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ABSTRACT

From DNA and RNA encoding life to flocculation agents used in water remediation,
charged polymers (polyelectrolytes) are prevalent in nearly all facets of our lives. The
charged nature of polyelectrolytes has rendered them useful in many applications,
from the stabilization of colloids to the formation of nanoparticles for drug or gene
delivery. There are open questions regarding the factors that dictate polyelectrolyte
stability, and electrostatic fluctuations, first elucidated by Debye and Hückel for
simple electrolytes, are key to the thermodynamic description of such charged
systems. Electrostatic fluctuations lead to ionic clouds around charges, leading
to favorable energy decreases. While charge-fluctuations are well-described for
simple electrolytes, the impact of polyelectrolyte (PE) charge connectivity on charge
fluctuations is much less well understood: a huge number of degrees of freedom
must be considered in order to describe themulticomponent nature of polyelectrolyte
solutions and the large number of conformations the polyelectrolytes themselves can
assume. Past theories have both under- and over-estimated the connectivity effects
on electrostatic fluctuations, and do not give a clear picture of the transition from
weak to strong electrostatic fluctuations.

My work has focused on coming up with a theory that self-consistently accounts
for the coupling of chain connectivity and electrostatic fluctuations, thus span-
ning electrostatic fluctuations from weak to intermediate fluctuation strengths. In
particular, I present a novel renormalized Gaussian fluctuation (RGF) theory that
identifies the renormalization of chain structure as a key physical consequence of
intermediate-strength electrostatic fluctuations. The theory self-consistently couples
chain structure with the thermodynamics, and mediates the transition from weak,
linearized fluctuations to the onset of stronger fluctuation effects like ion pairing.
While the onset of these different fluctuation effects has a clear sequence, they are
all coupled and must be determined self-consistently. A key concept introduced
by the theory is the notion of the polyelectrolyte self energy, which describes the
electrostatic work required to charge the molecule in solution, and provides a useful
perspective from which to understand and rationalize the effects of chain conforma-
tion on thermodynamic behavior. We use the theory to study the phase behavior of
polyelectrolyte solutions and connect theory to experimental results.
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C h a p t e r 1

INTRODUCTION: CHARGED SYSTEMS

This introductory chapter gives an overview of the basic features of charged systems
and a sense of the range of contexts where charged molecules, in particular charged
polymers (polyelectrolytes), might appear. We outline the classical theoretical
descriptions of such systems in order to give context to the open theoretical chal-
lenges that need to be addressed and the physical questions that must be answered.
Subsequent chapters present our new theoretical framework and its application to
polyelectrolyte systems.

This chapter includes content from our previously published article:

1K. Shen, and Z.-G. Wang, “Electrostatic correlations and the polyelectrolyte self
energy”, J. Chem. Phys. 146, 084901 (2017) DOI:10.1063/1.4975777.

1.1 Charged Molecules in Nature
Our lives aboundwith polymers and colloids – insoluble largemolecules andmicron-
sized particles “suspended” in solution. To write or paint in the past millennia
one had to grind inkstone or other mineral pigments and suspend the resulting
particles in water. Without further additives, the resulting inks and paints did not
stay suspended in solution nor did they last long on the writing substrates. The
innovation of adding gum arabic, a natural mixture of polysaccharide polymers,
or other natural binders like egg yolk greatly improved the stability of inks and
paints and their durability when applied [1]. During the Renaissance, painters like
Jan van Eyck exploited another colloidal suspension innovation – oil-based paints,
which could suspend more pigments for increased vibrancy and would dry more
slowly to allow more precise mixing of colors – to achieve ever-increasing realism
in paintings [2]. Literally entire eras of art and human culture can be characterized
by innovations in colloidal suspensions.

It comes as no surprise then that the control of colloidal suspensions is of great inter-
est, and electrostatic interactions provide a crucial physical handle on these systems.
Some colloids, like the tannins in wine and pigments in ink are lyophobic and not
stable in solution [3]. The work of dispersing these colloids in suspension is often
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achieved by charging these colloids by coating them with charged polymers, also
known as polyelectrolytes [4]. In other applications, for example, when removing
organic contaminants from wastewater, polyelectrolytes are again used to aggregate
the (oftentimes charged) contaminants into larger, more easily separable flocs, thus
avoiding more energy-intensive filtration processes [5, 6].

In addition to serving as powerful additives to control colloidal suspension behavior,
polyelectrolytes are themselves a ubiquitous class of molecules with interesting
behaviors of their own. For one, most naturally occurring polymers are charged –
our genetic material, DNA and RNA, has negatively charged backbones endowed
by their phosphate groups. Polysaccharides, such as the anticogulant heparin [7],
can carry carboxyl, amine, and/or sulfuric groups that endow the polysaccharide
with charge. Proteins almost invariably have charged amino acid groups. For broad
reviews of polyelectrolytes we refer the interested reader to recent works[8, 9]; here
we only highlight some of the physical questions we are interested in.

Charged interactions are long-ranged and lead to important correlations between
positive and negative charges which can manifest in many different ways. For
example, polyelectrolytes attract oppositely charged salt ions to maintain a nearly
constant effective charge, a phenomenon known as counterion condensation [10–
12]. Similarly, correlations also exist between oppositely charged polyelectrolytes,
leading to polyelectrolyte complexation. For example, the assembly of many RNA
viruses is believed to be driven primarily by charge-driven complexation between
the negatively charged genetic material RNA and positively charged portions of
virus capsid tails [13–16]. In fact, even charged, synthetic polyelectrolytes and even
gold particles can be packaged by virus capsids, a testament to the importance of
charged interactions [17, 18].

These complexation behaviors can be rich with questions and puzzles. Studies of the
aforementioned RNA viruses found that the RNA packaged by viruses often contain
more negative backbone charge than the positive charge on the virus capsid tails [13,
15]! What governs this overcharging behavior? Another related question is, what
concentrations and kinds of positive charges are needed to compact our (negatively-
charged) DNA within the small confines of our nuclei [19, 20]? The idea of DNA
compaction has even been used in a new class of next-generation antibiotics based
on polyelectrolytes, whosemechanism of action is a charge-facilitated penetration of
bacteria and a subsequent charge-induced aggregation of DNA within the bacterial
cytoplasm into useless aggregates [21].
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Inspired by natural nanoparticles created from polyelectrolyte complexes, many syn-
thetic nanoparticles are likewise being developed from polyelectrolytes. A prototyp-
ical example is the use of polyethylenimine, a positively charged polyelectrolyte, to
complex with RNA/DNA and form “synthetic viruses” that protect the RNA/DNA
and deliver them to cells [22–24]. These nanoparticle systems can be further tai-
lored using block copolymers, i.e. polymers with more than one functional group.
For example, such a block copolymer can have a charged domain responsible for
complexing with the nanocargo of interest, and a second neutral block to endow
such nanoparticles with a relatively well-defined size [23, 25].

In addition to the formation of nanoparticles by polyelectrolyte complexation, an-
other interesting class of materials formed by polyelectrolytes are complex coacer-
vates. Coacervates are a broad class of materials where lyophilic colloids aggregate,
but because of their affinity for the solvent, the resulting colloid-enriched, coacervate
phase still has a high solvent content, notably resulting in a liquid phase, in contrast
to lyophobic colloids that form solid aggregates and precipitate out of solution [3].
Coacervates were first reported in the early 1900s (Fig. 1.1), and the termwas coined
by Bungenberg de Jong and Kruyt, from the prefix “co” and Latin word “acervus”
meaning “heap” [26]. The word coacervate thus literally means, “to heap together,”
and the additional prefix of “complex” to the phrase “ complex coacervation” is
meant to highlight the charge-complexation process that underlies the coacervation
of polyelectrolytes. Complex coacervates need not contain polyelectrolytes – even
rigid charged particles and multivalent ions may form such a coacervate phase – but
polyelectroltyes do constitute a large class of complex coacervates [8].

Coacervates are prevalent and are employed in many industrial settings [3]. Yogurt
and milk drinks stabilize naturally-occurring (negatively charged) casein micelles
in milk by the addition of positively charged metyl esterified pectins. The resulting
complex-coacervate aggregates stay stable in solution [27]. In addition, complex
coacervates are being explored as potential fat-replacement droplets [28] and self-
healing coatings [29]. The ability of coacervates to maintain a distinct, stable phase
and uptake solid particles and oil has sparked interest in using complex coacervates
for separations and enhanced oil recovery [26, 30].

This last feature of complex coacervates – that they are well-defined phases that
can maintain a chemical environment distinct from the dilute aqueous phase –
may have many implications for how cellular activity is organized. A hypothesis
sometimes called the “garbage bag world” hypothesis posits that life may have
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Figure 1.1: Reproduced from Bungenberg de Jong and Kruyt, a picture of a coacer-
vate phase formed by gum arabic and serum albumen [26].

originated from complex coacervates [31–35]. The idea is that small coacervate
droplets can accumulate small molecules in a well-defined environment, increasing
their concentration and facilitating possible reactions and the formation of more
complicated molecular or proto-cellular structures. The appeal of this hypothesis is
that a membrane would not be a pre-requisite for early chemical life to proceed [35].
Although the “garbage bag” world does not address many issues of the origin of life,
such as the development of systematic reproduction, recent work has highlighted
the role of intrinsically disordered proteins in forming phase-separated-domains
within cells [36–38]. These domains, such as nucleoli, Cajal bodies, and RNA
granules, are associated with localized cellular activity and have been aptly named
“membraneless organelles” (Fig. 1.2) [39–42]. The intrinsically disordered proteins
are typically 10-15% charged, and currently workers are trying to address to what
extent these membraneless organelle phases are driven by charge interactions [43].

A key question to ask in such polyelectrolyte systems is the nature and strength of the
charge correlations. In general, the balance of electrostatic attraction and repulsion
is not trivial – studies have shown that increasing multivalent ion concentration at
first shrinks polyelectrolyte sizes, before leading to a re-entrant expansion at even
higher salt concentration [44].
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Figure 1.2: Reproduced from Feric et al. 2016 (DOI: 10.1016/j.cell.2016.04.047,
CellPress open access, Creative Commons License), a picture of the nucleolus, a
membraneless organelle [42].

Much of the recent experimental work done on polyelectrolytes has centered around
improved characterization of such polyelectrolyte systems. Early experimental work
typically employed naturally occurring polyelectrolytes [26, 45], which introduced
complicating factors, such as complex molecular structure or polydispersity. One
important advancement was the characterization of simpler, better-characterized
polyelectrolyte systems. A series of important works explored the complexation
process between poly(acrylic acid) and poly(allylamine), systematically varying pa-
rameters such as the stoichiometric mixing ratio, salt concentration, pH, and chain
length ratios. Turbidity and optimal microscopy were used to identify polyelec-
trolyte complex formation, distinguish between precipitates and coacervates, and
form phase diagrams [46, 47]. Their results were rationalized by consideration
of screening by salt and bridging effects between chains. Subsequent studies of
polypeptides were even better controlled – chain length can be precisely controlled
and the backbones are the same in both cationic and anionic polypeptides, with the
difference all ascribable to the side group [48–50]. These studies further character-
ized the phase boundary by determining the critical amount of salt needed to dissolve
the coacervate as well as used isothermal calorimetry to calculate the enthalpy and
entropy change upon mixing polycation and polyanion solutions. Consistent with
past work and simulation [51], they found that the mixing free energy was largely
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endothermic, suggesting that the mixing process is dominated by the entropy gain
of counterion release.

Before discussing the state of comparison between theory and experiment, we
discuss some key ideas in the theoretical description of charged systems.

1.2 Simple Electrolytes: Fluctuations and Debye-Hückel
We first consider simple electrolyte solutions, such as solutions of NaCl or KCl,
where there are only cations and their associated anions.

The main interaction governing charged systems is the Coulomb interaction, where
the energy between two charges of valence z1 and z2 are

U =
z1z2

4πε0εrr12
(1.1)

where r12 = |r1 − r2 | is the separation distance between the two charges, ε0 =

8.854... · 10−12F/m = 4.76 · 10−6e2/nm · kB · K is the vacuum permittivity, and εr
is the relative permittivity of the medium in a linear dielectric description. At room
temperature, water has εr ≈ 80.

It is helpful to compare the Coulomb interaction energy to the thermal energy scale
kBT = 1/β, which identifies the Bjerrum length

lb =
e2

4πε0εr kBT
(1.2)

as a characteristic length scale at which two elementary charges interact with energy
kBT . The interaction energy is then βU = lb

z1z2
r12

. For aqueous solution at room
temperature, lb ≈ 0.7nm, which is roughly 1− 3 atoms or molecular diameters. The
Bjerrum length characterizes the strength of electrostatic interactions, with higher
lb corresponding to stronger electrostatic coupling.

The total Coulombic energy in a system is obtained by summing up all pair inter-
actions between charges. In a continuous representation of charges, this is written
as

βU =
∫

dr1dr2lb
ρe(r1)ρe(r2)
|r1 − r2 |

(1.3)

where the net charge density ρe =
∑

i ziρi is the sum of the charge contributions
from each species i.

In practice, it is difficult to keep track of the locations of all charges, which constantly
fluctuate in space, and so a very useful theoretical technique is to apply a mean-field
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description where, instead of tracking the instantaneous location all particles in
the system, one instead only keeps track of the average (mean) fields. Mean field
descriptions can successfully describe a range of interesting phenomena, such as
the van der Waals liquid-vapor or polymer blend phase separation [52, 53]. When
applied to charged systems, we keep track of the species charge densities ρ̄i and the
net charge density ρ̄e.

An interesting consequence of the long-ranged nature of the Coulomb energy is that
macroscopic charge separation has a prohibitive energy cost. In other words, on
average the system must be charge neutral (ρ̄e = 0), and charge separation must be
confined to small regions in space. For bulk solutions, there are no special interfaces
for charges to be localized, and so ρ̄e = 0 everywhere. One then immediately finds
that the mean-field Coulombic energy is identically zero everywhere, independent
of the Bjerrum length and charge density!

This signals that, unless the charge neutrality symmetry is broken by external fields
or charges, the leading order effect of charged systems lies in higher-order fluctuation
effects. Electrostatics is all about how charges are correlatedwith each other. This is
fundamentally different from the mean-field nature of many other phase separating
systems.

Seeing that the simplest mean-field description is inadequate for describing the
thermodynamics of charged systems, one must employ more advanced tools of
statistical mechanics.

A physically motivated approach to describe such correlations employs a clever use
of the mean-field theory. As noted earlier, the mean-field description gives the
trivial solution unless some symmetry in the system is broken. The idea, then, is
to tag an ion in bulk solution and study the distribution about or correlation to the
other charges in solution. Although one is still studying bulk solution, the choice
of reference frame breaks the symmetry of the system, and a suitable use of mean
field theory would capture the correlations of the bulk solution with respect to the
tagged ion, even while ignoring the correlations between the rest of the ions.

For concreteness, let us specify to a monovalent 1:1 salt solution, and let the tagged
charge be positive. Formally, the distribution of the +/− species is characterized by
a pair-distribution function

ρ±(r) = ρ+0g+±(r) = ρ+0e−βw+±(r) (1.4)
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where w+± = − ln g+± is the potential of mean force between the (+) tagged ion
and the +/− species of interest. The Poisson-Boltzmann approximation is the
assumption that the potential of mean force is related to the mean electrostatic
potential ψ about the tagged ion [54]

w+± = ±βψ (1.5)

where βψ is given by the Poisson equation:

−∇ε(r)∇ψ(r) = ρ+(r) − ρ−(r) (1.6)

In 1923, Debye and Hückel approximately solved the Poisson-Boltzmann equation
for the charge distribution about a tagged ion by linearizing the Boltzmann relation
characterizing the pair distribution function g+± = e−βw+± [54, 55]. The resulting
mean potential is characterized by a screened Coulomb interaction

βψ(r) = lb
e−κr

r
(1.7)

where κ = (4πlb
∑

i ρi0q2
i )1/2 is the Debye screening constant whose inverse is the

Debye screening length λD = κ
−1.

The ion distribution similarly follows a screened-CoulombYukawa form, and this ion
distribution is called the “ionic” atmosphere about the tagged ion, with oppositely-
charged ions enriched and same-charged ions depleted about the tagged ion (Fig.
1.3).

The tagged ion, however, is representative of all charges in the bulk solution – they
will all be preferentially surrounded by opposite charges, thus leading to a lower
interaction energy relative to the mean-field result. The free energy decrease of the
ion relative to the mean field result gives the excess chemical potential of the ion,
which, within the DH approximation is

βµDH
i = −q2

i
lbκ

2
(1.8)

and the bulk solution Helmholtz free energy has an excess electrostatic contribution

β f DH = − κ3

12π
. (1.9)

Note that the factor of κ in the numerator of both expressions increases in magnitude
with density, meaning that the electrostatic correlation energy becomes increasingly
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Figure 1.3: Schematic of the ion cloud, or distribution, about a tagged charge of
interest. The self energy is the electrostatic work required to build up a charge
in this environment. (a) For simple ions the ion cloud is well-described by the
Debye-Hückel theory. (b) For polyelectrolytes, the ionic atmosphere is modified by
neighboring monomers along the same and other chains, and depends on the chain
structure. Reproduced fromShen andWang JCP 2017.[60]DOI:10.1063/1.4975777

negative with increasing concentration. This provides a driving force for the system
to separate into a phase with a higher concentration of charges.

A theory using the DH Helmholtz free energy as the driving force found that the
critical interaction strength at which ions will phase separate into a liquid phase
is σ/lb ≈ 0.0625 (with sigma a characteristic ion diameter) [56], corroborated by
simulations that found a critical value of about σ/lb ≈ 0.057 [57]. Although this
liquid-liquid phase separation has not been observed in solution for monovalent
ions, we note that the critical temperature at which the NaCl vapor-molten liquid
transition appears is σ/lb ≈ 0.055 [58, 59], remarkably close to the results predicted
by the simple DH theory for the restricted primitive model with symmetric ion sizes!

1.3 Theory of Polyelectrolytes
A salient feature of the DH theory is that electrostatic correlations increase with
increasing ion valency zi. Thus, polyelectrolytes, being inherently multivalent, have
increased correlation effects compared to simple electrolyte systems. However, the
magnitude of the multivalency effect is unclear because the spatial extent of the
polyelectrolyte chains introduces new length scales and the conformation degrees
of freedom of the polymers (Fig. 1.3).

Any theoretical attempt to understand the effective multivalency effect arising from
chain connectivity in polyelectrolytes is immediately faced with a daunting increase
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in the number of variables to study, the most salient of which include: backbone
architecture, backbone flexibility and Kuhn length, and charge sequence. In an effort
to achieve physical clarity and reduce the number of variables, many theories and
simulations take their starting point to be linear polyelectrolytes with N monomers
of Kuhn length b and only some fraction α of same-charged monomers.

The foundational (and still widely used) [61–64] theory of polyelectrolyte coac-
ervation put forth by Voorn and Overbeek [65] chooses to completely ignore the
contribution of chain connectivity to electrostatic correlations, directly borrowing
the DH expressions for charge correlations and hence treating the backbone charges
as disconnected free ions. In the Voorn-Overbeek theory, chain connectivity is only
manifested in the translational entropy term:

f VO =
∑

i

ρi

Ni

(
ln
ρi

Ni
− 1

)
+ f ex. vol. + f DH (1.10)

where Ni is the chain length of species i, ρi is the monomer density of species
i. The correlation energy term is treated assuming it is the same as if all the
charged monomers were disconnected, and approximated by the Debye-Hückel
form f DH = −κ3/12π with κ2 = 4πlb

∑
i αiz2

i ρi, and αi the fraction of charged
monomers of species i.

The idea of approximating the backbone charge as disconnected ions has been
adopted in recent theories of polyelectrolytes, either using theVO-DHapproximation
as a starting point for constructing inhomogeneous theories [64], or replacing the
DH correlation using more advanced treatments of simple electrolytes [66].

Attempts to connect experiment to theoretical predictions have often started with
the VO theory [62, 65] or the Debye-Hückel screening ideas applied in different
ways. These early theoretical comparisons with experiments test the limits of min-
imal, physical models. Because of its conceptual simplicity and seemingly severe
assumptions, the VO theory truly serves as an important test of “how much we can
get away with.” If one does not expect quantitative accuracy, VO theory was found
to give qualitatively reasonable phase boundary dependence on added salt [62],
the agreement of which improves significantly if one allows for fitting parameters
in the VO theory. Another interesting problem was explaining the ultra-low sur-
face tensions of polyelectrolyte coacervates [64, 67]. Voorn-Overbeek ideas were
borrowed and combined with a local-density approximation to predict the surface
tension of polyelectrolyte coacervates, where it was found to give qualitatively cor-
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rect salt-dependent scaling [64], and the surface tension was found to decrease with
increasing chain length.

A time-salt superposition principle for polyelectrolyte coacervate rheology has also
been proposed based on the idea that the relaxation time in coacervates is governed
by “sticky attractions” characterized by Debye-Hückel screened interactions [68].
This identified time scale produced surprisingly good collapses of rheological mea-
surements of the polyelectrolyte coacervate frequency response [50, 68]. However,
many puzzles still persist: chain-length effects on the rheology were found to be
asymmetric for polycations versus polyanions [68], and simulations have yet to
reproduce the same salt-dependent frequency response.

Despite the VO theory’s wide use and many successes, its treatment of electrostatic
correlations and neglect of chain connectivity effects on charge correlations likely
benefits from cancellation of errors; the VO approximation is still poorly understood,
and as a result obscures the influence of one of the most important design parameters
of polyelectrolytes – the chain architecture. In some instances, VO theory can even
be qualitatively wrong. The most recent example of the VO theory’s failure is its
predictions for the tie lines of polyelectroltye coacervation in the salt-polymer plane.
The VO always predicts salt enrichment in the coacervate phase, whereas recent
experiments and simulations suggest that the tie line can indicate both enrichment
and depletion of salt [69]. How might chain connectivity qualitatively modify the
tie-line behavior of polyelectrolyte complexation?

A more systematic and descriptive theory is clearly desirable to understand both the
merits and shortcomings of VO theory and the true underlying physics governing
polyelectrolyte solutions and complexes. Over the decades much effort has been put
into developing improved polyelectrolyte theories, many of which are described in
a couple of recent reviews [9, 70]. These theories can be broadly categorized by the
different physical effects that they seek to consider.

A widely used theory is the thermodynamic perturbation theory (TPT), which aims
to capture the effects due to chain connectivity through a leading order perturbation
expansion around the simple electrolyte results [71–76]. The first-order TPT (TPT-
1) forms the basis for a widely used density-functional framework for the study
of inhomogeneous polyelectrolyte systems [77–80]. While producing reasonable
agreements for bulk properties and inhomogeneous systems at higher densities, like
the VO theory and its variants, TPT-1 offers no insight into how one can use polymer
characteristics – like backbone architecture and charge distribution on the backbone
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– to control electrostatic interactions in materials. Only recently has there been a
proposal to use TPT with a polymer one-component plasma as the reference system
to better describe the connectivity effects [81].

An approach that tries to capture the effects of chain connectivity from the outset
is the one-loop expansion/Random Phase Approximation (RPA) based on a leading
order treatment of fluctuations in the field theoretic partition function [82–84]. RPA
theories require a chain structure as input, and for prescribed chain structure provide
explicit expressions describing how chain-connectivity generates extra charge cor-
relations. Recent work has applied the RPA to macromolecules of arbitrary fractal
dimensions with fixed intrachain structure factors [85]. However, for flexible chains,
the use of a fixed Gaussian-chain structure factor for all concentrations (hereafter
referred to as fixed gaussian-RPA) leads to overestimation of the correlation effects,
particularly at dilute concentrations. As a result, for flexible chains fg-RPA predicts
critical concentrations that vanish with increasing chain length [86], in contradiction
to simulation results [87]. Previous work has tried to fix this deficiency by intro-
ducing an ad hoc mesoscopic wavevector cut-off while still keeping the Gaussian
structure factor for the long-wavelength fluctuation contributions [88].

The RPA theories of polyelectrolytes typically only consider fluctuations in the
electrostatic interactions. In order to account for excluded volume fluctuations that
are important even for neutral polymer systems [89], a variational method [90] was
employed to treat the “double screening” [91], due to both excluded volume and
electrostatic interactions. This theory by Muthukumar and coworkers has been used
to study phase separation [92], adapted to account for counterion condensation [93,
94], and applied to study polyelectrolyte coil-globule transitions [95]. Unlike the fg-
RPA, this approach allows the polyelectrolyte conformation to self-adapt. However,
in the interest of obtaining analytical expressions, the double-screening theory pre-
integrates the salt degrees of freedom, resulting in the Debye-Hückel description
of screened interactions between monomer units, which does not feed back on the
effective interaction between the salt ions. We note that such an approximation of
using a screened Couloumb interaction for macroions is a common practice in many
analytical and simulation studies [14, 96, 97].

Another method that bypasses the fixed-structure assumption is the self-consistent
PRISM (sc-PRISM) integral equation approach [98, 99] that employs a structure-
dependent effective medium-induced potential, and such an approach has been ap-
plied to polyelectrolytes by Yethiraj and coworkers [97, 100–103]. The sc-PRISM
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has been quite successful for studying polyelectrolyte solution structure, but there
have been limited studies on the thermodynamics [104–107]. Further, PRISM the-
ories require the use of closures, the choice of which is guided by experience and
comparisons to experiment and theory [97]. Finally, to date, sc-PRISM studies have
been limited to only one polyelectrolyte species. To our knowledge the only appli-
cation of PRISM to complex coacervates ignored the self-consistent determination
of chain structure, and inconsistently borrowed thermodynamic expressions from
theories of monomeric solutions [108].

A variational theory close in spirit to the sc-PRISM was proposed by Donley,
Rudnick, and Liu [109] to study the concentration-dependence of polyelectrolyte
chain structure. In hindsight, the theory can be understood as a sc-PRISM where
the form of the effective intrachain interaction is motivated by RPA theory using
heuristic arguments. Their theory yields good agreement with available computer
simulation data on the end-to-end distance of the polyeletrolyte chain as a function
of the polyelectrolyte and salt concentrations.

Lastly, we highlight a few recent theories of polyelectrolytes that do not fall as neatly
into the above discussion. There has been a series of works applying a field theoretic
technique called the Gaussian Equivalent Representation to polyelectrolytes, which
has been applied to study the osmotic pressure of homo-polylectrolyte solutions
and would be interesting to apply to more complex polyelectrolyte systems [110–
114]. Another recent series of works have tried to revisit and re-evaluate the
importance of microscopic detail and close-range interactions on polyelectrolytes,
through the application of a (no-chain-self-consistency) PRISM theory [108] and a
phenomenological transfer matrix theory with parameters that explicitly account for
counterion condensation and polyelectrolyte-polyelectrolyte monomer ion pairing
effects [115]. There has also been interest in further extending VO theory to
account for counterion condensation and ion pairing effects through a chemical
binding theoretical picture [116].

1.4 Thesis Outline
Our interest in the theoretical description of polyelectrolytes can broadly be divided
into two complementary themes. First, what are the ways by which electrostatic
correlations manifest themselves in polyelectrolytes? We are aware of different
limiting cases, such as Debye exponential screening in dilute, weakly correlated,
simple electrolyte solutions and counterion condensation for highly charged, cylin-
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Figure 1.4: Schematic of two main factors dictating charged systems: chain connec-
tivity and strength of electrostatic coupling. A central outcome of our work is the
presentation of a unified theory that contextualizes how past theories are related to
each other, and demonstrates the previously unappreciated coupling regime where
changing chain conformations (boxed in the diagram) play a paramount role.

drical polyelectrolytes, but how do electrostatic correlations transition from one
physical manifestation to another? Secondly, we want to understand the role of
chain conformation in controlling these electrostatic correlations. How does the
microscopic structure of a polyelectrolyte chain influence electrostatic attractions
and the strength of complexation? The ultimate goal would be to construct a unified
theory that self-consistently addresses both correlations and chain conformations
and is consistent from weak to (modestly) high interaction strengths. A unified
theory is crucial to understanding the relative importance and contributions of the
many facets of electrostatic fluctuations.

A central contribution of my work is the presentation of just such a unified theory
that clarifies the dual and complementary effects of chain connectivity and varying
electrostatic coupling strength. In Fig. 1.4, we outline where some of the main
physical effects are expected to be important, and some corresponding classical the-
ories that describe these physical effects. On the simple electrolyte (disconnected
charges) side of things, the two limits are a linear-screening regime characterized by
the Debye Hückel theory, and ion pairing and clustering effects at strong coupling
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strengths. Integral equation theories approximately handle the increasing electro-
static coupling strength, and their accuracy is dependent on the closure used. The
TPT-1 theory outlined previously attempts to bridge from the disconnected to the
connected side of this diagram in a perturbative way. On the connected-charge side
of the diagram, past theories have tended to either focus on the weak-coupling limit,
where chain connectivity can be treated using the RPA theory, which is essentially
a generalized DH theory applicable for macromolecules, or directly jump to the
polyelectrolyte analog of simple electrolyte strong coupling effects – counterion
condensation and inter-chain pairing. Through the use of our unified theory, we
demonstrate that there is actually a large range of electrostatic couplings where
electrostatic fluctuations primarily act through renormalized chain conformations,
though of course all correlation effects are coupled. Previous theories that fail to
treat chain connectivity properly risk over-estimating the importance of stronger
correlation effects. We explore the physical consequences of these renormalized
chain conformations on polyelectrolyte solution thermodynamics.

To this end, in Chapter 2 I introduce the renormalized Gaussian fluctuation (RGF)
and, for the first time in literature, apply it to polymers. A key theoretical result is
that the physical effect of the leading non-perturbative fluctuations not considered
in past perturbative theories is the renormalization, or self-consistency, of the chain
structure with the charge fluctuations and solution thermodynamics. In particular, I
apply the theoretical framework to study salt-free solutions of polyelectrolytes, and
introduce a physical quantity we term the polyelectrolyte self energy, which can be
understood as the electrostatic chemical potential, or the work it takes to assemble
charge into a chain. In addition to the Born solvation energy and a generalized
ionic cloud self-interaction energy which are present for simple electrolytes, the self
energy also contains intra-chain charge interactions, which depend significantly on
chain conformation. Our theory bridges the commonly used Voorn-Overbeek (VO)
theory [65], which only accounts for the ionic cloud energy of disconnected charges,
and Random Phase Approximation (RPA) theories which account for connectivity
but ignore that electrostatic energy can be relaxed through conformational changes.
The self energy highlights the importance and role of adapting chain structure, in
particular highlighting how incorrect large-wavelenth behavior introduced artifacts
in previous polyelectrolyte theories.

Our theory describes the infinite-dilution self energy appropriately, reproduces ex-
pected scalings of overall chain dimension at finite salt and polymer concentration,
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and gives a N-dependent cross-over of the correlation energy from a renormalized
Debye-Hückel concentration dependence to a weaker concentration dependence as-
sociated with chain connectivity. In particular, we find that chain conformational
changes represent a significant mode through which electrostatic energy is relaxed in
polyelectrolyte solutions; relaxing the inter-chain electrostatic energy through con-
formational changes subsequently reduces the magnitude of correlation energies.
Accounting for these conformational changes allows our theory to appropriately
capture the N-independent limit of the critical point in salt-free polyelectrolyte solu-
tions. Also important is that for long chains our theory reproduces a N-independent
plateau in the osmotic coefficient, which other theories are unable to predict.

Following, in Chapter 3 we apply our self-consistent theory to study the phase behav-
ior of polyelectrolyte solutions. Our theory predicts re-entrant behavior with added-
salt for polyelectrolyte (PE) solutions with a single PE species. For coacervate-
forming solutions of oppositely charged polyelectrolytes, we predict salting-in and
tie-line behaviors consistent with recent experiments. Importantly, we find that the
phase diagrams of fully-charged flexible chains are much more similar to that of
semiflexible rods than Gaussian chains, even in semi-dilute solution when the chain
structure is overall Gaussian. We trace this to the local-stiffening of flexible chains
by the electrostatics, which persists in semi-dilute solution and continues to play
a big role in the thermodynamics and phase diagrams, thus emphasizing the im-
portance of shorter wavelength electrostatic flutuations. We also show that at high
polymer concentrations the correlation energy of flexible polyelectrolytes follows a
functional form ∝ − ln ρ that can be thought of as renormalizing the translational
entropy of counterions. This kind of behavior was previously only predicted for
polyelectrolyte rods [85].

In Chapter 4 we investigate the apparent similarity between the (renormalized)
linearized fluctuations captured by our theory and counterion condensation. We
propose a theory that self-consistently captures electrostatic fluctuations from weak
to intermediate electrostatic couplings, and from our theory we identify a total
electrostatic binding constant that captures counterion condensation’s dependence
on chain structure and anti-cooperative effects. We find an unexpectedly important
contribution to the osmotic pressure from linearized fluctuations – in fact, above
an electrostatic interaction strength of roughly lb/b ≈ 1, the relative contribution
of counterion condensation decreases with increasing concentration. Further, by
retaining the discrete nature of condensed counterions and backbone charge sites,
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we reveal the importance of the “residiual” charge fluctuations of these condensed
ion pairs in governing the phase behavior of polyelectrolyte solutions. Depending
on the amount of residual fluctuations, counterion condensation can either stabilize
or destabilize the solution.

Finally, in Chapter 5 we further discuss some nuances of the RGF framework and
its relation to other theoretical approaches for studying fluctuations. We address
the issue that statistical mechanical field theories feature complex-valued actions,
whereas the Gibbs-Feynman-Bogoliubov (GFB) bound upon which the RGF proce-
dure is based is based is only valid for real-valued actions. We demonstrate that the
RGF self-consistency conditions do not need to be rooted in the GFB bound, but can
also be understood as a self-consistent first order perturbation. Our work thus both
establishes the RGF procedure on more secure footing as well as makes transparent
the physical consequences of the newly-considered fluctuations. We further present
a self-consistent first-order perturbation treatment of canonical ensemble systems,
and discuss its connections with previous theories.

