantarum, 

L. brevis, Enterococcus faecalis, and Acetobacter pomorum20.  

Multiple factors influence the microbial composition within Drosophila. In the wild, 

Drosophila populations associate with a wider diversity of bacterial species, which is proposed to 

be due in part to their diet21. Additionally, shifts in the carbohydrate:protein ratio of laboratory fly 

media dramatically influence the proportions of specific bacterial genera21–23. In addition to dietary 

influences, the microbiota also changes throughout the life cycle of D. melanogaster. During the 

larval stage, L. fructivorans and L. plantarum are the two dominant species, with the former 

retaining this status in young adults1,24. Microbial dysbiosis can occur during old age (30 days 

post-eclosion) with an expansion in Gammaproteobacteria, similar to that found in elderly 

humans25–27. Within adult flies, seasonal changes in the microbiota do occur, and L. brevis is a 

species that particularly displays this temporal variation23. Furthermore, the composition of the 

microbiota differs between males and female flies, which is another feature also found in 

mammals1,24,28.          

In addition to bacteria, Drosophila harbor fungal commensals and endosymbionts, some 

of which are removed in common fly media preparations. The connection between the diet and the 

microbiota in flies extends to fungi, as diet outweighs host species in its contribution to fungal 

diversity29. In addition to fungi, the endosymbiont Wolbachia is an Alphaproteobacteria that has a 

range of effects on host physiology, including cytoplasmic incompatibility30. Furthermore, roughly 

30% of all stocks at the Bloomington Drosophila Stock Center harbor Wolbachia31. Multiple 

factors influence the microbial composition within Drosophila. The use of flies lacking a 
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microbiota, also known as axenic flies, facilitates the examination of the aspects of host physiology 

that microbes modulate.  

1.5 HOST-MICROBE INTERACTIONS IN D. MELANOGASTER 

Due to the genetic tools available and its limited microbial community D. melanogaster 

represents an ideal model organism to unravel the complexities of host-microbial interactions. The 

primary focus of such studies previously centered on bacterial activation of immune pathways, 

such as immune deficiency (IMD) and Toll. However, more recent research has uncovered 

commensal regulation of various aspects of host physiology, including growth and development32–

35. Axenic larvae exhibit a significant delay in development under nutrient-poor conditions 

compared to conventional controls bearing a complete microbiota36. Metabolic products from the 

commensal A. pomorum activate systemic insulin/insulin-like growth factor signaling in D. 

melanogaster, resulting in changes in larval growth and energy metabolism37. Additionally, 

another commensal, L. plantarum, increases growth and development in Drosophila under 

conditions of chronic undernutrition. Association with L. plantarum causes these effects through 

enhancing the expression of larval peptidases that alter protein assimilation, and subsequently 

stimulate the TOR and insulin-like peptide pathways36,38,39. Interestingly, L. plantarum-mediated 

effects on growth are conserved in mammals, further demonstrating the importance of this 

bacterium and the beneficial impact of its symbiosis on various hosts40.  

 The microbiota also regulates additional aspects of host physiology and function, including 

metabolism and behavior. Depending on the protein level within the diet, axenic female flies 

display significantly increased levels of triglycerides (TAG) and carbohydrates, including glucose 

and trehalose, compared to conventional controls41,42. While mono-colonization with five different 

commensal bacteria (A. pomorum, A. tropicalis, L. brevis, L. fructivorans, or L. plantarum) was 

able to restore glucose to levels similar to conventional controls, only A. pomorum, A. tropicalis, 

or to a lesser extent L. plantarum mono-colonization were able to lower TAG levels42. Related to 

metabolism, food consumption is reduced in axenic flies compared to conventional counterparts. 

However, mono-colonization with only either A. pomorum or A. tropicalis increases feeding to 

conventional levels in female flies43. No differences in food intake are found between male axenic 

and conventional flies41.  
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Recently, commensal bacteria have been implicated in food preference, reproduction, and 

oviposition behaviors44,45. After the removal of essential amino acids from the diet, flies had an 

increased preference for amino-acid rich media and decreased egg laying that was diminished by 

A. pomorum and Lactobacilli species (L. planatrum and L. brevis), demonstrating the importance 

of the microbiota under nutrient-poor conditions44. Microbial metabolism of specific nutrients is 

also implicated in oviposition preference with Enterococci catabolism of carbohydrates and the 

receptors Gr5a and Gr64 mediating this behavior45. Different compounds are produced in 

microbial communities depending on their composition, as bacterial and fungal members of the 

microbiome can catabolize products from each other. Products of one such co-culture, acetate and 

its metabolites, drive host preference for a mixture of Saccharomyces and Acetobacter species, 

partially through the olfactory receptor, Or42b46. While the microbiota and microbial-derived 

products are implicated in regulating host behavior, very little is known about the underlying host 

mechanisms facilitating these changes. 

 Feedback from the host is another important and only recently examined aspect of host-

microbe interactions. One study using Drosophila Genetic Reference Panel (DGRP) lines found 

links between specific genes, such as those in insulin-like signaling and TOR, and microbial effects 

on metabolism in flies47,48. Furthermore, a genome-wide association study (GWAS) revealed that 

neuronal-related genes alter the levels of particular bacterial species, including Acetobacter 

tropicalis48,49. However, more research is needed in order to understand this aspect of host-

microbial interactions. 

 The microbial community within D. melanogaster is relatively limited compared to that of 

mammals and has known effects on host physiology, making it an excellent candidate for exploring 

microbial contributions to conserved behaviors. As there is a close relationship between specific 

species and host metabolism, we chose a metabolically-related behavior, locomotion, for 

examination in the context of host-microbe interactions. Previous literature in mice suggested that 

host walking speed is regulated by the microbiota50,51; however, this had not been shown in 

Drosophila nor had the underlying pathways been explored.   
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C h a p t e r  2  

DELVING INTO LOCOMOTION IN D. MELANOGASTER 
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2.1 INTRODUCTION TO LOCOMOTION AND ITS NEURONAL CORRELATES 

 

At first glance, coordinated movement through an environment appears simple; however, 

it requires the complex integration of multiple stimuli and coordination of various organ systems 

throughout the body1. Locomotion has been studied across organisms spanning from humans and 

cats to ants and flies. While the number of appendages varies, there is a multitude of consistent 

features, including energy conservation and feedback from peripheral sensors1. Locomotor 

behavior in insects has been relatively well studied and provides a good model for examining 

contributions from internal and external stimuli. 

As larvae, Drosophila crawl along a surface through coordinated peristaltic waves of 

muscle contractions2. Patterned movements are locally generated through central pattern 

generators (CPGs) with additional control from descending neurons in the subesophageal zone 

(SEZ) and central brain2. Within the ventral nerve cord (VNC), excitatory and inhibitory 

interneurons coordinate the activity of motor neurons. Nevertheless, the exact mechanisms by 

which sensory information is processed by VNC and integrated into motor behavior in larvae are 

not currently known.   

 Adult Drosophila have six legs along a body plan consisting of a head, thorax, and 

abdomen. Multi-joined legs are widely used among terrestrial animals for locomotion. 

Furthermore, as in many other invertebrates and vertebrates, CPGs constitute a critical component 

for the generation of rhythmic movements in adult flies3. For example, if the central brain is 

removed, CPGs can be stimulated through exogenous application of biogenic amines4. Regions 

within the central brain, including the central complex, provide inputs to CPGs that significantly 

alter walking behavior. Analysis of walking behavior in mutant Drosophila lines revealed that the 

central complex regulates walking initiation, step length, swing speed, and leg placement5. 

Furthermore, the ellipsoid body in the central complex is necessary for maintenance of the 

temporal walking pattern of adult flies6. In addition to the central complex, removal or inhibition 

of the mushroom body results in increased walking speed7. Such experiments in Drosophila 

demonstrate the use of both central and peripheral neuronal circuits in the execution of motor 

behaviors.    
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2.2 OVERVIEW OF THE NEUROTRANSMITTERS INVOLVED IN REGULATING 

LOCOMOTION  

 

A variety of biogenic amines and small molecules have been implicated in modulating 

locomotor behavior in the central brain and the periphery, including dopamine, serotonin, 

octopamine, and tyramine. Dopamine (DA) is a catecholamine synthesized from tyrosine through 

the use of the enzymes tyrosine hydroxylase (TH) and DOPA decarboxylase (DDC). In both 

vertebrates and invertebrates, dopamine signaling is necessary for coordinated movement4,8–11. For 

example, dopamine deficient flies display decreased walking speeds and climbing behavior, both 

of which exhibit age-dependent declines8,12. Interestingly, these age-related changes in walking 

are associated with exploratory behavior, rather than centrophobism12. Similar to DA, exogenous 

application of serotonin to the spinal cord of cats or the VNC in insects stimulates walking 

behavior, implicating its involvement in locomotor regulation4,13,14. Serotonin (5HT) is derived 

from tryptophan through the use of tryptophan hydrolase (TPH) and DDC. Inactivation of 

serotonergic pathways in the central brain and RNAi knockdown of 5HT receptors further 

demonstrate the involvement of serotonin in motor behavior, specifically that of the 5HT receptors 

1B, 2 and 7 in the mushroom body15,16. Two other monoamines involved in locomotion, 

octopamine (OA) and tyramine (TA), are synthesized from tyrosine and lie along the same 

pathway, with tyramine produced as an intermediate17. Tyramine was previously assumed to only 

act as a precursor of octopamine; however, it is now known as an independent neurotransmitter 

that modulates behavior and physiology through G-coupled protein receptors18–26. Octopamine and 

tyramine share homology with the adrenergic system both in terms of structure and due to their 

involvement in regulating metabolism and similar behaviors17,20. Octopamine is widely expressed 

within the nervous system, particularly in the ventromedial (VM) neuropil cluster along the SEZ, 

the AL2 cluster of the antennal lobes, and the VNC27,28. Additionally, it can reach other body sites 

through circulation in the hemolymph17. Tyraminergic neurons have also been identified in the 

central nervous system and are thought to be a distinct population as they lack octopamine 

expression29. In terms of their involvement in locomotor regulation, octopamine and tyramine have 

opposite effects with higher levels of octopamine driving elevated muscle contractions and 

locomotion, and corresponding decreases in both features associated with increased tyramine20. 
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However, others have proposed a dependence on a proper balance of both neurotransmitters for 

normal locomotion18.  

In addition to aminergic signaling, neuropeptides and small molecules, such as GABA, 

also regulate locomotion in Drosophila. Experiments knocking down inhibitory GABAergic 

inputs to leg motorneurons impaired adult locomotion in flies, demonstrating their importance in 

motor behavior30. Additionally, cholinergic interneurons are involved in the regulation of 

locomotor behavior31. Other neuropeptides, including tachykinin (DTK) and short neuropeptide F 

(sNPF) expressed in the central complex, modulate locomotor activity32. Contributions from such 

a diverse array of neuronal subsets and neurotransmitters demonstrates the complex circuitry 

underling this multifaceted behavior.     

2.3 REGULATION BY INTERNAL STIMULI 

 

In order to successfully navigate a complex environment, feedback is needed from multiple 

sensory systems detecting internal and external stimuli33–35. Sensory receptors detect changes in 

internal metabolic state that alter various behaviors, including locomotion33, which are mediated 

by certain neuromodulators36.   

Under periods of starvation, flies will execute foraging behaviors, altering their trajectory 

and speed37–42. Local search behaviors vary as the starvation period increases, with the highest 

activity taking place in the first three hours after starvation41. Foraging is mediated in part by 

different sets of dopaminergic neurons depending on the satiation state of the fly, with 

dopaminergic neurons in the PAM cluster mediating behavior in starved flies43. However, both of 

the neuronal populations employed in the two satiation states converge on the dopamine D1 

receptor expressed in Kenyon cells in the mushroom body43. Deficits in specific nutrients, such as 

amino acids, also shift exploration away from a global strategy to a focused search for 

proteinaceous patches within defined arena, illustrating the importance of nutritional need in 

foraging strategies38. Furthermore, the bacterial populations within Drosophila can alter foraging 

patterns and preferences through olfactory cues, with an innate preference towards exploring their 

associated Lactobacilli species44.  
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In addition to foraging trajectories, starvation increases the activity and speed of flies39,40,42. 

Drosophila originating from various locations with climates ranging from temperate to tropical all 

exhibit increased activity in response to starvation42. Recently, the involvement of octopaminergic 

neurons within the SEZ in starvation-induced hyperactivity was identified39,40. Yu et al. (2016) 

also found that adipokinetic hormone (Akh), similar to mammalian glucagon, mediates these 

effects independent of food intake. However, whether these same circuits are influenced by 

changes in the microbial community is currently unknown. 

  



 

 

17 

REFERENCES 

 

1. Dickinson, M. H. et al. How animals move: An integrative view. Science 288, 100–106 

(2000). 

2. Clark, M. Q., Zarin, A. A., Carreira-Rosario, A. & Doe, C. Q. Neural circuits driving 

larval locomotion in Drosophila. Neural Development 13, 1–10 (2018). 

3. Marder, E. & Bucher, D. Central pattern generators and the control of rythmic 

movements. Curr. Biol. 11, R986–R996 (2001). 

4. Yellman, C., Tao, H., He, B. & Hirsh, J. Conserved and sexually dimorphic behavioral 

responses to biogenic amines in decapitated Drosophila. Proc. Natl. Acad. Sci. U. S. A. 

94, 4131–4136 (1997). 

5. Strauss, R. The central complex and the genetic dissection of locomotor behaviour. Curr. 

Opin. Neurobiol. 12, 633–638 (2002). 

6. Martin, J.-R., Faure, P. & Ernst, R. The Power Law Distribution for Walking-Time 

Intervals Correlates with the Ellipsoid-Body in Drosophila. J. Neurogenet. 15, 205–219 

(2001). 

7. Martin, J. R., Ernst, R. & Heisenberg, M. Mushroom bodies suppress locomotor activity 

in Drosophila melanogaster. Learn. Mem. 5, 179–91 (1998). 

8. Riemensperger, T., Isabel, G., Coulom, H., Neuser, K., Seugnet, L., Kume, K., Iché-

Torres, M., Cassar, M., Strauss, R., Preat, T., Hirsh, J. & Birman, S. Behavioral 

consequences of dopamine defciency in the Drosophila central nervous system. Proc. 

Natl. Acad. Sci. U. S. A. 108, 834-839 (2011).  

9. Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. & Caron, M. G. Hyperlocomotion and 

indifference to cocaine and amphetamine in mice lacking the dopamine transporter. 

Nature 379, 606–612 (1996). 



