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ABSTRACT 

This thesis is divided into two parts. 

In Part I, we give an explicit construction for a class 

of lattices with effectively non-integral dimensionality. A 

reasonable definition/\ applicable to lattice systems is 

proposed. The construction is illustrated by several 

examples. We calculate the effective dimensionality of some 

of these lattices. The attainable values of the 

dimensionality d using our construction, are densely 

distributed in the int~rval 1<d<w. 

The variation of critical exponents with dimensionality 

is studied for a variety of Hamiltonians. It is shown that 

the critical exponents for the spherical model, for all d, 

agree with the values derived in literature using formal 

arguments only. We also study the critical behavior of the 

classical p-vector Heisenberg model and the 

Fortuin-Kasteleyn cluster model for lattices with d<2. It 

is shown that no phase transition occurs at nonzero 

temperatures. The renormalization procedure is used to 

determine t he exact values of the connectivity constants and 

the critical exponents <>I.., rf and ).) for the self-avoiding 

walk proDl em on some multiply connected lattices with d<2. 

It is shown b y e xplicit construction that the critical 
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exponents are not functions of dimensionality alone, but 

depend on d etailed connectivity properties of the lattice. 

In Part II, we investigate a model of the melting 

transition in solids. Melting is treated as a layer 

phenomenon , the onset of melting being characterized by the 

ability of lay·ers to slip past each other. We study the 

variation of the root-mean-square deviation of atoms in one 

layer as the temperature is increased. The adjacent layers 

are assumed held fixed and provide an external periodic 

potential. The coupling between atoms within the layer is 

assumed to be simple harmonic. The model is thus equivalent 

to a lattice version of the Sine-Gordon field theory in two 
' 

dimensions ~ Using an exact equivalence, the partition 

function for this problem is shown to be related to the 

grand partition function of a two-species classical lattice 

Coulomb gas. We use the renormalization procedure to 

determine the critical behavior of the lattice Coulomb gas 

problem. Translating the results back to the original 

problem, it is shown that there exists a phase transition in 

the model at a finite temperature Tc. Below Tc, the root 

mean square deviation -of atoms in the layer is finite, and 

varies 
-1/4 

the phase transition. Above Tc the as (Tc -T) near 

root mean square deviation is infinite. The specific heat 

shows an essential singularity at the phase transition, 
-IJJ. 

varying as exp(- \Tc -T 1 ) near Tc. 
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PART I 

LATTICES OF EFFECTIVELY NONINTEGRAL DIMENSIONALITY 



I INTRODUCTIO~ 

In recent years much attention has been devoted to the 

study of the variation of critical exponents as a function 

of d, wher e d , t he dimensionality of space , is treated as 

a continuo usly va r iable parameter. Nonintegral dimensions 

were first introduced to aid the understanding of critical 

phenomena exhibited by a binary fluid system of "Gaussian 

mol ecules" (1). Wilson and Fisher (2-4] developed the 

technique called £-expansion which allows one to write 

critical e xponents for Ising-like models as power series in 

E , where £:4-d . These E-expansion calculations have been 

pushed up to third order in~ by Brezin, Le Guillo~, 

Zinn-Justin and Nickel [5-6]. Similar serie~ expansions in 

powers of E , where the space dimensionality is 2-E,2+E,6-c 

etc. [7-12] have been developed to describe a wide variety 

oC phase transitions in different physical systems. In . 

quantum field theory [13-15], the space dimension 4-e has 

been intr oduced to regularize the ultraviolet divergences in 

perturbation theory. Also atomic bound states have been 

studied as a function of continuously varying d [16). 

Despite much work done dealing with the computational 

. aspects of the £-expansion techniques,( only some of which 

was cited above ) its conceptual basis has remained quite 

obscure. Just what physical meaning may be assigned to 
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these £-expansions ? We may argue that the appearance of S 

as a continuous variable is a technical or mathematical 

artifice, and that physically meaningful results correspond 

only to integral values of E . This argument fails , 

however because the radius of convergence of these 

expansions (if they converge at all ; there are indications 

that the expansions are only asymptotic [17] ) is expected 

to be much less than one. In the following , we shall 

attempt to answer this question by explicitly constructing a 

class of lattices having nonintegral dimensionality. These 

lattices are generalizations of the truncated tetrahedron 

lattice, invented by Nelson and Fisher (18]. 

The lattices are defined recursively. They are 

multiply connected and have some unusual topological 

properties. In particular, they are spatially inhomogenous 

and highly anisotropic. They may be called pseudo-lattices 

to distinguish them from the "regular" lattices usually 

encountered in solid state theory or statistical phy~ics. 

An example of a pseudo-lattice is the Bethe lattice 

which has been very important historically in the 

development of the theory of phase transitions. Detailed 

study of the Ising model on this lattice has suggested the 

possibility of a new class of phase transitions ( phase 

transitions of continuous order )(19] which have 

subsequently been realized on more conventional lattices 
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[20]. 

Part of the motivation for the study of these 

pseudo-lattices springs from the fact they are very good 

pedagogical examples of renormalization group techniques at 

work Despite enormous progress in the application of the 

renormalization group to the field of phase transitions 

since the pioneering work of Kadanoff and Wilson (21], the 

number of cases showing nontrivial phase transitions where 

the exact renormalization transformation may be explicitly 

implemented has remained rather small The only other 

exceptions are the Gaussian model [22] and the hierarchical 

model [23]. These lattices may also be used to test the 

validity of new approximation schemes . 

While , as explained above , the £-expansion techniques 

have motivated and influenced our analysis , a familiarity 

with them is not a prerequisite for an understanding of the 

ensuing discussion • Indeed, the major goal of this half of 

our thesis is to provide an explicit construction of 

lattices of effectively nonintegral dimensionality , where 

the critical behavior of various Hamiltonians may be 

explicitly determined independently of the £-expansion 

techniques, and thus provide a "reason for existence '' and 

testing grounds for these techniques Some previous 

exposure to the renormalization group formalism will be 

helpful in following the arguments, but it is not necessary. 



-0-

II OUTLINE 

The discussion is organized as follows: 

In Section III we define what we mean by the effective 

{nonintegral ) space dimensionality of an infinite lattice . 

The dimension of a lattice is defined in terms of the 

density of states of the low frequency modes for a nearest 

neighbour harmonic interaction Hamiltonian on the lattice. 

The proposed definition is different from that assumed by 

Nelson and Fisher ( 18]. In particular the space 

dimensionality of the truncated tetrahedron lattice using 

our definition is found to be 2 log~3~1.3651 and not 

log2 3~1.5350 as proposed by Nelson and Fisher. Arguments 

are presented in favor of our definition. 

In Section IV we give some examples of lattices having 

nonintegral values of effective dimensionality. One is a 

gene:alization of the truncated tetrahedron lattice to the 

truncated n-simplex lattice. We def~ne the (M,N) modified 

rectangular lattice and the (M,N)~ modified rectangular 

lattice. Here M and N are arbitrary positive integers. The 

(M,N) modified rectangular lattice , and the (M,N)~ modified 

rectangular lattices are planar multiply connected 

lattices with coordination number 3 or 4. These lattices 

may be obtained by selectively deleting some bonds from a 
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two dimensional rectangular lattice. We also define a 

modified n-cuboid lattice . Other lattices of this type are 

easy to construct. The effective dimensionalities of some 

representative cases of these lattices are determined in 

Section V by deriving functional equations for their 

characteristic functions and determining their frequency 

spectra. 

In Section VI , the critical behavior of the spherical 

model on a d-dimensional lattice is outlined , for arbitrary 

d. We give the expressions for critical exponents as 

functions of d It is shown that the critical exponents 

are piecewise continuous functions of d . We also verify 

that all the various critical exponents that may be defined 

are not independent , and simple relations exist amongst 

them • 

The spherical model is exceptional in that its critical 

behavior can be analysed for arbitrary dimension d . This 

is not true for most Hamiltonians, where no simple 

separation of variables takes place . In the next three 

sections we consider some of these cases. Section VII 

contains a discussion of the classical p-vector Heisenberg 

model • In Section VIII we discuss the Fortuin-Kasteleyn 

cLuster model. The behavior 

determined only for d<2. For 

structure of these lattices, 

of these models has been 

d<2 due to the special 

we can write down the exact 
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renormalization equations in terms of a finite number of 

coupling constants . For simplicity, we shall consider only 

the truncated tetrahedron lattice . Other lattices may be 

similarly treated and so long as d<2, the qualitative 

behavior of these lattices is quite similar and is 

characterized by the absence of a phase transition at 

nonzero temperatures. We determine the behavior of 

correlations in these models at very low temperatures. It 

is found that the susceptibility of the p-vector model 

varies as the ( .2.::_ol )+n power of the inverse temperature . 

The correlations are much stronger in the cluster model, and 

there the mean size of a cluster varies as an exponential of 

an . expon-ential of the inverse temperature . Lattices with 

d>2 are much more interesting, because ~hey show phase 

transitions ; but then the renormalization equations become 

much more complicated and are difficult to analyse . 

In Section IX , we discuss self avoiding random walk 

problems. These walks show a nontrivial phase transition 

for multiply connected lattices, in the sense that the 

generati~g functions of the random walk become singular as 

functions of their argument. The nature of the singularity 

and the values of the critical exponents c<, ¥and Y are 

determined for the truncated tetrahedron lattice, the 

truncated 4-simplex lattice, and the (2,1)~ modified 

rectangular lattice • 
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In th i s case , ho wever , no simple expressions exist 

for the critical exponents as functions of the 

dimensional ity of the lattice . In fact, we can construct 

examples of lattices that have the same space 

dimensional ity, but different critical exponents o<, Yand V. 

It is suggested that this is because the asymptotic behavior 

of self avoiding random walks depends on detailed 

connectivi t y properties of the lattice and not on the 

dimensional ity alone • We conclude with some final remarks 

in Section X . 
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III: DEFINITION OF THE S?ACE DIMENSIO NALITY OF 

AN INFINITE LATTICE 

Consider an infinite lattice. For our purpose a 

lattice is specified by its graph consisting of lattice 

points and lines joining them called bonds. For simplicity 

we consider only one kind of bonds. Two sites that have a 

bond in common are called nearest neighbours . How do we 

assign a dimensionality to an ar bitrary infinite lattice ? 

( The effective dimensionality of a finite lattice may be 

defined to be zero. ) Any proposed definition of effective 

dimensionality should satisfy some elementary properties. 

It should agree with the conventional integral value of 

dimensionality for ''regular " lattices . It should depend 

only weakly on the lattice in the sense that introduction or 

deletion of a finite number of lattice points or bonds 

should not change its value. And preferably it should 

satisfy some scaling relations between critical exponents 

[24). 

It is instructive to look at the familiar case when the 

space dimensionality d is integral. We consider a ''simple 

cubic " lattice in d dimensions and consider a model in 

which a scalar displacement Xtis associated with each site 

t and nearest neighbours are connected by harmonic springs 

of equal spring constants. Introduction of normal mode 
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coordinates converts this problem into one of independent 

simple harmonic oscillators Each normal mode is 
-7 

characterized by a wave number K which is a d-dimensional 

vector lying within the first Brillouin zone. We also know 

that : 

{i) For small wavenumbers, the frequency w of the mode -with wave number K , is approximately proportional to the 

magnitude of K, i.e. , cd': 1-<
2 C2.. for small IKI. 

--(ii) The number of modes with lKI< Ko is proportional 

to Kc ct for smal 1 Ko. These two facts together imply that 

the fractional number of modes with frequency less than Wis 

proportional to J. 
0 for small ~ . 

In making a transition to more general lattices with 

possibly nonintegral dimensionality , we may again define a 

nearest neighbour harmonic interaction model It is 

difficult to say just what meaning may be assigned to a ''non 
_,,. 

integral-dimensional vector K ". At best, we may say that 
....,. 

low values of \Kl correspond to slow space varying modes and 
_,, 

large value of \Kl correspond to modes where the spatial 

variation is large • We nec€ssarily assume that something 

like (ii) is correct. Compare this , for instance with 

the scaling property assumed by Wilson ( Eq.(A3) and (A9) in 

Ref. [25] ). 
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The validity of (i) is rendered plausible by the 
,, ?, c'2 

observation that the equation co :K 

-;.i..x _ __ J')i \Tly. transform of the equation u _ ~ v A at 
as the displacement at 

. 
site /; and 

is just the Fourier 

If we identify Xi 
2 

replace v x. by its 
. 

discrete analog L Cxa -'XJ where a are the sites 
J 

neighbouring . that the equation correctly gives v we see 

the equation of motion of x~ in our model . 

It is thus reasonable to postulate that the fractional 

number of modes with frequency less than w is proportional 

d to w, for small W, even if d is non integral We adopt 

this as the definition of effective dimensionality of an 

infinite lattice . 

In practice the determination of t~e fractional 

number of modes below a frequency w involves starting with a 

finite lattice of size N and then letting N tend to 

infinity. For an arbitrary lattice such a limit obviously 

does not exist. In statistical mechanics wi shall only be 

concerned with lattices which are sufficiently regular and 

all such limits will be assumed to exist. 

Analysis given in Section V shows that the effective 

dimensionality of the truncated tetrahedron lattice is 

2 log -5' 3 • 



Nelson and Fisher give a different argument to 

determine the effective dimensionality. We give here a 

somewhat more careful formulation of their reasoning 

applicable to infinite lattices. Define the distance 

between two lattice points of a lattice as the minimum 

number of bonds that have to be traversed in order to go 

from one point to the other. A sphere of radius R ( here R 

is an integer - } about a point C, is the set of points whose 

distance from the point C, called the center of the sphere , 

is less than or equal to R. The volume of a sphere is the 

number of points inside it . We average over all positions 

of the center to define the average volume ~(R) of a sphere 

of radius R, which is independent of the location of the 

center. The dimensionality of the lattice ma~ be defined by 

d =Lim Lh V[R) (1) 
t<-?-co 2'/1- R 

In mathematics literature, this is called the Hausdorf 

dimensionality of the space. Using this procedure, the 

dimensionality of the truncated tetrahedron lattice may be 

shown to be log
2

3 . This follows trivially from the 

i 1 · t · 2 • 3'1' ~ ·v c 2 r ) >,. 3 !(' • nequa l 1es -ft , 

The two definitions of dimensionality are clearly not 

equivalent as they give different values for the 

dimensionality of the truncated tetrahedron lattice. The 

important difference is that while in Nelson and Fisher's 

definition one considers the lattice as a whole, our 
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proposed definition looks only at the low spat i al frequency 

modes. Si nce phase transitions are governed by the 

long-range correlations, i.e. low frequency ~odes, we 

believe that our pr oposed de f inition is more r elevant to the 

study of phase transitions. 

For example , the (2,1)? modified rectangular lattice, 

defined in the next section has an effective 

dimensionality 3/2 usi ng our definition. If we use Nelson 

and Fisher ' s definition , the effective dimensionality of 

the lattice would be 2. However, the behavior of model 

Hamiltonians like the Gaussian model or the Ising model on 

this lattice is very different from that on a two 

dimensional square lattice. In particular, it may be shown 

that on this lattice, the Ising model shows 1~::> spontaneous 

magnetization or phase transition. Thus we may expect the 

assigned effective dimensionality to be less than two. 

Similar argument may be made for the truncated n-simplex 

lattice. 

We note that the effective dimensionality of a lattice 

has been defined in terms of a specific model ( nearest 

neighbour harmonic spring interaction model). We expect the 

dimensionality of a lattice to be model independent and 

different definitions of effective dimensionality using 

other model Hamilton ians should give identical value of 

dimensionality when i t is calculated co~rectly in terms of 



independently determinable critical e xponents of the model. 

The quadratic Hamiltonian was chosen due to its simplicity. 

In particular, the dimensionality of a lattice would 

not change if we introduced a second nearest neighbour 

spring interaction , or any quadratic interaction of finite 

range for that matter. This may be proved rigorously using 

the exact renormalization equations, but is most easily seen 

by the application of first order perturbation theory. Let 

the first and the second nearest neighbour spring constants 

be J and J' respectively, J'<<J. The change in z w,, the 

frequency of the 
• th 
~ mode is given by 

; n. (.,); • (2) 

where ~ is some constant depending on the l~ttice. This 

implies that the power law dependence of the density of 

states in the low frequency region remains unchanged. 

Finally we mention the works of Wilson [25], 

Stillinger [26), and Mendelbrot [27], who have also studied 

spaces of nonintegral dimensionality Wilson and 

Stillinger have developed their ideas starting from a set of 

axioms that are assumed to hold for the spaces in question. 

While they give explicit rules for the calculation or 

various integrals in such spaces, they do not give any 

concrete examples. Also, their axioms hold for continuum 

spaces and the generalization to discrete spaces is not 
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s tr a igh tforward (if possible ) This is a great 

disadvantage in statistical physics and field theory, where 

the lattice formulations are much easier to handle as the 

infinities associated with small scale behavior are avoided. 

Vector addition is allowed in Wilson's axioms This 

implies the existence of a denumerable (finite or infinite ) 

set of basis vectors • The number of such basis vectors, 

inevitably 

purposes 

addition 

becomes the dimension of the space for most 

While Stillinger explicitly rejects vector 

in his formulation, he introduces an axiom. 

concerni~g the behavior of Gaussian integrals in his space, 

which implies non-positivity of the integration measure in 

the space • Expressed more simply, the axioms imply that 

the "volume" of some set of points has to be negative . 

This is a very serious drawback, because the proofs of many 

existence theorems that form the foundations of statistical 

physics {e.g. the existence of a thermodynamic limit, 

convexity of the free energy etc. ) fa i 1 to hold in such a 

case. Also Stillinger's definition of dimensionality of the 

space is the same as Nelson and Fisher's discussed above, 

and the s-ame arguments apply to this case . 

Mendelbrot's definition of objects of non integral 

dimensioBality, called fractals, assumes the existence of an 

underlying space of integral dimensions. The dimensionality 

of fractals is defined in terms of the change in volume of 
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these fractals under a magnification or contraction of the 

underlying integral dimensional manifold. For instance, the 

dimensionality of a llne is related to its ''kinkiness~ in an 

underlying two dimensional space This definition of 

effective dimensionality does not seem to be very useful in 

statistical physics or field theory In any case, the 

assigned numerical value of the dimensionality for fractals 

is the same as given by Eq.(1). Hence the arguments agaist 

the definitions of Wilson, Stillinger, Nelson and Fisher 

extend to this case as well. We shall not discuss it any 

further here . 
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IV SOME EXAMPLES OF LATTICES WITH 

NONINTEGRAL DIMENSIONALITY 

In this section we describe some examples of lattices 

with nonintegral effective dimensionality . The lattices 

are defined recursively in such a way that the exact 

renormalization equations for Hamiltonians on these lattices 

may be written down explicitly in terms of a small {usually 

finite ) number of coupling constants. It is easy to 

construct other lattices of this type . 

A : The Trun cated n-Simplex Lattice 

The truncated n-simplex lattice is a simple 

generaliza t ion of the truncated tetrahedron lattice. The 

lattice is defined recursively. The graph of the zeroth 

order truncated n-simplex lattice ·i s a complete graph on 

(n+l) points. ( A complete graph is a graph in which there 

+-+ 
(a) (b) (cl 

FIG . 1. (a} A complete graph on 5 points, zeroth order trun­
cated 4-simplex lattice . (b) Replacement of s ingle vertex by 
a complete 4 point graph. (c) Result of replacement on 
Fig. (a). First order truncated 4-simplex lattice. 
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exists a bond between every pair of points.) The graph of 

the (r+1)th order lattice is obtained by replacing each of 

the vertices of the rth order graph by a complete graph on n 

points. Each of the new n points is connected to one of the 

lines coming to the original vertex. For the thermodynamic 

limit, we let r tend to infinity. In Figure 1 the 

construction i~ - illustrated for the case n:Q. 

The case n:1 corresponds to the uninteresting case of 

mutually disconnected pairs of points. n=2 corresponds to a 

linear chain . For n=3 , we get the truncated tetrahedron 

lattice For higher values of n the lattices are 

nonplanar. It is easy to see that the rth order truncated 

n-simplex lattice has ( n+ 1 ) n 'f' vertices and (n+1 )n'r'° 1 /2 

bonds. The coordination number of each latti"'f::< point is n . 
While the lattice is multiply connected for n>2 ' it is 

possible to disconnect an arbitrarily large set of points 

from the rest of the lattice by deleting only n bonds. We 

show later that the effective dimensionality of this lattice 

is (2 log n)/{log(n+2)}. 

FIG. 2. A portion of the infi­
nite truncated 4-simplex -
lattice. 



