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ABSTRACT 

This in_vestigation deals with the response of the semi-infinite, 

linear elastic, homogeneous, isotropic plate in plane strain, subject 

to symmetric normal loads acting, in the absence of shear stress, 

on its edge. A double Laplace transform technique is used to obtain 

long-time information for two problems; a uniform load and a line-load. 

Near- and far -field approximations are found, the far -field approxi­

mations giving the __integral of the Airy integral for both problems. 
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INTRODUCTION 

Analysis of semi-infinite waveguides based on the equations 

of motion for a linear elastic, homogeneous, isotropic medium, is 

a subject of long-standing interest. Miklowitz, in [1 ], gives a review 

of the area (up to 1969). As he points out there, contributions on 

nonmixed problems (stresses or displacements prescribed at the 

edge) are relatively uncommon compared to those for mixed prob­

lems (wherein a combination of stress and displacement components 

is specified on the edge). This is because of the nonseparable nature 

of the former. 

Recently, Miklowitz extended a method used by Benthem, [2], 

for the stress analysis of semi -infinite elastostatic strips, to the 

dynamic case, thereby providing a means for handling these nonmixed 

problems. The method uses a Laplace transform on the propagation 

coordinate, coupled with a boundednes s condition on the solution, to 

generate integral equations for the edge displac~ments and their 

gradients. Solving these integral equations then determines the 

formal solution to a problem. The method is demonstrated in [ 1]; 

the long -time solution to a nonmixed problem of the displacement type 

being treated there. 

In the present work, this technique is used on nonmixed prob­

lems of the stress type; being employed to obtain long-time informa­

tion for two problems involving symmetric end-loads acting, in the 

absence of shear stress, on the edge of the semi-infinite plate in 
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plane strain. The problems are: 

P roblem A ... a suddenly applied uniform normal stress; 

and Problem B ... a suddenly applied normal line -load. 

Results in the long-time, near-field for Problem A reduce to 

elementary forms; for Problem B, however, the corresponding forms 

are quite complex, entailing singular terms and some numerics. The 

far -field approximations lead to integrals of the Airy integral for both 

problems - the same function that arises in mixed problems (see [I]). 

If the forces acting on the plate edges in Problems A and B are equal, 

these far-field responses are found to be identical. 
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.1. FORMULATION, FORMAL SOLUTION, AND BOUNDEDNESS 

CONDITION 

We now formulate the class of elastic, waveguide problems to 

be considered, essentially following Miklowitz in [ 1]. Plane rec­

tangular cartesian coordinates are chosen for the plate such that the 

x-axis is in the direction of propagation whilst the y-axis is in the 

thickness direction (Fig. 1 ). u = u(x, y, t) is the displacement in the 

x direction; v = v(x, y, t) the displacement in the y direction. The 

plate is 2h thick. 

y 

·~ ,, 
v 

} 

h 

0 u 
h I 

X 

\ 

_. 

Fig. I. Coordinates and displacements for the semi-infinite plate 

Under the assumptions of plane strain, the displacement 

equations of motion for a line~r elastic, homogeneous, isotropic 

medium are 
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2 02
V a 2 0~ 2 o2 v ) o2 v c -(x, y, t) + (cd-c )-- (x, y, t) + cd -(x, y, t = -(x, y, t), 

s ox2 s oxoy oy2 ot2 . 

(I. I) 

for x > 0, -h < y < h, t > 0. Here cd = J (),.+21J)/ p and cs = Jii7P are, 

respectively, the dilational and equivoluminai body, wave speeds, A. 

and IJ are the Lam~ constants, and pis the mass density. The asso­

ciated stress-displacement relations may be expressed by 

) r, 2 au 2 2 ov J a X (x, y, t = /J Lk ox (x, y, t) + (k - ) oy (x, y, t) , 

) ~ 2 2) ou 2 ov J ay(x,y,t =IJ~k- ox(x,y,t)+k oy(x,y,t), (I. 2) 

a (x, y,t) = IJ~ (x, y, t) + ~v (x, y, t)J, xy LUY . ux 

for x > 0, -h < y < h, t > 0. Here a , a , a denote the rectangular x y xy . 

components of stress in the usual way, and k 2 ~ c~ /c:. 
For quiescent 1:nitial conditions one has 

~ ov . 
u(x, y, 0) = at (x, y, 0) = v (x, y, 0) = at (x, y, 0) = 0, 

for x ~ 0, -h ~ y ~h. Conditions at infinity are taken as 

lim 
J u(x, y, t), :: (x, y, t), etc., = O, 

t v(x, y, t), ox {x, y, t), etc 

{ 1. 3) 

(1. 4) 
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for -h ~ y ~ h, t;;::: 0. Plate-face conditions for stress-free 

surfaces are 

a (x, h, t) = a (x, h, t) ;: 0, y xy 
(I. 5) 

for x ~ 0, t ;;::: 0. To these are added, for excitation of the plate which 

is symmetric with respect to the x-axis, the symmetry criteria~ 

v(x, 0, t) = 0, cr (x, 0, t) = 0, 
xy 

( 1. 6) 

for x > 0, t;;::: 0. Finally we have our edge conditions, which consist 

of a normal stress suddenly applied on the edge x = 0, for 0 ~ y < h, 

in the absence of any shear stresses. Equations (1. 1) through (1. 6), 

in conjunction with the edge conditions, . define the class of problems 

from which the two particular examples of the ensuing sections will 

be drawn. 

We now focus our attention on a formal solution for this class 

of problems, defining the Laplace transforms on x, parameter s, 

and t, parameter p, by 

00 00 

f(s} = I f(x)e -sx dx, - I -pt f(p) = f(t)e dt. (1. 7) 

0 0 

Double transformation of (1. I}, followed by the application of (1. 2), 

(1. 3 ), (1. 5 }, (1. 6 ), transformed appropriately, and the attendant 

inversion formulae for (1. 7), produces the forms that follow in equa-

tions (1. 8} through (1. 16). First, the pertinent, inversion integrals, 

namely 
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I u(x, y, t) l 
v(x, y, t) !

u(s,y,p)l 

= 2~ I ept[z~ I esx ~ ds }p, 
Br Br v(x, y, p) 

p s 

(1. 8) 

in which Br and Br are, respectively, the Bromwich contours in 
p s 

the p- and s- planes. Here 

:::::...( ) = ::::..: p ( ) 0. c ) u s, y, p u s, y, p + u (s, y, p , 

v(s,y,p) = vp(s, -y,p)+VC{s,y,p), 
} (1. 9) 

where the superscripts indicate the source of the contribu~ion to the 

transformed displacement field; p signifying the particular integrals 

for the ordinary differential equations arising from the transformation 

of (1. 1) while c signifies the complementary functions of the same. 

Consequently 

y 2 

~p(s, y, p) = -1
- J {I!_ sinha(y-y)+f3sinhf3 (y-y')Jg(s, y, p) 

k2 ~a · 
s 0 

+ s[cosha(y-y)-coshf3(y-y')]h(s,-Y., p)}dy', 

yP (s, y, p) = k1
2 
f {~sinh<> (y-f) + f sinhf3 (y-y' )Jh(s, .;, p) 

s 0 . 

(1. 10) 

[ I I] I } I + s cosha (y-y )-coshf3 (y-y) g (s, y, p) dy, 

and 
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vc (s, y, p) = : C1 (s, p)sinhay- ~ C 2 (s, p)sinh~y, 
} (1. 11) 

where 

C1 (s, p) = -s[(2s 2 -k 2 )I(s, p)sinh~h+2s~J(s, p)cos~h]/R(s, p), } 

s (1. 12) 

C 2 (s, p) = -~[2sal(s, p)sinhah - (2s 2 -k;)J(s, p)coshah]/R(s, p), 

R(s, p) = (2s 2 -k 2 
)
2 coshahsin~h + 4s 2 a~ sinhahcosh~h, 

s 

h 

I(s, p) = -1
- J{!. [(2s 2 -k 2 )sinha(h-y)+2a~sinh~(h-y )]g(s,y, p)+ 

k2 a s 
s 0 

[ (2s 2 -k:)cosha (h-y)-2s 2 cosh~ (h-y) }l(s, y, p) }dy + (l<2 -2 )u(O, h, p ), 

with 

g(s, y, p) = k2~u(O, y, p) + ~~ (0, y, p)}(k2 -1 )~; (0, y, p), 

) - ) av ( 2 au h(s,y,p = sv(O,y,p +ax O,y,p) + (k -1)ay(O,y,p), 

and 

(1. 13) 

(1. 14) 

} (1. 15) 



a = Jk a -s 2 
d I 
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(1. 16) 

The set of results numbered (1. 8) to (1. 16) correspond to . 

equation (19) of [ 1 ]. Details of the derivation for this set appear in 

Mik1owitz, [ 3 ], Section 2. 

To avoid the awkwardness of equal and opposite (hence cancel-

ling) singularities on performing the integration for the particular 

integrals and complementary functions in the problem treated in 

Section 3, these forms are now combined. (1. 9) through (1. 14), 

together, imply 

~ 1 [{'s u(s, y, p) = k 2 . a A(s, p;O, h)[t (s, p)coshay-2 af3 (2s 2 -k:)coshf3y J-
s 

rr (s, p;O, h)['!' (s, p)coshf3y-2s 2 (2s 2 -ks2 )co shay] + 

a[ ..Lu - 2 u - l j k
5 

f3'P (s,y,p)v(O,h,p)- (k -2)s'f _(s,y,p)u(O,h,p)]J R(s,p) 

-! [A(s, p;O, y)sinhay-@ (s, p;y, h)coshay] 

+ Tf<s, p;O, y)sinhf3y + O(s, p;y, h)coshf3y]. 

