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ABSTRACT 

Halpern has defined a center valued essential spectrum, 

:61(A), and numerical range, W'i(A), for operators A in a von 

Neumann algebra <1?. By restricting our attention to algebras <P which 

act on a separable Hilbert space, we can use a direct integral decom

position of <P to obtain simple characterizations of these quantities, 

and this in turn enables us to prove analogues of some classical 

results. 

Since the essential central spectrum is defined relative to a 

central ideal, we first show that, under the separability assumption, 

every ideal, modulo the center, is an ideal generated by, finite pro

jections. This leads to the following decomposition theorem: 

Theorem: Z = f EB c(A)dµ E :61(A) if and only if c(A) E u (A(A)) 
A e 

µ.-a. e., where A= f EB A(.X)dµ and ae is a suitable spectrum in the 
A 

algebra <P(A). 

Using mainly measure-theoretic arguments, we obtain a 

similar decomposition result for the norm closure of the central 

numerical range: 

Theorem: Z = f EB c(A)dBJL E W'} (A) if and only if c(A.) E W(A(A)) 
A 

µ.-a.e. 

By means of these theorems, questions about :61(A) and 

W (A) in <P can be reduced to the factors <P(A). As examples, we 
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show that spectral mapping holds for ~l' namely f(~1 (A)) == ~1(f(A)), 
and that a generalization of the power inequality holds for W/ (A) . 

Dropping the separability assumption, we show that central 

ideals can be defined in purely algebraic terms, and that the following 

perturbation result holds: 

Theorem: ~1(A + X) = ~1 (A) for all A E 4> if and only if X E I. 
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INTRODUCTION 

In this chapter, we will state the basic results and terminology 

that will be used repeatedly in the sequel. Section I will collect 

various results on von Neumann algebras. In section 2, we will, 

following mainly the presentation of Schwartz [ 15], introduce the 

concept of a direct integral of Hilbert spaces, and we will state the 

important reduction theorem. The basic facts about operators can 

be found in [ 8] and [ 9], while [ 4] is the standard reference for von 

Neumann algebras. A discussion of reduction theory can also be 

found in [ 11] and [ 13] . 

1. Von Neumann Algebras 

Leth be a Hilbert space, B(h) the algebra of all bounded 

linear operators on h; 1 will denote the identity operator . If <I> is 

a *-subalgebra of B(h) which is closed in the weak operator topology, 

<I> is called a von Neumann algebra. The set of all operators Z E <I> 

which satisfy ZA = AZ for all A E <I> is called the center of <I>, and 

is denoted by '> (<I>) or by _,.. when no confusion is possible o If ,_

consists of only the scalar multiples of the identity, <I> is called a 

factor. If A c B(h), the commutant of A, A', will be all operators 

which commute with all operators in a. Avon Neumann algebra is 

characterized by the fact that <I>" = (<I>')' = <I>. [A V 11*] " is the 

smallest von Neumann algebra containing fl, and is called the algebra 

generated by A. 
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An operator F E B(h) is called a projection if F2 = F and 

F* = F. Since no confusion is possible, we will often let F denote 

both the projection and the subspace F(h). If E and F are two pro

jections, we say that F dominates E (or E is smaller than F) if FE 

= EF = E; we write E ~ F. If now E, F E cl>, we call F and E 

equivalent (relative to cl>), F - E, if there exists U E <P such that UU*= 

F, U*U = E ;U is called a partial isometry. We write EI::: F if E is 

equivalent to a projection which is dominated by F. Finally, for F 

E cl> a projection, we define the central support of F, cs(F), as 

the smallest projection P in 'i such that P dominates F. 

For projections E and F, we define inf (E, F) to be the pro

jection onto R(E) A R(F); similarly, sup (E, F) will be the projection 

onto tre closed subspace generated by R(E) and R(F). If E, F E cl>, 

then both inf (E, F) and sup (E, F) are in cl>. 

A projection F E cl> is said to be finite if whenever E ~ F, 

E - F implies E = F. Hence, an infinite projection is one that is 

equivalent to a proper sub-projection of itself. F is called purely 

infinite if F does not dominate any finite projection other than 0. F 

is called properly infinite if FQ is either 0 or infinite for all central 

projections Q. F is called abelian if the algebra F <I> F is 

abelian. <P is called finite (purely infinite, properly infinite) if 1 is 

finite (respectively purely infinite, properly infinite). 

For A cl>, it is important to know that particular operators 

related to A are also in cl>. We define the range projection of A, 

R(A), to be the projection onto the closure of the range of A, and 
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N(A) will denote the projection onto the null space of A; N(A) and 

R(A) are in q,. If His the positive square root of A*A, there is a 

unique partial isometry U such that N(U) = N(A) and A = UH. This 

representation is called the polar decomposition of A; we have 

U, H Eq,, and R(A) = UU** R(A*) = U*U. Furthermore, if 
M 

H = I XdE(X) is the spectral representation of H, then q, contains all 
0 

of the spectral projections. 

An ideal in <P will always mean a norm closed two sided 

ideal. ~ will be reserved for a maximal ideal of 'r' and [ ~] will 

denote the ideal in q, generated by C K(h) will be the ideal of com

pact operators in B(h). There is a close connection between ideals 

and projections. If I is an ideal, and E is a projection in I, then 

F E I for all F ~. E. Also, if E, F E I, then sup (E,F) E I. Further

more, if A E I and the range of A is closed, then R(A) E I. 

2. Direct Integral Decomposition 

Let h1 c h2 C •••• c h00 be a sequence of Hilbert spaces, hn 

having dimension n and h
00 

separable. µ will denote a finite, positive, 

regular Borel measure on a compact set A c 1R. Finally, let e , 
oo n 

1 ~ n ~ oo, be a sequence of disjoint Borel sets, V en = A. en are 
1 

called the dimension sets. Leth denote all functions x: A - h
00 

such that 

(1) x(X) E hn if X E en 

(2) x( ·) is µ-measurable 

(3) I 1 1 x (X) [ I 
2
dµ < 00 

A 
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If we further define 

(4) (x, y) = f (x(A) , y(A))dµ 
A 

then h becomes a Hilbert space if we identify functions which are 

equal µ-a. e. We write h = I EB h(A)dµ, and call this a direct integral 
A 

decomposition of h. If µ(ek) = 0 for all k except k = n, h is said to 

be of pure dimension n. 

Suppose now that A: A - B(h(A)) is such that A(A) x (A.) is 

µ measurable for all x E h and 11 A(A) 11 is bounded. Then 

(*) x( ·) ~. A(· )x( ·) 

defines a bounded linear operator in h. Any A E B(h) for which a 

function A(A.) exists such that (*) represents A is said to be decom

posable, and we write A = I EB A(A)dµ, which is called the direct 
A 

integral decomposition of A. If A(A.) = c(A.) lA, where c(A) is a scalar 

valued function, A is called a diagonal operator. 

Let ' A = J EB A(A.)dµ and B = f EB B(A.)dµ be two decomposable 
A A 

operators. The basic properties of direct integral decompositions 

are: 

(1) A* is decomposable and A* = f EB A*(A.) dµ 
A 

(2) aA + {3B is decomposable, and aA + {3B = f EB[ aA(A.) + 
A 

{3B(A)]dµ. 

(3) AB is decomposable and AB = f EB A(A)B(A.)dµ 
A 

(4) 11 A i I = essential sup 11 A(A.) 11 
A 

( 5) A is invertible if and only if A(A) is 
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is invertible µ-a. e. and 11 A(Xf
1

11 is essentially bounded; in this 

case, A -i = I EB A(X)-1 dµ. 
A 

Suppose now that An = I EB ~(X)dµ is a sequence of decompos-
A 

able operators; let cli{X) be the von Neumann algebra in the Hilbert 

space h(X) which is generated by {An(X)};_ic, and let <I> be the algebra 

in h generated by {An} and all the diagonal operators. Then 

{ <I>(X)} is called a measurable family of von Neumann algebras, and 

<I> is called the direct integral of <l(X): in symbols, <I> = I EB <I>(X)dµ. 
A 

If <I> is an algebra in h = f EB h(X)dµ. for which a measurable family 
A 

<I>(X) exists with <I> = f EB <I>(X)dµ, <I> is said to be decomposable relative 
A 

to the direct integral decomposition of h. The main theoren, due to 

von Neumann, can now be stated (see [ 11], [ 14], [ 15] ). 

