
Decomposing formal specifications into assume-guarantee

contracts for hierarchical system design

Thesis by

Ioannis Filippidis

In Partial Fulfillment of the Requirements for the

degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2019

Defended November 30, 2017

ii

c⃝ 2017

Ioannis Filippidis
ORCID: 0000-0003-4704-3334

All rights reserved

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Richard Murray for advice and support

through my PhD studies, the freedom to pursue a range of different research

directions, and for the invaluable experience that I gained from our collabora-

tion. I would like to thank Gerard Holzmann for insightful observations, his

advice, and guidance during my internships at the Jet Propulsion Laboratory.

I would like to thank the members of my thesis committee Joel Burdick and

Mani Chandy for their helpful comments.

I would like to thank Necmiye Özay and Scott Livingston for discussions over

the years that significantly helped in the research of this thesis. Discussions

with Necmiye motivated Section 9.1, Section 9.2, and Section 9.6, and Necmiye

pointed out the relevance of well-separation. Choices of quantification for ini-

tial conditions were formulated by Scott, and discussions with Scott motivated

examining when an assume-guarantee specification should be regarded as vac-

uous. Section 9.3.3 was motivated by a discussion with Necmiye and Scott.

Thanks to the designers of TLA+ for a useful and elegant language.

This work was supported in part by the Powell Foundation, the JPL Grad-

uate Fellowship Program, and the TerraSwarm Research Center, one of six

centers supported by the STARnet phase of the Focus Center Research Pro-

gram (FCRP), a Semiconductor Research Corporation program sponsored by

MARCO and DARPA.

iv

ABSTRACT

Specifications for complex engineering systems are typically decomposed into

specifications for individual subsystems in a way that ensures they are imple-

mentable and simpler to develop further. We describe a method to algorith-

mically construct specifications for components that should implement a given

specification when assembled. By eliminating variables that are irrelevant to

realizability of each component, we simplify the specifications and reduce the

amount of information necessary for operation. To identify these variables, we

parametrize the information flow between components.

The specifications are written in TLA+, with liveness properties restricted

to an implication of conjoined recurrence properties, known as GR(1). We

study whether GR(1) contracts exist in the presence of full information, and

prove that memoryless GR(1) contracts that preserve safety do not always

exist, whereas contracts in GR(1) with history-determined variables added do

exist. We observe that timed stutter-invariant specifications of open-systems

in general require GR(2) liveness properties for expressing them.

We formalize a definition of realizability in TLA+, and define an operator for

forming open-systems from closed-systems, based on a variant of the “while-

plus” operator. The resulting open-system properties are realizable when ex-

pected to be. We compare stepwise implication operators from the litera-

ture, and establish relations between them, and examine the arity required

for expressing these operators. We examine which symmetric combinations

of stepwise implication and implementation kind avoid circular dependence,

and show that only Moore components specified by strictly causal stepwise

implication avoid circular dependence.

The proposed approach relies on symbolic algorithms for computing specifica-

tions. To convert the generated specifications from binary decision diagrams

to readable formulas over integer variables, we symbolically solve a minimal

covering problem. We implemented an algorithm for minimal covering over

lattices originally proposed for two-level logic minimization. We formalized the

computation of essential elements and cyclic core that is part of this algorithm,

and machine-checked the proofs of safety properties using a proof assistant.

Proofs supporting the thesis are organized as TLA+ modules in appendices.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[Contrib1] I. Filippidis, R. M. Murray, and G. J. Holzmann, “A multi-

paradigm language for reactive synthesis,” in 4th Workshop on Syn-

thesis (SYNT), 2015, pp. 73–97. DOI: 10.4204/EPTCS.202.6

Ioannis conceived and developed the proposed approach.

[Contrib2] I. Filippidis and R. M. Murray, “Symbolic construction of GR(1)

contracts for systems with full information,” in 2016 American

Control Conference (ACC), 2016, pp. 782–789. DOI: 10.1109/ACC.

2016.7525009

Ioannis conceived and developed the proposed approach.

[Contrib3] I. Filippidis and R. M. Murray, “Symbolic construction of GR(1)

contracts for synchronous systems with full information,” Califor-

nia Institute of Technology, Technical Report arXiv:1508.02705,

2015,

Ioannis conceived and developed the proposed approach.

[Contrib4] I. Filippidis and R. M. Murray, “Formalizing synthesis in

TLA+,” California Institute of Technology, Technical Report

CaltechCDSTR:2016.004, 2016. Available at: http://resolver.

caltech.edu/CaltechCDSTR:2016.004

Ioannis conceived and developed the proposed approach.

[Contrib5] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M.

Murray, “Control design for hybrid systems with TuLiP: The tem-

poral logic planning toolbox,” in 2016 IEEE Conference on Con-

trol Applications (CCA), 2016, pp. 1030–1041. DOI: 10.1109/CCA.

2016.7587949

Ioannis contributed substantially code to the software toolbox and

to its design, developed some elements of the approach, and wrote

sections of the paper.

vi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Table of Contents . vi
List of Illustrations . viii
List of Tables . xi
Chapter I: INTRODUCTION . 1

1.1 Motivation . 1
1.2 Proposed approach . 3

Chapter II: PREVIOUS WORK . 6
2.1 Modular design by contract . 6
2.2 Synthesis of implementations 10

Chapter III: PRELIMINARIES . 14
3.1 Predicate Logic and Set Theory 14
3.2 Semantics of Modal Logic . 15
3.3 Synthesis of implementations 19
3.4 Elements of synthesis algorithms 21

Chapter IV: CONTRACTS . 24
4.1 Assume-guarantee contracts between components 24
4.2 Open systems . 29

Chapter V: PARAMETRIZED HIDING OF VARIABLES 35
5.1 Motivation and overview . 35
5.2 Preventing safety violations . 36
5.3 Hiding specific variables . 38
5.4 Choosing which variables to hide 42
5.5 Eliminating hidden variables 44

Chapter VI: DECOMPOSING A SYSTEM INTO A CONTRACT . . 46
6.1 Overview . 46
6.2 The basic algorithm . 47
6.3 Finding assumptions in more cases 50
6.4 Taking observability into account 53
6.5 Multiple recurrence goals . 57
6.6 Detecting solutions in the presence of parametrization 58
6.7 Other considerations . 62

Chapter VII: GENERATING MINIMAL SPECIFICATIONS 66
7.1 Minimal disjunctive normal form 66
7.2 Set covering over a lattice . 70

Chapter VIII: EXAMPLE . 94
Chapter IX: OPEN SYSTEM SPECIFICATIONS 105

9.1 Assume-guarantee specifications 105

vii

9.2 Degrees of freedom needed for representation 111
9.3 WhilePlusHalf . 121
9.4 Forming open from closed systems 128
9.5 System factorization . 134
9.6 Composition without circularity 142
9.7 Hiding history preserves realizability 154
9.8 Defining generalized reactivity 157

Chapter X: THE EXISTENCE OF GR(1) CONTRACTS WITH FULL
INFORMATION . 159
10.1 Preserving closure and refining 159
10.2 Memoryless contracts . 161
10.3 Stateful contracts . 165

Chapter XI: TIME . 170
11.1 Who controls time? . 171
11.2 Assuming time does progress 172

Chapter XII: CONCLUSIONS . 174
Appendix A: Supplemental material: Proofs and methods 176
Appendix B: Miscellaneous notes . 177

B.1 History-determined variables as modal witnesses 177
B.2 Where are the bounded quantifiers ? 177
B.3 Improvements on efficiency of symbolic synthesis algorithms . . 179
B.4 Proof of Theorem 1 . 182

viii

LIST OF ILLUSTRATIONS

Number Page

1.1 Anatomy of hierarchical system design. 2

1.2 A component is specified by expressing requirements that the im-

plementation should fulfill under assumptions about other parts

of the assembled system. 2

3.1 Semantic concepts of the temporal logic TLA+. 15

3.2 Formula anatomy. 17

3.3 Stuttering and nonstuttering steps. 17

3.4 Illustration of stuttering refinement. 18

4.1 Each component is specified by a property that may allow be-

haviors that violate the desired global property. These undesired

behaviors would be caused by arbitrary behavior of other com-

ponents. Nonetheless, when we conjoin the component specifi-

cations of the contract, the result implies the global property,

because of mutual fulfillment of assumptions between components. 25

4.2 The stepwise principle of taking one more step. 32

4.3 The component can behave arbitrarily after the environment

takes an erroneous step. 32

4.4 The stepwise form of Unzip. 33

6.1 The basic idea of the approach. 48

6.2 How traps are constructed (simple case). 49

6.3 An example where a trap is found. 50

6.4 An example where the simple approach cannot find a trap. . . 50

6.5 Including the states where component 2 can escape allows finding

the trap suggested by the specifier’s intuition. 51

6.6 Collecting escapes that can cause a trap set to not form. 52

6.7 Accounting for observability when computing assumptions. . . 55

6.8 Algorithm for constructing contracts of recurrence-persistence

pairs. The presentation borrows elements from PlusCal [119]. . 60

6.9 Slices of the state space that correspond to different assignments

of values to the parameters. 61

ix

6.10 In iterations of non-monotonic operators that depend on param-

eters, when a solution is found for some parameter values (a

slice), then no further iterations should occur for those values. . 61

7.1 BDD of global invariant. 67

7.2 Overall minimal covering algorithm 70

7.3 Using a care set enables finding simpler covers. 75

7.4 Different cases of problems. Except for the middle top case, the

others raise warnings or errors in the implementation. 75

7.5 Computation of lower and upper bounds. 76

7.6 Illustration of Umbrella. 77

7.7 Steps within a single iteration while computing the cyclic core. 77

7.8 The four operations applied when computing the cyclic core. . 79

7.9 Illustration of Ceil. 80

7.10 Illustration of Floor. 80

7.11 A covering problem that yields a nonempty cyclic core. 81

7.12 The maxima of any set form a representative “kernel” of minimal

covers. 82

7.13 An example where the original algorithm does not ensure strong

reduction. 83

7.14 Steps of the cyclic core computation until reaching a fixpoint. 83

8.1 Landing gear avionics. 94

8.2 The reason why the algorithm of Section 6.3 is useful in the

landing gear example. 100

8.3 Variables communicated between subsystems, depending on the

current goal. 104

9.1 Machine-unclosed representations. 113

9.2 Into the wild : after a few steps the component violates the en-

vironment action. From there on it can behave arbitrarily. . . . 117

9.3 Relative well-separation illustrated. 119

9.4 Comparing realizations of implication and while-plus. 120

9.5 Restoring enabledness after environment errors. 132

9.6 Reasoning along the two directions of the proof. 155

10.1 Game where a liveness assumption realizable by player 1, and

sufficient for player 0, does not exist. Player 0 (player 1) moves

from disks (boxes). 161

x

10.2 Two-sided counter-example where a GR(1) contract does not

exist. Compare to Fig. 10.1. 162

10.3 Why realizable parts are too weak for ensuring correct composition.164

10.4 Predicates computed by UncondAsm, Algorithm 10.5. 166

10.5 Algorithm that constructs a nested GR(1) specification for a

single recurrence goal. 167

10.6 Example of a chain condition. 168

10.7 A chain condition schematically (Fig. 10.6 is a particular instance).168

B.1 Phases of solving a GR(1) game. The main changes proposed

here are to avoid memoization of fixpoint iterates in phase 1,

and construct substrategies on-the-fly in phase 2, to avoid mem-

oization also in phase 2. 179

xi

LIST OF TABLES

Number Page

3.1 Distinguishing TLA, raw TLA, TLA+, with and without past

operators. 17

3.2 Flavors of temporal quantification. 18

9.1 Controllable step operators. 142

9.2 Comparing Step and StepU . 153

xii

1

Chapter 1

INTRODUCTION

1.1 Motivation

The design and construction of a large system relies on the ability to divide the

problem into smaller ones that involve parts of the system. Each subproblem

may itself be refined further into smaller problems, as illustrated in Fig. 1.1.

Typically the subsystems interact with each other, either physically, via soft-

ware, or both. This interaction between modules needs to be constrained, in

order to ensure that the assembled system behaves as intended. For example,

if we consider a component that controls the manipulator arm of a rover for

exploring the geology of other planets, it depends on a camera for deciding

how to position the arm, and on a power supply, as sketched in Fig. 1.2. The

maximum manipulator speed that the controller can safely command is limited

by the camera frame rate. Depending on power supply and type of operation,

the manipulator controller can request a lower frame rate from the camera,

in order to economize on power. During grasping operations though, the con-

troller does require high fidelity and frequent frames. Based on the available

power supply, the controller may decide to decline a request for grasping, due

to insufficient power for completing the operation. Such an issue could arise

in rovers that depend on solar energy, because their power supply is contigent

on environmental conditions.

Systems are built from designs, and designs are created incrementally. A

common direction is to start thinking in terms of larger pieces, and divide

those in smaller ones that are more detailed, but also more specific and local

in nature [191]. The design activity should be captured accurately [122, 86]. A

representation with precise syntax and semantics, or specification, is desirable

to describe how each component should behave in the context of other modules.

When a specification is available, we can attempt to prove that a system is safe

to operate and useful. Unsafe designs can have a high cost, for example in the

context of airliners, automotive subsystems, nuclear power plant controllers,

and several other application areas.

This decomposition involves distributing functionality among components, and

2

∃∃∃∃∃∃ y : ∧

⇒

∃∃∃∃∃∃ x : ∧

⇒

subsystem

component A
component B

assembled system

Figure 1.1: Anatomy of hierarchical system design in TLA+: composition
is represented by conjunction (∧), hiding of details by (temporal) existential
quantification (∃∃∃∃∃∃), and refinement by logical implication ⇒.

Component spec
Power supply Camera

assum
es

assu
mes

can be implemented

guarantees

Figure 1.2: A component is specified by expressing requirements that the
implementation should fulfill under assumptions about other parts of the as-
sembled system.

creating interfaces between them [190, 105]. We are motivated to decompose in

order to focus and isolate. Focus of attention allows for fewer errors. Isolation

makes reasoning easier, and more tractable to automate [106]. Decomposition

also makes possible the use of off-the-shelf components, and the assignment

of tasks to different subsystem manufacturers. Obtaining conclusions about a

system by using facts about its subsystems comes at an extra cost [115, 113].

But it may be the only scalable way of approaching the design of a large

system [26], [115, pp. 421–422], [117, p. 168].

A system can be described at different levels of detail [111], [110, p. 192]. A

3

description that corresponds closely to available physical elements is directly

implementable [191]. However, writing specifications at this level of detail is

often more difficult than specifying behavior at a higher level. A specification

at the implementation level can then be derived by hand or using (automated)

synthesis, which relies on notions from the theory of games [179]. Synthesis

has attracted considerable interest in the past two decades, and advances both

in theory and implementation have been made, as described in Section 2.2

[167, 153, 152, 95, 189, 102, 52]. In this work, we are interested in automated

decomposition of specifications that yields implementable component specifi-

cations. In particular, we aim at automatically modularizing a design that has

been partially specified by a human. Human input is necessary, in one form

or another, because an algorithm cannot know what the assembled system is

intended for, and what part of the system each component represents. Algo-

rithmic synthesis can be used to implement the specifications that result after

some iterations of decomposition.

1.2 Proposed approach

A component mathematically means a collection of variables. A contract is

a collection of realizable component specifications that combined imply the

specification we decomposed (Section 4.1). It is easier to write a centralized

specification, referring to any variable as needed. But it is simpler to specify

internal details in absence of variables from other components.

Parametric analysis for hiding variables In this thesis, we study the

problem of eliminating variables during the decomposition of specifications

into assume-guarantee contracts between components. In order to detect which

variables each component needs to know about, we use parameters that pre-

scribe whether each variable is hidden or not (Chapter 5). This can be regarded

as parametrizing the information communicated between components.

We prove that variables selected to be hidden can be eliminated from the

resulting specifications, and propose a decomposition algorithm (Chapter 6).

Thus, information is hidden without producing component specifications that

would be computationally expensive or intractable to implement [59, 158, 159].

Both the property to be decomposed and the generated component proper-

ties are expressed with liveness restricted to an implication between conjunc-

tions of recurrence properties, a fragment called GR(1) [153]. The polynomial

4

computational complexity of implementing open-system GR(1) specifications

motivates this choice, discussed more in Section 3.3. The fulfillment of live-

ness requirements between components is acyclic, in order to avoid circular

dependencies. An example case study is discussed in Chapter 8.

Generating readable specifications from BDDs The second problem

that we study is writing the constructed specifications in a form that humans

can read, so that they can work with the produced specifications at a lower

level of refinement, for example to specify details internal to a subsystem before

decomposing the subsystem into components. The algorithms that we develop

are symbolic, in that they manipulate binary decision diagrams (BDDs), which

are graph-based data structures that represent sets of states [30, 92, 39]. The

predicates of the assume-guarantee component specifications are computed

as BDDs first, which are not suitable for reading. Assuming that shorter

formulas are more readable, we formulate as a minimal set covering problem

the construction of minimal formulas in disjunctive normal form of interval

constraints over integer variables (Chapter 7). The covering problem is solved

exactly with a symbolic branch and bound algorithm originally proposed for

two-level logic minimization [44].

Stepwise implication operators We study the properties of stepwise im-

plication operators from the temporal logic of actions (TLA+) and linear tem-

poral logic (LTL), their relation, and avoidance of circular dependence between

components. We propose an operator (WhilePlusHalf) for defining open-

system specifications that are realizable when expected to be (Sections 4.2

and 9.3). Using this operator, we define an operaor (Unzip) for forming open

from closed systems (Section 9.4.2).

We show that the “while-plus” operator (+−▷) of TLA+ is expressible in raw

TLA+, as a strictly causal variant of strict implication used for LTL games.

We show that the opposite is not true, unless both the environment and com-

ponent are specified with machine-closed pairs of formulas (Section 9.1). We

investigate how machine closure affects the transfer of liveness subformulas

from environment to component descriptions and vice versa, and relate to

notions of well-separation (Section 9.2).

We distinguish between the assume-guarantee structure and the liveness part

of temporal properties. The term “GR(1)” refers to a form of liveness formulas

5

(one generalized Streett pair), and is orthogonal to what form of stepwise

implication is specified (Section 9.8).

Circularity We investigate how circularity arises depending on what assume-

guarantee operator is used and what kind of implementation is assumed, Mealy

or Moore. We compare the associated controllable step operators, and show

that the only symmetric case that avoids circular dependence is composition

of Moore components (Section 9.6).

Existence of GR(1) contracts We study whether GR(1) contracts exist in

the presence of full information, and prove that memoryless contracts in GR(1)

do not always exist, whereas contracts in GR(1) with history-determined vari-

ables added do exist (Chapter 10).

History-determined variables and realizability Using raw TLA+, we

show that both hiding and unhiding of history-determined variables preserve

realizability (Section 9.7), thus formalizing remarks about deterministic Büchi

automata in the literature [153].

Stutter-invariant open-systems with time constraints We consider

timed stutter-invariant specifications of open-systems, and show that in gen-

eral GR(2) liveness properties are required for expressing them (Chapter 11).

A short literature review is given in Chapter 2. Chapter 3 introduces the

mathematical language we use, a formalized notion of implementability, and

some elements from algorithmic game theory. The algorithms are implemented

in Python using the package omega [63], and the binary decision diagram

package dd [62], which were written in the context of this thesis.

Where are the proofs? Specifications, theorems, and proofs are organized

as TLA+ modules in separate documents. These are described in Appendix A.

6

Chapter 2

PREVIOUS WORK

2.1 Modular design by contract

The dependence of a component on its outside world is known as assumption-

commitment, or rely-guarantee, paradigm for describing behaviors [86]. The

assumption-commitment paradigm about reactive systems is an evolved in-

stance of reasoning about conditions before and after a terminating behavior.

Early formulations [87, pp. 26–29], [97, p. 4] were the assertion boxes used

by Goldstine and von Neumann [74], and the tabulated assertions used by

Turing [184, 143]. A formalism for reasoning using triples of a precondition, a

program, and a postcondition was introduced by Hoare [80], following the work

of Floyd [71], [97, pp. 3–4] on proving properties of elements in a flowchart,

based on ideas by Perlis and Gorn [172, p. 122], [87, p. 32 and Ref.25, p. 44].

Hoare’s logic applies to terminating programs. However, many systems are

not intended to terminate, but instead continue to operate by reacting to their

environment [155]. Francez and Pnueli [72] introduced a first generalization

of Hoare-style reasoning to cyclic programs. They also considered concurrent

programs. Their formalism uses explicit mention of time and is structured into

pairs of assumptions and commitments.

Lamport [110] observed that such a style of specification is essential to rea-

son about complex systems in a modular way [157, p. 131]. Lamport and

Schneider [109, 124] introduced, and related to previous approaches, what

they called generalized Hoare logic. This is a formalism for reasoning with pre-

and post-conditions, in order to prove program invariants. Misra and Chandy

introduced the rely-guarantee approach for safety properties of distributed sys-

tems [141], [7, §6 on p. 532], [78, §2.5 on pp. 247–248]. Stepwise implication

in their work constrains the immediate future behavior of a system in case

its environment behaved as assumed throughout the past. The increment of

time between constraint and assumption enables assembling interdependent

components without circular dependence. All properties up to this point were

safety, and not expressed in temporal logic [156]. Two developments followed,

and the work presented here is based on them.

7

The first was Lamport’s introduction of proof lattices [108]. A proof lattice is

a finite rooted directed acyclic graph, labeled with assertions. If u is a node

labeled with property U , and v ,w are its successors, labeled with properties

V ,W , then if U holds at any time, eventually either V or W will hold.

In temporal logic, this can be expressed as 2(U ⇒ 3(V ∨ W)). Owicki

and Lamport [149] revised the proof lattice approach, by labeling nodes with

temporal properties, instead of atemporal ones (“immediate assertions”).

The second development was the expression of stepwise implication operators

(+−▷ and variants) in temporal logic by Lamport [110], and by Pnueli [157], i.e.,

without reference to an explicit time variable. In addition, Pnueli proposed a

proof method for liveness properties, which is based on well-founded induction.

This method can be understood as starting with some temporal premises for

each component, and iteratively tightening these properties into consequents

that are added to the collection of available premises, for the purpose of de-

riving further consequents. This method enables proving liveness properties

of modular systems. Informally, the requirement of well-foundedness allows

using as premises only properties from an earlier stage of the deductive pro-

cess [165, 192]. This prevents circular existential reasoning about the future,

i.e., circular dependencies of liveness properties [6, §2.2, p. 512], [11, §5.4,
p. 264], [175], [15, Prop. 14, p. 45]. As a simple example, consider Alice and

Bob. Alice promises that, if she sees b, then she will do a at some time in the

future. Reciprocally, Bob promises to eventually do b, after he sees a. As raw

TLA formulas, these read 2(b ⇒ 3a ′) for Alice, and 2(a ⇒ 3b ′) for Bob. If

both Alice and Bob default to not doing any of a or b, then they both satisfy

their specifications. This problem arises because existential quantification over

time allows simultaneous antecedent failure. Otherwise, if Bob was required

to do b for the first time, then Alice would have to do a, then Bob do b again,

etc.

Compositional approaches to verification have treated the issue of circularity

by using the description of the implementation under verification as a vehicle

for carrying out the proof. The implementation’s immediate behavior should

constrain the system sufficiently much so as to enable deducing its liveness

guarantees. This approach is suitable for verification, because an implementa-

tion is available at that stage. Specifications intended to be used for synthesis

are more permissive. For this reason liveness properties, and minimal reliance

8

on step-by-step details, are preferred in the context of synthesis. Stark [175]

proposed a proof rule for assume-guarantee reasoning about a non-circular

collection of liveness properties. McMillan [133] introduced a proof rule for

circular reasoning about liveness. However, this proof system is intended for

verification, so it still relies on the availability of a model. It requires the

definition of a proof lattice, and introduces graph edges that consume time,

as a means to break simultaneity cycles. The method we propose in this work

constructs specifications that can have dependencies of liveness goals, but in

a way that avoids circularity (Chapter 6).

The assumption-guarantee paradigm has since evolved, and is known by sev-

eral names. Lamport remarks that a module’s specification may be viewed as

a contract between user and implementer [110, p. 191]. Meyer [137] called the

paradigm design by contract and supported its use for abstracting software

libraries and validating the correct operation of software. The notion of a con-

tract has several forms. For example, an interface automaton [50] describes

assumptions implicitly, as those environments that can be successfully con-

nected to the interface. An interface automaton abstracts the internal details

of a module and serves as its “surface appearance” towards other modules.

More recently, contracts have been proposed for specifying the design of sys-

tems with both physical and computational aspects [22, 21, 170]. In this con-

text, contracts are used broadly, as an umbrella term that encompasses both

interface theories and assume-guarantee contracts [146, 147, 22, 148], with ex-

tensions to timed and probabilistic specifications. A proof system has been

developed for verifying that a set of contracts refines a contract for the com-

posite system [38], as well as a verification tool of contract refinement using

an SMT solver [37]. This body of work focuses mainly on using and modifying

existing contracts. We are interested in constructing contracts.

Decomposition of an assume-guarantee contract for an overall system into

assume-guarantee contracts for components has been investigated in an ap-

proach that checks whether a candidate decomposition satisfies certain suffi-

cient conditions, and if not amends the contracts in a sound way in search

of a correct decomposition [125]. This approach is formulated generically for

contract theories whose operators satisfy certain distributivity requirements,

and is demonstrated in theories with trace-based and modal transition speci-

fications.

9

An approach to architectural synthesis based on contracts of components avail-

able from a library has been studied in [81, 82]. In that approach, the com-

ponents are automatically selected from an existing library, with the objective

of creating an assembly that satisfies a given specification.

An algorithm for decomposing an LTL contract by partitioning its variables

into subsets that define projections whose composition refines the given con-

tract is studied in [83]. The algorithm progressively collects each subset of

variables by detecting variable dependencies using a model checker. The re-

sulting projections are used to decompose the synthesis of a composition of

components from a library to smaller problems of synthesis from the library.

Contract theories in the framework of [22, 170] formulate the notion of con-

tract as a pair of two assertions (properties) that represent a component and

its intended environment. In our approach, each component is specified by a

single temporal formula, which incorporates assumptions and guarantees im-

plicitly, as a suitable form of implication (stepwise for safety, propositional for

liveness) [7, 88, 96]. For example, the formula φ ≜ 23(a = 1) ⇒ 32(b = 2),

is equivalent to 23(b ̸= 2) ⇒ 32(a ̸= 1). Which one is intended as assump-

tion, 23(a = 1), or 23(b ̸= 2)? Formally, we cannot distinguish without

mentioning a separate formula other than φ. In other words, the formula

A ⇒ G describes one component, without describing an intended environ-

ment. Two formulas A and A ⇒ G can describe two components. Our notion

of contract refers to a collection of component specifications, and for the case

of two specifications corresponds in descriptive capability to a pair of asser-

tions as contract [22, 170, 20]. Also, we view a contract as an agreement

that binds multiple components, whereas a pair of assertions in contract theo-

ries is an agreement that binds one component. Methodologically, in contract

theories one checks that an assumption formula is fulfilled by another com-

ponent’s guarantee [182], whereas in our approach the conjoined component

specifications should imply the desired overall specification.

The theory of synchronous relational interfaces [182] is an approach that al-

lows expressing safety contracts, and reasoning about composition, refinement,

and component substitutability. The refinement calculus of reactive systems

(RCRS) [162] is a framework for describing components using monotonic prop-

erty transformers that operate on sets of traces, and can describe safety and

liveness properties. It is a typed formalism that distinguishes inputs from

10

outputs, and represents constraints on the environment in a way that can be

regarded as behavioral typing, supporting non-input-receptive representation

of systems and type inference [163, 161]. We use an untyped logic, TLA+, and

suitable forms of implication to specify realizable open systems. Our approach

is state-based, and how realizability is required, i.e., how quantifiers affect vari-

ables, indicates which variables are controlled by each component. Declaration

of variables does not annotate them as inputs or outputs. Which variables are

communicated to other components is determined by the decomposition algo-

rithm. In our approach, (strictly) causal systems are specified using stepwise

implication (in the operators +−▷ and WhilePlusHalf). Acausal specifications

are unrealizable with our definition of realizability. RCRS is aimed mainly at

verification and bottom-up synchronous composition of systems and their con-

tracts from components, whereas in this work we are interested in decomposing

specifications of an overall system.

FOCUS is a typed formalism based on stream processing functions [28, 29]

which can express assume-guarantee specifications, open and closed systems,

and supports reasoning about system composition and refinement.

Reactive modules [15] is another formalism for hierarchical specification and

verification of systems, which supports assume-guarantee reasoning for both

synchronous and asynchronous systems, temporal refinement, and state hiding.

A methodology for decomposing refinement proofs using assume-guarantee

reasoning, abstraction of implementation details, and witness modules for in-

stantiating internal state of the specification has been described in [77, 78].

2.2 Synthesis of implementations

This section samples the literature on games of infinite duration. Synthesizing

an implementation from a specification can be formulated as a game between

component and environment. The type of game depends on:

• whether one or more components are being designed,

• whether components are designed in groups,

• when components change their state,

• the liveness part of specifications, and

• the visibility of variables.

11

Games can be turn-based or concurrent [16, 51, 49]. Inability to observe ex-

ternal state changes makes a game asynchronous [158, 171]. If we want to

construct a single component, then the synthesis problem is centralized. Syn-

chronous centralized synthesis from LTL has time complexity doubly expo-

nential in the length of the formula [155], and polynomial in the number of

states. By restricting to a less expressive fragment of LTL, the complexity

can be lowered to polynomial in the formula [153]. Asynchronous centralized

synthesis does not yield to such a reduction [158]. Partial information games

pose a challenge similar to full LTL properties, due to the need for a powerset-

like construction [104]. To avoid this route alternative methods have been

developed, using universal co-Büchi automata [102], or antichains [52].

If we want to construct several communicating modules to obtain some col-

lective behavior, then synthesis is called distributed. Of major importance in

distributed synthesis is who talks to whom, and how much, called the commu-

nication architecture. A distributed game with full information is in essence

a centralized synthesis problem. Distributed synchronous games with partial

information are undecidable [159], unless we restrict the communication archi-

tecture to avoid information forks [69], or restrict the specifications to limited

fragments of LTL [34]. The undecidability of distributed synthesis motivates

our parametrization for finding a suitable connectivity architecture, instead of

deciding whether a given architecture suffices. Bounded synthesis circumnavi-

gates this intractability by searching for systems with a priori bounded mem-

ory [70]. Asynchronous distributed synthesis is undecidable [107, 181, 171].

Besides synthesis of a distributed implementation, the more general notion of

assume-guarantee synthesis [32] constructs modules that can interface with a

set of other modules, as described by an assumption property. This is the

same viewpoint with the approach proposed here. A difference is that we are

interested in synthesizing temporal properties with a liveness part, instead of

implementations. In addition, we are interested in “distributed” also in the

sense that the modules will be synthesized separately. Assumption synthesis

has been used for the verification of existing modules by eliminating variables

to abstract the modules, before reasoning about safety properties of their com-

position [14].

Another body of relevant work is the construction of assumptions that make

an unrealizable problem realizable. The methods originally developed for this

12

purpose have been targeted at compositional verification, and use the L⋆ al-

gorithm for learning deterministic automata [40], and implemented symbol-

ically [144]. Later work addressed synthesis by separating the construction

of assumptions into safety and liveness [33]. The safety assumption is ob-

tained by property closure, which also plays a key role in the composition

theorem presented in [7]. Our work is based on this separate treatment of

safety and liveness. Methods that use opponent strategies [99] to refine the

assumptions of a GR(1) specification, searching over syntactic patterns, were

proposed in [127, 17]. The syntactic approach of [17] was used in [18] to re-

fine assume-guarantee specifications of coupled modules. However, that work

cannot handle circularly connected modules, and thus neither circular liveness

dependencies. Another approach is cooperative reactive synthesis, where a

logic with non-classical semantics is used, and synthesis corresponds to this

semantics [57].

Our work uses parametrization, based on ideas of approximating asynchronous

with GR(1) synthesis [158, 95, 94]. Another form of parametrization studied

in the context of synthesis is that of safety and reachability goals [142]. Instead

of hiding specific variables, an alternative approach in the context of verifica-

tion [41] identifies predicates that capture essential information for carrying

out proofs with less coupling between processes. Also relevant is the separation

of GR(1) synthesis into the design of a memoryless observer (estimating based

on current state only) and of a controller with full information [59]. Identifying

what variables provide information essential for realizability (Chapter 5) re-

lates to work on synthesizing probabilistic sensing strategies [73]. A hierarchi-

cal approach where an observer for the continuous state is designed separately

from synthesizing a discrete controller from temporal logic specifications [138],

and decomposition of properties for synthesizing implementations have been

studied in the context of aircraft management systems [150]. Layering as a

method for structuring system design has been applied in the context of the

DisCo method, which is based on TLA [139, 89, 105].

The Quine-McCluskey minimization method, which takes exponential amount

of space and time and so is impractical, has been used before for simplifying

Boolean logic expressions in manuals [177], robot path planning among planar

rectangles [173] and recently for simplifying enumerated robot controllers [76].

In the context of synthesis, prime implicants (used here for minimal covering)

13

have been used for refining abstractions [189], and have been mentioned in

the context of debugging specifications [58]. For theories more general than

propositional logic there has been work on deriving prime implicants in the

context of SMT solvers [55].

14

Chapter 3

PRELIMINARIES

3.1 Predicate Logic and Set Theory

We use the temporal logic of actions (TLA+) [117], with some minor mod-

ifications that accommodate for a smoother connection to the literature on

games. At places, we also use “raw” TLA+, which is a fragment that allows

stutter-sensitive temporal properties (stutter invariance is defined below) [114,

§4], [135, p. 34]. The motivation for choosing TLA+ is its precise syntax and

semantics, the use of stuttering steps and hiding as a refinement mechanism,

and the structuring of specifications, by using modules, and within modules

by definitions and planar arrangement of formulas.

TLA+ is based on Zermelo-Fraenkel (ZF) set theory [117, p. 300], which is

regarded as a foundation for mathematics [56]. Every entity in TLA+ is a set

(also called a value). A function f is a set with the property that, for every

x ∈ domain f , we know what value f [x] is. Functions can be defined with

the syntax

f
∆
= [x ∈ S 7→ e(x)],

where e(x) is some expression [117, p. 303, p. 71]. If a value f equals the

function constructor that maps values in domain f to the values obtained by

function application, then it is a function

IsAFunction(f)
∆
= f = [x ∈ domain f 7→ f [x]].

For any x /∈ domain f , f [x] is some value, unspecified by the axioms of TLA+.

The collection of functions with domain S and range R ⊆ T forms a set,

denoted by [S → T].

Operators are defined to equal some expression, with no domain specified. Un-

like functions, which are sets, operators are a syntactic mechanism for nam-

ing. All occurrences of operators are syntactically replaced by their definitions

before semantic interpretation takes place. Parentheses instead of brackets

distinguish an operator from a function, for example g(x) ≜ x defines the

operator g to be the identity mapping. Unnamed operators are built with the

construct lambda [121]. A first-order operator takes as arguments operators

15

s0 s1 s2

⟨s0, s1⟩ s2JxK = 5

state

step behavior

value of variable x at state s2

Figure 3.1: Semantic concepts of the temporal logic TLA+.

without arguments (nullary). An operator that takes a first-order operator

as argument is called second-order. For example, the expression F (x ,G())

denotes an operator F that takes as arguments a nullary operator x and a

unary operator G [117, §17.1.1]. TLA+ includes [117, §16.1.2] Hilbert’s choice
operator [79, 126]. If ∃x : P(x), then the expression choose x : P(x) equals

some value that satisfies P(x). Otherwise, this expression is some unspecified

value that can differ depending on P .

The operator ∧ denotes conjunction, ∨ disjunction, ¬ negation. Nat denotes

the set of natural numbers [117, §18.6, p. 348], and for i , j ∈ Nat the set of

integers between i and j is denoted by

i ..j
∆
= {n ∈ Nat : i ≤ n ∧ n ≤ j}.

A function with domain 1..n for some n ∈ Nat is called a tuple and denoted

with angle brackets, for example ⟨a, b ⟩.

There are two kinds of variables: rigid and flexible. Rigid variables are also

called constants. They are unchanged through steps of a behavior (behaviors

are defined below). Rigid quantification can be bounded, as in the formula

∀x ∈ S : P(x), or unbounded, as in ∀x : P(x). The former is defined in

terms of the latter as

∀x ∈ S : P(x)
∆
= ∀x : (x ∈ S) ⇒ P(x).

So the “bound” is an antecedent. Substitution of the expression e1 for oc-

currences of the identifier x in the expression e is written as the formula

let x ≜ e1 in e.

3.2 Semantics of Modal Logic

Temporal logic serves for reasoning about dynamics, because it is interpreted

over sequences of states (for linear semantics). A state s is an assignment of

16

values to all variables. A step is a pair of states ⟨s1, s2 ⟩, and a behavior σ is

an infinite sequence of states, i.e., a function from Nat to states, as illustrated

in Fig. 3.1.

An action (state predicate) is a Boolean-valued formula over steps (states).

Given a step ⟨s1, s2 ⟩, the expressions x and x ′ denote the values s1JxK and

s2JxK, respectively. A state is a function from variable identifiers to values. In

the metatheory of TLA+, each identifier is a string “x”, so the value sJxK ≜
s [“x”].

We will use the temporal operators: 2 “always” and3 “eventually”. If formula

f is true in every (some) state of behavior σ, then σ |= 2f (σ |= 3f) is true.

Formal semantics are defined in [117, §16.2.4].

A property is a collection of behaviors described by a temporal formula. If

a property φ cannot distinguish between two behaviors that differ only by

repetition of states, then φ is called stutter-invariant. Stutter-invariance is

useful for refining systems by adding lower-level details [111]. In TLA+ stutter-

invariance is ensured by the constructs [11, Prop. 2.1]

[A]v
∆
= A ∨ (v ′ = v),

⟨A⟩v
∆
= ¬[¬A]v = A ∧ (v ′ ̸= v).

So, (x = 0) ∧ 2[x ′ = x + 1]x is satisfied by a behavior whose each step either

increments x by one, or leaves x unchanged. The main syntactic elements

of TLA+ are illustrated in Fig. 3.2. The notion of stuttering is illustrated in

Fig. 3.3. As mentioned above, stutter-sensitive properties can be described in

raw TLA+ (RTLA+). In addition, in later sections we use raw TLA+ with

past temporal operators [128]. We abbreviate this logic as PastRTLA+. The

relation between these different flavors of temporal logic is summarized with

examples in Table 3.1.

If every behavior σ that violates property φ has a finite prefix that cannot be

extended to satisfy φ, then φ is a safety property. If any finite behavior can

be extended to satisfy φ, then φ is a liveness property [12] [172, p. 49]. A

property of the form 23p (32p) is called recurrence (persistence) [130].

We briefly mention a few more concepts that we will use later. An informal

definition is sufficient to follow the discussion, and a formal one can be found

in the semantics of nonconstant operators [117, Ch.16.2].

17

operator name
initial condition

primed variable (value of x in next state)

may take steps that satisfy this action

stuttering subscript

nonstuttering subscript

must take such steps

recurrence (“always eventually”)

safety part

liveness part

Figure 3.2: Formula anatomy.

stuttering steps

changes along a behaviornonstuttering steps

Figure 3.3: Stuttering and nonstuttering steps.

Table 3.1: Distinguishing TLA from raw TLA, TLA from TLA+, with and
without past operators. The superscript + signifies the presence of set theory.

TLA TLA+

Raw1 2(x ′ = x + 1) 2(x ′ ∈ S)
Normal2 2[x ′ = x + 1]x 2[x ′ ∈ S]⟨x ,S ⟩
Raw with past3 2(Earlier(x = 1)

⇒ (y = 1))
2(Earlier(x ∈ S)
⇒ (y = 2))

1 Stutter-sensitive properties.
2 Stutter-invariant properties.
3 Recalling the past relies on indexing, i.e., σ, i |= φ

The thick existential quantifier ∃∃∃∃∃∃ denotes temporal existential quantification

over (flexible) variables. The main purpose of temporal quantification is to

“hide” variables that represent details internal to a subsystem. The expression

∃∃∃∃∃∃ x : P(x) is satisfied by a behavior if, by introducing stuttering steps, and

overwriting the values of the variable x , we can obtain a behavior that satisfies

the property P(x). This meaning is illustrated in Fig. 3.4.

In addition to the temporal quantifier ∃∃∃∃∃∃ , which results in a stutter-invariant

property when P is stutter-invariant, we denote stutter-sensitive existential

18

changes along a behavior

st
u
tt
er

h
id
e
x

∃∃∃∃∃∃ x

Figure 3.4: Stuttering refinement visualized in the definition of the temporal
quantifier ∃∃∃∃∃∃ .

Table 3.2: Flavors of temporal quantification.

Type Rigid Temporal

Inv1 Raw2

Existential ∃ ∃∃∃∃∃∃ ∃∃∃∃∃∃
Universal ∀ ∀∀∀∀∀∀ ∀∀∀∀∀∀

1 Stutter-preserving quantification.
2 Stutter-sensitive quantification.

temporal quantification [95, 91] with the symbol ∃∃∃∃∃∃ .1 The expression ∃∃∃∃∃∃x :

P(x) is satisfied by a behavior if by overwriting the values of the variable x ,

we can obtain a behavior that satisfies the property P(x). This is in contrast

to the meaning of ∃∃∃∃∃∃ [114]. The temporal quantifier ∃∃∃∃∃∃ can occur in raw TLA+

expressions, but not in TLA+expressions. Table 3.2 summarizes the different

kinds of temporal quantifiers.

The expression enabled A is true at states from where some step could be

taken that satisfies the action A. Using enabledness, weak fairness is defined

as

WFv(A)
∆
= (32enabled ⟨A⟩v) ⇒ 23⟨A⟩v

Collection versus set Not every statement in ZF defines a set. Some state-

ments describe collections that are too large to be sets [117, p. 66]. In naive

1 Stutter-sensitive quantification ∃∃∃∃∃∃ is defined in the module TemporalLogic.

19

set theory this phenomenon gives rise to Rusell’s and other paradoxes [56]. A

collection that is not a set is called a proper class [101, p. 20]. The semantics

of TLA+ involve states that assign values to all variable names. Any finite for-

mula we write will omit some variable names. For each state that satisfies the

formula, we can assign arbitrary values to variables that do not occur in the

formula, and thus obtain another state that satisfies the same formula. Thus,

the collection of states that satisfy a formula is not a set [66, p. 65] (within the

theory that the semantics is discussed). So to accommodate TLA+ semantics

we should use the term “collection” instead of “set”. However, to use com-

mon terminology and for brevity, we will refer to “sets” of states, even when

“collection” would be appropriate.

3.3 Synthesis of implementations

Synthesis is the algorithmic construction of an implementation that satifies

the specification of a component. Let y be a variable that represents the com-

ponent, and x a variable representing the component’s environment. Consider

a property described by the temporal formula Phi(x , y). If an implementa-

tion of Phi(x , y) exists, then the property is called realizable. The notion of

realizability [8, 154, 155, 134] can be formalized [66] as follows:

Realization(x , y , mem, f , g , y0, mem0, e)
∆
=

let v
∆
= ⟨mem, x , y⟩

A
∆
= ∧ y ′ = f [v]

∧mem ′ = g [v]

in ∧ ⟨mem, y⟩ = ⟨mem0, y0⟩
∧2[e ⇒ A]v

∧WF⟨mem, y⟩(e ∧ A)

The variable mem serves as internal memory, with initial value mem0. The

functions f and g control the component state y and internal memory mem,

and y0 is the initial value of y . The action e determines when the component

is allowed to change its state. Behaviors that satisfy Realization(. . .) are those

that could result when the component is implemented with the functions f (for

externally visible behavior) and g (for internal behavior). Let

IsAFiniteFcn(f)
∆
= ∧ IsAFunction(f)

∧ IsFiniteSet(domain f)

IsRealizable(Phi(,), e(,))
∆
=

20

∃ f , g , y0, mem0 :

∧ IsAFiniteFcn(f) ∧ IsAFiniteFcn(g)

∧ let R(mem, u, v)
∆
= Realization(

u, v , mem, f , g , y0, mem0, e(u, v))

in ∀∀∀∀∀∀ x , y : (∃∃∃∃∃∃mem : R(mem, x , y)) ⇒ Phi(x , y)

The operator IsFiniteSet requires finite cardinality [117, p. 341]. The expres-

sion IsRealizable(Phi , e) means that property Phi can be implemented with

resources e. The above definition is based on a note by Lamport [113], (see

also [110, p. 221]), and formalizes realizability as described in the literature on

synthesis [90, §4, pp. 46–47], [23, §2.3, pp. 914–915], with a difference regarding

initial conditions.

Tractable liveness A formula described by the schema

StreettPair
∆
=

∨
j∈1..m32P j ∨

∧
i∈1..n23Ri

defines a liveness property categorized as generalized Streett(1), or GR(1) [153].

