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ABSTRACT 

This thesis is based on several papers published by the author and some 

more work to be published. We explain the technical problem of minimizing 

Higgs potentials using group theoretical concepts. Three mathematical results 

which belong to distinct areas are used to analyze the Higgs potential in an 

abstract way. The problem reduces to one of finding "contours" of directional 

minima and thus our method is geometrical. It is explained in detail and demon­

strated for some simple cases. We show that the Michel-Radicati conjecture and 

the Gell-Mann-Slansky conjecture have geometrical significance besides predict­

ing the most likely symmetry groups of the absolute minimum of the potential. 

We also apply the method to a non-monotonic potential. 
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CHAPI'ERI 

1.1 INTRODUCTION 

After the discovery of the Higgs mechanism [1], it has been employed 

almost exclusively in the gauge symmetry breaking problem because it breaks a 

local gauge symmetry without damaging the renormalizability [2]. Though it is 

not the only known mechanism to do such a job [3,4], certainly it is the only 

tractable one. Partly due to its tractability it drew considerable attention of 

theoretical physicists despite some ugly features. There is a consensus that 

though it may not be a fundamental mechanism it would describe the effective 

phenomena arising from some unknown fundamental interactions. It was 

applied to the unification of electromagnetic and weak interactions [5] with 

great success and subsequently to fancier grand unification theories [6]. Here 

some major difficulties arose, namely the gauge hierarchy problem [7] and prol­

iferation of Higgs parameter s etc. As the spontaneous symmetry breaking 

mechanism was devised by Landau [8] to explain the second order phase transi­

tion in type II superconductors, the mechanism has been widely employed in 

condensed matter physics [9, 10]. The importance of the Higgs problem in the 

contemporary theoretical physics is indicated by the existence of several exten­

sive review articles [ 11]. 

The technical problem of minimizing the Higgs potential and finding the 

symmetry of the vacuum actually was overlooked by most model builders. It is 

not the least aspect of model building because the representation content of 

scalar particles is not the only ingredient in determining the vacuum symmetry; 

the actual structure of the potential also comes in to play a major role. Some­

times the surviving symmetry group turns out to be smaller than we expected 
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from branching rules of the Higgs representation. 

It seems a bit in reverse order to review historical developments of the 

theory before presenting some explanations of the terminology. We urge the 

reader unfamiliar with the subject to skip the following paragraph for a moment 

until he finishes reading the whole of chapter I. 

There are three major mathematical results one needs to solve the Higgs 

problem: 

1) invariant polynomials specify orbit; 

2) there is a basic set of invariant polynomials; 

3) the structure of the orbit space. 

The first result which is the most important for our purpose was clearly per­

ceived by Aronhold [12] in 1863. The second result is due to Hilbert [13]. As Weyl 

stated in his book [ 14], "Hilbert founded the proof of the invariant theoretical 

main theorems on a general proposition concerning polynomial ideals that is 

one of the simplest and most important in the whole of algebra". Relatively 

recently much work was done [15] on the orbit space structure of a single 

irreducible representation. These results lay in the backyard until very 

recently. Brout [ 16] first noticed the importance of the orbit structure and of 

the conjugacy classes of subgroups. Michel and Radicati [ 17, 18] took further 

steps in this direction and in addition studied the geometrical structure (in the 

field component space) of orbits. They defined the orbit parameters and expli­

citly constructed the orbit space. Based on a theorem by Michel [ 17] concern­

ing the critical orbits, they conjectured that a fourth degree Higgs potential 

preserves the maximal symmetries possible. Later Li [ 19] simplified a set of 

Higgs fields by group transformations, which was equivalent to parametrizing 

orbits succinctly. But his method of minimizing the Higgs potentials was a con­

ventional one. Recently Ruegg et al. [20,21] looked for the minimizing directions 
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while keeping the magnitudes of the Higgs fields constant instead of extremizing 

the whole potential with respect to field components, which was partly in confor­

mity with Michel's method but was a first step towards new methods of minimi­

zation. Subsequently Gell-Mann and Slansky [22] attempted to generalize 

Michel's conjecture for one irreducible representation to two irreducible 

represenlalions. Most recently Abud and Sartori [23] fully utilized the above 

results in their work and treated each invariant as a coordinate in a hyper-space 

where an orbit is represented by a point. They further unveiled some geometri­

cal aspects of the hyper-space. 

The geometrical method that is going to be reviewed in this thesis , is based 

on a collection of papers [24,25,26,27] published by the author plus work 

presently in progress [28]. Although this method was inspired by Prof. Gell­

Mann's remark in his lecture concerning the existence of some parameter speci­

fying the orbit of SU3 adjoint representation, it carries the foregoing works 

further and elucidates the rich geometrical nature of the extremization prob­

lem. It is based on the observation that the orbits and the conjugacy classes of 

subgroups are the relevant quantities to describe the minimum of the Higgs 

potential which is invariant under a linear transformation of a compact Lie 

group on the scalar fields. Hilbert proved that there is a basic set of invariants 

such that all the other invariants are expressed in terms of them and provided a 

systematic method to find all the basic invariants. It has been known that invari­

ants specify orbits, i.e., one can view an orbit as a point in a (l + 1)-dimensional 

vector space. How can we describe a direction in such a space? Indeed there is a 

set of parameters that can be used for such purpose. We define dimensionless 

ratios of invariant polynomials as orbit parameters. These parameters can be 

considered as some set of generalized angles specifying a direction · in the 

representation space. Their ranges being bounded they occupy a localized 



-4-

region (called the orbit space) in the orbit parameter space, which can be 

regarded as al-dimensional vector space. 

Since the scalar potential is a group invariant function it can be e1..rpressed 

in terms of the basic invariants. But a classical scalar potential is restricted to 

be a fourth degree polynomial of the scalar fields due to renormalizability*. 

Because of this restriction it is normal that a subset of all the basic invariants 

appear linearly in the Higgs potential. The potential can be written in terms of 

the norm of the field and a few orbit parameters. For a given set of orbit param-

eters we can survey the behavior, particularly e:Ktrema, of the potential along 

the corresponding direction in the vector space. By varying the orbit parame-

ters we can survey the whole space in search of the absolute minimum where 

the va cuum resides. Because of the linearity the absolute minimum of the 

potential occurs on the boundary of the orbit space, which is a projection of the 

complete orbit space. 

The potential can be minimized abstractly for a general representation of a 

general compact group. The difficult part of extremizing the potential in the 

conventional methods is equivalent to finding the orbit space boundary, which is 

unique for each different representation. In our original works we used the 

Michel-Radicati conjecture for one irreducible representation (irrep) and the 

Gell-Mann-Slansky conjecture for two irreps as a guide to find the orbit space 

boundary. Later we found that much work has been done by mathematicians 

[ 15] on the structure of the orbit space for one irrep. Their results were derived 

without referring to invariants at all and, though general, are not too under-

standable for an average physicist. With our formalism many things become 

intuitively clear . The main result is that the orbit space consists of some l-

• In the solid-state physics the free energy need not be restricted to be a fourth degree poly­
nomial of order parameters but in some cases it is important to go to higher degree [29]. 
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dimensional volume occupied by the generic stratum of the lowest level sym­

metry group and all the other strata of higher symmetries forming the singular 

boundaries. The strata of the highest symmetries are the most singular. 

As we shall see the absolute minimum of the Higgs potential occurs on the 

most protrudent portions of the projected orbit space boundary. Though there 

is no coherent logical relationship between singularity and protrusion of a stra­

tum, we observe that most singular strata are normally most protrudent (at 

least locally though not globally). Consequently the absolute minimum of the 

potential is most likely to occur at the stratum of highest symmetries in accor­

dance ·with the two conjectures above. 
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1.2 HIGGS PROBLEM AND ORBIT PARAMETERS 

Though our method can be applied to any kind of Higgs potential. we 

will take a rather simple case to show the main ideas. In a non-abelian gauge 

theory, where the scalar potential has a symmetry G x reflection and the 

scalars transform as an n-dimensional irreducible representation H. of G*, the 

Higgs potential can be written as 

1 n 1 n 
V(cp) = - -m2 l; So/Soi + -A ( ~ c;otc;oi )2 + 

2 i=l 4 i =1 
(I.2.1) 

V( cp) is invariant under a group transformation 

where T('IJ) is an n-dimensional matrix corresponding to a group element. In 

general 

N 
T('IJ.) = exp(-i~ 'IJLXL) , 

i=l 

where XL are generators of the group and 'IJL are group parameters specifying 

an element of the group. 

As is well known, due to the negative mass term the minimum of the poten-

tial occurs at some nonzero values v of cp. The vacuum, defined to be at the 

minimum of the potential. respects only a subgroup G' of the symmetry group G 

of the Lagrangian. Mathematically speaking, T('!J) v = v only if T('IJ) is an ele­

ment of G' c G, otherwise T('IJ.) v '/: v. 

• G is a semi-simple compact Lie group. 
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When one tries to find the minimum of the potential, one faces significant 

difficulties; 

1) Finding the solution for arbitrary coupling coefficients by setting 

al' I acpi = 0 is very difficult because it requires us to solve simultaneous cubic 

equations of too many unknowns. 

2) For numerically given values of the coefficients we may try to use some 

well-developed computer programs to minimize the potential. But it will not be 

helpful because the minimum occurs along valleys in cp space. To put it more 

clearly, we may choose rp 1 = v and ~X1 .X2.X3 ~ as our subgroup singlet and gen­

erators respectively, or we may equally well choose rp2 = v and ~X4.X5 .X6 ~. In 

general there is a continuum of equivalent sets of C,Oi and ~XL .XM .XN J. The Higgs 

potential is totally blind to such differences. 

We will now introduce some useful group theoretical concepts. The orbit of 

C,Oa is defined to be the set of states rp(a) that can be expressed as rp(a) = T(iJ) C,Oa 

wiLh '/'( 19) un clement of G. The little group of Y'a is defined to be the subgroup 

G'a of G that leaves C,Oa invariant, T(iJ)cpa, = cpa, for T(iJ)EG'a c G. Considering 

that T('l'J)cpa = T(Oc,oa is true if and only if T('l'J) = T(0T(1'J') with T('l'J') an ele­

ment of G'a we see that the states of an orbit are in one-to-one correspondence 

with the coset GI G'a· It can easily be shown that the little group G'b of any 

state rp0 on the orbit of C,Oa is conjugate to G'a.· If the T('l'J) are unitary then all 

the states rp(a) have the same norm c,o;c,oa. In general. there is a continuum of dis­

tinct orbits respecting the same little group up to conjugation. The set of all 

such orbits is called the stratum of the little group. Note that if the little groups 

of two orbits are distinct then the orbits are distinct. However the converse is 

not true, i.e., if two orbits are distinct their little groups are not nec~ssarily 

different. 
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Two important theorems concerning invariants and orbits can be found in 

the literature: 

Theorem 1; Invariant polynomials P(cp) specify orbits of cp. 

From this theorem [ 12] we see that each invariant polynomial in the Higgs 

potential is conslant on an orbit and thus is a function of orbits. When we seek a 

solution to the Higgs problem, we are actually seeking the orbit that minimizes 

the potential, and its little group. 

Theorem 2; There exists a set of invariant polynomials Ia(cp), called the 

integrity basis such that every invariant polynomial P(cp) can be expressed 

as a polynomial of Ia. : P(cp) = P[Ia(cp)] . 

This is the celebrated theorem of Hilbert's [ 13]. The invariants in the integrity 

basis are not necessarily independent and indeed for some representations 

there are constraints among them. We will call the complete set of independent 

invariants, basic invariants. The number (l + 1) of basic invariants is different for 

each different representation .H. Thus we can visualize an orbit as a point in the 

(l+l)-dimensional space of Ia· 

Our crucial observation is that the dimensionless ratios of invariants to the 

magnitude of the cp vector, for example 

(I.2.2) 

can also be used to specify strata, and yield a powerful tool in minimum prob-

lem. We will call the dimensionless ratios orbit parameters. They can be con-

sidered as a set of generalized angles containing all the directional information. 

From the definition we can readily see that their ranges are bounded and thus 

they occupy a localized region (called the orbit §pace)* in the orbit parameter 

space, which can be regarded as al-dimensional vector space. 

• We think Michel and Radicati [ 18] were the first physicists who constructed orbit spaces ex­
plicitly. 
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CHAPTER II ONE IRREDUCIBLE REPRESENTATION 

Il. l OUTLOOK WITH AN EVEN DEGREE HIGGS POTENTIAL 

Before we analyze the general scalar potential let us consider a simple case 

to develop general ideas. Suppose the scalar fields transform as an n-

dimensional irreducible representation (irrep) R of a compact (or finite) group 

G and in addition have a reflection symmetry. Then the most general Higgs 

potential can be written as 

where 

Since we want the potential V( cp) to increase to +00 as 11cp114 00 , we impose a 

condition on the coupling coefficients; 

(IJ .1.2) 

Our new variables are 11cp11 and Ai (s;?). Since the potential is made of quadratic 

and quartic invariants only, normally A,;. do not constitute the complete set of 

orbit parameters. However we shall soon see that these constitute the complete 

set of 1 ,!'umeters needed to specify the absolute minimum of the potential. 

If we choose a particular direction in cp space, then the orbit parameters 

will take definite values. We can easily see how the Higgs potential behaves in 
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this direction; 

V = - ~ m 2 IIY'11 + ! A' 11Y'11 2 
, (Il.1. 3) 

where m and A' are constant numbers. This function behaves like Fig. II.1.1. 

The extremum for this particular choice of ~ (~) is found by setting 

(II.1.4) 

equal to zero. We obtain 

(Il.1.5) 

which is automatically positive for m 2> 0 due to the condition (II.1.2). Noting 

that 

(II.1.6) 

is always positive due to the condition (II.1.2), we see that eq.(II.1.5) is a local 

minimum (which we call the dfrectianal minimum of the potential in the direc-

tion of Y' specified by Ai(~). 

v v 

Fig. II.1.1 Fig. Il.1.2 
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At the directional minimum 

'Va(So) = V(So)J11~ll=ll~ll 0 

_ 1 m 4 

- - 4 (A + A1tq+ AzA2+ · · · ) 
(II. 1. 7) 

As we change the direction in So space (i.e., the t..i(~)), the location of the 

minimum will move around as in Fig. II.1.2. To find the absolute minimum we just 

have to look for the lowest of those directional minima. Since 

av 
a~ 

(II.1.8) 

V is a monotonic function of Ai. Thus the absolute minimum of V is not at 

a VI a~ = 0, but at the boundary points of the region of "physical" ~. 

To find these boundary points, note that the orbit parameters are dimen-

sionless ratios of invariants such as eq.(I.2.2), i.e., they depend on~ whose mag-

nitudes are less than one. These defining equations permit a precise determina-

tion of the region of "physical" t..i. In particular it is immediately clear that for 

any configuration of '(/;, the range of t..i is bounded above and below: 

In an actual calculation the first practical task will be to calculate the physical 

region of Ai('(/;), which we shall call the orbit space*. 

•A proper description is the stratum space, which is a projection of the true orbit space. Th~ 
choice was made because "Orbit Space" is close enough and phonetically sounds softer. Later 
we found that Michel and Radicati [18] named it the same way. 
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Suppose there are two orbit parameters Ai and f..2 . In the /..i - f..2 plane, the 

orbit space will look like the warped polygon in Fig. II.1.3. It is important to note 

(viz, eq. (I. 2. 2)) that the orbit space is independent of Higgs coupling coefficients 

and masses, though it does depend on the group and the representation. 

Turning our attention to the potential, let us put 

(II. l. 9) 

Jl'or given values of A, A1, A2 and C, this will represent a line in Ai - f..2 space (Fig. 

II.1.3) According to condition (II.1.2) the line can only intersect orbit space when 

C .> 0. As we increase C at fixed A, Ai, A2 , the line will sweep the orbit space. 

The minimum physical value of C will occur where the line first touches the orbit 

space. By eq. (II.1. 6) this corresponds to the absolute minimum of the Higgs 

potential. Above the absolute minimum of V there is a continuous range of V and 

11'fJ11 0 where a VI a 11'fJ11 = 0 can be satisfied by some choice of f..i. As we further 

increase C, the line finally leaves the orbit space at the highest of the direc­

tional minima where V has the form of the upper curve in Fig. II.1.2. 

C>O 

Fig. Il.1.3 
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Our considerations with Fig. II.1.2 have suggested that V has no other 

extremum than the absolute minimum and the local maximum at 11cp11 = 0. 

For some special values of A 1 and A2 the line can first touch the boundary of 

orbit space at two points. In such cases there are two different valleys of 

extrema (two orbits) that cannot be connected by a gauge transformation and 

the vacuum has an accidental degeneracy. 

If there are more than two orbit parameters, then 

(II.1.10) 

represents a plane in f.. space and the situation can be depicted as in Fig. 11.1.4. 

The procedure to find the minimum will be the same as before. Since the abso­

lute minimum always occurs at the boundary of the orbit space, we have to find 

the (s-1) surface parameters and the value of the potential at the first contact 

point in the s-dimensional orbit parameter space. However the orbit space of a 

single irrep is normally conjectured to be star-shaped (Fig. II.1.4) and normally 

all we need to know is the location of the cusps. Detailed e~rplanation will be 

presenled i.n Cll 11.2-3 and CHV. 

Fig. 11.1.4 
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When the representation is complex, the potential can in general contain 

terms of the type 

( H ~jktCfJiCfJjCfJkCfJt+ complex conjugate) 

= 2 JHI cos[h + '6(~)] 17(~)1ISol1 2 
, (Il.1.11) 

where 

I H I = magnitude of H , 

h = argument of H , 

At the minimum of the potential, h + 1J = 1f, and 11(~) is determined in the same 

way as the Ai. 

In problems where cubic potentials or effective potentials are considered, 

the potential takes the general form 

V(cp) =~Al ISol I+~ [B1f11(~) + B2f32(~) + ... ]I I cpl 1
312 

+ ! [ c + ca 1 ( ~) + ... J I 1 cp I 12 + ~ [ n i o i ( ~) + ... ] I I cp I I 512 + · · · (IL i.12) 

If we choose a direction in cp space, all the orbit parameters will become con­

stant numbers and we can easily see how the function behaves in that direction 

of cp. However due to Theorem 2, some orbit parameters associated with higher 

degree (~5) polynomial invariants are polynomials of lower degree parameters. 

Eventually the problem will become non-linear and one may expect that detailed 

solution will be far more complicated. However, as we shall see in ClN the prob­

lem can still be reduced to a form similar to the one presented in this chapter. 
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The classic paper of Li [19] dealt with single irreps of Higgsons in SUn and 

SOn . Only cases involving a single orbit parameter were considered. i.e., the 

orbit space was always a line Arron~ A(~) ~ Amax· The absolute minimum is found 

trivially by substituting the boundary value of the orbit parameter into eq. 

(II.1.6). 
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Il.2 GENERALFORMAIJSM 

Let us start with a case where there is one cubic invariant polynomial and 

one non-trivial quartic invariant polynomial. As we will see our result can be 

trivially extended to a more general case where there are more cubic and quar-

tic invariant polynomials. 

To simplify the notation, we set 

r = I I c; I I 112 
, (II.2.la) 

(ll.2.lb) 

B' = B{3 . (II.2.lc) 

Then the Higgs potential takes the form, 

m 2 B' A' V= - --r 2 + -r3 + -r4 

2 3 4 
(II.2.2) 

We impose the positivity condition, 

(II.2.3) 

on Lhe coupling coefficients in order to ensure that V4+ 00 as 11c;114 00 • 

As eA.rplained in the previous section, since the potential is a monotonic 

function of a and (3 we do not differentiate with respect to a and (3 to find the 

e}...1.remum of the potential. Differentiating with respect to r we obtain, 

av 
or = r (-m2+ B'r + A'r2) . (Il.2.4) 

There are three extrema: 

(i) T 0 = Q (II.2.5a) 
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(iii) r = 0 
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-B'+ V B'2+ 4A'm2 

2A' 

-B'- V B'2+ 4A'm2 

2A' 

(II .2.5b) 

(II.2.5c) 

To find out the nature of each extremum, let us check the second derivative, 

a2 v --= -m2 + 2B'r + 3A'r2 

ar 2 

The value of the second derivative at each extremum is: 

(i) 

(ii) 

(iii) 

-m2 

VJ5 (05 - B') 
2A' 

VJ5 (...JJJ + B') 
2A' 

where D = B'2+ 4A'm 2 . 

(II.2.6) 

(II.2. ?a) 

(II.2.7b) 

(II.2.7c) 

In order to prevent confusion, we will treat the three cases, m 2> 0, m 2= 0, 

and m 2< 0, separately. 

(a) m2 > 0 

In this case, taking eq. (Il.2 .3) into account, D is automatically positive and 

greater than I B' I. Checking signs in eqs. (Il.2.5) and (II.2.7) we find that solution 

(i) is a local maximum. solution (iii) is unphysical, and solution (ii) is a local 

minimum for either sign of B'. The local minimum is lower when B'< 0. 

Substituting solution (ii) into eq. (II .2.2) we obtain 

m 4 m 2B'2 m 2B' B'3 -B'+ VB' 2+ 4A'm2 

Va = - -4-A-' - 12A'2 + ( 3A' + 12A'2 H 2A' ~ 

= - !£_ - 4 I 
(II.2.8) 
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which is negative definite for A'> 0, m 2> 0, and B'< 0. This equation defines a 

curve in the r.x-{3 plane (or A'-B' plane). To get a rough idea, we have made com­

puter generated plots of the contours for several k values for a particular case 

(A, A 1, B, m 2 > 0) (Fig. II.2.1). Despite the complicated look of eq. (II.2.8), the 

contours turned out to have simple shapes. For a given k, the contour is a 

smooth curve with no extrema in the region A + A 1r.x > 0. Each k contour passes 

through the point [ ex= (m 4/ k -A)/ A1, {3=0] to reach the point 

[ r.x=-A/ A 1, {3=.J213m 3/-.JkB] where A' goes negative. Ask is reduced from 

+00 , where the contour is the horizontal line cx=-A/ A1, the k contour rises up 

and slides to the right in the case (A, A 1, B, m 2 > 0) . When it makes the first 

contact with orbit space, it yields the absolute minimum of the potential. As k is 

further reduced, the k contour sweeps through the entire orbit space. 

a 

1.0 

A'>O 

A' = 0 - - - - - - - - - - - - - - - - - - - - - - - - - -

Fig. II.2.1 
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The above statements on the movement of the k contow~ are justified by 

checking the direction of the gradient vector Vk = (Bk I arx, ak I 8{3). In terms of 

p = v B'2+ 4A'm2/ IE' I > 1, its components are: 

1 Bk 1 Bk 
- 4aA' = - 4A

1 
arx 

= m 
4 

( p + 1 ~2 > 0 , 
4A'2 p - 1 

= m 2 IB'I m 2 B'2 IB'I + VB'2+ 4A'm2 

6A'2 + ( 3A' + 4A'2 )( 2A' J 

IB'I 1 + ---;:::~::=:====;:;--
+ m 2 IB'I IB'l 3 VB'2+4A'm2 

( 3A' + 12A'2 H 2A' 1 

:: m 2 I B' I (p + 1)2 > 0 
6A'2 (p - 1) 

(Il.2.9) 

(Il.2.10) 

The orientation and direction of movement of the k contour as k decreases are 

summarized in Fig. II.2.2 for each sign of A1 and B. 
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Fig . Il .2.2 



- 21 -

Using eqs. (II.2.9) and (II.2.10) one can compute the second derivative: 

d2A' __ .!!.-__(Bk/ BB') 
dB' 2 - dB' (ak; aA') 

= 14 (p-1) 
2 > 0 . 9m p 

(II.2.11) 

One finds that the k contour is always concave in the direction towards which it 

is moving. 

