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ABSTRACT

Topologicalmaterials have been a fastest growing research topic in the recent decade.
Out of the numerous new phases proposed and/or discovered, “topological insula-
tors" (TIs) are one of themost promisingmaterials that could lead to further advances
in high-performance electronics and to applications in quantum computing. Similar
to the ordinary semiconductors, TIs have a bulk gap; yet they host robust edge/surface
states which are protected from non-magnetic disorder and interactions while the
gap remains open. This feature is a manifestation of the non-trivial topology of TIs,
the crucial feature that distinguishes them from ordinary semiconductors. Although
the search for more topological materials continues, discovered TI currently are
limited by practical difficulties that prevent industrialization.

In this thesis, we study graphene, which is the first proposed TI candidate in the his-
tory, and its derivatives. With the intrinsic spin-orbital coupling (SOC) on graphene,
one can open a topologically nontrivial band gap at the Dirac cones, although the
SOC of the carbon atoms is exceedingly small for topological insulation to be ob-
served in experiments. Many proposals exist to enhance the SOC on graphene by
doping with adatoms, changing the functionality of the surface, placing graphene
on top of other strong SOC materials, etc. However, few proposed TI signatures
have been found experimentally. Furthermore, measuring these intrinsic SOCs
through magnetoconductance is challenging due to their relatively weak signatures
in transport. This work addresses the challenges in transport measurements from
both analytical and numerical approaches on various graphene-based materials.

Graphene’s Dirac band structure and open geometry underlie its exciting prospects
for engineering new physics via impurity-induced spin-orbit coupling. As a tantaliz-
ing example, previous theory works predicted a robust quantum-spin-Hall phase in
graphene covered with dilute heavy adatoms such as In, Tl, and Os, although exper-
iments to date have not detected the required enhancement of spin-orbit coupling.
Motivated by these experiments, we explore the consequences of adatom-generated
spin-orbit couplings on magneto-transport in graphene. We attack the problem
using diagrammatic techniques and the Landauer-Buttiker transport simulation in-
formed by microscopics, and study various coverages, chemical potentials, and
disorder types. We find that the induced spin-orbit couplings can contribute to
magneto-conductance differently from conventional intrinsic and Rasbha spin-orbit
couplings. Our results provide a possible rationale for the absence of spin-orbit
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signatures in recent experiments, and also highlight a roadmap for their discovery
in future work.

In addition to the adatom-dedoped graphene, we also study graphene placing on
top of strong SOC substrate, WS2, by jointing theory, numerics, and experiment.
We demonstrate, in experiment, a clear weak anti-localization (WAL) effect arising
from induced Rashba spin–orbit coupling (SOC) in WS2-covered single-layer and
bilayer graphene devices. Contrary to the uncovered region of a shared single-
layer graphene flake, WAL in WS2-covered graphene occurs over a wide range of
carrier densities on both the electron and hole sides. At high carrier densities, we
estimate the Rashba SOC relaxation rate to be ∼ 0.2 ps−1 and show that it can be
tuned by transverse electric fields. In addition to the Rashba SOC, we also predict
the existence of a ’valley-Zeeman’ SOC from first-principles calculations. The
interplay between these two SOC’s can open a non-topological but interesting gap
in graphene; in particular, zigzag boundaries host four sub-gap edge states protected
by time-reversal and crystalline symmetries. The graphene/WS2 system provides a
possible platform for these novel edge states.
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C h a p t e r 1

INTRODUCTION

One of the most fast growing research topics in the recent decade is topological ma-
terials. Topology is the study of geometric properties that are insensitive to smooth
deformation (bending, stretching, etc.). Two topologically distinct objects can not
transform into each other without breaking or cutting. A disc, for example, can be
bent and smoothed out into a square but it is impossible to deform it into a circle
without drilling a hole somewhere. These ideas of topology and geometry inher-
ently manifest themselves in physical phenomena, and in particular, in topological
materials.

Two topologically distinct phases of matter cannot be deformed into each other
without the breakdown of the adiabaticity (possibly up to symmetry constraints). It
is in this sense, phases of matter can be classified by topology in addition to the usual
identifiers of symmetry and dimensionality [17]. Out of the numerous new phases,
“topological insulators"(TI) are one of the most promising materials which can
lead to high-performance electronics and applications in quantum computing [63].
Topological insulators were predicted [25, 39, 40, 52, 58] to exist and confirmed
experimentally in HgTe quantum wells and thermo-electric materials Bi2Se3 and
Bi2Te3 [12, 16, 32, 43, 72]. They have an insulating bulk but support robust gapless
(i.e. metallic) edge/surface conducting states. In three dimensions, a nice analogy
from Charlie Kane is that of a Hershey’s kiss which starts of initially wrapped in
aluminum foil. However, in this case, when you cut it Hershey’s kiss in half, it turns
into two complete and still-fully-wrapped Hershey’s kisses (which is probably quite
annoying if you want to eat it!) There are two striking and important properties of
these topological insulators: one is that its surface behavior leads to dissipation-less
conduction; the other is that if we induce superconductivity (e.g. by the proximity
effect) on the edges of a TI, one can localize exotic electronic excitations known as
Majorana modes. These Majorana modes, which are robust against deformations
of the Hamiltonian, have non-abelian braiding properties [57] that are useful for
topological quantum computing.

The search for more TIs has continued over the past decade. Many 3D TIs have
been discovered; numerous 2D TIs theoretical proposals and first-principles calcu-
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lations [12, 16, 25, 32, 39, 40, 43, 52, 58, 72] existed though many of them are
not confirmed experimentally. Two dimensional TIs were first predicted to arise
in graphene [39]. However, its topological aspects were not observable due to the
extremely weak spin-orbit coupling [7-11], a key ingredient that often promotes
topological insulating behavior. Later on, Bernevig al et. proposed another 2D TI
candidate, the CdTe/HgTe/CdTe quantum well, which inverts the bulk subbands to
achieve a topological phase by changing the thickness of HgTe [10]. This proposal
was subsequently confirmed by experiments [12]. Other similar proposals for a 2D
TI include InAs/GaSb quantum wells [47] and bilayer bismuth [54]. While this
milestone experiment confirmed the existence of a 2D TI, the engineering and ex-
perimental applications are still limited by many practical difficulties related to this
structure. In this regard, graphene has greater industrial and application potential if
we can achieve topological phases by enhance its SOC.

Fortunately, the open two-dimensional honeycomb structure of graphene allows
tailoring of the SOC strength by coupling to foreign atoms or materials [13, 21,
24, 34, 38, 50, 70]. Several experiments have pursued approaches of graphene
hydrogenation [7, 41] or fluorination [31] as well as heavy-adatom decoration [15,
36]; thesemethods tend to decrease transport quality, andmoreover the induced SOC
appears to be difficult to reproduce [7, 41] and/or detect [15, 31, 36]. A different
approach has recently been employed by several groups: placing graphene on target
substrates featuring heavy atoms. Proximity to the substrates not only provides
desirable properties such as ferromagnetic ordering and large SOC, but also reduces
adverse effects on the target materials [6, 37, 68, 69]. Yet no solid evidence for the
signature of 2D TI have been found on these materials, people have explored its
applications in multifunctional 2D spintronic devices as in Refs. [18, 27, 49, 74].

In contrast to aforementioned 2D TIs, many existing 3D TIs have been discovered.
The first generationwas the Bi1−xSbx binary alloy (x = 0.07−0.22), which, however,
has the complicated surface structure and the narrow gapmakes further experimental
development difficult [32, 46]. The second generation, including Bi2Se3, Bi2Te3 and
Sb2Te3 [77], are all hexagonal structures with narrow gaps [5]. The surface states
of these TIs have been experimentally observed by angle-resolved photoemission
spectroscopy [72]. These TIs are most widely used due to their simple structures and
strong TI nature (only one Dirac cone) [33]. Another type of 3D TIs are topological
crystalline insulators (TCIs) [48], which have a gapped bulk and a boundary state
with spin filter properties protected by mirror symmetry (001) on the surface. This
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novel topological phase could be achieved on films of SnTe, PbxSn1−xSe(Te) (001),
and Pb1−xSnxSe [45, 55, 59]. The gap of a TCI can be controlled by an electric
field which breaks the mirror symmetry. Furthermore, a variety of novel topological
phenomena can be observed in TCIs such as Dirac mass generation via ferroelectric
distortion and flat band superconductivity. All of the above properties make TCIs a
great platform for engineering quantum devices in spintronics. However, for most
existing 3D TIs, controlling the Fermi level (e.g., doping) is still quite challenging
and although there has been much improvement, the precision has still not reached
the levels needed for industrialization [64]. The search for new topological materials
and their applications is an ongoing mission.

The purpose of this chapter is to introduce and briefly review the theoretical concepts
and phenomenology of topology, topological insulators, and graphene-based TIs.
We will also discuss transport tools for measuring TI signatures on graphene and a
provide an overview of disorder physics in mesocopic systems. There are a number
of excellent topical reviews covering the field in much greater depth than permitted
here. The reader is encouraged to consult to Refs. [3, 14, 20, 26, 29, 30, 53, 57] for
a much more comprehensive review of the subject.

1.1 Brief introduction of topological phases
In this section, we discuss a simple example: a particle on a ring, showing how
topology plays a role in condensed matter physics. Next, we will describe the first
discovered topological phase - quantum Hall effect (QHE), and define a topological
index known as the Chern number. If we adjoin two copies of quantum Hall systems
with opposite Chern number and spin, i.e., adjoin two copies that are time-reversal
symmetric partners, we obtain a new time-reversal symmetric topological phase—
a 2D TI or alternatively known as the quantum spin Hall effect (QSHE). Finally,
we focus on how to calculate the corresponding topological number and bulk/edge
correspondence.

Motivating example—a particle on a ring
Consider a particle with the moment of inertia I on a ring [1]. As shown in the
Fig. 1.1, there is a homogeneous magnetic field B in the center, r < rc, of the ring,
but the particle on the ring is experiences no field. We choose the vector potential
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Figure 1.1: The cartoon picture of a particle on a ring.

as ®A = Aêφ with

A =


Br2
c

2r =
Φ

2πr if r > rc

Br
2 if r < rc.

(1.1)

The corresponding classical action S, Lagrangian Lcl, and Hamiltonian Hcl of the
particle respectively read

S [φ] =

∫
dtLcl(φ, Ûφ) =

∫
dt[p Ûφ −Hcl(p, φ)], (1.2a)

Lcl =
I
2
Ûφ2 + eAr Ûφ, (1.2b)

Hcl =
1
2I
(p − eAr)2. (1.2c)

The angle φ(t) denotes the angular coordinate of the particle on a ring and p = ∂L
∂ Ûφ

denotes the momenta. Although both Lcl andHcl depend on A, the vector potential
does not affect the equation of motion

I Üφ = 0. (1.3)

This matches our classical expectation: the electron on the ring experiences no
field and hence no force acts upon it. Even with the nontrivial topology of the ring
φ = φ + 2π, topology does not matter since we can always think of φ as taking real
values from−∞ to∞ and remove A by a simple canonical transformation p→ p+A.
Thus, the gauge of A is not important classically.

Consider now a quantum particle on a ring. The Hamiltonian is similar

Hq =
1
2I
(−i~∂φ − eAr)2 (1.4)
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with the eigenstates and eigen-energies

ψm = eimφ, (1.5)

Em =
~2

2I
(m −

eAr
~
)2 =

~2

2I
(m −

Φ

Φ0
)2 (1.6)

where m = 0,±1,±2, ... and Φ0 denotes the number of flux quanta h
e . Surprisingly,

the quantum system is sensitive to A because of the quantization of p. If we try
to remove A by making a transformation ψ → eiAφψ and obtain p → p + A, the
boundary conditions will not match ψ(φ + 2π) = ei2πAψ(φ). Therefore, A can be
removed from H by absorbing it into the boundary conditions, but it is not possible
to remove the physical effect of the A term in quantum mechanics by any adiabatic
transformation.

The A term is directly associated with the topology of the ring and manifests itself
as the topological term in the Lagrangian

Stopo = er
∫ t2

t1
dt A Ûφ = 2πer A

φ2 − φ1
2π

= θ
∆φ

2π
. (1.7)

The phase θ = 2πer A = h Φ
Φ0

denotes the change of action whenever the particle
travels a full circle around the ring. More specifically, it is the number of flux quanta
piercing through the ring which changes the eigen-energy of the system. This type
of topological term is also called a topological theta-term. A similar concept is
found in the quantum Hall effect.

Integer Quantum Hall effect
In 1879, Edwin Hall performed a magneto-transport experiment with a thin gold
leaf in the xy-plane and a fixed magnetic field Bz in the z-direction. He found that
the magnetic field altered the charge distribution when the current flows by: while
applying the magnetic field perpendicular to the conductor, he found a nonzero
voltage difference across the electrical conductor, transverse to the electric current—
the Hall effect.

We now discuss the theory of the Hall effect and generalize it to the quantum Hall
effect. Consider the Hall experiment for a sample in the x, y-plane with magnetic
field Bz. In the linear response regime, the conductivity and resistivity tensors
defined through j = σE and E = ρj respectively are

σ =

[
σxx σxy

σyx σyy

]
, ρ =

[
ρxx ρxy

ρyx ρyy

]
. (1.8)
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The matrices are related by σρ = 1. The classical Hall experiment shows that the
Hall resistivity is proportional to Bz,

ρxy = −
Bz

ne
(1.9)

where n is the density of electrons in the sample. This Hall resistivity equation
turns out to be an important diagnostic tool for investigating the carriers of electric
current.

In 1980, von Klitzing discovered a quantized Hall conductivity of a 2D electron gas
(conductor), as opposed to the proportionality to Bz [42, 67] found by Edwin Hall:

ρxy = −
h
νe2 (1.10)

where ν is an integer. Furthermore, the diagonal resistivity ρxx vanishes at these
plateau as shown in the Fig. 1.1. This phenomena cannot be explained classically.
One can solve the Hamiltonian of a 2D electron gas under a perpendicular magnetic
field, and obtain the so-called Landau energy levels which are highly degenerate
with degeneracy

Nl ∼
A0

2πl2
B

=
Φ

Φ0
. (1.11)

Here Φ is the total magnetic flux, Φ0 =
h
e is the quantum of flux, and A0 is the area

of the device. The magnetic length lB =
√
~

mω is defined by the electron mass m and
the cyclotron frequency ω = eB/m. In the simplest treatment, we can estimate the
total number of electrons of a system with N filled bands as NNl . Then plugging
the electron density n = Nl

A0
into Eq. 1.9, we obtain the QHE resistivity

ρxy = −
Bz

ne
= −

2πl2
BBz

e
1
N
= −

h
e2

1
N

(1.12)

which is the same as Eq. 1.10. However, this approach can not explain why QHE
is a universal phenomena even in the presence of disorder and interaction. We will
need to look into the Berry curvature.

Chern integer and topology
The QHE is actually a universal phenomena, regardless of the material geometry,
disorder, and electron interactions. By analyzing gauge invariance carefully, Thou-
less et al. [65] along with Simon [61] connected the quantized conductivity to Bloch
wavefunctions, and showed that the integer in the QHE is the first Chern number.
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Figure 1.2: Quantum Hall effect taken from Ref. [42]. This figure is adapted from
“New Method for High-Accuracy Determination of the Fine-Structure Constant
Based on Quantized Hall Resistance,” by Klitzing, K. v. and Dorda, G. and Pepper,
M., 1980, Phys. Rev. Lett., 45, p. 494–497. Copyright 1980 by American Physical
Society.

The Chern number properly distinguishes the gapped phase in the QHE from that
of an ordinary insulator.

For electrons in a crystal, the electronic states are described by Bloch wave functions

ψn,k(r) = eik·run,k(r), un,k(r + R) = un,k(r). (1.13)

ψn(r) is the quasi-periodic eigenstates of n−th band function. Due to the translational
symmetry, each Bloch wave function lives on a Brillouin zone which is topologically
a torus. The Hall conductivity for a 2D system can be shown in relation to the these
eigenstates as,

ν =
h
e2σ

xy =
∑

n∈occ.

∫
BZ

i
2π
(〈∂kxun,k |∂kyun,k〉 − 〈∂kyun,k |∂kxun,k〉)dkxdky (1.14)

where the n is summed over all occupied bands and the integral is performed over
the entire Brillouin zone (BZ). The above, seemingly complicated expression, is
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nothing but the integral of the gauge-invariant Berry curvature F ,

ν =
1

2π

∫
BZ
F d2k. (1.15)

The Berry curvature is the curl of the Berry gauge field A =
∑

n∈occ〈un,k |i∇k |un,k〉.

From Stoke’s theorem, we know that ν is an integral of A over the boundary of the
BZ. If A is continuous, then ν becomes zero and so does the conductivity because
a torus (the BZ) has no boundary. Therefore,A can not be a continuous function in
order to agree with experimental results.

Before analyzing discontinuous A, we first consider the wavefunction of the n−th
energy level. Under a smooth gauge transformation, un,k turns to

u′n,k = ei f (k)un,k (1.16)

where f (k) is a smooth function over part of the BZ. The corresponding gauge
transformation on Berry potential An is

A′n = An + ∇ f (k). (1.17)

Now since An is not continuous in the BZ (otherwise conductivity is zero), it must
be true that we can not find a smooth gauge f (k) at part of the BZ—ks. Let’s now
separate the BZ into two parts: one is the regime where the wavefunction ψ1 is
smoothly defined; another one is some small circles Rs which surround the zeros
ks. In the latter regime, we can pick another phase g(k) for which wavefunction
ψ2 is smoothly defined inside the small circles. At the boundary between these two
regimes, the wavefunctions can be connected by

ψ2 = ei(g(k)− f (k))ψ1 = eiχ(k)ψ1 (1.18)

and their Berry potentials are related by

A2 = A1 + i∇χ(k). (1.19)

Since these two areas share the same boundary, we can plug these two Berry
potentials into Eq. 1.14 and further simplify the invariant ν

ν =
1

2πi

∫
∂(Rs)

dk · i∇χ(k) = n (1.20)

where n is the so-calledwinding number of the gauge transformation on the boundary
of the piecewise definition of the wavefunctions. This number has to be an integer
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because upon a full revolution around the pointks, χ(ks+εei2π−0−)−χ(ks+ε) = 2mπ

has to be satisfied. This gauge invariant parameter ν came to be known as the
TKNN/Chern number. Because of the quantization of ν, it must be a constant under
continuous changes to the system, as long as the number of occupied bands remains
fixed (gapped insulator).

In the presence of disorder, the Landau levels will be broadened but the states in the
Landau level tails are localized in space, while only states in the center of Landau
levels are extended states. These localized states can help us to spot the plateaus.
When the chemical potential lies between two Landau level centers, electrons will
be localized, not contributing to the conductivity. (Note that there exist some edge
states which contribute to the none-zero constant conductivity in this case.) If the
chemical potentials lies at the center of a Landau level, the conductivity will move
to higher quantized value, since the occupation of the extended states has changed.
Alsoσxx is non-zero at this transition because the dissipation is no longer suppressed
in these extended states.

In the aforementioned paragraph, we mentioned that the conductivity between two
centers of Landau levels comes from the edge currents. While the bulk states are
localized, these edge states carry a current because of electron drift on the potential
gradient. More specifically, each edge state contributes to conductivity e2

h . The edge
states are chiral and topologically protected as long as the bulk gap exists. The edge
states are perfect 1D conducting channels against impurities and defects because the
right- and left-moving currents are spatially separated and hence back-scattering is
prohibited. The relation between insulating bulk spectrum and gapless edge states is
generally referred to as the “bulk/edge correspondence." This correspondence states
that a gapless excitation must exist at the interface between two different topological
classes of materials. The bulk gap of a topological class can not smoothly connected
to another system with different topology without closing the gap.

The quantum Hall effect may be regarded as the first topological insulator, with the
Hall conductivity being a topological response function of the system. One may
perturb a quantum Hall system – but as long as the material remains insulating, σxy

is invariant under adiabatic changes to the system. To change the Hall conductivity,
the system must pass a singularity in the Berry connection and Bloch functions.
When that happens, the band insulators can not continuously deformed from one
to another while maintaining a gapped system (since they haver different Chern
number); the gap has to close and reopen to make that transition.
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Quantum spin Hall effect
TheQuantumHall experiment explicitly breaks time-reversal symmetry by applying
an external magnetic field. The Hall conductivity σxy = jx/Ey is also time-reversal
breaking, where jx is odd under time-reversal but E is even. We wonder whether it
is possible to realize a TI which respects to the time-reversal symmetry.

In 2005, Kane and Mele proposed a time-reversal symmetric topological insulator
by combining two copies of the QH system with opposite Chern numbers and
spin [39]. These two copies are connected by time reversal symmetry. This type
of TI is based on graphene with z → −z inversion symmetric spin-orbital coupling
(SOC), i.e. the so-called intrinsic SOC or Kane-Mele SOC as shown in Fig. 1.3.
Since sz is still a good quantum number, we can split the Hamiltonian of graphene
into two copies — spin up and spin down. The SOC for the spin up copy acts like
a positive out-of-plane magnetic field and turns half of the system into a ν↑ = 1 QH
state. Similarly, the SOC for the spin down copy serves as a negative out-of-plane
magnetic field, and makes another QH with ν↓ = −1. Finally the SOC opens a gap
in the band diagram, which turns out to also be topologically nontrivial yielding a
quantized spin Hall conductivity σxy

s = e/2h. This state is a Z topologically trivial
state since ν↓ + ν↑ = 0; however, it belongs to another topologically nontrivial class:
Z2. The edges of the system host two helical edge states, like two copies of chiral
edge currents of QHE stacked on each other but traveling with opposite chirality.
This phenomenon is called quantum spin Hall effect (QSHE).

(a) (b)

A

A

A B

B

B
CdTe

HgTe

E1

E1H1

H1

HgTe

CdTe CdTeCdTe

Figure 1.3: Microscopic model for Quantum spin Hall effect on (a) graphene and
(b) quantum wells. The Kane-Mele model consists of a hopping term between
nearest-neighbor with coefficient t2. The dashed arrows are of the form −it2σz
for spin-up, where t2 is the second nearest-neighbor hopping amplitude. (Hopping
against dashed arrow is it2σz.) The hopping term for spin down is the same with
inverted sign.

It was soon realized that the SOC of carbon atoms is exceedingly small for the QSHE
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being observed in experiments on graphene. Bernevig et al. [10] suggested a possible
realization of a 2D topological insulator involving HgTe sandwiched between CdTe
layers to create a 2D quantum well, which was soon confirmed by König et al. [43]
in an experiment. Instead of opening the topological gap by bringing in SOC into
the system, they open the topological gap by tuning the width of the sample and
engineer the QSH phase via band inversion on strong SOC materials, which is a
generic and common way to realize many TIs.

The quantumwell is composed of barriermaterial-CdTe, which is a normal semicon-
ductor with Γ6 s-type band lying above the Γ8 p-type one, and thewell material-HgTe
having inverted bands with Γ8 p-type band lying above the Γ6 s-type band as shown
in the Fig. 1.3. Considering the SOC, these bands can be grouped into three subband
states E1, H1, L1, where only the first two are relevant near the Fermi level. These
two subbands states have the opposite parity- E1 has mJ = ±

1
2 and H1 has mJ = ±

3
2 ;

the Hamiltonian constructed by these states reads

Heff(kx, ky) =

[
H(k) 0

0 H∗(−k)

]
, H(k) = ε(k) + diσi, (1.21)

where σi are the Pauli matrices. By the symmetry constraints, each Hamiltonian
block to the lowest order in k can be expanded in the following form:

d1 + id2 = A(kx + iky) = Ak+,

d3 = M − B(k2
x + k2

y),

εk = C − D(k2
x + k2

y),

(1.22)

where A, M , C, and D are determined by the microscopic models for specific
materials. The Hall conductance for each subblock is

σxy = −
1

8π2

∫
dk(d̂) ·

(
∂x(d̂) × ∂y(d̂)

)
(1.23)

in e2/h. Interesting, one can easily change the parameters A, M , C, and D by
modifying the width of the well material d, and there is a transition point d = dc

across which the Hall conductance is changed by 2e2/h and the number of pairs
of helical edge states is changed by 1. For thickness d < dc, the bands are still
dominated by CdTe and the quantum well is in the normal phase; for d > dc, the
HgTe is thick enough to invert the bands, leading to the topological phase.

With a six-terminal transport probe, experimentalists measured the quantized con-
ductance e2/h for each edge of the system, thereby confirming the helical edge nature
of the QSH insulator. The details of the experiments are presented in Refs. [43, 44].



12

Z2 invariant and bulk-edge correspondance
The quantum spin Hall effect is the so-called 2D Z2 topological insulator. Systems
under time-reversal symmetry are characterized by the Z2 topological numbers. By
time-reversal symmetry T , the Bloch wavefunctions un,k and Tun,k are degenerate
and orthogonal to each other. Built from the matrix of overlaps of the ith eigenstate
with the time reversal of the jth eigenstate wmn(k) = 〈um,k |Θ|un,−k〉, we can define
the Z2 invariant as

δa = Pf[w(Λa)]/
√
Det[w(Λa)] = ±1 (1.24)

where Ph[w(Λa)] is the Pfaffian of the matrix w(Λa). Then the Z2 invariant ν is
defined by

(−1)ν =
4∏

a=1
δa. (1.25)

Here a is one of the four special points Λa in the bulk of 2D BZ where k and −k
differ by a reciprocal lattice vector. Note that this simple approach is only valid in
the presence of the additional symmetry-inversion symmetry. There are also other
approaches for general systems as shown in Refs. [22, 60, 62]. The calculation of this
number becomes a nice indicator either analytically or numerically of confirming a
certain structure of materials being TIs.

The QSH states (or 2D TI) have gapless edge modes by the bulk-boundary corre-
spondence. For a gapped 2D TI state, there is always an odd number of Kramers pair
(time-reversal polarization) edge states traveling in the opposite direction. Kramers
pair are related by time reversal symmetry; the same symmetry also prevents elec-
trons in one edge state from backscattering into its Kramers partner [4, 8, 73]. This
protection yields a TI phase robust against most disorder, except for magnetic im-
purities that break time reversal symmetry. For more details, we refer the readers to
Ref. [29].

1.2 Gaphene-based topological insulators
Though QSHE was already realized in the quantum well structure, many experi-
mental activities on the QSHE effect are still limited by some practical difficulties.
On the contrary, the open surface, high conductivity, and easy fabrication makes
graphene more amendable for experimental and industrial investigation. The only
lacking ingredient in engineering QSHE on graphene is strong SOC, especially the
intrinsic SOC. In this spirit, many proposals exist to enhance SOC on graphene by
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doping adatoms, changing functionality of the surface, placing graphene on top of
other strong SOC materials, etc.[13, 21, 24, 34, 38, 50, 70, 75, 76]. In this section,
we establish a mathematical setup to study this problem, and clarify all the notations
which will be used in the following chapters.

Graphene
Graphene is made of carbon atoms distributed at the edges of hexagons as shown
in the figure (a) of Table 1.2. Carbon is a light element with outer shell 2p orbitals,
specifically 2pz orbitals (or π states). Electrons in the 2pz state can hop easily
between neighboring atoms. The Dirac physics of graphene relies on this hopping
process in graphene. To describe this system, we define the creation operator
c†r which adds an electron to a pz orbital at site r , and construct the minimum
Hamiltonian H in real space with a tight binding model,

H =
∑
〈r,r′〉
(c†r cr′ + h.c.) (1.26)

where t is the hopping amplitude. Here and below, spin indices are implicitly
summed whenever suppressed. The honeycomb lattice is viewed as a Bravais lattice
(triangular) built with unit cells of two atoms, say A and B. Each unit cell is
connected via the superposition of two vectors a1 and a2 as defined in Table 1.2.

Performing the Fourier transformation of Eq. (1.26), we obtain the

H =
∫

k
c†k

[
0 −t f (k)

−t f ∗(k) 0

]
ck (1.27)

with a geometrical factor

f (k) =

√
1 + 4 cos2(kx

√
3a
2
) + 4 cos(kx

√
3a
2
) cos(ky

3a
2
). (1.28)

Here ck is a four-component object with spin and sub-lattices (A, B). The reciprocal
lattice of a honeycomb lattice is also a honeycomb with reciprocal lattice vectors G1

and G2. The corresponding energy spectrum is simply

E(k) = ±t | f (k)| (1.29)

which contains two Dirac cones with Dirac points K, K′ at zero energy. This energy
diagram is especially interesting and important because its low energy excitations
followa linear dispersion, the same as that of the light cone for fundamental electrons.
These low energy states are also known as Dirac states—a “relativistic" state.



14

We now expand Eq. (1.27) around K and K′ up to the first order in momentum k.
The effective low-energy Hamiltonian reduces to the linear model as follows,

Heff = vF

∫
k
ψ†k(τzσxkx + σyky)ψk (1.30)

where ψ†k is the low-energy electron creation operator with 8 components,

ψ†k = (c
†

K+k,A,↑, c
†

K+k,A,↓, c
†

K+k,B,↑, c
†

K+k,B,↓, c
†

K′+k,A,↑, c
†

K′+k,A,↓, c
†

K′+k,B,↑, c
†

K′+k,B,↓).

(1.31)

Here τ is the Pauli matrix for valleys (K,K′), σ is for sub-lattices (A, B), and vF =
3
2 at ∼ 106 m/s is the Fermi velocity. The spin states (↑, ↓) and its corresponding Pauli
matrices sx,y,z will be used later in a spin-dependentHamiltonian. The corresponding
energy dispersion reads

E± = ±~vF |k|. (1.32)

The Dirac Hamiltonian of graphene gives an experimentally accessible system in
which to study relativistic physics. For more interesting properties of graphene, we
refer the readers to Refs. [14, 19].

• Lattice spacing a.

• ®a1 = (
3
2 a,−

√
3

2 a), ®a2 = (0,
√

3a)

• ®δ1 = (
a
2,
√

3
2 a), ®δ2 = (

a
2,−

√
3

2 a), ®δ3 =
(−a, 0)
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4π
3a (1, 0), G2 =

4π
3a (

1
2,
√

3
2 )

• Dirac point
K = 4π

3a (
1
2,

1
2
√

3
), K′ = −K

• energy ε± =

±t
√

3 + 2 cos
√

3kya + 4 cos 3
2 kxa cos

√
3

2 kya

Quantum spin Hall effect on graphene
Before discussing the QSHE on graphene, it is useful to start by introducing the
Chern insulator (a.k.a. Haldane model) on the honeycomb lattice which is histor-
ically the first topological insulator without a magnetic field. Haldane wanted to
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mimic an integer QHE on graphene in the absence of external magnetic field [28].
He realized that the crucial ingredient for topological insulation that the magnetic
field provided was time-reversal symmetry breaking. Following this insight, he
engineered a system which breaks time-reversal symmetry, but which has no net
magnetic flux per unit cell, by introducing a magnetic phase φ on the next-nearest-
neighbor hopping amplitude. The Hamiltonian reads

H = −t
∑
〈r,r′〉

c†r cr′ + t2
∑
〈〈r,r′〉〉

e−iνrr′φc†r cr′ + M
∑

r
εrc†r cr (1.33)

where the parameter εr = ±1 depends on r = A or B sublattice, t2 is the next-nearest
neighbor hopping energy, and M is an on-site inversion symmetry-breaking term
(mass term). The sign of the phase in next-nearest neighbor hopping amplitude
is determined by the hopping direction νrr′ = sign(d̂r × d̂r′)z = ±1 where d̂i is
the position relative the center of each hexagon: r − rc. The t2 term and mass M

term break the time-reversal symmetry and the inversion symmetry respectively.
Both open a band gap but as we will see later, these two band gaps have different
topological nature.