(1.17) 

v(s, y, p) = _!_ [J A(s, p;O, h)[t (s, p)sinhay + 2s 2 (2s 2-k 2 )sinhf3y] 
k2 \.. s 

s 

+ ~ Tf<s, p;O, h)['i'(s, p)sinh(3y + Zaf3(2s 2 -k: )sinhay J + 

2 [ . ..LV - 2 V - 1l/ k
9 

s 'P (s, y, p)v(O, h, p)-(k -2)at (s, -y, p)u(O, h, p)]J R(s, p) 

- ~ [ 11( s, p; 0, y) c 0 s hf3 y + n ( s, p; y, h) s inh(3 y J 

-A(s, p;O, y)coshay + @ (s, p;y, h)sinhay l, 
-' 
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in which 

b 

1\(s, p;a, b) = r• [ I ) • I I 1] 1 ah(s, y, p s1nhay -sg(s, y, p)coshay dy, 
( 

a 

b 
n ·(s,p;a,b) I [ I • p I I ) I] I = sh(s,y,p)s1nh ytpg(s,y,p coshPy dy, 

.... 
a 

b 
8 (s, p;a, b) I [ I ) • I I I] I = ... s g (s, y, p Slnhay-ah(s, y, p)coshay dy, 

a 

b 
O(s, p;a, b) = ! [p g (s, y, p )sinhpy' + s h(s, Y, p )coshpy' ]dy', 

,) 

a 

2 

~ (s, p) = (2s 2 -k 2 ) sinhahsinhf3h + 4s 2 aP coshahcoshPh, s 

2 

'¥(s, p) = (2s 2 -k:) coshah coshPh +4s 2 ap sinhah sinhPh, 

u t (s,y,p) = 

u 
~ (s,y,p) = 

v t (s, y, p) = 

v 
~ (s,y,p ) = 

(2s 2 -k 2 )sinhf3h coshay + Zap sinhah coshPy, 
s 

2s 2 coshPh co shay - (2s 2 -k 2 )coshah coshPy, 
s 

(2s 2 -k 2 )sinhf3h sinhay - 2s 2 sinhah sinhPy, 
s 

2apcoshf3h sinhay + (2s 2 -k 2 )co shah sinhpy. s 

(1. 18) 

} (1.19) 

(1. 20} 

Observe that u(s, y, p), v(s, y, p) of (1. 17) involve, via g(s, y, p) 

and h(s, y, p) of (1. 15), the six edge unknown·s: u(O., y., p}, v(O, y, p), 

au av au av 
ay (0, y, p), ay (0, y, p), a;c(O, y, p), Bx(O, y, p). Differentiation with 
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respect to y of the first pair of these quantities yields the second 

pair. Application of the edge conditions further reduces the number 

of the edge unknowns to be found to two. It remains for us to utilize 

the only condition left in the preceding formulation, to wit the infinity 

condition (1. 4 ), to obtain a means of ascertaining these last two edge 

unknowns. 

Note that the denominator of the complementary functions given 

in ('1. 11), (1. 12), is R(s, p) of (1. 13). Now R(s, p) set equal to zero 

is a generalized form of the Ray leigh-Lamb frequency equation 

for symmetric waves in an infinite elastic plate. Hence as Miklowitz 

points out in [ 1 ], R(s, p) has an infinite set of zeros in each quadrant 

of the complex s -plane and, in particular, there exists s = s. (p) such 
. J 

that 

R ( s . (p), p) = 0, 
J 

Re s. (p) > 0. 
J 

(1. 21) 

Accordingly, a residue evaluation of the inner integral in (1. 8) would 

lead to exponentially unbounded waves as x - oo, a violation of (1. 4 ). 

Thus, to eliminate these transcendentally large terms the numerators 

of C1 (s,p) and C 2 (s,p) in (1.12) are set equalto zero for s = s.(p) 
J 

satisfying (1. 21 ), yielding 

J ( s . , p) - Y ( s . , p )I ( s . , p) = 0, 
J . J J 

(1.22) 

where 



Y(s .,p) = 
J 

2s. a. 
J ] tanha.h = 

J 

11 

(2s~-k 2 ) 
__ J,___s_ tanh~ .h, 

2s. ~- J 
J J 

a., ~., being a,~~ of (1. 16) for s = s.(p). On expansion, (1. 22) 
J J J 

becomes 

- v(O, h, p)- (k2 -2)Y(s., p)u(O, h, p) = 0. 
J 

{1. 23) 

(I. 24) 

(1. 24), the boundedness condition, corresponds to equation {23) of 

[ I] and is the requisite system of integral equations for completing 

the evaluation · of the edge unknowns. 
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2. PROBLEM A: UNIFORM LOAD 

In this section we use the boundedness condition of Section 1 

to find the formal solution valid for small p, thence the long-time 

solution, for the specific problem of a uniform normal stress suddenly 

applied to the end of our waveguide (Fig. 2). Thus a A is a positive 

quantity with the dimensions of stress; U(t) is the unit step function. 

y 

J .. 

-aA U(t) 
~ h cr =0 

xy -
) 

h \ 
X 

Fig. 2. Edge conditions for Problem A 

This particular loading is expressed through the stress -displacement 

relations, (1. 2 ), (assuming the displacement field to be continuously 

differentiable on the edge), by 
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cr (G, y, p) = #Jika aau (0, y, p) + (k2 -2) aav (0, y, P~ = 
X L X y ~ 

crxy(O, y, p) = /J[~~ (0, y, p) + ~~ (0, y, p~ = 0, 

for 0 ~ y < h, p > 0; wherein the quantities concerned have been trans-

formed with respect to time so as to involve the edge unknowns. 

The long-time behaviour of the waveguides we are currently 

studying can be derived by approximating u(s, y, p) and ~(s, y, p) of (1.17) 

for small p once the edge unknowns have been established. It follows 

that determination, via the boundednes s condition, of the edge unknowns 

satisfying (2. 1) for small p, will provide the formal long-time solution 

for the present problem. To accomplish this we first turn to the 

e Zemen tary theo1'y of compressional waves in a plate as our modus 

operandi for estimating the time -dependence of the edge unknowns in 

the long-time. 

For the elementary theory one derives the equation of motion 

directly on assuming the stress is uniform over any cross -section 

of the plate perpendicular to the d~rection of propagation of the long 

waves (the x direction). Setting the second of (1. 2) equal to zero, 

and substituting the result found thereon for ~; (x, y, t) in the first of 

(1. 2), furnishes the associated constitutive relations. On combining 

these expressions, one has the standard, elementary theory, field 

equations, 
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1 

c2 
p 

ave k 2 -2 aue 
~ (x, y, t) = -(--) -~ -(x, t), 
uy k2 uX 

e o (x, t) 
X 

= 
aue 
- (x, t), 
ax 

holding· on x > 0, - h < y < h, for t > 0. 

(2. 2) 

plate, wave speed and the e atop quanti~ies serves to intimate their 

geneses. It should be noted that (2. 2) cannot, in general, be realized 

as a consistent specialization of the equations of motion and the 

stress -displacement relations quoted in Section 1. Further, the 

relationship of the frequency, w, to the wave number, K, obtained 

on substituting ue(x, t) = ei(Kx-Wt) in the first of (2. 2), is 

W = c ft• p 
(2. 3) 

Now approximation of the Rayleigh -Lamb frequency equation contained 

in (1. 13), (1. 21 ), for small p and s gives 

(2. 4) 

whence on setting s = irt, p = iW, one recovers (2. 3) as the dominant 

term for the lowest mode in the frequency spectrum of the plate. 

Consequently our elementary theory should show close agreement 

with the exact theory for the very long-time response of plates to low 
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frequency inputs and hence be a suitable approximation for Problem A. 

To pose the analogous problem to Problem A for the elementary 

theory, one takes a plate of unit width at rest, impinges on it a force, 

of magnitude 2a A h, in the positive x direction on its end, x = 0, and 

thereafter retains only outward travelling waves (in this instance, 

those propagating in the positive x direction). For a plate subjected 

to these conditions, application of the Laplace transform on time of 

(1. 7) to (2. 2) readily produces, at the edge, x = 0, 

-e OACP 
(£), u (0, p) = 

41J.p2 k 2-l 

aue -a 
( _K_ ), A 

ax (O,p) = 41J.p k 2 -1 
(2. 5) 

ave a A 
(k

2 
-2 ) ' ay(O, p) = 41J.p k 2 -1 

for - h < y < h, p > 0. 

To the estimates in (2. 5) we adjoin a supplementary set of 

edge unknowns - distinguished by the superscript a - to account for 

any differences between the exact and elementary theories. For 

these additional contributions we employ the technique used first 

be Benthem, for the stress analysis of elastostatic strips, and later 

by Miklowitz, in dynamic problems, and represent them by Fourier 

series in y with the p dependence incorporated into the series coef-

ficients. 
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a:ua( a-a 
Foray 0, y, p), a; (0, y, p) continuous on the interval -h<y< h, 

-a 
as functions of y, the symmetry criteria, (1. 6), imply that ~u (0, y, p) 

-a y 
is an odd function of y on -h < y < h whilst ~v (0, y, p) is an even one. 