The contents of each chapter have been published, or have been prepared as a
manuscript for submission.
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C h a p t e r 2

THE POLYELECTROLYTE SELF ENERGY

We address the effects of chain connectivity on electrostatic fluctuations in polyelec-
trolyte solutions using a field-theoretic, renormalized Gaussian fluctuation (RGF)
theory. As in simple electrolyte solutions (Z.-G. Wang, Phys. Rev. E. 81, 021501
(2010)), the RGF provides a unified theory for electrostatic fluctuations, accounting
for both dielectric and charge correlation effects in terms of the self energy. Unlike
simple ions, the polyelectrolyte self energy depends intimately on the chain con-
formation, and our theory naturally provides a self-consistent determination of the
response of intramolecular chain structure to polyelectrolyte and salt concentrations.
The effects of the chain-conformation on the self energy and thermodynamics are
especially pronounced for flexible polyelectrolytes at low polymer and salt con-
centrations, where application of the wrong chain structure can lead to a drastic
misestimation of the electrostatic correlations. By capturing the expected scaling
behavior of chain size from dilute to semi-dilute regimes, our theory provides im-
proved estimates of the self energy at low polymer concentrations and correctly
predicts the eventual N-independence of the critical temperature and concentration
of salt-free solutions of flexible polyelectrolytes. We show that the self energy can
be interpreted in terms of an infinite-dilution energy µelm,0 and a finite concentration
correlation correction µcorr which tends to cancel out the former with increasing
concentration.

This chapter includes content from our previously published article:

1K. Shen, and Z.-G. Wang, “Electrostatic correlations and the polyelectrolyte self
energy”, J. Chem. Phys. 146, 084901 (2017) DOI:10.1063/1.4975777.

2.1 Introduction
Polyelectrolytes are widely used for many applications, ranging from energy mate-
rials [1] to solution additives (e.g. for food, cosmetics, and healthcare products).
[2] Polyelectrolytes are also ubiquitous in biology, as many naturally occurring
polymers – DNA/RNA, proteins, and some polysaccharides – are charged. Con-
sequently, understanding the interplay of electrostatics with polyelectrolyte func-
tionality is central for understanding many biological processes [3] and guides the



27

design of materials such as adhesives, [4] drug-delivery microencapsulants, [5–7]
and micro/nanoactuators. [8]

The long-range nature of electrostatic interactions gives rise to nontrivial correla-
tion effects in polyelectrolyte systems such as ion-condensation [9] and complex
coacervation. [10–12] A key challenge in the theoretical study of polyelectrolytes
is the proper description of electrostatic correlations and their consequences on the
structure and thermodynamics.

The physical origin of electrostatic correlation is the preferential interaction between
opposite charges. For simple electrolyte solutions this correlation is manifested in
the “ionic atmosphere” (Fig. 1.3) first proposed by Debye and Hückel (DH). [13]
As the result of the favorable interaction of an ion with its ionic atmosphere, the free
energy of the system is lowered. Theoretically, for point charges, the spatial extent
of the ion atmosphere is characterized by the well-known inverse Debye screening
length

κ2 = λ−2
D = 4πlb

∑
i

z2
i ci, (2.1)

where theBjerrum length lb = e2/4πεkT is the length scale atwhich twounit charges
interact with energy kT and characterizes the strength of charge interactions. These
charge correlations modify a host of properties such as osmotic pressure, ionic
activities, and mobilities. For dilute electrolyte solutions, the electrostatic free
energy density and the associated excess chemical potential are given respectively
by:

β f el = − κ3

12π

βµel
i = −z2

i
lbκ

2
. (2.2)

A key question we wish to address is how the connectivity of polyelectrolytes will
modify this classic Debye-Hückel correlation behavior. The DH expression gives a
prediction for both the concentration and valency-dependence of correlation ener-
gies. Polyelectrolytes, being inherently multivalent, should on physical grounds be
expected to also have increased correlation effects compared to simple electrolyte
systems. However, the magnitude of this multivalency effect is unclear due to the
spatial extent of the polyelectrolytes, and the concentration dependence of corre-
lation energies is also unclear. We will find, at extremely low concentrations, that
flexible polyelectrolytes follow a renormalized DH concentration-scaling, before
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transitioning to more rod-like polyelectrolyte concentration dependences at higher
concentrations.

In this chapter, we study electrostatic fluctuations in polyelectrolyte solutions by ex-
tending the field-theoretic renormalized Gaussian fluctuation theory (RGF) derived
in the previous chapter for polymers to a general case with charged interactions an
arbitrary number of charged species. In this theory, the key thermodynamic quantity
that captures the electrostatic fluctuations is the self energy of an effective single
chain. For simple electrolytes, the self energy is the electrostatic work required to
assemble charge from an infinitely dispersed state onto an ion and is given by [14]

βµel
chg =

z2
chg

2

∫
dr′dr′′hchg(r − r′)G(r′, r′′)hchg(r′′ − r) (2.3)

where hchg is the charge distribution on an ion, and G(r, r′) is a self-consistently
determined Green’s function characterizing electrostatic field fluctuations, which
can be thought of as an effective interaction between two test charges in an ionic
environment. Eq. (2.3) is a unified expression accounting for both the polarization
of the dielectric medium (e.g. Born solvation and image charge interactions) and
correlations due to the ionic atmosphere.

For polyelectrolytes, wewill see that the self energy is analogously the work required
to assemble charge onto the polyelectrolyte. However, because of the conformational
degrees of freedom, part of the work is due to the entropic change of deforming
the chain. The internal energy contribution to the self energy resembles Eq. (2.3)
and involves the single-chain structure factor, reflecting the spatial extent of the
polyelectrolyte chain. The RGF theory prescribes a self-consistent determination of
the effective intrachain structure along with the effective interaction G(r, r′) as an
inherent part of the theory.

To demonstrate the new physical content embodied in our theory and its effect on
polyelectrolyte solution thermodynamics, we compare our results to several classical
theories. The first theory to which we compare to is the thermodynamic perturbation
theory, in particular the so-called first-order theory (TPT-1), which attempted to
capture chain connectivity through a leading order perturbation expansion around
the simple electrolyte results [15–24]. This is only expected to give good results
in very dense systems, and the connectivity information in TPT-1 is limited, giving
little qualitative insight into the effect of more complicated polymer architectures.

We also compare to the Random Phase Approximation (RPA), which is essentially
the perturbation theory foundation upon which our RGF approach tries to improve.
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Unlike the TPT-1, the RPA also tries to capture the complete effects of chain
connectivity from the outset [25–27], and is based on a leading order treatment
of fluctuations in the field theoretic partition function. The key limitation of RPA
theories is that they require a chain structure as input, but for prescribed chain
structure the RPA provides explicit expressions describing how chain-connectivity
generates extra charge correlations. However, for flexible chains, the use of a fixed
Gaussian-chain structure factor for all concentrations (hereafter referred to as fixed
gaussian-RPA) leads to the overestimation of the correlation effects, particularly at
dilute concentrations, predicting critical interactions and concentrations that vanish
with increasing chain length, [28, 29] in contradiction to simulation results [30]. A
key contribution of the work of this chapter is to explain this spurious behavior in
physical terms.

The rest of this chapter is organized as follows. In Section II we present a full deriva-
tion of the RGF theory for polyelectrolyte solutions. At this stage, our derivation is
general for arbitrary charged macromolecules. A key part of the variational calcula-
tion is the natural emergence of a self-consistent calculation of single-chain averages
and chain structure under an effective interaction G(r, r′). We then specify to a bulk
system and provide expressions for the osmotic pressure and electrostatic chemical
potential of polyelectrolytes, the latter being identified as the average self energy.
In Section III we apply our theory to study flexible, discretely charged chains, and
demonstrate how the self-consistent procedure and single-chain averages can be
approximated with a variational procedure. In Section IV we present and discuss
numerical results for the intrachain structure, effective interaction, polyelectrolyte
self energy, osmotic coefficient, and critical point. We demonstrate the crucial im-
portance of intrachain structure in determining the self energy and thermodynamics.
We compare our results with those from several existing theories, with particular
attention paid to the chain length dependence in the various properties. Finally, in
Section V we conclude with a summary of the key results and future outlook.

2.2 General Theory
2.2.1 Field-Theoretic Formulation
We consider a general solution of polyelectrolytes (charged macromolecules with
arbitrary internal connectivity and charge distribution) and salt ions in a solvent.
We start with the microscopic density operator for species γ (which indexes over all
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solvent, polyelectrolyte, and salt ion species)

ρ̂γ(r) =
nγ∑

A=1

Nγ∑
j=1

δ(r − rγAj), (2.4)

where A refers to the A-th molecule of species γ, running up to the total number nγ
of molecules of species γ, and j refers to the j-th “monomer” out of a total number
Nγ of monomers in a molecule A of species γ. For monomeric species, such as the
small ions and solvent, Nγ = 1 and the index j only takes the value of 1.

Following previous work on the self energy of simple electrolytes, [14] individual
charges (i.e. salt ions or charged monomers) are described by a short-ranged charge
distribution ez h(r − r′), for an ion located at r′, where we have factored out the
elementary charge e and the (signed) valency z. A convenient choice for h is a
Gaussian

h =
(

1
2a2

)3/2
exp

[
−π(r − r′)2

2a2

]
. (2.5)

This distribution gives the ion a finite radius, not of excluded volume, but of charge
distribution. Doing so avoids the diverging interactions in point-charge models and
captures the Born solvation energy of individual ions in a dielectric medium, as well
as finite-size corrections to the ion correlation energy. [14] This feature allows our
coarse-grained theory to capture the essential thermodynamic effects of finite-size
ions at higher densities without having to resolve the microscopic structure.

For simple salt, the charge density of the A-th molecule of species γ in unit of the
elementary charge e is simply ρ̂chgγA = zγhγ(r − rA). However, for polyelectrolytes
we need to sum over all monomers j of a particular macromolecule A of species γ.
In addition, to allow for arbitrary charge distribution along the polymer backbone,
we introduce the signed valency zγ j such that an uncharged monomer in the poly-
electrolyte chain has zγ j = 0. The charge density due to the A-th molecule of the
γ-th species is

ρ̂
chg
γA (r) =

∑
j

zγ j hγ j(r − rγAj), (2.6)

where the sum runs over each monomer j of object A of species γ. With this
definition, the charge density of each species γ is given by

ρ̂
chg
γ (r) =

∑
A

ρ̂
chg
γA . (2.7)
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Allowing for the presence of external (fixed) charge distribution ρex, we then define
a total charge density

ρ̂chg = ρex +
∑
γ

ρ̂
chg
γ . (2.8)

Treating the charged interactions as in a linear dielectric medium with electric
permittivity ε (which can be spatially dependent), the Coulomb energy of the system
is written as

HC =
e2

2

∫
drdr′ ρ̂chg(r)C(r, r′)ρ̂chg(r′), (2.9)

where C(r, r′) is the Coulomb operator given by

−∇ · [ε∇C(r, r′)] = δ(r − r′). (2.10)

To complete the description of the system, we add the excluded volume interactions
and polyelectrolyte conformation degrees of freedom. The excluded volumebetween
all the species is accounted for by an incompressibility constraint

∑
γ φ̂γ(r) = 1 that

applies at all r.[31] This constraint is enforced by a Dirac δ-function in its familiar
exponential representation δ(1 − ∑

γ φ̂γ) =
∫
Dηeiη(1−∑γ φ̂γ), which introduces an

incompressibility field η and the volume fraction operator φ̂γ, which is related to
the density operator via φ̂γ = vγ ρ̂γ, where vγ is the monomer volume of species γ
(for simplicity, we have implicitly assumed that all monomers on the polyelectrolyte
chain have the same volume).

The conformation degrees of freedom of the polyelectrolyte is accounted for by an
(arbitrary) chain connectivity bonded interaction hamiltonian HB which depends on
the relative positions of the monomers in a polyelectrolyte chain. To focus on the
electrostatic correlation, we ignore other interactions, such as the Flory-Huggins
interaction.

The canonical partition function is

Q =
∏
γ

1

nγ!vnγNγ
γ

∏
A, j

∫
drγAj

∫
Dη exp(−βH), (2.11)

where the effective “Hamiltonian" is

βH = βHC − iη

(
1 −

∑
γ

φ̂γ

)
+ βHB (2.12)

and includes the incompressibility constraint. In Eq. (2.12) the species index γ runs
over all species (solvent, simple salt ions, and polyelectrolyte). We use the monomer
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volume vγ instead of the usual cube of the thermal de Broglie wavelength to avoid
introducing nonessential notations; this merely produces an immaterial shift in the
reference chemical potential.

We then introduce the scaled Coulomb operator

C = βe2C

and the scaled permittivity
ε = ε/(βe2),

which has units of inverse length and is related to the Bjerrum length by

lb =
1

4πε
.

For an inhomogeneous dielectric medium, ε will be more convenient to use than lb.
The scaled permittivity also leads naturally to the scaled inverse Coulomb operator

C−1(r, r′) = −∇r · [ε(r)∇r′δ(r − r′)],

which is related to the Coulomb operator by∫
dr1C−1(r, r1)C(r1, r′) = δ(r − r′)

To further simply notation, we henceforth use kBT as the unit of energy and e as the
unit of charge, so we set β = 1 and e = 1.

Next, we use theHubbard-Stratanovich (HS) transformation to decouple theCoulomb
interaction, which introduces the electrostatic potential Ψ(r) (non-dimensionalized
by βe) and renders the canonical partition function as

Q = 1
ΩC

∏
γ

1

nγ!vnγNγ
γ

∫
DΨDη exp(−Y ), (2.13)

where ΩC is a normalization factor from the HS transformation given by

ΩC =

∫
DΨ exp

[
−1

2

∫
drdr′ Ψ(r)C−1(r, r′)Ψ(r′)

]
=

∫
DΨ exp

[
−1

2

∫
drε(∇Ψ)2

]
= [det C]1/2 (2.14)

and the canonical “action" is

Y =
1
2

∫
drdr′Ψ(r)C(r, r′)−1

Ψ(r′) (2.15)

−
∫

dr(iη − iρexΨ) −
∑
λ

nγ ln Qγ[η,Ψ],
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where Qγ is the single-particle/polymer partition function given shortly below.

Transforming to the grand canonical ensemble by introducing the species fugacities
λγ, we obtain the grand canonical partition function

Ξ =
1
ΩC

∫
DΨDηe−L[Ψ,η] (2.16)

with the grand canonical “action” L

L[Ψ, η] = 1
2

∫
drdr′Ψ(r)C(r, r′)−1

Ψ(r′) (2.17)

−
∫

dr(iη − iρexΨ) −
∑
λ

λγQγ[η,Ψ].

It is useful to notationally distinguish between the three basic types of species: sol-
vent (s), simple salt (±), polymer (p). Correspondingly, the single-particle/polymer
partition functions of the three basic types of species are:

Qs =

∫
drse−ivsη (2.18)

Q± =
∫

dr±e−iv±η−iz±h±∗Ψ (2.19)

Qp =

∫
DRe−HB−ivp

∫
drηρ̂p−i

∫
drΨ ρ̂chg

p1 (2.20)

where we have introduced R to denote collectively the positions of all monomers in
a single polyelectrolyte. For economy of notation, it is to be understood that ρ̂chgp1
refers to the charge density of a single chain only, defined as in Eq. (2.6). We also
write h ∗ Ψ to denote a convolution, or spatial averaging by the distribution h:

h ∗ Ψ =
∫

dr′h(r − r′)Ψ(r′). (2.21)

Thus far, Eq. (2.16) is the formally exact expression for the partition function of our
system. It forms the starting point for field-based numerical simulations such as the
Complex Langevin methods [31] as well as approximate analytical theories.

2.2.2 Renormalized Gaussian Fluctuation Theory
For analytical insight, we seek to develop an approximate theory for evaluating
Ξ, Eq. (2.16). The lowest-order saddle-point approximation would lead to a
self-consistent mean-field theory, [32] in which the saddle-point condition on Ψ
results in a Poisson-Boltzmann (PB) level description where correlations between
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fixed charges ρex and mobile charges ρchgγ are included, but correlations between
mobile charges themselves are ignored. The standard RPA theory accounts for
the quadratic fluctuations around the saddle-point. In doing so, however, one is
left with a fixed structure factor determined solely by the saddle-point condition.
For uniform systems of polyelectrolytes, the chain structure factor that enters the
RPA is independent of polyelectrolyte and salt concentrations. To circumvent this
shortcoming, we approximate the partition function Eq. (2.16) as in our previous
RGF theory, using a non-perturbative variational calculation.

The RGF theory follows the Gibbs-Feynman-Bogoliubov (GFB) variational ap-
proach by introducing a general Gaussian reference action Lref. As written, Eq.
(2.16) involves two fields η and Ψ to which we may apply the variational method.
Allowing fluctuations in both fields will lead to the so-called double screening of
both electrostatic and excluded volume. [33, 34] However, in this chapter, we focus
on the fluctuation effects due to electrostatics and thus perform the variational cal-
culation only for the Ψ field; the excluded volume interaction will be treated at the
mean-field level by the saddle-point approximation for the η field. For the Ψ field,
we make the following Gaussian reference action:

Lref =
1
2

∫
drdr′[Ψ(r) + iψ(r)]G−1(r, r′)[Ψ(r′) + iψ(r′)] (2.22)

which is parametrized by a mean electrostatic potential −iψ(r) and a variance, or
Green’s function G(r, r′) which we will later show to correspond to an effective
electrostatic interaction that generalizes the familiar screened-Coulomb interaction.
This reference action thus accounts for the deviation χ = Ψ − (−iψ) = Ψ + iψ from
the mean electrostatic potential.

Using Lref we rewrite the grand canonical partition function Eq. (2.16) as

Ξ =
1
ΩC

∫
DΨDηe−Lref[Ψ]e−(L[Ψ,η]−Lref[Ψ])

=
ΩG

ΩC

∫
Dη

〈
e−(L[Ψ,η]−Lref[Ψ])

〉
ref

(2.23)

where 〈· · · 〉ref denotes an average over Ψ with respect to the reference action Lref,
and ΩG the corresponding partition function of Lref, defined analogously to ΩC in
Eq. (2.14) with G in place of C. For notational clarity, we will henceforth write
〈· · · 〉ref as 〈· · · 〉.

To implement the GFB procedure (for more discussion of the nuances, see Ch. 5),
we begin with approximating the field integral overΨ with a leading order cumulant
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expansion
Ξ ≈

∫
Dη ΩG

ΩC
e−〈L−Lref〉 ≡ ΞGFB. (2.24)

The first cumulant in the exponent can be readily evaluated owing to the Gaussian
nature of the fluctuating field, and is given by:

〈L − Lref〉 =
1
2

∫
drdr′

〈
Ψ · C−1 · Ψ

〉
−

∫
dr(iη − iρex 〈Ψ〉) (2.25)

−
∑

j

λ j
〈
Q j

〉
− 1

2

∫
drdr′G−1(r, r′) 〈χ(r)χ(r′)〉

=
1
2

∫
drdr′[C−1 − G−1]G − 1

2

∫
drdr′ψ · C−1 · ψ (2.26)

−
∫

dr(iη − ρexψ) −
∑
γ

λγ
〈
Qγ

〉
where we have used 〈Ψ〉 = −iψ and 〈χ(r)χ(r′)〉 = G(r, r′). The grand partition
function ΞGFB and variational grand free energy Wv are found to be:

ΞGFB =

∫
Dηe−Wv[G,ψ;η] (2.27)

Wv[G, ψ; η] = − 1
2

ln
(
det G
det C

)
+

1
2

∫
drdr′[C−1 − G−1]G

− 1
2

∫
drdr′ψ · C−1 · ψ −

∫
dr(iη − ρexψ) −

∑
γ

λγ
〈
Qγ

〉
. (2.28)

In Eq. (2.28), the Ψ-field averaged single-particle/polymer partition functions are:

〈Qs〉 =
∫

drs exp [−ivsη] (2.29)

〈Q±〉 =
∫

dr± exp [−iv±η − z±h± ∗ ψ] · exp
[
−1

2
z2
±h± ∗ G ∗ h±

]
(2.30)〈

Qp
〉
=

∫
DR exp

[
−HB −

∫
dr (ivpηρ̂p1 + ψρ̂

chg
p1 )

]
(2.31)

· exp
[
−1

2

∫
drdr′ ρ̂chgp1 · G · ρ̂

chg
p1

]
.

For the small ions, the electrostatic fluctuations characterized by G(r, r′) enter as an
instantaneous self-interaction which defines the self energy of the ion [14]

u±(r) ≡
1
2

z2
±h± ∗ G ∗ h±

=
1
2

z2
±

∫
dr1dr2h±(r − r1)G(r1, r2)h±(r2 − r). (2.32)
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Similarly, the calculation of the single-chain partition function now features G(r, r′)
as an effective intrachain interaction

uinstp (R) ≡
1
2

∫
drdr′ ρ̂chgp1 (r)G(r, r

′)ρ̂chgp1 (r
′). (2.33)

In the limit where the polymer has only one monomer, ρ̂chgp1 (r) = zph(r− r̂), and the
polyelectrolyte expression reduces to that of the simple electrolytes above. In the
general case, however, this instantaneous (hence the superscript ‘inst’) interaction
is clearly conformation dependent and non-local; Eq. (2.31) further suggests that
there will also be chain conformation entropy contributions.

We emphasize that although our theory has the structure of independent particles
and chains, the single-particle/chain partition functions involve the fluctuation-
mediated effective intra-particle/chain interaction G(r, r′) that is missing in self-
consistent mean-field (SCMF) theories. For polymeric species, it is precisely this
intrachain interaction that is able to generate chain structures that adapt to the
solution conditions.

For transparency and notational simplicity, in the following part we specify to a
system of solvent, salt, and one polyelectrolyte species, but the expressions can be
trivially extended to treat the general case with more salt and polyelectrolyte species.

To proceed, wefirstmake the saddle-point approximation for the field η. Anticipating
that the saddle-point value of η is purely imaginary, we define a real field P = iη.
The saddle-point condition is

δWv

δP(r) = 0 (2.34)

which yields
1 − vsρs − v+ρ+ − v−ρ− − vpρp = 0. (2.35)

The densities of the species are given by:

ρs(r) = −
λp

vs

δ 〈Qs〉
δP(r) = λse−vsP

ρ±(r) = −
λ±
v±

δ 〈Q±〉
δP(r) = λ±e−v±P−z±h±∗ψ−u±

ρp(r) = −
λp

vp

δ
〈
Qp

〉
δP(r) . (2.36)

Eq. (2.35) is just the condition of incompressibility, and P can be solved to yield

P = −1
v s

log
1 − φ
λsvs

(2.37)
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where φ is the total volume fraction φ =
∑
γ,s vγργ of non-solvent species. It is

customary to set λs = 1/vs, which gives

P = −1
v s

log (1 − φ) (2.38)

We note that, at the saddle-point level, our theory can be easily adapted to accom-
modate other models of excluded volume and hard sphere equations of state.

With the excluded volume effects taken care of, we now discuss the determination
of the variational parameters (G, ψ) describing the electrostatic fluctuations and
interactions. The self-consistency of the GFB procedure comes from determining
the values of (G, ψ) such that Wv[G, ψ;P] is stationary at fixed pressure field P, by
a partial functional differentiation with respect to the variational parameters G and
ψ.1[35]

Performing the variation with respect to the mean electrostatic potential

δWv

δψ(r) = 0 (2.39)

leads to a Poisson-Boltzmann type expression

−∇ · ε(r)∇ψ = ρex + ρchg+ + ρchg− + ρ
chg
p , (2.40)

where the species charge densities are given by:

ρ
chg
± (r) = −λ±

δ 〈Q±〉
δψ(r) = λ±z±h± ∗ e−v±P−z±h±∗ψ−u±

ρ
chg
p (r) = −λp

δ
〈
Qp

〉
δψ(r) (2.41)

Finally, the stationarity condition on G

δWv

δG(r, r′) = 0 (2.42)

leads to an integro-differential equation

δ(r − r′) =
∫

dr1 [C−1(r, r1) + 2I(r, r1)]G(r1, r′) (2.43)

1While procedurally the same as the saddle-point evaluation of P, we stress that while P is
an original field variable of the exact partition function, (G, ψ) have a distinct origin in the GFB
variational approximation of fluctuations in the Ψ field.



38

where the ionic strength term is given by

2I(r, r′) =
∑
γ

λγ
δ
〈
Qγ

〉
δG(r, r′)

=z2
+

∫
dr1 h+(r − r1)ρ+(r1)h+(r1 − r′)

+ z2
−

∫
dr1 h−(r − r1)ρ−(r1)h−(r1 − r′)

+ λp
〈
Qp

〉 〈
ρ̂
chg
p1 ρ̂

chg
p1

〉
. (2.44)

In the last line above we have used the identity for the single-chain charge correlation〈
ρ̂
chg
p1 ρ̂

chg
p1

〉
=

1〈
Qp

〉 δ
〈
Qp

〉
δG(r, r′) (2.45)

of a single chain with partition function
〈
Qp

〉
to rewrite the differentiation with

respect to G

λγ
δ
〈
Qp

〉
δG(r, r′) = λp

〈
Qp

〉〈
Qp

〉 δ
〈
Qp

〉
δG(r, r′)

= λp
〈
Qp

〉 〈
ρ̂
chg
p1 ρ̂

chg
p1

〉
. (2.46)

In the case where the polymer only consists of one monomer, the polymer contribu-
tion to the ionic strength reduces to the simple electrolyte case.

Equations (2.38), (2.40), (2.43), and (2.44) constitute the central expressions of our
self-consistent theory. The self-consistent determination of polymer conformation
originates from the fact that the Green’s function G(r, r′) Eq. (2.43) itself depends
on the single-chain charge correlations

〈
ρ̂
chg
p1 (r)ρ̂

chg
p1 (r

′)
〉
, which in turn comes from

the average single-chain partition function
〈
Qp

〉
determined by G(r, r′), Eq. (2.31).

Although the idea of a self-consistent determination of chain structure is not new, it
is gratifying that our derivation of the RGF naturally prescribes how to perform the
self-consistent calculation.

2.2.3 Bulk Solution Thermodynamics: Self Energy and Osmotic Pressure
To demonstrate the nature of this self-consistent calculation, we now specify to a
bulk solution with ρex = 0. For a bulk solution, the single-particle/polymer partition
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functions simplify to:

〈Q±〉 =Ve−v±P−z±ψq±

q± =e−
1
2
∫

drdr ′ z±h±∗G∗z±h± = e−u±〈
Qp

〉
=Ve−NpvpP−ztotp ψqp

qp =
1
V

∫
DR e−HB− 1

2
∫

drdr ′ ρ̂chg
p1 ·G·ρ̂

chg
p1 (2.47)

where ztot
p is the total charge carried by a chain. qγ = Qγ/V is the single-

particle/chain partition function excluding the translational degrees of freedom;
for simple ions q± is simply the Boltzmann weight given by the simple ion self
energy u± in Eq. (2.32).

Using Eq. (2.36), we evaluate the density and determine the fugacities to be:

λ± =
n±
〈Q±〉

=
ρ±

exp[−u±] exp[−v±P − z±ψ]

λp =
np〈
Qp

〉 = ρp/Np

qp exp[−vpNpP − ztot
p ψ] (2.48)

where ρp = npNp/V is the monomer density. Using the fugacity relation, the
polymer contribution Eq. (2.46) to the ionic strength is simply

λp
〈
Qp

〉 〈
ρ̂
chg
p1 ρ̂

chg
p1

〉
= np

〈
ρ̂
chg
p1 ρ̂

chg
p1

〉
=

np

V
V

〈
ρ̂
chg
p1 ρ̂

chg
p1

〉
=
ρp

Np
Schg

p . (2.49)

Recognizing that the single-chain structure
〈
ρ̂
chg
p1 ρ̂

chg
p1

〉
scales as the density of a

single chain N/V , we have pre-emptively regrouped a factor of V/V in anticipa-
tion that the single-chain charge structure factor defined as Schg

p ≡ V
〈
ρ̂
chg
p1 ρ̂

chg
p1

〉
is

independent of volume.

The fugacity is related to the chemical potential by µγ = ln(λγvγ), whence we can
identify the per-ion and per-chain chemical potentials as:

µ± = ln(ρ±v±) + v±P + z±ψ + u±

µp = ln
(
ρpvp

Np

)
+ vpNpP + ztot

p ψ + up (2.50)

where
up = − ln qp. (2.51)
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The first three terms in both chemical potential expressions of Eq. (2.50) are the
same as in a mean-field analysis of a bulk solution. The physical content of the last
term up is the free energy of a chain interacting with itself via the effective potential
G, and within our theory up is easily identifiable as the per-chain, chemical potential
attributable to electrostatic fluctuations. We thus define µel

p ≡ up and term it the
(bulk) per-chain self energy.

It can be easily verified that all the polymer expressions above reduce to those of
simple electrolytes in the single-monomer limit Np = 1, since then ztot

p = zp, HB can
be set to zero, ρ̂chgp1 (r) = zph(r− r̂), and by translation invariance

∫
DR →

∫
dr →

V . Clearly, in this limit up
Np=1
−−−−→ u±.

In the bulk, it is also useful to define the self energy per monomer (note subscript
‘m’ for ‘monomer’) as

µel
m ≡

up

Np
. (2.52)

Further, the self-consistent set of Equations (2.38), (2.40), (2.43), and (2.44) are
simple in the bulk case: the constitutive equation (2.40) for ψ is just the global
charge neutrality constraint, while in Eq. (2.43) the structure factors and G(r, r′)
become translation-invariant, allowing a simple Fourier representation. Further,
because of the rotational symmetry, only the magnitude of the wavevector matters,
and Eqs. (2.43) and (2.44) become:

1 = εk2G̃(k) + 2Ĩ(k)G̃(k) (2.53)

2̃I(k) = ρ+S̃chg
+ (k) + ρ−S̃chg

− (k) +
ρp

Np
S̃chg

p (k) (2.54)

which can be easily solved to obtain

G̃(k) = 1
ε[k2 + κ̃2(k)]

, (2.55)

where we identify κ̃2(k) = 2Ĩ(k)/ε as thewave-vector dependent screening function,
a generalization of the Debye screening constant. In our spread-charge model, even
simple salt ions have some internal charge structure

S̃chg
± = z2

± h̃2
±(k). (2.56)

For point charges h̃± = 1, recovering the same ionic strength contribution as in DH
theory. Therefore in the absence of polymers, in the point charge limit for simple
electrolyte, G̃(k) is precisely the DH screened Coulomb interaction.
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In bulk solution, a polyelectrolyte with discrete charges has a charge structure factor
that can generally be divided into a self and non-self piece

S̃chg
p (k) =

∑
l

z2
pl h̃

2
pl(k)

+
∑

l

∑
m,l

zpl h̃pl(k)zpm h̃pm(−k)ω̃lm(k). (2.57)

The first sum is the l = m self piece, and the second sum is over all other terms.
The structure is characterized by the intramolecular correlation ω̃lm between two
monomers l and m on the same chain. [36] While ω̃lm(k) has unknown analytical
form, we know that ω̃lm(k) → 1 as k → 0, and ω̃lm(k) → 0 as k � 1/a. We thus see
that in the large wavelength limit the polyelectrolyte charges contribute collectively
to the screening κ̃2(k) as a high-valency object ∼ (ztot)2 where ztot =

∑
l zpl is

the total valency. In contrast, in the small wavelength limit the charges screen as
independent charges, which for historical reasons we call the Voorn-Overbeek (VO)
limit (only in the sense of treating the charges as disconnected from each other –
the original VO theory used DH theory with point charges, while we leave open the
possibility of giving charges internal structure).

It has been previously noted that the magnitude of collective screening by poly-
electrolyte charges should be wave-vector dependent and described by the charge
structure (contained in Ĩ): [26, 37] at different wavelengths portions of chains screen
as independent objects, and the size of these screening portions is set by the structure.
These discussions correctly identified that with increasing density, screening will be
increasingly controlled by higher-k structure. However, previous discussions, with
few exceptions,[38] often smear out the charges on a chain, thus treating simple ions
and polymer charges on different footing and missing the approach to the VO-limit
at high wavevectors.

We now present the osmotic pressure Π. We can use λγ
〈
Qγ

〉
/V = ργ/Nγ to

identify the ideal osmotic contribution. Then, using Fourier integrals to evaluate
the determinants in Wv Eq. (2.28), the osmotic pressure is:

Π = −
[
Wv −W0

v

V

]
= − 1

4π2

∫ ∞

0
k2 dk

[
ln

(
1 +

κ̃2(k)
k2

)
− κ̃2(k)

k2 + κ̃2(k)

]
− 1
vs

(
1 + log(1 − φ)

)
+

1 − φ
vs
+ ρ± +

ρp

Np
(2.58)

where W0
v is the grand free energy of a pure solvent system.
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An important feature of the theory is the necessity of self-consistently determining
the chain charge structure S̃chg

p (k) Eq. (2.57) and G̃(k) Eq. (2.55). The Green’s
function G̃(k) itself depends on the chain structure; the latter is in turn determined by
a chain interacting with itself through G in the single-chain partition function

〈
Qp

〉
,

Eq. (2.31). The self-consistency is typically solved by iteratively approximating G

and the chain structure until convergence is achieved.

The last piece required to implement our theory is an evaluation of the single-
chain partition function and corresponding intramolecular charge structure. The
exact evaluation of single-chain partition functions is difficult even for simpler pair
interactions, and in general should be done by numerical simulation. [39] In Sec.
2.3 we demonstrate how

〈
Qp

〉
can be approximately and simply evaluated, but we

point out that such an approximation is not itself inherent to the general theory.

