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ABSTRACT

Halpern has defined a center valued essential spectrum,
ZI(A), and numerical range, W,}(A), for operators A in a von
Neumann algeb\ra ®. By restricting our attention to algebras & which
act 6n a separable Hilbert space, we can use a direct integral decom-
position of & to obtain simple characterizations of these quantities,
and this in turn enables us to prove analogues of some classical

results,

Since the essential central spectrum is defined relative to a
central ideal, we first show that, under the separability assumption,
every ideal, modulo the center, is an ideal generated by finite pro-

jections. This leads to the following decomposition theorem:
Theorem: Z = {&@ c)dp € Z)I(A) if and only if c(A) € oe(A()L))
p-a.e., where A = :/f&@ AM)du and Oy is a suitable spectrum in the
algebra ®()).

Using mainly measure~theoretic arguments, we obtain a
similar decomposition result for the norm closure of the central

numerical range:

Theorem: Z =[® cA)dp ¢ W,;_(N if and only if c(A) ¢ W(AQ))
A

p-a.e.

By means of these theorems, questions about ZI(A) and

W (A) in ® can be reduced to the factors ®(\). As examples, we



iv

show that spectral mapping holds for Z;, namely f(ZI(A)) = ZI(f(A)),

and that a generalization of the power inequality holds for W,? (A).
Dropping the separability assumption, we show that central

ideals can be defined in purely algébraic terms, and that the following

perturbation result holds:

Theorem: EI(A +X) = ZI(A) for all A € & if and only if X € I.
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INTRODUCTION

In this chapter, we will state the basic results and terminology
that will be used repeatedly in the sequel. Section I will collect
various results on von Neumann algebras. In section 2, we will,
following mainly the presentation of Schwartz [ 15], introduce the
concept of a direct integral of Hilbert spaces, }and we will state the
important reduction theorem. The basic facts about operators can
be found in [ 8] and [ 9], while [4] is the standard reference for von
Neumann algebras. A discussion of reduction theory can also be

found in [ 11] and [13].

1. Von Neumann Algebras
Let h be a Hilbert space, B(h) the algebra of all bounded
linear operators on h; 1 will denote the identity operator. If & is

a *-subalgebra of B(h) which is closed in the weak operator topology,

® is called a von Neumann algebra. The set of all operators Z € &
which satisfy ZA = AZ for all A € & is called the center of &, and

is denoted by »(®) or by 3. when no confusion is possible. If »
consists of only the scalar multiples of the identity, & is called a
factor. If A cB(h), the commutant of A, A’, will be all operators
which commute with all operators in A, A von Neumann algebra is
characterized by the fact that &” = (#’)’ = &. [AV A*]” is the
smallest von Neumann algebra containing A, and is called the algebra

generated by A,




An operator F € B(h) is called a projection if F2 = F and
F* = F. Since no confusion is possible, we will often let F denote
both the projection and the subspace F(h). If E and F are two pro-
jections, we say that F dominates E (or E is smaller than F) if FE
=EF=E;wewrite E< F, If now E, F. ¢ &, wecall F and E
equivalent (relative to ®), F ~ E, if there exists U € & such that UU*=
F, U*U=E;Uiscalled a partial isometry. We write EX F if E is

equivalent to a projection which is dominated by F. Finally, for F

€ & a projection, we define the central support of F, cs(F), as

the smallest projection P in 4 such that P dominates F.

For projections E and F, we define inf (E, F) to be the pro-
jection onto R(E) N\ R(F); similarly, sup (E, F) will be the projection
onto the closed subspace generated by R(E) and R(F). If E, F ¢ &,
then both inf (E, F) and sup (E, F) are in &.

A projection F € & is said to be finite if whenever E < F,

E ~ F implies E = F. Hence, an infinite projection is one that is
equivalent to a proper sub~projection of itself. F is called purely
infinite if F does not dominate any finite projection other than 0. F
is called properly infinite if FQ is either O or infinite for all central
projections Q. F is called abelian if the algebra F & F is

abelian, & is called finite (purely infinite, properly infinite) if 1 is

finite (respectively purely infinite, properly infinite).
For A &, it is important to know that particular operators

related to A dre also in &, We define the ré.nge projection of A,

R(A), to be the projection onto the closure of the range of A, and



N(A) will denote the projection onto the null space of A; N(A) and
R(A) are in ®. If H is the positive square root of A*A, there is a
unique partial isometry U such that N(U) = N(A) and A = UH. This

representation is called the polar decomposition of A; we have

U, H ¢®, and R(A) = UU** R(A*) = U*U. Furthermore, if
H = ?/IXdE(A) is the spectral representation of H, then & contains all
of thz: spectral projections.

An ideal in ¢ will always mean a norm closed two sided
ideal. § will be reserved for a maximal ideal of 4, and [¢] will
denote the ideal in & generated by {. K(h) will be the ideal of com~
pact operators in B(h). There is a close connection between ideals
and projections. IfI is an ideal, and E is a projection in I, then
F cIfor all F& E. Also, if E,F ¢ I, then sup (E,F) €I. Further-
more, if A € I and the range of A is closed, then R(A) € 1.

2. Direct Integral Decomposition

Let h; €h,<....C h_ be a sequence of Hilbert spaces, hn
having dimension n and h_  separable. p will denote a finite, positive,
regular Borel measure on a compact set A CR. Finally, let e,
1 < n < «, be a sequence of disjoint Borel sets, q/’ e,=A. e are
called the dimension sets. Let h denote all functions x: A~ h__

such that
(1) xA)eh ifree
(2) x(-°) is py~measurable

@) [ || x0)[]%dp < =
A



If we further define
4) &,y = jf“ (x@), y())dw

then h becomes a Hilbert space if we identify functions which are

equal p~a.e. We write h = [ © h()dp, and call this a direct integral

A
decomposition of h., If u(ek) = 0 for all k except k = n, h is said to

be of pure dimension n.

Suppose now that A: A - B(h(d)) is such that AQ) x (A) is

p measurable for all x ¢ h and || AQ) || is bounded. Then
(*) x(-) — A(-)x(+)

defines a bounded linear operator in h. Any A € B(h) for which a
function A(A) exists such that (*) represents A is said to be decom-
posable, and we write A = [ @ A(A)dp, which is called the direct

A

integral decomposition of A. If AQ) = c(r) 17\, where c¢(d) is a scalar

valued function, A is called a diagonal operator.

Let'A={® AQM)dp and B = [ & B(\)du be two decomposable
operators. TheAbasic properties ofj::lirect integral decompositions
are:

(1) A* is decomposable and A* = [ & A*(\) dp

(2) aA + BB is decomposable, anc‘;&aA + BB = [®] aAQ) +
FB(\)]dp. .

(3) AB is decomposable and AB = [ @ AQ)BM)du

@) || A || = essential sup | A(A)AI |

(5) Aisinvertible if andhonly if AQ\) is



is invertible p~a.e. and || AQA)™ || is essentially bounded; in this
case, A =@ A0 dp.

Suppcfée now that An = {\ ) An(h)du is a sequence of decompos~
able operators; let &X) be the von Neumann algebra in the Hilbert
space h(A) which is generated by {An(h)}?, and let & be the algebra
in h generated by {An} and all the diagonal operators. Then

{®()} is called a measurable family of von Neumann algebras, and

& is called the direct integral of &X): in symbols, &= [ & &(\)dp.
A
If ® is an algebra inh = [ ® h(d)dp for which a measurable family
A

&()\) exists with &= [ @ #(\)du, & is said to be decomposable relative
A
to the direct integral decomposition of h. The main theoren, due to

von Neumann, can now be stated (see [11], [14], [15]).

