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ABSTRACT 

The function of semiconductor devices is intrinsically tied to their structure. While 

there are already myriad techniques in use today to fabricate an extreme diversity of 

devices, new processes are regularly developed to make the production of previously 

unrealizable structures, and consequently devices, possible.  

This dissertation deals with several unconventional approaches to generating 

ordered semiconductor structures. One chapter discusses a novel technique to measure the 

various forces that impede the alignment of randomly dispersed microstructures. The 

technique made it possible to both determine the magnitude of the interactions that the 

particles must overcome in order to be organized into a useful structure and assess the 

functional form of the forces that the microstructure is experiencing, thereby giving insight 

into the physical origin of said forces. 

The following chapter deal with the spontaneous structure formation seen in 

photoelectrodeposited semiconductor films. One chapter investigates how the natural 

tendency of these films to form oriented, high aspect ratio structures can be coupled to the 

geometry of the substrate on which they are grown. This work demonstrates that extremely 

straight, high aspect ratio structures can be grown over macroscopic areas by making 

simple modifications of the substrate. 
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The final chapter characterizes the iridescence that these films exhibit. A simple 

physical explanation for the origin of the coloration is posited and verified. Then the 

information gleaned about the optical response of these films is used to generate vibrant, 

colorful patterns on electrode using consumer electronics.
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1 
C h a p t e r  1  

INTRODUCTION 

The consistent, microscopic structuring of materials influences, either directly or 

indirectly, every facet of modern life. This claim mostly rests on the ubiquity of integrated 

circuitry, accounting for over $400 billion in sales in 2017.1 However, in addition to more 

familiar electronic devices, micromechanical electrical systems (MEMS) are present in as 

mundane of products as inkjet printer nozzles and tire pressure gauges.2 The production of 

the structures that underlie the devices in these goods relies on many sophisticated processes, 

including photolithography, physical vapor deposition, chemical vapor deposition, and 

various etch methods, all of which come at astonishing cost.3 In fact, the cost of a single 

state-of-the-art scanner (over $100,000,000)4 exceeds the cost of a synchrotron light source.5 

The cost of the commonly used commercial processes involved in structuring 

materials on the scale of tens of nanometers comes from several sources. Modern lithography 

employs exotic high power lights sources and extremely complicated optical systems to 

generate subwavelength features. Material deposition typically involves high vacuum 

chambers and expensive potentially hazardous precursor materials. Due to the nature of the 

devices being made, all materials involved need to be extremely pure. And because of the 

extreme sensitivity of all these processes, the commercial production of materials with sub-

micron features must take place in costly dedicated facilities. 



 

 

2 
In contrast to these expensive and extremely precise pattering techniques are a host 

of alternatives that produce limited types of patterns, but at a small fraction of the cost of 

modern photolithography. For instance, techniques such as nanosphere lithography,6 

polymer buckling via solvent exposure or thermal treatment,7 and anodic etching of silicon8 

all have been shown to generate micro- to nanoscopic patterns cheaply and facilely with 

minimal equipment requirements. 

The work to be described in this thesis continues in the vein of the latter set of 

techniques. The following chapter delves into some of the practical concerns involved in 

generating structures from randomly distributed particles, particularly issues involving 

overcoming the adhesive force between the particles and other surfaces. The third chapter 

deals with the behavior of self-organizing electrodeposited semiconductor films in response 

to abrupt changes in substrate morphology, and how substrate modifications can be designed 

to influence the resulting film structure. Finally, the fourth chapter investigates the 

iridescence of highly ordered films such as those deposited in the previous chapter, with an 

eye towards their use as biomimetic coloration. 
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C h a p t e r  2  

DIRECT MEASUREMENT OF ADHESIVE FORCES PERTINENT TO 

THE ALIGNMENT OF RANDOMLY DISPERSED MICROWIRES 

2.1 Introduction 

Given the unabated year over year increases in energy consumption and atmospheric 

CO2 concentration, finding sources of energy that do not contribute to global warming is one 

of the most pressing scientific and engineering challenges of our time.9–13 However, the 

oftentimes tepid regulatory response to the threat of global warming points towards another 

requirement of any scientific solutions to the problem of energy production. It is not enough 

that solar energy generating devices be able to produce enough power to meet global demand; 

said devices must also do so economically enough that they can compete with fossil fuels 

with minimal governmental assistance.  

Modifying the structure of the semiconductor used in solar energy harvesting devices 

can potentially improve the economics of green power generation. Controlling the structure 

of the semiconductors used in light absorbing devices is one of many techniques researchers 

have used to improve their devices’ viability.14–18 For instance, arrays of microscopic silicon 

cones have been shown to have greatly improved light absorption relative to planar silicon 

surfaces.19 Improving light absorption improves both the voltage and current produced by a 

solar cell, resulting in substantial efficiency increase. Furthermore, structuring light 

absorbers can also improve the economics of solar energy generation by reducing the cost of 
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devices. A device geometry that improves light absorption efficiency also reduces the 

amount of material needed to absorb the light, thereby reducing the device cost. By 

decoupling the direction of light absorption and carrier collection, it also becomes possible 

to separate photogenerated electron-hole pairs without recombination while using worse 

light absorbing materials.20 

However, for all the potential of structural control to improve the competitiveness of 

solar energy, one should keep in mind the crucial caveat that any structuring treatment can 

only be justified if the cost of the processing involved is outweighed by the improvement of 

the final device economics. Many syntheses of structured light absorbers are highly capital 

intensive processes, requiring some combination of high vacuum equipment, high 

temperature reactors, dangerous precursors, and lithographic patterning.21,22 However, 

substantial effort has also been dedicated to the solution phase synthesis of semiconductors. 

The diversity of semiconductors synthesized via solution processes (perovskites, metal 

oxides, II-VI, and III-V materials)23–28 exceeds the materials that can be deposited in CVD 

processes. These syntheses take place at moderate temperatures and pressures in standard 

laboratory glassware using relatively stable precursors. However, the resultant 

semiconductor particles lack the periodic structure necessary for most devices. 

The self-assembly of nanoparticles has been well-studied, with reports of the 

assembly of varied structures, including face centered cubic and body centered cubic arrays 

and hexagonally close packed monolayers.29–34 The spontaneous assembly of nanoparticles 

into ordered arrays relies on the small particle dimension. Due to the extremely small size of 

the particles under discussion, the inter-particle forces, which scale with surface area, can 
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overcome particle inertia, which scales with particle volume. However, larger particles have 

proven more troublesome to get to self-assemble, as the square-cube relationship between 

particle surface area and volume becomes less favorable with increased particle size. This 

fact proves troublesome, because some possible applications of oriented light absorbers 

would require semiconductor particles many microns across or larger, especially when 

indirect gap materials are used for the light absorbers. In the case of larger particles, external 

stimulus has proven helpful in effecting particle organization. 

2.2 Background  

Previously, researchers investigated using magnetic coatings to align randomly 

dispersed silicon microwires.35 The motivation was several fold. First, the magnetic coating 

on the wires would give one a powerful handle with which the wire alignment could be 

controlled externally. Second, the nickel used in magnetic coatings would be multipurpose, 

potentially acting as an ohmic contact to silicon for device integration or as a catalyst in 

photoelectrochemical fuel generating device. Finally, in the case of the specific chemical 

vapor deposition grown microwires used for the study, the nickel coating was facilely applied 

using electrodeposition and the wires were shaved off the growth substrate, making possible 

the potential reuse of the relatively expensive growth wafers. 

This study considered the alignment of the metal coated microwires in different 

solvents and off of different substrates. Wires were removed from the growth substrate, 

dispersed in isopropanol, drop cast onto the substrate of interest, and allowed to sit for the 

few minutes needed to let the isopropanol completely evaporate. The samples were then 
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placed in an electromagnet mounted to a microscope. The solvent, either deionized water 

or isopropanol, was then added to the sample, and the alignment of the wires versus applied 

magnetic field was monitored microscopically. 

The experiments in this study showed that the different substrate-solvent 

combinations resulted in significantly different required field strengths to align over 90% of 

wires. Ranked from lowest required field to highest required field, the substrate-solvent 

pairings were hydrophilic silicon hydroxide (SiOH) and water, SiOH and isopropanol, and 

hydrophobic silicon hydride (SiH) and isopropanol. No appreciable alignment occurred for 

wires on SiH in water at the field strengths accessible with the experimental setup. However, 

while the relative strengths of solvent-dependent microwire-substrate interactions are 

accessible from these experiments, actual values for adhesion could not be measured. Since 

wire-substrate adhesion plays a central role in the alignment of randomly dispersed 

microwires, both in terms of allowing the wires to break free of the surface and limiting 

aggregation of wires at high wire loadings, there was interest in developing a technique that 

would let us directly measure the context-specific adhesion between wires and substrates, 

with an eye toward finding optimal conditions for alignment. 

Force spectroscopy measurements have widely been used to collect adhesion data for 

standard atomic force microscope (AFM) tips, functionalized tips, and colloidal particles.36–

39 In these experiments, an AFM probe, consisting of a probe body that is mounted to the 

instrument, a thin reflective cantilever extending off of the probe body, and a tip on the 

underside of the cantilever, is lowered toward the surface of interest. As the tip comes into 

contact with the surface, the cantilever deflects upward or downward, to an extent dependent 
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on the strength of the interaction between the tip and the surface. Meanwhile, a laser beam 

is reflected off the back of the cantilever into a detector. As the cantilever deflects, the laser 

beam moves on the detector, which is then converted via calibration data into the upward or 

downward movement of the cantilever. Finally, given the spring constant of the cantilever, 

an application of Hooke’s law coverts the cantilever deflection data into the force felt by the 

tip of the cantilever as a function of probe position. By noting the maximum force between 

the tip and the surface before the tip separates from the substrate, one measures the strength 

of adhesion between the tip and the surface. 

2.3 Tip Preparation 

These previous applications of the technique motivated using a similar approach to 

measure directly the adhesive force between microwires and various substrates. To 

accomplish this, custom AFM probes had to be prepared, but with nickel coated microwires 

in the place of the usual sharp tip. The wires were prepared as they were in the previous work 

on metal coated microwires. Silicon microwires were grown via chemical vapor deposition, 

giving 50 micron tall wires with diameters of 2 microns. Ohmic contact was made to the 

substrate by scratching a eutectic composition of GaIn (75% Ga, 25% In by weight) into the 

wafer. The wires’ native oxide was removed with a buffered hydrofluoric acid etch, and the 

nickel was deposited potentiostatically at -1.0 V vs. Ag/AgCl for 10 minutes using a 

commercial nickel sulfamate based plating solution. The nickel plated wires were then 

shaved off the substrate and suspended in isopropanol. The wires were then drop cast onto a 

silicon wafer scrap, and the conformality of the coating was verified microscopically. 
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Wire-tipped AFM probes were prepared using tip free AFM probes (Bruker NP-

O10). The tip free probes were mounted on a microscope slide using double sided tape. A 

wafer scrap with drop cast wires on it was mounted on the slide, and a small, roughly 1 mm 

diameter dot of epoxy (Hysol 9460) was added elsewhere to the slide. Using a very fine 

micromanipulator tip, a single wire was gently nudged until the wire broke free of the wafer 

scrap and adhered to the micromanipulator tip. The wire laden tip was then lifted away from 

the surface. A separate micromanipulator tip was used to collect a small amount of epoxy 

and spread the adhesive on the tip of the AFM cantilever. The wire on the tip was then set 

into the epoxy, and the epoxy was allowed to cure at room temperature overnight. The wire-

tipped AFM probe was examined in a scanning electron microscope (SEM) to verify that the 

wire was properly seated and that the wire had not been damaged in the fabrication process, 

that the cantilever was in good condition, and that there was no adhesive on the bottom 

surface of the microwire. 
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Figure 1: Fabrication of Custom AFM Tips 

1) A metal coated wire on the substrate, 2) A micromanipulator tip 
pressed into the microwire, 3) The retracted micromanipulator tip with 
adhering wire, 4) A second micromanipulator tip collecting epoxy, 5) 
Application of epoxy to a tip free cantilever, and 6) Placing the microwire 
into the adhesive to fabricate the custom AFM tip 
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Once prepared, the effective spring constant of the custom AFM probes was 

measured using cantilever calibration standards (Bruker CLFC-NOBO). The deflector 

voltage-to-tip deflection conversion factor, or deflection sensitivity, was first measured by 

collecting deflection vs. probe extension data when extending the probe into a high hardness 

surface, in this case silicon. Applying the assumption that the silicon surface does not deform 

and that all the cantilever deflection is due to the tip deflecting upward, one can determine 

the calibration constant relating the measured detector voltage and the cantilever deflection. 

