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Abstract
The Kosterlitz-Thouless-Nelson-Halperin-Young theory of melting in two
dimensions by unbinding of thermally excited dislocation pairs is
tested against thermodynamic data on monolayer films of 3He and *He
on graphite. It is shown using a new analysis of the theory in the
asymptotic region that a definitive test is not possible with thesz dala
because the theory is expected to be most accurate in a2 regime very
close to the melting transition which is inaccessible tc experiments

that are not performed on extremely long time and length scales.

One of the two unknown parameters of the theory, that which measures the
resistance to twist of the monolayer with respect to the periodic subsirele,
is calculated, along with the equilibrium angle, to moderate accuracy using
the most recent information about the helium grazphite potential from
atomic scattering experiments. The other parameter, which characterizes
the energy of a dislocation core, is provisionally determined by finding what

values make the heat capacity of the film, computed from the theory and

elastic data on the film, are consistent with experime=tal results.

These computations are carried out using the full renormalizztion greup
equations, crossing the transition from the solid inte into the regicn where
those equations break down, by cutting off the integration at a finiie value
characterlstlc of the size of a graphite platelet, which werlis until the meen
distance between free dislocations decreases to approximately the size of
the patch. The core parameter falls in a range considerably larger than
previously estimated for classical Lennard-Jones solids and other materizals.
Only at large values can the dislocation heat capacity be suppressed enough

not to be inconsistent with experiment.
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Non-rigorous interpolation methods were developed to try to include some
quantum efiects in the heat capacity calculations, but these improved the
agreement between the theory and the experiments only slightly.

Also appearing for the first time are extensive tables of the thermodyrnzmic
functions of He for coverages ranging frem .00 to 1 layer and tempera-

tures from 50mK to 10K
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Chapter 1. Introduction

Melting may be the least-understood of everyday phenomena. The
physicist'é intuitive concept of melting as the vibration of atoms (or molecules)
out of the cages formed by their neighbors when the solid is heated is as good as
any theory of bulk melting that has been proposed, and yet does not provide a

mechanism for a phase transition.

There is, however, a recent theory 1.2.3 of melting in two dimensions which
can, in principle, be used to predict the thermodynamic and dynamic behavior
of the solid and the fluid phases. In particular, it predicts that the melting tran-
sition is a critical transition which takes place when thermally excited disloca-
tion dipoles first weaken the solid (which lowers their energy and allows more to
be created at larger separations as the temperature is increased), and then

unbind, allowing the material to flow under slow shear stresses.

The theory is elegant and attractive because its central idea that order is
broken up by a kind of topological excitation (the dislocation) finds application
in theories of other two-dimensional phase transitions, e.g. superfluids, magnetic
systems, and possibly liquid crystals. Of course, it is hoped that it also may lead
to an explanation of bulk three-dimensional melting, but little progress has been

made in this area.

However, it is not yet established that the theory is correct. The question
treated in this thesis is whether it applies to the particular experimental sys-
tems for which enough data may exist to test it, the helium monolayer films on

graphite, in which the two-dimensional solid was first observed.
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Crystalline order (in the sense of the existence of sharp Bragg diffraction
peaks) was rigorously proven by Mermin in 1968 not to occur at any finite tem-
perature in two dimensions,4 owing to smearing out by low frequency vibrations,
although Landau and Peierls had made this point many years earlier. However,
experiments 5 with helium monolayers on Grafoil, a commercial graphite pro-
duct, established that at sufficiently high density and low temperature, the heat
capacity of the films was proportional to 7%, characteristic of a two-dimensional
system whose low-lying excitations are phonons. Independent measurements 6
of the compressibility of the monolayers showed that transverse as well as longi-
tudinal phonons were present and the material had a non-zero shear modulus,
and hence, exhibited the most important characteristic of a solid, even though
translational crystalline order might not be present. Soon after this, Bretz,
et al 5 found sharp, cusplike peaks in the heat capacity at constant coverage of
these monolayers, peaks which were thought to mark the melting transition.
Figure 1.1 shows these heat capacity peaks for *He and figure 1.2 is the data of
Hering, et al. 8 for 3He. Elgin and Goodstein? added overlapping adsorption
isotherms and heat capacity measurements to the earlier data on *He. They
showed how the combined results could be used to produce detailed thermo-
dynamic tables for the film and to disentangle the contributions to the heat
capacity and other thermodynamic quantities owing to such deviations from
ideal 2-D behavior as promotion into a second adsorbed layer and desorption
into the bulk gas in equilibrium with the monolayer films. Similar analysis has

been performed on 3He ®

The elastic properties of the solid were shown by Stewart!0 to be similar to
the properties of bulk helium solids at the same interatomic spacing, and the
heat capacity peak temperatures were likewise comparable to bulk melting tem-

peratures. The solid is known to be incommensurate with the substrate from



Figure 1.1. Heat capacity of *He films at severa!l densities for which the films are
solid at low temperature. Reprinted from Elgin and Goodstein.7
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Figure 1.2. Heat capacity of ®He films which are solid at low temperature. Re-

printed from Hering, ef. al .8
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neutron scattering measurements of the lattice parameter.

This experimental work makes the helium monolayers the best-
characterized of all 2-D systems; nonetheless, the task of verifying the predic-
tions of the theory for these films is extremely difficult, for several reasons.

The most easily extracted predictions of the theory are of the behavior of
equilibrium and non-equilibrium properties of the system in the asymptotic crit-
ical region around the phase transition. These predictions are, in summary, that
no quantity measurable by thermodynamic techniques exhibits singular
behavior at the phase transition, except of the type of the infinitely smooth
essential singularity of the form 1+be!*!™ where t is reduced temperature and v
is positive. That means the critical behavior is undetectable in these experi-
ments and, in addition, that the transition cannot even be found, because the
transition temperature depends upon two parameters which can only be
estimated for helium films. These parameters are the dislocation core energy,
which measures the energy of the strongly distorted central region of a disloca-
tion and acts as a kind of chemical poteﬁtial governing the average density of
dislocations, and the strength of the restoring torque opposing twist of the sub-
strate with respect to the film arising from the effect of the periodic lateral vari-

ation of the substrate-adatom potential.

Thus, thermodynamic measurements, which have been used in the past to
map out phase diagrams of 2D and 3D systems, and without which very few
dynamical measurements can be correctly interpreted, cannot be used to locate
phase transitions in several of the most important and interesting 2D cases, if
the theory is correct. Furthermore, if phase boundaries (spch as that deduced
from the heat capacity peaks, and displayed in figure 2.2) are found, the theory
tells us they must be other transitions than melting, superfluid-normal, or

ferromagnetic-paramagnetic.
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Since the thermodynamic experiments can give little or no information
about the phase transition itself, the major effort of this thesis was to extend the
theory to’ give useful comparisons with experiment away from the critical
region, at.temperatures below and above melting. Those efforts have been along

several lines.

First, some success has been achieved in determining a parameter charac-
terizing the strength of the distortions of the helium lattice by tie underlying
periodic potential of the substrate. This parameter, called ¥, can be calculated
only as a function of the distance from the substrate to the helium overlayer,
which is not known precisely enough to give accurate answers, but we are able to
use recent neutron scattering results to determine that it is usually too small to

affect other calculations significantly.

The corrections to the elastic theory of a triangular lattice in the presence
of finite equilibrium pressure and substrate interactions have been worked out,

including their effect on the dislocations which break up the solid.

The effect of dislocations in softening the elastic response of the crystal and
has been calculated directly from the theory and also from non-rigorous tech-

niques designed to take into account quantum mechanical effects.

For future experimental studies, we have derived more rigorously than had
previously been done the characteristic critical behavior above the melting
transition. The method reveals that the region over which the asymptotic formu-
lae are accurate approximations to the actual behavior of the system. has
never been probed in an experiment, nor it is likely to be with currently used
techniques.

The succeeding chapters develop these themes in more detail. Chapter II

briefly surveys the experiments on 2-D melting and the information gleaned

from them. Chapter III contains the theory of helium monolayers treated as
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compressed elastic continua subject to a 2-D periodic external potential.

Chapter IV reviews the renomalization group calculation of dislocation unbind-

ing, discusses the problems of testing it, and displays calculations of the effect

of this mechanism on the heat capacity of the films above and below the transi-

tion. Chapter V is a calculation of the substrate effects on the elastic properties

of the films and a speculation on the origin of the heat capacity peaks. Chapter

VI discusses the behavior of the theory in the critical region and the extent of

that region.
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Chapter 2

Experimental Data on 2-D Melting

1. Overview of Available Information

The study of 2-D behavior in physisorbed monolayers has come of age since
1969, when Thomy and Duval ! discovered phase transitions in submonolayer
rare gas films on exfoliated graphite which seemed little influenced by substrate
inhomogeneity. Soon after, Grafoil 2 was found by Bretz3 to have a surface
homogeneous enough that the properties of the monolayer could be disentan-
gled from the interaction with the substrate. The surface area of about 20
m®/ gm for Grafoil means that signals of, e.g. heat capacity, could be comfort-
ably extracted from the background (at least at low temperature) to make accu-
rate measurements. The fact that more than 90% of the Grafoil surface is basal-
plane crystal face means that once the tighter binding sites (at platelet edges,
junctions of two platelets, steps in the crystal surface, impurities, etc.) are filled
up the rest of the surface appears to the adsorbed atoms as a uniform weakly
corrugated surface over very large distances. The corrugation arises because
the adsorbing van der Waals potential is most strongly attracting at the center

of the graphite hexagons and weakest near carbon atoms.

This means that mobile phases of adsorbed atoms can be formed. At low
temperatures, the mobility arises from tunneling through the corrugation bar-
riers. These mobile phases behave {after corrections for band structure effects

of the periodicity of the potential in the plane) like 2-D gases and liquids. A rich
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range of solid behavior is also observed, depending upon whether or not the cor-
rugation amplitude and period cause that energy to dominate the adsorbate-
adsorbate interactions, or vice versa. Prior to this, the closest thing to a 2-D
material that could be made in the laboratory was a monolayer of large organic
molecules (stearates) on some immiscible liquid (e.g. water), and there the
dynamics of the monolayer was strongly coupled to the dynamics of the base

material.

The heliurn monolayers were the first and most completely studied systems
on Grafoil, and will be discussed in the succeeding section and chapters. It is
necessary to view that work with some knowledge of parallel research on other
monolayers, using a wide variety of techniques. There is essentially only one
other known substrate (made from compressed MgO smoke)? which has the
same degree of homogeneity as the best Grafoil (there are several varieties with
slightly different properties), and a somewhat smaller surface to volume ratio.
Very little work has been done with it, so a summary of the results on Grafoil is

essentially a summary of the most useful results in the field.

The techniques for studying phase transitions of adsorbed films can be
divided into three categories based on the kind of information they provide,
although there is actually considerable overlap of one technique into more than
one area. The three kinds of information are thermodynamic, structural and
dynamic, the first two usually pertaining to the equilibrium properties, and the

last to a large class of effects both microscopic and macroscopic.

1.1. Thermodynamic Measurements

The thermodynamic experiments consist of measurements of the chemical
potential of the film as a function of coverage and temperature, and the heat
capacity of the film. The latter is obtained by standard calorimetric methocs,

with some care taken to understand and calibrate the background effects from
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the calorimeter, the gas in equilibrium with the film, and the dynamic balance of
adsorption, desorption (which changes the coverage as a function of tempera-
ture if a fixed amount of adsorbate is introduced into the sample chamber) and
promotion of adsorbate atoms into the second and higher layers which may
occur as the adsorbate approaches monolayer density at moderate tempera-
tures. The chemical potential is equal to the value in the gas in equilibrium with
the film, and is thus measured by measuring the pressure of the gas. This gas is
always dilute enough that an ideal or one-term virial gas relation between pres-
sure and chemical potential is sufficiently accurate. As is discussed in Elgin and
Goodstein, ® and in the appendix to this thesis, if heat capacity and chemical
potential are each measured wherever possible in the temperature-coverage
plane, and the measurements overlap in some region extending down to very low
coverage, the thermodynamic functions can be found at all temperatures for
which the heat capacity can be measured for the region of coverage spanned by
the overlapping measurements, and at all coverages where pressure can be
measured for the region of temperature spanned by the overlapping measure-

ments, if the measurements are sufficiently dense in the plane.

For most cases, heat capacity measurements, together with the other ther-
modynamic functions, are the most direct way of studying phase transitions. In
fact, heat capacity measurements are the most common way phase boundaries
are discovered, or mapped out if they are discovered in some other measure-
ment. The transitions are almost always marked by some sort of anomaly or
singularity in the heat capacity, and the shape of these anomalies is often
predicted by theories or models of the phase transition, so direct tests of the
theories can be performed if the data are accurate enough. It should be noted
that according to the theory of 2-D melting discussed in this thesis, the heat

capacity, while showing non-ideal behavior near the transition, does not exhibit
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any singularity right at the melting point.

In one-phase regions, certain shapes of the heat capacity are indicators of
the type of phase present. For instance,a behavior C=AT? at low temperature
with 4 prioportional only to the bulk modulus (determined from the coverage
variation of the chemical potential) indicates the phase is a liquid (since there is
no shear modulus). The solid also has a 72 heat capacity signature, but it cannot
be accounted for by longitudinal sound waves alone -- there must be a non-zero
shear modulus. The gas phase is marked by a high-temperature heat capacity
approaching the ideal 2-D gas value for the particular substance, with quantum
virial corrections that should be predictable using known interatomic or inter-
molecular potentials, plus possible effects from substrate-mediated interac-
tions. It is also possible, using the thermodynamic measurements, to investi-
gate the effects of the inhomogeneity and periodicity of the grafoil substrate on
the behavior of adsorbates. For example, the registered overlayer of various
gases at V3 times the graphite lattice spacing was found first in heat capacity
measurements.® The band structure effécts of substrate periodicity have an
observable signature in the heat capacity of the 2-D gas at low coverage.” The
extrapolation of the chemical potential to zero Kelvin yields the distribution of
inhomogeneous adsorption sites as a function of energy.8 Where first-order
phase transitions are known to occur, the slope of the chemical potential vs.
coverage in the regime of two-phase coexistence is determined by the inhomo-
geneities of the substrate.® The finite binding energy of the substrate implies
that excited states of single atoms in the substrate potential exist, and the
energy of these can be deduced from the heat capacity of low-density 2-D gases

at high temperatures.5

At high temperatures and coverages, the heat capacity is affected by the

desorption of atoms into the bulk gas and promotion into higher layers. Meas-
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urement of the 3-D gas pressure and assumption of a virial equation of state in
the second layer allows this effect to be removed in a consistent fashion.5

While measurements of the heat capacity near a phase boundary often
accurately locate the phase transition point and help characterize it (as a first-
order or critical transition, and if the latter, according to the strength of the
singularity), the real power of the thermodynamic measurements in studying
adsorbed films is that all of the thermodynamic equilibriumn properties can be
obtained if an experimenter is willing to engage in the long-term and somewhat
tedious work needed to collect the necessary data, and to take considerable
care in reducing that data. This sort of work results in an integrated knowledge
of the behavior of the film and a large database against which to test predictions
made from analysis of particularly "interesting" regions of the phase diagram.

Only for helium films has this type of program been carried out.

1.2. Structural Techniques

The techniques aimed at eliciting the structure of adsorbed systems are
necessarily microscopic, and usually involve scattering of some probe from the
adsorbed atoms. Among the techniques so  far used are neutron scattering, 10
X-ray scattering, most recently using synchrotron radiation, 1! low-energy elec-
tron scattering,1?2 Mdssbauer spectroscopy (limited to adsorbates containing a
gamma emitter). Recently, a new technique involving a second gas species used
as a two-dimensional piston to compress a solid has been developed.13 Research
applying modern surface science tools as Auger electron spectroscopy to phy-

sisorbed monolayers is just beginning.

Because scattering occurs at particular angles dependent upon lattice con-
stant, the scattering experiments yield information mainly about adsorbed solid
phases, the location of lines and satellite peaks marking lattice spacings, modu-

lation of those spacings by substrate periodicity, coexistence of two or more
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solid phases, superlattices of domains of registered material.1! Changes of the
spacings with temperature is related to structural phase transitions, and melt-
ing. The relative and absolute intensity of the lines gives information about the
quantity of material in the various phases and the amount in possibly unobserv-
able or hard-to-resolve coexisting gas or liquid phases. The line shapes provide
information about the size of homogeneous regions, if the lines are not limited
by instrumental resolution, and also about dynamical properties of the system
(Debye-Waller factors), especially if inelastic scattering experiments can be
done. The lineshapes also contain information about position correlation func-

tions, and hence about the degree of order in the adsorbed systems.

One other recent application of neutron scattering has been, by measuring
the interference of the scattering from helium and Grafoil at a particular Bragg
peak of the substrate, to determine the distance of a heliumm monolayer from
the substrate to within about 2%.14 Since the corrugation of the potential seen
by the adsorbed atoms varies strongly with that distance, this result is impor-
tant for understanding the density waves in incommensurate solid films (see
chapter 5) and in the transformation between registered and incommensurate

phases.

It is also possible to use nuclear magnetic resonance measurements to
deduce structural information when the lines are not significantly narrowed by
molecular motion and not broadened by substrate-induced local magnetic field

gradients, but in practice, this is nearly impossible on Grafoil.

1.3. Dynamical Techniques

Dynamical properties of the adsorbed system are elicited from all the
experimental techniques mentioned so far, and additionally from some
extremely revealing atomic scattering experiments. From the thermodynamic

measurements, it is possible to deduce elastic properties. From scattering
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lineshapes, related information is available, and in principle, inelastic neutron
scattering could directly be used to measure the phonon spectrum of adsorbed
materials, although current beam intensity limitations make this extremely
difficult. ,NMR lineshapes and intensities also lead to dynamical information,
within the context of some model for the motions of the system, presumably
justified by some theory or other experimental evidence. Some results of NMR
experiments, with delicate interpretation, may be extremely important to
understanding melting transitions. 15.16.17 The atomic scattering experiments 18
provide direct measurement of bound-state energies of single adsorbate
molecules to the substrate and diffraction by different substrate corrugation
components. Thus they allow the adsorbate-substrate potential to be derived in

detail, including effects from the dielectric anisotropy of graphite.

Finally, under the rubric of dynamic techniques, we should mention com-
puter experiments, done either by molecular dynamics or Monte Carlo methods,
the latter being wusually used to study phase transitions. Essentially,
configurations of a few hundred or a few thousand atoms are chosen randomly
and accepted or rejected according to a thermodynamic weighting function.

Time averages over the time steps provide equilibrium or dynamical properties.

These techniques suffer from finiteness and inefficiency of computing
resources. Typically, even for moderate size samples, runs "heating" the sample
through a phase transition go at a rate of 10°K/sec, which is probably far too
fast to assure that the sample reaches equilibrium at any temperature along the
way, especially near possible critical phase transitions at which critical slowing
down may occur. Practitioners of these experimentsl? are as yet unable to
determine the order of the melting transition with certainty in their systems,
because it is difficult to untangle the problems of finite time intervals and rela-

tively small samples. (This is not to say that physical experimentalists do not
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have similar problems. Dash and Puff® argue that the helium melting transition
may be a first-order phase transition smeared out by substrate inhomogeneity,
in which case it cannot be caused by the dislocation unbinding mechanism
alone. See also chapter 6.) The computer experiments have produced tantaliz-
ing indications that defects, particularly dislocations and combinations of them,

are important constituents in these systems near melting.

The rapid improvement in computer technology and development of better
schemes for parallel processing even using conventional microcomputers will
undoubtedly produce new classes of computer experiments which may shed

more light on phase transitions.

1.4. Experimental Systems and What is Known About Them

With this background, we will try to discuss what is known about 2-D melting
in various simple adsorbates (except helium treated in the next section). The
literature of experiments done with various physisorbed monolayers on Grafoil
in the past 10 years or so has grown so large and has addressed so many
separate problems that trying to tabulate it here would be of little use to any-
one. References to most of these problems can be found in recent review arti-
cles in conference proceedings edited by Dash and Ruvalds, and by Sinha {see
references this chapter.) Dash?® provides a book-length review. We will just
mention that spin conversion of ortho- and para-hydrogen, and amongst varicus
spin states of methane, conformational changes of non-spherical molecules
{standing up or lying down) on the substrate, different forms of registered-
incommensurate transitions, have all been or are being studied. Inclusion of
thicker films in a survey would reveal a large body of experiments on the onset
of superfluidity in helium films, which seem to give strong evidence in favor of a
theory of that phenomena very similar to the theory of 2-D melting examined

here. All of this work will be ignored here, and we will discuss only a modest
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selection from the extant research on melting.

Most of the systems discussed here are mentioned in review articles of Niel-

sen, McTague and Passell, 10 and Vilches?!

Argon has been studied by X-ray and neutron scattering, both elastic and
inelastic, and there are sketchy heat capacity measurements. It forms an

incommensurate solid, since it is too small to self condense at the 1/3 density.

Krypton has been studied by neutron difiraction, heat capacity measure-
ments, X-ray scattering, and LEED and forms registered solid at 1/3 density up
to monolayer completion, since it is just barely too small to choose that demnsity
for itself in the absence of a substrate lateral field. A denser solid can be made
by compressing the first layer slightly with a second. Renormalization group
calculations of the phase diagram of Kr assuming 3-D Lennard Joneé potentials

give reasonable agreement with experiment.

Xenon is too large an atom to form the registered solid and is incommen-
surate everywhere. It has been studied by heat capacity techniques, X-ray and
neutron scattering. The triple point of solid-liquid-vapor coexistence has been

observed, and produces an extremely sharp heat capacity signature.

Nitrogen has been studied by heat capacity measurements and neutron
scattering. It has an incommensurate structure and a small set of data near

melting has been taken.

One of the most promising candidates for experimental work is methane,
because it is one of the few materials accessible by nearly all the techniques. It
has been observed in several neutron scattering experiments (in the isotopic
form CD,), some rudimentary heat capacity studies, some preliminary NNR stu-
dies by this author, and infrared spectroscopy of its rotational transitions on the

surface. The closely related compound CF, is also accessible and being studied
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by some of these techniques. A detailed set of heat capacity measurements on
methane is now being taken at Caltech, of the sort that have been made on both
helium isotopes, and a pulsed NMR experiment is being set up to study dynami-
cal properties near melting. It is hoped that this classical material will provide a
better test of the theory than helium films do.

Neon films have had moderately detailed heat capacity studies done, and
have been probed by LEED. They have a complicated collection of registered and

incommensurate solid phases.

Hydrogen and mixed hydrogen isotopes have also been studied, not as sys-
tematically as some of the other systems, mainly by neutron diffraction, but at
least one NMR experiment at low temperatures has been performed. Hydrogen

seems to form both commensurate and incommensurate structures.

The magnetic properties of Oxygen make it an extremely interesting candi-
date for study, and it exhibits 3 different incommensurate phases, some of
which may be magnetically ordered (antiferromagnetic). It has been studied

mainly by neutron scattering.

Finally, it is possible to perform experiments on lattices of electrons crys-
tallized into states above a liquid helium surface or helium film at very low den-
sities, and held in place by image forces and external electrostatic potential.
These are non-degenerate electrons on a smooth substrate and can be studied
using various electronic and microelectronic techniques. It is also possible to
properly compute the energy of dislocations and other defects in the electron
solid, which gives hints as to possible values of such things as the core parame-

ter.22
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2. Measurements on Helium Monolayers

The thermodynamic measurements on helium monolayers have been
reviewed in chapter 1 as they pertain to melting, but to orient the reader better,
figure 2.1 shows a contour map of the heat capacity of *He films, and figure 2.2,
the conjectured phase diagram of *He below the monolayer coverage.

At extremely low coverage, most of the adsorbed helium is frozen onto the
most tighﬂy binding sites of the substrate. Once these sites are filled, the
material forms a gas whose behavior is well accounted for by a 2-D quantum

virial gas moving in a periodic potential (which induces band-structure effects).

At around 2/3 layer coverage, there is a registered solid corresponding to
one atom per 3 graphite hexagons, with a transition at 3K to a fluid. At nearby
densities, vacancies or interstitials must form to preserve the overall registry.
This costs energy, so the order is broken up at lower temperature, explaining at
least qualitatively the curvature of the phase boundary. At lower coverage there
seems to be a coexistence with a dilute gas, and at higher coverage, with a dense
fluid. This phase boundary has not been completely mapped out, but presum-
ably, at high coverage, runs into a poorly understood phase boundary at around
1K which connects registered phase to the low-temperature, low coverage end of
what was once thought to be the melting line. These 1K heat capacity péaks,
discovered by Hering, et al. 23 are extremely sharp, occur in both isotopes, and
as yet are not explained, although they probably mark a coexistence region

between registered and higher-density incommensurate solid.

The line of heat capacity peaks at higher temperature and coverage was
originally identified as the melting line, but the theory may make us reconsider
that conclusion, since according to the dislocation unbinding theory, the solid is
unstable to formation of free dislocations at a temperature substantially below

the peak temperature at any coverage. This criterion is essentially a



-19-

Figure 2.1 Contours of heat capacity per atom of *He as function of coverage and
temperature. Adapted from Elgin and Goodstein.5
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Figure 2.2. Phases of *He monolayers on Grafoil indicated on a heat capacity
contour plot. The SHe phase diagram is similar, but the line of heat capacity
peaks near the monolayer runs down to lower coverage and temperature to in-
tersect the short band of peaks near 1K, whose origin is not understood.
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mechanical stability criterion — it does not guarantee that melting is caused by
dislocation unbinding, but that in order to be observed, any other mechanism
causing melting must produce a transition at a lower temperature than that
predicted by the dislocation unbinding theory. Several speculations on the ori-
gin of the line of high-density heat capacity peaks are briefly presented in

chapter 4.

Just below 1 monolayer, this line of peaks turns rather sharply upward, and
the qualitative shape of the peaks change. At lower coverages, the peaks resem-
ble low flat cusps, but at higher density, they appear to become much larger,
narrower and steeper. Elgin and Goodstein 5 have shown that this amplification
and sharpening of the peaks is explained by the effects of desorption into the
bulk gas and promotion into the second layer, and the part of the heat capacity
owing to the atoms still in the first layer has roughly the same shape as that at
lower coverages. The slope of the line of heat capacity peaks gets steeper
because, as the coverage reaches one layer and continues to increase, the
atoms in the first layer can be only slightly compressed, and the second layer
atoms form a 2-D gas and does not participate in the transition. Thus the tem-
perature of the first-layer transition is roughly constant as the overall coverage

changes, since the density in that layer is almost constant.

As was pointed out in the introduction, the thermodynamic measurements
were able to show that a solid existed at low temperature. Unfortunately, the
method of deducing this result depends upon being able to deduce the shear
modulus from the Debye temperature and the compressibility, as explained in
chapter 3. Since the Debye temperature characterizes the behavior of the heat
capacity only at low temperature, there is no known way to extract the shear
modulus from thermodynamic data at higher temperatures in precisely the

region where it should be driven to zero by dislocation unbinding, if the theory is
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correct. Since the theory predicts no striking singularity in the heat capacity at
melting, and no pressure discontinuity, etc., it is not possible to identify the
transition from these measurements. The next question is, how much further
informatipn can be gotten from dynamical and struqtura.l probes?

Helium monolayers are the most weakly bound of any, to graphite or any
other substrate. This makes the usual dynamic probes like X-ray and electron
scattering, which have rather high energies if they have high resolution, difficult
to use on helium monolayers, because they disturb significantly or even desorb
them. Neutron scattering is a usable technique, but is hindered by the low
coherent scattering cross section of both the helium isotopes, and lack of high
beam currents at the low momenta needed. Many interesting problems that in
principle could be very profitably studied by neutron diffraction await the
development of higher-intensity monochromatic slow-neutron beams, but the
technique has produced some results on melting that are not fully under-
stood.?4.14.25 Some very similar experiments using NMR on He3 18 have also not
been explained properly, since they involve properties of the system at finite
frequency, and as such are a province of dynamical theories. The dynamics of
dislocations are treated by Zippelius, Halperin and Nelson ?8 but their work has

not yet been applied to the NMR results.

The main piece of information that can be drawn from the neutron scatter-
ing results on He3 is that for coverages sufficiently below the monolayer that
second-layer promotion is unimportant, in the neighborhood of the dislocation
unbinding temperature (which is not known precisely), the nearest neighbor dis-
tanc.e in the solid portion of the adsorbate decreases as the temperature is
raised, so the solid must be compressed somehow even though the overall den-
sity is not changing.®® (The liquid, if one coexists with the solid, cannot be

resolved.) This can occur by converting some of the solid to a less dense fluid, or
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by creating defects (point defects or dislocations) which cause imperfect
spacefilling as the temperature is raised. The intensity of the line also
decreases above this onset of compression, which may be a signal that fewer and
fewer atoms remain solid and scatter coherently with their neighbors.

The NMR results are rather similar, although they are talked about in other
language.1® There is a change in the behavior of the spin-spin relaxation time
near the predicted melting temperature, which may indicate the onset of
significant diffusion in the material, and perhaps imply that it has melted. An
anomaly in the spin-lattice relaxation time near the heat capacity peak tem-
peratures is conceivably caused by the loss of orientational ordér that is sup-
posed to remain above the transition, since when it disappears, the local corre-
lations between atoms disappear and the full disorder of the liquid, with relaxa-

tion induced by collisions, markedly changes the relaxation mechanisms.

This sort of interpretation of the NMR and neutron scattering results is ten-

tative at best.

Helium monolayers, which exhibit strong quantum effects in all thermo-
dynamic phases, seem to be the least likely ones to quantitatively obey the
predictions of a dislocation unbinding theory formulated for classical systems
(although that mechanism may still govern the process). Nonetheless, it is
worth making the comparison of the theory and experiment using the data on
these films simply because a set of data complete enough for the necessary

comparison does not exist for other substances. The effort currently underway
at Caltech to obtain thermodynamic and NMR data on methane films will, it is

hoped, allow more rigorous comparison with the classical theory.
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Chapter 3.

Elastic Theory of Helium Fonolayers

1. Fundamentals

In this section, the elastic theory of helium monolayers is derived by an
unusual method suggested by Feynman! although the general technique is used
in other problems.? The unusual derivation is designed to display explicitly the
importance of quanturmn mechanical quantities in the classical elastic parame-

ters.

The basic idea is to express the ground state energy of an elestically
deformed system at T=0 {or the free energy at finite T) as a perturbation to that
of the undistorted system. The correction terms are expectation velues in the
undistorted ground state at T=0 or statistical averages over the unperturbed

density matrix at finite T.

The distortions considered are homogeneous deformations produced by
external stresses on the boundary of the crystal. There are two contributions to
the energy shift -- a change in the potential energy of the new equilibrium posi-
tions (this is the entire shift in classical elasticity) and a change in the kinetic
energy and potentizl energy of the fluctuations {thermel and/or quanturn) about
those equilibrium positions. The kinetic energy is altered because the boun-
daries of the system are altered; however, the effect does not depend on having

a solid of finite extent, since the underiying reason for the change in kinetic
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energy is that the size and/or shape of the "box" localizing each atom has
changed, guaranteeing a kinetic energy change by the uncertainty principle.
“This dependence upon shape (even if the volume is unchanged) is known to be

present in the analogous case of electromagnetic zero-point fluctuations.3

The deformation shifts the equilibrium positions of the atoms. The method
of calculating the perturbations to the energy or free energy is to find a coordi-
nate transformation which undoes the shift of the equilibrium positions; then,

the perturbations can be expressed in terms of known unperturbed averages.

The Hamiltonian of the helium atoms is, in terms of the positions and

momenta of the atoms 7,

H = 2%]2/ 2m1+2 V('?]J) . (31)
I J<I

A strain is applied to the crystal, such that a small mass moves from position X
in the crystal to position . The components of the displacement are u;=z; —X;.

oz;

——and th
anan e

The new positions are related to the old by z;=cy;X;, where o;; =

X

inverse transformation §;; = satisfies ay £jx =0 We use the summation con-

vention for repeated lower case Roman indices.

Since we regard the crystal as a continuum, we can express the deforma-

tion in terms of the displacement gradients

0y .
= =i =05 (3.2)
'“v a/\fj v v
Examples of deformations in 2 dimensions are pure compression or expansion,
a O
u=ly 4 (8.32)
14a O
as=| 5 14g (3.3b)
1
1+a
‘: 1 (330)
0
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and pure shear

u=[g _(’a] | (3.42)

i1+4a O
a=| 5 1-g (3.4b)
1
1+a
£= 1 | (3.4¢)
0
1—a

In order to find the expectation value of the perturbed Hamiltonian in the
original symmetrical ground state (at zero temperature) or the thermal average
with respect to the unperturbed density matrix, the coordinates and momenta

are rescaled to realign the boundaries with the original. New coordinates Z=§¢2
are defined. The momenta rescale also (since ﬁzgﬁ) to p=a p. Inserting these

into the Hamiltonian gives

H=2}:[(ﬁ‘$)1'(ﬁ'€)1

2m]

+ 2 V(i"],ra)
J<J

:zj:[p—————qu Eg::;]tk ;]V(TUJ a.‘j )] (35)

To go further with this description of the system we temporarily concen-
trate on the potential energy. While it is not necessary, we make the approxima-
tion (excellent for helium) that the atoms interact by central forces. This allows
the potential to be regarded as a function of 72 and thus simplifies the expansion
about the equilibrium positions. We now drop the uppercase Roman subscripts
that labeled the atoms and implicitly assume that unspecified sums are over all
lattice positions. Using

r2=zf=z; 0y T 0k (3.6)

this becomes, to second order in the distortion parameters wu;;,

V(La)z V(rz)-f—(aq %“6,})2,’2} V(Tz)-f-
%(a-;j Qi —6jb)zjzkzlzm(aﬂ Oim —6im ) V(T?) (3.7)
where f indicates differentiation of f with respect to 7%, The quantity
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M =5 Qe — O 0 ) =W{wyj +1uj; +2pei i) (3.82)
is precisely the strain tensor of classical elasticity theory, measuring the

increase in distance between two points when the deformation is applied accerd-
ing to the equation

| Az [B—| AX |2=2ny AX; AX; (3.8b)
or

Zl= oy 0 X X = X84+ 2m4; X X;. (3.82)
Thus the potential in terms of strains is

V(r?)= V(ra)+2n_,-,,zjzk V(rz)+217_,—kmmzjzk z, zp, V(r?), (3.22)

By inserting the expression for 7y; in terms of w;; we can convert this equatio

8}

to the form

V(r®)=V(r®) +2up 2T V(1) + U Uy [T T4 Ty Tn, V(T2) 2020 631, VT?)]. {G.8b)
A similar expansion is made of the kinetic energy in the primed momenta, using
Cramer's rule to find the elements of £ in terms of those of &, namely

QKzz —042
£= —O2; &)

/ det (a) , (3.10)
Since det(a) is the Jacobian of the coordinate transformation, it is also the ratio

of volumes in the two coordinate systems.

Thus, the kinetic energy becomes

LB/ 2m + (¢ én —0u ) L pipi/ Rm (3.11)
=2 8%/ 2m +((—1)"** (Rny +64 )(det () 2—64) PsiPs i/ 2
where (det (a))®=1-2n, +4nf—4det(n) to second order in u;; or 7;;. The second

equation in (3.11) and the expression for (det(x))™® are derived from expres-
sions in terms of w;; assuming that uz;=u;z, which must be true in the absence
of external torques on the crystal.

The Hamiltonian neatly divides into the original unperturbed Hamiltonian

(in the new coordinates) plus pieces linear and quadratic in 7;;. Denoting the

linear parts by H,; and the total by H,, the perturbed ground state energy can
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be expressed to second order in 7y; as

On 0
EREg+HP+ Y HiTHn

(3.122)
stetes n=C EO_En

where superscripts indicate matrix elements between unperturbed eigenstates.
Similarly, the statistical perturbation expansion and minimum principle for the

free energy ! gives

B, o v
F<Fo+<H >+ %<Hu>f10—%< J eHopy e Fop o> Hy (3.12b)
()
where the thermal averages are taken with the unperturbed densily mairis an

B=1/ (kg T). The last term of (3.12b) can be reduced to

—gL.
Y | Hp |2e PO

“pEm 'pEn
yePPogr e Pm—e PR 15
%e mzﬁ.n Er‘_Evm IHXI | 2 ze_ﬁm ® (J._. )
n

The quantum virial theorem can be used to express some of the first-order
averages in terms of the initial external stress in the unperturbed state (a uni-
form pressure, P, in the case of helium). The virial theorem31! states that
=<} 78, V>+2<},p?/2m>=2P in two dimensions. Since 78, V{r)=2r?3_.V(r?)

the form of the theorem used here is 3, —r?V{(r?)+<} p?/2m >=P.

The format of the result is

E-EoNY Ty i + 10 G My M = 20T W + 2 A e U (3.142)
where the relation between 4, and Gju,

Ay =Cijia +Tj 0 (3.14b)
is obtained by substituting equation (3.82) for 7 in terms of u;;. The coeflicient
of 7y; is the stress applied in the initial state (~Pd;; in our case ) and the term is
the work done against that stress in deforming the crystal. The coeflicient of

Mij M s the elastic constant.

To find the elastic constants, we must take the appropriate averages of in

equations (3.12) and compare them with (3.14). The pieces are
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Hu=2((—1)"*"* N —mu 64 )P (3-1)P (3-k)/ @M +2n 7. 2,252 V{r?) (3.25)
H1=H1 1+277.U77u Zzizjzkzl I’('rz)'i'
4(=(—1)"** nunu +nFoy —6xdet(n))p (3—1)P (3-r)/ RM. (3.16)

Expanding H,, in components we find,

Hy=—4m2, (X ppe/ 2m =) 21z, V(r?)) =2 (e / 2m — (3.17)
2z EV(r®))—Rne(Lps / 2m -y zEV(r?))

