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Abstract

The emergence of a new class of cellular solids, i.e., nano- and micro-architected materials, poses the

question of whether they can be characterized as a continuum solid. Extensive research has shown

that these ultralight and strong structural metamaterials are particularly attractive for mechanically-

demanding applications; yet their susceptibility to flaws, fracture behavior, and discrete-continuum

duality remains relatively unexplored. In the course of this work, we report the fabrication and

tensile-to-failure response of three-dimensional ceramic nanolattices, comprised of 50nm-thick alu-

mina tubes that are arranged into periodic 5um-wide octet-truss unit cells, with and without pre-

fabricated through-thickness center notches oriented at different angles to the loading direction.

In-situ uniaxial tensile experiments revealed that for all notch orientations, failure always initiated

at the notch root, as would be in a monolithic material, with the tube walls at nodal junctions

fracturing first, followed by instantaneous crack propagation through the discrete lattice architec-

ture along nodal planes orthogonal to the loading direction. Measured tensile strength of 27.4MPa

was highest for the unnotched samples and decreased systematically with the increase of notch ori-

entation to its minimum of 7.2MPa in the orthogonally-notched samples. We found the specific

tensile strength of hollow-tube octet alumina nanolattices to be ∼ 4x higher than what has been

reported for architected and bulk materials at similar low densities. Three-dimensional finite ele-

ment simulations closely reproduce the observed failure mechanism and trends in failure strength. A

direct comparison is made between the experimental measurements, finite element simulations, and

predictions of linear elastic fracture mechanics for a self-similar monolithic tensile samples made out

of an ideally-brittle solid. Results are in good agreement with the scaling of failure strengths from

classical mode I fracture criteria and suggest that trajectory of crack propagation can be adequately

explained by considering the connectivity of the lattice architecture. These findings imply that the

continuum nature of nano-architected materials offers predictability of failure stresses, which helps

enable the development of advanced materials through informed architectural design.
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Chapter 1

Introduction

1.1 Overview of Architected Materials

“Materials by Design” is becoming a household phrase, which highlights the need to develop advanced

materials with custom-tailored properties that cannot be attained through conventional processing

routes. A successful approach to attain such properties has been through architectural design of

materials. Architected materials, similar to cellular solids, are assemblies of geometrical unit cells

made up of an interconnected network of solid struts or plates that pack together to fill space in

either a stochastic fashion such as in stochastic foams or in an ordered fashion. By combining

constitutive material properties and architectural elements, properties such as stiffness, strength,

toughness, thermal conductivity, diffusivity, and so forth can be tailored to meet requirements that

were traditionally thought to be mutually exclusive.

The potential to achieve enhanced mechanical properties has fueled the recent development of

architected materials and propelled their use as structural materials [2, 3]. Devices and large scale

structures can be created to reap further mechanical enhancement by employing an architecture at

the micro and nanoscale to access the advantageous properties offered by nanomaterials. An early

successful example of this creative thinking comes in the form of polymeric and metallic foams,

which exploit material size effects [4–16]. However, the stochastic nature of foams prevents the

achievement of optimal structural efficiency and yields poor scaling of stiffness and strength with

relative density. Recent efforts in fabrication techniques have advanced the development of nano-

architected materials with controllable architectures with nanoscale features that harvest structural

efficiency across length scales [17, 18]. Three profitable techniques capable of producing these novel

materials involve self-propagating photopolymer waveguides [19–23], micro-stereolithography [24–

26], and direct laser writing two photon lithography [22,27].

Self-propagating photopolymer waveguides produces the highest throughput out of these tech-

niques. This scalable technique relies on on the difference in index of refraction between crosslinked

and the initial resin bath. Subsequent fabrication steps can be used to coat the polymer structures
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with thin films, remove the polymer core, and obtain hollow structures composed of the deposited

material. The lattice architecture can be easily modified by changing the waveguides direction; how-

ever this technique is restricted to generating unit cell geometries that are highly directional, which

restricts the deformation mode to be bending of lattice bars. Micro-stereolithography is also capable

of producing microlattices via a layer-by-layer additive process. This technique is able to generate

monolithic polymeric lattices and hollow tube structures who deformation is stretching or bending-

dominated architectures. Microlattices fabricated with self-propagating photopolymer waveguides

and micro-stereolithography produce mm-sized unit cells and wall thicknesses dictated by the thin

film deposition technique. This provides the potential to take advantage of material size effects but

the dimensions of the unit cells are too large to actually exploit the size effects. Structural analysis

can adequately describe the response of these microlattices. When the unit cell size is decreased

to the length scales comparable to the wall thicknesses, the effective mechanical properties can be

classified as material properties and the effective structure as nano-architected material, or struc-

tural metamaterial. Direct laser writing via two photon lithography enables the fabrication of these

architected materials with characteristic features at the micro- and nanoscale. Their mechanical

properties depend on the properties of the constituent nanomaterial and the structural response

of the architecture. The mechanical properties of architected materials are generally characterized

by their constituent material properties, relative density, which is defined as the volume fraction

of the solid material divided by the representative volume of the unit cell and by the structural

architecture, which is defined by the connectivity of the struts or faces comprising the unit cell of

the cellular solid [28].

1.2 Approach and Objectives

Research on three-dimensional architected materials whose characteristic features are on the order

of nanometers and micrometers has revealed their enhanced mechanical properties [1, 2, 24, 25, 29–

35]. Extensive research has been conducted to investigate the compressive strength and stiffness

of materials with lattice architectures as a function of their geometry, dimensions, and material

properties [36–40]. Recent work on 3D lattices with characteristic dimensions on nanometer length

scales demonstrates mechanical resilience [1], greater-than-predicted strength [29], recoverability

of brittle ceramics [30], tunable acoustic band gaps [41] and photonic crystals with a complete

photonic bandgap [42]. Little work has been done on tensile and fracture properties of nano- and

micro-lattices, mainly because of the challenges associated with fabricating tensile specimens out

of these materials and the required equipment for nanomechanical experiments. Existing work is

mainly computational and limited to 2D architectures [43–53]; experimental studies on tensile and

fracture response of 3D architected materials are scarce and mainly focused on the response of
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pristine samples to uniaxial loads without taking into account flaws or their discrete-continuum

duality, fundamental features of fracture [25,31,32].

The aim of this thesis is to develop an understanding of mechanical response of nano-architected

materials under tensile loads and characterize its fracture behavior. The fabrication and mechan-

ical characterization of three-dimensional hollow ceramic nanolattices is reported, whose features

sizes are 50nm for the wall thickness, 5µm for the unit cell size, and 0.1mm for the gauge sec-

tion length. Notched and unnotched micro-sized tensile samples were fabricated that contained

differently-oriented center notches and in-situ uniaxial tension experiments were conducted to char-

acterize their tensile-to-failure behavior. Results show that failure always occurred along the nodes

within the lattice architecture, with fracture surface always orthogonal to the loading direction re-

gardless of notch orientation. Fracture surface was formed by local failures at nodal junctions, tube

wall rupture, and crack branching along preferred orientations that form a global failure surface

morphology perpendicular to the applied load. Stress at failure decreased from 27.4MPa in the

unnotched samples to 7.2MPa in the samples whose notch was oriented at 90 degrees with respect

to loading direction; similar to an equivalent linear elastic continuum. The relationship between

tensile failure strength and notch orientation is discussed in the framework of linear elastic fracture

mechanics (LEFM) and shows that these materials occupy a previously unattained region in the

specific tensile strength property space.
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Chapter 2

Design and Fabrication

2.1 Center-Notched Tension Design for Three-Dimensional

Nanolattices

We designed center-notched tensile specimens with a nano-architected gauge section and monolithic

supporting structures that brace the gauge section at the top and bottom to ensure uniform loading.

SEM images in Fig. 2.2 show the bottom support that is attached to the substrate and the top

support that is inserted into a custom-made tension grip in the nanomechanical instrument. This

shape of the supports was designed to minimize the stress concentrations and premature failure

initiation at the interfaces between the gauge section and the supports. Fig. 2.2A shows the final

sample that consists of a ceramic hollow-tube gauge section braced by polymer-alumina composite

supports. Fig. 2.2A shows that the gauge section consists of 27 (height) x 17 (width) x 2 (thickness)

octet unit cells. The individual unit cell dimensions were designed to have a length of 4.72±0.03µm,

an average outer tube diameter of 981nm with eccentricity of 1.1, and alumina tube wall thicknesses

of 50nm (Fig. 2.2C-E). This octet unit cell is a rigid 3D architecture with a nodal connectivity of 12

and cubic symmetry, which categorizes it as a stretching-dominated cellular solid with a low degree

of structural anisotropy [36]. We fabricated most of the samples to contain a pre-defined through-

thickness notch, which was composed of a collection of omitted tubes and nodes with relative notch

lengths of 2a/W = 0.45 and notch orientations varying from 0 to 90 degrees with respect to the

direction of loading (Fig. 2.3).

2.2 Fabrication of Nano-Architected Center-Notched Tensile

Specimens

Adequate consideration of the sample design must be taken into account for a proper tensile test

at any length scale. The sample design must prevent induced stress concentrations and premature
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Figure 2.1: Schematic representation of the multi-step fabrication process employed to create hollow
tube tensile nanolattices. The process starts by designing the lattice unit cells and using these files
as input during the two-photon lithography direct laser writing (DLW) process to write a monolithic
polymer lattice. The sample is then coated with alumina using an atomic layer deposition (ALD)
process. One edge of the sample is milled using a focused ion beam (FIB) to expose and etch away
the polymeric core using an O2 plasma barrel asher. The final tensile sample consists of a hollow
tube nanolattice gauge section supported by polymer-alumina composite structures.

failure initiation sites, introduced by the required supporting structures bracing the gauge section.

The nanolattices in this work were designed to emulate conventional conditions for fracture exper-

iments in monolithic materials, where samples take a dog-bone shape with a central gauge section

of uniform width.