A formula of this form is useful for expressing the dependence of a component

on its environment. Rewriting the above as

(
∧

j∈1..m23¬P j) ⇒
∧

i∈1..n23Ri

emphasizes this use case. Usually, the formulas ¬P j express recurrence prop-

erties that the component requires from its environment in order to be able to

realize the properties Ri . If the environment lets the behavior satisfy 32P j ,

then the component cannot and so is not required to satisfy the properties

23Ri . As a specification for the gear subsystem of an aircraft, a simple ex-

ample is 23(DoorsOpen) ⇒ 23(ExtensionRequest ⇒ GearExtended). This

property requires that the gear respond to any request to extend under suit-

able conditions. A more complete example is described in Chapter 8, and

there are several examples of GR(1) specifications for practical applications in

the literature [193, 129, 164, 151, 150, 194, 23].

Conjoining k Streett pairs yields a liveness property called GR(k), which can

be regarded as a modal conjunctive normal form [158, 130]. Synthesis of a

controller that implements a GR(k) property has computational complexity

factorial in the number of Streett pairs k [152]. This is why GR(1) properties

are preferred to write specifications for synthesis. An implementation that

21

satisfies a GR(1) property can be computed by applying the controllable step

operator (defined in Section 3.4) m × n × S 3 times, where S the number of

states (usually exponential in the number of variables) [23, 178, 179]. When a

symbolic implementation is used the runtime is in practice much smaller than

the upper bound S 3, because the state space is much “shallower” than the

number of states.

A controller that implements a generalized Streett property can require ad-

ditional state (memory) as large as 1..n. There are properties that admit

memoryless controllers, but searching for them is NP-complete in the number

of states [85], so exponentially more expensive than GR(1) synthesis [153]. For

this reason GR(1) synthesis algorithms unconditionally add a memory variable

that ranges over 1..n.

3.4 Elements of synthesis algorithms

Reasoning about open systems involves computing from which states a con-

troller exists that can guide the system to a desired set of states. Given a set

of states as destination, an attractor is the set of states from where such a con-

troller exists. Computing an attractor can be viewed as solving a “multi-step”

control problem that iteratively solves a “one-step” control problem [51]. The

“one-step” control problem is described by the controllable step operator Step

(commonly denoted as CPre), which is defined as follows:

Step(x , y , Target(,))
∆
= ∃ y ′ :

∧ SysNext(x , y , y ′)

∧ ∀ x ′ : EnvNext(x , y , x ′) ⇒ Target(x ′, y ′)

A state satisfies Step if x , y take values in that state such that the system

can choose a next value y ′ allowed by SysNext , and any next environment

value x ′ that EnvNext allows leads to a state that satisfies Target . The above

definition of Step is for specifications where in each step at most one component

can change its state in multiple ways. For more general specifications, the

corresponding Step operator is

GeneralStep(x , y , Target(,))
∆
= ∃ y ′ :

∧ SysNext(x , y , y ′)

∧ ∀ x ′ : ∨ ¬EnvNext(x , y , x ′)

∨ ∧ AssemblyNext(x , y , x ′, y ′)

∧ Target(x ′, y ′)

22

Remark 1. The expression ∃y ′ is ungrammatical in TLA+ [117, p. 281,

p. 110]. Instead we should write fresh rigid variables, for example ∃v . Having
said this, we continue with ∃y ′ below because it makes reading easier (see

also [112, Sec. 2.2.2 on p. 6]). □

Assume that the state predicate Goal(,) describes the destination. The

states from where a controller exists that can guide the system in at most k

steps to some state that satisfies the predicate Goal(x , y) are those that satisfy

the following operator [179, 178]:

kStepAttractor(x , y , Goal(,), k)
∆
=

let recursive F (, ,)

F (u, v , m)
∆
= if m = 0

then Goal(u, v)

else let Target(a, b)
∆
= F (a, b, m − 1)

in ∨ Target(u, v)

∨ Step(u, v , Target)

in F (x , y , k)

Recursive definitions as the above are part of TLA+2 [121]. The attractor of

Goal is the fixpoint of the k -step attractor operator:

Attractor(x , y , Goal(,))
∆
=

let

Attr(u, v , n)
∆
= kStepAttractor(u, v , Goal , n)

r
∆
= choose k ∈ Nat : ∀ u, v :

Attr(u, v , k) ≡ Attr(u, v , k + 1)

in

Attr(x , y , r)

In this definition Goal is a first-order operator. An attractor definition with

Goal being a set is possible too [64, §IV-A]. The above operators are simpler

cases of those that we define in later sections. Dual to the attractor is the trap

operator, defined as follows:

kStepSafe(x , y , Stay(,), Escape(,), k)
∆
=

let recursive F (, ,)

F (u, v , m)
∆
= if m = 0

then true

else let Safe(a, b)
∆
= F (a, b, m − 1)

23

in ∨ Escape(u, v)

∨ ∧ Stay(u, v)

∧ Step(u, v , Safe)

in F (x , y , k)
Trap(x , y , Stay(,), Escape(,))

∆
=

let

Safe(u, v , n)
∆
= kStepSafe(u, v , Stay , Escape, n)

r
∆
= choose k ∈ Nat : ∀ u, v :

Safe(u, v , k) ≡ Safe(u, v , k + 1)

in

Safe(x , y , r)

Game solving involves reasoning about sets of states. Symbolic methods using

binary decision diagrams (BDDs) [30] are used for compactly representing sets

of states, instead of enumeration. To use BDDs for specifications in untyped

logic we need to identify those (integer) values that are relevant, a common

requirement that arises in automated reasoning [185]. This information is de-

clared as type hints [123] to enable automatically rewriting the problem in

terms of newly declared variables, so that all relevant values be Boolean (in-

stead of integer), thus enabling use of BDDs. This process is called bitblasting

and bears similarity to program compilation.

24

Chapter 4

CONTRACTS

4.1 Assume-guarantee contracts between components

The purpose of a contract is to represent the assumptions that each component

in an assembly makes about other components, and the guarantees that it pro-

vides when these assumptions are satisfied. The assignment of obligations to

components should be balanced. It is unreasonable to specify an assumption

by one component that is infeasible by any other component. So the specifica-

tions should suffice for ensuring that the assembly behaves as desired, and also

not overconstrain any of the components. We can view these requirements as

placing a lower and an upper bound on component specifications. The lower

bound ensures that each component is implementable, and the upper bound

ensures that the assembled system operates correctly. These requirements

are formalized with the following definition. A contract [67] is a partition of

variables among n components, defined by n actions

eA(,), . . . , eW (,)

and a collection of temporal properties

A(,), . . . ,W (,)

that satisfy the following theorem schema:

∧ IsRealizable(A, eA)
...

∧ IsRealizable(W , eW)

∧
(
A(x , y) ∧ . . . ∧W (z ,w)

)
⇒ Phi(x , . . . ,w)

In other words, a contract is a collection of assume-guarantee properties for

each component that are realizable and conjoined imply the desired behavior

for the system assembled from those components. The notion of composition

of properties is illustrated in Fig. 4.1.

Remark 2. Two alternative definitions are possible. Instead of using the

letters A, . . . ,W we can use an index j , with the understanding that j is part

25

ψ0

ψ1

φ

ψ0

ψ1

φ

Decomposition

Composition: ∧

“global” property

component 1 component 2

φ

ψ0 ∧ ψ1

|= ψ0 ∧ ψ1 ⇒ φ

Figure 4.1: Each component is specified by a property that may allow behav-
iors that violate the desired global property. These undesired behaviors would
be caused by arbitrary behavior of other components. Nonetheless, when we
conjoin the component specifications of the contract, the result implies the
global property, because of mutual fulfillment of assumptions between compo-
nents.

of the identifier, not a value in the object language (here TLA+) [93]. Another

approach is to incorporate the index within the object language. This can

be done by defining a single property parametrized by an index, for example

Prop(, ,) and eR(, ,). The schema can then be written as

∧ ∀ j ∈ 1 . . n : let R(u, v)
∆
= Prop(u, v , j)

e(u, v)
∆
= eR(u, v , j)

in IsRealizable(R, e)

∧ ∀∀∀∀∀∀ x , y :

(∀ j ∈ 1 . . n : Prop(x [j], y [j], j)) ⇒ Phi(x , y)

□

Remark 3. The above notion of contract describes the obligations that bind

each component (in analogy to an agreement among them). The above notion

26

relates in two ways to a notion of contract as a pair of an assumption and a

guarantee [170, 22, 21, 20]. The case of two properties above, e.g., A,B , can

be thought of as describing an environment and a component, separately, and

so to correspond to a pair of properties. On the other hand, each property

above (A, . . .) incorporates an assumption and a guarantee using a suitable

form of implication, thus it has the nature of an agreement that binds one

component. □

Example 1. As an example used throughout the thesis, consider a charging

station for mobile robots that has two spots, and a robot that requests a

spot for charging. The charging station keeps track of which spots are taken

(variables spot 1, spot 2), as well as the spot number that becomes available

for the robot to dock (free x , free y), when the variable free = 1. The robot

can request docking by setting the variable req , and is represented by its

coordinates on the plane pos x , pos y . Not all spots are free. One other spot

is occupied by another robot, which forms part of the environment of the

charging station and the robot. This spot is indicated by the variable occ,

and to keep the example small, occ remains unchanged through time, so the

occupied spot does not change, but neither the station nor the robot control

which this spot is. The specification of the entire system is the following:

extends Integers

variables spot 1, spot 2, free x , free y , free,

req , pos x , pos y , occ, turn

station vars
∆
= ⟨spot 1, spot 2, free x , free y , free⟩

robot vars
∆
= ⟨req , pos x , pos y⟩

vars
∆
= ⟨station vars , robot vars , occ, turn⟩

StationStep
∆
= ∧ turn = 1

∧ (req = 0) ⇒ (free ′ = 0)

StationNext
∆
=

∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1 ∧ free ∈ 0 . . 1

∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18

∧ ∨ (free = 0)

∨ (free x = 1 ∧ free y = 1 ∧ spot 1 = 0)

∨ (free x = 2 ∧ free y = 1 ∧ spot 2 = 0)

∧ (free = 1) ⇒ ∧ spot 1 = 0 ⇒ occ ̸= 1

∧ spot 2 = 0 ⇒ occ ̸= 2

27

∧ StationStep ∨ unchanged station vars

RobotNext
∆
=

∧ pos x ∈ 1 . . 15 ∧ pos y ∈ 1 . . 15 ∧ req ∈ 0 . . 1

∧ ((req = 1 ∧ req ′ = 0) ⇒ ∧ free = 1

∧ free x = pos x ′

∧ free y = pos y ′)

∧ (turn = 2) ∨ unchanged robot vars

OthersNext
∆
= (occ ∈ 1 . . 3) ∧ (occ′ = occ)

SchedulerNext
∆
= ∧ turn ∈ 1 . . 2

∧ (turn = 1) ⇒ (turn ′ = 2)

∧ (turn = 2) ⇒ (turn ′ = 1)

Env
∆
= ∧ turn ∈ 1 . . 2 ∧ occ ∈ 1 . . 3

∧2[OthersNext ∧ SchedulerNext]vars

∧23⟨SchedulerNext⟩turn
Init

∆
= ∧ spot 1 = 0 ∧ spot 2 = 0

∧ free x = 0 ∧ free y = 0 ∧ free = 0

∧ pos x = 1 ∧ pos y = 1 ∧ req = 0

Next
∆
= StationNext ∧ RobotNext

L
∆
= 23(req = 0) ∧23(req = 1)

Assembly
∆
= Init ∧2[Next]vars ∧ L

Phi
∆
= Env ⇒ Assembly

We wrote the property Assembly using implication. In general, the operator

Unzip (defined in Section 4.2.2) or a variant should be used instead of implica-

tion. Nonetheless, in this case the environment can realize Env independently

of the two components, so we can simply use implication (and defer discussing

how open-systems should be defined to Section 4.2). An alternative would be

to let Phi be the conjunction Env ∧Assembly (a closed-system). In that case,

we would have to consider components for the scheduler and other robots. Let

the actions

eStation(turn)
∆
= (turn ′ ̸= turn)

eRobot(turn)
∆
= (turn ′ ̸= turn)

define when each implementation takes nonstuttering steps. Note that the

property Assembly defines synchronous and interleaving changes to the com-

ponents. This is the case for the implementations too, due to the presence

28

of variable turn in eStation and eRobot , together with the antecedent Env in

formula Phi .

A contract between the charging station and the robot has the form of two

properties PhiS ,PhiR such that

∧ IsRealizable(PhiS , eStation)

∧ IsRealizable(PhiR, eRobot)

∧ ∨ ¬ ∧ PhiS (spot 1, spot 2, free x , free y ,

free, req , occ, turn)

∧ PhiR(req , pos x , pos y , free x , free y ,

free, turn)

∨ Phi

We used operators that take several arguments, instead of only two, but this

difference is inessential (we could have used record-valued variables instead).

To demonstrate what the realizability condition means for the robot, we can

define it as

IsRealizable(PhiR(, , , , , ,), eR())
∆
=

∃ f req , f pos x , f pos y , g ,

req0, pos x0, pos y0, mem0 :

∧ IsAFiniteFcn(g) ∧ IsAFiniteFcn(f req)

∧ IsAFiniteFcn(f pos x) ∧ IsAFiniteFcn(f pos y)

∧ ∀∀∀∀∀∀ req , pos x , pos y , free x , free y , free, turn :

let R(mem)
∆
=

let v
∆
= ⟨mem, req , pos x , pos y , free x ,

free y , free, turn⟩
N

∆
= ∧mem ′ = g [v]

∧ req ′ = f req [v]

∧ pos x ′ = f pos x [v]

∧ pos y ′ = f pos y [v]

e
∆
= eR(turn)

in ∧mem = mem0 ∧ req = req0

∧ pos x = pos x0 ∧ pos y = pos y0

∧2[e ⇒ N]v

∧WF⟨mem, req, pos x , pos y⟩(e ∧ N)

in

29

(∃∃∃∃∃∃mem : R(mem))

⇒ PhiR(req , pos x , pos y , free x ,

free y , free, turn)

□

Remark 4. Realizability can be defined without design of initial conditions

for the component (the ∃req0, pos x0, pos y0 above). With such a definition,

the property PhiR should not constrain the component’s initial state, because

that would render PhiR unrealizable [66, §3.3, pp. 14–16]. So initial conditions
within PhiR would be part of an antecedent. In consequence, a conjunction of

realizable component specifications would not imply any closed-system prop-

erty. The choice between these different definitions is a matter of specification

style. □

4.2 Open systems

4.2.1 Defining an open system

An open system is one constrained with respect to variables it does not con-

trol [6], [90, §3.1], [114, §9.5.3]. Usually the components we build rely on their

environment in order to operate as intended. For example, a laptop should be

able to connect to the Internet, but this is impossible in absence of a wired

or wireless network compatible with the laptop’s interface (ports or other). If

we describe the laptop as a system that is able to connect to the Internet, our

specification is fictitious, because it wrongly predicts that the laptop will be

online in the middle of a desert. We could augment the specification by adding

that there is a wireless network, and that the laptop connects to it. In this

attempt we are overspecifying, by promising to deliver both a laptop and a

wireless network. Laptops are usually designed separately from the buildings

that host wireless networks. What we should instead do is to guarantee a

connection to the Internet assuming that a wireless network is available. In

absence of a network, the laptop is free to remain disconnected.

The notion of open system can be defined mathematically using the notion

of proper class. As remarked earlier, any temporal property defines a proper

class of behaviors. So any system defined by a temporal property is modeled

by a proper class of behaviors. This indicates that the notion of open sys-

tem is relative to some designated variables. These observations motivate the

following definition.

30

IsAClosedSystem(P())
∆
=

∃ S : ∀∀∀∀∀∀ v : P(v) ⇒ 2(v ∈ S)

IsAnOpenSystem(P())
∆
= ¬IsAClosedSystem(P)

theorem

assume temporal P()

prove IsAnOpenSystem(P) ≡
∀ S : ∃∃∃∃∃∃ v : P(v) ∧3(v /∈ S)

Let x be a variable and P(x) a temporal property. The property P(x) de-

fines an open system if and only if IsAnOpenSystem(P). So the possibility

of diverging behavior characterizes a system as open. A property P defines

a closed-system if it implies a type invariant that bounds all variables that

occur in P . Therefore, closed systems can be defined using ∆0 formulas [100,

p. 161]. Diverging behavior is also the main concept in how initial conditions

affect realizability [66, Lemma 6, p. 12].

Remark 5. Thus, cardinality distinguishes an open from a closed system; a

criterion applicable even if we decide to restrict our attention to only finitely

many states. Considering a system closed if its variables take values from a

finite set, an open system is one whose variables take values from an infinite

set. □

4.2.2 Specifying interaction with an environment

A component’s specification should not constrain its environment. This is

expressible with a formula that spreads implication incrementally over a be-

havior [7, 96, 10, 11, 88, 141]. We define the operator Unzip for forming

open-systems from closed-systems

WhilePlusHalf (A(,), G(,), x , y)
∆
=

∀∀∀∀∀∀ b : ∨ ¬ ∧ b ∈ boolean ∧2[b ′ = false]b

∧ ∃∃∃∃∃∃ u, v : ∧ A(u, v)

∧2 ∨ b ̸= true

∨ ⟨u, v⟩ = ⟨x , y⟩
∨ ∃∃∃∃∃∃ u, v : ∧G(u, v) ∧ (v = y)

∧2 ∨ b ̸= true

∨ ⟨u, v⟩ = ⟨x , y⟩
∧2[(b = true) ⇒ (v ′ = y ′)]⟨b, v , y⟩

31

Unzip(P(,), x , y)
∆
=

let Q(u, v)
∆
= P(v , u) swap back to x , y

A(u, v)
∆
= WhilePlusHalf (Q , Q , v , u) swap to y , x

in WhilePlusHalf (A, P , x , y)

The operator WhilePlusHalf is a slight variant of how the “while-plus” op-

erator +−▷ can be defined within TLA+ [117, p. 337], [11, p. 262] (+−▷ is de-

fined by TLA+ semantics [117, p. 316]). If A,G are temporal operators, then

WhilePlusHalf (A,G) can be thought of as being true of a behavior σ if every

finite prefix of σ that can be extended to a behavior that satisfies A can also

be extended, starting with a state that satisfies v = y , to a behavior that

satisfies G .

Remark 6 (Comparison to +−▷). Only v is constrained in the first state of

the suffix, thus the “half” in the name. In contrast, the operator +−▷ constrains
both u and v in the first state of the suffix. For disjoint-state specifications,

this additional constraint results in unrealizability, using the definition of syn-

thesis from Section 3.3. To obtain a realizable property, the property G should

be sufficiently permissive [66, §5.2.4, pp. 26–27]. However, this leads to pos-

sible underspecification of what ∃∃∃∃∃∃ u, v : G(u, v) . . . means (i.e., the closure of

G may allow behavior undetermined by the axioms of the logic). These ob-

servations motivate the above modification, which corresponds to definitions

of “strict implication” from the literature on games [23]. □

The operator Unzip takes a closed-system property and yields an open-system

property, and roughly means

While the environment does not take any step that definitely blocked

the assembly, the component’s next step should not definitely block

the assembly, and the assembly should not have been blocked in

the past.

Writing a closed-system specification is typically easier than reasoning about

how to separate it into two properties A,G . More fundamentally, the environ-

ment behavior should be mentioned in its entirety within G . Otherwise, the

disjunct that contains G can allow the component to behave as if the envi-

ronment has arbitrary future behavior. How Unzip is defined is reminiscent of

32

EnvNext

s0
behavior

s1 sn−1 sn

sn+1EnvNext

SysNext

Figure 4.2: The stepwise principle of taking one more step.

EnvNext

s0

behavior

s1 sn−1 sn

EnvNext SysNext

sn+1 sn+2

wild

¬EnvNext
Figure 4.3: The component can behave arbitrarily after the environment takes
an erroneous step.

how +−▷ is defined for safety properties in terms of −▷ [11, p. 262], [10, Prop. 1,
p. 501].

For the synthesis of implementations for properties specified using Unzip, re-

lating this operator to existing results about synthesis from GR(1) properties

is useful [23]. This is possible via the following definition in raw TLA+ with

past

AsmGrt(Init(,), EnvNext(, ,), SysNext(, ,),

Next(, , ,), Liveness(,), x , y)
∆
=

∧ ∃ u : Init(u, y)

∧ ∨ ¬∃ v : Init(x , v)

∨ ∧ Init(x , y)

∧2(Earlier(EnvNext(x , y , x ′))

⇒ ∧ Earlier(Next(x , y , x ′, y ′))

∧ SysNext(x , y , y ′))

∧ (2EnvNext(x , y , x ′)) ⇒ Liveness(x , y)

The second conjunct expresses “stepwise implication” (Figs. 4.2 and 4.3), so

that if at some step the environment violates the assumed action EnvNext ,

then the system is not obliged to satisfy the action SysNext in later steps. The

operator AsmGrt is a modification of [96] to avoid circularity [67], [88, §5, ▷
on p. 59]. The operator Earlier abbreviates the composition of the past LTL

operatorsWeakPrevious and Historically (expressible in TLA+ using temporal

33

∃x ′ : Next

∃y ′ : Next

Next
system obligations

environment obligations

s0 s1 s2

behavior

Figure 4.4: Defining an open-system from a closed-system property with action
Next , using the operator Unzip.

quantification and history variables). It is possible to define Earlier by using a

modified satisfaction relation |= in raw TLA+, but we will omit this definition

here.

It is proved in Section 9.4.2 that if P ≡ Init ∧ 2[Next]⟨x ,y ⟩ ∧ L, where L a

GR(1) liveness property, and the pair of properties Init ∧ 2[Next]⟨x ,y ⟩,L is

machine-closed (meaning that L does not constrain the safety in the property

Init ∧2[Next]⟨x ,y ⟩ [7]), then an implementation synthesized for the property

AsmGrt(Init , [∃y ′ : Next]x , [∃x ′ : Next]y , [Next]⟨x ,y ⟩,L, x , y)

also realizes Unzip(P , x , y). Existing algorithms can be used to synthesize

such an implementation [23]. The above form is illustrated in Fig. 4.4.

Remark 7. Open systems can be defined also in other ways, for example using

game graphs together with liveness formulas [90], game structures, alternating-

time temporal logic formulas [16], or modules [186]. The property P in the

formula Unzip(P , x , y) corresponds to the graph and liveness in a game graph

description. □

Remark 8 (Symmetry). Dijkstra requires symmetry from solutions to the mu-

tual exclusion problem [54, item (a)]. The approach we follow asserts that all

components are implemented as “Moore machines” (f and g are independent

of primed variable values). Alternatives are possible where one component

is Mealy and its environment Moore [23, 99]. Specifying such components in

a way that avoids circular reasoning leads to using more than one operators

for defining open-systems, which is asymmetric. In the presence of multiple

components, a spectrum of Moore to Mealy machines needs to be considered,

not unlike typed components [51]. □

Example 2. The specification of the robot in the charging station example can

be defined using the operator Unzip by first defining a closed-system property

34

that describes the robot together with its environment P
∆
= Env ∧Assembly

and letUnzip(P , spot 1, . . . , turn, req , pos x , pos y) specify the robot (the num-

ber of arguments has been adapted, as in similar remarks above). In the next

section, we will see how some of these external variables can be eliminated to

define a property for the robot that mentions fewer details about the rest of

the system. □

We consider specifications that are interleaving [117, p. 137] among most of

the components involved (the scheduler is an exception), in that they allow

variables of only one component to change in each step (a “move”). Com-

ponents move in a fixed order that repeats, so the resulting interaction can

be viewed as a turn-based game between the components. Each variable is

controlled by a single component throughout time, and thus the specifications

are disjoint-state [117, p. 144]. Let C be a collection of indices that identify

components, and e i be actions that attribute state changes to components (as

the e in Realization, Section 3.3), and v a tuple of relevant variables. The

concept of interleaving can be defined as the following pairwise orthogonality

condition [7, p. 514], [11], [66, §5, p. 22]:

Interleaving
∆
= 2[∀i , j ∈ C : (i ̸= j) ⇒ (e j ⇒ ¬e i)]v

In words, no step changes the state of more than one component. Let V be

a collection of indices of variable identifiers x k , and e j ,k attribute changes of

variable x k to component j . The concept of disjoint state can be defined as

follows [66, §5.1.2, p. 24]:

DisjointState
∆
= ∀k ∈ V : ∃i ∈ C :

∀j ∈ C \ i : 2[¬e j ,k]xk

In words, all changes to each variable are attributed to no more than one

component. These definitions are schematic, in that i , j , k are metatheoretic

notation [93].

35

Chapter 5

PARAMETRIZED HIDING OF VARIABLES

5.1 Motivation and overview

Precision is essential for specification, but adding details makes a specification

less manageable by both humans and machines. Decomposition in general in-

volves as much computation as solving the problem in a monolithic way [115].

Structuring the specification hierarchically to defer introducing lower-level de-

tails is a solution in the middle. Hierarchy corresponds to how real systems

are designed, for example airplanes. The deferred details should be irrelevant

to the higher level design, and specific to subsystems only. Some internal

component details may be relevant to the higher levels, and be mentioned be-

fore decomposition of a specification to component specifications. Mentioning

these details can make writing the specification easier, or these details may

concern the interaction of some components, but not others.

We want to remove irrelevant details from the specification of each component.

We do so by detecting which variables can be eliminated from a component’s

specification. The specification that results after the selected variables have

been eliminated should be realizable, otherwise no component that implements

that specification exists. This objective can be summarized as follows:

Problem 1 (Hiding variables). Given a realizable open-system GR(1) property

φ, which environment variables can be hidden from the component (by making

the values of those variables unavailable to the controller function) without

preventing the component from realizing φ?

In this section, we parametrize the selection of which variables to hide. This

parametrization is obtained by modifying the controllable step operator. This

operator is used in later sections to construct a property φ that is realizable,

by reasoning about dependencies between components.

Synthesizing implementations from specifications with partial information is

computationally hard. Since the hidden variables are chosen to preserve re-

alizability, and reasoning about hidden behavior at the time of component

synthesis is computationally expensive, we eliminate the hidden variables. We

36

show that the resulting specifications can be written as if only the visible

variables were declared to the component, thus as if the component had full

information; an objective summarized as follows.

Problem 2 (Expressibility). Can we write the component specifications with

formulas in which hidden variables do not occur?

In Section 5.3 we discuss the abstraction from the controllable step operator

for specific variables, and in Section 5.4 we parameterize the choice of which

variables to hide. We start by considering the safety part of the specification

in Section 5.2.

5.2 Preventing safety violations

The starting point is a specification for the assembled system. Suppose that

this is a property of the form

Assembly
∆
= Init ∧2[Next]vrs ∧ Liveness ,

where the conjunct Liveness is a conjunction of liveness properties, for example

23Goal1 ∧ 23Goal2. The property Liveness can impose constraints on the

safety property SM ≜ Init ∧ 2[Next]vrs . If this is not the case, then the pair

of properties SM ,Liveness is called machine-closed [2, p. 261], [7, p. 519].

We are about to decompose the property Assembly . To avoid circularity, we

create the safety and liveness parts of component properties separately, in two

stages. Only “pieces” of liveness constraints will end up in each component’s

specification. This means that we should ensure that the safety part is strong

enough to prevent any component from “straying away” to an extent that

would violate the assembly’s Liveness property.

Having established this goal, let us focus on safety. The property SM may be

too permissive to ensure that Liveness will be satisfiable in the future. We

need to strengthen SM . The weakest safety property W that suffices is the

strongest safety property implied by Assembly , i.e., such that

|= Assembly ⇒ W .

The property W is known as closure of the property Assembly [13, p. 120],

[7, p. 518], [11, pp. 261–262], due to topological considerations [12]. If W is

written in the form

W ≡ Init ∧2[Next]vrs ∧2Inv ,

37

then the invariant Inv defines the largest set of states that can occur in any

behavior that satisfies the property Assembly . The weakest invariant also

yields the (unique) weakest safety assumption necessary in turn-based games

with full information (set of cooperatively winning states) [33], [67, §III-A].

Example 3. For the charging station example, the assembly invariant Inv

(when Env holds) is

∧ turn ∈ 1 . . 2 ∧ free ∈ 0 . . 1

∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18 ∧ occ ∈ 1 . . 3

∧ pos x ∈ 1 . . 15 ∧ pos y ∈ 1 . . 15

∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1

∧ ∨ ∧ (free x = 1) ∧ (free y = 1) ∧ (occ ∈ 2 . . 3)

∧ (spot 1 = 0) ∧ (spot 2 = 1)

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 1)

∧ (spot 1 = 1) ∧ (spot 2 = 0)

∨ ∧ (free x ∈ 1 . . 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 1 = 0) ∧ (spot 2 = 0)

∨ (free = 0)

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 2 = 0)

This invariant was symbolically computed as the greatest fixpoint of the assem-

bly’s action. The BDD resulting from this computation was then converted to

a minimal formula in disjunctive normal form, with integer variable constraints

as conjuncts. □

A component’s action should constrain the next values of only variables that

the component controls. In addition, the component should be constrained to

preserve the invariant Inv . The property W can be written as Init ∧ Inv ∧
2[WNext]vrs , where [114, by INV2, Fig.5, p. 888]

WNext
∆
= Inv ∧ Next ∧ Inv ′.

The property Unzip(Assembly , x , y) can be defined by quantifying the primed

variables of other components, using the following operators as arguments of

the operator AsmGrt (defined in Section 4.2.2):

EnvNext(x , y , x ′)
∆
=

38

[∃ y ′ : ∧ Inv(x , y) ∧ Inv(x ′, y ′)

∧ Next(x , y , x ′, y ′)]x

SysNext(x , y , y ′)
∆
=

[∃ x ′ : ∧ Inv(x , y) ∧ Inv(x ′, y ′)

∧ Next(x , y , x ′, y ′)]y
For specifications that are interleaving for all components except a determinis-

tic scheduler, as those we discuss are (in general, for specifications that in each

step allow multiple alternatives for state changes for at most one component),

the Step operator with the above actions implies that Inv ∧ Next is satisfied

by each step. The reason is that in each step, at most one component can

change in a non-unique way. See also Section 9.5 for more details.

Remark 9. In the charging station example, any nonstuttering step of the

assembly is a nonstuttering step of the scheduler, which is assumed to take

infinitely many nonstuttering steps. The fixpoint algorithms we develop cor-

respond to a raw TLA+ context. When transitioning to the raw logic, after

stuttering steps are removed, the property 23⟨SchedulerNext ⟩turn reduces to

safety, because any nonstuttering step of the assembly changes the variable

turn. □

5.3 Hiding specific variables

Suppose we want to hide variable h in predicate P(h, x , y , y ′). The environ-

ment controls variables h and x , and the component y . If we use unbounded

quantification, ∀h : P(h, x , y , y ′), then in most cases the result will be too re-

strictive, or false. The quantified variable h should be bounded, so a suitable

antecedent Bound is needed. Using this bound should not permit previously

unallowed values for x and y , which leads to the conjunction

∧ ∃ h : Bound(h, x , y)

∧ ∀ h : Bound(h, x , y) ⇒ P(h, x , y , y ′).

We will use Inv(h, x , y) as a bound on h. It will be the case that |= Bound(h, x , y) ⇒
∃y ′ : P(h, x , y , y ′). As defined in Chapter 3, the controllable step operator

when the component can observe the values of variables x and h takes the

form (to reduce verbosity we omit the argument Target)

Step(x , y , h)
∆
= ∃ y ′ : ∀ x ′, h ′ :

∧ SysNext(h, x , y , y ′)

∧ EnvNext(h, x , y , h ′, x ′) ⇒ Target(h ′, x ′, y ′)

39

The component’s decisions cannot depend on the variable h, leading to the

modified operator

StepH (x , y)
∆
=

∧ ∃ h : Inv(h, x , y)

∧ ∃ y ′ : ∀ x ′, h ′ : ∀ h :

∨ ¬Inv(h, x , y)
∨ ∧ SysNext(h, x , y , y ′)

∧ EnvNext(h, x , y , h ′, x ′) ⇒ Target(h ′, x ′, y ′)

Algebraic manipulation yields

StepH (x , y) ≡
∃ y ′ : ∀ x ′ :

∧ ∧ ∃ h : Inv(h, x , y)

∧ ∀ h : Inv(h, x , y) ⇒ SysNext(h, x , y , y ′)

∧ ∀ h ′, h :

∨ ¬ ∧ Inv(h, x , y)

∧ EnvNext(h, x , y , h ′, x ′)

∨ Target(h ′, x ′, y ′)

If Target is independent of h ′, (which is the case in Chapter 6), then confining

universal quantification to the first disjunct yields

StepH (x , y) ≡
∃ y ′ : ∀ x ′ :

∧ ∧ ∃ h : Inv(h, x , y)

∧ ∀ h : Inv(h, x , y) ⇒ SysNext(h, x , y , y ′)

∧ ∨ ¬∃ h, h ′ : ∧ Inv(h, x , y)

∧ EnvNext(h, x , y , h ′, x ′)

∨ Target(x ′, y ′)

By defining

SimplerSysNext(x , y , y ′)
∆
=

∧ ∃ h : Inv(h, x , y)

∧ ∀ h : Inv(h, x , y) ⇒ SysNext(h, x , y , y ′)

SimplerEnvNext(x , y , x ′)
∆
=

∃ h, h ′ : ∧ Inv(h, x , y)

∧ EnvNext(h, x , y , h ′, x ′)

40

we obtain

StepH (x , y) ≡
∃ y ′ : ∀ x ′ :

∧ SimplerSysNext(x , y , y ′)

∧ SimplerEnvNext(x , y , x ′) ⇒ Target(x ′, y ′)

The resulting operator StepH is schematically the same with that for the full

information case. So the open-system specification with hidden variables can

be rewritten as an open-system specification with no hidden variables, with-

out changing the set of states from where the property is realizable. The

eliminated variables do not appear in the component specification, so further

work focusing on that component can be carried out in a full information

context, including GR(1) synthesis. The action SimplerEnvNext abstracts en-

vironment details. Abstraction for the environment is appropriate in a refined

open-system property, because of contravariance between component and en-

vironment (assumptions should be weakened, guarantees strengthened) [50],

[86, Eq. (4.14), p. 325].

Example 4. To demonstrate the effect of hiding variables in the context of

the charging station example, consider the action of the charging station’s

environment. Without hiding any state from the station, the environment

action is (shown for steps that it is the robot’s turn to change)

∧ turn = 2 ∧ turn ′ = 1 ∧ free ∈ 0 . . 1 ∧ free x ∈ 0 . . 18

∧ free y ∈ 0 . . 18 ∧ occ ∈ 1 . . 3 ∧ occ′ ∈ 1 . . 3

∧ pos x ∈ 1 . . 15 ∧ pos x ′ ∈ 1 . . 15 ∧ pos y ∈ 1 . . 15

∧ pos y ′ ∈ 1 . . 15 ∧ req ∈ 0 . . 1 ∧ req ′ ∈ 0 . . 1

∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1

∧ ∨ ∧ (free = 1) ∧ (free x ∈ 0 . . 1) ∧ (occ = 3)

∧ (occ ′ = 3) ∧ (pos x ′ = 1) ∧ (pos y ′ = 1)

∨ ∧ (free = 1) ∧ (free x ∈ 2 . . 18) ∧ (occ ∈ 2 . . 3)

∧ (occ ′ = 3) ∧ (pos x ′ = 2) ∧ (pos y ′ = 1)

∨ ∧ (free = 1) ∧ (occ ∈ 1 . . 2) ∧ (occ′ = 1)

∧ (pos x ′ = 2) ∧ (pos y ′ = 1) ∧ (spot 2 = 0)

∨ ∧ (free = 1) ∧ (occ ∈ 1 . . 2) ∧ (occ′ = 2)

∧ (pos x ′ = 1) ∧ (pos y ′ = 1) ∧ (spot 1 = 0)

∨ (occ = 1) ∧ (occ′ = 1) ∧ (req = 0)

41

∨ (occ = 1) ∧ (occ′ = 1) ∧ (req ′ = 1)

∨ (occ = 2) ∧ (occ′ = 2) ∧ (req = 0)

∨ (occ = 2) ∧ (occ′ = 2) ∧ (req ′ = 1)

∨ (occ = 3) ∧ (occ′ = 3) ∧ (req = 0)

∨ (occ = 3) ∧ (occ′ = 3) ∧ (req ′ = 1)

∧ InvH

After hiding the robot’s coordinates pos x , pos y , the environment action is

simplified to

∧ turn = 2 ∧ turn ′ = 1 ∧ free ∈ 0 . . 1

∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18

∧ occ ∈ 1 . . 3 ∧ occ ′ ∈ 1 . . 3

∧ req ∈ 0 . . 1 ∧ req ′ ∈ 0 . . 1

∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1

∧ ∨ (free = 1) ∧ (occ = 1) ∧ (occ′ = 1)

∨ (free = 1) ∧ (occ = 3) ∧ (occ ′ = 3)

∨ ∧ (free = 1) ∧ (occ ∈ 1 . . 2) ∧ (occ ′ = 2)

∧ (spot 1 = 0)

∨ (occ = 1) ∧ (occ′ = 1) ∧ (req = 0)

∨ (occ = 1) ∧ (occ′ = 1) ∧ (req ′ = 1)

∨ (occ = 2) ∧ (occ′ = 2) ∧ (req = 0)

∨ (occ = 2) ∧ (occ′ = 2) ∧ (req ′ = 1)

∨ (occ = 3) ∧ (occ′ = 3) ∧ (req = 0)

∨ (occ = 3) ∧ (occ′ = 3) ∧ (req ′ = 1)

∧ InvH

Details about safe positioning of the robot have been simplified, because they

are not necessary information for the station’s operation. These expressions

have been obtained by using the invariant as a care predicate for the minimal

covering problem that yields the DNF. In particular

InvH
∆
=

∧ turn ∈ 1 . . 2 ∧ free ∈ 0 . . 1

∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18

∧ occ ∈ 1 . . 3 ∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1

∧ ∨ ∧ (free x = 1) ∧ (free y = 1) ∧ (occ ∈ 2 . . 3)

∧ (spot 1 = 0) ∧ (spot 2 = 1)

42

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 1)

∧ (spot 1 = 1) ∧ (spot 2 = 0)

∨ ∧ (free x ∈ 1 . . 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 1 = 0) ∧ (spot 2 = 0)

∨ (free = 0)

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 2 = 0)

The concept of a care predicate will be described in Chapter 7. □

5.4 Choosing which variables to hide

Which variables can we hide without sacrificing realizability? We could enu-

merate combinations of variables to hide, and check realizability for each one.

This is inefficient (there are exponentially many combinations to enumerate).

Instead, we parametrize which variables are hidden or not. We redo Sec-

tion 5.3, but now the choice of hidden variables is parametric. For each vari-

able, a mask constant m is introduced that “routes” the variable to take a

visible or hidden value

Mask(m, v , h)
∆
= if (m = true) then h else v

The rigid variable m models the availability or lack of information. Following

Section 5.3, we replace h with the selector expression to define a controllable

step operator with parametrized hiding as follows (where variable v is h for

the case that m = false, meaning h visible):

MaskedInv(h, v , x , y , m)
∆
= let r

∆
= Mask(m, v , h)

in Inv(r , x , y)

PrmInv(v , x , y , m)
∆
= ∃ h : MaskedInv(h, v , x , y , m)

R(v , x , y , m)
∆
=

∃ y ′ : ∀ x ′, v ′ : ∀ h :

let r
∆
= Mask(m, v , h)

in ∨ ¬Inv(r , x , y)
∨ ∧ SysNext(r , x , y , y ′)

∧ ∨ ¬EnvNext(r , x , y , v ′, x ′)

∨ Target(v ′, x ′, y ′, m)

PrmStep(v , x , y , m)
∆
=

∧ PrmInv(v , x , y , m)

43

∧ R(v , x , y , m)

An important point is that we can “push” the substitution inwards, in order

to obtain a controllable step operator over parametrized actions

PrmStep(v , x , y , m) ≡
let

MskInv(h)
∆
=

let r
∆
= Mask(m, v , h)

in Inv(r , x , y)

PrmInv
∆
= ∃ h : MskInv(h)

MskSysNext(h, y ′)
∆
=

let r
∆
= Mask(m, v , h)

in SysNext(r , x , y , y ′)

PrmSysNext(y ′)
∆
=

∧ PrmInv

∧ ∀ h : MskInv(h) ⇒ MskSysNext(h, y ′)

MskEnvNext(h, v ′, x ′)
∆
=

let r
∆
= Mask(m, v , h)

in EnvNext(r , x , y , v ′, x ′)

PrmEnvNext(v ′, x ′)
∆
=

∃ h : MskInv(h) ∧MskEnvNext(h, v ′, x ′)

in

PrmStep(v , x , y , m)
∆
= ∃ y ′ : ∀ x ′, v ′ :

∧ PrmSysNext(y ′)

∧ PrmEnvNext(v ′, x ′) ⇒ Target(v ′, x ′, y ′, m)

The let expressions can be implemented either with syntactic substitution of

bitvector formulas (provided the variables v and h can take the same values,

and compatible type hints are declared for them to aid bitblasting), or existen-

tial quantification. We use existential quantification. The operator PrmStep

can be rearranged to obtain an equivalent result with new actions and the

full information Step, as in Section 5.3. The assumption that Target does not

depend on v ′, which enables the rewriting, holds only for m = true, so this

rewriting takes place for specific variables, after the parametrization has been

used to select what variables to hide, as described in Chapter 6.

44

The parametrization is separate for each component. Fresh mask constants

are declared for this purpose. These masks increase the number of Boolean-

valued variables in the symbolic computation, but are not quantified during

controllable step operations, and are Boolean-valued, whereas the variables

they mask are integer-valued. With n components and k (integer-valued)

variables in total (over all components), (n − 1)k Boolean mask variables are

introduced. These are parameters, so the number of reachable states remains

unchanged, and thus the same number of controllable step operations will

be applied, and realizability fixpoints take the same number of iterations,

similar to arguments developed for parametrized synthesis [142]. The number

of components n involved in each individual decomposition step is expected to

not be large, so that the design specification be understandable by a human.

The masks parametrize the interconnection architecture between components,

and allow for computing symbolically those architectures that allow for decom-

posing the high-level specification into a contract. We can think of the above

scheme as a sensitivity analysis of the problem with respect to the information

available to different components.

5.5 Eliminating hidden variables

In Section 5.3 we defined the operator SimplerEnvNext as

SimplerEnvNext(x , y , x ′)
∆
=

∃ h, h ′ : Inv(h, x , y) ∧ EnvNext(h, x , y , h ′, x ′)

We then mentioned some DNF expressions that are equivalent to this operator

when defined in the context of a particular example. The DNF expressions can

be defined as operators, but using a different identifier than SimplerEnvNext .

The resulting formulas are provably equivalent, but one contains quantified

variables, the other not. The quantifiers should be eliminated in order to

obtain the component specifications.

These observations arise because we cannot define the same operator twice.

A nullary operator stands for the expression on the right hand side of its

definition [117, p. 319]. For example, the definition f ≜ x 2 defines the nullary

operator f to be the expression x 2. We may define g ≜ x × x and prove that

|= (x ∈ Nat) ⇒ (f = g) under the usual definitions of superscript and ×, but

f and g are defined to be different expressions. The act of defining symbols,

and how this act relates to declaring symbols as constants and introducing

45

axioms about those symbols can be understood as extending a formal theory

by definitions [93, §74, Vol. 1, p. 405].

46

Chapter 6

DECOMPOSING A SYSTEM INTO A CONTRACT

6.1 Overview

The decomposition algorithm takes an (open or closed) system specification

and produces open-system specifications for designated components. A com-

ponent means a collection of variables. We assume that the specification al-

lows components to stutter when variables from other components change.

So component interaction is synchronous, in that nonstuttering environment

steps are noticed by the component implementation, but the components are

not required to react immediately to changes. This assumption is useful for

transitions between interconnection architectures (Section 6.7.3).

We describe the algorithm incrementally, starting with the main idea. The

first description neglects hidden variables and complicated cases. We then add

these details to obtain the algorithm’s skeleton. The main idea is reasoning

backwards about goals to create a chain of dependencies of which component

is going to wait until which other component does what. These obligations

can be sketched roughly as follows:

Component 1 : L1
∆
= 23R1

Component 2 : L2
∆
= 32P2 ∨23R2

Component 3 : L3
∆
= 32P3 ∨23R3,

where the chaining is established by the implications

(R1 ⇒ ¬P2) ∧ (R2 ⇒ ¬P3).

Conjoining the above specifications, we can deduce the recurrence properties

L
∆
= 23R1 ∧23R2 ∧23R3.

Each liveness property listed above should be ensured by the designated com-

ponent implementation. So property L1 is a guarantee from the perspective of

component 1, and an assumption from the perspective of component 2. From

the perspective of component 3, property L2 is an assumption, and property

L3 is a guarantee.

47

There is no notion of a “liveness assumption” in the context of a single com-

ponent specification. Viewing liveness only as a “guarantee” agrees with real

world practice: there is no point in a behavior where we can decide that the

liveness assumption “has been violated” [7, 10]. Liveness “assumptions” are

meaningful in the context of multiple components, specified by multiple tem-

poral properties, a situation similar to possibility properties [116], [117, §8.9.3].
The liveness part of a property defined by the Unzip and WhilePlusHalf oper-

ators has no distinct place that could be regarded as “assumption” (notably,

if G is a safety property, then F +−▷ G is a safety property [11, §5.2, p. 261]).

