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ABSTRACT

, In order to gain some understanding of interference effects
during the combustion and evaporation of fuel sprays, simple three-
dimensional body-centered cubic arrays of nine n-heptane or nine
methyl alcohol droplets burning in air have been studied, Different
cube sizes were used to vary the amount of interference obtained
during combustion of the droplets. Photographic studies of the
center droplet in this nine-droplet array were made in order to
determine the qualitative effects of droplet spacing on the evapora-
tion constant (K') while combustion was in progress and to deter-
mine whether the mass rate of burning was proportional to the first
power of droplet diameter for a three-dimensional array of droplets.

Experimental results indicate that, when the droplets are in
close proximity and the flames completely merged, the evaporation
constant is reduced by 40 percent below the value obtained for
minimum interference. A 25 percent increase in the evaporation
constant over single-droplet values for K' was noted when the drop-
let spacing was altered to reduce local heat losses from the flame
fronts, The results obtained from studies of the center droplet
substantiate Probert's assumption (Ref. 38) that the square of drop-
let diameter decreases linearly with time.

Unsuccessful attempts to study the combustion of liquid
bipropellant mixtures and to examine the "burning'" of red fuming
nitric acid in an ammonia atmosphere are described,

In Part II, a general discussion of information available on
the disintegration of liquid jets, spray characteristics, mean
droplet size, droplet-size distribution, and spray evaporation is
presented. The use of similarity considerations in analyzing spray-
nozzle performance is demonstrated, Calculation of K' for a spray
from experimental spray evaporation data is described and the
results of these calculations tabulated,
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PART I. INTERFERENCE DURING BURNING
OF BODY-CENTERED CUBIC ARRAYS

OF NINE FUEL DROPLETS IN AIR
I, INTRODUCTION

The combustion of fuel sprays is of great practical importance
in the construction and design of present-day propulsion equipment
(Refs, 1 to 9). Although there is a wealth of experimental data (Refs,
9 to 21), no adequate theory is available to describe properly the
combustion processes of clouds of droplets when subjected to various
ambient conditions. On the other hand, the burning of isolated single
fuel droplets in oxidizing atmospheres is relatively well understood
(Refs, 22 to 37). The greatest difficulty in extrapolating the informa-
tion available on single-droplet burning to spray combustion seems to
be associated with the lack of information about interference effects
during combustion and evaporation in sprays. Recently, some work
has been done on interference effects between two and five stationary
fuel droplets burning in air (Refs. 30 and 33), These studies show
clearly that the square of the droplet diameter (DZ) decreases linearly
with time (t). However, the slope of the D vs. t curve could not be
explained on the basis of any simple theory, It appears that the diffu-
sion theory for the burning of single droplets will have to be modified
in order to introduce convection effects, proper allowance for radiant
heat transfer, chemical feaction rates, and for interference during
burning.

- Analysis of experimental data on spray combustion requires

some well-defined point of departure. Some years ago, an important
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theoretical study was carried out by Probert (Ref. 38). In his study,
Probert assumed that the drop-size distribution was determined by
‘the Rosin-Rammler distribution law, viz.,

R=exp (- D) M

where R equals the weight or volume fraction of spray with drops of
diameter greater than D, D is the "absolute size constant', n is the
ndistribution constant™.

Subsequent to Probert's work, a similar analysis was made for
other drop-size distribution laws (Ref. 39). Furthermore, it has been
found that the Rosin-Rammler expression was of use over a fairly wide
range of operating conditions encountered in combustion equipment
utilizing fuel sprays (Refs. 40 to 43). The Rosin-Rammler distribution
law is simpler to handle than two other useful equations (Ref. 40). The

Nukiyama-Tanasawa equation is

o o311 e
M=)

where [-' signifies the gamma function (in the present case, the incom-

plete gamma function), i.e.,

X
hl _ n-t n=X
rloon] = [xmiexdx. ®
o
The log probability equation had the form

__[iog (—")Va.] , (4)
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where the minus sign is used for log 'ﬁ% > 0 and the plus sign for
log Ml‘)g < 0, M'g equals the geometric mean for mass distribution,

i.e. , the value of D when R = 0, 50, and P now signifies the complete

gamma function

L -3
["n) = Ix“"e"‘dx= (n-1)! . (5)
o
It is of interest to note that both the Rosin-Rammler and log-
probability equations were developed from data for size distributions in
powdered solids, whereas the Nukiyama-Tanasawa equation was derived
from experimental data for air-atomizing nozzles.
Probert's second assumption was that the mass rate of burning

of the droplets is proportional to the first power of droplet diameter. It

is then readily shown that

2 o 2

D“ = (D° -K“ (6)
where D is the droplet diameter at any time t, D° is the initial diameter
and K', called the "evaporation constant®, has dimensions of area per
unit time. Probert showed how to calculate the percentage of unevapo-
rated or unburnt fuel as a function of @/ﬁ for n varying £r0m“ 2
to 4. Here tr is the residence time of the droplets in the combustion
chamber. Probert's theoretical curves (figure 1) show that the time for
evaporation of a given quantity of fuel is more sensitive to variations in
D than in n; however, n has a strong influence on the time necessary to
evaporate the last few percent of the spray. A small value of n gives a
small mean diameter of drop sizes in the injected spray, which indicates

a high rate of evaporation. However, after burning is about three-fourths
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completed, the effect of n is.reversed and the rate of burning decreases
for small values of n.

An attempt by Graves and Gerstein (Ref. 2) to use single drop-
let data for K' in spray combustion was not successful. These
investigators measured combustion efficiency as a function of oxygen
concentration for a single tubular combustor, using isooctane as the
fuel with counter-stream injection. Observed combustion efficiencies
were compared with those calculated using Probert's theoretical
analysis, in conjunction with values of K' measured or calculated for
the burning of single droplets. The observed data could not be com-
pletely explained unless spray combustion involves effects, at least for
over-all oxygen concentrations below 24 percent, which can be ignored
in the burning of single droplets.

The earlier experimental efforts to test the validity of equation
6 for single-, two-, and five-droplet arrays (Refs. 30 tc 35) indicated
that, for steady burning in an oxidizing atmosphere, K' was constant
over the range of drop sizes tested. Since equation 6 is believed to
correlate all observed results for combustion of single fuel droplets in
an oxidizing atmosphere and apparently holds also for simple planar
arrays of droplets, it seemed desirable to check the validity of the
functional form of this equation also for a three-dimensional array. As
a simple example of a three-dimensional array, a body-centered cubic
spatial arrangement was chosen with droplets at the eight corners of the
cube and the droplet to be studied located at the center of the cube., Since
any finite spray can be approximated as a superposition of simpler three-

dimeﬁsional arrays, studies of the burning law for a body-centered cubic
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lattice should shed some light on the validity or failure of equation 6
to represent a pheﬁomenologically acceptable description of burning
rate. Also, the use of a small number of drops, which can be closely
scrutinized, may provide some clues for the important physico-chemical
processes operative during droplet burning, Therefore, experiments
were carried out to determine if equation 6 holds for a three-dimension-
al array and, if so, to find K' for the body-centered cubic array as a
funcfion of drop-spacing. Cube sizes were selected so that flame shapes
for the array varied from separated flame fronts for each droplet, to
partially merged flame fronts, and finally to completely merged flames
with a single flame envelope.

