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ABSTRACT

This thesis is divided into two parts.

In Part I, we give an explicit construction for a class
of lattices with effecpively qin—integral dimensionality. A
reasonable definitio:?:gzgzzZ;gle to lattice systems is
proposed. The construction |is illustrated by several
examples. We calculate the effective dimensionality of some
of these lattices. The attainable values of the

dimensionality 4 , using our construction, are densely

distributed in the interval 1<{d<e,

The variation of critical exponents with dimensionality
is studied for a variety of Hamiltonians. It is shown that
the critical ekponents for the spherical model, for all d,
agree with the values derived in literature using formal
arguments only. We also study the critical behavior of the
classical p-vector Heisenberg = model and the
Fortuin-Kasteleyn cluster model for lattices with d<2. 1t
is shown that no phase transition occurs at nonzero
temperatures. The renormalization procedure 1is wused to
determine the exact values of the connectivity constants and
the critical exponents %, ¥ and Y for the self-avoiding
walk problem on some multiply connected lattices with d<2.

It is shown by explicit construction that the critical



exponents are not functions of dimensionality alone, but

depend on detailed connectivity properties of the lattice.

In Part 11, we investigate a model of the melting
transition in solids. Melting 1is treated as a layer
phenomenon, the onset of melting being characterized by the
ability of 1layers to slip past each other. We study the
variation of the root-mean-square deviation of atoms in one
layer as the temperature is increased. The adjacent layers
are assumed held fixed and provide an external periodic
potential. The coupling between atoms within the layer is
assumed to be simple harmonic. The model is thus equivalent
to a lattice version of the Sine-Gordon field theory in two
diﬁensions_ Using an exact equivélence, the partition
function for this problem 1is shown to be related to the
grand partition function of a two-species classical 1lattice
Coulomb gas. We use the renormalization procedure to
determine the critical behavior of the lattice Coulomb gas
problem. Translating the results back to the original
problem, it is shown that there exists a phase transition in
the model at a finite temperature T,. Below T,, the root
mean square deviation of atoms in the layer is finite, and
varies as {EL-Tf% near the phase transition. Above T,, the
root mean square deviation is infinite. The specific heat
shows an essential singularity at the phase transition,

=
varying as exp(-|T.-T| ) near T,.
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PART I

LATTICES OF EFFECTIVELY NONINTEGRAL DIMENSIONALITY



I : INTRODUCTION

In recent years much attention has been devoted to the
study of the variation of criticalrexponents as a function
of d, where d , the dimensionality of space , is treated as
a ccntinuously_ variable parameter. Nonintegral dimensions
were first introduced to aid the understanding of critical
phenomena exhibited by a binary fluid system of "Gaussian
molecules™ {1]. Wilson and Fisher [2-4] developed the
technique c¢alled € -expansion which allows one to write
critical exponents for Ising-like models as power series 1in

£ , where €=4-d. These t-expansion calculations have been
pushed up to third order in £ by Brezin, Le Guillou,
Zinn-Justin and Nickel [5-6]. Similar series expansions in
powers of £ , where the space dimensionality is 2-£,2+£,6-8
ete. [7-12] have been developed to describe a wide variety
of phase transitions in different physical systems. In
quantum field theo;y [13-15], the space dimension 4-& has
been introduced to régularize the ultraviolet divergences in
perturbation theory. Also atomic bound states have been

studied as a function of continuously varying d [16].

Despite much work done dealing with the computational
. aspects of the €-expansion techniques,( only some of which
was cited above ) its conceptual basis has remained quite

obscure, Just what physical meaning may be assigned to



these £-expansions ? We may argue that the appearance of €
as a continuous variable 1s a technical or mathematical
artifice, and that physically meaningful results correspond
only to integral wvalues of & ., This argument fails ,
however , Dbecause the radius of convergence of these
expansions (if they converge at all ; there are indications
that the expansions are only asymptotic [17] ) is expected
to be much 1less than one. In the following , we shall
attempt to answer this question by explicitly constructing a
class of lattices having nonintegral dimensionality. These
lattices are generalizations of the truncated tetrahedron

lattice, invented by Nelson and Fisher [18].

The 1lattices are defined recursively. They are
multiply connected and have some unusual topological
properties. In particular, they are spatially inhomogenous
and highly anisotropic. They may be called pseudo-lattices
to distinguish them from the '"regular" lattices usually

encountered in solid state theory or statistical physiecs.

An example of a pseudo-lattice is the Bethe lattice "
which has been  very important historically in the
development of the tﬁeory of phase transitions. Detailed
study of the Ising model on this lattice has suggested the
possibility of a new class of phase transitions ( phase
transitions of continuous order )[19] , which have

subsequently been realized on more conventional lattices



{201.

Part of the motivation for the study of these
pseUGOolatticés springs from the fact they are very good
pedagogical examples of renormalization group techniques at
work . Despite enormous progress in the application of the
renormalization group to the field of phase transitions
since the pioneering work of Kadanoff and Wilson ({21], the
number of cases showing nontrivial phase transitions where
the exact renormalization transformation may be explicitly
implemented has remained rather small . The only other
exceptions are the Gaussian model [22] and the hierarchical
model [23]. These lattices may also be wused to test the

validity of new approximation schemes .

While , as explained above , the g-expansion techniques
have motivated and influenced our analysis , a familiarity
with them is not a prerequisite for an understanding of the
ensuing discussion . Indeed, the major goal of this half of
our thesis is to provide an explicit construction of
lattices of effectively nonintegral dimensionality , where
the critical behavior of various Hamiltonians may be
explicitly determined independently of the ¢g-expansion
techniques, and thus provide a "reason for existence " and
testing grounds for these techniques . Some previous
exposure to the renormalization group formalism will be

helpful in feollowing the arguments, but it is not necessary.



I1 : OUTLINE
The discussion is organized as follows:

In Section III we define what we mean by the effective
(nonintegral ) space dimensionality of an infinite lattice .
The dimension of a lattice is defined in terms of the
density of states 6f the low frequency modes for a nearest
neighbour harmonic interaction Hamiltonian on the 1lattice.
The propesed definition is different from that assumed by
Nelson and Fisher {181. In particular the space
dimensionality of the truncated tetrahedron lattice using
our definition is found to be 2 10g5331.3652 , and not
log23w1.5850 as proposed by Nelson and Fisher. Arguments

are presented in favor of our definition.

In Section IV we give some examples of lattices having
nonintegral values of effective dimensionality. One is a
generalization of the truncated tetrahedron lattice to the
truncated n-simplex lattice. We define the (M,N) modified
rectangular lattice and the (M,N), modified rectangular
lattice. Here M and N are arbitrary positive integers. The
(M,N) modified rectangular lattice , and the (M,N), modifiéd
rectangular lattices are planar , mwmultiply connected
‘lattices with coordination number 3 or 4. These lattices

may be obtained by selectively deleting some bonds from a



two dimensional rectangular lattice. We also define a
modified n-cuboid lattice . Other lattices of this type are
easy to construct. The effective dimensionalities of some
representative cases of these lattices are determined in
Section V by deriving functional -equations for their
characteristic functions and determining their frequency

spectra.