A simple but necessary property of the specifications L1,L2,L3 is the acyclic

arrangement of the reasoning that derives L [157], forming a proof lattice [149].

Mutual dependence of safety properties is admissible because it is possible to

spread implication in a “stepwise” fashion over a behavior, as in the operator

WhilePlusHalf . So what appears circular for safety properties is a well-founded

chain of implications crisscrossing between components. Unlike safety proper-

ties, liveness properties allow arbitrary deferment of obligations to the future.

This deferment is what allows circularity to arise when liveness properties are

mutually dependent. Thus, in order to obtain sound conclusions about live-

ness properties of an assembly, there should be no cycles of dependence among

liveness properties guaranteed by different components [175].

All the discussion that follows focuses on liveness and omits the safety part of

specifications. Safety is addressed by closure and computation of component

actions as described in Chapter 5. In the computations, safety is taken into

account in the Step operator within the Attractor and Trap operators.

6.2 The basic algorithm

Consider two components 1 and 2. Suppose that we want their assembly to

satisfy the property L ≜ 23Goal . We want to find liveness properties L1,L2

for each component that are realizable and conjoined imply L. If L is realizable

by component 1 alone, then we can let L1 be L and L2 be true. The interesting

case is when accomplishing L requires interaction between components. The

basic idea is shown in Fig. 6.1. For the objective Goal , the set

A
∆
= Attractor 1(Goal)

contains those states from where component 1 can controllably lead the as-

sembly to the Goal . Component 1 cannot ensure that Goal will be reached

48

Goal

A ≜ Attractor1(Goal)

Trap
Unti

lA

Attractor1(A ∨ TrapUntilA)

Figure 6.1: The basic idea of the approach.

from outside A. So we need to relax the requirement 23Goal on component

1, by disjoining another liveness property. Suppose that we could find a set

TrapUntilA from where component 2 can reach A and component 1 can keep

the assembly inside TrapUntilA until A is reached. We can then write the

liveness specifications

L2
∆
= 23¬TrapUntilA

L1
∆
= 32TrapUntilA ∨23Goal

Property L2 is realizable by component 2 (because it can reach A, which is

outside TrapUntilA). If the set

C
∆
= Attractor 1(A ∨ TrapUntilA)

covers all of the assembly’s initial conditions, then the property L1 is realizable

by component 1 from these initial conditions. Realizability ensures that L1 and

L2 are implementable. Assembling the implementations specified by L1 and

L2, we can deduce that the assembly satisfies L1 ∧ L2, and by

L1 ∧ L2 ⇒ 23Goal

the assembly will operate as desired.

We could have simply found Attractor 2(A) (from where component 2 can lead

the assembly to A), and continued alternating among players, until a fixpoint

is reached. The resulting specifications would be chains of nested implications

between recurrence goals, so not in GR(1) [67]. The construction described

49

Goal

A ≜ Attractor1(Goal)

T ≜ Trap1
(B ,A

) ∧ ¬A

B ≜ Attractor2(A)

Figure 6.2: How traps are constructed (simple case).

can be regarded as subtracting goals from each other, in order to avoid nested

dependency.

We did not say how traps are computed, which we do now. Two attributes

characterize a trap:

• Component 2 should be able to ensure that the behavior reaches A.

• Component 1 should be able to ensure that the behavior remains within

the trap until A is reached.

The largest set that satisfies the first attribute is the attractor

B
∆
= Attractor 2(A).

The trap should be a subset of B . The largest subset of B that satisfies the

second attribute can be computed as the greatest fixpoint

C
∆
= Trap1(B ,A).

The above is a shorthand for the trap operator defined in Section 3.4, with

B corresponding to Stay and A to Escape. The subscript 1 signifies that

component 1 is existentially quantified within the controllable step operator.

By definition of a trap,

(C ⇒ B) ∧ (A ⇒ C).

So the desired trap set is

T
∆
= C ∧ ¬A.

50

Goal

B ≜ Attr2(A)
A ≜ Attr1(Goal)

s2

s1

s3 s4 s5 s6

T ≜ Trap1(B ,A) ∧ ¬A

Figure 6.3: An example where a trap is found.

Goal

B ≜ Attr2(A)

A ≜ Attr1(Goal)

s2

s1

s3 s4 s5 s6

escaping edge
edge that causes B
to shrink too much

Escape set

|= false ≡ Trap1(B ,A) ∧ ¬A

Figure 6.4: The simple approach cannot find a trap in this example. Compared
to Fig. 6.3, the failure is due to the edge ⟨s4, s3⟩.

These sets are illustrated in Fig. 6.2. Letting TrapUntilA ≜ T , we obtain real-

izable properties L1,L2 (the full specifications include safety, initial conditions,

and are defined using Unzip, but this section focuses on the liveness parts).

The algorithm we described derives from an earlier version for the case without

hidden variables [67, 65]. Covering all initial conditions of the assembly is not

possible in general [67, §III-B], unless either safety is restricted, or a syntactic

fragment larger than GR(1) is used [67, §IV-A], which is equivalent to using

auxiliary variables hidden by temporal quantification.

6.3 Finding assumptions in more cases

Forming a trap is the key step for constructing liveness assumptions. But the

approach of Section 6.2 can fail to find a trap, even in cases when our intuition

suggests otherwise. The reason is too small a set B , causing Trap1(B ,A) to

be empty. We use an example to explain why, and then a solution.

Example 5. Consider the graph shown in Fig. 6.3. Component 1 chooses the

next node when at a disk, and component 2 when at a box. A trap is found

51

Goal

Basin ≜ B ∨ Escape

A ≜ Attr1(Goal)

s2

s1

s3 s4 s5 s6

T ≜ Trap1(D ,A) ∧ ¬A

D ≜ Attr2(A ∨ ¬Basin) ∧ Basin ∧ ¬A

Figure 6.5: Including the states where component 2 can escape allows finding
the trap suggested by the specifier’s intuition.

for Fig. 6.3, because component 2 can reach A from both nodes s3 and s4.

Fig. 6.4 shows a modification with the edge ⟨s3, s2 ⟩ added. No trap is found

in this case, because B ∧¬A contains only node s4, so component 2 can move

“backwards” from s4 to s3. So a larger B is needed, but why did B shrink

compared to Fig. 6.3?

The set B shrunk because component 2 can no longer reach A from node

s3. Nevertheless, this inability is irrelevant in the context of constructing a

persistence goal for component 1. While pursuing the persistence goal T that

we are about to construct, component 1 is not going to move backwards (s3

to s2), because it would interrupt its attempt to remain forever within T .

It is this behavior that the specifier’s intuition suggests. But component 2

is unaware of this premise, and neither can it depend on what component 1

will do, in order to avoid circularity (remember that we are discussing about

liveness properties).

Enlarging B by the successors of states from where component 2 can “escape”

out of B can avoid the issue described above. The result is shown in Fig. 6.5.

Let the state predicate Escape mean that the current node is s3. Define

Basin
∆
= B ∨ Escape

We seek a trap within Basin, so a trap T that satisfies the implication

T ⇒ Basin

If component 1 can escape outside of Basin, then it can escape outside T too,

by the contrapositive

(¬Basin) ⇒ ¬T

52

A ≜ Attr1(Goal)

Goal

Basin := Attr2(A)

Escape

Holes := Basin ∧ Step2(Out)

Holes

Escape := Image(Holes) ∧Out

Out := ¬Basin

Figure 6.6: Collecting escapes that can cause a trap set to not form.

Thus, there is no loss in relaxing the goal A to A ∨ ¬Basin for component 2.

The corresponding attractor is

D
∆
= Attr 2(A ∨ ¬Basin) ∧ ¬(A ∨ ¬Basin)

and accounts for the intent of component 1 to remain forever inside the trap T

that is about to be computed. This relaxation of objective is shown in Fig. 6.5.

The larger attractor D enables a trap to form; the set of states

T
∆
= Trap1(D ,A) ∧ ¬A

is nonempty. Moreover, Attr 1(T ∨A) covers all nodes. So the components can

realize the properties

Component 2 : L2
∆
= 23¬D

Component 1 : L1
∆
= 32T ∨23Goal

Instead of an empty trap, we obtained a contract, because T ⇒ D , so L2 ⇒
23¬T . The issue discussed in this section does arise in practice; for instance

in the landing gear example of Chapter 8. □

The above discussion referred to individual states. A symbolic approach re-

lies on manipulating collections of states. Fig. 6.6 illustrates how what we

described above is symbolically implemented. The Basin is initialized as (the

symbol : = indicates that the identifier Basin is going to change value during

the algorithm’s execution, in later sections)

Basin : = Attr 2(A).

53

The states from where component 2 can force a step that exits the Basin are

those in the set

Holes : = Basin ∧ Step2(¬Basin).

Steps from Holes to the exterior of Basin lead to the set

Escape : = Out ∧ Image(Holes),

where Image is the existential image operator (all unprimed flexible variables

are existentially quantified), defined as

Image(x , y , Source(,), Next(, , ,))
∆
=

∃ p, q : Source(p, q) ∧ Next(p, q , x , y)

The resulting Basin is used for computing D : = Attr 2(A∨¬Basin)∧Basin ∧
¬A and Trap1(D ,A) ∧ ¬A. If the latter is nonempty, then we have found a

trap. Otherwise, the above computation is iterated using the larger Basin as

described in the following sections.

6.4 Taking observability into account

So far we ignored that each component observes different information. What

information is available depends on the parameter values (Chapter 5). Each

component specification should be expressed using only variables that it ob-

serves, which is not the case in previous sections. In order to ensure this

property, we use the following operators:

Maybe(v , x , y , m, P(, ,))
∆
=

∃ h : let r
∆
= Mask(m, v , h)

in P(r , x , y)

Observable(v , x , y , m, P(, ,),

R(, ,), Inv(, ,))
∆
=

∧Maybe(v , x , y , m, Inv)

∧ ∀ h : let r
∆
= Masks(m, v , h)

in R(r , x , y) ⇒ P(r , x , y) P is observable within R

Some operator arguments are omitted in the discussion below. Expressing

specification objectives using only visible variables allows for using the Step

operator with suitably parametrized component and environment actions (Sec-

tion 5.3). Thus, we can apply the Attractor and Trap operators. The sets of

states when observability is taken into account are shown in Fig. 6.7. The

54

indices correspond to components, with the mask parameters that correspond

to each of them. The main difference with Section 6.3 is that observability is

required when alternating between components. Specifically,

• Goal is replaced by G ≜ Obs1(Goal) for computing A

• A is replaced by U ≜ Obs2(A) for computing D

• D is replaced by Stay ≜ Obs1(D) for computing T .

The next theorem establishes the connection between these objectives of com-

ponents 1 and 2. The theorem is stated without mentioning the parameters,

but applies also to parametrized computations.

Theorem 1 (Soundness). assume : The sets of states D and T are computed

as in Fig. 6.7. prove : The property

P
∆
= 23¬D

is realizable by component 2. The property

Q
∆
= 2 ∨ ¬(T ∨ A)

∨ (32T) ∨3A

is realizable by component 1. The implication holds

|= (T ∧ Inv) ⇒ D

A detailed proof can be found in the appendix.

Proof sketch: By its definition, D is contained in Basin ∧ ¬U , so (U ∨
Out) ⇒ ¬D . States in D are contained in the attractor of U ∨ Out , so the

property 2(D ⇒ 3(U ∨ Out)) is realizable by component 2. Thus, 2(D ⇒
3¬D) is realizable by component 2, and this property is equivalent to 23¬D .

This proves the first claim.

From the trap Z ≜ Trap1(Stay ,A), component 1 can either eventually reach

A or remain forever within Z ∧¬A, where (Z ∧¬A) ≡ T . By definition of T ,

it follows that (T ∨ A) ⇒ Z . So from any state in T ∨ A, component 1 can

realize 3A ∨32T . This proves the second claim.

By definition of T , T ⇒ Stay . By definition of Stay , (Stay∧Inv) ⇒ D . Thus,

(T ∧ Inv) ⇒ D . qed

Theorem 1 implies that component 1 cannot prevent component 2 from reach-

ing ¬D . So it ensures that component 1 cannot stay forever within T , and

55

G ≜ Obs1(Goal)

Goal

A ≜ Attr1(G)
U ≜ Obs2(A)

Basin

D ≜ ∧ Attr2(U ∨Out)
∧ Basin ∧ ¬U

Stay ≜ Obs1(D)

T ≜ Trap1(Stay ,A) ∧ ¬A
Out ≜ ¬Basin ∧Maybe2(Inv)

Figure 6.7: Accounting for observability when computing assumptions.

that if the behavior exits T , then component 1 can ensure A is reached. As

component 2 moves towards ¬D , the behavior does exit T . Therefore, progress

of component 2 can be utilized by component 1 for progress towards its re-

currence objective A. Theorem 1 is the building block for computing more

complex dependencies of objectives. For a single recurrence goal of component

1, multiple traps may be needed to cover the desired set of states (for which

we use the global invariant Inv). If the procedure MakePinfoAssumption

computes A,T ,D , then by iterating this procedure until a least fixpoint is

reached, we can find several traps, such that the corresponding persistence

objectives suffice in order to eventually reach the Goal . This use is illustrated

by the pseudocode

Y : = Observable1(Goal)

Yold : = choose r : r ̸= Y

while Y ̸= Yold :

Yold : = Y

A,T ,D : = MakePinfoAssumption(Y , . . .)

(* . . . store D *)

Y : = A ∨ T

The procedure MakePinfoAssumption is defined in Section 6.6. This com-

putation is in analogy to the least fixpoint computed for one goal in a GR(1)

game [23].

56

Example 6. In the charging station example, for the recurrence goal23(req =

0) the trap that is computed when the robot can observe the variables free,

free x , turn is

T
∆
=

∧ turn ∈ 1 . . 2 ∧ free ∈ 0 . . 1 ∧ free x ∈ 0 . . 18

∧ pos x ∈ 1 . . 15 ∧ pos y ∈ 1 . . 15 ∧ req ∈ 0 . . 1

∧ ∨ (turn = 1) ∧ (free x ∈ 1 . . 2) ∧ (req = 1)

∨ (free = 0) ∧ (req = 1)

The goal 32T ∨23(req = 0) can be understood as follows. The robot issues

a request for recharging by setting req = 1. It cannot set req = 0 unless it

has reached the position indicated as free by free = 1. The robot is allowed

to wait while free = 0 (the station has not indicated any spot as available), or

until free = 1 and the station has indicated an available spot, and it is not the

robot’s turn (turn = 1, not 2). The disjunct that involves turn = 1 appears

in order to allow the charging station to satisfy the generated recurrence goal

¬D (given below). If turn = 1 was absent from that disjunct, then the robot

could raise a request (req = 1), and then simply ignore that the station did

react by offering a spot (free = 1), and idle, without responding by reaching

the spot, in order to be able to set req = 0. In other words, such a larger T

would have relaxed the objective 32T ∨23(req = 0) too much.

The trap T corresponds to the recurrence objective 23¬D that is generated

for the charging station provided it observes the variables req , occ, turn

D
∆
=

∧ turn ∈ 1 . . 2 ∧ free ∈ 0 . . 1

∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18 ∧ occ ∈ 1 . . 3

∧ req ∈ 0 . . 1 ∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1

∧ req = 1

∧ ∨ ∧ (turn = 1) ∧ (free x = 1) ∧ (free y = 1)

∧ (occ ∈ 2 . . 3) ∧ (spot 1 = 0) ∧ (spot 2 = 1)

∨ ∧ (turn = 1) ∧ (free x = 2) ∧ (free y = 1)

∧ (occ = 1) ∧ (spot 1 = 1) ∧ (spot 2 = 0)

∨ ∧ (turn = 1) ∧ (free x = 2) ∧ (free y = 1)

∧ (occ = 3) ∧ (spot 2 = 0)

∨ ∧ (turn = 1) ∧ (free x ∈ 1 . . 2) ∧ (free y = 1)

∧ (occ = 3) ∧ (spot 1 = 0) ∧ (spot 2 = 0)

57

∨ (free = 0)

This recurrence objective requires from the station to react by indicating some

spot as free, and also make sure that the spot is not taken (as indicated by the

variables spot 1, spot 2, spot 3). The above expressions were computed from

BDDs by using the approach described in Chapter 7, and the conjunct req = 1

was factored out of the disjuncts for brevity of the presentation. □

6.5 Multiple recurrence goals

The results of Section 6.4 are about one recurrence goal. By repeating the

computation for different recurrence goals, for example 23R1 and 23R2

for component 1, suitable realizable properties can be found, for example

32P1 ∨23R1 and 32P2 ∨23R2. However, conjoining these two properties

would not yield a GR(1) property. Instead, a GR(1) property can be formed

by a suitable combination described below, provided that 23¬P1 ∧ 23¬P2

are implemented by components that can realize them irrespective of how

component 1 behaves (unconditionally).

Relaxing a property preserves realizability. More precisely, if a property P is

realizable, and P implies Q , then Q is realizable.

proposition Relaxation

assume temporal P , temporal Q

prove (IsRealizable(P) ∧ (P ⇒ Q)) ⇒ IsRealizable(Q)

For what we are interested in, let

L
∆
= ∧ 32P1 ∨23R1

∧ 32P2 ∨23R2

Q
∆
= ∨ 32P1 ∨32P2

∨ 23R1 ∧23R2

It is the case that L ⇒ Q , so if a component can realize L, then it can realize

Q . The reverse direction does not hold in general. Nonetheless, if a behavior

σ satisfies

σ |= ¬(32P1 ∨32P2)

and σ arises when using a component that implements Q , then it follows that

σ |= 23R1 ∧ 23R2. This establishes the reverse direction in the presence of

other components that implement 23¬P1 and 23¬P2. This reasoning leads

to the following theorem.

58

theorem Let Q
∆
= ∨ 32T 1 ∨32T 2

∨ 23R1 ∧23R2

assume IsRealizable1(Q) ∧ ∧ ¬D1 ⇒ ¬T 1

∧ ¬D2 ⇒ ¬T 2

prove ∀f : ∨ ¬ ∧ IsARealization1(f ,Q)

∧ Realization1(f ,Q)

∧ 23¬D1 ∧23¬D2

∨ 23R1 ∧23R2

The operator IsARealization is the modification of IsRealizable that results

from making f , g , y0,mem0 arguments. To emphasize the main points, we

have simplified the notation, lumping all these arguments as f , and letting the

subscript 1 indicate the e being used for component 1. The discussion above

generalizes to more than two recurrence properties in an analogous way.

6.6 Detecting solutions in the presence of parametrization

The implementation of the computation described in Section 6.4 is shown in

Algorithm 6.8. The controllable step operator, fixpoint and other computa-

tions are parametrized with respect to the communication between the compo-

nents, as described in Chapter 5. The parameters are indexed by component

and current recurrence goal, which is the purpose of passing Team and Player

as arguments. Player corresponds to component 1 and Team to component 2

in earlier sections. The renaming is in anticipation of discussing the case of

more than two components in Section 6.7.2.

Iteratively enlarging the Basin does not necessarily lead to a monotonic be-

havior of the trap ηplayer . To see why, consider the effect of increasing Basin

to the computation within the procedure MakePair, when T is empty. The

TeamGoal shrinks, so Attr(TeamGoal ,Team) may shrink (not necessarily),

but Basin ∧¬TeamGoal becomes larger. Thus, D may become larger, leading

to a larger Stay , thus possibly to a nonempty T . This is possible, but not

necessarily the case. The largest Basin is true, and corresponds to the basic

case of Section 6.2, which can fail as demonstrated by Fig. 6.4. So enlarging

the Basin after a trap forms can lead (back) to an empty trap.

To avoid regressing to an empty trap, as soon as a trap set is found, the

iteration should terminate. In absence of parameters this is a straightfor-

ward check whether ηplayer is nonempty. However, this does not apply to

parametrized computations. Each parameter valuation defines a “slice” of the

59

state-parameter space, as shown in Fig. 6.9. A different number of iterations

can be necessary for a trap to form in each slice. For this reason, as soon

as a trap is found for some parameter values, those are “frozen” in further

iterations, as illustrated in Fig. 6.10. The variable Coverged is used for this

purpose. The operator NonEmptySlices(ηplayer) ≜ ∃vars : ηplayer abstracts

the variables of all players, in order to find the parameter values such that

ηplayer is not false. This approach ensures that traps are recorded when

found, and that the iteration terminates.

Theorem 2 (Termination). assume : A finite number of states satisfies the

global invariant Inv. prove : Algorithm 6.8 terminates in a finite number of

iterations.

A structured proof style is used [120, 121].

⟨1⟩ k ∆
= choose n ∈ Nat : true

⟨1⟩ suffices ∨ Terminates(iter = k)

∨ EnlargesStrictly(Basin, iter = k)

by assumption Finitely many relevant states satisfy Basin.

⟨1⟩1.case At(L1, iter = k) : |= Escape ≡ false

⟨2⟩1. Terminates(iter = k)

by ⟨1⟩1, WhileGuard

⟨2⟩ qed
by ⟨2⟩1

⟨1⟩2.case At(L1, iter = k + 1) : ¬ |= Escape ≡ false)

⟨2⟩1. At(L2, iter = k) : |= Out ′ ⇒ ¬Basin
⟨2⟩2. At(L3, iter = k) : |= Escape ′ ⇒ Out

⟨2⟩3. At(L3, iter = k) : |= Escape ′ ⇒ ¬Basin
by ⟨2⟩1, ⟨2⟩2

⟨2⟩4. At(L4, iter = k) :

|= (Escape ∧ Basin) ≡ false

by ⟨2⟩3
⟨2⟩5. At(L4, iter = k) : |= Escape ⇒ Basin ′

⟨2⟩6. At(L4, iter = k) :

¬ |= (Basin ′ ∧ ¬Basin) ≡ false

60

Algo. 6.8: Algorithm for constructing contracts of recurrence-persistence pairs.
The presentation borrows elements from PlusCal [119].

def MakePinfoAssumption(Goal ,Player ,Team) :
(* The player can observe its own variables. *)

(* Some team variables are hidden from the player, *)

(* as determined by parameters. Vice versa for the team. *)

(* So the parametrizations express different perspectives. *)

G : = Observable(Goal ,Player)
A : = Attr(G ,Player)
TeamGoal : = Observable(A, Inv , Inv ,Team)
Basin : = Attr(TeamGoal ,Team)
Escape : = true
Converged : = false

L1 while (¬ |= Escape ≡ false) :
(* Complement within team state space. *)

L2 Out : = ¬Basin ∧Maybe(Inv ,Team)
Holes : = Basin ∧ Step(Out ,Team)
Escape : = Out ∧ Image(Holes ∧ Inv ,Team)

L3 Escape : = ∧ Maybe(Escape,Team)
∧ Out ∧ ¬Converged

L4 Basin : = Basin ∨ Escape
ηplayer , ηteam : = MakePair(
A,Basin,Player ,Team)

Converged : = ∨ Converged
∨ NonEmptySlices(ηplayer)

return A, ηplayer , ηteam

def MakePair(A,Basin,Player ,Team) :
TeamGoal : = ∨ Observable(A, Inv , Inv ,Team)

∨ ¬Basin ∧Maybe(Inv ,Team)
D : = ∧ Attr(TeamGoal ,Team)

∧ Basin ∧ ¬TeamGoal
Stay : = Observable(D , Inv , Inv ,Player)
T : = Trap(Stay ,A,Player) ∧ ¬A
return T ,D

61

{}
{“x”} {“y”} {“x”, “y”}

Visible
variab

les

Figure 6.9: Slices of the state space that correspond to different assignments
of values to the parameters.

Param
eter assign

ments

Iteration 1 Iteration 2 Iteration 3

converged, no trap
converged, traps found

has not converged yet

The slices that have converged are frozen in later iterations.

Figure 6.10: In iterations of non-monotonic operators that depend on param-
eters, when a solution is found for some parameter values (a slice), then no
further iterations should occur for those values.

by ⟨1⟩2, ⟨2⟩4, ⟨2⟩5
⟨2⟩7. At(L4, iter = k) : |= Basin ⇒ Basin ′

⟨2⟩8. EnlargesStrictly(Basin, iter = k)

by ⟨2⟩7
⟨2⟩ qed

by ⟨2⟩8
⟨1⟩ qed

by ⟨1⟩1, ⟨1⟩2

62

6.6.1 Characterizing the parametrization

Parameters are TLA+ constants, also known as rigid variables [117]. Parametriza-

tion has a “static” effect: the controllable step operator quantifies over only

(primed) flexible variables, so the number of quantified variables remains un-

changed. Each “slice” obtained by assigning values to parameters has a diam-

eter (the farthest two states can be apart in number of transitions) no larger

than the state space of the assembly without any parametrization.

So the number of iterations until reaching fixpoints in attractor and other

computations is the same with and without parametrization (because the case

of no hidden variables corresponds to a parameter valuation). Similar obser-

vations have been made for the case of parametrized reachability goals [142,

pp. 69, 80].

One difference with parametrization of goal sets is that those can be en-

coded directly with existing game solvers (by letting the parameters be flex-

ible variables constrained to remain unchanged [114, Note 16]), whereas the

parametrization of information studied here requires using substitution (equiv-

alently, rigid quantification) and quantification in order to hide the selected

variables in the component actions (the resulting parametrized actions can

still be used with the usual controllable step operator).

6.7 Other considerations

6.7.1 Covering the global invariant

The selection of interconnection architecture (possibly different for each recur-

rence goal) is constrained to ensure that the “root” component (component 1

in the preceding sections) can realize its recurrence goals from all states that

satisfy the global invariant Inv . The assumption that specifications do not

force immediate component reactions ensures that when each recurrence goal

is reached, a nonblocking step is possible in transition to pursuing the next

recurrence goal. So if the states that satisfy the fixpoint Y in Section 6.4 cover

the invariant Inv from the viewpoint of the component, then the generated

specification is realizable, in particular

|= Maybe i(Inv) ⇒ Y ,

where i indicates the component under consideration. This constraint is re-

quired in order to restrict the parameter values that constitute admissible

solutions. An alternative formulation is possible, where an outermost greatest

63

fixpoint is computed in order to find the largest set of states from where the

root component can realize its goals, as a function of the parameters. Nonethe-

less, if this set of states does not cover the global invariant, this indicates that

the assembly specification may need modification, in order to ensure that the

assembled system can work from all states that it is expected to, based on the

assembly specification before decomposition.

6.7.2 Systems with more than two components

By applying Theorem 1 hierarchically in an acyclic way, we can deduce prop-

erties of the assembled implementations from the component specifications.

The previous sections were formulated in terms of two components. The same

approach applies to multiple components, as follows. The components are

partitioned into a “root” component, and the rest form a “team”. The de-

composition algorithm is applied to two players: the root component and the

team. In this step, the team is treated as if it was a single player. The

specification that is generated for the team needs to be decomposed further.

This is achieved by applying the same algorithm recursively, using as goal

the generated ¬D . In other words, what is generated as ¬D for the team at

the top layer becomes the Goal for one of the team’s components at a lower

layer of decomposition. Components are removed until the team is reduced

to a singleton. We will see an example of this kind with three components in

Chapter 8.

When the procedure MakePair of Algorithm 6.8 is called for decomposing

a subsystem, the set of states Stay can result smaller than intuition suggests.

The reason is that when we write specifications by hand, we reason “locally”,

i.e., under the condition that we are constructing a specification for the team

to reach Goal , so we implicitly condition our thinking in terms of ¬Goal ∧
Inv . This condition can be applied to the algorithm in order to improve

observability. This modification is obtained by the replacement

Stay : = Observable(D ,Within ∧ Inv , Inv ,Player),

where Within is the set of states within which the constructed objectives are

needed. The trade-off is that the resulting persistence goal can “protrude”

outside the set of states Within. What needs to be checked in that case is that

the intersection of the persistence goal with ¬Within is outside sets where other

64

components depend on that component (for example, the root component), or

otherwise subsumed by some other persistence goal of the same component.

6.7.3 Switching interconnection architecture

Different recurrence goals can be associated to different interconnection archi-

tectures between components. To progress towards each goal with the gener-

ated specifications, the system should switch between the different interconnec-

tions. This switching is controlled by the “root” component. In each intercon-

nection mode, different variables are communicated between components. To

model the switching between different interconnection architectures in TLA+,

we formalize the interface between each pair of components by using a variable

that takes records as values. A record is a function with a set of strings as do-

main (a dictionary). For example, if x , z are variables that model component

1, then these are not declared as variables in the specification of component

2, because doing so would make them uninterruptedly visible to component 2.

Instead, a record-valued variable vars1 ∈ [subset {“x”, “z”} → Val] models

the communication channel from component 1 to component 2. In different

interconnection modes, the variable vars1 takes values with different domain,

thus making different variables of component 1 visible to component 2.

In order to switch between interconnections, each interconnection should be

signified in some way. There are two options for representing the intercon-

nection mode. In the case that each component is connected to the root

component, and each interconnection involves different collections of visible

variables to each component, then the domain of the record itself encodes the

interconnection mode. Otherwise, an extra field in the record is added to

define the interconnection mode. In configurations that occur intermediately

while transitioning from one interconnection to another, the components re-

main unblocked, because as assumed earlier the specification allows stuttering

reactions.

The information available to each component is a prerequisite for realizability

of its objectives. In the case of more than one interconnections, the goals of

components are conditioned on the corresponding interconnection mode. In

other words, persistence goals are conjoined to the interconnection mode they

correspond, i.e., 32(T ∧ (cnct = k)), and recurrence goals are required only

provided the corresponding interconnection mode is active, i.e., 23((cnct =

65

k) ⇒ ¬D). This can be regarded as a component assuming that if it provides

enough information to its environment, then it can in return request reactions

that become feasible for the environment when that information is available.

66

Chapter 7

GENERATING MINIMAL SPECIFICATIONS

7.1 Minimal disjunctive normal form

We use binary decision diagrams [30, 31] for the symbolic computations de-

scribed in previous sections. BDDs are typically used in symbolic model check-

ing for verifying that a system has certain properties [39, 92], in synthesis

of controllers [84, 160] (e.g., as circuits), and in electronic design automa-

tion [188, 75]. These applications are directed from user input to an answer

of either a decision problem (yes/no), or some construct (e.g., a circuit) to

be used without the need for a human to study its internal details. When

more details are needed, for example if the input needs to be corrected, then

in many cases the interaction between human and machine becomes enumer-

ative, by listing counterexamples, satisfying assignments, and other witnesses

that demonstrate the properties under inspection.

The BDDs in our approach represent specifications, so we want to read them.

BDDs themselves are not a representation that humans can easily inspect and

understand. For example, the global invariant of the charging station example

was generated from the BDD shown in Fig. 7.1. A simple alternative would be

to list the satisfying assignments for this BDD. However, there are 3.9 million

satisfying assignments, so inspection of a listing would not be very helpful for

understanding what predicate the BDD corresponds to. An additional diffi-

culty is that we work with integer-valued variables, and these are represented

using Boolean-valued variables (“bits”) in the BDD. We are used to reading

integers, not bitfields.

We are interested in representing the answer (a specification) in a readable

way. A canonical form for representing Boolean functions is in disjunctive

normal form (DNF). Having to read less usually helps with understanding

what a formula means, so we formulate the problem as that of finding a DNF

formula with the minimal number of disjuncts necessary for representing a

given Boolean predicate. The next question is how the disjuncts should be

written. In the propositional case, each disjunct is a conjunction of Boolean-

valued variables. We are interested in integer-valued variables, so we choose

67

10

28

_i_1-89

_i_0-7

_i_0-10

29 free_0-20

True-1

30 spot_1_0-34

occ_1-33

31 occ_1-24

occ_0-3232 occ_0-17

occ_0-40

free_x_0-5033 free_x_0-53

free_x_0-55free_x_0-48

34 spot_2_0-22

free_x_1-26

pos_x_1-23

spot_2_0-28

free_x_1-5135 free_x_1-25

36 pos_x_1-43

pos_x_1-46

37 pos_x_0-42

free_x_3-47

pos_x_0-5

free_x_3-12

pos_x_0-3

free_x_4-31

38 pos_x_3-45 pos_x_3-41pos_x_3-54

39 pos_x_2-27

pos_x_2-37

pos_x_2-18

40

41 free_x_2-36free_x_2-30

42

free_y_4-21

free_x_4-16

43 free_y_4-38

44 free_y_0-19

pos_y_0-52

-1

free_y_0-39

45 free_y_2-8 free_y_2-14

46 free_y_3-9

free_y_3-13

47

-1

free_y_1-4

48

-1

49 pos_y_3-2

50 pos_y_2-44

51 pos_y_1-15

52

-1

Figure 7.1: The binary decision diagram from which the formula of the global
invariant was generated for the charging station example in Section 5.2. The
variable names shown are the “bits” that are used to represent the integer-
valued variables. A BDD isn’t very suitable to help a human understand what
Boolean expression it represents.

conjunctions of interval constraints of the form x ∈ a..b. In the context of

circuit design the problem of finding a minimal DNF is known as two-level

logic minimization [132, 169, 27, 44]. Logic minimization is useful for reducing

the number of physical elements used to implement a circuit, thus the circuit’s

physical area. The problem of finding a minimal DNF for a given Boolean

function can be formulated as a minimal set covering problem, and is NP-hard.

Algorithms for logic minimization are typically based on a branch-and-bound

search.

We implemented an exact minimal covering algorithm [44] that is based on a

branch-and-bound search, together with symbolic computation of the essen-

tial prime implicants and cyclic core (primes that are neither essential nor

dominated by other primes) during the search [47, 46, 45, 43]. The original

algorithm was formulated for the general case of a finite (complete) lattice,

68

and symbolically implemented for the case of the Boolean lattice [44, 140]. As

remarked above, we use integer-valued variables, so we are interested in the

lattice of integer hyperrectangles. The propositional minimal covering algo-

rithm is not suitable for the case of integer variables, because the minimization

is in terms of constraints on individual bits, ignoring the relation between the

bits that are part of the same bitfield. This leads to awkward expressions that

are difficult to understand. In other words, the “palette” of expressions avail-

able when working directly with bits is not easy to understand, as opposed to

constraints of the form x ∈ a..b, where x is an integer-valued variable. For

this purpose, we implemented the exact symbolic minimization method for

the lattice of integer orthotopes (hyperrectangles aligned to axes). The im-

plementation is available as part of the Python package omega [68]. Briefly,

the problem of finding a minimal DNF formula of the form we described can

be expressed as follows, where f is the Boolean function that is represented

as a BDD and a formula is to be found. The Domain in our approach is a

Cartesian product of integer variable ranges.

extends FiniteSets , Integers

constants Variables , Domain, CareSet

Assignments
∆
= [Variables → Int]

assume

∧ (Domain ⊆ Assignments) ∧ (CareSet ⊆ Domain)

∧ IsFiniteSet(Domain) ∧ IsFiniteSet(Variables)

∧ (CareSet ≠ {}) ∧ f ∈ [Domain → boolean]

EndPoint(k)
∆
= [1 . . k → Domain]

IsInOrthotope(x , a, b)
∆
= ∀ var ∈ Variables :

(a[var] ≤ x [var]) ∧ (x [var] ≤ b[var])

IsInRegion(x , p, q)
∆
= ∃ i ∈ domain p :

IsInOrthotope(x , p[i], q [i])

SameOver(f , p, q , S)
∆
= ∀ x ∈ S :

f [x] ≡ IsInRegion(x , p, q)

p, q define a cover that contains k orthotopes

IsMinDNF (k , p, q , f)
∆
=

∧ {p, q} ⊆ EndPoint(k)

∧ SameOver(f , p, q , CareSet)

∧ ∀ r ∈ Nat : ∀ u, v ∈ EndPoint(r) :

69

∨ ¬SameOver(f , u, v , CareSet) not a cover, or

∨ r ≥ k u, v has at least as many disjuncts as p, q .

A useful feature of the approach is the possibility of defining a care predicate

(that defines a care set). A care set can be thought of as a condition to be taken

as “given” by the algorithm when computing a minimal DNF. For example,

consider the formula

∨ (x ∈ 1..5) ∧ (y ∈ 3..4)

∨ (x ∈ 1..2) ∧ (z ∈ 1..3) ∧ (y ∈ 3..4)

Using the care set defined by Care ≜ y ∈ 3..4, the above formula can be

simplified to

∧ ∨ (x ∈ 1..5)

∨ (x ∈ 1..2) ∧ (z ∈ 1..3)

∧ y ∈ 3..4

This transformation is a form of factorization, where the care predicate is used

as a given conjunct. When working with specifications, such factorization al-

lows using other parts of the specification (e.g., an invariant), or other versions

(e.g., a predicate before it is modified) to simplify the printed expressions.

Besides reading the final result of a symbolic computation, we have found the

method of decompiling BDDs as minimal DNF formulas over integer-valued

variables an indispensable aid during the development of symbolic algorithms.

Symbolic operations are implicit: the developer cannot inspect the values of

variables as readily as for enumerative algorithms. It is highly unlikely that

any symbolic program works on first writing. Bugs will usually be present,

and some debugging needed. Being able to print small expressions for the

BDD values of variables in symbolic code has helped us considerably during

development efforts. Another area of using the algorithm is for inspecting

controllers synthesized from temporal logic specifications.

Example 7. We show the usefulness of decompiling BDDs by revisiting the

charging station example from Section 5.2. Fig. 7.1 shows the BDD that results

from computing the invariant of the assembly in that example (the bits with

names starting with i encode the variable turn). This BDD was obtained

after reordering the bits using a method known as sifting [168], whose purpose

is to reduce the number of nodes in the BDD. Attempting to decipher what the

BDD means is instructive, but not an efficient investment of time. By applying

70

branch if X ̸= {} X = {} construct cover of
original problem

embed X in Z
Y = primes over X

care set taken into
account here

cyclic core fixpoint
computation

accumulate essential elements in E

(X = Xinit) ∧ (Y = Yinit)

Xinit ,Yinit(enumerative)

(symbolic)

Figure 7.2: Overall minimal covering algorithm [44].

the minimal covering algorithm described above, we obtain the minimal DNF

formula

∧ turn ∈ 1 . . 2 ∧ free ∈ 0 . . 1

∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18 ∧ occ ∈ 1 . . 3

∧ pos x ∈ 1 . . 15 ∧ pos y ∈ 1 . . 15

∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1

∧ ∨ ∧ (free x = 1) ∧ (free y = 1) ∧ (occ ∈ 2 . . 3)

∧ (spot 1 = 0) ∧ (spot 2 = 1)

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 1)

∧ (spot 1 = 1) ∧ (spot 2 = 0)

∨ ∧ (free x ∈ 1 . . 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 1 = 0) ∧ (spot 2 = 0)

∨ (free = 0)

∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 2 = 0)

That the minimization is performed directly for formulas over integer variables

distinguishes this result from what a propositional approach would yield in

terms of bitfields. □

7.2 Set covering over a lattice

We use an algorithm originally proposed for two-level logic minimization [44],

which has three parts:

1. Computing essential and ambiguous elements (cyclic core);

71

2. branching by picking an ambiguous element as candidate; and

3. pruning subtrees of the search tree that branching creates.

Pruning is performed using lower and upper bounds on the minimal solution.

In Section 7.2.1 we describe how bounds on the minimal solution are computed

for initialization and pruning of branches during the branch and bound search.

In Section 7.2.2 we describe in more detail the computation of essential ele-

ments and elements in the cyclic core (a set of covering elements Y is a cyclic

core when removing any single y ∈ Y yields a feasible covering problem, and

for no y1, y2 ∈ Y does y1 cover more than y2). In Section 7.2.3 we revisit the

computation of all minimal covers to the given minimal cover problem.

A TLA+ specification for the cyclic core computation can be found in the

appendices, together with proofs of its correctness. The main part of the

proofs have been checked using the proof assistant TLAPS [35, 36, 48, 136]

A note in the postamble of a module signifies whether TLAPS has checked

it, and the version of the proof assistant used (namely, the modules CyclicCore,

StrongReduction, Lattices ,MinCover , Optimization, and FiniteSetFacts). The

theorems and proofs are organized into modules of general interest, and mod-

ules specific to the cyclic core computation. This criterion for organization

has been used also in the specification of Naiad [166, 9]. For basic facts about

finite sets, functions, sequences, and well founded induction, we use the library

of modules distributed with TLAPS.

The implementation of the algorithm is written in Python within the package

omega [63] using the binary decision diagram package dd [62]. The specification

of the cyclic core computation is shown below, together with theorems about

its properties.

module CyclicCoreExcerpt

extends

FiniteSetFacts , Integers , Lattices ,

MinCover , Optimization, TLAPS

constants

Leq , Xinit , Yinit

variables

X , Current set to be covered.

72

Y , Set of elements available for covering X .

E , Accumulates essential elements.

Xold , Yold , History variables used to detect fixpoint.

i Program counter.

Z
∆
= Support(Leq)

assumption CostIsCard
∆
=

Cost = [cover ∈ subset Z 7→ Cardinality(cover)]

Definitions for convenience.

RowRed(u, v)
∆
= MaxCeilings(u, v , Leq)

ColRed(u, v)
∆
= MaxFloors(v , u, Leq)

InitIsFeasible
∆
= ∃C : IsACoverFrom(C , Xinit , Yinit , Leq)

assumption ProblemInput
∆
=

∧ IsACompleteLattice(Leq)

∧ IsFiniteSet(Z)

∧ Xinit ⊆ Z

∧ Yinit ⊆ Z

∧ InitIsFeasible

Specification of cyclic core computation.

TypeInv
∆
=

∧ X ∈ subset Z

∧ Y ∈ subset Z

∧ E ∈ subset Z

∧ Xold ∈ subset Z

∧ Yold ∈ subset Z

∧ i ∈ 1 . . 3

Init
∆
=

∧ X = Xinit

∧ Y = Yinit

∧ E = {}
∧ Xold = {}
∧ Yold = {}

73

∧ i = 1

ReduceColumns
∆
=

∧ (i = 1) ∧ (i ′ = 2)

∧ Y ′ = ColRed(X , Y)

∧ Xold ′ = X

∧ Yold ′ = Y

∧ unchanged ⟨X , E ⟩

ReduceRows
∆
=

∧ (i = 2) ∧ (i ′ = 3)

∧ X ′ = RowRed(X , Y)

∧ unchanged ⟨Y , E , Xold , Yold⟩

RemoveEssential
∆
=

∧ (i = 3) ∧ (i ′ = 1)

∧ let

Ess
∆
= X ∩ Y Essential elements.

in

∧ X ′ = X \Ess
∧ Y ′ = Y \Ess
∧ E ′ = E ∪ Ess

∧ unchanged ⟨Xold , Yold⟩

Next
∆
=

∨ ReduceColumns

∨ ReduceRows

∨ RemoveEssential

vars
∆
= ⟨X , Y , E , Xold , Yold , i⟩

Spec
∆
= Init ∧2[Next]vars ∧WFvars(Next)

Invariants

IsFeasible
∆
= ∃C : IsAMinCover(C , X , Y , Leq)

HatIsMinCover
∆
=

∀C , H :

∨ ¬ ∧ IsAMinCover(C , X , Y , Leq)

∧ IsAHat(H , C ∪ E , Yinit , Leq)

74

∨ ∧ IsAMinCover(H , Xinit , Yinit , Leq)

∧ Cardinality(H) = Cardinality(C) + Cardinality(E)

ReachesFixpoint
∆
= 32[false]⟨X ,Y ⟩

theorem TypeOK
∆
= Spec ⇒ 2TypeInv

Any minimal covers of X ,Y yield (via Hat) a minimal cover of the initial problem

Xinit ,Yinit .

theorem RecoveringMinCover
∆
=

Spec ⇒ 2HatIsMinCover

theorem RemainsFeasible
∆
=

Spec ⇒ 2IsFeasible

theorem Termination
∆
=

Spec ⇒ ReachesFixpoint

The role of a care set For covering problems that arise in an application

with existing structure, using a care set that represents this structure can

simplify the cover. For example, in a specification where we already know the

input formulas, the minimal DNF that covers a set of variable assignments can

be smaller when the rest of the specification is taken into account as a care

set.

The meaning of a care set is illustrated in Fig. 7.3. Within the lattice of

rectangles, covering the set X requires 3 rectangles. If we take the set shown

as a care set though, we can cover X using only 2 rectangles. Points outside

X ∩CareSet are ignored, even if covered. In other words, in order to describe

X without any care set as “background” information, we need more linear

inequalities than needed if we know that some points can be ignored, e.g.,

because they never occur in our application.

If a care set is defined, it is taken into account during initialization of the

algorithm, for computing the set Y of prime implicants using X and the care

set. The set to be covered should be contained in the care set, and the care set

contained within the type hints that guide the selection of bitvector widths in

the symbolic encoding, as illustrated by Fig. 7.4.

75

care set

don’t
care

X to cover

3 primes needed for covering
without a care set 2 primes suffice for covering

given the care set on the left

Figure 7.3: Using a care set that defines “don’t care elements” allows finding
simpler covers.

f

Care

TypeHints

Care

f

̸|= Care ⇒ TypeHints Intended problem description ̸|= f ⇒ Care

f

Care

TypeHints

Trivial cover true, when |= Care ⇒ f

Figure 7.4: Different cases of problems. Except for the middle top case, the
others raise warnings or errors in the implementation.