 

 

18 

10. Zhou, Q. Y. & Palmiter, R. D. Dopamine-deficient mice are severely hypoactive, adipsic, 

and aphagic. Cell 83, 1197–1209 (1995). 

11. Beninger, R. J. The role of dopamine in locomotor activity and learning. Brain Res. Rev. 

6, 173–196 (1983). 

12. White, K. E., Humphrey, D. M. & Hirth, F. The dopaminergic system in the aging brain of 

Drosophila. Front. Neurosci. 4, 205 (2010). 

13. Grillner, S. The motor infrastructure: From ion channels to neuronal networks. Nat. Rev. 

Neurosci. 4, 573–586 (2003). 

14. Grillner, S. Neurobiological bases of rhythmic motor acts in vertebrates. Science 228, 

143–149 (1985). 

15. Rodriguez-Oroz, M. C. et al. Initial clinical manifestations of Parkinson’s disease: 

features and pathophysiological mechanisms. Lancet Neurol. 8, 1128–39 (2009). 

16. Silva, B., Goles, N. I., Varas, R. & Campusano, J. M. Serotonin receptors expressed in 

Drosophila mushroom bodies differentially modulate larval locomotion. PLoS One 9, 

(2014). 

17. Roeder, T. Octopamine in invertebrates. Prog. Neurobiol. 59, 533–561 (1999). 

18. Saraswati, S., Fox, L. E., Soll, D. R. & Wu, C. F. Tyramine and Octopamine Have 

Opposite Effects on the Locomotion of Drosophila Larvae. J. Neurobiol. 58, 425–441 

(2004). 

19. Selcho, M., Pauls, D., el Jundi, B., Stocker, R. F. & Thum, A. S. The role of octopamine 

and tyramine in Drosophila larval locomotion. J. Comp. Neurol. 520, 3764–3785 (2012). 

20. Roeder, T. Tyramine and octopamine: ruling behavior and metabolism. Annu. Rev. 

Entomol. 50, 447–77 (2005). 

21. Damrau, C., Toshima, N., Tanimura, T., Brembs, B. & Colomb, J. Octopamine and 



 

 

19 

Tyramine Contribute Separately to the Counter-Regulatory Response to Sugar Deficit in 

Drosophila. Front. Syst. Neurosci. 11, 1–11 (2018). 

22. Blenau, W. & Baumann, A. Molecular and pharmacological properties of insect biogenic 

amine receptors: Lessons from Drosophila melanogaster and Apis mellifera. Arch. Insect 

Biochem. Physiol. 48, 13–38 (2001). 

23. Saudou, F., Amlaiky, N., Plassat, J. L., Borrelli, E. & Hen, R. Cloning and 

characterization of a Drosophila tyramine receptor. EMBO J. 9, 3611–7 (1990). 

24. Blumenthal, E. M. Regulation of chloride permeability by endogenously produced 

tyramine in the Drosophila Malpighian tubule. AJP Cell Physiol. 284, C718–C728 (2003). 

25. Alkema, M. J., Hunter-Ensor, M., Ringstad, N. & Horvitz, H. R. Tyramine functions 

independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46, 

247–260 (2005). 

26. Huang, J., Liu, W., Qi, Y. xiang, Luo, J. & Montell, C. Neuromodulation of Courtship 

Drive through Tyramine-Responsive Neurons in the Drosophila Brain. Curr. Biol. 26, 

2246–2256 (2016). 

27. Busch, S., Selcho, M., Ito, K. & Tanimoto, H. A map of octopaminergic neurons in the 

Drosophila brain. J. Comp. Neurol. 513, 643–667 (2009). 

28. Monastirioti, M., Linn, C. E. & White, K. Characterization of Drosophila tyramine beta-

hydroxylase gene and isolation of mutant flies lacking octopamine. J. Neurosci. 16, 3900–

3911 (1996). 

29. Nagaya, Y., Kutsukake, M., Chigusa, S. I. & Komatsu, A. A trace amine, tyramine, 

functions as a neuromodulator in Drosophila melanogaster. Neurosci. Lett. 329, 324–328 

(2002). 

30. Gowda, S. B. M. et al. GABAergic inhibition of leg motoneurons is required for normal 

walking behavior in freely moving Drosophila. Proc. Natl. Acad. Sci. 115, E2115–E2124 



 

 

20 

(2018). 

31. Imlach, W. L. et al. SMN is required for sensory-motor circuit function in Drosophila. 

Cell 151, 427–439 (2012). 

32. Kahsai, L., Martin, J.-R. & Winther, A. M. E. Neuropeptides in the Drosophila central 

complex in modulation of locomotor behavior. J. Exp. Biol. 213, 2256–65 (2010). 

33. Huston, S. J. & Jayaraman, V. Studying sensorimotor integration in insects. Curr. Opin. 

Neurobiol. 21, 527–34 (2011). 

34. Tuthill, J. C. & Wilson, R. I. Mechanosensation and Adaptive Motor Control in Insects. 

Curr. Biol. 26, R1022–R1038 (2016). 

35. Tuthill, J. C. & Azim, E. Proprioception. Curr. Biol. 28, R193–R194 (2018). 

36. Hultborn, H. State-dependant modulation of sensory feedback. J. Physiol. 533, 5–13 

(2001). 

37. Kim, I. S., Dickinson, M. H., Kim, I. S. & Dickinson, M. H. Idiothetic Path Integration in 

the Fruit Fly Drosophila melanogaster. Curr. Biol. 1–12 (2017). 

doi:10.1016/j.cub.2017.06.026 

38. Corrales-Carvajal, V. M., Faisal, A. A. & Ribeiro, C. Internal states drive nutrient 

homeostasis by modulating exploration-exploitation trade-off. Elife 5, 1–29 (2016). 

39. Yu, Y. et al. Regulation of starvation-induced hyperactivity by insulin and glucagon 

signaling in adult Drosophila. Elife 5, e15693 (2016). 

40. Yang, Z. et al. Octopamine mediates starvation-induced hyperactivity in adult              

Drosophila. Proc. Natl. Acad. Sci. 201417838 (2015). doi:10.1073/pnas.1417838112 

41. Bell, W. J., Cathy, T., Roggero, R. J., Kipp, L. R. & Tobin, T. R. Sucrose-stimulated 

searching behaviour of Drosophila melanogaster in a uniform habitat: modulation by 

period of deprivation. Anim. Behav. 33, 436–448 (1985). 



 

 

21 

42. Knoppien, P., van Der Pers, J. & van Delden, W. Quantification of locomotion and the 

effect of food deprivation on locomotor activity in Drosophila. J. Insect Behav. 13, 27–43 

(2000). 

43. Landayan, D., Feldman, D. S. & Wolf, F. W. Satiation state-dependent dopaminergic 

control of foraging in Drosophila. Sci. Rep. 8, 1–9 (2018). 

44. Wong, A. C. N. et al. Gut Microbiota Modifies Olfactory-Guided Microbial Preferences 

and Foraging Decisions in Drosophila. Curr. Biol. 27, 2397–2404.e4 (2017). 

 

  



 

 

22 

C h a p t e r  3  

A GUT MICROBIAL FACTOR MODULATES LOCOMOTION IN 

DROSOPHILA  

 

Schretter, C. E., J. Vielmetter, I. Bartos, Z. Marka, S. Marka, S. Argade, and S. K. Mazmanian 

A modified version of this chapter along with Chapter 4 was submitted in “A gut microbial factor 

modulates locomotor behavior in Drosophila.” 
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3.1 ABSTRACT 

 

While research into the biology of animal behavior has primarily focused on the central 

nervous system, cues from peripheral tissues and the environment have been implicated in brain 

development and function1–6. Emerging data suggest bidirectional communication between the gut 

and the brain affects behaviors including anxiety, cognition, nociception, and social interaction, 

among others4,7–17. Coordinated locomotor behavior is critical for the survival and propagation of 

animals, and is regulated by internal and external sensory inputs18–20. However, little is known 

regarding influences by the gut microbiome on host locomotion, or the pathways involved. Here 

we report that germ-free status or antibiotic treatment result in hyperactive locomotor behavior in 

female Drosophila melanogaster. Increased walking speed and daily activity found in the absence 

of a gut microbiome are rescued by mono-colonization with specific bacteria, including the fly 

commensal Lactobacillus brevis. The bacterial enzyme xylose isomerase (Xi) from L. brevis is 

sufficient to recapitulate the locomotor effects of microbial colonization, likely via modulation of 

sugar metabolism in flies. Additionally, thermogenetic activation of octopaminergic neurons or 

exogenous administration of octopamine, the invertebrate counterpart of noradrenaline, abrogates 

Xi-induced effects on Drosophila locomotion. These findings reveal a previously unappreciated 

role for the gut microbiome in modulating locomotion, and identify octopaminergic neurons as 

mediators of peripheral microbial cues that regulate motor behavior in animals. 
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3.2 INTRODUCTION 

 

Coordinated locomotion is required for fundamental activities of life such as foraging, 

social interaction, and mating, and involves the integration of multiple contextual factors, 

including the internal state of the animal and external sensory stimuli18,19. The intestine represents 

a major conduit for exposure to environmental signals that influence host physiology and is 

connected to the brain through both neuronal and humoral pathways. Recently, seminal studies 

have uncovered that the intestinal microbiome regulates developmental and functional features of 

the nervous system4–7, though gut bacterial effects on the neuromodulators and neuronal circuits 

involved in locomotion remain poorly understood. Since central mechanisms of locomotion, 

including sensory feedback and neuronal circuits integrating these modalities, are shared in 

lineages spanning arthropods and vertebrates19,21,22, we employed the fruit fly Drosophila 

melanogaster to explore host-microbiome interactions that contribute to locomotor behavior. 

 

3.3 THE MICROBIOTA INFLUENCES HOST LOCOMOTION 

 

Locomotion was examined in the presence (conventional; Conv) and absence (axenic; Ax) 

of commensal bacteria23. In comparison to conventionally-reared animals, axenic female adult flies 

exhibit increased walking speed and daily activity (Fig. 1a – b, and 1g). Axenic adult flies also 

display corresponding changes in locomotor coordination (Fig. 1h) that were previously correlated 

with elevated average walking speeds24. Drosophila locomotion is characterized by a pattern of 

intermittent periods of pauses and activity bouts19,25,26, in which the average speed of the fly is 

above a set threshold of 0.25 mm/second. An increased average speed may be related to changes 

in temporal patterns, including the number and/or duration of walking bouts25. We discovered that 

axenic flies display an increased average walking bout length in addition to a decreased average 

pause length, while remaining indistinguishable in the number of bouts compared to animals 

harboring a microbial community (Fig. 1c – f). These data reveal that the microbiota modulates 

walking speed and temporal patterns of locomotion in Drosophila. 
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3.4 SELECT BACTERIA MODULATE LOCOMOTOR BEHAVIOR 

 

The microbial community of Drosophila melanogaster contains 5 – 20 bacterial species27–

31. In laboratory-raised flies, two of the dominant species are Lactobacillus brevis and 

Lactobacillus plantarum28. Specific bacteria in this community affect distinct features of 

Drosophila physiology, and even closely related microbial taxa can exhibit unique biological 

influences on the host28,32–35. Accordingly, we examined whether locomotor performance was 

impacted differentially by individual bacterial species. Despite similar levels of colonization (Fig. 

2a), mono-association with L. brevis, but not L. plantarum, starting at eclosion is sufficient to 

correct speed and daily activity deficits in axenic flies (Fig. 1a – b, 1g, and 2b – e). However, these 

locomotor effects appear to be sex-specific as male flies did not exhibit significant changes in 

speed depending on microbial status (Fig. 2b), consistent with recent reports36. Varying the strain 

of L. brevis or host diet did not alter bacterial influences on host speed (Fig. 2c – e), and L. brevis 

is able to reverse changes in average pause length (Fig. 1c – f and 2f). Detailed gait analysis reveals 

that L. brevis-associated flies display comparable locomotor coordination to that of 

conventionally-reared flies (Fig. 1h and 2g).  

As flies are usually associated with more than one bacterial species, we evaluated L. brevis-

dependent changes in locomotion under different microbial conditions. Axenic flies co-colonized 

with a 1:1 mixture of L. brevis and L. plantarum display similar changes in speed to flies mono-

associated with L. brevis (Fig. 2h). Conventional and mono-associated flies with lower speeds also 

appear to exhibit increased levels of L. brevis (Fig. 3a – b). However, a similar trend was not found 

in flies mono-associated with L. plantarum (Fig. 3c).  In order to examine the locomotor effects of 

L. brevis in a complex microbial background, we supplemented conventional flies with either L. 

brevis or L. plantarum. Administration of L. brevis, and not L. plantarum, significantly reduced 

walking speeds compared to naïve conventional animals (Fig. 3d).  

Due to the diversity of bacterial species within the microbiota of Drosophila, we tested if 

other commensal or non-commensal bacteria also lower host locomotion upon colonization. Of 

the four remaining bacteria tested (Acetobacter pomorum, Acetobacter tropicalis, Escherichia 

coli, Enterococcus faecalis), only A. tropicalis and E. coli significantly reduced host walking speed 

(Fig. 4). The strain of A. tropicalis tested was isolated from the flies used in this study; however, 

it is not fully sequenced. Therefore, the sequenced Drosophila commensal L. brevis and the non-
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commensal E. coli were subsequently used to examine the involvement of specific bacterial 

factors. 

 

3.5 BACTERIAL-DERIVED PRODUCTS AFFECT HOST SPEED AND ACTIVITY  

 

Gut bacteria secrete molecular products that regulate aspects of host physiology, including 

immunity and feeding behavior37,38. To explore how microbes influence locomotion, we 

administered either cell-free supernatant (CFS) harvested from bacterial cultures or heat-killed 

bacteria to axenic flies. CFS alone from L. brevis (L.b CFS) reduces hyperactivity in axenic flies, 

while heat-killing bacteria ablates modulation of locomotion (Fig. 5a and 6a – e), demonstrating a 

requirement for metabolically active L. brevis. Treatment with MRS media alone or L.p CFS did 

not significantly lower host walking speed compared to axenic flies (Fig. 6a – f). The time course 

of administration is also important, as L.b CFS does not alter host locomotion if supplied less than 

24 hours prior to testing (Fig. 7a). However, varying the concentration of sucrose present in the 

testing chamber did not alter L.b CFS ability to reduce host walking speed (Fig. 7b). While 

previous studies have revealed that L. brevis produces uracil35, a molecule that affects the host 

immune response and may impact locomotion37,39, administration of physiologic levels of uracil 

to axenic flies did not alter walking speed (Fig. 6g).  