Theorem: Let & be a von Neumann algebra acting on the separable
Hilbert space h. Then there exists a direct integral decomposition
of h, h = [® h(\)du, relative to which & is decomposable, &=

£ ® @(A)dﬁ, and ®(A) is a factor u-a.e. Furthermore, (®) is the

set of diagonal operators.



CHAPTER 1
ESSENTIAL CENTRAL SPECTRUM

1. Central Ideals

Definition 1.1: An ideal I will be called central if for any bounded

sequence {Ak} 1°° C I, and mutually orthogonal central projections

o0
{P ., wehave Z AP €l
i

Examples: (1) In a factor, any ideal is central.

(2) In any algebra, the ideal generated by the finite pro-
jections is central.

(3) If Pis a central projection in the algebra &, then &P
is a central ideal in ®.

If ® acts on a separable Hilbert space, the last two examples
are basically the only central ideals. A ‘precise formulation of this
result, Theorem 1.5, is the main result of this section. This result
will follow easily from a theorem of Halpern [ 7]; to state it, we need

the following definition:

Definition 1.2: Let P be a central projection, E a properly infinite

projection dominated by P. Denote by _I_P(_E_) the ideal generated by all
projections F which satisfy

i) F<P

(ii) if EQ & FQ for a central projection @, then EQ = 0.

The theorem mentioned above is then:



Theorem 1.3 (Halpern): An ideal I is central if and only if it is of the

form IP(E) .

Lemma 1.4: Let F be an infinite projection. Then there exists F; < F

with F, properly infinite.

Proof: Let A be the collection of all sets {Qk}, where the Q.
are mutually orthogonal central projections such that FQk is finite for
all k. If A = ¢, then F is properly infinite, and we are finished. If
A # ¢, then partially order Aby set inclusion; the union of a chain is
clearly a least upper bound. By Zorn, A contains a maximal element
{Q{{}. Let =;z: Q, and F, = F(1-Q)).

We will t;irst show that FQ' is finite. If G< FQ', FQ' ~ G, then
G=2 GQk ~ 2z FQk, or since the Qk are orthogonal, GQk 5 FQk; but
FQkkis finite, and so GQk = FQk, and G = FQ'. Hence, F, # 0, and it
is now easy to see that F, must be properly infinite, for if not, it would

contradict the maximality of {Qk} .

Theorem 1.5: Let ® be a von Neumann algebra acting on a separable

Hilbert space, I a central ideal. Then there exists central projections
PI’ QI such that PIQI =0, and
(1) I1-(PpQp)) =0
(ii) IQI=<I>QI; I ﬁ} =IQIﬂ i
(iii) IPI is the ideal generated by all finite projections < PI’

and <I»PI is properly infinite.

Proof: By Theorem 1.3, I = IP(E), where E is properly infinite
and P is a central projection. If we set Py = cs(E), and QI =P - cs(E),



then the first statement is clearly true. Further, one observes that any
central projection S < QI is in IP(E). That these are the only central
projections in IP(E) follows from the fact that if SPI # 0, S a central

projection, then

Z _
(PS)E £ (SP)S = SP,

and P.SE # 0. Hence, S ¢ IP(E). This proves (ii).

I

To prove (iii), we first notice that I’ being the central support
of a properly infinite projection, is itself properly infinite, and hence,
so is the algebra <I>PI. Suppose now that F is a finite projection < PI’
and SE £ FS for some central projection S. But FS < F is finite, while
SE is either 0 or infinite since E is properly infinite. Hence SE =0,
or Fe I. To see that these are the only projections in IPI, suppose now
that F < PI is infinite; by Lemma 1.4, we may assume that F is
properly infinite.

Let ® =/ & (A)du be the direct integral decomposition of @,

and let cs(F) = AGB Xxgdue where X is the characteristic function of the
measurable set 1(‘} We can then write F =] @& F(A\)du, where F()) is
infinite u-a.e. since F is properly infinite .G But then F(A) ~ 1(A),
because in a factor on a separable Hilbert space, all infinite projections

are equivalent ([11]), and so, F ~cs(F) ([14]). If F € I, then cs(F) € I,

but this contradicts the fact that IPI N P = 0. This completes the proof.

Remarks: (a) Everything in the above theorem goes over to the non-
separable case, as the proof shows, except for the statement that IP is

generated only by the finite projections. If @ = B(H) and dimension



H =c, then the ideal generated by all projections P which satisfy
dimension R(P) < N , is central, but is not generated by just the
finite projections.

(b) Suppose that ® is purely infinite, I a central ideal. Then,
as was shown in the above proof, if F € I, F a projection, then c¢s(F) = I.
Hence, I = ®Q for a central projection Q. Therefore, we may also
assume that the algebra <I>PI has no pure infinite part.

(c) Theorem 1.5 can also be proved using the results of [ 2].

Part (ii) of the above theorem guarantees that every central ideal
contains a maximal central projection, or, stating this in a slightly
different form, there is a maximal central projection QI such that
IQI €I (this fact can also be observed directly from the definition). If
we now replace the identity by an arbitrary projection in &, we obtain
an algebraic characterization of central ideals; the necessity of this
condition was observed by Halpern. We separate out fhe following simple

but useful lemmas:

Lemma 1.6: Let J be an ideal, A € J. Then for € > 0, there exists
B € J such that the range of B is closed, and IlA - BIl < e.

| Proof: Let A = UH be the polar decomposition of A. It is suf-
ficient to prove the lemma for A = H, because H = U*A €J , and if Hy

satisfies the above conditions for H, then
IA-UHgll = NU(H=-Hy)!l = IH-Hyll < €

and the range of UH, is closed.
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M
Let H=/ AdE(M) be the spectral decomposition of H, and let
0
E, denote the spectral projection associated with the interval [1/n, M].
Clearly, E_H has closed range, IH-E HIl < 1/n, and E H¢€ J since

H € J, and the proof is complete.

Lemma 1.7: Let ¢ be a maximal ideal of 3, [ €] the ideal generated in
n
® by €. Then elements of the form Z;: Aka, Ak € ®, Q €¢ and the
range of Q_is closed, are dense in {¢]. Furthermore, elements of the
n
form J + 21) A Q, JEI, A, Q as above, are dense in I+ [e].

n
Proof: Clearly Z A, Q, form a dense set in [e]; if A€ [e],
1

there exist A, Quk=1,...,n Ak € ®, Q€ ¢ such that

n
IA - ) AQ I < €/2
1
However, by Lemma 1.6, we can find Qi{ € ¢, range of Qi{ is closed,

and 1Q - Q Il < €/n A, I, Hence,

n n n
1A = ) AQN < TA - ) AQ I+ 1)) A(Q - Q)
1 1 1

n
< €/2+ ) IANIQ -Ql < €
1

which completes the proof, as the last statement follows immediately.

Theorem 1.8: An ideal I C ® is central if and only if for any projection

F € &, there exists a maximal central projection Q such that QF € I.
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Proof: The proof of the necessity of the condition is exactly the
same as the proof of Lemma 1.4, and so will be omitted. Suppose that
I satisfies the condition, and let {Ak} fo C I be a bounded set, and let
{Pk T be a sequence of mutually orthogonal central projections; we wish
to show 21? APy € Now by Lemma 1.6, we can find B, € I, the
range of B, is closed, and llA - B, I < 1/n. Then
H%o AkPk - %o B, k“ < 1/n, and since n was arbitrary and I is closed,
it suffices to assume that the range of Ak is closed.