To then measure the cantilever spring constant, one then measures the apparent deflection 

sensitivity when pressing the wire into one of the calibration standards. Using the following 

equation, 

𝑘𝑘 = 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎

− 1� �
𝐿𝐿

𝐿𝐿 − ∆𝐿𝐿
�
3

 

the cantilever spring constant can then be determined for the custom AFM probe. 

Here kref is the spring constant of the reference cantilever, Sref is the deflection sensitivity 

measured while in contact with the reference standard, Shard is the deflection sensitivity 

against a hard surface, L is the reference cantilever length, and ΔL is the distance between 

the end of the reference cantilever and the point of contact with the AFM tip. Standard 

methods for determining the spring constant are unreliable for the custom probes because the 

addition of a relatively massive wire tip substantially changes the probe geometry from the 

typical case. 
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2.4 Adhesion Measurements  

Adhesion measurements were first taken in air against both SiH and SiOH surfaces. 

Hydrophobic SiH surfaces were produces by dicing a degenerately doped (ρ < 0.005 Ω∙cm) 

n-type (111) silicon wafer (Addison Semiconductors) into 1 cm by 1 cm pieces, rinsing them 

with acetone, isopropanol, then water, and etching them in a buffered hydrofluoric acid 

solution (Transene) for 30 second. Hydrophilic SiOH surfaces were then prepared by 

subjecting freshly etched SiH surfaces to 10 minutes of UV-ozone cleaning. Contact angle 

measurements verified that the SiH surfaces were hydrophobic and the SiOH surfaces were 

hydrophilic. The adhesion measurements showed that the force of adhesion was similar for 

both the hydrophobic surface and the hydrophilic surface. This is attributed to the menisci 

that form in ambient environments, i.e. in the presence of even small amounts of water vapor 

in the air.40,41 The surface tension in the menisci that form between the tip and the substrate 

appears to be far greater than whatever specific tip-substrate adhesion is present in each case. 

Experiments must be conducted in a liquid environment to measure adhesion without the 

conflating effects of water vapor.  
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Figure 2: Force Curves taken in Air 

(a) Repeated force curves taken versus a hydrophilic silicon dioxide 
surface in ambient air. (b) Force curves taken with the same tip versus a 
hydrophobic silicon hydride surface. 
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Measurements taken in 18 MΩ∙cm deionized water freshly collected from a 

Barnstead Nanopure system showed that the adhesion between the hydrophobic SiH surface 

and the microwires is substantially higher than the adhesion between the SiOH surface and 

the microwires. This is in some ways an expected result; because the SiH surface is 

hydrophobic, the interface between the SiH and water is more energetically costly than the 

interface between the hydrophilic SiOH and water. Then it would follow that it should be 

more difficult to remove the wires from the hydrophobic surface in water than from the 

hydrophilic surface in water, because in pulling the wires off the surface, one is 

simultaneously generating the substrate-solvent interface everywhere the wire was 

previously in contact with the surface. The same measurements taken in isopropanol show 

minimal adhesion between the wires and either substrate. There is no discernible adhesion 

between the microwire and the SiOH substrate in isopropanol, and any apparent adhesion to 

the SiH surface is not clearly distinguishable from the baseline noise. 
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Figure 3: Force Curves taken in Water and Isopropanol 

(a) Repeated force curves taken versus a hydrophobic silicon hydride 
surface in water. (b) Force curves taken versus a hydrophilic silicon 
hydroxide surface in water. (c) Force curves taken versus a hydrophobic 
silicon hydride surface in isopropanol. (d) Force curves taken versus a 
hydrophilic silicon hydroxide surface in isopropanol 
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These data are not consistent with alignment data from the previous study, 

assuming that the substrate-wire adhesion is the sole factor influencing alignment. From the 

magnetic alignment data alone, one would conclude that the relative adhesion strengths are 

Si-H/water > SiH/isopropanol > SiOH/isopropanol > SiOH/water. However, the actual 

forces of adhesion as measured via AFM are SiH/water > SiOH/water > SiH/isopropanol ≈ 

SiOH/water. 

It is fruitful to consider the apparatuses in which these measurements are taken. In 

the case of the magnetic alignment, the substrate is placed in the center of an electromagnet 

made from coiled wire. The wire is insulated by encapsulating it in an insulating epoxy 

(Hysol 9460). By contrast, the AFM measurements previously discussed are performed in a 

cell with a metal base in electrical contact with the grounded chassis of the instrument. 

However, before the AFM measurement was refined completely, measurements were taken 

in a plastic petri dish instead of a dedicated, grounded cell. The force vs. distance curves 

occasionally featured a gradual detachment from the surface instead of the abrupt detachment 

expected from a tip overcoming adhesion force and coming free from the surface. This long 

range interaction is consistent with the length scale of coulombic interactions but not typical 

surface forces. 

2.5 Coulombic Force Characterization 

To further probe the nature of electrostatic forces in this system, adhesion 

measurements were performed in a solvent chosen to make the effects of the coulombic 

interaction as pronounced as possible. Hexane was chosen for this purpose because it is 
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sufficiently nonconductive to avoid dissipating built up charge, and it also has a small 

dipole moment so that the molecular dipole does not screen any charges present. The force-

distance curves show very pronounced long range interaction, persisting even when the wire 

and the substrate are separated by hundreds of nanometers. Because the adhesion force is so 

strong and the probe has to be drawn roughly 100 nm away from the point of first contact 

between the wire and the substrate to get the wire to detach, the retraction curves lack data 

about the long distance interaction between the wire and the surface for separations less than 

100 nm. Thankfully, the approach curves do have this information. By combining the probe 

extension data and the measured tip deflection, the force vs. probe extension data can be 

converted to force vs. wire-substrate separation. 

The functional form of the force vs. separation can be better understood by plotting 

the data on log scale. There are two distinct regimes in this plot. First, at smaller separations, 

the force falls of like z-1, where z is the separation between the wire and the substrate. At 

greater distances, the force begins falling like z-1. This behavior is characteristic of the force 

felt by a charge in the electric field of a finite line charge:42 

𝐸𝐸 =
1

4𝜋𝜋𝜋𝜋
2𝜆𝜆𝜆𝜆

𝑧𝑧√𝑧𝑧2 + 𝐿𝐿2
 

where z is the distance between the test charge and the line charge, λ is the charge 

density, and L is the length of the line charge. 

At separations much smaller than the length of the line charge, the finite line charge 

appears similar to an infinite line charge to the test charge, hence the z-1 behavior: 
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𝐸𝐸 =
1

4𝜋𝜋𝜋𝜋
2𝜆𝜆
𝑧𝑧

 

 At large distances, the line charge begins to appear more point-like, causing the 

electric field to vary like z-2: 

𝐸𝐸 =
1

4𝜋𝜋𝜋𝜋
2𝜆𝜆𝜆𝜆
𝑧𝑧2
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Figure 4: Analysis of Long Range Force 

(a) Approach (dashed) and retraction (solid) force curves against silicon 
hydride in hexane. (b) Force versus wire-substrate separation for the 
approach curve. (c) Log-log plot of the force versus separation data 
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In reconciling this model with the physical system under investigation, we 

conclude that the line charges must be a feature of the wires. The substrates are all extremely 

flat, polished, and freshly cleaned silicon (111) surfaces. The wires, by contrast, have an 

electrodeposited nickel coating on them. The microwires’ surface texture, including many 

linear domains, is apparent in scanning electron micrographs (SEMs). The charges that 

interact with the line charges are then concluded to be the image charges of the line charges 

generated in the highly conductive, degenerately doped silicon substrate.  

With this model in hand, it becomes possible to extract useful physical information 

from the linear regions of the log-log plot of force vs. wire-substrate separation. The switch 

from one limiting regime to the other takes place at a wire-substrate separation of roughly 

100 nm. This is consistent with the length of the raised linear regions visible in the texture of 

the metal coating. The linear charged domains appear to be the microscopic edges found on 

the nickel film. 

The plausibility of this physical description of the long range interaction and the 

consistency with theory lend credibility to the argument that coulombic interactions can play 

a confounding role in the organization of micro- and nanoparticles. The AFM measurements 

performed in an insulating cell with isopropanol showed coulombic forces on the same order 

as the adhesive force of measured between the microwires and SiOH surfaces. The exact 

extent of charging that took place during the magnetic alignment measurements is 

indeterminate, depending on the electron affinity of the materials in the electromagnet 

encased cell, the trace water and ionic content of the isopropanol used, the material of the 

pipette used to dispense the solvent, and likely many other unaccounted for factors. However, 
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it can be said that the observed range of coulombic force magnitudes observed in 

isopropanol via AFM would be sufficient to explain the discrepancy between the relative 

difficulty of magnetically aligning randomly oriented nickel plated microwires in different 

contexts and the measured force of adhesion in those same conditions. 

 

Figure 5: Evidence of Coulombic Force in Isopropanol 

The force versus probe extension curve in isopropanol against a SiH 
surface. The black dashed line shows the expected curve shape in the 
absence of long range forces  
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2.6 Manipulating Adhesion with Surface Charge 

Though the coulombic force observed in these measurements worked contrary to 

alignment, the strength of the attraction suggests that, if both the wires and the substrate were 

similarly charged, one could reduce the adhesive force, and possibly make the surfaces repel 

one another. Though there are many possible routes to generate surface charge, AFM 

measurements were used to characterize wires covalently functionalized with carboxylic acid 

moieties and wires that were charged electrochemically. 

The silicon microwires to be chemically functionalized were grown in the same CVD 

process used to produce the wires that were then coated with nickel for the previous 

measurements. The wires were then functionalized using the procedure used by Gallant, et. 

al.43 The adhesion between a silicon native oxide surface and the wires was measured in 

hydrochloric acid solutions from pH 1 to 6, in a neutral water solution, and in sodium 

hydroxide solutions from pH 8 to 13. The force curves at low pH were very similar to each 

other, as were the force curves at high pH, indicating that the solute concentration had 

minimal impact on the adhesion. However, in going from pH 5 to pH 6, the form of the 

adhesion curve changed qualitatively. In more acidic pH solutions, the curve had the familiar 

form showing adhesion between the wire and the substrate. At pH 6 and above, there was no 

measured adhesion. In fact, the force curve showed that the wire was repelled from the 

surface. Two physically relevant processes take place between pH 5 and 6. The pKa of both 

surface-bound carboxylic acid groups and silicon hydroxide groups fall in that range.44 As 

both surfaces go from neutral and protonated to negatively charged and deprotonated, the 

adhesion between the surfaces turns into repulsion. This effect illustrates that, by capitalizing 



 

 

22 
on the substrate and wire surface chemistry, it is possible to switch adhesion on and off in 

these systems using an easily controlled property such as solution pH. 