These coefficients can be evaluated using the symmetry of the lattice. For
a triangular lattice, the atoms are centers of symmetry and the ground s
has sixfold rotation symmetry and 2 perpendicular reflection lines. Thus, aver-
ages over the unperturbed ground state of the form <z™y"jf {(r)> and
<pI'pyg (p)> can be related to isotropic averages <r™*" f (r)> and <p™*"g{p)>

for all positive values of m and n with m+n<6.

The relevant angular averages are given by

<z™y"f(r)>=<p;pyg (p)>=0. (3.182)
for odd values of m or n,
<z?f (1)>=<y?f (r)>=¥<r?f (1)>, (3.18b)
<z%y?f (r)>=Y<rism?(20)f (r)>= £<r*f (r)> (3.182)
<ztf (r)>=<yf (r)>= g—<'r4f (r)>, [3.184)

and similarly for functions of p. These can be easily checked by considering

these quantities for the 6 nearest neighbors of a particular atom.
Equations (3.18) and (3.186), together with the quantum viria! thecrem, yield

the necessary quantum averages.
<H;1>==Pmy (3.:9)
<H,>=—Pny+2(n§—2det(n))<X.p?/ 2m>+

274N ( %ﬁq Ok (1=04 )+ %5:3 OB +(Bu 6 +64065)(1—6,)) <Y r*V(r?)>(3.20)
A slightly more elaborate version of these arguments has been suggested by

Feynman to deal with the second order perturbations with A;;. It makes use of
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the fact that while the eigenstates of the system may not have the full symmetry
of the ground state, each excited state is a member of a submanifold of states
with the same energy which can be obtained from one another by the symmetry
operations (rotations and reflections) of the crystal.

For any such submanifold n with states {%,>, a symmetry operation R pro-
duces a mixture in the submanifold,

R i >=My 30> (3.2:2)
while the ground state clearly obeys

Rlo>=]0>. (3.2:5)
The sum over the submanifold of any functions of position and mementum can
be shown to be invariant under a symmetry operation of the crystal frst by
proving that the matrix elements taken between the rctated states sum to the
unrotated value (using 3.21a,b and the unitary nature of #), and then the gen-
eral rule that

<Ri, |Z | R '0>=<i, |RZE1 0> (3.22)
for any unitary or orthogonal R. Thus,

<O|RZ\R|in><iy |RZ; B 0> _

3 <0\ Z, 14, ><i, | Z: 10>
n.i EU_En '

EC—En

{3.23)

2

n,i

Considering £ +—z or y+—y reflections, it is clear that for Z,,Z; of the form
z*y'f (r) or pI'plg(p) that the second order perturbation sum will vanish if
k+m or l+n is odd, and that other combinations of powers will behave as these

of the ground state averages discussed earlier. For example, defining

@=<n |y zz; V(r?)-Y %%—I 0> we have the result

Since
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HETHE .
2 EG_En 4¥(E0 En) X

n

0 4 m2 NOn .
ME QXY +12Q8 Q80 +m 1M QIT QB +c.c. )+

4nfe| @FF [B+2111m12(Q1PQMT +c.c. )+ 2022 12( @ @2 +c.c.)] (3.25)
we can evaluate all the terms in equation (3.12a). The last two terms, which mix

diagonal and off-diagonal elements of # must vanish in the sum. By cocmparing

the coefficients of 7y and 7,7 in equation (3.12a) with equations (3.20) and

(3.25) inserted, with those of equation (3.14), we find

T-,'a' =—P5-,;J'
and

C1112=C1222=0
as expected, but the classical results

C1111=C2222=3C122=3C212 wrong in @

become
- 3 477(-2 3
Cllll_-4_—<zr V(T )>+2<KE >+2—Q
Ciiz2= szlx=x<2"'4 'V("'z)>+%Q
C1212=C2121=C1221=Ca112
=K< TV (r?)> +<K.E >+%8
where

o=y |<n |=Yp%/ 2m+ Y r?V(r?)|0>|?
- n Eo-En

where the kinetic energy, <K E >=<)p?/2m>. Using the

definition of the shear and bulk moduli, x and B, we have
Cun=B+u
Cnze=B -
Ciz12=H
and
B—Z/J,:Cun—Bleg: —<KFE. >

In classical elasticity theory, only the terms involving the

(3.2%2a)
(3.29b)
(3.28¢)

(3.30)

second deriva-
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tives of the potential appearing in equation (3.18) appear in the final answers for
the elastic constants, and for situations like the helium lattice, where the atoms
interact by central forces and are located at centers of symmetry, the equation
(3.30) is called a Cauchy relation (B.ossica =Rlciassicas ). We see that in the quan-
tum mechanical case, the symmetry of the problem is slightly altered by the
presence of the zero-point motions.

Table 5.3 shows the elastic properties of the helium films in the solid ran
for both isotopes. The kiretic energy can in principle be estimated from the
difference between B and 2u (for the periodic substrate, ¥ calculated in chapter
5 must also be known). Since B>2u in the data, the Cauchy relation is
violated, because the kinetic energy must be positive. Whether this arises from
the presence of ¥ and the related external torques applied by the substrate will

be discussed in a future publication.

2. Sound Waves at Long Wavelength

There is no completely satisfactory dynamical theory of solid helium in

either 2 or 3D owing to two effects arising from the large zero-point motion.

1. The zero-point motion causes an expansion of the solid to an equilibrium lat-
tice spacing beyond the infiection point on the attractive side of the He-He pair
potential, which results in the potential of an atom in the solid having a hump at
the equilibrium position (see figure 3.1). A classical harmonic analysis gives an
absolute instability for such a crystal, making a perturbation calewlztion of the
average behavior unfeasible. However, a bound state can be found by calculat-
ing the potential experienced by any atom averaged over the zero-point motion

of its neighbors.

2. The large scale of the zero-point motion means that atoms would frequently

penetrate each other's repulsive cores if their motions were not correlated so
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that they stay out of each other’s way. The net result is that each atom moves in
an effective potential obtained by averaging in a self-consistent way over its ovmn
motions and those of its neighbors. Any theoretical approach to this problem
must include correlations of the atoms over long distances in collective phonon
motions and over short distances owing to the strong zero-point repulsion.

These theoretical approaches 4 are quite complex and produce results with
significant inaccuracies. The phenomenological tack taken in this work ellovs
the use of simpler models of the solid with recourse to the experimental data for
parameters. In this spirit, there follows a discussion of the long-wavelength pro-
perties of phonons in the 2D helium solids and a justification of the greally
simplified approach taken here to obtain those properties.

The results obtained so far in this chapter give the response of the sysiem
to an infinitesimal infinite-wavelength distortion of the 2D crystal, to second
order in the strains. The elastic coeflicients obtained contain averages over the
zero-point or thermal plus zero-point motions. The next task is to extend them

painlessly to long but not infinite wavelength.

The easiest way to do this is by analogy to standard calculations of classical
elastic theory, in which the thermal and zero-point motions are ignored and the
response to a sinusoidal force on the boundary, or the normal modes of the sys-
tem with the distorted equilibrium positions regarded as the dynamical variable,
are found.

In our case, we argue that the long-wavelength sound waves of the system
have very low frequencies. Time-averaging the atomic motions on scales short
compared to the period of the wave investigated, but long compared to the
periods of high-frequency zero-point or thermal oscillations, reveals that these
time-averaged motions are nearly identical over long distances (look like nearly

homogeneous deformations), that the solid locally can be considered tec be in
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Figure 3.1. The potential near a lattice site on a linear chain of atoms interact-
fng with a Lennerd-Jones potential with hard core parameter 0=2.56& and 2 lat-
tice spacing of 3.54%. These are charecteristic parameters for helium solids.
Correlated zero-point motions smear out the hump at the lattice site.
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equilibriumm with a distortion given by the slowly-varying time-averaged motion,
and that the restoring forces for the waves are given by the infinite wavelength
elastic constants obtained earlier, at least within an approximation that
becomes increasingly good as the wavelength approaches infinity.

Thus we can, just as in the classical calculation, regard the elastic
coefficients (in reality containing averages of the dynamical quantities) as con-
stant and treat the time-averaged distortions as dynamical variebles. The
improvement here is that the classical calculation uses the values of the poten-
tial at the equilibrium positions (which gives imaginary frequencies for helium),
while the present calculation uses a quantum or thermal average potential con-
taining some effects of the fluctuations.

Using this procedure it is easy to find the wave speeds, which ve expect to
be independent of wavelength for long-wavelengths. Because the triengular lat-
tice has the same long-wavelength elastic properties as an isotropic continuum
(as we show below), the two sound polarization$ are true longitudinal and

transverse waves in any direction of propagation.

The Lagrangian density for the displacements averaged over short times
can be written L=¥pu?*—®(w;), where & is the total potential energy. The equa-

tion of motion for the system is thus

PU= X, 00w,/ 6% 06X, Ouw

As expected, no 8L/ du; terms appear because only the relative displacements

0 o% 0o o¢ (3.31)

are important. For the potential appearing in these equations, we use the right
hand side of (3.14), which is the potential of the slow distortion, and gives
Pk =0k [ Tix +%Apgrs (Upg Ori Sies +2rs S g )] (3.32)
=W Arsix Ursic + Aikrs Ursk ) = Aers Ursk

Putting in plane wave solutions

i =dgetd@Z-ot) (8.33)
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yields

—wlpu; = -Zijld 959 U (3.34)
and inserting values of Ay, from (3.14b) and (3.29) we find that

pPl=(u—P)q*d +B§ (g 1) (3.35)
which is identical to the equations of motion for a classical isotropic continuum

with speeds of sound

pclf=pu—P (3.358a)
pcPf=B+u—P (3.38b)

-

These last equations can be derived by decomposing i into components @; and

(4

u; transverse and parallel to §. Inserting this decomposition into (3.35), making

two new equations by taking scalar and cross products with §, and noting that
ij'ﬂ,=§xal =0, we find

po¥(g xiy )=(u—P)q*(§ xd; ) (3.37a)

pe®(q -,)=(u—P)g¥§ 4,)+Bg¥§ ) (3.37b)

which give equations (3.36).

3. Sound Speeds on a Periodic Substrate

As we will show in more detail in chapter 4, the presence of a periodic sub-
strate with hexagonal symmetry of the same type as the helium monolayers dis-
torts the monolayers as the atoms try to move into the nearest substrate potez;.-
tial well, interacting elastically with their neighbors as they do so. Because the
two lattices are incommensurate, the helium lattice can translate freely on the
graphite surface without change in energy (since for every atem that is shifted
into a well, another must be emerging somewhere else). The distortions induced
by the substrate have the substrate periodicity and are equivalent to the dis-
placements of the helium atoms as would be found in a snapshot of the crystal
excited by a standing wave phonon of the same periodicity. The energy of the

static density wave (SDW) and the degree of excitation of transverse and longitu-
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dinal SDW's depends on the relative angle of orientation of the two lattices, and
has a mininum at an angle calculated in chapter 5. Thus, there must be a restor-
ing torque to suppress local deviations from that orientation, and at long-
wavelengths, an additional term in the energy of the system and a new elastic
constant y also calculated in chapter 5. The zero degree energy of a distorted
system can now be written (cf. equation (3.14)
E—Eo—AE(S1ocK) =) TigUij + 0 Aijrr Wij i + 153 7 (2 12— 21)? (3.38)
where w3 —ug =¢g;;u;; =RAY.
Following through the same derivation of the sound speeds carried out in
the previous section, we find the transverse sound speed raised and the longitu-

dinal speed unchanged,
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pcf=B+u-P
pel=u—P+y.
These equations are used extensively in the succeeding chapters.
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Chapter 4
Evaluation of the Heat Capacity near Melting in the
Dislocation Unbinding Theory and Comparison with

Experiments on Helium Monolayers.

1. Introduction

Since the information on helium films on graphite is more nearly complete
than that of any other quasi-two-dimensional system, it was hoped that it could
be used to definitively test the dislocation unbinding theory of 2-D melting,
hereafter called the KTHNY theory.1.2.3 Of course, even if a crucial comparison
could be performed, the theory would not be verified or disproved; at best, its
applicability to the particular experimental system could be determined. If the
theory were found applicable, it would be surprising since it is formulated in the
framework of classical elasticity theory and the helium monolayer solids exhibit
strong quantum effects. Nonetheless, the helium system is probably the only one
for which the experimental thermodynamic data are sufficiently good that a
comparison can even be attempted.

In fact, the theory as set forth in references [1] and [2] is with high proba-
bility inapplicable to helium monolayers except possibly qualitatively, because it
takes into acéount no quantum effects. Several important conclusions about it

can nonetheless be drawn, and there is some hope of using phenomenological



-4] -

techniques to extend it to quantum systems, although we have not been able to

justify the techniques theoretically.

The following conclusions can be drawn from the work described in the rest

of this chapter:

1

It should not be expected that the theory as formulated will apply to 2-D
melting of most real systems, since it is actually only valid for materials
whose melting temperature greatly exceeds the Debye temperature, that
is, completely classical systems, which are rare amongst simple solids. This
is not to say that the dislocation unbinding mechanism in inapplicable, but

only the classical treatment of it.

The theory in principle can be used away from the transition, but it is really
a theory only of the dislocation contribution to the various properties and
thus will be a close approximation to the behavior of all the degrees of free-
dom of the system only where the strongly fluctuating variables which dom-
inate the behavior are the dislocation degrees of freedom. This occurs in
the region asymptotically close to the transition. Most of the quantitative
theoretical predictions have focussed on this asymptotic behavior and some
regrettable confusions have arisen from those predictions. One of these is
that since the melting transition occurs when a single phonon mode of
infinite wavelength softens to zero velocity, the transition is characterized
by a essential singularity and all of the thermodynamic functions are
smooth at the transition. This is correct; however, it should not be con-
cluded that the dislocations do not cause observable changes in the ther-
modynamic functions. In fact, they cause the heat capacity to rise spectac-
ularly in a small region near the transition, mirroring, qualitatively at least,
the experimental curves, which ‘deviate rather sharply from Debye-law

behavior in the same temperature range. Thus, thermodynamic data may
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not give useful information about the critical exponents of the phase transi-
tion, or precisely pin down the transition temperature, but they provide a

lot of information about the influence of dislocations, nonetheless.

The theory, although it may correctly describe the phenomena above the
transition, is almost impossible to use there given currently known methods
of approximating it. This is the result of several factors. First, the renor-
malization transformation diverges from the fixed point of the Hamiltonian
above the transition, and since the recursion relations of that transforma-
tion are approximate, they break down and become unphysical not too far
away from the transition. The known methods of avoiding the divergence
are to integrate the recursion relations to some high temperature at which
they are still valid, and then use a high-temperature approximation for the
behavior of a 2-D dislocation plasma. Unfortunately, the range of validity of
the high-temperature approximation suggested in reference [2] does not
overlap with the region of validity of the renormalization group equations.
Furthermore, the importance of the dislocations in the degree of disorder
of the material diminishes as the temperature rises high enough so theat
translational order is essentially lost. Then, if the theory is correct, there
is still orientational order which is enhanced by the substrate and weak-
ened by another type of topological singularity, the disclination, whose
effects are not accounted for in the dislocation Hamiltonian or the renor-
malization group transformation of it. Finally, one would expect to be able
to use the asymptotic critical behavior of the theory over some reasonable
temperature range around the transition; however, as we show in chapter 6,

that region is very small

| —T%TL"—| <«.001. (4.1)
m

This causes several problems, discussed in more detail in chapter 6. First,

t

]
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the transition temperature as estimated in experiments to date is known
only to within a few percent, and the width of the transition region owing to
substrate inhomogeneity is probably of the same order as the size of the
critical region or larger. Second, the transition temperature observed in
any current experiment is almost guaranteed to be much further from the
transition temperature for an infinite solid than t=.001, since the theory
predicts this region can only be observed in experiments on extremely

large spatial and time scales.

2. Overview of the Dislocation Unbinding Theory

We begin the description of the dislocation unbinding theory of 2-D with a
conceptual overview. This overview contains some oversimplifications and ques-
tionable assumptions which are dissected in detail later in the discussion. The
purpose is to provide the reader enough general knowledge to see past the com-

plications brought up later.

The theory treats the solid as a classical elastic continuum normalized to a
lattice spacing ay with the symmetry of the actual crystal structure (the helium
triangular lattice is isotropic, as was shown in chapter 3, if substrate perturba-
tions are ignored). The solid is described by an elastic Hamiltonian, an expan-
sion of the potential energy terminated at the second order. It is regarded as
perfectly harmonic, except for the effect of the dislocations. The kinetic energy
of the system in classical statistical mechanics always separates out of the par-
tition function and is ignored in this approach, contributing %kz T per atomic
momentum coordinate to the internal energy.

The atomic displacements in any configuration of the solid are then
regarded as the sum of two contributions, one a static displacement from the
symmetric equilibrium positions produced by the strain field of dislocations in

the material, and the other the dynamical quantity whose average is zero about
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these new positions, produced by thermal phonons in the material. Since the
thermal or time average of the phonon displacements is zero, it is claimed that
when the total displacement (or its gradient in continuum theory) is squared,
the cross term between thermal and dislocation contributions vanishes on the

average.

Thus the partition function for the potential energy of the system separates
again into independent contributions from thermal phonons and dislocations.
For a classical harmonic theory, the potential energy of the smooth phonon dis-
placements contributes ¥%kp T to the internal energy for each atomic coordinate,
so does nothing interesting. The alert reader may already notice that somehow
the system has acquired additional degrees of freedom, beyond the two momen-
tum and position variables for each atom. This is a weakness of the theory which

has not been dealt with well.

It remains to deal with the dislocation contribution (which is computed
using renormalization group techniques), after a brief digression on the nature

of these singular distortions of the solid.

The topological distortion of a solid called a dislocation has been studied
since the 19th century. Dislocations and their role in various aspects of the
behavior of solids including plastic flow, work hardening, cracking, heat transfer,
etc., are discussed in several treatises4.9.6.7.8 While more complicated types
exist in three dimensions, a dislocation in two dimensions consists of a
configuration of the solid produced by introducing an extra half-line of atoms
into the material and allowing it to relax to a configuration of mechanical equili-
brium. Figure 4.1a and figure 4.2 show a dislocation in a square and a triangular
lattice, respectively. Where the extra half-line of atoms ends, the strains from
the perfect lattice are very large (in fact, in continuum theory, they become

infinite at the center of the dislocation) and linear elasticity theory should not
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Figure 4.1. (a) A dislocation in a s i
: ' quare lattice. (b) A path around such a dislo-
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pared to the lattice spacing.
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predict correctly the energy or stresses in the material. If another half-line of
atoms is inserted into the opposite half-plane parallel to the first, but which
-ends at any other location than the end of the first, as in figure 4.3, the solid is
essentially undisturbed at large distances, and has distortions that are
significant only on the scale of the distance between the dislocations. Such a
configuration is called a dislocation pair or dipole because of its resemblance to
& separated pair of electric charges, whose field is significant only at distances
characteristic of the scale of the pair, and whose effects nearly cancel at large

distances.

The topological characterization of the dislocation is based upon the fact
that any closed path in the perfect solid will fail to close if it bounds a region
containing a net number of dislocations (a pair of opposite dislocations counts
as zero). The paths in figures 4.1 and 4.3 illustrate this principle and would be
square paths in the perfect solid. The amount by which the path fails to close is
a vector called the Burgers' vector b and acts like a vector charge. Its direction
depends upon which direction the path is traversed, and the conventional
definition is to traverse counterclockwise. The reader can easily verify by draw-
ing paths that circle the individual dislocations in figure 4.3 (rather than the

entire pair), that they have opposite Burgers' vectors with length ag.

The relation between the dislocations and the state of the system (solid or
liquid) can be understood from simple Gedanken experiments on the lattices of
figures 4.1 and 4.3. If a uniform shear (hold the bottom row of atoms fixed and
push the top of the crystal rightwards) is applied to crystal, the extra half-line of
atoms is pushed closer to its right neighbor and if the force is increased, the
crystal rearranges itself so that the next half-line to the right becomes the
“extra” half-line. In effect, the dislocation has hopped one lattice spacing to the -

left and relieved part of the stress. Of course, if the lines connecting the atoms
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Figure 4£.2. The configuration of atoms in a dislocation in a2 triangular lattice, as
computed by Englert and Tompa ®
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Figure £.3. A pair of dislocations in a square lattice whose strain fields nearly
cancel except in the immediate vicinity of the pair. A path around the pair
closes so the net Burgers' vector is zero, while a path that includes only one of
the dislocations will have a non-vanishing Burgers’ vector.

|
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were not drawn in figure 4.1d, the effect would be more obvious, and the recon-
nection of the lines is only in the mind of the reader. It is also clear that the
dislocation will move across the crystal to the edge if the force is continuously
applied. When the force is removed, the crystal will not regain its original form,
but will have a kink at the edge where the dislocation emerged. This is shown in
figure 4.1c. Thus the dislocation is responsible for plastic deformation of the
crystal. If'there were many free dislocations in the crystal, it could not support

shear stresses, and would be a liquid.

If one considers the same Gedanken experiment in the configuration of
figure 4.3, it becomes clear that the members of the pair of dislocations are
moved in opposite directions, each motion helping to reduce the shear stress.
However, the size of the distorted region increases as they separate, and this
has a large cost in elastic energy. Another way of saying this is that oppositely
charged dislocations attract each other (and if they coincided, would annihilate
regenerating the perfect crystal). This prevents the pair from flowing under
shear stress. What motion there is is bounded, and can be regarded as the
polarization and stretching of the dipole, along the direction of the Burgers vec-

tors.

The dislocation unbinding theory attempts to explain melting in 2-D as a
transition from a state in which free dislocations and hence flow under shear are
not favored thermodynamically, to one in which they are. The argument can be
treated in two stages, the first that led Kosterlitz and Thouless to the theory in
the first place, and the second, a refinement that makes the theory a quantita-

tive one.
A single dislocation has a strain field which decays at large distances as 1/7

and hence, when the energy of the distortion is computed by integrating the

stress {x strain) times the strain over the crystal
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Ez}é[dz?-uﬁa‘j =}§.£d?*i=u_u Gt (4.2)
(where u is the displacement gradient, C the elastic tensor and A the area of
the crystal) it is nK(In(R/ ag)+C)+angular part where R measures the size of
the crystal, and K is some combination of elastic constants. It is thus infinite in
an infinite system. In computing the integral, a suitable cutoff must be imposed
nearby the dislocation where the elastic theory breaks down. This region, of size
on the order of ag, is characterized by its own contribution, wKC, to the energy

of the system and is called the dislocation core.

The free energy of the dislocation is
F=FE-TS (£.3)
and the entropy, S depends only upon the number of configurations containing a
dislocation. In fact, it is given bir
S=kpIn(A/ ag)=2kgIn(R/ ag). (2,4)
This is also clearly infinite for an infinite 2-D solid.

However, if K varies slowly with temperature, it must be true that there is
some temperature at which the sign of F becomes negative (its magnitude is
always infinite in this crude picture, except at the transition), and this must be
an estimate of the transition temperature. Below this temperature, the free
energy of the dislocation is +=, so the probability of creating a dislocation ther-
mally is nil. Above it, the free energy is —= so the crystal will fill up with disloca-
tions and lose all resistance to shear. In this crude model, the transition tem-
perature is given by

T (crude)=rK/ 2kp. (4.5)

Kosterlitz and Thouless indicated a method for refining this calculation of
the transition temperature, by taking into account the effects of thermally-
excited dislocation pairs, and Nelson and Halperin 2 (hereinafter referred to as

NH). and Young 3 developed a renormalization group technique for performing
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that refinement.

The pairs, since their size is finite, have only a finite area of significantly
distorted material, hence a finite energy, which turns. out to be roughly
RnK(In(r/a)+C) for each pair, where 7 is the separation of the charges in the
pair. Thus they are present and thermally excited at all temperatures to some
degree. Of course, the assignment of dislocations to one pair or another is
somewhat arbitrary (not completely) but as long as the net dislocation charge in
the solid is zero, the energy must be finite. Each dislocation interacts with all

the others.

The detailed behavior of the dislocation system is thus extremely compli-
cated, even though the dislocations are assumed to be fixed on the sites of the
lattice dual to the atomic mesh. The interaction energy only appears in the ther-
mal average to favor one possible configuration over another, rather than actu-
ally causing the dislocations to move. However, it is not extremely difficult to
work out the qualitative nature of the interaction between pairs, by analogy with
charges. If we fix the positions of the dislvocations in a large pair, and consider
some smaller pair, the energy will be lowest if the Burgers’ vectors of opposite
sign on the two pairs are close together, which favors some orientations over
others, depending upon the location of the pairs. Similarly, fixing the small pair

produces favorable orientations for the large one.

In general, the presence of a small pair implies that the interaction
between the members of the large pair is partially screened, so the attractive
force is weakened. This effect will be treated using linear response theory in the
same way it applies to charges in a dielectric.

Thus, we can explain the phase transition in the following way: At low tem-
perature, there is a small population of thermally-excited pairs, almost all of

small size. As the crystal is heated, more of these pairs are created. As the gas
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of pairs becomes less dilute, interactions become important, and smaller pairs
screen the larger ones, making the effective force (and effective K) between the
elements of & large pair weaker. This increases the likelihood of creating larger
pairs, anqd as the temperature increases, the process runs away. When a single
dislocation pair separates to infinite distance, the elements will flow under even
an infinitesimal shear force, so the system has become a liquid, which behaves

like large patches of solid with free dislocations.

Another way of describing this process is to say that the KX at long
wavelength (which is roughly proportional to the shear modulus), is weakened by
the presence of polarizable dislocation pairs, and in the infinite wavelength limit,
drops to zero at the transition. Once free dislocations appear in the system, the
screening becomes complete at shorter and shorter distances, the resistance to

transverse shear goes to zero at shorter and shorter wavelengths.

This means that the effective elastic constants, governing the propagation
of transverse phonons are weakened. The mechanism of this effect is clear -- a
transverse phonon produces a shear stresé that it approximately uniform on the
scale of one half-wavelength, and that shear polarizes pairs smaller than a
wavelength or so in size. This response of the pair implies the displacements of
atoms from the shear are greater than it would be in the undistorted material,

which means that the effective elastic resistance is smaller.

It is important to mention the criteria which determine the degree of order
above and below the transition, but we will leave the details of the proofs to
references 2 and 3. In the solid phase even at very low temperatures, it is well
known that Bragg peaks in scattering experiments are not —functions as they
are in bulk, but have a form characteristic of algebraic (that is, power law)
decay of positional correlations at large distance, owing to diverging amplitudes

of thermal fluctuations at long wavelengths. This is called quasi long-range
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order, since the short-range order of the liquid state is characterized by
exponentially decaying correlation functions. At the same time, there is
long-range order in the correlations between the angles between atomic bonds
at long distances. When the dislocations unbind, the positional correlations
become short-range and exponentially decaying, while the angular correlations

become algebraic, producing a liquid-crystal like order.

This overview of the theory will conclude with a description of the renormal-
ization group treatment that makes the coupled-dislocation problem manage-

able.

The renormalization group technique 10 js an attempt to solve a compli-
cated dynamical or statistical problem with many interacting degrees of free-
dom by an iterative method, in which the system is viewed at progressively
larger and larger scales. Objects smaller than the current scale are grouped
into composites which, if the grouping is done properly, behave like the smaller
objects with different interaction coupling constants. What is done is to find a
model of the problem which can be rescaled, in the following sense. (We restrict
the discussion to rescaling in position-space for conceptual reasons only; the
procedures all have analogues in momentum space.) The interacting degrees of
freedom in some small patch of the system are averaged over to produce an
effective single degree of freedom for the patch which interacts with the neigh-
boring patches by a perhaps different law than the original microscopic degrees
of freedom. If the model and the averaging region are chosen properly, the par-
tition sum can be cast into the form of an overall factor which represents the
contribution of the degrees of freedom that have been integrated out, times a
partition sum identical in form to the original one but with fewer degrees of
freedom and altered couplings between them (altered only in numerical value).

Finding the transformation for a particular problem is the part of the program
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which requires cleverness.

Now the transformation is iterated, and at each iteration, the problem is
rescaled to the original lattice size. We have described the iteration as a
discrete procedure, but the scale can also be changed continuously in many
problems, including the one of interest here, so the change of the couplings with
scale can be represented as differential equations (called renormalization group
recursion relations). A trajectory of the differential equations in the space of all
possible couplings (the phase space of the differential equations) represents the
evolution of the equations as the scale is changed, and also is the locus of
related physical problems with different sets of couplings. What this means is
thet, for example, a complicated interacting problem can be transformed (by
moving along a trajectory) to another problem in which one or more of the cou-
plings are weak or vanishing, and which can be solved exactly or by some

approximation. The result can then be rescaled to the original problem.

This is exactly the technique that is used in the dislocation problem. Let us
assume starting conditions in the solid, with a given set of bare elastic constants
(those determined at 0 K where no dislocations are present). At finite tempera-
ture the presence of many interacting pairs makes the dislocation free energy
essentially impossible to find directly. What is done is to notice that the pa..ram-
eters that determine how many and what size dislocation pairs are excited are
the values of X and C. These are the couplings. If we look at all pairs smaller
than some initial size, we can ignore the details of their interaction, since it
affects only a small portion of the solid, except insofar as they screen larger
pairs, and make the effective elastic constants on larger scales smaller. Thus if
we blur our view of the solid to scales bigger than the initial size, any patch of
the solid of that size is regarded as containing only the net number of disloca-

tions enclosed in a Burgers’ circuit around it. The core size and the lattice size
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is raised to the size of the patch. The core energy is increased to reflect the
larger area (to account for all the possible microscopic cores inside), and the
coupling between the dislocation (if any) in the patch and any other patch is
governed by the effective elastic constants on that scale. Then we pretend that
the new patch size is actually the old patch size and rescale all the distances
accordingly.

Of course, as the core energy increases at fixed temperature, fewer pairs
are excited, so in every iteration, we transform the problem into a closer
approach to the dilute neutral weakly-interacting gas of dislocations. Since at
finite temperature, the probability of finding a pair of a given size is proportional
to a Boltzmann factor of the energy, and hence proportional to 7 X, as we
iterate the RG transformation, there are fewer and fewer pairs to blur away, so

the screening effect vanishes, the effective K becomes constant, and the core

energy approaches infinity.

The highest temperature for which renormalization procedure removes all
the pairs from the problem is the melting temperature. Above that tempera-
ture, the dislocations have weakened the crystal enough that the members of a
pair can separate to infinite distance, i.e., ionize. Thus at that scale, there is no
longer resistance to shear (effective shear modulus is zero). At the same time,
the effective core energy has also decreased to zero, so free dislocations tend to
fill the crystal, the density increasing rapidly above the transition. When a shear
is applied to the crystal, pairs are pulled apart to infinity and additional ones

created until the stress is relieved.

The essence of the particular RG transformation used in this problem is
that at any stage, the computational work of finding the new couplings is done
by solving a simple statistical physics problem. Instead of having to treat a mul-

titude of interacting dislocations, the partition function that is summed is that
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for a single pair with size in the range from a to a+da. If the microscopic core
energy of the system is large enough, at any stage of the iterative procedure,
the dislocation gas is dilute enough so another pair of the same size is not likely
to be near enough to the pair of interest to create difficulties. At each stage of
the iteration, the elements of the pair of interest are actually the net dislocation

charges in the renormalized cores interacting by the effective X.

In the next section, the overview presented here will be filled in somewhat

and the various approximations used in the theory will be discussed.

3. The Dislocation Unbinding Theory

In this section, an attempt is made to discuss the dislocation unbinding
theory of 2-D melting with emphasis on using it to compute the heat capacity
predicted for the dislocations. The presentation roughly follows references 2
and 3, but rather than repeat details covered there, we try to amplify and com-

ment upon the procedures and assumptions used.

First, the elastic Hamiltonian used in references 2 and 3 for the monolayer
must be corrected (in the case of helium) for finite initial pressure without
which the solid will not form. This was discussed in chapter 3. Thus the correct
equation for the elastic potential energy in the harmonic approximation in the
presence of finite applied pressure is

H:fdrz(-gpuﬁ + Yo A Wij Uy ) (4.8)
where u;; is the gradient of the i** component of the displacement in the ;%
direction, ¢ is the 2-D pressure. The modified elastic constants are given as in
chapter 3 by

Aijit = Cijrr —9 051 6 (£.7)
with
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Gt =H(8u 053 +8y 65, —06y;0p, )+ B 66 +7e5E0
=ﬂ(5|k 6j1+6i1 GJk)+)\6u6kl +Y8iiEn (48)
where the notation is as in chapter 3 and ¢ is the second rank totally antisym-

metric tensor. As pointed out in chapter 3, the second order term in w;; can be
mapped onto the zero-pressure Hamiltonian by replacing u by u—¢ in the latter
result. The term linear in w;; is irrelevant to thermal averages over either pho-

non or dislocation strains, since it averages to zero.

The dislocation energy must also be corrected for the effect of pressure,
since the formation of the dislocation requires work against the pressure forces.
It turns out that the energy of the dislocation given by equation (4.17) is
modified in exactly the same way as the elastic Hamiltonian, namely, by the

replacement u-»u—¢. This can be proved in the following way.

Wallace!l demonstrates that a finite strain my; relative to a configuration

with zero strain with initial stress ‘rg applied, produces a stress

T =To+ By + 0(n%) (4.9)
where

For the case where 'ricj is a pressure, this reduces to

B =—p (64655 +0645 67 —06456, )+ G
=(n—¢) (6w b5 +06y b ) +(A+9)8y; 6 +7E8m (4.11)
where we have used equation (4.8). Thus the stress in a configuration with a sin-

gle dislocation and initial pressure is to leading order in the strains

T= =0+ [ (u—9)(0u 65 +84 0, )+ (A+9)8y; 8p 7 80 Jui (4.12)
while a dislocation in an unstressed medium produces a stress

¥y =[H(6u 0 +6405 )+ A0y 60 +VeyE0 . (4.13)
The equations of mechanical equilibrium are

7y g (4.12)

oz 7]
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with boundary condition (that stress be continuous at the edge of the crystal)

~_ O freesurface
‘rii_{-—quﬁ hydrostaticpressureapplied (4.15)

Thus, if we define

Ty=—p0y +Ty (4.16)
the boundary value problem for 7 is identical to that for ¥; as long as we
replace I by u—yp and X by A+g.

Thus t.he energy of a dislocation is gotten from the standard solution of this
boundary value problem as in references [2] and [3] with the above replace-
ments. It is {in the notation of Young)

Egs =K (In(R/ ag+C) (4.17)
where the integral of the term in equation (4.6) linear in the strains over the
crystal vanishes by symmetry because using Hooke's law it can be transformed
into an integral over the stresses, which in polar coordinates are

Ter =Tosxsin{®)/r (4.18a)
Trsx—cos{¥)/ T (4.18b)

This 1/7 dependence of the stress and strain fields of the dislocation is
guaranteed by the condition that any closed path around the dislocation fail to
close by an amount equal to the Burgers vector,

= pugdz;=b, (4.19)
since this implies that paths with the same shape scaled up or down in size must
produce the same result. Thus we can guess that the leading order behavior of
the dislocation energy, the stress times the strain integrated over the crystal
(excluding the core region) will be proportional to In(R) and by a multipole-type
expansion we can see that the energy of a pair will be proportional to In(r)
where # is the crystal size and = the pair separation. The full Hamiltonian in

Young's notation is
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—Hp/ kg T=21rz<: {Kﬁgi-gjln(ri"/ a°)—1{3°{(5"‘<1ﬁ)(6’5-ﬁ)/ (r¥9)2-Yb* -5"]}4,20)
&t
J +Inyo) (b%)?
i
where 'F"j‘=i""—1‘” the positions of dislocations at sites i and j, Inyg is related to
the core energy and acts like a fugacity for the dislocations, and the

configurations of §b*} are restricted to cases of total neutrality, 36*=0. The
[ 1

parameters K; and K3 depend on the bare elastic constants {measured in the

absence of dislocations at 0K),

1 a§ #oBo HoY0 .
KT = + 221a
7 2r% kpT |motBo  Hot7o ( )
_ 1 a& [uBe _ pore FL B
2r? kpT |pe+Bo  MotYo

and are equal when the substrate is smooth and 9,=0. Equation (4.21b) corrects

a typographical error in reference 3.

Examination of the fugacity term in equation (4.20) reveals that since the
energy is proportional to the square of the charge, charges greater than one
unit are of low probability because they are unstable to the formation of several

unit charges.

Since references 2 and 3 present detailed (and different) versions of the
methods used to obtain the renormalization group recursion relations, for
tutorial reasons we briefly sketch two methods for obtaining them for simplified
problems and then describe more fully the approach of Young that leads most
directly to the RG relation for the free energy, which we need to compute the
heat capacity. This latter description is intended to outline the process for the
reader without reproducing the evaluation of integrals and other mathematical

details needed in intermediate stages.