A multi-step fabrication process is employed to fabricate nanomechanical tensile specimens; as

illustrated in Fig. 2.1. The gauge section geometry was generated using MATLAB scripts and

the supporting structures were designed using a CAD model generated with Solidworks (Dassault

Systmes). These CAD models were also used to determine the relative density of the samples. The

notch geometry was designed to resemble naturally occurring cracks in lattices. For materials with

lattice architectures, notches come in the form of a combination of structural imperfections, such as

unconnected or broken struts and missing nodes. We fabricated some of the samples to contain a pre-

defined through-thickness notch, which was composed of a collection of omitted tubes with relative

notch lengths of 2a/W = 0.45 and notch orientations varying from 0 to 90 degrees with respect to

the direction of loading. Notch orientations are related to the in-plane cubic symmetry of the octet

ranging from 0 to 90 degrees; that is, β = arctan(i) ·
(
180
π

)
, where i = [0, 0.5, 1, 2, 8,∞]. Fig. 2.4

illustrates the various notched gauge section designs used in this work. The addition of the notch

to the pre-defined gauge section designs provides consistent means of fabricating nearly identical

samples. The designs were used as input to the lithographic instrument. A visual representation of

the notch generating scripts is provided with Video S3.
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Figure 2.2: Architected center-notched tension specimen geometry and constituent features. (A-D)
Scanning electron micrographs show an unnotched and notched specimen and their gauge section
features. (A-B) The gauge section consists of a 27 x 17 x 2 array of octet unit cells (scale bar:
50µm). (C) Octet unit cells are tessellated in space to generate an architected gauge section (scale
bar: 5µm). (D) Each octet unit cell is composed of hollow 3.3µm-long tubes with a mean radius r
of 491± 62nm (scale bar: 1µm). (E) Computed-aided designs illustrate a representative octet unit
cell with a unit cell length l of 4.72± 0.03µm and a wall thickness t of 50nm.

Fabrication of all samples starts with the writing of a polymer sample made out of photoresist

(IP-Dip photoresist, Nanoscribe GmbH) using two-photon lithography (TPL) direct laser writing

(DLW) in a Photonic Professional lithographic system (Nanoscribe GmbH). Samples are written

using laser powers in a range from 15-20 mW and a writing speed of 20000-50000 µm/s. The laser

power is used to control the effective diameter of the tubes, and the speed varies slightly during the

writing process to control the quality of the supporting structures. The samples were written on

silicon wafers that were silanized to improve the adhesion between the sample and the substrate.

The silanization process is essential to avoid delamination under tensile loading conditions.

Silanization procedure
1 Prepare solution A by mixing:

9.3ml Ethanol, 0.5ml deionized H20, and 0.2ml acetic acid.
2 Sonicate silicon chip in IPA for 15 mins
3 Sonicate chip in deionized H20 for 15 mins
4 Add 0.2ml of silane to solution A. Shake well.
5 Pour solution A into a glass petri dish.
6 Take out Si chip from sonicator, dry chip briefly.
7 Immerse chip in solution A for 2 mins.

Agitate gently by swirling the glass petri dish slowly.
8 Dip chip into a beaker of Ethanol and swirl gently.
9 Place chip onto hot plate at ∼ 90◦ for 2 hrs.

These samples were then critically-point dried with an Autosamdri 931 (Tousimis) and con-

formally coated with 50nm of alumina using atomic layer deposition (ALD) in a Nanotech S200

(Cambridge Inc.). We used oxygen plasma to etch away the polymeric core from the gauge section

of the nanolattice. This was accomplished by Focused Ion Beam (FIB) milling of auxiliary struts,



7

β

2a

W

DB

x

y

C

E

b

Tensile Load

β

2a

W

Tensile Load

A

Figure 2.3: SEM images of fabricated architected notched tensile specimens. (A) Specimens are
subjected to a uniaxial tensile load by displacing a tension grip upwards. (B-E) SEM images show
a notched specimen and its gauge section features. (B) The gauge sections are pre-fabricated with
an inclined notch with fixed length-to-width ratio, 2a/W of 0.45; the notch orientation β varies
with respect to the direction of loading. (C) The notch is designed by omitting tubes during the
fabrication process. (scale bar: 5µm). (D) Unit cells are composed of hollow 3.3µm-long tubes with
a mean radius r of 491 ± 62nm (scale bar: 1µm). (E) The gauge section consists of hollow tube
alumina unit cells with a few polymer-composite unit cells near the boundaries.

which enabled the exposure of the internal polymer to oxygen plasma with minimal ion bombard-

ment in critical regions of the sample, e.g., the vicinity of the notch root. This multi-step process

allowed us to create hollow-tube alumina nanolattices without affecting the structural integrity of

the supporting structures.

The resulting polymeric sample is then critically-point dried with a Autosamdri 931 (Tousimis)

and conformally coated with 50nm of aluminum oxide (alumina) using atomic layer deposition

(ALD). Deposition is done at 150◦C in a Cambridge Nanotech S200 ALD system using the following

steps: H2O is pulsed for 15ms, the system is purged for 20s, trimethyl aluminum (TMA) is pulsed

for 15ms, the system is purged for 20s, and the process is repeated. The carrier gas is nitrogen,

which is used at a flow rate of 20sccm. The process was repeated for 500 cycles to obtain the desired

thickness coating. The thickness of the coatings was verified using spectroscopic ellipsometry with

an alpha-SE Ellipsometer (J.A. Wollam Co., Inc.). A detailed study on the mechanical properties

of ALD alumina can be found in ref. [54].

After deposition, a focused ion beam (FIB) (Versa 3D DualBeam, FEI) is used to mill away

auxiliary beams of the sample to expose the polymer to air, as shown in Fig. 2.5. Once the polymer

is exposed, samples are placed into a SP100 oxygen plasma system (Anatech Ltd.) for between

50-80 hours at a pressure of 100mTorr and at 100W of power in order to remove the polymer from

the gauge section. It is possible to determine whether the polymer has been fully etched away by

looking for any contrast change in the beams using a scanning electron microscope, as shown in Fig.
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Figure 2.4: Center-notch geometry generated by MATLAB scripts. (A) Architected gauge sections
of notched samples contain a pre-defined through-thickness notch composed of a collection of omitted
tubes and nodes with relative notch lengths of 2a/W = 0.45 and notch orientations varying from
0 to 90 degrees with respect to the direction of loading. (B-C) Close-up MATLAB image of notch
oriented at 63.4 degrees and corresponding SEM image of final sample.

2.6. For tensile specimens, it is crucial to regularly measure the etching profile to prevent structural

damage of the supporting structures.

2.3 Creating an Architected Hollow-Tube Gauge section

To expose and etch away the polymer core, auxiliary struts were included in the gauge section

designs and milled by focused-ion beam (FIB) milling to provide an opening for oxygen plasma to

ash the polymer using a SP100 oxygen plasma system (Anatech Ltd.) (Fig. 2.5 and Fig. 2.6).

The addition of auxiliary struts enables the exposure of the internal polymer with minimal ion

bombardment to sacrificial material and no damage in critical regions of the sample, such as the

vicinity of the notch root. Excessive ion bombardment could induce material and geometric defects,

such as changes in the material composition [55–57], and introduce external flaws in the form of

missing struts or nodes. The final sample consists of a ceramic hollow-tube gauge section supported

by polymer-alumina composite structures.

The progression of the etching profile can be evaluated by imaging the samples in an SEM
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Figure 2.5: Focused Ion Beam (FIB) milling is employed to expose the polymeric core by removing
sacrificial beams.

to nondestructively determine the amount of polymer that has been removed. Fig. 2.7 shows a

representative sample that shows the location of monolithic polymer-alumina unit cells and hollow-

tube alumina unit cells in the gauge section, which is denoted by a change in contrast of the sample.

Samples were etched in O2 plasma barrel asher and monitored to determine the etching rate and the

total amount of time required to etch away the gauge section only without affecting the integrity

of the support structures (Fig. 2.7). This delicate and time-consuming process was performed for

all gauge sections with and without a notch, separately. Depending on the notch orientation, the

etching process lasted more than 60 hours.

2.4 Sample Survival Rate

There are several critical steps in the fabrication process that reduced the sample survival rate.

More than 1000 samples were successfully written on silicon substrates but ∼ 114 samples were used

during the analysis of this work. Most samples were successfully developed, critically point dried,

and coated with ALD alumina. Sacrificial beams and a pre-defined notch allowed for a high survival

rate after focused ion beam milling; which enabled identical samples regardless of the presence of

a notch or notch orientation. The survival rate after the etching process was low (∼ 10%) making

this the critical step in the fabrication process. The low survival rate is mostly due to the high

probability of finding an unwanted defect in the alumina thin film which lets O2 plasma etch the

substrate at undesirable locations (see Fig. 2.8). For example, if a defect (in the form of a crack

or void) is located at the interface between the bottom support and the substrate, then etching

will simultaneously start at the gauge section and at the bottom support. Since the etching rate
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Figure 2.6: Etching profile. Sacrificial beams are removed from designated sites from both sides
of the gauge section to expose the polymeric core to oxygen plasma. The duration of the etching
process depends on the number of openings and the distance between the openings and the wavefront
of polymer. Afterwards, the gauge section consists of hollow alumina tubes.

is higher for the support compared to the tortuous paths of the gauge section, then the support

will be completely hollowed out before the gauge section is ready for the tension experiment. A

visual inspection of the supports with a microscope does not necessarily allow the determination of

failed samples, which leads to evaluating the integrity of the samples during the testing phase. The

minimum hours required to fabricate an tension specimen with an architected gauge section is >

84.5 hr/sample, as listed in Table 2.1.

Table 2.1: Duration of each step during the fabrication process and testing phase.