(b) m 2 = 0 

Though the potential has a simplified structure in this case, it still has 

directional extrema. Solution (i) is an inflection point and solution (ii) with 

B'< 0 is the directional minimum. 

Eq. (Il.2.8) reads, for m 2= 0 and B'< 0, as follows: 

IB'l 4 

Vo = - 12A'3 

k 
4 

which is negative definite. Solving eq. (II.2.12) for A' we obtain 

A' = I B' 1413; (3k )113 . 

(II.2.12) 

(II.2.13) 

This is a familiar curve, somewhere bclwecn a slraighl line and a parabola, and 

thus gives some insight into the complicated k contour found in the other cases. 

We see that k is a measure of the flatness of the curve. As k is reduced, the 

curve becomes steeper or equivalently the k contour pivots about th.e point 

(A'=O, B'=O) towards the A'-axis. 
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(c) m2 < 0 

In the region where B'2 - 4A' I m 2 
J > 0, solution (i) is a local minimum, solu­

tion (ii) with B' < 0 is a local minimum, and solution (iii) with B' < 0 is a local 

maximum. If the cubic term is strong enough, solution (ii) will be the lower 

minimum. Otherwise solution (i) will be the lower. In the region where 

B'2 - 4A' Im 2 I < 0, there is only one local minimum at the origin. 

Directional behavior of the potential is most complicated in this case. The 

evolution of the potential t hr ough the configurations listed above as k decreases 

is shown in Fig. II.2.3. 

v v 

r 

(a) ( b) 

v v 

r r 

(c) ( d) 
Fig. II.2.3 
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I m2<ol 
a 

8'2 
k = 0 '- 2 

A -9lm21 

\ 8'2 m4 
k1>k2>k3 

A'= 
41 m2

1 
k = - 3A' 

k3 k, k2 

A'> 0 

A' =O --- - - - - - --- -------, - --

Fig. II.2.4 
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Eq. (II.2.8) reads, for m 2 < 0, and B'< 0, as follows: 

= _ m 4 + lm2 l IB'l 2 + lm 2 l IB'I 
Va '1A ' 12A'2 ( 3A' 

IB'l 3
, IB'l+v'B'2-4A'lm2

1 

~( 2A' J 

4 

12A'0-p2)2 (3p4 + 8p3 + 6p2 - 1), 

k 
4 

(II.2 .14) 

which is not negative definite for 0 ~ p ~ 1. Eqs. (II.2.9), (II.2.10), and (II.2.11) 

can be used for the m 2< 0 case withm2 replaced by-jm2
1 and (p-1) by (1-p). 

The direction of the gradient vector Vk =(ak; aa, ak; a{3) is the same as before. 

The k contour is again concave. The k contour does not slide but pivots about 

the point (a=-A/ A1, (3=0). For simplicity let us concentrate on the case 

A, A1, B, - m 2 > 0 (Fig. II.2.4). As k is reduced from + 00 the k contour pivots 

clockwise until it meets the orbit space. As k is reduced to zero, which happens 

whenp = 1/ 3, the contour becomes the parabola, 

2 B'2 

A'= g jm21 . (II.2.15) 

Beyond this point k takes on negative values. As the k contour touches and 

becomes identical to the parabola B'2- 4A'lm2 1=0 at k = - m 4/3A', the two 

extrema at r 0 ~O coincide and become an inflection point leaving the origin as 

the only extremum, the absolute minimum. 

lf the first contact occurs with the k =O contour an interesting phenomenon 

occurs. In this case we have a spontaneous symmetry breaking at T 0 ~O and no 

symmetry breaking at T 0 =O (Fig. II.2.3b). It will be interesting to see what kind 

of physics happens in such a degenerate vacuum. 
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The problem can again be reduced to the same form in cases involving one 

irreducible representation with more cubic and quartic invariants. To see this, 

note that the potential still has the form (II.2.2) in these cases, with A' and 'B 

dependent on more orbit parameters ai and f3i but still linear in them. Eqs. 

(II.2.9) and (II.2.10) still hold for each BkJaai and Bk/Bf3i and (II.2.11) still 

holds. We see that a hyper-k -surface approaches to the orbit space as k is 

reduced from +=. The k surface is again non-convex in the direction towards 

which it is moving. Again the first contact, i.e., the absolute minimum, can 

occur only on the non-concave segments of the orbit space boundary. 
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11.3 THE GENERAL STRUCTURE OF THE ORBIT SPACE OF ONE IRREDUCIBLE 

REPIU!SENTATION 

Due to the monotonicity of the Higgs potential with respect to the orbit 

parameters the absolute minimum occurs on the boundary of orbit space, a t the 

point of first contact with the potential minimizing k-surface. If the k-surface is 

ftat (CHII.1) or concave in the direction towards which it is moving (CHII.2), its 

point of contact is further restricted to non-concave segments on the orbit 

space boundary. These features are universal to a general Higgs potential for 

scalar bosons belonging to an irreducible representation of the symmetry 

group. What is different for each different representation is that each has its 

own unique orbit space. 

Although the structure of the orbit space for an irrep was unveiled [ 15] 

abstractly by a group of mathematicians, we derived the same result in a more 

intuitive way. An important clue leading to a general description of an orbit 

space is found in Michel's work. Michel and Radicati [ 17, 18] were among the first 

who realized the importance of the orbit structure and of the conjugacy classes 

of subgroups. They took further steps in this direction and in addition studied 

the geometrical structure (in the field component space) of orbits. They conjec­

tured that if the representation of the symmetry group G of a fourth degree 

Higgs potential is irreducible on the real, its minima preserve ma:h.imal little 

groups. This was based on a theorem by Michel [ 17] that when 11cp11 is held con­

stant, all invariant polynomials are stationary at a critical orbit, which is iso­

lated in its stratum and has a maximal little group. This theorem amounts to 

saying that there is a cusp at each critical orbit point. If these cusps are the 

only non-concave portions of the boundary, the Michel-Radicati conjecture is 

proved. These considerations led us to anticipate that the orbit space of one 

irrep would be star-shaped (Fig. II.1.4). 
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Let us give somewhat more specific arguments on the structure of a com-

plete orbit space of one irrep. First the dimension of a complete orbit space for 

one irrep is one less than the number of independent invariant polynomials. The 

latter number is equal to the number of simplified Higgs field components, which 

we have called CfJi so far. The two sets of parameters are equivalent ways of 

specifying a stratum point. The non-linear transformation rules among them are 

given by the definitions of the orbit parameters. Let us denote the ratios of the 

components as before, ri = cpd CfJt+I· If we consider the Jacobian determinant 

B(a1, a2. · · · .at) I a(r 1, r 2 , · · · .rt). then we can easily deduce the necessary 

condilions for a boundary poinl: 

At a point on the bo'undary point of the orbit space' the rank of the 

Jacobian determinant is less than or equal to (l-1). 

When the rank of the determinant is (l-s) in some regions of the orbit space, 

the regions form (l-s )-dimensional surfaces. The regions are singular regions 

embedded in higher-dimensional space. Let us define P = (a1i a 2 , · · · , at) to 

describe the boundary conditions in more detail. When s =l in some regions 

they correspond to singular points, i.e., cusps. Equations for them are 

(II.3.1) 

When s =(l -1) in some regions they correspond to singular curves, i.e., edge 

curves. Equations for them are 

(II.3.2) 

where BP I ari = 0 is allowed for some i's but not for all. Whens =(l-2) in some 

regions they correspond to singular two-dimensional surfaces, i.e., warped sur-

faces. Equations for them are 
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(II.3.3) 

where ~ij(aaal ari)(aab/ ari) = 0 is allowed for some (a,b) but not for all. 

Eq. (JI.3.1) imposes l conditions on l ri 's, implying that the stratum of the 

cusp has only one parameter, i.e., one singlet. This guarantees that the little 

group of the cusp is a maximal little group. Eq. (II.3.2) imposes (l -1) conditions 

on l ri 's, leaving two parameters. The stratum of the curve has a semi-maximal* 

(or maximal) little group. Eq. (II.3.3) imposes (l-2) conditions on l ri 's, leaving 

three parameters. The corresponding stratum commonly has a one-level lower 

little group. 

From the above considerations and some examples (CHII.4, CHIV. l) we can 

picturize the complete orbit s ·~ ... ..; e of one irrep as follows; On the boundary of 

the complete orbit space there are cusps of maximal little groups, singular 

curves of semi-maximal little groups connecting the cusps, and singular sur-

faces of lower level little groups stretching between the curves, and so on. Inside 

the boundary all the points belong to a stratum, called the generic stratum, 

corresponding to a unique little group . It is noteworthy that the lower level little 

groups are subgroups of higher level little groups when the strata of the latter 

lie on the strata of the former. For example, when a cusp lies on two curves of 

different little groups they are subgroups of the little group of the cusp. 

The main result of ref. [ 15] is that the generic stratum occupies some l-

dimensional volume (an open, dense, and topologically connected region) and all 

the other lower dimensional strata form the singular boundaries of the generic 

stratum. It is noteworthy that this pattern repeats whichever stratum we start 

• A little group is a subgroup whose sub-representations contain singlets. Maximal little 
groups are the largest little groups which do not contain each other. Semi-maximal little 
groups are second largest little groups whose sub-representations contain more singlets than 
maximal little groups. Semi-maximal little groups do not contain each other. 
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from. For example, if we start from a two-dimensional surface the curves close 

most of the boundary of the surface and the cusps close both the curves and the 

surface. 

If the Michel-Radicati conjecture is to hold, the projected orbit space (con­

structed out of the invariants employed in the 4th degree Higgs potential) must 

have further properties; Cusps should be globally most protrudent. In other 

words, all the boundary surfaces must lie inside the polyhedron which is con­

structed by drawing straight lines between all the cusps. AB we shall see in 

CHIV. l, the complete orbit spaces do not have this property. Whether or not the 

projected orbit spaces have the property remains to be seen. 

However in the examples of CHIV.1 we find that the cusps are locally more 

protrudent than the curves, the curves are locally more protrudent than the 

two-dimensional surfaces and so on. We do not yet have a general proof or dis­

proof of the observed hierarchy of concavities. 
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II.4 APPLICATION TO SU(N) ADJOIN1' REPRESENTATION 

II.4.1 THE IDGGS POTENTIAL FOR SU(5) ADJOINT REPRESENTATION 

In the spirit of doing simple things first and then extending to a general 

case we will first consider SU5 adjoint [30] to show concretely how our method is 

applied. We will consider the most general Higgs potential invariant under SU5 

gauge transformation: 

(II.4.1) 

Diagonalizing the traceless hermitian matrix cpi i, we obtain 

m2 o B 5 A 5 A1 5 
V( So) = - - I: Sof + - 2: ~( + - ( I; cpi2 

)
2 + - I; cp{ 

2 i=l 3 i=l 4 i=l 4 i=l 
(II.4. 2) 

with 

(II.4.3) 

We further express the potential as 

V(cp) = - rr~
2 

11~1 I+ g {3(~)1l~l1 312 +!(A+ A1 a(~)) I I cpl 12 (11.4.4) 

where 

(II.4.5) 

ex. = r[+ri+r~+ 1+(r1+ r 2+r3+1 )4 

[ rr+ r~+ r~+ 1 + (r1+ r2+ T3+ 1 )2 ]2 I 

(Il.4.6) 
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(II.4. 7) 

with ri = cpi/ cp 4 . Note that (3 can be positive or negative for the same a depending 

on the signs of the fields. 

We impose the positivity condition, 

(II.4.8) 

on the coupling coefficients in order to ensure that V-') +00 as 11cp11 ~ 00 • 

II. 4.2 MAXIMAL AND 8.EMI-1tIAXll\:'JU. IJTTLE GROUPS AND ORBIT SPACE 

The maximal little groups and associated branching rules [22,31] of 2..4 are 

as follows: 

SU4xU1 : 24 = 1(0) + 4(-5) + 4(5) + 15(0) (II .4. 9) 

5 = 1 ( 4) + 4( -1) 

cp = a ( 1, l, 1, 1, -4) (II.4.10) 

a= 13/ 20 

f3 = ± 3/ 2v'5 (II.4.11) 

SU3xSUzxU1 : 24- = (1,1)(0)+(1,3)(0)+(8,1)(0)+(3,2)(-5)+(3,2)(5) (II.4.12) 

5 = (3,1)(-2)+(1,2)(3) 

cp = a (2,2,2,-3,-3) (II.4.13) 

a= 7/ 30 

(3 = ± 1/ -v'30 (II.4.14) 
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where we also have listed the branching rule of ..Q.. the form of cp which 

transforms as a singlet under the listed subgroup, and the orbit parameters for 

each case. 

The semi-maximal little groups and associated branching rules of ..2..:1 are as 

follows: 

24 = 1 [ 0' 0] + 1 [ 0' 0] + 1 [ 0 l 2] + 1 [ 0 l -2] + 8[ 0 l 0] 

+3[-5,1]+3[-5,-1]+3[5,1]+3[5,-1] (II.4.15) 

5 = 3[-2,0]+1[3,1]+1[3,-1] 

r.p = (a,a,a,b ,-3a-b) (II.4.16) 

a= 3a4 +b 4+(3a+b )4 _ 3r4+1+(3r+1)4 

[3a2+b 2+(3a+b )2] 2 (3r2+1+(3r+1)2] 2 (II.4.17) 

_ 3a3 +b 3-(3a+b)3 _ ± · 3r3 +1-(3r+1)3 

(3- [3a2+b 2 +(3a+b)2] 312 [3r 2+1+(3r+1)2] 31 2 (II.4.18) 

24 = ( 1, 1) [ 0,0]+( 1, 3) [ 0,0] +( 1.1)[ 0, O] +(2, 1)[0,3] +(2, 1)[0, -3] 

+(3, 1)[ 0, O] +( 1.2) [ -5, -2] + (2,2) [-5, 1] +( 1,2) [ 5, 2]+(2, 2)[ 5, -1 ](II.4.19) 

5 = (1,1)[-2,-2]+(2,l)[-2,1]+(1.2)[3,0] 

r.p = (a ,a,b ,b ,-2a-2b) (II.4.20) 



a= 2a4 +2b 4 +(2a+2b )4 

[2a2 +2b 2+(2a +2b )2] 2 
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2r4+2+(2r +2)4 

[2r2+2+(2r +2)2] 2 

(3 = Za 3 +2b 3-(2a +2b )3 = 2r3 +2-(2r +2)3 

[2a2+2b 2+(2a+2b )2] 312 - ± [2r2+2+(2r+2)2] 312 ' 

(II.4. 21) 

(II.4.22) 

where we have listed two U1 charges in the brackets. We have underlined the 

singlets.The curves that represent the strata of these little groups are displayed 

in Fig. II.4.1. 

--SU3XU1xu, 

----SU2 x SU 2 xu1xU1 

-0.8 -0.6 -0.4 

0.6t 
(A) 

0.5 

0.4 

' ' ' /--- ____ , 
- ( 8) -

\ o.2t I 
SU 3 x SU2 x U1 

0.1 

-0.2 0.0 0.2 

Fig. 11.4.1 

0.4 0.6 0.8 8 
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A simple-minded approach to finding the boundary of the orbit space is to 

extremize {3 for each ex. Instead we can use the following idea. Consider a set of 

</)i such that ex, {3 lies on the boundary. Make an infinitesimal variation of one of 

the fields C/)i. The resulting change oex/ OC/)i I 8{31 acpi forms a vector in ex, {3 space. 

This vector cannot take us out of orbit space, therefore it must have vanishing 

component normal to the boundary. This requirement that the vector vanish or 

point along the orbit space boundary holds for infinitesimal variations in each 

'Pi, giving us the necessary condition for a boundary point; 

At a boundary point, all field components <pi must either satisfy 

or must have a common value of 

Partial derivatives of a and {3 with respect tori are: 

4[ rP+(r 1+r2+r3+1)3] 
= ------------------------~ 

[r.f +r~ +r§ + 1 +(r1+r 2+r3+1)2 ] 2 

4[ ri +(r 1+r2+r3+1) ][ r ( +ri +r~ + 1+(r 1+r2+rs+1)4
] 

[rr +r~ +r~ +1+(r1+r2+r3+1)2]3 

.2.JL= (±) 3[rl-(r1+r2+rs+1)2] 
ari [rr+r~+r§+1+(r1+r2+r3+1)2] 312 

3[ ri +(r 1+r2+r3+1)][ r r +r~ +rg + 1-(r 1+r2+r3+1)3
] 

[rr +r~ +rg + 1+(r1+r2+r3+1)2] 512 

(11.4.23) 

(II.4.24) 

(II.4.25) 

(Il.4. 26) 

We confirm that cp = a(l.1.1.1.-4) and cp = a.(2.Z,2,-3,-3) satisfy the condition 

(Il.4.23); cp = b(r,r,r,1,-3r-1) and cp = b(r,r,l,1,-2r-2) satisfy the condition 

(IIA24). 
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To ensure that these curves really form the boundaries, we have plotted 

several thousand random stratum points. ·No point was found outside the boun-

daries defined by the curves (A) and (B) of Fig. II.4.1. 

II.4.3 LOCKI10N Qli' THE ABSOLUTE MINIMUM 

Using the general formalism developed in CHII.2 we can locate the absolute 

minimum immediately. Since the k contours behave similarly for m2~ 0 as for 

m 2> 0, we can treat all three cases together. 

Due to the concavity of the boundary curves of the orbit space and the con-

cave shape of the k contour, the first contact can occur only at 

(a=13/ 20, {3=±3/ 2-v'5), the stratum of SU4 xU1, or at (a=7/ 30, {3=±11 ..J30), the 

stratum of SU3xSU2x U1, in agreement with the Michel-Radicati conjecture. 

When A 1> 0, the absolute minimum may occur at either stratum depending on 

the values of the other coupling coefficients. When A1 < 0, the absolute minimum 

occurs only at the stratum of SU4x U1. Note L11at of the two cusps with the same 

ex, the one with B'< 0 gets the first contact because it yields a lower value of the 

potential. 

II.4.4 SU(N) ADJOINT REPRESENTATION 

The formalism for SU5 2.1: can be extended trivially to the case of SUN 

adjoint representation by extending the sums to N. What is different is that 

there are more maximal little groups and the orbit space boundary has more 

cusps as the ~roup gets bigger. 

The strata for the maximal little groups of SUN adjoint representation are 

of the form 

<p =a (1,1, · · · ,1, ;m , ;m , · · · . ;m } 
-m -m -m 

(II.4.27) 
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where m elements have the common value a and the other (N -m) elements 

have the common value -am/ (N-m ). For fixed m eq. (II.4.27) represents the 

stratum of SUmxSUN-mx Ui. The orbit parameters for this stratum are : 

m + (N-m) (N"'.::_m)4 
(X = ----------

[m + (N-m) ( m ~2]2 
N-m 

m - (N -m) ( m )3 
N-m 

{3 = ± ---------
[m + (N-m) ( m )2]312 

N-m 

The list of maximal little groups for SUN adjoint representation is: 

(Il.4.28a) 

(II.4.28b) 

(II.4.29) 

The strata for the semi-maximal little groups of SUN adjoint representation 

are of the form 

<p = a ( r, r , · · · , r, 1.1. · · · , 1, -mr -( N -m -1) ) (II.4.30) 

where m elements have the common value ar, (N-m-1) elements have the 

common value a, and one element is the negative sum of all the other elements. 

For fixed m, eq. (II.4.30) represents the stratum of SUmxSUN-m-1xU1xU1. The 

orbit parameters for this stratum are: 

a= mr4 + (N-m-1) + (mr + (N-m-1))4 

[mr2 + (N-m-1) + (mr + (N-m-1))2]2 ' 

_ ± mr3 + (N-m-1) - (mr + (N-m-1))3 

{3 - [mr 2 + (N-m-1) + (mr + (N-m-1))2]31 2 

(II.4.31a) 

(II.4.31b) 
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It can easily be checked that eqs. (II.4.27) and (11.4.30) satisfy the necessary 

conditions for boundary points, eqs . (II.4.23) and (ll.4.24), respectively. The 

cusps and curves of the boundary are shown in Fig. II.4.2 for several low N *. 

Again computer generated random stratum points never appeared outside the 

boundary. 

It will be noted that the boundary curves corresponding to semi-maximal 

little groups in Fig. II .4.2 ar e all concave again. One sees, using the same k con-

tour as in the previous section, that only the cusps corresponding to the maAi-

mal little groups can yield the absolute minimum, in agreement with the 

Michel-Radicati conjecture. Consideration of Figs. 11.2.2 and ll.4.2 together shows 

that when A1 < 0, the absolute minimum occurs only at the stratum of SUN_ 1x U1. 

When A 1> 0, the absolute minimum may occur at any of the strata of maximal 

little groups, t_he choice depending on the value of the other coupling 

coefficients. 

Again the Michel-Radicati conjecture is found to be true for any SUN 

adjoint. 

•No curve is shown for SU3 because Trcp4 is not independent of (Tn;o2)2, i.e., there is no a, in 
this case. 
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(a ) ( b ) 

~SU5 xu 1~ 

( c ) ( d) 

· Fig. II.4.2 
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CHAP'l'J~H Ill TWO UliIBDUCIBIB REPRESEN'l'ATIONS 

lli.1 GENERAL FORMAIJSM 

When there are two irreps. H. and .S.. of scalar bosons~ and x the most gen-

er al re normalizable Higgs potential invariant under G x reflection can be writ-

ten as 

+ ! [c + ca1(x) + c212(x) + · · · JI lxl 12 

+ ~ [B+B1f31(~.x)+ ... Jll~llllxll. (III .1.1) 

While cxi and 'li specify the orbits and associated little groups of E and .S.. 

respectively, f3i specifies relative directions between orbits of .H. and orbits of .S.. 