Dielectric theory can be used to obtain the recursion relations for the

simplified dislocation Hamiltonian with no angular interactions and the Burgers’
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vectors treated as scalars. This Hamiltonian is equivalent to that for vortices in
a 2-D superfluid and was first solved by Kosterlitz.1?2 The potential of two charges
in two dimensions which satisfies Poisson’s equation is —29,921n(7,2/ ag), so we
can map the dislocation problem onto the Coulomb gas with the correspondence
nKo=q®%/kgT. Two opposite charges at large separation 7 are screened by
smaller dipoles, so the force gE=2rKy/7T is reduced. Treating the smaller
dipoles as a continuous medium, the reduced field F can be written in terms of
the displacement field D from the two test charges of our large pair in the
absence of the smaller dipoles divided by the dielectric constant of the medium
e=1+4mx where x is the susceptibility. The reduction in force increases with
separation, so the relevant dielectric function is scale-dependent. This can also
be subsumed into an effective scale-dependent K(r)=Ky/ £(r). The susceptibil-

ity of all the dipoles with size smaller than 7, x(r) is given by

x('r)sz(r',0)a(r’)r'dr’d19 (4.22)
@p
where a(r') measures the polarizability, ¥mKgr'?, of a single dipole of separation
7' and rho (r'8) is the density of pairs of separation 7' making an angle ¥ to
some arbitrary axis. This thermal density is evaluated with the partition func-
tion determined by the simplified dislocation Hamiltonian, with the interaction
between the pairs modified from Ky to K(r') by the screening of even smaller
pairs. The density is thus given by
Tho (r'8)=(yo/ a§ ){r'/ ag) 7" (£.25)
to leading order in y¢, where V is the potential energy integrated from the force
"7 dinr’
V(r)In(r/ ag)EKoh{DET—,)—-.

The self-consistent equation for K(r) derived from this (letting I =In(r/ ay)) is

(£.24)

] i
KY(1)=Kg" +4mdy¢ [explal'—2n [ K(l”)dl"] (2.25)
0 [+]
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which can be simplified by defining a scale-dependent fugacity

v (1)=yoexp

21 '—n}K(l ")dl"] (4.26)
[¢]

which can be used to turn equation (4.25) into the coupled differential equations

.

of the renormalization transformation

d,;(;l =Ay® (¢.272)
B =(2-rK)y (4.27b)

This same method (with some complications) can be wsed to treat the disioca-
tion problem for the smooth substrate and triangular adsorbate including the
angular part of the dislocation Hamiltonian and the vector nature of the
"charges”. The two main complications are in the angular averages, which lead
to Bessel functions, and the possibility of two Burgers' vectors which are not
opposite being paired with a third one opposite to the vector sum of the first
two, i.e. "dipoles” with one element being a composite of two elementary Burgers

vectors at 120° (the charge of such a composite is still one unit).

Nelson and Halperin approach the récursion relations by finding the per-
turbing effect of a single dislocation pair on the reduced elastic tensor, where
reduced means that elastic constants are multiplied by ag/kp 7. The inverse of
that tensor is written in terms of a correlation function

Crlm=<U; Uy>/ Aag (£.28)
of a quantity U that is essentially the total strain in the crysta! and is given by

Uj=—¥% { (wyn; +ujn;)dl (4.29)
where the integration is taken around the boundary of the crystal, P, with unit
normal 7i. The displacements and therefore U have contributions from the pho-
nons and singular parts from the dislocations. Since the displacement u is
discontinuous for a complete path around a dislocation, branch cuts are drawn

between each dislocation and the origin and contribute the value of the
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discontinuity of 2 (=5). to the equivalent area integral derived by Green's

theorem from equation (4.29),

U“"‘:fdzruvm(?)+§%ao[bi (ﬁ)ejk R +b; (}?)sa Re] (4.30)
In fact, the first term vanishes by symmetry (if the boundary stress is continu-
wous), so the only contribution from the dislocations is that of the cuts. There
are three kinds of pairs (for the three possible directions of Burgers’' vectors on
-a triangular lattice) and each contributes to the correlation function with weight
dependent upon the probability of it being excited, which in turn depends on the
separation of its elements and the angle the Burgers’ vector makes to the vector

Joining those elements. The contribution to the elastic constant from a single

Ppair is thus

CR t)kl“cukl +Ky i (ep ifjstep 5 Sts)(ep kEjt+ep 1Ekt) (4‘31)

dz -nK
g (e
>a

where &, are the unit vectors along which Burgers' vectors can point, &, are

corresponding angular factors, and the first term on the right side of equation

(4.31) is the bare inverse elastic tensor (arising from the smooth parts of U)

Ger= é(tﬁe Sji+6ubj =00 )+ Zl‘Bg'fSij Oy + i}‘% €kl (4.32)
-and the overbar indicates a reduced elastic constant.

This perturbation to the components of the reduced inverse elastic tensor
begins to behave badly near the transition, suffering an infrared divergence in
the integral when the temperature changes such that nKy+2. Nonetheless, by
asing RG methods, it is possible to use the perturbation approach without incor-
porating higher order terms directly. The renormalization group relations for
the variation of these components of the inverse elastic tensor are then derived

by breaking the integral into two parts
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- e’ =

-{%&4([“,{4)% (4.33)
for small 6. The small R portion is absorbed into redefinitions of Z, B and K.
Then the large K parts can be rescaled to range from a to =, creating extra fac-
tors abso;'bed into redefined values of y. The same considerations of composite

Burgers’ vectors pairing must be accounted for.
Finally, having prepared for the most complicated of the calculations, we
recount Ybung’s approach to the full dislocation problem with K§ not neces-

sarily equal to K¢, that is, the problem of melting on a periodic substrate.

The partition function for the vector "charges” can be written as a sum over
all possible configurations, parametrized by the number n, of dislocations of
each 8 kinds (along +&p),

N
eHn)), (4.34)

z=2f[[ 2 ]fﬁldzﬁ[-jcg

frnala=1 g

where N is the total number of dislocations and H is the dislocation Hamiltonian
(divided by —kpT) without the term containing y¢ and with a fixed set of n,. The
dislocations are not allowed to get within one core spacing (ay) of each other.

The reduced Hamiltonian is put into the form

H(in})=2nY b}epg biers Mes (FY) (4.35)
$<j
where
Mpq (7)=K"8pq G(T)+ K (rpTq / T2—Vpg) (4.36)

and G{r)=In(r/ay) is the Green's function for a point charge in 2-D. We now
consider a dipole (i,7) with separation between oy and ag(1+6¢) for some small
6l. The part of the Hamiltonian pertaining to this pair consists of the interac-
tion of its elements, producing a contribution to the partition function

exp(HJ)=exp(nK’cos29), (4.37)

and the interaction of each element with all the other dislocations,
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I—fg=2ﬂb}8m§;[ﬂw (F —7F ) — My (77 =% ) Jbk e s . (4.38)
(This looks asymmetrical and is missing b’ because that vector is equal and
opposite to B;.) The plan is to integrate over #* and #7 to remove those degrees
of freedom from the partition function. The integral of 7* is over the annulus of
width 6! and radius ag around i'}. which is correct as long as the pairs are dilute
enough that we can neglect the possibility of another pair coming within a; of
the one in question. Then 7 is integrated over the entire crystal, except in disks

of size a; around each of the other dislocations.

The result of this integration, after complex and tedious manipulations, is
proportional to 6 and can be broken into 3 terms, two of which resemble the
terms of equation (4.36). These terms must therefore be the changes to the
couplings K™ and K®. The remaining term is the contribution to the free energy
of all configurations containing one pair at this separation. That is, if we denote

the annulus by §; and the disk by D;, the integration can be written in the form

S{dz fde'r e By +H§
4]
goF erao

kl.kl )
= y2 ) 5K'5pq6(rkz)—5m[?’;‘)’2 ——g"—”b;b; (£.39)
k<l

with each of 6F, K", 6K proportional to 6/. The manipulations to produce this

form are messy but the results can be summarized by the differential equations

A! ZI—F=67TIC(7TK")y2/ ag (£.40)
—“—z’— —S'rrsyz{[(K')2+(K'°)2]!g(771(")—K’K"11(17K")} (¢.21a)
“‘—f;= 611"33/2{21('1("’10(17}("’)—}6[(K’)z+(K")2]Il(nK")] (4.21b)

where A is the area of the system. It is important to note that equation (4.40) is
not the recursion relation for the free energy of the system because it still con-
tains ag. In Young's paper, this factor is missing from equation (4.40). We have

described the first iteration of the renormalization group, in which pairs of size
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ap are integrated out; in general, the current core size age! should be used in
equation (4.40).
It is possible to put equations (4.41) into a slightly simpler form by making
the change of variables
Ki=Y(K'—K°), Kr=W{K +K°) (4.42)
which has the physical meaning of the transverse and longitudinal couplings in
the sense that the Fourier transform of the dislocation Hamiltonian of equation
(4.20) can be shown to decompose with transverse interaction governed by K7
and longitudinal interaction governed by K;. The smooth subtrate is thus
characterized by a purely transverse interaction between dislocations. The

recursion relations for these couplings are given by

d{:‘;—l =123y 1 o(mK®)+ %I, (7 K?)] (4.43a)
dK7? .
o = 1RmY eI o(mK®) =Kl (mK?)]. (4.43b)

The renormalization procedure is completed by the following manipulations:
Rearrange the summation over {n,] to account for the pair that is gone from the
explicit partition sum, taking into account the three possible charge directions
for a pair, and then reexponentiate the terms proportional to dl in equation
(4.39), changing the couplings to K"+6K™ and K?+6K®. The hard core distance
has been expanded, so we must replace all occurences of ag in the partition sum
by a'g=ag(1+48l). Each of the terms y/af becomes to leading order,
y(1+26l)/a'§ and the term in the exponential involving G(r) is rewritten in
terms of a'p producing a term e ™K 8lx1 KT 61 to leading order.. We cannot
integrate charges at distance ag which are not opposite, but must treat them as
"composite” if they sum to another unit vector. After the rescaling operation,
any charge can either be an original charge or a composite one. The effect of

this is added to the above contributions to the renormalization of y to produce
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%:(2-n}¢)y +2nlo(mK?)ye. (4.22)
The rescaling of ag in the free energy term is cumulative, so after enough itera-
tions of the procedure that the scale has changed from ag to age!, the correct

recursion relation for the free energy must be written

-1 9F _ Bmy*e " Io(mK?)
dl a2 '

Equations (4.41) or equations (4.43), equation (4.44) and equation (4.45) form a

(4.45)

complete set of recursion relations for the full dislocation problem.

Combining these results with the Nelson-Halperin approach, it is possible to

derive recursion relations for the elastic constants themselves. These are

E;Ll=3ny"’]°(1r1{"’) (4.462)
dp_l - 2r
—g =3y [To(mK®) =1, (7K?)] (4.46b)
9P <3yl Io(m K+ 11 (n K] (2.460)

We will discuss these recursion relations in detail shortly.

We next discuss the structure and solution of the recursion relations. The
controlling equation is equation {4.44). In the equation for y, if the initial value
of y is small enough that the first term dominates and K§>2/ 7, then y will
decrease and be driven to zero. Thus in equations (4.41), the couplings K will
increase more and more slowly as y-0, and ‘ eventually stop chahging
significantly with ¥ and {. On the other hand, if the sign of the first term is posi-
tive, y is guaranteed to increase (this corresponds to increasing the concentra-
tion of dislocations as one rescales until the approximation of dilute pairs no
longer applies). In the intermediate region, if the initial value of y is large
enough, even though the first term may be negative initially, if K™ ever becomes
smaller than 2/ 7 while y is nonzero, y will increase and diverge. Visualizing this

behavior in (y, K, K?) space, we find a critical (in the sense of differential equa-

tion phase plane theory ) surface y =0 which is stable for X" >2/ m and unstable
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in the opposite case, that is, a small perturbation away from the surface grows,
or a trajectory that comes arbitrarily close to the surface in the unstable region
turns away from it and recedes to infinity. This surface is a fixed surface of the
renormalization group transformation (every point of it is a critical point). The
stability of the fixed surface changes along the line KT=2/ 7.

By specializing to the case K"=K? we can learn a bit more. Now y=0is a
fixed line. A single curve terminating at the edge of the stable region
(y=0, K=2/ m) separates the trajectories that hit the fixed surface from those
that diverge away. This curve, called the separatrix, is found by starting at the
terminating point and integrating the ratio of equation (4.43b) to equation (4.44)
in the direction of decreasing K~!. Figure 4.4 displays the phase plane of these

differential equations along with the separatrix and several other trajectories.

Clearly the melting transition occurs when the fully renormalized K is
exactly 2/ 7, since that is the point at which the behavior changes from renor-
malization towards a more and more dilute gas of dipoles to one in which there
is a nonzero concentration of dislocationsv on infinite scales. It is easy to show
that the couplings K™ and K® at any scale have the same form as equations
(4.21) with the elastic constants replaced by the partially renormalized elastic
constants at that scale. Thus, the phase transition temperature is given by
1 _f_lir #rBr _ _HRYR

Tanm kp |ur+Br  MeRtYR

where the renormalized elastic constants are determined from equations {4.46).

Y (4.47)

In order to complete our understanding of this system we must deduce the
initial conditions. At any temperature, they are determined by the bare elastic

constants and the core parameter C such that

yome O 8T (£.48)

which is shown for "typical " values of C by the dashed curves in figure 4.4 When
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Figure 4 4. Phase plane of renormalization group recursion relations in the no-
tation of reference 3. The heary lines comprise the separatrix the dashed curve
is the line of starting points for core parameter C=2 and the dot-dashed curve is
the line of starting points for C=3. The solid region is the region below the lelt
bump of the separatrix, where the RG trajectories intersect the X! axis.
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the temperature and core parameter are such that Kg,yp lies on the separatrix,
the renormalization must proceed along that trajectory to the critical value of
KE, so the separatrix represents the phase boundary of the system. Below the
separatrix in figure 4.4, the system is solid, above, it is not. In fact, if the core
parameter C is not a function of density or temperature, the intersection of the
separatrix with the curve of initial conditions (known in the trade as the line of
starting points) represents the entire melting curve of the system. (The reader
should recall that X contains ag and is thus a function of the density of the sys-

tem.)

For the case 75=0, the calculation of the heat capacity is straightforward,
and for non-zero 7, it is only manageably more complicated, so we next proceed

to the description and analysis of the heat capacity computation.

4. Comparison of Experimental Data on Helium Monolayers with the Disloca-
tion Unbinding Theory

In this section, comparisons are attempted between the predictions of the
dislocation unbinding theory and observed thermodynamic data, particularly
the heat capacity, of helium monolayers. It was hoped that even though a cru-
cial parameter characterizing the energy of the dislocation core was unknown,
some range of core energies would produce consistency with the experirn-ental
data, in a sense to be discussed below, but it turned out that this does not seem
to be the case. The heat capacity data were summarized in chapter 2, and we

will discuss various aspects of it in sequence.

First, we point out that the theory as formulated by NH and Young cannot
possibly predict melting temperatures as high as the observed heat capacity
peak temperatures. This can be established by the following argument: The
melting temperature is a function only of the renormalized elastic constants,

which can only be determined in terms of the measured or calculated bare
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elastic constants if the core energy is known. However, an upper bound on the
melting temperature can be found by replacing the renormalized elastic con-
stants in equation { 4.47) with the bare ones. At the melting temperature
predicted by the theory, the value of K from the bare elastic constants (deter-
mined by the intersection of the line of starting points with the separatrix) is
greater than the renormalized value 2/ 7, as can be seen in figure 4.4. Thus the
temperature determined by setting the bare K to 2/ 7, which can be called the
"unrenormalized” melting temperature, is greater than the renormalization
group prediction of the melting temperature. Furthermore, the melting tem-
perature predicted by the theory is actually an absolute stability criterion for
the solid — melting could occur at a lower temperature if some other mechan-
ismm preempted the dislocation unbinding, but if the solid exists at Tj,, it must
be unstable to the formation of free dislocations. Thus, it is guaranteed (at least
for classical solids) that the "unrenormalized" melting temperature estimated
from the bare elastic constants is outside the solid region of the phase diagram
of the substance. Since the heat capacity peaks plotted in figures 4.5a and 4.5b
are significantly above these "unrenormalized” melting temperatures, they can-

not mark the melting transition.

Precise predictions of the true melting temperature from the theory can-
not be made because the initial conditions for the renormalization procedure
cannot be specified without the value of C, the core parameter. This core
parameter is essentially a non-physical concept, since it is to some extent arbi-
trary (but not completely). Essentially it is a means of cutting off the integral of
the total elastic energy of a dislocation at some small distance from the disloca-
tion, such that the integral is carried out over the region over which linear elas-
ticity theory correctly describes the strains, and the excess energy in the cen-

tral region is subsumed into the core parameter. The core parameter is not, as
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Figure 4.5b. Heat capacity peak temeerature(-év), “unrenormalized” melting
temperature{x) for several coverages of “He.
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it is sometimes described, simply an indication of the size of the cutoff. The
core parameter is only known for certain simple systems. One such case is the
classical Lennard-Jones solid, for which it has been evaluated by Englert and
Tompa® by an iterative relaxation method applied to a collection of 1B4 atoms
forming a triangular lattice bound by nearest neighbor forces only and contain-
ing a single dislocation. They did not evaluate the core parameter explicitly, but

found the strain energy of the dislocation in terms of the Lennard-Jones param-

eters to be B.65z, where the Lennard-Jones potential is V(r)=4&(( ;7-_—)12 —(:—)6)

and the equilibrium spacing of the classical (zero-pressure) solid is 21/ %o, if only
nearest neighbor forces are included. Using the methods of chapter 3 to evalu-

ate the elastic constants of this classical solid

54
Hetass =VoBoiass = = fg_ (4.49)

(it is also easy to show that the second-nearest neighbor forces increase these
by less than 9%), we can compare the energy computed by Englert and Tompa

with the equation for the energy of a dislocation (assuming a smooth substrate)

Egu= %m(ﬁ/ a5)+C) (4.50)
where R is related simply (by mR?=NV.q;) to the size of the sample treated by
Englert and Tompa. This comparison yields C of .85, which is smaller than the
value 1.5 usually suggested in standard dislocation theory treatises, and far
smaller than numbers that produce reasonable heat capacities for helium mono-

layers.

No one has yet made a similar calculation for a quantum system, nor has
anyone even predicted in which direction the quantum corrections will go. Since
the equation (4.48) for the line of starting points contains C in the exponent, a
factor of 4-6 in the core parameter makes a very substantial difference in the

concentration of dislocation pairs, especially at low temperature. The larger the
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core energy, the closer the line of starting points is to the fixed surface y=0 and
the more dilute the gas of dislocation pairs. Thus, the larger the core parame-
ter, the smaller the degree to which the elastic constants are renormalized, and
the closer the predicted Ty, to the "unrenormalized"” estimate. Figure 4.4 shows
the relationship of the line of starting points to the core parameter, for the case

where the substrate is smooth.

In this case, the procedure for calculating the heat capacity is relatively
simple. The bare elastic constants x4 and B are obtained from the experimental
data for a particular coverage as explained in chapter 2, and we choose a value
of the core parameter. The intersection of the line of starting points deter-
mined by this information with the separatrix is found numerically to deter-
mine the melting temperature corresponding to this core energy. For the pur-
poses of extending the calculation of the heat capacity above this melting tem-
perature, we also arbitrarily choose a crystal size, the use of which will be
explained below. Then, at each of a sequence of temperatures between 0K and
the heat capacity peak temperature the renormalization group equations for
K7', y, and F are numerically integrated, beginning at the appropriate point on
the line of starting points for each temperature. Second differences with

respect to temperature of the values of Fp(T) give the heat capacity

9% F
aT?

According to the theory, this dislocation contribution to the heat capacity

Cais (T)==-T (4.51)
should be added to the heat capacity of the bare phonons, which we take to obey

a Debye model, for comparison with the experimental heat capacity.

We require that the heat capacity calculated here must be less than the
experimental heat capacity if it is to be considered consistent with the data. In
general, the Debye model gives the correct behavior at very low temperatures,

but at moderate temperatures, the van Hove singularities which must occur in
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the phonon density of states (where dw/ dk =0 ) usually raise the heat capacity
above that predicted by the Debye model, because it is guaranteed that there be
at least one maximum in the dispersion curve at lower k than the first
minimum, Figure 4.6 shows the heat capacity predicted for the phonon spec-
trum displayed in figure 5.8 of chapter 5, in comparison with the pure Debye
heat capacity corresponding to the zero-degree speeds of sound, as an example
of this eflect. Anharmonicity of the solid, which is completely ignored here
except for the part produced by the dislocations, can either increase or more
usually, decrease the departures from the Debye law, 11 so the requirement that
the dislocation heat capacity be less than the measured heat capacity is not
strictly correct. However, the actual deviations in the experimental heat capa-
city from Debye-law behavior occur in a narrow range of temperature right near
where, for some values of the core parameter, the dislocation heat capacity is
predicted to become large, while anharmonicity usually causes more gradual

effects, and also usually is only important at higher temperatures.

In the case of a periodic substrate, the separatrix becomes a surface in

(K™, K®, y) space which reaches the fixed surface ¥ =0 along the line K"=2/ 7.

For this case, the computation of the heat capacity is slightly more compli-
cated. Given the bare elastic constants, including 7, as obtained in chapter 5,
the determination of the melting temperature is somewhat trickier than in the
smooth substrate case. A brute-force method was chosen: a likely point on the
line of starting points was chosen and the RG equations were integrated until
they either reached y=0 or passed through a minimum. A binary search
method was used to find the place on the line of starting points for which the
resultant trajectory passed through K™=2/pi, y=0, within some tolerance. The
temperature at that initial point is the melting temperature. The rest of the

computation of the heat capacity proceeds as before, except that the full set of
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Figure 4.6. The heat capacity for a realistic phonon spectrum (upper curve on
the spectrum of figure 5.8) compared with the Debye law (lower curve) and ex-
perimental points for this coverage.
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recursion relations, equations (4.41), (4.44), (4.45) must be used.

Before presenting the results of these calculations we will try to unify them
with some alternate methods of computing the heat capacity and refinements to
the various methods that allow some estimates of the heat capacity above the
transition temperature.

To get any results at all above the transition temperature, we use a finite
size crystal. The theory states that the screening between elements of a pair is
only complete when they are infinitely far apart right at the transition, and then
the screening length becomes smaller as the temperature rises. Thus a patch of
finite size (in the infinite medium, so boundary conditions and image dislocation
fields cause no trouble) remains solid until some temperature higher than that
marking the onset of flow under infinite wavelength shear. If we calculate the
heat capacity of the dislocations in this finite patch assuming it is neutral (by
renormalizing only out to a scale-length equal to the patch size) and similarly
calculate the bare phonon heat capacity of the patch by including wavelengths
smaller than the patch size, we should have underestimated the totzl heat
capacity/atom. Until the screening length becomes equivalent to our patch
size, the RG equations will be well-behaved and can be used as before. When the
temperature reaches a value that lowers the screening length to the patch size,
we stop trying to calculate further. This is in practice determined by a more ad-
hoc criterion of stopping the integration at any temperature for which the
renormalization group equations start becoming inaccurate (y>0.1) before we
reach the scale equivalent to the patch size.

While carrying out the renormalization group integrations, it is possible to
use the results in an equivalent calculation that is more easily modified to incor-
porate quantum effects, although we have only managed to do that in a physi-

cally motivated, but ad hoc fashion.
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At the outset, instead of separating the displacement field into phonon and
dislocation parts, we can use linear response theory on the entire elastic Hamil-
tonian to understand the behavior under arbitrary applied stress. This leads to
a relationship between the temperature-dependent, effective elastic constants
and a correlation function of the strains, which in turn can be used to predict
the thermodynamic and dynamic behavior of the system in terms of only the
renormalized and bare elastic constants. Now the results of our RG integration
can be used numerically to evaluate the equations generated. Since the prob-
lem has now been characterized in terms of effective phonons, it is easier to see
how to approach the real quantum mechanical problem, and we will display an
interpolation formula for the heat capacity in terms of bare and renormalized
elastic constants which has the correct high and low-temperature limits, but
essentially no other physical justification.

Linear response theory 13.14 is a formal method for analyzing the dynamical
response of a system to an small external perturbation. To first order in the
perturbation, the shift in the thermal 'average of any quantum-mechsanical

operator Ais given by

6<2(t)>=%_}-dt '<[A=(t).A(t)]>. (4.52)

In particular, if A°® takes the form Zfd’?}i- (7#.t)of* where o is a generalized
i

force coupling to the operators Z, then the linear reponse of one particular

operator is given by

6<Z¢(?,t)>=-—%—;dt Sar<[AF).A4F . t)]>ofR(FELt).  (4.53)
Thus, the response of any operator is proportional in this approximation to the
applied force, and proportional to the space and time correlation function of
itself with other dynamical quantities. By Fourier transforming equation {4.53)

in time and space, we can obtain a similar relationship between the operators
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and the force as functions of frequency and wavevector, and if the system is
translationally invariant in space and time and the force is local, that relation-

ship decouples responses at different frequencies and wave numbers.

For the simple case of a single dynamical operator, the response depends
on the autocorrelation function, and in the long-wavelength, low fre'quency limit
corresponds to the static response. For example, in the case of a magnetic sys-
tem in a weak external field, the change in the local magnetization is propor-
tional to the magnetization autocorrelation function. But the temperature-
dependent static susceptibility is defined to determine exactly that response,

6M=xéh, so the correlation function is related to a susceptibility.

In our problem, the analogue of the magnetization is a strain component,
and the force is an applied stress. The Hamiltonian is the full elastic Hamil-
tonian, of equation (4.8), making no attempt to decompose it into phonon and
dislocation contributions. Once again, the long-wavelength, low-frequency limit
tells us how to interpret the correlation functions that occur -- they must obey
Hooke's law, 0y =Cj,1,. so the correlatioh function <wy;uy, > is proportional to
the inverse elastic tensor, Gj} which plays the role of a temperature-dependent
susceptibility. Clearly, at finite wavelength and frequency, (or a finite distance
and time) the generalized susceptibility represents the compliance of the sys-
tem to disturbances of this scale and time dependence. Since the thermal aver-
age in the correlation function is over strains produced both by phonons and
dislocations, the susceptibility clearly must represent the renormalized scale-
and frequency- dependent elastic constants, and in fact the correlation function

is sometimes used as an alternative definition of the elastic constants.

The internal energy of the system, whose temperature derivative is the heat
capacity, is given by the correlation function evaluated at equal times and at the

same space position, i.e., ignoring pressure terms and the kinetic energy.



- BO -

E( T)=%fd2rC}§-’u <wy; (F)uy, (F)>. (4.54)
Fourier transforming this equation and putting in the elastic tensor for the 2-D

isotropic continuum (shown in chapter 3 to be equivalent to the triangular lat-

tice) we find (using dimensionless wavevectors)

E(N)=4 £Lpg<u(@ru; (-1)>. (4.55)
where the bare dynamical matrix is a function of the bare elastic tensor,
O(r )= 2 g:9; "
Dij(q)=10og® [0y - g® +25809:9;. (4.56)

and thus is determined by the properties at T=0 where there are no disloca-
tions. Using linear response theory, the correlation function at finite (nonzero)
wavevector (below the transition temperature) for a classical isotropic elastic

solid can be written as15

BT{ 1 [ _wmy],

ur(a.TY[Y  ¢* |

ur(g, T)iBR(q T) q;zj}=q2<u-;(é‘.t)uj(—q’.t)> (4.57)

which, combined with equation {4.58) and equation (4.55), gives for the classical

internal energy,18

a?g | wo Bo+ g ] ,
E(T)= %kBTftlrz i#}? (q.7) " Br(g.T)+ur(q. 7)) e

At this point, we still do not know how to calculate the renormalized elastic
constants (or equivalently, the correlation function) directly, since they are the
result of statistical averages over the full Hamiltonian. However, our appreoach
is wholly equivalent (so long as we consider a classical system) to the renormali-
zation group approach, so we can use the results of those calculations of the
renormalized elastic constants, if we can make a correspondence between up (1)
and ug(g). The obvious such correspondence is g =n/age!, which can only be in

error by a factor of order unity.
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Thus, the temperature derivative of equation (4.58) is entirely equivalent to
the heat capacity calculation described above in which the dislocation contribu-
tion is added to that of the bare phonons. It certainly has the correct qualita-
tive behavior. If there were no dislocations, the renormalized elastic constants
would be the same as the bare ones, and the heat capacity would simply be kg,
or exactly what one gets from the equipartition theorem applied to the potential
energy of a classical system of oscillators. Since the renormalized elastic con-
stants are always smaller than the bare ones (the dislocations always weaken
the restoring forces), we always get an excess contribution above the bare pho-
non contribution, exactly what one would expect from the calculation in which

the phonons and dislocations are decoupled.

To try to improve this calculation for a quantum system, we must assess the
places where we have not taken quantum mechanics into account. The most
obvious place is in the treatment of the bare phonons, since we have not noticed
that they are quantized, will not be fully excited at low temperature, and thus
will have a heat capacity that falls to zero as the temperature decreases, and is

proportional to T 2 at low enough temperature.

If this were the only area in which quantum mechanical effects have been
neglected, correcting the oversight would be trivial — the dislocation contribu-
tion to the heat capacity as calculated from the RG equations would remain the
same, while the bare phonon. heat capacity could be replaced by a quantum
mechanical model, of complexity ranging from a simple Debye law to a fully
self-consistent phonon calculation based only on the interatomic potential. (It
would not be extremely useful to employ this latter model, because we have
neglected all anharmonic terms which lead to further couplings between the

dislocations and phonons.)

Unfortunately, even though dislocation pairs are relatively high-energy
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excitations of the system, and owing to the non-zero core energy are not
expected to be significantly excited or contribute importantly to the heat capa-
city of the system at low temperatures, it is not correct to treat them classi-
cally. Essentially, the quantum properties of the dislocations arise from the fact
that they are not actually fixed to positions on the lattice, but are free to move
slightly in response to local stresses. The part of the motion which moves dislo-
cations around in the lattice is presumably accounted for in the configuration
integrals in the partition function, which  favor arrangements of the disloca-
tions on the lattice which minimize their energy. The motions on smaller scales,

including quantum jitter, are not taken into account.

Motion along the Burgers vector, called glide, is easy and occurs under sus-
tained shear, as discussed in section 4.2. It is essentially this motion which we
understand physically to produce the weakening of the effective elastic con-
stants at large scales, the polarization and stretching of dislocation pairs in a
shear force. (Motion perpendicular to the Burgers vector, called climb, is very
difficult, because it requires that the ‘extra half-line of atoms be either
lengthened or shortened, which can only be done by nucleation of vacancies or
interstitials in the crystal.) When the disturbing shear is on a scale large com-
pared to the size of a particular pair then polarizing motion takes place. When,
on the other hand, it occurs at a wavelength small compared to the size of the
pair, the shear is, on the average, opposite at the two members of the pair and
hence they move in the same direction, producing no net effect. Thus there is a
crossover in the effect of applied shear on a particular pair which occurs when
the variation of the shear is over wavelengths comparable to the size of the pair.
For wavelengths above the crossover, the pair's response is to increase the
amplitude of the local displacements, and thus mimic a weakening of the elastic

response at that wavelength. There are also variations in the response depend-
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ing upon the timescale of the applied shear, resembling retardation effects in
the interaction of light with bound charges.

Thus the evaluation of the quantum mechanical correlation function is more
complicated than what has been done above, and we have not carried it out.
Instead, we have approximated that correlation function, which depends on both
wavevector and an integral over all frequencies, by the result of the static (but

scale-dependent) calculation of the interaction of dislocation pairs.

There is a more or less empirical way to include some of the quantum
mechanical effects of dislocations, by finding a simple, unjustified interpolation
formula which agrees with equation (4.58) and reduces to the correct 0 Kelvin

result.

We assume that the bare phonons are described by a Debye-like model wit
angular frequencies given by w%;(q)=cf;q for transverse and longitudinal
modes, with the sound speeds ¢ given by equations (3.39) in terms of the bare
elastic constants. We notice that we can reproduce the classical result (4.58) if
we write

- cr Qg(q) =R, .. 59

E(T)=YRog(g) 5~ (a) (4.59)

where 7@ is the usual Bose occupation number at inverse temperature f=1/kpT
for the renormalized frequency wg,

Ry

Ak (g)=[e 1] (<.60)

since in the limit of high temperature (small 8), & reduces to kg T/ fi.;;,'?(q) and

since the elastic constants, bare or renormalized, are proportional to w? The

zero-degree limit is also reproduced by equation (4.59), since at low tempera-

ture, the renormalized frequencies approach the bare ones and equation (4.59)

just becomes the usual mode sum for phonons (ignoring the zero-point energy

which does not contribute to the heat capacity).
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One can.attempt to concoct justifications for equation (4.59) on the grounds
that it mimics a system of phonons whose freqtiencies are unchanged but whose
occupation numbers are altered by the presence of dislocations, but it is less
pretentious to treat it as an interpolation formula like the Debye law itself.

We now compare the experimental data on the excess heat capacity of
helium films above the Debye law result, with the results of the calculations
based upon wequation (4.59) with the Debye law subtracted out, and with the
dislocation contribution to the heat capacity as calculated from the RG equa-
tions (recall that this is also an estimate of that excess, since we ignore the bare
phonons). Since in general, quantum mechanical heat capacities tend to zero
faster than classical ones as the temperature decreases, we expect the result of
equation (459) to be less than the pure RG result, and the expectation is
confirmed.

Figures 4.7 thru 4.10 show these heat capacities for SHe (*He is similar) for
several coverages with core parameter C chosen roughly to optimize the fit of
the classical dislocation heat capacity t§ the experimental data. Figures 4.11
thru 4.14 shows roughly optimal results for the interpolation formula at several
coverages. The largest temperature on the curves is the heat capacity peak
temperature, and the dislocation unbinding temperature for the particular core
parameter is indicated to be substantially below the peak temperature. In gen-
eral, the steep rise of the calculated heat capacity occurs at higher tempera-
ture, the larger the core parameter. The results of the interpolation formula for

several different values of the core parameter are plotted in figure 4.15.

As mentioned above, the calculations are carried above the dislocation
unbinding temperature by treating a finite-size patch of solid. The crystal patch
size is taken to be the mean platelet size of 1404 (or about 40 lattice spacings.)

as determined recently (for krypton-plated graphite) from modelling of experi-
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Figure 4.7 Heat capacity from experimental data, from RG equations (C-dis), and
from ad hoc interpolation formula, all measured as excess above Debye law, for
SHe at coverage .092 £ 2, core 2.8, gamma .13 and lattice size 40 spacings.
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Figure 4.8 Heat capacity from experimental data, from RG equations (C-dis), and
from ad hoc interpolation formula, all measured as excess above Debye law, for
SHe at coverage .0B7 £ 2, core 3.3, gamma .114 and lattice size 40 spacings.
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Figure 4.9 Heat capacity from experimental data, from RG equations (C-dis), and
from ad hoc interpolation formula, all measured as excess above Debye law, for
SHe at coverage .0822 X 2, core 3.8, gamma .0982 and lattice size 40 spacings.
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Figure 4.10 Heat capacity from experimental data, from RG equations (C-dis),
and from ad hoc interpolation formula, all measured as excess.above Debye law,
for 3He at coverage .0801 A2 core 4.2, gamma .11 and latticesize 40 spacings.
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Figure 4.11 Heat capacity from experimental data, from RG equations (C-dis),
and from nd hoc interpolation formula, all measured as excess above Debye law,
for 3He at coverage .092 L2, core 2.3, gamma .13 and lattice size 40 spacings.

The predicted dislocation unbinding temperature is 2.458 K.
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Figure 4.12 Heat capacity from experimental data, from RG equations (C-dis),
and from ad hoc interpolation formula, all measured as excess above Debye law,
for ®He at coverage .087 A2, core 2.7, gamma .11 and lattice size 40 spacings.

The predicted dislocation unbinding temperature is 1.757 K.
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Figure 4.13 Heat capacity from experimental data, from RG equations (C-dis),
and from ad hoc interpolation formula, all measured as excess above Debye law,
for SHe at coverage .0822 £ 2, core 3.4, gamma .0982 and lattice size 40 spac-
ings. The predicted dislocation unbinding temperature is 1.205 K.
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Figure 4.14 Heat capacity from experimental data, from RG equations (C-dis),
and from ad hoc interpolation formula, all measured as excess above Debye law,

for ®He at coverage .0801

‘&—2

, core 3.7, gamma .11 and lattice size 40 spacings.

The predicted dislocation unbinding temperature is 1.037 K.
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Figure 4.15. Expenmenta] points vs curves of interpolation formula for the heat
capacity of SHe at coverage n= 092-‘( . for values of the core parameter 2.3, 2.¢
2.6 2.8, reacing from left to right.
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mental heat capacity near the registry transition by Callaway and Schick using
RG methods.17.18 Since the same work yields a standard deviation of the platelet
size distribution of 1064, we might expect to see considerable smearing of the
heat capacity from different platelets. Figure 4.16 shows the calculated results
for several platelet sizes, taken by cutting off the RG integrals at the appropri-
ate scale and taking an appropriate lower limit of mode sums involved in the
Debye law and the phonon interpolation formula. These results are surprising --
that near the transition temperature, the size of the crystal in computing the
heat capacity does not matter until the size gets smaller than 40 lattice spac-
ings. These are relatively crude estimates of the size effects, since they do not
take into account any boundary effects; nonetheless, the scale of the variation in
the heat capacity as function of platelet size is probably correct in order of
magnitude, at least. Notice also, that the calculated heat capacity rises less

steeply and at a higher temperature, the smaller the platelet size.

It is very difficult to draw definite conclusions about these results. It is
probably fair to say that the theory does not account for the experimental heat
capacity, but do the differences arise from experimental problems (platelet size
variation and substrate inhomogeneity) or from some defect of the theory? If
the latter, is the defect so fundamental as to invalidate the dislocation unbind-
ing mechanism in this system, or is there some approximation (for example,
assuming the system to be a classical elastic continuum) which is overextended
for this system, but only causes the theory to lose quantitative predictive power

in this case, while retaining validity as a qualitative description of the melting?