Theorem: Let <I> be a von Neumann algebra acting on the separable 

Hilbert space h. Then there exists a direct integral decomposition 

of h, h = f EB h(X)dµ, relative to which <I> is decomposable, <I> = 
A 

f EB <I>(X)dµ, and <I>(X) is a factor µ-a. e. Furthermore,'} (<I>) is the 
A 
set of diagonal operators. 
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CHAPTER 1 

ESSENTIAL CENTRAL SPECTRUM 

1. Central Ideals 

Definition 1. 1 : An ideal I will be called central if for any bounded 

sequence {Ak} ;' _c I, and mutually orthogonal central projections 
00 00 

{Pk} 1 , we have ~ AkPk EI. 
1 

Examples: (1) In a factor, any ideal is central. 

(2) In any algebra, the ideal generated by the finite pro-

jections is central. 

(3) If Pis a central projection in the algebra <I>, then <I>P 

is a central ideal in <I>. 

If <I> acts on a separable Hilbert space, the last two examples 

are basically the only central ideals. A ~recise formulation of this 

result, Theorem 1. 5, is the main result of this section. This result 

will follow easily from a theorem of Halpern [ 7]; to state it, we need 

the following definition: 

Definition 1. 2: Let P be a central projection, E a properly infinite 

projection dominated by P. Denote by .!iifil the ideal generated by all 

projections F which satisfy 

(i) F ~ P 

(ii) if EQ fu FQ for a central projection Q, then EQ = 0. 

The theorem mentioned above is then: 
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Theorem 1. 3 (Halpern): An ideal I is central if and only if it is of the 

form Ip(E). 

Lemma 1. 4: Let F be an infinite projection. Then there exists F 1 :::; F 

with F1 properly infinite. 

Proof: Let t::,. be the collection of all sets { ~}, where the Qk 

are mutually orthogonal central projections such that F~ is finite for 

all k. If t::,. = </>, then F is properly infinite, and we are finished. If 

t::,.. * </>, then partially order /:::,..by set inclusion; the union of a chain is 

clearly a least upper bound. By Zorn, t::,.. contains a maximal element 

{Qk:} . Let <;t = ~ Qk, and F 1 = F(l-Q'). 
k 

We will first show that FQ' is finite. If G < FQ', FQ' ,.., G, then 
I 

G = ~ G~ ""' ~ F~, or since the~ are orthogonal, ~ "' F~; but 
k 

FQk is finite, and so~ = F~, and G = FQ'. Hence, F 1 * 0, and it 

is now easy to see that F1 must be properly infinite, for if not, it would 

contradict the maximality of { ~} . 

Theorem 1. 5: Let 4> be a von Neumann algebra acting on a separable 

Hilbert space, I a central ideal. Then there exists central projections 

PI' QI such that PIQI = 0, and 

(i) I(l - (PI+QI)) = 0 

(ii) I~ = cl>~; I n J' = IQ1 n t 
(iii) IPI is the ideal generated by all finite projections :::; PI, 

and cl> P1 is properly infinite. 

Proof: By Theorem 1. 3, I = Ip(E), where E is properly infinite 

and Pis a central projection. If we set PI = cs(E), and QI = P - cs(E), 
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then the fir st statement is clearly true. Further, one observes that any 

central projection S ~ QI is in Ip(E). That these are the only central 

projections in Ip(E) follows from the fact that if SPI * 0, S a central 

projection, then 

and PISE * 0. Hence, S i. Ip(E). This proves (ii). 

To prove (iii), we first notice that PI, being the central support 

of a properly infinite projection, is itself properly infinite, and hence, 

so is the algebra <I>Pr Suppose now that F is a finite projection ~ PI, 

and SE ~ FS for some central projection S. But FS ~ F is finite, while 

SE is either 0 or infinite since Eis properly infinite. Hence SE = 0, 

or FE I. To see that these are the only projections in IPI, suppose now 

that F ~PI is infinite; by Lemma 1. 4, we may assume that F is 

properly infinite. 

Let <I> = f EB (A)dµ be the direct integral decomposition of <I>, 
A 

and let cs(F) = f EB xadµ where xa is the characteristic function of the 
A 

measurable set G. We can then write F = f EB F(A)dµ, where F(A) is 
G 

infinite µ-a. e. since F is properly infinite. But then F(A) ,...., l(A), 

because in a factor on a separable Hilbert space, all infinite projections 

are equivalent ((11]), and so, F ,...., cs(F) ([14]). If F E I, then cs(F) E I, 

but this contradicts the fact that IPI n ;?' = 0. This completes the proof. 

Remarks: (a) Everything in the above theorem goes over to the non

separable case, as the proof shows, except for the statement that IP is 

generated only by the finite projections. If <I> = B(H) and dimension 
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H = c, then the ideal generated by all projections P which satisfy 

dimension R(P) ~ 1\1. 0 is central, but is not generated by just the 

finite projections. 

(b) Suppose that <I> is purely infinite, I a central ideal. Then, 

as was shown in the above proof, if F E I, F a projection, then cs(F) ~ I. 

Hence, I = <I>Q for a central projection Q. Therefore, we may also 

assume that the algebra <I>P1 has no pure infinite part. 

(c) Theorem 1. 5 can also be proved using the results of [ 2]. 

Part (ii) of the above theorem guarantees that every central ideal 

contains a maximal central projection, or, stating this in a slightly 

different form, there is a maximal central projection Q1 such that 

1Q1 E I (this fact can also be observed directly from the definition). If 

we now replace the identity by an arbitrary projection in <I>' we obtain 

an algebraic characterization of central ideals; the necessity of this 

condition was observed by Halpern. We separate out the following simple 

but useful lemmas: 

Lemma 1. 6: Let J be an ideal, A E J. Then for E > 0, there exists 

B E J such that the range of Bis closed, and llA - B il < E. 

Proof: Let A = UH be the polar decomposition of A. It is suf

ficient to prove the lemma for A = H, because H = u* A E J, and if H0 

satisfies the above conditions for H, then 

ll A-UH0 11 = ll U(H-H0)11 = llH-H0 11 < e 

and the range of UH0 is closed. 
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M 
Let H = I AdE(A) be the spectral decomposition of H, and let 

0 

En denote the spectral projection associated with the interval [ 1/n, M] . 

Clearly, EnH has closed range, llH- EnHll ~ 1/n, and EnH E J since 

H E J, and the proof is complete. 

Lemma 1. 7: Let ~ be a maximal ideal of 1, [ ~] the ideal generated in 
n 

<I> by ~· Then elements of the form ~ AkQk, Ak E <I>, Qk E ~ and the 
1 

range of ~ is closed, are dense in [ ~] . Furthermore, elements of the 
n 

form J + ~ AkQk, J EI, Ak, Qk as above, are dense in I+[~]. 
1 

n 
Proof: Clearly ~ AkQk form a dense set in [ ~]; if A E [ ~], 

there exist Ak, ~' k = l, ..• , n Ak E c), ~ E ~ such that 

n 

llA - L AkQkll < E/2 
1 

However, by Lemma 1. 6, we can find Qk E ~, range of Qk is closed, 

and llQk- Qk_ll < E/n llAkll. Hence, 

n n n 

llA - L AkQk_ll ~ llA - I AkQkll + 11L: Ak(~ -Qk_) II 
1 1 1 

n 

~ E/2 + L llAkll llQk - Qkll < E 

1 

which completes the proof, as the last statement follows immediately. 

Theorem 1. 8: An ideal I c <I> is central if and only if for any projection 

F E ~' there exists a maximal central projection Q such that QF E I. 
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Proof: The proof of the necessity of the condition is exactly the 

same as the proof of Lemma 1. 4, and so will be omitted . Suppose that 

I satisfies the condition, and let {Ak} ;° c I be a bounded set, and let 

{Pk}~ be a sequence of mutually orthogonal central projections; we wish 
00 

to show ~ AkPk E I. Now by Lemma 1. 6, we can find Bk E I, the 
1 

range of Bk is closed, and llAk- Bkll < 1/n. Then 
00 00 

llL AkPk - L BkPkll < 1/n, and since n was arbitrary and I is closed, 
1 1 

it suffices to assume that the range of Ak is closed. 
00 

Let T = L AkPk. If we show that R(T) E I, then T = R(T)T E I. 
1 

Now because Pk are central projections, 

00 

R(T) = R( L AkPk) = 

1 

and since the range of Ak is closed, R(Ak) E I. Therefore, the problem 

has been reduced to showing that if F k E I are projections, then 
00 

F = z; F kpk E I. By assumption, there is a maximal central projection 
1 

Q such that QF E I. If Q * 1, there is a Pk such that Pk (1 - Q) * 0 
00 0 0 

(there is no harm in assuming that z; Pk = 1). But then, 
1 

F Pk ( 1 - Q) = Fk Pk ( 1 - Q) E I 
0 0 0 

and thus Q + Pk
0 

(1 - Q) contradicts the choice of Q. 