# Process Duration Approx. survival rate
1 Substrate preparation 1 hr/sample 99%
2 Two-photon lithography 4 hr/sample 90%
3 Resin development 0.5 hr/sample 90%
4 Critical point drying 1 hr/sample 90%
5 Thin film deposition 6 hr/sample 90%
6 Focused ion beam milling 1 hr/sample 90%
7 O2 plasma etching > 70 hr/sample 10%
8 Tension experiment 1 hr/sample 80%

TOTAL > 84.5 hr/sample 10%

2.5 Relative Density Calculations

To calculate the volume of the final hollow-tube ceramic specimens, a SolidWorks model of the unit

cell was used (Fig. 2.1). Dimensions of the structure in SolidWorks were set using the measured
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Figure 2.7: Samples were etched in O2 plasma barrel asher and monitored to determine the etching
rate and the total amount of time required to etch away the gauge section only without affecting
the integrity of the support structures.

dimensions of the tubes based on SEM images (see Fig. 2.2 and Fig. 2.3). Using these dimensions,

the volume of the polymer unit cell contained in the unit cell was calculated using the SolidWorks

model. The volume fraction was found by dividing the volume of the material contained in the

unit cell by the volume encompassing the unit cell, which is equivalent to the relative density of the

structure. A single unit cell was considered in this calculation since the volume of the structure and

the bulk both scale by the number of units cells that form the lattice.
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Figure 2.8: Most samples did not survive the O2 plasma etching due to undesirable etching away
from the gauge section. (A) For example, etching will simultaneously start at the gauge section and
at the bottom support where defects were found. Since the etching rate is higher for the support
compared to the tortuous paths of the gauge section, then the support will be completely hollowed
out before the gauge section is ready for the tension experiment. (B-C) Cracks usually formed at
the interface between the bottom support and the substrate, which propagated due to the shrinkage
of the polymeric core and stress concentrations in the alumina thin film. The final tensile specimens
were designed to alleviate stresses on the thin film and prevent the formation of cracks after the
resin development and etching processes.
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Chapter 3

Experimental Methods

3.1 Introduction

Uniaxial tension experiments were conducted in an in-situ nanomechanical instrument to simulta-

neously collect load-displacement data and to observe the deformation process and global and local

failure. The axial displacement measured by the instrument was corrected to account for the addi-

tional compliance of the nanoindenter-sample system by quantifying and subtracting the extension

outside the gauge section from the total measured extension and accounting for the contributions of

supporting structures and tension grips to the displacement.

3.2 In-situ Nanomechanical Experiments

Tension experiments were conducted in an in-situ nanomechanical instrument (InSEM, Nanome-

chanics Inc.) to observe global and local failure behavior. Samples were subjected to an applied

tensile load by engaging with a custom-made tension grip. The tension grip was machined on the

head of a 0.8mm stainless steel screw by electrical discharge machining; see Fig. 3.1. Video S1 and

Video S2 show the in-situ mechanical data and its corresponding real-time video of the deformation

of an unnotched and notched specimen.

Once the sample settles and self-align into the wedged tension grip, most of the pre-existing

slight misalignment within this experimental setup is rectified; that is, minimal lateral movement is

seen in videos and the load-displacement data contains short non-linear regions at the initial stage

of loading. All experiments were conducted at a quasi-static strain rate of 10−3s−1 and were carried

out to failure. Fig 3.2 shows a representative raw data depicting constant strain rate loading after

the initial settling events.
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Figure 3.1: Custom tension grip used to test nano-architected tensile samples. The tension grip was
machined on the head of a 0.8mm stainless steel screw by electrical discharge machining.

3.3 Data Analysis Methods

To correctly measure the uniaxial tensile properties of a material, special techniques must be adopted

in order to avoid damaging samples and compromising the area of interest. However, the additional

material that must be used to grip, support, or adhere the sample, will lie in the loading path

and influence the recorded strain measurements. The contributions from these sources must be

accounted for to accurately report the strains of the area of interest. The extension from outside

the gauge section must be determined and subtracted from the total measured extension. The total

measurement of the stiffness for the nanomechanical experiments can be viewed as the effective

stiffness of springs in series, as illustrated in Fig. 3.3A and quantified as

1

Keff
=

1

K
+

1

Ks
(3.1)

where Keff is the effective stiffness recorded by the nanomechanical instrument, K is the stiffness

of the gauge section, and Ks is the stiffness outside of the gauge section, as shown in Fig. 3.3B.

Since compliance is the inverse of stiffness, Eq. 3.1 can be written as

Ceff = C + Cs (3.2)

Additional experiments on samples without the gauge section were performed to determine Cs.

Samples were fabricated without the hollow gauge section, as shown in Fig. 3.3C. Two layers of

alumina-polymer core-shell composite octet unit cells make up the central section of these samples to

resemble the few composite unit cells in samples with complete hollow gauge sections. The average
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Figure 3.2: Representative displacement data for an unnotched sample and corresponding displace-
ment and strain rates as a function of time. After initial settling events, all samples are loaded under
constant strain rate conditions.

compliance of multiple samples was determined and subtracted from the displacement and subse-

quent strain calculations for each unnotched and notched sample. The corrected displacements were

then normalized by the gauge section length to determine engineering strains. The corresponding

loads for all samples were converted to stresses, defined as σ = P/A; P is the measured load and A

is the total cross-sectional area perpendicular to the load.

Displacements and strains of the gauge section could also be calculated using the observed length

change with the real-time deformation video recorded by the scanning electron microscope. However,

since the window frame of the video must account for the entire gauge section (∼ 120µm in length)
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Figure 3.3: Displacement and strain for the hollow gauge section only can be obtained by subtract-
ing the contribution of the additional compliance from the effective compliance recorded by the
nanomechanical instrument.

and total strain at failure of 0.01 − 0.03 (∼ 1 − 3µm), the maximum length change is confined to

less than 5 pixels. This low amplitude of displacements and the characteristic grainy appearance of

micrographs (as a result of random fluctuations of electrons in the electron beam) render the video-

assisted technique unsuitable for accurate strain measurements. Fig. 3.4 illustrate a comparison

between the compliance-corrected data and the video-corrected data. Displacements corrected with

the real-time video resulted in stiffer samples by more than a factor of 2 compared the compliance-

corrected data, which yielded stiffnesses close to the values reported for similar hollow-tube octet

nanolattices tested in compression [30]. The compliance method was employed to accurately measure

the displacements and strains of the gauge section, and to systematically account for the additional

compliance by the sample geometry and nanomechanical system.
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Figure 3.4: Comparison between raw data, compliance-corrected data, and video-assisted corrected
data.
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Chapter 4

Tensile Response of Nanolattices

The stress-strain data for all unnotched center-notched tensile specimens is shown in Fig. 4.1. For

clarity, only one representative curve is colored and all others are grayed out. The data reveals that

after the initial self-alignment into the tensile grips (shown by the non-linear behavior within 1%

strain of incipient loading), all specimens displayed linear elastic loading up to failure regardless of

the presence of a notch (Video S1). The point of tensile failure strength is defined as the maximum

tensile stress prior to failure and is denoted by ‘x’ in Fig. 4.1. The distribution of local nodal

strengths leads to scatter in the observed tensile failure strengths. We calculated the Young’s

modulus from a linear fit of the stress-strain data after 50% of the maximum strain for all samples.

We used bootstrap statistical analysis to calculate the mean and standard error of the Young’s

modulus for each notch orientation, which is shown by the dashed line to the right of the data.

We found the Young’s modulus of unnotched specimens to be 1.30 ± 0.04GPa in agreement with

experimental studies of similar nanolattices under compression [30].

The elastic behavior of these nanolattices was reaffirmed by performing cyclic tensile experiments.

Cyclic experiments consisted of 10 loading segments to ∼ 0.90% of the average load at failure for

all unnotched samples, followed by an unloading segment last the original position of the tension

grip (Fig. 4.2). The load-displacement data shows stable hysteretic cycling behavior for all cycles.

After each consecutive cycle, the sample recovered to the original height on unloading with minimal

degradation; all subsequent cycles showed nearly complete recovery to this initial deformed position.

The nanomechanical instrument could be the main reason for the hysteresis due to the displacement

spring in the transducer, which has a notable effect over high loads and low displacement ranges.

The hysteresis in each cycle may also be attributed to friction between the tension grip and the

tensile sample, but its contribution is most likely minimal.
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Figure 4.1: Stress-strain response of unnotched samples. The Young’s modulus is averaged over all
samples is also plotted and shown as a dashed line. For visual simplicity, one representative curve
has been highlighted (purple).

4.1 Specific Tensile Strength of Hollow Octet Nanolattices

The experimentally measured tensile strengths of 27.4±1.4MPa exhibited by the unnotched nanolat-

tices represent the highest tensile strength reported for architected materials to date (Fig. 4.4). At a

low relative density of 6.5%, these nanolattices attain a specific tensile strengths of 146 kPa kg−1 m3;

outperforming all other existing materials with lattice architectures and bulk materials with low rel-

ative densities (Fig. 4.3). The specific tensile strength of 146 kPa kg−1 m3 of hollow alumina

nanolattices is a factor of ∼ 4 higher than what has been reported for similar nano-architected ma-

terials [31, 32], which places them prominently in the untapped territory in the material properties

space. The attainment of such high strengths likely stems from activating tube wall fracture as

the failure mechanism, i.e. material strength-driven phenomenon, instead of buckling and bending-

dominated deformation, a structural response previously seen in hierarchical lattices and composite

nanolattices under tensile loads [25, 32]. Buckling in nanolattices is correlated with a significant

reduction in the scaling of strength with relative density caused by the nonlinear dependence of

buckling on slenderness in low-density samples [1, 58, 59]. The experimental methodology and sam-

ple design employed in these nanomechanical experiments allows for a large number of unit cells to
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Figure 4.2: Cyclic loading of an unnotched sample. Minimal degradation of elastic properties is seen
after 10 loading-unloading cycles.

span the length and width of the gauge section (27 and 17 unit cells, respectively), which enables

the measurement of the effective strength of the architected gauge section rather than the strength

of a structure or the strength of its constituent beams and nodes.