Unfortunately, even these vaguer questions are not precisely answerable
either. Certainly, the heat capacity produced by the theory can be made, by
suitable choice of core parameter, to resemble the data in that it rises steeply

in a narrow range of temperatures near the melting transition. The rise must of
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Figure 4.16. Heat capacity vs. T at fixed coverage {.0924 %) 9=.13 and core
parameter 2.4 for 3He for several values of size. The dower curve is for a platelet
size of 10 lattice spacings, the upper curve is actually 4 curves essentially un-
resolved whose endpoints correspond to the effective melting temperature
for patch sizes (from right to left, 40, 100, 300, 1000 lattice spacings.
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TTourse reverse somewhere, since even if there is no other mechanism, once the
dislocation density approaches the atomic density, no more can be created, so

ihe temperature will rise faster for a constant heat input.

However, the calculations always rise much faster than the data above the
iransition and they are designed to underestimate the heat capacity. By making
the core parameter big enr.:mgh. the exponential rise of the calculations can be
pushed to higher and higher temperatures until the calculated heat capacity
does not exceed the experimental heat capacity at any temperature at which
1his method still works, but then the shape of the calculated curve is vastly
different from the experimental one. The fact that the core energies are 4-6
times bigger than the classical Lennard-Jones value and 2-4 times bigger than
other calculated values is mysterious, but no one knows what the core energy in
@ quantum solid should be. It is also disturbing that in changing the coverage by
about 10%, the optimum core parameter changes by about 25%, but this could
be a feature of the rapidly-changing role of correlated zero-point motions in the

quantum solid as a function of density.

The experimental difficulties are also only partially characterized. The
effect of the periodic substrate can be small or large depending critically on the
distance between the substrate and the solid layer (see chapter 5), and our cal-
culation has been carried out using values of the twist elastic constant  deter-
mined in chapter 5 by the distance value at the center of the experimental error
bars. We have only crude estimates of the effect of the platelet distribution
neglecting the very important effects of boundaries, including image strain

fields, and pinning behavior.

How might the true dynamic phonon-dislocation coupling be introduced into

the problem?

We recall that the strains or displacements of the atoms can be
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decomposed into two components, one arising from the singular dislocation
strain fields and the other from the phonon strains. If dislocations are allowed
to move in the crystal, this is equivalent to saying that the atomic momenta can
also be decomposed into contributions from the oscillatory motion and the
motion of the dislocations. We do not know if the decomposition is unique, but
on physical grounds guess that it might well be. Now the kinetic energy does not
Just make a trivial contribution to the internal energy of }%kz T per momentum
coordinate, but just as for the displacements, there is an extra contribution
from the dislocation motion. The problem is actually extremely complicated,
since the dislocations are essentially only free to jitter slightly about their sites
on the lattice unless the stresses become large enough so they can hop from
site to site as explained in section 2. Also there are complications that motions
perpendicular to the Burgers vector can only occur in large energy fluctuations,
since vacancies and interstitials must be created or absorbed. Thus the ele-
ments of a pair do not in general spontaneously annihilate each other, but
persist for long periods without having to orbit each other the way the charges
in positronium do. It is not likely that quantitative statistical mechanics calcu-
lations involving interactions between thermal phonons and dislocations in a
real crystal will be available in the near future, and presumably we will have to
rely on the calculations which have been performed on dislocations in con-
tinua.19.20 We have not, despite some effort, made significant progress toward

elucidating this aspect of dislocation motion in melting.

Ve close this chapter with a speculation on the possible cause of the heat
capacity peak. One tentative explanation of the peak as a saturation effect of
filling up the crystal with dislocations has been mentioned above. Another possi-
bility is suggested by NH. They point out that even after the dislocations unbind,

the material still has some quasi-long-range order in orientation of the bonds
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between atoms, that correlation functions of these orientations decay algebrai-
cally with distance above the melting transition, which implies a liquid-crystal
order. If the substrate is smooth, at high enough temperature there must be a
transition to a true liquid, for which angular correlations decay exponentially. If
the substrate is periodic and has the same symmetry as the adsorbate, it
imposes long-range orientational order to infinite temperature, so there need be
no second transition, although the order gets weaker and weaker as the tem-
perature increases. However, we have shown in chapter 5 that substrate locks
the adsorbate at an angle of about +20° (depending on coverage) from alignment
of symmetry axes. Thus there are two equivalent orientations that are favored
(and a small continuous variation of energy between them), so the possibility
exists for an Ising-like transition between a system of large domains ‘m'th one or
the other preferred orientation (ferrooriented), to one in which the orientation
of individual bonds or small groups of bonds was randomly either of the pre-
ferred ones (paraoriented). This transition would produce a heat capacity peak,
but probably only a small one. We do not know how to estimate this effect, and in
any case, it would be superimposed on the dislocation behavior. Some dynami-
cal experiments on 3He using neutron scattering, 2! and nuclear magnetic reso-
nance?? have claimed to detect anomalies near the heat capacity peak tempera-

tures but the interpretation of these experiments is far from clear.

Nelson and Halperin predict that the mechanism of the breakup or weaken-
ing of orientational order is another topological one, namely the unbinding of
pairs of disclinations. A disclination in a triangular lattice is a rotational distor-
tion of very high energy made by adding to or removing from the crystal a single
atom, producing one 5 or 7-fold coordinated atom somewhere, and then letting
the crystal relax. This is not the same as a vacancy or interstitial, which can be

regarded as dislocation pairs whose elements are separated by two lattice spac-
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ings. In fact, looking at the configuration of a single dislocation in a triangular
lattice, one sees at the center one 5-fold and one 7-fold coordinated atom, so a
single dislocation is a disclination dipole. NH predict that at some temperature
these dipples will unbind (unless some other mechanism preempts the transi-
tion, or in the case of the periodic substrate, suppresses it) by a similar
mechanism to dislocation unbinding, and destroy the liquid-crystal order. They
map the problem onto the scalar Coulomb gas problem solved by Kosterlitz for
vortices in a 2-D superfiuid, and carry through the results from there. It is this
transition that is suppressed by the periodic substrate, and this one which
could in principle be superseded by an Ising-like transition. Considerably more
experimental and theoretical work is needed to determine whether the heat
capacity peak is sharp enough (after inhomogeneities have been deconvolved) to

be a phase transition and to determine the mechanism for it.
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Chapter 5 Orientational Ordering in Incommensurate

Solid Helium Monolayers on Graphite

Note

Most of the contents of this chapter is an amplification of a published
paper,! so there is an unavoidable overlap with material discussed in other parts

of this thesis.

1. Introduction

Certain adsorbates, such as helium, neon and argon, are known to form
incommensurate solid phases when adsorbed at appropriate temperatures and
densities on graphite substrates. Novaco and McTague?3 predicted that
although such adsorbate lattices could translate freely over the substrate
without change in free energy, in equilibrium there would be preferred orienta-
tions with respect to the substrate. They estimated the angle for argon and the
other heavy rare gas elements assumning them to be classical harmonic solids.
Novaco? revised the theory of this effect to account for quantumn behavior and

obtained the small quantum corrections to the argon alignment angle.

In this chapter, we present similar predictions for the quantum systems *He

and *He. 1t is found that the helium lattice prefers to be misaligned by about
17-25° (depending upon coverage) from the corresponding crystal axis in the
substrate. We also present calculations of an elastic constant y, which measures

the restoring force against departures from that alignment.
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Aside from their intrinsic interest, the results presented here are impor-
tant because they may govern the qualitative nature of the melting transition in
these monolayer solids. Nelson and Halperin® have presented a detailed theory
of the melting of the two-dimensional ( 2D) solid by means of dislocation unbind-
ing, in which 7 plays a crucial role. According to the theory, if the substrate
were smooth (i.e. ¥ = 0), melting would proceed in two steps, from solid into a
liquid-crystal-like "hexatic” phase, then into a fluid. By contrast, on a periodic
substrate, the second transition is not expected, because the substrate imposes
long range orientational order at all temperatures if the adsorbate and sub-
strate have the same symmetry. However, it may be replaced by a qualitatively
different kind of transition with an Ising-like character, with two degenerate
misalignment angles providing the two states of the Ising system. 8 In chapter 4
of this thesis we analyze the melting of He monolayers, making use of the results

presented here.

The misalignment of axes between the film and substrate results from dis-
tortions (static density waves or SDW) in the adsorbate as adsorbate atoms seek
more favorable positions in the periodic potential wells of the substrate. These
changes of position are resisted by the elastic interaction of adsorbate atoms,

and a new equilibrium configuration balancing the competing effects is achieved.

For quantum adsorbates, like helium, the size of the distortions produced
by the substrate is greatly reduced owing to zero-point motion. Since each
adsorbate atom samples in its motion large regions of varying substrate poten-
tial, even if there were no interactions between adatoms, an adatom moving
from the least to most favorable spot on the substrate would gain an energy less
than the difference in potential at those spots. By treating the phonons of the

adsorbate self-consistently, it is possible to take account of this effect.4

Thus, the calculation requires detailed knowledge of the corrugations of the
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substrate potential, and the phonon spectrum of the adsorbate (in order that
the balance of substrate force and elastic response can be found). The correc-
tions from zero-point motion also depend on the adsorbate phonon spectrum.
We derive this spectrum from an effective potential determined by the experi-
mental values of the elastic constants of the He monolayer films. The substrate
potential has become known through recent advances which have made the He-
graphite interaction one of the best understood phenomena in surface physics,”

and we make extensive use of those results.

The calculation leads to curves of energy versus orientation angle for the
system at OK. An example at a typical density is shown in figure 5.1 The
minimum in the curve gives the preferred orientation and the curvature around
the minimum (divided by 4) yields 7. In the following sections, we describe in
detail how the calculation is performed, pointing out the ways in which the
extensive experimental data on helium on graphite make it possible to obtain
reliable results using simpler, more phenomenological approaches than were

needed for argon, and we describe and discuss the results.

In section 2 we discuss the nature of incommensurate and commensurate
phases, the physical origin of orientational ordering, and an outline of Novaco's
theory of the effect. The next two sections describe the ingredients of our
phenomenological calculation of the orientational ordering. In section 3 we
present our description of the elastic properties of the adsorbate. In section 4
the helium-graphite potential is discussed. In section 5 we describe an iterative
computation of the static density wave distortions and energy using the ele-

ments of sections Il and IV. In section 6 we present and discuss the results.

2. Origin of Orientational Ordering

The peculiar orientational ordering studied in this chapter only occurs for

an incommensurate 2-D solid. The strict definition of incommensurability, that
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Figure 5.1 Static density wave energy versus relative angle of *He ard *He ad-
sorbed on graphite at a density of .092 £-2. The calculation is done using equa-
tions 12 and 13 assuming the distance of the adsorbate from the substrate to be

2.85 £ for *He and 2.89 A for SHe.
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the ratio of unit cell areas of adsorbate and substrate be an irrational number,
cannot be satisfied by every film in the continuous range of densities covered in
this study, yet, as we will now argue, all the films can be expected to behave like
incommensurate solids, except above the melting temperature and at extremely
low temperatures. The strict definition is, in any case, a sort of red herring,
since any irrational number is arbitrarily close to some rational number. It
might be wondered why registry is not observed at or arbitrarily near any physi-
cal density. The solution of these questions can be understood by considering
the energetics and thermodynamics of the transition to registry from a density
close to a registered density. The details of the commensurate-incommensurate
transition are quite complicated and just beginning to be understood, but the

central arguments are clear.

While any film density is arbitrarily close to a rational multiple of the sub-
strate density (in this discussion only, density refers to ratio of unit cell areas of
substrate to adsorbate), the forces tending to produce registry at that rational
multiple are quite weak, except in special cases. When the density is not a ratio
of small whole numbers, only a small percentage of the adsorbed atoms actually
lock in substrate wells, and many of the others are in unfavorable positions, as
can be seen from the two 1-D examples of atoms registered at 2/3 and 3/5 den-

sity shown in figure 5.2.

It is clear that as long as the potential is purely sinusoidal, the average
energy is independent of the relative position of the two lattices, except for
exact submultiples 1/7n of the substrate density. This is only true if the adsor-
bate lattice is rigid, since from figure 5.2 it is clear that if the unfavorably
located atoms shift their positions downward into the wells, thus changing the
lattice constant of the adsorbate, the potential energy of the system is lower

than in the configuration shown, even when the increased repulsion between
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Figure 5.2. Schematic picture of a rigid chain of atoms in registry at 2/3 densi-
ty (top) and 3/5 density (bottom) in a one-dimensional sinusoidal potential.
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adsorbate atoms is taken into account. There must be a point of stable force
balance. Similar distortions of the lattice occur when the material is not
registered but is at a commensurate density. The difference in energy between
the registered and "floating” states is determined by the energy gain of the
locked atoms (the ones whose positions at the bottom of substrate wells) are not
changed in the distortion, and clearly decreases as the ratio of the number of
those atoms to the total number decreases, i.e., as the density ratio becomes

the ratio of larger and larger integers.

Any marginal improvement depends on the amplitude of the m-th Fourier
component of the substrate potential (for a density m/n). That is, the first
Fourier components of the substrate potential that have minima at the positions
of the atoms marked in figure 5.2 are the second and third, respectively. For
the graphite substrate of interest here, table 5.2 shows that the substrate
Fourier components decrease extremely rapidly with wavevector. It must also
be pointed out that the distortions produced by the different Fourier com-
ponents of the potential will often counteract each other partially, and the net
efflect depends upon the particular density ratio and the relative amplitudes of

those components.

A film with a truly incommensurate density, say 1/V2, can be pulled into

registry by one of several mechanisms:

1. The coexistence of two registered phases, one at higher and one at lower den-

sity, or the coexistence of a commensurate and incommensurate phase.

2. The breakup of the surface into domains of registered phase with various pos-
sible kinds of boundary. The registered phase usually can take several different
positions on the crystal -- i.e., several different superlattices are possible. As an
example of this, shown in figure 5.3, consider the 1/3 registry on graphite — one

adatom for each 3 graphite hexagons — which has three possible superlattices.



Figure 5.3. Schematic picture of basal plane surface of graphite (with one car-

bon atom at each hexagon vertex) and three possible superlattices for a re-
gistered phase at density 1/3.



- 109 -

Regions of the crystal where one superlattice is occupied can be abutted with
regions of occupation of one of the others, with some kind of unregistered boun-
dary of higher or lower density between them. Domain structures observed
include stripes, hexagonal domains, and irregular honeycomb structures all of
whose walls are parallel to one of the six symmetry directions but have irregular
lengths.® The domain walls can be regarded as collections of defects, patches of

incommensurate phase or in several other ways.

The phase boundaries clearly must have higher free energy than the uni-
form incommensurate material, so the transition to the registered state will
only occur if there is a significant lowering of the free energy of the registered
portions of the film, i.e. if the appropriate Fourier components of the substrate
potential are large enough. Also, the difference between the registry density
and the initial density is important, since the smaller that difference, the
smaller the irregular regions of the surface (the shorter the length of domain
wall or phase boundary) needed to fit all the atoms onto the substrate. Thus, for
a 1/ V2 film, we would expect that a 100/141 registry would be more likely than
a 10/14 registry because the former is closer to actual density; yet, we would
expect neither to be very likely because neither the 100th or the 5th harmonic. (
10/14 = 5/7) of the fundamental substrate corrugation should have large ampli-

tude.

Steric considerations and the strength of the adsorbate-adsorbate interac-
tion are also important. Helium, for instance, cannot form a monolayer on gra-
phite at 1/ V2 density because some atoms are squeezed off the surface into the
second layer. Also, the 2-D case is more complicated than the 1-D case since the
substrate symmetry is important. It is readily apparent from figure 5.3 that 1/3
is a highly favorable registry on graphite, while it is impossible to produce a uni-

form triangular lattice at density 1/2 for which every atom is in a substrate well.
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Despite the weakness of the registering forces on the adsorbed atoms at all
but a few very special densities, every commensurate component of the poten-
tial produces an infinite energy gain if the adsorbate atoms lock into substrate
wells. Thus every harmonic of the potential will register a narrow band of densi-
ties at 7=0, and there will be no incommensurate solid. What happens at finite
temperature?

The relevant quantities at finite temperature are the free energies of the
registered and unregistered phases which depend on both the energy and
entropy. Ignoring the thermal motions, the energy of the registered phase is
independent of temperature, as is the entropy (given by the number of possible
superlattices times the number of atoms, i.e. also infinite). The free energy can
thus be written for the registered phase (that is the locked adsorbate)

Frpe=—NOV—NkpTlnl (5.1)
where N is the number of atoms in the adsorbate, 6V the energy difference
between the registered and floating potential energy, per atom, kg Boltzmann's
constant and [ the number of superlattices. The contribution of each Fourier
component of the potential to §V is proportional to nV,/ m, where numerator of
the density ratio is m, For the unregistered phase (that is, the same adsorbate
in arbitrary position with respect to the symmetry point of the substrate, but
possibly still locked at a preferred angle), the average energy is zero but the

entropy is much larger (and not easy to calculate).

We can roughly estimate the transition temperature for a particular
registered density (ignoring the effects of nearby registries) by equating the
potential energy gain of the registered state (per atom) with kg 7. Presumably
at this point, the thermal entropy of the floating state will dominate the poten-
tial energy gain of the registered state. This is an overestimate, since we have

ignored the effects of nearby registries (each of which tends to disrupt the
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other).

For the particular case of helium on graphite, there is only one corrugation
wave vector of importance, the lowest (and its 5 counterparts at multiples of
80°). At the lower densities, the helium film forms a gas in preference to a solid.
The 1/3 ordering does occur, and is used as a coverage calibration for compar-

ing data from different laboratories. The ordered phase occurs for a narrow
band of densities around 1/3, separate from the denser helium solids discussed

in this thesis.

Nelson and Halperin® have argued that as the temperature approaches
zero, every Fourier component of the substrate potential, no matter how weak,
is able to lock the adsorbate in a tiny range of density into registry, and as the
temperature decreases, the phase diagram becomes filled with an increasingly
complex proliferation of registered and incommensurate phases, but with some
kind of registered phase for every density at zero temperature. (Their argu-
ments are made for classical systems, and it is not completely understood what
role the strong quantum effects in the helium solids play in this discussion,
except that the zero-point motion should reduce the effective strength of any

potential corrugation that tries to register the film.)

Our calculation of the orientational ordering at zero Kelvin ignores this
registry, for the following reasons. The only necessity for performing the calcu-
lation at 0 K is that the sound speeds must be deduced from the Debye tempera-
ture, which is a 0 K extrapolation of the low temperature data. However, we do
not expect the elastic constants to change significantly at low temperature, nor
do we expect to see significant thermal effects on the orientational ordering at
extremely low temperature. Thus, we expect our calculation to be accurate at
(still low) temperatures above which the registry is destroyed if it is produced

by high order substrate potential corrugations, even though we have neglected
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the registry energy at lower temperatures.

The sets of reciprocal lattice vectors (hk) are given by 5‘hk=hfr'm+kém with

| G |2=(h®+k®~hk)G§, for a triangular substrate, and similarly for the adsor-

hR+k?—hk

1Zrmi—ml 27

bate. Thus, registry is produced for unit cell areas in the ratio

the ones with small (hk) will be the strongest. As we shall show, the strength of
the substrate Fourier components in this range is less than .04 of the strength
of the fundamental corrugation which is the only one that contributes to the
orientational ordering. Furthermore, the zero point motion renormalizes these
components to lower values, and the result is that the minimum length corruga-
tion with which the films can be exactly in registry has a renormalized strength
7x107* times smaller than the primitive substrate corrugation, which produces

the 1/3 registered phase that becomes a gas above 3K.

We point out that the physical arguments made here do not agree with the
arguments of Nelson and Halperin, whose criterion for the transition between a
registered and unregistered solid at the same density is independent of the

strength of the substrate potential in the weak-coupling limit.

If the material is not registered, the main effect of the substrate potential
is not to tend to lock the film to a particular position with respect to some sym-
metry point of the substrate, moving each atom an equal amount. Rather, it is
to distort the helium lattice in an inhomogeneous way, pulling each atom some
distance into the nearest graphite potential well. The size of the distortion is
governed by the strength of the elastic forces of the helium crystal which get

larger as the atoms are pulled together or pushed apart.

Once again, a classical 1-D model helps to elucidate the nature of the distor-

~

tion, as in figure 5.4. The atoms are displaced slightly from their undistorted

positions, moving just far enough to reach mechanical equilibrium with the elas-
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Figure 5.4. Distortions in a one-dimensional linear chain in an incommensurate
sinusoidal potential. Atoms are pulled toward the bottom of the nearest well.
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tic He-He forces. The substrate potential variation from this particular corruga-
tion component is Vpe *® so the force moving the atom is +iGVge *®. If we
imagine the atoms to be connected by harmonic springs, the elastic response of
the distortion for atom n is —K(2u, —upn4+;—Un-;). It is clear that since the forces
and responses must be periodic with wave vector E? the displacements are
exactly those that would be produced by a standing wave phonon of the same
wave vector at some instant, and the elastic energy is just the phonon potertial
energy at that instant. Since the corrugation occurs at a wave vector shorter
than the He-He spacing, such a phonon is equivalent to (i.e., as far as the He
atomns can tell, indistinguishable from) one in the first Brillouin zone of the He --
in figure 5.4, the longer wavelength mode labelled §, with §=G-% and 7 a

reciprocal lattice vector of the He. The energy change for this distortion is

given by

Eg(classical 1-D) = =Y (iGVeug—mwiug/ 2) (5.2)
z
where v, is determined by minimizing this energy with respect to it, or,

equivalently, by balancing the forces, and is thus,

ug(classical 1-D) = —i),GVg/ (mwf). {5.5)
z
The two terms in equation (5.2) are, respectively, the potential energy gained by
moving deeper into substrate wells, and that lost by exciting some amplitude of
the "static phonon” §.

The 2-D case is similar but for this important effect: the "static phonon”
wave vector § has a length and orientation which depends upon the angle
between G and 7 (see figure 5.5). A distortion along G can be analyzed into com-
ponents transverse and parallel to ¢, giving the amplitudes of the static
transverse and longitudinal phonons excited. (Strictly speaking, the com-
ponents must be along the polarizations of the d phonons even if they are not

precisely transverse and longitudinal.)



Figure 5.5.
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Figure 5.5. The geometrical determinants of orientational ordering are shown
for the same conditions as in ﬁgure 1. The Brillouin zone of the adsorbate, the
reciprocal lattice basis vectors Tg; and ¥4 are drawn to scale relative to the sub-
strate prumtlve reciprocal lattice vector Gm The adsorbate reciprocal lattice
vector 7); is the nearest in magnitude and direction to Gm for these experimen-
tal conditions and when subtracted from Gm produces the vector g, which is the
vector in the first Brillouin zone of the adsorbate which has the same phonon
eigenfrequencies and polarizations e; and ey as Gm The angle ¥ is the orienta-
tion orderm_.g angle, the angle of the minimum in energy of figure 1. Note that
neither €;-Gg, nor ér Gm vanishes, so both transverse and longltudmal distor-
tions occur at this angle. Since the Fourier component of the substrate poten-
tial with wave vector Gp; produces the only significant contribution to the distor-
tion energy, this figure shows the influence of the geometry almost completely.
If Gp, were aligned with 73, the denominator of equation 13 {and hence the dis-
tortlon energy from longitudinal displacements) would be reduced but then
er Gm would vanish, and there would be no contributions from transverse distor-
(€7 Goy)? (EL Ge1)?

tions. The energy minimum occurs at a maximum of ?
w 'UJL
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The energy gain depends upon how much of the distorting force is
transverse to § -- a mostly transverse force is less strongly resisted; thus the
distortion is large before mechanical equilibrium is reached, and the energy
gain larger. Examination of figure 5.5 makes it clear that the amount of
transverse force increases as the angle between G and 7 is increased; however,
at the same time the length of § increases, and, except near the zone boundary,
this means that the energy of the § phonons increase also, so the energy gain

and distortion tends to be reduced by this second effect.

Thus, the preferred orientation angle is determined by the balance of two
competing effects — one tending to increase the angle to excite a larger ampli-
tude of the weaker phonon polarization, the other tending to decrease the angle
to reduce the energy of the phonons excited, and hence the resistance to strain.
As long as the transverse phonons have considerably lower energy than the long-
itudinal ones, the locking angle will be away from any symmetry direction in the

crystal by a finite amount.

From these considerations, the 2-D analogs of equations (5.2) and (5.3) can

be readily written down:

Ep(classical2-D)=Y (—ida GVa _ Zumwglug/ 2) (5.4)
2y ==Ly éfncvf,;“ (55)

This analysis makes transparent the details of the SDW theory of Novaco, as
long as we carefully carry over our arguments to the case of a quantum mechan-
ical adsorbate. The only missing piece is the role played by the zero-point
energy.

The major effect of the zero-point motion is to reduce the strength of the

distorting potential. Since the distortion is proportional to the strength of the

potential, it is reduced by the same factor, and the energy (quadratic in the dis-
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tortion) is reduced by the square of that factor. The atoms move over a sub-
stantial fraction of the unit cell, so that the advantage of an atom sitting at the
bottom of a substrate potential well over one at an unfavorable position is much
less than the difference in potential between the two sites, since the first atom
spends a substantial fraction of its time in places where the potential is less
favorable, and the latter atom spends time in better positions than its average
position. This smearing produces a Gaussian renormalization of each substrate
Fourier component of the form e"C Ve This smearing factor contains the ten-

sor W which resembles the mean square vibration amplitude of any atom

Wt = Y<oussub> = zl—m‘%e,a(k‘)e,ﬂ(lz);im[n, ()+3). (5.6)
where the €, and w are polarizations and frequencies of the phonons of the
undistorted lattice and m; (k) is the usual Bose factor (and is zero at OK where
this calculation is done). The summation is over the entire adsorbate Brillouin
zone and over all three modes. N is the number of atoms in the adsorbate.
Strictly speaking, the phonon frequencies and polarizations used in equation
(5.6) should be those of the distorted lattice, but, as Novaco has shown, when the
zero-point amplitude is large and the distortion amplitude is small, {(which we
verify a posteriori), the phonon spectrum of the undistorted adsorbate can be
used. This is convenient because the undistorted lattice is highly symmetric,
and is isotropic at long wavelengths. Since large zero point motion reduces the
distortion amplitude, unless the substrate potential has very strong periodic

components, the approximation of the spectrum of the distorted lattice by the

undistorted one is excellent for quantum systems like He.

Suffice it to say that this effect reduces the size of the distorting potential
seen by any atom by a factor of order B (and the distortion by the same propor-
tion) from the classical value, and hence the SDW energy and y by a factor of

order 60. There are other, more subtle effects, e.g. a change in the phonon
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energies and polarizations when the adsorbate is distorted, but in part owing to

the large quantum fluctuations, the distortions are small enough that this effect

can be neglected.

3. Theory of Static Density Waves and Orientational Ordering

In this outline of Novaco's theory of static density waves in 2-D incommen-
surate solids,4 an attempt is made to convey the essentials of the derivation of

the results just reached by physical reasoning.

The approach is to minimize the free energy of the system of film plus film-
substrate interactions (the substrate is assumed to be too stiff to be affected by
the presence of the film) by a variational calculation in which the varization
parameters are the Fourier components of the distortions and the frequencies
and polarizations of the phonons of the distorted lattice. The results are the
equilibrium values of those quantities. Since the relevant thermal averages are
taken over the equilibrium distribution (which depends on the unknown parame-

ters), the results appear as self-consistent equations for those parameters.

Fortunately, in the case of helium on graphite, for which the zero-point and
thermal oscillations are large and the distortions small, it is not necessary to
solve the self-consistent equations. Instead, the phonon frequencies and polari-
zations of the undistorted lattice can be used (although they also satisfy self-
consistent equations) and the distortions computed as a linear response to the
perturbing substrate corrugations, just as has just been done for the classical
case. In fact, the only difference between the classical and quantum film in this
approximation is that the He-He and He-graphite couplings are both renormal-
ized by the motion of the He atoms, and for the latter, the renormalization of
the corrugation at wave vector G is through a corresponding Debye-Waller (or
smearing) factor e~C 7% giscussed earlier, where W=¥<6u%uf> is a tensor

measuring the mean square displacements of the atoms. The Hamiltonian of the
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monolayer is

=1 =2
A 2m§:p +3+0
where & is the He-He potential and U the He-graphite potential. Letting Rf be

components of the undistorted equilibrium position of atom J, Zf be com-

ponents of its displacement, we can write
LIS ONIIDY 1{72"3'“31 R gatier-2p

U aug

Uz;; Upe T B (HiG%aP)
where Vj is the Fourier transform of the He-He potential, Uz the Fourier com-
ponent of the substrate potential corrugation of wave vector G. The sum
marked all § means a sum over all g-space rather than over the first Brillouin
zone of the undistorted adsorbate.

Phonon creation and annihilation operators can be introduced in the usual
way, but the thermal averages of single creation and annihilation operators do
not vanish, because the distortion is non-zero. A canonical transformation is
made to a representation using new creation and annihilation operators which
have the average value (the distortion) subtracted out. If those average values
of the original operators are denoted by VN ¢E17=<aiﬂ>' the Fourier components

of the distortion can be written

ﬁa-:;gz (VR ma () (¢ +E2)
Since these distortions are standing waves we expect the amplitudes to be real,
so the corresponding velocity average x( {f—¢_g) must vanish in equilibrium
and Novaco demonstrates this. In this equation, £,(¢) is the polarization vector
and w;(§) the frequency of the phonon of wave vector §, mode index L. These

parameters, along with i3 are to be found.

The free energy is now given by F=<H>-TS, where the average is calcu-
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lated by taking diagonal matrix elements in the new phonon basis and the new

phonon modes are treated as non-interacting.

The details of the actual variational calculation are tedious and described
sufficiently well in Novaco's paper to avoid repeating them here. The variations
of F with respect to m;(§) produce the usual boson thermal occupation
- 1
()= —

e P (6)_1

8<H>
ony (d)

respect to w;(§), as expected. The frequencies and polarizations of the phonons

where 12, (§)

and turns out to be equal to w;(§) when F is varied with

turn out to be given the eigenvalues and eigenvectors of the usual dynamical
matrix formed by Fourier transforming the entire potential (He-He plus He-
graphite), also as expected. Finally, the variations with respect to ﬂq are car-
ried out, and since only the potential energy terms depend upon it, the self-
consistent equations are

wf(§)=2.(9) D(§)&(F)
D(§)-&.(F)=wi(d)E(F)

8<U>+6<®> _ 0
sug
with
8<d> _ i q-(B,-B)) we@p-af) (KT 3(B-Rp)
=— V,q? e e e
dug 21.16”3:3 e q7®
6; ﬁf =i2§muae&'5-ﬁ)e (2<22) (-2 w-B)g (- B)
Ug J
where

mw, (§)

The dynamical matrix D(§) is the sum of terms arising from the substrate and

TPp=2(<sa750f ~007600>)= S Dot @)ef(@) ——tm @) +Hll1—e T B
d.i

adatom potentials,

D=D1+Dz
with
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Dgf= ﬁ_; ;n1—§—G“G’Uae‘3' v-2,i8-<2,) (8 Bp)

and
DgR (P)= }_vl;zé”za:_qaqpyqeﬁ'(ﬁl—ﬁz)ew"ﬁf—ﬁf)e (—%:'i-l‘uiz')eiﬁ(ﬁ;—ﬁ,/).

The equations for the variation of <> and <> now are approximated

(because they are quite complicated) by assuming the distortions to be small,

<>

expanding e in powers of u, keeping only terms linear in . In terms of

the dynamical matrix in the absence of strains,

Dé"(p)— 2&12—:1 gtV e TR KTy D(1—cos§-(Bi—-E)]) (5.7)

the approximate forms of the potential variations are

6<3>
o

where the term independent of u is zero, and

=Nm.Dg? (F)u’,

where only the term independent of u is retained. In terms of the eigenvalues

w; () and eigenvectors & (§) of Dy the variation of <&> can be rewritten

8<d>
o

The two sum of the potential variations is set equal to 0 producing the solution

—NmEe{’(q)ez(q) d_g.

<uy >=i§u§ sin(G-R)

with iz given by
< e(B) Up(z)ezp (-G4G*W™) .
uf = -y, 2 = €(G) G
1 w®(G)
To evaluate the strain energy of the distortions, the term e BBy in <&>

is expanded to second order in « and in <D > is expanded to first order in u,
both terms contributing to the energy to second order in Uz, producing the

result



-123-

Espy(8) = _%ﬂ'; Ug(z)ezp (-G+GYIWH) GPué.

plus an additional termnon-zero only for commensurate systems

E'Rec:N};,Ed’c’} Uge-0 79
Ed
and another term independent of » which gives the usual potential energy asso-
ciated with the thermal and zero-point phonon motion.

When the substrate-adsorbate potential is purely sinusoidal with wavevector
G (and its symmetric equivalents), and the wavevector § in the first Brilloin
zone equivalent to it (see figure 5.5) is sufficiently small in megnitude, the orien-
tational ordering can be discussed in a more illuminating fashion and &l the
results can be derived analytically. In this case, the sum in equation {5.10)
reduces to a single term, the strength of the sinusoidal component of the sub-
strate potential and the smearing factor arising from zero-point motion do ne
influence the angular dependence, and the pheonons appezring in the dencomina-
tor of eq. (5.13) can be approximated by isotropic sound waves with velocities

c; and cp.

The substitution of eq. (5.13) in eq. (5.10) under these conditions gives

[ 5)2
-’ ] (1—){0031?) o B Y2 (=D
E + (xsin® 5.8)
BTE = (1+x%—2xcos¥)? | (4 (xsint) '
where 4 is the angle between G and # and X is the ratio of the magnitudes of &

and 7 . This ratio varies with coverage as the adsorbate lattice spacing changes
and possibly with orientation angle since as the two lattices are rotated vith

respect to one another, the particular # needed to reduce G to the first Brillowin
. cf
zone may shift. In eq. (5.8), ¥ is (—c?—)

It is clear that for all ¥ for which this particular # is the closest to G, all of
the angular dependence, including the value of angle producing a minimum in

Espy. is a function only of x and the ratio of the speeds of sound. Differentiating
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eq. (5.8) with respect to ¥ gives an equation for the angle of the minimum

energy in terms of these parameters.
cos(¥) = 1+(2y—1)® (5.2)

(Y=13+(@+1)x -
Figure 5.8 shows plots of this angle vs. x® (x? is inversely proportional to the den-

sity as long as 7 remains the closest adsorbate reciprocal lattice vector to G) for
several values of sound-speed ratio. Note that ¥ in figure 5.5 is mezasured with
respect to 7;, the nearest adsorbate reciprocal lattice vector tc G, and this 7 is
at an angle of 30° to an angle which would bring the two latiices inlo absolutle
alignment, so an angle of 5° in figure 5.6, for example, correspcnds tc one of 25°
in figure 5.7. The only known cases of registered helium solids on graphite occur
when é‘;]:?g, or for ¥=0 in figure 3 and 4 and for ¥=30° and coverage of

.063664 2 in the notation of figure 5.7.

The physical content of equations (5.8) and (5.9) can be summaearized by the

7]

following observations. For a given value of y, the preferred argle increases &
the shear force weakens (¥ increases)but the dependence is weak for most
values of x. For a fixed value of ¥, the angle approaches zero as the lattices
approach a particular registry for which y=1. (There is an acditional piece in

the energy when the two lattices are commensurate, but it is igncrec here.)

The incommensurate heliurmm monolayer solids occur only in density ranges
in which the most important Fourier component of the substrzte potential, Ug
(where the subscripts are the Miller indices), is quite different from the nearest
7, so the very sharp minima developing as registry is approached are not
observed. Even though some other reciprocal lattice vector of the substrate
may be close to some reciprocal lattice vector of the adsorbate (i.e. the lattices
are nearly in partial registry) the Fourier components of the potential fall off
rapidly as the Miller indices increase, and the exponent in the smearing factor is

proportional to the square of G, so the effects of these accidentza! approaches to
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registry are negligible. (The term neglected in these calculations which is
nonzero only at exact registry contributes an energy linear instead of quadratic
in Uz and in the smearing factor, but is still insignificant except when the unit
cell areas of the two lattices are exactly in the ratio of very small whole

numbers.)

1. Flastic Properties of the Helium Monolayer

Any theoretical approach to the elastic behavior of helium: solids is compli-
cated by the strong quantum effects present. The monolayer sciids behzve simi-
larly to bulk material in that the harmonic analysis of the soiids at the eguili-
brium spacing produces imaginary frequencies, which become real when the
extremely large zero-point motion (which averages the potential over large
areas of the unit cell) is taken into account. Furthermore, strong correlations
between the atoms in the solid cannot be ignored, for if they were nol present,
the large amplitude of zero-point motion would frequently carry atoms deep into
the repulsive cores of their neighbors. A considerable theoretical machinery
known as self-consistent phonon theory® has been developed for treating this
difficult problem, and has produced useful, but not extremely accurate results.
For the bulk solids, this is true despite the accurate knowledge of the He-He
potential. In the monolayer, the free space He-He interaction is modified by the
dielectric properties of the graphite substrate, and while these medifications
have recently been calculated!© it was decided that a full-blovn self-consistent
phonon calculation for the monolayer solids would probably be less accurate
overall than a phenomenological approach. Since an effective potential arises
from a self-consistent calculation in any case, we use an effective He-He poten-
tial for the undistorted lattice whose parameters are determined by experimen-

tally derived speeds of sound.
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The potential was proposed by Novaco.l! The essential idea of the approxi-
mate spectrum is that since the monolayer solidifies only under 2-D pressure,
the elastic properties are predominantly influenced by the repulsive part of the
potential. The effective potential is thus taken to be a purely exponential repul-
sion, v(r), whose first and second derivatives, evaluated at the equilibrium lat-

tice spacing for a nearest-neighbor Born-von Karman calculaticn are

,_ v, V3 .
v = —‘U-.B—(no—zi)_% (5.;05)
v = Moge® 7Y R/ (5..0b)

where n is the areal density, ng a convenient reference density and B and «§ are

the parameters to be determined from the sound speeds by the equalions

2
\/_n/no(s(%ja—) —-1)
B = . (5.212)
(?‘3
. 4 ze—B(l—l/ V7 ng) o
0o = ZZTeL o 51ty
B

Table 5.1 displays the values of the spectral parameters at severz! densities of

both helium isotopes.

