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ABSTRACT 

In Part I various low-lying electronic states of N2 , CO, and 

ethylene are studied by the equations-of-motion-method. This approach 

attempts to describe excitation processes directly, without solving 

Schroedinger's equation separately for the excited and ground states. It 

reduces to a matrix eigenvalue problem in a space of single particle­

hole excitations, and the effect of double excitations is determined by 

perturbation theory. 

Using extensive Gaussian basis sets, excitation energies and 

oscillator strengths are obtained for nine states of CO and eleven 

states of N2 at the equilibrium geometry. The typical error in frequency 

is about five per cent relative to experiment. Calculated oscillator 

strengths are also very good since the total intensity must very nearly 

satisfy the energy weighted sum rule. Results for ethylene show that 

the V state is a valence state but is more diffuse than the T state and 

ground state. 

Potential energy curves are constructed for all these states by 

solving the equations at a few points with slightly smaller basis sets. 

The theory is appropriate as long as the Hartree-Fock approximation 

is a good one for the ground state- -within about thirty per cent of 

equilibrium. The ~+ states of N2 and CO are most interesting because 

questions about perturbation and pre-dissociation can be answered. 

Part II describes open shell SCF calculations for some diatomic 

molecules. By working with the real functions rr x and rr Y instead of 

1T + and rr-, the SC F Hamiltonians for the L: states of the configurations 
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3 3 3 3 
(1T u) (1T g), (1T u) (1T g) , and (11T) (2rr) of diatomic molecules can be expressed 

in terms of Coulomb and exchange operators only. With these results, 

conventional SCF programs can solve for the wavefunctions of many 

interesting states of N2 , 0 2 , and CO, e.g., the B 3 ~~ state of 0 2 • For 

many states, the SC F results are in good agreement with experiment. 

However, SCF theory runs into serious trouble if electron correlation 

is important in determining the relative locations of excited states. 
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I. Application of the Eauations-of-Motion Method to the Excited States 

of N2 , CO, aPd C 2H4 

A. Introduction 

Nearly all our intuitive knowledge of chemical behavior is 

based on the localized chemical bond. The role of a fixed spatially 

directed valency in determining the size and shape of molecules was 

understood before quantum mechanics and, with the development of 

valence bond theory, most problems in chemical structure were theo~ 

retically explainable. However, quantitative ab initio calculations of 

bond strengths have not proven possible by this method because the 

definition of a valence bond wave function ignores important correlation 

terms in the total energy representing instantaneous electronic inter­

actions. This problem occurs because chemical energies are really 

small compared to the total energy of the reactants or products and 

are often comparable to the correlation energy change upon reaction. 

The molecular orbital approach (Hartree-Fock theory) was the 

first to put calculation of total molecular energies on a rigorous basis. 

The correlation energy can be defined as the difference between the 

non-relativistic experimental energy and the Hartree-Fock energy 

and is usually small for unexcited molecules. However, the molecular 

orbital picture breaks down as a molecule is significantly distorted 

from equilibrium and dissociation curves are often worse than would 

be predicted by a simple valence bond approach. Excited state wave 

functions can also be defined in the Hartree-Fock method but 
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excitation frequencies calculated in this manner are unreliable in 

cases where there are large correlation energy differences between 

molecular states (see Part II); these differences can actually affect 

the ordering of states of the same symmetry. 

In order to answer quantitative questions about chemical bonding 

or excitation processes, theoretical chemists have been forced to find 

very accurate molecular wave functions. This is usually done in a 

configuration interaction (CI) calculation wh~re a large number of 

excited configurations, representing electro(lic correlation, are mixed 

with the molecular orbital approximation to the wave function. Although 

such calculations are exact in principle, computational limitations 

usually require arbitrary truncation in the number of configurations 

included with resultant inaccuracies. All in all, we have lost most of 

our intuitive understanding of electronic binding in molecules in going 

from the valence bond model to the molecular orbital approximation 

to large CI calculations while, at the same time, numerical agreement 

with experiment is still often inadequate, especially considering the 

resources allocated to these calculations. 

An alternative approach which is presented here is one which 

describes molecular excitation processes efficiently and inexpensively. 

It utilizes the model of an electron gas, corrected consistently for non­

ideality, to describe the behavior of electrons in molecules; all the 

terms included are physically understandable even though they do not 

add to our insight in terms of classical chemical theory. Excitation 

frequencies and, in particular, optical oscillator strengths, are 

predicted accurately for small molecules, and extension to larger 
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systems is straightforward. 

Although the mathematics of the many-body (electron gas) 

approach is quite tedious, involving Green's functions and second . 

quantization, the concepts involved are simple. If a time dependent 

function (propagator) is sought which describes the motion of a single 

electron introduced into a molecule, this function can be found as an 

expansion in terms of the occupied Hartree-Fock orbitals (holes) and 

virtual orbitals (particles) where the coefficients contain matrix 

elements of the interelectronic coulomb interaction which repre sent 

scattering events, i.e. the interactions of the added electron with all 

the other electrons. This is simply time-dependent perturbation theo ry 

and the propagator is related to the total wave function for the system . 

In the lowest order (independent particle mode 1) an electron introduced 

into any Hartree-Fock orbital remains there indefinitely. Its energy 

consists of kinetic and nuclear potential energy (one-body terms) and 

conlomb and exchange terms representing interactions with the average 

distribution of the other electrons, and will be a constant of motion. 

The range of the interelectronic force is the same as in free space 

since all the electrons are fixed in orbitals. Including all the higher 

order corrections to thi.s model involves essentially a complete CI 

calculation and is not feasible. The idea of many-body theory is to 

include the effect of scattering events of certain types whose amplitudes 

are large or are likely to add coherently. This is called partial 

summation. 

The random phase approximation is used as a starting point 

for the development of our theory. It involves a partial summation of 
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the so-called ring interactions and holds rigorously for a dense electron 

gas. The RPA by itself has been applied with moderate success to 

molecules, presumably because the strong central force of the nuclear 

framework gives an electron kinetic energy comparable to that in a 

dense electron gas limiting the characteristic time for interaction wilh 

other electrons. The type of scattering event which is considered is 

the creation of local excitations in the electronic medium as an electron 

moves through it; this polarization results in a screened force between 

electrons or, alternatively, a quasi particle with a smaller mass 

consisting of the electron with its surrounding shell of polarization. 

Thus the dielectric constant of the medium is greater than unity. It 

should be noted that the RPA only includes dynamic correlations between 

electrons; it does not take into account scattering of electrons by pre­

existing particle-hole pairs (excitations) relative to the Hartree-Fock 

model and thus underestimates the correlation energy. 

The equations-of-motion method of Howe, 2 as reviewed in the 

next section, is a convenient way of formulating the many-body problem 

to consistently treat excitation processes, that is, to use the same 

approximations for the ground and excited states of the system under 

consideration. Given a level of approximation for the ground state, 

the excited states are generated by a series of excitations expressed 

in terms of the Hartree-Fock orbitals. The amplitudes for these 

excitations are eigenvectors of a simple matrix equation and the 

excitation frequencies are the eigenvalues. As will be seen, these 

amplitudes easily show the extent of electron correlation in an excited 

state. For instance, the V (1 B~u) state of ethylene which is predominatly 
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a rr ~ rr * transition from the ground state also involves excitations of a 

a__... a* type and, to a lesser extent, multiple excitations. From a 

many-body point of view an electronic excitation of a molecule involves 

a sharp decrease in the dielectric constant at the excitation frequency. 

Local electronic excitations are strongly coupled together because of 

the increased interaction, and, when the correct amount of energy is 

supplied, they produce a cooperative transition. In the equations-of­

motion formulation, the matrix problem need only be solved in the 

representation of important excitations, perhaps all single particle­

hole excitations or 1T ~ 1T * excitations; the contribution of lesser 

processes can be estimated by perturbation theory. 

When the ground state used in Rowe's equation is the Hartree­

Fock ground state and the presence of real correlations is thus ignored, 

the RPA matrix equation results. If the excitation space is of size n 

the RPA matrix is made up of two n x n submatrices, the A matrix 

representing the Hamiltonian of particle-hole excitations (single 

excitation CI Hamiltonian) as it affects the excited state energy and 

the B matrix including the "virtual" correlations in the ground state. 

The result is equivalent to the so-called quasi-boson approximation 

where particle-hole pairs, once created, behave exactly like bosons, 

scattering into other particle-hole pairs but not interacting at all with 

the local density fluctuations present to a small extent in any real 

system . . It is readily seen that this model violates the Pauli exclusion 

principle in that it allows electrons to move into partially occupied spin­

orbitals. Also, because the RPA underestimates correlation energy 

and excited states are usually less correlated than the ground state, 
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the excitation frequencies are underestimated. For low lying states 

like the T(3 B3u) state of ethylene at 3. 6 eV this can result in instabilities 

in the equations. 

The corrections to the RPA equations were worked out by 

Shibuya and McKoy 1 and modified by Shibuya, Rose, and McKoy 6 as 

described in the Appendix. They are not an atten1pt to perform further 

partial summations of interactions but are the lowest order corrections 

to the RPA partial summation. This theory is consistent with second 

order perturbation theory in the sense that all terms involving quadratic 

dependence in the interaction elements V ijkl are retained. Thus, the 

limiting accuracy of the method as it is presented here is that of con­

structing a correlated ground state by performing a double excitation 

CI calculation on the Hartree-Fock wave function, performing a CI 

calculation on the excited state using all single and double excitations 

and single de-excitations from this ground state, and determining the 

energy difference between the states. This would be a herculian task 

if properly descriptive basis sets were used. By asking only for 

energy differences the equations-of-motion circumvents the inclusion 

of relatively unimportant terms and the necessity for diagonalization 

of large CI natrices. Transition properties are also obtained very 

easily and accurately in this formalism. 

The correction terms can all be understood physically. The 

matrix T corrects the A matrix by allowing an electron to scatter from 

a particle state to a particle state or from a hole state to a hole state 

by exchanging with an electron in a real correlated configuration. An­

other A matrix correction proportional to the correlation density p(2), 
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modifies the coulomb force an ele.ctron feels in propagating through 

the molecule due to the presence, on the average, of local polarizations. 

Both of these terms help to correct the exclusion principle violations. 

If only the diagonal corrections to the A matrix are considered, it. is 

equivalent to defining renormalized independent particle energies 

which best account for correlation effects. The correction S to the B 

. matrix is neglected by Rowe in his higher RPA theory 2 and allows to 

some extent for coulomb forces between "virtual" correlations in the 

ground state. The D matrix is a metric which essentially insures that 

the eigenstates remain orthonormal. 

The next section reviews the formal development of the equations-

of-motion and the method of obtaining numerical solutions. 

The following two sections give the results of calculations for N2 , CO, 

and ethylene at the equilibrium configuration and slightly distorted 

geometries. The theory is adequate when the Hartree- Fock model is a 

good representation for the ground state, i.e., the molecule is a 

closed shell system; excitation frequencies within about five to ten per 

cent of experiment are obtained if the internuclear coordinates are not 

displaced by more than about twenty per cent from their equilibrium 

values. Part II is a study of SCF wavefunctions of excited states of 

diatomic molecules. 
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B. Theoretical Considerations 

In this section we review some pertinent aspects of the 

solution of the equations-of-motion we have recently proposed. 

References 1 and 2 contain the necessary details. The variational 

form of the equations-of-motion states that the operator for generating 

an excited state I A.) from the ground state ! 0) is exactly a solution 

of the equation2 

(1) 

where "'\ is the excitation energy, EA - E0 , and th~ double commutator 

is defined by 

2[A, H, BJ = (A, (H, BJ] + ([A, H], B] (2) 

BOA is a variation on QA. The operator o"A+ is specified by a set of 

amplitudes which determine the relative importance of various 

particle-hole excitations in generating the state I">..) , i. e. , 

The dominant terms in oA+ are the single particle-hole amplitudes 

(lp- lh). In the first approximation we restrict oA+ to the lp- lh 

form 

and then we will include the 2p- 2h contribution by a perturbation 

(3) 

(4) 
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approach. In Eq. (4) C~Y (SM) is spin-adapted particle-hole creation 

operator and m and y specify a particle and a hole state respectively. 

With O~ of Eq. (4), Eq. (1) gives the following equation3 for the 

amplitudes {Ym) and {zm,J and the excitation frequency wA 

[ 

A(S) 

-B*(S) 

B(S) 1 [Y(AS)] [ D . 
= w(AS) 

-A *(S) Z(AS) 0 

where the matrix elements of A, B, and D are 

:J 

Amy, no (S) = (0 !(Cmy(SM), H, C~0(SM)J lo> 

[

Y(AS)] 

Z(AS) 

( 5) 

. Bmy, no (S) = -<o l(cmy(SM), H, cn0(SMJ] lo> (6) 

Dmy, no (S) = (0 ![c my(SM), C~o(SM)] 10) 

To evaluate the matrix elements in E q. (6) we write an approximate 

ground state w avefunction, 

(7) 

where 

(8) 

The approximate ground state w a vefunction, ! 0), of E qs. (7) and ( 8) 
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contains the main correlation effects for closed-shell systems. 4 WP 

have recently shown that with I 0) of Eq. (7) the matrix elements of 

Eq. (6) are, to a very good approximation1' 5 

Amy, nO(S) = ~~' nO(S) + Oy[Tmn - t(Em +En - 2Ey)P::n] 

- omn [Tyo - i(2Em - EY -Eo)P;~>l 
<o> S 

Bmy, no(S) = Bmy, no(S) + (-l) 8my, no + ~y, nO(S) 

D my, no 
<2> <2> 

= 0mnl>yo + 0mrfyy - 0yf1Jmn (9) 

where Em is a Hartree-Fock (HF) orbital eigenvalue. The terms in 

Eq. (9) are defined as follows 

<o > 
Amy, no(S) = 0mn°yo(Em - E'Y) - V mony + V moyn°SO 

<o> S 
Bmy, no(S) = -(-l} V mnoy + 2V mnyo. 0so 

(10) 

Tmn (11) 

v. ·1 .. 11 = (i(l) H2> I_!_ jk(t)1(2>> 
IJ~ r12 

C .. 1,.11(0) = ~ C' .. 1,.n(O) - i C'. ·1 .. 11(1) 
l).IU. 2 lJnx. lJAA. 

(12) 

C 001 .. 11 (1) = 3...C'. ·1 .. 11 (1) - i C'. ·1 .. 11 (0) 
lJ.tU.. 2 l].r.u. lJ.r.u. 
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In Eqs. (9)-(11) the indices m, n, p and q always refer to particle 

states and y, 6, µand v to whole states. The matrices T and S in 

(11) depend linearly on both the interaction elements Vijki and the 

correlation coefficients Cljkl. Only integrals of the form V myno and 

V s:. are needed to compute the matrix elements in (9). The matrix mnyv 
X which contains interaction elements Vm pq; and V s:. ,which are not n yvµv 
of this type.,,have been shown to be negligible and are not included in 

these calculations. 5 
Em or E'l' represents a Hartree-Fock (HF) 

<2> <2> 
orbital energy. Pmn and Pyo are the second order density matrix 

corrections and depend quadratically on the correlation coefficients; 

terms containing them are part of the renormalization scheme. 6 If 

all correlation coefficients c'ijk.f (S) are ignored the elements of (9) 

reduce to (10), the random phase approximation (RPA) matrices. 

With these approximations to the matrix elements Am ~, y,nv 

Bmy, no and Dmy, no' the equation of motion (5) can be solved by 

standard matrix algebra to yield the lp-lh amplitudes {Ymy} and 

{zm,,} and the corresponding excitation energy w~: Although the 

results given here are obtained from the solution of (5) accurate 

answers (see B. 2.) can be obtained by including only diagonal 

terms in the D matrix, the principal advantage being that a new eigen­

value equation (13) can be formed which has the form 



[ 

A(S) 

-i3*(s) 

-, 
B(S) I 

-A*(S) J [ 
Y(>tS).J 

Z(~S) 

12 

[ 
Y(>tS)J 

= w(~S) _ 
Z(>tS) 

(13) 

where the elements of A, B, Y, and Z have the renormalized forms 

A - C 1 A C 1 

my' no - my my' no no 

-1 

B - f B C 1 

my,no - my my,no no 

y = f y 
my my my 

(14) 

with 

f = ( 1 + p ( 2 ) - p ( 2) )~ • 
my yy mm (14a) 

Equation (5) is the final form of the equations-of-motion for 

the excitation frequencies, w(>t), in the single particle-hole approxi­

mation. In this approximation the excitation operator, O~, contains 

only lp - lh creation and destruction operators, c-:n
11

(SM) and Cmy(SM) 

respectively. These excitations are from a correlated ground state. 

Note that the equations are designed so that the matrix elements 

needed are ground state expectation values of double commutators. 

These should depend on relatively simple properties of the wave­

function. Since these double commutators, e. g. , Amy, no and 

Bmy, no, are of lower particle rank than matrix elements such as 

( 0 I H I 0) they are correspondingly less sensitive to the details of IO) • 
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In principle one can solve Eq. (13) and the equation defining the ground 

state 
(15a) 

self-consistently. In Ref. 5 we showed that Eq. (15a) leads to the 

approximate conditions 

(15b) 

C s:. is defined in Eq. (12). In practice Eq. (15) can be solved my,nv 
only approximately but this is a minor point since, as expected, the 

calculated excitation frequencies are not sensitive to small changes in 

the correlation coefficients {C~y, no}, Eq. : (8). In the calculations 

p~esented here we solve (5) iteratively us~ng the amplitudes {Y mo} 

and {Z(mo)} in (15) to determine the correlation coefficients for a new 

iteration until the eigenvectors and eigenvalues have converged. How­

ever, an initial approximation to the coefficients C'ijki using Rayleigh­

Schroedinger perturbation theory gives essentially the converged 

result. Note that the particle-hole pairs {my} determine the 2p- 2h 

components which should be included in the ground state I 0). 

Generally the most important components of low-lying excited 

states are the single-particle-hole pairs. In the complete expansion of 

the excitation operator O~, Eq. (4), these would have the largest ampli­

tudes. However doubly excited configurations (relative to the ground 

state)--two particle-hole components--can affect the excitation 

energies of some molecular states by more than three electron volts, 

the actual amount reflecting mainly a self-consistent readjustment of 

the core of basically ground-state (hole) orbitals during the excitation 

process. In Ref. 6 we showed how the theory including two-particle-like 

states is equivalent to the single-particle-like theory with a renormalized 

interaction and suggested a perturbation approximation for including 
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their effects on the excitation frequencies and transition moments. 