In Section VI , the critical behavior of the spherical
model on a d-dimensional lattice is outlined , for arbitrary
d. We give the expressions for critical exponents as
functions of d . It is shown that the critical exponents
are piecewise continuous functions of d . We also verify
thét all the various critical expoﬁents that may be defined
are not imdependent , and simple relations exist amongst

them .

The spherical model is exceptional in that its critical
behavior <can be analysed for arbitrary dimension d . This
is not true for most Hamiltonians, where no simple
separation of wvariables takes place . In the next three
sections we consider some of these cases. Section VII
contains a discussion of the classical p-vector Heisenbefg
model . In Section VIII we discuss the Fortuin-Kasteleyn
cluster model. The behavior of these models has been
determined only for d<2. For d<2 , due to the special

structure of these lattices, we can write down the exact
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renormalization equations in terms of a finite number of
coupling constants . For simplicity, we shall consider only
the truncated tetrahedron lattice . Other lattices may be
similarly treated , and so 1long as d<2, the qualitative
behavior o¢f these 1lattices 1is quite similar and is
characterized by the absence of a phase transition at
nonzero tempefatures. We determine the behavior of
correlations in these models at very low temperatures. It
is found that the susceptibility of the p-vector model

. : ;b .
varies as the ( Q{Ci ) power of the inverse temperature .

The corrslations are much stronger in the cluster model, and
there the mean size of a cluster varies as an exponential of
an exponential of the inverse temperature .. Lattices with
d>2 are much more interesting, because they show phase
transitions ; but then the renormalization equations become

much mors complicated and are difficult to analyse .

In Section IX , we discuss self avoiding random walk
problems. These walks show a nontrivial phase transition
for multiply connected 1lattices, in the sense that the
generating functions of the random walk become singular as
functions of their argument. The nature of the singularity
and the palmas of Gbe oribisal exponents X, ¥ and VY are
determined for. the truncated tetrahedron ‘lattice, the
truncated B-simplex lattice, and the (2,1), modified

rectangular lattice .



In this case , however , no simple expressions exist
for  the eritical exponents as functions of the
dimensionality of the lattice . 1In fact, we can construct
examples of lattices that have the same space
dimensionality, but different critical exponents &, Y and V.
It is suggested that this is because the asymptotic behavior
of self avoiding random walks depends on detailed
connectivity properties of the lattice and not on the
dimensionality alone . We conclude with some final remarks

in Section X .



ITI: DEFINITION OF THE SPACE DIMENSIONALITY OF

AN INFINITE LATTICE

Consider an infinite 1lattice. For our purpose a
lattice 1is specified by 1its graph consisting of lattice
points and lines joining them called bonds. For simplicity
we consider only one kind of bonds. Two sites that have a
bond in commepn are called nearest neighbours . How do we
assign a dimensionality to an arbitrary infinite lattice ?
{ The effective dimensionality of a finite 1lattice may be
defined to be zero. ) Any proposed definition of effective
dimensionality should satisfy some elementary properties.
It should agree with the conventional integral value of
dimensionality for "regular "™ lattices . It should depend
only weakly on the lattice in the sense that introduction or
deletion of a finite number of lattice points or bonds
should not change its value. And preferably it should
satisfy some scaling relations between critical exponents

{24},

It is instructive to look at the familiar case when the
space dimensionality d is integral. We consider a "simple
cubic " lattice in d dimensions and consider a model in
which a scalar displacement X;is associated with each site
L and nearest neighbours are connected by harmonic springs

of equal spring constants. Introduction of normal mode
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coordinates converts this problem into one of independent
simple harmonic oscillators . Each normal mode 1is
characterized by a wave number‘z which 1is a d-dimensional
vector 1lying within the first Brillouin zone. We also know

that :

(i) For small wavenumbers, the frequency @ of the mode
with wave number K , 1s approximately proportional to the

2 2,2 =
magnitude of F, i.e. , @=zkKC for small IKL

(ii) The number of modes with IKI< K. is proportional
4
to K for small K.. These two facts together imply that
the fractional number of modes with frequency less than Wis

proportional to &* for small @,

In making a transition to more general iattices with
possibly nonintegral dimensionality , we may again define a
nearest neighbour harmonic interaction model . It 1is
difficult to say just what meaning may be assigned to a "non
integral-dimensional vector K". At best, we may say that
low values of fz'correspond to slow space varying modes and
large value of fﬁlcorrespond to modes where the spatial
variation is 1large . We necessarily assume that something
like (ii) is correct. Compare this , for instance |, with
the scaling property assumed by Wilson ( Eq.(A3) and (A9) in
Ref. (251 ).
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The validity of (i) 1is rendered plausible by the
observation that the equation o =k C is just the Fourier
transform of the equation Z%§1= CZV{X. If we identify X;
as the displacement at site t and replace ‘7%X by its
discrete analog 2;A<xg-ﬁxﬁ where ] are the sites

neighbouring ( , we see that the equation correctly gives

the equation of motion of X; in our model .

It is thus reasonable to postulate that the fractional
number of modes with frequency less than wis proportional
to caf for small w, even if d is nonintegral . We adopt
this as the definition of effective dimensionality of an

infinite lattice .

In practice , the determination of f(he fractional
number of modes below a frequency @ involves starting with a
finite lattice of size N , and then 1letting N tend to
infinity. For an arbitrary lattice such a limit obviously
does not exist. In statistical mechanics we shall only be
concerned with 1lattices which are sufficiently regular and

all such limits will be assumed to exist.

Analysis given in Section V shows that the effective
dimensionality of the truncated tetrahedron 1lattice is

2 log‘53 .
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Nelson and Fisher give a different argument to
determine the effective dimensionality. We give here a
somewhat more careful formulation of their reasoning
applicable to infinite 1lattices. Define the distance
between two lattice points of a lattice as the minimum
number of bonds that have to be traversed in order to go
from one point to the other. A sphere of radius R ( here R
is an integer-) about avpoint C, is the set of points whose
distance from the point C, called the center of the sphere ,
is less than or equal to R. The volume of a sphere is the
number of points inside it . We average over all positions
of the center to define the average volume V(R) of a sphere
of radius R, which is independent of the 1location of the

center. The dimensionality of the lattice mav be defined by

_ In VIR)
d -Lixgemw . @Y,

In mathematics literature, this is called the Hausdorf
dimensionality of the space. Using this procedure, the
dimensionality of the truncated tetrahedron lattice may be
. shown to be 10323 . This follows trivially from the

r

imequalities 2.3”} ve2" )y » 3" .