The crudeness of this model of the film is compensated by the determina-
tion of its parameters entirely by experimental elastic data. By using the exper-
imental data to determine the parameters of the model potential, we efectively
do a self-consistent phonon calculation. We also assume thet for each 2-D wave
vector there are 3 modes, one each transversely and longitudinaliy polarized in
the plane of the adsorbate (at long wavelength) and a third transverse optical
mode polarized normal to the substrate at long wavelength, with energy deter-
mined by the difference of the lowest excited state of the substrate-He potential

and the ground state,!? 6.24 meV for *He and 5.70 mev for *He.

It can be shown® that when the substrate and adsorbate attzin their
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optimum orientation the energy of small deviations (in the plane) from equili-

brium can be written

H = %d?_,m(zllﬂk? + My 645)% + (85w — 8,5)%) (5.12)
where u and A are the 2-D Lamé constants, u;; are symmetrized displacement
gradients, u;; =%(8;4;+8;%;) in the plane of the adsorbate {Roman indices signify
2-D components) and 7 is the elastic constant restoring local twists of the adsor-
bate relative to the substrate. Actually, the initial pressure without which the
monolayer solid will not form adds a correction to this equation. II the elastic
constants are defined in the conventional way, that is, as the second derivatives
of the free energy with respect to strain evaluated at the eguilibrium
configuration, then the 2-D pressure, ¢, can be properly included bty repiacizg A

by A + ¢ and u by 1 — ¢ in equation (5.12) and adding a term Y, —g8;uy; 1514

=
cicms

The sound speeds for waves in the distorted medium are given by'4
pcf = u—p+2y (5.232)

pcf = 2u—p+A (5..3b)
for transverse(T) and longitudinal(L) sound, respectively. p is the mass per unit

area of adsorbate.

The sound speeds are obtained from experimental measuremenis of heat
capacity and chemical potential of the monolayer solids, which yieid the Detye
temperature 0p, the compressibility « and the spreading pressure ¢. For ther-
modynamic data needed to generate the elastic properties of *He monolayers
see Elgin and Goodstein,15 and Bretz, et al. 18 Data on 3He are contained in Her-
ing, et al. 17 and unpublished work of Elgin, Greif and Goodstein. The summear

of the elastic theory of helium monolayers is contained in reference (14). Since

0} = (i—?—)zgf-{-c-l?—+ c_l,?'] (5.12)

and
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L =2y + plef-cf) (5.25)
the experimental data together with an assumed value of vy allow equations
(5.14) and (5.15) to be solved for the sound speeds, which then determine the
Lamé constants along with B and w§. Our procedure is to iteratively refine these
parameters and 7y simultaneously until a consistent set is found. This is done by
guessing a value of ¥ (usually zero), solving equations {5.2%) and (5.15) for the
sound speeds, proceeding with the rest of the calculation as described belov to
obtain a new value of ¥, which is then used to generate a new sclution of equa-
tions (5.14) and (5.15). The procedure eventually converges to a value of ¥ which
does not change from iteration to iteration.

To make use of the elastic properties of the He monclayer, we calculate {for
a phonon of wavevector §) the dynamical matrix, which has eigenvalues egual to
the square of the angular frequencies of the 3 phonon modes and normalized
eigenvectors along the direction of polarization of these modes. The phonon
energies and polarizations are used below to find the size of the distortions and
their energies. The dynamical matrix for our model is1! (using Greek indices for

3-D vector components)

DoB(q) = wfdekeo® + —i Rl - cos(t}'ﬁj)) (5..6)
M 2
with w, representing the vibration frequency of the optical mode at lo

wavelength. The force constants ¢ are given by

V3 %
> = (nc_g—) 4
8%8(Ry) = v (R;)|Bandpm — — 0047 (5.17)

where 7% = z2+y?+2%? . The dynamical matrix of equation (5.16) is used as an
approximation to the undistorted Dg of equation | (5.7). A typical phonon spec-

trum in the symmetry directions of the adsorbate crystal is shown in figure 5.8.
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Figure 5.8. Phonon spectrum (angular frequency vs. wave vector) in the sym-
metry directions of *He adsorbed on graphite at coverage of .082 A2 calculated
according to the model of section 2. The three modes in order of increasing en-
ergy are transverse acoustic, polarized parallel to the substrate, longitudinal
acoustic, and transverse optical polarized normal to the substrate. The inset
shows the Brillouin zone and the symmetry directions.
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2. The Helium-Graphite Potential

Atomic scattering experiments!8.19 have been used!? to produce the most
accurately-known of any substrate-adsorbate potential for the system of helium
on graphite. The results include detailed knowledge of the Fourier components
of the potential. Other calculations involving this potential have prcduced
remarkable agreement with experiment.” One important result of the study of
the He-graphite potential is that it cannot be analyzed as a sum of iscircpic He-
C pair potentials, but must include contributions from the anisctropic eleciron
distribution in the graphite layers, thus enhancing the corrugations of the

potential and the degree of orientational ordering.
The substrate-adatom potential is written as
U(z) = Uo(z)+§ Up(z)e it ? (5.28)
where z is the height above the substrate, ¥ is a vector in the plane of the sub-

strate, and the sum is over the reciprocal lattice vectors of the substrate &,

The leading term is

_ 4neo® 2 0 o
Up(z) = =i %(10.2/d) - ¢(4.2/d) (5.19)
and the Fourier components are given by
neo®Be o -~
Uaz) = ——)*x (5.20)

2Gys_1 Gz LA
[(oz—)sm{Ks + ap(Ks - FKS)] - |Kz + a4(Kz - T!‘S):Ii]'

Here ¢ is the generalized Riemann zeta function, K; are modified Bessel funec-

tions of argument Gz, ap and o, are parameters characterizing the anisotropy,
£ and o are effective 2-D Lennard-Jones parameters fitted from the experimental
bound state energies and matrix elements between bound states to excellent
accuracy. The rest of the parameters characterize the graphite crystal and are

identical to those tabulated in reference (12).
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Theory and experiment also provide limits on the distance of the helium
monolayer from the substrate. A WKB calculation in the laterally-averaged sub-
strate potential gives 3.00 K for *He and 3.04 X for SHe, while numerical integra-
tion of the Schrodinger equation for the laterally-averaged potential predicts
2.92 X for *He,? and a more careful accounting of the anisotropy predicts 2.89

K20 Preliminary experimental neutron scattering results?! give 2.85 X for this
distance. We use the experimental values in our calculations, but the results are

tested for dependence upon this parameter, as we shall see below.

3. Determination of Orientational Ordering

We now calculate, for a particular alignment angle, the energy per adatom
of the static density waves produced by the triangular graphite lattice on the
triangular helium monolayer. Repeating for convenience the results of section

2, the energy as a function of misalignment angle ¥, is given by?*

Espy(9) = —%’i; Ug(z)ezp (—GHGY WH) GPug. (5.21)
Here u# are components of the distortions of the adatom equilibrium positions
caused by a particular density wave at wavevector G. (If the two solids are com-
mensurate, an additional vector is needed to describe the displacement of the
origin (a center of symmetry of the adsorbate) from a center of symmetry of
the substrate. For infinite incommensurate lattices, however, it is always possi-
ble to locate the origin at a place in the adsorbate where the two centers of sym-
metry coincide, and thus this additional vector cannot appear in the final answer

and has been set to zero. See references 1 and 3.) They are given by

ug = -y e Ua(::)?()gwmw) &(8)G (5.22)
(3

Here m is the helium atomic mass. w is the angular frequency of the phonon of
the undistorted lattice at the wavevector G in the extended zone scheme for the

adsorbate, and the & are polarization vectors for these phonons with mode



-133-

indexed by .

Figure 5.5 shows the adsorbate Brillouin zone, a representative G of the
substrate, and the importance of the geometry of the two lattices in determin-
ing Espy. In the diagram, 1",;,- are reciprocal lattice vectors of the adsorbate, and
the angle between the two lattices in reciprocal space is denoted by 3. To deter-
mine the phonon energies and polarizations appearing in equation (5.22), we find
the unique ¥ which reduces G to the first Brillouin zone of the adsorbate. The
equivalent first-zone wave vector is ¢ =G-%. It has the same eigenfrequencies
and polarizations & as G. Thus, a phonon transverse to § will not be transverse
to G and &-C will be non-zero. The substrate corrugation Uz thus produces dis-
tortions with sizes determined by the phonons corresponding to §. The angle-
dependent factors in equation (5.22) arise from the reduction of G to the first
Brillouin zone, and thus appear in the phonon frequency and the scalar product

of & and G.

Our calculation proceeds by the iterative scheme alluded to in section III.
We guess a value of 7, usually zero. With this choice, the speeds of sound can be

determined from the experimental parameters.

The sound speeds determine the parameters of the phonon spectrum
needed (see section II) to evaluate equations (5.21) and (5.22) at any angle. The
minimum energy (5.21) is located crudely by testing at 1° intervals through the
possible 30° range of distinct alignment angles, and then found to arbitrary
numerical accuracy by an iterative parabolic fit. The curvature of this minimum
is a new prediction of 4y. A new guess is made partway between the old and new
values of ¥ and the whole process iterates until the new and old values are the
same. Convergence occurs for all experimental coverages of both isotopes of He

for which incommensurate solids are known to occur.
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Each time the angle is changed, the eigenvalues and eigenvectors of the
phonon spectrum at wavevector G must be found for each Fourier component of
the substrate potential considered (and for a representative set of wave vectors
for the sum in equation 14). The distortions and their energy are computed for
21 distinct Fourier components of the potential (each has sixfold symmetry),
although only 3 of those make appreciable contributions, and to a good approxi-
mation, only the lowest G is necessary. Table 5.2 presents values of the sub-
strate potential Fourier components for reciprocal lattice vectors ordered by
their Miller indices, and typical values of the smearing factors for those com-

ponents.

For the highly symmetric helium solids (at least before they are distorted
by the substrate), it is easily shown that the only non-zero components of # are
the diagonal ones, and W**=W¥W . Since the z-component of G is zero, the tensor
contraction G'W G reduces to W**G?, so the dependence of the smearing factor
on the reciprocal lattice vector is easily found to be

Sy = SfkP+E-r) (5.23)
where S;; is the exponential smearing factor for 5'u=k5r'm+15m. Thus as the
length of G increases, the smearing factor decreases very rapidly, and hence
the contribution from the larger reciprocal lattice vectors to the orientational

ordering is depressed.

In fact, we find in retrospect that the contribution of Ug; to the SDW energy
is an excellent approximation to the full result. For this case (see reference 2),
the preferred orient&tion angle is independent of the magnitude of Uz (although
the energy and ¥ are not) and depends only on the adsorbate density and ratio
of speeds of sound, through their influence on the shape of the model phonon

spectrum.
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4. Discussion of Results

The results of the calculation are summarized in table 5.3, which presents
the elastic properties of films at several different coverages of 3He and *He. Fig-
ure 5.9 displays the value of orientation angle vs. coverage. (The angles for argon
and neon layers are respectively, 26.5° and 12°.)2 Figure 5.7 is a graph of ¥ vs.
coverage for each helium isotope.

It is expected that the orientational ordering should be weaker in ®He than
in *He, as the results confirm, for two reasons. First, the 3He is at a larger dis-
tance from the substrate, which implies a weaker coupling. Second, the zero-
point motion for 3He is substantially larger than that of *He, as is evidenced by

the smearing factors in table 5.2.

All the above results are calculated assuming the adsorbate is localized 2.85
R above the substrate for *He and 2.89 & above for SHe. The *He value agrees
with the experimental results and the 3He value is chosen to produce the same
ratio of distances as the WKB calculation in the laterally averaged potential. In
table 5.4, we compare the results with those computed at a particular coverage
at the theoreticaliy predicted distances discussed above, and at the limits of
precision of experimental measurement. From table 5.4, it becomes clear that
the estimated error in the experimentally determined *He-substrate distance of

+.054 is too large to give a precise value of 7.

The reason for this is shown in figure 5.10, which is a schematic picture of
the anisotropy of the substrate potential (based on reference 10), measured
above the center of a graphite hexagon (position S) and above a carbon atom
(position A). The major component of the corrugation amplitude Up,{(z) is pro-
portional to the vertical distance between the curves at a particular value of z.
The corrugation decreases to a negligible value for 2>3.2&, where y would be

zero, but moving toward the potential minimum it increases roughly linearly as
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Figure 5.9 Angle of preferred orientation versus coverage for *He and 3He on gra-
phite, assuming the adsorbate-substrate distances of figure 1. Since only cne
Fourier component contributes significantly to the distortion energy, the angle
is determined primarily by the ratio of substrate to adsorbate lattice spacing,
and secondarily by the ratio of adsorbate speeds of sound as explained in refer-
ence 2.
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Figure 5.7 Coverage dependence of v, the elastic constant measuring resistance
to relative twist of the adsorbate and substrate about the preferred orientation

angle, calculated for the adsorbate-substrate distances of figure 1.
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Figure 5.10. He-graphite potential deduced from the He-graphite scattering
data in reference 10, as measured above the center of a graphite hexagon (S)
and above a carbon atom (A), as shown in the inset. The vertical difference
between the curves is 9 times the most important Fourier component of the cor-
rugation of the potential, Ug,. The size of the corrugation becomes negligible
when the helium atoms are more than about 3.2 £ from the substrate, and in-
creases rapidly at shorter distances.
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z decreases. Since the strain energy and y vary quadratically with Up,, which is,
as we have seen, the principal contributor to Espy, we expect 7y to increase qua-
dratically with decreasing z with a zero near 3.2 A as shown in figure 5.11. As
long as only one corrugation wavelength is important, the angle is nearly
independent of 2, and the slight shifts in the orientation angle arise from the
weak dependence of ¥, on the ratio of the undistorted sound speeds. (The
experimental measurements yield the actual sound speeds, so for a given set of
experimental sound speeds, the derived undistorted sound speeds will depend
upon z). Clearly this uncertainty in the distance between substrate and adsor-
bate dominates all others in the calculation of 9. Fortunately, values of ¥ as a
function of 2 may be estimated from those in Table 5.4 using the observations
that 7 is very nearly proportional to U§ (z). (If a more precise measurement of
the average 2 becomes possible and the current result was reportedly difficult
to obtain, a possible further improvement in the calculation would be to com-
pute an average value of Up taking into account the excursions of the adsorbate
atoms perpendicular to the substrate. This will increase the values of ¥{z)
reported in table 5.4, owing to the quadratic dependence discussed above. The
root-mean-square spread of the atoms has been estimated in Cole, Frankl and

Goodstein to be .25 X.)

Besides the uncertainty in distance of the adsorbate from the boundary,
there are other approximations in our calculation whose efects are smaller.
The linear response approximation (assuming the distortions to be small and

using the phonon spectrum of the undistorted lattice) produces errors of order
u©
(u—az where a is the lattice spacing. For the helium solids this quantity is

small, as can be seen by comparing ug; in table 5.3 to the lattice spacing of
about 3.6X. In fact, the distortions are small compared with the zero-point

amplitude which is measured by the square root of the trace of ¥ displayed in
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Figure 5.11. The amplitude of the principal corrugation Fourier component of
the substrate potential, Up,, and v, the elastic constant governing restoration of
twist of substrate relative to adsorbate about the angle of preferred orientation,
are displayed as functions of z, the height of the adsorbate above the substrate.
Equation (5.22) predicts that ¥ should be quadratic in Up, in cases such as this
one in which no other components of the substrate potential corrugation are im-
portant. This figure, along with table 5.4, illustrate the rapid variation of ¥ with
2.
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table 5.2. We expect the errors from these two sources to be of the order of 10
percent or less in y and negligibly small in the orientation angle, which is more

strongly influenced by geometry than anything else.

It is more difficult to estimate the errors due to our model of the phonon
spectrum. These affect two separate aspects of the distortion energy. the value
of w in the denominator of eq. (5.22), and the smearing tensor #. Neither has a
significant effect on the orientation angle since the errors in the phonon spec-
trum occur primarily at short wavelength, while the angle is usually fixed by the
geometry and by the long-wavelength behavior in turn determined by experi-
mental results. For the same reason, the first effect produces only small errors
in the values of Egspy and 7. The second effect appears in the smearing factor
which is the primary determinant of the size of ¥ and Espy. (For argon, the
exponential factor in eq. (5.21) is about 0.8, while for helium, it ranges from a
maximum of about .15 to 10?7 for the Fourier components considered. In fact,
calculations done by the method of reference 1, essentially identical to the
present one but leaving out the effect of zero-point motion produce very large

distortions and unphysical values of ¥ and Espy even far from registry.)

For completeness, we mention several other implicit approximations pro-
ducing very small errors in the results. For one, the film may not be a plane
parallel to the substrate, but rather a slightly buckled plane. This should be a
small effect because the corrugation of the substrate-He potential is small com-
pared with the overall attraction. Essentially, one might expect that the overall
distortions of the helium lattice could be slightly increased in the plane if they
were accompanied by a correlated set of distortions perpendicular to the plane
which slightly reduced interatomic repulsions. This effect must be small since
the strength and steepness of the surface-averaged potential as a function of z

is large compared to either the corrugations or the helium-helium potential.
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We have decoupled the motion perpendicular to the substrate from the in-
plane motion, and that decoupling is probably somewhat inadequate. We have
reduced the problem of calculating all the phonon modes of the distorted sys-
tem to the problem of calculating the shift of the low frequency modes (i.e. of )
which is surely an oversimplification. We have also ignored the perturbations of
the substrate by the adsorbate on the grounds that the substrate is much stiffer

than the adsorbate.

We believe that if the precision of the adsorbate-substrate distance were
improved, the accuracy of this calculation would be limited by that of the exper-

imentally determined elastic constants on which it is based.

The helium monolayer solids occur in a region of the coverage-temperature
plane bounded by sharp heat capacity peaks which seem to occur at substan-
tially higher temperatures® than Kosterlitz-Thouless 23 dislocation unbinding
temperatures predicted by renormalization group theories.5?4 1t is easy to
speculate that these peaks are the signatures of a possibly Ising-like transition
marking the end of angular order.® The present calculation may provide an

energy scale for an estimation of the temperature of this phase transition.

5. Possible Experimental Measurements of Orientational Ordering

Orientational ordering has been observed in other noble gas films on gra-
phite using low energy electron diffraction (LEED), ?° but there is as yet no

definite confirmation of the effect in helium.

No measurements of ¥ have ever been made, for any system, nor have any
obviously feasible experimental methods been proposed for making the meas-
urement. Since the calculated value of ¥ depends so strongly on the mean
height above the surface, which is known to about 3%, a measurement of y is less

a check of the present computation than a confirmation or refinement, which
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depends on the quality of that computation, of the measurement by neutron

scattering of the mean height Z of the film above the substrate.

A study is now underway to determine the feasibility of making neutron
scattering measurements to measure at least the orientation angle of helium
films on graphite. As part of that study, we present the current knowledge of

the expected elastic neutron scattering structure factor for such z film.

At least two effects should be present in the neutron scattering. The first of
these is a reproducible angle between the adsorbate reflections and substrate
reflections, which varies with density as predicted earlier in this chapter. The
graphite reflections are a large background signal, easily detectable, so it
should be possible to see the locking angle whenever helium refiections are visi-
ble at all, unless the experiment must be done on unoriented substrate or the

neutrons are not sufficiently collimated or monochromatic.

A preferred orientation could also be produced by various kinds of dirt
effects — pinning of the helium film at the edges of small patches of smooth sub-
strate, impurities in or on the graphite. To distinguish the effects, the results for
the angle should be independent of the particular substrate sample used and
there should also be some way of measuring the SDW distortion of the helium lat-
tice from perfectly triangular. This distortion should produce a decrease in
intensity of each helium Bragg peak (which will probably be undetectable
without an undistorted reference) and satellite peaks substantially displaced

from the primary peaks in reciprocal space.

The general formula for the neutron scattering dynamic structure factor
(the Fourier transform of the density-density correlation function of the system)

can be written

s<q'.u)=}v—§'e*7~@-ﬁ'>f 2 et cexp(if 2 (B))exp(—id T(R.1)> (5.24)
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where § and w are wave vector and frequency, N the number of atoms in the cry-
stal, and R * R’ the positions of atoms. If the average distortion is extracted
from the thermal average by decomposing Z into <ﬁ(1§)>+6ﬁ(}?,t) where the

average value (the distortion) is computed from the SDW theory, then
S(g.w)= Ji/—% e~ (R-R) o= <2(B)>g +iF <2 (B)>x (5.25)

S Betet cexp(ig 6 (R))exp(ig 6 (2 .£))>
The distortion <d(ﬁ)>=§ﬂ3sin(é'ﬁ), where the static density wave amplitude

da produced by the substrate corrugation at wave vector G has been calculated
earlier in the chapter. The static part of the structure factor {gotten, e.g., by
expanding the exponentials in the thermal averages in the integral of equation
(5.13.8), taking the zero-order term and performing the time integral) is propor-
tional to
S(§)xe 2 w-agg e da,(p_p)eﬁdzgsm(a»}?)e +i7 #3sin(-R) (5.25)
where G are substrate reciprocal lattice vectors.
Finding this static structure factor involves sums over the lattice of the

form §e"‘a'(§*§“3'm which will always lead to Bessel functions. McTague and

NovacoS3 have calculated these sums for situations in which the neutron momen-

tum transfer vector ¢ is in the plane of the adsorbate. They find
S(§)=e21 74 [gJo<a-aa>A<q> +
2;(;%Jo(q'ﬁé))Jl(Q'ﬂ&)A(i+5')+ e (5.27)
AL
where A(§)=) 633 and {7} are adsorbate reciprocal lattice vectors. As noted
¥

above, the first term represents the reduced primary reflections, and the
second term gives the satellite peaks, which occur for § at a substantial dis-

tance into the Brillouin zone (see figure 5.5). Since the sums over G can be
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truncated after including just the six equivalent lowest wave vectors, without
significant loss of accuracy, many details of the neutron experiments can be

predicted using our earlier results for ig.

It will be difficult, and is probably impossible with current technology, to
observe this effect, 28 because the neutron scattering cross section for He is so
low and there is so much background from diffuse scattering from graphite as
well as various crystallographic reflections from the graphite. In the absence of
neutron beams of high enough intensity and monochromaticity to attempt to
observe the angle between helium and graphite primary reflections on a single
crystal substrate (where the amount of adsorbed material is much less than on
polycrystalline substrates with large surface area), it is the only possible way of

observing orientational ordering with neutrons scattering.
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Table 5.1
n wgx107 B "
K2 (rad/sec)? erg / cm?
SHe
.0781 2.78 4.409 6.400
.0791 3.10 3.779 8.214
.0801 3.48 3.787 9.471
.0822 3.65 4.297 9.740
.0870 4.79 5.450 12.87
.0920 6.30 6.410 18.48
.1021 9.05 B.569 35.51
“He
.0781 2.10 3.577 7.38
.0791 2.1 3.820 7.974
.0801 2.35 3.681 B8.616
.0822 2.66 3.820 10.11
.0870 3.46 4.130 14.34
.0920 4,46 4.536 20.28
.1021 6.81 5.456 38.70
.1083 B8.32 6.042 55.71
.1100 B.73 6.222 61.36

Table 5.1

Parameters of the phonon spectrum at several values of coverage for both
helium isotopes. All the parameters are defined in the text. The calculation

assumes an adsorbate-substrate distance of 2.85 X for *He and 2.89 & for SHe.
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Table 5.2

Miller indices Uz (meV) Smearing factor
“He SHe

0 1 -1.665x1071  1.356x107!  1.146x107!
0 2 -6.438x10™*  3.381x107*  1.725x107%
1 2 6.616x1073  2.493x107%  1.505x107®
0 3 1.775x107®  1.550x107®  3.409x107°
1 8 -9.794x107%  B.430x1077  2.598x1077
2 3 -9.794x107®  B.430x1077  2.596x1077
0 4 -7.737x1071®  1,.307x107'* B.850x107!6
1 4 -1.296x107®  5241x107'® 5.880x107!3
2 4 7.040x1078%  3.865x1071! 5.131x107!2
3 4 -1.296x1078  5.241x107'® 5.880x107'3
0 B -5.143x10713  2.025x107%* 3.017x107%
1 5 2.238x1071  5990%x1071% 1.749x107%C
2 5 -5.744x10™1  3.258x10717 1.332x107!8
3 5 -5.744x1071  3.258x107!7 1.332x1071€
4 5 2.238x107!1!  5.990x107!% 1.749x107%0
0 6 5.708x10718  5772x107%% 1.351x107%¢
1 ] -7.424x1071%  1.259x107%7 6.835%x107%C
P 6 -5.875x10"# 5.050x107%% 4.541x107%7
3 6 2.393x10718  3.724x107%* 3.963x107%°
4 6 -5.875x10"#  5.050x107%% 4.541x107%7
B 6 -7.424x1071%  1.259x107%7 6.835x1073°
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Table 5.2

Amplitude of corrugations of the substrate-adatom potential for the wavevectors
equalling the lowest 21 substrate reciprocal lattice vectors in a 80° sector of
momentum space, along with representative smearing factors eC¥C caleulated
with an adsorbate-substrate separation of 2.85 & for *He and 2.89 £ for ®He. See

equations (5.20) and (5.23).
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Table 5.3
n 1/k BOp ¢ # e cr cry Vg Y Emn OUms ug
SHe
0781 661 17.60 1911 S3.078 446, 177. 172. 2553 .0578 -.0732  .959 .050
0791 B73 17.80 2.006 3.147 499, 176. 169, 2529 .0926 -.0962  .837 .055
0801 10.07 19.20 2115 3418 532, 187. 180. 25.06 .1137 -.1296  .904 .057
0822 1015 21.10 2.383 4.031 535 206, 200. 2453 .0082 -.1531  .873 .050
0870 12.99 2680 3.000 5820 602, 250. 254. 2341 .1114 -2744 785 .043
0920 1831 3370 3.887 B.434 704. 318, 314 2224 .1202 -43%2 706 .038
.1021 3425 4940 6475 1662 931, 448, 445 1970 .1281 -7497 587 .029
‘He

0781 7.911 1541 1.788 2704 412, 153. 132, 2653 .3100 -.2847  .910 .115
0791 8539 1611 1.892 2896 426. 150. 138. 2531 .3385 -.3355  .891 .111
.0B01 9.207 1683 2004 3.116 440. 166. 144. 2507 .3558 -.3847  .871 .108
0822 1075 1B.43 2261 3.640 471. 179. 158. 2455 .3861 -5013  .831 .101
.0B70 1512 2248 2988 5140 546, 213. 103. 2344 4817 -802  .751 .087
0820 2113 27.33 3.882 7.413 630, 253. 236 22.28 5107 -1151  .678 .073
1021 3949 3036 7.051 14.85 B35 348. 339, 1086 .4538 -1.758 562 .052
1083 5625 4838 9.843 21.97 675. 418. 410, 1829 .4373 -2036 508 .043
1100 6178 5109 1076 2440 1015 436, 432. 17.84 4027 -2102 494 041

Table 5.3

Elastic properties of 3He and *He films on graphite assuming the adsorbate-
substrate distance to be 2.85 A for “He and 2.89 & for 3He. The coverage n is in
K2 The elastic constants 1/«, M, 7, and the 2-D pressure ¢ are all measured in
ergs/cm? and the SDW energy at the preferred orientation is in units of

107%erg/ cm? The Debye temperature @p is in Kelvins. The speeds of sound
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¢z, cr, and cry (the latter being the derived transverse speed for the undis-
torted lattice) are tabulated in m/sec. The rms zero-point amplitude du and
the major contribution to the distortion wg, are given in X. The orientation
angle is in ° relative to a crystal axis of the substrate exactly aligned with one of

the adsorbate. {Registry occurs at an angle of 30 °.)
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Table 5.4

z Uoi Ugg Epp®10P 4 Vrmin

X meV X erg / cm? .
2.80 -.2166 .089 -1.855 0321 22.31
2.85 -.1685 .073 -1.181 5107 ee.27
2.90 -.1284 .055 -.6287 2E25 R2.27
2.92 -.1158 .049 -57.3 2357 R2.25
3.00 -.0789 .032 -.2550 1017 R2.258

Tasle 5.4

Orientaticnal ordering as a fun

erage of .082 £7?) above the sub

ALim
“vival

£ LY 3 ol 41 . . Cnk & mEsie
of the height of the *He adsorbatle (al & cov

strate, z. The preferred angle ol crientaticn

hardly varies but the size of surface potential corrugations, and the distoriicns

and static density waves they induce are strong functions of 2.
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Chapter 6

The Critical Region in the Dislccation Unbkinding

Theory

1. Analysis of Asymptotic Behavior
The KTHNY theory of 2-D melting has been used mostly to predict the

behavior of systems in the immediate vicinity of the transition, where strongly

fluctuating variables determine that behavior. Although in principle the theory

—_

should be a complete description of the contribution of topological defects at al

&

other kinds of anharmonicity in the solid, or diffusion in the liquid crystel phase
above the melting temperature. Another complication is that the main tools of
the theory, the renormalization group (RG) equations, repidly become essen-

tially unusable above the transition.

Since the critical properties of the the transition are among the easiest to
calculate from the theory, the question naturally arises as to whether those pro-
perties are experimentally accessible, that is, whether they apply over a
sufficient range of temperatures to be observable, given the current experimen-

tal and theoretical uncertainty in the transition temperature itself.
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Below the transition, for a given set of initial conditions eand core parameter
C. the dislocation contribution to any thermodynamic property can be calcu-
lated by using the the RG equations. These can be integrated over all scales,
and, since they always converge to the fixed point y{=)=0, dK" 1/ dy(=)=0 are
numerically well-behaved.

Above the transition, the RG trajectories diverge to ¢ (<)==, This indicates

that they have broken down, since ¥ o

and the core energy sheuld never
be negatlive. The breakdown occurs because the gas of dislocations is not dilute
much above 7,,. Thus, truncating the expansions in powers of y at the seccnd
order is invalid in this region, and produces unphysical results. The cnly way &
use the RG equations above the transition is to integrate from the bare melted
state, with mixtures of bound and free dislocations, to higher temperature an
larger but finite scale, where the renormalized problem of mestly {ree dislcca-
tions can be treated with some other approximation appropriate to high-
temperature "plasmas". This procedure has been carried out successfully by
Solla and Riedel! for the scalar Coulomb gas model of vortices in a 2-D
superfiuid, but has not been used for the dislocations in a solid, partly beczuse
at temperatures substantially above that of the transition, disclinztions would
be expected to dominate the thermodynamic behavior and they are not mco.r-

porated into the dislocation Hamiltonian.

Thus, it is important to determine the width of the transition region, cver
which the properties can be determined with reasonable accuracy by the

asymptotic critical relations.

We now present a new analysis of the behavior in the transition region,
which produces the same critical exponents as NH 2 and Young® but corrects
some errors in their treatment, and also leads to criteria for the width of the

critical region. Some of this work was carried out in collaboration with AP,
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Silva-Moreira.

In particular, we examine the behavior of the correlation length £,
approaching the melting temperature from above. This correlation length is
proporticnal to the mean distance between free dislocations, so the density of
free dislocations varies as the inverse square of the correlation length, n,~¢;2.
The technique used makes use of the well-known behavior of the correlation
length under the RG transformation,

£.(0)=e ¢, (1), 8.1)
This result is essentially a bit of dimensional analysis which is eguivalent Lo say-
ing that when the system is examined on scale e! times bigzer, the correlation
length is e' times smaller than the physical correlation length. Ve determine
the correlation length in the critical region by integrating the RG eguzalicns to
some value of the scele {* fer from the transition such thal the ccrrelation
length is small and slowly varying as a function of {. When the scale-dependent

correlation length reaches the order of one lattice spacing (at the curren
scale), then further iterations of the renormalization transfermztion vill not
closeness of the starting point to the transition and determines at what sczle ve
have gotten far enough from the transition that the correlation length {viewed
on that scale) is slowly varying. Thus, * depends upon the reduced temperzsiure
t. We will show that L*~|t |™ where U=.3693... The scaling law for the correla-
tion length is thus ¢,~eX/ !t ¥ where  is a non-universal constant.

Near the critical point, K~'=1/ 16w, y =0, the separatrix bounding the sclid
and hexatic liquid crystal phases can be regarded as a pair of straight lines with

slopes

_B=VB?+244% _] 0.0341 (6.22)
my= 1274 -0.02:2
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A=e?(2I4(R)-1,{2))=21.937 {8.Rb)
B=ely(2)=86.195
where I, are imaginary Besse! functions. The analysis that follows is restricied

/\

6.2¢c

v

to core parameters large enough so the initial conditions for the integration are
in the region near the critical point where the separatrices can be rezarded zs
straight lines. For smaller values of the core parameter, the same behavior

occurs, but over an even narrower range of reduced temperatre.

By changing variables to {(z,y) with K 1{l)=- é‘ (i+z{l}), the smcoth-
substrate RG equations of NH can be written

f;‘lz =12n° 4y (6.32)

& =pzy+2nzy? (6.50)

Defining the deviation from the incoming and culgoing separairices

D{)=yl)-m_z(l) (8.22)
EQ)=y{l)-m.z(l) 152

eguation {€.3b) can be written as
82 = —gzp+:2nkm. D? (5.52)

near the incoming separatrix and
&Y = —gzE+12n4m _E? (5.5b)

nezr the outgoing separatrix. Either of the eguztions is valid anyvhere eguziion
(8.3b) is, but each is useful only near the approprizie separatrix.

It hags

A typical RG trajectory above the transition is shown in fizure 6.1
first the left and then the right separatrix. The intersection of the line ¢f start-
ing points

—CKy_
yc=eE‘nk5T (6.5)

with the trajectory gives the initial conditions (z¢.D¢) or (ze.¥c). (In equation

4a§ uyBo

P where y and By are the bare shear and bulk moduli and g
0

(66). Ko=
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0.0l

0.005

I

Figure 6.1. Phase plane of the RG equations for a smooth substrate of Nelson
and Halperin. Heavy lines represent the separatrices, the dashed line is 2 line of
starting points for C=2, and the dot-dashed line shows initial conditions for C=3.
The remaining curves are RG trajectories. The region below the left separatrix
contains all possible solid states.
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is the lattice spacing. The endpoint (z,,F,) is determined by the critericn for
cutting off the RG integral when the correlations are roughly constant. There zre
several such criteria which we have shown numerically 4 to be essentially identi-
cal, eg. £=0.1 or y=0.01. The trajectery passes through a minimum where

d ’
E%=O in equation (6.3b), namely when

1
Se———r B8.7a
y=-—5 (6.72)
or equivalently, when
1,
x—__/ * o~
=—{—=+m_)T C.70
“—tm.) (6.70)
or
E‘::—( 1 +m+)x“‘. (v l")
B v
In integrating the RG equations, equaticn {6.53) is used from the stzriing point
to the minimum, and then equation {6.5b) o1t to the cutoff point. By expanding

the line of sterting points arcund the value where it intersecls the incoming

separatrix, it becomes clear that Dgx|t| where f{ is reduced temperature,

(T_Tm)/ Tm~

The equations (6.3a,3b) do not depend on ! explicitly, so we may consicder

v

their quotient

dz _ 6?72.41/

= £.8
which, upon substitution of y =vz can be shown to have the solution
(y—viz)*(y—vz)P=c (6.9)

with v,=m,, B=6r°Am?2/ (1+6r?4m2)=v and c=1—-B. Clearly the starting point
and endpoint must lie on the trajectory, so
K=(y o=V +Z¢)* Yo~ o) (6.102)

k=(y 1~V 42 )%y 1—v -2,)P (B.4100)

orin terms of D and E
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&=DE (Do+(v_—v)zc)?
k=Ef (Ey+(v_—v,)z))F.

When Dy is sufficiently small and z; sufficiently large that

Do |v_—v, | |z
E1<<;'U+_'U_gx1

a relationship can be established between starting points and endpoints,

E=D§’

Rewriting the trajectory in terms of D and F,

k=DF[D+(v_-v,)z]®
k=ESE+(v_—v,)z ]
and solving each one for x we find

K1/ @ D _ T D
_(v_—v+)D5"" T w—v,) DFe v_—u,)
_ KV B E _ T E
T (e )EYF  (v,—vD)  EYE (v,-v))

(86.112)
(6.2:b)

(6.222)

(5.22b)

where the constants I" and I" contain all the dependence on initial or final condi-

tions. When the approximations of equation (6.12) are valid,

PNDg/“zo
Inserting equations (6.15) into equations (6.5) we find

8Dl _ _orpi-gra 2
dl 2I'D +GD
%:—E?El_a/ﬁ'FHEz

where

2

(v-—v,)

2

(we—v)”

G=12m2Am  +

H=12r%Am _+

(6.162)
(8.28%)

(8.172)

(8.17b)

(8.182)

(6.28b)

Now the integral of the renormalization group trajectory is the sum of two qua-

dratures with no closed form solution, i.e.

s=lF+ly

(6.19)
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where

_ 2D
i ';[ —R2TD'B/a1 GD? (6:202)
0

1 2
¢ L!: —_TE-e/F+ HE?