 

  

Figure 6: Wire-Substrate Adhesion at Varied pH 

The retraction force curves for a carboxylic acid functionalized wire and 
a native silicon oxide surface in an aqueous HCl solution. The solid line 
was taken at pH 5 and the dashed lined at pH 6. 
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Motivated by the pH adhesion dependence, a more general method to tune 

adhesion was investigated using a redox couple in solution. The pH based adhesion 

modulation require there to be groups that can either be deprotonated or protonated on the 

surface of the wire and substrate. But there are many interesting physical systems where this 

is not the case. In the case of conductive materials, however, a redox couple can be used to 

control the charge of surfaces.45 When a material is put in contact with a solution containing 

a redox couple at a potential different than the Fermi level of that material, charge will flow 

between the dissolved redox couple and the material until there is enough built up charge in 

the material and the electrochemical double layer to prevent further charge from passing. By 

modifying the solution potential, it should be possible to influence the charge on the surface 

of the material. In the following experiments, a nickel coated wire was used as the AFM tip 

and a silicon wafer piece sputter coated with gold was used as the substrate. Two solutions 

were used for the measurements. The control solution was a 1 M aqueous solution of 

potassium chloride, while the other solution was 1 M potassium chloride, 25 mM potassium 

ferricyanide, and 25 mM potassium ferrocyanide. The potential of the couple is higher than 

that of either metal, so both metal surfaces would be expected to be negatively charged in 

solution.46 In the plots of force versus distance, the adhesion measured between the mutually 

charged surfaces is reduced to roughly one eighth of the adhesion measured in the control 

electrolyte solution. Though the preliminary experiments described here do not constitute a 

comprehensive investigation of the phenomena at play, they suggest the utility of solution 

potential as an easily adjusted control to influence adhesion between materials. 
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Figure 7: Redox Couple Dependent Adhesion 

Force curves for a nickel coated wire in contact with a gold surface. The 
solid red line shows the data collected in the electrolyte control. The 
dashed blue line shows dramatically different behavior in the presence of 
the redox couple. 
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2.7 Conclusions  

Force spectroscopy allowed the direct measurement of the interaction strength 

between metalized microwires and varied substrates. The AFM measurements made it 

possible to measure not only the strength of the interaction as a function of substrate surface 

chemistry and solvent environment, but also the dependence of the attractive force on wire-

substrate separation. The measurement technique allowed the origin of the substrate-

microwire interaction to be determined, which provided insights into how attempts to align 

randomly dispersed particles could be improved. 
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C h a p t e r  3  

THE INFLUENCE OF SUBSTRATE TEXTURE ON MORPHOLOGY OF 

SELF-STRUCTURING PHOTOELECTRODEPOSITED 

SEMICONDUCTOR FILMS 

3.1 Introduction  

There are many technologically significant methods for semiconductor structuring 

that are widely employed industrially. Photolithography and sophisticated etch processes 

have been employed for the fabrication of integrated circuits for decades.47,48 There are also 

many selective wet chemical etch processes used in the production of strain sensors, pressure 

sensors, and myriad other micromachined devices.49–52 Photoanodic etching can generate 

high aspect ratio structures by using electric fields internal to the material to direct the current 

that causes the material to undergo anodic etching.53–56 These techniques produce well 

defined structures on large scales, though the cost is typically substantial. 

While the cost of these processes depends on the expense of the equipment used to 

define the nanoscale features, ultimately all these processes will be limited by the 

fundamental costs of the materials being used. All the aforementioned processes are top 

down processes, where the structures are generated by the removal of material. In contrast, 

bottom up syntheses produce structures by adding material, so that the material cost closely 

tracks the cost of the material added. However, bottom up processes that rely on other 

expensive patterning processes will still be limited by the other processing steps; even a 
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cheap process, such as standard electrodeposition, will be limited in affordability if the 

areas where mass is being added are defined by some relatively expensive lithographic 

process. 

3.2 Background  

There is then value to processes that deposit mass in a self-structuring manner, ideally 

where the structuring is externally tunable. One such process is the photoelectrodeposition 

of chalcogenides reported by Sadtler, et.al.57 The initial aim was to electrodeposit a 

semiconducting film containing selenium and tellurium. The deposition was conducted at 

moderate negative bias under illumination, with the aim of using the photovoltage generated 

by the deposited film to promote the further deposition of material. If the deposition of 

material is dependent on the photoactivity of the deposit, then any deposition conditions that 

produce substantial cathodic films will be likely to produce photoactive, p-type films. It was 

found that the morphology of the films generated in this manner depended on both the 

wavelength and polarization of the illumination. 

In the case of unpolarized illumination, the resulting deposits had circular voids 

spread across the surface. However, when polarized light was used to illuminate the 

electrodes during deposition, lamellar ridges of a photoactive selenium tellurium alloy 

deposited aligned with the polarization direction of the light. The lateral spacing of the ridges 

deposited under polarized light was found to vary with the wavelength of the light used for 

the deposition. To first order the spacing between the ridges varies like λ/2n, where λ is the 

illumination wavelength and n is the refractive index of the solution in which the deposition 
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occurs. This suggested a mechanistic explanation involving interference of light scattered 

off the surface. The putative explanation was that randomly spaced dipole scatterers on the 

surface scattered light in the plane of the electrode surface. Multiple scatterers set up 

interference fringes on the surface, with a spacing between fringes given roughly 

approximately by λ/2n. Because light is a transverse electromagnetic wave, the oscillation of 

the dipole scatterers preferentially supports scattering normal to the polarization direction of 

the incident light. This explanation was born out by variable wavelength experiments, and 

the observed structure was recreated in optical simulations. 

This result was both scientifically interesting and promising at a patterning technique. 

This simple, solution phase, mask free process was shown to generate relatively high fidelity 

sub wavelength features over macroscopic areas. In contrast to traditional lithography 

equipment, that can cost from hundreds of thousands to hundreds of millions of dollars, the 

only equipment needed for this spontaneous patterning process are a lamp, a polarizer, and a 

power supply. As an added benefit, the material deposited was necessarily of a sufficiently 

high quality to be photoactive. 

Several papers followed this initial study, in which subsequent researchers varied the 

illumination conditions to influence the morphology of the deposited film. In one study, two 

separate light sources with the same polarization but different wavelengths were used in 

place of the single source used in the initial report of these structured films.58 It was found 

that the period of the features in the resulting films was intermediate between the periods of 

films grown with either light source by itself. The final period was ultimately an intensity 

weighted average of the source wavelengths. 
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A separate investigation characterized the relationship between the relative 

polarizations and phases of two separate sources and the resulting films.59 Circularly 

polarized light and unpolarized light generated similar mesh-like structures, with pores in the 

film spaced isotropically throughout the deposit. When elliptically polarized light was 

instead used, the morphology of the deposits was intermediate between the linear, highly 

ordered growths formed from linearly polarized light and the structurally disordered mesh 

like pores characteristic of films grown using unpolarized light, with more linear growth 

apparent along the major axis of the ellipse and a level of disorder related to the eccentricity 

of the polarization of the light. 

Furthermore, an investigation into electrodepositing films using two sources of 

different wavelengths with orthogonal polarizations found that said experimental conditions 

produced two sets of crossed, perpendicular lamella, each with periods and orientations 

dictated by the relevant light source’s wavelength and polarization.60 The relative heights of 

the two sets of lamellar depended on the intensity of the light used for growth. 

The generation of structured films during illuminated electrodeposition of 

semiconductors was shown to be generalizable beyond the selenium tellurium system used 

in the previous studies, as well. Lead selenide films were deposited under similar conditions 

to those used for the selenium tellurium films, and lamellar structures were observed in the 

resulting films.61 

These studies all featured computational modeling as a complement to experimental 

results. The model was a two-step process, where first light absorption was modeled using a 
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commercial software package (Lumerical FDTD Solutions), and then material was added 

to the simulated structure dependent on the intensity of local carrier generation. This process 

was iterated to simulate the feedback-induced structuring that takes place during 

electrodeposition. The simulations successfully reproduced the experimental results, using 

only the material’s complex refractive index, carrier lifetime, and electron mobility as inputs. 

This suggests that the spontaneous growth of these structures is principally governed by the 

light scattering that takes within the deposit, not by the electrochemistry involved in the 

plating. 

Taken together, these previous works elucidate how varied optical inputs can serve 

as a powerful handle with which to manipulate the morphology of these electrodeposited 

films. However, the illumination used for a deposition is only one part of the light scattering 

that takes place on the surface of photoelectrodes. The surface itself also influences the sort 

of scattering that can occur. On a highly planar, polished silicon electrode, as was used in the 

previous studies, the origin of the light scattering particles was taken to be the disordered 

deposition of non-photoactive material prior to the photoelectrodeposition taking over at later 

times. There was interest in understanding the effect on film morphology of anisotropic 

distributions of scatterers. 

Part of this interest derived from the lack of straightness in the lamellar growths that 

form on planar substrates. Some of the disorder that appears in these structured films can be 

attributed to the initial disorder in the random dark growth at the start of the process. As 

shown in the schematic below, while the scatterers that are offset by a vector normal to the 

incident light’s polarization vector contribute strongly to growth perpendicular to the 
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polarization axis, diagonally oriented scatterer pairs also produce interference fringes that 

promote the deposition of material. Furthermore, even assuming scattering only takes place 

between scattering pairs oriented perpendicularly to the polarization direction of the light, 

with random nucleation of scattering pairs, there will inevitably be regions that are not in 

registry with one another. When these misaligned regions grow together, there will 

necessarily be mismatch at the interface between the different domains. Additionally, the 

interaction between these self-ordering growths and features on the growth substrate 

warrants investigation because if these structures are to be of any interest industrially, they 

must be able to be directed to grow at a specific location on a substrate in order to use them 

in device fabrication.  
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Figure 8: Mechanism for Formation of Kinked Lamellae 

(a) A hypothetical surface containing three scattering particles. (b) 
Vertically polarized light scattering off the horizontally oriented particles. 
Interference maxima cause localized deposition of material. (c) Vertically 
polarized light scattering off diagonally oriented particles. As before, 
material is deposited at regions of constructive interference. (d) An 
extrapolation of the lamellar structure that would develop from this 
distribution of particles. The otherwise straight lamellae kink due to the 
random distribution of particles. 
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3.3 Ordered Growth on Abraded Electrodes  

Insight into the role of surface texture on film morphology was serendipitously 

gleaned during investigations into growing lamella on materials other than silicon. Platinum 

surface electrodes were fabricated by etching a (111) single side polished silicon wafer 

(Addison Wafers, n type, P doped, ρ < 0.005 Ω∙cm) in buffered hydrofluoric acid (Transene) 

for 30 seconds to remove surface oxide. The wafer was then loaded into a metal evaporator 

(Denton Vacuum) and pumped down to less than 1∙10-5 Torr. A 10 nm layer of titanium (Kurt 

J. Lesker Company, 99.995%) was deposited via electron beam evaporation at 10 kV 

accelerating voltage and 40 mA emission current. This layer formed an ohmic contact to the 

silicon as well as serving as an adhesion layer. A 50 nm platinum layer (Kurt J. Lesker 

Company, 99.99%) was subsequently deposited on the titanium layer without breaking 

vacuum. The wafer was then scribed into squares approximately 5 mm on a side. A eutectic 

composition of gallium (Alfa Aesar, 99.99%) and indium (Kurt J. Lesker Company, 99.99%) 

was scratched into the back side of the electrodes to make ohmic contact. Electrodes were 

then fixed to aluminum rods with flash dry silver conductive paint (SPI Supplies), and the 

edges of the electrodes and any exposed metal were covered with clear nitrocellulose-based 

nail polish. 

Photoelectrodeposition was performed potentiostatically at -0.2 V vs Ag/AgCl (CH 

Instruments, 1 M KCl solution) for 150.0 seconds using a Bio-Logic VMP-3 multichannel 

potentiostat. The plating bath was an aqueous solution composed of 20.0 mM SeO2 (Alfa 
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Aesar, 99.5%), 10.0 mM TeO2 (Sigma Aldrich, 99%) and 2.00 M H2SO4 (J. T. Baker. 