To get the band structure, we derive the corresponding low energy Hamiltonian
H =

∫
k c†kh(k)ck at Dirac cones with

h(k) = ε(k) + di(k)σi (1.34)

where

ε(k) = −3t2 cos(φ)

dx(k) =
3
2

tτkx

dy(k) =
3
2

tky

dz(k) = M − 3
√

3t2 sin(φ)τ

(1.35)

where τ = 1 corresponds to Dirac point K and τ = −1 to K′. The corresponding
Hall conductance of the above Hamiltonian depends on the details of the parameters,
especially M and φ. Without loss of generality, we assume 0 < φ < π), t2 > 0.
In the case of M � t2, the system is dominated by the mass term and opens a
topologically trivial gap with wavefunctions localizing on the A or B sites. If we
lower M , the K′ Dirac fermion goes through a gap-closing and reopening transition
at

M = 3
√

3t2 sin φ. (1.36)
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In the mean time, the Hall conductance from K′ cone changes from − e2

2h to e2

2h with
a change of e2

h , while the gap at K′ stays open all the time. If we keep lowering M ,
the K Dirac fermion also goes through a gap-closing and reopening transition at

M = −3
√

3t2 sin φ (1.37)

with a change in Hall conductance of − e2

h , while point K′ remains gapped. Beyond
this point, the phase is trivially insulating again, and is smoothly connected to the
M = −∞ phase. The phase diagram of Haldanemodel is summarized in the Fig. 1.2.

Figure 1.4: Phases of the Haldane model characterized by the first Chern number
C1.

One may wonder: is breaking time-reversal symmetry the only way to realize
a topological phase? Kane and Mele answered no to the above question with
intrinsic spin-orbital coupling τzσzsz [39]. The idea is that, by adding a spin
degree of freedom, one can stack two Haldane models together and realize another
topological state while preserving TR symmetry. The full tight binding model of
proposed Hamiltonian reads

H = −t
∑
〈i, j〉

c†i c j + iλso

∑
〈〈i, j〉〉

eiνi jc†i szc j, (1.38)

where νi j are the bonds as in the Haldane model. The new SOC term respects TR
symmetry. In the low energy limit, the intrinsic SOC can be written as

Hso = ∆so

∫
k

c†k [τzσzsz] ck, ∆so = 3
√

3λso. (1.39)

As shown in the Fig. 1.5, the corresponding bulk energy spectrum has a gap at the
Dirac points with a pair of counter-propagating edge modes on a graphene strip with
open boundary conditions: spin up current goes counter-clockwise while spin down
current goes clockwise. These two edge modes cross at a TR-invariant point; the
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crossing is protected by TR symmetry and cannot be absorbed into the bulk (unless
the symmetry is broken). This state is not the same Z topological state as in the
Haldane model since its charge Hall conductivity is 0; however, it can be shown to
be a Z2 topological insulator - also QSHE- in Ref. [40], of which the derivation will
not be repeated here. This topological state is robust against weak interactions and
disorder (but preserving TR), but can be destroyed by magnetic impurities or any
term which breaks TR symmetry.

Valence

Conduction
(a) (b)

Figure 1.5: (a) A cartoon phase diagram with edge states for Kane-Mele model. (b)
The edge states in real space.

The above model is the simplest model for a 2D TI on graphene, of which the spin
sz is still a good quantum number. However, the actual atomic SOC arises from
∇V(r) × p · σ which includes a spin-conserving term sz and/or a spin-flipping term
sx,y, especially the latter one is a common spin type in experiments. For example,
the Rashba SOC

HR = λR

∫
k

c†k
[
σxτzsy − σysx

]
ck, ∆so = 3

√
3λso (1.40)

is a common spin-flipping SOC seen in the experiments. It also preserves time
reversal symmetry, but breaks the out-of-plane inversion symmetry. Rashba SOC
has been found in many experiments [7, 31, 41, 75].

When Rashba SOC and intrinsic SOC appear in graphene together, the sz quantum
number is no longer conserved. One may ask that, if the system can not be separated
into spin-up and spin-down copies, does the topology still exist in the presence of
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Rashba SOC? To answer this question, we can study graphene with both intrinsic
SOC ∆so and Rashba SOC λR. When λso , 0 and λR = 0, the system has a topolog-
ically nontrivial gap. If we slowly turn on λR, the topological gap slowly decreases
as 2(∆so − λR). The gap is smaller but the edge states still exist. This suggests that
when λR < ∆so, the system can be smoothly connected to the topological phase
of λR = 0. However, since the spin sz is no longer a good quantum number, the
system does not have quantized spin-Hall conductance, but spin still gets pumped.
In this case, we say that the system has a quantized TR polarization [39]. When
λR > ∆so, the gap will close and the system becomes a trivial conductor. Note that
it is possible to have edge states if the edge is of zig-zag type, but they will not cross
the bulk gap and not be robust against disorder.

To sum up, the key ingredient of realizing the QSHE on graphene is SOC, especially
the intrinsic SOC. A few adverse factors such as Rashba SOC, strong disorder and
interactions, or magnetic impurities would destroy QSH phase. Therefore, one must
be very careful in avoiding these factors while coupling graphene to adatoms or
other materials to enhance SOC. Combining analytical modeling and DFT, there are
many proposals to engineer a 2D TI on graphene, yet no solid evidence such as a gap
or quantized edge states have been found so far. More importantly, we do not really
have a good tool to tell whether graphene actually inherits these SOCs, especially
the intrinsic SOC, from other materials. Common SOC measurements such as spin
Hall transport and magneto-conductance have some difficulties in reading intrinsic
SOC. More details will be mentioned in the following sections.

1.3 Disordered Mesocopic system
Disorder physics has been investigated for decades and continues to be a rich field of
research. In real experiments, disorder is unavoidable, ranging from a few impurities
to the strong disorder limit in alloys. Furthermore, disorder is a key ingredient for
some interesting physics phenomena such as quantum interference, the topological
Anderson insulator, and many-body localization.

In this section, we will briefly describe the disorder-induced metal-to-insulator
transition and then specifically focus on the two-dimensional case. Next, we will
discuss themicroscopic origin of weak-localization/weak anti-localization, quantum
interference, and its application in identifying SOC in 2D materials. Lastly, we will
talk about 2D mesoscopic systems which are great platforms for observing quantum
interference effects and all its related length scales.
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Disorder classes
Beginning with a perfect metallic system, we may put disorder in the system either
by increasing the number of impurities or by increasing the disorder strength. De-
pending on the symmetries and the dimensionality of the system, the system may
experience a disorder transition, the so called metal-to-insulator phase transition
(MIT). By using a one-parameter renormalization group approach, Abrahams et al.
found that the finite size scaling of the conductance in a metal is different from an
insulator [2]:

g ∼ Ld−2 when metallic; (1.41)

g ∼ e−2L/ξ when insulating. (1.42)

Here Ld denotes the system size in d−dimension. We can thus define a function β
to describe the scaling variable g(L) as

β(g) =
d ln g
d ln L

∼


d − 2 when metallic, i.e.g →∞,

ln g when insulating, i.e.g → 0.
(1.43)

From the schematic flow diagram in Fig. 1.3, we observe that there is no MIT for
d < 2. The system is immediately localized with infinitesimal disorder. On the
other hand, there is always a transition point between the metallic and insulating
phases for d > 2. The d = 2 cases is a marginal case. The existence of aMIT further
depends on the symmetry (time reversal and spin rotation) and can be categorized
intoweak localization (with noMIT), weak anti-localization (withMIT), and unitary
(marginal case). Therefore, the phenomena of weak-localization (WL) and weak
anti-localization (WAL) can be very useful tool to distinguish the symmetry/disorder
class of a 2D system.

Weak localization for 2D electron gas
Unlike the strong disorder regime in which the single-particle wavefunctions are
exponentially localized at zero temperature, a conductor/semiconductor, in the pres-
ence of weak disorder, has single-particle wavefunctions that extend throughout
the whole system. Here we will focus on an interesting quantum interference phe-
nomenon on a 2D material with weak disorder.

Consider a metallic system with weak disorder. Naively, we would expect a mono-
tonic decrease in conductance and zero interference effects because the phases of
various paths completely are randomized. However, this is not exactly correct. To
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Figure 1.6: Renormalization group flows of the β function for the zero temperature
conductance of a disordered system with dimensionality d.

clarify this point, let’s focus on a scattering path in which an incident electron in
mode m is reflected into mode n with intermediate scattering process m1,m2, ... with
the probability R(m → n). By squaring the sum of all possible Feynman paths
connecting the initial and final states, the probability R(m→ n) reads

R(m→ n) = |A1(m→ n) + A2(m→ n) + ...|2

=
∑

i

|Ai |
2 +

∑
i, j,i, j

Ai A j

where
A(m→ n) = |A| exp[i(kmlm + km1 lm1 + km2 lm2 + ... + knln)]

Usually the phases of the various paths are all random and any interference effects
cancel out upon averaging yielding R(m→ n) →

∑
i |Ai |

2. However, this is not the
case when the initial and final states are the same. For each such process

m→ m1 → m2...mN−1 → mN → m,

there is a time reversed path which also has the same initial and final states

m→ mN → mN−1...m2 → m1 → m.

The probability of transitioning from m to m state is simply

R(m→ m) = |(A1 + A2 + ...) + (A1R + A2R + ...)|
2 = |A + AR |

2 (1.44)
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where A is the collection of the paths of m → m and AR is the time reversal of A.
The amplitude of A and AR are the same but the phases, θ and θR, can be different.
Therefore, the Eq. (1.44) can be rewritten as

R(m→ m) = 2|A|2 + 2|A|2 cos(θ − θR). (1.45)

Depending on the phase difference, the system will present different transport be-
haviors,

cos(θ − θR) = 0→ incoherent backscattering

cos(θ − θR) = 1→ constructive interference

cos(θ − θR) = −1→ destructive interference.

If the quantum interference is constructive, electrons tend to localize in the system
and the conductivity decreases. This phenomena is the so-called weak localization
(WL). On the other hand, if the quantum interference is destructive, electrons tend to
travel through the system, more thanwithout quantum interference. This phenomena
is weak anti-localization (WAL). For a spinless particle in 2D, the phases acquired
from disorder are the same and this system shows WL behavior.

There are two major features of weak localization. The first is the logarithmic
divergence of the resistance at low temperature. However, the same divergence
scaling can also be caused by impurity-induced electron-electron interaction. The
second feature is magnetoconductance (MC) and can be used to distinguish these
two effects. The idea of MC is to alter the phase of the interferences of the self-
intersecting paths by applying a magnetic field. The reflection probability becomes

R(m→ m) = 2|A|2 + 2|A|2 cos(θ − θR − 2θB) (1.46)

where θB is the phase induced by magnetic field. Therefore, the MR will oscillate
when the magnetic field increases. From the dispersion of the MR at B = 0, we
can distinguish the type of localization. Near B = 0, if the MC increases while B
increases, it means that the conductance is suppressed by the interference and the
material is weakly localized. On the other hand, if the MC decreases, it suggests
that the quantum interference is destructive and the electrons tends to anti-localize.

In conventional spin-independent 2D system, a small amount of disorder cause weak
localization. However, Bergman found that we can actually have WAL in 2D by in-
troducing SOC into the system, and this idea was later confirmed by the experiments
shown in Fig. 1.7 [9]. Bergman performed a magneto-transport measurement on
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a Mg film which has little SOC and found increasing MC, suggesting WL. Next,
they placed some Au atoms on the film to enhance the SOC and found that the MC
decreased gradually and, eventually, turned to negative MC. It showed that SOC can
turn a 2D material from WL to WAL. This result is not too surprising. When SOC
happens during a back-scattering process, the wavefunction gains an extra phase.
Due to the different directions of A and AR, there exists a 2π phase between A and
AR in the spin degrees of freedom, leading to a minus sign of the wavefunction
because of the property of electrons. The drastic change in MCmakes MC transport
experiments a nice indicator for the existence of SOC for 2D electron gas.

Figure 1.7: The figure is take from Bergman(1982) [9]

It it worth mentioning another perspective for classifying disorder. Wigner and
Dyson modeled the statistics of single particle states of non-interacting systems
with external disorder potentials by standard Random matrix ensembles [23, 71].
Random matrices for a disordered system can be classified into three distinct invari-
ant ensembles based on symmetries, such as time-reversal (TR) and spin-rotation
(S) symmetry. The three ensembles are Gaussian Unitary Ensemble (breaks T),
Gaussian Orthogonal Ensemble (respects both T and S), and Gaussian Symplectic
Ensemble (respects T, breaks S) as shown in the Table. 1.1. Each of these specifies
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a disorder class: weak localization and anti-localization are classified according to
orthogonal and symplectic ensembles respectively. By examine the symmetry of a
2D Hamiltonian, one can easily tell the WL or WAL disorder class.

Class Time-reversal Spin rotation
Orthogonal 3 3

Unitary 7 not applicable
Symplectic 3 7

Table 1.1: Classification of the different Random matrix ensembles proposed by
Wigner and Dyson.

Weak localization in Graphene
In the low energy graphene physics, a relevant quantity used to characterize the
eigen-functions’ chirality is defined as the projection of the momentum along the
pseudo-spin direction p · σ,

(p · σ)ψK(r) = ±
1
2
ψK(r). (1.47)

States around Dirac points can be categorized by chirality: electrons at K have
positive chirality while the holes have negative chirality. The chirality at K′ is the
same but with the opposite sign. This chirality is similar to SOC, leading to an
extra Berry phase gain in a back-scattering process within the Dirac cone; this phase
changes the sign of the amplitude of one path with respect to the time-reversed
path and thus graphene with smooth disorder is predicted to exhibit WAL. However,
strong inter-valley scattering, which typically arises in ordinary-quality samples,
suppresses the chirality-relatedWAL and generates weak localization (WL) [29, 39].
The whole classification becomes more complicated when spins are included in the
system since the interplay of spins, pseudo-spins, valleys, and their corresponding
phase become non-trivial.

Imura and McCann have done extensive work on analyzing the localization prop-
erties of graphene in the presence of different scattering and SOC mechanisms.
Different localization classes are controlled by the number of effective internal
degree of freedom, i.e. spin s and pseudo-spin for sub-lattices σ and valleys
τ. Imura [35] used a set of effective time-reversal symmetries TΣ, where Σ =
{®σ}, {®σ, ®τ}, {®σ, ®s}{®σ, ®τ, ®s}, to categorize the localization behavior for different scat-
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tering process as shown in Fig. 1.8. Their explicit forms are given by

Tσ = −iσyK, Tσ,τ = τxK,

Tσs = (−iσy)(−isy)K, Tσ,τ,s = τx(−isy)K,
(1.48)

whereK is complex conjugation. TheHamiltonian of graphenewith spin-independent
disorder and Rashba coupling respects all the effective time reversal symmetries.
Thus their localization properties are determined by the number of activated spin
degrees of freedoms, Ns. One can verify T2

Σ
= 1 if Ns is even, and T2

Σ
= −1 if Ns

is odd. The former (latter) corresponds to the orthogonal (symplectic) class. The
Kane-Mele term and mass term σz possibly break some effective TRS operators and
drive the system to unitary class.

Intervalley

Kane-Mele
SOC 

Mass term

Rashba

Intra-valley

WLAL

WL
WLU

AL

U
U

Figure 1.8: Weak localization class diagram of grapheme-based models with dif-
ferent types of the mass and impurity scattering. WL, AL and U refer to weak
localization (orthogonal class), weak anti-localization (symplectic class) and ab-
sence of WL (unitary class), respectively.

The precise crossover between different regimes depends on the competition of
scattering and/or SOC relaxation rates, as shown in Fig. 1.9. By using diagrammatic
techniques, McCann analyzed disordered graphene, deriving the weak localization
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Figure 1.9: The disorder class in monolayer is determined by the magnitude of
the inelastic dephasing rate τ−1

φ relative to characteristic relaxation rates describing
intra-valley symmetry-breaking τ−1

∗ and inter-valley scattering τ−1
i . The left side

shows the expected behavior when the defacing rate is smaller than scattering rates
related to either Bychkov-Rashba (BR) or Kane-Mele (KM) spin-orbit coupling

correction to the magneto-conductance [51],

∆ρ(B) =
e2ρ2

2πh
[F(

B
Bφ
) − F(

B
Bφ + 2Bi

) − 2F(
B

Bφ + Bz
)

− 2F(
B

Bφ + BBR + BK M
) + 2F(

B
Bφ + 2Bi + BBR + BK M

)

+ 4F(
B

Bφ + Bz + BBR + BK M
)

− F(
B

Bφ + BBR
) + F(

B
Bφ + 2Bi + 2BBR

) + 2F(
B

Bφ + Bz + 2BBR
)] (1.49)

where Bφ,i,z,BR,K M = (~c/4De)τ−1
φ,i,z,BR,K M with diffusion coefficient D = v2τtr/2.

The parameters are defined as follows: the transport time τtr = 2τ0, F(z) = ln z +

ψ(1/2+ 1/z), τ−1
φ is the inelastic decoherence rate, τ−1

z is the intra-valley scattering
rate, τ−1

i is the inter-valley scattering rate. The total elastic scattering rate is τ−1
0 =

τ−1
z + τ

−1
i . The Kane-Mele (intrinsic) and Rashba SOC rates are described by τ−1

K M

and τ−1
BR respectively. Here we would like to address the effects of each rate in

quantum interference:

1. The decoherence, or dephasing, rate τ−1
φ characterizes the suppression of

quantum interference. Therefore, the MC change is more significant in a
system with smaller decoherence rate.

2. The inter-valley scattering couples two valleys. The system with only intra-
and inter-valley scattering is an orthogonal disorder class (WL behavior).

3. Adding Kane-Mele SOC will turn the spin-independent disordered graphene
from WAL/WL to the unitary class, which shows suppressed WL in the
magneto-transport data. It is challenging to distinguish the unitary class
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from WL, because both inelastic scattering and Kane-Mele SOC show the
suppressed WL in MC.

4. The Rashba SOC flips WAL to WL or vice versa. It is the most obvious
change than the other scattering mechanisms or SOCs.

Due tomultiples parameters, it is a challenging task to extract all the relevant rates by
fitting the above MC equation to the experimental data. Also, the above equation is
only valid under the assumption of only local disorder, 〈V(x)V(x′)〉 ∼ δ(x− x′), and
no correlation between different disorder types. Therefore, one should be careful in
using the above equations to extract SOC rates from experimental MC data.

Relevant length scales
There are a few important length scales in transport in a 2D mesoscopic system:
wavelength λ = 2π

k , correlation length of the disorder ξ, mean free path le, localiza-
tion length ξloc, and system size L.

A magnetic field introduces two additional effective length scales into the problem.
First, the electron trajectories become curvedwith the classical cyclotron orbit radius
lcyc = m∗v/eB, where m∗ denotes the electron effective mass. Secondly, the effect
of the magnetic field on the phase of the electron wavefunction is characterized by
the magnetic length lB = [~/eB]1/2.

Depending on the disorder or SOC details, more related scattering lengths (or
rates) are included in the system, such as lφ,i,z,BR,K M which stands for decoherence
length, inter-valley scattering length, intra-valley scattering length, Rashba spin
relaxation length, and Kane-Mele (intrinsic) spin relaxation length respectively. In
the following, I will explain the physical meaning of each relaxation rate.

1. Fermi wave-vector kF and Fermi wavelength λ

The wave-vector kF = EF/~vF =
2π
λ and the associated parameter (kF le)−1

characterize the "disorderness" of the system. When (kF le)−1 is much greater
than 1, it suggests the system is either in the Anderson localization regime
or in another subtle regime at the Dirac point, where Boltzmann theory and
diagrammatic calculations fail.

2. Decoherence/dephasing rate τ−1
φ
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Coherence/dephasing time measures how long it takes for an electron to
lose its phase coherence through inelastic scattering from, or entanglement
with, the environment, e.g., the phonons. For example, we can change the
dephasing rate by changing temperature. The dephasing length is defined
as Lφ = (Dτφ)1/2 where D = v2

Fτtr/2 is the diffusion constant and τtr is the
transport time. In a finite-size system, the Lφ is determined by the minimum
length of the inelastic scattering length, system size, and magnetic length:[20]

Lφ = min{L, LT, lB}. (1.50)

Here, L is the system size, LT is the Thouless length, and lB is the magnetic
length.

3. Intra-valley scattering rate τ−1
z and Inter-valley scattering rate τ−1

i

The intra-valley and inter-valley scattering together contribute to elastic scat-
tering. With presence of long range disorder, the graphene system has mostly
intra-valley scattering. On the other hand, when the disorder is short-ranged
(even uncorrelated), large angle scatterings are allowed and the inter-valley
scattering would be more important. Both associated scattering rates can be
estimated by Fermi’s Golden rule.

4. KM relaxation rate τ−1
K M

This spin relaxation term is associated with the homogeneous Kane-Mele
(intrinsic) SOC,

∆soσzτzsz . (1.51)

One can easily check that sz is a good quantumnumber for the graphene+Kane-
Mele SOC: [H, sz] = 0 but sx(y) is not. The eigenstates are still eigenstates
of sz, so that the spin up (or down) in z-direction will not relaxed. However,
in experiments, the spin can be in other orientation which can be relaxed.
To be more precise, let’s consider the states in the band structures that are
sx eigenstates, those that are not eigenstates of Hamiltonian. If a collision
event with non-magnetic impurities changes the momentum of an electron,
it changes the spin as well because the spin orientation associated with the
momentum are never mutually parallel. Such a spin changing process is called
the “Elliot-Yafet” mechanism and the spin relaxation rate is estimated to be

τ−1
K M = τ

−1
0 (
∆so

EF
)2. (1.52)
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Since the elastic scattering is the main source in flipping spin, the spin relax-
ation rate is proportional to the elastic scattering rate.

5. Rashba relaxation rate τ−1
BR

When inversion symmetry is broken, homogeneous Rashba SOC will appear
and lift the spin degeneracy,

λR(σxτzsy − σysx). (1.53)

None of sx,y,z is a good quantum number in this system (graphene+Rashba
SOC). The Rashba SOC induces a more efficient spin relaxation process.
Since the conduction energy bands are spilt, the spin of each momentum
state will precess as if there is an internal magnetic field for each momentum.
Unlike the intrinsic SOC, the spin orientation changes during the precession
but the electron loses the rotating information once it is scattered into another
state. Thus, the scattering event acts against the spin relaxation in this case,
which is also known as D’yakonov-Perel mechaism:

τ−1
BR = 2τ0(

λR

~
)2. (1.54)

The spin-diffusion length is lBR =
√

DτBR ∼
~vF
λR

. The following picture is a
summary of the relation between spin relation rate and the elastic scattering
rate for the EY and DP mechanisms [11].

The real spin relaxation mechanism in graphene and its source is still in debate.
The above theoretical argument is used by many research works [51, 56], but is
not confirmed in experiments yet. First, a wide variety of experiments suggest a
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linear scaling between τs and τ0 with independence of the carrier concentration.
Also, the spin relaxation time is much shorter than expected. These data suggest the
failure of the EY mechanism. A more recent experimental paper studying the DP
mechanism [66] shows that none of these conventional mechanisms can describe
the experimental results of graphene spintronic properties.

Length scale comparison in a MC experiment
In a typical magneto-transport measurement, the length scales at higher carrier
density are in the order of

Lϕ > ltr > λ > ξ > a. (1.55)

This length scale order describes diffusive mesoscopic system with weak finite-
range correlated disorder kF l � 1. We will strive to prepare such a system later
in our simulation. However, this length scale order is not applicable at low carrier
density, where kF l � 1. Close to the Dirac points, the carrier density saturates at
a non-zero value ∼ 1010 − 1011cm−2 due to inhomogeneities (such as electron-hole
puddles.) Another fundamental mystery in graphene transport is the absence of any
strong localization-induced insulating phases around the Dirac point, though where
kF l � 1 due to the infinitesimal kF at the charge neutrality point. This is a manifest
violation of the Ioffe-Reggel criterion which predicts strong localization for kF l < 1.
It is conceivable, but does not seem likely, that graphene may go insulating due to
strong localization at lower temperatures.

1.4 Overview of the thesis
This thesis focuses on enhancing SOCs on graphene and extracting SOC information
by using numerical and analytical methods.

In Chapter 2, we give a detailed derivation of the magneto-conductance for different
graphene-based systems by using diagrammatic theory. In Chapter 3 and 4, we dis-
cuss the theory of simulating magneto-conductance by using the Landauer-Büttiker
formalism, and explore various important factors in the magneto-conductance sim-
ulation. In Chapter 5, we study the graphene/WS2 system from experimental,
numerical, and analytical perspectives. We find that the SOC on such system is
greatly enhanced and discuss the underlying physics mechanisms. In Chapter 6, we
study heavy adatom-doped graphene in the hope of engineering a 2D TI by a prox-
imity effect. We propose a way to measure the SOC signatures which are precursor
signatures of 2D TI, and confirm this idea both analytically and numerically. Lastly,
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we summarize our work in Chapter 7.
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C h a p t e r 2

DIAGRAMMATIC THEORY

An applied uniform magnetic field provides a sensitive probe for the measurement
of quantum interference correction, leading to various of applications. The dia-
grammatic theory is a great quantitative tool to study the coherent effects in weakly
disordered metals, especially in a larger system.

In this chapter, we outline the derivation of magneto-conductance(MC) of graphene.
Firstly, wewill construct theHamiltonian of graphene in a newbasiswhich simplifies
the calculation and also matches QED 2+1 theory. Then we use the diagrammatic
method to calculate the conductivity and spin-relaxation rates. Notably, we will use
two approaches; one is the straightforward diagrammatic evaluation by following
Ref. [1, 5], and another one is converting the coordinate to the hidden symmetry
representations as in Refs. [4]. The first method is more powerful in evaluating all
kind of cases while the latter one can be very efficient in tackling special cases. We
will use eachmethod to deal with one type of disorder as an example- straightforward
approach for adatom-doped graphene (local scatters) and hidden symmetry one for
graphene on various fo substrates (homogeneous disorder landscape).

2.1 Hamiltonian
To simplify the calculation and match QED 2+1 theory, we change the basis from
(ψKA, ψKB, ψK′A, ψK′B) to two sets of 4 × 4 Hermitian matrices for sublattice "iso-
spin" Σµ and valley "pseudo-spin" Λµ respectively,

Σ
x = τz ⊗ σx, Σ

y = σy, Σ
z = τz ⊗ σz,

Λ
x = −τy ⊗ σy, Λy = τx ⊗ σy, Λz = τz ⊗ σ0,

(2.1)

with algebraic relations ΣαΣβ = iεαβγΣγ and ΛαΛβ = iεαβγΛγ; the two sets are
mutually independent. The time-reversal operator in this basis is Θ = ΛyΣysyK.

These two sets of matrices are particularly useful to construct a general time-
invariant Hamiltonian and calculate the quantum interference due to their time
reversal asymmetric nature. The (time-reversal invariant) Hamiltonian of graphene
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with generic disorder, for example, can be written as

H = ~vF ®Σ · ®p + Îu(r) +
∑
n,m

unm(r)Σn
Λ

m +
∑
n,m

αnm(r)Σnsm +
∑
n,m

βnm(r)Λnsm

(2.2)

where u(r) and unm describe the spatial distribution of each disorder. Similarly,
the possible SOC types include Σnsm and snΛ

m. This type of disorders are already
derived in Refs. [3, 4] so that we will not repeat the calculation here. Now we
consider two types of disorder in the following.

Adatom Hamiltonian
According to Chapter. 6, we focus on the disorder induced by p, d−orbital adatoms.
For d-orbital adatoms, the low-energy effective Hamiltonian for a single adatom
scatters at RI can be approximated to

δH
(d)
RI
=

[
V0I + ei(∆K·RI )Λ

z

(ViΛ
x
Σ

z − λiΛ
xsz)

+ λKMΣ
zsz + λR(Σ

xsy + Σysx)

]
δ(r − RI).

(2.3)

where ∆K =
( 8π

3
√

3a
, 0

)
. Similarly, the induced potential by p-orbital adatoms can be

written as

δH
(p,0)
R = A7δ(r − R)

[
V0I + λKMΣ

zsz + ei∆K·RIΛ
z

(ViΛ
x
Σ

z − λiΛ
xsz)

]
(2.4)

and

ψ†δH
(p,1)
RI

ψ = A7δ(r − RI)
[
ψ†Ω · (−i∇ψ) + h.c.

]
(2.5)

with

Ωx = aV (1)0 Σ
x − aλ(1)i Λ

x
Σ

xszei∆K·RIΛ
z

+ aλ(1)R (s
y + Λz

Σ
xsy − Λz

Σ
ysx)

− aλ(1)R ei∆K·RIΛ
z

(Λy
Σ
ysy + Λy

Σ
xsx + Λx

Σ
zsy)

Ωy = aV (1)0 Σ
y + aλ(1)i Λ

x
Σ
yszei∆K·RIΛ

z

+ aλ(1)R (−sx + Λz
Σ
ysy + Λz

Σ
xsx)

− aλ(1)R ei∆K·RIΛ
z

(Λy
Σ
ysx − Λy

Σ
xsy − Λx

Σ
zsx).

(2.6)

Here V (1)0 = −3
2

t2
1
ε1

and λ(1)i = λ
(1)
R . Adatoms are short-ranged disorder, providing

both intra- and inter-valley scattering. Also, the spin-independent scattering terms
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can be re-normalized into the other inevitable disorder source, e.g. from substrate,
and has little contribute to the change of MC. Thus, these terms will be neglected
in the following calculation. Lastly, each disorder types are highly correlated since
they are from the same adatom, unlike the uncorrelated assumption in Ref. [4].
Therefore, we should be more careful in treating different types of disorder.

Homogeneous Disorder Landscape
Herewe consider proximity induced phenomena or periodically functionalized struc-
ture. SOCs induced from periodically structures are homogeneous and thus undergo
a different spin relaxation process than the local adatom case. These SOCs may
be induced to graphene on a substrate which breaks various of symmetries. In the
work of Denis Kochan et al. [2] who have constructed low energy effective model
for structures with global point group symmetries D6h, D3d , D3h, C6v, and C3v that
represent, for example, pristine graphene, graphene mini-ripple, planar boron ni-
tride, graphene on a substrate, and free standing graphone,respectively. By reducing
symmetry step by step, they find the emergence of certain spin-orbit couplings by
specific point group symmetries. Based on their work, we will discuss the transport
signatures of for these SOCs,

1. Pristine graphene D6h: intrinsic SOC-Σzsz.

2. Rippling structure D3d: intrinsic SOC and momentum-dependent SOC (PIA
SOC)-kxsy − kysx .

3. Sub-lattice inversion asymmetry D3h: intrinsic SOC and valley-Zeeman SOC-
Λzsz.

4. Transverse electric field C6v: intrinsic SOC and Rashba SOC-Σxsy − Σysx

Unlike local impurities, these SOCs are homogenous induced on graphene and thus
technically they do not relax spin orientations because the propagating states are the
eigenstates of Hamiltonian of graphene and these SOCs, Hg + Hso. However, spins
may be relaxed when there is any spin-independent static disorder scattering. The
detail scattering mechanisms are discussed in the Chapter. 6.