A summary of the experimental procedure and results is present-
ed in Sections II and III of Part I for n-heptane and methyl alcohol
droplets burning in air,

Unsuccessful attempts at using the experimental techniques des-
cribed above for the study of liquid bipropellant mixtures and for the
"burning" of red fuming nitric acid in an ammonia atmosphere will be

described in Section IV of Part I,
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II, EXPERIMENTAL PROCEDURE

All of the experimental data were derived from motion picture
‘studies and measurements of droplets suspended by means of quartz
fibers properly mounted in a body-centered cubic array, The desired
geometric spacing of the fibers was obtained by cementing the fibers
to supports attached to metal rods, The rods, in turn, were suppoi‘ted
by clamps fastened to a suitable stand. The arrangement of the fibers
with the desired spacing presented some difficulties in that the
Sauereisen cement used had a tendency to shrink when drying, This
shrinking produced a change in the arrangement of the fibers, Two
methods were used to avoid this difficulty. These are: (1) the fibers
were mounted in groups of four by using two parallel metal plates with
holes drilled at the desired spacing or (2) the fibers were cemented to
individual soft copper wires which could be bent to yield any desired
spacing, The latter method is simpler to use but does not provide a
completely rigid support for the fibers, In practice, a combination of
these two methods was employed, The pairs of four fibers, attached to
each of two bars, were arranged at angles of 15 to 45 degrees from the
horizontal; the fibers supported from the bars i)rovided the cubic
arrangement desired when the bars were brought together within the
prescribed distance (figure 2). The center droplet was supported
separately from another bar,

The fuel was placed on the droplets by use of a hypodermic syr-
inge and needle, As can be seen in figure 3, the droplets were

reasonably spherical, It was possible to ignite the droplets with a match.
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The burning droplets were photographed by use of an’
electrically—driveh Arriflex 35 mm movie camera. Back lighting was
: provided by.a 100 watt bulb lo.cated about seven inches away from the
droplets. A telephoto lens was used with a ten inch adapter tube in
order to obtain as large an image as possible. The film gave images
of nearly the actual size. The high magnificé.tion reduced the depth of
field to the order of a droplet diameter. However, only the center drop-
let v§as of interest in the present experiments; the corner droplets
closest to the camera lens were slightly out of focus and the rear corner
droplets were, in most cases, not visible because the camera was
mounted almost directly in front of one face of the cube.

Kodak Plus-X film was used for dropesize measurements, where-
as Kodak Tri-X was employed to photograph the flame front and shape.

A stroboscope served as a timing standard. A ten-inch circular
aluminum plate, with three holes 120 degrees apart near the periphery,
was secured to a 75 r.p. m. constant speed motor giving 3, 75 flashes
per second. The stroboscope was placed directly behind the Burning
drops. The camera speed was adjusted to the maximum of about 25
frames per second,

Calibration of drop diameter was obtained by photographing a
3/32 inch ball bearing for each 100 feet of film. This ball bearing was
photographed under the same conditions as were used for the center
droplet.

‘The film was measured by use of a microfilm recorder and a
millimeter scale. Two measurements were made on each drop, i.e.,

the two perpendicular diameters inclined 45 degrees to the major and
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minor axes in the plane of observation. The arithmetic mean value

of these two reading.s was recorded as the “effective diameter" of
: the droplet, It is readily shown that the volume of a sphere with the
measured "effective diameter'" is not very different from that for the
prolate spheroid shape assumed by the droplet under gravitational and
surface tension forces, The use of the microfilm recorder provided
a magnification of about 35 diameters. Measurements were made
evel;y third to seventh frame from ignition to the point where any one
of the droplets under study was completely burned out,

In order to obtain a complete picture of the lower flame shape
for conditions varying from little interference to complete merging of
the flame for all the droplets, a shorter adapter tube was used with
the same telephoto lens on the camera, Representative photographs

of this type are shown in figure 4,
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1Ii, EXPERIMENTAL RESULTS

Values of K', the evaporation constant, were calculated by
determining the slope of the D2 vs., t curves for the center droplet in
each expei‘iment. These results are listed in Tables I and II for n-
heptane and methyl alcohol, respectively, In Table III, average values
of K' are shown for the two fuels for all spacings, Representative
curves for several runs are plotted in figures 5 to 10. The data plotted
in figures 5 to 10 indicate that D2 was a linear function of time, t,
(within the limits of experimental accuracy) for the center droplet,
Several of the runs showed a low-frequency, small-amplitude,
oscillation for D2 about the values falling on the "best' straight line,
This oscillation was probably produced by mechanical vibrations of the
quartz fibers, Slight spurious vibrations in the supports introduced an
oscillation of the fibers which, in turn, caused the droplets to move,
Since the camera shutter was at a fixed speed and the rate of film trans-
port was 25 frames per second, the movement of the droplet ¢ould cause
a slight distortion of the image on the film, which might possibly mani-
fest itself as a variation in measured drop diameter.

In the paper by Goldsmith and Penner (Ref. 31), the results of
the calculation of K' from the theory derived for the simple model of
steady burning are tabulated for several fuels including n-heptane, In
Table IV are listed the values of K' obtained for single droplets from
this theory and from Godsave's experiments (Ref. 35), as well as the
values for two-, five-, and nine-droplet arrays.

As is readily apparent from the data shown in figures 11 and 12

and listed in Tables I and II, the extent of interference between droplets
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has a significant effect on the evaporation constant. For the case in
which the droplets are in close .proximity and the flames are complete-
‘ly merged (see figure 4), K' was reduced by 40 percent below the value
obtained for minimum interference, This reduction provides positive
evidence for the practical importance of locally fuel-rich zones on burn-
iné rates, Oxygen deficiency for interfering droplets is undoubtedly
responsible for the observed decrease in evaporation constant, In
figure 13, data are presented from the paper by Rex, Fuhs, and
Penner (Ref. 30) for the variation in K' with spacing for two droplets of
n-heptane. Spacings for the nine-droplet three-dimensional array were
not varied over wide ranges and, therefore, the shape of the K' vs,
spacing curve obtained from nine-droplet data (figures 11 and 12) cannot
be positively established. However, the results suggest qualitatively
that, depending on droplet spacing, the effective value of X' may be
equal to, less than, or greater than the value of K' which is appropriate
for a single isolated fuel droplet.