. au a av-a y 
Accordingly, for ay (0, y, p) and ay (0, y, p) continuously differentiable 

in yon the open interval ]0, h[, we have sine and cosine series repre-

s entations in y, respectively. Contingent upon these two quantities 

being smoothly extended as periodic functions of y onto the infinite 

interval, -oo < y < oo, the coefficients a '(p) and b 1(p ), of their res pee-
n n 

tive series must go down faster than •1 /n as n ... oo. t Thus, to secure 

expansions which are acceptable from a convergence standpoint, we 

seek trigonometric series capable of such extensions. 

Now introducing the edge -strain estimates of the elementary 

theory, set down in (2. 5 ), into the first of the edge conditions in (2. 1 ), 

reveals that these elementary theory quantities do produce the normal 

t To exemplify this claim we consider f(y); a continuously differentia­
ble odd function on the open interval ]-2h, 2h[ with a continuous exten­
sion as a function of period 4h onto ] -oo, oo[. Suppose f(y) admits 

00 2h 

representation by the series I sn sin~£', where sn=zk Jf(y) sin~£' dy. 

n=l, 3, 5, • • • -2h 

Modelling our treatment after that of Kantorovich and Krylov, [ 4] 
{p. 79), we integrate the defining equation for s by parts to obtain 

n 
2h 2h 

s = -..!Jy2 cos nrry I + _I_ J df(y) cos nrry dy. 
n n1r Zh n1r dy 2h 

-2h -2h . 

The first term on the right-hand side of the above is zero by virtue 
of the continuity and perodicity of f(y); the second term is o(l /n), for 
n- oo, as a consequence of the Riemann-Lebesgue lemma. Thus we 
have an example of the coefficient decay advertised. 
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stress acting on the end of the plate in Problem A. Therefore, the 

additional contributions to the edge strains for Problem A must 

satisfy 

aua 2 ova . 
k 2 ax (0, y, p) + (k -2) ay (0, y, p) = 0, (2. 6) 

for 0 ~ y < h, p > 0. On approaching the corner x = 0, y = h, one sees, 

in the light of (2. 6) and the plate -face conditions (1. 5 ), that 

lim -a 
y - h g; (0, y, p)} = o. 
y<h 

( 2. 7) 

This corner condition suggests that the cosine series chosen for 
oo · 

-a 
OV \ I n'TTy oy (0, y, p) be L bn(P) cos 2h . The absence of any such corner 

n=l, 3, 5, ••• 
-a -a 

condition for ~; (0, y, p) implies ~; (0, y, p) will not be zero at y = h 

in general and thus dictates that the companion sine series be taken 

for this term. We then have 

00 

au·a \ ' 
ay (0, y, p) = L a~ (p) sin ~~v , 

n=l, 3, 5, .•• 

00 
(2. 8) 

ova \ 
ay (O, y, p) = L b~ (p) cos ~hv, 

n=l, 3, 5, ••. 

for 0 s: y s: h, p > 0. The accompanying extensions for these 

au a 
quarter-range Fourier series t representations of -n- (0, y, p) uy . 

t It is apparent from the c;ontinuations specified that the series repre­
sentations in (2. 8) can be drawn from the half-range series on [0, 2h] 
in much the same manner that the half-range representations on [0, h] 
can be extracted from the full Fourier series (sine and cosine terms) 
on [ -h, h]. Thus a Fourier theorem holds true for the series of (2. 8) 
and the name, quarter -range Fourier series, is appropriate. 
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-a 
and ~; (0, y, p) are defined, by: 

on the closed interval [h, 2h], · 

-a au 
ay (O, h+y, p) 

au a = oy (0, h-y, p) and 

ova ova 
ay (O, h+y, p) = - ay (O, h-y, p), (O ~ y ~h); 

on [ -2h, 2h ], 

-a au 
ay (O, -y, p) 

au a 
= - oy (0, y, p) and 

-a av 
ay (O, -y, p) 

and on ] -oo, oo [ , 

= 
-a 

av 
ay (O, y, p), (0 ~ y ~ 2h); 

aua aua 
Oy (0, 4mh+y, p) = oy (0, y, p) and 

ova ova 
ay (0,4mh+y,p) = ay (O,y,p), (-2h ~Y ~2h), 

many integer. As a result of the corner condition, this is a continuous 

definition of these functions of y on ] -oo, oo [. Basically here we have 

precluded the possibility of Gibbs phenomena at y = h in our series 

expansions, thereby ensuring the necessary decay in the coefficients. 
-2ha~ (p) 2h b~ (p) 

Integrating (2. 8); on exchanging nTr for an(p), n1r 

-a forb (p),u (0, h, p) for u(p), and invoking the symmetry criteria (1. 6); 
n 

generates 
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00 

u a(O, y, p) = u(p) + I an (p)cos ~~y 
n=l, 3, 5, ..• 

00 

v a ( 0, y, p) = L b n (p) sin n {{ , 

n=l, 3, 5, ••• 

(2. 9) 

for 0 ~ y ~ h, p > 0. u(p) is the transformed corner displacement 

in the x direction. 

Observe that (2. 9) automatically establishes the validity of 

term-by-term differentiation of the series there. Notice also, that, 

as a consequence of the large n behaviour secured for a~(p), b'n (p), 

the coefficients in (2. 9) must obey the order conditions 

a (p) 
n 

I . 
= o(-) 2 , 

n 

1 
b n (p) = o (- ), as n - oo. 

n2 
(2.1 0) 

To guarantee the satisfaction of the relevant edge conditions 

au a av a au a ava . 
for ry-(0, y, p), ay (0, y, p), ax (0, y, p) and ax (0, y, p); to Wlt, the 

second of (2. 1 ), and (2. 6); the last pair of these terms are chosen as 

below 

-a au 
ax (O, y, p) 

for 0 ~ y ~ h, p > 0. 

n1ra (p) 
n 

n=l, 3, 5, ••• 

z1TY cos h , 

(2.11) 

-~ s1n --zh, 

Now adding the contributions from the elementary theory given 

in (2. 5) (with an integration of the last result there to provide 
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•-e • v (0, y, p) ) and the corresponding terms from (2. 9) and (2. 11) gives 

00 

= 0 
A cp k 2 

\ n1T' u(O, y, p) (--) + u(p) + L a (p)cos ~, 
41Jp2 k 2 -1 n · 2h 

n=1, 3, 5, ... 

(J y 00 

;-(o, y, P) A ( k
2 

-2 ) I !!!!Y = -4 - -- + b (p)sin -zh' 
/JP k2-1 n 

av-ax (O, y, p) = 
00 

\ ' 
{ , 

n=1, 3, 5, ••• 

k a 2 Loo n1Tb (p) 
(.---) n nzry 

Zh cos h' 
k2 

n=1, 3, 5, •.• 

n1T'a (p) 
n . ~ 

2h sm-zh, 
n=l, 3, 5, ••• 

(2. 12) 

for 0 ~ y ~ h, p > 0. (2. 12) concludes the postulation o£ the edge un-

knowns in Problem A since it will yield, after differentiation of 

the first two expressions therein coupled with the use of ( 1. 15 ), the 

apposite terms for substitution into the boundednes s condition, (1. 24 ). 

On performing this substitution, and the subsequent simple 

integrations, one procures 

00 

U ( s . , p )u (p) + \ [A ( s . , p )a (p) + B ( s . , p) b (p) ] = QA ( s . , p), 
J L n J n nJ n J 

(2. 13) 

n=1, 3, 5, .•• 

where 
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k2 
U(s.,p) = _i(k2 -2)Y(s .,p), 

J Q!~ J 

A (s.,p) 
n J 

J 

n-1 
(-1)_2_ 

B (s ., p) = 
n J r; a J 

~~)+~j 

= Q (s ... p) + dA(s ., p )., 
c J J 

crA c 
(k

2 
-2) Q (s ... p) = p 

-- Y(s., p), 
c J 4J.LD!~ c 2 k 2 -1 J 

J s 

-cr k 2 

(k2 2 )G k2a~h J 
dA(sj'p) 

As = --- . s. Y(s ., p) - J , 
2J.Lpcr~~~ k 2 J J 2 (k2 -1 ) 

J J 

(2. 14) 

(2. 15) 

(2. 16) 

(2. 1 7) 

and in which Y(s., p) is as in (1. 23). Equations (2. 13) through (2. 17) 
J 

comprise an infinite set of algebraic equations for u(p) and the 

Fourier coefficients an (p ), bn (p )., p being small. To solve (2. 13) for 

p -+ 0 we first consider the s. (p) complying with (I. 21) for small p. 
J 

Asymptotics on R(s, p) of (1. 13) give 

R(s, p) = -is 2 k 2 (k2 

-
1 

)<sin2sh+2sh)+ Q (p4
), 

s k2 
(2. 18) 

as p -+ 0. Hence the s . (p) for p '_. 0 are selected from the complex 
J . . 

zeros of 
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r(s) = sin2sh + 2sh = 0, (2. 19) 

as those roots having a positive real part. In fact, only those roots 

in the first quadrant are required in the present analysis because the 

elements in (2. 13) are symmetric about the real s-axis, that is, 

* * * * * * * u ( s ., p) = u ( s ., p) I A ( s . I p) = A ( s . I p) I B ( s . , p) = B ( s . , p) = QA( s . , p) 
J J nJ n J n J n J J . * = QA(sj, p),. the *referring to the complex conjugate of the quantity 

beneath it. Robbins and Smith in [5] list the first 10 (in order of 

increasing real part) non-zero values of 2sh satisfying (2. 19) in this 

quadrant. They also cite asymptotic expressions for large roots. 

