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ABSTRACT

Despite the emergence of architected materials for various applications, metals still
play a key role in engineering in general and aeronautics in particular. Turbine
blades in jets engines for instance are made from single-crystal Nickel superalloys.
As a result, studying the failure mechanism of these crystalline materials would help
understand the limits for their application. At the core of this mechanism are line
defects called dislocations. Indeed, the plastic deformation of metals is governed by
the motion of dislocation ensembles inside the crystal. In this thesis, we propose a
novel approach to dislocation dynamics through the method of monopoles. In this
approach, we discretize the dislocation line as a collection of points (or monopoles),
each of which carries a Burgers "charge" and an element of line. The fundamental
difference between our method and current methods for dislocation dynamics lies
in the fact that the latter discretize the dislocation as a collection of line segments
from which spans a need to keep track of the connectivity of the nodes. In our
approach, we propose a "line-free" discretization where a linear connectivity or
sequence between monopoles need not be defined. This attribute of the formulation
offers significant computational advantages in terms of simplicity and efficiency.
Through verification examples, we show that our method is consistent with existing
results for simple configurations. We then build on this success to investigate
increasingly complex examples, with the ultimate goal of simulating the plastic

deformation of a body-centered cubic grain in an elastic matrix.
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Chapter 1

INTRODUCTION

1.1 Motivation

Thanks to recent advances in materials science and engineering, researchers are
now able to design materials tailored to specific applications. Consequently, it
has become possible to meet design criteria that heretofore seemed unachievable.
A prime example is the use of metamaterials in electromagnetism. From the
Greek meta- meaning "beyond", metamaterials are materials engineered to have
electromagnetic properties not found in nature [1-3]. One such property is the
ability to have a negative index of refraction over a range of frequencies [2-5].
To understand the implication of this property, consider an incident wave from
air into water. Since the index of refraction of water is positive, the path of the
refracted wave will be as shown in Figure [1.1a] However, if the wave travels from
air into a metamaterial with negative index of refraction, the refracted wave will
instead follow the trajectory shown in Figure [1.1b] An important application of
this property is the ability to use metamaterials in the design of "superlenses", i.e.
lenses which, unlike conventional glass lenses, have resolution beyond the diffraction
limit [6-8]. Beyond lenses, metamaterials also have applications in high-gain small

antennas, electromagnetic absorbers, and ideal cloaking devices |2, |3} |7, 9-11].

arr airr
water .
metamaterial
(a) Path of a refracted wave in (b) Path of a refracted wave in a
water. metamaterial.

Figure 1.1: Difference in the path of a refracted wave in a metamaterial (with
negative index of refraction) and in water (with positive index of refraction).
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Another example of human-made materials for engineering purposes concerns the
use of carbon fiber reinforced polymer (CFRP) in engineering structures where
both strength and weight are important design parameters. Indeed, as shown in
the Ashby plot of Figure [1.2] CFRP, or "composites" for short, have strength
comparable to that of traditional metals while maintaining a lower density. For
this reason, they have seen much use in the aerospace industry, where the airplane
structure must be strong enough to withstand the loads experienced by the aircraft
during flight while light enough that significant fuel savings can ensue. It is then no
surprise that Boeing's 787 Dreamliner and Airbus's A350XWB both have fuselage
and wing structures made primarily of CFRP, making up 50% of the airplane’s

weight [12-14].

10,000
g, i Composites bl
& 1,000 |
. Woods and Polymers
o wood pnoguds ' Glasscs
o 100F & : 5
- 1
5 I ‘
= s 'l
E " N, \ \_5<
Porous ‘
ceramics Metals
4 Rubbers and alloys
-
[
5 Ceramics: chart shows compressive strength,
ensile strength typically 10% of compressive
l Foams tOther m:ter?;Is:t?t)rengZh in tension/'():ompression
0.4 — — ] .
100 300 1,000 3,000 10,000 30,000
<«—Light DENSITY (kg/m?) Heavy —>

Figure 1.2: Classification of materials classes by their strength-to-weight ratio.
Image credit: http://www-materials.eng.cam.ac.uk/mpsite/
interactive_charts/strength-density/basic.html

It is evident from the above two examples that architected materials have a
promising future in science and engineering. However, despite the now widespread

use of composites in the 787 Dreamliner, aluminum and titanium still make up 20
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and 15% of the weight of the aircraft, respectively [12]. Furthermore, steel columns
and beams are still prevalent structural elements in civil engineering. Finally, metals
also have applications in medicine where titanium has become the material of choice
in surgical implant procedures [15-517]. In other words, traditional materials and
metals in particular are still ubiquitous in science and engineering and require just as
much research. In this thesis, we deal with dislocations as line defects. Specifically,
given the role of dislocations as agents of plastic deformation in metals, we propose
a new approach to dislocation dynamics that offers significant computational
advantages in terms of simplicity, robustness, and efficiency. However, before we
lay out the details of this new approach, we first give a brief review of defects
in crystals—Section [1.2] Section expands on this topic further by specifically
considering dislocations as line defects. Finally, the outline of the thesis is given in

Section [1.4]

1.2 Perfect and Real Crystals

Metals and many important classes of nonmetallic solids are crystalline, i.e. the con-
stituents atoms are arranged in a pattern or unit cell that repeats itself periodically
over three-dimensional space [18-20]. This is illustrated in Figure[1.3| for the case
of a simple cubic structure. When a crystalline solid has a structure as described
above, it is said to be a perfect or ideal crystal. However, the regular, strictly
periodic structure of a crystal as described above is merely an idealized picture [21].
In nature, even under conditions of ideal thermodynamic equilibrium, real crystals
deviate considerably from the aforementioned ideal model. All deviations from the
ideal crystalline structure are called crystal defects |21, [22]. These defects, which
strongly influence the properties of the crystal, can be classified into four main
categories according to their dimensionality: point defects, line defects, surface
defects, and volume defects [18, |19, 21, 22].

Point defects
Point defects are crystalline defects of dimension zero. Depending on the nature of

the defect, they can be further classified as intrinsic or extrinsic [18].

Intrinsic point defects are characteristic of pure metals, i.e. metals comprising of
only one element (Cu, Zn, Ni, etc.). Examples include vacancies and self-interstitials.
A vacancy is a crystal lattice defect where an atom is absent from a site where
one should be expected. This is highlighted in Figure[1.4a] A self-interstitial on

the other hand is a point defect where an atom is occupying a site that would



Figure 1.3: Schematic of a perfect crystal with a unit cell highlighted.

otherwise be free—see Figure [1.4b]

(a) Schematic of a real crystal (b) Schematic of a real crystal
with a vacancy. with a self-interstitial.

Figure 1.4: Intrinsic point defects in a crystal.

Extrinsic point defects on the other hand can only occur when a crystal contains
foreign elements. Examples include substitutional impurity atoms and interstitial
impurity atoms. A substitutional impurity atom is a lattice defect where a foreign
(or "impurity") atom replaces (or "substitutes") a parent atom at a lattice site in
the atomic structure [18]. An interstitial impurity atom is a point defect similar
to a self-interstitial, but with the major distinction that the interstitial is a foreign
atom. These concepts are illustrated in Figure and respectively.

It should be noted that the atomic lattice will typically be distorted in the vicinity



(a) Schematic of a real crystal
with a substitutional impurity
atom.

(b) Schematic of a real crystal
with an interstitial impurity atom.

Figure 1.5: Extrinsic point defects in a crystal.

of these defects. However, this is not illustrated in the simplified schematics of

Figures[1.4] and [1.5

Line defects

As suggested by the name, line defects are lattice defects of dimension one. In
crystalline materials, these comprise of dislocations and disclinations. Unlike point
defects which have short-range effects, dislocations and disclinations disturb the
long-range order in a crystal [21]. Though recent research has evidenced the presence
of disclinations in crystalline solids [23], these defects are commonly associated
with liquid crystals [24} 25]. Indeed, disclinations—or "rotational dislocations" as
they are sometimes called—do not appear as isolated defects in metals |19, 26],
and we refer the interested reader to references [27-33] for further reading on the
topic. As a result, we will only focus on dislocations as line defects in crystals.

However, we defer this discussion until Section [1.3]

Surface defects
These two-dimensional defects can be of many types, ranging from the mere
presence of a crystal surface to stacking faults (irregularly packed atom layers),

grain boundaries, and twin boundaries [18-22].

Since a perfect crystal is one in which atoms are arranged in a pattern that repeats
itself periodically over space, one such crystal must necessarily be infinite. However,

given that every crystal must be finite in size, there must be surfaces (i.e. 2-D
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defects) that interrupt the infinite periodicity of the crystal, thus leading to surface
defects 19, 21].

Moreover, crystalline solids usually consist of a large number of randomly oriented
single crystals [18]. A grain boundary is the interface where two single crystals of
different orientations join in such a manner that the material is continuous across
the boundary [26]. Though Figure illustrates this for straight grain boundaries,
a grain boundary need not be straight. However, straight grain boundaries are more
energetically favorable in thermal equilibrium since they minimize the boundary

area and thus the boundary energy [26].

Figure 1.6: Schematic of grain boundaries separating three single crystals of
different orientations.

Finally, a twin is a crystal with consistently mutually misoriented regions (twin
components) whose atomic structure is related geometrically by some symmetry
operation (e.g. reflection in a plane) [21]. In general, twins are of two classes:
growth twins and deformation twins. Growth twins arise during crystal growth and
deformation twins arise through mechanical stress [22]. Specifically, deformation
twinning is the process through which a region of the crystal undergoes homogeneous
shear that produces the original crystal structure in a new orientation [18]. As
a result, the twin component of the resulting crystal is a mirror image of the

parent crystal through the twin or composition plane. This process is represented
schematically in Figure [1.7]
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(a) Parent crystal prior to shearing. (b) Parent and twin crystals.

Figure 1.7: (Deformation) twin boundary in a crystal.

Volume defects

Volume defects are three-dimensional defects that include voids (or clusters of
vacancies), precipitates (or cluster of impurities), inclusions, and similar macroscopic
formations |18, 21]. Though considered defects, some of these can be intentional
as is the case in the development of high-strength alloys through the interaction

between dislocations and precipitates.

1.3 More on Dislocations
Given that the subject matter of this thesis deals with dislocations, we return to

these line defects to elaborate on the discussion started in Section [1.2]

Background on dislocations
Dislocations first appeared as an abstract mathematical concept in a 1907 paper
by Volterra [33]. However, it would take researchers more than two decades to

fully appreciate the role of these line defects in the plastic deformation of crystals.

To start, consider the crystal on the left in Figure with a defect as shown.
Suppose we wish to "push" the defect outside the crystal through shear so as to

obtain the configuration shown on the right.

In a perfect crystal, the sliding of one plane of atoms over an adjacent one would
have to be a rigid cooperative motion of all atoms from one position of the perfect
lattice to another [18]. Frenkel [34] first estimated the shear stress required for
this process in 1926. Given the periodicity of the lattice, he assumed a periodic
shear stress of form [18, 26, 35|

2
T(ZL‘) = Ttheor SIN Lm ) (11)

b



Figure 1.8: Plastic deformation of a single crystal through shearing.

where b is the magnitude of a simple lattice-translation vector (see Figure |1.8]),
x is the shear translation of the two rows away from the low-energy equilibrium

position, and Tiheor is the theoretical maximum shear stress of the crystal.

In the limit of small shear strain x/a, where a is the spacing between two adjacent
rows of atoms (see Figure|1.8]), Hooke's law dictates that

x
T(x) = p—, (1.2)
a
where 1 is the shear modulus of the crystal.

Comparing equations ([1.1)) and (1.2)) in the small strain limit, one obtains

T . 21T 2mx
M — = Ttheor S —/— = Ttheor —7
a b b
from which it follows that
b
theor 271' a
or, since b= a,
Ttheor = ﬁ . (13)
2T

Using more realistic expressions for the shear stress as a function of shear displace-
ments, later estimates placed the theoretical value of the maximum shear stress
between £1/30 and 1/5 at room temperature [26]. However, except for whiskers
which are nearly free of defects, experimental observations in real, well-annealed
crystals showed that the stress required for plastic deformation is at least several
orders of magnitude smaller than the above estimates, between 10~y and 10~%p
[18, 20, |26, 135]. It wasn't until 1934 with the independent works of Taylor, Polanyi,
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and Orowan [36-39] that dislocations were found to be the source of plastic de-
formation in crystalline materials. More specifically, rather than an entire row of
atoms sliding rigidly over another, dislocations allow nearby atoms (and only these)
to move one interatomic distance as the imperfection progressively advances inside
the crystal (see Figure[1.9). As a result, much lower shear stresses are needed for
plastic deformation, thus explaining the discrepancies between the theoretical and

experimental values of the maximum shear stress in crystalline solids.

Today, dislocations are known to affect the mechanical, electrical, and even optical
properties of crystals [40, [41]. Therefore, understanding the nature of these linear

defects is of great importance in these various fields.

Burgers vector and Burgers circuit

As a one-dimensional crystal defect, a dislocation is uniquely characterized by a
line direction and a "slip" vector called the Burgers vector [19, |20, 26]. This
vector is the most important property of a dislocation and is constant along the
dislocation line—except possibly in the highly strained regions near the center of
the dislocation where the atomicity of the structure cannot be neglected—and
remains so when the dislocation travels through the crystal [20, 35]. There are
several equivalent definitions of the Burgers vector of a dislocation with some more
useful than others depending on the context. For example, in Chapter [2| we'll
encounter a definition more appropriate for that context. In the meantime, the
most useful definition is given in terms of what is commonly referred to as the
Burgers circuit [18-20, [26, [35].

A Burgers circuit consists of any sequence of atom-to-atom steps and forms a
closed loop when drawn in a perfect crystal. However, when the same Burgers
circuit encloses a dislocation, it does not end at the starting atom and thus does
not form a closed loop. The vector pointing from the starting atom to the ending
atom, needed to complete the loop, is the Burgers vector of the dislocation. This
is illustrated in Figure[1.10} where b represents the Burgers vector.

The convention used in the above characterization of the Burgers vector is sometimes
referred to as the SF/RH Burgers circuit, meaning "Start to Finish; Right Hand"
convention. An equivalent definition can be stated starting with a closed loop in
a dislocated crystal, and retracing the same circuit in a perfect crystal. In this
case, the vector pointing from the ending atom to the starting atom needed to
complete the loop is the Burgers vector of the dislocation—see Figure [1.11] Not
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(f) Final configuration.

(e) Intermediate configuration 4.

Figure 1.9: Sequence showing the role of dislocations in the plastic deformation of
crystals.
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(a) Closed Burgers circuit in a (b) Corresponding Burgers circuit
perfect crystal. in a dislocated crystal.

Figure 1.10: SF/RH Burgers circuit and Burgers vector in a crystal with a
dislocation. The positive sense of dislocation line is taken out of the page.

surprisingly, this latter convention is known as the FS/RH characterization of the

Burgers circuit. Nevertheless, as stated earlier, these two definitions are equivalent,

as can be evidenced by the identical Burgers vectors in Figures|1.10b|and [1.11b|

(a) Closed Burgers circuit in a (b) Corresponding Burgers circuit in a
dislocated crystal. perfect crystal.

Figure 1.11: FS/RH Burgers circuit and Burgers vector in a crystal with a
dislocation. The positive sense of dislocation line is taken out of the page.

Equivalent Burgers Circuits

Using the FS/RH convention, consider the two Burgers circuits shown in the
dislocated crystal of Figure [1.12a] Following the above example, we subsequently
draw corresponding circuits in the perfect crystal. As can be seen from Figure
[1.12B} both circuits result in the same Burgers vector, i.e. b; = by. When this is

the case, the circuits are said to be equivalent. More precisely, two Burgers circuits
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are said to be equivalent if one can be translated or deformed to coincide with the

other without cutting through any "bad" material during this process [20, 26].

We can now prove the statement made earlier that the Burgers vector is constant
along the dislocation line. In doing so, we consider a Burgers circuit around the
dislocation. This circuit can be translated and deformed (through "good" material)
along the dislocation line. By virtue of equivalent Burgers circuits, the resulting
Burgers vectors should be identical to that of the original circuit. Thus, the Burgers

vector is conserved along the dislocation.

Another important consequence of the equivalence of Burgers circuits is the fact
that a dislocation cannot end inside a crystal. It must either form a closed loop,
meet with other dislocations to form a node, or end at the surface of the crystal or
at grain boundaries |18, 20, |26]. Indeed, consider a crystal with a single dislocation
of nonzero Burgers vector and suppose that this dislocation ends inside the crystal.
Then, the original Burgers circuit can be translated and deformed so that it remains
a closed loop while enclosing only "good" parts of the crystal, resulting in a zero
Burger vector. By equivalence of Burgers circuits, the corresponding Burgers
vectors should the identical, i.e. both zero in this case. But this contradicts the

initial assumption that the dislocation had a nonzero Burgers vector.

We end our discussion of equivalent Burgers circuits by looking at the relationship
between Burgers vectors for dislocations meeting at a node. To this end, we
consider the dislocations of Figure [1.13| with their respective Burgers vectors and
line directions as shown. We further assume that the the host crystal is otherwise
free of other defects. Then, the Burgers circuits A and B are equivalents and we
have that

by =by + bs.

If the line direction &; of the first dislocation is reversed, then the corresponding
Burgers vector b, is also reversed. This follows immediately from considering a
Burgers circuit oriented in the opposite direction to that shown in Figure [1.13] In

this case, equivalence of Burgers circuit gives
b1 + b2 + b3 =0

or, more generally, for n branching dislocations all oriented away from the node,

ibi - 0. (1.4)
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(a) Two Burgers circuit in a dislocated crystal.

(b) Corresponding circuits in a perfect crystal.

Figure 1.12: Equivalent Burgers circuits and corresponding (identical) Burgers
vectors in a dislocated crystal using the FS/RH convention. The positive sense of
dislocation line is taken out of the page.
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Figure 1.13: Conservation of Burgers vector at a dislocation node.

This is known as Frank's theorem for conservation of Burgers vector at a dislocation

node [20]. Notice the analogy to Kirchhoff's law of electrical currents.

Edge, screw, and mixed dislocations

Recall that a dislocation is uniquely characterized by a line direction &£ and a Burgers
vector b. Depending on the orientations of these two, a dislocation can be of edge,
screw, or mixed character [18-20, 26, 35]..

A dislocation is said to be of edge character when its Burgers vector is perpendicular
to the dislocation line. Mathematically, this is equivalent to saying that b- & = 0.
In fact, these are the dislocations that were postulated by Taylor, Orowan, and
Polanyi in 1934 [36-39] in their explanation of the discrepancies between the
theoretical and experimental values for the maximum shear stress of metals. As
such, figures [1.8] [1.9} [I.10b] [1.11a] and are all illustrations of edge-type
dislocations, where the dislocation line is pointing into the page and the Burgers
vector is as shown. Furthermore, Figure illustrates an edge dislocation in a

continuum.