The two definitions of dimensionality are clearly not
equivalent : aS they give different values for the
dimensionality of ihe truncated tetrahedron lattice. The
important difference 1is that while in Nelson and Fisher's

definition one considers the 1lattice as a whole, our



proposed definition looks only at the low spatial frequency
modes. Since phase transitions are governed by the
long-range correlations, 1i.e. low frequency modes, we
believe that our proposed definition is more relevant to the

study of phase transitions.

For example , the (2,1), modified rectangular lattice,
defined in the next section 5 has an effective
dimensionality 3/2 using our definition. If we use Nelson
and Fisher's definition , the effective dimensionality of
the lattice would be 2. However, the behavior of model
Hamiltonians 1like the Gaussian model or the Ising model on
this 1lattice 1is very different from that on a two
dimensional square lattice. 1In particular, it may be shown
that on this lattice, the Ising model shows D spontaneous
magnetization or pﬁase transition. Thus we may expect the
assigned effective dimensionality to be 1less than two.
Similar argument may be made for the truncated n-simplex

lattice.

We note that the effective dimensionality of a lattice
has been defined in terms of a specific model ( nearest
neighbour harmonic spring interaction model). We expect the
dimensionality of a 1lattice to be model independent and
different definitions of effective dimensionality using
other model Hamiltonians should give identical value of

dimensionality when it is calculated correctly in terms of
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independently determinable critical exponents of the model.

The quadratic Hamiltonian was chosen due to its simplicity.

In particular, the dimensionality of a 1lattice would
not change 1if we introduced a second nearest neighbour
spring interaction , or any quadratic interaction of finite
range for that matter. This may be proved rigorously using
the exact renormalization equations, but is most easily seen
by the application of first order perturbation theory. Let
the first and the sscond nearest neighbour spring constants
be Jd and J' respectively, J'<<J. The change in zoi the

frequency of the L% mode is given by

dwi? O(LJL?' e }ugﬁmr ovcder Erms  in @i (2)
ald’
where & is some constant depending on the 1lattice. This

implies that the power 1law dependence of the density of

states in the low frequency region remains unchanged.

Finally , we mention the works of Wilson [25],
Stillinger [261, and Mendelbrot [27], who have also studied
‘spaces of nonintegral dimensionality " Wilson and
Stillinger have developed their ideas starting from a set of
axioms that are assumed to hold for the spaces in question.
While they give explicit rules for the calculation or
various integrals in such spaces, they do not give any
concrete examples. Also, their axioms hold for continuum

spaces and the generalization to discrete spaces 1is not
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straightforward (if possible ) . This 1is a great
disadvantage in statistical physics and field theory, where
the 1lattice formulations are much easier to handle as the

infinities associated with small scale behavior are avoided.

Vector addition is allowed in Wilson's axioms . This
implies the existence of a denumerable (finite or infinite )
set of basis vectors . The number of such basis vectors,
inevitably , becomes the dimension of the space for most
purposes . While 3Stillinger explicitly rejects vector
addition in his formulation, he introduces an axiom.
concerning the behavior of Gaussian integrals in his space,
which  implies non-positivity of the integration measure in
the space . Expressed more simply, the axioms imply that
the "volume" of some set of points has to be negative
This is a very serious drawback, because the proofs of many
existence theorems that form the foundations of stétistical
physics {(e.g. the existence of a thermodynamic Timit,
convexity of the'free energy etc. ) fail to hold in such a
case., Also Stillinger's definition of dimensionality of the
space is the same as Nelson and Fisher's discussed above,

and the same arguments apply to this case .

Mendelbrot's definition of objects of nonintegral
dimensioaality, called fractals, assumes the existence of an
underlying space of imtegral dimensions. The dimensionality

of fractals is defined in terms of the change in volume of
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these fractals under akmagnification or contraction of the
underlying integral dimensional manifold. For instance, the
dimensionality of a llne is related to its "kinkiness” in an
underlying two dimensional space . This definition of
effective dimensionality does not seem to be very useful in
statistical physies or field theory . 1In any case, the
assigned numerical value of the dimensionality for fractals
is the same as given by Eq.(1). Hence the arguments agaist
the definitions of wilson, Stillinger, Nelson and Fisher
extend to this case as well. We shall not discuss it any

further here .



IV : SOME EXAMPLES OF LATTICES WITH

NONINTEGRAL DIMENSIONALITY

In this section we describe some examples of lattices
with nonintegral effective dimensionality . The lattices
are defined regursively in such a way that the exact
renormalization equations for Hamiltonians on these lattices
may be written down explicitly in terms of a small (usually
finite ) number of coupling constants. It 1is easy to

construct other lattices of this type

A : The Truncated n-Simplex Lattice

The truncated n-simplex lattice is a simple
generalization of the truncated tetrahedron lattice. The
lattice is defined recursively. The graph of ¢the =zeroth
order truncated n-simplex 1lattice ‘is a complete graph on

(n+1) points. ( A complete graph is a graph in which there

(a). (b)

FIG. 1. (a) A complete graph on 5 points, zeroth order trun-
cated 4-simplex lattice. (b) Replacement of single vertex by
a complete 4 point graph. (c) Result of replacement on

Fig. (a). First order truncated 4-simplex lattice.
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exists a bond between every pair of points.) The graph of
the (r+1)th order lattice is obtained by replacing each of
the vertices of the rth order graph by a complete graph on n
points. Each of the new n points is connected to one of the
lines coming to the original vertex. For the thermodynamic
limit, we 1let r tend ¢to infinity. In Figure 1 the

construction is illustrated for the case n=4.

The case n=1 corresponds to the uninteresting case of
mutually disconnected pairs of points. n=2 corresponds to a
linear chain . For n=3 , we get the truncated tetrahedron
lattice p For higher values of n the lattices are
nonplanar. It is easy to see that the rth order truncated
n-simplex lattice has (n+1)n" vertices and (n+1)nv*1/2
bonds. The coordination number of each lattire point is n .
While the lattice is multiply connected for n>2 , it is
pessible to disconnect an arbitrarily large set of points
from the rest of the lattice by deleting only n bonds. We
show later that the effective dimensionality of this lattice

is (2 log n)/{log(n+2)1}.