2.2 Direct approach - adatom disorder
Disorder Correlator
For simplicity, we denote the general disorder as V , which can be background
disorder Hdis, adatoms δHRI , or others. Correlator B(k, k′) = 〈V(k, k′)V(k′, k)〉,
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the product of transition amplitudes, is the elementary vertex in the diagrams. We
also use slightly different correlators for diffuson and Cooperon,

Use for Diffuson Use for Cooperon 

(2.7)

of which the mathematical forms read:

B(d)αβ,γδ = V(k, k′)αγV(k′, k)δβ (2.8)

B(c)αβ,γδ = V(k, k′)αγV∗(−k′,−k)δβ. (2.9)

Here we evaluate the correlators for B(d)αβ,γδ:

Scalar Potential For scalar potential uI with density ni, the correlator is simply
B(k, k′) = niu2I ⊗ I, and B(d)αβ,γδ = B(c)αβ,γδ.

d-orbital adatom Assuming that the adatoms are randomly but homogeneously dis-
tributed on graphene with the density nI , the associated scattering cross section for
the state |k, α〉 with α = (τ, σ, s) is described by

V(k, k′)αβ = 〈k, α |V |k′, β〉

= V0 Î + ei∆K·RIΛ
z

(ViΛ
x
Σ

z − λiΛ
xsz)

+ λKMΣ
zsz + λR(Σ

xsy − Σysx)

(2.10)

and the correlator is

Bαβ,δγ(k, k′) = nIV intra
α,γ (k, k′)V intra

δ,β (k
′, k)

+ nIV inter
α,γ (k, k′)V inter

δ,β (k
′, k)

(2.11)

where

V intra = V0 Î + λKMΣzsz + λR(Σ
xsy − Σysx)

V inter ⊗ V inter =

1
2
[(ViΛ

x
Σ

z − λiΛ
xSz) ⊗ (ViΛ

x
Σ

z − λiΛ
xSz)]

+
1
2
[(ViΛ

y
Σ

z − λiΛ
ySz) ⊗ (ViΛ

y
Σ

z − λiΛ
ySz)] .

(2.12)

There are a few things to note. Firstly, the intervalley and intravalley correlators are
decoupled because the phase for V intraV inter is ∼ eiQr , averaging to 0. In addition,
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one needs to be careful in dealing with the phase of intervalley scattering. The
term ei∆K·RIΛ

z
ΛxΣz includes more than ΛxΣz scattering process; it is a mix of two

scattering process ΛxΣz, ΛyΣz after averaging all the disorder. Again, B(d)αβ,γδ =

B(c)αβ,γδ.

p-orbital adatomThe correlators between zeroth order corrections are the same as the
d-orbital case, except λR. However the momentum dependent disorder correlators
should be dealt different while evaluating Diffuson and Cooperon. Take the B(d) for
example, the adatom potential has three pieces

V(k, k′) =V intra + eiϕΛz [
Λ

xV inter,x + ΛyV inter,y]
=V intra + (cos ϕΛx − sin ϕΛy)V inter,x + (cos ϕΛy + sin ϕΛx)V inter,y

(2.13)

where the last two describe the intervalley scattering with Λx/y respectively. The
disorder-averaged correlator will be

B(d)αβ,δγ(q) = V intra(q) ⊗ V intra(q)

+
1
2
Λ

xV inter,x(q) ⊗ ΛxV inter,x(q) +
1
2
Λ

xV inter,x(q) ⊗ ΛyV inter,y(q)

+
1
2
Λ

yV inter,y(q) ⊗ ΛxV inter,x(q) +
1
2
Λ

yV inter,y(q) ⊗ ΛyV inter,y(q)

+
1
2
Λ

yV inter,x(q) ⊗ ΛyV inter,x(q) −
1
2
Λ

yV inter,x(q) ⊗ ΛxV inter,y(q)

−
1
2
Λ

xV inter,y(q) ⊗ ΛyV inter,x(q) +
1
2
Λ

xV inter,y(q) ⊗ ΛxV inter,y(q)

(2.14)

where k′ + k = q. Note that the transition probability V(q) depends on the sum of
incoming and outgoing wave-vectors, instead of their difference. The exact reason
for this dependence remains unclear.

Green function and self energy
The propagation of an electron on adatom-doped graphene can be described by
retarded and advanced Green’s functions Gr/a[

E − v®Σ · ®p − Σ ± iη
]

Gr/a = I (2.15)

with self-energy Σ is energy contribution from disorder V . The self energy in the
leading order in V can be written as

Σr,a
0 (k, ω) =

∫
d2k
(2π)2

〈V(k, k′)Gr,a
0 (k

′, ω)V(k′, k)〉 (2.16)

where G0 is the bare Green function. The non-zero disorder correlator, and also its
corresponding self-energy, implies that the eigenstate of the free Hamiltonian has
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the average lifetime τ(k) = − ~
2ImΣR .

= + +

Figure 2.1: Diagrammatic expansion of the average Green function and self-energy,
up to the leading order.

Self-energy and life times
d-orbital adatom

The life times of a particle is determined by the imaginary part of the self-
energy as τα(k) = − ~

2ImΣR . The self-energy is given by Σa(E, k) = V(k, k) +∫ dq
(2π)2 V(k, q)Ga(E, q)V(q, k), averaged over disorder realizations. The anti-Hermitian

part of Green’s function is

Im
∫

d2q
(2π)2

Ga
0(q, E) =

1
(2π)2

∫
dθq

π

~v
P(sgn E)

q

= πν0(E)
I

2

(2.17)

where P±q =
1±®Σ·q̂

2 is the projection on to the conduction/valence band at q, and
ν(EF) =

kF
2π~vF A7 is the density of states per unit cell, for a single valley and spin.

Then, the antiHermitian part of the self-energy reads

2 Im Σa = ΓaI + ΓbΣ
zsz + Γc(Σ

xsy + Σysx), (2.18)

where

Γa = πνna(V2
0 + λ

2
KM + 2λ2

R + V2
i + λ

2
i ),

Γb = 2πνna(V0λKM − Viλi + λ
2
R),

Γc = 2πνnaλR(V0 + λKM).

(2.19)

Consider more types of disorder usl in Eq. (2.2), which are uncorrelated with each
other, along with the adatoms. We find that the self-energy is still the same except
that Γa has additional terms such as

∑
πνnslu2

sl . By projecting the Eq. (2.18) into
the subspace spanned by P±k , we obtain

P±k (2 Im Σ)P±k =
[
Γa ± Γc(cos θksy − sin θksx)

]
P±k (2.20)
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with eigenvalues Γa + Γc and Γa − Γc.

We define

τ+ =
~

Γa − Γc
, τ0 =

~

Γa
, τ− =

~

Γa + Γc
, (2.21)

being the lifetimes.

p-orbital adatom

To evaluate the self energy for momentum dependent disorder, we set θk = 0 for
simplicity (and WLOG). The disorder V(q = k′ + k) depends on the sum of wave-
vectors qx = k′ cos θ+ k and qy = k′ sin θ. Note that the Green function is peaked at
Fermi level, so that we assume that the amplitude of the wave-vectors k = k′ = E

~v .

The imaginary part of self-energy Σ is

Im Σ(k, ω) =
∫

k′dk′dθ
(2π)2

〈V(k, k′)Gr,a
0 (k

′, ω)V(k′, k)〉

=
1
(2π)2

∫
dθ

kπ
~v
〈V(k, k′)Pk′V(k′, k)〉

=
νπ

2
[
ΓaI + Γbsy + ΓcΣ

x + ΓdΣ
xsy + ΓeΣ

ysx + Γ f Σ
zsz] (2.22)

where Γ = Γ′naπν and Γ′s are

Γ
′
a = V2

0 + 2V0V (1)0 ka + V2
i + λ

2
i + λ

2
KM

Γ
′
b = kaλ(1)R (2V0 − 2Vi)

Γ
′
c = 2ka(V (1)0 V0 + λ

(1)
i λi)

Γ
′
d = kaλ(1)R (V0 + Vi + λi − λKM)

Γ
′
e = −kaλ(1)R (V0 + Vi + λi − λKM)

Γ
′
f = 2((V0 + kaV (1)0 )λKM − Viλi).

(2.23)

Since we only focus on the qualitative contribution, i.e. momentum-dependent
Rashba SOC, here we assume λ(1)i = V (1)0 = 0 and further simplify the Γ’s. Projected
into the subspace spanned by Pk, P±k (2 Im Σ)P±k equals to[

Γa + Γbsy
]
P±k (2.24)

with eigenvalues

Γ∓ = Γa ± |Γb |. (2.25)
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which defines the two relevant scattering times τ± respectively. We can also define
the projection operators for each eigenvalue-

µ±k =
1
2
(I ± sy) . (2.26)

Then again we define three life times,

τ+ =
~

Γa − |Γb |
, τ− =

~

Γa + |Γb |
, (2.27)

and τ0 =
~
Γa
.

Drude-Boltzmann Conductivity
Now we evaluate the diagonal conductivity σxx(ω) of which the real part at zero
temperature is given by Kubo formula,

σxx =
~

πΩ
ReTr

[
ĵxGr ĵxGa] (2.28)

where ĵx = −evFΣ
x is the current operator in x-direction. The system size is

Ω, the Green functions are given by equation (2.15), and the disorder averaged
conductivity is denoted as σ(ω) = σxx(ω). Out of numerous disorder scattering
processes, three leading contributions to conductivity areDrude-Boltzmann process,
the diffuson, and the Cooperon as shown in Fig.2.2. In this section, we will evaluate
the contribution of the first scattering diagram.

...

Figure 2.2: The diagrams of leading contributions to conductivity. The first one is
Drude-Boltzmann, the second one is the diffuson, and the third one is Cooperon.

d-Orbit Doped Adatom

The bare conductivity is

σ0(ω) =
e2

h

∫
k
~2v2

F Tr
[
Σ

xGr(ε+, k)ΣxGa(ε−, k)
]

(2.29)

= e2ν(εF)v
2
F

(
~

Γa + Γc − i~ω
+

~

Γa − Γc − i~ω

)
(2.30)

which can be reduced to

σ0(ω = 0) = e2ν(εF)v
2
F(τ+ + τ−). (2.31)
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with the elastic scattering rate τe =
τ++τ−

2 . When the onsite scalar disorder u is much
stronger than adatom disorder, this equation turns to, τ+ + τ− → 2τ0.

p-orbit Doped Adatom

The bare conductivity is

σ0(ω) =
e2

h

∫
k
~2v2

F Tr
[
Σ

xGr(ε+, k)ΣxGa(ε−, k)
]

(2.32)

= e2ν(εF)v
2
F

(
~

Γa + Γb − i~ω
+

~

Γa − Γb − i~ω

)
(2.33)

This is the same for as the d−orbital adatoms, except different Γs. Note that
Γb = Γb(kF) here.

Diffuson
The next order of classical conductivity correction is diffuson, which is the second
diagram in Fig. 2.2. The conductivity for diffuson is

σd =
e2v2

F~

2π
Tr

[
Vx(k, ε−, ε+)P̃(k, k′, ε)Vx(k′, ε+, ε−)

]
(2.34)

where Vx is the current vertex (related to ĵx) connected two Green’s functions as

Vx(k, ε1, ε2) = Gr(k+, ε1)vx(k, ε1, ε2)Ga(k−, ε2), (2.35)

and P(k, k′, ε) is the diffuson satisfying the recursive relation,

P(k, k′, q, ε) = 1 +
∫

d2k′′

(2π)2
B(k, k′′, ε)Gr(k′′+, ε+)Ga(k′′−, ε−)P(k′′, k′, q, ε) (2.36)

where B(k, k′) is the correlator. Note that these matrices are connected as in the
figure 2.3 instead of inner product.

d-Orbit Doped Adatom

The scatters are static and momentum-independent, therefore all internal integration
become independent and the diffuson only depends on q. We first define pair
propagator� as

� (ε, ω, q)αβγδ =
∫

k
Gr(ε+, k+) ⊗ Ga(ε−, k−)

=

∫
d2k
(2π)2

Gr(ε + ~ω, k)αβGa(ε, k − q)δγ

=

∫
dϕ
2π

∫
kdk
2π

1
ε+ − ~vk · ®Σ + iη

⊗
1

ε− − ~vk− · ®Σ − iη

(2.37)
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P

P

P

P

P

...

...

...

...

(e)

P

Figure 2.3: Diffuson. Note that p refers to k here and k± = k± q/2, ε± = ε ± ~ω/2.

where k− = k − q, ε+ = ε + ~ω, ε− = ε . To simplify the calculation, we restrict
ourselves at q→ 0 and project the propagator into energy eigenstates.

� (ε, ω, q = 0)αβγδ =
∑
x,y

∫
dθk

2π

∫
kdk
2π

Pkµ
x
k ⊗ Pkµ

y
k

(ε + ~ω − ~vk + i Γx2 )(ε − ~vk − i Γy2 )

(2.38)

= 2πν(kF)

∫
dθk

2π

∑
x,y

Pkµ
x
k ⊗ Pkµ

y
k

Γx+Γy
2 − i~ω

(2.39)

= 2πν(kF)

∫
dθk

2π

[
Pkµ

+
k ⊗ Pkµ

+
k

Γ+ − i~ω
+

Pkµ
−
k ⊗ Pkµ

−
k

Γ− − i~ω
+

Pkµ
+
k ⊗ Pkµ

−
k

Γ0 − i~ω
+

Pkµ
−
k ⊗ Pkµ

+
k

Γ0 − i~ω

]
(2.40)
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where Pk and µ±k are defined as

Pk =
1
2
(I + cos θkΣ

x + θkΣ
y) (2.41a)

µ±k =
1
2
(I ± (cos θksy + sin θksx)) . (2.41b)

Now we evaluate the bare conductivity with the above pair propagator: σ0 =
e2

h ~
2v2Tr

[
�αβ

δγ Σ
x
αδΣ

x
βγ

]
. The diffuson contribution can be renormalized into cur-

rent operator j → j̃ as shown in Fig. 2.3 (e). The classical conductivity is

π

e2v2~
σcl = Tr

[
Σ

x
αδ �

αβ
δγ Σ

x
βγ

]
+ Tr

[
Σ

x
αδ �

αβ
δγ Pββ′

γγ′ �
β′α′

γ′δ′ Σ
x
α′δ′

]
(2.42)

From Fig. 2.3(c), we know that P(VV)−1 = I + P � so the above equation can be
simplified to

π

e2v2~
σcl = Tr

[
Σ

x
αδ �

αβ
δγ Pββ′

γγ′ 〈VV〉−1
β′γ′,α′δ′Σ

x
α′δ′

]
(2.43)

= Tr
[
Σ

x
αδ �

αβ
δγ Σ̃

x
βγ

]
(2.44)

where Σ̃x = Σx + P � Σx = P(VV)−1Σx = (1 − VV �)−1Σx . Note that in the
limit of q→ 0, the diffuson is no longer invertible because these diffuson channels
indeed possess long wave length diffusive modes. However, we can explicitly check
that the contraction P(q)Σx is valid.

Due to the high correlation nature of different scattering types of adatoms, there is no
simple analytical form for this case. However, in the presence of strong background
disorder or uncorrelated case Γi,a � Γa, the above current modification can be
approximated to be

j̃ = 2 j . (2.45)

Otherwise, the exact contribution from diffuson can be solved numerically.

p-Orbit Doped Adatom The diffuson contribution of p-orbit doped adatom is the
same as the d-orbital one, except that the Γs are different.

Cooperon
In Cooperon calculation, we first define two quantities- pair propagator and current
current propagator. The pair propagator⇒ is defined as

⇒ (ε, ω,Q)αβγδ =
∫

d2k
(2π)2

Gr(ε + ~ω, k)αβGa(ε,Q − k)γδ . (2.46)
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...

...

...

...

Figure 2.4: (a) A process of collisions contributed to quantum interference and the
same process after disorder averaging which is also called Cooperon. (b)Cooperon,
maximally cross diagram, in momentum representation. (c) The definition of
Cooperon C̃ and modified Cooperon C.

or more succinctly⇒=
∫

kGr(ε+, k+) ⊗ Ga(ε−, k−).

In polar coordinates,

⇒ =

∫
dϕ
2π

∫
k dk
2π

1
ε+ − ~vk · ®Σ + iη

⊗
1

ε− − ~vk− · ®Σ − iη
(2.47)

which in low limit Q = 0 can be simplified to be

⇒ =
1
~v

∑
x,y

ε
~v Pkµ

x
k ⊗ Pk−µ

y
k−

Γx+Γy
2 − i~ω

≈ 2πν(ε)
∑
x,y

Pkµ
x
k ⊗ P−kµ

y
−k

Γx+Γy
2 − i~ω

= 2πν(ε)
(

Pkµ
+
k ⊗ P−kµ

+
−k

Γ+ − i~ω
+

Pkµ
−
k ⊗ P−kµ

−
−k

Γ− − i~ω
+

Pkµ
+
k ⊗ P−kµ

−
−k + Pkµ

−
k ⊗ P−kµ

+
−k

Γ0 − i~ω

)
.

(2.48)

This describes the pair propagator in the diagrams and is applicable for both p−

and d−orbital adatom-doped graphene. Now we define another physics quantity,
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describing the current-current vortices, pair- j-pair propagator:

⇔
j
:
j
⇔ (ε, ω; k + k′) ∼ , (2.49)

with the mathematical form,

⇔
j
:
j
⇔ (ε, ω; Q) =

∫
d2k
(2π)2

GR(ε + ~ω,Q − k)ΣxGA(ε,Q − k) ⊗ GA(ε, k)ΣxGR(ε + ~ω, k).

(2.50)

Here we keep total momenta Q = k + k′ fixed. In the low Q limit (setting Q = 0),
the current-current operator can be reduced to

⇔
j
:
j
⇔ (ε, ω; 0) =

4πν
(Γ+ − i~ω)3

P−kΣ
xP−kµ

+
−k ⊗ PkΣ

xPkµ
+
k

+
4πν

(Γ− − i~ω)3
P−kΣ

xP−kµ
−
−k ⊗ PkΣ

xPkµ
−
k

+
4πν

[
P−kΣ

xP−kµ
+
−k ⊗ PkΣ

xPkµ
−
k + P−kΣ

xP−kµ
−
−k ⊗ PkΣ

xPkµ
+
k
]

(Γ0 − i~ω)(Γ+ − i~ω)(Γ− − i~ω)
.

(2.51)

Consider a degenerate Dirac Fermi gas with ~ω, kT � εF with weak disorder
kF l � 1. Under this limit, we calculate the conductivity corresponding to the
maximally crossed diagrams (Cooperon) in Fig. 2.4 (b),

δσ =
e2v2~

2π
Tr

[
Vx(p, ω−, ω+)C̃(p, p′, ω)Vx(p′, ω+, ω−)

]
(2.52)

where Vx is the current vertex (related to ĵx) connected two Green’s functions as

Vx(p, ω1, ω2) = Gr(p+, ω1)ṽx(p, ω1, ω2)Ga(p−, ω2) (2.53)

with the renormalized vertex corrections ṽx = 2Σx (assuming background disorder
uI dominating all of the disorder types). The Cooperon can be written as

(2.54)
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of which the mathematical form is

C̃(Q) =
(
1 −

∫
[VV(q1)⇒ (k + q1)] d2q1

)−1
VV(k′, k). (2.55)

Combining the above operators we can easily write down the conductivity correction
corresponding to the maximally crossed diagram.

δGq =
2e2v2~

π
Tr

[
⇔

j
:
j
⇔ C

]
(2.56a)

=
2e2v2~

π

∫
Q

∑
i∈poles

Residue@Γi
1
2~v

2Q2τ0 − i~ω + Γi +
~
τφ

(2.56b)

where Γi is the pole. The 1
2v

2Q2τ0 comes from the first order correction in Q and
τ0 ∼ τu by approximation. τφ is the decoherence time which prevents the divergence
of the integral.

The quantum conductivity is dominated by the 1
2~v

2Q2τ0 channels, which is also
called the singlet mode. Hence in the diffusive limit the Cooperon structure factor
reduces to a projector onto this singlet mode. In contrast, these single modes are
not important in the diffuson conductivity. This can be easily understood from the
fact that the vertex renormalization does not depend on the vanishing modes, but
only on its massive modes though not universal.

There is an important assumption about the vertex renormalization in the above
calculation, which is that uI disorder dominates the transport (or the different dis-
order types are un-correlated). This assumption is valid for most experiments since
long range onsite disorder is known to be the major disorder source near the Dirac
points. Therefore, in the following examples, we explore various systems all with
the assumption of large onsite disroder uI. For a more general system, the vertex
correction and conductivity can be solved mathematically.

Examples
From the above setup, we can evaluate the conductivity for different cases.

1. spin-independent disorder - uI +
∑

s,l=⊥,z ulsΛlΣs where ⊥= x, y.

• Poles : 0, (8u2
⊥⊥ + 4u2

⊥z)πν, (4u2
⊥⊥ + 2u2

⊥z + 4u2
z⊥ + 2u2

zz)πν and (u2 +

4u2
⊥⊥ + 2u2

⊥z + 2u2
z⊥ + u2

zz)πν, many other poles with u2.
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• Residues: 2
πν(u2+4u2

⊥⊥+2u2
⊥z+2u2

z⊥+u2
zz)
, 2
πν(−u2+4u2

⊥⊥+2u2
⊥z−2u2

z⊥−u2
zz)
, - 4
πν(u2−2u2

z⊥−u2
zz)

and many others ...

• Assumption: with the approximation used in McCann’s paper (u2 �

u2
sl), we can ignore all the contributions from poles with u2 because 1/u2

is small compare the the fist three poles. The leading contributions for
the first three poles are residues 2

πνu2 (1,−1,−2) = 2
πνu2 ci.

• Conductivity

δσ =
2e2v2~

π

2
πνu2

∫
Q

∑
i

ci

~DQ2 − i~ω + Γi +
~
τφ

(2.57)

=
4e2D
π

∫
Q

∑
i

ci

~DQ2 − i~ω + Γi +
~
τφ

(2.58)

=
2e2

πh

∑
i

ci ln(
τ−1

τ−1
φ + Γi/~

) (2.59)

and the magneto-conductance will be

δσ(B) =
2e2

πh

∑
i

ciF
(

B
Bφ + Bi

)
F(z) = ln z + ψ

(
1
2
+

1
z

)
, Bi =

Γi

4De

(2.60)

We need to further consider another two diagrams of which each pro-
duces −1

4 of the above results. Therefore the total conductivity is

δσ(B) =
e2

πh

∑
i

ciF
(

B
Bφ + Bi

)
(2.61)

with Γi = 0, (8u2
⊥⊥ + 4u2

⊥z)πν, (4u2
⊥⊥ + 2u2

⊥z + 4u2
z⊥ + 2u2

zz)πν and
ci = (1,−1,−2), which recovers the result in McCann’s paper.

2. p-orbital adatom: 0th order

• Poles: πν
(
2λ2

i +2λ2
KM, 2V2

i +2λ2
KM,V

2
i +λ

2
i +2λ2

KM,V
2
0 +V2

i +λ
2
i +λ

2
KM,

(V0−λKM)
2+(Vi+λi)2

2 , (V0−λKM)
2+2V2

i +2λ2
i

2 , V2
0 +3V2

i −2Viλi+3λ2
i −2V0λKM+λ

2
KM

2 , (Vi−λi)
2+(V0+λKM)

2

2 ,
(V0+λKM)

2+2(V2
i +λ

2
i )

2 , V2
0 +3V2

i +2Viλi+3λ2
i +2V0λKM+λ

2
KM

2
)
.

• Residues 2/(νπ(V2
0 + V2

i − λ
2
i − λ

2
KM), and many others...

• Unitary
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3. p-orbital adatom w/ SRD: 0th order

• Poles: πν(2λ2
i + 2λ2

KM).

• Residues 1/(νπ(u2 + 4u2
⊥⊥ + 2u2

⊥z + V2
0 + V2

i − λ
2
i − λ

2
KM) ∼ 1/(πνu2).

• Conductivity

δσ(B) = −
e2

2πh
F

(
B

Bφ + BΓ

)
(2.62)

where Γ = πν(2λ2
i + 2λ2

KM). This is still a Unitary behavior.

4. d-orbital adatom - no analytical solution if we consider full correlation.

5. d-orbital adatom w/ SRD - no analytical solution if we consider full correla-
tion. Ifwe somehowassumeno correlation between different disorder type and
take the approximation that u2 � Γ⊥z, Γ⊥⊥ � adatom′s coupling strength.

• Poles: the leading three contributions πν
(
0, 4λ2

R, 2(λ2
i +2λ2

KM+λ
2
R)

)
=

Γi.

• Residues: The corresponding residue after approximation is 1
πνu2 (−1, 1, 2) =

1
πνu2 ci,

• Conductivity

σ(B) =
e2

2πh

∑
i

ciF
(

B
Bφ + Bi

)
(2.63)

where Bi =
Γi

4eD and ci are the pole and sign of residue as shown above.

6. p-orbital adatom w/ and wo/ SRD:: 1st order - no analytical sol for either
correlated or uncorrelated case.

2.3 Hidden symmetry approach - substrate disroder
As discussed in the last section, only massive modes contribute to diffuson modes
while the divergent modes, singlet, contribute to the Cooperon. If we rewrite in the
space spanned by singlet and triplet, we can find that the Cooperon and diffuson is
diagonalized and can be easily solved, unless the hidden symmetry is broken. But
the question is what is the singlet and triplet in this system?

Consider the basis to the representation of hidden symmetry (l, i, j) as shown in Fig.
2.5,

C({l, i, j}) =
1
4

M†li jC({τ, σ, s})Mli j (2.64)
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Figure 2.5: The transformation from the spaces τ ⊗ σ ⊗ s of two incoming particles
to representation of hidden symmetry l ⊗ i ⊗ j.

with the transformation matrix M l
s = sys jΣyΣiΛyΛl which is a 32× 32 dimensional

matrix. The two iso-spin (sublattice) of incoming and outgoing electrons together
is transformed to another set of iso-spin by ΣyΣi and so are pseudo-spin (valley)
and spin but by ΛyΛl and sys j respectively. This transformation does nothing but
changes the basis of states such that the states for l = 0, x, y, z (same for i, j) are
singlet, triplet states for two incoming/outgoing states. Then we can rewrite the
modified Cooperon as

Cl ′i′ j ′

li j (Q, ω) =δ
l ′
l δ

i′
i δ

j ′

j +
1
4

∑
l ′′,i′′, j ′′

Cl ′,i′, j ′

l ′′,i′′, j ′′(Q, ω)×∫
d2p

′′

(2π~)2
Tr

[
〈Vp+p′′+

M†li jVp′′− p′−
〉Gr(p

′′

+, ε+)Ml ′′i′′ j ′′
[
Ga(p

′′

−, ε−)
]T ]

=δl ′
l δ

i′
i δ

j ′

j +
∑

l ′′,i′′, j ′′
ζ

l ′′,i′′, j ′′

l,i, j (Q, ω)Cl ′,i′, j ′

l ′′,i′′, j ′′(Q, ω)

(2.65)

and the equation of motion for modified Cooperon∑
l ′′,i′′, j ′′

[
δl ′′

l δ
i′′
i δ

j ′

j − ζ
l ′′,i′′, j ′′

l,i, j (Q, ω)
]

Cl ′,i′, j ′

l ′′,i′′, j ′′(Q, ω) = δ
l ′
l δ

i′
i δ

j ′

j . (2.66)

Though there are many elements in C, only a few of them will contribute the
conductivity. The relevant channels depend on the details of the system, and thus
the corresponding quantum conductivities can show WAL/WL/U.

So far, we did nothing but re-wrote the Cooperon in the new bases. To simplify the
calculation, here I made a few assumptions:

• Weak disorder regime λF le � 1

• Weak magnetic field effect ωcτe � 1
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• Other stronger disorder sources dominating the scatting process–intra-valley
scattering uI > unmΣ

nΛm > adatom’s couplings.

• Uncorrelated disorder correlators

This method is straightforward and easy in calculation with the last two assumptions.
In this new basis, u all ΛΣ combinations are all diagonalized as shown in the
following derivation, and thus the corresponding channels are all gapped out and
have little contribution to conductivity. Therefore, only 4 out of 64 are the leading
contributions and their residuals are basically ∼ τe times an number and we only
need to evaluate a 4 × 4 Cooperon matrix.

In the following few subsections, we will re-examine the Cooperon obtained from
this approach and derive the Cooperon for the homogeneous SOC.

Case I: Static disorder

Consider the most common onsite spin-independent disorder uÎ with correlation
〈u(r)u(r′)〉 = u2δ(r − r′) with density na. By plugging the correlator into Eq.
(2.66), we find that only diagonal channels of l = l′ and j = j′ will survive and thus
the equation of motion for C(Q) can be reduced to

©­­­­­«
−iωτ + 1

2v
2Q2τ2 − i

2vFQxτ −
i
2vFQyτ 0

− i
2vFQxτ

1
2 0 0

− i
2vFQxτ 0 1

2 0
0 0 0 1

ª®®®®®¬
Cl j = 1 (2.67)

where τ = ~/2πγ(pF)nau2. At low energy and weak disorder limit (Q, ω→ 0), the
divergence of the first element in Cl j (i.e. Cl0 j

l0 j ) suggests that the modified Cooperon
corresponding to iso-spin singlets i = 0 is the dominating scattering process in
quantum transport. The Cooperon C̃ has a simple relationship with the modified
Cooperon:

C̃l j(Q) = u2ζ(Q, ω)Cl j ∼ u2Cl j (2.68)

and we can even rescale the Cooperon to C̄ where C̄li j =
2τ2πν(pF )
~ Cli j such that the

rescaled Cooperon satisfies the Schrodinger equation[
D(i∇ +

2e
c~

A)2 + Γli j + τ
−1
φ − iω

]
C̄li j(r, r′) = δ(r − r′) (2.69)

where τφ is the decoherence rate, the cutoff of the quantum interference. For onsite
disorder uÎ, the iso-spin triplets i = x, y, z are all gapped out with the gap size
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...

...

...

Figure 2.6: The modified Cooperon diagrams. Different colors represent different
correlators.

Γli j = 0 have little contribution to the quantum transport. If we further consider
more disorder types, including intervalley scattering, as shown in the paper [4],
more channels will be gapped out, except for channels C00 j , which are isospin
singlet and pseudo-spin singlet. Generally, the graphene experiments have lots of
disorder, including both inter-valley and intra-valley scattering, from substrate or
other sources; therefore in the following subsections, we assume that the graphene
has strong disorder and only focus on the adatom effects on the aforementioned four
Cooperon channels C00 j .

