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ABSTRACT 

Propagation and radiation of electromagnetic waves from oscil

lating sources in a suddenly created plasma are studied in this 

investigation. Field expressions are derived through the use of 

Laplace transformations. The spatial distribution of sources is 

taken to be arbitrary but confined. 

Two cases are considered in detail: (1) plane wave propagation 

in a source-free region, and (2) electric point dipole radiation. In 

the case of plane wave propagation, various aspects such as wave 

split, frequency shift, phase and group velocities, amplitude changes, 

power flows and energy relations are discussed. In the case of elec

tric dipole radiation, the electromagnetic fields and instantaneous 

radiated power are calculated and expressed in terms of Lommel func

tions of two variables. Asymptotic expressions and graphical results 

of numerical calculations of these quantities are presented. 

interesting properties of the spherical waves and power radiation are 

discussed. 
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1. INTRODUCTION 

The study of the interaction between the electromagnetic radia

tion and the plasmas having time-varying parameters (for example, free 

electron density) has been of interest recently [1-15]. This interac

tion plays an important role in radio communication in the disturbed 

ionosphere or in the vicinity of a nuclear explosion. It is significant 

in microwave plasma devices and in astrophysics. The employment of 

lasers to produce plasmas and the prospect of using lasers in control

ing thermonuclear fusion has also led many investigators to this area 

of research. 

One of the interesting subjects is to investigate the proper

ties of the electromagnetic waves propagated in time-varying plasmas. 

The temporal variations of the plasma parameters might be produced 

by the solar flares, by a strong laser pulse, or by some other means, 

say, a nuclear explosion; however, the physical processes of the 

interaction between the medium and the ionozation agents are beyond 

the scope of this work. In this paper, we are mainly concerned with 

the small-amplitude waves in a suddenly-created plasma. The free elec

tron density in the medium increases suddenly from zero to some 

constant value. The plasma is assumed to be isotropic, cold, lossless, 

homogeneous, and linear. This simple model is a useful theoretical 

case that could provide some insight into the basic features of the 

wave propagation and source radiation in the presence of a time

varying plasma. 

The problem of wave propagation in a dielectric medium whose 

permittivity and permeability vary with time was studied by 
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Morgen t haler [16]. With device app lica tion in mind many authors have 

also investigated t he properties of waves in time-varying magneto

elastic media and transmission lines [17-21]. Recently, using finite 

difference method Taylor, Lam, and Shumpert obtained some numerical 

results for pulse scattering from a perfectly conducting cylindrical 

rod in a cylindrical waveguide filled with time-varying inhomogeneous 

lossy media [13]. Felsen and Whitman solved the time-domain scalar 

wave equation with a pulsed excitation in time-varying nondispersive 

and dispersive media [14]; and Fante derived complicated expressions 

for the electric fields transmitted into a half-space with time-varying 

properties [ ]. In these previous works, however, the problem of 

waves generated from oscillating sources in a time-varying plasma has 

not been studied. 

This report presents a systematic study on the electromagnetic 

wave propagation and radiation from sinusoidally oscillating sources in 

a suddenly-created plasma. In the second chapter, Maxwell's equations 

are formulated; a free current term is introduced to account for the 

interaction of the field with the plasma. The spatial distribu-

tions of sources are assumed to be arbitrary but confined. Originally, 

it is assumed that monochromatic waves are propagated and radiated. 

Through the use of Laplace transformation, the field equations in the 

suddenly-created plasma are solved. The solutions. for the electromag

netic fields are expressed in terms of their initial values and the 

inverse Laplace transforms of the source currents and the Green's 

dyadic functions. Various aspects of the wave propagation in a source

free region are then discussed in detail in the third chapter. In the 

fourth chapter the electric and magnetic fields are calculated for an 
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oscillating electric point dipole. The amount of power radiated by 

the dipole is also evaluated. 
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2. ELECTROMAGNETIC FIELD SOLUTIONS 

This chapter will deal with the derivation of the field expres-

sions. We consider a medium which is suddenly ionized at the time 

t = 0 • This suddenly-created plasma is assumed to be isotropic, cold, 

lossless, homogeneous, and linear. 

The field quantities obey Maxwell's equations: 

'l X E = d (2.1) -- ll H dt o-

'l X H = J d (2.2) +- E E -t dt o-

v • E E = pt (2. 3) 
o-

'l • ll H = 0 (2.4) 
o-

where -4 and are the total macroscopic current density and total 

macroscopic charge density respectively. Neglecting the bound current 

and charge in the medium, the total current density J 
-t 

consists of 

the applied source current density J 
-s 

and free current density Jf , 

and the total charge density pt consists of the applied source charge 

density ps and free charge density ~f , that is, 

J 
-t 

. (2. 5) 

(2. 6) 

where the free current and charge densities have been introduced to 

account for the interaction between the wave and the suddenly-created 

plasma. 

The applied source current density will now be specified as 
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-iw t 
~ = Re {~o (E) e o } for all t (2. 7) 

where "Re" is the shorthand for "real part of". J (r) 
-o- is an arbitrary 

function of r but is confined to a finite part of space. 

A. t < 0 

For t < 0 , i.e., before the plasma is created, ~ = 0 ; and a 

monochromatic wave is propagated and radiated from the source region. 

The electric and magnetic fields take the following form: 

-iw t 
~ (.!_, t) E (r) 0 (2. 8) = e 

-o-
-iw t 

H (.!_, t) = H (r) 0 (2. 9) e o-

where we have dropped Re{ } for the sake of simplicity. It is easily 

shown by using Maxwell's equations and Eq. (2.8) and (2.9) that the 

vector wave equation for E (r) 
-o-

is 

V x V x E (r) - k2 E (r) = iw ~ J (r) 
-o- o-o- oo-o 

where k - w lilT , and 
0 0 0 0 

H (r) = -
1
- V X E (r) 

-o- iw ~ -o-
0 0 

(2.10) 

(2 .11) 

In an unbounded medium the solutions which satisfy the radiation condi-

tions are [22]: 

E (r) = iw ll I r ( r r I) • J ( r I) dV I (2 .12) 
-o- 0 0 =o _,_ -o-

v 
H (r) = J 

VG ( r, r') x J ( r') dV' (2.13) 
-o- o-- -o-

v 
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where the integration with respect to the primed coordinates extends 

throughout the volume occupied by J 
-o 

The scalar and dyadic Green's 

and 

G (r,r') = o--

ik I r- r'l 
0- -

e 

r (r,r') 
=o --

1 
= ~ + 2 V V) G ( r, r ') 

k 0--

0 

where ~ is the unit dyad defined as 

~-

e. (i= 1,2,3) 
-'],. 

3 3 
I I e e 

m=l n=l --m -n 
0 mn 

are the unit base vectors, and 0 

delta which is 1 for m = n and 0 for m 1- n • 

(2 .14) 

(2.15) 

(2.16) 

is the Kronecker 
mn 

Then the electric and magnetic fields just before the plasma is 

created (i.e., at t = 0-) are 

B. t = 0 

E (r) 
-o-

H (r) 
-o-

(2 .17) 

(2 .18) 

At t -= 0 the plasma is created. It is assumed that the newly 

created free electrons and positive ions are stationary at the moment, 

+ that is, their velocity just after the creation (t = 0 ) is zero. Thus 

the free current density in the medium which is zero for t < 0 is 

still zero at t = 0+. The electric and magnetic fields at t = o+ are 



the same as at t 0-. 

+ I<.£, o ) 

+ H (_£, 0 ) = 

and it follows that 

d + <at I) (.£, o ) = 

c. t > 0 

-7-

E (r) 
-o-

H (r) 
-o-

-iw E (r) o-o-

(2 .19) 

. (2.20) 

(2. 21) 

After t = 0 , however, the free electrons and ions in the 

created plasma are then set in motion by the field in the medium. 

