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Abstract 

The Kosterlitz-Thouless-Nelson-Halperin-Young theory of melting in two 

dimensions by unbinding of thermally excited dislocation pairs is 

tested against thermodynamic data on monolayer films of 3He and 4He 

on graphite. It is shown using a new analysis of the theo!'y i!l the 

asymptotic region that a definitive test is not possible '\',ith these da:a 

because the theory is eA']>ected to be most accurate in a regime ve!'y 

close to the melting transition which is inaccessible t: eA-periDe:lts 

that are not performed on extremely long time and length S:!ales. 

One of the two unkno"Ytn par~"'11.eters of the theory, that which measures ~he 

resistance to twist of the monolayer vrith respect to the perio6:: s-:.:bs~rc..te. 

is calculated, along v.ith the equilibrium angle, to moderate a:!c~a:y us~:-_g 

the most rece:1t information about the heliu.'ll g:-aphlt.e po~er.~.:ial fro::1 

atomic scattering experiments. The other parameter, which charactt2:~izes 

the energy of a dislocation core, is provisionally determbed by !L~d.ing ..... -:-_at 

values make the heat capacity of the film, computed fro:n t!J.e theo!'y ar..d 

elastic data on the film. are consistent with experime~_tal results. 

These computations are carried out using the full reno!'!'!!.~:.ze.tion g:-c;;? 

equations, crossing the transition from the solid into into t~e regi~:l , .. -~e!'e 

those equations break down, by cutting otr the integration at a fL""lite value 

characteristic of the size of a graphite platelet. which worl~s t!..~t:.l the mec:...l'l 

distance between free dislocations decreases to approxi.rr~ateiy the size of 

the patch. The core parameter falls in a range considerably large:- than 

previously estimated for classical Lennard-Jones soliC:s a::d other materic.~s. 

Only at large values can the dislocation heat capacity be suppressed enough 

not to be inconsistent with eArperiment. 
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Non-rigorous interpolation methods were developed to try to L'lclude some 

quantum effects in the heat capacity calculations, but these improved the 

agreement between the theory a.'ld the e>.."Periments only slightly. 

Also appearing for the .fu'st time are extensiYe tables of the thermodyn::..lT'Jc 

functions of 3He for coverages ranging frc!:l .O:i~ to 1 la~.~e!" a::C. te::::pe:-a­

tures f!.4 om 50rn.K to :OK. 
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Chapter 1. Introduction 

Melting may be the least-understood of everyday phenomena. The 

physicist's intuitive concept of melting as the vibration of atoms (or molecules) 

out of the cages formed by their neighbors when the solid is heated is as good as 

any theory of bulk melting that has been proposed, and yet does not provide a 

mechanism for a phase transition. 

There is, however, a recent theory 1, 2, 3 of melting in two dimensions which 

can, in principle, be used to predict the thermodynamic and dynamic beha\ior 

of the solid and the fiuid phases . In particular, it predicts that the melting tran­

sition is a critical transition which .takes place when thermally excited disloca­

tion dipoles .first weaken the solid (which lowers their energy and allows more to 

be created at larger separations as the temperature is increased), and then 

unbind, allowing the material to flow under slow shear stresses. 

The theory is elegant and attractive because its central idea that order is 

broken up by a kind of topological excitation (the dislocation) finds application 

in theories of other two-dimensional phase transitions, e.g. superfiuids, magnetic 

systems, and possibly liquid crystals. Of course, it is hoped that it also may lead 

to an explanation of bulk three-dimensional melting. but little progress has been 

made in this area. 

However, it is not yet established that the theory is correct. The question 

treated in this thesis is whether it applies to the particular experimental sys­

tems for which enough data may exist to test it, the helium monolayer films on 

graphite, ~which the two-dimensional solid was first observed. 
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Crystalline order (in the sense of the existence of sharp Bragg diffraction 

peaks) was rigorously proven by Mermin in 1968 not to occur at any finite tem­

perature in two dimensions,4 owing to smearing out by low frequency vibrations, 

although Landau and Peierls had made this point many years earlier. However. 

experiments 5 with helium monolayers on Grafoil, a commercial graphite pro­

duct, established that at sufficiently high density and low temperature, the heat 

capacity of the films was proportional to 'f'l. characteristic of a two-dimensional 

system whose low-lying excitations are phonons . Independent measurements 6 

of the compressibility of the monolayers showed that transverse as well as longi­

tudinal phonons were present and the material had a non-zero shear modulus. 

and hence, exhibited the most important characteristic of a solid, even though 

translational crystalline order might not be present. Soon after this, Bretz . 

et al . 5 found ~harp, cusplike peaks in the heat capacity at constant coverage of 

these monolayers, peaks which were thought to mark the melting transition. 

Figure 1.1 shows these heat capacity peaks for 4He and figure 1.2 is the data of 

Hering, et al. B for 3He. Elgin and Goodstein7 added overlapping adsorption 

isotherms and heat capacity measurements to the earlier data on 4He. They 

showed how the combined results could be used to produce detailed thermo­

dynamic tables for the film and to disentangle the contributions to the heat 

capacity and other thermodynamic quantities owing to such deviations from 

ideal 2-D behavior as promotion into a second adsorbed layer and desorption 

into the bulk gas in equilibrium with the monol,ayer films. Similar analysis has 

been performed on 3He. 9 

The elastic properties of the solid were shown by Stewartl0 to be similar to 

the properties of bulk helium solids at the same interatomic spacing, and the 

heat capacity peak temperatures were likewise comparable to bulk melting tem­

peratures. The solid is lmown to be incommensurate with the substrate from 
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Figure 1.1. Heat capacity of 4He ft1m.s at severe! densities for which the 1i1ms are 
eolia at low temperature. Reprinted from Elgin and Goodstein."' 
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Figure 1.2. Heat capacity of 1He 15.lms which are solid at low temperature . Re­
printed from Hering . et. al .e 
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neutron scattering measurements of the lattice parameter. 

This experimental work makes the helium monolayers the best­

characterized of all 2-D systems; nonetheless, the task of verifying the predic­

tions of tb.e theory for these films is extremely difficult, for several reasons. 

The most easily extracted predictions of the theory are of the behavior of 

equilibrium and non-equilibrium properties of the system in the asymptotic crit­

ical region.around the phase transition. These predictions are, in summary. that 

no quantity measurable by thermodynamic techniques exhibits singular 

behavior at the phase transition, except of the type of the infinitely smooth 

essential singularity of the form l+be lt 1-v where t is reduced temperature and v 

is positive . That means the critical behavior is undetectable in these experi­

ments and, in addition, that the transition cannot even be found, because the 

transition temperature depends upon two parameters which can only be 

estimated for helium films . These parameters are the dislocation core energy, 

which measures the energy of the strongly distorted central region of a disloca­

tion and acts as a kind of chemical potential governing the average density of 

dislocations, and the strength of the restoring torque opposing twist of the sub­

strate with respect to the film arising from the effect of the periodic lateral vari­

ation of the substrate-adatom potential. 

Thus, thermodynamic measurements. which have been used in the past to 

map out phase diagrams of 2D and 3D systems. and without which very few 

dynamical measurements can be correctly interpreted, cannot be used to locate 

phase transitions in several of the most important and interesting 2D cases, if 

the theory is correct. Furthermore, if phase boundaries (such as that deduced 

from the heat capacity peaks, and displayed in figure 2.2) are found, the theory 

tells us they must b~ other transitions than melting, superfi.uid-normal, or 

ferromagnetic-paramagnetic. 
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Since the thermodynamic experiments can give little or no information 

about the phase transition itself, the major effort of this thesis was to extend the 

theory to· give useful comparisons with experiment away from the critical 

region, at. temperatures below and above melting . Those efforts have been along 

several lines. 

First, some success has been achieved in determining a parameter charac­

terizing the strength of the distortions of the helium lattice by U!e underlying 

periodic potential of the substrate . This parameter, called y, can be calculated 

only as a function of the distance from the substrate to the helium overlayer, 

which is not known precisely enough to give accurate answers , but we are able to 

use recent neutron scattering results to determine that it is usually too small to 

affect other calculations significantly. 

The corrections to the elastic theory of a triangular lattice in the presence 

of finite equilibrium pressure and substrate interactions have been worked out, 

including their effect on the dislocations which break up the solid . 

The effect of dislocations in softening the elastic response of the crystal and 

has been calculated directly from the theory and also from non-rigorous tech­

niques designed to take into account quantum mechanical effects . 

For future experimental studies, we have derived more rigorously than had 

previously been done the characteristic critical behavior above the melting 

transition. The method reveals that the region over which the asymptotic formu­

lae are accurate approximations to the actual behavior of the system. has 

never been probed in an experiment, nor it is likely to be with currently used 

techniques. 

The succeeding chapters develop these themes in more detail. Chapter II 

briefly surveys the experiments on 2-D melting and the information gleaned 

from them. Chapter Ill contains the theory of helium monolayers treated as 
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compressed elastic continua subject to a 2-D periodic external potential . 

Chapter IV reviews the renomalization group calculation of dislocation unbind­

ing, discusses the problems of testing it, and displays calculations of the effect 

of this mechanism on the heat capacity of the films above and below the transi­

tion Chapter Vis a calculation of the substrate effects on the elastic properties 

of the films and a speculation on the origin of the heat capacity peaks . Chapter 

VI discusses the behavior of the theory in the critical region and the e)..i.ent of 

that region. 
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Chapter 2 

Experimental Data on 2-D Melting 

1. Overview of Available Information 

The study of 2-D behavior in physisorbed monolayers has come of age since 

1969, when Thorny and Duval 1 discovered phase transitions in submonolayer 

rare gas films on exfoliated graphite which seemed little influenced by substrate 

inhomogeneity. Soon after, Grafoil 2 was found by Bretz3 to have a surface 

homogeneous enough that the properties of the monolayer could be disentan­

gled from the interaction with the substrate. The surface area of about 20 

m 2
/ gm for Grafoil means that signals of, -e.g . heat capacity, could be comfort­

ably extracted from the background (at least at low temperature) to make accu­

rate measurements. The fact that more than 90% of the Grafoil surface is basal­

plane crystal face means that once the tighter binding sites (at platelet edges, 

junctions of two platelets, steps in the crystal surface, impurities, etc.) are filled 

up the rest of the surface appears to the adsorbed atoms as a uniform weakly 

corrugated surface over very large distances . The corrugation arises because 

the adsorbing van der Waals potential is most strongly attracting at the center 

of the graphite hexagons and weakest near carbon atoms. 

This means that mobile phases of adsorbed atoms can be formed. At low 

temperatures, the mobility arises from tunneling through the corrugation bar­

riers. These mobile phases behave (after corrections for band structure effects 

of the periodicity of the potential in the plane) like 2-D gases and liquids. A rich 
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range of solid behavior is also observed, depending upon whether or not the cor­

rugation amplitude and period cause that energy to dominate the adsorbate­

adsorbate interactions, or vice versa. Prior to this, the closest thing to a 2-D 

material bhat could be made in the laboratory was a monolayer of large organic 

molecules (stearates) on some immiscible liquid (e.g. water). and there the 

dynamics of the monolayer was strongly coupled to the dynamics of the base 

material. · 

The helium monolayers were the first and most completely studied systems 

on Grafoil, and will be discussed in the succeeding section and chapters. It is 

necessary to view that work ·with some knowledge of parallel research on other 

monolayers, using a v.ide variety of techniques. There is essentially only one 

other kno"Wn substrate (made from compressed MgO smoke)4 which has the 

same degree of homogeneity as the best Grafoil (there are several varieties v.ith 

slightly different properties), and a somewhat smaller surface to volume ratio. 

Very little work has been done with it, so a summary of the results on Grafoil is 

essentially a summary of the most useful results in the field . 

The techniques for studying phase transitions of adsorbed films can be 

divided into three categories based on the kind of information they pro'.ide. 

although there is actually considerable overlap of one technique into more than 

one area. The three kinds of information are thermodynamic, structural and 

dynamic, the first two usually pertaining to the equilibrium properties, and the 

last to a large class of effects both microscopic and macroscopic . 

1.1. Thermodynamic Measurements 

The thermodynamic experiments consist of measurements of the chemical 

potential of the film as a function of coverage and temperature, and the heat 

capacity of the film . The latter is obtained by ~tandard calorimetric methods, 

with some care taken to understand and calibrate the background effects from 
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the calorimeter, the gas in equilibrium with the film. and the dynamic balance of 

adsorption, desorption (which changes the coverage as a function of tempera­

ture if a fixed amount of adsorbate is introduced into the sample chamber) and 

promotion of adsorbate atoms into the second and higher layers which may 

occur as the adsorbate approaches monolayer density at moderate tempera­

tures . The chemical potential is equal to the value in the gas in equilibriurr1 ¥with 

the film. and is thus measured by measuring the pressure of the gas . This gas is 

always dilute enough that an ideal or one-term virial gas relation between pres­

sure and chemical potential is sufficiently accurate. As is discussed in Elgin and 

Goodstein, 5 and in the appendix to this thesis, if heat capacity and chemical 

potential are each measured wherever possible in the temperature-coverage 

plane, and the measurements overlap in some region extending dovin to very low 

coverage, the thermodynamic functions can be found at all temperatures for 

which the heat capacity can be measured for the region of coverage spanned by 

the overlapping measurements. and at all coverages where pressure can be 

measured for the region of temperature spanned by the overlapping measure­

ments, if the measurements are sufficiently dense in the plane. 

For most cases, heat capacity measurements, together VYith the other ther­

modynamic functions, are the most direct way of studying phase transitions . In 

fact, heat capacity measurements are the most common way phase boundaries 

are discovered, or mapped out if they are discovered in some other measure­

ment. The transitions are almost always marked by some sort of anomaly or 

singularity in the heat capacity, and the shape of these anomalies is often 

predicted by theories or models of the phase transition, so direct tests of the 

theories can be performed if the data are accurate enough. It should be noted 

that according to the theory of 2-D melting discussed in this thesis, the heat 

capacity, while showing non-ideal behavior near the transition, does not exhibit 
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any singularity right at the melting point. 

In one-phase regions, certain shapes of the heat capacity are indicators of 

the type of phase present. For instance,a behavior C=ATl at low temperature 

with A proportional only to the bulk modulus (determined from the coverage 

variation of the chemical potential) indicates the phase is a liquid (since there is 

no shear modulus). The solid also has a T2 heat capacity signature, but it ca.'"l...TJ.ot 

be accounted for by longitudinal sound waves alone -- there must be a non-zero 

shear modulus. The gas phase is marked by a high-temperature heat capacity 

approaching the ideal 2-D gas value for the particular substance, with quantum 

virial corrections that should be predictable using kno-vvn interatomic or inter­

molecular potentials, plus possible effects from substrate-mediated interac­

tions. It is also possible, using the thermodynamic measurements, to investi­

gate the effects of the inhomogeneity and periodicity of the grafoil substrate on 

the behavior of adsorbates . For example, the registered overlayer of various 

gases at ...J3 times the graphite lattice spacing was found first in heat capacity 

measurements.6 The band structure effects of substrate periodicity have an 

observable signature in the heat capacity of the 2-D gas at low coverage. 7 The 

extrapolation of the chemical potential to zero Kelvin yields the distribution of 

inhomogeneous adsorption sites as a function of energy.B Where first-order 

phase transitions are known to occur, the slope of the chemical potential vs. 

coverage in the regime of two-phase coexistence is determined by the inhomo­

geneities of the substrate.9 The finite binding energy of the substrate implies 

that excited states of single atoms in the substrate potential exist, and the 

energy of these can be deduced from the heat capacity of low-density 2-D gases 

at high temperatures.5 

At high te:nperatures and coverages, the heat capacity is affected by the 

desorption of atoms into the bulk gas and promotion into higher layers. Meas-
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urement of the 3-D gas pressure and assumption of a virial equation of state in 

the second layer allows this efi'ect to be removed in a consistent fashion.5 

While measurements of the heat capacity near a phase boundary often 

accurately locate the phase transition point and help characterize it (as a first­

order or critical transition, and if the latter. according to the strength of the 

singularity). the real power of the thermodynamic measurements in studying 

adsorbed films is that all of the thermodynamic equilibrium properties can be 

obtained if an experimenter is willing to engage in the long-term and some,.,·hat 

tedious work needed to collect the necessary data, and to take considerable 

care in reducing that data. This sort of work results in an integrated knowledge 

of the behavior of the film and a large database against which to test predictions 

made from analysis of particularly "interesting" regions of the phase diagram. 

Only for helium films has this type of program been carried out. 

1.2. Structural Techniques 

The techniques aimed at eliciting the structure of adsorbed systems are 

necessarily microscopic, and usually involve scattering of some probe from the 

adsorbed atoms. Among the techniques so far used are neutron scattering. lO 

X-ray scattering, most recently using synchrotron radiation, 11 low-energy elec­

tron scattering,l2 Mossbauer spectroscopy (limited to adsorbates containing a 

gamma emitter). Recently, a new technique involving a second gas species used 

as a two-dimensional piston to compress a solid has been developed.13 Research 

applying modern surface science tools as Auger electron spectroscopy to phy­

sisorbed monolayers is just beginning. 

Because scattering occurs at particular angles dependent upon lattice con­

stant, the scattering experiments yield information mainly about adsorbed solid 

phases, the location of lines and satellite peaks marking lattice spacings. modu­

lation of those spacings by substrate periodicity, coexistence of two or more 
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solid phases, superlattices of domains of registered material. 11 Changes of the 

spacings with temperature is related to structural phase transitions, and melt­

ing. The relative and absolute intensity of the lines gives information about the 

quantity Qf material in the various phases and the amount in possibly unobserv­

able or hard-to-resolve coexisting gas or liquid phases. The line shapes prov"ide 

information about the size of homogeneous regions, if the lines are not limited 

by instrw::riental resolution, and also about dynamical properties of the system 

(Debye-Waller factors), especially if inelastic scattering experiments can be 

done. The lineshapes also contain information about position correlation func­

tions, and hence about the degree of order in the adsorbed systems. 

One other recent application of neutron scattering has been, by measuring 

the interference of the scattering from helium and Grafoil at a particular Bragg 

peak of the substrate, to determine the distance of a helium monolayer from 

the substrate to within about 2%.14 Since the corrugation of the potential seen 

by the adsorbed atoms varies strongly with that distance, this result is impor­

tant for understanding the density waves in incommensurate solid films (see 

chapter 5) and in the transformation between registered and incommensurate 

phases . 

It is also possible to use nuclear magnetic resonance measurements to 

deduce structural information when the lines are not significantly narrowed by 

molecular motion and not broadened by substrate-induced local magnetic field 

gradients, but in practice, this is nearly impossible on Grafoil. 

1. 3. Dynamical Techniques 

Dynamical properties of the adsorbed system are elicited from all the 

experimental techniques mentioned so far, and additionally from some 

extremely revealing atomic scattering ex"Periments . From the thermodynamic 

measurements, it is possible to deduce elastic properties. From scattering 
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lineshapes, related information is .available, and in principle, inelastic neutron 

scattering could directly be used to measure the phonon spectrum of adsorbed 

materials, although current beam intensity limitations make this extremely 

difficult. . NMR lineshapes and intensities also lead to dynamical information, 

within the context of some model for the motions of the system, -presumaoly-

justified by some theory or other experimental evidence. Some results of NMR 

experiments, with delicate interpretation, may be extremely important to 

understanding melting transitions. 15, 16,17 The atomic scattering experiments 18 

provide direct measurement :of bound-state energies of single adsorbate 

molecules to the substrate and .diffraction by different substrate corrugation 

components . Thus they allow the adsorbate-substrate potential to be derived in 
.. 

detail, including effects from the dielectric anisotropy of graphite. 

Finally, under the rubric of dynamic techniques, we should mention com-

puler experiments, done either by molecular dynamics or Monte Carlo methods , 

the latter being usually used to study phase transitions . Essentially, 

configurations of a few hundred or a few thousand atoms are chosen randomly 

and accepted or rejected according to a thermodynamic weighting function. 

Time averages over the time steps provide equilibrium or dynamical properties . 

These techniques suffer from finiteness and inefficiency of computing 

resources . Typically, even for moderate size samples, runs "heating" the sample 

through a phase transition go at a rate of 109K/sec, which is probably far too 

fast to assure that the sample reaches equilibrium at any temperature along the 

way, especially near possible critical phase transitions at which critical slowing 

down may occur. Practitioners of these experiments19 are as yet unable to 

determine the order of the melting transition with certainty in their systems, 

because it is difficult to untangle the problems of finite time intervals and rela-

lively small samples. (This is not to say that physical e>.."Perimentalists do not 
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bave similar problems. Dash and Pufi9 argue that the helium melting transition 

may be a first-order phase transition smeared out by substrate inhomogeneity, 

in which case it cannot be caused by the dislocation unbinding mechanism 

alone. Se.e also chapter 6.) The computer experiments have produced tantaliz­

ing indications that defects. particularly dislocations and combinations of them, 

are important constituents in these systems near melting. 

The rapid improvement in computer technology and development of better 

schemes for parallel processing even using conventional microcomputers v.ill 

undoubtedly produce new classes of computer experiments which may shed 

more light on phase transitions. 

1.4. Experimental Systems and What is Known About Them 

With this background, we will try to discuss what is known about 2-D melting 

in various simple adsorbates (except helium treated in the next section). The 

literature of experiments done with various physisorbed monolayers on Grafoil 

in the past 10 years or so has grown so large and has addressed so many 

separate problems that trying to tabulate it here would be of little use to any­

one. References to most of these problems can be found in recent review arti­

cles in conference proceedings edited by Dash and Ruvalds, and by Sinha .(see 

references this chapter.) Dash2o provides a book-length review. We ''ill just 

mention that spin conversion of ortho- and para-hydrogen, and amongst various 

spin states of methane, conformational changes of non-spherical molecules 

(standing up or lying dov;n) on the substrate, different forms of registered­

incommensurate transitions, have all been or are being studied. Inclusion of 

thicker films in a survey would reveal a large body of experiments on the onset 

of superfiuidity in helium films, which seem to give strong evidence in favor of a 

theory of that phenomena very similar to the theory of 2-D melting examined 

here. All of this work will be ignored here, and we will discuss only a modest 
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selection from the extant research on melting. 

Most of the systems discussed here are mentioned in review articles of 1\iel­

sen, McTague and Passel!, to and Vllches21 

Argon has been studied by X-ray and neutron scattering, both elastic and 

inelastic, and there are sketchy heat capacity measurements. It forms fu"'l 

incommensurate solid, since it is too small to self condense at the 1/3 density. 

Krypton has been studied by neutron diffraction, heat capacity measure­

ments, X-ray scattering, and LEED and forms registered solid at 1 /3 density up 

to monolayer completion, since it is just barely too small to choose that density 

for itself in the absence of a substrate lateral field. A denser solid can be made 

by compressing the first layer slightly with a second. Renormalization group 

calculations of the phase diagram of Kr assuming 3-D Lennard Jones potentials 

give reasonable agreement with experiment. 

Xenon is too large an atom to form the registered solid and is incommen­

surate everywhere . It has been studied by heat capacity techniques, X-ray a~d 

neutron scattering. The triple point of solid-liquid-vapor coexistence has been 

observed, and produces an extremely sharp heat capacity signature. 

Nitrogen has been studied by heat capacity measurements and neutron 

scattering. It has an incommensurate structure and a small set of data near 

melting has been taken. 

One of the most promising candidates for experimental work is methane, 

because it is one of the few materials accessible by nearly all the techniques. It 

has been observed in several neutron scattering experiments (in the isotopic 

form CD4), some rudimentary heat capacity studies, some preliminary N1:R stu­

dies by this author, and infrared spectroscopy of its rotational transitions on the 

surface. The closely related compound CF4 is also accessible and being studied 
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by some of these techniques. A detailed set of heat capacity measurements on 

methane is now being taken at Caltech, of the sort that have been made on both 

helium isotopes, and a pulsed NMR experiment is being set up to study dynami­

cal properties near melting. It is hoped that this classical material will provide a 

better test of the theory than helium films do. 

Neon films have had moderately detailed heat capacity studies done, and 

have been probed by LEED. They have a complicated collection of registered a.."ld 

incommensurate solid phases. 

Hydrogen and mixed hydrogen isotopes have also been studied, not as sys­

tematically as some of the other systems, mainly by neutron diffraction, but at 

least one NMR experiment at low temperatures has been performed . Hydrogen 

seems to form both commensurate and incommensurate structures. 

The magnetic properties of Oxygen make it an exi.remely interesting candi­

date for study, and it exhibits 3 different incommensurate phases, some of 

which may be magnetically ordered (antiferrornagnetic). It has been studied 

mainly by neutron scattering. 

Finally, it is possible to perform experiments on lattices of electrons crys­

tallized into states above a liquid helium surface or helium film at very lm-.' den­

sities , and held in place by image forces and external electrostatic potential. 

These are non-degenerate electrons on a smooth substrate and can be studied 

using various electronic and microelectronic techniques . It is also possible to 

properly compute the energy of dislocations and other defects in the electron 

solid, which gives hints as to possible values of such things as the core parame­

ter.22 
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2. Measurements on Helium Vonolayers 

The thermodynamic measurements on helium monolayers have been 

reviewed in chapter 1 as they pertain to melting, but to orient the reader better, 

figure 2.1· shows a contour map of the heat capacity of 4He films, and figure 2.2, 

the conjectured phase diagram of 4He below the monolayer coverage. 

At extremely low coverage, most of the adsorbed helium is frozen onto the 

most tightly binding sites of the substrate. Once these sites are filled, the 

material forms a gas whose behavior is well accounted for by a 2-D quantum 

virial gas moving in a periodic potential (which induces band-structure effects). 

At around 2/3 layer coverage, there is a registered solid corresponding to 

one atom per 3 graphite hexagons, with a transition at 3K to a fluid. At nearby 

densities, vacancies or interstitials must form to preserve the overall registry. 

This costs energy, so the order is broken up at lower temperature, explaining at 

least qualitatively the curvature of the phase boundary. At lower coverage there 

seems to be a coexistence with a dilute gas, and at higher coverage, with a dense 

fluid. This phase boundary has not been completely mapped out. but presum­

ably, at high coverage, runs into a poorly understood phase boundary at around 

lK which connects registered phase to the low-temperature, low coverage end of 

what was once thought to be the melting line. These lK heat capacity peaks. 

discovered by Hering, et al. 23 are extremely sharp, occur in both isotopes, and 

as yet are not explained, although they probably mark a coexistence region 

between registered and higher-density incommensurate solid. 

The line of heat capacity peaks at higher temperature and coverage ,.,- as 

originally identified as the melting line, but the theory may make us reconsider 

that conclusion. since according to the dislocation unbinding theory, the solid is 

unstable to formation of free dislocations at a temperature substantially below 

the peak temperature at any coverage. This criterion is essentially a 
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Figure 2.1 Contours of heat capacity per atom of 4He as function of coverage and 
temperature . Adapted from Elgin and Goodstein.5 
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Figure 2 .2. Phases of 4He monolayers on Grafoil indicated on a heat capacity 
contour plot. The eHe phase diagram is similar, but the line of heat capacity 
peaks near the monolayer runs down to lower coverage and temperature to in­
tersect the short band of peaks near lK. whose origin is not understood. 
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mechanical stability criterion- it does not guarantee that melting is caused by 

dislocation unbinding, but that in order to be observed, any other mechanism 

causing melting must produce a transition at a lower temperature than that 

predicted by the dislocation unbinding theory. Several speculations on the ori­

gin of the line of high-density heat capacity peaks are briefly presented in 

chapter 4 . 

Just below 1 monolayer, this line of peaks turns rather sharply upward, and 

the qualitative shape of the peaks change. At lower coverages, the peaks resem­

ble low flat cusps, but at higher density, they appear to become much larger, 

narrower and steeper. Elgin and Goodstein 5 have shown that this amplification 

and sharpening of the peaks is explained by the effects of desorption into the 

bulk gas and promotion into the second layer, and the part of the heat capacity 

owing to the atoms still in the first layer has roughly the same shape as that at 

lower coverages. The slope of the line of heat capacity peaks gets steeper 

because, as the coverage reaches one layer and continues to increase. the 

atoms in the first layer can be only slightly compressed, and the second layer 

atoms form a 2-D gas and does not participate in the transition. Thus the tem­

perature of the first-layer transition is roughly constant as the overall coverage 

changes, since the density in that layer is almost constant. 

As was pointed out in the introduction, the thermodynamic measurements 

were able to show that a solid existed at low temperature. Unfortunately, the 

method of deducing this result depends upon being able to deduce the shear 

modulus from the Debye temperature and the compressibility, as explained in 

chapter 3. Since the Debye temperature characterizes the behavior of the heat 

capacity only at low temperature, there is no known way to extract the shear 

modulus from thermodynamic data at higher temperatures in precisely the 

region where it should be driven to zero by dislocation unbinding, if the theory is 
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correct. Since the theory predicts no striking singularity in the heat capacity at 

melting, and no pressure discontinuity, etc., it is not possible to identify the 

transition from these measurements. The next question is, how much further 

information can be gotten from dynamical and structural probes? 

Helium monolayers are the most weakly bound of any, to graphite or any 

other substrate. This makes the usual dynamic probes like X-ray and electron 

scattering·, which have rather high energies if they have high resolution, difficult 

to use on helium monolayers, because they disturb significantly or even desorb 

them. Neutron scattering is a usable technique, but is hindered by the low 

coherent scattering cross section of both the helium isotopes, and lack of high 

beam currents at the low momenta needed . Many interesting problems that in 

principle could be very profitably studied by neutron diffraction await the 

development of higher-intensity monochromatic slow-neutron beams, but the 

technique has produced some results on melting that are not fully under­

stood.24, 14 ,25 Some very similar experiments using NMR on He3 16 have also not 

been e}.."Plained properly, since they involve properties of the system at finite 

frequency, and as such are a province of dynamical theories . The dynamics of 

dislocations are treated by Zippelius, Halperin and Nelson 26 but their work has 

not yet been applied to the NMR results. 

The main piece of information that can be drawn from the neutron scatter­

ing results on He3 is that for coverages sufficiently below the monolayer that 

second-layer promotion is unimportant, in the neighborhood of the dislocation 

unbinding temperature (which is not kno·wn precisely), the nearest neighbor dis­

tance in the solid portion of the adsorbate decreases as the temperature is 

raised, so the solid must be compressed somehow even though the overall den­

sity is not changing .24 (The liquid, if one coexists Yt-ith the solid, cannot be 

resolved.) This can occur by converting some of the solid to a less dense fiuid, or 
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by creating defects (point defects or dislocations) which cause imperfect 

spacefilling as the t-emperature is raised. The intensity of the line also 

decreases above this onset of compression, which may be a signal that fewer and 

fewer atoms remain solid .and scatter coherently with their neighbors. 

The NMR results ar.e rather similar, although they are talked about in other 

language .16 There is a :change in the behavior of the spin-spin relaxation time 

near the -predicted melting temperature, which may indicate the onset of 

significant diffusion in ihe material, and perhaps imply that it has melted .. A .... -.,. 

anomaly in the spin-lattice relaxation time near the heat capacity peak tem­

peratures is conceivably .caused by the loss of orientational order that is sup­

posed to remain above the transition, since when it disappears, the local corre­

lations between atoms .disappear and the full disorder of the liquid, VYith relaxa­

tion induced by collisions, markedly changes the relaxation mechanisms . 

This sort of interpretation of the NMR and neutron scattering results is ten­

tative at best . 

Helium monolayers, whi~h exhibit strong quantum effects in all thermo­

dynamic phases, seem !o be the least likely ones to quantitatively obey the 

predictions of a dislocation unbinding theory formulated for classical systems 

(although that mechanism may still govern the process). Nonetheless, it is 

worth making the comparison of the theory and experiment using the data on 

these films simply because a set of data complete enough for the necessary 

comparison does not exist for other substances. The effort currently unden.,-ay 

at Caltech to obtain thermodynamic and NMR data on methane films will. it is 

hoped, allow more rigorous comparison with the classical theory. 
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Chapter 3. 

Elastic Theory of Helium l~onolayers 

1. Fund.am.e:ttals 

In this section, the elastic theory of heliu.."'l monolayers is derived by w"l 

unusual method suggested by Feynma:.'11 although the general tectr~c;_ue is UEed 

in other problems.2 The unusual derivation is designed to display explicitly the 

importance of quantum mechanical quantities in the classical elastic pararue­

ters. 

The basic idea is to e:x-press the grou.."ld state energy of an elastically 

deformed system at T=O (or the free energy at finite T) as a pertU!'bc.tion to that 

of the undistorted system. The correction terms are expectation Yalues in the 

undistorted ground state at T=O or statistical averages over the unpe:rturbed 

density matrix at finite T. 

The distortions considered are homogeneous deformations produced by 

external stresses on the boundary of the crystal. There are two contributions to 

the energy shift -- a change in the potential energy of the new equilibrium p~si­

tions (this is the entire shift in classical elasticity) and a change in the kinetic 

energy and potential energy of the fluctuations (thermal and/or quantum) about 

those equilibrium positions. The kinetic energy is altered because the boun­

daries of the system are altered; however, the effect does not depend on having 

a solid of finite extent, since the underlying reason for the change in kinetic 
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:energy is that the size and/or shape of the "box'' localizing each atom has 

.changed, guaranteeing a kinetic energy change by the uncertainty principle . 

"This dependence upon shape (even if the volume is unchanged) is known to be 

present itL the analogous case of electromagnetic zero-point fiuctuations. 3 

The deformation shifts the equilibrium positions of the atoms . The method 

of calculating the perturbations to the energy or free energy is to find a coordi-

nate transformation which undoes the shift of the equilibrium positions; then, 

the perturbations can be expressed in terms of kno¥r'Tl unperturbed averages . 

The Hamiltonian of the helium atoms is, in terms of the po~itions and 

momenta of the atoms I, 

H = ~ bll 2m1 + ~ V(ru )]. 
I [ J<l 

(3 .1) 

A strain is applied to the crystal. such that a small mass moves from position X 

in the crystal to position 4.. The components of the displacement are ~ =k -Xi. 

Bk 
The new positions are related to the old by k = cxi.i Xi, where ai.j = oX· and the 

J 

inverse transformation (ij = 0°~ satisfies a'iJ (;~e =6ik . We use the summation con­
'Z.j 

vention for repeated lower case Roman indices . 

Since we regard the crystal as a continuum, we can express the deforma-

lion in terms of the displacement gradients 

(3.2) 

Examples of deformations in 2 dimensions are pure compression or expansion, 

u=[~ ~] (3 .3a) 

[l+a 
a= 0 l~a] (3 .3b) 

1 

~ 1+a 
(3.3c) t= 

0 
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u=~ !] 
a=[l~a 10 a] 

t= l!a ~ l 
0~ 

(3.4a) 

(3.4b) 

(3.4c) 

In order to find the expectation value of the perturbed Hamiltonian in the 

original symmetrical ground state (at zero temperature) or the thermal average 

with respect to the Wlperturbed density matrix, the coordinates and momenta 

are rescaled to realign the boundaries with the original . New coordinates x =t·x 

are defined. The momenta rescale also (since p = ~) top =a ·~ . Inserting these 
1. 

into the Hamiltonian gives 

H = ~ [ (ft . () r {fl · () 1 I ~ V( ru ·a) l 
I 2m1 J<I 

=~[Pi.!tji.Pk!(jJ; I ~ V(Ti[JClij )] . 
I 2m1 J<I 

(3.5) 

To go further with this description of the system we temporarily concen-

trate on the potential energy. While it is not necessary, we make the approxima­

tion (excellent for helium) that the atoms interact by central forces . This allows 

the potential to be regarded as a function of r 2 and thus simplifies the expansion 

about the equilibrium positions. We now drop the uppercase Roman subscripts 

that labeled the atoms and implicitly assume that unspecified sums are over all 

lattice positions . Using 

r_2=.z;l=.:z:Jaij.:z:J&a.Vt:, 

this becomes, to second order in the distortion parameters 'tLi,;, 

V(I:.2)= V(r2)+ (o..iJ a...t -6jlc ):rj.:Z:J: V(r 2)+ 
.. 2 

*(CliJ O:Vt; -6 Jk ):rj.:Z:J:.:Z:t.:Z:m (av aim -6lm) V(r ) 

where j indicates differentiation off with respect to r 2 . The quantity 

(3 .6) 

(3.7) 
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(3.Ba) 

is precisely the strain tensor of classical elasticity theory. measuring the 

increase in distance between two points when the deformation is applied accc·rd-

ing to the equation 

(3.B~) 

or 

;;:l= aii ai.t Xi xk = xl + 27Jij xi x1 . (3 .88) 

Thus the potential in terms of strains is 

( ,.., , , ) 
u.~a 

By inserting the expression for 1Jii in terms of ~i v:e ca..."'l. convert this equa~ioa 

to the form 

A similar expansion is made of the kinetic energy in the primed rr.~.o::1enta , usir..g 

Cramer's rule to find the elements of t in terms of those of a., namely 

I Cl.22 -a.12] 
(= ,.. a. I det (a) . 

- ..... 21 11 
(3. :o) 

Since det(a) is the Jacobian of the coordinate transformation, it is also the ratio 

of volumes in the two coordinate systems. 

Thus, the kinetic energy becomes 

~2 I 2m + ( ti' tik -oi.t) l:PiPk I 2m (3 .11 ) 

= ~p2/ 2m+(( -l)i+k (2TJ-ik +oi.t)(det (a.))-2-o'ik) l:P3-iP3-k I 2m. 

where (det (a))-2= 1-21]u +41Ja -4det('1) to second order in ~i or 1Jii. The se8ond 

equation in (3.11) and the expression for (det (cx))~2 are derived from ex;>:::--es-

sions in terms of u.;,1 assuming that u 21 =u 12, which rnust be true in the abse:-l8e 

of external torques on the crystal. 

The Hamiltonian neatly divides into the original unperturbed HamiltoP...ian 

(in the new coordinates) plus pieces linear and quadratic in 11ii. Denoting the 

linear parts by H 11 and the total by H 1, the perturbed ground state energy can 
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be expressed to second order in TJi.i as 

HOn;p,O 
E';::!;Eo+HP0 + I; 11 11 (3.12a) 

lrt.atesn~C Eo-En 

where superscripts indicate matrix elements between unperturbed eigenstates. 

Similarly, the statistical perturbation e>..-pansion and minimu..."TT pri:1.ciple for the 

free energy 1 gives 

( '? "2' ) u . .;. :::> 

where the thermal averages are taken with the unperturbed der.LSi:y ::-:.atri2: a::d 

{1=1/ (kB T). The last term of (3.12b) can be reduced to 

(3.:3) 

The quantum virial theorem can be used to express some of the first-order 

averages in terms of the initial external stress in the unperturbed state (a uni-

form pressure, P. in the case of helhL."TT) . The \"i.rial theorem3, 1 s:ates that 

-<I;rar V>+2<l:p 2/ 2m>=2P in two dimensions. Since rar V(r)=2r 28r2 V'(r 2
) 

the form of the theorem used here is 2;-r2 l~'(r 2)+<L;p 2/2m>=P. 

The format of the result is 

E-Eo';::!;"E'ii'TJij +*"E C;,j~ctTJij'l'Jid = L'T"ii'Uti +*L:~Jk(Z~.iukt 
where the relation between ~lcl and CijJcl. 

(3.14-a) 

~let= C;.jld +'T"jt OiJ: I (3.1 4-b) 

is obtained by substituting equation (3.8a) for r; in terms of 'Uti. The coefficient 

of T};.j is the stress applied in the initial state ( -Poi.i in our case ) a..l'ld the term is 

the work done against that stress in deforming the crystal. The coefficient of 

'1ii'TJJct is the elastic constant. 

To find the elastic constants, we must take the appropriate averages of in 

equations (3.12) and compare them with (3.14). The pieces are 
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"" .. 2 H 1=H11+2?'Jii?'Jlt:ll..Jx;.xjxlcxt V'(r )+ 

4( -( -1)"+k17'ik?'Jtt +TJHo'ik -o'ik det('7 )) l:Pc3-i)P ~s-~:)1 2m. (3.1 6) 

Expanding H 11 in components we find. 

H u=-41721(2:P JP2/ 2m -2:xlx2 V(r2))-27Jll ('I:P r /2m­

I;xPV(r2))-27]22(2:P:! /2m-I;x:!11(r2)) 

(3 .: 7) 

These coefficients can be evaluated using the symmetry of the lattice. For 

a triangular lattice, the atoms are centers of symmetry a._?}d the g:--~'.l:".~. d. s~E..~e 

has sixfold rotation symmetry and 2 perpendicular reflection lines . T~t:s, a\~e:---

ages over the unperturbed ground state of the fo:--m <='!T-yr. f (r)> e:~d. 

<p:'P;g (p) > can be related to isotropic averages <rm +n f ( r) > a~d <p ~ +n g (p ) > 

for all positive values of m and n with m +n~6 . 

The relevant angular averages are given by 

for odd values of m or n. 

u2f (r )>=<y2f (r )>=72<r2f (r )>. 

<z2y 2f (r)>=}(<r2sin2(2~)/ (r)>= ~r4f (r)> 
8 

<z4f (r)>=<y4f (r)>= t<r4f (r)>, 

(3.18a) 

(3 . :8~) 

(3 .:88) 

(3 . : B:i) 

and similarly for functions of p. These can be easily checked by conside:i:r..g 

these quantities for the 6 nearest neighbors of a particul~ atom. 

Equations (3.18) and (3.16), together with the quantum '\iric..! t:h.e~:e:-:1 , y~e!d 

the necessary quantum averages. 

<H u>=-P1Ju (3.: 9) 

<H1>=-P17u +2(?'Ja-2det(1']))<2:p 2
/ 2rn>+ 

1 3 .. 2 
21];.;?'Jlt:l ( iftSiJ 6kt (1-6-ik )+ S0;.;6lt:l6'ik +(o'ik o;t +ov o ;~c)( 1-6;.; )) <2:r4 V(r )> (3. 20) 

A slightly more elaborate version of these arguments has been suggested by 

Feynman to deal with the second order perturbations '\'\ith H 11 . It makes use of 
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the fact that while the eigenstates of the system may not have the full symmetry 

of the ground state, each excited state is a member of a submanifold of states 

with the same energy which can be obtained from one another by the symmetry 

operations (rotations and reflections) of the crystal. 

For any such submanifold n ¥~ith states !in.>. a sym.metry operation R pro-

duces a mixture in the submanifold, 

...... : . I. 
R i~>=!Jij 1Jn> 

while the ground state clearly obeys 

RIO>= !O>. (3.2:~) 

The sum over the submanifold of any functions of position ru"':C: ffi::):rre::~w."'n ca.."'l 

be shown to be invariant under a symmetry operation of the crys~al fi~~st !Jy 

proving that the matrix elements taken between the rotated. s~ates su:n to the 

unrelated value (using 3.21a,b and the unitary nature of .M), and then the gen-

eral rule that 

<!?in I 2 I J?-10>=<in.l i?zJ?-l! 0> 

for any unitary or orthogonal R. Thus, 

..... ..... ..... 1 ..... ..... ..... 1 
~ <0 I RZ1R- lin ><in I RZzR- ! 0> 
n,i Eo-En 

0 1 z" ,. · ' Z ..... 'o 2: < 1 1 I 'Ln.><';--. ; 2 > . 
n,i Ec-En 

(3 .22) 

(3.23) 

Considering :r .... -:r or y .... -y reflections, it is clear that for Z 1,Z2 of the form 

zkylf (r) or p:1;:Jg (p) that the second order pertll!'bation SlL"Tl v.ill var-J.s~:1 if 

k +m or l +n is odd, and that other combinations of povrers v .. ill behc-xe e..s the-se 

of the ground state averages discussed earlier. For example, def.!.!'.i:--.:.g 

(3.2~) 

Since 
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HOnHnO 
2: 11 11 42: ( E c-En) -l X 
n Eo-En n 

["'flQPrQ"iP +1J~2QfrQ~~ +1J11TJ22( QPfQH~ +c. c . )+ 

47Jf21 QPr I 2+21JuTJt2(Qi"~QPr+c.c. )+2ryz2TJt2(Qr~Q&r+c.c . )] (3 .25) 

we can evaluate all the terms in equation (3. 12a) . The last two terms. which mix 

diagonal and off-diagonal elements of TJ must vanish in the sum. By comparit1..g 

the coefficients of 7J;.; and 1Jii1Jkt in equation (3.12a) v.i.th equations (3.20) and 

(3.25) inserted, with those of equation (3.1~). we fLl1d 

and 

Cut2=C1~22=0 

as expected, but the classical results 

become 

3 ~ 4 .. ( 2 3 Cu 11 = 4<L.Jr V r )>+2<KE. >+ ~ 

cl122= c2211 =}( <~r4 ir(r 2)>+*Q 

c1212= c2121 = c 1221 = C2112 

=~<L:r4 V(r2)> +<KE. >+*Q 

where 

Q=2; I <n 1-L:p21 2m+ ~r2 V(r2)! 0> 12 

n Eo-En 

(3.26a) 

(3.26b) 

(3 .2Sc) 

(3.27a) 

(3.27b) 

(3.27c) 

(3.28) 

where the kinetic energy, <KE. >=<2:p 2/2m>. Vsing the conxentional 

definition of the shear and bulk moduli, J.L and B . we have 

and 

Cuu=B+J.L 

Cu22=B-J.L 

Ct212=f.L 

B-2J.L=Ctut-3Ct2tz=-<KE. >. 

(3.29a) 

(3.29b) 

(3.29c) 

(3.30) 

In classical elasticity theory, only the terms involving the second deriva-
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tives of the potential appearing in equation (3.16) appear in the fi...11.al answers for 

the elastic constants, and for situations like the helium lattice, where the ato:ns 

interact by central forces and are located at centers of symmetry, the equation 

(3. 30) is called a Cauchy relation (BctassicaJ. =2J.Lcta.sncaJ.). We see that in the qu::.n­

tum mecha.."lical case, the symmetry of the problem is slightly al:ered by the 

presence of the zero-point motions. 

Table 5.3 shows the elastic properties of the helium films in the solid ra!.J.ge 

for both isotopes. The kinetic energy can in principle be estimated from the 

difference between B and 2J.L (for the periodic substrate, -y calculated in chapter 

5 must also be kno·wn). Since B>2J.L in the data, the Cauchy relation is 

·violated, because the kinetic energy must be positive. Whet~e:- this arises fl~om 

the presence of -y a..'1d the related external torques applied by the substrate ;;,-ill 

be discussed in a future publication. 

2. Sound Waves at Long Wavelength 

There is no completely satisfactory dynamical theory of solid heliu...T in 

either 2 or 3D owing to two effects arising from the large zero-point motion. 

1. The zero-point motion causes an expansion of the solid to an equilibriu..rn lat­

tice spacing beyond the ifu4.ection point on the attractive side of the He-He pair 

potential, which results in the potential of an atom in the solid h::.\ing a hu.."T~P at 

the equilibrium position (see figure 3.1). A classical harmonic analysis gives an 

absolute ir...stability for such a crystal, making a perturbation celcul::.tio~ of t~.:.e 

average behavior unfeasible. However, a bound state can be found by calculat­

ing the potential experienced by any atom averaged over the zero-point motion 

of its neighbors. 

2. The large scale of the zero-point motion means that atoms would frequently 

penetrate each other's repulsive cores if their motions were not correlated so 
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that they stay out of each other's way. The net result is that each atom moves in 

an effective potential obtained by averaging in a self-consistent way over its ov.'":l 

motions and those of its neighbors. Any theoretical approach to this problem 

must include correlations of the atoms over long distances in collective phonon 

motions and over short distances O'\'\'i.ng to the strong zero-point repulsion. 