The truncated 4-simplex lattice may be more 

conveniently drawn as in Fig.2 as a square lattice with 

bonds conr.ecting at most ''next nearest neighbors''. The 

quotation marks ind ic ate that the word is used in the 

Euclidean sense. By our definition all pairs of points 

having a bond in common are nearest neighbors. The 

construction of the graph is explained in Fig.3. We define 

a first order square as a complete graph on four points. An 

(r+1 )-t.h order square is obtained by joining four r i:h order 

squares together by bonds such that each r~ order square is 

(al (bl 

FIG. 3. fa) 'Graph of a first order square. (b) Schematic rep­
resentation of the graph of the (r + llth order. The sh aded 
squares deir,ote the graph of rth order squares of whic h only 
the ~rner 11;.ertices are shown. 

joined to the other r -th order squares by bonds connecting 

corner points, and each r~ order square contributes one 
-tJi 

corner point to the ( r+ 1 ) order square. The graph in 

Fig.2 is a third order square. It is easy to convince 

oneself that the graph of the infinite order square is 

topolog ically equivalent to the graph of the infinite 

truncated 4-simplex lattice. Thus we may generate the 

truncated 4-simplex lattice from the graph of a two 

dimensional infinite square lattice with "nearest neighbor ... 
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and "next nearest neighbor '' bonds by selectively deleting 

some bonds. This deletion of bonds results in a change in 

the effective dimensionality of the lattice from 2 to 

2 ln4/(ln6 ) . 

B : The (M,N) Modified Rectangular Lattice 

For arbitrary positive integers M and N , the lattice 

is defined recurfiively as follows: The first order 

rectangle is a cyclic graph on four points. (A cyclic graph 

is a connected graph in which every point has two nearest 

) ( )
-th 

neighbors. To construct a graph of r+1 order , we take 

MN r~ order rectangles and arrange them in 2~ · MxN array. 

FIG. 4. A schematic representation of the graph of 

the (r+1)th order rectangle of the (2,3) modified 

rectangular lattice. The shaded rectangles are the 

graphs of rth order rectangles of which only the corner 

vertices are shown. 
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We connect these rectangles by introducing additional 

vertical and horizontal bonds to join the corner vertices of 

all the adjacent rectangles. No additional bonds are added 

to any vertex that is not a corner vertex of any r~ order 

rectangle. In all we add 2M(N-1) horizontal bonds and 

2N(M-1) vertical bonds. The resultant figure defines a 

(r+1)th order rectangle. Clearly the (r+1)th order 

rectangle has 4~PN~ vertices . The lattice is planar and 

all the vertices have coordination numbers 3 or 4. 

illustrates the construction for the case M=2,N=3. 

Fig.4 

The procedure of determining the effective 

dimensionality, to be discussed in the next section, may be 

applied to this lattice as well. For arbitrary M and N, 

however, the resulting equations are quite complicated 

(though there are onl y a finite number of them involving 

only rational functions) , and an explicit expression for 

dimensionality in terms of M and N is difficult to obtain. 

It is however easy to see that for M=N=1, the lattice is 

finite and hence zero dimensional. If N:1, and M>1, the 

lattice is one dimensional. For M>1 and N>1 , the effective 

dimensionality of the lattice is between 1 and 2. By an 

appropriate choice of integers M and N , a lattice with 

effective dimensionality arbitrarily close to any 

preassigned value between 1 and 2 may be obtained. 
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C : The ( M,N )~ .. Modified Rectangular Lattice 

The cons truction of this lattice is '!fl;"';. ry similar to that 

of the ( M, N) modified rectangular lattice, except for the 

fact that we rotate the r-th order rectangles by goc after 
th 

arranging them · to form the M x N array to form the (r+1) 

order rectar. gle. The subscript r stands for rotation. The 

effect of this rotation is to reduce the anisotropy of the 

lattice. The ratio of the "length '' and the ''width'' of the 

r-th order rectangle does not increase as ( M/N { , as in the 

(ol (bl 

FIG. 5. (a) The graph of the first order rectangle. 

(b) Schematic representation of the graph of the 

(r+2)th order rectangle of the (2,1)-y> modified 

rectangular lattice. The shaded areas denote graphs of 

rth order rectangles of which only the corner vertices 

are shown. 

previous casie , but remains finite for all r. It is M/N if 

r is even, and 1 if r is odd. 
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Like the (M,N) modified rectangular lattice, this 

lattice is planar and may be obtained from a two dimensional 

square lattice by selectively deleting some bonds. The 

simplest example of this class is the case M =2 , N = 1. 

Since the values of M and N are low, the recursion equations 

for this case are usually quite easy to write down. The 

construction is illustrated in Fig. 5. In the next section 

we show that the effective dimensionality in this case is 

312. 

D : The Modified n-Cuboid Lattice 

We may similarly define a modified n-cuboid lattice. 

The n-cuboid is an n-dimensional generalization of a 

rectangle ( n is a positive integer ) The first order 

n-cuboid graph has 2n points. Each point has n neighbors 

and the graph has nearest neighbor relations and the 

symmetry of an n-dimensional cuboid. The (r+l)th order 

graph is obtained by bringing together two rth order graphs 

and connecting 

dimensional 

the 2 
n-1 

of one 

corner 

th r 

vertices on one "(n-1) 

order cuboid to the 
n -1 

2 corner vertices of the other cuboid with corresponding 
Yl-1 

2 bonds. The result is a graph of an (r+1)th order 

cuboid whose corner vertices are the 
n-1 11-I 

2 +2 corner 

vertices of the starting set which were not connected 



together. This proc edure of ''glueing " together of cuboids 

is done cyclically in the n different directions along the 

axes of t he cuboids . Usin g the same techniques as developed 

in the next section, it may be shown that the effective 

dimensionality of this lattice is 2(1-in). The (2,1)p 

modified rectangular l attice corresponds to the special case 

n=2. The details of the calculation are of marginal 

interest only and are omitted here. 

By var ying n in the truncated n-simplex lattice we 

get lattices of effective dimensionality 0, 1, 2 fog5 3, 

2fog6 4, ..• With the proper choice of the integers Mand N , 

we may get an effective dimensionality arbitrarily close to 

any preassigned value between 1 and 2 , from examples B and 

C. The effective dimensionality of the latti~?. is, however, 

always less than two. The same is true of example D. It 

is, however, easy to obtain lattices of higher 

dimensionality. Given two lattices L1 and L2 , we define 

their direct product lattice L = L 1 xL 2 as follows: For 

each ordered pair ( £,, (i.>, where i, and €1. are any lattice 

points in the lattices L 1 and L~ respectively, we associate 

a unique lattice point £ ~ L • The points ~. (). 1 6 L, where 

..f_:( f,, e1 ), 1 1
:( e/, l;.'> , are nearest neighbors of each other 

in L iff 
I . I 

( i) e = f, and ( f1 and ~ are nearest neighbors in L.:z.) or 

(ii) 1;;. =I/ and ( f, and i/ are nearest neighbors in L1 ). 



It is easy to see that the effective dimensionality of 

L i s the sum o f the e ff e c t i v e d i men s ion a 1 i t i e s o f L 1 a n d L 2 • 

For example, the direct product of a linear chain and a 

square lattice is a simple cubic lattice of dimensionality 

3=1+2. 

This gives us a 

effectively nonintegral 

whole class of lattices with 

dimensionality, so that the effect 

of changing dimensionality on the critical exponents etc. 

may be studied in much more detail than has been possible so 

far. By forming the direct product of the (2,1))" modified 

rectangular lattice with itself, we get a lattice of 

effective dimensionality 3. Verification that the critical 

exponents for, say, the Ising model on this lattice are the 

same as for the simple cubic lattice would be an important 

test of the usefulness and relevance of our definition of 

dimensionality, and of the strength of the universality 

hypothesis. 
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V DETERMINATION OF THE EFFECTIVE 

DIMENSIONALITY 

We no w show how the effective dimensionality of the 

recursivel y defined lattices, examples of which were 

described in the previous section may be determined. For 

simplicity , we discuss only the cases of the truncated 

n-simplex lattice and the (2,1)~ modified rectangular 

lattice. The truncated n-simplex lattice is discussed in 

some detail It has relatively simple recursion equations 

involving only one variable. We analyse the spectrum in 

some detail to familarize ourselves with the renormalization 

group techn iques. The (2,1)P modified rectangular lattice 

is discussed to illustrate how the effective ~imensionality 

may be determined when the recursion equations involve more 

than one variable. 

The same technique is applicable to other recursively 

defined lattices, though the analysis of the recursion 

equations is usually more involved. We use the 

renormalization transformation to determine the frequency 

spectrum of the nearest neighbour Hamiltonian on the 

lattice. In general, for l<d<2, the frequency spectrum is 
-

quite singul ar and consists of an infinite number of delta 

functions of varying heights. The dimensionality of the 

lattice is deduced from the power law behavior of the 
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cumulative frequency distribution function for low 

frequencies. The procedure is equivalent to determining the 

low tempe r ature specific heat behavior of a Debye solid on 

the lattice. If the low temperature specific heat is 

proportional to Tc{ , wh ere .T is the temperature, we identify 

d as the effective dimensionality of the lattice. 

A. The Truncated r.-Simplex Lattice 

We define the spherical model on this lattice by 

assigning :a continuous spin 'X1 (-co< X~<+ co) to each of the 

sites [ of the r-th order truncated n-simplex lattice. The 

• index l. 
Y' goes from 1 to Nr=(n+1)n . The nearest neighbour 

sites are assumed to have a ferromagnetic Ising interaction 

of strength J. The spherical constraint (L_.-x/· :N) is taken 
I: 

care of by introducing a Lagrange parameter ;;>-. in the 

Hamiltonian , so that the Hamiltonian of the system is 

H = (J/2) L 
.,.,.."'""'-"'' -nil~br-..•• (;j) 

2. 
(X,-X~) ., 

- 2 
+ (~J 12 )2_, )(~ 

(. 

(:3) 

We get the partition function as 
+.o 

z Y' (/\) = V(lctx) exp(- ~H) , (4) 

where (3 is the inverse temperature. This is a Gaussian 

integral and may be done easily , giving 
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N.,./2. 
: {2TT/ 13 J) Gr(~) 

N,._ 

G"'(/, ) : n 
'•I 

l - 112 
( 0; + /\ ) 

(5) 

(6) 

where w/ are the normal mode frequencies of the model. The 

treatment of this model is quite parallel to that of the 

Ising model discussed in Ref. (18). In particular we may 

define the analogs of the star triangle and the dedecoration 

transformations in the continuous spin case. These 

transformations follow from the identities 

0) 

(8) 

These identities are applied as follows: We group the 

N~ spins into N~/n groups of n spins each , such that each 

spin interacts with every other spin in the same group with 

Xz*': ' " 
5 5 

X3 X4 

FIG. 6'. An example of the generalized star triangle transfor­
mation with 11 = 5. 

interaction strength 1 in scaled units. Then we introduce a 



new spin 'jj for each group J and couple it to each of the 

spins in its group with interaction strength n. The 

original n(n-1)/2 bonds within each group are deleted and 

replaced by n new bonds all connecting the new spin 2Jj to 

the other spins (Fig. 6). Identity (7) ensures that the 

partition function remains unchanged. 

The second identity corresponds to the dedecoration 

transformation of Fisher (Fig. 7). We integrate over all 

the original spins '"Xz. This leaves us with the new spins ct· 
which form a (r-1)-t:b order truncated n-simplex lattice, and 

all the spins ~; interact with their nearest neighbors on 

this lattice with a quadratic interaction. By a scale 

transformation on the spins ~j , this new interaction may be 

converted into an interaction of unit strengt~ . 

X1 ! 'I'/ X2 
() • • 0 

n x t x n -
FIG. 7. The dedecorat ion transformation. Spins ~ and 1) are 
integrated over. 

Applying these transformations we find that 
-N,,.+~ 1 

G 
1
,( )\) = [ (A+n) (>.+n+2)] ~ .,.,, Gr~} A +211 +n/,). 

Define 

(C\) 
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F('/\) =Lim ln Gr>(~ )!Nn. (lo) 

We get 

F('A)=-(n-2)/(1.ln} ln[(::\+n)(/\+n+2)] + (1/n)F(l)'-+n?i+2?d. (1~) 

The frequency spectrum of the model may be determined 

from this functional equation for the characteristic 

function F(~ ). Details of the calculation are given in 

Appendix A. We note that )i = 0 i s a f i x e d po in t o f the 

transformation. From Eq.(11), putting /\:0, we get 

F(O) = -[(n-2)/{4(n-1)}] ln [n(n+2)]. (12) 

From Eq.(A1) of the Appendix A , it is easily seen that for 

small A >O, F( )\) has an asymptotic expansion of the form 
"112 

F( )\ ): F(O) +A~ +{higher order terms in A), where d is the 

dimensionality of the lattice. Substituting in Eq.(11) and 

comparing the leading power of )\ we get 

d/2 
A = (A/ n) ( n+2 ) . C-'o) 

This implies that 

d = 2 ln(n) I ln(n+2) oi.> 

It is interesting to note that this result may be obtained 

without the complicated analysis of Eq.(11) given in the 

Appendix. 

B. The (2,1)~ Modified Rectangular Lattice 
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For this lattice we wish to determine a functional 

equation of the same general form as Eq.(11) from which tne 

dimensionality of the lattice may be deduced. The 

functional equation is, however, much more complicated and 

involves five variables instead of one. 

We have 

"')7 2 - 2 
H = (J/2)L_._. (X:-X; ) +(~J/2)z_, X.~ 

clj) • 

(3) 

where the sum over (ij) extends over all nearest neighbor 

pairs (ij). We consider a more general form of the 

Hamiltonian and allow different interaction strengths and 

next-nearest neighbor interaction between spins belonging to 

the same first order rectangle. we write 

H = 

where J .. 
'J 

belong to 

C 1 /2 > z:_, Jcj < X· -X· ' ;; 

)z + ('AJl2>Z"Xz
2 

, 
,.., 

=O unless and are nearest neighbors 

the. same first order rec tang le. J .. 
. 'V 

FIG . 8. Coupling constants 
for the modified rectangular 
lattice . The spins y 1, yz, y,. 
Y 4 are integrated over. 

may 

c 1'5) 

or they 

take four 

different values J 1 ,J2 ,J~ or J2i. These interactions are 

depicted in Fig.(8) J 2 , J 3 a r e r es pe c t iv e 1 y the 

vertical, horizontal and diagonal bond strengths if ~and j 



belong to the same first order rectangle. J4 is the 
. 

interaction strength if Z and d are nearest neighbors but do 

not belong to the same first order rectangle. 

The renormalization transformation consists of 

integrating over the spins Y,, Y2 , Y
3 

, and Y4 and similar 

spins on other rectangles. This reduces the number of 

degrees of freedom in the Hamiltonian by a factor 2. The 

spins X;, and similar spins on other rectangles again form 

the vertices of a (2,1)~ modified rectangular lattice. The 

integrations over ~[ ( L =1 to 4 ) give us an effective 

interaction between 'X· ( t = . 1 to 4 ) and since the . 
interaction is quadratic , it may again be expressed in the 

same form as Eq.(15) except for new values of the coupling 

constants J 1 ,J2 , J;). The value of J-4 rema1r.s unchanged. 

The most general form of the weight of an r th order 

rec tang le with corner spins JC,, X;. , Y; , Y2 , and al 1 other 

spins integrated over is 

(T) CrJ S 1 ' l z. \ 2 ! 
-~~ ~ 1 ('/- ~f_/\ -llJ1X1 +ht'l,~l,j _ CX.-Y.J + • 'l,J ~ 

- ~ ,,.._, 

(1{,) 

-co 



The integrations in this equation are Gaussian and ~ay be 

carried out easily. This gives us the recursion equations 

for the new coupling constants 

Cf,. .. <> :(Ctr))<- ( 211)2. (3-2( ~r; J+J;;lr> +J,,v"J )-112. 

X ( -,,:r>J 2J (rJ J (•I .1 (rJ )-111 ( ,tnJ J (rJ J tr> 2J )-1/z 
./'. + I + ~ +u3 /\ + ').. + 3 + Lj 

fl" I c -V.• 
X( ?\ J+2J,{•) +2J4 +J.t r) +Jt)) "-

<{!'.l (r) tr) ( J (r) J tr) )•.z.. ( '"\.lY')J +2 Ji, +J,Cr) +J,!r) )-/ = / .. ,J +J:i +J, - ;; + 3 /\ ..., ~ v 

~r .. \)J+2 J:;(M l) + 2 J'3(N I) 

:( xr\) J+2J/r) +2J3'r)) ( ~l"'J+2J,fr) +2J!l.(r)) 

X{ )\(r) J +2 J/rl +J;z(rl +Jt) )-/ ' 

~Y+I) (r .. t) {r .. 1) 
/\ J +2J, +2J'2. 

:[( ')\'JJ+2J,<r> +2J_t>) ( ).'.rJJ+2J,(y) +2J:i.(YI) 

( 1'6a) 

( \~ 6) 

(1<2c) 

( \~d) 

+2J.Li ( ;i'"'1J+2J,<l-I +J
1

(rJ +Jt'J )] [ ~:;fJ+2J,. +2J/'J +J,;i_(rJ +J
3
(r) f 1

• (\6e) 

Let the free energy per spin of the Hamiltonian given 

by Eq.( 15} be F(J, ,J:z. ,J.:,. ,J 4 , ').). From the renormalization 

transformation we get the equation 

where J' J.'' J' ,, are c0 iven by Eqs.(18b-e). To 00 et the free 1t :Zf JtA 



energy per spin of the original model we set J, ::J2 ::,J~ ::J and 

We note tha-t ~=0 is a fixed point of the 

renormalization transformation The free energy per spin 

is a singular function of 7' near /\ :::0 and has an asy:nptotic 

expansion of the form ( /\ >O) 

d/2 
F(J, ,J2 ,J;; ,J1.; '~ ):F(J, ,J2 ,J3 ,J<i ,O)+ ~ G(J, ,J.z ,J3 ,J~ )+ 

higher order terms in 'A . C~o) 

We wish to determine the behavior of F for small ~ . 

However, the value of 
'\lNIJ ., ( rl 

approximately as /\ ~ 2 /\ 

Also the values of J,'t), J ( rJ 

.:l ' 

lrl 
)\ increases with iteration 

as is ev id en t from Eq. ( 18 b) • 

~w decrease with iteration. We 

choose initial ~ sufficiently small and r sufficiently 

large so that 

( 21) 

Then the recursion equations (18) may be approximated as 
'"\tr.,. I) 'l tr> 
./\ ~2/\, 

J. (\"i"I) J (r+\) °' 
I + .3 ~ 

J ·(Y"tl) J l r+I) 
). + 3 

l ;)Qa) 

(!ln) 

C22c) 

(~~d) 

s;ih:}•lnr 
Now, if we write F (J, ,J1 ,J3 ,J4 ,'?.) as the singular part 

of the free energy near /\ =O, we get from Eq. ( 19) 

F5in;i•~..-( JO•J J[r> J(r) J .1 crJ) ·~· ( 112 ) « '"f"l<c J (nl) c~+') (..-+I) ?tu-+!) ( JI \ 
I ' ) , 3 ' ~ ' /\ . F ( I ' J !}. ' J.; ' J ,, ' ) . 2.. '..) 

It can be shown that Eqs. (22b-d) imply that lr' I J er> and 
2. I 

J(rJ/J(r) tend to finite asymptotic values c2"l +i113
) and i 113 

. 3 I 

geometrically with large r. Hence for large enough r the 
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eqs. (22a-d) have the form 

::>t-+ I) 
~ 2 ').'"') 

J \5'-+ I) 
~ 2-•13 J ('r! 

l I ' 
J (r -;-U 

:;. 
~· 2V3 J;i.0") 

' 
J {r_,.1) -•/j 

J,\r) ~ 2 "i '° 

Now, since the variables J (r) and 
!/. 

proportional to J frJ for large r 
I 

J (r) 
3 

( :2 lio) 

l 2 2; c) 

are as ym pt o t i c a 11 y 

these variables are 

unnecessary for our discussion . Any one of the variables 

J,{"), J;''), J,t) is adequate for the discussion of the critical 

properties of our model. These variables provide a relevant 

F S1n5 1.; /u,.- ( J'o JIYJ J(fJ ,,rJ) scale for our problem. We assume that , , 2 , 3 , 11 

where A is some constant. Substituting 

this in Eq.(23) and with the help of Eqs.(24a-b) we find 

that d=3/2, which is the promised result. 



VI THE SPHERICAL MODEL 

The spherical model was first proposed by Kac [28] in 

1947, and later solved exactly by Montroll [29]. We give 

here a brief review of its critical properties for arbitrary 

space dimensionality d. A more detailed and exhaustive 

review is given by Joyce (30). No new results are presented 

in this section. Our purpose here is only to illustrate by 

an explicit example how the critical exponents depend 

piecewise continuously on the space dimension~lty d. Also , 

these calculations constitute an important argument in favor 

of our definition of dimensionality, since the critical 

exponents agree with the expressions derived in literature 

using formal arguments only. Our treatment here is brief. 

For a more complete discussion , the reader is referred to 

the review article by Joyce. 

The spherical model assigns a continuous spin 

(-CtJ</(~<+OJ) to each site i of a d-dirnensional lattice. The 

Hamiltonian of the system is given by 

Here J is the ferromagnetic coupling constant between the 

spins. h is an external magnetic field. The summation over 

(i,j) runs over all nearest neighbor pairs. The spins are 
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subjected to the constraint 

/.)(~2 = N' 
i 

where N is the total number of sites on the lattice. The 

partition function of the system is given by 

N -tm 

Z( (3 ,h) = lJ CLd'X) exp(-PH) S<;z,x/ -~o ' {_2/) 

where ~ is the i~verse temperature. The partition function 

may be evaluated easily using Laplace transforms. We write 

fie:> 

1 exp [->fJ CZ-X/-N)/2] [3J d/\/(47\L). 