4.2 Weibull Statistical Analysis

The most common way to describe the strength distribution of brittle materials is the Weibull

distribution [60–63]. This statistical analysis is based on the weakest-link argument, which describes

failure as a catastrophic event initiated at the any flaw within a given volume. Also, it assumes a

homogeneous distribution of flaws throughout the volume. Assuming a constant volume across all

specmines, this empirical two-parameter relation takes the form of

P = exp

[
−
(
σf
σo

)m]
(4.1)

P = 1− Pf (4.2)
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Figure 4.3: Specific tensile strength versus relative density. Architected lattices known to be tested
in tension and material groups have also been plotted for comparison.

where P is the probability of survival of the whole specimen, Pf is the probability of failure for

the whole specimen, σf is the stress at failure, and the two distribution parameters are σo, the

stress level at which the survival probability is equal to 1/e, and m, the Weibull modulus. These

parameters can be found by solving for 1
P and taking natural logarithms twice to arrive at

ln ln
1

P
= m ln

σf
σo

(4.3)

= m (lnσf − lnσo) (4.4)

The Weibull parameters are then determined by using a linear fit; whose slope is the Weibull

modulus m and the intercept on the ordinate of the diagram is related to σo when ln ln 1
P = 0. Then

the survival probabilities for a given stress level is calculated by ranking the data points of strength

values in ascending order and assigning a number beginning with 1 and ending with N . The survival

probability of the ith specimen can be determined using a mean rank [64,65], that is

Pi = 1− i− 1/2

N
(4.5)
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Figure 4.4: Tensile strength of material groups and architected materials known to be tested in
tension.

The Weibull distribution diagram for unnotched specimens in this study is shown in Fig. 4.5.

The Weibull modulus is found to be 13.21; similar values were calculated using several rank methods.

This value falls within the typical range of Weibulll modulus for engineering ceramics (m = 10 ∼ 20),

including thin film alumina [61,66,67].

The high Weibull modulus indicate a well behaved flaw population for these tensile specimens.

For an nano-architected material, the flaw population can be dictated by defects in the constituent

material and geometric defects in the lattice architecture. The complex interplay between the

defects across several length scales, including the thickness of the thin film, limits the material

defects to less than the 50nm. Geometric defects are usually introduced during the writing process

in the form of wavy or rough structural elements, common to additive manufacturing processes,

and by the shrinkage of the polymeric scaffold during the development phase. The high modulus

from such a moderate set of samples suggests that a larger set can yield an even higher Weibull

modulus, and therefore, a greater reliability of nanolattices to accompany the high specific tensile

modulus. Nevertheless, the Weibull statistical distribution seem to be reasonable representations of

the measured tensile strength of brittle nanolattices.

It is worth noting that this statistical analysis is typically used to fit tens to hundreds of data

points and then extrapolated to probabilities outside the range of stresses in the experiment. The

data sets for our nanomechanical experiments are rather small compared to the usual sets of macro-

scopic tensile and fracture experiments. Needless to say, it is understood that incrementing the total
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number of data points in this study by one means devoting more than 84.5 hours (as illustrated in

table 2.1); while typical macroscopic specimens can often be readily mass-produced by the ten or

hundred.

Figure 4.5: Weibull probability diagram for unnotched specimens. The Weibull modulus is denoted
by the slope of the linear fit. Guidelines for a survival probability (the fraction of samples that
would survive a given stress level) of 95% and 10% are also included for visual assistance.

4.3 Failure Surface Morphology

A fractographic evaluation of unnotched samples revealed the local trajectory of crack propagation

of hollow octet nanolattices under tensile loads. Global failure surface is confined to planes of nodes

perpendicular to the uniaxial applied load as cracks traverse from node to node across hollow tubes,

as depicted in Fig. 4.6. Samples with uneven failure surfaces corresponded to low tensile strengths

(Fig. 4.7). This high occurrence of ragged failure surfaces can be attributed to the inevitable

misalignment of the tension grip with the sample central axis. The uneven applied force with a

lateral contribution, which results in an unequal stress distribution at the gauge section. Since the

strains at failure are ∼ 2.5% (equivalent to ∼ 3µm), a slight misalignment of the tension grip can

result in a largely asymmetrical distribution of stress across the width of the samples and premature

initiation of failure closer to the top boundary of the gauge section. These observations facilitated

proper evaluation of data for experimental analysis.
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Figure 4.6: Failure surface morphology of center-notched tensile samples. SEM images show crack
propagation from crevices at nodal junctions; arrows indicate path trajectories across tube wall.
Scale bar denotes 5µm, unless stated otherwise.

22.0 MPa 13.8 MPa21.5 MPa 14.6 MPa

28.5 MPa 31.1 MPa26.2 MPa 31.2 MPaA

B

Figure 4.7: Failure surface morphology of unnotched tensile samples. SEM images of failure surface
morphology and corresponding failure load. (Row A) A low percentage of fabricated samples exhib-
ited high tensile strengths with failure localized in one plane of nodes perpendicular to the applied
load. These samples make up the set of unnotched specimens used in this work. (Row B) The
majority of unnotched tensile samples failed at lower strengths coupled with uneven failure surfaces
and discarded from the analysis section of this work. Scale bar denotes 50µm.
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4.4 Failure Mechanisms

The mechanism of failure in hollow nanolattices is likely associated with crack initiation at the

weakest nodal junctions stochastically within the gauge section of the unnotched nanolattices and

then instantly propagating through the nodes along a “nanolattice plane” orthogonal to the loading

direction. The trajectory of crack propagation depends on the stress distribution at the nodal

junctions. The complex local stresses within hollow nodes lead to an uneven distribution of stress

within the unit cell that induces stress concentrations at crevices, i.e. wall tube intersections, which

act as elastic hinges and dominate the deformation of the unit cell. Cracks initiate at these localized

zones and extend along hollow tubes into adjacent zones of high tensile stress, as shown in Fig. 4.6.

Meza, et al. described the compressive deformation of similar alumina nanolattices to occur via three

main failure mechanisms: (1) fracture of the tube walls, (2) Euler buckling, or (3) shell buckling

of individual tubes [1]. In an octet architecture, the hollow tubes that are parallel to the x-axis in

Fig. 2.3B could buckle in response to global tension being applied to the specimen. The dominance

of a failure mode is dictated by the tube geometry, which is described by two characteristic length

ratios: wall thickness-to-radius ratio t/a and tube radius-to-length a/L. For the tensile specimens

in this thesis, t/a is 0.1029 and a/L is 0.1469 (see Fig. 2.2E for dimensions). These ratios fall below

the critical ratios for Euler or shell buckling, which indicates that the failure of nanolattices in this

work occurs solely by tube-wall fracture. In-situ nanomechanical experiments suggest the dominant

failure mechanism to be via tube wall fracture followed by crack branching; i.e., cracks branch and

propagate in multiple directions from node to node across hollow tubes, as seen in Fig. 4.6. Damage

away from the initial failure location, e.g. in the form of cracks at nodal junctions, could occur but

such dynamic events are not able to be captured by the frame rate of the nanomechanical instrument.
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Figure 4.8: Failure mechanisms of hollow-tube nanolattices can be simplified to the energetic com-
petition between fracture of the tube walls and buckling instabilities, as described in ref. [1].
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Chapter 5

Tensile Response of
Flaw-Containing Nanolattices

5.1 Introduction

Understanding how a material behaves in the presence of flaws is integral to determining its fracture

response. Naturally occurring defects like pores, voids, and notches within a solid are generally

subjected to a complex stress state determined by their shape and orientation relative to the applied

loads. In trying to design fracture-safe materials, a defect’s geometry and orientation must be con-

sidered to fully characterize the possible mixed-mode states and to quantify a material’s resistance to

fracture initiation. Typically, such fracture experiments are performed on samples with pre-defined

flaws. Center-notched tension specimens are commonly used for characterizing tensile properties

and fracture behavior of thin films, plates, and sheet materials [68,69]; this geometry allows notches

to be oriented along directions that closely resemble the mixed-mode loading of naturally occurring

defects. The experimental results from notched tensile specimens will be presented in this chapter

and analyzed in the following chapter.

Unnotched90.0° 63.4° 45.0° 26.6° 7.1°

A

B

0.0°

Figure 5.1: Failure surface morphology for notched and unnotched specimens (scale bar: 25µm).



28

5.2 Path of Crack Propagation

Post-failure SEM images (Fig. 5.1) reveal that the notched hollow-tube octet nanolattices always

failed at the notch roots, and that brittle failure occurred along a plane of nodes orthogonal to the

loading direction, regardless of the notch orientation. The unnotched nanolattices also failed along

a single nodal plane within the gauge section. Fig. 5.2 shows zoomed-in SEM images of the fracture

surface of a notched sample and suggests that cracks initiate at a node within the notch root and

propagates outwards towards the boundary of the specimens.

A B

Figure 5.2: Global and local failure surface morphology. Scanning electron micrographs of (A)
notched sample after failure (scale bar: 10µm) and (B) local crack propagation trajectory on nodal
junctions and through hollow tubes (scale bar: 2µm).

5.3 Onset of Failure

Fig. 5.1 contains SEM images of all specimens before and after failure as a progression of notch

orientations and the the corresponding stress-strain data is plotted in Fig. 5.3. The data reveals that

after the initial self-alignment into the tensile grips, all specimens displayed linear elastic loading

up to failure regardless of the presence of a notch (Movie S1-S2). For each plot, the point of tensile

failure strength is defined as the maximum tensile stress prior to failure and is denoted by ‘x’,

and plotted separately in Fig 5.4. For clarity, the failure strengths for all samples are also plotted

and a single representative stress-strain curve for each notch orientation. The distribution of local

nodal strengths leads to scatter in the observed tensile failure strengths. Young’s modulus was

calculated from a linear fit of the stress-strain data after 50% of the maximum strain for all samples.

We used bootstrap statistical analysis to calculate the mean and standard error of the Young’s

modulus for each notch orientation, which is shown by the dashed line to the right of the data.

We found the Young’s modulus of the unnotched specimens to be 1.30 ± 0.06GPa, in agreement

with experimental studies of similar nanolattices under compression [30], and that of the notched

specimens to decrease from 1.76GPa to 0.9GPa as the notch orientation increased from 0 (parallel)
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Figure 5.3: Representative stress-strain data for notched and unnotched specimens. All samples
show linear-elastic behavior up to catastrophic failure. The mean Young’s moduli (dotted line) for
each case is also plotted. The point at failure is denoted with an ‘x’ for all samples.

to 90 degrees (orthogonal).