These theoretical approaches 4 are quite complex and produce results Y.'"ith 

significant inaccuracies. The phenomenological tack taken in this v:ork allo>:'.-s 

the use of simpler models of the solid '\ith recourse to the e:h.-pe:-i:Tiental da:e.. for 

parameters. In this spirit, there follows a discussion of the long-,.,~avelength pro­

perties of phonons in the 2D helium solids and a justification of t!:1e great~y 

simplified approach taken here to obtain those properties. 

The results obtained so far in this chapter give the response of the sys:em 

to an intinitesimal infinite-wavelength distortion of the 2D crystal, to seco:ld 

order in the strains. The elastic coefficients obtained contain averages over the 

zero-point or thermal plus zero-point motions. The next task is to extend them 

painlessly to long but not infi_nite wavelength. 

The easiest way to do this is by analogy to standard calculations of classical 

elastic theory, in which the thermal and zero-point motions are ignored end the 

response to a sL."1.usoidal force on the boundary, or the normal modes of the sys­

tem Votith the distorted equilibrium positions regarded as the dyr-.a..rnical v~iable, 

are found. 

In our case, we argue that the long-wavelength sound waves of the system 

have very low frequencies. Time-averaging the atomic motions on scales short 

compared to the period of the wave investigated, but long compared to the 

periods of high-frequency zero-point or thermal oscillations, reveals that these 

time-averaged motions are nearly identical over long distances (look like nearly 

homogeneous deformations), that the solid locally can be considered to be in 
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Figure 3.1. The potential neu a lattice site on a linear chain of atoms inle!"'act­
lni with a Lenn.e.rd-Jones potential with herd core parameter cr=2.56K and £- lat­
tice spacing of 3.54.(. These ere ch.e..re.cteristic parameters for helium solids . 
Correlated zero-point motions smee.r out the hump at the lattice •tte. 
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equilibrium with a distortion given by the slowly-varying time-averaged motion, 

and that the restoring forces for the wa\ .. es are given by the infinite wavele:1gth 

elastic constants obtained earlier, at least within an approximation that 

becomes increasingly good as the wavelength approaches in..fh"lity. 

Thus we can, just as in the classical calculation, regard the elc..stic 

coefficients (in reality containing averages of the dynamical qua..""ltities) as con-

stant and treat the time-averaged distortions as dynamical va!."ic...bles. The 

improvement here is that the classical calculation uses the values of the poten-

tial at the equilibrium positions (which gives imaginary frequencies for heliu.:.u), 

while the present calculation uses a quantu..."TT or thermal a\~erage pote:-ltiol con-

taining some effects of the fluctuations. 

Using this procedure it is easy to fL."ld the wave speeds, which v.~e e:h.-pect to 

be independent of wavelength for long-wavelengths . Because the tric..:--.t.gulc...r lat-

tice has the same long-wavelength elastic properties as an isotropic continuu...rn 

(as we show below), the two sound polarizations are true longitudinal a.."ld 

transverse waves in any direction of propagation. 

The Lagrangian density for the displacements averaged over short ti!!les 

can be written L=*.Pul-rf>('l-LL). where tP is the total potential energy . The equa-

tion of motion for the system is thus 

.. a at~> 
PU;. = BX~c 88U;.I BX~c 

(3 .31) 

As expected, no oL! O'l-LL terms appear because only the relative d.is?laceme::ts 

are important. For the potential appearing in these equations, we use the right 

hand side of (3.14), which is the potential of the slow distortion, a.l"ld gives 

pii;. =B~c [ TiJc +*Apqno (Upq On o~c:s +Urs OnOq~c)] 

= *( Ani.t 'Ursk + ~ Ur,J:;) =Au:rs 'Ursie 

Putting in plane wave solutions 

(3.32) 

(3.33) 
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yields 

-c..>2pU;, =-~kl qj ql UJc (3 . 3~) 

and inserting values of Atiict from (3.14b) and (3.29) we find that 

(3 .35) 

which is identical to the equations of motion for a classical isotropic contin.ucrn 

\\ith speeds of sound 

PCt
2=J.L-P 

pc?=B+J..L-P 

(3 .36a) 

(3 .36b) 

These last equations can be derived by decomposing i1 into corr:pone:nts i1t a..":d 

ilL transverse and parallel to q. Inserting this decomposition into (3.35) , makiEg 

two new equations by taking scalar and cross products v.ith q, c..:1d noting that 

pc..>2(q xilt )=(J.L-P)q 2(q xilt) 

pc..>2(q ·ill )=(J.L-P)q 2(q ·ill)+ Bq 2(q ·ill) 

which give equations (3.36). 

3. Sound Speeds on a Periodic Substrate 

(3 .37a) 

(3.37b) 

As we '\\Jill show in more detail in chapter 4, the presence of a periodic sub-

strate V~ith hexagonal symmetry of the same type as the helium monolayers dis-

torts the monolayers as the atoms try to move into the nearest substrate poten-

tial well, interacting elastically with their neighbors as they do so . Because the 

two lattices are incommensurate, the helium lattice ca."l trar.slate free~y c::: the 

graphite surface without change in energy (since for every atom that is sr.ifted 

into a well, another must be emerging somewhere else). The distortions induced 

by the substrate have the substrate periodicity and are equivalent to the dis-

placements of the helium atoms as would be found in a snapshot of the crystal 

excited by a standing wave phonon of the same periodicity. The energy of the 

static density wave (SDW) and the degree of excitation of transverse and longitu-
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dina! SDW's depends on the relative angle of orientation of the two lattices, and 

has a mininum at an angle calculated in chapter 5. Thus, there must be a restor-

ing torque to suppress local deviations from that orientation, and at long-

wavelengths, an additional term in the energy of the system and a new elastic 

constant 7 also calculated in chapter 5. The zero degree energy of a disto~ted 

system can now be written (cf . equation (3. 14) 

E-Eo-b.E(~LOCK )= l:'v'Uti +J22>~ifklu.~juki. +J2L?'(u 12-u21)
2 

where u 12-u21 =tii'Uti=2D.~. 

(3 ~~) \ •'-''-' 

Follo"Yti.ng through the same derivation of the sound speeds carried out in 

the previous section, we find the transverse sotL.~d speed raised c....~d the long:tu-

dinal speed unchanged, 

pc,2=B +p.,-P 

pcl=p.,-p +-y. 

These equations are used extensively in the succeedL.~g chapters. 
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Chapter4 

Evaluation of the Heat Capacity near :Melting in the 

Dislocation Unbinding Theory and Comparison with 

Experiments on Heliwn :Monolayers. 

1. Introduction 

Since the information on helium films on graphite is more nearly complete 

than that of any other quasi-two-dimensional system, it was hoped that it could 

be used to definitively test the dislocation unbinding theory of 2-D melt ing, 

hereafter called the KTHJ\TY theory.l,2,3 Of course, even if a crucial comparison 

could be performed, the theory would not be verified or disproved; at best, its 

applicability to the particular experimental system could be determined . If the 

theory were found applicable, it would be surprising since it is formulated in the 

framework of classical elasticity theory and the helium monolayer solids exhibit 

strong quantum effects . Nonetheless, the helium system is probably the only one 

for which the experimental thermodynamic data are sufficiently good that a 

comparison can even be attempted. 

In fact, the theory as set forth in references [1] and [2] is with high proba­

bility inapplicable to helium monolayers except possibly qualitatively, because it 

takes into account no quantum effects . Several important conclusions about it 

can nonetheless be drawn, and there is some hope of using phenomenological 
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techniques to extend it to quantum systems, although we have not been able to 

justify the techniques theoretically. 

The following conclusions can be drawn from the work described in the rest 

of this chApter: 

1 It should not be expected that the theory as formulated will apply to 2-D 

melting of most real systems, since it is actually only valid for materials 

whose · melting temperature greatly exceeds the Debye temperature, that 

is, completely classical systems, which are rare amongst simple solids. This 

is not to say that the dislocation unbinding mechanism in inapplicable. but 

only the classical treatment of it. 

2 The theory in principle can be used away from the transition, but it is really 

a theory only of the dislocation contribution to the various properties and 

thus will be a close approximation to the behavior of all the degrees of free­

dom of the system only where the strongly fluctuating variables which dom­

inate the behavior are the dislocation degrees of freedom. This occurs in 

the region asymptotically close to the transition. Most of the quantitative 

theoretical predictions have focussed on this asymptotic behavior and some 

regrettable confusions have arisen from those predictions . One of these is 

that since the melting transition occurs when a single phonon mode of 

infinite wavelength softens to zero velocity, the transition is characterized 

by a essential singularity and all of the thermodynamic functions are 

smooth at the transition. This is correct; however, it should not be con­

cluded that the dislocations do not cause observable changes in the ther­

modynamic functions. In fact, they cause the heat capacity to rise spectac­

ularly in a small region near the transition, mirroring, qualitatively at least, 

the experimental curves, which deviate rather sharply from Debye-law 

behavior in the same temperature range. Thus, thermodynamic data may 
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not give useful information about the critical exponents of the phase transi-

tion, or precisely pin down the transition temperature, but they provide a 

lot of information about the influence of dislocations, nonetheless. 

3 The iheory, .although it may correctly describe the phenomena .above the 

transition, is .almost impossible to use there given currently known methods 

of approximating it. This is the result of several factors. First, the renor-

malization transformation diverges from the fixed point of the Hamiltonian 

above the transition. and since the recursion relations of that transforma-

tion are approximate, they break down and become unphysical not too far 

away from the transition. The known methods of avoiding the divergence 

are to integrate the recursion relations to some high temperature at which 

they are still valid, and then use a high-temperature approximation for the 

behavior or a 2-D dislocation plasma. Unfortunately, the range of validity of 

the high-temperature approximation suggested in reference [2] does not 

overlap with the region of validity of the renormalization group equations . 

Furthermore, the importance of the dislocations in the degree of disorder 

of the material diminishes as the temperature rises high enough so that 

translational order is essentially lost. Then, if the theory is correct, there 

is still orientational order which is enhanced by the substrate and ~eak-

ened by another type of topological singularity, the disclination. whose 

effects are not accounted for in the dislocation Hamiltonian or the renor-

malization ~roup tranBformation of it. Finally, one would expect to be able 

to use the asymptotic critical behavior of the theory over some reasonable 

temperature range around the transition; however, as we show in chapter 6, 

that region is very small 

T-Tm. 
t =I T. I <<.001. 

m. 

(4.1) 

This .causes 1Several problems, discussed in more detail in chapter 6. First, 
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the transition temperature as estimated in experiments to date is known 

only to within a few percent, and the width of the transition region oVving to 

substrate inhomogeneity is probably of the same order as the size of the 

critical region or larger. Second, the transition temperature observed in 

any current experiment is almost guaranteed to be much further from the 

transition temperature for an infinite solid than t= .OOl, since the theory 

predicts this region can only be observed in experiments on e}..-tremely 

large spatial and time scales. 

2. Overview of the Dislocation Unbinding Theory 

We begin the description of the dislocation unbinding theory of 2-D VYith a 

conceptual overview. This overview contains some oversimplifications and ques­

tionable assumptions which are dissected in detail later in the discussion. The 

purpose is to provide the reader enough general knowledge to see past the com­

plications brought up later . 

The theory treats the solid as a classical elastic continuum normalized to a 

lattice spacing a 0 with the symmetry of the actual crystal structure (the helium 

triangular lattice is isotropic, as was shown in chapter 3, if substrate perturba­

tions are ignored). The solid is described by an elastic Hamiltonian, an expan­

sion of the potential energy terminated at the second order. It is regarded as 

perfectly harmonic, except for the effect of the dislocations. The kinetic energy 

of the system in classical statistical mechanics always separates out of the par­

tition function and is ignored in this approach. contributing }2kB T per atomic 

momentum coordinate to the internal energy. 

The atomic displacements in any configuration of the solid are then 

regarded as the sum of two contributions, one a static displacement from the 

symmetric equilibrium positions produced by the strain field of dislocations in 

the material, and the other the dynamical quantity whose average is zero about 
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these new positions, produced by thermal phonons in the material. Since the 

thermal or time average of the phonon displacements is zero, it is claimed that 

when the total displacement (or its gradient in continuum theory) is squared, 

the crOSEi term between thermal and rlislocation contributions vanishes on the 

average. 

Thus the partition function for the potential energy of the system separates 

again into independent contributions from thermal phonons and dislocations . 

For a classical harmonic theory, the potential energy of the smooth phonon dis­

placements contributes Jllke T to the internal energy for each atomic coordinate, 

so does nothing interesting. The alert reader may already notice that somehow 

the system has acquired additional degrees of freedom, beyond the two momen­

tum and position variables for each atom. This is a weakness of the theory which 

has not been dealt with well. 

It remains to deal with the dislocation contribution (which is computed 

using renorrnalization group techniques), after a brief digression on the nature 

of these singular distortions of the solid. 

The topological distortion of a solid called a dislocation has been studied 

since the 19th century. Dislocations and their role in various aspects of the 

behavior of solids including plastic fiow, work hardening, cracking, heat transfer, 

etc., are discussed in several treatises.-4,5,6,?,8 While more complicated types 

exist in three dimensions, a -dislocation in two dimensions consists of a 

configuration of the solid produced by introducing an extra half-line of atoms 

into the material and allowing it to relax to a configuration of mechanical equili­

brium. Figure 4 .1 a and figure 4.2 show a dislocation in a square and a triangular 

lattice, respectively. Where the extra half-line of atoms ends, the strains from 

the perfect lattice are very large (in fact, in continuum theory. they become 

infinite at the center of the dislocation) and linear elasticity theory should not 
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F.iiure 4.1. (a) A dislocation in a square lattice. (b) A path aro~d such a dislo­
cation fails to close by an amount equal to the Bu:~ers ' ve:tor b . (c) A di~!oca­
tion moves across the crystal under shear stress. (d) The ehAnges in posi­
tion of the atom~ near the extra half line as the crystal slips are all small com­
pared to the lattice spacing . 
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predict :eorrectly the :energy or stresses in the material. If another half-line of 

atoms is inserted into the opposite half-plane parallel to the first, but which 

-ends at any other location than the end of the first, as in figure 4.3, the solid is 

-essentially undisturbed at large distances, and has distortions that are 

.significant only on the scale of the distance between the dislocations. Such a 

configuration is called a dislocation pair or dipole because of its resemblance to 

a separated pair of electric charges, whose field is significant only at distances 

characteristic of the scale of the pair, and whose effects nearly cancel at large 

distances . 

The topological characterization of the dislocation is based upon the fact 

that any closed path in the perfect solid will fail to close if it bounds a region 

containing a net number of dislocations (a pair of opposite dislocations counts 

as zero) . The paths in figures 4 .1 and 4.3 illustrate this principle and would be 

square paths in the perfect solid. The amount by which the path fails to close is 

a vector called the Burgers' vector b and acts like a vector charge . Its direction 

depends upon which direction the path is traversed, and the conventional 

definition is to traverse counterclockwise. The reader can easily verify by draw­

ing paths that circle the individual dislocations in figure 4.3 (rather than the 

entire pair), that they have opposite Burgers' vectors with length ao. 

The relation between the dislocations and the state of the system (sol id or 

liquid) can be understood from simple Gedanken e:x-periments on the lattices of 

figures 4.1 and 4.3. If a uniform shear (hold the bottom row of atoms fixed and 

push the top of the crystal rightwards) is applied to crystal. the extra half-iine of 

atoms is pushed closer to its right neighbor and if the force is increased, the 

crystal rearranges itself so that the next half-line to the right becomes the 

"extra" half-line. In effect, the dislocation has hopped one lattice spacing to the 

left and relieved part of the stress. Of course, if the lines connecting the atoms 
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Figure 4.2. The configuration of atoms in a dislocation in a triangular lattice . as 
computed by Englert and Tompa.i 
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Figure ~ . 3 . A pair of dislocations in a square lattice whose strain fields nearly 
cancel except in the immediate vicinity of the pair. A path around the pair 
closes so the net Burgers ' vector is zero, while a path that includes only one of 
the dislocations will have a non-vanishing Burgers' vector. 

-X 
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were not ·drawn in figure 4.1d, the effect would be more obvious, and the recon­

nection of the lines is only in the mind of the reader. It is also clear that the 

.dislocation will move across the crystal to the edge if the force is continuously 

.applied. When the force is removed, the crystal will not regain its original form, 

but will have a kink at the edge where the dislocation emerged. This is shown in 

:figure 4.1c. Thus the dislocation is responsible for plastic deformation of the 

crystal. If there were many free dislocations in the crystal, it could not support 

-shear stresses, and would be a liquid. 

If t>ne considers the same Gedanken experiment in the configuration of 

figure 4.3, it becomes clear that the members of the pair of dislocations are 

moved in opposite directions, each motion helping to reduce the shear stress. 

However, the size of the distorted region increases as they separate, and this 

has a large cost in elastic energy. Another way of saying this is that oppositely 

charged dislocations attract each other (and if they coincided, would annihilate 

regenerating the perfect crystal). This prevents the pair from flowing under 

shear stress . What motion there is is bounded, and can be regarded as the 

polarization and stretching of the dipole, along the direction of the Burgers vec­

tors. 

The dislocation unbinding theory attempts to explain melting in 2-D as a 

transition from a state in which free dislocations and hence flow under shear are 

not favored thermodynamically, to one in which they are. The argument can be 

treated in two stages, the first that led Kosterlitz and Thouless to the theory in 

the first place, and the second, a refinement that makes the theory a quantita­

tive one. 

A single dislocation has a strain field which decays at large distances as 1/ r 

and hence, when the energy of the distortion is computed by integrating the 

stress ( « strain) times the strain over the crystal 
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(4.2) 

(where u is the displacement gradient, C the elastic tensor and A the area of 

the crystal) it is TrK(ln (R / a 0)+ C)+angular part where R measures the size of 

the crystal, and K is some combination of elastic constants. It is thus infinite in 

an infinite system. In computing the integral. a suitable cutoff must be imposed 

nearby the dislocation where the elastic theory breaks down. This region. of size 

on the order of a 0 , is characterized by its own contribution, 1rKC. to the energy 

of the system and is called the dislocation core. 

The free energy of the dislocation is 

F=E-TS (4.3) 

and the entropy, S depends only upon the number of configurations containing a 

dislocation. In fact, it is given by 

S=kBln(A/ a5)=2kBln(R/ a 0). (4.4) 

This is also clearly infinite for an infinite 2-D solid . 

However, if K varies slowly with temperature, it must be true that there is 

some temperature at which the sign of F becomes negative (its magnitude is 

always infinite in this crude picture, except at the transition). and this must be 

an estimate of the transition temperature. Below this temperature , the free 

energy of the dislocation is +ex::, so the probability of creating a dislocation ther­

mally is nil . Above it, the free energy is -oo so the crystal wiil fill up with disloca-

lions and lose all resistance to shear. In this crude model, the transition tern-

perature is given by 

Tm (cnui.e )=TrK I 2kB. (4.5) 

Kosterlitz and Thouless indicated a method for refining this calculation of 

the transition temperature, by taking into account the effects of thermally­

excited dislocation pairs, and Nelson and Halperin 2 (hereinafter referred to as 

NH). and Young 3 developed a renormalization group technique for performing 
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that refinement. 

The pairs. since their size is finite, have only a finite area of significantly 

distorted material, hence a finite energy, which turns . out to be roughly 

2rrK(ln(r/a)+C) for each pair, where r is the separation of the charges in the 

pair. Thus they are present and thermally excited at all temperatures to some 

degree . Of course. the assignment of dislocations to one pair or another is 

somewhat arbitrary (not completely) but as long as the net dislocation charge in 

the solid is zero. the energy must be finite . Each dislocation interacts with all 

the others. 

The detailed behavior of the dislocation system is thus extremely compli­

cated, even though the dislocations are assumed to be fixed on the sites of the 

lattice dual to the atomic mesh. The interaction energy only appears in the ther­

mal average to favor one possible configuration over another, rather than actu­

ally causing the dislocations to move. However, it is not extremely difficult to 

work out the qualitative nature of the interaction between pairs, by analogy Vfith 

charges . If we fix the positions of the dislocations in a large pair, and consider 

some smaller pair, the energy will be lowest if the Burgers' vectors of opposite 

sign on the two pairs are close together, which favors some orientations over 

others, depending upon the location of the pairs . Similarly, fixing the small pair 

produces favorable orientations for the large one. 

ln general, the presence of a small pair implies that the interaction 

between the members of the large pair is partially screened, so the attractive 

force is weakened. This effect will be treated using linear response theory in the 

same way it applies to charges in a dielectric. 

Thus, we can explain the phase transition in the following way: At low tem­

perature, there is a small population of thermally-excited pairs, almost all of 

small size . As the crystal is heated, more of these pairs are created. As the gas 
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of pairs becomes less dilute, interactions become important. and smaller pairs 

screen the larger ones, making the effective force (and effective K) between the 

elements of .a large pair weaker. This increases the likelihood of creating larger 

pairs. anq as the temperature increases. the process runs away. When a single 

dislocation pair separates to infinite distance. the elements will fiow under even 

an infinitesimal shear force, so the system has become a liquid, which behaves 

like large patches of solid with free dislocations. 

Another way of describing this process is to say that the K at long 

wavelength (which is roughly proportional to the shear modulus), is weakened by 

the presence of polarizable dislocation pairs. and in the infinite wavelength limit, 

drops to zero at the transition. Once free dislocations appear in the system, the 

screening becomes complete at shorter and shorter distances, the resistance to 

transverse shear goes to zero at shorter and shorter wavelengths. 

This means that the effective elastic constants, governing the propagation 

of transverse phonons are weakened. The mechanism of this effect is clear -- a 

transverse phonon produces a shear stress that it approximately uniform on the 

scale of one half-wavelength, and that shear polarizes pairs smaller than a 

wavelength or .so in size . This response of the pair implies the displacements of 

atoms from the shear are greater than it would be in the undistorted material, 

which means that the effective elastic resistance is smaller. 

It is important to mention the criteria which determine the degree of order 

above and below the transition, but we will leave the details of the proofs to 

references 2 and 3. In the solid phase even at very low temperatures, it is ,~.-ell 

known that Bragg peaks in scattering experiments are not c5-functions as they 

are in bulk. but have a form characteristic of algebraic (that is, I?ower la·w) 

decay of positional correlations at large distance. owing to diverging amplitudes 

of thermal fluctuations at long wavelengths. This is called quasi long-range 
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order, since the short-range order of the liquid state is characterized by 

exponentially decaying correlation functions. At the same time, there is 

long-range order in the correlations between the angles between atomic bonds 

at long distances. When the dislocations unbind, the positional correlations 

become short-range and exponentially decaying, while the angular correlations 

become algebraic, producing a liquid-crystal like order. 

This overview of the theory will conclude with a description of the renorrnal­

ization group treatment that makes the coupled-dislocation problem manage­

able . 

The renormalization group technique to is an attempt to solve a compli­

cated dynamical or statistical problem with many interacting degrees of free­

dom by an iterative method, in which the system is viewed at progressively 

larger and larger scales . Objects smaller than the current scale are grouped 

into composites which, if the grouping is done properly, behave like the smaller 

objects with different interaction coupling constants. What is done is to find a 

model of the problem which can be rescaled, in the following sense . (We restrict 

the discussion to rescaling in position-space for conceptual reasons only; the 

procedures all have analogues in momentum space.) The interacting degrees of 

freedom in some small patch of the system are averaged over to produce a..r1 

effective single degree of freedom for the patch which interacts with the neigh­

boring patches by a perhaps different law than the original microscopic degrees 

of freedom. If the model and the averaging region are chosen properly, the par­

tition sum can be cast into the form of an overall factor which represents the 

contribution of the degrees of freedom that have been integrated out. times a 

partition sum identical in form to the original one but with fewer degrees of 

freedom and altered couplings between them (altered only in numerical value). 

Finding the transformation for a particular problem is the part of the program 
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which requires cleverness. 

Now the transformation is iterated, and at each iteration, the problem is 

rescaled to the original lattice size. We have described the iteration as a 

discrete procedure, but the scale can also be changed continuously in many 

problems, including the one of interest here, so the change of the couplings with 

scale can be represented as differential equations (called renormalization group 

recursion relations). A trajectory of the differential equations in the space of all 

possible couplings (the phase space of the differential equations) represents the 

evolution of the equations as the scale is changed, and also is the locus of 

related physical problems with different sets of couplings . What this means is 

thet, for example, a complicated interacting problem can be transformed (by 

moving along a trajectory) to another problem in which one or more of the cou­

plings are weak or vanishing, and which can be solved exactly or by some 

approximation. The result can then be rescaled to the original problem. 

This is exactly the technique that is used in the dislocation problem. Let us 

assume starting conditions in the solid, with a given set of bare elastic constants 

(those determined at 0 K where no dislocations are present). At finite tempera­

ture the presence of many interacting pairs makes the dislocation free energy 

essentially impossible to find directly. What is done is to notice that the param­

eters that determine how many and what size dislocation pairs are excited are 

the values of K and C. These are the couplings. If we look at all pairs smaller 

than some initial size, we can ignore the details of their interaction, since it 

affects only a small portion of the solid, except insofar as they screen larger 

pairs, and make the effective elastic constants on larger scales smaller. Thus if 

we blur our view of the solid to scales bigger than the initial size. any patch of 

the solid of that size is regarded as containing only the net number of disloca­

tions enclosed in a Burgers' circuit around it. The core size and the lattice size 
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is raised to the size of the patch. The core energy is increased to reflect the 

larger area (to account for all the possible microscopic cores inside), and the 

coupling between the dislocation (if any) in the patch and any other patch is 

governed,by the effective elastic constants on that scale. Then we pretend that 

the new patch size is actually the old patch size and rescale all the distances 

accordingly. 

Of course, as the core energy increases at fixed temperature, fewer pairs 

are excited, so in every iteration, we transform the problem into a closer 

approach to the dilute neutral weakly-interacting gas of dislocations. Since at 

finite temperature, the probability of finding a pair of a given size is proportional 

to a Boltzmann factor of the energy, and hence proportional to r-K, as we 

iterate the RG transformation, there are fewer and fewer pairs to blur away, so 

the screening effect vanishes, the effective K becomes constant, and the core 

energy approaches infinity. 

The highest temperature for which renormalization procedure removes all 

the pairs from the problem is the melting temperature. Above that tempera­

ture, the dislocations have weakened the crystal enough that the members of a 

pair can separate to infinite distance, i.e., ionize. Thus at that scale. there is no 

longer resistance to shear (effective shear modulus is zero) . At the same time. 

the effective core energy has also decreased to zero, so free dislocations tend to 

fill the crystal, the density increasing rapidly above the transition. "When a shear 

is applied to the crystal. pairs are pulled apart to infinity and additional ones 

created until the stress is relieved. 

The essence of the particular RG transformation used in this problem is 

that at any stage, the computational work of finding the new couplings is done 

by solving a simple statistical physics problem. Instead of having to treat a mul­

titude of interacting dislocations, the partition function that is summed is that 
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for a single pair !fith size in the range from a to a+da . If the microscopic core 

energy of the system is large enough, at any stage of the iterative procedure, 

the dislocation gas is dilute enough so another pair of the same size is not likely 

to be near enough to the pair of interest to create difficulties. At each stage of 

the iteration, the elements of the pair of interest are actually the net dislocation 

charges in the renorrnalized cores interacting by the effective K . 

In the next section, the overview presented here will be filled in somewhat 

and the various approximations used in the t)leory will be discussed. 

3 . The Dislocation Unbinding Theory 

In this section, an attempt is made to discuss the dislocation unbinding 

theory of 2-D melting with emphasis on using it to compute the heat capacity 

predicted for the dislocations. The presentation roughly follows references 2 

and 3, but rather than repeat details covered there, we try to amplify and com-

ment upon the procedures and assumptions used. 

First, the elastic Hamiltonian used in references 2 and 3 for the monolayer 

must be corrected (in the case of helium) for finite initial pressure without 

which the solid will not form. This was discussed in chapter 3. Thus the correct 

equation for the elastic potential energy in the harmonic approximation in the 

presence of finite applied pressure is 

(4.6) 

where 'Ut.j is the gradient of the ith component of the displacement in the jth. 

direction, rp is the 2-D pressure. The modified elastic constants are given as in 

chapter 3 by 

Avkt = Cvkt -rpojl oik (4.7) 

with 
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C;.;JU =J.L(OV: 6 ;t +oiloik -oii old)+ B oii old +7~i.i ~JU 

=J.L(O~.t O;z+ oil 6;k )+A.oi.i o}l;l +!'~ii ~kt (4.8) 

where the notation is as in chapter 3 and ~ is the second rank totally antisym-

metric te!lsor. AB pointed out in chapter 3, the second order term in 'Ll;.j can be 

mapped onto the zero-pressure Hamiltonian by replacing J.L by J,L-rp in the latter 

result . The term linear in uv is irrelevant to thermal averages over either pho­

non or dislocation strains, since it averages to zero. 

The dislocation energy must also be corrected for the effect of pressure , 

since the formation of the dislocation requires work against the pressure forces . 

It turns out that the energy of the dislocation given by equation ( 4 .17) is 

modified in exactly the same way as the elastic Hamiltonian, namely , by the 

replacement J.L-*J.L-rp . This can be proved in the following way. 

Wallace1l demonstrates that a finite strain TJ;.j relative to a configuration 

with zero strain with initial stress 18 applied, produces a stress 

where 

BlJid =J7( 18oik +1~6V: +;fkoil +18: c5;t -21~6/d )+ Ct,ikt · 

For the case where 18 is a pressure, this reduces to 

Bij}t;J. = -rp (oil 6 ik + oV: 6 it -o;.i 6 kl) + Ct.;kt 

=(.u-rp)(c5V: 6;z +oil 6;k )+(A.+rp)c5iioJU +!'~ii~kl 

(4 .9) 

(4 .1 0) 

( 4 . 11) 

where we have used equation (4.8) . Thus the stress in a configuration ""ith a sin-

gle dislocation and initial pressure is to leading order in the strains 

; 'iJ = -rpc5i; + [ (,u. -rp) ( c5V: 6 ;t +oil 6ik )+ (X+r; )oii 6kt +/'~ii ~kt ]ukz 

while a dislocation in an unstressed medium produces a stress 

'Tii =[,U(c5~,t c5;z +oilojk )+~oi;okl +~~ii ~kt ]ukz· 

The equations of mechanical equilibrium are 

(4 .12) 

(4.13) 

(4.14) 
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with boundary condition (that stress be continuous at the edge of the crystal) 

--{ 0 freesurface 
7";.;- -rp6i,j hydrostaticpressureapplied (4.15) 

Thus. if we define 

(4 .16) 

t.he boundary value problem for 'f;.; is identical to that for 'Ti.i as long as we 

replace j1. by J.L-rp and~ by A+rp. 

Thus the energy of a dislocation is gotten from the standard solution of this 

boundary value problem as in references [2] and [3] with the above replace­

ments . It is (in the notation of Young) 

Erb.s =rrK'" (ln(R I a 0+ C) ( 4 .17) 

where the integral of the term in equation (4 .6) linear in the strains over the 

crystal vanishes by symmetry because using Hooke's law it can be transformed 

into an integral over the stresses, which in polar coordinates are 

'T" =1 ~ocsin(~)/r 

'Tr,oc-cos('l9)1 T 

(4 .1Ba) 

(4.1Bb) 

This 1/ r dependence of the stress and strain fields of the dislocation is 

guaranteed by the condition that any closed path around the dislocation fail to 

close by an amount equal to the Burgers vector, 

(4.1 9) 

since this implies that paths with the same shape scaled up or do\'.'11 in size must 

produce the same result. Thus we can guess that the leading order behav"ior of 

the rli.slocation energy, the stress times the strain integrated over the crystal 

(excluding the core region) will be proportional to ln(R) and by a multipole-type 

expansion we can see that the energy of a pair will be proportional to ln(r) 

where R is the crystal size and r the pair separation. The full Hamiltonian in 

Young's notation is 
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-Ho/ kB T=21T£,{Klib'-bjln(r'j / a.0)-Kd'[(b'·f"i)(bj ·'IV)/ (rV)2-}2b' .i)"; l}4 20) 

+lnyol:(b")2 

\ 

where :;tii =ri-;tJ the positions of dislocations J:tt sites i and j, Iny0 is related to 

the core energy and acts like a fugacity for the dislocations, and the 

configurations of ~bij are restricted to cases of total neutrality, l:bi=O. The 
i 

parameters Kb and Kt depend on the bare elastic constants (measured in the 

absence of dislocations at OK), 

(4 .2 l a) 

(4.2 j_ b) 

and are equal when the substrate is smooth and ")'o=O. Equation (4.2 J. b) corrects 

a typographical error in reference 3. 

Examination of the fugacity term in equation (4.20) reveals that since the 

energy is proportional to the square of the charge. charges greater than one 

unit are of low probability because they are unstable to the formation of several 

unit charges . 

Since references 2 and 3 present detailed (and different) versions of the 

methods used to obtain the renormalization group recursion relations , for 

tutorial reasons we briefly sketch two methods for obtaining them for simplified 

problems and then describe more fully the approach of Young that leads most 

directly to the RG relation for the free energy, which we need to compute the 

heat capacity. This latter description is intended to outline the process for the 

reader without reproducing the evaluation of integrals and other mathematical 

details needed in intermediate stages. 

Dielectric theory can be used to obtain the recursion relations for the 

simplified dislocation Hamiltonian with no angular interactions and the Burgers ' 
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vectors treated as scalars. This Hamiltonian is equivalent to that for vortices in 

a 2-D superfluid and was first solved by Kosterlitz.l2 The potential of two charges 

in two dimensions which satisfies Poisson's equation is -2q 1q2ln(r 12la0), so we 

can map the dislocation problem onto the Coulomb gas with the correspondence 

""1rKo=q 21 JcB T. Two opposite charges at large separation r are screened by 

smaller dipoles. so the force qE=2rrK0 /r is reduced. Treating the smaller 

dipoles as a 1::ontinuous medium, the reduced field E can be written in terms of 

the displacement field D from the two test charges of our large pair in the 

absence of the smaller dipoles divided by the dielectric constant of the medium 

E= 1 +4rrx where x is the susceptibility. The reduction in force increases Y..ith 

separation, -so the relevant dielectric function is scale-dependent. This can also 

be subsumed into an effective scale-dependent K(r}=Kol E(r). The susceptibil­

ity of all the dipoles with size smaller than r, x(r) is given by 

r 
x(r )= J p(r ','l1)a(r ')r'dr 'd'l1 (4.22) 

a.o 

where a(r') measures the polarizability, *rrK0r'2, of a single dipole of separe..tion 

r' and rho (r','l1) is the density of pairs of separation r' making an angle v to 

some arbitrary axis . This thermal density is evaluated with the partition func-

lion determined by the simplified dislocation Hamiltonian, with the interaction 

between the pairs modified from Ko to K(r ') by the screening of even smaller 

pairs. The density is thus given by 

(4.23) 

to leading order in Yc. where Vis the potential energy integrated from the force 

lnr dlnr' 
V(r )ln(r I a 0)=K0 J ( ') 

l:il.a.o £ r 
( 4- .24) 

The self-consistent equation for K(r) derived from this (letting l =ln(r I ao)) is 

(4.25) 
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which can be simplified by defining a scale-dependent :fugacity 

(4.26) 

which can be used to turn equation (4.25) into the coupled difierential equations 

of the renormalization transformation 

d.K-t -4 3...2 
~- Tiy 

':% = (2-rrK)y. 

(4 .27a) 

(4.27b) 

This same method ('with some complications) can be .used to treat the disloca­

tion problem for the smooth substrate and triangular adsorbate including the 

angular part of the dislocation Hamiltonian and the vector nature of the 

"charges" . The two main complications are in the angular averages, which lead 

to Bessel functions, and the possibility of two Burgers· vectors which are not 

opposite being paired with a third one opposite to -the vector sum of the first 

two, i.e . "dipoles" with one element being a composite of two elementary Burgers 

vectors at 120° (the charge of such a composite is still .one unit). 

Nelson and Halperin approach the recursion relations by finding the per-

turbing effect of a single dislocation pair on the reduced elastic tensor, where 

reduced means that elastic constants are multiplied by 4§ IkE T . The inverse of 

that tensor is written in terms of a correlation function 

--1 2 ( ) CR.ijkl=<Uii U~t>l Aac ~ . 28 

of a quantity U that is essentially the total strain in the -crystal and is given by 

(4.29) 

where the integration is taken around the boundary ~f the crystal , P, with unit 

normal n . The displacements and therefore U have ~ontributions from the pho-

nons and singular parts from the dislocations . Since the displacement u is 

discontinuous for a complete path around a dislocation, branch cuts are dra.,,-n 

between each dislocation and the origin and contribute the value . of the 
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:discontinuity of i1 (=b), to the equivalent area integral derived by Green's 

..theorem from equation (4.29), 

(4.30) 

.1n fact. tlle first term vanishes by symmetry (if the boundary stress is continu­

-ous), so the only contribution from the dislocations is that of the cuts. There 

.are three kinds of pairs (for the three possible directions of Burgers' vectors on 

.a triangular lattice) and each contributes to the correlation function Vvith weight 

:dependent upon the probability of it being excited, which in turn depends on the 

'Separation of its elements and the angle the Burgers' vector makes to the vector 

joining those elements. The contribution to the elastic constant from a single 

pair is thus 

C.RJ;.ct = C.:;J +~y2 '£ ( ep .it jli +ep .; tv) ( ep . .c tit+ ep .z t,et) 
p=l 

x r d2R~,.R, Q;, [R l-nK +o(y3) 
1Jf1>a a ~ 

(~ . 3 1 ) 

where ip are the unit vectors along which Burgers' vectors can point, Qp are 

corresponding angular factors, and the first term on the right side of equation 

(4.31) is the bare inverse elastic tensor (arising from the smooth parts of U) 

G;.c1z= 4~(6i.t6;t+6-u6;.c-6\i6.cz)+ 4~6i;6.ct+ :)iE'i.;· t~:z 
.and the overbar indicates a reduced elastic constant. 

( 4. 32) 

This perturbation to the components of the reduced inverse elastic tensor 

begins to behave badly near the transition, suffering an infrared divergence in 

the integral when the temperature changes such that rrK0 .... 2. Nonetheless, by 

~ing RG methods , it is possible to use the perturbation approach without incor-

-porating higher order terms directly. The renormalization group relations for 

:the variation of these components of the inverse elastic tensor are then derived 

by breaking the integral into two parts 
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(4.33) 

for small 6. The small R portion is absorbed into redefinitions of P,. B and K . 

Then the large R parts can be rescaled to range from a to co, creating extra tac-

tors absorbed into redefined :values of y. The same considerations of composite 

Burgers' vectors pairing must be accounted for. 

Finally, having prepared lor the most complicated of the calculations, we 

recount Young's approach to the full dislocation problem with KE not neces­

sarily equal to K8, that is . the problem of melting on a periodic substrate . 

The partition function for the vector "charges" can be written as a sum over 

all possible configurations. J>ararnetrized by the number na of dislocations of 

each 6 kinds (along ±ep). 

Z= 2: fi [-1-, ]In d2r: [JT]N eHOn l) I 
fnaja=l na. \=1 ao 

(4.34) 

where N is the total number of dislocations and H is the dislocation Hamiltonian 

(divided by -kBT) without the term containing y 0 and with a fixed set of na · The 

dislocations are not allowed to get within one core spacing (a0 ) of each other. 

Th~ reduced Hamiltonian is put into the form 

where 

H(~n j)=2rr l:b],tpq b/trs Mqs (rii) 
i<j 

(4.35) 

(4.36) 

and G(r)=ln(r I a 0) is the Green's function for a point charge in 2-D. We now 

consider a dipole (i,j) with"Separation between a 0 and a 0(1+ol) for some small 

ol. The part of the Hamiltonian pertaining to this pair consists of the interac-

tion of its elements. producing a contribution to the partition function 

~xp(HJ)=exp(rrf<'l'cos2~). (4 .37) 

and the interaction of each-element with all the other dislocations, 
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(4.38) 

(This looks asymmetrical and is missing b; because that vector is equal and 

opposite to bi .) The plan is to integrate over T' and;; to remove those degrees 

of freedom from the partition function. The integral of T' is over the annulus of 

width t5l and radius ao around ri, which is correct as long as the pairs are dilute 

enough that we can neglect the possibility of another pair corning within a 0 of 

the one in_ question. Then Tj is integrated over the entire crystal, except in disks 

of size ao around each of the other dislocations. 

The result of this integration, after complex and tedious manipulations. is 

proportional to t5l and can be broken into 3 terms, two of which resemble the 

terms of equation (4.36). These terms must therefore be the changes to the 

couplings K'" and~. The remaining term is the contribution to the free energy 

of all configurations containing one pair at this separation. That is, if we denote 

the annulus by t5i and the disk by Dj. the integration can be written in the form 

(4.39) 

with each of t5F, t5K". 6~ proportional to t5l. The manipulations to produce this 

form are messy but the results can be summarized by the differential equations 

A-1 ':: =61ilc(rr~)y2/ a8 (4 .40) 

~ = -6n"y2{[(K'") 2+ (~)2]/ o( r. ~)-K'" ~It ( "~)] 

~ =-6trit2{2K'" ~I o(r.~)-*[ (K'")2+(K")2]1 1 (r.K")} (4A-1b) 

where A is the area of the system. It is important to note that equation (4 .40) is 

-not the recursion relation for the free energy of the system because it still con-

tains a 0 : In Young's paper, this factor is missing from equation (4.40). We have 

described the first iteration of the renormalization group, in which pairs of size 
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ac are integrated .t>ut; in general. the current core size a 0e 1 should be used in 

equation (4 .40). 

It is possible to put equations (4.41) into a slightly simpler form by making 

the change of variables 

(4.42) 

which has the physical meaning of the transverse and longitudinal couplings in 

the sense that the Fourier transform of the dislocation Hamiltonian of equation 

(4.20) can be shown to decompose with transverse interaction governed by Kr 

and longitudinal interaction governed by KL. The smooth subtrate is thus 

characterized by a purely transverse interaction between dislocations . The 

recursion relations for these couplings are given by 

( 4 .43a) 

(4.43b) 

The renorrnalization procedure is completed by the following manipulations: 

Rearrange the summation over ~naJ to account for the pair that is gone from the 

explicit partition sum, taking into account the three possible charge directions 

for a pair, and then reexponentiate the terms proportional to c5l in equation 

(4.39), changing the .couplings to K" +oK'" and ](6+c5i(fJ. The hard core distance 

has been expanded, so we must replace all occurences of a 0 in the partition sum 

by a'0=a0 (1+ol). Each of the terms yla8 becomes to leading order, 

y(1+2c5l)/a'g and the term in the exponential involving G(r) is rewritten in 

terms of a'0 producing a term e-ffxr 6t~1-nJ<Tol to leading orde!" .. We cannot 

integrate charges at liistance n 0 which are not opposite, but must treat them as 

"composite" if they sum to another unit vector. After the rescaling operation, 

any charge can either be an .t>riginal charge or a composite one. The effect of 

this is added to the above contributions to the renormalization of y to produce 
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(4.44) 

The rescaling of a 0 in the free energy term is cumulative, so after enough itera­

tions of the procedure that the scale has changed from a 0 to a 0e 1 , the correct 

recursion relation for the free energy must be written 

(4 .45) 

Equations (4.41) or equations (4.43), equation (4.44) and equation (4.45) form a 

complete set of recursion relations for the full dislocation problem. 

Combining these results with the Nelson-Halperin approach. it is possible to 

derive recursion relations for the elastic constants themselves. These are 

d~-
1 

=3rry2I 0 (rrK") 

dlJ-1 
~ = 3rry2

[ I o ( 1i ~) -Il ( 1i ~)] 

d--1 7"-=3r.y2 [I o( rr ~) + I1 ( 1i ~) J. 

We will discuss these recursion relations in detail shortly. 

(4.46a) 

( 4.4,6c) 

We next discuss the structure and solution of the recursion relations . The 

controlling equation is equation (4.44). In the equation for y, if the initial value 

of y is small enough that the first term dominates and K6 >2/rr. then y '""ill 

decrease and be driven to zero. Thus in equations ( 4.41 ), the couplings K 'will 

• 
increase more and more slowly as y ... a, and eventually stop changing 

significantly withy and l. On the other hand. if the sign of the first term is posi-

tive, y is guaranteed to increase (this corresponds to increasing the conce:-:t~a-

lion of dislocations as one rescales until the approximation of dilute pairs no 

longer applies) . In the intermediate region, if the initial value of y is large 

enough, even though the first term may be negative initially, if K'" ever becomes 

smaller than 2/rr while y is nonzero, y will increase and diverge. Visualizing this 

behavior in (y, J(T, ~) space, we find a critical (in the sense of difi'erential equa­

tion phase plane theory ) surface y =0 which is stable for K'" >2/rr and unstable 
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in the opposite case, that is, a small perturbation away from the surface grows , 

or a trajectory that comes arbitrarily close to the surface in the unstable region 

turns away from it and recedes to infinity. This surface is a fixed surface of the 

renormali.zation group transformation (every point of it is a critical point). The 

stability of the :fixed surface changes along the line J(T =2/ 1r. 

By specializing to the case .K'"=~ we can learn a bit more . Now y=O is a 

fixed line.. A single curve terminating at the edge of the stable region 

(y =0, K=2/ rr) separates the trajectories that hit the fixed surface from those 

that diverge away. ·This curve, called the separatrix, is found by starting at the 

terminating point and integrating the ratio of equation (4 .43b) to equation (4.44) 

in the direction of decreasing K- 1. Figure 4. 4 displays the phase plane of these 

differential equations along v.i.th the separatrix and several other trajectories . 

Clearly the melting transition occurs when the fully renormalized K is 

exactly 2/ rr. since that is the point at which the behavior changes from renor-

malization towards a more and more dilute gas of dipoles to one in which there 

is a nonzero concentration of dislocations on infinite scales. It is easy to show 

that the couplings xr and ~ at any scale have the same form as equations 

(4.21) with the elastic constants replaced by the partially renormalized elastic 

constants at that scale. Thus. the phase transition temperature is given by 

(4.47) 

where the renormalized elastic constants are determined from equations (4 .46) . 

In order to complete our understanding of this system we must deduce the 

initial conditions. At any temperature. they are determined by the bare elastic 

constants and the core parameter C such that 

(4.48) 

which is shown for "typical " values of C by the dashed curves in figure 4.4 When 
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f'i&ure 4 .4 . Phase plane or renormalization croup recursion relations in the no­
tation of referen~e 3. 'Ibe hea'J' lines comprise the separaL"i.x the dashed cur\e 
11 the line of st.artin& points for core parameter C=2 and the dot·dashed curve is 
the line of st.utin.g points for C=3. Tbe solid re&ion i£ the re&ion below the le!t 
hump of the separatrix, where the RG trajectories intersect the Jr1 axis. 
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the temperature and core parameter are ~uch that IQi ,y0 lies on the separatrix, 

the renormalization must proceed along that trajectory to the critical value of 

.Kf?, so the separatrix represents the phase boundary of the system. Below the 

-separatrix in figure 4.4, the system is solid, above, it is not. ln fact, if the core 

parameter Cis not a function of density or temperature, the intersection of the 

separatrix with the curve of initial conditions (known in the trade as the line of 

starting po~ts) represents the entire melting curve of the system. (The reader 

should recall that K0 contains a 0 and is thus a function of the density of the sys­

tem.) 