Since the ions are much more massive than the electrons, the velocity 

imparted to the ions by the field is negligibly small compared to the 

velocity given to the electrons. Thus the free current density Jf 

can be written as 

(2.22) 

where N is the free electron density in the plasma, , e is the 

electronic charge, and ~(_£,t) is the average velocity at time t 

and position r • From Newton's second law and the Lorentz force 

equation 

d ' 
Nm dt ~ = Ne(E + ~x~J!) (2. 23) 

where m is the electron mass. Linearizing Eq. (2.23), neglecting 

the v x ~ H term and multiplying it by e/m , we obtain the desired 
- o-

relation between If and E 
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where the plasma frequency w 
p 
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2 w e: E 
p o-

is defined as 

w- ~ 
p J~ 

(2.24) 

(2.25) 

Taking the curl of Eq. (2.1) and using Eq. (2.2), (2.5), and (2.24) 

yields the vector wave equation for E for t > 0 

Cl 
-ll - J 

0 Clt -s 
(2 .26) 

where 2 
c = 1/ll e: • 

0 0 
Equations (2.26) and (2.1) now serve to deter-

mine ~(E,t) and H(E,t) (for t > 0) which satisfy the initial and 

radiation conditions. 

To solve for the field expressions we employ the method of 

Laplace transformation. Laplace transformation with respect to time 

is now performed. If F(t) is the function of time under considera-

"' tion, F(s) defined as 

00 

F(s) = J F(t) e-st dt 

0 

(2.27) 

is its Laplace transformation. F(t) is recoverable by means of 

inversion formula 

F(t) --
1

- J F(s) est ds 
2ni 

c 

(2. 28) 

where C is the ~traight-line path cr-i00 to cr+i00 and the path lies 

"' to the right of all the poles and branch points of F(s) • 
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The r esult of the transformation of Eq. (2. 26) is 

2 2 

V XV X E (.!_, s) 
S +W 

+ __ p E(r s) 2 - _, 
c 

iw 11 s- iw 
0 0 

J (r) + 0 E (r) = 
s+iw -o- 2 -o- (2. 29) 

0 c 

where we have used Eq. (2.19) and (2.21) for initial conditions. It 

is still difficult to obtain useful solutions because of the presence 

of the term 
s- iw 

0 
2 ~(_E) acting as a source which is not confined to 

c 
a finite part of space. However, we are able to· get rid of it by 

making appropriate transformations. In order to do this, let us 

rewrite the E (r) in Eq. (2.29) as -o-

(2. 30) 

where F
1 

and F
2 

are spatially constant and satisfy the relation 

= 1 

From Eq. (2.10) we can write , 

E (r) = l (V X V x E (r) - iw l1 J (r)) 
-o - k2 -o - 0 0 -o -

0 

Thus Eq. (2.30) can be written as 

E (r) 
-o-

F2 
= F1L (_r) + - (V x V x E (r) - iw 11 J (r)) 

' v k2 -o - 0 0 -o -
0 

(2. 31) 

(2. 32) 

(2. 33) 

Substituting Eq. (2.33) into Eq. (2.29) and regrouping the similar 
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terms, we obtain 

s- iw 
\J X \J X 

A 0 
F2 ~ (r)) (!(.E_,s)- 2 w 

0 

2 + 2 s- iw s w 
A 

+ E (! (.!_, s) - 0 
Fl~ (.£)) 2 2+ 2 c s w 

p 

1 s- iw 
= (s + iw 

0 
F2) iw ~ J (r) 2 0 0 -o-

0 w 
0 

Now we choose F1 and F
2 

such that 

1 
2+ 2 s w 

p 

Solving Eq. (2.31) and (2.35), we obtain F1 and F2 

Hence Eq. (2.34) becomes 

2 
w 

0 

s- iw 
'V x 'V x (E(r,s)- 0 

E (r)) 
5

2+ 2 2 -o-w +w 
0 p 

2+ 2 s w 
+ ---E (E(r,s) -

c2 

s- iw 
0 

2 2 2 !a (r)) 
s + w +w 

0 p 

(2. 34) 

(2. 35) 

(2.36) 

(2. 37) 

(2. 38) 
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" 

-11-

s- iw 
0 

2 2 2E(!) 
s + w +w -o 

0 p 

J' (r,s) 

. 2 
~w w 

0 p 
2 2 2 ~(.!.) 

s ( s + iw ) ( s + w + w ) 
0 0 p 

the vector wave equation (2 .29) is transformed into 

2 2 
" s+w,... ,... 

'V x 'V x ! ' (_!:., s) + --2-P~ E' ( r, s) = -sll 
0 

.!!_' (_!:., s) 
c, 

(2.39) 

(2.40) 

(2. 41) 

To solve for the magnetic field, we Laplace transform Eq. (2.1): 

Making use of Eq. (2.39), we find 

" 'V X E ' (_E., s ) = 

where 

-sll H' (r,s) 
0- -

H (r) 
-o-

(2. 42) 

(2. 43) 

(2.44) 

Thus the retarded field solutions are (compare Eq. (2.41) and 

(2.43) with Eq. (2.10) and (2.11)) [22]: 

A 

! '(_;,,s) = -s)l o I .!:. (£,£' ) • J ' (£' 's) dV' 

v 

= I 
A 

'VG(_E.,_E.') x .!!_' (.E,' ,s) dV' 

v 

(2.45) 

(2. 46) 

where the integration with respect to the primed coordinates extends 
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" throughout the volume V occupied by J' . The Green's functions 

G(.£,_£') and ,[(.!.,.£') are defined by 

and 

1.£- .E.' I j 2 2 
- s + w 

e c p 
G (.£,.!.' ) = ---4-:-TI--r-I.E---r--=':-TI---

= (u -
2 

c 
2 2 'V'V) G ( r ,!. ') 

s + w p 

(2. 4 7) 

(2. 48) 

where ~ is the unit dyad given by Eq. (2.16). The square root 
... 

is defined to be positive for real, positive s • For the 

purpose of the inversion technique the definition of the square root 

will be continued into the left half plane by Eq. (2.49) and Fig. 2.1. 

= 

(2.49) 

It should be no'ted that the advanced field solutions can be 

obtained by replacing by G (r,r') 
a--

where 

I!.- !.'I }s2+ ti 
e c p 

G (r,r') = --------
a-- I I 4 7T .E. - .E.' . 

in Eq. (2.45) to (2.48), 

(2.50) 

Substituting Eq. (2.45) and (2.46) into Eq. (2.39) and (2.44), 

we obtain the fields in Laplace transforms: 
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Im(s) 

Fig. 2.1 A definition of Js2+ w2 
p 
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s- iw J 
2 ° 2 -oE (r) - Sll I<.£,£') • J' (£' ,s)dV' 

s
2
+w +w 0 

0 p v 
2 2 

s - iw s + w I 
0 p ( ) 

2 2 2 !!a .E. + 
s (s + w + w ) 

0 p I v 

"' 
V'G (!_,.!_' ) X J' <.!.', s) dV' 

(2. 51) 

(2.52) 

Inverse Laplace transformation is now performed to obtain the 

field quantities as functions of time. Hence, for t > 0 , 

w + w ". w - w . 
~(r, t) = ---0

- E (r)e -1.wt + 0 E (r)e1 wt 
2w -o- 2w -o-

H(r,t) = 

+ C 1
{-siJ

0 
I _!'(r,E.') • J• (r~s)dV'} 
v 

w (w + w ) 
o 

2 
o H (r)e-iwt 

-o-2w 

w (w- w ) 
o o H (r)eiwt 

2w2 -o-

(2. 53) 

I VG(E.,E.') x JA' (r', s) dV'} (2. 54) 

v 

where 

(2 .55) 

It can be seen that there are waves which result from the 

original fields at t = 0 • In Eq. (2.53) and (2.54) they are repre-

sented by those terms involving the initial values E (r) and 
-o-

H (r) • There are also waves which result from the presence of 
-o-

sources in the medium. They are represented by the inverse Laplace 

transforms in Eq. (2.53) and (2.54). 

t < 1 times the minimum of 1.!.- .!. ' I 
c 

presence of exp [st- I r- r' I /s2+ w2 ] 
. c p 

Their values are zero for 

(£' within V ) because of the 

in the integrands of the 
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inversion integrals. 