When the dislocation line is parallel to the Burgers vector, the dislocation is said to
be of screw type. This is equivalent to saying that the cross-product of b and € is
zero, or b x £ = 0. Because it is typically difficult to illustrate these dislocations
using crystal lattices, we have not attempted to do so here. For this, the reader is
referred to figures 1.20 and 2.2 of references [18] and [20] respectively. Instead, we
have reproduced in Figure [1.14b| the illustration from [19] for a screw dislocation

in an elastic continuum.
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Generally, however, a dislocation is neither completely edge or screw. Instead, it is
curved and usually comprises of edge and screw components together. In this case,
the dislocation is said to be of mixed type as illustrated in Figure [1.15a] At every
location along the dislocation, the Burgers vector can be decomposed—see Figure

into screw and edge components given respectively by

b, = (b-£)¢ (1.5)

and

(a) Edge dislocation in (b) Screw dislocation
a continuum. in a continuum.

Figure 1.14: lllustration of edge and screw dislocations in a continuum. The
dislocation line is shown in the dash-dot pattern with direction & .

1.4 Outline of the Thesis

In the preceding, we have introduced dislocations as line defects in crystalline
materials. In doing so, our presentation relied heavily on the atomic crystal
structure to illustrate the relevant concepts. However, in what follows, and as is
typically done in line dislocation dynamics simulations, it'll be more convenient
to look at dislocations as defects in an elastic continuum. To this end, Chapter
is devoted to the continuum theory of dislocations. In this chapter, we derive
expressions for the elastic field of straight and curved dislocations. This sets the

stage for Chapter [3, where we lay out the theory of the aforementioned novel
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(a) Mixed dislocation (b) Burgers vector decomposition of a
in a continuum. mixed dislocation.

Figure 1.15: lllustration of a mixed dislocation in a continuum. The dislocation
line is shown in the dash-dot pattern with direction £ .

approach which we call the method of monopoles. In an effort to show the validity
of this approach, Chapter 4] deals with verification examples. It is shown that the
method of monopoles gives results consistent with the expected behavior for these
canonical examples. Building on this success, Chapter |5 investigates increaingly
complex examples, this with the ultimate goal of simulating the plastic deformation
of a body-centered cubic grain in an elastic matrix. Finally, Chapter [f] contains the
main conclusions of this work and provides some future research directions building

on this new approach.
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Chapter 2

CONTINUUM THEORY OF DISLOCATIONS

2.1 Introduction
The phrase "continuum theory of dislocations" is ambiguous as sometimes it
implies the theory of isolated dislocations in an elastic continuum and sometimes
the theory of continuous distributions of infinitesimal dislocations [42]. This chapter
is concerned with the former, while the latter will be discussed in Chapter [3] Recall
that in Chapter [1| we defined the Burgers vector of a dislocation schematically in
terms of the Burgers circuit while making use of the crystal structure of the solid.
In this chapter, we consider the solid to be an elastic continuum and as a result, a
different—yet equivalent—definition of the Burgers vector of a dislocation must be
given. More specifically, given a line L inside an elastic continuum, L is said to be
a dislocation of Burgers vector b if the displacement field w around L is such that
26, [43] ;
u

b= D I di, (2.1)
where dl is the infinitesimal element of line around the closed loop C. This is
illustrated in Figure 2.1 where, as before, £ is the dislocation line direction. It is
worth noting that Figure[2.1]and Equation make use of the SF/RH convention

for the direction of the Burgers vector with respect to the dislocation line.

->|d5|<—/,/
§

C

Figure 2.1: Schematic illustrating the definition of the Burgers vector of a
dislocation in an elastic continuum.

As mentioned in the above definition, the variable u is the displacement field inside

the body due to the dislocation. More generally, the effect of a dislocation on the
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properties of a solid is associated primarily with the internal strain and stress fields
and with the strain energy of the dislocation [26]. However, before we can derive
these elastic fields, it is necessary to review the relevant elements of classical linear
elasticity theory. This is the subject of Section 2.2 This theory is then applied in
Sections [2.3| and [2.4] to obtain the elastic field of straight and curved dislocations
respectively. Finally, Section is devoted to forces on dislocations.

2.2 Review of Classical Linear Elasticity Theory

Linear elasticity is a specialization of continuum mechanics to a subclass of materials
in which the stress tensor in any element is determined exclusively by the strain
tensor in the same element and, furthermore, the relationship between these two
tensors is a linear one [44]. In other words, in classical linear elasticity, the stress
tensor at a point inside the body is a linear function of the strain tensor at the same
point. This is known as (generalized) Hooke's law. There are several references on
the subject of linear elasticity. Classic ones include references [45-48]. However,
[49-51] were also found to be excellent references. As a result of this vast literature,
we do not attempt to give here an extensive survey of the topic. Interested readers
should consult the references just mentioned for that purpose. Instead, we only
revisit those equations as given in [44] and [26] that will be relevant to subsequent
sections of this chapter. Finally, here and throughout this thesis, we will use index

notation and Einstein's summation convention on repeated indices.

In classical linear elasticity theory, the displacement field is the variable of interest.
This is denoted by w or, using index notation, u; where i = 1,2,3. The position
of a material point inside the body is denoted by @ or simply z; . In linear elasticity
theory, deformations are small enough that the components of w and x can be
taken with respect to the undeformed or deformed configurations. Furthermore,
the theory also assumes that the distortions Ju;/0x; are small, leading to the

following expression for the strain tensor € at a point inside the body:
52.. — — N
J 2 a.fllj axl

1
€ij = 5 (u” + sz) ) (2.2)

or

where we have used the comma to represent differentiation with respect to the

corresponding component of x .
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Notice that
gij = 5]‘1’ (23)

follows immediately from the above definition. Hence, the strain tensor is symmetric.

The stress tensor o on the other hand is such that o;; gives the ith component of
the force per unit area on a plane whose outward normal is parallel to the positive
x; direction—see Figure [2.2]

x3
T A033

—>» 0

/0131 23
032

031 }%22

012

021 —_—
011 / T2
e

Figure 2.2: Stress distribution on an infinitesimal volume element.

Given a body B of density p with body force per unit volume f, the stress state at

every point inside B must satisfy
oy + i = pis, (2.4)

where ii; = 0%u; /Ot* is the acceleration of the material point. As given, Equation

(2.4) is the momentum conservation equation.

For problems in elastostatics, i.e. where i; = 0, Equation (2.4 reduces to
Uij,j + fz = 0, (25)

which is the equilibrium equation for classical elasticity.

If no internal torques are present, conservation of angular momentum requires that
Oij = Oji, (2.6)

which implies that the stress tensor is also symmetric.



20
Furthermore, at an external surface of the body, we either have
0Ny = t_z s (27)

where m is the outward normal to the surface and ¢ the applied traction per unit

area, or

U = Ui, (2.8)
where w is the prescribed displacement at the surface of the body.

The union of all traction boundary surfaces is usually denoted by 9B, and that
of all displacement boundary surfaces by 0B, so that 0B = 0B; U 0By with

0B1 N 0By = ) —see Figure 2.3

Figure 2.3: Body under displacement boundary conditions #; on its boundary 0B;

and traction boundary conditions t; on its boundary 9B,. Note that if no traction

or displacement is prescribed at a boundary, this is equivalent to having a traction
of t; = 0 at said boundary.

Next, recall that linear elasticity is characterized by a linear relationship between

the stress and strain tensors. Specifically, we write
045 = Uijki€kl » (2-9)

where Cj;i; are the elastic constants of the material.

It immediately follows from Equations (2.3)) and (22.6]) that

Cijkt = Cjitt = Cijie = Chae
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and we say that the elastic modulus tensor has minor symmetry. Though we don't

prove it here, the elastic modulus tensor also has major symmetry, viz

Cijki = Chij -

As a result of these symmetries, the number of independent elastic constants

decreases from 81 to 21.

For an isotropic material, this is further reduced to only two elastic constants called

Lamé constants. |n this case, we have
Cijrt = ANij0 + 1 (0650 + 0udji) (2.10)

where §;; is the Kronecker delta, being 1 when ¢ = j and zero otherwise. The usual

elastic constants can be expressed in terms of A and u as follows:
o Young's modulus: E = (3A+2u) / (A +p)
o Poisson’s ratio: v = A/ [2(A+ p)] ,
© Shear modulus:
o Bulk modulus (or inverse compressibility): £ = X\ + %,u.

It should be noted that each of the above moduli can be similarly expressed in
terms of any other two. The resulting table can be found on pages xxvii and 74 of

references [51] and [50] respectively.

Using Equation ([2.10]), Hooke's law for isotropic solids becomes
Oij = Aekk&j + 2#6@' . (211)

Alternatively, strains can be expressed in terms of stresses as
1+v v
Sij = T % Eakkéij- (2.12)
The strain-energy density function, which represents the energy per unit volume
associated with the deformation of the solid, is given by
1 1

W = §O-ij5ij = §Cijk:l€ij€kl . (213)

To summarize, the classical problem of static linear elasticity consists of solving the
field Equations (2.5), (2.2), and for the displacement field u, the stress and
strain tensors o and € subject to the boundary conditions and on 0B,
and OB, respectively—see Figure [2.3] Next, we look at two special cases arising

from these boundary-value problems.
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Plane strain

In this section, we consider so-called plane strain problems in an isotropic medium.
These are problems for which it is known a priori—or assumed—that the displace-
ment field depends only on two components of position, with the displacement
along the third component being identically zero. For instance, for a plane strain

problem along the x3 axis, the displacement field is of the form
uy = ug(xq, x2), ug = us(x1, 3), us =0. (2.14)

Consequently,

€13 = O, E93 — 0, £33 — 0. (215)
When combined with Equation ([2.11)), (2.15]) implies that
o33 = A(en + €22) , o13=0, oo3 =0. (2.16)

Therefore, for a body in static equilibrium with no body forces, (2.5) becomes

o111 + 0122 =0, (2.17a)
0121 + 0222 =10, (2.17b)

where we have used symmetry of the stress tensor to write oy5; instead of oy; 1
in Equation ([2.17h)).

Equations are satisfied automatically if there exists a function U such that
011 = ‘11,22, 022 = ‘I’,n, 012 = —‘I’,lz- (2-18)
Such a function ¥ is commonly referred to as the Airy stress potential.
On the other hand, one can use Equation to easily show that
€11,22 + €2211 = 2€12.12 (2.19)

Inserting ([2.12]) into ([2.19)) and making use of relations (2.18]) to simplify while

keeping in mind that A = vE/[(1 + v) (1 — 2v)], one arrives at
ot N 0w N o'
oxt  T0x30r3 Oz

2 92\’
— 4+ ) v=0. 2.20
<8x% + (91:3) (2.20)
Solving the above biharmonic equation yields the stresses 011 , 092, and 015, which

in turn yield the corresponding strains through Equation (2.12)). The displacements

uy and usy follow from direct integration of the strains.

0,

or
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Antiplane strain

We now consider an isotropic solid in a state of antiplane strain. In this case,
two components of the displacement field are identically zero, with the nonzero
component depending only on the position components along which the displace-
ments are zero. For instance, for a state of antiplane strain along the x5 axis, the

displacement field is of the form

u =0, uy =0, ug = uz(xy, ) . (2.21)

Consequently, all strain components are zero except for €13 and 93 which in this

case are given respectively by

1 1
€13 = §U371 and E93 = §U3,2 . (222)

Accordingly, the nonzero components of stress are

g13 = 2/1613 = MU3;1 and 093 = 2#823 = Huszz2 . (223)

Hence, assuming no body forces in the solid, equilibrium equation (2.5]) simplifies
to
V2u3 = 0. (2.24)

Thus, the antiplane strain problem reduces to solving Laplace's equation for us

together with the relevant boundary conditions.

2.3 Straight Dislocations
Armed with the above review, we now proceed to derive the elastic field of straight

dislocations in an isotropic medium, starting with those of screw type.

Screw dislocations

Recall that a screw dislocation is one for which the Burgers vector is parallel to
the dislocation line. In order to derive the corresponding elastic field, we'll make
use of Figure illustrating such a dislocation in an infinite medium with respect

to a cartesian coordinate system.

e Stress and displacement fields

We start by noticing that the displacement components u; and uy are identically

zero and that us is only a function of x; and x5. Therefore, we have a state of
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x3

Figure 2.4: Screw dislocation along the positive x5 axis in a cartesian coordinate
system.

antiplane strain as discussed in Section [2.2] Furthermore, us is only a function of
the angle 6 as shown in Figure [2.4] and increases uniformly from zero to b as 6
increases from 0 to 2. The simplest form of w3 satisfying the above requirement
is [18-20], 126} [35, [42] [44]

b
= —0. 2.25
s 2T ( )
In cartesian coordinates, this becomes
b )
= —tan ' [ =) . 2.2
ug = o tan (Il) (2.26)

One can easily verify that V2uz = 0 as required by Equation (2.24). The nonzero
components of the strain tensor follow from (2.22) as

b T2
=_-— "< 2.27a
€13 47T IE% + l’% ) ( )
b T
= — . 2.27b
BT Y z3 + 23 ( )
Using Equation ([2.23]), we obtain the corresponding nonzero stresses as
pb  xo
= ——— 2.28a
13 21 23 + 13’ ( )
b
gy = 211 (2.28b)

T 9.2 2
2w xf + 15
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The above derivation can also be done in polar coordinates, in which case Equations

(2.26)), (2.27)), and (2.28) take the much simpler form
bo

zZ T~ 229
U o ( a)
b
s =€ = — 2.29b
€o €20 - ( )
_ b
09y = 09 = Gy s (229C)

with all other components of displacement, stress, and strain being zero.

e Strain energy

We first notice that as r — 0, the strain ¢4, and stress oy, diverge to infinity.
Since solids cannot withstand infinite stresses, a hole of radius o must be inserted
inside the infinite cylinder of Figure 2.4] the result of which is shown in Figure
[2.5] However, since real crystals are not hollow, as we approach the center of the
dislocation, linear elasticity theory ceases to be valid and a non-linear, atomistic
model must be used instead [18, 26| 42]. This region around the dislocation where
linear elasticity ceases to be valid is called the core of the dislocation. It is common
to assume a value of ry on the order of the Burgers vector magnitude b |18, 26,
44]. Therefore, in computing the strain energy of the screw dislocation, we will

focus on the region outside this core and consider the hollow cylinder shown in
Figure[2.5

The strain energy per unit length inside the infinite hollow cylinder can be easily

computed using polar coordinates. Using Equations (2.13)), (2.29b)), and (2.29¢),

it is found to be
W R 27 1
7= / / B (09.€0- + 0.9€,9) rdOdr
0 0

R
= / 09€0.2mrdr (2.30)

T0
=—1In|—).
47 o

As excepted, W/ L diverges as ry — 0. However, it also diverges as R — oo. As
a result, one cannot associate with the dislocation a definite characteristic energy.
In fact, the energy depends on the size of the crystal. For a single dislocation, R is
typically taken to be the distance from the dislocation to the nearest free surface.
For a crsytal containing many dislocations of both signs, R is taken to be half the

average distance between the dislocations [26, [42].
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Figure 2.5: Screw dislocation along the positive 3 axis in a hollow cylinder used
to compute the strain energy of the dislocation.

Edge dislocations

We recall that in an edge dislocation, the Burgers vector is perpendicular to the
dislocation line. In deriving the corresponding elastic field, we'll make use of Figure
illustrating such a dislocation in an infinite medium.

e Stress and displacement fields

For the dislocation depicted in Figure 2.6 the displacement component uj is
everywhere zero, as are all derivatives taken with respect to x3. Hence, we have a
state of plane strain as described in Section[2.2] To this end, solving the elastic field
reduces to solving the biharmonic Equation (2.20)) with the appropriate boundary

conditions. We summarize below the derivation of [26], which starts by setting

d = V. (2.31)

Then @ satisfies Laplace equation. In polar coordinates, this means that

2 1 1 2
(8 L1o, 8)@:0. (2.32)

a2 v T eow

It is well known that the harmonic Equation (2.32)) is separable |26, 44] and thus
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Figure 2.6: Edge dislocation along the positive x3 axis in a cartesian coordinate
system.

has a single-valued solution of the form

d=aqg+ folnr+ Z [(anr” + ﬁnr_") sin nf + (’ynr" + (M"‘”) cos n@] .
n=1

(2.33)

Though we skip the details here, it can be shown using the appropriate boundary

conditions that the simplest solution of the form (2.33)) is

® = Byr tsind, (2.34)

so that combining Equations (2.31]) and (2.34) gives

2 2
( 0 L9 + l@_) U = B sing. (2.35)

- + -
or?2  ror  r200?
A solution of the above equation is

U= %T sinflnr. (2.36)

With the requirement that a complete circuit around the dislocation must yield a
displacement of b along the x-direction, we find that

b

ST
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Therefore, the solution of the biharmonic Equation (2.20)) for the edge dislocation

is
b .
/R Inr.
o (1= I/)rsm9 nr
The nonzero components of the stress tensor follow as [19, |26, (35| 44]
1 0*¥ N 10V ) 1. 0
Opp = —=—o +——=————————5infh,
r2 002 r or 2n(l—v)r
0*w ub 1 9
= —_—— ——_S
700 = B2 2r (1 —v)r e
0 (10V b 1 0
r — r= "2 |\ "3, = 57  _~_COSU,
0 =00 or \r 00 2n(1—v)r
b
Our = V(Op + 0gg) = —ﬁ;sin&

(2.37)

(2.38a)
(2.38b)
(2.38¢)

(2.384)

The corresponding strains follow from Hooke's law and the displacements from

integration of the strains. The latter are found to be

b 1—2v sin @
—_ —_— —_— — 1 l —
Uy 2#{ ) sin ¢ nr+4<1_y)~|—9c059} ,
b 1—2v cos
=— |————cosfOlnr - ——— — 0sinf]| .
Ugp 2#{ ) cosfInr =) sin ]

The equivalent counterparts in cartesian coordinates are

b
b xo (322 + 22
011:‘1’,222—2 /f 2(2 - 222)
T(1=v) (23 +2))
b Ty (22 — 22
022:‘1’,11:2 'llt 2(21 23)7
m(l—v) (zf + x3)
pb  wy (z] —23)
0‘ :O’ pr— —\If pr— y
B _ pbv T
o33 =V (011 + 092) = oy R

and

b e n T1T2
U = — n J—
YT o Ty 2(1—v) (22 +23) |’

U = In (IL‘% + x%) +

2w [4(1—v)

b [ 1—2v 3 — 23
4 )]

(2.39a)

(2.39b)

(2.40)

(2.41a)
(2.41b)
(2.41c)

(2.41d)

(2.42a)

(2.42b)
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e Strain energy

For the same reasons as in the screw case, we will compute the elastic energy inside
a hollow cylinder of inner radius r, and outer radius R as depicted in Figure [2.7]
Using Equation ([2.38)) and Hooke's law, we find

W R p2m 1
- = / / 5 {0-7"7“57‘7" + 099€on + Ororo + 0-6’7‘597”} rdodr
L. ) 2

R 2 1 1
_ / / : {g% (1 = ) 0 — vO00]
ro Jo (2.43)
1+

v (1 —v)ogg — Vo] + 20,4 ;Te } rdfdr
w

+ o9y I

ub? R
47 (1 — I/) To

ANNAN

AN

0 r
T )\xAQ

Figure 2.7: Edge dislocation along the positive x3 axis in a hollow cylinder used to
compute the strain energy of the dislocation.