For the case -y0=0, the calculation of the heat capacity is straightfon'\-'ard, 

and for non-zero ")'o it is only manageably more complicated, so we ne)..'t proceed 

to the description and analysis of the heat capacity computation. 

4. -Comparison of Experimental Data on Helium Monolayers with the Disloca­

tion Unbinding Theory 

Jn this section, comparisons are attempted between the predictions of the 

dislocation unbinding theory and observed thermodynamic data, particularly 

the heat capacity, of helium monolayers. It was hoped that even though a cru­

cial parameter characterizing the energy of the dislocation core was unkno1m, 

some range of core energies would produce consistency with the experimental 

data, in a sense to be discussed below, but it turned out that this does not seem 

to be the case . The heat capacity data were summarized in chapter 2, and we 

will discuss various aspects of it in sequence. 

First, we point out that the theory as formulated by NH and Young cannot 

possibly predict melting temperatures as high as the observed heat capacity 

peak temperatures . This can be established by the following argument : The 

melting temperature is a function only of the renormalizbd elastic constants, 

which can only be determined in terms of the measured or calculated bare 
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elastic constants if the core energy is known. However, an upper bound on the 

melting temperature can be found by replacing the renormalized elastic con­

Blants in equation ( 4.47) with the bare ~nes. At the melting temperature 

predicteq by the theory, the value of K from the bare elastic constants (deter­

mined by the intersection of the line of starting points with the separatrix) is 

greater than the renormalized value 2/n, as -can be seen in .figure 4.4. Thus the 

temperat~e determined by setting the bare K to 2/ rr, which can be called the 

"u.nrenormalized" melting temperature, is -greater than the renormalization 

group prediction of the melting temperature. Furthermore, the melting tem­

perature predicted by the theory is actually an absolute stability criterion for 

the solid - melting could occur at a lower temperature if some other mechan­

ism preempted the dislocation unbinding, but if the solid exists at T rn , it must 

be unstable to the formation of free dislocations. Thus, it is guaranteed (at least 

for classical solids) that the "unrenormalized" melting temperature estimated 

from the bare elastic constants is outside the solid region of the phase diagram 

of the substance . Since the heat capacity peaks plotted in figures 4 .5a and 4 .5b 

are significantly above these "unrenormalized" .melting temperatures, they can­

not mark the melting transition . 

Precise predictions of the true melting temperature from the theory can­

not be made because the initial conditions for the renormalization procedure 

cannot be specified without the value of C, the core parameter. This core 

parameter is essentially a non-physical concept, since it is to some extent arbi­

trary (but not completely). Essentially it is a means of cutting off the integral of 

the total elastic energy of a dislocation at some small distance from the disloca­

tion, such that the integral is carried out over the region over which linear elas­

ticity theory correctly describes the strains, .and the excess energy in the cen­

tral region is subsumed into the core parameter. The core parameter is not. as 
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Figure 4 .5a. Heat capacity peak temperature(+), "unrenormalized .. melting 
temperature(x) for several coverages for 4He. 
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Figure 4 .5b. Heat capacity peak temt>erature(+), ••unrenormalized" melting 
temperature(x) for several coverages of ... He . 
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it is sometimes described, simply .an indication of the size of the cutoff. The 

core parameter is ~nly known for certain simple systems. One such case is the 

classical Lennard-~ones solid, for which it has been evaluated by Englert and 

Tompa9 by .an iterative relaxation method applied to a collection of 184 atoms 

forming a triangular lattice bound by nearest neighbor forces only and contain-

ing a single dislocation. They did not evaluate the core parameter explicitly, but 

found the ~train ener~y of the dislocation in terms of the Lennard-Jones param-

eters to be 8.65£, ~here the Lennard-J ones potential is V(r )=4£(( .!!__ )1 2 -( .!!__ ) 6) 
· T T 

and the equilibrium spacing of the classical (zero-pressure) solid is 2116a . if only 

nearest neighbor forces are included. Using the methods of chapter 3 to evalu­

ate the elastic constants of this classical solid 

(4.49) 

(it is also easy to ~how that the second-nearest neighbor forces increase these 

by less than 9%), 9e ~an compare the energy computed by Englert and Tornpa 

with the equation for .the energy of a dislocation (assuming a smooth substrate) 

2 
a.o J.LB 

Edis = 
2 

B (ln(R / a 0) +C) 
1r J.L+ 

( 4. 50) 

where R is related simply (by nR2=N~8u) to the size of the sample treated by 

Englert and Tompa. 'This comparison yields C of .65, which is smaller than the 

value 1.5 usually suggested in standard dislocation theory treatises , and far 

smaller than numbers that produce reasonable heat capacities for helium mono-

layers. 

No one has yet n1ade a similar calculation for a quantum system, nor has 

anyone even predicted in which direction the quantum corrections will go . Since 

the equation ( 4.46) for the line of starting points contains C in the exponent, a 

factor of 4-6 in the ~ore parameter makes a very substantial difference in the 

concentration of rlislocation pairs, especially at low temperature . The larger the 
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core energy, the closer the line of starting points is to the fixed surface y=O and 

the more dilute the gas of dislocation pairs. Thus. the larger the core parame­

ter, the smaller the degree to which the elastic constants are renormalized, and 

the closer the predicted T~ to the "unrenormalized" estimate. Figure 4.4 shows 

the relationship of the line of starting points to the core parameter. for the case 

where the substrate is smooth. 

In thi~ case. the procedure for calculating the heat capacity is relatively 

simple . The bare elastic constants J..L and B are obtained from the experimental 

data for a particular coverage as explained in chapter 2, and we choose a value 

of the core parameter. The intersection of the line of starting points deter­

mined by this information with the separatrix is found numerically to deter­

mine the melting temperature corresponding to this core energy . For the pur-

poses of extending the calculation of the heat capacity above this melting tern-

perature. we also arbitrarily choose a crystal size. the use of which v.ill be 

explained below. Then, at each of a sequence of temperatures between OK and 

the heat capacity peak temperature the · renormalization group equations for 

Ki1, y. and F are numerically integrated, beginning at the appropriate point on 

the line of starting points for each temperature. Second differences v..ith 

respect to temperature of the values of FR( T) give the heat capacity 

( 4. 5 ~ ) 

According to the theory, this dislocation contribution to the heat capacity 

should be added to the heat capacity of the bare phonons, which we take to obey 

a Debye model, for comparison with the experimental heat capacity . 

We require that the heat capacity calculated here must be less than the 

experimental heat capacity if it is to be considered consistent with the data. In 

generaL the Debye model gives the correct behavior at very low temperatures, 

but at moderate temperatures, the van Hove singularities which must occur in 
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the phonon density of states (where d c.>/ dJc =0 ) usually raise the heat capacity 

above that predicted by the Debye model. because it is guaranteed that there be 

at least one maximum in the dispersion curve at lower k than the first 

minimum. Figure 4.6 shows the heat capacity predicted for the phonon spec­

trum displayed in figure 5.8 of chapter 5, in comparison with the pure Debye 

heat capacity corresponding to the zero-degree speeds of sound, as an example 

of this eff~ct. Anharmonicity of the solid, which is completely ignored here 

except for the part produced by the dislocations, can either increase or more 

usually, decrease the departures from the Debye law, 11 so the requirement that 

the dislocation heat capacity be less than the measured heat capacity is not 

strictly correct. However, the actual deviations in the experimental heat capa­

city from Debye-law behavior occur in a narrow range of temperature right near 

where, for some values of the core parameter, the dislocation heat capacity is 

predicted to become large, while anharmonicity usually causes more gradual 

effects, and also usually is only important at higher temperatures. 

In the case of a periodic substrate, the separatrix becomes a surface in 

(K'", ~. y) space which reaches the fixed surface y=O along the line .K'"=2/rr. 

For this case, the computation of the heat capacity is slightly more compli­

cated. Given the bare elastic constants, including ?'o as obtained in chapter 5, 

the determination of the melting temperature is somewhat trickier than in the 

smooth substrate case. A brute-force method was chosen: a likely point on the 

line of starting points was chosen and the RG equations were integrated until 

they either reached y =0 or passed through a minimum. A binary search 

method was used to find the place on the line of starting points for which the 

resultant trajectory passed through 1<'"=2/pi, y=O, within some tolerance. The 

temperature at that initial point is the melting temperature. The rest of the 

computation of the heat capacity proceeds as before, except that the full set of 
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Figure 4 .6. The heat capacity for a realistic phonon spectrum (upper curve on 
the spectrum of figure 5.8) compared with the Debye law (lower curve) and ex­
perimental points for this coverage. 
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recursion relations. equations (4.41), (4.44). (4 .45) must be used. 

Before presenting the results of these calculations we will try to unify them 

with some alternate methods of computing the heat capacity and refinements to 

the varioas methods that allow some estimates of the heat capacity above the 

transition temperature. 

To get any results at all above the transition temperature, we use a finite 

size crystal. The theory states that the screening between elements of a pair is 

only complete when they are infinitely far apart right at the transition. and then 

the screening length becomes smaller as the temperature rises . Thus a patch of 

finite size (in the infinite medium, so boundary conditions and image dislocation 

fields cause no trouble) remains solid until some temperature higher than that 

marking the onset of fiow under infinite wavelength shear. If we calculate the 

heat capacity of the dislocations in this finite patch assuming it is neutral (by 

renormalizing only out to a scale-length equal to the patch size) and similarly 

calculate the bare phonon heat capacity of the patch by including wavelengths 

smaller than the patch size. we should have underestimated the totcJ heat 

capacity I atom . Until the screening length becomes equivalent to our patch 

size, the RG equations lVill be well-behaved and can be used as before . Vrnen the 

temperature reaches a value that lowers the screening length to the patch size , 

we stop trying to calculate further . This is in practice determined by a more ad­

hoc criterion of stopping the integration at any temperature for which the 

renormalization group equations start becoming inaccurate (y >0 . 1) before vie 

reach the scale equivalent to the patch size. 

While carrying out the renormalization group integrations, it is possible to 

use the results in an equivalent calculation that is more easily modified to incor­

porate quantum effects, although we have only managed to do that in a physi­

cally motivated, but ad hoc fashion. 
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At the outset, instead of separating the displacement field into phonon and 

dislocation parts, we can use linear response theory on the entire elastic Hamil-

tonian to understand the behavior under arbitrary applied stress. This leads to 

a relationship between the temperature-dependent, effective elastic conste.....T'lts 

and a correlation function of the strains, which in turn can be used to predict 

the thermodynamic and dynamic behavior of the system in terms of only the 

renormali?ed and bare elastic constants. Now the results of our RG integration 

can be used numerically to evaluate the equations generated. Since the prob-

lem has now been characterized in terms of effective phonons. it is easier to see 

how to approach the real quantum mechanical problem, and we \\ill display a..'1 

interpolation formula for the heat capacity in terms of bare and renorrnalized 

elastic constants which has the correct high and low-temperature limits, but 

essentially no other physical justification. 

Linear response theory 13, 14 is a formal method for analyzing the dynamical 

response of a system to an small external perturbation. To first order in the 

perturbation, the shift in the thermal average of any quantum-mechanical 

operator A is given by 

• c 
6<A(t)>= ~J a.t '<[H 8 :a (t').A(t)]>. (4.52) -

In particular, if fjezt takes the form ~J dr~ (r ,t )af=t where a is a generalized 
i 

force coupling to the operators ~ then the linear reponse of one particular 

operator is given by 

• c 
6~(r,t )>=-~£ a.t ·f rtr'<[~(r,t),Aj(r t ')]>a;= ( r , ' t ') . ( 4 . 53) 

Thus, the response of any operator is proportional in this approximation to the 

applied force, and proportional to the space and time correlation function of 

itself with other dynamical quantities. By Fourier transforming equation (?.53) 

in time and space, we can obtain a similar relationship between the operators 
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and the force as functions of frequency and wavevector, and if the system is 

translationally invariant in space and time and the force is local, that relation­

ship decouples responses at different frequencies and wave numbers. 

For the simple case of a single dynamical operator, the response depends 

on the autocorrelation function, and in the long-wavelength, low fre.quency limit 

corresponds to the static response . For example, in the case of a magnetic sys­

tem in a weak e:>..i.ernal field, the change in the local magnetization is propor­

tional to the magnetization autocorrelation function. But the temperature­

dependent static susceptibility is defined to determine exactly that response, 

oM =xoh. so the correlation function is related to a susceptibility. 

In our problem, the analogue of the magnetization is a strain component, 

and the force is an applied stress . The Hamiltonian is the full elastic Hamil­

tonian, of equation (4 .6). making no attempt to decompose it into phonon a..1d 

dislocation contributions. Once again, the long-wavelength, low-frequency limit 

tells us how to interpret the correlation functions that occur -- they must obey 

Hooke's law. aiJ=C;,j~:luJ;J.. so the correlation function <~iukL> is proportional to 

the inverse elastic tensor, q:;JL which plays the role of a temperature-dependent 

susceptibility. Clearly, at finite wavelength and frequency , (or a finite dista.J'lce 

and time) the generalized susceptibility represents the complia..'1.ce of the sys­

tem to disturbances of this scale and time dependence. Since the thermal aver­

age in the correlation function is over strains produced both by phonons and 

dislocations, the susceptibility clearly must represent the renorm.alized sc:ale­

and frequency- dependent elastic constants, and in fact the correlation function 

is sometimes used as an alternative definition of the elastic constants. 

The internal energy of the system. whose temperature derivative is the he at 

capacity. is given by the correlation function evaluated at equal times and at the 

same space position, i.e., ignoring pressure terms and the kinetic energy. 
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(4.54) 

Fourier transforming this equation and putting in the elastic tensor for the 2-D 

isotropic continuum (shown in chapter 3 to be equivalent to the triangular lat­

tice) we f}nd (using dimensionless wavevectors) 

E( T)=lflj =~ D;.~<u, (iJ)ui ( -q)>. (4.55) 

where the bare dynamical matrix is a function of the bare elastic tensor, 

( 4. 56) 

and thus is determined by the properties at T=O where there are no disloca-

lions. Using linear response theory, the correlation function at finite (nonzero) 

wavevector (below the transition temperature) for a classical isotropic elastic 

solid can be written as 15 

( 4 . 57) 

which, combined with equation (4 .56) and ·equation (4.55), gives for the classical 

internal energy,16 

(4.58) 

At this point, we still do not know how to calculate the reno!"malized elastic 

constants (or ..equivalently, the correlation function) directly, since they are the 

result of statistical averages over the full Hamiltonian. However. our approach 

is wholly equivalent (so long as we consider a classical system) to the renormali-

zation group approach, so we can use the results of those calculations of the 

renormalized elastic constants, if we can make a correspondence between f.-LR (l) 

and J..lR(q ). The obvious such correspondence is q =n/ a 0e 1 , which can only be in 

error by a factor of order unity. 
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Thus, the temperature derivative of equation (4.58) is entirely equivalent to 

the heat capacity calculation described above in which the dislocation contribu­

tion is added to that of the bare phonons. It certainly has the correct qualita­

tive behavior. If there were no dislocations, the renormalized elastic constants 

would be the same as the bare ones, and the heat capacity would simply be ka, 

or exactly what one gets from the equipartition theorem applied to the potential 

energy of a classical system of oscillators . Since the renormalized elastic con­

stants are always smaller than the bare ones (the dislocations always weaken 

the restoring forces), we always get an excess contribution above the bare pho­

non contribution, exactly what one would expect from the calculation in which 

the phonons and dislocations are decoupled. 

To try to improve this calculation for a quantum system, we must assess the 

places where we have not taken quantum mechanics into account. The most 

obvious place is in the treatment of the bare phonons, since we have not noticed 

that they are quantized, will not be fully excited at low temperature, and thus 

v.ill have a heat capacity that falls to zero as the temperature decreases, and is 

proportional to T 2 at low enough temperature . 

If this were the only area in which quantum mechanical effects have been 

neglected, correcting the oversight would be trivial - the dislocation cont r ibu­

tion to the heat capacity as calculated from the RG equations would remain the 

same, while the bare phonon heat capacity could be replaced by a qua.Dtum 

mechanical model, of complexity ranging from a simple Debye law to a fully 

self-consistent phonon calculation based only on the interatomic potential . (It 

would not be extremely useful to employ this latter model, because we have 

neglected all anharmonic terms which lead to further couplings between the 

dislocations and phonons.) 

Unfortunately, even though dislocation pairs are relatively high-energy 
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excitations of the system, and owing to the non-zero core energy are not 

expected to be .significantly excited or contribute importantly to the heat capa­

city of the system at low temperatures, it is not correct to treat them classi­

cally. Essentially, the quantum properties of the dislocations arise from the fact 

that they are not actually fixed to positions on the lattice, but are free to move 

slightly in response to local stresses. The part of the motion which moves dislo­

cations around in the lattice is presumably accounted for in the configuration 

integrals in the partition function, which favor arrangements of the disloca-

lions on the lattice which minimize their energy. The motions on smaller scales, 

including quantum jitter, are not taken into account. 

Motion along the Burgers vector, called glide, is easy and occurs under sus­

tained shear, as discussed in section 4.2. It is essentially this motion which we 

understand physically to produce the weakening of the effective elastic con­

stants at large scales, the polarization and stretching of dislocation pairs in a 

shear force. (Motion perpendicular to the Burgers vector, called climb, is very 

difficult, because it requires that the extra half-line of atoms be either 

lengthened or shortened, which can only be done by nucleation of vacancies or 

interstitials in the crystal.) When the disturbing shear is on a scale large com­

pared to the size of a particular pair then polarizing motion takes place . "When, 

on the other hand, it occurs at a wavelength small compared to the size of the 

pair, the shear is, on the average, opposite at the two members of the pair a.."1d 

hence they move in the same direction, producing no net effect. Thus there is a 

crossover in the effect of applied shear on a particular pair which occurs when 

the variation of the shear is over wavelengths comparable to the size of the pair. 

For wavelengths above the crossover, the pair's response is to increase the 

amplitude of the local displacements, and thus mimic a weakening of the elastic 

response at that wavelength. There are also variations in the response depend-
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ing upon the timescale of the applied shear, resembling retardation effects in 

the interaction of light with bound charges. 

Thus the evaluation of the quantum mechanical correlation function is more 

complica~ed than what has been done above, and we have not carried it out. 

lnstead, we have approximated that correlation function, which depends on both 

wavevector and an integral over all frequ€nci.es, by the result of the static (but 

scale-dependent) calculation of the interaction of dislocation pairs. 

There is a more or less empirical way to include some of the qua..lJ.tu..rn 

mechanical effects of dislocations, by finding a simple, unjustified interpolation 

formula which agrees with equation (?.58) and reduces to the correct 0 Kelvin 

result . 

We assume that the bare phonons are described by a Debye-like model ,.,""ith 

angular frequencies given by c..>¥.L(q )=c?.Lq for transverse and longitudinal 

modes, \\'ith the sound speeds c given by equations (3.39) in terms of the bare 

elastic constants. We notice that we can reproduce the classical result (4 .58) if 

we '"'Tile 

E(T)=l:!fJC(q) c..>~(q) ff!?(q) (4.59) 
q.p p c..>f(q) ·-p 

where n is the usual Bose occupation number at inverse temperature {3= 1/ kB T 

for the renormalized frequency c..>f, 

nR(q)=[e~JL:fCq)_l]- 1 (?.60) 

since in the limit of high temperature (small {3), n reduces to kB T I Fi..;f(q) and 

since the elastic constants, bare or renormalized, are proportional to (..)2 . The 

zero-degree limit is also reproduced by equation (4.59), since at low tempera­

ture, the renormalized frequencies approach the bare ones and equation ( 4. 59) 

just becomes the usual mode sum for phonons (ignoring the zero-point enE:re;y 

which does not contribute to the heat capacity). 
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One can.attempt to t:oncoctjustifications for equation (4.59) on the grounds 

that it mimics .a system of phonons whose frequencies are unchanged but whose 

occupation numbers are altered by the presence of dislocations, but it is less 

pretentious .to treat it as an interpolation formula like the Debye law itself. 

We now -eompare the -experimental data on the excess heat capacity of 

helium films .above the Debye law result, with the results of the calculations 

based upon ~quation ( 4.59) with the De bye law subtracted out. and with the 

dislocation ~ontribution to the heat capacity as calculated from the RG equa­

tions (recall that this is also an estimate of that excess, since we ignore the bare 

phonons). Since in general, .quantum mechanical heat capacities tend to zero 

faster than ~lassical ones as the temperature decreases, we e}r..'Pect the result of 

equation (4.""59) to be less than the pure RG result, and the expectation is 

confirmed. 

Figures 4.7 thru 4 .10 show these heat capacities for SJle (4He is similar) for 

several coverages with core parameter C chosen roughly to optimize the fit of 

the classical :dislocation heat capacity to the experimental data. Figures 4.11 

thru 4.14 shows roughly optimal results for the interpolation formula at several 

coverages. The largest temperature on the curves is the heat capacity peak 

temperature, and the dislocation unbinding temperature for the particular core 

parameter is indicated to be substantially below the peak temperature. In gen­

eral. the steep rise of the calculated heat capacity occurs at higher tempera­

ture, the larger the core parameter. The results of the interpolation formula for 

several different values of the .core parameter are plotted in figure 4.15. 

As mentioned above, the calculations are carried above the dislocation 

unbinding temperature by treating a finite-size patch of solid. The crystal patch 

size is taken to be the mean platelet size of 140A (or about 40 lattice spacings .) 

as determined recently (for krypton-plated graphite) from modelling of experi-
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Figure 4 .( Heat capacity from experimental data, from RG equations (C-dis), and 
from atl. hoc interpolation formula, all measured as excess above Debye law, for 
9He at coverage .092 A -2 , core 2.8, gamma .13 and lattice size 40 spacings. 
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Figure 4 .8 Heat capacity from ~xperimental rlata, from RG equations (C-dis), and 
from n.d. hoc interpolation lormula, all measured as excess above De bye law, for 
SJ.ie at coverage .087 A -2 , core ~.3, gamma .114.and lattice size40:spacings . 
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Figure 4.9 Heat capacity from experimental data, from RG equations (C-dis) , and 
from ad hoc interpolation formula, all measured as excess above Debye law, for 
8He at coverage .0822 A -2• core !3.8. gamma .0982 and lattice size 40 spacings. 
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Figure 4 .10 Heat capacity from experimental data, from RG ~quations (C-dis), 
and from a.d hac interpolation formula, all measured as excess.above Debye law, 
for 9He at coverage .0801 A -2 , core 4 .2, gamma .11 and latticesize 40 spacings . 
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Figure 4.11 Heat capacity from experimental data, from RG equations (C-dis) , 
and from rJ.d hDc interpolation formula, all measured as excess above De bye law, 
for 19He at coverage .092 A -2 , core 2 .3, gamma .13 and lattice size 40 spacings . 
The predicted dislocation unbind.ing temperature is 2.458 K . 
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Figure 4 .12 Heat capacity from experimental data, trom RG equations (C-dis). 
and from ad hac interpolation formula, .all measured as excess above De bye law, 
lor 9He at coverage .087 A -2. core 2.7, gamma .11 and lattice size 40 spacings . 
The predkted dislocation unbinding temperature is 1. 757 K . 
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Figure 4.13 Heat capacity from experimental data, from RG equations (C-dis), 
and from a.d hoc interpolation formula, all measured as excess above Debye law, 
for 5He at coverage .0822 X -2 • core 3.4. gamma .0982 and lattice size 40 spac­
ings. The predicted dislocation unbinding temperature is 1.205 K. 
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Figure 4 .14 Heat capacity from experimental data, from RG equations (C-dis) . 
and from ad hac interpolation formula, all measured as excess above Debye law, 
for 5He at coverage .0801 A -2, core 3 .7, gamma .11 and lattice size ~0 spacings . 
The predicted dislocation unbinding temperature is 1.037 K. 

I 
I 
I 

' I • 
I 

' 3.7. llh40.0801 I 
I 

Cph-tO 
I -- I • I 

+++ Cexp-tO I 
I 

Cda• I 
I 
I 
I • I 
I 
I 
I 
I 
I • I 
I 

' I • I 
I 
I • 
I • 
I 
I 
I 
I 
I • 
I 

• I 
I 

I 
I • I . ,./ ,;• 

.. , au.._... .· .. .,. 
• • 



- S3-

Figure 4 .15. Experimental points vs . curves of interpolation formula for the hec.t 
capacity of !!He at coverage n. =.092_.{ - 2 • !or ~alues of the core parameter 2.3 . 2.4 
2 .6 2 .8, reaWn.g from left to right. 
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mental heat capacity near the registry transition by Callaway and Schick using 

RG methods.J7, 18 .Since the same work yields a standard deviation of the platelet 

size distribution of 106K, we might -expect to see considerable smearing of the 

heat capacity from mfferent platelets. Figure 4.16 shows the calculated results 

for several platelet sizes, taken by cutting off the RG integrals at the appropri­

ate scale and taking an appropriate lower limit ol mode sum.s in\-·olved in the 

Debye law _and the phonon interpolation formula. These results are surprising -­

that near the transition temperature, the size of the crystal in computing the 

heat capacity does not matter until the size gets smaller than 40 lattice spac­

ings. These are relatively crude estimates of the size effects, since they do not 

take into account any boundary effects; nonetheless, the scale of the variation in 

the heat capacity as function of platelet size is probably correct in order of 

magnitude, at least. Notice also, that the calculated heat capacity rises less 

steeply and at a higher temperature, the smaller the platelet size . 

It is very difficult to draw definite conclusions about these results. 1t is 

probably fair to say that the theory does not account for the experimental heat 

capacity, but do the differences arise from experimental problems (platelet size 

variation and substrate inhomogeneity) or from some defect of the theory? If 

the latter, is the defect so fundamental as to invalidate the dislocation unbind­

ing mechanism in this system, or is there some approximation (for example, 

assuming the system to be a classical elastic continuum) which is overeA-tended 

for this system, but only causes the theory to lose quantitative predictive power 

in this case, while retaining validity as a qualitative description of the melting? 

Unfortunately, -even these vaguer questions are not precisely answerable 

either. Certainly, the heat capacity produced by the theory can be made, by 

suitable choice of core parameter, to resemble the data in that it rises steeply 

in a narrow range of temperatures near the melting transition. The rise must of 
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0~------------L-------------~------------~~ I 
T (K) 

Figure 4.16 . Heat capacity vs . T at fixed coverage ~.09aA -2) r-= .13 and core 
parameter 2.4 for sHe for several values of size. The ~ower curve is for a platelet 
size of 10 lattice spacings. the upper curve is actually 4 curves essentially un­
resolved whose endpoints correspond to the effective melting temperature 
for patch sizes (from right to left. 40, 100, 300, 1000 lattice spaci..ngs. 
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~ourse reverse somewhere, since even i! there is no other mechanism, once the 

:dislocation density approaches the atomic density, no more can be created, so 

~e temperature .rui rise faster for a :constant heat input. 

However. the calculations always rise much faster than the data above the 

iransition and they are designed to underestimate the heat capacity. By making 

:the core parameter big enough, the .exponential rise of the calculations can be 

-pushed to .higher .and higher temperatures until the .calculated heat capacity 

does not exceed the ~xperimental heat capacity at any temperature at which 

1.his method still works, but then the shape of the calculated curve is vastly 

different from the experimental one. The fact that the core energies are 4-6 

times bi.gger than the classical Lennard-Jones value and 2-4 times bigger than 

1)ther calculated values is mysterious, but no one knows what the core energy in 

.a .quantum solid should be . It is also disturbing that in changing the coYerage by 

about 10%, the optimum core parameter changes by about 25%, but this could 

he a feature of the rapidly-changing role of correlated zero-point motions in the 

~uantum solid as a function of density. 

The experimental cli.fficulties are .also only partially characterized . The 

~fiect of the periodic substrate can be .small or large depending critically on the 

distance between the substrate and the solid layer (see chapter 5), and our cal­

~ulation has been carried out using values of the twist elastic constant ?' deter­

mined in chapter 5 by the distance value at the center of the experimental error 

bars. We have ~nly crude estimates of the 1:lfiect of the platelet distribution 

neglecting the very important effects of boundaries, including image strain 

~elds, and pinning behavior. 

How might the true dynamic phonon-dislocation coupling be introduced into 

the problem? 

We recall that the strains or displacements of the atoms can be 
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decomposed into two components, one arising from the singular dislocation 

strain fields and the other from the phonon strains. 1f dislocations are allo·wed 

to move in the t:rystal, this is equivalent to saying that the atomic momenta can 

also be decomposed into contributions from the :oscillatory motion and the 

motion of the dislocations. We do not know if the decomposition is unique , but 

on physical grounds guess that it might well be. Now the kinetic energy does not 

just make .a trivial ~ontribution to ~he internal energy of ~B T per momentum 

coordinate, but just as for the displacements. there is an extra cont ribution 

from the dislocation motion. The problem is actually extremely complicated·, 

since the dislocations are essentially only free to jitter slightly about their sites 

on the lattice unless the stresses become large enough so they can hop from 

site to site as explained in section 2. Also there are t:omplications that motioas 

perpendicular to the Burgers vector can only occur in large energy fluctuations, 

since vacancies and interstitials must be created or absorbed. Thus the ele­

ments of a pair do not in general spontaneously annihilate each other. but 

persist for long periods without having to orbit each other the way the charges 

in positronium do. Jt is not likely that quantitative statistical mechanics calcu­

lations involving interactions between thermal phonons and dislocations in a 

real crystal will be .available in the near future, and presumably we will have to 

rely on the ~alculations which have been performed on dislocations in con­

tinua.19,20 We have not, despite some effort, made significant progress to·ward 

elucidating this aspect of dislocation motion in melting. 

We close this t:hapter with a speculation on the possible cause of the heat 

capacity peak. One tentative explanation of the peak as a saturation effect of 

tilling up the crystal with dislocations has been mentioned above. Another possi­

bility is suggested by NH. They point out that even after the dislocations unbind , 

the material still has some quasi-long-range order in orientation of the bonds 
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between atoms, t.hat ~orrelation functions .of these :orientations decay algebrai-

cally with distance above the melting transition, -which implies a liquid-crystal 

order. If the substrate is smooth, at high enough .temperature there must be a 

transitioq to a true liquid, for which angular correlations decay exponentially. If 

the substrate is periodic and has the same sym.metry as the adsorbate. it 

imposes long-range -orientational order to infinite temperature, so there need be 

no second_ transition, although the order gets weaker and weaker as the tem­

perature increases. However, we have shown in ~hapter 5 that substrate locks 

the adsorbate at an angle of about ±20° (depending on coverage) from alignment 

of symmetry axes . Thus there are two equivalent l>rientations that are favored 

(and a small continuous variation of energy between them). so the possibility 

exists for an Ising-like transition between a system of large domains -with one or . 
the other preferred orientation (ferrooriented). to -one in which the orientation 

of individual bonds or small groups of bonds was randomly either of the pre­

ferred ones (paraoriented). This transition would produce a heat capacity peak, 

but probably only a small one . We do not know how to estimate this effect, and in 

any case. it would be superimposed on the dislocation behavior. Some dynami­

cal experiments on 3He using neutron scattering, 21.and nuclear magnetic reso­

nance22 have claimed to detect anomalies near the heat capacity peak tempera-

ture s but the interpretation of these experiments is far from clear. 

Nelson and Halperin predict that the mechanism of the breakup or weaken­

ing of orientational order is another topological one, namely the unbinding of 

pairs of disclinations. A disclination in a triangular lattice is a rotational distor-

tion of very high ~nergy made by adding to or removing from the crystal a single 

atom, producing :One 5- or 7-fold coordinated atom somewhere, and then letting 

the crystal relax. This is not the same as a vacancy or interstitial, which can be 

regarded as dislocation pairs whose elements are separated by two lattice spac-
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ings. In fact, looking at the configuration of a single dislocation in a triangular 

lattice, one sees At the center one -5-fold and one '?-fold coordinated atom, so a 

single dislocation is a disclination rlipole. NH predict that at some temperature 

these dip9les will unbind (unless some ~ther mechanism preempts the transi­

tion, or in the case of the periodic substrate, suppresses it) by a similar 

mechanism to dislocation unbinding, .and destroy the liquid-crystal order. They 

map the p~oblem -onto the scalar Coulomb gas problem solved by Kosterlitz for 

vortices in a 2-D superfiuid, and carry through the results from there. It is this 

transition that is suppressed by the periodic substrate,· and this one which 

could in principle be superseded by .an Ising-like transition. Considerably more 

experimental and theoretical work is needed to determine whether the heat 

capacity peak is sharp enough (after inhomogeneities have been deconvolved) to 

be a phase transition and to determine the mechanism for it. 
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Chapter 5 Orientational Ordering in Incommensurate 

Solid Helium Monolayers on Graphite 

Note 

Most of the contents of this chapter is an amplification of a published 

paper, 1 so there is an unavoidable overlap with material discussed in other parts 

of this thesis. 

1. Introduction 

Certain adsorbates, such as helium, neon and argon, are kno"\\TI to form 

incommensurate solid phases when adsorbed at appropriate temperatures and 

densities on graphite substrates. Novaco and McTague2, 3 predicted that 

although such adsorbate lattices could translate freely over the substrate 

without change in free energy, in equilibrium there would be preferred orienta­

tions with respect to the substrate. They estimated the angle for argon and the 

other heavy rare gas elements assuming them to be classical harmonic solids. 

Novaco4 revised the theory of this effect to account for quantu...l'!l behavior and 

obtained the small quantum corrections to the argon alignment angle. 

ln this chapter, we present similar predictions for the quantum systems 3He 

and 4He. It is found that the helium lattice prefers to be misaligned by about 

17-25° (depending upon coverage) from the corresponding crystal axis in the 

substrate. We also present calculations of an elastic constant 7. which measures 

the restoring force against departures from that alignment. 
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Aside from their intrinsic interest, the results presented here are impor­

tant because they may govern the qualitative nature of the melting transition in 

these monolayer solids. Nelson and Halperin5 have presented a detailed theory 

of the melting of the two-dimensional ( 2D) solid by means of dislocation unbind­

ing, in which 7 plays a crucial role. According to the theory, if the substrate 

were smooth (i.e . 7 = 0), melting would proceed in two steps, from solid into a 

liquid-crystal-like "hexatic" phase, then into a fiuid. By contrast, on a periodic 

substrate , the second transition is not expected, because the substrate imposes 

long range orientational order at all temperatures if the adsorbate and sub­

strate have the same symmetry. However, it may be replaced by a qualitatively 

different kind of transition with an Ising-like character, with two degenerate 

misalignment angles providing the two states of the Ising system. 6 In chapter 4 

of this thesis we analyze the melting of He monolayers, making use of the results 

presented here. 

The misalignment of axes between the film and substrate results from dis­

tortions (static density waves or SDW) in the adsorbate as adsorbate atoms seek 

more favorable positions in the periodic potential wells of the substrate. These 

changes of position are resisted by the elastic interaction of adsorbate atoms, 

and a new equilibrium configuration balancing the competing effects is achieved. 

For quantum adsorbates, like helium, the size of the distortions produced 

by the substrate is greatly reduced owing to zero-point motion. Since each 

adsorbate atom samples in its motion large regions of varying substrate poten­

tial, even if there were no interactions between adatoms, an adatom moving 

from the least to most favorable spot on the substrate would gain an energy less 

than the difference in potential at those spots. By treating the phonons of the 

adsorbate self-consistently, it is possible to take account of this efi'ect.4 

Thus, the calculation requires detailed knowledge of the corrugations of the 
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substrate potential, and the phonon spectrum of the adsorbate (in order that 

the balance of substrate force and elastic response can be found). The correc­

tions from zero-point motion also depend on the adsorbate phonon spectrum. 

We derive this spectrum from an effective potential determined by the experi­

mental values of the elastic constants of the He monolayer films. The substrate 

potential has become known through recent advances which have made the He­

graphite interaction one of the best understood phenomena in surface physics.7 

and we make extensive use of those results. 

The calculation leads to curves of energy versus orientation angle for the 

system at OK. An example at a typical density is sho-wn in figure 5.1 The 

minimum in the curve gives the preferred orientation and the curvature arou...T'ld 

the minimum (divided by 4) yields -y. In the following sections, we describe in 

detail how the calculation is performed, pointing out the ways in which the 

extensive experimental data on helium on graphite make it possible to obtain 

reliable results using simpler, more phenomenological approaches than were 

needed for argon, and we describe and discuss the results. 

In section 2 we discuss the nature of incommensurate and commensurate 

phases, the physical origin of orientational ordering, and an outline of Novaco's 

theory of the effect. The next two sections describe the ingredients of our 

phenomenological calculation of the orientational ordering. In section 3 we 

present our description of the elastic properties of the adsorbate. In section 4 

the helium-graphite potential is discussed. In section 5 we describe an iterative 

computation of the static density wave distortions and energy using the ele­

ments of sections III and N. In section 6 we present and discuss the results. 

2. Origin of Ori.entational Ordering 

The peculiar orientational ordering studied in this chapter only occurs for 

an incommensurate 2-D solid. The strict definition of incommensurability, that 
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Figure 5 .1 Static density wa~e energy versus relat!ve angle ot .,He ~d •He ad­
sorbed on graphite at a density of .092 A. -z. The calculation is done using equa­
tions 12 and 13 ass~ the dis~ance of the adsorbate from the substrate to be 
2.85 A for 4He and 2.89 A for 8He. 
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the ratio of unit cell areas of adsorbate and substrate be an irrational number, 

cannot be satisfied by every film in the continuous range of densities covered in 

this study, yet, as we will now argue, all the films can be expected to behave like 

incommensurate solids, except above the melting temperature and at extremely 

low temperatures. The strict definition is, in any case, a sort of red herring, 

since any irrational number is arbitrarily close to some rational number. It 

might be wondered why registry is not observed at or arbitrarily near any physi­

cal density. The solution of these questions can be understood by considering 

the energetics and thermodynamics of the transition to registry from a density 

close to a registered density. The details of the commensurate-incommensurate 

transition are quite complicated and just beginning to be understood, but the 

central arguments are clear. 

While any film density is arbitrarily close to a rational multiple of the sub­

strate density (in this discussion only, density refers to ratio of unit cell areas of 

substrate to adsorbate), the forces tending to produce registry at that rational 

multiple are quite weak, except in special cases. When the density is not a ratio 

of small whole numbers, only a small percentage of the adsorbed atoms actually 

lock in substrate wells, and many of the others are in unfavorable positions, as 

can be seen from the two 1-D examples of atoms registered at 2/3 and 3/5 den-

sity shown in figure 5.2. 

It is clear that as long as the potential is purely sinusoidal, the average 

energy is independent of the relative position of the two lattices, except for 

exact submultiples 1/n of the substrate density. This is only true if the adsor-

bate lattice is rigid, since from figure 5.2 it is clear that if the unfavorably 

located atoms shift their positions downward into the wells, thus changing the 

lattice constant of the adsorbate, the potential energy of the system is lower 

than in the configuration shown, even when the increased repulsion between 



-  1 0 6 -

Figure 5.2. Schematic p icture of a rigid chain of atoms in registry a t 2 /3  densi- 
ty  (top) and 3 /5  density (bottom ) in a one-dimensional sinusoidal potential.
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adsorbate atoms is taken into account. There must be a point of stable force 

balance. Similar distortions of the lattice occur when the material is not 

registered but is at a commensurate density. The difference in energy between 

the registered and "floating" states is determined by the energy gain of the 

locked atoms (the ones whose positions at the bottom of substrate wells) are not 

changed in the distortion, and clearly decreases as the ratio of the number of 

those atoms to the total number decreases, i.e., as the density ratio becomes 

the ratio of larger and larger integers. 

Any marginal improvement depends on the amplitude of the m-th Fourier 

component of the substrate potential (for a density m/ n ). That is, the first 

Fourier components of the substrate potential that have minima at the positions 

of the atoms marked in figure 5.2 are the second and third, respectively. For 

the graphite substrate of interest here, table 5.2 shows that the substrate 

Fourier components decrease extremely rapidly with wavevector. It must also 

be pointed out that the distortions produced by the different Fourier com­

ponents of the potential will often counteract each other partially, and the net 

effect depends upon the particular density ratio and the relative amplitudes of 

those components. 

A film with a truly incommensurate density, say 1/-./2, can be pulled into 

registry by one of several mechanisms: 

1. The coexistence of two registered phases, one at higher and one at lower den­

sity, or the coexistence of a commensurate and incommensurate phase. 

2. The breakup of the surface into domains of registered phase v..ith various pos­

sible kinds of boundary. The registered phase usually can take several different 

positions on the crystal- i.e., several ditierent superlattices are possible. As an 

example of this, shown in figure 5.3, consider the 1/3 registry on graphite- one 

adatom for each 3 graphite hexagons - which has three possible superlattices. 
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Figure 5.3. Schematic picture of basal plane surface of erapbite (with one c~­
bon atom at each hexagon vertex) e.nd three possible superlattices for a re­
gistered phase at density l/3. 
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Regions of the crystal where one superlattice is occupied can be abutted v.'ith 

regions of occupation of one of the others, Y..'i.th some kind of unregistered boun­

dary of higher or lower density between them. Domain structures observed 

include stripes, hexagonal domains, and irregular honeycomb structures all of 

whose walls are parallel to one of the six symmetry directions but have irregular 

lengths. 8 The domain walls can be regarded as collections of defects, patches of 

incommensurate phase or in several other ways. 

The phase boundaries clearly must have higher free energy than the u..l.i­

form incommensurate material, so the transition to the registered state ·will 

only occur if there is a significant lowering of the free energy of the registered 

portions of the film. i.e. if the appropriate Fourier components of the substrate 

potential are large enough. Also, the difference between the reg istry density 

and the initial density is important, since the smaller that difference, the 

smaller the irregular regions of the surface (the shorter the length of domain 

wall or phase boundary) needed to fit all the atoms onto the substrate. Thus. for 

a 1/ V2 film . we would expect that a 100/141 registry would be more likely than 

a 10/14 registry because the former is closer to actual density; yet, we would 

expect neither to be very likely because neither the 100th or the 5th harmonic ( 

10/14 = 5/7) of the fundamental substrate corrugation should have large ampli­

tude. 

Steric considerations and the strength of the adsorbate-adsorbate interac­

tion are also important. Helium. for instance, cannot form a monolayer on gra­

phite at 1/ V2 density because some atoms are squeezed off the surface into the 

second layer. Also, the 2-D case is more complicated than the 1-D case since the 

substrate symmetry is important. It is readily apparent from figure 5 .3 that 1/3 

is a highly favorable registry on graphite , while it is impossible to produce a uni­

form triangular lattice at density 1 /2 for which every atom is in a substrate well . 
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Despite the weakness of the registering forces on the adsorbed atoms at all 

but a few very special densities, every commensurate component of the poten­

tial produces an infinite energy gain if the adsorbate atoms lock into substrate 

wells. Thus every harmonic of the potential will register a narrow band of densi­

ties at T=O, and there will be no incommensurate solid. What happens at fL."'lite 

temperature? 

The relevant quantities at finite temperature are the free energies of the 

registered and unregistered phases which depend on both the energy and 

entropy. Ignoring the thermal motions, the energy of the registered phase is 

independent of temperature, as is the entropy (given by the number of possible 

superlattices times the number of atoms, i.e. also infinite). The free energy can 

thus be ·written for the registered phase (that is the locked adsorbate) 

FREc=-NoV-NkB Tlnl (5.1) 

where N is the number of atoms in the adsorbate, o V the energy difference 

between the registered and floating potential energy, per atom, kB Boltzmann's 

constant and l the number of superlattices . The contribution of each Fourier 

component of the potential to o Vis proportional ton Vnl m, where numerator of 

the density ratio is m, For the unregistered phase (that is, the same adsorbate 

in arbitrary position with respect to the symmetry point of the substrate, but 

possibly still locked at a preferred angle), the average energy is zero but the 

entropy is much larger (and not easy to calculate). 

We can roughly estimate the transition temperature for a particular 

registered density (ignoring the effects of nearby registries) by equating the 

potential energy gain of the registered state (per atom) with ke T. Presumably 

at this point, the thermal entropy of the floating state will dominate the poten­

tial energy gain of the registered state. This is an overestimate, since we have 

ignored the etiects of nearby registries (each of which tends to disrupt the 
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other). 

For the particular case of helium on graphite , there is only one corrugation 

wave vector of importance, the lowest (and its 5 counterparts at multiples of 

60°). At the lower densities, the helium film forms a gas in preference to a solid. 

The 1/3 ordering does occur, and is used as a coverage calibration for compar­

ing data from different laboratories . The ordered phase occurs for a narrow 

band of densities around 1/3, separate from the denser helium solids discussed 

in this thesis. 

Nelson and Halperin5 have argued that as the temperature approaches 

zero, every Fourier component of the substrate potential, no matter how wea..'k:, 

is able to lock the adsorbate in a tiny range of density into registry, c:tr.i.d. as the 

temperature decreases, the phase diagram becomes filled VYith an increasingly 

complex proliferation of registered and incommensurate phases , but VYith some 

kind of registered phase for every density at zero temperature . (Their argu­

ments are made for classical systems, and it is not completely understood what 

role the strong quantum effects in the helium solids play in this discussion, 

except that the zero-point motion should reduce the effective strength of any 

potential corrugation that tries to register the film.) 

Our calculation of the orientational ordering at zero Kelvin ignores this 

registry, for the following reasons. The only necessity for performing the calcu­

lation at 0 K is that the sound speeds must be deduced from the De bye tempera­

ture, which is a 0 K extrapolation of the low temperature data. Hm·{ever, we do 

not expect the elastic constants to change significantly at low temperature , nor 

do we expect to see significant thermal effects on the orientational ordering at 

extremely low temperature . Thus, we expect our calculation to be accurate at 

(still low) temperatures above which the registry is destroyed if it is produced 

by high order substrate potential corrugations, even though we have neglected 
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the registry energy at lower temperatures. 

The sets of reciprocal lattice vectors (hk) are given by ~ =hG1o+kG01 'VI'ith 

I ewe l2=(h2+k 2-hk)G81 for a triangular substrate, and similarly for the adsor-

bate. Thus, registry is produced for unit cell areas in the ratio ~2+k:-hk and 
l +m -ml 

the ones with small (hk) will be the strongest. As we shall show, the strength of 

the substrate Fourier components in this range is less than . 04 of the strength 

of the fundamental corrugation which is the only one that contributes to the 

orientational ordering. Furthermore, the zero point motion renormalizes these 

components to lower values, and the result is that the minimu...'TI length corruga-

tion with which the films can be exactly in registry has a renormalized strength 

7x 10-4 times smaller than the primitive substrate corrugation, v·.-hich produces 

the 1/3 registered phase that becomes a gas above 3K. 

We point out that the physical arguments made here do not agree with the 

arguments of Nelson and Halperin, whose criterion for the transition between a 

registered and unregistered solid at the same density is independent of the 

strength of the substrate potential in the weak-coupling limit. 

If the material is not registered, the main effect of the substrate potential 

is not to tend to lock the .film to a particular position with respect to some sym-

metry point of the substrate , moving each atom an equal amount . Rather, it is 

to distort the helium lattice in an inhomogeneous way, pulling each atom some 

distance into the nearest graphite potential well. The size of the distortion is 

governed by the strength of the elastic forces of the helium crystal which get 

larger as the atoms are pulled together or pushed apart. 