The main thrust of the argument is that if { Y } and { Z } 
my my 

are the amplitudes of the lp - 1h components in O~ then the excitation 

frequency of this transition is, to a good approximation~ 

w = W (lp- lh) - AW (16) 

where w ( lp - lh) is the excitation energy of the lp - lh approximation, 

i.e., an eigenvalue o~ Eq. (13) and 

r.I * r.I r.I * r.I 

AW = Y Aa Y + Z Ad Z (17) 
,,...._, _..J 

The elements of the matrices Aa and Ad are given explicitly in 
,,--./ ,,,...._,. 

Eqs. ( 46) and ( 47) of Ref. 6 but they are essentially perturbation-like 

matrix elements in which the numerator is a matrix element of the 

Hamiltonian between a lp - lh and 2p- 2h component. The denominators 

are particle-hole energy differences. Actually the inclusion of 2p- 2h 

terms can be viewed as consistent with an expansion of the equation-of­

motion Eq. (5) to second order (see Section ~2). We refer to the excita­

tion frequencies of Eq. (16} as those of the equations-of-motion including 

lp- lh and 2p- 2h components. 

Finally in the 1 p - lh theory the transition moment matrix ele­

ment between a state I:\) and the ground state I 0) is given, to the same 

accuracy as equation (5) (to second order), as 

M 0 , = <O IM I A> = {2 • L; [Y* (:\) M + z* (:\) M ] (18a} 
A my my my my my 

~ (2) L; (2) 

Mm"' = M°m + M°mc5 P ~ - ~ Pmn ' y 0 yv n y 
(18b) 
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~ is the transition moment between a hole orb.ital y and a particle · 
my <2> <2> 

orbital m and Pmn and Pyo are defined in (9). The two last terms in 

Eq.(18b} represent second order corrections to M
0
A and tend to alter 

(usually decrease) it by only a few percent. Other second order cor­

rections due to 2p- 2h components are not included here. They depend 

only on particle-particle (Mmn) and hole-hole (MY0) transition mo­

ments and should be of lesser magnitude. Many sum rules, including 

those for the oscillator strength and rotational strength must be very 

nearly satisfied in this method. 7 
In terms of M

0
A the oscillator 

strength, f, of the transition is 

(19) 

where G is the degeneracy factor. 

In the following sections we discuss the results of calculations 

on various states of N2, CO, and C2H4 using the lp- lh theory, Eq. ( 5), 

and the lp - lh and 2p- 2h theory, Eq. (16). 
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Although the "equation-of-motion" (1) is exact in principle, it 

must be truncated in any practical calculation. Errors can occur 

through limiting the basis set and the set of MO's used in the calcula­

tion or in the formal expansion of (1). This latter difficulty does not 

occur in a complete CI calculation but restricting the configurations 

included amounts to a similar but more arbitrary approximation. 

The expansion to "second order" used in obtaining ( 5) is consistent 

with a type of perturbation theory at least from a heuristic point of 

view, as is the derivation of the Eq. (17) for 2p- 2h corrections. The 

resulting matrix equations are of low dimensionality even when an 

extensive basis set must be employed. 

In second quantization formalism the many electron Hamiltonian 

can be written as 

H1 =I; e.n. 
. 1 1 
1 

H2 = - I; (2J. - K. ) n. 
iy Iy Iy 1 

1 "'\'-+ 2 LI (J .. n. - K .. ) n. 
ij lJ J lJ 1 

"\' + + +LI K .. c .. (OO)C .. (00) 
ij lJ lJ Jl 

(20) 

Hg= - ~ (1-o .. )[L (2V .. -v. .) +i I; v.kk.] ~2 x c .. (00) 
ij lJ j ly]y l'YY] k 1 ] l] 

+ L; (1 - o .ko ·11 )(1 - o. ll o .k)v. ·1 .. IJ c~k(oo) c:-11 (OO) 
ijkl. 1 Jx. lx. ] 1).1\..K. 1 ]x. 

J .. = v .... 
l] 1)1] 

k .. - v .... 
IJ llJJ 

n. = -12 c .. +(00) 
l 11 



17 

The notation is the same as in the text with Jij and Kij being coulomb and 

exchange integrals and ni being a space orbital number operator. 

In the Rayleigh-Schroedinger perturbation scheme H1 is the zero order 

. Hamiltonian H0 and H2 and H3 are the diagonal and off-diagonal terms 

of the perturbation H'. Grimaldi 27 has shown that this perturbation 

scheme gives accurate correlation coefficients for the ground states 

of N2 and CO using only second order energy corrections. A reason­

able approach to solving (1) would then be to consider the correlation 

coefficients C'ijk.£ as first order terms since they are first order cor­

rections to the ground state wavefunction. Expansion ( 5) then includes 

all terms of the form (Vijk..e)m (C'ijk.£ )n, where m + n ~ 2, and is thus 

analogous to a Rayleigh-Schroedinger expansion of the excitation energy 

through second order. Similar arguments can be made for dropping 

· interaction terms in the double excitation matrix elements. Use of 

another scheme such as chosing the zero order Hamiltonian as H1 + H2 

of ( 20) would be more difficult to implement. Furthermore we find 

that the discrepancy between the eigenvalues obtained in these two 

schemes would be less than about five per cent if double excitations 

· are handled consistently. However it can be much greater if only the 

(lp ~ lh) theory is used. 

Of the various approximations made in the previously published 

SHRPA scheme 5 (summarized in Section C. 3 in text) only the one 

which involves setting c'ijld. (O) = C\jkl (1) is exceptionally poor. Although 

this is true identically if i = k or j = l. the difference for the smaller 

off-diagonal coefficients is important since singlet and triplet excita-

tion frequencies are affected predominately by the singlet or triplet 
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coefficients, respectively. Thus the T state of ethylene which should 

be adequately described by the [3s2p/ls] basis of Ref. 5 decreases 

in energy by 0 .. 9 eV when the [ 4s2p/2 s] +R (3PzC) basis us used in the 

original SHRPA scheme. However, when calculations are done in 

both bases using the correct equations (9) the change is only 0. 2 eV. 

The idea of including only correlation coefficients generated from the 

same symmetry as the excitation under consideration is reasonable if 

these represent a large portion of the correlation energy, e.g., 60% in 

the case of the B3u symmetry of ethylene. Inclusion of all the coef­

ficients increases the B3u frequencies by less than 0. 4 eV. In N2 or 

CO there are many low-lying states of different symmetries and all 

the coefficients must be included. 

Renormalization of the equations as outlined in Ref. (6) involves 

inclusion of terms in the second order correction to the matrix A which 

are proportional to the second order density matrix and also inclusion 

of the matrix D. These effects tend to cancel causing a typical excita­

tlon frequency of a valence state to decrease less than 5%. The great­

est effect was found for the a 3II state of CO where renormalization 

decreased the frequency by 8%. Treating D as diagonal (13) is a very -
good approximation affecting the frequencies by less than 1%. 

Finally iterating the solutions to self-

consistency is of minor importance. One iteration is sufficient to con­

verge the frequencies to the final answer which, in N2 or CO, is only 

about 0.1 eV or less above that using the initial (Rayleigh-Schroedinger) 

correlation coefficients Cljld. In accordance with these observa-

tions, an argument could be made for not iterating the solutions to 

self-consistency. In ethylene the T and V states increase in energy 
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about 0. 2 eV upon iteration, and at convergence sigma-pi correlation 

is larger and pi correlation is smaller relative to the Rayleigh­

Schroedinger guess. 
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The set of Gaussian functions to be employed in the calculations 

is the most important practical consideration if optimal accuracy is to 

be obtained at minimal cost. A [ 4s3p] contracted Gaussian basis 

using a (9s5p) primitive atomic set28 gives very good agreement with 

experiment if supplemented with diffuse functions . This type of basis 

set was used for the equilibrium configuration calculations on N2 , CO, 

and C2H4 reported in Section C. 

d functions are relatively unimportant, affecting the frequencies 

by several tenths of an eV in N2 for instance. The contracted valence 

functions were those of Dunning. 28 For ethylene we used the 

[ 4s2p/2s] + R(3pzC) basis. The diffuse p7T functions on the carbon 

atoms have exponents ~ = 0. 0365, 0. 0116, and 0. 0037. For the CO 

the basis is a [ 4s3p] valence set plus a single diffuse s function on 

carbon and oxygen (~ = 0. 036 and ~ = 0. 048) and a diffuse Pz function 

on each center (~ = 0. 030 and 0. 040). In N2 we used a [ 4s3p] valence 

basis plus two Pz functions (~ = 0. 05 and 0. 01) and two d 1T functions 

(~ = 0. 3 and 0. 03) at the center of the molecule. This is necessary 

to describe the c' 1 ~ , b' 1 2.:~ and b 1 nu states. The importance 

of diffuse functions in the final frequency ranges from about 0. 3 eV 

for the V state of ethylene and 1. 5 eV for the b' state of N2 to several 

eV for the c' state of N2 and the Band C states of CO. All these 

states a re somewhat diffuse. 

In practice we have taken only the lowest 19 virtual orbitals 

in solving the equations-of-motion for N2 and CO at the equilibrium 

internuclear distance. Only for the 1 ~+ states of CO was it necessary 
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to further truncate the particle-hole basis (from 32 to 30) to utilize 

existing programs. Neither truncation has a significant effect on the 

excitation energies since representative valence and diffuse virtual 

orbitals are included accounting for about half the total ground state 

correlation energy. For ethylene we used a more efficient transfor­

mation program which .included 22 of 26 virtual orbitals. To keep 

the total cost of a calculation small for molecules of low symmetry 

reasonable--let us say under 1 hour--it is necessary at present to 

restrict tile total number of MO's to about 30. 

In section D we report results for all three molecules in 

slightly distorted geometries. Here it was found that a [ 3s2p] basis 

set contracted from a (7s 3p) primitive set29 gives good answers for 

CO and C2H4 while it is not sufficient for N2 , either in the Hartree-

Fock approximation or the excitation process, due to the high symmetry 

which restricts mixing of configurations. Also, although the sum 

·rule for oscillator strengths is nearly obeyed, the distribution of 

intensity among the states is very dependent on the nature of the 

diffuse functions employed. For instance, the B and C states of CO 

have much lower intensities when extra diffuse functions are placed 

at the center of the molecule. Excellent agreement with experiment 

for Rydberg state intensities should not be expected unless a very 

diffuse and balanced basis is used; thus the apparent better accuracy 

of the oscillator strengths of these states in Section C. 2. is probably 

fortuitous. 
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c. Results at Equilibrium Geometry 

1.~ 

The electron configuration of the ground state of N2 is 

We have considered the following states: B 3Ilg(3ag ~ 1T g), a 
1
Ilg 

(3 --; 1T ) A 3~+ b l~- B 3~- I I~- w 3 A d w 1 A [all 
a g g ' u' u' u' a u' u' an u 

(7T u ~ 1T g), c' 
1 ~~ (3a g __. 3au), C 

3f\i (2au ~ 1T g), and b 
1f\i (2au ~ 1T g). 

We indicate in parentheses the electron configuration of the principal 

component of each state. 

The first step of the calculation is to carry out a Hartree-Fock 

calculation in order to generate a particle-hole basis. The occupied 

orbitals are hole states and the virtual orbitals are particle states. 

The SCF calculations are done in a basis of Gaussian orbitals on 

each atom. The size of the basis determines the quality of the hole 

states and the number of particle states. We used a [ 4s3p] basis of 

contracted Gaussian functions plus some diffuse components; details 

are given in the Appendix. Table I lists the hole and particle energy 

levels used in the calculation. 

We include excitations out of all hole levels except the lag 

and lau levels. These levels are too low to have any effect on the 

low-lying excited states we consider. All particle-hole excitations 

of the appropriate symmetry are included in the calculation 

on each state. These particle-hole pairs, 
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. TABLE I. SC F molecular orbital eigenvalues for N2 a 

MO Ey MO € MO Em m 

1 la g -15.7079 sb 3au 0.0257 20 5cr g 0.8602 

2 1 au -15.7043 9 hrgx 0.0910 21 6a 1.0232 u 

3 2ag - 1. 5255 10 hrgy 0.0910 22 7a u 1. 5413 

4 2au - 0.7727 11 4au 0. 1632 23 47rgx 1. 6651 

5 'TTUX - 0.6240 12 21f gx 0.1654 24 4ugy 3.6651 

6 11uy - 0.6240 13 21Tgy 0.1654 25 31Tux 3.0148 

7 3ag - 0.6271 14 21Tux 0.5320 26 311uy 3.0148 

15 21Tuy 0.5320 27 Bau 3.0819 

16 4ag 0.5460 28 6ag 3. 3 528 

17 5au 0.5869 29 51Tgx 3.9962 

18 37rgx 0.6114 30 51Tgy 3.9962 

19 37Tgy 0.6514 31 9au 33.2482 

32 7ag 33.5275 

ain a ([ 4s3p] + R (2Pz + 2d7r)CM ) basis of contracted Gaussians. 

This basis gives EscF = -108. 888 a. u. See Section 3. B. for details. 

bOrbitals 8 - 13 are diffuse functions. 
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in turn, determine the pair correlations- - 2p - 2h components of 

the correlated ground state--which are included in the correlation 

function U of Eq. (8). From Eq. (5) it would seem that if N particle­

hole pairs are included then the resulting equations give an unsym­

metric 2N x 2N matrix. It is well-known, however ,8 that the eigen­

values, w, can be found by solving a..tJ. N >< N matrix for 

the eigenvalue w2
• The largest matrices which we have to handle are, 

on the average, of dimensionality 25 x 25 to 30 x 30. With the lp- lh 

pairs specified, Eq. (13) and Eq. (15b) can then be solved for the 

excitation frequencies in the lp - lh approximation. These eigenvalues 

are the aproximate excitation energies of the excited states of the 

system under the condition that these excited states differ only by· 

single particle-ho"le excitations relative to a correlated ground state. In 

the next stage of the calculation we introduce the effect of 2p - 2h exci­

tations out of the correlated ground state. We include this effect by using 

the approximate results, Eq. (17), for the energy lowering of the lp- lh 

frequency, due to these 2p - 2h components. For each state all 2p - 2h 

excitations derivable from the set of single particle-hole excitations, 

i. e. ' { c~;J are included. 

Table II shows the results of calculations on eleven states of 

N2 • All these calculations were done at the ground state equilibrium 

internuclear distance of 2. 068 a. u. In the first column we list the 

symmetry and the conventional spectroscopic designation of the various 

states. The next column shows the number of single particle-hole 

pairs used in setting up the equations-of-motion. The excitation 

frequencies in the lp - lh approximation are listed in the third column. 
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TABLE II. Equations-of-Motion Calculations: Excited States of N2 a 

£\Ed 6Ed 
d o/c 

State Ne 
(lp - lh) (lp - lh) + (2p - 2h) Exp Error 

3 )b B Ilg(3ag-+ 7Tg 15 9.6 7.5 8. 1h 7 

in f 
a g 15 11. 5 8.8 9.3 5 

3 + ) A Eu (11u _.1fg 20 8.4 7.8 7.8 "'o 
B' 3 E- g } 11. 3 10.2 9.7 6 u 8 
W 

3
A l 0. l 9.4 8. 9i 6 

u 
I lh-

) 11. 3 10.6 9.9 6 a u 
8 

WI~ 12.0 11. 0 10.3 6 

b' 1~+ 

J 16.8 15.0 14. 4j 4 u 20 
c' 1 E+(3a ~a ) 15.5 12. 1 12.9 6 u g u 

3 10 C II (2a ~1T g) u u 13.3 10.8 11. 1 4 

b !fl 10 u 17.4 14.0 12.8 9 

aa 11 calculations done at an equilibrium internuclear distance 

of 2. 068 a.u. 

bindicates the main component of the excitation relative to the 

ground state. 

c number of single particle-hole pairs used in the calculation. 

e 

See Sect. B. 3 for discussion of the basis set and selection of the particle­

hole excitations. 

din electron volts. 

ere la ti ve to the experimental value. 
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f same designation as in the previous state. 
CT 

bthe next five states have the same principal lp - lh component 

type. 

hT he experimental results for this state and for the a 1Ilg, 

A 3 L+ B 3 L-, a' 1 E-, w 111 , and C 
3
Il states are those reported 

u' u u u u 

by W. Benesch, J. T. Vanderslice, S. G. Tilford, and P. G. 

Wilkinson, A strophys. J. 142, 1227 (1965). Their tabulations are 

based on high resolution optical data. 

iw. Benesch and K. A. Saum, tT. Phys. B: A tom. Molec. 

Phys. 1_, 732 (1971). 

jThe experimental results for the b' 
1

E.u+' C 3 Il and b 
1
Il states u u 

are from the electron energy-loss spectrum of Ref. 10. 
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Comparison with the experimental vertical excitation energies show 

that this approximation predicts all the states to lie about one to three 

eV's above the experimental values. Inclusion of 2p - 2h components 

· lowers the lp - lh excitation frequencies by about one to three electron­

volts resulting in excitation energies in good agreement with the experi­

mental values. The percentage errors of calculated excitation energies 

relative to the experimental values are in the range of one to nine 

percent with an average error of about five per cent. The experimental 

results are probably reliable to within a few per cent, while we believe 

that the various approximations made in deriving the final equation 

may lead to an error of the same order. We do not intend to make 

any extensive comparisons between our calculated values and those 

obtained by other methods, e.g., SCF or CI calculations. The 

prime purpose of our calculations is to test the practicality and accuracy 

of the equations-of-motion method. The total amount of computing time 

is quite low. The calculations on all eleven states of N~ required only 

about 20 minutes on an IBM 370/ 155. A typical breakdown of this time 

would be: 30% for the HF calculation on the ground state, 45% for the 

lp- lh calculation and 25% for the inclusion of the 2p - 2h components. 

The other calculations reported here i.e., on CO and C2H4 , both 

required less than twice this time. 