5.4 Weibull Statistical Analysis

Similarly to the statistical analysis from the previous chapter, the strength distribution of notched

specimens can be described by a Weibull distribution. Fig. 5.5 shows the Weibull diagram for

notched and unnotched cases. Fig. 5.6 shows the probability density function for all specimens

and the Weibull modulus as a function of notch orientation. For comparison the results for the

unnotched case has also been included. The distribution of tensile strength is consistent across all

notched samples with a mean modulus of ∼ 10, expect for the data set for 63.4◦-notched specimens,

which shows a bimodal population. As seen in Fig. 5.6A, the distribution of stresses indidcate a

well-behaved flaw population for notched tensile specimens.

The scatter in stresses for the notched cases is similar to that observed in macroscopic tensile

and fracture experiments for engineering ceramics [61–63, 70]; and, also similar to the unnotched

case, as expected since the thin film deposition technique and fabrication process were the same.

These statistical analysis suggest that the fabrication process is not affecting the measurements.
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Figure 5.4: Stress at failure for all notched samples as a function of notch orientation. The failure
strength for the unnotched samples is also plotted as a band corresponding to a 95% confidence
interval centered at the mean strength of all unnotched samples.
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Figure 5.5: Weibull probability diagram for unnotched and notched specimens. The Weibull modulus
(denoted by the slope of each linear fit) is consistent for all notched cases and similar to the unnotched
case. Guidelines for a survival probability of 95% and 10% are also included.
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Figure 5.6: Weibull distribution for unnotched and notched tensile specimens. (A) The probability
density function for all unnotched and notched cases, and (B) the corresponding Weibull modulus,
which is the shape factor of the distribution; that is, as m decreases, the distribution widens.
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Chapter 6

Continuum Approach to
Center-Notched Tension Specimens

6.1 Motivation

Within continuum mechanics theories, crack propagation can be predicted by defining the critical

conditions for crack initiation and incipient crack deflection. A prevalent continuum-based theory,

linear elastic fracture mechanics (LEFM), is commonly used to describe fracture of brittle materials

and inherently assumes that the microscopic failure events at the crack tip are substantially smaller

than the relevant global dimensions of the continuum solid. For most monolithic materials, the size

of the plastic zone, i.e. the region where the material has undergone inelastic deformation ahead

of the crack tip, can be estimated to be rp ∝ K2
Ic/σ

2
y, where KIc is the fracture toughness and σy

is the yield strength of the material [68, 71]. In brittle or quasi-brittle materials, the dimensions of

the plastic zone at the crack tip are comparable to the fracture process zone where all the energy

absorption processes occur, on the order of less than 1 µm for engineering ceramics, and is usually

deemed negligible with respect to the characteristic lengths of macroscopic specimens. Under these

small-scale yielding conditions, LEFM is useful in characterizing the initiation of fracture in brittle

materials [68,71]. For LEFM failure criteria to uniquely define stress conditions at the onset of failure,

the failure events have to be localized in small areas with radius rc compared to the characteristic

flaw length (2a). For these continuum-based criteria to be applicable to architected materials, the

flaw itself and the characteristic lattice length (l) must be smaller than the global lattice dimensions

(W ), i.e. rc << l, a << W . [43]; see Fig. 2.3B,E for corresponding labels.

6.2 Linear Elastic Fracture Mechanics

LEFMs failure criteria that estimates critical conditions at failure are commonly based either on

the energy approach, which measures the material’s resistance to crack growth and is usually
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Figure 6.1: Evaluation of local stresses near the crack tip.

parametrized by the energy dissipated during fracture per crack extension, G, or on a critical stress

state approach that parametrizes the stress field near the crack tip with a stress intensity factor, K.

These two approaches are derived from different physical interpretations are fully equivalent within

linear elasticity, where G can be expressed in terms of K as G = K2/E′; where E′ is the Young’s

modulus E under plane stress or E/(1 − ν2) under plane strain conditions. Stress-based failure

criteria that predict crack initiation and the direction of crack propagation have been extensively

discussed in literature [71]. Within the scope of LEFM and assuming in-plane mixed-mode loading

with dominant mode I and mode II failure, a failure criteria can be expressed as f(KI ,KII) = 0,

where KI and KII are the stress intensity factors for mode I and mode II, respectively. Fracture is

described by the relative contribution of each mode, which dictates the onset of crack propagation

at an inclination to the tangent of the crack axis.

y
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Mode I
(symmetric)
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(out of plane)

Figure 6.2: Modes of fracture. There exists three types of crack opening: Mode-I denotes symmetric
crack opening, Mode-II is characterized by an antisymmetric separation of the crack surfaces, and
Mode III describes the separation due to relative displacements in the direction tangent to the
crack front. In this work, we consider in-plane mixed-mode loading where mode-I and mode-II are
superimposed while mode-III is not present.

Classical fracture mechanics concepts have been used to predict the onset of failure and crack

deflection of brittle materials [68,69,71,72]. For a homogeneous, isotropic, and linear-elastic brittle

material, the in-plane stresses around the tip of a crack can be described in terms of the stress
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intensity factors (KI and KII). The local stresses can be written in polar coordinates as,

σrr =
1√
2πr

cos
θ

2

[
KI

(
1 + sin2 θ

2

)
+KII

(
3

2
sin θ − 2 tan

θ

2

)]
+ T cos2 θ +O(r1/2) (6.1)

σθθ =
1√
2πr

cos
θ

2

[
KI cos2

θ

2
− 3

2
KII sin θ

]
+ T sin2 θ +O(r1/2) (6.2)

τrθ =
1

2
√

2πr
cos

θ

2
[KI sin θ +KII(3 cos θ − 1)]− T cos θ sin θ +O(r1/2) (6.3)

For a plate with a central crack of length 2a inclined at an angle β with respect to the direction

of loading and subjected to a uniaxial far-field tensile stress σ (Fig. 6.1), the stress intensity factors

are,

KI = σ
√
πa sin2 β (6.4a)

KII = σ
√
πa cosβ sinβ (6.4b)

T = σ
√
πa cos 2β (6.4c)

(6.4d)

Keff =
√
K2
I +K2

II (6.4e)

For brittle and quasi-brittle materials, a frequently used fracture criterion is based on the as-

sumptions that the crack propagates in the radial direction, θ0, perpendicular to the maximum

circumferential stress, σθθ, and that crack propagation initiates when the near field stress σθθ(θ0) at

a distance rc in front of the crack tip reaches the same critical value as in pure mode I, described

by KIc [73]. These two conditions can be summarized as followed:

1. The crack propagates in radial direction θ0 perpendicular to the maximum circumferential

stress σθ|max (directional condition).

2. Crack propagation initiates when the near field stress σθ(θ0) at a distance rc in front of the

crack tip reaches the same critical value as in pure mode I (failure condition).

Therefore, the following failure and directional conditions define the onset of fracture,

∂σθθ
∂θ

∣∣∣∣
θ0

= 0 (6.5)

σθθ(θ0) =
KIc√
2πrc

(6.6)

This classical formulation is interpreted as a bipartite criterion, which contains both the crit-

ical condition for the onset of failure and a directional condition for the initial crack propagation
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trajectory. Using Eq. 6.2 and Eq. 6.5, we obtain θ0 (at a distance rc from the crack tip),

∂σθθ
∂θ

∣∣∣∣
θ0

= [KI sin θ0 +KII (3 cos θ − 1)]− 16

3
T
√

2πrc sin
θ0
2

cos θ0 = 0 (6.7)

The direction of fracture initiation found from Eq. 6.7, can be used in conjunction with Eq. 6.2

and Eq. 6.7 to determine the critical stress conditions at failure,

(σθθ)c =
1√
2πr

cos
θ0
2

[
KI cos2

θ0
2
− 3

2
KII sin θ0

]
+ T sin2 θ0 +O(r1/2) (6.8)

where (σθθ)c is the critical circumferential stress at a critical distance rc. For pure mode I fracture

when KII , T , and θ0 are equal to zero, and Eq. 6.8 reduces to

√
2πrc(σθθ)c = KIc (6.9)

where KIc is the fracture toughness of the material. Therefore, the onset of fracture can be

defined as

KIc − T
√

2πrc sin2 θ0 = cos
θ0
2

[
KI cos2

θ0
2
− 3

2
KII sin θ0

]
(6.10)

Eq. 6.5 and Eq. 6.10 define the onset of failure under mixed mode fracture (given a critical

radius rc, notch length a, and notch orientation β). The geometry of finite specimens has an effect

on the crack tip stress fields, and so expressions for stress intensity factors must be modified by the

addition of a correction factor to enable their use in practical applications [68]. That is, a geometric

factor is introduced to the definition of the stress intensity factors,

Kc = Y σc
√
πa (6.11)

In the case of center-notched tension specimens [68], the geometric factor is defined as

Y =

√
sec

a

W
(6.12)
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6.2.1 Direction of Fracture Initiation

To solve for the initial deflection angle that dictates crack propagation trajectory, Eq. 6.7 is written

as

[KI sin θ0 +KII (3 cos θ − 1)]− 16

3
T
√

2πrc sin
θ0
2

cos θ0 = 0

KI

Keff
+

3 cos θ − 1

sin θ

KII

Keff
−

16
3 T
√

2πrc

Keff

cos θ0 sin θ0
2

sin θ0
= 0

KI

Keff
+ a

KII

Keff
= b (6.13)

where

a =
3 cos θ − 1

sin θ
(6.14a)

b =
16

3

T
√

2πrc
Keff

cos θ0 sin θ0
2

sin θ0

=
8

3
Bα

cos θ0

cos θ02
(6.14b)

and B = T
√
πa

Keff
and α =

√
2rr
a . Now, by letting z = KII

KI
, we can rewrite Eq. 6.13 to solve for θ0,

KI√
K2
I +K2

II

+ a
KII√

K2
I +K2

II

= b (6.15)

1

KI

√
K2
I +K2

II

+ a
1

KII

√
K2
I +K2

II

= b (6.16)

1√
1 + z2

+ a
1√
1+z2

z2

= b (6.17)

Rearranging Eq. 6.17,

(a2 + b2)z2 + 2az + (1− b2) = 0 (6.18)

Solving Eq. 6.18 for z,

z

(
=
KII

KI

)
=
−a± b

√
a2 − b2 + 1

a2 − b2
(6.19)

Only the negative solution of Eq. 6.19 is acceptable since θ0 must be between -90 and 0. Using the

definition of the mixity parameter,

Me =
2

π
arctan

(
KI

KII

)
(6.20)
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Simplifying,

KI

KII
=

σ
√
πa sin2 β

σ
√
πa sinβ cosβ

= tanβ (6.21)

Replacing Eq. 6.21 in Eq. 6.20 and equating to Eq. 6.19,

2

π
arctan

(
KI

KII

)
=

2

π
arctan

(
a2 − b2

−a± b
√
a2 − b2 + 1

)
arctan (tanβ) = arctan

(
a2 − b2

−a± b
√
a2 − b2 + 1

)
β = arctan

(
a2 − b2

−a± b
√
a2 − b2 + 1

)
(6.22)

We can solve for θ0 as a function of (β,B, α) using Eq. 6.22 and Eq. 6.14a-6.14b. Fig. 6.3 illustrates

the variation of crack deflection angle with respect to notch orientation for an equivalent linear-elastic

plate for a range of rc values. A continuum approach to crack propagation in monolithic brittle

materials predicts a gradual transition from a combined stress state to pure Mode I propagation,

accompanied by an initial crack deflection.