As CFS contains complex mixture of molecules, we employed a series of biochemical 

approaches to narrow down the bacterial factors involved. While amylase treatment did not alter 

the locomotor effects of L.b CFS, protease- or heat-treated L.b CFS no longer lowered host walking 

speed (Fig. 8a – d). CFS from L. brevis grown in minimal media decreased locomotion in axenic 

flies (Fig. 9a), limiting the complexity of the molecules potentially involved. Subsequent size-

dependent fractionation of L.b CFS using either dialysis or fast protein liquid chromatography 

(FPLC) revealed eluted fractions containing molecules greater than 30 kDa reduced locomotion 

(Fig. 9b – c). Multiple attempts to further identify the bacterial factors in this fraction using mass 

spectrometry proved unsuccessful. 
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3.6 XYLOSE ISOMERASE FROM L. BREVIS ALTERS HOST LOCOMOTION 

 

Bacterial metabolism of amino acids and carbohydrates is associated with changes in host 

behavior8,16; however, it is not known whether metabolic enzymes from bacteria influence host 

locomotion. Biochemical analysis of L.b CFS and comparative functional analysis of bacterial 

strains40–42 determined that bacterial locomotor effects are mediated via proteinaceous molecule(s) 

present in select bacteria, including L. brevis and E. coli (Fig. 8a – e). Subsequently, a screen of 

E. coli strains containing single gene mutations related to amino acid and carbohydrate metabolism 

identified xylose isomerase (Xi) as a candidate factor modulating locomotor behavior (Fig. 8f). Xi 

is an enzyme with four 43 kDa subunits that catalyzes the reversible isomerization of certain 

sugars, including the conversion of D-glucose to D-fructose43–45. Xi is also present only in L. brevis 

and E. coli of the sequenced bacterial strains tested (Fig. 8e). Administration of His-tagged Xi 

from L. brevis (Xi*) reduces locomotor behavior in axenic flies to levels similar to L.b CFS and 

conventional flies (Fig. 5b – c and 8g – h). The addition of His-tagged L-arabinose isomerase 

(Ai*), an enzyme that is not differentially expressed among the bacteria tested, is not sufficient to 

influence host speed in axenic flies (Fig. 5c). Furthermore, we generated a chromosomal deletion 

of the xylose isomerase gene xylA in L. brevis, and demonstrate the mutant strain lacks the ability 

to modulate host speed and daily activity (Fig. 5d and 8g). Neither the addition of the predicted 

products of Xi (D-fructose, D-glucose, D-xylose, and D-xylulose) alone, nor Xi inactivated by 

EDTA43 or paraformaldehyde treatment, reduces walking speed in axenic flies (Fig. 10a – d). We 

next sought to explore Xi activity through carbohydrate analysis of whole flies, which revealed 

those given Xi* exhibit increased ribose and reduced trehalose levels compared to axenic controls 

(Fig. 5e), with no differences in these sugars in the fly media (Fig. 10e). While EDTA-treated Xi* 

did not significantly alter trehalose levels, these flies still display heightened levels of ribose 

compared to axenic controls (Fig. 10f). Additionally, similar to previous findings46, conventional 

and L. brevis-colonized flies show reduced levels of trehalose compared to axenic groups (Fig. 

10g – h). Administration of trehalose alone abrogates microbial effects on host speed, while 

supplementation with arabinose or ribose did not (Fig. 5f and 10i – l). Collectively, these results 

demonstrate that xylose isomerase from L. brevis alters locomotion in Drosophila, likely via 

modulation of key carbohydrates, such as trehalose. 
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3.7 SUMMARY  

 

Herein, we found that the gut microbiota modulates locomotion in female D. melanogaster. 

Removal of the microbiota results in increased locomotion, and colonization with select bacterial 

species, including L. brevis, A. tropicalis, and E. coli, decreases host speed. Furthermore, 

microbial-derived factors, such as xylose isomerase (Xi), mediate changes in host motor behavior, 

potentially through altering the carbohydrate composition in flies. While other bacterial factors 

may exhibit similar effects on fly locomotion, we will further use L. brevis and Xi to examine the 

host pathways involved.      
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3.8 FIGURES 

Fig. 1. Select gut bacteria modulate locomotor behavior in flies.  

a, Experimental design unless otherwise stated. Flies were either left untreated or administered a 

single bacterial species or bacterial-derived factors. All treatments were supplied daily through 

application to the fly media (40 µL) for 6 days following eclosion and all assays were performed 

on day 7. b, Average speed of conventional (Conv), axenic (Ax), and L. plantarum (L.p) or L. 

brevis (L.b) mono-associated flies. Traces below are representative of individuals from each group 

and all groups were tested over a 10-min. period. Conv, n = 36; Ax, n = 36; L.p, n = 35; L.b, n = 

36. c, Average instantaneous speed of Conv, Ax, and L.p or L.b mono-associated flies. All groups 

were tested over a 10-min. period and dashes below represent 5-min. mark for each group. Conv, 

n = 23; Ax, n = 35; L.p, n = 23; L.b, n = 21. d – f, Analysis of the average bout length (d), average 

pause length (e), and number of bouts (f) over a 10- min. testing period for Conv, Ax, L.p, and L.b 

groups. Conv, n = 32; Ax, n = 36; L.p, n = 22; L.b, n = 20. g, Daily activity of Conv, Ax, L.p, and 

L.b groups (virgin female OregonR flies) over a 2-day light-dark cycle period each lasting 12 hrs., 

starting at time 0. White boxes represent lights on and gray boxes represent lights off. n = 

8/condition. h, Stance linearity index calculated for Conv, Ax, L.p, and L.b groups. Conv, n = 6; 

Ax, n = 7; L.p, n = 5; L.b, n = 5. Boxplots: lower and upper whiskers represent 1.5 interquartile 

range of the lower and upper quartiles, respectively; boxes indicate lower quartile, median, and 
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upper quartile, from bottom to top. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 

Kruskal-Wallis and Dunn’s post-hoc test was applied for statistical analysis. Data are 

representative of at least 3 independent trials for each experiment.   
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Figure 2. Effects of colonization level, bacterial strain, and host diet on L. brevis-modulation of 

locomotion. 

a, Colony forming units (CFU) per individual fly for L.p or L.b mono-associated flies. Error bars 

represent mean +/- S.E.M. n = 16/condition. b, Average speed of Conv, Ax, and L.b mono-

associated female or male flies. Females: Conv, n = 90; Ax, n = 92; L.b, n = 89; Males: Conv, n = 

100; Ax, n = 100; L.b, n = 95.  c – d, Average speed of Ax or flies mono-associated with L.b strains 

EW, Bb14, or P-2. n = 24/condition. e, Average speed of Ax or L.b mono-associated flies raised 

on different diet compositions from eclosion until day 7. n = 18/condition. f, Average speed during 
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walking bouts for Conv, Ax, L.p, and L.b groups. Conv, n = 32; Ax, n = 36; L.p, n = 22; L.b, n = 

20. g, Tripod index for Conv, Ax, L.p, and L.b groups. Conv, n = 6; Ax, n = 7; L.p, n = 5; L.b, n = 

5. h, Average speed of Ax flies or flies mono-associated with L.p or L.b alone or in combination 

(1:1). n = 24/condition. Boxplots: lower and upper whiskers represent 1.5 interquartile range of 

the lower and upper quartiles, respectively; boxes indicate lower quartile, median, and upper 

quartile, from bottom to top. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. Unpaired 

Student’s t-test (a), Kruskal-Wallis and Dunn’s (b – d and f – h), or Mann-Whitney U (e) post-hoc 

test was applied for statistical analysis. Data are representative of at least 3 independent trials for 

each experiment. 
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Fig. 3. L. brevis modulates host locomotion under conventional and mono-associated conditions.  

a, Average speed of two groups of Conv flies with corresponding levels of L.b in each group. n = 

6/condition. b – c, Correlation analysis for average speed of individual mono-associated flies with 

corresponding colony forming units of either L.b (b) or L.p (c). L.b, n = 35 (two-tailed Spearman 

correlation, * P = 0.02, line of best fit with 95% CI); L.p, n = 32 (two-tailed Spearman correlation, 

* P = 0.02, line of best fit with 95% CI). d, Average speed of naïve Conv flies or Conv flies 

supplemented with either L.p or L.b. n = 36/condition. Kruskal-Wallis and Dunn’s post-hoc test 

was applied for statistical analysis. Boxplots: lower and upper whiskers represent 1.5 interquartile 

range of the lower and upper quartiles, respectively; boxes indicate lower quartile, median, and 

upper quartile, from bottom to top. **** P < 0.0001.    
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Fig. 4. Select bacteria modulate host speed. 

Average speed of Ax flies and flies treated with L.b, L.p, A. pomorum (A.p), A. tropicalis (A.t), E. 

faecalis (E.f), or E. coli (E.c). n = 30/condition. Boxplots: lower and upper whiskers represent 1.5 

interquartile range of the lower and upper quartiles, respectively; boxes indicate lower quartile, 

median, and upper quartile, from bottom to top. *** P < 0.001, **** P < 0.0001. Kruskal-Wallis 

and Dunn’s post-hoc test was applied for statistical analysis. Data are representative of at least 2 

independent trials for the experiment. 
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Fig. 5. Xylose isomerase (Xi) from L. brevis alters host locomotion. 

a, Average speed of Ax, L.b mono-associated, and Ax flies treated with cell-free supernatant (CFS) 

from L.b or heat-killed (HK) L.b alone. Ax, n = 57; L.b, n = 42; L.b CFS, n = 36; L.b HK, n = 24. 

b, Average speed of Conv, Ax, and Ax flies treated with His-tagged xylose isomerase from L.b 

(Xi*, 100 µg/mL). Conv, n = 17; Ax, n = 45; Xi*, n = 29. c, Average speed of Ax and Ax flies 

treated with L.b CFS, Xi*, or His-tagged L-arabinose isomerase from L.b (Ai*,100 µg/mL). Ax, n 

= 31; L.b CFS, n = 12; Xi*, n = 28; Ai*, n = 13. d, Average speed of Ax and Ax flies treated with 

CFS from either WT L.b or xylA mutant L.b (L.b∆xylA) bacterial strains. Ax, n = 28; L.b CFS, n = 

29; L.b∆xylA CFS, n = 18. e, Carbohydrate levels in Ax and Xi*-treated flies. Each sample contains 

5 flies. Error bars represent mean +/- S.E.M. n = 5 samples/condition. f, Average speed of Ax flies 

and Xi*-treated Ax flies either left untreated or supplemented with trehalose (10 mg/mL) for 3 

days before testing. Ax, n = 16; Xi*, n = 18; Ax+Treh, n = 16; Xi*+Treh, n = 17. Boxplots: lower 

and upper whiskers represent 1.5 interquartile range of the lower and upper quartiles, respectively; 

boxes indicate lower quartile, median, and upper quartile, from bottom to top. * P < 0.05, ** P < 
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0.01, *** P < 0.001, **** P < 0.0001. Kruskal-Wallis and Dunn’s (a – d and f) or Mann-Whitney 

U (e) post-hoc test was applied for statistical analysis. Data are representative of at least 2 

independent trials. Gluc, glucose; Fruc, fructose; Ribo, ribose; Treh, trehalose.   
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Figure 6. Bacterial-derived products from L. brevis alter locomotion.  

a, Average speed of Ax, L.p or L.b mono-associated, and Ax flies treated with cell-free supernatant 

(CFS) from L.p or L.b. Ax, n = 45; L.p, n = 17; L.b, n = 42; L.p CFS, n = 17; L.b CFS, n = 16. b – 

e, Average speed (b), average bout length (c), average speed during walking bouts (d), and daily 

activity (e) of Ax and Ax virgin female OregonR flies treated with CFS from either L.p or L.b. 

White boxes represent lights on and gray boxes represent lights off. Speed: Ax, n = 23; L.p CFS, 

n = 20; L.b CFS, n = 19. Activity: Ax, n = 8; L.p CFS, n = 8; L.b CFS, n = 4. f, Average speed of 

Ax, L.b, L.b CFS-, and MRS-treated flies. n = 48/condition. g, Average speed of Ax, L.b mono-

associated, and Ax uracil-treated flies. n = 24/condition. Boxplots: lower and upper whiskers 

represent 1.5 interquartile range of the lower and upper quartiles, respectively; boxes indicate 

lower quartile, median, and upper quartile, from bottom to top. * P < 0.05, ** P < 0.01, *** P < 

0.001, **** P < 0.0001. Kruskal-Wallis and Dunn’s post-hoc tests was applied for statistical 

analysis. Data are representative of at least 2 independent trials for each experiment. 
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Fig. 7. The role of timing and testing environment in microbial effects on locomotion.  

a, Average speed of Ax flies and flies treated with L.b CFS 1 min., 1 hr., or 1 day prior to testing. 

n = 18/condition. b, Average speed of Ax and L.p or L.b CFS-treated flies tested in arenas with 0, 

1, or 5% sucrose and 1% agar. n = 24/conditions. Boxplots: lower and upper whiskers represent 

1.5 interquartile range of the lower and upper quartiles, respectively; boxes indicate lower quartile, 

median, and upper quartile, from bottom to top. * P < 0.05, ** P < 0.01. Kruskal-Wallis and Dunn’s 

post-hoc tests was applied for statistical analysis. Data are representative of at least 2 independent 

trials for each experiment. 
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Fig. 8. Modulation of locomotion by the bacterial enzyme, xylose isomerase. 

a – c, Average speed of Ax or Ax flies treated with unaltered, protease- (Typ, Trypsin; PK, 

Proteinase-K), or heat-treated (100°C) L.b CFS. n = 18/condition. d, Average speed of Ax flies 

administered with amylase-treated PBS (Ax), amylase-treated L.b CFS (+amyl L.b CFS), or 

unaltered L.b CFS (-amyl L.b CFS). n = 18/condition. e, Average speed of Ax flies or flies 

mono-associated with L.b, L.p, A. pomorum (A.p), or E. coli (E.c). n = 30/condition. f, Average 

speed of Ax and flies mono-associated with either WT E.c or a strain of E.c carrying a knockout 

of a single gene (∆tyrA, ∆trpC, ∆manX, ∆treA, ∆xylA). Ax, n = 60; E.c; n = 60; E.c∆tyrA, n = 24; 
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E.c∆trpC, n = 24; E.c∆manX, n = 48; E.c∆treA, n = 48; E.c∆xylA, n = 24. g, Daily activity of Conv, Ax, 

and Ax virgin female OregonR flies treated with L.b CFS, L.b∆xylA CFS, or Xi* over a 2-day light-

dark cycle period each lasting 12 hrs., starting at time 0. White boxes represent lights on and 

gray boxes represent lights off. Conv, n = 16; Ax, n = 23; L.b CFS, n = 18; L.b∆xylA CFS, n = 19; 

Xi*, n = 8. h, Average speed of Ax and Ax flies treated with L.b CFS or Xi*. Ax, n = 16; L.b 

CFS, n = 11; 10 µg/mL Xi*, n = 12; 100 µg/mL Xi*, n = 14. Boxplots: lower and upper whiskers 

represent 1.5 interquartile range of the lower and upper quartiles, respectively; boxes indicate 

lower quartile, median, and upper quartile, from bottom to top. * P < 0.05, ** P < 0.01, *** P < 

0.001, **** P < 0.0001. Kruskal-Wallis and Dunn’s post-hoc test was applied for statistical 

analysis. Data are representative of at least 2 independent trials for each experiment. 
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Fig. 9. Fractionation of L. brevis-derived products.   

a, Average speed of Ax flies and flies treated with L.b CFS grown in MRS or minimal media. n 

= 24/condition. b, Average speed of Ax, L.p or L.b mono-associated flies, and flies treated with 

either the fraction of L.b CFS above or below 3.5 kDa. n = 48/condition. c, Average speed of Ax 

and flies treated with L.b CFS or the fraction of L.b CFS between approximately 30 to 100 kDa 

or less than 30 kDa. n = 96/condition. Boxplots: lower and upper whiskers represent 1.5 

interquartile range of the lower and upper quartiles, respectively; boxes indicate lower quartile, 

median, and upper quartile, from bottom to top. * P < 0.05, ** P < 0.01, **** P < 0.0001. 