2. Decomposition Theorem 

For this section, we will always assume that our von Neumann 

algebra ~ acts on a separable Hilbert space. Recall that ~ will denote 
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a maximal ideal of the center y, and [ ~] (respectively I + [ ~]) will 

denote the ideal generated by ~ (respectively I and ~) . The following 

definition is due to Halpern: 

Definition 1. 9: Let A E <P, I a central ideal. The essential central 

spectrum of A relative to the ideal I is 

~I(A) = { Z E r jz(~) a(A/I + [ ~]) v d 
A. 

where Z denotes the Gelfand transform of Z, and a is the usual spec-

trum in the C*-algebra <I>/I + [~]. 

If <I> = B(h), and I is the ideal of compact operators, then this 

definition reduces to one of the usual definitions of the essential spec

trum a e; namely, ,\ E a e(A) if and only if A - ,\ is not invertible modulo 

the compacts (i.e., A - A is not Fredholm). The same is true if we 

take <P to be a II
00 

factor and take for I the ideal generated by the finite 

projections. To simplify the terminology, we will, following Breuer 

[ 1] , agree to call the ideal generated by the finite projections (in any 

algebra) the ideal of compact operators, and we will call any operator 

that is invertible modulo this ideal Fredholm . 

The following simple example may aid in understanding the 

decomposition theorem. We choose <P to be the von Neumann algebra 

acting on the Hilbert space h EB h which consists of all 2 x 2 matrices 

of the form 
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where A, B E B(h). If we take I to be the compact operators, then it is 

clear that 

and 

OJ cr, {3 E ~ 
;31 

and that there are only two maximal ideals in :r' one generated by [ 6 g ] 
and the other by [ g ~]. With this, it is not difficult to see that 0 belongs 

to the essential central spectrum of[~ ~]if and only if 0 E ae(A) n ae(B), 

where ae is the essential spectrum mentioned above. 

Suppose we now change I; let 

I = 
[

K

0

1 ol oJ K1 E K(h) 

Then all of the above remains the same except that now 0 belongs to the 

essential central spectrum of[~ ~] if and only if 0 E ae(A) and 

0 E a(B), where a is the ordinary spectrum. 

Since a direct integral decomposition can be viewed as a continuous 

direct sum, it seems plausible that the above observations can be 

extended to an arbitrary algebra and central ideal. However, as the 

second example makes clear, in relating z:;1(A) to the spectrum of the 

components of A, the ideal I will determine whether the essential or 

ordinary spectrum is called for. 
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Suppose now that I A E9 <.fJ(i\)dµ is the direct integral decomposition 

of <P. The following theorem of von Neumann [ 14] will help us prove the 

measurability of certain sets: 

Theorem 1. 10 (von Neumann): Let E =IA E9 E(i\)dµ be a projection. 

Then the sets { i\ I E(i\) = 0} and { i\ I E(i\) is finite} are measurable . 

. . 

Lemma 1. 11: Let A = IA E9 A(i\)dµ E 4>. Then Ao = { i\ E A IA(i\) is 

invertible} is measurable. 

Proof: Let A = UH be the polar decomposition of A. It is easy 

to see that U = IA E9 U(i\)dµ, H = IA E9 H(i\)dµ where U(i\)H(i\) is the 

polar decomposition of <P(~). Since A(i\) is invertible if and only if both 

U(i\) and H(i\) are, A0(A) = A0(U) n Ao(H), and we can therefore treat 

these cases separately. 

For U, we note that 

Ao(U) = { i\ IN(U(i\)) = o} n { i\ IN<u*(i\)) = o} 

where N(T) denotes the projection on the null space of T. However, 

both of these sets are measurable by Theorem 1.10, and hence, so is 

A0(U). For H, we let En be the spectral projection associated with the 
00 

interval [ 0, 1/n]. Clearly then, Ao(H) = y {i\ IEn(i\)H(i\) = o}' and 

since each set in the union equals 

A0(H) is measurable, again by Theorem 1.10. This completes the 

proof. 
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A well-known theorem of Atkinson states that an operator 

A E B(h) is Fredholm if and only if the range of A is closed and N(A) 

and N(A *) are finite. The following result, due to Breuer, generalizes 

this to an arbitrary algebra. 

Lemma 1. 12 (Breuer) : A E <I> is Fredholm if and only if 

(i) N(A) is finite 

(ii) there exists a projection F E <I> such that F c range of A and 

1 - F is finite. 

Lemma 1.13: Let A = IA EB A(A.)dµ E <I>. Then the set Ae ={A. IA(A.) is 

Fredholm} is measurable. 

Proof: As in Lemma 1.11 we use the polar decomposition 

A =UH, A(A.) = U(A.)H(A.). Since the Fredholm operators are closed under 

multiplication, A(A.) is Fredholm, N(A(A.)) = N(U(A.)) and N(A*(A.)) = 

N(U*(A)) are finite, and so, U(A.) and U*(A.) are Fredholm. But 

H(A.) = U*(A.)A(A.), and therefore, Ae(A) = Ae(U) n Ae(H). However, 

Ae(U) = {A. IN(U(.\)) is finite} n { .\ jN(U*(,\) is finite} 

implies Ae (U) is measurable by Theorem 1. 10. If we could verify that 

where En is the spectral projection of H associated with [ 0, 1/n], then 

Ae(H) would be measurable, completing the proof. Clearly, if En(.\) 

is finite for some n, then H(.\) is Fredholm, for then H(.\) = En (A)H(.\) + 

(1- En(A.) )H(A.) and H(.\) maps 1 - En(.\) onto 1- En(.\). Therefore, it 



16 

only remains to show that if H E cf> is positive hermitian and Fredholm, 

then there exists a spectral projection E([ 0, a]) which is finite. 

Because H is Fredholm, we can find F E cf>, F c range of H, 

and 1 - F finite. Now there is a closed subspace V c R(H) such that 

H : V ---+ F one-to-one and onto. Since V = 1 - N(FH) = R( (FH)*), 

V E cf>, and furthermore, 1 - V = N(FH), and because both H and F are 

Fredholm, 1 - V is finite. H : V ---+ F is an invertible mapping, and so 

there exists {3 > 0 such that 

(1) llHx ll ~ {3 llx ll for all x E V 

Let Ebe the spectral projection of [ 0, {3 / 2]; for x E E we have 

(2) llHx ll ~ (/3 / 2) llx ll 

Comparing (1 ) and (2) we see that inf(E, V) = 0. But then, by parallelo

gram law [ 10], 

E = E - inf (E, V) ,...., 1 - V - inf ( 1 - V, 1 - E) ~ 1 - V 

which says that E is finite. This completes the proof. 

Returning now to the essential central spectrum, we need the 

following two results due to Halpern: 

Lemma 1.14: Let I be a central ideal, QI the largest central pro

jection in I, and let S be an arbitrary central projection. Then 

(i ) IS is a central ideal 

(ii ) QI2;I(A) = 0 for all A E cf> 

(iii) z;I(A) = z;IS(AS) EB z;IS (AS1) 
1 
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where S1 = 1 - S, and the essential spectra on the right-hand side are 

taken in the algebras <I>S and <I>S1 , respectively. 

Theorem 1.15 (Halpern): Suppose that <I> is properly infinite, and that 

I = Ip{E) . Then if Z E 2:;1(A), there exists two sequences of mutually 

orthogonal projections { EJ, {Fn} suchthatcs(En) = cs(Fn) = P, all 

are properly infinite, and ll (A-Z)En ll ~ 1/ n, ll Fn(A- Z) ll ~ 1/ n . 

Part (ii) of Lemma 1.14 says that as far as the essential central 

spectrum is concerned, we might as well assume that I n l = 0, or 

QI = 0, and we shall do this from now on. Under this assumption, a 

central ideal will, by Theorem 1. 5, divide the algebra <I> into two parts, 

<I> = <I>P EEl tl>(l- P), such that I n <I>(l- P) = I{l- P) = O and IP is the ideal 

of compact operators in <I>P. Let P =IA EEl xGdµ, where xG is the 

characteristic function of the measurable set G. We will, in order to 

simplify the statement of the decomposition theorem, accept the fol

lowing convention: in the factor <I>(A) , A E G, ae will denote the 

essential spectrum of invertibility modulo the compacts whereas for 

<I>(A.), A {:. G, ae will be the ordinary spectrum. 