Once again, a classicall-D model helps to elucidate the nature of the distor­

tion, as in figure 5.4. The atoms are displaced slightly from their undistorted 

positions, moving just far enough to reach mechanical equilibrium with the elas-
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Figure 5 .4. Distortions in e. one-dimensional linear chain in an incom.mensU!"ate 
sinusoidal potential . Atoms are pulled toward the bottom of the nearest well . 
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tic He-He forces. The substrate potential variation from this particular corruga­

tion component is Vee--"~ so the force moving the atom is +iGVce -iG.z: . If we 

imagine the atoms to be connected by harmonic springs , the elastic response of 

the distortion for atom n is -K(2Un--'U.n+t-'ll.n-t) . lt is clear that since the forces 

and responses must be periodic with wave vector G, the displacements are 

exactly those that would be produced by a standing wave phonon of the same 

wave vector at some instant, and the elastic energy is just the phonon poter.:.tial 

energy at that instant. Since the corrugation occurs at a wave vector shorter 

than the He-He spacing, such a phonon is equivalent to (i.e., as far as the He 

atoms can tell, indistinguishable from) one in the first Brillouin zone of the He -­

in figure 5.4, the longer wavelength mode labelled q, with q = G-f and f a 

reciprocal lattice vector of the He. The energy change for this distortion is 

given by 

(5 .2) 

where ua is determined by minimizing this energy with respect to it, or, 

equivalently, by balancing the forces, and is thus, 

uc (classical 1-D) = -iL; GVcl ( m c.>i) . (5.3) 

The two terms in equation (5.2) are, respectively, the potential energy gained by 

moving deeper into substrate wells, and that lost by exciting some amplitude of 

the "static phonon" if. 

The 2-D case is similar but for this important effect: the "static phonon" 

wave vector q has a length and orientation which depends upon the angle 

between G and 7' (see figure 5.5). A distortion along G can be analyzed into com­

ponents transverse and parallel to iJ, giving the amplitudes of the static 

transverse and longitudinal phonons excited. (Strictly speaking, the com­

ponents must be along the polarizations of the q phonons even if they are not 

precisely transverse and longitudinal.) 
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F1gure 5 .5. 
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Figure 5.5. The geometrical determinants of orientational ordering are shmvn 
for the same conditions as in figure 1. The Brillouin zone of the adsorbate, the 
reciprocal lattice basis vectors 7'a1 and 7'10 are drawn to scale relative to the sub­
strate primitive reciprocal lattice vector Go 1. The adsoibate reciprocal lattice 
vector 7'12 is the nearest in magnitude and direction to Ga1 for these experimen­
tal conditions and when subtracted from Go 1 produces the vector q, which is the 
vector in the first Brillouin zone of the adsorbate which has the same phonon 
eigenfrequencies and polarizations eL and eT as Go 1. The angle -6 is the orienta­
tion orderit?:g a.11gle, th~ angle of the minimum in energy of fi...gure 1. Note that 
neither eL. GOl nor eT· Gal vanishes, so both transverse and longitudinal distor­
tions occur at this aqgle . Since the Fourier component of the substrate poten­
tial with wave vector Ga1 produces the only significant contribution to the distor­
tio!J. energy, this figure shows the in.ft.uence of the geometry almost completely. 
If Ga 1 were aligned with 7'12, the denominator of equation 13 (and hence the d.is­
tortjon energy from longitudinal displacements) would be reduced, but then 
eT· Ga 1 would vanish, and there would be no contributions from transverse distor-.... .... 2 

(eT· Gol) 2 (eL · Gel) 
tions . The energy minimum occurs at a maximum of + ---=---= 

Wf wl 
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The energy gain depends upon how much of the distorting force is 

transverse to q -- a mostly transverse force is less strongly resisted; thus the 

distortion is large before mechanical equilibrium is reached, and the energy 

gain larger. Examination of figure 5.5 makes it clear that the amou...TJ.t of 

transverse force increases as the angle between G and 7- is increased; hov>'ever, 

at the same time the length of q increases, and, except near the zone boundary, 

this means that the energy of the q phonons increase also, so the energy gain 

and distortion tends to be reduced by this second effect. 

Thus, the preferred orientation angle is determined by the balance of two 

competing effects - one tending to increase the angle to excite a larger ampli-

tude of the weaker phonon polarization, the other tending to decrease the angle 

to reduce the energy of the phonons excited, and hence the resistance to strain. 

As long as the transverse phonons have considerably lower energy than the long-

itudinal ones, the locking angle will be away from any symmetry direction in the 

crystal by a finite amount. 

From these considerations, the 2-D analogs of equations (5 .2) and (5.3) can 

be readily written down: 

(5.4-) 

(5.5) 

This analysis makes transparent the details of the SDW theory of Novaco, as 

long as we carefully carry over our arguments to the case of a quantum mechan-

ical adsorbate. The only missing piece is the role played by the zero-point 

energy. 

The major effect of the zero-point motion is to reduce the strength of the 

distorting potential. Since the distortion is proportional to the strength of the 

potential, it is reduced by the same factor, and the energy (quadratic in the dis-
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tortion) is reduced by the square of that factor. The atoms move over a sub-

stantial fraction of the unit cell. so that the advantage of an atom sitting at the 

bottom of a substrate potential well over one at an unfavorable position is much 

less than the difference in potential between the two sites. since the first atom 

spends a substantial fraction of its time in places where the potential is less 

favorable, and the latter atom spends time in better positions than its average 

position. This smearing produces a Gaussian renormalization of each substrate 

Fourier component of the form e -~· r.~. This smearing factor contains the ten­

sor W which resembles the mean square vibration amplitude of any atom 

Wal! = *<ouaouP> = 
2
1N ~e,a(f)et(f) 1i ... [n, (k)+}2]. (5.6) 

k.t mw, (k) 

where the e, and w are polarizations and frequencies of the phonons of the 

undistorted lattice and n, (k) is the usual Bose factor (and is zero at OK where 

this calculation is done). The summation is over the entire adsorbate Brillouin 

zone and over all three modes. N is the number of atoms in the adsorbate. 

Strictly speaking, the phonon frequencies and polarizations used in equation 

(5.6) should be those of the distorted lattice. but. as Novaco has shown, when the 

zero-point amplitude is large and the distortion amplitude is small, (which we 

verify a posteriori), the phonon spectrum of the undistorted adsorbate can be 

used. This is convenient because the undistorted lattice is highly symmetric, 

and is isotropic at long wavelengths. Since large zero point motion reduces the 

distortion amplitude, unless the substrate potential has very strong periodic 

components, the approximation of the spectrum of the distorted lattice by the 

undistorted one is excellent for quantum systems like He. 

Suffice it to say that this effect reduces the size of the distorting potential 

seen by any atom by a factor of order 8 (and the distortion by the same propor­

tion) from the classical value, and hence the SDW energy and "'f by a factor of 

order 60. There are other, more subtle effects, e.g. a change in the phonon 
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energies and polarizations when the adsorbate is distorted, but in part owing to 

the large quantum fluctuations, the distortions are small enough that this effect 

can be neglected. 

3. Theory of Static Density Waves and Orientational Ordering 

In this outline of Novaco's theory of static density waves in 2-D incommen­

surate solids,4 an attempt is made to convey the essentials of the derivation of 

the results just reached by physical reasoning. 

The approach is to minimize the free energy of the system of film plus film­

substrate interactions (the substrate is assumed to be too stiff to be affected by 

the presence of the· film) by a variational calculation in wr...ich the variation 

parameters are the Fourier components of the distortions and the frequencies 

and polarizations of the phonons of the distorted lattice. The results are the 

equilibrium values of those quantities. Since the relevant thermal averages are 

taken over the equilibrium distribution (which depends on the unknovtn parame­

ters), the results appear as self-consistent equations for those parameters. 

Fortunately, in the case of helium on graphite, for which the zero-point and 

thermal oscillations are large and the distortions small. it is not necessary to 

solve the self-consistent equations . Instead, the phonon frequencies and polari­

zations of the undistorted lattice can be used (although they also satisfy self­

consistent equations) and the distortions computed as a linear respor...se to the 

perturbing substrate corrugations, just as has just been done for the classical 

case. In fact, the only difference between the classical and quantum film in this 

approximation is that the He-He and He-graphite couplings are both renormal­

ized by the motion of the He atoms, and for the latter, the renormalization of 

the corrugation at wave vector G is through a corresponding Debye-Waller (or 

smearing) factor e-~· F·~ discussed earlier, where W=*<ouaou~> is a tensor 

measuring the mean square displacements of the atoms. The Hamiltonian of the 
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R= _l_2::P2+~+ 0 
2m J 

where i is the He-He potential and fJ the He-graphite potential. Letting Rf be 

components of the undistorted equilibrium position of atom J, 111· be com-

ponents of its displacement, we can write 

i=*L:~II 2: Vqe ~·(RJ-Rl)e ;qa.(u/-1i1) 
JJ aUq 

fi= ~~ Ui}e Hi! il,>e HG"U/) 

where Vi is the Fourier transform of the He-He potential, U0 the Fourier com­

ponent of the substrate potential corrugation of wave vector G. The sum 

marked all q means a sum over all q -space rather than over the first Brillouin 

zone of the undistorted adsorbate. 

Phonon creation and annihilation operators can be introduced in the usual 

way, but the thermal averages of single creation and annihilation operators do 

not vanish, because the distortion is non-zero. A canonical transformation is 

made to a representation using new creation and annihilation operators ·which 

have the average value (the distortion) subtracted out. If those average values 

of the original operators are denoted by~ (-qz=<aqL>, the Fourier compone~ts 

of the distortion can be written 

ul = L: l, ( q) Y ff./ m c..>t ( q) ( ( qz + ( ~qL) 

' Since these distortions are standing waves we expect the amplitudes to be real, 

so the corresponding velocity average oc( (/L -( -qt) must vanish in equilibrium 

and Novaco demonstrates this. In this equation, l, (q) is the polarization vector 

and c.Jt (q) the frequency of the phonon of wave vector q, mode index l. These 

parameters, along with u1 are to be found. 

The free energy is now given by F=<H>-TS, where the average is calcu-
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lated by taking diagonal matrix elements in the new phonon basis and the new 

phonon modes are treated as non-interacting. 

The details of the actual variational calculation are tedious and described 

sufiiciently well in Nova co's paper to avoid repeating them here. The variations 

ofF with respect to '11i (q) produce the usual boson thermal occupation 

.. o<H> where JU:>l (q) = ( ) and turns out to be equal to c.>t (q) when F is varied ¥<ith 
0~ q 

respect to c.>t (q). as expected. The frequencies and polarizations of the phonons 

turn out to be given the eigenvalues and eigenvectors of the usual dynamical 

matrix formed by Fourier transforming the entire potential (He-He plus He­

graphite), also as expected. Finally, the variations with respect to ilq are car-

ried out, and since only the potential energy terms depend upon it, the self-

consistent equations are 

with 

where 

r.>l(q)=lt (q) · D (q) ·lt (q) 

D(q)-lt (q)=c.>t2(q)lt (q) 

o<U>+o<¥> _ 0 ou; 

T7J = 2( <6ul6u/ -6ul ou} >) = 
2
1N r, el( iJ)e l< if) lrn [ "-~ ( iJ) + *l [ 1-e ;q (ilrR: 

1 l 
f.t mc.>t q 

The dynamical matrix D(q) is the sum of terms arising from the substrate and 

adatom potentials, 

with 
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and 

D~ (P)= _1 -~tiJ ~-q«q'Yq e Jq·(RJ-A,>e ;,qa(uf--af)e (-YifTIJ ·q)e i$·(RJ-AJ>. 
Nm IJ f 

The equations for the variation of <~> and <D> now are approximated 

(because they are quite complicated) by assuming the distortions to be small, 

expanding e W·<'11,> in powers of u. keeping only terms linear in u. In terms of 

the dynamical matrix in the absence of strains, 

D~ (:p)= - 1-l;tu 2:-q 4q'~ e 'if·cn1-J?,)e C--MTu·f)(l-cos [q · (RJ-RJ )]) (5 . 7) 
Nm JJ i tJ 

the approximate forms of the potential variations are 

6:!; = NmDif' (jJ )u ~q 
where the term independent of u is zero, and 

d<U> ->'.GYU eC-~· F ·~>o 
6uj c ~ ~.~+q 

where only the term independent of u is retained. In terms of the eigenvalues 

wt (q) and eigenvectors el (q) of Do the variation of <i> can be rewritten 

The two sum of the potential variations is set equal to 0 producing the solution 

<U1 > =i~u~sin( G· R) 

with il~ given by 

." e1
4 (G} U~(z)erp ( -~G'WJ.W) .. .. .. 

ut = -'I.L.J 2 ( ) el (G)· G. 
' ~~ G 

To evaluate the strain energy of the distortions, the term e"i1 ·(R1 -R,> in<¥> 

is expanded to second order in u and in <U > is expanded to first order in u, 

both terms contributing to the energy to second order in Uc. producing the 

result 
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EsDr(1J) = -~~ U~(z)e:xp(-ouavw.uv)G8u!­

plus an additional termnon-zero only for commensurate syste!Ils 

EREc=N">'.~o c :r- Uce ( -G· e'·G) c:r- . 
and another term independent of u which gives the usual pote~tial ene~gy asso-

cia ted with the thermal and zero-point phonon motion. 

When the substrate-adsorbate potential is purely sinusoidal \~ith v,'c.vevector 

G (and its symmetric equivalents), and the wavevector q in the f~·st :S~illo-..:.:.:1 

zone equivalent to it (see figure 5.5) is sufficiently s:nall in mag:1~tuds, t~e ol~:en-

tational ordering can be discussed in a more illumL.'1.ating fc.s:-.JcrJ. c..nd. C..:l the 

results can be derived analytically. In this case, the sum in eq~c.t.ion (5.1 0) 

reduces to a single term, the strength of the sinusoidal compc:1ent o~ the su.b-

strate potential and the smearing factor arising from zero-poin~ motior.~. do r..ot 

influence the angular dependence, and the phonons appea!"i:ng in the d.e:1o:r~~a-

tor of eq. (5.13) can be approximated by isotropic sound , ... -aves v.rith velocities 

The substitution of eq. (5.13) in eq. (5.10) under these conditions gives 

E -lr l (1-xcos'!5)2 + ( ; ,~)2] (5.a) 
SD'fl oc ( 1 +~-2xcos1J)2 1/1 xslnv 

where 1J is the angle between G and T and x is the ratio of the me.gnit'..:des of G 

and 7- . This ratio varies with coverage as the adsorbate lattice spacing changes 

and possibly with orientation angle since as the two lattices c.Ye rotated Y."'ith 

respect to one another, the particular 7' needed to reduce G to the first Brillouin 

zone may shift. In eq. (5.6), '1/1 is ( :$ ~. 
It is clear that for all'{; for which this particular tis the closest to G, all of 

the angular dependence, including the value of angle producing a minimun: i~ 

EsDrt, is a function only of x and the ratio of the speeds of sou...'1.d. Differentiating 
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eq. (5.8) with respect to ~ gives an equation for the angle of the !!linimum 

energy in terms of these parameters. 

(5.9) 

Figure 5.6 shows plots of this angle vs. >f (>f is inversely propo!:'tional to the den-

sity as long as =T remains the closest adsorbate reciprocal lattice vector to G) for 

several values of sound-speed ratio. Note that , in figure 5.5 :s mee..s:.1red v.ith 

respect to 1-21 , the nearest adsorbate reciprocal lattice vector to G, a::d this "':" is 

at an angle of 30° to an angle which would bring the two latti8es into absolute 

alignment, so an angle of 5° in figure 5.6, for example, corresp:::::d.s tc o:1e of 25° 

in figure 5.7. The only known cases of registered helium solids on grap~ite occur 

when G01 =1-21 or for ,=0 in figure 3 and 4 and for ,=30c ~:.d coverage of 

.06366A - 2 in the notation of figure 5.7. 

The physical content of equations (5.8) and (5. 9) can be s~"r....~a!:'ize::l by the 

following observations. For a given value of x. the preferred ar.:.;le increases as 

the shear force weakens (1/1 increases) but the dependence is ·weak for ~est 

values of X· For a fixed value of 1/1. the angle approaches zero as the lattices 

approach a particular registry for which x=L (There is an ad.ciitional piece in 

the energy when the two lattices are commensurate, but it is igr;.creC:. here.) 

The incommensurate helium monolayer solids occur only irr density ranges 

in which the most important Fourier component of the subst:re..t.e po:.e:-.!.tial, U c1 

(where the subscripts are the Miller indices), is quite different from the nearest 

1-, so the very sharp minima developing as registry is approached are not 

observed. Even though some other reciprocal lattice vector of the substrate 

may be close to some reciprocal lattice vector of the adsorbate (i.e. the lattices 

are nearly in partial registry) the Fourier components of the potential fall off 

rapidly as the Miller indices increase, and the exponent in the smearing factor is 

proportional to the square of G, so the effects of these accidental approaches to 
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Figure 5.6. Locking angle vs . >!for various values of 1/J. 



- 126-

registry are negligible. (The term neglected in these calculations 'Nhich is 

nonzero only at exact registry contributes an energy linear ii'l...stead of quadratic 

in Uc and in the smearing factor, but is still insignificant except when the unit 

cell areas of the two lattices are exactly in the ratio of very small whole 

numbers.) 

1. Elastic Properties of the Helium Monolayer 

Any theoretical approach to the elastic behavior of heliurr: so:iG.~ is corr ... pli­

cated by the strong quantum effects present. The monolayer solid.s behz:.,~e si:ni­

larly to bulk material in that the harmonic analysis of the solid.s at the equili­

brium spacing produces imaginary frequencies, which become real when the 

extremely large zero-point motion (which averages the poten~ial over large 

areas of the unit cell) is taken into account. Furthermore. strong co:-relatioas 

between the atoms in the solid cannot be ignored, for if they V{ere not p:-ese:-1t, 

the large amplitude of zero-point motion would frequently carry atoms deep in~o 

the repulsive cores of their neighbors. A considerable theoreti~al ma~hir:e~y 

known as self-consistent phonon theory9 has been developed for treating tb...is 

difficult problem, and has produced useful, but not extremely accurate results. 

For the bulk solids, this is true despite the accurate knowledge of the He-He 

potential. In the monolayer, the free space He-He interaction is modified by the 

dielectric properties of the graphite substrate, and while these !':lod.itl~at.io!':s 

have recently been calculatedlO it was decided that a full-blov:n self-cor...siste:lt 

phonon calculation for the monolayer solids would probably be less accurate 

overall than a phenomenological approach. Since an effective potential arises 

from a self-consistent calculation in any case, we use an effective He-He poten­

tial for the undistorted lattice whose parameters are determined by experimen­

tally derived speeds of sound. 
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The potential was proposed by Novaco.ll The essential idea of the approxi-

mate spectrum is that since the monolayer solidifies only under 2-D p!."ess'.lre, 

the elastic properties are predominantly influenced by the repulsive part of the 

potential. The effective potential is thus taken to be a purely exponential repul-

sion, v (r ), whose first and second derivatives, evaluated at the eq_uili"!:>rilli--n le.t-

lice spacing for a nearest-neighbor Born-von Karman calculatio:: at~e 

v" "'-'3 v' = -]f<noz-1--* (5.:0e.) 

, _ M 2 B(1 - 1/ ~nln"i) 
'IJ - ~o e (

- -I"\' ) :) .... vb 

where n is the areal density, n 0 a convenient reference density a~ .. d B c...nd :...;[ are 

the parameters to be determined from the sound speeds by the equations 

cl 
~(3(~-1) 

( cf ~-3 
Cf 

B= 

4 
-B(1- 1/ ~n/n0) 

~ = -::-'11.C f-e---==....._-
"'3 ...Jit7Ti:O 

3- B 

(5.1:b) 

Table 5.1 displays the values of the spectral parameters at seve!."al densities of 

both helium isotopes. 

The crudeness of this model of the film is compensated by t:te ::ieter~:::-1a-

tion of its parameters entirely by experimental elastic data. By usi!'l_g the exper-

imental data to determine the parameters of the model potential, v;"e effectively 

do a self-consistent phonon calculation. We also assume the.t for eac!-.i. 2-:J \;,-ave 

vector there are 3 modes, one each transversely and longitudinally pola!'izeci in 

the plane of the adsorbate (at long wavelength) and a third tran.sve:::"se optical 

mode polarized normal to the substrate at long wavelength, ¥-ith energy deter-

mined by the difference of the lowest excited state of the substrate-He potential 

and the ground state,l2 6.24 meV for 3He and 5.70 mev for 4He. 

It can be shown5 that when the substrate and adsorbate attain their 
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optimum orientation the energy of small deviations (in the plane) from equili-

brium can be written 

H = * 2: (2J.Lut~ + A.(utjOij )2 + -y(Bjut - O(Uf ) 2
) (5.1.2) 

atoms 

where J.L and A. are the 2-D Lam~ constants, 'UtJ are symmetrized displacement 

gradients, 'Utj =*(8,;ut +8,11:;) in the plane of the adsorbate (RomCJ'l indices signify 

2-D components) and-y is the elastic constant restoring local tv.~sts of the aC.sor-

bate relative to the substrate. Actually, the initial pressure v.-:tt:out V·.~h:ch the 

monolayer solid will not form adds a correction to this equatio!l. I!' th:e elc..st:c 

constants are defined in the conventional way, that is, as the s£cor:d derivath'"es 

of the free energy 'Yiith respect to strain evaluated at the equ.ilibr~:..:.."!l 

configuration, then the 2-D pressure, rp, can be properly include~ by rep:c:..c~=.g \ 

by A.+ rp and J.L by J.L- ~ in equation (5.12) and adding a term 2: -;;oi{·u.~i .13, 14 
C::orr..s 

The sound speeds for waves in the distorted medium are given by14 

pc:} = J.L-rp+2-y 

pcf = 2J.L-~+A. 
(5.:3a) 

(5.:3b) 

for transverse(T) and longitudinal(L) sound, respectively. p is the mass per U!'lt 

area of adsorbate. 

The sound speeds are obtained from experimental meascremen:s of he at 

capacity and chemical pote:1.tial of the monolayer solids, whic:C. yield. the Debye 

temperature E>D, the compressibility tc and the spreadi!"..g press~.1re cp. For ther­

modynamic data needed to generate the elastic properties of .{He r::or:o:aye~~s 

see Elgin and Goodstein,15 and Bretz, et al. 16 Data on 3He are ccr.:.~ained ir .. Her­

ing, et al. 17 and unpublished work of Elgin, Greif and Goodste:!l. The s~"':'...:."!lary 

of the elastic theory of helium monolayers is contained in refere~ce (14). Since 

(5.14) 

and 
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1 -= 2?' + p(cf-cr) 
IC 

(5.15) 

the experimental data together with an assumed value of 1 allow equatio:1s 

(5.14) and (5.15) to be solved for the sound speeds, which then determine the 

Lam~ constants along with B and c.>5 . Our procedure is to iteratively refine these 

parameters and ?' simultaneously until a consistent set is folli">}d. This is done by 

guessing a value of?' (usually zero), solving equations (5. :~) and (5.15) fo:- the 

sound speeds, proceeding with the rest of the calculation as G.escribed. beloY: to 

obtain a new value of ?'· which is then used to generate a ne''·" solution of equa-

tions (5.14) and (5.15). The procedure eventually converges to a value of 1 v."r.J.ch 

does not change from iteration to iteration. 

To make use of the elastic properties of the He :::r..o:1.olayer, \':e cc..~cdat.e (for 

a phonon of wavevector q) the dynamical matrix, wh.;.ch has eiger:values equal to 

the square of the angular frequencies of the 3 phonon modes a:'.i.d normalized 

eigenvectors along the direction of polarization of these modes. The phonon 

energies and polarizations are used below to f.:.nd the size of the disto:-tions ~"ld 

their energies. The dynamical matrix for our model is11 (usi!"_g Greel~ indices for 

3-D vector components) 

D"'~(ij) = c.>io"'~oaz + Ml f:C~"'~(Rj)(l- cos(q·i?i)) (5.:6) 
j=l 

with c.>p representing the vibration frequency of the optical r!l~::.e at long 

wavelength. The force constants q, are given by 

( 5.17) 

where "12 = :z:2+y2+z 2 . The dynamical matrix of equation (5.16) is used as an 

approximation to the undistorted De of equation (5. 7). A typical phonon spec­

trum in the symmetry directions of the adsorbate crystal is sho\\'ll in figure 5.8. 
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Figure 5.8. Phonon spectrum (angular frequency vs . wave vectorJ in the sym­
metry directions of 4He adsorbed on graphite at coverage of .092 A -2 calculated 
according to the model of section 2. The three modes in order of increasing en­
ergy are transverse acoustic, polarized parallel to the substrate, longitudinal 
acoustic, and transverse optical polarized normal to the substrate. The inset 
shows the Brillouin zone and the symmetry directions. 
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2. The Helium-Graphite Potential 

Atomic scattering experiments lB. 19 have been used 12 to produce the most 

accurately-known of any substrate-adsorbate potential for the system of helilL.'TI 

on graphite. The results include detailed knowledge of the Fourier components 

of the potential. Other calculations involving this potential hc::Fe prcduced 

remarkable agreement with experiment.? One important res~t of tl:e s:-:..:dy of 

the He-graphite potential is that it cannot be analyzed as a su...':l o: is:::!~opic He-

C pair potentials, but must include contributions from the anisotropic elec~:::-o:1 

distribution in the graphite layers, thus enhancing the co:::-rugations of the 

potential and the degree of orientational orde:::-ing. 

The substrate-adatom potential is written as 

U(z) = U0(z)+~Uc(z)e-i~· i' (5. :B) 

'"there z is the height above the substrate, r is a vector in the plane of the su~-

strate, and the sum is over the reciprocal lattice vectors of the subs:rate G. 

The leading term is 

41T'tCT
6 f 2 CT l U0 (z) = ~-g-< d1 6((10.z/d)- ((4,z/d) 

and the Fourier components are given by 

rrtcraf3c G 
U~(z) = ( -J2 x a z 

(5 .20) 

{( a:G~\~o [Ko + a:R(Ko- ~ KB)l- [K2 +a:A(K2- cz Ks)]}· 
Here (is the generalized Riemann zeta function, ~ are modified Bessel func-

lions of argument Gz, a..R and aA are parameters characterizL."lg the a..'li.sotropy, 

E and cr are effective 2-D Lennard-Jones parameters fitted from the experimental 

bound state energies and matrix elements between bound states to excellent 

accuracy. The rest of the parameters characterize the graphite crystal and are 

identical to those tabulated in reference (12). 
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Theory and experiment also provide limits on the distance of the helium 

monolayer from the substrate . A WKB calculation in the laterally-averaged sub­

strate potential gives 3.00 A for 4He and 3.04 A for 3He, while numerical integra-

tion of the Schrodinger equation for the laterally-averaged potential predicts 

2.92 A for 4 He,12 and a more careful accounting of the anisotropy predicts 2.89 

A.20 Preliminary experimental neutron scattering results21 give 2.85 A for this 

distance. We use the experimental values in our calculations, but the results are 

tested for dependence upon this parameter, as we shall see below. 

3. Determination of Orientational Ordering 

We now calculate, for a particular alignment angle, the energy per adatom 

of the static density waves produced by the triangular graphite lattice on the 

triangular helium monolayer. Repeating for convenience the results of section 

2, the energy as a function of misalignment angle 19, is given by4 

EsDr('t9) = -Yli~ Uc(z )exp ( -C?GvWJW)GfJut (5.21) 

Here u8 are components of the distortions of the adatom equilibrium positions 

caused by a particular density wave at wavevector G. (If the two solids are com-

mensurate, an additional vector is needed to describe the displacement of the 

origin (a center of symmetry of the adsorbate) from a center of symmetry of 

the substrate. For infinite incommensurate lattices, however, it is always possi-

ble to locate the origin at a place in the adsorbate where the two centers of syrn.­

metry coincide, and thus this additional vector cannot appear in the final answer 

and has been set to zero. See references 1 and 3.) They are given by 

·~ eta( G) U~(z )e:rp ( -C?G"WJW) .. ( .. ) .. ue = .-,i.J 2 .... et G ·G. 
l m.Wt (G) 

(5.22) 

Herem is the helium atomic mass. w is the angular frequency of the phonon of 

the undistorted lattice at the wavevector G in the extended zone scheme for the 

adsorbate, and the e, are polarization vectors for these phonons with mode 
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indexed by l. 

Figure 5.5 shows the adsorbate Brillouin zone, a representative G of the 

substrate, and the importance of the geometry of the two lattices in determin­

ing EsDrt· In the diagram, 7-f.i are reciprocal lattice vectors of the adsorbate, and 

the angle between the two lattices in reciprocal space is denoted by~. To deter­

mine the phonon energies and polarizations appearing in equation (5.22), we fi...'ld 

the unique r which reduces G to the first Brillouin zone of the adsorbate. The 

equivalent first-zone wave vector is if= G-1-. It has the same eigenfrequencies 

and polarizations e as G. Thus. a phonon transverse to if will not be transverse 

to G and e · G will be non-zero. The substrate corrugation U0 thus produces dis­

tortions with sizes determined by the phonons corresponding to q. The ~~le­

dependent factors in equation ( 5. 22) arise from the reduction of G to the first 

Brillouin zone, and thus appear in the phonon frequency and the scalar product 

ore and a. 
Our calculation proceeds by the iterative scheme alluded to in section III. 

We guess a value of -y, usually zero. With this choice, the speeds of sound can be 

determined from the experimental parameters. 

The sound speeds determine the parameters of the phonon spectrum 

needed (see section II) to evaluate equations (5.21) and (5.22) at any angle. The 

minimum energy (5.21) is located crudely by testing at 1 o intervals through the 

possible 30° range of distinct alignment angles, and then fou.."ld to arbitrary 

numerical accuracy by an iterative parabolic fit. The curvature of this minimum 

is a new prediction of 4-y. A new guess is made partway between the old and new 

values of 7 and the whole process iterates until the new and old values are the 

same. Convergence occurs for all experimental coverages of both isotopes of He 

for which incommensurate solids are known to occur. 
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Each time the angle is changed, the eigenvalues and eigenvectors of the 

phonon spectrum at wavevector G must be found for each Fourier component of 

the substrate potential considered (and for a representative set of wave vectors 

for the sum in equation 14). The distortions and their energy are computed for 

21 distinct Fourier components of the potential (each has sixfold symmetry), 

although only 3 of those make appreciable contributions, and to a good approxi­

mation, only the lowest G is necessary. Table 5.2 presents values of the sub-

strate potential Fourier components for reciprocal lattice vectors ordered by 

their Miller indices, and typical values of the smearing factors for those com-

ponents . 

For the highly symmetric helium solids (at least before they are distorted 

by the substrate), it is easily shown that the only non-zero components of W are 

the diagonal ones, and w:z::z: = WW. Since the z-component of G is zero, the tensor 

contraction G·W· G reduces to w:z::z: cfl. so the dependence of the smearing factor 

on the reciprocal lattice vector is easily found to be 

(5.23) 

where S~ct is the e}..l>onential smearing factor for ~ =kG10+lG01 . Thus as the 

ler1.gth of G increases, the smearing factor decreases very rapidly, and hence 

the contribution from the larger reciprocal lattice vectors to the orientational 

ordering is depressed. 

In fact, we find in retrospect that the contribution of Uc 1 to the SDW energy 

is an excellent approximation to the full result. For this case (see reference 2), 

the preferred orientation angle is independent of the magnitude of Ut; (although 

the energy and -y are not) and depends only on the adsorbate density and ratio 

of speeds of sound, through their influence on the shape of the model phonon 

spectrum. 
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4. Discussion of Results 

The results of the calculation are summarized in table 5.3, which presents 

the elastic properties of films at several different coverages of 3He and 4He. Fig­

ure 5. 9 displays the value of orientation angle vs. coverage. (The angles for argon 

and neon layers are respectively, 26.5° and 12°.)2 Figure 5. 7 is a graph of -y vs. 

coverage for each helium isotope. 

It is expected that the orientational ordering should be weaker in 3He than 

in 4He, as the results confirm, for two reasons. First, the 3He is at a larger dis­

tance from the substrate, which implies a weaker coupling. Second, the zero­

point motion for 3He is substantially larger than that of 4He, as is evidenced by 

the smearing factors in table 5.2. 

All the above results are calculated assuming the adsorbate is localized 2.85 

A above the substrate for 4He and 2.89 A above for 3He. The 4He value agrees 

with the experimental results and the 3He value is chosen to produce the same 

ratio of distances as the WKB calculation in the laterally averaged potential. In 

table 5.4, we compare the results with those computed at a particular coverage 

at the theoretically predicted distances discussed above, and at the limits of 

precision of experimental measurement. From table 5.4, it becomes clear th?.t 

the estimated error in the experimentally determined 4He-substrate distance of 

±. 05A is too large to give a precise value of -y. 

The reason for this is shown in figure 5.1 0, which is a schematic picture of 

the anisotropy of the substrate potential (based on reference 10), measured 

above the center of a graphite hexagon (position S) and above a carbon atom 

(position A). The major component of the corrugation amplitude U01(z) is pro­

portional to the vertical distance between the curves at a particular value of z. 

The corrugation decreases to a negligible value for z~3.2A, where -y would be 

zero, but moving toward the potential minimum it increases roughly linearly as 
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Figure 5. 9 Angle of preferred orientation versus coverage for 4He and 5He on gra­
phite, assuming the adsorbate-substrate distances of figure 1. Since only one 
Fourier component contributes significantly to the distortion energy, the angle 
is determined primarily by the ratio of substrate to adsorbate lattice spacing , 
and secondarily by the ratio of adsorbate speeds or sound as explained in refer­
ence 2. 
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Figure 5. 7 Coverage dependence of 7, the elastic constant measuring resistance 
to relative twist of the adsorbate and substrate about the preferred orientation 
angle, calculated for the adsorbate-substrate distances of_ figure 1. 
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Figure 5.10. He-graphite potential deduced from the He-graphite scattering 
data in reference 10. as measured above the center of a graphite hexagon (S) 
and above a carbon atom (A). as shown in the inset. The vertical difierence 
between the curves is 9 times the most important Fourier· component of the cor­
rugation of the potential, U01 . The size of the corrugation becomes negligible 
when the helium atoms are more than about 3.2 K from the substrate, and in­
creases q:~pidly at shorter distances . 
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z decreases . Since the strain energy and I' vary quadratically with U01 , w~ch is, 

as we have seen, the principal contributor to EsDW· we expect I' to increase qua­

dratically with decreasing z with a zero near 3. 2 A as shown in figure 5.11. As 

long as only one corrugation wavelength is important, the angle is nearly 

independent of z. and the slight shifts in the orientation angle arise from the 

weak dependence of ~min on the ratio of the undistorted sound speeds . (The 

experimental measurements yield the actual sound speeds, so for a given set of 

experimental sound speeds, the derived undistorted sound speeds Vvill depend 

upon z ). Clearly this uncertainty in the distance between substrate and adsor­

bate dominates all others in the calculation of "'· Fortunately, values of I' as a 

function of z may be estimated from those in Table 5.4 using the observations 

that "f is very nearly proportional to U61 (z ). (If a more precise rr-..easu:-ement of 

the average z becomes possible and the current result was reportedly difficult 

to obtain, a possible further improvement in the calculation would be to com-

pute an average value of Ut; taking into account the excursions of the adsorbate 

atoms perpendicular to the substrate . This will increase the values of 7(z) 

reported in table 5.4, owing to the quadratic dependence discussed above . The 

root-mean-square spread of the atoms has been estimated in Cole. Frankl and 

Goodstein to be .25 A.) 

Besides the uncertainty in distance of the adsorbate from the boundary, 

there are other approximations in our calculation whose effects are smaller. 

The linear response approximation (assuming the distortions to be small and 

using the phonon spectrum of the undistorted lattice) produces errors of order 

( u~ ~2 where a is the lattice spacing. For the helium solids this quantity is 
a 

small, as can be seen by comparing u 01 in table 5.3 to the lattice spacing of 

about 3.6A . In fact, the distortions are small compared with the zero-point 

amplitude which is measured by the square root of the trace of W displayed in 
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Figure 5.11. The amplitude of the principal corrugation Fourier component of 
the substrate potential, U01 , and 1. the elastic constant governing restoration of 
twist of substrate relative to adsorbate about the angle of preferred orientation, 
e.re displayed as functions of z. the height of the adsorbate above the substrate . 
Equation (5.22) predicts that 1 should be quadratic in U01 in cases such as this 
one in which no other components of the substrate potential corrugation are im­
portant. This figure, along with table 5.4, illustrate the rapid variation of 1 with 
£ . 
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table 5.2. We expect the errors from these two sources to be of the order of 10 

percent or less in --y and negligibly small in the orientation angle, which is more 

strongly influenced by geometry than anything else. 

It is more difficult to estimate the errors due to our model of the phonon 

spectrum. These affect two separate aspects of the distortion energy, the value 

of w in the denominator of eq. (5.22), and the smearing tensor W. Neither has a 

significant effect on the orientation angle since the errors in the phonon spec­

trum occur primarily at short wavelength, while the angle is usually fixed by the 

geometry and by the long-wavelength behavior in turn determined by experi­

mental results. For the same reason, the first effect produces only small errors 

in the values of EsDrt and -y. The second effect appears in the smearing factor 

which is the primary determinant of the size of 7 and EsD'ft'· (For argon, the 

exponential factor in eq. (5.21) is about 0.8, while for helium, it ranges from a 

maximum of about .15 to 10-27 for the Fourier components considered. In fact, 

calculations done by the method of reference 1, essentially identical to the 

present one but leaving out the effect of zero-point motion produce very large 

distortions and unphysical values of 7 and EsDr even far from registry.) 

For completeness, we mention several other implicit approximations pro­

ducing very small errors in the results. For one, the film may not be a plane 

parallel to the substrate, but rather a slightly buckled plane. This should be a 

small effect because the corrugation of the substrate-He potential is small com­

pared with the overall attraction. Essentially, one might expect that the overall 

distortions of the helium lattice could be slightly increased in the plane if they 

were accompanied by a correlated set of distortions perpendicular to the plane 

which slightly reduced interatomic repulsions. This effect must be small since 

the strength and steepness of the surface-averaged potential as a function of z 

is large compared to either the corrugations or the helium-helium potential. 
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We have decoupled the motion perpendicular to the substrate from the in­

plane motion, and that decoupling is probably somewhat inadequate. We have 

reduced the problem of calculating all the phonon modes of the distorted sys­

tem to the problem of calculating the shift of the low frequency modes (i.e. of/') 

which is surely an oversimplification. We have also ignored the perturbations of 

the substrate by the adsorbate on the grounds that the substrate is much stiffer 

than the adsorbate. 

We believe that if the precision of the adsorbate-substrate distance were 

improved, the accuracy of this calculation would be limited by that of the exper­

imentally determined elastic constants on which it is based. 

The helium monolayer solids occur in a region of the coverage-temperature 

plane bounded by sharp heat capacity peaks which seem to occur at substan­

tially higher temperatures22 than Kosterlitz-Thouless 23 dislocation unbinding 

temperatures predicted by renormalization group theories.5,24 It is easy to 

speculate that these peaks are the signatures of a possibly Ising-like transition 

marking the end of angular order .6 The present calculation may provide an 

energy scale for an estimation of the temperature of this phase transition. 

5. Possible Experimental Measurements of Orientational Ordering 

Orientational ordering bas been observed in other noble gas films on gra­

phite using low energy electron diffraction (LEED), 25 but there is as yet no 

definite confirmation of the efi'ect in helium. 

No measurements of I' have ever been made, for any system, nor have any 

obviously feasible experimental methods been proposed for making the meas­

urement. Since the calculated value of ')' depends so strongly on the mean 

height above the surface, which is known to about 3%, a measurement of')' is less 

a check of the present computation than a confirmation or refinement, which 
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depends on the quality of that computation, of the measurement by neutron 

scattering of the mean height z of the film above the substrate. 

A study is now underway to determine the feasibility of making neutron 

scattering measurements to measure at least the orientation angle of helium 

fi.lm.s on graphite. As part of that study, we present the current knm-dedge of 

the expected elastic neutron scattering structure factor for such a f.Jm. 

At least two effects should be present in the neutron scattering. The f...rst of 

these is a reproducible angle between the adsorbate reflections a...~d substrate 

reflections, which varies with density as predicted earlier in this chapter. The 

graphite reflections are a large background signal, easily detectable, so it 

should be possible to see the locking angle whenever helium refiections are visi­

ble at all, unless the experiment must be done on unoriented substrate or the 

neutrons are not sufficiently collimated or monochromatic. 

A preferred orientation could also be produced by various kinds of dirt 

effects - pinning of the helium film at the edges of small patches of smooth sub­

strate, impurities in or on the graphite. To distinguish the effects, the results for 

the angle should be independent of the particular substrate sarnple used and 

there should also be some way of measuring the SDW distortion of the helium lat­

tice from perfectly triangular. This distortion should produce a decrease in 

intensity of each helium Bragg peak (which will probably be lL."1.detectable 

without an undistorted reference) and satellite peaks substa..11.tially displaced 

from the primary peaks in reciprocal space . 

The general formula for the neutron scattering dyna.">Tiic structure factor 

(the Fourier transform of the density-density correlation function of the system) 

can be written 
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where q and GJ are wave vector and frequency, N the number of atoms in the cry­

stal, and R .. ,R' the positions of atoms. If the average distortion is extracted 

from the thermal average by decomposing il into <il(R)>+oil(R,t) where the 

average value (the distortion) is computed from the SDW theory, then 

S(ij ,c.>)= 1-h.e -il ·(~-ihe-ii · <il(R)>e +'i4·<i1(jh>x 

J;! eiwt <exp(iq·oil(R'))exp( -74 ·oil(R ,t ))> 

(5.25) 

The distortion <il(R)>=~u~sin(G · R), where the static density wave amplitude 

il~ produced by the substrate corrugation at wave vector G has been calculated 

earlier in the chapter. The static part of the structure factor (gotten, e .g ., by 

expanding the exponentials in the thermal averages in the integral of equation 

(5.13.6), taking the zero-order term and performing the time integral) is propor­

tional to 

S(q)«e -2l·ll'·fu,J;;.e -if-(J!-lhe -if ·;T,;sin(~ J!) e +iif·U;i,.n(~· !!·) 

where G are substrate reciprocal lattice vectors. 

(5.26) 

Finding this static structure factor involves sums over the lattice of the 

form ~e -tl · (A+Aain~·A) which will always lead to Bessel functions. McTague and 

Novaco3 have calculated these sums for situations in which the neutron momen-

tum transfer vector iJ is in the plane of the adsorbate . They find 

s(q)«e-2f r f [IJ Jo(q -U~)ll((i) + 

2~(},1.J0(q·U~))J,(q·U~.)ll((i+l})+ · · · ] (5.27) 

where ll(q)= ~ol ~ and l-T~ are adsorbate reciprocal lattice vectors. As noted 
f . 

above, the first term represents the reduced primary reflections, and the 

second term gives the satellite peaks, which occur for q at a substantial dis­

tance into the Brillouin zone (see figure 5.5). Since the sums over G can be 
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truncated after including just the six eqllivalent lowest wave vectors, ·without 

significant loss of accuracy, many details of the neutron experiments can be 

predicted using our earlier results for i10 . 

It will be difficult, and is probably impossible with current technology, to 

observe this effect, 26 because the neutron scattering cross section for He is so 

low and there is so much background from diffuse scattering from graphite as 

well as various crystallographic reflections from the graphite. In the absence of 

neutron beams of high enough intensity and monochromaticity to attempt to 

observe the angle between helium and graphite primary reflections on a single 

crystal substrate (where the amount of adsorbed material is much less than on 

polycrystalline substrates with large surface area), it is the only possible ·w·ay of 

observing orientational ordering with neutrons scattering . 
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Table 5.1 

n w8 x1o-24 B v" 

A.-2 (rad/ sec )2 erg I crn2 

5He 

.0781 2 .78 4.409 6 .400 

.0791 3 .10 3 .779 8.214 

.0801 3.48 3 .787 9 .471 

.0822 3.65 4.297 9.740 

.0870 4 .79 5 .450 12.87 

.0920 6 .30 6 .410 18.48 

.1 021 9.05 8 .569 35 .5 1 

4He 

.0781 2 .1 0 3.577 7.38 

.079 1 2 .21 3 .620 7.974 

.0801 2 .35 3.68 1 8.616 

.0822 2 .66 3 .820 10.11 

.0870 3.46 4 .130 14.34 

.0920 4 .46 4 .536 20.28 

.1021 6 .81 5.456 38 .70 

.1083 8 .32 6 .042 55.71 

.1100 8 .73 6 .222 6 1.36 

Table 5.1 

Parameters of the phonon spectrum at several values of coverage for both 

helium isotopes . All the parameters are defined in the text. The calculation 

assumes an adsorbate-substrate distance of 2 .85 A for 4He and 2 .89 A for 3He. 
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Table 5.2 

Miller indices u~ (meV) Smearing factor 

4He 3He 

0 1 -1 .665x10- 1 1.356x 10-1 1.146X 1Q-l 

0 2 -6 .438x 10-4 3 .381x 10-4 1.725x1o-4 

1 2 6.616x1o-s 2.493x 1o-s 1.505x1o-s 

0 3 1.775x 1o-6 1.550X 10-B 3 .409x l o-9 

1 3 -9 . 794X 10-6 8.430x 1o-7 2.596x1o-7 

2 3 -9 . 794X 10-6 8 .430x 1o- 7 2 .596xlo-7 

0 4 -7.737x l o- 10 1.307x 10- 14 8.850X1Q- 16 

1 4 -1. 296X 1 o-B 5.241X 10-12 5.880x 1 o- 13 

2 4 7 .04QX 10-B 3 .865x 10-11 5 .1 3 1x l o- 12 

3 4 -1 .296x 1o-a 5.241X 10- 12 5 .880x l 0- 13 

0 5 -5 .143X 10- 13 2.025x 1o-22 s.o 17x 1 o-24 

1 5 2 .238x 10-11 5 .990x 10-19 1. 749x 1 o-20 

2 5 -5 . 744X 10-ll 3 .258x 10-17 1.332x1o- 18 

3 5 -5 . 744-X 10-11 3.258x 10-17 1.332x 1 o-IB 

4 5 2.23Bx 10-11 5. 990x 10- 19 1.749X 10-20 

0 6 5 . 708x 10- 16 5. 772x 10-32 1.351x 10-34 

1 6 -7 .424X 10-15 1.259x 1o-27 6.835x 1 o-so 

2 6 -5 .875X 10-14 5.Q5QX 10-25 4 .541x 1o-27 

3 6 2 .393x 10- 13 3 . 724X 10-24 3 .963x 10-26 

4 6 -5 .875X 10-14 5 .050x10-25 4 .541 X 10-27 

5 6 -7.424X 10-15 1.259x 10-27 6 .835x 10-30 
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Table 5.2 

Amplitude of corrugations of the substrate-adatorn potential for the wavevectors 

equalling the lowest 21 substrate reciprocal lattice vectors in a 60° sector of 

momentum space, along \'\'ith representative smearing factors e -~- .-- ~ calculated 

'Yfith an adsorbate-substrate separation of 2.85 A for 4He and 2.89 A for .3He. See 

equations (5.20) and (5.23) . 