76

xy1

y2

y3
x

Pick an x ∈ X

X

Lower bound computation Upper bound computation

subtract the u ∈ X

X \ Umbrella(x)

Pick a y ∈ Y that

y y

x1

x2 x3

X \ ThoseUnder(X , y)

uX

ThoseUnder(X , y)

y that is above x

covers some u ∈ X

that are below some

Figure 7.5: Computation of a lower bound iterates through the operations
shown on the left. After all u ∈ Umbrella(x) are removed from X , any v
picked later will not be covered by any of the y that covered x . Computation
of an upper bound iterates through the operations shown on the right. It is
unnecessary to remove y from Y when computing an upper bound, because
removing all the x below from X implies that y will not be picked again in
any later iteration.

7.2.1 Upper and lower bounds for initialization and pruning

The branch and bound computation is well known, so we do not describe it.

The computation of upper and lower bounds, though, is worth sketching. The

bounds are needed for pruning branches during the branching search [44].

An upper bound is computed once upon initialization, by finding some cover,

as illustrated in Fig. 7.5. This computation iteratively picks an element y ∈ Y

that cover at least one u ∈ X , adds it to the cover being constructed, and

removes from X all those v ∈ X covered by y . The iteration terminates when

X becomes empty.

Lower bounds are computed throughout the branching search, by picking an

x ∈ X , and removing from X the “umbrella” of x , i.e., all u ∈ X that are cov-

ered by some y ∈ Y that also covers this x . Again, the iteration terminates

when X has been emptied. Fig. 7.6 shows what the operator Umbrella means.

In both the upper and lower bound computations, the corresponding y ele-

ments are removed from Y in each iteration, but that operation is secondary

to the algorithm’s objective.

77

x1

x2

x3

y2

y1

Y ≜ {y1, y2, y3}
X ≜ {x1, x2, x3}

ThoseOver(Y , x1) = {y1, y2}

ThoseUnder(X , y1) = {x1, x3}

ThoseUnder(X , y2) = {x1, x2}

Umbrella(x1,X ,Y) = union {ThoseUnder(Xy) : y ∈ ThoseOver(Y , x1)}
= union {ThoseUnder(X , y1),ThoseUnder(X , y2)}
= union {{x1, x3}, {x1, x2}}
= {x1, x2, x3}

y3

Figure 7.6: Illustration of Umbrella. The umbrella of x1 contains those x ∈ X
that are covered by some y ∈ Y that covers x1.

X1

Y1

X2

Y1

X3

Y1

X4

Y2

X4

Y3

X4

Y4

Ceilings Maxima \Ess

\Ess

Ess ≜ X3 ∩ Y1

Floors Maxima

Figure 7.7: Steps within a single iteration while computing the cyclic core.

7.2.2 Cyclic core computation

The cyclic core computation iterates through three steps shown expanded in

Fig. 7.7:

1. Reduction of the set of covering elements:

Y ′ = Maxima(Floors(Y ,X ,Leq),Leq)

2. Reduction of the set to be covered:

X ′ = Maxima(Ceilings(X ,Y ,Leq),Leq)

78

3. Removal and accumulation of essential elements

Ess = X ∩ Y , X ′ = X \ Ess , Y ′ = Y \ Ess , E ′ = E ∪ Ess .

Taking the floor of elements in Y maps (minimal) covers from Y to (minimal)

covers from Floors(Y), because by definition Floor(y) covers exactly those

elements covered by y (Fig. 7.10). Since y and Floor(y) are both upper bounds

of those x under y , but Floor(y) is the supremum of that set, it follows that

Floor(y) ≤ y . Fig. 7.8 illustrates this relation.

Maxima(Y) maps each (minimal) cover from Y to a (minimal) cover from

Maxima(Y) ⊆ Y , which is also a (minimal) cover from Y (thus it is a mapping

from subset Y to subset Y). This relation is illustrated in Fig. 7.8.

The operators Ceilings and Maxima on X leave the set of minimal covers

unchanged. In the case of Maxima(X), this is due to transitivity of the par-

tial order (Fig. 7.8), and in the case of Ceilings , it is because by definition

Ceiling(x) is smaller than those y above x , so each Ceiling(x) is covered by

exactly the same elements that x was covered (enlargement of x and tran-

sitivity of ≤, Fig. 7.9 and Fig. 7.8). This iteration yields a fixpoint. If X

is nonempty in this fixpoint, then the resulting covering problem defined by

X ,Y is called as the cyclic core, and requires branching in order to be solved.

An example problem with a nonempty cyclic core is shown in Fig. 7.11.

7.2.3 Constructing all minimal covers

The original algorithm [44, Thm. 3] can generate some minimal covers of the

given minimal covering problem, but not necessarily all. In particular, the

step that constructs minimal covers of the input problem from minimal covers

of the cyclic core (in each branching iteration) needs to be modified to account

for the maximization step Y = Maxima(Floors(Y ,X ,Leq),Leq).

Enumerating all minimal covers without enumerating covers other than min-

imal ones is known as strong reduction [44, § 2.4]. Even though the cyclic

core computation and branch and bound in the original algorithm do yield the

results necessary for constructing the set of all minimal covers to the input

problem, the reconstruction step needs to be modified as described below.

Without this modification, some minimal covers can be lost, as demonstrated

by the covering problem shown in Fig. 7.13. The steps of the cyclic core

79

≤

≤
≤

≤

≤ ≤≤

≤

≤≤

y

Floor(y ,X) = sup({x1, x2, x3})

x1

x2

x3

Floor operation

Maxima(X) operation

x1
x2

x3

{x3} = Maxima({x1, x2, x3})

y

≤
≤

≤

≤

y1

y2

x1

x2

x3

Maxima(Y) operation

≤

≤

Ceiling operation

Ceil(x ,Y) = inf({y1, y2, y3})

y2y1 y3
≤

≤

x2

{y1} = Maxima({y1, y2})

Figure 7.8: The four operations applied when computing the cyclic core: the
floor of y is the supremum of those elements x that are below y , and the ceil
of x is the infimum of those elements y that are above x . Maximization has
the usual meaning. The algorithm’s properties rely on the relations shown,
which arise from the lattice.

iteration until reaching a fixpoint are shown in Fig. 7.14 (in this example,

the cyclic core is empty, so no branching is needed). What happens in this

example is that the maximization step Ym = Maxima(Yf ,Leq) (with Yf =

Floors(Y ,X ,Leq)) yields a set Ym that does not have all of Y above it. In

the end, this leads to the minimal cover {3, 4}. The only element from Yinit

above 3 is 3, and above 4 is 4. So the reconstruction of [44, Thm. 3] yields a

single minimal cover, {3, 4}.

However, {2, 4} and {3, 5} are minimal covers too. The algorithm proposed

below does recover also these two minimal covers. It does so by finding the

elements below 3 that do cover all x that only 3 covers (i.e., 4 does not cover

80

x1

y2

y1

Y ≜ {y1, y2, y3}

ThoseOver(Y , x1) = {y1, y2}

y3

Ceil(x1,Y ,Z)
= Infimum(ThoseOver(Y , x1),Z)
= Infimum({y1, y2},Z)
= u

u

Figure 7.9: Illustration of Ceil . The lattice Leq is the subset relation between
rectangles, with (Z × Z) = domain Leq .

x1

y1

Floor(y1,X ,Z) = Supremum(ThoseUnder(X , y1),Z)
= Supremum({x1, x3, x4},Z)
= u

u

x4
x3

x2

X = {x1, x2, x3, x4}

ThoseUnder(X , y1) = {x1, x3, x4}

Figure 7.10: Illustration of Floor .

81

y1

y2

y3

y4

x1 x2

x3x4

yc

Figure 7.11: A covering problem that does yield a nonempty cyclic core,
Xinit = {x1, x2, x3, x4},Yinit = {y1, y2, y3, y4}. The cyclic core is X = Xinit
and Y = {yc1, yc2, yc3, yc4}. Each yck is the supremum of those x below yk .
For example, yc2 is shown on the right (translated from where it actually is,
in order to avoid visual overlap).

those). This set is {6} (7 is covered by 4, so not only by 3). This step inverts

Maxima(Yf ,Leq). The next step is as in the original algorithm, inverting

Floors(Y ,X ,Leq). Namely, the elements above 6 are 2 and 3, which yield the

original covers {2, 4} and {3, 4}. Symmetrically, replacing 4 by 8 leads to the

original covers {3, 4} and {3, 5}.

The proposed algorithm for constructing the set of minimal covers of X ,Y

from the set of minimal covers of X ,Maxima(Y ,Leq) is shown below, to-

gether with a specification, and the theorem StrongReductionSafety about its

correctness.1 Given a minimal cover Cm ∈ subset Maxima(Y ,Leq), the al-

gorithm iterates though the elements ym ∈ Cm , and “shrinks” each ym by

enumerating all those replacements y ∈ Y that are below ym , and cover all

x ∈ X that are covered only by ym . For each ym there are certainly some

elements in X covered only by ym , because otherwise Cm \ {ym} would be

a cover cheaper than Cm , but Cm is minimal. The set of such sufficient y

below a given ym can be computed symbolically, before enumerating those

elements. This avoids enumerating covers that are not minimal. All covers

1 A proof can be found in the module StrongReduction.

82

MaxFloors(Y)

F ≜ Floors(Y)
y (non-maximal)

SomeMaxAbove(y ,F)

Floors

Y

Maxima(S)

Chat

C

a minimal cover from S

a minimal cover from S
made of maximal elements

S

Injective because otherwise C wouldn’t be minimal.
Thus Card(C) = Card(Chat) (assuming finite sets).

Maxima(S)

S

SomeMaxAbove

Multiple minimal covers from S can map to the same
minimal cover from Maxima(S) ⊆ S
(for any minimal cover, there exists an
image under SomeMaxAbove in Maxima(S))

Figure 7.12: The maxima of any set S form a kernel that contains minimal
covers, each of them representing an equivalence class of minimal covers from
S . Thus, SomeMaxAbove induces a partition of minimal covers into equiva-
lence classes, in effect “folding” the set of minimal covers into its intersection
with Maxima(S).

83

0

1

2 3 4 5

6 7 8

Figure 7.13: Example of a covering problem that demonstrates that the algo-
rithm proposed in [44] does not ensure strong reduction (i.e., enumeration of
all minimal covers, and only those). With the modification proposed in this
document, strong reduction is ensured. The partial order is 2 ≤ 1 etc.

6

2 3 4 5

7 8

6
2

3 4

7
5

8

6

3 4

7 8

6
3 4

7

8

6
3 4

8

3 4

Floors

Maxima(Y)

Ceilings

Maxima(X)

Essential

Ceilings ,
Maxima(X),
Essential

Essential

Figure 7.14: Steps of the cyclic core computation until reaching a fixpoint.
This example shows that the minimal cover found does not yield all minimal
covers to the input problem using the elements above elements from the cover
[44]. Instead, first a “downward” step is needed.

84

that result by each such replacement are minimal covers from Y , so no redun-

dant enumeration is performed. Moreover, if any cover C ∈ subset Y with

Cardinality(C) = Cardinality(Cm) is not enumerated, then some ym ∈ Cm

cannot be replaced with a y ∈ C that covers all the x ∈ X covered by only

ym from among the y ∈ PartialCover ∪ Image(Lm, k ..N), where PartialCover

is defined in the algorithm description.

Each minimal cover C from Y is elementwise below some minimal cover

Cm ∈ subset Maxima(Y ,Leq). Thus, applying the below algorithm to each

minimal cover Cm ∈ subset Maxima(Y ,Leq) yields in total the minimal cov-

ers of X consisting of elements from Y .

In contrast to the algorithm for enumerating some minimal covers of the input

problem, which simply finds a “hat” of the E by elements from Y , enumerating

all minimal covers requires backwards construction step-by-step, in reverse

through each iteration of the cyclic core. In the presence of branching in

the branch-and-bound part of the algorithm, all branches that could contain

minimal covers need to be searched for finding all minimal covers to the original

problem. An enumeration of this kind may not be efficient, nevertheless it is

an algorithm for exhaustive reconstruction of minimal covers.

module StrongReductionExcerpt

extends

FiniteSetFacts , FunctionTheorems , Lattices ,

Sequences , SequenceTheorems , TLAPS

constants Leq , X , Y

Z
∆
= Support(Leq)

assumption CostIsCard
∆
=

Cost = [cover ∈ subset Z 7→ Cardinality(cover)]

assumption ProblemInput
∆
=

∧ IsACompleteLattice(Leq)

∧ IsFiniteSet(Z)

∧ X ⊆ Z

∧ Y ⊆ Z

85

Only(ymax , C)
∆
= {u ∈ X : ∀ yother ∈ C \ {ymax} :

¬Leq [u, yother]}

BelowAndSuff (ymax , C , V)
∆
=

{y ∈ V :

∧ Leq [y , ymax]

∧ ∀ q ∈ Only(ymax , C) : Leq [q , y]}

Cm is a cover of X from Maxima(Y ,Leq)

AllCandidatesBelow(Cm, V)
∆
=

{S ∈ subset V :

∧ Cardinality(S) = Cardinality(Cm)

unnecessary to consider smaller subsets (they cannot be covers), or larger subsets (they

cannot be minimal)

∧ Refines(S , Cm, Leq)}

Enumerate(S)
∆
=

let Dom
∆
= 1 . . Cardinality(S)

in choose f : f ∈ Bijection(Dom, S)

Image(f , S)
∆
= {f [x] : x ∈ S}

Specification of the reconstruction of minimal covers from Y that are below a given cover

Cm from Maxima(Y ,Leq).

constants Cm

variables stack , MinCoversBelow

Max
∆
= Maxima(Y , Leq)

Lm
∆
= Enumerate(Cm)

N
∆
= Cardinality(Cm) N = Len(Lm)

Patch(r)
∆
= Image(Lm, r . . N)

TypeInv
∆
= ∧ stack ∈ Seq(subset Y)

∧MinCoversBelow ⊆ subset Y

Init
∆
= ∧ stack = ⟨{}⟩

∧MinCoversBelow = {}

Terminal case that adds a minimal cover to the set MinCoversBelow .

86

Collect
∆
=

let

end
∆
= Len(stack)

Partial
∆
= stack [end]

i
∆
= Cardinality(Partial)

front
∆
= SubSeq(stack , 1, end − 1)

in

∧ i = N

∧ stack ′ = front

∧MinCoversBelow ′ = MinCoversBelow ∪ {Partial}

Branching that generates all minimal covers induced by replacing the next maximal element
ymax with all those below it that suffice (succ).

Expand
∆
=

let

end
∆
= Len(stack)

Partial
∆
= stack [end]

i
∆
= Cardinality(Partial)

k
∆
= i + 1

front
∆
= SubSeq(stack , 1, end − 1)

ymax
∆
= Lm[k] element to replace

Q
∆
= Partial ∪ Patch(k)

succ
∆
= BelowAndSuff (ymax , Q , Y)

enum
∆
= Enumerate(succ)

more
∆
= [r ∈ 1 . . Len(enum) 7→ Partial ∪ {enum[r]}]

in

∧ i < N

∧ stack ′ = front ◦more

∧ unchanged MinCoversBelow

Next
∆
=

∧ stack ̸= ⟨⟩
∧ ∨ Collect

∨ Expand

vars
∆
= ⟨stack , MinCoversBelow⟩

Spec
∆
= Init ∧2[Next]vars ∧WFvars(Next)

87

Invariants.

LeqToBij (C)
∆
= choose g ∈ Bijection(1 . . N , C) :

∀ q ∈ 1 . . N : Leq [g [q], Lm[q]]

IsPrefixCov(PartialCover , g)
∆
=

let i
∆
= Cardinality(PartialCover)

in PartialCover = {g [q] : q ∈ 1 . . i}

InvCompl(C)
∆
=

let g
∆
= LeqToBij (C)

in

∨ ∃ n ∈ domain stack : IsPrefixCov(stack [n], g)

∨ ¬IsAMinCover(C , X , Y , Leq)

∨ C ∈ MinCoversBelow

InvSound(C)
∆
= (C ∈ MinCoversBelow) ⇒ IsAMinCover(C , X , Y , Leq)

theorem StrongReductionSafety
∆
=

assume

new C , IsAMinCover(Cm, X , Max , Leq)

prove

∧ Spec ⇒ 2InvSound(C)

∧ (C ∈ AllCandidatesBelow(Cm, Y))

⇒ (Spec ⇒ 2InvCompl(C))

88

def EnumerateMincoversBelow(Cm) :

stack : = ⟨{}⟩
Lm : = Enumerate(Cm)

N : = Cardinality(Cm)

MinCoversBelow : = {}
while stack ̸= ⟨ ⟩ :

end : = Len(stack)

PartialCover : = stack [end]

i : = Cardinality(PartialCover)

stack : = SubSeq(stack , 1, end − 1)

if i = N :

MinCoversBelow : = MinCoversBelow ∪ {PartialCover}
continue

k : = i + 1

succ : = BelowAndSuff (Lm[k],PartialCover ∪ Image(Lm, k ..N),Y)

for z ∈ succ :

NewCover : = PartialCover ∪ {z}
stack : = stack ◦ ⟨NewCover ⟩

return MinCoversBelow

7.2.4 Definitions from the modules Lattices, Optimization, and MinCover
module OptimizationExcerpt

extends FiniteSetFacts , Integers , WellFoundedInduction

IsAFunction(f)
∆
= f = [x ∈ domain f 7→ f [x]]

Support(R)
∆
= {p[1] : p ∈ domain R} ∪ {p[2] : p ∈ domain R}

IsReflexive(R)
∆
= let S

∆
= Support(R)

in ∀ x ∈ S : R[x , x]

IsIrreflexive(R)
∆
= let S

∆
= Support(R)

in ∀ x ∈ S : ¬R[x , x]

IsTransitive(R)
∆
= let S

∆
= Support(R)

in ∀ x , y , z ∈ S : (R[x , y] ∧ R[y , z]) ⇒ R[x , z]

IsSymmetric(R)
∆
= let S

∆
= Support(R)

89

in ∀ x , y ∈ S : R[x , y] ⇒ R[y , x]

IsAntiSymmetric(R)
∆
= let S

∆
= Support(R)

in ∀ x , y ∈ S : (R[x , y] ∧ (x ̸= y)) ⇒ ¬R[y , x]

S is a set of pairwise comparable elements (totality).

IsChain(S , Leq)
∆
= ∀ x , y ∈ S : Leq [x , y] ∨ Leq [y , x]

S is a set of pairwise incomparable elements.

IsAntiChain(S , Leq)
∆
= ∀ x , y ∈ S :

(x ̸= y) ⇒ (¬Leq [x , y] ∧ ¬Leq [y , x])

Optimization

When the minimum exists, it is unique, similarly for the maximum.

IsMinimum(r , S , Leq)
∆
= ∧ r ∈ S

∧ ∀ u ∈ S \ {r} : Leq [r , u]

IsMaximum(r , S , Leq)
∆
= ∧ r ∈ S

∧ ∀ u ∈ S \ {r} : Leq [u, r]

This definition requires that Leq be reflexive, so it applies to partial orders.

IsMinimalRefl(r , S , Leq)
∆
= ∧ r ∈ S

∧ ∀ u ∈ S \ {r} : ¬Leq [u, r]

IsMaximalRefl(r , S , Leq)
∆
= ∧ r ∈ S

∧ ∀ u ∈ S \ {r} : ¬Leq [r , u]

A general definition, which applies even if Leq is not anti-symmetric, and so also to preorders.

IsMinimal(r , S , Leq)
∆
= ∧ r ∈ S

∧ ∀ u ∈ S : Leq [u, r] ⇒ Leq [r , u]

IsMaximal(r , S , Leq)
∆
= ∧ r ∈ S

∧ ∀ u ∈ S : Leq [r , u] ⇒ Leq [u, r]

If a minimum does exist, then it is unique, so clearly “minima” refers to minimal elements.

In presence of the minimum, Minima is a singleton.

Minima(S , Leq)
∆
= {x ∈ S : IsMinimal(x , S , Leq)}

Maxima(S , Leq)
∆
= {x ∈ S : IsMaximal(x , S , Leq)}

IndicatorFuncToRel(f)
∆
= {x ∈ domain f : f [x] = true}

90

IrreflexiveFrom(Leq)
∆
=

let

S
∆
= Support(Leq)

in

[t ∈ S × S 7→ if t [1] = t [2] then false else Leq [t]]

module MinCoverExcerpt

extends Integers , Optimization

constants Cost

Minimal set covering

CostLeq [t ∈ (domain Cost)× (domain Cost)]
∆
=

let

r
∆
= t [1]

u
∆
= t [2]

in Cost [r] ≤ Cost [u]

CardinalityAsCost(Z)
∆
= Cost = [cover ∈ subset Z 7→ Cardinality(cover)]

C and X suffice to define a cover, because the notion of covering involves elements from a

cover and a target set to cover. Y is irrelevant.

IsACover(C , X , IsUnder)
∆
= ∀ x ∈ X : ∃ y ∈ C : IsUnder [x , y]

IsACoverFrom(C , X , Y , IsUnder)
∆
=

∧ C ∈ subset Y

∧ IsACover(C , X , IsUnder)

CoversOf (X , Y , IsUnder)
∆
= {C ∈ subset Y : IsACover(C , X , IsUnder)}

The set Y is irrelevant to the notion of a cover, but is necessary to define a notion of minimal

element.

IsAMinCover(C , X , Y , IsUnder)
∆
=

let

Covers
∆
= CoversOf (X , Y , IsUnder)

in

IsMinimal(C , Covers , CostLeq)

MinCost(X , Y , IsUnder)
∆
=

let

Cov
∆
= CoversOf (X , Y , IsUnder)

91

min
∆
= choose u ∈ Minima(Cov , CostLeq) : true

in

Cost [min]

IsACover(C ,X ,Leq) ≡ Refines(X ,C ,Leq)

Refines(A, B , Leq)
∆
= ∀ u ∈ A : ∃ v ∈ B : Leq [u, v]

module LatticesExcerpt

extends FiniteSetFacts , MinCover , Optimization

ThoseUnder(X , y , Leq)
∆
= {x ∈ X : Leq [x , y]}

ThoseOver(Y , x , Leq)
∆
= {y ∈ Y : Leq [x , y]}

Umbrella(x , X , Y , Leq)
∆
= union {

ThoseUnder(X , y , Leq) : y ∈ ThoseOver(Y , x , Leq)}

IsBelow(r , S , Leq)
∆
= ∀ u ∈ S : Leq [r , u]

IsAbove(r , S , Leq)
∆
= ∀ u ∈ S : Leq [u, r]

IsTightBound(r , S , Leq)
∆
=

let

Z
∆
= Support(Leq)

in

∧ r ∈ Z

∧ IsAbove(r , S , Leq)

∧ ∀ q ∈ Z : IsAbove(q , S , Leq) ⇒ Leq [r , q]

HasTightBound(S , Leq)
∆
=

let Z
∆
= Support(Leq)

in ∃ r ∈ Z : IsTightBound(r , S , Leq)

TightBound(S , Leq)
∆
=

let Z
∆
= Support(Leq)

in choose r ∈ Z : IsTightBound(r , S , Leq)

UpsideDown(Leq)
∆
=

let Z
∆
= Support(Leq)

in [t ∈ Z × Z 7→ Leq [t [2], t [1]]]

HasSup(S , Leq)
∆
= HasTightBound(S , Leq)

92

HasInf (S , Leq)
∆
= let Geq

∆
= UpsideDown(Leq)

in HasTightBound(S , Geq)

Supremum(S , Leq)
∆
= TightBound(S , Leq)

Infimum(S , Leq)
∆
= let Geq

∆
= UpsideDown(Leq)

in TightBound(S , Geq)

Floor(y , X , Leq)
∆
= Supremum(ThoseUnder(X , y , Leq), Leq)

Ceil(x , Y , Leq)
∆
= Infimum(ThoseOver(Y , x , Leq), Leq)

Floors(S , X , Leq)
∆
= {Floor(y , X , Leq) : y ∈ S}

Ceilings(S , Y , Leq)
∆
= {Ceil(x , Y , Leq) : x ∈ S}

max τX or “column reduction” in [44].

MaxFloors(S , X , Leq)
∆
= Maxima(Floors(S , X , Leq), Leq)

max τY or “row reduction” in [44].

MaxCeilings(S , Y , Leq)
∆
= Maxima(Ceilings(S , Y , Leq), Leq)

IsAQuasiOrder(R)
∆
= ∧ IsReflexive(R) ∧ IsTransitive(R)

∧ IsAFunction(R) ∧ ∃ S : S × S = domain R

IsAPartialOrder(R)
∆
=

∧ IsReflexive(R) ∧ IsTransitive(R) ∧ IsAntiSymmetric(R)

∧ IsAFunction(R) ∧ ∃ S : S × S = domain R

IsALattice(R)
∆
=

∧ IsAPartialOrder(R)

∧ let Z
∆
= Support(R)

in ∀ S ∈ subset Z : ∨ Cardinality(S) ̸= 2

∨ HasInf (S , R) ∧ HasSup(S , R)

IsACompleteLattice(R)
∆
=

∧ IsAPartialOrder(R)

∧ let Z
∆
= Support(R)

in ∀ S ∈ subset Z : HasInf (S , R) ∧ HasSup(S , R)

SomeAbove(u, Y , Leq)
∆
= choose r ∈ Y : Leq [u, r]

SomeMaxAbove(u, Y , Leq)
∆
= choose m ∈ Maxima(Y , Leq) : Leq [u, m]

93

Hat(S , Y , Leq)
∆
= {SomeAbove(y , Y , Leq) : y ∈ S}

IsAHat(H , C , Y , Leq)
∆
=

∧ H ∈ subset Y

∧ Refines(C , H , Leq)

∧ Cardinality(H) ≤ Cardinality(C)

MaxHat(S , Y , Leq)
∆
= {SomeMaxAbove(y , Y , Leq) : y ∈ S}

SomeUnfloor(u, X , Y , Leq)
∆
= choose y ∈ Y : u = Floor(y , X , Leq)

Unfloors(S , X , Y , Leq)
∆
= {SomeUnfloor(y , X , Y , Leq) : y ∈ S}

IsUnfloor(C , F , X , Leq)
∆
= ∧ F = Floors(C , X , Leq)

∧ Cardinality(C) ≤ Cardinality(F)

94

Chapter 8

EXAMPLE

The example we consider concerns the subsystems involved in controlling the

landing gear of an aircraft [67, 25]. Three modules are involved, as shown in

Fig. 8.1. The autopilot controls the altitude, flight speed, and mode of the

aircraft. The gear module positions the landing gear, which can be extended,

retracted, or in some transitory configuration. The third module operates the

doors that seal the gear storage area. The variables take integer values, with

appropriate units that can be ignored for our purpose here. We specify the

following main properties collectively for these modules:

• If the gear is not retracted, then the doors shall be open.

• If airspeed is above threshold speed , then the doors shall be closed.

• If the aircraft is flying at or below threshold height , then the gear shall

be fully extended.

• On ground the gear shall be fully extended.

• In landing mode the gear shall be fully extended.

• In cruise mode the gear shall be retracted and the doors closed.

• The autopilot shall be able to repeatedly enter the landing and cruise

modes.

(Auto)pilot &

Landing gear computing module

Radar altimeter

Gear control gear Door control door

aircraft behavior

Air data
Flight control

module mode

height

speed

Figure 8.1: Landing gear avionics.

95

The specification of the assembled system is given below in TLA+.

extends Integers

variables mode, height , speed , door , gear , turn

constants max height , max speed , door down,

gear down, threshold height , threshold speed

mode 0, 2, 1 used below

Modes
∆
= {“landing”, “intermediate”, “cruise”}

Autopilot
∆
= ⟨height , mode, speed⟩

AutopilotTurn
∆
= turn = 1

DoorTurn
∆
= turn = 2

GearTurn
∆
= turn = 3

Init
∆
= ∧ (mode = “landing”) ∧ (height = 0)

∧ (speed = 0) ∧ (door = door down)

∧ (gear = gear down) ∧ (turn = 1)

AutopilotNext
∆
=

∧mode ∈ Modes ∧ height ∈ 0 . . max height

∧ speed ∈ 0 . . max speed

∧ (gear ̸= gear down) ⇒ (height > threshold height)

∧ (mode = “landing”) ⇒ (gear = gear down)

∧ (mode = “cruise”) ⇒ ((gear = 0) ∧ (door = 0))

∧ (height = 0) ⇒ (gear = gear down)

∧ AutopilotTurn ∨ unchanged ⟨height , mode, speed⟩
DoorNext

∆
=

∧ door ∈ 0 . . door down

∧ ((speed > threshold speed) ⇒ (door = 0))

∧ DoorTurn ∨ unchanged door

GearNext
∆
=

∧ gear ∈ 0 . . gear down

∧ (gear ̸= 0) ⇒ (door = door down)

∧GearTurn ∨ unchanged gear

SchedulerNext
∆
=

∧ turn ′ = if turn = 3 then 1 else turn + 1

∧ turn ∈ 1 . . 3

Next
∆
= ∧ AutopilotNext ∧GearNext

96

∧ DoorNext ∧ SchedulerNext

vars
∆
= ⟨mode, height , speed , door , gear , turn⟩

Recurrence
∆
= ∧23(mode = “landing”)

∧23(mode = “cruise”)

Spec
∆
= Init ∧2[Next]vars ∧ Recurrence

For brevity, we will let mode ∈ 0..2 in the discussion below. The compo-

nents change in an interleaving way, based on the value of the variable turn.

The scheduler changes its state in every step. So the scheduler changes in a

noninterleaving way with respect to the other components. The specification

has constant parameters max height , . . . that define the range of values that

the variables height , speed , door , gear can take. Increasing the values of these

constants produces instances of the specification with more states reachable.

The first operation is to restrict the assembly specification in order to ensure

that it is machine-closed. The weakest invariant that ensures machine-closure

is computed as the states from where the specification 2[Next]vars∧Recurrence
can be satisfied. For the constants max height = 100, max speed = 40,

door down = 5, gear down = 5, threshold height = 75, threshold speed = 30,

the resulting invariant is

Inv(door , gear , turn, height , mode, speed)
∆
=

∧ turn ∈ 1 . . 3 ∧ door ∈ 0 . . 5

∧ gear ∈ 0 . . 5 ∧ height ∈ 0 . . 100

∧mode ∈ 0 . . 2 ∧ speed ∈ 0 . . 40

∧ ∨ ∧ (door = 0) ∧ (gear = 0)

∧ (height ∈ 76 . . 100) ∧ (mode ∈ 1 . . 2)

∨ ∧ (door = 5) ∧ (gear = 5)

∧ (mode = 0) ∧ (speed ∈ 0 . . 30)

∨ ∧ (door = 5) ∧ (gear = 5)

∧ (mode = 2) ∧ (speed ∈ 0 . . 30)

∨ ∧ (door = 5) ∧ (height ∈ 76 . . 100)

∧ (mode = 2) ∧ (speed ∈ 0 . . 30)

∨ ∧ (gear = 0) ∧ (height ∈ 76 . . 100)

∧ (mode = 2) ∧ (speed ∈ 0 . . 30)

From these states a centralized controller would be able to repeatedly enter

landing and cruise mode, while taking vars-nonstuttering steps that satisfy

the action Next .

97

We next examine the actions of the components. The result of applying the

minimal covering method of Chapter 7 is

AutopilotStep(door , gear , turn, height , mode, speed ,

height ′, mode ′, speed ′)
∆
=

∧ turn = 1 ∧ door ∈ 0 . . 5 ∧ gear ∈ 0 . . 5

∧ height ∈ 0 . . 100 ∧ height ′ ∈ 0 . . 100

∧mode ∈ 0 . . 2 ∧mode ′ ∈ 0 . . 2

∧ speed ∈ 0 . . 40 ∧ speed ′ ∈ 0 . . 40

∧ ∨ ∧ (door = 0) ∧ (height ′ ∈ 76 . . 100)

∧ (mode ′ ∈ 1 . . 2)

∨ (gear = 5) ∧ (height ′ ∈ 0 . . 75)

∨ (gear = 5) ∧ (mode ′ = 0)

∨ ∧ (height ′ ∈ 76 . . 100) ∧ (mode ′ = 2)

∧ (speed ′ ∈ 0 . . 30)

The two conjuncts below were used as care predicate.

∧ Inv(door , gear , 1, height , mode, speed)

∧ (∃ door , gear :

Inv(door , gear , 2, height , mode, speed))′

The action AutopilotStep applies to steps that change the autopilot. The

action that constrains the autopilot is

AutopilotNext(door , gear , turn, height , mode, speed ,

height ′, mode ′, speed ′) ≡
∧ Inv(door , gear , turn, height , mode, speed)

∧ ∨ AutopilotStep(

door , gear , turn, height , mode, speed ,

height ′, mode ′, speed ′)

∨ unchanged ⟨height , mode, speed⟩
Note that only variables that represent the autopilot appear primed in the

action AutopilotStep.

Suppose that we have selected to hide the variable door . For this choice of

variable, the invariant with door abstracted is

InvWithDoorHidden
∆
= ∃ door : Inv(

door , gear , turn, height , mode, speed)

Compared to the general case ∃h : Inv(h, x , y),

98

• door corresponds to h

• gear , turn to x

• height ,mode, speed to y

Writing InvWithDoorHidden is simple, but mysterious without recalling the

definition of Inv . We cannot define the identifier InvWithDoorHidden twice,

but we can write another expression that is equivalent to it. Define

InvH
∆
=

∧ turn ∈ 1 . . 3

∧ gear ∈ 0 . . 5 ∧ height ∈ 0 . . 100

∧mode ∈ 0 . . 2 ∧ speed ∈ 0 . . 40

∧ ∨ ∧ (gear = 0) ∧ (height ∈ 76 . . 100)

∧ (mode ∈ 1 . . 2)

∨ ∧ (gear = 5) ∧ (mode = 0) ∧ (speed ∈ 0 . . 30)

∨ ∧ (gear = 5) ∧ (mode = 2) ∧ (speed ∈ 0 . . 30)

∨ ∧ (height ∈ 76 . . 100) ∧ (mode = 2)

∧ (speed ∈ 0 . . 30)

This expression was obtained by decompiling the BDD that results after door

has been existentially quantified in the BDD representing Inv . This fact can

be expressed by writing theorem InvH ≡ InvWithDoorHidden. How InvH

was obtained proves this equivalence.

Note that the type hints were used as the care set in this case, because the

invariant implies them. Also, note that InvH constrains all visible variables

to be within the defined bounds.

The autopilot action that results after hiding the variable door from the au-

topilot is

SimplerAutopilotStep
∆
=

∧ gear ∈ 0 . . 5 ∧ height ∈ 0 . . 100 ∧ height ′ ∈ 0 . . 100

∧mode ∈ 0 . . 2 ∧mode ′ ∈ 0 . . 2

∧ speed ∈ 0 . . 40 ∧ speed ′ ∈ 0 . . 40

∧ ∨ (gear = 5) ∧ (height ′ ∈ 0 . . 75)

∨ (gear = 5) ∧ (mode ′ = 0)

∨ ∧ (gear ∈ 0 . . 4) ∧ (height ′ ∈ 76 . . 100)

99

∧ (mode ∈ 0 . . 1) ∧ (mode ′ ∈ 1 . . 2)

∨ ∧ (height ′ ∈ 76 . . 100) ∧ (mode ′ = 2)

∧ (speed ′ ∈ 0 . . 30)

∨ ∧ (height ′ ∈ 76 . . 100) ∧ (mode ′ ∈ 1 . . 2)

∧ (speed ∈ 31 . . 40)

∧ let turn = 1 in InvH

∧ (∃ turn, gear : InvH)′

where again we used the invariant as care set, in order to structure the resulting

formulas more clearly, and modularize the covering problem. The operator

SimplerAutopilotStep defines the autopilot action by letting

SimplerAutopilotNext(gear , turn, height , mode, speed ,

height ′, mode ′, speed ′)
∆
=

∧ InvH

∧ ∨ (turn = 1) ∧ SimplerAutopilotStep

∨ unchanged ⟨height , mode, speed⟩
We chose to structure the autopilot action in this way because we already knew

that the specification has an interleaving form. Hiding did not change the in-

terleaving, but it did change how the autopilot is constrained when turn = 1.

The environment action SimplerEnvNext is obtained after existential quantifi-

cation of door and door ′ from the environment action. The scheduler remains

the same, changing turn in each turn. In the gear module’s turn (turn = 3),

the action is

SimplerGearModuleNext
∆
=

∧ gear ∈ 0 . . 5 ∧ gear ′ ∈ 0 . . 5

∧ height ∈ 0 . . 100 ∧mode ∈ 0 . . 2

∧ speed ∈ 0 . . 40

∧ ∨ (gear ∈ 0 . . 4) ∧ (gear ′ = 0)

∨ (gear ∈ 1 . . 5) ∧ (gear ′ = 5)

∨ ∧ (height ∈ 76 . . 100) ∧ (mode = 2)

∧ (speed ∈ 0 . . 30)

∧ let turn
∆
= 3 in InvH

∧ (let turn
∆
= 1

in ∃ height , mode, speed : InvH)′

This action includes primed values of both gear module and scheduler, because

both form part of the autopilot’s environment. The invariant has been used to

100

gear =

height ≤ threshold height

gear ̸=

mode = “intermediate”

mode = “intermediate”
gear = gear down

mode =

height > threshold height

gear = up

mode =

A = Attractor1(Goal)

turn =
turn =

unsafe

autopilot

gear

gear module

autopilot

autopilot

gear module
autopilot

desired recurrence assumption

B = Attr2,3(A)

in B = Attr2,3(A) but not in Trap1(B ,A)
because gear can escape

threshold height

“intermediate”

“cruise”

autopilot Goal

height >

autopilot
not in

AutopilotTurn
GearTurn

gear down gear down

module

Figure 8.2: The reason why the algorithm of Section 6.3 is useful in the landing
gear example.

define the care predicate (the last two conjuncts), which allowed for a simpler

formula to be found.

The next step is the construction of the liveness parts of component specifica-

tions. Writing liveness specifications in this example is not as simple as it may

appear. If we were to write these specifications by hand, a naive first attempt

could be to assert that whenever the autopilot requests that the doors open

and the landing gear is extended, the door and gear modules react accordingly.

Such a specification would be incorrect, because it is too strong an assumption

by the autopilot module, and too strong a guarantee for the door module. The

door module cannot realize this requirement, because the autopilot is allowed

to require this reaction while keeping the airspeed above threshold speed . This

would prevent the doors from opening, thus the door module cannot realize

this objective. Errors of this kind cannot result from the contract construction

algorithm, because the way that it finds the module specifications ensures that

each module can realize its own specification.

For constructing liveness specifications, we start with the autopilot as the

“root” module, and the door module and gear module lumped into a “team”.

The basic algorithm described in Section 6.2 cannot find a trap set, which

demonstrates why the algorithm described in Section 6.3 is needed. The reason

101

is illustrated in Fig. 8.2, when the current goal of the autopilot is to enter

cruise mode.1 The autopilot can enter cruise mode from the intermediate

mode when the gear is retracted (up). The gear can retract when extended,

but it could also idle, leading to the state on the bottom left. In that state,

it is the autopilot’s turn, and the autopilot could idle, or change the height

to less than or equal to threshold height . This would prevent the gear from

retracting. Therefore, the bottom left state is not in the team’s attractor of A

(the autopilot’s attractor of cruise mode). This leads to an empty trap when

the basic algorithm is used. By using the approach of Section 6.3, the Basin is

enlarged to incorporate the bottom left state, and a weaker goal is generated

for the gear. This goal takes into account that the gear should reach either A,

or the top left state (which corresponds to several states). The autopilot has

a choice to not go backwards, thus it can keep the behavior within the two

bottom left states, until the gear does retract.

Algorithm 6.8 produces specifications for the autopilot and the lumped door

and gear modules. Different mask parameters are used for each recurrence goal,

and thus different interconnection architectures. The goal that is generated

for the lumped modules is used as the goal in a recursive call to Algorithm 6.8.

This recursive call refines the interconnection architecture further, by gener-

ating separate specifications for the gear module and the door module. We

show next the generated specifications for when the goal of the autopilot is to

enter cruise mode. The autopilot trap is

AutopilotTrap
∆
=

∧ turn ∈ 1 . . 3 ∧ door ∈ 0 . . 5 ∧ height ∈ 0 . . 100

∧mode ∈ 0 . . 2 ∧ speed ∈ 0 . . 40

∧ ∨ ∧ (turn = 2) ∧ (height ∈ 76 . . 100)

∧ (mode = 2) ∧ (speed ∈ 0 . . 30)

∨ ∧ (door ∈ 1 . . 5) ∧ (height ∈ 76 . . 100)

∧ (mode = 2) ∧ (speed ∈ 0 . . 30)
and the resulting persistence objective 32(AutopilotTrap ∧ (cnct = 0)). As

expected, the autopilot is allowed to keep waiting while the doors are still

open (door ∈ 1..5 in second disjunct), and until the gear reacts, only pro-

vided the autopilot has reached and maintains the height above the threshold

(height ∈ 76..100), and it keeps the mode to intermediate. The last two con-

straints are required because height below the threshold or mode equal to
1 This figure corresponds to an earlier version of the specification.

102

landing would prevent the gear from being able to retract. Notice that the

autopilot does not need to observe the gear state, only the door state, because

when the doors close, the global invariant Inv implies that the gear has been

retracted too. Therefore, the specification of the autopilot in this interconnec-

tion mode is expressed without occurrence of the variable gear .

The corresponding recurrence goal 23((cnct ̸= 0) ∨ ¬DTeam) for the door-

gear subsystem is defined by

DTeam
∆
=

∧ turn ∈ 1 . . 3 ∧ door ∈ 0 . . 5 ∧ gear ∈ 0 . . 5

∧ height ∈ 0 . . 100 ∧mode ∈ 0 . . 2

∧ ∨ ∧ (turn = 2) ∧ (gear = 0)

∧ (height ∈ 76 . . 100) ∧ (mode = 2)

∨ ∧ (door = 5) ∧ (height ∈ 76 . . 100)

∧ (mode = 2)

∨ ∧ (door ∈ 1 . . 5) ∧ (gear = 0)

∧ (height ∈ 76 . . 100) ∧ (mode = 2)

While the doors are open (door = 5 in second disjunct, or door ∈ 1..5), the

subsystem is required to change by closing the door, which implies retracting

the gear. When both gear have been retracted (gear = 0) and doors closed

(door = 0), then the subsystem needs to wait until the autopilot’s turn. The

earliest this can happen is by the gear retracting (turn = 3) and then the

doors closing (turn = 2), hence the turn = 2 in the first disjunct.

From the subsystem’s viewpoint, both of the variables door and gear are vis-

ible, so its specification in this interconnection mode mentions both. Notice

that there is no mention of speed , because it is unnecessary information for

reaching cruise mode. If the doors are already closed, then they need not open

while transitioning from intermediate to cruise mode, so they need not know

the airspeed. If the doors are currently open, then the invariant Inv implies

that the airspeed is below the threshold, and that the autopilot will main-

tain this invariant. The airspeed is unnecessary information while the doors

transition from open to closed.

The variable cnct is introduced to define the current interconnection mode,

and is controlled by the autopilot. When cnct changes, the other modules are

constrained to change the information that they communicate, by changing

103

the domains of the record-valued variables that are used for communication

between the modules.

When the subsystem of gear module and door module is decomposed into two

separate components, using ¬DTeam as the goal, the generated specifications

are as follows. For the gear module

Gear Trap
∆
=

∧ turn ∈ 1 . . 3 ∧ door ∈ 0 . . 5

∧ gear ∈ 0 . . 5 ∧ height ∈ 0 . . 100 ∧mode ∈ 0 . . 2

∧ ∨ ∧ (turn = 2) ∧ (gear = 0)

∧ (height ∈ 76 . . 100) ∧ (mode = 2)

∨ ∧ (door ∈ 1 . . 5) ∧ (gear = 0)

∧ (height ∈ 76 . . 100) ∧ (mode = 2)
and for the door module

D Door module
∆
=

∧ turn ∈ 1 . . 3 ∧ door ∈ 0 . . 5 ∧ gear ∈ 0 . . 5

∧ ∨ (turn = 2) ∧ (gear = 0)

∨ (door ∈ 1 . . 5) ∧ (gear = 0)
Again, these goals are conditioned using the current interconnection cnct . The

above specifications can be understood as follows. The gear assumes that the

doors will close, provided the gear has retracted itself (conjunct gear = 0). The

gear cannot assume that the doors will close while the gear is still extended,

because that would be too strong an assumption. It would be realizable by the

gear, but unrealizable by the doors. Similar to what we remarked about the

autopilot earlier, this is an error that could arise if we specified the subsystem

goals by hand, instead of generating them automatically. Provided the gear

has retracted, it is allowed to wait until the door retracts, and also until it is the

autopilot’s turn. Note that the gear does not receive speed information in this

interconnection, which is shown in Fig. 8.3a. For the doors, the requirement

is that if the gear has retracted (gear = 0), then the doors should not be open

(door ∈ 1..5).