When x moves on an orbit with the direction of ~ fixed, the little group of the 

reducible representation (H. + .S.) changes whereas the separate little groups of 

E. and .S. remain the same . {3i specifies the location of x on its orbit. 

Let us define 

(III.1.2) 

Again we impose positivity conditions on coupling coefficients so that V --> +00 as 
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I ho 11 ~ = and I or 11X11 ~ =; 

A'> 0, 

C'> 0 I (III.1.3) 

B'> - ..JA'Ci 

We will treat 11~ l I. I !xi I. ~(S2J), /'i(X), and f3i(S2J,f{) as independent variables 

and extremize the potential with respect to these. The reasoning is similar to 

the one irrep case. If we choose a particular direction in ~-x space, all the orbit 

parameters will be determined and the potential reduces to a function of 11~11 

and I lxl I: 

+ ! A' I I ~ 11 2 + ! C' I Ix 11 2 + ~ BI 11 ~ I 11 Ix I I . (III.1.4) 

The directional behavior of the potential is schematically shown in Fig. III.1.1. 

Fig. III.1.1 
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The extremum for the particular choice of orbit parameters, conveniently 

expressed in terms of the variables r = 11So11*ands=11X11*. is given by the con-

ditions 

a V = r (A'r2 + B's2 - M2) = 0 ar I 

a V = s (B'r 2 + C's 2 - m 2) = 0 as 

There are four solutions; 

I) r = s =O , 

II) r = 0 , s 2= m 2/ C' , 

III) 

IV) 

(III.1.5) 

(III.1.6a) 

(III.1.6b) 

(III. l.6c) 

(III.1.6d) 

To ascertain which solution is the minimum for this particular choice of 

direction in So-x space (i.e.,the directional minimum), recall that at a minimum 

the second derivatives 

a2
V = (A'r 2 + B's 2 - M2) + 2 A'r2 

ar2 I 

a2 v --= (B'r2 + C's 2 - m 2) + 2 C's2 
as 2 • 

a2 v --=2B'rs aras 

must satisfy 

a2v > o 
ar2 I 

(III. l. 7) 

(III.1.Ba) 
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a2v > o 
os2 ' 

(III. l.Bb) 

(III.1.Bc) 

Of course solution I is not a minimum unless M2< 0 and m 2< 0, a case we shall 

not be concerned with. We see from eqs. (III.1.6) - (Ill.1.8) that solution II (pure x) 

is a directional minimum if 

(Ill. l. 9) 

Solution III (pure cp) is a directional minimum if 

(III.1.10) 

Solution N is a directional minimum if 

(III.1.1 la) 

(III.1.llb) 

A'C'> (B')2 (III.1.1 lc) 

for A'> 0 and C'> 0. 

11cp11 o > 0 and 1 l X 11 o > 0 is guaranteed only if the conditions (III.1.11) are 

satisfied. This is in contrast to the case of one irrep where 11 cp 11 0 ~ 0 was 

ensured by the positivity conditions, A'> 0 and m 2> 0. Relations (III.1. q) serve 

to replace the conditions M2> 0, m 2> 0 which are overly strict because the Higgs 

fields cp and x can both develop nonzero vacuum expectation values even with 
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M2< 0 or m 2< 0 when B'< 0. 

From another point of view M 2 C' = m 2B' and m 2A' = M 2B' represent the 

boundaries where the directional minimum shifts from solution N to solution II 

or III respectively. If solution Wis the directional minimum, extrema II and ill 

are saddle points (assuming now m 2> 0, M2> 0) as indicated in Fig. III. l. lb. In 

this case evaluation of the potential at the minimum yields 

(Ill.1.12) 

When solution N does not satisfy the conditions (III.1.11), it occupies a saddle 

point and either solution II (with Va = - m 4/ 4C') or III (with Va = - M4! 4A') 

becomes the directional minimum. 

The foregoing discussion has been concerned wit~ a particular direction in 

rp-x space. As we now change the direction in cp-x space (i.e., the 

~ , f3i , and /'i), the location of the minimum will move around. The absolute 

minimum will be the lowest of these directional minima. Since 

(III. l.13a) 

av = .L 11 11 2 c. oyi 4 x 'I. I 
(Ill. l.13b) 

av 1 
8{3i = z-11rp1111x11 B~ I 

(III. l.13c) 

V is a monotonic function of the orbit parameters ~ , f3i , and /'i. Th~s once 

• The conditions (III.1.11) are only necessary conditions for solution IV to be the absolute 
minimum. There are additional conditions for sufficiency [see CHIIL3]. 
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again the absolute minimum of V occurs at a boundary of the orbit space rather 

than at a VI aai = 0, etc. 

To illustrate how determination of the absolute minimum proceeds, let's 

look into the simple case where 

c·= c + ca(x) (III.1.14) 

B'= B + Bi{3(cp.x) 

Let us set 

Va (cp.x) = - ! . (III.1.15) 

Then from eq. (IIl.1.12), 

(III.1.16) 

It can easily be shown that the above equation represents a cone in a - ?' - {3 

space. That is, the potential minimizing k-surface is a cone in this problem. 

After some coordinate transformations, it reduces to 

zz = A1C1 (X2 _ Y2) 
2 Br ' (III.1.17) 

where 

x = (X'+ Y')/ v'2 I 

y = (X'- Y')!v'2 I 
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(III.1.18) 

C m 4 

Y' = ?' + C1 - kC1 I 

While the coupling coefficients determine the shape and orientation of the cone, 

the value of k determines the location of the vertex of the cone which moves on 

a straight line in a - ?' - {3 space as k varies. As we decrease k from +oo, the 

cone begins to touch the orbit space at some k (Fig. III.1.2). This k gives the 

minimum energy, and the point of c_ontact gives the orbit. 

y 

a 

Fig. III.1. 2 
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Some further details concerning the cone are as follows. 

i) The straight line along which the vertex of the cone moves lies on the cone 

(i.e., it is a generating line of the cone.). 

ii) The condition A'C' = B'2 holds on the k = 00 cone and A'C' > B'2 holds inside 

it. Recalling that A'C' > B'2 is a condition for solution N (i.e., 11So11 0 and 

11 x I I 0 both nonzero), we see that when this solution gives the minimum 

energy, the orbit space lies entirely within the "forward" part of the cone, 

i.e., the part which narrows ask decreases (Fig. III.1.2). 

iii) The line along which the vertex moves is also the intersection of the two 

planes 

M2C' = m 2B' 

and 

which formed the boundary between solutions II or ID and N. These planes 

slice the inside of the cone into three pieces. Only when the cone touches 

the orbit space on the M2 C' > m 2B', m 2A' > M 2B' side of these planes do we 

get type N solutions. Such type W solutions yield the absolute minimum 

energy if they occur at k > M4/ A' 0 and k > m 4/ C 1

0 • 

While the formalism in the preceding two paragraphs is universal to all the 

cases where there are three orbit parameters a, )', and (3, each different case 

will have a different orbit space and different physical meaning for the boundary 

surface. The formalism can be extended trivially to a general case where there 

are more a's, )' 1
S, and {3's. The k-surface will be a mixture of a plane and a cone 

in some hyper-space. 
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IIl.2 'fHE GENERAL STRUCTURE OF 'I'HE ORBIT SPACE OF nm IRREDUCIBLE 

REPRESENTATIONS 

While the trace of the hierarchical relationship between the levels of little 

groups and the concavities and dimensions of their strata observed in one irrep 

case is still visible in two irrep cases, the orbit space boundary of two irreps is 

more complex and things are pretty much mixed. The existence of a modified 

resemblance can be inferred from the observation that whereas orbit parame­

ters associated with each irrep tend to form warped concave boundary surfaces, 

orbit parameters associated with both irreps tend to destroy such behavior 

because with the field components of one irrep fixed (consequently orbit param­

eters associated with that irrep are fixed.), one can always change the field com­

ponents of the other irrep creating a volume traced by pencils. Moreover the 

volume occupied by the generic stratum is not always confined by the strata of 

higher symmetries but the generic stratum itself surfaces on the boundaries. 

This "looseness" stems from the non-compactness of the representation space. 

. Again an important clue leading to a description of an orbit space of two 

irreps is found in the Gell-Mann-Slansky conjecture [22] concerning the likely lit­

tle groups of the absolute minimum of a 4th degree Higgs potential. Since the 

conjecture was made shortly before the current work started we restate it in the 

following. 

To state the conjecture let us define the maxi-maximal little groups: 

Suppose there are two irreps H and 3... First, we construct a list of maximal lit­

tle groups and branching rules for 11: 

R = 1 + r 1 + r 2 + · · · for G'a CG 

for G't> c G 

= 



- 48 -

For each G'i the branching rules of .S. will be 

S = S 1 + S2 + S3 + · · · 

= 

for G'a CG 

for G'b c G 

Then we. make a list of maximal little groups and branching rules for each si: 

for G~1) C G'a 

= 

for Gp2) C G' a 

= 

= 

for G&5> c G'0 

= 

This procedure yields a list, ~G~1>, ... ;G~2>, ... :GJ4>, ... ;GJ5>, ... ; · · · L of 

maxi-maximal little groups. Repeating the same procedure staring from S.., 

we obtain another list of maxi-maximal little groups, which is different from the 

previous list. 

The Gell-Mann-Slansky conjecture states that the minimum of a fourth 

degree Higgs potential will preserve no smaller subgroup than is in the list of 
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maxi-maximal little groups, which is made of the union of the two lists. 

In the previous chapter we have seen that the potential minimizing k­

surface for a Higgs potential of tw_o irreps which has separate reflection sym­

metries in addition to the symmetry of the gauge group is a hyper-cone. This 

implies that if the Gell-Mann-Slansky conjecture is to hold for such a class of 

Higgs potentials then the strata of maxi-maximal little groups must occupy most 

protrudent portions, i.e., cusps, convex curves and surfaces etc., of the orbit 

space boundary. Specific examples will be given in the following chapters. 

To help the reader to understand the abstract statements made above, let 

us briefly explain dimensionalities of strata of two irreps. Suppose the branch­

ing rules for two irreps, E and S, under G'cG are 

If E. contains one singlet and .S. one singlet of G', then the stratum will be a point 

in the orbit space. If E. contains one singlet and .S. two singlets of G' or vice 

versa, the stratum will normally be a curve in the orbit space, though there are 

exceptions. If E. contains one singlet and .S. three singlets of G' or vice versa, the 

stratum is likely to be a two-dimensional surface. If E contains two-singlets and 

.S.. two singlets of G', the stratum is likely to occupy a three-dimensional volume. 

The occasions when we have more singlets than the parameters needed to 

specify the stratum are more common for two irrep than one irrep cases. These 

ambiguities will be partially clarified at the end of CHIII.4. Also the range of vali­

dity of the Gell-Mann-Slansky conjecture will be discussed later at the end of 

CHV. 
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ill.3 APPIJCATION TO SU(N) ADJOINT +VECTOR REPRESENTATIONS 

1'}.3.1 IIlGGS POTENTIAL FOR SU(5) 24 + ~ 

In this chapter we apply the general formalism derived in the previous 

chapter lo the case of SU0 adjoint + vector representations. This particular 

problem has been solved by many people [32] ever since Georgi and Glashow [6] 

formulated the grand unification theory based on SU5 symmetry. In other 

branches of physics [9], namely in the second order phase transition occurring 

in order-disorder phenomenon [10], the spontaneous symmetry breaking prob-

lem already became so complicated that more powerful means were required. 

But in elementary particle physics it was the appearance of grand unification 

theories that prompted the need of more powerful methods than conventional 

ones. There was just no hope of minimizing the scalar potential with conven-

tional methods when the representation of the scalar bosons is as huge as the 

ones introduced in 8010 or E6 unification theories [33]. 

We will consider two scalar fields: (/)ii, which transforms as the 24-

dimensional adjoint representation, and Xi, which transforms as the 5-

dimensional (complex) vector representation. The most general renormalizable 

Higgs potential invariant under SUr-, x reflection is 

(III.3.1) 
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where we have represented the .21: as a 5 x 5 traceless hermitian matrix. 

Because cp/ is hermitian, we can always choose the coordinate system of cp-x 

space in such a way that only x and the diagonal elements of cpf develop v. e. v. In 

terms of <pi = rpf the "potential" that we are going to minimize can be written as 

M2 A 2 m2 5. • 
V(rp.x) = - - L; <pi - - 2: Xi Xi 

2 i=l 2 i=l 

with 

We further eA.rpress the potential in the simplest form as 

Af2 m2 
V(cp.x) = - z 11cp11 - -2-1 lxl I 

1 + -c I lxl 12 
4 

+ ~ (B + B1 f3(So.x))l lcpl 11 lxl I 

(III.3.2) 

(III.3.3) 

(III.3.4) 
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where 

<pi 
~i = -( 1-1 cp-11 )~* I 

Xi 
Xi = -(I _Ix-I I)..,,.,-* (III.3.5) 

and the independent variables are now the field strengths 

(III.3.6a) 

5 

I lxl I = ~xtxi (III.3.6b) 
i=l 

and the orbit parameters 

a= (III.3.7) 

(III.3.8) 

ID.3.2 ORBIT SPACE AND MAXI-MAXIMAL~ GROUPS FOR SU(5) 24 + Q. 

As we stated in the previous chapter the orbit space of two irreducible 

representations is made of pencils. The reason is as follows: 

Assign a set of numerical values to <pi. For the a thus determined, vary Xi to 

obtain a range of (3. Repeating the process, we eventually cover the entire orbit 

space. 

We see from eq. (TII.3.8) that the maximum of (3 is reached when Xi points 

along the largest element of <pi and the minimum when Xi points along the smal-

lest element of (/Ji. These simple considerations yield three straight line sections 

of the boundary (Fig. III.3.1): 
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(I) If one of the C/)i is zero, then f3rmn = 0. In this case 

(III.3.9) 

which is the a of the SU4 adjoint representation. 

(II) If cp =a (1,1,1,1,-4), then a takes the maximum value 13/20 and 1/20 ~ (3 ~ 

4/5. 

(III) If cp = a (2,2,2,-3,-3), then a takes the minimum value 7 /30 and 2/ 15 ~ {J ~ 

3/10. 

0.8 

a 

0 0.2 0.4 0.6 0,8 /3 

Fig. III.3.1 
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To find the remaining, curved sections of the boundary in Fig. III.3.1 we 

could extremize {3 for each ex, but this method is very laborious. The second 

method of finding the boundary is to solve the equations for a boundary point, 

which were originally devised for this problem by Prof. Frautschi, 

and 

acx; Bcpz 
a(31 acp2 

(III.3.10) 

(III.3.11) 

Though this method is more civilized than the first one it is still not satisfactory 

because it requires us to solve high degree simultaneous algebraic equations of 

many unknowns. In the original work [25] we actually tried hard to solve these 

equations. Though we could find the wanted solutions we also found unwanted 

solutions and could not find the complete set of solutions. We realized that the 

best use of the above two equations is to confirm our final answers. The third 

method is to guess the answers assuming that the Gell-Mann-Slansky conjecture 

holds. As we explained at the end of the previous chapter, if the conjecture is to 

hold, the strata of maxi-maximal little groups must occupy most protrudent 

segments of the boundary of the projected orbit space built from the invariants 

employed in the 4th degree Higgs potential. 

The maximal little groups of 2..4 and associated branching rules are: 

24 = 1(0) + 4(-5) + 4(5) + 15(0) (III. 3.12) 

= (1.1)(0)+(8,1)(0)+(1,3)(0)+(3,2)(5)+(3,2)(-5) SU3 x SU2 x U1(III.3.13) 

where the U 1 charges are displayed in an arbitrary normalization in the 

parentheses. 
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The branching rules of Ji under these subgroups are: 

5=1(4)+4(-1) (III.3.14) 

= (3, 1)(-2) + (1,2)(3) (III.3.15) 

The maximal little groups of these sub-representations of Ji (for the listed sub-

groups), and the associated branching rules are: 

[ 

1(4) = 1 

4(-1) = 1(0) + 3( - 1) 

[

(3,1)(-2) = (1.1)(0) + (2,1)(-1) 

(1.2)(3) = 1(0) + 1(3) 

(III.3.16) 

(III.3.17) 

(III. 3.18) 

(III.3.19) 

Therefore we obtain a list of three maxi-maximal little groups, whose branching 

rules for ..21: and.5.. are 

SU4 : 5=1+4 (III.3.20) 

24 = 1 + 4 + 4 + 15 

SU3xU 1 : 5=1(0)+1(3)+3(-1) (III.3.21) 

24 = 1(0) + 1(3) + 3(4) + 1(-3) + 3(-4) 

+ 1(0) + 3(-1) + 3(1) + 8(0) 

SU2 x SU2 x U1 : 5 = (1,1)(0) + (1,2)(1) + (2,1)(-1) (III.3.22) 

24 = (1,1)(0) + (1,2)(-1) + (2,1)(1) + (1,2)(1) + (2,1)(-1) 

+ (1, 1)(0) + (3, 1)(0) + (1.3)(0) + (2,2)(2) + (2,2)(-2) . 
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Starting from the maximal little group of ..Q., SU4 , we obtain another list of 

maxi-maximal little groups along this route: 

As we see in this example, lists 0f maxi-maximal little groups along two different 

routes are different in general. 

Having found the list of maxi-ma}cimal little groups let us find their strata, 

namely the field components transforming as the singlets of the little groups . 

The stratum of SU3 x U1 is found to be 

q; = (a ,a,a ,b,-3a-b) , X = (0,0,0,0.f) . (Ill.3.23) 

which occupies a curve that can be characterized by the parameter r = a/ b : 

ex = 3a4 +b 4+{3a+b 24 3r4 + 1+{3r +124 

(III.3.24) 
[3a2+b 2 +(3a+b )2] 2 [3r2 + 1+(3r+1 )2] 2 , 

(3 = {3a +b 22 {3r+122 

3a2+b 2 +(3a +b )2 3r2+ 1+(3r+1)2 

The curve is displayed as a function of r in Fig. III.3.2. If r is eliminated, the 

curve can be expressed as 

= 107 + 35 (p- ~2 ± (4-5@2
312 

(3{3)1/2 
ex 280 24 35 24 

The stratum of SU2 x SU2 x U1 is found to be 

rp = (a ,a ,b ,b ,-2a-2b) • x = (0,0,0,0.f) . 

which occupies the curve 

ex = 2a4 +2b 4 +{2a +2b 24 

[2a2+2b 2 +(2a+2b )2] 2 
2r4 +2+ {2r +224 

[2r2 +2+ (2r +2)2]2 ' 

(III.3 .25) 

(III.3.26) 

(III.3.27) 
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_ ( 2a + 2b )2 _ __(,__2_r _+__,2 )'--2 __ 

{3 - 2a2+2b 2 +(2a+2b )2 2r2 +2+(2r+2)2 

The curve is displayed as a function of r in Fig. III.3.2. If r is eliminated, the 

curve can be expressed as the part of the parabola 

= .1_+ ~{3- ~2 ex 30 16 15 (III.3.28) 

running from {3 = 0 to {3 = 4/5 . 

0.8 

a 
-4 

0.4 

0.2 -3/2 -3/2 

0 0.2 0.4 0.6 0.8 /3 

Fig. III.3.2 
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The stratum of SU4 is found to be 

<{J = a ( 1, 1, 1, 1, -4) I x = ( 0 I 0 1 0 I 0 .f ) I 

which is located at 

a = 13/ 20 I (3 = 4/ 5 • 

(III.3.29) 

(III.3.30) 

This stratum occupies the cusp at the upper right hand corner of orbit space, 

where the SU3 x U1 curve, SU2 x SU2 x U1 curve, and horizontal line all inter­

sect. 

The stratum of SU 3 is found to be 

q; = (a,a,a,b ,-3a-b), X = (0,0,0.f ,g), (III.3 .31) 

which occupies the planar region confined by the SU3 x U 1 curve and the upper 

horizontal line (Fig. III.3.3). Note that the horizontal line, which is a one­

dimensional stratum, belongs to the SU3 stratum. 

a 

Fig. III.3.3 
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In order to see if these lines (I - III) and curves form the boundary let us 

first check the boundary conditions. For purposes of varying ex and {:3, we can 

replace cp by 

(IIl.3.32) 

without loss of generality since ex and {:3 are dimensionless. It will suffice for our 

present needs to restrict x to the" 5 direction" : 

x = ( 0, 0, 0, 0, ! ) . (IIl.3 .33) 

The reason is that we can always arrange ri 's such that the 5th component is the 

smallest or the largest yielding respectively left or right extreme values of {:3 for 

fixed ex. The form of ex and (3 is now 

r t + r;l+ r!+ 1 + (r 1+ r 2+ r 3+ 1 )4 
ex = ~~~~~~~~~~~~~~~~ 

[ rr+ r~+ r§+ 1 + (r1+ rz+ rs+ 1 )2 ]2 
I 

(r 1 + r 2+ r 3+ 1 )2 
{:3= ~~~~~~~~~~~~~-

r[+ r~+ r§+ 1 + (r 1+ r 2+ r 3 + 1 )2 

Differentiating , one finds 

4[ r?+(r 1+r2+r3 +1)3] = ~~~~~~~~~~~~~ 
[rr +r~ +r§ +1 +(r 1 +r 2+r3+1)2]2 

4[ ri +(r 1+r2+rs+1) ][ r [ +ri +r~ + 1+(r 1+r2+rs+ 1)4
] 

[ r r +r~ +r§ + 1+(r1+r2+r3+1)2]3 

2.f}_ _ 2(r 1+r2+r3+ 1)[rr +r~ +r~ + 1-ri(r1+r2+r3+ 1)] 

ari - [rr +r~+r§+1+(r1+r2+r3+1)2]2 

(III.3 .34) 

(III.3.35) 

(III.3.36) 

(III.3.37) 

To see that the curves and the lines we have found can form the orbit space 

boundary we have checked that eq. (III.3.10) is satisfied at the cusp representing 
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the SU4 stratum and eq. (III.3.11) is satisfied on the one-dimensional strata, 

namely the curves representing the strata of SU3x U1, SU2 xSU2xU1. On the 

upper horizontal line belonging to the SU3 stratum and the lower horizontal line 

belonging to the SU2x U1 stratum ocx./ ari = 0, and on the vertical line 

B{31 ari = 0. 

To bolster our confidence that the curves and lines we have located really 

form the boundary of orbit space, we have plotted several thousand stratum 

points at random (Fig. III.3.4). They all lay within our boundary. 

The main point of our observation is that most of the orbit space boundary 

is covered by the strata of maxi-maximal little groups but there are some por-

tions belonging to lower level little groups. It is noteworthy that the most protru-

dent portions, namely the cusp and the convex portions, are covered exclusively 

by the strata of maxi-maximal little groups. 

0.8 

a 

0.4 

0.2 

0 0.2 

· .. · .. ·. 
. · . 

0.4 

Fig. III.3.4 

• • • 'I,• • ... • • • • • ,. 

\ ... ,• 

.· .·· · . . 