2.3 Self-Consistent Calculation of Flexible Chain Structure
Our discussion has heretofore been general for macromolecules of arbitrary internal
connectivity and charge distribution. To illustrate one way of carrying out the self-
consistent calculation and facilitate comparison to previous theories, we specify to
study flexible polyelectrolyte chains with Kuhn length b, equally spaced (discrete)
charges of the same valency zp, and overall charged monomer fraction f , such that
the total polymer charge is ztot

p = N f zp. Again, the discrete nature of the charges
will be reflected in the charge structure factor and is important at high wavevectors.

Given this chain model, the expressions for the per-monomer chemical potential,
density, and charge structure factor S̃chg

γ (k) are now:

µm =
1

Np
ln
ρpvp

Np
− vpP + f zpψ +

up

Np
(2.59)

ρp =λpNpe−NpvpP−Np f zpψ−up (2.60)

S̃chg
p (k) =z2

pN f [1 + (N f − 1)ω̃(k)]h̃2
p(k) (2.61)

where we have re-expressed the sum over all monomer-monomer pair correlations
ω̃lm with an average per-monomer structure ω̃. Following our previous discussion,
one can check that when k → 0, S̃chg

p ∼ (N f zp)2 as for a N f zp-valent object, and
when ka � 1, S̃chg

p ∼ N f z2
p as for N f independent charges of valency zp.

Returning to the task of calculating the single-chain partition function, we resort
to a commonly used variational technique. There are many variations reported
in the literature, [36, 37, 40–44] but they all essentially reduce to a Flory-type
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decomposition of the single-chain free energy into entropic Fent and interaction Fint

contributions
up = − ln qp ≈ min

ζ

[
Fent(ζ) + Fint(ζ)

]
(2.62)

where ζ indicates some conformational parameterization of a reference chain. In
Flory’s treatment of the excluded volume of a single chain, for example, ζ would
be the average end-to-end distance. For our case, we take our reference chain to be
a wormlike chain parameterized by an effective persistence length ζ ≡ leff. Under
this model, leff controls the chain expansion α2 =

〈
R2

ee
〉
/R2

ee,0

α2 = 2
leff
b

[
1 − leff

Nb

(
1 − e−Nb/leff

)]
.

(2.63)

The variational parameter leff also controls the per-monomer structure ω̃(k; leff) in
the charge structure factor S̃chg

p . We note, however, leff introduced here cannot be
simply interpreted as the mechanical persistence of the polymer, since it is defined
by the overall chain size rather than reflecting the local bending stiffness. [41]While
exact expressions of the worm-like-chain (WLC) structure factor exist in literature,
[45] to facilitate calculations we use a simple analytical form:

ω̃(k) = exp[−kleff/2]
1 + k2Nbleff/6

+
1 − exp[−kleff/2]

1 + kNb/π (2.64)

which interpolates between the appropriate asymptotic limits of ω̃(k; leff): [46, 47]

ω̃(k) ∼


1, k <

√
6/Nbleff

6/k2Nbleff,
√

6/Nbleff < k < 1/leff
π/kNb, k > 1/leff

(2.65)

Like a previously proposed expression, [46] our expression interpolates between
Gaussian-chain behavior ω̃ ∼ 6/Nbleffk2 at low wavevector and rodlike behavior
ω̃ ∼ π/kNb at high wavevector, with a crossover set by leff. An important feature
of the WLC chain structure captured by our expression is that the magnitude of ω̃
at high wavevector is negligibly affected by leff, reflecting the intuition that while
electrostatics can greatly deform overall chain structure, smaller scale structure
is less affected, [41] consistent with blob-theory arguments [48] and simulation
observations. [49] As long as we work in the regime where electrostatic blobs have
only g ∼ (b/ f 2lb)2/3 ∼ O(1) monomer each, the WLC structure persists down to
the monomer length scale so that smaller length-scale structures do not need to be
resolved.
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We are thus able to write a one-parameter (leff) model for the single-polyelectrolyte
free-energy Eq. (2.62) with entropic and interaction terms given by:

Fent = −
3
2

N ln
(
1 − α

2

N

)
− 3 ln(α) (2.66)

Fint =
1

4π2

∫
k2dk G̃(k)S̃chg

p (k; leff) (2.67)

The first term of the entropic free energy is a finite extensibility approximation that
lies between the elastic free energies obtained from integrating the worm-like-chain
(WLC) and freely-jointed-chain (FJC) force-extension relationships. [50, 51] The
second term −3 ln(α) is a term that resists chain compression, first deduced by Flory
and used by several subsequent authors. [52–55]

We also note that the expression for the interaction energy Eq. (2.67) is an improve-
ment upon typical scaling estimates of the Coulomb energy. When the effective
interaction G is a bare Coulomb interaction, for an extended structure (R ∼ N) the
usual scaling estimate gives an energy of N2/R ∼ N . [48] The structure factor of
an extended chain is roughly S̃chg(k) ∼ N2/(1 + kN/π), and Eq. (2.67) gives an
interaction energy of ∼ N ln N with the correct logarithmic correction. [56, 57]

An interesting consequence of this decomposition of the single-chain partition func-
tion is that the electrostatic fluctuation contribution to the self energy is decomposed
into two contributions: 1) entropic work of deforming the chains and 2) average in-
teraction energy. The presence of an entropic contribution to the fluctuation-induced
excess chemical potential is a special feature of flexible chains.

With the structure factor specified, we solve for self-consistency iteratively: for
given Green’s function G̃ we minimize the single-chain free energy Eq. (2.62)
to approximate leff and estimate the charge structure factor S̃chg

p (k) via Eq. (2.61)
and (2.64), which we then use as input to update G̃ using Eq. (2.55). We stop
when the rms relative error of leff between iterations is below 10−10. Results of our
calculations are presented in Sec. 2.4.

2.4 Numerical Results and Discussion
For numerical calculations, we consider fully-charged chains with f = 1, zp = 1,
monovalent salt, set all ion sizes to be the same diameter σ = 2a = 1, and set the
Kuhn length b = σ. We also study systems with Bjerrum length lb ∼ 1, ensuring
that electrostatic blobs only have g ∼ (b/ f 2lb)2/3 ∼ 1 Kuhn monomers each. To
facilitate comparison with the restricted primitive model, the parameters vγ are
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chosen to reproduce the divergence in the excluded volume free energy at the closest
packing number density of hard spheres with diameter σ.

We start by examining salt-effects on the structure of isolated chains, then finite-
concentration effects on chain size in salt-free polyelectrolyte solutions. Subse-
quently, we present the effective self-interaction G, demonstrate the presence of
charge oscillations, and compare to screening predictions under the DH and fixed-
Gaussian structure approximations. Next, we examine the polymer self energy of
salt-free polyelectrolyte solutions and compare our predictions to alternative theo-
ries for electrostatic correlations. Finally, we study the consequences of our theory
on the osmotic coefficient and phase separation behavior.

2.4.1 Chain Structure
The scaling behavior of linear homopolyelectrolytes is well-known for both the
single-chain [48] and semidilute regimes.[57, 58]

In the single-chain, salt-free limit, scaling theory predicts that the long range elec-
trostatic forces elongate flexible chains into a “cigar” of electrostatic blobs with
chain size scaling linearly with chain length as R ∼ N . [48] At finite concentrations
of salt, the screened Coulomb interaction effectively acts as an excluded volume
interaction for chain segments separated by distances greater than κ−1, where κ is
the inverse Debye length of the added salt. Consequently, while short chains still
exhibit the “cigar” scaling, sufficiently long chains behave as self-avoiding walks,
[57, 58] with the crossover determined by the salt concentration. These expectations
are borne out in Fig. 2.1, where we plot results for the chain size as function of
chain length for several different salt concentrations ρ±.

For our theory, in the single-chain limit the polyelectrolyte does not contribute to the
screening κ̃(k), and the Green’s function reduces to a modified screened Coulomb
interaction G̃ = 4πlb/(k2+κ̃(k)2). Since in the single-chain limit G̃ is independent of
polymer conformation, the self-consistent calculation only requires us to minimize
the free energy of a single effective chain Eq. (2.62).

Because the salt concentrations considered are still dilute enough for finite ion-size
effects to be negligible, the DH expression κ2 = 4πlbz2(2ρ±) = 8πlbz2ρ± is a good
estimate of the screening length, and the crossover condition κR > 1 predicts a
crossover salt concentration ρ∗± ∼ N−2, where we have used that in the dilute salt
limit R ∼ N . In the inset of Fig. 2.1 we locate the crossover by the intersection
of fits to the asymptotic scaling limits, and verify this scaling expectation of the
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Figure 2.1: End-to-end distance in the single-chain limit, with parameters lb =

0.7, f = 1, zp = 1, at different salt concentrations ρ±. The blue and green dashed
lines represent, respectively, the R ∼ N and R ∼ N3/5 scalings in the zero and high
salt limits. The inset shows the crossover salt concentration ρ∗± ∼ N−2.

crossover concentration.

At finite concentrations of polyelectrolyte, there is a new scaling regime for the
polymer size when the monomer concentration ρp becomes sufficiently high. This
concentration is usually taken to be at the physical overlap, ρ∗p ∼ 1/N2, with new
scaling behavior given by the semidilute prediction of ideal random walk statistics
R ∼ N1/2. [57, 58]

We plot our results for salt-free polyelectrolyte solutions in Fig. 2.2 at several
polymer concentrations. For sufficiently high concentrations, we recover the ideal
random walk scaling. Further, the crossovers happen below physical overlap, in
accord with limited simulation data, [40, 49] and are attributed to the fact that the
Coulomb interactions are long-ranged and that chains repel each other even below
physical overlap.

The crossover appears to be extremely gradual (more than two decades). Neverthe-
less, for given concentration we can approximately locate the crossover chain length
by again finding the intersection of the asymptotic limits. We plot these results in
the inset of Fig. 2.2 and find that the crossover concentration goes as ρ∗p ∼ N−3.
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Figure 2.2: End-to-end distance of a polyelectrolyte in salt-free solutions at finite
monomer concentration ρp, with parameters lb = 0.7, f = 1, zp = 1. The blue and
green dashed lines represent, respectively, the R ∼ N scaling in the dilute regime,
and the R ∼ N1/2 scaling in the semidilute regime. The inset shows the crossover
monomer concentration ρ∗p ∼ N−3.

To understand this apparently strong N-dependency, we will have to first understand
the nature of screening in solutions with finite concentrations of polyelectrolyte, of
which we will give a more detailed discussion in Section 2.4.3. We do mention,
however, that if one uses the most conservative estimate of screening where only
counterions contribute to the screening length, chains are expected to interact at
concentrations a factor of 1/(4πlb f )3 below physical overlap, [58] which is several
orders of magnitude for parameters studied in this chapter (4πlb f ≈ 10). This is
in qualitative agreement with our results that chains begin contracting far below
physical overlap.

Thus, we have shown that our theory is able to correctly capture asymptotic chain
size scaling behavior and reproduce qualitatively reasonable crossovers. We will
show that correctly capturing these asymptotic limits is sufficient to give correct
behavior for the osmotic coefficient and critical properties.
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2.4.2 Effective Interaction G(k)
For simple electrolytes, the field fluctuations and effective screened interaction
are well-described by the Debye-Hückel screened Coulomb function. The Voorn-
Overbeek approximation of neglecting chain connectivity takes Debye-Hückel as its
starting point, and describes electrostatic fluctuations in polyelectrolyte solution by
a screened Coulombwith screening constant κ2

vo = 4πlb(ρ++cpN) = 8πlbρp, where
the monomer number density ρp is related to the chain number density cp by ρp =

cpN , and ρ+ = ρp in salt-free solution of polyelectrolyte (recall f = 1, zp = 1). The
opposite limit is to treat polyelectrolytes as point charges of valency ztot = N . [49]
In this case, the electrostatic fluctuations are characterized by the screened Coulomb
with a renormalized screening constant κ2

N = 4πlb(ρ+ + cpN2) = 4πlbρp(1 + N).
Clearly, the effect of chain connectivity on screening should lie somewhere between
these two limits. In Fig. 2.3, we plot the Fourier-transformed Green’s function G

for salt-free solutions of (1) chains with adaptable structure (our theory, RGF) and
for (2) chains with fixed Gaussian-chain structure (fg-RPA), and compare to the two
aforementioned limits.

For sufficiently dilute systems, the Green’s function G for both our theory and RPA
fall on the screened Coulomb line with screening constant κ2

N – information about
the chain connectivity is reflected only through the total charge ztot . We argue that
this is the correct limiting law – for sufficiently dilute systems translational entropy
opposes any ion condensation and the counterions can be considered a constant
background charge. As long as the polymers are sufficiently far apart, they appear
to each other essentially as point charges with valency ztot , and can be treated using
results from the one-component plasma (OCP) theory once one scales the charges
by ztot . In the dilute limit, the OCP is known to be governed by the DH expressions
[59] – when treating polyelectrolytes as a single ztot-valent object the OCP theory
gives a screening length λ that scales as ∼ (lbρN)−1/2, which is consistent with
screening constant κ2

N = 4πlbρp(1 + N) for N � 1.

At higher concentrations, the finite-extent of the polyelectrolyte begins impacting
the Green’s function, and leads to a peak in G(k) at finite wavenumbers that depend
on the concentration. This peak can be shown to lead to attractive wells in G(r− r′),
which allow for positively charged chains to assume random walk statistics; the
random-walk conformation would not be possible with a purely repulsive screened
Coulomb interaction. This is the reason our RGF is able to reproduce the Gaussian-
chain scaling in semidilute solution. On the other hand, the fg-RPA assumes a
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Figure 2.3: Green’s functionG/4πlb characterizing electrostatic field fluctuations, at
different polyelectrolyte concentrations, from our RGF theory (blue solid), fg-RPA
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VO = 8πlbρp (DHVO, red
dotted), andDHprediction using the N-valent screening strength κ2

N = 4πlbρp(1+N)
(DHN, brown dot-dashed). Results are for salt-free solutions (lb = 1, f = 1, zp =

1, N = 100) at different monomer densities ρp. Relative to the RGF, the fg-RPA
over-predicts screening, has a delayed crossover, and predicts a peak at higher
wavenumber (smaller wavelength).

Gaussian-chain structure for all concentrations, and there is no feedback of G onto
the chain structure.

The peak in G(k) is also associated with decreased screening compared to DH
expectations using the dilute limit κ2

N as the screening strength. The onset of a peak
is actually also present for simple electrolyte solutions and corrects for the over-
prediction of correlations within the DH approximation at higher concentrations.
It can be generally shown that the peak sets in at lower concentrations for larger
ion sizes: at higher concentrations, only sub-portions of spatially extended charged
objects screen independently, hence decreasing the effective valency and screening
strength.

Polyelectrolytes have their charge greatly extended across space, and correspond-
ingly their peak sets in at a much lower concentration than simple electrolytes. The
RGF, which predicts an adaptable chain size that becomes expanded relative to the
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ideal Gaussian chain, predicts an earlier onset of a peak in G(k) and less screening
(larger G(k) values) than the fg-RPA theory at all concentrations. However, the
peaks of the two theories do approach each other with increasing concentration, as
expected of the semidilute regime.

2.4.3 Electrostatic Self Energy and Correlations
We now examine the self energy per polyelectrolyte monomer Eq. (2.52), which
depends on both the chain structure and Green’s function. We first give the total
self energy, where the zero energy of the electrostatics is taken to be the state where
charges are dispersed into infinitesimal bits at infinity in vacuum. This perspective
highlights the energetic consequences of connecting charges onto a chain, which is
especially important in dilute solution. Further, this reference energy includes the
energy of assembling charge onto each charged monomer, thus ensuring we account
for both dielectric effects of solvation and interactions between charges.

To study correlation effects due to finite polymer concentration, we argue that the
most natural definition involves subtracting out the infinite-dilution energy. We are
then able to distinguish a dilute limit following a renormalized DH-like scaling, and
a crossover to less effective screening due to the overlap of polyelectrolyte chains in
space.

To simplify the parameter space to one density variable and highlight the role of chain
structure in modifying the self energy, below we only present results for salt-free
solutions of flexible polyelectrolytes. However, the physical principles regarding
screening and the correlation energy are generally applicable to more complicated
systems.

2.4.3.1 Total Self Energy

One key feature of semidilute solutions is that the self energy should become inde-
pendent of chain length for sufficiently long chain lengths. This is confirmed in Fig.
2.4a, where we plot the total self energy of salt-free solutions of polyelectrolytes.
With increasing chain length, the self energies begin overlapping over greater con-
centration ranges, in agreement with our expectations for semidilute solutions.

Figure 2.4a also shows that the fg-RPA theory greatly over-estimates the self energy
at low concentrations, and its value rapidly grows with chain length N . Having
shown in Section 2.4.2 that with increasing dilution the Green’s function G becomes
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figure.
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insensitive to chain structure, we conclude that the origin of this huge over-estimate
of the self energy is the fg-RPA chain structure.

To understand the magnitude of the fg-RPA’s over-estimate of the self energy, we
consider the infinite-dilution limit. The self energy of a simple ion is the Born
solvation energy given by lb/2a, representing the work done against the dielectric
background to assemble a charge into a region of size a. For polyelectrolytes, we
expect the infinite-dilution per-monomer energy to be higher than the Born solvation
energy of an isolated ion, due to the additional work (including chain elasticity)
required to assemble multiple charges at finite separation from each other.

As confirmed in Section 2.4.1, the chain size of an isolated flexible polyelectrolyte
scales linearly with chain length R ∼ N . Elementary calculation of the energy of
a line of charges gives an energy that scales as ∼ N ln N; as mentioned earlier in
the context of our expression for the interaction energy Eq. (2.67), this is generally
true of charges arranged in a structure that scales as R ∼ N for large N . Thus for
flexible polyelectrolytes we expect that at infinite dilution, the per-monomer energy
associated with connectivity grows logarithmically ∼ ln N .

In contrast, for a fixed-Gaussian structure R ∼ N1/2 and the infinite-dilution (chain)
self energy scales as ∼ N2/R ∼ N2/N1/2 ∼ N3/2, leading to a per-monomer self
energy that grows as ∼ N1/2. This is the origin of the rapidly diverging self energy
in fg-RPA, and is attributed to the artificially compact conformation imposed by
a fixed-Gaussian-chain structure. The self energies predicted by the fg-RPA at
low concentrations lead to an artificially high driving force for phase separation
into denser states. In contrast, our theory allows the chain conformation to relax,
significantly reducing the self energy and increasing the stability of the single-phase
region of a polyelectrolyte solution relative to fg-RPA theory.

For a constant dielectric background, the screening due to correlations (as a result
of finite polymer concentration) reduces the amount of work required to assemble
charge onto a chain, which we have defined as the self energy. The infinite-dilution
self energy, then, contains information about the amount of correlation energy
attributable to chain connectivity and provides an upper bound for its magnitude.

2.4.3.2 Electrostatic Correlation Energy

To isolate the correlation self energy µcorrm associated with finite concentrations of
polyelectrolyte, for constant-dielectric backgrounds, it is most natural to subtract
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out the infinite-dilution self energy µel
m,0

µcorrm = µel
m − µel

m,0 (2.68)

In the simple-electrolyte case, this is simply taking the single-ion Born solvation
energy to be the reference energy, and is the usual reference used for studying
simple electrolytes. For polyelectrolytes, however, one must be careful to subtract
the infinite-dilution energy of an entire chain, not just the sum of the Born solvation
energy of each of the charged monomers.

In Fig. 2.4b we plot the correlation energy µcorrm . For comparison we also plot the
correlation energy results from the liquid-state integral equation Mean Spherical
Approximation (MSA) theory of simple electrolytes, [20] TPT-1 chain perturbation
theory, [20] the VO approximation, and our theory applied to 1:1 electrolytes. Here
we focus on the behavior for our theory, and postpone comparison until Section
2.4.3.3.

At sufficiently low concentrations, our theory predicts a per-monomer correlation
energy µcorrm that scales as ∼ (Nρplb)1/2 = (N2cplb)1/2, where we remind the readers
that ρp and cp are the monomer and chain number densities, respectively. Compari-
son with the DH point charge result ∼ (z2c lb)1/2 indicates that in sufficiently dilute
solution, the correlations follow DH-scaling, with chains screening as N-valent ions
– the entire chain behaves as a fundamental, N-valent screening unit. This is in
accord with the dilute limit, renormalized-DH behavior of electrostatic fluctuations
described by G(k).

At first sight, this N-dependence may seem unusually strong. Examination of Fig.
2.4b shows that the dilute scaling quickly crosses over to a weaker concentration
dependence at higher concentrations. The presence of a crossover is a generic feature
of finite-sized charges, and is also present in the MSA theory for simple electrolytes
and the RGF theory applied to simple electrolytes. However, the location of the
crossover in simple electrolytes depends on the ion size a, which is much smaller
than the size of a polyelectrolyte. As hinted by our examination of the chain structure
and Green’s function, the dilute solution DH behavior only persists while the chain
size R < ξ, where ξ is some length scale that we attempt to identify below.

In general, the screening function κ̃ in our RGF theory is wavelength-dependent
but, as demonstrated above in the dilute solution limit, DH behavior describes the
thermodynamics, with an N-dependent screening constant κ2

N = 4πlbρp(1 + N),
suggesting that the relevant length scale may be given by ξ−2

DH = κ2
N. Combined
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with the dilute solution scaling R ∼ N , the condition R/ξDH > 1 is equivalent to
ρp < N−3 ≡ ρ∗DH

p , which is the crossover scaling observed in Section 2.4.1 for the
chain size. We note that this crossover scaling is in contrast to the physical overlap
condition or “minimal” screening arguments that predict a crossover that scales as
ρ∗p ∼ N−2. [58] We leave the resolution of this discrepancy to future research.

Nevertheless, even if our RGF estimate of the location of crossovers is not accurate,
the theory still reproduces the asymptotic limits in both dilute and semi-dilute
solutions for the electrostatic correlations, both set by the scale of the infinite-dilution
self energy. Thus the range of uncertainty in the intermediate concentrations is
limited andwe expect the theory to be able to reasonably describe the thermodynamic
properties in this concentration range. The same cannot be said for the fg-RPA
theory, which can severely overpredict correlations over a significant concentration
range.

2.4.3.3 Comparison to Other Theories

We now compare our predictions for the correlation energy to other theories. Note
that in Fig. 2.4b the fg-RPA results are not discussed because they are not well-
represented on the axes used: the over-estimation of the correlation energy is too
great.

As can be seen in Fig. 2.4b, classic VO theory approximates correlations with a
solution of disconnected point charges using Debye-Hückel theory. DH theory pre-
dicts a self energy that scales linearly with the Debye screening constant κ ∼ ρ1/2 for
all concentrations, without crossovers. Compared to our theory for polyelectrolytes,
the VO theory underestimates correlations for most concentrations.

We also plot the MSA theory as an example of a liquid-state integral equation theory
for the restricted primitive model of simple electrolytes, which accounts for ion size
through a hard-core model. At low concentrations the integral equation theory
matches the DH point charge theory; it is only at higher concentrations (κa > 1)
that there is a deviation, and correlations have a weaker concentration-dependence
relative to the DH result. Recent polyelectrolyte theories that use integral equation
results for the simple electrolyte [60] make the same VO approximation of treating
the correlations with a solution of disconnected charges, and are expected to more
or less coincide with the MSA results presented here. While for high concentrations
the MSA correctly reduces correlations relative to point-charge VO, the lack of
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any chain-length information means that the chain-length dependent crossover is
completely neglected.

Thermodynamic perturbation theory (TPT-1) is an attempt at correcting for chain
correlations by perturbing about liquid-state results for simple electrolytes. [20,
61] TPT-1 predicts a perturbation that grows with chain length as ∼ (N − 1)/N ,
[62] yielding a modest multivalency effect of chain-connectivity. However, the
perturbation rapidly becomes insensitive to chain length. As shown in Fig. 2.4b,
the TPT-1 results for chain lengths N = 16 and N = 220 are indistinguishable
on the scale of the plot. Further, because the TPT-1 theory uses correlations
of a simple electrolyte system, it is unable to capture the crossover behavior in the
electrostatic correlations at low concentrations, an essential consequence of polymer
chain connectivity. Instead, the crossover observed in TPT-1 theory is tied to the
monomeric length-scale a.

2.4.4 Thermodynamics and Critical Point Behavior
The theory presented in this chapter is applicable to the study of the thermodynamics
of general polyelectrolyte solutions, which will be the subject of future work. Below
we illustrate its application to the osmotic coefficients and the critical properties for a
fully charged ( f = 1) salt-free polyelectrolyte solutionwithmonovalent counterions.

With increasing chain length N , we expect the osmotic coefficient to become in-
dependent of N in semidilute solutions. The osmotic coefficient is defined as the
ratio of the actual osmotic pressure of a solution to its ideal value (given by van’t
Hoff’s law). For a salt-free polyelectrolyte solution with monovalent counterions,
the osmotic coefficient is

Φ =
Π

ρp + cp
=

Π

ρp(1 + 1/N) (2.69)

In Fig. 2.5, we plot the RGF theory’s predictions of Φ for salt-free polyelectrolyte
solutions at lb = 1, which can be seen to reproduce the expected convergence in the
large-N limit. Our result for N = 16 is in good quantitative agreement with reported
simulation data of salt-free polyelectrolyte solutions for that chain length. [63]

For large N , our predicted osmotic coefficientΦ exhibits a plateau at a value less than
1 over a wide range of concentration. (At sufficient dilution we expect Φ to return
to 1.) Such a plateau is often interpreted as a signature of counterion condensation,
which reduces the population of osmotically active counterions.[64] However, we
believe that in our theory, the plateau is a reflection of the behavior of a semidilute
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Figure 2.5: Osmotic coefficient Φ = Π/ρp(1 + 1/N) of salt-free polyelec-
trolyte solutions as a function of the monomer concentration ρp, with parameters
lb = 1.0, f = 1, zp = 1. Our RGF results for N = 16 (solid, green) are shown in
comparison with existing simulation data (circle, black).[63] In RGF theory, as the
chain length increases the osmotic coefficients approach each other in semidilute so-
lution (N = 16000 and N = 220 are nearly indistinguishable). TPT-1 underpredicts
the chain-length dependence, with N = 16 (solid, black) nearly indistinguishable
from N = 128 (squares, black).

solution of rods – we expect locally the chains to be stiff, up to some semidilute
mesh size. Indeed, recently published work (without accounting for counterion
condensation) found that infinite charged rods have a correlation energy that goes
as ∼ ρ ln ρ, which serves to renormalize (reduce) the effective translational entropy
of the counterions.[65] Such renormalization would lead the osmotic coefficient to
exhibit a plateau at a value less than 1.

Importantly, though not obvious from the figure, it can be shown that at the presented
lb = 1, the solution remains stable against increased chain length. Our results
are in contrast to those from the fg-RPA, where at any lb, increasing the chain
length will eventually turn the osmotic coefficient negative and drive the system to
phase separation. [28] Lastly, although the TPT-1 involves a modest chain-length
correction, it far underpredicts the dependence of correlations on chain length,
reflecting its behavior for the self energy.
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In Fig. 2.6, we plot the chain-length dependence of the critical Bjerrum length
(∼inverse temperature) lc

b and critical monomer density ρc
p, for chain lengths up to

N = 104. The predicted critical point appears insensitive to chain length for chain
lengths N ≈ 30; this insensitivity to chain length is in agreement with previous
simulations and theories. [29, 30]

Previous literature suggested the origin of this critical behavior as either due to
counterion condensation or other strong correlations on small length scales that
cannot be accounted for by weak fluctuation theories.[29, 30] In contrast, our theory
suggests that, in fact, accounting for chain conformational change is sufficient to
explain the chain-length independence of the critical point of salt-free solutions of
flexible polyelectrolytes. The conformational change is particularly important in
dilute and low-concentration semidilute solution, where the unscreened Coulomb
interactions can significantly distort the chain structure, and in doing so bound the
correlation energy gain that drives phase separation. Application of the Gaussian
chain structure at low concentrations drastically overestimates the correlation energy
and hence the driving force for phase separation in salt-free solutions of flexible
polyelectrolyte.
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One might notice that the predicted critical Bjerrum length for long chains lc
b ≈ 2

is above 1 (the critical value for Manning condensation for f = 1) and hence
expect counterion condensation to play a role in further stabilizing the dilute phase.
[30] (At sufficiently large lb, Brilliantov and coworkers [66, 67] showed that the
chain can undergo a first-order coil-globule transition in a salt-free dilute solution.
However, the value of lb for such a transition is beyond the range of interest of our
work in this chapter.) Although counterion condensation will undoubtedly further
reduce the self energy, the magnitude of such reduction is still bounded by the same
infinite-dilution self energy. Because the infinite-dilution self energy per monomer
has only a weak dependence on the chain length (logarithmic vs. N1/2 from fg-
RPA), the energy range in the relevant range of the concentration where counterion
condensation can play a role for large N in our theory is rather limited; we do not
expect counterion condensation to substantially affect our conclusions. (In contrast,
the magnitude of the counterion condensation contribution to the correlation energy
would be much greater if the correlation energy followed the fg-RPA behavior. But
even with the inclusion of counterion condensation, the fg-RPA theory does not
predict the correct behavior of the critical properties without introducing additional
modifications.)[29] Nevertheless, for quantitative prediction it would be important
to account for counterion condensation, and this is planned for future work.

2.5 Conclusions
In this chapter, we have extended the field-theoretic renormalized Gaussian fluctua-
tion (RGF) variational theory of simple electrolyte systems to systematically account
for electrostatic fluctuations in polyelectrolytes. The key results of our theory can
be summarized as follows:

1. Our theory derives a self-consistent procedure whereby electrostatic fluctu-
ations characterized by G Eq. (2.43) are coupled to the intrachain structure
and vice versa. The theory provides a unified framework for simultaneously
describing the chain structure and thermodynamics in dilute and semidilute
solutions.

2. Our theory correctly predicts the crossover from the R ∼ N scaling in the
chain size to the R ∼ N3/5 scaling as a function of increasing salt in the
single-chain limit. For finite concentrations of polyelectrolyte, the theory also
predicts the dilute-limit scaling R ∼ N and the semidilute scaling R ∼ N1/2

in salt-free solutions.
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3. The self-consistent procedure allows the clarification of the nature of screen-
ing, described by G. We confirm the screening behavior at long length
scales, where the polyelectrolytes screen as polyvalent point charges, and at
smaller length scales, where the charges on the polyelectrolyte chains behave
as disconnected units (the VO limit). The onset and location of a peak in
G is determined by the chain size, which is more accurately described by an
adaptive chain structure.

4. Our theory features prominently the role of the polyelectrolyte self energy
up, Eq. (2.51), which is the free energy of an independent chain interacting
with itself through G, and is the work required to assemble charge onto a
chain. The infinite-dilution self energy bounds the magnitude of connectivity
contributions to the correlation energy, the latter tending to cancel out the
former with increasing concentration.

5. We clarify that the correlation energy µcorrm is the difference of the self energy
from its infinite-dilution value; µcorrm characterizes finite-concentration effects
and reduces the self energy. With increasing polymer concentration, the
correlation energy has a chain-size dependent crossover from a renormalized
DH scaling in dilute solution to a weaker concentration dependence in the
semidilute regime and beyond.

6. For salt-free polyelectrolyte solutions, we show that the chain structure can
dramatically affect the self energy. By capturing the correct chain conforma-
tion in dilute and low-concentration semidilute solution, our theory correctly
bounds the correlation energy and reproduces the N-insensitivity both in the
osmotic coefficient in semidilute solution and the critical properties in the
large-N limit.

Wenote that our physical picture of the self energy corroborates the self energy expla-
nation used by some authors for “strong correlation” complexation. [68–70] These
works treated polyelectrolyte complexation in the zero temperature limit where
Coulomb interactions dominate. They identified the driving force for polyelec-
trolytes to aggregate into denser states as driven by a loss of an infinite-dilution self
energy (which was estimated using the Coulomb energy of line charges ∼ N log N

per chain) upon entering a dense, neutralized state. Our theory works at finite
temperature, and for a given concentration is able to quantify how much of the
infinite-dilution self energy is lost. Being a weak coupling theory, our theory will
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require further modification to include structures due to strong correlation effects,
such as counterion condensation and ion-pairing.

The response of chain conformation to changing density is a key feature in our
theory that is not present in theories of polyelectrolytes assuming fixed chain struc-
tures, such as fg-RPA [28, 29] or Ultra-Soft-Restricted-Primitive Model. [71, 72]
Such theories predict, for Gaussian chains, spuriously strong N-dependencies of
correlation energies, and this behavior is due to the failure of the assumed Gaussian
structure at low concentrations. The fixed-Gaussian structure assumption artificially
confines flexible chains to a radius that is too small by a factor of

√
N , thus rais-

ing the infinite-dilution self energy by the same factor. Thus, the fg-RPA theory
predicts a higher infinite-dilution energy (which is a positive quantity), and there is
correspondingly more electrostatic energy for the correlations (which contribute a
negative energy) to reduce, leading to overestimations that persist into the semidilute
regime. By a self-consistent determination of the single-chain structure, our theory
avoids the artificially high energies appearing in the fg-RPA theory.

The self-consistency procedure derived in our theory is similar in spirit to sc-PRISM
proposals [40] and the procedure employed byDonley et al,[37] all involving a single
chain interacting through an effective pairwise additive interaction G. Indeed, our
Green’s function G would be the same as that prescribed by sc-PRISM theory if
one used 1) the so-called “RPA” closure, [40, 73] 2) smeared charge distributions
to regularize the electrostatic interactions, and 3) a commonly employed estimate
of the medium-induced potential. [40, 74, 75] We note that Chandler demonstrated
that RISM+RPA theory can be derived using a Gaussian Hamiltonian for density
fluctuations, but no prescription was given on the self-consistent determination of a
polymer’s intrachain structure. [76]

A quantity of great interest for comparison with experimental scattering functions
of polyelectrolyte solutions is the structure factor. Based on the similarity in G

between our theory and the sc-PRISM+RPA theory, one might be tempted to assume
the structure factor associated with our theory to be comparable to that of the sc-
PRISM+RPA theory. However, we note that our theory is formulatedwithout explicit
density fields, and density is determined by conjugating an external field and taking
the first functional derivative of the thermodynamic potential with respect to this
field. It is thus most natural to calculate the structure factor using the conjugating
field by taking the appropriate functional derivatives; this procedure is known to
produce corrections that go beyond RPA,[27, 77] thus resulting in an improved
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expression for the structure factor relative to sc-PRISM+RPA.