Figure 6.3: LEFM stress-based analytical predictions for crack deflection angle for a center-cracked
linear-elastic continuum plate. The deflection angle defines the direction of fracture initiation as a
function of notch orientation.
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6.2.2 Onset of Failure

A complete solution of a crack propagation problem includes the determination of the onset of failure

in addition to the crack path deflection. The dominant fracture mechanism establishes both the onset

of crack growth and the crack deflection angle based on the notch orientation and the appropriate

characteristic distance. To solve for the stress at the onset of failure, Eq. 6.8 is substituted in Eq.

6.10,

KIc = Y
√

2πrc(σθθ)c = cos
θ0
2

[
KI cos2

θ0
2
− 3

2
KII sin θ0

]
+ T
√

2πrc sin2 θ0

= KI cos3
θ0
2
− 3

2
KII sin θ0 cos

θ0
2

+ T
√

2πrc sin2 θ0 (6.23)

Assuming onset of failure, where σf is the critical remote applied stress, the stress intensity factors

are

KI =KIf = σf
√
πa sin2 β (6.24a)

KII =KIIf = σf
√
πa cosβ sinβ (6.24b)

T =T = σf
√
πa cos 2β (6.24c)

The stress intensity factors can be substituted in Eq. 6.24a-6.24c in Eq. 6.23, to obtain the stress

at failure as a function the notch orientation and the deflection angle,

Y
√

2πrc(σθθ)c = KI cos3
θ0
2
− 3

2
KII sin θ0 cos

θ0
2

+ T
√

2πrc sin2 θ0

= (σf
√
πa sin2 β) cos3

θ0
2
− 3

2
(σf
√
πa cosβ sinβ) sin θ0 cos

θ0
2

+ (σf
√
πa cos 2β)

√
2πrc sin2 θ0

...

(σθθ)c =
σf
Y

(
X

α
− Q

α
+ Z

)
σf

(σθθ)c
=

Y(
X
α −

Q
α + Z

) (6.25)

where

X = sin2 β cos3
θ0
2

Q =
3

2
cosβ sinβ sin θ0 cos

θ0
2

Z = cos 2β sin2 θ0
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Figure 6.4: LEFM stress-based analytical predictions of stress at failure for a center-cracked linear-
elastic continuum plate.

It is convenient to express fracture initiation in mixed-mode loading conditions in terms of the

stress intensity factors KI and KII and converted into normalized mixed mode stress intensity

factors, KI/KIc and KII/KIc as shown in Fig. 6.5. The fracture loci predicted by the maximum

circumferential stress criteria by Erdogan et al. and the extended failure criteria which takes into

account the effects of the T-stress are plotted for comparison.
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Figure 6.5: LEFM stress-based analytical predictions for mixed-mode failure of a center-cracked
linear-elastic continuum plate.
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Chapter 7

Continuum-Discrete Aspect of
Three-Dimensional Hollow Octet
Nanolattices

7.1 Introduction

Failure and fracture are two prominent engineering concepts in the history of mankind; society

has been utilizing these concepts to design new structural materials and to build failure-safe struc-

tures [74,75]. Understanding materials’ resistance to fracture has allowed us to outperform natural

structural materials by engineering novel materials with enhanced properties, like fiber-reinforced

composites and bulk metallic glasses. Continuum-based computational models have enabled accu-

rate predictions of mechanical properties of objects of all dimensions and to build structures that are

mechanically resilient even under extreme mechanical environments, like the Eiffel tower, the Inter-

national Space Station, and offshore oil platforms. Failure analysis of such materials and structures

has become a customary and mandatory practice where classical beam theories are commonly used to

model failure of beam-based structures, i.e. truss-like networks, and conventional continuum-based

mechanics is used to describe failure of materials [71,76].

2a

Materials
(continuous)

Structures
(discrete)

2a

l

Figure 7.1: As the characteristic features of three-dimensional architected materials are reduced
to the microscale, a question arises of whether they are better described as discrete structures or
continuum-like materials.
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The applicability of continuum-based approaches to describe failure and deformation of archi-

tected materials with discrete structural features at small scales, i.e. nano- and micro-lattices [2,77],

is unclear. When the characteristic length of discrete architectural features, e.g. beams or tubes,

is comparable to macroscopic sample dimensions, the solid is classified as a structure, and its me-

chanical response can be adequately interpreted using beam theory. As this characteristic length

decreases, the mechanical properties of many architected materials can be described using cellular

solids theory [36]. When the defining dimensions of the structure, e.g. unit cell size, beam diam-

eter, and wall thickness, are reduced to the same length scale as that of local plastic events that

initiate failure, on the order of several microns for engineering ceramics, the deformation of discrete

architectural features governs global structural failure and challenges the fundamental assumptions

of continuum-based mechanics models. This poses the question whether a cellular solid whose di-

mensions are on the order of nanometers and micrometers can be identified as a continuum solid

with respect to failure, which would enable the use of existing analytical tools to describe structural

failure [68,71]. Such a structural metamaterial is characterized by a plastic zone whose size is smaller

than the individual features that comprise it, and a characteristic unit cell length that is significantly

smaller than the global macroscopic dimensions of the sample.

Figure 7.2: Crack deflection angle for hollow-tube octet nanolattices and analytical predictions for
an equivalent center-cracked linear-elastic continuum plate. The error bars for the experimental data
denote one standard deviation. The continuum-based predictions consist of a shaded area defined
by a characteristic distance rc of 0.04µm and 2µm, respectively.
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7.2 Path of Crack Propagation

Fig. 7.2 illustrates the variation of crack deflection angle with respect to notch orientation for

the nanolattices (data points) and that for an equivalent linear-elastic plate (solid line and shaded

area). The observed crack path directions in the nanolattices always extend from the notch roots

along the axis of the tubes towards the adjacent nodes along a nodal plane that is orthogonal

to the loading direction. This failure mechanism stems from the structural effects inherent to

lattice architectures: they provide a path of least resistance along the nodal planes, defined by the

connectivity of the architecture. Experimental and computational findings for similar nanolattices

reveal that the notch roots initially provide the highest stress concentrations [31], where the crack

nucleates; and nearly immediately stop serving as the strongest stress concentrators once the crack

starts to propagate because the mechanism shifts towards nodal fracture, similar to that in the

unnotched nanolattices. The driving failure mechanism of nodal fracture marks the difference in

crack path trajectory predictions for continuum solids and for architected materials. For the latter,

the local stresses developed in the individual tubes lead to the overall deformation along the tubes’

central axis and subsequent crack deflection. In hollow nanolattices, failure is initiated by fracture

at the 50nm thick tube walls, which is a material-based mechanism. After the initial failure, the

pre-defined lattice connectivity drives subsequent rupture such that the fractured surface is oriented

orthogonally to the loading direction regardless of the notch orientation, which is in contrast to

monolithic solids.

7.3 Onset of Failure

The nanolattices in this work were notched to emulate conditions for conventional fracture ex-

periments in monolithic brittle materials. The octet architecture in this work is categorized as a

stretching-dominated cellular solid, whose failure is dictated by the local concentrations of tensile,

compressive, and shear stresses within the beams in a unit cell [30, 36]. The effect of these local

stresses is even more pronounced in hollow tube-based architectures because tube walls must bear

and distribute the global applied load [30, 31, 78, 79]. This suggests that using a stress-based fail-

ure criteria is most appropriate to compare the initiation of fracture of an equivalent linear-elastic

solid to that of the 50nm-thick alumina nanolattices [71,73]. To evaluate whether classical fracture

theories, i.e. LEFM, describe a similar failure to that of nano-architected materials, we evaluated

the response of an ideally-brittle continuum similar to the architected gauge section of the notched

specimens, that is, an equivalent monolithic plate loaded under plane stress conditions and geomet-

rically similar to the center-notched specimens in this work (Fig. 2.3A,B). The onset of failure is

predicted by the failure condition previously stated in Eq. 6.6. For clarity, the critical stress at
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failure is restated here as

σf
√

2πrc = cos
θ0
2

[
KI cos2

θ0
2
− 3

2
KII sin θ0

]
+ T
√

2πrc sin2 θ0 +O(r1/2) (7.1)

where the magnitude of the first term in the sum is defined by the stress intensity factors (KI

and KII), and the second term represents the stress that contributes to mode I crack opening and

accounts for the inherent stress biaxiality in geometries with finite dimensions [75]; commonly known

as the T-stress. This biaxiality characterizes the stresses perpendicular to the applied tensile load,

which are prominent in center-notched specimens with finite widths. The second term is relevant for

mixed-mode loading, under which its magnitude becomes comparable to that of the first singular

term. This formulation, as well as other linear elastic fracture criteria, is associated with a material

characteristic feature, rc, that is often identified as the distance that separates the length scale of

microscopic damage processes and that of incipient crack growth at the global scale. It is reasonable

to assume the critical distance in hollow alumina nanolattices to be less than 1µm, which represents

the width of a nodal junction and the thickness of the wall tubes (Fig. 5.2) and is comparable to the

characteristic distance and plastic zone size of other engineering ceramics, like alumina and silicon

carbide [75,80,81].