In summary, the electromagnetic field expressions have been 

derived for arbitrary but confined source distributions in a suddenly

created plasma. In the following chapters plane wave propagation and 

electric dipole radiation will be studied in detail based on these 

general field expressions. 
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3. PROPERTIES OF WAVE PROPAGATION 

Suppose that a circularly polarized plane wave is propagated 

in the positive z-direction for t < 0 • The fields are 

ik z- iw t 
!(!:, t) = - 1

-(e + ie ) E e 0 0 

12 --x -y 0 
(3.1) 

1 
ik z- iw t 

H(r,t) = --(e -ie) He 0 0 

12. -y --x o · 
(3.2) 

where E is a constant and H = FoE 
0 0 J~ 0 

0 

For t > 0, i.e., after the plasma is created, the fields are 

(from Eq. (2.53)' and (2.54)) 

1 _!(r,t) = -(e + ie ) . 12 --x -y 

w+w ik z- iwt 
__ o_E e o 

2w o 

+ ; (e + ie ) 
v2 --x -y 

w- w ik z + iwt 
--~oEe o 

2w o 

1 
w (w + w ) ik z- iwt 
o o H e o .!!,(r, t) = --(e - ie ) 12 -y --x 2w2 o 

- ·-
1-(e - ie ) I'I -y --x 

+ - 1-(e - ie ) 12 -y -x 

w (w - w ) 
0 0 

2w
2 

w2 ik z 
-E.. H o 2 e w 0 

He 
0 

ik z + iwt 
0 

where Expressed in terms of the parameter · 

w 
a = _.E. 

w 
0 

Eq. (3.3) and (3.4) become 

(3.3) 

(3.4) 

(3.5) 
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! (!_, t) 
J 2 ik z - iw j1 + a.2 t 

= 1 (e + ie) 1~+1 E e o o 
12 -x --:1 2)1 + o.2 0 

1 ie ) J1 + a2 _ 1 ik z+ iw J1 + a.
2 

t 
+ ~ (e + E e 

0 0 
(3.6) 

v2 -x --:1 2)1 +a.2 o 

1 Jl+ a2 + 1 H eikoz- iwo)l + a.2 t 
H(!_, t) = -(e - ie ) 

2 -y -x 2(1 +a.2) 0 

1 J1 + 2 _ 1 ik z + iw J1 + a.
2 

t 
- --(e - i~) a. 2 Hoe o o 
li -y 2(l+a.) 

2 fk z 
+ --1--(e- ie) a. He 0 (3.7) 

12 -y -x 1 + 0.2 0 

It is clear that now there are two waves. One is a wave 

propagated in the positive z-direction, and the other is a wave propa-

gated in the negative z-direction. The original field accelerates the 

electrons in the newly created plasma, which in turn radiate a wave in 

the negative direction as well as one in the positive z-direction. The 

sense of the circular polarization of the two waves remains the same as 

the original one. 

The frequency of these two waves has been shifted from w 
0 

w J1 + a.2 
• It can also be explained in the following way: From the 

0 

initial conditions (2.19) and (2.20), the propagation constant k 
0 

to 

of 

the wave must be conserved in a suddenly-created plasma. Hence the fol-

lowing relations must hold: 

w 
0 w k =- =-

0 c v 
p 

where 

(3. 8) 
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c (3.9) v 1:11----

p Jl-4 
w 

is the phase velocity in the plasma. It follows from Eq. (3.8) that 

the new frequency must be blue-shifted, since the phase velocity in a 

plasma is greater than c • It is also noted that 
w 

fr e i . a. = ~ << 1 equ nc es, 1.e., 
w 

0 

1 2 w ~ w (1 + - a. ) 
0 2 

w2 
=w +~ 

o 2w 
0 

w > w 
p 

For high 

(3.10) 

which is slightly higher than the original frequency; the frequency 

shift is 

2 
~w ~f a. 
-=-~-= 
w f 2 

0 0 

N 
40.5 2 

f 
0 

(3.11) 

where 8f = 8w/2rr = (w- w ) /2rr , f = w /2rr 
0 0 

and N is the · free elec-
. 0 

tron density. For low frequencies, 

1 w ~ w (1 + -) 
p 2a.2 

w 
i.e., a. =~>> 1 

= w 
p 

2 w 
+~ 

2w 
p 

w 
0 

, 

(3.12) 

whiCh is slightly higher than the plasma frequency; the frequency shift 

is 

~w _ ~f _ a. = 9 ¥N w-- r- f 
0 0 0 

In Fig. 3.1, w/w is plotted as a function of a. = w /w • 
0 p o . 

Expressed in terms of a. , the phase velocity 

V a C Ji+ a.2 
p 

v 
p 

(3.13) 

is 

(3.14) 
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5 
Wp 

a=wo 

Fig. 3.1 Frequency shift 

8 
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The group velocity is calculated according to the formula [23] 

(3.15) 

Thus 
c (3.16) 

w 
which is greater for higher frequencies. As a=~~ 0 , v ~ c ; as 

0 g 
a ~ 00 v g ~ 0 • Group velocity is also ~n terpreted as the velocity of 

energy propagation in lossless structures [24]. 

Now it is interesting to consider qualitatively what will happen 

when a frequency modulated pulse is propagated in a suddenly-created 

plasma. First of all, the pulse will split into two pulses; one is 

transmitted, the other is reflected. Secondly, if the original pulse 

has the higher frequencies in the leading portion, the transmitted 

pulse will be stretched out since the energy in its leading portion 

will propagate with a greater velocity than that in its trailing por-

tion. But the reflected pulse will be compressed first and stretched · 

out subsequently, since the energy in its trailing portion will propa-

gate with a greater velocity and will overtake that in _its leading 

portion [25,26]. However, if the original pulse has the higher fre-

quencies in the trailing portion, the compression will take place in the 

transmitted pulse. 

The ratios of the electric field amplitudes of the two waves to 

that of the original wave are 

Jl+ a2 
+ 1 

2}1 +a2 
(3.17) 
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-= 
E 

0 
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(3.18) 

where E+ and E are the amplitude of the wave propagated in the 

positive z-direction and the amplitude of the wave propagated in the 

negative z-direction, respectively. 

tiona of a = w /w in Fig. 3.2 • 
p 0 

E 2 · 
- a 
"E~4 

0 

Both ratios are plotted as func
w 

For high frequencies, a = ~ << 1 , 
0 

(3.19) 

(3.20) 

A very small amount will be propagated in the negative z-direction. For 

low frequencies, 
w 

a = ...E. >> 1 , 
wo 

E+ 1 1 
-~-+--E 2 2 2 o a 

(3.21) 

(3.22) 

where nearly half will be propagated in the positive z-direction and 

half in the negative direction. 

The ratios of the magnetic field _amplitudes are 

(3.23) 

H ~-1 -=-
Ho 2(1 +o.l) 

(3.24) 

see Fig. 3.3. Both will go to zero in the low frequency limit. jH_j 
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0.5 -J----------------------------
1 
I E-/Eo 
I 
I 
I 
I 

o~~------~--------~----------._--~----~· 
5 10 15 20 

Wp 
a= wo· 

Fig • . 3.2 Amplitudes of . electric field-
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Wp 
a=wo 

Fig. 3.3 Amplitudes of magnetic field 
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is less than 1/8 of the original magnitude IH I . It is also noted 
0 

that there is a static but spatially varying magnetic field in Eq. 

(3.4) or (3.7). The slightest loss in the medium would damp out this 

residual static component. The collision effects will be further dis-

cussed in Appendix A. 

The power relations will now be considered. Since the field 

amplitudes do not vary with time or distance, the average power is the 

instantaneous power for a circularly polarized wave. 

For t < 0 , by taking the real part of the complex Poynting 

vector [27], we obtain the original power flow: 

(3.25) 

where the star (*) denotes the complex conjugate. 