The behaviour of the slopes of s. (p} as p - 0 can be determined . J 

by recognizing that along the branches of R(s. (p), p) = 0, 
J 

oR aR · 
dR(s.(p), p) = 1r (s.(p}, p)ds.(p) + n- (s.(p), p)dp = 0, 

J uS J J up J 

and therefore, from (2. 18 ), (2. 19 ), and an application of 11Hopital 1s 

rule, 

P- o J = P- o . aK J 
lim { ds.(p)} lim. ~- ~R. (s.(p), p) ·1 
p > 0 p p > 0 1r ( s . (p), p) 

us J 

lim I -2s. (p}r(s. (p)) 
= P- 0 

p > 0 p [ 2 r ( s . (p)) + s . (p )dd r ( s . (p)) J 
J J s J I 

lim 
= P- 0 

p> 0 

d ds. (p) 
-2 [ r ( s . (p)) + s . (p) d r ( s . (p))] --+dJ_ 

J J s J p 

2r(s.(p))+s.(p)ddr (s.(p))+p [3 ddr (s.(p))+s.(p)~(s.(p))] 
J J s J s J J ds J 
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whence, since lim r(s. (p)) = 0 and from (2. 19), lim ~r (s . (p)) -10, 
p-+0 J p-+ 0 s J 
p> 0 p > 0 

lim {ds.(p)} 
p-+0 ] = 
p > 0 dp 

lim { d s j (p) } 
-2 p ... 0 d , 

p> 0 p 

i.e. 

lim {ds.(p)} 
p ... 0 d] . = 0. 
p> 0 p 

It follows, as remarked i:ri [ 1 ], that the zeros of r (s) in (2. 1 9) are a 

good approximation to the s. (p) for a range of p small but greater 
J 

than zero. 

Continuing with our solution of (2. 13) for small p, we expand 

a., (3. and Y(s ., p) as p ... . 0 to arrive at 
J J J 

k~ 

+ 0<P4lJ a.(s., p) =is.~ d a. = 
J J J J 2s.2 

J 
k2 

+ 0P4 l], (3. (3.(9., p) =is.~ s 
= 

J J J J 2.s~ 
(2. 20) 

J 

Y(s ., p) = -tans .h + Qp2 ) • 
J J 

(2. 14), (2.16 ), (2. 17) and (2. 20) then imply 
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B (s.,p) = 
n J 

(2. 21) 

Q (s ., p) = 
c J 

as p -. 0, D (s.) = 
. n J 

a A c k2 2 
-~_..p_ ( ---)tans.h + Q (p2 ), 

4JJ s ~ c 2 k 2 -1 J . 
J s 

Now, on the basis of the premise that our elementary theory 

will in fact describe the nature of the dominant time variation in the 

very long-time, we ·require ord {u(p)} ~ ord [.!.2 }, ord{a (p)}~ord{ .!.}, 
p n p 

and ord [b (p)} ~ ord f.!. }, for p -. 0. Moreover-~ for these terms to 
n p ~ 

have significant contributions to the long-time solution we need the 

orders of all three quantities to be greater than one. In toto then, we 

seek u(p), a (p), b (p) such that 
n n 

o rd f 1 } < o rd { u (p) } ~ o rd { .!_
2 

} , 
p 

I o rd [an (p ) } I . 1 
ord{1}< ord(bn(p)} ~ord{p}, 

as p -. 0. 

} (2. 22) 
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Considering the leading terms of the real and imaginary 

parts of the quantities in (2. 21) one sees that 

} (Z. 23) 

whilst 

(2. 24) 

for p ~ 0. Thus, and as a consequence of (2. 22), the integrated 

boundednes s condition (2. 13 ), on using (2. 15 ), (2. 21 ), reduces to 

oo n-1 2 -- n s. · 
\ ( -1 ) 

2 
_J_ 2 c~ a (p) + s . b (p) l = 0' L D (s.) eon n J n ....J 

n=l, 3, 5, .•. n J 

(2. 25) 

for all s. satisfying (1. 21 ). 
J 

Concerning (2. 25), we first remark that the boundedness 

condition has now been freed of u(p). Hence u(p) endures as an un-

known term at this juncture. t This indeterminancy may reasonably 

be attributed to the near-field, long-time domain 'asymptotically 

approaching' a second boundary-value problem in elastostatics 

t u(p)ls determination awaits a later application of the boundedness 
condition, in its original form (1.4), during the course of the inver­
sion process. 
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(stresses prescribed), since this type of static problem admits an 

arbitrary, infinitesimal, rigid displacement field. t 
1 In this connection observe also that, as u(p) can be ord { -

2
} 

p 
as p - 0, we are in essence allowing the possibility of some other 

plate wave speed, say. 

not yet shown this. 

I 
Though we expect c p = cp, 

As a final remark on (2. 25 ), we note the solution 

a (p) = b (p) = 0, 
n n 

n = 1, 3, 5, .••• :f: 

we have 

(2. 26) 

(2. 26) insists that, for the present small p approximation, the only . 

supplementary terms to the edge unknown estimates derived from 

the elementary theory - be such terms decreasing in t, non-decreasing 

in t, or increasing in t at no faster than a linear rate - are confined 

to u(p). 

From (2. 12), (2. 26), we have, for the six edge unknowns, 

t Cf. the elastodynamic problem of the second type which has no such 
arbitrary displacement field. 

:f: It might appear, since an(p), bn(P) of (2. 26) fulfill the order re­
quirement of (2. 10) trivially, that the care in the selection of the 
series representations was unwarranted. Certainly, in the present 
instance this is so; however, in Problem B of Section 3 our efforts 
are vindicated. 
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OAC k2 
u(O, y, p) = p (--) + u(p), 

4~p2 k 2 -1 

(2. 2 7) 

au k 2 a"V -o A k 2 

ax(o, y, p) = -(--) ay (O, y, p) = -- (- ) .. 
k 2 -2 4~p k 2 -1 

ou ov 
ay ( o, Y, P) = ax { o, Y, P) = o, 

0 ~ y ~h, p small. 

We now undertake the inversion process for Problem A. 

Introducing (2. 27) into (1. 18) by means of (1. 15), carrying out the 

elementary integrations encountered thereupon then substituting the 

resulting forms into (1. 17), yields, on using (1. 13), {1. 19), (1. 20) 

and simplifying, 

:::::..: 
v(s, y, p) = 
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(2. 28) holds for small p. In tackling its inversion we treat three 

ranges of s separately: 

s -p 

s = p 

and 

00 as p- 0; 

c as p- 0, c a constant ( ~ 0); 

s 
- 0 as p- 0. p 

The first range corresponds to the near-fi~ld. For p -+ 0, s 

relatively large, R(s, p), a and (3 are given by (2. 18 ), (2. 20). Using 

(2. 20) in (1. 20) one sees that 

} (2. 29) 

as p -o. Thus, under thi~ limiting process, (2. 28) becomes 

u(s, y, p) = 0
A (~)[~ _.!.]+u(p)+Q(1) 

4~ps k:a -1 p s · s ' 

· 0 AY k 2 

~( s' Y' P) = 4~ps ( k 2 -1 > + Q(l ) ' 

as p -0, whence, on recalling the order conditions for u(p) (see (2. 22)), 

0 A k 2 

u(x, y, t) - -r- (--) [c t-x] + u t": 
~~ k 2 -1 p c 

} (2. 30) 
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for 0 < x ~X , 0 ~ y ~ h, and t - oo, where u is a constant having the 
n c 

dimensions of length; y ~ 1; and X demarks the extent of the near -field. 
. n 

In view of the forms found for the edge unknowns (see (2. 27)), 

the region of validity for (2. 30) may be expanded to include x = 0. 

Due to the uniformity of the asymptotics on p in s and y, for this case, 

(2. 30) may be differentiated with respect to x and y to produce the 

near -field, long -time strains. 

Now for s and p - 0 concurrently, 

R(s, p) = ~4(k2 - 1)(3hkJ~ 2 
- ~ J + Q(p

7 
). 

p 

(2. 31) 

(2. 31) shows that the zeros of R(s, p) agree asymptotically with the 

low-frequency, long-wave approximation recorded earlier in (2. 4). 

(1. 20), for s and p - 0 simultaneously, reduces to 

¢u(s, y, p) = k: + Q(p4), 

(2. 32) 

Accordingly, (2. 28), . subject to this limiting procedure, gives 
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~(s, y, p) = 

(2. 3 3) 

~ 

v(s, y, p) = 

Both u(p) components in the above have poles in the right-half, 

s -plane at s = p/c • These poles are not admissible in vie\lt/ of the 
. p 

condition at infinity (1. 4) (recall the argument to this effect in Section 

1). We therefore set u(p) = 0; which in turn implies u = 0 in (2. 30). c 

Inversion of the surviving terms in (2. 33) then produces 

a A k2 
u(x, y, t),..., - ( --) [c t-x] U(c t-x), 

4J.L k 2 -1 p p 
. } (2. 34) 

a AY k2 -2 . 
v(x, y, t),..., - ( --) U(c t-x), 

4J.L k 2 -1 p 

as t ... oo. Comparison of (2. 34) with the reduced version of (2. 30) 

(uc=O>. demonstrates that the former applies on 0 ~ x, 0 ~ y ~ h, for 

t large. 