(22) 

We substitute this representation of the delta function into 

Eq. ( 27) . The integrations over /( are now Gaussian , and 

may be done easily to give 
1 (c-0 

Z( ~,h) = ( I37\~) j'JJexp[ p)iNJ/2] J1< p ,/I) exp[ Nh
2
/3/2;) J]. 

with 
-i"" . C7'1.) 

UC {~, ')..) = TJ (fd'X;) exp[- ~f,.J ('X; - "Xj )i. /2 -0t3J/z)(~ -x~~] 
= (2 -11 I (!:i J )i\l(z lJ ( q~ ), f y2 

• C~o) 
l 

2. 
Here Wz are the normal mode frequencies of the Hamiltonian 

H. The integral in Eq.(29) may be evaluated using the 

method of steepest descent. We get , retaining only terms 

linear in N, 

ln ZC f ~h) = l.-nilL( ~ ,?_0 ) + N ph
2 
/(2~.,J) + N f3?i 0J/2 , Ol) 

where 'I\ c is the po int where the right hand side of Eq. ( 31) 

attains its maximum value and thus is determined by the 

equation 



First consider the case h:O. Then the equation determining 

~o is 

co 

J l}( l0'2.> d lD9. ( w2- +?lo f 1 

= (33) 
0 

Here D(0::l ) is the spectral density function. D(w .. )dwz... is 

. 2.. 
the fractional number of modes in the frequency range ~ and 

. 2- . 'Z.. 
(i) +dli:. Using our definition of effective dimensionality 

,,, cJ-j_ 
D(CU~ ) = K w , for small 4.J , (24) 

where K is some constant of proportionality. Three 

different cases arise. 

Case I : d<2 . The integral on the left hand side of 
d-2 _ 

Eq.(33) diverges for small /\cas ~ 
0 

·i • Hen c e for 1 a r g e 

2 

0~ ! 

For any finite ~ 1 ~c is finite and a smooth function of 

~ ~ Consequently the free energy is a smooth function of 

~, and no phase transition occurs at non-zero temperatures. 

Since the critical temperature is zero the critical 

exponents cannot be defined unambigously in this case. We 

note 
' 

however, that as p tends to infinity, the magnetic 

susceptibility of the model is given by 

with 

respect to ~and from Eqs.(31) and (33); it is easily seen 
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that the en ergy per site is given by 

E = 1/,2/3) - ~OJ/2 = ( 1 /2) (1/p - 1/:X::) • ('S7) 

This relat i on between the i n ternal energy per site and the 

zero fie ld susceptib ility is valid for higher dimensions 

also for [3 < f-c . The specific heat per site for low 

temperatures is given by 

'2 '2 
cl 

C1-,( p ) ( f-' /N) Q_ .2_ n Z( (~ ,h:O) 1 /2 ~d-2 (~fbj = ;'..\', - K 
car~,_ 

where K is some constant of proportionality and we have 

ignored highe r order singular te r ms in ~ . 

Case I I : 2 < d < 4 • In this case , the integral on 

the left hand side of Eq. ( 3 3) converges for /\ = 0 
0. Define 

~<1 by the equation 
Co 

J D( .07... ) ct 0:/ /w 2 = #c J . (get) 
0 

For fo > ~ ' Eq. cii> ceases to be valid. The phenomenon is 

analogous t o the onset of condensation in an ideal Bose gas. 

~0 becomes exactly zer o and q , the normal mode coordinate 
0 

corresponding to the zero frequency mode , becomes very 

large, of o rder [N . This is the onset of spontaneous 

magnetizat i on in this model. 

If p = re ( 1- £ ) ' where E is a small negative 

quantity, we get 
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But ~;/N is the square of the spontaneous magnetization in 

the model. Hence we get for the critical exponent ;3 , 

which measures the rate at which the spontaneous 

magnetization increases as a function of S , 

p = 1 /2 .•. (iii) 

Th i s c r it i c a 1 ex po n en t ; 2 sh o u 1 d not be c on fused w i th the 

inverse temperature (3 used everywhere else in this 

discussion. Also, for f > f::. 

satisfies the equation 

E(~ >Pc ,h:O) = 1/(2 /2 ) . 

/.,
0
= 0, and the energy 

Thus the specific heat below the critical temperature is a 
-o(' 

constant, and the corresponding critical exponert ( Cv~ le! ) 

is 

oZ'= o. 

Below the critical temperature, the magnetization is a 

nonanalytic function of the external field h. Hence the 

susceptibility below the critical temperature is infinite 

and the critical exponent ~~ which specifies the divergence 

of susceptibility below 

( X"' lcf~
1 

) , is undefined. 

the critical temperatu!"e 

To discuss the critical . properties of the spherical 

model in the presence of an external field h, it is 

convenient to work with a constant magnetization ensemble 
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instead o f the constant external field. For a fixed 

magnetization m, the Eqs.(3 1) and (32) may be easily seen to 

yield ,exce pt for irrelevant additive constants 
C) 

( 1 /N) ( n Z { f , h, m) = -Jl JD~:~~z cit,} -t f?> hrn - j fHLfJJ)- ~ f Dru:)dl</iv,Ccu"-t;io) , 

(_ 62.i) 

where ::\ ., is det~rmined by the condition 

(1/fJ) + m2 = 1 • 015) 

Different terms in Eq.(44) are easy to identify. The first 

term is the ferromagnetic interaction energy of the spins. 

The second term gives the interaction energy with the 

external field. The third and the fourth terms give the 

entropy contribution due to the normal modes. Eq.(45) is 

essentially the same as Eq.(33) with the c ontribution m~ due 

to the zero frequency mode explicitly written out. 

To determine the equilibrium value of m( ~ ,h), we have 

to maximize f n Z( p ,h,m) with respect tom. Setting its 

partial derivative with respect to m equal to zero , we get 

[ ' ~id-Diwz) l~'?_,_ /\:)z~Ac -t- (3h - ~ f t"'ll0~)_J__ctw:\ 'd>- 0 ==- o , ( ~6) ~ t' +/ • J ~ ·-m L ~ V (..)~::;\., J ())n 

But from Eq • ( 4 5) 

[%>;;,] hiJ [D10)c~· ctw'J +-~"' = o 

Substituting in Eq . (46) we get after some simple algebra 

m)i J = h • 
0 



Now we recall that DC0z. ) is pr·oportior.al to 

small 0 . Hence we may write for small /X, o 

c~ -2 
co for 

J 
CD d-2 

c D Cw"- L~~.\ Jw' ·~ ~ J -~ ).. 0 z. -K2 1\ 0 +higher order terms in 71
0 

, (liq) 

where Kr and KL are some constants dependent on the lattice. 

If d < 4' then the K.l term is of higher order than the Ki 

term and may be ignored. Substituting the value of ./\ 0 from 

Eq. ( 4 8) i nto Eq.(45), and making use of the approximation of 

Eq.(49) 
' we get to the lowest power in h 

d-2 
·~ t_ J - K 1 ( h/mJ) --z . 

From this equation of state, the critical exponents are 

easily determined. Consider P= I{ . Then the critical 

exponent '() , which determines the magnetization as a 

function of the external field at the critical point ( h....., 

m;) ) , is easily seen to be 

S = (d+2)/(d-2) , for 2<d<4. 

Also, if ? >Pc , the magnetization m is seen to be a 

nonanlytical function of h, and hence the susceptibility 
-y' 

exponent 0 ' C Xcv1r-g1 , for~> fc >is undefined. 

If v. < s y I c.. , then for small external field h , m is small and 

may be neglected in the left hand side of Eq.(50) . This 

gives 

(z:;;i1) 

Hence we get the critical exponent 
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r; = 2/(d-2) • ~3) 

Also, from Eqs.(33) and (49) we see that for 

But from Eq.(37) we know that the singular behavior of /\ 0 is 

the same as the singular behavior of the energy. Hence we 

see that the specific heat exponent 

~ < ~ ) is given by 

d = ( d-4 ) I ( d-2} 

-'"-"! 
d-__ ( C V N ( #"- - (~ ) for 

Case III : rj > 4 The treatment of this case is 

identical to the previous one. The only difference is that 

ford >4, in Eq.(49) , the K~ term dominates over the K1 

term . The Eq.(50) is modified to 

The critical exponents in this case are derived similarly. 

We get 

o!.'= o. 
yl= o undefined • 

S= 3. 

D" = 1. 

c{ = 0. 

~ = 1 /2. 

(c:i'7) 

(~8) 

(Sq) 

(b"o) 

(6'1) 

(6~ 

Hence for d>4 , the critical exponents are independent of 

dimensionality and have the same values as for d:4. 



All the critical exponents are seen t1 satisfy the 

scaling re l ations 

~ = , • 01 13 • 

v(.+ 2 p + (( = 2 

(61J 

In the liter atu~e [31] , many other scaling relations are 

discussed. They however involve additional exponents like 

V or ~ etc. These exponents depend on the rate of 

decay of the correlation function near the critical point, 

and are difficult to define because of the 

inhomogenei ty of the lattices studied here. 

spatial 

Scaling 

relations involving these exponents are not included here. 

We shall return to this point in the next section. 



VII THE CLASSICAL XY MODEL 

In the classical XY model a s pin d i r e c t i o n f?~ , 
c 

is assigned to each site 1.., of the 1 attic e. The 

Hamiltonian of the system is given by 

-h Zcose,, 
i:. 

where the summation over <i i> extends over all pairs of 

nearest neighbor sites. The corresponding partition 

function is given by 

exp<-pn . (66) 

First consider the case of zero external field h. We write 

-+-O:I 

exp[ fo Jcos( &: -6?,· )]=~ ... In:; CpJ) exp[~n.J. C8,-i9,·)], {61j 

where I~( X) is the modified Bessel function of X of order m, 

and express Z as a summation over all possible values of 

{n iJ } • With each term of this summation we associate an 

arrow configuration on the bonds of the lattice. The arrow 

configuration has n,J. arrows going from site ~ to site i, 
for all nearest neighbor sites and with the convention 

nu =-n;z· Thus tbe partition function is expressed as a sum 

over all possible arrow configurations. The weight of a 

bond with m arrows is I..,,(~J). The integrations over { 8,:} are 

trivial and show that only those configurations of arrows 

contribute to the partition function su~ in which the total 



number of arrows going into any si~e is zero. 

Equivalently we may assign a weight T(m, ,m
2 

,m3 ) to a 

arrows going into it from its three 

nearest neighbors. If m1 +m2..+m 5 ;t0, we set the corresponding 

vertex weight T (m
1 

,m2- ,m 3 ):0. 

-
FIG. Cf. The .renormalizntion transfornwtion for the XY model 
on the truncated :3-simplex lattice. The three vertices in the 
left figure are replaced by ::J. single vertex . 

The renormalization procedure for the truncated 

3-simplex lattice consists of replacing a group of three 

neighboring vertices by a single vertex and is illustrated 

in Fig 9. If T <f'
1
(m

1 
,m.:2.. ,rn3 ) denotes the vertex weight after r 

iterations , the renormalization equations are given by 
. -r-c<l 

(r+v """') it) ( n (CJ 

T (m 1 ,m:t,m3 )=L-:.T (m
1
,c-m,,-c)T (m3 ,mi"'c,c+m 2 )T (m 2 ,c,-c-m 2 ). 

C.=-c.'O 

The starting values of vertex weights are 

The free energy per site is given by 
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f( fo >=- I~ Lim 
J--'><<> 

- '(' (r) 

3 lnT (0,0,0). 

It is eas y to verify that Eqs. (68) have or.ly one 

attractive f ixed point given by 

This corres ponds to spin directions at large distances being 

uncorrelated and hence to the absence of spontaneous 

magnetization in this system. If the temperature is very 
1 ., ') ') 

1 ow , p J > > ( m, - + m 1- + m 3 - ) , we ha v e 

TlO)(ffil ) ,m2 ,-m1 -m 2 

(7/) 

If ~J is ver y lar ge , we may replace the summation over c in 

Eq • ( 6 8 ) by an in t e gr at ion . Sub st i tut in g the v a 1 u e s o f the 
(0) 

weights T (m 1 ,m:i. ,m~) from Eq. (71) we get 
0) 

T (m 1 ,m2. ,-m1 -m 2 ) 

m Aw exp[-5{m
1

<- +m2.2 +(-m 1 -mz..)z. }/12fJ], 

where Ace) and A(1) are some constants. This shows that the 

renormaliza t ion equation for the temperature is 

(72) 

Now le t us introduce a small external field h, ph<<1. 

It is easy t o see that the vertex weights T(m 1 ,m4 ,m3 ) are no 

longer zero if m 1 ~m2+m 3 *O. To first order in ~ h, and for 

foJ>>(m 1
2 +m.:<.2 +m_/) the other nonzero vertex weights are 

~ ~ . 2 2 ~ 
T ( m 

1 
, m;. , m3 ) = fh A ex p [ - { m 1 + m 2 + m ~ } / 4 ~J ] , 

(73) 



After one renormalization , using Eq.(68) these are easily 

seen to transform to 

Thus we see that to the lowest order in ~ h, the external 

field h is transformed according to the renormalization 

equation 

{70-J 

Using Eqs. (72) and (75) , it is easy to determine the 

behavior of th~ susceptibility as a function of temperature. 

Let · g(~,h) be the singular part of the logarithm of the 

partition function per spin. By the renormalization 

transformation 

g(~,h):(1/3) g(3f/5,5h), 

and the susceptibility 

X Cp>= --j3 ~,,~U,h)/h,o ~-+ ~.CJU(rij/h',o 

=5 'X ( 3 ~ /5 ) . 

Hence if X<[5>l'V (3i we get 

15 :ln5/(ln5-ln3) . 

(7f;j 

(77J 

. Similar analysis of the truncated n-simplex lattice for 

a~bitrary n shows that in general , for d<2 



'o' :2/(2-d). 

The specific heat tends to the simple harmonic 

oscillator value k Ke. as the temperature tends. to zero. 

These results are easily extended to the case when the 
~ 

spin at each site is a p-dimensional vector S of unit 

magnitude. Here p is an arbitrary integer greater than or 

e qual to 2. p=2 corresponds to the XY model. p:1 

corresponds to the Ising model which differs from the rest 

in being a discrete rather than a continuum model and is 

discussed in the next section. 

The recursion equations for the coupling constants PJ 

and ~h for the p-vector model ( p>2) are still given by 

Eqs. (72) and ( 75). For low enough temperature, the angle 

between nearest neighbor spins is small and interaction 

between them may be replaced by a harmonic spring coupling. 

Eq. C72) just shows how the harmonic spring coupling 

constants are transformed for the truncated 3-simplex 

lattice under the renormalization transformation. Also, 

Eq.(75) follows from the fact that the nearest neighbor 

spins are very closely aligned at low temperatures. 

Consider a renormalizati-0n transformation under which three 

spins on a first order triangle X; ~1 , ~:i.' s::'3 are replaced 
. --=:> 

by a block spin SO( . The effective coupling of these spins 
.....,, __., _,, --'> 

to a small ex terr.al field h is given by - f h. (S_,, 1 +S~·:i..+S-< 3 ). 
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-"'>---"?> 

This is approximately equal to -3~h.~ 
~ ·~ 

s inc e s"' ~ soi.~ for most 

configurations. This gives us the renormalization equation 

( 75). 

Since the renormalization equations are inde pendent of 

p, we conclude that the critical behavior of the model is 

also independent of p, for p>2, for the truncated 3-simplex 

lattice (in general for lattices with d<2). This conclusion 

is of some interest because it is known to be false for d>2, 

and series expansions for critical exponents in powers of 

(1/p) exist in literature (32]. In particular the case 

P-.:;.cO corresponds to the spherical model [33J discussed in 

the previous section. 

The exponent (5 in Eq.(79) should not be identified 

with the critical exponent 0 which appears in the scaling 

equations and specifies the divergence of susceptibility as 

a function of temperature slightly away from the critical 

point. The reason is the arbitrariness in the definition of 

critical exponents when the critical temperature is zero. 

The procedure of determining the critical exponents in terms 

of the divergence of correlation length is of doubtful 

validity here because the lattice is not translationally 

invariant and the "correlation length" is a function of 

position. Different definitions of "averaged correlation 

length" may well give rise to difference dependence on 

temperature. In general, it is difficult to find a useful 
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of correlation length for the spatially 

inhomogeno us and highly anisotropic lattices studied here. 

Consequently the critical indices y and YJ are undefined 

even if the transition temperature is finite. (To define 

them in terms of scaling relations would be begging the 

question.) The critical exponents like d. , 0, o' or 6etc. [34], 

which may be defined by differentiation of thermodynamic 

quantities, are however well defined for nonzero transition 

temperatures. 
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VIII : THE FORTUIN-KASTELEYN CLUSTER MODEL 

The cluster model was introduced by Fortuin and 

Kasteleyn (35-37). It is defined in terms of a parameter K 

and includes as special cases the percolation model ( K. :1), 

the Ising model (K:2), resistive networks (K:O), and the 

n-state Potts model( K :n) [38). 

The partition function of the cluster model for any 

given graph is given by 

~ Y'(C) N- rCC.) 
Z(p,K-)=L__;;P (1-p) · 

v 

where N is the total number of bonds in the graph. The 

summation extends over all possible configurations C of 

"occupied" or ttunocc~piedtt states of bonds on the lattice. 

r{C) is the number of occupied bonds in the configuration C 

and Y(C) is the number of distinct clusters in 

configuration C. Fortuin and Kasteleyn have called this the 

random cluster model. However, the model is completely 

specified by a Hamiltonian which has a term proportional to 

the total number of occupied bonds and a term proportional 

to the total number of clusters . It is thus no more random 

than any other statistical mechanical system, and the 

adjective "random~ is unnecessary. 
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Due to its very gener al nature, the cluster model is of 

much interest in statistical physics. However, for 

arbitrary values of K , the model has not been solved even 

in two dimensions. We sketch below the renormalization 

group treatment of this model for the truncated tetrahedron 

lattice. It is shown that the model does not show any phase 

transition for any values of K and p such that k >O, and 

We define the restricted partition functions 

(f') I ) Z Ca1b c), z(r) (a \ bc)' Zc"J(b11ac), al( , ) <">( ) Z c I ab , and Z abc . 

Here zr")Ca )o!c> is the partition function of the r-th order 

triangle, whose corner vertices are a,b,c and the summation 

corresponds to all configurations of edges within the 

triangle subject to the constraint that no sequence of 

occupied bonds within the triangle connects any two of the 

vertices a,b,c. 
(r) 

Z (abc) is the restricted partition 

function when a,b,c are connected together by bonds lying 

within the r-th order triangle. Z (a\bc) etc. are defined 

similarly. By symmetry between the corner vertices a,b and 

c, we have 

\.~) \ = Z ( b ac) = 

and we write 

\ r' ' z· ' (c\ab) 
I 

(Y') 

= z1 (say) (3 \ci) 



Z (!') ( abc) = Z 2i (rl • 

(<!,lb) 

(<6k) 

It is quite straightforward , though tedious , to write 

• ln\J {r+ I) trtl) LY) down the expressions for z, , Z:;_ , Z3 in terms of Z, z lrJ 

' 2 ' 

and zr> by summing over the 23 possible states of the three 

bonds that connect the r-ih order triangles to form a (r+1 )1=h 

order triangle and grouping together terms that correspond 

to the same connectivity structure of the (r+1 )-t..0 order 

triangle. Th e result is 

(NI) 3 ( . )3 
Z1 =q Z1, +3Z2.. +Z3 

+3p~{i"
1

CZ, +3Z2+Z3 )(Z,+2Z2.)(Z1+'4Z2+2Z3) 

+3p12 q kz. { (Z 1 +2Z2 )
3 +3(Z 1 +2Z2. { (Z2-+Z3 )+Z, (Zz..+Z3 )z.} 

3 -3 1 , ( z.. 3 3 . 4 ·z_ z. z 3 } 
+p K t. Y\ 3Z 3 Z1 +Z_,_ ) ..... 14Z.1.+12Zi Z2..Z 3+2 Z:.z..Z 1 +3Z 1 Z3 +9Z, Z.i..+Z, , 

C'b2-a.) 

a> 
where we hav e put q=1-p, and Z~ =Zz ,i=1,2,3. In Appendix B, 

we have listed the configurations of r~h order triangles 

that form an (r+1)th order triangle with all its corner 

vertices belonging to the same cluster. The sum of the 

~eights of t hese configurations appears on the right hand 

side of Eq.(82c). Eqs.(82a) and (82b) are written down 

similarly. 



If q >O, analysis of these equations shows that there 

exists only one fixed point which is attractive and 
(rJ !<l ( ~) UJ 

corresponds to Z;i. IZ, =Z3 /Z1 :0. This implies the absence of 

phase transitions at any finite temperature. For small q 

d 11 Z (•) . h 1 an sma r, ~ ls muc arger h Z 
(y ) z (I') 

t an , or ·;i • If we 

r enormal ize 
(r) ( rJ (rJ L>"J 

the Z~ after each iteration so that Z, +3Zi. +Z3 =1 

always, we get to the lowest order in q 

z (\") 
I 

:; r<2-q3' l <63o.) 

z (1") i. c 33 b) 
.:1. :: K q r, 

z (y.) 