FIG. 2. A portion of the infi-
- nite truncated 4-simplex -
lattice.
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The truncated J-simplex lattice may be more
conveniently drawn as in Fig.2 as a square lattice with
bonds connecting at most "next nearest neighdbors”. The
quotation marks indicate that the word 1is wused in the
Euclidean sense. By ocur definition 2all pairs of points
havipg a bond in common are nearest neighbors. The
construction of the graph is explained in Fig.3. We define
a first order square as a complete graph on four points. An
(r+1fh order square is obtained by joining four rth order

squares together by bonds such that each rth order square is

%

X

(a) (b}

7

FIG. 3. (a} Graph of a first order square. (b) Schematic rep-
resexntation of the graph of the (r+1)th order. The shaded
squares demote the graph of rth order squares of which only
the corner vertices are shown,

th

joined to the other r order squares by bonds connecting

corner points, and each r¥ order square contributes one
th

corner point to the (r+1) order square. The graph in

Fig.2 1is a third order square. It is easy to convince

oneself that the graph of theb infinite order square |is
topologically equivalent to the graph of the infinite
truncated H-simplex 1lattice. Thus we may generate the
.truncated u-simpléx lattice from the graph of a two

dimensional infinite square lattice with "nearest neighbor”
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and "next nearest neighbor" bonds by selectively deleting
some bonds. This deletion of bonds results in a change in
the effective dimensionality of the 1lattice from 2 to

2 Ind/(1nb}.

B : The (M,N) Modified Rectangular Lattice

For arbitrary positive integers M and N , the 1lattice
is defined recursively as follows: The first order
rectangle is a cycliec graph on four points. (A cyclic graph
is a conmected graph in which every point has two nearest
neighbors.) To construct a graph of (r‘+1)\&'h order , we take

MN r” order rectangles and arrange them in a2» MxN array.

FIG. 4. A schematic representation of the graph of
the (r+1)th order rectangle of the (2,3) modified
rectangular lattice. The shaded rectangles are the
graphs of rth order rectangles of which only the corner

vertices are shown.
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We connect these rectangles by introducing additionsal
vertical and horizont=zl bonds to join the corner vertices of
all the adjacent rectangles. No additional bonds are added
to any vertex that is not a corner vertex of any rth order
rectangle. In all we add 2M(N-1) horizontal bonds and
2N(M-1) vertical bonds. The resultant figure defines a
(r+1)th order rectangle. Clearly the {(r+1)th order
rectangle has 44" N”  vertices . The lattice is planar and
all the vertices have coordination numbers 3 or 4, Fig.4

illustrates the construction for the case Mz2,N=3.

The procedure of determining the effective
dimensionality, to be discussed in the next section; may be
applied to this lattice as well. For arbitrary M and N,
however, the resulting equations are quite complicated
(though there are only a finite number of them involving
only rational functions) , and an explicit expression for
dimensionality in terms of M and N is difficult to obtain.
It is however easy to see that for M=N=z1, the laitice is
finite and hence zero dimensional. If N=1, and M>»1, the
lattice is one dimensional. For M>1 and N>1 , the effective
dimensionality of the lattice is between 1 and 2. By an
appropriate choice of integers M and N , a lattice with
effective dimensionality arbitrarily close to any

preassigned value between 1 and 2 may be obtained.
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C : The (M,N), Modified Rectangular Lattice

The construction of this lattice is wery similar to that

of the (M,N) modified rectangular lattice, except for the

fact that =2 rotate the E%

order rectangles by 90° after
arranging %them to form the M x N array to form the (r+1fh
order rectangle. The subscript r stands for rotation. The
effect of this rotation is to reduce the anisotropy of the
lattice. The ratio of the "length " and the "width"” of the

tr

r order rectangle does not increase as (M/N)11 , as in the

- 7
2/ )

{a) (b)

FIG. 5. (a) The graph of the first order rectangle.
(b) Schematic representation of the graph of the
(r+2)th order rectangle of the (2,1), modified
rectangular lattice. The shaded areas denote graphs of
rth order rectangles of which 0n1§ the corner vertices

are shown.

previous case , but remains finite for all r. It is M/N if

r is even, and 1 if r is odd.
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Like the (M,N) modified rectangular lattice, this
lattice is planar and may be obtained from a two dimensional
square lattice by selectively deleting some bonds. The
simplest example of this class is the case M =2 , N = 1,
Since the values of M and N are low, the recursion equations
for this case are wusually quite easy to write down. The
construction isvillustrated in Fig. 5. 1In the next section
we show %hat the effective dimensionality in this case is

3/2.

D : The Modified n-Cuboid Lattice

We may similarly define a modified n-cuboid 1lattice.
The n=cuboid is an n-dimensional generalization of a
rectangle { n is a positive integer ) . The first order
n-cuboid graph has 2" points. Each point has n neighbors
and the graph has nearest neighbor relations and the
symmetry of an n-dimensional cuboid. The (r+1)th order
graph is obtained by bringing together two rth ordér graphs

o n 3
and connecting the 2 corner vertices on one "(n-1)

dimensional face”™ of one r o order cuboid to the

~1 . . .
corresponding ) corner vertices of the other cuboid with

-1
2" bonds. The result is a graph of an (r+1)th order

n-1

i 5 n-1
cuboid whose corner vertices are the 2 +2 corner

vertices of the starting set which were not connected
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together. This procedure of "glueing" together of cuboids
is done cyclically in the n different directions along the
axes of the cuboids. Using the same techniques as developed
in the next section, it may be shown that the effective
dimensionality of this lattice is 2(1-27). The (2,1),

modified rectangular lattice corresponds to the special case
n=2. The details of the calculation are of marginal

interest only and are omitted here.

By varying n in the truncated n-simplex 1lattice , we
get 1lattices of effective dimensionality 0, 1, 2fog53,
2£og54,... With the proper choice of the integers M and N ,
we may get an effective dimensionality arbitrarily close to
any preassigned value between 1 and 2 , from examples B and
C. The effective dimensionality of the lattice is, however,
always less than two. The same is true of example D. It
is, however, easy to obtain lattices of higher
dimensionality. Given two lattices L, and L,, we define
their direct product 1lattice L = L,xL, as follows: For
each ordered pair ( ﬂ, {,), where Z,and @_are any lattice
points 1in the lattices L, and L, respectively, we associate
a unique lattice point /€L . The points 7,87 & L, where
‘Z=( 2, 0), 7= Qié{) , are nearest neighbors of each other
in L iff |

(i) ¢ :Zy and ( @_énd Z/ are nearest neighbors in L;) or

(ii) ZL=<é/and ( / and ¢’ are nearest neighbors in Ly).
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It is easy to see that the effective dimensionality of
L is the sum of the effective dimensionalities of L, and L,.
For exampls, the direct product of a 1linear chain and a
square lattice 1is a simple cubic lattice of dimensionality

3=1+2.

This gives us a whole class of lattices with
effectively nonintegral dimensionality, so that the effect
of éhanging dimensionality on the critical exponents ete.
may be studied in much more detail than has been possible so
far. By forming the direct product of the (2,1), modified
rectangular lattice with itself, we get a 1lattice of
effective dimensionality 3. Verification that the critical
exponents for, say, the Ising model on this lattice are the
same as for the simple cubic lattice would be an important
test of the wusefulness and relevance of our definition of
dimensionality, and of the strength of the wuniversality

hypothesis.
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¥ : DETERMINATION OF THE EFFECTIVE

DIMENSIONALITY

We now show how the effective dimensionality of the
recursively defined lattices, examples of which were
described in the previous section , may be determined. For
simplicity, we discuss only the cases of the truncated
n-simplex 1lattice and the (2,1), modified rectangular
lattice. The truncated n-simplex lattice is discussed in
some detzil . It has relatively simple recursion equations
involving only one wvariable. We analyse the spectrum in
some detail to familarize ourselves with the renormalization
group techniques. The (2,1), modified rectangular lattice
is discussed to illustrate how the effective dimensionality
may be determined when the recursion equations involve more

than one variable.