The analogous asympto1ics for sU(s, y, p) and ~; (s, y, p), with 

u(p) set equal to zero, furnish 
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su(s, y, p) (J A c s E k2 J 
= p _E.. ( k2T) + Q(p2) , 

} 41Jp2 (s + ) -c . 
(2. 3 5) p 

av-
(J A Ek: -2) + Q!p2)l ay (s, y, p) = 

4~p(s +...E.) k -1 
cp 

whence, 

au -oA k2 
ax (x, y, t) - 4~ ( k2 -1 ) U {cpt-x), 

} (2. 36) 

av 0A k 2 -2 U(c t-x), ay (x, y, t) 4J.L ( k2 -1 ) p 

as t - oo, for 0 ~ x, 0 ~ y ~ h; extension up to and including x=O again 

being legitimate on account of the matching with corresponding 

near-field values. (2. 36) is our first far-field approximation fo.r 

Problem A and exhibits waves that are non-decaying in space and 

time. Interesting is the fact that (2. 34 ), (2. 36) could have been 

obtained from the elementary theory, though tJlis is not what we 

have done in the present treatment. On the contrary, we have shown 

that the elementary solution, and the elementary solution alone, is 

obtained from the first long -time approximation of the exact theory 

for Problem A. 

To facilitate the illustration of results found here and subs~e--

quently, we introduce the notation 
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c t 
,.. X 
X = h, f = ___£__ h , 

u = u(x, y, t) = u(x, y, t)/h, (2. 3 7) 

/ 

v = v(x, y, t) = v(x, y, t) /h .. 

With this nomenclature, the dimensionless equivalent of (2. 3 6) is 

- u --(-.-- cr --U1:-x, au;~ k
2 

) av-;,.. (~ ,.. ) 
ax A k2-2 ay A 

(2.38) 

as f - oo, for 0 ~ x, 0 ~ y ~ 1. Here 

(2. 3 9) 

(2. 38) attests the long -time Poisson's ratio aoup Zing of the 

longitudinal and thiakness strains. 

A higher order approximation than (2. 36 ), based on a second 

approximation to R(s, p) rather than the first in (2. 31 ), is available 

for s and p tending to zero together. t This approximation, which 

gives more of the wave features than (2. 36), closely represents the 

physical nature of a longitudinal pulse in the far -field of an end -loaded 

rod or plate. Accordingly such an approximation will be derived here. 

t The derivation of this approximation is now well-known; see [ 1] 
for a selection of pertinent references. 
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The residues associated with the inner integral of (1. 8) at 

in view of (2. 35 ), are given by 

Residue 

at s = 
su(s, y, p) 

av= 
ay(s,y,p) 

k' = 1 (ka -2 )a t 
b k2 , 

Consequently, (1. 8), (2. 39) imply 

au 
-o-A I plt-~ 11- lfh2p2]} 

e ~ CpL Cp2 ~ 
ax (x, y, t) - 2m p , 

Br 
p 

av ) ( k 2 -2 au 
ay (x, y,t -- k2') ax (x, y, t), 

1 

as x, t-oo. The second of these reiterates the Poisson's ratio 

(2. 40) 

coupling of (2. 38) for the present approximation. 

of the integrand in (2. 40) is a simple pole at p = 0. 

The sole singularity 

Therefore, Br 
p 

may be chosen along the imaginary p-axis provided we indent the 
~ 

contour near p = 0. Collapsing this indentation - thereby collecting 

the residue contribution at the origin - setting p = iw and combining 

the resulting integrals from -oo to 0 and from 0 to oo, leads to 

t Cf. (2.4) 
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00 

a I J (w [ k' h
2 (jl J ) dw I a~ (x, y, t) I(; A,..., :rr sin c X I + 2 - wt - - z-' 

O p Cp W 

for x, t - oo. Based on stationary phase arguments and certain 

transformations -see for instance, Skalak, [6] ... this result may 

be reduced to, on introducing our dimensionless variables, 

00 

for x, t - oo. 
f-x 

Here 11 = --
3(31/.x 

Ai(-T)) = J cos (w 3 -Tlw)dw, 

0 

the Airy function. av- follows from (2. 40). 
ay 

(2. 4I) 

This higher order approximation was first found by Skalak, 

[ 6], in a mixed, edge condition. problem. In the closely related 

elastic rod problem it has been shown to be in close agreement with 

experimental results - see discussion in [ I]. 

Note that our second approximation is -also non-decaying in 

space and time, but, unlike our first approximation, exhibits dis-

persion. To compare the two approximations, Fig. 3 shows a plot 

of them both. 

To conclude the inversion of the small p, formal solution 

for Problem A, we consider the third s range, namely; p small, 

s-o. For this limiting procedure (2. 28), with u(p) = 0, gives 
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u(s, y, p) = Q(I ), v( S 1 y 1 p) = Q(l ) 1 

as s -0 and hence we have no contributions to the displacements 

for t large, x - oo. Similarly it may be shown that the strains are 

zero as x - oo and thus our solution is in accord with the conditions 

at infinity, (1. 4 ). 
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3. PROBLEM B: LINE-LOAD 

We now parallel the procedures adopted in Section 2 to procure 

long -time information for a line -load impact on the end of our wave-

guide (Fig. 4 ). Thus aB is a positive quantity with the dimensions of 

force per unit length; o(y) is the symmetric delta, a generalized 

function defined by 

where 

o(y) = lim o(y;~), 
~ ..... 0 

1 
o(y;~) = U [U(y+~) - U(y-~)], 

with ~ > 0. 

iT 

h 
y)U(t) ~ a =0 -- _XY. -

h 

I 
) 

) 

I 
J 

I 

Fig. 4. Edge conditions for Problem B 

(3. 1) 

(3. 2) 

.. 
X 
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Operations on o(y) will be defined, in general, as the result 

of performing the equivalent operation on o (y; ~) then taking the limit 

~ - 0. In view of this, the edge conditions for Problem B - which 

may be expressed through (1. 2) by 

- rau ov J = cr xy ( 0, y' p) = ~Loy ( 0' y I p) + ox ( 0, y, p) 0, 

} (3. 3) 

for 0 ~ y < h, p > 0 - can be regarded as the conditions satisfied by 

the problem arrived at as the limit, ~- 0, of the sequence of normal 

loadings, crx(O, y, t) = -crBo(y;~)U(t), acting on the edge of our plate. 

As in Section 2, we must now postulate forms for the edge 

unknowns in order to 1open up' the boundedness condition (1. 24 ). 

In undertaking this postulation, the only differences encountered, 

between . the pattern established for Problem A and that required for 

Problem B, will be occasioned by the singular n-ature of the latter 

problem. Hence, to facilitate the appraisal of such singular nature, 

we resolve Problem B, for the long-time, into three problems (Fig. 5): 

Problem B1 ••. the line-load on the elastostatic half--space, some-

times referred to as the Flamant problem. Problem B1 will provide 

the long-time singu Zar parts of the edge unknowns. 

Problem B2 •.. the residual associated elastostatic problem. The 

stresses applied to the plate-faces here, cr ', ± cr 1 (d > 0, d h > 0), 
y xy y X . 

are of the same magnitude as those acting , on the corresponding 
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sections of the half-space in Problem Bl, but opposite in sign. 

Problem B2 is made self-equilibrating by the introduction of a uniform 
0 . 

normal stress, ~, acting on the plate edge. The attendant edge 

values for this problem will contribute to the regular parts of the 

edge unknowns. 

Problem B3 ... the uniform normal load applied to our waveguide, 

recognizable as Problem A with a modified stress input. Problem 

B3 will furnish the dominant, long -time, time dependence of the edge 

quantities, thereby completing the selection of the representations 

for the regular parts of the edge unknowns. 

We now consider each problem in this decomposition individu-

ally; first, the singular problem. 

It is apparent, from the edge unknown involvement in the 

boundedness condition, that to perform the requisite integrations in 

(1. 24) we will need to determine the values at the origin of us (0, y, p), 

-s aus a;s aus avs 
v (0, y, p), ay (0, y, p), ay (0, y, p), ax (0, y, p), ay (0, y, p) -the super-

script s here denoting the respective quantity's singular source. In 

order to obtain this additional information on the well-known Flamant 

problem, we solve Problem Bl as the limit, fj- 0, of the sequence 

of kernel problems indicated by o(y, fj) of (3. 2). 

A kernel problem 'Will thus constitute a second boundary-value 

problem in elastostatics with: 

o (0, y; fj) = - oB o (y; fj), o (0, y; fj) = 0, for -oo < y < oo; 
X xy 

and o (x, y;fj) = o(l), o (x,y; ~) = o(l), o (x, y;~) = o(l) as r-. oo,r=Vx2+y2
• 

x y xy 

This problem is tractable to Fourier transformation on y as a means 



41 

of deriving its solution. t In what follows, we confine our attention 

to the results· of such a derivatfon. 

Consider the displacement field, for the half-space, 

u(x, y; 6.) = aB {xrarctan( ~) - arctan(.Y.±Q. >] 
4~.L1T(k2 -1) L X X 

(3. 4) 

aB { ~ y+6. v(x, y;6.) = (y-6.)arctan( ) - (y+6.)arctan( ) 
4{¥.L1T(k2 -1) X X 

wherein the arctan ranges from - rr/2 to rr/2. :f: Differentiating (3. 4) 

and substituting the terms found thereon in the elastostatic analogue 

of (1. 2), gives 

-aB { ( 26.x ) a (x, y; 6.) = 'l:i\Tr arctan 2 2 2 + 
X uTr X +y -~ 

26.x(x2-y2+~2) } , 

[x2+(y+6)2J [x2 +(y-~ fa] 

ay(x, .y;6.) = -aB {arctan( 26.x ) - 26.x(x2-y2+6.2) . } , 
'1:Flrr x2 +y2-~2 [x2 +(y+t)2] [x2 +(y-~)2] 

(3. 5) 

a xy(x, y; t) = 
-2aBx2 y 

t See Sneddon, [ 7], Art. 45. 