While in this chapter we have focused on linear homopolyelectrolyte solutions, our
theory is applicable to general polyelectrolyte systems, such as polyelectrolyte coac-
ervates, dendrimers, and gels. Promisingly, our theory gives a systematic framework
for studying the impact of arbitrary polyelectrolyte architectures on electrostatic cor-
relations, not achievable by many commonly-used theories of polyelectrolyte ther-
modynamics (i.e. TPT-1 and other theories that use the VO disconnected charges
approximation). This feature of our theory is critical for advancing the theoreti-
cal design of novel polyelectrolyte materials, for which polymer architecture is a
particularly important design parameter.

Finally, our theory retains many of the advantages of the original Gaussian varia-
tional theory applied to simple electrolytes, [14] providing a systematic framework
for studying inhomogeneities in the dielectric medium and concentration profiles.
Study of inhomogeneous systems will be the subject of future work.
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C h a p t e r 3

POLYELECTROLYTE PHASE BEHAVIOR

Using a recently developed renormalized Gaussian fluctuation (RGF) field theory
that self-consistently accounts for the concentration-dependent coupling between
chain structure and electrostatic correlations, we study the phase behavior of poly-
electrolyte solutions, with a focus on the effects of added salts and chain structure.
For solutions of a single polyelectrolyte species plus salt, the RGF theory predicts
the existence of a loop in the phase boundary at Bjerrum lengths (inverse temper-
ature) below (above) the critical value of the salt-free system. This loop behavior
can occur at electrostatic interaction strengths lb/b at which the loop no longer
exists for the TPT-1 theory, and at fixed lb/b the loop can persist for infinitely long
chains, in contrast to theories using a fixed-Gaussian structure (fg-RPA). For sys-
tems of oppositely charged (but otherwise symmetric) chains, we again find that
the fg-RPA greatly over-predicts the driving force for phase separation, especially
at higher charge fractions (but still below the critical Manning charge density). In
general, stiff chains have a narrower two-phase region than intrinsically-flexible
chains, although intrinsically flexible chains can still experience a local stiffening
which persists in semidilute solution; for higher charge fractions the local stiffening
of flexible chains is crucial for reproducing qualitatively correct thermodynamics
and phase diagrams. For fully charged flexible chains, we find that phase diagrams
are quite similar to those for semiflexible rods, and that it is possible to capture the
coacervate phase diagrams of the full self-consistent calculations using a constant,
renormalized chain stiffness.

This chapter includes content from our previously published article:

1K. Shen, and Z.-G. Wang, “Polyelectrolyte chain structure and solution phase be-
havior”,Macromolecules 51, 1706–1717 (2018)DOI:10.1021/acs.macromol.
7b02685.

3.1 Introduction
Polyelectrolytes are commonly found in both natural [1–5] and synthetic [6–12]
polymer systems. Many applications (i.e. food, [4, 13, 14] pharmaceutical, [15–21]
adhesives [8, 22–25]) of polyelectrolytes rely on their propensity to phase separate
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into complexes, which can be fluid or solid, microscopic or macroscopic, and can
often be structured. [20, 21, 26–29] In this chapter we focus on the electrostatic-
correlation-induced liquid-liquid phase separation of polyelectrolytes in water or
other polar solvent.

Electrostatic correlations in polyelectrolyte solutions continue to attract consid-
erable theoretical efforts, as summarized in recent reviews.[28–30] One class of
theories follows the spirit of Voorn and Overbeek (VO), and begins with a physical
picture where the electrostatic correlations are based on an equivalent solution of
disconnected charges. [31] The original VO work used the Debye-Hückel free en-
ergy density[32] for the electrostatic correlation, while more recent work use more
detailed thermodynamic models of simple electrolytes,[33] or include the leading
connectivity effects via a first-order thermodynamic perturbation (TPT-1) about the
simple electrolyte reference.[34–39]

Another class of theories attempts to account for chain connectivity from the out-
set. [40–47] These theories use chain density correlation functions to characterize
connectivity effects on electrostatic fluctuations. In the most basic form,[40, 44,
45] most commonly applied to flexible chains, a fixed, Gaussian chain structure
(hereafter referred to as fg-RPA for fixed-Gaussian random phase approximation)
is assumed for all concentrations. This approximation is only valid when the chain
density is above ρ∗b3 ∼ (lb f 2/b)1/3,[40] where lb/b characterizes the strength of
electrostatic interactions and is O(1) for typical aqueous solutions. At a mod-
est charge fraction f . 1 where no Manning condensation occurs, this condition
requires very high densities ρ∗b3 ≈ 1.

For typical systems, the fg-RPA approximation greatly overestimates the correlation
contribution to the free energy, especially at low concentrations.[46] One insightful
attempt to correct the failings of the fg-RPA recognized that fluctuations in fg-RPA
are treated improperly on short length scales. However, rather than tackling the root
problem associated with the chain structure, this “modified RPA theory” advocated
for completely suppressing the short length scale fg-RPA fluctuations through the
use of ad hoc cutoffs. [46] Another theory that is shown to yield significantly
improved predictions of the critical parameters and osmotic coefficients was based
upon decomposing the system into two one-component plasmas [48, 49] and using
a neutral semi-dilute solution as the reference structure factor. [43]

We recently proposed a renormalized Gaussian fluctuation (RGF) theory using a
variational, non-perturbative framework, that naturally prescribes a self-consistent
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calculation of the chain structure. [50] In light of the RGF theory, many qualitative
shortcomings of the VO, TPT-1, and fg-RPA theories have been demonstrated to
be connected to their incorrect treatment of the chain structure. [50] The RGF was
shown to correctly capture the crossovers in overall chain scaling as function of
salt and polymer concentration, similar to some previous work that self-consistently
accounted for the concentration-dependence of chain structure. [50–57]

Using the RGF we further elucidated the effects of conformation-concentration cou-
pling on thermodynamics. A key observation was that the electrostatic correlation
per monomer for linear flexible chains can, at most, increase logarithmically in
chain length (stemming from the electrostatic energy of a linear object, which scales
as ln N per unit length). A consequence of capturing this expected N-dependence
is that, when applied to salt-free solutions of a single polyelectrolyte species, the
RGF correctly predicts that there exists a critical Bjerrum length below which the
solution is stable for all chain lengths, in agreement with simulations [58] and in
qualitative contrast to the prediction from the fg-RPA theory. Below this critical
Bjerrum length, the entropic penalty of partitioning counterions to a dense phase is
too great for any chain length to overcome.

In this chapter, we apply the RGF to study the influence of added salt on the phase
behavior of polyelectrolyte systems, with a focus on the role of the chain structure.
An important conclusion is that small wavelength fluctuations are highly coupled to
the chain structure at short length scales; stiff chains (semiflexible rods) have lower
correlation energies and consequently narrower two-phase regions than flexible
chains. Although in semidilute or high-salt solutions flexible polyelectrolytes are
overall Gaussian, we find that their phase behavior is nevertheless much closer to
that of semiflexible rods than that of ideal Gaussian chain. By renormalizing the
chain structure, the RGF properly treats fluctuations on intrachain length scales
and naturally suppresses the higher-wavenumber fluctuation modes without the
introduction of an artificial cut-off as in “modified RPA". Thus, our theory can
treat systems across a significantly wider density window and, importantly, can treat
systems at much higher charge densities (up to lb f /b ' 1) than previously possible
with the commonly used fg-RPA theory or any other field theories that involve a bare
Gaussian chain structure approximation. While we would have liked to compare
the RGF to predictions from the “modified RPA” theory, the latter was developed
and illustrated only for salt-free polyelectrolyte solutions, and no attempt was made
to give a quantitative estimate of the cutoff nor to generalize the single cut-off
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to solutions with multiple polyelectrolytes or small ions, making fair quantitative
comparisons difficult. We thus do not attempt to compare the RGF to the “modified
RPA.”

The rest of the chapter is organized as follows. In Section 3.2 we present the
essential results of the RGF relevant to bulk solutions. In Section 3.3 we examine
the phase behavior of solutions of a single polyelectrolyte species, while in Section
3.4 we consider solutions with symmetric, oppositely charged polyelectrolytes. In
both sections we compare phase diagrams predicted by the RGF for flexible chains
with self-consistent chain structure to diagrams predicted for chains with fixed-
Gaussian and semiflexible-rod structures. We follow in Section 3.5 by discussing
the renormalization of chain structure and its effect on correlation energies. Finally,
in Section 3.6 we conclude with a summary of the key results.

3.2 Theory
Although the RGF can be derived very generally for arbitrary polyelectrolytes and for
inhomogeneous systems, we recapitulate only the key results relevant for discussion
of bulk solution thermodynamics. We consider a general system with five species:
neutral solvent, symmetric and oppositely charged salt ions (±), and symmetric
polyelectrolytes (p±) of chain length N , with a fraction f of evenly-spaced, discrete
charges. Systems having fewer components are just the special cases where one or
more species are absent. For simplicity, all monomers are taken to have the same
volume v, and Kuhn length of the polymer is taken to be b = 1, thus setting the unit
of length.

The first subsection outlines the theory, introducing the renormalized Gaussian
fluctuation theory and the self-consistent single-chain partition function of a flexible
chain. The second subsection describes a second variational calculation used to
estimate the single-chain partition function. For the full derivation and further
details, we refer interested readers to our previous publication.[50]

3.2.1 Renormalized Gaussian Fluctuation (RGF) Theory
The main interaction considered in our system is the electrostatic interaction, which
we model as taking place in a linear dielectric medium with constant scaled electric
permittivity ε = ε/(βe2). To simplify notation, we will use kBT as the unit of energy
and e as the unit of charge, so we set β = 1 and e = 1.

Individual monomeric charges are modeled with a short-ranged charge distribution
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z h(r− r′) for a charged monomer of valence z located at r′. The charge distribution
is chosen to be a Gaussian with a radius a (not necessarily the same as the excluded
volume size, but for simplicity we take a = 0.5 in this chapter). This smearing
captures the Born solvation energy of individual ions in a dielectric medium, and
produces finite-size corrections to the ion correlation energy. [50, 59]

The excluded volume between all species is accounted for by an incompressibility
constraint

∑
γ φ̂γ(r) = 1 applied at all r.[60] We express the constraint with a

Dirac δ-function in its Fourier representation, δ
(
1 −∑

γ φ̂γ

)
=

∫
Dηeiη(1−∑γ φ̂γ),

introducing the incompressibility field η. The volume fraction operator φ̂γ is related
to the monomer density operator via φ̂γ = vγ ρ̂γ, where vγ is the monomer volume
of species γ.

Finally, the chain connectivity and conformation degrees of freedom of the polyelec-
trolytes are accounted for by the bonding interaction modeled by the Hamiltonian
HB, which depends on the relative positions of the monomers in a polyelectrolyte
chain. To focus on electrostatics we ignore other interactions such as the Flory-
Huggins interaction.

Using the defined interactions, it is straightforward to write the corresponding field-
theoretic, grand canonical partition function using standard field-theoretic iden-
tity transformations,[60] which introduces a fluctuating electrostatic potential field
Ψ.[50] We approximate this partition function using the RGF procedure, which
is non-perturbative. The RGF theory follows the Gibbs-Feynman-Bogoliubov[59]
variational procedure and introduces a Gaussian reference action with a Green’s
function G characterizing the field fluctuations about a mean −iψ; ψ and G are
determined self-consistently by the RGF variational condition (for further discus-
sion of the RGF see Ch. 5). (We note that there is a closely-related self-consistent
approach that yields slightly different self-consistent equations, called the Gaussian
equivalent representation (GER), first developed for quantum physics[61] and later
applied to study thermodynamics[62–64] and conformational changes in polyelec-
trolyte solutions.[65])

To focus on the electrostatic field fluctuations, we perform the variational calculation
only for the Ψ field; the excluded volume interaction will be treated at the mean-
field level by the saddle-point approximation for the η field. If one formulated a
full variational action that also considered fluctuations of the η field, with additional
variational Green’s functions characterizing such fluctuations, one would repro-
duce excluded volume fluctuations, leading to what is termed double-screening.[52]



72

Nevertheless, although our restricted electrostatic fluctuation theory does not have
excluded volume screening, it was previously shown to correctly give self-avoiding-
walk statistics and random walk statistics for the overall polymer conformation of
isolated chains and semidilute solutions, respectively.[50]

The saddle-point condition for η leads to a pure imaginary value, so we henceforth
define a real field P = iη satisfying:

P = −1
v

log(1 − φ) (3.1)

for the incompressibility condition, where φ is the total volume fraction φ =∑
γ,solv vγργ of non-solvent species.

The RGF variational condition applied to ψ yields a charge neutrality condition
and will not be further discussed. Meanwhile, the variational condition for G̃(k) is
expressed conveniently in Fourier space

G̃(k) = 1
ε[k2 + κ̃2(k)]

, (3.2)

from which we identify κ̃2(k) = 2Ĩ(k)/ε as the wavevector-dependent screening
function, a generalization of the Debye screening constant, with the ionic strength
function Ĩ(k) given by

2Ĩ(k) =
∑
γ

ργ

Nγ
S̃chg
γ (k) (3.3)

where S̃chg
γ (k) is the single-molecule charge structure factor.

In our spread-charge model, even simple salt ions can have internal charge structure

S̃chg
± = z2

± h̃2
±(k). (3.4)

The single-chain charge structure factor for a polyelectrolyte with discrete charges
is

S̃chg
p± (k) =

∑
l

z2
pl h̃

2
pl(k)

+
∑

l

∑
m,l

zpl h̃pl(k)zpm h̃pm(−k)ω̃lm(k). (3.5)

The first sum is the l = m self piece, and the second sum is over all other pairs.
The structure is characterized by the intramolecular correlation ω̃lm between two
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monomers l and m on the same chain. [66] In general, ω̃lm(k) → 1 as k → 0, and
ω̃lm(k) → 0 for k � 1/a.

The structure factors S̃chg(k) are obtained fromdifferentiation of the single-particle/chain
partition functions, which are:

〈Q±〉 =Ve−v±P−z±ψq±

q± =e−
1
2
∫

drdr′ z±h±∗G∗z±h±〈
Qp±

〉
=Ve−NpvpP−ztotp±ψqp±

qp± =
1
V

∫
DR e−HB− 1

2
∫

drdr′ ρ̂chg
p1 ·G·ρ̂

chg
p1 (3.6)

Note that the electrostatic partition functions qγ feature G(r, r′) as a fluctuation-
mediated, effective intra-molecular interaction, and is missing in self-consistent
mean-field theories. This effective interaction is what allows chain structure to
adapt to solution conditions.

The per-ion and per-chain chemical potentials are given as:

µ± = ln(ρ±v±) + v±P + z±ψ + u±

µp± = ln
(
ρpvp

Np

)
+ vpNpP + ztot

p±ψ + up± (3.7)

The first three terms in both chemical potential expressions Eq. (3.7) are the same
as in a mean-field analysis of a bulk solution. The last terms uγ are the self energies

uγ = − ln qγ . (3.8)

The self energy represents the free energy of an entity (an ion, or a polyelectrolyte
chain) interacting with itself via the effective potential G, and reflects the effect
of electrostatic correlations. We also define the average self energy per monomer
(subscript ‘m’ for ‘monomer’) as

µel
m ≡

up±
Np

. (3.9)

Finally, the osmotic pressure is

Π = − 1
4π2

∫ ∞

0
k2 dk

[
ln

(
1 +

κ̃2(k)
k2

)
− κ̃2(k)

k2 + κ̃2(k)

]
− 1
v

(
1 + log(1 − φ)

)
+

1 − φ
v
+ ρ± +

ρp±
Np

(3.10)
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where the abbreviations ρ± and ρp± are shorthand for summing over both positively
and negatively charged species.

The exact evaluation of single-chain partition functions is difficult even for simpler
pair interactions, and in general can be done by numerical simulation. [67] In Sec.
3.2.2 we describe an approximate scheme for calculating

〈
Qp

〉
and S̃chg

p , but such
an approximation is not inherent to the general theory.

3.2.2 Calculation of Chain Structure Factor
For our specified model of flexible chains with fraction f of discrete charges of
valence zp, we write the charge structure factor as

S̃chg
p (k) =z2

p±N f [1 + (N f − 1)ω̃(k)]h̃2
p(k) (3.11)

where we have re-expressed the sum over all monomer-monomer pair correlations
ω̃lm with an average per-monomer structure ω̃.

Instead of performing a full simulation to calculate S̃, we perform a variational
calculation[50] by decomposing the single-chain free energy up into entropic Fent

and interaction Fint contributions, parameterized by an effective persistence length
leff, which controls the chain expansion

α2 =
〈
R2

ee
〉
/R2

ee,0 = 2(leff/b)
[
1 − (leff/Nb)

(
1 − e−Nb/leff

)]
. (3.12)

leff sets the per-monomer structure function ω̃(k; leff) and is approximated as

ω̃(k) = exp[−kleff/2]
1 + k2Nbleff/6

+
1 − exp[−kleff/2]

1 + kNb/π , (3.13)

interpolating between Gaussian-chains ω̃ ∼ 6/(Nbleffk2) at low k and rodlike be-
havior ω̃ ∼ π/kNb at high k, with a crossover set by leff. An important feature is
that the magnitude of ω̃ at sub-monomeric length scales is negligibly affected by
leff, consistent with expectations and simulations. [68] If one uses the uniform ex-
pansion approximation for chain structure, the small wavelength fluctuations will be
artificially suppressed, resulting in a non-physical effect of dampening the solvation
energy of individual monomers.

We thus write a one-parameter (leff)model for up± ≈ minleff(Fent+Fint)with entropic
and interaction terms:

Fent = −
3
2

N ln
(
1 − α

2

N

)
− 3 ln(α) (3.14)

Fint =
1

4π2

∫
k2dk G̃(k)S̃chg

p (k; leff) (3.15)
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The first term of the entropic free energy is elastic contribution accounting for fi-
nite extensibility. The second term −3 ln(α) is associated with the phase volume
by the chain ends, first deduced by Flory[69, 70] and used by several subsequent
authors.[71–73] We note that the interaction energy Eq. (3.15) is capable of repro-
ducing the logarithmic factor for linear structures.[74, 75] Minimization of the free
energy determines leff and in turn the charge structure factor S̃chg

p .

3.2.3 Calculation Details
For a prescribed macroscopic condition set by lb and {ργ}, we solve for the Green’s
function G̃ and the persistence length leff self-consistent by an iterative procedure:
for a givenGreen’s function G̃ weminimize the single-chain free energy to determine
leff and estimate the charge structure factor S̃chg

p via Eq. (3.11) and (3.13), which
is then used to update G̃ using Eq. (3.2). We stop when the relative error of leff
between iterations is below 10−10.

The volumes for all monomers are taken to be the same. By assuming the liquid
density to correspond to closest packing of effective hard spheres, ρ0 = π/3

√
2vhs,

where vhs is the volume of the sphere, the volume fraction for species γ is then
φγ = ργ/ρ0. For simplicity, we take vhs = b3 and report our results in terms of the
dimensionless density ρb3.

For phase equilibria, we solve for chemical potential equality for solutes µI
γ = µI I

γ

(where γ , s) and mechanical equilibrium ΠI = ΠI I between the supernatant and
coacervate phases, with both phases constrained to be charge-neutral. Further, for
solutions with only one polyelectrolyte species, the asymmetry between positive
and negative species requires that we consider the Donnan potential difference ∆ψ
between the two phases.[76]

Results denoted “fg-RPA” in this chapter are calculated with the same expression as
the reference WLC chain Eqs. (3.11) and (3.13) but with leff fixed at leff = b/2. We
also compare our results with those of a semiflexible rod by setting leff = Nb. By
using the same chain structuremodel for both the Gaussian and stiff limits, we ensure
that fluctuations on monomer length scales are the same between all calculations,
and the differences can be unambiguously attributed to different treatment of the
chain structure at larger length scales.
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3.3 Single Polyelectrolyte Species
We first study solutions with only a single polyelectrolyte species. As shown in
our previous work (presented in Ch. 2), for salt-free solutions, there is a critical
Bjerrum length lc

b below which the solution is stable for all chain lengths. [50] The
stability of the salt-free solution lies in the entropic penalty of phase-separating out
the counterions required to neutralize the polyelectrolytes in the dense phase. At
lb < lc

b the correlations are not strong enough to overcome this entropic penalty in
salt-free solutions.

Experiments and recent theory [76–78] have shown that low amounts of salt can
lead to phase separation where the polyelectrolyte “salts out” into a denser phase.
The added salt reduces the entropic penalty of phase-separating out the small ions
that neutralize the polyelectrolyte charge. Once the amount of added salt is on the
order of the charge concentration contributed by polyelectrolytes, the supernatant
salt concentration no longer changes appreciably upon phase separation, and the
polyelectrolyte is able to form a denser phase, even at at lb < lc

b. In Fig. 3.1 we plot
the phase diagram in the salt-polymer concentration plane, where the salt concen-
tration indicates the amount of added salt in excess of the neutralizing counterions,
and zero salt concentration refers to a salt-free solution. In the inset of Fig. 3.1, we
see that the coexistence curves for the different chain lengths converge to a boundary
linear in polyelectrolyte concentration below which the solution is “effectively salt
free” and does not phase separate.

Eventually, at higher salt concentrations, increasing the amount of added salt reduces
the polyelectrolyte concentration in the dense branch of the phase diagram, and
there is a critical salt concentration above which the solution no longer phase
separates – in other words, the polyelectrolyte “salts in.” The usual argument
is that salt screens the electrostatic interactions.[79, 80] From the perspective of
the self energy, [50] the salting-in behavior is explained by recognizing that with
increasing salt, the correlation energies are increasingly dominated by the small
ions. That is, the differential gain in the correlation energy (decrease in the energy)
of the polyelectrolyte upon phase separation is diminished because the electrostatic
environments in both the supernatant and polymer-rich phases are increasingly salt-
controlled and hence similar.

Together, the salting-in and salting-out phenomena means that a loop is observable
in the salt-polymer concentration phase diagram even when lb < lc

b, which we plot
in Figure 3.1. This loop has also been predicted for simple electrolyte solutions
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Figure 3.1: ρs vs. ρp phase diagram for single-species polyelectrolyte solution at
lb = 1 < lc

b, b = f = 1. A linear boundary that is roughly ∼ 0.3ρsb3 demarcates an
effectively salt free regime; below the line no phase separation happens. Increasing
chain length increases the area of the two-phase region. The tie lines (blue dashed)
are for N=100, and indicate a lower salt concentration in the polymer-rich phase.

with one multivalent species.[81] The tie lines predict a lower salt concentration in
the dense than in the dilute phase, which is in agreement with previous work. [76]
This tie line behavior has been attributed to the larger excluded volume interactions
in the dense phase [82] but in our recent work can be understood more generally as
the result of asymmetries between small ions and polyelectrolytes in the exchange
chemical potential. [83]

The density of the dense phase increases with increasing chain length, but appears
to approach a common envelope for long chains, consistent with the picture of a
semidilute solution independent of chain lengths. For the longest chains studied at
lb f /b = 1, the polymer density remains low and never exceeds 0.02/b3. On the
other hand, the supernatant phase continues to be rapidly depleted with increasing
chain length due to the ever decreasing translational entropy of chains.

The upper critical salt concentration increases as a function of chain length N , again
reflecting the increasing propensity for polyelectrolytes to phase separate. The
upper critical polymer concentration is non-monotonic with chain length – it first
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Figure 3.2: Lower and upper critical concentrations for both salt (ρc
s , blue) and

polyelectrolyte (ρc
p, green), at lb = b = f = 1. The upper critical polyelectrolyte

concentration is non-monotonic with a maximum at N ≈ 38. The lower critical con-
centration vanishes very rapidly with increasing chain length, with a N-dependence
ρcrit

s ∼ N−4. The lower critical polymer concentration has an even stronger N-
dependence ρcrit

p ∼ N−5.

increases (for N < 38) and then decreases (for N > 38). The decrease for long chain
lengths reflects the decreasing translational entropy of long chains, which results in
the longer chains phase separating at lower densities. Meanwhile, the correlation
energy becomes independent of N for long chains in semidilute solution and has
negligible chain-length effect on phase separation. The initial increase in the critical
polymer concentration is because for short chains, increasing chain length initially
increases the correlation energy faster than the translational entropy decreases. The
behavior for these upper critical concentrations is shown by the two top curves in
Fig. 3.2.

The lower critical salt concentration decreases with increasing chain length, consis-
tent with the broadening of the phase separating region, and eventually vanishes for
long chains (Fig. 3.2). In stark contrast, for chains with fixed Gaussian structure,
sufficiently long chains do not have a lower critical point altogether. Increasing
chain length in the fg-RPA leads to phase separation even in salt-free conditions,
[50] as indicated by the “chimney” feature in the binodal of a Gaussian chain (Fig.
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3.3).

From Fig. 3.2, we see that the lower critical polymer concentration has a stronger
N-dependence than the critical salt concentration. Although we cannot explain the
scaling exponents for the lower critical concentrations, we suggest that the critical
concentration and thus exponents may be insensitive to chain structure. To support
this suggestion, we plot the binodal and spinodal for rods (leff = Nb) and note that
they have a similar shape to the RGF for the flexible chains, with a lower critical point
nearly coinciding with that of the flexible chain (our theory). Remarkably, even the
spinodal of the fg-RPA (leff = 0.5), which features an instability that persists to zero
salt concentration, has an ellipsoidal region with a lower apex near the lower critical
point of the stiffer chains. The insensitivity of this apex to the chain structure can be
understood by noting that the polymer concentration at the critical point ρp ∼ N−5

is far below overlap, in a regime where the polyelectrolyte predominantly screens
as an N f -valent ion, independent of chain structure.[50] At higher concentrations,
however, chain structure has a stronger impact on the electrostatic correlation and
the spinodal of the fg-RPA deviates significantly from that of stiffer chains.
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We also point out that at the conditions presented (lb f /b = 1), the TPT-1 theory
does not predict a loop in the phase diagram. The electrostatic correlation energies
in TPT-1 theory are much weaker than in the RGF theory. For a polyelectrolyte
solution where all monomers have diameter b and are charged, TPT-1 predicts a
lower critical Bjerrum length lb/b ≈ 2.8 below which the loop in the phase diagram
ceases to exist.[76] For the parameters we investigated, we did not yet encounter
the lower critical lb for which the loop vanishes, though the loop does shrink with
decreasing lb (and should cease to exist for lb = 0).

Lastly, in Fig. 3.3 one can clearly see that increasing stiffness reduces the two-
phase region of the phase diagram. Within the RGF theory, this is largely because
stiffer chains have smaller correlation energies. Stiffer chains naturally tend to
conformations with lower electrostatic energy than more flexible chains, meaning
there is consequently less correlation energy to be gained by phase separation. Also
important to note is that fully flexible chains can behave much more similarly to rods
than to chains with fixed Gaussian structure. As will be shown later, at sufficiently
high (but stillmodest) charge fractions, flexible chainswill locally stiffen and expand,
meaning their charge environment will more closely resemble rods than truly ideal
chains.

3.4 Symmetric Polyelectrolyte Species
Next we study solutions of oppositely charged but otherwise symmetric polyelec-
trolytes. The oppositely charged polyelectrolytes are known to phase separate
together into liquid phases called complex coacervates.[31]

We begin by examining the salt-free limit, where for chains of fixed fractal dimension
d > 3/2, RPA theory predicts that the critical monomer density scales as ρc

p ∼ N−1

and that the critical charge fraction scales as f c ∼ N−2/3.[42] Our results (Fig. 3.4)
show a slightly weaker N-dependence for ρc

p and slightly stronger dependence for
the charge fraction f c, but are in general quite close to the RPA predictions.

The origin of this surprising agreement lies in the extremely low critical charge
fractions. At such low charge fractions, the polyelectrolyte structure is essentially
unperturbed by the charge interaction. The number of monomers in an electrostatic
blob scales as g ∼ (b/lb f 2)2/3 in theta solution and g ∼ (b/lb f 2)5/7 in good solvent.
The good solvent scaling means that the critical charge fraction scaling f c ∼ N−0.695

produces g ∼ N0.993 ≈ N , i.e., the electrostatic blob is essentially the entire chain
and overall R/b ∼ N−3/5. Even the theta solution scaling yields g ∼ N0.927. Further



81

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

N

ρ
c p
b3
,
f
c

f c

N −0.695

N −0.93

N −2/3

N −1

Figure 3.4: Scaling of the critical charge fraction f c (blue) and critical monomer
density ρc

p (green) for salt-free solutions of oppositely charged, symmetric polyelec-
trolytes with lb = b = 1. The exponents −2/3 and −1 respectively for f c and ρc

p
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assuming that the blobs are linearly aligned then yields R/b ∼ N/g1−ν ∼ N0.537

overall. This assumption of linearly aligned blobs yields an overlap concentration
ρ∗ ∼ N−0.61, which is consistently above the critical lower concentration. It is thus
not surprising that for the salt-free symmetric polyelectrolyte system, our theory
yields scaling results that are so close to the RPA predictions. Again, to match the
cited scaling predictions, the chain structure does not need to be strictly Gaussian
d = 2 (ν = 1/2), but merely needs to satisfy d > 3/2 (i.e., the Flory exponent
ν < 2/3).[42]

At higher charge fractions, the deviation from Gaussian behavior becomes more
significant. In particular, at low concentrations we expect flexible chains to stretch
to relax their electrostatic energy, reducing the correlation energy gain (relative to
chains with fixed Gaussian structure) upon complexation.[50] In other words, the
fg-RPA’s picture of an ideal Gaussian chain over-predicts the per-chain electrostatic
energy in dilute solution, which is screened upon complexation. Consequently, one
expects the fg-RPA to greatly overpredict the window of phase separation. This is
confirmed in Fig. 3.5, where one can see that the dense branch of the binodal is
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denser in fg-RPA than in the RGF theory. In addition, the critical charge fraction
is slightly higher in the RGF theory, in agreement with the increased stability when
chains are allowed to relax their chain structure.

For the dilute branch, by assuming an ideal Gaussian structure the fg-RPA predicts
polyelectrolyte concentrations that are many orders of magnitude too dilute. Recent
work by Delaney and Fredrickson has shown that in coacervate-forming systems,
the supernatant phase is composed of clusters of oppositely charged chains, which
lower the magnitude of the per-monomer electrostatic energy in the dilute phase.[84]
Although this clustering effect is currently not captured by the RGF, the RGF still
hints at the drastic over-estimate of the per-chain electrostatic energy in the fg-RPA
theory and its overly dilute predictions for concentration in the supernatant phase.

We now consider adding salt under conditions where the salt-free solution already
phase separates (Fig. 3.6). Similarly to solutions of only a single polyelectrolyte
species, the added salt screens electrostatic interactions and decreases the window
for phase separation. At any reasonable overall salt concentration, the salt is depleted
in the coacervate phase, as indicated by the tie lines. (Interestingly, at extremely
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Figure 3.6: Phase diagram of complex coacervation with added salt at lb = 0.7,
b = f = 1. There is an N-independent envelope for the dense branch, and the
tie lines indicate that the coacervate phase has a lower salt concentration than the
supernatant phase.

low salt concentrations, the salt can actually be enriched in the dense phase, but
these concentrations are too low to be shown clearly on the scale of the figure.)
This behavior of the tie line is in contrast to theories that use the VO picture
of disconnected charges,[85] but consistent with other theories that incorporate
connectivity effects [76, 82, 83] and experiments and simulation.[86, 87]

Increasing chain length should, again, decrease the translational entropy of the
chains and marginally increase the electrostatic correlation, leading to wider binodal
curves (Fig. 3.6). Consequently, the critical salt concentration increases with
increasing chain length, while the critical polymer concentration decreases for long
chains. For shorter chains, the same competition between the correlation energy and
translational entropy seen in the single polyelectrolyte species case is still operative,
and there is a non-monotonicity in the critical polymer concentration with a peak
around N = 12 (Fig.3.7) for the conditions presented in this chapter.

Away from the critical point, the dense branch of the polyelectrolyte approaches
an N-independent curve (Fig. 3.6) with increasing chain length. This behavior is
again consistent with the eventual N-independence of the correlation energies in
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semidilute solution.

When comparing chain structures, we again find that stiffer chains experience smaller
correlation energies, and consequently have narrower two-phase regions in their
phase diagram. In Fig. 3.8 one can clearly see this stiffness effect by comparing
the semiflexible rods with flexible chains (whose structures are adaptively estimated
by the RGF). Interestingly, one may also note that away from the critical point, the
phase boundaries of the RGF theory of flexible chains is quantitatively quite close
to those of polyelectrolyte rods. In fact, if we fix leff ≈ 2.0 by its value at the RGF
critical point, the resulting phase boundary nearly overlaps with that of the full RGF
prediction (orange line, Fig. 3.8).

This similarity between stiff and semiflexible chains may be surprising – the dense
phase of polyelectrolyte coacervates are semidilute and chains are overall Gaussian,
which may lead one to expect the fg-RPA to give a good description of the dense
phase. While this may be true for a qualitative understanding, we remark that the
fg-RPA can lead to significant numerical discrepancies. Not only is the dilute branch
of the binodal overly dilute, the dense branch can also be overly dense. In fact, the
entire binodal region of the fg-RPA can be so wide that a significant phase unstable
region persists up until the excluded volume limit for the parameters studied (Fig.
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3.8). Further, the fg-RPA calculation for N = 100 has such strong correlations
that the instability window is even wider than predicted by the RGF for N = 1000
(compare to Fig. 3.6). This overestimate of the electrostatic energy is most severe
for the dilute phase, but the overestimate in the dense phase is still quantitatively
significant.