Theorem 1. 16: Let I = Ip{E) be a central ideal, P = cs(E) = I A EEl xGdµ, 

and let A = IA EEl A{A.)dµ E <I>. Then Z = I A EEl c(A.)dµ E ~I(A) if and only 

if c{A.) E ae (A{A.)) µ-a . e. 

Proof: It suffices to treat the case Z = 0, so assume that 

0 E l:;I(A). Then A is invertible modulo I + [~] for some \; 

(3) AB = l + K where B E <I>, K E I + [~] 
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Now, by Lemma 1. 7, we can find J E I, Qk E ~' and Dk E <I>, 

k = 1, ... , n, such that the range of Qk is closed and 

n 
(4) ll K - (J + L°: ~Qk)ll ~ 1/2 . 

1 

From (3) we find that 

00 00 

AB - (J + L°: ~Qk) = 1 + [K - (J + L DkQk)) 
1 1 

and from (4) we see that the right-hand side is invertible, and therefore 

there is a B' E ~ such that 

or 

(5) 

n 

n 

ABB' - (JB' + L ~B'~) = 1 
1 

n 

AB 0 = 1 + J 0 + L CkQk J 0 E I, B 0 , Ck E ~ . 
1 

Now, R(L; CkQk) ~ sup R(CkQk) ~sup R(~) E ~ since the range of~ 
1 k k 

is closed. Hence, if Q = sup R(~) we have 1 - Q :1= 0 and 
k 

(1- Q) d~ CkQk) = 0. Hence, from (5) we get 
1 

AB 0( 1 - Q) = 1 - Q + J ( 1 - Q) 

which says that A, as an operator from (1 - Q) into (1 - Q), is invertible 

modulo I. Therefore if 1 - Q = IA EB Xydµ, we have that A(A) , for 
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.A E Y, is either Fredholm or invertible (depending upon whether A E G 

or .A f. G). Hence, 0 E ae(A{.A)) on a set of positive measure. 

Conversely, suppose that 0 E ~1(A). If I = 0, consider 

A0 = {.A IA(.A) is invertible} which, by Lemma 1.11, is measurable. If 

µ(A0) > 0, then we can find A~ c A0 , µ(A~) > 0, such that llA(.Af 1
11 is 

bounded for .A E A~. Therefore, A is invertible as an operator on Q, 

where Q = f EB xA'dµ. Hence, 0 E a(A/I~]), where ~ is any maximal 

ideal in r containing 1- Q, which contradicts our assumption that 

0 E ~1(A). Hence, µ(A0) = 0 as required. 

By Lemma 1.14 and Theorem 1. 5, it remains to consider the 

case when <I> is properly infinite with no pure infinite part and I is the 

ideal of compact operators in <I>. In this case, by Theorem 1.15, we 

can find two sequences of mutually orthogonal projections {En} and 

{Fn} satisfying all the conditions in that theorem. Since all projections 

have central support 1, the above conditions hold for each A(.A) except 

possibly on a µ-null set. However, by Lemma 1.12, this says that A(.A) 

cannot be Fredholm, and so, 0 E ae(A(.A)) µ-a. e. This completes the 

proof. 

As a corollary, we get the following converse to Theorem 1. 15. 

Corollary 1. 17: Suppose that <I> is properly infinite, A E <I>, {En} and 

{ F J as above. Then 0 E ~iCA) . 

3. Spectral Mapping 

Either directly from the definition, or from Theorem 1. 16, it is 

clear that a(Z) c a(A) if Z E ~1(A). Hence, if f is analytic on a neigh

borhood of a(A), f(Z) is also defined, and so it is natural to expect that 
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a mapping theorem holds . The next lemma is directed t owards showing 

that 

f(A) = f EB f(A(A) )dµ . 
A 

Lemma 1.18: Let A = f EB A(A)dµ E <I>. Then a (A(A)) c a(A) J.Jra. e. 
A 

Proof: Let a 0 be in the resolvent set of A. Then there is a 

(3 > 0 such that ll (A- ao)x ll ~ (3 llx ll for all x. Hence, except on a µ-null 

set Yao' A(A) - a 0 is invertible, and ll (A(A) - a 0)xA II ~ (3 llxA 11 for all 

xA E h(A.) . Therefore, there is an open disk W a about a 0 , such that 
0 

A(A.) - a is invertible for all a E W ao' A E A\Y%. If we do this for all 

a 0 E p(A), we get a collection of open disks covering p(A) , from which 

we can select a countable subcovering {w a }:°. If Y°k are the cor-
k <Xl 

responding µ-null sets, then a(A(A)) c a (A) provided At:_ U Ya as 
1 K 

required. 

Corollary 1.19 : If f is analytic on a neighborhood of a(A), then 

f(A) = f EB f(A(A) )dµ. 
A 

Proof: By the above, f(A(A.)) is well defined µ-a. e . Since the 

result is clearly true if f is a polynomial, a limiting process yields 

the full statement. 

Theorem 1. 20: Let A = f EB A(A.)dµ E <I>, f analytic on an open set 
A 

U => a(A). Then ~I (f(A)) = f(~1(A)). 

Proof: We first show f (~1(A)) c ~1f(A) . Let 
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Z =IA EB c(.X)dµ E .6I((A) ). From Theorem 1.16, c(.X) E ae(A(A)) µ-a. e., 

and f(c(.X)) E f( ae (A(.>t)). However, by a result of Gramm sch and Lay 

[ 5], f( ae(A(.X)) = ae(f(A(.X))); and so f(c(.X)) E ae(f(A(.X))). Again by 

Theorem 1.16, f(Z) =I EB f(c(.X) )dµ E .6If(A). 

To verify that .6If(A) c f(.6I(A)), considerably more work is 

required. We will first establish that this is true 'locally': i.e. , we 

will show that if Z E .6If(A), then there is a non-zero central projection 

Q such that ZQ E f(.6I(AQ)). We proceed to prove this by examining 

three cases: 

I: Assume that a(A) has an isolated point a. Since 

Z = f A EB c(.X)dµ E .6If(A), we have c(.X) E ae f(A(.X)) = f[ae (A(.X))], and 

hence, c(.X) E range of f. Let Ya = C 1 
(a). Now since a is isolated, 

there is a measurable set G, µ(G) > 0, such that a E f[ae(A(.X))] for 

all A E G; in other words, Ya n ae(A(.X)) * </> for A E G. If 

Q =I EB xcdµ, we claim that Ya n a(AQ/IQ + [~]) =1= </>for all <: where <: 
A 

will now be a maximal ideal of J'Q; if not there is a <: such that for 

each y E Ya, AQ-y is invertible modulo IQ+[~]. As in the proof of 

the decomposition theorem, this means that for y E Ya there is a 
A 

central projection ~ ~ Q, Qy( ~) = 1, and such that AQ - y is invertible 

modulo IQ as an operator from ~ into ~· By the openness of invert

ible operators, this last condition holds for a neighborhood WY of y . 

Ya is closed, and so compact, and we can therefore select a finite 

number Wy
1

, ••• , WYn to cover Ya. If QYi' ... ,QYn are the corre-
n /\ 

s ponding projections, set Q' = II Qy ; Q' ( ~) = 1, and so Q' =t= 0. Further-
1 k 

more, by construction, AQ' - y, as an operator from Q' into Q', is 
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invertible modulo IQ for all y E Ya. Consequently Ya n ae (A(A) ) = ¢ 

for all A. E G', where Q' =IA EB XG'dµ, which is a contradiction. There

fore Ya n a(AQ/IQ + [ ~]) * cf> for all ~. But then a theorem of Halpern 

([7], Theorem 3. 5), guarantees a Z0 n }Q such that Z0(~) E Ya for all ~· 

Hence, Z 0 = IA EB d(A.) xGdµ and d(A.) E Ya for A E G. Recall that 

ZQ = JG EB a(A.)dµ where a(A.) = a. Clearly, ZQ = f(Z 0) E f(LI AQ). 

d 1 
00 

II. We now assume f' = dz f = 0 on Y = C ( a(Z)). If U = U Uk, where 
1 

Uk are the components of U, then either Uk n Y is finite or f is con-

stant on Uk. Hence, f assumes at most a countable number of values, 

and therefore, we must have an isolated point in a(Z). This puts us 

back in case I. 