The present results have led to the following practically import-
ant conclusions:

(1) The droplet burning relation

2 s} 2
D"=(D) -K' (7)

holds not only for one-, two-, and five-droplet arrays, but also for a
three-dimensional nine-droplet array. Therefore, it seems likely that
it applies also to sprays, and that equation 6 forms an acceptable postu-

late for a phenomenological analysis of spray combustion,
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(2) Spray design may have a profound effect on the effective
.burning rate bf reduéi‘ng K' significantly in locally fuel-rich environ-
‘ments.

(3) The enhancement in burning rate over the single droplet
results, which can be produced through optimum spray design, should
be at least as large as 25 percent, the greatest increase observed in
the present investigations. For poor spray design, the evaporation
constant can be reduced easily by as much as 40 percent, which is the

largest reduction observed in the burning of nine-droplet arrays.
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IV. UNSUCCESSFUL ATTEMPTS AT BURNING

VARIOUS FUEL-OXIDIZER COMBINATIONS

The objective of the present investigations was to study the
validity of the burning rate law {equation 6) for fuel-oxidizer systems
of the type used in rocket engines, In particular, it was desired to see
if a gaseous fuel with a liquid oxidizer would provide the same type of
results as have been observed for hydrocarbon and alcohol droplets in
air, An effort was made to "burn" red fuming nitric acid in an
ammonia atmosphere, The attempt was made in a sealed plexiglass
dry-box which had first been purged with high-purity dry nitrogen gas
and then filled with NH3 gas, The ANH3 gas was supplied continuously
with a very slight positive pressure to insure a nearly uniform atmos-
phere in the dry-box., However, efforts to obtain a droplet of RFNA on
a quartz fiber in the chamber resulted only in the immediate formation
of ammonium nitrate at the surface of the RFNA droplet, The spark
ignition source could not be used successfully and a heterogenéous
diffusion flame could not be established,

Because liquid bipropellant fuels are customarily used in many
conventional rockets, it was decided to attempt burning RFNA and
aniline droplets in close proximity in an inert atmosphere, The arrange-
ment was similar to that described above, using nitrogen as the inert
gas, Again the spark ignition source, which supplied only about 20,000
volts, could not be used to ignite two-and five-droplet arrays, even when
the droplet surfaces w;are almost touching, An effort was made to ignite
the droplets by bringing them into actual contact while they were exposed

to the spark ignition source. This scheme was also unsuccessful and led
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6n1y to the formation of a cafbonaceous residue. A similar experi-
_ment, in which abéuf 25 to 30 percent by weight of furfuryl alcohol had
been added to the aniline, also failed to lead to a stable heterogeneous
diffusion flame. Finally, a stream of RFNA was sprayed on the bot-
tom of the chamber (covered with stainless steel) so as to intercept a
stream of aniline containing furfuryl alcohol. After about one quarter
Cm3 6f each had been injected and a carbonaceous lump formed
(similar to the residue produced when the two droplets were brought
in contact), the junction of the sprays and the carbonaceous lump began
to glow incandescently and finally burst into flames. This experiment
verifies the well-known fact that, if sufficient concentrations of fuel and
oxidizer are maintained and heat transfer from the contact area is
limited, the mixture will ignite spontaneously.,

On the basis of the results discussed above, it is felt that the
combustion of liquid bipropellants of the type used does not lead to
stable heterogeneous diffusion flames and, therefore, equation 6 proba-
bly does not provide an acceptable phenomenological description for

these propellant systems.
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V., DISCUSSION

The studies «;.m two-droplet interference effects (Refs, 30, 33)
showed that the value of the evaporation constant (K') was a function
of the initial droplet diameters and of the spacing. No attempt was
made in the present investigations to obtain detailed quantitative infor- -
mation on the dependence of K' on geometric parameters, Rather, the
purposes of this study were (a) to verify the validity of equation 6 and
(b) to show that the geometric design of the nine-droplet arrays does
affect qualitatively the observed values of K/,

From studies on two droplets burning in close proximity (Refs.,
30, 33), it appeared that K' was decreased in oxygen-deficient atmos-
pheres but tended to increase when heat losses from the flame surface
to the outside were minimized,

For the three-dimensional array of nine droplets, the droplet
spacing enters as an indirect measurement of the interference obtained
and flame shape developed., As is clearly shown in figure 4, the flame
shape changes radically as the spacing is varied., Average values of K'
for the three arrangements are included with the photographs shown in
figure 4 and are listed also in Table III, The change in K' observed in
going from the completely separated flames to the partially merged
flame is too small to permit any definite conclusions, However, the re-
duction in evaporation constant for extensive interference between
flames provides graphic evidence of the change resulting from local
oxygen deficiency. Because changes in K' for the unmerged and partial-
ly merged flames were not large in comparison with the changes found

for two droplets, prbof of a rise in evaporation constant associated with
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fhe reduction in local heat losses from the flame fronts is less evident,
The reality of this effect is, however, suggested by the fact that K' in
‘nine -droplet experimeénts exceeds by about 25 percent the single drop-
let values (Refs, 32, 34, 35),

Experimental data showing the reduction in combustion rate for
excessively rich mixtures (Refs, 3 to 5) seems to validate the theory
that mass evaporation rates and, consequently, combustion rates will
be reduced when the mass concentrations of droplets per unit volume
in a combustor are excessive,

Use of the information regarding the possible increase in com-
bustion rate and K' with optimum droplet spacing may make it possible
in the future to optimize spray characteristics by increasing the
efficiency of combustion equipment., The success of this method of
approach depends on the availability of information on evaporation
constants for the various fuels and some ciefinite knowledge concerning
the atomizing characteristics of the fuel injectors used, The problem
of spray formation and drop-size distribution is considered in greater

detail in Part II of this thesis,
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PART II, SPRAY FORMATION AND EVAPORATION
i1, ' INTRODUCTION

It is the purpﬁse of the present discussion to summarize criti-
cally the infoi'mation available on spray formation and evaporation,
Many writers have attempted to explain the factors influencing drop-
size distribution and spreading of sprays from fuel nozzles (Refs. 13
to 17, 38 to 45). An extensive bibliography is provided in reference
46, Experimental studies of sprays indicate that the most important
factors affécting spray distribution and atomization are the following:
(1) the construction of the nozzle and associated supply equipment; (2)
the physical properties of the fuel, such as density, viscosity, surface
tension, etc.; (3) the physical properties of the medium into which the
fuel is being discharged (Ref. 6).