In Table III we compare the calculated oscillator strengths with 

available experimental results. The calculated oscillator strengths in 
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·TABLE III. Oscillator strengths for transitions in N2 • 

Transition f el 
a b 

fel • qv'v" qv'v" exp 

X 1 .E+ -+ c' 1E+ 0.11 c 0. 11 d 
Qoo "' 1 0. 14 ± 0. 04 g u 

0.16e 

xi~+-+ b 1Il 
g u 0.64 -- -- < 0.3f 

x lL;+-+ b' l~+ 0.49 
large "measured" -- --g u fel 

g 

afel = i . G · AE • M
2

, where M is the dipole transition matrix 

element and G the degeneracy factor. The oscillator strengths in this 

column do not include any Franck-Condon factors. 

bFranck-Condon factors for the v' and v" levels. 

c 
Ref. 9. 

dThis is the measured f value for the 0 - 0 transition. See 

Ref. 9 .. 

eTotal f-value from lifetime measurements by J. E. Hesser, 

J. Chem. Phys. 48, 2518 (1968). ,,....,..... 

fsee text. This is an estimate derived from the band oscillator 

strength measurements by the authors of Ref. 9. 

g Weak due to intensity perturbationsj by v' = 5 and 6 of the 

c' 
1~~ and v' = 0 of the e' 1L;~ states. From shock-heated vibrationally 

excited N2 fel (v" = 5 -+v' = 2) ~ O. 83 and fe 1(v" = 8 -+v' =2) ~ Oo 4 

[J. P. Appleton and M. Steinberg, J. Chem. Phys. 46, 1521 (1967)]. 
""'-"' 
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the second column of Table III do not contain any Franck-Condon 

factors. For transitions between states with very similar equilibrium 

internuclear distances and in the absence of perturbations by the 

vibrational levels of other states we can expect the Franck-Condon 

factor for the 0-0 transition to be very close to unity. This is the 

case for the transition X 1 ~; - c' 1 ~~. Assuming a Franck-Condon 

(FC) factor of unity our calculated oscillator strength of 0. 11 is in 

very good agreement with the measured values which lie in the range 

0. 14 ± 0. 04. 
9 

It is well-known that it is difficult to estimate FC 

factors for the X - b 1Ilu transition because of strong perturbations 

of the vibrational levels of the b 1llu well by those of the c 1llu well. 9 

However we can show that the calculated vertical electronic oscillator 

strength of 0. 32 for the X ~ b 1llu is in good agreement with available 

experimental data. Geiger and Schroeder's
10

high resolution electron 
9 0 

energy-loss spectrum shows that the 965 A band (12. 84 eV), the 0 - 4 
l 

component of the X ~ b nu transition, accounts for 14% of the dipole 

oscillator strength in the 11. 4 - 13. 6 eV range. From their measured 

absolute value of f(965 A) = 0. 055, Lawrence et al., 
9 

could then show 

that the total dipole oscillator strength for the 11. 4 - 13. 6 eV region 

of the spectrum is 0. 40. Almost all the intensity in this region of the 

spectrum comes from the c' 1 ~ +, b 1llu, and c 1ll transitions. But u u 

the measured contribution of the c" 1 ~ ~ state to the total f-value is 

0. 14 ± 0. 04 and hence the total f-value of the b 
1
1lu and c 1llu states lies 

11 .. 
between 0. 22 and 0. 30. The X --. b 1IIu transition accounts for a 

large fraction of this totai.
12 

This is in fair agreement with a calculated 

value of 0. 64 for the X ~ b 1Ilu transition if we assume a constant 

transition moment and sum over the whole band. 
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. Finally we obtain a vertical electronic oscillator strength of 

O. 49 for X 1 E+ ~ b' 1 E+ transition. Thel:-e are no reliable measured g u 

values for this transition. However the data of Ref. 10 show that 

the intensity of this vertical transition is very low indicating that the 

effective FC factor for the transition is small. This is probably due 

. to intensity perturbations of the b' 
1 E~ levels by those of the c' 

1 E~. 
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2. States of CO 
~ 

The electron configuration of the ground state of CO is 

( 1 a) 
2 

( 2 a) 2 
( 3 a) 2 

( 4 a) 
2 

( l7T) 4( 5 a) 2 
• 

We have done calculations on these states: a 3TI (5a-- 2Jr), 

A 
1
Il ( 5 a~ 2 rr ) , a' 

3 ~ + , c 
3 
L: - , I 1 ~ - , d 

3 ~ , D 1 ~ [ all ( l7r -- 2Jr )j , 

B 1L:+ (5a~ a), and C 1 ~+ (5a~ a). The electron configuration of 

the principal component of each state is shown in parentheses. All 

calculations were done at an internuclear distance of 2. 132 a. u. 

Table IV shows the hole and particle energy levels used in the calcu­

lation. The bas.is set used in the calculation is described in Section 

B. 3. 
! 

Table V shows the results of calcula~ions on nine states of CO. 
I 

In the first column we list the symmetry and the conventional spectro-

scopic designation of the various states. The number of particle-hole 

pairs used in each calculation is listed in the next column. In the third 

and fourth column we show the calculated vertical excitation energies. 

The results in the third column are those in which only lp- lh excita­

tions out of the ground state are included in the excitation operator 
i 

O~. As in the results for N2 the excitation energies in this 

approximation are about one to two eV's above the experimental values. 

Inclusion of 2p- 2h components lowers these values leading to calcu­

lated excitation energies in good agreement with experiment. These 

results and the experimental values are shown in columns four and five 

respectively of Table V. The percentage errors of calculated excita-
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TABLE IV. SCF molecular orbital eigenvalues for COa 

MO Ey MO € MO E m m 

1 la -20.6903 ab 6a 0.0711 19 47T y 0.8402 

2 2a -11. 3945 9 7a 0.0817 20 12a 0.8784 

3 3a - 1. 5665 10 27Tx 0.1198 21 13a 1. 1629 

4 4a - 0.8006 11 21T y 0.1198 22 14a 1. 7874 

5 hrx - 0.6493 12 Ba 0.1639 23 15a 2.2186 

6 17ry - 0.6493 13 9a 0.2990 24 57Tx 2. 1089 

7 5a - 0.5594 14 311x 0.4109 25 51Ty 2.1089 

15 37Ty 0.4109 26 67Tx 4.0880 

16 10a 0.4376 27 611 y 4.0880 

17 11a 0.7686 28 16a 4.4496 

18 47Tx 0.8402 29 17a 23.8040 

30 18a 43.3068 

aln a ([ 4s3p] + R (pz + s)) basis of contracted G aussians. This 

basis gives EscF = -112. 6986 a. u. See Section B. 3. for details. 

bOrbitals 8, 9, 12, and 13 are diffuse functions. 
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TABLE V. Equations-of-Motion Calculations: Excited States of CO a 

d d % ~E 4E 
c 

Expd Error e State N (lp - lh) (lp - lh) + (2p - 2h) 

b 
6. 3 h a 3 TI (5a --+ 27T) 22 7. 1 6.0 3 

A Inf 22 10.3 8.5 8.4 ~o 

a' 3 E+ (11T __. 21T) 30 9.3 7.9 8.4 6 

e 3 E_g 

} 11. 5 9.5 9.7 2 
8 

d3~ 10.5 8.9 9.2 3 

!IE- } 11. 5 9.8 9.9 1 

D
1a 

8 
12.0 10.0 10.5 5 

B 
1
1:+ (a_, a*)} 13. 8 11. 4 10.8 6 

30 
C 1E+(a--+ a*) 13.4 11. 4 11. 4 "'o 

aAll calculations done at an equilibrium internuclear distance 

of 2. 132 a. u. 

bindicates the main component of the excitation relative to the 

ground state. 

cnumber of single particle-hole pairs used in the calculation. 

See the Appendix for a discussion of the basis set and selection of the 

particle-hole excitations. 

din electron volts. 

erelative to the experimental value. 

gthe next four states have the same principal component. 

hThe experimental results for the A In, B IL;+, and C IE+ states 
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are from the electron energy-loss spectrum of V. Meyer, A. Skerbele, 

and E. Lassettre, J. Chem. Phys. il' 805 (1965). The experimental · 

results for the other states are from G. Herzberg, T. Hugo, S. Tilford, 

and J. Simmons, Can J. Phys. il' 3004 (1970). 
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tion energies relative to the experimental values are in the range of 

one to six percent with an average error of about 3%. In terms of 

c,omputer requirements the method is quite economical. For example 

tlJ.e largest matrices involved are of the order of 30 x 30. Calculations 

~sing other methods have been carried out on various states of CO. 
13 

We do not want to make extensive comparisons between our values and 

those of other methods since we primarily want to test the practicality 

of our method. We note however that our calculated excitation energies 

~re in as good--in many cases better--agreement with experiment as 

those of the CI calculations of Ref. 13. The CI calculations involve 

much larger matrices than those in the equations-of-motion method. 

In Table VI we compare our calculated oscillator strengths 

with available experimental data. The X 1E+ --. A 1Il transition has 

been extensively studied by electron energy-loss spectroscopy. 

Lassettre et al. , 
14 

obtained a value of 0. 043 for the v' = 2 level of 

the A 1II state by extrapolating the generalized oscillator strength to 

zero rromentum transfer. The calculated value of 0. 0·52 for this 

transition is in good agreement with their result. 14 The total f-value 

for the X 
1 
E+ --. A 1Il transition obtained from lifetime measurements 

15 

is 0. 15. To obtain this value they15 included the r-centroid dependence 

of the electronic transition moment in analyzing Hesser's lifetime 

measurements. 16 If this dependence is neglected the total f-value for 

the transition is about 0. 094. 16 Our calculated estimate of 0. 22 for 

the total f-value of this transition--assuming a constant electronic 

transition moment for transitions to the v' = 0 ~ v' = 6 levels-- could 

be improved by including the variation with distance (see Sec. D. 2). 
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TABLE VI. Oscillator strengths for transitions in CO 

Transition· f el 
a 

qv'v" b fel 0 q v'v" exp 

x IE+-+ A In 0.22 q20 ~ 0. 24 c 0.053 o. 043 d 

0.15 e 

x IE+ -+C IE+ 0.12 qoo ~l 0.12 0.16g 

X 1 E+ -+B 1 E+ 0.048 qoo ~l 0.048 o. 016g 

X 1 E+-+ B and C 1 E+ 0.17 0.18h 

afel = i · G • AE • M2
, where M is the dipole transition matrix 

element and G the degeneracy factor. The oscillator strengths in this 

column do not include any Franck-Condon factors. 

bFranck-Condon factors for the v' and v" levels. 

cP. H. Krupenie, Natl. std. Ref. Data Ser., Natl. Bur. Std. 

(U.S.) ~, (1966). 

dThis is the measured value for the v' = 0 --+ v" = 2 transition. 

See Ref. 13. 

eThis is the total f-value for the transition see Ref. 14. This 

value takes into account the r-centroid dependence of the electronic 

transition moment. See texto Lassettre13 obtains 0. 19 from electron 

impact studies. 

f See Ref. 14. 

gelectron impact studies of Lassettre. 14 

hThis is the total f-value for the X-+ B and X-+ C transitions. 

See text for discussion. 



37 

Finally the calculated f-value of 0. 12 for the X --4 C transition 

is in good· agreement with the measured value of 0. 16. This value is 

obtained by extrapolating the generalized oscillator strength to zero 
14 . 

momentum transfer. The agreement for the X --. B transition is 

not as good. The calculated value is 0. 048 while Lassettre's extra­

polation of his electron-impact results gives 0. 016. These transitions 

are quite close to each other with the B state lying 0. 6 eV below the 

C state . . Their data 14 also show that the Born approximation is not 

valid for the X -i B transition even at incident electron energies of 

400 eV. 
17 

Note that the calculated total f-value for the X-.. B and 

X -+ C transitions is 0. 17, in good agreement with their measured 

value of 0.18. To study these measurements more closely we plan to 

calculate the generalized oscillator strength as a function of momentum 

transfer in the Born approximation using the equations-of-motion 

method. Similar calculations on electron-helium scattering by Schneider 

have given accurate results. 18 
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We have done additional calculations on the T and V states of 

ethylene which are the triplet and singlet states arising primarily 

from a 1T-+ 'TT* transition. In these calculations we use an extensive 

Gaussian atomic orbital basis with diffuse 'IT* components which is 

described in Section B. 3. In reference 5 we studied these 

same transitions in a smaller basis but we made two restrictive 

approximations in solving Eq. (5) (the SHRPA approximation of Ref. 5). 

First we included only those correlation coefficients in Eq. (8) made 

up of particle-hole pairs of the same symmetry as the excited state 

under study, in this case19 B3u. In this approximation we assumed 

that off-diagonal correlation coefficients were small so that C' J:. (O) = my, nu 

c' J:.(1). Secondly, we did not use the fully renormalized matrix ele-my, Du 

ments of Eq. (9), which include terms quadratic in the coefficients 

C'my, no· These terms are of the same order as other terms linear 

in C'my, no and an interaction matrix element V ijld.. These assump­

tions, which work reasonably well for ethylene, are poor when applied 

to systems with stronger electron correlation in the ground state, 

especially for states of symmetries that are unimportant in the cor­

relation function, Eq. (8), e.g., in diatomic molecules. For con­

sistency we now solve the equations of motion without these assumptions. 

The magnitude of these corrections is discussed in the Appendix; 

although they are small the effect is significant enough that these 

results are not directly comparable with those of Ref. 5. Table VIl 

lists the particle and hole energy levels used in these calculations. 
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TABLE VII. SCF molecular orbital eigenvalues for C2H1 a 

MO EA MO € m MO Em 

1 la1g -11. 2420 9b 2biu 0.0088 21 3b2u 0.4351 

2 lb3u -11. 2405 10 lb2g 0.0122 22 2b1g 0.4545 

3 2a1g - 1. 0397 11 3b1u 0.0392 23 5bm 0.6580 

4 2b3u - 0.7969 12 2b2g 0.0456 24 3b 1g 0.7048 

5 lb2u - 0.6565 13 3b2g 0.1141 25 5b2g 0.7150 

6 3a 1g - 0.5812 14 4b1u 0.1503 26 6a 1g 0.7325 

7 lb1g - 0.5197 15 4b2g 0.2124 27 5b3U 0.8911 

8 lb1u - 0.3731 16 3b3U 0.2607 28 6b3U 1. 1294 

17 4a1g 0.2862 29 7a1g 1. 3051 

18 2b2u 0.3838 30 4bzu 1. 4115 

19 4b3U o. 4004 31 7b3U 1. 4406 

20 5a1g 0.4177 32 4b1g 1. 7326 

33 8a1g 23.7659 

34 8b3u 24. 0592 

aln a l(4s2p / 2s) + R(3p C)] basis of contracted Gaussians. 
z 

This basis gives ESCF: - 78. 0111 a. u. See Section B. 3. for details. 

bOrbitals 9 - 14 are diffuse functions. 
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Table VIII shows the excitation energies for the N ---> T, N ---> V, 

and N---> R "'transitions. The N--.. R'" transition is the first member of 

the N ---> nR 111 Rydberg series according to Wilkinson's assignment. 20 

Wilkinson20 suggested that this R'" series arose from a 1I ---> nd7I transi-x 

tion. This Rydberg state is of the same symmetry as the V state. As 

in the results on N2 and CO we see that the excitation energies obtained 

by including only lp- lh components are larger than the experimental 

values but when 2p - 2h components are included theory and experiment 

are in agreement. The excitation energies for the T and V states are 

4. 1 and 7. 9 eV compared with the observed values of 4. 6 and 7. 6 eV, 

respectively. 21 The calculated oscillator strength for the vertical 

transition is O. 40 compared with the experimental total f-value of Oe 34 

for the N---> V band. 22, 23 Our results also show that the 7T* orbital of 

the V state, although somewhat more diffuse than the 11 * orbital of the 

T state, is a valence-like molecular orbital. A valence-like 7T* 

molecular orbital is consistent with most available experimental infor­

mation on the N--.. V band. Previous calculations, in both the HF24 and 

limited configuration interaction approximation, 25 have given a singlet­

state with a diffuse 1T* orbital as the lowest state of this symmetry. In 

the case of the HF calculations it is very probable that in the SCF 

approximation the lowest state is in fact a Rydberg state. An exten­

sive configuration interaction calculation should give results similar 

to those of Table VIII, e.g., a valence-like 1T ->1T* state at about 

7. 8 - 8. 026 eV. An important consideration in such a calculation 

would be the inclusion of enough valence-like virtual orbitals to 

properly describe sigma-pi correlations in addition to diffuse 
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TABLE VIII. The N--+ T, N-+ V, and N-+ R'" transitions of C2H4 a 

~EC ~EC aEc 

Transition Nb (lp - lh) ~lp- lh~ + exp. < 7T * I z2 I 7T * > d f e 
fobs 

2p-2h calc. 

N--+T 22 4.8 4.1 4.6 2.7 - - - -

N->V J 9.0 7.9 7.6f 9.0 I 0. 40 0.34g 
22 

I 

N--+ R"' 10.4 8.9 9.05h 83.3 0.02 
0. 002 -
O.Oli 

-

aCalculations are. all done at approximately the ground state 

geometry (C-C bond length of 1. 35 A, C-H bond length of 1. 07 A, 
CH-C-H of 120°). 

bnumber of lp - lb pairs used in the calculation 

cin electron volts 

dthe average value of z2 (perpendicular to the molecular plane) 

for the TT* orbital (in (a. u. )
2

) 

eassuming a Franck-Condon factor of unity for the vertical 

excitation 

· fmaximum in the N-+V absorption 

gtotal f-value for the transition 

hrrhis is the N--+ R'" transition in Wilkinson's assignment. See 

text and ref. 20 for discussion. 

ipreliminary results of Allan Smith and Barney Ellison 

(Yale University). See text for discussion. 
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functions, leading to a very large matrix problem. 

In Table VIII we also list the excitation energy and oscillator 

strength for the first 1T __. nd7Tx Rydberg state. The calculated excita­

tion energy of 8. 9 eV is in good agreement with the value reported by 

Wilkinson20 for this Rydberg transition. Wilkinson20 suggested that 

the state at 9. 05 eV was the first member of a N---. R 111 Rydberg series 

involving a 'TT -+ nd7Tx transition. This region of the spectrum has 

recently been remeasured. 22 Our results are in fair agreement 

with these experimental results and with those of Wilkinson. 20 
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D. Potential Energy Curves 

1. States of N2 
~ 

The electron configuration of the gro~nd state of N2 is again 

The excitation frequencies and transition moments are determined at 

six internuclear distances, R = 0. 90, 1.00, 1. 094 (Re), 1. 20, 1. 30, and 

0 3 . 1 ( ) 1. 40 A, for the following eleven states: B Ilg and a Ilg 3crg-+ 7Tg, 

A 3~+ b' 1~+ B 32;- a' 1:6- W 3!.\ and w 1A (7T ---> 1f ) c' 1:6+ (3a -> 
u' u' u' u' u' u u g ' u g 

30' ) c 3n and b 1rr (2a -+ 1T ). The principal excitation in each 
u' U .U U g 

state is in parentheses. 