= 1-3q2 Kr. 
('t:i3C-) 

.3 

Thus for very small r, Zi<l'J increases linearly with r. 

This, however 
' is =-i0t true for larger values of r ' when z c-; 

.2 

becomes comp arable to q, and is not of order 'Z. q • Let us 

assume that the value of 
{rJ 

Z1 is Ecr; with 1>> E:..'"') >> q21\ • Then 

it is easy to see from eq.(82a) and the condition 

that to second order in 
. l~ 

the values of z~ 

are given by 

z (r) 
I 

:; 3 Etr/Z (3~o,) 

z~(r) = f(r) rn~ b) 

(Y') 
Z3 = 1-3(r) 

' ')_ (~~c) ct~_) 
-3c.- • 

Substituting these values in the recursion equations (82) we 

can determin e e ll'+ ' 
c up to second order in q and We get 



'L 
trj - I i•J 2. 

+4E K +4q E + Kq . (9/5) 

This shows that 

,.-ir'-t I ) lW 

c - cc_ ~ 4 ( £:") +qi</2) 
2 

/K . (~6) 

c(\"J Since c is small com~ared to one its value changes 

slowly with r and we m3y approximate the difference equation 

(86) by the corresponding differential equation 

This equation has the solution 

CE[f'J+cui:r' - (clO) - ovt_'r1 R'; L1r/K 

This equation determines E!'(lJ as a function of r. Let us 

determine the value cf r when E-r) becomes comparable to 1. 

Call this re . 
le) 

We may :: :.it E :0, 
(l') 

f':0.2 (typically). 

very small q we get t n~ approximate equation 

: 1/(2q) - A ; , 
' ' . 

For 

(£0) 

Here A is some constan: which depends on the precise value 

of cutoff, and thus pe :-~ aps depends weakly on K. 

Now, the mean siz~ of a cluster is obviously given by 

83~ where B is some finite constant dependent on the 

cutoff. We have thus :.:. educed that for small q<<11i<, the 
J_ 

mean · size of a clus ::.er is approximately given by B(K)3 2
''. 

This result has alread~ been obtained by Nelson and Fisher 

for the particular ci:.se of the Ising model. The mean size 

of a cluster in t h~ Fortuin-Kasteleyn cluster model 



corresponds to the susceptibility of the Ising model [39]. 

We need only note the correspondence K=2 and q=exp(-2pJ), 

to specialize our result to this particular case. 

Other lattices with 1<d<2 give very similar results. 

In each case the mean size of a cluster varies as the 

exponential of the exponential of inverse temperature. To 

appreciate how close these systems are to phase transitions, 

one need only observe that the susceptibility of the Ising 

model on the truncated tetrahedron lattice is of the order 

of 200 when ,0J:1. When pJ=3, the logarithm of the 

susceptibility is approximately 220. If these lattices were 

experimentally accessible, an experimentalist would 

certainly conclude that the system shows spontaneous 

magnetization at low ~emperatures, since it would be quite 

impossible to eliminate external magnetic fields so 

completely. Or for that matter, to find samples 

sufficiently large so that the volume of the experimental 

sample is comparable to the correlation volume. 



IX ·• . SELF-AVOIDING RAND0'.'-1 WALKS 

Self-avoidin! random walks were originally proposed as 

a model of polymers , to study the effect of excluded volume 

(40]. The prop~rties of these walks are connected with some 

properties of the Ising model [41]. The study of the 

configurational problems encountered in this problem may be 

expected to shed some light on the more general problem of 

second order phase transitions The problem has been 

attacked using a variety of numerical and analytical 

techniques [42-44] , but the number of exact results known 

is · small It has resisted a complete solution in the 

physically interesti~3 case of three dimensions , or even in 

the considerably simpler case of two dimensions. 

It is thus of some interest ~o study the problem for 

some psuedo-lattices where the exact solution may be 

worked out and its properties analysed in detail. The 

analysis in this section differs from the previous two 

mainly in that for the self avoiding walk problems, the 

recursion equations have nontrivial fixed points, even for 

lattices witn effective dimensionality less than two. The 

system shows a phase transition in the sense that the 

generating functions of the random walk become singular as a 

function of their argument. We can determine the critical 



exponents using standard renormalization group techniques. 

The recursion eq uations are coupled algebraic equations 

and their derivation and analysis is quite straightforward. 

In the parameter space of the coupling constants we 

observe the phenomenon of the point specifying the effective 

interaction approaching the fixed point of the 

renormalization transformation initially. Eventually the 

point escapes away from the fixed point after a large number 

of iterations unless the starting system was exactly 

critical. Linearizing the recursion equations about the 

fixed point, we determine the critical exponents from the 

eigenvalues of the linearized renormalization transformation 

matrix. 

A self avoiding walk on a lattice is a random walk with 

the constraint that no lattice point is visited more than 

once. We associate a weight factor x with each step of the 

walk and define the generating functions 

al 

C(x) Lim ( 1/N)2__.C" ( N) 
n 

= x (C,o) 
1\1~ CD ....... 

CJ'.> 

P(x) Lim {1/N)L:P.,,(N) 
)1 

= x LC\I) N -4 ca ·TI : 'l 

Here Cn(N) is the total number of distinct self 

avoiding random walks of n steps on a large lattice 

consisting of N points. Pn(N) is the number of distinct 

closed simple polygons of perimeter n on the lattice . The 
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random walk may start fr om any point on the lattice. For 

large N the numbers Ch(N) and Pn(N) are asymptotically 

proportional to N and the limit exists. For regular 

lattices, where all the lattice points are equivalent , this 

limiting procedure is unnecessary because the number of self 

avoiding walks of length n is independent of the vertex from 

which the walk starts (so long as the starting vertex is not 

too close to the boundary of the lattice) . This is not the 

case for t he spatially inhomogenous lattice studied here and 

the averaging over all possible positions of the starting 

point is necessary. We define 

P.., = Lim P...,(N)/N (a2) 
N-?c:> 

c.,, = Lim C_,.,(N )/~ . (q~) 

N......, "° 
We know that for large n' P,, and c: increase geometrically 

with n. Let us assume that for large n 

P.,.. rv K 
1 

f-J-» n -,,i.- 3 , (c14) 

where K1 and K.:z are some coefficients of proportionality. 

In general , we represent a constant of proportionality by 

K, with or without subscripts . Its numerical value is not 

necessarily the same in different equations. Y- is called 

the connectivity constant of the lattice , and o/.... and ?5 are 

critical indi ces for the random walk. Substituting the 

a s ym pt o t i c b eh av i or o f ~ and P 
11 

i n to E q s . ( 9 O ) and ( 9 1 ) we 
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find that as x tends to 1/~ from below, the asy~ptotic 

behavior of C(x) and P(x) is given by 

C( x) ~ 
-i 

KJ.. (1-x,U-) +less singular terms, 

P(x) ~ K 
1 

(1-XfL ).;/- ·:i( + less singular terms . (C17) 

The average number of self avoiding walks per site that 

return to the origin (polygonal closu~es ) after exactly n 

steps is given by 2n~ We also define the generating 

function for the mean squared end to end distance by 

R(x) =Lim (1/N)2_JR(L)]
2 x11

(L), 
"14 oo l... 

where R(L) is the end to end distance for the random walk L 

with total number of steps given by n(L) . The summation 

extends over all possi~le self avoiding random walks L on a 

large lattice of size N • We define the critical exponent 

)) by the relation 

for large n , 

where ZR~) is the mean squared end to end distance for 

n-step self avoiding random walks , all walks being weighted 

equally. Since the number of such walks increases as 

(Eq. (95)), we find that tne asymptotic behavior of R(x) as 

xp-~1 from below , is given by 

R{x) rv K ( 1-x f-)1'-?.Y + less singular terms . (lcm) 



We use the renormalization group techniques to 

determine the consta nts f , d._ , O' and Y for the truncated 

tetrahedron lattice by determining the singular behavior of 

the generating functions C(x) , P(x) , and R(x). We shall 

show that fo r the truncated tetrahedron lattice 

µ:1.6180 ·' cl. :0.7342 ' 1' =1.3752 ' J):0.7986 . (\o\) 

We now derive these connectivity constant and critical 

indices. The generating functions C(x) , P(x) and R(x) are 

weighted sum s over self avoiding random walks . The weight 

of a wal k of length n is xn For R(x) , there is an 

additional multiplicative weight factor depending on the end 

to end distance of the walk (Eq. (98)). Instead of 

assigning a weight x to each step of the walk we may 

equivalently assign a weight x to each vertex the walk 

passes throu gh, and a weight JX to each of the two vertices 

that are th e end points of the walk . Then , for example , 

P(x) is is the sum over all possible configurations with a 

single l oop . 

AM s«i c(d o!r> 

YlG. IC. Restr.icted partition fu nc t ions for an rth order triang le . 
The shaded trw.ngles denote rth order tria nu-les of \\·h ich onl v 
the curner vertices and the end points of th~ self-avoiding wa-lks 
are shown. 



The renormalization transformation consists of summing 

over all internal configurations of rth order triangles, as 

was done for the Fortuin-Kasteleyn model in Section VIII. 

We define the r-u, order weights as shown in Figure 10. Here 
(Y'' 

A , is the weight of an r"'ti" order triangle with one line 

going in. The end point of the line may be any of the 

vertices inside the r~b order triangle. We sum over all 

possible configu?"atior.s of the th r order triangle 

consistent with the constraint that one of the end points of 

the walk lies inside it . Similarly Berl is the weight of an 

r~h order triangle in which a line goes into the triangle 

from one of the corner vertices and comes out of another. 

(The lines are undirected. We use the terms going in and 

coming out rather loosely.) The C 
(Y) 

weights d D
\.1'-) 

an are 

defined similarly. The starting values of these weights are 

A
te) __ c 

~ x ' 

CLO) = D '') = 0 • 

A ' ' 

FIG. IL All possible configurations of :in open self :ivoiding 
w:ilk of order r. The shaded triangle~ denote (r- l)th orde r 
graphs of which only the corne r vertices are shO\rn. The facto r 
3 is for the three poss ible orientations of the figu r es. 

(_1 ():J_ a.) 

c to::L6) 
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We call a closed or open walk L of order r if r is the 

minimum value of p such that the walk can be completely 

described inside a p~h o rder triangle The sum of weights 

of all rih order closed loops inside or,e r-th order triangle 

i s c 1 ear 1 y ( B er- 11 
) 
3 Si n c e the r e a r e 3 )'l po i r. t s i n s id e each 

r""tl? order triangle , the contribution of r Tu order closed 

1 . t i· s. 3-r( B cr-u )3 oops per s1 e Hence we get 

cO 

P ( X ) : L__, f Y' ( B U'- t> ) 3' 
V'~ I 

(10~) 

Similarly we get (Figure 11) 

It is easy to write down the recursion equations for 

the weights B (!') Cc") Der; 
' ' ' by drawing all possible 

th 
ways a configuration 0f an~+V order triangle may arise out 

of configurations of r-u, order triangles. Figure 12 shows 

B lNIJ • all possible configurations that contribute to 

shows that 

AA ·, 
I /'if: Z~' 

FIG. Ii. AH possible configurations of rth order triangles (de­
noted by shaded triangles in the diagram) that contribute to 
B<r+ll • 

This 



Bu..-\)= ( Bt r) )2+ ( B'r' ) 3 . 

Th • t • f A(r-1\) Cc r-tlJ d D(r-.-IJ e recursion equa ions or , an are written 

down similarly ( See Appendix c for details) and we get 

Acr+b = Arr i( 1 +28+28 '2) +C { 28 2
) (_ loSb) 

cfr+IJ = A ( 8 2
) +C ( 38

2
) (IOZ:Sc) 

rf''+IJ (A2- +2A
2 

B+4ABC+6BC
2

) 
2- ( 1oGd) = + D (28+3B ) 

A
(i') (r) 

We ha ve suppressed the superscripts of , B 
(I'' ) 

' c ' 
(l") 

D in the right hand sides of Eq.{105b-d). 

Equations (102-105) determine the functions C(x) and 

P(x) completely. We notice that the recursion equation for 

B 
cr+IJ r; involves onl y Bi • Also the recursion equations for 

Arr-ti> and c ff+I) are independent of D1
r> 

From Eqs. (105a) and (103) , we see that P(x) satisfies 

the functional equation 

P(x) = x 3/3 +(1/3) P(x 2 +x 3 ) (lob"J 

This equation has fixed po in t s g iv en by the equation 

x~ "'"2 *3 Q07) = x + x 

which gives the fixed points >I: 0,(±[5-1)/2,co. The us x = 
fixed points x'I- :0 and x* = ru are attractive fixed points , 

while the f ixed points x = {~[5-1)/2 are repulsive. The 

fixed point at x =C-f5-1)/2 produces a small even-odd 

oscillation effect in the coefficients ~ Otherwise its 
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influence on the asymptotic behavior of Pn is small, which 

is essentially determined by the dominant singularity of 

P(x) closest to the origin at x=( j 5-1)/2 

If the starting value Bl'J is less than ({5-1 )/2 , from 

Eq. (105a ) we see that with successive iterations the value 

of B1
r
1 dec r eases to zero. If B(o> is greater than <;5-1)/2; 

for large r B'"> tends to infinity and P(x) is infinite. 

This shows that the connectivity constant P. is given by 

/'1- = 2/( [5-1) ~ 1. 6180 • (toS) 

Putting x:l/p--in Eq.(106) we get 

P( /~t-' ) = µ-J 12 • (lo~ 

• ·I to) ((o) • 

Consider x=f-.L-S, where o is a small positive number. Then 

Eq. ( 106) gives 

PC P.--1 -S'J) = ;.i 3 
13- JJ~t·'+(1/3)P(JJ--/-S('}<2+f-2 )) +o(a"';Z).(_llC) 

We assume· that the singular part of P( /.i1

- b 1

) varies as (8(0'.Y-~ 

This gives us from Eq. (110) 

oZ = 2- x n3 I [ { n(2+V 2
)] ~ 0.7342 . ( 111) 

Let us define ~·>=Ji'-Bcr-l • 

T,_ l d . s::<r> E uen to owe st or er in 0 , q. (105a) gives the recursion 

relation 

(_l12) 



We choose a small positive number E , and choose a 

starting va l ue 6°> sufficiently small so that 

(Ill;) 

and 

C llS) 

Th f < s::- (•J 1· s less than en or r r
0 

, o E and we may replace 
-I 

in Eqs. (1 05b- d) by r. This gives us a set of coupled 

linear recur sion equatioos for the constants A and C 

( l(b o) 

which implies that 

A(,.> K " .,. 
<>::. , ......... ' 

(1\1 0..) 

l r 
Cl" .::t· K~ :1.t, for 1 <r<r0 , 

( ll '7 b) 

where K1 and Kl. are some constants of proportionality. /\+ is 

the larger eigenval ue of the matrix 

C 11 'D) 

which gives 

(II°<) 

Substituting from Eqs. (117a-b) into Eq.(105d), we see that 

th · t · for D {r > e recursion equa ion has the form 
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Cr :;to) 

Since '.)\:is greater than {2+/ii), this equation implies that 

(0) :iJ:L 
D ~, K /\ , for 1<r<r

0
• u 9-1 ) 

( ~ ) ( •) 

, the constants B and C approach zero rapidly 

and A ci-i and D <"' tend to finite asymptotic values 

approximately given by 

(1;2!20.) 

t"J (1',) 2 
D ~ A for r>>r 0 • 

Here K(E) is again a constant of proportionality which 

depends on E ~lcJ• but is independent of u We substitute 

these values from Eqs. (122) and (117) into Eq. ( 1 04) • 

Approximating the sum by its largest term , we see that 

C( x) ~ 
I - 'l. )"'o K l.)'- ..- 13 • 

Substituting for r
0 

from Eq. ( 115) we get 

--1 
C ( x ) ~ K ( £ / 'it» , (124) 

with 

-.../ "'\ 2- - Z 
6 = ln(M/3)/ln(2+p) ·~ 1.3752. 

In Eq.(124) , the constant of proportionality K must 

vary as £-'t ; so that C(x) is independent of c, as is 

obvious from its definition. 



The critical exponent V may be determined similarly. 

We note that for r<r0 , the contribution of rth order open 

loops to R{x) is approximately Ciz.r) K (A:13f. For r>~ , 

B 
(t') 

the coefficients rapidly become zero. In configurations 

of the type At"' (Fig. 10) , the end point of the line stays 

close to the vertex from which it entered the triangle. 

Thus for r>r
0 

, the contribution of the r-th order open loops 
2 ~ -~ 

to R(x) varies as K(4 ?I .. ) 0 3 • We thus have 

R(x) ~ 
2 ~ 

K((4'.ll.,)/3)" 

Subs t i tut in g f o r r 0 from E q • ( 1 1 5 ) and comparing its 
(0) 

dependence on 3 with Eq.(100) we get 

( 1:2'7) 

This determines all the critical exponents d, ~ and 

y . We remark here that though a more complete and rigorous 

analysis of the recursion equations is certainly possible 

it is unnecessary since all the constants p,~ ,~, and Y 

are determined exactly. 

Similar analysis may be used to determine the critical 

exponents for the truncated 4-simplex and the (2,1)~ 

modified rectangular lattice. The reader is referred to 

Dhar (45] for details. For the (2,1) modified rectangular 

lattice , we find that 
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µ:1.6909 ' d :0.6699 ' 6' :1.4403 ' 

And for the truncated 4-simplex lattice 

Y=0.6650 . 

P-=2.2866' cX :0.5413' 6=1.4461' l}:0.7294. ( 1~iz0 

We note that in all these cases considered here, the 

critical exponents satisfy the relation 

dY = 2 - cX. , 

where d is the dimensionality of the lattice as defined by 

Nelson and Fisher. On the other hand, we know that in other 

cases (e.g. the XY model discussed in Sec VII ) the 

dimensionality 

the power 1 aw 

of the lattice is more usefully defined by 

behavior of the spectral cumulative 

distribution functicr for low frequencies. Perhaps the 

self-avoiding walks are atypical in that the generating 

functions whose singulQrities determine the critical 

exponents, are not given in terms of the partition function 

of a Hamiltonian. 

The critical behavior of self-avoiding random walks 

depends strongly on the connectivity properties of the 

lattice; and not on dimensionality alone. For example, we 

expect the critical indices o!., o and V to be different 

for self avoiding walks on planar and nonplanar two 

dimensional lattices. This is because planarity determines 

if the walk can cross itself or not. On the other hand, the 

critical exponents for the Ising model in two dimensions are 
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expected t o remain unchanged if a small next nearest 

neighbor in teraction is added to the original nearest 

neighbor Ham iltonian (which makes the lattice nonplanar) . 

It is possible t6 construct pseudo-lattices that have 

the same effective dimensionality, but different critical 

exponents f or t.he self avoiding walk problem. Consider 

for examp l e, the (p,1)~ modified rectangular lattice. The 

lattice is planar and has coordination number 3. It may be 

shown tha t the effective dimensionality of this lattice is 

312, indepe~dent of p. Also, the dimensionality of the 

lattice is 2 ( again independent of p) if we use Nelso.n and 

Fisher's de f inition. Though the coordination number and the 

dimensio~ali ty of the lattice are independent of p 

(whichever definitiui1 of dimensionality is used ), it is 

easy to verify that the critical exponents for the self 

avoiding walk problem on these lattices do depend on p. In 

particular~ for p=3 we find that 

r:J... :0. 6589' f:1.4601, y :0.6705, 

which differ from the exponents for p:2 [Eq.(128a)]. 

It appears that the connectivity structure of these 

lattices is quite complicated and a 

"effective dimensionality~ is not sufficient 

single value of 

to completely 

characterize the critical behavior of self avoiding walk 

problem on t hese lattices. More study in this area is 
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needed to identify the parameters that can be used to 

completely characterize the critical behavior of different 

Hamiltor.ians or. such pseudo-lattices. 
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x CONCLUDING REMAKKS 

In the preceding discussion we have introduced and 

studied a class of lattices with effectively nonintegral 

dimensionality . Although admittedly somewhat artificial 

these are of interest in the theory of phase transitions and 

critical phenomena . They provide a physical basis and 

testing grounds for techniques such as the ~-expansion , 

which have up till now remained largely formal. The study 

of critical behavior of model Hamiltonians on such lattices 

may be expected to improve 

influence of dimensionBlity 

our 

in 

understanding of the 

determining the nature of 

phase transitions in rhysical systems. 

These lattices differ in an important way from the 

axiomatic spaces of nonintegral dimensions defined by Wilson 

and Stillinger. They are not homogenous and different 

lattice points do not have identical neighbourhoods 

Homogeneity appears only in a much weaker sense : for any 

finite neighbourhood of a point , there are infinitely many 

other points having identical neighbourhoods . This is an 

important property necessary for the existence of a 

thermodynamic limit . Also , the magnitude of interaction 

between different parts of a lattice becomes negligible 

compar ed to the magnitude of interaction within parts, as 



the volume of parts tends to infinity . The effect of 

boundary can thus be ignored for sufficiently large systems 

and the existence of the thermodynamic limit is assured for 

most physically interesting Hamiltonians on these lattices. 