Lic_i_uid fuel is usually supplied to a combustor through a fuel
nozzle, The nozzle delivers the fuel to the burner or cornbus.tion cham-
ber in such a state that vaporization and combustion will be very rapid.
The transition from an initially continuous liquid jet to a vapor, or to a
great number of finely divided droplets, requires the addition of energy
to the fuel, The energy may be added by: (a) pressurizing the fuel
chamber and subsequently converting the pressure head into kinetic
energy in the nozzle; (b} the addition of heat; (c) the use of a secondary
fluid, such as air, to assist in the break-up of the liquid; or (d) the use
of moving parts, such as a mechanically driven spinner,

Giffen and Muraszew (Ref. 6) have recently summarized the

available information on atomization of liquid fuels, The present discus-
sion on the disintegration of liquid jets is based on the discussion given

in their book,
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II, DISINTEGRATION OF LIQUID JETS

The complex itﬂ:eraction of physical properties involved in the
disintegration of liqﬁid jets makes it difficult to correlate properly the
effects of the fundamental physical factors present in the atomization
process, Investigators differ greatly in the importance they attach to
the various factors involved in spray formation, Thus, different
parameters are used for correlating spray performance giith the injec-
tion variables. In the following discussion, a qualitative outline of the
probable mechanism of jet disintegration will be given,

A low-velocity liquid jet discharged through an orifice is prima-
rily affected by gravity and surface tension forces. As the discharge
velocity is increased, the liquid assumes the form of a continuous jet,
Surface tension forces and disturbances in the liquid may cause the jet
to collapse if its length is greater than its circumference., Such a
collapse results in the formation of small drops, Strictly speaking,
this critical length to circumference ratio, the importance of which was
first recognized by Rayleigh (Ref, 47), applies only to non-viscous
liquids. Viscous forces increase the ratio slightly, The disintegration
process becomes more complicated as the primary disturb'ances in the
liquid flow increase, These disturbances can be introduced by the
atomizer, the liquid, or the surrouqding medium and, in practice, are
always present, In addition, these random disturbances cause vibra-
tions at the liquid-air interfaces of the jet, The cross-section of the jet
then beéomes deformed in such a way that successive deformations are
displaced by 90 degrees, If the wavelength of the oscillations is greater

than the circumference of the jet, then surface tension forces contribute
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to further deformation and subsequent disruption of the jet, Haenlein
(Ref. 48) found that the optimum wavelength for jet disruption was
'.4. 42 times the jet diameter for liquids of low viscosity and greater
for very viscous liquidé. As the jet velocity is increased further,
the effect of the resistance of the surrounding medium becomes
signiﬁc;ant. This resistance tends to increase deformation of the
jet and to reduce the critical value of the wavelength of the oscilla-
tioné above which jet disintegration begins, Using air as the medium,
Weber (Ref, 49) found the optimum wavelength to be 2,8 times the
jet diameter for a medium-velocity liquid jet. A further increase in
efflux velocity causes the jet to oscillate with respect to its axis
while the cross section remains essentially constant,

Air resistance tends to increase the amplitude of jet oscilla-
tions and leads to final disrupltion of the jet. The wave action
described above is more pronounced for viscous liquids, but viscous
forces permit larger oscillations before the break-up takes plvace.
Generally, viscous effects decrease the break-up rate of the distor-
tions in the jet and, after break-up, tend to increase the final mean
droplet size, Surface tension acts in two ways. Initially, it opposes
the development of surface distortions into ligaments and droplets;
however, it aids the final stages of disruption. In pl;actice, the initial
stages are of greatest importance in spray formation.

In the terminal stages of atomization of a high-velocity fluid
jet, the process which is of greatest practical interest in combustion
applications, the jet becomes sub-divided into many small droplets in

a cone-shaped spray. Photographic studies indicate that atomization
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begins immediately at the orifice, although the total mass rate of
evaporation increa.ses as finer droplets are formed. The spray is
‘initially divided into large droplets and, as it travels down the com-
bustor, tends to break up into smaller droplets (Ref., 44),
Disintegration of a liquid jet ceases when the velocity of the liquid
particles falls below a critical value for the liquid.

Disintegration of a liquid jet is promoted by turbulence in the
flow of the liquid from the orifice and by the influence of turbulence in
the surrounding medium, Turbulence in the flow depends on atomizer
design and flow velocity, Turbulent flow is characterized by radial
velocities which induce widening of the jet and final break-up. The
magnitude of the resistance of the surrounding medium will be propor -
tional to the momentum difference between the fluid jet and the
surrounding medium, This difference will increase in combustion
chambers where high temperatures and related higher viscosities exist,

The description given above for the break-up of a fluid jet applies
to simple orifice injectors. In practical applications, the atomization
process is improved by introducing greater disrupting forces such as

impinging fluid streams, high centrifugal velocities, etc,
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III, SPRAY CHARACTERISTICS

The spray characteristics may be discussed in terms of
appearance, penet;‘ation, cone angle, dispersion, mean droplet size,
spray uniformity and droplet-size distribution.

A, Spray Appearance

The spray generally appears at the atomizer tip as a cone., For
simple orifice atbrnizers, this cone has an included angle of only a few
degrees; with swirl or poppet valvé atomizers, the cone is hollow and
has a wide angle, In practice, the included angle is of the order of 80
degrees, Rupe (Ref., 44) suggested that the cone angle be defined as
the angle in which 80 percent of the spray by weight is included. Any
desired configuration of the spray can be realized through proper design
of the outlet orifice and supply conditions. A finite distance from the
orifice face, the spray is usually enveloped in a mist of small droplets
suspended in,or moving with, the surroundi_ng medium. The number of
suspended droplets increases with increasing injection pressure or in-
creasing density of the surrounding medium. The main spray travels
inside the misty envelope., The characteristics and dimensions of the
combustion chamber will usually dictate the choice of a particular spray.

B, Spray Penetration

The penetration of a spray is usually much greater than that of a
single droplet injected under similar conditions since the liquid jet
imparts some of its energy to the surrounding medium and thus de-
creases the velocity differential between the droplets and the medium.
Spray penetration for continuous spray nozzles depends on the following:

(a) discharge velocity, (b) properties of ‘the surrounding medium, (c)
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‘atOmizer design, and (d) fuei properties. Secondary effects on
‘penetration are those introduced by the degree of spray dispersion and
‘the degree of atomization. The effect of injection pressure on pene-
tration is not easily defined. An increase in injection pressure not
only causes an increase in spray velocity, but also causes an increase
in the number of droplets thereby increasing air resistance. The
avai}éxble experimental evidence seems to indicate that spray pene-
tration increases with increasing injection pressure.

An increase of the density of the surrounding medium generally
tends to reduce spray velocity and penetration., It is usually assumed
that penetration is a function of gas density and independent of gas
viscosity. The latter assumption has been shown to be true as long as
the flow around the droplets is turbulent. Obviously, the atomizer
design has a great effect on penetration. Probably the most important
feature of the atomizer is the size of the discharge orifice., Increasing
the size of the orifice leads to an increase in spray momentum with
respect to the surrounding medium and, consequently, increases
penetration. Counter-stream injection generally reduces penetration
But improves atomization. An increase in fuel density or viscosity tends
to increase penetration. |

An effort has been made by Mehlig (Ref. 50) and Schweitzer
(Ref. 51) to correlate the effects of different variables, such as air
density, injection pressure, and orifice size with penetration. The
simple relationships developed are of value in comparing the penetra-

tion of two similar sprays under various conditions. Schweitzer found
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that

.