Kruskal-Wallis and Dunn’s post-hoc test was applied for statistical analysis. Data are 

representative of at least 2 independent trials for each experiment. 
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Figure 10. Xylose isomerase activity and key carbohydrates are involved in Xi-mediated changes 

in locomotion. 

a – b, Average speed of Ax and Ax flies treated with Xi* or 100 µg of D-fructose, D-glucose, D-

xylose, or D-xylulose. (a) Ax, n = 16; Xi*, n = 13; D-fructose, n = 13; D-glucose, n = 15. (b) Ax, 

n = 26; Xi*, n = 21; D-xylose, n = 22; D-xylulose, n = 18. c, Average speed of Ax and Ax flies 

treated with either Xi* or Xi* inactivated through treatment with 5 mM EDTA. Ax, n = 21; Xi*, 

n = 16; Xi*+EDTA, n = 18. d, Average speed of Ax and Ax flies treated with Xi*, 1.6% PFA, or 

Xi* treated with 1.6% PFA. Ax, n = 27; Xi*, n = 19; Xi*+PFA, n = 21; PFA, n = 21. e, 
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Carbohydrate levels in Ax and Xi*-treated fly media. Each sample is from 0.1 g of fly media and 

represents a separate vial. Error bars represent mean +/- S.E.M. n = 3 samples/condition. f, 

Carbohydrate levels in Ax, Xi*, and EDTA-treated Xi* flies. Each sample contains 5 flies. Error 

bars represent mean +/- S.E.M. n = 5 samples/condition. g, Trehalose levels in Conv, Ax, and Xi*-

treated flies. Error bars represent mean +/- S.E.M. Conv, n = 9 samples; Ax, n = 6 samples; Xi*, 

n = 3 samples. h, Trehalose levels in Ax and L.b colonized flies. Error bars represent mean +/- 

S.E.M. n = 15 samples/condition. i, Average speed of Ax and Xi*-treated flies supplemented with 

either trehalose (Treh, 10 mg/mL) or arabinose (Ara, 10 mg/mL) for 3 days before testing. Ax, n 

= 40; Xi*, n = 40; Xi*+Treh, n = 39; Xi*+Ara, n = 18. j, Average speed of Ax, Xi*-, or ribose- 

(Ribo, 10 mg/mL) treated flies. Ax, n = 29; Xi*, n = 25; Ribo, n = 12. k, Average speed of Conv 

and Ax flies supplemented with trehalose (Treh, 10 mg/mL) for 3 days before testing. n = 

30/condition. l, Average speed of Ax and Xi* or EDTA-treated Xi* Ax flies subsequently left 

untreated or supplemented with trehalose (Treh, 10 mg/mL) for 3 days before testing. n = 

30/condition. Boxplots: lower and upper whiskers represent 1.5 interquartile range of the lower 

and upper quartiles, respectively; boxes indicate lower quartile, median, and upper quartile, from 

bottom to top. * P < 0.05, ** P < 0.01, *** P < 0.001. Kruskal-Wallis and Dunn’s (a – d, f – g, i – 

l) or a Mann-Whitney U (e and h) post-hoc test was applied for statistical analysis. Data are 

representative of at least 2 independent trials for each experiment. Gluc, glucose; Fruc, fructose; 

Mann, mannose; Xylu, xylulose; Treh, trehalose; Ribo, ribose. 
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3.9 METHODS 

Fly Stocks and Rearing  

We obtained the Canton-S (#64349) line from Bloomington Drosophila Stock Center at 

Indiana University. Other fly stocks used were OregonR (kindly provided by A. A. Aravin and K. 

Fejes Tόth).  

Flies were cultured at 25˚C and 60% humidity on a 12-hr. light:12-hr. dark cycle and kept 

in vials containing fresh fly media made at California Institute of Technology consisting of 

cornmeal, yeast, molasses, agar, and p-hydroxy-benzoic acid methyl ester. Other dietary 

compositions used were created through altering this standard diet or the Nutri-Fly “German Food” 

Formula (Genesee Scientific) and were calculated using previously published nutritional data47. 

Axenic flies were generated using standard methods23,30,32,35. Briefly, embryos from conventional 

flies were washed in bleach, ethanol, and sterile PBS before being cultivated on fresh irradiated 

media23. Axenic stocks were maintained through the application of an irradiated diet supplemented 

with antibiotics (500 μg/ml ampicillin, Putney; 50 μg/ml tetracycline, Sigma; 200 μg/ml rifamycin, 

Sigma) for at least one generation. For experiments, virgin female flies were collected shortly after 

eclosion and placed at random into vials (10 – 15 flies per vial) containing irradiated media without 

antibiotics. Vials were changed every 3 – 4 days using sterile methods. The antibiotic-

supplemented diet was applied to conventional flies shortly after eclosion to generate antibiotic-

treated (ABX) flies. Both antibiotic-treated and axenic flies were tested for contaminants through 

plating animal lysates on Man, Rogosa, and Sharpe (MRS, BD Biosciences); Mannitol (25 g/L 

Mannitol, Sigma; 5 g/L Yeast extract, BD Biosciences; 3 g/L Peptone, BD Biosciences); and 

Luria-Bertani (LB, BD Biosciences) nutrient agar plates. 

Bacterial Strains 

Lactobacillus brevis EW, Lactobacillus plantarum WJL, and Acetobacter pomorum were 

obtained from laboratory-reared flies in the laboratory of Won-Jae Lee (Seoul National 

University)35,40,41. Lactobacillus brevisBb14 (ATCC, #14869) and Lactobacillus brevisP-2 (ATCC, 

#27305) were isolated from human feces and fermented beverages, respectively. Acetobacter 

tropicalis was isolated from conventional flies in the Mazmanian laboratory and Enterococcus 
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faecalis was isolated from mice. Escherichia coliK12 (CGSC, #7636) was grown in LB broth and 

Escherichia coli∆tyrA (CGSC, #9131), Escherichia coli∆trpC (CGSC, #10049), Escherichia coli∆manX 

(CGSC, #9511), Escherichia coli∆treA (CGSC, #9090), and Escherichia coli∆xylA (CGSC, #10610)42 

were grown in LB broth supplemented with kanamycin (50 μg/mL). Lactobacillus brevis and 

Lactobacillus plantarum cultures were grown overnight in a standing 37˚C incubator in MRS broth 

(BD Biosciences). For mono-associations, fresh stationary phase bacterial cultures (OD600 = 1.0, 

40 μl) were added directly to fly vials. Associations with 2 bacterial species were performed in a 

1:1 mixture. For heat-killed experiments, fresh cultures of Lactobacillus brevis (OD600 = 1.0) 

were washed 3 times in sterile PBS, incubated at 100˚C for 30 min., and cooled to room 

temperature before administering to flies. All treatments were supplied daily through application 

to the fly media (40 µL) for 6 days following eclosion. 

Bacterial Supernatant Preparations 

Cell-free supernatants (CFS) of specified bacterial strains were harvested from bacterial 

cultures (OD600 = 1.0) by centrifuging at 13,000 x g for 10 min. and subsequent filtration through 

a 0.22-µm sterile filter (Millipore). CFS was dialyzed in MilliQ water with a 3.5 kDa membrane 

(Thermo Scientific) overnight at 4˚C to generate L.b CFS and L.p CFS samples. Each of these 

treatments was supplied daily through application to the fly media (40 µL) for 6 days following 

eclosion. 

Heat and Enzymatic Treatment of L.b CFS 

For heat-inactivation experiments, freshly prepared L.b CFS samples were incubated at 

100˚C for 30 min. and cooled to room temperature before administering to flies. For proteinase K 

(PK) and trypsin (Typ) treatment, overnight dialysis of CFS was performed in Tris-HCl (pH 8 for 

PK and pH 8.5 for Typ) after which samples were treated with either PK (100 μg/mL, Invitrogen) 

or Typ (0.05 μg/mL, Sigma) at 37˚C for 24 or 7 hrs., respectively. A proteinase inhibitor cocktail 

(Sigma) was added to stop the reaction and subsequently removed through overnight dialysis 

(Thermo Scientific) at 4˚C in MilliQ water. Aliquots of the samples were run on a 4-20% Tris-

glycine gel (Invitrogen) to confirm protein cleavage. Controls followed the same protocol except 

for the addition of proteinase K or trypsin. For amylase digests, 20 μl of 100 mU/mL amylase 
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(Sigma) was added to either freshly prepared L.b CFS or a PBS control for 30 min. and inhibited 

through lowering the pH to 4.5. Each of these treatments was supplied daily through application 

to the fly media (40 µL) for 6 days following eclosion. 

Production of His-tagged proteins (Xi* and Ai*) 

An expression plasmid for the production of His-tagged xylose isomerase from L.b, here 

termed as Xi*, was constructed by amplification of its gene and cloning the resulting PCR product 

in the pQE30 cloning vector (Qiagen) using SLIC ligation. The following primer sequences were 

used for the construct: 5’-

CGCATCACCATCACCATCACGGATCTTACTTGCTCAACGTATCGATGATGTAA-3’ and 

5’-GGGGTACCGAGCTCGCATGCGGATCATGACTGAAGAATACTGGAAAGGC-3’. 

Conformation of the resulting plasmid was verified and transformed into E. coli (Turbo, NEB). 

This strain was then grown in LB containing ampicillin (100 µg/mL) and chloramphenicol (25 

µg/mL) with shaking at 220 rpm at 37˚C for 1 hr. before the addition of 0.1 mM IPTG. After 4 

hrs. of shaking at 220 rpm at 37˚C, cells were pelleted and lysed using lysozyme (Sigma) and bead 

beating with matrix B beads (MP Biomedicals) for 45 sec. Supernatant was collected after 

centrifugation and the Xi* protein purified through metal affinity purification under native 

conditions using HisPur™ Ni-NTA Spin Columns (Thermo Scientific). Protein purification was 

verified through western blot using an Anti-6X His tag® antibody (Abcam) and quantified using 

a Pierce BCA Protein Assay kit (Thermo Scientific) after which protein was stored at -20˚C. 

Expression and purification of His-tagged L-arabinose isomerase from L.b, here termed as Ai*, 

was performed under the exact same conditions and the following primer sequences were used for 

the construct: 5’-

GGGGTACCGAGCTCGCATGCGGATCATGTTATCAGTTCCAGATTATGAATTTTGG-3’ 

and 5’-CGCATCACCATCACCATCACGGATCCTTACTTGATGAACGCCTTTGTCAT-3’. 

For EDTA treatment, purified Xi* was combined with 5 mM EDTA for 44 hrs. at 4°C and 

subsequently dialyzed prior to administering to flies through application to the fly media (40 µL) 

for 6 days following eclosion. For paraformaldehyde (PFA) treatment, 1.6% PFA was added to 

Xi* at room temperature for 2 hrs. and subsequently dialyzed prior to administering to flies through 

application to the fly media (40 µL) for 6 days following eclosion. 
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Generation of xylA deletion mutant (∆xylA) 

~1-kb DNA segments flanking the region to be deleted were PCR amplified using the 

following primers: 5’-ATTCCAATACTACCACTAGCAACGACATCCGTAAAGT-3’; 5’-

AATTCGAGCTCGGTACCCGGGGATCCACAATCAGAATTGATCGCGGCAAC-3’; 5’-

TCGTTGCTAGTGGTAGTATTGGAATCCTAAACCAGATTTCTTATCTTGATG-3’; 5’-

GCCTGCAGGTCGACTCTAGAGGATCCCGCAAGTCTAGTGCGGCT-3’. The forward 

primers were designed using to be partially complementary at their 5’ ends by 25 bp. The fused 

PCR product was cloned into the BamHI site of the Lactobacilli vector pGID023 and mobilized 

into L.b. Colonies selected for the erythromycin (Erm) resistance, indicating integration of the 

vector into the host chromosome were re-plated onto MRS+Erm and subsequently passaged over 

5 days and plated onto MRS+Erm. Colonies selected for Erm resistance were passaged again in 

MRS alone over 3 days and plated on MRS. Resulting colonies were plated in replica on MRS and 

MRS+Erm. Erm sensitive colonies were screened by PCR to distinguish wild-type revertants from 

strains with the desired mutation.  

Bacterial Load Quantification 

Intestines dissected from surface sterilized 7-day-old adult female flies were homogenized 

in sterile PBS with ~100 µl matrix D beads using a bead beater. Lysate dilutions in PBS were 

plated on MRS agar plates and enumerated after 24 hrs. at 37˚C.  

Locomotion Assays 

Locomotor behavior was assayed through three previously established methods: the 

Drosophila Activity Monitoring System (DAMS, Trikinetics)48,49, video-assisted tracking26,50,51, 

and gait analysis24.  

Activity measurements 

7-day-old individual female flies were cooled on ice for 1 min. and transferred into 

individual vials (25 x 95 mm) containing standard irradiated media. Tubes were then inserted and 

secured into Drosophila activity monitors (DAMS, Trikinetics) and kept in a fly incubator held at 
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25˚C. Flies were allowed to acclimate to the new environment for 1 day before testing and midline 

crossing was sampled every min. Average daily activity was calculated from the 2 days tested and 

actograms were generated using ActogramJ49. 