The above discussion corresponds to the interconnection architecture while

the autopilot has cruise mode as its current goal. A different interconnec-

tion architecture, shown in Fig. 8.3b is computed to allow the autopilot to

reach landing mode. The resulting specifications have an analogous struc-

ture with those described above, though the direction of change for the en-

tire system is the opposite (the autopilot should lower the airspeed to allow

104

Autopilot

Gear control

Door control

Goal: enter cruise mode

door

gear

mode, h
eight

door

(a) Communicated variables when the
goal is cruise mode.

Autopilot

Gear control

Door control

Goal: enter landing mode

door

gear

mode, spe
ed

mode, speed
(b) Communicated variables when the
goal is landing mode.

Figure 8.3: Variables communicated between subsystems, depending on the
current goal.

the doors to open, and also change from cruise to intermediate mode; then

the autopilot is allowed to wait for the doors to open, and for the landing

gear to extend, and only then can the autopilot enter landing mode). An

interesting observation regarding the connectivity in Fig. 8.3b is that the

gear needs to observe both mode and speed . This requirement results be-

cause the gear module needs to be able to observe globally that the doors are

still within D Door module, which requires information about the mode and

speed . However, we would expect this to be information necessary only to

the door module. Indeed, by using the complement of the subsystem goal as

Within to change Stay : = Observable(D , Inv , Inv ,Player) in Algorithm 6.8

to Stay : = Observable(D ,Within ∧ Inv , Inv ,Player), as described in Sec-

tion 6.7.2, the generated specification for the gear becomes independent of

mode and speed , and those signals are removed from the interconnection ar-

chitecture. The resulting persistence goal for the gear becomes weaker. In

this example, there is one trap formed for the subsystem, so this weakening is

admissible. In problems where this is not the case, either an interconnection

architecture with more information sharing needs to be used, or the weaker

persistence goals checked to ensure that they do not intersect with other traps,

or are contained within the persistence goal for the same component within

another subsystem trap.

The above example demonstrated the applicability of the proposed approach

to systems with multiple components, by recursive decomposition, and by

construction of interconnection architectures with only necessary information

shared between components. An implementation of the algorithms described

is available in a Python package [61].

105

Chapter 9

OPEN SYSTEM SPECIFICATIONS

9.1 Assume-guarantee specifications

9.1.1 Forms of stepwise implication

Open-system specifications constrain the behavior of component variables in

presence of appropriate environment behavior. This kind of relation resembles

logical implication (⇒), suggesting defining a binary operator. In this section,

we compare two operators of this kind:

• The TLA+ operator +−▷ (named WhilePlus below)

• A quinary operator based on work by Klein and Pnueli [96, Eq. 3 on

p. 163].

Klein and Pnueli defined the (PastRTLA+) formula

KP
∆
= ∨ ¬EnvInit

∨ ∧ SysInit

∧2(UpToNow(EnvNext) ⇒ SysNext) Stepwise implication

∧ ∨3¬EnvNext Environment error (“liveness gap”)

∨ ∃ i ∈ 0 . . n : 32P(i) generalized Streett pair

∨ ∀ j ∈ 0 . . m : 23R(j)

The formula UpToNow(EnvNext) is true when the action EnvNext has been

true in all previous steps and the current step. In LTL, UpToNow is called

“historically” [128].

The “assume-guarantee” character of RawWhile is manifest in the stepwise

implication and the environment error. The “GR(1)” character is manifest in

the Streett pair that constrains the component. Thus, the assume-guarantee

form we choose is orthogonal to whether the liveness part is a GR(1) or GR(k)

property, so we can lump all liveness in order to obtain the general form

RawWhile(EnvInit , SysInit , EnvNext , SysNext , Liveness)
∆
=

∨ ¬EnvInit
∨ ∧ SysInit

∧2(UpToNow(EnvNext) ⇒ SysNext)

106

∧ ∨3¬EnvNext
∨ Liveness

For reasons discussed in Section 9.6 we study the operator RawWhilePlus ,

instead of RawWhile, defined as follows:

RawWhilePlus(IeP(,), EnvInit , SysInit , EnvNext , SysNext , Le, Ls)
∆
=

∨ ¬∃ p, q : IeP(p, q) satisfiability of EnvInit

∨ ∧ SysInit

∧ EnvInit ⇒ ∧2(Earlier(EnvNext) ⇒ SysNext)

∧ (2EnvNext ∧ Le) ⇒ Ls

The main difference between RawWhile and RawWhilePlus is in using the op-

erator Earlier instead ofUpToNow [67, 65, 88]. The expression Earlier(EnvNext)

is true when the action EnvNext has been true in all previous steps (omitting

the current step). We use the operator RawWhilePlus with the argument

EnvInit defined as IeP(x , y), where x , y are variables declared in the relevant

context. So the argument EnvInit could be omitted, but that would require

adding x and y as arguments, and thus cluttering this definition.

It can be shown that RawWhilePlus is expressible with the quinary operator

RawWhilePlusDisj (InitC , InitD , EnvNext , SysNext , Liveness)
∆
=

InitC ⇒ ∧ InitD

∧2(Earlier(EnvNext) ⇒ SysNext)

∧ Liveness ∨3¬EnvNext
It does not matter whether the main operator is disjunction. Any property ex-

pressed with the operator RawWhilePlusDisj is expressible using the following

operator:

RawWhilePlusConj (InitA, InitB , EnvNext , SysNext , Liveness)
∆
=

∧ InitB

∧ InitA ⇒ ∧2(Earlier(EnvNext) ⇒ SysNext)

∧ Liveness ∨3¬EnvNext
The previous operators are in raw TLA+ with past operators (PastRTLA+)

(see Section 3.2). The operator RawWhilePlus is suitable for algorithmic im-

plementation [153]. We next examine the relation between WhilePlus and

RawWhilePlus , which has also been examined under more restrictive assump-

tions in [88].

107

9.1.2 Stepwise form of +−▷
Arguments represented as machine-closed pairs Machine-closure of

the pair

EnvInit ∧2[EnvNext]v , Le

and of the pair

InitSys ∧2[SysNext]v , Ls

imply equivalence of the properties defined using the operators RawWhilePlus

and +−▷, as implied by the below theorem. In absence of machine-closure, these

two operators are not equivalent, as discussed in more detail in Section 9.2.1

A syntactic definition of closure [113, 11]

MustUnstep(b)
∆
= ∧ b = true

∧2[b ′ = false]b

∧3(b = false)

SamePrefix (b, u, x)
∆
= 2(b ⇒ (u = x))

Front(P(,), x , b)
∆
= ∃∃∃∃∃∃ u : P(u) ∧ SamePrefix (b, u, x)

Cl(P(), x)
∆
= ∀∀∀∀∀∀ b : MustUnstep(b) ⇒ Front(P , x , b)

Each property is decomposable into safety and liveness [12].

SafetyPart(P(), x)
∆
= Cl(P , x)

LivenessPart(P(), x)
∆
= SafetyPart(P , x) ⇒ P(x) [88, Sec. 2.3 on p. 54]

Below we use this operator with adapted arity.

IsMachineClosed(S (), L())
∆
=

let SL(u)
∆
= S (u) ∧ L(u)

in ∀∀∀∀∀∀ x : S (x) ≡ Cl(SL, x)

theorem PhiEquivRawPhi
∆
=

assume
variable x , variable y ,

new sigma,

IsABehavior(sigma),

constant IeP(,),

constant IsP(,),

constant NeP(, , ,),

1 A proof of the theorem PhiEquivRawPhi is in the module WhilePlusTheorems.

108

constant NsP(, , ,),

temporal Le, temporal Ls , thus TLA+ formulas

∧ ∀ u, v : IeP(u, v) ∈ boolean

∧ ∀ u, v : IsP(u, v) ∈ boolean

∧ ∀ a, b, c, d : NeP(a, b, c, d) ∈ boolean

∧ ∀ a, b, c, d : NsP(a, b, c, d) ∈ boolean ,

let

v
∆
= ⟨x , y⟩

Is
∆
= IsP(x , y)

Ie
∆
= IeP(x , y)

Ne
∆
= NeP(x , y , x ′, y ′)

Ns
∆
= NsP(x , y , x ′, y ′)

in

∧ IsMachineClosed(Ie ∧2[Ne]v , Le)

∧ IsMachineClosed(Is ∧2[Ns]v , Ls)

prove
let

v
∆
= ⟨x , y⟩

Is
∆
= IsP(x , y)

Ie
∆
= IeP(x , y)

Ne
∆
= NeP(x , y , x ′, y ′)

Ns
∆
= NsP(x , y , x ′, y ′)

A
∆
= Ie ∧2[Ne]v ∧ Le

G
∆
= Is ∧2[Ns]v ∧ Ls

Phi
∆
= A +−▷ G

EnvNext
∆
= [Ne]v

SysNext
∆
= [Ns]v

RawPhi
∆
= RawWhilePlus(

IeP , Ie, Is ,

EnvNext , SysNext , Le, Ls)

in

(sigma, 0 |= RawPhi) ≡ (sigma |= Phi)

proof

by RawPhiImpliesPhi , PhiImpliesRawPhi

109

9.1.3 Shifting liveness around

It is of practical interest to know when we can shift liveness conjuncts from

the environment to the component property, or vice versa. Shifts of this kind

negate the liveness, turning recurrence into persistence, and vice versa.

The specifier usually imagines an “environment”

Env
∆
= EnvInit ∧2[EnvNext]v

and a “component”

Sys
∆
= SysInit ∧2[SysNext]v ∧ Liveness

However, RawWhilePlusDisj depends on five arguments (EnvInit , . . . ,Liveness);

not two (Env , Sys). This difference is essential, in that there are properties

expressible with RawWhilePlusDisj but inexpressible with any binary oper-

ator that takes Env and Sys as arguments (we show this inexpressibility in

Section 9.2).

One pitfall is to change any of the formulas EnvInit , . . . ,Liveness , while keep-

ing Env and Sys the same. If such a change leads from a machine-closed

to machine-unclosed representation of either Env or Sys , then in general the

property RawWhilePlusDisj changes.

Assume that both A and G are written using machine-closed representations.

If we shift the property Le to G , then the closure of A +−▷ G remains un-

changed. More precisely

theorem
assume

∧ A ≡ (Ie ∧2[Ne]v ∧ Le)

∧ Cl(A) ≡ (Ie ∧2[Ne]v) The pair Ie ∧2[Ne]v ,Le is machine-closed.

∧G ≡ (Is ∧2[Ns]v ∧ Ls)

The pair Is ∧2[Ns]v ,Ls is machine-closed. This implies that the pair Is ∧2[Ns]v ,Ls ∨¬Le
is machine-closed (see Q below).

∧ Cl(G) ≡ (Is ∧2[Ns]v)

prove
let

P
∆
= Ie ∧2[Ne]v

Q
∆
= Is ∧2[Ns]v ∧ (Le ⇒ Ls)

in

110

A +−▷ G ≡ P +−▷ Q
This theorem can be used in the reverse direction too, i.e., to shift Le to the

first argument (the “environment” property). In that case, persistence dis-

juncts from the formula (Le ⇒ Ls) within Q are shifted to become recurrence

conjuncts in the formula Le within the formula that represents A.

In absence of machine-closure, the above rewriting can change the open-system

property. There are two cases in GR(1):

1. Shifting recurrence from A to persistence in Q . If the pair Ie∧2[Ne]v ,Le
is machine-unclosed, then Cl(P) is weaker than Cl(A) (because Le im-

poses a safety constraint on Ie ∧2[Ne]v), so this transformation relaxes

the assumption’s closure.

If the pair Is∧2[Ns]v ,Ls is machine-unclosed, then relaxing the liveness

to (Ls∨¬Le) can weaken the closure (not necessarily). Thus, Cl(Q) may

be weaker than Cl(G).

The combined effect of relaxing A to P and changing G to Q in this way

is nontrivial.

2. Shifting persistence from Q to recurrence in A. This transformation

strengthens the guarantee from Q to G . If the pair Is∧2[Ns]v ,Ls is not

machine-closed, then the closure Cl(G) may be stronger than Cl(Q).

This shift conjoins Le to Ie ∧2[Ne]v inside A, so Cl(A) is stronger than

Cl(P) if the pair Ie ∧2[Ne]v ,Le is machine-unclosed.

To summarize, in absence of machine-closure, shifting liveness from assump-

tion to guarantee relaxes the closure of the assumption and possibly of the

guarantee. Shifting liveness from the guarantee to the assumption strengthens

the closure of the assumption, and possibly of the guarantee too.

In both cases, the combined effect from changing both arguments appears to

have a nontrivial effect on the open-system property that the two properties

define when fed to the operator +−▷.

Remark 10. Lamport defined the operator “as long as” directly in seman-

tics [110, ⊴ on p. 220]. This operator is similar to RawWhile. The operator

“one step longer” [110, ◁ on p. 220] is equivalent to StepwiseImpl .2 □
2 The operator StepwiseImpl is defined in the module WhilePlusTheorems.

111

Remark 11. A reusable definition of +−▷ within TLA+ has to include at least

one argument for variables, because there is no way to refer to all declared

variables from within TLA+. □

Remark 12. The operator WhilePlus(A,G , x , y) does differ from +−▷ if A or

G depend on variables other than x and y . This is a potential cause of errors

by the specifier when using WhilePlus . □

9.2 Degrees of freedom needed for representation

9.2.1 Overview

Klein and Pnueli defined a temporal formula that describes those open-system

properties that are implemented by a known fixpoint algorithm [96, 153]. The

quinary operator RawWhilePlus is the strictly causal version of the Klein-

Pnueli formula (Section 9.1). In this section we define the operator

RawWhilePlus(EnvInit , SysInit , EnvNext , SysNext , Liveness)
∆
=

∧ SysInit

∧ EnvInit ⇒ ∧2(Earlier(EnvNext) ⇒ SysNext)

∧ Liveness ∨3¬EnvNext
This operator is called RawWhilePlusConj in Section 9.1 and for satisfiable

IeP the RawWhilePlus from Section 9.1 is equivalent to this RawWhilePlus .

The above suffices in this section.

When writing specifications, we tend to think in terms of two properties: an

“environment” and a “component”. In accord with this thinking, the oper-

ator +−▷ takes two arguments. Can we define RawWhilePlus too as a binary

operator?

Is any property describable by RawWhilePlus also describable by

some binary operator over Env and Sys? (The answer is negative.)

Earlier we showed that RawWhilePlus is the stepwise form of +−▷ (i.e., going

from two to five arguments). So any property expressed using Env +−▷ Sys can

be expressed using RawWhilePlus , by feeding to RawWhilePlus the machine-

closed representation of Env and Sys . What we investigate now is the opposite

direction.

112

The answer depends on whether any property describable by applying the

operator RawWhilePlus to the five arguments

EnvInit , SysInit ,EnvNext , SysNext ,Liveness

can also be described by the application of some operator to the two arguments

Env
∆
= EnvInit ∧2[EnvNext]v

Sys
∆
= SysInit ∧2[SysNext]v ∧ Liveness

A property defined by RawWhilePlus changes when we change any of the five

arguments (except for corner cases). So we expect the two arguments Env

and Sys to depend on all five arguments EnvInit , . . . ,Liveness . As expected,

we show that the two properties Env and Sys alone cannot capture all the

information that the RawWhilePlus operator uses from the five arguments.

9.2.2 Example

In other words, if we are given Env and Sys in a canonical representation with

state machine and liveness different than those used in RawWhilePlus , then

we cannot find out what those properties were. If we try to make a property

from this Env and Sys , it will be the same for all representations of Env and

Sys , unlike the RawWhilePlus properties that result for those representations,

which are different.

Fig. 9.1 illustrates the concept of multiplicity of representations. Any property

P can be described by several different pairs of safety and liveness, for example

P ≡ P1 and P ≡ P2, where P1 ≜ I 1∧2[Next1]v∧L1 and P2 ≜ I 2∧2[Next2]v∧
L2. If these representations are machine-closed

∧ Cl(I 1 ∧2[Next1]v ∧ L1) ≡ I 1 ∧2[Next1]v

∧ Cl(I 2 ∧2[Next2]v ∧ L2) ≡ I 2 ∧2[Next2]v

then it follows that using I 1,Next1,L1 in RawWhilePlus yields the same prop-

erty as that obtained by using P in +−▷. This holds if we replace I 1,Next1,L1

by I 2,Next2,L2. But for a machine-unclosed representation

P3
∆
= I 3 ∧2[Next3]v ∧ L3

where P ≡ P3, using I 3,Next3,L3 in RawWhilePlus can yield a different prop-

erty than what we get by using P in +−▷. So given Env and Sys in some

representation, it is impossible to ensure that feeding that representation to

113

Liveness

Safety ≜ Init ∧2[Next]v

weaker

stronger
weaker

machine-closed representations

machine-unclosed representations

S1,L1

S2,L2

P1

P2 S4,L4

S5,L5

S3,L3

S6,L6

representations of property P1

representations of property P2

Figure 9.1: Each temporal property P can be represented in multiple ways as
a conjunction S ∧ L of a safety formula S and a liveness formula L (except
for corner cases). For some pairs S ,L the liveness property does not impose a
safety constraint on S , but for others it does. The first case is called machine-
closed, the second machine-unclosed. The ordering of properties along axes in
this figure is a simplification (two properties can be incomparable).

RawWhilePlus yields the same property as feeding Env and Sys to +−▷. If

we convert the representation to a machine-closed one, then we get the same

property with +−▷.

9.2.3 Useful notions

Three notions are relevant to the discussion below (listed from stronger to

weaker):

1. Equivalence of two properties |= P ≡ Q (the collections of behaviors

that P and Q describe coincide)

2. Equisynthesizability |= ∀f : IsARealization(f ,P) ≡ IsARealization(f ,Q)

(the collections of implementations of P and Q coincide)

3. Equirealizability of two properties |= IsRealizable(P) ≡ IsRealizable(Q)

(P and Q are both realizable or both unrealizable).

For example, if the variable y represents the component, then the properties

114

P ≜ true and Q ≜ 2(y = 0) are equirealizable. They are not equisynthesiz-

able.

9.2.4 Multiple representations for a closed system

There would not be any problem if any property Sys (Env) had a unique

representation using an initial condition Init , and action Next , and a liveness

formula. There would be only a single way of expressing Sys with these kinds

of subformulas, and a single choice of arguments for RawWhilePlus . This is

not the case, as shown below.

For any state predicates I 1, I 2, v and actions A1,A2, if I 1 ≡ I 2 and A1 ≡ A2,

then the RTLA+ formula (I 1 ∧ 2A1) ≡ (I 2 ∧ 2A2) and the TLA+ formula

(I 1 ∧ 2[A1]v) ≡ (I 2 ∧ 2[A2]v) are both valid. The converse does not hold,

because an action may lead to deadends. In other words, a property of the

form 2Next is describable by multiple inequivalent actions.3

proposition RawTails
∆
= in RTLA+

prove
let

A1
∆
= false

A2
∆
= (x = 1) ∧ (x ′ = 2)

in

∧ (2A1) ≡ (2A2)

∧ ∃∃∃∃∃∃ x : ¬(A1 ≡ A2)

The corresponding phenomenon in TLA+ is observed in the presence of live-

ness. Safety alone cannot give rise to deadends in TLA+, due to stutter-

extensibility (an infinite stuttering tail). More precisely, the following propo-

sition is valid.4

proposition InvertingTails
∆
=

assume
state v ,

action A1, action A2,

(2[A1]v) ≡ (2[A2]v)

prove

⟨A1⟩v ≡ ⟨A2⟩v
Conjoining an initial condition preserves the above inversion result over reach-

able states, but not at unreachable states.5

3 A proof of RawTails is in the module Representation.
4 A proof of InvertingTails is in the module Representation.
5 A proof of InvertingStateMachines is in the module Representation.

115

proposition InvertingStateMachines
∆
=

assume

state I 1, state I 2, state v ,

action A1, action A2,

let

SM 1
∆
= I 1 ∧2[A1]v

SM 2
∆
= I 2 ∧2[A2]v

in

SM 1 ≡ SM 2
prove

let

SM 1
∆
= I 1 ∧2[A1]v

in

∧ I 1 ≡ I 2

∧ SM 1 ⇒ 2[A1 ∧ A2]v
Unfortunately, in TLA+ uniqueness disappears when liveness is included, be-

cause deadends can again form, as in RawTails above (in RTLA+).

9.2.5 Mismatch between RawWhilePlus and WhilePlus in absence

of machine closure

With liveness present, we prove that no binary operator of the properties

Env
∆
= EnvInit ∧2EnvNext

Sys
∆
= SysInit ∧2SysInit ∧ Liveness

can express the property

RawWhilePlus(EnvInit , SysInit ,EnvNext , SysNext ,Liveness),

simply because we can change the latter while keeping Env and Sys the same.

In other words, there are two quintuples

EnvInit1, . . . ,Liveness1 and EnvInit2, . . . ,Liveness2

that yield the same Env and Sys , but different RawWhilePlus properties.

So any binary operator that depends on Env and Sys cannot describe both

properties.

We give examples of both stutter-sensitive and stutter-invariant properties.

That the RawWhilePlus properties are “different” means they are inequivalent.

In these examples, the properties are not equirealizable.

116

9.2.5.1 Stutter-sensitive example (RTLA+)

Inequivalence The first quintuple is

EnvInit1
∆
= true

EnvNext1
∆
= y = 0

SysInit1
∆
= y = 0

SysNext1
∆
= (y ∈ 0 . . 1) ∧ (y ′ = y + 1)

Liveness1
∆
= true

The second quintuple differs by only

SysNext2
∆
= false

Conjunction for the first quintuple yields

Env1
∆
= (EnvInit1 ∧2EnvNext)

≡ 2(y = 0)

Sys1
∆
= (SysInit1 ∧2SysNext1 ∧ Liveness1)

≡ false

and the same pair results for the second quintuple too

Env2 ≡ 2(y = 0)

Sys2 ≡ false

The RawWhilePlus properties are

Q1
∆
= RawWhilePlus(EnvInit1, SysInit1, EnvNext1, SysNext1, Liveness1)

≡ ∧ y = 0

∧2 ∨ ¬Earlier(y = 0)

∨ ∧ y ∈ 0 . . 1

∧ y ′ = y + 1

Q2
∆
= RawWhilePlus(EnvInit2, SysInit2, EnvNext2, SysNext2, Liveness2)

≡ false

Clearly, the properties Q1 and Q2 are inequivalent (Q1 is satisfied by a behav-

ior where y takes the values 0, 1, 2, 2, . . ., as illustrated in Fig. 9.2, whereas Q2

is unsatisfiable). Any binary operator will yield the same property when ap-

plied to the pair Env1, Sys1 and to the pair Env2, Sys2 (because Env1 ≡ Env2

and Sys1 ≡ Sys2). This property cannot be equivalent to both Q1 and Q2.

So no binary operator can express RawWhilePlus via Env and Sys .

Inequirealizability Assume that the system controls the variable y . Then

property Q1 is realized by an implementation that initializes y = 0 and incre-

ments variable y by 1 in each step. Property Q2 is unrealizable. So Q1 and

Q2 are not equirealizable (thus neither equisynthesizable).

117

Earlier(y = 0)

y
0 1 2 ♣ ♠ ♢

behavior

true false

Figure 9.2: Into the wild : after a few steps the component violates the envi-
ronment action. From there on it can behave arbitrarily.

We started by presenting an example in RTLA+ to emphasize that the above

observation is unrelated to stutter-invariance. The stutter-invariant example

given below obtains the same effect via interaction between safety and liveness.

9.2.5.2 Stutter-invariant example

We now want to convert the RTLA+ example of the previous section to a TLA+

example (so from stutter-sensitive to stutter invariant). For this objective it

is useful to consider the stutter-closure of a property defined by an RTLA+

formula, which is a property expressible in TLA+. In particular, the stutter

closure of the RTLA+ property 2Next(x , x ′) is

StutterClosure(Next(,), x)
∆
=

∧2[Next(x , x ′)]x

∧ ∨23⟨true⟩x
∨23enabled ∧ Next(x , x ′)

∧ unchanged x

where Next is a constant operator, and x a variable (alternatively, we need to

know all the declared variables). This property is satisfied by a behavior that

takes only Next-steps, and stops changing x only at states where Next allows

so.

We apply StuttterClosure to create an example that involves stutter-invariant

properties that are the stuttering-closures of the properties from the example

in Section 9.2.5.1.

EnvInit1
∆
= true

EnvNext1
∆
= y = 0

SysInit1
∆
= y = 0

SysNext1
∆
= [(y ∈ 0 . . 1) ∧ (y ′ = y + 1)]y

Liveness1
∆
= 23⟨true⟩y

The second quintuple differs by only

118

SysNext2
∆
= false

Notice that Liveness1 results from StutterClosure, because the disjunct

23enabled ∧ (y ∈ 0 . . 1) ∧ (y ′ = y + 1)

∧ unchanged y

≡ false

Similarly to the stutter-sensitive example, both cases yield the same compo-

nent property

Env1 ≡ 2(y = 0)

Sys1 ≡ ∧ y = 0

∧2[(y ∈ 0 . . 1) ∧ (y ′ = y + 1)]y

∧23⟨true⟩y
≡ false

and

Env2 ≡ 2(y = 0)

Sys2 ≡ false

The RawWhilePlus properties are

Q1
∆
= RawWhilePlus(EnvInit1, SysInit1, EnvNext1, SysNext1, Liveness1)

≡ ∧ y = 0

∧2 ∨ ¬Earlier(y = 0)

∨ y ′ = y

∨ ∧ y ∈ 0 . . 1

∧ y ′ = y + 1

∧2(y = 0) ⇒ 23⟨true⟩y
Q2

∆
= RawWhilePlus(EnvInit2, SysInit2, EnvNext2, SysNext2, Liveness2)

≡ false

Again, the properties Q1 and Q2 are inequivalent. The corresponding pairs

Env1, Sys1 and Env2, Sys2 though are identical. Again, no binary operator

that depends on Env and Sys can equal two different properties (Q1 and Q2).

To emphasize this, the value of such an operator would be

MagicOperator(2(y = 0), false)

and equal to bothMagicOperator(Env1, Sys1) andMagicOperator(Env2, Sys2),

but unequal to Q1 or unequal to Q2.

In addition, property Q2 is unrealizable, whereas Q1 is realizable (since there

exists some behavior that satisfies it, and Q1 depends on only variable y ,

which the component controls).

119

start E +−▷ S realizable from here

E +−▷ S unrealizable from here

E ⇒ S realizable from here

(thus also E ⇒ S)
env choice

at the cost of realizing ¬(Cl(E) +−▷ Cl(S))

Figure 9.3: The property E ⇒ S can be realizable at the cost of violating
E +−▷ S . The environment can have a choice between these two outcomes,
even when S +−▷ E is realizable by it. Relative well-separation [131] implies
that an environment that implements Cl(E) won’t accidentally let the system
realize (E ⇒ S) ∧ ¬(E +−▷ S).

9.2.6 Notions of well-separation

Klein and Pnueli study the equisynthesizability of RawWhile and E ⇒ S

[96].6 We are interested in comparing +−▷ and E ⇒ S .7 The property +−▷ is

not equivalent to E ⇒ S , nor equirealizable [131].8 Assuming safety as E ,

these properties are equisynthesizable if both the environment specification

Cl(S) +−▷ E is realizable (by the environment) and the assembled system

cannot reach states from where ¬(Cl(E) +−▷ Cl(S)) is realizable by the system.

This condition corresponds to well-separation with respect to a guarantee [131].

We discuss why this condition is necessary for equisynthesizability.

The specification E ⇒ S can be realizable when E +−▷ S is unrealizable, despite

Cl(S) +−▷ E being realizable by the environment (an environment that does

not realize E). Such an environment can give the component an opportunity

6 “Equirealizable” in [96] is called equisynthesizable here, and equirealizable here is a
weaker notion than there.

7 We work with +−▷ but the same principles apply to WhilePlusHalf , due to similar
syntactic properties with respect to closure.

8 Klein and Pnueli define well-separation as a property of the environment E [96].
Relative well-separation is a property of the pair of properties E ,S , not of the environment
alone.

120

realizations of E +−▷ S

realizations of E ⇒ S

These realizations make a difference only when we assemble
the component with an environment that does not realize Cl(S) +−▷ E .

Figure 9.4: Comparing the collections of realizations of E ⇒ S and E +−▷ S .

to realize9

(E ⇒ S) ∧ ¬(E +−▷ S).

The environment could prevent the component from realizing E +−▷ S , even

though E ⇒ S remains realizable.

Remark 13. If the closures prevent the assembly from reaching a state from

where the component can predict that it can force a future violation of E ,

then the properties E ⇒ M and E +−▷ M become equisynthesizable. This is

relevant to an observation about implementations [7, Sec. 5.1 on p. 528]. □

The puzzling point then is how E ⇒ S can remain realizable when E +−▷ S is

not, and although Cl(S) +−▷ E is realizable by the environment. The answer is

that an environment that realizes Cl(S) +−▷ E does not ensure E (a stronger

property). Such an environment could let the component violate SysNext

before EnvNext in its path to implementing E ⇒ S (and this outcome does

satisfy Cl(S) +−▷ E).

This is why relative well-separation requires more than environment realiz-

ability [131]. In particular, well-separation requires that the assembly cannot

safely reach states from where the component can realize E ⇒ S by violating

E +−▷ S . When this is the case, composing a component that implements

E ⇒ S with an environment that implements Cl(S) +−▷ E does keep the

component away from states where it can benefit from violating the action

9 The property (E ⇒ S) ∧ ¬(E +−▷ S) is equivalent to (E ⇒ S) ∧ ¬(Cl(E) +−▷ Cl(S)).

121

SysNext before the action EnvNext is violated. An even stronger requirement

is well-separation, which requires realizability of E instead of Cl(S) +−▷ E , i.e.,

irrespective of the component’s specification.

Klein and Pnueli observe that well-separation is stronger than requiring a

realizable environment, and that realizability is too weak to ensure equivalence

of ⇒ and RawWhile [96, footnote on p. 171] Indeed, realizability of Cl(S) +−▷
E by the environment does not suffice to ensure equirealizability, and well-

separation requires realizability of E (unconditional).

9.3 WhilePlusHalf

The property Env +−▷ Sys is unrealizable if the action SysNext constrains

primed environment variables (x ′) [66], which makes writing realizable spec-

ifications less straightforward.10 Relaxing Sys to leave environment variables

unconstrained can avoid this situation. This relaxation though raises issues

of underspecification with respect to the axioms of TLA+. We want to define

open-system properties that are realizable when Env and Sys suggest so, and

also expressible with some binary operator that resembles implication.

Motivated by these observations, we define the operator WhilePlusHalf be-

low, which is realizable when expected from thinking in terms of Env and

Sys . WhilePlusHalf is obtained as a modification of WhilePlus (the syntac-

tic definition of +−▷). We also prove that WhilePlusHalf is equivalent to the

operator RawWhilePlusHalf in raw TLA+, which does not involve temporal

quantification and is suitable for fixpoint computations [153].

The value of machine-unclosed representations We may want to write

a specification that lacks machine closure for a layer higher than the imple-

mentation, in order to write a more readable specification [1, p. 142], [117,

p. 203], [53]. The operator WhilePlusHalf allows writing a machine-unclosed

representation of Sys that constrains x ′. Otherwise, we would have to find

a machine-closed representation that leaves x ′ unconstrained, which involves

reasoning similar to synthesis.

Bounded temporal formulas Boundedness is useful in avoiding depen-

dence on underspecified parts of TLA+ (and several operators are specified

10 Besides SysNext , a liveness subformula too can impose constraints on x ′.

122

only within a set of values, not for arbitrary values). Deducing properties

of unbounded formulas can be harder than for bounded formulas.11 For ex-

ample, whether an unbounded specification allows the component to eschew

the intended liveness formula (in Sys) by letting x ′ take arbitrary values

along the tail of some behavior that is a witness for temporal quantifica-

tion (∃∃∃∃∃∃) within WhilePlus . If so, then the system could “pretend” unreal-

istic environment behavior in the witness behavior’s tail in order to satisfy

2[SysNext]v ∧SysLiveness , while forcing 3⟨¬EnvNext ⟩v) in the actual behav-

ior.

9.3.1 Modifying the WhilePlus operator

The operator WhilePlus , defined below within TLA+, is equivalent to the

operator +−▷ [117, p. 337] (which is defined semantically [117, p. 316]).

MayUnstep(b)
∆
= ∧ b ∈ boolean

∧2[b ′ = false]b

Unstep(b)
∆
= ∧MayUnstep(b)

∧3(b = false)

SamePrefix (b, u, v , x , y)
∆
= 2(b ⇒ (⟨u, v⟩ = ⟨x , y⟩))

PlusHalf (b, v , y)
∆
= ∧ v = y

∧2[b ⇒ (v ′ = y ′)]⟨b, v , y⟩

Front(P(,), x , y , b)
∆
=

∃∃∃∃∃∃ u, v :

∧ P(u, v)

∧ SamePrefix (b, u, v , x , y)

FrontPlusHalf (P(,), x , y , b)
∆
=

∃∃∃∃∃∃ u, v :

∧ P(u, v)

∧ SamePrefix (b, u, v , x , y)

∧ PlusHalf (b, v , y)

FrontPlus(P(,), x , y , b)
∆
= ∃∃∃∃∃∃ u, v :

let

vars
∆
= ⟨b, x , y , u, v⟩

11 Boundedness relates to whether a formula’s meaning depends on what model of a
theory we use [100, pp. 161–163], and to decidability [100, p. 168 and §IV. 3].

123

Init
∆
= ⟨u, v⟩ = ⟨x , y⟩

Next
∆
= b ⇒ (⟨u ′, v ′⟩ = ⟨x ′, y ′⟩)

Plus
∆
= 2[Next]vars

in

∧ P(u, v)

∧ Init ∧ Plus

WhilePlus(A(,), G(,), x , y)
∆
=

∀∀∀∀∀∀ b : (MayUnstep(b) ∧ Front(A, x , y , b)) ⇒ FrontPlus(G , x , y , b)

We propose the following operator, which differs fromWhilePlus in that within

the consequent primed environment variables are not constrained (and initial

component variable values are unconditionally constrained).

WhilePlusHalf (A(,), G(,), x , y)
∆
=

∀∀∀∀∀∀ b : (MayUnstep(b) ∧ Front(A, x , y , b)) ⇒ FrontPlusHalf (G , x , y , b)

WPH (A, G , x , y)
∆
= WhilePlusHalf (A, G , x , y) a shorthand

9.3.2 Stepwise form of WhilePlusHalf

Properties written using WhilePlusHalf are expressible as the conjunction of a

“stepwise” safety property and an implication (theorem WhilePlusHalfAsConj

below), similarly to the tautology that holds for +−▷. This form is useful

for expressing WhilePlusHalf in raw TLA+ with past operators (theorem

WhilePlusHalfStepwiseForm below), similarly to the connection between +−▷
and RawWhilePlus (Section 9.1).12

theorem WhilePlusHalfAsConj
∆
=

assume
variable x , variable y ,

temporal A(,), temporal G(,)

prove
let

ClA(u, v)
∆
= Cl(A, u, v)

ClG(u, v)
∆
= Cl(G , u, v)

in

WPH (A, G , x , y) ≡ ∧WPH (ClA, ClG , x , y)

∧ A(x , y) ⇒ G(x , y)

12 The theorems WhilePlusHalfAsConj and WhilePlusHalfStepwiseForm are proved in
the module WhilePlusHalfTheorems.

124

RawWhilePlusHalfFull(

IeP(,), JeP(,), IsP(,),

EnvNext , Next , SysNext , Le, Ls)
∆
=

∨ ¬∃ p, q : IeP(p, q) ⇒ JeP(p, q)

∨ ∧ ∃ p : IsP(p, y)

∧ ∨ ¬ ∨ ¬IeP(x , y)

∨ JeP(x , y)

∨ ∧ IsP(x , y)

∧ IeP(x , y) ∨2(Next ∧ SysNext)

∧ ∨ ¬IeP(x , y)

∨2(Earlier(EnvNext) ⇒ ∧ Earlier(Next)

∧ SysNext)

∧ ∨ ¬ ∨ ¬IeP(x , y)

∨ JeP(x , y) ∧ Le ∧2EnvNext

∨ Ls

theorem WhilePlusHalfStepwiseForm
∆
=

assume
variable x , variable y ,

new sigma, IsABehavior(sigma),

constant IeP(,),

constant JeP(,),

constant IsP(,),

constant NeP(, , ,),

constant NsP(, , ,),

temporal LeP , temporal LsP ,

∧ ∀ u, v : IeP(u, v) ∈ boolean

∧ ∀ u, v : JeP(u, v) ∈ boolean

∧ ∀ u, v : IsP(u, v) ∈ boolean

∧ ∀ a, b, c, d : NeP(a, b, c, d) ∈ boolean

∧ ∀ a, b, c, d : NsP(a, b, c, d) ∈ boolean ,

let

xy
∆
= ⟨x , y⟩

Is
∆
= IsP(x , y)

125

Ie
∆
= IeP(x , y)

Je
∆
= JeP(x , y)

Ne
∆
= NeP(x , y , x ′, y ′)

Ns
∆
= NsP(x , y , x ′, y ′)

Le
∆
= LeP(x , y)

Ls
∆
= LsP(x , y)

A(u, v)
∆
=

let

I
∆
= IeP(u, v)

J
∆
= JeP(u, v)

N
∆
= NeP(u, v , u ′, v ′)

vrs = ⟨u, v⟩
L

∆
= LeP(u, v)

in

I ⇒ (J ∧2[N]vrs ∧ L)

Q(u, v)
∆
=

∨ ¬IeP(u, v)

∨ ∧ JeP(u, v)

∧2[NeP(u, v , u ′, v ′)]⟨u, v⟩

R(u, v)
∆
= ∧ IsP(u, v)

∧2[NsP(u, v , u ′, v ′)]⟨u, v⟩

in

∧ ∀∀∀∀∀∀ u, v : Cl(A, u, v) ≡ Q(u, v)

IsMachineClosed adapted by replacing x with arguments.

∧ ∀∀∀∀∀∀ u, v : IsMachineClosed(R, LsP , u, v)

prove
let

A(u, v)
∆
=

let

I
∆
= IeP(u, v)

J
∆
= JeP(u, v)

N
∆
= NeP(u, v , u ′, v ′)

vrs = ⟨u, v⟩

126

L
∆
= LeP(u, v)

in

I ⇒ (J ∧2[N]vrs ∧ L)

G(u, v)
∆
=

let

I
∆
= IsP(u, v)

N
∆
= NsP(u, v , u ′, v ′)

vrs
∆
= ⟨u, v⟩

L
∆
= LsP(u, v)

in

I ∧2[N]vrs ∧ L

Phi
∆
= WhilePlusHalf (A, G , x , y)

xy
∆
= ⟨x , y⟩

Ie
∆
= IeP(x , y)

Is
∆
= IsP(x , y)

Ne
∆
= NeP(x , y , x ′, y ′)

Ns
∆
= NsP(x , y , x ′, y ′)

Le
∆
= LeP(x , y)

Ls
∆
= LsP(x , y)

EnvNext
∆
= [Ne]⟨x , y⟩

Next
∆
= [Ns]⟨x , y⟩

SysNext
∆
= [∃ r : NsP(x , y , r , y ′)]y

RawPhi
∆
= RawWhilePlusHalfFull(

IeP , JeP , IsP , EnvNext , SysNext , Le, Ls)

in

(sigma, 0 |= RawPhi) ≡ (sigma |= Phi)

9.3.3 Closing an assembly: Should we constrain the component’s

initial state?

We compare two definitions of realizability: with and without choice of initial

values of component variables.

Realization(x , y , mem, f , g , y0, mem0, e)
∆
=

let

127

v
∆
= ⟨mem, x , y⟩

A
∆
= ∧ y ′ = f [v]

∧mem ′ = g [v]

in

∧ ⟨mem, y⟩ = ⟨mem0, y0⟩
∧2[e ⇒ A]v

∧WF⟨mem, y⟩(e ∧ A)

RealizationOld(x , y , mem, f , g , mem0, e)
∆
=

let

v
∆
= ⟨mem, x , y⟩

A
∆
= ∧ y ′ = f [v]

∧mem ′ = g [v]

in

∧mem = mem0

∧2[e ⇒ A]v

∧WF⟨mem, y⟩(e ∧ A)

More properties are realizable with Realization than with RealizationOld , be-

cause Realization lets the component choose the initial value of variable y .

Properties formed using WhilePlusHalf can be realizable with Realization but

unrealizable with RealizationOld . The reason is that RealizationOld leaves

the initial value of y unconstrained, so the specification property should not

constrain the initial state more than the assumption does.

If we specify two components A1 and A2 that leave the initial state uncon-

strained, then the assembly A1 ∧A2 cannot imply any nontrivial initial condi-

tion. So we cannot assemble a closed-system from open-systems, unless each

component constrains some part of the initial state.

This may sound reasonable, because any real system interacts with the rest of

the world. However, after assembling all components relevant to the variables

declared in a given specification, we expect to obtain a closed-system that

models reality.

We can obtain a closed-system assembly by specifying each component with

the operator WhilePlusHalf and an initial condition in the second argument

(guarantee). By using Realization, instead of RealizationOld , we avoid unre-

alizability of such properties.

128

9.3.4 Machine-closed representation of open-systems

Abadi and Lamport note the tautology13

A +−▷ G ≡ ∧ Cl(A) +−▷ Cl(G)

∧ A ⇒ G

The same tautology holds for the operator WhilePlusHalf .14

Interestingly, this particular conjunction is a machine-closed representation of

the property A +−▷ G . In other words the following theorem is provable.

theorem WhilePlusSafetyLivenessDecomp
∆
=

assume

temporal A, temporal G

prove

∧ SafetyPart(A +−▷ G) ≡ Cl(A) +−▷ Cl(G)

∧ LivenessPart(A +−▷ G)

≡ (Cl(A) +−▷ Cl(G)) ⇒ (A +−▷ G)

The reason for this decomposition is that the stepwise conjunct holds if either

eventually Cl(A) is violated, thus also A (so A ⇒ G), or both Cl(A) and

Cl(G) are satisfied, which implies that the liveness goals of both A and G

remain reachable throughout the behavior, thus A ⇒ G does not place any

safety constrain on the stepwise part. A similar result can be shown about the

operator WhilePlusHalf .

9.4 Forming open from closed systems

9.4.1 Trapped between over and under specification

9.4.1.1 Overspecification

Consider the specification

variables a, b the component controls b

A
∆
= ∧ a = 1

∧2(a ∈ 1 . . 2)

∧23(a = 2)

B
∆
= ∧2(b ∈ 1 . . 2)

∧2[b ′ = a]⟨a, b⟩
13 The module TemporalLogic contains a proof of this tautology, and of the theorem

WhilePlusSafetyLivenessDecomp.
14 As proved in the module WhilePlusHalfTheorems).

129

∧23(b = 2)

A first inspection suggests that the assumption A should suffice to ensure

realizability of the guarantee B .15 To put it differently, we want an operator

that forms a realizable open-system from the pair A,B . The resulting open-

system should mean what we expect. What do we expect?

Conjoining the open-system with the intended environment should imply the

guarantee.16

(OpenSystem ∧ Env) ⇒ B

Let Env ≜ A. The above implication is valid with the definitionOpenSystem ≜
A +−▷ B because17 (A∧(A +−▷ B)) ⇒ B so the implication (OpenSystem∧A) ⇒
B is valid.

Is the property OpenSystem realizable?18 No, due to a counter-example where

an arbitrary value of a ′ blocks the component from satisfying Cl(B) in the

safety part Cl(A) +−▷ Cl(B) of OpenSystem [66, Prop. 7].

Briefly, A +−▷ B is unrealizable because the finite behavior

⟨


a 7→ 1

b 7→ 2
...


︸ ︷︷ ︸

s1


a 7→ 20

b 7→ ∗
...


︸ ︷︷ ︸

s2

⟩

satisfies A up to s1, so in any implementation the variable b should take a

value s2.b such that ⟨s1, s2 ⟩ be extendable to a behavior that satisfies B . This

extension is impossible.19

theorem NotExtensible
∆
=

assume

∃ tau : ∧ IsABehavior(tau)

∧ tau |= B

∧ tau[0].a = 1

∧ tau[1].a = 20

∧ tau[0].b = 2

15 With realizability defined so that the component pick the initial value of variable b.
16 This is a reasonable sanity check for any operator for defining open-systems.
17 By the proposition StepwiseAntecedent in the module TemporalLogic.
18 In the context of a reasonable definition of realizability.
19 A proof of the theorem NotExtensible is in the module UnzipTheorems.

130

prove false

Unrealizability above arises due to a ′ taking an arbitrary value that blocks

the component, despite A prohibiting that value.20 Unless the value a ′ is

constrained within Realization, unrealizability is remains for the property A +−▷
B . Incorporating such an assumption within Realization splits the assumption

into two parts (the operator A and a subformula within Realization). Using

the operator WhilePlusHalf instead of +−▷ can avoid this situation.

What we observed above is an instance of overspecification. We overspecified

the component by constraining in B the next environment state (a ′), which is

unconstrained by A +−▷ B , regardless of what the assumption A is. Removing

the constraint on a ′ from B avoids this situation, but raises another issue as

discussed below.