Case 2: d-orbital Adatoms

Consider the disorder induced by d-orbital adatoms as in Eq. (2.10) with correlation
〈V(k, k′)V(k′, k)〉 = nVα,γVδ,β where α, β, γ, δ refer to the quantum state |τ, σ, s〉.
With 25 different disorder correlators, the modified Cooperon can be grouped dia-
grammatically as in Fig. 2.6 which suggests ζ in Eq. (2.66) is simply the addition
of all the possible correlators. After some simple algebra, we find that system will
be largely gapped out with gaps

Γ000 = 0

Γ00x = Γ00y = τ−1
λi
+ τ−1

λKM
+ τ−1

λR

Γ00z = 2τ−1
λR

(2.70)

where the SOCS rates are τ−1
λi/KM

= 2πnaνλ
2
i/K M A7/~ and τ−1

λR
= πnaνλ

2
RA7/~.

Note that all off-diagonal in correlators only have higher order contribution in Q.

Case 3: p-orbital Adatoms

Consider momentum dependent disorder,

ζ l,l ′′
s,s′′(Q, ω) =

∫
dk′Tr

[
M l†

s V(q)Gr(k′, ε+)M l ′′
s′′G

a(Q − k′, ε−)TV(q)T
]

(2.71)



57

which can be view as

=

(2.72)

where the indices show how these matrices are connected. Note that k′ − k = q.
The Cooperon gap is

Γ000 = 0

Γ00x = τ
−1
λi
+ τ−1

λKM
+ 4τ−1

λ
(1)
i

+ 14τ−1
λ
(1)
R

Γ00y = τ
−1
λi
+ τ−1

λKM
+ 4τ−1

λ
(1)
i

+ 10τ−1
λ
(1)
R

Γ00z = 24τ−1
λR

(2.73)

where ~τ−1
λ
(1)
R
= naπν(λ

(1)
R )

2k2a2 A7 and ~τ−1
λ
(1)
i

= naπν(λ
(1)
i )

2k2a2 A7.

Case 4: Homogeneous SOCs

If the induced SOCs, e.g. from the substrate, are homogeneous, the Green function
of graphene needs to be modified as

Gr(p, ε) =
1

ε + iη − v®Σ · ®p − Hso
. (2.74)

Strictly speaking, the homogeneous SOCs does not relax spin orientation since
an electron traveling through the mesoscopic system is always in an eigenstate.
However, if any background disorder, such as uI +

∑
mn umnΛ

mΣn, exists, it will
cause the spin relaxation with the none-zero ξ

ζ l,l ′′
s,s′′(Q, ω) =

u2

4

∫
d2p
(2π~)2

Tr
[
M l†

s Gr(p, ε+)M l ′′
s′′G

a(Q − p, ε−)T
]

= δll ′′
u2

4

∫
d2k
(2π)2

Tr
[
Σ

s
Σ
yGr(p, ε+)ΣyΣs′′Ga(Q − p, ε−)T

] (2.75)

For example, the KM SOC has extra contribution to Cooperon

Γ
l
0,z = −

1
2
λ2

E2
1
τ0
→ 0 (2.76a)

Γ
l
x,y =

1
2
λ2

E2
1
τ0
→

λ2

E2
1
τ0
=

1
τK M

(2.76b)

, where the self-energy is shifted by absorbing the minus sign into the phase rates.
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Magneto-conductivity
The magneto-conductivity can be greatly simplified in the hidden symmetry space
too. Again, consider the only spin-independent scattering case which can be easily
generalized to SOC scatters. The conductivity, current-current correlation, can be
written as

δσxx = 2
e2~

π
Tr

[
Ṽx(k, ω−, ω+)C̃(Q, ω)Ṽx(Q − k, ω+, ω−)

]
Ṽx(k, ω1, ω2) = Gr(k, ω1)ṽx(k, ω1, ω2)Ga(k, ω2)

where Ṽx is a current operator. 2 is from the spin degeneracy. If we work in the new
basis {Λ, Σ} with the inverse transform of basis changing equation

Cγδ,γ′δ′

αβ,α′β′ =
1
4

∑
ll ′ss′

(
M l†

s

)δγ
βα

Cll ′
ss′

(
M l ′

s′

)γ′δ′
α′β′

(2.77)

where M l
s = Σ

yΣsΛyΛl and

δσxx =
e2~

2π
Tr

[(
M l ′

s′

)γ′δ′
α′β′

Vx(k, ω−, ω+)
δ′γ
β′αVx(Q − k, ω+, ω−)γ

′δ
α′β

(
M l†

s

)δγ
βα

C̃ll ′
ss′(Q, ω)

]
=

e2~

2π
Tr

[
V t

x(Q − k, ω+, ω−)M l ′
s′Vx(k, ω−, ω+)M l∗

s C̃ll ′
ss′(Q, ω)

]
=

e2~

2π
Tr

[
Z ll ′

ss′C̃
ll ′
ss′(Q, ω)

]
(2.78)

which can be further simplifed to

δσxx = −
e2~

2π
Tr

[
Z0

(
C̃x(Q, ω) + C̃y(Q, ω) + C̃z(Q, ω) − C̃0(Q, ω)

)]
(2.79)

because only C̃l
00 is gapless, leading to l = l′. Also, Z l = −Z0 due to the property

of M:

M l = M0
Λ

l, M l M l∗ = M0
Λ

l M0∗(Λl)∗ = −M0M0∗ (2.80)

and the operator Λl commutes with G and Γx . Now the only thing we need to figure
out is Z0,

Z0 = V t
x(Q − k, ω+, ω−)ΣyΛyVx(k, ω−, ω+)ΣyΛy

= V t
x(Q − k, ω+, ω−)ΣyVx(k, ω−, ω+)Σy

= Gr(Q − k, ω+)ṽx(Q − k, ω+, ω−)Ga(Q − k, ω−)ΣyGa(k, ω−)ṽx(k, ω−, ω+)Gr(k, ω+)Σy .

(2.81)
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Since Cl(Q, ω) depends on the total momentum Q and the contribution from small
Q dominates the summation, Z0 can be replaced with

Z0 = −
2π2

vη3
pF

(2π~)2
v2 = −4

EFτ
3

~5 (2.82)

δσxx = 4
e2~

2π
EFτ

3

~5

∫
d2Q
(2π)2

(
C̃x(Q, ω) + C̃y(Q, ω) + C̃z(Q, ω) − C̃0(Q, ω)

)
(2.83)

in the limit of Q = 0 and ω = 0. If we consider the other two diagrams as in the
McCann (each of them contributes −1

4 of the above diagram) and re-organize the
coefficient, the total conductivity correction reads

δσxx =
2e2

π~

v2
Fτ

2

∫
d2Q
(2π)2

(
C̄x(Q, ω) + C̄y(Q, ω) + C̄z(Q, ω) − C̄0(Q, ω)

)
(2.84a)

=
2e2

π~
D

∫
d2Q
(2π)2

(
C̄x(Q, ω) + C̄y(Q, ω) + C̄z(Q, ω) − C̄0(Q, ω)

)
(2.84b)

=
e2

πh
D

∑
l=0,x,y,z

cl ln

(
τ−1

τ−1
φ + Γ

l

)
(2.84c)

where D → D∗ if we consider diffuson contribution. We can further include the
magnetic field in this system and obtain magnetoconductivity,

δσxx(B) = 2
e2D
π~

∑
l=0,x,y,z

cl
eB
π~

τB/τ∑
n=0

Cl(qn) (2.85a)

∆σxx(B) = δσxx(B) − δσxx(0) (2.85b)

= −
e2D
πh

∑
l=0,x,y,z

cl F
(

B
Bφ + Γl

)
, (2.85c)

Bi =
~c

4De
τ−1

i (2.85d)

F(z) = ln z + ψ
(
1
2
+

1
z

)
(2.85e)

where ψ is the Digamma function. The above derivation for spin-independent
disorder can be easily generalized to be spin-dependent one with the modified MC

δσxx(B) = −
e2D
2π~

∑
l, j=0,x,y,z

clc j F

(
B

Bφ + Bl
j

)
. (2.86)

The indices l, j label the iso-spin and spin degrees of freedom. In the hidden
symmetry approach, one can easily obtain the MC by calculating the Cooperon
gaps.
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2.4 Correlated versus uncorrelated disorder
So far we have used two approaches to evaluate the MC. The first approach is to
directly solve for the Cooperon and the conductivity, and it is also easier to include
the correlated disorder in this approach. However, we can only analytical solve a few
uncorrelated and simply correlated cases since we always consider full dimension
64-by-64 matrix and its inversion can be technical/unsolvable. On the other hands,
the calculation will be greatly simplified if we transform the system into a new
basis -singlet, triplets- associated with hidden symmetries of the model and take
the assumptions of u � adatom’s coupling. In the new basis, the Cooperon of the
normal disorder I and ΣsΣl is diagonalized at zeroth order in momentum, and has
big Cooperon gaps, leading to negligible MC. Due to these giant Cooperon gaps,
SOCs’s leading contribution is only important and can only be seen in four gapless
channels. In this case, we can easily solve all types of uncorrelated disorders,
but incorporation of correlated disorder is very difficult. We checked that both
approaches give the same results for the uncorrelated cases.

To understand how the correlations affect the results, we numerically solve for the
Cooperon gaps by using the first approach. We numerically solved Os adatom case
with 0.1% coverage. The following singular points are the poles-Cooperon gaps
ranging from 0 to 0.05eV

0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

-5 0 5 10

x 10
-4

0

200

400

600

800

(a)

(b)

(2.87)

where only the smallest ones around 0 are the leading contribution in MC and the
rest are negligible. If we further zoom in around origin point, we can see three
peaks and these three peaks (blue dotted line below) are the extremely close to the
value obtained analytically(solid red line)–(0, 2πνλ2

KM + 2πνλ2
i + 2πνλ2

R, 4πνλ
2
R)
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throughout the whole studied carrier density range.

0 1 2 3 4 5 6

Carrier density (cm
-2

) 10 13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i

10 -3

(2.88)

So it suggests that the correlation is negligible in Os case.
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C h a p t e r 3

QUANTUM TRANSPORT THEORY

Transport experiments have been a great tool to measure electrical properties, probe
phases of matter, and uncover novel physical phenomena. From the classical per-
spective, free electrons traveling in a spatially-periodic potential experience a series
of collisions like pinballs according to the equations of motion. The electrical
conduction is well-described by the Drude model [1] which yields the equation of
motion,

d
dt
〈p(t)〉 = e

(
E +
〈p(t)〉 × B

m
)
−
〈p(t)〉
τ

(3.1)

and a linear relationship between current density J and electric field E

J =
(
ne2τ

m

)
E. (3.2)

Here 〈p(t)〉 is the averagemomentum per electron at time t, and e,m, n, τ are electron
charge, mass, density, and mean free time between two collisions respectively. From
the relationship between current and electric field J = σE, we find the conductivity
σ = ne2τ

m . This model provides a good explanation of DC and AC conductivity in
metals, the Hall effect, and the magnetoresistance in metals near room temperature.

This model was later supplemented with the quantum theory by Arnold Sommerfeld
and Hans Bethe, leading to the Drude-Sommerfeld model [1]. From this semi-
classical perspective, electrons are wave packets (plane-waves or Bloch waves)
f (r, p, t) instead of pinballs and carry energy/momentum according to the band
structure of the crystal. Electrons traveling into the device have an effective mass
determined by the band structure and interactions; their scattering processes also
reflect the disorder configuration in the system. Note that this is still a free electron
model but the electrons are treated quantum mechanically—identical and indistin-
guishable, following Fermi-Dirac statistics. The evolution of the wave packets of
state i can be described by

dfi
dt
= I[ f ] (3.3)

and the Boltzmann equation
df
dt
=
∂ f
∂t
+ v∇ f + Ûp

∂ f
∂p

. (3.4)
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At equilibrium, which is a stationary solution, there is no net flow of particles, i.e.
I[ f ] = 0. Slightly away from equilibrium, I[ f ] = −( f − feq)/τ is a linear function
with scattering time τ derived from microscopic model such as Born approximation
[1]. On the other hand, the Boltzmann equation describes the statistical behavior of
a thermodynamic system out of equilibrium fromwhich we can draw the connection
between the electric field and current density yielding the conductivity. Consider
an isotropic impurity potential V(r) =

∑
i v(r). For example, the conductivity for

the free electron gas is

σ =
1
3

e2(gv2τ)ε=µ (3.5)

where g is the density of states at energy ε . This expression can be traced back to
the Drude conductivity σ = ne2τ

m .

At low temperature, when the system size is small enough with a long phase coher-
ence length, the semi-classical theory is insufficient to describe such a mesoscopic
system. When the electrons are coherent, different scattering processes interfere
with each other. Although simple intuition suggests that the phases associated with
multiple scattering average to zero and have no effect on the conductivity, all of
the scattering paths and their time-reversal scattering paths, in fact, constructively
interfere in a conventional 2-dimensional system, causing electrons to localize in
the system. This quantum coherence effect in a conventional 2-dimensional system
is also called weak localization. Depending on the details of the system and di-
mensionality, the quantum interference can be neutral, constructive, or destructive.
There are a few approaches to study mesocopic systems: diagrammatic theory for
a homogeneous, weakly disordered system (translationally invariant) in the thermo-
dynamic limit and/or a quantum transport simulation for a non-homogeneous, small
size system. We have explored the diagrammatic approach in the previous chapter.
In this chapter, we will discuss how to simulate the transport of a mesocopic system
efficiently.

Most simulations in this thesis are done with the Landauer-Büttiker approach [6, 7]
as the foundation for numerical simulations of quantum transport. Therefore, we
will present a pedagogical derivation of the Landauer theorem and describe the
implementation of this theory for simulation of quantum transport in microscopic
models. In the last section, we also briefly introduce another common tool for
quantum transport: O(N) real-space algorithms of the diagonal Kubo formula [9],
and comment on the discrepancies between the two tools.
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Device

Lead 1 Lead 2

Reservoir 2Reservoir 1

Figure 3.1: Typical setup for the Landauer-Büttiker formalism. Two (or more)
reservoirs are connected via long and translational invariant leads to a mesoscopic
device.

3.1 Landauer-Büttiker formalism
In 1957, Landauer proposed a new perspective on electron transport[6, 7]: “we
can view the carriers introduced at the boundaries of the sample as the source
of transport, and then ask how the resulting build-up of carriers produces fields."
At that time, he treated the electrons semi-classically and assumed that scatterers
act incoherently. This idea sparked many generalizations to the quantum coherent
setting, most notably by Büttiker [2], where the conductance of a mesoscopic sample
is related to the transmission properties of electrons. This theory is now called the
Landauer-Büttiker formalism. It has wide applications and is the corner stone of
quantum transport theory and simulation.

Consider a mesoscopic sample connected to electron reservoirs via leads, as shown
in the Fig 3.1. The reservoirs provide thermalized electrons that flow into the
metallic lead without dissipation. Furthermore, the leads are considered to be
perfect (dissipation-less) and translationally-invariant in the propagating direction.
Electrons from the reservoirs enter the leads without reflection, but the contact
friction generates resistance - one of the main sources of resistance in the system.
All of the incident electrons are either transmitted from one lead to another or
are reflected back to the same leads. Hence, the conductance is related to the
transmission rate T . Therefore, the conductance of a two-terminal setup at zero
temperature, for example, is described by the Landauer formula:

G =
e2

h
T . (3.6)

As shown by Büttiker, this formula can be generalized to a multi-lead geometry and
to the case in which a magnetic field is present. Since this formula is used to deal
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with a finite system, we need to be careful in dealing with finite size effects. First, the
lead, though metallic in experiments, provides quantized transverse modes due to a
finite width. Therefore, the wavefunctions in the leads can be written in the form
eikx xφm(y) where transverse modes φm(y) are also referred to as eigen-channels
or extended Bloch waves with longitudinal wave numbers km. According to the
Landauer formula, the conductance of a finite sample can be expressed as

G =
e2

h

∑
m

Tm(EF) (3.7)

where the total transmission rate is a summation of the transmission probability Tm

of channel m. Here below, I provide a heuristic, intuitive derivation of this formula,
following S. Datta Electronic Transport in Mesoscopic Systems in Ref. [4]. Readers
who are interested a more rigorous derivation are referred to Ref. [3].

Consider a two-probe setup with leads α = L, R. The electrons in the leads, with
wave vector kx and energy E , obey the Fermi-Dirac distribution f (E − µα) where
µα is the chemical potentials of the connected reservoirs. Assuming the leads are
ballistic and finite, each has M transverse modes. Then the m-th mode injected into
the system from lead L will transmit to lead R with the average probability Tm. We
know that the current carried by n non-interacting electrons per unit length with
velocity v is env. Therefore, the transverse mode m of lead α carries an electric
current,

Iαm(E) =
2e
L

∑
k

v(k)Tm(E) f (E − µα), (3.8)

across a sample of length L. The velocity v(k) refers to group velocity and the
factor of 2 arises from spin degeneracy. The net current is obtained by calculating
the difference between the currents originating from two leads and summing over
all quantum channels:

I =
∑

m

(ILn(E) − IRn(E))

=
2e
L

∑
n,k

Tm(E)v(k) [ f (E − µL) − f (E − µR)] .
(3.9)

We can further convert this into energy space as

I =
2e
h

∑
m

∫
dE Tm(E) [ f (E − µL) − f (E − µR)] (3.10)



67

by using the definition of group velocity v(k) = 1
~

dE
dk . This equation describes

the current flowing in the sample with a potential drop between two leads: V =

(µR−µL)/e. Hence, we can also obtain conductanceG = I/V by dividing Eq. (3.10)
with the voltage V across the sample.

Assuming zero temperature, net current flow takes place entirely in the energy
range µL > E > µR. We can further simplify Eq. (3.10) by Taylor expansion of
f (E − µL) − f (E − µR) in E around the Fermi energy, leading to f (E − µL) −

f (E − µR) ∼ δ(E − EF)(µL − µR). Inserting these approximation into Eq. (3.10)
and dividing by V , one would recover the Landauer formula:

G =
2e2

h

∑
n

Tn(EF) =
2e2

h
· T (EF). (3.11)

We define the total transmission coefficient T as the sum of all transmission prob-
abilities Tm(EF). The above derivation can easily be generalized to systems with
more than two probes. In a N-probe system, the total current through lead α is the
summation of all the current flowing out of lead-α and currents flowing into lead-α
from other leads, which can be written as

Iα =
2e
h

∑
β,α

[Tβα(EF)µα − Tαβ(EF)µβ] (3.12)

where Tαβ(EF) is the total transmission coefficient from lead-α to lead-β. Since
the current is conserved, the above equation can be simplified with the property-∑
α Tαβ =

∑
β Tαβ. After some algebra, we obtain the conductance between leads

α, β as desired,

Gαβ =
2e2

h
Tαβ(EF). (3.13)

The is the generalized Landauer formula for a multi-terminal setup. In the next
section, we will discuss how to implement this formalism from microscopic point
of view.

3.2 Fisher-Lee relation: connecting the transmission coefficient to theGreen’s
function

The transmission coefficient can be expressed in terms of the Green’s function by
using Fisher-Lee relation [5]. The Landauer formula describes the conductance in
terms of transmission probability,

G =
2e2

h
· T (EF) =

2e2

h
Tr[t†t] (3.14)
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and the probability T can be further connected to the transmission matrix across
the system t in the scattering S matrix:

S =

(
r t′

t r′

)
. (3.15)

This scatteringmatrix element can be expressed in terms ofGreen’s function between
two interfaces Gr

LR (yR, yL) as

snm = −δnm + i~
√
vnvm

∫ ∫
χn (yR)

[
Gr

RL (yR, yL)
]
χm(yL)dyRdyL (3.16)

which is the Fisher-Lee relation. Parameters vc and χc(yα) are, respectively, the
longitudinal propagation velocity and the transversewave function in the propagating
channel c of lead α. The integration runs over the contact interface region at L/R

leads; n ∈ L and m ∈ R. Plugging Eq. (3.16) into Eq. (3.14), we obtain

T =
∑

n

∑
m

snms∗mn

= ~2vnvm

∫ ∫ ∫ ∫
dyRdyLdy′Rdy′L χn (yR)

[
Gr

RL (yR, yL)
]
χm(yL)χm(y

′
L)

[
Gr

LR
(
y′L, y

′
R
) ]∗

χn
(
y′R

)
= ~2vnvm

∫ ∫ ∫ ∫
dyRdyLdy′Rdy′L χn (yR)

[
Gr

RL (yR, yL)
]
χm(yL)χm(y

′
L)

[
Ga

RL
(
y′R, y

′
L
) ]
χn

(
y′R

)
=

∫ ∫ ∫ ∫
dyRdyLdy′Rdy′L χn

(
y′R

)
~vnχn (yR)

[
Gr

RL (yR, yL)
]
χm(yL)~vm χm(y

′
L)

[
Ga

RL
(
y′R, y

′
L
) ]

=

∫ ∫ ∫ ∫
dyRdyLdy′Rdy′LΓR(y

′
R, yR)

[
Gr

RL (yR, yL)
]
ΓL(yL, y

′
L)

[
Ga

RL
(
y′R, y

′
L
) ]

= Tr
[
ΓRGr

RLΓLGa
RL

]
= Tr

[
ΓRGr

RLΓL
(
Gr

RL
)†]

(3.17)

where

ΓL(yL, y
′
L) =

∑
m

χm(yL)~vm χm(y
′
L) (3.18)

is the broadening function. Therefore, we can rewrite the Landauer formula as

G =
2e2

h
Tr

[
ΓLGr

LRΓRGa
LR

]
= Tr

[
ΓRGr

RLΓL
(
Gr

RL
)†] (3.19)

with the Green’s functions across the mesoscopic device GLR/GRL and the broad-
ening function describing the coupling of the device to the leads. The latter can be
derived from self-energy Σ,

Γ = i
[
Σ − Σ†

]
. (3.20)
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Lead L Lead RDevice Device

Figure 3.2: The semi-infinite leads can be integrated out and taken into account as
self-energy corrections to the device.

The above equations constitute a theoretical framework to calculate the conduc-
tance from a microscopic model. However, it is computational expensive and even
impossible in practice since the Green’s function including semi-infinite leads has
infinite lattice sites. In the following, I will describe efficient numerical methods to
calculate the Green’s function and the self-energy resulting from leads.

3.3 Lattice Green’s Function Method
In this section, I will describe an efficientmethod for calculating theGreen’s function
and broadening function by following thework in Ref. [8]. Given a total Hamiltonian
H composed of both device and leads,

H = HD +
∑

i

(Hi
L + V i

LD + V i
DL), (3.21)

the Green’s function is described by

G(E) = [E + iη − H]−1 . (3.22)

The term HD is the Hamiltonian for the device, Hi
L is the Hamiltonian for the lead

i, and V i
LD describes the hopping between the lead and the device. Simplifying the

above Green’s function computation can be accomplished by integrating out the lead
degrees of freedom and evaluating their energy contribution to the device Σp. This
turns out to be easy due to the (half)-translational symmetry. We can rewrite G as

G =

[
[E + iη] I − 〈i |HD +

∑
p=L,R

Σp |i〉

]−1

(3.23)

with Σp = (V
p
LD)
†g

p
LV p

LD. In the following two subsections, I will explain how to
efficiently deal with the device Green’s function and the self-energy correction from
the leads.
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Figure 3.3: By Dyson’s equation, the total Green’s function can be obtained by
stitching each slices together.

Recursive Green’s function Method
3.4 Lattice Green’s Function Method
Instead of evaluating the total device Green’s function at once, it is more efficient to
divide the lattice of the device into several sections, calculate the Green’s function
of each section and glue them together by Dyson’s equation,

G = g + gVG. (3.24)

As shown in the Fig. 3.4, g is the Green’s function of disconnected sections, V

describes the hopping between the sections, and G is the Green’s function of the
connected system. Specifically, we first slice the system into N pieces. For each
column i = 1, 2, ..., N , the isolated Greens function gi is calculated by direct inver-
sion,

gi = [[E + iη] I − 〈i |Hd |i〉]−1 ,

gp =
[
[E + iη] I − 〈i |Hd + Σp |i〉

]−1
.

(3.25)

The Hamiltonian for each slice of the device is described by Hd , with the exception
of the first and the last columns which also include the self-energy Σp (p = L, R) of
the leads. Then we start from the left end of the device and add the single column
one by one. The recursive relation of the conductance can be summarized in the
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following two equations:

GL
n+1,n+1 =

[
I − gn+1Vn+1,nGL

nnVn,n+1
]−1

gn+1,n+1 (3.26)

GL
n+1,0 = GL

n+1,n+1Vn+1,nGL
n0. (3.27)

After all the slices are connected, we obtain the left Green’s functionGL
N1. Similarly,

we derive the right Green’s function starting from right lead with the recursive
relations:

GR
n,n =

[
I − gnVn,n+1GR

n+1,n+1Vn+1,n
]−1

gn,n (3.28)

GR
n,N+1 = GR

n,nVn,n+1GR
n+1,N+1. (3.29)

The full Green’s function is then

Gn,n =
[
E − hn − Vn,n+1GL

n+1,n+1Vn+1,n − Vn,n−1GL
n−1,n−1Vn−1,n

]−1 (3.30)

Gn,0 = Gn,nVn,n−1GL
n−1,0 (3.31)

Gn,N+1 = Gn,nVn,n+1GR
n+1,N+1 (3.32)

Gn,n−1 = GnVn,n−1GL
n−1,n−1 (3.33)

Gn+1,n = GR
n+1,n+1Vn+1,nGn,n. (3.34)

If only transmission matrices are required, we can simply close either sweep with a
connection to both ends:

1. For the left sweep

GN+1,N+1 =
[
I − gN+1VN+1,NGL

N,NVN,N+1
]−1

gN+1 (3.35)

GN+1,0 = GN+1,N+1VN+1,NGL
N0. (3.36)

where gN+1 = gR.

2. For the right sweep

G0,0 =
[
I − g0V0,1GR

1,1V1,0
]−1

g0 (3.37)

G0,N+1 = G0,0V0,1GR
1,N+1. (3.38)

where g0 = gL .

The above equations yield the right-to-left and left-to-right Green’s functions. For
systems with inversion symmetry, we expect G00 = GN+1,N+1 and G0,N+1 = GN+1,0
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and therefore only one sweep is necessary to evaluate the whole scattering matrix.
Also, for symmetric leads, and in the absence of an external magnetic field (i.e.,
time-reversal symmetric systems), the Green’s functions satisfy the relation[

Gr
N+1,0

]†
=

[
Gr

0,N+1
]∗
= Ga

N+1,0 = Ga
0,N+1 (3.39)

and only one sweep is necessary, i.e.

G =
2e2

h
Tr

[
ΓLGr

LRΓR
(
Gr

LR
)†]

. (3.40)

Otherwise, both sweeps are required. From the above setup, we find that this method
is only applicable to short-range or finite-range interactions on tight-bindingmodels.
For longer range interactions, we have to extend the size of each slice to ensure that
each isolated slice only has its Hd and energy contribution V from its nearest-
neighbor slices. In this case, the efficiency of the method decreases.

Self-energy of semi-infinite leads
Although the leads are infinite (thermodynamically large), the self-energy can still
be greatly simplified by using the recursive Green’s function method because of
periodicity. The Green’s function of a semi-infinite lead has a form of

gL = [E + iη − Hl]
−1 (3.41)

=

©­­­­­­­«

d −A 0 0 .

−B D −A 0 .

0 −B D −A .

0 0 −B D .

. . . . .

ª®®®®®®®®¬
(3.42)

which can be rescaled to another matrix, similar to the original structure but with
new elements,

d′ = d − AD−1B (3.43)

D′ = D − AD−1B − BD−1 A (3.44)

A′ = AD−1 A (3.45)

B′ = BD−1B (3.46)

g′r,1 = g2r−1,1 (3.47)

where r = 2, 3, .... After sufficient rescaling, A′, B′ is negligible, the new Green’s
function of the lead will be g11 ≈ d−1

n . The corresponding retarded self-energy can
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be determined by

[E + iη − (hl + Σl)] g11 = 1 (3.48)

or

Σ
r
L(E) = uLg

r
Lu†L and Σ

r
R(E) = u†Rg

r
RuR; (3.49)

Either equation yields the same self-energy. Thus, the broadening function Γ can
be obtained by using relationship Γ = i

[
Σ − Σ†

]
. With both Green’s functions of

the device and the self-energy contribution from the leads, one can easily simulate
the quantum transport of any system.

3.5 An alternative quantum simulation method-O(N) real-space methods
Another common approach to calculate the static conductivity of a disordered metal
is to consider linear response of a system at equilibrium, perturbed by an external
voltage—Kubo formulae. In the linear response framework, when the temperature
is much lower than the Fermi temperature, the real part of the diagonal conductivity
can be well-described by the zero temperature limit conductivity:

Re σxx(εF, ω) =
~

πΩ
Tr

[
ĵxImĜR

εF ĵxImĜR
εF−~ω

]
. (3.50)

By expanding the above equation on a basis of orthogonal polynomials and by
using real-space recursion principle, Roche developed a O(N) real-space methods
which can efficiently simulate quantum transport in the presence of magnetic field—
quantum Hall effect. The key point of this algorithm is to rescale the density of
states and then make a polynomial expansion of the associated Kubo formula; thus,
instead of diagonalizing the total Hamiltonian, one only needs to take N recursion
steps to obtain conductivity. We refer the readers to Ref. [9] for more details.

The Kubo formalisms and Landauer formalism are equivalent and can be derived
from one to another. Landauer formalism is particularly convenient if we want
to study a complex geometric system where there is no equivalent to the Kubo
description. ThoughLandauer formulae has higher flexibility in dealing complicated
system, it is also very time consuming since diagonalizing an N-state Hamiltonian
requires CPU time scaling as O(N3). Even with recursive Green’s function method,
the scaling is still O(N2). O(N) real-space methods provides an efficient route to
tackle larger, strongly disordered, quasiperiodic, and inhomogeneous systems. Note
that this method implicitly requires taking the limit of an infinite system. In this
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thesis, we focus on small weak disordered system, probing magneto-conductance;
therefore, Landauer-Büttiker formalism, though more time-consuming, is a proper
choice in this context.
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C h a p t e r 4

QUANTUM TRANSPORT SIMULATION RESULTS

We use the Landauer Büttiker formalism to study devices with hexagonal structures
and explore various variations of the graphene device. In this chapter, we will
discuss how to model graphene-based devices effectively and efficiently, including
the device itself, external leads, disorder, and magnetic fields; then we will discuss a
few elements that arise in the realistic simulation of a topological insulator—contact
mismatch minimization, finite size effects, diffusiveness, and magnetoconductance.

4.1 Landauer-Büttiker implementation on graphene
Modeling graphene device
Consider a graphene-based device of width w and length L. We employ operators
c†rα to create a spin-α electron on the carbon atom at site r; throughout, indices
such as α are implicitly summed when suppressed. The minimum Hamiltonian for
graphene is given by

Hg = −t
∑
〈rr′〉
(c†rcr′ + h.c.). (4.1)

To minimize the evaluation time O(w3 × L), we slice each column in which 2
a
√

3
w

number of carbon atoms reside, as shown in Fig. 4.1. This single column setup
is still applicable with the inclusion of second-nearest hopping (e.g. Kane-Mele
SOC), spin-flip hopping (e.g. Rashba SOC),

HKM = it2
∑
〈〈r,r′〉〉

νrr′c
†
r szcr′, (4.2)

HR = i
t1
a

∑
〈r,r′〉

c†r (s × drr′)z cr′, (4.3)

and adatoms described by a tight-binding model. Though the Hamiltonian of each
column and interaction between two consecutive slices are not exactly the same
everywhere, one can still easily stitch them together by Dyson’s equation.