Video-assisted tracking 

Individual female flies were cooled on ice for 1-2 min. before being introduced under 

sterile conditions into autoclaved arenas (3.5 cm diameter wells), which allowed free movement 

but restricted flight. After a 1 hr. acclimation period, arenas were placed onto a light box and 

recorded from above for a period of 10 min. at 30 frames per sec. All testing took place between 

ZT 0 and ZT 3 (ZT, Zeitgeber time; lights are turned on at ZT 0 and turned off at ZT 12) and both 

acclimation and testing occurred at 25˚C unless otherwise stated. Videos were processed using 

Ethovision software or the Caltech FlyTracker (http://www.vision.caltech.edu/Tools/FlyTracker/).  

Bout analysis was performed using custom python scripts (available upon request). The 

velocity curve was smoothed from the acquired video at 30 frames per sec. using a 15 sec. moving 

average window. A minimum walking speed of 0.25 mm/s was given below which flies were 

moving but not walking (‘pause bouts’) and above which they were designated as walking 

(‘walking bouts’). Lengths were measured as time between bout onset and offset. 

Gait analysis 

Experiments used an internally illuminated glass surface with frustrated total internal 

refraction (fTIR) to mark the flies' contact with the glass24. The movement of the flies and their 

contact was recorded with a high-framerate camera, and videos were quantified using the 

FlyWalker software package. For further details of the parameters see 24. All groups consisted of 

7-day-old female flies and were tested at room temperature.  

Measurement of carbohydrate levels 

Fly (5 flies per sample) and fly media (0.1 g per sample) were homogenized in TE Buffer 

(10 mM Tris, pH = 8, 1 mM EDTA) using a bead beater for 45 sec. followed by centrifugation at 
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7,000 x g for 3 min. The supernatant was heat treated for 30 min. at 72°C before being stored at -

80°C before subsequent clean-up steps prior to running on HPAEC-PAD. 

100 µL of fly or fly media homogenate sample in TE buffer was diluted with 200 µL of 

UltraPure distilled water (Invitrogen) and sonicated to get uniform solution. Samples were 

centrifuged at 2,000 rpm for 15 sec. to precipitate insoluble material. 100 µL of the sample were 

filtered through pre-washed Pall Nanosep® 3K Omega centrifugal device (MWCO 3KDa, Sigma-

Aldrich) for 15 min. at 14,000 rpm, 7°C. The filtrate was dried on Speed Vac. The dry sample was 

reconstituted in 300 µL of UltraPure water and loaded onto pre-washed Dionex OnGuard® IIH 

1cc cartridge. The flow through and 2x1 mL elution with Ultrapure water was collected in the 

same tube and lyophilized. 

Monosaccharide analysis was done using Dionex CarboPac™ PA1 column (4 x 250 mm) 

with PA1 guard column (4 x 50 mm). Flow rate 1 mL/min. Pulsed amperometric detection with 

gold electrode. The elution gradient was as follows: 0 min - 20 min, 19mM sodium hydroxide; 20 

min. - 50 min., 0 mM - 212.5 mM sodium acetate gradient with 19 mM sodium hydroxide; 50 min. 

- 65 min., 212.5 mM sodium acetate with 19 mM sodium hydroxide; 65 min. - 68 min., 212.5 mM 

- 0 mM sodium acetate with 19 mM sodium hydroxide; 68 min. - 85 min., 19 mM sodium 

hydroxide 

Trehalose, arabinose, galactose, glucose, mannose, xylose, fructose, ribose, sucrose and 

xylulose were used as standards. The monosaccharides were assigned based on the retention time 

and quantified using Chromeleon™ 6.8 chromatography data system software. In Figure 10g – h, 

measurements of trehalose levels were performed following the same isolation procedure and 

subsequently processed using a Trehalose Assay Kit (Megazyme) according to the manufacturer’s 

instructions. 

For experiments treating flies with trehalose, arabinose or ribose, groups of conventional, 

axenic, or axenic flies previously treated with Xi* were administered with trehalose, arabinose, or 

ribose (10 mg/mL, Sigma) through application to the fly media (40 µL) for every day for 3 days 

before testing.  
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Statistical Analysis 

All statistical analysis was performed using Prism Software (GraphPad, version 7). Sample 

size was based on data from pilot experiments and experimenters were not blinded as almost all 

data acquisition and analysis was automated. To analyze two sets of data following a normal 

distribution, we used an unpaired two-sided Student’s t-test. If the data did not follow a normal 

distribution, a non-parametric two-sided Mann-Whitney U test was used. Comparisons among 3 

or more data sets and comparisons with more than one variant were analyzed using One-way 

ANOVA or Two-way ANOVA, respectively. If statistical significance was identified for the 

variables tested, then a Dunn’s post-hoc test was performed. ANOVAs on normally distributed 

data were followed by a Bonferroni post-hoc test to determine significant differences between 

genotypes. Boxplots: lower and upper whiskers represent 1.5 interquartile range of the lower and 

upper quartiles, respectively; boxes indicate lower quartile, median, and upper quartile, from 

bottom to top. Bar graphs are presented as mean values +/- S.E.M. 
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C h a p t e r  4    

HOST PATHWAYS MEDIATING MICROBIAL MODULATION OF 

LOCOMOTION  

 

Schretter, C. E., J. Vielmetter, I. Bartos, Z. Marka, S. Marka, S. Argade, and S. K. Mazmanian 

A modified version of this chapter along with Chapter 3 was submitted in “A gut microbial factor 

modulates locomotor behavior in Drosophila.” 
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4.1 INTRODUCTION 

 

The microbiota is an important regulator of host physiology, multiple aspects of which 

directly or indirectly alter locomotion. Microbial factors, such as xylose isomerase (Xi), may signal 

through these host pathways to subsequently alter motor behavior. For example, a reduction in 

host speed is also found in instances of ill health and could indicate recruitment of immune 

pathways involved in sickness behavior1. The gut microbiota also regulates host metabolism; 

therefore, increased locomotion upon removal of the gut microbiota may suggest a starvation-like 

state regulated by similar neuromodulators2. In order to investigate the host pathways involved, 

we broadly examined the importance of development, immunity, feeding behavior, and 

neuromodulators in mediating microbial effects on motor behavior.  

 

4.2 POST-ECLOSION MICROBIAL SIGNALS DECREASE HOST LOCOMOTION 

 

To investigate whether the effects of microbial exposure are dependent on host 

developmental stage, we mono-colonized flies at 3 – 5 days post-eclosion (Fig. 1a), a time point 

in which the development of the gastrointestinal tract and remodeling of the nervous system are 

complete3–5. Colonization with L. brevis in fully developed female flies decreases locomotor speed 

and average walking bout length to levels similar in flies treated immediately following eclosion 

(Fig. 1b – e). Changes in locomotion are likely independent of bacterial effects on host 

development, as conventionally-reared flies treated after eclosion with broad spectrum antibiotics 

exhibit similar walking speeds to animals born under axenic conditions (Fig. 1f). Administration 

of antibiotics increases fly locomotion in two different wild-type lines (Fig. 1g). Furthermore, 

colonization with L. brevis, but not L. plantarum, after the removal of antibiotics reduces 

locomotor behavior to levels similar to conventional flies (Fig. 1h – m). From these data, we 

conclude that locomotion is modulated by select bacterial species of the Drosophila microbiome 

and is mediated by active signaling, rather than developmental influences. 
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4.3 INTERACTION BETWEEN LOCOMOTOR PHENOTYPES AND OTHER ASPECTS 

OF HOST PHYSIOLOGY 

 

Gut bacteria secrete molecular products that regulate multiple aspects of host physiology, 

including immunity and feeding behavior6,7. As colonization with L. brevis and treatment with 

either cell-free supernatant (CFS) or Xi from L. brevis reduced host locomotion in flies (Chapter 

3), we subsequently used this bacterium and its products to examine the host pathways involved. 

Changes in mass can alter motor behavior; however, we did not find any significant differences in 

weight between L.b CFS-treated flies and axenic or L.p CFS-treated groups (Fig. 2a). Total protein 

levels are also similar between these groups (Fig. 2b). While the number of excreta was increased 

in axenic flies, it did not alter upon colonization with either L. brevis or L. plantarum (Fig. 3). We 

next explored the involvement of immunity and feeding behavior in microbial-mediated 

locomotion. Depletion of the microbiome in Immune Deficiency (IMD) and Toll knockout flies 

using antibiotics results in similar increases in walking speed compared to wild-type flies (Fig. 4a 

– b). There are no differences in the expression of anti-microbial peptides or the dual oxidase gene, 

Duox, in L.b CFS-treated axenic flies (Fig. 4c). Moreover, while food intake may be influenced by 

bacterial species and can inhibit locomotor behavior7–9, there is no significant change in the amount 

of food ingested by L.b CFS-treated flies compared to controls (Fig. 4d – e). Although L.b CFS 

did not cause changes in antimicrobial peptides or food intake, xylose isomerase (Xi) could alter 

aspects of host health that contribute to changes in locomotion. While L.b CFS did increase the 

number of apoptotic cells similar to previous reports10, no changes in survival or intestinal cellular 

apoptosis occur at the time of motor testing in Xi*-treated flies compared to controls (Fig. 5a – b). 

However, administration of Xi* throughout life did lead to an overall reduction in survival 

compared to axenic flies starting at day 42, suggesting Xi negatively affects host health at later 

time points (Fig. 5a).   

The microbiota is known to affect circadian oscillations of host metabolites and 

transcription of certain genes in the epithelium11,12. Although recent work has revealed conflicting 

findings on changes in sleep in mice and Drosophila13,14, alterations in sleep:wake behavior could 

contribute to our previous results. Axenic female flies do exhibit a significant reduction in total 

sleep compared to conventional and L. brevis mono-colonized flies during the light phase (Fig. 
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6a). However, Xi*-treatment did not significantly alter sleep in axenic flies (Fig. 6b), indicating 

that other microbial factor(s) could contribute to changes in sleep:wake behavior in female flies. 

 

4.4 OCTOPAMINE SIGNALING MEDIATES XYLOSE ISOMERASE-INDUCED 

CHANGES IN LOCOMOTION  

 

Specific neuronal pathways regulate complex behaviors in animals2,15–17, and can be 

modulated by peripheral inputs, including intestinal and circulating carbohydrate levels18,19. To 

explore the involvement of various neuronal subsets in bacterial-induced motor behavior, we used 

the thermosensitive cation channel Drosophila TRPA1 (dTRPA1) to activate neuronal populations 

previously implicated in locomotion15,20 via a repertoire of GAL4-driver lines. In combination with 

UAS-dTrpA1 at the activity-inducing temperature (27˚C), we observed that activation of only two 

GAL4 lines that both label octopaminergic neurons, tyrosine decarboxylase (Tdc2) and tyramine 

beta-hydroxylase (Tβh), override L. brevis modulation of locomotion (Fig. 7a and 8). Accordingly, 

activation of Tdc-expressing cells abrogated the effects of Xi*-treatment and differences between 

conventional and antibiotic-treated groups (Fig. 7b – c and 9). The ability of L. brevis to decrease 

locomotion, however, is not changed by the activation of dopaminergic, serotoninergic, 

GABAergic, or cholinergic neurons (Fig 7a and 8e – h). The administration of octopamine to 

conventional, Xi*-, or L.b CFS-treated flies increases host walking speed to levels similar to that 

of axenic flies (Fig. 7d – e and 10a). Further, Tdc2 and Tβh transcript levels are reduced in RNA 

extracted from the heads of Xi*- and L.b CFS-treated flies (Fig. 10b – c). As Tdc and Tβh are 

important for octopamine synthesis, these results further link octopamine to Xi-induced locomotor 

effects. Octopamine and tyramine are involved in multiple aspects of host physiology, including 

metabolism and behavior, and display opposite roles in regulating certain motor behaviors21–29. 

While administration of tyramine did not influence walking speed in Xi* and L.b CFS conditions 

(Fig. 7e and 10d), antibiotic-treated flies carrying a null allele for Tdc (Tdc2RO54) no longer display 

differences in locomotion upon supplementation with Xi* (Fig. 7f), suggesting an indirect role for 

tyramine. Limiting the expression of a transgene for diphtheria toxin (DTI) to octopaminergic and 

tyraminergic neurons outside of the ventral nerve cord24,30 results in equivalent speeds between 

antibiotic- and Xi*-treated flies (Fig. 10e), implicating the involvement of neurons in the 

supraesophageal and the subesophageal zones in microbial effects on motor behavior. Octopamine 
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signaling is necessary for locomotor changes, as axenic flies administered with mianserin, an 

octopamine receptor antagonist, and antibiotic-treated flies carrying a null allele for Tβh (TβHM18) 

or expressing Tβh RNAi no longer respond to Xi* or L.b CFS treatment (Fig. 7g and 10f – h). 

Similar results are also found under conventional conditions compared to antibiotic-treated groups 

(Fig. 10i – k). Collectively, we conclude that defined products of the microbiome, and specifically 

Xi, negatively regulate octopamine signaling to control Drosophila locomotion (Fig. 10l). 

 

4.5 CONCLUSION 

The microbiome influences neurodevelopment, regulates behavior, and contributes to 

various neurologic and neuropsychiatric disorders. Herein, we demonstrate that gut bacteria 

modulate locomotion in female Drosophila. The depletion of the gut microbiota increases host 

exploratory behavior, and the commensal bacterium L. brevis is sufficient to regulate locomotion. 

In addition, we establish that xylose isomerase from L. brevis corrects the locomotor phenotypes 

of axenic flies, a process that is mediated by trehalose and octopamine signaling in the host. 