9.4.1.2 Underspecification

Suppose that we modify the guarantee to

Bnew
∆
= ∧ b = 1

∧2(b ∈ 1 . . 2)

∧2[(a ∈ 1 . . 2) ⇒ (b ′ = a)]⟨a, b⟩

∧23(b = 2)

That a part of the assumption now occurs within the guarantee indicates that

separation into an assumption and guarantee passes through reasoning about

the assembled system. In Section 9.4.2 we show how to specify the assembled

system (closed) and transform that into an open-system specification.

Reconsidering the behavior that we discussed above, which starts with (was

b = 2 at the initial state, but that difference is irrelevant)[
a 7→ 1

b 7→ 1

][
a 7→ 20

b 7→ ∗

]

we can now extend it to satisfy Bnew , as follows

τ
∆
=

[
a 7→ 1

b 7→ 1

][
a 7→ 20

b 7→ 1

][
a 7→ 1

b 7→ 2

]
· · · stuttering tail

20 The same problem with +−▷ is present in typed formalisms too; our observation is not
an artifact of untypeness.

131

So the property A +−▷ Bnew is realizable, in constrast to A +−▷ B . The modified

property Bnew has some unexpected properties. For instance, another witness

behavior is

tau
∆
=

[
a 7→ 1

b 7→ 1

][
a 7→ 20

b 7→ 1

][
a 7→ {1, 3}
b 7→ 2

][
a 7→ Nat

b 7→ 2

][
a 7→

√
2

b 7→ 2

]
· · ·︸ ︷︷ ︸

arbitrary values of a

The suffix of τ can assign arbitrary values to variable a, even if a satisfies A up

to the second state, i.e., PrefixSat(sigma, 2,A). A behavior that demonstrates

this is the following

tau
∆
=

[
a 7→ 1

b 7→ 1

][
a 7→ 1

b 7→ 1

][
a 7→ {1, 3}
b 7→ 1

][
a 7→ Nat

b 7→ 2

][
a 7→

√
2
Nat

b 7→ 2

]
· · ·

(Variable b cannot take arbitrary values, because the definition of Bnew in-

cludes the conjunct 2(b ∈ 1..2)).

This behavior is a witness even for B , given this particular (2-state) prefix

that satisfies the assumption. The arbitrariness of values assigned to variable

a would better be avoided, as discussed below.

9.4.1.3 Practical considerations

One can argue that, in general, we can formulate a specification so as to

allow arbitrariness of values within the suffix of the witness behavior, without

compromises to what we can specify.

However, there are other factors to consider too. In order to mechanize the

computation of a closure, we have to eliminate a temporal existential quantifier

(∃∃∃∃∃∃). This elimination typically involves some reachability analysis (unless we

are given a safety property, or a property as the conjunction of a machine-

closed pair of a safety and a liveness property). Computing the closure is

necessary for mechanized reasoning about the operator +−▷, whenever any of

its first two arguments is given as a conjunction of two properties that do not

form a machine-closed pair (Section 9.1).

Semantic methods (BDDs, enumeration, etc.) are more automated than syn-

tactic methods (theorem proving) so we assume that a semantic method is

used to compute the closure of G when given as a machine-unclosed pair of

formulas. In order to compute the closure Cl(G), a semantic method needs

132

∧EnvNext

behavior
x ′ ̸= x

∃∃∃∃∃∃ u, v

∧¬EnvNext
∧SysNext ∧SysNext ∧EnvNext

∧SysNext
y′ = y

enabled SysNextenabled SysNext

¬enabled SysNext

Figure 9.5: How 2[SysNext]y within +−▷ allows the component to restore
enabledness within the tail of the behavior that witnesses temporal quantifi-
cation ∃∃∃∃∃∃ , even after environment glitches, but at the cost of underspecification.
(For example, by allowing arbitrary environment glitches to occur in the tail
of the witness behavior. The component can exploit this to exhibit undesired
behavior in the unhidden part of the witness behavior.)

to interpret all the variables that occur in G (with the exception of G written

in suitable syntactic form [7], and using a syntactic method). So G should

be a bounded formula (∆0 [100]), i.e., a closed-system (with respect to rele-

vant variables). Thus, a property G that leaves the environment variable a

unconstrained is inconvenient for computing the closure mechanically.

One way to relax a property of the form A +−▷ G in order to make it realizable

is to by allowing the component to stutter y

G
∆
= Init ∧2[N]y ∧ L

This stuttering subscript allows A-steps, with

A
∆
= (x ′ ̸= x) ∧ (y ′ = y),

from states where ¬enabled N back to states where enabled N . This speci-

fication style alows the component to restore the environment to a helpful state

after glitches, as shown in Fig. 9.5. However, it also allows “wild” behavior

of x within ∃∃∃∃∃∃ . The possibility of wild behavior is relevant because the sys-

tem could exploit it to prevent the environment from satisfying its liveness

specification, or its safety specification.

9.4.2 The Unzip operator

Inventing an assumption and a guarantee that fit together as the specifier

intends is an error-prone and time consuming process. Even worse, many

times the resulting specification means something different than the specifier

wants, in subtle ways. Recognizing mistakes in open-system specifications

133

is more difficult than reasoning about closed-system specifications. For this

reason, we propose an approach for transforming a closed-system specification

into an open-system specification.

The Unzip operator (defined in Section 4.2.2) can be expressed in raw TLA+

with past operators as follows21

theorem
assume

variable x , variable y ,

constant I (,),

constant N (,),

temporal L(,)

prove
let

P(u, v)
∆
= ∧ I (u, v) ∧ L(u, v)

∧2[N (u, v , u ′, v ′)]⟨u, v⟩

EnvNext
∆
= [∃ r : N (x , y , x ′, r)]x

SysNext
∆
= [∃ r : N (x , y , r , y ′)]y

Next
∆
= [N (x , y , x ′, y ′)]⟨x , y⟩

Raw
∆
=

∧ ∃ p : I (p, y)

∧ ∨ ¬∃ q : I (x , q)

∨ ∧ I (x , y)

∧2 ∨ ¬Earlier(EnvNext)
∨ SysNext ∧ Earlier(Next)

∧ (2EnvNext) ⇒ L(x , y)

in

Unzip(P , x , y) ≡ Raw

The proof applies twice the transformation of WhilePlusHalf to stepwise form

within PastRTLA+.

Practical benefits TLA aids the specifier via syntactic constructs that en-

sure intended properties (stutter-invariance via [A]v , machine-closure via WF

and SF). The Unzip operator aligns with this approach (e.g., it prevents

the component from leading the environment to a deadend). For example,

21 A proof is in the module WhilePlusHalfTheorems.

134

Unzip(false, . . .) ≡ false (so unrealizable), which prevents accidental “vacu-

ity”.

TLA helps the specifier also by reducing reasoning about temporal formulas

to reasoning about actions, when possible [112, author’s abstract, Sec. 6 on

p. 20], [114, Sec. 6.1.3 on p. 891], [11, Sec. 4.1 on p. 253]. In this direction

of simplifying reasoning, Unzip reduces writing the specification of an open-

system to writing the specification of a closed-system. For example, we need

not decide how to split the specification into two arguments (of course, we still

need to include sufficient constraints).

Remark 14. Unzip(P) avoids trivial realizability, because there is no way to

block the environment. That Cl(P) implies the assumption, together with the

fact that we are weakening ∃y ′ : Next , ensure that the component cannot

block the environment. If P is satisfiable, then within Unzip, the argument

A(u, v) to WhilePlusHalf (Section 4.2.2) is realizable. (This also addresses the

question of whether satisfiability or realizability should be used for defining

vacuity.)

(∃ u : Next(x , y , u, y ′)) ⇒
(∃ v : ∃ u : Next(x , y , u, v)) ⇒
(∃ u : ∃ v : Next(x , y , u, v)) ⇒
enabled ∃ v : Next(x , y , x ′, v) ⇒
enabled EnvNext(x , y , x ′)

So the component cannot force a behavior where 3⟨¬EnvNext(x , y , x ′)⟩⟨x ,y ⟩,
without first disabling SysNext . In other words, the system cannot block the

assembly before the environment does. □

Regarding closure of the assumption The operator Unzip is defined

using as assumption the property A ≜ WPH (P ,P , y , x), which is a safety

property, because, with C (u, v) ≜ Cl(P , u, v)

A ≡ WPH (C ,C , y , x) ∧ (P ⇒ P) ≡ WPH (C ,C , y , x) ≡ Cl(A).

Thus, we need not compute a closure for the assumption A.

9.5 System factorization

9.5.1 Inessential noninterleaving

In developing the algorithm for hiding variables in Section 5.3, we used the

operator Step (defined in Section 3.4). In Section 5.2 we applied existential

135

quantification to define the component actions SysNext and EnvNext from the

action WNext of the closure W of the property Assembly that describes the

assembled system. For simplicity, in this section we let Next stand for WNext ,

and Assembly for W (equivalently, we assume that Assembly is expressed with

a machine-closed representation).

The operator Step corresponds to realizability of properties defined using

WhilePlus , and the operator GeneralStep (defined in Section 3.4) to realizabil-

ity of properties defined using WhilePlusHalf . This correspondence becomes

evident by the stepwise forms of these operators, derived in Sections 9.3.2

and 9.4.2.

As we remarked in Section 5.2, the Step operator with the component ac-

tions SysNext and EnvNext corresponds to applying Unzip to the property

Assembly . We justified this observation in Section 5.2 by assuming that only

limited noninterleaving is allowed for the environment. In particular, we as-

sumed that the environment can change in only a unique way in steps that the

component changes, with a deterministic scheduler as an example. We now

prove this claim, as follows. Let

ExistsUnique(P())
∆
= ∧ ∃ u : P(u)

∧ ∀ u, v : (P(u) ∧ P(v)) ⇒ (u = v)

The following theorem expresses that, uder the assumption that the environ-

ment changes in a unique way in system turns, then if both of the actions

SysNext and EnvNext hold, so does the action Next .22

theorem InessentialNoninterleaving
∆
=

assume

variable x , variable y , constant Inv(,),

constant SysTurn(,), constant Next(, , ,),

let SysNext(p, q , v)
∆
= ∃ u : Next(p, q , u, v)

EnvNext(p, q , u)
∆
= ∃ v : Next(p, q , u, v)

in

∧ ∨ ¬(SysTurn(x , y) ∧ Inv(x , y))

∨ ExistsUnique(lambda r : EnvNext(x , y , r))

∧ SysNext(x , y , y ′) ∧ EnvNext(x , y , x ′)

prove

22 The module Unzip contains a proof of the theorem InessentialNoninterleaving and of
other theorems in this section.

136

∨ ¬ ∧ SysTurn(x , y)

∧ Inv(x , y)

∨ Next(x , y , x ′, y ′)

9.5.2 General case of noninterleaving specifications

We now address the case when the property Assembly is an arbitrary non-

interleaving specification. Specifically, we show that a component defined as

Unzip(Assembly , x , y), which would require using the GeneralStep operator,

has the same implementations as a component specified by Unzip(New), where

the operator Step can be used for the property New , instead of the operator

GeneralStep. This result allows applying the decomposition results of Chap-

ter 6 to noninterleaving assembly specifications, provided that the assembly

specification is first transformed from Assembly to New .

This transformation removes what we call the “non-Cartesian” part from the

action Next of Assembly , because this part is unrealizable by a Moore compo-

nent (due to constraints between x ′ and y ′).

The starting point for noninterleaving specifications is

theorem CPreSimplerByConjunctivity
∆
=

assume

new Next , new SysNext , new EnvNext , new Target ,

Next ≡ (SysNext ∧ EnvNext) Conjunctivity

prove

(∧ SysNext

∧ EnvNext ⇒ Target)

≡
(∧ SysNext

∧ EnvNext ⇒ ∧ Next

∧ Target)

Therefore, whenever Next is the conjunction of SysNext and EnvNext , we can

replace the GeneralStep operator with the Step operator. When do the actions

SysNext ,EnvNext satisfy the above assumption?

For arbitrary SysNext ,EnvNext there is not much we can say, unless

Next(x , y , x ′, y ′)
∆
= SysNext(x , y , y ′) ∧ EnvNext(x , y , x ′)

137

To see why, consider the case that we are interested in

SysNext(p, q , v)
∆
= ∃u : SomeNext(p, q , u, v).

By the definition of Next ,

(∃u : Next(x , y , u, v)) ≡ (SysNext(x , y , v) ∧ ∃u : EnvNext(x , y , u)).

So it is not necessarily the case that SysNext(x , y , v) ≡ ∃u : Next(x , y , u, v).

For this reason, we focus on the case that we are interested in:

SysNext(p, q , u, v)
∆
= ∃ u : Next(p, q , u, v)

EnvNext(p, q , u, v)
∆
= ∃ v : Next(p, q , u, v)

This case corresponds to actions that occur within Unzip (whereas the pair

Next , SysNext occurs in any instance of WhilePlusHalf).

We call Cartesian an action Next that satisfies the formula

Next ≡ ((∃x ′ : Next) ∧ (∃y ′ : Next)).

For example, this formula is false with Next ≜ x ′ = y ′.

We show below that we can always transform a property Unzip(P) to a prop-

erty Unzip(NewP), so that both properties have the same implementations.

The resulting actions EnvNext and SysNext are Cartesian, and constrain x ′

and y ′, respectively.

Conjunctivity ((EnvNext ∧ SysNext) ≡ Next) is insufficient to ensure that

Next is Cartesian. In addition, the actions EnvNext and SysNext need to be

enabled at the same states, and depend on only x ′ and y ′, respectively.

Assume that SysNext(x , y , y ′) and EnvNext(x , y , x ′) (dependence only on y ′

and x ′, respectively). Then, by letting

NewNext
∆
= SysNext ∧ EnvNext

∃ x ′ : NewNext ≡ ∃ x ′ : (SysNext ∧ EnvNext)

≡ SysNext ∧ ∃ x ′ : EnvNext

≡ SysNext ∧ enabled EnvNext

∃ y ′ : NewNext ≡ ∃ y ′ : (SysNext ∧ EnvNext)

≡ EnvNext ∧ ∃ y ′ : SysNext

≡ EnvNext ∧ enabled SysNext

138

So whether |= SysNext ≡ ∃x ′ : NewNext depends on whether |= (∃y ′ :

SysNext) ⇒ (∃x ′ : EnvNext). Similarly, whether |= EnvNext ≡ ∃y ′ :

NewNext depends on whether |= (∃x ′ : EnvNext) ⇒ (∃y ′ : SysNext). Over-

all, the condition is same enabledness:

(∃x ′ : EnvNext(x , y , x ′)) ≡ (∃y ′ : SysNext(x , y , y ′))

which can be expressed as

(enabled EnvNext(x , y , x ′)) ≡ (enabled SysNext(x , y , y ′)).

We arrive at the following theorem

theorem EquienablednessImpliesCartesianity
∆
=

assume
variable x , variable y ,

constant EnvNext(, ,),

constant SysNext(, ,),

(∃ u : EnvNext(x , y , u)) ≡ ∃ v : SysNext(x , y , v)

prove

The proof goal says that NewNext is Cartesian.

let

NewNext(p, q , u, v)
∆
= ∧ EnvNext(x , y , u)

∧ SysNext(x , y , v)

in

∧ SysNext(x , y , y ′) ≡ ∃ u : NewNext(x , y , u, y ′)

∧ EnvNext(x , y , x ′) ≡ ∃ v : NewNext(x , y , x ′, v)

Actions EnvNext ,SysNext that result from Unzip are enabled at the same states.

proposition EquiEnablednessFromUnzip
∆
=

assume
variable x , variable y ,

constant Next(, , ,),

constant SysNext(, ,),

constant EnvNext(, ,),

∧ ∀ v : SysNext(x , y , v) ≡ ∃ u : Next(x , y , u, v)

∧ ∀ u : EnvNext(x , y , u) ≡ ∃ v : Next(x , y , u, v)

prove

(∃ u : EnvNext(x , y , u)) ≡ ∃ v : SysNext(x , y , v)

139

corollary
assume

variable x , variable y ,

constant Next(, , ,),

constant SysNext(, ,),

constant EnvNext(, ,),

∧ ∀ v : SysNext(x , y , v) ≡ ∃ u : Next(x , y , u, v)

∧ ∀ u : EnvNext(x , y , u) ≡ ∃ v : Next(x , y , u, v)

prove
let

NewNext(p, q , u, v)
∆
= ∧ EnvNext(x , y , u)

∧ SysNext(x , y , v)

in

∧ SysNext(x , y , y ′) ≡ ∃ u : NewNext(x , y , u, y ′)

∧ EnvNext(x , y , x ′) ≡ ∃ v : NewNext(x , y , x ′, v)

By this theorem, given two actions that constrain x ′, y ′, we need to “balance”

their enabledness. Using the above results, we arrive at the following “sub-

traction” of unrealizable steps from the action Next .

corollary
assume

variable x , variable y ,

constant Next(, , ,)

prove
let

The operators SysNext and EnvNext are already “balanced”, but may not imply Next when

conjoined. This is why we have to do the factorization as the next theorem below.

SysNext(p, q , v)
∆
= ∃ u : Next(p, q , u, v)

EnvNext(p, q , u)
∆
= ∃ v : Next(p, q , u, v)

NewNext(p, q , u, v)
∆
=

∧ SysNext(x , y , v)

∧ EnvNext(x , y , u)

NewNext is conjunctive and Cartesian, so the controllable step operator is simpler when we

apply Unzip to a property defined using NewNext .

in

∧ SysNext(x , y , y ′) = ∃ u : NewNext(x , y , u, y ′)

∧ EnvNext(x , y , x ′) = ∃ v : NewNext(x , y , x ′, v)
theorem SeparatingTheRealizablePart

∆
=

140

assume
variable x , variable y ,

constant Next(, , ,),

constant Target(,),

constant EnvNext(, ,),

constant SysNext(, ,),

(enabled SysNext(x , y , y ′)) ⇒ enabled EnvNext(x , y , x ′)

prove
let

NewNext(u, v)
∆
=

∧ SysNext(x , y , v) ∧ EnvNext(x , y , u)

∧ ∀w : EnvNext(x , y , w) ⇒ Next(x , y , w , v)

The second conjunct shrinks the first in order to ensure receptivity at those states.

NewSysNext(v)
∆
= ∃ u : NewNext(u, v)

NewEnvNext(u)
∆
= ∃ v : NewNext(u, v)

A
∆
= ∃ v :

∧ SysNext(x , y , v)

∧ ∀ u : EnvNext(x , y , u) ⇒ ∧ Next(x , y , u, v)

∧ Target(u, v)

B
∆
= ∃ v :

∧ NewSysNext(v)

∧ ∀ u : NewEnvNext(u) ⇒ ∧ NewNext(u, v)

∧ Target(x ′, v)

C
∆
= ∃ v :

∧ NewSysNext(v)

∧ ∀ u : NewEnvNext(u) ⇒ Target(u, v)

in

∧ NewNext(x ′, y ′) ⇒ Next(x , y , x ′, y ′)

∧ A ≡ B

∧ A ≡ C

∧ NewNext(x ′, y ′) ≡ (NewSysNext(y ′) ∧ NewEnvNext(x ′))

corollary
assume

variable p, variable q ,

constant Next(, , ,),

141

constant Target(,)

prove
let

SysNext(x , y , v)
∆
= ∃ u : Next(x , y , u, v)

EnvNext(x , y , u)
∆
= ∃ v : Next(x , y , u, v)

NewNext(x , y , u, v)
∆
=

∧ SysNext(x , y , v) ∧ EnvNext(x , y , u)

∧ ∀w : EnvNext(x , y , w) ⇒ Next(x , y , w , v)

NewSysNext(x , y , v)
∆
= ∃ u : NewNext(x , y , u, v)

NewEnvNext(x , y , u)
∆
= ∃ v : NewNext(x , y , u, v)

A(x , y)
∆
= ∃ v : ∀ u :

∧ SysNext(x , y , v)

∧ EnvNext(x , y , u) ⇒ ∧ Next(x , y , u, v)

∧ Target(u, v)

in

∧ NewNext(p, q , p ′, q ′) ⇒ Next(p, q , p ′, q ′)

Conjunctivity and Cartesianity

∧ NewNext(p, q , p ′, q ′)

≡ ∧ NewSysNext(p, q , q ′)

∧ NewEnvNext(p, q , p ′)

∧ A(p, q) ≡ ∃ v : ∀ u :

∧ NewSysNext(p, q , v)

∧ NewEnvNext(p, q , u) ⇒ ∧ NewNext(p, q , u, v)

∧ Target(u, v)

∧ A(p, q) ≡ ∃ v : ∀ u :

∧ NewSysNext(p, q , v)

∧ NewEnvNext(p, q , u) ⇒ Target(u, v)

Thus, we can always transform an Unzip property so that the generator closed-

system property is Cartesian, without changing the realizable part. In other

words, if P ≜ I ∧ 2[Next]vars is used to define an open-system using Unzip,

then even if the action Next includes noninterleaving changes where variables

of more than two components change in a coupled way, then the coupling is

unrealizable unless Cartesian.

142

Table 9.1: Controllable step operators.

Strategy

Implication Moore Mealy

UpToNow

∃ y ′ : ∀ x ′ :

EnvNext ⇒ ∧ SysNext

∧ Target

∀ x ′ : ∃ y ′ :

EnvNext ⇒ ∧ SysNext

∧ Target

Earlier

∃ y ′ : ∀ x ′ :

∧ SysNext

∧ EnvNext ⇒ Target

∀ x ′ : ∃ y ′ :

∧ SysNext

∧ EnvNext ⇒ Target

By showing that the realizable part remains unchanged when we remove the

non-Cartesian part from a system, we have shown that there is no loss of

generality in assuming that we are given a system with Cartesian action.

In summary, conjunctivity (Next ≡ (SysNext ∧ EnvNext)) is useful for using

the Step operator in place of GeneralStep (see the theorem CPreSimplerBy-

Conjunctivity. A Cartesian action (Next ≡ ((∃x ′ : Next) ∧ (∃y ′ : Next)))

is useful for ensuring conjunctivity in the case of open-system properties that

are defined using the operator Unzip.

9.6 Composition without circularity

9.6.1 Stepping

Four ways of specifying how an open-system interacts with the world arise

when we try to avoid circularity, shown in Table 9.1. They result as a combi-

nation of two choices:

1. Whether the component chooses y ′ knowing the value x ′ (“Mealy”), or

not (“Moore”).

2. How soon after the environment fails is the component allowed to fail:

a) Can fail as soon as the environment fails

2(UpToNow(EnvNext) ⇒ SysNext)

b) May fail only after the environment fails

2(Earlier(EnvNext) ⇒ SysNext)

143

The component controls variable y and the environment variable x . In this

section we discuss using RTLA+. Below we show that each combination means

something different. The temporal formulas relate to each other by

let P
∆
= UpToNow(EnvNext) ⇒ SysNext

Q
∆
= (EnvNext ∧ Earlier(EnvNext)) ⇒ SysNext

in P ≡ Q

Tsay [183] calls UpToNow “weak” and Earlier “strong” assume-guarantee

specifications. We can also observe that these correpond to causal and strictly

causal systems. Another comparison worth observing is

∧ SysNext

∧ EnvNext ⇒ Target

versus

(EnvNext ⇒ (SysNext ∧ Target)) ≡ ∧ EnvNext ⇒ SysNext

∧ EnvNext ⇒ Target

The order of quantifiers in Table 9.1 corresponds to whether a Moore strategy

(∃y ′ : ∀x ′) or a Mealy strategy (∀x ′ : ∃y ′) is used.

9.6.2 Comparing steps

Let

Step(EnvNext , SysNext)
∆
= Moore,Earlier

∃ y ′ : ∀ x ′ : ∧ SysNext

∧ EnvNext ⇒ Target

StepU (EnvNext , SysNext)
∆
= Moore,UpToNow

∃ y ′ : ∀ x ′ : EnvNext ⇒ ∧ SysNext

∧ Target

StepAE (EnvNext , SysNext)
∆
= Mealy ,Earlier

∀ x ′ : ∃ y ′ : ∧ SysNext

∧ EnvNext ⇒ Target

StepAEU (EnvNext , SysNext)
∆
= Mealy ,UpToNow

∀ x ′ : ∃ y ′ : EnvNext ⇒ ∧ SysNext

∧ Target

We show with a few examples why Step is the only operator that does not lead

to circular dependency of components. This conclusion follows from requiring

symmetry, i.e., that all components are Moore and specified in the same style.

144

Otherwise, heterogeneous collections of specifications can be used to avoid

circularity. However, heterogeneity means additional complexity, translations

of formulas (repriming) when comparing assumptions of one component to

guarantees of another component, and so likely more errors.

There are two levels to consider:

1. What we can deduce from the specifications only. This is useful because

we can work without involving lower-level details, in particular we don’t

need to reason about alternating quantifiers in order to tease more con-

clusions out of the problem description. This level means considering

Earlier or UpToNow . It ignores whether the implementation is Mealy

or Moore, unless quantifiers appear in the temporal specification (as is

the case with Unzip).

2. Both of specification and realizability definition are taken into account

(so Earlier or UpToNow together with Mealy or Moore). In this way we

can deduce more at the expense of reasoning about quantifiers.

For each case we first consider the specification level (which does not distin-

guish between Mealy or Moore, so at that level we can prove the same things

about SpecU and SpecAEU). Then we consider the implementation level too.

9.6.2.1 Up to now

Let

NextA
∆
= x ′ = 1

NextB
∆
= y ′ = 1

NA
∆
= UpToNow(NextB) ⇒ NextA

NB
∆
= UpToNow(NextA) ⇒ NextB

A
∆
= 2NA

B
∆
= 2NB

Even if both components implement their specifications, we cannot deduce

that the assembly implements 2(NextA ∧ NextB)

2(¬NextA ∧ ¬NextB) ⇒ (A ∧ B)

(For example, 2((x ′ = −5) ∧ (y ′ = −5)) ⇒ 2(¬NextA ∧ ¬NextB). Clearly

̸|= (A ∧ B) ⇒ 2(NextA ∧NextB).) This failure is because UpToNow allows a

145

step that satisfies NA ∧ NB to violate both actions NextA and NextB . This

possibility becomes evident by rewriting as

(NA ∧ NB) ≡ ∧ (NextA ∧ Earlier(NextB)) ⇒ NextB

∧ (NextB ∧ Earlier(NextA)) ⇒ NextA

So we cannot deduce anything useful from specifications of the UpToNow form.

The reader will object that StepU is stronger than StepAEU . This is true,

so by considering the implementation level we can deduce more about Moore

components that implement the same UpToNow property. The circularity

above arises because component A can pick an x ′ that violates action NextA

in the same step that component B picks a y ′ that violates action NextB . This

is possible for Mealy components because A’s choice of x ′ depends on y ′ and

B’s choice of y ′ depends on x ′. This dependence is formalized by including

these variables as arguments of the next-step functions that implement A and

B. What it means is that we assume components A and B will be able to

communicate within the same step (intrastep communication).

9.6.2.2 Moore and up to now

But a Moore component A cannot depend on y ′, nor can a Moore component

B depend on x ′. Does StepU avoid the unistep failure that UpToNow does?

Only in part. Moore components cannot pick x ′ and y ′ simultaneously in a

way that violates both NextA and NextB , but only if not both components

are unblocked.

What StepU still allows is two Moore components being blocked in the same

behavior state (“simultaneously”–remember this is not physical time). So two

components becoming blocked in the same step. The last example does not

demonstrate this situation, but the next one does.

NextA
∆
= (x = 1) ∧ (x ′ = 1)

NextB
∆
= (y = 1) ∧ (y ′ = 1)

NA
∆
= UpToNow(NextB) ⇒ NextA

NB
∆
= UpToNow(NextA) ⇒ NextB

A
∆
= 2NA

B
∆
= 2NB

Two Moore components that implement A and B can start from any state

that satisfies (x ̸= 1) ∧ (y ̸= 1), and behave arbitrarily. Though from a

146

state that satisfies (x = 1) ∧ (y = 1) the assembly does imply the invariant

(x = 1) ∧ (y = 1). In more detail

StepA
∆
= ∃ x ′ : ∀ y ′ : ∨ ¬((y = 1) ∧ (y ′ = 1))

∨ (x = 1) ∧ (x ′ = 1)

≡ ∃ x ′ : (y = 1) ⇒ ((x = 1) ∧ (x ′ = 1))

StepB
∆
= ∃ y ′ : ∀ x ′ : ∨ ¬((x = 1) ∧ (x ′ = 1))

∨ (y = 1) ∧ (x ′ = 1)

≡ ∃ y ′ : (x = 1) ⇒ ((y = 1) ∧ (y ′ = 1))

A remedy is to conjoin initial conditions

InitA
∆
= x = 1

InitB
∆
= y = 1

NextA
∆
= (x = 1) ∧ (x ′ = 1)

NextB
∆
= (y = 1) ∧ (y ′ = 1)

NA
∆
= UpToNow(NextB) ⇒ NextA

NB
∆
= UpToNow(NextA) ⇒ NextB

NewA
∆
= InitA ∧2NA

NewB
∆
= InitB ∧2NB

The assembly of Moore components that implement NewA and NewB does

imply the invariant (x = 1) ∧ (y = 1). So the result we obtain in this way

is as good as we can obtain with specifications that use Earlier instead of

UpToNow . What advantage does Step have over StepU ?

The operator Step corresponds to a specification that uses Earlier . So we

can prove properties of the assembly by working only with the specification.

In contrast, using UpToNow (so StepU), we must take into account that the

components are Moore (via the definition of realizability, thus at the cost

of reasoning about alternating quantifiers). Later we will compare Step and

StepU in more detail.

Surprises by Moore and up to now Even with initial conditions, UpToNow

can unexpectedly allow circularity. Consider the specification

InitA
∆
= x = 1

InitB
∆
= y = 1

NextA
∆
= (x = 1) ∧ (x ′ ∈ 1 . . 2)

147

NextB
∆
= (y = 1) ∧ (y ′ ∈ 1 . . 2)

NA
∆
= UpToNow(NextB) ⇒ NextA

NB
∆
= UpToNow(NextA) ⇒ NextB

A
∆
= InitA ∧2NA

B
∆
= InitB ∧2NB

Thinking in terms of the closed-systems

ClosedA
∆
= InitA ∧2NextA

ClosedB
∆
= InitB ∧2NextB

one would expect that (A ∧ B) ⇒ 2(NextA ∧ NextB). This is not the case.

Starting from a state that satisfies InitA ∧ InitB , a Moore component A can

pick x ′ = 2 and a Moore component B can pick y ′ = 2. Both satisfy NextA

and NextB . The second state satisfies (x = 2) ∧ (y = 2). From the second

state onwards ¬UpToNow(NextA) ∧ ¬UpToNow(NextB) (because the con-

juncts (x = 1) of NextA and (y = 1) of NextB are unsatisfiable in the second

state). So the assembly can behave arbitrarily after the second state. In

contrast, the specifications

NAPlus
∆
= Earlier(NextB) ⇒ NextA

NBPlus
∆
= Earlier(NextA) ⇒ NextB

APlus
∆
= InitA ∧2NAPlus

BPlus
∆
= InitB ∧2NBPlus

do not allow any circularity to arise, and are realizable by two Moore compo-

nents. The assembly of Moore components that realize APlus and BPlus does

imply the invariant (x = 1) ∧ (y = 1).

9.6.2.3 What about primed environment variables in the system

action

The presence of ∀x ′ within Step means that if SysNext depends on x ′, then

that dependence is erased. It must be the case that SysNext is satisfiable by

some choice of y ′ for any arbitrary x ′. This limitation may appear severe.

Two observations show it is not.

A specification of the form

StepwiseImpl(EnvNext , SysNext)
∆
= 2(Earlier(EnvNext) ⇒ SysNext)

is implemented as a Moore component using Step. If x ′ occurs in SysNext ,

then we can show that this presence of x ′ is inessential, in the sense that we can

148

write the realizable behaviors allowed by this property using the same operator

(StepwiseImpl) together with different arguments (EnvNext and SysNext).

∃ v : ∀ u : ∧ SysNext(x , y , u, v)

∧ EnvNext(x , y , u, v) ⇒ Target(u, v)

≡
∃ v : ∧ ∀ u : SysNext(x , y , u, v)

∧ ∀ u : EnvNext(x , y , u, v) ⇒ Target(u, v)

≡
∃ v : ∧ ∀R : SysNext(x , y , R, v) define this as NewSysNext

∧ ∀ u : EnvNext(x , y , u, v) ⇒ Target(u, v)

≡
∃ v : ∧ NewSysNext(x , y , v)

∧ ∀ u : EnvNext(x , y , u, v) ⇒ Target(u, v)

≡
∃ v : ∧ ∀ u : NewSysNext(x , y , v)

∧ ∀ u : EnvNext(x , y , u, v) ⇒ Target(u, v)

≡
∃ v : ∀ u : ∧ NewSysNext(x , y , v)

∧ EnvNext(x , y , u, v) ⇒ Target(u, v)

Thus we lose no expresiveness by restricting to specifications with action

SysNext that has no occurrence of x ′. This observation applies when we

consider only specifications that can be written using Earlier and a Moore

component. What about the more general case?

In general, a Moore component cannot react to x ′, so dependence of the choice

y ′ on what x ′ will be leads to unrealizability [66]. This issue arises due to

unbounded quantification. A quantifier bound is necessary, and this bound

takes the form of EnvNext . However, as we saw earlier, EnvNext as antecedent

leads to circularity at the specification level (i.e., it is too lax). For this reason

we want to have a conjunct that is unconditional (as we do with SysNext

within Step). But what possibilities exist in between these two extremes?

Combining these two alternatives, we arrive at the step operator

StepHalf (EnvNext , SysNextImmediate, SysNextLater)
∆
=

∧ SysNextImmediate

∧ EnvNext ⇒ ∧ SysNextLater

∧ Target

149

The action SysNextImmediate cannot mention x ′ in any essential way (any such

mention is unrealizable, and can be rewritten with another SysNextImmediate

that does not mention x ′, as we showed above). The action SysNextLater can

mention x ′. It seems that we have more “degrees of freedom” with such an op-

erator (this operator actually corresponds to Unzip when SysNextImmediate ≡
∃x ′ : SysNextLater). Is it so; in other words can we express more with this

step operator than what we can using Step?

No. Whatever we can write with StepHalf is expressible with Step, by ap-

propriately defining the action SysNext (we show this below). Let us express

StepHalf using Step. Define

SysNext
∆
= ∧ SysNextImmediate

∧ EnvNext ⇒ SysNextLater

and rewrite as follows

StepHalf (EnvNext , SysNextImmediate, SysNextLater)

≡ ∧ SysNextImmediate

∧ EnvNext ⇒ SysNextLater

∧ EnvNext ⇒ Target

≡ ∧ SysNext

∧ EnvNext ⇒ Target

≡ Step(EnvNext , SysNext)

This proves that we can write any Moore interaction that we are interested in

a specification form that uses Earlier only, and so use Step. The importance

is that we can use the same solvers for synthesis (which are based on Step),

after a suitable initial preprocessing of the component actions.

The part that is removed above is called the non-Cartesian part of the ac-

tions. In other words, the extra freedom that StepHalf specifications allow

expressing is non-Cartesian, thus unrealizable by a Moore component. Only

the Cartesian part is realizable (equiv. the realizable is Cartesian) and any

Cartesian specification can be expressed using Earlier (Step).

Remark 15. Mealy components introduce combinational cycles, unless a mix-

ture of different kinds of components is used [51]. We do not consider this

arrangement, because it is asymmetric [54], and it involves intrastep commu-

nication. □

150

In summary, we answered the question of whether any behavior realizable by a

Moore component is specifiable using Earlier (thus with Step), which requires

that SysNext be independent of x ′.

9.6.2.4 Earlier

Unlike UpToNow , when composing systems specified by Earlier we can deduce

properties of the assembly without encountering circularity.

theorem

assume action NextA, action NextB

prove let

NA
∆
= Earlier(NextB) ⇒ NextA

NB
∆
= Earlier(NextA) ⇒ NextB

A
∆
= 2NA

B
∆
= 2NB

in

(A ∧ B) ⇒ 2(NextA ∧ NextB)

⟨1⟩1. (A ∧ B) ≡ 2(NA ∧ NB)

⟨1⟩ define
NA

∆
= Earlier(NextB) ⇒ NextA

NB
∆
= Earlier(NextA) ⇒ NextB

N
∆
= NA ∧ NB

InvAct
∆
= NextA ∧ NextB

⟨1⟩2. N ≡ ∧ Earlier(NextB) ⇒ NextA

∧ Earlier(NextA) ⇒ NextB

by def N , NA, NB

⟨1⟩3. (2N) ⇒ InvAct

Remember that we use RTLA+in this section, so the inital condition can be an action.

by ⟨1⟩2 def Earlier

⟨1⟩4.2((InvAct ∧ N) ⇒ InvAct)

by ⟨1⟩2 def Earlier

⟨1⟩5. (2N) ⇒ 2(InvAct)

by ⟨1⟩3, ⟨1⟩4
⟨1⟩ qed

by ⟨1⟩5 def N , NA, NB , InvAct

So what is the difference between Mealy and Moore implementations when the

components are specified by Earlier properties?

151

9.6.2.5 Earlier and Mealy

As with UpToNow , we can prove more assembly properties if we consider

Moore components. But the reason is that Moore implementations can be

unrealizable when the same specifications are realizable by Mealy implemen-

tations. So we prove the assembly property (an upper bound) due to a false

antecedent. The separate requirement of realizability fails in this case for the

Moore components (the lower bound).

In other words, Mealy implementations can do more than Moore implementa-

tions (a well-known difference). We can prove the same assembly specifications

from component specifications, but those component specifications can be re-

alizable as Mealy components, and unrealizable as Moore components. This

is how Step differs from StepAE .

Demonstrating this with an example

NextA
∆
= x ′ = y ′

NextB
∆
= y ′ = x ′

These steps are of the StepAE form.

StepA
∆
= ∀ y ′ : ∃ x ′ : ∧ NextA

∧ NextB ⇒ true With true as Target .

≡ ∀ y ′ : ∃ x ′ :

∧ x ′ = y ′

∧ (x ′ = y ′) ⇒ true

≡ true

StepB
∆
= ∀ x ′ : ∃ y ′ : ∧ NextB

∧ NextA ⇒ true

≡ ∀ x ′ : ∃ y ′ :

∧ x ′ = y ′

∧ (x ′ = y ′) ⇒ true

≡ true

This example is the “canonical” non-Cartesian constraint. Realizing a non-

Cartesian constraint requires intrastep communication. Two Mealy compo-

nents can communicate within a single step. So by using Mealy components,

we are not reasoning about steps that involve no communication. Therefore,

circular dependence can arise with Mealy implementations regarding decisions

about the next state of each component.

152

Moreover, refining a single component step into multiple steps can lead to

one component making decisions using information about the future state of

another component, which may be unknown at that point (e.g., due to future

environment noise).

9.6.2.6 Earlier and Moore

The non-Cartesian example is unrealizable by Moore components. So an as-

sembly of two Moore components would implement 2(NextA∧NextB), but no

Moore components exist that implement the specifications2(Earlier(NextB) ⇒
NextA) and 2(Earlier(NextA) ⇒ NextB). In detail

NextA
∆
= x ′ = y ′

NextB
∆
= y ′ = x ′

These steps are of the Step form.

StepA
∆
= ∃ x ′ : ∀ y ′ : ∧ NextA

∧ NextB ⇒ true

≡ ∃ x ′ : ∀ y ′ :

∧ x ′ = y ′

∧ (x ′ = y ′) ⇒ true

≡ false

StepB
∆
= ∃ y ′ : ∀ x ′ : ∧ NextB

∧ NextA ⇒ true

≡ ∃ y ′ : ∀ x ′ :

∧ x ′ = y ′

∧ (x ′ = y ′) ⇒ true

≡ false

Remark 16. The Step operator is more demanding than StepAE . It requires

that the component be able to pick a y ′ that works independently of what x ′

is going to be.

The Mealy versus Moore choice is absent from the specification. It is deter-

mined by what definition of realizability we choose, so what communication

arrangement we assume between the components. □

153

Table 9.2: Comparing Step and StepU . We let E ≜ enabled EnvNext and
S ≜ enabled SysNext .

Step StepU

¬E ¬S false true
S true true

E
¬S false false
S StepU StepU

9.6.3 Comparison of Step to StepU

Algebraic manipulation leads to a simple relation between the quantified sub-

formulas of Step and StepU

∧ SysNext(x , y , y ′)

∧ EnvNext(x , y , x ′) ⇒ Target(x ′, y ′)

≡ ∧ SysNext(x , y , y ′)

∧ EnvNext(x , y , x ′) ⇒ ∧ SysNext(x , y , y ′)

∧ Target(x ′, y ′)

≡ ∧ SysNext(x , y , y ′)

∧ CPreB(x , y)

The relation between Step and StepU is (under the assumption that SysNext

does not depend on x ′)

Step(x , y) ≡ ∧ ∃ y ′ : SysNext(x , y , y ′)

∧ StepU (x , y)

Step differs from StepU only at states where the component is blocked, as

shown in Table 9.2. The Step operator requires that the component remain

unblocked while EnvNext has not been violated by previous steps. The choice

of y ′ should satisfy SysNext independently of x ′, and should lead to Target for

all those x ′ that satisfy EnvNext . Steps that violate EnvNext can be ignored,

because those lead to satisfaction of the specification in the next step.

Due to the circularity example with two blocking Moore components, it is

reasonable to require enabledness:

∃ y ′ : ∧ ∃ x ′ : SysNext(x , y , x ′, y ′) The component should not block.

∧ ∀ x ′ : EnvNext ⇒ ∧ SysNext(x , y , x ′, y ′)

∧ Target

≡

154

∃ y ′ : ∧ ∃ x ′ : SysNext(x , y , x ′, y ′)

∧ ∀ x ′ : EnvNext ⇒ SysNext(x , y , x ′, y ′)

∧ ∀ x ′ : EnvNext ⇒ Target

Define

NewSysNext(x , y , y ′)
∆
=

∧ ∃ x ′ : SysNext(x , y , x ′, y ′)

∧ ∀ x ′ : EnvNext ⇒ Sysnext(x , y , x ′, y ′)

Substitute the definition above

∃ y ′ : ∧ NewSysNext(x , y , y ′)

∧ ∀ x ′ : EnvNext ⇒ Target

≡
∃ y ′ : ∀ x ′ : ∧ NewSysNext(x , y , y ′)

∧ EnvNext ⇒ Target

So even for a SysNext that does contain x ′, after we require enabledness, we can

write the resulting controllable step operator equivalently using Step. Thus,

there is no loss of generality.

Remark 17. Any collection of inter-dependent components needs to include

a Moore component to ensure that circular dependence is avoided. Also, a

suitable combination of While and WhilePlus properties can avoid circular

dependence, but is asymmetric. □

9.7 Hiding history preserves realizability

For a specification that includes history-determined variables, we prove that it

suffices to synthesize an implementation with the history variables unhidden.

More precisely

let

Spec(x , h)
∆
= Prop(x) ∧ History(x , h)

SpecH (x)
∆
= ∃∃∃∃∃∃ h : Spec(x , h)

in

IsRealizable(SpecH) ≡ IsRealizable(Spec)

This result is useful for using temporal synthesis algorithms that do not reason

about ∃∃∃∃∃∃ (for example GR(1) synthesis), and then hiding the history variables,

in order to obtain an implementation for properties that contain temporal

quantification of only history variables.

Hiding history-determined variables [5, Sec. 2.4] preserves realizability, in the

sense that an implementation for Spec also implements SpecH ; after the hidden

155

∃∃∃∃∃∃ h : Realization(f , y ,m) ⇒

Realization(f , y , q ,m)

∃∃∃∃∃∃ h : Φ(y , h)

Φ(y , q)⇒

∃∃∃∃∃∃ h : Realization(f , y ,m) ⇒

Realization(f , y , q ,m)

∃∃∃∃∃∃ h : Phi(y , h)

Φ(y , q)⇒

internalize q

augment output with
unique q-behavior

q matches history-
determined h

hiding a history-determined variable (nearly) preserves implementations

unhiding a history-determined variable preserves realizability

Figure 9.6: Reasoning along the two directions of the proof.

variables are turned into internal variables of the implementation (memory).

Unhiding history-determined variables leads to a realizable specification be-

cause the implementation can simulate such variables using information from

the already visible state.

In the context of GR(1) synthesis To implement a non-GR(1) property

using GR(1) synthesis we need to use the hiding direction–the one that cre-

ates history variables. The unhiding direction is used to ensure that if GR(1)

synthesis decides “unrealizable”, then the non-GR(1) property too is unrealiz-

able. The result of this section formalizes in (raw) TLA+ the observation that

GR(1) synthesis applies to any property specifiable by a deterministic Büchi

automaton [153, p. 378]. The history variable represents the automaton’s node

at each state of a behavior.

An example of a property that is not equirealizable by expressing it in GR(1)

with auxiliary variables is persistence, 32P . The auxiliary variable used to

express persistence is not history-determined, and thus the below theorem does

not apply in that case. For persistence properties, unhiding remains sound,

156

but not necessarily complete.