The same technique is applicable to other recursively
defined 1lattices, though the analysis of the recursion
equations 1is usually more involved. We use the
renormalization transformation to determine the frequency
spectrum o¢f the nearest neighbour Hamiltonian on the
lattice. In general, for 1<d<2, the frequency spectrum is
quite éingular and consists of an infinite number of delta
functions of varying heights. The dimensionality of the

lattice is deduced from the power 1law behavior of the
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cumulative frequency distribution function for low

frequencies. The procedure is equivalent to determining the

low temperature specific heat behavior of a Debye solid on

the lattice. If the 1low temperature specific heat is
d

proportional to T , where .T is the temperature, we identify

d as the effective dimensionality of the lattice.

A. The Truncated n-Simplex Lattice

We define the spherical model on this 1lattice by
assigning a continuous spin K (- ©<{X:<+ @) to each of the

sites ( of the r?

order truncated n-simplex lattice. The
index [ goes from 1 to Nr:(n+1)nr . The nearest neighbour
sites are assumed to have a ferromagnetic Ising interaction
of strength J. The spherical constraint (Z;Xf =N) is taken

care of by introducing a Lagrange parameter >\ in the

Hamiltonian , so that the Hamiltonian of the system is

‘ — 2
H= (3/2) ) (X% + I72)20 % (3)
Naaresy miﬂbmﬁ 149¢} =
We get the partition function as
2. (A = [zitfdxg exp(- AH) , (&)
where (2 is the inverse temperature. This 1is a Gaussién

integral and may be done easily , giving
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N
@/ pay e, (2 (5)
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"

G.(A)
where ;" are the normal mode frequencies of the model. The
treatment of this model 1is quite parallel to that of the
Ising model discussed in Ref. [18]. 1In particular we may
define the analogs of the star triangle and the dedecoration
transformations in the continuous spin case. These

transformations follow from the identities

j "N X = = i qg - —l - X 1 9 (7
expl-52, 06| - [ 2L exp[g g a0 )
Jde [a1 exp|-Fower-3En 2050 ELERLRY)

Vs mi_wﬁﬁ : = B
" o =M X)t AR (8)
- () (ene2) QXP{ A Gn+2) T2 }

These identities are applied as follows: We group the

N, spins into N,./n groups of n spins each , such that each

spin interacts with every other spin in the same group with

FIG. €. An example of the generalized star triangle transfor-
mation with n=5.

interaction strength 1 in scaled units. Then we introduce a
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new spin %5 for each group j and couple it to each of the
spins in 1its group with interaction strength n. The
original wn(n-1)/2 bonds within each group are deleted and
replaced by n new bonds all connecting the new spin g; to
the other spins (Fig. 6). Identity (7) ensures that the

partition function remains unchanged.

The second identity corresponds to the dedecoration
transformation of Fisher (Fig. 7). We integrate over all
the original spins X;. This leaves us with the new spins 3;
which form a (r-1fb order truncated n-simplex lattice, and
all the spins 35 interact with their nearest neighbors on
this lattice with a quadratic interaction. By a scale
transformation on the spins gj, this new interaction may be

converted into an interaction of unit strengtr.

X X X
- 3 : p S . o'————o?
n o 4t a B xNor N

FIG. 7. The dedecoration transformation. Spins ¢ and 7 are
integrated over.

Applying these transformations we find that
~Na p N2
G (D) = LOWR) Qens2)] 5 7 G L N 42h +n). (a)

Define
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PUA) = Lim  1n G.{2A)/Ny, . (o)

We get

F(A)==(n=2)/(4n) 1nl(2+n)(A+n+2)] + (1/n)F{¥ +nr+2A). (1)

The frequency spectrum of the model may be determined
from this functional equation for the characteristic
function F(A ). Details of the <calculation are given in
Appendix A. We note that A=z0 1is a fixed point of the

transformation . From Eq.(11) , putting A =0, we get

F(0) = =[(n-2)/{4(n=-1)}] 1n [n(n+2)]. (12)
From Eq.(A1) of the Appendix A , it is easily seen that for
small A>0, F(XA) has an asymptotic expansion of the form
FCA)= F(0) +A7$m+(higher order terms in A ), where d is the
dimensionality of the lattice. Substituting in Eq.(11) and

comparing the leading power of A we get

i = (A8 C(ne2) 2 (2

This implies that

d = 2 1n(n) / In(n+2) . D)
It is interesting to note that this result may be obtained
without the complicated analysis of Eq.(11) given in the

Appendix.

B. The (2,1),. Modified Rectangular Lattice
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For this lattice we wish to determine a functional
equation of the same general form as Eq.(11) from which tne
dimensionality of the 1lattice may be deduced. The
functional equation 1is, however, much more complicated and

involves five variables instead of one.
We have

Ho= (1/2) 7 (x=X) + (/2 2 X, ®
where the sum o::r {(ij) extends over all nearest neighbor
pairs (ij). We consider a more general form of the
Hamiltonian and allow different interaction strengths and

next-nearest neighbor interaction between spins belonging to

the same first order rectangle. we write

H= (1/2) 235 (=% + (A2 X", (%)
where J; =0 unless and are nearest neighbors or they

bélong to the same first order rectangle. Jg may take four

X 2 Vi Y3y, X3
gl 1Ve de FIG. 8. Coupling constants
for the modified rectansular
h Ji M J ! i
Jg s Inthce._ The spins y,, Y2, V3
i ¥4 are integrated over,

XZ Y2 Ya J2 X4

difterent values J, ,d, ,Jdy or J. These interactions are
depicted in Fig.(8) . J, J,,J3 are respectively the

vertical, horizontal and diagonal bond strengths if ¢ and
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belong to the same first order rectangle. J, 1s the
interaction strength if [ and j are nearest neighbors but do

not belong to the same first order rectangle.