The dimensionality of a lattice cannot be varied 

continuously in 

exponents for a 

dimensionali ty 

our formulation 

very slightly 

To get the critical 

different value of 

we have to work with an entirely new 

lattice, with a new set of recursion equations etc. which 

have to be analysed afresh . Also it is not possible to 

construct a lattice with an arbitrary preassigned value d of 

dimensionality A little thought shows that this is 

necessaril y so The lattices which can be contructed using 

the recursion procedure described in Section IV or 

extentions thereof are denumerable as their recursive 

construction has to be describable in a finite number of 

words. On the other hand , the number of real values of d 

between any two limits (say, 1 and 2 ) is nondenumerable . 

We do , however , have a slightly weaker result (sufficient 

for most practical purposes ) Dimensionalities of 

lattices that are described in Section IV , or are formed by 

forming direct products thereof , form a dense set in the 

interval 1 <d< a:>. 
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For lattices with d< 2 the critical behavior of 

Hamiltonians can be determined fairly completely using the 

exact recursion equations. This was illustrated in Sections 

VII to IX , where the critical behavior of different systems 

for d<2 lattices was studied . For the classical XY model 

the critical exponent °"'b was shown to be equal to 2/(2-d) . 

We consider the fact that such simple expressions exist for 

the critical exponents in terms of the dimensionality of the 

system , a strong evidence in favor of our definition of 

dimensionality • 

Latt i ces with d>2 are more interesting because they 

show non t rivial phase transitions with physically 

interesting Hamiltonians like the Ising model etc. In 

this case, however, the recursion equations usually involve 

an infinite number or parameters and their exact analysis, 

and the determination of thermodynamic functions is quite 

difficult We may use approximate renormalization 

equations or numerical extrapolation methods like the series 

expansions to determine the values of critical exponents 

These techniques may also be applied to the study of quantum 

mechanical Hamiltonians on lattices with d<2 . This seems 

to be a promising field for further investigation . 

We studied the critical behavior of self avoiding walks 

on these lattices, and showed that for lattices with the same 

value of effecti ve dimensionality , the critical exponents 
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cX, {f, an d ).) 11ay be different depending on the detailed 

connectivi ty properties of the lattice . This shows that 

the critical exponents are not functions of the 

dimensiona l ity alor.e, and series expansions for critical 

exponents l ike the E.-expansion should involve additional 

variables Even if we adopt the position that the 

€-expansio n represents the dependence of the critical 

exponents 

fixed 11 

explicitly 

on 

,. 

dimensionality , "with all other variables held 

it is important to identify these variables 

Lattices witn non integral effective 

dimensionality as defi~ed here have rather unusual 

connectivity properties, but if the £-expansion technique is 

to be physically meaningful, it should be able to predict 

the critical exponent~ for such lattices . 

It is hoped that further study of these questions 

lead to a better understanding of the influence 

dimensionality on phase transitions in general . 

will 

of 



PART II 

l MODEL OF THE MELTING TRANSITION 
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I INTRODUCTIO~ AND OUTLINE 

The t heory of melting is a longstanding problem of 

great inter est and importance for understanding the physics 

or solids and liquids. The problem was discussed by 

Lindemann [46] in an important paper in 1910. He noted that 

for most materials, the ratio of the root mean squareAof an 

atom of a s o lid just below the melting point and the lattice 

spacing is approximately constant. Since then, many 

attempts have been made to present a reasonable theory of 

the melting transition [47]. The earliest approaches 

im1,olved ev aluating the Gibbs free energy per particle for 

the fluid an d the solid phases separately, and equating them 

to determine the melting temperature. This approach is 

still popular and may give results in close agreement with 

experiments* See, for example, the calculations by Warren 

and Evenso n (48]. This approach is unsatisfactory because 

it does not treat the fluid and the solid phases on equal 

f'ooting. Also, it does not help very much in under standing 

the physics of melting. 

Braunbek [ 49] considered the melting of binary 

crystals, a nd supposed that the two sublattices move rigidly 

with respect to each other. He assumed the mutual potential 

energy of the lattices to be a periodic function of the 

displacement . The assumption of perfectly rigid sublattices 



is very questionable. Furthermore, it is quite easy to show 

rigorously that such a model does not undergo any phase 

transitions . 

. Lennard-Jones and Devonshire [50] proposed a cell model 

of melting in which the atoms are localized into cells and 

move independently of each other in the average field of 

their neighbors. The theory has since been improved to the 

"expandable cell" and the "correlated cell'' models. For a 

recent paper employing this approach, see Mori et. al. 

(51). This paper treats the correlation between cells in an 

approximate way. The influence of the approximation on the 

exact nature of the phase transition is not very clear. 

Kirkwood and Mon~oe (52] found a solid-like solution to 

the self consistent field equations for the pair 

distribution function for high densities. The nature of the 

approximation is however, not very clear. The 

approximation is known to be unsatisfactory even for fluids 

of moderate densities. A somewhat similar, but more 

reliable, approach to the melting problem is discussed by 

Ramakrishnan and Youssouff [53]. 

In the dislocation theories of melting, the solid is 

assumed to melt when it becomes unstable with respect to 

spontaneous generation of dislocations [54-55]. This 

instability criterion has been discussed recently by 
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Kosterlitz and Thouless [55), Edwards [57), and Nelson [58]. 

The major objection that may be raised against this approach 

is that it is a one phase theory. The model does not 

describe the liquid state. 

Much insight into the problem of melting has been 

gained from · the study of computer experiments. The 

molecular dynamic calculations of Adler and Wainwright (59] 

showed th~ existence of a melting transition in hard sphere 

assemblies as the density of packing is increased. The 

existence of a phase transition in hard 'sphere' assemblies 

in lattice and continuum systems has now been proved 

rigorously using a variant of the Peirls' argument proving 

the existence of nonzero spontaneous magnetization in Ising 

magnets at low temperatures [60-61). Adler and Wainwright 

observed that the onset of melting in hard sphere assemblies 

is characterized by the ability of layers to slip past each 

other. 

In the second half of this thesis, we propose a model 

of the melting transition motivated by the above 

observation. 

atoms placed 

We consider the thermal motion of a layer 

in an external periodic potential. 

of 

The 

external potential mimics the interaction of the layer with 

adjacent layers assumed held fixed in their equilibrium 

co.nfiguration. We assume further that interaction between 

atoms within the layer may be satisfactorily treated in the 
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harmonic approximation. It is shown that the model 

undergoes a sharp (albeit continuous ) transition from a 

phase in which the root mean squa r e deviation of atoms in 

the la yer is finite to a phase in which it is infinite, as 

the temperature of the system is increased. It seems 

natural to identify these phases as the ''solid - like '' ar.d the 

"1 i qui d-1 i ke '' phases respectively, since the most obvious 

distinction between sol ids and liquids is that while in 

solids the atoms are localized, in liquids they are not. We 

determine the nature Of the transition near the critical 

point using the renormalization group techniques. Due to 

the special mathematical structure of the model, we can 

determine t he critical behavior of the model exactly, even 

though expl icit formulas for the free energy, or the exact 

location of the critical point etc. cannot be determined. 

The organization of this second half of our thesis is 

as follows : 

In Section II, we describe the model of melting, and 

write down a Hamiltonian for it. The Hamiltonian is a 

lattice version of the Sine-Gordon field theory in two 

dimensions. We then establish an exact equivalence between 

the partition function of the melting model , and the grand 

partition function of a charged lattice gas with a pairwise 

additive Coulomb-like interaction . The activities of the 

charges are related to the Fourier coefficients of the 



exponential of the periodic potential. We briefly remark on 

the relationship of this model to the classical XY model in 

two dimensions, the Kosterlitz-Thouless dislocation melting 

model, the Kondo problem, and other models related to the 

above. (For example, the two dimensior.al superfluid model 

is related to the classical XY model.) 

In Section III, the exact equivalence between the 

melting model and the charged lattice gas is extended to the 

case when the meltir.g model is treated quantum mechanically. 

In this case the behavior of a d-dimensional melting model 

is related to the behavior of a (d+1) dimensional charged 

gas where the (d+1)th dimension of the charged gas is 

continuous and cyclic. The ground state of the 

d-dimensior.al quantum-mechanical melting model is related to 

the finite temperature equilibrium state of a truly (d+1) 

dimensional classical Coulomb gas, because in this limit, 

the diameter of the (d+1)th cyclic dimension of the charged 

gas becomes infinite. 

In Section IV, we develop the formalism of the 

renormalization transformation, applied to the lattice 

Coulomb gas problem. The degrees of freedom of the system 

are decreased by a factor of 4 on each renormalization. We 

use the cumulant expansion techniques to determine the 

effective Hamiltonian of the system. 



The critical behavior of the charged lattice gas is 

determined in Section V by the analysis of the sequence of 

effective Hamiltonians ob ta in ed by iterating the 

renormaliza t ion transformation. We find that the lattice 

Coulomb gas undergoes a phase transition at a finite 

temperature from bound to unbound charges. At low 

temperatures of the charged gas, the dielectric constant of 

the gas is finite. Above the critical temperature, it is 

infinite. I t is shown that the specific heat shows a very 

weak essential singularity, and the correlation length 

diverges very strongQ~ 

critical temperature. 

near the 

Translating these results to the melting problem, we 

find that the mean square deviation of atoms in the 
-1/), 

"solid-like '' phase varies as ( Tc - T) just below the critical 

temperature. Above the transiti6n temperature, it is 

strictly i n finite . The specific heat near the transition 

shows a ver y weak essential singularity, and the correlation 
-1 

length diverges as exp( ITc - TI~) . We determine the 

critical temperature for weak perturbing potentials. 

In Section VI, the predictions of the model are 

compared with experiments. We point out the reasons for the 

shortcomings of the model and suggest some i mprovements. 



II THE MELTING MODEL AND ITS RELATIONS~IP TO 

OTHER MODELS IN STATISTICAL ~ECHANICS 

We now describe the model quantitatively. Cor.sider a 

two dimensional array of atoms, each of mass m0 , forming a 

square lattice · of lattice constant a. The atoms are 

---? 

labelled by a two dimensional integral valued vector R = 

(m,n), where m and n are integers taking values between 1 

and M, and 1 and N respectively. The total number of atoms 

is MN. 

With each atom we associate a scalar variable x~n and 

its canonically conjugate momentum variable p~n· This 

assumption of scalar variables is made only to simplify 

notation. The case where the diplacements are vectors may 

be treated exactly similarly. Later in the section we shall 

indicate the modifications in the formalism needed to treat 

the case of vector displacements. The physical properties 

of the model do not depend on the scalar or vector nature of 

the displacements . We assume that the interaction between 

atoms is adequately described within the harmonic 

approximation. For sake of definiteness, we shall assume 

that the interaction energy between the atoms of the layer 

is given by 

(K/2) L [ ( x,,,n -x,., n~• )~ 2.. 
x"""") ]. 

...,.,.., > y-, 

This assumption is not necessary, and the results are easily 



-85-

extended t o arbitrary harmonic binding between atoms. The 

Hamiltonian of the system is given by 

(1) 

This is a standard problem in classical mechanics. The 

Hamiltonian can be diagonalized by a change of variables to 

coordinates and where P-
" 

and q "K are Fourier 

transforms of the coordinates p and xm~· We get 
"'" 

H 0 = L [ p/ p_ /(2m.,) + X:(2-coskx -cosk<'f)qK: q~ ], (.2) 
ft I< 

where k = (k~ ,kl' ) , and k ~ and ky take the values 2rrr/M and 

2rrs/N res pectively. (r = -M/2 to M/2 -1 s : -N/2 to ~/2 

-1). The partition function for this problem is easily 

written do~n. We get 

= TI ( 2 Tl I f3 w:< ) , 
i 

l~) 

where i0i;: is the frequency of the mode labelled by the wave 

vector k. It is easy to see that 

r..o/· = (2K./m 0 ) (2 - cosk,. - cosky) . lfi) 

We no w perturb the system by placing it in , an external 

periodic potential having the same periodicity as the 

lattice. Physically, the periodic potential imitates the 

interactio n of this layer with adjacent layers in a three 

dimensiona l solid. We hold the adjacent layers fixed, and 

study the motion of only one layer. The interaction energy 
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of each atom (m,n) due t? the perturbing potential is a 

periodic function of xrn~ We choose the periodic function 

to be a cosine function f~r simplicity. Then the full 

Hamiltonian of this laye r of harmonically bound atoms placed 

in an external periodic potential is given by 

(6) 

where 

H1 = -V0 L cos(2 nx,,," /a). (7) 
-m;n 

The partition function for the perturbed problem is given by 

('?>) 

where the angular brackets denote thermodynamic averaging 

with respect to the unperturbed Hamiltonian H0 • We recall 

the identity 

exp(x cos G) = ::2__, L~(x) exp( Z q e), 
q~-c> 

where I~(x) is the modified Bessel's function of argument x 

and of order q. Making use of this identity we may write 

exp{-~ H1 ) = L {TI I 't ( [3V0 )} exp[2TIL2_,qmn Xrn.-.fa]. (lo) 
t't· m•~ M ,n ni., m>i. 

Now, under H0 the variables {xmnl are distributed normally. 

A linear combination of these variables 2nL.,x,,.," q,.,.,,, is also 
-.nn 

a Gaussian random variable. We recall that for a Gaussian 

random variable ~ 
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<exp( (.E; )> = exp(-< is2 >12). (II) 

Using this result to evaluate the expectation value in 

Eq. ( 8) we get 

Z IZ 0 = L expc-/3'H>, 
1 q_'"" ~ 

where we have put 

4 ( m , n ; m' , n ' ) = (£> ( m-m' , n- n ' ) 

= 
and 

fo = Ks T TI'l/ (X-a:i) • 

(1:2) 

(113) 

The right hand side of Eq.(12) is seen to be interpretable 

as the grand partition function of a charg('>0 lattice gas. 

At each site (m,n) we have a discrete charge q>hri· The 

Hamiltonian consists of a pairwise additive interaction 

between charges, bilinear in the charges, and a chemical 

potential term. 

In Eq.(12), the summation over the configurations of 

charges {qm,..) has been restricted to the case when 

:0. It is e asy to see that all other configurations have 

zero weight in the statistical sum. In the charged lattice 

gas language we say that it takes an infinite amount of 

energy to create isolated charges, and hence al 1 

configurations satisfy the overall neutrality 



conditio n .:2:,qn-.,,
1 

= 0 • 
..,,.,.,., 

From t he definin g equation (14), it is easy to verify 

that the potential ~ (R) is long-range and varies as 

( 1 /71 ) Qn(R ) for large separatio ns R. This is in keeping 

with our i nterpretation of Cf?<R> as the two dimensional 

electrosta t ic potential between the the charges {q~"}. 

Let us now briefl y indicate the modifications to the 

above equ i valence needed when we consider more general 

interact i ons than discussed above. It is easy to verify 

that the equivalence holds for arbitrary lattice structure 

and arb i trary dimensionality of the lattice. We may 

introduce next nearest neighbor quadratic interaction, or 

any other quadratic i n teraction in H0 • ThP. result only 

changes t he functio nal dependence of lU;< on k . In each 

case, the potential <±? is related to the Fourier transform 

of ( 1 I cv,._ ~ ) • Also, so long as ~z is proportional to 
2-

k for 

small k i the poten~ial CE_(R) is logarithmic for large 

separations R in two dimensions. 

We ma y introduce a more general functional form for the 

periodic potential th~n the cosine dependence assumed in 

Eq.(7). Th is only changes the activities Li(~V0 ) of the 

charged gas . They are no longer Bessel's functions of order 

q, but some what more general functions of q. 



Finally, we may consider vector displacements. In this 

case we have to introduce two species of charges, or.e for 

each compo~ent of the vector displacement. The charged gas 

has two species of charges; at each site (m,n) , we have 

two integer valued charge variables q 
I rnn and q.:i.m.-. • The 

electrostatic interaction between the charges may be written 

down easily, and has the form 

q q , , ~_,,( m , n ,· m ' , n ' ) • 
c(. l'nn ot m n~ ~-

The interaction potential ct ~""' is small unless :X.:o.!..'. 

If we ignore the interspecies interaction of the charges, 

the problem just becomes a problem of two independent single 

species charged gases interpenetrating each other. Hence 

the critical behavior is the same as it woti~d be if the 

displaceme~ts were scalars. This argument can be made more 

rigorous. It is possible to show that the interspecies 

interaction cJ?"''>I' is an "irrelevant" operator under the 

renormalizatio~ transformation discussed in Section IV. The 

term "irrelevant~ means that the interaction may be ignored 

without affecting the critical behavior. 

We have thus established the equivalence of the melting 

·model and the classical lattice Coulomb gas. In two 

dimensions~ the potential of interaction is logarithmic for 

the charged lattice gas. This interaction is of great 

interest i~ statistical physics and many different systems 
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may be modelled by it. 

Kosterlitz and Thouless [56] and Feynman [6l] have 

discussed a dislocatior. model ,of two dimensional melting. 

In two dimensions, the lattice dislocations have interaction 

energy which increases logarithmically with separation. A 

similar situation arises in two-dimensional superfluids, 

where the interaction energy of vortex-pair excitations 

increases l ogarithmically with the distance between them. 

If the variation of the amplitude of the superfluid wave 

function is considered to be small compared to its variation 

in phase, the two dimensional superfluidity problem is 
I 

equivalent to the classical XY model. Finally, it has been 

shown that four dimensional abelian lattice gauge field 

theories have similar renormalization properties [63) and 

similar ninstanton'' structures as the classical XY model in 

two dimensions [64]. 

Anderson and Yuwal have treated the Kondo problem in 

(65]. In the Kondo problem, we study the behavior of 

isolated magnetic impurities which may interact with 

electrons in the conduction band. This problem may be 

converted to a one dimensional continuum problem of an 

interacting charged gas where the charges are alternately 

positive and negative and interact with each other by a long 

range logarithmic interaction. While this problem is one 

dimensional, the important property of the interaction 



potential being logarithmic at large separations implies 

that techniques similar to those for the two dimer.sior.al 

charged gas, may be applied here too with minor 

modifications. The critical behavior of the two systems is 

very similar. Also, the Kondo problem is equivalent to a 

Ohe dimensional Ising model with longrange interaction 
-2 

varying as R where R is the distance between spins (65). 

Finally, we note that the melting model is clearly a 

fairly good model of a monolayer adsorbed on a crystalline 

substrate, having the same periodicity as the substrate. 

We thus see that our melting model is related to many 

important problems in the field of phase transitions and 

critical phenomena, and deserves much attention. 
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III : EQUIVALENCE OF THE QUANTUM MECHANICAL MELTING 

MODEL TO A CLASSICAL COULOMB GAS 

In this section we extend the equivalence between the 

system of coupled simple harmonic oscillators in an external 

periodic potential and the classical Coulomb gas, to the 

case where the oscillators are treated quantum mechanically. 

It is shown that the evaluation of the free energy of a 

d-dimensional quantum mechanical melting model is equivalent 

to the evaluation of the Landau potential of a (d+1) 

dimensional classical Coulomb gas. The space of the charged 

Coulomb gas is discrete in d dimensions forming a lattice 

same as the lattice formed by the coupled harmonic 

oscillators, but the (d+l)th dimension is continuous and 

cyclic. The pairwise additive interaction between the 

charges is shown to be Coulomb-like, though it is slightly 

temperature dependent. In the limit of high temperatures 

for the melting model, the quantum mechanical effects are 

unimportant and we reproduce the classical result. In the 

limit of zero temperature of the melting model, we get a 

truly (d+1) dimensional charged gas, in the sense that the 

(d+1)th dimension is also infinite in extent. 

We consider a d-dimensional "simple cubic" lattice, and 

start with the Hamiltonian 



(I 6) 

H 0 = ~ [ p _7'" p - I ( 2 m 0 ) + ( 1 I 2 ) m c 0? q _* q - ] , 
{< K K K K 

( 1'7) 

H1 = -Ve ~ c os(2nxR. /a ) . 
R 

(l ~) 

Here xR is the displacement from equilibrium of the atom 

whose equilibrium position is at site R ( We treat 

different atoms · as distinguisha~le.) R is a d-dimensi onal 

integer valued vector. and q _ 
K 

are the momentum and 

the coordinate of the normal mode labeled by the wave vector 

k . The total number of sites in the lattice i s N. a is 

the lattice constant and for simplicity, we have considered 

scalar displacements. Generalization to vector 

displacements is immediate. 

The coordinates xR and q~ are of course related by 

q IZ = 

x~ 

Putting 

qr< 

and 

we get 

(1/JN) ~ 
R 

= (1/,fN) ~ 
;<. 

= (n/2m,,c.oi< ) 

~ = - (., 

__,,. ·~ 

x~ exp(-~k-R) 

q 'K exp(t:k.R). (g__ 0) 

1/;i. 