However, further work is needed to identify the exact neurons and neuronal mechanisms involved, 

including potential changes in firing patterns. It would also be important to clarify the sex-specific 

aspects of these microbial effects on locomotion14. It is intriguing that germ-free mice display 

hyperactivity similar to axenic Drosophila, and specific bacteria have been shown to decrease 

locomotor activity in mice13,31,32, although the neuronal pathways implicated in mammalian 

systems have yet to be identified. The mammalian counterpart of octopamine, noradrenaline, 

modulates locomotion2,33,34, potentially implicating adrenergic circuitry as a conserved pathway 

that is co-opted by the microbiome in flies and mammals. In addition to motor behavior, 

octopamine signaling is linked to sugar metabolism, and trehalose serves as a major energy source 

for Drosophila21,35. Xylose isomerase may therefore facilitate adrenergic regulation of host 

physiology through orchestrating metabolic homeostasis, such as via altering internal energy 

storage, although additional work is needed to define how the microbiome mediates interactions 

between sugar metabolism and octopamine signaling. The link between metabolic state and 

locomotion suggests that peripheral influences on metabolism, including the microbiota, may 

signal via neuronal pathways that modify physical activity.   
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4.6 FIGURES 

Figure 1. Post-eclosion microbial signals decrease host locomotion. 

a, Experimental design (b – e) in which Ax flies were associated with L.b either directly after (day 

0, dark green arrows) or 3 – 5 days (light green arrows) following eclosion. b – d, Average speed 

(b), average bout length (c), and average speed during walking bouts (d) of Ax and flies mono-

associated with L.b at either day 0 or day 3 – 5. n = 46/condition. e, Average speed of Conv, Ax, 

and flies mono-associated with L.b at either day 0 or day 3 – 5. n = 46/condition f, Average speed 

of Conv, Ax, and Conv flies treated with antibiotics for 3 days after eclosion (ABX). n = 

30/condition. g, Average speed of OregonR (OR) and Canton S (CS) Conv flies and Conv flies 

treated with antibiotics for 3 days after eclosion (ABX). n = 15/condition. h, Experimental design 

(i – m) in which conventionally-reared flies were treated with antibiotics (ABX, black arrow) for 

3 days following eclosion. All flies were subsequently placed on irradiated media either without 

supplementation (ABX) or associated with L.p (blue arrows) or L.b (green arrows) for the 3 days 
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prior to testing. i, Average speed of Conv and Conv flies treated with antibiotics (ABX) for 3 days, 

after which flies were either left naïve or colonized with L.p or L.b. Conv, n = 25; ABX, n = 29; 

L.p, n = 24; L.b, n = 35. j – l, Average speed (j), average bout length (k), and average speed during 

walking bouts (l) calculated for ABX, L.p-, and L.b-associated flies. n = 36/condition. m, Daily 

activity of ABX, L.p and, L.b groups (virgin female OregonR flies) over a 2-day light-dark cycle 

period each lasting 12 hrs., starting at time 0. White boxes represent lights on and gray boxes 

represent lights off. n = 6/condition. Boxplots: lower and upper whiskers represent 1.5 interquartile 

range of the lower and upper quartiles, respectively; boxes indicate lower quartile, median, and 

upper quartile, from bottom to top. * P < 0.05, ** P < 0.01. Kruskal-Wallis and Dunn’s (b – f and 

i – m) or Mann-Whitney U (g) post-hoc test was applied for statistical analysis. Data are 

representative of at least 2 independent trials for each experiment.  
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Figure 2. Mass and protein levels are not significantly altered by treatment with microbial 

metabolites.  

a, Mass of Ax and L.p CFS- or L.b CFS-treated Ax flies. Error bars represent mean +/- S.E.M. 

Ax, n = 9; L.p CFS, n = 9; L.b CFS, n = 8. b, Protein levels in whole Ax and L.p CFS- or L.b 

CFS-treated Ax flies. n = 6 samples/condition. Error bars represent mean +/- S.E.M. Kruskal-

Wallis and Dunn’s post-hoc test was applied for statistical analysis. Data are representative of at 

least 2 independent trials for each experiment.  
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Figure 3. Colonization with L. plantarum or L. brevis alone does not alter excretion number.  

Number of excreta per fly for Conv, Ax, and L.p or L.b colonized flies. Conv, n = 6; Ax, n = 10; 

L.p, n = 13; L.b, n = 10. Boxplots: lower and upper whiskers represent 1.5 interquartile range of 

the lower and upper quartiles, respectively; boxes indicate lower quartile, median, and upper 

quartile, from bottom to top. * P < 0.05. Kruskal-Wallis and Dunn’s post-hoc test was applied for 

statistical analysis. Data are representative of at least 2 independent trials for each experiment.  
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Figure 4. The role of food intake, anti-microbial peptides, as well as the Immune Deficiency (IMD) 

and Toll pathways in locomotor phenotypes.  

a, Average speed of wild-type background (OregonR, Wt) and Imd-/- flies placed on either media 

alone or media supplemented with antibiotics (ABX) following eclosion. n = 24/condition. b, 

Average speed of wild-type background (Canton S, Wt) and Ti-/- flies placed on either media alone 

or media supplemented with antibiotics (ABX) following eclosion. n = 18/condition. c, qRT-PCR 

of immune-related transcripts in Ax and Ax L.p- or L.b-CFS treated flies. Error bars represent 

mean +/- S.E.M. n = 6 samples/condition. d, Amount ingested by Ax and Ax L.p- or L.b-CFS 

treated flies over 10 trials during MAFE assay. n = 6/condition. e, Intestinal content measured 

through supplementing the diet of Conv, Ax, and L.p- or L.b-CFS treated Ax flies with blue food 

dye. Conv, n = 7; Ax, n = 13; L.p CFS, n = 7; L.b CFS, n = 10. Boxplots: lower and upper whiskers 

represent 1.5 interquartile range of the lower and upper quartiles, respectively; boxes indicate 

lower quartile, median, and upper quartile, from bottom to top. * P < 0.05, ** P < 0.01, **** P < 
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0.0001. Mann-Whitney U (a – b), One-way ANOVA and Bonferroni (c), or Kruskal-Wallis and 

Dunn’s (d – e) post-hoc test was applied for statistical analysis. Data are representative of at least 

2 independent trials for each experiment. Dpt, Diptericin; Drs, Drosomycin; Cec, Cecropin; AttA, 

Attacin-A; Duox, Dual Oxidase. 
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Figure 5. Lifespan and percentage of intestinal apoptotic cells under various microbial conditions. 

a, Lifespan measurements for Ax and Ax treated with L.p CFS, L.b CFS, or Xi*. Asterisks above 

represent significance at the time point measured by Kruskal-Wallis and Dunn’s post-hoc test. 

Inset image shows survival at day 7. Ax, n = 4 groups; L.p CFS, n = 5 groups; L.b CFS, n = 5 

groups; Xi*, n = 4 groups. b, Percentage of apopotic cells in the intestine of Conv, Ax, and Ax 

treated with L.p CFS, L.b CFS, or Xi*. Error bars represent mean +/- S.E.M. Conv, n = 7; Ax, n = 

5; L.p CFS, n = 4; L.b CFS, n = 6; Xi*, n = 6. * P < 0.05.  Kruskal-Wallis and Dunn’s post-hoc 

test was applied for statistical analysis. Data are representative of at least 2 independent trials for 

each experiment. 
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Figure 6. Sleep analysis for mono-colonized flies and flies administered with bacteria factors. 

a, 24-hour sleep profiles of Conv, Ax, L.p-, and L.b-colonized virgin female OregonR flies with 

the number of sleep bouts in 60 min. time window and total sleep in the light or dark phase. n = 

8/condition b, 24-hour sleep profiles of Conv, Ax, L.b CFS-, L.b∆xylA CFS-, and Xi* treated Ax 

virgin female OregonR flies with the number of sleep bouts in 60 min. time window and total sleep 

in the light or dark phase. Conv, n = 17; Ax, n = 25; L.b CFS-, n = 19; L.b∆xylA CFS-, n = 21; Xi*, 

n = 8. Boxplots: lower and upper whiskers represent 1.5 interquartile range of the lower and upper 

quartiles, respectively; boxes indicate lower quartile, median, and upper quartile, from bottom to 

top. * P < 0.05. Kruskal-Wallis and Dunn’s post-hoc test for multiple comparisons was applied for 

statistical analysis. Data are representative of at least 2 independent trials for each experiment. 
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Figure 7. Octopamine mediates xylose isomerase-induced changes in locomotion.  

a, Difference in average speed between flies previously treated with antibiotics and subsequently 

left untreated (ABX) or administered with L.b CFS calculated for each GAL4 line crossed with 

UAS-dTRPA1 tested at 27˚C (for further details and graphs of each GAL4 line, see Fig. 8). 

Asterisks above bars represent statistical significance (Two-way ANOVA, Mann-Whitney U post-

hoc tests) between untreated and L.b CFS-treated flies within each GAL4 line. Error bars represent 

mean +/- S.E.M. b, Average speed of flies previously treated with antibiotics and subsequently left 

untreated (ABX) or administered with L.b CFS with and without thermogenetic activation of the 

Tdc2-GAL4 line. GAL4: ABX, n = 15; Xi*, n = 12; UAS: ABX, n = 23; Xi*, n = 23; GAL4>UAS 

(27°C): ABX, n = 14; Xi*, n = 12; GAL4>UAS (20°C): ABX, n = 12; Xi*, n = 15. c, Average 

speed of Conv flies and flies previously treated with antibiotics and subsequently left untreated 

(ABX) with and without thermogenetic activation of the Tdc2-GAL4 line. GAL4: Conv, n = 57; 

ABX, n = 30; UAS: Conv, n = 59; ABX, n = 39; GAL4>UAS (27°C): Conv, n = 59; ABX, n = 

39; GAL4>UAS (20°C): Conv, n = 15; ABX, n = 18. d, Average speed of Conv, Ax, and Xi*-

treated Ax flies left untreated or supplemented with octopamine (OA, 10 mg/mL) daily for 3 days. 
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Conv, n = 13; Ax, n = 33; Xi*, n = 21; Conv+OA, n = 29; Ax+OA, n = 27; Xi*+OA, n = 32. 

Kruskal-Wallis and Dunn’s post-hoc test for multiple comparisons was applied for statistical 

analysis. e, Average speed of Ax flies and Xi*-treated Ax flies either left untreated or 

supplemented with octopamine (OA, 10 mg/mL) or tyramine (TA, 10 mg/mL) daily for 3 days 

after the removal of Xi*. Ax, n = 58; Ax+OA, n = 13; Ax+TA, n = 10; Xi*, n = 54; Xi*+OA, n = 

46; Xi*+TA, n = 27. Kruskal-Wallis and Dunn’s post-hoc test for multiple comparisons was 

applied for statistical analysis. f, Average speed of wild-type background (w+, Wt) and Tdc2 null 

mutants (Tdc2RO54) after treatment with antibiotics for 3 days following eclosion. All flies were 

subsequently placed on irradiated media without supplementation (ABX) or treated with Xi* daily 

for 3 days. Wt ABX, n = 12; Wt Xi*, n = 17; TdcRO54 ABX, n = 19; TdcRO54 Xi*, n = 17. Mann-

Whitney U post-hoc test was applied for statistical analysis. g, Average speed of wild-type 

background (Canton-S, Wt) and Tβh null mutants (TβHM18) after treatment with antibiotics for 3 

days following eclosion. All flies were subsequently placed on irradiated media without 

supplementation (ABX) or treated with Xi* daily for 3 days. Wt ABX, n = 15; Wt Xi*, n = 15; 

TβHM18 ABX, n = 11; TβHM18 Xi*, n = 12. Mann-Whitney U post-hoc test was applied for statistical 

analysis. Boxplots: lower and upper whiskers represent 1.5 interquartile range of the lower and 

upper quartiles, respectively; boxes indicate lower quartile, median, and upper quartile, from 

bottom to top. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. For experiments containing 

two independent variables (a – c), Two-way ANOVA was applied, and statistical significance was 

assessed. Mann-Whitney U post-hoc tests were subsequently performed. Data are representative 

of at least 2 independent trials for each experiment. Tdc, Tyrosine decarboxylase; Tβh, Tyramine 

beta-hydroxlyase; Ddc, DOPA decarboxylase; Th, Tyrosine hydroxylase; Gad1, Glutamate 

decarboxylase 1; ChAT, Choline acetyltransferase. 
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Figure 8. Thermogenetic activation of neuromodulator-GAL4 lines. 

a, Experimental design in which Conv flies (Canton-S) were treated with antibiotics (ABX, black 

arrow) for 3 days following eclosion. All flies were subsequently placed on irradiated media either 

without supplementation or treated with L.b CFS (green arrows) for 3 days. 1 hr. prior to and 

during testing flies were either exposed to 27˚C (red line) to facilitate thermogenetic activation or 

kept at 20˚C (blue line). b – h, Average speed of flies previously treated with antibiotics and 

subsequently left untreated (ABX) or administered with L.b CFS for 3 days prior to testing. n = 

24/condition. Boxplots: lower and upper whiskers represent 1.5 interquartile range of the lower 

and upper quartiles, respectively; boxes indicate lower quartile, median, and upper quartile, from 
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bottom to top. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. Two-way ANOVA was 

applied to test for the effect of two independent variables, and statistical significance was assessed 

for both variables. Mann-Whitney U post hoc tests were subsequently performed. Data are 

representative of at least 2 independent trials for each experiment.  
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Figure 9. Activation of octopaminergic neurons in flies carrying a null allele for Tβh (TβHM18). 

Average speed of flies previously treated with antibiotics and subsequently left untreated (ABX) 

or administered with L.b CFS for 3 days prior to testing. n = 24/condition. Boxplots: lower and 

upper whiskers represent 1.5 interquartile range of the lower and upper quartiles, respectively; 

boxes indicate lower quartile, median, and upper quartile, from bottom to top. Two-way ANOVA 

was applied to test for the effect of two independent variables, and statistical significance was 

assessed for both variables. Mann-Whitney U post hoc tests were subsequently performed. Data 

are representative of at least 2 independent trials. 
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Figure 10. Octopamine mediates L. brevis- and xylose isomerase-induced changes in locomotion. 

a, Average speed of Ax and L.b CFS-treated Ax flies left untreated or supplemented with 

octopamine (OA, 10 mg/mL) or L-dopa (1 mg/mL) for 3 days. n = 36/condition. b, qRT-PCR for 

transcripts from heads of Ax and L.b CFS-treated Ax flies. Error bars represent mean +/- S.E.M. 

n = 6 samples/condition. c, qRT-PCR for transcripts from heads of Ax or Ax Xi*-treated flies. 