Fig. 7.3 shows the measured tensile strength of the nanolattices and a range for the possible

values for an equivalent linear-elastic solid whose characteristic distance is between 0.04−2µm, which

includes estimates of the plastic zone size and characteristic distance for engineering ceramics, and

the dimensions of the tube wall thickness and the width of a nodal junction in the nanolattices.

The theoretical predictions accurately capture the decrease of tensile strength with decreasing notch

orientation, consistent with experiments.

7.4 Tensile-Shear Stress Criterion

These findings imply that knowing the architecture, i.e. lattice connectivity, enables one to define

the directional condition that accurately predicts the crack propagation angle and onset of failure as

a function of notch orientation. A failure criterion for hollow-tube octet lattices can be formulated

where the crack is assumed to be near the notch root at a nodal junction and propagate through the

tube walls closely aligned with the plane orthogonal to the applied load. The complex stress at the

nodal junctions can be attributed to a combination of tensile and shear stresses. A fracture criterion

for linear-elastic failure that takes into account local tensile and shear contributions and assumes a

preferred crack deflection angle can be formulated based on the following two assumptions:

1. The crack propagates in a radial direction θ0 perpendicular to the remote tensile load (direc-

tional condition).
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Figure 7.3: Normalized tensile strength for hollow-tube octet nanolattices and analytical predictions
for an equivalent center-cracked linear-elastic continuum plate. Variation of normalized critical stress
with crack orientation of nanolattices, where error bars denote one standard deviation. Predictions
for a plate according to stress-based continuum criteria and net-section strength criterion are also
plotted, where the top and bottom boundaries of the shaded area are defined by a characteristic
distance rc of 0.04µm and 2µm, respectively. The stress at failure for unnotched specimens is plotted
as a band centered at the bootstrapped mean and bounded by a 95% confidence interval.

2. Crack propagation initiates when the near field stress σf (θ0), which is defined as a contribution

of the tensile σθθ and shear τrθ stresses at a distance rc from the crack tip, reaches the same

critical value as in pure mode I fracture (failure condition).

Consequently, the following failure and directional conditions define fracture initiation, where the

critical stress is a function of the local tensile and shear stresses,

θ0 =
π

2
− β (7.2)

σf (θ0) =
KIc√
2πrc

(7.3)

σ2
f = σ2

θθ + λτ2rθ (7.4)
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Using Eq. 6.2 and Eq. 6.24a-6.24c, the critical tensile stress at the onset of failure is,

(σθθ)c =
1√

2πrc
cos

θ0
2

[
KI cos2

θ0
2
− 3

2
KII sin θ0

]
+ T sin2 θ0 +O(r1/2)

(σθθ)c =
σf
√
πa√

2πrc
cos

θ0
2

[
sin2 β cos2

θ0
2
− 3

2
cosβ sinβ sin θ0

]
+ σf cos(2β) sin2 θ0

(σθθ)c = σf

[
sin2 β cos3 θ02 −

3
2 cosβ sinβ sin θ0 cos θ02
α

+ cos(2β) sin2 θ0

]
(σθθ)c = σfA(β, θ0, α) (7.5)

Similarly, using Eq. 6.3 and Eq. 6.24a-6.24c, the critical shear stress at the onset of failure is

τrθ =
1

2
√

2πr
cos

θ

2
[KI sin θ +KII(3 cos θ − 1)]− T cos θ sin θ +O(r1/2)

(τrθ)c =
σf
√
πa

2
√

2πrc
cos

θ0
2

[
sin2 β sin θ0 + cosβ sinβ(3 cos θ0 − 1)

]
− σf cos(2β) cos θ0 sin θ0

(τrθ)c = σf

[
sin2 β sin θ0 cos θ02 − cosβ sinβ cos θ02 (3 cos θ0 − 1)

2α
− cos(2β) cos θ0 sin θ0

]
(τrθ)c = σfB(β, θ0, α) (7.6)

The critical stress normalized by the fracture toughness of the effective material can be calculated

as a function of the local stress near the crack tip,

KIc√
2πrc

=

√
(σ2
θθ + λτ2rθ)

∣∣∣
θ0

K2
Ic

2πrc
= (σ2

θθ + λτ2rθ)
∣∣∣
θ0

K2
Ic

2πrc
= (σfA)2

∣∣
θ0

+ λ(σfB)2
∣∣∣
θ0

σf
KIc

=
1√

2πrc(A+ λB)2

∣∣∣∣∣
θ0

(7.7)

When the weighting factor λ is assumed to be 0; the classical formulation of failure for brittle fracture

is obtained as described in the previous chapter. When the weighting factor λ is 1, local tensile and

shear stresses have equal contributions. A dedicated study must be carried out to properly evaluate

an adequate value of λ for an architected material based on the stress contributions at the unit cell

length scale.
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7.5 Net Section Yielding

For center-notched specimens, failure could also emanate from yielding in the critical net section,

i.e., in the ligaments. An empirical relationship to describe net section yielding for center-crack

tension panels (Fig. 7.4) has been proposed by a simple residual strength analysis technique derived

from experimental observations [82]. The analysis is applicable to center-cracked tension panels with

the crack oriented perpendicular to the applied load and it covers the full range of crack lengths,

i.e., cracks that span the entire width of the panel down to cracks that span a small percentage of

the width. This net-section yielding evaluation is based on the assumptions of linear elastic fracture

mechanics to derive a smooth and continuous relation between the stress at failure and the flaw

size.The concept of the stress intensity factor is utilized to describe the fracture instability and to

uncouple the width as an independent parameter in crack behavior analysis.

Tensile Load

β

2a

W

Tensile Load

H

B

Figure 7.4: Equivalent linear-elastic center-cracked plate.

Fig. 7.5 illustrates the inverse relationship between stress and crack length for elastic fracture

behavior. The idealized relationship, which is denoted as a green dotted curve, is derived from the

analysis of a panel of infinite size in which a uniform stress field is remotely applied. As illustrated,

the curve is parameterized by the stress intensity factor, K. For actual specimens with finite width,

this relationship will change due to finite-size constraints. The stress at failure for actual specimens
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is elastically limited by the tensile yield strength, and the maximum flaw length is limited by the

finite width. These constraints define a net section yield limit, shown as the diagonal line on Fig.

7.5. This line passes through the width limit on the crack length axis and the tensile yield strength

at the stress axis, representing a line of constant net section stress. That is, it is the loci of crack

length that result in a net section stress on the ligaments of the specimen’s cross section. This line

also divides the crack behavior into two categories: (1) a plastic instability regime where points

fall above and to the right of the net section yielding line, which represent fracture conditions with

notable plasticity, and (2) an elastic instability regime where points fall below and to the left of the

net section yielding limit, and represent fracture conditions of considerable elastic behavior.

Figure 7.5: Relationship between the stress at failure and flaw length for a center-cracked plate. For
an infinite sample, the stresses will follow the green dashed line where failure stresses, σf , depend
on the flaw size, a, and parameterized by the stress intensity factor, K. If the stresses at failure
are associated with yielding at the net section, then a conventional stress analysis can be used to
describe the fracture stresses.

In previous work on center-cracked brittle specimens, a linear relation between stress and flaw

size was observed at the extremes of the range of values for flaw length [82–86]. This suggested

the use of linear tangents to accompany the idealized K curve as a method to account for finite

widths; resulting in a smooth and continuous curve of fracture behavior over the full range of crack

lengths. Following the method described by Feddersen [82], we can generate a similar net section

strength relationship for an equivalent center-notched specimen. The curve is divided into three

regions, where the K-derived curve is bounded by two linear regions.
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The left-bound linear region can be calculated by knowing that the slope of the K curve at any

point in a stress vs. crack length plot is

dσ

d(2a)
=

d

d(2a)

(
K√
4a

)
= − σ

4a
(7.8)

This slope is equal to the liner tangents at the extremes of the plot; that is from 0 to point α and

from point γ to 1, as illustrated in Fig. 7.5. At point α, the matching condition is

dσ

d(2a)

∣∣∣∣∣
α

= − σα
4aα

(7.9)

= −σTY S − σα
2aα

(7.10)

which reduces to

σα =
2

3
σTY S (7.11)

This condition implies that the stress denoted by point α is always at two thirds of the tensile

yield strength sigmaultiamte. At the other extreme, we have the slope condition at point γ

dσ

d(2a)

∣∣∣∣∣
γ

= − σγ
4aγ

(7.12)

= − σγ
W − 2aγ

(7.13)

which reduces to

2aγ =
W

3
(7.14)

This condition represents the linear region for high notch lengths, which indicate that point γ always

occurs at one third of the panel width. These two tangent conditions represent the slopes outside

the middle region parameterized by K. These conditions are translated into the following screening

criterion [82],

These conditions are used to analyze the data and predict fracture behavior in center-cracked

tension panels. Given a data point (that is, flaw size and corresponding stress at failure) from

an experiment where the notch is aligned perpendicular to the applied tensile load, the complete

stress-flaw can be constructed and a K value can be calculated. Therefore fracture behavior can be

predicted by evaluating the residual strength at the ligaments of the center-notched tension speci-

mens, which is elastically constrained by the tensile yield strength of the material and geometrically

restricted by the finite width of the gauge section.
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Table 7.1: Screening criterion to generate a net section yielding relationship between the stress at
failure and flaw size.