- 151-

Table 5.3 

n 1/ IC eD J.J- CL CT CTr; ~min 7 Emin OUnn.s Uo1 

SJfe 

.0781 6.61 17.60 1.911 3.078 446. 177. 172. 25.53 .0578 -.0732 .959 .050 

.0791 8.73 17.90 2.006 3.147 499. 176 . 169. 25.29 .0926 - .0962 .937 .055 

. 0801 10.07 19.20 2.115 3.418 532. 187. 180 . 25.06 .1137 -.1296 .904 .057 

. 0822 10.15 21.10 2.383 4.031 535. 206. 200 . 24.53 .0982 - . 1531 .873 .050 

. 0870 12.99 26.90 3.000 5 .820 602. 259. 254. 23.41 .1114 - .2744 .785 .043 

.0920 18.31 33.70 3.887 8.434 704. 318. 314. 22.24 .1292 -.4392 .706 .038 

.1021 34.25 49.40 6.475 16.62 931. 448. 445. 19.70 .1281 -.7497 .587 .029 

4He 

.0781 7.911 15.41 1.788 2 .704 412. 153. 132. 25.53 .3100 - .2947 .910 .115 

.0791 8 .539 16. 11 1.892 2.896 426. 159. 138. 25.31 .3385 -.3355 .891 ' 111 

.0801 9.207 16.83 2 .004 3.116 440. 166. 144 . 25.07 .3558 - .3847 .871 .108 

. 0822 10.75 18.43 2 .261 3 .640 471. 179. 158. 24.55 .3861 - .5013 .831 ' 101 

.0870 15.12 22.48 2.988 5 .149 546. 213. 193. 23.44 .4817 -.8022 .751 .087 

.0920 21 .13 27.33 3.682 7.413 630. 253. 236. 22.28 .5107 -1.151 .678 .073 

.1021 39.49 39.36 7.051 14.85 835. 348. 339. 19.86 .4538 -1 .758 .562 .052" 

1-
.1083 56.25 48.38 9.843 21.97 975. 418. 410. 18.29 .4373 -2.036 .508 .043 

.1100 61.76 51.09 10.76 24.40 1015. 438. 432. 17.84 .4027 -2.102 .494 .041 

Table 5.3 

Elastic properties of 3He and 4He films on graphite assuming the adsorbate­

substrate distance to be 2 .85 A for 4He and 2.89 A for 3He. The coverage n is in 

A -2. The elastic constants 1/ "· JJ., 7. and the 2-D pressure IP are all measured in 

ergs/ cm2 , and the SDW energy at the preferred orientation is in units of 

10-2erg/ cm2. The Debye temperature aD is in Kelvins . The speeds of sound 
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cL, cr. and err; (the latter being the derived transverse speed for the U..Tldis­

torted lattice) are tabulated in m/sec. The rrns zero-point amplitude ou a~d 

the major contribution to the distortion u 01 are given in .X.. . The orientatio:::1 

angle is in o relative to a crystal a.xis of the substrate exa2:ly aligned V\i.th one of 

the adso!'bate . (Registry occUYs at an angle of 30 °.) 
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Table 5.4 

z Uct Uot Ernir_x102 -y ~min 

A. meV .4 erg I cm2 c 

2 .80 -.2166 .099 -1.855 .9321 22.31 

2 .85 -.1665 .073 -1. 151 .5107 22 .27 

2 .90 -.1284 .055 -.6987 .2825 22.27 

2 .92 -.1158 .049 -.57:3 .2357 22 .26 

3.00 -.0769 .032 -.2550 .10:7 22.26 

T~le 5.4 

Orientational o::-d.erin.g as a fu..J.ctioa of t!:1e heig~ ... t of the 4 He aC:so::-tc..te (at a co-.-·-

erage of .092 A -2) above the substrate, z . The preferred angle of o::-ieEtatio:l 

hardly vw--ies but the size of surface potential corrugations, c..~ .. :::. tJ:·.e ~is~o~:tic:-;.s 

and static density waves they induce are strong functions of z. 
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Chapter 6 

The Critical Region in the Dislc~a.tio:J. Unbinding 

Theory 

1. Analysis of Asymptotic Behavior 

The KTHl\'Y theory of 2-D n:elting has been used mostly to predict the 

behavior of systems in the immediate ·vicinity of the transition, ·where stro!lgly 

fluctuating variables determine that behavior. Although in p!"inciple the theory 

should be a complete description of the contribution of topological defe~ts at all 

temperatures, when it is used away from the immediate neighborh8cd of the 

transition, various complications ensue. 

One of these is that other effects may become important, for exa."'":lple, 

other kinds of anharmonicity in the solid, or diffusion in the liquid crystal p~.:.c..se 

above the melting temperature. Another complication is that the main to:>ls of 

the theory, the renormalization group (RG) equations, rapidly become essen­

tially unusable above the transition. 

Since the critical properties of the the transition are among the easiest to 

calculate from the theory, the question naturally arises as to whether those pro­

perties are experimentally accessible, that is, whether they apply over a 

sufficient range of temperatures to be observable, given the current eA'Perimen­

tal and theoretical uncertainty in the transition temperature itself. 
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Below the transition, for a given set of initial conditions and core parameter 

C. the dislocation contribution to any thermodyna..'T..ic property can be ca.~c'.l­

lated by using the the RG equations. These can be integrated over all scales, 

and, since they always converge to the fixed point y(oc)=O, dn1/dy(oo)=O ~e 

numerically well-behaved. 

Abo"~;"e the transition, the RG trajectories diverge toy ( oc )=Xi. T..':Js ~~dicates 

that they have broken doVvn, since y =e -E,JkBT and the core energy s!:lc·~d nEv·er 

be negative. The breakdovm occurs because the gas of G.islocc..tio:ls is not c~ute 

much above T m. Thus, truncating the expansions in pm..,-ers of y at the sec~:J.d 

order is invalid in this region, and produces unphysical results . The caly -r-ay to 

use the RG equations above the transition is to inte5rate :ror:1 the b2.2"e me~ted 

state, ·with mixtures of bound and free dislocations, to higher tEr:-.. perat"L:l"e c....--:d 

larger but finite scale, where the renormalized proble:n of rr .. ostly free C:~s~~ca­

tions can be treated with some other approximation appropriate to b.Jgh­

temperature "plasmas". This procedure has been carried out success.:'ully by 

Solla and RiedeP for the scalar Coulomb gas model of vortices in a 2-:9 

superfiuid, but has not been used for the dislocations in a soEd, partly bece.'-l.se 

at temperatures substantially above that of the trans:tion, d.iscli~ations -r.-:::·t:.ld 

be e}.."Pected to dominate the thermodynamic beha"ior a..?ld they are not i~cor­

porated i:1to the dislocation Hamiltonian. 

Thus, it is important to determine the Vvidth of the tra.."'lsition region, eYer 

w"bich the properties can be determined with reaso~able accuracy by the 

asymptotic critical relations. 

We now present a new analysis of the behavior in the transition region, 

which produces the same critical exponents as NH 2 and Young3 but corrects 

some errors in their treatment, and also leads to criteria for the width of the 

critical region. Some of this work was carried out in collaboration ·with A.F. 
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Silva-Moreira. 

In particular, ·w·e examine the behavior of the correlation length ~ + 

approaching the melting temperature from above. This correlation ler...gth is 

proportional to the mean distance between free dislocations. so the density of 

free dislocations varies as the in'\ .. erse square of the correlatio!1 lei"'...gth . nf -t ; 2 . 

The technique used makes use of the \~tell-kn~:)'wn beha\ior of the correle.tiQ!:l 

length under t~e RG tran.sformation. 

This result is essentially a bit of dimensional analysis \'."hich is eq:..:ivale:--... t ~o say-

ing that when the system is exarr..ined on scale et tirnes biggs!.·, t~ .. s cc::.'Te:a: i ~· :l 

length 1's el times ~ ......... ,ller tha:""' t'he pb~r- ; cal co"'rel"''-l'on le--'-h 1· -o ...:!c:-'"c~....,.., ; ...,<=> ... l. ::::: ... ~ ... ~.... .. .. J. ... .J.. - • ., ~... ... .~..... ...J. ... l.e L.. . , , _ '-- ""-- ...... 1 ...... --

the correlation length in the critical region by integrating the :RG e~ .. .:..~~~~:-.:.:S t0 

some value of the scale l* far fron the tran.sition sl.!ch thc:.t t!:" ... e c:::.::-rel:::.t:c-:1 

length is small and slo·wly varying as a function of l. When the scc..le-depenG.e!:lt 

correlation length reaches the order of one lattice spacing (at the curre:1t 

scale), then further iterations of the renormalizati0::1 tra_"lsfcr!':'le.t~o:l Y.-tll ::~t 

closeness of the starti.ng point to the transition and deterrrlines e.t v.-r-~t scc..~e \'.-e 

have gotten far enough from the transition that the correlat::on le::-.:.gt'2 (v·t.eY.-ed. 

on that scale) is slowly varying. Thus. l* depends upon t~e redt.:se:i te:r::;Je.::-c..::.:.:~e 

t. We will shmv that l*-!t I-'D ·where i/=.3693 ... The s~aling la;:·.· b:- the co!.·re:a.­

tion length is thus ~+-e~/ lt !ii where x is a non-universal consta.'rlt. 

Near the critical point, K- 1= 1./ 16rr, y =0, the separatrix ~o'..:...~dir .. g thE s~~:d 

and hexatic liquid crystal phases can be regard.ed as a pair of straight lines Y.~t~ 

slopes 

(6.2a) 
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A=e 2 (2/ 0(2)-/ 1 (2))=21.. 937 

B=elc(2)=6.195 

(6.2b) 

(6 ?n) 
\ · -~ 

where In are imaginary Bessel fu_~ctions. The a!la.lys:.s t!.-... c..t follo·v,-s is restricted 

to core parameters large enough so the initial conditio::s for the integratior: a!"e 

in the region near the critical point YThere the separatrices can be regarded. c.s 

straight lines. For smaller values of the core parameter, the sa.me beha-.-ior 

occm-s, but over an even narrower ra.:.'"'lge of reduced terrJ,.perat:.z-e. 

By changing variables to (x,y) v.ith x-1(l)= . 1_ (~+z(l)). the s::--.::~th-
1611 

substrate RG equations of NH can be v.Titten 

dx .., 2 --=:i.2iit;:kd 
dl 

d!J =..il......-z ... ~· +2- Dy2 dl - ""'::J 11..:,_, • 

D (l )=y (l )-m_z (l) 

E(l )=y (l )-m+x (l) 

e:;uatio!'.l (6.3b) can be "\\Titter! as 

c;[i =-2zD+:2rrA2m+D2 

near the i~corning separatrix and 

dE = -2.,..E• 12"1'7A2m. ;::2 dl - ' - ,,.., "-.:..J 

( 6 . 3a) 

(6.2:.:;) 

(6.5a) 

(
e::: _, ) .... . :>;:) 

near the outgoi:n.g separatrix. Either of the e;~~::ons is ,~e..!.id. a:-.:j"":'-~_ere e ::;_·J.~:io!'.l 

(6.3b) i~, but each is useful only nea: the ap;;ropriate separat!"ix. 

A typical RG trajectory above the transition is s!:lo\·.~ in figt:.:'e 6.1. It 1-.:.".lgs 

f:st the left and then the right separatrix. The intersection of the li.::e of ~:c.rt-

ing points 

-CK0 

Yo=e e-rrkBT (6.6) 

with the trajectory gives the initial conditions (x 0 .Dc) or (xo.Yo). (In equation 

( ) - 4aff !-LoBo where JJ,., and Bo are the bare shear and bulk moduli and Cio 6.6 . K0 - J.J.o+Bo r-u 
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y 

0.005 

1.0 

Figure 6.1. Phase plane of the RG equations for a smooth substrate of Nelson 
and Halperin. Heavy lines represent the separatrices. the dashed line is a line of 
starting points for C=2, and the dot-dashed line shows initial conditions for C=3 . 
The remaining curves are RG trajectories . The region below the left separatrix 
contains all possible solid states. 
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is the lattice spacing. The endpoint (.x 1,E 1) is deterrni!.'led by the criterio:: :or 

cutting off the RG integral when the correlations ~e roughly cor..ste...'>).t. There ~e 

several such criteria which we have shown nlli'"Tl.erically 4 to be essentially ide:J.ti-

cal, e.g. x =0.1 or y =0.01. The traje~tory passes tb...rough a minimum v.~here 

dJ: =0 in equation (6.3b), namely when 

or equivalently, when 

or 

y=--1-x 
r.B 

1 D*=-( -B +m_)x* 
1i 

(6 . ?a) 

( ,., ....,- ) 
0.:0 

In integratir.t.g the RG equations, equati~:: (6 .5a) is u~ed fror:: t~e stG.:"'.:i:-.;.g p::1~:1t 

to the rrinimlli'"Tl., and then equation ( 6. 5b) o".J.t to the cutoti p::1~:1.t. By e~:p a:1~i:.1.g 

the line of starting points aro'..Ll'ld the value v."here it inte!~se8ts the L--::o='_i:-...g 

separatrix, it be:omes clear that Dc-x it I vthere t is red'.l.:ed ter::.:?erat'..!Ye, 

The equations (6.3a,3b) do not depe:1d on l explicitly, so we mar co~s~der 

their quotient 

d.x _ 6;,2Ay 
dy - X+iiBy' 

lr~.Jch, 11.po!.1. substitution of y =vx ca..l'l be shol\T! to have the sol1.2.tion 

and endpoint must lie on the trajectory, so 

or in terms of D and E 

IC=(yo-v +xc)a(yo-v -Zo)P 

IC= (y 1-v +X 1)0 (Y 1-'V -I 1)~ 

(6.6) 

(6. 9) 

(6.2-0a) 

(6.~0b) 
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~e=DC (Do+(v --·v +)x0)a 

~e=Ef (E 1 + (v _-v +)x 1).8. 

·when Do is sufficiently small and = 1 sufficiently lc:ge that 

Do<< lv--v+ ! ixc I 
E 1 << I v + -v - ! ::: 1 

a relationship can be established between stc.rting points a..."'l.d enC:.:;?oints, 

Rewriting the trajectory in terms of D and E. 

IC=D.B[D+ (v _-v +)z ]a 

IC=Ea[E+(v _-v +)x ].8. 

and solving each one for x we find 

~ella D r z= ----
( V--v +) D.81 a (v--v+) - D~la 

"11.8 E r z= 
(v +-v _) 

----
(v +-v _)£ai.B Ew.B 

D 
(1;·_-v+) 

E 
(v +-v _) 

(6. 1~ a) 

(6.1:b) 

(6 .:2a) 

(6.:2b) 

(6 . :3) 

( ~ 1 ~ ) v.l"'::a 

(6 '- ) 
' . ~ t)C. 

(6 . :51,:,) 

Where the constants rand f contain all the dependence on iP..itial or fi ...... '"!.al co~di-

tions . When the appro}Qmations of equation (6.12) are valid, 

r~ne1 c.xo 

r~£fl.Bx1 . 

Inserting equations (6.15) into equations (6.5) ·we f ... Ild 

where 

dD =-zrn1-P1 a+GD2 
dl 

dE =-2fEI-a!.8+HE2 
dl 

(6 .16a) 

(6.:6b) 

(6. 17a) 

(6. : 7b) 

(6. :Bb) 

Now the integral of the renormalization group trajectory is the sum of two qua.-

dratures with no closed form solution, i.e. 

(6.19) 
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D• 
l*- r dD 

1 - i;n -2rnt-p;o.+GD2 
0 

E• 
-l•=[ ""' dE 

2 1 -2rEt-o.l P+ HE2 . 

(6.'20a) 

(6.20b) 

It is tempting to discard the second term in the cier:o:nir.~.ator of e~::!h 

integral on the grounds that for small D and E, the first term dominates. For 

small Do and E 1• D and E are small near the endpoL"lts, but, as we no•.'.- st.:Y\'7, 

become larger near the minimum (D• and E* ), where, in fact, bc·th terr::s ir ... the 

denominator of each integral are of similar size. 

Inserting equations (6.15) into equations (6. 7) we fL."ld sol~tio:1s 

D*=RfO--DU 

E*=SfP-Ef 

(5 .2:a) 

(6 . 2:~) 

'"ith R and S constants independent of De and E 1 . Comparing ec~'.lc.E:::: (S .2:c.) 

and equation (6.21b) we find that 

DU -Ef. 

Rearranging the denominators of equation (6 .20) v.~e find at the rni!li!!:.u...rn, 

~a( -2R1-P1 o.+GR2) 

f 2p( -zsl-o.l P+ l-IS2) 

so the dependence upon starting point factors out. 

equation (6.23a), for example, are nearly the same 

Rl-Pio. 
R2 50.567 I G=76.08 

(6.22) 

(6 ?~~) . ,_- ~...;~_ 

(0,.. ?~..__) 
•"--...; 

(6 .24-) 

so the integrals for L• must be evaluated '\\lithout truncating the denomi:1ator. 

This is done by rescaling the equations to remove the dependence on D0 

from the integrand. Let P=D I D~ and determine s such that all the depen­

dence upon D0 factors out of the integral in equation (6.20a) . Not surprisingly, 

s ={3. Similarly, the substitution Q=E I Eo. produces the follov.ing set of integrals 
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P• 
L•-D-fJ { d? 

1
-

0 j,
0

-2xcP1-p/c:+GP2 
(6.25a) 

Q• 
-l • -E --(lf c:f.Q (6 2-· ) 

2 - 1 -2x Ql-c../ e+ ryQ2 . 'Ob 
Qo l . h. 

where equation (6.12) has been used to simplify r and r. NoV{ differentiate the 

integrals with respect to Do and E 1, respectively, to :f .•. !"ld 

(6.26a) 

Since 

(6.2?a) 

and similarly, 

The second term in each of the ditiere:ntial eqac..tion.s (6.26) abc·.""e a~~ses f:·c:a 

di..+rerentiating the lower limit of the integrals in equations (6.25). The 1..:pper 

limit makes no contribution, because by choice of P and Q and equ:::.tior~s (6.2:), 

P* a.'l'ld Q• are independent of Do and E 1, respectively. 

Inserting equations (6.27) into equations (6.25), the d.ifie~entie.~ eqt:.e.t~c:-:s 

can be solved by the usual use of integ~ating facto:::-s, yieldir ... g, 

(6.25e.) 

(6.25b) 

The second term in the denominators of eq12Z.tion (6.28) can novt be ::Lsca:::-C.ed, 

for suitably small values of D0 and E 1, a.."ld the integ:--a2.s yield 

lf~ a +flDofJ 
-2xcf3 

L·~_j}__+NE-a 
2 2x la 1 

where M and N are constants. Since E 1-D91 a, we have 

(6.29a) 

(6.29b) 
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z*=l t +l2* -DofJ- it 1-{J 
which agrees with the result from NH. 

( 6. 3:J) 

The present calculation improves that of KH because their analysis of the 

behavior of l* worked by means of an incorrect approximation. They integrated 

from the initial point tmvard the mir..imu.Jn, and stopped when D be::a:::'!le 

significant (before the minimum), then arbitrarily jumped across the mii'..imu..rn 

and added a piece gained from integratifl...g along the outgoing se;a::--at~i~:. Y.~e 

have shov.-n numerically that nearly all the contribution to l* comes near the 

minimum, but since that part also -It 1-fJ. KH accidentally got the cc:~::"s::t 

depe::de:1ce, although the constants of propc::"tio:lality were v::~::;::g. 

The only approximations in the treatment above are those of e~ .. -...:~~ic::".:.s 

(6. :2) and the tru..~cation of the deno::7li.::-~a~or of equations (e.23). (Tl-.:.ese l c.~~er 

could be re::noved by performing a Taylor series e>.."Pansion to any desired c:..c::u-

racy, "hut we are only concerned '\•.ith the leading order behavior.) The c:..ppro~i-

mations produce bounds en the validity of the scaling law, a::.d he:::e gi','e a_~ 

indication of the -width of the critical region. 

From equation (6.12) we find 

Do<< j.056.:;.zo I 
E 1 << 1. 0564-x 1 I or De<< 1. 0564:x 1 I (l-fJ)/ fJ 

a_"lc f~o!r1 the integrals, 

(6.31a) 

(6.31b) 

GDc<<2x 0 ==> D0<<.0341xo (6 .31c) 

HE1<<2x 1 ==> D0<<(.0223z 1)(l-fJ)/fJ. (6.3:d) 

Clearly, the controlling approximations are equations (6.31c) a:.1ci (6.31d) . :::ilnce 

(J.-{3)1 {3=1.71. we can re·write equation (6.31d) as 

D0 <<.0015x f-71
. (6.31e) 

Choosing x 1=0.1 (supposedly far enough from the tra:1sition that ~+ is 

roughly constant) and zc=-.01, the controlling approximation is equation 

(6.31e), 
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Dc<<2. 9x :o-5. (6.32) 

It remains only to find the proportionality between Do and It 1. from the equa­

tion of the line of starting points. E}.'Panding equation (6.6) around the intersec-

tion ¥-ith the separatrix we obtain 

(6.33a) 

(6.33b) 

whe:-e the subscript s refers to values at the intersection of the line of st~ting 

points v.ith the separatrix, 

(6.33~) 

Thus, 

( ~ r::..:.) 
\.,I. u-

·w·here Qs = CK0/Brrke Ts. At the intersection of the separatrix v;"i~r.~. the li:1e y =0. 

the \"alue of Qs is 2C, and since K 0 \7aries by less than 30% ove!:" the region v.~hel"e 

the sepa:ratrix is approximately linear, \Ye take "s ~6. for c~3. ~""!.d. Ys "" · 00~ I 

m_=-.021, we have D0~.03t. Since =s~-.05 from equatio:J. (6.33c), v:e hc::..,.,.e 

zc~-.05+t. Thus for t}'Pical values of the core parameter C, for vaL..1.es of 

f<< .OOl · (6.35) 

the inequality (6.32) is satisfied. Tb.is inequality is actually ger1e:ral, beir~ 

sat.isSed over the entire region v.rhe:re the sepa:ratrix is nearly l~ee.r, si::.ce for 

larger C, the last term of equation (6 . 3~) is domir...ated by m_/2C, so De 

approaches m_t. For smaller values of C, even more restrictive criteria b.old 

because an RG trajectory through any point on the line of st~ting points for 

C=3 intersects lines of starting points for smaller C closer to the separatrLx. 

Thus the width of the transition region is characterized by equation (6.35). 
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2. Numerical Tests 

The predictions of the analysis of the p!'e\~ous section were tested by 

numerical integrations of the RG equations . The numerical results for the co!'e 

parameter C=2 are shm·\TI in table 6.1, '"'there the choice of l * was made in 

several ways to ensure that the cutoff p!'ocedure did not influence the res:.llts. 

An unresolved numerical precision problem caused the result~ to be ~..!'eEable 

for l*>500. 

Table 6.1 

II t 
Criterion 

16ii1\1= 1.1 I 1-t=O. l i v dive!~,ges ' l 

I 
10-6 469.0 ~73 . 5 474-.0 
10-5 195.0 199.0 200.0 

I 
10-4 78.0 82 .4 83.0 
10-3 29 .0 33 .0 3~ . 0 

Figure 6 .2 displays a sensitive test of the critical e:x"Ponent D. It plots l ~{Dvs . logt 

nor-malized to a conve:llent value for C=2 and C=3. Except for the sli~htly ir ... ac-

curate results at very small values of t, the points are nearly c~:-... star:.t over 

several o!'ders of magnitude in t, begin.."ling to deviate from the ho:izo~tal line 

near t -:.o-3 . 

3. Con.ciusions 

There have been no measurements of this level of accll!'acy that CC-."1 be 

interpreted as indicators of a 2-D melting transition, so a.."ly co:lfl..""matio:l of the 

scaling law for the correlation length, or any other critical beha\~or predicted 

by the theory must be left to some future generation of eA"PerL"'lents, V{r..lch 

must begin by finding extremely accurate values of the transition te:::nperature 

and then look at a narro'"' range of reduced temperature on either side . 

T m is the lowest temperature at which y and Tr1 diverge as l .... co, and thus 

cannot be determined exactly in any experiment sensitive to the behavior of the 

system on finite scales. Dynamical experiments thus do not determine the 
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Figure 6.2. t•tfivs.logt for C=2 (x) and C=3 (•) from numerical integration of RG 
equations . 
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exact transition temperature since they probe finite v;avev·ectors. 

Using the data of table 6.1 we can estimate the difficulty. The asymptc':.~c 

critical behavior is observable if t <"' 1 o-3 ·wrJch means a correlation ler:gth 

larger than e 30~10 13 lattice spacings. On smaller length scales, the medium 

remains solid up to a higher temperature. Typical experiments ar-e per:Q~~rr .. ed 

on lattices of order 102 -107 lattice spacings. Tnus, in practical cases, the e;.."Pe:~i­

mer ... :s cannot probe the prediction of the e}.."})Or:ent D. 

Even for very large sa..'Tlples, the r...ature of the exper~mer ... t. ::1t1.st be carefully 

considered. A neutron scattering e}..-perL."'TTent, for exa..."'TTple, collld. detect critical 

beh.a\'i.or in t~e necesse.r-y ra.."lge of reG.uced temperature only fer :::.:-.... o:::::er_t:.::...."'Tl. 

transfers smeller than a'bcut 10-13 in u:.:i.ts of the reciprocal latt:.ce spaci.r-.:.g. TLe 

related requirement on frequencies irr""plies that such experirneats must be G.::::.:.-.... e 

on very long tirr1.e scales. 

Since !Ii.any experiments are done on very small samples (i.e. G~afoil, v.~t-~ch 

has homogeneous patches of order 100-2000A), we have plotted in figure 6.3 the 

appa!'ent melting temperature as a fu..l"lctio:J. of sample size usi.~g pa.rarr:.eters 

(elastic consta:1ts) applicable to 3He "\'lith an assumed core energy pe.ra~eter 

C=2.8. A more realistic treatment of the problem of a fi_"'lite st:bstrate , •. :)'.2ld 

have to take into accou..'lt conditions at the sa..'Tl.ple bo:.:r:de_ry a..'"'-.d. other cc::::J.­

plications; however, figure 6.3 does correctly describe the ternperatUYe at , .. ~h:.ch 

the correlation length does become of the order of the size of a correspo:1.d.ing 

patch i!l an inf.u."'lite solid. It was deduced from nunterical inte~raticn o: the RG 

equations. 

While the theory may yield other testable predictions, the asymptotic criti­

cal behavior seems beyond the range of current experiments. 
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Figure 6.3.· Apparent reduced melting temperature (relative to that for an 
infinite medium) for a patch of given size (in the infinite medium). 
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Appendix: Generation of Thermodynamic Tables for 3He 

This appendix presents tables of the thermodynamic functions for 3 He films 

on Grafoil for submonolayers over the range ~19K and for 2 layer films above 

2.4K, and describes how these tables were produced from three separate experi­

mental sources. 

The "Raw'' Data 

The so-called raw data are from three sources. From Caltech there is the 

mixture of heat capacity and vapor pressure measurements made by Robert 

Elgin at Caltech over the temperature range 2.4-19.5K and from .003 to 2 layers. 

From the University of Washington there are two sets of data. One is heat capa­

city measurements by Br:etz. et al. 1 These were taken at coverages between 

roughly .1 and.? layers and temperatures between 0.037 and 4.2K. The data of 

Hering,2 and Hering. van Sciver and Vilches 3 comprise 3 runs of heat capacities 

between .04 and .15 layers and .05-1.5K and much denser data between :6-1.0 

layers and . 05-4. 2K. 

The Caltech and Washington data are rather different in character. The Cal­

tech data are a systematic grid in the coverage-temperature plane at 57 cover­

ages and 24 temperatures. All the measured Caltech heat capacities are aver­

ages over the 10% temperature intervals used in the tables. The vapor pressure 

was measured whenever it was observable, that is at high temperatures and cov­

erages. The data was reduced by the experimenter to produce the high tem­

perature part of the tables displayed here, according to methods described in 
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detail in Elgin and Goodstein. 4 The heat :.capacities were all corrected for the 

effect of desorption into the bulk gas in equilibrium with the film. 

The technique used by Elgin, of averaging over 10% temperature intervals, 

is not usE!ful for elucidating features of .sharp heat capacity peaks. but essen­

tially provides the glue that allows the rest of the data to be connected by ther­

modynamic relationships and makes possible a survey of the entire phase 

diagram. The functions which should be most accurately deduced from these 

data alone are functions integrated up from the data, for example, the entropy 

from the heat capacity. The coarseness of the data grid in the coverage vs . tem­

perature (n-T) plane means that reduction methods should treat the data as his­

tograms, each bin representing, e .g . the average heat capacity over the tem­

perature interval spanned. The vapor pressure, however, is quite accurate at the 

temperature and coverage where it was measured, and does not repesent an 

average over any changes in thermodynamic variables . 

The Washington data are generally more intensive in "interesting" regions 

and sparse elsewhere . Heat capacities were measured over small intervals (as 

small as lm.K) near peaks and at many poin~s on peaks. There are runs at 

several coverages near the ordering transition in the Bretz data which cover 

only a narrow temperature range like 2.5-3.5K. 

The raw data discussed in Bretz, et nl. were provided in the form of a table 

of heat capacities at various temperatures and coverages for both 5He and 4He, 

and it was necessary to use the table rather critically to weed out typographical 

errors . 

The heat capacity data from Hering. et Dl., were easier to verify. since the 

necessary heater input and thermometer readings were included, except in the 

case of the three low-coverage runs, which were read from unpublished graphs . 
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None of the Washington heat-1::apacity data is corrected for desorption. 

Preparing the Thermodynamic Tables 

Several attempts were made to prepare self-consistent tables of the ther­

modynamic functions. The difficulties were mostly in deali.ng with scatter and 

highly variable density of data from Washington. 

The goal of the procedure was to extend the tables of Elgin downward in 

temperature,continuing his regular grid of 10% intervals at the coverages he 

used. Thus the basic procedure required interpolating each Washington run (at 

fixed coverage) to produce heat capacities at the "magic., grid temperatures, 

and then interpolating between coverages at these temperatures to produce 

results at the grid coverages, that is,a bivariate interpolation of a non-standard 

sort. 

First, a brief review of the method used by Elgin on the high-temperature 

data will be presented. By equ·ating .ftlm and vapor chemical potentials,and 

using the ideal gas law (with vi.rial corrections when necessary) the measured 

vapor presstires determined the chemical potential of the film where vapor pres­

sures could be measured. 

An extremely difficult problem for these measurements in certain ranges of 

pressure is that of determining the pressure in a cold chamber, e.g., at 4K, Yt-ith 

a gauge at room temperature when a long thin tube connects the warm and cold 

regions . The pressure is different in the warm and cold regions, basically O\\ing 

to the different effusion rates of warm and cold gas through the tube, but com­

plicated by details of the inner surface of the tube, the temperature gradient 

along it, and other effects. The -gauge must be calibrated for the particular 

tube, gas. temperature and pressure range by empirical methods. This effect is 

called thermal transpiration. 
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The coverage was determined by keeping track of the total 3He in the sys-

1em and the amount in the gas (again using the corrected pressures). Where 

~hemical potentials existed .at nearby temperatures, a Maxwell relation con-

.,.,rted ~~ L to-~ L· This could be integrated from zero coverage (where 

~e entropy is zero) to produce entropy values at high temperature where the 

vapor pressures were measured. The heat capacity and vapor pressure data 

~verlapped at each coverage,so starting from known entropy values, the heat 

~apacity could be integrated downward to extend the entropy to lower tempera­

tures . Comparing entropies at different coverages, the Maxwell relation above 

~ould be used to extend the chemical potential and pressure data downward in 

temperature as well. 

In extending these tables further downward in temperature using the data 

from Washington, the procedure was the same,with a few exceptions . Because his 

rlata were corrected for desorption and very smooth,Elgin could reliably take 

.derivatives simply by subtracting neighboring values and dividing by the inte:rval 

(or using next-nearest-neighboring values and assigning the derivative to the 

point in between) and integrate by treating his data as histograms. 

By contrast,the Washington data is irregular and has lots of scatter. This is 

not to say it is less accurate (since it is based on much smaller heat inputs than 

Elgin used) but rather that it attempts finer resolution. Desorption corrections 

are only necessary when the .pressure of the gas is high (how high depends on 

the dead volume of the system- the corrections are to account for changes in 

-the surface coverage owing to thermal promotion of atoms into the gas) and in 

"'Practice, turned out to be unimportant below 3K or so. This left some overlap of 

ileal capacities,but not as much as would be desired for consistency checkif'l..g . 

Even at lower coverages where desorption was unimportant even above 3K. the 

Washington calorimeter was reported to have uncorrected temperature drifts 
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above 3K making some of that data unreliable. 

In any case. the scatter in the data made it impossible to differentiate it 

directly. lt was thought that since the entropy was to be derived from the heat 

capacity by integration, the scatter would be tiltered,but even this turned out to 

produce :~ ] T values of wildly oscillating signs,etc . It was necessary to smooth 

the data, a~d their variable density made this difficult. The scatter was worst on 

the sides of sharp peaks, where small errors in measuring the temperature 

cause sharp oscillations in .the curves drawn ttirough the data points. Various 

techniques of fitting were tried- low order polynomial fits (up to 20th degree), 

and similar techniques using orthogonal polynomials, truncated Fourier series 

fits, and fits using spline functions. All of these methods had similar difficulties -­

wherever the fitting functions were not constrained by many data points, i.e. at 

the ends of the interval or where the data were sparse, they would diverge or 

bend far from the rest of the data, seriously affecting the quality of the fit for 

considerable distances into the dense data. All but the spline fits failed to follow 

peaks correctly. 

What finally worked was a method known as B-splines on an irregular mesh, 

which are explained at the end of this section. It is not necessary to know how 

they work,since plots of the data points and the smoothed curves fitting them 

clearly show that the procedure introduces nothing pathological, except round­

ing of the peaks (at the very top) . See figure (A.1) The curves are essentially the 

same as would be drawn by eye and French curve, except they have characteris­

tic mathematical properties because they are best fits in a certain sense. 

The B-splines that were used to smooth the heat capacities and other ther­

modynamic functions are easily integrated and differentiated. The Elgin data 

were analyzed to find starting values of the entropy that weren't too near any 
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phase transitions (to avoid problems matching to the histogram type results) . 

From these starting values, the integrated CIT values were subtracted to extend 

the entropies to the lowest temperatures for which heat capacities existed at 

each coverage,including at all the "magic" temperatures in the range. This 

table of entropies was interpolated to the grid points between coverages. The 

entropies were then smoothed and differentiated with B-splines to generate new 

values of chemical potential from the Elgin starting values at 2.4119K. The tem-

perature integrations of ~~ L were both up"!ard and downward, the upward 

ones being designed to check the consistency of the reduction by comparing 

with Elgin's derived chemical potentials. They are not completely consistent but 

the difi'erences are small. They probably arise from two effects . One is that 

these chemical potentials are derived from the unreliable high-temperature 

heat capacities from Washington, uncorrected for desorption, which should have 

significant effects o~ =~ lr at least at high coverage. The other is that nearly 

all the Elgin chemical potentials below 4.2K are derived from his histogram pro­

cedure , rather than from direct measurement of vapor pressures at these tem­

peratures, and the B-spline procedure should be more accurate with 

dense,scattered data . In all cases checked so far, the change in chemical poten­

tial computed between 2.4 and 4.2K is larger than the change computed by 

Elgin. 

In the course of generating the entropy tables, it was found necessary to fill 

out the heat capacity tables in certain regions to prevent the fitting functions 

from misbehaving in nearby regions where data exist. This "fake" data were 

inserted in the following places: 
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1. In the 3 Hering runs at very low coverage, the upper temperature limit was 

1.5K. Entropies and heat capacities between 2.4 and 4.2K were interpolated 

between nearby Elgin coverages and although there was no overlap of the 

data lrom Caltech and Washington here, the integrations were carried out 

anyway (using a very large first step). The results at very low coverage and 

temperature cannot be taken very seriously. 

2. Several of the runs in the solid region extended only down to about 1K. To 

prevent messing up the edges of nearby regions where the data e:x-tended to 

much lower temperat'lire,these runs were extrapolated toward zero tem­

perature using a T2 law with Debye temperatures from Hering's analysis of 

her own data. 

3. Several runs near the registry density which contained only points near the 

peak were ignored during the preparation of the general tables . 

Nature of B-splines-5'· 6, 7 

Consider a real interval [a,b] and a set of values cO ,cl, .. . cn in that 

interval.The points a,cO.cl, ... ,b are a set of knots on the interval . On this set of 

knots we can construct functions with following properties: 

1. On each sub-interval between two knots,the function is a cubic polynomial. 

2. Each of the cubic polynomials joins onto its neighbors smoothly, matching 

function values, first and second derivatives at the knots. 

The set of all such functions on a particular set of knots forms a function 

space . If we have a function defined at any set of points on the interval [a ,b], 

there is a unique member of the function space which is a best fit (in the least 

squares sense) to the arbitrary function, that is, out of all the members of this 

function space, it comes closest to the arbitrary function. 

It turns out that there is a way to choose a basis for the function space 
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(with some trickery at the ends of the interval [a,b]) with the property that on 

any sub-interval, . only four of the basis functions are nonzero (the total number 

of basis functions is n+4, where n is number of subintervals). All the functions in 

the space are linear combinations of basis functions, so the least squares fit can 

be represented as a linear regression to find the coefficients of the linear combi­

nation, and since only four functions are defined on any subinterval. the matrix 

equation is banded and easy to solve and store,even if there are many knots and 

data points . The problem is always well-posed if a decent choice of the knots is 

made. A good rule of thumb is to make sure that every sub-interval has at least 

one data point in it- if it doesn't, the polynomial may go crazy in that subinter­

val. For that reason.standard spline smoothing (which spaces the knots at regu­

lar intervals), fails . Each of these functions which is a smooth joining of cubic 

polynomials is by definition a spline function and the space is the space of B­

splines on a given set of knots. 

The way the scattered heat capacity data were treated was to place the 

knots at every k-th data point (typically, k=4). 

Notice that this fitting procedure is different from the procedure of spline 

interpolation (also used in this data reduction project). The fitting procedure 

finds the spline curve that comes closest to a set of .data points given a perhaps 

unrelated set of knots, while the interpolation procedure fixes one knot at each 

data point, constructs the unique spline function that passes through all the 

data points, and uses it to interpolate between the data points . 

Thermodynamic tables for 3He 

The table of the thermodynamic functions for 3He films follow. The columns 

are identified and their units set forth below. 

The first line of each page contains the coverage, first in units of A -2 and 
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then as a fraction of the 1/3 registry. The columnar data are, from left to right 

1. Temperature in Kelvins 

2. Chemical potential in Kelvins 

3. Natural log of the 3-D gas pressure in torr 

4. Entropy per atom in Boltzmanns 

5. Bulk modulus in ergs I ern 2 

6. Landau potential density in ergs I cm.2 (same as 2-D pressure) 

7. Helmholtz free energy density in ergs I cm.2 

8. Internal energy density in ergs 1 cm.2 
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Table of Thermodynamic Functions of 3He on grap3ite . 

n= . 3859e-03 ang ••-2 or n/nc= .6062e-02 

T u Ln(?3D) SINk B -P2d=W F E 

2.4119 -263.65 -1.018e+02 1. 3820 4.770e-02 -.0230 -.1247 - . 1234 

2.6421 -263.60 -9.202e+01 1. 4323 4.750e-02 -.0229 -.1246 -.1231 

2.8943 -263.54 -8.308e+01 1.4574 4.720e-02 -.0227 -. 1244 - . 1228 

3 . 1707 -263.48 -7.490e+01 1. 4825 4.690e-02 -.0226 -.1242 -.1224 

3.4735 -263.41 -6.740e+01 1.5077 4.650e-02 -.0224 - . 1240 -.1220 

3.8051 -263.34 -6.055e+01 1.5579 4 . 610e-02 -.0222 -.1233 -.1215 

4.1685 -263.26 -5.427e+Ol 1.5831 4.560e-02 -.0220 -.1235 - . 1210 

4.5667 -263. 17 -4 . 851e+Ol 1.6333 4.510e-02 -.0217 - .1232 -.1204 

5.0029 -263.08 -4.324e+01 1. 6836 4 .450e-02 - . 0214 - . 1229 -.1197 

5 . 4808 -262.98 -3.841e+01 1 . 7590 4.380e-02 -.0210 -. 1225 - . 1188 

6.0045 -262.89 -3 . 398e+01 1.8092 4.300e-02 -.0206 -.1221 -.1179 

6.5784 -262.83 -2.993e+01 1. 9600 4.200e-02 -.0201 -.1216 - . 1166 

7.2072 -262 . 83 -2.621e+01 2.0354 4.090e-02 -.0195 -.1210 - . 1153 

7.8958 -262 . 93 -2.282e+01 2 . 1861 3.94-0e-02 -.0188 -.1203 -.1135 

8.6503 -263.16 -1.971e+01 2.4123 3.770e-02 -.0179 -.1195 -.1114 

9.4770 -263.60 -1.688e+01 2 . 7138 3.570e-02 -.0169 - . 1185 -.1087 

10.3830 -264.38 -1.430e+01 2 . 9148 3.350e-02 -.0158 -.1178 - . 1061 
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n= .6119e-03 ang • •-2 or n/nc= .9612e-02 

T u Ln(P3D) SINk B -P2d=W F E 

2.4119 -223.60 -8.519e+01 .9508 7.790e-02 -.0505 -.1873 - . 1859 

2.6421 -223.77 -7.695e+01 .9667 7.740e-02 - . 0502 -.1871 -.1856 

2.8943 -223.95 -6.940e+01 .9667 7.700e-02 -.0499 -.1869 -.1852 

3 . 1707 -224. 16 -6.249e+01 . 9825 7.640e-02 -. 0496 -.1667 -. 1848 

3 . 4735 -224.40 -5.617e+Ol .9984 7.580e-02 -.0492 -.1665 -. 1844 

3.8051 -224 . 67 -5.039e+01 1 . 0142 7.520e-02 -.0487 - . 1662 -.1639 

4. 1686 -224 . 99 -4.509e+01 1 . 0301 7.440e-02 -. 0482 - . 1659 - . 1833 

4.5667 -225.37 -4.024e+01 1.0459 7.340e-02 -.0476 - .1E55 - .1826 

5.0029 -225.82 -3.579e+01 1 . 0935 7.230e-02 -.0470 -. 1852 -.1818 

5 . 48 08 -226.36 -3. 173e+01 1 . 1410 7.090e-02 -.0462 -. 164 7 - . 1609 

6.0045 -227 . 04 -2.80le+01 1.2202 6.920e-02 -.0452 -.1641 -.1797 

6.5784 -227.90 -2 .462e+01 1. 3312 6.710e-02 -.0441 - . 1635 -.1762 

7.2072 -229 . 01 -2.152e+01 1. 4579 6.470e-02 -.0427 -.1828 - .1764 

7.8958 -230 . 44 -1.870e+Ol 1. 5847 6. 180e- 02 -.0410 -.1820 -.174 4 

8 . 6503 -232 . 25 -1.614e+01 1.7432 5.840e-02 -.0390 -.1811 -.1719 

9 .4770 -234.50 -1.381e+01 1 . 9967 5 .440e-02 -.0367 -.1C:. C2 - . 1687 

10 . 3830 -237.32 -1. 169e+Ol 2 .3 137 5.010e-02 -.0342 -.1794 - . 164 7 
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n= .9697e-03 ang • •-2 or nine= .1523e-01 

T u Ln(P3D) SINk B -P2d=W F E 

2.4119 -186.84 -6.995e+01 .9700 7.780e-02 -.0883 -.2695 -.2673 

2.6421 -187.17 -6.310e+01 1.0000 7.760e-02 -.0879 -. 2694 -.2668 

2.8943 -187.55 -5.683e+01 1.0300 7.730e-02 -.0874 -.2693 -.2664 

3. 1707 -187.99 -5. 1 09e+01 1.0500 7.690e-02 -.0868 -.2691 -.2659 

3.4735 -188.50 -4.584e+01 1.0900 7.640e-02 -.0662 - . 2689 -.2653 

3.8051 -189.10 -4. 104e+01 1. 1300 7.570e-02 -.0854 -.2688 -.264 6 

4. 1686 -189.82 -3 . 665e+01 1. 1800 7 . 470e-02 -.0845 -.2C:E.5 -.2533 

4.5667 -190.68 -3.264e+01 1.2400 7.350e-02 -.0534 - . 2683 -.26 28 

5.0029 -191 . 73 -2.898e+01 1.3200 7.200e-02 -.0821 -.2680 -.2615 

5.4808 -183.01 -2.565e+01 1. 4200 7.010e-02 - . 0805 -.2377 -.26J1 

6.0045 -194.59 -2.261e+01 1. 5500 6.790e-02 -.0785 - . 267 3 -.2583 

6.5784 -196.52 -1.985e+01 1. 7400 6.540e-02 -.0764 -.2670 -.2559 

7 . 2072 -198.86 -1 . 734e+01 1.9700 6.270e-02 - . 0738 -.2556 -.2528 

7.8958 -201 . 68 -1.506e+01 2.2200 5.990e-02 -.0707 -.2653 -.2493 

8.6503 -205.05 -1.299e+01 2 . 4900 5.700e-02 -.0671 - . 2660 -.2451 

9.4770 -209.05 -1.112e+Ol 2.8200 5.410e-02 -.0631 -.2658 - . 23S9 

10 . 3830 -213.75 -9.419e+OO 3. 1700 5. 140e- 02 -.0557 -.2650 - . 234 1 
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n= .1537e-02 ang••-2 or nine= .2414e-01 

T u Ln(P3D) SINk B -?2d=W F E 

2.4119 -167.80 -6.206e+01 1.2239 6.350e-02 -.1218 -.3797 -.3751 

2.6421 -168.21 -5.592e+01 1. 2681 6.300e-02 -.1212 -.3797 -.3746 

2.8943 -168.69 -5.031e+01 1.3186 6.230e-02 -.1205 -.3797 -.3739 

3. 1707 -169.26 -4.518e+01 1. 3754 6. 140e-02 -.1196 -.3798 -.3731 

3.4735 -169.96 -4.050e+01 1.4448 6.030e-02 -.1186 -.3799 - . 3721 

3 . 8051 -170.80 -3.623e+01 1. 5331 5.900e-02 - . 1174 -.3799 -.3710 

4. 1686 -171.83 -3.233e+01 1. 6466 5.750e-02 -.1159 -.3600 -.3685 

4.5667 -173.07 -2.878e+01 1. 7854 5.580e-02 -.1142 -.3802 -.3577 

5.0029 -174.56 -2.555e+01 1. 9621 5.410e-02 -.1121 -. 3804 -.3653 

5.4808 -176.35 -2.261e+01 2. 1640 5.230e-02 -. 1097 -.3607 - . 3625 

6.0045 -178.47 -1.992e+01 2.4037 5.070e-02 -.1068 -.3512 -.3590 

6.5784 -180.97 -1.748e+Ol 2.6624 4.940e-02 -. 1036 -.3818 - .354-8 

7.2072 -183.88 -1.526e+Ol 2 . 9274 4 . 820e-02 -.1000 -.3826 -.35G2 

7.8958 -187.23 -1.323e+Ol 3. 2113 4.750e-02 -.0959 -.3837 -.34-4- 8 

8.6503 -191.08 -1.138e+01 3.4952 4.710e-02 -.0915 -.3652 -.3387 

9.4770 -195.46 -9 . 685e+OO 3.8232 4.730e-02 -.0867 -.3872 -.3315 

10.3830 -200.43 -8.135e+OO 4. 1324 4.800e-02 -.0817 -.3898 -.3238 
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n= .2436e-02 ang • •-2 or n/nc= .3827e-01 