Let T = Z AkPk If we show that R(T) € I, then T =R(T)T € 1.
Now because Pklare central projections,

R(T) = R(), A P = ) R(APP,
1 1

and since the range of Ak is closed, R(Ak) € I. Therefore, the problem
has been reduced to showing that if Fk € I are projections, then

F = g FkPk € I. By assumption, there is a maximal central projection
Q suclzh that QF € I. f Q 21, thereisa Pko such that Pko (1-Q 0

o0
(there is no harm in assuming that = Pk =1). But then,
1

FPk(l Q)—FkP (1-Q) €1
and thus Q + P (1 - Q) contradicts the choice of Q.
o :

2. Decomposition Theorem

For this section, we will always assume that our von Neumann

algebra ® acts on a separable Hilbert space. Recall that ¢ will denote
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a maximal ideal of the center 3, and €] (respectively I + [£]) will

denote the ideal generated by ¢ (respectively I and ¢). The following

definition is due to Halpern:

Definition 1.9: Let A € &, I a central ideal. The essential central

spectrum of A relative to the ideal I is

28) = {2z € 320 o/+[e) vt

where Z denotes the Gelfand transform of Z, and o is the usual spec-

trum in the C*-algebra ®/I + [¢].

If ® = B(h), and I is the ideal of compact operators, then this
definition reduces to one of the usual definitions of the essential spec-
trum o o namely, X € 0 e(A) if and only if A - XA is not invertible modulo
the compacts (i.e., A - X is not Fredholm). The same is true if we
take @ to be a II_, factor and take for I the ideal generated by the finite
projections. To simplify the terminology, we will, following Breuer
[1], agree to call the ideal generated by the finite projections (in any

algebra) the ideal of compact operators, and we will call any operator

that is invertible modulo this ideal Fredholm.

The following simple example may aid in understanding the
decomposition theorem. We choose & to be the von Neumann algebra
acting on the Hilbert space h © h which consists of all 2 X 2 matrices

of the form
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where A,B ¢ B(h). If we take I to be the compact operators, then it is

clear that
K, O
I = K,,K, €¢K(h)
0 K,
and
al 0

®) = ,BEC
}() " Bla

and that there are only two maximal ideals in %, one generated by [(1) 8]
and the other by [ ]. With this, it is not difficult to see that 0 belongs
to the essential central spectrum of [OA (])3] if and only if 0 € 0_(A) n o (B),
where Oy is the essential spectrum mentioned above.

Suppose we now change I; let

K, 0
I = K, € K(h)
0 0

Then all of the above remains the same except that now 0 belongs to the
essential central spectrum of [‘8‘ %] if and only if 0 € oe(A) and
0 € o(B), where o is the ordinary spectrum.

Since a direct integral decomposition can be viewed as a continuous
direct sum, it seems plausible that the above observations can be
extended to an arbitrary algebra and central ideal. However, as the
second example makes clear, in relating ZI(A) to the spectrum of the
components of A, the ideal I will determine whether the essential or

ordinary spectrum is called for.



14

Suppose now that fAEB ®(N)du is the direct integral decomposition
of ®. The following theorem of von Neumann [ 14] will help us prove the

measurability of certain sets:

Theorem 1.10 (von Neumann): Let E =/ & E(A)du be a projection.

A
Then the sets {1 |[E(x) =0} and {)|E(}) is finite} are measurable.

Lemma 1.11: Let A = J,® AQ)du € @. Then Ag ={X € A|A(Y) is

invertible} is measurable.

Proof: Let A = UH be the polar decomposition of A. It is easy
to see that U = | [, © U)dp, H = / [, @ HQ)dp where TO)H() is the
polar decomposition of ®(1). Since A(XA) is invertible if and only if both
U(A) and H(A) are, Ay A) = Ay(U) N A(H), and we can therefore treat
these cases separately.

For U, we note that
AU) = {x|N(UQ)) =0} n {r|N(U*()) = 0}

where N(T) denotes the projection on the null space of T. However,
both of these sets are measurable by Theorem 1.10, and hence, so is
A)U). For H, we let En be the spectral projection associated with the
interval [0, 1/n]. Clearly then, A H) = L? {1 lEn()\)H(A) =0}, and

since each set in the union equals
{x |[R((E_H)(\))= 0}

A(H) is measurable, again by Theorem 1.10. This completes the

proof.
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A well-known theorem of Atkinson states that an operator
A ¢ B(h) is Fredholm if and only if the range of A is closed and N(A)
and N(A*) are finite. The following result, due to Breuer, generalizes

this to an arbitrary algebra.

Lemma 1.12 (Breuer): A € ® is Fredholm if and only if

(i) N(A) is finite
(ii) there exists a projection F € & such that F C range of A and

1-F is finite.

Lemma 1.13: Let A = fAeB A(\)dp € @. Then the set A ={) IA(D) is

Fredholm} is measurable.

Proof: As in Lemma 1.11 we use the polar decomposition
A =UH, A(A) = U(A\)H()). Since the Fredholm operators are closed under
multiplication, A(\) is Fredholm, N(A(X)) = N(U(X)) and N(A*())) =
N(U*())) are finite, and so, U(A) and U*()) are Fredholm. But
H(A\) = Ux(A)A()), and therefore, Ae(A) = Ae(U) A Ae(H). However,

A, (0) ={x |N(U(V)) is finite} N {1 |[N(U*() is finite}
implies Ae(U) is measurable by Theorem 1.10. If we could verify that

A (H) = CJIO {x ]En(k) is finite}

where E_ is the spectral projection of H associated with [0, 1/n], then
Ae(H) would be measurable, completing the proof. Clearly, if En()\)
is finite for some n, then H()) is Fredholm, for then H(}) = En(A)H(A) +

1- En(A))H(}\) and H(A) maps 1 - En(h) onto 1- En(A). Therefore, it
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only remains to show that if H € & is positive hermitian and Fredholm,

then there exists a spectral projection E([ 0, @]) which is finite.
Because H is Fredholm, we can find F € $, F C range of H,

and 1 - F finite. Now there is a closed subspace V C R(H) such that

H:V — F one-to-one and onto. Since V =1-N(FH) = R((FH)*),

V ¢ &, and furthermore, 1-V = N(FH), and because both H and F are

Fredholm, 1-V is finite. H:V — F is an invertible mapping, and so

there exists B > 0 such that

(1) IIHx!l = Blxll  forall x €V

Let E be the spectral projection of [0, 8/2]; for x € E we have
(2) Hx!l < (3/2)1xll

Comparing (1) and (2) we see that inf(E,V) = 0. But then, by parallelo-

gram law [ 10],
E =E-inf(E,V) ~1-V-infl-V,1-E)41-V
which says that E is finite. This completes the proof.

Returning now to the essential central spectrum, we need the

following two results due to Halpern:

Lemma 1.14: Let I be a central ideal, QI the largest central pro-
jection in I, and let S be an arbitrary central projection. Then
(i) IS is a central ideal
(ii) QIZ)I(A) =0forall A ¢
(iii) ZI(A) = ZIS(AS) ) EISI(Asl)
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where S, = 1- S, and the essential spectra on the right-hand side are

taken in the algebras ®S and ®S,, respectively.

Theorem 1.15 (Halpern): Suppose that ® is properly infinite, and that

I= IP(E). Then if Z € EI(A), there exists two sequences of mutually
orthogonal projections {En} , {Fn} such that cs(En) = cs(Fn) =P, all
are properly infinite, and (A - Z)En” < 1/n, HFn(A- Z)I < 1/n.

Part (ii) of Lemma 1.14 says that as far as the essential central
spectrum is concerned, we might as well assume that I N %= 0, or
QI = 0, and we shall do this from now on. Under this assumption, a
central ideal will, by Theorem 1.5, divide the algebra & into two parts,
& =3P @ &(1-P), suchthat IN ®(1-P) =I(1- P) =0 and IP is the ideal
of compact operators in ®P. Let P = fA@ X gd#H, where x - is the
characteristic function of the measurable set G. We will, in order to
simplify the statement of the decomposition theorem, accept the fol-
lowing convention: in the factor ®(A), A € G, O will denote the

essential spectrum of invertibility modulo the compacts whereas for

d(N), A £ G, 0, will be the ordinary spectrum.