Further, the dilute branch of the RGF theory and rods are both orders of magnitude
higher than the fg-RPA theory, but we anticipate that in reality all three phase
boundaries exhibit an overly dilute supernatant phase because none account for the
formation of clusters.[84] Nevertheless, we expect the correct supernatant densities
to still be so dilute that the osmotic pressure due to polymers is very nearly zero.
Correspondingly, we believe that even with a corrected dilute branch, the dense
branch will continue to be a good estimate away from the critical point.[42]
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3.5 Effects of Chain Structure
The significant overestimate of flexible chain electrostatic correlation effects accom-
panying ideal Gaussian chain assumptions (fg-RPA) in both cases studied (single
polyelectrolyte species and oppositely charged symmetric polyelectrolytes) and the
quantitative closeness of RGF predictions to those for semiflexible rods can be ex-
plained by changes in the flexible chain structure. These changes persist even in
semidilute solution and are sufficient to lead to a marked increase in thermodynamic
stability of flexible polyelectrolyte solutions predicted by the RGF as compared to
fg-RPA.

To quantify the change in chain structure, we plot the polyelectrolyte size along the
binodal curves of both types of systems for a sample chain length N = 100 in Fig.
3.9. Along the dilute branch, the chains are much more extended than the ideal
Gaussian chain, and in both systems Ree decays monotonically with increasing salt.
This may at first be surprising for the single polyelectrolyte species system, where
the polymer concentration is non-monotonic in salt concentration along the dilute
branch. However, along the portion of the dilute branch where the polymer concen-
tration decreases with increasing salt, the polymer is so dilute that the screening is
mostly dictated by the monotonically increasing salt concentration, leading to the
monotonic decrease in chain size.

Along the dense branch, in the single polyelectrolyte system and away from the
upper critical point, the chain size decreases monotonically. Away from the upper
critical point, the polymer concentration seems to be around or below the overlap
of self-avoiding chains, meaning that continued decrease in chain size is likely
mostly due to the increased salt screening. On the other hand, the chain size
increases monotonically along the dense branch of the symmetric polyelectrolyte
system. This is because for nearly the entire branch, the polymer concentration
remains above overlap and the polymer size is essentially controlled by the polymer
concentration. As the polymer concentration drops monotonically with increasing
salt, the correlation length of the semidilute solution increases and the chain size
increases monotonically.

We note that for both the single polyelectrolyte species and the symmetric polyelec-
trolyte mixtures, the polyelectrolyte is still noticeably swollen relative to the Gaus-
sian chain even along the dense branch. In particular, even in the coacervate-forming
system where the dense phase can reach 10% volume fraction, the polyelectrolyte is
still nearly twice as large as the ideal chain.
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The change in the chain structure with the polyelectrolyte and salt concentrations has
huge effects on the electrostatic correlation energies. As an example, in Fig. 3.10,
we present the per-monomer correlation energy at fixed salt chemical potential,
i.e. we consider a semi-grand system where the salt concentration equilibrates
with a salt-only reservoir. To isolate the correlation energy associated with finite
concentration of polyelectrolyte and hence the driving force for the formation of
a dense polyelectrolyte phase, we subtract off the polyelectrolyte self energy in
the limit of zero polyelectrolyte concentration from the electrostatic part of the
per-monomer chemical potential[50]

µcorr
m = µel

m − µel
m (ρp = 0) (3.16)

At low polymer concentrations, the correlations are primarily due to the salt ions
and µcorr

m is insensitive to polymer concentration. At a cross-over polymer concen-
tration that increases with increasing salt, the electrostatic environment becomes
eventually dominated by the polyelectrolytes, which produces a negative change in
the correlation energy. The fg-RPA confines charges to an artificially small ideal
Gaussian chain volume, down to the monomeric scale, and hence greatly overes-
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potential with reservoir salt concentration ρsb3 = 10−3 (red), ρsb3 = 10−2 (blue),
ρsb3 = 10−1 (green). Our RGF results are shown as solid curves and the fg-RPA
results are given as dashed curves.

timates the magnitude of the correlation energy (primarily by overestimating the
positive µel

m (ρp = 0) term). In the salt-free limit, the fg-RPA has been shown to
overestimate the correlation energy by up to a factor of

√
N/ln(N).[50] For N = 100

this overestimation is up to a factor of ≈ 2.2.

Note that Fig. 3.10 is shown on a linear-log plot, highlighting that for sufficiently
high concentrations (such that screening is dominated by the polyelectrolytes), the
correlation energy is actually logarithmic in polymer concentration ∆µel

m ∼ − ln ρ.
This result can be rationalized by realizing that, at the parameters studied, the
chain structure is rod-like in semidilute solutions up until at least some electrostatic
persistence length.

The electrostatic fluctuation integrals can then bewell approximated by replacing the
chain structure factor with the asymptotic high-k expression for rods, S̃(k) ∼ π/k.
Although the resulting integral is not convergent, it is straightforward towork out that
the convergent piece of the fluctuation contribution to the Helmholtz free energy has
a functional form −αρ(ln ρ − 1), which has the same form as translational entropy,
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plus a thermodynamically inconsequential logarithmic piece ∝ ln(a) related to the
energy of confining charges to a cylinder of microscopic cut-off radius a. As long
as the prefactor −α is not overly negative (i.e. yielding negative osmotic pressures),
this can be viewed as renormalizing the translational entropy of the counterions into
(1 − α)ρ(ln ρ − 1). Thus, 1 − α can be interpreted as the fraction of “osmotically
active” counterions in counterion condensation theories.[75, 88–90]

This effect was previously noted in our paper on the osmotic coefficient of salt-free
solutions [50] and outlined in a previous RPA study for rods. [42]We emphasize that
we only study conditions below the critical Manning condensation parameter. Thus,
even at charge densities below the critical Manning charge parameter, our theory
effectively describes an atmosphere of ions about the polyelectrolyte backbone.

These results indicate that it is vitally important to capture the correct chain structure
at length scales below the correlation lengths. While our chain structure Eq. (3.13) is
approximate, it captures the fact that polyelectrolyte chain structures at the conditions
studied do resemble theWLC reference structures used. [90] A more accurate chain
structure can be obtained by performing full single-chain simulations as part of the
self-consistent calculation, which will likely yield similar WLC chain structures.
However, if one uses the Gaussian uniform expansion structure (commonly used
to successfully describe the overall chain size),[54] electrostatic interactions on
smaller scales will be artificially suppressed. Within the RGF framework, a uniform
expansion approximation will erroneously predict that correlation energies decrease
(i.e. become more negative) with increasing chain length in semidilute solutions,
when they should instead be independent of chain length.

In conjunction with the results in previous sections, we suggest that, at least for the
purposes of calculating thermodynamic properties or fitting experimental data of
semidilute solutions for the coacervate system, it is possible to use Eq. 3.13 with
a constant leff as a fitting parameter, thus bypassing the need for the self-consistent
calculations.

3.6 Conclusions
Using the renormalized Gaussian fluctuation (RGF) field theory, which is able to
self-consistently describe the intrachain structure and thermodynamics from dilute
to semidilute solutions, we have studied the phase behavior for solutions of both
a single polyelectrolyte species and a symmetric mixture of oppositely charged
polyelectrolytes, in the presence of salt.



90

Unique to the single polyelectrolyte system is a loop in the phase diagram in the salt-
polymer concentration plane. Both the lower critical salt and polymer concentrations
vanish with increasing chain length, respectively as N−4 and N−5. Interestingly, the
spinodal shape near the RGF lower critical point seems to be fairly independent
of chain structure. Even the fg-RPA, which assumes an ideal Gaussian structure
and may not have a lower critical point at all, can still exhibit a peculiar spinodal
featuring an ellipsoidal region with a lower apex near the RGF lower critical point.

For both the single polyelectrolyte and oppositely charged polyelectrolytes, the
addition of large amounts of salt eventually salts the polyelectrolyte back into a
single phase. The upper critical salt concentration grows with increasing chain
length, while the upper critical polymer concentration is non-monotonic in the
chain length, reflecting competing chain length dependences between increasing
correlation energies and decreasing translational entropy. The phase diagrams for
fully-charged flexible chains within the RGF theory are much more similar to those
predicted for semiflexible rods than for chains with fixed, ideal Gaussian structures.
We also consistently find that increased rigidity decreases the tendency for phase
separation.

Even at relatively mild conditions ( f lb/b ≤ 1 where Manning counterion conden-
sation theory predicts no condensation), we showed that to get a good estimate of
the thermodynamics and correlation energies, it is vital to capture correct chain
structure. Our calculations confirm that a main consequence of field fluctuations of
more highly charged chains is the renormalization of the chain structure, leading to
local stiffening and chain swelling even in semidilute solution, and can significantly
change the correlation energies and thermodynamics. For such fully-charged chains,
in particular at higher salt and polymer concentrations, we see that it is possible to
capture the predictions of the RGF theory for the coacervates by using a constant
leff.

At lower charge fractions where the chain structure is only slightly perturbed, the
critical point behavior of the oppositely charged symmetric polyelectrolytes pre-
dicted by our theory is close to that previously predicted for chains with fractal
dimension d > 3/2.

In the RGF the nonlinear fluctuations are to a certain degree naturally accounted for
through the self-consistent chain structure, which describes the correlated monomer
densities associatedwith the fluctuations. The self-consistent calculation of the chain
structure within RGF in essence renormalizes the entire chain structure and in doing
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so predicts better correlation energies and thermodynamics. Even in neutral melts,
fluctuations modify the chain structure. The closely related renormalized one-loop
(ROL) theory predicts a perturbative correction to the single chain structure factor
(the ROL only self-consistently renormalizes the k → 0 value of the interaction χ,
but the chain structure correction is calculated perturbatively). [91–94] The RGF’s
non-perturbative “renormalization” of chain structure self-consistently estimates the
electrostatic fluctuations at all sub-chain length scales, and is especially important
given the scale-free nature of the Coulomb interaction.
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C h a p t e r 4

IONIC ATMOSPHERE VS. COUNTERION CONDENSATION:
FROMWEAK TO INTERMEDIATE ELECTROSTATIC

CORRELATIONS

We give a unified account of electrostatic fluctuations of flexible polyelectrolytes,
from ionic atmospheres described by weak coupling (corresponding to the free
energy of linear charge density responses) to intermediate coupling (where coun-
terion condensation becomes important). Over a broad range of charge fractions
or interaction strengths, electrostatic fluctuations renormalize intrachain structure
and couple weak fluctuations with counterion condensation; this adaptive intrachain
structure is described by the recently-developed renormalized Gaussian fluctuation
(RGF) theory, which self-consistently accounts for the coupling of thermodynam-
ics with changing chain conformations. At higher interaction strengths the chain
structure is determined self-consistently alongside counterion condensation, which
we treat via a tight-binding population of condensed counterions. We elucidate the
relative importance of the ionic atmosphere and counterion condensation, and find
that at typical coupling strengths lb/b & 1 the relative contribution of counterions is
actually found to decrease with increasing concentration. From our theory we also
identify a comprehensive electrostatic binding constant that describes how screen-
ing, chain structure, and degree of condensation modulates the driving force for
counterion condensation. The choice of chain model and charge renormalization
scheme needs to be made carefully – the typical convention of completely neutraliz-
ing the counterion can lead to the unphysical effect of suppressing phase separation
in salt-free solutions at all interaction strengths. To remedy this, we retain the
discrete nature of the polyelectrolyte backbone and the counterions; in the far field,
these counterion-backbone pairs act as dipoles, and their fluctuations lead to phase
separation in salt-free polyelectrolyte solutions.

4.1 Introduction
Charge correlations underpin the phenomenology and behavior of charged macro-
molecules. A particularly provocative effect is when the correlations of the small
ions lead to effective attraction [1, 2] and even phase-separation between like-
charged macromolecules.[3–7] Physically, charge correlations reflect the fact that
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charges are preferentially surrounded by opposite charges (conversely, like-charges
are repelled), reducing the effective charge seen away from the charge.

The earliest acknowledgment of such a charge correlation effect is by Debye and
Hückel (DH), who calculated the linear density response of simple electrolytes
about tagged charges;[8] this formalized the notion of an “ionic atmosphere” and
the screened Coulomb (Yukawa) potential. The DH linear response calculation can
be applied to integrate out small ion degrees of freedom in colloidal and polymer
systems,[5, 8–10] and results in the same pairwise-additive screened Coulomb po-
tential between macromolecular charges. We note that the linear response approach,
also known as the Random Phase Approximation can also be used to integrate out
macromolecular degrees of freedom.[11–13] In this chapter, we will formally re-
fer to the electrostatic response calculated via linear response approaches as the
“linearized fluctuations” or more informally the (generalized) “ionic atmosphere.”

It is not hard to see that such linear response theories will be inadequate when
stronger electrostatic interactions and correlations are involved. At high enough in-
teraction strengths there will necessarily be counterion condensation, an effect first
elucidated by Manning and Oosawa for charged polymers, or polyelectrolytes.[14–
18] They idealized the polyelectrolyte as an infinitely long cylinder and found that
above a certain linear charge density, counterions are condensed onto the polyelec-
trolyte and renormalize the effective charge of the cylinder.

Leading-order effects of counterion condensation on thermodynamic quantities like
the osmotic coefficient can be readily understood – the condensed counterions lose
their translational entropy, resulting in an osmotic coefficient plateau proportional to
the fraction of uncondensed counterions; conversely the release of counterions leads
to a free energy change of kT per released ion. Overall, counterion condensation
has informed many studies of polyelectrolytes – it serves as a way to reason about or
heuristically treat the strong-correlations between counterions and highly charged
polyelectrolytes, reducing the system to a simpler one with only modestly charged
polyelectrolytes.[19–22]

Due to the historic importance and wide application of DH theory, the ionic atmo-
sphere is often used synonymously with electrostatic correlations, but we emphasize
again that both counterion condensation and the linearized electrostatic response that
underpins the DH ionic atmosphere are different forms of electrostatic correlations.
Even once the translational entropy reduction effect of counterion condensation is
considered, the linearized electrostatic fluctuations (of both small ion and macro-
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molecular degrees of freedom), which also reduce the osmotic pressure, must still
be accounted for in order to produce effective attractions and/or phase separation.[4,
5, 23, 24]

A complicating factor for flexible polyelectrolytes is that, well before counterion
condensation sets in, electrostatic fluctuations and correlations first act to change
the conformation of polyelectrolyte chains,[23, 25–27] which can also significantly
affect thermodynamic properties. Intriguingly, after the renormalization of the chain
conformations, the remaining linear-response fluctuations of unbound counterions
and electrostatically stiffened chains can produce thermodynamic signatures charac-
teristic of counterion condensation, such as the aforementioned osmotic coefficient
plateau.[23, 27] This raises a conceptual question: if both counterion condensation
and the ionic atmosphere characterize the accumulation of opposite charges next to
each other, and both effects result in similar thermodynamic effects, how should one
distinguish between the two? It is an outstanding challenge to construct a theory that
self-consistently accounts for the many different ways that charge correlations can
manifest: from weak-coupling ionic atmospheres, [5, 8–10] to chain conformational
changes that accompany intermediate couplings,[23, 25, 26] to the onset of strong
coupling effects like counterion condensation.[14–18]

The most common theoretical treatment of counterion condensation introduces a
tightly-bound population of counterions in the vincinity of monomers, alongside
an “unbound” population.[9, 12, 28–32] Theories that invoke a tightly-bound pop-
ulation of counterions often introduce the notion of a local binding constant. The
binding constant can range from a phenomenological parameter,[33] to an intrinsic
piece describing remaining effects after others (i.e. VO-type screening, excluded
volume capture) have been estimated,[32] to identification with a bare Coulomb in-
teraction energy or backbone-solvent dielectric mismatch.[12, 30, 31] The simplest
estimate of the binding constant ln K estimate it to be driven by an interaction energy
ε of order lb/σ, the unscreened electrostatic interaction of two charges,[12] where
lb is the Bjerrum length characterizing the strength of electrostatic interactions and
σ is the average ion size. However, this estimate neglects the long-ranged nature
of electrostatics and chain connectivity – there will necessarily be interactions with
other monomers in the chain and condensed counterions, meaning that counterion
binding should be a non-local and cooperative binding effect that reflects chain
connectivity and conformations.

After introducing a description of counterion condensation, it is necessary for a the-
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ory to account for the correlations of uncondensed charges. (We again note previous
work’s imprecise terminology separating counterion condensation and electrostatic
correlations) These remaining electrostatic correlations have been modeled using a
variety of approaches, including Voorn-Overbeek-type approximations [32], Ran-
dom Phase Approximation [12], and double screening theory [30, 31]).

However, there are still two important contributions to electrostatic correlations. As
discussed, one of these important effects is chain conformational changes – this is
not a widely appreciated fact and has seen only limited study.[30, 31] Secondly,
the electrostatic fluctuations of the condensed charges are also important, and will
necessitate a more detailed consideration of the charge structure of the bound state.
These residual charge fluctuations are important when treating the ion pairing and
phase separation of simple electrolytes,[34] and they have also been implicated in
the coil-globule phase transitions of polyelectrolytes.[35–39] Yet for simplicity, the
tightly-bound counterion population is often accounted for by identically neutraliz-
ing both the condensed charges and sites.[12, 29, 31, 32] Such a strict neutralization
of the counterion and backbone charges eliminates much of the charge fluctuations
of the counterion and its condensation site. To recover these residual charge fluc-
tuation effects, theories have had to supplement their free energy expressions with
density-functional expressions,[37, 40] or with added dipole interaction terms.[30,
39]

In this chapter, we strive for a unified exposition of electrostatic interactions that
accounts for the aforementioned effects: chain connectivity and fluctuations of both
condensed and uncondensed charges. In section 4.2 we describe how to combine
fluctuations, described using the recently-proposed renormalized Gaussian fluctu-
ation (RGF) framework, which can account for changes in chain structure, with a
tight-binding picture. In the vein of colloid charge-renormalization theories,[4, 5,
41–44] we give a thermodynamic interpretation for the loosely bound counterions
as those providing the linear density response to the (conformation-adapted)[23, 27]
macromolecule and its strongly “bound” population of condensed counterions. Our
theory allows us to separate the thermodynamic effects associated with the transla-
tional entropy loss of bound counterions from the remaining linearized fluctuations,
and compare their relative contributions.

To understand the fluctuations of condensed charges we relax the assumption of
identically neutralizing the condensed charges and sites. We retain the discreteness
of both the counterion and the charged site, and each condensed pair is characterized
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by a length parameter d and in the far field contributes a dipolar electrostatic
response; no new dipole interaction terms need to be introduced. Small values of d

suppress charge fluctuations and is expected to stabilize the solution against phase
separation, while larger (but still reasonable) values of d allow for phase separation.
The extent of residual charge fluctuations is thus seen to be an important determinant
of phase separation. We also compare to models with continuous backbones and
either smeared or discrete condensed counterions.

Crucially, our derivation allows the transparent identification of an effective elec-
trostatic binding constant that captures the direct interaction between condensing
charges as well as the non-local effects due to chain connectivity and correla-
tion/screening. This careful development of the electrostatic binding coefficient
allows us to appreciate the effects of screening and chain-connectivity on the electro-
static binding, and mitigates risks of double-counting physical effects when piecing
together different electrostatic theories into a polyelectrolyte theory of counterion
condensation. To emphasize the physical content of the electrostatic binding con-
stant, we discuss how other counterion condensation theories in literature can be
understood in terms of our expression for the electrostatic binding constant, using
Voorn Overbeek-type estimates of the binding constant as a concrete example.

Following, in section 4.3 we present numerical results, first studying the dependence
of counterion binding on salt and polymer concentration. Using the self energy we
explain differences in counterion binding between different chain structures and
charge models, and we decompose the binding constant to distinguish between a
bare Coulombic and finite-concentration correlation contributions to the binding
constant. We then track the exchange of counterions between the tightly-bound
and loosely-bound populations to evaluate the transition from weak to intermediate
fluctuation effects, and present the osmotic coefficient contribution of counterion
condensation versus the (renormalized) linearized fluctuations. Finally, we discuss
the extent to which counterion condensation stabilizes polyelectrolyte solutions, and
the degree to which explicit charge structure is needed to produce expected phase
separations in polyelectrolyte solutions.

4.2 Theory
We first present the general, renormalized Gaussian fluctuation variational grand
free energy. For details of notation and derivation we refer readers to our previous
paper [23] or Ch. 2. To focus on electrostatics, the main interaction considered is
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the electrostatic interaction, which we model as taking place in a linear dielectric
medium with constant scaled electric permittivity ε = ε/(βe2). We do not consider
other interactions like the Flory-Huggins χ interaction, though they can readily be
added. To simplify notation, we will use kBT as the unit of energy and e as the unit
of charge, so we set β = 1 and e = 1. For further simplicity, all monomers are taken
to have the same volume v, and Kuhn length of the polymer is taken to be b = 1,
thus setting the unit of length. We then describe how, within the grand canonical
ensemble and a tight-binding framework, counterion condensation can be treated
by classifying polyelectrolytes and their condensed counterions collectively as new
species. We discuss our proposed models for the charge structure and the physical
content of the electrostatic binding constant that arises in the theory.

4.2.1 Introducing tight binding into the renormalized Gaussian fluctuations
Given the position configuration of the species, we can introduce the microscopic
density ρ̂γ, volume fraction φ̂γ = vγ ρ̂γ, and charge density ρ̂

chg
γ operators for

species γ (which indexes over all solvent, polyelectrolyte, and salt ion species).
Within our theory, individual monomeric charges are modeled with a short-ranged
charge distribution z h(r − r′) for a charged monomer of valence z located at r′.
The charge distribution is chosen to be a Gaussian with a radius a (not necessarily
the same as the excluded volume size, but for simplicity we take a = 0.5 in this
chapter). This smearing is reflected in the charge densities ρ̂chg

γ , and captures the
Born solvation energy of individual ions in a dielectric medium, and produces
finite-size corrections to the ion correlation energy. [23, 45]

Given the charge densities, the charged interactions are treated as in a linear di-
electric medium, mediated by a Coulomb operator C and with energy HC . Chain
connectivity is accounted through a bonded interaction hamiltonian HB which de-
pends on the relative positions of the monomers in a polyelectrolyte chain. To
complete the description of the system, the excluded volume between all the species
is accounted for by an incompressibility constraint

∑
γ φ̂γ(r) = 1 that applies at all

r.[46] This constraint is enforced by a Dirac δ-function in its familiar representation
δ(1 −∑

γ φ̂γ) =
∫
Dηeiη(1−∑γ φ̂γ), which introduces an incompressibility field η.

The RGF is a non-perturbative procedure and consists of writing the grand canon-
ical partition function, carrying out standard field-theoretic transformations, and
then following the Gibbs-Feynman Bogoliubov approach by introducing a Gaussian
reference action characterized by a Green’s function G capturing field fluctuations



105

about a mean−iψ. The resulting variational grand partition function and free energy
are:

ΞGFB =

∫
Dηe−Wv[G,ψ;η] (4.1)

Wv[G, ψ; η] = − 1
2

ln
(
det G
det C

)
− 1

2

∫
drdr′ψ · C−1 · ψ

+
1
2

∫
drdr′[C−1 − G−1]G

−
∫

dr(iη − ρexψ) −
∑
γ

λγ
〈
Qγ

〉
. (4.2)

Note that at this point the expressions above are completely general and can accom-
modate any number of species γ. The last term features species fugacities λγ and
effective (field-averaged) single-molecule partition functions

〈
Qγ

〉
, which are the

partition functions of a single molecule of species γ interacting via the effective
interaction G and mean fields ψ and η.

Equilibrium is determined by solving for G, ψ, η such that the variational free
energy is stationary. For a bulk system without background charges, the stationarity
condition for ψ yields a charge-neutrality condition. Treating incompressibility at
the mean field level, η is pure-imaginary, and we henceforth define a real field
P = iη satisfying:

P = −1
v

log(1 − φ) (4.3)

defining φ as the total volume fraction φ =
∑
γ,solv φγ of non-solvent species.

We define
〈
Qγ

〉
below and the equilibrium relation for G in section 4.2.3, but

first note that the self-consistency of the RGF method arises because the average
molecular behavior, as described by

〈
Qγ

〉
, depends on the Green’s function G

(via the variational condition), which in turn depends on the molecular structure
described by

〈
Qγ

〉
.[23]

We now specify to a system with polyelectrolyte chains (p), each with chain length
N and charge fraction f , monovalent counterions (+), added monovalent salt pairs
(+/−), and neutral solvent (s) . For concreteness take the polyelectrolyte chain to
be negatively charged, and take the monovalent counterions to be the same as the
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cations in the added salt. For solvent (s) and simple electrolytes ±,

〈Qs〉 =
∫

drs exp [−ivsη] (4.4)

〈Q±〉 =Vq± exp [−v±P − z±ψ]

q± = exp
[
−1

2

∫
drdr′ z±h± · G · z±h±

]
(4.5)

The polyelectrolyte expression is a bit more involved. Within the tight-binding
model, each charged monomer serves as a binding site for a counterion, and a
binding state can be specified by the occupation numbers of each of these sites
{σi}. Each binding state may still have additional internal degrees of freedom of
the counterion in its bound state, along with associated constraints due to sterics or
other short-range interactions, and can be subsumed in an internal partition function
ξ to be detailed shortly.

A natural way to incorporate tight binding into the theory is to introduce a different
species for every possible binding configuration {σi}; this procedure can be justi-
fied by carefully tracking all the combinatorial factors associated with partitioning
a system of chains and small ions into these new species. Of course, the fugaci-
ties of these new species are not independent, but instead related to those of free
polyelectrolyte and cations by

λ{σi} = λpλ
m
+ (4.6)

where we have defined the occupancy number m =
∑

i σi, and without loss of
generality assumed the counterions are positively charged and labeled by ‘+’. The
sum

∑
λγ

〈
Qγ

〉
over these new polyelectrolyte species then becomes∑

{σi}
λγ

〈
Qγ

〉
= λp

∑
{σi}

λm({σi}) 〈Q{σi}
〉

(4.7)

with the average partition function
〈
Q{σi}

〉
for a specific binding configuration {σi}

written as:

λm
+

〈
Q{σi}

〉
=

emµ+

m!vm
+

e[−(Np+m)vP−(m−N fp±)zψ]Vqp({σi}) (4.8)

qp({σi}) =
1
V

∫
DR

m∏
dr+cΩ({r+c}; {σi})e−HB

exp
[
− 1

2

∫
drdr′ ρ̂chgp1 (r; {r+c}, {σi})

· G(r, r′) · ρ̂chgp1 (r
′; {r+c}, {σi})

]
(4.9)
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where Ω({r+c}; {σi}) represents constraints on the configuration space of the con-
densed counterion coordinates r+c, i.e. single occupancy or other internal degrees
of freedom constraints, and ρ̂

chg
p1 represents the charge density resulting from the

chain specified by coordinates R and condensed counterions r+c.

A convenient result of working in the grand canonical ensemble is that, after sum-
ming over all possible binding configurations {σi}, one can re-interpret the poly-
electrolyte as a single species that is itself in grand-canonical equilibrium with the
counterions:

λp
〈
Qp

〉
≡λp

∑
{σi}

λm({σi}) 〈Q{σi}
〉

(4.10)

Thus the introduction of polyelectrolyte-counterion species was only a temporary
tool to account for the binding states associated with the tight-binding model.

In general, the single chain partition functions qp({σi}) can be estimated using
simulation, but for ease of calculation we generalize a one-parameter Flory-type
decomposition that was shown to give good results for homopolyelectrolytes.[23,
27]

To proceed we now specify the constraint that counterions are not allowed to con-
dense onto the same site, and that remaining degrees of freedom on configurations
of each bound counterion can be summarized by an internal partition function ξ.
For example, the “capture volume” described previously [32] would be included in
this term. Then, to simplify the summation over all possible binding configurations
we first make the common approximation that all configurations with m counterions
have similar structures and energies, and hence are well-approximated by an average
configurational partition function that depends only on the occupancy m:

qp({σi}) ≈ e−F(m)+m ln ξ (4.11)

where the self-energy (or single-chain free energy) F(m) follows fromminimization
over an effective one-parameter (leff) Flory-type decomposition:[23]

F(m) =min
leff

(
Fent(leff) + Fint(leff; m)

)
(4.12)

Fent = −
3
2

N ln
(
1 − α

2

N

)
− 3 ln(α) (4.13)

Fint =
1

4π2

∫
k2dk G̃(k)S̃chg

p (k; leff,m) (4.14)
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where the chain expansion α2 is approximated as

α2 =
〈
R2

ee
〉
/R2

ee,0 = 2(leff/b)
[
1 − (leff/Nb)

(
1 − e−Nb/leff

)]
, (4.15)

and the charge structure Schg
p will be presented in the next subsection 4.2.2. The

single chain partition function can then be written〈
Qp

〉
≈

∑
m

(N f )!
(N f − m)!

em(µ++ln ξ)

m!vm
+

V

exp
[
−(Np + m)vP − (m − N fp±)zψ − F(m)

]
(4.16)

The combinatorial factor enumerates the number of ways m ions can condense onto
N f charged sites, and the second factor exp [m(µ+ + ln ξ)] represents the effective
fugacity of the m condensed ions. The last factor is the Boltzmann weight of
a polyelectrolyte with m condensed ions, including both the mean-field excluded
volume, mean electrostatic potential, and free energy F(m) of the polyelectrolyte-
condensed counterion species.

4.2.2 Charge Model and Self-Energy Decomposition of Polyelectrolyte With
Condensed Counterions

At this point, Eq. (4.14) gives an estimate of the interaction energy provided we
know the chain-condensed-counterion charge structure factor Schg

p (k; leff,m), which
represents an average over the counterion binding configurations of m condensed
counterions and, following previous work, is further parameterized by an effec-
tive persistence length leff that is variationally determined.[23] However, we still
have to propose a reasonable approximation for the charge structure factor, which
will necessitate independent choices for both chain structure (i.e. Gaussian, self-
consistent flexible chain, or semiflexible rod), described by a function ω̃ that we
present towards the end of this section, and a charge model, i.e. the assumption of
continuous or discrete charges and a more detailed description of the structure of
condensed counterions and their condensation site. Different charge models will
lead to different energies of counterion condensation and different residual charge
fluctuations.

A common approximation in tight-binding counterion condensation theories is that
the condensed counterion coordinates r+c are restricted to exactly neutralize poly-
electrolyte backbone charges; in such models the polyelectrolyte backbone charge
and renormalizing counterions are often treated in a smeared-out fashion with a
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Figure 4.1: Charge model Schg
p of the combined polyelectrolyte-condensed counteri-

ons object. We consider continuous-backbone plus continuous counterion (cB-cC),
continuous-backbone plus discrete counterion (cB-dC), and discrete-backbone plus
discrete counterion (dB-dC). The cB-dC and dB-dC models have a dipole param-
eter d dictating how much fluctuations are left upon condensation. Uncondensed
counterions are always treated as discrete charges with finite size described by a
smearing function h.

continuous backbone, which we formally express as

S̃chg
p (k, x) =(1 − x)2Schg

pp (k) (4.17)

Schg
pp =N f · N f ω̃h̃2 (4.18)

where x = m/N f is the fraction of condensed charges, h̃ is the Fourier transform
of the spread-charge distribution, (which for simplicity is taken to be the same for
all species), and ω̃ is again the average intra-chain per-monomer structure specified
at the end of this section. Note that the continuous nature of the backbone is
because there is no self-scattering term. We call Eqs. (4.17) plus Eq. (4.18) the
Continuous-Backbone-Continuous-Counterion (cB-cC) model.

As we will discuss in the results this exact neutralization over-estimates the de-
gree of charge-stabilization, and can lead to counter-intuitive results. To make
transparent the physical assumptions in the cB-cC model and its relations to the
new charge models that we will propose, it is helpful to decompose the charge
structure of the polyelectrolyte-plus-counterion species into explicit polyelectrolyte-
polyelectrolyte (pp), polyelectrolyte-counterion (pc), and counterion-counterion (cc)
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contributions:[12]

S̃chg
p (k; leff, x) =Schg

pp − 2Schg
pc + Schg

cc (4.19)

The cB-cC charge model then corresponds to the following choices for the partial
structure factors:

Schg
pp =N f · N f · ω̃h̃2

Schg
pc =N f x · N f · ω̃h̃2

Schg
cc =N f x · N f x · ω̃̃̃h2 (4.20)

Such a decomposition will help comparisons with charge models that have discrete
charges.

We now propose two more models of the charge structure. The first presumes a
continuous charge distribution on the backbone, as has usually been assumed in the
past,[11, 13, 29, 31] but we introduce the discrete nature of the counterions in the
counterion-counterion (cc) correlation.

Schg
pp =N f · N f ω̃h̃2

Schg
pc =N f x · N f ω̃Γ̃h̃2

Schg
cc =N f x[1 + (N f x − 1)ω̃]Γ̃2 h̃2 (4.21)

The discrete nature of the condensed counterions can most easily be seen by looking
at the limit when the chain connectivity ω is zero: in such a limit Schg

cc is still finite,
representing the self-scattering of the explicit counterions. By comparison, the
cB-cC model Eq. (4.20) has no such self-scattering.

Tomodel the residual charge fluctuations of ion pairs that do not identically neutralize
each other, in Eq. (4.21) we also introduced a “counterion distribution” Γ(r, d) =
δ(|r | − d) about condensed sites, that in Fourier space is

Γ̃(k, d) = sin(kd)/kd (4.22)

and contains a length d; Γ thus locates charges at a finite distance from a backbone
monomer. One might naturally expect d to be roughly the monomer diameter σ,
but in practice it is sensitive to other molecular details and we prefer to treat it as
a parameter measuring the degree of residual charge fluctuations. Importantly, in
the x → 1 limit, Eq. (4.19) is no longer identically 0, and charge fluctuations are
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retained even when the chain is fully condensed. Although a decomposition of the
charge structure into pp, pc, and cc components was proposed previously,[12] the
previous work did not consider residual fluctuations and finite d. We call Eq. (4.19)
plus Eq. (4.21) the Continuous-Backbone-Discrete-Counterion (cB-dC) model.