After a Hartree-Fock calculation at each internuclear distance, 

the equations of motion are first solved in the lp-lh approximation 

including all particle-hole pairs of the appropriate symmetry except 

those of the very low lag and lau hole levels. The basis set for these 

calculations contains both contracted valence Gaussian functions, 

[ 4s3p], and uncontracted Gaussian functions (2dw, 2po-) at the center of 

the molecule. This basis set has been described in B. 3. We then 

include the effects of two particle-hole components (2p-2h) on the exci-

tation energies and oscillator strengths. 

Table IX lists the excitation energies for the eleve1~ states of N2 at 

six. internuclear distances. The agreement with experiment is quite 

good. The excitation frequencies in the (lp-lh) approximation are all 

larger than the obs.ervcd values but the inclusion of 2p-2h cornponcnts 

leads to a dccr0a.sc in these excitation ·cneq;ics and excitation frcqncn-

cies in fairly good agreement with cxpcri mcnt. WC' do not w'1nt to 
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TABLE IX: Excitation Energiesa: States of N2 

x12: + -
g B 3 Il g a 

1ng 

R(A) (lp-lh) (1p-1h)+ Obs.b (lp-lh) (lp-lh)+ Obs. (2p-2h) (2p-2h) 

0.90 12.7 11. 0 --- 14. 6 12.3 ---
1. 00 10.9 9.0 9.4 12.9 10 . 3 10.5 

1. 094c 9.6 7.5 8.1 11. 5 8.8 9.3 

1. 20 8.2 5.9 6.8 10.0 7.2 8.0 

1. 30 7.1 4.8 5. 8 8.9 6.1 7.0 

1.40 6.3 4.0 4.9 8.0 5.3 6.0 

A 32: + B' 3~ -
u u 

0.90 13.2 12.7 --- 15.9 15.1 ---
1. 00 10.5 9.9 --- 13.3 12.4 ---
1. 004 8.4 7.8 7.8 11. 3 10.2 9.7 

1. 20 6.4 5.7 5.9 9.3 8.1 7.8 

1. 30 5. 1 4.2 4.4 7.9 6.6 6.4 

1. 40 4.0 3.2 3.2 6. 7 5. 4 5.3 
----·- ------------ ·-··---------------- ,-------- ------ ----- ----~--- .---

w 3 !1 ' 1 -
u a l:u 

0.90 14.8 1.4.3 --- 15.9 15.4 ---
1. 00 12.1 11. 5 --- 13.3 12.7 ---
1. 094 10.1 9.4 8.9 11. 3 10.6 9.9 

1. 20 8.1 7.3 7.1 9.3 8.5 8.1 

1. 30 6.7 5.8 5.6 7.9 6.9 6.6 

1.40 5.5 4.7 4.5 6.7 5.8 5.5 
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TABLE IX . (Cont'd) 

W 
1
A u 

b' 1 L. + 
u 

0.9 16.5 15.7 
_,.._ 

19.6 17.9 ---
1. 0 14.0 13.0 --- 18.3 16.6 ---
1. 094 12.0 11. 0 10.3 16.8 15. 0 14.4 

1. 20 10.0 9.0 8.5 15.0 13.2 12.8 

1. 30 8.6 7.3 7.2 13.l 11. 4 11. 2 

1.40 7.3 6.0 6.0 11. 0 9.1 9.7 

,1~ + 
c u C

3
Il u 

0.90 15.8 12.8 --- 14~4 12.5 ' ---
1. 00 15.6 12.3 13.0 13.8 11. 5 ---
1.094 15.5 12.1 12.9 13.3 10.8 11.1 

1. 20 15.4 12.0 12.6 12.9 10.1 10.6 

1. 30 15.2 11. 6 12.3 12.7 9.6 10.0 

1. 40 14. 9 11. 5 --- 12.7 9.3 9.3 

b 
1

11 u 

0.90 17.7 14.-9 ---
. . 

1.00 17.6 14. 5 ---
1. 094 17.4 14.0 13.0 

1. 20 17.2 13.4 12.0 

1. 30 17.3 12.9 10.7 

1. 40 17.5 12.7 9.4 
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TABLE IX (Cont'd) 

a In electron volts. 

b The experimental results are from W. Benesch, J. T. Vanderslice, 

S. G. Tilford, and P. G. Wilkinson, Astrophys. J., 142, 1227 
. ~ 

(1965), and J. Geiger and B. Schroeder, J. Chem. Phys., 50, 7 
~ 

(1969). 

c Experilnental equilibrium internuclear distance. 
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make any extensive comparisons between these results and those dcrivod 

by other methods, since the main purpose is to test the practicality 

and accuracy of the method and to see how we 11 it docs in descril>ing 

closed-shell systems away from equilibrium geometry. The results of 

calculations at internuclear distances beyond R = 1. 4 become poorer and 

show that the closed-shell assumption in the theory6 is beginning to fail 

at these distances. Some correlation coefficients become as large as 

0. 3-0. 4 at these distances. Fortunately this occurs at distances that 

are already large f~r practical spectroscopic interests. 

Figures IA .to ID arc plots of the potential energy curves for these 

states of N2 that are derived from these frequencies and the experimental 

ground state potential energy curve. These derived curves agree quite 

well with the observed potential energy curves, e.g., the minima are 

all close to the observed values. Of special interest here are the states 

labeled b' 1
2:;+ and c' 1

L;+. 
u u 

30 1 + Dressler has shown that the observed Lu 

states in the 12. 4-14. 3 eV region of the spectrum can be interpreted in 

terms of "deperturbed" states of a valence type (b' 1L+) and a Rydberg 
u 

1 + . 
type (c' L ). These "deperturbcd" curves correspond to hypothetical u 

electronic states of the same symmetry that are perrnitted to cross 

each other .30 The electrostatic interaction terms between these states 

is expected to be small, since their electron configurations are very 

different and hence our calculated potential energy curves should essen­

tially be the deperturbecl curves except very close to a crossing point. 

In Fig. IA, we have drawn our curves for these states as depcrturbed 

curves, and in Fig. IB we preserve the noncrossing rule and show con-

tinuous s~ates that assume different electron configurations with 
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FIGURE I 

a. The basis set used is [ 4s3p] with two diffuse drr functions and two 

diffuse p functions at the internuclear center (see Section B. 3.) The a 
experimental ground state curve is taken from F. Gilmore, J. Quant. 

Spectrosc. Radiat. Transfer, ~' 369-390 (1965). 

b. This state is poorly described in this basis set. The energy well 

should be deeper and cross the b' 1 L: ~ state at a distance considerably 

shorter than shown here. Dissociation to ionic nitrogen at 24. 5 eV is 

shown (coulomb repulsion curve). 

c. These two points represent strong mixing of the b' and c' states 

near the crossing point and thus do not fall on the de perturbed curves. 

d. The bl nu state is the least well described of the low lying states 

of N2 because of the importance of double excitations. At 0. 9.A the rr g 

excited orbital has a mean squared displacement perpendicular to the 

molecular axis of 13. 3 a. u. 2 and the b 1 IIu state is essentially a 

single electronic excitation. In the vertical transition region and beyond, 

double excitations mix in strongly and the 1T g orbital is a typical valence 

orbital size (from 3. 0 to 2. 0 a.u. 2)~ the perturbation approach cannot 

handle the double excitation contribution in excess of 15% adequately and 

the we 11 is not deep enough. 

e. The ci nu state is probably primarily a (3ag ~ 27T u) state which is 

not adequately described in this basis which contains no diffuse rr . u 
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functions. Double excitations are also important and the c state strongly 

perturbs the b state experimentally (reference 10). The state is 

included in the plot for completeness although the energy well is not 

nearly deep enough. Dissociation is shown to N+ (3P) + N- ( 3P) at 24. 5 

eV which would be the limit of the doubly excited state. The (3a ~ 
g 

27Tu) state dissociates to N(4S) + N(3p, 4D) at 21. 51 ev ~ 
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internuclear distance. Our results agree with the observations of 

Lefebvre-Brimi3
1
and Dressler,

30
i. e., the b' II;+ state is a 1T -> 1I u u g 

intravalence transition with R ~ 2. 7 a. u. and the c' I:6+ a Rydberg e u 
3a - 4 3a transition with R ~ 2. 1 a. u. The deperturbed results give 

g u e 
H =~ 2. 73 a. u. for U1(~ b' 1:6+ state and H = 2. 12 a. u. for the c' 12:+ c u e u 
state. The observed 1

lfu states can also be analyzed by assurning an 

interaction between a valence b III state and Hydberg states c 1
IT and 

u u 
1 1 

o n . Our calculat0cl valence b II (2a ---) 1T ) has an r of about u · u u g c 

2. 2 a. u., which is smaller than the value of 2. 5 a. u. derived by 

Dressler.30 The c 1TI (3a ---) 21f ) state is not adequately described in 
u g u 

this basis since it does not contain any diffuse 1Tu components. 

TableX gives the electronic oscillator strengths for the X 1z:;+---) 
g 

b 
1
TI , b' 1

2:; and c' 1z:;+ transitions at several internuclear distances. 
u u u 

These oscillator strengths do not contain any Franck-Condon factors. 

The behavior of the oscillator strength for the b' 1
2:; + state is very intcr­

u 
0 

esting. At smaller internuclear distance, i.e., R = 0.90 and 1.00 A, 

the f-value is only about 0. 1 but increases to 0. 5-0. 6 at H = 1. 094 and 

1. 20. The reason for this is that at the smaller distances the 1T g 

orbital begins to acquire some Rydberg character, e.g., the orbital's 

second moment,( 1T g lx2
+y

2
j1T g ), is about 27 (a. u. f. This ~eflects the 

Rydberg-valence mixing of the hypothetical deperturbed states and per­

haps the onset of tmited-atom behavior. At the larger internuclear 

distances, the slate becomes more valence-like, c. g., arr g orbital 
2 

second moment of 10 (a. u.) at R = 2. 3 a. u. We also sec that the 

X 1
2:;+ -> c' 12:+ transition has an f-valuc that bc:cornc::-; very small at. g u 

R =-~ 2. 27 a.u. This is due to t1w inter;i\.fion of tit(' b' 1 1~-I <11HI c' ';; -' 
ll ti 
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30 
states whose "dcpcrturbcd" curves cross at R = 2. 31 a. u. -
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TABLE X: Oscillator Strengths for Transitions in N2 • a 

-· ----~---

x 1 ~ + - b 1 TI g u 
x 1 :E + - b '· 1 :6 + 

g u 
-

R{J1.) 
(lp-lh}+ (lp-lh)+ 

(lp-lh} (2p-2h)b (lp-lh) (~2h)b 

0.90 0.58 0.46 0.13 0.11 

1. 00 0.62 0.48 0.13 0.11 

1. 094 0. 64 0.46 0.49 0.42 

1. 20 0.58 0.40 0.59 0.50 

1. 30 0.58 0.40 0.31 0.26 

1. 40 0.60 0.36 0.13 0.10 

1 ~ ''+._ c' iL; + x g u 

0. 90 0.07 0.05 

1. 00 0.09 0.07 

1. 094 0.11 0.08 

1. 20 O.OOlc 0.001 

1. 30 0.12 0.08 

1. 40 0.22 0.15 

a The electronic oscillator strength fel = ~ G · D.E · M where M is the 

dipole transition matrix clement and G the degeneracy factor. 

b These values include the effect of a decrease in the excitation 

energies in going from the (lp-lh} to (lp-lh} + (2p .. ·2h) approxima-

tion and a scaling of the lp-lh amplitudes due to the inc]usion of 

2p-2h amplitudes. 

c Due to an avoided crossing at around R = 1. 25 A. See texi for dis-

cussion. 
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2. States of CO 
~ 

The electron configuration of the r~rouncl f:tak of CO is 

we have obtained the excitation frequencies and transition moments at 

the five internuclear distances, R = 0. 98, 1. 09, 1. 13 (Re), 1. 21, and 

1 o 3 I ( 3+ 3-• 32 A, for these states of CO: a n and A II 5a -> 211), a' E , e z; , 
1- 3 1 . I+ I+ I+ I z; , d A, D A, and ~ (11T --+ 21T), B E (5cr--+ 3s), and C ~ 

(5a--+ 3pa ). The -e.lectron configuration of the principal component of 

each state is shown in parentheses. The basis set used in these calcu­

lations is a [ 3s2p] contracted valence Gaussian set, plus a single s and 

pa on the C and 0 atoms as used ln C. 2 with the [ 4s3p] valence basis, 

and a diffuse s and pa function at the center of charge. The calculations 

at R = 1. 09 A and 1. 21 A were done without the diffuse pa function. This 

hardly affects the excitation energies but we will see that the oscillator 

strengths for the X 
1
E+ ~ 1

:6+ transitions can depend quite strongly on 

the composition of the bas is. 

TableXI shows the excitation energies for nine states at five inter­

nuclear distances. The agreement with experiment is quite good. We 
0 

have also calculated the excitation frequencies at R ::: 1. 43 A. At this 

internuclear distance, the predicted excitation energies are all about 

0. 7 -1. 0 e V smaller than the observed values. Th is is primarily clue lo 

slight inadequacies in lhc orbital basis. Al lhis internuclear ciif)lancc:, 

the corrc lation cocffi cients are smal1 enough for the clo;.cd-shc 11 

assnm11Uon to be v~ llcl. Of special intcrcd arc the results for the I 
1~ -
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TABLE XI: Excitation Energies a: States of CO 

.. --1- -- -- ------------ ··--·-------· --· -- - - -- ---· · ·-· . . ··------ ···-------· --·-
1 + a 

3
II A 

1n x ~ -
R(A) (lp-lh) (lp-lh}+ Obs. b (lp-lh) (lp-lh}-1 

Obs. (2p-2h) (2p-2h} 
-
0.97 8.8 7.4 --- 12.2 10.1 ---
1. 09 7.6 6.5 6.6 11. 0 9.1 8.8 

1.13 7.2 6.0 6.1 10.3 . 8. 5 8.4 
• 

1. 21 6.6 5.4 5.6 9.6 7.6 7.7 

1. 32 5.7 4.4 5.0 8.3 6.1 6.8 

a' 3~+ e 3~-

0.97 13.1 11. 2 --- 15.6 13.1 ---
1. 09 10.5 9.1 9.3 12.9 11. 0 10.8 

1.13 9.5 8.1 8.5 11. 9 10.0 9.8 

1. 21 8.3 6.6 7.0 10.6 8.3 8.2 

1. 32 6.6 4.5 5.5 8.8 6.0 6.6 

d 3 L\ I iz:-

0.97 14.5 12.4 --- 15.G 13.3 ---
1. 09 11. 8 10.3 10.1 12.9 11. 2 10.9 

1. 13 10.9 9.3 9.2 11. 9 10.2 9.8 

1. 21 9.6 7.7 7.7 10.6 8.5 8.3 

1. 32 7.8 5.5 6.1 8.8 6.2 6.7 
----··---- ------------·-·· -- ·- --· 
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TABLE XI (Cont'd) 

D it::i. B i~+c 

0.97 16.1 13.5 --- 12.3 10.3 10. 6d 

1. 09 13.4 11. 5 --- 12.9e 11. 0 10.8 

1.13 12.5 10.4 10.5 12.8 10.9 10.8 

1. 21 11.1 8.7 8.4 13.le 11. 0 10.8 

1. 32 9.3 6.3 6.8 12.9 10.5 10.Bd 
~ ..... --.- - ··'" 

C 1~+c 

0.97 13.0 10.9 ---
1. 09 13.5e 11. 4 ---
1.13 13. 5 11. 3 11.4 

1. 21 13.Se 11. 5 ---
1. 32 14.9 12.4 ---

a In electron volts. The experimental Re is 1.13 A. 

b The experimental results are from G. Herzberg, T. Hugo, S. Til­

ford, and J. Simmons, Can. J. Phys. , 1J!_, 3004 (1970) and V. Meyer, 

A. Skerbele, and E. Lassettre, J. Chem. Phys., il' 805 (1965). 

c The calculated excitation energies to the b 
3
L+ and c 3 6+ states, the 

triplet states corresponding to the B 
1
L+ and C 1 L+ states, are 10. 5 

and 11. 2 eV at H = 1.13 A compared to the observed v?Jues of 10. 4 

and 11. 6 e V, respectively. 

d Estimated fron:i a plot of the measured values at R = 1. 09, 1.13, and 

i. 21 A.. 
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TABLE XI (Cont'd) 

e The excitation energies at this point were calculated without the 

diffuse po function at the center of charge. See text for discussion. 
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state, which arc all within 2-7% of the observed values reported by 

Herzberg et aI.32 These results are quite different from those deduced 
. 33 0 0 

by Krupeme, e.g., the excitation energies at R = 0. 97 A and 1. 09 A 

arc given as 7. 8 eV and 9. 1 eV, respectively, in Ref. 33. Our results 

therefore suggest that the experimental potential energy curve of Ref. 

32 is the correct one for R < 1. 09 A. 
As in the results for N2 , the calculated excitation energies 

are used with the experimental potential energy curve for the ground 

state to construct potential energy curves for the various states of CO 

in Figs.HA to IID. These curves all agree well with experiment. Of 

special interest are the curves for the 
1
:6+ states. Figure IA shows 

these potential curves for four 12:+ states, i.e., B 
1
:6+ (5a -~ 3s), C 1

:6+ 

(5a ~ 3pa ), 
1
:6+ (R), and, at a few points, 

1
:6+ (l~r ~ 2w), a valence state. 

In this Figure we draw these curves to correspond to approximate 

"deperturbed" curves that arc therefore shown as crossing one another .30 

The 
1
:0+ (n) is a Rydberg-like state that cannot be adequately described 

in the present orbital basis, especially at larger internuclear distances 

where it carmot retain its Rydberg character in this basis. The curve 

for this state is therefore just an approximate one. This calculation 

also predicts a1~+ stale that is valence-like with hr --> 2n as the princi-

pal component of the excitation. This state may play a role in the :6+ 

spectrum of CO in this region, similar to that of the b' 1
2; + state of N2 • 

u 

The predissociation of the v' = 2 level of the B 1
:6+ state is probably due 

to the a' 3:6+ to so~e extent, 34 but the location of this 1h+ (l1r ~ 27i) 

state relative to the B 
1
2:;+ suggests that some predissocialion may take 
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FIGURE II 

a. The basis set used is [ 4s, 2p7T 3Pa] ([ 3s2p] valence basis contracted 

from a (7s3p) primitive basis plus 3s and 3pa functions on carbon(~ = 

. 036, . 030) and oxygen (~ = . 048, . 040)) with an additional 4s (~ = . 01) 

and 4 Pa (~ = . 0085} at the center of charge. As mentioned in the text 

the points at 1. 09Aand 1. 21A were computed without the 4pa function; 

this function only affects the z;+ Rydberg states (lowering the Blz;+ and 

c1~+ states by 0. 1 and 0. 2 eV respectively) so that all five distances 

are plotted except for these states for which three points are used. 