ACS Reagent Grade). A 6 mm diameter graphite rod (Sigma Aldrich, 99.995%) was used as 

the counter electrode. Samples were illuminated with a broad spectrum halogen lamp fitted 

with an ELH bulb. The light was directed through a glass diffuser (Thorlabs, DG20-600) 

before being passed through a wire grid polarizer (Edmund Optics, #34-254) into the 

electrochemical cell. A photodiode (Thorlabs, FDS100) inserted into the electrochemical cell 

was used to measure light intensity. The intensity was tuned to 25 mW∙cm-2 by adjusting the 

positions of the lamp and the polarizer. 

Following deposition, electrodes were examined in a scanning electron microscope. 

It was observed that, while most of the surface exhibited the sort of morphology seen in 

previous studies, there were many isolated domains of abnormally straight lamellar growth. 

Besides being morphologically distinct from the surrounding area, the orientation of the 

straight lamella often differed from the orientation of the rest of the film’s lamella. Instead 

of growing along the polarization direction of the light, the straight lamella would often grow 

several degrees rotated from the expected direction, though no large regions of straight 

growth were observed offset more than 15° from the polarization direction. Interesting 

features were also growing at larger angles from the polarization directions. At offsets 

between 15° and 50°, lines of doglegs in the lamella were observed. The lamella on one side 

of the feature would briefly grow at a different angle at the feature, before returning to the 

normal growth direction on the other side of the feature. At higher angles than that, the 

underlying structure produced abrupt breaks in the lamellar growths. 

  



 

 

35 
 

 

Figure 9: Lamellar Morphology near Scratches 

Top left: Domains of abnormally straight growth slightly misaligned with 
overall lamellar growth. Top right: Diagonal “dogleg” pattern that 
appears when underlying structure is misaligned with polarization 
direction. Bottom left: Overview of growth near deep, crossed scratches. 
Bottom right: higher magnification of the features in the bottom left 
image.  
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These domains of distinct growth have only been observed on metalized silicon 

surfaces, never on uncoated silicon electrodes. The random orientation of the straight 

domains and their presence only on surfaces that have a deformable top layer informed the 

hypothesis that the ordered domains were a consequence of scratches made inadvertently 

during the electrode fabrication process. When the GaIn eutectic was scratched into the back 

of the electrodes, the faces of the electrodes may have been abraded by the clean room wipes 

(Texwipe, TX624) they were placed. Silicon, by contrast, is substantially harder than 

platinum, and would be less likely to pick up scratches in this process. 

These scratches could be a source for the nonrandom scatterers needed to impose 

greater order on the deposited films. The ridges created accidentally during handling could 

be good light scatterers themselves. It is also possible that the abrasions could serve as 

nucleation centers for the selenium tellurium alloy, which could then serve as a dipole 

scatterer itself. 

3.4 Simulated Growth 

Simulations were done to explore the role of ridges in controlling the lamellar 

structure of films grown on nonplanar substrates. The simulations involved a two-step 

process to simulate light absorption in the computed structure and add material to regions 

with the highest list absorption. The growth in the vicinity of a single 100 nm wide by 100 

nm tall ridge was simulated using 630 nm incident light polarized such that the polarization 

vector ran parallel to the ridge. It should be noted that the boundary conditions for these 

simulations are periodic, so the nominally isolated ridge is in fact physically analogous to an 
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array of ridges spaced 6 microns from one another. However, as the simulation results will 

indicate, the effects of the ridge are short ranged enough that any effects due to long range 

periodicity can be discounted. 

The grayscale images are simulated scanning electron micrographs. They are 

generated by taking the three dimensional simulated volumes and determining the highest 

voxel occupied in each column. A shade of gray is then assigned to each coordinate, with a 

white pixel assigned to the highest maximal cell in each simulation iteration and a black cell 

assigned to the lowest maximal cell. This generates images that look similar to SEMs taken 

with correctly adjusted brightness and contrast. 

In the control simulations, the early iterations result in the addition of matter 

randomly across the surface. This is a consequence of the fact that matter addition in the 

model is weighted by the local light absorption, but it is still added randomly. At early times, 

light absorption is equal throughout the surface, so the matter is added isotropically. In later 

iterations, there are subtle ridges that are just becoming visible. As some regions randomly 

gain matter in a configuration conducive to lateral scattering, the light absorption in those 

regions becomes anisotropic, resulting in the deposition of these early ridges. The emergence 

of the lamella progresses further in subsequent iterations. The apparent roughness decreases 

as the height of the lamella becomes much greater than the height of the random surface 

roughness. Finally, in the last shown iteration, the simulation arrives at a structure very 

similar to the result one would actually arrive at by electrodepositing the selenium tellurium 

alloy under illumination. 
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Figure 10: Simulated Growth on a Planar Surface 

(a) Early simulation iteration showing only random nucleation on the 
surface. (b) Intermediate iteration highlighting the early development of 
lamellar features. (c) Final iteration, with fully developed lamellae 
throughout the simulation area.  
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In the earliest iterations of the simulation with the substrate with a single ridge, the 

deposition in the planar portion of the substrate also appears to be isotropic. This is the 

expected result. The platinum substrate is not photoactive, so the model does not weight the 

light absorption in the addition of mass. A photoactive layer of the selenium tellurium alloy 

must first be deposited to generate light mediated growth. Later iterations show precisely this 

happening. Once the randomly added selenium tellurium layer is in place, light absorption 

becomes highly localized in bands adjacent to the scattering ridge. The bands directly 

adjacent to the ridge are the most pronounced, but a second set of band further from the ridge 

are just visible. Subsequent iterations show the formation of relatively long, continuous 

lamella where the innermost bands were in the previous iterations. These lamella are not as 

straight at the central ridge, but they are much straighter than the surrounding lamella 

growing in the planar region. The growth on the top of the ridge is also bifurcating and 

spreading outward into the space nearby. This is likely caused by the strong absorption at the 

edges of the ridge directing growth to the ridge’s corners and sidewalls. The two lamella that 

develop on the top of the ridge seem to effectively crowd one another out of the center of the 

ridge. This is likely the result of the developing lamella absorbing the light that would 

otherwise reach the center of the ridge and make possible the growth needed to bridge the 

gap between the two ridge lamella. In the final iteration, two extremely straight lamella have 

been formed from the central ridge. The lamella immediately adjacent to the central ridge 

are appreciably straighter than lamella from the control simulations, as well. As lamella get 

further from the ridge, however, they revert to a level of disorder that almost matches the 

disorder of the control case. This can be rationalized by considering the scatterer distribution 

argument previously put forward. The lamella immediately adjacent to the ridge have 
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randomly distributed scatterers on one side, and a continuous line of scatterers on the other. 

This can be credited with the increased straightness of the lamella next to the ridge as opposed 

to the control lamella. However, while they are straighter than they would be without the 

influence of the ridge, the straightened lamella are not as straight as the ridge. The second 

lamella out from the ridge are principally influenced in their growth by the random scatterers 

in the planar region on one side and by the abnormally straight, but still not perfectly straight, 

growths that form adjacent to the ridge. Lamella even further from the ridge are increasingly 

disordered as they get further from the ridge, until they are ultimately not appreciably more 

ordered than the lamella observed in the control simulation. 
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Figure 11: Simulated Film Morphology at a Ridge 

(a) Initial simulation iteration showing the narrow ridge as the dominant 
feature on the electrode. (b) Intermediate image showing the film 
morphology developing in response to the substrate structure. (c) Final 
iteration illustrating the straight lamellar growth predicted in the vicinity 
of the ridge. 
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The previously discussed simulation offered insight into the growth near a ridge, 

but that is not the only geometry that might be generated by a scratch in a surface. Abrasions 

would also create abrupt edges where the surface of the material transitions from the cavity 

generated by the scratch to the original surface level. To understand the behavior at these 

step edges, a simulation was performed under the same conditions as before, except with a 

substrate featuring a 100 nm tall, 3 µm wide strip of material rising out of the electrode 

surface. At early times, the growth, as before, is isotropic since there is insufficient 

photoactive material deposited on the substrate to generate anisotropic light absorption. 

Shortly thereafter, straightened lamella develop adjacent to the step edges. These bands occur 

on both the upper and the lower surfaces. The lamella that grow right on the edges of the 

ridge are extremely straight, and they appear to expand outward into the space above the 

lower region. These lamella grow outward, likely because the outside edges of the step edge 

lamella absorb more light than the inner edges. The inner edges are effectively competing 

with the material in the adjacent lamella for light, while the outer edges have no such nearby 

competition, causing more light to be absorb on those edges, which in turn promotes the 

outward growth of the step edge lamella. As before, the ordering generated by the modified 

substrate geometry does not strongly influence the deposited film morphology more than one 

lamella away from the step edge. 

The short range effect of surface perturbations on lamellar ordering suggests that the 

patches of the platinized electrodes that exhibit extraordinary straightness may be the result 

of many parallel grooves on the order of the wavelength of light. This possibility was also 

investigated via simulation. A series of simulations were conducted with substrates with 
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multiple parallel 100 nm by 100 nm ridges. The simulated electrode area was 6 µm by 6 

µm. Simulations were conducted with four ridges per substrate with a ridge-to-ridge pitch of 

1.5 µm, eight ridges with a 750 nm pitch, sixteen ridges with a 375 nm pitch, and thirty two 

ridges pitched 187.5 nm apart. 

The simulation featuring the most widely spaced ridges resulted in straightened 

growth across the entire substrate. The ridges gave rise to the straightest lamella, as seen 

previously. The lamella that formed adjacent to the ridges were straighter than the nearest 

neighbor lamella that grew adjacent to the step edges or the isolated ridges. In those two 

cases, the disorder in the lamella adjacent to the ridge was attributed to the random 

distribution of scattering sites on the side of the lamella opposite to the substrate feature. In 

the case of closely packed ridges, this same argument no longer applies. Instead of having 

randomly placed scatterers, the lamella adjacent to the ridges have other ridge-adjacent 

lamella as the source of the light scattering from the side opposite the ridge. Notably, none 

of the lamellar branching at the top of the ridges that took place in the isolated ridge 

simulation was observed in this experiment. In contrast to the isolated ridge case, where there 

was enough disordered growth to allow the lamella adjacent to bow outward and make room 

for the ridge lamella to widen and ultimately split, the multiple ridge case has built-in 

geometrical constraints on how far a lamella can move before it gets too close to another 

lamella to absorb enough light to continue growing. The packing of the straightened lamella 

forces the ridge lamella not to split. Counting from left to right and accounting for periodic 

boundary conditions, there are twelve lamella in 6 µm, for a lamella-to-lamella pitch of 500 

nm. The expected pitch for a planar substrate is 235 nm. When deposition takes place on a 
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randomly nucleated surface, there will in general be some scattering sites spaced the 

expected λ/2n apart. In the structured case, however, the scattering is dominated by the 

ridges, which may explain the approximate pitch doubling observed in this simulation. 
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Figure 12: Simulated Film Morphology near 1.5 Micron Pitch Ridges 

(a) Initial simulation iteration showing the narrow ridges as the dominant 
features on the electrode. (b) Intermediate image showing the film 
morphology developing in response to the substrate structure. (c) Final 
iteration illustrating growth straighter than the control throughout the 
sample. 
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The next simulation in the set is the simulation with ridges spaced 750 nm apart. 