General straight dislocations

We now turn to the treatment of a general straight dislocation. In doing so, we
remember that the Burgers vector of such a dislocation can always be decomposed
into edge and screw components—see Figure [2.8]

e Stress and displacement fields

Recall from Equation ((1.6)) that the screw component of the dislocation is

bs:(b€>€a
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Figure 2.8: Mixed dislocation in an infinite medium with its Burgers vector
inclined at an angle 3 to the dislocation line.

or, in light of Figure |2.8]
bs = (bcos ) &, (2.44)

where b is the magnitude of the Burgers vector b.

Thus, the magnitude of the screw component of the Burgers vector is

b, = bcos 8 (2.45)

and, since b, L b, with b = b, + b, it follows that

be =bsin . (2.46)

By the superposition principle of linear elasticity [45-51], the elastic field of a
mixed dislocation can be obtained by superposition (or addition) of the elastic
fields corresponding to the pure edge and pure screw dislocations. Therefore,
using Equations (2.26]), (2.28)), (2.41), and (2.42)), the elastic field for the mixed
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dislocation along the positive z3-axis follows as

pbe o (322 4 23)

o1 = — 2.47a
Y 2r(-v) (@3 a3y (2:472)
be 2 .2
022 = a 72 (@) xg) , (2.47b)
5L 9) (423
(bev To
— 2.47
733 7(l—v)a? 4+ a3’ ( °)
,ubs T
= —_ 2.47d
723 = on 3+ a3’ ( )
/~Lbs )
— 2.47
13 21 22 + 23’ (2.47¢)
be 2 .2
19 = K 1 (xl xg) , (247{:)
3w (1-9) (of +23)
U = be tan~! [ 22) + i (2.48a)
2 T 2(1—v) (a2 +a3) ]|’
b 1-—2v x? — a2
=< |—=1 2 2 ! 2 2.48b
Y o {4(1—u)n(xl+x2)+4(1—u)(m%+x§) ’ (2:48b)
bs -1 (T2
— 5 Ze 2.4
us = o tan ($1) : (2.48¢)

where b, and b, are given in Equations (2.45)) and ([2.46)).

The corresponding strain components follow from Equation (2.47)) and Hooke's
law, or by differentiation of the displacements using Equations ([2.48)) and ([2.2)).

e Strain energy

The strain energy of a mixed dislocation can likewise be obtained by adding the
respective edge and screw counterparts. As a result, for an infinite hollow cylinder
of inner radius 7y and outer radius R, the strain energy per unit length of a mixed

dislocation along the axis of the cylinder is given by
W ub? R ub? R
RS el T b _ P a2
L 4r n<r0)+47r(1—1/)n ro )’

w 1 (beos B)? In (R) N 1 (bsin 5)? In (R)
L Y

4 To 4r (1 —v)

To

or

7= E(®)h (5) | (2.49)
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where E(f) is the so-called prelogarithmic energy factor [26] and is given by

B(g) = (0052 L ) . (2.50)

2.4 Curved Dislocations

So far, our treatment of dislocations has focused only on straight dislocations.
However, dislocations as they are observed in metals need not be straight [52, 53].
As a result, we summarize below the continuum theory of dislocations as it pertains
to curved dislocations. In doing so, it'll be necessary to review the Green's tensor

of linear elasticity.

Green’s tensor of linear elasticity

The Green's function method provides a convenient framework to deriving the
elastic field of dislocations and point force arrays in arbitrary solids. Indeed, if
the response of a body to a point force is known, the deformation caused by any

distribution of forces can be obtained by integration [26].

By definition, the Green's function tensor G;;(x, ') is the tensor field that gives
the displacement at the point « along the x;—direction in response to a unit point
force applied at the point ’ along the z;—direction [26, {44, |54]. For an infinite
homogeneous body, translation invariance requires that [54]

Gij(.’l,', a:’) = sz(a: — 33,) = Gij(a:' — 33) = Gﬂ<33 — CL',) s (251)
so that
Giij(m — CB,) = —Gm;y(d) — ZEI) = —Ging(iB, — ZE) s (252)
and
Gij,kl(m — a:’) = Gij,k’l’ (:1) — a:') = Gij7kl(wl — 33) . (253)

In Equations (2.52) and (2.53)), the unprimed and primed subscripts denote differ-
entiation with respect to @ and @’ respectively. In general, analytical solutions for
G; cannot be found for anisotropic media. However, for the special case of an

infinite isotropic solid, a closed form expression for G;; can be obtained [44, b4].

In deriving the general differential equation for G;;, we follow the approach of
Bacon et al. [54] and consider the schematic of Figure [2.9]illustrating a point force
F; at a point &’ inside an anisotropic solid.

In light of the definition of the Green's tensor, we have that

up(x) = Grp(x — ') F), (2.54)
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€3

Z2
T

Figure 2.9: Displacement at the point @ due to a point force at @’ inside an
anisotropic solid with boundary S. Here AS is any surface enclosing x’.

from which it follows that
uk (@) = Gipa(x — ') F) . (2.55)

By Equations (2.9) and (2.2)) and the symmetry of the elastic modulus tensor, the
corresponding stress state at @ is given by

1
oij(x) = §Cz‘jkl(uk,l + up )

= UijkiUk,1 (2-56)

= ijleka(CB — CE’)Fp.

Thus, in the absence of other sources of stress, the point &’ is in static equilibrium
if
Fi + # oij(x)dS; =0,
AS
i.e., if

Fi + # Cijleka(CC — .’L‘/>deSj = O, (257)
AS

where AS' is any surface enclosing the point ' and we write dS; to mean n;dS,
with dS being the elemental area and n the outward normal to the surface AS as
shown in Figure 2.9,

Using the divergence theorem [55-57], Equation (2.57|) can be written as

Fz’ + ﬂ Cijlekp,lj (iB — w’)deV = 0, (258)
AV

where AV is the volume enclosed by AS.
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Recalling the sifting property of the Dirac Delta distribution [58-61]

//f S — 2/ )dV = fld) ifzxzeV | (2.50)

0 else.
we can rewrite ([2.58)) as
/// [F,é(a: — 33/) + Oijlekaj(aZ - HZI)FP] dV = 0,
AV

///AV [Gipd( — @) + CigraGipas(® — )] F,dV = 0. (2.60)

or

Because Equation ([2.60)) must hold true for any point force F},, we arrive at the

differential equation for the Green's tensor of linear elasiticity, namely
CijikiGrpii(x — ') + 0;p0(x — ') = 0. (2.61)
To derive the displacements in terms of the Green's tensor, we notice that using
Equation (2.53]), we can rewrite Equation as
CijtiGrpyjr(@ — ') + 60 (x — ') = 0. (2.62)

On the other hand, static equilibrium—Equation (2.5)—at @’ can be written in

terms of displacements as

Cijrin, i (') + fi(z") = 0. (2.63)

Next, multiply Equations (2.62) and (2.63)) by u;(«’) and G;,(x — ') respectively,
subract the resulting expressions, and integrate the dlfference over any volume V/

of the solid containing . The result is

// Gip(x — ') fi(x')dV"
///VC’UMGW(SU — & Yupp o (x)dV
_///‘/Cijszkp,l/,(w_w> e

However, using the major symmetry of the modulus tensor, it follows that
Cijia | Gip(@ — & uppy (') = Grpry (@ — @ )ui(2')]

= Cijut [Gip(x — 2 )upp(2') — Grpp(x — 2')u; ()]

5/

»J
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and so

up(®) = ///V Gip(x — ') fi(a)dV"
] contta - <t v
_ ///V Cijrt [Grpur (. — ' Yus ()], AV

Assuming that the integrands and their derivatives are continuous and single-valued,

one can apply the divergence theorem to obtain
wi@) = [|[ Gule—a)p(a)av
+ #;7 CijuGip(x — ' )upp (2')dS] (2.64)
— #9 CijriGrpp (T — w’)ui(w’)dS;- ,

where S is the surface enclosing the volume V.

For an infinite homogeneous body, the surface integrals may be assumed to vanish

at infinity. We get
wi@) = [[| Gute - a)p@)av.
1%

Furthermore, using translation invariance of the Green's tensor as given through
Equation (2.51)), the displacement equation simplifies to

uy(x) = ///‘/Gm(m — ') fi(x")dV'". (2.65)

Stress and displacement fields

We now make use of Equation to derive the elastic field of a curved
dislocation line in an infinite solid. In Figure 2.10, Sy is any area bounded by
the dislocation L, with outward normal as shown. Though we assume that the
dislocation lies in an infinite solid, we use Equation instead of Equation (2.65))
because introducing the dislocation creates a discontinuity in the displacements—
see Equation (2.1)—and as a result, the divergence theorem cannot be applied.
Thus, it is necessary to consider a volume V' within which the integrands of Equation
are differentiable and single-valued. To this end, we consider the domain

consisting of the entire space except for a volume around the dislocation bounded
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Figure 2.10: Schematic of a (closed) curved dislocation L in an infinite solid. S is
an arbitrary surface bounded by the dislocation.

by the tubular region of radius ry and the surfaces S; and S; across which the
displacements u; changes discontinuously by b; . This is illustrated in Figure (2.11)),

which is the front view of the cross-section shown in Figure ([2.10)).

Figure 2.11: Schematic of the surface cap used for determination of the
displacement field of a curved dislocation. The cap consists of the cut faces Sy
and S; and a tubular surface, T, of radius ry centered around the dislocation

line.

Assuming no body forces in the infinite solid, the displacement field in the region
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outside the cap is continuous, and as a result we can use Equation (2.64)) to write

the displacement due to the dislocation as

CU) = // Cijleip(w — m/)Uk,l/ (w’)ds; — // Cijlekp,l’<w o wl)uz(w')de’
0 Sy
+ // Cijleip(w — m')Uk,l/(w/)dS;. — ﬂ+ C’ijlekal(CU . wl>uz(w/)dS;
So
// CijiGip(® — ' ury (x')dS] — // CiiniGrpy (x — ') uy(x')dS; .
I'o To

Since the dislocation deformation and the Green's tensor satisfy the same homoge-
neous boundary conditions, it can be argued—see [44, 54]—that the contribution
from the tubular region vanishes in the limit 1o — 0. We get

// Gl — aYup(2!)dS] — //S CiGrpa(@ — a)ui(a)dS),

0

//S+ Czjlezp(w — X )uk l’( ,)dS; — //S+ Cz‘jlekal(a’} — m’)uz(m')dS; .

As 1o — 0, the cut surfaces S; and Sy collapse onto Sy. Since the integrand in
the first surface integral of Equation (2.64)) is continuous across Sy, and given that

the outward normal of the surfaces S;” and S; are exact opposite, it follows that

// Cijleip(ZB — a:’)uk,l/ (CU/)C'S; + ﬂ+ Cl'jleip(CC — :c’)uw(a:’)dS;- =0
0 Sg
in the limit 7o — 0. As such, we have

uy(x) = — //_ CijGrp (@ — a')ui(x')n;dS’
+ //+ CijtiGrp (¢ — w/)ui(wl)”jdsl
SO

// Ui(iB/)ka’l/ (:13 — w’)nde/
_ﬂ ui(w/)ka,l’(w — ml)n]dS,] 5
Sy

where the outward normal vector n; is that of the surface Sy, which is the same as
that of S; and the opposite of that of S; .

= —Cijkt

In the limit 7o — 0, i.e. as the surfaces S; and Sa“ collapse on Sy, the relative
displacement of S; with respect to Sy is u;(Sy ) — u;(Sy") = b; . It follows that

up(a:) = — ijklbi // ka,l’<w — w’)dS; . (266)
So
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This is known as Volterra's equation for the displacement field of a dislocation in
an infinite medium as a function of the Green's tensor [26, 43, 144, |54, 62].

The distortions follow from differentiation of the displacements as
Upg(®) = —=biCij // Grprg(@ — @')dS] .
So
However, using Equations (2.52)) and ([2.53)), this becomes

up’q(a:) == bi(]ijkl //5 ka,l’q’<w — a:')dS; . (267)

The strains and stresses then follow easily from Equations and (2.9). We
would like to emphasize that the surface S; in the above equations is any arbitrary
surface bounded the dislocation line L. By a judicious application of Stockes'’
theorem [55-57], Mura [62] showed that can be written as line integral, viz.

Uy g(@) = —biClispierse §£L i@ — '), (2.68)

so that
Opmn () = Cmnpq“p,q(m) = _bicmnpqcijklerjq§£ ka,l(iB - wl)d$;~ ) (2-69)
L
where

1 if (4,4,k) is an even permutation of (1,2,3),
€k = —1 if (¢,7,k) is an odd permutation of (1,2,3),

0 else.

In other words, the stress field does not depend on the surface Sy but only on the

dislocation line L .

In principle, Equations (2.66]) and (2.68) are valid for arbitrary infinite anisotropic

media. However, in practice, their use is often limited to isotropic materials as the
Green's tensor for a general anisotropic solid cannot be obtained analytically. For
isotropic solids, we have [26, |43] 44, 54, 63]

n_ 1 0ij — TiT;
Gij(x — ') = Sz — | {25” 20 =) } : (2.70)

where )

T, =

|z —a'|
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In this case, the displacements and stresses take the following forms, known

respectively as Burgers' equation [64] and Peach-Koehler stress formula [65]:

b 9 (1 b 1,
T, &)
8r(l—v) Jg ”kax;n&z:;- b
and
P 0 (LN A B
7s(®) == g7 §) brcime (R) R (R) e (272)
2.72

/
dx),

_Ly{b €. 83—]%_25 9 (1
An(L—v) J, ™ | 0aldxn 0ty P02 \ R

R=|x—2a|.

where

Strain energy of a dislocation loop

In order to derive the strain energy of a curved dislocation, we consider the more
general case of the interaction energy between two dislocation loops. As such, we
consider the dislocations lines L; and L, and the arbitrary areas S; and S, that

they respectively enclose—see Figure [2.12]

Figure 2.12: Schematic of two dislocation loops within an infinite elastic
continuum.

Following Hirth and Lothe [26], the interaction energy between the two dislocations

is given by

W12 = // b1a02a5(x1>d5157 (273)
S1
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where

o by, is the a—component of the Burgers vector b, of the dislocation L,

o 09, ,(x1) is the af—component of the stress tensor at the point 2; on

the dislocation L; due to the dislocation L5, and

o dS), is the f—component of the elemental area of the arbitrary surface

S enclosed by the dislocation L; .
Not surprisingly, this can also be expressed as

Wi = // bzaUlaﬁ(ﬂfz)dS%,
S1

with the variables by, , 01, ,(x2), and dS,, defined similarly as above.

Inserting Equation (2.72)) into ([2.73)) while noting that OR/0xy, = —OR/0x,, ,

where now R = |x; — 2|, we get

L 0 1
W= ], § s, () 952
L 0 1
+45 J[,§, vz (7) dentsi
b, bs, Eomp=——————d5,dS
+ 47T(1 — V) //51 fiz 1a?2m€ kaxlﬁxla@mﬂ 1

I 0 1
it ptiog (5) s

Though we do not include the details here, one can use Stokes' theorem to simplify

(2.74)

the above expression. We obtain |26, 42]

Wiy — — ﬁ% % (bl X b2) . (dll X dlg) . ﬁ% % (bl . dll)(bQ . de)
2 27 Ju, J1, R dr J1, J1, R

1
+47‘r(1—1/) élfiQ(ledll) T (ngdlg),

(2.75)

where
0’R B J’R
(‘)xli@xl]. N axgﬁxgj

as the order of differentiation does not matter in this case.

T; =
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The strain energy of a single dislocation loop L can now be obtained as the limiting
case of the above result by setting L; = Lo and dividing the result by 2 [26, [44].
We get

W, :£§£ 55 (b-dly)(b-dly)
81 Li=L JLo=L R

i
+87r(1—1/) yi:L&éFL(bxdll) T (bxdl),

where R is the distance between two points on the dislocation—see Figure [2.13]
‘L
€3

€1

(2.76)

€2

Figure 2.13: Schematic of a dislocation loop within an infinite elastic continuum.

As written, the dislocation self-energy W, diverges. This is the same problem that
led to the use of a hollow cylinder when computing the strain energy of straight
dislocations. However, the use of a hollow core for general curved dislocations
increases the complexity of the problem as it would require a knowledge of the
Green's function for the region outside the dislocation core [44]. We will return to
this discussion in Section 2.5

2.5 Forces on a Dislocation

The notion of force on a dislocation is one of configurational forces, i.e. one defined
as the variation (in the derivative sense) of the energy (or work) of a solid with
respect to the position of the configuration. This force should not be confused with
the notion of force on a mass as the former is, in a sense, fictitious and introduced
to give a description of energy changes in a solid [20, 26, 54, |66| 67]. As such,
the force on a dislocation is the variation of the energy of the host medium with

respect to the position of the dislocation. It what follows, it will be important to
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distinguish between forces due to external stresses, those due to internal stresses,

and those due to the self-stress of the dislocation.

Forces due to external stresses

Consider a dislocation loop in an elastic medium and let o be the stress field due
to applied tractions at the boundary of the solid. As the dislocation is created, the
work done by the applied tractions o is [26, 42] is

W = _biaijdsj y (277)
So

where, as before, S is the area enclosed by the dislocation line.

Next, suppose that an element of line dl of the dislocation moves by an amount
dax —see Figure [2.14] Then the area S; increases by §Sy = dx x dl and as a
result, the applied tractions do additional work:
5W = —bi Uij 55’0j
= —bl Oij EjmndiCmdln
(2.78)

= (_Ojibi Ejmndln) Cl.fL'm

= (ijn Ujibi dln) diL'm .
However, denoting by dF' the configurational force on the element dl of the

dislocation, we must also have that
SW = dF,, da, . (2.79)

Since the element dl and the virtual displacement dx were chosen randomly,

080

d:c

Figure 2.14: An element dl of dislocation line moves a distance dx, thus
increasing the area swept by the dislocation by the amount 6 Sy = dx x dl .

comparing Equations (2.78]) and (2.79)) implies that the force on the element dl is
given by

dFm = €mjn Ojibi dln . (280)
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In vector notation, Equation (2.80]) becomes

dF = (ob) x dl . (2.81)

Equation (2.81)) (or, equivalently, Equation ([2.80))) is known as the Peach-Koehler
formula for the force on a dislocation, owing to Peach and Koehler [65] who first
derived it in 1950. In Equation ([2.80)), the stress field o is to be evaluated at the

element of dislocation line dl .

Forces due to internal stresses
Internal stresses in a solid with a dislocation can be understood as those stresses
due to other imperfections inside the solid resulting in traction-free state at the

external surfaces [20]. These could be due to other dislocations or point defects.