The x1~ + ground state curve is taken from the experimental data of 

Krupenie, Natl. Std. Ref. Data Ser_. , Natl. Bur. Std. (U.S. ) ~' (1966). 

b. This point represents a 3z;+ (a~ 3s} Rydberg state which is the 

lowest state of this symmetry at small internuclear distances. For 

all the other distances plotted the a' 3 ~+ (7T ~7T*) state is at lower 

energy. 

c. The valence 1T ~'TT* state only appears in the low energy region at 

large internuclear distances. This is analogous to the b' 1~~ state 

of N2 and may cause predissociation of the B 1~+ state (see text). 

d. These points represent a Rydberg state (probably the next member 

of the a~ ns series which has erroneously been assigned as F 1n experi­

mentally [ T. Betts and V. McKoy, J. Chem. Phys. ~' 113 (1971)] 

that is inadequately described in this basis. At larger distances this 
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combination of orbitals produces a spurious valence state which may 

have altered the other 1 ~+ curves; these effects would be eliminated 

by adding more diffuse a functions to the basis set. 
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place through this mechanism. The variation of the lifetime with vibra­

tional quantum number 35 for v' = 0 and 1 vibrational levels of the B 
1
:6 + 

state may also be due to perturbations between these two states. In Fig. 

IIB we preserve the noncrossing rule and show continuous potential energy 

curves for these slates. Our calculated excitation energies for the b 3:>~+ 

and c 3E+ states are 10. 5 eV and 11. 2 eV at He of the ground state. 

These values agree well with experiment., i.e., 10. 4 eV and ll. 6 eV, 

respectively, and are not listed in TableXI. 

In TableXII we give the oscillator strengths for the X 1
2;+ --- >A 

1
11, 

B 1:6+, and C 1
2;+ transitions at the various internuclear distances. 

14 From the electron energy loss spectra, Lassettrc has obtained the 

dependence of the electronic transition moment on internuclear distance 

for the X 1E+ ~A III (Fourth Positive) band. It is now known that it is 

necessary to include this variation of the transition moment with R to 

remove the discrepancy that existed between total f-valucs derived 

from lifetime data and electron energy loss spcctra.15 In Table XIII 

we show our calculated values of the transition moment, 

( X 1E +I ~ r . f A III), at five internuclear distances. In the sc cond 
. -1 

column of this Table, we also list the experimental valuest4for M(H) at 
0 0 

R ~ 1. 09 A and 1. 13 A, which are the two values that lie in our range 

of R. The agreement between the r.alculated transition moment and the 

experimental values is good. Figure III shows a plot of M(R) along 

with a plot of Lasselfre 's data. 

The calculated f-Yalues for the X 1:6+---> B 1
L;+ and C 

1E+ transi-

tions can be sensitive to the basis set used in the calculation. This is 

due to the fact that they arc Rydberg-lib:~ state;.. For example, the 
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TABLE XII:. Oscillator Strengths for Transitions in CO. a 

X 
1
b+ - A 

1
Il X 1b+ - B 1 L+ c 

R(A) 
(lp-lh)+ (lp-lh)+ 

(lp-lh) (2p-2h)b (lp-1h) (2p-2h) 

0.97 0.34 0.28 0.03 0.03 

1. 09 0.22 0.18 ....... ...... _ 

1.13 0.18 0.14 0.04 0.03 

1. 21 0. 14 0.10 
__ ... ---

1. 32 0.06 0.04 O.OG 0.04 

x lb+ - c lb+ c 

0.97 0.04 0.03 

1. 09 ........ ---
1.13 0.06 0.04 

1. 21 --- ---
1. 32 0.06 0.05 

a The electronic oscillator Rtrenzth f el = ! · G • D.E • M
2 

where M is 

the dipole transition matrix element and G the degeneracy factor. 

b See footnote b of Tab le II. 

c The oscillator strengths for the B 
1
L+ and C 1 ~+ states are strongly 

affected by the diffuse components of the orbital basis. We only 

report values for the mcst complete and balanced basis. Sec text 

for discussion. 
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Dependence of the transition moment on internuclear 

distance in the Fourth Positive band of CO. 

R (A) M(R)a Mobs. 
b 

0.97 0.753 

1. 09 0.636 0.59 

1. 13 0.580 0.56 

1. 21 0.518 

1. 32 0.365 

a In atomic units. These values of M(R) are derived from the (lp-lh) + 

(2p-2h) values off in Table XII. 

b These two values of Ref.30 lie within our range of R. See Fig. 

for .a plot of the other data. 
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f-values obtained in the more complete calculation of C. 2. are 0. 05 

and 0. 12 for the B and C states, respectively, at H = 1. 13 A. There 

we used a [ 5s4pa, 3p7r] basis. This f-valuc of 0. 12 for the X ~ C 

transition, although in better agreement with the observed value of 

0.16, would probably be lowered if more diffuse Rydberg-like functions 

are added to the basis. 
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3.~ 

TablesXIV.:.XV~how the results of calculations on the N---+ T (3B 3u), 

N ---+ V (1B3U), and N ---+ R''' (1B3u) transitions in ethylene. The T and V 

states are the triplet and singlet rr --1T* states and R'" is the first mem-

ber of 1T ---+ nd1T Rydberg series. This Rydberg state is of the same g . . 
symmetry as the V state. In C. 3. results are given of calculations on 

these same states with a large basis, i.e., [4s3p / 2s] + R(3p ) Gaussian z 

basis, but only at the ground state equilibrium geometry. These new 

results show the dependence of the excitation frequencies and oscillator 

· strengths of these transitions on internuclear geometry. 

Table'XIV gives the excitation frequencies of these transitions at 

six C-C internuclear distances for the planar molecule. The results at 

R = 1. 35, Re of the ground state, can Le compared with the experimental 

vertical excitation energies of 4. 6, 7. 6, and 9. 0 e V, respectively. 
36 

The results in C. 3. · are in better agreement with experiment especially 

for the N ---+ R"' transition where we obtained an excitation frequency of 

8. 9 eV. However the excitation energies in this basis for this transi-

tion should give a reascmahle potential energy curve but shifted to 

higher energies. One of o:ir p1Jrpo0es is to obtain potcnti<ll ene:r-gy 
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TABLE XIV., Excitation energies: states of C2H4 as a function of C-C 

bond distance. a 

N __. T (3Bsu)b V (1B3u) R"' ( iB3u )d 

Rc-c(.A) (lp-lh) (lp-lh) + (lp-lh) (lp-lh) + (lp-lh) (lp-lh) + 

(2p-2h) (2p-2h) (2p-2h) 
----·-----

1. 24 6.1 5.5 10.9 9.8 12.7 11. 1 

1. 35C 4.8 4.0 9.7 8.2 12.0 10.6 

1. 46 3.7 3.0 8.6 7.5 11. 4 10. l 

1. 57 2.9 2.1 7.6 6.3 11. 1 9.8 

1. 69 2.1 1. 3 6.5 5.0 10.8 9. 5 

1. 80 1. 5 0.5 5.5 3.8 10. 5 9.3 

a Calculations are all done at a C-H bond length of 1. 07 A and a CH­

CH bond angle of 120 ° and tn the planar geometry. 

b ~xcitation energies in eV's. 

cR of the ground state. See C •. 3. for a comparison of the calculated e 
and experimental res1.1lts at Re. 

d The first member of the Rydberg series of the same symmetry as 

the V state. 
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TABLE XV. Oscillator strengths for the N ~ V transition at several 

C-C distances. a 

R(A) b (lp-lh) + 
(lp-lh) (2p-2h) 

1. 24 0.44 0.34 

1. 35C 0.40 0.33 

1. 46 0.33 0.28 

1. 57 0.24 0.20 

1. 69 0.15 0.11 

1.80 0.10 0.07 

a For planar ethylene with a C-H bond length of 1. 07 A and a CH-CH 

bond angle of 120 °. 

b fel == ~ • AE • M2 where M is the transit.ion moment. No Franck­

Condon factors are included in this table. 

c Re of the ground state. See C. 3. · for a comparison with experi­

mental results. 
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TABLE XVI. Excitation energies: states of C2H4 at several torsional 

angles. a 

N~ T(3B3U )c V<1Bau )c R'" (1B3U) 

8b (lp-lh) (lp-lh) + (lp-lh) (lp-lh) + (lp-lh) (lp-lh) + 

(2p-2h) (2p-2h) (2p-2h) 
--- ------

00 4.8 4.0 9.7 8.2 12.0 10.6 

30° 3.9 3.4 8.0 7. 1 90 7 8.4 

45 ° 2.9 2.3 6.6 5.7 9.2 7.9 

a With a C-H bond length of 1. 07 A and a CH-CH bond angle of 120 ° 

and Rc-c = 1. 35 A. 
b The calculations at 30 ° and 45 ° were done in a [3s2p/ls] contracted 

valence plus two Py and Pz diffuse Gaussian basis. 

c Sze text for a comparison with available experimental data. 
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curves for planar ethylene in the T, V, and R"' states. To obtain these 

· curves, we assume a Morse curve for the C-C stretching in the gr aJ.nd 

state with Re = 1. 35 A, w = 1600 cm-
1
, and De ~ 146 kcal/mole. From 

this ground state potential energy curve and the excitation frequencies 

of TableXIV we obtain the potential energy curves for the T, V, and R 

states shown in Fig.IVA.. The V state is drawn with a dissociation limit 

of 8 eV. 
37 

These curves give C-C bond lengths in these states in 

agreement with the suggested experimental values. 36 The curves 

are approximate but reasonable changes in the dissociation limits will 

not change these estimates drastically. The T state has an Re of alJont 

1. 55 A while the V state has a minimum around 1. 7-1. 8 A. Mulliken 12 - 36 

suggests values of 1. 58 A and 1. 8 A for Re of the T and V states, 

respectively. The potential energy curve for the R"' state has a mini·~ 
0 0 

mum at around R = 1. 42 A, which agrees well with the value of 1. 41 A 

observed for most Rydberg states of ethylcn2~ 0 The b2g (or 1T*) orbital 

has a second moment in the direction perpendicular to the molecular 

plane, Le., ( 7r* I z2 I1f*) of about 6 (a. u. )2 and 66 (a. u. )2 in the V and 

R"' states, respectively. The N ~ V transition is clearly an intra-

valence transition. Fimt.lly, we lbL the oscillator strengths for the 

N ~ V transition at several internuclear distances in Table XV. The f-

value of 0. 33 for thJ vertical transition at the groond state R is close 
e . 

to the suggested total f-value of N -- V band. The basis set used in 

these calculations is not ade0'Jate to describe the f-value of the N ~TI"' 
6 . 

transition at larger C-C distances. 

Table XVI lists excitation energies at torsional angles of 30 ° and 

45 ° for N -- T, V, and R"' transitions. In th2se calculatioDs the C-C 
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FIGURE IV 

a. The basis set employed is [ 3s2p] + R{ 2p c) utilizing a contracted 
. ~ 

(7s3p) primitive set (reference 29) with two diffuse Pz functions on 

each carbon (~ = .0 3, . 01) and, in the case of twisted ethylene, identical 

Py functions also. 

b. The ground state curve for stretching is generated by the Morse 

functionAE = 7.3(1-e- 2· 3(R-1. 35 ) )2 whileR1.s in angstroms and 

AE is in electron volts. The points at 1. 80 A (3. 4 a. u.) are inaccurate 

because the closed shell gound state approximation is beginning to fail 

at this distance. The modified symbols at 1.91A(3.6 a.u.) indicate 

that the ground state correlation coefficients are the perturbation 

theory estimates since the equations-of-motion are no longer self­

consistent in the (1 p-lh) approximation. 

c. The ground state curve for twisting is taken as AE = 2. 3 sin2 8 + 

1. 3 sin4 e - 0. 8 sin6 e where AE is in eV. This fits the CI data of 

Kaldor and Shavit, J. Chem. Phys.~ 191 (1968) up to about 45° 

and matches the experimental barrier of 2. 8 eV (B. S. Rabinovitch 

and F.S. Looney, J. Chem. Phys. 23, 315 (1955)). 
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distance is kept at 1. 35 A. Calculations at 60 ° showed that some ground 

state correlation coefficients become large and hence we could not make 

the closed-shell assumption for the ground state wavefunction. An open­

shell version of the equations-of-motion method would have to be used. 

In Fig. IV B potential curves are plotted for these states from the cal­

culated excitation energies and the suggested potential energy curve for 

torsion in ·the ground state. To compare the calculated frequencies with 

experiment, we assume the potential energy curves of the V and T states 

given in Ref. 36 but shifted so as to give the observed excitation energies 

of 7. 6 and 4. 6 eV at e = 0 ° for the V and T states, respectively. The 

calculated frequencies agree well with these suggested experimental 

results.. At twisting angles (} = 0 °, 30 °, and 45 °, the calculated values 

for the N ~ T transition are 4. O, 3. 4, and 2. ·3 e V, respectively, and 

the available expzrimental data suggest36 values of 4. 6, 3. 2, and 1. 9 eV. 

For the N -) V trans it ion the values are 8. 2, 7. 1, and 5. 7 e V at 

6 = 0 °, 30 °, and 45 ° compared with the probable experimental values of 

7. 6, 6. 4, and 5. 0 eV, respectively. The curve for the R"' state shows 

a minimum at a torsional angle of about 30 ° in agreement with the observed 

. minima at an angle of 25 ° in other Rydberg states and the 
3
Biu positive 

ion of ethylene. 36 The oscillator strength for the N ~ V transition 

decreases from a value of 0. 33 at €J = 0 ° to 0. 08 at 45 °. From the 

orbital second moments, the electron density is obviously becoming less 

diffuse in both the V and R"' states as the molecule is twisted. 
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II. Applicability of SCF Theory to Some Open-Shell States of CO, 

N2 , and 0 2 

A. Introduction 
~ 

The Hartree-Fock model provides a useful description of the 

electronic structure of atoms and molecules. For closed-shell sys­

tems, the Hartree-Fock (HF) wavefunction is an antisymmetrized 

product of orthogonal spin orbitals which satisfy the pseudo-eigen-

value equation, 

F<Pi = E. cp. 
' 1 l 

(1) 

where 

N 
F = h + ~ (2J. - Ki). 

i=l 1 
(2) 

h is the nuclear field plus kinetic energy operator for each electron, 

and J. and K. are the Coulomb and exchange operators associated 
1 1 

with the doubly-occupied orbital <Pi. For open-shell systems, the 

total wavefunction is, in general, a sum of Slater determinants. 

In these cases there are two complicating features which do not 

occur in the closed shell equations, Eqs. (1) and (2): (i) the off-

diagonal Lagrange multipliers Eij cannot, in general, be eliminated 

by an arbitrary unitary transformation and will therefore appear 

in Eq. (1), and (ii) it is not always possible to express the HF 

operator in terms of Coulomb and exchange operators only. For 

some types of open-shell configurations the first difficulty can be 
1 handled by Roothaan's coupling operators but the recently proposed 

Orthogonality Constrained Basis Set Expansion (OCBSE) method is 
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much more convenient and general. 2 The second difficulty arises in 

systems with two or more open shells in which, in addition to the 

usual terms in the expression for the total energy, we have a term 

representing the interaction between two open shells. In the nota­

tion of Ref. 1, this is the term 

I = 2 ff' L; I m' , 
mm' m 

(3) 

where m and m' refer to orbitals in the first and second open 

shells, respectively, and f and f' are the usual fractional occupations 

of the open shells. For example, in the B 3~~ state of oxygen with 

the configuration 1T~ 1T; , I, Eq. (3) would be 

(4a} 

where 

Upon variation of the total energy, an integral such as ( 4b) 

leads to an operator which cannot be ex-

pressed as a sum of Coulomb and exchange operators. All eight 

~ states arising from the configurations 1T~ 1T g and 1T~ 1T ~ contain 

such integrals. The presence of such terms in the HF Hamiltonian 

matrix is a complicating factor in trying to set up a general 

computer program to treat open-shell states. 
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In this paper we show that by working with the real functions 

1Tx and 1Ty instead of 1T+ and 1T -, we can write the energy expressions 

for E states of the configurations (7T u)3
(7T g), (7T u)\rrg)

3 
and (17T )

3
(21T) 

for diatomic molecules in terms of Coulomb and exchange integrals 

only. This means that the HF operator now contains only the 

Coulomb and exchange operators J. and K.. This is an immediately 
.1 1 

useful result for it allows us to solve correctly for the SCF solu-

tions of the 
1 E~, 3E~, 1~~ , and 

3 E~ states of N2 and 0 2 and the 

analogous states in CO. Many of these states are of spectroscopic 
3 - , 1 + interest, e.g., the B ~u state of 0 2 and the b Eu of N2 • These 

calculations can be done using existing open-shell SCF programs. 

In the next section we discuss the algebraic identities which are 

used to express the interaction terms Imm, in terms of the J and 

K integrals. We also list the coefficients needed to set up the new 

HF matrices. 