Similarly, for t > 0 , the power flows of the waves propagated 

in the positive and negative z-directions are, respectively, 

s = e 
(~ + 1)2 s 

-=+ -z 4 (1 + 0.2) 3/2 0 

s = -e 
(Jl + 0.2 - 1)2 s 

-z 4 (1 +a.2) 3/2 0 

Is I is less than 1/27 of the original value 

(3.26) 

(3. 2 7) 

S • In the low frequency 
0 

limit the power flows for both waves are nearly zero, since in this 

limit the velocity of energy propagation which is 

approaches zero, (see Eq .• (3.35) and (3.36).) 

v 
g 

in Eq • ( 3 • 16) 
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The net power flow is then 

s 
-net 

1 
=~+E_=-ze S 

-------. l+a? 0 
(3. 28) 

Thus the net power flow is in the positive z-direction. The magnitude 
w 

For high frequencies, rv = __£_ << 1 
"" ' w 

0 

which is nearly equal to the original one. For low frequencies, 
w 

a= --E.. >> 1 
w ' 

0 

s -net 
e _!_ S 
-z 2 0 

a 
(3.30) 

which is very small. Iri Fig. 3.4, S+/S , S /S , S /S are plotted o - o net o 

as functions of a = w /w • 
p 0 

The energy density of the wave for t < 0 is 

(3.31) 

For t > 0 , the energy density of the wave propagated in the positive 

z-direction is [28] 

Similarly, 

as 

w 
0 

w .'V 0; as 
. w 

a-i-oo, w 'Vw 'V_£ 
+ - 4 

(3.32) 

(3.33) 

(3.34) 

It is 
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noted that 

s = e w c 
-o -z 0 

s e w+vg -+- -z 

s = -e w v - -z - g 

where v = g c/Jl +a? (Eq. ( 3.16)) • 

The total energy density of the 

w =w++w_= tot 

w 

w 
0 

For high frequencies, a = 2 << 1 , 
w 

and for low frequencies ·, 

w tot 
~ (l + _1_) 

2 2 
a 

w 
0 

0 

w 
a= 2 >> 1 w , 

0 

(3.35) 

(3.36) 

(3.37) 

two waves is 

(3.38) 

(3.39) 

(3.40) 

which is a little greater than w
0
/2 • It is noted that wtot < w

0 

This means that some wave energy has been lost during the creation of 

the plasma; see Appendix B for further discussions. w+/w , w /w , 
0 - 0 

are plotted as functions of a = w /w 
p 0 

in Fig. 3.5. 
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4. ELECTRIC DIPOLE RADIATION 

In this chapter the problem of radiation from a sinusoidally 

oscillating electric point dipole in a suddenly-created plasma will be 

considered. The origin of a spherical coordinate system is chosen to 

be at the dipole. Rectangular coordinate system is also shown, see 

Fig. 4.1. The directionsof the dipole and the positive z-axis are the 

same. 

The dipole has a moment of amplitude p and sinusoidal fre-

quency w • 
0 

It is represented mathematically by 

(4.1) 

Here o(~) is the three-dimensional Dirac o function. The applied 

source current density is related to M by 

(4.2) 

For t < 0 , the steady state electromagnetic fields radiated 

from this electric point dipole are well known [29]: 

2 
lloWop { 1 

E ( r, t) = 2 cos a :--ck OS (k r - w t) r - 4nr r o o 
0 

2 . 
lJOWOp { 1 

Ea(_r,t) = 4 sin a sin(k r -w t) +-k cos(k r -w t) nr o o r o o 
0 

--1- sin(k r- w t)} 
k2 r2 o o 

0 

(4. 3) 

(4 .4) 
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2 
w p 1 

Hn-(.!., t) = -4° sin a {sin(k r- w t) +-k cos(k r -w t)} 
~ nrc o o r o o 

0 

(4. 5) 

All the other components are zero. 

For t > 0 , i.e., after the plasma is created, the fields can 

be obtained by taking the real part of Eq. (2.53) and (2.54): 

2 ,----
lJWp . · j 2 

E (r,t) = E'(r,t) + 0 0 2 cos a{ l+a. + l [k1 cos(k r 
r - r - 4 Tir 2 j 1 + 0.2 

0 
r o 

(4.6) 

E a<.!., t) 

+ k 1 cos (k r .- w J1 + a.2 t) - _L
2 

· sin(k r -w J1 + a.2 t}] 
r o o k2 o o o r . o. 

+ J1 + a.2 - 1 J 2 1 j · 2 -;===-- [sin(k r +w 1 +a; t) +-k cos (k r +w 1+ a. t) 
2j 1 + a.2 . o o 0 r o o 

-
2
1 

2 sin (k r + w J 1 + a.
2 

t)]} 
k r o o 

(4.7) 

0 
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2 J 2 
( ) wop { 1 +a + 1 J 2 Ht+- _E,t ::a H'(_E,t) + -4 - sin 6 

2 
[sin(k r- w 1+ a. t) 

't' nrc 2 (l + a. ) o o 

1 J 2 J 1 + a.
2

- 1 j 2 + k r cos(k
0
r- w

0 
l+a t)]-

2 
[sin(k r+w l+a. t) 

0 2 (1 +a. ) 0 0 

+ k\ cos(k
0
r+w

0
Jl+ri t)] + a\(sin k r+k1 cos k r)} (4.8) 

o l+a. o or o 

where a. = w /w 
p 0 

E; (_E, t), E' ( r, t) and H' (_E, t) are the nonzero 

spherical components of 

11 sJ' (s) 
o e 

and 

H ' (_E, t) - L -l {- - 1- v X E ' (_E, s) } 
l1 s 

0 

4n [~ -------r----

where J'(s) is calculated by using Eq. (2.40) and (4.2): 

(4.9) 

(4.10) 

(4 .11) 

It is readily seen from Eq. (4.6) to (4.8) that, like the plane 

wave case, there are also two waves traveling in opposite directions. 

One is a spherical wave propagated outwardly from the origin, and the 

other is a spherical wave propagated inwardly into the origin. Their 

frequency is shifted from w to w )l+a.2 • The amplitude and power 
0 0 

relations are the same as in the plane wave case. Moreover, the 
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outgoing wave will vanish at a finite observation point since there is 

no source at the origin to radiate this wave any more; but the incoming 

wave will focus into the origin and be reflected. These novel aspects 

of the wave propagation are expressed mathematically in the terms 

E~(£,t), Ea(r,t) and H~(£,t) • In addition to these waves, there is 

. the radiation by the dipole which is also included in the expressions 

for E~ (£, t), Ea (£, t) and H<f> (.!,, t) • 

The inverse integration ~ill now be performed; and !'(£,t) and 

H'(£,t) will be calculated. Performing the differentiations in Eq. 

"' (4.9) and expressing the components of !' (r,s) in spherical coordi~-

nates, we have 

"' E'(r,s) 
r-

From Eq. (4.10), 

H' (r,s) = 0 
r-

rj 2 2 

1
-- s + w 
e c p 

2 
wp) (4.12) 

(4 .14) 

(4 .15) 

(4.16) 

(4.17) 
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J'(s) will now be expanded into partial fractions: 

. J2 2 J2 2 
wop . e 1 I s s + wp 1 s s + wp 

H!(!_,t) = -- s1n -- ( 2 - 2 2 2 
"' 47Trc 27Ti 2+ 1 + + 

C 
s w a. s w 

. 0 

2 Js2+ w2 
1 st-E)s2 +w2 

a. P) (l:+ ) e c p ds 
l+a.

2 8 
rfsq2 · -s+w 
c p 

(4 .18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

To avoid duplication of calculations, we evaluate the following inte-

grals: 

(4. 23) 
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Hence, 

~owop 1 
II! 4nr sin 6 { (I1 (w0

) + I 2 (w0
) -

1 
+ a,2 (I1 (w) + I 2 (w)) 

2 l:r:l (I1 (0) + I 2 (0))} (4.27) 

~p . 1 ; 
H1(.!_,t) = -4- sin 6 (I (w)- 2 I

3
(w)-

2 
I

3
(0)) 

.., nrc 3 o 1 + a. 1 + a. 
(4.28) 

Performing the integration technique described in Appendix D, we 

obtain 

rJ 2 2 

J 
n2 st - - s + w 

I (Q) 1 ( 1 - ) e c P ds 
1 = 2ni s2+ n2 

c 
(4.29) 

2 
r w Jl(q) r 

• o<t - c) -~ q H(t - c) 

(4.30) 



n +)n2
- w2 

A(f2) =- ---~P 
w 

p 

n + i}w
2

- n2 
- ____ p __ 

w 
p 
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when 

when 

n > w 
p 

n < iw 
p 

(4.31) 

r 
H(t- c), the Heaviside step function, is 0 when r t < - , or 1 when 

c 

t > ~ • Partial fractioning of the integrands yields c 

Using the integration formulas in Appendix D, we find that 

(4.32) 