How does l* depend on |t |?

(6.20b)

It is tempting to discard the second term in the denomirnator of each
integral on the grounds that for small D and E, the first term dominates. For
small Dy and E;, D and E are small near the endpoints, but, as we now show,
become larger near the minimum (D* and £* ), where, in fact, both terms in the

denominator of each integral are of similar size.

Inserting equations (6.15) into equations (6.7) we find solutions

D*=RT*~D§ (8.2:a)
E*=STe~Ep (68.2:b)

with K and S constants independent of D; and E,. Compearing equaticn {82’z

L

and equation (6.21b) we find that

DE~EZ. (6.22)

Rearranging the denominators of equation (6.20) we find at the minimum,

Lo(-2R"H"4 G (6.252)
T‘zﬁ(_zsl—a/ﬁ+‘;.‘752) (6.25b)

so the dependence upon starting point factors out. The universel corstanis in
equation (6.23a), for example, are nearly the same

R 1-8/a
Rz
so the integrals for L * must be evaluated without truncating the denominator.

=50.587 , G=76.08 (8.2%)

This is done by rescaling the equations to remove the dependence on Dy
from the integrand. Let P=D/D§ and determine s such that all the depen-
dence upon Dy factors out of the integral in equation (6.20a). Not surprisingly.

s=B. Similarly, the substitution @=E/ E® produces the following set of integrals
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F=DgFf 1[ _Z%PI mfapz (6.252)

cd —
=Ey 8.25b
b/;_glel a/8+th2 ( )

where equation (6.12) has been used to simplify T and I'. Now differentiate the

integrals with respect to Dg and £}, respectively, to find

dip -gir aDg#

— DB 4 Ga
dDo Do Do 2 _5/ +G_D§ \5.20 )
_dl_“_.__.qli_ - BEl—a (R 2@-‘\)

dE, E, ' o—2z, @I vE+HQE o

Since
Py=Dy/ DE=Dg (8.272)
and similarly,

@.=E§. (6.270)

The second term in each of the differential equetions {6.26) above arises from
differentiating the lower limit of the integreals in egquaticns (6.25). The upper

limit makes no contribution, because by choice of P and @ and equztiors {8.21)

P* and @* are independent of Dy and £, respectively.

P oA
CanPf S 6.2%2
1205 ez oD (6.252)
Ey
—ig=Er2f L (6.25b)

Eﬁ(—ez 1+H8) ’

The second term in the denominators of equztion (6.28) can now be discarced,

for suitably small values of Dg and E;, and the integrals yield

x — v
* o +17DgE 6.2%2)
ll E 06 .0 (

* + ' S 23 Sng)
£, —g—la NE| (

where M and N are constants. Since £,~D§’%, we have
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I*=L¥+1F~Dgf~it | (6.29)
which agrees with the result from NH.

The present calculation improves that of NH because their analysis of the
behavior of I* worked by means of an incorrect approximation. They integrated
from the initial point toward the minimum, and stopped when D became
significant (before the minimum), then arbitrarily jumped across the minimum

and added a piece gained from integrating along the outgoing se

K$

have shown numerically that nearly all the contribution to {* comes nezar the

minimum, but since that part also ~|t|™®, NH accidentally got the cerrec

dependence, although the constants of propertionality were vrong

ang.

The only approximations in the treatment above are those of eguzlicns
(6.22) and the truncation of the dencminator of equations {€.23). (These laller
could be removed by performing a Taylor series expansion to any desired accu-
racy,®ut we are only concerned with the leading order behavior.) The approxi-

mations preduce bounds cn the validity of the scaling law, and hence give an

indication of the width of the critical region.

From equation (6.12) we find

Dy |.0584z4] (8.53:2)
E,<<|.0584z,| or D¢<<|.0564z,|(1~F)//F (6.3.b)
end from the integrals,

GDc<KRzy ==> DeKk.0341lzg (8.3.¢)
HE <2z, ==> Dpk(.0223z )} F)VF. (6.214)
Clearly, the controlling approximations are eguations (€.31c) and (8.5.d). Since

(1—-B)/ B=1.71, we can revrite equation (6.31d) as
Dp<k.0015z } 71, (6.31¢€)

Choosing z,=0.1 (supposedly far enough from the transition that £, is
roughly constant) and z¢=-.01, the controlling approximation is equation

(6.31e),
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Dpy<kR.ex1075, (6.32)
It remains only to find the proportionality between Dy and |t |, from the equa-
tion of the line of starting points. Expanding equation (6.6) around the intersec-

tion with the separatrix we obtain

CK,

yc‘ys(l"*m) (6.332)
ZoRT+ —[&———t (6.33b)
07 T 16mkp Ty '
where the subscript s refers to values at the intersection of the line of starting
points with the separatrix,
Ys=m zs. (6.332)
Thus,
, m_ b
De=yo—m zc=8st{vs— 37 (€.54)

where g =CK¢/ 8rkp T;. At the intersection of the separatrix with the line ¥ =0,
the value of & is RC, and since Kj varies by less than 30% over the region where
the sepzaratrix is approximately linear, we take @ =*8, for Cx3, and ys~.001,
m_=-.021, we have Dgx.03t. Since z,x-—.05 from eguation {6.33c), we have
zcx—.C5+f. Thus for typical values of the core parameter C, for values of
t«.001 - (6.35)
the inequality (6.32) is satisfied. This inequality is actually general, being
salisfied over the entire region where the separatrix is nearly linezr, since for
larger C, the last term of equation (8.3%4) is dominzted by m_/2C, so D¢
approaches m_t. For smaller values of C, even more restrictive criteria hoid
because an RG trajectory through any point on the line of starting points for
C=3 intersects lines of starting points for smaller C cleser to the separatrix.

Thus the width of the transition region is characterized by equation (6.35).
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2. Numerica! Tests

The predictions of the analysis of the previous section were tested by
numerical integrations of the RG equations. The numerical results for the core
parameter C=2 are shown in table 8.1, where the choice of I* was made in
several ways to ensure that the cutoff procedure did not infizence the results.

An unresolved numerical precision problem caused the resuits to be unreliable

for 1*>500.

Table 8.1 [
¢ Criterion l
16mK '=1.1}| v=0.1! v diverges!

1076 469.0 | 473.5 4740

1075 125.0 199.0 200.0

1074 78.0 B82.4 83.0

10781 29.0 33.0 3£.0

Figure 6.2 displays a sensitive test of the critical exponent U. It plots I*¢¥vs. logt
normalized to a convenient value for =2 and C=3. Except for the siighlly inac-
curate results at very small values of ¢, the poinis are nearly constant over
several orders of magnitude in t, beginning to deviate from the horizoztel line

near t~1078,

3. Cornclusions

There have been no measurements of this level of accuracy that can be
interpreted as indicators of a 2-D melting transition, so any confirmation of the
scaling law for the correlation length, or any other critical behavior predicted
by the theory must be left to some future generation of experiments, which
must begin by finding extremely accurate values of the transition temperature
and then look at a narrow range of reduced temperature on either side.

Ty, is the lowest temperature at which y and K7 diverge as l-»e=, and thus
cannot be determined exactly in any experiment sensitive to the behavior of the

system on finite scales. Dynamical experiments thus do not determine the
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Figure 6.2. 1*tPus.logt for C=2 (x) and C=3 (=) from numerical integration of RG
equations.
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exact transition temperature since they probe finite wavevectors.

Using the data of table 8.1 we can estimate the difficulty. The asymptotic
criticalbehavior is observable if £<~107% which means a correlation length
larger than e%=10!3 lattice spacings. On smaller length scales, the medium
remains solid up to a higher temperature. Typical experiments are perisrmed
on lattices of order 10°—107 lattice spacings. Thus, in practical cases, the experi-

mernts cannot probe the prediction of the expornent 7.

Even for very large samples, the nature of the experiment must be carelully

pry
O
(8]
cr
[¢]
i
o
ot
N
O
v
ja

considered. A neutron scattering experiment, for example, could de
behavior in the necessary range of reduced temperaiure only for momenium
transfers smeller than about 1072 in units of the reciprocal lattice spacin
related requirement on frequencies implies that such experiments must be ccone
on very long time scales.

Since many experiments are done on very small samples {i.e. Grafoil, wkich
has homogeneous patches of order 100—-20004), we have plotted in figure 6.5 the
apparent meltling temperature as a function of sample size using parameters
(e

C=R2.8. A more realistic treatment of the problem of a finite substrate would

ot

astic constants) applicable to 3He with an assumed core energv perameter

have to take into account conditions at  the seample boundary 2nd other com-
plications; however, fizure 6.3 does correctly describe the temperature at which
the correlation length does become of the order of the size of a corresponding
patch in an infinite solid. It was deduced from numerical integration of the RG
equations.

While the theory may yieid other testable predictions, the asymptotic criti-

cal behavior seems beyond the range of current experiments.
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infinite medium) for a patch of given size (in the infinite medium).
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Appendix: Generation of Thermodynamic Tables for 3He

This appendix presents tables of the thermodynamic functions for SHe films
on Grafoil for submonolayers over the range 0-19K and for 2 layer films above

2.4K, and describes how these tables were produced from three separate experi-

mental sources.

The "Raw’' Data

The so-called raw data are from three sourcés. From Caltech there is the
mixture of heat capacity and vapor pressure measurements méde by Robert
Elgin at Caltech over the temperature range 2.4-19.5K and from .003 to 2 layers.
From the University of Washingtbn there are two sets of data. One is heat capa-
city measurements by Bretz, ef al. ! These were taken at coverages between
roughly .1 and .7 layers and temperatures between 0.037 and 4.2K. The data of
Hering.? and Hering, van Sciver and Vilches 3 comprise 3 runs of heat capacities
between .04 and .15 layers and .05-1.5K and much denser data between :6-1.0

layers and .05-4.2K.

The Caltech and Washington data are rather different in character. The Cal-
tech data are a systematic grid in the coverage-temperature plane at 57 cover-
ages and 24 temperatures. All the measured Caltech heat capacities are aver-
ages over the 10% temperature intervals used in the tables. The vapor pressure
was measured whenever it was observable, that is at high temperatures and cov-
erages. The data was reduced by the experimenter to produce the high tem-

perature part of the tables displayed here, according to methods described in
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detail in Elgin and Goodstein.4 The heat capacities were all corrected for the

effect of desorption into the bulk gas in equilibrium with the film.

The technique used by Elgin, of averaging over 10% temperature intervals,
is not useful for elucidating features of sharp heat capacity peaks, but essen-
tially provides the glue that allows the rest of the data to be connected by ther-
modynamic relationships and makes possible a survey of the entire phase
diagram. The functions which should be most accurately deduced from these
data alone are functions integrated up from the data, for example, the entropy
from the heat capacity. The coarseness of the data grid in the coverage vs. tem-
perature (n-T) plane means that reduction methods should treat the data as his-
tograms, each bin representing, e.g. the average heat capacity over the tem-
perature interval spanned. The vapor pressure, however, is quite accurate at the
temperature and coverage where it was measured, and does not repesent an

average over any changes in thermodynamic variables.

The Washington data are generally more intensive in "interesting" regions
and sparse elsewhere. Heat capacities were measured over small intervals {as
small as 1mK) near peaks and at many points on peaks. There are runs at
several coverages near the ordering transition in the Bretz data which cover

only a narrow temperature range like 2.5-3.5K.

The raw data discussed in Bretz, et al. were provided in the form of a table
of heat capacities at various temperatures and coverages for both 3He and *He,
and it was necessary to use the table rather critically to weed out typographical
errors.

The heat capacity data from Hering, et al., were easier to verify, since the

necessary heater input and thermometer readings were included, except in the

case of the three low-coverage runs, which were read from unpublished graphs.
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None of the Washington heat capacity data is corrected for desorption.

Preparing the Thermodynamic Tables

Several attempts were made to prepare self-consistent tables of the ther-

modynamic functions. The difficulties were mostly in dealing with scatter and
highly variable density of data from Washington.

The gpal of the procedure was to extend the tables of Elgin downward in
temperature,continuing his regular grid of 10% intervals at the coverages he
used. Thus the basic procedure required interpolating each Washington run (at
fixed coverage) to produce heat capacities at the "magic" grid temperatures,
and then interpolating between coverages at these temperatures to produce

results at the grid coverages, that is,a bivariate interpolation of a non-standard

sort.

First, a brief review of the method used by Elgin on the high-temperature
data will be presented. By equating film and vapor chemical potentials,and
using the ideal gas law (with virial corrections when necessary) the measured
vapor pressures determined the chemical potential of the film where vapor pres-

sures could be measured.

An extremely difficult problem for these measurements in certain ranges of
pressure is that of determining the pressure in a cold chamber, e.g., at 4K, with
a gauge at room temperature when a long thin tube connects the warm and cold
regions. The pressure is different in the warm and cold regions, basically owing
to the different effusion rates of warm and cold gas through the tube, but com-
plicated by details of the inner surface of the tube, the temperature gradient
along it, and other effects. The gauge must be calibrated for the particular
tube, gas, temperature and pressure range by empirical methods. This effect is

called thermal transpiration.
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The coverage was determined by keeping track of the total 3He in the sys-
iem and the amount in the gas (again using the corrected pressures). Where
<hemical potentials existed at nearby temperatures. a Maxwell relation con-

werted g% to —-g%’s;—] . This could be integrated from zero coverage (where
n T

the entropy is zero) to produce entropy values at high temperature where the
wapor pressures were measured. The heat capacity and vapor pressure data
::verlappeél at each coverage,so starting from known entropy values, the heat
ctapacity could be integrate‘d downward to extend the entropy to lower tempera-
tures. Comparing entropies at different coverages, the Maxwell relation above
could be used to extend the chemical potential and pressure data downward in

temperature as well.

In extending these tables further downward in temperature using the data
from Washington,the procedure was the same,with a few exceptions. Because his
data were corrected for desorption and very smooth,Elgin could reliably take
derivatives simply by subtracting neighboring values and dividing by the interval
(or using next-nearest-neighboring values and assigning the derivative to the

point in between) and integrate by treating his data as histograms.

By contrast,the Washington data is irregular and has lots of scatter. This is
not to say it is less accurate (since it is based on much smaller heat inputs than
Elgin used) but rather that it attempts finer resolution. Desorption correcticns
are only necessary when the pressure of the gas is high (how high depends on
the dead volume of the system — the corrections are to account for changes in
the surface coverage owing to thermal promotion of atoms into the gas) and in
Ppractice, turned out to be unimportant below 3K or so. This left some overlap of
+heat capacities,but not as much as would be desired for consistency checking.
Even at lower coverages where desorption was unimportant even above 3K, the

Washington calorimeter was reported to have uncorrected temperature drifts



=174 -

above 3K making some of that data unreliable.

In any case, the scatter in the data made it impossible to differentiate it
directly. It was thought that since the entropy was to be derived from the heat

capacity by integration, the scatter would be filtered,but even this turned out to

produce g% values of wildly oscillating signs,etc. It was necessary to smooth
T

the data, and their variable density made this difficult. The scatter was worst on
the sides of sharp peaks, where small errors in measuring the temperature
cause sharp oscillations in the curves drawn through the data points. Various
techniques of fitting were tried — low order polynomial fits (up to 20th degree),
and similar techniques using orthogonal polynomials, truncated Fourier series
fits, and fits using spline functions. All of these methods had similar difficulties --
wherever the fitting functions were not constrained by many data points, i.e. at
the ends of the interval or where the data were sparse, they would diverge or
bend far from the rest of the data, seriously affecting the quality of the fit for
considerable distances into the dense data. All but the spline fits failed to follow

peaks correctly.

What finally worked was a method known as B-splines on an irregular mesh,
which are explained at the end of this section. It is not necessary to know how
they work,since plots of the data points and the smoothed curves fitting them
clearly show that the procedure introduces nothing pathological, except round-
ing of the peaks (at the very top). See figure (A.1) The curves are essentially the
same as would be drawn by eye and French curve, except they have characteris-
tic mathematical properties because they are best fits in a certain sense.

The B-splines that were used to smooth the heat capacities and other ther-
modynamic functions are easily integrated and differentiated. The Elgin data

were analyzed to find starting values of the entropy that weren't too near any
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Figure A.1 — Experimental heat capacity run for 3He and the B-spline approxi-
mation to it, with knots chosen at every fourth data point.
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phase transitions (to avoid problems matching to the histogram type results).
From these starting values, the integrated C/T values were subtracted to extend
the entropies to the lowest temperatures for which heat capacities existed at
each coverage.including at all the "magic” temperatures in the range. This
table of entropies was interpolated to the grid points between coverages. The
entropies were then smoothed and differentiated with B-splines to generate new

values of chemical potential from the Elgin starting values at 2.4119K. The tem-

perature integrations of g% were both upward and downward, the upward
: n

ones being designed to check the consistency of the reduction by comparing
with Elgin’'s derived chemical potentials. They are not completely consistent but
the differences are small. They probably arise from two effects. One is that
these chemical potentials are derived from the unreliable high-temperature

heat capacities from Washington, uncorrected for desorption, which should have

significant effects on %f:— at least at high coverage. The other is that nearly
T

all the Elgin chemical potentials below 4.2K are derived from his histogram pro-
cedure, rather than from direct measurement of vapor pressures at these tem-
peratures, and the B-spline procedure should be more accurate with
dense,scattered data. In all cases checked so far, the change in chemical poten-
tial computed between 2.4 and 4.2K is larger than the change computed by
Elgin.

In the course of generating the entropy tables, it was found necessary to fill
out the heat capacity tables in certain regions to prevent the fitting functions
from misbehaving in nearby regions where data exist. This "fake" data were

inserted in the following places:
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In the 3 Hering runs at very low coverage, the upper temperature limit was
1.5K. Entropies and heat capacities between 2.4 and 4.2K were interpolated
between nearby Elgin coverages and although there was no overlap of the
data from Caltech and Washington here, the integrations were carried out
anyway (using a very large first step). The results at very low coverage and

temperature cannot be taken very seriously.

Several of the runs in the solid region extended only down to about iK. To
prevent messing up the edges of nearby regions where the data extended to
much lower temperature,these runs were extrapolated toward zero tem-
perature using a 7? law with Debye temperatures from Hering's analysis of

her own data.

Several runs near the registry density which contained only points near the

peak were ignored during the preparation of the general tables.

Nature of B-splines5 6.7

Consider a real interval [a,b] and a set of values cO,cl,..cn in that

interval . The points a,c0,c1,....b are a set of knots on the interval. On this set of

knots we can construct functions with following properties:

1.

2.

On each sub-interval between two knots,the function is a cubic polynomial.

Each of the cubic polynomials joins onto its neighbors smoothly, matching

function values, first and second derivatives at the knots.

The set of all such functions on a particular set of knots forms a function

space. If we have a function defined at any set of points on the interval [a,b],

there is a unique member of the function space which is a best fit (in the least

squares sense) to the arbitrary function, that is, out of all the members of this

function space, it comes closest to the arbitrary function.

It turns out that there is a way to choose a basis for the function space
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(with some trickery at the ends of the interval [a,b]) with the property that on
any sub-interval, only four of the basis functions are nonzero (the total number
of basis functions is n+4, where n is number of subintervals). All the functions in
the space are linear combinations of basis functions, so the least squares fit can
be represented as a linear regression to find the coefficients of the linear combi-
nation, and since only four functions are defined on any subinterval,the matrix
equation is banded and easy to solve and store,even if there are many knots and
data points. The problem is always well-posed if a decent choice of the knots is
made. A good rule of thumb is to make sure t.h;t every sub-interval has at least
one data point in it — if it doesn't, the polynomial may go crazy in that subinter-
val. For that reason,standard spline smoothing (v'ﬁhjch spaces the knots at regu-
lar intervals), fails. Each of these functions which is a smooth joining of cubic
polynomials is by definition a spline function and the space is the space of B-
splines on a given set of knots.

The way the scattered heat capacity data were treated was to place the
knots at every k-th data point (typically, k=4).

Notice that this fitting procedure is different from the procedure of spline
interpolation (also used in this data reduction project). The fitting procedure
finds the spline curve that comes closest to a set of data points given a perhaps
unrelated set of knots, while the interpolation procedure fixes one knot at each
data point, constructs the unique spline function that passes through all the

data points, and uses it to intérpolate between the data points.

Thermodynamic tables for SHe
The table of the thermodynamic functions for *He films follow. The columns
are identified and their units set forth below.

The first line of each page contains the coverage, first in units of K2 and
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then as a fraction of the 1/3 registry. The columnar data are, from left to right
1. Temperature in Kelvins

Chemical potential in Kelvins

Natural log of the 3-D gas pressure in torr

Entropy per atom in Boltzmanns

Bulk modulus in ergs / cm?

Landau potential density in ergs/ cm?® (same as R-D pressure)

Helmholtz free energy density in ergs/ cm?

@ X o o & 0w

Internal energy density in ergs / cm?



-18B0 -
References

1. M. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean, and O. E. Vilches, Phys. ‘
Rev. AB, 1589(1973).

2. S.V.'Hering, Ph.D. thesis, University of Washington, Seattle, WA, 1975.

3. S. V. Hering, S. W. van Sciver, and 0. E. Vilches, J. Low Temp. Phys. 25,
793(1976). ‘

4. R. L Elgin and D. L. Goodstein, Phys. Rev. AS, 2657(1974).

5. C.L Lawson and R. A, Hanson , Solving Least Squares Problems (Prentice-
Hall , Englewood Cliffs, N.J., 1974).

6. C. de Boor, J. Approz. Theory 6, 50(1972).

7. C. de Boor, J. Approz. Theory 1, 219(1968).



- 181 =

Table of Thermodynamic Functions of *He on graphite.

n= .3859e-03 ang®**-2 or n/nc= .8062e-02
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.8658
.0620
.2531
.4600
.6830
.8cee
. 1487
.4035
.6463
.8891
.1200
.3708

.6086

B

.780e-02
.580e-02
.350e-02
.130e-02
.800e-02
.€70e-02
.480e-02
.270e-02
.110e-02
.820e-02
.880e-02
.850e-02
.840e-02
.B850e-02
.960e-02
.080e-02

.230e-02

-P2d=W

.1510
.14€9
. 1486
. 1471
. 1454
. 1434

L1411

L1218

L1178

.1138

. 1083

. 1055

F

.5311
.5314
.5318
.5324
.5330
.5338
.5348
.5360
.5376
.5385
.5418
. 5447
.5482
.5525
.5578
.5637

.5711

.51i¢9

.50E7

.504S

.50C3

.49C02

.4842

L4777



T

4119
.6421
.8943
.1707
.4735
.8051
.16886
.5667

.0029

.8503

L4770

.3E€30

-147.
-148.
-149.
-150.
-151.
-152.
-154.
-156.
-158.
-160.

-162.

-174.

=178,

-183.

u

61

43

37

{07
.e8

.21

82

€3

30

.3860e-02 ang**-2

-4.

-3

-3.

-3.

-2

=2

or n/nc=

Ln(P3D)

.368e+01

.843e+01

383e+01

.024e+01

522e+01

154e+01

Bi7e+01

.508e+C1

.224e+01

.€84e+01

.725e+01

.507e+01

.305e+01

.120e+01

.498e+00

.831e+00

.485e+00

.6083e-01

S/Nk

.8745
.1228
.R735
4343

.6028

4440

.6349

.8208

186 -

B

6.440e-02

.310e-02

6.200e-02
6.120e-02

6.050e-02

.020e-02
.030e-02
.070e-02

.140e-02

6.260e-02

.410e-02

6.600e-02

.830e-02
.110e-02
.430e-02
.780e-02

.200e-02

-P2d=W
-.1874
-.1€54
-.1831
-.1807

-.1781

-.14860
-. 1427

-.1385



= 187 -

n= .6119e-02 ang**-2 or n/nc= .8612e-01

T u  La(P3D)  S/Nk B -P2d=W F E
.0753 -124.17 -1.650e+03 1.3502 5.580e-02 -.2225 -.9623 -.9B18
.0B25 -124.20 -1.506e+03 1.3708 5.580e-02 -.2225 -.9825 -.9818
.0904 -124.23 -1.375e+03 1.3692 5.600e-02 -.2226 -.9828  -.8B820
.0990 -124.27 -1.256e+03 1.3835 5.610e-02 -.2227 -.9631  -.9523
.1085 -124.31 -1.146e+03 1.3061 5.630e-02 -.2228 -.8534 -.6825
.1188 -124.35 -1.047e+03 1.4009 5.660e-02 -.2229 -.9838 - .9€28
.1302 -124.40 -9.553e+02 1.3993 5.670e-02 -.2250 -.9542  -,€831
1426 -124.46 -B.723e+02 1.4167 5.800e-02 -.2231 -.0847  -.GE34
1562 -124.53 -7.965e+02 1.4247 5.720e-02 -.2232 -.9651  -.GE38
.1712 -124.60 -7.268e+02 1.4421 5.740e-02 -.2233 -.€557 -.9842
.1B75 -124.68 -6.63Be+02 1.4405 5.770e-02 -.2234 -.C553  -.Q848
.2054 -124.76 -6.061e+02 1.4500 5.790e-02 -.2235 -.9E89  -.9E51
2250 -124.86 -5.534e+02 1.4595 5.810e-02 -.2238 -.S576 - .GE5S
2485 -124.98 -5.052e+02 1.4659 5.830e-02 -.2237 -.9554 - .QES82
.2701 -125.10 -4.611e+02 1.4770 5.860e-02 -.2238 -.9803  -.9868
2959 -125.24 -4.210e+02 1.4833 5.880e-02 -.2239 -.6€902 -.€875
.3242 -125.40 -3.843e+02 1.4896 5.000e-02 -.2239 -.9913  -.9383
.3551 -125.57 -3.509e+02 1.5261 5.0920e-02 -.2240 -.9924  -.9E91
.3890 -125.77 -3.204e+02 1.5419 5.040e-02 -.2241 -.9837 -.8600
.4262 -126.00 -2.924e+02 1.5483 5.0950e-02 -.2241 -.9951 -.8210
.4669 -126.25 -2.670e+02 1.5768 5.960e-02 -.2241 -.8986  -.9521
.5115 -126.53 -2.437e+02 1.5974 5.570e-02  -.2240 -.9883  -.©9E3
.5604 -126.85 -2.225e+02 1.6370 5.970e-02 -.2240 -1.0002 -.8948
.8139 -127.21 -2.031e+02 1.6671 5.970e-02 -.2240 -1.0024 -.5S81
.6725 -127.62 -1.B54e+02 1.7321 5.970e-02 -.2238 -1.0048 -.6878
.7367 -128.09 -1.603e+02 1.7733 5.950e-02 -.2237 -1.0075 -.9995
.8071 -128.62 -1.546e+02 1.8002 5.820e-02 -.2234 -1.0105 -1.0016
.BB42 -129.23 -1.411e+02 1.B446 5.870e-02 -.2231 -1.0138 -1.0038
.9687 -129.80 -1.280e+02 1.8B826 5.B20e-02 -.2227 -1.0175 -1.0064

1.0612 -130.66 -1.177e+02 1.9143 5.760e-02 -.2222 -1.0217 -1.0083

1.1625 -131.52 -1.074e+02 1.8761 5.670e-02 -.2216 -1.0283 -1.0123



N

n NN

.2736
.3852
.5285
.8745

.8344

.20186

.4119

.6421

.17C7

.4735

.8031

.16868

.5867

.4808

.0045

.5784

-132.
-133.
-134.
-136.
-137.
-138.
-141.

-144.

-162.

-1€5.

-168.

=172

48
58
83
24
84
66
73

08

.88

.78

.80

17

.55

.10

.81

.72

.83

o 19

81

73

S8

60

.64

.810e+01
.959e+01
.183e+01
.475e+01
.831e+01
.243e+01
.708e+01
.222e+01
.70ge+01
.240e+01
.810e+01
.415e+01
.054e+01
.T23e+01
.418e+01
.140e+01
.884e+01
.848e+01
.432e401

.234e+01

.273e+00

.B45e+00

w

W w W W

.0411
.1108
.1568
.2170
.2551
.3533
.4468
.6687
. 7859
.9048
.0268
.1520
.2819
.4135
.5498
.6876
.8255
.9685
.1139
.2581
.4008
.5402
.6880

.8318

- 188 -

5.570e-02

5.460e-02

5.310e-02

5.130e-02

4.890e-02

4.580e-02

4.260e-02

3.800e-02

4.100e-02

4.330e-02

4.590e-02

4.880e-02

5.190e-02

5.550e-02

5.830e-02

6.370e-02

6.840e-02

7.360e-02

7.830e-02

8.550e-02

9.240e-02

1.000e-01

1.083e-01

1.172e-01

.2209
.2202
.21¢e2
.2180
.2165
.2145
.2125
.2102
.2082
.2062
.2041
.2020

.19¢8

L1917
.1889
.1883
.1868
. 1858
. 1847
.1841

.1840

.0316
.0375
.0442
.05186
.0598
.0891
.0787

.0918

.1126

.1160

. 1283

.1348

. 1831

.1687

.2187

.2402

.2648

.0157

.01¢5

.0240

.0289



- 189 -

n= .9687e-02 ang**-2 or n/nc= .1523

T u Ln(P3D) S/Nk B -P2d=wW F E
.0753 -121.72 -1.618e+03 1.1720 7.020e-02 -.2501 -1.4304 -1.4285
.0825 -121.74 -1.477e+03 1.1850 7.040e-02 -.2503 -1.4308 -1.4298
.0804 -121.76 -1.348e+03 1.1880 7.070e-02 -.2505 -1.4312 -1.4301
.0800 -121.79 -1.231e+03 1.2160 7.110e-02 -.2507 -1.4316 -1.4305
.1085 -121.82 -1.123e+03 1.2280 7.140e-02 -.2509 -1.4321 -1.4S08
.1188 -121.85 -1.026e+03 1.2510 7.180e-02 -.2511 -1.4327 -1.42312
.1302 -121.89 -9.359e+02 1.2600 7.210e-02 -.2513 -1.4338 -1.4317
.1426 -121.83 -B8.548e+02 1.2860 7.260e-02 -.2518 -1.4339 -1.4322
.1562 -121.98 -7.803e+02 1.2990 7.300e-02 -.2518 -1.4347 -1.4327
L1712 -122.04 -7.118e+02 1.3120 7.340e-02 -.2521 -1.4335 -1.4333
.1875 -122.10 -6.501e+02 1.3380 7.390e-02 -.2523 -1.4384 -1.4320
.2054 -122.1B -5.935e+02 1.3570 7.440e-02 -.25268 -1.4374 -1.4347
.2250 -122.26 -5.41Be+02 1.3760 7.490e-02 -.2529 -1.4385 -1.4355
.2465 -122.36 -4.946e+02 1.3910 7.540e-02 -.25831 -1.4387 -1.4383
2701 -122.47 -4.514e4+02 1.4060 7.800e-02 -.2534 -1.4410 -1.4373
.2959 -122.60 -4.120e+02 1.4280 7.650e-02 -.2537 -1.4425 -1.4384
.3242 -122.74 -3.761e+02 1.4460 7.710e-02 -.2839 -1.4441 -1.4325
.3551 -122.980 -3.434e+02 1.4960 7.760e-02 -.2541 -1.4458 -1.4407
.3880 -123.08 -3.135e+02 1.5250 7.820e-02 -.25843 -1.4478 -1.4421
.4262 -123.29 -2.8581e+02 1.5430 7.880e-02 -.2545 -1.4501 -1.4437
.4669 -123.53 -2.812e+02 1.5840 7.930e-02 -.2548 -1.4525 -1.4454
.5115 -123.81 -2.3B4e+02 1.6070 7.980e-02 -.2547 -1.4533 -1.4473
.5604 -124.11 -2.178e+02 1.8550 8.050e-02 -.2548 -1.4583 -1.4483
.8139 -124.46 -1.988e+02 1.6900 8.110e-02 -.2549 -1.4817 -1.4517
.6725 -124.86 -1.813e+02 1.7780 8.180e-02 -.2549 -1.4858 -1.4540
.73687 -125.32 -1.656e+02 1.8290 8.240e-02 -.2548 -1.4700 -1.4589
.8071 -125.85 -1.511e+02 1.8780 8.290e-02 -.2545 -1.4749 -1.4602
.8842 -126.46 -1.380e+02 1.8320 B8.330e-02 -.2540 -1.4803 -1.4638
.9687 -127.14 -1.250e+02 1.9610 8.380e-02 -.2538 -1.4864 -1.4680

1.0612 -127.90 -1.151e+02 2.0170 8.420e-02 -.2530 -1.4833 -1.4725

1.1625 -128.79 -1.051e+02 2.0870 8.440e-02 -.2521 -1.5009 -1.4774



(=

AV B VI AV B A1

w w wu

10.

.5285

.6745

.B8344

.0087

.2016

4119

.6421

.8843

.1707

.4735

.8051

.1685

.5667

.0028

.4808

.0045

.5784

.2072

.8g358

.6503

.4770

3830

-129.
-130.
-132.
-133.
-135.
-137.

-1389.

-141

-142.

-143.

-144.

-145,

-148.

-147.

-148.

-151.
-153.

-155.

-160.

-163.

-1686.

-170.

v

89

18

84

32

24

40

.88

54

30

15

10

186

80
€3

68

.87

52

37

58

12

.587e+01
.767e+01
.010e+01
.320e+01
.893e+01
.123e+01
.803e+01
.130e+01
.620e+01
.154e+01
.726e+01
.334e+01
.975e+01
.846e+01
.344e+01
.087e+01
.B13e+01
.579e+01
.364e+01
.188e+01
.847e+00
.175e+00
.836e+00

.217e+00

N

w

NV N NNV NN D

W W w

. 1420
.2300
.2890

.3520

.8E50
.0B20
.1820

.RE20

.8110
.8230
.0379
.1528
.26689
.3808
.5039

.6269

190 -

.48Ce-02
.420e-02
.470e-02
.460e-02
.380e-02
.280e-02
.190e-02
.090e-02
.480e-02
.630e-02
.280e-02
.750e-02
.025e-01
.078e-01
.138e-01

.200e-01

.514e-01

.608e-01

.714e-01

.B28e-01

.854e-01

.2501
.2466

. 2468

.2331
.232¢

.2328

.5085
.5194
.5304
.5427
.5566
.5721
.5898
.8100
.6161

.6230

.6818

.8748

.6E86

L7713

.7688

.8287

.8648

.8041

(o))
n
[sl}
[\

[9]]
]
(&)
a

o
P

W
(6]

.51380

.5039

.4870

.4EC4

4811



N

NN

10.

T

.0087
.20186
.4118
.8421

.8943

. 1688

.5667

.0029

.4808

-139.
-140.
-140.

-141.

87

24

87

59

.31

.44

.72

.53

.78

.29

.11

.28

.1455e-01 ang**-2

or n/nc=

Ln(P3D)

.040e+01
.517e+01
.03ge+01
.533e+01
.070e+01

.845e+01

.258e+01

.800e+01

.573e+01

.274e+01

.888e+01

.748e+01

.514e+01

.301e+01

.105e+01

.R48e+00

.587e+00

.060e+00

.€53e+00

.2288

S/Nk

2.5818
2.70¢8
2.8084
2.8871
2.9857

3.0743

3.9167

4.0187

4.1180

4.2253

4.3339

191 -

B
.800e-03
.B50e-02
.350e-02
.880e-02
.870e-02
.430e-02
.025e-01
.115e-01
.213e-01
.318e-01
.433e-01
.558e-01
.6E4e-01
.840e-01
.000e-01
.175e-01
.384e-01

.574e-01

2.804e-01

-P2d=W
-.R847
-.2664
-.2684
-.269¢9

-.2715

-.2811

-.3112
-.31¢91
-.3280

-.3383

-2

-2.

-2

~ i

~2

F
2375

2870

.3007

3103

L3212

.6824

L7401

-2.

-2.

=2

=25

-2,

E
1620

1802

. 1344
L1242
L1128
.09g8

. 0854



10.

T

.4119
.6421
.8843
.1707
L4735
.8051
. 1688
.58€7
.0028

.4808

.B503

4770

3830

~141.

-142.

-143.

u

.87

.43

.54

(2

g6
g2

78

.73

.68

.87

.35

0.13

.1939e-01 ang**-2

-3.
=3

=&

or n/nc=

.503e+01

.038e+01

812e+01
222e+01

865e+01

.537e+01

.237e+01

.881e+01

.708e+01

.478e+01

.3048

[

[AV IR AV IR V)

S/Nk

.8505

. 7340

.8180

.8028

.8871

.0718

.15586

.2411

.3276

L4147

.5037

.5932

L6877

.7807

.8753

.8748

.07¢€8

192 -

B

.980e-02
.090e-02
.330e-02
.680e-02
.180e-02
.080e-01
.256e-01
.448e-01
.858e-01
.888e-01
.133e-01
.403e-01
.685e-01
.012e-01
.356e-01
.724e-01

.120e-01

-.4088

-.4271

-.4475

.8800
.8628
.0072
.0235

.0418

-2.

8580

. 8527
.8491
.8451

.6407

L7317



[AVIRE \V B \V]

fY]

w W

10.

it

.2016
.4119
.6421
.8243

.1707

.2072

-137.88 =5,
-138.
-138.
-139.
-138.