In Secs. C and D we give the SCF results for most of 

· the low-lying excited states of N2 , 0 2, and CO. For N2 and CO, 

these calculations are all done at the groWld state geometry, but 

for 0 2 we give results at a few internuclear distances for the 

3 - 3 + l + B ~u and A ~u states. The SCF results for the ~u states of N2 

and 3 E- states of 0 2 answer some important questions concerning 
u 

the relative locations of valence and Rydberg states of the same 

symmetry in the HF approximation compared to the positions of the 

corresponding states in the observed spectrum. For example, we 

show that in a basis with only valence atomic orbitals there is no 

bound 1E+ state arising from a rr - 1T transition in N., in the HF u u g G 
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approximation. Expansion of the basis to include Rydberg orbital 

character gives well defined Rydberg states but still no bound 

valence states. This is contrary to experiment where the 1f g orbital 

of the b' 
1E~ state is known to be strongly antibonding. We show 

that there is a simple explanation for this behavior, namely, that 

changes in correlation energy are important in establishing the 

ordering of these excited states. A very similar case arises in 

comparing the valence B 
3E~ state of 0 2 with configuration (1f u)

3 (1f g)3 

and a Rydberg state of the same symmetry with the configuration 

(11' u)s(11T g)2(211g). 
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For open-shell systems the SC F wavefunction is, in general, 

a sum of Slater determinants. For many open-shell states it is 

possible to write the expression for the total energy in terms of 

the familiar one-electron, Coulomb and exchange integrals of closed 

shell SCF theory. In such cases, if one partitions the occupied 

spatial orbitals into Q shells each containing the set of orbitals 

{ cp q }, the energy is given by 

(2 a J.. - b K .. ) • qp l] qp l] 
(5) 

Here fq is the fractional occupation of shell q, aqp and bqp are 

elements of a symmetric matrix specifying the interactions between 

shells q and. p,and h1, J .. and K .. are defined as follows, lJ lJ 

(6a) 

J .. = (¢.(1)¢.(2)1 _!_ 1¢.(l)cp.(2)) 
IJ 1 J r 12 1 J 

(6b) 

K. . = < cp. ( 1) <P. ( 2) I _!_ I cp. ( 1) <P. ( 2) ) . 
IJ 1 J r 12 J 1 

(6c) 

The numbers aqp and bqp must be determined for each specific 

state. Requiring that the energy be stationary with respect to 

variations of the orbitals, we obtain the HF equation for each shell, 
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€.cp. 
I I 

(7a) 

Q 
Fq = h + I; f ~ (2 a J. - b K.) . 

p=l p <P.jE{cpp} qp J qp J 
(7b) 

The off-diagonal Lagrange multipliers, Eij' needed to preserve 

orthogonality between orbitals </Ji and cpj are not explicitly shown in 

Eq. (7a) since we assume that these equations are to be solved by 

the OCBSE method. 2 In this method the orthogonality of a given 

orbital to all others is achieved by requiring the variations to be 

orthogonal to the other orbitals. 

Clearly if the energy, Eq. (5), cannot be written only in 

terms of the integrals h., J .. and K .. , then the resulting SCF equa-
1 I] IJ 

tions, Eqs. (7), will contain operators which cannot be expressed 

in terms of the Coulomb and exchange operators. The resulting 

equations would be more complicated to solve numerically, requiring 

an SCF program which would have to manipulate the additional integrals 

necessary for the calculation. Huzinaga has stated that the energy 

expressions for some important excited E states of diatomic mole-

cules cannot be written in terms of J and K integrals alone.1 

1 + 3 -These would include the b' Eu state of N2 and the B Eu of 0 2 • 

However, if the wavefunctions of the configuration (11r)n(27T)m are 

expressed in terms of the real functions 11 and 11 instead of x y 
the complex functions 1T +and 1T-, the terms in the energy ex-

pression which are not obviously J and K integrals . are of only 

three types: 
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11 = (ln (1)21T (2) I _!_ I 11T (1)21T (2)) 
x x r12 Y Y 

(8a) 

I2 = (11T (1 )11T (2) I _!_ j 21T (1 )21T (2)) x y r 12 x y 
(8b) 

13 = < 11T ( 1 > 11T ( 2 > I _!_ 121T ( 1 > 21T ( 2 » . x y r 12 y x (Sc) 

Through various algebraic identities, 11' 12, and 13 can all be 

expressed in terms of Coulomb and exchange integrals . The ex­

pression for 11 can be obtained from the relationship 

(9) 

Hence, 

(10) 
2 

Here 1T + and 1T- are ('IL_ + i1T )/{2 and (1T - i11'. )/-12, respectively. --x y x y 

Similarly 12 can be found from 

Hence, 

(12) 
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Finally 13 is just an exchange integral 

13 = K(11f , 211' ) . x y (13) 

These results for 11' 12 and 13 can now be used to write the energy 

expressions for the open-shell E states of the configuration 

(111' )n(21f)m in terms of J and K integrals only. With the resulting 

coefficients a and b p' calculations can be done for these states qp q 

using existing open-shell SC F programs. Tables I and II give 

these coefficients for the various states of the configuration 

11'3 
1T and n3 1T.g3 , respectively. These states include many of the 

u g u 

valence excited states of N2 and 0 2 • All the results for the 'TT~ 1Tg 

configuration are applicable to CO also, although the 11 orbitals no 

longer have g or u symmetry. The results for the ~ states are not 

new but are included for completeness. 



TABLE I. Coefficients for the configuration 1T~ 1Tg. a 

State q = (] 1Tux 1Tuy 1Tgx 1Tgy 

f 1 3/ 4 3/ 4 1/ 4 1/4 q 
all ~ (aoq, b oq) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) states 

(a q' b q) (1, 1) (8/9, 8/9) (8/9, 8/9) b b 
1Tux 1Tux 

3~+ (a q' b q) (1, 1) (1 / 3, 4/ 3) (5/3, 4/3} u 7Tgx 1T gx 

1 + 
(a q· b q) (1, 1) (1/3, -4) (5/3, 20/3) ~ u 1f gx 'lfgx 

3 - 1 -
(a q' b q) (1, 1) (5/3, 4/3} (1/3, 4/3) ~u' ~u 

1T gx 1T gx 

3a (a q' b q) (1, 1) (1, 4/ 3) (1, 4 / 3) u 1T gx 1T gx 

ia (a q' b q) (1, 1) (1, 4/ 3) (1, -4) u 1T gx 7Tgx 

aThe coefficients not explicitly listed can be found by a transformation x - y in the row and 
column labels. A blank space indicates no interaction. 

bThese coefficients vary from state to state and can be found lower in the table by utilizing the 
symmetry of apq_ and bpq_. 

co 
~ 



TABLE II. Coefficients for the configuration 11'~ 1Tg· a 

State q = (] 1Tux 11'uy 1Tgx 1T gy 

f q 1 3/4 3/4 3/ 4 3/4 

all \ (aaq, b aql (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) 
states 

(a q' b q) 
1Tux '"ux 

(1, 1) (8/9, 8/9) (8/9, 8/9) b b 

3~+ 
(a q' b q) (1, 1) (11/9, 4/3) (7 /9, 4/3) (8 / 9, 8/ 9) (8/9, 8/9) u 1Tgx 7Tgx co 

~ 

IE+ 
(a1T q' b 1T q) (1, 1) (11/9, 4/9) (7 /9, 4/ 9) (8 / 9, 8/ 9) (8 / 9, 8/9) u gx gx 

3~-
u (a q' b q) 

1Tgx 1fgx 
(1, 1) (7 /9, 4/9) (11/9, 20/9) (8 / 9, 8/ 9) (8 / 9, 8/9) 

l~- (a , b ) (1, 1) (7 / 9, 4/3) (11/9, -4 / 9) (8 / 9, 8/ 9) (8 / 9, 8/9) u 1Tgxq 7Tgxq 

3.A (a q' b q) (1, 1) (1, 4/3) (1, 4/9) (8 / 9, 8/ 9) (8 / 9, 8/9) u 1T gx 1T gx 

IA 
(a1T q' b7T q) (1, 1) (1, 4/ 9) (1, 4/ 3) (8 / 9, 8/ 9) (8 / 9, 8/9) u gx gx 



TABLE TI. Continued. 

~he coefficients not explicitly listed can be found by the transformation x - y in the row and 

column labels. 

bThese coefficients vary from state to state and can be found lower in the table by utilizing 

the symmetry of aw and bw. 

co 
CJ1 
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c. 

Tables m and IV give the results of SCF calculations on 

many . of the interesting excited states of N2 and CO. In addition to 

the states arising from the TT - 11* excitation, we also give results 

for the a - TT* valence states and some ions. SCF results have 
3 3 2 + already been reported for the a TI state of CO and the X ~g 

and A 2Ilu 4 ions of N2, but the results for the other excited states 

are presented for the first time mainly due to the historical diffi­

culties of expressing the open-shell SCF Hamiltonians of the 
1' 3 ~+, and 1 ' 3 ~- states in terms of Coulomb and exchange operators 

1 only. The results of the previous section now allow us to carry 

out SCF calculations on these states in a simple and direct way. 

1 + All the calculations except those for the ~u state of N2 were done 

in a valence [ 4s3p] contracted Gaussian basis derived from a 

(9s5p) primitive basis on each atom. 5 This basis gives an SCF 

energy close to the HF limit for the ground states, i.e., -108. 9928 

a. u. for N2
4 and -112. 7860 a. u. for CO. 6 The effect of adding 

Rydberg-like P7J" orbitals to the basis is estimated to be less than 

0. 001 a. u. on the total energy of the valence states listed. Although 

addition of a single d7T function to the basis in N2 lowers the ground 

state energy by 0. 071 a. u.,the changes in excitation energies are 

much smaller, e.g., an increase of 0. 27 eV for the X 
1 ~; - A 

3~~ 

transition. 

The results are in good agreement with experiment except 

for the b' 
1 ~~ state of N2 and the 1E+ (111' .. 2w) of CO where there 



TABLE m. SCF results for the excited states of N2 • a 

Descriptionb 
c 

State ESCF (au) AEexp (eV) AESCF (eV) AEfc (eV) 

x 11;+ 
g -108.8877 0.0 0.0 0.0 

B 3ng a - 'TT -108.6064 8.1 7.66 7.78 g g 

a 1ng a - 'TT g g -108. 5408 9.3 9.44 9.72 

A 31;+ 1Tu-1Tg -108.6613 7.8 6.16 6.22 u co 
IE+ Rydbergd 14.27d 

-:J 

-108.3633 
u 

a' 1E-
'TTU - 'TTg -108.5813e 9.9 8.34 8.38 u 

3A 
1Tu - 'TTg -108.6211 8.5 7.26 7.31 

u 
iA 1Tu-1Tg -108.5565 10. 3 9.01 9.05 

u 

X 2 E+ 
g 

N+ 
2 -108. 3059 15.6 15.83 17.05 

A 2
Il u 

N+ 
2 -108.3063 17.1 15.82 16.97 



TABLE III. Continued. 

aAt an internuclear distance of 1. 094 A. 
bThis describes the excitation relative to the ground state configuration (lag)2(lau)2(2ag)2(2au)2 

(111 u)4(3ag)
2

• 

cThese values taken from R. S. Mulliken, "The Energy Levels of the Nitrogen Molecule" in 

the Threshold of Space, edited by B. Armstrong and A. Dalgarno (Pergamon Press, Inc., New York, 

1957) and F. R. Gilmore, J. Quant. Spectrosc. Radiat. Transfer 5, 369 (1965). -
~his is not the b' 1~~ state which is known to have a strongly antibonding 11 g orbital but is a 

Rydberg state with the configuration (core)(11u)3(3ag)2nd7Tg· No bound state of this symmetry is 

obtained with a purely valence basis. See text for discussion. 

eln the HF approximation the B' 3~~ and a' 1 2";~ states have the same energy. Experimentally 
3 -the B' ~ state lies at about 9. 0 eV. 

u 

tO 
ex> 



TABLE IV. SCF results for the excited states of co. a 

D . t· b 
c d d State escrip ion ESCF (au) aEexp (eV) aESCF (eV) AEfc (eV) 0 exp DSCF 

X 1E+ -112.6969 0.0 0.0 0.0 -0.114 ± 0.005 0.528 

a 3rI (J - 1T* -112.4977 6.3 5.42 5. 80 ± 1. 38 2.33 

A ine a - w* -112.3837 8.35 8.52 9.10 ± o. 03 ± o. 08 1. 29 

a 3~+ 1T - 11* -112.4492 8.2 6.74 7.65 -1. 45 

I 1E- 11 - 11* -112.3981f 9.1 8.13 9.44 -1.11 

d 3A 
(0 

11 - 11* -112.4225 9.1 7.46 8.55 -1.28 (0 

D 
1
A 1T - 11* -112.3890 10. 4 8.38 9.95 -0.95 

X 2E+ co+ -112.1990 14.1 13.55 15.18 

aAt an internuclear distance of 1. 128 A. 
bThis describes the excitation relative to the ground state configuration (la)2(2a)2(3o"}2(4a)2

(11f )4 

(5a)2
• 

cSee P. H. Krupenie, "The Band Spectrum of CO," National Standard Reference Data Series, 

NBS 5 (1966). ,,...., 



TABLE IV. Continued. 

i.e.' 

din Debyes. The dipole moment is positive if charge is transferred from carbon to oxygen, 

carbon is positive. The experimental values for the a 
3
Il and A 1Il states are for the equili-

brium distances on these states, i.e., 1. 21 A and 1. 235 A ,respectively. 

eThe total HF oscillator strength for this transition is 0. 185 which is very close to experiment. 

See Ref. 11. 

fln the HF approximation the e 3 E- and I 
1 ~- states have the same energy. Experimentally 

the e 3 E- state lies at about 8. 9 eV. 
..-
0 
0 
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are some serious problems in attempting SCF calculations. We 

. discuss these below. In most cases the SC F scheme underestimates 

the excitation energies since the excited states would usually have 

less correlation energy than the ground state. This is not so for 

some cases, for example, the b' 1 ~+ state of N2 and the B 3 E-u u 

of 0 2 • The results in column 6 of Tables Ill and IV are those in 

which only the excited orbital, e. g. , 7r g' is variationally determined 

and the core orbitals are taken from the ground state calculation. 

This approximation is quite good for N2 but unsufficient for CO, e.g., 
l 

in . the a state of CO core contraction lowers the energy by 1. 6 eV. 

Nesbet 7 has computed the energy levels of an these states in the simple 

virtual orbital approximation. They are, in general, about 1 eV higher 

than our frozen-core results for N2 but the discrepancy is less for CO. 

The 
1
E+ states of N2 and CO are of special interest since 

they illustrate a serious problem with the SC F approach to some 

excited states. In N2 the b' 1 ~+ state is primarily a 1l - 1T . u u g 

transition with a vertical excitation energy of about 14. 4 eV. 
1 + Experimentally there is a strong perturbation of the b' Eu state 

by the c' 1L~ state, but this estimate of 14. 4 eV for excitation to 

the b' 1 L~ is the deperturbed value of Geiger and Schroder. 
8 

A 

vibrational analysis shows the b' 1 E~ state to have a strongly anti­

bonding 1T g orbital and an equilibrium internuclear distance of 1. 44 A 

In · the SC F scheme no bound valence state exists which has such 

characteristics. In a [ 4s3p] Gaussian basis with only valence atomic 

orbitals,5 only 1T g orbitals with positive eigenvalues result from the 

SCF iterative scheme. When very diffuse Rydberg-like atomic orbitals 

are added to the basis, i.e. , Px and p
2 

orbitals with exponents of 

0. 05, 0. 015, 0. 004, .and 0. 001, rapid convergence to a 1
2..;+ with a u 

Rydberg-like 7r orbital results. This is a Rydberg state with an g 
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oscillator strength9 of 0. 033 and a mean-squared displacement for 

the 1fg orbital of (vg lx2 l1Tg) = 50. 2 a. u.
2 

(this is a nd'lT orbital lying 

in the x-z plane where z is the molecular axis). The state is well 
2 

described in the frozen core approximation using an ionic A nu 

core, e.g., the energy lowering due to self-consistency is less 

than 0. 01 eV. This state is then the first in a 1~+ Rydberg series 
u 

with the configuration (lag)
2
(lau)2(2ag)2(2au) 2 (7T u) 3(3ag)

2
nd7T g and a HF 

excitation energy of 14. 27 eV or 1. 55 eV below the A 2II ion in 
u 

the HF scheme. With this term value this state should be experi-

mentally at about 15. 6 ey, i.e., 1. 55 eV below the true ionization 

potential. There are many Rydberg transitions appearing in this 

region in the energy-loss spectrum of Geiger and Stickel. lO 

The question now arises as to where the valence-like b' 1E+ 
u 

state of N 2 is. The explanation is that in HF theory this valence 

state is calculated to be above the HF ionization potential and 

therefore in the continuum of the A 2Ilu ion. Because of ortho­

gonality requirements the state is also contaminated with lower­

energy Rydberg components. This argument suggests a HF excita­

tion energy of at least 15. 8 eV and implies that the valence excited 

b' 1
}; +state has about 1. 5 eV more correlation energy than the ground 

u 

state. This is not unique as we will show that the B 3E~ state of 

0 2 has 2. 5-3 eV more correlation energy than the ground X 3z;; 
state. 

We also find no bound valence-like 'TT - 11* state of 
1
E+ sym­

metry for CO in the HF approximation and in fact such a state has 
11 not been observed. Lefebvre-Brion et al. , have shown that the 
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B 1~+ and C 
1 ~+ states (at 10. 78 eV and 11. 40 eV experimentally) 12 

must be a - a* excitation in which the a* orbital contains primarily 

M shell atomic functions. Calculations using the X 
2
E+ ion core of 

CO and including Rydberg basis functions give 
1

:2;+ states at 3. 3 eV 

and 2. 5 eV below the X 2 E+ ion. Using an ionization potential of 

14. 1 eV for this ion these states come out at 10. 8 eV and 11. 6 eV, 

respectively, in good agreement with experiment. 12 The calculated 

oscillator strengths of 0. 031 and 0. 082 for the transitions to the B 

and C states are in good qualitative agreement with the experimental 

values of 0. 017 and 0. 170. l2 

Dipole moments are also shown for CO in Table IV. The 

ground state dipole moment is opposite to the observed value and 

quite far from the HF limit of al:x>ut 0.274 n.6 Hence, the calculated 

values should pr<1>bably be viewed as representing only differences in 

dipole moments reliably. The E and fl. states are predicted to have 

large dipole moments in the same direction as the ground state 

( C-0 +), which may be verified experimentally, while the Il states 

have large positive moments (c+o-). The dipole moment of the 

a 3Il state (essentially the same value, 2. 46 D, was obtained by 

Huo 12) is very large and in qualitative agreement with experiment 

(1. 38 D). 
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D.~ 

Two important excited states of 0 2 are the A 3~~ and B 
3

E~ 

states which are the upper states in the Herzberg bands (A ~ X) 

and Schumann-Runge bands (B ~ X) respectively. The transition 

X ~ B is dipole-allowed with an oscillator strength of 0.193. These 

states arise from a 1T - 1T transition which leads to the relatively u g 
large increase of about 0. 3 to 0. 4 A in equilibrium internuclear 

separation relative to the ground state. Robin and Kuebler 13 have 

shown that the Schumann-Runge bands are unaffected by high pres­

sures of inert perturbing gases indicating that the B state is a 

valence state. However, Taketa et al., 14 have carried out 7T­

electron calculations which show that the A state is adequately 

described in a minimum basis of valence atomic orbitals but that 

the B state comes out too high in energy. By allowing the orbital 

exponent of one 1T g molecular orbital (MO) to take a different value 

from the other 7fg MO's, variational calculations showed that the 

resulting outermost 1Tg orbital is much more diffuse than the other. 