( u - a-+ 
) ' - I< + I< 

62 I) 
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Ho = L . o..t 1i LU.<: ( i. Q K. + 1/2 ) 
' i< 

and 

[ QK. ' 
. + 

Ctl(,. ] = C5K,K 1 • 

We work in the interaction picture and define 

S ( (3 ) = exp ( /3 H0 ) exp ( - fo H ) 

where 

and T is the p-ordering operator. Then we get 

Z =Tr exp(-/3H) = Tr[ exp(-/3 H0 ) S( (3 )] , 

and 

We have defined Z0 to be the unperturbed partition function 

corresponding to the Hamiltoni an He. We further define 

$R.< (~') = exp(p
1

H0 } (2rrx~ /a) exp{-/l'H 0 ) , 

=- ~ tlIT /~ ( 0.K.e:i<.R-ia'w""-r o..K ... e+t.<.P:+r3 ;0") c~q) 
~ c~ ~3. m.w;_ N 

Su~stituting cos(2nx~/a} =~>. exp{2rrxgi.~/a), into Eq.(28) 
.6 1)~:1.1 

we get 

Z1~ Z~1 z.~ 01,:)"~ [TI p;,: l~W ~J 
. \r l l .er.pl-(3Ho) '2~pUrJ 1~ 1 )e:<pLL~2~:i) · €J-p(Cij~r.)1} 

C~o) 



where we have abbrevia t ed ~,... ( P: ) = ~· Using the operator 
R. i 

identities 

(expA) (expB) = exp(A+B) exp[A,B/2] , 

and 

f -t ). -1 f-1)/ Trexp(- A. O.u) exp(f-1., ll ) exp(Yll..) = { 1- e- ·1 exp( ,, ) , (32' e -1 J 

it is easy to evaluate t he trace in Eq.(30), and one gets 

Z
1 

= Z (~0 f~, ~ 1:} (~ J~~ ~ )J ·ex\·)[-~£ D .IJ. <:p( R· p. · 2,, (3. )] J 
#l"::Q / c L "~' Rt. " '1.&.=il i._.j::.~, t. J ~) <.J .J tJ 

(3~ 

where 

~ ( Ri_}:; K'j , ~;) 

as may be easily verified. 

Thus Z' is seen to be the grand partition function of a 

classical charged gas with pairwise additive interactions. 

The position of the ith charge is specified by the (d+1) 

coordinates (1( ,~), where the last coordinate is continuous 

0 ~ P: ~ 13 • The pa i r po tent i a 1 i s i n v a r i an t u n d er tr an s 1 a ti o n 

and reflections and has the additional property that 

l1> CR, , ts. ; Rj , ~· ) = c} <Rt , ~ - 13" +2 ,~. ; R j , #; ) . 

This shows t hat we can treat the coordinate 0 as a cyclic 

coordinate. The summations over R; and the integrations 

over Pi in Eq.(33) are thus to be understood as integrations 

over all positioni of a charge in the (d+1) dimensional 

space. 



To understand the pair potential better, we look at its 

Fourier transfo rm . Since the ~coordinate is cyclic, the 

corresponding Fourier transform variable is discrete. We 

get 
UZ.IR':-R;J+iGlf;-fl:J 

~- <ff. ~R . , a, .. - 6.~ .. · ) = (2rr 2 k 6 Tim, a2 N) "")" .e, 2 e2 '--V < J r: I~ ~ ~ c..._;ii: + 
(37) 

Here the summat~ons 
_,, 

over k are essentially continuous 1 

(equivalent to integrations over the first Brillouin zone). 

but the summation over G is a summation over a discrete set 

of values 8 = 2rr r/(ti f3), r integral, which remains discrete 

even if the size of the lattice tends to infinity. 

We see that the Fourier transform of the potential is 

of the form ( 1 /q 2 ), where qL is the (d+l) dimensional 

momentum transfer. 

Since the spacing between the allowed values of tJ is 

proportional to t he temperature, we see that the interaction 

is temperature dependent. Of special interest are the 

limits p~ 0 and [3---:..co. In the high temperature limit of 

the melting model, the radius of the cylindrical dimension 

for the charged gas shrinks to zero. The interaction energy 

between the charges in this limit becomes independent of 

their ~ coordinate. Integrations over the coordinates ~ 

may then be done trivially, to give a multiplicative factor 

f> for each charge, and we recover the classical case 

discussed in the previous section. 



In the case ~-Teo, the summatior. over rJ in Eq.(37) 

tends to a continuous integral and we get a (d+1) 

dimensional Coulomb gas. This is particularly interesting 

because we observe that the quantum mechanical melting model 

in or.e dimension is equivalent to a Coulomb-like classical 

gas in two dimensions. As we shall show, the two 

dimensional Coulomb gas undergoes a phase transition. After 

an appropriate identification of symbols, we find that a 

''mobile-immobile'' transition occurs in one dimensional 

chains in a weak exterr.al periodic potential at a critical 

value of the mass per atom me~ fl Ti/ (4ac). Here c is the 

velocity of sound in the chain and a is the lattice spacing. 

If the mass per atom m" <me , in the ground state of the one 

dimensior.al system, ~ach particie has an infinite root mean 

square deviation. For masses m0 > me, the particles become 

bound by the periodic potential and the root mean square 

deviation of the particles is finite. 

The behavior of other quantities of interest (e.g. 

correlation length, elementary excitations etc.) may be 

deduced from the behavior of corresponding quantities for 

the two dimensional Coulomb gas at finite temperature. We 

shall determine these using the renormalization group 

techniques in the next two sections. 



IV REN OR MALIZATION GROUP TREATMENT OF THE 

LATTICE COULO~ B GAS PROBLE M 

In t h is section we shall determine the critic al 

behavior of the . two dimensional lattice Coulo~b gas problem 

using renormalization group techniques. The treatment in 

this sect i on and the next one is fairly self contained and 

for the most part can be read independently of the rest of 

this thesis. 

The t wo dimensional continuum Coulomb gas has been 

studied b y Hauge ar. d Hemmar [67], Salzburg and Prager [68], 

and May [6 9 ]. For th~ continuum case we can determine the 

exact equa t ion of state usi ng scaling arguments, even though 

the partition function cannot be evaluated as a function of 

temperature. The continuum model is somewhat unphysical, 

because t he classical partition function diver ges below the 

critical t empe r ature. Hauge and Hemmar considered the problem 

of a two d i mensional gas of charged disks with hardcore 

radius a. In the limit of the hardcore radius going to 

zero, they obtained the equation of state 

P = '-n k~ ( T - Tc I 2 ) 

= nk0 T /2 

for T ~ Tc , 

for T ~ Tc • 

Here P is the pressure of the gas and n is the number 

density o f the charged disks . 



However, if a is finite, the scaling argument does not 

work and the problem is difficult to solve. In particular, 

the nature of the phase transition is difficult to 

determine. 

Kosterlitz [70) has studied the two dimensional Coulomb 

gas problem with ultraviolet cutoff, in the context of the 

classical XY model, and showed that the phase transition 

involves an exponentially diverging correlation length near 

the critical point, with an essential singularity in 

specific he at. Earlier, a similar phase transition was 

found by Ander son and Yuwa 1 [ 6 5 J in the Kondo prob 1 em. In 

fact, the renormalization equations for these problems are 

very similar. More recently, Nelson (58] has studied the 

Kosterlitz-Thouless dislocation transition in two 

dimensional films. He has shown that on a triangular 

lattice, the dependence of the correlation length near 
-1/e;-

critical temperature is modified to exp( A \T-Tc( ) . ( Here 

A is some constant.) This arises due to the geometric fact 

that on a triangular lattice, three Burger vectors of unit 

magnitude may add up to a zero sum. A similar situation 

does not arise in our model, and we shall show that near the 

transition temperature, the correlation length varies as 
-.L 

exp( A \T-Tc!-t. ) . 
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A somewhat similar result for the two dimensional field 

theory was obtained by Coleman (71 J. He showed that the 

1x-1t dimensional scalar field theory with self-interaction 

density proportional to cos( pep) is equivalent to the charge 

zero sector of the massive Thirring model. 1-lowever, since 

he does not incorporate any ultravoilet cutoff, the theory 

is ill defined for t3>8TI. This result is, of course, 

equivalent to the divergence of the classical partition 

function of a two dimensional continuum Coulomb gas for 

temperatures below the critical temperature. 

The Hamiltonian of the two dimensional lattice Coulomb 

gas is given by 

H = - c 112 > L q. q. <1? < T-1 )- c 1113 > L.. fnr < q. ) 
• • (. J t. \,. 
•J 

where 

~cf-T > = 
O:ro) 

is the pairwise additive two body Coulomb potential. 

~ J- are two dimensional lattice vectors denotin~ the position 

of lattice sites, 
7 , f 

l : ( L1 , L.z ) and q. 
" 

is an 

integer valued variable denoting the charge at site The 

second term in the Hamiltonian represents the chemical 

potential for the charges {q•}. The corresponding chemical 

activities I{q~) satisfy the charge inversion sy'.Tlmetr y 

relations 
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I(q ) = I( - q) , (L, I) 

but are otherwise arbitrary. Without any loss of 

generality , we assume that I(O) =1. p is the inverse 

temperature. 

The t hermodynamic properties of the system are 

determined by the grand canonical partitio n function of the 

system 

Z = / , exp ( - 3 ~ ) , m I 

c Li 2) 

where the s ummation extends over all configurations {q~} of 

the charges q~ , subject to the constraint that 

If ~q.: -=fO ., we define the energy of the configuratior. to be 

infinite, so that the weight of the configuration in the 

configuration sum becomes zero. This corresponds to the 

fact that in two dim~nsibns, an infinite amount of energy is 

required to create isolated charges. 

The critical properties of the system are determined 

using the renormalization procedure. We group the lattice 

sites into blocks of 2x2 sites each. The lattice sites are 

now specified by a block coordinate 0(: (LJ.,,c:i/.2.), where o< 1 

and cx'Jare integers; and an internal index m taking values 

from 1 to 4 [Fig. 13]. 
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FIG. 13. The renormalization transformation. Each 

block of 2x2 spins is replaced by a single site. The 

internal index m ( m goes from to 4) is used to 

specify individual sites within a particular block. 

Also, instead of the site variables q~;q~m , we define 

new block variables Q~ and S~p (p:1 to 3) by the equations 

Qc( = Q)(, I + q ol, 2 + q.><,3 + q o<,i.; (_ ~3ct) 

so1,1 :: qe;I_, ') + qei_,'2 - q ..>i,3 - q <V1 (~36) 

Sc1,2.. = qOl.,1 - q..t.,:2 + Q::o<,3 - Q.u1 ( L; 3 e) 

S.x,3 = q-1.,-1 - qPl,2 - Qo1,3 + qC<'_,q ( L;'l;,d) 

The variables Q;)J_ , S:i1,1 's"",:z ' Sc1,3 measure the total charge, 

the two components of the dipole moment and the quadrupole 

moment of the block o( respectively. Since q :.<,m. are 



-lo';;-

integers, we see that Q« may take arbitrary integral 

values, but the values of the variables S.x_, f' (p=1 to 3) 

depend on Q'-'( • In particular, S . .i1_, p are constrained to have 

the same pa r ity as Qci. • In terms of these block variables, 

the Hamilton ian of Eq.(39) may be rewritten as 

with 

::,, 

H ;]_ = L L s,,,,, s,.,,, lf;i- ( a<_ , (3 ) • 
f,'i, ' f ,; "# 13 

(41) 

Here we have defined 

and 
4 

= < 1 116) L.1 [ pc o< ,m ; 0, 1 ) + Cf? <ex ,h1; /5, 2 ) 
)?)'/ 

-4(c:{,rn;p,3)-4<~ ,m;~,4) ] . (2-{() 

Similar expressions for the potentials ~P and ~rv 

(p,q:1 to 3) in terms of p< T,f) are easily written down. 

The restric t ion D(f:i6 in Eqs.(46) and (47) may be removed if 

we define 

~re o<. , ~ > = ~'i, c 0/. , 0-( > = o . 
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The potential is long range and behaves 

logarithmically for large separations 
---'> -;'> 

\ L - ?r / • Fr om the 

defining equation (qO), it is easy to see that for large 

separations 1-z - ,"1 1 

seer,~>~ c11n H ~n IY-~I +r/+c312> €n2 J +o<,i-il>' (t;91) 

w!'lere is Euler's constant. The 

potentials ~{ '.~ ' p ) ' Yi,,( a< '(3 ) ' 

and ~3 t ~ , p ) (p,q=1,2} may be similarly shown to vary as 
-2 -2 

R , R , 
-3 -~ 

R , and R respectively for large separations 

R= /o(- \?JI For example, is the 

quadrupole-quadrupole interaction in two dimensional 

electrostatics, and hence decreases with distance as 
-'1 
R • 

Also, these potentials are well behaved and remain finite 

for small separatior.~. We expect tne overall influence of 

H1 and H2 to be small compared to !-!
0

, and hence these 

interactions may be usefully treated as small perturbations. 

We now sum over the variables {S<>1.,p} (p:1 to 3) in the 

expression for the grand partition function [Eq.(q2JJ. This 

gives us an expression which is proportional to the marginal 

probability distribution of the variables {Qo<.. J. We may 

define an effective Hamiltonian for the variables {Q~ } by 

the equation 

= Lexp[-~HJ. 
r S...r I &J..I 
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Here the summation extends over all possible values of 

{S-x,p} consistent with the cor.figuration of block char~es 

{Qcx}. In this equation ~e f.f is an arbitrary constant fixing 

the scale of the effective Hamiltonian He# . We shall make 

a spec i f i c ch o i c e o f ~if-f 1 a t er in the d i s c u s s i o n . 

We use the cumulant expansion technique to write down 

an explici t series expansion for He ~ {Q~} in powers of~ 

and H~. This is done by first writing the exponential of 

~?ft H~ {Q"'-} as a power series in the perturbation (H 1 +Y). 

Then we take the logarithm of this series to determine a 

power series for ~l" H., f;: {Q"'} in powers of (H 1 + H2 ). 

From Eq s. (44) and (52) we write 

exp[- 3~* Hefl ] = L Qxp[- fb~Ur~.,~"rO] r £ e~~)" (H1+H2:/? 
, 1S:..,r1Q"1.J li:o ' -

= [ ,::>_, Qxp[-rH0(l6l.,Swp~)JJ· l- ~, ({f (_(H,+H2)
11

~,,l&~ 
i S. r 1 &L, f ,' ('iii 3) 

where we have used the notation 
-1 

' [ 2=, e~e L- /3t./J~6J.i,S~r'u]] 
t~rJG.>1.l 

for any thermodynamical varia. b\ e ff = {f c I o '( , so( f l > • The 

angular brackets represent the thermodynamic average value 

of the variable in an ensemble with probability distribution 

correspondin g to the Hamiltonian H
0

, subject to the 

constraint t hat the block c harges at sites x are fixed at 
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values Qc(. 

Under H0 , the variables S~P at different blocks ~are 

independent of each other, and the summations are easily 

done. We define 

l(Q°'_) =~exp[~ foI(q..: ) -(1/2)Lq" q cp(tX,m,;~>m,_)] 
~rl&~ ,m m,7 ,n, .m, '1. ,'m , 

Then we get 

L 1 Q:<p [- ~~L(foL\D] - 2-xp [ - ,k ~ QoJ.Qp lf:r/o!;p) +~~ I{&)]. (06) 
1S..,r !Q"t 

The moments of H1 and H2 about this distribution are easily 

taken. We write 

s .zp 
>1,3 fJ;.rri,:i.n, 2-f ( Q'.:>I.) ' 

and 

Here m,n and p a r e i Gtegers. All other powers of S~P on 

the same block :.::<. have zero expectation value by srnmetry. 

Since S.,,p at different blocks are uncorrelated, all the 

expectation values in Eq. (53) may be written down in terms 

of the moments ~,n,p{Q"'). For example, we have 

<H 1 + H2 > = 0, (-S-B) 

2 < (H1 +H.2 ) > 

Here s is t he Kronecker delta symbol. Expressions 

for higher order moments may be written down similarly. A.11 

the moments are functions of { Q «_} only, since all the 

dependence on {S,_.,pl has been integrated out. The 
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expressions for these moments are substituted in Eq . (53) . 

We ta ke the logarithm of this series and write it as as an 

exponentia l of an ir.finite series in powers of H1 and Hz 

using the cumulant expansion. We note that <(H 1 + H2 )>H.,19 .. ~ 

is zero, a nd the cumulant expansion may be written as 
a:> 

4,<- p )n <(H1 +H2. )n >H,,1& .. ~ /n! 

2 . 2. ~ 3 = exp[ ( ~ 12) < (H 1 +H 2 ) >;-1. ,\()(,, + ( f3 16) < <H1 +H2 ) >H._'llJ.\ 

+ c r~ '1 12 4) { < rn
1 

+H2 )
4 

>H - 3 < < H, +H2 )
1 

>J_ l 
o.~t>.l H. , ~&.~ 

+ higher order cumulants ] . 

A 11 t h e s e cum u 1 an ts a r e fun c t i o n s o f { Q :x. } o n l y , a n d 

thus Eq.(6 0 ) gives us the series expansion for He ff {{Q~}) in 

powers of ( H1 +H 2 ). The effective Hamiltonian is seen to be 

a sum of terms in"olving many body forces. The nth order 

cumulant i nvolves at most (n+1) blocks at one time and hence 

contains a t most (n+1) body forces. 

We can regroup these terms and separate out the 

''irreducib l e '' one body interaction, the ''irreducible '' two 

body interaction etc. using the following criterion An 

irreducible n-body interaction term is nonzero only if each 

of the cha r ges contributing to the n-body interaction is 

nonzero. 

If an n-body interaction term is not irreducible, it 

may be written as a sum of an n-body irreducible interaction 

.and fewe r body irreducible interactior.s. For example, 
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consider a term in the second cumulant which does not 

satisfy our criterion 

(61) 

This may be written as 

(_6~) 

where 

f-1; (0) 
_, 0 ~ 0 

T:;. : 2( ~ 61-}, c, c (Qd ) 6J.t 0, u(Q~ ){ Yi1 (6<', ~ ) J2] {63c) 

where we have put 

f-tc, / Qc;. ) - !;- oo ( 0) • , , 

The terms T
0

, T1 and T2 are clearly irreducible 0-body, 

irreducible one-body, irreducible 2-body terms. ( An 

irreducible 0-body term in the Hamiltonian is just an 

additive constant to the Hamiltonian.) We thus write 

.-.../ 

- ( 1 /2) ~; <±>Bil(;{ - ~)Q"- Qj> 

+ C 1 /3 ! ) ~ ~( x, Qol ; ~ , 013 ; t, Oy) 
:>(, f, o 

+ higher body interactions. 
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,..,.._,. 
Here Vh stands for the n-body irreducible interaction. 

The advantage of this decomposition is that the effect of 
.~ 

the n-body interaction V~ is now proportional to the nth 

power of the charge density. For small charge densities, 

(as will be shown to be the case near the fixed point of the 

renormalization transformation) the terms with n;.. 3 may be 

neglected. 

Note that in Eq.(64) we have two terms involving the 

two-body in teraction. It is useful to separate out the 
r-' 

Coulomb interaction between the blocks cp&& , from the 
,.-.../ 

"residual"' two-body irreducible interaction v2. which is 

expected to be small. 

Usual ly, we should be able to determine the irreducible 

0-body, i-body, 2-body .... interactions , by considering the 

cases when only 0,1,2 .•.. of the charges are nonzero. This 

is not possible because of the constraint L. Q ... = 0. A 
o<. 

configurati on with only one nonzero charge is not allowed. 

We are thus free to define the one body potentials any way 

we like, so long as the corresponding two body interactions 

are appropr iately defined. In pa~ticular, the Hamiltonian 

is unchanged under the transformation 

,,,...._; 

cp {R) +c( 1- 8~,o], 



-110-

for any constant c. 

However, once the one and two body potentials are 

defined, the higher irreducible interactions are defined 

unambiguously. 

It is shown in Appendix D that the potential 

varies logarithmically for large R. We have for large R 

(3 '-f: ( R) - (A ~n R + B ) + c !~ .:-c • 
I 6; $. "IT 

(66) 

Here (A enR + B ) is the correction to the Coulomb 

interaction between blocks due to the polarizability of the 

surrounding medium. A and B are some constants that go to 
2-

zero approximately as [1(1)] • c is an arbitrary constant 

which we are free to choose [Eq.(65)] Now, we use our 

freedom to choose the constants P._~ and c, so so that the 
,..__, 

new potential Cf1.._CR) differs from the original potential 

4CR) as little as possible. We put 

and 

~fl- = p - A TI , 

+( )' + ?, 1n2)/r. - p( '6 + :£ ln2)/f,tt .. 
;;l. 

so that we have for 1 arge R 

,..__, 
q\,JR) ?t· (1/1\){ tnR + 3'+(3/2) k7n2} + 0(1Ri' ), 

- -1 
~ ( R ) + 0 (f R! ) • 

{6?) 
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With this choice of (3~ ff and c specified, we now have 

an explicit computational procedure for determining H ~~ 

from H. 

Of course, we can repeat the procedure again, and 

reduce the number of degrees of freedom again by a factor of 

4. The many body interaction terms in He~ are included in 

H~ This makes the explicit calculation of cumulants much 

more difficultt but does not cause any difficulty in 

principle. We write 

H e.f4 = K (H)' 
( "11) 

where ·~ is the (nonlinear) renormalization transformation 

operator which maps the Hamiltonian H into the Hamiltonian 

H e.H • The operator may be applied more than once. 