Theorem 1.16: Let I =Ip(E) be a central ideal, P =cs(E) = fAEB X g

and let A = fAeB A(N)du € . Then Z = fA@ c()du € Zy(A) if and only

if c(A) € oe(A(A)) u-a.e.

Proof: It suffices to treat the case Z =0, so assume that

0 € Z/(A). Then A is invertible modulo I + [¢] for some ¢;

(3) AB = 1+K where B c®, KeI+[¢]
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Now, by Lemma 1.7, we can find J € I, Qk € ¢, and D, € @,

k =1,...,n, such that the range of Qk is closed and
n

(4) K - (J+ ), DQJII < 1/2
1

From (3) we find that

AB-(@J+ ), DQ) =1+[K-(J+ ) DQY]
1 1

and from (4) we see that the right-hand side is invertible, and therefore

there is a B’ € & such that

n
ABB' - (JB' + ) D, B'Q,) =1
1

or
n

(5) ABy = 1+Je+ ), C,Q. Jo €1,B,,Cy € @
1

n
Now, R(? Cka) < svép R(Cka) < sup R(Qk) € § since the range of Q
k
is closed. Hence, if Q = sup R(Qk) we have 1 - Q # 0 and
k
1-Q) (E Cka) = 0. Hence, from (5) we get
1

AB(1-Q) =1-Q+J(1-Q)

which says that A, as an operator from (1 -Q) into (1-Q), is invertible

modulo I. Therefore if 1-Q = [

A@ deu, we have that A(x), for



19

A €Y, is either Fredholm or invertible (depending upon whether X € G
or » £ G). Hence, 0 € oe(A(A)) on a set of positive measure.

Conversely, suppose that 0 € ZI(A). If I =0, consider
A, ={2 ’A(A) is invertible} which, by Lemma 1.11, is measurable. If
©(Ag) > 0, then we can find Ay C A,, w(Ah) > 0, such that H1AQ) "I is
bounded for A € Ag. Therefore, A is invertible as an operator on Q,
where Q = [ @ X prdu. Hence, 0 € o(A/[t]), where ¢ is any maximal
ideal in ¥ containing 1 - Q, which contradicts our assumption that
0 ¢ EI(A). Hence, u(A,) =0 as required.

By Lemma 1.14 and Theorem 1.5, it remains to consider the
case when & is properly infinite with no pure infinite part and I is the
ideal of compact operators in ®. In this case, by Theorem 1.15, we
can find two sequences of mutually orthogonal projections {En} and
{Fn} satisfying all the conditions in that theorem. Since all projections
have central support 1, the above conditions hold for each A()) except
possibly on a u-null set. However, by Lemma 1.12, this says that A(})
cannot be Fredholm, and so, 0 € oe(A(A)) p-a.e. This completes the

proof.
As a corollary, we get the following converse to Theorem 1.15.

Corollary 1.17: Suppose that & is properly infinite, A € &, {En} and
{Fn} as above. Then 0 € Z(A).

3. Spectral Mapping

Either directly from the definition, or from Theorem 1.16, it is
clear that o(Z) C o(A) if Z € EI(A). Hence, if f is analytic on a neigh-

borhood of o(A), f(Z) is also defined, and so it is natural to expect that
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a mapping theorem holds. The next lemma is directed towards showing

that

f(A) = fAEB f(AQY) )dp

Lemma 1.18: Let A = fA@ A(A)du €®. Then g(A())) C o(A) p-a.e.

Proof: Let aqbe in the resolvent set of A. Then there is a
B > 0 such that II(A - ayx!l = Blixll for all x. Hence, except on a u-null
set Yao, A()) - a4 is invertible, and II(A(X) - ao)xkll > Bllx}tu for all
X, € h()). Therefore, there is an open disk W . about o, such that

0

A()\) - a is invertible for all a € W,, d € A\Yao' If we do this for all
0
a, € p(A), we get a collection of open disks covering p(A), from which
we can select a countable subcovering {Wak}zo. Ity o are the cor-
(e}
responding u-null sets, then o(A(x)) C o(A) provided A £ (U YO‘K as
1

required.

Corollary 1.19: If f is analytic on a neighborhood of ¢(A), then
f(A) = fAéB f(A) )d .

Proof: By the above, f(A(X)) is well defined u-a.e. Since the
result is clearly true if f is a polynomial, a limiting process yields

the full statement.

Theorem 1.20: Let A = IA@ A(\)dp € &, f analytic on an open set
U D o(A). Then ZI (f(A)) = f(ZI(A)).

Proof: We first show f(ZI(A)) - ZIf(A). Let
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7 = IAEB c(\)du € Z)I( (A)). From Theorem 1.16, c()) € 0(AQ))) u-a.e.,
and f(c(2)) € f(oe(A()t) ). However, by a result of Grammsch and Lay

[ 5], f(oe(A(A)) = oe(f(A(A) )); and so f(c())) € 0, (f(A(x))). Again by
Theorem 1.16, £(Z) =] @ f(c(}))du € Z)If(A).

To verify that EIf(A) i f(EI(A) ), considerably more work is
required. We will first establish that this is true 'locally': i.e., we
will show that if Z ¢ EIf(A), then there is a non-zero central projection
Q such that ZQ € f(EI(AQ) ). We proceed to prove this by examining

three cases:

I: Assume that o(A) has an isolated point a. Since

% = fA69 c(\)dp € ZIf(A), we have c(A) € oA f(A(N)) = f[oe(A(A) )], and
hence, c(A) € range of f. Let ¥, = f'l(a). Now since a is isolated,
there is a measurable set G, w(G) > 0, such that a € f[oe(A(A) )] for

all A € G; in other words, Ya al oe(A(}\)) + pforre G. If

Q= IAGB XgdH, we claim that Y, n 0(AQ/IQ + [t]) # ¢ for all ¢ where ¢
will now be a maximal ideal of }Q; if not there is a ¢ such that for
eachy € Y, AQ-y is invertible modulo IQ + [¢]. As in the proof of

the decomposition theorem, this means that for y € Ya there is a
central projection Qy < Q, Qy({) =1, and such that AQ-y is invertible
modulo IQ as an operator from Qy into Qy By the openness of invert-
ible operators, this last condition holds for a neighborhood Wy of y.

Ya is closed, and so compact, and we can therefore select a finite
number W

., W, tocover Ya' IfQ ,...,Qy are the corre-
1 n

¥z 2 Vg,
n
sponding projections, set Q' = fll ka; 62’(() =1, and so Q" # 0. Further-

more, by construction, AQ’ -y, as an operator from Q' into Q', is
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invertible modulo IQ for all y € Y,. Consequently Ya n oe(A(A)) =¢
for all A € G', where Q' = fAéB X du, which is a contradiction. There-
fore Y, N 0(AQ/IQ + [¢£]) # ¢ for all £. But then a theorem of Halpern
(7], Theorem 3.5), guarantees a Z, N 3Q such that 7o) € Y, for all ¢.
Hence, Z, = IAEB d(A)dep. and d(\) € Y, for A€ G. Recall that

ZQ = fG @ a(A)du where a(d) = a. Clearly, ZQ =1(Z,) € f(ZIAQ).

II. We now assume ' = (—?E f=0onY=£f"0(z)). U :Clj Uy, where
Uk are the components of U, then either Uk A Y is finite or f is con-
stant on Uk' Hence, f assumes at most a countable number of values,
and therefore, we must have an isolated point in 0(Z). This puts us

back in case I.