:f: Throughout our treatment of Problem B1, results will apply at 
discontinuous and singular points only in some 'integrable sense'. 
Nevertheless, since providing values for the integration of (1. 24) 
is the ultimate purpose of the treatment, existence in such a sense 
suffices. 
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Here the arctan varies between 0 and 1T'. Clearly the stresses in 

(3. 5) conform with our boundary and order conditions for a kernel 

problem. A second differentiation of (3. 4) and substitution into the 

time-independent counterpart of (1. 1) reveals that u(x, y;~, v(x, y;~) 

satisfy the displacement equations ·of equilibrium. Consequently 

(3. 4 ), (3. 5) comprise the appropriate values for a kernel problem. 

In particular, for x = 0, (3. 4) yields 

a k 2 

u(O,y;~) = B · [(y-~)2?z,y-~~-(y+~)2?t(y+~tJ, 
4f¥.L1T' (k2 -1 ) 

v(O, y; ~) = 
(3. 6) 

au ov -a B 
6(y;~), ox (O, y; ~) = ay (O, y; ~) = 

21J (k2 -1) 

au ov 
a k 2 

ay (O, y; ~) = -ox (O, y;~) = . B 0nlctl 
4~1T'(k2-l) y+~ } 

in which 

sgn(y;t.) = (I - f)U(y-~) + (1 + f)U(y+~) - I. (3. 7) 

Proceeding to the limit~_. 0 in (3. 4), (3. 5) produces displace-

ments and stresses in agreement with the usual forms, valid away 

from the origin, for the Flamant problem. The same limiting process 

in (3. 6) implies that we take, as forms for the singular components 

of the edge unknowns for Problem B: 
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-s 
u (0, y, p) = 

- (j k2 
___ B __ Rln ( ~ ), 

2~.nrp (k2 
- I) 

au s av s 
oy (O, y, p) = - ax (O, y, p) = 

for 0 < y ~ h, p > 0; 

-s 
v (O,y,p) = 

-s au ox (O, y, p) = 

-a 
__ B __ sgn(y), 

41-£p (k2 
- I ) 

av: ay (O, y, p) = 
-a 

___ B_ 6(y) 

21-£p(k2 
- I) 

} (3. 8) 

} (3. 9) 

on 0 ~ y ~has integrable quantities, t for p > 0; where sgn(y) = 2U(~-I, 
is the signum function, with sgn(O) defined to be zero. Here u s(O, y, p) 

is determined to within an arbitrary, infinitesimal, rigid body dis-

placement; such indefiniteness is consistent with an elastostatic, 

second boundary-value problem and will be incorporated in a u(p) 

term in the same manner as in Section 2. 

The forms in (3. 8), (3. 9) fulfill the edge conditions (3. 3 ). 

Indeed, the use of (3. 3) in conjunction with the standard results for 

the Flamant problem and the definition of the derivative of the signum 

function by 

d 
dy {sgn(y)} = lim : {sgn(y; 6}, 

6 ... 0 y 

t As intimated earlier, the integral from zero to some upper limit of 
an integrand containing 6(y) will be defined to be equal to the limit, 
6 ... 0, of the equivalent integral entailing 6(y;6). 
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sgn(y;~) as in (3. 7); viz. d~ {sgn(y)} = 2o(y); will furnish (3. 8), (3.9). 

One should bear in mind that currently we are merely postu-

lating the forms for the singular parts of the edge unknowns. Accord-

ingly (3. 8), (3. 9) are only reasonable guesses as to what these terms 

might be, based on the thesis that the long-time singular nature, in 

the near-field, of a problem involving, exclusively, outward propa-

gating disturbances, is the same as the singular behaviour of the 

corresponding elastostatic problem. Should it transpire that this is 

not the case for Problem B, the convergence of the Fourier series 

representations that we subsequently select will, at best, be attained 

in a generalized sense. 

For use in the next problem we set y = h in the limiting values 

(~ - 0) of cry (x, y; ~), cr (x, y; ~) of (3. 5) to obtain xy 

cr (x, h) 
2crB (x/h) 

= - 1l"h y [ 1 + (x/h)2 
] 

2 

cr (x, h) 
2crB (x/h)2 

= - 1Th xy [ 1 + (x/h)2 ]a 

X~ 0. 

} (3~ 10) 

In Problem B2 we continue our theme that the analysis of cor-

responding elastostatic problems will provide long ~time, near -field 

information; putting cr ' = -cr (x, h), cr 1 = -cr (x, h), with cr (x, h), 
y y xy xy y 

cr (x, h) as in (3. 10 ). Integ ration of these surface stresses, a' , a' , xy . y xy 

then shows this problem to be self-equilibrated. Hence it is amenable 

to a finite-element approach. Such an approach is outlined in Appendix 

1. 
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In choosing edge forms for Problem B2 we observe the 

similarity of the prescribed stresses at x = 0 with those in Problem A, 

suggesting as suitable representations of the edge unknowns for the 

present problem the expressions in (2. 12) with cr A therein replaced 
-crB 

by 2h. However, Problem B2 has, in addition to edge stresses, 

the equilibrating plate-face stresses, d, o' . This implies that we 
y xy 

modify these forms by omitting the c /p2 term. 
p 

Now turning to Problem B3, we note its complete equivalence 
OB 

to Problem A subject to 2h being exchanged for o A. It follows that 

the appropriate forms for Problem B3 are contained in (2. 2 7) on 

oB 
swapping o A there for 2h . 

Combining the edge representations for these last two problems 

will cancel the elements in v(O, y, p), ~u (0, y, p) which give rise to 
~ X 

± 2h, and thus produce the compact forms 

00 

OBC k2 I __ P_ (-- ) + u(p) + an(p)cos nz;r, 
S"'h pa k2 -1 

n=l, 3, 5, ••• 
00 

-r 
v (0, y, p) = I bn(p)sin n~, 

-r au 
8x(O,y,p) 

n=l, 3, 5, •.. 

00 

= - ( k 2 
-2 ) \ ' 

k2 L 
n1rb (p) 

2~ cosW, 

n=l, 3, 5, .•. 

00 

av-r \ 
ax ( 0, Y, P) = L, 

n=l, 3, 5, •.• 

(3. 11) 

for 0 ~ y ~h, p > 0. Here, the r atop quantities signifies their regular 

nature (which is assumed at this juncture); the u(p) is the amalgamation 



46 

of the two 1u(p)' in (2. 12), (2. 27). 

Contingent upon the validity of the thesis that the forms in 

(3. 8), (3. 9) will describe all the singular contributions to the edge 

unknowns, the terms in (3.11) will, in fact, be regular and, conse-

quently, the a (p), b (p) there will be subject to the large n, order 
n n 

condition, (2. 1 0). t Further, such regularity then guarantees that 

term-by-term differentiation of the displacement representations in 

(3. 11) is legitimate. Thus, adjoining (3. 8 ), (3. 9) to (3. 11) and the 
au r a-r 

terms, oy (0, y, p), a; (0, y, p) obtained therefrom, we have 

00 

-(O ) = 0
B ( k

2 
)r_1 10n(Y.)J ( ) \ ( ) nny u , y, p 21Jp ka -1 l4hp - 1T h + u p + L.J an p cos 2h , 

n=1, 3, 5, .•. 

v(o, y, P> = 
00 -a 

B 
2 

sgn(y) + \ bn(p)sin ~";{', 
41Jp(k -1) L 

n=1, 3, 5, ••• 

ali a~ 
ay (o, h, p) = - ax (O, y, p) = 

ou -aB k2 -2) ~ mrbn (p) . ZhY 
ox(O, y, p) = 2J.tp(ka -1) o(y) - ( 7 L 2li cos , 

n=1, 3, 5, ••• 

ov (0 ) - -aB ~( ) + Loo n1Tbn (p) tr 
- Y P - U Y 2h COS 1 
ay ' ' 21Jp(k2 -I) -

n=l, 3, 5, ••• 

(3. 12) 

for 0 < y ~h, p > 0 - with extension to include y = 0 in an integrable 

sense whenever this is as ked for by the boundednes s condition, (1. 2~ ). 

(3. 12) ends our postulation of the edge unknowns for Problem B. 

t To see this, recall the argument on quarter-range Fourier series 
in Section 2. 
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We note that: the u(p), a (p), b (p) terms in (3. 12) are the 
1 n n 

a 
same as in (2. 12); the cp terms would be the same if 2~ in (3. 12) 

was replaced by aA. Hence, on using the integral definitions 

Shi(y) = 
y 

J si~y' dy' (the sinh integral), 

0 y 

h h 

I o(y')cosh[~ }y'dy' =lim J o(y';~)cosh[~ }y'dy' c=t .. by (3. 2) ) .. 
0 . /j-+O 0 

(1. 24) and (3. 12) together yield 

00 

U(s.,p)u(p) +\[A (s.,p)a (p) + B (s.,p)b (p)] = QB(s.,p), 
J L n J n n J n J 

n=1, 3, 5, ••• 

where 

= Q' (s ., p) + Q 1B(s ., p), 
c J J 

Q'(s.,p) = 
c J 

aBc p 

8~-tha~ c 2 

J s 

(3. 13) 

(3.14) 

and Y(s., p), U(s., p), A (s., p), B (s., p) are given in (1. 23), (2. 14). 
J J n J nJ . 