III. From I and II, we may now assume that we have a point w0 E a(Z) 

such that Yw
0 

= C
1
(w 0) is at most a finite set uk, k = 1, ... ,n, and 

f'(uk)-:/- 0 for all k. Hence, there is a neighborhood of w0 , W, and open 

sets Uk, k = 1, ... , n, uk E Uk, such that f: Uk~ W has an analytic 

inverse gk. Further, by choosing W small enough, we can assume that 
i n 

C (W) c U Uk. If c(A.o) E W, we have 
1 

and so for k0 , 1 ~ k0 ~ n, gk
0 

(c(A.0)) E ae(A(A.0)). Let 

G ={A. jc(A) E W}; G is measurable since c is a measurable function, 

and µ(G) > 0 since w0 E a(Z). By Lemmas 1.11 and 1.13, 

Gk ={ A E G lgj(c(A.)) E ae(A(A.) )} is measurable, and by the above 
n 

remark, G = · U Gk. Hence, we can assume that µ(G1 ) > 0. Let 
1 
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Q = f EB x G d µ; then 
A i 

ZQ = I EB c(.X)xG dµ = f(f EB g1 (c(.X) )xG dµ) 
A i A i 

and by Theorem 1.16, f EB g1 (c(.X) )x Gdµ E ~1AQ. This establishes our 
A i 

'local' result. 

To complete the proof of the theorem we will use a Zorn's lemma 

argument. Define 

t::,.. = { Q IQ a central projection, ZQ E f(:E1AQ)} 

where Z = IA EB c(.X)dµ E :E1f(A). 6. inherits the standard partial ordering 

of projections, and t::,.. :f:: <P by the local result. If {Qa} is a chain, let 

Q0 = sup Qa. By the separability, we know that { Qa} is countable, so 

write { Qk} ';'; Qk = IA EB Xv k dµ. Now since ZQk E f(:E1A~), there is a 

function 1k(.X) such that c(.X) = f(tk(A) ) for .XE Vk. Let 
00 

t(A) = :E tk 1 (A)[ Xv (A) - Xv (A)]. Clearly' C(A) = f(t(.X)) for 
0 + k+l k 

.X E V = U Vk, and so Q0 E 6., and is the required upper bound. 
1 

Hence, 6. has a maximal element, but the local result forces this 

projection to be the identity. This completes the proof. 



24 

CHAPTER 2 

PERTURBATION THEOREM 

We have already mentioned that when 4> = B(h) and I is the ideal 

of compact operators, the essential central spectrum is the essential 

spectrum of invertibility modulo the compacts. In this case, Gustafson 

and Weidmann [ 6] have demonstrated the following converse to Weyl 's 

Theorem: if ae(A+ X) = ae(A) for all A E B(h) (where ae is either the 

essential spectrum mentioned above, or the Weyl essential spectrum), 

then Xis compact. The purpose of this section is to prove the cor

responding statement for the essential central spectrum. 

For this section, we will drop the assumption that the algebra 4> 

operates on a separable Hilbert space. 

Definition 2. 1 : Let I be a central ideal; we define W 1 by 

Our objective is to show that WI = I. Clearly, I c WI' and so it 

only remains to verify the reverse inclusion. The next result will enable 

us to restrict our attention to the projections in W r 

Proposition 2 . 2 : WI is an ideal. 

Proof: That WI is closed under addition and scalar multiplication 

is clear. Hence, let XE WI' A,B E 4>. We first note that 



25 

and therefore, we may assume that B is invertible. Now, 

z L::I(A + BX) <=;> 0 E L::I(A + BX- Z) 

# 0 E L::I(B- 1A + X- B- 1 Z) 

4> 0 E L::I(B- 1A- B-1 Z) 

<:? 0 E L::I(A- Z) 

# Z E L::I(A) 

Hence, BX E WI; XB is handled similarly, and thus it remains to 

show that WI is norm closed. Let {xJ c WI' x..i--? X. We have, 

z L::I(A) ¢=> Z E L::I(A + ~) v n 

# 0 E L::I(A + ~ - Z) v n 

~ A + Xn - Z not invertible 

modulo I + [ ~] v n, ~. 

Since the invertible operators in any C*-algebra form an open set, 

the above implies that A + X - Z is not invertible modulo I + [ ~] v ~' 

and the ref ore, z E L::I(A + X). Hence, L::I(A) c L::I(A + X). If we now 

replace A by A+ X, and ~by -~, then the reverse inclusion is 

obtained, and the proof is complete. 

Remark: The above method furnishes an alternate proof to the theorem 

of Gustafson and Weidmann, since in the event that <I> = B(h), the com

pacts are the only proper ideal; the same is true when <I> is a II
00 

factor, 

for again the uniform closure of the finite elements is the only proper 

ideal. 
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By the above proposition, to show that WI = I, it suffices to show 

that the projections in WI also belong to I [16]. As was done previously, 

we will decompose <I> into several parts, and handle them separately. 

We will require the following lemmas: 

Lemma 2. 3: XE WI iff 0 E ~1(A) = 0 E ~1(A ± X). 

Lemma 2. 4: Let I be a central ideal, ~ a maximal ideal of 'r' and 

suppose Pis a central projection with P ~ ~ · Let ~1 = ~P, 1>1 = <I>P. 

Then 

(i) ~1 , is a maximal ideal of '}(<I>1) = d-(<I>)P 

(ii) [ ~] P = [ ~1 ], (I + [ ~]) P = I1 + [ ~1 ] when I1 = IP and [ ~1 ] is 

the ideal generated in the algebra <I>1 • 

(iii) If~' is a maximal ideal of 5(<1>1), then~ = ~' EB (1- P)d-(<I>) 

is a maximal ideal of '} (<I>) . 

. Proof: The only statement that isn't immediate is that 

[ ~1 ] = [ ~] P. [ ~] P :::J [ ~1 ]. On the other hand, elements of the form 

AQ, A E <I>, Q E ~' generate [ ~], and (AQ)P = (AP)(QP) E [ ~1 ], and so 

[ ~] p = [ ~l] . 

Since we will be working with more than one algebra, we will 

need a way of identifying in which algebra a certain essential central 

spectrum is taken . As in the above lemma, we will denote the algebras 

with subscripts, <I>1 , and use ~~ for the essential central spectrum 
1 

relative to 11 in the algebra <1>1 • If no subscript is present, it will 

always mean the algebra <I>. 
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Lemma 2. 5: Let P be a central projection; I1 = IP, <P1 = <PP. Let 

A1 E <P1 • Then 0 E :6~1 (A1) iff 0 E :6I(A1) . Also, if A E <P and 0 E :6 I(A) , 

then 0 E :6~ (AP) . 
1 

Proof: Suppose that 0 E :6~ (A1 ) and 0 E :6I(A1). Hence, there 
1 

is a maximal ideal ~ and BE <P .such that 

(1) Y E I + [~] 

Note that PE ~' since that would imply that A1 E [ ~], and so by (1), 

1 E I + [\]. Hence, 1- PE ~' and 

A1 B = A1 BP = P + Y' Y' E I+ ( t;] 

This equation shows that Y' = Y' P, or that Y' E I1 + [ ~1 ] by the previous 

lemma. But this contradicts our assumption that 0 E :6~ (A1). 
1 

Conversely, assume that 0 E :6I(A1) and that 0 f- :6~1 (A1). Then 

Let ~ = ~1 EB (1 - P)3( <P); then 

A1B1 = P + Y1 + (1- P) - (1 - P) = 1 + Y YE I + (d 

which says 0 E ~1(A1). The proof of the last statement follows in a 

similar manner. 

We are now in a position to show that WI behaves nicely when <P 

is decomposed . 
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Proposition 2. 6: WIP = WIP' where Pis a central projection and 

IP= I1 is considered as a central ideal in the algebra <1> 1 = <I>P. 

Proof: We first show that WIP c WI
1

• Let Q E WIP, A1 E <I>H 
1 

and 0 E ~Ii (A1). Lemma 2. 5 shows that 0 E ~I(A1), and hence, 

0 E ~1 (A1 ± Q) since Q E Wr Again by the above lemma, 0 E ~~ (A1 ± Q) 
1 

since Q E <I>i- By Lemma 2. 3, Q E WI . 
l 

Suppose now that Q E WI
1

, and that 0 E ~I (A) for A E <I>. By 
l 

Lemma 2. 5 we have 0 E ~I1 (AP). If we assume that 0 E ~I (A + Q), then 

(2) (A +Q)B = 1 + Y B E <I> YEI+(~] 

for some ~. Note that Pf. ~; for if not, Q E [~ ], and the equation would 

say 0 f. ~I (A). Hence, multiplying (2) by P, we get 

(AP +Q)(BP) = P + Y' Y' E I1 + [~] 

or 0 rt. ~~ (AP +Q), and since Q E WI , 0 rt. ~~ (AP), which is the 
l l 1 

desired contraction. 