Error bars represent mean +/- S.E.M. Ax, n = 5 samples; Xi*, n = 6 samples. d, Average speed of 

Ax and L.b CFS-treated Ax flies left untreated or supplemented with tyramine (TA, 10 mg/mL) 

for 3 days. n = 12/condition. e, Average speed of control lines and flies expressing DTI in 

octopaminergic and tyraminergic neurons outside of the ventral nerve cord. All flies were 

previously treated with antibiotics and subsequently left untreated (ABX) or administered with 

Xi* for 3 days prior to testing. n = 24/condition. f, Average speed of control lines and flies 

expressing Tβh RNAi in all neurons. All flies were previously treated with antibiotics and 
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subsequently left untreated (ABX) or administered with L.b CFS for 3 days prior to testing. n = 

12/condition. g, Tβh mRNA measured from heads of flies previously treated with antibiotics. Error 

bars represent range. n = 2 samples/condition. h, Average speed of Ax and Xi*-treated Ax flies 

left untreated or supplemented with mianserin (2 mg/mL) for 3 days. n =14/condition. i, Average 

speed of Conv, Ax, and Xi*-treated Ax flies left untreated or supplemented with mianserin (2 

mg/mL) for 3 days. n = 30/condition. k, Average speed of wild-type background (w+, Wt) and 

Tdc2 null mutants (Tdc2RO54) either left untreated or after treatment with antibiotics for 3 days 

following eclosion. Wt Conv, n = 13; Wt ABX, n = 21; TdcRO54 Conv, n = 28; TdcRO54 ABX, n = 

34. Mann-Whitney U post-hoc test was applied for statistical analysis. g, Average speed of wild-

type background (Canton-S, Wt) and Tβh null mutants (TβHM18) either left untreated or after 

treatment with antibiotics for 3 days following eclosion. Wt Conv, n = 38; Wt ABX, n = 42; TβHM18 

Conv, n = 26; TβHM18 ABX, n = 33. Mann-Whitney U post-hoc test was applied for statistical 

analysis.  l, Model of bacterial modulation of host locomotion. Boxplots: lower and upper whiskers 

represent 1.5 interquartile range of the lower and upper quartiles, respectively; boxes indicate 

lower quartile, median, and upper quartile, from bottom to top. * P < 0.05, ** P < 0.01, *** P < 

0.001. Kruskal-Wallis and Dunn’s (a, d, h – i), unpaired Student’s t-test (b – c and g), or Mann-

Whitney U (e – f and j – k) post-hoc test was applied for statistical analysis. Data are representative 

of at least 2 independent trials for each experiment. Tdc, Tyrosine decarboxylase; Tβh, Tyramine 

beta-hydroxlyase; Ddc, DOPA decarboxylase; Tph, Tryptophan hydroxylase. 
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4.7 METHODS 

 

Fly Stocks and Rearing 

We obtained Canton-S (#64349), Imd-/- (#55711), Ti-/- (#30652), UAS-dTrpA1 (#26264), 

Tdc2-GAL4 (#52243), Tβh-GAL4 (#48332), Th-GAL4 (#8488), Ddc-GAL4 (#7009), Gad1-GAL4 

(#51630), ChAT-GAL4 (#60317), Elav-GAL4 (#46655), UAS-TβhRNAi (#27667), UAS-DTI 

(#25039), and pBDPG4U-GAL4 (#68384) lines from Bloomington Drosophila Stock Center at 

Indiana University. Other fly stocks used were OregonR (kindly provided by A. A. Aravin and K. 

Fejes Tόth), TβHM18 (kindly provided by M. H. Dickinson)36, Tdc2R054, and tsh-GAL80 (both 

kindly provided by D. J. Anderson)37,38. To minimize the effect of genetic background on 

behaviors, mutant fly lines were outcrossed for at least three generations onto a wild-type 

background. 

Flies were cultured at 25˚C and 60% humidity on a 12-hr. light:12-hr. dark cycle and kept 

in vials containing fresh fly media made at California Institute of Technology consisting of 

cornmeal, yeast, molasses, agar, and p-hydroxy-benzoic acid methyl ester. Other dietary 

compositions used were created through altering this standard diet or the Nutri-Fly “German Food” 

Formula (Genesee Scientific) and were calculated using previously published nutritional data39. 

Axenic flies were generated using standard methods10,40–42. Briefly, embryos from conventional 

flies were washed in bleach, ethanol, and sterile PBS before being cultivated on fresh irradiated 

media40. Axenic stocks were maintained through the application of an irradiated diet supplemented 

with antibiotics (500 μg/ml ampicillin, Putney; 50 μg/ml tetracycline, Sigma; 200 μg/ml rifamycin, 

Sigma) for at least one generation. For experiments, virgin female flies were collected shortly after 

eclosion and placed at random into vials (10 – 15 flies per vial) containing irradiated media without 

antibiotics. Vials were changed every 3 – 4 days using sterile methods. The antibiotic 

supplemented diet was applied to conventional flies shortly after eclosion to generate antibiotic-

treated (ABX) flies. Both antibiotic-treated and axenic flies were tested for contaminants through 

plating animal lysates on Man, Rogosa, and Sharpe (MRS, BD Biosciences); Mannitol (25 g/L 

Mannitol, Sigma; 5 g/L Yeast extract, BD Biosciences; 3 g/L Peptone, BD Biosciences); and 

Luria-Bertani (LB, BD Biosciences) nutrient agar plates. 

 



 

 

82 

Bacterial Supernatant Preparations 

Cell-free supernatants (CFS) of specified bacterial strains were harvested from bacterial cultures 

(OD600 = 1.0) by centrifuging at 13,000 x g for 10 min. and subsequent filtration through a 0.22-

µm sterile filter (Millipore). CFS was dialyzed in MilliQ water with a 3.5 kDa membrane (Thermo 

Scientific) overnight at 4˚C to generate L.b CFS and L.p CFS samples. Each of these treatments 

were supplied daily through application to the fly media (40 µL) for 6 days following eclosion. 

Production of His-tagged proteins (Xi* and Ai*) 

 An expression plasmid for the production of His-tagged xylose isomerase from L.b, here 

termed as Xi*, was constructed by amplification of its gene and cloning the resulting PCR product 

in the pQE30 cloning vector (Qiagen) using SLIC ligation. The following primer sequences were 

used for the construct: 5’-

CGCATCACCATCACCATCACGGATCTTACTTGCTCAACGTATCGATGATGTAA-3’ and 

5’-GGGGTACCGAGCTCGCATGCGGATCATGACTGAAGAATACTGGAAAGGC-3’. 

Conformation of the resulting plasmid was verified and transformed into E. coli (Turbo, NEB). 

This strain was then grown in LB containing ampicillin (100 µg/mL) and chloramphenicol (25 

µg/mL) with shaking at 220 rpm at 37˚C for 1 hr. before the addition of 0.1 mM IPTG. After 4 

hrs. of shaking at 220 rpm at 37˚C, cells were pelleted and lysed using lysozyme (Sigma) and bead 

beating with matrix B beads (MP Biomedicals) for 45 sec. Supernatant was collected after 

centrifugation and the Xi* protein purified through metal affinity purification under native 

conditions using HisPur™ Ni-NTA Spin Columns (Thermo Scientific). Protein purification was 

verified through western blot using an Anti-6X His tag® antibody (Abcam) and quantified using 

a Pierce BCA Protein Assay kit (Thermo Scientific) after which protein was stored at -20˚C. 

Expression and purification of His-tagged L-arabinose isomerase from L.b, here termed as Ai*, 

was performed under the exact same conditions and the following primer sequences were used for 

the construct: 5’-

GGGGTACCGAGCTCGCATGCGGATCATGTTATCAGTTCCAGATTATGAATTTTGG-3’ 

and 5’-CGCATCACCATCACCATCACGGATCCTTACTTGATGAACGCCTTTGTCAT-3’.  
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Drug treatments 

Axenic flies were either left untreated or administered with L.b CFS or Xi* for 3 days after 

eclosion. After switching to new irradiated fly media, groups of axenic flies were treated through 

application to the fly media (40 µL) with octopamine (OA, 10 mg/mL, Sigma), tyramine (TA, 10 

mg/mL, Sigma), L-dopa (1 mg/mL, Sigma), or mianserin (2 mg/mL) every day for 3 days before 

testing, similar to previously published methods16,17,22.  

Locomotion Assays  

Locomotor behavior was assayed through three previously established methods: the 

Drosophila Activity Monitoring System (DAMS, Trikinetics)43,44, video-assisted tracking45–47, and 

gait analysis48.  

Activity measurements 

7-day-old individual female flies were cooled on ice for 1 min. and transferred into 

individual vials (25 x 95 mm) containing standard irradiated media. Tubes were then inserted and 

secured into Drosophila activity monitors (DAMS, Trikinetics) and kept in a fly incubator held at 

25˚C. Flies were allowed to acclimate to the new environment for 1 day before testing and midline 

crossing was sampled every minute. Average daily activity was calculated from the 2 days tested 

and actograms were generated using ActogramJ44. Sleep was defined as a 5 min. bout of inactivity 

as previously described49. 

Video-assisted tracking 

Individual female flies were cooled on ice for 1-2 min. before being introduced under 

sterile conditions into autoclaved arenas (3.5 cm diameter wells), which allowed free movement 

but restricted flight. After a 1 hr. acclimation period, arenas were placed onto a light box and 

recorded from above for a period of 10 min. at 30 frames per sec. All testing took place between 

ZT 0 and ZT 3 (ZT, Zeitgeber time; lights are turned on at ZT 0 and turned off at ZT 12) and both 

acclimation and testing occurred at 25˚C unless otherwise stated. Videos were processed using 

Ethovision software or the Caltech FlyTracker (http://www.vision.caltech.edu/Tools/FlyTracker/).  
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Bout analysis was performed using custom python scripts (available upon request). The 

velocity curve was smoothed from the acquired video at 30 frames per sec. using a 15 sec. moving 

average window. A minimum walking speed of 0.25 mm/s was given below which flies were 

moving but not walking (‘pause bouts’) and above which they were designated as walking 

(‘walking bouts’). Lengths were measured as time between bout onset and offset. 

Feeding Assays 

Female flies were collected at the same time as described for Locomotor Assays. Flies were 

transferred regularly onto fresh food until day 7, upon which the flies were starved for 2 hrs. and 

subsequently transferred for 30 min. to an irradiated standard fly media dyed with FD&C Blue no. 

1 (Sigma) at a final concentration of 0.5 g dye per 100 g food. Flies were allowed to feed on the 

food (3-4 biological replicates and 7 flies per replicate) at 25˚C after which they were decapitated 

and their bodies collected. Each replicate was homogenized in 150 µL of PBS/0.05% Triton X-

100 and centrifuged at 5,000 x g for 1 min. to remove debris. Absorbance for all groups was 

measured together at 630 nm and the amount of food consumed was estimated from a standard 

curve of the same dye solution. The MAFE assay was performed as described previously34,50. 

Briefly, individual flies were introduced into a 200 μL pipette tip, which was cut to expose the 

proboscis. Flies were first water satiated and presented with 100 mM sucrose delivered in a fine 

graduated capillary (VWR). After flies were unresponsive to 10 food stimuli, the assay was 

terminated and the total volume of food was calculated.  

Measurement of life span  

 Adult female flies were transferred under sterile conditions to irradiated fly media every 4 

– 5 days. Survival in 3 or more independent cohorts containing 15 – 25 flies each was monitored 

over time.  

Apoptosis assay 

 Midguts from 7-day-old female flies were dissected in PBS containing 0.1% Triton X-100 

and the apoptosis assay was performed as previously described10,41. The percentage of apoptotic 
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cells was determined by dividing the number of apoptotic cells by the total number of cells in each 

section and multiplying by 100.  

RNA isolation and quantitative real-time PCR 

Heads (20 flies per sample) or decapitated bodies (5 flies per sample) were dissected on 

ice and immediately processed using an ArcturusTM PicoPureTM RNA isolation kit (Applied 

Biosystems) or a standard TRIzolTM-Chloroform protocol (ThermoFisher). 1 μg of RNA was 

reverse transcribed using iScript cDNA Synthesis Kit, according to manufacturer’s protocol (Bio-

Rad) and diluted to 10 ng/μl based on the input concentration of total RNA. 

Previously published primer pairs were used to target immune-related gene transcripts10,51. Other 

primer sequences used include Tdc (F: GGTCTGCCGGACCACTTTC, R: 

CACTCCGATGCGGAAGTCTG), Tβh (F: GCTTATCCGACACAAAGCTGC, R: 

GAAAGCATTCTGCAAGTGGAA), Ddc (F: TGGGATGAGCACACCATCTTG, R: 

GTAGAAGGGAATCAAACCCTCG), Tph (F: TGTTTTCGCCCAAGGATTCGT, R: 

CACCAGGTTTATGTCATGCTTCT). All primers were synthesized by Integrated DNA 

Technologies. Real-time PCR for the house-keeping genes Rp49 and RpL32 were used to ensure 

that input RNA was equal among all samples. Real-time PCR was performed on cDNA using an 

ABI PRISM 7900 HT system (ThermoFisher) according to the manufacturer’s instructions.  

Statistical Analysis 

All statistical analysis was performed using Prism Software (GraphPad, version 7). Sample 

size was based on data from pilot experiments and experimenters were not blinded as almost all 

data acquisition and analysis was automated. To analyze two sets of data following a normal 

distribution, we used an unpaired two-sided Student’s t-test. If the data did not follow a normal 

distribution, a non-parametric two-sided Mann-Whitney U test was used. Comparisons among 3 

or more data sets and comparisons with more than one variant were analyzed using One-way 

ANOVA or Two-way ANOVA, respectively. If statistical significance was identified for the 

variables tested, then a Dunn’s post-hoc test was performed. ANOVAs on normally distributed 

data were followed by a Bonferroni post-hoc test to determine significant differences between 

genotypes. Boxplots: lower and upper whiskers represent 1.5 interquartile range of the lower and 
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upper quartiles, respectively; boxes indicate lower quartile, median, and upper quartile, from 

bottom to top. Bar graphs are presented as mean values +/- S.E.M. 
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EXAMINING CONSERVATION OF MICROBIAL EFFECTS ON 

LOCOMOTION 

 

Schretter, C. E. and S. K. Mazmanian. 

This chapter was used as preliminary data for “Gut Microbiota Regulate Motor Deficits and 

Neuroinflammation in a Model of Parkinson’s Disease.” 
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5.1  INTRODUCTION 

 

The nervous system and behavior of mammals are also influenced by their gut 

microbiome1–4. Similar to our experiments in D. melanogaster, mice that lack a microbiota (germ-

free, GF) exhibit increased speed compared to conventional or specific pathogen free (SPF) 

controls5. Further, GF mice exhibit elevated locomotion under both western and low-fat diets6. 

Colonization with specific bacterial species can also decrease locomotor behavior in mice7. In 

addition to behavior, higher striatal turnover of norepinephrine, dopamine, and serotonin are found 

in GF animals compared to their SPF counterparts5. Many of these studies thereby suggest that the 

microbial-dependent locomotor phenotypes found in Drosophila could be conserved in mice. 

However, differences in their development and the stability of the microbiota between the two 

organisms could lead to divergent effects on host behavior and mediation through dissimilar 

neuronal pathways.  