Following a derivation similar to the above, it can be shown [54] that the force on
the dislocation due to other sources of internal stress also assumes the form given
in Equation ([2.81]). More specifically, a dislocation in a solid with other sources of

internal stress experiences a force
dF = (¢b) x dl, (2.82)
where now o is the stress field due to the internal sources.

For our purposes, the image stresses due to the dislocation are also considered to
be of the internal type. These are stresses induced by the fact that the dislocation
may be in a bounded—rather than infinite—medium [68] and are illustrated with
the help of Figure 2.15] When it comes to their effect on a dislocation, Gavazza
[69, [70] was the first to rigourously prove that the force they create can also be

written using the Peach-Koehler formula, viz.
dF = (o'b) x dI, (2.83)

where o/ is the image stress field of the dislocation.

Self-force of a dislocation

In the following, we use the notion of self-force to mean the force on a dislocation
due to its own elastic field in an infinite medium. The resulting stress, also known
as the self-stress of the dislocation, is given by Equation (2.69)), which is repeated

below for convenience:

Tmn(T) = Crnpqlipg(x) = _bicmnpqcijklerqug Grpi(x — m’)dx; .
L
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Figure 2.15: Principle of superposition used to define the image stress in a
bounded solid with a dislocation |71, |72]. o corresponds to the stress in the finite
dislocated solid as shown on the left. o> corresponds to the stress in the infinite
dislocated solid. This creates tractions ¢° at the boundary that would delimit the

real finite solid. Finally, o’ is the image stress in the finite solid free of
dislocations. Note the traction boundary conditions used in this case.

Inevitably, the self-stress diverges along the dislocation line. Therefore, it cannot
be used in the Peach-Koehler formula to compute the self-force on the dislocation.
Still, in an attempt to quantify the self-force on a dislocation, researchers haven
taken various approaches to regularize the self-stress along the dislocation line.
Beyond suggesting yet another such approach, the work of Cai et al. [73] gives an
excellent review of previous attempts to remove this singularity in the continuum

theory of dislocations. A few of them are summarized below.

In reference [74], Brown describes an approach where the self-stress at a point
x along the dislocation is evaluated as the average of those at points  +e¢m,
where € can be taken to be the core parameter and m is the in-plane normal to
the dislocation at & —see Figure 2.16

In the approach of Gavazza and Barnett [68], a tubular region around the dislocation
similar to Figure is removed and the elastic energy is computed using the
volume outside this region. The resulting self-force is then approximated as the
variation of the energy. However, this method is restrictive in that it applies only
to planar dislocations.

Hirth and Lothe [26] on the other hand suggest a regularization where the self-stress
at a point @ along the dislocation is computed using Equation (2.69)), but with the
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Figure 2.16: lllustration of the core regularization proposed by Brown [74] in 1964.
The self-stress at x is computed as the average of those at & e m , where m is
the in-plane normal to the dislocation at x .

added constraint that the integral be set to zero for points @’ lying within a radius
€ of . For the illustration of Figure [2.17] this means that the self-stress at « is
approximated as
amn(:v) = C’mnpqum(w) ~ —biCmnquijklequ/ ka,l(a: — a:’)dm;,, (284)
A—B

where the integral is taken along the open coutour A — B along L.

Figure 2.17: lllustration of the core regularization proposed by Hirth and Lothe
[26]. The self-stress at @ is computed using Equation (2.69)) but excluding a those
points &’ that are a distance less than € away from x .

Finally, in the approach of Cai et al. [73], the Burgers vector is spread isotropically

within the core—as opposed to being concentrated on the dislocation line—using a
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spreading function characterized by a single parameter which they call the spreading

radius. This parameter essentially plays the same role as the dislocation core radius.

The current work uses yet another regularization of the dislocation core. The
details are given in Chapter [3| as part of the method of monopoles for dislocation

dynamics.
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Chapter 3

A METHOD OF MONOPOLES FOR DISLOCATION DYNAMICS

Note: Significant content of this chapter is taken from the work of Deffo, Ariza,
and Ortiz [75].

3.1 Introduction

The plastic deformation of crystals is the macroscopic effect of the cooperative
motion of large ensembles of lattice dislocations. From a geometric point of view,
dislocations are line-like lattice defects that demarcate the boundary of areas of
constant crystallographic slip on slip planes. By the discrete nature of crystal lattices,
crystallographic slip is in turn constrained to occur in quanta of Burgers vector and,
therefore, the dislocation lines carry a quantized Burgers vector 'charge’. Since
dislocations are boundaries, they must themselves have no boundary, i.e., they must
form closed loops, branch according to Frank's rule or terminate at the boundary of
the solid. The motion of dislocation is driven by the Peach-Koehler force induced
by the applied stresses and by the elastic interaction between dislocations and is
controlled by dislocation mobility. As they move, dislocations may undergo line
stretching, pair annihilation, dislocation reactions, pinning-depinning interactions,

and other complex geometrical and topological transitions.

Given their fundamental role as agents of plastic deformation, dislocations have
been extensively studied both experimentally, analytically and computationally.
This chapter contributes to this study by proposing an innovative approach to
dislocation dynamics simulations. However, before giving the details of this new
theory, previous attempts at the long lasting problem of dislocation dynamics

simulation stand a brief review.

3.2 Previous Approaches to Dislocation Dynamics
Though new methods for dislocation dynamics have recently been proposed (cf.,
e.g., the level-set method of [76]), previous attempts can be categorized into two

classes: the line dislocation dynamics method and the phase field approach.

The line approach to dislocation dynamics simulations can usually be summarized
as follows [40, [77]:
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1. Discretize the dislocation lines using an adequate scheme—typically connected

line segments;

2. Compute the Peach-Koehler forces along the dislocation elements using
continuum linear elasticity—for the forces due to applied external stresses
and other sources of internal stresses as described in Section 2.5and an
appropriate core regularization scheme—for the forces due to the self-stress

of the dislocation element, also described in Section [2.5;
3. Evolve the dislocation elements using an appropriate mobility law;
4. Compute the resulting plastic deformation;

5. Apply complex rules to account for short-range segment-segment interactions,

dislocation reactions, and topological transitions;

6. Go back to step 2 above and repeat until the total simulation time is reached.

Within this description, the overall dislocation structure is characterized by a set of
nodes (or segments) and a data structure defining the connectivity between them
[78]. This is known as the line dislocation dynamics method. Across the major
dislocation dynamics codes, the discretization can be performed in two different

manners which lead to two families of dislocation dynamics simulations 78, |79].

Lattice-based simulations

In the initial version of lattice-based codes, all dislocations are discretized into a
collection of edge and screw segments. In recent developments, however, curved
dislocations are discretized into a succession of straight segments—not necessarily
of edge or screw type—which are positioned on preset directions of an underlying
cubic lattice such that the length of each segment is a multiple of the lattice
parameter [79, 80]. Because the segment extremities coincide with lattice points,
a finite set of dislocation orientations is selected and only these orientations are
considered. Dislocation motion is considered only in the direction orthogonal
to each of these segments [78, 80]. This is illustrated in Figure where the
dislocation line and the corresponding lattice-based discretization are shown in
black and red respectively. During simulations, the integration points at which the
Peach-Koehler force is calculated are usually taken to be the middle of segments.
However, sometimes the integration points have to be moved to other locations

for ease of computing of the Peach-Koehler force [80]. Examples of dislocation
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dynamics codes using this discretization scheme include Tridis and microMegas
[79]. For further reading on lattice-based simulations, the reader is referred to [30,

81] and the references therein.

Figure 3.1: Discretization of a curved dislocation into line segments (in red) in
lattice-based simulations. The integration points are taken as the middles of the
segments. The outward arrows indicate the only possible directions of motion of the
segments.

Nodal simulations

In node-based simulations, the dislocations are represented by a set of nodes
positioned on the dislocation lines, and shape functions are used to connect
consecutive nodes. Though the simplest and most commonly used shape functions
are the linear type, resulting in straight line segments [78] (see Figure [3.2), cubic
splines have also been used—for example in the PDD code of Ghoniem et al.
which is detailed in [82]. There is no need to restrict the discretization to a
collection of edge and screw segments as any dislocation orientation is allowed.
The segments are only submitted to the condition of conservation of Burgers vector
at the nodes—see Figure [1.13)and Equation [1.4] Furthermore, the motion of the
nodes is not restricted to specified directions. Rather, dislocation segments can
move in any direction consistent with their mobility law [78]. However, because
the nodes are located on the dislocation lines, computing the Peach-Koehler force
requires regularization of the elastic energy and stress expressions. In the nodal
code ParaDiS [83], the core regularization of Cai et al. [73] is used to that effect.
Reference [72] and Chapter 10 of [40] give a more detailed description of line

dislocation dynamics using nodal representation.

In dislocation dynamics simulations, each of the above discretizations has its
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Figure 3.2: Discretization of a curved dislocation into line segments (in red) in nodal
simulations.

advantages in terms of accuracy, computing efficiency, simplicity, and flexibility. In
lattice-based simulations, since the segments extremities coincide with lattice points,
force calculations are simplified as the finite number of segment directions allows
tabulating parts of the stress field computations [80]. On the other hand, with
node-based simulations, the discretization generally gives smoother representations
of the dislocation line. This is because the dislocation segments can take any
shape, thus resulting in a more accurate representation of the dislocation. However,
despite these advantages, line dislocation dynamics simulations still suffer from
challenges associated with large scale 3D simulations, the first of which is the
computational cost [77]. It is well known that for a simulation volume containing N
segments, the cost for the nodal force computations scales as O(N?) [79, 80]. As
a result, researchers have taken various approaches to reducing this computational

overhead.

One such venue is the use of the Fast Multipole Method (FMM) [84, 85| and
the derivative works thereof [86, 87]. Application of this method in dislocation
dynamics is detailed in references [88, [89]. Despite the improvements provided by
the FMM in dislocation dynamics, the cost of nodal force computations is further
compounded by the fact that one needs to keep track of the connectivity of the
segments (or nodes) at all time. This is especially true during strain hardening

where dislocation entanglements lead to complex interactions and connectivities
between nodes [90-92].

Furthermore, the simulation time step strongly correlates with the stability, and thus

accuracy, of the computations. Indeed, because most line discretization schemes use
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explicit methods for time integration of the nodes (cf., e.g., the Euler method and
the Euler-trapezoid method used in microMegas [80] and ParaDis [40] respectively),
stability of the algorithm limits the simulation time step to small values. As a
result, the number of time steps required to achieve a given total simulation time is
larger than in an implicit simulation where the algorithm is unconditionally stable,

and thus the time step can be taken to be significantly larger.

The phase field method to dislocation dynamics was born in an attempt to address
some of the issues just mentioned. The approach relies on a continuous field of
eigenstrains to reveal the locations of dislocations in regions of high strain gradients
. Indeed, given that a dislocation is the boundary line between slipped and unslipped
areas on a crystal plane, the amount of slip across the plane becomes a natural
candidate for the phase field associated with the dislocation [40]—see Chapter 11
of [40] and the references therein as well as the paper by Koslowski et al. [93] for
an overview of the method. A significant advantage of this method stems from the
fact that no specialized treatment of topological changes is required [40, 77| as the
method seamlessly accounts for these phenomena. As a result, the implementation
is more straightforward when compared to line dislocation dynamics. Nevertheless,
because the equations are solved on a grid, features smaller than the grid spacing
cannot be resolved. As a result, short range dislocation interactions cannot be
modeled accurately on a grid without a very fine grid spacing [77]. However, this
would make large-scale 3D simulations computationally unfeasible, thus offsetting

the method'’s ability to seamlessly deal with topological transitions.

The complexities and limitations of the two approaches just described derive
largely from i) the need for dislocation segments to remain linearly connected
in order for dislocation lines to remain boundaries, or ‘divergence-free’, and ii)
the inability of the phase field method to give reliable results for large-scale 3D
simulations. In line dislocation simulations especially, the resulting dynamics
inevitably leads to complex line entanglements that are difficult to track and
negotiate effectively. In light of these complexities and limitations, we develop a
‘line-free’ paradigm differing fundamentally from traditional line-based schemes
in that the dislocation density is concentrated at points, or monopoles, and an
explicit linear connectivity, or ‘'sequence’, between the monopoles is not defined or
enforced. Instead, the monopoles move as an unstructured point set subject to a
weak divergence constraint. In this sense, the new paradigm sidesteps the need to

track dislocation lines, an attribute that offers significant computational advantages
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in terms of simplicity and efficiency. In particular, it affords an extension to three
dimensions of the wealth of point-dislocation methods that have been developed
and extensively applied in two dimensions (cf. the seminal paper [94] and derivative

works thereof, too numerous to list or even summarize here).

3.3 Introduction to the Method of Monopoles

The basis for the new paradigm is a reformulation of dislocation dynamics as
a problem of transport of measuredl| (cf., e.g., [97] for background on optimal
transport theory). Whereas the transport nature of dislocation dynamics has long
been appreciated (cf., e.g., [62]), the literature to date is largely restricted to
‘continuously distributed dislocations’, or dislocation densities described by regular
functions. However, as already noted, dislocations are line defects and, as such,
measures and not functions. This distinction is not insignificant but fundamental.
Indeed, the reformulation of dislocation transport theory from functions to measures
affords a number of essential extensions and provides the basis for the present
work: i) it enables the direct treatment of dislocation as line objects, as opposed
to 'diffuse’ or ‘distributed’ functions; ii) it leads to notions of weak solution
and of weak satisfaction of the divergence constraint that, in particular, open
the way for spatial approximation schemes other than segments; iii) it introduces
concepts from transport theory such as transport maps and push-forward operations
enabling exact geometrical updates; iv) it supports time discretizations resulting in
incremental minimum problems for energy-dissipation functionals; and v) it enables
discretizations of the dislocation density within spaces of measures, e.g., by means
of Dirac masses or ‘monopoles’, which would otherwise be undefined in functional

spaces.

Within this measure-theoretical framework, monopoles suggest themselves as a
canonical approximation owing to the density properties of Dirac masses in spaces
of measures. Specifically, every monopole carries a Burgers vector and an element
of line. The monopoles then move according to mobility kinetics driven by elastic
and applied forces. The divergence constraint, expressing the requirement that the
monopoles approximate a boundary, is enforced weakly. Most importantly, at no

point in the approximation or in the calculations an explicit linear connectivity, or

Here and throughout this work, the term measure, which is standard in mathematics (cf.,
e.g., [95]), is used simply to emphasize that certain fields, such as the plastic deformation of the
dislocation density, are not regular functions but are instead concentrated on surfaces or lines
and are characterized by their action on appropriate test functions; cf. also [96] for a rigorous
treatment of plastic deformations and dislocation densities as currents.
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‘sequence’, between the monopoles is defined or enforced. The monopoles instead
move as an unstructured point set subject to the weak divergence constraint. In this
sense, the new paradigm is ‘line-free', i.e., it sidesteps the need to track dislocation
lines, an attribute that offers significant computational advantages in terms of

simplicity and efficiency.

The time discretization developed in the present work parallels the pioneering work
of Jordan, Kinderlehrer, and Otto [98] on transport of scalar measures, and reduces
the problem to the successive minimization of an incremental energy-dissipation
functional. The solutions of these minimum problems define a time-wise sequence
of incremental transport maps. Pushforward by the incremental transport maps
then supplies a geometrically exact update for the dislocation measure that, in
particular, preserves the divergence-free constraint. The spatial discretization of the
transport maps in turn mirrors similar mesh-free discretization schemes proposed
in the context of solid and fluid flows [99] and diffusion [100]. Because gradients
are required by the geometrical updates, the discretization of the transport map
must be conforming. We specifically use a max-ent interpolation scheme [101]
that, in keeping with the 'line-free’ character of the monopole approximation, does

not require sequencing of the monopoles.

The rest of the chapter is organized as follows. In Section [3.4 we begin with a
succinct review of dislocation dynamics as a problem of transport of measures.
The representation of dislocations as line currentsﬂ [96, 104, |105] is summarized
in Section [3.4] Of particular concern is the formulation of transport equations in
a weak form that is applicable to dislocation densities that are concentrated on
lines or points and that are not differentiable in the sense of ordinary functions,
cf. Section 3.4, An additional focus concerns the reformulation of the transport
problem in terms of transport maps and geometrically-exact push-forward opera-
tions that pave the way for time discretization, cf. Section [3.4] In order to close the
transport problem, a mobility law delivering the instantaneous dislocation velocity
needs to be specified. Section develops the conventional energetic viewpoint
that the dislocation motion is a gradient flow driven by energetic driving forces
and governed by kinetics. We specifically focus on variational formulations of
mobility, Section [3.5] and energy, Sections 3.5/ and [3.5] that provide the basis for
the incremental minimum problems developed subsequently. Section focuses

2Currents arise in geometrical measure theory (cf., e.g., [102, [103]) as special measures,
indeed distributions, which generalize the Dirac delta distribution to lines and surfaces and carry
vector or tensor-valued charge capable of acting on general forms.
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on the representation of the energy as a function of the dislocation density. In
particular, we present a derivation based on the Helmholtz decomposition that
generalizes an earlier derivation of Mura [106] to arbitrary domains and nonlinear
behavior. In Section [3.5 we deal with the logarithmic divergence of the energy by
means of an explicit core regularization based on gradient elasticity. In Section [3.6)
we address issues of approximation, including time discretization, discretization of
the dislocation measure and discretization of the transport map. Following [98-
100], time discretization is effected by defining an incremental energy-dissipation
functional for the transport map, with the update of the dislocation measure
following as a byproduct, cf. Section[3.6] Exploiting the property that the incremen-
tal energy-dissipation functional is well-defined for general dislocation measures,
we proceed to discretize the dislocation measure by means of Dirac masses, or
monopoles, cf. Section [3.6] We additionally discretize the transport map by means
of mesh-free max-ent interpolation [101], cf. Section 3.6} in keeping with the
line-free character of the approach. The incremental equations of equilibrium
finally follow by rendering the incremental energy-dissipation functional stationary
with respect to the monopole positions, cf. Section [3.6] The general structure of
the resulting dislocation dynamics solver and selected issues of implementation
are discussed in Section [3.6] The developments to this point are based on the
assumption that the incremental transport map is continuous and, therefore, the
dislocation measure undergoes no topological transitions. Section addresses
two common topological transitions in the context of the monopole approximation,

namely dislocation reactions and dislocation nucleation.

3.4 Dislocation Dynamics as a Transport Problem

The formulation of dislocation dynamics as a transport problem is well known [62],
but may stand a brief review as it provides the basis for all subsequent developments.
We specifically call attention to the representation of dislocations as measures, or,
more specifically, as line currents [96, 104} |105], that opens the way for particle-like

approximation schemes such as the method of monopoles developed in this work.