Modeling lead
In an experiment, the leads are metallic and provide numerous electrons. The
interface of the leads and the device is a low resistance junction—an Ohmic contact.
To satisfactorilymodel the leads, we choose a similar hexagonal structure in the leads
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Figure 4.1: Upper panel is the cartoon picture of lattices of the device and leads.
Lower panel shows the minimum column for the device and leads.

to minimize the contact mismatch, and adjust the chemical potentials to ensure the
high density of states. Note that, in principle, the leads can be modeled by any type
of semi-infinite lattice, and one can experiment with different structures to obtain
the best performance for the device of interest.

The Hamiltonian of leads is chosen to be graphene structure,

H = µ
∑

r
c†r cr − t

∑
〈rr′〉
(c†rcr′ + h.c.). (4.4)

The nearest-neighbor hopping amplitude t is the same as the device (graphene) and
the chemical potential is shifted to −4 eV in order to maximize the density of states
and maintain the symmetric V-shape of conductance versus Fermi energy G(EF)

relationship. If |µlead | > 4 eV, the conductance curve becomes U-shaped; on the
contrary, if |µlead | < 4 eV, the curve is asymmetric and unable to provide enough
electrons from the leads.
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Modeling disordered device
Many different types of disorder are unavoidable in a real graphene sample. Com-
mon sources of disorder include charges density inhomogeneities (charge puddles),
substrate irregularities, intrinsic and extrinsic ripples, strain fields, surface molec-
ular adsorption, vacancies, irregular edges, lattice bulk defects, and so on. Their
effects are investigated in many research works [2, 7, 9, 11]. Most of the above can
be studied using the recursive Green’s function method. However, this method is
suboptimal in modeling long-range disorder.

In this thesis, we apply the diagonal disorder

H =
∑

r
V(r)c†r cr − t

∑
〈r,r′〉

[
c†r cr′ + h.c.

]
(4.5)

as the major source that, depending on the correlation V(r), yields inter-valley
and intra-valley scattering. To generate the disorder potential V(r), which has
correlations with disorder strength K0 (dimensionless) and correlation length ξ, we
firstly create a continuous potential landscape satisfying

〈V(x)V(x + r)〉 = K0
(~vF)

2

2πξ2 e
− r2

2ξ2 , (4.6)

then map the potential on the discrete lattice. Here 〈· · · 〉 stands for the average over
disorder realizations and the average disorder potential 〈V(x)〉 is 0. This disorder
potential simulates finite-range correlations, but can be used to model short- and
long-range correlations by adjusting the correlation length. When ξ → 0, the
disorder correlation 〈V(x)V(x + r)〉 goes to 0, except at x = 0; this is similar to
white noise disorder. On the other hand, when ξ → ∞, the system has infinite
correlation as in the case of no disorder at all.

In order to make the random disorder landscape satisfy Eq. (4.15), we can move to
momentum space and randomize the phase.

V(q) =

√
K0
A
~vF exp(−

q2ξ2

4
) exp(iφ(q)) (4.7)

where A is the area of graphene and φ(q) is a random phase which depends on
q, and φ(q) = −φ(−q). We choose random phases for each q and then Fourier
transform back to real space, such that the V(r) satisfies the Eq. (4.15). Note that
maximum possible value of V(r) is ~vF

πξ2

√
AK0 and that the average height of the

potential is
√

K0
2π
~vF
ξ . Here, we present two examples of disorder landscapes with

different correlation lengths ξ.
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Figure 4.2: The disorder landscape modeled on the device. The unit for both axes
are lattice constant a.

Modeling magnetic field
In the Landauer-Büttiker simulation, we need to incorporate a magnetic field into the
tight-binding representation. Consider an electron moving in a uniform magnetic
field B. The electron obtains a phase by hopping between different sites. This phase
can be well-described by a Peierls substitution

t → tei e~
∫ f

i
®A·d®l (4.8)

where A is the vector potential of the magnetic field B = ∇ × A. Note that only
a perpendicular magnetic field applied to the sample will have an influence on the
orbital of the electrons since we are considering a 2D system. This substitution fails
when the magnetic length is smaller than the lattice spacing,

lB =

√
~

eB
=

26nm
√

B
> a = 0.142nm. (4.9)

This constraint can be easily satisifed as long as B . 100T in our simulation.

In the quantum mechanical simulation, we want to apply a magnetic field to the
device in order to measure the magneto-contanctance at zero magnetic field B→ 0.
To realize such a setup, we consider a small uniform magnetic field B applied
perpendicularly to the graphene plane B = Bez and choose a corresponding gauge

®A =


0 , for x < 0

B0x ŷ , for 0 < x < L

B0L ŷ , for L < x

. (4.10)

Here we choose the x−coordinate of first slice of atoms to be 0 while that of the last
slice to be L. This gauge is chosen for two reasons: one is to keep the periodicity in
ŷ direction if we study a nanotube structure; another is to ensure the continuity at
the interface.
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4.2 Conductance quantization
In this section, we will discuss quantized conductance arising from finite size effect.
Consider a graphene nano-ribbon with width w and length L. Each edge is termi-
nated in an armchair geometry (the same calculation applies to zigzag as well). Due
to confinement, the wave-vector in y−direction is quantized as

kn =
πn

W +
√

3a
+

2π
3
√

3a
(4.11)

to satisfy the boundary conditions. Each quantum number n corresponds to a
state in the band structure. As shown in Fig. 4.3, we expect to obtain a quantized
conductance in the quantum simulation if the leads are perfectly metallic.
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Figure 4.3: Conductance simulation for perfect metallic leads and PFT of pristine
graphene nano-ribbon. (w, L) = (43, 45)a.

However, the leads in a real simulation have a finite density of states and thus
the energy level mismatch causes contact resistance. Therefore, in real quantum
transport, we obtain a jagged continuous curve instead of quantized conductance.
The jagged features not only depend on the contact resistance, but also reflect the
Febry-Perot oscillations due to the finite system length L as shown in Fig. 4.4.

4.3 Confinement and tunneling effect
Confinement
Confinement (finite size effect) may introduce a gap in a gapless Hamiltonian for
different edge geometries. For a graphene nanoribbon terminated with armchair
edges, the system could be either semi-conducting or metallic depending on the
width. The finite size gap closes when w = (3n + 1)

√
3

2 a where n is the number of
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Figure 4.4: Conductance simulation with metallic leads for a pristine graphene
nano-ribbon of size (w, L) = (87.5, 150)a. a is the bond length of graphene.

rows; otherwise, a gap of size ∼ δ ∼ vF
π

w+
√

3a/2
opens (the actual value is slighter

smaller in simulation as shown in Table 4.1). Since we are interested in gapped
systems (e.g. topological insulators), we need to carefully choose a large enough
width to observe the “true gap” of the system. In the next subsection, we will discuss
how to extract the gap size from simulation results.

number of rows Ny 21 52 100 201 300 400
finite size gap 0.4eV 0.2eV 0.1eV 0.05eV 0.04eV 0.02eV

Table 4.1: The confinement gap size measured in the quantum mechanical simula-
tion. The width w is

√
3

2 Nya.

Tunneling effect and minimum conductance
Amajor problem preventing us from observing the gap is quantum tunneling. Since
the simulated system is so small, there is always some tunneling current found in the
gap, a phenomenon which is also seen in experiments and is known as the minimum
conductance problem. Let us focus on the behavior of the minimum conductance
in two extreme limits: W/L → ∞ and w/L → 0. In the first case, W/L → ∞, the
leads are close to each other and thus current can tunnel through the device. With
this tunneling current, the conductivity (σ = G L

W ) is predicted to converge to a fixed
value,

σmin =
4e2

πh
. (4.12)
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In the other limitW/L → 0, the tunneling current is very weak and the conductance
would gradually decrease since electrons have higher chances to back scatter into
other channels throughout the infinite strip. However, L/W grows much faster than
G such that conductivity goes to infinity while L/W → ∞. Both predictions are
consistent with our results shown in Fig. 4.5.
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Figure 4.5: Checking the limits of a graphene strip. (a) is the relative conductivity
σxx/σ0 change by varying W/L and (b) is the conductance G change respect to L.
In the W/L → ∞ limit, the conductivity converges to σ0 as predicted. In the other
limit, L increases and the conductance gradually drops to an insignificant value. It
indicates that backscattering is not very important in our system.

Due to quantum tunneling, zero conductance is no longer a good indicator for an
energy gap. A more reliable way to extract the gap size is by finite size scaling: the
conductance in the gap decays exponentially with the system size,

G(L) = G(0)e−L/lloc . (4.13)

The finite-size gap can be easily identified by increasing system size as shown in
the Fig. 4.6. Concluding from the above discussion, to see the transport gap ∆ of
a gapped Hamiltonian, one should choose a large system, for which the finite-size
gap is smaller than ∆ from the Hamiltonian. However, it doesn’t guarantee the
appearance of a perfect gap with zero conductance inside and non-zero conductance
outside; the tunneling effect is unavoidable and oscillations near the gap makes it
hard to define the size of the transport gap. One reliable way to measure the tranport
gap is to ensure the finite size gap is smaller than the target system’s gap, and then
measure the gap size by finite-size scaling, to avoid confusion of tunneling current.
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As shown in Fig. 4.7, current in a gap decays exponentially as the system grows
longer while it decays insignificantly and linearly out side of a gap.
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Figure 4.6: Finite size gaps for device’s width w = Ny

√
3

2 (a) Ny = 51a,(b) Ny =

100a, (c) Ny = 201a, (d) Ny = 400a. The corresponding finite size gaps are 0.2 eV,
0.1 eV, 0.05 eV, and 0.01 eV respectively. L is in the unit of 1.5a. The color bar
unit is log(G( e2

h ))



84

50

100

150

200

250

300

50

100

150

200

250

300

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

-35

-30

-25

-20

-15

-10

-5

0

Figure 4.7: Pristine graphene transport simulation of different mass gap ∆. (a)
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4.4 Disorder and diffusiveness
One of the most important sources of scattering in a generic graphene sample are
charged (i.e. Coulomb) impurities, especially in the low carrier density regime.
The random charged impurities at the graphene-substrate interface lead to inhomo-
geneous electron-hole puddles; its long-range disorder nature results in the linear
behavior of the conductivity as the density (or Fermi energy) increases. Analytically,
we can study this problem with a long-range Coulomb potential by semi-classical
Boltzmann theory. Numerically, however, it is difficult to simulate the long-rang
disorder. Instead, we use the non-interacting electron model with a Gaussian disor-
der landscape and apply a self-consistent RPA (considering the electron screening
effect) to estimate the relevant variables. For some high-mobility samples, a sub-
linear conductivity is found in experiments. This result suggests that short-range
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disorder plays a dominant role in the system. In this thesis, we strive to model both
types of disorder, and study its effects on magneto-transport.

In this section, we will address a few issues regarding modeling disorder in graphene
and compare the simulation results with analytical transport theory. Firstly, we will
discuss two disorder models—simple onsite disorder and finite range disorder. Next,
we investigate how short- and long-range disorder affects the conductance G(EF)

and compare this to the analytical results. Finally, we will describe how to extract
mean free path from the simulation results.

Disorder Models
Let us start with disordered graphene in the simplest setup. Consider disorder on a
carbon at site rdis. Its Hamiltonian is

Hdisorder = −µdis

∑
r

δ(r − rdis)c†r cr (4.14)

where µdis is the energy shift caused by the disorder with the assumption that the
average disorder strength 〈µdis〉 is 0. From Fig. 4.8, we can see that the conductance
decreases as more or stronger impurities are placed on graphene. Furthermore, the
conductance curve G(E) shows sub-linearity due to the short-range nature of simple
onsite disorder, a result that is consistent with analytical prediction in the Ref. [9],

(a) (b)
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Figure 4.8: (a)The conductance change by tuning the density of disorder n. The
system parameters are (w, L) = (50, 20) and µdis = 1; conductance G is in the unit
of e2

h and the Fermi energy E is in the unit of eV. (b) The conductance change
by tuning the disorder strength. The density is fixed to 0.1. The above data are
averaged over 100 different disorder distributions.
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Now, we consider a more generalized model—Gaussian correlated disorder—which
is a finite-range disorder that can be used to model short- and long-range disorder
with the appropriate choice of correlation length,

〈V(x)V(x + r)〉 = K0
(~vF)

2

2πξ2 e
− r2

2ξ2 . (4.15)

where K0 is the dimensionless disorder strength and ξ is the correlation length.
When ξ is smaller than the bond length, this disorder model is short-ranged and
leads to sub-linear conductance at higher carrier concentration, as shown in the left
panel of Fig. 4.9. On the other hand, we find that the finite-range disorder, similar to
the case of long-range disorder, results in the linearity of the conductance (right panel
of Fig. 4.9). Although this model may not fully capture the properties of long- or
short-range disorder, it can well approximate the disorder that generates intra- and
inter-valley scatterings (see next subsection) as desired for magneto-conductance
calculations. Therefore, we adopt this model in all of our simulation results.
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Figure 4.9: (a) Transport measure of graphene with different long range disor-
der strength. Parameters (w, L, bc, ξ) = (173a, 90a, 1, 4a).(b)Transport measure of
graphene with different short range disorder strength. Parameters (w, L, bc, ξ) =
(173a, 90a, 1, 0.5a).

Compare to Boltzmann theory
In the weak disorder limit kF le � 1, we can analytically derive the mean free
path and conductivity for intra-valley scattering and inter-valley scattering for the
Gaussian disorder case:

1. intra-valley scattering
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lMFP =
2k2ξ2

K0I1(k2ξ2)
ek2ξ2

(4.16)

σ =
4e2

h
k2ξ2

K0I1(k2ξ2)
ek2ξ2

(4.17)

2. inter-valley scattering

The transport scattering time is

1
τt
=

N A
4

∫
d2k′

(2π)2
Wkk ′(1 − cos θ)

=
NK0π

2~
(~vF)

2
∫

d2k′

(2π)2
exp(−(q2 + η2)ξ2/2)(1 + cos θ)(1 − cos θ)

× (cosh(ξ2qyη) + 2 cosh(−ξ2qx

√
3

2
) cosh(ξ2qyη/2))δ(Ek ′ − Ek) (4.18)

lMFP = vFτt (4.19)

σ =
e2v2

Fτ

~
(

4kF

π~vF
) (4.20)

by Boltzmann theory. (See Appendix 8 for derivation details.) The total mean
free path is the inverse of the sum of each l−1

mfp. From Fig. 4.10, we see that the
inter-valley scattering becomes important only when ξ < 1, which suggests short-
range disorder. For long-range or finite-range disorder, Boltzmann theory predicts
insignificant inter-valley scattering encounteredwithin the system size in simulation.

These disorder parameters in the Gaussian disorder case can be associated to real
disorder sources such as charged impurities from the substrate. Shaffique et al. have
established a relationship in Ref. [1] which extracts the corresponding parameters
from experiments—

K0 =
1

4r2
s
(
D0
C0
)2 (4.21)

ξ =
1
√nimp

D0

4πr2
s

1
(C0)3/2

(4.22)
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Figure 4.10: The conductivity change by changing different correlation length ξ at
Fermi energy (a)EF = 0 eV and (b)EF = 0.3 eV. The inter-valley scattering is only
important when ξ < 1a.

where rs = e2/κγ and κ is the effective dielectric constant that depends on the choice
of substrate. The coefficients C0 and D0 are respectively

C0(z) = −1 +
4E1(z)
(2 + πrs)

2 +
2e−zrs

1 + 2rs
+ (1 + 2zrs)e2zrs (E1[2zrs] − E1[z(1 + 2rs)])

(4.23)

D0(z) = 1 −
8rszE1[z]
(2 + πrs)

2 +
8e−zrs

(2 + πrs)
2 −

2e−zrs

1 + 2rs
− 2zrse2zrs (E1[2zrs] − E1[z(1 + 2rs)]).

(4.24)

These disorder parameters in the Gaussian disorder case can be associated to real
disorder sources such as charged impurities from the substrate. Shaffique et al. have
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established a relationship in Ref. [1] which extracts the corresponding parameters
from experiments—

K0 =
1

4r2
s
(
D0
C0
)2 (4.25)

ξ =
1
√nimp

D0

4πr2
s

1
(C0)3/2

(4.26)

where rs = e2/κγ and κ is the effective dielectric constant that depends on the choice
of substrate. The coefficients C0 and D0 are respectively

C0(z) = −1 +
4E1(z)
(2 + πrs)

2 +
2e−zrs

1 + 2rs
+ (1 + 2zrs)e2zrs (E1[2zrs] − E1[z(1 + 2rs)])

(4.27)

D0(z) = 1 −
8rszE1[z]
(2 + πrs)

2 +
8e−zrs

(2 + πrs)
2 −

2e−zrs

1 + 2rs
− 2zrse2zrs (E1[2zrs] − E1[z(1 + 2rs)]).

(4.28)

Here, z = 4kF d and E1(x) =
∫ ∞

x t−1e−t dt. Typical experimental conditions corre-
spond to K0 between 1 and 3. The correlation length is about 10nm. Combining
the above prediction for parameters and the results from Boltzmann theory, only
intra-valley scattering processes will happen in the transport experiment if we use
this model to simulate the charged impurities. However, even though the main
disorder source is believed to be charged impurities from the substrate, almost all
the magneto-conductance experiments show weak localization, resulting from inter-
valley scattering, A recent work proposes that the intervalley scattering comes from
edge disorder [9] . However, we find that our system size is too small for edge disor-
der to induce strong enough inter-valley scattering. Therefore, we strike the balance
between simulating the real disorder landscape and capturing the inter-valley scat-
tering in MC, by adopting short-range disorder ξ < 1a. We will address the issue
of choosing the proper disorder for magneto-conductance simulations in the next
section.

In Fig. 4.11, we present the conductivity results from the Landauer Büttiker simula-
tion and Boltzmann theory analysis. General trend (blue-red) and scales are roughly
in agreement, but the relation σ with respect to K0 and ξ, are not ideal. Therefore,
it is crucial to develop a method to identify the disorder phases and extract the cor-
responding mean free path numerically. We will discuss this topic in the following.
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Figure 4.11: Conductance change respect to (a) disorder strength K0 (where ξ = 5a)
and (B) correlation length ξ (where K0 = 2) in Landauer Büttikar simulation. (c)
and (d) are the same as (a) and (b) but estimated from Boltzmann theory. The
conductivity is in units of e2
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Mean free path extracted from simulation
One crucial length scale in studying diffusive transport is the mean free path. When
the mean free path lmfp is longer than the device, the system is metallic; on the other
hand, the system is diffusive if lmfp < L. However, if the disorder is too strong, the
system changes its nature qualitatively from diffusive, where the wave functions are
spatially extended, to localized, where the wave functions are spatially localized.
Here, we present a way to distinguish these three phases from simulation results,
and extract the mean free path/localization length if applicable.

In Landauer Büttiker formalism, the resistance in a diffusive system has two sources:
contact resistance and classical Ohm’s resistance:

Rmeasured = Rc + Rcl =
h

2Nche2 +
h

2Nche2
L
L0
=

1
T

h
2e2 . (4.29)

Here Rc is the contact resistance, Rcl is the classical Ohm’s resistance, Nch the the
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number of channels in the device, andT is the transmission coefficient. Following the
statistical criteria for disorder phases as shown in Refs. [5, 6, 8], we can distinguish
the diffusiveness or localization for a given E, L. In the diffusive regime, the
transmission coefficient T satisfies

∆T
〈T〉

< 1 (4.30)

with mean free path

lmfp = L
(

Nch

T
− 1

)−1
. (4.31)

Here ∆T is the standard deviation of the transmission coefficient, and 〈T〉 is the
average T over disorder realizations. In contrast, electrons in the localized regime
move across the device by tunneling through localized states and thus T fluctuates
considerably between very small values and values close to 1. One is deep in this
regime when

∆ ln T
〈ln T〉

< 1 and
∆T
〈T〉

> 1, (4.32)

with localization length ξloc,

〈ln T〉 ∝ −L/ξloc. (4.33)

Combining these statistical criteria and by finite-size scaling of the conductance (or
its logarithm), we can distinguish the weak disorder and localization phases as well
as extract the corresponding Lmft or ξloc. We can also identify the metallic properties
with the criteria lmfp > L. This will be an important step in preparing a weakly
disordered phase to study magneto-conductance in simulation.

4.5 Magneto-transport
Before discussing the simulation results, we note that Peierls substitution in graphene
under a magnetic field is accurate as long as the lattice spacing a is much smaller
than the magnetic length,

lB =

√
~

eB
=

26nm
√

B
> a = 0.142nm. (4.34)

One should be careful about the field range applied to the system while studying
magneto-transport.
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Strong magnetic field-QHE
The tight binding model of clean graphene with an applied magnetic field is,

Hg = −t
∑

A

(exp(−iπ
Φ

Φ0
(nA + 1/6))c†AcA+δ1

+ exp(iπ
Φ

Φ0
(nA + 1/6))c†AcA+δ2

+c†AcA+δ3) + h.c (4.35)

where Φ0 =
h
e and Φ = 3

√
3

2 B0a2. nA = 1, 2, 3, ..., 2L. The corresponding low
energy spectrum is

E±(N) = ±ωc
√

N, (4.36)

with ωc =
√

2 vF
lB
. The zero-mode Landau level is the anomaly observed in the

graphene quantum Hall effect. From the density of states of the carbon nanotube in
Fig. 4.12, we observe the peaks corresponding to the extended states of each Landau
level. Also, since only electrons in the Landau levels can propagate, we observe
conduction peaks at the Landau levels. However, the peaks are too narrow and the
gap is too small to observe the peaks as the system size increases. Therefore, at large
system size, the conductance drops to zero around the Dirac point, even though we
can see these states in the DOS. Note that the magnetic field is high because of small
system size; it does not represent the exact value in experiments.

To observe the Landau levels, we can put some disorder in the systemwhich broadens
the peaks. We consider a larger size (w, L) = (43a, 75a) which shows no Landau
levels in the transport simulation. After placing some disorder in the device, the
Landau level peaks are seen again. However, compared to the theoretical values,
the position of the peaks are slightly shifted toward to zero energy instead of simply
broadening.

Now let’s look at the magneto-transport of both a nano-strip (open boundary condi-
tion, OBC) and a nano-tube (periodic boundary condition, PBC) at high magnetic
field. In the nano-tube geometry, the conductance quickly drops to zero as mag-
netic field increases; only when Landau levels pass through the Fermi energy, one
might observe a little peak in the conductance if the system is small enough. In
the nano-strip geometry, the sample presents a quantized plateau showing edge cur-
rents. However, if the strip geometry tends to be qausi-1D, the edge channels from
different edges may scatter into each other, leading to smaller conductance as shown
in Fig. 4.14.
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Figure 4.12: (a) The DOS and the conductance of the carbon nanotube with
parameters (w, L, B) = (17a, 30a, 100T) and (b) is the same as (a), except
(w, L) = (43a, 75a). The red dashed lines are the analytical value of Landau
levels, E = ±~ωc = 0.06

√
B
√

N . Note that, if we look into the spatial distribution
of some states at zero energy, some states come from the edge states at end of the
nanotube, but they does not help conduct current in the bulk.

Adding disorder also broadens the conductance peak where the Landau level is
located. Interestingly, short-range and long-range disorder of the same K0 have
different effects on magneto-transport. For long-range disorder (LRD), the disorder
landscape creates numerous charge puddles which assist current tunneling through
the device. As shown in Fig. 4.15, we observe the broadened conductance peaks
with LRD; however, when the LRD is too strong, current can easily tunnel through
the device and thus the conductance increases. For short-range disorder (SRD) of the
same K0, the average disorder strength 〈V2〉 is so much stronger; thus disorder with
only K0 ∼ 0.01 can broaden the peak more than in the case of LRD with K0 ∼ 0.1.
Furthermore, SRD with K0 = 1 drives the system into Anderson localization as in
Fig. 4.15. We see that K0 = 1 is too strong for studying weak disorder phenomena
such as weak localization. This can be also checked by the aforementioned statistical
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Figure 4.13: (a) is the DOS and the conductance of the carbon nanotube with
parameters (w, L, B) = (43a, 75a, 100T) and (b) is the same as (a), but with disorder
(µdisorder, n) = (−1, 0.1). One can find that the disorder broadens the peaks of the
Landau levels and makes them easier to observe.

criteria as well.

Weak magnetic field-quantum interference
Between the metallic and localized phases, the weak (anti-)localization phase has
drawn great attention for its interesting physics and applicability in revealing SOC in
2Dmaterials. Weak (anti-)localization is a manifestation of quantum interference in
a 2D diffusive mesoscopic system. This phenomena can be measured by magneto-
conductance with a weak magnetic field.

As mentioned in Chapter 1, weak (anti-)localization (WL/WAL) is a quantum phe-
nomena which can only be measured when all the scattering paths are coherent in
phase. Any inelastic scattering from, or entanglement with the environment, e.g.,
phonons, system size, or magnetic field, will destroy such coherence and make the
system effectively classical. Therefore, the applicable magnetic field range for mea-
suring WL/WAL is determined by the (temperature-dependent) characteristic scale
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of the magnetic field Bφ = ~/4D |e|τφ, which is related to the coherence rate τφ.
Here D = v2τtr/2 is the diffusion constant. In other words, forWL/WAL, one would
expect to see the most obvious changes in conductance by applying magnetic fields
for which magnetic length is comparable to the phase coherence length, lB ∼ Lφ, or
equivalently, ωcτ ∼ ~/εFτφ.

Another related length worth mentioning is that of classical magnetoresistance
Bcl ∼ m/|e|τ, as Bφ ∼ Bcl~/εFτφ. The classical magneto-conductance effect is
governed by the orbit bending scale, ωcτ ∼ 1, in a metallic system, whereas the
weak-localization quantum effect sets in when a loop of typical area L2

φ encloses a
flux quanta in a diffusive system. Classical magneto-conductance mostly vanishes
in a diffusive system.
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Here are two criteria to observe weak (anti-)localization in MC in a simulation:

• Diffusive mesocopic system: le < lφ = L∗

• Magnetic field: lB > Lφ. B <
(

26nm
L∗

)2
.

Pristine graphene MC

Technically, clean graphene without disorder does not have WL/WAL because there
is no scattering process leading to quantum interference. However, in a finite size
system, electrons can scatter from the boundaries and cause quantum interference,
such as the Fabry-Perot effect. This interferences induces a conductivity oscillation
with the frequency π

L of the increasing wave-vector k. As shown in the Fig. 4.5 (b),
one can observe a large periodic oscillation in conductance along with many smaller
oscillations, which are probably due to the low reflectivity of the zigzag interface.
After applying a magnetic field, one will see the magneto-conductance having large
peaks with some mild oscillations. These high peaks also correspond to the small
sharp peaks in the no-B field graphene. Fortunately, these oscillation peaks coming
from boundary scattering are washed away with a diffusive bulk.

Here, we also notice that the magneto-conductance oscillation is observed when
E > 0.2eV in our system setup. When E < 0.2eV , the wavelength is longer than
the system so that the electron will travel through the system with little scattering.
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Figure 4.16: (a) Magnetoconductance of pristine graphene strips of which size is
(w, L) = (346a, 120a). (b) Conductance of pristine graphene without a magnetic
field and the conductance change with magnetic field. Note that G(B)-G(0) is
rescaled as 10, 000 times larger for convenience in presentation.
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Disordered graphene

Due to its unusual chirality, graphene with smooth disorder is predicted to ex-
hibit WAL [4]. However, strong inter-valley scattering, which typically arises in
ordinary-quality samples, suppresses the chirality-related WAL and generates weak
localization (WL) [10, 12]. We have confirmed these WL/WAL behaviors in our
simulations. In Fig. 4.17, we place long range disorder—ξ = 4a—on a graphene
sheet, check the diffusiveness, and then measure the magneto-conductance. We find
that magneto-conductance is mostly WAL, except at EF = 0.6eV. This is due to
the fact that electrons at higher energy are closer to their neighboring Dirac cones
in momentum space and thus it is easier to hop between two valleys. Applying the
same algorithm to SRD, we find that the system which is diffusive shows WL as
expected, except at EF < 0.3 where the system is apparently ballistic. Here, again,
we confirm numerically that the real WL/WAL signatures can only be observed in
the diffusive regime.
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Figure 4.17: (a) Transport property map and (b) magnetoconductance of LRD
graphene strips of which size is (w, L) = (346a, 120a). The disorder strength is
(K0, ξ) = (1.5, 4a). We average over 100 disorder realizations and B = 0.5T.

Universal conductance fluctuation
Another important physical phenomenon in the multiple-scattering regime is the
presence of universal conductance fluctuations (UCF). The phase coherences for
different disorder configurations are completely different and this difference leads to
a unique signature of each configuration in conductance. Naively, one would expect
such fluctuations in 2D to vanish in the thermodynamic limit L →∞. However, this
is not the case in the mesoscopic regime where L < Lφ. The fluctuations around
the average value do not depend on disorder, but depend only on the geometry of
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graphene strips of which size is (w, L) = (346a, 120a). The disorder strength for (a)
is (K0, ξ) = (0.088, 0.5a) and for (b) is (K0, ξ) = (0.1, 0.5a) . We average over 100
disorder realizations and B = 0.5T.

the conductor: so called UCF—

δG2 = G2 − G
2
∼

(
e2

h

)2

. (4.37)

The origin of UCF is beyond the scope of this thesis, and we refer the readers to
Ref. [3]. The UCF increases the difficulty in measuring WL/WAL signatures; the
MC change ∆G = G(B) − B(0) is much smaller than UCF ∼ e2/h due to the small-
size system in our simulation. Therefore, we need to average over more disorder
realization to identify the true WL/WAL signals as shown in Fig. 4.5.
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Figure 4.19: AveragedMC changewith increase the number of disorder realizations.
System info: (w, L,K, ξ, E, B) = (346a, 120a, 1.5, 4a, 0.247eV, 0.1T).
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Recipe for MC simulation
In the aforementioned subsections, we discussed many aspects of the transport
simulation. To successfully study the quantum interference effect numerically,
we list a few things which should be carefully treated or considered in magneto-
conductance simulation.

• Prepare a diffusive graphene device with enough inter-valley scattering by
placing short range disorder. (Note that the disorder can’t be too strong to
turn the system into a strongly localized phase.)

• Apply magnetic field of which the magnetic field length lB is larger than
coherence length lφ.

• The system size is the only determining factor for decoherence length. Larger
systems show more significant MC change.

• Perform the same calculation with multiple disorder realizations to obtain the
real WL/WAL signatures.
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C h a p t e r 5

GRAPHENE ON WS2

Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS2

5.1 Introduction
Electron pseudospin in graphene and the associated chirality yield remarkable trans-
port consequences including the half-integer quantum Hall effect [53] and intrinsic
weak anti-localization (WAL) [2]. Physical spin, by contrast, is often largely a
spectator that couples weakly to momentum due to carbon’s low mass, leading to
much longer spin diffusion lengths ( > 1 µm at room temperature) than normal con-
ductors [17, 42]. Graphene’s extremely weak spin-orbit coupling (SOC) clearly has
merits, yet greatly hinders the observation of important spin-dependent phenomena
including the quantum spin Hall effect [24] and quantum anomalous Hall effect
[28, 35, 37, 46].