Early growth between the ridges is spread throughout the available area, with the notable 

lack of growth immediately adjacent to the ridges. This is in fact a general feature of these 

simulations. The ridges effectively get the first chance to absorb the incoming light, and they 

are able to absorb light that would otherwise reach the surface near the edge. This is why 

there is so little growth immediately adjacent to the ridges. As the structure develops, the 

growth between any given pair of ridges converges to a single lamella. These lamellar are as 

straight as the ridge derived lamella. The lamella that grow on the flat substrate have ridge 

derived scatterers on both sides of them. In this case, there is minimal disorder among the 

scatterers that direct the growth of the substrate lamella, so these lamella become very 

straight. Once again there is a discrepancy between the predicted pitch for growth on planar 

substrates and the growth seen in this simulation. Here the measured pitch is 375 nm, 

compared to the prediction of 235 nm and the previous observation of 500 nm. Early 

iterations is this simulation show that there is initially a wide band where light is being 

scattered, as indicated by where the matter is deposited. However, as seen in the previous 

simulation, the growth converges to a structure that depends on the initial geometry of the 

substrate. 
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Figure 13: Simulated Film Morphology near 750 nm Pitch Ridges 

(a) Initial simulation iteration showing only the ridges and random 
nucleation. (b) Intermediate image showing area between ridges growing 
into early lamellae. (c) Final iteration illustrating the highly straightened 
growth produced by this substrate. 
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The next substrate has twice the density of ridges as in the previous simulation. 

Here there are sixteen ridges with a pitch of 375 nm. The growth in this case is the most 

straightforward of all the simulations so far. The lamellar growth only occurs at the tops of 

the ridges. There is not enough space between the ridges to accommodate the development 

of lamella on the substrate surface. Growth is straight for all the lamella, because they are all 

constrained to grow on top of the ridges. As noted before, the ultimate lamellar pitch differs 

from the planar case. Here the lamellar pitch matches the pitch seen in the previous 

simulation, with 375 nm between lamellae. 
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Figure 14: Simulated Film Morphology near 375 nm Pitch Ridges 

(a) Initial simulation iteration showing the many ridges on the substrate. 
(b) Intermediate image with lamellae growing directly up from ridges. (c) 
Final iteration depicting straight growth. 
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The final simulation in this set has double the ridge density of the previous example. 

The thirty two ridges are spaced with a pitch of 187.5 nm. Initially the growth takes place on 

top of all the ridges to an equal extent. This growth is unstable, however. Due to the small 

spacing between the ridges, the scattering from a ridge supports the growth on ridges one 

ridge removed from it. The scattering of light does not reinforce growth on the nearest 

neighbor ridges. It is fruitful to think of the ridges as two interdigitated sets of ridges, each 

of which scatters light preferentially among its members. Eventually, once enough material 

has been added, one set of ridges will randomly have more mass than the other, and the 

scattering from that set comes to dominate the overall light scattering that takes place. This 

results in greater light absorption in one of the two sets of ridges, which in turn results in 

faster growth on that set. This process feeds back on itself, with the ridge set that absorbs 

light better growing faster, which in turn makes that ridge set absorb light even better still. 

In the simulation, one set of ridges begins overtaking the other across the entire substrate at 

once. This indicates that this process is cooperative and somewhat long-ranged. How long-

ranged this ordering effect is could not be determined from the simulations, as the computer 

used for the simulations had difficulty handling larger simulation volumes. What would 

happen at the interface between regions where different sets of ridges predominated remains 

an interesting, unanswered question. In this simulation, as before, the final pitch of the 

lamella is not the expected pitch. However, the pitch of the original ridges was apparently 

too small for the lamella to accommodate. The pitch ended up converging to that seen in the 

previous two simulations. 
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Figure 15: Simulated Film Morphology near 187.5 nm Pitch Ridges 

(a) Initial simulation iteration showing many closely spaced substrate 
ridges. (b) Intermediate image where one set of ridges begins to 
predominate. (c) Final iteration with the structure converged to that in 
previous simulations. 
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3.5 Lithographically patterned substrates 

To validate the predictions made by the simulation with an elevated strip on the 

substrate, silicon substrates were prepared to match the simulated substrate geometry. Non-

photoactive, degenerately doped (100) wafers (Addison Wafers, p type, B doped, ρ < 0.005 

Ω∙cm) were cleaved into 15 mm strips and cleaned with deionized water, acetone, 

isopropanol, acetone, and then water before being etched for 30 seconds in buffered 

hydrofluoric acid (Transene). Wafer pieces were then transferred to a quartz tube and placed 

in a tube furnace (Carbolite). The tube was purged with a flow of 2 standard liters per minute 

of argon. The tube was then heated to 1000° C. The argon flow was then bubbled through 

deionized water held at 95° C to incorporate water vapor into the argon stream. The wet 

thermal oxidation of the wafer was allowed to continue for 1 hour, at which time the argon 

was rerouted so that it was no longer carried water vapor into the tube. The furnace heater 

was turned off, and the sample was allowed to cool to room temperature. 

The thermal oxide was then prepared for photolithography. The SiO2 surfaces were 

cleaved into approximately square pieces before being washed with water, isopropanol, 

acetone, isopropanol, and water sequentially. They were then loaded into a spin coater 

(Laurel Technologies Corporation) and treated with MCC Primer 80/20 (Microchem). The 

surface was coated with the primer by spinning it at 3000 rpm for 1 minute, after which time 

the sample was placed on a hotplate held at 125° C for 1 minute. The wafer pieces were 

placed back into the spin coater, and the surface was covered with S1813 photoresist 

(Microchem). The resist was spun to a uniform thickness at 3000 rpm for 1 minute. The 

substrate was then soft baked on a 125° hot place for 1 minute. The wafers were then 
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patterned with parallel lines 3 µm wide. The patterned wafers were developed in MF 319 

developing solution (Microchem). 

The oxide was removed from the exposed regions by placing the patterned substrates 

in buffered hydrofluoric acid for 5 minutes before rinsing the substrates with copious 

amounts of deionized water. The residual photoresist was removed by soaking the wafers in 

acetone for 10 minutes. The wafers were given a quick 10 second etch to remove any native 

oxide that had formed on the exposed silicon. They were then placed in a 30% aqueous KOH 

solution at 30° C for 2 minutes. This etch step removed approximately 200 nm of silicon 

where there was no SiO2 to keep the basic solution from etching the wafer. The wafer pieces 

were removed from the KOH solution and rinsed with water. They were then etched for 5 

minutes in buffered hydrofluoric acid to remove the remaining SiO2 etch mask. The resulting 

substrates consisted of 4.5 µm flat grooves 200 nm deep into the substrate. The widening of 

the features was a consequence of the exposure conditions used and undercutting during the 

first hydrofluoric acid etch of the thermal oxide. Given that simulations predict that the 

ordering effects that take place at the surface step edges are relatively short-ranged, the exact 

width of the grooves is believed to be of little importance. 

Wafers were then scribed into roughly 5 mm by 5 mm squares. Ohmic contacts were 

made to the backs of the electrodes using a eutectic mixture of gallium and indium scratched 

in with a tungsten carbide scribe. Electrodes were mounted to an aluminum rod using flash 

dry silver paint. Nitrocellulose-based nail polish was used to seal the edges of the electrode 

and to cover any exposed metal. Electrodes were etched for 10 seconds in buffered 

hydrofluoric acid immediately before being used. 
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Photoelectrodeposition was performed potentiostatically at -0.2 V vs Ag/AgCl 

(CH Instruments, 1 M KCl solution) for either 75.0 seconds or 150.0 seconds using a Bio-

Logic VMP-3 multichannel potentiostat. The plating bath was an aqueous solution composed 

of 20.0 mM SeO2 (Alfa Aesar, 99.5%), 10.0 mM TeO2 (Sigma Aldrich, 99%) and 2.00 M 

H2SO4 (J. T. Baker. ACS Reagent Grade). A 6 mm diameter graphite rod (Sigma Aldrich, 

99.995%) was used as the counter electrode. Samples were illuminated with a broad 

spectrum halogen lamp fitted with an ELH bulb. The light was directed through a glass 

diffuser (Thorlabs, DG20-600) before being passed through a wire grid polarizer (Edmund 

Optics, #34-254) into the electrochemical cell. A photodiode (Thorlabs, FDS100) inserted 

into the electrochemical cell was used to measure light intensity. The intensity was tuned to 

25 mW∙cm-2 by adjusting the positions of the lamp and the polarizer. The grooves in the 

substrate were aligned to the edge of the electrode body to which the substrates were 

attached, and the polarizer was aligned so that the polarization direction lined up with the 

long dimension of the grooves. 

SEMs of the resulting morphology match well with the simulated structure near the 

step edge. In the short, 75 second depositions, the lamella immediately adjacent to the ridges 

are much more pronounced than the lamella in the planar portion of the electrode. This is the 

result of light being most strongly scattered to the areas immediately adjacent to the ridges. 

The anisotropic scattering that directs light preferentially to the lamella immediately adjacent 

to the ridge causes those lamella to grow more rapidly that the lamella elsewhere on the 

electrode. This explains the contrast between these lamella and the other lamellae on the 

surface. 
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After 150 seconds of growth, the rest of the surface appears to have effectively 

caught up with the lamellae immediately adjacent to the surface discontinuity. The increased 

resistance of the longer lamellae would reduce the amount of current that flows to the tip of 

those lamellar relative to the current through the shorter lamellae. The straightened lamellae 

match the straightness of the lithographically patterned feature. These straight lamella 

continue unbroken for upwards of 100 µm. They are also well localized to the substrate 

structure that generates the pattern. Examination of the SEMs shows that the disorder of the 

lamellae far from the step edge is similar for lamellae further from the step edge than nearest 

neighbor lamellae. This observation matches well with the simulated prediction. 
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Figure 16: Lamellar Structure at Lithographically Defined Step Edges 

(a) Early stage lamellar growth (75 seconds elapsed). (b) Final structure 
after 150 seconds of growth. 
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The ordering effect of the step edges is promising, but the short range of the effect 

limits the ability to get extremely high fidelity periodic patterning of long areas. In an attempt 

to find conditions that result in regular patterns over larger areas, shorter wavelength 

illumination was investigated. Previous reports on these self-ordering films have shown that 

at short wavelengths, nodules form along the length of the lamella. These nodules are 

believed to be the result of a nearfield optical scattering effect. The short range of this light 

scattering results in nodules ordered more regularly than the lamellae themselves. The aim 

in using short wavelengths for depositions in this case was to determine if the highly ordered 

growths that develop near the substrate features are able to enforce order out to greater 

distances than in the long wavelength case. 

Lithographically patterned electrodes were fabricated as previously described. 

Control electrodes were made of 5 mm by 5 mm square pieces of a wafer from the same 

cassette as the wafer that was lithographically patterned. The control electrodes were 

contacted with GaIn eutectic and sealed to the electrode bodies with flash dry silver paint. 

The electrodes were sealed with nail polish, and electrodes were etched immediately before 

use. The electrodeposition was conducted using the same conditions as those used for the 

electrodes illuminated with the broadband light source, except that the samples were only 

deposited for 150.0 seconds. The light source used was a 420 nm light emitting diode 

(Thorlabs, M405L3) collimated into a beam. The optical setup was the same as the one used 

in the previous experiment, except that the polarizer was rotated so that the polarization 

direction was normal to the groove direction so that the step edge would have an ordering 
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effect on the secondary nodule growths. The power output of the LED was adjusted such 

that the intensity at the electrode was 20 mW∙cm-2 as measured by a photodiode. 

The SEM of the control electrodes shows ordered nodules throughout the surface. 