S ‘ t Bo. \/-‘
Y (H' Po) = ¢ ( d
d , (8)
correlated the experimental data for a spray. Here, s is the spray
penetration, d'is orifice diameter, P‘ is the density of the air, p is
the supply pressure, and t is the time.

C. Spray Cone Angle and Spray Spreading

The cone angle of a spray is usually defined as the angle between
the tangents to the spray envelope at the orifice face., Entrained air has
a tendency to reduce the angle slightly at finite distances from the
orifice face, but the spray is essentially conical in shapé. The cone
angle of the spray may also be defined as the angle which includes a
specified percentage by weight of the spray, as in Rupe's definition
which was noted previously (Ref. 44).

In the present discussion, the cone angle will be taken as the
angle enclosing the spray envelope, the term spray spreading will be
used to describe the distribution of drops by weight in the enclosed vol-
ume of the spray.

Spray dispersion or spreading can be expressed (Ref. 6) by esti-
mating the maximum intensity of the spray, i.e., the maximum volume
of fuel collected on unit area of a target transverse to the spray, and
expressing the degree of dispersion as the reciprocal of this value. Thus
a spray of high intensity is poorly dispersed and the reciprocal of intensi-
ty has a small value. Numerical results may have some value in compar-

ing sprays of similar type which are used for the same purpose.
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ijection variables usually have opposite effects on cone angle
and penetration. Thus, an increase in the density of the surrounding
‘medium, a decrease in fuel viscosity or density, and improved atomi-
2ation, all tend to increase the spray cone angle,

D. Mean Droplet Size and Droplet-Size Distribution

Droplet size and droplet-size distribution are useful para-
meters for describing spray characteristics. A description of
drop-size distributions was used earlier in this thesis in the discuésion
of Probert's analysis (Ref. 38).

The fineness of the spray is affected by many variables, such as
atomizer design, properties of the liquid and surrounding medium, and
discharge velocity. No satisfactory correlation for all these effects on
droplet size has as yet been found. Attempts to attack this problem by
the use of dimensional analysis will be discussed in Section IV.

The cone angle was found to have little effect on drop size when
pressure drops through the nozzle were greater than 30 psi. Below 10
psi, for angles less than 750, the drop size increased rapidly with de-
creasing angle. In the low-pressure region, cone angle plays a
dominant part in the determination of droplet-size distribution (Ref.
43).

A useful fictitious drop size, which provides a convenient
method for comparing two sprays, is the Sauter mean diameter which
will be abbreviated to S. M.D. (Ref. 52). The S.M.D. equals the
liquid volume of a real spray divided by the surface area of the real
spray. It also corresponds to a fictitious spray of uniform droplet size,

which has the same liquid volume and the same surface area as the real .

spray.
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Probert's analysis, based on the Rosin-Rammler distribution
law (Ref. 38), reqﬁires the I.evaluation of two constants characteristic
of the spray. Bevan (Ref. 40) and others (Refs. 41 to 43) indicate that
the Rosin-Rammler law applies for many sprays. However, Ingebo
(Ref., 13) found that, for his experimental set-up (i.e. simple orifice
injector with fuel pressure drop of 55 psi, air velocity 140 to 180 feet
per second), the Rosin-Rammler law gave mean droplet diameters
which were about one-half of the measured mean droplet diameter; on
the other hand, the Nukiyama-Tanasawa (equation 2) and the log-
probabilit‘y methods (equation 4) gave mean drop sizes in good agree-
ment with the size determined by direct integration of the experimental
data. The error in mean droplet diameter, computed by using the
Rosin-Rammler law, developed because Ingebo chose a number-mean
droplet diameter, i.e., the diameter of a drop having an area equal to
the ratio of the total surface area of all drops to the total number of
drops formed. The Rosin-Rammler expression is of limited use in
calculating number-mean droplet diameters since it predicts an infinite
number of inﬁinitesimal droplets unless n in equation 1 is greater than
3. Ingebo selected n equal to 3.1. Calculation of a value for n from
experimental data in reference 13, using expressions from reference
43, gave a value of n equal to 2. 39, The Rosin-Rammler expression
has been shown to be of use in computing various mass-mean droplet
diameters, i.e., the diameter obtained by giving to each particle dia-
meter a weighting factor proportional to the mass of the particle.
Mass means are one of the more important types of averages (Ref. 40).

Because of the choice of a number-mean droplet diameter, the failure
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of equation 1 to correlate with Ingebo's results does not appear to be
important, |

Ingebo's experimental results for evaporation rate are well
correlated by his theoretical expressions for mass evaporation rate.
He states that his data do not agree with the results of Probert's
analysis (Ref. 38); the observed discrepancies can probably again be
attributed to Ingebo's choice of a number-mean droplet size. He
computed S, M.D, from the Nukiyama-Tanasawa expression (equation
2) developed from air-atomizing nozzles while, in his experimental
setup, he used a simple orifice pressure atomizer,

As an example of unusual experimental conditions under which
equation 1 was found to hold, reference may be made to experiments
on liquid wax injected through a fuel nozzle, in which particle size was
determined by sieving techniques after solidification of the wax droplets
(Ref, 42), Hopkins (Ref. 41) used equation 1 and derived expressions
for the weight-mean diameter (the average weight of fuel droplets in-
cluded in droplets of a particular size range) and the standard

deviation of the volume distribution, viz,,

dw=.r'[{l+;.")5]‘ (9)

In equation 9, dw is the weight-mean diameter; also

o« 0/ [0+ &)-[Fa-£f  w

where o) is the standard deviation and I-' represents, as usual, the

gammoa function,
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Bowen and Joyce (Ref, 43) analyzed the effects of cone angle,
pressure drop, and flow number (F = flow rate in gallons per hour
‘divided by the square root of the pressure drop in psi} on the particle
size distribution from a pressure-jet atomizer. They derived
expressions for D and n based on the flow number (F) of the pressure
atomizer and the S. M.D, for the spray. The empirically derived

expressions for n, D, and S.M.D. were developed from log-log plots

of S. M, D. versus pressure drops for fixed values of F but variable

cone angle, Their results were:

log D = (2.7008 + ,0261F) - (. 3358 - ,02427F) log p, (11)
log S.M.D. = 2.6164 - (,3712 - .02589F) log p, (12)

D
(-4

where p is the pressure drop in psi.