T u Ln(P3D) SINk B -P2d="i'v F E 

2.4119 -156.02 -5.717e+01 1.4012 7.780e-02 -.1510 -. 5311 -.5228 

2.6421 -156.61 -5.153e+01 1. 4927 7.560e-02 -.1499 -.5314 -.5218 

2.8943 -157.32 -4 . 638e+01 1.6042 7.350e-02 -. 1486 -.5319 -.5205 

3.1707 -158. 15 -4. 166e+01 1 . 7356 7.130e-02 -. 14 71 -. 5324 -.5190 

3.4735 -159 . 14 -3 . 738e+01 1.8668 6.900e-02 -. 1454 -.5330 -.5171 

3.8051 -160.29 -3.347e+01 2.0620 6 . 670e-02 -. 1434 -.5338 -.5147 

4. 1686 -161. 64 -2.969e+01 2.2531 6 . 460e-02 - . 1411 -.5348 - . 5119 

4.5667 -163.20 -2.662e+01 2.4600 6.270e-02 -.1385 -.5360 -.50E7 

5.0029 - 164. 99 -2.364e+01 2.6830 6. 110e-02 - . 1357 -. 5376 -.5049 

5.4808 -167.05 -2.091e+01 2.9099 5.990e-02 -. 1325 -.5395 -.5006 

6.0045 -169.39 -1.841e+01 3 . 1467 5 . 690e-02 -. 1292 -.5418 -.4958 

6 . 5784 -172.04 -1 . 613e+01 3.4035 5.850e-02 -.1256 -.5447 - . 4902 

7.2872 -175. 04 -1 . 403e+01 3.6463 5.840e-02 -.1219 -. 5482 -.4842 

7.8958 -178 . 41 -1.211 e+01 3.8891 5 . 860e-02 -.1179 - .5525 - . 4777 

8.6503 -182. 19 -1 . 035e+01 4. 1200 5.960e-02 -.1138 -.5576 - . 4708 

9 . 4770 -186.42 -8.732e+OO 4.3708 6.080e-02 -. 1096 -.5637 -.4628 

10 . 3830 -191. 15 -7.243e+OO 4.6096 6.230e-02 -.1055 -. 5711 -. 4545 
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n= .3660e-02 ang • •-2 or n/nc= .6063e - 01 

T u Ln(?3J)) Sl!\"k B -P2d="i'f F E 

2.4119 -147.61 -5.366e+01 1.9745 6.440e-02 -. 1674 -.7571 -.7388 

2.6421 -148.43 -4 . 843e,..Ol 2. 1228 6 . 310e-02 -.1854 -.7583 -.7366 

2.8943 -149.37 -4.363e+01 2 . 2735 6.200e-02 -.1831 -.7597 -.7343 

3. 1707 -150.42 -3.924e+Ol 2 . 4343 6.120e-02 -.1807 -.7e13 -.7315 

3.4735 -151.61 -3.522e+01 2.6026 6.050e-02 -.1761 -.7633 -.7234 

3.8051 -152 . 95 -3. 154e+01 2.7759 6.020e-02 - . 1753 - . 7657 -.724 9 

4. 1666 -154 . 46 -2 . 8 17e+01 2 . 9518 6.030e-02 -. 1724 -.76c5 -.7211 

4.5667 - 156 . 14 -2.508e+01 3 . 1326 6.070e-02 -.1683 -.7720 -.7168 

5.0029 -158.02 -2.224e+01 3.3160 6.140e-02 -.1661 -.7761 -.7120 

5 . 4808 -160. 12 -1.964e+01 3.5019 6.260e-02 -.1629 -.7609 -.7068 

6.0045 -162.46 -1 . 726e+01 3.6929 6.410e-02 - . 1595 -.7866 -.70 : 0 

6.5784 -165.07 -1.507e+Ol 3.8663 6 . 600e-02 - . 1562 -.7933 - . 6S47 

7.2072 -167 . 98 -1.305e+01 4.0747 6 . 830e-02 -.1528 - . 6012 - . 6::78 

7.8958 -171.21 -1. 120e+01 4 . 2606 7.110e-02 -.1494 - . 8103 -.6804 

8.6503 -174.82 -9 . 498e+OO 4.4440 7.430e-02 -.1460 - . 8208 - . 6724 

9.4770 -178.83 -7 . S31e+OO 4.6349 7.7SOe-02 - . 1427 -.8330 -.6e34 

10.3830 -183 . 30 -6 . 486e+OO 4.8208 8 . 200e-02 - . 1395 - . 8471 -.6539 



- 187 -

n= .6119e-02 ang••-2 or n/nc= .9612e-01 

T u LTI(P3D) S/~~ B 

.0753 -124 . 17 -1.650e+03 1.3502 5.560e-02 

.0825 -124.20 -1.506e+03 1 . 3708 5.580e-02 

.0904 -124.23 -1 . 375e+03 1.3692 5.600e-02 

.0990 -124 . 27 -1.256e+03 1.3835 5.610e-02 

. 1085 -124.31 -1 . 146e+03 1.3961 5.630e-02 

. 1188 -124 . 35 -1.047e+03 1.4009 5.660e-02 

.1302 -124.40 -9.553e+02 1 . 3993 5.670e-02 

.1426 -124 . 46 -8.723e+02 1.4167 5.690e-02 

.1562 -124 . 53 -7.965e+02 1 . 4247 5 . 720e-02 

. 17 12 

. 1875 

.2054 

. 2250 

.24 65 

.2701 

.2959 

.3242 

.3551 

.3890 

.4262 

.4669 

.5115 

.5604 

.6139 

.6725 

.7367 

.8071 

.8842 

.9687 

1.0612 

1. 1625 

-124.60 -7.269e+02 

-124.68 -6 . 638e+02 

-124.76 -6.061e+02 

-124.86 -5.534e+02 

-124.98 -5.052e+02 

-125.10 -4.611e+02 

-125 . 24 -4.210e+02 

-125.40 -3 . 843e+02 

-125 . 57 -3 . 509e+02 

-125.77 -3.204e+02 

-126.00 -2 . 924e+02 

-126 . 25 -2.670e+02 

-126 . 53 -2.437e+02 

-126.85 -2.225e+02 

-127 . 21 -2 . 031e+02 

-127 . 62 -1.854e+02 

-128 . 09 -1.693e+02 

-128.62 -1.546e+02 

-129 . 23 -1.41le+02 

-129 . 90 -1.289e+02 

-130.66 -1 . 177e+02 

-131.52 -1.074e+02 

1 . 4421 5.740e-02 

1.4405 5.770e-02 

1.4500 5.790e-02 

1 .4595 5 . 810e-02 

1.4659 5.830e-02 

1.4770 5 . 860e-02 

1.4833 5 . 880e-02 

1 . 4896 5 . 900e-02 

1.5261 5.920e-02 

1 . 5419 5.940e-02 

1 . 5483 5.950e-02 

1 . 5768 5 . 960e-02 

1 . 5974 5.970e-02 

1 . 6370 5 . 970e-02 

1 . 6671 

1. 7321 

1 . 7733 

5.970e-02 

5 . 970e-02 

5 . 950e-02 

1.8002 5.920e-02 

1 . 8446 5.870e-02 

1 . 8826 5.820e-02 

1.9143 

1.9761 

5.760e-02 

5.670e-02 

-P2d=Vv F E 

-.9616 -.2225 -.9623 

- . 2225 - . 9825 -.9818 

-.2226 -.9S28 - . 9820 

-.2227 - . 9631 - . 9523 

- . 2228 - .9534 - . 8825 

-.2229 -.9838 - . 9628 

- . 2230 - . 9542 -.9531 

- . 2231 - . 9E:47 - . SE:34 

-.2232 - . 9551 -.9838 

- . 2233 - .8357 -.954 2 

-.2234 - . 8~53 -.8846 

-.2235 - . 9859 -.9651 

-.2235 -.9576 -.9856 

-.2237 -.9554 -.9862 

-.2238 - . 9893 - . 9868 

- . 2239 -.9902 -.9675 

-.2239 -.9913 - . 98 83 

-.2240 -.9924 - . 9691 

- . 2241 - . 9937 -.SS:JO 

- . 2241 - . 9951 -.99 10 

- . 2241 -.9966 -.9921 

- . 2240 - . 9983 -.9933 

-.2240 -1.0002 -.99~6 

-.2240 -1.0024 -.9961 

-.2239 - 1 .0048 - . 9976 

- . 2237 -1.0075 -.9995 

-.2234 -1.0105 -1.0016 

-.2231 -1.0138 -1.0038 

-.2227 -1.0175 -1.0064 

-.2222 - 1 . 0217 -1 . 0093 

-.2216 -1.0263 -1 . 0123 



- 188 -

1.2736 -132.48 -9.810e+01 2.0411 5.570e-02 -.2209 -1.0316 -1.0157 

1.3952 -133.58 -8.959e+01 2. 1108 5.460e-02 -.2202 - 1. 0375 -1.0195 

1.5285 -134.83 -8. 183e+01 2. 1568 5.310e-02 -.2192 -1.0442 -1.0240 

1.6745 -136.24 -7.475e+01 2 . 2170 5.130e-02 -.2180 -1.0516 -1.0289 

1.8344 -137.84 -6.831e+01 2.2551 4.890e-02 -.2165 -1.0599 -1.0346 

2.0097 -139.66 -6.2~3e+01 2.3533 4.580e-02 -. 2145 -1 . 0691 - 1. 0402 

2.2016 -141.73 -5.708e+01 2.4468 4.260e-02 -.2125 -1.0797 -1.0467 

2.4119 -144.08 -5.222e+01 2.6687 3 . 900e-02 -.2102 -1.0918 -1.0524 

2. 6421 -144. 89 -4.709e+01 2.7859 4. 100e-02 -.2082 -1.0948 -1.0487 

2.8943 -145.79 -4.240e+01 2.9048 4.330e-02 -.2062 -1 . 0983 -1.04 68 

3. 1707 -146.80 -3.810e+01 3.0268 4.590e-02 -. 2041 -1.1024 -1.0436 

3.4735 -147.92 -3.415e+01 3.1520 4 . 880e-02 -.2020 -1.1071 -1 . 0~01 

3.8051 -149.17 -3.054e+01 3.2819 5.190e-02 -.1998 -1 . 1126 -1.0362 

4. 1686 -150.55 -2.723e+01 3.4135 5.550e-02 -.1977 - 1 . 1190 -1 . 0319 

4.5667 -152. 10 -2 . 419e+01 3.5498 5.930e-02 -. 1955 -1 . 1263 - 1 . 0271 

5.0029 -153 . 81 -2.140e+01 3.6876 6 . 370e-02 - . 1936 - 1 . 1348 -1.0219 

5.4808 -155.72 -1.884e+Ol 3.8255 6.840e-02 -.1917 -1.1445 -1.0102 

6.0045 -157.83 -1.649e+01 3.9665 7.360e-02 -.1899 - 1 . 1557 -1.0099 

6.5784 -160.19 -1 . 432e+01 4. 1139 7.930e-02 -.1883 - 1 . 1685 -1.0029 

7.2072 -162 . 81 -1.234e+01 4.2581 8.550e-02 -.1868 -1 . 1831 - . 9953 

7 . 8958 -165.73 -1.051e+01 4.4008 9.240e-02 -.1856 -1 . 1997 - . 9871 

8.6503 -168.98 -8 . 823e+OO 4.5402 1.000e-01 -.1847 -1 . 2187 - . 9783 

9.4770 -172.60 -7.273e+OO 4.6860 1.083e-01 -. 1841 -1.2402 - . 9685 

10.3830 -176. 64 -5.845e+Of' 4.8318 1.172e-01 -. 1840 -1.2648 -.9579 



- 189 -

n= .9697e-02 ang••-2 or nine= .1523 

T u Ln(P3D) SINx B 

7.020e-02 

7 . 040e-02 

7.070e-02 

7. 11 Oe-02 

.0753 -121.72 -1.618e+03 1.1720 

.0825 -121 . 74 -1.477e+03 

.0904 -121.76 -1.348e+03 

.0990 -121.79 -1.231e+03 

.1085 

.1188 

.1302 

.1426 

.1562 

.1712 

.1875 

.2054 

-121.82 -1.123e+03 

-121.85 -1.026e+03 

-121 . 89 -9.359e+02 

-121 . 93 -8.546e+02 

-121.98 -7.803e+02 

-122.04 -7.119e+02 

-122.10 -6.501e+02 

-122.18 -5.935e+02 

1. 1850 

1 . 1880 

1.2160 

1.2280 7.140e-02 

1.2510 7.180e-02 

1.2600 7.210e-02 

1.2860 7.260e-02 

1.2990 7.300e-02 

1 . 3120 7.340e-02 

1.3380 7.390e-02 

1.3570 7.440e-02 

-P2d="iY F 

- . 2501 - 1 . 4304 

-.2503 -1 . 4308 

-.2505 -1.4312 

- . 2507 - 1 . 4316 

- . 2509 - 1 . 43 21 

- . 2511 - 1 . 4327 

- . 2513 - 1 . 4333 

- . 2516 - 1 . 4339 

-.2518 -1 . 4347 

- . 2521 -1 . 4355 

-.2523 -1 . 4364 

- . 2526 - 1 . 4374 

E 

-1 . 4295 

-1.4298 

-1.4301 

-1 . 4305 

-1. 4308 

-1 . 4312 

-1 . 4317 

-1. 4322 

-1.4327 

-1. 4 333 

- 1. 43~0 

-1 . 434 7 

.2250 -122 . 26 -5.418e+02 1 . 3760 7.490e-02 -.2529 - 1. 4385 - 1 .4355 

.2465 -122.36 -4.946e+02 1.3910 7.540e-02 - . 2531 -1 . 4397 - 1. 4353 

.2701 

.2959 

.3242 

.3551 

.3890 

.4262 

-122 . 47 -4.514e+02 

-122.60 -4.120e+02 

-122 . 74 -3.761e+02 

-122.90 -3.434e+02 

-123 . 08 -3 . 135e+02 

-123.29 -2.861e+02 

1 . 4060 7.600e-02 

1 . 4290 7 . 650e-02 

1 . 4460 7 . 710e-02 

1 . 4960 7 . 760e-02 

1.5250 7.820e-02 

1.5430 7.880e-02 

.4669 -123.53 -2 . 612e+02 1.5840 7.930e-02 

.5115 -123 . 81 -2.384e+02 1 . 6070 7.990e-02 

.5604 

.6139 

.6725 

.'7367 

.8071 

.8842 

.9687 

1. 0612 

1. 1625 

-124 . 11 -2 . 176e+02 

-124.46 -1.986e+02 

-124 . 86 -1.813e+02 

-125.32 -1 . 656e+02 

-125.85 -1.511e+02 

-126.46 -1 . 380e+02 

-127.14 -1.260e+02 

-127.90 -1.151e+02 

-128.79 -1.051e+02 

1.6550 8.050e-02 

1.6900 8.110e-02 

1 . 7780 8.180e-02 

1 . 8290 8.240e-02 

1.8790 8.290e-02 

1.9320 8.330e-02 

1.9610 8 . 380e-02 

2.0170 8.420e-02 

2.0870 8 . 440e-02 

- . 2534 - 1 . 4410 -1.4373 

-. 2537 -1.44 25 -1 . 43C:4 

-.2529 -1 . 444 1 -1 . 4325 

- . 2541 - 1 . 4459 -1 . 4407 

- . 2543 - 1 . 44 79 - 1 . 44 21 

- . 2545 - 1 . 4501 -1 . 44 37 

- . 2546 -1 . 4525 -1. 4454 

- . 254 7 - 1 . 4553 - 1 . 44 73 

- . 2548 -1 . 4583 -1 .44S3 

-.2549 -1 . 4617 -1 . 4517 

-.2549 -1 .4556 -1. 4 540 

-.2548 -1 .4700 -1.4569 

-. 2545 -1.4749 -1.4602 

-. 2540 -1.4803 -1 . 4638 

-.2536 -1.4664 -1.4680 

-.2530 -1.4933 -1.4725 

- . 2521 -1 . 5009 -1.4774 



- 190 -

1.2736 -129.77 -9.597e+01 2. 1420 8.460e-02 -. 2511 -1.5095 - 1 . 4 53 1 

1.3952 -130.89 -8 . 767e+01 2.2300 8 . 490e-02 -.2501 -1.5194 -1.4892 

1.5285 -132 . 19 -8 . 010e+01 2 . 2990 8 . 470e-02 - . 2466 -1.5304 -1 . 4963 

1.6745 -133.64 -7 . 320e+Ol 2.3520 8 .46 0e-02 -.24 68 - 1.5427 -1.5046 

1 . 8344 -135.32 -6 . 693e+01 2.4470 8 . 390e-02 -.2444 -1.5566 -1.5130 

2.0097 -137.24 -6.123e+01 2 . 5230 8 . 280e-02 - . 2413 -1 . 5721 -1 . 5229 

2.2016 -139 . 40 -5 . 603e+01 2.6350 8 . 190e-02 -.2350 -1.5898 - 1 . 5 335 

2 . 4119 -141.86 -5. 130e+01 2.8870 8 . 090e -02 - . 2344 - 1 . 6100 -1 .5~25 

2. 6421 -142 . 54 -4.620e+01 2.9E50 8.460e-02 - . 2339 -1.6161 - 1 . 5 38 6 

2.8943 -143.30 - 4. 154e+01 3 . 0820 6 . 660e- 02 -.2335 - 1 . 6230 - l . 5355 

3 . 1707 -144. 15 -3.726e+01 3 . 1820 9.29 0e-02 -.2331 -1.6309 - 1 . 533 1 

3.4735 -145 . 10 -3 . 334e+01 3.2820 9.750e-02 - . 2329 -1 . 6399 - 1. 5294 

3.8051 -146 . 16 -2.975e+01 3.3E50 1. 025e-01 - . 2328 - 1. 650 1 - 1. 5 252 

4 . 1685 -147.35 -2.646e+01 3.4890 1 . 078e-01 -.2328 -1.66 16 - 1 . 5206 

4.5667 -148 . 67 -2 . 344e+01 3.5950 1.136e-01 -.2331 -1 . 674 8 - 1 . 51 56 

5.0029 - 150. 15 -2 . 067e+01 3 . 7020 1 . 200e -01 -.2336 -1.6E96 -1. 51 00 

5 . 4808 -151 . 80 -1 . 813e+01 3 . 8110 1 . 269e-01 -.2345 -1 . 7064 -1 . 5039 

6.0045 -153.63 -1.579e+01 3.9230 1. 343e- 01 -.2357 -1.7255 -1. 4 970 

6 . 5784 -155 . 68 -1.364e+01 4 . 0379 1 . 425e-01 - . 2373 -1 . 7470 - 1 . 4884 

7.2072 -157 . 97 -1. 166e+Ol 4. 1529 1.514e-01 - . 2395 -1 . 7713 -1 . 4811 

7.8958 -160 . 52 -9.847e+OO 4.2669 1 . 609e-01 -.2422 -1.7988 - 1 . 4 721 

8.6503 -163 . 37 -8. 175e+OO 4.3809 1 . 714e-01 -.2455 -1 . 8297 -1 .4622 

9.4770 -166.56 -6 . 636e+OO 4.5039 1.828e-01 -.2495 -1.8646 - 1. 4587 

10 . 3830 -170. 12 -5 . 217e+OO 4.6269 1.954e-01 - . 2544 -1 . 9041 -1 .4382 



- 191 -

n= .1455e-01 a:J.g • '-2 or nine= .2286 

T u Ln(?3D) Sl:!\"k B -P2d=Vf F E 

2.0097 -135.59 -6 . 040e+Ol 2.5818 7.600e-03 -. 2647 -2 . 2375 -2 . 1620 

2.2016 -137 . 50 -5 . 517e+01 2.7098 3 . 850e-02 -.2664 -2 . 2670 -2. 1802 

2.4119 -139 . 67 -5.039e+01 2.8084 7.350e-02 - . 2684 -2 . 3007 -2.2021 

2. 6421 -140.24 -4.533e+Ol 2.8971 7.980e-02 -.2699 -2 . 3103 -2.1989 

2.8943 -140 . 87 -4.070e+01 2 . 9857 8.670e-02 -.2715 -2.3212 -2 . 1955 

3. 1707 -141.59 -3.645e+01 3.0743 9.430e-02 -.2734 -2 . 3335 -2 . 1917 

3.4735 -142.39 -3.255e+01 3. 1636 1.025e-01 -.2756 -2.3474 -2. 1875 

3.8051 -143.29 -2.900e+01 3.2536 1.115e-01 -.2762 -2.3631 -2. 1530 

4. 1686 -144.31 -2 . 573e+01 3 . 3443 1.213e-01 -.2811 -2.3808 -2. 1780 

4.5667 -145 . 44 -2.274e+01 3.4356 1.316e-01 -. 2845 -2.4007 -2. 1725 

5.0029 -146.72 -1 . 995e+01 3.5289 1.433e-01 -.26S5 -2.4232 -2. 1663 

5.4808 -148 . 14 -1.746e+01 3.6228 1 . 558e-01 - . 2930 -2.4485 -2.1596 

6.0045 -149 . 74 -1 .514e+01 3.7195 1.6S4e-01 -.2983 -2.4770 -2. 1520 

6.5784 -151 . 53 -1.301e+01 3.8174 1.840e-01 -.3043 -2 . 5091 -2 . 1437 

7.2072 -153.53 -1. 105e+01 3 . 9167 2.000e-01 -. 3112 -2.5451 -2. 1344 

7.8958 -155.78 -9.246e+OO 4.0167 2.175e-01 -.3191 -2 . 5556 -2. 1242 

8.6503 -158 . 29 -7.587e+OO 4 . 1180 2.364-e-01 -.3280 -2 . es12 -2. 1129 

9.4770 -161 . 11 -6.060e+OO 4.2253 2.574e-01 -.3383 -2 . 6824 -2.0998 

10.3830 -164. 26 -4 . 653e+OO 4.3339 2.804e-01 -.3501 -2.7401 -2.0854 



- 192 -

n= . l939e -OJ e.n g • •- 2 or nine= .3046 

T u Ln(P3~) SII\r:k B -?2d='i'v F E 

2.4119 -136 . 97 -5.010e+01 2 . 6505 3.960e-02 -.2853 - 2.9600 -2.8560 

2 . 6421 -139.43 -4 . 503e+01 2.7340 5 . 090e-02 - . 2892 -2 . 9928 -2 . 8527 

2.8943 -139 . 95 -4 . 038e+01 2 . 8180 6 . 330e-02 -.2935 -3.0072 -2.8491 

3. 1707 -140 . 54 -3 . 612e+01 2.9026 7 . 660e-02 -.2984 -3 . 0235 -2.6451 

3.4735 -141 . 21 -3.222e+Ol 2.9671 9.180e-02 - . 3033 -3.0419 -2.6407 

3 . 8051 -141.96 -2 . 865e+01 3 . 0716 1 . 080e-01 -.3099 -3 . 0626 -2 . 8359 

4 . 1686 -142 . 62 -2 . 537e+01 3 . 1556 1.256e-01 - . 3 166 -3 . 0858 -2 . 83~8 

4 . 5667 -143.78 -2.237e+01 3.2411 1 . 448e-Ol - . 3242 -3.1120 -2 . 8250 

5.0029 -144.86 -1.961e+01 3.3276 1 . 658e-01 -.3326 -3.1414 -2 . 8166 

5 . 48 08 -146.07 -1.708e+01 3 . 4147 1 . 866e-01 - . 3421 -3.1745 -2.E 116 

6.0045 -147.45 -1.476e+Ol 3 . 5037 2 . 133e-01 -.3527 -3 . 2 116 -2 . 5037 

6 . 5784 -1 46.89 -1.262e+01 3.5952 2 .403e-01 -.3645 -3.2534 -2 . 7948 

7.2072 -150 .73 -1.066e+01 3.6677 2.695e-01 -.3777 -3.3002 -2.7849 

7.8958 -152 . 68 -6.853e+OO 3.7807 3.012e-01 -.3924 -3 . 3528 -2.7740 

8.6503 -154. 87 -7. 193e+OO 3.6753 3.356e-Ol -.4088 -3 . 4118 -2.7618 

9.4770 -157.35 -5.663e+OO 3. 9748 3.724e-01 -.4271 -3.4 780 -2.74 76 

10.3830 -160. 13 -4 . 254 e+OO 4 . 0768 4.120e-01 -.4475 -3.5524 -2.7317 



- 193 -

n= . 2424e-Ol a.:ng • •-2 or nine= .3808 

T u Ln(P3D) Sl!\"'k B -P2ci=W F E 

2.2016 -137.55 -5.519e+01 2 . 3958 7. 100e-03 -. 2645 -3 . 5988 -3 . 4710 

2.4119 -138.61 -4 . 995e+01 2 . 4682 7.670e-02 - . 2957 -3 . 6556 -3.5113 

2.6421 -138.97 -4 . 485e+01 2.5502 9 . 110e-02 - . 3025 -3 . 6712 -3.5079 

2.8943 -139.38 -4.018e+01 2 . 6318 1 . 070e-01 - . 3101 -3.6886 -3 .504 1 

3 . 1707 -139 . 86 -3.591e+Ol 2.7134 1 . 246e-01 -.3185 -3 . 7086 -3 . 5000 

3.4735 -140.39 -3 . 199e+01 2.7951 1.438e-01 - . 3278 -3.7309 -3 . 4956 

3.8051 -141.01 -2.840e+01 2 . 8763 1 . 652e-01 -.3381 -3 .755 1 -3. 49:J 8 

4. 1686 -1 4 1 . 70 -2.511e+01 2.9583 1.8e3e-01 -.3495 -3.76.:;3 -3 .4E:54 

4.5667 -142.49 -2 . 209e+01 3.0407 2.136e-01 -.3620 -3.8161 -3. 4785 

5.0029 -143.39 -1.932e+01 3.1239 2 .4 13e-01 -.:3760 -3 . 8518 -3 .~700 

5.4808 -144 . 41 -1 . 678e+01 3 . 2079 2.712e-01 - . 3915 -3 .821 9 -3 .4657 

6.0045 -145.56 -1.444e+01 3.2939 3.042e-01 - . 4065 -3.9:370 -3 .4575 

6.5784 -146 . 87 -1.230e+01 3 . 3815 3.398e-01 -. 4274 -3 . 9675 -3.446 3 

7.2072 -1 4 8 . 35 -1.033e+01 3 . 4703 3 .786e-01 -.4483 -4.0443 -3 . 4360 

7.8958 -150.02 -8.517e+OO 3 . 5599 4 . 210e-01 - . 4714 -4. 1079 -3.4266 

8.6503 -151 . 91 -6.851e+OO 3 . 6519 4.669e-01 - .4969 -4.1793 -3 .4 135 

9.4770 -154.06 -5 . 317e+OO 3 . 7 483 5. 168e-01 -.5250 -4.2594 -3 . 3963 

10 . 3830 -156 . 49 -3.904e+OO 3 . 8467 5 .7 13e-01 - . 5561 -4.3495 -3.3813 



- 194 -

n= . 2909e-01 ang • •-2 or n/nc= .4570 

T u Ln(P3D) S!!\"k B -P2d=Vi F E 

1 . 5265 -135.07 -8.199e+01 1.8950 6.500e-03 -.1528 -4.0621 -3.9979 

1.6745 -135.52 -7.433e+01 1.9447 5 . 040e-02 -.1786 -4. 1210 -4.0263 

1.8344 -136.01 -6.731e+01 2.0164 9.730e-02 -.2085 -4. 1652 -4.0576 

2.0097 -136.53 -6.087e+Ol 2.0537 1 . 442e-01 -. 2434 -4.2151 -4.0950 

2.2016 -137. 16 -5.501e+Ol 2. 1734 1.946e-01 -.2815 -4.2715 -4. 1323 

2.4119 -137.89 -4 . 965e+01 2.2770 2.483e-01 - . 3242 -4.3354 -4. 1756 

2 . 6421 -138 . 18 -4.455e+01 2.3567 2.629e-01 -.3336 -4.3532 -4.1721 

2.8943 -138 . 51 -3.988e+01 2 . 4361 2.791e-01 -.3441 -4.3734 -4.1653 

3. 1707 -138 . 89 -3.560e+01 2.5154 2.970e-01 -.3557 -4.3951 -4 . 1641 

3.4735 -139.33 -3 .168e+01 2.5947 3.171e-01 -.3666 -4.4218 -4. 1596 

3 . 8051 -139.84 -2 . 809e+01 2.6741 3 . 386e-01 - . 3828 -4.4586 -4. 1546 

4.1686 -140.41 -2.480e+01 2.7541 3.627e-01 - . 3955 -4 . 4832 -4.14-92 

4.5667 -141.07 -2. 178e+01 2 . 8344 3 . 869e-01 -.4158 -4.5197 -4. 1432 

5.0029 -141.83 -1.90le+Ol 2.9161 4 . 174e- 01 - . 4349 -4 . 5608 -4. 1364 

5.4808 -142.70 -1.647e+01 2.9981 4.481e-01 -.4559 -4.6069 -4. 1289 

6.0045 -143.68 -1.413e+01 3 . 0617 4.816e-01 -. 4791 -4 . 6587 -4. 1204 

6.5784 -144 . 80 -1 . 19Be+O 1 3 . 1677 5.180e-01 -.5046 -4 . 7169 -4. 1107 

7.2072 -146.09 -l.OOle+Ol 3.2547 5.572e-01 -.5326 -4.7622 -4 . 0998 

7.8958 -147.54 -8 . 203e+OO 3.3431 5.996e-01 -.5634 -4.6554 -4.0875 

8.6503 -149.20 -6 . 537e+OO 3.4337 6.464e-01 -.5974 -4 . 9376 -4.0736 

9.4770 -151.09 -5 . C03e+OO 3.5291 6.975e-01 -.6347 -5 . 0299 -4.0570 

10 . 3830 -153 . 24 -3.5Sle+OO 3.6271 7.534e-01 -.6758 -5. 1336 -4.0360 
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n= .3394e-01 ang • •-2 or nine= .5331 

T u Ln(P3::>) S/:1\""k 3 -?2d=W F E 

.9687 -133 . 75 -1.328e+02 1 . 3888 5.700e-03 -.0473 -4.5868 -4.5412 

1.0612 -133 . 89 -1.207e+02 1. 4474 2.560e-02 -.0651 -4.6092 -4.5571 

1.1625 -134.04 - 1 . 096e+02 1. 5314 4.910e-02 -.0855 -4.6349 -4.5745 

1.2736 -134 . 24 -9.948e+01 1.5651 7.680e-02 -.1080 -4. 6640 -4.5963 

1.3952 -134.46 -9.023e+01 1.6611 1.092e-01 - . 1333 -4 . 6970 -4.6184 

1.5285 -134.72 -8. 176e+01 1 . 7125 1 . 470e-01 - . 1626 -4 . 7351 -4 . 6463 

1.6745 -135 . 02 -7.403e+01 1. 7634 1.862e-01 -.1952 -4.7778 -4.6776 

1.8344 -135 . 36 -6.695e+01 1.8177 2.273e-01 -.2321 -4 . 5262 -4 . 7130 

2.0097 -135.74 -6 . 048e+01 1.8579 2.562e-01 -.2733 -4 . 8804 -4.7536 

2.20 16 -136 . 22 -5.458e+01 1.9714 2.876e-01 -.3183 -4 . 9417 -4 . 7944 

2 . 4119 -136.81 -4 . 920e+01 2.1105 3 . 170e-01 - . 3681 -5.0113 -4 . 63S5 

2.6421 -137.04 -4 . 412e+01 2. 1879 3.372e-01 -.3602 -5.0312 -4.6350 

2.894 3 -1:37 . 30 -3.947e+C1 2 . 2654 3.568e-01 -.3935 -5 . 0537 -4.8312 

3. 1707 -137.62 -3.520e+01 2.3428 3 . 826e-01 -. 4054 -5 . 0791 -4.8270 

3.4735 -137.98 -3.129e+01 2 . 4205 4.088e-01 - . 4248 -5 . 1078 -4 . 8224 

3.8051 -138.40 -2.771e+01 2. 4985 4.377e-01 -.4428 -5.1400 -4.8173 

4 . 1656 -138.88 -2.443e+01 2.5768 4.688e-01 - . 4627 -5 . 1763 -4 . 8118 

4.5667 -139 . 44 -2.142e+Ol 2.6562 5 . 036e-01 -.4846 -5 . 2172 -4 . 8055 

5 . 0029 -140 . 08 -1 . 866e+01 2.7368 5.419e-01 -.5088 -5.2632 -4.7955 

5 . 4808 -140.82 -1 . 612e+01 2.8179 5.837e-01 - . 5353 -5 . 3149 -4 . 7907 

6 . 0045 -141 . 68 -1 . 380e+01 2.9008 6 . 294e-01 -.5644 -5 . 3729 -4.7818 

6 . 5784 -142 . 66 -1. 166e+Ol 2.9859 6.795e-01 -.5964 -5.4382 -4 . 7715 

7.2072 -143.76 -9.695e+OO 3.0719 7.351e-01 -.6316 -5.5115 -4 . 7601 

7.8958 -145 . 07 -7.890e+OO 3. 1585 7.955e-01 -.6701 -5.5937 -4 . 7473 

8.6503 -146.54 -6.229e+OO 3.2485 6 . 621e-01 -.7126 -5.6861 -4 . 7324 

9.4770 -148 . 22 -4.701e+OO 3.3419 9.357e-01 -.7593 -5.7899 -4.7150 

10.3830 - 150. 14 -3 . 293e+OO 3.4382 1. 020e+OO -.8111 -5 . 9069 -4.6953 



n= .3879e-01 ang••-2 or nine= .6093 

T 

.0753 

.0825 

.0904 

.0990 

. 1085 

.1188 

.1302 

. 1426 

. 1562 

.1712 

. 1875 

.2054 

.2250 

.2465 

.2701 

.2959 

.3242 

.3551 

.3890 

.4262 

.4669 

.5115 

.5604 

.6139 

.6725 

.7367 

.8071 

.8842 

.9687 

1.0612 

1. 1625 

u Ln(?3D) 

-131.93 -1.753e+03 

-131.95 -1.600e+03 

-131.97 -1.461e+03 

-131.99 -1.334e+03 

-132.01 -1.217e+03 

-132.03 -1.111e+03 

-132.06 -1.014e+03 

-132.08 -9.258e+02 

-132 . 11 -8 . 451e+02 

-132.14 -7.710e+02 

-132 . 18 -7.038e+02 

-132 . 21 -6 . 423e+02 

-132.25 -5.862e+02 

-132.29 -5.349e+02 

-132 . 33 -4.879e+02 

-132.38 -4.451e+02 

-132 . 43 -4.060e+02 

-132.48 -3 . 703e+02 

-132.53 -3.377e+02 

-132.58 -3.079e+02 

-132.63 -2.807e+02 

-132.69 -2.558e+02 

-132.75 -2.330e+02 

-132.81 -2.122e+02 

-132.88 -1.933e+02 

-132.94 -1 . 759e+02 

-133.01 -1.600e+02 

-133.08 -1.455e+02 

-133.16 -1.322e+02 

-133.26 -1.201e+02 

-133.37 -1.090e+02 

SIN"k 

.5082 

.5307 

.5540 

.5810 

.5980 

.6277 

.6465 

.6745 

.6980 

.7180 

.7417 

.7637 

.7857 

.8082 

.8242 

.8474 

.8672 

.9017 

.9262 

. 9399 

.9722 

1.0004 

1. 0324 

1.0672 

1.0969 

1. 1339 

1.1619 

1.2054 

1.2537 

1 . 3059 

1. 3844 
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B -P2d=W 

7.545e-01 

7.503e-01 

7.455e-01 

7.410e-01 

7.362e-01 

7.310e-01 

7.260e-01 

7.209e-01 

7. 156e- 01 

7.103e-01 

7.048e-01 

6.996e-01 

6.938e-01 

6.886e-01 

6.830e-01 

6.779e-01 

6.728e-01 

6 . 679e-01 

6 . 631e-01 

6.588e-01 

6.543e-01 

6 . 517e-01 

6.508e-01 

6.512e-01 

6.505e-01 

6 . 487e-01 

6.458e-01 

6.412e-01 

6.416e-01 

6.438e-01 

6.481e-01 

.0262 

.0263 

.0264 

. 0264 

.0264 

.0264 

.0262 

.0260 

.0256 

.0250 

.0244 

. 0235 

. 0223 

.0209 

. 0192 

.0172 

.0147 

. 0117 

.0080 

.0036 

-.0016 

-.0078 

-.0149 

-.0232 

-.0329 

-.0444 

-.0576 

-.0727 

-.0900 

-. 1093 

-.1316 

F 

-5.0915 

-5.0921 

-5.0926 

-5.0934 

-5.0942 

-5 . 0952 

-5 . 0963 

-5.0976 

-5.0991 

-5. 1008 

-5. 1028 

-5 . 1050 

-5 . 1076 

-5.1105 

-5.1140 

-5.1178 

-5. 1221 

-5 . 1270 

-5. 1327 

-5 . 1392 

-5. 1464 

-5. 1548 

-5. 1642 

-5. 1750 

-5.1873 

-5.2012 

-5.2171 

-5.2350 

-5.2554 

-5.2786 

-5.3053 

E 

-5.0900 

-5.0904 

-5.0907 

-5. 0911 

-5 . 0917 

-5 . 0923 

-5.0930 

-5.0938 

-5.0949 

-5.0960 

-5.0974 

-5.0990 

-5.1008 

-5 . 1029 

-5. 1053 

-5. 1081 

-5 . 1112 

-5 . 1146 

-5. 1188 

-5. 1236 

-5. 1288 

-5. 1349 

-5.1418 

-5.1496 

-5 . 1586 

-5. 1688 

-5. 1807 

-5. 1936 

-5.2083 

-5.2248 

-5.2428 
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1.2736 -133.51 -9.891e+01 1. 4182 6.557e-01 -.1566 -5.3356 -5.2655 

1.3952 -133.67 -8.966e+01 1.5047 6.669e-01 -. 1849 -5.3701 -5.2887 

1 . 5285 -133.85 -8.119e+01 1.5509 6.779e-01 - . 2175 -5.4098 -5.3178 

1.6745 -134.07 -7.346e+01 1 . 6016 6.872e-01 -.2536 -5 .4543 -5.3502 

1.8344 -134.35 -6.641e+01 1 . 6536 6.750e-01 -.2924 -5.5040 -5.3863 

2.0097 -134.74 -5.998e+01 1. 6999 6.231e-01 -.3323 -5 . 5587 -5.4262 

2.2016 -135.22 -5 . 413e+01 1.8086 5.614e-01 -.3755 -5 . 6208 -5 . 4664 

2 . 4119 -135.64 -4.880e+01 1.9501 4.602e-01 -.4220 -5. 6911 -5.5087 

2. 6421 -136.01 -4.373e+01 2.0251 4.984e-01 -.4365 -5 .71 24 -5.5048 

2.6943 -136.22 -3.909e+01 2. 1006 5.217e-01 -.4526 -5.7366 -5 .5007 

3 . 1707 -136.46 -3.483e+01 2. 1764 5.490e-01 - . 4706 -5.7640 -5.4963 

3.4735 -136.74 -3.094e+01 2.2526 5.600e-01 -.4909 -5 . 7951 -5.4916 

3 . 6051 -137.07 -2.736e+01 2 . 3296 6.150e-01 -.5131 -5 . 8301 -5 .4863 

4 . 1686 -137.46 -2.409e+01 2.4066 6.539e-01 - . 5376 -5.8697 -5 . 4805 

4.5667 -137.91 -2. 106e+01 2 . 4656 6.959e-01 -.5645 -5.9142 -5 .4739 

5 . 0029 -136 . 44 -1.633e+01 2 . 5651 7.429e-01 -.5942 -5.9643 -5 .4665 

5 . 4606 -139 . 05 -1.560e+Ol 2.6456 7.946e-01 - . 6269 -6.0206 -5.4583 

6.0045 -139 . 77 -1.346e+01 2.7278 6.513e-01 -.6627 -6 . 0642 -5.4489 

6.5784 -140.59 -1. 135e+Ol 2 . 6123 9.136e-01 - . 7021 -6 . 1556 -5.4380 

7.2072 -141.54 -9.364e+OO 2.6978 9.621e-01 -. 7454 -6.2359 -5.4257 

7.6956 -142.64 -7.562e+OO 2.9643 1.056e+OO -.7929 -6 .3260 -5.4120 

8.6503 -143.91 -5.925e+OO 3.0726 1. 140e+OO -.6452 -6.4273 -5.3963 

9 . 4770 -145 . 36 -4.399e+OO 3.1655 1.231e+OO -.9028 -6.5413 -5.3776 

10 . 3830 -147.03 -2.993e+OO 3 . 2615 1.321e+OO -.9660 -6 . 6694 -5.3558 



n= .4364e-Dl ang••-2 or nine= .6855 

T 

.0753 

.0825 

.0904 

.0990 

.1085 

. 1188 

. 1302 

. 1426 

.1562 

.1712 

. 1875 

.2054 

.2250 

.2465 

. 2701 

.2859 

.3242 

.3551 

.3890 

.4262 

.4669 

. 5115 

.5604 

.6139 

.6725 

.7367 

.8071 

.8842 

.9687 

1.0612 

1.1625 

u L:1(P3J) 

-130.23 -1.731e+03 

-130 . 25 -1.580e+03 

-130.28 -1.442e+03 

-130.31 -1.317e+03 

-130.35 -1 . 202e+03 

-130.38 -1.097e+03 

-130.42 -1.001e+03 

-130.46 -9 . 144e+02 

-130.50 -8.348e+02 

-130.54 -7 . 616e+02 

-130.59 -6.953e+02 

-130.64 -6.346e+02 

-130.69 -5.7S2e+02 

-130 . 74 -5.256e+02 

-130.80 -4.822e+02 

-130.85 -4.400e+02 

-130 . 91 -4.013e+02 

-130.98 -3.661e+02 

-131.04 -3.339e+02 

-131.11 -3.044e+02 

-131.17 -2.775e+02 

-131.24 -2.529e+82 

-131.30 -2 . 304e+02 

-131.37 -2.099e+02 

-131.44 -1.911e+02 

-131.51 -1 . 740e+02 

-131.59 -1.583e+02 

-131.68 -1 . 439e+02 

-131.77 -1.308e+02 

-131.87 -1.188e+02 

-131.97 -1.078e+02 

Sl~"k 

.5380 

.5582 

.5757 

. 5982 

.6139 

.6368 

.6517 

.6744 

.6928 

.7088 

.7273 

.7444 

. 7613 

. 7790 

.7913 

.8088 

.8250 

.8510 

.8693 

. 8793 

.9046 

.9261 

.9530 

.9824 

1. 0066 

1.0379 

1.0623 

1.0997 

1 . 1432 

1.1914 

1. 2617 
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B 

3.556e-01 

3.510e-01 

3.465e-01 

3.416e-01 

3.368e-01 

3 . 320e-01 

3.263e-01 

3.209e-01 

3.162e-01 

3 . 108e-01 

3.057e-01 

2.998e-01 

2 . 948e-01 

2.8S3e-01 

2.838e-01 

2.791e-01 

2.740e-01 

2.684e-01 

2.636e-01 

2.592e-01 

2.541e-01 

2.513e-01 

2.498e-01 

2.503e-01 

2.495e-01 

2 . 476e-01 

2.458e-01 

2.434e-01 

2.465e-01 

2.563e-01 

2.724e-01 

-P2c=Yv 

-.0510 

-.0502 

-.0496 

-.0490 

-.0483 

-.0477 

-. 04 72 

-.0468 

-.0466 

-. 0464 

-.0464 

-.0466 

- .0·00 

-.0477 

-.0487 

-.0501 

-.0519 

-.0542 

- . 0572 

- . 0610 

-.0655 

- . 0712 

-.0782 

-.0664 

-.0959 

- . 1069 

-.1196 

-.1341 

-.1512 

-. 1708 

-.1939 

F 

-5.7341 

-5.7345 

-5.7351 

-5.7358 

-5.7366 

-5 .7376 

-5.7387 

-5.7400 

-5 . 74-15 

-5 .7~33 

-5 . 7452 

-5.7475 

-5.7502 

-5 .7532 

-5.7567 

-5.7C:06 

-5 .7650 

-5.7700 

-5 . 7759 

-5.7625 

-5 .7699 

-5.7235 

-5 .60~2 

-5.6193 

-5.6319 

-5.646 2 

-5 . 6624 

-5.8806 

-5 . 9015 

-5.9254 

-5.9531 

E 

-5.7323 

-5.7325 

-5.7328 

-5 . 7332 

-5 .7337 

-5 .7343 

-5.7350 

-5.7:358 

-5.7358 

-5 .7350 

-5.7393 

-5.7409 

-5 .74 27 

-5 . 74-4-8 

-5.7473 

-5.7501 

-5 . 7533 

-5 . 7568 

-5 . 7611 

-5.7661 

-5 .7715 

-5 . 7778 

-5.754-9 

-5 . 7930 

-5 .6024 

-5 . 8129 

-5.8250 

-5.8382 

-5.8532 

-5.8703 

-5 . 8691 
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1.2736 -132 . 09 -9.779e+01 1. 2959 2.966e-01 -.2201 -5.9846 -5.9126 