48 

We must next solve this infinite system of linear . equations in 

the infinite set of unknowns comprised of u(p), a (p), b (p); for small n n 

p. U(s., p), A (s, p), B (s., p), for p small, are as in (2. 21). 
J n j n J 

(2.16), (2. 21), (3.14) imply 

(3. 15) 

Shi(a.b), Shi(J3.h), for small p, may be found by using (2. 20) and the 
J J 

series expansions for Shi(y), t sinhy, and are given by 

Shi{:!Y} ={Si(s .y)- - 1- {:~
2

} sins.y + QCp4)1, as p- o, 
. ~ J Y L J 2s ~ s J ~ 

. J 

(3. 16) 

y • I ) I Sln V d I 2 6 in which Si(y = 1 y, the sine integral. (2. 0), (3. 1 ) then 

imply 
0 y 

crB 
h [[1T-2Si(s.h)][1+s.htans.h] 

21-LTrpcos s j J J J 
(3.17) 

- 2sins.h +Qp2
)} 

j 

as p- 0. 

Now, on the basis of the premise that Problem B3 will in fact 

describe the nature of the dominant time variation 1n the very long -time, 

we require u(p), a (p), b (p) to comply with the same small p order 
n n 

condition as we had in Problem A, to wit (2. 22). Considering the 

leading terms of the real and imaginary parts of the quantities in 

(2. 21 ), (3. 15 ), (3. 1 7), one sees that (2. 23) holds with Q (s ., p) therein 
c J 

t See [ 8], equation (5. 2. 1 7). 
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c J 
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Thus, as a consequence of these order stipulations, the integrated 

boundedness condition (3. 13), on using {2. 21), (3. 14), (3. 15), (3. 17), 

reduces to 

oo n-1 "' 2 
~ 4n°1T Z. I < -1 > r n 1Ta + z . s 1 = 

_ [z~-n21r2]2 n J n 
n-1, 3, 5, • . . J 

(3. 18) 
Z• Z. Z. z. Z. 

{[ 1T-2Si( f)] [ 1 + -f tan zL] - 2sin -f} I cos -f, 

wherein all quantities have been rendered dimensionless by the 

introduction of 

,. pa (P) ,. pbn(p) . n 
b 2s .h, a = = z. = n 

&Bh 
n ,. 

J J crBh 
(3. 19) 

where 

,. crB k2 
crB = 

2~Lh1T ( k 2 -1 ). (3. 20) 

(3. 18) holds for all z. satisfying sin z. + z. = 0. Accordingly we 
J J J 

employ the method of reduation whereby: 

one takes the first N non-zero roots, z ., (in order of increasing real 
J 

part), with Re z. > 0, lm z. > 0, t and solves the 2Nx2N finite system, 
J J 

t This set of roots suffices since (3. 18) holds for z~ if it holds for z .. 
J . J 
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that results on decomposing (3. 18) into real and imaginary parts, for 

h A A " (' (' 

al , a3 , .•. a2N -1, bl , o3 , ... , o2N -1 ; 

then increases the number of roots taken to N+l, solving the enlarged 

finite set of linear equations for the first N+l i s and b s; 
n n 

and continues enlarging the system until the a , b estimates have 
n n 

attained s tabi Zi ty, i.e. the differences in the an, bn estimates from 

successive finite matrices is negligible. 

The z. and Si(z. /2) needed to solve these · finite systems are 
J J 

tabulated in Appendix 2 (for the first 24 zeros). The method used to 

compute z. is the same as in [5]; the method used to compute Si(z./2) 
J . J 

is outlined in Appendix 2. 

The results for the first ten ~ , b , found using 24 roots, are 
n n 

displayed in Table 1. t 

Table 1. Fourier coefficient estimates 

,. 
b n a n n 

1 -0. 1129 0.2891 

3 -0.0242 o. 00-36 

5 0.0077 -0.0026 

7 -0.0030 0.0011 

9 0.0014 -0.0005 

11 -0.0007 0.0003 

13 0.0004 -0.0001 

15 -0.0003 0.0001 

17 0.0002 -0.0001 

19 -0.0001 0.0000 

t These results are independent of elastic constants. This follows 
from their non-dimensioning in (3.19), (3. 20) and th.e form of (3. 18). 
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We define /1N {an}., ~ [bn}, as measures of stability, by 

~ N {an } = I an {N) - an {N-2) L 
where a (N) are the a c alculated using N roots, z., with a similar 

n n J 

definition for /J.N (b }. For the values in Table 1, it is found that 
n 

!J.24 {a }< 3xlo-6, Ll24 (b } < 10-
6

, with /124 [a }uniformly (inn) 
n n n 

less than /J.
22

{an}, L\24
{bn} uniformly l ess than ~22 [bn}. Hence it 

would appear that our coefficient estimates are sufficiently stable, 

viz. the values listed are probably correct to the 4 decimal places 

quoted. 

The numerical decay of the a , b estimates is faster than n n 

1 /n2 for n ~ 5, in agreement with our large n order condition, (2. 1 0). 

Indeed, for n ~ 7, these values decrease faster than 1 /n3
• Such 

numerical convergence supports our thesis that the long-time, 

near-field, singular nature of Problem B is the same as the singular 

behaviour of the corresponding elastostatic problem. 
A 

Using a , b of Table 1, the edge displacements as so cia ted 
n n 

with Problem B2 can be evaluated, thus enabling comparison with 

the finite-element analysis of this problem (Appendix 1 ). The dis­

placement sets so computed agree to within 1% of the finite-element 

values, for all y. t Appendix 1 contains the relevant plots for this 

comparison. 

Turning to our forms for the edge unknowns for Problem B, 

(3. 12), and carrying out the simple inversion on p, allows us to define 

t Equivalent to within 0. 1% of u, v in (3. 21 ). 
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the static edge displacements for Problem B, u and v, by 

" 

u = [u(O, y, t) - aB :cp t ]jo-B h 
00 

= - 0n y + u c + I a.n cos n 2v , 
n=l, 3, 5 ••• 

v = v(O, y, t)/oB h 

00 

= I 
,.. 

,.. nzy bn sin , 

n=l, 3, 5, .•• 

(3. 21) 

for 0 < y ~ 1. Here the dimensionless terms in (2. 37), (3. 19), (3. 20) 

have been introduced, and we have anticipated a result yet to be 

established, namely 

u(p) = 
crBhuc 

p 

(3. 22) will be a by-.product of the inversion process (cf. u(p) for 

(3. 22) 

Problem A). Note that u, v of (3. 21) are independent of time - hence 

the name static edge displacements. 

The attendant displacement gradients, u and v , arising from 
y y 

(2. 37), (3. 12), (3. 19), (3. 20), are 

00 ,.. ,.. 

- [ ~ I 
n'TT'a mry J 

+ n 
sin - 2 - , 

} 
u = ---z-y y 

n=l, 3, 5, ••• 
00 

n'TT'b 
(3. 2 3} 

I n 
n'TT'y 

v = z- cos z-' y 
n=1, 3, 5, ••• 
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for 0 < y ~ 1. v has a symmetric delta at y = 0. 
y 

The numbers in 

Table 1 afford a means of calculating u, v, u , v , which are then 
y y 

plotted for k 2 = 7/2 (Fig. 6 ). In Fig. 6 we include the value of 

u , 0. 935, which is actually determined in the course of the inversion 
c 

process. 

In proceeding to the formal solution of Problem B, for small 

p, one substitutes (3. 12) into (1. 18) by means of (1. 15} and performs 

the integrations encountered thereupon, using, in particular, 

y 

Cinh(y) = J cos~y'-l dy' (the cosh integral). 

0 y 

Substitution of the forms that eventuate into ( 1. 1 7), and simplifying 

using (1.13}, (1.19), (1. 20), yields the counterpart of (2. 28} in 

Section 2. The algebra here is straightforward but tedious, and the 

forms so produced, lengthy. For the sake of brevity, we suppress 

these forms here. 

We next outline the inversion process, focusing on the results 

found, and closely following the methods in Section 2. 

For the nec;tr-field inversion, we require; in addition to 

(2. 18}, (2. 20), (2. 29); (3. 16) and the companion relation for the cosh 

integral (derived similarly) 

as p - 0, wherein Cin(y) 

0 

I 

!-cosy dy'. These expressions coupled 
I 

y 
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Fig. 6. Static edge displacements and derivatives thereof for Problem B 
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with the pertinent asymptotic forms from [8], Chapter 5, allow us to 

recover the edge values on taking the limit, s-+ oo; to wit (3. 12) on 

inversion with respect to p. 