Another approximation can be made if one wishes to retain the discrete nature of
the backbone charged sites that the counterions can bind to:

Schg
pp =N f [1 + (N f − 1)ω̃]h̃2

Schg
pc =N f x[1 + (N f − 1)ω̃]Γ̃h̃2

Schg
cc =N f x[1 + (N f x − 1)ω̃]Γ̃2 h̃2 (4.23)

which, when combined with Eq. (4.19) we term the discrete-Backbone-discrete-
Counterion (dB-dC) model. In contrast to the cB-dC model Eq. (4.21), note that
when d = 0, for charges of equal size (i.e. the same ion spread charge distribution h)
this discrete backbone model yields a structure factor that is identically zero in the
x → 1 limit because the charged site and the counterion exactly overlap and cancel;
this x → 1, d → 0 limit is analogous to the smeared renormalization model Eq.
(4.17) in the sense that the charge fluctuations are identically eliminated (if charges
are of equal size). In this dB-dC charge model Eq. (4.23), nonzero values of d are
required to recover finite-strength dipoles.

A nice feature of the dB-dC model can be seen by first rearranging the sum Eq.
(4.19) of the dB-dC terms Eq. (4.23):

Schg
dBdC =N f h̃2

[
(1 − x) + 2x(1 − Γ̃) (4.24)

+ ω̃[N f − 1 + x(N f x − 1)Γ̃2 − 2xΓ̃(N f − 1)]
]

(4.25)

written this way, we reveal the self-scattering of the N f (1 − x) condensed charges,
the chain connectivity contributions proportional to ω̃, and the charge structure
2N f x(1 − Γ) of the condensed backbone-counterion charge pairs. In the far-field,
the charge structure of the pairs behaves as a dipole

1 − Γ̃ ≈ k2d2/6. (4.26)

When substituted into the Green’s function expression Eq. (4.29) presented in the
next section, counterion-backbone charge pairs will naturally screen as dipoles,
without the need for explicit introduction of dipole interactions. When d = 0, there
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is are no more dipolar fluctuations, qualitatively similar to the cB-cC model. It is
also instructive to note that the cB-dC model also leads to dipolar screening but,
in contrast to the dB-dC model, the cB-dC model delocalizes the backbone charge
over the entire chain and yields a counterion-backbone charge pair structure of the
form ω̃ − Γ̃, which will yield a dipole length set by the chain size.

Lastly, leff enters through ω̃, an averaged per-monomer structure factor that interpo-
lates between Gaussian chains at low k and rodlike behavior at high k,[23]

ω̃(k) = exp[−kleff/2]
1 + k2Nbleff/6

+
1 − exp[−kleff/2]

1 + kNb/π . (4.27)

Eq. (4.19) above defines the average structure at fixed leff and m, and the final
structure factor of the polyelectrolyte species should be averaged over m

S̃chg
p (k) =

∑
m S̃chg

p (k,m) (N f )!
(N f−m)!

em(µ++ln ξ)

m!vm+
exp

[
−(Np + m)vP − (m − N fp±)zψ − F(m)

]∑
m
(N f )!
(N f−m)!

em(µ++ln ξ)
m!vm+

exp
[
−(Np + m)vP − (m − N fp±)zψ − F(m)

] .

(4.28)

As will be seen in section 4.2.3, for finite concentrations of polymer, the charge
structure factor will modify the effective solution screening and the free energy
F(m) Eq. (4.12), and the two need to be solved self-consistently. To facilitate these
calculations we approximate the average Eq. (4.28) with the value of S̃chg

p at the
most-likely value of m, as determined by a maximum-term approximation detailed
in section 4.2.4.

4.2.3 Solution Screening and Thermodynamic Quantities
Having defined the charge structure, the RGF condition for Green’s function is
written in Fourier space as

G̃(k) = 1
ε[k2 + κ̃2(k)]

, (4.29)

from which we identify
κ̃2(k) = 2Ĩ(k)/ε (4.30)

as the wavevector-dependent screening function, a generalization of the Debye
screening constant,[23] with the ionic strength function Ĩ(k) given by

2Ĩ(k) =
∑
γ

ργ

Nγ
S̃chg
γ (k) (4.31)
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where S̃chg
γ (k) is the single-molecule charge structure factor. Again, for the poly-

electrolyte it is Eq. (4.19) averaged over m Eq. (4.28), while for monovalent small
ions it is Schg

± (k) = h̃2.

Importantly, the Green’s function characterizes the electrostatic field fluctuations in
the system and acts as a renormalized (screened) electrostatic interaction. As alluded
to earlier, the dB-dC charge model Eq. (4.23) can be rearranged to reveal that at low
k, polyelectrolyte charged sites with condensed counterions yield a charge structure
that contribute (in addition to connectivity effects) dipolar screening terms ∼ k2 Eq.
(4.26) to the screening function Eq. (4.30); to leading order these dipolar terms act
to renormalize (in the low-k limit) the dielectric constant in the Green’s function
equation Eq. (4.29).

Evaluating the grand potential Eq. (4.2) at its equilibrium (self-consistent RGF)
value yields the osmotic pressure

Π = − 1
4π2

∫ ∞

0
k2 dk

[
ln

(
1 +

κ̃2(k)
k2

)
− κ̃2(k)

k2 + κ̃2(k)

]
− 1
v

(
1 + log(1 − φ)

)
+

1 − φ
v
+ ρ+ + ρ− +

ρp

Np
. (4.32)

In the above expression, ρ+ only refers to the free cations, and does not include the
bound counterions.

The per-ion and per-chain chemical potentials are determined from the relationship
ργ = λγ

〈
Qγ

〉
:

µ± = ln(ρ±v±) + vP + z±ψ + u±

µp = ln
(
ρpvp

Np

)
+ vNpP + ztot

p±ψ + up (4.33)

The first three terms in both chemical potential expressions Eq. (4.33) are the same
as in a mean-field analysis of a bulk solution. The last terms uγ are the small ion
self energies u± and the non-mean-field contribution up to the polymer chemical
potential

u± = − ln q± (4.34)

up = − ln
[∑

m

(N f )!
(N f − m)!

em(ln ρ+v++ln ξ+u+)

m!vm
+

e−F(m)
]

(4.35)

We remark that Eq. (4.32) has the same terms as the original RGF theory, which
does not have an explicit tight binding population. Counterion condensation enters
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only through the modification of the loose counterion density ρ+ and the effective
charge structure hiding in the ionic screening function κ̃2(k) Eq. (4.30). Once
the self-consistent κ̃2(k) is determined, the remaining Fourier integral has the same
form as in a linear response theory, and we will call this the “linearized” fluctuation
contribution:

βΠlin = − 1
4π2

∫ ∞

0
k2 dk

[
ln

(
1 +

κ̃2(k)
k2

)
− κ̃2(k)

k2 + κ̃2(k)

]
(4.36)

For point charges, this linearized fluctuation contribution corresponds to a size-
corrected Debye-Hückel fluctuation energy describing the correlation energy con-
tained in the ionic atmosphere. Given prescribed chain structure and hence ionic
screening function κ̃2(k), Eq. (4.36) generalizes the ionic atmosphere to polyelec-
trolytes, and implicitly includes the effect of changing chain structure.

The remaining contribution to the osmotic pressure corresponds to the counterion
translational entropy change of condensed counterions, which we term the counte-
rion condensation contribution to the osmotic pressure:

βΠcc = ρ+ − ρ0
+ = − 〈x〉 ρ+ (4.37)

where ρ0
+ is the total counterion concentration, including both bound and unbound

ions.

4.2.4 Electrostatic Binding Constant
To define the driving force for counterion condensation it is convenient to use the
maximum-term approximation:〈

Qp
〉
≈Ve−NpvP−N fp±zψ · (4.38)

max
m

(N f )!
(N f − m)!

em(ln ρ+v++ln ξ+u+)

m!vm
+

e−F(m)

Using Stirling’s approximation for the factorials, and expressing m = xN f , the
maximum term-condition is equivalent to

0 = ln ρ+ − ln
x

1 − x

+ ln ξ + u+(G) −
1

N f
∂F(xN f )

∂x

����
G

(4.39)

The first two terms correspond to translational entropy of unbound counterions and
combinatorial entropies of bound counterions, and the third term ln ξ again describes
the internal degrees of freedom of the counterion in its bound state.
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We identify the binding constant for the equilibration of condensed and uncondensed
charged sites as

K =
x

1 − x
= ρ+ξ · Kel (4.40)

as driven by a non-electrostatic (translational entropy and internal partition function
ξ) and an electrostatic Kel piece. We focus our attention on the electrostatics and
study the electrostatic binding constant Kel , given by the last two terms of Eq. (4.39)
as

ln Kel(x; G) = −
(

1
N f

∂F(xN f )
∂x

����
G
− u+(G)

)
, (4.41)

which can be interpreted as the electrostatic free energy change of condensing a
counterion on the polyelectrolyte chain. Our expressions Eqs. (4.12)-(4.14) for F

involves a charge structure factor S̃ Eq. (4.19) that can be decomposed into pp,
pc, and cc interactions. Chain connectivity and anti-cooperativity arise naturally as
long as the respective structure components incorporate a chain structure factor (ω̃
Eq. (4.27) in our notation).

There is an implicit dependence of ln Kel on G: ln Kel has components u+ and
∂F(xN f )
∂N f x which are both calculated at the equilibrium G, i.e. at fixed concentration

and chain structure. For single-chain in salt, G is simply that in the bulk salt solution
– the final equilibrium value of x of a single chain does not affect G. However,
at finite-concentrations of polyelectrolyte each chain is condensing counterions and
hence x can significantly affect the solution screeningG; when Eq. (4.39) is satisfied
by the optimal value x∗, G represents the screening in a solution at the equilibrium
x∗, and the two have to be self-consistently determined.

For given x, we fix the free cation concentration by charge neutrality, fix the x value
in the structure factor (4.19), and use Eq. (4.12) to calculate the leff that determines
the average chain structure and hence G at the specified (x, ρ+). This gives the
x-dependence of G and thus Kel(x), which can be used in Eq. (4.39) to solve for the
equilibrium fraction of condensed ions xeq.

To interpret correctly and appreciate the electrostatic binding constant Eq. (4.41),
we highlight an apparent paradox that arises when approximating F(m) and u+ us-
ing Voorn-Overbeek (VO) ideas.[32] Such a model, where the condensed charges
are neutralized and the electrostatic free energy is estimated only for uncondensed
charges using a generalized Debye-Hückel (GDH) expression,[32] essentially mod-
els the chain electrostatic free energy as F(xN f ) = (1 − x)N f u+, where the elec-
trostatic free energy of the chain is modeled as simply the number of charges times
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the self energy of separate ions. In this case, the electrostatic binding constant is
ln KVO

el = 2u+. If one further applies the GDH expression u+ = −lbκ/2(1 + κσ),
which is negative, it appears that the resulting (VO-type GDH, or GDH-VO) electro-
static binding constant ln KGDH−VO

el opposes counterion condensation and becomes
increasingly unfavorable with increasing Bjerrum length (electrostatic interaction
strength)!

This result runs counter to expectations and arises from the fact that the GDH free
energy expression subtracts out the Born energy of uncondensed ions as its refer-
ence energy, leaving only the (negative) correlation energy.[23] Conceptually this
is problematic because the reference energy then changes with changing degrees
of counterion condensation, even though the total number of charges in the system
doesn’t change upon condensation. Physically, when charges condense (become
“neutralized”), the GDH expression only accounts for the loss of the favorable cor-
relation energy, leading to an electrostatic binding constant that opposes counterion
binding.

More generally, when calculating electrostatic correlation energies it is a common
regularization practice[12, 13, 47] to subtract reference energies in the form of

1
4π2

∫
k2dk C̃(k)S̃chg

p (k; leff,m) (4.42)

where C̃(k) is the Coulomb operator. This has the side effect of removing the direct,
favorable pc electrostatic interactions that drive counterion condensation. Such a
procedure leaves only the correlation, or screening, effects behind [23] and leads to a
binding constant that opposes counterion condensation. We caution that the choice
of Schg used in such a regularization is not unique (i.e. connected or disconnected
charges),[12, 13, 47] and different choices of Schg correspond to different interactions
being removed.

The typical “fix” in such theories is to reintroduce an additional electrostatic driv-
ing force or binding constant, either empirically [32] or by physical argument.
Theoretical estimates of the binding constant have been estimated for simple ion
pairing,[34] and in the polyelectrolyte literature has been estimated as ∼ lb/b,[12]
possibly scaled with a dielectric mismatch parameter,[30, 31] corresponding to the
direct counterion-backbone electrostatic interaction. We correspondingly write an
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estimate for DH-VO and GDH-VO binding constants as

− ln KDH−VO
el ≡ − lb

b
+ lbκ (4.43)

− ln KGDH−VO
el ≡ − lb

b
+

lbκ

(1 + κb) (4.44)

where the DH-VO uses the Debye-Hückel (DH) point charge expression for the
correlation energy. However, such an ad hoc binding constant suffers several phys-
ical limitations as outlined in the introduction, with an unclear dependence on
chain structure (i.e. missing interactions between condensed counterions and both
polyelectrolyte charges and other condensed counterions) and the electrostatic en-
vironment (i.e. changing screening, described by G).

In contrast, we do not encounter such issues with our expressions Eqs. (4.14) and
(4.35) for Fint(m) and u+, respectively. Our expressions adopt the more natural
reference energy of taking the vacuum as the point of zero energy for both Fint(m)
and u+, yielding what is termed the total self energy.[23, 40] This reference energy
explicitly includes the energy of assembling charges dispersed at infinity into a finite
object; for homopolyelectrolytes it accounts for how chain connectivity increases
the electrostatic energy of the monomers in the chain.[23]

Further, when we use Eq. (4.14) to evaluate F(m) in ln Keq, the charge structure
factor S̃chg

p (k; m), as seen in the decomposition Eq. (4.19) explicitly describes the
spatial arrangement of both polyelectrolyte chain and condensed counterions, thus
accounting for intrachain (pp), counterion-chain (pc), and counterion-counterion
(cc) electrostatic interactions by substituting the respective partial charge structure
factor into the interaction energy Eq. (4.14):

Fint,pp/pc/cc =
1

4π2

∫
k2dk G̃(k)S̃chg

pp/pc/cc(k; leff,m) (4.45)

Our expression considers nonlocal interaction effects that arise from chain connec-
tivity via ω̃ in our expressions for Schg, e.g. Eqs. (4.20), (4.21), (4.23). Further, the
Green’s function G accounts for how changing solution environment modifies the
screening and direct interaction between counterions and their condensed sites.

Even for a single chain in salt, where G is independent of the degree of conden-
sation, ln Keq still depends on the degree of condensation through Schg

p , reflecting
(anti-)cooperative effects due to the previously condensed counterions, described
explicitly by the x2 dependence of Schg

cc e.g. Eq. (4.23), and implicitly through the
possibly adaptive chain structure ω̃ Eq. (4.27). This is in contrast to the VO-type
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binding constant Eq. (4.44), which approximated F(xN f ) = (1 − x)N f u+ and
yields a x-independent ∂F(xN f )

∂x provided that G (and thereby u+) is independent of
the degree of condensation (as it is for a single chain in salt solution).

To summarize, in our theory the electrostatic binding constant contains both chain
connectivity and finite-concentration correlation (screening) effects in a self-consistent
fashion. The electrostatic energies F Eq. (4.14) and u+ Eq. (4.34) both depend
on concentration and chain structure effects implicitly through G. Further, F also
contains an explicit dependence on the charge structure of a polyelectrolyte with its
associated counterions. The charge structure depends on both the degree of coun-
terion condensation as well as the adaptive chain structure, which is determined
variationally by the RGF framework.[23] We will thus be able to see how changing
chain conformation mediates and affects counterion binding.

4.3 Numerical Results
We first present results for single chain in salt. In the single chain limit counterion
condensation does not change the bulk concentration of free counterions, thus
simplifying discussion of the binding constant, though the results carry over to
solutions with finite polyelectrolyte concentration with only quantitative differences.
We are able to explain differences between different chain structure and charge
models in terms of the self energy.

After presenting single chain results, we discuss solutions with finite polyelectrolyte
concentration. We first explain quantitative differences between salt-free poly-
electrolyte solutions and single polyelectrolyte chains at equivalent salt conditions,
appropriately defined. We then consider the thermodynamic effects of counte-
rion condensation on polyelectrolyte solutions, and examine the transition from the
regime when entropy effects are dominated by linearized fluctuations to the limit
when entropy changes are mostly attributable to the translational entropy loss of the
tightly bound population, and explore the consequences of retaining residual dipolar
fluctuations on the phase behavior.

To translate our number densities to units of M , we set b = 0.35nm in our conver-
sions. Unless otherwise mentioned, we present most results only for the discrete
backbone, discrete counterion (dB-dC) model with a dipole parameter of d = 0.7a.
In general, qualitative results generalize for both of our proposed charge structure
models cB-dC Eq. (4.21) and dB-dC (4.23), and when relevant we compare the two
models to show their quantitative differences. When appropriate, we also compare
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to continuous backbone, continuous counterion (cB-cC) model Eq. (4.17). Most
results are presented for flexible chains with adaptive chain structure; in certain cases
we also compare to predictions where the average chain structure is fixed to either
a Gaussian or semiflexible rod form, as detailed elsewhere.[27] Unless otherwise
noted, to focus on only the electrostatic driving force for counterion condensation,
we set ln ξ = 0 such that there is no intrinsic bias favoring or disfavoring counterion
condensation – the electrostatics included thus far already provide a driving force
for counterion condensation.

4.3.1 Single Chain in Salt
To illustrate the theory, we first present representative probability distributions of
the degree of condensation, at two different salt concentrations and for various chain
lengths. As the chain length increases, we expect the average degree of condensation
to increase due to increasing correlations, before eventually reaching some long-N
limit because condensed counterions can only “see” the chain up to the solution
screening length – they can not tell how long the chain is if the chain is much longer
than the screening length. Further, we expect the probability distribution for x to
narrow for long chains. These expectations are borne out in Fig. 4.2, where we
can clearly see the mean of the probability distributions converge towards a long-
N limit. Further, we see that the convergence of the mean is achieved faster for
higher salt concentrations – this again makes sense, because increasing salt means a
decreasing screening length, and correspondingly a shorter length scale over which
chain connectivity can enhance counterion binding.

This chain length effect can be better visualized by plotting the average counterion
condensation as a function of salt concentration in Fig. 4.3a. Similarly to Fig. 4.2,
the convergence of different chain lengths is faster for higher salt concentrations. Fig.
4.3a is plotted for lb = 2b. Setting b = 0.35nm such that lb = 0.7nm corresponds
to water at room temperature, at salt concentrations of ∼ 0.01M or Debye lengths ≈
3nm, chain lengths N > 100 have nearly indistinguishable counterion condensation
profiles. At the lowest salt concentrations plotted, the curves for N = 3000 and N =

10, 000 chains are nearly indistinguishable. With increasing chain length, the level
of counterion condensation also becomes a weaker function of salt concentration,
almost approaching a plateau. Still, screening at high salt concentrations eventually
slightly reduces the level of counterion condensation.

We can also examine the effect of chain structure and our different proposed models
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for the charge structure. As observed in our previous work, fully charged poly-
electrolyte chains are locally stiffened, and this results in thermodynamic properties
(i.e. correlation energies and binodal values) that more closely resemble those of
semiflexible rods rather than (fixed-average-structure) Gaussian chains.[27] Further,
previous work showed that, in choosing the reference electrostatic energy as we have,
the (total) self energy consists of an infinite-dilution repulsive piece characterizing
the work to assemble charge onto the chain. Finite concentration correlation effects
screen the repulsive self-energy, such that the total self energy trends towards zero.

In other words, chains with greater self energy stand to benefit more from cor-
relations, whether they take the form of linearized density responses (ionic at-
mospheres),[23] macroscopic phase separation,[27] or counterion condensation as
studied in this chapter. We thus also expect Gaussian chains, which are more com-
pact and hence have higher repulsive self energy to condense more counterions than
their rigid counterparts. Adaptive-structure flexible chains, as described by the RGF
theory, lie somewhere in between, though for highly charged chains their increased
stiffness yields behaviors more similar to rods than continuous Gaussian chains.[27]

We find these self-energy arguments to apply to counterion condensation. In Fig.
4.3b we again plot the average counterion condensation as a function of salt con-
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Figure 4.2: Probability distribution of counterion condensation fraction, at lb/b = 2
for chains with N = 100, 300, 1000, 3000, 10000, f=1, with the dB-dC charge model.
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Figure 4.3: a) Chain length effect at lb = 2b for dB-dC charge model with d = 0.7a,
for chain lengths N = 100 to N = 10, 000, from bottom to top. b) Single flexible
polyelectrolyte chain in salt, effect of different chainmodels, N = 100, f = 1, lb/b =
2. DH-VO (light blue, asterisk) andGDH-VO (purple, cross). Discrete backbone and
discrete counterion models with dipole parameter d = 0.7a for Gaussian structure
(green triangle), self-consistent structure (blue triangle) and semiflexible rod (red
triangle). We also present results for self-consistently calculated chains, but with
other models of the backbone and counterion charges: dB-dC with d = 0.0a (blue
circle); cB-dC with d = 0.0a (blue dashed); cB-cC (blue solid).
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centration; the lines with triangles denote calculations using discrete backbone and
discrete counterion charges (dB-dC) with parameter d = 0.7a. The results for the
self-consistent calculation of flexible chains (blue triangles), are much closer to
predictions of semiflexible rods (red triangles) than predictions asssuming the chain
is fixed in a Gaussian chain structure (green triangles); the latter is seen to greatly
overestimate the degree of counterion condensation because it confines the chains
to artificially compact chains, increasing the intrachain electrostatic interactions and
the tendency to attract counterions.

On the other hand, the VO-assumption Eq. (4.44), which is missing chain-
connectivity effects, leads to a drastic under-estimate of the amount of counterion
condensation, for both the DH (light blue asterisks) and GDH (purple crosses) elec-
trostatic correlation expressions. In particular, the DH expression, which is derived
for point charges and is known to give overly strong correlations, suppresses coun-
terion condensation even more than the GDH expression. Accounting for the finite
size of ions limits the amount of electrostatic correlations to roughly the infinite
dilution self energy,[23] which the GDH expression respects. Our reference energy
and spread-charge regularization scheme [45] also behaves correctly with respect to
this correlation energy limit.

An interesting feature of all of the models with chain connectivity is that there
appears to be a peak in counterion condensation with increasing salt. This means
that, initially increasing salt also increases the degree of counterion condensation,
but for sufficient salt concentration there is less energy to be gained by condensation.
This can be interpreted as screening, or more generally correlation effects, and the
non-monotonicity in degree of counterion condensation will be discussed later when
we take a closer look at the effective electrostatic binding constant.

We also find that the charge models, which differ in their treatment of residual charge
fluctuations of condensed charge and site, differ quantitatively from each other. Like
the differences due to chain structure, quantitative differences in the different charge
models can also be traced to their different amounts of self energy (the work required
to assemble charge into the chain)[23, 27] that can be reduced through correlations
or condensation. The dB-dC charge model has the largest self energy because it
confines charges into discretemonomers, and correspondingly has themost energy to
be gained by condensation (larger driving force). In comparison, the cB-dC model
(blue dashed) assumes a continuous backbone, which lowers the self energy and
reduces a significant portion of the interaction between a counterion and a backbone
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site; the driving force for condensation is weaker and the the average fraction of
condensed ions drops. Finally, further delocalizing the counterion charges over the
backbone (cB-cC model, blue solid) in a smeared fashion artificially removes much
of the Born energy of the counterion upon condensation (counterions are discrete
when unbound), producing an artificial driving force relative to the cB-dC model.
Thus cB-cC predictions for 〈x〉 are intermediate between dB-dC and cB-dC results.

An interesting difference between the discrete backbone and continuous backbone
models is that, although the degree of charge condensation in both can be non-
monotonic, continuous backbones appear to have counterion condensation peaks at
lower salt concentrations than the dB-dCmodel assuming discrete backbone charges.
We point out that the continuous backbones also show an increase of counterion
condensation at high salt (> 1M). This feature actually also exists for the discrete
backbone model at even higher salt concentrations, but is less pronounced, and is
attributed as an artifact of tight bindingmodels at weak interaction strengths and high
concentrations. If one looks at Eq. (4.39) one notices that at sufficiently high salt
concentration, the translational entropy piece actually begins favoring condensation.
Similar issues of spurious “condensation” or “pairing” at high concentrations exist
with a popular theory of associating polymers.[48]

Due to chain connectivity effects, the electrostatic driving force depends on the
fraction of condensed counterions – the presence of condensed charges will repel
uncondensed charges and hence reduce the driving force for counterion condensa-
tion. This is in contrast to theories that a priori take the counterion condensation
binding constant to be constant, or include the x-dependence only if the concentra-
tion of counterions is changing (i.e. for finite concentration of polyelectrolyte).[32]
Our results are presented in Fig. 4.4a, where one can see that for most counte-
rion condensation fractions, ln Kel changes with x. Interestingly, it appears to be
largely linear in x, consistent with the leading x2 dependence of the counterion-
counterion charge structure factor and hence electrostatic self energy Fint (recall
ln Kel ∼ ∂Fint/∂x). Only at high values of x does one start to see deviations from
the linear behavior. We also plot the zero-salt limit of the electrostatic binding
constant (black-dashed)

ln K0
el(x) ≡ ln Kel(x; ρ± = 0) (4.46)

which describes the effective electrostatic driving force due to the direct Coulomb
interactions, and will be helpful for isolating changes to the binding constant due
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to anti-cooperative counterion binding and due to finite-concentration correlation
effects.

Note that ln K0(x) implicitly contains much of the chain-connectivity and structure
effects – chain connectivity should be most pronounced when the electrostatics are
unscreened and long-ranged. In the inset of Fig. 4.4a one can see the significant
difference in binding constant between semiflexible rod and Gaussian chains. The
fully-charged chains with adaptive structure (black line in inset) are quite close to
those of the rod.

To visualize the dependence of ln Kel on the salt concentration, for given salt con-
centration ρ± in Fig. 4.4b we plot the value of ln Kel at the equilibrium extent of
counterion condensation xeq(ρ±) at the specified salt concentration. For compar-
ison, we also plot the VO-motivated binding-constants Eq. (4.44). In the inset
we compare the full binding constant to the zero-salt binding constant ln K0

el at
the same xeq(ρ±). Noting that that the predominant chain structure effects are
embodied in ln K0

el , the difference between ln Kel and ln K0
el is then attributable to

finite-concentration correlation effects, which technically includes both screening
and adaptive chain structure effects [23]. Over the range of concentrations presented
in Fig. 4.4b, the concentration dependence of ln Kel is largely driven by screening
effects; this is consistent with Fig. 4.3 where we see that the degree of counterion
condensation changes negligibly over the same concentration range. Of course, at
even lower concentrations, changes in the binding constant will be predominantly
due to increasing bare Coulomb-interactions between the condensed counterions.

The concentration-dependence of the degree of counterion condensation seen in
Fig. 4.3 can be understood by examining Eq. (4.40), which makes apparent that
there is a competition between translational entropy and the electrostatic driving
force. Typical counterion condensation theories predict that the amount of coun-
terion condensation should increase with increasing salt concentration, primarily
because as ρ± increases, the counterion translational entropy penalty associated
with condensing drops. We find this to be true over most salt concentrations. How-
ever, increasing salt also screens electrostatic interactions and decreases ln Kel – at
high enough salt, if the electrostatic driving force decreases faster than the transla-
tional entropy penalty decreases, then the amount of counterion condensation will
decrease. In general, we expect there to be a non-monotonic dependence of 〈x〉 on
the salt density ρ±, as observed previously in Fig. 4.3, and this in fact holds for
finite concentrations of polyelectrolyte as well.
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Figure 4.4: (a) Binding driving force as function of condensation fraction, at lb/b =
2, for N = 100, f = 1. The black dashed line is for the zero salt ρ± = 0M limit, while
the remaining colored lines are for different concentrations, from ρ± = 1.22M (top)
to ρ = 1.22 · 10−5M (bottom). Inset: zero-salt binding constants for semiflexible
rod (red), Gaussian chain (green), and adaptive chain structure (black). (b) Binding
driving force at the average 〈x〉 of given salt concentration ρ±. Results are for
N = 100, lb/b = 2, f = 1, with the dB-dC charge model (d = 0.7a) and self-
consistently-calculated flexible chain (blue), GDH-VO (green), and VO (purple).
Inset: binding constant for the adaptive chain structure, compared to the zero-
salt binding constant (ln K0) at the same equilibrium condensation fraction. The
difference between the two are attributable to finite-concentration correlation effects.
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Generally, the salt concentration at which the (admittedly shallow) peak 〈x〉 is
attained depends on the rate at which the entropy penalty and electrostatic driving
forces change with salt concentration. Clearly, if both terms changed at the same
rate, then the amount of condensed counterions will stay constant with changing
salt concentrations. For long chains, we see a flattening of the 〈x〉 versus ρ± curve
in Fig. 4.3b, corresponding to a regime where, although increased salt screening
decreases the electrostatic driving force for counterion condensation, it decreases at
nearly the same rate at which the translational entropy penalty decreases.

The peak in the condensed fraction 〈x〉 coincides with the salt concentration at
which the rate of change of the translational entropy penalty matches the rate of
change of the electrostatic driving force. This peak is observed even for the DH-VO
theory (which does not consider chain connectivity effects) at lb/b = 2 – at high
concentrations the electrostatic driving force decreases sufficiently quickly with
increasing salt concentration. Although this non-monotonic dependence of 〈x〉 on
salt concentration is not yet observed for the GDH-VO theory at lb/b = 2, one
can see that increasing the Bjerrum length will increase the rate of screening and
eventually lead to a non-monotonic dependence of 〈x〉 on ρ±.

By examining the salt-dependence of counterion condensation one can further infer
the relative rates at which the electrostatic binding constant changes for the different
charge models. However, in the interest of brevity we do not pursue such an in-depth
comparison.

4.3.2 Finite Concentration: Thermodynamics
Much of the intuition regarding the influence of chain structure and concentra-
tion carries over from the single-chain case to the case of solutions with finite-
concentrations of polyelectrolytes. To compare the two cases, we define the equiva-
lent single-chain system as that of a single chain in a simple-electrolyte concentra-
tion at the same counterion concentration as the salt-free polyelectrolyte solution.
Conceptually, the equivalent single-chain system is achieved by disconnecting all
polyelectrolytes in the salt-free solution except for one chain.

We first look at the probability distribution P(x) of the condensed counterion frac-
tion. As seen in Fig. 4.5a, the standard deviations are quite similar between the
two cases, while the salt-free polyelectrolyte solution (solid lines) has a consistently
smaller 〈x〉 than does the equivalent single-chain in salt system. The primary reason
for this is because in the salt-free polyelectrolyte solution, every chain is condens-



127

ing counterions. As a result, the counterion condensation drops as the average
condensation fraction increases, increasing the translational entropy penalty. This
additional translational entropy penalty reduces the average counterion condensed
fraction relative to that of a single chain at the equivalent salt concentration.

The effect of this increase in the translational entropy penalty holds true for both
discrete backbone and continuous backbone models, across all concentrations, as
presented in Fig. 4.5b. Further, in general counterion condensation should push the
concentration ρp at which 〈x〉 achieves its peak to higher concentrations. Relative
to the equivalent single-chain in salt system, salt free polyelectrolyte solutions
face a larger translational entropy penalty to condense ions because all chains are
condensing counterions. Conversely, the translational entropy penalty also decreases
faster as a function of increasing polymer (and counterion) concentration, and
higher concentrationsmust be achieved before the screening reduces the electrostatic
driving force faster than the translational entropy penalty decreases. This delay of
the counterion condensation peak is true for the discrete backbone model (red
dashed). For the continuous backbone model, at the conditions presented in Fig.
4.5b, the translational entropy penalty is large enough to suppress the non-monotonic
dependence of 〈x〉 on ρ± altogether, resulting in a monotonically increasing 〈x〉.

We now turn our attention to the issue of the distinction between the linearized
fluctuations and the translational entropy loss of the condensed counterions. As ob-
served in previous works, over a significant semidilute regime, the linear-response
fluctuations of locally stiff polyelectrolytes (i.e. rods or electrostatically extended)
predict electrostatic chemical potential contributions that have the same functional
form as the translational entropy of small ions, albeit with opposite sign.[27] This
suggests that, at the level of linear response, the fluctuation effects of such poly-
electrolytes can be understood largely as renormalizing the small ions’ translational
entropy, or reducing the osmotically active population of small ions.

This renormalization effect of the fluctuations is qualitatively the same as the ther-
modynamic effect of condensed counterions. We are thus interested in howmuch of
the entropy loss of the system can be associated with the linear response fluctuations,
and how much with the condensed counterions. Clearly, at low values of 〈x〉 (i.e. at
low lb) we expect that the correlations should predominantly come from the linear
response. In contrast, at high condensation fractions the correlations are expected
to be dominated by the translational entropy loss of condensed counterions. The
crossover between these two limits is of great interest – how quickly do the two
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contributions cross over? To what extent does the linear fluctuation theory describe
counterion condensation?
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Figure 4.5: (a) lb = 2σ, N = 100. Solid lines are for salt-free solutions at
0.0000122M (blue) and 0.122M (red). Dashed lines, with the same meaning for
colors, are for single chains at the equivalent salt concentration. (b) lb = 2σ,
N = 100. Solid lines are for the cB-dC charge model (d = 0a) and dashed lines are
for dB-dC chains (d = 0.7a). Red lines are for salt-free solutions and blue lines are
for single chains at the equivalent salt concentration. Translational entropy penalty
is larger for salt-free solution than single chains in equivalent salt because all chains
collect their counterions, reducing the concentration of free counterions.
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We consider the electrostatic contributions to the osmotic coefficient, across a range
of lb. In salt-free solution, the osmotic coefficient is Φ = βΠ

ρ( f+1/N) , from which we
define the linearized fluctuation and counterion condensation contributions to the
osmotic coefficient in accordance with our classification of the osmotic pressure
contributions in Eqs. (4.36) and (4.37):

Φ
lin =

βΠlin

ρ( f + 1/N) (4.47)

Φ
cc =

βΠcc

ρ( f + 1/N) (4.48)

and define the total electrostatic contribution of the osmotic coefficient as Φtot =

Φlin + Φcc.