SeM.D. = (13)

In actual sprays studied by the wax particle method, photogra-
phy, etc., the distribution of droplets by size was found to follow a
slightly leptokurtic curve skewed toward the smaller sizes (aésuming
a distribution from zero to infinity).

E. Effects of Physical Factors of the Fuel and the Surrounding Medium

As the density of the surrounding medium increases, atomization
generally improves. It can be assumed that an increase in the tempera-
ture of the surrounding medium would have the effect of improving
atomization because of increased viscosity, but this is difficult to
prove experimentally since the effect of temperature on vaporization
rates makes accurate droplet measurements difficult. Since surface
tensions and specific gravities of fuels in present use do not vary widely,

attention has been directed primarily toward determining the effect of
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fuel viscosity on droplet sizé. The general conclusion is that the
fineness of atomization decreases as viscosity is increased.

The effect of an increase in density of the surrounding medium
on spray characteristics may be summarized as follows:

(a) the spray velocities decrease, especially at low pressures
(i.e., pressures less than 50 psi);

| (b) the spray pen.etration decreases;

(c) the cone angle increases for plain atomizers and decreases
for swirl atomizers;

(d) the spray spreading increases;

(e) the mean droplet size decreases.
The effect of the viscosity of the surrounding medium is similar to
that of density, but is only appreciable when the flow around the drop-

lets is not turbulent (which is usually not the case).
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IVv. 'SIMILITUDE IN SPRAY-NOZZLE PERFORMANCE

Dimensional analysis may be a useful tool for the study of the
performance of fuel nozzles, | This method of approach helps to define
the ﬁumbér of important groups in problems which are too complicated
for detailed analytical study. Other investigators (Refs. 6, 45 and 54)
have used the me_thods of dimensional analysis with some success to
correlate data on spray-nozzle performance,

The present discussion will be limited to an attempt to obtain
the important variables defining mean droplet size for a simple
swirl-type nozzle, It is assumed that the mean drop size is defined
by the following va.riables:

d = the mean drop size (dimension! where lé denotes length),

B¢ = the density of the iiquid (m,(-3 where m denotes mass),

B"

/U-‘ = the viscosity of the liquid (m,L_l - where t denotes
time),

[t}

the density of the surrounding medium (m1—3),

,‘lhr = the viscosity of the surrounding medium (m,e,-l t—l)
Ot
ap
6

For other types of nozzles additional variables may have to be

?

the surface tension of the liquid (mt‘z),

a characteristic length of the nozzle (I),

1

the pressure drop across the injection orifice (rnl_1 t_z),

the spray angle,

introduced in order to define the problem. Typical additions might be
the following: a length characterizing the swirl chamber dimensions, a
fuel pressure in the secondary supply lines for duplex nozzles, a fuel

pressure in the return lines for spill-return type nozzles, a length
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characterizing the size of the tangential slots, a length character-
izing the shape of the orifice, etc.

The following assumptions have been made in listing the nine
variables given above for swirl-type nozzles:

(a) Only one leﬁgth characteristic of the nozzle needs to be
introduced. As the result of this, the effects of swirl-chamber design,
the s_hape of tangential slots, orifice construction, etc., are neglected.
However, in scaling with maintenance of exact geometric similarity, it
is evidently not necessary to consider more than one characteristic
length,

(b) Since the temperatures of the liquid and the surrounding
medium have not been introduced as important variables, it is assumed
that the influence of the temperature can be accounted for fully through
the temperature-dependent parameters listed explicitly. The deletion
of temperature as an important variable is clearly not justified under
conditions where evaporation rates play an important role.

For the nine listed variables expressed in three dimensions, it
follows from the Buckingham Pi theorem (Ref. 53) that correlations
must involve six dimensionless groups. Following conventional proce-

dures, the following groups were chosen:

d Lap, L.(E.LAE)"’: P M
L ’ 6-1—* Ma Pm ’ Adm

and 6. Here the pressure drop across the injection orifice, Ap, is

proportional to VIPJ_ (V denotes the efflux velocity with the

dimensions of lt- 1); LAp/GZ is the Weber number relating inertial

o L.(pe ap) o
to surface tension forces; the group UL is the Reynolds

number referred to the characteristic length L., It is now apparent
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that d/L should be represented as a function of the other five dimen-
_sionless groups if fhe preceding assumptions are justified, Thus
hLoe, L(paR)" p @)

Oy ' AL Prm * (19)
For given fluids the ratios of density and viscosity are constant, In
this case, for a given nozzle with fixed spray angle, 0, it follows
from equation 14 that the ratio d/L reduces to a function of the Weber

and Reynolds numbers only, viz.,

‘e! EA
L @(—Ef" (15)

The validity of equation 15 has been tested by Shafer and Bovey (Ref.
45) using Rupe's experimental data (Ref, 44). Shafer and Bovey found
that d/L was a unique function (within + 10 o/o) of Weber number for
various Reynolds numbers.

Giffen and Marazew (Ref, 6) have described several applications
of dimensional analysis to spray nozzle performance. Egquation 14 has

been written in the equivalent form

V( V/"’ﬂ' ’ -lij—ﬂ-v—) ./UA- Pﬂ B) (16)

where the ratio of efflux ve10c1ty to the kinematic viscosity, "-D;

corresponds to (p‘,qu_p and the Weber number has been replaced
by the dimensionless group >3 representing Weber number

divided by the Reynolds number. For the special case in which the effect
of surface tension may be neglected, and the analysis is restricted to a

fixed fluid pair, both equations 14 and 16 simplify to
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d ¢ Lv -

d.p(le, o),

L py) (17)
i, e,, the relative droplet size for geometrically similar nozzles is

only a function of the Réynolds number and the cone angle,
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V. '‘SPRAY EVAPORATION AND ESTIMATES OF THE

EVAPORATION CONSTANT (K') FOR VARIOUS SPRAYS

Bahr (Ref. 14) obtained data for evaporation and spreading of
an isoocténe spray injected counter-current to an airstream. In this
work, fuel pressure, air pressure, air velocity, orifice diameter,
air temperature, and downstream location of the sampling station
were varied, The inlet air temperature had a more marked effect on
evaporation than any of the other variables. At first sight it might
appear that the degree of atomization had little effect on the percent
evaporated, However, it should be noted that pressure drops across
the orifice were low and not greatly different for tile various runs.
Also, the fuel was injected counter-stream and consequently had a
relatively long residence time, which would minimize the effects of
initial droplet size. Hanson (Ref. 16) found that the evaporation rate
was considerably influenced by the relative velocity between the spray
and the surrounding airstream. Hanson determined that artificially
induced turbulence introduced a lack of uniformity in drop size.
Miesse (Ref. 29) studied the ballistics of an evaporating single droplet.
Goldsmith (Ref. 32) showed that the gas velocity has no profound effect
on evaporation rate.