The renormalization transformation  consists of
integrating over the spins Y, Y, Y, , and Y, and similar
spins on other rectangles. This reduces the number of
degrees of freedom 1in the Hamiltonian by a factor 2. The
spins X;, and similar spins on other rectangles again form
~the vertices of a (2,1), modified rectangular lattice. The
integrations over 4. ( (=1 to 4 ) give us an effective
interaction between X (= 1 to % ) and since the
interaction is quadratic , it may again be expressed in the
same form as Eq.(15) except for new values of the coupling
constants J, ,J,, J; . The value of JQ rema'ns unchanged.
The most general form of the weight of an r% order
rectangle with corner spins X, X, Y, Y,, and ‘all other
spins integrated over is

(r; )

(0 Ry _ X ok
WX YY) s € exp] Bl oSy - Bl fonnteent

(r>

—(¥) 4 X.l X:T‘{,ﬂ \,lz
‘é‘fi{ §(x.-xf+<‘/--wf‘1%ﬁ ’ |

) Q)

We also have the recursion equation (Fig. 8)
b4y )

+eo
W { Xt ] )€3‘, X;z! XH) = jf”d%\ dgzdggdiﬁ \/\j(f)<xn)x2;vu71>

ST %K) - expls BT (YO, ﬂ &)
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The integrations in this equation are Gaussian and may be
carried out easily. This gives us the recursion equations

for the new coupling constants

(o M a2 2 - ¥ v Y
C = (C Y (2n) B NI+ eIy
AE P TR L LA e Ji W LA T
XCH' J428,7 420, #3743, (12
{ret) &8 % o ) r
AT 2 A ge207 2207y (X343, 437Y 12
E+3) o4t}

J+23, +2IF®
s K3td” 437 =0 37237V 0020, 437 17 8

w=l)

(>‘ J 2J (rel} EJQ(HU

49

=( 27 34237 4237 ( AJ423,7 4257

) r) !
)

XCATJ+23" 43,7 +d5 , (1)

te)

A

(r+41)

Te34™ w21
=00 W J+237 4237y ( W34237 +287)
+2J, (2734237 +3,7 43,7 )10 NI+29, +23,7 +3, 74371, (180

Let the free energy per spin of the Hamiltonian given
by Eq.(15) be F(J, ,d,,d5,d5,A). From the renormalization

transformation we get the equation

(rat)

/e 1. (1 /2)FCIT 00,00 00, ),
(1a)

FCJ, ,d, 135, , 2 )=(1/8)1nlC

where J',4',J', \' are given by Eqs.(18b-e). To get the free
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energy per spin of the original model we set J, =J, =4, =J and
Jy =0. We note that 2=0 1is a fixed point of the
renormalization transformation . The free enebgy per spin
is a singular function of A near A=0 and has an asymptotic
expansion of the form (A >0)

FO3, ods odyadh oD JSFLD o0, & oy o008 BTG, L0, o0 o4, s

higher order terms in 7\ . o)

We wish to determine the behavior of F for small ) .

” (r) s 3 3 3
However, the value of A increases with iteration

1l (&b ]
approximately as 2\ #2 A as is evident from Eg.(18b).

Also the values of J7, J”, J” decrease with iteration. We

choose initial A sufficiently small and r sufficiently

large so that

Niccd”, 3l

2

(r)‘
» dy <<J,, (2)

Then the recursion equations (18) may be approximated as
N21)) {r)

A w2 A , (22q)
I 43 o (1/2)I01), -
sz(ru} +J3(r+1) % 24 J'(r)+J:r)) (Ju(')"’ng) (2J,W+J:')+J3m )*! . (220)
g IO J'(r)+( 1/2 )J;”+( 1/2 )J;” . Q2d)

ular

Now, if we write Fsmg (J, ,J, J3 ,J, ,A) as the singular part

of the free energy near A =0, we get from Eq.(19)

{ 1) (r) C

fngalir, r sinjular vt el rrl A
e B L P WA P73 T i P S o b AR e O )

)

It can be shown that Eqs. (22b-d) 1imply that J./J" and
JP/7J” tend to finite asymptotic values (2" +2 ) and 27

geometrically with large r. Hence for large enough r the
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egs. (22a-d) have the form

Dﬁ“)% 2 gﬁ" (24a)
Jaiul) 5 2“/3 J‘(” , (22b)
%fwu %é%<ﬁm’ {22 ¢)
et L L

Cry

Mow, since the variables J, and J,” are asymptotically

proportional to . Jf”

for 1large r , these variables are
unnecessary for our discussion . Any one of the wvariables
if”, 37, 37 is adequate for the discussion of the critical
properties of our model. These variables provide a relevant

Sy lﬂr w) 147} r)
¢

scale for our problem. We assume that F (37,37,37, %)
a Aiﬁfi,limf% , where A is some constant. Substituting
this in Eq.(23) and with the help of Egqs.(24a-b) we find

that d=3/2, which is the promised result.



Vi ¢ THE SPHERICAL MODEL

The spherical model was first proposed by Kac [28] in
1947, and later solved exactly by Montroll [29]. We give
here a brief review of its critical properties for arbitrary
space dimensionality d. A more detailed and exhaustive
review is given by Joyce [30]. No new results are presented
in this section. Our purpose here is only to illustrate by
an explicit example how the «critical exponents depend
piecewise continuously on the space dimensionality d. Also ,
these calculations constitute an important argument in favor
of our definition of dimensionality, since the critical
exponents agree with the expressions derived 1in 1literature
using formal arguments only. Our treatment here is brief.
For a more complete discussion , the reader is referred to

the review article by Joyce.

The spherical model assigns a continuous spin X
(=co<{X <+ ) to each site i of a d-dimensional lattice. The

Hamiltonian of the system is given by

H= +03/2) J (=% -h 2 Xe . (25)
) U

Here J is the ferromagnetic coupling constant between the

spins. h is an external magnetic field. The summation over

(i,j) runs over all nearest neighbor pairs. The spins are
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subjected to the constraint

., (aé)
2 FX; = N,
where N is the total number of sites on the lattice. The
partition function of the system is given by
N T
Z2(3,n) = T‘,U)dx) exp(=BH) S(Z% -V , 27)

where ﬁ is the inverse temperature. The partition function
may be evaluated easily using Laplace transforms. We write
ffm
2 &5 o B .
S(ZX -N) exp [~ 3 (X =N)/2]1 gJd dA/(AR D)
- (28

We substitute this representation of the delta function into
Eq.(27). The integrations over X; are now Gaussian , and

may be done easily to give

Z( B,h) = (fU Jdaexpt BANIZ2Y LLCF A expl NnPB/23 41,

No C29)
with

AL A5

— e

ﬂ(f 7() expl- BYJ (% - 7() /2 -(§\5J/2)<27()]
s @/ TTeara ™ L (30)
Here leare the normal mode frequencies of the Hamiltonian
H. The integral in Eq.(29) may be evaluated using the
method of steepest descent. We get , retaining only terms
linear in N,

In z¢g ) = IndlCp Q) + N g7 /(22,0 + N gAJ/2 , G
where‘}o is the point where the right hand side of Eq.(31)

attains its maximum value and thus is determined by the

equation
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2 -4 2
/) S (@0%2) =PI - B/l . (33)
First consider the case h=0. Then the equation determining

fko is

co
fmco"“)dcoﬂ (*+2.) = Ba. (33)
C

Here D(") is the spectral density function. D(R")de” is

the fractional number of modes in the frequency range cbland

OF +d (2" tising our definition of effective dimensionality

DI ) = K g , for small & , (3%)
where K 1is some constant of proportionality. Three
different cases arise.