These growths pack closely together, and they are grouped into snaking chains that undulate 

substantially. The secondary growths are much better ordered in the SEM taken of the 

structured electrode. The top half of the image is the portion of the silicon wafer that was 

protected from the KOH etch by the SiO2 etch mask, while the bottom half is the groove 

produced by the etch process. The nodules at the step edge are very well ordered on both 

sides of the step. On the upper surface, the ordering of the nodules persists for three rows 

away from the edge, verifying that the substrate induced ordering of these growths is stronger 

than for the longer wavelength lamellar growths. On the lower, etched surface, the fidelity 

of the pattern remains excellent up to several microns away from the surface step. This shows 

that, using a structured substrate, it is possible to translate a feature size accessible by simple, 

laboratory photolithography (~µm) into sub-wavelength features using a low cost 

photoelectrochemical treatment. 
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Figure 17: Secondary Lamellar Structure at Lithographically Defined Step Edges 

(a) Control electrode with undulating nodular growth. (b) Structured 
electrode with large patches of well oriented nodular growth. 
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3.6 Abraded Substrates 

The ability to deposit high fidelity structures in registry with defined features on the 

electrode surface increases the feasibility of using photoelectrodeposition of lamellar films 

to complement traditional higher precision patterning techniques. However, the greatest 

control of the growth morphology of these selenium tellurium films was achieved when the 

surface texturing size was commensurate with the final feature size of the resultant films. 

The best simulated film fidelity was observed when the ridges were spaced approximately 

one lamellar period apart. However, if it is possible to generate that ridge pattern 

lithographically, then the growth of lamellae on top of that pattern provides negligible 

benefit. If one wishes to leverage the self-structuring of the lamellar films to pattern 

structured surfaces, the treatment required to structure the underlying substrate should ideally 

be low cost. 

This observation motivates the return to studying the abrasions that were believed to 

be the origin of the original observations of highly oriented domains. The abrasions on the 

original films were all adventitious and in general there were abrasions running in many 

different directions. Intentional abrasion of the electrode surfaces would produce a more 

uniform distribution of microscopic surface scratches, both in terms of the orientation of the 

scratches and in terms of their distribution across the electrode surface. 

To abrade electrode surfaces uniformly, a cubic block of aluminum measuring 5 cm 

on a side was placed on a hot plate heated to 150° C. Several flakes of QuickStick 135 

mounting wax (EMS Diasum) were added to the top of the heated block. Once the wax had 
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melted, it was spread uniformly over the surface of the block. A 5 cm square piece of 

silicon was pressed into the adhesive, and the block was moved off the hot plate to cool. A 

slurry of 1 µm diamond particles (Micro-Di) was added to a 30 cm diameter polishing pad. 

An aluminum rail was clamped in place on the pad, and the block with the wafer mounted to 

it was held against the rail with the wafer in contact with the slurry. The block was then 

repeatedly moved across the surface, using the rail to ensure that all the abrasion took place 

in the same direction. The wafer was moved approximately 20 cm across the polishing pad 

100 times to ensure the entire wafer would be abraded. The wafer and block were then rinsed 

with deionized water and heated to 150° C to melt the mounting wax. The wafer was then 

removed and allowed to cool to room temperature. It was then washed with soap, water, 

isopropanol, acetone, isopropanol, and water sequentially. The resulting electrodes featured 

parallel abrasions across their entire surface. 
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Figure 18: DIC Image of Abraded Surface 

Differential interference microscope image of an abraded silicon sample. 
Scratches of many different sizes cover the silicon surface. 
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Lamellae were grown on the abraded substrates using both highly monochromatic, 

532 nm laser light and broad band light from an ELH halogen lamp. All electrodes were 

fabricated as previously described, as were control electrodes. In both cases the illumination 

power incident of the electrodes was tuned to 25 mW∙cm-2. The polarization direction of the 

light was set to be parallel to the scratch direction. 

The SEMs taken of the electrodes illuminated with the 532 nm laser during 

deposition reveal the striking effect of substrate texturing on the resultant film morphology. 

The control SEM shows the sort of growth expected; the deposit is certainly ordered, but the 

lamellae tend to curve at random, producing a sinuous network of material. The Fourier 

transform of the control image shows this relative disorder. Most of the intensity in the 

transform is in the broad spots on either side of the image center. This indicates that the 

periodicity that we would assign to the lamellae is not truly regular. There must be many 

different inter-lamellar distances to produce all the frequency components seen in the Fourier 

transform. It can also be seen from the transform that the lamellae grow at a wide range of 

angles. The intensity at points off of the main axis of the transform reflects the presence of 

spatial frequency components that are not perfectly normal to the polarization direction. If 

all the growth were well aligned, there would not be the vertical spread in the bright spots. 

The tightly spaced frequency components above and below the center of the Fourier 

transform represent the nodules that form along the length of lamellae. These nodules are 

more consistently spaced, as can be seen by the narrowness of the spot. However, owing to 

the wavering of the underlying lamellae, what would ideally be a small spot has been 

stretched into an arc. 
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The SEM from the abraded electrode differs substantially from the SEM of the 

control. The lamellae are clearly much straighter, even by eye. There is also much less void 

space between the lamellae. Single lamellae are seen to travel in a straight, unbroken line 

across the entire image. Compare this behavior to that seen in the control sample, where a 

single lamella will typically only persist for several microns before being subsumed by 

another lamella. There is a much greater abundance of nodules along the lamellae for the 

scratched substrates. Because the nodules grow through nearfield, highly directional 

scattering, it is plausible that curved lamellae are less able to support these secondary 

structures. Nodules can only grow on top of existing lamellae, so if there is a kink in a 

lamella, the near field scattering near that kink would potentially end up in open space where 

it would be incapable of generating a nodule. The Fourier transform of the SEM offers 

interesting insights, as well. Compared to the Fourier transformed image of the control 

substrate, most of the horizontal intensity in the transformed abraded image is tightly 

distributed around the horizontal axis. This means that there is very little intensity from the 

diagonal spatial frequencies in the transformed image, which is a consequence of the extreme 

straightness of the lamellae. The vertical spots in the Fourier transform correspond to the 

periodicity of the nodules growing on the lamellae. The high intensity of those spots reflects 

the abundance of nodules in the deposit. The intensity of the nodule associated peaks is also 

more concentrated toward the center of the arc, in contrast to the roughly equal intensity arcs 

seen from the control sample. The nodules growing on the abraded sample are more 

consistently aligned than those on the control sample. 
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Figure 19: Lamellae Grown with 532 nm Light on Abraded and Planar Surfaces 

(a) Control sample grown on a surface without abrasions. (b) Highly 
straightened lamellae grown on abraded surface. (c) FFT of panel a. (d) 
FFT of panel b. 
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The morphology of the white light grown lamellae shared many features with the 

lamellae grown with laser illumination. In the case of the control sample, the lamellae grow 

roughly aligned with the polarization direction of the light, but they meander back and forth 

across the electrode. They often cross paths with other lamellae and either merge with them 

or terminate into their sides. The average lamella is still relatively short, measuring only a 

few µm. The Fourier transform of the SEM is similar to that of the green control sample. The 

transform features large, diffuse spots on the axis normal to the polarization direction. The 

prevalence of lamellar growth along directions not completely parallel to the polarization 

axis is clear from the large spots in the transform. There is no vertical spot in the transform, 

consistent with the fact that the nodules seen in the green sample develop much less readily 

when the illumination source has more of its intensity coming from red or infrared light. 

The abraded sample grown in white light has a dramatically different appearance than 

the control. The lamellae grow straight across the micrograph, with some small, particulate 

growth still visible in some places. The lamellae are well separated, with a larger amount of 

void space visible than in the SEM of the abraded sample illuminated with 532 nm light. 

While the lamellae are all very straight, the spacing between them varies more than seen in 

the other samples. This observation is supported by the Fourier transform of the micrograph. 

The transformed images features a continuous strip of intensity along the horizontal axis. 

The intensity peaks at the same locations relative to the center of the image as the intensity 

peaks in the transformed control image. The most common spacing in the abraded sample 

matches that in the control sample, but all other spacings are represented in the abraded 
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sample. As before, the Fourier transform confirms the absence of the secondary nodule 

growth, owing to the long wavelength of the light source. 

The wide variation in the spacing between lamellae is a result of the many different 

scratch widths in the abraded surface. While the abraded sample illuminated by 532 nm light 

had a single predominant period, that was the result of the light source being a laser, and 

therefore monochromatic. The halogen lamp light source emits light across the entire visible 

and near infrared range. Given a diverse range of scattering ridge separations, some ridges 

will be spaced correctly to optimally scatter specific wavelengths of light, in which case the 

effect of that wavelength of light will be outsized relative to the amount of the incoming 

optical power attributable to that wavelength. In the case of white light illumination, the 

increased spatial ordering from straightening the lamellae comes at the cost of spatial 

disorder from the widely varying inter-lamellar spacing. 
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Figure 20: Lamellae Grown with White Light on Abraded and Planar Surfaces 

(a) Control sample grown on a surface without abrasions. (b) Highly 
straightened lamellae grown on abraded surface. (c) FFT of panel a 
showing round horizontal features. (d) FFT of panel b showing a narrow 
horizontal line. 
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3.7 Conclusions 

Understanding the role that substrate structuring plays in influencing the morphology 

of photoelectrochemically deposited lamellar structures expands on the toolset available to 

generate bespoke nanostructures via simple, solution phase processes. The use of patterned 

electrodes has been shown to be an effective, low cost way to improve the pattern fidelity. 

The use of varied surface features joins the use of different optical inputs to dictate film 

morphology. 

While this particular study is complete, it suggests many potential fruitful avenues 

for future researchers to pursue. There is an interesting interplay between the periodicity of 

the substrate and the wavelength of the light source, as evidenced by simulations and the 

morphology of the structures grown on abraded surfaces under white light illumination. 

However, the relationship between the two factors is not fully understood. Furthermore, as 

will be discussed in the following chapter, there is value into getting an extremely periodic 

lamellar pattern across macroscopic areas for the purposed of optical device fabrication. The 

result that the nodules pattern very nicely near step edges is a promising first step. What 

remains to be done is to optimize the deposition conditions and grow these structures on 

substrates with smaller, roughly 1 µm separations between the step edges. Finally, this study 

illustrates that lamellae deposit adjacent to the step edges. A quantitative investigation of this 

behavior would be of interest in the context of multiple patterning. 
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C h a p t e r  4  

STRUCTURAL COLORATION OF SELF-STRUCTURED 

PHOTOELECTRODEPOSITED SEMICONDUCTING FILMS 

4.1 Introduction  

Though most familiar coloration comes from pigments and their absorption of 

specific wavelengths of light, there are many other examples of color arising from the 

microscopic structure of a material.62–65 The iridescent color of soap bubbles is a 

consequence of interference taking place in the thin soap layer at the edge of the bubble.66 

The colorful, angle dependence appearance of CDs, DVDs, and the holograms on credit 

cards is the result of diffraction off of microscopic surface features. Structural color is also 

the source for many of the most striking colors found in nature. The blue coloring in peacock 

feathers and Morpho butterfly wings is the result of microscopically structured material that 

preferentially reflects specific wavelengths. 

The development and characterization of microscopic structures that interact with 

light in an angle dependent, polarization dependent, and wavelength dependent manner has 

generated substantial scientific interest.67–71 Because the color of these structures depends 

crucially on their microscopic geometry, researchers have many degrees of freedom with 

which to manipulate the optical response of these materials. Both alterations to the structure’s 

overall geometry and the specific dimensions of the structure can have dramatic effects on 

the color of the material. Many different fabrication techniques have been brought to bear on 
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the problem of how to create these structures. High capital cost processes such as 

photolithography and e-beam lithography have both found substantial use in patterning 

surfaces to create grating-like structures.72,73 Colloidal self-assembly of nanoparticle 

templates has been used to make three dimensional photonic crystals, though only a limited 

class of structures are accessible by using this technique.74–76 Two-photon lithography has 

been used to create many diverse structures that extend out of the plane of the substrate, 

though the process is both expensive and serialized.77,78 

The photoelectrodeposited films discussed in the previous section spontaneously 

develop subwavelength features spaced regularly across the electrode surface. These periodic 

structures are similar to those found in devices designed to exhibit structural color. In fact, 

the microscopic structure of iridescent blue butterfly wings is very similar to the structure 

that the selenium tellurium films discussed in the previous chapter naturally adopt. The 

morphology of these structures can also be modified using the host of techniques previously 

discussed if one wished to tune the properties of the resulting film. Photoelectrodepositing 

self-structuring semiconductor films has the potential to deposit structures that exhibit 

structural color in a low cost, scalable way. The following chapter will consider initial forays 

into creating structural coloration using phototropic growth of semiconductors. 