Ingebo (Ref. 13) studied drop sizes photographically in an experi-
mental setup similar to Bahr's (Ref, 14) and found that, for stations
close to the injector, with the counter-stream injection used,A all drop-
lets in the duct have the same translational velocity regardless of size

(5 - 130/1.). In these tests relative velocities between the droplets and
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the airstream were quite high. Reynolds numbers for the large drop-
lets were as high as 400, However, the droplet speed approached the
‘value of airstream velocity within fourteen inches downstream of the
injector and was about 80 0/0 of airstream velocity five inches down-
stream of the injector, Use has been made of this last result in the
calculations described below.

In order to illustrate how one may use published spray data
for estimating effective values of K', some calculations have been
carried out using the results of NACA experiments (Refs. 14 and 15)
in conjunction with Probert's theoretical curves and empirical
expressions for n and D in the Rosin-Rammler distribution law (Ref,
43). In reference 14 evaporation data are given for sprays of iso-
octane injected counter-stream from a simple orifice injector, Data
are reported also {Ref, 15) for evaporation of JP-5 sprays injected
counter-stream from a multiple-orifice injector. Experimental data
are presented for the percentage evaporated at several sampling
stations downstream. Using the tabulated experimental results, the
following calculations have been made:

(a) From the fuel-air ratio and the air-flow rate a flow number
(F) was obtained.

(b) Using equations 11, 12, and 13, values for D and n were
calculated., The calculated values are in accord with the data plotted
in reference 43,

(c) Using tabulated data (Refs. 14 and 15) for the percentage
evaporated and making use of Probert's graph (see figure 1) for the

computed values of D and n, the parameter 1/K' tr was found,
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(d) Using the results for -/K'_‘tr at two different downstream
sampling positions, and assuming that the droplets traveled with the
.air velocity, absolute values for K' were computed, The results of
these calculations are listed in Tables V and VI,
Examination of the computed evaporation constants, K', shows
that they are of the same order of magnitude as the known evaporation

constants for one, two, five, and nine droplets burning in air,
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TABLE I

EXPERIMENTAL RESULTS FOR THREE -DIMENSIONAL
ARRAYS OF NINE n-HEPTANE

DROPLETS BURNING IN STILL AIR

RUN SPACING OF K' FLAME SHAPE
CORNER DROPLETS 2
(mm) (cm”/sec)

1-1 9.5 .0119 Separate
2-1 9.5 .0135 Separate
3-1 8.5 . 0127 Separate
4-1 8.5 .0119 Separate
1-2 8.5 .0107 Separate
2-2 8.5 .0109 Separate
3-2 8.5 .0123 Separate
4-2 8.5 .0119 Separate
5-2 8.5 . 0105 Sepafate
6-2 8.5 .0109 Separate
-2 8.5 .0124 Separate
1-3 7.5 .0110 Separate
2-3 7.5 .0114 Separate
5-3 7.5 .0134 Separate
6-3 7.5 .0134 Separate
7-3 7.5 .0128 Separate
8-3 7.5 .0119 Separate

10-3 7.5 .0113 Separate

11-3 7.5 . 0107 Separate
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TABLE I (cont'd)

EXPERIMENTAL RESULTS FOR THREE-DIMENSIONAL

ARRAYS OF NINE n-HEPTANE

DROPLETS BURNING IN STILL AIR

RUN SPACING OF K' FLAME SHAPE
CORNER DROPLETS >
(mm) (cm“/sec)

6-4 3.6 . 0061 Completely Merged

7-4 3.6 . 0065 Completely Merged

8-4 3.6 . 00775 Completely Merged
10-4 3.6 . 0087 Completely Merged
11-4 3.6 . 0083 Completely Merged
12-4 3.6 . 0085 Completely Merged
13-4 3.6 . 00725 Completely Merged

8-5 5.8 .0128 Partially Merged
10-5 5.8 .0129 Partially Merged
11-5 5.8 . 0122 Partially Merged
12-5 5.8 .0148 Partially Merged
13-5 5.8 .0126 Partially Merged
14-5 5,8 . 0129 Partially Merged
15-5 5.8 .0129 Partially Merged
16-5 5.8 L0127 Partially Merged
17-5 5.8 .0128 Partially Merged
18-5 5.8 L0117 Partially Merged
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TABLE II

EXPERIMENTAL RESULTS FOR THREE-DIMENSIONAL

ARRAYS OF NINE METHYL ALCOHOL

DROPLETS BURNING IN STILL AIR

RUN SPACING OF K' FLAME SHAPE
CORNER DROPLETS 2
{(mm) (cm”/sec)

6-1 . .0104 Separate
12-3 . .0110 Separate
13-3 . .0110 Separate
14-3 7.5 .0101 Separate
15-3 7.5 .0120 Separate
16-3 7.5 .0126 Separate
17-3 1.5 .0111 Separate
18-3 7.5 . 0097 Separate

1-4 3.6 . 00635 Completely Merged

2-4 3.6 . 0062 Completely Merged

3-4 3.6 . 00645 Completely Merged

4-4 3.6 . 00655 Completely Merged

5-4 3.6 . 00655 Completely Merged
14-4 3,6 . 0066 Completely Merged
15-4 3.6 . 0059 Completely Merged

1-5 5.8 . 0105 Partially Merged

2-5 5.8 . 0106 Partially Merged

3-5 5.8 .0103 Partially Merged

4-5 5.8 .0119 Partially Merged

5-5 5.8 .0104 Partially Merged

6-5 5.8 .0106 Partially Merged

7-5 5.8 L0111 Partially Merged
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TABLE III

- AVERAGE VALUES OF EVAPORATION CONSTANT (K') FOR

NINE-DROPLET ARRAYS OF n-HEPTANE AND

METHYL ALCOHOL AS FUELS BURNING IN STILL AIR

FUEL SPACING OF AVG. K' NO. OF FLAME SHAPE
CORNER 2 RUNS
DROPLETS (cm”/sec)
(mm)
n-Heptane 9.5 .0127 2 Separate
n-Heptane 8.5 .0116 9 Separate
n-Heptane 7.5 .01225 8 Separate
n-Heptane 5.8 .0128 10 Partially merged
n-Heptane 3.6 .0077 7 Completely merged
Methyl Alcohol 8,5 , 0104 1 Separate
Methyl Alcohol 7.5 . 0109 K Separate
Methyl Alcohol 5,8 .0108 7 Partially merged
Methyl Alcohol 3,6 . 00637 7 Completely merged
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TABLE IV

REPRESENTATIVE VALUES FOR EVAPORATION
CONSTANTS FOR ONE, TWO, FIVE, AND NINE
n-HEPTANE DROPLETS BURNING IN STILL

AIR, DERIVED FROM VARIOUS SOURCES

NO. OF =y

DROPLETS SOURCE (cm®/sec) FLAME SHAPE
1 Ref 31 . 0086
1 Ref 35 . 0097
2 Ref 30 = ,0080 Merged
2 Ref 30 = , 0130 Partially merged
2 Ref 30 = ,0120 Separate
5 Ref 30 . 0099 Partially merged
9 .0077 Merged
9 _ .0128 Partially rﬁerged

9 ,0119 Separate
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TABLE V
RESULTS OF CALCULATIONS OF K' FOR ISOOCTANE
SPRAYS INJECTED COUNTER-STREAM, BASED
ON DATA GIVEN IN REFERENCE 14.
((Fuel pressure drop = 55 psi, orifice diameter = . 041 inches, air
pressure = 25 inches Hg, Flow number (F) = 2,29, S,M.D, = 118

microns, D = 183 microns, n (Distribution constant in Rosin -
Rammler law) = 2, 35)).