Case I : d<X2 . The integral on the 1left hand side of

&2
Eq.(33) diverges for small A_as A_? . Hence for large

B

/57517

A, ()

For any finite ﬁ>, A, is finite and a smooth function of
E & Consequently the free energy is a smooth function of
ﬂ, and no phase transition occurs at non-zero temperatures.
Since the criticai temperature 1is zero , the critical
exponents cannot be defined unambigously in this case. We
note , however, that as ﬁ tends to infinity, the magnetic
susceptibility of the model is given by

2 =
K= Q/p N)%T;i In 2(p ,h)\\; = n~P " L (30

\hn=c¢

' The energy is obtained by differentiating {n Z(ji,h) with

respect to ﬁ and from Eqs.(31) and (33); it is easily seen
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that the energy per site is given by

E = 1/2p) = A /2 = (1/72) (1/p - 1/x) . (37)
This relation between the internal energy per site and the
zero field susceptibility is valid for higher dimensions
also for ;3<,é . The specific heat per site for 1low
temperatures is given by

c(8) = (B2 fn 2 % ,h=0) » 1/2 - Kr3g7 , (38)

AR op* (
where K is some constant of proportionality , and we have

ignored higher order singular terms in ﬁ .

Case II : 2 < d< § . In this case , the integral on
the 1left hand side of Eq.(33) converges for A= 0. Define

ﬂe by the equation

f D(" ) dw' /o> = BJg . (33)
For p >f , Eq.(33) ceases to be valid. The phenomenon is
analogous to the onset of condensation in an ideal Bose gas.
2\, becomes exactly zero and a_ the normal mode coordinate
corresponding to the zero frequency mode , becomes very

large, of order (ﬁh. This 1is the onset of spontaneous

magnetization in this model.

If ﬁ = @3(1-éi), where & is a small negative

quantity, we get
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9= -Nep J . (29
But Qf/N is the square of the spontaneous magnetization in
the model. Hence we get for the critical exponent /3,
which measures the rate at which the spontaneous

magnetization increases as a function of & ,

B=1/2 . (41)
This critical exponent /2 should not be confused with the
inverse temperature /g used everywhere else in this
discussion. Also, for f3> é , A= 0, and the energy

satisfies the equation

E(B>F ,h=0) = 1/(2 2 ). (42)
Thus the specific heat below the critical temperature 1is a

constant, and the corresponding critical exponent ( Cv~t£fx)

18

A= 0. (43)
Below the <c¢ritical temperature, the magnetization 1is a
nonanalytic function of the external field h. Hence the
susceptibility below the critical temperature is infinite |,
and the critical exponent XC which specifies the divergence
of susceptibility below the critical temperature

! v
(X ~ le:g ), is undefined.

To discuss the critical properties of the spherical
model in the presence of an external field h, it is

convenient to work with a constant magnetization ensemble
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instead of the constant external field. For a fixed
magnetization m, the Eqs.(31) and (32) may be easily seen to

yield ,except for irrelevant additive constants

(1/4) ¢n Z(/B,h,m) :—0%\, .D(L& Ao 4 phm - S0(8T)-4 fpumm(@ﬂ)
( 22)
where 2\ is determined by the condition
(22}

(/73 f D(cog)—@'—ﬁ; d@° + m* = 1 . (45)
Different terms in Eq.(434) are easy to identify. The first
term 1is the ferromagnetic interaction energy of the spins.
The second term gives the interaction energy with the
external field. The third and the fourth terms give the
entropy contribution due to the normal modes. Eq.(45) is
essentially the same as Eq.(33) with the contribution m® due

to the zero frequency mode explicitly written out.

To determine the equilibrium value of m( 3 ,h), we have
to maximize [n Z(/g,h,m) with respect to m. Setting its
partial derivative with respect to m equal to zero , we get

f A _ K v e s o .Ao
['{;z die? Du))&:) +\>TE +3h g\' gD(Q)Z‘ﬁﬁgw %7?\ . R (Z,Q
But from Eq.{(45)

Sll- ﬁwr@ Ny 4] rom - o @)

Substituting in Eq.(45) we get after some simple algebra

(4%)
m)onh. J
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Now we recall that D(.*) is proportional to for
small ) . Hence we may write for small 2,

» .
J D(&fz}sijwiyéJ -K,A?? -X, A, +higher order terms in 7, , (2Q
where K, and K, are some constants dependent on the lattice.
If d < 4, then the X; term is of higher order than the X
term and may be ignored. Substituting the value of 2>, from

Eq.(48) into Eq.(45), and making use of the approximation of

Eq.{49) , we get to the lowest power in h

d

-2
2

paC1 - a®)  x LI - K, h/m) = &
From this equation of state, the <c¢ritical exponents are
easily determined. Consider (3= /%'. Then the critical
exponent § , which determines the magnetization as a
function of the external field at the critical point ( h~

mg.), is easily seen to be

&S = (d+2)/(d-2) , for 2<d<4. 5D
Also, if #>A , the magnetization m is seen to be a
nonanlytical function of h, and hence the susceptibility
exponent Y'( X3viﬁéfw , for £> 2 ) is undefined.
i g ﬁ(/%_ , then for small external field h , m is small and
may be neglected 1in the left hand side of Eq.(50) . This

gives

X=mm =~ (A= L) (%2)

Hence we get the critical exponent



¥ = 2/(d-2) . @3
Also, from Egs.(33) and (49) we see that for  f<f3

™, o« - pyET (52)

<

But from Eqg.(37) we know that the singular behavior of 2 is

the same as the singular behavior of the energy. Hence we

: : —od
see that the specific heat exponent AL C,~(E- ) for
b < é ) is given by

ool = (d=-4)/(d=2) . (55)
Case III : d4 > 4 . The treatment of this case 1is

identical to the previous one. The only difference is that
for d >4, in Eq.(49) , the K, term dominates over the K,

term . The Eq.(50) is modified to

pIC 1- m*) =~ EJ -K,h/m . (%¢)

The critical exponents in this case are derived similarly.

We get
oL'= 0. (5
BJ: undefined . (%8)
S= 3. | (5q)
Y= t. (66D
K = 0. (6D
P= 172, | (62)

Hence for d>4 , the critical exponents are independent of

dimensionality and have the same values as for d=b.
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All the critical exponents are seen t9 satisfy the

scaling relations
S=1 4+ b//lé’ . (é%)

04+2[5+B/=2. (64)
In the literature [31] , many other scaling relations are
discussed. They however involve additional exponents like
Y or D etc. . These exponents depend on the rate of
decay of the correlation function near the critical point,
and are difficult to define Dbecause of the spatial
inhomogeneity of the lattices studied here. Scaling
relations involving these exponents are not included here.