III. From I and II, we may now assume that we have a point wq € 0(2Z)
such that Yy, = £7'(w,) is at most a finite set w,k=1,...,n, and

f’(uk) # 0 for all k. Hence, there is a neighborhood of w,, W, and open
sets Uk’ k=1,.,.+,0, uy € Uk’ such that f :Uk — W has an analytic
inverse 8- Further, by choosing W small enough, we can assume that

£7H (W) CLllj Up. If c(ry € W, we have
e = flg ()] € o HANY) = Lo (A0Y)

and so for ko, 1 < ko <n, gy (c(Ag)) € 0,(A(Xg)). Let

G ={X|c(d) € W}; G is measurable since ¢ is a measurable function,
and u(G) >0 since wy € 0(Z). By Lemmas 1.11 and 1.13,

Gy = {rec ’gj(c(h)) € o (A() )} is measurable, and by the above

n
remark, G = Llj Gy.. Hence, we can assume that u(G,) > 0. Let
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Q = fAGB xGldp.; then
ZQ = IA@ cMx g du = f(fA@ g.(c())x g dw)

and by Theorem 1.16, IA@ g:(c(M))x g du € Z;AQ. This establishes our
1
'local' result.
To complete the proof of the theorem we will use a Zorn's lemma

argument. Define
A ={Q|Q a central projection, ZQ € f(EIAQ)}

where Z = fA ® c(\)dp € Z)If(A). A inherits the standard partial ordering
of projections, and A # ¢ by the local result. If {Qa} is a chain, let
Q, = sup Qoz‘ By the separability, we know that {Qa} is countable, so
m ° °
write {Qk}l ; Q= fAEB Xde“" Now since ZQ, € f(ZIAQk), there is a
function tk(k) such that c¢() = f(tk()\)) for A€ V. Let
[>e)

t) = % tlfl(k)[ Xy, M - ka(k)]. Clearly, c(A) = £(t(2)) for
ALEV = Llj Vi and so Q, € A, and is the required upper bound.

Hence, A has a maximal element, but the local result forces this

projection to be the identity. This completes the proof.
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CHAPTER 2
PERTURBATION THEOREM

We have already mentioned that when ® = B(h) and I is the ideal
of compact operators, the essential central spectrum is the essential
spectrum of invertibility modulo the compacts. In this case, Gustafson
and Weidmann [ 6] have demonstrated the following converse to Weyl's
Theorem: if oe(A+ X) = oe(A) for all A € B(h) (where 0, is either the
essential spectrum mentioned above, or the Weyl essential spectrum),
then X is compact. The purpose of this section is to prove the cor- |
responding statement for the essential central spectrum.

For this section, we will drop the assumption that the algebra &

operates on a separable Hilbert space.

Definition 2.1: Let I be a central ideal; we define WI by

Wy = {x E@IEI(A+X) = Z(A) v Ac &

Our objective is to show that WI =1I. Clearly, I C W,, and so it

I’
only remains to verify the reverse inclusion. The next result will enable

us to restrict our attention to the projections in WI'

Proposition 2.2: W, is an ideal.

I

Proof: That WI is closed under addition and scalar multiplication

is clear. Hence, let X ¢ WI’ A,B € &, We first note that

Z{A+BX) = Z(A+(B-NX+1X) = Z(A+(B-NX)
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and therefore, we may assume that B is invertible. Now,

Z Z{A+BX) < 0 € Z(A+BX-7)

&0€2(B'A+X-B"'7)

I
&0¢€ EI(B'lA— B~'7)
&0 € Z(A-7)

© Z€ 2 (A)

Hence, BX € WI; XB is handled similarly, and thus it remains to
show that Wy is norm closed. Let {Xn} C Wy, X, — X. We have,

Z Z)I(A) &S 7€ EI(A+ Xn)v n
&0 € EI(A+Xn-Z) v n
& A+ Xn - Z not invertible

modulo I + [ ¢] v n, €.

Since the invertible operators in any C*-algebra form an open set,
the above implies that A + X - Z is not invertible modulo I + [¢] v ¢,
and therefore, Z € ZI(A+ X). Hence, ZI(A) C Z)I(A+ X). If we now
replace A by A+ X, and )% by -)g], then the reverse inclusion is

obtained, and the proof is complete.

Remark: The above method furnishes an alternate proof to the theorem
of Gustafson and Weidmann, since in the event that & = B(h), the com-
pacts are the only proper ideal; the same is true when ® is a II_ factor,
for again the uniform closure of the finite elements is the only proper

ideal.
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By the above .proposition, to show that WI =1, it suffices to show
that the projections in WI also belong to I [16]. As was done previously,
we will decompose @ into several parts, and handle them separately.

We will require the following lemmas:

Lemma 2.3: X € Wy iff 0 € Z(A) = 0 € Z(A ¢ X).

I

Lemma 2.4: Let I be a central ideal, £ a maximal ideal of P and
suppose P is a central projection with P £ ¢. Let £, = tP, &, = &P.
Then
(i) ¢,, is a maximal ideal of }(@1) = }((I))P
(i) [elPp=[¢gl, @+[e])P =1,+[¢,] whenI, =IPand|[ ¢,] is
the ideal generated in the algebra ®,.
(i‘ii) If ¢’ is a maximal ideal of }(d)l), then t =¢' @ (1- P)j,(tb)

is a maximal ideal of '}(<I>).

Proof: The only statement that isn't immediate is that
[e] =[¢lp. [e]PD[e]. On the other hand, elements of the form
AQ, A €®, Q €¢, generate [ ¢], and (AQP = (AP)(QP)€ [¢,], and so
[P =1¢l].

Since we will be working with more than one algebra, we will
need a way of identifying in which algebra a certain essential central
spectrum is taken. As in the above lemma, we will denote the algebras
with subscripts, @, 3 and use Zil for the essential central spectrum

relative to I, in the algebra ®,. If no subscript is present, it will

always mean the algebra &.
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Lemma 2.5: Let P be a central projection; I, = IP, &, = ®P. Let
A, € &. Then O € z} (A,) iff 0 € Z(A;). Also, if A€ and 0 € Z/(A),
1
then 0 € z; (AP).
1

Proof: Suppose that 0 € Zil (A,) and 0 ¢ ZI(AD- Hence, there

is a maximal ideal ¢ and B € ¢ such that
(1) AB=1+Y YelI+[¢e]

Note that P ¢ ¢, since that would imply that A, € [ ¢], and so by (1),
1 €I+[t]. Hence, 1-P€ ¢, and

AB =ABP=P+Y Y e I+][e]

This equation shows that Y’ = Y’P, or that Y’ € I, + [¢,] by the previous
lemma. But this contradicts our assumption that 0 € Zi (A).
1

Conversely, assume that 0 € ZI(AI) and that 0 ¢ 2;1 (A,). Then
AB, =P+Y,, Be® , YeI+[t]
Lett=¢ © (1- P)'A(@); then
AB, =P+Y,+(1-P)-(1-P) =1+Y YelI+]|t]

which says 0 ¢ EI(AI). The proof of the last statement follows in a

similar manner.

We are now in a position to show that WI behaves nicely when ¢

is decomposed.
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Proposition 2.6: WIP = WIP’ where P is a central projection and

IP =1, is considered as a central ideal in the algebra &, = &P.