-140.

u

61
a7
38
86

39

.01

.70

.49

.38

.41

.56

.35

.02

.06

.48

.2424e-01 ang**-2

-4

-3.

-3.

-2.

or n/nc=
Ln(P3D)

518e+01

.825e+01

.485e+01

.018e+01

591e+01

19G8e+01

840e+01

.511e+01

.208e+01

.832e+01

.678e+01

.444e+01

.230e+01

.033e+01

.517e+00

.851e+00

.317e+00

.904e+00

.3808

S/Nk

2.398358

2.4682

3.4703

3.5599

3.6518

3.7483

3.8487

193 -

B

.100e-03
.670e-02
.110e-02
.070e-01
.246e-01
.438e-01
.652e-01
.883e-01
.136e-01
.413e-01
.712e-01
.042e-01
.3¢8e-01
.7EBe-01
.210e-01
.689e-01
.168e-01

.713e-01

-P24=W

-.3025

-.3101

-.3185

-.4274

- .4483

-.4714

-.5250

-3.
-8

-3.

-3.

=3

-3.

=8.

'
W

-3
(%]
(@]

LA
om
(9]
2

-
w
=3
[9]]



10.

T

.5285
.8745
.8344
.0087
L2018
.4119
L6421
.8643
.1707
.4735
.8051
. 1688
.5887
.0028
.4808
.0045

.5784

-135.
-135.
-138.
-1386.

-137.

-138.

-139.

-138.

-140.

=141

-14.1 .

-142.

-143.

-144.

-148.

-147.

-149.

u
07
52
01
53

186

.89

.18

.51

8e

33

84

41

07

83

70

€8

B0

08

54

20

.08

.24

.2909e-01 ang**-2

-8.

-3,
=3
-2,

-2.

or n/nc=
Ln(P3D)

1898e+01

.433e+01
.731e+01
.087e+01
.501e+01
.665e+01
.455e+01

.888e+01

580e+01

168e+01

809e+01

480e+01

.178e+01

.801e+01

.647e+01

.413e+01

.198e+01

.001e+01

.203e+00

.537e+00

.C03e+00

.561e+00

L4570

S/Nk

2.0164
2.0537

2.1734

2.9981

3.0817

3.1877

3.3431

3.4337

3.5281

3.6271

194 -

B
.500e-03
.040e-02
.730e-02
.442e-01
.946e-01
.483e-01
.829e-01
.791e-01
.970e-01
.171e-01
.388e-01
.827e-01
.888e-01
.174e-01
.481e-01
.816e-01
.1€0e-01
.572e-01
.886e-01
.464e-01
.975e-01

.534e-01

-P24=W
-.1528

=. 1786

.0821

.1210

. 1852

.2151

L2715

.8679

-1107

.0ges8

.0875



10.

1t

.8687
.0612
. 1825
L2736
.3952
.5285
.8745
.8344

.0087

.4735
.8051
.1688
.5887
.0029
.4808
.0045
.5784

.2072

.8503

.4770

3830

-133.

-133.

-134.

-134.

-134.

-134.

L}
—
(3]
(8]}

'
—
w
[9]]

-135.

-138.

-138.

-137.

-137.

-138.

-138.

-139.

-140.

-140.

-141

-142.

-143.

-145.

-146€.

-148.

-150.

u
75
89
04
24
46

72

74
22

81

98

40

88

44

08

82

.68

78

07

54

22

14

.3394e-01 ang**-2

or n/nc=

Ln(P3D)

.328e+02

.207e+02

.098e+02

.248e+01

.023e+01

.176e+01

.403e+01

.625e+01

.048e+01

.458e+01

.820e+01

.412e+01

.847e+C1

.520e+01

.128e+01

.771e+01

.443e+01

.142e+01

.868e+01

.812e+01

.380e+01

.165e+01

.685e+00

.880e+00

.228e+00

.701e+00

.293e+00

.5331

S/Nk

1.3888
1.4474
1.5314
1.58651
1.6611
1.7125
1.7634
1.8177
1.8579
1.9714
2.1105

2.1879

2.8562
2.7388
2.8179
2.8008
2.6858
3.0719
3.1585
3.2485
3.3419

3.4382

195 -

B

.700e-G3
.560e-02
.910e-02
.680e-02
.092e-01
.470e-01
.882e-01
.R273e-01
.562e-01
.E76e-01
.170e-01
.372e-01
.588e-01
.826e-01

.088e-01

T7e-01

.6882-01

.036e-01

.418e-01

.837e-01

.294e-01

.785e-01

.351e-01

.855e-01

.621e-01

.357e-01

.020e+00

-P2d=W

-.3802

-.3683

-.4054

-.5644

-.5664

-.63186

~, 8701

-.7128

-.7593

-.8111

.8349
.86840

.8870

.1078

.3149

.3729

. 4382

6881

. 7889

.8089



n= .3872e-01 ang**-2

T
.0753
.0825
.0904
.0920
.1085
.1188
.1302
. 1428
.1562
L1712
.1B75
.2054

.2250

.3551
.3880C
.4262
.466¢9
.5115
.5604
.6139
.6725
. 7387
.8071
.8842
.8687
1.0612

1.18625

-131.

-131

-131.
=1381.
-132.
-132.
-1382.
-132.
-132.
-132.
=13
-132;
-132.

-132.

-132

-132.

-132.

-132.

=132

-132.

- 132,

-132.

-132.

-132.

-133.

-133.

-133.

-133.

-133.

u

83

.95

97
29
01
03
06
08
11
14
18
21
25

28

.33

38

43

48

58

63

.69

~1
(9]

81

88

94

01

08

16

286

37

or n/nc=

Ln(P3D)

.753e+03

.600e+03

.481e+03

.334e+03

.217e+03

.111e+03

.014e+03

.258e+02

.451e+02

.710e+02

.038e+02

.423e+02

.882e+02

.349e+02

.879e+02

.451e+02

.060e+02

.703e+02

.377e+02

.078e+02

.807e+02

.558e+02

.330e+02

.122e+02

.833e+02

.759e+02

.800e+02

.455e+02

.322e+02

.201e+02

.090e+02

.6093
S/Nk
.5082
.5307
.5540
.5810
.5880
.8277
.6465
.8745
.6980
.7180
.7417
. 7637
. 7857
.8082
.8242
.8474
.8872
.8017
. 8262
.8389

.8722

1.0004
1.0324
1.0872
1.0069
1.1339
1.1819
1.2054
1.2537
1.3059

1.3844

196 -

o O O

(o)}

B

.545e-01
.503e-01
.455e-01
.410e-01
.362e-01
.310e-01
.260e-01
.208e-01
.156e-01
.103e-01
.048e-01
.998e-01
.838e-01
.886e-01
.830e-01
.778e-01
.728e-01
.878e-01
.831e-01
.588e-01
.543e-01
.517e-01
.508e-01
.512e-01
.505e-01
.487e-01
.458e-01
.412e-01
.416e-01
.438e-01

.481e-01

-P24=W
.0262

.02863

.0182
.0172
.0147
.0117
.0080

.0038

-.0018

-.0078

-.0148

-.0232

-.0329

-.0444

-.0576

-.0727

-.0800

-.1083

-.13186

F

.0815
.0821

.0826

.0842

.0g¢81
.1008

.1028

.1078

.1108

.1140

+1178

L1221

.1270

<1387

.1382

. 1464

. 1548

.1642

.1750

.1873

L2012

L2171

.2350

. 2554

.2786

.3053

E

.0800
.0804
.0907
.0011

.0817

. 1053
.1081
L1112
.1148
.1188

. 1238

. 1807
. 1836
.2083
.2248

.2428



W W O T AV I I oV B\ ]

~ (0] o O )] N »

I TN

10.

.2738

.3952

.5285

.8745

.B344

.0097

.2016

4119

.8421

.8843

.1707

.4735

.8051

.1688

.5667

.0029

.4808

.0045

.5784

.2072

.8058

.8503

.4770

3830

-133.
-133.
-133.

-134.

-136.

-1386.

-137.

-137.

-137.

-138.

-139.

-139.

-140.

-141.

-142.

-143.

-145.

-147.

51

67

85

o7

.35
.74
.22
.84
.01

.22

48

74

o7

48

81

44

05

77

59

54

64

81

36

03

=9..

-8

-8

-3.

-2

-2.

-2

8981e+01

966e+01

.118e+01
.346e+01
.841e+01
.898e+01
.413e+01
.880e+01
.373e+01
.909e+01

.483e+01

094e+01

.736e+01

409e+01

108e+01

.833e+01
.580e+01
.348e+01
.135e+01
.384e+00
.582e+00
.925e+00
.388e+00

.983e+00

.4182

.5047

.5509

.6018

.86538

.6899

.8088

.8501

.0251

.10086

.1764

.2526

.32886

.4088

.4856

.5651

.8458

.7278

.8123

.8978

.8843

.0728

.1855

.28615

o o o o

187 -

.557e-01

.8688e-01

.778e-01

.872e-01

.750e-01

.231e-01

.814e-01

.802e-01

.984e-01

.217e-01

.490e-01

.800e-01

.150e-01

.5308e-01

.8508e-01

.428e-01

.946e-01

.513e-01

.136e-01

.821e-01

.058e+00

.140e+00

.231e+00

.321e+00

. 15686
. 1849

.2175

.4365

.4528

.4708

.4909

.5131

.5376

.5645

.5842

.8028

.8660

.3356
.3701
.4088
.4543
.5040
. 5587
.8208
.6211
.7124
. 7388
. 7640
. 7851
.8301
. 8697
.8142
.9643
.0208

.0842

.2855
.2887
.3178
.3502
. 3883
.4282
.4664
.5087
.5048
.5007
.48863
.4818
.4883
.4805

.4739

.4583

.4489

.4380

.4257

.4120

.3683

.37786

.3558



n= .4384e-01 ang**-2

T
.0753
.0825
.0e04
.0ee0

.1085

.1188

. 1562
L1712

L1875

.86139
.B725
.7367
.8071
.8842
.8687
1.0612

1.1625

-130.
-130.

-130.

-130.

-130.

-130.

=131.

-131.

=131

-131

=131

=131.

-131

=131.

-131

-131.

-131

-131.

u

.23

.25

28

31

35

.38
.42
.46
.50
.54

.58

.88

.74

80

85

.91

g8

04

11

17

.24

.30

37

.44

.51

59

.68

77

.87

87

or n/nc= .

Ln(P3D)

.731e+03
.580e+03
.442e+03
.317e+03
.202e+03
.0897e+03
.001e+03
.144e+02

.348e+02

.258e+02

.822e+02

.4C0e+02

.013e+02

.661e+02

3Ce+02

.044e+02

.099e+02
.811e+02
.740e+02
.583e+02
.4389e+02
.306e+02
.188e+02

.078e+02

.5882
.6139
.863€8
.8517
8744
.6928
.7088

.7R73

.8510

.8623

.87€3

.80486

.8261

.8824

.00866

.0379

.0623

.0887

. 1432

.1914

.2617

198 -

B
.558e-01
.510e-01
.465e-01
.416e-01
.388e-01
.320e-01
.263e-01
.208e-01
.162e-01
.108e-01
.057e-01
.288e-01
.848e-01
.883e-01
.838e-01
.781e-01
.740e-01
.684e-01
.836e-01
.592e-01
.541e-01
.513e-01
.488e-01
.5C3e-01
.425e-01
.478e-01
.458e-01
.434e-01
.465e-01
.563e-01

.724e-01

-P2d=W

.0510
.0502
.0468
.04¢0

.0483

.0464

.0468

.0470

.0477

.0572

.0810

.0855

.C712

.1198

. 1341

.1512

.1708

.1839

.8624

.8808

.8015

.9254

.9531

[&]]



[

EAV IR AV I \V]

L2738
.3e52
.5285
.6745
.8344
.00e7
.20186

.4119

=132.
-132.
-132.
-132.
-132.
-133.

-133.

-13%.

-138.

-139.

-140.

~14d.

09
22
38
57
86
35

95

.71

.82

.86

.14

72

40

18

11

18

.43

.87

-3

-3,

-2

.779e+01
.862e+01
.023e+01
.258e+01
.558e+01
.920e+01
.355e+01
.833e+01
.325e+01
.866e+01

.442e+01

053e+01

698e+01

.371e+01

.072e+01

.787e+01

.545e+01

.314e+01

.101e+01

.057e+00

.252e+C00

.610e+00

.089e+00

.886e+00

.8038
.87586

. 9485

w

199 -

.866e-01
.308e-01
.714e-01
.177e-01
.566e-01
.747e-01
.018e-01
.283e-01
.785e-01
.288e-01
.742e-01
.233e-01
.748e-01
.311e-01
.E25e-01
.585e-01
.032e+00
.112e+00
.200e+00
.286e+00
.401e+00
.516e+00
.838e+00

.768e+00

.5155

.5382

.5632

.9848

.0207

.0821

.1086

.1804

L2170

.2815

.8128
.8372
.8876
.0015
.0377
LCTTT

. 1188



N

w

1C.

W N W

T

.6745
.8344
.0087
.2018
.4118

.6421

L1707
.4735
.8051
.1688

.5667

4770

3830

-132.
-132.
-132.
~182.
-133.
-133.
-133.

-133.

u
37
45
67
94
32
38
43

53

.66
.83
.04
.28
.81
.88

.44

.82

.37

.27

.47

.484Be-01 ang**-2

=7,

or n/nc=
Ln(P3D)

245e+01

.537e+01

.885e+01

.302e+01

.7T76e+01

.273e+01

.813e+01

.381e+01

.005e+01

.851e+01

.327e+01

.029e+01

.756e+01

.508e+01

.276e+01

.084e+01

.701e+0C0

.€15e+00

.273e+00

.761e+00

.381e+00

.7615

S/Nk

1.3409

2.5780

2.8636

2.7512

2.8429

2.8373

200 -

.400e-02
.811e-01
.282e-01
.038e+00
.533e+00
.535e+00
.547e+00
.567e+00
.582e+400
.621e+00
.651e+00
.687e+00
.T27e+00
.770e+00
.818e+00
.871e+00
.827e+00
.990e+00
.058e+00
.145e+400

.288e+00

L7169
.7515

.7867

.9286

. 6843

. 0455

.1126

.1881

L2875

.3620

-6.

-8,

=6 :

F
7752

8317

L7724
.88¢€3
.0215

.1718

E

.6663

.7048

=3
<«
(93]
o0



w W N WD

w

10.

T

.4119
.B421
.8843
- 1707

.4735

.8051

. 1688

.0029

.4808

.0045

.5784

.2072

.8858

L4770

3€30

-131.

=181,

-131.

-131.

-131.

-131.

-131.

-131

=132,

=132,

-133;

-133.

-134.

u

21

16

186

20

28

39

54

.73

.88

28

10
64

29

.05

.5333e-01 eng**-2

-3.
=3»

=2

or n/nc=

Ln(P3D)

.686e+01

.190e+01

734e+01

318e+01

§358e+01

.587e+01

.R87e+01

.973e+01

.704e+01

.458e+01

.229e+01

.021e+01

.288e+00

.524e+00

.801e+00

.407e+00

.022e+00

.8377

S/Nk

1.50486
1.5784
1.6523
1.7265
1.8010
1.8759
1.8512
2.0276

2.1052

2.6021

2.7867

201 -

B

7.065e-01
8.606e-01

1.137e+00

.288e+00

.371e+00

1.4867e+00

.5684e+00

.681e+00

1.766e+00

.880e+00

2.008e+00

2.150e+00

2.310e+00

2.488e+00

2.687e+00

2.878e+00

3.0086e+00

-P24=W

.68E5

. 7285

L1115

.1%61

.R47T2

.3254

.4113

.5040

<8111

.7551
. 7200

.B287

.5032
.5020
.5000
. 4981
.4¢50
4014
L4873

L4821



(o]

10.

(o IS

T

.4119
.6421
.8643
L1707
L4735
.8051
.1688

.5887

-130.

-130.

-130.

-130.

-130.

70

54

48

48

.83

.81

.74

.82

.14

.42

o

.20

.73

.38

.12

.02

.5578e-01 ang**-2

or n/nc=

Ln(P3D)

.678e+01
.172e+01
.713e+01
.225e+01
.914e+01
.585e+01
.245e+01
.251e+01
.883e+01
.436e+01
.208e+01
.000e+01
.088e+00
.327e+00
.705e+00
.213e+00

.837e+00

.8759

S/Nk
.4025
.4914
.5740
.6528
.7263
.8051
.8680¢9
.8573
.0347
.1131

.1833

.4430
.5300
.6204

.7134

202 -

B

5.7698e-01
1.055e+00
1.407e+00
1.580e+00
1.898e+00

1.782e+00

.880e+00

1.978e+00

2.083e+00

2.216e+00

2.353e+00

2.507e+00

2.678e+00

2.882e+00

3.067e+00

3.355e+00

3.520e+00

-P2d=W

.7288
L7750
.8168
.8561
.8856
.8372
.8821
.C308
.0843
.1431
.2078
.2791
.3578
.4439
.5389
.6428

.7561

=8

=8
=8

=B

-9.

-9.

F

0310

.0827

0958

1317

1712

.2154

.2851

.3211

. 3842

.4555

.5359

.6287

L7282

.8447

-7

=
=i

=5

E

.8424

.8430

8418

83¢5

8353

.8324

.8279

.8227

.8166

.80¢E7

.8016

L7922

.78:4

.7622

L7141



[ O V]

[V} w W N

10.

T

.4119
.6421
.8843
.1707
.4735
.8051
.16868

.5667

.6503

L4770

3830

-13C.
-130.
-12¢.
-129.

=128.

=131,

=132,

-132.

u

62

08

68

47

.50

.61

i

.03

58

18

.5818e-01 ang**-2

or n/nc=

Ln(P3D)

.884e+01

.148e+01

.683e+01

.283e+01

.B82e+01

.535e+01

.216e+01

.824e+01

.857e+01

.411e+01

.185e+01

.773e+00

.885e+00

.111e+00

.487e+00

.008e+C0

.840e+00

.8139

S/Nk

f03 -

(o)

N

N

(O]

w

.401e-01
.967e-01
.264e+00
.743e+00
.948e+00
.112e+00
.RT4e+00
.418e+00
.552e+00
.837e+00
.854e+00
.028e+00
.R17e+00
.421e+00
.828e+00
.831e+00

.052e+00

-1
1)
(Q)]
[9]]

-8.

-8

-8.

-&.



[y

W W W N NN DD

o o

X}

o © o XN

T

.0812

. 1825

L2738

.3952

.5285

.6745

.8344

.00¢e7

.20186

.4119

.6421

.8943

.1707

.4735

.8051

.1686

.5687

.0029

.4808

.0045

.8503

.4770

.3830

-128.

-128.

-128.

-128.

-128.

-128.

-128.

-128.

-129.

-130.

-130.

u

.22

.93

.58

.08

.46

.70

.65

.22

.50

.41

.73

.97

.48

.28

18

13

13

18

27

41

58

84

18

13

82

= .B0Ble-01 ang**-2

or n/nc=

Ln(P3D)

.257e+02

.138e+02

.028e+02

.282e+01

.356e+01

.503e+01

.711e+01

.872e+01

.288e+01

.855e+01

.13%5e+01

.658e+01

.231e+01

.850e+01

.503e+01

.185e+401

.884e+01

.628e+01

.383e+01

.158e+01

.521e+00

.621e+00

.875e+00

.270e+00

.7S2e+00

.432e+00

.9521

N

LAV V]

S/Nk

.7969
.8158
.8230
.8411
.8801
.8764
.9150
.9485
.0028
.ogs2
.1851
.3604
.4885
.5824
.6642
. 7420

.81886

.1339

.2165

.3008

.3873

4776

.5708

04 -

B

8.783e+00
9.458e+00
9.024e+00
B.468e+00
7.795e+00
7.008e+00
6.040e+00
4.865e+00

3.502e+00

.817e+00

2.0186e+00

2.540e+00

3.028e+00

3.234e+00

3.303e+00

3.371e+00

3.438e+00

3.511e+00

3.589e+00

3.701e+00

3.819e+00

3.254e+00

4.107e+00

4.261e+00

4.406e+00

4.805e+00

-P24=W

.38639
.3138
.2531
.1805
.0914
.0138
. 1479

.3202

.9416

.0185

.0729

. 1257

.1814

.2404

.3037

.3734

.4501

.5347

.6278

.7302

.8417

.8831

.0838

=10

F

.0739
.1071
. 1452
.1881

.2403

.0730

. 140

.2328

E

.0227
.04886
.0817
L1179
. 1808
.2102
.2879
.3401
.4218
.5128

.5211

.5110

.5075

.5033

['sS
03]
[o2]
[0)]

LN
[9)]
-~
@

L4274

.4053



EAV I (VB V)

[V B AV I V]

10.

T

.8687

.0812

.1825

.2736

.3952

.5285

.8745

.8344

.0087

.20186

L4119

.6421

.8843

L1707

.4735

.8051

.1688

.58667

.002¢9

.4808

.8503

.4770

3830

-131.
-131.
-131.
-131.
-131.
-130.
-130.
-130.
-129.
-122.
-128,
-127.
-128.

-128.

-127.

-327.

-127.

-128.

u
2’2
21
18
(0°)
00
84
63
28
72
C1
12
60
g3

42

.26

.18

.18

«18

.24

.32

.43

.59

«81

11

48

57

.8303e-01 ang**-2

=T .

-1

=1

-9.

-8

=7

=Ts

or n/nc=
Ln(P3D)

302e+02

.182e+02

.071e+02

701e+01

.774e+01

822e+01

141e+01

.418e+01
.748e+01
.131e+01
.560e+01
.055e+01
.588e+01
.167e+01
.792e+01
.451e+01
.138e+01
.852e+01
.589e+01
.348e+01
.126e+01
.217e+00
.340e+00
.815e+00
.028e+00
.562e+00

.215e+00

.8901
S/Nk
. 7474
.7512
. 7646
.7691
.7811
.7832
.8049
.8252
.8478
.8838

.9528

1.0212
1.1525
1.3800
1.5015
1.5878
1.6668
1.7495
1.8281
1.9034
1.9823
2.0628
2.1449
2.2288
2.3172
2.4077

2.5017

205 -

B

.587e+01
.518e+01
.450e+01
.365e+01
.257e+01
. 125e+01
.887e+01
.768e+01

.515e+01

iCe+01

.704e+00

.841e+00

.338e+00

.457e+00

.200e+00

.034e+00

.887e+00

.801e+00

. 7€5e+00

.777e+00

.780e+00

. 765e+00

.820e+00

.852e+00

.8609e+00

.131e+00

.233e+00

-P24=W
-.3081 -B.
-.3383 -8
-.36837 -8.
-.3¢81 -8.
-.4372 ~-8B.
-.4858 -8.
-.5429 -8B.
= B8187¢ =B
-.7133 -8.
-.82¢9 -8
-.8701 -9
-1.0342 -¢
-1.1146 -9
-1.1884 -9
-1.2408 -9.
-1.2€13 -9.
-1.3450 -9.
-1.4032 -8.
-1.4€74 -¢.
-1.5384 -¢
-1.6169 -8.
=1.70388 =8,
-1.78689 -9.
-1.9058 -§.
-2.0218 -10.
-2.1481 -10.
-2.2855 -10.

F

5800

.6038

6308
6307
6242

7329

3571

4241

.5000

-8.
-8.
-8.
=B

=B

E
5344

5533

.€C46
.8788

.8899

.8800

.B8425

.8357

.E278

.8187



n=

10.

T

.8687
.0812
.1825
.R2736
.3¢e52

.00¢7
.2C18
.4119

.6421

.4735

.8051

.1688

.5687

.002¢9

.0045

.5784

.2072

.8958

3830

=118
=11¢.
-119.
=119.
=120,
-120.
-121.
-121.
=122
-122.

=128

-124.

-124.

-124.

-124.

-124.

-124.

-124.

-124.

-124.

u
11
32
56
86
25
67
15
€7
24

g4

.87
.89

.01

00

01

04

o8

12

19

29

44

63

.80

.20

.60

.18

.8545e-01 eng**-2

-2

-8,

or n/nc= 1.028

Ln(P3D)

.177e+02

.070e+02

.715e+01

.819e+01

.004e+01

.257e+01

.574e+01

.840e+01

.376e+01

.850e+01

.368e+01

.808e+01

.483e+01

.021e+01

.727e+01

.383e+01

.087e+01

.B0Be+01

.547e+01

.308e+01

.020e+01

.B88e+00

.038e+00

.335e+00

.762e+00

313e+00

830e-01

S/Nk

.731¢
.7332
.7458
.7534
. 7640
.7740
.78486
.7983
.8172
.8583
.8649

.8275

.4454

.5340

.6131

.68986

.TES4

.8419

.8187

.89885

.0810

.1649

2086 -

W\

[AVIRNE A BN V]

.681e+01
.844e+01
.582e+01
.504e+01
.406e+01
.285e+01
.142e+01
.858e+01
.723e+01
.447e+01
.120e+01
.321e+00
.044e+00
.465e+00
.095e+00
.005e+00
.867e+00
.024e+00
.084¢+00
.124e+00
.208e+00
.305e+00
.423e+00
.588e+00
.817e+00
.007e+00

.243e+00

.8328

.36€3

.3683
. 3668

.4834

9]

.5801

.6545

. 7261

.8059

-9.

-8

-9.

-9.

=8



N

[AV IR A B \V)

N N o o o

T

.5115

.5604

.6138

.8725

. 7367

.8071

.8842

.e687

.0812

.1625

.2738

.3952

.5285

.6745

.8344

.0087

.2018

.4119

.8421

.8843

L1707

.4735

.8051

.1686

.5667

.0029

.4808

.0045

.5784

.2072

.8958

-109.
-108.
-109.
-108.
-109.
-110.
=110
-110.

-111.

=113

=112;

-112.

=113+

-114.

-115.

-1i8.

=118,

-119.

=320.

-121

-121,

=121.

=121

=121,

-121,

=122,

-122.

-122.

-122.

-122.

-122.

u
07
26
48
68
91
17
45
7

13

.55

09

76

54

44

51

76

19

82

55

.35

85

85

g7

88

89

01

05

11

20

33

51

.6788e-01 ang**-2

-2.

-2.
-2.

=2

or n/nc= 1.066

Ln(P3D)

096e+02

.811e+02
.742e+02
.588e+02
.446e+02
.317e+02
.189e+02
.091e+02
.825e+01
.027e+01
.208e+01
.467e+01
.780e+01
.174e+01
.813e+01
.104e+01
.639e+01
.218e+01
.788e+01
.325e+01

.023e+01

668e+01

340e+01

038e+01

.760e+01

.505e+01

.270e+01

.054e+01

.549e+00

.718e+00

.033e+00

S/Nk

.7188

.7204

.72186

.7244

. 7266

. 7283

.7308

.7346

.7368

.75186

.7661

.7788

. 7901

.8025

.8188

.8383

.8788

.83863

.0038

.1380

.2880

.3834

.4780

.5551

.6300

.7045

L7787

.8585

.8355

.0161

.0881

207 -

o o o

B

.586e+01
.579e+01
.571e+01
.561e+01
.548e+01
.535e+01
.518e+01
.484e+01
.467e+01
.433e+01
.322e+01
.344e+01
.284e+01
.212e+01
.118e+01
.974e+00
.537e+00
.830e+00
.357e+00
.115e+00
.011e+00
.B29e+00
.764e+00
.781e+00
.824e+00
.870e+00
.950e+00
.057e+00
.197e+00
.365e+00

.573e+00

-P2d=W

-2.
-2.
=2+
-2
=R
=2
-2.
=&
-2.
=2,
-2.
-2.

-2

-2.

-2.

1758
1710
1659
1610
1582
1508
1444
1372

1281

o668

031¢

.98094

.8048

.8338

.8762

L7271

. 7855

.8262

.0098

.1032

2071

3224

-10.
-10.
-10.
-10.
-10.
=10

-10.

F

.5783
.5873
.5860
.8059
.6168
.8288
.6419

€562

E

.5543

.55989

.B288

(A
N
s
-

.8743
.6812
.6862
.6891
.6674
.8319

.5984

.5740
.5672
.5610
.5550
. 5487
.5417
.5338
.5243

.5132



- 208 -
8.6503 -122.72 -3.475e+00 2.1847 6.720e+00 -2.4527 -10.7828 -9.4899

.03 -2.043e+00 2.2747 6.910e+00 -2.5937 -10.9452 -9.4819
-11.1277 -9.45¢98

8.4770 -123
10.3830 -123.48 -7.240e-01 2.3685 7.200e+00 -2.7462



n= .7030e-01 ang**-2

.5115
.5604
.6139
.€725
. 7387
.8071
.8842

.8687

.2736
.3852
.5285
.8745
.B344
.0097
.2018

.4119

-103.
=1083.
-103.
-108.
-103.
-104.
-104.
-104.
-104.
-104.

-104.

-106.

-108.

-106.

-107.

-107%.

-108.

-108.

-106.

-110.

=131,

~112;

-114.

-115.

-117.

u

61

69

6

85

94

04

15

27

40

53

68

.84

5.01

5.20

.40

.82

5.86

12
41
74
11
54
04

67

33
37
64
18
89

90

=6,

-6.

or n/nc= 1.104

Ln(P3D)
627e+02

047e+02

.523e+02

.042e+02

.604e+02

.203e+02

.836e+02

.501e+02

.185e+02

.916e+02

.661e+02

.42Be+02

.215e+02

.020e+02

.842e+02

.680e+02

.531e+02

.385e+02

.271e+02

.157e+02

.053e+02

.587e+01

.725e+01

.940e+01

.228e+01

.580e+01

.981e+01

.457e+01

.974e+01

.535e+01

.136e+01

.7318
.7313
.7308
.7305
.7302
. 7300
.7295
.7295

.7298

.7313

. 7320

. 7340

. 7362

.7385

. 7420

.7464

.7513

. 7691

.7909

.BOES

.8217

.8373

.8607

.8825

.8253

1.0151

_09 -

B

5.883e+00
5.899e+00
5.9816e+00
5.833e+00
5.849e+00
5.888e+00
5.984e+00
6.002e+00
6.016e+00
6.034e+00
6.046e+00
6.056e+00
6.087e+00
6.072e+00
6.071e+00
€.086e+00
6.051e+00
6.024e+00
5.884e+00
5.935e+00
5.871e+00
5.788e+00
5.692e+00
5.642e+00
5.634e+00
5.603e+00
5.547e+00
5.445e+00
5.297e+00
5.089e+00

4.829e+00

-P2d=w

=R

=2

=%

-2,

=2

5983

5934
5900
5865

.58286

.5786

.5742

.56897

.5849

.5587

.5544

.5488

.5431

.5372

.5305

.5237

.5162

.5075

.4971

.4848

4685

. 4483

.4213

.3838

.3377

.2814

.2083

.1183

.0157

.8950

-10.

-10.

-10.

=10

=10,

11311

1280

1444

1627

1830

-9.

-9,

=10

-10

-10.

-10.

-10.

=10

.0125

0170

0198

0185

0109



W W W N P

IS

10,

.6421

.8643

.1707

L4735

.8051

.1688

.5667

~118.
=129,
-119.
=139 5
-119.
-118.

-138,

48

01

57

58

.80

.61

.84

.710e+01
.315e+01
.844e+01
.587e+01
.278e+01
.880e+01
.707e+01
.456e+01
.225e+01
.013e+01
.188e+00
.384e+00
.702e+00
.1867e+00
. 756e+00

.540e-01

.8740
. 8537
.0357
.1208
.2100

.3008

- 210 -

5.

706e+00

.769e+00
.381e+00
.384e+00
.306e+00
.24 1e+00
.207e+00
.211e+00
.239e+00
.286e+00
.355e+00
.452e+00
.588e+00
.874e+00
.C14e+C0

.212e+00

.8012
.8513
.0100
.0772

. 1837

=10

=10

-10.

-10.

-10.4

=10,

-10.

~=10.

.2018

2254

2810

-9

-9.
=8

=0

.8E78

.9618

9422

2305



S W w

N

[
o

© o =N N O (o2} (4] (3}

T

.0812
.1625
.27386
.3852
.5285
.8745
.8344
.0087
.2018
.4119
.6421
.8€43
.1707
.4735
.8051
.16886
.56867
.0028

.4808

.5784
.2072
.8958
.8503
.4770

.3830

-106.

-107.

-107.

-108.

-108.

-109.

-111.

-112.

-113.

=115,

-118,

=116,

-118.

-1186.

-118,

-116.

-118.

-118.

-116,

-118.

-116.

-1186.

-117.
=11%.

=117

u

54

02

58

25

03

5

07

41

95

73

04

29

48

60

68

72

74

76

78

80

84

80

.03

11

32

61

.7273e-01 ang**-2

-9,

=8

-7

-7
-6.

or n/nc= 1.142

Ln(P3D)

483e+01

.637e+01

.855e+01

144e+01

496e+01

.806e+01
.372e+01
.887e+01
.447e+01
.047e+01
.817e+01
.221e+01
.853e+01
.514e+01
.200e+01
.811e+401
.845e+01
.400e+01
.174e+01
.654e+00
.734e+00
.865e+00
.338e+00
.827e+00
.440e+00

.590e-01

.8329
.8518
.8708
.8018
.8260

.8721

.1058

.1758

.3173
.3861
.4543
.5231
.5829
.6642
L7375
.8135
.80919
.8727
.0567
.1470

.2358

211 -

o I A V.

O © ©

O ©

B

.850e-02
.827e-01
.238e-01
.363e+00
.108e+00
.970e+00
.011e+00
.314e+00
.7T77e+00
.483e+00
.081e+00
.802e+00
.853e+00
.916e+00
.892e+00
.840e+00
.787e+00
.741e+00
.712e+00
.707e+00
.711e+00
. 736e+00
.533e+00
.213e+00
.354e+00

.596e+00

-P24=W
-2.
-2,

-2.

-2

-2,

-2,

-2.

-2

-2.

-2.

=2

-2,

-2.

=&

-2.

-2.

=2

=2

-2.

-2.

=2.

=

-2.

-2.

-3.

-3.

5713

5533

53186

.5043

4687

2144

lieg

1112

-10.
-10.
-10.

-10.

-10

-10

-i0

=10

F E
3187 -10.2805
3371 -10.2705
35684 -10.2810
3774 -10.2829
.3697 -10.3050
.4234 -10.3173
.4479 -10.3275
.4734 -10.3381
.5018 -10.3482
.533¢ -10.3512
5505 -10.3380
.5728 -10.3253
.6025 -10.3149
.6384 -10.3058
.6816 -10.2980
.7324 -10.2¢15
.7611 -10.2853
.8587 -10.2791
.8382 -10.2728
.0248 -10.2681
1259 -10.2582
2406 -10.24¢2
38¢6 -10.2387
5149 -10.2209
6816 -1GC.2C1
8708 -10.1822



o w W W N ST o I A A

>

(o]

O © o N =N o o0

T

.8344

.0097

.2018

.4119

.8421

.8943

.1707

.4735

.8051

.1686

.5687

.0029

.4808

.0045

.5784

.2072

.8958

.8503

L4770

.3830

-110.

-110.

=111.

-112.

-112.

-113.

-113.

-113.

-113.

-113.

-113.

-113.

-113.

-113.

-113.

-113.

-113.

-113.

-114.

-114,

.7515e-01 ang**-2

u

16 -5.

88 -4.

72 -4

89 -3.
87 -3.

02 -3.

14 -2

24 -2

31 -2.

386 -1

39 -1

42 -1

44 -1

48 -9

50 -7

54 -5.

71 -3.

93 -2.

10 -1

30 1

or n/nc= 1.180

Ln(P3D)
322e+01

811e+01

.346e+01

820e+01
497e+01

108e+01

.748e+01

.417e+01

112e+01

.831e+01

.572e+01

.333e+01

.113e+01

.098e+00

.226e+00

499e+00
919e+00

480e+00

.100e+00

.590e-01

S/Nk

.8221
.9472
.8983
.0419
.0983
.1580
.2213
.2843
.3475
.4114
L4765
.5435
.6125
.6840
.7582
.8351

.€150

_R12 -

[{e]

<0

B

.672e-01

.984e+00

.841e+00

.752e+00

.069e+C0

.323e+00

.528e+00

.662e+00

.741e+00

.79Ce+00

.852e+00

.911e+C0

.€€8e+00

.002e+01

.010e+01

.021e+01

.044e+01

.067e+01

.080e+01

.106e+01

-P24d=W

-2.

=2 x

-2

-2.

-2.

-2

=2

-2

-2

-2

-2

~2.

=&

-2

=2

-3.

=3

4427
4342
4223
4084
4187
4310
4533
4837

5225

.57C2

6288

6€30

76€5

9563
o688

1873

.3222
.4781

.8547

=3

=1

-1

-10,

-10.

-1

=1

-1

=

0.

0.

0.

1

1

1,

11,

.0377

.0821

14€4



0O ™ =N

T

.6139
.8725
.7387
.8071
.8842
.8687
.0812

.1825

.2018
4118
.6421

.8943

.1688
.5667
.0029
.4808
.0045
.5784
.2072
.8958
.8503

.4770

-107.
-108.
-108.
-108.
-108.
-108.

-1C8.

-110,

-110.

-110.

-110.

-110.

-110.

-110.

u
83
08
22
3¢
57
77

00

.23

.39

.49

81

.74

.48

.50

.50

.49

48

486

46

48

48

59

.775Ee-01 ang**-2

-3

-2.