Dislocation geometry
We consider throughout a crystal occupying a region Q C R3. A continuum
plastic deformation generated by crystallographic slip is a tensor-valued measure (3?

supported on a slip surface X5, contained within crystallographic planes, characterized
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by the property that
/771']' dﬁz = / 771']'51%]' dS (31)
Q b

for all test functions 1, where v(x) and dS(x) are the unit normal and element
of area at * € X, respectively. In addition, the slip surface ¥ is a surface of
discontinuity of the displacement field of the crystal and d(x) is the displacement
jump across x € ¥. Within the Volterra theory of dislocations, the value of the
displacement jump is constrained to be an integer combination of Burgers vectors
characteristic of the crystal class. In particular, the displacement jump is piecewise

constant over the slip surface.

The Nye [107] dislocation measure « is given by Kroner's formula [108] as

Q5 = _ﬁfkylelkja (3-2)

where ¢;;;, denotes the permutation tensor and the curl is to be interpreted in a

distributional sense, i.e.,
/Uij dag; = / Nija€jike AP, (3.3)
Q >

for all test functions m. For Volterra dislocations, the dislocation measure has the

/nij dOéZ‘j :/nZ]bZt] dS (34)
Q r

for all test functions n, wher dislocation line, within X, t(x) and ds(x) are the

representation

unit tangent vector and the element of length at @ € T', respectively, and, for every
x € T', b(x) is a Burgers vector of the crystal. In particular, the dislocation line

separates regions of constant displacement jump within the slip surface.

It follows from Kroner's formula ((3.2)) that
Q55 = 0, (35)

i.e., the dislocation density is closed, or divergence-free. Here, again, the divergence

is to be interpreted in a distributional sense, i.e.,

—/fi,j daij =0, (3-6)
T

for all test functions &. The null-divergence property—Equation (3.5)—of the
dislocation density implies that dislocations cannot terminate in the bulk but must
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form closed loops or networks or exit through the boundary. It also implies Frank’s

rule for dislocation branching (cf., e.g., [26]).

Representations ((3.1]) and give measure-theoretical expression to distribu-
tions of crystallographic slip and Volterra dislocations. We note that the plastic-
deformation and dislocation measures are also (rectifiable integer-valued) currents
[96, |105] of well-defined dimension, namely, the plastic deformation measure is a
two-dimensional current and the dislocation measure is a one-dimensional current.
As currents, the plastic deformation and dislocation measures additionally have
well-defined boundaries. In the sense of currents, Kréner's formula (3.2)) simply
defines the dislocation current as the boundary of the plastic-deformation current.
In addition, the divergence-free condition ({3.5) simply records the fact that a

boundary has itself null boundary.

Dislocation transport
Next, we consider moving dislocations characterized by a time-dependent dislocation
measure a(x,t). Let S be a fixed, arbitrary oriented surface with boundary 05.

The total Burgers vector crossing S is then given by

bZ(S, t) = / deaij- (37)
S
Taking rates, we obtain
bZ(S, t) = / deééij, (38)
s

with all derivatives understood in the distributional sense. But b(S,t) must also

equal the flux of Burgers vector across the boundary 085, i.e.,

bi(S,t):/ CrmmkUmbi A, (3.9)
as

where v(x, t) is the dislocation velocity. Note that v(x,t) has no contribution to

b(S,t) if it is parallel to the dislocation line or the contour 95 at @, as required.

An application of Stoke's theorem then gives

/Vj dOéZJ :/Ejlkemnij(Umeém),l, (310)
S S
and, since S is arbitrary,

Gij — €jtkCmnk (Vmin) 1 = 0, (3.11)

3More precisely, b(S,t) is the link of «, regarded as a current, and S, cf., e.g., [109].
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which defines a transport equation for the dislocation measure. Using the identity
€ijkCimn = 5jm51m - 5jn5kma (3-12)
the transport equation (3.11]) can be recast in the equivalent form
&y — (v — agvp) 0 = 0, (3.13)
or, using Equation ({3.5)),
Qi + 0G0 — vy 4 ogvp = 0. (3.14)
Taking the distributional divergence of this equation we additionally find that
gy = 0, (3.15)

which shows that the transport equation (3.11)) is indeed consistent with the
divergence constraint. More precisely, testing (3.11) with 7;; we obtain

/nijddij + / €51k CmnkUmNij 1Ay = 0. (3.16)
Q Q

Setting 1;; = &, j, this identity further reduces to

/gi,jddij — 0, (317)
Q

which indeed implies (3.6]).

The transport equation ([3.11]) has the effect of restricting the possible rates and
variations of the dislocation measure .. Specifically, for a rate & to be admissible,

there must exist a vector field v(x,t) such that the curl of & x v equals —cv.

Transport maps

An equivalent Lagrangian formulation of the transport problem that plays a central
role in time discretization can be formulated in terms of a transport map ¢ :
Qx[0,7] — 2 [97]. In this representation, the dislocation measure (-, ) at time
t is the push-forward of the initial dislocation measure a(x) = (-, 0) by (-, t).
Formally,

o = prye, (3.18)

where we write doy () = da(x,t) and ¢,(x) = p(x,t), and ¢, denotes the
push-forward by ;.
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The appropriate notion of push-forward for dislocation measures, regarded as line

currents, is that v is the push-forward of p by ¢ if

/ i ()i () = / iy () Vi () iy (), (3.19)
Q Q

for all test functions 1. We note that

/Q () dvi(y / () Vg (@) dpiy ()
= [ (&te@)y du(a),

whence it follows that the push-forward operation preserves the divergence-free

(3.20)

condition, i.e., if u is divergence-free then so is v. The local form of the push-
forward is obtained by considering absolutely continuous dislocation measures, or
continuously distributed dislocations, dji;; = f;; dz and dv;; = g;; dy, where f and

g are regular dislocation densities. In this case,

/Q i (Y)9i;(y) dy = /Q i (p(x))gij (p(x)) det(Vep(x)) dx

(3.21)
_ / (@) Vg () fip() da
which requires that
i (pla)) = el (322)

We observe that the push-forward operation entails reorientation and stretching of

the dislocation line.

For completeness, we verify that Equation (3.18)) is equivalent to the transport

equation ((3.11]). Using the definition (3.19)) of push-forward, we have
/Qnij(y)daij(yat) :/Q%(90(33,t))V%p(fBat)daz‘p(fB»O)‘ (3.23)

For simplicity, we consider the case of absolutely continuous dislocation measures
dayj(x,t) = pij(x,t) dz. In this case, the push-forward ([3.23) reduces to

Vgpjl’(wv t)pip($7 0)

g — 24
Taking time derivatives, we obtain
pij ((P(Q?, t)? t) + Pij,k(‘P(ma t)a t)‘tpk(a% t) =
vajp(w’ t)pip(w> 0) v@jp(wa t)pip(m’ O) . -1
— Vo (x,t)V x,t) =
det(Vol@, ) det(Ve(w,n) @IV l@l =" 0

Vgpjp(w t)v(ppk ( )/M(‘P(wa t)? t)_
VQOlq(iB, t)V()Oql ( ) t)pij(cp(wa t)? t),
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or, by a suitable change of variables,

i (Y t) + pijr (Y ) (Y, t) = vin(y, ) pie(y, 1) — v iy, t)pij(y, 1),  (3.26)
which is identical to ([3.14) with velocity

vi(y,t) = @i(e 'y, 1), 1), (3.27)

as required.

3.5 Mobility and Energetics

In order to close the transport problem ([3.11]), we need to specify a mobility law
that supplies the instantaneous dislocation velocity. Whereas the transport problem
(3-11)) concerns the geometry of the dislocations and its evolution in time, the
mobility law encodes the kinetics of dislocation motion. In this section, we develop
the conventional energetic viewpoint that the dislocation motion is a gradient flow
driven by energetic driving forces and governed by kinetics. We specifically focus
on variational formulations that provide the basis for the incremental minimum

problems developed subsequently.

Dislocation mobility

In order to identify the appropriate driving force for dislocation motion, we consider
the rate of elastic energy F attendant to a plastic deformation rate 3. Alternatively,
we may regard 3P as a variation of the plastic deformation 37 and E the attendant
variation of the energy F, as the operations of taking rates and variations are

mathematically identical. We have

E :/ Uz‘j Ze] dﬂ? = / O-ij(ui,j — Z) dﬂ?
(9293 Q

:/U”(uw— ,Z)dl': —/O'l]dﬁfj,
Q Q

i.e., at equilibrium and in the absence of body forces and applied tractions, the

(3.28)

rate of elastic energy equals the negative of the plastic work rate. We recall that

equilibrium stress fields admit the representation

Oij = —Xik,€lkj = Oji, (3.29a)

Xij,j = 0, (329b)

in terms of an Airy stress potential x. Inserting this representation into Equation

(3.28), we obtain

E:/Xik,lelkjdﬁ.fj :/Xijddija (3.30)
Q Q
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which shows that the Airy stress potential and the dislocation measure are work

conjugate.

In order to proceed further, we need to characterize the admissible rates, or
variations, &. This characterization is non-trivial since the dislocation densities
o define a non-linear space[f] Formally, the appropriate notion of variation of
follows from the transport equation (3.11)), namely, & is an admissible rate, or
variation, if there exists a velocity field v such that is satisfied. Using this

differential structure, we have
E= / Xijdc; = / Xij,1 €1k EmnkUm A,
Q Q

(3.31)
:/O—ikenmkvmdoﬁn:/O—ikenmkvmbitn ds:/fmvmdsv
Q T I

where
fm = Oikenmkbitn (332)

is the Peach-Koehler force per unit dislocation length.

In view of (3.32)), standard thermodynamic arguments suggest that the dislocation
motion is governed by a mobility law of the type

Uy = Dil/f*(f)a (3-33)

where ¢(f) is a dual kinetic potential and D, denotes partial differentiation.

Alternatively, we may express the mobility law in inverse form as

fi=Diy(v), (3.34)

where the kinetic potential ¢)(v) is the Legendre transform of ¢*(f), provided that
it exists

The precise form of the mobility law, and the potential ¢(v) depends on the
physical processes that limit dislocation mobility (cf., e.g., [26]). For instance, if

lattice friction is the rate-limiting mechanism, then

U(v) = 1|v], (3.35)

4cf., e.g., |97, 1110] for background on the closely related spaces of probability measures that
arise in scalar transport problems. The geometry of optimal transport of vector-value measures
appears to be considerably less developed.

5We recall that the Legendre transform is well-defined on proper, convex, lower-semicontinuous
functions, cf., e.g., [111].
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where 7, is the critical resolved shear stress. In particular, ¢ (v) is homogeneous of
degree one in the dislocation velocity. If, instead, dislocation motion is controlled

by phonon drag, then
B
P(v) = §|'v|2, (3.36)
where B is a phonon-drag coefficient. In this case, ¥(v) is quadratic in the

dislocation velocity.

Dislocation energy

As we have seen, within an energetic framework the motion of the dislocations, and
the attendant evolution of the dislocation measure, is driven by energetic or Peach-
Koehler forces. For present purposes, we shall require a representation of the energy
that is well-defined for general dislocation measures, including Volterra dislocations
and, subsequently, dislocation monopoles. We derive one such representation in two
steps. Firstly, we present a general argument based on the Helmholtz decomposition
[104] that shows that, in the absence of Dirichlet boundary conditions, the—possibly
nonlinear—elastic energy of the solid depends solely on the dislocation density.
This representation generalizes a similar result obtained by Mura [106] for the
special case of linear elasticity. Unfortunately, conventional linear elasticity is not
well-suited to Volterra dislocations due to the well-known logarithmic divergence
of the energy (cf., e.g., [26]). In order to sidestep this difficulty, we develop a
regularization based on strain-gradient elasticity that renders the energy well-defined

for general dislocation measures, including dislocation monopoles.

Suppose that the crystal deforms under the action of body forces f, prescribed
displacements g over the displacement or Dirichlet boundary I'p and applied
tractions h over the traction or Neumann boundary I'y. We recall that the
Helmholtz decomposition of 37 is [112]

fj =V + Wik, 1€lkj, (3.37)

where v and w are potentials. To this representation, we additionally append the
Lorenz gauge condition
Wij5 = O, (338)

and the boundary conditions

v; =0, on I'p, (3.39a)
Wik, 1Clkj TG = O, on FN. (339b)
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Taking the divergence and the curl of (3.37)), we obtain
szj,j = Ui,jja (3403)
BhnnCnmj = —Qij = Wik 1nClkmCnmj = —Wij kk, (3.40b)

where we have used the gauge condition (3.38) and Krdner's formula (3.2). Equa-
tions ((3.40)), together with the boundary conditions (3.39)), uniquely determine the
potentials. In particular, we note that the vector potential w is fully determined by

the dislocation measure o.

Let & be a stress field in equilibrium with the body forces and the applied tractions,

i.e.,
61‘]’,]’ + fl = O, in Q, (3.413)
5'1']‘71]' = hi, on FN. (341b)

Then, the potential energy of the crystal takes the form
@(U,,@p) = / (W(DU — ﬁp) — 6ij(um~ — Z)) dI, (342)
Q

where W (3°) is the elastic strain energy density and Dwu is the distributional

derivative of the displacement field. For a linear elastic crystal,

1
W(B°) = S Cighi€ij €kt (3.43)

where c;j3; are the elastic moduli and €f; = (8, + 35,)/2 are the elastic strains.
However, we emphasize that the present derivation does not require linearity and
holds for general strain energy densities. The elastic energy at equilibrium follows

E(B?) = inf{®(u,B"), u=gonIp}. (3.44)

But, inserting the Helmholtz decomposition into gives
O(u,B?) = /Q (W(Du —Dv -V Xw)—7d;(vi; + wik,lelkj)) dr. (3.45)
Absorbing v into u, which by leaves u unchanged over I'p, we obtain
EB") =inf{®(u,V X w), u=gonTp}=Ea), (3.46)

since the potential w is fully determined by the dislocation density «x. Let u* be

the displacement field at equilibrium, also fully determined by c. Then,

/ (DVVZ](D’U,* -V X w) — 6Z~j) i, 5 dr = 0, (347)
Q
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for all test functions 7, and the stress field at equilibrium follows as
o7, = DWy;(Du* — V X w), (3.48)

which is also fully determined by the dislocation density cx.

In cases where the body is subject to traction boundary conditions only, such as an
infinite body or a periodic unit cell, a more direct expression for the energy can be
obtained as follows. Begin by writing the potential energy ([3.42) as

(3) = / (W(8°) — 0:;8) dr, (3.49)

where
fj = U5 — 4 (350)

ij

is the elastic deformation. From Kréner's formula ([3.2)) we have
Oéij = Bl'ekjelk‘j- (351)

Thus, in the absence of displacement boundary conditions, the equilibrium elastic

deformation 3¢* follows directly from the minimum problem
B € argmin {®(8°), V X 3° = a}. (3.52)

Thus, 3°* minimizes the potential energy of the solid subject to the constraint that
it be compatible everywhere except on the support of the dislocation measure, where
it must satisfy a curl constraint, e.g., in the sense of Burgers circuits. Enforcing
the curl constraint by means of a Lagrange multiplier x, or Airy stress potential,

results in the Lagrangian

L(B°,x) = /Q (W(B°) — 64585 — xij (s — Birgemm;)) det, (3.53)

or, integrating by parts,
L(B% x) = / (W(B) — (o5 + Xik1€iki) Bij — Xijj) de, (3.54)

Q

which must be stationary at equilibrium. We note that 3¢ enters the Lagrangian
undifferentiated and can, therefore, be minimized pointwise, which results in the

complementary energy

¥ (xa) = [ WV xx+0)+ x0) de, (3.55)
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where
W*(o) = sup{oi;3;; — W(B°)} (3.56)

is the complementary energy density. For linear elastic solids, eq. (3.43)), we
explicitly have

1
W*(o) = 50;%10,-]»0“. (3.57)

The elastic energy follows again by minimization with respect to the elastic defor-
mations, i.e.,
E(a) =inf (-, o). (3.58)

From Equation ([3.58) we conclude that, in the absence of Dirichlet boundary
conditions, the elastic energy at equilibrium is a function solely of the dislocation

measure, as advertised.

Core regularization

One key advantage of the representation of the energy is that « enters in
®*(x, o) linearly and can therefore be treated as a general measure, as required
by the monopole approximations pursued subsequently. However, as already noted,
a direct application of to Volterra dislocations is not possible due to the
well-known logarithmic divergence of the energy. This type of energy divergence
is well-known in connection with elliptic problems with measure data, e.g., the
Laplace equation with a point source [113]. In these problems, equilibrium solutions
exist but have infinite energy, which precludes an energetic characterization of the

solutions and attendant configurational forces.

A number of regularizations of linear elasticity have proposed in order to eliminate
the logarithmic divergence of the energy of Volterra dislocations (cf., e.g., [40]),
including discrete elasticity [104, [L14], core cut-offs [26] and nonlinear elasticity
[115] |116]. Yet another regularization that is particularly well-suited to general
dislocation measures consists of endowing dislocation lines with a core profile, e.g.,
by mollifying the dislocation measure on the scale of the lattice parameter ¢ [105].

In this approach, the dislocation density is given the representation
a® = ¢ x a, (3.59)

where a is a collection of Volterra dislocation lines, ¢¢ is a mollifier and * denotes
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convolution?l The regularized energy is then
E(a) = E(af), (3.60)

with E(-) given by (3.58).

A connection between mollification of the dislocation density and strain-gradient

elasticity can be established as follows. Begin by regularizing the complementary

energy (B55) as
P (x,a) = / (W*(V X (1 — eQA)X +0)+ Xija/ij) dx, (3.61)
Q
where A denotes the Laplacian operator. Changing variables to

X = (1—-eA)x, (3.62)

the regularized complementary energy ([3.61) becomes

O*(x, ) = / (W*(VX X +0o)+ ijozfj) dx = ®*(x*, ), (3.63)
Q
with
=(1-EAN"'a=¢*a, (3.64)
and )
‘(x) = ~l=l/e 3.65
(@) = e (3.65)

which identifies the mollifier and the core structure of the dislocations.

For an infinite linear isotropic solid, the elastic energy (3.58)) of a sufficiently regular
dislocation measure follows as (cf. [26], eq. (4-44))

/ / g S ()o@
+ L / / e UMD (3.66)
+m / / Ty (, @ Yesymenmdas; (@) do (@)

where

9’R
O0x;0x;

5By a mollifier here we understand a sequence ¢¢ of smooth positive functions of total mass
1 defining a Dirac-sequence. We also recall that the convolution of two functions is defined as

fxg=[f(x—a)g(x)da’ (cf., eg., [117]).

R(z,z') = |z — 2|, Tij(x,x') = (x — '), (3.67)
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w is the shear modulus and v Poisson’s ratio. Inserting ([3.59)) into ([3.66]), we

obtain
— %//Se(w,w’)eikmeﬂndaij(w)dakl(:c')
ﬁ / / S¢(, ') da; (x)doy; (') (3.68)
1 —I/ // 33 m ezgmeklndau( )d&kl(m/),

where we write
S=1/R, S°=¢ x¢ xS, (3.69)

and
R = ¢ % ¢ x R, Tfj:gbe*qﬁe*ﬂj:ﬁ. (3.70)
k 0z;0x;
By virtue of the regularization of the kernels, the energy is now finite
for general dislocation measures. In particular, for Volterra dislocations ([3.68))

specializes to

=[Sl ) bls) 5 B (805 () s
= / [ 5 @62l bls) - €006 - (s dsds+
&r(l—v) 1— V) // )T (z(s),z(s)) - (b(s') x t(s')) ds ds’.