(4.33) 

See Appendix C for some mathematical properties of Lommel functions of 

two variables U (w,z) • 
n 

Similarly, the integration technique described in Appendix D 

gives 
27r 

12 (l'l) .. 2;i J 
0 

X eiq cos lJJ , 1, ( r) 
d't' H t -c 

(4.34) 
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Partial fractioning followed by the use of the integration formulas 

in Appendix D yields 

2 

+ r2 (llt w2) [ll(Ul (YqA(n) ,q) + Ul (YqA-l,q)) 

p 

. r 
- 2w u

1
(yq,q)] }H(t--) 

p . . c (4.35) 

And, for 1
3 

, 

2 
w Jl(q) r 

I
3
Hn = o(t-!.) _ _E_ H(t --) 

c r/c q c 

(4. 36) 

then it gives 

2 
w Jl(q) r r 

I 
3 
(~l) = o ( t - .!. ) - _E_ H ( t --) - w y J ( q) H ( t - -) 

c r/c q c p 1 c 

{J 2 2 -1 - n- wP ru
1

(yqA{n),q) - u
1 

(yqA (n),q)J 

c -1 } r + -[ -J {q) +U (yqA(n) ,q) + U {yqA (Q) ,q)] H(t- -c) 
r o o o 

(4.37) 

Therefore, 
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+ (1- ))k2 l (U1 (Yqi;;o,q) + U1 (Yqi;;~1,q)) 
0 

2a 1 -1 
- 2 2 2 U1(Yq,q)-J 2 (Uo(yq~,q)-Uo{yq~ ,q)) 

(1-a)kr 1+a kr 
0 0 

(4. 38) 

+ 

2 

H$(,!,t) ~ :~:c sin 6 {-11-r:hu1(yql;;
0
,q)- u 1(yqi;;~1 ,q)) 

_ __.;;;1;...___ (U (yq~,q) + U (yq~-1 ,q)) 
(1+ a2 )k r 0 0 

0 

za2 . 1 } r + 
2
(mu

1 
(1.yq,q) -k U (iyq,q)) H(t --) 

1+ a or o c 
(4.40) 
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where ~ = A(w ) and ~ = A(w) • 
0 0 

When Eq. (4.38) to (4.40) are substituted into Eq. (4.6) to (4.8), 

the total electric and magnetic fields Er(r,t), E8 (~,t) and H~(~,t) 

for t > 0 are obtained. 

For small y , corresponding to times just after the arrival of 

the first disturbance, the disturbing fields are 

2 
~owop 4 3 · r 4 

E ' ( t) 2 8 J ( ) y H (t - -) + 0 (y ) r ~, = 4nr cos ak2r2 3 q c 
0 

2 
~owop 1 2 3 r 4 

Ea(~,t) • 4nr sin 8 (-3+ k2r2)a J3(q)y H(t -c) + O(y ) 

2 wp 
0 • = -- s1n 4nrc 

0 

-8 3 r 4 8 - J
3

(q)y H(t --) + O(y ) a c 

The amplitudes are small. The Bessel functions with arguments 

(4. 41) 

(4.42) 

(4. 43) 

q = wpt~ represent oscillations having a frequency that is ini-

tially high but continuously decreases to w 
p 

We shall now obtain the asymptotic behavior of the total fields 

at a point ~ as t ~ ~ • Through the use of the asymptotic formulas 

in Appendix C, we find, for w > w 
0 p 

2 
~owop 1 J 2 

E r ( r, t) "' 411r 2 cos 9 { j cos (k 1 - a r - w t) 
1 - 0.2 k r o . o 

0 

J 1 + o.2 - 1 1 J 2 1 . c-:--2 + [ (-:--ck os(k r +w 1+ a t)- - 2 2 s1n(k r+ w .Jl+ a t)) 
2J1 + a2 0 r o o k r o o 

0 
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+ (k
1 

cos(k r-wJ1+a? t)- 2
1

2 sin(k r-wJ1+a2 
t))]} (4.44) 

0
r o o k r o o 

0 

+ k
1 

cos (k r + w J1 +a? t)- 2
1

2 sin(k r + w Jr + a2 
t) 

r o o k o o o . r 
0 

+ (sin (k r- w J1 + a2 
t) + k

1 
cos (k r- w J1 + a2 

t) 
o o r o o 

0 

2 
w p J 2 J 2 

HA-(,!,t) 'V -
4
° sin 8 { 1- a sin(k 1- a r- w t) 

't' Tire o o 

+ k
1 

cos(k r+w J1+ a
2 

t))- (sin(k r- w J1+ a.Z t) r o o o o 
0 

1 J 2 a.Z . 1 + -k cos(k r-w 1+a t))] + 2 (s~n k r+-k cos k r 
r o o 1 + o r o 

0 (J. 0 

-w r/c 1 -w r 
-aeP --ep)} 

k r 
0 

and for w < w , 
o P · 

(4.45) 

(4.46) 
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-k Ja2
- 1 r 

cos e { 1 e 
0 

Ja.2- 1 k r 
sin w t 

0 

0 

-k Ja2 -1 r 
0 sin w t + a sin w t 

o (a2- l)k2r2 P 
0 

+ J1+ a2 - 1 

2}1+ a2 
[the same as the corresponding terms in 

Eq. (4.44)]} 

r 
sin w t 

0 

(4.47) 

-k Ja.2-1 r 
0 e 

x sin w t + a. sin w t + J1 + a.
2 

- 1 [the same as the 
o (a.2- l)k2r2 P 2}1 + a.2 

0 corresponding terms in Eq. (4.45)]} 

(4.48) 

l d -ko ja2 .,. 1 r J ]_ ~ a2 .:. ]_ 
+ k r e cos w t - 2 Ithe same as the cor-

o 0 2(1 + a ) 
responding terms in Eq. (4.46).] 

[the same as the corresponding terms in Eq. (4.46)]} 

(4. 49) 

The neglected terms have amplitudes vanishing faster than 

-1/2 t as t ~ ~. It can be seen that radiation from the dipole has 

assumed its steady-state value. The outgoing wave has vanished but the 

. incoming wave still exists because the plasma is assumed to be lossless 

. and unbounded. The reflection of the incoming wave has also estab-

lished its steady-state propagation. The incoming wave and its 

reflection carry the same energy but in opposite directions, hence 
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there is no net power flow associated with these waves. It is noted 

that the magnetic field has a static but spatially varying component 

and that the electric field has a residual oscillation at the plasma 

frequency. Both do not contribute to the radiation and would be 

damped out by the slightest loss in the medium; see Appendix A for the 

effects of collisions. 

Numerical calculations of the field quantities were performed. 

Since the medium is isotropic, the fields were only computed in the 

equatorial plane (z = 0). In this plane only the fields E8 and H~ 

are nonzero. Figures 4.2 through 4.4 show these fields as a function 

of the normalized time w t • The time-harmonic electric field's 
0 

amplitude is denoted by horizontal dashed lines in the figures. 

Figure 4.2 shows the fields for w /w = 0.5 and k r = 50, corres-
p 0 0 

ponding to the observation at a large distance compared with the orig~ 

inal wavelength of the radiation. Figure 4. 3 corr.esponds to the 

case of dense plasma and long distance from the source with w /w = 0.9 
p 0 

and k r a 50. Figure 4.4 shows the fields in an overdense plasma in 
0 

which w /w = 1.2 and k r = 5 , corresponding to the observation 
p 0 0 

near the source. The beating phenomena can be seen in the fields in 

Figs. 4.2 through 4.4. In Figs. 4.2 and 4.3 the effect of the group 

velocity on the propagation in a dispersive plasma can be seen. After 

r t=-c' i.e., w t > k r = w , a small disturbance 
0 0 

faster signal of frequency w arrives at w t 
0 

finally the signal of frequency w builds up 
0 

The time lag between these two signals is 

1 - J 1- o.
4 

/1t rv ~===;=-- r 
Jl- 0.2 

or 
1 - jr-1---o.-4 

~ (w t) rv 50 --;:=::;;,;:--
o Jl- a,2 

'V 

at 

comes, then the 

so/l+a?, and 

w t 'V 50/j 1- a?. 
0 

This phenomenon is 
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clearly observed in Fig. 4.3 in which the ratio of the group velocity 

at w to that at w is (1- (0.9) 4)-l/2 ~ 1.7 and the time lag is 
0 

large, 11(w t) 'V 46 • 
0 

The radiated power by the dipole will now be calculated. For 

t < 0 , it is well-known that 

2 cos w t 
0 

which has the average value 

4 2 
prad = lJOWOp 

127TC 

(4.50) 

(4.51) 

For t > 0 , the theory of the time-irreversible power radiated 

by a current distribution [30,31] will be employed here. A detailed 

discussion of various aspects of this theory can be found in Ref. 32. 