As was discussed in Chapter 1, Halpern has shown that every 

central ideal is of the form Ip (E), where P is a central projection, and 

E is a properly infinite projection which is dominated by P. Every 

central ideal therefore has a natural decomposition 

I = I(l - P) EB I(P -QI) EB IQI 

where QI = P - cs(E) is the largest central projection in I. As before, 

what happens in the algebra <I>QI does not affect the essential central 

spectrum, and hence we may assume QI= O. By Proposition 2. 6, we 
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are then left with considering the case I = I(l - P) = 0 and the case 

I = I1(E), where cs(E) = 1. We will begin with the latter case. 

Definition 2. 7: A projection F will be called I - properly infinite if 

whenever FQ E I for some central projection Q, then FQ = 0. 

The terminology is justified, for if we let I be the ideal gen-
.. 

erated by the finite projections, then we obtain one of the standard 

definitions of properly infinite. The following lemma is a generaliza

tion of the rather obvious statement that any projection (in B(h)) which 

does not dominate any infinite projections must be finite. 

Lemma 2. 8: Let S E <I> be a projection which does not dominate any 

I - properly infinite projection. Then S E I. 

Proof: Consider the following sets of central projections: 

Since S is not I- properly infinite, n is non-void; it is partially ordered 

by set inclusion, and clearly, the upper bound of any chain is the union 

over the chain. Hence, by Zorn, we can find a maximal element {Qi}; 

we claim ~Qi = cs(S). If not, then S(cs(S) - ~Qi)¢ O, and is not 
1 1 

I- properly infinite since it is dominated by S. Therefore 

S(cs(S) - ~Qi) Q0 E I for some Q0 E l' but then {Qi} U (cs(S) - ~Qi)Q0 
1 1 

contradicts the maximality of {Qi}. Since ~Qi = cs(S), 
1 

S = cs(S)S = (W. )S = ~Q.S 
1 1 
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By construction, QiS E I, llQiS II ~ 1, and since I is a central ideal, 

SE I. 

A basic tool that we will need is the following characterization 

of I;I(A) when A = A* due to Halpern ( (7] Corollary 3.15). 

Theorem (Halpern) 2. 9: Let <I> be properly infinite, A E <I> hermitian. 

Then Z E I;I(A) iff there is a sequence of mutually orthogonal projections 

{En} such that 

(i) cs(En) = 1 - QI 

(ii) En are I - properly infinite 

(iii) ll (A - Z)En II ~ 1/ n. 

Proposition 2.10: Let <I> be properly infinite, I= I1(E) where cs(E) = 1. 

Then w1 =I. 

Proof: We have already shown that it is sufficient to show that 

every projection in WI is in I; hence, let S E W be a projection. We will 

first show that S cannot be I -properly infinite. 

If S is I - properly infinite, then so is 1 - cs(S) + S; suppose 

Q E '}", and Q(l - cs(S)) + QS E I. But QS is orthogonal to Q(l - cs(S) ), 

and since I is an ideal, we have QS E I and Q(l - cs(Q)) E I. However 

the former term is zero since S was assumed to be I- properly infinite, 

while the latter vanished because In a = 0. Hence, 1 - cs(S) +S is 

I - properly infinite, which also implies that it is properly infinite, since 

I contains all finite projections. 
00 

It is well-known that if F is properly infinite, then F = I; Fk 
1 

where Fk are mutually orthogonal and Fk ,...., F( [ 4 ]). Hence, 
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00 

1 - cs(S) + S = L Sk, Sk,..., 1 - cs(S) + S. Therefore, the {sk } are I -
1 

properly infinite, and cs(8k) = 1, since equivalent projections have the 

same central support. Then by Halpern's Theorem, 

0 E ~1(1 - cs(S) +S)) = ~1(cs(S) - S) . 

or 

0 E ~1(cs(S)) 

since S E Wr This, however, is impossible unless cs(S) = 0 because 

cs(S) is invertible modulo ~' where ~ is any maximal ideal containing 

1 - cs(S). Hence, we have succeeded in showing that Q E W 1::::> Q is not 

I - properly infinite. Further, Q cannot dominate any I - properly 

infinite projection, for if Q > Q0 , then Q0 E WI' which we have just 

shown to be impossible. Hence, by Lemma 2. 8, Q E I. This completes 

the proof. 

Proposition 2 .11: Let cl> be a von Neumann algebra, I = 0. Then 

Proof: Let S E w1, S a projection. As was done above, it is 

sufficient to verify that 0 E :01 (cs(S) - S), since this implies that 

cs(S) = 0. 

We assume that 0 f_ :01 (cs(S) - S); i.e., there is a ~ for which 

cs(S) - S is invertible modulo [ ~] : 

(cs(S) - S)B = 1 + Y y E [~] 

or 

Y = 1 - (cs ( S) - S) B 
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Hence, the range of (1 - cs(S) + S)Y is equal to 1 - cs(S) + S, and since 

(1 - cs(S) + S)Y E [ ~], R( (1 - cs(S) + S)Y) = 1 - cs(S) + SE ~. Therefore, 

SE ( ~] . 

By Lemma 1.7, we canfindAkE <I>, Qk E ~' k = 1, ... ,n, such 

that the range of ~ is closed, and 

(3) 

Now, 

n 

ll S - L Ak~ ll < 1/2 
1 

n 

llS - S( L AkQk)S ll 
1 

n n 

n n 
= ll S(S - L, AkQk)Sll ~ llS - L AkQk ll 

1 1 

and S(~ AkQk)S = L (SAkS)~, there is no harm in assuming that 
n 1 1 
~ AkQk maps S into S. However, (3) says that as an operator from S 
1 n n 
into S, ~ AkQk is invertible, and so, R( L AkQk) = S. Then 

1 1 

n 

S = R( L AkQk) ~ sup R(AkQk) ~ sup R(Qk) = Q 
1 k k 

But R(~) E ~ since the range of Qk was chosen to be closed, and 

therefore, Q E ~. But S ~A, Q E } implies cs(S) ~ Q, which in turn 

says that cs(S) E \, a contradiction. 

Therefore, 0 E ~{cs(S) - S), and the proof is complete. 

Theorem 2 .12: w1 =I. 

Corollary 2.13: n I+[~] = I. 
~ 

Proof: I c n I+ [ ~] c WI" 
~ 
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CHAPTER 3 

CENTRAL RANGE 

In addition to the essential central spectrum, Halpern has also 

introduced an essential central numerical range. In this chapter, we 

will investigate this numerical range when I = 0, and thus shorten the 

terminology to just the central range . In the first section, we prove 

results aimed towards obtaining a decomposition theorem, as was 

accomplished for the ·central spectrum in Chapter 1. It turns out, 

however, that a complete decomposition theorem is obtained instead 

for the norm closure of the central range. 

1. The Central Range 

We again insist that our algebra ~ act on a separable Hilbert 

space. Recall that a projection E E ~ is called Abelian if the algebra 

E4>E is abelian. If we define '1t = J, there exist abelian projections in 

'1t whose central supports equal 1 ([ 14] ) . Further, if E is sue h a pro

jection, and A E '1t ::J ~' then EAE = ZE for some Z E '}'. With this in 

mind, we state the following definition due to Halpern : 

Definition 3 .1: Let A E 4>. We define the central range of A, W J(A), by 

W}(A) = {z E 'J" IEAE = ZE} 

where E E + = r I is an abelian projection of central support 1. 

This definition is not as strange as it might look at first. If 

A E B(h), then the numerical range, W(A), is given by 
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W(A) = {A E ~ IA = (Ax, x) x E h, ll x ll = 1} . 

On the other hand, every abelian projection in B(h) is given by a one

dimensional projection Ex whose range is the subspace spanned by x, 

llx ll = 1. Furthermore, 

and so the definitions agree for B(h). In addition, when <I> is a factor, 

W'} (A) = W(A). 