(3.71)

For the specific mollifier ([3.65]), straightforward calculations using the Fourier
transform give, explicitly,

2¢ — (r + 26)e*7"/€’ Re(r) = r? +4e? —e(r + éle)e*’”/e7 (372)

2er T

S€(r) =

with r = |z — &'|.

Example 3.5.1 (Circular prismatic loop) We illustrate the logarithmic diver-
gence of linearly elastic Volterra dislocations and the effect of regularization by
means of the simple example of a circular prismatic loop. Assume that the loop is

in the (x4, x2)-plane, has radius p and its Burgers vector isb = bez ,b > 0. Under

these conditions, reduces to

MbQ 2

B) = T [ [T ) T ) pe0) et 0, 273)
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Figure 3.3: Circular prismatic loop. a) Regularized energy normalized by S

Regularized Peach-Koehler force per unit length normalized by #ﬁ/)ﬁ. Loop radius
normalized by ¢.

where 0 is the polar angle and e, (0) is the radial unit vector on the plane x3 = 0.

The corresponding Peach-Koehler force acting on the loop is

1 0EF
- 2mp Op

f<(p) (p)- (3.74)

The dependence of E<(p) and f(p) on the loop radius p is shown in Figure[3.3 As
may be seen from the figure, both the energy and the Peach-Koehler force are finite
for all 0 < p < +o0. Thus, the regularization eliminates the divergence of energy
and the Peach-Koehler force as p — 0. Specifically, we observe that both the
energy and the Peach-Koehler force decrease to zero as p — 0, at which point the
loop annihilates. For large p, the energy grows as plog(p/€) and the Peach-Koehler

force decays as log(p/€)/p, in agreement with linear elasticity (cf. [26], egs. (5-28)
and (6-52)). O

3.6 Variational Formulation and Approximation

We note from that the Peach-Koehler driving force is a function
of the dislocation measure a. Therefore, the transport equation (3.11) and the
mobility law define a closed transport problem governing the evolution of a
in time. The study of transport problems for measures was pioneered by Jordan,
Kinderlehrer, and Otto (JKO) [98, 118, |119] in the context of scalar measures.
They recognized that such problems can be given a natural variational structure by

recourse to time discretization. This incremental approach characterizes the time
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evolution as a competition between dissipation, which penalizes departures from the
current configuration, and energy, which favors low-energy configurations. Quite
crucially, JKO quantify the incremental dissipation by means of a Wasserstein-like
distance between two consecutive measures. As we shall see, the overwhelming
advantage of such measure-theoretical and time-discrete variational approaches
is that they are geometrically exact in the sense of the incremental push-forward
operation. In the present setting, the resulting incremental dislocation updates are
exact with respect to dislocation advection, stretching of null-divergence constraint.
Another crucial advantage of measure-theoretical approaches is that they supply a
suitable mathematical framework for the formulation of particle methods such as

the method of monopoles proposed here.

Time discretization

We begin by discretizing the transport problem in time. To this end, let
to=0<t;<---t, <ty ... <ty =T be a discretization of the time interval
[0,T]. We wish to determine corresponding discrete approximations oy, @ ...
oy of the dislocation measure of a collection of Volterra dislocations and discrete

approximations g, @1 ... @y of the transport maps.

We begin by defining an incremental dissipation as

D(Qom Qou-i-l) = (375)

min{ [ [ 0(6(6.0) 5015t 5 6(0) = 01 pltn) = 1

where I’y is the initial dislocation line parameterized by its arc-length s with unit

tangent vector £(s), we write

90(3’ t) = QO(CL'(S), t)? QO,(S,t) = vso(m(‘s)?t)t(s)? (376)

and the minimum is taken over all transport paths taking values ¢, at time t,
and @, at time t,,1. In addition, let E(¢, ) denote the elastic energy of the
dislocation measure « at time t, where the explicit dependence on time derives

from the time dependence of the applied loads.

On this basis, we introduce the incremental energy-dissipation functional

F(pu, pu1) = D(pu, put1) + Etur1, (por1)pon) — E(ty, (o) gow), (3.77)
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and the incremental minimum problem

P11 € argmin F(p,, - ). (3.78)

We verify that the solution of this problem indeed approximates the mobility law.
Taking variations in (3.77)) with respect to ¢, 1 and using the path-optimality of

the transport map, we obtain
/F (Das(0(@ (). tv) — filw(s). trt) ) m(s)ds =0, (379)

which is a weak statement of the mobility law (3.34)).

In summary, the incremental minimum problem determines the updated
transport map ¢, 1, whereupon the updated dislocation measure «, 1 follows
from the exact geometric update (3.23). Specifically, we see from Equation (3.77)
that the updated transport map ¢, follows from a competition between the
incremental dissipation D(¢,, ¢,+1), which penalizes departures from ¢,, and the

energy E(t 11, (@u+1)400), which drives ¢, towards energy minima.

We note the similarity between the incremental dissipation and the Wasser-
stein distance between scalar measures [97]. It is easy to see that the incremental
dissipation D(¢,, ¥, 1) also defines a distance between dislocation measures. The
paths for which the minimum in is attained are known as minimizing paths
and arise in theories of inelasticity including plasticity, where they also supply a
nexus between time discretization and incremental variational principles [120]. The
minimizing path definition of the incremental dissipation has the important
property that it results in a priori energy bounds that in turn ensure the weak

convergence of the time-discretized solutions (cf., e.g., [98, 118, 119]).

Unfortunately, because of the geometrical evolution of the dislocation line, the
minimizing paths that deliver the incremental dissipation ([3.75)) cannot be charac-
terized in closed form and additional approximations are required. A simple scheme
consists of restricting the incremental paths to a convenient class, e.g., piecewise

linear paths of the form

ty+1 —1 t— tu
- S + J——
ty_,_l — tl, 901/( ) tu+1 - tV

whereupon ([3.75]) reduces to

D(vrprin) ~ / [ p(E 2Dy s yjasar, (38)

90(S7t) ~ 901/-‘:-1(5)7 te [tV’tV-&-l - t]7 (380)

v+1 — tu
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or, exchanging the order of integration,

Dl i) = (ta =) [ o(BLZ2ADYs s, 3e2)

To tV+1 - tz/
where
1 tyt+1 )
Moiils) = [ s 0] d (3.83)
tV—‘rl - tu ty

is the average stretch ratio of the dislocation line over the interval [t,,,.1]. A

further approximation by recourse to the generalized trapezoidal rule gives, explicitly,

Aswr1(s) = (1 =), (s)] + ey, 11(5)], (3.84)

with v € [0, 1].

Monopole discretization of the dislocation measure

Next, we turn to the question of spatial discretization of the incremental minimum
problem ([3.78)) and the weak form of the transport equation ([3.23)). The structure of
these problems reveals the need for two types of approximations: i) the discretization
of the dislocation measure a1, and ii) the discretization of the transport map

p,+1. We consider these two approximations in turn.

As already noted, the dislocation measure a1 enters ((3.78) and (3.77)) linearly
and undifferentiated. In addition, the regularized energy ([3.60) is finite for general

measures, including Dirac atoms. Therefore, a natural and computationally conve-
nient spatial discretization of the dislocation measure is as a linear combination of

dislocation monopoles, i.e.,

M
oy = Z ba,l/ X £a,1/ 5ma,u7 (385)
a=1

where x, , is the position of monopole @ at time ¢,, b, , is its Burbers vector, &,
its element of line, 0z, is the Dirac-delta distribution centered at x,,, and M
is the number of dislocation monopoles. It bears emphasis that Equation ([3.85))
represents a totally unstructured monopole ensemble and that no connectivity or

sequencing between the monopoles is implied by the representation.

For dislocation measures of the form ([3.85)), the push-forward ([3.23)) reduces to

M M
(ba,VJrl X £a,u+1) : n(wa,u) - Z(ba,l/ ® V‘Pa,y Sa,u) : n(a:a,u) ) (386)

p=1 p=1
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which must be satisfied for all test functions 7. Therefore, we must have

ba,l/+1 = ba,l/a (3878)
£a,u+1 = V¢V%V+1<ma,l/)€a,lj7 (387b)

i.e., the monopoles carry a constant Burgers vector and the element of line of every

monopole is advected by the local gradient of the incremental transport map

Prov+l = Pur+1 © ‘P;l- (3'88)

Thus, in the absence of topological transitions, i.e., if the incremental transport
map is continuous, the weak reformulation of the dislocation transport problem
results trivially in Burgers vector conservation, simply by keeping the Burgers vector
of all monopoles constant. In addition, the requisite null-divergence property of
the dislocation measure is ensured by the geometrically-exact character of the

push-forward operations (|3.87)).

Spatial discretization of the incremental transport map

A full spatial discretization additionally requires the interpolation of the incremental
transport map ¢,_,,+1. Since ¢,_,,,1 and its variations enter the governing
equations and differentiated, its interpolation must be conforming.

To this end, we consider general linear interpolation schemes of the form

M
(Pz/%zz+1<w> =+ Z("Eaﬂﬂrl - wa,V)Na,l/(w)a (389)
a=1
with gradient
M
VQOV—>V+1(33) =1 + Z(ma7u+1 - may) & VNa,V(w)v (390)
a=1

where a again indexes the dislocation monopoles, {N,, }, are consistent shape
functions at time ¢, and {x,,}M, and {x,, .1}, are the arrays of monopole
coordinates at time ¢, and ¢, 1, respectively. Consistency here means, specifically,

that the shape functions satisfy the identity

> Nao(x) =1, (3.91a)

ensuring an exact dislocation update for a uniform translation of all the monopoles.

An example of consistent mesh-free interpolation is given in Appendix [Al
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Incremental equilibrium equations

Inserting interpolation (3.90)) into (3.87b]), we obtain the relation

M
£a7y+1 - 5(1,1/ + (Z(wb,u+1 - mb,V)VNb,V<wa,u)> ) Ea,u ) (392)

b=1
which defines a geometrical update for the monopole elements of line. This relation
in turn reveals that the updated elements of line {&, .1}, are fully determined by
the updated monopole positions {x, 1} ;. Thus, the updated elements of line
are not independent variables but are tied to the updated monopole positions. We
may therefore render the incremental energy-dissipation function F' a sole function
of the updated monopole positions by inserting interpolation (3.85)) into (3.77))
with all elements of line updated as in (3.92). The corresponding incremental

equilibrium equations then follow as

OF  0&,11
'fa’V—H 8$a v+l Z <8ma v+l 8&77'/'*‘1 amavl’""l >

- ) OF (3.93)
N Z <8a:a w1 85,,7,,“ VNQ’V(:Bva) ’ Eb,u) = 0,

where we have made use of the update (3.92). We note that the effective forces

{fa 11}, on the monopoles comprise a direct term, corresponding to the direct
dependence of F' on the updated monopole positions, and a geometrical term

resulting from the dependence of F' on the updated monopole elements of line.

Incremental dissipation

Inserting the monopole approximation (3.85)) into the incremental dissipation ([3.82)),

we obtain

D({ma V}y—h {ma V+1}¢]1\/[—1) ~
V+1 Z¢<ma v ) ((1 - ’7)|£a,z/’ + Vlga,u+1|> d87

V+1_t

(3.94)

where we have used and {&,,11}2, is tied to {z,, 1}, through the
geometrical update (3.92)). It follows from that the corresponding monopole
forces ([3.93|) consist of a direct term and a geometrical term. The direct term
encodes the dilocation mobility law whereas the geometrical term takes into account
the advection and stretching of the dislocation line. We note that the geometrical

term vanishes for the particular choice 7 = 0.
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Regularized linear elasticity

Inserting the monopole representation ((3.85) into the regularized energy (3.71)), we
obtain

M M M

Eé({wa,l/+1}cjzwzl) = Z EZ,V+1 + Z Z E;b,l/+17 (395)
a=1 a=1 b=1
b#a

where

M
Eflb,l/—f—l = _Ese(maﬂ/-{-la wb,u+1)(ba,u+1 X bbﬂ/-ﬁ-l) : (Ea,l/—H X €b,l/+l)

+ %Se(ma,u—‘rh mb,y—l—l)(ba,u—i-l : sa,u+1)(bb,u+1 : €b,u+1) (396)

—'u €
+ 87-[—(1 _ l/) (ba,y+1 X €G7V+1) -T (wa,u-i-la mb,u+1) : (bbﬂj.’_l X €b7y+1),

is the interaction energy between monopoles a and b. In addition, the self-energy
of the monopoles is obtained by taking the limit of x;, — x,, with the explicit

result

w1
8_7rﬂ(ba,v+1 o)+

L

ES ., = R
a,v+1 87T(1 . V)

1

§|ba,u+1 X Eapal? (3.97)
The essential role of the regularization of the elastic energy is clear in these
expressions. In particular, the self-energy of the monopoles is finite but diverges as
e — 0, as expected.

We note that the self-energy of the monopoles depends on the angle
subtended by the Burgers vector and the element of line. This dependence
introduces a line-tension anisotropy that favors certain monopole directions over
others. For instance, in the usual range of v > 0, screw monopoles, b x £ = 0,
have lower energy than—and therefore are favored over—edge monopoles b - £ = 0.
In BCC crystals, this line-tension anisotropy is specially pronounced, resulting is a

proliferation of long screw segments.

Applications are often concerned with the motion of dislocations under the action

of an applied stress 0. The effect of the applied stress is to add the term

M
EeXt({ma,V-i-l}iVil) = Z((Uooba,v+l) X €a71/+1) *Lap+1 (3-98)

a=1

to the total energy. Rearranging terms, we can alternatively write (3.98)) in the
form
Een({ma,u-i-l}(]zvil) =—Vo>*: EZZ+1> (3.99)
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cf. eq. (3.28)), where

M
1
€11 = 72 Z bai1 © (§aps1 X Tapt1) (3.100)
a=1

is the effective or macroscopic plastic strain, V is a macroscopic volume and
a®b=(a®b+b®a)/2 denotes the symmetric dyadic product of vectors a
and b.

In computing all contributions to the energy, we regard the updated monopoles
element of line {&,,.1}2, as tied to updated monopole positions {x, 1},
through the geometrical update (3.92). The corresponding energetic forces on
the monopoles then comprise direct terms, resulting from the dependence of the
energy on the updated monopole positions, and geometrical terms, resulting from

the dependence of the energy on the updated monopole elements of line.

Summary of update algorithm

Algorithm 1 Optimal transport of dislocation monopoles.

. Compute shape functions {N, ,}2 and {VN,,}M, from {z,,}},.
. Solve incremental equilibrium equations: f,,.1 = 0 for {z,,11}2,.

. Update monopole line elements {&, .}, including splitting.

: Reset v < v+ 1, go to (1).

[y

~ W N

The monopole time-stepping algorithm is summarized in Algorithm [I} The forward
solution has the usual structure of implicit time-integration and updated-Lagrangian
schemes. The updated monopole positions are computed by solving the incremental
equilibrium equations (3.93)). The update of the monopole line elements is then
effected explicitly through the push-forward operations (3.87)). In calculations,
we solve the equilibrium equations using the Polak-Ribiére iterative solver
[121] or Scalable Nonlinear Equations Solvers (SNES) in the PETSc library of the
Argonne National Laboratory [122].

The scheme leaves considerable latitude as regards the choice of shape functions
for the interpolation of the transport maps. A particularly powerful method for
formulating interpolation schemes of any order is provided by maximum-entropy
inference [101]. The details of this approach, as it applies in the present context,
are summarized in Appendix A. We note that max-ent interpolation introduces a
range of interaction h, = 1/32 for every monopoles, where {3,}, are parameters

of the interpolation. Specifically, the transport map at monopole a, and derivatives
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thereof, depends predominantly on the cluster of monopoles in the h,-neighborhood.
A simple form of adaptivity is to tie the parameters {3,}*L, to the length of the

corresponding line elements through the constraint
Ba|€4* = constant. (3.101)

In all calculations presented subsequently, we set the constant to 1/2.

While a complete analysis of convergence is beyond the scope of this thesis, we
illustrate the convergence properties of the monopole approximation by means of the
simple example of a circular prismatic loop. Figure. illustrates the convergence
of the regularized energy and Peach-Koehler force per unit length with respect to
the number of monopoles. As may be seen from the figure, coarse discretizations of
the loop tend to be overly stiff and overestimate the energy and Peach-Koehler force
per unit length. The convergence of the monopole approximation with increasing

number of monopoles is also evident in the figure.

3.7 Topological Transitions

The preceding developments are predicated on the assumption that the transport
maps are continuous. Under such conditions, the topology of the dislocation
measure remains invariant. In particular, the Burgers vectors of the monopoles

remain constant through the motion—Equation (3.87a]). In actual dislocation
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VAN

Figure 3.5: Schematic of junction formation. Two intersecting glissile dislocation lines of
Burgers vectors by and by zip up along a line of direction € on the intersection between
their slip planes to form a sessile segment of Burgers vector bs = by + bs .

dynamics, topological transitions occur due to a number of processes, including
dislocation nucleation, dislocation reactions and junction formation, among others
(cf., e.g., [40]). Topological transitions require additional logic, or 'rules’, to be
added to the monopole dynamics. Some basic topological transitions that play a

role in subsequent calculations are discussed next.

Dislocation reactions

Topological transitions may result from monopole-monopole reactions of the type
b1 ® &105 + by ® £20, — by ® €304, (3.102)

subject to the Burgers-vector conservation constraint
b, + by = bs, (3.103)

where b; ® €16, and by ® &30, are the precursor monopoles and b; ® &30, is
the product monopole. Pair-annihilation represents a special type of dislocation
reaction in which the reacting monopoles have equal and opposite Burgers vectors
and the reaction product is a null monopole. Junction formation, Figure [3.5]
entails another special type of dislocation reaction in which two intersecting glissile
dislocation lines of Burgers vectors b, and b, zip up along a line of direction &3
on the intersection between their slip planes to form a sessile segment of Burgers
vector b3 = by + b,.

The stability of monopole-monopole reactions may be elucidated by comparing the

energies before and after the reaction. Thus, before the reaction we have from
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(3.95)
E° = EGi + B, (3.104)
where
1 1
celf = ﬂ_(bl -&1)° + — — b1 x &
87 2¢ 87(1 —v) 3e
0l I 1 (3.105)
Z (b, - 2 R — 2
sr e 02 &) T gyl x &l
is the self-energy of the precursor monopoles, eq. (3.97)), and
i
Ho = A (30— )by €52 &)
b487(1 —v)e (3.106)

— 6(1 = )(b1 X by) - (&1 % &) +2(by X &) - (by x &)

is the interaction energy of the precursor monopoles, obtained by taking the limit
of |1 — @3] — 0 in eq. (3.96). After the reaction, the energy of the product

monopole is

pol 2 H 1 2
Ef=-"—(b;s- ———1|b : 107
871'26( 3 - &)+ 871'(1—1/)36‘ s % &l (3.107)

The stability diagram of the monopole-monopole reaction is

AE® < 0 = stable, (3.108a)
AE® = 0 = indifferent, (3.108b)
AE® > 0 = unstable, (3.108¢)

where AFE* is the difference between the energies after and before the reaction.