The power radiation formula is 

prad(t) a - J Erad(.!_,t) • .:!.g (.!_, t) dV (4.52) 

v 

where the volume integration extends throughout the volume V occupied 

b h J Erad(.!_,t) y t e source • 
-s 

is the ·Dirac radiation field given by 

(4.53) 

where Eret(r t) - _, are the retarded and advanced solu-

tiona for the electric field respectively. For time-harmonic outgoing 

waves, 

(4.54) 
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in and ! (.!:_, t) are the outgoing and incoming electric 

fields respectively. In the case of time-harmonic incoming waves, 

in will be replaced by E (.!:_,t) in Eq. (4.54), and vice versa 

since the incoming wave will bring energy into the source region. Now, 

carrying out the volume integration of Eq. (4.52) results in 

prad(t) a -Erad(O t) w t z _, w
0

p cos 
0 

(4 .55) 

It is easily shown that 

Erad(O t) z _, -- (4.56) 

where 

Erad' (0 t) a .!(Eret' (0 t) - Eadv' (0 t)). z _, 2 z _, z _, . (4.57) 

E~et' ~,t) is the z-component of E'(.!:.,t) in Eq. (4.9) at the origin; 

E:dv' ~,t) is the z-component of the advanced field 

Eadv' (r t) = · - _, L -1 { E ad v ' (.!:_, s ) } 

+ E}s2+ 2 
-}lsJ'(s) w 

L-1{ 
c p · 

0 [e e - 47T r -z 

+ .!.}s2+ 2 
2 w 

r;L 
c p 

c (e )] (4. 58) -
s2+ 2 ()z r w p 

at t~e origin. 

To calculate 
rad' Arad' 

E (0 t) we start with E (r,s). z _, , z -
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Erad' (r,s) = !(E'(r s) - Eadv' (r s)) z - 2 z _, z _, (4.59) 

=-

rJ 2 2 rJ 2 2 
2 2 ( - c s + w c s + w )] c a e p - e p 

- 2+ 2 ~ r 
S W oZ 

(4.60) 

p 

Carrying out the differentiation we find, as r ~ 0 , 

= (4.62) 

Defining 

(4.63) 

c 

we obtain 

Erad' (0 t) a z . _, (4.64) 

Using the same technique (see Appendix D) as was used in evaluating 

I we find 1,2,3 
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2 27r 

-~ f 87r 
0 

iw t cos lJJ 
x e P dlJJ (4.65) 

2 Jl(w t) 2 
a o'(t) + w p - n J (w t) 

p Wpt o p 

-n Jn.2- w
2 [u (A(n)w t,w t)- u (A-1 (n)w t,w t)] 
p 0 p p .o p p 

(4.66) 

where o'(t) : :t(o(t)) and where A(S'l) is defined by Eqs. (4.31). 

Hence, 

3 
rad ' · lloWop{ j 2 · -1 

Ez (.Q.,t) =-
6 

1-a. (U (~ w t,w t)-U (~ w t,w t)) 
'ITC 0 0 p p 0 0 p . p 

1 (U (~w t,w t) ~ U (~-lw t,w t))} J 1 + a,2 0 p p 0 p p 

where ~ = A(w ) and ~ = A(w) • 
0 0 

Thus, for t > 0 , the power radiated by the dipole is 

4 2 

Prad(t) • _11o_w_o_P_ 1 J 2 cos w t { [ cos ( w 1 + a. t ) -
61rc o j 1 + a,2 o 

-1 
(U (~w t,w t)- U (~ w t,w t))] 

0 p p 0 p p 

+ J 1- a.2 (U (~ w t,w t) - U (~-lw t,w t))} 
0 0 p p . 0 0 p p 

For t small, i.e., w t << 1 , 
p 

(4.67) 

. (4.68) 
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(4.69) 

As + t ~ 0 , that is, just after the plasma is created, 

(4.70) 

But from Eq. (4.50), as t ~ 0-, that is, just before the plasma is 

created, 

The instantaneous radiated power at + 
t = 0 decreases to 

(4.71) 

1 of 

its value at t = 0- because work must be done by the driving source 

in order to keep the dipole moment constant during the creation of the 

plasma. 

As t ~ ~ , we find, for w > w 
0 p 

4 2 
rad . lloWop J 2 2 

P ( t) rv 1 - a cos w t 6nc o 

for w • w 
0 p 

and for w < w 
0 p 

(4. 72) 

(4.73) 
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4 2 
rad lloWop p::-; 

P (t) 1 . 
I\, 6 7T c a. - cos w 

0 
t s ~n w 

0 
t (4.74) 

These are the power radiation formulas for an oscillating electric 

point dipole immersed in an isotropic, cold, lossless, homogeneous and 

linear plasma. The average values are 

4 2 
prad = lloWop J 2 

for w >w 127Tc 1 - a. 0 p (4.75) 

:a 0 for w < w o- p (4.76) 

Numerical calculations of the instantaneous radiated power were 

performed. Figures 4.5 through 4.7 show the power as a function . of 

the normalized time w t • The value 2Prad where Prad is given by 
0 

Eq. (4.75) is denoted by horizontal dashed lines in the figures. 

Figures 4.5 and 4.6 correspond to cases with w /w = 0.5 
p 0 

and 

w /w = 0.9 respectively. Figure 4.7 shows the power oscillation in 
p 0 

an overdense plasma • . Beating phenomena can be seen in Figs. 4.5 

through 4.7. In each case, a decrease in power radiation at t = 0 is 

clearly observed. 
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5. CONCLUSIONS 

This work studies the problem of electromagnetic wave propaga-

tion and radiation from oscillating sources in a suddenly-created 

plasma. A free current density has been introduced in Maxwell's equa-

tiona to account for the interaction of the wave with the plasma. 

Through the use of Laplace transformation, general expressions of the 

field quantities in the suddenly created plasma have been obtained. 

In the case of plane wave propagation, it is found that there 

are two waves in the suddenly created plasma. One is a wave propagated 

in the direction of the original wave, and the other is a wave propa-

gated in the opposite direction. Their frequency is shifted from the 

i i 1 f to jwo2 + wp
2 

h · h 1 f or g na requency w w ere w 1s t e p asma re-
o p 

quency. The amplitudes of the electric and magnetic fields of these 

two waves have been found and plotted as functions of the parameter 

a = w /w • The power flows and energy densities have also been cal
p 0 

culated. The net pow~r flow of the two waves is in the direction of 

the original wave, but its magnitude is only 
1 of the original 

value. It is also noted that the total energy density of the two waves 

is less than the original one, that is, some wave energy has been lost 

during the creation of the plasma. 

In the case of electric dipole radiation in a plasma suddenly 

created at t = 0 , there are also two waves for 0 < t < r/ c where r 

is the distance between the dipole and the observation point. One is 

an outgoing spherical wave and the other is an incoming spherical wave. 

Their frequency shift, amplitudes and power relations are the same as 
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those in the plane wave case. At t = r/c , the first small distur-

bances arrive at r • Around t ~ r , the outgoing wave fades 
c/}l + cJ. 

away, and a new wave arrives which has the same frequency and amplitude 

as the incoming wave but is propagated away from the origin. This new 

outgoing wave is a result of the reflection of the incoming wave at 

the origin. Later on, in a plasma with w < w , around 
p 0 

the radiation from the dipole builds up its steady state value. 

However, in an overdense plasma, the fields due to the oscillating 

dipole decay exponentially with distance. The exact field solutions 

have been obtained; and numerical calculations have been performed. 

The radiated power by the dipole has also been evaluated. It is found 

that the instantaneous radiated power suffers a decrease at the moment 

of plasma creation since some work must be done by the driving source 

to keep the dipole moment unchanged during the creation of the plasma. 