Proof: We first show that WP C WIl' LetQ € WP, A, € 9,
and 0 ¢ Zil (A;). Lemma 2.5 shows that 0 ¢ ZI(AI), and hence,
0€>,(A +Q) sinceQ € Wy. Again by the above lemma, 0 € Zil (A, £ Q)
since Q € ;. By Lemma 2.3, Q € Wll'

Suppose now that Q € WII, and that 0 € 3, (A) for A € &. By
Lemma 2.5 we have 0 € Eil (AP). If we assume that 0 € Zy (A +Q), then

(2) A+QB=1+Y Bed YeI+|[t]

for some ¢. Note that P £ {; for if not, Q € [ ], and the equation would

say 0 ¢ Z (A). Hence, multiplying (2) by P, we get
(AP+Q)(BP) = P+Y' Y'e 1, +[e]

or 0 ¢ Zil (AP +Q), and since Q € Wll’ 0¢ Eil (AP), which is the

desired contraction.

As was discussed in Chapter 1, Halpern has shown that every
central ideal is of the form Iy (E), where P is a central projection, and
E is a properly infinite projection which is dominated by P. Every

central ideal therefore has a natural decomposition

where Q; = P - cs(E) is the largest central projection in I. As before,
what happens in the algebra <I>QI does not affect the essential central

spectrum, and hence we may assume Q; = 0. By Proposition 2.6, we
I
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are then left with considering the case I = I(1 - P) = 0 and the case

I=1(E), where cs(E) = 1. We will begin with the latter case.

Definition 2.7: A projection F will be called I - properly infinite if

whenever FQ €I for some central projection Q, then FQ = 0.

The terminology is justified, for if we let I be the ideal gen-
erated by the finite projections, then we obtain one of the standard
definitions of properly infinite. The following lemma is a generaliza-
tion of the rather obvious statement that any projection (in B(h)) which

does not dominate any infinite projections must be finite.

Lemma 2.8: Let S € & be a projection which does not dominate any

I - properly infinite projection. Then S € 1.

Proof: Consider the following sets of central projections:

Q = {{Ql}lQl s CS(S)7 QIQ] & 0’ 0 i QIS S I}

Since S is not I - properly infinite, £ is non-void; it is partially ordered
by set inclusion, and clearly, the upper bound of any chain is the union
over the chain. Hence, by Zorn, we can find a maximal element {Qi -
we claim Z;Qi = ¢s(S). If not, then S(cs(S) - Zi)Qi) # 0, and is not
I- properly infinite since it is dominated by S. Therefore
S(es(S) - iZQi) Q, € I for some Q, € %, but then {Qi} U (cs(S) - ?Qi)Q0
contradicts the maximality of {Qi} . Since ZQ; = cs(8),

i

S = cs(S)S = (DQi)S = 2Q;S
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By construction, Q;S € I, IIQiSH < 1, and since I is a central ideal,
Sel
A basic tool that we will need is the following characterization

of Zy(A) when A = A* due to Halpern ([7] Corollary 3.15).

Theorem (Halpern) 2.9: Let & be properly infinite, A € & hermitian.

Then Z € EI(A) iff there is a sequence of mutually orthogonal projections
{E_ } such that

(i) cs(En) =1 - QI

(ii) E are I-properly infinite

(ii) |(A-2Z)E|l < 1/n.

Proposition 2.10: Let & be properly infinite, I = I,(E) where cs(E) = 1.

Then W][ = T,

Proof: We have already shown that it is sufficient to show that
every projection in WI is in I; hence, let S € W be a projection. We will
first show that S cannot be I -properly infinite.

If S is I - properly infinite, then so is 1 -c¢s(S) + S; suppose
Q¢ Y and Q(1 -cs(S)) +QS € 1. But QS is orthogonal to Q(1 - ¢s(S)),
and since I is an ideal, we have QS ¢ I and Q(1 -cs(Q)) € 1. However
the former term is zero since S was assumed to be I- properly infinite,
while the latter vanished because I N ¥ = 0. Hence, 1-cs(S)+Sis
I-properly infinite, which also implies that it is properly infinite, since
I contains all finite projections.

It is well-known that if F is properly infinite, then F = °E° Fk

1
where Fy are mutually orthogonal and By F([4]). Hence,
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0
1-cs(S)+8S= ’Zl‘;Sk, e 3 = cs(S) +S. Therefore, the {Sk} are I-
properly infinite, and cs(Sk) = 1, since equivalent projections have the

same central support. Then by Halpern's Theorem,
0¢ 21(1 -cs(S) +8)) = EI(cs(S) -S)

or

0 € T(es(S))

since S € Wi This, however, is impossible unless cs(S) = 0 because
cs(S) is invertible modulo §, where { is any maximal ideal containing
1-cs(S). Hence, we have succeeded in showing that Q € W= Q is not
I-properly infinite. Further, Q cannot dominate any I - properly
infinite projection, for if Q > Q,, then Q, € WI’ which we have just
shown to be impossible. Hence, by Lemma 2.8, Q € I. This completes

the proof.

Proposition 2.11: Let & be a von Neumann algebra, I =0. Then

W, =0.

I

Proof: LetS€ Wy, Sa projection. As was done above, it is
sufficient to verify that 0 € ZI (cs(S) - S), since this implies that
cs(S) =0.

We assume that 0 £ Z)I (cs(S)-9S); i.e., there is a ¢ for which

cs(S) - S is invertible modulo [ ¢] :

(cs(S)-S)B =1+Y Ye€|[¢]

or
Y =1-(cs(S)-S)B
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Hence, the range of (1 -cs(S)+8S)Y is equal to 1 -cs(S)+S, and since
(1-cs(S)+8)Ye[¢], R((L-cs(S)+8)Y) =1 - cs(S) + S€ ¢. Therefore,
sefel.

By Lemma 1.7, we can find Ake ®, Qk €t k=1,...,n, such
that the range of Qk is closed, and

n
(3) IS - ZAkan < 1/2
1
Now,
n n n
IS - S( ) A Q)8! = 1IS(S - > AQ Sl < IS - D AQ!
1 1 1

n n
z:,lnd S(? Aka)S & ?(SAkS)Qk, there is no harm in assuming that
> Aka maps S into S. However, (3) says that as an operator from S
1 n n

into 8, Z A, Q, is invertible, and so, R(Z A, Q) = S. Then
1 1

n
S =R() AQ) < slx:p R(A Q) < Sllip R(Q) = Q
1

But R(Qk) € ¢ since the range of Qk was chosen to be closed, and
therefore, Qe £. ButS <A, Q ¢ Y implies ¢s(S) < Q, which in turn
says that cs(S) € ¢, a contradiction.

Therefore, 0 € ZI(cs(S) - S), and the proof is complete.

Theorem 2.12: W, =1.

I

Corollary 2.13: [} I+ [¢] =1.
¢

Proof: ICc N 1+][¢] C Wy
g
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CHAPTER 3
CENTRAL RANGE

In addition to the essential central spectrum, Halpern has also
introduced an essential central numerical range. In this chapter, we
will investigate this numerical range when I = 0, and thus shorten the
terminology to just the central range. In the first section, we prove
results aimed towards obtaining a decomposition theorem, as was
accomplished for the central spectrum in Chapter 1. It turns out,
however, that a complete decomposition theorem is obtained instead

for the norm closure of the central range.

1. The Central Range

We again insist that our algebra & act on a separable Hilbert
space. Recall that a projection E € & is called Abelian if the algebra
E®E is abelian. If we define ¥ = }' , there exist abelian projections in
¥ whose central supports equal 1 ((14]). Further, if E is such a pro-
jection, and A€ ¥ O &, then EAE = ZE for some Z € ? With this in

mind, we state the following definition due to Halpern:

Definition 3.1: Let A € &. We define the central range of A, w}@, by
Wy (4) = {z € 3|EAE = zE}
where E € ¥ = 'Zr’ is an abelian projection of central support 1.