In the particular case & = & = &, a straightforward calculation using ((3.103])

gives

AB* = i (b €)(bs )+ g s (b X €) (b <€) (3109

In addition, for this particular geometry the sequence of dipoles
Qp =by ®E0picye + by @ E0pcpes (3.110)
where ¢, | 0 and e is a direction of approach, converges to the reaction product
a=b;® &5, (3.111)

weakly in the sense of measures, i.e., a, — . However, we see from (3.109) that
AFE*€ # 0 in general. This shows that, as expected, the energy E¢(ax) is not weakly
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continuous with respect to the dislocation measure a. Eq. (3.109)) also shows that

AFE* can be positive for some reactions, which additionally shows that E* is not
weakly lower-semicontinuous. Thus, whereas pair annihilation, b — b — 0, and
monopole splitting, 2b — b + b, lower the energy, monopole pairing, b + b — 2b,
increases the energy. This lack of weak lower-semicontinuity has far-reaching
consequences for microstructural evolution, as the crystal can lower its energy,
or relax, through microstructural rearrangements involving annihilation, splitting,

network formation and other mechanisms [123].

In calculations, monopole reactions can be accounted for simply by introducing
a capture distance and replacing the approaching monopoles by their reaction
product if the energy is decreased. However, we note from that general
reaction products can be rank-two monopoles, which adds a certain complexity to

the implementation.

Loop nucleation
Dislocations are nucleated during plastic slip through a number of mechanisms
including Frank-Read sources, double cross-slip and others [26]. In calculations,
we model nucleation simply by introducing small loops of fixed radius pg, e.g.,
commensurate with the radius of operation of a Frank-Read source, at prespecified
source locations provided that the resolved shear force at the source is greater
that the source strength. As such, given a source of strength b7, , a loop will be
nucleated if

br > b, (3.112)

where the resolved shear force b7 at the source is computed as a configurational
force. In other words, we write
AFE*

br=-=1" (3.113)

where A = 7p? is the area of the putative loop and AE® = E<, — Ef is the

resulting change in energy.

In light of Equations (3.112) and (3.113)), the criterion for loop nucleation becomes

AE < —br.mp} . (3.114)

After nucleation, the new loop shields the source and its operation is shut off
until the loop becomes sufficiently large. This transient shielding results in the

intermittent emission of loops from the sources.
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3.8 Summary

In this chapter, we presented the theory of the method of monopoles for 3D
dislocation dynamics. In doing so, we developed a new core regularization schemes
that parallels that of [73], but with the added benefit that the regularization
developed here is consistent with the theory of strain gradient elasticity. Next,
we prove the validity of the method. First, in Chapter [4], we explore canonical
examples and verify that the method of monopoles is consistent with well known
results. This sets the stage for Chapter [5| where the method is used to study the

evolution of increasingly complex dislocation configurations.
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Chapter 4

VERIFICATION EXAMPLES

4.1 Introduction

In the preceding chapter, we laid out the theory of the method of monopoles for
dislocation dynamics and provided a numerical scheme for its implementation in
infinite isotropic media. In this chapter, we apply the aforementioned theory to
a series of canonical examples to show the validity of the method. We start with
straight dislocations of the screw and edge type for which Chapter |2| provided
the analytical elastic fields and we later consider the widely studied case of the
circular prismatic loop. This will provide an opportunity to exhibit convergence and

accuracy of the method through definitions that will be made explicit later.

4.2 Infinite Straight Screw Dislocation
Consider the segment of screw dislocation line with positive direction along the
x3—axis as shown in Figure[4.1] The segment has length 2L and is discretized using

2M +1 uniformly distributed monopoles so that the element of line length associated

2L
with each monopole is [ = M1 In light of the method of monopoles, we
approximate the nonzero component of the dislocation density tensor for this
segment as
a=M a=M 2L
h a
gy = blo(x — x,) = bd(x1)0(x2)0(x3 — 5) , 4.1
= 3 Wie e = 3 grptile)dede s, (@

where b is the magnitude of the Burgers vector of the dislocation and

Self-stresses
Using the definition of the dislocation density tensor (see equation (3.2))), the self
stress of a continuous distribution of dislocations in an infinite solid 2 can be
written as [62]

055 = /QCijlepqmnelnthp,q(m — m’)amh(a:')da:' . (42)
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Figure 4.1: Discretization of the screw dislocation segment in the method of monopoles.

Inserting approximation (4.1]) into Equation (4.2)), the resulting stress field is

a=M

oij(x) = /QCz'jszpqannska,q(aS — ) Z

2L
aar 110l

a=M

= (CijklcquQ - CiijCpq31> b Z ka,q(l’h Lo, T3 — x%)

a=—M

a
X1,T2,T3 — 373)

a=M
= ijklOpq3n€ln3b E
a=—M

2L
2M + 17

(4.3)
where we have used the sifting property of the Dirac distribution—see Equation

(2.59)—to write the second equality.

For a fixed L, the last expression in (4.3) is a Riemann sum [124-126] for

ffL Ghpq(T1, T2, T3 — x5)daly. Therefore, taking the limit as M — oo, we get

L
O'Z(w) — (C’ijlepqgg — C’iijCpqgl) b/L ka,q(xla Lo, T3 — l’g)dxé . (44)

Furthermore, in the limit L — oo, (4.4 becomes

o0

o-zhj (CL’) — (C’ijlepqg)g — C’ijkngqgl) b/ ka7q(l'1, Lo, T3y — I’g)dl‘g . (45)

—0o0

For an isotropic medium with Lamé constant A and shear modulus p, we have,
recalling Equation (2.10),

Cz‘jk:l = )\51‘j5kl + M(Csiléjk + 5ik5jl) .
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so that (4.5) simplifies to

03 = ubCijra [Frsa(®) + Fras(®)] — pubCijka [Frai (®) + Fras(x)],  (4.6)

where -
Fipg(x) = / Grp.qg(T1, T2, x5 — 2)dasy.

oo

But recall from Equation (2.70]) that the Green's tensor for an infinite isotropic

medium with shear modulus 1 and Poisson ratio v is given by

1 -
Gijlx—y)= ——[20;; — 22—
8|z — y 2(1 -v)
so that
-1 85Ty + 0Ty + 04T, — 3TTYT,
Ginl—y) = ———— 26, T, — 2 i J 47
o) = o 20T 21~ 0] 4D
where
T~y
T —y|

It follows that Fjss, Fio3, Fia1,and Fjq3 evaluate to zero for k = 1, 2. Likewise,

F393 = F313 = 0. However, F335 and F33; evaluate respectively to

1 T2
2mp a? + a3

and
1 I

C2mpad 4 ad
Therefore, we obtain

U?j(w) — ubCijz1 Fazo() — pibCijsa Fsg1 ()

(4.8)
— ,uzb(&géﬂ + (Sil(sj‘g)Fggg(q’B) — /Lzb(éigéjg + 512(5J’3)F331 (CC)

It is immediate that of, , ok, , ol ,and ol — 0 everywhere in the solid, whereas

b
R

0' —_—
13 2m % + 23’

b
h(x) - 2

o .
23 21 2% + 13

In other words, we recover the stress expressions of Equation (2.28) as L, M — oc.
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Transport Equation

Recall the dislocation transport equation derived in Chapter 3
Gij — €jikmnk (UmQin) g = 0, (4.9)

where v, the dislocation velocity, is a function of the force on the dislocation.

We assume that the dislocation velocity is zero for driving forces below the Peierls
barrier and that the Peierls barrier is small enough to be neglected [127]. This is
an especially reasonable assumption in FCC metals where the Peierls stress is very
low [128]. In this so-called "viscous drag" regime, the appropriate kinetic potential
is given by Equation and the dislocation velocity, which becomes a linear
function of stress, is usually limited by the viscosity due to dislocation interaction
with lattice vibrations (i.e. sound waves) [40]. Thus, in order to determine the
dislocation evolution over time, it is necessary to obtain the driving forces along
the dislocation. In doing so, we use the Peach-Koehler formula derived in Chapter

and repeated below for convenience:
f=(o-b)xt, (4.10)

where f is the force per unit length, o is the total stress experienced by the

dislocation, b is the Burgers vector, and t is the tangent to the dislocation line.

For a screw dislocation along the z3—axis, we have t = (0,0,1) and b = (0,0,b)
with b > 0 so that

fi = El'jgo'jgb = 6@130’13b -+ €i230'23b . (411)

It has already been established that within the linear elasticity theory of dislocations,
the stress field diverges logarithmically along the dislocation line. As a result,
a regularization scheme must be employed to evaluate the stresses along the
dislocation. Using the core regularization described in Chapter 3] the regularized

force along the dislocation is obtained as

fi =" % fi

€€ €€
= €13075b + €i23053b,

(4.12)

where
o =0 x x0o, (4.13)
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with .
€ - - |z|/€
(@) 47r62|:13|e
as given in Chapter 3|

In light of this regularization, we make use of Equation (2.72)) to write

e 3 o5« ,  pb 05
aﬁ(w) - 471' % bmﬁzma a / d B %bmelmﬁ a , dxa
B M b . 63Ree 25 aSee dx, (414)
dr(1—v) RN A e
where
€€ € € —R/e 4e? —R/a
RC=¢x¢p°«* R=R —ce —|—§(1—e ) (4.15)
and ) ) )
— € fx — — — (1= —R/a\ _ ~ _—RJe 41
OF * ¢F * 5= R (1—e ) 5 © (4.16)
with
R=2'—x and R=|R|. (4.17)

Therefore, we have

w_ 05«  ub 95«
013:—E¢b6131 a , d$3—47r¢b@338 7 dIl

B Iu ‘ 03Ree 0.See
Ar(1 —v) %Lbelgk (8:17;8:16’@3 20187 o} da.

2

Upon further simplification, we arrive at

« Kb Ry dS*
oty = / R2 T 47 (4.18)
Similar calculations lead to
e pb [0 Ry dS*

Along the dislocation line, i.e. when z; = 25 = 0, we have Ry = Ry = 0,

R3 = 2, — x3 so that R = |z}, — x3|. It follows that,

o1y = 053 = 0. (4.20)

Therefore, by Equation , the self-force on the dislocation vanishes and as a
result, the velocity is identically zero along the dislocation. Owing to Equation (4.9)),
this implies that ¢;; = 0, which means that the dislocation density tensor—and
thus the dislocation configuration—is constant in time. This is to be expected since

it is well known that an infinite straight dislocation is an equilibrium configuration
[68].



85

4.3 Infinite Straight Edge Dislocation

We now consider a segment of edge dislocation line with positive direction along
the x3—axis and with Burgers vector along the x;—axis as shown in Figure 4.2
As in the screw case, the segment has length 2L and is discretized using 2M + 1

uniformly distributed monopoles so that the element of line length associated with
2L

QM +1°

each monopole is again [ =

elﬁ_e’g 2L
1

Figure 4.2: Discretization of the screw dislocation segment in the method of monopoles.

Using the method of monopoles, we approximate the nonzero component of the

dislocation density tensor for this segment as

a=M a=M
2L
Ay =" bls(x—my) = Y oar PE)(@)os —a5), (421
a=—M a=—M

where b is the magnitude of the Burgers vector of the dislocation segment and

2aL
€T = QL =
3 OM + 1

a=-M,...,M.
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Self-stresses
We proceed as before and insert the approximation (4.21)) into Equation (4.2)). The
resulting stress field is

a=M
/ 2L / / / a /
Uzhj(m) = /QcijklcpqlnelnSka,Q(w - )az_:M oM + 155(551)5(%)5@3 — z3)dz

=Mo9r

= ijlepqlnelnSb Z —ka,q($1,372,$3 —x%)
" 2M +1

a=M

= (Ciji1Cpgrz — CijraCpq11) b Z Grpg(T1, T2, 73 — 25)

a=—M

2L
2M +1°

(4.22)

For a fixed L, the last expression in (4.22)) is a Riemann sum for

ffL Grp.q(T1, T2, 23 — 24)d2} so that as M — oo, we get
L
O'Z(w) — (C’ijlepqlg - C’ijkngqn) b/ Gk:p,q(xly Lo, T3 — xé)dxé . (423)
—L

In the limit L — oo, we further have

azhj(w) — (C’ijlepqlg - Cijkgcpqu) b/ ka,q<l’1, Lo, T3y — .I'g)dl’/g . (424)

As was done for the case of the screw dislocation segment, we plug expressions for
Cijr and Gyj, for the isotropic case into (4.24) and recover the stress expressions
(2.41) as L, M — oc.

Transport Equation

For an edge dislocation along the x3—axis with Burgers vector in the x;—axis, we
have t = (0,0,1) and b = (,0,0) with b > 0 so that

fi = €ij30j1b = €;130110 + €123021b . (4.25)

The regularized force along the dislocation is then obtained as

Ji=0 %9 * [
= Gilgo'ielb + 62'230';61[?,

(4.26)

where, as before,
o =9 kP x0. (4.27)
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Following a procedure similar to the screw case of the previous section, we get

oy =05 =0. (4.28)

Therefore, the self-force on the dislocation again vanishes and the velocity is
identically zero along the dislocation. Consequently, the dislocation configuration
is constant in time. Again, this is to be expected as an infinite straight dislocation

is an equilibrium configuration.

It's important to note that in arriving at the above conclusions for the infinite
screw and edge dislocations, no use was made of our approximation for the disloca-
tion density tensor. Therefore, the above follows from the theory of continuous
dislocation distributions rather than from the chosen approximation for a.. As a
result, showing that our approximation recovers the stresses computed in Chapter

is sufficient for the straight screw and edge dislocation configurations.

4.4 Circular Prismatic Dislocation Loop

In the previous examples, the monopole approximation and the theory of continuous
distributions of dislocations were used to recover the expected behaviors for infinite
screw and edge dislocation lines. In this section, we turn our attention to the
circular prismatic dislocation case, i.e. one consisting of a circular dislocation loop
whose with Burgers vector is normal to the plane of the loop. This configuration
has been well studied and expressions for the stress field and energy in an infinite
continuum can be found analytically [68, (129, 130]. However, these expressions
are often singular along the dislocation line and need to be regularized for use in
determining the evolution of the dislocation [73]. In the following, we illustrate
the validity of the method of monopoles for the circular prismatic dislocation loop
through numerical simulations while using the discretization scheme developed in
Chapter 3] In doing so, we consider the dislocation under its own self-stress and

under the action of an applied external stress.

Climb under self-stress

It is well known that at high temperatures, a circular prismatic dislocation loop—see
Figure [4.3—will shrink under the effect of its own self-stress by climb [26] 44, [76].
As seen in Chapter [3] the climb force on the dislocation is radial pointing toward
the center of the dislocation. It was shown that the core regularization used in

the foregoing is consistent with this result and that the monopole approximation
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converges to the analytical solution derived in Chapter[3|as the number of monopoles

gets large.

O O"'d

Figure 4.3: Circular prismatic dislocation loop in an elastic continuum.

Given the above convergence, we simulate the evolution of the dislocation loop of
Figure [4.3] The loop lies in the x; — x5 plane and has Burgers vector as shown in

the figure. We use the following parameters:

¢ Initial radius: p =5.0,

¢ Number of monopoles: M = 20,
o Burgers vector: b= (0,0,1),

o Climb mobility: M, =1.0 x 1072,
o Glide mobility: M, =1.0,

o Time step: At =0.1,

¢ Number of time steps: 7" = 500,
¢ Shear modulus: = 1.0,

¢ Poisson ratio: v = 0.3,

o Regularization parameter: ¢ = 1.0.

The monopole approximation of the initial dislocation configuration is shown in
Figure [4.4] and Figure illustrates the evolution of the dislocation over time.
We note that the dislocation shrinks under the effects of its own stress field as

expected.
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Figure 4.4: Discretization of the circular dislocation loop in the method of monopoles.

Climb under applied stress

Next, we consider the evolution of the dislocation under the action of an external
stress. As before, only the 33—component of the stress tensor is responsible for
dislocation climb. As such, an external stress state o is used, with all components
set to zero except for the 33—component which is set to 0.05. All other parameters
remain as above, with the only exception that the initial radius is now taken to be
p = 1.0. The resulting evolution is depicted in Figure [4.6] Once again, we notice

that the dislocation expands by climb while still remaining circular.

Convergence study

We already encountered a notion of convergence when computing the regularized
Peach-Koehler force on a circular prismatic dislocation loop. It was shown—see
Figure [3.4b—that the force obtained from the monopole approximation approaches

the analytical value as the number of monopoles gets large.

Now, we would like to investigate the accuracy of the approximation over a fixed
period of time. However, because our results are qualitative in nature, we do
so by investigating the "consistency" of the algorithm. More specifically, for
a circular prismatic loop expanding by climb under an applied external stress
035, the monopoles positions {x,, 1}, at time t,,, suffice to determine the
corresponding elements of line {&,,.1}2, . This is because the vector &, .1 has

the same direction as &,, and, for uniformly distributed monopoles along the



(a) Initial configuration.

>
4
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(b) After 100 time steps.
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(f) After 500 time steps.

Figure 4.5: Evolution of a circular prismatic dislocation loop under its self-stress in the
method of monopoles. As expected, the dislocation shrinks under its self-stress while
remaining circular. The grey lines indicate the trajectories of the monopoles.
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Figure 4.6: Evolution of a circular prismatic dislocation loop under the action of an
applied stress 055 > 0. The dislocation expands under the applied stress while remaining
circular. The grey lines indicate the trajectories of the monopoles.
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) . 27 )
circular loop, has magnitude |&,,+1| = ik where p, 1 = |@4,41| is the same

for all monopoles as the dislocation remains circular. We denote this element of

line length by &, .

On the other hand, for any dislocation configuration, the elements of line {&, 1},
at time ¢, also follow from the new monopoles positions {x, .1}, and the
previous positions {x,, }} | and elements of line {&,, }}, through equation (3.92).
For the circular prismatic dislocation loop, the resulting elements of line vectors
have the same magnitude and we denote the corresponding (constant) element of

line length by &; .

In light of the preceding, we define consistency of the algorithm by its ability to
give the same elements of line vectors for the canonical example of the circular
prismatic loop using the two methods described above. Given that the resulting
elements of line computed both ways have the same directions, it suffices to focus
on the magnitudes & and &, of the corresponding vectors at each time step. The
parameters used in the simulations are identical to those used when examining
dislocation climb under self-stress, with the exception that the simulation time step
is increased proportionally to the number of monopoles while the simulation time
is set to s = 5.0. We display in Figure the error between the corresponding
element of line lengths. It is computed as error = ‘&—;&', where p is the initial
radius of the dislocation loop. As can be seen from the figure, the error decreases
with the number of monopoles. The convergence rate—or negative slope of the

regression line—is computed to be 2.84 .