 

5.2 MICROBIAL MODULATION OF MOTOR-RELATED BRAIN REGIONS AND 

BEHAVIOR IN MICE 

 

As previous research identified changes in locomotion depending on microbial status, we 

examined SPF, GF, and antibiotic-treated SPF mice (ABX) in an open field test. While GF mice 

exhibited increased speed compared to SPF mice, ABX animals displayed lower speeds than GF 

(Fig. 1). Similar decreases in locomotion have been reported in C57BL/6 mice upon antibiotic 

treatment; however, this appears to differ based on the antibiotics used and host genetics8,9. Due 

to this difference in locomotion between SPF and GF animals, we next explored if there were any 

changes in neuronal populations related to motor behavior, including the substantia nigra pars 

compacta (SNc) and the striatum. Compared to SPF mice, GF animals had a 60% and 35.8% 

reduction in the number of cells positive for a marker of dopaminergic neurons, tyrosine 

hydroxylase (TH), and total neurons in the SNc, respectively (Fig. 2 – 3). Bacterial colonization 

of GF mice (EX-GF) increased the number of TH-positive cells to levels similar to SPF mice (Fig. 

4). In the striatum, GF mice exhibit a decrease in the optical density of TH staining in the 

dorsomedial region, which is a target for projections from the SNc (Fig. 5).  
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A dramatic loss of dopaminergic neurons in the SNc as well as a resulting loss of dopamine 

in the striatum has been implicated in the cognitive motor deficits seen in Parkinson’s Disease 

(PD)10. Due to microbial involvement in motor behavior and enteric contributions to the 

progression of PD11,12, we examined the potential role of the gut microbiota in a mouse model of 

PD. Epidemiological studies have correlated pesticide exposure with the development of certain 

cases of PD13,14. Rotenone is common pesticide that inhibits mitochondrial Complex I and 

produces a loss of striatal dopaminergic terminals followed by progressive degeneration of 

dopaminergic neurons in the SNc15–17. While rotenone has traditionally been given systemically, 

oral treatment in mice results in specific nigrostriatal dopaminergic neurodegeneration, motor 

deficits, and the up-regulation of α-synuclein in the surviving dopaminergic neurons18,19. 

Moreover, oral treatment prompts α-synuclein inclusions to form in the ENS and follow a 

retrograde progression to the brain, as well as colonic motility deficits18–20. Due to these 

connections and our previous data, we employed this model of PD to examine if removal of the 

gut microbiota alters its progression. There were no significant changes in weight across the 

groups, and rotenone-treated SPF and GF animals exhibited no differences in speed (Fig. 6 – 8). 

Specific populations of neurons in the myenteric plexus of the ENS, such as dopaminergic 

and cholinergic neurons, have been linked to the regulation of gut motility and PD12. While we 

found no differences in the total number of neurons in the proximal small intestine, GF mice 

display significantly lower numbers of TH-positive cells in this region (Fig. 9a – b). Additionally, 

mRNA expression of choline actyltransferase (ChAT), an enzyme involved in acetylcholine 

synthesis, is reduced in the proximal small intestine of GF animals (Fig. 9c). This data indicates 

that the gut microbiota may affect these neurotransmitters in the gastrointestinal tract, which have 

been implicated in the pathogenesis of PD. 

 

5.3 CONCLUSION 

 

 Herein, we found that mice lacking a microbiota exhibit increased locomotor behavior 

along with decreases in TH-positive neurons in the SNc and TH staining in the dorsomedial 

striatum. TH-positive cells and ChAT expression is also reduced in the proximal small intestine of 

GF mice. Further, administration of rotenone appeared to diminish behavioral differences between 

GF and SPF animals. While the gut microbiota may play a role in locomotor behavior as well as 
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related regions and disorders in mammals, more research needs to be performed in order to 

evaluate these changes in the context of our previous results in Drosophila.  

 Additional recent research has shown that the microbiota contributes to the progression of 

certain mouse models of PD. In the rotenone model, changes in the microbiota precede intestinal 

and motor deficits21. Mice overexpressing wild-type human α-synuclein under the Thy1 promoter 

develop many features of sporadic PD, including: progressive changes in dopamine release and 

striatal content, α-synuclein pathology, deficits in motor and non-motor functions, inflammation, 

in addition to biochemical and molecular alterations similar to those observed in PD17,22,23. 

Research conducted in the Mazmanian laboratory after our experiments found that the microbiota 

is required for motor deficits in this mouse model of PD24. This work further suggests that the gut 

microbiota contributes to the progression of certain cases of PD, which may indicate its 

involvement in mammalian motor behavior during steady-state conditions. However, there are 

conflicting results upon antibiotic-treatment in addition to developmental and ecological 

differences between Drosophila and mice. These discrepancies between the model organisms 

support the need for more in-depth experiments evaluating if microbial modulation of locomotion 

remains consistent across phylogenies and if comparable pathways are utilized.  
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5.4 FIGURES 

 

 

 

 

 

 

 

Figure 1. GF mice display increased speed compared to SPF and antibiotic-treated mice.  

4-month-old SPF, GF, and antibiotic-treated SPF (ABX) mice were recorded over 10 min. and 

average speed was calculated by Ethovision software. n = 8/condition. Kruskal-Wallis and Dunn’s 

post-hoc test was applied for statistical analysis.  
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Figure 2. GF mice have reduced TH+ cells in the SNc compared to SPF controls.  

Representative images at 4x of TH+ (green) staining in the SNc of SPF (6-month-old female) and 

GF (6-month-old female) C57Bl/6 mice.  
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Figure 3. Lower TH+ cells and cell counts in the SNc of GF mice compared to SPF controls.  

Brains from 3 – 6 month-old female SPF (black, n=4) and GF (gray, n=7) were stained using anti-

TH and goat anti-rabbit Alexa Fluor 488 antibodies. Images were taken using a fluorescent 

microscope and analyzed using Image-J. Cell counts were performed after Nissl staining and were 

subsequently analyzed with Image-J. There were no significant differences between counts taken 

from 3-month versus 6-month-old animals in GF or SPF animals (data not shown). A two-tailed t-

test test was applied for statistical analysis. 
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Figure 4. Reduced TH+ cell counts are reversed through colonization.  

Brains from 4-month-old female SPF (n=6), EX-GF (n=4), and GF (n=4) were stained using anti-

TH and goat anti-rabbit Alexa Fluor 488 antibodies. Images were taken using a fluorescent 

microscope and counts were performed by a blinded experimenter using Image-J. Kruskal-Wallis 

and Dunn’s post-hoc test was applied for statistical analysis.  
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Figure 5. TH+ optical density in the dorsomedial striatum of GF mice is decreased compared to 

SPF animals. 

Analysis was performed on slices from 4-month-old male SPF (gray, n=4) and GF (black, n=4) 

using Image-J. No differences were observed in the ventral striatum. A two-tailed t-test was 

applied for statistical analysis. 
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Figure 6. Experimental design for examining microbial involvement in a mouse model of 

Parkinson’s.  

4-month-old female specific pathogen free (SPF) or germ free (GF) mice were orally treated via 

gavage with rotenone (10 mg/kg) for 28 days under sterile conditions. Following treatment, open 

field tests were performed.   
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Figure 7. Weight of mice over the course of the experiment.  
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Figure 8. General locomotion in mice with varying microbial status and rotenone treatment.  

Naïve and rotenone-treated SPF and GF mice were recorded for 10 min. and average velocity was 

calculated by Ethovision software. SPF vehicle-treated (SPF-V), n = 6; GF vehicle-treated (GF-

V), n = 3; SPF rotenone-treated (SPF-T), n = 6; GF rotenone-treated (GF-T), n = 7. Kruskal-Wallis 

and Dunn’s post-hoc test was applied for statistical analysis. 
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Figure 9. Staining for TH and ChAT expression is decreased in the proximal small intestine of GF 

mice.  

A – B, Small intestine of 3-month-old male SPF (gray, n = 3) and GF (black, n = 3) mice stained 

with anti-TH or PGP 9.5. Fluorescence intensity and cell counts were measured using Image J. C, 

Whole small intestinal tissue from 3-month-old male SPF (gray) and GF (black) animals (n = 3-4 

for proximal and medial; n = 2 for distal) were dissected, luminal contents flushed, and mRNA 

extracted using the Qiagen RNeasy mini kit. Expression was tested in triplicates and normalized 

using the housekeeping gene, GAPDH. A two-tailed t-test was applied for statistical analysis. 
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5.5 METHODS 

 

Animals 

C57BL/6 mice were purchased from Taconic Farms. 3- to 6-month-old age- and sex-

matched mice were used. All mice were group housed (2–5 mice per cage) with a 13 hr. light/11 

hr. dark cycle (lights on at 06:00) at 21–23 °C and 45% relative humidity within a range of 30–

70% in ventilated cages. All procedures were performed in accordance with the guidelines and 

approved protocols from the Institutional Animal Care and Use Committee at the California 

Institute of Technology. 

Immunohistochemistry  

 Brains were placed in 4% PFA for 48 hr. and subsequently sectioned at 50 µm in cold PBS 

using a vibratome. Sections were stained using anti-TH (1:400) and goat anti-rabbit Alexa Fluor 

488 (1:400) antibodies. Images were taken using a fluorescent microscope and analyzed using 

Image-J. Nissl staining was performed on corresponding slices and subsequent analysis was 

performed with Image-J. 

 For staining in the small intestine, the gastrointestinal tract was dissected and luminal 

contents flushed with 4% PFA and OCT and subsequently frozen on dry ice. Sections were taken 

using a cryostat and stained with anti-TH (1:400) or PGP 9.5 (1:400). Fluorescence intensity and 

cell counts were measured using Image J. 

RNA extraction and qRT-PCR 

RNA extraction was based on the manufacturer’s protocol (Trizol, Life Technologies). 

Before reverse transcription, RNA was treated with DNase I to eliminate genomic DNA 

contamination. 1 μg RNA from each sample was reverse transcribed by using the iScript cDNA 

synthesis kit (Bio-Rad). The gene expression in the small intestine was measured using Power 

SYBR Green PCR master mix (Life Technologies). Gene expression was normalized using the 

housekeeping gene, GAPDH. 
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Open Field Testing 

 Mice were placed in a novel behavior testing room in groups of 4. Animals were then 

individually placed in plastic open top arenas (50 X 50 X 30cm) and allowed to freely move over 

a 10-min. period. Video was captured using an overhead mounted video camera. Ethovision 

software was used to generate trajectory maps and analyze average velocity. 
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C h a p t e r  6  

CONCLUSION 
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In the wild, D. melanogaster is associated with a range of environments with different 

nutritional compositions1,2. Therefore, there is a need to maintain homeostasis under changing 

external conditions and to quickly identify beneficial situations. As the microbiota both acts as a 

food source and increases the amount of readily available nutrients3,4, it could buffer against large 

changes in nutritional composition and indicate a favorable environment. Specific species within 

the microbiota significantly alter host metabolism5–8, thus helping to maintain homeostasis within 

an individual. Given the close ties between metabolism and certain behaviors, including 

locomotion, we hypothesized that the microbiota also contributes to this aspect of host physiology. 

In this work, we found that removal of the microbiota in female Drosophila results in 

hyperactivity compared to conventional counterparts, independent of developmental influences. 

Starvation is also reported to cause similar increases in fly locomotion9. Mono-colonization with 

select bacteria, including Lactobacillus brevis, restored host speed and daily activity to 

conventional levels and exhibited similar effects under more complex microbial conditions. The 

addition of a microbial-derived enzyme, xylose isomerase (Xi), was also sufficient to increase host 

speed and daily activity in axenic flies. Furthermore, we found that octopamine signaling is 

involved in mediating microbial effects on locomotion, which is similarly implicated in starvation-

induced hyperactivity9–11. These overlapping phenotypes and pathways suggest that the removal 

of the microbiota may result in a starvation-like state reversed by certain bacterial species and their 

products, including Xi. However, a more in-depth analysis of the neuronal circuits involved in our 

phenotypes is needed to facilitate this comparison.  

As male flies did not exhibit the same degree of changes in host speed upon removal of the 

microbiota or mono-colonization with L. brevis, these effects on host locomotion appear sex-

specific. A previous report also found that increased levels of trehalose in axenic flies is sex-

specific8. Further, sexually dimorphic locomotor behavior was previously linked to trehalose and 

insulin signaling12,13. Future work should examine potential ties between sex-specific microbial 

effects on locomotion and the differences in metabolic requirements and neuronal circuitry 

between males and females.  

Microbial effects on locomotion may also be conserved as our work and that of others 

similarly reported hyperactivity in germ-free mice14,15. However, as antibiotic-treated mice 
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displayed decreased locomotion, there are likely distinct differences in the microbial effects and 

the underlying pathways mediating changes in locomotion in Drosophila and mice. It would be 

interesting to examine if the same bacterial species and products identified in Drosophila are able 

to alter locomotion in mice. However, researchers should carefully consider the ecological and 

developmental dissimilarities between the two model organisms.   

The work presented in this thesis demonstrates that the microbiota acts as a source of 

stimuli that can alter host behavior. We have identified a novel role for Xi in modulating host 

locomotion and octopamine signaling in mediating microbial-induced changes in motor behavior. 

Additionally, our data lays the groundwork for future analysis into the mechanisms that underlie 

microbiota-related changes in locomotion. As we did not pinpoint the exact host molecular and 

neuronal pathways by which Xi signals, this is one important avenue for future research. The 

behavioral results from ablating Tdc-expressing neuronal populations within the central brain 

suggest their involvement; yet, central pattern generators within the ventral nerve cord could still 

contribute. Furthermore, parallel pathways by which Xi and the microbiota influence host 

locomotion may also exist. It is important to note that while we did not see any significant changes 

in the carbohydrates tested in the diet upon Xi* treatment, Xi could still act on carbohydrate ratios 

within the diet or the intestine of the fly.  

As select bacterial species and their products restore locomotion to conventional levels, 

our work also demonstrates the importance of examining contributions from individual 

components of the microbiota. The microbiome differs by laboratory, individual, temperature, and 

genotype; therefore, this reductionist approach helps to minimize variability due to changes in the 

microbial community. As with most experimental designs, there are limitations to these types of 

experiments that can be complemented by additional work. For example, results from mono-

association experiments may not directly correspond with effects under conventional conditions 

where there is increased microbial complexity. Combining experiments with mono-colonization 

or single metabolites with those using whole microbial communities provides insight into both the 

relative contributions of species and the natural environment. Furthermore, this thesis illustrates 

the importance of considering the whole organism, including its microbial counterparts, in 

behavioral analysis. In Brummel et al. (2002), the authors state: “Drosophila geneticists have paid 

relatively little attention to the bacterial flora within fly stocks, yet such flora may increase 
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phenotypic variation.” The tools for rigorous examinations of microbial communities and neuronal 

circuits have rapidly progressed, enabling studies revealing both a deeper understanding of the 

stimuli emanating from the microbiota and the corresponding host pathways mediating their 

potential behavioral and physiological effects.  
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