This definition is not as strange as it might look at first. If

A ¢ B(h), then the numerical range, W(A), is given by
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W(A) = {reCx=(Ax,%x) x€ h, Ixll =1}

On the other hand, every abelian projection in B(h) is given by a one-
dimensional projection EX whose range is the subspace spanned by x,

Ixll =1. Furthermore,

E_AE_ = (Ax, %) E,

and so the definitions agree for B(h). In addition, when & is a factor,

Remark: It is easily observed that W}(A) satisfies the following
linearity properties:

(a) W}(aA) & aWa(A) a €

(b) W}(A+ Z) = W}(A) +Z €%

We will now begin to study the connection between W}(A) and
W(A(A)). We point out that, at first, it might appear that there is a
problem in trying to use a direct integral decomposition to study W} (A),
since the definition uses operators from outside the‘algebra ¢ (namely,
the abelian projections of ¥). However, if ® = fA @ ®(A)du, we have
¥ = IA ® ¥(\)du, same A and u, because a direct integral decom-
position is taken with respect to a commutative algebra [ 14] and
NP =¥ NV = Y- Alternatively, one could just note that Wﬁ' (A),

A ¢ & is the same as WZ’(A) when A is looked at as an operator in ¥,

and therefore, we could assume ¢ = V.

Proposition 3.2: Let A = IA@ A(A)du € ®. Then Z = fA & c(\)du —EW}'\A\
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if and only if c(x) = (A(M)x(2), x(A)), where x€ h = fA @ h(A)du and

Ix(A\)Il =1 p-a.e.

Proof: Let x € h with Ix(A)lIl =1 g-a.e. Theny ch, (y(-),x(-)) is
a bounded measurable function, and therefore, (y(-),x(-)) x(}) € h.

Denote by EX the projection which maps
y(.) — (v(-),x(-)) =(-)
If Z, € ?f’ Zo = IA@ b(A)du, then

E Zoy(N) = (Zgy(1),x(0)) x(1)

= (b(A)y(),x(x)) x(¥)
b(a) (y(a),x(x)) (1)
= Z{E_.y(\))

and hence, E_ € }’. Since lIx(A\)Il =1 p-a.e., cs(EX) =1, and we have

E,AE_y(A) = E_A(g(V)x()) g) = (y(0),x(x))
(Ag(M)x(d),x(1) ) x(1)
= (Ax(2),x(2)) y(O)x(x)

= (Ax(1),x(0) E_y()

which shows that E_ is abelian and that Z = fA @ (Ax(A),x()))du € W}(A).

Conversely, suppose that F € ¥ is any abelian projection with
cs(F) =1. Choose x € R(F) with ix(A)Il =1 pu-a.e., and let E, denote
the projection constructed above. Now Ex < F, and so EXF = Ex‘

Therefore, if FAF = ZF, then

ZEX = EXAFEx E EXFAFEx = EXAEX

which shows that Z is of the required form.
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Corollary 3.3: Z = IA ® c(A)du € W,}(A) implies c¢(A) € W(A())) u-a.e.

A complete decomposition theory would require the converse of
Corollary 3.3 also, which we have been unable to do. However, we
have been able to get satisfactory results for W} (A), the uniform

closure of W(A). The next few lemmas are directed towards this

theorem.

Lemma 3.4: Let A = IA ® A(A)du € ®. For € > 0, there is a measur-
able set X_ C A, “(Xe) < €, such that (A(-)x(-),x(-)) is a continuous
function on A\Xe for all x € h.

Proof: Let x,,%,,..., be an orthonormal basis for h. gij(k)
& (A(A)xi(x),xj(k)) is a measurable function, and so by Lusin's Theorem
([12]), there is a set Xij C A, u(Xi]-) < €/2i+] such that 8; is continuous
on A )g] Put X, = L Xij; then u(X,) < € and for A € A\X,

(A(N)x(A),x()))

il

(A()) Z a, % V), Z 0 ; ;)

)
1

=8

@ (AN x0), 550

which is the uniform limit of continuous functions. This completes the

proof.
To simplify things, we define

Vv ={xe hlllx(A)H =1 pa.e.}
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Lemma 3.5: Suppose 0 € W(A())) u~a.e. Then for €, 6 > 0, there
exists a measurable set X C A, u(X) < 6, and x € V, such that

[(A(?\)x(h),x()t)) f < € for x € A\X.

Proof: We first assume that h is a direct integral Hilbert
space of pure dimension. By the above lemma, we can find a set X
w(X) < 6, such that (A(A)x(1),x(A)) is a continuous function on A\ X

for all x € h. Fix Ay € A\X. Since 0 € W(A(A,) ), there is an x, € h(},),
lIxell =1, and I(A(Ao)xo, Xo) | < €/2. Because h is of pure dimension,
the function x,(A) = Xpis in h. (A(A)x4(A),Xe(A)) is a continuous function,

so we can find an open ball U, centered at A, such that
0
|(AQ) - AT =), x1)) | < €/2 for A€ U,

The sets UAO, Ao € M\X, cover A\X, and so by the Lindelof
property, A\X = Cj Ukk. We change this into a disjoint union in the
usual manner: Y, i Yi,oo0s Y =UNY 1- Recaloloing that each U}‘k
brought with it a vector x(A) = Xy, we define X(\) = 21: xYk(A)xk(A) € h.

Now for A€ A X, X € Yy for exactly one value of k, and so,

(A=), Z0)) | = (A%, %) |
= l([ A(XN) -A(Ak)]xk’ Xk) ’ + l(A(Ak)X ’xk) ’
< €/2+€/2=¢

The last inequality follows from the fact that A € Yk C Uy and from the

choice of Xy -
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To complete the proof, decompose h into a direct sum of
0
spaces of pure dimension; h =2 & hk. Apply the above result to each

. k
hy with 6, = 5/2", and let U = Xy -

ped CBH

Lemma 3.6: Suppose 0 € W(A(X)) u-a.e. Then for € > 0, there exists
x € V such that [(A(W)x(1),x(0))]| < € p-a.e.

Proof: By Lemma 3.5, there exists a set X;, u(X;) < (1/2) u(4),
and X, € h such that I(A()\)xl(k),xl(x)) I < € for A €Y, = A\X,.
Repeating this process, we construct a sequence {Xn} such that

X, CX _p ,u(Xn) < (1/2) u(Xn_l), and a sequence {xn} such that
) (A%, (), x, () | < € NEY =X \X

Now

0
Hence, p(AN L{ Yn) = “(Xn) < (1/2™ u(A) — 0 and so we may assume
&5 0
L1) Y, =A.
[oe)
Define x, = Z Xy (k)xn(k). The fact that {Yn} is a disjoint
1 n

sequence and (T) combine to show that x, is the required vector.
We are now in a position to prove the announced result.

Theorem 3.7: Z = fAEB c(N)du € W}(A) if and only if

e

c(A) € WA(N)) p-a.e.
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Proof: It suffices to examine Z =0. If 0 € W(A())) u-a.e.,
apply Lemma 3.6 with € =1/n, n =1,2,..., to obtain x, €V,
[(A()x, (0),x (1)) | < 1/n. By Proposition 3.2, Z = fA ® (ANx, (),
x,(A))du € W}(A), and clearly Z_ — 0. Therefore 0 ¢ W}, (A).
Conversely, suppose that Z_ ¢ W?(A), Z, — 0 uniformly. If
Z, = IA ® c,(M)dp, c (A) 0 p-a.e. and cn(A) € W(A(M) ) by Proposition

3.2. Hence, 0 € W(A(N)) u-a.e.

Theorem 3.7 yields the following generalization of a classical

result:

Corollary 3. 8: ZO(A) o Wg,(A).

Proof: Z = fA ® c(A)dp € Zy(A) implies, by Theorem 1.5,
c(d) € o(A(N)) C WEAM). An application of Theorem 3.7 completes the

proof.