Hiding and unhiding history-determined variables History-determined

variables exist [5, p. 1551] (see also [66]).

module HistoryDeterminedVar

variable v ,

constant Init(,) corresponds to f in [5, Eq.(4)]

constant Next(, ,) corresponds to g in [5, Eq.(4)]

Hist(h, v)
∆
=

let

N
∆
= ⟨h ′ = Next(h, v , v ′)⟩v

in

∧ h = Init(v)

∧2[N]⟨h, v⟩

Temporal existential quantification below this point in this section is stutter-

sensitive. By the proof of the theorem, it is possible to construct an imple-

mentation of the property PhiH from an implementation of the property Phi .

module RawHistoryDeterminedVar

variable v ,

constant Init(,)

constant Next(, ,)

Hist(h, v)
∆
=

let

N
∆
= h ′ = Next(h, v , v ′)

in

∧ h = Init(v)

∧2N

theorem HistoryExists
∆
= History-determined variables exist

also in raw TLA+, similarly to TLA+ [5].

∀∀∀∀∀∀ v : ∃∃∃∃∃∃ h : Hist(h, v)

theorem RealizingHistory
∆
=

assume

constant finit , constant fnext ,

157

constant Init(,),

temporal Phi(, ,),

let

History(h, x , y)
∆
=

∧ h = finit [x , y]

∧ 2(h ′ = fnext [h, x , y , x ′])

in

∀∀∀∀∀∀ x , y , h : Phi(x , y , h) ⇒ History(h, x , y)

prove
let

I (x , y , h)
∆
= Init(x , y) ∧ (h = finit [x , y])

PhiH (x , y)
∆
= ∃∃∃∃∃∃ h : Phi(x , y , h)

in
The controlled variables are not shown. Phi is realizable with h a controlled variable, and

x is controlled in both cases. Variable y is part of the environment.

IsRealizable(I , Phi) ≡ IsRealizable(Init , PhiH)

9.8 Defining generalized reactivity

Syntax or semantics? A GR(200) formula can happen to be equivalent to a

GR(1) formula. Should we call such a formula GR(1) or GR(200)? Recognizing

that a GR(200) formula is equivalent to some GR(1) formula involves a step

that reasons about equivalence, so this decision costs computation. For this

reason we define “GR(1)” as “GR(1) formulas”; not as “formulas equivalent

to some GR(1) formula”. This definition is syntactic: a schema of formulas

that describe liveness.

As the safety-liveness decomposition of stepwise implication properties indi-

cates, their effect is on the safety part of a property. When a GR(1) formula

occurs within a stepwise implication, it pertains to the liveness part (assuming

machine-closure, otherwise it can determine also the safety part).

The complexity of temporal synthesis is governed by the nesting of fixpoints

(assuming the one-step control problem isn’t more expensive [51]). Catego-

rizing synthesis as GR(k) emphasizes that the liveness subformulas determine

the fixpoint nesting (though in practice computing the controllable step op-

erator becomes a challenge in symbolic methods before the depth of fixpoint

nesting).

158

GR(1) in the literature The syntactic nature of the definition is indi-

cated in the literature by the phrases “class of GR(1) formulas” [153, Eq.(1),

p. 365] and “implication between conjunctions of recurrence formulas” [153,

§3 p. 369]. In the definition of generalized Streett[1] games [90, p. 49], the

winning condition is one generalized Streett pair (formula). The safety part is

defined semantically, using transition relations [90, §2, p. 40], and the model

of computation is by definition interleaving [90, §3.1, p. 44].

9.8.1 Temporal quantification

Hidden variables can be used to record information. If the behavior of a hidden

variable depends only on the past behavior of other variables, then it can be

“revealed” by deleting the temporal quantifier, as described in Section 9.7.

Otherwise an exponential increase in cost occurs (due to a subset construction)

for hidden environment variables that are not history-determined [59]. So in

the presence of quantification the merit of GR(1) synthesis is limited to the

history-determined case.

In order to express quantifier-free non-GR(1) formulas of the form

Orig
∆
= Init ∧2[Next]v ∧ NonGR1Liveness

as quantified formulas in GR(1), we need to introduce an auxiliary variable

New
∆
= ∃∃∃∃∃∃ h : NewInit(h) ∧2[NewNext(h)]⟨v ,h ⟩ ∧GR1Liveness(h)

The history variable h adds state that needs to be reasoned about during syn-

thesis of implementations. So synthesis is implemented with history-determined

variables unhidden. The complexity depends on the number of all variables,

both free and bound.

159

Chapter 10

THE EXISTENCE OF GR(1) CONTRACTS WITH FULL
INFORMATION

10.1 Preserving closure and refining

In this section we investigate whether given a GR(1) property1 φ, a contract

of realizable GR(1) properties φ1, φ2 exists such that conjoining them ensures

φ

(φ1 ∧ φ2) ⇒ φ

and safety not be constrained, i.e., the closure of the conjoined properties be

equivalent to the closure of the assembly property

Cl(φ1 ∧ φ2) ≡ Cl(φ)

The first requirement ensures that a system assembled from components that

implement φ1 and φ2 implements the assembly specification φ. The second

requirement aims to avoid placing premature constraints on component spec-

ifications (i.e., introduce liveness instead of safety constraints). As we show

below, avoiding additional safety constraints has implications on when such a

decomposition is possible.

GR(1) synthesis admits the addition of history-determined variables [3], be-

cause unhiding such variables yields essentially equisynthesizable specifications

[153, 23]. However, history variables also add state. For this reason, we first in-

vestigate whether memoryless contracts exist, i.e., contracts of specifications

over the variables that φ depends on. We show that such contracts do not

always exist, not even for GR(1) games with a single recurrence goal.

We then relax the requirement of remaining within GR(1), and describe a

decomposition algorithm that yields “nested GR(1)” properties, which have

a “request-response” structure. We next show that any such “nested GR(1)”

property is equivalent to a GR(1) property with an auxiliary variable added

(ranging over a set of values at worst linear in the state space—typically small).

1 The requirement of state predicates within recurrence formulas in GR(1) is important
for the results of this section.

160

Thus, we prove that GR(1) contracts exist, albeit at the price of adding history-

determined variables (memory). In other words, stateful GR(1) contracts exist

(unlike memoryless ones).

Even though nested GR(1) properties do not constrain safety, their realizable

part constrains safety, due to the structure of the decomposition algorithm

(and in general this is unavoidable). Therefore, directly constraining safety to

obtain a GR(1) property without adding history variables is not restrictive.

One may wonder what would change if we dropped the requirement

(φ1 ∧ φ2) ⇒ φ.

We would expect that the weakest requirement that may work is to have the

realizable parts R(φ1) and R(φ2) [4, 3, 113] of φ1 and φ2 in their place, i.e.,

(R(φ1) ∧R(φ2)) ⇒ φ.

As we will see below, in absence of logical refinement, the conjunction of

realizable parts does not imply φ. So there is no gain in replacing each φi by

its realizable part.

Our results about the need for memory should not be surprising, in light of

results on the need for auxiliary variables to define refinement mappings [2],

and the inexistence of memoryless strategies for GR(1) games [85].

We discuss the existence of contracts in terms of two properties, but the conclu-

sions have implications for the entire collection of (stepwise) GR(1) formulas.

The safety part is mostly ignored throughout the discussion, because we work

with specific counterexamples in which we leave safety constraints unchanged.

The approach is focused on the case of a specification φ with a single recurrence

goal. Multiple recurrence goals can be handled by first adding a history vari-

able that “chains” them together (equivalently defining a deterministic Büchi

automaton that cycles through the goals), and thus reducing them to a single

recurrence goal. The memory added by such a transformation is as large as

the memory typically added during GR(1) synthesis (linear in the number of

recurrence goals), so there is no loss of generality in such a transformation.

161

G

Attr1(s5 ∨ s6)

Attr0(G)

s2s0 s1 s3 s4 s5 s6

s7

Figure 10.1: Game where a liveness assumption realizable by player 1, and
sufficient for player 0, does not exist. Player 0 (player 1) moves from disks
(boxes).

10.2 Memoryless contracts

10.2.1 One-sided counterexample

The example shown in Fig. 10.1 has the main feature that leads to inexistence

of memoryless GR(1) contracts. The figure shows a game between two play-

ers, each player chooses the outgoing edge from nodes of the same shape. The

objective is to find a GR(1) contract for the two players, so that together they

implement φ ≜ 23s6. We start by trying to find a (generalized) Streett(1)

liveness goal for the disk player that relaxes 23s6, because 23s6 is unrealiz-

able by the disk player. This turns out to be impossible: for each candidate

persistence goal 32P , either

• (32P) ∨23s6 is unrealizable by the disk player, or

• 32P is realizable by the disk player (and, clearly, P contains a cycle that

omits s6—the only P that contains a cycle with s6 includes all nodes, so

is equivalent to true).

In more detail, 23s6 alone is unrealizable. Any P that does not contain any

cycle yields a property (32P)∨23s6 that is equivalent to 23s6 (due to the

safety constraints that represent the game graph). The smallest cycles are

C 1 ≜ {s0, s1} and C 2 ≜ {s2, s3}. Thus any persistence set P that contains a

cycle contains at least one of these two cycles. Thus, whenever (32P)∨23s6

is weaker than 23s6 (so possibly realizable), 32P is realizable too, i.e., the

disk player can choose to remain forever in C 1 or forever in C 2, instead of

repeatedly visiting s6.

More formally (the below proof sketch and the proof in [65] take a different

approach than the outline above)2

2The symbol sr−▷ is shorthand for (2ρe ∧ We)
sr−▷ (2ρs ∧ Ws) ≜ 2

(
(⃝∼2−ρe) ⇒ ρs

)
∧

162

G

Attr1(s5 ∨ s6)

Attr0(G)

s2s0 s1 s3 s4 s5 s6

s7

Figure 10.2: Two-sided counter-example where a GR(1) contract does not
exist. Compare to Fig. 10.1.

Proposition 3. Assume: Define the transition relations ρ0, ρ1 by the game

graph of Fig. 10.1, the set of nodes V ≜ {s0, . . . , s7}, and the goal JGK ≜ {s6}
of player 0. Prove: For all sets JPK ⊆ V , with ψ1 ≜ (2ρ0)

sr−▷
(
2ρ1 ∧23P

)
and ψ0 ≜

(
2ρ1∧23P

)
sr−▷

(
2ρ0∧23G

)
, it is JWin(0, ψ0)K∩JWin(1, ψ1)K = ∅.

Proof Sketch: For any P that does not intersect {s0, . . . , s3}, player 1

cannot win, because player 0 can force, and keep, the play outside of P . For

similar reasons, P should intersect each of {s0, s1} and {s2, s3}. If P intersects

{s0, s1} and {s2, s3}, then player 1 can win by always moving from s4 to s1,

when the play comes to s4. This forces a visit to either both s0 and s1, or

both s2 and s3. So, for no P do both players have a winning strategy. A proof

can be found in [65].

10.2.2 General counterexample

Assigning the goal 23s6 to the box player in Fig. 10.1 reveals that there

is a GR(1) contract (32(s0 ∨ s1 ∨ s2 ∨ s3) ∨ 23s6 for the box player, and

23(s4 ∨ s5 ∨ s6 ∨ s7) for the disk player).

By adding two edges to Fig. 10.1, we obtain the example of Fig. 10.2. There

is no safety-preserving GR(1) contract for this example. A proof sketch is as

follows. Assume that all recurrence goals of both players have the form 23R,

where R contains nodes other than {s6, s7}. If so, then

̸|= (φ1 ∧ φ2) ⇒ φ

because all the recurrence goals in φ1 ∧ φ2 are satisfiable by a behavior that

cycles through all nodes in {s i : i ∈ 0..5}, and forever avoids s6. Similarly,

any nontrivial realizable persistence goal omits s6.

((2ρe ∧We) ⇒ Ws) ≡ (2ρe)
sr−▷

(
2ρs ∧ (Ws ⇒ We)

)
.

163

Thus, at least one component specification, φ1 or φ2, must include 23s6 as a

conjunct (or the equivalent 23(s6 ∨ s7)). So it suffices to reason only about

specifications where either one of the players has the goal 23s6. Additional

recurrence goals only strengthen the specifications, and we split cases by real-

izability of the persistence goals.

The goal 23s6 is unrealizable without a relaxation by persistence goals. Each

relaxation is either unrealizable, or if realizable, then some nontrivial persis-

tence goal is realizable, which avoids s6. The root cause is the same as for the

one-sided example. For the box player, getting past s5 requires assuming that

“waiting” in a set of nodes that includes s5 will lead to an eventual response

by the disk player. However, such a waiting set (persistence goal) would have

to contain {s2, s3, s4}. The box player can remain forever in this set. Similar

observations apply to the disk player. Therefore, a GR(1) contract does not

exist for this example.

The claims of both the one-sided and the two-sided examples for the goal 23s6

assigned to each player have been checked by a machine, using a GR(1) solver

(the Python module omega.games.gr1), and multiple parametric persistence

goals 32P1 ∨ 32P2 ∨ . . . ∨ 32P64 (the parameters are BDD bits that are

not quantified during computations).

10.2.3 What about refinement by realizable parts?

What if we replaced the requirement (φ1∧φ2) ⇒ φ with the corresponding re-

alizable parts? A behavior σ satisfies the realizable part R(φ1) of the property

φ1 if there exists some implementation of φ1 that gives rise to this behavior

(under some environment behavior). We show below that memoryless GR(1)

contracts do not exist even if we relax the requirement in this way, using the

example of Fig. 10.2.

Assume that ̸|= (φ1 ∧ φ2) ⇒ φ but

(R(φ1) ∧R(φ2)) ⇒ φ

(a contract requires realizability, and thus R(φ1) and R(φ2) are not false).

Pick two strategies f , g that realize φ1 and φ2, respectively. If either f or g

realizes a goal 32P that implies 32¬s6, then we are done showing that the

implication fails.

164

G

s2s0 s1 s3 s4 s5 s6

s7

loop that never visits node s6

Figure 10.3: Two strategies that violate φ, thus showing that in case ̸|= (φ1 ∧
φ2) ⇒ φ, conjoining realizable parts does not ensure that φ is implemented.

Otherwise φ1 ∧ φ2 contains recurrence goals that are satisfied by a behavior

that satisfies 32¬s6 (by the assumption above). Construct two new strategies

p, q for each player, by the following procedure:

• Stategy p for the disk player chooses the edge s5 ∧ s ′2 and alternates

between s1 ∧ s ′0 and s1 ∧ s ′2 on each visit to s1, unless for 100 steps the

recurrence goals within φ1 are not visited. If so, then p switches to using

f , otherwise it renews counting steps.

• Strategy q for the box player alternates between s4 ∧ s ′5 and s4 ∧ s ′1 on

each visit to s4, and switches to g under similar conditions to p.

The strategies p and q will never switch to f and g , because the recurrence

goals in φ1 ∧ φ2 are all visited within 100 steps, by visiting all the nodes

{s i : i ∈ 0..5}. Thus
̸|= (R(φ1) ∧R(φ2)) ⇒ φ,

which is a contradiction. In other words, if ̸|= (φ1 ∧ φ2) ⇒ φ, then any two

strategies that implement φ1 and φ2 can happen to “conspire” so that when

assembled, the resulting behavior violates φ, as shown in Fig. 10.3.

165

10.3 Stateful contracts

10.3.1 Nested GR(1)

We proved earlier that memoryless safety-preserving GR(1) contracts need not

always exist. To overcome this limitation, we extend the class of properties

as follows, and then show that these are equivalent to GR(1) properties with

auxiliary history-determined variables added.

Definition 4 (Chain). Let d ∈ Nat ,H k ∈ Nat ,Ξm ∈ Nat. A chain condition

is

∧ ∀m ∈ 1..d : ∀l ∈ 0..Ξm : ∧ Pm−1 ⇒ Qm

∧ ξml ⇒ ¬Pm−1

∧ ∀m ∈ 0..d : ∧ Qm ⇒ Pm

∧ ∀l ∈ 0..Hm : ηml ⇒ (Pm ∧ ¬Qm)

∧ ∀l ∈ Ξm : ξml ⇒ Qm

Definition 5 (Nested GR(1) property [67]). Assuming the chain conditions

of Definition 4 hold, then

φ
∆
= 2

∧
m∈0..d∧ ∨ ¬Pm

∨ ¬
∧

k∈m..d

∧
l∈0..H k

23¬ηkl
∨ 3Qm

∧
(
Qm ⇒

∧
l∈0..Ξm23¬ξml

)
is a nested GR(1) property.

A nested GR(1) property is defined here as a liveness formula. Inserting a live-

ness formula of this form in a stepwise implication operator (+−▷,WhilePlusHalf ,

or some other choice) can yield an open-system property with this type of live-

ness.

A nested GR(1) property can be regarded as a request-response chain, in

analogy to Rabin and Streett chains (parity) [187, p. 13] [178]. Note though

that synthesis for a nested GR(1) property is similar to GR(1), whereas for

parity games it is unknown whether a polynomial time algorithm exists.

10.3.2 A decomposition algorithm

We propose Algorithm 10.5 [67], which takes a recurrence goal G , and con-

structs nested GR(1) specifications for the individual components, forming a

contract that implies 23G . This algorithm assumes that the safety closure of

166

B = Attrk (A)

A = Attrj (g)

g

¬A ∧ B ∧ Trapj (B ,A)

Figure 10.4: Predicates computed by UncondAsm, Algorithm 10.5.

the assembled system has already been taken, in order to constrain the com-

ponent actions (in the full information setting this is always possible [33, 67]).

Theorem 6 ([67, 65]). Assume: A cooperatively realizable specification φ =

23G∧2Next (with component actions that result from closure of φ). Prove:

After O(n |V |2) calls to CPrej , the call GameStack(0,G ,C , stk) in Algo-

rithm 10.5 returns in stk a contract of nested GR(1) properties (with safety

part defined using stepwise implication) that refines φ, and each property is

realizable by the corresponding component from all states in the cooperatively

winning set.

Proof Sketch: Function UncondAsm finds the largest set r from where

player j can keep the play inside the k -attractor of the j -attractor of goal g ,

as shown in Fig. 10.4. This yields an unconditional assumption that player j

makes about player k . Iteration l of the while loop produces an assumption

23¬ηml of player j , with η = trap = r , which is also a guarantee 23¬ξm ′l

by player k , with ξm ′l = trap. The fixpoint ν : µ : µ for computing r in

UncondAsm has alternation depth 1 [60], so it invokes CPre? O(|V |) times.

Due to determinacy [180, 103], and the definition of the cooperatively winning

set C , for every n nested calls of UncondAsm fromGameStack, at least one

call to UncondAsm from within the for loop removes a node from uncovered.

So, GameStack makes O(n |V |2) calls to CPre?. A proof can be found in

[65].

Concurrent [16] and asynchronous [158] games are special cases of games with

partial information, which are not determined, so the inductive argument does

not hold in that case.

Example 8. Let us revisit the example of Fig. 10.1, to observe the algo-

rithm’s execution. Player 0 wants 23G . The first call to GameStack

will call UncondAsm. Player 0 can force a visit to s6 from the attractor

167

Algo. 10.5: Construction of nested GR(1) specification, for a single recurrence
goal G .

def GameStack(j ,G , uncovered , stack) :
trap : = true
goal : = G
stack : = ⟨ ⟩
(* Create unconditional assumptions ηml *)

while (¬ |= trap = false) :
for k ̸= j :
attr , trap : = UncondAsm(j , k , goal)
goal : = attr ∨ trap
assumptions : = assumptions ∪ {⟨k ,23¬trap ⟩}
if ¬ |= trap = false :
break

game : = ⟨j , goal ,G , assumptions ⟩
stack .append(game)
uncovered : = uncovered ∧ ¬goal
(* Covered cooperatively winning set? *)

if |= uncovered = false
return (* Construct a nested game *)

GameStack(j ⊕ n1, goal , uncovered , stack)

def UncondAsm(j , k , g) :
A : = Attr j (g)
B : = Attr k(A)
r : = ¬A ∧ B ∧ Trapj (B ,A)
return A, r

A = Attr 0(s6) = s5∨s6. Player 1 can force A from B = Attr 1(A) = s4∨s5∨s6.
But r = false, because player 1 can escape to s1. So, a nested game is

constructed over s0 ∨ s1 ∨ s2 ∨ s3 ∨ s4, with player 1 wanting 3(s5 ∨ s6).

In the nested game, A = Attr 1(s5 ∨ s6) = s4 ∨ s5 ∨ s6. The attractor

B = Attr 0(s4 ∨ s5 ∨ s6) = true, and player 0 can keep player 1 in there,

until player 0 visits s4 ∨ s5 ∨ s6. So, in the nested game, player 1 makes the

assumption 23¬(s0 ∨ s1 ∨ s2 ∨ s3). This covers the cooperative winning set,

which in this example is the entire game graph. □

168

P1 Q1

P0

Q0

η1,0

η1,1

η0,0

ξ1,1

ξ1,0

Figure 10.6: An example of a chain condition, with states satisfying each pred-
icate depicted by patches. Containment means implication, e.g. |= Q0 ⇒ P0.
Note that Q0 is the desired recurrence goal, so the algorithm never produces
any ξ inside Q0, because we have arrived at the goal.

Pm+1

Qm+1

Pm

Qm

η(m+1)l

ηml

ξ(m+1)l

ξml

Pd

ηdl

Figure 10.7: A chain condition schematically (Fig. 10.6 is a particular in-
stance).

169

10.3.3 Equivalence to GR(1) with linear memory increase via aux-

iliary variables

We prove that nested GR(1) properties can be expressed as GR(1) properties

using an auxiliary hidden variable that ranges over at most d+2 values, where

d in the nesting depth, which is typically small (in the worst case d is bounded

by the number of states). This result shows that the original algorithm still

produces GR(1) properties, which preserve all safe behaviors (although not all

realizable).

Theorem 7 (Flattening nested GR(1) to GR(1)). Assume that φ is a nested

GR(1) formula, and σ a behavior. Prove

(σ |= φ) ≡ σ |= ∃∃∃∃∃∃p : ∧ p = d + 1

∧ 2(p ′ = choose r ∈ 0..(d + 1) :

∧ ∀m ∈ 0..d : ∨ (r ≤ m) ∨Qm

∨ (p > m) ∧ ¬Pm

∧ (r ≤ d) ⇒
(
¬Q r ∧ (P r ∨ (p ≤ r))

)
)

∧ ∨ ¬∀m ∈ 0..d , l ∈ 0..Hm : 23¬ηml

∨ ∧ 23(p = d + 1)

∧ ∀m ∈ 0..d , l ∈ 0..Ξm : 23¬ξml

Finally, we can observe that a nested GR(1) property does not constrain safety

compared to the given assembly property φ, but the realizable part of each

component specification can constrain safety. In particular, “going backwards”

after entering a set of states Pm would lead outside the attractor of Qm (by

construction via the decomposition algorithm), even though the response3Qm

is required by a nested GR(1) property after entering Pm (provided the liveness

assumptions ηkl hold). Therefore, a component realizing such a property would

have to avoid such backwards transitions that exit the attractor of Qm , which

is a safety constraint.

170

Chapter 11

TIME

Time is absent from TLA+ and LTL. Behaviors represent changes, not time.

(TLA+ could also be called the “logic of changes”.) Physical time can be

modeled by a variable (that takes discrete or continuous values throughout a

behavior) [5, 118, 118], [117, Ch.9].

Why is there no time in temporal logic? The main reasons are:

• To abstract away from specifics. If timing is irrelevant to the purpose of

a specification, then it clutters it, reduces readability, and increases the

likelihood of errors.

• To increase reusability. Reusing a component’s design, or replacing one

component by another in a deployed assembly should be insensitive to

timing, unless time is of essence to the application.

• To enable machines reason to about specifications. Timed specifications

involve additional state (in the form of clocks and times) that quickly

leads to intractable reasoning problems.

• To simplify refinement within the object logic. Instead of constraining

how many steps should occur, TLA+ layers a system into different time

scales. We need not count steps, instead liveness ensures that changes

eventually do happen.

Liveness in temporal logic models time flow in the physical world.

Remark 18. The abstraction into time scales hinges on an implicit assump-

tion: that steps in the faster time scale never sum to an amount of time

comparable to the slower time scale. For example, the sum of ALU steps

needed for performing some arithmetic operation may in all cases be negli-

gible compared to the time scale of communicating over a network. If this

assumption does not hold, then liveness is not a good model, and the two time

scales should be merged. The TLA+ approach to time scales is reminiscent of

singular perturbation theory [98]. □

171

We can write timed specifications without liveness in TLA+, despite the

stutter-invariance of properties, by having any nonstuttering step increment

time. However, this approach means that absolute time is tied to change in

lock step with changes of variables at a particular level of refinement [111].

This prevents from letting several “fast” nonstuttering steps to occur between

changes that happen at a slower pace.

11.1 Who controls time?

Time cannot be a variable controlled by any component under design. Allow-

ing a component to control time enables it to force its environment to violate

an assumption, if the assumption contains timing constraints. For example,

if the assumption specifies that the environment eventually responds to some

requests, and that those responses consume time, then a component that con-

trols time can implement a specification with such an assumption by freezing

time. Freezing time freezes the environment, and ensures that the assumption

is violated. This meaning is not what we want when specifying timed systems.

Suppose that the environment controls time. In a specification that abstracts

time from faster time scales, many untimed steps may be prerequisite for a

change that does consume time. The environment can then “race” the clock

ahead, by incrementing it in each behavior step, even though those steps are

in a “fast” time scale. Until the component has taken all the necessary fast

steps, the deadline it was working towards has elapsed. Avoiding this situation

requires using a fine-grain time scale, but that increases the computational

burden.

There is a distinction between measuring time and counting steps. This dis-

tinction gives rise to the above issues of too relaxed and too demanding timed

specifications. In LTL, this situation can be avoided by incrementing time in

each behavior step. However, doing so precludes easy step refinement, as in

TLA+.

Modeling time with stutter-invariant open-system specifications requires using

two variables:

1. A time variable controlled by the environment, which can be thought of

as modeling physical time.

172

2. A variable controlled by the system that can pause time in the slower

time scale.

The situation is symmetric. In summary, some component controls time, but

is allowed to advance time only under agreement by other components. (There

are special cases where time constrains the environment only via safety, not

liveness, and in those cases GR(1) specifications still suffice, but in general we

need to use GR(2).)

What about verification? Time needs to be an environment variable in the

context of synthesis due to the alternation of quantification (∃f : ∀∀∀∀∀∀ x , y , . . .).
In verification quantification is uniform, so the unrealizability issues discussed

above are absent (in other words, in verification the assembled components

are treated as a single entity that allows some behaviors; there is no situation

there of a component freezing time to hinder other components). One example

of timed open-system specifications in a verification context is [5].

11.2 Assuming time does progress

Writing timed assume-guarantee specifications in the presence of alternating

quantification is tricky. A first attempt might be

variables now , env , controlled by the environment

pause, sys controlled by the component

. . . specification . . .

TickHappens
∆
= ⟨true⟩now

UnfreezeTime
∆
= pause = false

Se
∆
= EnvInit ∧2EnvNext

Le
∆
= 2[¬pause]now ∧23TickHappens

Env
∆
= Se ∧ Le

Sm
∆
= SysInit ∧2SysNext

Lm
∆
= ∧23Goal

∧23UnfreezeTime

Sys
∆
= Sm ∧ Lm

WrongSpec
∆
= WhilePlusHalf (Env , Sys)

173

This specification is wrong. Assuming each of the pairs Se,Le and Sm,Lm

is machine-closed, we can shift the liveness to the second argument of While-

PlusHalf to obtain

WrongL
∆
= ∨32¬TickHappens

∨ ∧23Goal

∧23UnfreezeTime

WrongSpec ≡ WhilePlusHalf (Se, Sm ∧Wrong)

A component that satisfies 2(pause = false) does implement this specifica-

tion. Clearly, WrongSpec is not what we want to specify.

Instead, we should require that time flow resumes unconditionally of whether

time flow, as follows

NewL
∆
= ∧23UnfreezeTime

∧ ∨ ¬23TickHappens

∨23Goal

NewLe
∆
= (23UnfreezeTime) ⇒ 23TickHappens

NewLm
∆
= 23Goal ∧23UnfreezeTime

proposition NewL ≡ (NewLe ⇒ NewLm)

Spec
∆
= WhilePlusHalf (Se, Sm ∧ NewL)

The liveness formula NewL is in GR(2), not GR(1). Again assuming machine

closure as needed, we can shift the antecedent to the first argument to obtain

the specification

Spec ≡ WhilePlusHalf (Se ∧ NewLe, Sm ∧ NewLm)

The above reasoning shows that in general timed, stutter-invariant open-

system specifications need to include GR(2) liveness formulas. As a conse-

quence, synthesis from such specifications is more expensive, but nevertheless

low in the temporal hierarchy.

174

Chapter 12

CONCLUSIONS

We developed an approach for decomposing the temporal logic specification of

an assembled system to open-system component specifications that form a con-

tract, in the sense that they are implementable and conjoined imply the given

overall system specification. The decomposition approach relies on generating

liveness requirements for individual components in a way that leads to acyclic

dependencies. In the context of full information, we developed an algorithm

that decomposes any given GR(1) property into GR(1) properties with auxil-

iary variables added, or equivalently to nested GR(1) properties. In order to

hide unnecessary external information from each component, we parametrized

contract construction with respect to the interconnection architecture, and

showed how variables can be eliminated from component specifications. We

investigated under what conditions GR(1) contracts exist, and showed that de-

composition of a GR(1) property into a contract of GR(1) properties in general

leads to introducing safety constraints. We implemented these algorithms in

Python and Cython packages that we developed.

We formalized realizability in TLA+, and used it to define formally the notion

of a contract between components. We defined a closed-system property as

one that implies a type invariant that bounds all variables of interest, and

an open-system property as one that is not closed. We observed that open-

system properties defined using the “while-plus” operator of TLA+ are un-

realizable with our definition of realizability, when not expected. To ensure

realizability in those cases, we defined a variant of the “while-plus” operator,

called WhilePlusHalf . Using the operator WhilePlusHalf , we defined an oper-

ator for forming open-systems from closed-systems, called Unzip. The Unzip

operator has desirable properties related to avoiding accidental vacuity. We

studied stepwise implication operators from the literature, and established re-

lations between forms with and without temporal quantification, the latter

expressed in raw TLA+ with past operators. We showed that in symmetric

systems, Moore components specified by strictly causal stepwise implication

ensure that circularity is avoided.

175

We decompiled the generated specifications from BDDs by using a symbolic

minimal covering algorithm originally proposed for two-level logic minimiza-

tion. We specified in TLA+ the cyclic core computation of this algorithm,

and proved that the specification implies safety properties of interest using a

proof assistant. We implemented this minimal covering algorithm for the case

of integer variables. In addition, we specified and proved correct an algorithm

for constructing the set of minimal covers of the input covering problem from

the set of minimal covers of the cyclic core.

Future directions One direction for future investigation is reducing the

amount of information that is visible to other components in the contracts

that result from decomposition. It is conceivable that the structure of a spec-

ification can be utilized to tractably identify cases where more variables can

be hidden. We described how noninterleaving specifications can be handled.

Noninterleaving, together with hiding can be used to relax the scheduling as-

sumption to specify asynchronous interaction.

The parametric analysis relied on constant parameters. This choice was moti-

vated by the aim to eliminate variables from specifications, by not mentioning

them at all. The same computational approach can be used to design com-

munication strategies that select when to send information, by letting the

constants be variables controlled by components. The strategies can then take

into account factors other than feasibility, for example a cost of communica-

tion.

Another direction is to find whether fewer liveness assumptions suffice. The

current version of the algorithm computes as many traps as it can find, and

each trap is a greatest fixpoint. It may be possible to use smaller traps and still

obtain a contract. One guiding criterion for selecting among different contracts

is whether some of them are expressible with more readable specifications than

others.

The minimal covering problem bridges the gap between semantic methods

and humans, enabling automation without rendering the result unreadable.

Besides the criterion of minimality, there is also the problem of structuring a

specification. As the planar syntax of TLA demonstrates, structuring mecha-

nisms play an important role, so identifying structure automatically is key for

humans to understand what a machine computes.

176

Appendix A

SUPPLEMENTAL MATERIAL: PROOFS AND METHODS

The theorems and proofs in support of this thesis are organized as appen-

dices in separate documents, available at: http://resolver.caltech.edu/

CaltechTHESIS:07202018-115217471, and organized as follows:

• Modules related to temporal logic and stepwise implication (relevant

to Chapter 9, Chapter 4, and Chapter 3). This appendix includes the

modules:

TLASemantics

TemporalLogic

TemporalQuantification

WhilePlusTheorems (Section 9.1.2)

WhilePlusHalfTheorems (Secs. 9.3,

4.2.2)

UnzipTheorems (Sections 4.2.2

and 9.4.2)

Realizability (Section 3.3)

HistoryIsRealizable (Section 9.7)

Representation (Section 9.2)

StepComparison (Section 9.6).

• Modules related to minimal covering, and the cyclic core computation

(Chapter 7). This appendix includes the modules:

FiniteSetFacts

Optimization

Lattices

MinCover

CyclicCore

StrongReduction.

The proofs in these modules have been checked with the proof assistant

TLAPS (version 1.4.31) [35], in the presence of the theorem prover Zenon

(v0.7.2) [24], the SMT solver CVC3 (v2.4.1) [19], the proof assistant Is-

abelle (v2011-1) [145], and the propositional linear temporal logic prover

LS4 (commit c5e907eb3be9d454b3365e747c05100bdffa939c) [176].

• Proofs about the relation between nested GR(1) properties and GR(1)

properties (Section 10.3.3).

Other proofs relevant to Chapter 10 can be found in [65]. Proofs relevant to

defining realizability (Section 3.3) can be found in [66].

1 TLAPS version 1.4.3 is available at: http://tla.msr-inria.inria.fr/tlaps/dist/
current/tlaps-1.4.3.tar.gz.

177

Appendix B

MISCELLANEOUS NOTES

B.1 History-determined variables as modal witnesses

Synthesis can be viewed as finding the “value” of a history-determined variable.

In non-modal logic a witness for existential quantification is a single value. In

analogy, a witness for temporal quantification is an infinite sequence of values.

One way to describe this sequence is by a function that is applied recursively

(the recursion loop closes via the history-determined variable itself).

The form of static synthesis in absence of bound variables other than the

existentially quantified variable y is:

∃y : P(y)

and a constant value c is the (rigid) witness. Similarly, for temporal quantifi-

cation:

∃∃∃∃∃∃ y : P(y)

the “modal witness” is a function f [y]. This function allows us to “embed”

the witness in the object theory itself.

∃∃∃∃∃∃ y : (y = y0) ∧2[y ′ = f [y]]y ∧ P(y)

There is no value in TLA+ that spans multiple steps. Using a function f in

this way compensates for this absence. This limitation does not exist in the

metatheory. There, we can write an infinite sequence of values for a variable,

by defining a behavior.

B.2 Where are the bounded quantifiers ?

Consider a quantifier-free formula Spec that specifies a system. We have been

talking about boundedness in the sense of ∆0, via a type invariant conjunct

within Spec. But where are the bounded quantifiers?

Bounded quantification arises when reasoning about the properties implied by

Spec. Suppose that we can prove the following theorem.

theorem TypeOK
∆
= Spec ⇒ TypeInv

178

where TypeInv is a type invariant that bounds all the declared variables that

occur in Spec. Suppose that next we want to prove that the implication

Spec ⇒ Prop

is valid. This is a formula with free variables. It is equivalent to the sentence

∀∀∀∀∀∀ x , y , . . . , z : Spec ⇒ Prop

where x , y , . . . , z are all the variable identifiers that are declared in the context

where the formula Spec ⇒ Prop appears.

theorem

Spec ⇒ Prop

proof

⟨1⟩1. Spec ⇒ TypeInv

by TypeOK

⟨1⟩2. Spec ≡ (Spec ∧ TypeInv)

by ⟨1⟩1
⟨1⟩3. suffices (Spec ∧ TypeInv) ⇒ Prop

by ⟨1⟩2
⟨1⟩4. suffices TypeInv ⇒ (Spec ⇒ Prop)

by ⟨1⟩3
⟨1⟩5. suffices ∀∀∀∀∀∀ x , y , z : TypeInv ⇒ (Spec ⇒ Prop)

by ⟨1⟩4 def Spec, Prop universal closure

x , y , z should be all declared variables

⟨1⟩ qed
omitted The goal from step ⟨1⟩5 is

a sentence with bounded quantifiers.

So boundedness is relevant to the sentence form of temporal claims that we

want to prove. This is the modal analog of bounded universal rigid quantifi-

cation.

TLA+ does not include bounded temporal quantification (a form of bounded

modal quantification). Wondering how bounded temporal quantifiers would

look like if present, we arrive at the following form by analogy to bounded

rigid quantification

∀∀∀∀∀∀ x ∈ S : P

179

winning
compute

Phase 1

game

Phase 2

construct a disjoin sub-fj

memoized iterates Yi ,Xijk
overallon-the-fly substrategy

avoid memoization

set Z
winning
states

strategies to obtain
overall strategy

construction strategy

for each
substrategy fj

φ

GR(1)

recurrence goal

Figure B.1: Phases of solving a GR(1) game. The main changes proposed
here are to avoid memoization of fixpoint iterates in phase 1, and construct
substrategies on-the-fly in phase 2, to avoid memoization also in phase 2.

∆
= ∀∀∀∀∀∀ x : 2(x ∈ S) ⇒ P

∀∀∀∀∀∀ x ∈ S , y ∈ Q : P
∆
= ∀∀∀∀∀∀ x ∈ S : ∀∀∀∀∀∀ y ∈ Q : P

≡ ∀∀∀∀∀∀ x , y : 2((x ∈ S) ∧ (y ∈ Q)) ⇒ P

This form is exactly what role a type invariant plays.

Interestingly, ∃f : ∀∀∀∀∀∀ x , y : Realization(f , x , y) ⇒ WPH (x , y) is a bounded

formula, because ∃ is bounded to a type invariance constraint (within the

guarantee), and ∀∀∀∀∀∀ to a negated type invariance constraint (within the as-

sumption).

B.3 Improvements on efficiency of symbolic synthesis algorithms

A puzzling question about symbolic implementations of synthesis is why widly

varying behavior is observed for benchmarks of different sizes [23]. Motivated

by observations while developing a language for describing synthesis problems

[68] led to experimenting further, and to developing a solver that scales well

with the number of recurrence goals in a given GR(1) problem. The main

conclusions from this effort are summarized below.

B.3.1 Changes

The modifications applied to the synthesis algorithm have been driven primar-

ily by the following observations:

• Reordering is essential in synthesis, especially during assembly of sub-

strategies to construct the overall solution.

180

• In practice with Cudd [174], reordering by sifting is effective only for

BDD managers with relatively few nodes. A manager with millions of

nodes can lead to hours of reordering, and little active time of non-

reordering computation. Besides, for managers with large BDDs, re-

ordering can have highly variable duration [195].

• Recomputing the same results can be expensive, but overall faster than

reordering of a manager with large BDDs.

• Deferring interaction between BDDs of different parts of a problem can

keep variables less coupled. In other words, a manager with many smaller

BDDs is observed to hinder reordering less than a manager with a few

larger BDDs.

Based on the above, we applied the following design principles (listed in the-

matic order):

• Avoid BDD memoization when possible.

1. No memoization in phase 1, as in GR1c [129].

2. On-the-fly strategy construction from iterates in phase 2.

• Dereference BDDs as informed by profiling.

• Dynamic reordering enabled during strategy construction [68].

• Group sifting as reordering algorithm.

• Conjoin and abstract simultaneously (AndAbstract, hereafter denoted

by ∧∃) [174].

• Isolation: use separate BDD managers for the fixpoint computation and

strategy assembly. One motivation is to isolate the manager where con-

trollable predecessors are computed (and cause high peak compared to

total nodes in a Cudd manager) from the manager where strategies are

assembled.

• Defer interaction of substrategies, by disjoining them at the end.

• Factor out the system’s action SysNext during strategy construction.

Below, we discuss some of these changes in more detail.

181

B.3.2 Avoiding memoization

Except for the solver GR1c, other tools memoize iterates during phase 1.

We do not memoize those iterates in phase 1. We also avoid accumulating

iterates in phase 2. Instead, we construct each recurrence strategy on-the-

fly, meaning that iterates are disjoined to the strategy as soon as they are

computed, and dereferenced immediately afterward. Otherwise significantly

more time is spent reordering, rather than for BDD computations.

B.3.3 On-the-fly substrategy construction

We avoid memoization in phase 2. Instead of accumulating the fixpoint iter-

ates, and then constructing each substrategy, we assemble each substrategy as

the iterates are being computed. At the level of program statements, we have

rearranged the operations to reduce how many nodes need to be referenced

simultaneously within the BDD manager of phase 2.

B.3.4 Multiple BDD managers

We use two BDD managers:

1. Manager 1 is used exclusively for the fixpoint computation, and is where

AndExists is computed.

2. Manager 2 is used for assembling slices of substrategies to obtain each

substrategy, storing substrategies (i.e., strategies associated with indi-

vidual recurrence goals Ri), and finally disjoining the accumulated sub-

strategies to obtain the final strategy.

Using two managers involves transfers of BDDs. Our experiments showed that

no significant difference is caused by these transfers, similarly to an observation

in [42]. The transfer times are small, compared to AndExists (which takes

80% of total runtime).

Maintaining two managers increases overhead, but isolates iterate computa-

tions in phases 1 and 2 from the ongoing strategy construction.

B.3.4.1 Simultaneous conjunction and quantification twice

BDD operations can be implemented as a sequence of more elementary oper-

ations, or in one recursive pass. The latter approach is more efficient, because

182

several large intermediary BDDs are never created. Simultaneous conjunction

and quantification (AndAbstract in Cudd [174], denoted ∧∃) implements

∃x : u∧v in one pass. We apply AndAbstract twice for computing the con-

trollable step operator as follows (x and y denote environment and system vari-

ables), and T the target set) CPre(Target)
∆
= (∃y ′ : SysNext(x , y , y ′)∧∀x ′ :

(EnvNext(x , y , x ′) ⇒ T (x ′, y ′))) ≡ (SysNext(x , y , y ′)∧∃y ′¬(EnvNext(x , y , x ′)∧
∃x ′¬Target

)
).

B.4 Proof of Theorem 1

Proof:

⟨1⟩1. IsRealizable2(23¬D)

⟨2⟩1. IsRealizable2(2(D ⇒ 3(U ∨Out)))

⟨3⟩1. define Z
∆
= Attr 2(U ∨Out)

⟨3⟩2. D ⇒ Z

by def D

⟨3⟩3. IsRealizable2(2(Z ⇒ 3(U ∨Out)))

by def Attr

⟨3⟩4. qed

by ⟨3⟩2, ⟨3⟩3
⟨2⟩2. (U ∨Out) ⇒ ¬D
⟨3⟩1. D ⇒ ¬Out
⟨4⟩1. Basin ⇒ ¬Out
by def Out

⟨4⟩2. D ⇒ Basin

by def D

⟨4⟩3. qed

by ⟨4⟩1, ⟨4⟩2
⟨3⟩2. D ⇒ ¬U
by def D

⟨3⟩3. qed

by ⟨3⟩1, ⟨3⟩2
⟨2⟩3. IsRealizable2(2(D ⇒ 3¬D))

by ⟨2⟩1, ⟨2⟩2
⟨2⟩4. 2(D ⇒ 3¬D) ≡ 23¬D

183

Proof:

2(D ⇒ 3¬D) ≡ 2 ∨ ¬D
∨ D ∧ (D ⇒ 3¬D)

≡ 2(¬D ∨3¬D)

⟨2⟩5. qed

by ⟨2⟩3, ⟨2⟩4
⟨1⟩2. IsRealizable1(2 ∨ ¬(T ∨ A)

∨ 3A ∨32T)

⟨2⟩1. define Z
∆
= Trap1(Stay ,A)

⟨2⟩2. IsRealizable1(2(Z ⇒ ∨ 3A

∨ 32(Z ∧ ¬A)))
by defs Z ,Trap

⟨2⟩3. T ≡ Z ∧ ¬A
by defs T ,Z

⟨2⟩4. (T ∨ A) ⇒ Z

⟨3⟩1. (T ∨ A) ⇒ ((Z ∧ ¬A) ∨ A)

by ⟨2⟩3
⟨3⟩2. (T ∨ A) ⇒ (Z ∨ A)

by ⟨3⟩1
⟨3⟩3. (Z ∨ A) ⇒ Z

⟨4⟩1. A ⇒ Z

by def Z ,Trap

⟨4⟩2. qed

by ⟨4⟩1
⟨3⟩4. qed

by ⟨3⟩2, ⟨3⟩3
⟨2⟩5. qed

by ⟨2⟩2, ⟨2⟩3, ⟨2⟩4
⟨1⟩3. (Inv ∧ T) ⇒ D

⟨2⟩1. T ≡ Trap1(Stay ,A) ∧ ¬A
by def T

⟨2⟩2. Trap1(Stay ,A) ⇒ (Stay ∨ A)

by def Trap

⟨2⟩3. T ⇒ (Stay ∧ ¬A)
by ⟨2⟩1, ⟨2⟩2

⟨2⟩4. (Inv ∧ Stay) ⇒ D

184

by defs Stay ,Obs1

⟨2⟩5. qed

by ⟨2⟩3, ⟨2⟩4
⟨1⟩4. qed

by ⟨1⟩1, ⟨1⟩2, ⟨1⟩3

185

BIBLIOGRAPHY

[1] M. Abadi, B. Alpern, K. R. Apt, N. Francez, S. Katz, L. Lamport, and

F. B. Schneider, “Preserving liveness: Comments on safety and liveness

from a methodological point of view,” IPL, vol. 40, no. 3, pp. 141–142,

1991. DOI: 10.1016/0020-0190(91)90168-H [p. 121]

[2] M. Abadi and L. Lamport, “The existence of refinement mappings,” TCS,

vol. 82, no. 2, pp. 253–284, 1991. DOI: 10.1016/0304-3975(91)90224-P

[pp. 36, 160]

[3] M. Abadi and L. Lamport, “An old-fashioned recipe for real time,” in

Real-Time: Theory in Practice. Springer, 1992, pp. 1–27. DOI: 10.1007/

BFb0031985 [pp. 159, 160]

[4] M. Abadi and L. Lamport, “Composing specifications,” TOPLAS, vol. 15,

no. 1, pp. 73–132, 1993. DOI: 10.1145/151646.151649 [p. 160]

[5] M. Abadi and L. Lamport, “An old-fashioned recipe for real time,”

TOPLAS, vol. 16, no. 5, pp. 1543–1571, 1994. DOI: 10.1145/186025.186058

[pp. 154, 156, 170, 172]

[6] M. Abadi and L. Lamport, “Open systems in TLA,” in PODC, 1994, pp.