0.6 0.8 (3 
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It is important to survey the orbit space structure a little further. The stra­

tum of SU2x U 1 is represented by 

<p = (a,a,b,c,-2a-b-c), x = (0,0,0.f ,g). (III.3.38) 

It is a three-dimensional stratum and occupies the whole orbit space. The 

branching rule of .5. under SU2 x U1 is 

5 = 2(1) + 1(0) + 1(-2) + 1(0). (III.3.39) 

It is immediately clear that this SU2xU1 is a subgroup of SU3• 

As we have seen in these examples various strata overlap each other or 

more accurately a stratum of a larger little group is included in the strata of 

smaller little groups that are subgroups of the larger, e.g., the stratum of SU 4 is 

the common point of the strata of all the little groups. This raises the issue of 

uniqueness of the little group corresponding to a stratum point. Since we are 

dealing with a projected space of the complete orbit space, it is natural for us to 

expect degeneracies. If we are provided With just two numbers, namely (a, {3), 

then there is a set of Soi 's and Xi's that yields these numbers. However if we are 

given additional conditions such as the boundary conditions, then we can deter­

mine the corresponding field configuration uniquely. We could establish the fol­

lowing result: On most of the boundary portions except for the vertical line the 

corresponding field configuration and thus the little group are uniquely deter­

mined, but to a point on the vertical line or to an interior point there 

corresponds a set of little groups none of which can be excluded in favor of the 

others. 
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IIl.3 .3 MINIMIZING THE P OTENTIAL 

III.3.3.1 CONDITION FOR THE MINIMUM 

The general formalism derived in CHIII.1 can be used for the case of SU5 21 

+ ..Q. with the following identification: 

A' = A + A1 a($) , (Ill.3.40) 

B' = B + B1 {3($.x) · 

We shall concentrate on the normal Higgs case m 2 > 0, M2 > 0. In this case 

solution I is the familiar local maximum at zero field, which we shall not be con-

cerned with. Solution II is the Higgs minimum for a pure x field and has energy 

- m4 
'Va--4C 

Solution III is the Higgs minimum for a pure (/) field and has energy 

(IIJ.3 .41) 

(lll.3.42) 

Solution N has non-ze ro v.e.v. for both fields and is therefore the solution of 

principal interest to us. Its energy is 

(III .3.43) 

The energies for directional minima ID and N are orbit- dependent. The 

absolute minimum for solution III is obtained by varying $ to find the minimum 

of A', which is either at amax = 13/ 20 or amin = 7/ 30 depending on the sign of A1. 
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The absolute minimlllll for solution N is obtained by varying ~ and x as dis-

cussed below. Comparison of the absolute minima for solutions II, III and N then 

gives the lowest overall energy for the Higgs system. 

III.3.3.2 GEOMETRY OF THE MINIMUM ENERGY CURVE 

To determine the absolute minimum of solution N, we begin by setting 

Vo (~.x) = - ! . (III.3.44) 

Then from eqs. (Ill.3.43), (III.3.44), and (III.3.40) one finds 

(III.3.45) 

We see that eq.(III.3.45) represents a parabola in a-{3 space. As k decreases 

from +00 , the parabola moves in a-{3 space. The absolute minimum of solution N 

for a given set of Higgs couplings and masses occurs at that k for which the par-

abola first touches a portion of the orbit space boundary satisfying the criteria 

of eqs .(III.1.lla-c), and the point of first encounter yields the orbit of minimum 

energy. 

To visualize the movement of the parabola with k, it is useful to rewrite it as 

At k = oo the parabola has the limiting form 

(Ill.3.47) 

As k varies, the vertex of the parabola at 
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(III.3.48) 

traces out the straight line trajectory 

(III.3.49) 

from a.0 ( 00 ) =-Al A1 , {30 ( 00 ) =-Bl B 1 to infinity. Moreover ask is decreased the 

parabola narrows, flips orientation at k = m 41 C where (III.3.46) becomes the 

vertical line 

(III.3.50) 

and then broadens again as k decreases further. Amidst all this movement every 

parabola, independent of k, passes through the intersection point of the vertex 

trajectory (Ill.3.49) and the vertical line (III.3.50): 

(III.3.51) 

Thus the parabolas move with k as indicated in Fig. III.3.5: ask decreases from 

00 the parabolas remain entirely inside the k = 00 parabola, narrowing to the 

vertical line at k = m 4 I C, then fiip to lie entirely outside the k = oo parabola at 

k < m 41 C, broadening to the limiting line 

(III. 3. 52) 

at k = 0. 
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Fig. III.3.5 
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The relation of this complicated behavior of the minimum energy curve to 

the simpler behavior found in CHIII.1 for a case with 3 orbit parameters is 

described as follows. The two parameter case we have studied in this example 

corresponds to the?'= 0 plane of the 3 parameter case. The intersection of this 

plane with the cone yields a parabolic conic section (Fig. III.3.6a), while the 

planes M 2C' = m 2B' and m 2A' = M 2B' become straight lines and their intersec­

tion becomes the fixed point common to all solutions in the ?' = 0 plane. As k 

decreases the vertex of the cone moves along the generating line towards the ?' 

= 0 plane, causing the conic section to shrink, reduce to a line when .the vertex 

reaches the plane at k = m 4/ C (Fig. III.3.6b), and flip as the plane subsequently 

cuts into the other branch of the cone (Fig. III.3.6c). 

(a) (b) (c) 

Fig. III.3.6 
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ill.3.3.3 THE SUF"FICIENCY CONDITION FOR SOLUTION IV TO BE THE ABSOLUTE 

MINIMUM 

The inequalities (III.1 .11) define a region in the a-(3 plane, which we will call 

the "allowed" region, where directional minima of type W occur. The region is 

shown schematically in Fig. III.3.7a for the particular case A1> 0, B 1> 0 with nor-

mal Higgs masses m 2> 0, M 2> 0. The equations for the parabola, the slant line, 

and the vertical line boundaries of the allowed region are given by replacing ine-

quality signs with equality signs in relations (Ill.l.llc), (III.1.llb), and (III.3.lla) 

respectively. It is important to note that these are the same as eqs. (Ill.3.47), 

(lII.3.49), and (III.3.50) for the k =00 parabola, the trajectory of parabola vertices, 

and the parabola flip line. Thus the dominant geometrical features of the previ-

ous chapter all have a simple physical interpretation. 

B'< -Ji!C 
unstable 

B'<-~ 
unstable 

A' < 0 unstable 

A'< 0 unstable 

m2 A'< M2 B' 

A'< 0 unstable 

Fig. III.3. 7 
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It is also possible to work out allowed regions for solution N for the "semi­

Higgs" potentials with m 2 > 0 , M2 < 0 and m 2 < 0 , M2 > 0. These are displayed 

in Fig .. III.3. 7b and III.3. 7c for the particular case A1 > 0 , B 1 > 0. Figs. III.3. 7b 

and III.3. 7c have the expected qualitative feature that although type-N direc­

tional minima with both fields nonzero still exist when only one mass term has 

the Higgs sign [B' < 0 makes them possible], the allowed region for them is 

smaller. 

The location of orbit space relative to the allowed region determines 

whether we obtain directional minima of type N: 

i) If the orbit space is totally inside the allowed region, then directional 

minima of type N occur everywhere in the orbit space. 

ii) If the orbit space straddles the B' = - ...JA'C branch of the parabola, which 

is the left branch in the case shown in Fig. lII.3. 7, then 11So11 0 4 +00 and 

11X11 0 
4 +00 at stratum points along the parabola. Higgs couplings leading to 

this unstable result must be forbidden (positivity condition (III.1.3c)). 

iii) If the orbit space straddles the slant and/ or the vertical lines within the par­

abola, then directional minima of type N occur at the stratum points within the 

allowed region. At nonallowed points of the orbit space, directional minima of 

type II or III may occur. 

iv) If the orbit space lies entirely outside the allowed region, no directional 

mini.ma of lype IVoccur. 

The absolute minimum of solution N corresponds to the first contact of the 

moving parabola (Ill.3.46) with orbit space in the allowed region. However in case 

iii) of the preceding paragraph, directional minima of solutions II or m as well as 

N are present and there is still the question of which solution gives the lowest 

energy. To settle this question we compare eqs. (III.3.41) and (III.3.42) to 

(III.3.43). First let us take the difference of eqs. (Ill.3.41) and (III.3.43) : 
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m 4 m 4A' + M4C - 2 M2m 2B' - --+ ----------
4C 4(A' C - B'2) 

(M2C - m 2B')2 

4C (A'C - B'2) 
(Ill.3.53) 

We see that at stratum points inside the parabola (A'C > B'2). type N solutions 

always give a lower minimum than type II. Secondly let us take the difference of 

eqs. (Ill.3.42) and (III.3.43) : 

M4 m 4A' + M 4 C - 2 M 2m 2B' 
- 4A'm + 4(A'C - B'2) 

(III.3.54) 

the right hand side of eq. (III.3.54) equal to zero again defines a parabola whose 

vertex is on the line ex = am and allows us a geometrical study which we leave 

the reader as an exercise. 

The result is that in case i), there are always stratum points that make eq. 

(III.3.54) positive and a type N solution gives the absolute minimum. In case iii), 

a type N solution commonly gives the absolute minimum, but there is a range of 

Higgs coupling coefficients for which eq. (Ill.3.54) is negative at all the stratum 

points in the allowed region and a type III solution yields the absolute minimum. 
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IH.3.3.4 CAN MINIMUM ENERGY ORBITS LlE ON STRAIGHT IJNE ORBIT SPACE 

BOUNDARIES? 

We now wish to show that although solution N can be a directional minimum 

on the straight line segments of the orbit space boundary, the absolute 

minimum never lies on the horizontal line boundaries, and in only one degen­

erate case on the vertical line boundary. 

At the point of first contact, the moving parabola must have the same slope 

as the boundary of orbit space (except at cusps). The horizontal boundary lines 

at C:Xmax= 13/20 and c:xmin= 7 /30 have slope dal df3 = 0. Therefore the parabola 

can make its first contact with orbit space on one of these horizontal boundaries 

only if the contact occurs at the parabola vertex. But in the case A1 > 0 , B 1 > 0 

depicted in Fig. III .3.8, the parabola already contacts other orbit space boun­

daries (Fig. III.3.Ba) before its vertex reaches a horizontal boundary (Fig. 

Ill.3.Bb). A horizontal boundary can be the last point touched (Fig. III.3.Bc) but 

not the first. The same property is readily verified for the other possible ranges 

of A 1 , B 1 . Thus solution N never gives the minimum energy at a horizontal line 

boundary. 

The vertical boundary line at f3 = 0 has slope dc:x/ df3 = 00 • The moving para­

bola has infinite slope only when it flips. Therefore (apart from the cusp at 

c:x = 1/ 4 , (3 = 0 which has no definite slope) the point of first contact can occur 

on the vertical boundary line only under special circumstances: the left-hand 

edge of orbit spac e must lie along the vertical line where the parabola flips, and 

the rest of orbit space must lie on its disallowed side (Fig. III.3.Bd). In this case 

solution N has k = m 4
/ C, degenerate in energy with solution II, and the field 

11cp11 0 of solution N vanishes since m 2 B' = M2 C along the vertical line. Thus the 

vertical line never gives a minimum energy solution with two nonzero fields. 
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(a) ( b) 

( c ) ( d) 

Fig. III.3.8 
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III.3.3.5 MINIMIDJI FOR VARIOUS RANGES OF IIlGGS PARAMKI'ERS 

Throughout this chapter our illustrative figures have been specialized to the 

case A1 > 0, B 1 > 0. In this case, the point of first contact of the parabola with an 

allowed portion of the orbit space (if any) occurs on the lower left boundary of 

orbit space . Here the minimum energy solution has residual symmetry 

SU2 x SU2 x U 1 with orbits characterized by -3/ 2 <b I a~ -1 (Fig. III.3.2). 

In the case A1 < 0, B 1> 0 the point of first contact (if any) occurs on the 

upper left boundary of orbit space. Here the minimum energy solution has resi­

dual symmetry SU3 x U1 with orbits characterized by -4 <b/a~ -3 (Fig. 

IIl.3.2). 

Proceeding in this way, one finds that the four possible sign combinations of 

Alt B 1 yield minimum energy solutions on the four corners of orbit space as 

summarized in Fig. III.3. 9. These results agree with those of Buccella, Ruegg, and 

Savoy [20], who employed analytic methods. 

Fig. lII. 3. 9 
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A1 and B 1 are only two of the seven Higgs parameters A, Alo B, Blo C, m, 

and M. Ideally one would like to generalize Fig. III.3.9 to the full seven­

dimensional Higgs parameter space, listing the exact boundaries of the unstable 

region where 11So11 and/or 11X11 ~ 00 (positivity conditions (III.1.3) violated), the 

non-Higgs region I lsti 11 = I lxl I = 0 (m2< 0, M2< 0), the region of single-field 

Higgs solutions, and the region of two-field solutions (conditions (III.1.11) 

satisfied plus the sufficiency condition discussed in CHIII.3.3.3), together with 

the exact boundary separating SU4 from SU3 x U1 residual symmetries in the 

A1> 0, B 1< 0 sector of Fig. III.3.9. The task of mapping these boundaries remains 

arduous, and we shall not carry it out here. 

IIl.3.4 IIlERARCHICAL SYMMETRY BREAKING via SU5~SUfxsurxu14SUfxUF 

If one begins with an SU5-symmetric grand unification theory [6] and 

attempts to fit the phenomenological facts, one is led to introduce a hierarchical 

symmetry breaking [7]. First one assigns So a huge v.e.v., which breaks the sym­

metry down to SU~xSU!f xU 1 giving huge masses to gauge bosons not belonging 

to SU§ xscyx U1. Then one assigns x a much smaller v.e.v., which further breaks 

the symmetry down to SU~ x ur. One normally treats the second stage as a per­

turbation to the first stage. 

There are four very restricted portions of the boundary curves (A) and (B) 

of Fig. III .3.2, where this conventional concept of perturbative hierarchical sym­

metry breaking is fully applicable: 

i) Points at or near (a = 7 / 30, {3 = 3/ 10) represent 

su5 4SU§xswx U1-~su§xur. 
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ii) points at or near (a = 7 I 30, {3 = 2/ 15) represent 

iii) points at or near (a = 13/ 20, {3 = 4/ 5) represent 

iv) points at or near (a = 13/ 20, {3 = 1/ 20) represent 

The region of greatest phenomenological interest is the first one, near 

(a=7 I 30, {3=3/ 10). 

However, our exact nonperturbative solution makes it clear that the condi-

tion 11 XI I 0 I 11 So 11 0 « 1 does not necessarily imply that gauge symmetry break-

ing occurs perturbatively and hierarchically. In general both fields should be 

trealed with equal status. For example, while keeping 11X11 0 I 11'P11 0 « 1 we 

can let the k-parabola first touch a point near the middle of one of the two con­

vex portions of the curve (A), where a is far from its extrema corresponding to 

Now let us examine our type-N solution directly. We observe that 

I lxl lo 
11c,o11 o 

(m2
/ M2)(A + A 1a) - (B + B1f3) 

[C - (m2/ M 2)(B + B 1{3)] 

can be made very small either by setting 

or by taking 

C»A'. IB'l.m2/M2
. 

(Ill.3.55) 

(II1.3.56a) 

(Ill.3.56b) 

Next, with an eye to the phenomenological situation, we take A1>0, B 1 <0, 

which places the first contact of the k parabola on the lower right SU3x u~m 
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orbit space boundary. Near (cx=7 I 30, {3=3/ 10) the slope of the orbit space boun-

dary is very small, so dcx/ d{3 of the k parabola at first contact would have to be 

very small in this region. The general formula for the slope of the k parabola is 

da 
d{i 

(III.3 .57) 

where {30 (k) refers to the parabola vertex at the given value of k. This slope can 

be made small either by taking 

a) 

or 

b) 
Br 

------~o. 
A 1(C-m4/k) 

(III.3.58a) 

(IIL3.58b) 

In· the first case the parabola vertex (slant line) passes very near the point 

(cx=7/ 30, {3=3/ 10). In the second case the vertex can be far away but the k par-

abola is very fiat in the vicinity of orbit space. 

Case a) is identical with the first condition for making 11X11 0 I _I I So 11 0 small, 

(m 2A' ~ M2B'). It requires what appears to be an unnaturally precise cancella-

tion of coupling coefficients, a problem which has stimulated much research 

activity [ 4, 7]. 

Case b) is compatible, but not identical, with the second condition for mak-

ing 11X11 o I 11 So 11 o small ( C » A', I B' I . m 2 I M2
). Therefore .the possibility exists 

(as already stated) that, while 11x11 0 I 11So11 o « 1, the point of first contact is 

far away from (a.=7 I 30, {3=3/ 10) on the SU3xur boundary curve. In any event, 

very large C leads us to a strong coupling quantum field theory. It is a 
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possibility, but we do not know how to treat such a theory. 

Up to now our analysis has been entirely classical, but a very important set 

of issues is raised by considering the radiative corrections. Whereas the classi-

cal Higgs potential is linear with respect to orbit parameters, radiative correc-

lions are non-linear [34]. If these radiative correction terms are important then 

the absolute minimum can occur on the non-convex portions of the orbit space 

boundary (see CIN), in which case the little group will be smaller than maxi-

maximal. The radiative correction terms are likely to play important roles in 

determining the symmetry of the vacuum if the gauge coupling coefficient is 

larger than the Higgs self-coupling coefficients, or if there is no quadratic term 

at all. Little groups smaller than maxi-maximal have not been noticed in the 

investigations of radiative corrections thus far [35], but no complete investiga-

lion has been performed yet and the danger is certainly present in the general 

case. The basic strategy for avoiding such a disaster is to prevent non-linear 

terms from playing major roles in determining the minimum of the effective 

potential*. 

In general, radiative corrections will also introduce new orbit parameters 

into the effective potential (this possibility exists because in the classical Higgs 

potential we have been dealing with a subspace of the complete orbit space). The 

resulting increase in the dimensionality of orbit space complicates the problem 

but does not introduce difficulties of principle. Some aspects of the complete 

orbit space will be described in CHN. 

Thus far we have not been able to shed any light on the gauge hierarchy 

problem, but we will try to use our method to resolve some of the difficulties in a 

future work [36]. where we will consider radiative corrections and renormaliza­

tion group behavior [37] for several different values of m 2 and M2
. 

• Our preliminary computation based on the effective potential in ref. [34], which contains 
only gauge boson loop contributions, indicates that the effective potential is monotonic with 
respect to a and pin the neighborhood of the point (a=7/30, P=3/ 10). 
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IIl.3.5 GENERALIZATION TO SU(N) ADJOINT +VECTOR 

The whole class of models SUN adjoint+ vector can be discussed by a trivial 

generalization of the techniques introduced in this paper for SU5 . The Higgs field 

C/)ij, which transforms as the (N2-1) dimensional adjoint representation, is 

represented by an NxN traceless hermitian matrix which we put in the diagonal 

form cpii = oii cpi. The Higgs field Xi transforms as the N-dimensional (complex) 

vector r epresentation. The potential V(c;o.x) and orbit parameters a and {3 retain 

the same forms (III.3 .2), (Ill.3. 7), and (III.3.8) with the sums extending from 1 to 

N. 

In searching for the boundaries of orbit space, we consider a one-parameter 

stratum of the form 

r/J = (r r .. · 1 1 · · · -nr -m) 
T • ' ' ' ' ' 

(III.3.59) 

(i.e., n elements rand m elements 1 withn+m+l=N) and 

x = (0,0, . . . . '. . ,0, 1) . (III.3.60) 

One can readily show that this stratum satisfies the necessary condition 

(III.3.10-11) for a boundary curve. It has the symmetry SUN-I for m=O, 

SUN_2xU1 for m=l, and SUnxSUmxU1 for m~2. The whole range of subgroups 

The stratum for m =O is the point 

n 3 + 1 a=----
n(n + 1)2 ' 

n 
{3= -­

n + 1 
(III.3.61) 

Each . stratum with m~l occupies a curve in orbit space which can be 
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characterized by the parameter r: 

a = n r 4 + m + (n r + m )4 
[nr 2+m +(nr +m)2 ] 2 

{3 = (n r + m)2 

n r 2 + m + (n r + m)2 

A useful formula for the slope of the curve is 

(Ill.3.62) 

2(n2-l)(r+ m+11{r+~)(r+ m-1 j 
d a - aa; ar - n n + 1 n -1 

df3 - ap;ar (r+ mHnr2+ m + (nr+m)2J 
n 

(Ill.3.63) 

This formula exhibits all the turning points aa/ ar = 0 and 6(:11 ar = 0 of the 

curve , except for the cusp factor (r-1) which occurs in both aa/ ar and 8(3/ Br 

and cancels out of their ratio. Substituting these values of r into eq. (Ill.3.62) we 

obtain the list of a and (3 at all turning points given in Table III. 3.1. 

Turning Point r a {3 

1 {m+n)3+1 m+n 
a max 

(m+n)(m+n+1)2 m+n+1 

local min and -{m-1} n {m-1}4+m{n-1~+{n-mt {n-m12 
n-1 [ n (m -1)2+m (n -1)2+(n -m )2]2 n (m -1)2+m (n -1)2+(n-m )2 

local max of a ..::!!!:._ m 3+(n+1)3 m 
n+l m(n+l){m+n+l)2 (n+l)(m+n+l) 

fJroln ~ m3+n3 
0 

n nm(m+n)2 

-(m+l} {m+1)3+n 3 n 
'1min n n(m+l)(m+n+1)2 (m+l)(m +n+l) 

Table III.3.1 
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If r is eliminated, the curve can be expressed as 

C<. = p2 [l + m 2-mn+n2 + 2(m2-4mn+n2
) + m 2-6mn+n2 ~ 

mn(m+n) mn(m+n)2 mn(m+n)3 

m 2 -mn+n2 m 2-4mn+n2 

-Z{3 [ mn(m+n) + mn(m+n)2 ~ 

m 2 -mn+n2 
+-----

mn(m+n) 

± 4(n-m) [n+m-(n+m+l) (3]312 ( _(i_)l/2 
(n+m) 3 mn 

(Ill.3.64) 

In most cases this curve has the teardrop-type shape we found in 

SU5 --> SU3x U1. An exception is the case n=m, where the coefficient of the 

square root vanishes and (Ill.3.64) simplifies to a parabola as in 

SU5 --> SU2xSU2x U1 . Note that this only occurs for Nodd. 

A check with random stratum points for several low N verifies that the 

boundary of orbit space is formed by the curves (III.3.64) together with a verti­

cal line at (3 = 0, a horizontal line at C<.max' and (for N odd) a horizontal line at 

C:Xmin as in SU5 . The first few cases are depicted in Fig. III.3.10. Each of the sub-

groups SUN-i. SUN_2x U1 , · · · occupies some portion of the orbit space boun-

dary. 