=7;

or n/nc= 1.219

Ln(P3D)

.717e+02
.564e+02
.423e+02
.285e+02
.178e+02
.071e+02
.725e+01
.826e+01
.897e+01
.233e+01
.533e+01
.883e+01
.308e+01
.766e+01
.271e+01
.B17e+01
.388e+01
.015e+01
.662e+01
.337e+01
.038e+01
.762e+01
.508e+01
.274e+01
.058e+01
.800e+00
.765e+00
.072e+00

.508e+00

058e+00

280e-01

S/Nk

. 7445
L7475
. 75086
. 7548
.7603
.7685
L7771
.7942
.8123
.8321

.8537

.1351

.1224

.2508

.3089

.3703

.4322

.4983

.5828

.6318

.7040

R213 -

B

.190e-02
.357e-01
.227e-01
.27%e-01
.560e-01
.180e-01
.355e-01
.131e+00
.508e+00
.284e+00
.612e+00
.425e+00
.518e+00
.903e+00
.580e+00
.833e+00
.880e+00
.011e+01
.031e+01
.047e4+01
.060e+01
.070e+01
.078e+01
.088e+01
.088e+01
.109e+01
.123e+01
.138e+01
.185e+01
.237e+01

.253e+01

-PR2=W
-2.
-2.
=2
=2.
-2.
-2.

-2.

=&
-2,

=2/

-3.

-3.

3074

3108

=11

-11

=32

=12

-12.

F
6803 -10
6243 -10
7097 -10
7285 -10
7451 -10
7637 -10
7835 -1iC
5144 -10
8480 -10
833 -10C
6233 -10
€724 -10
¢g51 -1i0.
0BE1 -10
1586 -10
24352 -11
2837 -11
.2921 -11.
.32%8 -11.C
.3842 -11,
4091 -11
4810 -11
5208 =11
5850 -11
BE74 -1
7571 -10
.8586 -10.
.9764 -10.
1086 -10.
2576 -10.
4277 -10.

88989
8815
9706
8556

2380



- 214 -

10.3

[&)]
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(S

-110.72 5.040e-01 2.1104 1.275e+01 -4.0324 -12.6219 -10.82290
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T

.8071

.8842

.8387

.0812

.1625

.27386

.3932

.5285

.8745

.8344

.00e7

.2016

.4119

.8421

.8943

.1707

.4735

.8051

.1688

.5687

.8503

L4770

. 3830

-1086.

-108.

-106.

-108.

-106.

-107.

-107.

-107.

-107.

~107.

-10%7.

-107.

-108.

-108.

-106.

-108.

-108.

-106.

-1086.

-108.

-108.

-106.

-108.

u
24
41
60
79
88
11
20

28

70

70

77

= .B000e-01 ang**-2

or n/nc= 1.257

Ln(P3D)

.268e+02
.153e+02
.048e+02
.517e+01
.833e+01
.818e+01
.088e+01
.380e+01
.747e+01
.165e+01
.628e+01
.133e+01
.877e+01
.270e+01
.895e+01
.551e+01
.234e+01
.944e+01
.678e+01
.428e+01
.202e+01
.92%7e+00
.82Ce+00
.207e+00
.557e+G0
.031e+00
.824e+00
.270e-01

.770e-01

S/Nk

. 7499
.7550
.7808
.7705
.7838
.7838
.8118
.8315
.8534
.8834

.9042

.1038
L1377
L2183
L2697

.3273

.€510
. 7245
.8011
.8831
.9682

.0505

_15 -

B
.186e+01
.186e+01
.187e+01
.190e+01
.187e+01
.184e+01
.182e+01
.178e+01
.185e+01
.207e+01
.235e+01
.284e+01
.351e+01
.381e+01
.390e+01
.402e+01
.414e401
.41Ce+01
.420e+01
.419e+01
.415e+01
.415e+01
.421e+01
.428e+01
.444e+01
.£55e+01
.434e+01

.455e+01

1.475e+01

-P2d=W

-2

=2.

=2

=2.

=2

=2

-2

=2 .

=24

-2.

=2

=2n

-3.

-3.
=8

-3.

.5191
5249
5320
5411
5544
5778
6114

€521

.0883

. 1323

.1718

.2189

.0973

.2835

.4544

=11

=41

=11.

=17,

=31,

=11.

.0182
.0380
.0500
L0847

L1130

.8335
.8054

.0020

-10.

-10.

=11

=11.

=El.

=11

=11.

=11.

=113

=11

-11

-11

-11

.3409
.3304
.3132

.2987



o N N

10.

.B242e-01 &ng**-2

T u

.8687 -103.24 -1
.0612 -103.42 -9
.1825 -103.60 -8
L2738 -103.74 -7
.3852 -103.86 -8
.5285 -103.€3 -8
.6745 -103.88 -5
.8344 -103.91 -4
.0087 -103.76 -4
.2016 -1£3.51 -3
.4119 -103.14 -3
.8421 -103.03 -3

.8843 -1i02.¢€8 -2.

.4735 -102.82 -2.
.8031 -102.80 -1
.1886 -102.88 -1
.5687 -102.87 -1

.0029 -102.88 -1

.0045 -102.78 -7.
.5784 -102.74 -5.
.2072 -102.66 -3.
.8658 -102.59 -2.
.6503 -1C02.80 -1.

.477C -102.62 1.

3830 -102.65 1

or n/nc= 1.295

Ln(P3D)
.013e+02
.168e+01
.342e+01
.553e+01
.829e+01
.162e+01
.54Be+01
.981e+01
.457e+01
.§?3e+01
.525e+01
.125e+01
781le+01
.427e+01
120e+01
.838e+01
.580e+01
.341e+01
.122e+401
.122e+00

321e+C0

885e+00
510e+00
149e+00
110e-01

.281e+00

S/Nk

. 7545
L7827
L7724
LPTTT
L7831
.8088
.8287
.8534
.8712
.9155

8771

.0720
L1245
.17886
.R337
.2866

.3468

.5322
.6002
B71LT
.7470
.8288
.912¢C

.9930

216 -

B

.305e+01

1.308e+01
1.308e+01
1.303e+01
1.280e+01

1.282e+01

.RB1le+01
.280e+01
.301e+01
.326e+01
.384e+01
.4408e+01
.521e+01
.553e+01
.588e+01
.580e+01
.606e+01
.817e+01
.826e+01
.832e+01
.837e+01
.639e+01
.652e+01
.853e+01

.658e+01

1.670e+01

1.874e+01

-2.
=R
-2.
-2.

=2

-3.

-8,

-3.

.0823

.1475

.2301

.3328

L4601

.5010

.8233

=113 .

=11,

-11.

=14,

=11,

=11,

-3,

=14

-11

-11

-11.

=31

E

.3661

.3877

-11.46

-11.

=11,

=11

=11,

=11

=114

=11

~11.7

=11

=11

=11.

S

-4,

=11s

=11

=11,



T

.8842

9687

O © MO N ~N O o O

.0612

.1825

L2738

.3952

.5285

.8745

.8344

.00e7

.2018

.4119

.8421

.8943

.4735

.8051

. 1668

.586€7

.002¢9

.4808

-99.
-99.
-99.
-100.
-100.
-100.
-100.
-100.
-100.
-100.
-100.
-989.

-88.

-98.

-88.

-88.

-88.

-28.

-98.

-88.

-98.

-98.

u
598
78
96
14
30
45
56
60
55
40
13
71

38

.07

86

T4

65

57

51

48

40

35

28

.18

: 12

.12

.13

.18

= .8485e-01 ang**-2

=8

-8

=%

=2y

or n/nc= 1.333

Ln(P3D)

.076e+02

.776e+01

873e+01

.045e+01
.283e+01
.585e+01
.841e+01
.347e+01
.798e+01
.280e+01
.819e+01
.382e+01
.987e+01

.626e+01

298e+01

.000e+01
.727e+01
.478e+01
.246e+01
.034e+01
.384e+00
.580e+00
.913e+00
.367e+00
.944e+00
.310e-01
.850e-01

.712e+00

S/Nk

.7450
. 7487
L7547
L7617
. 7644
L7770
.7600
.8050
.8239
.8387

.8764

.0855

.13¢8

.1845

.2498

.4229

.4856

.5517

_R17 -

B

1.518e+01

1.516e+01

1.515e+01

.513e+01

1.504e+01

.4E88e+01

1.474e+01
1.482e+01
1.452e+01
1.440e+01
1.435e+01

1.436e+01

.470e+01

1.578e+01

1.703e+01

.783e+01

1.807e+01

1.832e+01

.857e+01

1.874e+01

1.885e4+01

.862e+01

1.2086e+01

1.618e+01

.805e+01

1.909e+01

.908e+01

.898e+01

-3.

-3.

-3

-3.
-3.
-3.
-3.
=3
-3.
-3.
-3.

-3.

-4.

-P24=W
3135 -11.
3202 -11.
.3288 -11.
3445 -11.
3640 -11.
3823 -11.
4242 -11.
4718 -12.
5372 -12.
8203 -12.
7264 -12.
8801 -12.
.e218 -1i2.
9887 -12
.0505 -12.
.1050 -12.
.15g7 -12.
.2207 -12.
.2878 -12.
.3819 -12.
4480 -12.
.5419 -12.
6517 -12.
.7813 -13.
.6215 -13.
.C753 -13.
.2478 -13.
.4419 -13.

F
7634 -11
7881 -11
8117 -11
8411 -11
8744 -11
9123 -11
23383 -11
0c¥8 -11
0586 -11
1381 =11.
2222 -12.
3203 -12.
3351 -12.
3851 -12.1
4380 -12.
4833 -12.
5301 ~12.
5848 -12.
€467 -12.
7162 -12.
7956 -12.
868686 -12.
9¢10 -12.
1115 -12.
2473 -12.
4005 -12
5741 -12.
7722 -12.

11e8

1112

.0883

0799

0639



o O m N =N

.0812
.1825
.27386

.3852
.52E5

.6745

.00s87
.20186
.4119

.8421

u

.43
.83
.82
.01
.20

.38

.53

.62

.73

51

:.08

.92

.81

.72

.64

.44

.31

.29

.30

.40

Ln(P3D)

.020e+02
.348e+01
.483e+01
.882e+01
.981e+01
.293e+01
.878e+01
.108e+01
.583e+01
.086e+01
.645e+01
.225e+01
.847e+01
.484e+01
.187e+01
.872e+01
.607e+01
.3€5e+01
.143e+01
.380e+CO
.514e+00
.783e+00
.178e+00
.622e+00
.332e+00
.300e-02
.084e+00

.173e+00

.8727e-01 ang**-2 or n/nc= 1.371

S/Nk

.7410
. 74386
. 7475

. 7523

L7971

.80¢e2

.83¢88

.8508

.8848

.2541

.2084

.£545

.3214

.3797

.4408

.5051

.5733

.6480

L7278

.8078

.8882

2.028e+01

2.023e+01

2.018e+01

2.011e+01

1.998e+01

1.981e+01

1.861e+01

1.957e+01

1.808e+01

1.873e+C1

1.836e+01

1.768e+01

1.711e+01

1.668e+01

1.744e+01

.808e+01

2.048e+01
2.105e+01
2.12Ce+01
2.146e+01
2.160e+01
2.170e+01
2.194e+01
2.186e+01
2.180e+01
2.174e+01
2.171e+01

2.130e+01

-3.
-3.

-3.

-4.

-4,

-4.

=4

-4,

-5

-5.

-5.

-5.

-P24=W
B084 -12
8123 -12
8211 -12.
8344 -12.
E508 -12.
B71S =12,
.8016 -12.
.8441 -12.
.008¢ -12.
080< -12
1808 -12
3080 -12
3825 -12
4405 -12
.5384 -12.
.B278 -12.
.7035 -12.
el =12,
.8458 -13.
6235 -13.
.0139 -13.
1125 -13
2278 -13
357 -13
.4854 -13.
.8485 -13.
.8212 -13.
.0075 -14

.1578

. 1582

=12,
>12:,
=32

-12.

-12.x
-12.
=12
=12
=12.

-12.

-12,
-12.

-12.

5170

5282

5311

4687

4464



N

W w

[v2)

.0612
.1825
L2735
.3852
.5285
.8745
.8344
.0087

.20186

.4808
.C045

.5784

4770

.3830

-2,

-C1.

-21,

-88;
-88.
-88.
-88.
-88.
-88.
-88.

-88.

u

.21 -8.
.42 -8
.83 -7.
.84 -7.
.06 -6.
.28 -5.

.49 -5

18 R,

.73 -2,

.04 -1

.36 -1

.83 -1

.70 -1

.54 -8B.

42 -86.

32 -4

16 -3.

04 -1.

07 5.

15 1

37 2.

Ln(P3D)

702e+01

.810e+01

994 e+01
244e+01
557e+01

928e+01

.348e+01
.812e+01
.317e+01
.858e+01
.434e+01
.038e+01

.884e+01

353e+01

041e+01

.749e+01
.483e+01
.245e+01

.031e+01

S56e+00

582e+00

.811e+00

374e+00

961e+00

.6€0e-01

300e-01

.638e+00

857e+00

.8570e-01 ang**-2 or n/nc= 1.409

S/Nk

.7415
.7448

. 7465

.9237

.0301

.1024

.1€38

.2221

.2785

.3878

.4810

.5280

.6034

.6815

.7817

.8441

219 -
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N

B

.820e+01

.814e+01

.805e+01

.582e+01

.575e+01

.554e+01

.527e+01

.488e+01

.435e+01

.370e+C1

.294e+01

.207e+01

.138e+01

.G20e+01

.889e+01

.883e+01

.084e+01

.315e+01

.437e+01

.467e+01

.484e+01

.481e+01

.511e+01

.494e+01

.4B86e+01

.4T74e+01

.411e+01

.350e+01

=4,

-5.

-5.

=9 w

-5.

-6,

-€.

-8.

-6.

-6.

0315

.1512

27€9

. 3877

.47E20

.58608

.6508

7508

=12
=118
-12.
=¥2.
=12
-12.
-iR.

=12,

F
.5397 -12.
.5827 -12.
.5885 -12.
6177 -12.
6459 -12
6E5¢€ -12
TR75 -12
7755 -i2
8316 -1%
EE80 -i2
€728 =123
081¢ -12
0ees -12
1236 -12
1702 -12
2282 -i2
2849 -12
3845 -12
4314 -12
5028 -12
5821 -12
€733 -1i2
7805 -1i2
2004 -12
0341 -:i2
<1871 -12.
.3577 -12.
.5535 -12.
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T

.8842
.9687
.0612
.1625
.2736
.3852
.5285
.6745
.8344
.0097
.2016
.4119
.8421
.8943
L1707
.4735
.8051
.1686
.5687
.0029
.4808
.0045
.5784
.2072
.8958
.6503
.4770

.3830

-84.
-84.
-84.
-84.
-85.
-85.
-85.
-85.
-88.
-86.
-86.
-86.
-86.
-86.
-86.
-85.
-85.
-84.
-83.
-83.
-82.
-82.
-82.
-82.
-82.
-82.
-82.

-83.

u
16
38
62
86

12

39

66

81

31

41

40

44

43

31

04

08

38

04

83

67

48

42

46

54

81

22

.0212e-01 ang**-2

-9.
-8.
-7.
-6.

-6.

-5

~3.

-3

-2.

or n/nc=
Ln(P3D)
018e+01
187e+01
427e+01
730e+01

081e+01

.506e+01
.866e+01
.470e+01

.012e+01

588e+01

.196e+01

830e+01

.497e+01
.189e+01
.902e+01
.828e+01
.389e+01
.12B8e+01
.143e+00
.256e+00
.542e+00
.870e+00
.512e+00
.180e+00
.000e-02
.170e+00
.202e+00

.153e+00

1.447

S/Nk

.7375
.7388

.74186

.8071
.8223
.8420
.8683
.2105
1.0022
1.1074
1.1752
1.2384
1.2959
1.3563
1.4196
1.4884
1.5624
1.6404
1.7230

1.8078

w W

w

B

.029e+01
.021e+01
.010e+01
.992e+01
.872e+01
.851e+01
.21Be+01
.871e+01
.802e+01
.716e+01
.613e+01
.4E82e+01
.475e+01
.427e+01
.308e+01
.118e+01
.012e+01
.164e+01
.4E3e+01
.682e+01
.783e+01
.850e+01
.848e+01
.818e+01
.788e+01
.718e+01
.820e+01

.466e+01

-5

-5.

-0.

=5

-5.38

-9.

-5.

-5.

-5.

.2029
.20e2
.2166

.2262

.5779

.8E85

.8124

.9818

L1319

.2426

. 3528

. 4622

-14

-14

-14

.3024

.4342

.5830

. 7498

.8253



10.

T

.8842
.8687
.0612
. 1625
.2736
.3952
.52E5
.8745

.8344

.4119
.6421

.8643

.6503

.4770

3830

-77.

=Tls

-78.

-78.

'
-1
[4:]

-78.

~79.

=74

-'78.

-80.

-80.

-80.

-80.

-80.

-80.

=80.

-76.

=76,

=76,

-78.

-76.

-786.

=77

-78.

.61 =1

.38 -8

.9454e-01 ang**-2

u

53 -8.
76 -7.
02 -8.

30 -8.

.60 -5.

g1 -5.

24 -4

.42 -8B.

95 -4.

63 -2.

48 -1

46 -3.

61 7

g1 1

40 2.

11 3.

or n/nc= 1.485

Ln(P3D)
267e+01
504e+01
808e+01
166e+01
579e+01

041e+01

.547e+01
.022e+01
.874e+01
.288e+01
.932e+01
.589e+01
.287e+01
.998e+01
.733e+01
.485e+01
.249e+01
.021e+01

.050e+00

132e+00

469e+00

963e+00

.587e+00

540e-01

.810e-01

.820e+00

772e+00

845e+00

S/Nk

. 7349
. 7355
.7358
.7375
.73e3
.7433
. 7453
.7474

.7507

.7685
. 7644
.8062
.8210
.8388
.8658
.2031
.8745
.1088
.1861
.2512
.3141
.3787
.4494
.5274
.80789
.6922

L7778

_R1 -

B

.714e+01
.706e+01
.885e+01
.678e+01
.661e+01
.842e+01
.612e+01
.570e+01
.508e+01
.432e+01
.337e+01
.224e+01
.205e+01
.180e+01
.142e401
.020e+01
.778e+01
.538e+01
.580e+01
.872e+01
.087e+01
.120e+01
.103e+01
.071e+01
.004e+01
.878e+01
.721e+01

.684e+01

-P2d4=W

-6.
-6.
-6.
=8
-6.
-6.
-6.

-6.

-6.

-6.

-6.

=8 .

-8.

-6.

0760
0787
0778
o7rer
0820

.5847

. 7834

.8882

.10e3

-13.

=13

-14.

-14.

-14,

~14.

=14

-14.

-14 .,

=14,

-15.

-15.

[
—
[&]

.8E37

.6631

.8207

.5088
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T

.8842
.8687
.0812
.1625

L2738

.5285
L6745
.8344
.0097
.2016
.4119

.6421

.8051
.16886
.56867
.0629
.4808
.0045
.5784

.2072

.6503
L4770

.3830

-70.
-70.

-70.

-74.

-74.

-74.

-73.

=72,

-70.

-70.

-70.

-70.

=70

-71.

-72.

-73.

= .9697e-01 eng**-2

u

17 -7.

42 -6.

69 -6.

.00 -5,

.33 -5

.88 -4.

.06 -4

.47 -3.

.82 -3

.40 -2.

B7 -2.

29 -2.

.40 -2.

.49 -1

.57 -1

.60 -1

54 -1

25 -8.

3¢ -6.

03 -5.

89 -3.

44 -1

31 -5,

40 4.

73 1

32 2.

22 3.

21 4,

or n/nc= 1.523

Ln(P3D)
435e+01
748e+01
115e+01

538e+01

.008e+01

522e+01

.075e+01

667e+01

.292e+01

S48e+01

€26e+01

328e+01

C041e+01

. 776e+01

.531e+01

.305e+01

.023e+01

928e+C0

S58e+00

055e+090

363e+00

.23Re+00

610e-01

880e-01

.526e+00

466e+00

318e+00

117e+00

S/Nk

. 7351
. 7358
.7380
.7373
.7391
. 7421
. 7436
. 7453
.7478
.7515

.7610

.8899
.9612
.1073
.2002
.R723
. 3420
.4184
.5005
.5848
.6730

.7575

RR2R2 -

w

N NN

B

.532e+01

.528e+01

.517e+01

.504e+01

.490e+01

.474e+01

.452e+01

.418e+01

.375e+01

.317e+01

.245e+01

.156e+01

.149e+01

.136e+01

.113e+01

.084e+01

.992e+01

.745e+01

.410e+01

.244e+01

.190e+01

.351e+01

.337e+01

.255e+01

.108e+01

.898e+01

.856e+01

.087e+01

-P2d=W
-7.0085 -13.
-7.0075 -13.
-7.0080 -13
-7.0042 -13.
-7.0028 -13.
-7.0022 -13.
-7.0628 -13.
-7.0038 -14.
-7.0053 -14.
-7.00€3 -i4.
-7.0215 -14.
-7.0474 -1
-7.0584 -14.
-7.0737 -14.
-7.0856 -14.
-7.1250 -14.
-7.1707 -14.
-7.2558 -14.
-7.4240 -14.
-7.6563 -14
-7.8208 -14.
-8.08¢€0 -1
-8.1783 -14.
-8.2801 -15.
-8.3705 -15.
-8.4433 -15.
-8.4957 -15.
-8.4808 -15.

S

i~

8127

8358

.8811

-13.
-13.
-13.
-18.

-13.

=14..0

-14.

-14.

-14,

-14.

-14.

-14.1

-14.



o © O™ N N O o

T

.8842
.9687
.0812
.1625
.2738
.3952
.5285

.8745

.4118

.6421

.8843

.1707

.8051

.1688

. 5687

.0029

.4808

.0045

.5784

.2072

.8958

.8503

.4770

.3830

-64.

-64.

-64.

-64.

-65.

-65.

-66.

-66.

-67.

-67.

-68.

-68E.

-68.

-68.

-869.

-69.

-69.

-68.

-68.

-68.

-€5.

-84.

-84,

-64.

-65.

-66.

-67.

-68.

u
G5
31
60
e3
28
66

07

05

61

20

76

88

26

04

11

13

07

81

22

60

13

43

14

17

41

71

.9939e-01 ang**-2

-6.

-6 .

or n/nc= 1.5861

Ln(P3D)
743e+01

115e+01

.541e+01
.016e+01
.533e+01
.091e+01
.68Ze+01
.313e+01
.872e+01
.858e+01
.368e+01
.088e+01
.B32e+01
.585e+01
.357e+01
.147e+01
.508e+00
.882e+00
.©53e+00
.294e+00
.398e+00
.080e-01
.780e-01
.316e+00
.234e+00
.062e+00
.827e+00

.550e+00

S/Nk
.7360
.738686
.7375
.7388

. 7402

.7874
.7870
.8088
.B224
.8422
.8671
.8025
.8752
.1104
.R268

.3113

RR3 -

(%)

w

(V3]

LAV I V]

B

.707e+01

.702e+01

.885e+01

.686e+01

.876e+01

.664e+01

.647e+01

.626e+01

.596e+01

.558e+01

.507e+01

.442e+01

.450e+01

.458e+01

.461e+01

.453e+01

.380e+01

.112e+01

.684e+01

.364e+01

.315e+01

.385e+01

.241e+01

.876e+01

.756e+01

.688e+01

.003e+01

-P2d=W
=T

=7.

.00€3

.088¢8

.1248

.1783

.4456

-14.
-14.
-14.
~14.

- 14,

-14.7

-14.

-14.

-14.,

-14.

-14. 2

-14.

.1805

.1978

.2181

[AS B V]
[ol} (%)
[S2 3o
W

N
m
N
~

.5033

.5116



(oIS R

T

.8842
.8687
.0812
.1825
.R736
.3e52
.ORED
.8745
.8344
.0087
.2C186

.4118

.16886

.5867

-56.

-56.

-57.
-57.

-58.

-6C.

-61.

-81,

-61.

-61.

-61.

-62.

-62.

-59.

-60.

-61.

-63.

u

62

3]

.18

53
88

29

.21

.77

38

02

68

78

87

87

12

.18

.22

.08

.24

.54

10

28

62

13

-3.

-3.

-3.

-2.

-2.

-2.

-2

.1018 &ng**-2 or n/nc= 1.599

Ln(P3D)

.803e+01
.348e+01
.843e+01

.378e+01

£53e+01
563e+01
204e+01
876e+01
575e+01

228e+01

.043e+01

.80€e+01

.584e+01

.340e+01

.134e+01

34e+00

358e+20

.C25e+00

.5102+400

.055e+00

.680e+00

.800e-02

.128e+00

.035e+00

.E51e+00

.588e+00

.278e+00

.7398
L7411

.7423

.7599

.7685

.7764

.7846

. 7945

.8068

.8222

.B421

.8079

.8769

.1418

k24 -

B

4.691e+01
4.686e+01
4.681e+01
4.677e+01
4.671e+01
4.864e+01
4.655e+01
4.645e+01
4.635e+01
4.620e+C1
4.585e+01
4.558e+401
4.544e+01
4.527e+01
4.505e+01
4.474e+01
4.423e+01
4.312e+01
4.211e+01
4.011e+01
2.877e+01
2.205e+01
3.107e+01
2.878e+01
2.875e+01
2.490e+01

1.958e+01

-P2d=W
-85.8888 -14.
-8.85850 -14.
-8.8801 -14
-8.8741 -14.
-8.8678 -14.
-B.EB13 -14.
-8.6542 -14
-8.8446 -14
-8.8321 -14
-6.8182 -14
-8.803¢ -15
-8.68304 -15
-8.8118 -1i5
-8.8250 -15
-8.8443 -15
-6.8862 -15
-8.8843 -15
-8.8284 -15.
-8.8705 -15.
-8.0423 -15.
-98.20386 -15.
-8.5734 -15
-8.7€58 -15
-9.8288 -15
-2.8055 -15
-9.7747 -18
-9.6820 -16

€528

8764

.7022

-14.

=14..

-14.

=14 ;

-14.

-14 .

=

-14.

-i4.

=14 .

=1

-14.



»
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.0045
.5784
.2072
.8958
.6503

.4770

-48.

-55.

-54.

-54.

-586.

-57.

-59.

u

41 -8.
.64 -5
.89 -5.
.17 -4
.47 -4.
.81 -3.
.18 -3.
.58 -3
.03 -2.
.52 -2.
.08 -2,

.69 -1

.33 -1

.49 -8.

.67 -7

.86 -5.

5.12 -4.

.33 -3.

.87 -6.

88 4.

05 1

81

84 4

65 4.

2
21 3.

.1042 eng**-2 or n/nc= 1.8637

Ln(P3D)

116e+01

.548e+01

028e+01

.552e+01

115e+01

715e+01

348e+01

.011e+01

701e+01

418e+01

158e+01

.816e+01

.684e+01

.488e+01

.276e+01

.080e+01

984¢e+00

.307e+00

758e+00

337e+00

002e+00

.7687e+00

230e-01

820e-01

.810e+00

.650e+00

365e+00

.025e+00

848e+00

S/Nk

. 7383
.7380
. 7387
. 7407
. 7422
. 7437
. 7449
. 7467

.7482

.7698
LT771
.7860
.7970
.8111
.8283
.8535
.8865
.8330
.0614
.2333
.3824
.4976
.5860

.6760

_25 -

B
.620e+01
.816e+01
.812e+01
.608e+01
.607e+01
.607e+01
.806e+01
.604e+01
.603e+01
.607e+01
.618e+01
.627e+01
.631e+01
.824e+01
.600e+01
.566e+01
.516e+01
.447e+01
.355e+01
.256e+01
.110e+01
.839e+01
.842e+01
.361e+01
.141e+01
.347e+01
.223e+01
.105e+01

.251e+01

-P2d=W

-9

-8,

-8.

-9.

=B

-8.

-8.

-8

-9,

=8

=8

=8,

=18,

-9.

-9.

-9.

-9

-9

=8

-9.

=10

-10.

-10.

-10.

-10.

-10.

.8840

.91€8

9311

9411

. 9583

.8803

-15.

=195

-15.

F

.0384
.0584

.0803

. 7240
L7718
.B0C8
.2133
. 0455
. 1485
.2329
. 3389
.6303

-14

-14

-15.

=19,

=385

=18,

-15.

-14

-14.

E

.8817

.6962

.2001

.1008

0008

.8073

9752



N NN 0O 0 O

T

.5115
.5604
.6139
.6725
.7367
.8071
.8842
.8687
.0612
.1625
.27386
.3952
.5285
.8745
.8344
.0097
.2018
.4119
.8421
.8843
.1707
.4735
.8051
.1688
.5667
.0029
.4808
.0045
.5784
.2072

.8958

-40.
-40.
-40.
-40.
-40.

-41.

-41

-41.

-42.

-42.

-42.

-43.

-43.

-44.

-44.

-45.

-45.

-48.

-486.

-48.

-47.

-47.

-47.

-48.

-48.

-49.

-50.

-51.

-51.

-51.

-52.

u
24
40
58
77
89

22

.48

76
07
40
77
17
60
08

59

78
48
€5
89
17

52

36
95
67
49
31
30
34

92

-7

-6

-86.

-5.

w

= .1067 ang**-2 or n/nc= 1.676

Ln(P3D)

.504e+01

.823e+01

201e+01

631e+01

.108e+01
.628e+01
.120e+01
.787e+01
.417e+01
.C78e+01
.766e+01
.478e+01
.215e+01
.972e+01
.747e+01
.541e+01
.351e+01
.174e+01
.€12e+00
.227e+00
.876e+00
.250e+00
.938e+00
.715e+00
.806e+00
.860e-01
.570e-01
.254e+00
.228e+00
.131e+00

.781e+00

S/Nk

.7380
.7382
.7388
.7402
.7408
.7415
. 7423
.7433
.7449
. 7464
L7475
. 7492

.7518

.7814
.7674
L7748
. 7839
. 7958
.8114
.8313
.8573
.8913
.8342
.0082
.1947
.3841

.5121

R’26 -

-P2d=W

B
4.679e+01 -11.
4.8677e+01 -11.
4.674e+01 -11.
4.672e+01 -11.
4.668e+01 -11
4.665e+01 -11
4.681e+01 -11
4.858e+01 -11
4.660e+01 -11.
4.667e+01 -11
4.675e+01 -11
4.680e+01 -11
4.622e+01 -11
4.718e+01 -11
4.763e+01 -11
4.814e+01 -11
4.863e+01 -11
4.9803e+01 -11
4.823e+01 -11
4.720e+01 -11
4.581e+01 -10.
4.422e+01 -10.
4.224e+01 -10.
4.004e+01 -10.
3.702e+01 -10C
3.404e+01 -10.
3.055e+01 -10.
2.843e+01 -10
1.611e+01 -10
1.971e+01 -10
1.910e+01 -10.

11086
1078
1043

10086

.0e65

.0918

.0887

.0810

.0699

.0834

.0564

.0483

.0429

.0371

.0288

.0213

.0148

.0105

.0038

.8606

8415

7936

. 7208
.8403

.9443

8636

-15.

-15.

-15.

-15

-15.

=18

-15

-15.

=15,

-15.

-15

=18.

-16.

-186.

-16.

-16.

-18.

-18.

-16.

-186.

-16

-186.

F

4046

.4188

4343

4512

.4€88

.6624

7020

. 7480

7948

.9064

8713

.68€E8

G089

0270

0468

.0832

0887

1142

1414

1814

1956

3136

.4227

5100

-15.

-15.

-15.

-15.

-15

-15

-15.

-15.

-15.

-15.

-15.

-15

-15.

L4787
.5013

.5250

5509

.5784

.6112

L7754

.T723

.7876

7817

.7519

6351
5509

4750

.3508

2361



- 227 -

8.6503 -54.87 4.392e+00 1.6012 1.84B8e+01 -10.7768 -16.6087 -15.1318



W W M D NN DD

(7]

(S| b

T

.3551
.3880
.4262
.4669
.5115
.5604
.6139
.8725
.73867
.8071
.8842
.8687
.0812
.1625
.2738
.3952
.5285
.6745
.8344
.0087
.2016
.4119
.8421
.8943
.1707
L4735
.8051
.1686
.5667
.0029

.4808

-32.
-33.
-33.
-33.
-33.
-33.
-33.
-33.
-34.
-34.

-34.

-35.

-38.

-38.

-37.

-37.

-38.

-40.

-40.

-41.

-42.

-43.

-45.

u
93
05
17
31
45
62
80
99
21
45

71

.00

.30

.62

97

37

78

21

€65

14

.89

.28

.87

13

67

32

.08

96

98

09

.31

-9

-7.
-6.

-6.

-4.

-3

-3.

-3.

-2.

-2.

.1091 ang**-2 or n/nc= 1.714

Ln(P3D)

.001e+01

.200e+01

464e+01
792e+01

176e+01

.812e+01
.086e+01

.822e+01

188e+01

.780e+01

425e+01
089e+01
780e+01

495e+01

.232e+01
.201e+01
.768e+01
.562e+01
.38Se+01
.192e+01
.028e+01
.T71e+C0
.268e+00
.891e+00
.624e+00
.466e+00
.400e+090
.420e+00
.160e-01
.280e-01

.122e+00

S/Nk

. 7408
.7408
.7409
. 7411
.7415
.7418
. 7422
. 7430
.7435
. 7443
.7451
.7459
.7468

. 7483

. 7549
.7580
.7603
.7652
.7665
L7750
. 7856
.79886
.8144
.8335
.B8568
.8860
.8184

.9593

R’28B -

-P2d=W

B
4.024e+01 -12.
4.022e+01 -12
4.022e+01 -12.
4.021e+01 -12.
4.020e+01 -12.
4.018e+01 -12.
4.018e+01 -12.
4.016e+01 -12.
4.014e+01 -12.
4.013e+01 -12.
4.011e+01 -12.
4.010e+01 -12.
4.012e+01 -12.
4.017e+01 -12.
4.022e+01 -12.
4.027e+01 -12.
4.036e+01 -12.
4.054e4+01 -12.
4.084e+01 -12.
4.118e+01 -12.
4.152e+01 -12.
4.183e+01 -12
4.035e+01 -12
3.870e+01 -11
3.681e+01 -11
3.483e+01 -11
3.267e+01 -11
3.012e+01 -11
2.806e+01 -11
2.612e+01 -11
2.43Be+01 -11

1008

.08E5

0958
0e33
0904
0869
0831

0791

0572
0322
0481
0432
0374
0330
0321
0354
0384

0403

.0425
.0126
.8749
.8285
.86€0
. 7989
L7165
.8187
.5134

.3888

-18.

=~18.

-16.

-18.

-16.

-18.

-18.

-186.

-186

~18.

-16.

-16.

F
.6838 -15.
.7038 -15.
.7148 -15.
.72869 -15.
.7401 -15.
.7545 -15.
.7704 -15.
.7877 -15.
8087 -15
8275 -13
B303 -1iZ
.EB753 -15.
.8032 -15.
.8341 -15.
9679 -15
0048 -15
0459 -15
0919 -15.

1433 -15.
1988 -186.
2611 -18
3289 -16
3409 -186
3530 -18
35655 -16
3773 -186
3895 -186.
.4038 -18.
4187 -15.
4328 -15.
4504 -15.

.9203

9540

ec18

0435

0142

9752

9318

8768



§.0045
6.5784
7.2072
7.8¢658

8.65C3

-47.
-48.
-48.
-50.

-52.

.878e+00
.830e+00
.513e+00
.125e+00

.684e+00

- 229 -

2.120e+01
1.813e+01
1.668e+01
1.658e+01

1.587e+01

=11

=11.

=¥1.

-11.

=11.

-16.4804
-16.5249
-16.6484
-18.7364

-16.8382

-15.6125
-15.6789
-15.5573
-15.4172

-15.3082



Db W W W N NN
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T

.4119
.6421
.8843
.1707

.4735
.8051
.16€86
.5667
.002¢
.4808
.0045
.5784
.2072
.8858
.6503

.3830

-34.
-34.
-35.
-386.

-37.

u
34
4
62
42
31

.31
.40
.59
.88
.28
St
.12
.40
.05
.89

.00

-6.

-5

-4

-3

-2

.1115 eng**-2 or n/nc= 1.751

Ln(P3D)

719e+00

.478e+00
.333e+00
.285e+00
.311e+00
.409e+00
.880e-01
.260e-01
.710e-01
.877e+00
.353e+00
.015e+00
.8168e+00
.398e+00
.833e+00

.000e+00

S/Nk

.7981
.8098
.8231
.8384
.8558

.8758
.8993

.8278

.0000

.0000

230 -

B

.795e+01
.615e+01

.471e+01
.325e+01
.233e+01
.154e+01
.085e+01
.672e+01
.898e+01
.752e+01
.463e+01
.424e+01
.378e+01

.178e+01

-P2d=W

-12.

-12.

-12.

-12.

-12.

-12.

-12.

-11

-11

=11

b

=11.

-11

-18

.105e+01 -12.8389

.251ie+01 -12.7751

7G16
6138
5160
4054
2624
1540

0182

.8788
L7267
.6118

.6880

.4812

.5682

-16.

-18

-16.

-16.

=16

-186.

-16

-16

F

6676

.8708

6734
6751
8760

8765

.6758
.8787
.6877
.7028

.7118

-16

-186.

-16.

-18

-186.

-16

-16.

=16,

-18

~18.

-15.

E

.4530

4323

4078

.3787

6.3446

3049

.2578

2072

1530

.0e36

0087

88¢7

. 7467
.5879
.0549

.5682