Monopole Splitting

Though the accuracy of the incremental transport map increases with the number
of monopoles, one should notice that the (normalized) error for low numbers of
monopoles is quite large, especially for the small simulation time considered. For
instance, the error corresponding to M = 4 monopoles is 4.21% for a simulation
time of only s = 5.0 which in this case corresponds to 6 simulation time steps.
Obviously this problem can be remedied by choosing an adequately large number
of monopoles a priori. However, this number must also depend on the length of
the dislocation. Indeed, for expanding geometries, the geometrical update
results in line stretching and, potentially, in excessively long monopole line elements,
with a deleterious effect on accuracy. We prevent this loss of accuracy by splitting

the monopoles when they exceed a pre-specified length. In our simulations, this is
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Figure 4.7: Accuracy of the algorithm in predicting the correct elements of line length.
Test case of the expanding circular prismatic loop.

done when a monopole’s element of line length exceeds twice the Burgers vector
magnitude, i.e. when |£,| > 2|b,|, a=1...M. We illustrate this process in the
schematic of Figure[4.8] Each new monopole is centered on the associated element
of line vector—which is half the parent element of line vector—and has the same

Burgers vector as the parent monopole. In mathematical terms, we have

1
éal = faz = 5
1

1
Ty, = Ty — 1 £, Ty, =%, + 1 &, . (4.29b)

&a (4.292)

€a L €a1 Sag

1 maz

I, /\

€ €
€1 2 €1 2

€3

Figure 4.8: Splitting of a monopole into two new ones. The Burgers vector of each new
monopole is the same as that of the parent monopole, while the element of line vector is
half that of the parent monopole.
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Figure illustrates this concept for the case of an expanding circular prismatic
loop with initial radius p = 1.0 . In the illustrations of Figure[4.9] the initial number
of monopoles is 8 and the numbers of time steps is 750 . All other parameters
remain as in Figure [4.6] It is important to emphasize the fact that the splitting
procedure does not take into account the order of the monopoles. In other words,
the new monopoles need not be given in sequence in the corresponding arrays. In
fact, in the current implementation, new monopoles of the type a;—see Figure
[4.8/— are simply recorded at the end of the corresponding arrays. As such, we
cannot overstate the simplicity resulting from the line-free character of the method

of monopoles.

4.5 Summary

In this chapter, we demonstrated the valiability of the method of monopoles for 3D
dislocation dynamics. We did so by examining canonical examples in dislocation
dynamics for which the expected outcome is well known. These examples included
the straight edge and screw dislocations and the circular prismatic dislocation
loop. In the case of the straight edge and screw dislocation, it was shown that
the monopole approximation indeed recovers the singular stresses corresponding
to these configurations. Furthermore, upon regularization of the dislocation cores,
the dislocations did not evolve in time, which confirmed the well known fact that

straight dislocations are equilibrium configurations.

In the case of the circular prismatic loop, we successfully simulated the shrinking of
the dislocation by climb under the action of its self-stress. Because of the inherent
singularity along dislocation lines, this was done using the core regularization of
Chapter [3, For a circular prismatic loop under the influence of applied remote
stresses, we also successfully simulated the expected expansion of the dislocation.
In doing so, it was necessary to develop a notion of adaptivity or monopole splitting
for accuracy of the incremental transport map update. As a result, we implement

the monopole splitting algorithm in the numerical examples of Chapter [5
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Figure 4.9: Evolution of a circular prismatic dislocation loop under the action of an
applied stress 035 > 0 where we have implemented the splitting algorithm described in
the text. The grey lines indicate the trajectories of the monopoles.
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Chapter 5

NUMERICAL EXAMPLES

Note: Significant content of this chapter is taken from the work of Deffo, Ariza,
and Ortiz [75].

5.1 Introduction

In this chapter, we present selected examples of application that illustrate the range
and scope of the method of monopoles presented in the foregoing. We specifically
consider the case of a single BCC grain embedded in an elastic matrix. The grain
has the shape of a truncated octahedron and the grain boundary is assumed to be
impenetrable to dislocations. The impenetrability condition is enforced by means
of a potential that penalizes monopole excursions outside the grain. The grain
deforms by crystallographic slip on the 12 slip systems in the classs {110}(111)
under the action of a remotely applied uniaxial stress and the dislocation motion
obeys linear kinetics. The calculations are carried out as described in Section
and with v = 0 in equation (3.84)). Several scenarios of increasing complexity
are considered. We emphasize that these scenarios are intended to demonstrate
numerical capability and not to provide physically accurate quantitative predictions

of material behavior.

5.2 Activation of a Single Slip Plane
We begin by considering the simplest cases of the activation of a single slip plane.
In the first example, we examine the evolution of a single dislocation loop within

the slip plane while in the second we consider the repeated activation of a source.

Single dislocation loop

In this example, we examine the case of a single loop nucleated at a source on
a slip plane of arbitrary locations. A sequence of snapshots of the expanding
loop is shown in Figure 5.1l The loop initially expands unimpeded and eventually
arrests at the grain boundary. The example serves to illustrate how, despite the
line-free character of the calculations, the monopoles nevertheless align themselves
in order to attain low-energy configurations. The effectiveness of the geometrical

update of the monopole line elements is also evident in the figure. In particular,
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the monopoles march 'head-to-toe’ in order to maintain a closed-loop, and hence

divergence-free, configuration.

Single plane dislocation pile-up

Figure shows a sequence of snapshots corresponding to the case in which the
source is allowed to operate repeatedly, as described in Section 3.7, As may be
seen from the figure, the leading loop is followed at regular intervals by trailing
loops. As multiple loops are arrested at the grain boundary, they form a pile up.
The example thus demonstrates capability for repeated nucleation, loop-to-loop
interaction and dislocation pile-up at grain boundaries, all of which constitute

important mechanisms of dislocation multiplication and interaction.

5.3 Activation of a Single Slip System
Next, we consider the evolution of dislocation loops on a single slip system. This is

done through two examples as described below.

Parallel planes

In this example, we look at dislocation loops on several parallel planes of a slip
system. Each dislocation is nucleated at a random position within its plane and
the ensemble is simulated over time. Figure displays the sequence of snapshots
corresponding to this setup. The dislocation loops expands within their respective
planes under the action of an applied remote stress until they reach the impenetrable
boundaries of the grain. It is worth emphasizing that at no point in the simulations

is a connectivity or sequencing of monopoles enforced.

Parallel planes with dislocation pile-up

We now consider the case in which several slip planes in a slip system are allowed to
operate simultaneously with regularly activated sources. We show in Figure the
corresponding sequence of snapshots. The location of the sources and slip planes
is chosen at random. As in the preceding case, the sources operate repeatedly to
nucleate multiple dislocation loops that expand under the action of the applied
load and eventually pile up at the boundary. The example serves to illustrate
the full three-dimensional character of the formulation, which allows for coplanar

dislocations as well as fully-interacting dislocations on multiple planes.
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(a) Initial configuration. (b) After 50 time steps.

(c) After 100 time steps.

(e) After 200 time steps. (f) Final configuration.

Figure 5.1: BCC grain in elastic matrix. Snapshots of single loop nucleating from a
randomly-located source and expanding under the action of an applied uniaxial stress
until it reaches the impenetrable boundaries of the grain.
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(a) Initial configuration. (b) After 100 time steps.

(c) After 200 time steps. (d) After 300 time steps.

(e) After 400 time steps. (f) After 500 time steps.

Figure 5.2: BCC grain in elastic matrix. Snapshots of multiple loops nucleating from a
common randomly-located source and expanding under the action of an applied uniaxial
stress until they reach the impenetrable boundaries of the grain.
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(a) Initial configuration. (b) After 60 time steps.

(c) After 120 time steps.

(e) After 240 time steps. (f) Final configuration.

Figure 5.3: BCC grain in elastic matrix. Snapshots of single loops nucleating from
randomly-located sources on multiple parallel slip planes and expanding under the action
of an applied uniaxial stress until they reach the impenetrable boundaries of the grain.
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(a) Initial configuration. (b) After 100 time steps.

(c) After 200 time steps.

(e) After 400 time steps. (f) After 500 time steps.

Figure 5.4: BCC grain in elastic matrix. Snapshots of multiple loops nucleating from
randomly-located sources on multiple parallel slip planes and expanding under the action
of an applied uniaxial stress until they reach the impenetrable boundaries of the grain.
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5.4 Activation of Multiple Slip Systems

We finish by examining the evolution of dislocation systems on several slip systems.
The first example is concerned with the case of dislocations on two slip systems

while the second takes into account all slip systems in the single BCC grain.

Activation of two slip systems

In this example, we consider two dislocation loops nucleated at random sources
on different planes of different slip systems—see figure [5.5a] The subsequent
evolution of the ensemble under the action of a remotely applied stress is shown in
figure 5.5l As in the previous examples, the dislocations expand until they reach
the boundaries of the grain. Again, this is done without regard for the sequencing
of the monopoles. In other words, each monopole carries information about its
position, element of line vector, Burgers 'charge’, and slip plane normal, and the

implementation is completely blind to the connectivity of the monopoles.

Activation of all slip systems

Finally, Figure displays the complex evolution of the dislocation ensemble
that ensues when multiple sources, slip planes, and slip systems are allowed to
operate simultaneously. In particular, the sequence of snapshots shown in the figure
illustrates the ability of loops in different slip planes to interact at close range, cross

each other or form structures.

Given the ultimate goal of simulating hardening in the grain, we use Equation ([3.100)
to compute the stress vs. plastic strain curve corresponding to the dislocation
evolution shown in Figure 5.6l The resulting output is displayed in Figure [5.7]
We emphasize that all results in this thesis are qualitative in nature and as such,
no quantitative comparison should be made between the curve of Figure and
experimental data, especially since the numerical examples discussed here did not
explicitly implement topological changes. Nevertheless, the robust ability of the
method to account for—and negotiate—the complex dislocation interactions and
evolutions exemplified by the example is noteworthy and bodes well for the general

application of the method to a broad range of applications.
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(a) Initial configuration. (b) After 50 time steps.

(c) After 100 time steps.

(e) After 200 time steps. (f) Final configuration.

Figure 5.5: BCC grain in elastic matrix. Snapshots of two loops nucleating from two
different randomly-located sources on two slip systems and subsequently expanding under
the action of an applied uniaxial stress until they reach the impenetrable boundaries of

the grain.
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(a) Initial configuration.

(e) After 400 time steps. (f) After 500 time steps.

Figure 5.6: BCC grain in elastic matrix. Snapshots of multiple loops nucleating from
randomly-located sources on multiple slip planes and expanding under the action of an
applied uniaxial stress until they reach the impenetrable boundaries of the grain.
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Figure 5.7: Computed plastic strain plotted against the monotonically increasing remote
stress for the dislocation ensemble displayed in Figure .
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Chapter 6

CONCLUSION

Note: Significant content of this chapter is taken from the work of Deffo, Ariza,
and Ortiz [75].

6.1 Summary

In this thesis, we have developed a novel approximation scheme for three-dimensional
dislocation dynamics. In doing so, we have examined imperfections in crystals
with emphasis on dislocations—Chapter [I, In Chapter [2, we have provided the
basic framework for continuum dislocation theory after a review of classical linear
elasticity. Finally, in Chapter [3 we have laid out the details of the method of

monopoles.

In this method, the dislocation line density is concentrated at points, or monopoles.
Every monopole carries a Burgers vector and an element of line. Since monopoles
are Dirac masses, the monopole representation requires an extension of the classical
dislocation transport problem (cf., e.g., [62]), which is restricted to 'continuously
distributed dislocations’, to general measures. This extension requires: i) expressing
the transport Equation in weak form—Equation (3.16)); ii) expressing
the elastic energy in terms of Airy stress potentials—Equation (3.55)); and iii)
regularizing the elastic energy—Equation (3.61)). By virtue of these manipulations,
the dislocation density appears linearly in all expressions, which thus make sense
for general measures. In addition, the regularization of the elastic energy eliminates
the logarithmic divergence of Volterra dislocations and assigns finite energies and

Peach-Koehler forces to general dislocation measures, including monopoles.

Following concepts from optimal transportation theory (cf., e.g., [97]), we discretize
the dislocation transport problem in time by introducing incremental transport
maps. These maps push forward the dislocation density from one configuration to
the next—Equation ([3.23)). For dislocation densities in the form of monopoles, this
push-forward operation takes a particularly simple form—Equation (3.87)): i) the
Burgers vectors of the monopoles remain constant; and ii) the elements of line of the
monopoles are updated according to the local gradient of the incremental transport

map. It bears emphasis that these operations are geometrically exact to within
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the interpolation accuracy of the transport map. In particular, the geometrical
update preserves the null-divergence constraint and results in line stretching (resp.
shortening) for divergent (resp. convergent) geometries, cf. figures[4.5] [4.6] and [4.9]
Further adapting concepts from optimal transportation theory and, in particular,
from the pioneering work of Jordan, Kinderlehrer, and Otto [98-100], we formulate
an incremental minimum principle for the transport map—Equation (3.78)—that
encodes the energetics and mobility kinetics of the system. In particular, the
motion of the monopoles is the result of a competition between energy, which
drives the monopoles to low-energy configurations, and mobility, which opposes
motion. Finally, the requisite interpolation of the transport maps is effected by

means of mesh-free max-ent interpolation [101].

A distinguishing attribute of the proposed method of monopoles relative to tradi-
tional approximation schemes based on segments is that an explicit linear connec-
tivity, or ‘sequence’, between the monopoles need not be defined. In this sense, the
method is ‘line-free’. The satisfaction of the requisite null-divergence constraint is
ensured by the geometric exactness of the incremental updates—Equation (|3.87]).
In addition, the monopoles tend to align ‘head-to-toe’ spontaneously in order to
minimize the elastic energy. The result, which is clearly evident in the verification
and numerical examples of Chapters [4 and [f] is that, while not explicitly enforced,
the monopole ensemble approximates a collection of lines at all times. The examples
also attest to the remarkable robustness of the method and, in particular, to its
ability to negotiate complex dislocation dynamics including nucleation, close-range

interactions, pileups, intersections and other mechanisms.

6.2 Future Work

We close by remarking that the present work has been primarily concerned with the
mathematical framework, implementation, and numerical testing of the proposed
method of monopoles. In particular, we have not attempted to model specific
material systems or make quantitative predictions thereof with any degree of
physical fidelity. Nevertheless, because the method is advertised as potentially more
efficient that current line dislocation dynamics codes, upon optimization of the
method of monopoles, it'd be telling to compare it with current methods for line
dislocation dynamics, e.g., microMegas or ParaDiS, for the simple examples studied
in the foregoing. Regardless of the outcome, there is extraordinarily extensive
experience in applying dislocation dynamics to the elucidation of a vast array of

physical phenomena that we believe can be combined with the proposed method to
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great effect. In particular, as already noted, we believe that the method provides an
effective avenue for extending to three dimensions the wealth of point-dislocation
methods that have been developed and extensively applied in two dimensions,
starting with the seminal paper of Lubarda, Blume, and Needleman [94]. These
connections and extensions suggest themselves as worthwhile directions of future

research.

One such example is the implementation of topological transitions as described in
Section [3.7] Indeed, because our goal primarily has been to establish the method of
monopoles as a valid approach to dislocation dynamics, in all examples of this work,
we have not implemented the complex topological changes that accompany every
dislocation dynamics simulation. Therefore, implementing these topological changes
will provide the method with full capabilities and enable simulations of dislocation
dynamics for quantitative—as opposed to purely qualitative—results that can be
compared to experiments. Furthermore, given that an explicit connectivity between
the monopoles need not be defined, this gives the method a natural predisposition
to parallelization as monopoles could be split between processors without regard

for their neighbors.

Another extension of the present work is in the implementation of linear elastic
anisotropy in dislocation dynamics. It is well known [78] [131] that current line
dislocation dynamics algorithms are computationally expensive for obtaining the
stress field at dislocation nodes under conditions of elastic anisotropy. This is
because the integrand in the integral expression for the stress field is not known
analytically, which in turn is due to the fact that analytical expression for the
Green's function of elasticity is known only for elastic isotropy in an infinite medium.
Given that in the method of monopoles, integrals around the dislocation line are
replaced by (Riemann) sums, this suggests the method could prove viable as a

candidate for efficient dislocation dynamics simulations in anisotropic media.
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Appendix A

INTERPOLATED TRANSPORT MAPS

A.1 Zeroth-order Max Ent Shape Functions
The zeroth-order consistent max-ent shape functions at x are the solutions of the

constrained optimization problem [101]

M
Minimize: )~ B,Ny()|z — @,/ —|—ZN )log N, (), (A.1a)
a=1
M
subject to: N,(x) >0, a=1,..., M, ZNa(m) =1, (A.1b)
a=1

where {x,}} | are the nodes of the interpolation and {3,}}., are adjustable
parameters. The shape functions thus defined supply the least biased and most
local reconstruction of a function whose values are known on the node set [101].
Problem (A.1)) can be solved explicitly, with the result

1 Ba 5
Ny(x) = 7 exp (— 5 lr — x,| ) , (A.2)
where

Z:iexp (—%|w—wa|2> (A.3)

is the partition function. Suppose that the nodes moves to new positions {y, },.

We then define an interpolated transport map as

=x+ Z —x,)Ny(x), (A.4)
with gradient

Ve(@) =T+ (Yo — o) VNo(). (A.5)

A.2 Tests
Translation of the Monopoles
Suppose that y, = x,+u, i.e., the nodal set translates by . From the zeroth-order

condition, we find

x)=x+ (Z Na(w)> u=x+u, (A.6)
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and
M
Veo(z) =T + (Z VNa(:c)> u=1I (A7)
a=1
so that
Sa,qul = V(p(wa)sa,y = €a,1/
as required.

Rotation of the Monopoles
Now, suppose that y, = Rx, for some R € SO(3), i.e., the nodal set rotates
under a constant tensor R. From (A.4)), we have that

plx)=x+ Z(Ra:a — x,)No(x) (A.8)

or, in index notation,
M
pi(®) = 2+ Y (Rija§ — 25)No()
a=1
M
=2+ Y (Rij — 6;j)25No() (A.9)
a=1

M
=x; + (RZ] — 51]) Z Na(:n)a:? .
a=1

If we further assume—as in [101]—that the shape functions satisfy the first-order

consistency condition
M

Z Ny(x)z, =z YV, (A.10)

a=1
then (|A.9) simplifies to

so that
Ve(x) = R. (A.12)

It follows that
|£a,l/+1| = |V‘P(wa)£a,1/|
=|R&,,| (A.13)
= ’Ea,u|
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again as required.

We note that although the shape functions given by Equations and do
not satisfy the first-order consistency condition in general, this is typically
not an issue for problems in the small deformation setting where rigid body motion
leaves the body unstrained [132]. However, for problems in large deformation, the
chosen shape functions should satisfy both the zeroth- and first-order consistency
conditions (A.1b) and (A.10). An example of such shape functions is given by
Equations (17) and (18) of reference [101].
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