The k parabola described in CHIII.3.3 is the same for any SUN adjoint+ vec-

tor. The various sign combinations of Alo B 1 control the orientation of the k par-

abolas as in CHIII.3.3.5 and yield minimum energy solutions on the four corners 

of orbit space as summarized in Fig. III.3.11. These results again agree with 

those obtained by Buccella, Ruegg, and Savoy [20]. And once again, symmetry 

subgroups found at minimum energy are maxi-maximal little groups in accor-

dance with the Gell-Mann-Slansky conjecture. 
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su<N-o12 x su<N-i)12 x u1 (N odd) 
or SUN12 X SU(N/2)-I X U1 (N even) 

A, 

SUN-I, SUN-2 x U1 , SUN-3 x SU2 x U1, 

· · · · · · su<N-on x su<N-i)12 x u1 (Nodd) 

or SUN12 x SU(N/2)-I x U1 (N even) 

Fig. III.3.11 
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A new feature not found in SU5 is the indented boundary segments found, 

e.g., in SU6 near the intersection of the SU4 x U1 and SU3 xSU2x U1 curves (Fig. 

III.3.10). The minimum energy stratum point cannot lie on these segments 

because the k parabola can never make its first contact there. A simple con­

struction which indicates the restricted range of stratum points is to draw a 

straight line tangent to, e.g., the SU4x U1 and SU3xSU2x U1 curves on the lower 

right boundary of SU6 .3.Q + .Q. orbit space (Fig. III.3.12). The boundary segments 

closed in by this straight line never supply the lowest energy orbit. 

a 

Fig. III.3.12 
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m~4 APPLICATION TO SO(N) ADJOINT +VECTOR REPRESENTATIONS 

In this chapter we deal with the case of SON adjoint + vector representa-

tions. Though the same formalism as derived in the previous chapter is used for 

the minimizing procedure, its algebraic simplicity allows us to concentrate on 

the geometrical and group theoretical nature of the spontaneous symmet ry 

breaking problem. We are going to observe a proliferation of maxi-maximal little 

groups. Though many of their strata lie inside the projected orbit space associ-

ated with the partial list of invariants employed in the classical Higgs potential 

and thus do not yield the absolute minimum, all of them have the equal 

geometrical status of being singular points, curves, and surfaces on the com-

plete orbit space boundary. Also we are going to observe a proliferation of 

singlets. Some of them are grouped together and behave like one parameter. 

We will treat the S02n and S02n+i cases separately because the two cases 

have somewhat different features. We treat S010 as a prototype of the whole 

class of S0211, cases, because S010 is the smallest group that behaves like gen-

eral S02n as we can see from Dynkin diagrams. The results are trivially 

extended to the S02n cases. We treat S07 as a prototype of the whole class of 

S02n+I cases for similar reasons. Again the results are trivially extended to the 

~02n+I cases. 

ID.4.1 I-DGGS POTENTIAL FOR SO(lO} 45 + 10 

We will represent .4.Q by a 10x10 real antisymmetric matrix, (/)ij, and .1.Q by a 

10-dimensional real vector, Xi. Then the most general classical potential for the 

Higgs scalar fields, invariant under S010, can be written as follows•: 

•Adjoint representations of small S02n groups, namely 804, 806, and 806, have additional 
invariant polynomials of a generic form Eij ... kl f/J\J • • • f/Jkf., which are of degree less than 5. In 
such cases our Higgs potential, eq. (III.4.1), is not the most general one. 
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(III.4.1) 

A gauge transformation, which is equivalent to an orthogonal transforma-

lion, can simplify v.e.v. of the fields into the following form: 

0 C,01 

-cpl 0 0 0 0 0 

0 'P2 
0 -rp2 0 0 0 0 

0 <p3 
<p ::: 0 0 -cp3 0 0 0 

0 cp4 
0 0 0 

-<p4 0 0 

0 C{J5 
0 0 0 0 -cp5 0 

= [r;11'P21<fJ3,cp4,<p5] I (III.4.2) 

xr = (x1.D.x2.D.xs.D.x4.0.x5.0) 

= [x1.x2.xs.x4.x5] . (III.4.3) 

We have defined shorthand notations for the matrix and the row vector for con-

venience. In terms of this reduced set of components the potential takes a 

simpler form: 
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c 5 
+ -o:::xr>2 

4 i=l 

+ B (f; <fJt )(~ xf) + !!.-1_(~ c,of xf) 
i=l k=l 2 i=l 

The orbit parameters are: 

. 2 2:<fJt 
(2 l::q;f )2 

r ( +r i +r ~+rt + 1 = ~~~~~~~~ 
2 (r~ +r~ +r§ +rf +1)2 ' 

rfs r +r~s~ +r§s§ +r4s4+1 = ~~~~~~~~~~~~~~ 
2(rr +ri +r§ +r: + l)(s r +s~ +sg +s4+1) 

(3, we can write the potential in the simplest form: 

+ ! (A +Ai a(So)) 11c,o11 2 

+ .Le I lxl 12 
4 

+ ~ (B + B1 P(So,x)) I IY' 111 lxll . 

(III.4.4) 

(ITI. 4.5) 

(III.4.6) 

(III.4.7) 
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ill.4.2 MINIMIZATION OF THE IDGGS POTENTIAL FOR SO(lO) 45 + 10 

In order to find the boundary of the orbit space, we simply anticipate the 

answers by looking for the strata of the maxi-maximal little groups of the Gell­

Mann-Slansky conjecture. Then we verify our answers using the method given at 

the begining of CHIII.3.2 and by checking that they satisfy the necessary condi­

tions for a boundary point. Since the group S010 is fairly large, it is a rather 

lengthy procedure to find the maxi-maximal little groups. For our representa­

tions, ±Q + .1.Q, it might look unnecessarily sophisticated. It looks even more so 

for higher SON. But if one considers other cases, e.g., .1:Q + 1.Q [21] of S010 , one 

realizes that simplifications like eqs. (III.4.2) and (III.4.3) are not possible in gen­

eral and finds that the procedure is really a fool-proof way of finding the orbit 

space boundary. We refer the reader to Slansky's excellent review article [22] 

for the method of finding maxi-maximal little groups. 

First let us consider the route starting with maximal little groups of .1Q. 

The maximal little groups [22,31] of 1:5.. and the associated branching rules are: 

45 = 1(0)+10(4)+10(-4)+24(0) 

10 = 5(2)+5(-2) 

b) S08 x U1 : 

45 = l(O)+Bv (2)+8v (-2)+28(0) 

10 = 1(2)+ 1(-2)+8v (0) 

45 = (l,1)(2)+(1,1)(0)+(1.1)(-2)+(3,1)(0) 

(III.4.8) 

(III.4.9) 

(III.4.10) 
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+(1.15)(0)+(2,6)(1)+(2,6)(-1) 

10 = (2,1)(1)+(2,1)(-1)+(1,6)(0) 

45 = ( 3, 1, 1) ( 0) + ( 1, 3, 1) ( 0) + ( 1, 1, 1) ( 0) + ( 1, 1, 3) ( -4) 

+( 1, 1,3) ( 4-) +'( 1, 1, 8)( 0) +(2,2,3)(2)+ (2,2,3)(-2) 

10 = (2,2,1)(0)+(1,1,3)(2)+(1,1,3)(-2) 

We have adopted a SU2xSU2 notation for S04 sub-representations. 

(III.4.11) 

The maxi-maximal little groups along each of the four sub-routes are: 

sub-route a) : 

(Ill.4.12) 

10 = 1(0)+4(1)+1(0)+4(-1) 

45 = 1(0)+4(1)+6(2)+4(-1)+6(-2)+1(0)+4(1)+4(-1)+15(0) 

sub-route b) : 

S08 : (III.4.13) 

10 = l+l+Bv 

S07 x U1 : (Ill.4.14) 

10 = 1(1)+1(-1)+1(0)+7(0) 

45 = 1(0)+1(1)+7(1)+1(-1)+7(-1)+7(0)+21(0) 
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sub-route c) : 

10 = 1(1)+1(0)+1(0)+1(-1)+6(0) 

45 = 1(1)+1(0)+1(-1)+1(1)+1(0)+1(-1) 

+ 15(0)+6( 1 )+6(0)+6(0)+6(-1) 

10 = (2,1)(1)+(2,1)(-1)+(1,1)(0}+(1,5)(0) 

45 = (1,1)(2)+(1.1}(0)+(1,1)(-2)+(3,1)(0)+(1,5)(0} 

+( 1.10)(0}+(2, 1)(1)+ (2, 5)( 1)+(2,1 )(-1 )+(2,5)( -1) 

sub-route d) : 

10 = (3,1)(0)+(1. 1)(0)+(1,3)(1)+(1,3)(-1) 

45 = (3,1)(0)+(3,1)(0)+(1.1)(0)+(1.3)(-2)+(1.3)(2) 

+( 1,8}(0) + (3, 3) ( 1)+(1,3) ( 1)+ (3,3) ( -1)+ ( 1,3)(-1) 

10 = (2,2, 1)(0)+( 1, 1,2)( 1)+(1, 1, 1)(0}+( 1, 1,2)(-1)+( 1, 1, 1)(0) 

45 = ( 3, 1, 1) ( 0) + ( 1, 3, 1) ( 0) + ( 1, 1, 1) ( 0) + ( 1, 1, 1) ( -2) + ( 1, 1, 2) ( -1) 

+( 1, 1, 1)(2)+( 1, 1,2)( 1)+ ( 1, l, 1)(0)+ ( 1, 1,2)( 1)+ ( 1, 1,2)(-1) 

(III.4.15) 

(III.4.16} 

(III.4.17} 

(III.4.18} 
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+( 1, 1,3)( 0)+(2, 2, 1) (O)+ (2,2,2)( 1)+ (2,2, 1)(0)+ (2,2,2)( -1) 

Next let us consider the route starting with maximal little groups of .l.Q. In 

this case the procedure is rather simple because 1Q has only one maximal little 

group, S09 . The branching rules are: 

S09 : (Ill.4.19) 

10 = 1+9 

45 = 9+36 

Following the same procedure, we obtain the list of the maxi-maximal little 

groups along this route: S08, S07xU1, SU4XU1, SU2xS05xU1, S03 xSU3xU1• 
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As we mentioned in CHIII.3.2, the lists of maxi-maximal little groups along 

two different routes are found to be different. The total list of maxi-maA.imal lit-

tle groups, the forms of rp and x which transform as singlets under them, and the 

orbit parameters for them are listed in Table III.4. 1. 

Maxi -maximal 
Little Group Singlet Form a {3 

SU4x U1 

rp = [b,b,b,b,a] 1+4r4 1 
x = [0,0,0,0,v] 2( 1 +4r2

)
2 2(1 +4r2

) 

S08 
rp = [ 0,0,0,0,a] 

1/2 1/2 x = [0,0,0,0,v] 

S07XU1 
rp = [0,0,0,0,a] 

1/2 0 X = [ 0,0,0,v,O] 

SOeXU1 
rp = [0,0 ,0,b,a] l +r4 1 
X = [0,0,0,0,v] · 2( 1 +r2

)
2 2( 1 +r2) 

SU2xS05xU1 
rp = [0,0,0,a,a] 

1/4 0 x = [0,0,v ,0,0] 

SOsxSUsxU1 

rp = [a,a,a,0,0] 
1/6 1/6 x = [0,0,0,0,v] 

S04 xSU2xU1 

rp = [0,0,b ,b ,a] 1+2r4 1 
x = [o,ci.o.o,v] 2( 1 +2r2) 2 2(1+2r2) 

Table III.4.1 
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The points and curves representing the strata of maxi-maximal little groups 

are shown in Fig. III.4.1. Unlike the case of SUN adjoint +vector, strata of some 

maxi-maximal little groups are totally buried inside the orbit space and do not 

contribute to the boundary. This is because we are considering a projected 

space of the complete orbit space. We will come back to this issue in CHIII.4.5. 

Using the minimization procedure of CHIII.3.3, one immediately finds that: 

When A1> 0, B 1> 0, the absolute minimum occurs at the stratum of SU4x U1; 

when A1> 0, B 1< 0, the absolute minimum occurs at the stratum of SU4 xU1 or 

S08; 

whenA 1< 0, B 1> 0, the absolute minimum occurs at the stratum of S07xU1; 

when A 1 < 0, B 1 < 0, the absolute minimum occurs at the stratum of S08 . 

a 

0 0.5 

Fig. III.4.1 
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The number of maxi-maximal little groups grows rapidly as we go to higher 

n and the Gell-Mann-Slansky conjecture becomes less effective because the 

strata of more and more maxi-maximal little groups are totally buried inside the 

orbit space. However, the 11usable 11 boundaries, where absolute minima occur, 

consist of the strata of jus t three maxi-maximal little groups; 

(III.4.20) 

Their strata are listed in Table III.4.2. 

Thus the results of the S010 case for· absolute minima can be extended to 

Maxi -maximal 
Little Group Singlet Form a f3 

SUn_ 1XU 1 

cp = [b,b, · · · ,b,a] 1+{n-1}r4 1 
X = [0,0, · · · ,O,v] 2(1+(n-1)r2) 2 2 ( 1 + ( n - l )r 2) 

S02n-2 
cp = [0,0, · · · ,0,a] 

1/2 1/2 X = [0,0, · · · ,O,v] 

S02n-3x U1 
cp = [0,0, · · · ,0,0,a] 

1/2 0 X = [0,0, · · · ,O,v ,O] 

Table III.4.2 
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ill.4.3 THE IIlGGS POTENTIAL FOR S0(7) 21 + ']_ 

The Higgs potential for ~his case is of the same form as eq. (III.4.1) except 

that the upper limit of the sum is now 7. But after the gauge transformation the 

simplified v.e.v. of the fields take slightly different forms than before: 

0 9'1 
-sci 0 0 0 0 

0 So2 
0 -cp2 0 0 0 

f/J = 
0 C/)3 

0 0 
-Sos 0 0 

0 0 0 0 

(III.4.21) 

(Ill.4. 22) 

Instead of eq. (III.4.4) we now have 

3 A 3 
+ A ( 2: Sof )2 + - 1 2: cp{ 

i=l 2 i=l 

(III.4.23) 

The orbit parameters are: 



r[+ri+l =-----
2 (rP+ri+1) 2 ' 

(3 = -I;xicpii</)ikXJc 
(-~<pi; </)ji )(~xf> 
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rrsr +r~s~ +1 =----------
2(rr+r~+1)(sr+s~+1+sn · 

with ri = <pi/ <p3, si =Xii x3 • Eq. (Ill.4. 7) can be used without change. 

ID.4.4 MINIMIZATION OF THE IDGGS POTENTIAL FOR S0(7) 21 + 7 

(III.4.24) 

(III.4.25) 

As before we look for the strata of the maxi-maximal little groups to find 

the boundary of the orbit space. First let us consider the route starting with 

maximal little groups of 21.. The maximal little groups of .21. and the associated 

branching rules are: 

(III.4.26) 

21 = (1,3)(0)+(3,1)(0)+(1,1)(2)+(1,1)(0) 

+( 1.1)(-2)+(2,3)( 1)+(2,3)(-1) 

7 = (1,3)(0)+(2,1)(1)+(2,1)(-1) 

(III.4.27) 

21 = 1(0)+5(1)+5(-1)+ 10(0) 

7 = 1(1)+1(-1)+5(0) 
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c) SU3 x U1 : 

21 = 3( 1)+3(-1)+ 1 (0)+3(-2)+3(2)+8(0) 

7 = 1(0)+3(1)+3(-1) 

(III.4.28) 

The maxi-maximal little groups along each of the four sub-routes are: 

sub-route a) : 

(III.4.29) 

7 = 1[0,1]+1[0,0]+1[0,-1]+2[1.0]+2[-1.0] 

21 = 1[0,1]+1[0,0]+1[0.-1]+3[0,0]+1[2,0]+1[0,0] 

+1[-2,0]+2[1.1]+2[1.0]+2[1.-1]+2[-1.1]+2[-1,0]+2[-1,-1] 

S03 x U1 : 

7 = 3(0)+1(1)+1(0)+1(0)+1(-1) 

21=3(0)+1(1)+1(0)+1(-1)+1(1)+1(0) 

+ 1(-1)+3( 1)+3(0) +3(0)+3(-1) 

sub-route b) : 

7 = 1+1+5 

21=1+5+5+10 

7 = (1,1)(1)+(1,1)(-1)+(1.1)(0)+(2,2)(0) 

(Ill.4.30) 

(III.4.31) 

(III.4.32) 
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21 = (1.1)(0)+(1,1)(1)+(2,2)(1)+(1.1)(-1) 

+(2,2)( -1) + ( 1,3)( 0) +(3, 1) (0) +(2,2)(0) 

sub-route c) : 

7 = 1(0)+3(1)+3(-1) 

21 = 3(1)+3(-1)+1(0)+3(-2)+3(2)+8(0) 

7 = 1(0)+1(0)+2(1)+1(0)+2(-1) 

21=1(0)+2(1)+1(0)+2(-1)+1(0)+1(-2)+2(-1) 

+ 1(2)+2( 1)+ 1(0)+2(1 )+2(-1)+3(0) 

(III.4.33) 

(III.4.34) 

Next let us consider the route starting with maximal little groups of :L :J... 

has only one maximal little group, S06 . Following the same procedure, we obtain 

the list of maxi-maximal little groups along this route: S05,SU3x U1, S04x U1. 
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The total list of maxi-maximal little groups, the forms of cp and x which 

transform as singlets under them, and the orbit parameters for them are listed 

in Table III.4. 3. 

Maxi-maximal 
Little Group Singlet Form a (3 

SU2x U1x U1 
cp= [b,b,a] 1+2r4 

0 X = [0,0,0,v] 2( 1 +2r2) 2 

SOsxU1 
cp = [O,b ,a] 1+r4 1 
X = [0,0,v,O] 2( 1 +r2) 2 2(1 +r2) 

S05 
cp = [0,0,a] 

1/2 1/2 X = [0,0,v ,O] 

S04Xl/1 
cp = [0,0,a] 

1/2 0 x = [0 ,0,0,v] 

SUsx U1 
cp = [a,a,a] 

1/6 0 x = [0,0,0,v] 

SU2x U1 
cp= [b,b,a] 1+2r4 1 
x = [0,0,v ,w] 2( 1 +2r2) 2 2(1+2r2)( 1+s 2

) 

Table Ill.4.3 
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The points and curves representing the strata of maxi-maximal little groups are 

shown in Fig . III.4.2. 

Once again one easily finds that: 

When A1> 0, B 1> 0, the absolute minimum occurs at the stratum of SU3x U1; 

when A1> 0, B 1 < 0, the absolute minimum occurs at the stratum of SU2 x U 1 or 

when A1 < 0, B 1> 0, the absolute minimum occurs at the stratum of S04 x U1; 

when A1 < 0, B 1 < 0, the absolute minimum occurs at the stratum of S05 . 

a 

::J 
x 
::J-
x 

N 
::J 
(/) 

0 0.5 
f3 

Fig. III.4.2 
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In this example the relationship between the signs of A1 and B 1 and the 

strata of the absolute minimum is most transparent. When B 1> 0, {J is chosen to 

be zero and the minimum (maximum) value of a is chosen for A 1> 0 (A 1 < 0) to 

yield the lowest potential minimum. When B 1 < 0, the maximum allowed value of 

{J is chosen to yield the lowest potential. The balancing between a and {J is more 

delicate in this case because more options are available along the convex curved 

portion corresponding to SU2x U1. This property was used in ref. [20,21] to 

minimize the potential. 

The generalization to the S02n+i adjoint + vector case is trivially done by 

us.ing the results of the S07 case with SU3xU1 replaced by SUnxU1, SU2xU1 by 

tions of the boundary are listed in Table Ill.4.4. 

Maxi-maximal 
Little Group Singlet Form a p 

SUn_ 1XU1 
cp = [b,b, · · · ,b,a] l+(n-1}r4 1 
X = [0,0, · · · ,O.v ,w] 2(1+(n-1)r2) 2 2( 1 +(n -1)r2)( 1 +s 2) 

S02n - 1 
cp = [0,0, · · · ,0,a] 

1/2 1/2 X = [0,0, · · · ,O,v ,O] 

so2n-2xU1 
cp = [0,0, · · · ,O,a] 

1/2 0 X = [0,0 , · · · ,0,0,v] 

SUnxU1 
cp = [a,a, · · · ,a,a] 

1/2n 0 X = [0,0, · · · ,0,0,v] 

Table Ill.4.4 
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ID.4.5 TI-IE GEOMETRICAL SIGNIFICANCE OF MAXl-I~AXIl'dAL LI'ITfl".....E GROUPS 

In CHII.4 we have seen that strata of maximal and semi-maximal little 

groups, namely singular points and curves on the complete orbit space boun­

dary, are partially buried inside the projected orbit space used in the Higgs 

problem. Though it is hard to visualize the complete orbit space, the. points and 

curves corresponding to some maxi-maximal little groups that are buried in the 

projecte d orbit space in the examples of present chapter are thought to lie on 

the boundary of the complete orbit space. In this chapter we list the complete 

set of basic invariants for the adjoint + vector representations of 30 10 and S07 

and comput e the ranks of the Jacobian determinants for each stratum of the 

maxi-maximal little groups. 

Let us consider S010 adjoint + vector representations again. The complete 

set of elementary invariant polynomials for them is: 

c = l:xl. 

(III.4.35) 

(Ill.4.36) 

(III.4.37) 

We have confirmed that at the strata of S08 , S07xUi. SU2xS05xU1• and 

S03xSU3x 1/1, the Jacobian determinant 

a(cx4.cxa.cxa. cx5,{3z,{34,{3a.f3a)I a( r 1.r2.r3,r 4,s i.s2,s3,s 4) is of rank zero (i.e., eq. (II. 3.1) 

is satisfied.), and at the strata of S06xU1, S04xSU2xU1, and SU4xU1, the Jaco­

bian determinant is of rank 1 (i.e ., eq. (Il.3.2) is satisfied.) with the orbit param­

eters deduced from the above invariant polynomials. 



- 101-

For S07 adjoint + vector representations, the complete set of elementary 

invariant polynomials is: 

c = L:xr + x2. 

B2 = Trxcp 2x = -22:XiSofxi, B4 = Trxf1J4x = 22:XiC/Jlxi1 

Bfj = Trx.clx = -22:XiC/Ji6Xi· 

(III.4.38) 

(III.4.39) 

(lll.4.40) 

with i running from 1 to 3. We also have confirmed that at the strata of 

805 , S04 x U1i and SU3x U1, the appropriate Jacobian determinant is of rank 

zero, and at the strata of S03x U1, SU2x U1x U1, and SU2x U1 (with w = 0) it is of 

rank 1; and at the stratum of SU2 x U 1, it is of rank 2. 

The complete 3-dimensional orbit spaces of S05 and SU3 adjoint + vector 

representations will be illustrated in CHN.2. 

ill.4.6 COMMENTS 

A careful reader may have noticed that the number of independent parame­

ters is less than the number of singlets for a given maxi-maximal little group 

listed in eqs. (III.4.12)-(III.4.18) and eqs. (III.4.29)-(III.4.34). Generally, to specify 

a poinl in Lhc complete l -dimensional orbit parameter space we m~ed l parame­

ters. We can use l dimensionless ratios of field components or l independent 

invariants with I l cp 11 and 11x11 excluded for this purpose. These are the 

relevant parameters in determining the dimensionalities of cusps, curves, and 

surfaces of the complete orbit space. The most general stratum with full l 

independent parameters is called the generic stratum. Finding appropriate 

field components to describe the generic stratum of a representation is a non­

trivial job [ 19] and the total number of t~em [38] is not necessarily small. 
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(Though Hilbert provided a systematic method of constructing a complete set of 

basic invariant polynomials for a general representation it has not been worked 

out explicitly except for adjoint representations of classical and exceptional Lie 

groups [39] and a few other simple cases. To construct invariant polynomials 

one needs a tractable method for computing Clebsch-Gordan coefficients, which 

is not available yet.) 