Remark: It is easily observed that Wd-(A) satisfies the following 

linearity properties: 

(a) W'}(aA) = aWd-(A) a E G: 

(b) Wr(A + Z) = W}(A) + z E r 
We will now begin to study the connection between W}(A) and 

W(A(.\)). We point out that, at first, it might appear that there is a 

problem in trying to use a direct integral decomposition to study w1 (A), 

since the definition uses operators from outside the algebra <I> (namely, 

the abelian projections of +). However, if <I> = IA EB <l>(A)dµ, we have 

'1t = f EB '1t (A)dµ, same A and µ, because a direct integral decom-
A 

position is taken with respect to a commutative algebra [ 14] and 

<I> n <I>' = + n '11' = } . Alternatively, one could just note that W;t(A), 

A E <I> is the same as W 3-(A) when A is looked at as an operator in +, 

and therefore, we could assume <I> = '11. 

Proposition 3.2: LetA = fA EB A(A)dµ E <I>. Then Z =fA EB c(A)dµ ~ WJ-L\) 
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if and only if c (A.) = (A(A.)x(A.), x(A.)), where x E h = I EB h(A.)dµ and 
A 

llx(A.) 11= 1 µ-a.e . 

Proof: Let x Eh with llx(A.)11=1 µ-a.e. Then y Eh, (y( ·),x(· )) is 

a bounded measurable function, and therefore, (y( . ), x( .. ) ) x(A.) E h. 

Denote by Ex the projection which maps 

y( . ) ~ (y( ·) , x( . ) ) x( . ) 

If Z 0 E 1', Z 0 = IA EB b(A.)dµ, then 

ExZ0y(A.) = (Zo.Y(A.), x(A.)) x(A.) 

= (b(A.)y(A.),x(A.)) x(A.) 

= b(A.)(y(A.),x(A.)) x(A.) 

= Z o(Exy(A.) ) 

and hence, Ex E '}'. Since llx(A.) 11 = 1 µ-a. e ., cs(Ex) = 1, and we have 

g(A.) = (y(A.),x(A)) 

= (Ag(A.)x(A.),x(A.)) x(A.) 

= (Ax(A.),x(A.)) y(A.)x(A.) 

= (Ax(A.), x(A.) ) Exy(A.) 

which shows that E is abelian and that Z = I EB (Ax(A.), x(A.) )dµ E W 1.. (A) . 
x A d 

Conversely, suppose that F E 'it is any abelian projection with 

cs(F) = 1. Choose x E R(F) with llx(.\) II = 1 µ-a . e., and let Ex denote 

the projection constructed above. Now Ex ~ F, and so ExF = Ex. 

Therefore, if F AF = Z F, then 

which shows that Z is of the required form. 
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Corollary 3.3: Z =IA EB c(.\)dµ E W}(A) implies c(.\) E W(A(X.)) µ.-a.e. 

A complete decomposition theory would require the converse of 

Corollary 3. 3 also, which we have been unable to do. However, we 

have been able to get satisfactory results for W} (A), the uniform 

closure of W(A) . The next few lemmas are directed towards this 

theorem. 

Lemma3 . 4: LetA = f EBA(.\)dµ.E <I>. For E > 0, thereisameasur
A 

able set XE c A, µ(XE) < E, such that (A( ·.)x( ·), x( ·.) ) is a continuous 

function on A'\.XE for all x E h. 

Proof: Let Xv :x:a, ... , be an orthonormal basis for h . g . . (A.) 
lJ 

= (A(A)~(.\),x/A)) is a measurable function, and so by Lusin's Theorem 

([12]), there is a set Xij c A, µ(Xij) < E/2i+j such that gij is continuous 

on A X... Put XE = LJ X .. ; then µ.(X.J < E and for A E A\.X, 
-J.] . . lJ ..: . 

1, J 

00 00 

(A(A.)x(X.), x(.\)) = (A(X.) L akxk(A.), l: ajx/.\) ) 
1 1 

. 00 00 

= L L aka/A(.\)xk(A.), xj(.\)) 
1 1 

which is the uniform limit of continuous functions. This completes the 

proof. 

To simplify things, we define 

V = {x Eh l 11x(.\) ll = 1 µ-a.e .} 
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Lemma 3. 5: Suppose 0 E W(A(i\) ) µ.-a.e. Then for E, o > 0, there 

exists a measurable set X c A, µ.(X) < o, and x E V, such that 

l(A(i\)x(i\), x(i\)) I < E for ;\ E A'\..X. 

Proof: We first assume that h is a direct integral Hilbert 

space of pure dimension. By the above lemma, we can find a set X 

µ.(X) < o, such that (A(i\)x(i\), x(i\)) is a continuous function on A\ X 

for all x E h. Fix i\ 0 E A'\X. Since 0 E W(A(i\ 0)), there is an x 0 E h(i\0), 

llx 0 11 = 1, and j(A(i\0)x0,x0 ) I< €/2. Because h is of pure dimension, 

the function x 0 (i\) = x 0 is in h. (A(i\)Xo(i\), x 0(i\)) is a continuous function, 

so we can find an open ball U i\ centered at A.0 such that 
0 

for .A E U.A 
0 

The sets U A , i\ 0 E A'\..X, cover A'\X, and so by the Lindelof 
0 

00 

property, A'\..X = U Ui\ . We change this into a disjoint union in the 
1 k 

usual manner: Y1 = Y1' .. . , Yk = Uk'\ Yk-l" Recal~ng that each Ui\k 

brought with it a vector x(.A) = xk, we define x(i\) = L: x y (.A)xk(A.) E h . 
1 k 

Now for .\ E A X, .A E Yk for exactly one value of k, and so, 

j(A(.A)x(i\) 'x(i\)) I = l(A(i\)xk, xk) I 

~ I([ A(.A) - A(i\k)] xk, xk) I + j(A(i\k)xk, xk) I 
< E/ 2 + E/2 = £ . 

The last inequality follows from the fact that i\ E Yk c Uk and from the 

choice of xk. 
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To complete the proof, decompose h into a direct sum of 
00 

spaces of pure dimension; h = ~ EB hk. Apply the above result to each 
. k loo 

hk with ok = 5/ 2 , and let U = U Xk. 
1 

...,........,,...--,-......,._.,>. ' ; .. ' 
Lemma 3. 6: Suppose 0 E W(A(A)) µ -a. e. Then for E > 0, there exists 

x E V such that j(A(A)x(A), x(A)) I < E µ-a. e. 

Proof: By Lemma 3.5, there exists a set Xu µ( X1) < (1 / 2) µ( A), 

and X1 E h such that j(A(A)x1 (>t),x1 (A)) I< E for A E Y1 = A".X1 • 

Repeating this process, we construct a sequence{~} such that 

~ c ~-l' µ(~) < (1/2) µ(~_1 ), and a sequence{~} such that 

(t) 

Now 

00 00 

A'-\ U Yn = n ~ 
1 1 

00 

Hence, µ(A\ U Yn) :::; µ(~) < (1 / 2n) µ(A) ~ 0 and so we may assume 
00 00 1 
U Yn = A. 
1 

co 
Define x 0 = ~ x y (.X)~ (A). The fact that { Yn} is a disjoint 

1 n 
sequence and (t) combine to show that x0 is the required vector. 

We are now in a position to prove the announced result. 

Theorem 3.7 : Z =IA EB c(A)dµ E W}(A) if and only if 

c(A) E W(A(A)) µ-a. e. 
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Proof: It suffices to examine Z = 0. If 0 E W(A(A) ) µ-a. e. , 

apply Lemma 3. 6 with E = 1 /n, n = 1, 2, ... , to obtain xn E V, 

j(A(A)xn(>t),xn(A)) I< 1/n. By Proposition 3.2, zn =IA EB (A(A)xn(A), 

XJi(X) )dµ E W}(A), and clearly Zn_. 0. Therefore 0 E WJ(A). 

Conversely, suppose that Zn E W'J'(A), Zn_. 0 uniformly. If 

Zn =IA EB cn(A)dµ, cn(A) _. 0 µ-a. e. and cn(A) E W(A(A)) by Proposition 

3.2. Hence, 0 E W(A(A)) µ-a.e. 

Theorem 3. 7 yields the following generalization of a classical 

result: 

Corollary 3. 8: ~0(A) c W~(A). 

Proof: Z =IA EB c(A)dµ E ~0(A) implies, by Theorem 1. 5, 

c(A) E a(A(;\.)) c W(A(;\.)). An application of Theorem 3. 7 completes the 

proof. 