We will show below that these calculations did not converge to the 
3 - 3 -spectroscopic B ~u state but to a Rydberg Eu state with an elec-

tron configuration (1 a g)2(1 au)
2
(2ag)

2
(2au)

2 
(3a g)2 (7T u)\7T g)

2
nd1T g· In the 

7T-electron approximation without exchange with the core, this 
3 -Rydberg ~ state has a lower energy than the valence state 

u 

[(core)(1Tu)3 (11'g)3
] in the SCF approximation. In fact, Fig. 1 shows 

that with reasonably accurate SCF results the (1T u)3 (1T g)
3 

state is 

only 0. 33 eV below the (1T u)3 (1T g)2nd?T g state. It is the inclusion of 
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electron correlation which puts the valence state 6-7 eV below the 

Rydberg state. Recent extensive configuration interaction calcula­

tions15• 16 confirm these conclusions. 
3 -Table V shows the results of SC F calculations on the X Eg, 

A 
3 ~u+ and B 

3 
- t t f 0 d th 4 t f 0 + al ~ Eu s a es o 2 an e a nu s ate o 2 at sever 

internuclear distances. These are done using the coefficim ts of 

Table II. The vertical excitation energy for the A state is 

reasonable but the 
3E~ - 3E~ separation is far too large, namely 

8 eV instead of the observed 2 eV. Inclusion of a single d function 

on each atom only lowers the excitation energy of the B state by 

0. 2 eV. This separation of 8 eV would be reduced considerably by 

including electron correlation. Comparison of minimum basis set 

SCF calculations with the complete minimal basis configuration 

interaction results of Schaefer and Harris 17 shows that the B 3E~ 
• 3 -state has about 3 eV more correlation energy than the X E 

g 

state. From Table V we see that on the other hand the A 3~+ 
u 

state has 2 eV less correlation energy than the ground state. These 
3 + 3 -

two effects then reduce the SC F Eu - Eu separation of 8 eV to 

about 3 eV. 

To clarify the question of the relative location of the valence 
3E~ state and a Rydberg state of the same symmetry in the SCF 

approximation as compared to experiment, we have solved directly 

for the 
3

E~ state with the configuration (core)(1f u)3(1f g)
2
21f g· This 

state then has a singly-occupied diffuse 21f g orbital and a doubly­

occupied valence 1T g orbital. There are four possible spin couplings 

for such a state14 but since only Rydberg states are of interest we 



a TABLE V. Some valence states of 0 2 • 

State Description ESCF (R) 

1. 0 1.207 1.42 

X 3E-
g ground -149.4670 -149.5758 -149.5211 

A 3E+ 
u 11u - 'TTg -149.4276 -149.5057 

B 3E-b 
u 1Tu - 1Tg -149.1110 -149.1558 

4 
a nu o/ -148.8244 -149.0437 -149.0617 

~ a [ 4s3p] Gaussian basis. See Ref. 5. 

Vertical 
excitation 

energy 

1. 60 1.80 Exp SCF 

-149.4411 

-149.5027 -149.4745 6.2 4. 03 

-149.1254 -149.0701 8.3 12.64 

-149.0246 16.7 14.48 

bThe SCF value of the oscillator strength for the X - B transition is 0. 87. 

Re 

Exp SCF 

1. 21 1. 21 =F 0. 02 

1. 52 1. 49 =F 0. 04 

1. 60 1. 4-1. 5C 

1. 38 1. 34 =F 0. 02 

cDue to incorrect dissociation the potential energy curve begins rising steeply near equilibrium 

. causing Re to be underestimated. 

~ 

0 
(j.) 
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can choose a state such that the core corresponds to the lowest 

state of 0 2+ with the configuration (core)(11: )3(1T )2
• This is the 

u g 
4 3 -a nu state. The wavefunction for this Rydberg Eu state is then 

(14) 

In Eq. (14) a is the antisymmetrizer and we do not show the sigma 

orbitals for convenience. The function, Eq. (14), reduces to that 

for the (1T u)3 (1T g)3 configuration if the Rydberg orbital 21T g is set 

equal to 1T g· Table VI shows the apq and bpq coefficients needed in 

the SCF calculations. The valence electron interactions are identi­

cal to those of the a 4Ilu ion. The SCF energy for this Rydberg 

state is -149. 0990 a. u. Its Rydberg character is reflected by its 

low oscillator strength of 0. 001 and a very diffuse 211' g orbital, 

e.g., with a matrix element (21T g jx2 I 27T g) = 60. 1 a.u.2 compared to 

( 11T lx2 I l1T ) = 1.11 a.u.2 The Rydberg 3~- state is only 0. 33 eV g g u 

above the valence B 
3 :E~ state in the SC F approximation, whereas 

3 - 3 -
experimentally the :Eu state is about 7 · e V above the B Eu. 

Electron correlation is responsible for a large part of this differ­

ence. Figure I illustrates these differences clearly. 18 It is clear 

that in the 'IT-electron approximation, without exchange, the Rydberg 



TABLE VI. Coefficients for the [(11' )3 (11' )2211' ] 
3~- Rydberg state. a 

u g g u 

q = (] 
11'ux 'Tl'uy 11' gx 11' gy 27rgx 21Tgy 

f 1 3/ 4 3/ 4 1/ 2 1/ 2 1/ 4 1/ 4 q 

(a'Tl' q' b 1T q) (1, 1) (8 / 9, 8/ 9) (8 / 9, 8/ 9) (1, 4/ 3) (1, 4/ 3) (1 / 3, -20/ 9) (5 / 3, 44/ 9) 
ux ux 

(a q' b q) 
11' gx 1T gx 

(1, 1) (1, 4/3) (1, 4/3) (1, 2) (1, 2) (1, -2/ 3) (1, -2/ 3) 

(a2 q' b2 q) 
1T gx 1Tgx 

(1, 1) (1 / 3, -20/ 9) (5 / 3, 44 / 9) (1, -2/ 3) (1, -2/ 3) (1, -2 / 3) 

~he other coefficients for the 11'uy' 'TTgy' and 2'1T gy orbitals can be obtained from the trans­

formation x - y in the row and column labels. a refers to the closed shell core. 

...-
0 
(X) 
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FIG. I. Correlation between Hartree-Fock theory and experiment for the 

valence B 3E~[(7Tu)3(7Tg) 3 ] and the Rydberg 
3~~[(7ru) 3(7Tg)2 27Tg] states. 

See text for discussion. 

02+ a 4rru 16.7 

15.2 3 -
Rydberg 2:u 

8 3:z- 8.2 . ... 
u 

Experiment 

...... , 
. "" 

...... ........... 14.48 
a 4IT 

..... 
"" "" ...... 

,,. ,,, ,,, .,,,. ,,, 

"" ...... 12.97 
12.64 ,,. ,,. 

u 

Rydberg 3 2:~ 
B 32:-

u 

X32:­
g 

Hartree-Fock Theory 



110 

3~~ state lies below the B 
3 ~~ state, explaining why the calculation 

of Taketa et al., 14 converged to the Rydberg state. The valence 

(1r u) 3 (1T g)
3 

state, which is constrained to have equivalent 11g orbitals 

certainly represents the major configuration of the Schumann-Runge 

state. For example, it indicates an equilibrium internuclear separa-
o 19 

tion of about 1. 4-1. 5 A compared to the experimental value of 

1. 6 A. On the other hand the Rydberg 3~- state20 has a SCF 
u 

equilibrium separation of 1. 34 A ,in good agreement with the experi-

mental value which should be close to 1. 38 A of the a 4 TI state of 
u 

0/. 21 
Other molecular properties which are sensitive to correla-

tion, e.g., the oscillator strength can be expected to be in error · 

since the 1T - 1T transition represents only about 80% of the 
u g 15,16 

Schumann-Runge state, most of the remainder being a 3a - 3a g u 

contribution. 22 
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Abstract: 

The equations-of-motion method is discussed as an approach 

to calculating excitation energies and transition moments directly. 

The proposed solution [ T. Shibuya and V. McKoy, Phys. Rev. A, ~' 

2208 (1970)] of these equations is extended in two ways. First we 

include the proper renormalization of the equations with respect to 

the ground state particle-hole densities. We then show how to 

include the effects of two-particle-hole components in excited states 

which are primarily single-particle-hole states. This is seen to be 

equivalent to a single-particle-hole theory with a normalized inter­

action. Applications to various diatomic and polyatomic molecules 

indicate that the theory can predict excitation energies and transition 

moments accurately and economically. 
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I. INTRODUCTION 
~ 

The conventional approach to predicting the excitation energy 

of an excited state of a molecule would be to solve Schroedinger's 

equation separately for the energies and wavefunctions of the ground 

and excited state. In this way one calculates the total energies and 

absolute wavefunctions of two states in order to calculate the excitation 

energy. In spectroscopy the quantities of direct physical interest in 

a transition are excitation frequency and oscillator strength and not 

really the total energies and wavefunctions of the states. On the other 

hand the equations-of-motion method1 attempts to calculate the excita­

tion frequency of a transition directly. Observables such as the excita­

tion energy of an excited state and its transition matrix elements 

involve not so much the total wavefunctions as certain relationships 

between them. Accordingly in the equations-of-motion method one 

calculates excitation operators rather than wavefunctions. 

An excitation operator, O~, relates one state Ix> to the 

ground state jo> through a set of amplitudes. These amplitudes and 

an excitation frequency are the solution of the equations of motion. 

In summary, the philosophy of this approach is to shift emphasis away 

from absolute quantities such as total energies and to concentrate on 

the relative quantities e. g. excitation energies, directly accessible 

to measurement. 1 

The main objective of the equations-of-motion method is to 

obtain excitation energies of excited states relative to a correlated 

ground state directly. Thus the excitations are out of a correlated 
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ground state. This provides some definite advantages over an 

approximation in which the excited state wavefunction is correlated 

but the Hartree-Fock (HF) wavefunction .is used for the ground state. 

With a correlated ground state potential energy curves should dis­

sociate to the correct dissociation limits. Moreover the results in 

this approximation satisfy the energy-weighted sum rule which for 

electric dipole transitions is the Thomas-Reiche-Kuhn theorem. 2 

This is very useful if one is looking at various electric dipole transi­

tions of a molecule since the predicted intensities would be distributed 

in a way consistent with the sum rule. Finally, Harris3 has shown 

that in the time-dependent HF approximation, which is just the 

lowest order solution to the equations of motion with an implied 

correlated ground state, the different expressions for the oscillator 

strengths are equivalent with one another. If the dipole velocity and 

length forms of the oscillator strength disagree with each other in a 

basis set calculation, the difficulty is in the finite basis set. This 

result can be very useful in practical applications. Harris3 also 

shows that in this approximation the two expressions for the rotational 

strength are also equivalent. There is no origin dependence and the 

rotational strength sum rule holds. These properties are necessary 

for a theory to have wide applicability in spectroscopy. 

Recently we proposed a solution of the equations of motion 

which should be practical and accurate enough for describing the 

electronically excited states of molecules. 4 We started from Rowe's 

variational form of the equations of motion1 which states that the 



117 

operator O~ for creating an excited state Ii\> from the ground state 

is exactly a solution of the equation 

where wi\ is the excitation energy (Ei\. -E0 ) and the double commutator 

is defined by 

2[A, H, B] =(A, (H, B]] +[(A, H], B] (2) 

The operator O~ contains a set of amplitudes determining the relative 

importance of various particle-hole excitations in generating the state 

Ii\> out of IO> i.e., 

(3) 

We obtain these amplitudes and the excitation frequency wi\ from the 

solution of Eq. (1). One must assume some approximate ground state 

I <P> to evaluate the expectation values of the commutators in Eq. (1). 

However, the commutators will be of lower particle-rank than the 

operators themselves and hence their expectation values should 

depend on relatively simple properties of the ground state. 

For example, the operator atamH an+aj is of a particle-rank 

two greater than the operator [at 3ni' H, ~ + aj]. This is a particular 

merit of the equations-of-motion method. If one evaluates Eq. (1) 

using the HF wavefunction as the approximate ground state and o: 
with single-particle-hole creation and destruction operators the 

resulting equations are those of the random phase approximation 
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(RPA). For some cases this approximation leads to instabilities in 

Eq. (1). 5 In reference 4 we proposed a higher order solution to Eq. 

(1) in which, with the same O~ as in the RPA, the expectation values 

of the commutators were explicitly expanded in powers of the correla­

tion coefficients of the ground state. These equations referred to as 

the higher RPA 6 gave encouraging results for the N-V and N-T 

transitions of ethylene. 7 

In this paper we improve the theory of reference 4 in two 

respects. First we include the proper renormalization of the equations 

due to the particle-hole densities of the ground state. The resulting 

equations now contain renormalized matrix elements and amplitudes 

but the same matrix form. Secondly, we discuss ways of estimating 

the effect of two-particle-hole states on the excitation energy of an 

excited state. Generally the most important components of an excited 

state are the singly excited configurations, i.e. single-particle-hole 

pairs. In the complete expansion of the excitation operator O~ + these 

would have the largest amplitudes. However, for some states doubly 

excited configurations (relative to the ground state) can affect the 

excitation energy by a few electron volts. We also illustrate how the 

theory including two-particle-hole states is equivalent to the single­

particle-hole theory with a renormalized interaction. 8, 9 
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II. A SUMMARY OF VARIOUS APPROXIMATIONS 

In Eq. (1) one must specify which type of excitations are to be 

included in the excitation operator o~ and which approximate ground 

state wavefunction will be used to evaluate the expectation values of 

the commutators. For atomic and molecular systems singly excited 

configurations are the most important in low- lying excited states and 

hence O~ contains only single-particle-hole operators (lp-lh). If we 

completely accept the Hartree- Fock approximation for the ground state 

then O~ is, in second quantized form! 0 

o+(ASM) = ~ y (AS) c+ (SM) 
Li my my (4) 

my 

where Ym is the amplitude for the my particle-hole pair and c+ (SM) 
Y my 

are spin-adapted creation operators defined by 

- c+ c 
ma y{3 

c+my(lM) = ! [c+ c -c + c ] 
{2" ma ya m{3 y{3 _ 

c+ c 
m{3 ya 

(5a) 

M = + 1 

M = 0 (5b) 

M = -1 

m specifies a particle state and y a hole state, while a and {3 are 

the usual spin functions. The operators c :a and c i are creation and 

annihilation operators for spin-orbital ia. Note that c:ny(SM) 
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creates a state with spin symmetry SM when it acts on a singlet 

state. 

With o+(ASM) of Eq. (4) and a HF state the excitation energy 

of state I A> relative to the HF energy of the ground state is given by 

(6) 

where 

In Eq. ( 7 ) £ i is the HF orbital eigenvalue and 

v ijkt = <i<1> H2> I r ~ I k<1> 1(2)> (8) 

Eq. ( 6) is the usual expression for the energy from single-excitation 

configuration interaction (Cl). In the literature of many-body physics 

this equation is referred to as the Tamm-Dancoff approximation 

(TDA). ll 

In the next approximation one simply recognizes that the HF 

wavefunction is not the true ground state and hence the excitation 

operators must include lp-lh destruction C my , as well as 

creation, C~y' operators. Thus 

O+(XSM) = l: {Ymy(XS)C~y(SM) - Zmy(XS) Cmy{SM) } (9) 

my 

where 
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C {SM) = (-l)S+M C (S-M) 
my my 

( 10 ) 

If one substitutes Eq. ( 9) into the equation of motion and uses the 

HF wavefunction to evaluate the expectation values in this equation 

the random phase approximation is obtained:12 

A
0 (S) B

0 (S) Y(XS) Y(XS) 
= u:(XS) (11) 

-B0 (s) -A0 (s) Z(XS) Z(XS) 

where the elements of A0 are defined in Eq. (7) 

and 

a:Uy, no (S) = - (HF I [ cm.,,(SM), H, cn0{SM)] jHF) 

= -(-l)sv r.-1 + os 0 (2v ~) mnvy ' mnyv (12) 

Since IO> is the lowest state of the Hamiltonian one should require 

Ox jo> = 0 all X (13) 

But in deriving the equations of the RPA, Eq. (11 ), we use the HF 

wavefunction to evaluate the expectation values of Eq. (1). The HF 

wavefunction does not satisfy Eq. (13) with the O~ of Eq. ( 9). It 

is well known that such inconsistency may be acceptable because the 

equations of motion are comparatively insensitive to the approxi-

mate ground state used to set them up1. It is for this reason that 

one does not have to be very concerned about the rigorous require­

ment that the IO> used to set up the equations of motion should also 

satisfy Eq. ( 13) • This also applies to the higher order approximations 



122 

we will derive below. One should, of course, check the consistency 

of this assumption. It is obvious that this assumption is weakest 7 

for atomic and molecular calculations using minimum basis sets 

but improves in large basis set calculations with the increasing 

density of particle-hole pairs. The approximation should also be good 

for large numbers of particles. 

To remove this inconsistency of the RPA we could use a 

correlated ground state wavefunction to set up the equations of motion. 

This leads to our next approximation~ The expectation values of 

Eq. (1) will now explicitly depend on the correlation coefficients. 

Exactly how these coefficients are determined is not very crucial. 

To a good approximation we can write the ground state wavefunction 

for a closed shell system as 

(14) 

where N0 is the normalization constant and 

U = L; {Kmy' nlic ~ur c ~/3 c li/3 cya + ~ (Kmy' nli-Km5,ny) 
mn 
yo 

1 ( + + + + )} x - c #'Uc c ~ c + c aC a c ~ac a 2 m~ na va ya mt-1 fit-1 vt-' Yt-1 
(15) 

To set up a self-consistent theory we can require that the IO> of 

Eq. (14) satisfy Eq. (13) which gives 

zmy(XS) ~ L: Criiy, no(S)Yn0(XS) 
no 

(16) 
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where 

We can solve these equations and the equations of motion iteratively. 