Fortunately, the open two-dimensional honeycomb structure allows tailoring the
SOC strength by coupling to foreign atoms or materials [6, 10, 13, 19, 23, 29, 45].
Several experiments have pursued approaches of graphene hydrogenation [4, 25] or
fluorination [18] as well as heavy-adatom decoration [7, 21]; these methods tend to
decrease the transport quality, andmoreover the induced SOC appears either difficult
to reproduce [4, 25] or to detect [7, 18, 21]. A different approach has recently been
employed by several groups: placing graphene on target substrates featuring heavy
atoms. Proximity to the substrates not only provides desirable properties such as
ferromagnetic ordering and large SOC, but also reduces adverse effects on the target
materials [3, 22, 43, 44].

Here we employ magneto-conductance (MC) measurements to demonstrate en-
hanced SOC in graphene proximity-coupled to multilayer WS2. We quantify the
spin-relaxation rate caused by Rashba SOC by fitting to WAL data, and further
show that the Rashba strength is tunable via transverse electric fields. Guided by
first-principles calculations, we also predict thatWS2-covered graphene additionally
features a prominent ‘valley-Zeeman’ SOC that mimics a Zeeman field with oppo-
site signs for the two valleys. The interplay between these two SOC terms opens
a non-topological gap at the Dirac point that supports symmetry-protected sub-gap
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edge states along certain boundaries. Though the gap is too small to be detected in
our experiments, theory suggests that graphene/WS2 may provide a simple model
system for studying such an unusual gapped phase.
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Figure 5.1: (a) Device geometry. Bottom to top: SiO2, graphene, WS2, h-BN, and
Au top-gate. h-BN serves as the dieletric for the top gate, and is transferred onto
graphene/WS2 after deposition of Au contacts. (b) Optical image of graphene/WS2
before h-BN transfer. Two parallel graphene devices share the sameWS2 flake (dark
blue) and each hasWS2-covered and uncovered channels that can be probed indepen-
dently. All single-layer-graphene data shown in this paper were taken from the lower
device. (c) Top: conductivity of uncovered (red) and WS2-covered (blue) graphene
devices. Bottom: Shubnikov-de Haas oscillations of WS2-covered graphene mea-
sured at 2 K and 10 T. The evenly spaced peaks up to the 4th order on both sides
confirm the absence of carrier-density saturation.

5.2 Experimental Setup.
Figure 5.1(a) sketches the dual-gated graphene devices used in our study. Both
single-layer graphene and multilayer WS2 flakes were first exfoliated from their
respective bulk materials and subsequently placed onto a Si/SiO2 (280 nm) wafer.
Since multilayer WS2 flakes can be much thicker and stiffer, we chose to transfer the
WS2 flake instead of graphene to avoid trapped bubbles in between, thereby yielding
a larger effective overlap area. Figure 5.1(b) shows an optical image of the device
prior to top-gate fabrication. Notice that only part of the graphene channel directly
contacts with WS2; the left uncovered channel serves as a control sample that allows
direct comparison with the right part under WS2 (dark blue).
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Transport measurements were performed at 2K (unless specified otherwise) using
a Quantum Design’s Physical Property Measurement System. Figure 5.1(c), top,
shows the conductivity of graphene versus the back gate voltage. Interestingly, for
both top and back gate sweeps, the device does not show the conductivity saturation
(up to ±60V with back gate) reported recently by other groups [3, 43]. Conductivity
saturation in the latter studies was attributed to saturation in carrier density from
either the large density of states associated with sulfide defects [3] or screening by
electrons in the WS2/SiO2 interface [43]. In our WS2-covered device, the lack of
conductivity saturation on either side suggests that the Fermi level resides within
the band gap of WS2, consistent with our DFT calculations (see below). The
absence of the carrier density saturation in graphene is verified by Shubnikov-de
Haas oscillations of the WS2-covered graphene as a function of the gate voltage in a
10 T magnetic field; see Figure 5.1(c). On both sides, the Landau Levels are evenly
spaced up to the 4th level, indicating that the carrier density is proportional to the
gate voltage. This property allows us to access the high-density regions, which is
important for understanding the origin of enhanced SOC and accurately determining
its strength. The field effect mobility, calculated from capacitance of the SiO2 [8]
layer, is higher in the uncovered graphene (∼ 7000 cm2s−2V−1) than the WS2-
covered graphene ( ∼ 4000 cm2s−2V−1 on the hole side, and ∼ 2000 cm2s−2V−1 on
the electron side). Despite the relatively low mobility, our devices manifest clear
low-field magneto-conductance (MC) over a much larger carrier-density range than
in previous studies [3, 43].
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Figure 5.2: (a) MC comparison between WS2-covered (blue circles) and uncovered
(red squares) graphene channels at carrier density n = 5× 1012cm−2 [dotted lines in
(b) and (c)]. Solid blue and red curves represent fits using Eq. (5.1) and Ref. [30],
respectively. (b,c) Gate-voltage dependence of MC for (b) WS2-covered and (c)
uncovered devices. The narrow white vertical region near B = 0 in (b) represents
the WAL peak in WS2-covered graphene, whereas a WL dip near B = 0 appears
for all gate voltages in uncovered graphene (c). (d) Temperature dependence of the
WAL in a bilayer graphene device, with carrier density n = 8 × 1012cm−2.
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5.3 Rashba SOC Signature.
Due to its unusual chirality, graphene with smooth disorder is predicted to ex-
hibit WAL [2]. However, strong inter-valley scattering, which typically arises in
ordinary-quality samples, suppresses the chirality-related WAL and generates weak
localization (WL) [30, 40]. Introducing strong Rashba SOC allows the spin relax-
ation rate τ−1

R to exceed the inelastic dephasing rate τ−1
φ . In this case, before quantum

dephasing occurs the electron spin precesses around the effective magnetic field and
acquires an additional π phase in the interference [31]—reviving WAL due to spin.
Intrinsic (Kane-Mele) and valley-Zeeman SOC terms, by contrast, break a pseudo
time reversal symmetry and thus place the system in the unitary class (suppressed
WL) [20, 31].

Figure 5.2(a) contrasts the low-temperature MC ∆G = G −G(B = 0) for uncovered
and WS2-covered devices at approximately the same carrier density, n = −5 ×
1012cm−2 [corresponding to the black dashed lines in Figs. 5.2(b) and (c)]. The
uncovered graphene shows WL as expected given the modest mobility. More
interestingly, in WS2-covered graphene the MC clearly exhibits the hallmark WAL
feature at low fields. In both cases this behavior persists over a broad range of
gate voltages as shown in Figs. 5.2(b) and (c). The robust WAL feature appearing
only in theWS2-covered graphene—despite its lower mobility which naively further
promotes WL—provides strong evidence of Rashba SOC acquired from WS2 on
both electron and hole sides. This result differs qualitatively from the strongly
asymmetric characteristic reported in Ref. [3]; there the induced SOC was only
observed on the electron side, which was attributed to the asymmetric density-of-
states due to sulfur vacancies.

To further confirm the proximity-induced SOC,we fabricated aWS2-covered bilayer-
graphene device. Unlike in single-layer graphene, WL is expected independent of
inter-valley scattering strength in bilayer graphene due to its associated 2π Berry
phase [15]. Consequently, the emergence of WAL in a bilayer graphene—which
we indeed detect—gives direct evidence of Rashba SOC inherited from WS2 (i.e.,
the competing pseudospin interpretation disappears here). Figure 5.2(d) shows
the observed WAL feature in a bilayer-graphene device at different temperatures.
Note that we only measure a clear WAL signature when the carrier density exceeds
∼ 8 × 1012cm−2, suggesting that the dominant dephasing mechanism in bilayer
graphene is electron-electron interaction. In this scenario, increasing the carrier
density suppresses dephasing, andWALappears once the dephasing rate drops below
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the spin relaxation rate. The WAL feature also disappears on raising temperature,
due naturally to thermally enhanced dephasing.

It is worth mentioning that the MC data shown in Figure 5.2 are from single
field-sweep measurements, as opposed to an ensemble average [41, 43] over many
curves taken over a gate-voltage range corresponding to the Thouless energy. Our
device length (∼ 20µm × 2µm) greatly exceeds the coherence length (∼ 1µm);
hence the conductivity self-averages resulting in suppressed universal conductance
fluctuations (UCF) [9].

5.4 Quantitative Analysis
When inter- and intra-valley scattering rates are much larger than the dephasing and
spin relaxation rates, MC in graphene is well-described at low magnetic fields by
the following expression from diagrammatic perturbation theory [31]:

∆G =
−e2

2πh

[
F

(
B
Bφ

)
− F

(
B

Bφ + 2Basy

)
− 2F

(
B

Bφ + Basy + Bsym

) ]
. (5.1)

Here F (z) = ln (z) + Ψ
(

1
2 +

1
z

)
(Ψ is the digamma function) and Bφ,asy,sym =

~
4Deτ

−1
φ,asy,sym with D the diffusion constant. The spin relaxation rate τ−1

asy is determined
by the z → −z asymmetric Rashba SOC λR, i.e., τ−1

asy = τ
−1
R , while τ−1

sym follows from
those z → −z symmetric SOCs including the intrinsic SOC λI, and valley-Zeeman
SOC λVZ. (Additional SOC terms that may be present due to the system’s low
symmetry are assumed negligible for simplicity.)

The intrinsic SOC relaxation rate τ−1
I obeys the Elliot-Yafet mechanism [12, 33, 49]:

τ−1
I = τ

−1
e

(
λ2

I /E
2
F
)
, where τ−1

e is the momentum relaxation rate and EF is the Fermi
energy. This rate is thus negligibly small compared to the typical dephasing rate
in graphene when λ2

I /E
2
F � 1. Here we deliberately focus on the high-carrier-

density region (n > 4 × 1012cm−2 and EF > 0.2eV) where we can reasonably
approximate τ−1

sym ≈ 0. The λVZ coupling meanwhile is inherited from WS2 due to
sublattice symmetry breaking [48]. Since this term imposes an opposite Zeeman
field for the two valleys, it generates non-degenerate, spin-polarized momentum
eigenstates whose spin orientations do not relax (except due to the interplay with
other SOCs). Thus the valley-Zeeman SOC relaxation rate is also negligible. With
these assumptions only τ−1

φ and τ−1
R remain in Eq. (5.1), and both can be extracted

by fitting to the experimental data [see, e.g., blue curve in Fig. 5.2(a)].

Figure 5.3(a) shows the resulting τ−1
R for WS2-covered graphene as a function of

the momentum scattering rate τ−1
e calculated from the device mobility [38]. As
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τ−1
e increases, the Rashba SOC relaxation rate decreases almost monotonically,
indicating that the spin relaxation is dominated by the Dyakonov-Perel mechanism
[11] [τ−1

R = 2τe(λR/~)
2]. This behavior stands in marked contrast to standalone

graphene, in which the Elliot-Yafet mechanism dominates spin relaxation over a
broad range of carrier density [17, 25]. Furthermore, the spin relaxation rate of
WS2-covered graphene (τ−1

R ≈ 0.2ps−1) exceeds that for standalone graphene (e.g.,
∼ 3×10−3ps−1 [17]) by two orders of magnitude—indicating strong SOC introduced
by the proximity coupling with WS2.

Figure 5.3(b) displays the density dependence of the characteristic relaxation rates.
All data correspond to WS2-covered graphene except the inter-valley scattering rate
τ−1

i . The latter is extracted by fitting our WL data for uncovered graphene with the
theory of Ref. [30] instead of Eq. (5.1); as an example, see the red curve in Fig. 5.2(a).
[Equation (5.1) can also provide a good fit for our low-fieldWLmeasurements in the
absence of any SOC terms, but does not reveal τ−1

i .] We assume that τ−1
i inferred

from uncovered graphene sets a lower bound for the corresponding rate in WS2-
covered graphene,which is quite natural given its lower mobility. From Fig. 5.3(b)
we then see that τ−1

i � τ−1
R —a prerequisite for Eq. (5.1)—is indeed satisfied for

WS2/graphene. Moreover, the dephasing rate τ−1
φ can be extracted independently

from the WAL, or the UCF by the autocorrelation function [27] (see Supplementary
Material for details), and both methods agree quite well. These facts support the
applicability of Eq. (5.1) and suggest that the spin relaxation rates we extracted from
the high-carrier density region are reliable.

Our dual-gated graphene device [Fig. 5.1(a)] allows us to study the influence of
an applied transverse electric field on the Rashba SOC. In particular, the dual gate
enables independent control of the carrier density (thus the momentum scattering
rate) and the transverse electric field [39]. Figure 5.3(c) shows the spin relaxation
rate τ−1

R extracted at fixed τ−1
e = 12ps−1 but at different transverse electric fields Ea

(for Ea > 0 the field points from WS2 to graphene). Interestingly, τ−1
R increases

monotonically with the applied field, changing by 18% over the range -60V/300nm
to 60V/300nm. This increase can be interpreted as an enhancement of the Rashba
SOC: The positive electric field lifts the graphene Dirac bands towards the WS2

conduction bands [51]; hence graphene’s π orbitals acquire a stronger hybridization
with the tungsten d orbitals, substantially strengthening Rashba SOC.
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Figure 5.3: (a) Rashba SOC relaxation rates as a function of the momentum scat-
tering rates at carrier density n = 6.8 × 1012cm−1. Error bar indicate the fitting
uncertainty. (b) Characteristic rates in WS2-covered graphene as a function of the
carrier density, except inter-valley scattering rates (stars) which are extracted from
uncovered graphene. Squares denote the momentum scattering rates, circles are the
Rashba spin relaxation rates, and open (filled) triangles are the inelastic dephasing
rates extracted fromWAL (UCF). (c) Rashba SOC spin relaxation rates extracted at
different transverse electric fields. Dashed line is a guide to the eyes.

5.5 Origin and implications of SOC
To explain these experimental findings we performed density-functional theory
(DFT) calculations using a large supercell in the lateral plane (9 × 9 graphene
on 7 × 7 WS2) that minimizes the lattice mismatch (0.35%) between these two
materials. With the van der Waals correction, the optimized interlayer distance is
3.34, and a small buckling (< 0.08) is found in the graphene layer. The Dirac
cones in Fig. 5.4(a) still center around the Fermi level, indicating negligible charge
transfer between WS2 and graphene as seen experimentally [in all our devices the
graphene is slightly p-doped (n = 0 ∼ 1.5 × 1012cm−2), as generally observed for
SiO2 substrates]. The zoom-in of the band structure reveals a sizable spin splitting
and a gap at the Dirac point due to SOC and the loss of sublattice symmetry. To
diagnose the origin of the SOC terms, we adjust the SOC strength of each element
selectively; see rightmost panels of Fig. 5.4(a). When SOC of carbon is excluded,
the band structure remains essentially unchanged. However, eliminating the SOC for
tungsten removes the spin splitting and yields a trivial mass gap, unrelated to SOC,
that simply reflects the staggered sublattice potential induced by WS2. Enhanced
SOC of graphene is thus primarily induced by hybridization with tungsten atoms.
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middle and right exclude SOC for carbon and tungsten, respectively. (b) Upper
panel: calculatedRashbaSOCand its associated spin relaxation rate versus interlayer
distance. Green dashed line indicates the value of the experimentally extracted spin
relaxation rate. Lower panel: interlayer distance dependence of valley-Zeeman
SOC. (c) Energy bands for a graphene strip with zigzag edges (top) and armchair
edges (bottom) using λVZ/t = 0.3 and λR/t = 0.1 (t is the nearest-neighbor hopping
strength for carbon).
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We analytically model our DFT results with the low-energy Hamiltonian

He f f = ~vF(τzσx px − σypy) + Mσz

+ λIτzσzsz + λR(τzσxsy − σysx) + λVZτzsz . (5.2)

The first line represents the standard Dirac theory supplemented by a staggered
sublattice potential M , while the second encodes symmetry-allowed SOC terms
1. DFT bands near the Dirac point for the optimized structure can be well-fit
using Eq. (5.2) with the following parameters: M = 0.79meV, λR = 0.03meV,
λVZ = 0.96meV and λI ≈ 0meV.

The fitted SOC strengths do, however, depend sensitively on the interlayer distance
in the DFT simulations. Figure 5.4(b) presents the interlayer-distance dependence
of the two dominant SOCs, λR and λVZ . The Rashba spin relaxation rates shown
are calculated through τ−1

R = 2τe (λR/~)
2, with a value τe = 12ps−1 comparable

to that extracted from experiment. We find that DFT for the optimized structure
underestimates the Rashba coupling λR seen experimentally, but that this difference
can be mitigated by using ∼ 5% smaller interlayer distances. This ‘correction’ is
not unreasonable given imperfections in our samples and the neglect of the weak
force between graphene and WS2 in DFT calculations. The reduced distance also
increases λVZ in DFT; its effect, however, is likely artificially enhanced by the use
of a parallelogram supercell that breaks sublattice symmetry, which is arguably
restored in an average sense by the incommensuration of real samples. On the
contrary, we expect that incommensuration more weakly impacts λR, which only
requires z → −z asymmetry.

Together, these two SOCs open a gap at the neutrality point—λVZ lifts spin degener-
acy while λR gaps the remaining carriers via spin-flip processes. This gapped state is
not a topological insulator (contrary to the reports of previous DFT studies [14, 43]),
as can be verified by the existence of an even number of counter-propagating edge
states and explicit calculations of the topological invariant in a lattice model. Fig-
ure 5.4(c) shows the tight-binding band structure for a strip with zigzag (top) and
armchair (bottom) edges, including both λR and λVZ SOCs. In the zigzag case two
copies of edge states appear at K , K′ points due to band inversion, as observed in
Ref. [14], but two more edge states also appear at the M-point. These edge states are
protected by time reversal and crystalline symmetries, but do not have a topological
origin. For an armchair geometry, no edge states appear.

1Note that inter-valley terms are excluded here even though the system is a 3n × 3n superlattice;
the supplementary material provides evidence that they are unimportant in this case.
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This gapped phase, while topologically trivial, exhibits edge-state properties that
differ markedly from those of the valley Hall effect driven by an ordinary mass
gap [39, 47]. Both exhibit edge states along zigzag boundaries, but with very
different spin polarizations. For the SOC gap, the M-point edge states exhibit out-
of-plane spin polarization while those at K and K′ exhibit in-plane polarization.
In contrast, valley-Hall-effect edge modes are spin degenerate and thus do not
naturally support spin currents. The nontrivial spin structure for the edge modes
in our problem, combined with the prospect of electrically tuning Rashba coupling
and hence the band gap, underlie tantalizing applications for spintronics that warrant
further pursuit.

5.6 Conclusion
We have demonstrated a dramatic and tunable enhancement of Rashba SOC in
graphene by coupling to WS2. In the high carrier-density region, we determined the
Rashba coupling strength by analyzing the low-field MC. First-principles calcula-
tions indicate that the induced SOC originates from the band hybridization between
graphene π orbitals and tungsten states. The combination of Rashba and a theoreti-
cally predicted valley-Zeeman SOC creates novel edge states that are interesting to
pursue further by engineering heterostructures with different substrates as well as
improving the device mobilities. In addition, we show that Rashba SOC induced by
substrate proximity can be tuned with a transverse electric field; this method could
be applied on magnetic insulating substrates [36, 52] to enhance both the exchange
field and SOC needed to reveal the quantum anomalous Hall effect.
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5.8 Appendix
Method and experimental setup
The target WS2 flake was identified with an optical microscope and then transferred
to cover part of the long graphene channel. To promote adhesion, the wafer was
annealed in O2 at 300C for 3 hours. Standard electron beam lithography and
electron beam evaporation were used to connect the graphene with multiple 80nm
thick Au electrodes. The electrodes allow independent four-terminal resistivity
measurements in the covered and uncovered areas. After electrodes fabrication, an
h-BN flake was transferred to cover the whole device to serve as a top gate dielectric,
followed by the topAu gatemetal fabrication with similar electron-beam lithography
procedures. No additional annealing was performed thereafter.

Reproducible WAL in a single-layer graphene on WS2 device.
Here we present a second device that has the similar characteristics as the first
one shown in the main text. However, instead of transferring WS2 onto graphene,
this time we transferred graphene onto WS2, in order to show that the absence of
density saturation is independent of the transfer sequence and robustness of WAL
exists. Figure 5.5 (a) shows the conductivity of the graphene as a function of the
gate voltage. This device exhibits almost the same properties as the device in the
main text, despite that it has a lower mobility ( ∼ 3000cm−1s−1V−1 on the hole
side, and ∼ 2000cm−1s−1V−1 on the electron side), which is mainly due to the
bubbles in the device. As clearly seen in the inset, bubbles (small black dots) are
all over the graphene flake. We did not intentionally choose a bubble-free area in
order to minimize the UCFs. Figure 5.5 (b) shows the gate voltage dependent WAL
observed in this device. MC is smaller in this device. We symmetrize the data to
show clearer temperature dependence, as is shown in Figure 5.5 (c). Just as in the
first device, WAL is present on both hole and electron sides and disappears quickly
as temperature increases.

Distinctions between spin and pseudospin resulted WAL at intermediate mag-
netic field
To justify the spin origin of WAL that appears in the WS2-covered graphene, one
can also look at the change of the MC curve in the intermediate magnetic fields.
Here we present a heuristic way to explain the idea and one can find the same result
through a more complete diagrammatic perturbation theory. Magnetic field not
only reveals the WAL/WL by changing the phase of quantum interference but also
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Figure 5.5: (a) Conductivity vs. gate voltage. Inset: SEM image of graphene on
WS2 before electrode fabrication. Bubbles are visible after graphene is transferred
onto WS2. (b) MC and its dependence on the temperature (c). The Fermi level is
located on the electron side indicated by the black dotted line in (b).

shorten the dephasing length in which the system can be considered as a coherence
mesoscopic system. In a WL system, for example, the constructive interference of
electron and its time reversal partner makes electrons tend to localize in the system.
When we apply magnetic field, the excessive phase it brings in will destroy the
constructive interference and result in positive MC as what we see in zero magnetic
field. When we go on higher magnetic field, the dephasing length is shorten and
may drive the system into WAL-like once the dephasing length is shorter than the
inter-valley scattering. This is because when inter-valley scattering is no longer in
the quantum interference, the resulting interference in each little mesocpoic system
turns to be destructive (but not complete destructive as at zero magnetic field) and
thus mimics WAL behavior. The detail of MC behavior can be well described by
diagrammatic perturbation theory which predicts the quantum interference results
at different magnetic field.

Figure 5.6 shows a τ−1
B /τ

−1
φ vs. τ−1

B /τ
−1
R diagram, indicating the regions where

covered and uncovered graphene are separated by a dashed line: τ−1
φ = τ

−1
R , where

τ−1
B = 4DeB

~ and D is the diffusion constant. In the uncovered graphene channel,
we estimate τ−1

R from the total spin relaxation rate obtained in reference [17] (i.e.,
τ−1

R = 3 × 10−3ps−1), and τ−1
φ = 8 × 10−2ps−1 is calculated from the WL with the

theory in Ref. [30]. Note that the intervalley scattering rate τ−1
i can be calculated

from the same WL curve (∼ 2ps−1, as shown in Figure 5.3(d)), and is much greater
than τ−1

R . Therefore, in this regime WL appears [40, 41], as is indicated below
the dashed line in Figure 5.6. In contrast, if sufficiently strong Rashba SOC is
introduced so that τ−1

R > τ−1
φ in the WS2-covered graphene channel, WAL can occur

at small fields in the upper left region. As the magnetic field strength increases, it
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plays a similar role to inelastic dephasing which destroys the quantum interference
when τ−1

B > τ−1
R , i.e., the effect of the additional π phase is diminished and the WL

behavior is restored. This particular crossover occurs from left to right in Figure 5.6
and is characteristic of Rashba SOC. On the other hand, if this WAL arises from
pseudospin, it can only occur when τ−1

φ is greater than the inter- and intra-valley
scattering rates [41], i.e., the π phase due to intervalley scattering is already screened
by the large τ−1

φ . As the magnetic field increases, there is no more WL since the
coherence is lost.
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Figure 5.6: A diagram of the transition of MC between WAL and WL. The dashed
line stands for τ−1

φ = τ−1
R . The red solid line represents ∆G = 0 calculated from

Eq. 5.1 assuming τ−1
VZ = 0. Filled (Open) points are experimental values at different

carrier densities in WS2-covered (uncovered) channel.

Temperature dependence of MC
Figure 5.7(a) shows the temperature dependence of the MC data of theWS2-covered
graphene. Since compared with the spin diffusion length and the SO scattering rate
[17], the inelastic dephasing rate τ−1

φ is much more sensitive to temperature at low
temperatures, the dramatic decrease of the WAL signal can be primarily attributed
to the significantly increased inelastic dephasing rate. We extract the dephasing
rate τ−1

φ as a function of temperature and plotted it in Figure 3b. We find that τ−1
φ

obeys approximately a linear temperature dependence which can be explained by
the electron-electron scattering in the diffusive regime [1],

τ−1
φ = α

kBT
2EFτ0

ln(
EFτ0
~
) (5.3)

where α is a correction coefficient equal to 2.4. If the mobility of the graphene is
extremely high, the sample will reach the ballistic regime (kBTτ0/~ � 1) and the
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temperature dependence of τ−1
φ will turn parabolic [32]. Under this circumstance,

Eqs. (5.1) will also be rendered invalid since both are developed for the diffusive
regime. However, since our device has a moderate mobility of ∼ 4, 000 cm2s−1V−1,
it is well in the diffusive transport regime (kBTτ0/~ � 1); therefore Eqs. (5.1) is
applicable. At low temperatures, the dephasing time τ−1

φ seems to start deviating
from the straight line. In principle, at low temperatures, the electron-electron
scattering may not be the dominant inelastic scattering mechanism, as compared
with electron-phonon interactions, the spin-flip scattering of electrons from localized
spins [31], etc.
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Figure 5.7: (a) Temperature dependence ofMC forWS2-covered graphene at carrier
density n = 5×1012cm−2 (open circles). Solid lines are fits assuming a temperature-
independent SOC rate. The dephasing rate extracted from the fitting is shown in (b).
The temperature dependence of the dephasing rate (black dots) is approximately
linear in temperature. The red dotted line is the dephasing rate calculated from Eq.
(5.3) with α = 2.4.

Universal conduction fluctuation (UCF)
Universal conductance fluctuations can be extracted by removing the WAL back-
ground in the magneto-conductance, as shown in FIG. 5.8 a). The WAL curve is
fitted by equation 5.3 and describes the experimental data quite well up to 50 mT. In
addition to the reproducibility of the MC curves, the nearly symmetric fluctuations
in conductance as a function of B is another evidence that the fluctuation is UCF.

In order to calculate the phase coherence length lφ from the UCF, we utilized the
autocorrelation function F(∆B) = 〈δσ(B + ∆B)δσ(B)〉 to find the characteristic
magnetic field Bφ(Bφl2

φ = h/2e), which is determined by F(Bφ) = 1
2 F(0). FIG. 5.8

b) shows the normalized autocorrelation function at different gate voltages. When
the device approaches a higher carrier density, the characteristic field Bφ clearly
decreases, indicating an increase in the phase coherence length lφ, due to the weaker
electron-electron interaction than the Dirac region. l′φ s extracted from UCFs agree
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reasonably well with those extracted fromWAL, as shown in FIG 5.8. c), suggesting
the validity of equation 5.1 and thus the extracted spin orbit scattering rates. It is also
worth mentioning the l′φ s extracted fromWAL with λV Z = 0.5meV or λV Z = 0meV
are completely overlapped, further supporting that these two boundaries are not
distinguishable in the fitting given by equation 5.1.
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Figure 5.8: a) UCF extracted from MC by removing the WAL background. b)
Normalized autocorrelation functions at different gate voltages. F(Bφ)/F(0) = 1/2
gives the characteristic magnetic field Bφ. c) Phase coherence length extracted from
UCF and WAL.

Computational details
Our first-principles calculations were carried out using the projected augmented
plane-wave method [5, 26] as implemented in Vienna ab initio simulation package.
The valence electron configuration for C, W, and S is 2s222p2, 5d46s2, and 3s23p4,
respectively. Generalized gradient approximation of Perdew-Burke-Ernzerhof type
was used for the description of exchange-correlation interactions among electrons
[34]. The spin-orbit coupling was included in the self-consistent calculation level.
We employed 5 × 5 × 1 K-point grid for Graphene/WS2 heterostructure containing
162 C, 49 W and 98 S atoms. A large supercell is adopted to minimize the lattice
mismatch; graphene layers expanded as 9×9 in the lateral plane andWS2 monolayer
as 7 × 7. Slab structures are separated by ∼ 13 vacuum along the surface normal.
The energy cutoff for the plane-wave-basis expansion was set to 400eV. Positions
of all atoms are fully relaxed until the convergence of total energies becomes better
than 0.1meV. In order to treat the van derWaals force properly, we adopted DFT-D3
method suggested by [16].
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The size effect of the supercell on the low energy states
Since we used 9 × 9 graphene unit cell, Dirac cones are folded to Γ point and the
interaction of two different Dirac cones from K and K′ points can be artificially
incorporated into our calculations. In order to verify that the induced SOC of
graphene is not sensitive to the cell size we have chosen, we do the same calculation
for a different cell size. We adopted 5 × 5 graphene in contact with 4 × 4 WS2

monolayer to place Dirac cones separately at K and K′ point. The lattice mismatch
is increased to 2.49% and the separation between graphene and WS2 is decreased
to 3.21. Even though we used a different supercell, the low energy states remain
the same as shown in Figure S1 (a). We also found that the Dirac cones are very
sensitive to the SOC strength. Figure S1 (b) shows that the band order is inverted at
K point by SOC. Therefore, we can conclude that the enhancement of SOC is not
much affected by the specific atomic configuration and that inter-valley scattering is
a less important factor even if Dirac cones are shifted to the same point.
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Figure 5.9: (a) Calculated band structure for the slab structure of WS2 monolayer
(4 × 4) on graphene (5 × 5). (b) The energy gap of the Dirac cone as a function of
the spin-orbit coupling strength, which is adjusted from zero to the true value set as
1.

Variation of the energy gap of the unbuckled graphene
When WS2 layer is placed on the top of graphene, the graphene layer becomes
buckled because we use a finite size of supercell and A-B sites are no longer
equivalent to each other. For a more precise description of an incommensurate
Gra/WS2 structure in which AB symmetry breaking is expected to be canceled
out, we fixed carbon atoms to be flattened while maintaining the average distance
between graphene andWS2 layer. The unbuckled graphene have a very small trivial
gap close to zero but the energy gap difference (2.0 meV) caused by SOC is similar
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to that of unbuckled one (1.9 meV) [Figure S2(a), (b)]. It is worth to mention that
the large SOC effect is not originated from graphene layer itself. Figure S2(c) shows
that the effect of SOC on the energy gap is negligible in the absence of WS2 layer
and that the gap variation upon the electric field is not observed.