2. The Power Inequality 

As in the case of the essential central spectrum, the decomposition 

theorem (Theorem 3. 7) is a useful tool in reducing problems in the 

algebra down to the factors, where they are easier to handle. As 

examples, we will prove a generalization of the power inequality, and a 

von Neumann algebra analogue of a theorem of DePrima and Richard [3]. 

As with the central spectrum, we need to know that certain sets are 

measurable, and this information will be provided by Lemmas 3. 10 and 

3.13. 
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Lemma 3. 9: There exists a countable dense subset of V, {xn} ;', such 

that for each A0 E A, {~(Ao)}:° is dense in the unit sphere of h(A0 ) . 

Proof: Let x11 :x::a, ..• , be a dense subset of the unit sphere of 

h
00

, and let P n denote the projection of h 00 onto hn. Choose 

Yn E hn, ll yn ll = 1. We define the following functions: 

Y A Ee , 11 P Yk ll = 0 n n n 

where en are the dimension sets of h. Clearly, xk E V, and by the 

continuity of the projections Pn, satisfy the condition of the lemma. 

Lemma 3.10: Let A= JA E9 A(A)dµ E <P. Then ~ ={ A lo Jc W(A(A) )} 

is measurable. 

Proof: Let { xk} :° be a dense subset of V guaranteed by Lemma 

3. 9. The set Gk n 
' 

is measurable, and we claim that, modulo a set of µ measure zero, 

A =LJ fl}Gk. 
w n=l k=l ,n 

If 0 ti_ W(A(A0 f'( then j(A(A.o)y,y) I > 1/n0 for ally E h(A.0 ), 

00 

llyll = 1, and n 0 large enough. Hence, A. 0 E n Gk . Conversely, 
k =l 'no 

00 00 ' 

suppose that A0 E 0 n Gn k; then for some n, 
n=l ~=1 ' 

l(A(A0)xk:(A 0),xk(A0) J ); 1/n for all k. Now since {xk(A0 )} is dense 
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in the unit sphere of h(A.0 ) , for y E h(A.0 ), ll y II = 1, we can find a sub

sequence x/A.0 ) - y, and therefore, if zj = y - xj (A.0 ), 

and then by applying Cauchy Schwarz to the last term and letting j - oo , 

we get l(A(A.0 )y, y) I ~ 1/ n, or 0 f. W(A(A.0 )) • This completes the proof. 

The DePrima-Richard result mentioned above states that if 

A E B(h), Re(W(A n) ) ~ 0 for all n (where Re denotes the real part), 

then A is non-negative Hermitian. We will demonstrate that this 

remains true of W(An) is replaced by Wl(An), and of course, 

Re(A) = (Z + Z*) / 2. The following lemma, which will also be used to 

establish the power inequality, is all that we need to prove this generali-

zation. 

Lemma 3.11: Let A = ~ EB A(A.)dµ E cl>, and Re(W'J' (A)) ~ 0. Then 

Re[ W(A(A.) )] ~ 0 µ-a. e. 

Proof: We first note that Re(Z) ~ 0, Z =I EB c(A.)dµ, translates 
A 

to Re(c(A.)) ~ 0 µ.-a. e. Second, we claim that Re[ a(A(A.) )] ~ µ-a. e. 

If Re a < 0 and 

A0(a) = {A E A IA(A) - a not invertible} 

then A0 (a) is measurable (Lemma 1.11) and we must have µ(A 0 (a)) = O; 

for if not, choose Z = f A EB c(A.)dµ E W d' (A) and define 
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-- {c~A) 
g(A) u 

By Theorem 3. 7, Z' = JA EB g(.X}dµ E W r (A), but clearly Re(Z') does 

not have positive real part. Hence, µ(A 0(a)) = 0, and the argument 

used in the proof of Lemma 1.18 can now be applied, and thus, the 

claim is verified. 

In precisely the same manner, with Lemma 3. 10 used instead 

of Lemma 1. 11, we have that a E W(A(A.}), Re a< 0, only on a set of 

measure 0. Let { aJ ~be a countable dense subset of the left half 

plane. By removing a set of measure zero, we can assume that 

ak f. W(A(A.}) for all k, A.. Suppose now that {3 E W(A(.X0 }), Re {3 < O; 

then, W(A(.X0 }) can only be a straight line, for if it were any larger, 

there would have to be an interior point of W(A(.X0 )) in the left-hand 

plane by the convexity of the numerical range [ 9] , which has been ruled 

out by the deletion of the dense set { ak} :°. Hence, A(.X0 ) is a rotated 

and translated hermitian operator, and as such, the endpoints of 

W(A(A.0)) (one of which must lie in the left-hand plane) are also spectral 

points [ 9]. But, as we have seen above, this can only occur on a set 

of measure zero. This completes the proof. 

Corollary 3. 12: Re[ W d (An)] ~ 0 for all n implies that A is hermitian. 

Proof: By the above lemma, the hypothesis holds for each A(A.) 

except on a µ-null set. By the DePrima-Richard result, A(A) is 

hermitian, and therefore, so is A. 
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If A E B(H), the numerical radius of A, w(A), is defined as 

sup la I where a E W(A). The power inequality then states that 

w(An) ~ w(A)n [9]. For W'r(A), we define the central radius, w!W' 
in a similar fashion: w0 (A) = sup ll Zll, Z E Wr;(A). In Lemma 3.14 we 

give a formula for wt(A) which will yield the power inequality as a 

consequence. 

Lemma 3.13: A = f EB A(.\.)dµ E ~. Then w(A(A)) E L
00

(A) . 
A 

Proof: As usual, we may assume that h is of pure dimension. 

It suffices to prove that 

is a measurable set. By repeated applications of Lemma 3. 4, we 

can find a sequence of sets {xJ ~ satisfying the following properties: 

(a) ~ are disjoint, measurable 
00 

(b) µ(A\U ~) = 0 
1 

(c) (A(A)X(A), x(A)) is a continuous function on ~ for all x(A). 

00 

Since G{3 = l( ( G n ~), it suffices to show G{3 n ~ is measureable; 

suppose A0 E G{3 n ~. Then w(A(A 0)) = a> {3, and hence, there exists 

x 0 E h(A 0 ), llx0 II = 1, with I (A(A 0 )x0 , x0 ) I > (a + {3) /2. Then by con

tinuity, we have !(A(.\.)x0 , x0 ) I > f3 for .\. E ~ and IA - A0 I < E"o· In 

other words, for each A0 E G{3 n ~' there is an open set Ui\
0 

containing 

A0 , such that UA
0 

n ~ c G{3" The sets {uA) cover G{3 n ~;select a 

countable subcover { UA } ~. Then 
k 
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00 

G{3 n ~ = ( y UAk) fl ( G{3 n ~) 

= ( u [ u A n ~]) n Gf3 
1 k 

= U UA n ~ 
1 k 

Hence, G/3 n~ is measurable, and the proof is complete. 

Lemma 3.14: w1(A) = essential s~p w(A(A)). 

Proof: By the above lemma, /3 = essential sup w(A(A.)) makes 
A 

sense. We first show w J-(A) ~ /3. If 

Z = J EB c(A.)dµ E W4 (A), ll Z II = ess. sup lc(A.) /. But by Corollary 3. 3, 
A o A. 

c(A) E W(A(A.) ), and hence, /c(A) I~ w(A(A.) ). Therefore ll Z ll ~ /3, and 

thus wd-(A) ~ {3. 

On the other hand, for E > 0 there is a set of positive measure 

GE such that 

/3 ;:::: w(A(A) ) > {3 - E A.EG 
E 

Hence, for A E GE, there is a dA. E W(A(A.)) with /dA / > {3 - E; let 

.6. - UdA. By multiplying A by eiO if necessary, we can insure that 

dA E .6. n { ll! I I a I ~ /3' Re ll! < E - {3} 

on a set of positive outer measure r. But this means that there exists 

Z =IA EB c(A)dµ E W)' (A) and c(A) E {a / /a / ~ /3, Re a < E - /3} on a 

set of positive measure; for if not, then Re[ W1 (A+ (/3- E)l)] ~ 0, and 

so by Lemma 3.11, Re[ W(A(A.) + ({3- E)l)] ~ 0. But this contradicts the 

existence of the set r. Therefore, Z E W't (A) and ll Z II ;:::: /3 - E, and 

so, w't'(A) ~ {3, and we are finished. 
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Theorem 3.15: w 1 (An) ~ w'!(A)n. 

Proof: w'}(An) = ess. s~p w(An(A.}) 

= ess. sup w(A(A.} )n 
A 

= [ ess. sup w(A(A.})] n 
A. 

= wd(A)n . 
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