Lacking these important pieces of information we cannot but work with 

singlets in practice. The stratum of a maximal little group of one irrep which has 

one singlet occupies a null-parameter subspace, that is, a point. The stratum of 

a semi-maximal (or maximal) little group of one irrep which has two singlets 

normally occupies a one-parameter subspace, that is, a curve. The stratum of a 

maxi-maximal little group which has one singlet from each of the two irreps 

occupies a null-parameter subspace. The stratum of a maxi-maximal little group 

which has one singlet from one irrep and two singlets from the other often 

(though not always) occupies a one-parameter subspace. When there are more 

singlets the stratum of a maxi-maximal little group occupies a higher dimen­

sional subspace, e.g., the SU2 x U1 of S07 . 

However in many cases, especially for smaller little groups there tend to be 

more singlets than the parameters needed to specify the stratum. This is 

because the extra singlets can be removed by global gauge transformations. In 

our dealing with adjoint representations so far we have used a diagonalized 

matrix form to specify the field components. If the matrix which is invariant 

under some subgroup contains some off-diagonal components, they can always 

be grouped together (via group transformation) with diagonal components and 

thus we see less parameters than we started with. (This simplification is 

achieved by choosing appropriate group parameters, which we called 1JL in 

CHI.2, and thus the maximum possible number of reduction is the number of 



- 103 -

group generators. If the dimension of the representation is D and the exact 

number of reduction is Dr, then the dimension of the generic stratum, Dg, is 

Dg = D - Dr - 1 for one irrep and Dg = D · - Dr - 2 for two irreps. As far as we 

know there is not yet a tractable way to compute Dr.) Consequently these field 

components that are grouped together appear as single entities in invariant 

polynomials. In such cases the number of singlets is misleading in determining 

the dimension of the stratum. 
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CHAPTER N CO!JIPLETE ORBIT SPACES 

Now that we have given the general procedure for minimizing the Higgs 

potential the remaining problem is to survey the orbit spaces. Though most of 

the fourth degree Higgs potentials contain only a partial list of the complete 

orbit parameters, in more sophisticated problems more and more orbit parame-

ters are included. In this regard and for the sake of completeness it will be 

instructive to survey the complete orbit spaces. 

The general structure of the complete orbit space has been unveiled by a 

group of mathematicians [ 15]. It has been known that the generic stratum occu-

pies some l-dimensional volume and the lower dimensional strata form the 

singular boundaries of this volume. Equivalently the generic stratum occupies 

an open, dense, topologically connected region and thus the boundaries must 

belong to the lower dimensional strata. We demonstrate this and also that lower 

dimensional strata always form the boundaries of higher dimensional strata in 

the specific examples that we have worked out. That is, the "openness" 

decreases as we go to lower dimensional strata and only the null-dimensional 

stratum is truely closed. 

N.l COMPLETE ORBIT SPACES OF ADJOINT REPRESENTATIONS 

Let us briefly review some group theoretical results [ 40] to set up our nota-

tion. For the algebra of order N and rank (l+l) we choose a Cartan-Weyl basis, 

so that the commutation relations assume the standard form: 

i, j = 1, 2, ,(l+1); 

(IV.1 .1) 

t+l 
[Ecx, E'_cx] = I;ri(a)Hi; 

i=l 
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where Nap #: 0 only if r( a) + r({3) is also a root. The matrices are normalized such 

that 

with all the other combinations of matrices yielding zero. Furthermore the 

roots r(a) satisfy the condition 

l:ri(a)ri(a) = 6ii 
a 

Using the generalized Casimir operators derived by Racah [39], Gruber and 

O'Raifeartaigh [ 41] have derived forms for the Casimir invariants that are more 

useful in practice. 1t has also been known that the field components can be 

reduced by a group transformation to (l + 1) (number of rank) irreducible com-

ponents which correspond to Hi's in the Cartan-Weyl basis. Utilizing these 

results we can readily write down the tractable form of each invariant. 

The complete set of invariant polynomials for adjoint representations can 

be obtained by using the matrix form for the fields, 

(IV.1.2) 

where C/)i is the ith component of cp in vector notation and Xi is the matrix 

corresponding to the i th generator. Note that Xi can be based on any rep re sen-

tation. Using the notation 

Im = Trcpm, (IV. l. 3) 

we list the complete set of invariant polynomials in Table IV.1.1 along with other 

useful properties for each classical and exceptional Lie group. The I'n of S02n is 
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of a form similar to A5 in eq. (III.4.35). Using the convention 

(N.1. 4) 

where we have defined the square bracket as the diagonal elements of the 

matrix, we can directly write down the orbit parameters in the following generic 

form 

GROUP 

SUn+1 

S02n+1 

Spzn 

S02n 

G2 

F4 

Ea 

E1 

Ee 

Trcpm 

a...'rn = 
2m aia2 ... Um 

( Trcp2r12 

INVARIANTS 

12. /3, ... 
• ln+l 

fz, /4, ... , l2n 

12. /4, . . , , l2n 

f 2. /4, ... • I 2n - 2• l'n 

fz, !5 

fz, !5 , ls. /12 

12 . fr), Ia. Ia. 19, f 12 

fz, Ia. Is. 110, 112. /14, Irn 

I 2. I B· I 12• I 14• I 18· I 20. I 24• I 30 

Table N. 1.1 

(IV. l. 5a) 

(IV.1 .5b) 

ORDER RANK 

n(n+2) n 

n(2n+ 1) n 

n(2n+ 1) n 

n (2n-1) n 

14 2 

52 4 

78 6 

133 7 

248 8 
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N.1.1 GROUPSOFRANKTWU 

There is only one orbit parameter for the adjoint representation of a group 

of rank 2 and thus the orbit space is a line. 

SU(3) 

We choose the vector representation for the basis of the matrices. The 

stratum of each little group is represented as follows: 

SU2XU1 3 = 1[-2] + 2[1], (N.1.6) 

<p = [a,a,-2a], 

CX3 = ± 1/-J6; 

cp = [a ,b ,-a-b ], (N.1.7) 

The orbit space consists of two end points corresponding to SU2xU1 and the 

interior corresponding to U1x U1. 

S0(5) and Sp(4) 

We choose the 5-dimensional vector representation for the basis. The stra-

tum of each little group is represented as follows: 

SOsXU1 5 = 1[1] + 1[-1] + 3[0], (N.1.8) 

<p = [a I -a I 0 I 0 I 0] I 

~ = 1/2; 
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5 = 1[0] + 2[1] + 2[-1], (IV.1.9) 

cp = [a,-a,a,-a,0], 

cp = [a, -a, b, -b, O], (N.1.10) 

The orbit space consists of two end points corresponding to S03x U1, 

S0(4) 

Although S04 may be considered to be a direct product group SU2xSU2 we 

include it for completeness. We choose the vector representation for the basis. 

The stratum of each little group is represented as follows: 

SU2XU1 : (2,2) = 2[1] + 2[-1], (N.1 .1 1) 

cp = [a,-a,a,-a], 

cx'2 = ± 1; 

cp = [a , -a , b , -b ] , (IV.1.12) 

ex' = 22 ab 2 
2a2 +2b 2 

The orbit space consists of two end points corresponding to SU2xU 1 and the 

interior corresponding to U1x U1. 
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G(2) 

We choose the 7-dimensional representation for the basis. The stratum of 

each little group is represented as follows: 

7 = 3[0] + 2[1] + 2[-1], (IV. l.13) 

cp = [a,-a,a,-a,0,0,0], 

e<.6 = 1/ 16; 

7 = 1[0] + 1[2] + 1[ -2] + 2[1] + 2[-1], (IV.1.14) 

rp = [2a,0,-2a,a,-a,a,-a,], 

cx6 = 33/ 128; 

cp = [2a,0,-2a,a+b,a-b,-a+b,-a-b], (IV.1.15) 

2(2a )6 +2( a +b )6+2( a -b )6 

C:Xe = [2(2a )2+2(a +b )2+2(a -b )2] 3 · 

The orbit space consists of two end points corresponding to S03x U1, 

SU2x U1 and the interior corresponding to U1x U1. 
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W.1. 2 GROUPS OF RANK TI-IREE 

There are two orbit parameters for the adjoint representation of a Lie 

group of rank 3. The orbit space turns out to be a warped triangle. 

SU{4) andS0(6) 

We choose the 4-dimensional representation for the basis of the matrices. 

The stratum of each little· group is represented as follows: 

4= 1[-3] + 3[1], (IV.1.16) 

cp = [a,a,a,-3a], 

!X.3 = ± 11"\/'3, 

~ = 7/ 12; 

4 = (2, l)[ 1] + ( 1,2)[ -1], (IV.1.17) 

cp = [a,a,-a,-a], 

!X.3 = 0, 

~ = 1/4; 

4 = 1[1,1] + 1[1,-1] + 2[-1,0], (IV.1.18) 

r{J = [a I a I b I -2a -b ] I 

rp = [a ,b ,c ,-a-b -c ], (IV.1.19) 
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a. _ ± a 3+b 3+c3-(a+b+c)3 

3 - [a2+b2+c2+(a+b +c )2]312 ' 

The orbit space is shown in Fig. N.1.1. It is a warped triangle. Two cusps 

±Pl of [SU3xU1] and cusp P2 of [SU2xSU2xU1] are connected by the curve of 

[SU2x U1x U1]. The cusps and the curve together form the boundary of the gen­

eric stratum of [ U1x U1x Ui] which occupies the interior. 

-Pl 

±Pl:SU3xu, 

-0.75 

P2: SU2XSU2xu, 
Cl:Su 2xu 1xu 1 

+Pl 

P2 

0.0 

Fig. N.1.1 
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00(7) 

We choose the vector representation for the basis. The stratum of each lit-

tle group is represented as follows: 

7 = 1[1] + 1[-1] + 5[0], (N.1.20) 

(/) = [a,-a,0,0,0,0,0], 

0..4 = 1/2, 

0..5 = 1/ 4; 

7 = (1,3)[0] + (2,1)[1] + (2,l)[-1], (N.1.21) 

cp = [a,-a,a,-a,0,0,0], 

7 = 1[0] + 3[1] + 3[-1], (N.1.22) 

cp = [a ,-a,a,-a,a,-a,0], 

0..5 = 1/ 36; 

7= 1 [ 0,0]+ 1[0, 1]+ 1 [O, -1]+2[ 1,0]+2[ -1.0], (N.1.23) 

(/) = [a,-a,a,-a ,b ,-b ,O], 

4a6 +2b 6 
. 

cxa = ( 4a2+2b2)3 ' 
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7=1[1,1]+1[1,-1]+1[-1,1]+1[-1.-1]+3[0,0], (N.1.24) 

rp = [a,-a,b ,-b ,0,0,0], 

2a6 +2b 6 . 
O.e = (2a2+2b2)s , 

rp = [a,-a,b ,-b ,c ,-c ,O], (N.1.25) 

The orbit space is shown in Fig. N.1.2. It is again a warped triangle. Cusp Pl 

of [S05xU1] and cusp P2 of [SU2xS03xU1] are connected by straight line Ll of 

[S03x U1x U1]. All three cusps including cusp P3 of [SU3x Ui] are connected by 

curve C2 of [SU2x U 1x U1]. All the cusps and Ll and C2 together form the boun-

dary of the generic stratum [ U1x U1x Ui] which occupies the interior. 

0.3 

PI: so5xu, 
P2: SU 2x S03x U1 
P3: SU3xu, 
LI: so3xu 1x u, 
C2: su 2 xu 1xu1 

P3 

Fig. N.1.2 

Pl 

0.5 
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Sp(6) 

We choose the vector representation for the basis. The stratum of each lit-

tle group is represented as follows: 

6 = 1 [ 1] + 1 [ -1] + 4[ 0] I {IV. l.26) 

c,o = [a,-a,0,0,0,0], 

C(6 = 1/ 4: 

6=(2,1)[0]+(1.2)[1]+(1.2)[-1], (IV.1.27) 

cp = [a,-a,a,-a,0,0], 

C<5 = 1/ 16; 

6 = 3[1] + 3[-1], (IV.1.28) 

cp = [a, -a, a, -a , a, -a], 

0'.5 = 1/ 36; . 

6= 1[ 0, 1] + 1[ 0,-1]+2[ 1.0]+2[ -1.0], (IV.1.29) 

c,o = [a,-a,a,-a,b,-b], 

4a4 +2b 4 

~ = (4a2+2b2)2 I 

4a6 +2b 6 • 

cxe = (4a2+2b2)3 ' 
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6=1[1,1]+1[1,-1]+1[-1.1]+1[-1,-1]+2[0,0] , 

r; = [a ,-a,b ,-b ,0,0], 

2a6 +2b 6 . 
ex.a= (2a2+2b2)s ' 

rp = [a,-a,b ,-b ,c ,-c ], 

(IV.1.30) 

(IV.1.31) 

The orbit space is shown in Fig. N.1.3. As we can see from Fig . IV.1.2 and 

Fig. N.1.3 the orbit space of the Sp 6 adjoint is identical to that of the S07 

adjoint. This identity persists between the Sp 2n adjoint and the S02n+l adjoint 

for any n because the orbit parameters are identically defined. Only the labeling 

of the little groups is different. 

0.3 

PI: Sp4 x U1 
P2: su2 xsu2xu1 
P3: SU3xu, 
L 1: su3xu1xU1<B> 
C2: SU3xu,xu, CA> 

P3 

Fig. IV.1.3 

Pl 

0.5 
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W.1.3 GROUPS OF RANK FOUR 

There are three orbit parameters for the adjoint representation of a Lie 

group of rank 4. The orbit space turns out to be a warped tetrahedron. 

SU(5) 

We choose the vector representation for the basis of the matrices. The stra-

tum of each little group is represented as follows: 

5 = 1 [ -4] + 4[ 1] 1 (IV. l.32) 

cp = [a,a,a,a,-4a], 

CX3 = ± 3/ 2vD, 

C4 = 13/ 20, 

CX5 = ± 51/ 40vD; 

5 = (3, 1)[2] + ( 1.2)[ -3], (IV.1.33) 

cp = [2a,2a,2a,-3a,-3a], 

~=7/30, 

5 = 1[0,1]+1[-3,-1]+3[1,0]. (IV.1.34) 

cp = [a,a,a,b ,-3a-b ], 



SU2X U1X U1X u 1 
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_ 3a4 +b 4+(3a+b )4 

C4 - (3a2+b 2+(3a+b )2]2 

5=( 1, 1)[ -2.-2]+(1.2)[ 1,0]+(2, 1)[0, 1], 

<p = [a,a,b ,b ,-2a-2b ], 

_ ± 2a3 +2b 3-(2a+2b )3 

as - [2a2 +2b 2+(2a+2b )2] 312 ' 

_ 2a4 +2b 4 +(2a+2b )4 

C4 - [2a2+2b 2+(2a+2b )2] 2 ' 

_ ± 2a5 +2b 5-(2a +2b )5 . 

CXo - [2a2+2b2+(2a+2b )2]512 , 

5= 1[0, 1,0]+ 1[0,0, 1]+ 1[-2,-1,-1]+2[ 1,0,0], 

<P = [a,a,b ,c ,-2a-b -c ], 

2a4 +b 4 +c 4 +(2a+b +c )4 

cx4 = (2a2+b 2 +c 2+(2a+b +c )2] 2 ' 

<p = [a,b ,c ,d,-a-b-c -d], 

~ = a 4 +b 4 +c 4 +d4+(a+b +c +d)4 

[a2 +b 2+c 2 +d2+(a+b +c +d)2]2 ' 

(IV.1.35) 

(N.1.36) 

(IV.1.37} 
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The orbit space is shown in Fig. N.1.4. It is a thin warped tetrahedron. 

Cusps± Pl of [SU.4xU1] and cusps± P2 of [SU3xSU2xU1] are connected by both 

curves Cl of [SU3x U1x U1] and curves C2 of [SU2xSU2x U1x U1]. The two curves 

lie on the warped surfaces of [SU2x U1x U1x U1]. All these cusps, curves and 

surfaces together form the boundary of the generic stratum [ U1x U1x U1x Ui] 

which occupies the interior. 

The curves are all concave. One of the principal curvatures of each surface 

is zero (the surface is fiat in this direction) and the other is negative (the sur-

face is concave in this direction). 
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-Pl aJ2] 

)-_~!] -Pl +Pl 

as[1] 

Cl 6=60° 
t/)=30° 

+Pl 

C2 :Pl: SU,XU1 C2 ±P2: SUyc5UaX1J1 
Cl: SU~1XU1 
C2: SUr5UaXtJ iXU i Gt5 

+P2 
-0.6 0.6 

-Pl -Pl 
-0.6 

0.6 

+Pl +Pl 

Fig. IV.1.4 

The complete orbit space of the SU5 adjoint representation. Shown at the upper 

left corner is a view from the direction oriented 30° from the a.3 axis and 60° 

from the ~ axis . The numbers in the square brackets are the relative ratios of 

scale. Each projection is a view from the positive direction of the a.xis not shown 

in the picture. The dotted curves represent edges on the back (hidden) side of 

the orbit space. 
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S0{9) 

We choose the vector representation for the basis. The stratum of each lit­

tle group is represented as follows: 

S07x U1 : 9 = 1[1] + 1[ -1] + 7[0], 

rp = [a ,-a,0,0,0,0,0,0,0], 

CX.4 = 1/ 2, 

ex.a = 1/ 8; 

9=(5,1)[0] + (1,2)[1] + (l,2)[-1], 

rp = [a,-a,a ,-a,0,0,0,0,0], 

cx.6 = 1/ 16, 

cx.8 = 1/ 64; 

9 = ( 3 I 1) [ 1 ] + (3 I 1) [ -1] + ( 1, 3) [ 0] I 

rp = [a,-a,a,-a,a,-a,0,0,0], 

cx.8 = 1/ 216; 

9 = 1[0] + 4[1] + 4[-1], 

(IV.1.38) 

(IV.1.39) 

(IV.1.40) 

(IV.1.41) 
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cp = [a, - a,a,-a,a,-a,a,-a,0], 

0'.4 = 1/ 8, 

O'.a = 1/ 64, 

0:8 = 1/ 512; 

9= 1[0,0]+ 1[0, l]+ 1[0,-1]+3[ 1.0]+3[ -1,0], (N.1.42) 

c.p = [a,-a,a,-a,a,-a,b ,-b ,O], 

6a6+2b 6 

O'.a = (6a2+2b2)3 ' 

6a8 +2b 8 
. 

O'.a = (6a2+2b2)4 ' 

9=(1. 1)[0,0]+(2, 1)[1.0]+(2, 1)[ -1.0] (IV.1.43) 

+(1,2)[0, 1]+(1.2)[0,-1], 

cp = [a,-a,a,-a,b ,-b ,b ,-b ,O], 

4a4 +4b 4 
0'.4 = 

(4a2+4b 2)2 ' 

4a6 +4b 6 

0'.6 = 
( 4a2+4b 2)3 ' 

4a8+4b 8 
O'.a = (4a2+4b2)4 ' 

9=(1, 1)[0, 1]+(1.1)[0,-1]+(2, 1)[1.0] (N.1.44) 

+(2,1)[-1.0]+(1,3)[0,0], 
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q; = [a,-a,a,-a,b ,-b ,0,0,0], 

4a4 +2b 4 
l'.X.4 = (4a2+2b 2)2 ' 

4a6+2b 6 
aa = 

(4a 2+2b 2)3 ' 

4a8 +2b 8 
l'.X.a = 

(4a2+2b 2) 4 ' 

9= 1[ 1,0]+ 1 [ -1,0]+ 1[ 0, 1]+ 1 [ 0, -1]+5[0,0] , (IV.1.45) 

q; = [ a,-a,b, -b ,0,0,0,0,0], 

2a4 +2b 4 
l'.X.4 = 

(2a2+2b 2)2 ' 

2a6+2b 6 
l'.X.5 = 

(2a2+2b 2) 3 ' 

2a8+2b 8 
l'.X.a = (2a2+2b2)4 I 

9= 1[0,0,0]+ 1[0,1,0]+ 1 [0,-1,0] (IV.1.46) 

+ 1[0,0, l]+ 1[0,0,-1]+2[1,0,0]+2[ -1,0,0], 

q; = [a I -a I a I -a' b I -b I c I -c I 0]' 

4a6+2b 6 +2c 6 

aa = (4a2+2b 2+2c 2) 3 ' 

9= 1[ 1,0,0]+ 1 [ -1,0,0]+ 1[0, 1,0]+ 1[ 0, -1,0] (IV.1.47) 
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+ 1[0,0, 1]+ 1[0,0,-1]+3[0,0,0], 

rp = [a,-a,b ,-b ,c ,-c ,0,0,0], 

rp = [a,-a,b ,-b ,c ,-c ,d,-d,O], (IV.1.48) 

The orbit space is shown in Fig. IV.1.5. It is a thin and sharp tetrahedron. 

Cusp Pl of [S07 x U1] and cusp P2 of [S05xSU2x U1] are connected by curve Cl of 

[S05x U1x U1]. Cusp P3 of [SU3xSU2x U1] and cusp P4 of [SU4x U1] are con­

nected by curve C'2 of [SU3x U1x U1] which connects also Pl and P4. P2 and P4 

areconnected by curve C3 of [SU2xSU2xU1xU1]. Pl, P2 and P3 are connected 

pies the warped triangular surface P1-P2-P3 bounded by Cl and C4. The stratum 

of [SU2xUixU1xU1 (A)] closes the rest of the boundary of the generic stratum 

Cl and C3 are convex plane-curves and C2 and C4 are concave space-

curves. Surface Pl-P2-P3 is convex along its length but it meets with a 

a.4= constant plane along a straight line. All the other surfaces meet with a 
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C4= constant plane along concave curves. Surface Pl-P3-P4 is totally con-

cave. Each of surfaces P2-P3-P4 and Pl-P2-P4 have two principal curvatures 

of opposite sign, i.e., the surfaces are saddle-shaped. 

a.Ji] 

~ 
ae[2] aa[4] 

6=55° 
c/>=55° 

Pl 

Pl 

P2 

C2 

P4 

C3 

0.25 

ae 

Fig. N.1.5 

Pl 

~----,---------.------.......-----.--------. ae 

I 
I 

' I 
I 

0.25 

ae 

0.125 

0.125 

ae 

-~-4- ----------- ---, 

!/p3' '\ 
' ' 

\ .... , /) 
... _____ ... _ ... 