1.3952 -132.22 -8.862e+01 1.3710 3.309e-01 -.2504 -6.0207 -5.9372 

1.5285 -132.38 -6.023e+01 1. 4172 3.714e-01 -.2652 -6.0621 -5.9676 

1.6745 -132.57 -7.256e+01 1.4661 4.177e-01 -.3235 -6' 1086 -6.0015 

1.8344 -132.86 -6.559e+01 1.5332 4.566e-01 - . 3623 -6' 1604 -6.0377 

2.0097 -133 . 35 -5.929e+01 1.5879 4. 747e-01 -.3978 -6 '2170 -6.0777 

2 . 2016 -133.95 -5 . 355e+01 1.6941 5.018e-01 -.4362 -6.2815 -6' 1168 

2 . 4119 -134 . 71 -4.833e+01 1. 6038 5 .293e-01 - . 4761 -6 . 3547 -6.164 8 

2' 6421 -134' 62 -4.325e+01 1.8756 5.785e-01 -.4948 -6.3766 -6. j 623 

2.8943 -134 . 96 -3.866e+01 1.9485 6.266e-01 -.5155 -6 .4053 -5' 1592 

3 . 1707 -135 . 14 -3.442e+01 2 . 0225 6.742e-01 -.5382 -6 . 4S55 -6.1557 

3 . 4735 -135 . 34 -3.053e+01 2.0871 7.233e-01 -.5632 -6 .46n5 -6' 15j6 

3 . 8 05 1 -135.59 -2.698e+01 2' 1729 7.748e-01 - . 5907 -6.5078 -e. 1470 

4' 1686 -135 . 68 -2.371e+01 2.2491 8.311e-01 -.6210 -6.5510 -6' 1418 

4 .5667 -136.24 -2.072e+01 2 . 3267 8.925e-01 -.6542 -6.5886 -6. 1359 

5 . 0029 -136.65 -1.797e+Ol 2.4053 9.585e-01 -.6908 -6 . 6543 -6.1292 

5 . 4808 - 137. 14 -1.545e+01 2 . 4853 1 . 032e+OO -.7310 -6.7159 -6 . 1215 

6.0045 -137.72 -1 . 314e+01 2 . 5667 1. 112e+OO -.7752 -6.7853 -6. 1127 

6.5784 -138 . 40 -1.101e+01 2.6498 1. 2 00e +OO -.8237 -6 . 8534 -6.1027 

7.2072 -139 . 19 -9.057e+OO 2.7344 1. 296e+OO -.8770 -6 . 9512 -6 . 0912 

7.8958 -140.11 -7.262e+OO 2.8202 1 .401 e+OO -.9356 -7.0500 -6 . 0782 

8.6503 -141.18 -5 . 610e+OO 2 . 9077 1. 516e+OO -.9998 -7 ' 1610 -6 . oe.34 

9 . 4770 -142.43 -4.089e+OO 2.9995 1. 638e+OO -1 . 0702 -7 . 2657 -6.0452 

10.3830 -143.67 -2 . 689e+OO 3.0935 1. 798e+OO - 1 . 14 79 -7 . 4235 -6.024 8 



- 200 -

n= .4848e-01 ang .. -2 or n/nc= .7615 

T u Ln(P3D) S!!\l"k B -P2d=W F E 

1.6745 -132.37 -7 . 245e+01 1.3409 3.400e-02 -.3577 -6.7752 -6 . 6663 

1.8344 -132 . 45 -6.537e+01 1. 4295 2.911e-01 -.4106 -6.8317 -6.7046 

2.0097 -132.67 -5.895e+01 1 . 4913 6 . 292e-01 -.4628 -6.8946 -6 . 7493 

2.2016 -132.94 -5.309e+01 1. 5941 1. 039e+OO -.5217 -6.9668 -6.7866 

2.4119 -133.32 -4.776e+01 1.6575 1. 533e+OO -.5861 -7 . 0493 -6 . 8555 

2.6421 -133.36 -4.273e+01 1. 7272 1. 535e+OO -.6073 -7.0726 -6.8515 

2.8843 -133.43 -3.813e+01 1. 7834 1. 54 7e+OO -.6309 -7.0987 -6.8474 

3 . 1707 -133.53 -3.391e+01 1.8712 1.567e+OO -.6568 -7. 1304 -6.8427 

3.4735 -133.66 -3.005e+01 1.9450 1. 592e+OO -.6854 -7.1653 -6.8378 

3.8051 -133.83 -2.651e+01 2.0198 1.621e+OO -.7169 -7.2049 -6.8323 

4 . 1686 -134.04 -2.327e+01 2.0952 1. 651e+OO -.7515 -7.2496 -6.8262 

4 . 5667 -134.29 -2.029e+01 2. 1722 1 . 667e+OO -.7897 -7.3002 -6.8193 

5.0029 -134.61 -1.756e+01 2.2506 1. 727e+OO -.8317 -7.3574 -6.8115 

5.4808 -134.98 -1.506e+Ol 2.3300 1 . 770e+OO -.8779 -7 . 4218 -6 . 8027 

6.0045 -135.44 -1.276e+01 2.4110 1. 818e+OO -.9286 -7.4945 -6.7927 

6.5764 -135.96 -1.064e+01 2.4938 1. 871e+OO -. 9843 -7.5764 -6.7811 

7.2072 -136 . 62 -8.701e+OO 2.5780 1. 927e+OO -1.0455 -7 . 6686 -6 . 7679 

7.8958 -137.37 -6.915e+OO 2.6636 1. 990e+OO - 1 . 1126 -7.7724 -6.7528 

8 . 6503 -136.27 -5.273e+OO 2.7512 2.059e+OO -1.1861 -7.6893 -6.7355 

9.4770 -139 . 32 -3.761e+OO 2.8429 2. 145e+OO -1.2675 -8 . 0215 -6.7154 

10.3830 -140.47 -2.361e+OO 2.9373 2. 289e+OO - 1. 3620 -8.1718 -6 . 6933 



- 201 -

n= .5333e-01 ang • •- 2 or nine= .8377 

T u Ln(?3D) Sl~"k B -P2d=Vv F E 

2 .4 119 -131.21 -4.688e+01 1. 5046 7.065e-01 -.6995 -7.6968 -7.5032 

2 . 6421 -131 . 16 -4. 190e+01 1 . 5784 9.606e-01 -.7295 -7.7244 -7.5020 

2.8943 -131.16 -3.734e+01 1.6523 1. 137e+OO -.7601 -7 . 7551 -7.5000 

3 . 1707 -131 . 20 -3 . 318e+01 1.7265 1. 266e+OO -.7929 -7.7900 -7 .4981 

3 . 4735 -131.28 -2 . 936e+01 1 . 8010 1.371e+OO - . 8277 -7 . 8267 -7 . 4950 

3.8051 -131 . 39 -2.587e+Ol 1. 8759 1 . 467e+OO -.8652 -7.8721 -7 . 4914 

4 . 1686 -131 . 54 -2.267e+01 1.9512 1.564e+OO -.9061 -7.92 11 -7.4673 

4.5667 -131 . 73 -1.973e+01 2.0276 1. 661e+OO -.9505 -7.9759 -7.4821 

5 . 0029 -131.98 -1.704e+01 2 . 1052 1. 766e+OO -.9992 -8.0376 -7.4759 

5.4606 -132.26 -1.456e+Ol 2. 1839 1. 880e+OO -1.0527 -8.1073 -7. 4659 

6 . 0045 -132.65 -1.229e+01 2.2643 2.006e+OO -1.1115 -6 . 1858 -7 .4607 

6 .5784 - 133. 10 -1.021e+01 2.3465 2. 150e+OO -1.1761 -8.2744 -7.4511 

7.2072 -133 . 64 -6.288e+GO 2.4301 2.310e+OO -1.24 72 -8.3743 -7.4402 

7.6956 -134 . 29 -6 . 524e+OO 2.5152 2 . 488e+OO -1.3254 -8 . 4858 -7 .4277 

8.6503 -135.05 -4.901e+OO 2 . 6021 2.667e+OO -1 . 4113 -8.6136 -7 . 4132 

9.4770 -135.96 -3.407e+OO 2.6831 2 . 878e+OO -1.5040 -8.7547 -7 . 3936 

10 .3830 -136 . 95 -2.022e+OO 2 .7667 3 . 008e+OO -1 . 6111 -8 . 91 48 -7.3717 



- 202 -

n= .5576e-01 eng • •-2 or nine= .8759 

T u Ln(?3D) SINk B -P2d=W F E 

2.4119 -130 . 96 -4.678e+01 1. 4025 5.799e-01 -.7266 -8.0310 -7.8424 

2.6421 -130.70 -4.172e+01 1.4914 1. 055e+OO -.7750 -8.0627 -7.B430 

2.8943 -130 . 54 -3.713e+01 1. 5740 1. 407e+OO -.8169 -8.0959 -7.8418 

3. 1707 -130 . 48 -3 . 295e+01 1. 6526 1. 580e+OO -.8561 -8.1317 -7 . 8385 

3.4735 -130 . 48 -2.914e+01 1.7293 1. 698e+OO -.8956 -8.1712 -7.8363 

3.8051 -130.53 -2.565e+01 1.8051 1. 792e+OO -.9372 -8.2154 -7.8324 

4. 1686 -130.61 -2 . 245e+01 1. 8609 1. 860e+OO -.9821 -8.2651 -7.8279 

4 . 5667 -130.74 -1 . 95le+01 1.9573 1. 979e+OO -1.0308 -8.3211 -7.8227 

5.0029 -130.92 -1.683e+01 2.0347 2.093e+OO -1.0843 -8.3842 -7.8166 

5.4-s:,s -131 . 14 -1.436e+01 2.1131 2. 216e+OO -1.1431 -8.4555 -7 . 809 7 

6.00 45 -131.42 -1.209e+01 2. 1933 2.353e+OO -1.2078 -8.5359 -7.8016 

6.5784 -131 . 77 -1.000e+01 2.2752 2 . 507e+OO - 1 . 2791 -8.6267 -7.792 2 

7.2C72 -132.20 -6 . 068e+OO 2 . 3585 2. 678e+OO -1.3576 -8.7292 -7.78:4 

7.8958 - 132 . 73 -6 . 327e+OO 2 . 4430 2 . 862e+OO -1 . 4439 -8.8447 -7 . 7692 

8.6503 -133.36 -4.705e+OO 2.5300 3 . 067e+OO -1.5389 -8 . 9750 -7.7547 

9.4770 - 134. 12 -3.213e+OO 2.6204 3.355e+OO -1.6426 -9.1212 -7.7365 

10 . 3830 -135.02 -1.837e+OO 2 . 7134 3.520e+OO - 1 . 7561 -9 . 2851 -7.7141 



- 203 -

n= .5818e-01 ang • •-2 or n/nc= .9139 

T u Ln(?3J) SIN"'.K B -?2d=\'{ F E 

2.4119 -130.62 -4 . 664e+01 1.2602 1.40le-01 -.7431 -8.3429 -8.1660 

2.6421 -130 . 09 -4.149e+01 1.3742 5.967e-01 -.8103 -8.3792 -8. 1679 

2.8943 -129.68 -3.683e+01 1 . 4847 1. 264e+OO -.8735 -8.4181 -8. 1681 

3. 1707 -129 . 47 -3.263e+01 1.5757 1. 743e+OO -.9256 -8.4582 -8 . 1676 

3 . 4735 -129.40 -2 . 852e+01 1. 6577 1. 94 5e+OO -.9719 -8.5CJ3 -8.1653 

3 . 8051 -129.39 -2.535e+01 1. 7359 2. 112e+OO -1.0190 -5.5468 -8. 1625 

4. 1666 -129.42 -2 . 216e+01 1 . 8122 2.274e+OO -1.0682 -8.5SSO -8.1595 

4.5667 -128 . 50 -1.924e+01 1.8865 2. 419e+OO - 1 . 1232 -6.6573 -E..1555 

5.0029 -129.61 -1.657e+01 1.9657 2.552e+OO - 1 . 1820 -8 . 7227 -8 . 1505 

5 . 45 0 8 -129.77 -1.411e+Ol 2.0439 2.637e+OO -1.2465 -8 . 7Sc5 -a. 144 8 

6.00 4-5 -129 . 98 -1.185e+01 2. 1234 2.854e+OO -1 . 3176 -8 . E. 7S9 -5 . 1331 

6 . 5784 -130.25 -9.773e+OO 2.2049 3.028e+OO -1. 3S59 -8 . S74 0 -8. 1301 

7.2C72 -130.60 -7.855e+OO 2.2877 3 . 2l7e+OO -1.4821 -9 . c~ s 0 2 - f, . : 209 

7.8958 -131 . 03 -6.111e+OO 2.3719 3 . 421e+OO - 1 . 5767 -9.19 ~ 9 -8. 1 103 

8 . 6503 -131 . 56 -4.497e+OO 2.4586 3.629e+OO -1.6806 -9.33( 8 -8 . 0974 

9.4770 -132. 18 -3 . 008e+OO 2.5489 3.831e+OO -1.7851 -9 . 4E53 -8 . 0799 

10 . 3530 -132 . 98 -1.640e+OO 2 . 6417 4 . 052e+OO -1 . 9169 -9 . e 537 -E . 0579 



- 204 -

n= . 6061e-01 e.:Ig. ·- 2 or n/nc= .9521 

T u Ln(P3::)) Sll\T'k B -P2d=W F E 

1.0612 -139.22 -1.257e+02 .7969 9.783e+OO . 3639 -8.0739 -8.0227 

1 . 1625 -138.93 -1. 138e+02 . 8158 9.458e+OO .3136 -8 .1 071 -8.0496 

1. 2736 -138.56 -1.029e+02 .8230 9.024e+OO .2531 -8. 1452 -8.0817 

1.3952 -138 . 09 -9.282e+01 .8411 8.468e+OO .1805 -8 .1891 -8 . 1179 

1 . 5285 -137 . 46 -8.356e+Ol .8601 7. 795e+OO . 0914 -8.2403 -6 . 1606 

1 . 6745 -136 . 70 -7.503e+01 .8764 7.009e+OO -.0138 -8 . 2991 -8 . 2102 

1.8344 -135.65 -6.711e+01 . 9150 6. 040e+OO -. 1479 -8 . 35 97 -8 . 2679 

2.0097 -134.22 -5.972e+01 .9465 4.865e+OO -.3202 -8.4554 -6.3401 

2 . 2016 -132 . 50 -5.289e+01 1. 0028 3.502e+OO -.5250 -8 . 5555 -8.4218 

2.4119 -130 .4 1 -4.655e+01 1 . 0982 1. 917e+OO -.7669 -8.6733 -8.5128 

2. 6421 -129.73 -4. 135e+01 1.1951 2 . 016e+OO -.8496 -8 .71 25 -8 . 5211 

2 . 8943 -128 . 97 -3.658e+01 1. 3604 2. 540e+OO -.9416 -8.7563 -8.5 196 

3. 1707 -128 .46 -3 . 231e+01 1. 4895 3.099e+OO -1 . 0185 -8.6:l44 -6 . 5182 

3 . 4735 -128.28 -2.850e+01 1. 5824 3 . 234e+OO -1.0729 -8.8477 -5.5 146 

3.8051 -128 . 18 -2 . 503e+01 1. 6642 3.303e+OO -1 . 1257 -8 . 8948 -8 . 5110 

4 . 1666 - 128. 13 -2. 185e+01 1. 7420 3 . 371e+OO -1.1814 -8.9476 -8 . 5075 

4.5667 -128.13 -1 . 894e+01 1 . 6186 3 . 438e+OO -1.2404 -9 . 0066 -8 . 5033 

5 . 0029 -128 . 18 -1 . 628e+01 1.8957 3 . 511e+OO -1 . 3037 -9 . 0730 -8 .4982 

5.4808 -128.27 -1.383e+01 1.9735 3 . 599e+OO -1.3734 -9 .14 8Q -8.4924 

6.0045 -128 .4 1 -1.159e+Ol 2.0528 3.701e+OO -1.4501 -9 . 2328 -8 .4857 

6 . 5784 -128.59 -9.521e+OO 2. 1339 3 . 819e+OO -1.5347 -9.3286 -8.4778 

7.2072 -128.84 -7.621e+OO 2 . 2165 3.954e+OO -1.6279 -9 .4368 -8.4666 

7.8958 - 129 . 16 -5.875e+OO 2.3008 4 . 107e+OO -1.7302 -9 .5569 -8 .4578 

8.6503 -129 . 59 -4.270e+OO 2.3873 4.261e+OO - 1 . 8417 -9.6963 -8 .4446 

9.4770 -130 . 13 -2.792e+OO 2 .4776 4.406e+OO -1.9631 -9 . 8505 -8.4274 

10 . 3830 -130 . 82 -1.432e+OO 2 . 5708 4.605e+OO -2.0939 -10.0231 -8 .4053 



- 205 -

n= .6303e-01 ang • •-2 or n/nc= .9901 

T u Ln(P3D) S/N'k B -?2d=IY F E 

.9687 -131.22 -1.302e+02 .7474 2 . 567e+01 -.3091 -8.5800 -8.5344 

1.0612 -131 . 21 -1 . 182e+02 .7512 2.516e+01 -.3333 -8.6036 -8.5533 

1.1625 -131.16 -1.071e+02 .7646 2.450e+01 -.3637 -8.6306 -8.5746 

1.2736 -131.09 -9.701e+01 .7691 2.365e+01 -.3981 -8.6507 -8.5959 

1.3952 -131.00 -8.774e+01 . 7811 2. 257e+01 -.4372 -8.6942 -8 . 6256 

1 . 5285 -130.84 -7.922e+01 .7932 2.125e+01 - . 4858 -8.7329 -8.6565 

1.6745 -130 . 63 -7. 141 e+01 .8049 1. 967e+01 -. 5429 -8.7766 -8.6917 

1.8344 -130.28 -6.418e+01 .8252 1. 768e+01 -.6167 -8.8281 -8.7327 

2.0097 -129.72 -5.748e+01 .8478 1.515e+01 -.7133 -8.8595 -8.7821 

2.2016 -129.01 -5. 131 e+01 .8938 1. 219e+01 -.8299 -8.9612 -8.8372 

2.4119 -128.12 -4 . 560e+01 . 9528 8.704e+OO -.9701 -9 . 0453 -8.9004 

2.6421 -127.60 -4.055e+01 1.0212 7 . 641e+OO -1.0342 -9 . 0768 -8. 9C· 68 

2.8943 -126.93 -3.588e+Ol 1 . 1525 6.339e+OO -1.1146 -9 . 1149 -8.9 0~6 

3. 1707 -126.42 -3. 167e+01 1.3900 5.457e+OO - 1 . 1884 -9. 1564 -6.8786 

3.4735 -126 . 26 -2.792e+01 1. 5015 5 . 200e+OO -1 . 2408 -9 . 1987 -8 . 8699 

3.8051 -126 . 19 -2.451e+Ol 1.5878 5.034e+OO - 1 . 2913 -9.2453 -8 . 8645 

4. 1686 -126 . 18 -2 . 138e+01 1 . 6668 4 . 887e+OO -1.3450 -9 . 2979 -8.6600 

4 . 5667 -126. 19 -1.852e+01 1.7495 4 . 801e+OO -1.4032 -9.3571 -8 . 8535 

5.0029 -126 . 24 -1.589e+01 1. 8261 4 . 785e+OO -1.4674 -9.4241 -8.84S3 

5.4808 -126.32 -1.348e+01 1.9034 4.777e+OO -1.5384 -9.5000 -8 . 6425 

6.0045 -126 . 43 - 1 . 126e+01 1. 9823 4.780e+OO -1 . 6169 -9 . 5859 -8.8357 

6.5784 -126 . 59 -9.217e+OO 2.0628 4 . 795e+OO -1.7039 -9.6831 -8.8278 

7.2072 -126.81 -7.340e+OO 2. 1449 4.820e+OO -1.7999 -9.793 0 -6 . 8187 

7.6958 - 127. 11 -5.615e+OO 2.2286 4.852e+OO -1.9056 -9 . 9171 -6.8079 

6.6503 -127.48 -4.026e+OO 2.3172 4. 969e+OO -2.0219 -10.0572 -8.7938 

9.4770 -127.95 -2.562e+OO 2.4077 5. 131e+OO -2.1491 -10.2139 -8 . 7757 

10.3830 -128.57 -1.215e+OO 2.5017 5.233e+OO -2.2855 -10.3895 -8 . 7523 



- 206 -

n= .6545e-01 ang • •-2 or nine= 1. 028 

T u Ln(?3D) Sl~'"k B -?2d='i'{ F E 

.9687 -119.11 -1. 177e+02 .7319 2.691e+01 -1.3562 -9.1518 -9.1054 

1.0612 -119.32 -1.070e+02 .7332 2.644e+01 -1 .3610 -9. 1706 -9. 1197 

1.1625 -119.56 -9.715e+01 .7458 2.582e+01 -1.3663 -9.1914 -9.1346 

1 . 2736 -119.86 -8.819e+01 .7534 2.504e+01 -1.3683 -9 . 2134 -9.1506 

1.3952 -120.25 -8.004e+01 .7640 2.406e+01 -1.3666 -9.2368 -9 .1670 

1. 5285 -120 . 67 -7 . 257e+01 .7740 2.285e+01 -1.3650 -9 . 2628 -9 . 1854 

1.6745 -121 . 15 -6.574e+Ol . 7646 2. 142e+01 -1.3525 -9.2916 -9.2055 

1.8344 -121 . 67 -5.949e+01 .7983 1. 955e+O 1 -1 . 3603 -9.3238 -9 . 2250 

2 . 0097 -122.24 -5.376e+01 .8172 1. 723e+01 -1.3601 -9.3604 -9.2529 

2.2016 -122 . 84 -4 . 850e+Ol .8583 1. 44 7e+01 -1.3633 -9.4030 -9 . 2783 

2 .411 9 -123.50 -4.369e+01 .8649 1. 120e+O 1 -1 . 3695 -9 .4525 -9.3 159 

2 .642 1 -123.67 -3.906e+01 .9275 9 . 321e+OO -1 . 3732 -9.4675 -9.3071 

2.89 43 -123.89 -3.483e+01 1.0436 7.044e+OO -1.3762 -9 .4855 -9.2558 

3 . 1707 -124.01 -3.091e+01 1.3213 5. 466e+OO - 1 . 3992 -9 .5156 -9 02414 

3 04735 -124 . 00 -2.727e+01 1 . 4454 5.095e+OO -1 . 4385 -9 . 5546 -902260 

308051 -124 0 01 -2.393e+01 1 . 5340 5 . 005e+OO -1.4834 -8 06000 -9.2 179 

4 . 1685 -124.04 -2.087e+01 1.6131 4. 997e+OO -1.5335 -906519 -9 02118 

4.5667 -124 . 08 -1.806e+01 1. 6896 5.024e+OO - 1. 5901 -9.7109 -9.2059 

5 00029 - 124. 12 -1.547e+01 1. 7654 5 . 064e+OO -1.6545 -907781 -9 02000 

5 .4808 - 124. 19 -1.309e+01 1.8419 5. 124e+OO -1.7261 -9 08543 -9 . 1936 

6.0045 -124.29 -1.090e+01 1.9197 5. 206e+OO -1.8059 -9 o9409 -9 01865 

6 057 84 -124044 -8 . 889e+OO 1.9995 5.305e+OO -1.6945 -10.0390 -S> .1781 

7.2072 -124.63 -7.036e+OO 2.0810 5. 423e+OO -1.9928 -10.1501 -9.1655 

7.8958 -124 . 90 -5 . 335e+OO 2. 1649 5.568e+OO -2.1013 -1002756 -9.1570 

8.6503 -125.20 -3.762e+OO 2.2509 5 . 817e+OO -2.2247 -10.4169 -9 0 1445 

9.4770 -125.60 -2.313e+OO 2.3409 6. 007e+OO -2.3566 -1005768 -9. 1268 

10.3830 -126 . 16 -9.830e-01 2.4336 6.243e+OO -2.5009 -1007580 -9.1042 



- 207 -

n= .6788e-01 ang••-2 or nine= 1.066 

T 

.5115 

.5604 

.6139 

. 6725 

.7367 

. 8071 

.8842 

.9687 

u Ln(P3D) Sl:t\1c 

.7198 

.7204 

. 7216 

.7244 

.7266 

. 7283 

.7308 

.7346 

.7368 

. 7516 

.7661 

. 7786 

.7901 

. 8025 

.8188 

. 8383 

.8788 

. 9363 

B -P2d=W F 

-9.5793 

1.0612 

1 . 1625 

1.2736 

1. 3952 

1.5285 

1.6745 

1.8344 

2.0097 

2 . 2016 

2.4119 

2 . 6421 

2.8943 

3.1707 

3.4735 

3.8051 

4. 1686 

4.5667 

5.0029 

5.4808 

6.0045 

6.5784 

7.2072 

7.8958 

-109.07 -2.096e+02 

-109 . 26 -1.911e+02 

-109 . 46 -1.742e+02 

-109.68 -1.588e+02 

-109 . 91 -1.446e+02 

-110.17 -1.317e+02 

-110.45 -1 . 199e+02 

-110 . 77 -1.091e+02 

-111 . 13 -9.925e+01 

-111 . 55 -9.027e+01 

-112 . 09 -8.209e+01 

-112.76 -7 . 467e+01 

-113 . 54 -6 . 790e+01 

-114.44 -6.174e+01 

-115 . 51 -5 . 613e+01 

-116.76 -5.104e+01 

-118 . 19 -4 . 639e+01 

-119 . 82 -4 . 216e+01 

-120.55 -3.788e+01 

-121 . 35 -3.395e+01 

-121.85 -3.023e+01 

-121 . 95 -2.668e+01 

-121.97 -2.340e+01 

-121.98 -2 . 038e+01 

-121 . 99 -1.760e+01 

-122 . 01 -1.505e+01 

-122.05 -1.270e+01 

-122 . 11 -1.054e+01 

-122.20 -8.549e+OO 

-122.33 -6 . 718e+OO 

-122 . 51 -5.033e+OO 

1 . 0038 

1. 1360 

1. 2890 

1.586e+01 

1. 579e+01 

1 . 571e+01 

1.561e+Ol 

1. 549e+Ol 

1 . 535e+01 

1. 516e+01 

1.494e+01 

1. 467e+01 

1.433e+01 

1 . 392e+01 

1. 344e+01 

1. 284e+01 

1. 212e+01 

1.118e+01 

9.974e+OO 

8 . 537e+OO 

6 . 830e+OO 

6.357e+OO 

6.115e+OO 

6.011e+OO 

1 . 3934 5.829e+OO 

1.4780 5.764e+OO 

1.5551 5.781e+OO 

1 . 6300 5.824e+OO 

1.7045 5.870e+OO 

1 . 7797 5.950e+OO 

1.8565 6.057e+OO 

1 . 9355 6.197e+OO 

2.0161 6.365e+OO 

2 . 0991 6 . 573e+OO 

-2.1758 

-2 . 1710 -9 . 5873 

-2 . 1659 -9.5960 

-2.1610 -9 . 6059 

-2 . 1562 -9.6168 

-2 . 1508 -9 . 6288 

-2 . 1444 -9 . 64 19 

-2. 1372 -9.6562 

-2 . 1281 -9 . 6716 

-2. 1156 -9 . 6879 

-2 . 0957 -9 . 7045 

-2.0669 -9.7212 

-2.0319 -9. 738 8 

- 1. 9894 -9.7574 

-1 . 9357 -9.7763 

-1.8696 -9 . 7955 

-1.7950 -9.8175 

-1 . 7090 -9 . 8424 

-1.6645 -9 . 84 74 

-1.6180 -8 . 8551 

-1 . 6049 -9 . 8758 

-1 . 6336 -9.9 117 

-1 . 6762 -9 . 9558 

-1 . 7271 - 10 . 0072 

-1.7855 -10.0662 

-1.8517 -10 . 1338 

-1 . 9262 -10.2108 

-2.0098 -10 . 2984 

-2 . 1032 -10 . 3978 

-2.2071 -10.5106 

-2.3224 -10 . 6383 

E 

-9 . 5543 

-9.5599 

-9.5660 

-9 . 5728 

-9 . 580 5 

-9 . 5869 

- 9 .5981 

-9.6079 

-9.6 185 

-9 . 6266 

-9.6383 

-9 .E::~ 74 

-9 . 6569 

-9.6652 

-9.6743 

-9.6812 

-9 . 686 2 

-9 . 6891 

- 9 .6674 

-9 . 6319 

-9.5984 

-9 . 5831 

-9.5740 

-9.5672 

-9.5610 

-9.5550 

-9.5487 

-9 . 5417 

-9.5336 

-9.5243 

-9 . 5132 



- 208 -

8.65C3 -122.72 -3.475e+OO 2.1847 6.720e+08 -2.4527 -10.7628 -9.4999 

9 . 4770 -123.03 -2 . 043e+OO 2.2747 6.910e+OO -2.5937 -10.9452 -9.4819 

10.3830 -123.48 -7.240e-01 2.3665 7.200e+OO -2.7462 -11.1277 -9.4598 



n= .7030e-01 ang••-2 or n/nc= 1.104 

T 

. 1562 

.1712 

.1875 

.2054 

.2250 

.2465 

.2701 

.2959 

.3242 

.3551 

.3890 

.4262 

.4669 

. 5115 

.5604 

.6139 

.6725 

.7367 

.8071 

.8842 

.9687 

1.0612 

1.1625 

1.2736 

1.3952 

1.5285 

1. 6745 

1.8344 

2.0097 

2.2016 

2.4119 

u Ln(P3D) 

-103 . 61 -6.627e+02 

-103 . 69 -6.047e+02 

-103 . 76 -5.523e+02 

-103.85 -5.042e+02 

-103.94 -4.604e+02 

-104.04 -4 . 203e+02 

-104 . 15 -3.836e+02 

-104.27 -3 . 501e+02 

-104.40 -3.195e+02 

-104.53 -2.916e+02 

-104 . 68 -2 . 661e+02 

-104 . 84 -2 . 428e+02 

-105 . 01 -2.2l5e+02 

-105 . 20 -2.020e+02 

-105.40 -1.842e+02 

-105 . 62 -1.680e+02 

-105 . 86 -1 .531e+02 

-106.12 -1.395e+02 

-106 . 41 -1.271e+02 

-106 . 74 -1.157e+02 

-107.11 -1.053e+02 

-107.54 -9.587e+01 

-108 . 04 -8.725e+Ol 

-108 . 67 -7.940e+01 

-109.43 -7.229e+01 

-110.33 -6.580e+01 

-111 . 37 -5.991e+01 

-112.64 -5.457e+01 

-114.16 -4.974e+01 

-115.89 -4.535e+01 

-117.90 -4.136e+01 

SINk 

.7329 

.7326 

.7319 

.7313 

.7309 

. 7305 

.7302 

.7300 

.7295 

.7295 

. 7298 

.7298 

.7300 

. 7306 

.7313 

.7320 

.7340 

.7362 

.7385 

.7420 

.7464 

.7513 

. 7691 

.7909 

.8065 

.8217 

.8373 

.8607 

.8825 

.9253 

1.0151 

- 209 -

B -P2d=W F 

-9 . 8834 

E 

-9.8754 5.883e+OO 

5.899e+OO 

5.916e+OO 

5.933e+OO 

5. 949e+OO 

5. 968e+OO 

5.984e+OO 

6.002e+OO 

6.016e+OO 

6.034e+OO 

6.046e+OO 

6.056e+OO 

6.067e+OO 

6.072e+OO 

6.071e+OO 

6.066e+OO 

6.051e+OO 

6.024e+OO 

5.984e+OO 

5.935e+OO 

5.871e+OO 

5 . 789e+OO 

5 . 692e+OO 

5. 642e+OO 

5.634e+OO 

5.603e+OO 

5. 547e+OO 

5.445e+OO 

5.297e+OO 

5.089e+OO 

4.829e+OO 

-2 . 5993 

-2.5965 -9 . 6857 -9.8769 

-2.5934 -9.8880 -9.8784 

-2.5900 -9.8907 -9.8801 

-2.5865 -9 .8936 -9.8820 

-2.5826 -9 . 6968 -9.8841 

-2.5786 -9.9CJ4 -9.8666 

-2.5742 -9. 804:3 -9.6892 

-2.5697 -9.9087 -9.8921 

-2.5649 -9.8135 -9 .6953 

-2 . 5597 -9.8188 -9.8959 

-2.5544 -9.S2~ 8 -9.9029 

-2.5488 -9.93 14 -9.SJ74 

-2.5431 -9.93S7 -9 . 9124 

-2.5372 -9 . 9468 -9 . 9180 

-2.5305 -9.9557 -9 . 9241 

-2.5237 -9 . 9655 -9 . 9308 

-2.5162 -9 . 9764 -9 . 9383 

-2.5075 -9.9682 -9.9~63 

-2.4971 -10.0010 -9 . 954:8 

-2.4849 -10 . 0148 -9 . 8639 

-2.4695 -10.0295 -9 . 9734 

-2.4493 -10.044 9 -9 . 9520 

-2.4213 -10.0608 -9.9900 

-2.3839 -10.0769 -9 . 9978 

-2.3377 -10.0837 -10 . 0054 

-2.2814 -10.1111 -10.0125 

-2.2093 -10.1280 -10.0170 

-2.1193 -10 . 1444 -10 . 0198 

-2 . 0157 -10.1627 -10.0195 

-1.8950 -10.1830 -10.0109 



- 210 -

2.6421 -118.48 -3.710e+Ol 1. 0909 5.706e+OO -1.6613 -10 . 1902 -9 . 8676 

2 . 6943 -119.01 -3.315e+01 1 . 1803 6.769e+OO -1.8352 -10.2019 -9.9618 

3. 1707 -119.35 -2.944e+01 1. 2704 7.381e+OO -1.8354 -10.2254 -9.9422 

3.4735 -119 . 46 -2 . 597e+01 1 . 3533 7. 384e+OO -1.6613 -10.2610 -9 . 9305 

3.8051 -119.54 -2.276e+01 1. 4298 7.306e+OO -1.9012 -10.3050 -9.9226 

4. 1666 -119.57 -1 .980e+01 1 . 5029 7. 24le+OO -1.95.13 -10 . 3570 -9.9165 

4.5667 -119.58 -1.707e+01 1. 5752 7.207e+OO -2.0100 -10.4166 -9 . 91. 0 9 

5.0029 -119.60 -1.456e+01 1.6476 7.211e+OO -2.0772 -10 . 4847 -9.9052 

5 . 4808 -119 . 61 -1.225e+Ol 1.7212 7 . 239e+OO -2.1537 -10 . 5625 -9.6 9 94 

6.0045 -119.64 -1.013e+01 1.7965 7.286e+OO -2.2402 -10 . 6512 -9.6929 

6 . 5784 -119.70 -8. 168e+OO 1.8740 7. 355e+OO -2.3374 -10.7520 -9.8554 

7.2J72 -119.78 -6.364e+OO 1.9537 7.452e+OO -2.4463 -10 . 6555 -8.6768 

7.6958 -119.90 -4.702e+OO 2.0357 7.568e+OO -2.5661 -10.SS71 -9 . 8 5 71 

8 . 6503 -120 . 05 -3. 167e+OO 2 . 1206 7.874e+OO -2.7075 -11 . 1472 -8 . 8576 

9.4770 -120.31 -1.756e+OO 2.2100 B.C14e+OO -2.65~2 -11.3121 -9.8037 

10.3830 -120.67 -4 . 540e-01 2 . 3008 8 . 212e+OO -3.0153 - 11 . 4-954 -9 . 6180 



- 211 -

n= .7273e-01 ang • •-2 or nine= 1. 142 

T u Ln(?3D) SINk B -P2d=\'i F E 

1.0612 -106.54 -9 .493e+01 .7677 3.B50e-02 -2.5713 -10.3197 -10.2605 

1.1625 -107.02 -8.637e+01 .7878 2.B27e-01 -2.5533 -10.3371 -10.2705 

1.2736 -107.59 -7.855e+01 .8141 7.238e-01 -2 . 5316 -10 . 3564 -10.2810 

1.3952 -108.25 -7 .144e+01 .8329 1. 363e+OO -2.5043 -10.3774 -10.2929 

1.5285 -109.03 -6.496e+01 .8518 2. 108e+OO -2.4697 -10.3997 -10.3050 

1. 6745 -109 . 95 -5.906e+01 .8709 2.970e+OO -2.4265 -10.4234 -10.3173 

1.8344 -111.07 -5 . 372e+01 .9018 4.011e+OO -2.3695 -10.4479 -10.3275 

2.0097 -112.41 -4.857e+01 .9260 5.314e+OO -2.2979 -10.4734 -10.3381 

2.2016 -113.95 -4.447e+01 .9721 6.777e+OO -2.2144 -10.5018 -10.3462 

2.4119 -115.73 -4.047e+Ol 1.0414 8.483e+OO - 2. 1168 -10.5339 -10.3512 

2.6421 -116.04 -3.617e+01 1.1059 9.081e+OO -2.1112 -10.5505 -10.3380 

2.8943 -116.29 -3.221e+01 1. 1758 9.602e+OO -2.1147 -:i.0.5728 -10.3253 

3. 1707 -116.48 -2.853e+01 1.2470 9 . 853e+OO -2.1307 -10.6025 -10 . 3149 

3.4735 -116.60 -2.514e+01 1.3173 9.916e+OO -2. 1578 -10.6364 -10.3056 

3.8051 -116.68 -2.200e+01 1.3861 9.892e+OO -2 . 1958 -10.6816 -10.2980 

4. 1686 -116.72 -1.911e+01 1.4543 9. 840e+OO -2.2435 -10.7324 -10.2915 

4.5667 -116.74 -1.645e+01 1.5231 9.787e+OO -2.3003 -10.7911 -10.2853 

5.0029 -116 . 76 -1.400e+01 1. 5929 9.741e+OO -2.3666 -10.8587 -10.2791 

5.4808 -116 . 78 -1 . 174e+Ol 1. 6642 9. 712e+OO -2.4429 -10.9362 -10.2728 

6.0045 -116.80 -9.654e+OO 1.7375 9.707e+OO -2.5298 -11.0248 -10 . 2661 

6.5784 -116.84 -7.734e+OO 1.8135 9.711e+OO -2.6280 -11.1259 -10.2582 

7.2072 -116.90 -5.965e+OO 1.8919 9.736e+OO -2 .7366 -11.2409 -10.2482 

7.8958 -117.03 -4.338e+OO 1. 9727 9.533e+OO -2.8583 -11.3696 -10.2367 

8.6503 -117.11 -2.827e+OO 2.0567 9.213e+OO -2.9973 -11.5149 -10.2209 

9.4770 -117.32 -1.440e+OO 2.1470 9.354e+OO -3.1488 - 11 . 6816 -10.2017 

10.3830 -117.61 -1.590e-01 2.2358 9.596e+OO -3.3169 -11.8706 -10.1822 



- 212 -

n= .7515e-01 ang • •-2 or nine= 1. 180 

T u Ln(P3D) Sll\1"1< B -P2d=I'T F E 

1.8344 -110.16 -5.322e+01 .9221 6.672e-01 -2 . 4427 -10.7215 -10.5944 

2.0097 -110 . 88 -4.811e+Ol .9472 2.984e+OO -2.4342 -10.7671 -10.6241 

2.2016 -111.72 -4.346e+01 .9963 5.641e+OO -2 . 4223 -10.8183 -10.6535 

2.4119 -112.69 -3.920e+01 1.0419 8 . 759e+OO -2.4064 -10.8770 -10.6582 

2.6421 -112.87 -3.497e+01 1. 0983 9.069e+OO -2.4167 -10.8966 -10.6605 

2.8943 -113.02 -3.108e+01 1 . 1590 9.323e+OO -2.4310 -10.9244 -10.6723 

3.1707 -113.14 -2.748e+01 1. 2213 9.528e+OO -2.4533 -10.9561 -10.655J 

3.4735 -113.24 -2.417e+01 1.2843 9 . 662e+OO -2.4837 -10.9936 -10.6553 

3.8051 -113.31 -2. 112e+01 1 . 3475 9.741e+OO -2.5225 -11 . 0377 -10.6523 

4. 1686 -113.36 -1.831e+01 1 . 4114 9.799e+OO -2.5702 - 11 . 0691 -10.6470 

4.5667 -113.39 -1.572e+01 1. 4 765 9.852e+OO -2.6268 -11. 1464 -10.6417 

5.0029 -113.42 -1.333e+01 1. 5435 S. 911e+CO -2.6S30 -11.2165 -10.GS62 

5.4808 -113.44 -1.113e+01 1.6125 9.968e+OO -2.7595 -11.29~6 -l0.63J4 

6.0045 -113.46 -9.098e+OO 1.6840 1. 002e+01 -2.8569 -~1.35S7 -10 . 6238 

6.5784 -113.50 -7.226e+OO 1.7582 1.010e+01 -2.9563 -11 .4855 -10.6163 

7.2072 -113.54 -5.499e+OO 1. 8351 1.02le+~1 -3 . 0688 - 11 . 6016 -10.€077 

7.8958 -113.71 -3.919e+OO 1.9150 1.044e+01 -3 . 1873 -11.7329 -10.5966 

8.6503 -113.93 -2.460e+OO 1. 9982 1. 067e+01 -3.3222 -11 . 8844 -10.5E54 

9.4770 -114 . 10 -1 .100e+OO 2.0858 1. 080e+01 -3.4781 -12.0527 -10.5672 

10.3830 -114.30 1.590e-01 2. 1725 1. 106e+01 -3.6547 -12.2445 -10.5493 



n: .775ee-01 ang••-2 or n/nc= 1.219 

T 

.6139 

.6725 

.7367 

.8071 

.8842 

.9667 

1.0612 

1.1625 

1.2736 

1.3952 

1.5285 

1.6745 

1.6344 

2.0097 

2.2016 

2.4119 

2.6421 

2.8943 

3. 1707 

3.4735 

3.8051 

4' 1666 

4.5667 

5.0029 

u Ln(P3D) 