2. The Power Inequality

As in the case of the essential central spectrum, the decomposition
theorem (Theorem 3.7) is a useful tool in reducing problems in the
algebra down to the factors, where they are easier to handle. As
examples, we will prove a generalization of the power inequality, and a
von Neumann algebra analogue of a theorem of DePrima and Richard [3].
As with the central spectrum, we need to know that certain sets are
measurable, and this information will be provided by Lemmas 3.10 and

3.13.
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Lemma 3.9: There exists a countable dense subset of V, {xn} 1°° , such

that for each A, € A, {xn(ho)}io is dense in the unit sphere of h(},).

Proof: Let x;,x%,,..., be a dense subset of the unit sphere of
h,, and let Pn denote the projection of h_, onto hn' Choose

Yy € hn’ Hyn!l =1. We define the following functions:

ank/npnxku AeEep, IP Yl +0
Xk()\) =
Yy A€e , IP YN =0

where e, are the dimension sets of h. Clearly, X € V, and by the

continuity of the projections Pn’ satisfy the condition of the lemma.

Lemma 3.10: Let A = fA ® A(Mdp € @. Then A ={r[0 £ W(AR))}

is measurable.

Proof: Let {xk}jo be a dense subset of V guaranteed by Lemma

3.9. The set Gk,n
G n = 1M (A%, x,00) | > 1/n}

is measurable, and we claim that, modulo a set of g measure zero,

A=17  G. ..
w nL:Jl k=1 X0 |
If 0  WA(X,)), then [(Agy,y)| > 1/n, for all y € h(x,),
llyll =1, and n, large enough. Hence, A, € ﬂ Gk . Conversely,
k=1
suppose that Ay € U n G K then for some n,

n=1 k=1
|(A()¢ xk()\o) xk()\o)l > 1/n for all k. Now since {xk(ko)} is dense
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in the unit sphere of h(x,), for y € h(d,), llyll =1, we can find a sub-

sequence xj(ho) — y, and therefore, if Zj =Y - xj()to),

,(A(Ao)y, y) l = ’(A(A’O)X:V X]) ’ = ’(A(Ko)zj,Y) + (A(Ao)xrzj) ,

and then by applying Cauchy Schwarz to the last term and letting j — «,
we get ](A(Ao)y,y) ] >1/n, or 0 € W(A(%,)) . This completes the proof.

The DePrima-Richard result mentioned above states that if
A € B(h), Re(W(A™)) = 0 for all n (where Re denotes the real part),
then A is non-negative Hermitian. We will demonstrate that this
remains true of W(A") is replaced by W}(An), and of course,
Re(A) = (Z+ Z*)/2. The following lemma, which will also be used to
establish the power inequality, is all that we need to prove this generali-

zation.

Lemma 3.11: Let A = fAEB A(M)dp € ®, and Re(W}(A)) > 0. Then

Re[ W(A(L))] =0 u-a.e.

Proof: We first note that Re(Z) =0, Z = fAEB c(d)du, translates
to Re(c(A)) = 0 p-a.e. Second, we claim that Re[ o(A(1))] = p-a.e.
If Rea < 0 and

Ag@) ={x € A|A(N) - @ not invertible}

then Ay(a) is measurable (Lemma 1.11) and we must have u(A,(a)) = 0;

for if not, choose Z = fA ® c(A)du € W:} (A) and define



g(x) =
o AE A,

By Theorem 3.7, Z’' = fAEB g(AN)du € m, but clearly Re(Z’) does
not have positive real part. Hence, u(Ay a)) =0, and the argument
used in the proof of Lemma 1.18 can now be applied, and thus, the
claim is verified.

In precisely the same manner, with Lemma 3.10 used instead
of Lemma 1.11, we have that a € m), Rea < 0, only on a set of
measure 0. Let {avk}‘;o be a countable dense subset of the left half
plane. By removing a set of measure zero, we can assume that
N W(A(X)) for all k, A. Suppose now that 8 € W(A(x,)), ReB8 < 0;
then, m can only be a straight line, for if it were any larger,
there would have to be an interior point of m in the left-hand
plane by the convexity of the numerical range [ 9], which has been ruled
out by the deletion of T — {ak}io. Hence, A()\,) is a rotated
and translated hermitian operator, and as such, the endpoints of
\_Nm:,)_) (one of which must lie in the left-hand plane) are also spectral
points [ 9]. But, as we have seen above, this can only occur on a set

of measure zero. This completes the proof.

Corollary 3.12: Re[W?(An)] > 0 for all n implies that A is hermitian.

Proof: By the above lemma, the hypothesis holds for each A(X)
except on a u-null set. By the DePrima-Richard result, A(}) is

hermitian, and therefore, so is A.
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If A € B(H), the numerical radius of A, w(A), is defined as
sup |@ | where @ € W(A). The power inequality then states that

w(A") < w(A)?[9]. For Wr}, (A), we define the central radius, w, (A),
i

in a similar fashion: w,X(A) = supliZll, Z € W%(A). In Lemma 3.14 we

give a formula for w%(A) which will yield the power inequality as a

consequence.

Lemma 3.13: A = fAGB A(N)dp € ®. Then w(A(2)) € L (A).

Proof: As usual, we may assume that h is of pure dimension.

It suffices to prove that
Gg =1x]w(A) > 8, 8 >0,

is a measurable set. By repeated applications of Lemma 3.4, we

can find a sequence of sets {Xn}io satisfying the following properties:

(a) X, are disjoint, measurable

(b) u(A\L;JO X ) =0
(¢) (A(M)x(A),x(1)) is a continuous function on X, for all x(1).

Since G. = ? (Gn X)), it suffices to show GgN X, is measureable;
suppose A, € GB N X,. Then w(A(ry) ) = > B, and hence, there exists
Xo € h(dg), lIxe !l =1, with [(A(Xg)Xe,%o) | > (@+ B)/2. Then by con-
tinuity, we have [(A(N)xo,%,)| > B for X € X, and -2 | < g Im
other words, for each A, € GB N Xn’ there is an open set UAo containing
Xo, such that Uy n X, C Gg. The sets {U, } cover Ggn X ; select a

countable subcover {U)\k}jo. Then
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GgN X, = (LPOUAK) N(GgN X))
(3 [0y, 0 X100 Gy
(’13U>tkn)g1

Hence, GB an is measurable, and the proof is complete.

Lemma 3. 14: w.}(A) = essential sup w(A()\)).
A

Proof: By the above lemma, B = essential sup w(A())) makes
sense. We first show w?(A) <B. I .
7 = jA @ c(\)du € W?(A), IZ Il = ess. SI;p lc(y) |. But by Corollary 3.3,
c(A) € W(A(A)), and hence, lc()\), < w(A(A)). Therefore IZIl < fB, and
thus w,}(A) < B.

On the other hand, for € > 0 there is a set of positive measure

G & such that

B> wAl) >B-c¢ 1€ G,

Hence, for A € G, there is a d, € W(A(})) with ldy | > B-€; let

A - Udh. By multiplying A by eie if necessary, we can insure that
d, € an{a| |a| <B, Rea < e- 8}

on a set of positive outer measure I'. But this means that there exists
VA :fAEBc(A)du EWandc(A) €{a| |a| <B, Rea<e-p} ona
set of positive measure; for if not, then Re[ W/} (A+(B-¢€)1)] = 0, and
so by Lemma 3.11, Re[ W(A(A) + (8- €)1)] = 0. But this contradicts the
existence of the set I'. Therefore, Z € W’)' (A) and 1ZIl = B - €, and

so, w,,o,(A) > B, and we are finished.
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Theorem 3.15: w}(An) < w,a,(A)n.
Proof: w}(An) = ess. sup w(A™(V))
A
= ess. sklp w(a() )™
=[ ess. sgp w(AW))]®

= wrz, (A)n
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