Define 

H 
( r-+I) () \ 1') 

~-1-i = 1'.....- [ H e!f ] • 
('72) 

In the next section we study the asymptotic properties of 

the sequence of Hamiltonians., H:~ for larger, and deduce 

from this the critical behavior of the system. 
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V ANALYSIS Of THE RECURSION EQUATIO~S 

As is perhaps fairly clear by now, the full 

renormalization transformation is very complicated and 

difficult to implement. Fortunately we do not need to 

analyse the f~ll recursion equations in order to determine 

the critical properties of the model. For this purpose, 

usually the knowledge of the fixed points of the 

transformation and the behavior of the transformation near 

its fixed points is quite sufficient. In the following 

analysis we shall make many approximations in determining 

the nature of the phase transition near its critical point. 

While the approximations may be sometimes quite crude, it 

should be emphasized that they are unimportant in that they 

do not change the nature of the phase transition near the 

c r i tic a 1 po in t . It should be possible, though extremely 

tedious, to justify each approximation at each step. We 

shall not make such an attempt, and depend mainly on 

physical intuition for their justification. The critical 

behavior is determined exactly in spite of the 

approximations. 

Near the critical point, the recursion equations 

simplify considerably. As we shall show, charge densities 

ate arbitrarily small if we are sufficiently close to the 
A./ 

critical point Hamiltonian. Hence the many body terms V~ 
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in the Hamiltonian (n ~ 3 ) may be ignored. Similarly, the 
,,..__,, 

operator V2 , though it is a two body operator and hence of 

the same order in charge densities as the Coulomb 
____, 

interaction term PQa which we retain, turns out t o be Ot1 

"irrelevant operator'' in the jargon of renormalization 

theory. ( Irrelevant operators are those terms in a 

Hamiltonian whose deviations from their fixed point values 

decrease o n renormalization. Hence after a few iterations 

of the renormalization transformation , the irrelevant 

operators a re essentially fixed at their fixed point values, 

irrespectiv e of their starting values. The critic al 

behavior of the Hamiltonian is independent of their precise 

value.) It can thus be ignored without affecting the 

critical properties ~f the model. For further discussion on 

this point~ please see Appendix D. 

We need to determine the effect of the renormalization 

transformation on the Hamiltonian H, when the activities 

I(Q) of the charges are small for Q * 0. Since we have 
,....._, 

decided to ignore the many-body interactions and the Va_ 

interaction , the Hamiltonian is now characterized by the 
,,......, 

two-body Co ulomb potential PaQ, the one body potentials 
r.J 

I(Q), and the effective temperature Hence, in this 

approximation of small charge densities, the recursion 

equation (71} may be simplified to 
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(73) 

whic h jus t says that the r enormalization transformation maps 

o ne set o f values l ~ , 4.:c. ' I(Q)J to a different set 
?, ,-...; "" 

L Lit , ~<> , I < Q) J • 

It i s eas y to identify the fixed points of this 

transformation. There is a line of fixed points 

H ~ = ff'f l (2>* , 4"' , I'*' ( Q ) J , 
tr Lt J 

such that 

R H·J- :: H* . 

Her e the fix ed point values of r•co> and are given by 

the equat ion s 

r* (Q ) = S"e,o ' 

pot> = t 11?1 )L y + (3/2) an2 
,+ I(,_ 

+ JJJJdx, dxid~,c1~1 .fn{ (R)( +x
1
-x4 ):z.. +(R...:t +Y.-Y,,_ )z. }

11
,_]. 

-1/z 

C7€) 

and t he par ameter ~ is arbitrary. That the conditions (76) 

and (77) l ead to a fixed point is easily verified. Eq.(76) 

makes the activity of any nonzero-charge state zero. Thus 

the s t ate o f the system under H~ corresponds to no charges. 

Clearly, t his state maps onto itself under the 

* renor mali zat ion transformation. The potential cp is easily 

seen to reproduce itself LEqs.(66-68) J with the choice of 

the e onstar..t s 
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A = B = 0, 

C = - ( 1 In ) fn 2 C?Gh) 

There is a l so an isolated fixed point given by 

I* ( Q ) = 1 , for a 11 Q • C'? q b) 

This fixed point corresponds to arbitrarily large densities 

a t diffe r en t blocks and a complete screening of the Coulomb 

potential. For this fixed point, the value of the two-body 

potential 
't 
~ is clearly u n important, as it always occurs in 

a-t ff...,.._ • the combination t-J '±' 

Let us no w study the stability of the line of fixed 

points. Consider a :tarting Hamiltonian with parameters ~' 

I (Q), and 9:i.-( R ) + 6 ~ (R) After one renormalization, 

these are transformed to ( we retain only first order terms 

in deviations f r om H~ ) 

I
1

(Q) = q I(Q) expl-[3Q 2 .en2 /(2TT) J, 

o' ~ ( R--'1 ., = ( 1 I 16} 2 '15,t, ( 2~R \'\ ·e" VI "'e Y1 A YI ·e") '±' 't + ·.J, x - 'J,, x + J, e;- ·J., , • 
IJ: 't: 112 

Cooe.) 

Thus we see that i f p>4n , the fixed point Hamiltonian 

is attractive and successive renormalizations bring the 

effective Hamil t onian closer to the fixed point. 
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If {b < 4Tr , the fixed point becomes unstable, because 

the one-body interaction te r m I(Q = 1) starts growing with 

iteration. Successive iterations drive the effective 

Hamilonian after 
(<') 

r iterations, He~ , farther and farther 

away from the fixed point. Eventually, as r tends to 
(T) 

infinity, Hei.t tends to the attractive fixed point given by 

Eqs. (79 a-b ). 

Consider now the full renormalization transformation 

given by Eq.(73), when the activities I(Q) are small for 

nonzero Q. Full here means that we include the effect of 

nonlinear terms in the transformation ( but not the many 

body interactions). After a small number of iterations of 
,....._, 

the renormalization transformation, the potential c±i<R) is 

fairly indistinguishable from its asy~ptotic value 

and we may replace ;{; by ,+,* '-f 'fl in the recursion equations. 

The recursion equations for I(Q) show that the values of 

r:; co> (rJ 

!OI > 1, are essentially determined by Ieff(Q=1), and 

we have 
IP> tr> 16ll ( l•) )'Z-

Ilif ( Q) ·~ [IEE(1 )] fs. {1 + terms of order I'* (1) } , (21) 

where f & are some absolute constants dependant on Q. 

Thus, near the critical point, after a few iterations 

of the renormalization transformation, a contraction of 

description takes place and the effective Hamiltonian can be 

adequately characterized by only two parameters : 

I { 1 ) . 
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It is now easy to write down the recursion equations 

for these parameters. Remembering that near the critical 

point, ~ is close to 4TI, and v is close to zero, the 

renormalization equations take the considerably simpler form 

o. rr> K u; z.. 
I - '1V 

V c r-t1) "" 4vui exp[- (6crJ 1 n2/(2TT)] 

where we have retained only terms up to the third order in 

vCr) K
1 

and K2.. are some absolute ( though lattice 

dependent) constants whose precise value does not concern us 

here. 

Since the rest of this section is just a detailed 

analysis of the Eqs.(82), let us pause here a moment to 

understand these -equations physically. Q"Oo1 ' l~li ~iR) measures 

the effective interaction between any two block charges Q~ 

and Q~, separated by a distance R. Each block, in addition 

to the block charge Q, has dipole and quadrupole moments. 

Thus the charges Qo( and Q,1_, are in effect immersed in the 

polarizable medium of other blocks. Hence the effective 

interaction between them ~.elf is less than the bare 

inter action measured by ~ • The di ff er ence is proport io na 1 

to the polarizability of the medium, and this is clearly 

proportional to v 2 for small v. 
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The rec urs i on equation (82b) for v (_ r~ I) is also easy to 

understand . The factor 4 comes from the four possi~e 

positions o f the single charge on the block. The second and 

the third terms come from the shifting of the two-body 

potentia l by an amount c [Eqs.(65) and (68)]. Again the 

correction due to the polarizability of the medium is 

proportional to v 2 for small v. We might even say that 

these equa t ions (82) could be written down from first 

pr inc i p 1 es , w i thou t ha v in g to d eve 1 op t he f u 11 f o rm a 1 i s m o f 

the renorma l ization transformation. 

For small values of ( ~ - 4rr) and v their values 

change ver y slowly with r and the discrete recursion 

equations ( 82) may be profitably approximated by the 

correspond i ng differential equations 

d V 13 3 ~ : ( 4 Ti - I ) v J!. n2 /2 + K:z. v • 
v111.. 

These equa t ions may be solved easily to determine v and P 

as func t i o ns of r. The trajectories of ~In.) verses vc<) are 

shown i n F ig. 14. The trajectories are approximately 

hyperbolas near ~ = 4 7\ and v = 0 • They may be 

parameter ize d by a single parameter E, and are given by 

a 1 :i. P ( 1~ - !t i\ ) = v 2K1 I ( ~n2) + E. 

If we fi x the starting value of v at v0 , _and vary P.,, the 

paramete~ E varies according to the Eq.(84) . If E :0, we 
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FIG. 11.l. The trajectories Of ~(r) vers. v(r). The 

curve C1 corresponds to a temperature of the charged 

gas below the critical temperature. It ends at a fixed 

point on the v=O axis. Curve C is the critical curve 

and ends at the point v=O, f=4Ti. The curve C~ is for 

a charged gas at a temperature above the critical 

temperature. For larger, it tends towards the point 

v = 1 , p = 0 ( no t shown in the fig u r e) • 

get the critical curve C (Fig.14) which ends at the fixed 

point ~=4~ , v:O. Clearly the parameter E is linear in the 

temperature difference (~ - ~(v0 )], if the starting 

temperature ~ is slightly different from the critical 

temperatur•e [~ ( v0 ) • 

If E>O, the starting point is above the curve C in 

Fig. 121 and the trajectory follows a CuJLve... similar to C1 • As 

r tends to infinity, the curve c1 tends towards the fixed 

point f3 = 4)\ + .fE' v = 0. 
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If E < 0, the point ( 0 ,v) tends initially towards the 

v=O axis, but is ultimately repelled away from it and tends 

towards t he fixed point v = 1 , ~ = 0. This point is very 

much to the right of the figure and is not shown in the 

figure as the corresponding value of v is large and the 

small v ap pr oximation breaks down. 

Substituting the approximation (84) into the Eq.(83a), 

we get 

dr/dn, = -( f n2) [ ( [3 -47\)
2 

- EJ/2 

The solution of this equation for the case E > 0 is 

1S - Li :t\ - [E: 

0 -41\ +-fE = 
~o -47\ - ~ 
f->c-40-+-IT 

If E = O ~ the solution is 

exp[- ( n2 fErJ 

-I 
- ( lg - 4 11 ) = r f n 2 I 2 • 

0 

And if E <O, the solution is 

tan-1 
( (b~~/\. ) - tan-' ( 130~~ ) = ( .fn2) r ~lEI /2 <'36e.) 

In all t hese equations ~ is the value of p for r:O . v(r) 

may be obtained by differentiating #Cr) with respect to r 

[Eq.(83a) J . 

We n.ow determine the critical properties of the Coulo!Tlb 

gas from the se recursion equations. 
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Clearly E =0 corresponds to the critical curve 

separating the low temperature phase of the Coulomb gas 

where charges form bound pairs ( region above the curve C in 

Fig.14) fro m the high temperature phase where charges are 

unbound (reg ion below the curve C in Fig. 14) . If 

is the inv erse critical temperature corresponding to the 

activity v
0 

f or unit charges, we have for small v0 

This result is, of course, very plausible and says that if 

t·he activit ies of the charges are increased, the medium is 

more easily polarized, and the critical temperature for the 

breakdown o f bound charges is decreased. 

,,...._ 
Let us now consi~er the constant term A0 generated by 

the renormalization transformation , which we have ignored 

so far. This is the term which determines the Landau 

potential o f the system. In fact, the Landau potential per 

site g, satisfies the exact equation 

C38) 

Using the approximate expression for vtaj obtained by 

differentiat ing Eq.(86) , it is easy to verify that g has an 

essential s.ingul ari ty as a function of E and that the 

singular 
-'Ii 

part varies as exp(-K \Ei ] for small E, where K is 

some positiv e constant. Thus we see that the Landau 

potential g has an essential singularity as a function of 
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temperature . 

As r tends to infinity, the behavior of ~(f) is quite 

different above and below the critical point. The limiting 

value is zero for temperatures above the critical point, and 

a finite value ~ 
~(4K +~E ) below the critical temperature. 

As was pointed out earlier, 
") p ( r :OJ) measures the strength 

of the effective interaction between two charges very far 

away from each other, and it follows that P<r= 0 )/ p(r::ro) 

is equal to the dielectric constant of the charged gas. It 

is finite for temperatures below and at the critic al 

temperature but is infinite above it. Thus we see that the 

dielectric constant just below the critical temperature is 

given by 

Here again K is a constant of proportionality. We are, of 

course, working in natural units and T~ is just a number. 

Finally, let us determine the behavior of the 

correlation length as the temperature tends to the critical 

value from below. The correlation length varies as 2~ 

where ~ is the number of iterations of the renormalization 

transformation needed to reach some preassigned cutoff value 

of Clearly, from Eq.(86a) ' r varies as 
-!(;. 

E , and 

hence the correlation length varies as 2 
E-'Jz. 



This concludes our discussion of the critical behavior 

of the charged lattice gas. These results are easily 

translated into the language of the melting model. We see 

that the transition temperature for the melting model is 

given by [Eq.(15)] 

(qo) 

Here Ti:,,,, is the critical temperature f o r the melting model 

and K is some constant of proportior.al i ty. The result is 

valid for small Vo only. Thus the melting temperature 

increases as Vo is increased. For large values of Vo ' the 

increase in the melting temperature is much slower due 

to the pr es enc e o f h i g her o rd er term s i n V 
0 

in E q . ( 9 O ) • In 

particulart we expect the melting temperature to remain 

finite as V
0 

tends to infinity. 

Similar to the singularity of tne Landau potential for 

the charged gas , the free energy and the specific heat for 

the melting model show only a very weak essential 
-Vi. 

singulatity [ Cv,,......, exp(-K )T-Tc-,J )] as a function of 

temperature. 

The correlation function shows a sharply discontinuous 

behavior near the critial temperature. The mean squared 

• --"> deviation between the the sites (0,0) and R in the melting 

problem corresponds to effective potential between the same 

sites for a charged gas. We have, thus, for T>Tc,,,, , with 
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T-Tc,,,, smal l~ 

Lim <{ x ;; -X R )
2 > 2 n'2.i (a 1 foR) 

K-'> c.o -

= 0 ,for T<Tc,~. Cct.2) 

For T<T. , the mean square deviation ~oes not increase 
~,m 

with /R/ i nd efinitely . We can easily derive the asy~ptotic 

behavior o r <(x~- x~):z. > as R tends to infinity. In the 

charged la t tice gas language, this corresponds to evaluating 

the finite e nergy needed to create two charges infinitely 

separated f rom one another, in the presence of the ionized 

Coulomb gas at f> < /3c • Now, the total interactior. er.ergy 

between t wo charges Q and Q' infinitely separated from one 

another is 

The num ber of iterations needed to change the value of 

from 4 11 + JiEl to 4 i1 - ;IEI is approximately given by Eq.(85c) 

I 

r 0 = TI I ( C n2 \Er) • (Cf~) 

For t hese values of r, the constants c cr> are close to 

( 1 In ) kln2. For larger values of r, the function 
(r) 

13 tends 

very quickly to zero. Hence we have 

-.L 

= (El ;1.. • 

But E is prc portio nal to the temperature difference away 

from the cr itical point. 

square dev ia tion increases as 

And thus we find that the mean 
- 'J.i... 

(T.:,m - T) in the melting 



model as the temperature approaches ~.mfrom below. 



-1;26-

VI CONCLUDING REMARKS 

The treatment in the previous two sections showed that 

a two dimensional layer in a small external periodic 

potential undergoes a phase transition at a temperature 

given by 

where m
0
is the mass of one atom and c is the velocity of 

sound in the medium. This is, of course, a restatement of 

the Lindemann's melting criterion, which states that solids 

melt when the root mean square deviation of an atom reaches 

a critical fraction of the lattice spacing. Taking a 

typical example of si:ver (molecular weight = 108; velocity 

of transverse sound :1600 m/sec) , we get a prediction of 

the melting temperature 4.2 x104 °K. This should be 

compared with the experimental value T =1233°K. We see that 

our predicted temperature for melting is about 35 times 

higher than the experimental value. The agreement looks 

much more reasonable if, instead of comparing the melting 

temperature, we compare the value of the fraction f = c:r-la, 

where ~ is the root mean square deviation of atoms in the 

solid just below the melting temperature, and a is the 

lattice spacing. For real materials, this value is close to 

0.10. In our model the value of this fraction is close to 

0.6 • 



That our predicted temperature is too high by a factor 

of about 35, should not cause much concern. In fact, there 

would be reason to worry if the predicted temperature were 

closer to the experimental value. This is because our model 

is highly s1mplif1ed. In particular, we have introduced 

anharmonic interaction only between layers. Witnin each 

layer, the coupling between atoms was assu~ed to be purely 

harmonic. Furthermore, the layers adjacent to the layers 

under discussion were assumed held fixed. If this is not 

done, the onset of slipping should take place much earlier, 

because it would be possible to obtain much greater root 

mean square deviation at lower temperatures by the 

cooperative action of each layer being slightly displaced 

witn respect to the ~~evious one. 

Both of these effects, acting independently :i can 

decrease the transition temperature by a factor of 5 to 10. 

Also, in some cases, e.g. solid helium, the quantum 

mechanical zero point energy of vibrations is significant 

and decreases the transition temperature still further. 

While the formal treatment of the model is very similar 

to the Kosterlitz-Thouless dislocation melting in two 

dimensions? it must be emphasized that the physical picture 

is quite different. In the dislocation model, the two 

dimensioGal 'charges' correspond to dislocations, whose 

density increases as the temperature is increased. In our 
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model, the charges are something like "sol id i fie a ti on 

centers''. The density of these ''solidification centers" is 

very small at high te~peratures in the liquid phase. The 

solid phase corresponds to a high density of these charges. 

Also, as mentioned earlier, the behavior of the dislocation 

model depends on the lattice structure of the two 

dimensional lattice, being different for the square and the 

triangular lattices. Such a situation does not arise in our 

model and t he critical behavior of the model is independent 

of the lattice structure. 

We note that the melting transition in our model is a 

continuous transition, with no latent heat. This is a major 

inadequacy of our model, as all the melting transitions 

occuring in nature are first order. It is however, possible 

that a first order transition will be obtained if the 

magnitude of the periodic potential V0 is not assumed 

constant in the model, but is determined within the model in 

some self-consistent manner. Physically, such a 

self-consistency 

decrease in 

approximation 

the magnitude 

takes 

of the 

into account the 

effective 

potential due to the random thermal motion of the 

periodic 

adjacent 

layers. We have not succeeded so far in overcoming the 

mathematical difficulties encountered in the implementation 

of such a n approach. This seems to be a promising area for 

further in vestigation. 



Our approach to the melting transition differs in one 

important respect fro m earlier approaches. Most of the 

simplifications and approximations of the model are included 

in the model Hamilto nian. Once the Hamiltonian is written 

down, we do not make any more ad hoc approximations of 

dubious validity. The critical behavior is exactly 

determined for the assumed form of the Hamiltonian. 

Also, the model treats the low temperature and the high 

temperature phases on equal footing. This should be 

contrasted with other theories of melting, w~ich are 

essentially one phase th~ories and only 

breaks 

determine the 

temperature beyond which the 

example would be a theory 

theory 

that identifies 

down. { An 

the melting 

temperature as the tPmperature beyond which the theory gives 

a negative value for the shear modulus.) It is also superior 

to mean field type theories in that it takes into account 

the fluctuations near the transition temperature ( at least 

in two directions). 

The relationship of this model of melting to the 

melting transition in real materials is. at best, similar to 

that of a caricature ( as opposed to that of a portrait or a 

hologram) to a person. Some features of reality are very 

much magnified, while others are completely ignored. The 

qualitative picture of the melting transition as it 

emerges from the model , is presumably correct. A precise 
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agreement with experiments should not be expected. 



-1-01-

REFERE~CES AND FOOTNOTES 

(1] E. Helfand and F . H. Stillinger, J. Chem. Phys. Lett., 

!!2_, 1232, 1968. 

[2] K. G. Wilson and ~. E. Fisher, Phys. Rev. Lett .• ~~' 

24:0t 1972-. 

[3] M. E. Fisher, Rev. Mod. Phys.,~~' 597, 1974. 

[4] K. G. Wilson and J. Kogut, Phys. Rep. C, _1_~,75,1974. 

[5] E. Br ezin, J. C. Le Guillou, J. Zinn Justin and B. G. 

Nickel, Phys. Lett.,~~A,227,1973. 

[6] E. Brezin, J. C. Le Guillou and J. Zinn Justin, 

Physo Rev., D .2_, 1121, 1974. 

[7] A. A. Belavin and M. A. Yurishchev, Zh. Eskp . Teor. 

Fiz . ,64, 407, 1973. 

[ 8] A. Ah.arony and P. C. Hohenberg, Phys. Rev. ,R_l], 

3081 , 1976. 

(9] A. B. Harris, T. C. Lubensky and J. H. Chen,Phys. Rev. 

Lett.,36, 415, 1976. 