81–90. DOI: 10.1145/197917.197960 [pp. 7, 29]

[7] M. Abadi and L. Lamport, “Conjoining specifications,” TOPLAS, vol. 17,

no. 3, pp. 507–535, 1995. DOI: 10.1145/203095.201069 [pp. 6, 9, 12, 30,

33, 34, 36, 47, 120, 132]

[8] M. Abadi, L. Lamport, and P. Wolper, “Realizable and unrealizable spec-

ifications of reactive systems,” in ICALP, 1989, pp. 1–17. DOI: 10.1007/

BFb0035748 [p. 19]

[9] M. Abadi, F. McSherry, D. G. Murray, and T. L. Rodeheffer, “Formal

analysis of a distributed algorithm for tracking progress,” in Formal Tech-

niques for Distributed Systems, 2013, pp. 5–19. DOI: 10.1007/978-3-642-

38592-6 2 [p. 71]

[10] M. Abadi and S. Merz, “An abstract account of composition,” in Int.

Symp. on Mathematical Foundations of Computer Science (MFCS), 1995,

pp. 499–508. DOI: 10.1007/3-540-60246-1 155 [pp. 30, 32, 47]

186

[11] M. Abadi and S. Merz, “On TLA as a logic,” in Proceedings of the NATO

Advanced Study Institute on Deductive Program Design, ser. NATO ASI

Series F: Computer and Systems Sciences, vol. 152. Springer, 1996, pp.

235–272. Available at: https://members.loria.fr/SMerz/papers/mod94.

html [pp. 7, 16, 30, 31, 32, 34, 36, 47, 107, 134]

[12] B. Alpern and F. B. Schneider, “Defining liveness,” IPL, vol. 21, no. 4,

pp. 181–185, 1985. DOI: 10.1016/0020-0190(85)90056-0 [pp. 16, 36, 107]

[13] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,” Dis-

tributed Computing, vol. 2, no. 3, pp. 117–126, 1987. DOI: 10.1007/

BF01782772 [p. 36]

[14] R. Alur, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang, “Automating

modular verification,” in CONCUR, 1999, pp. 82–97. DOI: 10.1007/3-540-

48320-9 8 [p. 11]

[15] R. Alur and T. A. Henzinger, “Reactive modules,” FMSD, vol. 15, no. 1,

pp. 7–48, 1999. DOI: 10.1023/A:1008739929481 [pp. 7, 10]

[16] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time temporal

logic,” JACM, vol. 49, no. 5, pp. 672–713, 2002. DOI: 10.1145/585265.

585270 [pp. 11, 33, 166]

[17] R. Alur, S. Moarref, and U. Topcu, “Counter-strategy guided refine-

ment of GR(1) temporal logic specifications,” in FMCAD, 2013, pp. 26–33.

DOI: 10.1109/FMCAD.2013.6679387 [p. 12]

[18] R. Alur, S. Moarref, and U. Topcu, “Pattern-based refinement of assume-

guarantee specifications in reactive synthesis,” in TACAS, 2015, pp. 501–

516. DOI: 10.1007/978-3-662-46681-0 49 [p. 12]

[19] C. Barrett and C. Tinelli, “CVC3,” in CAV, 2007, pp. 298–302. DOI: 10.

1007/978-3-540-73368-3 34. Available at: https://cs.nyu.edu/acsys/cvc3/

[p. 176]

[20] S. S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Nyman,

and A. Wąsowski, “Moving from specifications to contracts in component-

based design,” in FASE, 2012, pp. 43–58. DOI: 10.1007/978-3-642-28872-

2 3 [pp. 9, 26]

187

[21] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,

P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger,

and K. G. Larsen, “Contracts for system design,” Foundations and

TrendsR⃝ in Electronic Design Automation, vol. 12, no. 2–3, pp. 124–400,

2018. DOI: 10.1561/1000000053 [pp. 8, 26]

[22] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,

P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and

K. Larsen, “Contracts for systems design,” INRIA, Tech. Rep. 8147, 2012.

Available at: https://hal.inria.fr/hal-00757488 [pp. 8, 9, 26]

[23] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Syn-

thesis of reactive(1) designs,” JCSS, vol. 78, no. 3, pp. 911–938, 2012.

DOI: 10.1016/j.jcss.2011.08.007 [pp. 20, 21, 31, 32, 33, 55, 159, 179]

[24] R. Bonichon, D. Delahaye, and D. Doligez, “Zenon: An extensible

automated theorem prover producing checkable proofs,” in LPAR,

2007, pp. 151–165. DOI: 10.1007/978-3-540-75560-9 13. Available at:

http://zenon.inria.fr [p. 176]

[25] F. Boniol, V. Wiels, Y. Ait Ameur, and K.-D. Schewe, Eds., ABZ 2014:

The landing gear case study. Springer, 2014. DOI: 10.1007/978-3-319-

07512-9 [p. 94]

[26] T. Bourke, M. Daum, G. Klein, and R. Kolanski, “Challenges and experi-

ences in managing large-scale proofs,” in Intelligent Computer Mathematics

(CICM), 2012, pp. 32–48. DOI: 10.1007/978-3-642-31374-5 3 [p. 2]

[27] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-

Vincentelli, Logic minimization algorithms for VLSI synthesis. Kluwer,

1984. DOI: 10.1007/978-1-4613-2821-6 [p. 67]

[28] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. Gritzner, and R. We-

ber, “The design of distributed systems—An introduction to FOCUS,”

Technische Universität München, Tech. Rep., 1992. [p. 10]

[29] M. Broy and K. Stølen, Specification and development of interactive sys-

tems: Focus on streams, interfaces, and refinement. Springer, 2001.

DOI: 10.1007/978-1-4613-0091-5 [p. 10]

188

[30] R. E. Bryant, “Graph-based algorithms for Boolean function manipu-

lation,” TC, vol. 35, no. 8, pp. 677–691, 1986. DOI: 10.1109/TC.1986.

1676819 [pp. 4, 23, 66]

[31] R. E. Bryant, “On the complexity of VLSI implementations and graph

representations of Boolean functions with application to integer multipli-

cation,” TOC, vol. 40, no. 2, pp. 205–213, 1991. DOI: 10.1109/12.73590

[p. 66]

[32] K. Chatterjee and T. A. Henzinger, “Assume-guarantee synthesis,”

TACAS, pp. 261–275, 2007. DOI: 10.1007/978-3-540-71209-1 21 [p. 11]

[33] K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Environment as-

sumptions for synthesis,” in CONCUR, 2008, pp. 147–161. DOI: 10.1007/

978-3-540-85361-9 14 [pp. 12, 37, 166]

[34] K. Chatterjee, T. A. Henzinger, J. Otop, and A. Pavlogiannis, “Dis-

tributed synthesis for LTL fragments,” in FMCAD, 2013, pp. 18–25.

DOI: 10.1109/FMCAD.2013.6679386 [p. 11]

[35] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “A TLA+ proof

system,” in Proceedings of the LPAR Workshops, Knowledge Exchange:

Automated Provers and Proof Assistants (KEAPPA) Workshop, vol.

418, 2008, pp. 17–37. Available at: http://sunsite.informatik.rwth-

aachen.de/Publications/CEUR-WS/Vol-418/paper2.pdf [pp. 71, 176]

[36] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “Verifying safety

properties with the TLA+ proof system,” in IJCAR, 2010, pp. 142–148.

DOI: 10.1007/978-3-642-14203-1 12 [p. 71]

[37] A. Cimatti, M. Dorigatti, and S. Tonetta, “Ocra: A tool for checking

the refinement of temporal contracts,” in ASE, 2013, pp. 702–705. DOI: 10.

1109/ASE.2013.6693137 [p. 8]

[38] A. Cimatti and S. Tonetta, “A property-based proof system for contract-

based design,” in EUROMICRO, 2012, pp. 21–28. DOI: 10.1109/SEAA.

2012.68 [p. 8]

[39] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. MIT

Press, 1999. [pp. 4, 66]

189

[40] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu, “Learning as-

sumptions for compositional verification,” in TACAS, 2003, pp. 331–346.

DOI: 10.1007/3-540-36577-X 24 [p. 12]

[41] A. Cohen and K. S. Namjoshi, “Local proofs for global safety properties,”

FMSD, vol. 34, no. 2, pp. 104–125, 2009. DOI: 10.1007/s10703-008-0063-8

[p. 12]

[42] A. Cohen, K. S. Namjoshi, Y. Sa’ar, L. D. Zuck, and K. I. Kisyova, “Par-

allelizing a symbolic compositional model-checking algorithm,” in HVC,

2010, pp. 46–59. DOI: 10.1007/978-3-642-19583-9 9 [p. 181]

[43] O. Coudert and J. C. Madre, “Implicit and incremental computation of

primes and essential primes of Boolean functions,” in DAC, 1992, pp. 36–

39. DOI: 10.1109/DAC.1992.227866 [p. 67]

[44] O. Coudert, “Two-level logic minimization: An overview,” Integration,

the VLSI Journal, vol. 17, no. 2, pp. 97–140, 1994. DOI: 10.1016/0167-

9260(94)00007-7 [pp. 4, 67, 68, 70, 76, 78, 79, 83, 92]

[45] O. Coudert, J. C. Madre, and H. Fraisse, “A new viewpoint on two-level

logic minimization,” in Design Automation Conference (DAC), 1993, pp.

625–630. DOI: 10.1145/157485.165071 [p. 67]

[46] O. Coudert, J. C. Madre, H. Fraisse, and H. Touati, “Implicit prime cover

computation: An overview,” in Synthesis and Simulation Meeting and

International Interchange (SASIMI), 1993. Available at: http://sasimi.jp

[p. 67]

[47] O. Coudert and J. C. Madre, “New ideas for solving covering problems,”

in DAC, 1995, pp. 641–646. DOI: 10.1145/217474.217603 [p. 67]

[48] D. Cousineau, D. Doligez, L. Lamport, S. Merz, D. Ricketts, and

H. Vanzetto, “TLA+ proofs,” in Formal Methods (FM), 2012, pp. 147–

154. DOI: 10.1007/978-3-642-32759-9 14 [p. 71]

[49] L. de Alfaro and M. Faella, “Information flow in concurrent games,” in

ICALP, 2003, pp. 1038–1053. DOI: 10.1007/3-540-45061-0 80 [p. 11]

[50] L. de Alfaro and T. A. Henzinger, “Interface automata,” in ESEC/FSE,

2001, pp. 109–120. DOI: 10.1145/503271.503226 [pp. 8, 40]

190

[51] L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang, “The control of syn-

chronous systems,” in CONCUR, 2000, pp. 458–473. DOI: 10.1007/3-540-

44618-4 33 [pp. 11, 21, 33, 149, 157]

[52] M. de Wulf, L. Doyen, and J.-F. Raskin, “A lattice theory for solving

games of imperfect information,” in HSCC, 2006, pp. 153–168. DOI: 10.

1007/11730637 14 [pp. 3, 11]

[53] F. Dederichs and R. Weber, “Safety and liveness from a methodological

point of view,” IPL, vol. 36, no. 1, pp. 25–30, 1990. DOI: 10.1016/0020-

0190(90)90181-V [p. 121]

[54] E. W. Dijkstra, “Solution of a problem in concurrent programming con-

trol,” CACM, vol. 8, no. 9, p. 569, 1965. DOI: 10.1145/365559.365617

[pp. 33, 149]

[55] I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken, “Minimum satisfying

assignments for SMT,” in CAV, 2012, pp. 394–409. DOI: 10.1007/978-3-

642-31424-7 30 [p. 13]

[56] H.-D. Ebbinghaus, Ernst Zermelo: An approach to his life and work.

Springer, 2007. DOI: 10.1007/978-3-540-49553-6 [pp. 14, 19]

[57] R. Ehlers, R. Könighofer, and R. Bloem, “Synthesizing cooperative reac-

tive mission plans,” in IROS, 2015, pp. 3478–3485. DOI: 10.1109/IROS.

2015.7353862 [p. 12]

[58] R. Ehlers and V. Raman, “Low-effort specification debugging and anal-

ysis,” EPTCS, vol. 157, pp. 117–133, 2014. DOI: 10.4204/EPTCS.157.12

[p. 13]

[59] R. Ehlers and U. Topcu, “Estimator-based reactive synthesis under

incomplete information,” in HSCC, 2015, pp. 249–258. DOI: 10.1145/

2728606.2728626 [pp. 3, 12, 158]

[60] E. A. Emerson and C.-L. Lei, “Model checking in the propositional

Mu-calculus,” Department of Computer Sciences, University of Texas

at Austin, Tech. Rep. TR-86-06, 1986. Available at: http://catalog.lib.

utexas.edu/record=b7285480∼S29 [p. 166]

191

[61] I. Filippidis, “Contract construction implementation.” Available at:

https://github.com/johnyf/contract maker [p. 104]

[62] I. Filippidis, “dd: Decision diagrams (Python package).” Available at:

https://github.com/tulip-control/dd [pp. 5, 71]

[63] I. Filippidis, “omega: Python package for specification of systems and

synthesis of implementations using symbolic algorithms.” Available at:

https://github.com/tulip-control/omega [pp. 5, 71]

[64] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray,

“Control design for hybrid systems with TuLiP: The temporal logic plan-

ning toolbox,” in 2016 IEEE Conference on Control Applications (CCA),

2016, pp. 1030–1041. DOI: 10.1109/CCA.2016.7587949 [p. 22]

[65] I. Filippidis and R. M. Murray, “Symbolic construction of GR(1) con-

tracts for synchronous systems with full information,” California Institute

of Technology, Tech. Rep. arXiv:1508.02705, 2015. [pp. 50, 106, 161, 162,

166, 176]

[66] I. Filippidis and R. M. Murray, “Formalizing synthesis in TLA+,”

California Institute of Technology, Tech. Rep. CaltechCDSTR:2016.004,

2016. Available at: http://resolver.caltech.edu/CaltechCDSTR:2016.004

[pp. 19, 29, 30, 31, 34, 121, 129, 148, 156, 176]

[67] I. Filippidis and R. M. Murray, “Symbolic construction of GR(1) contracts

for systems with full information,” in ACC, 2016, pp. 782–789. DOI: 10.

1109/ACC.2016.7525009 [pp. 24, 32, 37, 48, 50, 94, 106, 165, 166]

[68] I. Filippidis, R. M. Murray, and G. J. Holzmann, “A multi-paradigm

language for reactive synthesis,” in 4th Workshop on Synthesis (SYNT),

2015, pp. 73–97. DOI: 10.4204/EPTCS.202.6 [pp. 68, 179, 180]

[69] B. Finkbeiner and S. Schewe, “Uniform distributed synthesis,” in LICS,

2005, pp. 321–330. DOI: 10.1109/LICS.2005.53 [p. 11]

[70] B. Finkbeiner and S. Schewe, “Bounded synthesis,” STTT, vol. 15, no. 5,

pp. 519–539, 2013. DOI: 10.1007/s10009-012-0228-z [p. 11]

[71] R. W. Floyd, “Assigning meanings to programs,” in Symposia in Applied

Mathematics, ser. Aspects of Computer Science, vol. 19. AMS, 1967, pp.

19–32. DOI: 10.1090/psapm/019/0235771 [p. 6]

192

[72] N. Francez and A. Pnueli, “A proof method for cyclic programs,” Acta

Informatica, vol. 9, no. 2, pp. 133–157, 1978. DOI: 10.1007/BF00289074

[p. 6]

[73] J. Fu and U. Topcu, “Integrating active sensing into reactive synthesis

with temporal logic constraints under partial observations,” in ACC, 2015,

pp. 2408–2413. DOI: 10.1109/ACC.2015.7171093 [p. 12]

[74] H. H. Goldstine and J. von Neumann, Planning and coding problems

for an electronic computing instrument: Report on the mathematical

and logical aspects of an electronic computing instrument, Part

II. The Institute for Advanced Study, 1947, vol. 1. Available at:

https://library.ias.edu/files/pdfs/ecp/planningcodingof0103inst.pdf [p. 6]

[75] G. D. Hachtel and F. Somenzi, Logic synthesis and verification algorithms.

Kluwer, 1996. DOI: 10.1007/0-387-31005-3 [p. 66]

[76] B. Hayes and J. A. Shah, “Improving robot controller transparency

through autonomous policy explanation,” in Human-Robot Interaction,

2017, pp. 303–312. DOI: 10.1145/2909824.3020233 [p. 12]

[77] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, “You assume, we

guarantee: Methodology and case studies,” in CAV, 1998, pp. 440–451.

DOI: 10.1007/BFb0028765 [p. 10]

[78] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, “Decomposing refine-

ment proofs using assume-guarantee reasoning,” in ICCAD, 2000, pp. 245–

253. DOI: 10.1109/ICCAD.2000.896481 [pp. 6, 10]

[79] D. Hilbert and P. Bernays, Grundlagen der Mathematik II. Springer,

1970. DOI: 10.1007/978-3-642-86896-2 [p. 15]

[80] C. A. R. Hoare, “An axiomatic basis for computer programming,” CACM,

vol. 12, no. 10, pp. 576–580, 1969. DOI: 10.1145/363235.363259 [p. 6]

[81] A. Iannopollo, P. Nuzzo, S. Tripakis, and A. Sangiovanni-Vincentelli,

“Library-based scalable refinement checking for contract-based design,” in

DATE, 2014, pp. 1–6. DOI: 10.7873/DATE.2014.167 [p. 9]

[82] A. Iannopollo, S. Tripakis, and A. Sangiovanni-Vincentelli, “Constrained

synthesis from component libraries,” in FACS, 2016, pp. 1–6. DOI: 10.

1007/978-3-319-57666-4 7 [p. 9]

193

[83] A. Iannopollo, S. Tripakis, and A. Sangiovanni-Vincentelli, “Specifica-

tion decomposition for synthesis from libraries of LTL Assume/Guarantee

contracts,” in DATE, 2018, pp. 1574–1579. DOI: 10.23919/DATE.2018.

8342266 [p. 9]

[84] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem, “Anzu: A tool

for property synthesis,” in CAV, 2007, pp. 258–262. DOI: 10.1007/978-3-

540-73368-3 29 [p. 66]

[85] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a

game,” in CAV, 2005, pp. 226–238. DOI: 10.1007/11513988 23 [pp. 21,

160]

[86] C. B. Jones, “Specification and design of (parallel) programs,” in Infor-

mation Processing, 1983, pp. 321–332. [pp. 1, 6, 40]

[87] C. B. Jones, “The early search for tractable ways of reasoning about

programs,” IEEE Annals of the History of Computing, vol. 25, no. 2, pp.

26–49, 2003. DOI: 10.1109/MAHC.2003.1203057 [p. 6]

[88] B. Jonsson and Y.-K. Tsay, “Assumption/guarantee specifications in

linear-time temporal logic,” TCS, vol. 167, no. 1, pp. 47–72, 1996.

DOI: 10.1016/0304-3975(96)00069-2 [pp. 9, 30, 32, 106, 107]

[89] M. Katara and T. Mikkonen, “Design approach for real-time

reactive systems,” in International Workshop on Real-Time Constraints,

1999. Available at: https://www.cs.ccu.edu.tw/∼pahsiung/cp99-rtc/

proceedings.html [p. 12]

[90] Y. Kesten, N. Piterman, and A. Pnueli, “Bridging the gap between fair

simulation and trace inclusion,” Information and Computation, vol. 200,

no. 1, pp. 35–61, 2005. DOI: 10.1016/j.ic.2005.01.006 [pp. 20, 29, 33, 158]

[91] Y. Kesten and A. Pnueli, “Complete proof system for QPTL,” Journal of

Logic and Computation, vol. 12, no. 5, pp. 701–745, 2002. DOI: 10.1093/

logcom/12.5.701 [p. 18]

[92] Y. Kesten, A. Pnueli, and L.-o. Raviv, “Algorithmic verification of linear

temporal logic specifications,” in ICALP, 1998, pp. 1–16. DOI: 10.1007/

BFb0055036 [pp. 4, 66]

194

[93] S. C. Kleene, Introduction to metamathematics. North-Holland, 1971.

[pp. 25, 34, 45]

[94] U. Klein, “Topics in formal synthesis and modeling,” Ph.D. dissertation,

Courant Institute of Mathematical Sciences, New York University, 2011.

Available at: https://cs.nyu.edu/media/publications/klein uri.pdf [p. 12]

[95] U. Klein, N. Piterman, and A. Pnueli, “Effective synthesis of asyn-

chronous systems from GR(1) specifications,” in VMCAI, 2012, pp. 283–

298. DOI: 10.1007/978-3-642-27940-9 19 [pp. 3, 12, 18]

[96] U. Klein and A. Pnueli, “Revisiting synthesis of GR(1) specifications,” in

HVC, 2010, pp. 161–181. DOI: 10.1007/978-3-642-19583-9 16 [pp. 9, 30,

32, 105, 111, 119, 121]

[97] D. E. Knuth, “Robert W Floyd, In memoriam,” ACM SIGACT News,

vol. 34, no. 4, pp. 3–13, 2003. DOI: 10.1145/954092.954488 [p. 6]

[98] P. Kokotović, H. K. Khalil, and J. O’Reilly, Singular perturbation meth-

ods in control: Analysis and design. SIAM, 1999. DOI: 10.1137/1.

9781611971118 [p. 170]

[99] R. Könighofer, G. Hofferek, and R. Bloem, “Debugging formal specifica-

tions: A practical approach using model-based diagnosis and counterstrate-

gies,” STTT, vol. 15, no. 5, pp. 563–583, 2013. DOI: 10.1007/s10009-011-

0221-y [pp. 12, 33]

[100] K. Kunen, The foundations of mathematics, ser. Studies in Logic. Col-

lege Publications, 2012, vol. 19. [pp. 30, 122, 132]

[101] K. Kunen, Set theory, ser. Studies in Logic. College Publications, 2013,

vol. 34. [p. 19]

[102] O. Kupferman and M. Y. Vardi, “Safraless decision procedures,” in

FOCS, 2005, pp. 531–540. DOI: 10.1109/SFCS.2005.66 [pp. 3, 11]

[103] O. Kupferman, Y. Lustig, M. Y. Vardi, and M. Yannakakis, “Temporal

synthesis for bounded systems and environments,” in STACS, vol. 9, 2011,

pp. 615–626. DOI: 10.4230/LIPIcs.STACS.2011.615 [p. 166]

195

[104] O. Kupferman and M. Y. Vardi, “Synthesis with incomplete informatio,”

in Advances in Temporal Logic, vol. 16. Springer, 2000, pp. 109–127.

DOI: 10.1007/978-94-015-9586-5 6 [p. 11]

[105] R. Kurki-Suonio, “Component and interface refinement in closed-system

specifications,” in Formal Methods (FM), 1999, pp. 134–154. DOI: 10.1007/

3-540-48119-2 10 [pp. 2, 12]

[106] R. P. Kurshan and L. Lamport, “Verification of a multiplier: 64 bits

and beyond,” in CAV, 1993, pp. 166–179. DOI: 10.1007/3-540-56922-7 14

[p. 2]

[107] H. Lamouchi and J. Thistle, “Effective control synthesis for DES under

partial observations,” in CDC, vol. 1, 2000, pp. 22–28. DOI: 10.1109/CDC.

2000.912726 [p. 11]

[108] L. Lamport, “Proving the correctness of multiprocess programs,” TSE,

vol. 3, no. 2, pp. 125–143, 1977. DOI: 10.1109/TSE.1977.229904 [p. 7]

[109] L. Lamport, “The “Hoare logic” of concurrent programs,” Acta Infor-

matica, vol. 14, pp. 21–37, 1980. DOI: 10.1007/BF00289062 [p. 6]

[110] L. Lamport, “Specifying concurrent program modules,” TOPLAS, vol. 5,

no. 2, pp. 190–222, 1983. DOI: 10.1145/69624.357207 [pp. 2, 6, 7, 8, 20,

110]

[111] L. Lamport, “What good is temporal logic?” in Information Processing,

1983, pp. 657–668. Available at: http://lamport.azurewebsites.net/pubs/

what-good.pdf [pp. 2, 16, 171]

[112] L. Lamport, “A temporal logic of actions,” Systems Research Center of

Digital Equipment Corporation, Research Report 47, Apr 1990. Available

at: https://lamport.azurewebsites.net/pubs/old-tla-src.pdf [pp. 22, 134]

[113] L. Lamport, “Miscellany,” 21 April 1991, sent to TLA mailing list.

Available at: http://lamport.azurewebsites.net/tla/notes/91-04-21.txt

[pp. 2, 20, 107, 160]

[114] L. Lamport, “The temporal logic of actions,” TOPLAS, vol. 16, no. 3,

pp. 872–923, 1994. DOI: 10.1145/177492.177726 [pp. 14, 18, 29, 37, 62,

134]

196

[115] L. Lamport, “Composition: A way to make proofs harder,” in COMPOS,

1997, pp. 402–423. DOI: 10.1007/3-540-49213-5 15 [pp. 2, 35]

[116] L. Lamport, “Proving possibility properties,” TCS, vol. 206, no. 1, pp.

341–352, 1998. DOI: 10.1016/S0304-3975(98)00129-7 [p. 47]

[117] L. Lamport, Specifying systems: The TLA+ language and tools for hard-

ware and software engineers. Addison-Wesley, 2002. [pp. 2, 14, 15, 16,

18, 20, 22, 31, 34, 44, 47, 62, 121, 122, 170]

[118] L. Lamport, “Real time is really simple,” Microsoft Research, Tech. Rep.

MSR-TR-2005-30, 2005. Available at: https://www.microsoft.com/en-

us/research/wp-content/uploads/2016/02/tr-2005-30.pdf [p. 170]

[119] L. Lamport, “The PlusCal algorithm language,” in ICTAC, 2009, pp.

36–60. DOI: 10.1007/978-3-642-03466-4 2 [pp. viii, 60]

[120] L. Lamport, “How to write a 21st century proof,” Journal of fixed point

theory and applications, vol. 11, no. 1, pp. 43–63, 2012. DOI: 10.1007/

s11784-012-0071-6 [p. 59]

[121] L. Lamport, “TLA+2: A preliminary guide,” Tech. Rep., 15 Jan

2014. Available at: https://lamport.azurewebsites.net/tla/tla2-guide.pdf

[pp. 14, 22, 59]

[122] L. Lamport, “Who builds a house without drawing blueprints?” CACM,

vol. 58, no. 4, pp. 38–41, 2015. DOI: 10.1145/2736348 [p. 1]

[123] L. Lamport and L. C. Paulson, “Should your specification language be

typed?” TOPLAS, vol. 21, no. 3, pp. 502–526, 1999. DOI: 10.1145/319301.

319317 [p. 23]

[124] L. Lamport and F. B. Schneider, “The “Hoare Logic” of CSP, and all

that,” TOPLAS, vol. 6, no. 2, pp. 281–296, 1984. DOI: 10.1145/2993.

357247 [p. 6]

[125] T. T. H. Le, R. Passerone, U. Fahrenberg, and A. Legay, “Contract-

based requirement modularization via synthesis of correct decompositions,”

TECS, vol. 15, no. 2, pp. 33:1–33:26, 2016. DOI: 10.1145/2885752 [p. 8]

[126] A. C. Leisenring, Mathematical logic and Hilbert’s ε-symbol. MacDonald

Technical & Scientific, 1969. [p. 15]

197

[127] W. Li, L. Dworkin, and S. A. Seshia, “Mining assumptions for synthesis,”

in MEMOCODE, 2011, pp. 43–50. DOI: 10.1109/MEMCOD.2011.5970509

[p. 12]

[128] O. Lichtenstein, A. Pnueli, and L. Zuck, “The glory of the past,” in

Conference on logics of programs, ser. LNCS, vol. 193. Springer, 1985,

pp. 196–218. DOI: 10.1007/3-540-15648-8 16 [pp. 16, 105]

[129] S. C. Livingston, “Incremental control synthesis for robotics in the

presence of temporal logic specifications,” Ph.D. dissertation, California

Institute of Technology, 2016. DOI: 10.7907/Z94Q7RW3. Available at:

http://resolver.caltech.edu/CaltechTHESIS:12312015-131513787 [pp. 20,

180]

[130] Z. Manna and A. Pnueli, “A hierarchy of temporal properties,” in PODC,

1990, pp. 377–410. DOI: 10.1145/93385.93442 [pp. 16, 20]

[131] S. Maoz and J. O. Ringert, “On well-separation of GR(1) specifications,”

in FSE, 2016, pp. 362–372. DOI: 10.1145/2950290.2950300 [pp. 119, 120]

[132] P. C. McGeer, J. V. Sanghavi, R. K. Brayton, and A. L. Sangiovanni-

Vincentelli, “ESPRESSO-SIGNATURE: A new exact minimizer for logic

functions,” TVLSI, vol. 1, no. 4, pp. 432–440, 1993. DOI: 10.1109/92.

250190 [p. 67]

[133] K. L. McMillan, “Circular compositional reasoning about liveness,” in

CHARME, 1999, pp. 342–346. DOI: 10.1007/3-540-48153-2 30 [p. 8]

[134] S. Merz, “From TLT modules to stream processing functions,” Institut

für Informatik, Technische Universität München, Tech. Rep., Feb 1996.

Available at: http://www4.in.tum.de/proj/korsys/public/tltfocus.ps.gz

[p. 19]

[135] S. Merz, “Rules for abstraction,” in Advances in Computing Science—

ASIAN’97, 1997, pp. 32–45. DOI: 10.1007/3-540-63875-X 41 [p. 14]

[136] S. Merz and H. Vanzetto, “Harnessing SMT solvers for TLA+ proofs,” in

12th International Workshop on Automated Verification of Critical Systems

(AVoCS 2012), ser. ECEASST, vol. 53. EASST, 2012. DOI: 10.14279/

tuj.eceasst.53.766.794 [p. 71]

198

[137] B. Meyer, “Applying “design by contract”,” Computer, vol. 25, no. 10,

pp. 40–51, 1992. DOI: 10.1109/2.161279 [p. 8]

[138] O. Mickelin, N. Ozay, and R. M. Murray, “Synthesis of correct-by-

construction control protocols for hybrid systems using partial state infor-

mation,” in ACC, 2014, pp. 2305–2311. DOI: 10.1109/ACC.2014.6859229

[p. 12]

[139] T. Mikkonen, “Abstractions and logical layers in specifications of reac-

tive systems,” Ph.D. dissertation, Tampere University of Technology, 1999.

[p. 12]

[140] A. Mishchenko, “An introduction to zero-suppressed binary decision

diagrams,” University of California, Berkeley, Tech. Rep., 2014, see

also EXTRA library v1.3. Available at: http://www.eecs.berkeley.edu/

∼alanmi/research/extra [p. 68]

[141] J. Misra and K. M. Chandy, “Proofs of networks of processes,” TSE,

vol. 7, no. 4, pp. 417–426, 1981. DOI: 10.1109/TSE.1981.230844 [pp. 6, 30]

[142] S. Moarref, “Compositional reactive synthesis for multi-agent systems,”

Ph.D. dissertation, University of Pennsylvania, 2016. Available at:

https://repository.upenn.edu/edissertations/1902 [pp. 12, 44, 62]

[143] F. L. Morris and C. B. Jones, “An early program proof by Alan Turing,”

IEEE Annals of the History of Computing, vol. 6, no. 2, pp. 139–143, 1984.

DOI: 10.1109/MAHC.1984.10017 [p. 6]

[144] W. Nam and R. Alur, “Learning-based symbolic assume-guarantee rea-

soning with automatic decomposition,” in ATVA, 2006, pp. 170–185.

DOI: 10.1007/11901914 15 [p. 12]

[145] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A proof

assistant for Higher-Order Logic. Springer, 2002. DOI: 10.1007/3-540-

45949-9. Available at: https://www.cl.cam.ac.uk/research/hvg/Isabelle/

[p. 176]

[146] P. Nuzzo, “Compositional design of cyber-physical systems using

contracts,” Ph.D. dissertation, EECS Department, University of

California, Berkeley, 2015. Available at: http://www2.eecs.berkeley.edu/

Pubs/TechRpts/2015/EECS-2015-189.html [p. 8]

199

[147] P. Nuzzo, A. Iannopollo, S. Tripakis, and A. Sangiovanni-Vincentelli,

“Are interface theories equivalent to contract theories?” in MEMOCODE,

2014, pp. 104–113. DOI: 10.1109/MEMCOD.2014.6961848 [p. 8]

[148] P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli,

R. M. Murray, A. Donzé, and S. A. Seshia, “A contract-based methodology

for aircraft electric power system design,” IEEE Access, vol. 2, pp. 1–25,

2014. DOI: 10.1109/ACCESS.2013.2295764 [p. 8]

[149] S. Owicki and L. Lamport, “Proving liveness properties of concurrent

programs,” TOPLAS, vol. 4, no. 3, pp. 455–495, 1982. DOI: 10.1145/

357172.357178 [pp. 7, 47]

[150] N. Ozay, U. Topcu, and R. M. Murray, “Distributed power allocation

for vehicle management systems,” in CDC, 2011, pp. 4841–4848. DOI: 10.

1109/CDC.2011.6161470 [pp. 12, 20]

[151] N. Ozay, U. Topcu, R. M. Murray, and T. Wongpiromsarn, “Distributed

synthesis of control protocols for smart camera networks,” in ICCPS, 2011,

pp. 45–54. DOI: 10.1109/ICCPS.2011.22 [p. 20]

[152] N. Piterman and A. Pnueli, “Faster solutions of Rabin and Streett

games,” in LICS, 2006, pp. 275–284. DOI: 10.1109/LICS.2006.23 [pp. 3,

20]

[153] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,”

in VMCAI, 2006, pp. 364–380. DOI: 10.1007/11609773 24 [pp. 3, 5, 11,

20, 21, 106, 111, 121, 155, 158, 159]

[154] A. Pnueli and R. Rosner, “A framework for the synthesis of reactive mod-

ules,” in CONCURRENCY, 1988, pp. 4–17. DOI: 10.1007/3-540-50403-

6 28 [p. 19]

[155] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in

POPL, 1989, pp. 179–190. DOI: 10.1145/75277.75293 [pp. 6, 11, 19]

[156] A. Pnueli, “The temporal logic of programs,” in FOCS, 1977, pp. 46–57.

DOI: 10.1109/SFCS.1977.32 [p. 6]

[157] A. Pnueli, “In transition from global to modular temporal reasoning

about programs,” in Logics and Models of Concurrent Systems, ser. NATO

200

ASI Series F: Computer and Systems Sciences, vol. 13. Springer, 1985,

pp. 123–144. DOI: 10.1007/978-3-642-82453-1 5 [pp. 6, 7, 47]

[158] A. Pnueli and U. Klein, “Synthesis of programs from temporal property

specifications,” in MEMOCODE, 2009, pp. 1–7. DOI: 10.1109/MEMCOD.

2009.5185372 [pp. 3, 11, 12, 20, 166]

[159] A. Pnueli and R. Rosner, “Distributed reactive systems are hard to syn-

thesize,” in FOCS, vol. 2, 1990, pp. 746–757. DOI: 10.1109/FSCS.1990.

89597 [pp. 3, 11]

[160] A. Pnueli, Y. Sa’ar, and L. D. Zuck, “Jtlv: A framework for developing

verification algorithms,” in CAV, 2010, pp. 171–174. DOI: 10.1007/978-3-

642-14295-6 18 [p. 66]

[161] V. Preoteasa, I. Dragomir, and S. Tripakis, “Type inference of Simulink

hierarchical block diagrams in Isabelle,” in FORTE, 2017, pp. 194–209.

DOI: 10.1007/978-3-319-60225-7 14 [p. 10]

[162] V. Preoteasa and S. Tripakis, “Refinement calculus of reactive systems,”

in EMSOFT, 2014, pp. 2:1–2:10. DOI: 10.1145/2656045.2656068 [p. 9]

[163] V. Preoteasa and S. Tripakis, “Towards compositional feedback in non-

deterministic and non-input-receptive systems,” in LICS, 2016, pp. 768–

777. DOI: 10.1145/2933575.2934503 [p. 10]

[164] V. Raman, “Explaining unsynthesizability of high-level robot be-

haviors,” Ph.D. dissertation, Cornell University, 2013. Available at:

http://hdl.handle.net/1813/34373 [p. 20]

[165] G. Rock, W. Stephan, and A. Wolpers, Modular reasoning about struc-

tured TLA specifications, ser. Advances in Computing Science. Springer,

1999, pp. 217–229. DOI: 10.1007/978-3-7091-6355-9 16 [p. 7]

[166] T. L. Rodeheffer, “The Naiad clock protocol: Specifica-

tion, model checking, and correctness proof,” Microsoft Re-

search, Tech. Rep. MSR-TR-2013-20, Feb 2013. Available

at: https://www.microsoft.com/en-us/research/publication/the-naiad-

clock-protocol-specification-model-checking-and-correctness-proof/ [p. 71]

201

[167] R. Rosner, “Modular synthesis of reactive systems,” Ph.D. dissertation,

Department of Applied Mathematics and Computer Science, Weizmann

Institute of Science, 1991. Available at: http://lib-phds1.weizmann.ac.il/

Dissertations/rosner roni.pdf [p. 3]

[168] R. Rudell, “Dynamic variable ordering for ordered binary decision di-

agrams,” in ICCAD, 1993, pp. 42–47. DOI: 10.1109/ICCAD.1993.580029

[p. 69]

[169] R. L. Rudell, “Logic synthesis for VLSI design,” Ph.D. dissertation,

EECS Department, University of California, Berkeley, 1989. [p. 67]

[170] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming Dr.

Frankenstein: Contract-based design for cyber-physical systems,” Eu-

ropean Journal of Control (EJC), vol. 18, no. 3, pp. 217–238, 2012.

DOI: 10.3166/ejc.18.217-238 [pp. 8, 9, 26]

[171] S. Schewe and B. Finkbeiner, “Synthesis of asynchronous systems,” in

LOPSTR, 2007, pp. 127–142. DOI: 10.1007/978-3-540-71410-1 10 [p. 11]

[172] F. B. Schneider, On concurrent programming. Springer, 1997. DOI: 10.

1007/978-1-4612-1830-2 [pp. 6, 16]

[173] S. Singh and M. D. Wagh, “Robot path planning using intersecting

convex shapes: Analysis and simulation,” TRO, vol. RA-3, no. 2, 1987.

DOI: 10.1109/ROBOT.1986.1087448 [p. 12]

[174] F. Somenzi, “Cudd: CU Decision Diagram package release 3.0.0,” De-

partment of Electrical, Computer, and Energy Engineering, University of

Colorado at Boulder, 2016. [pp. 180, 182]

[175] E. W. Stark, “A proof technique for rely/guarantee properties,”

Foundations of Software Technology and Theoretical Computer Science

(FSTTCS), vol. 206, pp. 369–391, 1985. DOI: 10.1007/3-540-16042-6 21

[pp. 7, 8, 47]

[176] M. Suda and C. Weidenbach, “A PLTL-prover based on labelled

superposition with partial model guidance,” in IJCAR, 2012, pp.

537–543. DOI: 10.1007/978-3-642-31365-3 42. Available at: https:

//github.com/quickbeam123/ls4 [p. 176]

202

[177] H. W. Thimbleby and P. B. Ladkin, “From logic to manuals again,” IEE

Proceedings - Software Engineering, vol. 144, no. 3, 1997. DOI: 10.1049/ip-

sen:19971104 [p. 12]

[178] W. Thomas, “On the synthesis of strategies in infinite games,” in

STACS, 1995, pp. 1–13. DOI: 10.1007/3-540-59042-0 57 [pp. 21, 22, 165]

[179] W. Thomas, “Solution of Church’s problem: A tutorial,” New Perspec-

tives on Games and Interaction, vol. 4, pp. 211–236, 2008. DOI: 10.2307/

j.ctt46mwfz.14 [pp. 3, 21, 22]

[180] W. Thomas and H. Lescow, “Logical specifications of infinite computa-

tions,” in A Decade of Concurrency Reflections and Perspectives, 1993, pp.

583–621. DOI: 10.1007/3-540-58043-3 29 [p. 166]

[181] S. Tripakis, “Undecidable problems of decentralized observation and con-

trol,” in CDC, vol. 5, 2001, pp. 4104–4109. DOI: 10.1109/CDC.2001.980822

[p. 11]

[182] S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee, “A theory of

synchronous relational interfaces,” TOPLAS, vol. 33, no. 4, pp. 14:1–14:41,

2011. DOI: 10.1145/1985342.1985345 [p. 9]

[183] Y.-K. Tsay, “Compositional verification in linear-time temporal logic,”

in FOSSACS, 2000, pp. 344–358. DOI: 10.1007/3-540-46432-8 23 [p. 143]

[184] A. M. Turing, “Checking a large routine,” in Report of a Conference

on High Speed Automatic Calculating Machines, 24 Jun 1949, pp. 67–69.

Available at: http://www.turingarchive.org/browse.php/B/8 [p. 6]

[185] H. Vanzetto, “Proof automation and type synthesis for set theory in

the context of TLA+,” Ph.D. dissertation, Computer Science, Université

de Lorraine, 2014. Available at: https://hal.inria.fr/tel-01096518 [p. 23]

[186] M. Y. Vardi, “Verification of open systems,” in FSTTCS, 1997, pp. 250–

266. DOI: 10.1007/BFb0058035 [p. 33]

[187] P. T. M. Varghese, “Parity and generalized Büchi automata:

Determinisation and complementation,” Ph.D. dissertation, University

of Liverpool, 2014. Available at: http://livrepository.liverpool.ac.uk/id/

eprint/2027479 [p. 165]

203

[188] T. Villa, T. Kam, R. K. Brayton, and A. Sangiovanni-Vincentelli, Syn-

thesis of finite state machines: Logic optimization. Springer, 1997.

DOI: 10.1007/978-1-4615-6155-2 [p. 66]

[189] A. Walker and L. Ryzhyk, “Predicate abstraction for reactive synthe-

sis,” in FMCAD, 2014, pp. 219–226. DOI: 10.1109/FMCAD.2014.6987617

[pp. 3, 13]

[190] J. C. Willems, “The behavioral approach to open and interconnected

systems: Modeling by tearing, zooming, and linking,” IEEE Control Sys-

tems, vol. 27, no. 6, pp. 46–99, Dec 2007. DOI: 10.1109/MCS.2007.906923

[p. 2]

[191] N. Wirth, “Program development by stepwise refinement,” CACM,

vol. 14, no. 4, pp. 221–227, 1971. DOI: 10.1145/362575.362577 [pp. 1,

3]

[192] A. Wolpers and W. Stephan, “Modular verification of programmable

logic controllers with TLA,” in 9th IFAC Symposium on Information Con-

trol in Manufacturing 1998 (INCOM ’98), vol. 31, no. 15, 1998, pp. 159–

164. DOI: 10.1016/S1474-6670(17)40546-5 [p. 7]

[193] T. Wongpiromsarn, “Formal methods for design and verification of

embedded control systems: Application to an autonomous vehicle,”

Ph.D. dissertation, California Institute of Technology, 2010. Available at:

http://resolver.caltech.edu/CaltechTHESIS:05272010-153304667 [p. 20]

[194] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Formal synthesis of

embedded control software: Application to vehicle management systems,”

in Infotech@Aerospace, 2011. DOI: 10.2514/6.2011-1506 [p. 20]

[195] B. Yang, R. E. Bryant, D. R. O’Hallaron, A. Biere, O. Coudert,

G. Janssen, R. K. Ranjan, and F. Somenzi, “A performance study of BDD-

based model checking,” in FMCAD, 1998, pp. 255–289. DOI: 10.1007/3-

540-49519-3 18 [p. 180]