AIR AIR DISTANCE
TEMPER- VELOCITY DOWNSTREAM K't, K!
ATURE (ft/sec) FROM -4 > -3
) INJECTOR (cm x 10 ) (ecm”/sec x 10 7)
545 147 5,25 59
8.27
545 147 10,4 82.5
545 147 5,25 59
9.24
545 147 18,25 102
545 147 10, 4 82.5
10
545 147 18,25 102
545 197 5.25 66
12,4
545 197 10, 4 82.5
545 197 5.25 66
11,1

545 197 18.25 106
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TABLE V (cont'd)
RESULTS OF C.ALCULATIONS OF K' FOR ISOOCTANE
SPRAYS INJECTED COUNTER-STREAM, BASED
ON DATA GIVEN IN REFERENCE 14,
((Fuel pressure drop = 55 psi, orifice diameter = . 041 inches, air
pressure = 25 inches Hg, Flow number (F) = 2.29, S,M.D, = 118

microns, D = 183 microns, n (Distribution constant in Rosin -
Rammler law) = 2, 35)), ’

AIR AIR DISTANCE

TEMPER- VELOCITY DOWNSTREAM \I K' tr' K'

ATURE (ft/sec) FROM -4 2 3
o INJECTOR (cmx 10 ) (cm“/sec x 10 °)
690 228 ' 10. 4 119

16
690 228 18.25 132
690 270 10, 4 123

22
690 270 18,25 143
790 193 5,25 139

14, 4
790 193 10, 4 150
780 240 5,25 150

41,4

780 240 10. 4 172
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TABLE VI

RESULTS OF CALCULATIONS OF K' FOR JP-5 SPRAYS
INJECTED COUNTER-STREAM, BASED ON DATA
GIVEN IN REFERENCE 15,
((Fuel pressure drop = 26 psi, multiple -orifice injector, air pressure

= 25 inches Hg, Flow number (F) = 2.69, S.M.D, = 155 microns, D =
230 microns, n (Distribution constant in Rosin-Rammler law) = 2, 35)).

AIR AIR K; -3
TEMPERATURE VELOCITY (cm®/sec x 10 °)
(°R) ‘ (ft/sec)
760 216 1.75 - 2,80
760 270 1,68 - 1,88
760 324 2,62 - 1.20
760 370 1.70 - 2,64
960 216 0.69 - 1,50
960 270 1.23 - 2.63
960 324 2,80 - 1,20
960 370 4,7 -11.3
1160 216 6.16 - 3,6
1160 270 8.8 -8.95
1160 324

1160 370 27,0 -41,0
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100

e i,.v_ﬁ;., -

-n=4.0 |

= Residence Time

PERGENTAGE UNEVAPORATED

| |
¢ R U S S

FIG. | — PERCENTAGE OF UNEVAPORATED (UNBURNT) FUEL
AS A FUNGCTION OF \/K'tr/“[j AND n FOR SPRAYS

OBEYING THE ROSIN-RAMMLER DISTRIBUTION LAW

(AFTER PROBERT, REF. 38)
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FIG.2 — SCHEMATIC ARRANGEMENT OF APPARATUS FUK
PHOTOGRAPHING NINE-DROPLET ARRAYS
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t=0.00 Sec. t=0.40 Sec.

t=3.92 Sec. t =5.00 Sec.

FIG. 3 - PHOTOGRAPHS OF ONE RUN FOR BODY-CENTERED GUBIC
SPATIAL ARRANGEMENT OF NINE METHYL ALCOHOL DROP-
LETS BURNING IN AIR.CUBE EDGE SPAGING OF 3.6mm;K'
FOR GENTER DROPLET =0.0063 cm?/sec.
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Cube Size 7.5mm (Edge
Measurement). Separated
Flame Envelopes For Each

Droplet. Average K'=0.0109
cmz/sec.

GCube Size 5.8 mm.
Partially Merged
Flame Envelopes.

Average K'=0.0108
cm?/sec.

Cube Size 3.6 mm,
Completely Merged
Flame Envelopes.
Average K '=0.00637
cm?/sec.

FIG. 4 - PHOTOGRAPHS OF FLAME SHAPES OBSERVED FOR
BODY-CENTERED CUBIC SPATIAL ARRANGEMENT OF

NINE n- HEPTANE DROPLETS BURNING IN AIR
FOR VARYING CUBE SIZES
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FIG. 5 - VARIATION OF D2 WITH TIME FOR GCENTER DROPLET
IN NINE -DROPLET THREE-DIMENSIONAL ARRAY WITH

n-HEPTANE AS FUEL AND CUBE EDGE SPAGING OF

7.5 mm.
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FIG. 6 - VARIATION OF 02 WITH TIME FOR GCENTER DROPLET
IN NINE -DROPLET THREE-DIMENSIONAL ARRAY WITH

n-HEPTANE AS FUEL AND GCUBE EDGE SPAGING OF

58 mm,
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Time In Seconds

FIG. 7 - VARIATION OF D2 WITH TIME FOR GENTER DROPLET

IN NINE -DROPLET THREE-DIMENSIONAL ARRAY WITH

n- HEPTANE AS FUEL AND GUBE EDGE SPAGING OF

3.6 mm.
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FIG. 8~ VARIATION OF D2 WITH TIME FOR GENTER DROPLET
IN NINE -DROPLET THREE-DIMENSIONAL ARRAY WITH

METHYL ALGCOHOL AS FUEL AND CUBE EDGE SP:ACING
OF 75 mm.
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FIG. 9-VARIATION OF D2 WITH TIME FOR GENTER DROPLET

IN NINE-DROPLET THREE-DIMENSIONAL ARRAY WITH

METHYL ALCOHOL AS FUEL AND CUBE EDGE SPAGING
OF 58 mm.
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FIG. 10~ VARIATION OF D2 WITH TIME FOR GCENTER DROPLET
IN NINE -DROPLET THREE-DIMENSIONAL ARRAY WITH

METHYL ALGCOHOL AS FUEL AND GCUBE EDGE
SPACING OF 3.6 mm.
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