In considering the potential applications of photoelectrodeposited lamellar structures 

as optical devices, it is helpful to compare the spontaneously developing film morphology to 

that of existing structures known for their wavelength and angle dependent light response. 

Of particular interest are two examples drawn from disparate origins, specifically the 

structure of holographic diffraction gratings that allows them to separate light wavelength 
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and the surface structure on Morpo butterfly wings that is responsible for the butterflies’ 

deep blue color. 

Holographic diffraction gratings are common components used in monochromators 

and spectrometers to split light into the various wavelength components in the original beam. 

They are produced by shining two laser beams at a sample coated with photoresist. The two 

beams interfere and produce a series of intensity fringes across the illuminated surface.79 This 

variation in intensity across the surface causes only specific regions of the photoresist to be 

exposed. When developed, the result is a sinusoidal pattern on the surface of the substrate. 

These surfaces are given a reflective coating and then used in optical devices. Light incident 

upon this patterned surface is then diffracted according to the grating equation:80 

𝑛𝑛𝑛𝑛 = 𝑑𝑑(𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 − 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑜𝑜) 

Here the spacing between surface ridges is d, n is the order of the diffracted light, θi 

is the angle between the angle between the incoming light and a vector normal to the grating 

surface, and θo is the angle between the outgoing light and a vector normal to the surface. In 

an ideal grating with a constant separation between ridges, only a very narrow band of 

wavelengths will be measurable at any single outgoing angle. 

Butterfly wings also exhibit structure-derived light scattering, though somewhat 

differently. When viewed under a light microscope, the wings of a butterfly, in this case a 

Morpho menelaus butterfly (ButterfliesAndThings.com), are made up of scales roughly 75 

µm long. When viewed in a scanning electron microscope, ridges running along the long 

axis of the scale become apparent. At further magnification still, one can see that the ridges 
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have lamellae lining their sides. These lamellae are composed of transparent chitin. The 

bright blue coloration of Morpho butterfly wings is a consequence of a combination of both 

grating-like diffraction off the lamellae and multi-layer interference through the transparent 

layers.81–84 The butterfly wings have a brilliant blue color when viewed from a wide range 

of angles, though the color does depend somewhat on viewing angle. 
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Figure 21: Butterfly wing structure responsible for coloration 

(a) Microscope image showing colored scales that comprise Morpho 
wing surface. (b) SEM of the ridges on a scale. 
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Both diffraction gratings and butterfly wings bear comparison to the lamellar 

structures discussed in the previous chapter. In all cases, the surfaces are composed of 

periodic structures. More importantly, like diffraction gratings and butterfly wings, the 

lamellar structures diffract light in both a wavelength- and angle-dependent manner. For 

electrodeposited lamellae, this diffraction is most apparent when viewing the electrodes in 

the plane containing the vector normal to the electrode surface and the polarization axis of 

the light source used for the deposition. In other words, the coloration is strongest when 

tilting the sample down the growth direction of the lamellae, rather than tilting the sample 

such that you are effectively looking across the tops of lamellae. This suggests that there are 

periodic structures along the length of the lamellae that give rise to the diffraction. 

Additionally, the brightest samples are those grown under illumination with short 

wavelength light. The conditions that produce the most iridescent samples also produce the 

samples with the most prominent nodular growth along the lengths of the lamellae. These 

facts together suggest that the strong iridescence of these samples is due to the nodules. 
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Figure 22: SEM of an Iridescent Lamellar sample 

The SEM of this electrode show the surface morphology of a highly 
colored film. The lamella are hardly visible under the nodular growth. 
The lamellae are running roughly vertically in this sample. 
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4.2 Diffraction Characterization 

The diffraction from the structured electrode surfaces was characterized by 

scatterometry. A sample grown under polarized 455 nm LED illumination was analyzed 

using a VASE Ellipsometer (J. A. Woollam). Scattering spectra were collected with the 

sample illuminated at incidence angles of 75° and 80°. The detector was moved in 5° 

increments from 45° from the normal to 10° from the normal. The mechanism of the 

instrument constrained the detector to move in the plane containing the incident beam and 

its specular reflection. At each detector position a spectrum was collected from 400 nm to 

600 nm at 5 nm increments. The spectra shown illustrate the wavelength selective diffraction 

from the surface of the structured electrode. At any given instrument, the collected spectra 

show relatively narrow bandwidth diffracted light, with the peak wavelength dependent on 

the incident and outgoing angles. The full width half maximum for the spectra is generally 

approximately 30 nm, indicating that the surface structure as deposited would not serve as 

effectively in a monochromator as a commercial grating. The relative intensity of the 

collected light falls off as the detector approaches a position normal to the sample surface. 

This is in large part a geometrical artifact. At shallower angles, the region of the sample 

visible to the detector has a larger surface area than the region from which the detector can 

collect light while nearly normal to the sample. Similarly, the intensity of the spectra is across 

the board lower when the light source is at a more grazing angle of incidence. At these 

shallow illumination angles, the spot illuminated by the monochromator is spread across the 

sample, so that the total intensity incident on the portion of the sample visible to the detector 
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is lower than at steeper illumination angles, resulting in lower intensity diffracted to the 

detector. 

 

 

 

Figure 23: Angle Dependent Diffracted Spectra 

(a) UV-Vis spectra collected at 5° intervals of θo for θi = 10°. θi was as 
defined in the schematic below the image. (b) UV-Vis spectra series 
collected at θi = 10°. 
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Measurements of diffracted intensity versus detector angle were made at fixed 

wavelengths. The incident angle was set to 70° and the monochromator was programmed to 

emit light first at 400 nm and then at 500 nm, and the monochromator width was set to 1950 

µm. The detector was swept through the full angular range in 0.5° increments. The aperture 

on the detector subtends an angle of 0.4°, so using smaller increments for the detector 

movement would not be productive. The peaks were broad for both wavelengths, with full 

widths at half maximum of about 5°. The peak positions agree reasonably well with the 

positions predicted by applying the grating equation, though the peaks are offset from the 

predicted maxima by a few degrees. The grating equation roughly describes the diffraction 

from these films, but the fact that it does not perfectly predict the diffraction is not 

unexpected. The geometry of these samples differs substantially from the idealized geometry 

of a perfect grating. However, the qualitative agreement with theory confirms that the 

physical origin of the non-specular light from the surface is from diffraction off of the surface 

texture. 
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Figure 24: Diffracted light intensity as a function of angle 

The light diffracted off the surface, where angles are as measured in the 
schematic. The predictions from the grating equation are indicated by the 
black dashed lines. The 500 nm peak occurs at an angle 3.7° shallower 
than predicted, and the 400 nm peak occurs 3.4° shallower than predicted. 
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As the material comprising the diffracting surface was a semiconducting alloy of 

selenium and tellurium, a substantial amount of the incident light was assumed to be 

absorbed in the material without diffracting. To improve the reflectivity of the surface, a thin 

aluminum layer was applied to the structured surface. The original sample used in the 

previous measurements was coated by a 20 nm layer of aluminum via RF argon sputtering 

at 150 W in a chamber with a base pressure < 5 × 10-6 Torr. Subsequent measurements 

showed that there were substantial increases in light intensity at the detector at all angles and 

wavelengths. The diffracted intensity was generally roughly fourfold higher off the 

aluminized sample than off the as-deposited selenium tellurium film. Neither the peak 

positions nor the line widths changed appreciably following the deposition of the aluminum. 

This result was expected, as the pitch of the surface structure would be unaffected by the 

application of a conformal coating. While the spectra collected from the original film had 

only a single peak, several spectra from the metal coated film featured a second small peak 

in addition to the main peak. Higher order peaks are expected from diffraction gratings, but 

they were not observed, either visually or spectroscopically, from the as-deposited samples. 

The disorder of the electrode surface and the light absorption of the substrate likely reduced 

the intensity of light in the second order peak below the ellipsometer’s detection limit. 
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Figure 25: Variable Angle Spectra of As Deposited and Aluminized Films 

The upper peaks are the peaks from the aluminum coated sample, while 
the peaks directly below them are the peaks from the bare selenium 
tellurium sample. The peaks are identical, except that the aluminized 
samples are generally four times as bright and some secondary peaks are 
visible in the aluminized sample spectra. 
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The detector position in the ellipsometer is constrained to remain in the plane 

containing the incident beam and the specular reflection. However, a substantial amount of 

light is diffracted out of that plane by these surfaces. These electrode are strongly colored 

when viewed from a wide range of angles, much more so than diffraction gratings. 

Additionally, the fraction of the total intensity diffracted into the detector in the previous 

measurements is very small, even when the sample had a reflective coating, suggesting that 

the unaccounted for intensity must be going out of the plane of the detector. 

An apparatus to measure the out of plane diffraction was constructed. A screen was 

placed 30 cm in front of the sample, which was mounted on a rotation stage. A 532 nm laser 

was directed through a 1 mm aperture and a hole in the screen onto the sample. The sample 

was rotated, and the light intensity on the screen in front of it was recorded with and Olympus 

E-PL1 camera. The stationary bright spot is from diffuse light behind the screen passing 

through the opening in the screen. The bright rectangular spot is from the specular reflection 

off the surface of the electrode. The electrode was rotated in 5° increments. At higher extents 

of rotation, a bright band becomes visible on the screen. This is light diffracted from the 

structured surface of the electrode. Note that the light extends widely out of plane. This 

explains the low intensity measured in plane. Substantial light intensity extends well over 

10° out of plane in both direction. The small spots within the band of diffracted light are the 

speckle pattern from the laser light. 
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Figure 26: Out of Plane Diffraction Image 

532 nm light incident on the sample diffracts into a large area. Here the 
electrode was rotated 35° counterclockwise of normal incidence, 
producing a wide band of diffracted light. 
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4.3 Manipulating Structural Coloration 

Since the light diffracted off the surface of these electrodes spreads out into a wide 

band, it can be concluded that, barring substantial improvement in pattern fidelity, these 

surfaces are inappropriate for use as gratings. Monochromators require both good resolving 

power and high efficiency, neither of which these surfaces can provide. 

However, the properties of these films that make them unsuitable for use in 

instrumentation make them more valuable as a source of coloration. Just as the structure of 

butterfly wings results in broad band diffraction over a wide range of angles, so does the 

surface morphology of these electrodes. Using these surfaces for coloration is appealing for 

several reasons. First, the wavelength dependent pitch of the features on the surface means 

that an arbitrary nodule spacing can be deposited given the appropriate choice of illumination 

wavelength. This in turn means that the optical response of these surfaces can be easily tuned. 

Second, the fact that the origin of the color is structural instead of pigment derived means 

that these surfaces would be immune to bleaching, unlike conventional dyes. Short of being 

physically destroyed, these films should maintain their color even after exposure to high light 

intensity, extreme heat, or exposure to chemicals that would destroy pigments. Finally, since 

these films are more resilient to ionizing radiation than chemical pigments, these films could 

be used as a source of UV coloration. 

The photoelectrodeposition of these films can be conducted successfully at the same 

potential, regardless of illumination wavelength. Therefore, a single electrode held at a fixed 

potential can be patterned with different features in different areas by controlling the 
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wavelength of light incident on different regions of the electrode. Furthermore, it has been 

demonstrated that the illumination of an electrode with multiple wavelengths of light 

produces a deposit morphology consistent with illumination from a source with a wavelength 

intermediate between the two sources used. Using only two light sources, one could 

potentially pattern an electrode with an arbitrary range of feature spacings in a localized 

manner simply by adjusting the relative intensity of the sources on a point by point basis. 