At low lb and low concentrations, the linearized fluctuation theory captures most of
the electrostatic contribution to the osmotic coefficient (Fig. 4.6a, compare yellow
and purple lines). To emphasize the importance of accounting for changes in chain
conformations, we also plot the osmotic coefficient contribution of an RPA theory
(where the chains are assumed to on average have a Gaussian structure) without
counterion condensation (green line). As can be seen, even for small lb values, the
RPA theory over-estimates the fluctuations. There is thus a very clear regime where
chain conformational changes are important, but counterion condensation is not yet
important.

With increasing lb, introduction of counterion condensation reduces the contribution
of linearized fluctuations relative to predictions without counterion condensation,
and Φlin becomes a non-monotonic function of lb/b. Nevertheless, at typical aque-
ous experimental conditions (lb/b < 3), the transition to the counterion-dominated
regime is not yet complete – the linearized fluctuations still contribute an apprecia-
ble fraction of the osmotic coefficient drop. In Fig. 4.6b we plot the fraction of
the electrostatic contribution to the osmotic coefficientΦcc/Φtot = Φcc/(Φcc +Φlin)
assigned to counterion condensation. At lb/b = 2, the counterion condensation
contribution is only about 50%.

The above observations indicate that deviations of the osmotic coefficient from 1
are not entirely synonymous with counterion condensation – rather, much of it
may come from linearized fluctuations. For example, at the conditions in Fig.
4.6a (N = 100, f = 1, ρp = 0.00122M), at lb/b = 1 where no counterions are
condensed by the Manning criterion, and only < 5% of ions are condensed as
predicted by our theory, there is an appreciable osmotic coefficient drop of ∼ 0.3
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that arises from the linearized fluctuations alone. The slight upturn at low lb/b
for increasing concentration is a result of the previously-mentioned artifact of the
tight binding model, which is also seen when applying such binding theories to
associating polymers.[48]

In general, the partitioning of the electrostatic contributions into linearized fluctu-
ations and counterion condensation depends on the polyelectrolyte concentration,
and this is also observed in Fig. 4.6b. The transition from an electrostatic osmotic
coefficientΦtot contribution dominated by linearized fluctuations toΦtot dominated
by counterion condensation translational entropy losses follows a sigmoidal shape,
and the transition is sharper for lower polymer concentration. A particularly interest-
ing consequence of this concentration dependence is that at higher lb/b, increasing
polymer concentration actually decreases the fraction of the electrostatic contribu-
tion to the osmotic coefficient that is due to counterion condensation translational
entropy losses! This is all the more remarkable because for the concentrations
shown in Fig. 4.6b, the degree of counterion condensation is still increasing with
increasing polymer concentration. Although counterion condensation is increasing
with increasing polymer concentration, the linearized fluctuations are increasing at
a faster rate.

Finally, we examine the effect of counterion condensation on phase behavior. Pre-
vious work suggested that counterion condensation decreases the critical Bjerrum
length of salt free solutions – i.e. it destabilizes polyelectrolyte solutions.[12, 31].
The explanation for this destabilization is argued to be related to the modulated
small ion entropy upon counterion condensation.[31]

However, there is also reason to believe counterion condensation might stabilize
the solution – in simple electrolytes, ion pairing is predicted to increase the critical
electrostatic interaction strength lb ∝ T−1 and critical density ρ∗ [34]. For simple
electrolytes, this can qualitatively be understood by the fact that paired ions do not
screen as effectively nor contribute as much to fluctuations, thus decreasing the
driving force for macroscopic phase separation. Another way to rationalize this
trend is that the solution can decrease its electrostatic energy through condensation,
which in theories without counterion condensation is only achievable bymacrophase
separation. A similar qualitative effect can be seen when comparing RPA and RGF
theories for flexible chains – the RGF theory allows chains to relax their electrostatic
energy through conformational changes, which also has the qualitative effect of
stabilizing the solution against macroscopic phase separation.
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In our theory, we modulate counterion condensation by tuning the parameter d.
Decreasing the dipole parameter d in the discrete backbone (dB-dC) charge model
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Figure 4.6: (a) Decomposition of electrostatic osmotic coefficient contributions
for at ρp = 0.00122M . We also compare the total electrostatic contribution for
flexible chains with N = 100, f = 1, calculated for RGF with counterion binding,
RGF without counterion binding, and RPA. (b) Fraction of electrostatic osmotic
coefficient drop (Φcc/(Φcc + Φlin)) attributable to translational entropy loss upon
counterion condensation, at different densities. For low lb, the fraction attributable
to condensation entropy loss increases with increasing concentration; this trend is
reversed for higher lb.
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has two effects: 1) allowing counterion and backbone charge to interactmore closely,
thus slightly increasing the condensation driving force and increasing the amount of
counterion condensation, and 2) decreases the electrostatic fluctuations of the two
charges. Large values of d correspond to two essentially non-interacting charges
fluctuating as two independent charges, while d → 0 corresponds to two tightly
interacting charges whose leading order electrostatic fluctuations are those of a
charge dipole that vanishes as d2 Eq. (4.26). As discussed, we prefer to think of d

as a parameter characterizing the degree of fluctuations of the counterion-backbone
charge pairs.
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Figure 4.7: Phase diagram for cB-dC (solid lines, from top to bottom d=0.0a, d=1.0a,
d=2.0a) and dB-dC (dashed line, from top to bottom d=0.6a, d=0.7a, d=1.0a, d=2.0a,
d=100.0a) charge models, with ln ξ = 0. Inset: Critical Bjerrum length lc

b as a
function of non-electrostatic binding strength ln ξ, normalized by its avlue when
ln ξ = 0. Lines are for d = 1.0a (blue solid) and d = 1.5a (red dashed).

Our calculations for the phase diagram (4.7) confirm the importance of the residual
fluctuations. For large values of d, even when the counterions are condensed, their
dipolar fluctuations are still sufficiently strong to produce the expected macroscopic
phase separation. For decreasing values of d, which decreases the residual fluctua-
tions, the the critical Bjerrum length lb and critical concentration ρp both increase.
For small enough d, the phase window begins shrinking with increasing lb. In fact,
setting the dipole parameter d = 0 in the dB-dC charge model completely eliminates
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the phase instability of the salt-free polyelectrolyte solution at all Bjerumm lengths
considered (up to lb/b = 7).

This over-stabilization arises because setting d = 0 in the dB-dC model eliminates
electrostatic fluctuations and correlations associated with the condensed charge
and the site that it condenses onto. In a similar vein, the cB-cC model, which
has a continuous backbone and smeared-out (continuous) condensed counterions,
condenses fewer charges than the dB-dC model (see Fig. 4.3b) and also fails to
predict phase separation in the salt-free solution even at the highest Bjerrum lengths
we considered (lb/b = 7).

For comparison we plot predictions of the cB-dC model in Fig. 4.7 (solid lines).
In this model, the same stabilizing trend of increasing lc

b, ρ
c
p is observed with

decreasing d. However, the asymmetry between the continuous backbone and
discrete condensed counterions means that in the d = 0 limit the cB-dC model still
has charge fluctuation contributions of the form ω̃(k) − Γ̃. Thus, even in the d = 0
limit, the cB-dC model can still phase separate, unlike in the dB-dC model.

To more cleanly isolate the effect of residual fluctuations from the extent of coun-
terion condensation, we varied the non-electrostatic driving force ln ξ at different
values of the parameter d. For smaller d, we expect that increasing the driving force
acts to further stabilize the system against macroscopic phase separation because
of the aforementioned effect of weaker residual fluctuations. Thus, increasing ln ξ
increases the critical interaction strength lb required to observe phase separation, as
seen in the inset of Fig. 4.7 for d = 1a. Interestingly, at larger values of d we actually
observe that the critical lb can change non-monotonically with the non-electrostatic
driving force ln ξ, eventually de-stabilizing the solution. In such cases, there is
sufficient counterion condensation at high polymer concentrations relative to con-
densation at low polymer concentrations to destabilize the polyelectrolyte solution.
In fact, for large enough d this de-stabilization effect is also seen when comparing
ln ξ = −∞ (no counterion condensation) versus ln ξ = 0, though the effect is modest
(lc

b changes by ∼ 3%).

Our examination of different charge models reveals that the exact nature of the
fluctuating counterion-backbone charge pair should be examined more closely. The
interpretation and quantitative determination of our parameter d depends on the exact
details of the backbone charge structure (i.e. continuous or discrete) and molecular
details not considered in our coarse-grained model, but it is nevertheless clear that
retaining the residual, higher order charge fluctuations is vital to reproducing the
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phase separation of polyelectrolyte solutions.

4.4 Conclusion
We have discussed the nature of electrostatic fluctuations in solutions of flexible
polyelectrolytes within amodified self-consistent renormalized Gaussian fluctuation
(RGF) theory augmented with a tight-binding model for counterion condensation.
For weak charge interactions or low charge fractions, electrostatic fluctuations are
weak andwell-described by RPA theories, which essentially describe the free energy
changes associated with the linear response of charges. By using the RGF theory
for fluctuations, we are able to further cover intermediate interaction strengths when
field fluctuations renormalize the polyelectrolyte chain structure[23], to the onset of
stronger correlation effects like counterion condensation.

At stronger interaction strengths lb/b & 1, Manning condensation theory suggests
that there are stronger correlations associated with the physical phenomenon of
counterion condensation. In this work we observe that, after renormalizing the
chain structure, the remaining fluctuations in the RGF theory are still of the linear
response form. It is thus consistent to introduce a tightly bound population of
counterions to capture the nonlinear electrostatic fluctuations not described by the
RGF theory.

We show that within our theory one can identify a comprehensive electrostatic
binding constant as the free energy change of adding a tightly bound counterion
to a polyelectrolyte, while short-range, non-electrostatic effects driving counterion
binding are included in our derivation as an internal partition function ξ, and is
taken as a parameter in our theory. The electrostatic binding constant clarifies the
relevant contributions to counterion binding, such as the (anti-)cooperative effect
of previously bound counterions, and the RGF framework gives a unified way
to estimate the coupled effects of correlations (screening) and chain connectivity
(including conformational changes) on counterion binding. Further, differences
in counterion binding between different chain structure and charge models were
explainable in terms the self energy. In general, more compact chains condensemore
counterions than extended semiflexible rods. In a similar vein, the dB-dC (discrete
backbone and discrete counterion) charge model, which confines charges to discrete
entities and thereby raising their self energy, condenses more counterions than
continuous backbone models that delocalize charges along the entire polyelectrolyte
backbone.
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In contrast, previous theories often employ electrostatic correlation energy expres-
sions that subtract a condensation-dependent reference energy.[12, 30, 32] As we
showed, this is tantamount to subtracting out favorable electrostatic interactions
between counterions and backbone charges, which led previous theories to have to
re-introduce additional electrostatic binding constants. Further, the reference ener-
gies subtracted in such theories are not unique, and represent subtracting different
interactions.

We find it much more natural and consistent to use a reference electrostatic energy
where the vacuum is the zero-point;[23, 40] combined with our expressions for
the electrostatic self energy allows us to naturally describe chain connectivity, anti-
cooperativity between counterions, and screening effects. In particular, by break-
ing down the charge structure into polyelectrolyte-polyelectrolyte, polyelectrolyte-
counterion, and counterion-counterion, we were able to explain the electrostatic
binding constant’s dependence on the degree of counterion condensation x. This co-
operativity effect stems from the counterion-counterion interaction energies, which
to leading order depends quadratically ∼ x2 on the degree of counterion conden-
sation; the binding constant is the first derivative of the electrostatic energy of
condensation, and thus is to good approximation linear in x.

To highlight the different faces of electrostatic fluctuations, we compare the thermo-
dynamic contributions of the linearized electrostatic fluctuations with the transla-
tional entropy loss of condensed counterions. We see that chain structure renormal-
ization of flexible chains significantly modifies the linearized fluctuations even at
low lb/b, before counterion condensation sets in. The cross-over to the counterion-
condensation regime happens when lb/b ∼ O(1), typical for fully-charged polyelec-
trolytes in aqueous solution. However, under these common aqueous conditions,
the linearized fluctuations of the ionic atmosphere can still contribute an apprecia-
ble amount to the entropy loss associated with electrostatic correlations. In fact,
at higher interaction strengths lb/b & 1.5 ∼ 2 increasing the polyelectrolyte con-
centration actually decreases the relative contribution of counterion condensation
translational entropy losses.

While the onset of counterion condensation is after electrostatic fluctuations have
already begun renormalizing chain structure, we emphasize that the linearized fluc-
tuations, chain structure, and counterion condensation are all coupled. Counterion
condensation theories that ignore the role of chain conformational changes of flex-
ible polyelectrolytes skip a whole regime of fluctuation effects and, depending on
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their model of electrostatic correlations, may significantly under or over-estimate
counterion condensation.

Lastly, we showed how the choice of how to describe the charge structure (i.e. con-
tinuous or discrete backbone, continuous or discrete counterion) upon counterion
condensation needs to be made carefully. Specifically, using schemes that iden-
tically neutralize the backbone charge and counterion (i.e. the cB-cC continuous
backbone-continuous counterion charge model or dB-dC discrete backbone-discrete
counterion model we proposed with d = 0a) runs the risk of over-stabilizing the
electrostatic correlations and eliminating phase separation in salt-free polyelectrolyte
solutions. Instead, it is vital to retain the charge fluctuations of counterion-backbone
charge pairs, which we capture through the introduction of a dipole parameter d that,
to leading order, yields attractive dipolar charge fluctuations; in the past, this was
modeled as additional effective short-ranged attractive interactions.[30] Depending
on the amount of residual charge fluctuations, counterion condensation can either
stabilize polyelectrolyte solutions (i.e. increasing lc

b, consistent with the behavior of
simple electrolyte solutions [34], or eventually destabilize polyelectrolyte solutions,
as reported previously in certain theoretical studies.[12, 31]

We remark that the the sensitivity of polyelectrolyte solutions to the residual charge
fluctuations suggests that one should more carefully study the difference between
polyelectrolyte charge regularization due to acid/base reactions [49] and counterion
condensation (which to leading order is commonly treated as also exactly neutraliz-
ing the polyelectrolyte chains). The binding process in both cases will continue to
depend on chain structure and exhibit cooperative effects due to chain connectivity.
However, the two may have different phase separation behaviors. The exact charge
neutralizationmodel is probably a better description of acid/base titration than coun-
terion condensation, with the consequence that acid/base titration is more likely to
stabilize polyelectrolyte solutions. Granted, once the chains become neutralized, it
will also become important to consider non-electrostatic interactions, such as the χ-
interactions – the organic backbone of polyelectrolytes is typically hydrophobic and
thus otherwise immiscible with water. One will also have to more carefully consider
the difference between any introduced χ interactions and the residual charge fluctu-
ations of the polyelectrolyte – recent work has shown that adding a polarizability, or
an effective dipole, to polymer chains naturally leads to attractive interactions, as we
have found in our theory, and can be characterized by effective χ interactions.[50]

In the future, it will be important to account for the full spectrum of ion-pairing
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effects. For example, at even higher lb/b than those considered in this study, ion-
pairing between small ions may also need to be considered, and the fluctuations
of condensed ions and backbone can lead to coil-globule transitions discussed
in literature but not considered in this work. Also, at the O(1) values of lb/b
considered here, it will be important to examine the effect of ion pairing between
oppositely charged polyelectrolytes.[51] If counterion condensation occurs, then
chargedmonomers on polyelectrolyte chains, which will have enhanced electrostatic
interactions due to chain connectivity, will pair as well. It would be interesting to
study how such ion pairing would modify predictions of the phase diagram for
coacervates.
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C h a p t e r 5

FIELD THEORETIC TECHNIQUES TO STUDY
FLUCTUATIONS

Variational Gaussian approaches, sometimes termed renormalized Gaussian fluctu-
ations (RGF), are a powerful technique to describe field theoretic formulations of
partition sums beyond the perturbative, random phase approximation (RPA). Most
recently, it was generalized to study polyelectrolytes, where it was shown to capture
fluctuations corresponding to changes in chain conformation. However, while the
RGF approach is well-grounded in the Gibbs-Feynman-Bogoliubov (GFB) inequal-
ity for real-valued actions, the field theories that it has been recently applied to
feature complex-valued actions. We show that the RGF self-consistency conditions
are the same as those derived from a self-consistent first-order perturbation (sc1P),
thus giving another interpretation of the RGF that does not rely on the GFB in-
equality. Further, we show that the self-consistent conditions derived in our theories
all involve a self-consistent determination of the structure factor; this renormaliza-
tion of structure is a vital contribution of the newly-considered, non-perturbative
fluctuations. Specifically, we show that the RGF/sc1P procedure applied in the
grand canonical ensemble renormalizes the intrachain structure. Next, although the
RGF cannot be readily applied in the canonical ensemble, the sc1P can. By ex-
actly re-summing a sub-collection of terms in the perturbation expansion, we obtain
transparent self-consistency conditions that incorporate a renormalized multi-chain
structure factor, including both intra- and inter-chain effects. Our results shed
light on previous self-consistent perturbation theories in the canonical ensemble.
We close by discussing the relation of the RGF to other self-consistent fluctuation
theories.

5.1 Introduction
Statistical mechanics problems are often profitably reformulated as field theories,
whereby a partition sum is transformed from a many-body, particle-based repre-
sentation to a field-theoretic representation via standard mathematical identities [1].
The fields represent a collective description of the system, typically representing
density or auxiliary (chemical) potential fields. The resulting action (“Hamilto-
nian”) in the statistical weight is usually complex-valued, and the evaluation of the
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field-theoretic partition sum is typically impossible in full but is amenable to several
analytical tools. The saddle point of the complex action corresponds to a mean-field
solution, while including the leading order harmonic fluctuations about the saddle
point yields the random phase approximation (RPA) [1–6].

In many soft matter systems, the fluctuations play a crucial part in the thermodynam-
ics [7–12]. One of the most notable examples is charged systems, where for bulk
systems the mean field solution of the free energy is independent of the electrostatic
interactions due to charge neutrality; electrostatic fluctuations are a crucial part of
the thermodynamics. For this reason, studies of charged systems have employed a
variety of approaches to study the fluctuations in charged systems [13–28].

One of the most powerful tools to describe fluctuations are variational Gaussian, or
renormalized Gaussian fluctuation (RGF) approaches based on the Gibbs-Feynman-
Bogoliubov (GFB) bound [29]. We direct interested readers into excellent pedagog-
ical discussions with example applications to toy models involving scalar actions
[2, 3]. This approach has been widely used in the study of charged systems [13,
14, 17, 20, 21], and was recently extended to polymers where it was shown to natu-
rally produce a self-consistent procedure involving renormalization of the intrachain
structure, something that had previously only been done by self-consistent PRISM
theories [30, 31].

Despite the success of the various variational Gaussian theories, it is interesting
to note that the GFB free energy bound, upon which these variational theories are
constructed, only holds if the action in the partition sum is real-valued. In contrast,
typical field theories involve complex-valued actions. It is thus desirable to find a
more solid basis for such variational Gaussian theories – even if rigorous bounds
can not be found, such work would give deeper insight into the mechanics of the
GFB procedure.

To this end, recent work by Frydel et al. has explored the connection of variational
Gaussian theories to the inhomogeneous Ornstein-Zernicke equations closed by the
RPA closure [32], as well as connections with hierarchies of exact relations derived
from derivatives of the partition sum [2]. In this paper, we explore the connection
of the Gaussian variational procedure to self-consistent first order perturbation
(which we will call sc1P for short) theory. We are motivated by the fact that for
certain simple scalar theories, the sc1P procedure, which is also sometimes called
a self-consistent Hartree renormalization [33], can be shown to give the same self-
consistent equations as the RGF [3]. A version of the sc1P procedure has also been
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used to study semidilute solutions of polymers [11], where fluctuations beyond the
RPA are known to be important.

In Section II, we outline the field theoretic formalism for a generic system of
polymers interacting via a pair potential, and recapitulate the RGF procedure in the
grand canonical ensemble. In Section III we present the sc1P procedure for both
grand canonical and canonical ensembles. In Section IV we compare RGF and sc1P
to each other and to the RPA and exact field-theoretic expressions, emphasizing
that the new fluctuations considered by the self-consistency approach relate to
modifications of the chain structure. Finally, in Section V we close by comparing
the non-perturbative, self-consistent approaches derived in this paper with other
non-perturbative theories, noting their similarities and differences. Overall, we note
the importance of ensembles and whether or not the molecules considered are rigid.

5.2 Field Theoretic Framework
We first derive the field-theoretic representation of a system of homopolymer chains
with intramolecular bonded interaction βHB and under an external field h(r). A
particle-based representation describes configurations based on the chain configu-
ration RA ≡ {rAj}, where A indexes the A-th molecule and runs up to the total
number n of molecules, and j indexes the j-th “monomer” out of a total number
N of monomers in the A-th molecule A. The microscopic density operator for the
polymer is then defined as

ρ̂(r) =
n∑

A=1

N∑
j=1

δ(r − rAj), (5.1)

For monomeric species, N = 1 and the index j only takes the value of 1.

In addition to the intra-chain bonded interaction βHB, we let the monomers interact
through a pair potential U:

βHU =
1
2

∫
drdr′ ρ̂(r)U(r, r′)ρ̂(r′), (5.2)

The canonical partition function is then

Q = 1
n!vnN

∏
A, j

∫
drAj exp

(
−βHB − βHU −

∑
Aj

h(rAj)
)
. (5.3)

We use the monomer volume vγ instead of the cube of the thermal de Broglie
wavelength; this merely shifts the reference chemical potential and does not affect
thermodynamic properties.
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Next, we use the Hubbard-Stratanovich (HS) transformation to decouple densities in
the pair interaction. This introduces an auxiliary potential Ψ(r) and the interaction
energy is written as

e−βHU =
1
ΩU

∫
DΨ · exp

[
− i

∫
drρ̂(r)Ψ(r)

]
(5.4)

exp
[
− 1

2

∫
drdr′ Ψ(r)U−1(r, r′)Ψ(r′)

]
(5.5)

Note that the argument of the exponential is now complex-valued, but is only linear
in the density ρ. Being linear in ρ, the chains are now decoupled, interacting with
each other only vicariously through the auxiliary potential Ψ. Meanwhile, ΩU is a
normalization factor given by

ΩU =

∫
DΨ exp

[
−1

2

∫
drdr′ Ψ(r)U−1(r, r′)Ψ(r′)

]
= [det U]1/2 (5.6)

The field-theoretic canonical partition function is then

Q = 1
n!vnN

∫ DΨ
ΩU

exp(−Lc[iΨ + h]). (5.7)

with a complex-valued canonical action

Lc[ψ] = 1
2

∫
drdr′ Ψ ·U−1 · Ψ − n ln Q[iΨ + h] (5.8)

where the configurational integration is now included in the independent single-
chain partition functions Q:

Q =
∫
DRe−HB−

∫
dr(h+iΨ)ρ̂(1) (5.9)

where the superscript “(1)” in ρ̂(1) is meant to emphasize that this is a single-chain
version of the microscopic density operator.

Finally, we introduce the chain fugacities λ and transform Q to the grand canonical
partition function using a standard mathematical identity for the series representa-
tions of the exponential function [1]

Ξ =
1
ΩU

∫
DΨe−Lgc[iΨ+h] (5.10)

with the grand canonical “action”

Lgc[Ψ] = 1
2

∫
drdr′ Ψ ·U−1 · Ψ − λQ[iΨ + h] (5.11)
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One sees that the canonical and grand canonical field-theoretic partition functions
only differ in the term with the chain partition function Q.

The above field theoretic representation is derived only using identities and the
partition functions are thus exact. We reiterate that the actions in the full field-theory
equations are complex-valued. The saddle-point approximation of the partition
function is found by the value of the action at the mean field Ψ such that the
functional derivative δL/δΨ = 0 [1]. RPA theory expands about the saddle point
in quadratic fluctuations, but results in a fixed structure factor determined solely
by the saddle-point [1]. For uniform systems, the chain structure factor that enters
the RPA is independent of polymer concentration. This is not an issue for rigid
molecules, but can be vitally important for semidilute polymer concentrations [30,
31]. As we will see below, an important beyond-RPA physical effect captured by
the non-perturbative RGF and sc1P approaches will be a concentration-dependent
renormalization of polymer conformations.

5.3 Renormalized Gaussian Fluctuations
The RGF theory follows the Gibbs-Feynman-Bogoliubov (GFB) approach by intro-
ducing a general Gaussian reference action Lref. The Gaussian fluctuations are not
fixed by the saddle point, but rather “renormalized” by a variational condition. For
the Ψ field, we use the following Gaussian reference action:

L0 =
1
2

∫
drdr′[Ψ(r) + iψ(r)]G−1(r, r′)[Ψ(r′) + iψ(r′)] (5.12)

which is parametrized by amean electrostatic potential−iψ(r) and aGreen’s function
G(r, r′). This reference action accounts for the deviation δψ = Ψ − (−iψ) = Ψ + iψ

with variance G from the mean −iψ.

For reasons that will become clear soon, the GFB procedure is most readily applied
to the grand canonical ensemble. We use L0 to rewrite exactly the grand canonical
partition function Eq. (5.10) as

Ξ =
1
ΩU

∫
DΨe−L0[Ψ]e−(L[Ψ]−L0[Ψ])

=
ΩG

ΩU

〈
e−(L[Ψ]−L0[Ψ])

〉
0

(5.13)

where 〈· · · 〉0 denotes an average over Ψ with respect to the reference action L0, and
ΩG the corresponding partition function of Lref, defined analogously to ΩU in Eq.
(5.6) with G in place ofU. For notational clarity in this section, we will write 〈· · · 〉0
as 〈· · · 〉.
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The GFB procedure proceeds by approximating the field integral over Ψ with a
leading order cumulant expansion

Ξ ≈ ΩG

ΩU
e−〈L−L0〉 ≡ e−Wv ≡ ΞGFB. (5.14)

which defines Wv =
ΩG

ΩU
e−〈L−L0〉 as the variational grand free energy. If the action

were real-valued, the cumulant expansion would actually satisfy the GFB inequality
and thus produce a free energy bound. Unfortunately, because the action is com-
plex, this bound is no longer true. Nevertheless, the formal steps and stationarity
conditions of the GFB procedure can still be followed.

This cumulant expansion in the exponent can be readily evaluated owing to the
Gaussian nature of the fluctuating field, and results in the following grand partition
function ΞGFB and variational grand free energy Wv:

ΞGFB =e−Wv[G,ψ] (5.15)

Wv[G, ψ] = −
1
2

ln
(
det G
det U

)
+

1
2

∫
drdr′[U−1 − G−1]G

− 1
2

∫
drdr′ψ ·U−1 · ψ − λ 〈Q〉 . (5.16)

Importantly, in the grand canonical ensemble the partition function term 〈Q〉 can
be averaged exactly, in contrast to the canonical ensemble which would require per-
forming a Gaussian average on 〈ln Q〉. The former is easily performed because the
onlyΨ dependence inQ is e−i

∫
Ψ·ρ̂, and can be averaged inside of the configurational

integral using the identities in the appendix. The averaged single-particle/chain par-
tition function is:

〈Q〉 =
∫
DR e−HB−

∫
dr(h+ψ)·ρ̂− 1

2
∫

drdr′ ρ̂(1)·G·ρ̂(1) (5.17)

The calculation of the single-chain partition function now features G(r, r′) as an
effective intrachain instantaneous interaction

uinstp (R) ≡
1
2

∫
drdr′ ρ̂(1)(r)G(r, r′)ρ̂(1)(r′). (5.18)

This interaction is conformation dependent. We emphasize that the fluctuation-
mediated effective intra-particle/chain interactionG(r, r′) ismissing in self-consistent
mean-field (SCMF) theories. For polymeric species, it is precisely this intrachain
interaction that allows chain structure to adapt to solution conditions.
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It remains to determine the self-consistent set of equations for ψ and G. The RGF
conditions for ψ and G require that Eq. (5.16) be stationary with respect to both.
The condition arising from ψ yields the mean-field condition:

0 =
δWv

δψ
= −

∫
dr′U(r, r′)ψ(r′) + ρ(r) (5.19)

where we have used the system density ρ(r) = −λδQ[ψ]/δψ(r). This mean-field
condition might appear trivial, but ρ(r) depends on the external field h, the mean
electrostatic field ψ, and the effective intrachain interaction mediated by G. Thus
although the expression appears simple, in general the mean ψ will not be the same
as the saddle-point value.

Similarly, the functional differentiation with respect to G yields

0 = −G−1 +U−1 + λ 〈Q〉
〈
ρ̂(1)(r)ρ̂(1)(r′)

〉
(5.20)

where
〈
ρ̂(1)(r)ρ̂(1)(r′)

〉
1 is a single-chain structure factor determined by the single-

chain averaged partition function 〈Q〉, i.e. it is the single-chain structure of a chain
under external fields ψ and h, and interacting with itself via the pair interaction
G. The above two conditions constitute the self-consistent equations of the RGF
theory. Importantly, the Green’s function G depends on the single-chain structure
factor, which in turn implicitly depends on G through 〈Q〉. Thus the self-consistent
equations require a self-consistent solution of the single-chain structure as well.

This chain-structure self-consistency is missing in the RPA procedure. For simple
electrolytes, the RGF and RPA were shown to be equivalent [2], but this is no longer
true when the chain has intramolecular flexibility that allows it to adapt its chain
configuration to the the external field h and the variational parameters ψ and G.

We acknowledge that the exact evaluation of single-chain partition functions is
difficult even for simpler pair interactions, and in general can be done by numerical
simulation [34], or by other simple variational approaches [11, 30, 31, 34]. However,
the particular way by which one evaluates the single-chain partition function is not
necessary for the discussions in this paper, and we refer interested readers to the
aforementioned references or Ch. 2.

5.4 Self-Consistent First Order Perturbation (sc1P)
The self-consistent first order perturbation involves evaluating the partition integral
with a reference action L0[ψ]. Then, the average of any observable A can be exactly
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written as

〈A〉 =
〈
Ae−(L−L0)

〉
0〈

e−(L−L0)
〉

0
(5.21)

where the reference average 〈·〉0 is:

〈·〉0 =
∫

DΨ(·)e−L0[Ψ]∫
DΨe−L0[Ψ]

(5.22)

The first-order perturbation expands (5.21) to first order in ∆L:

〈A〉 = 〈A〉0 − 〈A∆L〉0 + 〈A〉0 〈∆L〉0 + ... (5.23)

The self-consistent procedure comes from setting 〈A〉 = 〈A〉0, i.e. requiring the
leading order first order perturbation to vanish

0 = − 〈A∆L〉0 + 〈A〉0 〈L〉0 . (5.24)

By setting the observable A to Ψ and δψδψ, we can self-consistently respectively
estimate the two parameters of the reference action: ψ and G−1. The physical
motivation for doing so is to essentially “renormalize” the first order perturbation
correction into the reference Gaussian action and into the leading order 〈A〉0 con-
tribution. This is most clearly understood when A = δψδψ, and 〈δψδψ〉0 = G.
In other words, we want the reference action’s Green’s function to approximate the
actual system’s second order response as closely as possible.

5.4.1 sc1P in Grand Canonical Ensemble
We first consider the Grand Canonical Ensemble, where, like the RGF, it is conve-
nient to use a Gaussian reference action

L0[Ψ] =
1
2

∫
12
δψ1G−1

12 δψ2. (5.25)

For economy of notation we use subscripts to denote the arguments of the functions
and integration variables.

Applying the sc1P to the mean field 〈Ψ〉 = −iψ + δψ, the sc1P condition is

0 = − 〈Ψ∆L〉0 + 〈A〉0 〈L〉0
= − 〈−iψ + δψ∆L〉0 + 〈−iψ + δψ〉0 〈L〉0
= − 〈δψ∆L〉0 + 〈δψ〉0 〈L〉0
= − 〈δψ∆L〉0 (5.26)
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where we note that ψ cancels in the two contributions because it is a constant and
can be can be taken out of the averaging, and under the Gaussian reference action
〈δψ〉0 = 0.

The reference averages will require averages over the chain partition function Q. We
introduce the shorthand notation∫

R
(·) ≡

∫
DRe−βHB−

∫
1 h1·ρ̂(1)1 (·) (5.27)

in order to focus on the effects of the averaging on the auxiliary field. Like in
the RGF derivation, the Gaussian averaging of the partition function yields 〈Q〉0 =∫

R exp[−
∫

1 ρ̂
(1)
1 · ψ1 −

∫
12

1
2 ρ̂
(1)
1 · G12 · ρ̂(1)2 ] and λ 〈Q〉0 = n the number of chains.

In this section we denote configurational averages with this effective single chain
partition function as 〈·〉R. The chain density operators involved are to be understood
as the single-chain density operator.