We shall return to this point in the next section.
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VII : THE CLASSICAL XY MODEL

In the classical XY model , a spin direction & ,
0¢0,¢2m, is assigned to each site ( of the lattice. The
Hamiltonian of the system is given by

Hz=J ) cos(& =8,) -n Scosb,, D,
CH 5
where the summation over «{j) extends over all pairs of

nearest neighbor sites. The corresponding partition

function is given by

Z = _TJ_C€{§;> exp(=£4) . <g€>

First consider the case of zero external field h. We write

exp[}chos( L= ﬁ-)]:éplnﬁ (PI) exp[[n\f (8.-8)1, @7)
where I, (X} is the mcdifieé Bessel function of X of order m,
and express Z as a summation over all possible values of
{n; ). With each term of this summation we associate an
arrow configuration on the bonds of the lattice. The arrow
configuration has n;. arrows going from site ( to site -5,
for all mearest neighbor sites and with the convention
ny: ==n:*. Thus the partition fun;tion is expressed as a sum'
over all possible arrow configurations. The weight of a
bond with m arrows is Im(@J).The integrations over {B:} are

trivial and show that only those_configurations of arrows

’contribute to the partition function sum in which the total
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number of arrows going into any site is zero.

Equivalently we may assign a weight T(m ,m,,m,) to a
vertex with m ,m,,m, arrows going into it from its three

nearest neighbors. If m +m,+m,#20, we set the corresponding

vertex weight T(m, ,m, ,m;)=0.

ma

mz I'l"]3

mytC

FIG. . The renormalization transformation for the XY mode!l
on thf: truncated 3-simplex lattice. The three vertices in the
left figure are replaced by a single vertex.

The renormalization procedure for the truncated
3-simplex lattice consists of replacing a group of three

neighboring vertices by a single vertex and 1is 1illustrated

)

in Fig 9. If T (m ,m,,m,) denotes the vertex weight after r

% 3
iterations , the renormalization equations are given by

[ i ™ (v w
T (m, ,my, ,m;)= 2 T (m ,c-m,,-c)T (m ,m=c,c+m )T (m,,c,=-c-m,).

C=-c (é%)

The starting values of vertex weights are

Tm, ,m, ,=m, -m,)= (1, (40T, (3T, (#3211 (69

The free energy per site is given by
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£(f)=- L Lim 3" 1nT"(0,0,0). (70)
[ M><
It 1is weasy to verify that Egs. (68) have only one

attractive fixed point given by

T(m, ,m, ,m;)/T°(0,0,0)= Sp,Sm, Omo -
This corresponds to spin directions at large distances being
uncorrelated , and hence to the absence of spontaneous
magnetization in this system. If the temperature is very
low, pI>>(m” +m, +m;~ ), we have
kam!,ml,-mi-mz)
¥ A7 expl-{m® +m> +(-m -m,)* }/43J] . C11)
If f#J is very large , we may.replace the summation over ¢ in
Eq.(68) by an integration. Substituting the values of the
weights T7(m, ,m, ,my) from Eq. (71) we get
f”(m,,ml,-m‘-mz)
~ A7 expl-5{m 2 +m *+(-m,-m,)* }/128J], (72
where A and A" are some constants. This shows that the

renormalization equation for the temperature is

p'=3p /5 . 79)

Now let us introduce a small external field h, Bh<<1.
It is easy to see that the vertex weights T(m, ,m, ,m; ) are no
longer zero if m +m +m, ¥0. To first order in gh, and for
BI>>(m,> +m,>+m,2) the other nonzero vertex weights are
Tgkm,,mi,m3)= ﬁhAw expl-{m > +m +m? }/48J1 ,

for m +m,+m;=+1. 73)
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After one renormalization , using Eq.(68) these are easily
seen to transform to
T%m, ,m,,my )=3phA" expl-5{m *+m,>+m, “}/128J] ,
for m,+m,+m, =41, ' (72)
Thus we see that to thé lowest order in ph, the external
field h 1is transformed according to the renormalization

equation

pvh':3}’))h. (75)

Using Eqs. (72) and (75) , it is easy to determine the
behavior of the susceptibility as a function of temperature.

Let'g(},h) be the singular part of the logarithm of the

partition function per spin. By the renormalization
transformation
g(p,n)=(1/3) g(34/5,5n), (76)

and the susceptibility
= ol -5_2_9(8.n),
X (= -5 Tpath),.. % 5 o

=5 X (36/5). (77)
Hence if,X(ﬁ)w BX we get

————

¥ =1n5/(1n5-1n3). | C78)
Similar analysis of ¢the truncated n-simplex 1lattice for

arbitrary n shows that in general , for d<2



w5 Y e
¥ =2/(2-d). ¢7a)

The specific heat tends to the simple harmonic

|

oscillator value z K, as the temperature tends to zero.

=4

These results are easily extended to the case when the
spin at each site 1is a p-dimensional vector S of unit
magnitude. Here p is an arbitrary integer greater than or
egual to 2. p=2 corresponds to the XY model. p=1
corresponds to the Ising model which differs from the rest
in being a discrete rather than a continuum model and is

discussed in the next section.

The recursion equations for the coupling constants £J
and ﬁh for the p-vector model (p>2) are still given by
Egqs.(72) and (75). For low enough temperature, the angle
between nearest neighbor spins is small and interaction
between them may be replaced by a harmonie spring coupling.
Eg.(72) Just shows how the harmonic spring coupling
constants are transformed for the truncated 3-simplex
lattice wunder the renormalization transformation. Also,
Eg.{(75) follows from the fact that the nearest neighbor
spins are very closely aligned at 1low temperatures.
Consider a renormalization transformation un&er which three

spins on a first order triangle o ; ?;, Ez §:3are replaced

2?

by a2 block spin'gi. The effective coupling of these spins
i A RS
to a small external field h is given by -ﬁh.(§h+§ué§3

: 8
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This is approximately equal to -3fh.S, sincevgzxsd: for most
configurations. This gives us the renormalization equation

(75).

Since the renormalization equations are independent of
p, we conclude that the critical behavior of the model is
also independent of p, for p>2, for the truncated 3-simplex
lattice (in general for lattices with d<2). This conclusion
is of some interest because it is known to be false for d>2,
and series expansions for critical exponents in powers of
(1/p) exist in literature [32]. 1In particular , the case
p&_9a)corresponds to the spherical model [33] discussed in

the previous section.

The exponent ¥ in Eq.(79) should not be identified
with the critical exponent Y which appears in the scaling
equations and specifies the divergence of suéceptibility as
a function of temperature slightly away from the ceritical
point. The reason is the arbitrarinesé in the definition of
ceritical exponents when the critical temperature is zero.
The procedure of determining the critical exponents in terms
of the divergence of correlation length is of doubtful
validity here becauée the lattice 1is not translationally
invariant and the ‘"correlation 1length™ is a function of
position. Different definitions of "averaged correlation
length” may well give rise to difference dependence on

temperature. In general, it is difficult to find a useful
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