A consumer home theater projector is well suited to accomplishing the previously 

outlined tasks. An Epson Home Cinema 2150 LCD projector was chosen as the light source 

for the following depositions. Two 50 mm focal length biconvex lenses were mounted on a 

rail in front of the projector and were adjusted to bring the projector image in focus 15 cm 

from the projector. An electrochemical cell was placed such that light from the projector 

would focus on the surface of an electrode in the cell, and a wired grid polarizer was mounted 

in the path of the beam. A fiber coupled UV-Vis CCD spectrometer was used to collect 

spectra from pure red, green and blue images. These images were full screen projections of 

a single defined color, with (255,0,0), (0,255,0), and (0,0,255) being the decimal code RGB 

values of red, green, and blue respectively. The spectra revealed that multiple light sources 

contribute to the red, green, and blue pixels. A FDS100 photodiode was used to measure the 

photocurrent density for each color. The photocurrent densities of the pure colors were 12.9 

mA∙cm2 for red, 18.5 mA∙cm2 for green, and 9.0 mA∙cm2 for blue. 
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Figure 27: Projector Illuminated Depositions 

The projector was configured to illuminate electrodes as shown. The UV-
Vis spectra of purely blue, green, and red images showed multiple peaks 
for each color. 
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Electrodes used in the following depositions were fabricated in a similar manner 

to those previously described. Single side polished (100) silicon wafers (Addison 

Semiconductor, n type, P doped, ρ < 0.005 Ω∙cm) were etched in buffered hydrofluoric acid 

(Transene) and loaded into a metal evaporator at a base pressure < 10-5 Torr. A 10 nm 

adhesion and ohmic contact layer of titanium (Kurt J. Lesker Company, 99.995%) was 

deposited via electron beam evaporation at 10 kV accelerating voltage and 40 mA emission 

current. A 50 nm gold layer (Kurt J. Lesker Company, 99.999%) was subsequently deposited 

at 10 kV accelerating voltage and 140 mA current. The wafers were then flipped and an 

ohmic back contact of 100 nm of titanium was then deposited at the same conditions as on 

the polished side. Wafers were scribed into 1 cm by 1 cm squares and mounted to electrode 

bodies with flash dry silver paint (SPI Supplies). Nitrocellulose based nail polish was used 

to seal the sides of the electrode and block any exposed metal on the electrode support. Gold 

was chosen because concurrent research in the group had shown that higher quality lamellar 

patterns form on noble metal surfaces than on lower work function materials. Gold was 

selected as the surface material over platinum because it allowed the use of more negative 

potentials during deposition without competitively producing hydrogen. 

Photoelectrochemistry was performed potentiostatically at -0.2 V vs Ag/AgCl (CH 

Instruments, 1 M KCl solution) for 600.0 seconds using a Bio-Logic VMP-3 multichannel 

potentiostat. The plating bath was an aqueous solution composed of 20.0 mM SeO2 (Alfa 

Aesar, 99.5%), 10.0 mM TeO2 (Sigma Aldrich, 99%) and 2.00 M H2SO4 (J. T. Baker. ACS 

Reagent Grade). A 6 mm diameter graphite rod (Sigma Aldrich, 99.995%) was used as the 

counter electrode. Depositions were conducted for longer times than previously reported 
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because lengthy depositions under red illumination had previously been shown to promote 

nodular growth on the lamellae. Shorter deposition times produce minimal secondary growth 

for red illumination. Nodular growth was deemed desirable because the iridescence of these 

films arises largely from the presence of nodules on the lamellae. 

Growth of samples under pure red and pure blue light showed that the photocurrent 

density toward deposition of the selenium tellurium film was similar in both cases. Though 

there was higher photocurrent as measured by the photodiode, the higher external quantum 

yield for blue illumination made the light current comparable for the two cases. In both cases, 

the resulting films were highly iridescent. The optical response clearly differed between the 

two samples, even by visual inspection. The electrodeposition produced films with a glossy, 

reflective black surface. The structure of the samples was examined microscopically. When 

examined in an FEI Nova scanning electron microscope using a through lens secondary 

electron detector, the difference in inter-lamellar spacing in the two samples was apparent. 

The secondary periodicity of the nodular growths was not visible, however, despite the clear 

presence of nodule-associated iridescence. When imaged in a Phenom G2 Pro SEM with a 

backscatter detector in topography mode, humps along the surface of the lamellae could be 

identified. The deposition conditions used produced subtle nodular growth on the lamellae, 

though that subtle growth is apparently sufficient to cause appreciable diffraction. 
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Figure 28: Morphology of Films Deposited under Projector Illumination 

The samples on the top row were grown using pure blue light from the 
projector. The samples on the bottom used pure red light. From left to 
right, the images are 100,000x magnification micrographs using a 
secondary electron detector, 45,000x magnification micrographs using a 
backscatter detector, and 45,000x magnification micrographs using a 
backscatter detector in topography mode. Subtle nodular growth is 
apparent in the far right images. 

 

 
 



 

 

91 
Patterning electrodes with a spatially varying lamellar structure was performed by 

projecting a two tone image, in this case a (0,0,255) blue Caltech “C” logo on a (255,0,0) red 

background. Red and blue were chosen because the films associated with each color of 

illumination would be as distinct as possible given the illumination sources available in the 

projector. As before, finished electrodes had a reflective black finish, with the “C” logo 

barely visible. One sample was coated with a thin aluminum coating to enhance reflectivity. 

The aluminum coating was deposited in a metal evaporator at a base pressure < 10-5 Torr. A 

20 nm reflective layer of aluminum (Kurt J. Lesker Company, 99.999%) was deposited via 

electron beam evaporation at 10 kV accelerating voltage and 40 mA emission current. The 

metal coated electrode with the “C” logo had a mirror-like finish. The “C” portion of the 

electrode was slightly darker, possibly due to more light being diffracted and less light 

undergoing specular reflection. Under SEM, the pitch of the lamellae differed in the regions 

grown under red illumination versus regions illuminated with blue light during deposition. 
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Figure 29: Patterning with a Projected Image 

(a) The Caltech icon converted to blue and red. This image was centered 
in a red background and projected onto electrodes to create a spatially 
varying nanoscale surface structure. (b) Two electrodes patterned with 
self-structuring selenium tellurium films under projector illumination. 
The sample on the left has been coated with aluminum, while the sample 
on the right is bare selenium tellurium. The “C” and torch are clearly 
visible on the metalized electrode. The pattern is only just visible on the 
bare electrode. 
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The utility of these coatings for coloration was examined by illuminating the 

samples with broadband light and photographing the samples. An ELH halogen lamp with 

an equivalent color temperature of 3200 K was used for illumination, and photographs were 

taken with and Olympus E-PL1 camera. A 60 mm focal length lens was used with an f/16 

aperture. The halogen lamp was positioned such that from the sample position, the angle 

between the camera and the lamp was 63.5°. The sample was then rotated and pictures were 

taken. The bare selenium tellurium “C” patterned surface showed a continuous variation of 

background color as the sample was rotated. The inner C and the torch diffracted most 

strongly at either shallow viewing angles or shallow illumination angles. 
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Figure 30: Film Color as a Function of Viewing Angle 

(a) The illumination configuration used to assess the iridescence of the 
patterned films. (b) The bare electrode viewed at an incident angle of 10°. 
(c) The electrode viewed at 15°. (d) The electrode viewed at 20° (e) the 
electrode viewed at 25°. 
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The previous experiment was repeated with the aluminized sample patterned with 

a Caltech logo. The results were similar to those with the uncoated selenium tellurium 

sample. The region grown under blue illumination was most colorful at the shallowest 

illumination or viewing angles. The C portion of the aluminized electrode had a slightly 

greener cast than seen in the bare sample. There was occasionally disagreement between the 

photographed color and the viewed color. The white background in the photographs looked 

greener in person, and the blue-green “C” at glancing angles appeared more aquamarine. 
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Figure 31: Film Color of Aluminized Sample as a Function of Viewing Angle 

(a) The aluminized electrode viewed at an incident angle of 5°. (b) The 
electrode viewed at an angle of 10°. (c) The electrode viewed at 15°. (d) 
The electrode viewed at 20°. (e) The electrode viewed at 25°. (f) The 
electrode viewed at 30°. 
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Because the color produced by these structures depends on both viewing angle and 

illumination angle, these experiments were repeated with the halogen lamp relocated. The 

halogen lamp was moved as close to the camera as possible for the following images. The 

lamp was slightly to the left of the camera. The angle formed between the lamp and the 

camera at the sample was 15.5° in this arrangement. When the aluminized sample was both 

illuminated and photographed from a glancing angle, the region illuminated with blue light 

during deposition lit up while the area grown under red illumination remained gray. The 

wavelength of the light diffracted back to the camera shifted continuously from red to blue 

as the sample was rotated. Only at near normal incidence did the background take on color. 

The background turns yellow and then orange as the illumination approached normal 

incidence. The background likely turned red, but the mirror finish on the sample caused all 

diffraction to be washed out by specular white light when very close to normal incidence. 
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Figure 32: Film Color as a Function of Viewing Angle near Normal Incidence 

(a) The aluminized electrode viewed at an incident angle of 30°. (b) The 
electrode viewed at an angle of 35°. (c) The electrode viewed at 40°. (d) 
The electrode viewed at 45°. (e) The electrode viewed at 50°. (f) The 
electrode viewed at 55°. 
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Diffraction off the lamellae, as opposed to the nodules, was also considered. The 

sample was rotated 90° and the previous experiment was repeated. The background turned a 

shade of blue very similar to that seen in Morpho butterflies. The sample remained blue at a 

wide range of angles. At no point did its color shift to longer wavelengths. Diffraction 

gratings are incapable of diffracting light of a wavelength greater than twice the period of the 

surface features. Further, for wavelengths near this cutoff, light would be diffracted at 

glancing angles at normal illumination, so no long wavelength light would be diffracted into 

the camera. The “C” portion of the electrode, which has a smaller period than the 

background, only showed deep purple coloration for the same reason. 
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Figure 33: Angle Dependent Iridescence Derived from Lamellar Period 

(a) The aluminized electrode viewed at an incident angle of 10°. (b) The 
electrode viewed at an angle of 15°. (c) The electrode viewed at 20°. (d) 
The electrode viewed at 25°. (e) The electrode viewed at 30°. (f) The 
electrode viewed at 35°. 
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4.4 Conclusions 

The experiments described herein constitute a thorough, but by no means exhaustive, 

investigation of the optical diffraction from the surface of spontaneously structuring 

photoelectrodeposited semiconductor alloys. The origin of the coloration has been identified 

as diffraction as governed by the grating equation. The diffraction of incident light to a 

diffuse spot prompted comparisons to structural coloration found in nature. Structural color 

was successfully derived from both the nodular periods and the lamellar periods. Samples 

were fabricated where illumination was varied spatially to produce arbitrary iridescent 

designs on a 1 cm by 1 cm square, suggesting that these structures could be used to create 

structural color economically on large scales. 

Future investigators of the optical properties of these systems have many interesting 

avenues available to them. The patterning was done with only two of the colors the projector 

could produce for simplicity. By using green as well, substantially more complicated patterns 

could be produced. Additionally, combinations of blue and green light show promise for 

creating microscopic surface morphologies with continuously variable pitches. If arbitrarily 

tunable surface morphologies can be realized synthetically, films could be deposited to 

diffract a specific wavelength of light at a given set of illumination conditions. One could 

then, in principle, design an illumination pattern that would result in the deposition of an 

electrode surface capable of producing an arbitrary color image when illuminated and viewed 

in a specific manner. Finally, the electrode size was constrained to a 1 cm by 1 cm by the 

electrochemical cell available for the deposition and, to a lesser extent, by the power of the 
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projector. With a specially designed cell and a more powerful projector, facile patterning 

of wafer scale structural coloration would be possible. 
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