The power radiation gradually reaches its steady state and has the 

lloW~P2 j 2 
average value 127Tc 1- a for a = wp/w

0 
< 1 or 0 for a ~ 1 • 

Finally, it should be noted that boundary value problems in a 

suddenly-created plasma can also be solved using the techniques 

developed in this work. However, the inversion integrations will be 

so complicated that numerical evaluation of integrals will be needed. 
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APPENDIX A. THE EFFECTS OF COLLISIONS 

In this appendix the effects of collisions will be discussed. 

In the presence of collisions, the equation for the average velocity 

~(£,t) of free electrons in a plasma will be [33]. 

d 
N~~ = Ne(E + ~ x ~0!!_) - Nmweff ~ (A.l) 

where the proportionality constant weff is the collision frequency and 

measures the number of effective collisi"ons an electron makes per unit 

time. Then the free current density is related to the electric field by 

(A. 2) 

where the nonlinear te.rm and the v x ~ H term have been neglected. 
- o-

It can be easi~y shown that the result of Laplace transformation 

of the vector wave equation (for t<O) is 

s2 + s w 2,.. 
s+~eff P E(r,s) = 

c --V x V x !(r,s) + 
iw ~ s-iw 

o o J ( ) + --...--oE ( r) 
s+iw -o £ · c2 -o -

0 (A.3) 

Comparing Eq. (A.3) with Eq. (2.29) the solutions can be obtained by 

simply replacing w 2 by s w 2 in Eqs. (2.51) and (2.52). 
P s+weff p 

Thus 

(s-iw )(s+w ff) 
E( ) 0 e__ E (r) 
- .!_, 8 a s 3-rw s2-t-w2s+w w 2 -o . - s~ 

eff eff. o J 
~c(r,£') ·~' (r,s)dV' 

(A.4) 
v 
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where w = ~~ 
0 p 

A iw w 2 
J ' ( r' s) ·-

0 ~ J ( ) ~ -' (s+iw )(s +w ffs2+w2s+w fw Z) -or o e ef o 

'V'V) G ( r, r') c--

A. Effects on plane wave propagation 

(A. 5) 

(A. 6) 

(A. 7) 

(A. 8) 

In the lossless plasma, two poles appear at s=±iw corresponding 

to two waves propagated in appositive directions, and an additional 

pole appears at s=O corresponding to the static but spatially varying 

magnetic field. See Eq. (2.51) and (2.52). In the presence of collisions, 

the poles now appear at the three roots of the cubic equation 

s3 + w s2 + w2s + w w 2 = o 
eff eff o 

In the case of very slight loss, i.e. Weff << 1, the roots are 
w 

0 

s2 
:::: we~fwp2 - iw 2w 

s3 = - ;5fwp2 + iW 

(A.9) 

(A.lO) 

(A.ll) 

(A.l2) 
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Hence, th~re are two waves whose amplitudes decay with time as 
- We~fWp 

2 t. 
e w There is

2
also a nonoscillatory (in time) field decaying 

We~fWa 
with time as e- w t. If w 2 > 2w 2 , the nonoscillatory field decays 

0 p 

faster than the wave amplitudes, otherwise the waves will decay faster. 

Thus, a limitation on the formulation of the lossless problem is for the 

time small enough so that collision effects on waves can be neglected 

that is, 

(A.l3) 

B. Effects on dipole radiation 

From Eq· (A.4) through (A.8), it can be seen that the collisions 

would displace the branch cut shown in Fig. 2.1 into the left half plane 
w 
eff a distance --
2
-- . Additional branch points appear at s=o,- w eff. Thus a 

limitation on the integration technique described in Appendix D is for 

the elliptical path (Eq.(D.7)) to lie well away from these singularities 

so that the influence of the collision frequency will be negligibly small. 

Then by Eq. (D.7)) 

~ << Wpf3 
2 .;-1--(3_,..2-

(A.l4) 

Thus 

!. h +(wef£)
2 

c 2w 
p 

(A.l5) 
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APPENDIX B. ENERGY CONSIDERATION 

The difference in wave energy densities before and after the 

plasma creation, see Eq. (3.38), will now be discussed in terms of the 

plasma model used in this investigation. 

It has been found that the total wave energy density for t>O 

is 

w 
tot = w + w 

+ -
w 

0 
(3.38) 

w 
where a = ~ • It is noted that, besides waves, there is a static but w 

0 

spatially varying magnetic field (from Eq. (3.7)): 

a 2 H ik z 
~ eo l+a o 

where H =J ~E. And there is an electronic current density 
0 l.l 0 

0 

corresponding to this field: 

e +-ie 2 -x -y ia ik z 
J •VxH = --e:Ee o 
-=-M . -=-=M 12 1 +a 2 o o 

Hence the average velocity of electrons is 

1 e +-ie 2 w e: ik z 
v • - J =- -x -y 1:£._ __Q__E_ E e o 
- Ne ~ 12 l+a2 Ne 0 

(B.l) 

(B. 2) 

(B.3) 

The energy densities associated with the field and the motion can be calcu-

lated. 
(B.4) 

1 a~ 
• - e: IE I = w 2 o o 2(l+a2 )2. o 

(B.5) 



and 

· since w 
0 

=! t: IE 12 2 0 0 
and 

It is clear that 

w 2me 
0 0 
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1 .a2 
- t: IE 12 = __.;.. _ __,_ w 
2 o o 2 ( 1 +a 2 )2 o 

w 2 
0 1 = -- = ~-

2 a w 
p 

(B. 6) 

(B. 7) 

(B.8) 

Thus a certain amount of wave energy has been transferred to the static 

magnetic energy and the kinetic energy of the electrons during the 

creation of the plasma. 
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APPENDIX C. PROPERTIES AND ASYMPTOTIC FORMULAS 

OF LOMMEL FUNCTIONS OF TWO VARIABLES 

In this appendix some properties and asymptotic formulas 

of Lommel functions of two variables are summarized in the following 

(36,37]: 

The Lommel functions of two variables for integral orders 

are defined by the series 

00 

(C.l) 

m=o 

(C.2) 

The two types of Lommel functions are interrelated in the following way: 

2 w z n'IT 
U (w, z) - V (w z) = cos (- + - - - ) n -n+2 , 2 2w 2 (C.3) 

(C.4) 

Then the recursion relations are 

(C.5) 

- w -n · v (w,z) + v +2(w,z) a (-) J n(z) n n z -
(C.6) 

As t + oo 

1 1 ·wpr / 2 
-
2
J

0
(q) +1. cos w t + -

2 p 2 C 'ITW .t 
p 

( - 311') cos wp t 4 

(C.7) 



-1 
u,(yq~,q) - UJ(yq~ ,q) 

/w2 - w 2 
p 

r 
lw 2 - w2 

e c p 

lw 2 - w2 p 

cos wt - w2 
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cos 

w 
E 

- w 2 
p 

1T 
(w t - -) 

p 4 

&cos 
p 

(C. 8) 

31T (w t --) w<w 
p 4 , p 

(C.9) { 
sin(wt - .E. / w2 - w 2 ) 

c . E 

fw2 - w 2 
p 

w f!j 31T . _ ..... J2__ -- cos (w t - -) w>w 
2 'J p 4 , p 

w - w ' p p 
(C.lO) 

... {e"" ~ lwp 'Z - w'Z cos wt + ~t cos (wp t - ~) ,w<:P 

Cos ( '·'t - !. . 'w2. --_ w 2 ) +/_2_ ( 1T ) "" ., --· c_os wpt - -4 ,w>wp 
C p 1TW t 

p 
(C.12) 



-1 u (yq~ q) - u (yq~ ,q) 
0 , 0 

w 2 
p 

e 
- .!. I w 2 - w'-

c p 
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sin wt-

Ul(yq~,q) 

I 
lw 2 - w2 

p 

w < w 
p 

cos(wt - .!. lw 2 - 00 2 ) . . c . p 

{w2 - w 2 
p 

w .> w 
p 

-1 
+ ul (yqt; 'q) 

r -- lw 2 - w2 c 

I 
e p 

(wt - .!./w2 . sin c 

w 

sin wt 

- w 2 ' ) 
p 

~ p 

w < w 
p 

w > w 
p 

1T 

cos (w t - --4 ) ' · . p 

(C.l3) 

cos 7f) . (w t - 4 , 
p . 