In detail, we evaluate the first order term to be:

〈δψ1∆L〉0 =
〈
δψ1

(
−1

2

∫
34
ψ3U−1

34 ψ4 − i
∫

34
ψ3U−1

34 δψ4 +
1
2

∫
34
δψ3(U−1

34 − G−1
34 )δψ4 − λQ[Ψ]

)〉
0

=

〈
δψ1

(
−i

∫
34
ψ3U−1

34 δψ4 − λQ[ψ]
)〉

0

=

[
−i

∫
34
ψ3U−1

34 〈δψ1δψ4〉0 − λ
∫

R

〈
δψ1e−

∫
1 ρ̂
(1)ψ1−i

∫
1 ρ̂
(1)
1 δψ1

〉
0

]
=

[
−i

∫
34
ψ3U−1

34 G14 − λ
∫

R
(−i)e−

∫
1 ρ̂
(1)
1 ψ1− 1

2
∫

12 ρ̂
(1)
1 ·G12·ρ̂(1)2

∫
4
ρ̂
(1)
4 G14

]
= − i

[∫
34
ψ3U−1

34 G14 −
∫

4
〈ρ4〉G14

]
= − i

∫
4

G14

[
− 〈ρ4〉 +

∫
3

U−1
34 ψ3

]
(5.28)

In the second line we have used the fact that terms that are odd in δψ disappear after
Gaussian averaging, and in the third line we wrote out the single-chain partition
function in full to identify the portion of the partition sum integrand that is averaged
by the reference action. The fourth line makes use of a Gaussian averaging identity
presented in the appendix, and the fifth line makes use of the fact that, in the grand
canonical ensemble

λ 〈Q〉0
1
〈Q〉0

∫
R
ρ̂(1)e−

∫
1 ρ̂
(1)
1 ψ1− 1

2
∫

12 ρ̂
(1)
1 ·G12·ρ̂(1)2 (5.29)

= λ 〈Q〉0
〈
ρ̂(1)

〉
R
≡ 〈ρ〉 (5.30)
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where
〈
ρ̂(1)

〉
R is the average density of a single chain and is proportional to N/V .

When combined with the number of chains factor λ 〈Q〉0 = n, one gets the system
average density 〈ρ〉

Finally, setting the term in the brackets to zero yields

0 = − 〈ρ1〉 +
∫

2
U−1

12 ψ2 (5.31)

which is the same expression as Eq. (5.19) obtained previously for the RGF!
Importantly, the sc1P requires the same effective single-chain partition function∫

R exp[−
∫

1 ρ̂
(1)
1 ψ1 − 1

2

∫
12 ρ̂

(1)
1 · G12 · ρ̂(1)2 ] as the RGF, and thus also contains the

same self-consistent renormalization of chain structure and G that is described in
the RGF.

To complete the correspondence between the sc1P and RGF for grand canonical
systems of chains, we consider the sc1P estimate of G = 〈δψδψ〉. The first order
perturbation terms that we have to evaluate are:

〈δψδψ〉0 〈∆L〉0 =G12

[
1
2

∫
34
[U−1 − G−1]34G34 −

1
2

∫
34
ψ3U−1

34 ψ4 − λ 〈Q〉0
]
(5.32)

〈δψδψ(L − L0)〉0 =
1
2

∫
34

〈
δψ1δψ2(δψ3 − iψ3)U−1

34 (δψ4 − iψ4)
〉

0 (5.33)

− λ 〈δψδψQ[ψ]〉0 −
1
2

∫
3,4

〈
δψ1δψ2δψ3G−1

34 δψ4
〉

0

=
1
2

[
G12

∫
34

G34U−1
34 + 2

∫
34

G13G24U−1
34

]
− 1

2
G12

∫
34
ψ3U−1

34 ψ4

− 1
2

[
G12

∫
34

G34G−1
34 + 2

∫
34

G13G24G−1
34

]
− λ

∫
R

e−
∫

1 ρ̂
(1)
1 ψ1− 1

2
∫

12 ρ̂
(1)
1 ·G12·ρ̂(1)2

[
G12 −

∫
34

G13G24ρ
(1)
3 ρ
(1)
4

]
=

1
2

[
G12

∫
34

G34(U−1
34 − G−1

34 ) + 2
∫

34
G13G24(U−1

34 − G−1
34 )

]
− 1

2
G12

∫
34
ψ3U−1

34 ψ4 − G12λ 〈Q〉0 + λ 〈Q〉0
∫

34
G13G24 〈ρ3ρ4〉R

We have again used the Gaussian averaging identities presented in the appendix,
and similarly to before identified

1
〈Q〉0

∫
R

e−
∫

1 ρ̂
(1)
1 ψ1− 1

2
∫

12 ρ̂
(1)
1 ·G12·ρ̂(1)2 ρ

(1)
1 ρ
(1)
2 =

〈
ρ
(1)
1 ρ
(1)
2

〉
R

(5.34)
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as the single-chain structure, of a chain under an interaction mediated by the Green’s
function G and the mean field ψ. Finally, the self-consistency condition requires

0 = 〈δψδψ(L − L0)〉0 − 〈δψδψ〉0 〈L − L0〉0

=

∫
34

G13G24(U−1
34 − G−1

34 ) + λ 〈Q〉0
∫

34
G13G24

〈
ρ
(1)
3 ρ
(1)
4

〉
0

(5.35)

which is satisfied by

0 = U−1 − G−1 + λ 〈Q〉0
〈
ρ(1)ρ(1)

〉
0
. (5.36)

which is the same as Eq. (5.20) derived in the RGF theory. We have thus shown,
within the grand canonical ensemble, the equivalence of the self-consistency con-
ditions derived from the RGF and from the sc1P procedures.

5.4.2 sc1P in Canonical Ensemble
The field theoretic action for the canonical ensemble features a n ln Q[iΨ + h]
term. The RGF procedure requires Gaussian averaging over this natural logarithm
〈ln Q〉0, which unfortunately can not be simply carried out (one could perform a
series expansion about a reference partition function, but this will involve products
of the partition function and becomes unwieldy).

If one were to use the same Gaussian reference action as in the grand canonical
ensembles, the sc1P would run into a similar problem as the RGF, where a Gaussian
average of 〈ln Q〉0 is required. Instead of carrying out the configurational integrals
which produce the ln Q term in the field-theoretic action, we preliminarily opt to
explicitly keep all chain coordinate degrees of freedom, such that we have a hybrid
particle-field partition function

Z =
∫
D{R}

∫
DΨe−H[Ψ,{R}] (5.37)

with canonical action

H[Ψ, {R}] =
∑

A

Hc[RA] +
∫

1
ρ̂1(h1 + iΨ1)

+
1
2

∫
12
Ψ1U−1

12 Ψ2 (5.38)

where the sum runs over the chains in the system and ρ̂ =
∑

A ρ̂A is again the system
instantaneous density. It will also be convenient to introduce the notation∫

R
=

∫
D{R}e−

∑
A Hc[RA]−

∫
1 ρ̂1h1 . (5.39)
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To carry out the sc1P procedure we use the same Gaussian action as before:

L0[Ψ] =
1
2

∫
12
δψ1 · G−1

12 · δψ2 (5.40)

and we define Gaussian averages 〈·〉0 just as before:

〈·〉0 =
1
ΩG

∫
DΨe−L0[Ψ] (5.41)

The perturbation theory requires the difference in the action, which we partition as:

H − L0 =
∑

A

Hc[RA] +
1
2

∫
12
δψ1 · (U−1 − G−1)12 · δψ2 +

∫
1
ρ̂1(−iψ1 + δψ1)

− i
∫

12
δψ1 ·U−1

12 · ψ2 −
1
2

∫
12
ψ1 ·U−1

12 · ψ2 +

∫
1

h1 ρ̂1

≡
∑

A

Hc[RA] +
∫

1
h1 ρ̂1 + H1 + H2 + H3

with the following definitions:

H1 ≡
1
2

∫
12
δψ1 · [U−1 − G−1] · δψ2 =

1
2

∫
12
δψ1 · ζ12 · δψ2 (5.42)

H2 ≡
∫

1
[ρ̂1ψ1 + i

∫
1
δψ1(ρ̂1 −

∫
12

U−1
12 · ψ2) (5.43)

H3 ≡ −
1
2

∫
12
ψ1 ·U−1

12 · ψ2 (5.44)

where in H1 we defined ζ ≡ U−1 − G−1 to save space. With these definitions, the
full partition function is

Z =
ΩG

ΩU

∫
R

〈
e−H1−H2−H3

〉
0 (5.45)

and averages in the full partition function are

〈·〉 =
∫

R

〈
(·)e−H1−H2−H3

〉
0∫

R

〈
e−H1−H2−H3

〉
0
. (5.46)

Instead of carrying out the perturbation to first order in H − L0, we only expand to
first order in H1. This is because we observe that H3 is a constant (for prescribed
ψ), and that H2 has a simple form that can be averaged with respect to L0 even when
exponentiated. For comparison, an earlier first-order perturbation analysis (with a
slightly different reference action) studied only the case where ψ = 0 and could be
ignored, kept the expansion with respect to the i ρ̂δψ term in H2 to all powers, while
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excluding terms corresponding to the product of H1 and higher orders of H2 [11,
24]. Our approach, by keeping H2 and H3 exponentiated, goes further and exactly
resums all terms that are first order in H1 but of higher order in H2 and H3.

Such an expansion scheme essentially sets the reference system about which we
perturb to one where H1 = 0. The partition function of this reference system can be
written as:

1
n!

〈∫
R

e−H2−H3

〉
0
=

1
n!

e−H3

∫
R

〈
e−H2

〉
0

=
1
n!

e−H3

∫
R

e−
∫

1 ρ̂1ψ1− 1
2
∫

12 δρ̂1G12δρ̂2

≡e−H3 ZR = Y (5.47)

where we define δρ̂1 = ρ̂1 −
∫

2 U−1
12 · ψ2. The factor of exp(−H3) can be factored

out because it does not depend on the configurations R nor the fluctuating field Ψ.
ZR or Y can be thought of the partition function of a system of chains interacting
with the pair interaction G, and under external potential ψ1 −

∫
23 G12U−1

23 ψ3. When
the external potential is constant, i.e. bulk systems, due to the constant number of
chains in the canonical ensemble, the external potential terms can be factored out
of the partition sum and ZR or Y are essentially the partition function of a system of
chains interacting via G.

We write averages with respect to this new effective reference as

〈O〉re f =
1

n!Y

∫
R
O

〈
e−H2−H3

〉
0 =

1
n!Y

1
n!

e−H3

∫
R
Oe−

∫
1 ρ̂1ψ1− 1

2
∫

12 δρ̂1G12δρ̂2 (5.48)

Our perturbation scheme for an observable O thus amounts to

〈O〉 =
∫

R

〈
Oe−H1−H2−H3

〉
0∫

R

〈
e−H1−H2−H3

〉
0

(5.49)

≈
∫

R

〈
O(1 − H1)e−H2−H3

〉
0∫

R

〈
(1 − H1)e−H2−H3

〉
0

=

∫
R

〈
Oe−H2−H3

〉
0 −

∫
R

〈
OH1e−H2−H3

〉
0∫

R

〈
e−H2−H3

〉
0 −

∫
R

〈
H1e−H2−H3

〉
0

=

∫
R

〈
Oe−H2−H3

〉
0 −

∫
R

〈
OH1e−H2−H3

〉
0

n!Y (1 − 1
n!Y

∫
R

〈
H1e−H2−H3

〉
0)

≈ 〈O〉re f − 〈OH1〉re f + 〈O〉re f 〈H1〉re f (5.50)
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We now apply the self-consistent perturbation to determine the condition for the
mean field ψ. Evaluating the terms in the perturbation, we obtain:

〈Ψ〉re f = − iψ + 〈δψ〉re f (5.51)

〈ΨH1〉re f = − iψ 〈H1〉re f + 〈δψH1〉re f (5.52)

〈Ψ〉re f 〈H1〉re f = − iψ 〈H1〉re f + 〈δψ〉re f 〈H1〉re f (5.53)

and
〈Ψ〉 = −iψ + 〈δψ〉re f − 〈δψH1〉re f + 〈δψ〉re f 〈H1〉re f (5.54)

Consider the leading perturbation term 〈δψ〉re f :

〈δψ〉re f =
1

n!Y

∫
R

〈
δψ1e−H2−H3

〉
0 (5.55)

= − ie−H3

n!Y

∫
R

e−
∫

1 ρ̂1ψ1 e−
1
2
∫

12 δρ̂1G12δρ̂2

∫
2

G12

(
ρ̂2 −

∫
3

U−1
23 · ψ3

)
= − i

∫
2

G12

〈
ρ̂2 −

∫
3

U−1
23 · ψ3

〉
re f

= − i
∫

2
G12

(
〈ρ̂2〉re f −

∫
3

U−1
23 · ψ3

)
An intuitively appealing self-consistency condition arises if we require 0 = 〈δψ〉re f ,
or

0 = 〈ρ̂2〉re f −
∫

3
U−1

23 · ψ3 (5.56)

which is a mean-field like expression. It also motivates our previous definition of
δρ̂ = ρ̂ − U−1 · ψ, and the identification 〈ρ̂〉 = U−1 · ψ and interpretation of Y

as the partition function of a system of chains feeling external potentials h and ψ,
while deviations of density from the mean interact via the effective interaction G.
Alternatively, we can consider this as a system of chains interacting with each other
through G, along with external field h and mean-field ψ1 −

∫
23 G12U−1

23 ψ3.Note that
this reference system is multi-chain, and thus the structure factors involved contain
inter-chain correlation information.
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Next we check the remaining perturbation contribution 〈δψH1〉re f :

〈δψH1〉re f =
1

n!Y

∫
R

〈
δψ1H1e−H2−H3

〉
0 (5.57)

=
1

n!Y

∫
R

〈
δψ1

1
2

∫
23
δψ2ζ23δψ3e−H2−H3

〉
0

(5.58)

=
1
2

∫
23
ζ23

e−H3

n!Y

∫
R

〈
δψ1δψ2δψ3e−H2

〉
0

=
1
2

∫
23
ζ23

e−H3

n!ZRX

∫
R
(−i)e−

∫
1 ρ̂1ψ1 e−

1
2
∫

12 δρ̂1G12δρ̂2 ... (5.59)[
−

∫
456

G14G25G36δρ̂4δρ̂5δρ̂6...

+

∫
4
δρ̂4(G12G34 + G13G24 + G23G14)

]
=
−i
2

∫
23
ζ23

[
−

∫
456

G14G25G36 〈δρ̂4δρ̂5δρ̂6〉re f ... (5.60)

+

∫
4
〈δρ̂4〉re f (G12G34 + G13G24 + G23G14)

]
Where we have defined correlation functions 〈δρδρδρ〉re f of the system with parti-
tion functionY . The second term in Eq. (5.61) is zero because of the aforementioned
condition, which is equivalent to 〈δρ〉re f = 0. Meanwhile, we expect the first term
in Eq. (5.61) to be smaller than the second term because it involves higher order
terms in both δψ (via G) and δρ. We thus propose to neglect the first term.

If we neglect these higher order terms in δψ and δρ, we satisfy the self-consistency
condition that 〈Ψ〉 = 〈Ψ〉0 = −iψ, with the mean-field condition Eq. (5.56). Note
that this is slightly different from requiring 〈Ψ〉 = 〈Ψ〉re f , but is, in addition to
being more tractable, still physically reasonable and in the spirit of renormalizing
the leading perturbation into the Gaussian reference action L0.

Finally, we present the self-consistent first order perturbation results for the fluctu-
ations. The perturbation expansion requires evaluating:

〈δψ1δψ2〉re f =
1

n!Y

∫
R

〈
δψ1δψ2e−H2−H3

〉
0 (5.61)

=
e−H3

n!Y

∫
R

e−
∫

1 ρ̂1ψ1− 1
2
∫

12 δρ̂1G12δρ̂2

[
G12 −

∫
34

G13G24δρ̂3δρ̂4

]
=G12 −

∫
34

G13G24 〈δρ̂3δρ̂4〉re f
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〈δψ1δψ2H1〉re f =
1

n!Y

∫
R

〈
δψ1δψ2H1e−H2−H3

〉
0 (5.62)

=
1
2

∫
34
ζ34

e−H3

n!Y

∫
R

〈
δψ1δψ2δψ3δψ4e−H2

〉
0

=
1
2

∫
34
ζ34

e−H3

n!Y
e−

∫
1 ρ̂1ψ1− 1

2
∫

12 δρ̂1G12δρ̂2 ...[
G12G34 + 2G13G24 +

∫
5678

G15G26G37G48δρ̂5δρ̂6δρ̂7δρ̂8...

−
∫

56
δρ̂5δρ̂6(G12G35G46 + G34G15G26...

+ G13G25G46 + G14G25G36 + G23G15G46 + G24G15G36)
]

=
1
2

∫
34
ζ34

[
G12G34 + 2G13G24 +

∫
5678

G15G26G37G48 〈δρ̂5δρ̂6δρ̂7δρ̂8〉re f ...

−
∫

56
〈δρ̂5δρ̂6〉re f (G12G35G46 + G34G15G26...

+ G13G25G46 + G14G25G36 + G23G15G46 + G24G15G36)
]

〈H1〉re f =
1

n!Y

∫
R

〈
H1e−H2−H3

〉
0 (5.63)

=
1

n!Y

∫
R

〈
1
2

∫
34
δψ3ζ34δψ4e−H2−H3

〉
0

=
1
2

∫
34
ζ34

e−H3

n!Y

∫
R

〈
δψ3δψ4e−H2

〉
0

=
1
2

∫
34
ζ34

[
G34 −

∫
56

G35G46 〈δρ̂3δρ̂4〉re f

]
where we have used the Gaussian identities to evaluate the Gaussian averages.
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Piecing everything together, we get:

〈δψδψ〉 = 〈δψ1δψ2〉re f − 〈δψ1δψ2H1〉re f + 〈δψ1δψ2〉re f 〈H1〉re f (5.64)

=G12 −
∫

34
G13G24 〈δρ̂3δρ̂4〉R

− 1
2

∫
34
ζ34

[
G12G34 + 2G13G24 +

∫
5678

G15G26G37G48 〈δρ̂5δρ̂6δρ̂7δρ̂8〉R ...

−
∫

56
〈δρ̂5δρ̂6〉R (G12G35G46 + G34G15G26...

+ G13G25G46 + G14G25G36 + G23G15G46 + G24G15G36)
]

+ G12
1
2

∫
34
ζ34

[
G34 −

∫
56

G35G46 〈δρ̂3δρ̂4〉R
]

−
∫

56
G15G26 〈δρ̂5δρ̂6〉R

1
2

∫
34
ζ34

[
G34 −

∫
78

G37G48 〈δρ̂7δρ̂8〉R
]

=G12 −
∫

34
G13G24...

〈δρ̂3δρ̂4〉R −
1
2

∫
34
ζ34

[
2G13G24 +

∫
5678

G15G26G37G48 〈δρ̂5δρ̂6δρ̂7δρ̂8〉R ...

−
∫

56
〈δρ̂5δρ̂6〉R (G13G25G46 + G14G25G36 + G23G15G46 + G24G15G36)

]
+

1
2

∫
34
ζ34

∫
56

G15G26 〈δρ̂5δρ̂6〉R
∫

78
G37G48 〈δρ̂7δρ̂8〉R

=G12 −
∫

34
G13G24 〈δρ̂3δρ̂4〉R −

1
2

∫
34
ζ342G13G24... (5.65)

− 1
2

∫
34
ζ34

[ ∫
5678

G15G26G37G48 〈δρ̂5δρ̂6δρ̂7δρ̂8〉R

−
∫

5678
G15G26 〈δρ̂5δρ̂6〉R G37G48 〈δρ̂7δρ̂8〉R

−
∫

56
〈δρ̂5δρ̂6〉R (G13G25G46 + G14G25G36 + G23G15G46 + G24G15G36)

]
Consistent with our self-consistency condition for themean fieldψ, we set 〈δψδψ〉 =
G, i.e. every term after the first in Eq. (5.65) vanishes. The self-consistency
condition is satisfied if

ζ34 + 〈δρ̂3δρ̂4〉re f = 0 (5.66)

and, like before, we neglect all higher order terms (in δρ̂ or δψ). The above
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self-consistency condition leads to the Green’s function equation:

0 =U−1 − G−1 + 〈δρ̂δρ̂〉re f

=U−1 − G−1 + 〈ρ̂ρ̂〉re f − 〈ρ̂〉re f 〈ρ̂〉re f (5.67)

In the bulk, the 〈ρ̂〉 〈ρ̂〉 term is immaterial for the Green’s function equation because
it leads to a delta function in Fourier space, thus only modifying the k = 0 mode,
and arises as a consequence of maintaining constant particle number when working
in the canonical ensemble. The Green’s function is then essentially determined by
the density-density pair correlation function 〈ρ̂ρ̂〉re f (related to the structure factor
∼ ρS in Fourier space).

Eqs. (5.56) and (5.67) constitute the sc1P conditions in the canonical ensemble,
using a hybrid particle-field partition function derivation. Importantly, there is a
complicated self-consistency hidden in the fact that the chain structure 〈δρδρ〉re f

depends on G and ψ, and vice versa. A further complication is that the structure
factor involved is a multi-chain structure.

5.5 Connection to Exact Field Theory and RPA
Our derived self-consistency equations for the RGFEqs. (5.19), (5.20) and sc1PEqs.
(5.31), (5.36), (5.56) and (5.67) bear striking resemblance to mean-field and RPA
expressions, which are based on the saddle-point approximation and a second order
perturbation about the saddle-point, respectively. To understand the connection on
a deeper level it is helpful to compare these expressions to the exact field-theoretic
relations for systems with a bare pair interaction U and auxiliary field Ψ (Eq. 4.53
and 4.56 in [1]):

〈ρ̂1〉 =
i
β

∫
2

U−1
12 〈Ψ2〉 (5.68)

〈Ψ1Ψ2〉 =U12 −
∫

34
U13 〈ρ̂3 ρ̂4〉U24 (5.69)

〈δψ1δψ2〉 = 〈Ψ1Ψ2〉 − 〈Ψ1〉 〈Ψ2〉

=U12 −
∫

34
U13 〈δρ̂3δρ̂4〉U24 (5.70)

where in the last equation δψ ≡ Ψ− 〈Ψ〉, and these averages are all system averages.
Eq. (5.68) has the exact same form as the self-consistency conditions Eqs. (5.19),
(5.31), and (5.56), except that the averages are taken in the reference ensemble
instead of the true ensemble. In the saddle-point approximation (and the RPA),
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the reference ensemble is a single chain in an external field. Meanwhile, for the
self-consistent relations derived in this chapter, the reference ensemble is either a
single chain or system of chains interacting with a mean field and with each other
through some effective interaction G. A crucial effect of the added pair-interactions
in the reference ensemble is to modify chain structure.

For completeness we also look at the relation for the fluctuations – by inverting Eq.
(5.70)

〈δψ1δψ2〉−1 =U−1
12 +

∫
3
〈δρ̂1δρ̂3〉

(
δ23 −

∫
4

U24 〈δρ̂3δρ̂4〉
)−1

(5.71)

≈U−1
12 + 〈δρ̂1δρ̂2〉 (5.72)

The RPA, RGF, and sc1P approximate the fluctuations 〈δψ1δψ2〉 = G12. The RPA
tries to approximate the chain structure term with a scaled single mean-field chain
structure n

〈
ρ̂(1) ρ̂(1)

〉
0, while the RGF and grand-canonical sc1P approximate it with

a renormalized single-chain structure n
〈
ρ̂(1) ρ̂(1)

〉
. Lastly, the canonical-ensemble

sc1P uses a multi-chain reference system 〈δρ̂1δρ̂2〉re f .

5.6 Discussion and Conclusion
In the grand canonical ensemble, RGF and sc1P yield equivalent self-consistent
relations. Importantly, for flexible molecules both procedures involve an adaptive
chain structure that must be solved self-consistently with the reference action’s field
fluctuations; this chain structure renormalization accounts for the leading effect of
fluctuations beyond the RPA-level.

We take a moment to compare our results with several others reported in the litera-
ture. Interestingly, for simple electrolytes, it was previously shown that a variational
Gaussian approach yielded the same self-consistent conditions as an inhomoge-
neous Ornstein-Zernicke theory with the RPA closure [32]. In a similar vein, for
rigid molecules the RGF and sc1P can be seen to give the same equations as the
RPA, because there will no longer be chain-structure self-consistency [30].

However, for flexible molecules it is doubtful that the Ornstein-Zernicke theory with
the RPA closure will yield the RGF and sc1P conditions, as neither the Ornstein-
Zernicke equations nor the RPA closure describe how chain structure should change
in response to different mean fields ψ or fluctuations G. Typically, self-consistent
chain structure must be added into a theory by ansatz, such as in the self-consistent
PRISM [34, 35] or RPA theories [36]. The RGF and sc1P approaches naturally
prescribe equations to effect this self-consistent chain structure calculation.
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Another interesting work considered derivatives of the grand canonical partition
function with respect to the fugacity and an external source term [2]. The real
partition function must satisfy these derivative relationships for self-consistency,
thus yielding self-consistency conditions for any proposed variational action. Im-
portantly, this work showed that there are two possible second-order conditions to
satisfy, and thus the variational Gaussian self-consistency approach is not unique.
Interestingly, the linearized second-order condition in this approach was shown to
be satisfied by the variational Gaussian approach. By extension, the sc1P grand
canonical theory derived in our work also satisfies the same linear second-order
condition. Our preliminary (unpublished) explorations with this self-consistency
scheme suggest that it can also renormalize chain conformations in the grand canoni-
cal ensemble, and itwould be interesting to considerwhat thismethod of constructing
self-consistent conditions might say about the canonical ensemble.

We were also able to apply the sc1P procedure to the canonical ensemble, which the
RGF is ill-suited for. A key step in our analysis was to carry out the perturbation
only on the harmonic term H1 =

∫
12 δψ1 · (G−1 −U−1)12 · δψ2 Eq. (5.42), leaving

the action term that is linear in density
∫

1 δψ1 · ρ̂1 Eq. (5.43) exponentiated, and
to apply the Gaussian averaging over Ψ before carrying out the configurational
integration. We were motivated to do this because the resulting Gaussian integrals
can be evaluated exactly, and leads to a transparent and more accurate perturbation
expansion where the reference action is that of a system of chains interacting via the
Green’s function G and under the action of an external field ψ1 −

∫
23 G12U−1

23 ψ3.

One key feature of this perturbation approach is that the reference system is multi-
chain, in contrast to the effective single-chain reference system in the grand canonical
ensemble. This is important because the grand canonical theories derived in this
paper can only renormalize intra-chain structural effects of the fluctuations, whereas
the canonical ensemble theory in principle also includes a renormalization of the
inter-chain structure. A detail of our derived canonical-ensemble self-consistent
conditions is that for given perturbation order in H1, the averaging with respect to
the reference system yields terms that are to mixed order in δψ and δρ. To effect the
self-consistency conditions, we opted to collect terms by their order in δψ and δρ,
and renormalize the leading perturbation terms into the variational Gaussian action
parameters ψ and G.

We compare our results to a previous first-order perturbation theory applied to the
canonical ensemble [11, 24]. In addition to only considering the bulk and tacitly
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setting the average ψ = 0, for its reference action this theory neglected the energy
term

(∫
1 δψ1 ρ̂1

)
linear in the density. This reference state hence does not explicitly

couple the chain conformations with field fluctuations, and is essentially that of
n independent chains (with prescribed structure) and an independently fluctuating
auxiliary field. In order to incorporate inter-chain structural or screening effects,
this theory performed a perturbation calculation and Gaussian averaging on the
exp[−H1−

∫
1 δψ1 ρ̂1]Boltzmann factor, kept H1 to first order, and resummed only the

higher order δψρ̂ terms that did not mix H1 and δψρ̂ (in contrast to our theory, where
we Gaussian average exp

[
−H1 −

∫
1 δψ1 ρ̂1

]
≈ (1 − H1) exp

[
−

∫
1 δψ1 ρ̂1

]
exactly).

Finally, self-consistent chain structure was re-introduced by a separate argument
requiring those the reference system’s non-interacting chains’ structures be the
same as that of single chains interacting via the effective interaction mediated by
G. Again, whereas the chain structure self-consistency arises naturally out of our
self-consistent derivation, it had to be introduced by a separate physical argument
in this previous work.

Thus we consider the canonical ensemble sc1P theory described in our paper,
because of its use of a more accurate reference system than the previous theory,
to be a closer approximation of the actual system. However, the previous theory
should not be underestimated – the simpler reference action and accompanying
approximations allow for greater analytical tractability and a reduction of the multi-
chain reference system to calculations involving just an effective single chain [11].
This reduction to an effective single chain problem is a very powerful result.

We note that the self-consistent first order perturbation theory procedure shares
similarities to Hartree approximations [3, 33]. The Hartree approximation has been
effected in several different ways in literature [1, 7, 9, 37], but like the sc1P, involves
renormalizing higher order perturbation responses into the functional form of a
higher order, typically mean-field response function, i.e. the leading order mean-
field response is renormalized. The self-consistency scheme is then effected by
requiring that the bare response used in calculating the perturbation contribution be
set to the renormalized mean-field response.

To make things more concrete, for example, for neutral polymer solutions one way
to effect the Hartree approximation is to demand that the fluctuation contribution
to the renormalized virial coefficient Br be calculated using Br instead of the bare
interaction strength B [1]. Similar analyses have been done for studying binary
polymer blends [7–9, 37], where the Hartree approximation was effected by consid-
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ering the perturbation correction to the k → 0 response function χ(k) and termed
a renormalized one loop (ROL) theory. While technically the response function
should be renormalized at all wavelengths, for simplicity it is often only performed
for the long wavelength contribution χ(k → 0). One interesting observation is that
the response χ(k) can be related to the system’s structure factor [9], such that a
Hartree renormalization of χ(k → 0) can be understood as a renormalization of
the long wavelength structure factor. Such long wavelength renormalizations are
vitally important near critical points. However, for systems where a finite length
scale emerges, a Hartree approximation would have to be performed for k , 0.

In a similar vein to theHartree, the canonical ensemble sc1P theory also renormalizes
inter-chain interactions, and so will renormalize the long wavelength k → 0 solution
structure. In contrast, the grand canonical RGF or sc1P only renormalizes intrachain
structure, but does so for all k > 1/R where R is some characteristic chain size.
Thus the grand canonical RGF and sc1P complement the k → 0 ROL theories. In
fact, in this thesis we will demonstrate that the long-range nature of electrostatic
interactions renders intra-chain structural renormalizations very important. Thus,
the RGF is ideally suited for studying polyelectrolyte systems.

Lastly, we would be remiss if we did not mention a series of works using a “Gaus-
sian Equivalent Representation”(GER) method that was previously developed for
quantum physics [38] and later applied to study polyelectrolytes [39–41]. Like
the RGF, the GER seeks to find the closest Gaussian representation of a field-
theoretic partition function as possible. However, in its derivation the GER does not
explicitly incorporate a chain conformation self-consistency condition like in the
RGF. Instead, like previous canonical-ensemble sc1P theories, chain conformation
self-consistency had to be added in by additional physical arguments [42].

To conclude, we have derived that an important physical effect of self-consistent (i.e.
non-perturbative) Gaussian fluctuations beyond the RPA (a second order perturba-
tive theory) correspond to renormalizations of both intra and inter-chain structure.
Further, the grand canonical RGF theory can be understood as a self-consistent
first order perturbation where we require the reference action’s mean field ψ and
response function G to simultaneously match, to first order, the full system’s mean
field and response. Thus, even though the GFB bound – upon which variational
Gaussian approaches are built – is not satisfied for the complex actions found in
many field-theoretic statistical mechanics formulations, the variational procedure
can nevertheless be grounded in its satisfaction of intuitive self-consistent condi-
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tions.

We also highlight that our canonical ensemble sc1P theory includes renormaliza-
tions of the inter-chain structure factor. Our derivation helps bring transparency to
previous self-consistent perturbation theories, and can serve as amore accurate foun-
dation upon which future work on the coupling between structure and fluctuations
can be built.

5.7 Appendix
Both the RGF and sc1P procedures rely on the exact evaluation of certain Gaus-
sian averages. Some particular useful ones involve evaluating moments that are
exponentially-weighted by exp

[
−i

∫
1 f1δΨ1

]
:

〈
e−i

∫
1 f1δψ1

〉
0
= exp

[
−1

2

∫
12

f1G12 f2

]
(5.73)〈

δψ1e−i
∫

1 f1δψ1
〉

0
= exp

[
−1

2

∫
12

f1G12 f2

]
(−i)

∫
2

G12 f2 (5.74)〈
δψ1δψ2e−i

∫
1 f1δψ1

〉
0
= exp

[
−1

2

∫
12

f1G12 f2

] (
G12 −

∫
34

G13G24 f3 f4

)
(5.75)〈

δψ1δψ2δψ3e−i
∫

1 f1δψ1
〉

0
= exp

[
−1

2

∫
12

f1G12 f2

]
(−i)... (5.76)

·
[
−

∫
456

G14G25G36 f4 f5 f6...

+ G12

∫
4

G34 f4 + G13

∫
4

G24 f4...

+ G23

∫
4

G14 f4

]
〈
δψ1δψ2δψ3δψ4e−i

∫
1 f1δψ1

〉
0
= exp

[
−1

2

∫
12

f1G12 f2

]
... (5.77)

·
[
(G12G34 + 2G13G24)...

−
∫

56
f5 f6[G12G35G46 + G34G15G26...

+ G13G25G46 + G14G25G36...

+ G23G15G46 + G24G15G36]...

+

∫
5678

f5 f6 f7 f8G15G26G37G48

]
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where in the last identity we have assumed symmetry between the (explicit) argu-
ments (1 and 2), (3 and 4), as will be the case in our derivations. In the text of the
chapter, f was typically δρ̂1 = ρ̂1 −

∫
2 U−1

12 · ψ2.

The above identities can be easily proven be Taylor-expanding the exponential,
performing the averages, and re-summing, being careful to keep track of all the
permutations of the Wick terms. This re-summation can be done exactly, yielding
the effective interaction terms 1

2

∫
12 f1 · G12 · f2 in the exponent.
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