[10] Y. I mry and S. Ma, Phys. Rev. Lett.,]~,1399, 1975. 

(11] E. Br ezin and J. Zinn Justin, Phys. Rev. Lett., 

36~ 691 ,1976. 

(12] D. For ester, D. R. Nelson and M. J. Stephan, 

Phys . Rev. Lett., 36,867,1976. 

(13] C. G. Bollini and J. J. Giambiagi,Nuovo Cim., 

B _!?. ~ 20, 1972. 



-1<3.2-

[14) G. t'Hooft and M. Veltman, Nuclear Phys.,B~~,189,1972. 

[15] J. F. Ashmore, Comm. Math. Phys.,~2_, 177,1973. 

(16] D. R. Herrick and F. H. Stillinger, Phys. Rev., All, 

42,1975. 

(17) K. G. Wilson, Phys. Rev.,82!,3174 and 3184, 1971. 

(18] D.R. Nelson and M. E. Fisher, Ann. Phys.(N.Y.), 

21_,226,1975. 

[19] E. Muller-Hartmann and J. Zittartz, Phys. Rev. Lett., 

33, 893, 1976. 

[20] J. Zittartz, Z. Phys. B,~}, 55,1976. 

[21] This is reviewed in Ref.[4]. 

(22] For a discussion of the spherical model, see Sec. VI. 

[23] G. Gallavotti and H. Knopps, Nuovo Cim.,2, 341,1975. 

[24] ~- E. Fisher, ~~p. Prog. Phys.,]Q, 615,1967. 

[25] ~.Wilson, Phys. Rev., DI, 2924,1973. 

(26] F. H. Stillinger, J. Math. Phys.,1~,1224,1977. 

[27] B. B. Mendelbrot, in 'Fractals : Form, Chance and 

Dimension', W. H. Freeman (San Fransisco), 1977. 

(28] For a historical account, see M. Kac, Phys. Today, 

_!I,40,1974. 

(29] E.W. Montroll, Nuovo Cim. Suppl., ~,265,1949. 

(30] G. S. Joyce, in 'Phase Transitions and Critical 

Phenomena' ,Vol. 2, Editors C. Domb and M. S. Green, 

Academic Press,( London-New York), 1972, p375. 

(31] See Ref. [24] or [30). 

(32] R. Abe, Prog. Theo. Phys.,2!2.113,1975. 



-13~ -

[33] H. E. Stanley, Ph ys. Rev . , ]_76, 718, 1968. 

[34] These were defi n ed in Section VI. 

(35] C. M. Fortuin and P. W. Kasteleyn, Physica , 2I, 

536 , 1972. 

[36] 

(37] 

[38] 

[39] 

c. M. 

c. M. 

R. B. 

This 

Fortui n , Physic a , 2_§_' 393, 1972. 

Fortuin, Physic a , 22.' 5 1~5' 1972. 

Pot ts, Proc. Cambridge Phil. Soc., ~~. 106, 1952. 

is proved in Ref. [ 3 5]. 

[40] E. W. Montroll, J. Chem. Phys.,]__§_, 734, 1950. 

[41] M. E. Fisher and M. F. Sykes, Phys. Rev.,1~,45,1959. 

[42] D. S. McKenzie, Phys. Rep. C--11_,37,1976; 

and r eferences cited therein. 

(43] S. G. Wittington and J. F. Harris, J. Phys. A,2, 

411,1972; C. Domb and F. T. Hioe, J. Chem. Phys., 

2.!_, 1920, 1969. 

(44] '1. F. Sykes et al, J. Phys. A:Gen. Phys.,2, 653,1972; 

F. T. Wall and F. Mandel, J. Chem. Phys., ~},4592, 

1975. 

(45] D. Dhar, J. Math. Phys., _!2, 5, 1978. 

(46] F. A. Lindemann, Z. Phys., 11, 609, 1910. 

[47] For a general review, please see A. B. Ubbelhode, 

"Melting and Crystal Structu?"e'', Oxford:Clarendon 

Press, 1965; or, W. G. Hoover and M. Ross, Contem. 

Phys., _]1_,339, 1971. 

- [48] G. L. Warren and W. E. Evenson, Phys. Rev., B]_! , 

2979, 1975. 



[49] W. Braunbek, Z. Phys., ]~,549,1926. 

(50] J. E. Lennard-Jones and A. F. De vcnshire. Proc. 

Roy. Soc.,Al?9,137,1939; Al70,434,1939. 

[51] M. Mori, M. Ol<amoto and S. Isa, Prog. Theo. 

Phys. ,!£1, 1087, 1972. 

(52) J. G. Kirkwood and E. Monroe, J. Chem. Phys., 

_2.,514, 1941. 

(53] T. V. Ramakrishnan and M. Youssouff, Solid State 

Comm.(USA),~l,389,1977. 

[54] F. N. R. Nabarro, in ''Theory of Crystal Dislocations'', 

Pergamon Press, Oxford,1967. 

(55] E. J. Jensen, W. D. Kristensen and R. M. Cotterill, 

Phil. Mig.,~I,623,1973;]Q,229,1974. 

[56] J. M. Kosterli~= and D. J. Thouless , J. Phys.C,~, 

1181,1973. 

(57] S. F. Edwards, Polymer, ll• 933, 1976. 

[58] D. R. Nelson, ''A Study of Melting in two Dimensions'', 

preprint, 1978. 

(59] B. J. Adler and T. E. Wainwright, Phys. Rev, 127, 

359. 1962. 

(60] R. L. Dobrushin, Fune. Anal. Appl.,~ 1 302,1968. 

(61] D. Ruelle, Phys. Rev. Lett., ~1 1 1040,1971. 

(62] R. P. Feynman, as reported in R. L. Elgin and D. L. 

Goodstein, Phys. Rev. A, 9-_,2657,1974. 

[ 6 3 ] A • A • Mi g d a 1 , Z h . E . T . F . , ~9-_ , 1 4 5 7 , 1 9 7 5 ; a n d ~_2. , 

810,1975. 



-l~~-

(64] A. M. Polyakov , Nordita, 76/33, 1975. 

[65] P. W. Anderson an d G. Yuwal, J. Phys. C, ~,607,1971. 

[66] P. W. Anderson, J. phys. C ,1~.2436,197 1 . 

[67] E. H. Hauge and P. C. Hemmar, Phys. Norveg., 5-, 

209 ' 1971 . 

(68] A.. Salzburg and S. Prager, J. Chem. Phys., 

}~,2587' 1963. 

[69] FL M. May, Phys. Lett., 25~, 282, 1967. 

(70) J. M. Kosterlitz, J. Phys. C, I, 10'46, 1974. 

[71] S. Coleman, Phys. Rev. D, _!_!, 2088, 1975. 



APPE NDIX A. 

We co r. sider the equation 

F()\) = -[ ( n-2)/4n] ~ r. [( /\ +n)('A+n+2)] + (1/n)F(n /\ +2A.. + ?i-z ). 

CI 11.) 

This equat i on is val id for al 1 ),_ >O. As /\ tends to 

infinity, F( /\ ) tends to - ( 1 / 2) _)_ n ~ . This condition 

specifies F( /\ ) completely, when combined with Eq.(l 11.). 

From Eq. (I 1C) we may wri t e 
aJ 

F(/\ )=- ( 1/2) Lctcu?_ D(0 ) ln( c.:?+ ?-. ) , ( /'.\ 1) 

where D( l.0'2.) d w"- is the fractional number of modes in the 

f ' '"2.. to / .--,7..+d~ -""' '2... requency range <-v \....U '---'-' From Eq.(A1) we may 

define F()i ) as an 2"'alytic function of ':::\ over the entire 

complex ? ,- plane. The function has logarithmic branch 

points on the negative real axis and consists of many 

sheets. Consider the sheet in which F( ?-- ) is real for all 

real posit i ve A. We make a branch cut along the negative 

real line. Then it is easy to see that 

H( w"- ) def-(2/n )Im F(- L.:J-<-+ ,·c_) , for all real 
(,)2.. 

= J d G1J z. D ( lJ t ) , for <-Oz. > 0 . 
0 

A plane 

I 
c • .. . ~ 

FIG. (5 . l'he complex X pl:lne s howing the curv e C and the 
b r anch cut along the negative r eal axi s _ 
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Consider .::\ = ::\R+ /c , where ~R is real. As we vary ),R 

from +co to - C::J, the function (n~+2':\+ '/\ 2
) traces out the 

curve C shown in Fig. (15). For /.LR<-(r,+2)/2 the curve C 

crosses over the negative real axis and goes into a 

different sheet. The value of the function F( ?- ) on this 

sheet differs from its value on the original sheet by an 

additive imaginary con stant. Taking the imaginary part of 

Eq.Q 1D it is easy to show that 

H(u.Jz...):(1/n) H(n c.J ... +2G..: 2 - L04) , for O<GJ2 <(n+2)/2, 

2. 
for ( n+2) /2 < 0) < v:~ , (fl-5) 

where E(X ) is a unit step function which is zero for 

negative arguments and +1 for positive arguments. From 

Eq.(A3), it is easy t "> see that H(4)i.) is a non-negative 

monotonically increasing function of ~2 , and we have 

(_AG; 

{Ar) 

We shall determine the function ~(6.J~) in the unknown range 

O<l2~<(n+2) by repeated applictions of Eqs. (A4) and (A5). 

e ~ ~ 
Consider C.::1 <CU <n , where w1 ~ n+2) 

Eq.(A7), we get H(n:e,/+2 LUc.-tv4):1 

Eqs.{A4) and (A5) we get 

I., 
- IJ, =n+2. Then from 

and hence by using 
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'2.. :z_ 2. 

H ( l0 ) = 1 / n , for CJ,< 0 < n. 

Then 

again H(n 1:c\2Lt.1z.-k/,.):1 by Eq.(A7), and using Eq.(A5) we get 

- 2 = 1 /2 , for n< Cv~ < &J)i • 

Thus we have determined the function H(luz.) in the 

r 1 2- ? - 2-. inter v a 1 ~, < 6) < q . This can be used to determine the 

function H (C0~) in the ranges 

where CJ;_:/ , 0 4z., CJ/, 0/ are constants determined by the 

equations 

( 2 ) ' 1 z_ / ' l, ( 2 ) (, ' 2- /'_ 1 {; /'_) 2-n + ll{,'.3 - '-U.; . = n+ "'-< - '-'.)• = <-u1 , CA f o) 

(A Ii) 

and so on. Eventually H(Wz.) is determined in all the 

interval O < w~<(n+2), except for some small set of zero 

measure. Thus we see that H(c..o2-) is constant everywhere 

except for an infinite but denumerable number of points 

where its value increases discontinuously. D(6J~) ,which is 

the deri v ative of H(~L) and is the spectral density of the 

system, is a sum of an infinite number of delta functions. 

Also the points W
2
:0 and 2. w =(n+2) are clearly points of 

accumulation of the delta functions and hence again by Eqs~ 

(A4) and ( A5) , there are an infinite number of such points 

of accumu l ation. Clearly the function D( Cd- ) is a highly 

singular function of fr;... However, in thermodynamics, we are 
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usually interested only in integrals of D(l}·) multiplied by 

some sufficiently smooth f t . of ,.,z.. unc 1or:. '-{.) Hence only some 

sort of smeared value of D(w2.) is of interest. It is easy 

to prove that in this case there exist nonzero finite 

constants A and B such that 

l- ci ,., 
and H(l.J) > Bw , for O<U-<(n+2), 

where 

d = 2 fr. ( n) I fn ( r,+2) • 

(A 11) 

( A12) 

c A t2i) 

This result is sufficiently strong to permit us to 

identify d as the effective dimensionality of the lattice. 
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APPENDIX B 

We list here the the configurations and the weights of 

the r .:ih order triangles that contribute to Z 
(r+ I) 
~ . 

C t .b t. to z}"+t) and on r1 u.,1ons _._ 
('f'+I) 

Z 1 may be written down 

similarly. Vertices that are connected together by occupied 

bonds are shown . with a full line joining them. Vertices not 

connected together by occupied bonds are shown with a dotted 

line joining them (Eris· Cl 62)). 

,\ 
' ' \ 

/ 
I 
I 

' 

/\ 
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APPENDIX C 

We list here all the graphs that contribute to the 

(r+l)th order vertex-weights for the self-avoiding walk 

problem on the truncated tetrahedror. lattice. 

• <r+I) 
Graphs that contribute to A : 

A''' 

2. 

s'" c('"l 

• tr+!) 
Graphs that contribute to C : 



( l°'t\) 
Graphs that cor.tribute to D : 

f:J\) {l") tf") 

2A 13 C 



APPENDIX D 

We sho w here that the effective two body Coulomb 

potential ~a.( R) generated by the renormalization 

transformat ion varies logarithmically for large R • 

The potential ctfR) is defined by the Eq.(II64). It is the 

two body interaction term in H.-i'~ which is bilinear in the 

block charges {Q~}. Quite clearly, this can only arise only 

out of terms that are of second order in the perturbatio n 

H1 , though they ma y contain arbitrary powers of Hz.. 

In practice, of course, we retain only a finite number 
,,,..._, 

of powers of H2 when evaluating ¢JR). But for theoretical 

discussion it is convenient to include the effect of all 

powers of H :L by cons id ·!r ing a perturb a ti on expansion in 

powers of H1 about the unperturbed Hamiltonian H0 + H2 

Then clear l y the secor.d cumulant of H1 is given by 

( ~- /2 } ) -\ 
;(,/3,J",S 

where we define 

{D1) 

fr',v ( ~ :£ ) = (Si~f Sc:,<;, )>-t"Hi, ,~of • (D2.) 

\ri< ~ ,f) i s the correlation function for the variables SP..t' 

and S 15,q,. when the ' Hamiltonian (unperturbed by H ~ ) is 

H0 +H~ , a nd all the block charges {Q~} are held fixed at 

zero val ues. If the unperturbed Hamiltonian were H 0 , the 

varia'oles S"' at different blocks would be independent and , r 
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we would have 

This is not the case in the presence of H
1

, w~ich explicitly 

couples the S:;;,,., varicbles at different sites. However, 

these couplings are weak and they die off at large 
-2 

separations at least as fast as R Furthermore, they tend 

to cancel each other on the average, as the potentials ~~ 

are as often positive as negative. We thus expect that 

exists and is finite. Also J;c
0

( ~,;:j) should decrease for 

large separations at least as fast as I~- s I The 

summation in the expression (01) may be simplified by a 

Fourier transformation. We get 

Now, \;q,Ck) tends to a finite value as 1kl tends to zero, and 

\f;~{k) and ~1 (k) vary as (kx /k"") and (k:i /k2..) respectively 

fo r 
~ 

smal 1 I k I • Thus clearly the integrand varies as 

Q(klQ(-k)/k 2 for small (kl. This implies a logarithmic 

interaction between the charges {Q~} for large separations. 

This logarithmic interaction adds to the bare (unperturbed) 

intetaction between the charges {Q~} which is also 

logarithmic for large separations. We note that magnitude 

of correction to the bare interaction is proportior.al to C 
wh ich is easily seen to be proportior:.al to v 2 for 



small v. 



-lli G-

APPENDIX E 

In this appendix we show that the residual two body 

irreducible interaction V2 is an irrelevant operator. We 

have seen that even if the initial Ha~iltonian H does not 

have any two-body non-Coulomblike interaction terms, these 

are generated by the renormalization transformation. This 

raises the possibility that on further iterations of the 

renormalizatior. transformation, these terms get larger and 

larger, and thus invalidate our analysis where we have 

ignored them altogether. We show that this does not happen. 

The irreducible two-body residual interaction consists 

of terms like T;i, f;::q.(II 63c)). Let us see how t his term 

transforms under the renormalization transformation. We 

show below that it does not increase without bounds and 

tends to a finite asymptotic value. Other terms that 
"-" 

contribute to the V2 interaction may be treated similarly. 

The argument may be generalized to higher body irreducible 

interactions. We recall that 

') \ LL ~ · 2. 
T ;i_ = 2 ~' OG,c, o{Q °' ) 'o~c)Q t' )[ 'Y

1 
{J, , 0 )] • 

The most important contribution to T~ comes from the mutual 

interaction of blocks with block-charges O~ = ±1. Near the 

critical point, higher values of Q~ occur with much lower 

probability , and in any case, can be treated similarly. If 

v is small, we have from the defining equation (II 57) 
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~ 
0 

( +1 ) = 1 +terms of order v 2 
• 

.,I.) IC 
(E 1) 

Let us for the moment neglect other many body interactions 

and consider the Hamiltonian 

).. '.' ) H LI ) 

nif "f• 
( I) 

+ T.:i • G:: l ) 

Here the superscripts denote the number of iterations of the 

renormaliza tion transformation. After one more 

renormalization t his Hamiltonian transforms to 
3'2• ( 2) <') ~«) '3 t2) ~ ::f:'c.<! (2) 

I"~ H ~~ = A0 - ~ .£ nI (Q"') -( l~tt /2) irf, Q" Qf.'+'61/ :I,(>) + T,,_ (E3) 

+ (n body terms with n>2). 

The additional terms introduced in the cumulant 

expansion Of H 
(2 ) 

<\-\ due to the presence of r;•J 

the followi ng types : 

• (I) 

in He.fl are of 

(i) An additional contribution to the zero body term A~ 

of order v 2 
• This arises due to the configuration of first 

order block charges ± 1 , 1 yi ng on the same second order 

block. Clearly since the second order block has net charge 

th . h . . t t . T ui zero, e nonv arn s i ng in er ac ion :i. between these charges 

H 
( 'l) 

will be transformed into a zero-body interaction in e+i • 

The weight of such configurations is proportional to 

v 2. for small v, and hence the correction to the A t Z) 

0 term 

is of order v~. Since the only fact about A0 used in our 

determinatio n of the critical behavior of the free energy 

was that A,, is of order v 2 [Eq . (II 88)], clearly this 

does not affect our analysis. 

(ii) An additional contribution to the one-body terms 
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This arises becaus e the wei ghts of internal 

configuratio ns <l a second orde r block corresponding to a 

fixed second order block char~e Q~ a r e alte r ed in the 

pr esence of the r ;'' interaction. 

I f !Q, \=1, such a contributio n is of o r der v3
, because T:.'

11 is 

zero if only one of the first order block charges is zero. 

All othe r configurations corresponding to the second order 

block charge Q, = ±1 have weigh t s at least of order v 3
• 

If \OJ> 1, the correction term modifies the weights by a 

fi n ite multiplicative factor. But tnen 1 wCQ) is itself of 

order 1GI v , and the corrections are of the same order. 

As a result, the effect of the term T~
1

) on the recursion 

equ ation for v can be absoroed by a change in the value of 

the constant KL in Eq.(II 82b). Again the critical 

behavior is independent of the precise value of K~ . 

(iii} An additional contribution to the two-body 

irreducible . . T t1 > interaction :i. • 

is just the average value of 

To the first order in T
(I) 

?- ' 

the mutual interaction 

this 

T (I) 

:;I. 

between the first oraer blocks constituting the second order 

block. We write 

< (I)> = T, 0) , 

Ha,if 
[E~) · 

where in obvious notation , is the change in the 

i n teractio r. T:i.'2' due to the presence of T '' i 
2 

. H ") d in q , an we 

break up the effective Hamiltonian after one iteration 
( I ) 

H ~ H' 

into three ter:ns H <'l 

O.,: [f ' 
H t•1 

1 <fl and H.ier as in Eq . (I I 4 4) . 



Thus, this contribution to the interaction T~ , say between 

second order blocks vi.. and @> at a distance R = !cl- 0 1 , is 

a sort of a verag e value of the interactior; T~"J between first 

order blocks at a distance 2R. 

( U \Ci) 

If v is small, H0 -<if is very close to H 0 ~ff- , and this 

would be approximately equal to the irreducible two-body 

residual interaction T
,,, 
2 at a distance 2R. But the 

interaction T2 decreases 
-'1 

with distance as R • [ This is 

obvious from the fact tnat Ti varies as l4;1 <R>f-. J Thus we 
,--.../ 

see th a t ( wr i t in g Vi instead of T2 

generalization) 

In addition? the ful'! recursior, equations 

include terms gen erated by the 

transformation, even in the absence of the 

in an obvious 

for 
A./(2} 

V2 

(E~) 

also 

renormalization 

interact ion v'I/ 1. 

in Htft • Hence the recursion equatior. has the form 

on H 0~ ] + higher order terms. 

In the jargon of renormalization theory , we say that 
r--.,,.(,2) 

V'J. is a " driven'' interaction, in the sense that its value 

under recursion is primarily determined by interaction 

parameters in H (.I) 

00!~ ' 

r- tl J 
and not so much on V1 • In particular, 

it cannot grow appreciably large unless the contribution to 

it from H0 ~" becomes appreciable. : But this contribution is 
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? of order v- , for small v. 
I"-' 

Hence the neglect of ~ in the 

recursion equations is justified and does not affect the 

critical behavior. 

r'V<V 

In addition to these terms, V2 will also contain terms 

generated by the n-body (n>2) interaction terms in H~;';. 

These terms inv6lve higher powers of charge density than 

two, and hence may be ignored near the critical po int. 

In the above dicussi on , we have avoided writing down 

explicit expressions for the various terms involved lest the 

physical argument be lost in the confusion of notation. 