When WS2 layer is placed on the top of graphene, the graphene layer becomes
buckled because we use a finite size of supercell and A-B sites are no longer
equivalent to each other. For a more precise description of an incommensurate
G/WS2 structure in which AB symmetry breaking is expected to be canceled out,
we fixed carbon atoms to be flattenedwhilemaintaining the average distance between
graphene andWS2 layer. The unbuckled graphene have a very small trivial gap close
to zero but the energy gap difference (2.0meV) caused by SOC is similar to that of
unbuckled one (1.9meV) [Figure 5.10(a), (b)]. It is worth to mention that the large
SOC effect is not originated from graphene layer itself. Figure 5.10 (c) shows that
the effect of SOC on the energy gap is negligible in the absence of WS2 layer and
that the gap variation upon the electric field is not observed.
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Figure 5.10: The energy gap of the Dirac cone of (a) the buckled (relaxed) and (b)
the unbuckled (unrelaxed) graphene as a function of the spin-orbit coupling strength,
which is adjusted from zero to the true value set as 1. (c) The energy gap of the
Dirac cone with (red triangles) and without SOC (blue dots) upon varying electric
field in the buckled graphene without WS2 layer.

The effect of WS2 multi-layer and SiO2 substrate
We also investigate the effect of WS2 multi-layer and SiO2 substrate on the Dirac
cone of graphene [Figure 5.11]. The Dirac cone was little affected by the additional
stacking of WS2 layer on graphene. The low energy states of graphene are almost
the same regardless of the thickness of WS2 layer. Even if we consider the effect of
SiO2 substrate into our calculations, it does not make noticeable changes except that
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the mass gap being increased by ∼ 3meV due to the presence of SiO2. In structural
point of view, the distance between graphene and WS2 is elongated by ∼ 0.2.
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Figure 5.11: (a) Calculated band structure for the slab structure of a single layer or
double layers of WS2 (4 × 4) on graphene (5 × 5). (b) Calculated band structure for
the slab structure of WS2 monolayer (4 × 4) on graphene (5 × 5) with SiO2 (3 × 3)
substrate terminating with oxygen atoms. The zero energy is set to be in the middle
of Dirac cone for the comparison.

The model Hamiltonian fitting to first-principles calculations
By comparison the model Hamiltonian with DFT calculations, we determined the
physical quantities: M = 0.01(0.04meV, ?R = 0.07(0.18)meV, ?V Z = 0.98(1.539)meV
and ?I 0(0)meV for 3.34(3.21). The excellent matching of DFT with the model
demonstrates the validity of the SOC values extracted from DFT calculations.
Figure 5.12 shows that the quality of fitting is well maintained regardless of the
separation between graphene and WS2.

The full Hamiltonian of WS2/Graphene and topological number calculation
InWS2/graphene system, the sub-lattice and z-inversion symmetries are both broken,
and thus the only symmetries left are 2π/3 rotational symmetry, the reflection
symmetry along the armchair direction and time reversal symmetry. Since tungsten
and sulfur bands are far away from Fermi level which is sitting at Dirac point, we
can reasonable treat the conduction bands from WS2 as perturbation and model the
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Figure 5.12: Calculated band structure from DFT and the model Hamiltonian for
the slab structure with the interlayer distance of (a) 3.34 and (b) 3.21.

system by a effective minimum tight-binding Hamiltonian,

H =

[
t0

∑
r

a†r ar + ξt0
∑

r

b†r br

]
− t

∑
〈rr ′〉

(a†r br ′ + b†r ar ′)

+

it1
∑
〈rr ′〉

a†r ( ®S × drr ′)br ′ + h.c
 +

t3
∑
〈〈rr ′〉〉

a†r ar ′ + κt3
∑
〈〈rr ′〉〉

b†r br ′


+

it2
∑
〈〈rr ′〉〉

vrr ′a†r szar ′ + iµt2
∑
〈〈rr ′〉〉

vrr ′b†r szbr ′


+

it4
∑
〈〈rr ′〉〉

a†r ( ®S × drr ′)ar ′ + iςt4
∑
〈〈rr ′〉〉

b†r ( ®S × drr ′)br ′

 (5.4)

where a†r /b
†
r is a spinor which adds an electron to honeycomb site r of sub-lattice

A(B). The first term describes onsite potential with t0; the second term t allows
nearest-neighbor hopping for graphene; the third term t1 is nearest-bright hopping
including spin-flipping process, which is also the origin of Rashba SOC; the fourth
term t3 is next-nearest-neighbor(n.n.n) hopping; the fifth is n.n.n hopping with sz

conserved SOC; and the last one is the n.n.n hopping with spin-flipping. The
parameters ξ, κ, µ, and η describes the asymmetry of sub-lattice. At low energy,
this Hamiltonian can be expanded around Dirac cone up to zeroth order

H = Ht + t0(
1 + ξ

2
+ σz

1 − ξ
2
) +

3
2

t1(τzσxsy − σysx)

− 3t3(
1 + κ

2
+ σz

1 − κ
2
) − 3
√

3t2τzsz(
1 − µ

2
+ σz

1 + µ
2
) (5.5)

where τ describes valley; σ is for sub-lattice; s is for spin. The parameters are
defined as:3

2 t1 = λR, 1−ξ
2 t0 − 3t3 1−κ

2 = M , 3
√

3t2
1−µ

2 = λV Z , and 3
√

3t2
1+µ

2 = λso.
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By fitting this Hamiltonian with DFT, we find that the low energy model is governed
by valley-Zeeman SOC and Rashba SOC, and thus it creates a w-shaped gap of size
≈ λR in this case. Based on the theory in Ref. [50], we find that the evolution of
Wannier function center of two states is trivially connected, which means one can
cut across even number(two in this case) of states for arbitraryΘ along ky-direction.
It suggests that the system is topological trivial.

Our results are different from the previous studies by Avsar [3] and Wang [43].
Avsar’s work shows that the the WS2 has no significant SOC introduced by the
WS2 unless with sulphur vacancy in the bulk WS2; while Wang’s work gives that
the SOC λV Z is huge and opens up a topological gap with the aid of Rashba SOC.
However, we later confirmed with authors in Wang’s paper that this gap is indeed
topologically trivial.
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Figure 5.13: The evolution of the Wannier function center, described by a phase
factor Θ, for the effective 1D system with ky.

Adiabatic connection between WS2/graphene and topological trivial system
Edge states onWS2/graphene system are robust against weak bulk disorder and even
magnetic field because of the large momentum separation of edge states near K-
point. However, we that a type edge disorder which can make the system smoothly
connected to a trivial insulator without closing the gap. As seen in Figure ??, the
edge states are lifted upward/downward when we assign the opposite on-site energy
for different edges. The broken sub-lattice symmetry yields asymmetric zigzag
edges, so they have opposite energy.
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Figure 5.14: (a) One dimensional energy bands for zigzag-edge strip of graphene
modeled with λVZ/t = 0.3 and λR/t = 0.1. (b) is the energy bands for the same
model in (a), except that the upper/lower edge has onsite energy 0.5t/−0.5t.

Spin relaxation rates of valley-Zeeman SOC
Valley-Zeeman spin orbit coupling is like Zeeman effect but with opposite sign at
two valleys due to time reversal symmetry. Consider a graphene with valley-Zeeman
SOC, H = ~vF(τzσx px −σypy)+λVZτzsz, the corresponding eigenstates are still the
same as the ones of uncovered graphene but the energy spectrum for spin up/down
shifts in opposite direction. The spin of an injecting electron in z-direction will not
be relaxed in an elastic scattering process because [H, sz] = 0 and the spin degree of
freedom is totally decoupled from momentum. On the other hand, an electron with
spin at in-plane direction will rotate with a constant rate 2λVZ

h which is unaffected
by intra-valley scattering. The rotation direction are opposite for different valleys,
so the spin will change direction after inter-valley scattering and the random spin
precession can be derived as

∆φ2(t) = (ωτi)
2 1
τi

t (5.6)

where ∆φ2(τs) ∼ 1
τ−1

s = ω
2τi (5.7)

. Therefore, the total spin relaxation rate is

τ−1
V Z =

2λV Z

h
(1 +

2λV Z

h
τi) (5.8)

The second term can be ignored because inter-valley scattering time is the shortest
time scale compared to the SOC relaxation time, i.e. 2λVZ

h � τ−1
i . Thus, one can

use the scattering rate τ−1
V Z =

2λVZ

h to extract valley-Zeeman SOC strength λV Z .
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C h a p t e r 6

ADATOM DOPED GRAPHENE

6.1 Introduction
Enhancing spin-orbit coupling (SOC) in graphene has attracted much interest in re-
cent years, for its application in spintronic devices and realization of exotic physics
phenomena such as quantum spin Hall effect[19] and quantum anomalous Hall
effect[28]. Due to the light mass of carbon atoms, the SOC on pristine graphene
is exceedingly weak[4, 11, 26, 36], leading to long spin relaxation length and un-
observable (topological) SOC gap (∼ 10−3meV). Therefore, to study the SOC
related phenomena, several theories and first principle simulations have proposed
tailoring the SOC strength on the open 2-dimensional honeycomb structure by
coupling to heavy adatoms, codopant, or other materials with hexagonal structure
[5, 8, 10, 14, 18, 23, 32, 35, 37]. Some experiments have confirmed the existence of
Rashba SOC arising from crystal with structural inversion asymmetry[3, 13, 20, 34];
however, interestingly intrinsic (Kane-Mele) SOC which respects the full symme-
tries of pristine graphene has not been observed in experiments. Moreover, no sign of
SOCwas observed experimentally [7, 16] on the adatomdecorated graphene samples
which are predicted to host significant SOC gap by first principle simulation[14, 32].
Therefore, it is important to investigate the reason for the absence of SOC signals in
the hope of bringing first principle calculation and experiments into consistency.

In an adatom-doped graphene model, the tunneling between two carbon atoms
through adatom orbitals opens or enhances channels in graphene and these channels
in the low energy effectively induce spin-conserving SOC or spin-flipping SOC. For
example, adatom with p outer-shell will only induce spin-conserving SOC such as
τyσysz and intrinsic SOC, without the detrimental factor-Rashba SOC. Therefore,
this type of atoms can effectively stabilize QSE phase and may induce sizable topo-
logical gap with strong SOC adatoms, e.g. In and Tl as predicted in the previous
work. [32] On the other hand, both spin-conseving and spin-flipping SOCs exist
on graphene near the Dirac points by coupling to d orbital adatoms. Thus, only
when the induced intrinsic SOC is greater than the Rashba SOC, the system will
turn to QSHE phase by proximity. Interesting, for some specific d-orbital adatoms,
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such as Os [14], they do not simply follow the aforementioned proximity scheme,
but still generate a topological gap with substantial adatom coverage. The energy
bands of these adatoms dominate the low energy physics and open a SOC gap which
essentially comes from adatoms instead of conventional gap in Dirac physics.

The above SOC signatures can be possibly identified by the magneto-conductivity
(MC) transport experiment[12]. The SOC in conventional 2D electron gas will turn
the disorder class from weak-localization (WL) to weak anti-localization (WAL) by
changing the quantum interference. However, the contribution of SOC in quantum
conductivity is more complicated in graphene due to its unusual chirality [1, 38].
Graphene with smooth disorder is predicted to exhibit WAL [1]; However, strong
inter-valley scattering, which typically arises in ordinary-quality samples, suppresses
the chirality-related WAL and generates weak localization (WL) [24, 31]. While
introducing strong Rashba SOC, the electron spin precesses around the effective
magnetic field and acquires an additional π phase in the interference [25]—reviving
WAL due to spin. Intrinsic (Kane-Mele) SOC terms, by contrast, break an effective
time reversal symmetry and thus place the system in the unitary class (suppressed
WL) [25]. Note that the SOC has to strong enough to participate in the interference
before the electron dephasing out—i.e. the relaxation rate exceeds the inelastic de-
phasing rate. Though intrinsic SOC is the most important SOC to realized quantum
spin Hall phase, it is hard to pinpoint its existence by MC since unitary behav-
ior can come from not only intrinsic SOC, but also other decoherence sources as
well. Therefore, in this work, we investigate the MC signatures in l = p, d-orbital
adatom doped graphene, We also proposed a scheme to hunt for the SOC signatures
this case and derive the corresponding magneto-conductivity formula and spin-
relaxation rates.

In the section 6.2, we will first derive the effective Hamiltonians for graphene with
sparse, randomly distributed adatoms of which outer-shell is p- or d-orbitals. Then
we will explore how the randomness and disorder brought in by adatoms would
affect the quantum spin Hall phase by Landauer Buttiker simulation in section 6.3.
In section ??, we derive the magento-conductance and the related SOCs for all the
possible SOCs induced by both adatoms and substrate. Finally, we discuss the cur-
rent difficulties of measuring SOCs in experiments and propose a potential scheme
to pin down their signatures in sections 6.5, 6.6.
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Figure 6.1: (a) Cartoon picture of graphenewith adatom at the center of the plaquette
and (b)the device setup in the transport simulation.

6.2 Effective Hamiltonians for adatom-decorated graphene
Throughout we consider either d- or p-orbital adatoms residing at ‘hollow sites’
in the graphene sheet [see Fig. 6.1(a)]. The hollow site allows the adatoms to
most effectively mediate the spin-dependent second-neighbor hopping present in
the Kane-Mele model while avoiding competing effects that arise in other positions
with fewer symmetries; moreover, this position is predicted to be energetically
favorable for many atomic species [2, 6, 22, 29, 30, 32]. In this section, we construct
a microscopic Hamiltonian describing a single adatom on graphene, then obtain
an effective graphene-only Hamiltonian, and finally derive a continuum model for
graphene with multiple randomly distributed adatoms.

Following Refs. [5, 9, 14, 32], we model graphene with a single adatom using a
tight-binding Hamiltonian

H = Hg + Ha + Hc, (6.1)

where Hg, Ha, and Hc respectively describe disordered graphene, the adatom, and
the graphene-adatom hybridization. We employ operators c†rα to create a spin-
α electron on the carbon atom at site r and d†mα to create a spin-α electron on
orbital m of the adatom; throughout, indices such as α are implicitly summed when
suppressed. The graphene-only part of the Hamiltonian is given by

Hg = −t
∑
〈rr′〉
(c†rcr′ + h.c.) + Hdis . (6.2)

The first term describes nearest-neighbor hopping with amplitude t while the sec-
ond encodes a ‘background’ disorder arising, for example, from the substrate but
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explicitly not from the adatom. The adatom Hamiltonian reads

Ha =

m=l∑
m=−l

ε|m|d†mdm +

l∑
m=−l

Λm
(
d†mszd†m − d†−mszd†−m

)
+

l∑
m=−l

√
2Λ′m

(
d†
−m+1s−d−m + d†m−1s+d†m + h.c.

)
.

(6.3)

Here l = 1 for the p-orbital case while l = 2 for the d-orbital case, and sz and
s± = (sx ± isy)/2 act on the spin degrees of freedom (sx,y,z are Pauli matrices).
Crystal fields and atomic spin-orbit coupling respectively split the adatom’s orbitals
through ε|m| and Λm, Λm′ couplings. Finally, the adatom-graphene hybridization
terms are

Hc = −

l∑
m=−l

(t|m|C
†

mRdm + h.c.). (6.4)

In Eq. (6.4), we introduced operators

CmRα =
1
√

6

6∑
j=1

e−i π3 m( j−1)cR+δrjα, (6.5)

where R designates the impurity site and δr j points from the impurity to one of
the six neighboring carbon atoms as illustrated in Fig. 6.1(a). The couplings tm are
constrained by symmetries; all are real except t1, which is purely imaginary.

To understand how graphene is affected by the adatom, it is illuminating to integrate
out the adatom degrees of freedom. Focusing on energies that are far from the
adatom levels, one obtains an effective graphene Hamiltonian that is modified in the
vicinity of the adatom (see Appendix ?? and Refs. [5, 9, 32]),

Heff = Hg + δHR. (6.6)

The second term describes additional channels mediated by the adatom:

δHR =
∑

i

T0c†i ci

+

[∑
〈i j〉

[T1c†i c j + iζi jT
′

1c†i szc j + iT
′′

1 c†i (s × di j)c j]

+
∑
〈〈i j〉〉

[T2c†i c j + iζi jT
′

2c†i szc j + iT
′′

2 c†i (s × di j)c j]

+
∑
〈〈〈i j〉〉〉

[T3c†i c j + iT
′′

3 c†i (s × di j)c j] + h.c.

]
. (6.7)
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Parameter relations
d-orbital case p-orbital case low-energy limit
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1
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0
ε0
+ 2 |t1 |

2

ε1
+ 2 t2

2
ε2
) T0 = −

1
6 (

t2
0
ε0
+ 2 |t1 |

2

ε1
) 3T0I

T1 = −
1
6 (
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−
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Table 6.1: Relationship between parameters in various models. The first two
columns relate couplings in Eqs. (6.3), (6.4), and (6.7) for the d- and p-orbital cases,
respectively. The third column gives the lowest-order contribution to the continuum
Dirac Hamiltonian arising from each microscopic process.

Here i, j denote carbon sites surrounding the impurity as labeled in Fig. 6.1; the
couplings for d- and p-orbital adatoms appear in Table 6.1; ζi j = ±1 denotes the
circulation of an electron hopping around the plaquette (see Fig.6.1); s is a vector of
Pauli matrices; and di j = δri − δr j . The T0 coupling simply represents a potential
induced by the adatom on the neighboring carbon sites, while the T1,2,3 terms are
first-, second-, and third-neighbor hoppings mediated by the adatom. All other
terms represent induced spin-orbit couplings, with T ′1,2 designating Sz-conserving
processes and T ′′1,2,3 non-Sz-conserving processes. The latter arise because the
adatom locally breaks structural inversion symmetry.

We now make the leap to many randomly distributed (but sparse) adatoms on
graphene by considering the Hamiltonian

Heff = Hg +
∑

R
δHR. (6.8)

Focusing on low-energy physics in the vicinity of graphene’s Dirac points, we can
further distill the model by deriving a continuum Dirac Hamiltonian perturbed by
the adatom-mediated couplings. To this end we decompose the lattice fermion
operators for honeycomb sublattices A and B in terms of slowly varying continuum
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Dirac fields via

cr∈A,α ≈
√

A7
(
ψK AαeiK·r + ψK ′AαeiK′·r

)
cr∈B,α ≈

√
A7

(
ψKBαeiK·r + ψK ′BαeiK′·r

)
,

(6.9)

whereK = ( 4π
3
√

3a
, 0),K′ = −K, A7 is the unit-cell area, and a is the nearest-neighbor

carbon separation.

Inserting this decomposition into Eq. (6.8) and then expanding in powers ofmomenta
away from the Dirac points yields the desired continuum model, which we write as

Hcont =

∫
drψ†

(
Hg +

∑
RI

δHR

)
ψ. (6.10)

The first term on the right side,

Hg = ~vF
(
−i∂xσ

xτz − i∂yσy
)
+Hdis, (6.11)

is the usual graphene Dirac Hamiltonian supplemented by a disorder potential
Hdis that encodes both intra- and inter-valley scattering. We note that Hdis is
the continuum analogue of Hdis from Eq. (6.2), and is thus is unrelated to the
adatoms. Here and below τx,y,z and σx,y,z are Pauli matrices that act in the valley
and sublattice sectors, respectively. The second term in Eq. (6.10) contains the
continuum form of the adatom-mediated couplings in Eq. (6.7). Interestingly, this
part of the Hamiltonian differs qualitatively for d- and p-orbital adatoms, so we now
examine these two cases separately.

d-orbital adatoms
For d-orbital adatoms, we find

δH
(d)
R = A7δ(r − R)

[
V0 + λR(τ

zσxsy + σysx)

+ λKMτ
zσzsz + ei∆K·Rτz (Viτ

xσx + λiτ
yσysz)

] (6.12)

upon retaining only terms with no spatial derivatives. All couplings are defined in
Table 6.2. (See also the last column of Table 6.1 for the low-energy contribution
arising from each microscopic channel.) The first term in Eq. (6.12) represents
a local potential due to the adatoms; the second encodes Kane-Mele SOC that
favors a QSH phase; the third is Rashba-like SOC, which breaks structural inversion
symmetry and does not conserve Sz; and finally the last line allows inter-valley
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Parameters in the continuum Dirac Hamiltonian
d-orbital case,
Eq. (6.12)

p-orbital case,
Eqs. (6.14), (6.15)

V0 = −
3
2
|t1 |2

ε1
−

3t2
2

2ε2
V0 = −

3
2
|t1 |2

ε1

Vi =
3|t1 |2
2ε1
−

3t2
2

2ε2
Vi = −V0

λKM = −
3t2

2
2ε2

2
Λ2 +

3|t1 |2
2ε2

1
Λ1

λKM =
3|t1 |2
2ε2

1
Λ1

λi =
3|t1 |2
2ε2

1
Λ1+

3t2
2

2ε2
2
Λ2 λi =

3|t1 |2
2ε2

1
Λ1

λR = 3i
√

2 t1t2
ε1ε2
Λ
′

2 λ
(1)
R = i 3

4
t0t1Λ

′

1√
2ε0ε1

Table 6.2: Definition of parameters in the adatom-mediated part of our continuum
Dirac Hamiltonians.

scattering with a phase that varies between different impurity sites (∆K = K′ −K is
the momentum difference between the valleys).

Equation (6.12) describes different types of scattering and spin-relaxation processes
induced by adatoms. The intra-valley V0 and inter-valley Vi scattering processes
show that adatoms can be viewed as a disorder source, and thus lead to lower
conductivity. We also see, however, that adatoms bring in three types of SOC: λi,
λKM , and λR. If one spatially averages the terms above, inter-valley processes drop
out leaving

δH
(d)
R = nI

[
V0 + λKMτ

zσzsz + λR(τ
zσxsy + σysx)

]
(6.13)

with nI the adatom coverage: the fraction of unit cells occupied with an adatom.
Within this very crude treatment the d-orbital adatoms mediate a QSH phase pro-
vided λKM > λR. [19] Previous work on related systems has shown that a QSH
phase can indeed appear even when the adatoms are randomly positioned in the lat-
tice [17, 32]; see also Sec. 6.5 below. Our main interest, however, is understanding
how the adatom-mediated processes encoded in the more exact Eq. (6.12) impact
transport signatures, especially magnetoconductance. We will address this problem
in Sec. 6.3 and 6.4.
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p-orbital adatoms
Next we turn to p-orbital adatoms. Again retaining only terms with no derivatives,
the second piece in Eq. (6.10) now becomes

δH
(p,0)
R = A7δ(r − RI)

[
V0 + λKMτ

zσzsz

+ ei∆K·RI τ
z

(Viτ
xσx + λiτ

yσysz)
]
.

(6.14)

Table 6.2 defines the couplings above in terms of microscopic parameters. Compar-
ing to Eq. (6.12) for the d-orbital case, we see that Rashba-like SOC is conspicuously
absent here—which reflects destructive interference among certainmicroscopic pro-
cesses that p-orbital adatoms mediate for electrons at the Dirac point [32]. Hence
Eq. (6.14) preserves structural inversion symmetry even though the adatoms clearly
violate this symmetry microscopically. We note that Ref. [27] found that a (small)
Rashba-like term can arise if one includes spin-dependent hopping between carbon
atoms and a p-orbital adatom. Due to carbon’s tiny intrinsic SOC, we expect that
such terms will be exceedingly weak and thus neglect them in this paper. At low
energies, Kane-Mele SOC λKM and the inter-valley scattering term λi then furnish
the dominant spin-dependent interactions, making p-orbital adatoms an appealing
mediator of QSH physics in graphene. Measuring these SOC’s through magne-
toconductance is, however, challenging due to their relatively weak signature in
transport [15, 25]. Fortunately, inversion symmetry is broken by higher-order cor-
rections in the adatom-mediated part of the Hamiltonian. Retaining terms with one
derivative, we find corrections

ψ†δH
(p,1)
R ψ = aλ(1)R A7δ(r − R)

×
[
ψ†Ω ·

(
− i∇ψ

)
+ h.c.

]
+ · · ·

(6.15)

with

Ωx = sy − τzσysx + σxsy

− ei∆K·RI τ
z (
τxsy − τyσzsx + τxσxsy

)
,

Ωy = −sx + τzσysy + σxsx

− ei∆K·RI τ
z (
τxsx + τyσzsy − τxσxsx ) .

(6.16)

Above we explicitly displayed only Rashba-like SOC’s that are odd under structural
inversion symmetry and thus break the ‘accidental’ symmetry present in Eq. (6.14);
Table 6.2 defines the corresponding coupling λ(1)R . Appendix ?? shows that various
other termswith one derivative also exist, whichwe represent with the ellipsis above.
Such terms are expected to be qualitatively unimportant, however, so we neglect
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Figure 6.2: (a) Elastic scattering length of graphene with 25% estimation by Drude
model (Green), compared to the scattering length of intrinsic disorder source (blue)
used in the later MC simulation to ensure the diffusiveness. The black line is the
system length in simulation L. (b) Elastic scattering time of graphene with randomly
distributed 1% and 10% Tl atoms. The coherence and elastic time are extracted
from the experiment[16]. In both simulation and experiment, we can see that the
disorder from adatoms is much weaker than other disorder.

them for simplicity in our analytical calculations below. In the following sections, we
instead explore how the higher-order Rashba-like SOC’s modify magnetotransport
in graphene.

6.3 Scattering rates and conductivties
Twomajor sources of disorder on adaotm-decorated graphene experiments are back-
ground disorderHdis and adatoms δHR, which are assumed to be uncorrelated with
each other. Background disorder enhances both intra- and inter-valley scatterings,
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and so do adatoms particularly if randomly distributed. However, we should bemore
careful in treating different types of scattering process within δHR, since they are
from the same adatom and thus highly correlated with each other. In this section, we
will derive the scattering times and conductivities for adatom-decorated graphene
with and without background disorder Hdis. Then we show that the correlation
between different scattering process within adatoms is negligible in some specific
situations.

After averaging over disorder, the propagation of an electron on adatom-doped
graphene can be described by retarded and advanced Green’s functions Ḡr/a,[

E −Hg,0 − Σr/a ± iη
]

Ḡr/a = I. (6.17)

Pristine graphene, without any disorder, is described byHg,0 = −i~vF
(
∂xσ

xτz + ∂yσ
y
)
,

and all the scattering processes caused by either intrinsic disorder or adatoms are
encoded in the self-energy Σr/a. We firstly consider graphene with weak adatom
potential δHR only and expand Ḡ around the bare Green’s funciton G0 to the leading
order in (δH)2,

= + +

with the leading order correction of self energy Σ0,

Σr,a
0 (k, ω) =

∫
d2k′

(2π)2
〈δH(k, k′)Gr,a

0 (k
′, ω)δH(k′, k)〉. (6.18)

Here 〈· · · 〉 represents averaging over disorder realizations. Since an adatom scatterer
contains multiple scattering types, the self-energy matrix has non-zero off-diagonal
elements reflecting the high correlation properties between different scattering types.
Therefore, the conventional Matthiessen rule for total scattering is no longer appli-
cable, and we also need to re-define the average scattering time of an electron. Now
we will derive the average scattering time for both d− and p−orbital adatoms.

d-orbital adatoms
We consider pristine graphene with randomly distributed d−orbital adatoms with
coverage nI , and derive the scattering time matrix τ = − ~

2ImΣR from the leading
order self-energy Σ0. Due to the high correlation, τ is a non-diagonal matrix with
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eigenvalues

τ+ =
~

Γa − Γc
, τ0 =

~

Γa
, τ− =

~

Γa + Γc
, (6.19)

where

Γa = πνnI A7(V2
0 + λ

2
KM + 2λ2

R + V2
i + λ

2
i ),

Γc = 2πνnI A7λR(V0 + λKM).
(6.20)

There is no unique life time for correlated disorder, and three of the scattering
times together determine the transport properties, e.g. conductivity and magneto-
conductance. The self-energy components Γa describes the self-energy contribution
from uncorrelated part, while Γc reflects the correlation between different types of
disorder within δH . Density of states per valley per spin at Fermi energy εF is
ν(εF) =

εF
2π~2v2

F

. If different scattering types induced by adatoms are uncorrelated,
then Γc will vanish and three life times are identical τ± = τ0 which is simply
the addition of scattering rate for each scattering type. If we further include the
background disorderHdis in the system, the corresponding scattering times are the
same as Eq. (6.19), except that Γa → Γa + Γbg where Γbg denotes the imaginary
self-energy resulted by background disorder.

The classical diagonal conductivity σxx(ω) for a system of volume Ω at zero tem-
perature is given by Kubo-Greenwood formula,

σxx =
~

πΩ
ReTr [ jxGr jxGa] (6.21)

where jx = −evFτ
zσx is the current operator. After disorder averaging, the leading

three scattering mechanisms are Drude-Boltzmann(bare), diffuson, and Cooperon
scattering (which corresponding to the maximally crossed diagram),

...
.

The former two describe classical conductivity and the last one shows the quantum
interference correction which we will discuss in the next section. By plugging the
Green’s function in Eq. (6.17) with the approximated self energy in Eq. (6.18) into
the first diagram, we derive the bare conductivity

σ0(ω) = e2ν(εF)v
2
F

(
~

Γa + Γc − i~ω
+

~

Γa − Γc − i~ω

)
(6.22)

which can be reduced to

σ0(ω = 0) = e2ν(εF)v
2
F(τ+ + τ−) (6.23)



138

for DC conductivity. By comparing to the conventional Drude conductivity for
Dirac fermion, we identify the “elastic scattering rate" τe =

τ++τ−
2 . Again, we can

simply replace Γa with Γa + Γbg if background disorder is included in the system.

We obtain some insights for this system by considering the following limits: un-
correlated limit Γa + Γbg � Γc and correlated limit Γa + Γbg � Γc. When the
background disorder Γbg or, more precisely, the uncorrelated part of self-enegy—
Γa + Γbg—is much stronger than adatom disorder, this equation will recover the
conventional uncorrelated results,

τ+ + τ− = 2τ0

(
1 + ε2 + O(ε4)

)
(6.24)

with ε = Γc
Γa+Γbg

, despite the none-zero correlation between scattering types induced
by adatoms. The background disorder Γbg can be estimated as ~/τ′e with the elastic
scattering τ′e caused by background disorder. Therefore, in a strong disordered
graphene sample, the correlation between different scattering types can be neglected.
On the other hand, in a clean system or for some specific adatoms where Γa +Γbg �

Γc, the correlation becomes important and should be considered in the conductivity
and MC.

The total classical conductivity includes both the bare conductivity and diffuson
scattering, which can be renormalized into the current operator as

.

The normalized current operator can be written as

j̃x = (1 − (δHI ⊗ δHI)(Gr ⊗ Gr))
−1 jx, (6.25)

and the explicit index contraction and derivation can be found in Appendix. ??.
Though there is no nice general analytical form for this normalized factor, the above
equation can be simplified to j̃x ∼ 2 jx in the uncorrelated limit. Therefore, total
classical conductivity, i.e. Drude conductivity, of the uncorrelated disorder system
is simply, and widely known as

σcl = 4e2ν(εF)D (6.26)

with diffusion coefficient D = v2
Fτtr/2 = v2

Fτe. If the correlation between different
scattering types in adatoms is not negligible, this factor will change accordingly and
can be estimated numerically for the given details of adatoms.
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p-orbital adatoms
The same derivation applies to p-orbital adatoms as well, with the corresponding
self-energy, up to first order in momentum,determined by

Γa =πνnI
[
V2

0 + V2
i + λ

2
i + λ

2
KM + O(k

2
F)

]
A7

Γb =2πνnI kFaλ(1)R
[
V0 − Vi

] (6.27)

and other correlation-related Γs listed in the Appendix. ??. The inclusion of back-
ground disorder, again, only modifies Γa to be Γa + Γbg. The corresponding bare
conductivity reads

σ0(ω) =e2ν(εF)v
2
F×(
~

Γa + Γb(εF) − i~ω
+

~

Γa − Γb(εF) − i~ω

)
.