Pl 

The complete orbit space of the S09 adjoint representation. Shown at the upper 

left corner is a view from the direction oriented 55° from the a6 axis and 55° 

from the a 4 axis. The numbers in the square brackets are the relative ratios of 

scale. Each projection is a view from the positive direction of the axis not shown 

in the picture. The dotted curves represent edges on the back (hidden) side of 

the orbit space. 
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Sp(B) 

We choose the vector representation for the basis, The stratum of each lit­

tle group is represented as follows: 

Sp 6 x U 1 : 8 = 1 [ 1] + 1 [ -1] + 6 [ 0], 

rp = [a ,-a,0,0,0,0,0,0], 

ex.a = 1/ 4, 

ex.a= 1/ 8; 

8 = (4,1)[0]+(1,2)[1]+(1.2)[-1], 

rp = [a,-a,a,-a,0,0,0,0], 

CX6 = 1/ 16, 

cx.8 = 1/ 64; 

8 = (3 .1)[1]+ (3,1)[ - 1]+(1,2)[0], 

rp =[a ,-a,a,-a,a,-a ,0,0], 

CX4 = 1/ 6, 

CX5 = 1/ 36, 

CXa = 1/ 216; 

8 = 4[1] + 4[-1], 

(IV.1.49) 

(IV.1.50) 

(IV.1.51) 

(IV.1.52) 
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<p = [a,-a,a,-a,a,-a,a,-a], 

cx6 = 1164, 

CXa = 1/ 512; 

8 = 1[0,1]+1[0,-1]+3[1,0]+3[-1.0], (IV.1.53) 

<p = [a ,-a,a,-a,a,-a,b ,-b ], 

6a4 +2b 4 

CX4 = 
(6a2+2b 2) 2 ' 

6a 6+2b 6 

cxe = 
(6a2 +2b 2) 3 ' 

6a8+2b 8 
CXa = 

(6a2 +2b 2 ) 4 ' 

8 = ( 1 '2) [ 1, 0] + ( 1, 2) [ ""'." 1 , 0] + ( 2' 1) [ 0 I 1 ] + ( 2 I 1 ) [ 0 I -1]' (IV. 1 . 54) 

<p = [a,-a,a,-a,b ,-b ,b ,-b ], 

4a6 +4b 6 

cxe= (4a2+4b2)3' 

8 = (1,1)[0,1]+(1.1)[0,-1]+(1 ,2)[0,0] 

+(2,1)[1.0]+(2,l)[-1,0], 

<p = [a,-a,a,-a,b ,-b ,0,0], 

(IV. l.55) 
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4a6+2b 6 

CX5 = (4a2+2b2)3 ' 

4a8 +2b 8 

cxa = (4a2+2b2)4 ; 

Sp 4X U1X U1 8 = 1 [ 1,0]+ 1 [ -1,0]+ 1[0.1]+ 1 [0, -1]+4[0,0], (IV.1.56) 

cp = [a ,- a ,b ,-b ,0,0,0,0], 

2a4+2b 4 
CX.4 = (2a2+2b2)2 I 

2a6 +2b 6 
CX.5 = (2a2+2b2)3 I 

2a8+2b 8 
a.a= (2a2+2b2)4 I 

8 = 1[0,1,0]+1[0,-1,0]+1[0,0,1]+1[0,0,-1] (IV.1.57) 

+2[1,0,0]+2[-1,0,0], 

cp = [a,-a,a,-a,b ,-b ,c ,-c ], 

4a6 +2b 6+2c 6 

CX.5 = ( 4a2+2b2+2c2)3 ' 

8 = 1[1,0,0]+1[-1,0,0]+1[0,1,0]+1[0,-1,0] (IV.1.58) 

+ 1[0,0, 1]+ 1 [0,0, -1]+2[ 0,0,0], 



- 128 -

cp = [a I -a I b I -b I c I -c I 0 I 0] I 

cp = [a ,-a,b ,-b ,c ,-c ,d,-d], (IV.1.59) 

The orbit space is shown in Fig. IV.1.6. Again it is identical to the S09 case. 

Thus we omit further details. 



a 4[1] 
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Pl: SpeXU1 
P2: Sp4XSUiXlJ 1 
P3: SUaJCSU~U 1 
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Cl: Sp4XU1XU1 
C2: SU~1XU 1 
C3: SU~U~U1XU1 (A) 
C4: SU~SU~U1XU 1 (B) 

C2 

P4 

C3 

I 
I 

I 
I 

0.25 0.25 

Fig. N.1.6 

Pl 

'--~-.---~~~~~~~~~ aa 
0.125 

0.125 

...... -- ...... aa 

/~-4-·····---- - -----.. 

/. P3' \ 
: ; 
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\\ /, 

',,___ / 

Pl 

The complete orbit space of the Sp 8 adjoint representation. It is identical to 

that of the S09 adjoint. 
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SO(B) 

We choose the vector representation for the basis. The stratum of each lit­

tle group is represented as follows: 

8 = 1[1] + 1[-1] + 6[0], {N.1 .60) 

<,o = [a,-a,0 ,0,0,0,0,0]. 

8 = (2,1,1)[1]+(2,1,1)[-1]+(1.2,2)[0], (IV.1.61) 

<,o = [a,-a,a,-a,0,0,0,0], 

C(B = 1/ 16, 

8 = 4[1] + 4[-1], (IV.1.62) 

<,o = [a,-a,a,-a ,a,-a ,a,-a] , 

cx.'4 = ± 1/ 4; 

8 = 1[0,1]+1[0,-1]+3[1,0]+3[-1], (IV.1.63) 
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<p = [a ,-a,a,-a,a,-a,b ,-b ], 

6a4 +2b 4 

CX4 = (6a2+2b2)2 ' 

6a6+2b 6 

cxo = (6a2+2b 2)3 ' 

8 = ( 2 I 1) [ 1 , 0] + ( 2 I 1) [ -1, 0] + ( 1, 2) [ 0 I 1] + ( 1, 2) [ 0 I -1] I (IV. 1 . 64) 

<p = [a,-a,a ,-a,b ,-b ,b ,-b ], 

8 = ( 1, 1) [ 1, 0] + ( 1, 1) [ -1, 0] + ( 1, 1) [ 0 I 1] + ( 1, 1) [ 0 I -1] (IV. l. 65) 

+(2,2)[0,0], 

<p = [a,-a,b ,-b ,0,0,0,0], 

2a4 +2b 4 

CX4 = (2a2+2b2)2 ' 

2a6 +2b 6 

CX5 = (2a2+2b2)s ' 

8 = l[0.1.0]+1[0,-1,0]+1[0,0,1]+1[0,0,-1] (IV. l. 66) 
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+2[1,0,0]+2[-1,0,0], 

rp = [a,-a,a,-a,b ,-b ,c ,-c ], 

cp = [a,-a,b ,-b ,c ,-c ,d,-d], (N.1.67) 

,..., _ 2'1abcd 
..... 4-

(2a 2+ 2b 2+ 2c 2+ 2d2) 2 

The orbit space is shown in Fig. N.1.7. It is a warped tetrahedron. Cusp Pl 

of [S06x U1] and cusp P2 of [S04xSU2x U1] are connected by line Ll of 

[S04xU1xU1]. Cusps ±P3 of [SU4xU1] and P2 are connected by line 12 of 

[SU2xSU2xU1xU1]. Pl and ±P3 are connected by curve C3 of [SU3xU1xu1]. 

The stratum of [SU2xU1xU1xU1] closes the boundary of the generic stratum 

(U1xU1xU1xU1] which occupies the interior. 

The projected orbit space ~ -cx.6 is not closed by the one-dimensional strata 

L1, 12 and C3. The concave punctured portion belongs to the two-dimensional 

stratum. This is related to the fact that the triangular surface P2 - + P3 - -P3 

is convex in the direction + P3 -> -P3 but concave in the direction normal to it. 

All the surfaces that contain cusp P2 are saddle-shaped. Surface 

Pl - +P3 - -P3 is totally concave. 
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+P3 +P3 
a~1] 

I 
a.£1] ae£1] L2 

8=90° Pl 0. 3 
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Fig. N.1.7 

The complete orbit space of the S08 adjoint representation. Shown at the upper 

left corner is a view from the direction oriented 32° from the ~ axis and 90° 

from the a'4 axis. The numbers in the square brackets are the relative ratios of 

scale. Each projection is a view from the positive direction of the axis not shown 

in the picture except for the one viewed from the -a6 axis. The dotted curve 

represents edges on the back (hidden) side of the orbit space. 
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F(4) 

We choose the 26-dimensional representation for the basis. The stratum of 

each little group is represented as follows: 

(IV.1.68) 

26 = 1[0]+1[2]+ 1[ -2]+7[0]+8[1]+8[-1] 

cp = [2a,-2a, 8 a's, 8 (-a)'s, 8 O's] 

cx.6 = l/ 96, 

CX.3 = 11/ 6 912 J 

CX.12 = 19/ 442368 ; 

(IV.1.69) 

26 = 6[1] + 6[-1] + 14[0] 

cp = [ 6 a's, 6 (-a )'s, 14 O's] 

cx6 = 1/ 144, 

. ex.a = 1/ 864 I 

CX12 = 1/ 124416 ; 

(IV.1. 70) 

26 = (8,1)[0]+(3,2)[1]+(3,1)[-2]+(3,2)[-1]+(3,1)[2] 

cp = [ 6 a's, 6 (-a)'s, 3 (2a)'s, 3(-2a)'s, 8 O's] 

cx.6 = 11/ 1296 , 
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ex8 = 43/ 46656 , 

ex 12 = 683/ 604661 76 ; 

26 = (1.1)[0]+(1,2)[3]+(1.2)[-3]+(1,3)[0] 

+(3,1)[-2]+(3,2}[1]+(3,1)[2]+(3,2)[-1] 

</) = [ 2 (3a)'s, 2 (-3a)'s, 6 a's, 6 (-a)'s, 

3 (2a)'s, 3(-2a)'s, 4 O's J, 

0'.5 = 23/ 2592 I 

0:8 = 193/ 186624 , 

ex12 = 14933/ 967458816; 

26 = 1[0,0]+1[2,0]+1[-2.0]+1[0,2]+1[0,-2] 

+5[0,0]+4[1.1]+4[1,-1]+4[-l.1]+4[-1,-1] I 

</) = [2a,-2a,2b ,-2b, 6 O's, 

4 (a+b)'s, 4 (a-b)'s, 4 (-a+b)'s, 4 (-a-b)'s], 

ex = 2(2a )6+2(2b )6 +B(a +b )6+8(a-b )6 
6 [2(2a)2 +2(2b )2+B(a+b )2+8(a-b )2] 3 ' 

ex _ 2(2a )8+2(2b )8 +8(a +b )8+B(a-b )8 

8 
- [2(2a)2 +2(2b)2+8(a+b}2+8(a-b)2 ] 4 ' 

ex _ 2(2a) 12+2(2b ) 12+8(a+b )12+8(a-b )12 . 
12 

- [2(2a)2 +2(2b )2 +8(a+b )2+B(a-b )2] 6 ' 

(IV.1.71) 

(IV.1. 72) 
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(IV. l. 73) 

26 = (1,1)[2,0]+(1,1)[0,0]+(1,1)[-2,0]+(1,3)[0,0] 

+(2, 1)[0, 1]+ (2, 1)[ 0,-1]+(1.2)[ 1.1]+( 1,2)( 1,-1] 

+(2,2)[1.0]+(1.2)[-1,1]+(1.2)[-1,-1]+(2,2)[-1.0] I 

cp = [2a,-2a,b,b,-b,-b,(a+b),(a+b),(a-b),(a-b), 

(-a+b),(-a+b),(-a-b),(-a-b), 4a's, 4(-a)'s, 40's], 

C<. = 2(2a)6+4b 6+4(a+b)6+4(a-b)6 +8a6 

6 [2(2a)2 +4b 2+4(a+b )2+4(a-b )2+8a2 ] 3 ' 

C<. = 2(2a)8+4b 8+4(a+b)8+4(a-b)8+8a8 

8 (2(2a)2 +4b 2+4(a+b)2+4(a-b)2+8a2] 4 ' 

C<. = 2(2a) 12+4b 12 +4(a+b) 12 +4(a-b) 12+Ba 12 . 
12 [2(2a)2 +4b 2 +4(a+b)2+4(a-b)2+8a2 ] 6 ' 

(IV.1.74) 

26 = 3[1.1]+3[1,-1]+3[-l,1]+3[-1.-1] 

+3[0, -2]+3[0,2]+8[0,0] 

<p = [ 3 (a+b)'s, 3 (a-b)'s, 3 (-a+b)'s, 3 (-a-b)'s, 

3 (2a )'s, 3( -2a )'s, 8 O's] 

a = 6(a+b)6+6(a-b)6 +6(2a)6 

6 [6(a+b)2+6(a-b)2+6(2a)2] 3 ' 

C<. = 6.(a +b )8+6(a-b )8 +6(2a )8 

8 [6(a+b)2+6(a-b)2+6(2a)2] 4 ' 

C<. _ 6(a+b) 12+6(a-b) 12+6(2a) 12 . 
12 

- [6(a+b)2+6(a-b)2+6(2a)2] 6 ' 
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(IV.1. 75) 

26 = 1[2,0]+1[0,0]+1[-2,0]+1[0,0]+3[0,2]+3[0,-2] 

+ 1[ 1,3]+3[ 1,-1]+ 1 [ 1,-3]+3[ 1, 1] 

+1[-1,3]+3[-1.-1]+1[-1,-3]+3[-1,1] I 

cp = [2a,0,-2a,0, 3 (2b)'s, 3 (-2b)'s, 

(a+3b), 3 (a-b)'s,(a-3b), 3 (a+b)'s, 

(-a+3b), 3 (-a-b)'s,(-a-3b), 3 (-a+b)'s], 

2(2a )0+6(2b )6 +2(a+3b )6+2(a-3b )6 +6(a +b )G+6(a-b )6 

aa = [2(2a)2+6(2b )2+2(a+3b )2+2(a-3b )2+6(a+b )2+6(a-b )2 ] 3 ' 

2(2a )8+6(2b )8 +2(a+3b )8 +2(a-3b )8 +6(a +b )8+6(a-b )8 

[2(2a)2 +6(2b )2+2(a+3b )2+2(a-3b )2 +6(a+b )2+6(a-b )2] 4 ' 

ex _ 2(2a) 12+6(2b )12+2(a+3b ) 12+2(a-3b )12+6(a+b ) 12 +6(a-b ) 12 

12 
- [2(2a )2+6(2b )2+2(a +3b )2+2(a -Sb )2 +6(a +b )2 +6(a-b )2] 6 

(IV. l. 76) 

26 = 1[2,0,0]+1[0,0,0]+1[-2,0,0]+3[0,0,0]+l[0,1,1] 

+ 1[0, 1,-1]+1 [0, -1, 1]+ 1 [ 0, -1.-1]+2[ 1, 1,0]+2[ 1,-1.0] 

+2[1,0,1]+2[1,0,-1]+2[-1,1.0]+2[-1.-1,0] 

+2[ -1,0, 1]+2[ -1.0,·-1] I 

_ 2(2a)6+2(b+c )6+2(b-c )6+4(a+b )6+4(a-b )6+4(a+c )6+4(a-c )6 

a6 
- [2(2a )2+2(b +c )2+2(b-c )2+4(a+b )2+4(a-b )2+4(a+c )2+4(a-c )2]3 ' 

_ 2(2a)6+2(b +c )6+2(b-c )6+4(a+b )6+4(a-b )8+4(a+c )6+4(a-c )6 

e<s - [2(2a )2+2(b +c )2+2(b-c )2+4(a+b )2+4(a-b )2+4(a+c )2+4(a-c )2]4 ' 
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ex _ 2(2a) 12+2(b +c )12+2(b-c )12+4(a+b ) 12+4(a-b )12+4(a+c ) 12+4(a-c )12 . 
12 

- [2(2a) 2+2(b +c )2+2(b-c )2+4(a+b )2+4(a-b )2+4(a+c )2+4(a-c )2] 6 ' 

(IV.1. 77) 

26 = 1[2,0,0]+1[0,0,0]+1[-2,0,0]+1[0,0,2]+1[0,0,0] 

+1[0,0, -2]+2[0, 1.0]+2[0,-1,0]+ 1 [ 1, 1.1]+ 1 [ l, 1, -1] 

+ 1[ 1, -1, 1]+1[ 1, -1, -1]+2[ 1,0, 1]+2[ 1,0,-1]+ 1[ -1, 1, 1] 

+1[-1,1,-1]+1[-1,-l,1]+1[-1,-1,-1]+2[-1,0,1]+2[-1,0,-1] 

2(2a)6+2(2c )6+4b 6+4(a+c )6+4(a-c )6 

+2(a+b +c )6+2(a+b-c )6+2(a-b +c )6+2(-a+b +c )6 

ex~ s· 

[ 
2(2a)2+2(2c )2+4b 2+4(a+c )2+4(a-c )2 ] 

+2(a+b +c )2+2{a+b-c )2+2(a-b+c ) 2+2(-a+b +c )2 

2(2a)6+2(2c )6+4b 6+4(a+c )6+4(a-c )6 

+2(a+b +c )6+2(a+b-c )8+2(a-b +c )6+2(-a+b +c )6 

ex.a= • 
r 2(2a )2+2(2c )2+4b 2+4(a+c )2+4(a-c )2 

] 

. l+2{a+b +c )2+2(a+b-c )2+2(a-b +c )2+2(-a+b +c )2 

2(2a) 12+2(2c ) 12+4b 12+4(a+c )12+4(a-c )12 

+2(a+b +c ) 12+2(a+b-c )12+2(a-b +c ) 12+2(-a+b +c ) 12 

CX.12= ! ]6 I 2(2a )2+2(2c )2+4b 2+4(a+c )2+4(a-c )2 

+2(a+b +c )2+2(a+b-c )2+2(a-b +c )2+2(-a+b +c )2 

rp = [2a,0,-2a,2c ,0,-2c ,b +d,b-d,-b +d,-b -d, 

a+b +c ,a+b-c ,a-b +c ,-a+b +c ,-a-b-c ,-a-b +c, 

-a+b-c ,a-b-c ,a+c +d,a+c -d,a-c +d,-a+c +d, 

-a-c -d -a-c +d -a+c-d a-c -d] I I I 

(IV.1. 78) 
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where we omitted the expressions for a.6 , cx.8 , and a. 12 . 

The orbit space is shown in Fig. N.1.8. It is a very thin warped tetrahedron. 

Cusp P1 of [S07x U1] and cusp P2 of [Sp 6x U1] are connected by curve C1 of 

[S05xU1xU1]. Cusp P2 and cusp P3 of [SU3xSU2xU1(A)] are connected by curve 

C2 of [SU3xU1xU1(A)]. Pl and cusp P4 of [SU3xSU2xU 1(B)] are connected by 

curve C3 of [SU3xU1xU1(B)]. All the cusps are connected by curve C4 of 

[SU2xSU2xU1xU1]. Surface Sl (Pl-P2-P3) and surface S2 (P2-P3-P4) belong to 

the stratum of [SU2xU1xU1xU1(A)]. Surface S3 (Pl-P3-P4) and surface S4 (Pl­

P2-P4) belong to the stratum of [SU2xU1xU1xU1(B)]. The interior is occupied 

by the generic stratum of [U1xu1xu1xu1]. 

C2 and C3 are convex plane-curves. Cl and the portion of C4 between P3 

and P4 are concave space-curves. The other portions of C4 are convex space­

curves. Surface P1 - P3 - P4 is totally concave . All the other surfaces are 

saddle-shaped. 
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Fig. N.1.8 

The complete orbit space of the F4 adjoint representation. Shown at the upper 

left corner is a view from the direction oriented 45° from the a.8 axis and 50° 

from the a.6 axis. The numbers in the square brackets are the relative ratios of 

scale. Each projection is a view from the positive direction of the axis not shown 

in the picture. The dotted curves represent edges on the back (hidden) side of 

the orbit space. The unlabeled curves are all portions of C4. 
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W.1.4 COMMENTS 

In the previous examples we have observed that the orbit spaces for the 

adjoint representations of S02n+I and Sp2n have identical geometrical shapes. 

Another interesting observation is, as Michel (11] pointed out, that the orbit 

spaces of some representations of finite groups have also identical shapes to 

them. For example, the orbit space for the vector representation of the 

octahedral group On is identical to that of S07 adjoint. The basic set of invari­

ants are I 2=q;r+r,ol+r,og, I4=cp[+r,oi+q;~. I6=cpf+cp~+cpB. The orbit space is depicted 

in Fig. IV.1.9. 

0.3 
Pl: C4 v 

P2: C2v 

P3: C3 v 

LI: C~ 
C2: C1 

P3 

Pl 

0.5 

Fig. IV.1.9 
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Another interesting observation is that the orbit space for the adjoint 

representations of SUN has the same geometrical shape as that of the sym-

metric tensor representations of SON. For example let us consider the traceless 

symmetric tensor of S05 , (/)ii. The basic set of invariant polynomials consists of 

Trcp 2• Trrp3 , Trcp4 , and Trrp5 . Since (/)ij is a real symmetric matrix. it can be diag­

onalized [ 19] by an orthogonal transformation. Thus the orbit space is identical 

to the SU5 adjoint. It is depicted in Fig. N.1.10. Note that the little group of the 

generic stratum is the null group. 

-Pl 

Cl 

Cl 

+P2 

Pl:SU2 XSU2 
P2: so3xu1 
Cl: 503 
C2: U1xU 1 
surface: u, 
interior: null 

C2 

Fig. N.1.10 
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The rnosl interesti ng observation is that the orbit spaces for the adjoint 

representations of Lie groups of the same rank all have similar geometrical 

shapes, namely straight line for groups of rank two, triangle for groups of rank 

three, tetrahedron for groups of rank four, and so on. This implies that there is 

an interesting relationship between the degree of polynomial invariants and the 

shape of the orbit space. For example, SU5 adjoint has only two maximal little 

groups but odd degree invariants such as 13 and 15 duplicate the number of 

cusps providing the third and fourth cusps needed to build a tetrahedron. But 

for the adjoint representations of all the other groups of rank four there are 

four maximal little groups and their invariants are of even degree yielding only 

four cusps , just enough to build a tetrahedron. 

It will be both interesting and important to see if our last observation holds 

generally: Is it true that a three-dimensional orbit space ·of an irreducible 

representation is always a warped tetrahedron? 
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IY.2 TWO IRREDUCIBLE REPRESENTATIONS 

The orbit spaces of two irreducible representations are normally high 

dimensional because after one of the representations is simplified only a small 

number of group parameters (which were called tJ.L in CHI.2) are left for further 

simplification of the other representation. We have found two cases where the 

orbit space is three dimensional, SU3 adjoint + vector and S05 adjoint + vector. 