(C.l4) 

(C.lS) 

(C.l6) 
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APPENDIX D. INTEGRATION TECHNIQUE 

AND FORMULAS [ 34,35] 

The inversion integrals in this work are of the form 

(D.l) 

where Fl and F2 are polynomials in their arguments. As s goes 

to infinity, Fl/F2 
2 

1- 0 'V f + f /s + f /s + ··· . If f , there is 
0 0 2 0 

a o function in F(t) . This can be subtracted away and inverted 

separately, in view of the fact that the inverse of exp[-r/c}s2+ w2 ] 
p 

rw2 Jl(q) 
is o(t - .!.) ---..E. ·H(t - .!.) where q = w tJl- p} (S :: r/ct) • c c q c p 

Then F
1

/F
2 

~ f
0 

= F1/F
2 

which is O(s-1) as s goes to infinity. It 

can be shown by closing the contour with a very large arc in the right-

hand plane that F(t) is zero for t < r/c • 

The singularities in the integrand occur at s = ±in and 

s • ± iw , see Fig. D.l. For the purpose of this method the complex 
p 

a-plane is cut along the imaginary axis between ±iw 
p 

The integral along C can be shown to be equal to an integral 

along a path C' around the branch cut plus contributions from the resi-

dues (Fig. D.l). Figure D.2 indicates the path deformation for the 

proof. 

In case 1, n > wp , the integrals along c4 and c
14 

, c
6 

and 

c
8

, and c
10 

and c
12 

cancel one another, and the integrals c7 and c11 

have values equal . to -2ni times the residues of the integrand at ±in , 



Im(s} 

Case 1. n > w 
p 
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Im(s} 

Case 2. n < w 
p 

Fig. D.l Integration contours 



Im(s) 

(-u, + il) (CT,+il) 

c3 cl. 

Re{s) 

.CJ5 

ell 

Case 1. n > w p 
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c3 

c7 

Im(s) 

c2 

iwp 

iD, 

Cs 

-in 

-iwp 

Ca 

Case 2. n < w 
p 

Fig. D.2 Integration paths Cj 

cl 

Re(s) 
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respectively. The value of the sum of the integrals along c
3 

and c
15 

is zero when L ~ oo for t > r/c since there are no singularities to 

the left of -a . Then 

Fl 
_ rJs2+ 2 

J2;i I 
st w 

dsl lim c p -e 
L~oo F2 

c2 
~+'IJ' 

M eJa2+ 42 1 

I 
r 

< lim < t- c-) cos <P d<P (D.2) 
L~oo 

21T 

1T-'IJ' 
2 

where -1 a 'IJ' = tan · 4 and M is a constant which arises from the 

asymptotic property of F1/F2 as s ~ oo • Changing variables in the 

integral on the right-hand side we obtain for that integral 

I M 
27T 

-'IJ' 

Using ; <P ~ sin <P ~ <P for 0 ~ <P ~; , it can be shown that this 

integral is less than· 

M[l -

which vanishes as L ~ oo • Therefore, 



1 
lim 27Ti 

L+oo 
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J ;1/F2 est - ~ Js2+ w! ds = 

c2 

0 (D.3) 

Similarly the contribution from the integral on path c
16 

can be shown 

to go to zero as L + 00 • It follows from Cauchy's integral formula 

that 

- J 2 16 1 f F1 st - ~ s + l- -e 
n=l 27Ti F2 

c 
n 

Since as L + oo , path c
1 

becomes C , 

F(t) 

2 
w 

P ds • 

In the same way it can be shown in case 2 that 

rJ 2 2 

0 

1 J F1 st - ~ s + wp 
F ( t) + 2 7Ti F e ds = 

C" 2 

(D.4) 

ds 

(D.S) 

0 (D.6) 

Now the path of integration about the branch cut is made to con-

form to the ellipse C' (Fig. D.l) described by 

w 
s • -;:::::::P==;: [f3 sin VJ + i cos VJ] , 

j1- e2 

(D. 7) 

In case 1, if the path C' lies outside ±in , i.e., 
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then, 
rJ 2 2 

I 
F 1 s t - - s + w ds 

F ( t) + 2 ;i F 2 e c p = 0 

C' 

If then 

F(t) 

On C' 

and 

If we let ·x = YeiljJ where y = 1(1- S)/ (1 + S), 

iw 
2 

S = _.E.. (1 + X ) 
2x 

J 2 2 iw 2 
S + W = _.E.. (1 - X ) 

p 2x 

w 2 
ds = -R (1 - x ) d,,. 2x 'f' 

= 0 

Therefore the integral in Eq. (D.8) or (D.9) takes the form 

(D.8) 

(D.9) 

(D.lO) 

(D.ll) 

(D.l2) 

(D.l3) . 

(D.l4) 

(D.l5) 
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P and Q are polynomials in i1JJ 
e • This ratio of polynomials can be 

expanded into partial fractions 

p 
- = 
Q 

N 

I 
n=O 

(D.l6) 

Using the integral representation for the Bessel function 

21T 

2nin Jn(q) a I e±inW eiq COB w dW (D.l7) 

0 

the integral in Eq. (D.l5) can be expressed in terms of Bessel func-

tiona and Lommel functions of two variables. 

Two basic integrals in this work will now be evaluated. 

21T 

I (D.l8) 

0 

for i = 0 and 1 and K = l,A(r2) where A(r2) is defined by Eq. 

(4.31). 

For i = 0 

21T iq cos 1JJ 
21T iq cos 1JJ 

F (q ,K) = I 
e -1 I e d1]J (D.l9) 

x2- K2 
d1]J =-

0 K2 2 
i21JJ 

0 0 1 _Le 
K2 

For K > 1 and f3 = r/ ct > 0 , the denominator can be expanded into a 

g·eometric series, 

(D.20) 

when the order of integration and summation is reversed and the 
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integral representation for the Bessel function is used, we obtain 

00 

F (q,K) =- 2~ I (-l)n (~)2n J2n(q) 
° K n=O 

In terms of Lommel functions of two variables (see Appendix C) 

F (q,K) 
0 

For K < 1 , . the cases y/K < 1 and y/K > 1 must be considered 

(D.21) 

(D.22) 

separately in evaluating F (q,K) • 
0 

This occurs when K-l = A(w ) = ~ 
0 0 

for w > w or when K-l = A(w) = ~. 
0 p 

-1 Taking, say, K = ~ 0 , we have 

-1 2 
F0 (q,~0 ) = -2TI~ U (yq~ ,q) 

0 0 0 

when y~0 < 1 • When y~0 > 1 , 

2TI iq 1jJ -1 
J 

cos e dljJ Fo(q,~o ) = 2 -2 
0 

X- ~0 

2TI 
-iljJ 2 

J y-2 
00 

-i21JJ I e n 
= e (~) 

0 
n=O 0 

00 

e iq 

-2(n+l) 
= 2TI I ~-2n(-l)n+l y 

0 n=O 

By means of Eq. (C.3) and (C.4) we obtain 

cos 1jJ dllJ 

J2n+2(q) 

n rJ 2 2 u2 (--:l-yr-,q) • U (yq~ ,q)- cos(w t-- w - w ) 
~ 0 0 0 c 0 p 

0 

(D.23) 

(D.24) 

(D.25) 
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Hence, 

-1 2 2 rJ 2 2 rc---2 
F0 (q,~0 ) = -27T~ U (yq~ ,q) +27T~ cos(w t -- w - w ) H(t --cjl- a ) 

0 0 0 0 0 c 0 p 

(D.26) 

But in the Laplace inversion there is also a contribution due to poles 

±iw in the integrand. 
0 

This term appears only for and 

it exactly cancels the second term on the righthand side of Eq. (D.26). 

Therefore for the value of -1 F · (q r ) we shall formally use Eq. (D.23) o '~o 

and the residue contribution will automatically be taken care of. The 

same thing applies for -1 
F (q, ~ ) • 

0 

In summary, 

Similarly, 

27Ti n ) 
Fl (q,K) = -I< ul < K ,q 

(D.2 7) 

(D.28) 
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