(6.28)

At Dirac points kF = 0, the correlated term Γb vanishes and the system can be
viewed as independent.

We estimated that the conductivity is dominated by background disorder in adatom-
decorated graphene with In and Tl, based on the parameter values given by Ref. [32].
Figure 6.2(a) and (b) show the comparison of elastic time/length of adatoms and
background disorder in both the experiment [16] and our simulations. In Fig. 6.2(a),
we estimate the elastic length(green line) with le/vF = τe ∼ ~/Γa for 25% In-
decorated graphene and find that it is shorter than the system size in all the studied
range. This is consistent with our quantum transport simulation results: the system
is always ballistic. In the later analysis and simulation, we will include the intrinsic
disorder (blue line) to ensure our system diffusive and having strong short range
disorder to study the quantum interference effect. In Fig. 6.2(b), the intrinsic
disorder (e.g. ripple, charge puddles) in adatom-doped experiments induces strong
scattering compared to the low coverage adatoms. Again, τe(red lines) are roughly
estimated by ∼ ~/Γa. However, we should clarify that, in an experiment, extra
“disorder" might be induced to graphene in the process of doping adatoms, but this
type of disorder comes from, for example, charge-puddle or ripple enhancement
instead of the adatom itself. To sum up, we find that the correlation property of the
disorder induced by adatoms has little effect on conductivity and elastic time, when
the background disorder is strong. On the contrary, in the case of clean graphene
strongly coupled to heavy adatoms, conductivity may increase due to correlation.
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6.4 spin-relaxation rates and magneto-conductance
In this section, we derive all spin relaxation rates arising from both local impurity
and homogeneous SOCs, and compute their respective contributions to themagneto-
conductance. Here homogeneous SOCs emerge through proximity of the graphene
sheet to a homogeneous substrate. Impurity SOCs arise from adatom doping as in
Eqs. (6.12), (6.14). From each SOC’s contribution individually, we can understand
the resulting magneto-conductance behavior qualitatively. However, one should
keep in mind that the total quantum conductance is determined by the interplay of
all of the scattering and spin-relaxation rates, so the exact quantitative contribution
is not always simply the sum of each rates and is case-dependent.

A few assumptions are made in the following evaluation of the quantum corrections
to the magneto-conductance.

• Weak magnetic field effect ωcτe � 1

• Weak disorder regime λF le � 1

• Intrinsic disorder dominating the scatting process.

• Uncorrelated disorder correlators

The first points is the minimum requirement to observe quantum interference byMC
and the second one states the limit of the perturbation theory. le and τe are the elastic
scattering length and time; ωc =

√
2 vF

lB
with magnetic length lB =

√
~/eB is the

cyclotron frequency. The third assumption is justified in the previous subsection.
In the following analysis, we will consider other disorder sources which include
both strong intra- and inter-valley scattering. The fourth assumption is more subtle.
Since all scatterings are induced from the same atom, they are highly correlated
and all the cross-term correlators need to be taken into consideration. However, we
show that the conductivity contributed from the extra correlators is negligible in
In/Tl and Os cases. Therefore, we can still get a general understanding of MC in the
adatom-graphene model by treating these scatterings uncorrelated.

Impurity SOC from adatom doping

Consider adatom decorated graphenewith the coverage na per unit cell. The adatom-
induced local SOC effects emerges at low-energy given in Eq. (6.12) and (6.14). We
assume these SOCs

∑
I δHI are perturbative effects on top of strongly disordered
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graphene, Hg +Vintrinsic(r), where Vintrinsic(r) describe all the possible momentum-
independent, uncorrelated, time-reversal symmetric disorder. (For more details
of intrinsic disorder, please see the appendix.) With the above setup, We use
diagrammatic techniques [12, 24, 25] to calculate the weak-localization correction
δσ to the conductivity for both p and d adatom cases.

The classical conductivity mainly determines the total conductivity, whereas the
quantum correction has weaker contribution and can be detected by applying weak
magnetic field. For d-orbital doped graphene with strong short range disorder, the
magneto-conductivity is

∆G = −
e2

2πh

[
F

(
B
Bφ

)
−

∑
j=x,y,z

F
(

B
Bφ + B j

)]
(6.29)

Bφ =
~

4eD
τ−1
φ , B j =

Γj

4eD
,

F(z) = ln z + ψ
( 1

2 +
1
z

)
.

where ψ denotes the digamma function, D = v2τe, and Γsym/asy denotes the
Cooperon gap for (z → −z) symmetric/anti-symmetric SOCs as

Γx,y = 2nIπνA7(λ2
i + λ

2
KM + λ

2
R)

Γz = 2nIπνλ
2
RA7.

(6.30)

We can relate the above gap to the spin-relaxation and scattering rates as in the Ta-
ble. 6.4. When an electron on graphene sheets bumps into an adatom, it experiences
the local SOC and may relaxes its original spin orientation. These spin relaxation
rates determine quantum conduction correction and are also the key to decipher the
presence of SOCs and their strength. Note that the local intrinsic SOC and Rashba
SOC do not obey the well-known Elliot-Yafel and D’yakonov-Perel relation which
obey different relaxation mechanisms. The corresponding spin relaxation rates are
listed in the Table 6.4.

For p-orbital adatom doped graphene, we derive magneto-conductance with

Γx = nIπνA7(2λ2
i + 2λ2

KM + 14k2
Fa2(λ

(1)
R )

2)

Γy = nIπνA7(2λ2
i + 2λ2

KM + 10k2
Fa2(λ

(1)
R )

2)

Γz = 24nIπνA7(kFaλ(1)R )
2.

(6.31)

Interestingly, we find that the Γx , Γy in contrast to the general MC equation.
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A big concern of the applicability of the above equations is the high correlation
between different disorder types, which has some technical difficulties to be solved
analytically. To resolve this issue, we numerically calculate the Cooperon gaps Γ
for Os and Tl cases and compare with Eq. (6.30) and (6.31). For a 0.1% Os-doped
graphene, we can see that the correlation has negligible effect on the Cooperon
gap in Fig.6.3, and so is the 0.4% case, above which coverage the Dirac physic no
longer applies. The main reasons of negligible correlation’s effects are, firstly, the
strong intrinsic disorder induces huge Cooperon gaps, which are the sub-leading
contribution to MC; also, the strength of correlation between different disorder
types are small compared to the ones within the same type (uncorrelated). For more
details, we refer the readers to the appendix. For the zeroth-order-in-momentum
Hamiltonian of p-orbital graphene-adatom model, the leading contribution to MC
of correlated case is the same as the uncorrelated one. If the Fermi energy moves
away fromDirac points, the induced Rashba SOCs have some non-trivial correlation
with the other disorder types from the adatom. Such correlation is also negligible
since kFaλ(1)R is extremely small (less than 10% of other adatom’s parameters, with
carrier density up to n = 5 × 1013cm−2).

Figure 6.3: The value of Cooperon gaps Γ0,x,y,z for correlated (red dotted line) and
uncorrelated types of disorder (blue solid line) for Os-doped graphene with coverage
1%.

Homogeneous SOC: substrate

Herewe consider proximity induced phenomena or periodically functionalized struc-
ture. SOCs induced from periodically structures are homogeneous and thus undergo
different spin relaxation process than the local adatom case. These SOCs may be
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induced to any graphene samples on a substrate which breaks different symmetries.
In the work of Denis Kochan et al. [21] who have constructed low energy effective
model for structures with global point group symmetries D6h, D3d , D3h, C6v, and
C3v that represent, for example, pristine graphene, graphene mini-ripple, planar
boron nitride, graphene on a substrate, and free standing graphone,respectively. By
reducing symmetry step by step, they find the emergence of certain spin-orbit cou-
plings by specific point group symmetries. Based on their work, we will further
derive the spin-relaxation rates for these SOCs and briefly discussed how to measure
them.

(i) Pristine graphene D6h. The only SOC which respects the full symmetry of
pristine graphene is intrinsic SOC-λiτ

zσzsz. Though the intrinsic SOC is
homogeneous, it still contributes to Γsym through other static disorder, such as
uI with the rate τ−1

i following the Elliot-Yafet mechanism

τ−1
i =

λ2
i

ε2
F

τ−1
e (6.32)

where Fermi energy is εF , gap size is ∆, and momentum relaxation rate is
τ−1

e . Interesting the intrinsic SOC rate is larger around the Dirac points and
thus one can possibly see the Unitary behavior around the gap through MC,
Γx,y =

~
τi
and Γz = 0, given that the system is still diffusive.

Spin-independent relaxation rates
decoherence rate τ−1

ϕ intra-valley scattering rate τ−1
∗

elastic scattering rate inter-valley scattering rate τ−1
inter

τ−1
0 = τ

−1
∗ + τ

−1
inter

Spin relaxation rates (impurity effect)
λKMA7τzσzsz τ−1

KM = naλ
2
KMπνA7

λi A7τyσysz τ−1
i = naλ

2
i πνA7

λRA7(τzσ
xsy − σysx) τ−1

R = 2naλ
2
RπνA7

λ
(1)
R (...) τ−1

R(1)
= 14na(λ

(1)
R ka)2πνA7

ν is the density of state per spin, per valley.
Spin relaxation rates (homogeneous effect)

λiτ
zσzsz τ−1

i =
λ2
i

ε2
F

1
τ0

λPIAσ
0(kxsy − kysx) τ−1

PIA = 2 k2(λPIA)
2

~2 τ0

λVZτ
zsz τ−1

VZ = 2λ
2
R

~2 τ0

λR(τzσ
xsy + σysx) τ−1

R = 2λ
2
R

~2 τ0
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(ii) Rippling structure D3d . Structures, like graphane, silicene, and graphene
miniripple, break the mirror symmetries respected x, y, z = 0 plane but pre-
serve time-reversal T and inversion I symmetries. In the structure, one
expects to obtain the presence of λI and amomentum-dependent Rashba SOC
λPIAσ

0(kxsy − kysx) where PIA is shorthand for the“pseudospin inversion
asymmetry". (Note that there is no terminological consensus.) Its SOC
relaxation rate

τ−1
PIA = 2

k2(λPIA)
2

~2 τe. (6.33)

is dominated by theD’yakonov-Perel scattering process. Due to spin-asymmetry
and momentum dependence, the Cooperon gap is Γx,y =

~
τPIA

and Γz =
2~
τPIA

and thus one would expect to see an increasing change of MC to negative
value (WAL) away from Dirac point.

(iii) Sublattice inversion asymmetry D3h. Materials like planar boron nitride,
aluminum nitride, or any other planar system with two nonequivalent inter-
penetrating triangular lattices A and B would lead to not only the mass gap σz

but also the valley-Zeeman SOC [33] λVZτ
zsz. Though it is spin-symmetric,

its spin relaxation rate follows D’yakonov-Perel mechanism as

τ−1
VZ = 2

λ2
R

~2 τe. (6.34)

In a MC measurement of graphene with valley-Zeeman SOC, one would
expect to see the suppressed WL with the inverse dependence of τe with
Cooperon gaps Γx,y =

~
τVZ

and Γz = 0.

(iv) Transverse electric fieldC6v. By applying external field or depositing graphene
on a substrate, one would break the z → −z mirror symmetry and induce
Rashba SOC (and PIA SOC for higher order contribution). Rashba SOC
obeys D’yakonov-Perel mechanism

τ−1
R = 2

λ2
R

~2 τe (6.35)

which has been measured in many quantum transport experiments. The
corresponding Cooperon gaps are Γx,y =

~
τR

and Γz =
2~
τR

and MC shows
WAL.

Generally, most materials or layered graphene-based structures include more than
one type of SOC due to limited symmetries. However, the net Cooperon gaps may



145
 

Figure 6.4: MAGNETO-CONDUCTANCE ∆G(B) = G(B) − G(B = 0) and Fermi
energy respect to the shifted Dirac point EF − EDP for (a) 20% and (b) 1% Tl-
doped graphene sheet. The blue curves describe Tl without SOC and the red curves
describe Tl with SOC. The simulated system information: system size (w, L) =

(49, 17)nm, short range disorder (besides adatom) 〈V(x)V(x + r)〉 = K0
(~vF )

2

2πξ2 e
− r2

2ξ2

with (K0, ξ) = (0.1, 0.5a), and Tl adatoms parameters extracted from DFT [32]
t = 2.82eV; δµ = 0.5eV; ε0 = 2.5eV , ε1 = 1.8eV ; t0 = 2eV , t1 = 0.95eV ; and
Λso = Λ

′

so = 0.31eV . The disorder class diagram respect to carrier density n and
coverage na in an experiment.The experiment information: τφ(lφ) is taken from the
experimental paper [16]. The star is a guide for eyes about the range of previous
adatom doped graphene experiments..

not be simply the sum of contribution from different SOCs, because the potential
correlation between different types of SOCs. In the hope of diagnosing the nature
of each SOC and its strength, one may need to combine the theoretical symmetry
analysis, first principle simulation, and proper designed MC experiments/schemes.

6.5 Graphene doped with In and Tl
As mentioned in Sec. 6.2, adatoms with p orbitals such as In and Tl modify the
low energy physics by inducing large intrinsic spin-orbit coupling, however, with
the absence of Rashba SOC at Dirac points. Given the aforementioned difficulties
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of measuring intrinsic SOC, we propose a way to measure the SOC indirectly: the
idea is to look for signatures of the SOCs induced at the next order in momentum
(Eq. 6.14) which has a clear WAL signatures in MC away from Dirac points.

Firstly, we simulate transport measurements of a Tl-doped graphene sheet and
measure the change in the magneto-conductance. With 20% Tl in Fig.6.4(a), we
observe a sign change in the magneto-conductance which indicates a transition from
WL (positive) toWAL (negative) by increasing the electron doping concentration. If
we remove the SOC in Tl, the conductance will decrease, but ∆G(B) is still positive
(WL). Therefore, such a transition suggests that the SOC is successfully induced on
graphene. Note that the transition only occurs on the electron side which is also
where the In bands lie. On the contrary, the spin relaxation for low enough na may
be too weak to have an appreciable influence on the quantum interference; therefore,
we will only see a mild change but not a transition to negative ∆G(B) as shown in
Fig.6.4(b).

To quantitatively describe such transition, we calculated the disorder class by using
the MC Eq.6.31 at infinitesimal amount of magnetic field. Combining with existing
experimental data (τφ from Ref.[16]), we found that the graphene-Tl model turns
fromWL toWALat high carrier density and high coverage as shown in the Fig.6.4(c);
the transition happens roughly at

~

τφ
∼ 10Γz = 240naπνA7(λ

(1)
R ka)2 (6.36)

which is a result of competition among decoherence rate, carrier density concentra-
tion, adatom’s SOC strength, and adatom coverage. Therefore, one can arrive WAL
by not only increasing carrier density and adatom coverage, but also using p-orbital
adatom with stronger SOC (such as Tl) and making the sample with long coherent
length. In the previous In-doped graphene experiments, the coverage na ∼ 0.25%
and the carrier density n ∼ 1− 5× 1012cm−2, as shown as the star sign in Fig.6.4(c),
are too low to drive the graphene to WAL. Also, In has only 1/3 of the SOC strength
of Os, so it requires both stronger SOC rates and longer coherence time to observe
WAL. This result provides a potential explanation for the absence of WAL signature
in the previous experiments and plots a road map to look for it.

6.6 Graphene doped with Os
As mentioned in the introduction, Os-doped graphene can hold quantum spin Hall
phase through two completely different mechanism. In the lower panel of Fig. 6.5
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Figure 6.5: (a) The band diagrams of graphene doped with 0.04% (up-
per panel) and 1% (lower panel). The gap at Γ is ∆Γ and the one
at K is ∆K . Tight-binding model - (ε0, ε1, ε2, t0, t1, t2,Λ1,Λ2, δ01, δ12) =
(−1.5,−0.5,−1.4, 1.5, 1.5, 1.5, 0.2, 0.1, 0.2

√
2, 0.1

√
2). (b) The transport simulation

of a graphene nanotube doped with various Os coverage. System information:
(w, L) = (49, 17) nm. (c) The competition of ∆Γ and ∆K . By increasing the cov-
erage, the dominant gap changes from ∆K to ∆Γ at 0.4%. (d) The disorder class
diagram for Os. The grey area means the Fermi energy lies in the d-orbital flat
banks.

(a), with a few percentage of Os coverage, the l = ±1 orbitals of Os form two bands
across the Dirac point and lead to a large topological gap ∼ 0.2eV , called“Γ gap
∆Γ". On the other hand, if the coupling between graphene and the adatoms is too
weak or if the adatoms have extremely dilute coverage, the low energy spectrum
of adatom doped graphene remains Dirac-like as shown in the upper panel of Fig.
6.5(a) and has a smaller but still topological gap at the high symmetry point K ,
named as “K gap ∆K". This gap is governed by Dirac physics and thus the gate
voltage may be shifted if excessive charges are doped into graphene. These two
types of gaps are formed by different mechanisms and there is a crossover at 0.4%
in Fig. 6.5 (c). In addition, our simulation results as shown in figure 6.5(b) also
suggest that the topological gap sustains with random distributed Os.

The ∆K and ∆Γ regimes are both topological and smoothly connected but many
of their physics properties are different. Firstly, the Dirac point will shift toward
electron side in the ∆Γ phase since the Os is a hole-dopant. On the other hand, we
don’t need to worry about the relation of charge transfer and shift of gate voltage
in this case since since all the excessive will gather around Osmium because of 5d
flat bands. Note that the DP doesn’t shift in Fig 6.5 because we don’t consider the
excessive holes doping in the simulation, but it should be there and is confirmed
by experiments. Furthermore, the low physics in ∆Γ regime is not no longer Dirac
physics, but is mainly dominated by the d-band of Os hybridized with a little
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pz orbital from carbons. Therefore, the MC prediction Eq. (6.30) is no longer
applicable. Anyway, though there is no appropriate MC equation to describe this
regime yet, we still expect to see WAL around the band gap since these d-bands
have strong SOC which is split by the crystal field, including the broken z → −z

inversion symmetry.

The MC of Os is easier to detect than the p-orbital case since Rashba SOC is not
canceled out and the adatoms bands are much closer to the Dirac points. As shown
in Fig 6.5(d), one can observe the WAL at relatively lower na and n, given the same
coherence rates as in Tl-doped case. Note that even though Rashba SOC is not
canceled out at the Dirac points for Os-doped graphene, we may still not be able to
observeWAL because the SOC rate at low energy may be too small, compared to the
coherence rate, to play a role in quantum interference. Therefore, to observe WAL,
one still needs to go on higher carrier density and keep a clean, coherent sample.
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C h a p t e r 7

CONCLUSION

In this thesis, we studied two types of structures, graphene with WS2 and adatom-
doped graphene. In the first structure, we have demonstrated a dramatic and tunable
enhancement of Rashba SOC in graphene by coupling to WS2. In the high carrier-
density region, we determined the Rashba coupling strength by analyzing the low-
field MC. First-principles calculations indicate that the induced SOC originates
from the band hybridization between graphene π orbitals and tungsten states. The
combination of Rashba and a theoretically predicted valley-Zeeman SOC creates
novel edge states that are interesting to pursue further by engineering heterostructures
with different substrates as well as improving the device mobilities. In addition, we
show that Rashba SOC induced by substrate proximity can be tunedwith a transverse
electric field; this method could be applied to magnetic insulating substrates to
enhance both the exchange field and SOC needed to reveal the quantum anomalous
Hall effect.

In the adatom-doped graphene, we provided a rationale for the missing SOC sig-
natures, particularly in the recent adatom-doped graphene experiment. By using
diagrammatic techniques and a Landauer-Buttiker transport simulation, we found
that the induced spin-orbit couplings from p−orbital adatoms can contribute to
magneto-conductance differently from conventional intrinsic and Rasbha spin-orbit
couplings. Moreover, we showed that the WAL - the SOC signature - appears away
from the Dirac points unlike conventional Rashba SOC with which WAL appears
in all range ("at all momenta" instead of "in all range"?). For d−orbital adatoms
(particularly Os), we investigated the gap-changing mechanisms and discussed their
SOC signatures under various coverages, chemical potentials, and disorder types.

The search of 2D TIs is still an ongoing mission which needs more collaboration
among experimentalists, numericists, and theorists. We have established a roadmap
for studying magneto-transport experiments by using simulation tools, and found
that the induced SOCsmay have different spin-relaxationmechanisms and SOC rates
depending on the origin of the SOCs. Building on this work, one could continue
seeking more possibilities by combining different materials and pushing the limit of
current experimental techniques in the hope of finding the next superstar material!
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C h a p t e r 8

APPENDIX

8.1 Mean Free Path Calculation for Intra-Valley Scattering
Disorder Potential on Graphene Lattice

A

A

B

A B

B

A

A

B

B

A

B

Ri

Ri

Ri

Consider a graphene samplewith gaussian correlation disorder. The effectiveHamil-
tonian close to Dirac point is H = σ · p + V . The disorder landscape V is discrete
and can be described as following,

V =
∑
Ri

V A(Ri)c
†

A(Ri)cA(Ri) + V B(Ri)c
†

B(Ri)cB(Ri) (8.1)

where Ri(= n1 ®a1 + n2 ®a2) is a lattice vector. We want the correlation between V A(B)

also satisfying Gussian correlation as Eq. 4.15 so that the matrix version of disorder
potential is

〈V( ®Ri)V( ®Ri + ®r)〉 = 〈

(
V A( ®Ri)V A( ®Ri + ®r) V A( ®Ri)V B( ®Ri + ®r)

V B( ®Ri)V A( ®Ri + ®r) V B( ®Ri)V B( ®Ri + ®r)

)
〉

= K0
(~vF)

2

2πξ2

(
exp(−r2/2ξ2) exp(−(®r − ®rAB)

2/2ξ2)

exp(−(®r + ®rAB)
2/2ξ2) exp(−r2/2ξ2)

)
(8.2)

where ®rAB = ®rA − ®rB which is depending on the choice of unit cell, shown in the
above figure. We can also do the Fourier transform on the left-hand side and obtain,

〈V( ®Ri)V( ®Ri + ®r)〉 = A
∫

d2k
(2π)2

e−ik x

(
V A(k)V A(−k) V A(k)V B(−k)

V B(k)V A(−k) V B(k)V B(−k)

)
(8.3)
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By comparing the above two equations, we can get V(k)V(−k) by Fourier transfor-
mation, 

V A(k)V A(−k) = (~vF)
2 K0

A exp(−k2ξ2/2)
V A(k)V B(−k) = (~vF)

2 K0
A exp(−k2ξ2/2) exp(i®k · ®rAB)

V B(k)V A(−k) = (~vF)
2 K0

A exp(−k2ξ2/2) exp(−i®k · ®rAB)

V B(k)V B(−k) = (~vF)
2 K0

A exp(−k2ξ2/2)

(8.4)

From the above relation, we can reasonable guess the form of V(K)(
V A(k)

V B(k)

)
= ~vF

√
K0
A

e−k2ξ2/4

(
1
e−i®k ·®rAB

)
eiα(k)

whereα(k) is the randomphase andα(−k) = −α(k). The proper physics explanation
of V A(B)(k) is the scattering strength for the scattering happening at A(B) sites.
Since we will calculate the scattering matrix 〈 f |Vq=k ′−k |i〉, we want the basis and
fourier transformation of V and wave function are consistent. Consider the first unit
cell choice(a), we apply a gauge transformation cB

k → cB
k eik·δ3 in the low energy

Hamiltonian, Eq. (8.6), so that the potential would be modified as(
V A(k)

V B(k)

)
= ~vF

√
K0
A

e−k2ξ2/4

(
1
1

)
eiα(k) (8.5)

The above equation holds if we choose other unit cell, because the phase will be
absorbed into the gauge transformation. The only difference in these three cases are
that the momentum of the wave function will differ by 2π/3 angle and it will not
make differences in scattering rates.

Wavefunction of electrons in Graphene
After applying the gauge cB

k → cB
k eik·δ3 as in the disorder potential, the low energy

Hamiltonian can be expanded around two Dirac points, K and K′.

H(k +K) = −~vF(σykx + σx ky)

H(k +K′) = −~vF(σykx − σx ky) (8.6)
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where ~vF = 3at/2, σ is the Pauli matrix for sub-lattice. The wave functions of a
Dirac electron around K and K′ is a pseudo-spinor (A,B),

φ
(1)
k+K(r) =

1
√

2

(
ieiθk

1

)
ei(k+K)·r

φ
(2)
k+K(r) =

1
√

2

(
ieiθk

−1

)
ei(k+K)·r

φ
(1)
k+K ′(r) =

1
√

2

(
ie−iθk

1

)
ei(k+K′)·r

φ
(2)
k+K ′(r) =

1
√

2

(
ie−iθk

−1

)
ei(k+K′)·r

where θ = tan−1(
ky
kx
) and k is the momentum defined around Dirac points. φ(1)K(K ′)

are conduction states and φ(2)K(K ′) are valence states.

Transition Rate and Scattering Rate
By Fermi golden rule, the transition probability is

2π
~
|Hk ′k |

2δ(Ek ′ − Ek) (8.7)

where Hk ′k is the scattering mechanism which is composed of the scattering in two
valleys separately. The scattering probability in valley K is

Hk ′k =
1
2

∫
d2q
(2π)2

(V A(q)ei(θk−θk ′) + V B(q))δ2(k + q − k′) (8.8)

Since V∗(q) = V(−q), one can easily derive the scattering probability,

|Hk ′k |
2 = H∗k ′k Hk ′k

=
1
2
(~vF)

2 K0
A

∫
d2q
(2π)2

exp(−q2ξ2/2)(1 + cos(θk ′ − θk))δ
2(k + q − k′)

(8.9)

and the scattering probability in valley K′ is the same. Now let us assume that
θk = 0, θk ′ = θ and obtain q = 2k sin(θ/2) by momentum conservation. Then the
above equation can be simplified as

|Hk ′k |
2 =

1
2
(~vF)

2 K0
A

exp(−2k2ξ2 sin2(θ/2))(1 + cos θ) (8.10)
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Now we can estimate the mean free path with this scattering mechanism. By the
Bozeman theory, the transport scattering rate 1

τt
of electron going through potential

V(r) is
1
τt
= N A

∫
d2k
(2π)2

Wkk ′(1 − cos(θk − θk ′)) fk ′(1 − fk) (8.11)

where N is the degeneracy of the system, Wkk ′ is the transition rate from state k to
k′, and fk is the Fermi distribution which is 1

2 if we consider zero temperature. The
factor 1 − cos θ accounts for the scattering probability in the transport direction.

The scattering rate of intra-valley is

1
τt
= 2

N A
4

∫
d2k′

(2π)2
Wkk ′(1 − cos θ)

=
NK0

2
π

~
(~vF)

2
∫

d2k′

(2π)2
exp(−q2ξ2/2)(1 + cos θ)(1 − cos θ)δ(Ek ′ − Ek)

=
πK0
~
~vF

∫
k′dk′dθ
(2π)2

exp(−q2ξ2/2)(1 − cos2 θ)δ(k′ − k)

=
πK0

(2π)2~
~vF

∫
dθk exp(−q2ξ2/2)(1 − cos2 θ)

=
K0vF k
2k2ξ2 e−k2ξ2

I1(k2ξ2) (8.12)

where N = 2 for spin degeneracy. Thus, we can easily write down the mean free
path and conductivity,

lMFP = vFτt

=
2k2ξ2

kK0I1(k2ξ2)
ek2ξ2

(8.13)

σ =
e2v2

Fτ

~
(

4kF

π~vF
)

= =
4e2

h
k2ξ2

K0I1(k2ξ2)
ek2ξ2

(8.14)

The above result is consistent with the result of Das Sarma’s work in 2009.

8.2 Mean Free Path Calculation for Inter-Valley Scattering
At short range disorder, inter-valley scattering becomesmore important. The leading
order of disorder potential has three terms, for example, the scattering from valley
K to K′ is

V(q) = V(q + η1) + V(q + η2) + V(q + η3) (8.15)
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k
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where η are shown in the above figure. For scattering of K′ to K , V(q) = V(q −
η1) + V(q − η2) + V(q − η3). The V = (V A,V B)> as used in intra-valley scattering.
Then we employ the wave function in the same basis.

φ
(1)
k+K(r) =

1
√

2

(
ieiθk

1

)
ei(k+K)·r

φ
(1)
k+K ′(r) =

1
√

2

(
ie−iθk

1

)
ei(k+K′)·r (8.16)

The wave functions are the eigenstates of the low energy Hamiltonian.

The scattering process from a state k to a state k′ include six terms

|Hk ′k |
2 =

3∑
i=1
|〈k′@(K + ηi)|VK ′K |k@K〉|2 + |〈k′@(K′ − ηi)|VKK ′ |k@K′〉|2 (8.17)

Let’s assume that the θk = 0 and θk ′ = θ and insert Eq. (8.15, 8.16) to Eq. (8.17).
After some algebra, one will obtain scattering mechanism

|〈k′@(K + ηi)|VK ′K |k@K〉| =
1
2

∫
d2q
(2π)2

(V A(q + ηi)ei(θk+θk ′) + V B(q + ηi))δ
2(k + q − k′)

|〈k′@(K′ − ηi)|VKK ′ |k@K′〉| =
1
2

∫
d2q
(2π)2

(V A(q − ηi)ei(θk+θk ′) + V B(q − ηi))δ
2(k + q − k′)

Let’s remove the Delta function for momentum conservation and replace |q | =
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2k sin θ/2.

|Hk ′k |
2 = H∗k ′k Hk ′k

=
1
2
(~vF)

2 K0
A

∑
i

exp(−(q + ηi)
2ξ2/2)(1 + cos(θk ′ + θk))

+
1
2
(~vF)

2 K0
A

∑
i

exp(−(q − ηi)
2ξ2/2)(1 + cos(θk ′ + θk))

= (~vF)
2 K0

A
exp(−(q2 + η2)ξ2/2)(1 + cos θ)

(cosh(ξ2qyη) + exp(−ξ2qxη

√
3

2
) cosh(ξ2qyη/2) + exp(ξ2qxη

√
3

2
) cosh(ξ2qyη/2))

= (~vF)
2 K0

A
exp(−(q2 + η2)ξ2/2)(1 + cos θ)

(cosh(ξ2qyη) + 2 cosh(−ξ2qxη

√
3

2
) cosh(ξ2qyη/2))

where η = |ηi |, qx = −2k sin2(θ/2) and qy = k sin θ.

The transport scattering time will be

1
τt
=

N A
4

∫
d2k′

(2π)2
Wkk ′(1 − cos θ)

=
NK0π

2~
(~vF)

2
∫

d2k′

(2π)2
exp(−(q2 + η2)ξ2/2)(1 + cos θ)(1 − cos θ)

(cosh(ξ2qyη) + 2 cosh(−ξ2qx

√
3

2
) cosh(ξ2qyη/2))δ(Ek ′ − Ek)