For s, p- 0, concurrently, (2. 31); (2. 32), the series expan-

sions of Shi(y), Cinh(y), and the small p formal solution of Problem B, 

imply 

~(s, y, p) = 

+ 
[ 

k2 oo n -1 2 A l 
s u (p) - a B { 1 + \ ( -1 )2 an } , 

2 2 L, TI1T 

( 2_ p-) 2JJ1rp(k - 1 ) -13 5 s 2 n- , , , ... 
c 

p 
(3. 24) 

~(s, y, p) = 

sy (k2-2) su(p)- crB {I+\'(-1T an} . 
[ 

k2 oo n -1 2 A l 
2 k 2 

2 2 L n1T 

( 
2- p- ) ,U1Tc (k -1) = 1 3 5 s , p n , , , ... 

cp 

The inadmissible pole at s 

expressions in (3. 24) by taking 

u(p) = 

= ...E... is removed from both 
c 

p 

(3. 25) 

This is the form that we previously anticipated in (3. 22). Using the 



a of Table 1, (3. 22), (3. 25) imply 
n 

~c = { 1 
~ za. } 

+ L ( -1) 2 n; 
n=l, 3, 5, ••. 

the value employed in Fig. 6. 
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= 0. 935, 

Inversion of the surviving terms in (3. 24) now produces 

0 BY k 2 -2 
v(x, y, t) ,..... 

8 
h ( - 2-) U(c t-x), 

,.,. k -1 p 

(3.26) 

as x, t .... oo, for 0 ~ y ~h. Analogous asymptotics for s ~(s, y, p) and 

a~ 
ay (s, y, p), with u(p) as in (3. 25), furnish 

au -oB k 2 

ax (x, y, t) ,..... 8uh ( -2-) U(c t-x), 
,.... k -1 p 

(3.27) 
a 2 2 av B k -

-a (x, y, t)"' 
8 

h (--) U(c t-x), 
y ,.,. k 2 -1 p . 

x,t large, 0 ~ y ~h. These last two equations, (3. 26) and (3. 27), are 

our first far-field approximation for Problem B. Derivation of the 

second far-field approximation, using the dimensionless forms in 

(2. 37), (3. 20), gives 

(3.28) 

(3. 2 9) 
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as x, t - oo. Comparison of (2. 35 ), (2. 36 ), (2. 41 ), (2. 40 ), in that 

order, with (3. 26), (3. 27), (3. 28), (3. 29), respectively, demonstrates 

that the long-time, far-field approximations for Problems A and B 

are the same if equal normal forces act on the edge, x = 0, in both 
a 

problems; that is, if oA = 2~. 
Inversion for p small, s - 0, shows the formal solution for 

Problem B to comply with the infinity condition (1. 4 ). 
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APPENDIX I. FINITE-ELEMENT ANALYSIS 

The problem analysed here corresponds to Problem B2 of 

Section 2 (Fig. 7). Thus x, yare given in (~. 37); crx c:: ~from Fig. 5; 

and a , 8 are implied by (3. I 0), viz. 
y xy 

o­
Y 

= 2 " X 

The analysis employs a first-order rectangular element wit~ 

the displacement field (which varies linearly on the element boundaries) 

" (" " ) v x, y 

where Q'. I ~• (i = 1 I 2, 3 I 4) are constants; u, V are the dimensionlesS 
1 1 

displacements inferred by (2. 37). Calculations ~remade, with 

k 2 = 7/2, for two non-uniform meshes: a coarse mesh (156 nodes), 

illustrated in Fig. 7; and a fine mesh (561 nodes) created by quartering 

the coarse mesh elements. 
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Results for the edge (x = 0) displacements, obtained at the 

nodes there, are plotted in Fig. 8; wherein 

u = 2/.lTr (k
2

~ 1 ) [u(o, y)-u(o, I)J, 
OB k ""' 

In Fig. 8, the broken line denotes the coarse mesh values whilst the 

solid lines denote the fine mesh values. The coarse and fine mesh 

results for v are virtually indistinguishable on the scale of this 

drawing. Consequently, only the fine mesh values for v are shown. 

For comparison, Fig. 8 also exhibits the analogous displace-

ments evaluated via the Fourier series representations, u' and v'. 

Differences between v and v' are only discernable on the scale used 

in the vicinity of y = l, and, though not demonstrated in the figure, 

these differences are uniformly less in magnitude for the fine mesh 

than for the coarse mesh. 
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Fig. 8. Values of the edge displacements for Problem B2 
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APPENDIX 2. NUMERICAL RESULTS FOR THE SINE INTEGRAL 

Here we give the computational method and results for Si(z. /2), 
J 

z. having real and imaginary parts greater than zero and satisfying 
J 

sin z. + z. = 0. 
J J 

First we evaluate z. using a two -dimensional Newton 1s method, 
J 

the same method used by Robbins and Smith in [5]. From the asymp-

totic forms stated in [5]; viz. Re z.- 'IT
2 

(4j-1), Imz. -2nTI(4j-1), 
J J 

j = 1, 2, 3, •.. , j large; and the form of the denominator in (3. 18); 
2 

namely, [z.
2

-n2 TI 2
]; it is apparent that for n = 2j-l, nand j large, 

J 

round-off error may become a factor in solving (3. 18). To avoid this 

difficulty, Newton 1s method is iterated until the roots are accurate to 

10 decimal places, a check on this accuracy being afforded on substi-

tuting the values for the roots back into sin z. + z.. The error estimate 
J J 

defined on such a substitution, e, is less than 10-
11 

for all z.. The 
J 

results for the first 24 z. are shown in Table 2, p. 66. 
J 

Now calculating Si(z./2). For small lz.l, the series expansion · 
J J 

for the sine integral t is a rapidly converging method of computation. 

The pertinent forms are 

N 
\' n-1 

Re Si(zj/2) ~ L (-1) 

2n-1 
r. cos(2n-1)8. 

(2n-1 )(2n-1)! I . 

n=1, 2, 3, ••. 

N n-1 
Im Si(z/2) "" I ( -1) 

2n-1 
r. sin(2n-1 )8. 

] J 
(2n-l )(2n-l)! 

n=1, 2, 3, ... 

t See [8], equation (5. 2. 14). 
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e < s 

2N r. 
J 

2N(2N}! 
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i8· 
wherein z. /2 = r. e J; N is the number of terms taken in the series; 

J J 

e is the truncation error, for which the stated upper bound can 
s 

readily be obtained on bounding the remainders of the infinite series 

for Re Si(z./2), Im Si(z./2). These forms were used to estimate the 
J J 

first seven roots with N < 36. 

For larger roots, I z.l > 45, the faster converging asymptotics 
J 

forms t are used. These are 

ReSi(z./2},..... :!!.
2 

- cosx. coshy. Ref(z./2)- sinx. sinhy. Imf(z./2) 
J J J J J J J 

- sinx. co shy. Re g(z. /2) + cosx. sinhy. Im g(z. /2), 
J J J J J J 

ImSi(z./2),..... sinx. sinhy. Ref(z./2)- cosx. coshy. Imf(z./2) 
J J J J J J J 

- cosx. sinhy. Re g(z./2)- sinx. coshy. Img(z./2), 
J J J J J J 

10 n-1 
Re f(z. /2) = L ( -1) ( 2~- 2 )

1
! cos (2n-1 )8., 

J r n- J 
n=1, 2, 3, •.• 

10 n-1 
Imf(z./2) = \ (-1) (2n- 2 )! sin(2n-1)8., 

J L 2n-1 J 
n=1, 2., 3, ••• 

10 n-1 

Re g(z/2) = I (-1) 

n=1, 2, 3, .•. 

r 

(2n-1)! 
2n cos 2n8., 

r J 

10 n-1 
Img(z./2) = L (-1) (2nzl)! sin2n8., 

J r n J 
n=1, 2, 3, •.• 

t See [8], equations (5. 2. 8), (5. 2. 34), (5. 2. 35). 
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in which z. /2 = x. + iy.. These expressions can be derived by repeated 
J J J 

integrating by parts of the sine integral, whence on bounding the resid-

ual integral, one may show that 

e 
a 

< 19 ! {1 +cosh y.) , --zo J 
X. 

J 

where e is the error in the asymptotic series evaluation. 
a 

Table 2 gives the first 24 values of Si{z. /2), the last 17 of these 
J 

being computed via the asymptotic series. The e quoted in the table 

is the maximum of the as so cia ted e and e values. s a 
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Table 2. z. satisfying sin z. + z. = 0, Si (z. /2) 
J J J J 

Re z. Im z. Re Si(z. /2) ImSi(z./2} 
J J J J 

4. 21239 22305 2. 25072 86116 1.94348 0.45761 

IO. 71253 73973 3. 103I4 87458 1.27733 -0.29396 

17. 07336 48532 3. 55108 73470 1.81179 0.23447 

23. 39835 52257 3. 85880 8993I 1.36267 -0.20112 
-

29. 7081I 98253 4. 093 70 49248 I. 75626 0. 17902 

36. 00986 60I64 4.28378 I5878 1.40206 -0. 16297 

42. 30682 67176 4. 44344 583 03 I. 72656 0. I5063 

48. 60068 4I241 4. 58IIO 45735 I.42546 -0. I4075 

54.89240 5788I 4. 70209 64604 I. 70753 0. I3260 

61. I8259 OI968 4. 8I002 51375 I.44132 -0. 12574 

67.47162 86350 4. 90743 84165 1. 69406 0.11985 

73. 75978 83468 4. 99620 44099 1. 452 95 -0. 11472 

80. 04725 84359 5. 07773 37322 1.68388 0. 11020 

86.33417 66904 5. 15311 770I4 I. 46I94 -0. I06I8 

92. 62064 60I43 5. 22321 79892 1.67585 0. 10257 

98. 90674 48938 5. 28872 68571 I. 469I7 -0.0993I 

I05. 19253 42895 5. 35020 88486 1.6693I 0.09635 

III. 4 7806 23079 5. 40813 03964 I. 47512 -0. 09363 

II 7. 76336 7445 7 5. 46288 I3I6I 1.66385 0.09114 

124. 04848 08 94I 5. 51479 07194 I. 48015 -0.08883 

I30. 33342 82072 5. 56413 89982 1.6592I 0.08669 

136.61823 05302 5. 61116 69898 1.48446 -0.08470 

I42. 90290 55184 5. 65608 30843 1.65519 0.08284 

149. 18746 80349 5. 6 9906 88025 1.48822 -0.08IIO 

e<1o- 11 e < Io- 9 