-107.93 -1.717e+02 

-108.06 -1.564e+02 

-108.22 -1.423e+02 

-108.39 -1.295e+02 

-108.57 -1.178e+02 

-108.77 -1.071e+02 

-109.00 -9.725e+01 

-109.23 -8.826e+Ol 

-109.39 -7.997e+Ol 

-109.49 -7.233e+Ol 

-109.61 -6 . 533e+Ol 

-109.74 -5.693e+01 

-109.67 -5.306e+Ol 

-109.97 -4.766e+01 

-110.08 -4.271e+Ol 

-110.19 -3.817e+01 

-110.28 -3.399e+01 

-110.35 -3.015e+01 

-110.41 -2.662e+01 

-110.45 -2.337e+01 

-110.48 -2.038e+01 

-110.50 -1.762e+01 

-110.50 -1.506e+01 

-110.49 -1.274e+Ol 

S!!\"k 

.7445 

.7475 

.7506 

.7548 

.7603 

.7665 

.7771 

.7942 

.8123 

.8321 

.8537 

.8766 

.9108 

.9343 

.9847 

1.0291 

1.0601 

1' 1351 

1. 1924 

1.2508 

1 '3099 

1.3703 

1 '4322 

1. 4963 

- 213 -

B - ?2C:=\'i F 

6. 1 90e-02 

1.357e-01 

2.227e-01 

3.279e-01 

4.560e-01 

6. 160e- 01 

8.355e-01 

1.131e+OO 

1. 508e+OO 

1.984e+OO 

2. 612e+OO 

3.425e+OO 

4.518e+OO 

5.903e+OO 

7.590e+OO 

9.633e+OO 

9.860e+OO 

1.011e+01 

1.031e+01 

1. 04 7e+01 

1. 060e+Ol 

1.070e+01 

1. 079e+01 

1.088e+Ol 

-2.3074 -10.6603 -10.6449 

-2 . 3109 -10 . 6943 -10.6553 

-2.3143 -10.7097 -10.6668 

-2.3160 -10.7255 -10.6793 

-2.3222 -10.7451 -10.6900 

-2.3270 -10.7657 -10.7081 

-2.3325 -10.7835 -10.7245 

-2.3407 -10.5144 -10.7428 

-2.3597 -10.6450 -10.7557 

-2.3859 -10.8B33 -10.7S33 

-2.4219 -10.9253 -10.8241 

-2.4556 -10.8724 -10.6566 

-2.5020 -:1 .C251 -10.6865 

-2 . 5564 -11 . 0851 -10.8424 

-2.6182 -11.1586 -10.9904 

-2.6917 -11.24~2 -11 .0~76 

-2.7063 -11 . 2637 -11.0423 

-2.7311 -11.2921 -11.0373 

-2.7681 -11.3255 -11.0323 

-2.7BE3 -11.3642 -11.0271 

-2.8379 -11.4091 -11.0224 

-2.88S5 -11.4610 -11.0178 

-2.9460 -11.5285 -!1 . 0131 

-3.0171 -11.5SSO -11.0052 

5.4808 -110.48 -1.059e+Ol 1.5626 1.098e+Ol -3.09S5 -11.6S74 -11.0030 

6.0045 

6.5784 

7.2072 

7.8958 

8.6503 

9.4770 

-110.47 -8.600e+OO 

-110.46 -6.765e+OO 

-110.46 -5.072e+OO 

-110.48 -3.509e+OO 

-110.46 -2.058e+OO 

-110.59 -7.290e-Ol 

1. 6318 

1. 7040 

1. 7793 

1. 8579 

1. 9401 

2.0261 

1.109e+01 

1.123e+01 

1.138e+01 

1.185e+01 

1. 237e+01 

1. 253e+Ol 

-3.1867 -11.7571 -10.9969 

-3.2698 -11.6596 -10.9899 

-3.4066 -11.9764 -10.9815 

-3.5379 -12.1086 -10.9706 

-3 . 6880 -12.2576 -10.9556 

-3.8483 -12.4277 -10.9380 



- 214 -

10.3830 -110.72 5.040e-01 2 . 1104 1.275eT01 -4.032~ -12 .6219 -10.8220 



- 215 -

n= .8000e-01 ang • •-2 or nine= 1.257 

T u Ln(?3D) SIN'..« B -P2c=W F E 

.8071 -106.24 -1.268e+02 .7499 1.186e+Ol -2.5191 -11.0182 -10.9698 

.8842 -106.41 -1. 153e+02 .7550 1. 186e+01 -2.5249 -11.0380 -10.9846 

.9687 -106.60 -1.048e+02 .7606 1. 187e+01 -2.5320 -11.0600 -11.0010 

1.0612 -106.79 -9.517e+01 .7705 1. 190e+01 -2.5411 -11.0647 -11.0193 

1.1625 -106.98 -8.633e+01 .7836 1. 197e+01 -2.5544 -11.1130 -11.0402 

1.2736 - 107. 11 -7.818e+01 .7938 1.194e+01 -2.5778 -11. 14 70 -11.0662 

1.3952 -107.20 -7.068e+01 .8116 1. 182e+01 -2.6114 -11.1671 -:1.C9S5 

1.5285 -107.26 -6.380e+01 .8315 1.178e+01 -2.6521 -11.2329 -11.1312 

1.6745 -107.30 -5.747e+01 .8534 1.185e+01 -2.7012 -11.2E52 - 11' 1708 

1.8344 -107.29 -5. 165e+01 .8834 1.207e+01 -2.7631 - 11 . 3459 - 11 '2163 

2.0097 - 107' 19 -4.628e+01 . 9042 1. 235e+01 -2.8412 -11.4167 -11.2713 

2.2016 -107.05 -4. 133e+01 .9530 1.284e+01 -2.9344 -11.49E3 -11.3304 

2.4119 -106.82 -3.677e•01 1. 0051 1. 351e+01 -3.0476 - ~ 1 . 5534 -11 '3995 

2.6421 -106.85 -3.270e+01 1 . 0521 1.361e+01 -3.0711 -11.6191 -11.3958 

2.8943 -106.87 -2.895e+01 1. 1036 1. 390e+01 -3.0983 -11.6481 -11.3825 

3. 1707 -106.69 -2.551e+01 1' 1577 1. 402e+01 -3' 1323 -11.6532 -11.3895 

3.4735 -106.89 -2.234e+01 1 . 2133 1 . 414e+01 -3.1718 -11.7234 -11.3853 

3.8051 -106.90 -1.944e+01 1.2697 1.419e+01 -3.2169 -11.7689 -11.3824 

4 ' 1686 -106.9~ -1.676e+01 1.3273 1 . 420e+01 -3.2682 -11 '8215 -11.3788 

4.5667 -106.90 -1.429e+01 1. 3864 1. 419e+01 -3.3298 -11.8526 -11.3751 

5.0029 -106.68 -1.202e+01 1 . 4479 1. 415e+01 -3.3997 -11.P503 -11 . 3708 

5.4608 -106.86 -9.927e+OO 1.5139 1 .415e+01 -3.4804 -12.0282 -11.3654 

6.0045 -106.83 -7.993e+OO 1.5808 1.421e+01 -3.5734 -12.1197 -11.3603 

6.5784 -106.79 -6.207e+OO 1.6510 1. 428e+01 -3.6800 -12.2233 -11.3544 

7.2072 -106.75 -4.557e+OO 1. 7245 1.444e+01 -3.6017 -12.3419 -11 . 34-76 

7.8958 -106.70 -3.031e+OO 1. 8011 1. 455e+01 -3.9423 -12.4766 -11.3409 

8.6503 -106.70 -1. 624e+OO 1.8831 1. 434e+01 -4.0973 -12.6335 -11 . 3304 

9.4770 -106.77 -3.270e-01 1.9682 1. 455e+01 -4.2635 -12.8054 -11.3132 

10.3830 -106.85 8.770e-01 2.0505 1.475e+01 -4.4544 -13.0020 -11.2987 



- 216 -

n= .8242e-01 .s.ng••-2 or n/nc= 1. 295 

T u Ln(?3D) S/N'k B -P2d="i'f F E 

,g687 -103.24 -1.013e+02 .754.5 1.305e+01 -2.9207 -11.4293 -11.3691 

1.0612 -103.42 -9.199e+01 .7627 1. 306e+01 -2.9303 -11.4544 -11.3877 

1. 1625 -103.60 -8 . 342e+01 .7724 1. 309e+01 -2.9447 -11 . 4832 -11.4092 

1.2736 -103.74 -7.553e+01 .7777 1. 303e+01 -2.9661 -11.5165 -11.4349 

1.3952 -103.86 -6.829e+01 .7931 1. 290e+01 -2.9952 -11 . 5549 -11.4637 

1. 5285 -103.93 -6.162e+01 .8098 1.282e+01 -3.0331 -11.5993 -11 . 4973 

1.6745 -103.96 -5.548e+01 .8267 1.281e+Ol -3.0823 -11.c509 -11.5365 

1.8344 -103.91 -4.98le+01 .8534 1. 290e+01 -3.1475 -11.7115 -11.5825 

2.0097 -103 . 76 -4.457e+01 .8712 1.301e+01 -3.2301 -11.7820 -11.6377 

2.2016 -103.51 -3.973e+01 .9155 1. 326e+01 -3.3328 -11.6544 -11.6863 

2 . 4119 -103.14 -3.525e+01 .9771 1. 364e+01 -3.4601 -11.9513 -11 . 7670 

2.6421 -103.03 -3. 125e+01 1. 0227 1. 449e+01 -3.5010 -11.SS28 -11.7700 

2.8943 -102.85 -2.761e+01 1.0720 1.521e+01 -3.5304 -12.0252 -11.7705 

3 . 1707 -102.95 -2.427e+01 1. 1245 1.553e+01 -3.5772 -12.0621 -11.7683 

3.4735 -102 . 92 -2.120e+01 1. 1786 1 . 568e+01 -3.6200 -12. 1026 -11.7652 

3.6051 -102 . 90 -1.836e+01 1.2337 1. 590e+01 -3.6691 -12. 1501 -11.7632 

4. !6!36 -102.89 -1.580e+01 1 . 2896 1. 606e+01 -3.7236 -12.2835 -11.7604 

4.5667 -102.87 -1.341e+01 1.3468 1.617e+01 -3.7650 -12.2839 -11 . 7569 

5.0029 -102.66 -1 . 122e+01 1. 4059 1. 626e+01 -3.8551 -12.3320 -11 . 7523 

5.4808 -102.83 -9. 1 f'2e+OO 1. 4676 1. 632e+Ol -3.9366 -12.4123 - 11 . 7493 

6.0045 -102.79 -7.321e+CO 1.5322 1.637e+01 -4.0310 -12.5031 -11.7449 

6.5784 -102.74 -5.5Sle+OO 1.6002 1.639e+01 -4.1366 -12.6067 -11.7391 

7.2072 -102.66 -3.96Se+OO 1. 6717 1. 652e+01 -4.2647 -12.7255 -11.7328 

7.8958 -102.59 -2.510e+OO 1.7470 1. 653e+01 -4.4064 -12.6617 -11.7248 

6.6503 -102.60 -1. 149e+OO 1.8288 1. 659e+01 -4.5574 -13.0134 -11.7096 

9.4770 -102.62 1.110e-01 1.9120 1. 670e+01 -4.7256 -:3.1667 -11.6932 

10.3830 -102.65 1.281e+OO 1.9930 1. 674e+01 -4.9233 -13.3839 -11.6784 



- 217 -

n= .8485e-01 ang • '-2 or n/nc= 1.333 

T u Ln(P3D) Sl!\1< B -P2d=W F E 

.8842 -99.59 -1.076e+02 . 7450 1.518e+01 -3.3135 -11.7634 -11.7075 

.9667 -99.78 -9.776e+01 .7487 1 . 516e+01 -3.3202 -11.7661 -11.7245 

1.0612 -99.96 -8.873e+01 .7547 1 . 515e+01 -3.3299 -11.8117 -11.7438 

1. 1625 -100.14 -8.045e+01 .7617 1. 513e+01 -3.3445 - 11 . 8411 -11.7660 

1.2736 -100.30 -7.283e+01 .7644 1.504e+01 -3.3640 -11.8744 -11.7918 

1.3952 -100.45 -6.585e+01 .7770 1. 488e+01 -3.3893 - 11 . 9123 -11.6203 

1.5285 -100.56 -5.941e+01 .7900 1.474e+01 -3.4242 -11.9503 -11.E539 

1.6745 -100.60 -5.347e+01 .8050 1. 462e+01 -3.4719 -12.0078 -11 . 6834 

1.8344 -100.55 -4.798e+01 .8239 1. 452e+01 -3.5372 -12.0686 -11.9403 

2.0097 -100.40 -4.290e+01 .8387 1. 440e+01 -3.6203 -12.1391 -11.9861 

2.2016 -100.13 -3.819e+01 .8764 1. 435e+01 -3.7264 -!2.2222 -12.0585 

2.4119 -99.71 -3.382e+01 .9041 1. 436e+01 -3.8601 -12.3203 -12 . 1353 

2.6421 -99 . 39 -2.987e+01 .9783 1.470e+01 -3.9218 -:2.3551 - 12. 1358 

2.8943 -99.07 -2.626e+01 1. 0324 1. 578e+01 -3.9687 -12.3851 -12.1416 

3. 1707 -98.86 -2.298e+01 1. 0855 1 . 703e+01 -4.0505 -12.4390 -12. 1470 

3.4735 -98.74 -2 . 000e+01 1 . 1396 1. 783e+01 -4. 1050 -12.4833 -12.1474 

3.8051 -98 . 65 -1.727e+01 1. 1945 1. 807e+01 -4.1597 -12.5301 -12. 1444 

4. 1666 -98.57 -1.476e+01 1.2496 1. 832e+01 -4.2207 -12.5848 -12.1428 

4.5667 -98.51 -1.246e+01 1. 3057 1. 857e+01 -4.2878 -12.6467 -12.1408 

5.0029 -98.46 -1.034e+Ol 1.3633 1.874e+01 -4 . 3619 -12.7162 -12. 1375 

5.4808 -98.40 -8.384e+OO 1. 4229 1.885e+01 -4.4460 -12 . 7956 -12.1339 

6.0045 -98.35 -6.580e+OO 1 .4856 1. 892e+C1 -4.5419 -12.6866 -12.1297 

6.5784 -98.28 -4.913e+OO 1.5517 1. 906e+01 -4.6517 -12.9910 -12 . 1249 

7.2072 -98.18 -3.367e+OO 1.6217 1.918e+01 -4.7813 -13.1115 -12.1198 

7.8958 -98. 12 -1.944e+OO 1. 6957 1. 905e+01 -4.9215 -13.2473 -12.1112 

8.6503 -98. 12 -6.310e-01 1.7768 1. 909e+01 -5.0753 -13.4005 -12.0963 

9.4770 -98. 13 5.850e-01 1.8581 1 . 909e+01 -5 . 2476 -13.5741 -12.0799 

10.3830 -98. 18 1.712e+OO 1.9391 1. 899e+01 -5.4419 -13.7722 -12.0639 



- 218 -

n= .8727e-01 ang • •-2 or n/nc= 1. 371 

T u Ln(?3D) SIN"..K B -?2d=W F E 

.8642 -95.43 -1.029e+02 .7410 2 . 026e+01 -3.6064 -12. 1349 -12.0777 

.9687 -95 . 63 -9.348e+01 . 7436 2. 023e+01 -3.8123 -12 . 1578 -12.0949 

1.0612 -95.82 -8 . 483e+01 .7475 2.018e+01 -3 . 8211 - 12. 1836 -12. 1144 

1. 1625 -96.01 -7.689e+01 .7523 2 . 011e+01 -3.8344 -12.2130 -12.1357 

1.2736 -96 . 20 -6.961e+01 .7540 1 . 998e+01 -3.8509 -12.2459 -12.1621 

1.3952 -96.38 -6 . 293e+01 .7640 1 . 981e+Ol -3.8715 -12 . 2526 -12.1898 

1.5285 -96.53 -5.678e+01 .7731 1.961e+01 -3.9016 -12.3256 -12 . 2226 

1.6745 -96.62 -5. 109e+Ol .7833 1.937e+01 -3.9441 -12.3759 -12.2614 

1.8344 -96 . 61 -4.583e+01 .7971 1. 908e+01 -4.0039 -12.4351 -12.3075 

2.0097 -96 .52 -4.096e+01 .8092 1. 873e+01 -4 . 050!. -12 .5005 -12.3516 

2.2016 -96.30 -3.645e+01 .8396 1.836e+01 -4.1806 -12.5643 -12 .4230 

2 . 4119 -95 . 92 -3.225e+01 .8506 1 . 798e+O 1 -4 . 3090 -12.6500 -12.5009 

2.6421 -95.68 -2 . 847e+01 . 8848 1. 711 e+81 -4.3625 -:2 .73.26 -12.5056 

2 . 8943 -95.25 -2.494e+01 .9541 1. 668e+01 -4.4405 -12 . 7537 -12.5127 

3. 1707 -94 . 73 -2 . 167e+01 1.0357 1. 744e+O 1 -4.5364 -12.8036 -12.5170 

3.4735 -94 . 31 -1.872e+01 ].095] 1 . 908e+01 -4.6278 -12 . 8582 -12 . 52~2 

3.8051 -94 . 08 -1.607e+01 1 . 1521 2.049e+01 -4.7035 -12 . 9137 -12.5311 

4. 1686 -93 . 92 -1.365e+01 j. 2084 2. 105e+01 -4.7731 -12.9698 -12 . 5302 

4 . 5667 -93.81 -1. 143e+01 1.2545 2. 123e+01 -4.8455 -13.0323 -12.5284 

5.0029 -93 . 72 -9.390e+CO 1.3214 2. 146e+01 -4.9255 - 13 . 1041 -12.5272 

5.4808 -93.64 -7.514e+OO 1. 3797 2. 160e+01 -5.0139 -13. 1854 -12.5255 

6.0845 -83 . 56 -5.783e+OO 1 . 4408 2. 170e+01 -5.1125 -13.2773 -12.5223 

6.5784 -93.44 -4 . 176e+OO 1. 5051 2.194e+01 -5 . 2276 -13.3526 -12.5185 

7.2072 -93 . 31 -2.692e+OO 1. 5733 2.196e+01 -5.3597 -13.5025 -12.5133 

7.6958 -93 . 29 -1.332e+OO 1. 6480 2. 160e+01 -5.4954 -13 . 6369 -12 . 5814 

8.6503 -93.29 -7 . 300e-02 1. 7276 2.174e+01 -5.6485 -13.7695 -12.4854 

9.4770 -93 . 30 1.094e+OO 1.8078 2.171e+01 -5 . 8212 -13 . 9636 -12.4687 

10 . 3830 -93.40 2. 173e+OO 1. 8892 2. 130e+01 -6.0075 -14. 1582 -12.4464 



- 219 -

n= .8970e-01 ang • •-2 or nine= 1.409 

T u Ln(P3J) Sl!\1<: B -P2ci=l'f F E 

.8842 -90.21 -9.702e+Ol .7378 2.620e+Ol -4.4476 -12.5397 -12.4812 

.9687 -90.42 -8.810e+Ol .7394 2 . 614e+01 -4.4523 -12.5627 -12 . 4985 

1.0612 -90.63 -7.994e+01 .7415 2.605e+01 -4.4592 -12.5885 -12.5180 

1.1625 -90.84 -7.244e+01 .7448 2.592e+01 -4.4697 -12.6177 -12.5400 

1. 2736 -91 . 06 -6.557e+Ol .7465 2.575e+Ol -4.4821 -12.6499 -12.5546 

1. 3952 -91.29 -5.928e+01 .7539 2.554e+01 -4.4974 -12.6E59 -12.5915 

1.5285 -91.49 -5.348e+01 .7596 2.527e+01 -4.5211 -12.7275 -12.6233 

1.6745 -91.64 -4.812e+01 .7663 2.486e+Ol -4.5551 -12.7755 -!2.6e:>4 

1.8344 -91. 72 -4.317e+01 . 7750 2.435e+01 -4.6038 -12.8316 -12.7041 

2.0097 -91.74 -3.859e+01 . 7844 2.370e+01 -4.6666 -l2.ES6Q - ~2. 7546 

2.2016 -91.65 -3.434e+01 .8076 2.294e+01 -4.7514 -12.9720 -12.5:25 

2.4~19 -91.41 -3.038e+O! .6235 2.207e+01 -4.6627 -13.0619 -12.6538 

2. 6421 -91.38 -2.684e+01 .8448 2. 139e+Ol -4 . 8821 -10 .0854 -12 . 6c382 

2.8943 -91. 19 -2.353e+Ol .8746 2. 020e+Ol -4.9441 -13.1236 -12.8S66 

3. 1707 -90.73 -2.041e+01 .9237 1. 889e+01 -5.0315 -13. 1702 -12.9075 

3.4735 -90.04 -1.749e+Ol 1 . 0301 1. 693e+01 -5.1512 -13.2282 -~2.S'072 

3.8051 -88.36 -1.463e+01 1. 1024 2.084e+01 -5.2789 -13.2949 -12.8166 

4. 1686 -88.93 -1.245e+01 1. 1638 2.315e+01 -5.3877 -13.3645 -12.9293 

4.5667 -68.70 -1.031e+Ol 1. 2221 2.437e+01 -5.4750 -13.42!4 -12.8387 

5.0029 -86.54 -8.356e+OO 1.2795 2.467e+01 -5.5606 -13.5028 -12.9266 

5.4808 -88.42 -6.562e+OO 1. 3377 2.484e+01 -5.6508 -13.5821 -12.9245 

6.0045 -88.32 -4.911e+OO 1. 3978 2.491e+01 -5.7508 -13.6733 -~2.82::)5 

6.5784 -68. 16 -3.374e+OO 1 . 4610 2.511e+01 -5.8726 -13 . 7805 -12.9~84 

7.2072 -88.04 -1.961e+OO 1.5280 2.494e+01 -6.0026 -13.9004 -12.9126 

7.8958 -88.06 -6.6S0e-01 1. 6034 2.466e+01 -6. 1353 -14.0341 -~2.e;e5 

8.6503 -88.07 5.300e-01 1.6815 2.474e+01 -6.2867 -14.1871 -12.8623 

9.4770 -88.15 1.638e+OO 1. 7617 2.411e+01 -6.4510 -14.3577 -12.6601 

10.3830 -88.37 2.657e+OO 1. 8441 2.350e+01 -6.6267 -14.5535 -12.8360 



- 220 -

n= . 9212e-01 ang••-2 or nine= 1.447 

T u Ln(P3D) SINk B -?2d=\'v F E 

.8842 -84. 16 -9.018e+01 .7358 3.029e+01 -5.1960 -12.9492 -12.8892 

.9687 -84.38 -8 . 187e+01 .7367 3.021e+01 -5.1987 -12.9722 -12 . 9064 

1.0612 -84.62 -7.427e+01 .7375 3 . 010e+Ol -5.2029 -12.9978 -12.9257 

1.1625 -84.86 -6.730e+01 .7396 2.992e+01 -5.2092 -13.0253 -12.9471 

1. 2736 -65 . 12 -6.091e+01 .7416 2.972e+01 -5 . 2166 -13.0577 -12.8707 

1. 3952 -85 . 39 -5.506e+01 .7471 2.951e+01 -5 . 2262 -13.0925 -12.9967 

1.5265 -65.66 -4.966e+Ol .7503 2 . 916e+01 -5.2416 -13 . 1326 -13.0270 

1. 6745 -85.91 -4.470e+01 . 7541 2.671e+01 -5.2640 - 13 . 1750 - 13.0517 

1. 8344 -86. 13 -4.012e+01 .7593 2 . 802e+01 -5.2962 -13 . 2300 -13 . 1017 

2.0097 -66.31 -3.586e+01 .7664 2. 718e+01 -5.3366 -13.25S2 -13. }4.73 

2.2016 -86.41 -3 . 196e+01 .7835 2. 613e+01 -5.3986 -13 . 35E.5 -~3.1996 

2 . 4119 -86.40 -2.830e+01 . 6071 2.492e+01 -5.4614 -13.4404 -13.2611 

2. 6421 -86.44 -2 .497e+01 .6223 2 . 475e+01 -5 . 5004 -13.4630 -13.2623 

2.8943 -66 . 43 -2 . 189e+01 .8420 2.427e+01 -5.5259 -13 . 4806 -13.2661 

3. 1707 -86.31 -1.902e+01 .8693 2. 306e+01 -5.5779 -13 . 5283 -13.2744 

3.4735 -85.67 -1.629e+01 .9105 2. 118e+01 -5.6695 -13.5786 -13.2682 

3 . 8051 -85.04 -1.369e+01 1.0022 2.012e+01 -5.8124 -13 . 6466 -13 . 2953 

4. 1686 -84.08 -1.128e+01 1. 1074 2. 164e+01 -5.9818 -13.7270 -13.3017 

4.5667 -83.38 -9 . 143e+OO 1. 1752 2 .483e+01 -6.1319 -13 . 8125 -13 . 3181 

5.0029 -83 . 04 -7.256e+OO 1. 2364 2 . 662e+01 -6.2426 -13 . 6823 -13 . 3225 

5.4606 -82.63 -5.542e+OO 1 . 2959 2.763e+01 -6.3529 -13.9628 -13.3285 

6 . 0045 -82 . 67 -3.970e+OO 1 . 3563 2. 650e+01 -6 . 4622 -14.0760 -13.3278 

6.5764 -62 . 48 -2.512e+OO 1. 4196 2. 646e+01 -6.5567 - 14 . 165J -13 . 3247 

7.2072 -82.42 -1. 180e+OO 1. 4664 2.816e+01 -6.7103 -14 . 3024 -13 . 3156 

7.8956 -82.46 4.000e-02 1 . 5624 2.766e+01 -6.6362 -14.4342 -13.2S76 

8.6503 -82.54 1 . 170e+OO 1.6404 2.718e+01 -6 . 9795 -14 . 5830 -13 . 2756 

9.4770 -82.81 2.202e+OO 1 . 7230 2.620e+01 -7.1211 -14.7496 -13.2454 

10 . 3630 -83.22 3. 153e+OO 1.6076 2.466e+01 -7.2569 -14.9253 -13. 1963 



- 221 -

n= .9454e-01 ang .. -2 or nine= 1 . 485 

T u Ln(P3D) SI~K B -P2d=l'f F E 

.8842 -77.53 -8.267e+01 . 7349 3.714e+01 -6.0760 -13 . 4055 -13.3440 

. 9687 -77 . 76 -7 . 504e+01 .7355 3.706e+01 -6 . 0767 -13 . 4285 -13 . 3611 

1.0612 -78.02 -6.806e+01 . 7358 3 . 695e+01 -6 . 0778 -13 .4538 -13.3600 

1. 1625 -78 . 30 -6. 166e+01 .7375 3 . 679e+01 -6.0797 -13.4618 -13 . 4007 

1 . 2736 -78.60 -5.579e+Ol .7393 3.661e+01 -6.0820 -13.5 125 -13.4235 

1.3952 -78 . 91 -5 . 041e+01 .7433 3.642e+01 -6.0862 -13, 5 L~66 -13 . 4467 

1.5285 -79 . 24 -4.547e+01 .7453 3.612e+01 -6.0935 -13.5~52 -13.4775 

1.6745 -79.58 -4 . 092e+01 .7474 3.570e+01 -6. 1040 -13 . 6279 - ~3.5096 

1.8344 -79 . 93 -3 . 674e+01 .7507 3.509e+01 -6.1188 -13 . €759 -13.5457 

2.0097 -80.28 -3.269e+01 .7559 3 . 432e+01 -6.1399 - 13.7299 -13.5563 

2 . 2016 -80 . 59 -2.932e+01 . 7685 3 . 337e+01 -6. 1734 -13.7224 -13 . €325 

2.4119 -60.82 -2.599e+01 . 7944 3 . 224e+01 -6.2250 -13.8651 -13.6650 

2 . 6421 -80.90 -2 . 287e+01 . 8062 3.205e+01 -6.2400 - 13.8531 -12 . 6557 

2.8943 -80.95 -1.999e+01 .8210 3.180e+01 -6 . 2605 -13.8132 -13 . 6555 

3 . 1707 -80.95 -1.733e+01 .8398 3.142e+01 -6.2894 -13 . 9425 -13.6908 

3.4735 -60.86 -1 . 485e+01 .8656 3. 020e+01 -6.3367 -13 . 9810 - 13.6858 

3 . 8051 -80.48 -1 . 249e+01 . 9031 2.778e+01 -6.4272 - 1 4.0~ 6 -J -13 . 7111 

4 . 1686 -79.61 -1.021e+01 .9745 2.536e+01 -6.5847 -14.1110 -13 . 7270 

4 . 5667 -78.39 -8.050e+OO 1. 1086 2.590e+01 -6.7934 -14.2040 -13.7254 

5 . 0029 -77.42 -6.132e+OO 1.1861 2.972e+Ol -6 . 9892 -14 . 3 081 -13 . 7471 

5 . 4808 -76 . 95 -4 . 469e+OO 1.2512 3 . 067e+01 -7. 1093 -14.3839 -13 . 7355 

6.0045 -76 . 63 -2.963e+OO 1.3141 3.120e+01 -7.2382 -14 . 4824 -13.73C4 

6.5784 -76 . 46 -1.597e+OO 1.3787 3. 103e+01 -7.3591 -14 . 5681 -:2 .7306 

7.2072 -76 . 46 -3.540e-01 1.4494 3.071e+01 -7.4753 -14.7043 -13.7167 

7.8958 -76.61 7.810e - 01 1. 5274 3.004e+01 -7.5911 -14.8333 -13.6937 

8.6503 -76.91 1.820e+OO 1. 6079 2.876e+01 -7.7071 -14.9781 -13.6631 

9 . 4770 -77.40 2 . 772e+OO 1. 6922 2 . 721e+01 -7.8191 - 15. 1368 -13.6207 

10.3830 -78.11 3.645e+OO 1.7779 2 . 684e+01 -7.9594 -15 . 3440 -13.5988 



- 222 -

n= .9697e-01 ang .. -2 or nine= 1.523 

T u Ln(P3D) S/Nlc B -P2d=W F E 

.6842 -70.17 -7.435e+01 .7351 3.532e+01 -7.0055 -13.8127 -13.7497 

.f3687 -70.42 -6 . 746e+01 .7356 3.526e+01 -7.0075 -13.8358 -13.7667 

1.0612 -70.69 -6.115e+01 .7360 3.517e+Ol -7.0060 -13.6611 -13.7854 

1.1625 -71 . 00 -5.538e+01 .7373 3.504e+01 -7.0042 -13.8557 -13.6056 

1.2736 -71.33 -5.008e+Ol .7391 3.490e+01 -7.0026 -13.9191 -13.5278 

1.3952 -71.68 -4.522e+01 .7421 3.474e+01 -7.0022 -13.9529 -13 . 8525 

1.5285 -72.06 -4.076e+Ol .7436 3.452e+Ol -7.0029 -13.9;03 -13.8301 

1.6745 -72.47 -3.667e+01 .7453 3.419e+01 -7.0038 -14.0314 -13 . 9104 

1.6344 -72.92 -3.292e+01 . 7478 3.375e+Ol -7.0053 -14.0765 -13.9435 

2.0097 -73.40 -2.946e+01 .7515 3.317e+01 -7.0093 -14.1257 -l3.S303 

2.2016 -73.87 -2.626e+01 .7610 3. 245e+Ol -7.0215 -14.1842 -14.0218 

2 . 4119 -74.29 -2.328e+Ol .7850 3.156e+01 -7.0474 -14.2515 -14.0679 

2.6421 -74 . 40 -2.041e+01 .7946 3. 149e+01 -7.05£4 -14 .2727 -14.0691 

2.8943 -74.49 -1.776e+01 .8063 3 . 136e+01 -7.0737 -14 . 2971 -14.0709 

3. 1707 -74 . 57 -1.531e+Ol .8208 3.113e+Ol -7.0956 -14.3263 -14.0739 

3 .4735 -74. 60 -1.305e+01 .8394 3.084e+01 -7.1250 -1~.3587 -14.0760 

3.8051 -74.54 -1.093e+01 .8643 2.992e+01 -7.1707 -14 .3953 -14.0799 

4. 1686 -74 . 25 -8.926e+OO .8999 2. 745e+01 -7.2558 -14.4563 -14 . 0925 

4.5667 -73.39 -6.S55e+OO .9612 2. 41 Oe+01 -7.4240 -] 4. 5406 -14.1150 

5.0029 -72.03 -5.055e+O'J 1. 1073 2.244e+01 -7 . 6563 -14.6407 -14.1C35 

5.4808 -70.89 -3.363e+OO 1. 2002 3 . 190e+01 -7.9208 -14.7947 -14.1568 

6.0045 -70.44 -1.932e+OO 1.2723 3.351e+01 -8.05SO -14.6585 -14. 1487 

6.5784 -70.31 -0.610e-01 1.3420 3 . 337e+01 -8.1783 -14.9959 -14.1398 

7.2072 -70.40 4.660e-01 1. 4184 3.255e+01 -8.2801 -15. 1064 -14.1151 

7.8958 -70 . 73 1.526e+OO 1.5005 3. 108e+01 -8.3705 -15.2253 -14.0799 

8.6503 -71.32 2.466e+OO 1. 5849 2.898e+Ol -8.4433 -15.3595 -14.0301 

9.4770 -72.22 3.319e+OO 1. 6730 2.656e+01 -8.4957 -15.4987 -13 . 9612 

10.3830 -73.21 4.117e+OO 1. 7575 2.087e+Ol -8 . 4808 -15.5796 -13.8101 



- 223 -

n= .9939e-01 ang • •-2 or nine= 1. 561 

T u Ln(?3J) Sl1\1c B -P2d=W F E 

.8842 -64.05 -6.743e+01 .7360 3.707e+01 -7.8790 -14.2451 -14.1805 

.9687 -64.31 -6. 115e+01 .7366 3.702e+01 -7.87€5 -14.2685 -14. 1976 

1.0612 -64 . 60 -5.541e+01 .7375 3 . 695e+01 -7.8731 -14.2939 -14.2161 

1.1625 -64.93 -5 . 016e+01 .7388 3 . 686e+01 -7.6657 -14.3215 -14.2362 

1.2736 -65.28 -4.533e+01 .7402 3.676e+01 -7 . 6641 -14.3520 -14.2563 

1. 3952 -65.66 -4.091e+01 .7427 3 . 664e+01 -7.8601 -14.3857 -14.2627 

1.5285 -66.07 -3.685e+01 .7443 3. 647e+01 -7.8550 -14.4227 -14.3097 

1 . 6745 -66.53 -3.313e+01 .7462 3.626e+01 -7.8502 -14.4630 -14.3388 

1.8344 -67.05 -2.972e+01 .7467 3.596e+01 -7.8425 -14 . 5068 -14.3703 

2.0097 -67.61 -2.658e+01 .7512 3.559e+01 -7.8346 -1~.5551 -14.4050 

2.2016 -68.20 -2 . 368e+01 .7589 3.507e+01 -7.8317 -14.60S7 -14.4436 

2.4119 -68.76 -2.099e+01 .7794 3.442e+01 -7.8385 -14.6729 -14.4661 

2.6421 -68 . 86 -1.832e+01 . 7674 3.450e+01 -7.8503 -14.6946 -14.4E7a 

2.8943 -68.96 -1.585e+01 .7970 3.458e+01 -7 . 86:53 -14.7190 -14.4598 

3 . 1707 -69.04 -1.357e+01 .8088 3.461e+01 -7.8850 -14.7472 -14.4923 

3.4735 -69. 11 -1.147e+01 .8234 3. 453e+::H -7.9113 -14 .7793 -14.4955 

3 . 8051 -69. 13 -9.509e+OO .8422 3.436e+01 -7.9467 -14.8:73 - 14 . 4958 

4. 1686 -69.07 -7.682e+OO .8671 3. 390e+01 -7.9380 -14.8S26 -14.5033 

4.5667 -68.81 -5.953e+OO .9025 3. 112e+01 -8.0623 -14 . 92:2 -14.5116 

5.0029 -68.22 -4.294e+OO .9752 2 . 694e+01 -8.2295 -15.0101 -14.5252 

5.4808 -€5.60 -2.398e+OO 1.1104 2.364e+01 -8.6044 -15. 1241 -14.5193 

6 . 0045 -64 . 26 -9.060e-01 1. 2268 3 . 315e+01 -5.E958 -15 . 2871 -14.555:> 

6.5784 -64 . 13 2 . 780e-01 1.3113 3.365e+01 -9.00E3 -15.3523 -14.5250 

7.2072 -64.43 1.316e+OO 1.3970 3.241e+01 -9.0869 -15.4904 -14.4896 

7.8958 -65. 14 2.234e+OO 1.4863 2.976e+01 -9.1248 -15.5SE:S -14.4325 

8.6503 -66. 17 3.062e+OO 1.5744 2.756e+01 -9.1431 -15.7197 -14.3661 

9.4770 -67.41 3.827e+OO 1.6628 2.689e+01 -9 . 1783 -15.8777 -14.3115 

10.3830 -68.71 4.550e+OO 1.7517 4.003e+01 -9.4456 -16.2749 -14.4672 



- 224 -

n= . 1018 ang • •-2 or nine= 1 . 599 

T u Ln(?3D) S/1\TJc B -?2d="i'i F E 

.8842 -56 . 62 -5.903e+01 . 7376 4 . 691e+01 -6 . 8666 -14.6528 -14.5864 

.9687 -56 . 89 -5.349e+01 . 7384 4 . 686e+01 -8.8550 -14 . 6764 -14.6036 

1.0612 -57 . 19 -4.843e+01 . 7396 4.681e+Ol -8 . 8801 -14.7022 -14.6223 

1 . 1625 -57.53 -4.379e+01 . 7411 4.677e+01 -8.8741 -14 . 7302 -14.6425 

1.2736 -57 . 89 -3.953e+Ol .7423 4 . 671e+Ol -8.8676 - 14.7509 -14.6647 

1.3952 -58.29 -3.563e+01 .7444 4 . 664e+01 -8.6613 -14 . 7950 -14.6682 

1. 5265 -58.72 -3.204e+Ol .7465 4.655e+Ol -8.8542 -14.8322 -1 4. 7160 

1 . 6745 -59.21 -2.876e+01 . 7487 4 . 645e+01 -8.8446 -1 4. 6726 -14.74 50 

1.8344 -59 . 77 -2.575e+01 .7517 4. 635e+01 -8 . 8321 -14.9165 -14.7761 

2.0097 -60 . 38 -2.296e+01 .7536 4.620e+01 -6.8182 -14.964 5 -14.8103 

2.20 16 -61.02 -2.043e+01 .7599 4.595e+01 -8.8059 -:5.0181 -1 4 .84 78 

2.4119 -61 . 68 -1.806e+01 .7695 4 . 558e+01 -8 . 8004 -15.0785 -14 . 8906 

2.6421 -61.78 -1 . 564e+01 . 7764 4 . 544e+01 -8.6118 -15.10J 8 -:4.8920 

2.8943 -61.87 -1.340e+01 .7846 4.527e+01 -8 . 8260 - 15 . 1248 -1 4 .6836 

3 . 1707 -61. 97 -1. 134e+01 .7945 4.505e+01 -8.8443 - 15. 1525 -14.8960 

3.4735 -62.05 -9.434e+OO .8068 4.474e+01 -8 . 6662 -15.1831 -i4 . 8S78 

3.8051 -62 . 12 -'j :;sse~oo . 8222 4.423e+01 -8 . 8943 -15 . 2H~2 -1 4. 8898 

4. 1686 -62 . 16 -6.C25e+OJ .8421 4.312e+Ol -8 . 9294 -15 . 2573 -14.9000 

4.5667 -62 . 22 -4.510 ~+00 .8690 4 . 211e+01 -8.9705 -15.3045 - 14 . 9805 

5.0029 -62.08 -3 . 065e-:-oo .9079 4 . 011e+01 -9.0423 -15 . 36!5 -14 . 8991 

5 . 4808 -61.66 -1.680e+OO .9769 2.877e+01 -9 . 2036 -15.4809 -14.9359 

6 . 004 5 -59.24 -6.800e-02 1.1416 2.295e+01 -9 . 5734 -15 . 6043 -14.8055 

6.5784 -58.54 1 . 128e+OO 1. 2842 3 . 107e+01 -9 . 7958 - 15 . 7550 - 14 .6850 

7.2072 -59. 10 2.055e+OO 1.3690 2.879e+01 -9.8268 -15 . 6434 -14.8243 

7.8958 -60.26 2.851e+OO 1.4655 2.675e+01 -9.8055 -15 . 8483 - 14. 7462 

8.6503 -61.62 3.588e+OO 1.5761 2.490e+01 -9 . 7747 - 16.0474 -14 . 6594 

9 . 4770 -63. 13 4 . 278e+OO 1. 6649 1. 958e+01 -9.6820 - 16. 1092 -14.5029 



- 225 -

n= .1042 a::1g ••-2 or n/nc= 1.637 

T u Ln(P3D) SINk B -?2d='i'v F E 

. 7367 -48.41 -6. 116e+01 .7383 4.620e+01 -9.9940 -15.0384 -14.9817 

.8071 -48.64 -5 . 548e+01 .7390 4.616e+01 -9.9S03 -15.0584 -14.9962 

.8842 -48.89 -5.028e+01 .7397 4.612e+01 -9.9861 -15.0803 -15.0122 

.Q687 -49. 17 -4.552e+01 .7407 4.608e+01 -9.9812 - 15. 1043 -15 . 0296 

1.0612 -49.47 -4.115e+01 . 7422 4.607e+Ol -9.9757 - 15. 1305 -15.0485 

1.1625 -49.81 -3.715e+01 . 7437 4.607e+01 -9.9691 - 15. 1592 -15.0691 

1.2736 -50. 18 -3.348e+01 . 7449 4.606e+01 -9.9617 - 15. 1906 -15.0917 

1. 3952 -50.58 -3. Olle+01 .7467 4.604e+01 -9 . 9544 -15.2252 -15.1167 

1. 5285 -51.03 -2.701e+01 .7492 4.603e+01 -9 . 9459 -15 . 2631 -15 . 1438 

1.6745 -51.52 -2 .416e+01 .7517 4 . 607e+01 -9.S356 -15.3044 - 15. 1732 

1 . 8344 -52.08 -2. 156e+01 .7553 4.618e+01 -9.9229 -15 . 3493 -15.2049 

2.0097 -52.69 -1.916e+01 .7568 4.627e+01 -9.9080 -15.3983 -15.2399 

2 . 2016 -53 . 36 -1 . 694e+01 .7625 4.631e+01 -9 . 8928 -15 .45 25 - 15. 2776 

2.4119 -54 . 05 -1.489e+01 . 7637 4.624e+01 -9.8819 -15.5138 -15 . 3219 

2 . 6421 -54. 19 -1.276e+01 . 7698 4.600e+01 -9.8891 -15.5353 -15.3233 

2.8943 -54.33 -1.080e+01 .7771 4.566e+Ol -9.8975 -15 . 5590 -15 . 3247 

3. 1707 -54.49 -8.984e+OO .7860 4.516e+01 -9.9078 -15 . 5657 -15 . 3260 

3 . 4735 -54 . 67 -7.307e+OO .7970 4. 44 7e+01 -9.91E8 -15 . 6149 -15.3265 

3.8051 -54. 86 -5 . 759e+OO . 8111 4.355e+01 -9 . 9311 -15 . 6473 -15.3257 

4. 1686 -55 . 12 -4.337e+OO . 8293 4.256e+01 -9.9411 -15.6849 -15 . 3247 

4.5667 -55.33 -3.002e+OO . 8535 4. 110e+01 -9.9583 -15.7240 -15.3179 

5.0029 -55 . 58 -1.767e+OO .8865 3. 839e+01 -9 . 9803 -15.7719 -15 . 3097 

5.4608 -55.87 -6.230e-01 .9330 3.642e+01 -9.9795 -15.8008 -15 . 2680 

6.0045 -55.88 4.920e-01 1 . 0614 2.361e+Ol -10.0902 -15.9133 -15 . 2492 

6.5784 -54.05 1 . 810e+OO 1.2333 2. 141e+01 -10.4134 -16.0455 -15.2001 

7.2072 -54. 81 2.650e+OO 1 . 3924 2. 34 7e+01 -10 . 4354 -16. 1465 -15.1008 

7 . 8958 -56 . 21 3.365e+OO 1 . 4976 2.223e+01 -10.3764 -16.2329 -15.0008 

8.6503 -57.84 4.025e+OO 1. 5860 2.105e+01 -10 . 3100 -16.3369 -14 . 9073 

9.4770 -59.65 4.646e+OO 1. 6760 3 . 251e+01 -10.4152 -16 . 6303 -14.9752 



- 226 -

n= .1067 ang••-2 or nine= 1.676 

T 

.5115 

.5604 

.6139 

.6725 

.7367 

. 8071 

.8842 

.9687 

1 . 0612 

1. 1625 

1.2736 

1 . 3952 

1.5285 

1.6745 

1.8344 

2.0097 

2.2016 

2.4119 

2.6421 

2.8943 

3. 1707 

3.4735 

3.8051 

4. 1686 

4 . 5667 

5.0029 

5 . 4808 

6 . 0045 

6.5784 

7.2072 

7.8958 

u Ln(P3D) 

-40 . 24 -7.504e+01 

-40.40 -6.823e+01 

-40 . 58 -6.201e+01 

-40.77 -5.631e+Ol 

-40 . 99 -5.108e+01 

-41.22 -4.629e+01 

-41 . 48 -4.190e+Ol 

-41 . 76 -3.767e+01 

-42.07 -3.417e+01 

-42.40 -3.078e+01 

-42.77 -2.766e+01 

-43.17 -2.479e+01 

-43.60 -2 . 215e+01 

-44 . 08 -1 . 972e+01 

-44 . 59 -1.747e+01 

-45 . 16 -1 . 541e+01 

-45 . 78 -1.351e+01 

-46 . 46 -1.174e+01 

-46.65 -9 . 912e+OO 

-46.89 -8 . 227e+OO 

-47.17 -6.676e+OO 

-47.52 -5.250e+OO 

-47.9S -3.936e+OO 

-48.36 -2.715e+OO 

-48.95 -1.606e+OO 

-49 . 67 -5.860e-01 

-50.49 3.570e-01 

-51.31 1 . 254e+OO 

-51 . 30 2.229e+OO 

-51 . 34 3.131e+OO 

-52.92 3.781e+OO 

SII\"k B -P2d=W F E 

.7390 4 . 679e+01 -11 . 1106 -15 . 4046 -15.3643 

.7392 4.677e+01 -11.1076 -15 . 4188 -15.3746 

.7396 4.674e+01 -11.1043 -15 . 4343 -15.3858 

. 7402 4 . 672e+01 -11.1006 -15.4512 -15.3S81 

.7408 4.668e+01 -11.0965 -15.4698 -15 . 4116 

.7415 4 . 665e+01 -11.0918 -15 . 4902 -15 . 4264 

. 7423 4.661e+01 -11.0667 -15.5125 -15.4~ 25 

.7433 4 . 658e+01 -11.0810 -15 . 5369 -15.4601 

. 7449 4 . 660e+01 -11.0755 -15.5641 -15 . 4797 

. 7464 4.667e+01 -11.0699 -15.5939 -15.5013 

.7475 4 . 675e+01 -11 . 0634 -15 . 6265 -15.5250 

. 7492 4 . 680e+01 -11.0564 -15 . 6624 -15 . 5509 

. 7518 4.692e+01 -11.0493 -15 . 7020 -15.5794 

.7543 4.719e+01 -11 . 0429 -15 . 7460 -15.6112 

.7579 4.763e+01 -11.0371 -15 . 7948 -15.6464 

.7596 4.814e+01 -11.0298 -15.8460 -15.6851 

. 7649 4 . 863e+01 -11.0213 -15.9064 -15.7267 

.7614 4.903e+01 -11.0146 -15 . 9713 -15 . 7754 

.7674 4 . 823e+01 -11 . 0105 -15.9886 -15.7723 

.7748 4 . 720e+01 -11.0036 -16 . 0069 -15 . 7676 

.7839 4 . 591e+01 -10.9935 -16.0270 -15 . 7617 

. 7958 4.422e+01 -10.9766 -16.0469 -15.7519 

. 8114 4.224e+01 -10 . 9547 -16 . 0650 -15 . 7386 

.8313 4.004e+01 -10.9287 -16 . 0687 -15.7190 

.8573 3 . 702e+01 -10.8909 -16 . 1142 -15.6955 

. 8913 3 . 404e+01 -10.8415 -16 . 1414 -15.6656 

. 9342 

1.0062 

1. 1947 

1.3941 

1.5121 

3.055e+01 -10 . 7936 -16 . 1814 -15 . 6351 

2 . 843e+01 -10 . 7209 -16.1956 -15.5509 

1 . 611e+01 -10.8403 -16.3136 -15.4750 

1.971e+01 -10.9443 -16.4227 -15.3506 

1.910e+01 -10.8636 -16 . 5100 -15 . 2361 



- 227 -

8.6503 -54.67 4.392e+OO 1.6012 1.848e+01 -10.7769 -16.6097 -15.1318 



n= .1091 ang••-2 or n/nc= 1.714 

T 

.3551 

.3890 

.4262 

.4669 

.5115 

.5604 

.6139 

.6725 

.7367 

.8071 

.8842 

.9687 

1.0612 

1.1625 

1.2736 

1.3952 

1.5285 

1.6745 

1.8344 

2.0097 

2 . 2016 

2.4119 

2.6421 

2.8943 

3.1707 

3.4735 

3.8051 

4.1686 

4.5667 

5.0029 

5.4808 

u Ln(P3D) 

-32.93 -9.001e+01 

-33.05 -8.200e+01 

-33.17 -7.464e+01 

-33.31 -6.792e+01 

-33.45 -6.176e+01 

-33.62 -5.612e+01 

-33.80 -5.096e+01 

-33.99 -4 . 622e+01 

-34 . 21 -4.188e+01 

-34 . 45 -3.790e+01 

-34.71 -3.425e+01 

-35.00 -3 . 089e+01 

-35.30 -2.780e+01 

-35.62 -2.495e+01 

-35.97 -2.232e+01 

-36.37 -1.991e+01 

-36.78 -1.769e+01 

-37.21 -1.562e+01 

-37.65 -1.369e+01 

-38.14 -1.192e+01 

-38.69 -1.028e+01 

-39.29 -8.771e+OO 

-39.67 -7.269e+OO 

-40.13 -5 . 891e+OO 

-40.67 -4.624e+OO 

-41.32 -3.466e+OO 

-42.08 -2.400e+OO 

-~2.96 -1.420e+OO 

-43.98 -5.160e-01 

-45.09 3.290e-01 

-46.31 1.122e+OO 

- 228 -

SINk B -P2d=W F E 

.7406 4.024e+01 -12.1008 -15.6938 -15.6651 

.7408 4 . 022e+01 -12.0985 -15.7038 -15.6724 

.7409 4.022e+01 -12.0959 -15.7148 -15.6803 

.7411 4.021e+01 -12.0933 -15.7269 -15.6891 

.7415 4.020e+01 -12.0904 -15.7401 -15.6987 

.7418 4.019e+01 -12.0669 -15 . 7545 -15.7092 

.7422 4.018e+01 -12.0631 -15 . 7704 -15.7207 

.7430 4.016e+01 -12.0791 -15.7877 -15 . 7332 

.7435 4.014e+01 -12.0743 -15.8067 -15.7470 

.7443 4.013e+01 -12.0691 -15.8275 -15.7620 

.7451 4.011e+01 -12 . 0634 -15.8503 -15 . 7785 

.7459 4.010e+01 -12.0572 -15.6753 -15.7955 

.7468 4.012e+01 -12.0522 -15.9032 -15.6167 

.7483 4.017e+01 -12.0481 -15.9341 -15.8392 

.7495 4.022e+01 -12.0432 -15.9679 -15.6537 

. 7511 4.027e+01 -12.0374 -16 . 0049 -15.6905 

.7530 4.036e+01 -12 . 0330 -16 . 0459 -15 . 9203 

.7549 4.054e+01 -12.0321 -16.0919 -15.9540 

.7580 4.084e+01 -12.0354 -16.1433 -15.9916 

.7603 4 . 118e+01 -12.0384 -16.1996 -16 . 0329 

.7652 4.152e+Ol -12.0403 -16.2611 -16 . 0774 

.7665 4.183e+01 -12.0425 -16.3289 -16.1272 

.7750 4.035e+01 -12.0126 -16.3409 -16 . 1175 

.7856 3.870e+01 -11.9749 -16.3530 -16.1050 

.7986 3.661e+01 -11.9265 -16.3555 -16.0892 

.8144 3 . 483e+01 -11.8690 -16.3773 -16.0687 

.8335 

.8566 

.8860 

.9184 

.9593 

3 . 267e+01 -11.7989 -16.3895 -16.0435 

3 . 012e+01 -11.7165 -16.4038 -16.0142 

2.806e+01 -11.6187 -16.4167 -15.9752 

2.612e+01 -11 . 5134 -16.4329 -15.9316 

2.438e+01 -11.3986 -16.4504 -15.8768 



- 229 -

6.0045 -47.56 1.878e+OO 1.0195 2. 190e+01 -11.2914 -16.4:604 -15 . 6125 

6.5784 -48.66 2.630e+OO 1. 1788 1. 813e+Ol -11 . 2164 -16 . 5249 -15.6789 

7.2072 -48.59 3.513e+OO 1.3669 1. 669e+Ol -11.3~78 -16.6494 -15.5573 

7.8958 -50. 19 4. 125e+OO 1.5313 1. 658e+O 1 -11.2601 -16.7364 -15.4172 

8.6503 -52.06 4.694e+OO 1. 6212 1. 567e+Ol -11.1590 -16.8382 -15.3082 



- 230 -

n~ .1115 ang••-2 o:r nine~ 1.751 

T u L!1(P30) Sll\"k B -P2d=W F E 

2.4119 -34.34 -6.719e+OO .7981 3.105e+01 -12.8389 -16.6676 -16.4530 

2.6421 -34.94 -5.478e+OO .8098 2.951e+01 -12.7751 -16.6708 -16.4323 

2.8943 -35.62 -4.333e+OO .8231 2.795e+01 -12.7016 -16.6734 -16.4078 

3. 1707 -36.42 -3.285e+OO .8384 2.615e+01 -12.6138 -16.6751 -16.3787 

3.4735 -37.31 -2.311e+OO .8558 2.47le+Ol -12.5160 -16.6760 -16.3446 

3.8051 -38.31 -1 .409e+OO .6758 2.325e+01 -12.4054 -16.6765 -16.3049 

4. 1686 -39.40 -5.660e-01 .8993 2.233e+01 -12.2624 -16.6756 -16.2576 

4.5667 -40.59 2.260e-01 .9278 2 . 154e+01 -12.1540 -16.6797 -16.2072 

5.0029 -41.88 9.710e-01 .9586 2.065e+01 -12.0182 -16.6877 -16. 1530 

5.4608 -43.26 1.677e+OO .9969 1.972e+01 -11.8786 -16.7028 -16.0936 

6.0045 -44.71 2.353e+OO 1. 0502 1.899e+01 -11.7267 -16.7118 -16.0087 

6.5784 -46. 12 3.015e+OO 1. 1789 1. 752e+01 -11.6116 -16.7544 -15.8SS7 

7.2072 -46.40 3.816e+OO 1 . 3860 1. 463e+01 -11.6880 -16.8621 -15.7467 

7 . 6958 -48.05 4.398e+OO 1.5511 1. 424e+01 -11.5951 -16.9534 -15 . 5679 

8.6503 -49.99 4.933e+OO 0.0000 1. 376e+01 -11.4812 -17.0549 -17.0549 

10.3830 0.00 O.OOOe+OO 0.0000 3.178e+01 -18.5682 -18.5682 -18.5682 