With the wavefunction of Eq. (14) and omitting all terms quadratic 

and higher in the correlation coefficients,Eq. (1) becomes 4 

A(S) B(S) 

[

Y(XS) 

Z(XS) 

Y(XS) 

= w(XS) 

Z(XS) -B*(S) -A*(S) 

where the matrix elements of A and B are: 

and 

8my,no = -~{VmµopCpµ,JO) + VnµypCpµ,mo(O)} 
pµ 

(18) 

Tmn = - ~ l;{vmqµvCriµ,qv(O) + VµvnqCmµ,qv(O)} 
qµv 

Ty6 = ~ l: {v pqyvcp6,qv(O) + V 6vpqcpy,qv(O)} 
pqv 
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( 20) 

In Eq. (20) m, n, p, q, refer to particle states, and y, o, µ, v to hole 

states. Eqs. (16) and (18) are the higher RPA. 4 For practical 

purposes one need not necessarily solve these equations self-con-

sistently but could simply estimate the correlation coefficients by 

perturbation theory and substitute these into Eq. (20). Usually 

iteration does not change the excitation frequency by more than a few 

per cent. This is expected since the equations are designed to be as 

insensitive as possible to the approximations made for the ground 

state. For molecular calculations with small basis sets the terms 

linear in the correlation coefficients in Eq. (20) are quite important. 7 

Extensive calculations on the excited states of N2 and CO also illustrate 

this. 13 
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We now show that we can obtain a more consistent set of 

equations than Eqs. (18)-(20) by including second-order density 

terms in the matrix elements Amy, n<5(S). With these additional terms 

we can write the equations exactly as in Eq. (18) but now with renor­

malized interaction matrix elements and amplitudes. 

The most general equation one obtains from Eq. (1) with the 

lp-lh form of O~, Eq. ( 9 ) is 

r d(S) 

lB*Cs) 

fl (S) 

-/l*(S) 

Y(A.S)J = w(AS) Fo8 
Z(AS) ~ 

where the matrix elements of tJ., '/3, and Dare 

0 

Z(A.S) 

In deriving the equations of the higher RPA we retained all 

terms linear in the correlation coefficients. These include the 

dominant corrections but it would be more complete to include 

terms in matrix elements, Eq. (21a), consistent with a given order 

( 21) 

in perturbation theory, e .. g!' VC and (€C€j)C
2 

are of the same order 

where V is an interaction matrix element and C a correlation coefficient. 
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To second order terms we can write 

(22) 

LV (S) - o o + o p (2
) - o (2 ) 

(/(./ my ,no - mn yo mn yo yoPmn 

In Eqs. (22) A 0 is given by Eq. (7), B by Eq. (19), and T's 

by Eq. (20). The p ( 
2
) 's are quadratic in correlation 

coefficients 4 

P~n = t i; i; cpµ, mv(S) cpµ,nv(S) 
pµv S=O, 1 

p~~ = - t L: L: cplK!Y(s)cpµ,qli<s> 
pqµ S=0,1 

where the C's are defined in Eq. ( 17 ) and 

To derive Eqs. (22) we use the results 

(23) 
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{HF lu+u !HF) =-L: p~ = L: P~m (25) 

'Y m 

Note that the ground state correlation energy is 

E = 2 ~ T + 2 ( ~ € p (2
) + ~ € p (2

) ) corr yy y yy m mm 
'Y 'Y m 

=-2 " T + 2 (" € p(2
) + \' € p(2

) ) (26) 
lJ mm l.J y 'Y'Y l.J m mm' 
m y m 

which is just E(2
) if the correlation coefficients of Rayleigh-Schroedinger 

perturbation theory are used to evaluate the T's and p(2 )'s leading to 

Ecorr = ~ TY'Y = - l Tmm (26a) 

'Y m 

The correction term of t2 in Eq. (22) is typically about half of 

that of A in Eq. (19). We will see, however, that the effect 

of this change in the elements of tZ on the excitation frequencies is 

partly compensated for by renormalization terms in b, The 

overall effect is usually less than 5% for the cases we have studied. 13 

To a good approximation we can write: 

~ - 0 0 ( 1 + p(2
) - (

2
) ) 

P'Vmy,no - mn yo 'Y'Y Pmm. (27) 

With this diagonal form for ff Eq. (21) becomes 

- - =~/\S) 
a (S) ~S) [Y(i\S) [y (/\S) 

-d*(S) -d{S) Z(~) Z(/\S) 
(28) 
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where the elements of a,>$, y' and z have the renormalized forms 

A (S) - C1 /J ( ) -1 
(.{;my ,no - my lL-my ,no s f no 

(28a) 

with the renormalization factor 

(29} 

A major advantage of the approximate expression Eq. (28) is that the 

matrices a and$ remain symmetrical and the equations have the same 

form as the RPA. 

The orthogonality condition implies that the amplitudes satisfy 

(30) 

or, in terms of Y and Z, 

(3.1) 

which again has the same form as in all the other approximations. 
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IV. COUPLING OF DOUBLE EXCITATIONS 

The low-lying excited states of molecular systems are primarily 

one-electron excitations relative to the ground state. These are single­

particle-hole {lp-lh) states and hence the excitation operator O~, Eq. 

( 9 ), contains just lp-lh creation and destruction operators. An 

excited state also contains two- and more-particle-hole components 

corresponding to two, three, etc. , electron excitations out of the 

ground state. The amplitudes, Y~y,nli and Z~y,nli' of these components 

of O~, will be much small er than those of the 1 p- lh components but 

their effect on large excitation energies e.g. 8-12 eV can be significant. 13 

Their effect on transition moments will be very small. In this section 

we show how these 2p-2h states should be rigorously inc~uded in the 

theory. An important conclusion is that the theory with both lp-lh 

and 2p-2h states can be shown to be equivalent to the lp-lh theory 

"th al" d . t t• 14 w1 a renorm ize m erac ion. Finally we derive a simple and 

practical approximation for including the effects of these double 

excitations. 

To include the effect of double excitations we add 2p-2h 

creation and destruction operators 

L { y~'Y' nli (J\S) r~'Y ,n Ii (SM) - z ~'Y' n Ii (J\S) :!i'ny ,n Ii (SM)} (3 2) 
myno 

to the O~ of Eq. ( 9 ). Here r~y,no is a 2p-2h creation operator and 

y(2
) and z(2

) are amplitudes to be determined. The explicit expressions 

for r+ are shown in Tables Ia and lb. Substitution of O~ containing the 
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Table Ia. The 2p-2h Creation Operators r+ ~ (S = M = O)a my,nv 

r + - c + c + c c - c+ (OO) c+ (OO) 
my, my - ma m/3 y{3 ya - my my 

1 
r+ = - [ c + c+ + c + c + ] c c = /2" c+ (OO)C+ (00) 
my, ny .f2 mo n/3 na m13 yf3 ya my ny 

(m:1; n) 

1 
r~y, mo =..J2 c ~a c~/3 [ c 013 c ya+ c'Y f3 c0a] = {'[ c~'Y(OO)C~10 (00) 
(y * o) 

r.(+ ) - ! [ c + c + + c +- c + ][ c ~ c + c'Y/3 c ~ l 
my' no 1 - 2 ma n/3 na m/3 v/3 ya va' 

(m=1=n,y=1= o) 

1 
T" + - - { [ c+ c+ c c + c+ c + c c ] 
.L(my' no)2 --13 ma na oa ya mfJ n/3 op yf3 
(m:/: n ;y=/; o) 

a The subscripts on the indices for r + indicate different spin 

couplings of the four orbitals, m, y, n, and· o; there are two inde­
pendent singlet excited states if m ¢ n and y ¢ o. Formal develop­

ment of the equations of Sec. IV up to and including (44) does not 

specify these subscripts explicitly, but in fact indices describing 
2p-2h excitations must include them. Starting from Eq. (45), 
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Table Ia. (continued) 

interaction terms in A 0 <2
, 

2
) are ignored. Thus the two singlet spin 

couplings are degenerate, and since the) are al~o chosen here to be 
orthogonal [diagonalizing the full D0 <2

, 2 matrix) they can be com­
bined into a single effective state for the index (my, no)o 
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Table lb. The 2p-2h Creation Operators r+ J::(S = 1, M = O)a my,nv 

1 
r. + - [ c + c + - c·+ c + ] c c 
(my, no) 1 =.f2 ma nf3 na mfJ y{3 ya 

(m :f. n) 

r. + - 1 [ c + c + - c+ c+ ] [ c c + c c l 
(my, no) 1 - 2 ma n{3 na m{3 0(3 ya yp oai 

(m:f.n, y:f. o) 

= ! [ c+ (lo)c+ ~(OO) - c+ ~(1o)c+ (OO) 
2 my nv nv my 

1 
r.+ = - c + c+ [ c c _ c c l 
(my, m 0)2 ~ ma m{3 0(3 ya yfl oa-' 

(y=1: o) 
1 

= -rn-2 [ c+ (lO)c+ ~ (OO) - c+ ~ (1o)c+ (OO)] 
VLI my mu mv my 

r.+ =![c+ c+ +c+ c+ ][c c -C c l 
(my, no)2 2 ma n{3 na m/3 0(3 ya y{3 oai 

(m=1n, y=1:0) 

= ! [ c~./lO)C~o(OO) - C~5(10)C~'Y(OO) 
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1 
= Fn-2 [ c+ (lO)C+ ~ (OO) + c+ ~ (lO)c+ (OO)] 
v~ my nu nu my 

a These operators diagonalize Do( 2 '
2)of Eq. (45). The subscripts 

on the indices (my, no) indicate the three possible independent spin 

couplings for the 2p-2h state when m ~ n and y ~ o. See footnote a 

of Table Ia. 
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terms in Eq. (32) into the variational form of the equations of motion, 

Eq. (1) gives 

-~* -r.:2* 

(33a) 

=W 

0 ,!)(2 ,2) 
z(2 ) (33b) 

The dimensionality of the equations is determined by the number of 

lp-lh and 2p-2h amplitudes included in the summations of Eq. ( 9) 

and (32). In Eqs. (33), the matrix elements of d. and~ are defined 

in Eqs. (2la) and the elements of a(i,2
), ~(2 '2 ) are given by 

# ~1)y' n' 0, ·my no(S) = -(0 I [hi 'y' n, 0, (SM), H, \ny no (SM)] IO) (3 5b) 
' ' ' ' ' 
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,A-'(2,2) . - I [ . + 1 I ~./ m '"\/' n' o' ·m"V no (S)=(O rm'"\/' n' 0 1 (SM), rm'\/ no (SM) O) 
' ' ' ' ' r ' ' ' 

(36) 

In Eqs. (33) we have dropped the state label S for convenience. 

We now show how Eqs. (33) containing both lp-lh and 2p-2h 

amplitudes are equivalent to a lp-lh theory with a renormalized inter­

action. Hence to include the effect of double excitations on excitation 

energies we can renormalize the single excitation theory. It is 

obviously very important to recognize this in interpreting semi­

empirical calculations. First, we note that the solution of Eq. (33b) 

for y(2)and z(2)involves the inverse of the matrix 

{d (>,2}_w)2,2)} 

- ~ (2,2)* . 

??(2,2) 

- { tl (2, 2) + w Jf (2, 2) * } 

The inverse of the matrix Eq. (37a)has the form 

[;. _:J 
. ,... 

with the properties 

(37a) 

(37b) 

(37c) 

The submatrices 01, {3, fJ have the same dimensions of a(2
'
2
). We can 

now write 

y(2) 

""" -{3* l
,.,/ 

{3 a* 

o* b* 

,....,, 
b [~ (38) 
~ -a 
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With Eq. (38) the second term on the left hand side of Eq. (33a} 

becomes 

a b 

= -
-b* -a* 

where 

A = aaa * + bo*'b* - (a/3b* + b/3*a*) a 

Ad ::; aoa* + ba*b* - (affb* + bJ3*a) 

Ab = aab + bo*a - (~a + bf3*b) 

[: (39) 

(40) 

Equation (33a) now reduces to an eigenvalue problem in the lp-lh 

amplitudes ·only. 

z 0 p · 
"('V 

= w 
y ')] 0 y 

(41} 

z 

with 

(42) 



137 

Note that a, (3, and o are functions of wand hence so are 1J. 1 , ,.....,, 

~ , and ~ . In the lp-lh approximation only the matrices t!l 
and~· would appear in Eq. (41). The inclusion of 2p-2h excitations 

leads to a renormalized interaction implied in Eq. (42). 

Since the effects due to 2p-2h components are expected to 

be small we can replace IO> by I HF> in evaluating the matrix 

elements a,(i,2 )etc. Eqs. (34) - (36). In this approximation ~o(i,2 ) 

and 'e?.0 (
2 

'
2

) vanish and 

{3 = 0 (43) 

With Eq. (43) Eqs. (40) become 

~b = 0 (44) 

If we further ignore the interaction terms in A 0 (
2

'
2

) it follows that 

(45) 

. ~ 2) 
We can make the matrix D0 

' diagonal by choosing the 2p-2h creation 
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operators r+ of Table I. The matrix elements of A0 (i,2
) in this 

basis are shown in Table II. With these elements we have 

{ fl. (AO)} _ \' Ao(1,2) Ao(1,2)* 
a . m 'y' , n' o' - l.J m 'y' ;my, my n' o' ;my, my 

my 2 ( E - E ) - w (AO) 
m Y 

Ao (1,2) Ao ( 1,2) * 
m 'y' ; my, mo n' o' ; my, mo 

2E - E - E 1:. - W (AO ) m y u 

+Li. L 
m<n y<o 

Ao(1,2) Ao(1,2)* Ao (1,2) Ao(1,2)* 
m 'y', (m/ino)i n' o', (my, no)i m 'y' ;(my, no)2 n'o' ~my,no)2 

E + E - E - E~ - W (AO) m n y u 

(46) 

for singlet states and 

m y<o 
2 E - E - € 1:. - W (A 1) m y u 
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Table Ila. Matrix Elements of A0 (i,2
) (S = O)a 

Ao(i,2 ) . - /2 (o v - o V ) 
m 'y' ;my, my - y' y ym' mm m' m yymy' 

(m * n) 

-o v m' n yym y' 

Ao(i,2 ) - o V + o V -o (V +V 
m 'y' ; my, mo - y 'y om' mm . y' o ym' mm m' m y om y' &ymy' ) 

(y * o) 

o( l 2) 1 . · 
A m''y'; (my, no)

1 
=.J2 { 0y'y (Vom 'mn +Vom 'nm)+ 0y 1o(Vym 'mn + Vym 'nm) 

(m*n, y *o) 

Ao(1,2) - /3{ o (V V ) 
m I YI ; (my' n0)2 - ,/ 2 ')'I Q ym I mfl - ')'m I Ilm 

(m#n, y # o) 

- 0 y I I' (Vom I mn - . v om I nm) 

a These elements should be used in Eq. (46). 
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Table IIb. Matrix Elements of A0 
(

1
'
2

) (S = l)a 

AQ(1, 2) - - o (V - V ) - o V 
m 'y; (my, ny) 1 - y'y ym 'mn ym' nm m' m yyny' 

(m:# n) 

Aof... 1
,

2
) - .! {-o (V -V ) 

m'y' ;(my, no) 1 --12 y'y om'mn om'nm 

(m*n, ni:O) 

Ao(1,2) - o V -o V 
m'y' ;(my,mo)2 - y'y om'mm y'o ym'mm 

+ 6m 1 m(Vyoroy'- V&ymy') 

Ao( 1,2) - .! { o (V + V ) 
m 'y' ;(my, no)2 - ,f[ y'y om I mn . Om I nm 

(m*n;y:to) 

Ao (i,2) . 
m'y' ;(my,no):~ = -oyy' (Vom'mn - Vom'nm) 

(m*n, y:f:6) 
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+oy'o(Vym'mn - Vym'nm) + 0m 1 m(Vyony' - V&yny') 

a These elements should be used in Eq. (47). 
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(47) 

for triplet states. To obtain the matrix elements of Ad (AS) one 

replaces -w(XS) by+ w(AS) in Eqs. (46) and (47). In this approxima­

tion the matrices Aa and t.d are no longer equal and hence Q1 and 

/}J_2 are not the same. The . matrix equation Eq. (41) will not have 
;""../ 

the symmetry of the original lp-lh theory, Eq. (21). The simplest 

way around this difficulty is to treat that part of the matrix containing 

the effects of 2p-2h states as a perturbation on the lp-lh theory. We 

then have for the excitation frequency, w, 
W = W(lp-lh)_ AW (48) 

with Aw given by perturbation theory 
,.,,,,. """"' /V 

Aw ~Y* A Y + Z* A * Z + Y* fl. Z a d b 

(49) 

Y and Z are the amplitudes obtained in the lp-lh 

approximation and fl.a' Ab' and ll.d are evaluated using the corresponding 

frequency. With the approximation Eq. (44) Eq. (49) reduces to 

A *Z d (50) 

Also Z is much smaller than Y and ll.d is also small compared to 

Aa and hence we can neglect the second term on the right hand side 

of Eq . . (50) and use the Y amplitudes of the TDA. This is just the 

energy lowering of the excited state due to double excitations. 
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CONCLUSIONS 
~ 

We have discussed the equations-of-motion method as an 

approach to calculating excitation energies and transition matrix 

elements of excited states directly as opposed to the conventional 

approach of obtaining the total energies and wavefunctions of the 

stationary states of the total Hamiltonian. We have extended our 

proposed solution of Rowe's variational form of the equation of 

motion~ referred to as a higher random phase approximation4 

in two ways. First we include the proper renormalization of the 

equations with respect to the ground state particle-hole densities. 

These equations now contain renormalized matrix elements. but 

have the same matrix form as the RPA. We have shown that the 

corrections to the transition energies due to this renormalization 

13 are small. 

. We have also shown how to include the effects of two-particle­

hole contributions in the excited states. The single-particle-hole 

amplitudes are by far the most important in the excitation operator 

but doubly excited configurations can affect the excitation energies by 

as much as two to three volts. An important conclusion of this 

section is that the theory with single-and two.particle-hole states 

can be shown to be equivalent to a single particle-hole theory with a 

renormalized interaction. Some of these conclusions have been 

obtained previously using either the quasi-boson approximations or 

time-dependent variational methods.: 5our approach on the other hand, 

starts from Rowe's equations, 1 enabling us to derive more general 
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equations, Eq. (41). 

We have applied the theory developed in this paper and 

reference 4 extensively to the excited states of nitrogen, carbon 

monoxide, ethylene, butadiene, and benzene. A comparison of the 

calculated results for N2 and CO with experiment shows that the theory 

can predict excitation energies and transition moments accurately 

and economically. 13 
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