IV.2.1 SU(3) ADJOINT + VECTOR REPRE:3ENTATIONS 

Using the same notation as in CHIII.3, the orbit parameters are: 

(N.2.1) 

(IV.2.2) 

The stratum of each little group is represented as follows: 

SU2: 8 = 1 + 2 + 2 +3, (IV.2.3) 

3 = 1 + 2, 

<p = [a,a,-2a], 

X = [0,0,c ], 

a 3 = ± 1/ '\/'6, 

flt = ± 2/ "'6, 

fJ2 = 2/3. 

!!.i 'P = [a I b I -a -b ] I (N.2.4) 
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X = [0,0,c ], 

0'.3 = (a3+b3-(a+b )3)/ (a2+b2+(a+b )2)312, 

f31 =-(a +b )I (a2+b 2+ (a +b )2)112, 

f32=(a +b )2/ (a2+b 2+(a+b )2). 

The generic stratum is represented by eqs . (N.2.1-2) and its little group is the 

null group. Can a curve confine a three-dimensional volume? The answer is no 

and thus the stratum of the null group must confine itself. The volume is 

extremized when either Xi or x2 is equal to zero with all the other components 

non-zero. The orbit space is shown in Fig. N.2.1. The strata of SU2 , namely the 

cusps, are the most protrudent as we might guess from the fact that they satisfy 

the most singular boundary conditions. The stratum of U Io namely the curve, is 

the next most singular. This may lead us to expect that such hierarchical rela­

tionship would be a prominent feature of the orbit space of two irreps. But as we 

shall see in the next example the strata of a lower level little group can be as 

singular as the higher level ones. 
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8=72° 
cf>=18° 
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Fig. N.2.1 
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The complete orbit space of the SU3 adjoint + vector. Shown at the upper left 

corner is a view from the direction 18° from the (3 1 axis and 72° from the (32 axis. 

The dotted lines are hidden lines. The numbers in the square brackets are the 

relative ratios of scale. Each projection is a view from the positive direction of 

the axis not shown in the picture. Here the dotted lines are portions of the 

boundary belonging to the null group stratum. Thus the hidden curves are drawn 

solidly. 
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W.2.2 S0(5) ADJOINT + VECTOR REPRESENTATIONS 

Using the same notation as in CHIII.4, the orbit parameters are: 

(lv.:-~.b) 

(IV.2.6) 

where i runs from 1 to 2. The stratum of each little group is represented as fol-

lows: 

S03 10 = 1 + 3 + 3 + 3, (IV.2.7) 

5 = 1 + 1 + 3, 

cp = [a,O], 

X = [c ,0,0], 

f32 = 1/ 2, 

(34 = 1/ 4. 

(JV.2.8) 

10 = 1(0)+1(2)+1(-2)+3(0)+2(1)+2(-1), 

5=1(0) + 2(1) + 2(-1), 

q;=[a,a], 

X = [0,0,c ], 



f32 = 0, 

{34 = 0. 

cp=[a,b] 

x = [0,0,c] 

f32 = 0, 

cp=[a,b] 

x= [O,c,d] 
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cx4 = (2a4 + 2b 4)/ (2a2 + 2b 2) 2, 

f32 = (b 2c 2
)/ (2a2 + 2b 2)(c 2 + d 2), 

{34 = (b4c2)/ (2a2 + 2b2)2(c2 + d2). 

(IV.2.9) 

(IV.2.10) 

The generic stratum is represented by eqs. (N.2.5-6) and its little group is the 

null group. The stratum of U 1 is two-dimensional and thus has a chance to 

enclose the whole volume. The U1 stratum occupies the surfaces represented by 

dotted lines in Fig. IV.2.2, but the surface represented by solid lines is a part of 

the generic stratum. This is in contrast to the case of one irrep where there was 
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no mixture of this kind. Thal is, equally singular surfaces consist of both the 

stratum of a maxi-maximal little group and a lower level one. Though the portion 

of the surface belonging to the null group is more singular than the interior 

there is no way to distinguish them because there is no more subgroup left. The 

volume is extremized when either x2 is equal to zero ( U1) or x3 is zero (the null 

group) with all the other components non-zero. 

null 

U1 

U1XU 1 

su~u1 

f32[ 1] {34[2] 

SU~U1 
a, 

U1 

U1 

U1 

S03 

S03 

8=80° 
¢=20° 

0.5 

/32 

Fig. N .2.2 

0. 5 

U1XU 1 

SU~1 

0.5 

f32 

U1 
S03 

U1 

{3, 
0.25 

0.25 
{3, 

The complete orbit space of the S05 adjoint + vector. Shown at the upper left 

corner is a view from the direction 20° from the (32 axis and 80° from the C4 axis. 

The dotted lines are hidden lines. The numbers in the square brackets are the 

relative ratios of scale. Each projection is a view from the positive direction of 

the axis not shown in the picture. Here the hidden curves and lines are drawn 

solidly. 
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N .2.3 COMMENTS 

Contrary to the case of one irrep where the strata of successively lower 

level little groups occupy successively higher dimensional and less singular 

(locally less protrudent) surfaces on the orbit space boundary, the orbit space 

boundary of two irreps is more complex and things are pretty much mixed. 

Whereas orbit parameters associated with each irrep tend to form warped con­

cave boundary surfaces, orbit parameters associated with both irreps tend to 

destroy such behavior. With the field components of one irrep fixed (conse­

quently orbit parameters associated with that irrep fixed), one can change the 

field components of the other irrep creating a volume traced by pencils. 

Indeed we have already observed such mixing in the projected orbit spaces 

of the SUN and SON adjoint+ vector representations. The straight lines, namely 

vertical and horizontal lines, belong to either a maxi-maximal little group or a 

lower level little group. In the case of SU3 adjoint + vector (Fig. IV.2.1) we find 

that the maxi-mmcimal little groups, SU2 and U1, occupy most protrudent por­

tions of the boundary. But in the case of S05 adjoint +vector (Fig. N.2.2) we find 

that the U1 stratum occupies the boundary planes indicated by the dotted lines 

and the stratum of the null group occupies the boundary plane indicated by the 

solid lines. That is, there is no sharp distinction between the maxi-maximal lit­

tle group, U i. and the lower level little group, the null group, in terms of dimen­

sionality and concavity. It may be that the mixing takes place only among the 

fiat or concave portions of the boundary. But we do not have an argument to 

support this wild conjecture. 

Another interesting point is that the little groups alone cannot distinguish 

the fine structure of the orbit space. In both of the above mentioned examples 

we see that the null group strata consist of two-dimensional surface .filld three­

dimensional volume . In the S05 case the strata of U 1 consists of an edge curve 
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Md two-dimensional surfaces. This indistinguishability comes from the fact that, 

whereas for a given group there are only a finite number of subgroups, there is 

no limit to the dimension, D, of a representation. The lower limit to the dimen­

sion of the corresponding orbit space is (D - the number of generators - 1) for 

one irrep and (D - the number of generators - 2) for two irreps. Thus the indis­

tinguishability is observed in both cases. The difference between the two cases 

may be that, whereas in one irrep case there is no dimensional miA-ing between 

the strata of little groups of different levels, rnch dimensional mixing generally 

occurs in two irrep case. 
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CHAPfER V GENERALIZATION TO NON-LINEAR POTENTIAL 

Because of the restriction that the classical Higgs potential must be made 

of at most fourth degree polynomial invariants, it contains only part of the com­

plete set of orbit parameters (except in a few cases of low dimensional represen­

tations of small groups) and is linear with respect to them if they are indepen­

dent. The potential can be readily minimized with respect to the partial list of 

orbit parameters, which is much less than the number of field components. Due 

to the linearity the absolute minimum is most likely to occur on the most pro­

trudent portions of the orbit space boundary, where the boundary conditions 

reduce the number of independent parameters drastically. The boundaries, 

consisting of strata of higher little groups, e1..rtremize the complete orbit space 

and we see that the difficult extremization procedure employed in the conven­

tional methods is transferred to the one of finding the boundary of the orbit 

space. The latter procedure is facilitated by some general mathematical results 

such as Michel's theorem [ 17] for one irreducible representation, which states 

that when J I cp 11 is held constant all invariants are stationary at a critical orbit 

corresponding to a maximal little group and thus implies that if we extremize 

one orbit parameter then we actually accomplish extremization of all the orbit 

parameters. lf we carefully consider the necessary conditions for a boundary 

point, we further realize that in order to find a one-dimensional stratum all we 

need to do is to solve two equations of type eq. (II.3.2). In practice we do not 

attempt to solve such high degree· algebraic equations but instead we simply 

look for singlets. 

However if the orbit parameters appearing in the Higgs potential are not all 

independent then the potential is no longer linear with respect to basic orbit 

parameters. (For example this happens for two adjoint representations.) There­

fore the danger arises that the absolute minimum may occur inside the 
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projected orbit space. In the examples we considered so far linearity was 

equivalent to monotonicity. But a non-linear function of a variable can still be 

monotonic with respect to the variable. What really counts in such extremum 

problems is monotonicity rather than linearity. 

V.1 ONE IRREDUCIBLE REPRESEN"TATION 

To see how monotonicity plays the major role in our problem let us recon-

sider the case of SU5 adjoint representation alone. Let us examine the following 

hypothetical potential: 

(V. l. l) 

where r = l lc;ol 1112 , {3 = Trcp3/ I lcpl 1312, and a= Trcp4/ I lc;ol 12 . We impose the 

positivity condition: 

(V.1.2) 

to ensure that V-) +00 for all (a,{3) as 11cp11 -> 00 • Partial derivatives of the poten-

tial with respect tor, a, and {3 are: 

(V.1.3) 

av= A1r4 aa I 

(V.1.4) 

(V.1.5) 

The potential is monotonic with respect to a because eq. (V.1.4) has a definite 

sign. Let us proceed to find extrema neglecting for the moment subtleties con-

cerning {3. Setting eq. (V.1.5) equal to zero we obtain 

(V.1.6) 
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Substituting eq. (V.1.6) into eq. (V.1.3) we obtain 

· (V.1. 7) 

We choose M < 0 to guarantee that eq. (V. l. 7) is positive. From eqs. (V.1.6) and 

(V.1. 7) we obtain 

r s12 
_ B l2(A+A 1a) 

f3o - - 2D -M (V.1.8) 

We can choose B > 0 without loss of generality. Then eq. (V.1.8) represents a 

curve which, if it traverses the orbit space at all, passes through the lower left 

corner of the orbit space for A1 > 0 or the upper left corner of the orbit space 

for A1 < 0 without crossing (3 = 0 (Fig. V.1.1). 

a 

Fig. V.1.1 
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If Lhe curve does not pass through the orbit space, then there is no "physi-

cal" value of {3 that satisfies eq. (V.1.6) and thus the potential is monotonic with 

respect to {3 despite the non-linearity. The absolute minimum will occur some-

where on the boundary curve, most likely at the cusps because they are most 

protrudent. 

If the curve passes through the orbit space (Fig. V.1.1), then extrema occur 

on the portion of the curve immersed in the orbit space. Substituting eqs. 

(V.1.6) and (V. l. 7) into eq. (V.1.1) we obtain the extremum value of the potential, 

Va = 
B2 
4D . (V.1.9) 

As we can expect from the monotonicity of the potential ·with respect to a the 

absolute extremum along the curve occurs at a point where the curve and the 

orbit space boundary meet. We have confirmed that for fixed a our solutions, 

eqs. (V.1.6) and (V.1. 7), satisfy the inequalities for a local minimum among the 

partial derivatives of the potential with respect tor and (3: 

(V.1.10) 

Therefore the absolute extremum obtained above is indeed the absolute 

minimum. 

Suppose we make a 3-dimensional map of the directional minimum V(r0 ) on 

the orbit space (Fig. V.1.1). Then we can imagine that the A1 term tends to make 

a north-south-wise slope, the B term tends to make a east-west-wise slope, and 

the D term tends to make a valley along the {3 = 0 line. Our slopes are not 

rugged at all but very monotonic. Look! There is a canyon descending from 

northwest to southeast marked eq. (V.1.8) and it is lower than the central line 

which fails to become a valley. The above map refers to a case where A1 > 0, 
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B > 0, and D > 0. The last point comes from the fact that the directional 

minimum on the {3 = 0 line, equal to -M2/ 4(A +A 1a), is always higher than Vo of 

eq. (V.1.9). The absolute minimum occurs at the end of the canyon, i.e., where 

the curve and the orbit space boundary meet and the little group is semi-

maximal. This example shows that when the directional minimum of the poten-

tial is monotonic in all but one orbit parameter the lowest possible little group 

of the absolute minimum is one level lower than the maximal little groups. We 

believe that the level can be lowered at most by one each time we have a con-

straint like eq. (V.1.8). 

Let us consider the general situation on a more solid ground. The procedure 

employed in the previous example does not always yield the absolute minimum 

and sometimes leads to a trivial solution. Thus we are not guaranteed that we 

would get all the local minima and only the minima in this way. Conceptually, 

the best Way to find the extremum is to solve first a VJ aT = Q for T0 (a,{3) and 

then compute av;aalr=ro and BV/8f3lr=ro· Physical extrema can occur only on 

the T 0 (a,{3) > 0 side of the orbit space. The curves defined by 

av;aalr=r = 0 I 
0 

(V.1.11) 

a v I a ,B I T =r = 0 
0 

(V.1.12) 

divide the orbit space into regions . In each of them the partial derivatives have 

definite signs. In each region we repeat the same procedure as we did for a 

monotonic case. The absolute extremum of the region will occur on the regional 

boundary, which consists of porti.ons of the orbit space boundary and the por-

tions of the curves, a VI aa = 0 and a VI B,B = 0 passing through the orbit space . If 

the potential is a smooth function of its variables the potential extremi.zing k -

contour will be a smooth curve and the first contact with the regional boundary 

is most likely to occur at cusps including new ones, though there is a possibility 
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that it may occur on concave curves corresponding to semi-maximal little 

groups. When the directional extremum is monotonic with respect to one of the 

orbit parameters (say, a) the absolute extremum may still occur at the cusps 

corresponding to maximal little groups. But a new possibility arises that it may 

occur at the new cusps, where the concave boundary curves and the curve 

a VI 8{3 = 0 meet. It will never occur at those points on the curve a VI 8{3 = 0 

which lie inside the orbit space because the directional extremum is still mono-

tonic with r e spect to a and the absolute extremum is carried to end points, 

namely the new cusps. 

A necessary condition for an interior point to be the absolute extremum is 

that both eqs. (V.1.11) and (V.1.12) should be satisfied in the orbit space. This 

situali.on is undesirable because the interior points of our projected orbit space 

cannot exclude either of them in favor of the other because the boundary condi-

tion is not applicable to an interior point. (However the interior points of the 

complete orbit space do correspond to a unique little group,U1xu1xu1xu1 . ) 

V.2 iWO IRREDUCIBLE REPRESENTATIONS 

A similar result is obtained for a simple but non-linear potential for two 

irreps. For example let us consider the following potential: 

(V.2.1) 

where r ~ 0, s ~ 0, and -1 ~ 'lJ ~ 1. Eq. (V.2.1) can be considered as a simplified 

potential for any two identical real irreps, e.g., two adjoints or vectors. In gen-

eral A' and C' contain orbit parameters. In order to ensure that V--> +DO as 

r --> DO ands --> DO we impose 
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A'> 0, C' > 0, D1J2 > - vA'C' (V.2.2) 

Partial derivatives of the potential with respect tor, s, and 1J are: 

av -= - M2r + A'r3 - Bs1J + Drs 21J.2 ar I 
(V.2.3a) 

av -= - m 2s + C's3 - Br1J + Dsr21J2 
as ' (V.2.3b) 

(V.2.3c) 

Disregarding the uninteresting solutions where r and/ors vanishes, and solving 

eq. (V.2.3c) for 1)0 we obtain 

1J0 =Bl Drs . (V.2.4) 

Substituting eq. (V.2.4) into eqs. (V.2.3a), (V.2.3b) we obtain 

(V.2.5) 

This makes it necessary to impose M2 > 0 and m 2 > 0. Substituting eq. (V.2.5) 

back into eq. (V. 2.4) we obtain 

BvA'C' 
19-a = ---­

DMm 
(V.2.6) 

To be more specific let us choose D > 0, B > 0 and consider a case where 

A'= A+A 1c:x and C' = C+Ca. Then eq. (V.2.6) represents a quadrant of a cone 

(Fig. V.2.1). Its vertex is located at (c:x = - Al A1, 'Y = - Cl C1, 1J = 0) and its axis 

lies in the c:x-r plane midway between the c:x and 'Y axes. Note that the two lines, 

ex. = - Al A1 and 'Y = - Cl C1, are always on the cone. 

For acceptable potentials with V 4 +00 as r ors 4 00 , the planes c:x = - Al A1 

and/' = - Cl C1, lie outside the orbit space, which is in any case centered about 
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v = 0 (Fig. V.2.1). If the cone is too wide in the v direction to intersect the orbit 

space, then there is no "physical" value of v that satisfies eqs. (V.2.4), (V.2.5) 

and the potential is monotonic with respect to v. In this case the apparent non­

linearity gives way to monotonicity of the directional minimum and the absolute 

minimum occurs on the orbit space boundary, most likely on the strata of the 

maxi-maximal little groups. 

8 

a y 

Fig. V.2.1 
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If the cone is narrow enough to pass through the orbit space (Fig. V.2.1), 

then extrema occur on the portion of the cone immersed in the orbit space. 

Substituting eqs. (V.2.5) and (V.2.6) into eq. (V.2.1) we obtain 

(V.2.7) 

Since we chose D > 0 we are assured at least that Va of eq. (V.2. 7) is lower than 

the directional minimum at 19- = 0. We have confirmed that for fixed a and J' our 

solutions, eqs. (V.2.4) and (V.2.5), satisfy the inequalities for a local minimum 

among the partial derivatives of the potential with respect to r, s, and 19-, includ-

ing a 3x3 determinant. Therefore the absolute minimum occurs at a boundary 

point of the intersection of the orbit space cut by the cone. 

In the "wide" case where eqs. (V.2.4) and (V.2.5) are not satisfied in the orbit 

space , a two-dimensional k -sud ace moves to meet the three-dimensional orbit 

space and the most protrudent portions of the boundary get the first contact. 

But in the "narrow" case where these equations are satisfied in the orbit space, 

eq. (V.2.4) introduces a constraint among the orbit parameters and thus 

reduces the dimension of the whole space effectively. On the cone the situation 

becomes similar to a monotonic case. A potential-minimizing k-contour moves 

to meet the boundary of a two-dimensional intersection. What was a curve is now 

a cusp and what was a three-dimensional volume is now a two-dimensional sur-

face (Fig. V.2.1). Thus some portions of the boundary which were less protru-

dent can now be utilized. Since the maxi-maximal little groups occupy first few 

low-dimensional boundary surfaces (though mixed with lower level ones) they 

can still be utilized but there is a new possibility that lower level little groups 

can also be utilized. 

There are two formidable difficulties in analyzing a realistic potential. First 

a general fourth degree Higgs potential for two irreps is of the form: 
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M2 B' A' 
V= - -11~1 I+ -I l~l 1312 + -11~11 2 

2 3 4 
(V.2.8) 

- m
2 

I lxl I + ~I lxl 1312 + £:...1lxl1 2 

2 3 4 

+ s·11~11 112 l lxl 1112 + T'l l~J 11 lxl I +p'l l~l l112 l lxl I 

+ q ' I I ~ I I 11
2 I I x I I 31 2 + P' 11 x I 1112 I I ~ l I + Q' 11 x I I 11

2 11 ~ I I 31 2 

where primed quantities normally contain orbit parameters. T' contains S'2 and 

thus makes the potential non-linear with respect to the orbit parameters that 

are in S'. The S' term is pr esent only when the two fields belong to the same real 

representation. It can be removed by redefining ~ and x but non-linearity still 

shows up in higher degree lc rms, e.g., A' and C' terms. Secondly the orbit space 

of two irreps is very complicated and of very high dimension. 

Whether the Gell-Mann-Slansky conjecture, which states that the absolute 

minimum of a fourth degree Higgs potential for two irreps preserves a maxi-

maximal little group, holds or not depends on the structure of the orbit space 

boundary. A good test-case is provided by two adjoints [30,42] of SU4 . The most 

general Higgs potential [ 42] is of the form eq. (V.2.8) with each primed quantity 

containing one orbit parameter except for the T' term which contains three 

including S'2 . Diagonalizing ~ and counting the number of singlets, we can make 

the following rough sketch of the orbit space: the most salient and low dimen-

sional portions of the boundary consist of the strata of the maxi-maximal little 

groups . However the stratum of the smallest maxi-maximal little group, U1x U1, 

is at most 6-dimensional and cannot cover the whole boundary surface of the 

11-dimensional projected orbit space. Less salient portions of the boundary sur-

face correspond to the semi-maxi-maximal little group, U1, whose stratum is at 

most 10-dimensional. The least salient portions of the boundary surface 
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correspond to the null group. A detailed analysis will take a tremendous amount 

of algebra. At this stage we suppose that the lowest possible little group will be 

U 1 *. considering that it corresponds to the second most protrudent portions of 

the boundary surface. Therefore it is likely that the Gell-Mann-Slansky conjec-

ture does not hold in this case. 

If we impose separate reflection symmetries on each scalar field then the 'S 

lcrrn d isappears along wilh olhcr Lcrms. We believe Lhal Lhis addillonat sym-

metry removes all the non-linearity, whether it comes explicitly as explained 

above or implicitly from a constraint among apparently independent orbit 

parameters. Another advantage of even degree Higgs potentials is that the 

potential minimizing k-surface for this case is known in general to be the cone 

of CHIII. l. (When there are more than three orbit parameters the k-cone 

represents a cone in a hyper-space.) Consequently the most protrudent portions 

of the orbit space boundary, which we conjectured correspond to the maxi-

maximal little groups, will get the first contact. We believe that the Gell-Mann-

Slansky conjecture for two irreps holds at least for an even degree Higgs poten-

tial. 

The main source of non-linearity, namely S', is absent when the two fields 

belong to different representations. It will be a challenging problem to find the 

potential minimizing k-surface for a non-even degree potential without S' term 

and check whether or not the Gell-Mann-Slansky conjecture holds in such cases. 

However non-monotonicity does not always yield violation of the conjecture. 

Even when the directional minimum is non-monotonic with respect to some orbit 

parameters, there are instances where the conjecture still holds because of the 

•Wu [ 42] stated without proof that the absolute minimum of a Higgs potential for two adjoint 
representations of SUN could diminish the little group to nothing. His statement can be true 
when several orbit parameters are non-monotonic so that non-salient portions of the orbit 
space boundary, which may correspond to the null group, are utilized. But in his problem 
there is only one non-monotonic orbit parameter. 
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orbit space geometry. In the case of two vectors the whole orbit space 

corresponds to the maxi-maximal little groups. 

Finally we would like to point out that though classification of little groups 

of two irreps in the way explained in CHIII.2 is relatively effective to the first 

level, it becomes much less effective because the second level little groups cover 

almost all the subgroups left and the mixing occurs both ways. But we cannot 

think of a better classification scheme. 
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