Region Condition Slope
1 σ ≥ 2

3σTY S linear tangent

2 σ ≤ 2
3σTY S K-derived curve

2a ≤ W
3

K = σ
√
πa

3 2a ≥ W
3 linear tangent

 Unnotched

 90.0° 

 63.4° 

 45.0° 

 26.6° 

 7.1° 

 0.0° 

Figure 7.6: Evaluation of net-section yielding by relating the stress at failure with the flaw size.
The black curve indicating a smooth, continuous relationship between the stress at failure and the
notch length is generated by a K-parameterized regime in the center bounded by two linear regimes
at short and long notch lengths. The curve depicted in this plot was generated by fitting a curve
through the average dta points for the unnothced case and the 90◦-notched specimen, which is the
only notched specimen with a horizontal notch. However, by plotting the projected notch length for
all other angled specimens, we see that they fall below the net section yielding limit and follow a
similar scaling as predicted by the fracture mechanics analysis.

The relationship between critical stress at failure and notch length using the nanomechanical data

is shown in Fig. 7.6. This plot conveys that the stresses associated with failure for an equivalent

linear-elastic solid are significantly lower than those associated with critical net-section instability

(that is, they fall to the left and below the net-section yielding line) and suggests that the finite

specimen width might not significantly influence the measurements. It might also be reasonable to

dismiss the net section yielding by plastic instability arguments because of the consistent observations
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of elastic-only deformation prior to fracture, as evident from the stress-strain response (Fig. 5.3)

and cyclic loading-unloading experiments (Fig. 4.2). This analysis suggests that in our experiments,

we are truly measuring the influence of notch orientation on the tensile strength without significant

boundary effects introduced by the finite width of the specimens; which will interfere with stress

concentrations at the notch root and will adversely initiate premature fracture.

The value of KIc fitted to the experimental data, as shown in Fig. 7.6 fall within the range for

fracture toughness of material groups with similar densities and seems to follow the predictions using

scaling laws derived from cellular solid theories. However, a dedicated study must be performed to

properly define a fracture toughness for three-dimensional architected materials and truly capture

the complex hierarchical nature of lattice architectures and their vast combination of geometric

parameters and failure mechanisms (as discussed in the following chapter).

B

A

Figure 7.7: The net cross-sectional area of a notched sample is defined as the gross area of the
ligaments to the side of the notched and perpendicular to the applied tensile load. (A) SEM im-
age illustrating the net cross-sectional area of a 90◦-notched specimen, which is denoted by the
highlighted red areas. (B) SEM image of the top view of the cross-sectional area.
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A net section strength criteria can also be formulated by describing the stress at failure of notched

specimens as a function of the tensile strength of the material and the net cross-sectional area,

σf (β) = σf,unnotched
Anet(β)

Atotal
(7.15)

where σf,unnotched is the stress at failure for the unnotched case, Anet,β is the net cross-sectional area

as a function of notch orientation β, and Atotal is the total cross-sectional area, as depicted by Fig.

7.7. Due to the finite length of the unit cells, the cross-sectional area can remain constant for a range

of notch orientations. That is, the cluster of structural elements that intersect an infinitesimal crack

might remain the same with a change in notch orientation. See Fig. 2.4 for a visual representation of

the cluster of elements that are removed to create a notch. This yields a net section strength criteria

that is piece-wise linear, as depicted by Fig. 7.8. As the length of the unit cell decreases, this curve

becomes smooth and continuous; as expected for a monolithic solid. The stress at failure from the

nanomechanical experiments and that predicted by a net section strength criterion is shown in Fig.

7.8. The experimentally measured fracture stresses are significantly less than the stresses associated

with net section yielding and do not predict the fracture strengths as well as a fracture mechanics

analysis, as seen from previous sections. This conventional stress analysis of residual strengths is not

suitable for estimating the fracture strength of notched specimens and suggests that the stresses at

failure measured from the nanomechanical experiments depict fracture stresses as function of notch

orientation without a significant influence from the finite width of the specimens.

7.6 Stiffness analysis

The stiffness of a linear-elastic solid plate under the same geometric constraints as the samples in this

study can be predicted as a function of notch orientation. Assuming linear elasticity, the compliance

of a cracked plate under tension is related to the strain energy release rate G by

G =
P 2

2B

∂C

∂a
(7.16)

where P is the applied tensile load, B is the width of the sample, C is compliance, and a is half the

crack length. Under plane stress, the strain energy release rate is proportional to the square of the

in-plane stress intensity factors KI and KII as the crack orientation varies,

G =
K2
I +K2

II

E
(7.17)

Using Eq. 6.4a and Eq. 6.4b as the definition of KI and KII , Eq. 7.16 can be solved for the com-

pliance of a linear-elastic cracked solid as a function of material properties and sample dimensions,
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Figure 7.8: A net section strength criteria can be used to evaluate the strength of the ligaments of
notched specimens. This criteria describes the stress at failure for notched specimens as a fraction
of the tensile strength of the material (that is, the measured stress at failure for the unnotched case)
and dictated by the net cross-sectional area. The piece-wise linear fashion of the curve is a result of
the discrete nature of the architected material. As the length of the unit cell decreases, this curve
becomes smooth and continuous; as expected for a monolithic solid.

which is found to be

C =
H

EBW

[
1 + 2π

W

H

( a
W

)2
cos2 β

]
(7.18)

This calculation is compared to the experimental stiffness data in this study, shown in Fig. 7.9. The

average material properties and global dimensions used for this calculation is listed in Table 7.2.

Table 7.2: Effective material properties and geometric constants used for computing the stiffness of
an equivalent linear elastic plate as a function of notch orientation

Parameter Value
Unit cell length, L 5 µm
Gauge section depth, B (2 x L) µm
Gauge section width, W (17 x L) µm
Gauge section height, H (27 x L) µm
Crack length, a 19.45 µm
Young’s Modulus, E 1.30 GPa

Using this approach, it appears that the specimens with the highest failure strength follow the

expected trend in stiffness of the equivalent continuum plate as a function of notch orientation.
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Figure 7.9: Stiffness for hollow octet nanolattices tested in this study and that of an equivalent
linear-elastic solid as a function of notch orientation. The stiffness for the unnotched samples are
also plotted as a band corresponding to a 95% confidence interval centered at the mean stiffness for
all unnotched samples.

The failure strength of samples exhibiting low stiffness is misleading as minor misalignment of the

experimental setup can induce non-uniform deformation and inhomogeneous loading. Common to

tensile experiments of brittle materials, the sources and magnitude of scatter in strains among geo-

metrically indistinguishable specimens are attributed to experimental misalignment that contribute

to an initial low stiffness region and premature failure.

7.7 Failure Envelope

The failure criteria can ve visuallre represented by using Eq. 6.4a through Eq. 6.4d to convert the

stress intensity factors into normalized mixed mode stress insentisity factors, KI/KIc and KII/KIc,

as shown in Fig. 7.10. These curve represent the fracture loci of combinations of stress intensity

factors that indicate the initiation of failure. The experimental results within the curves described

by a liner elastic fracture mechanics. Fig. 7.10 shows that for high notch orientations, fracture

occurs at low stress intensity factors near zero, where the T-stress is dominant. Contribution from

the T-stress can be better illustrated by plotting the effective stress intensity factor Keff normalized

by KIc against the T-stress normalized by the fracture stress σc, as shown in Fig. 7.11. For high

values of notch orientation, the effective stress intensity factor is low and the T-stress is positive;
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and for low values of notch orientation, the effective stress intensity factor is high and the T-stress

is positive. Fracture is more dictated by the T-stress for low low notch orientations [71–73]. For

moderate notch orientations (β ∼ 60◦), the T-stress is negligible and fracture is dominated by the

singular term in the series expansion. When T/σc = 1, the notch is oriented parallel to the applied

load and failure is dictated by the weakest point in the gauge section, similar to the unnotched case.

In this orientation, there is negligible crack opening so the effective stress intensity factor is zero

and failure is dominated by the non-singular term of the series expansion.

Figure 7.10: Mixed-mode fracture loci for hollow octet nanolattices and for an equivalent center-
notched linear-elastic continuum solid.

7.8 Finite Element Modeling

In collaboration with Yong-Wei Zhang (Institute of High Performance Computing, A*STAR, Singa-

pore) and Huang Wei (Northwestern Polytechnical University, Xian, China), numerical simulations

were performed to measure the response of nanolattices under tensile loads. Three-dimensional

finite element models for the as-designed hollow-tube octet nano-architected gauge sections with

and without a through-thickness center notch were created using HyperWorks-constructed sample

geometries and are shown in Fig. 7.12. All simulations were performed using the finite element pro-

gram ABAQUS/Explicit where three-dimensional 4-node quadrilateral shell elements with reduced-

integration were employed. A linear-elastic constitutive relation and a brittle damage model were

adopted to describe the mechanical response of alumina ceramic. Displacement-controlled boundary
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Figure 7.11: Contributions of the T-stress in mixed-mode loading for a center-notched linear-elastic
continuum solid and hollow octet nanolattices.

conditions were applied to the finite element model to closely resemble the experimental setup, all

the degrees of freedom at the bottom surface of the FE model were fixed, the degrees of freedom

of all the nodes on the top surface along the X and Z direction were constrained, and the uniaxial

tensile loading was implemented by prescribing displacement applied to the top surface along the

Y direction. Explicit dynamics procedure was adopted to simulate the quasi-static uniaxial tension

of the notched and unnotched nanolattice samples. During the tensile loading process, the energy

balance of the whole system was constantly monitored and enforced with its kinetic energy being

less than 1% of the internal energy. The effect of the kinetic energy of the system was negligible

compared to its internal energy and external work. A post-processing module (ABAQUS /Viewer)

was used to view the analysis results, e.g. reaction forces of nodes, stresses, and strains.

The numerical results from finite element simulations of notched and unnotched samples under

uniaxial tensile loading are shown in Fig. 7.13, which are plotted analogously to the experimental

results shown in Fig. 5.3. Analogous to Fig. 5.1, the simulated central sections of all samples before

and after tensile loading are shown, and each of the seven plots displays a single representative stress-

strain data set (solid line) and tensile failure strengths denoted by x. All the samples exhibited an

elastic deformation up to instantaneous failure regardless of the existence of a through-thickness

notch. The Young’s modulus was calculated by fitting the stress-strain data in the strain range

between 0 and 2% for each notch orientation, which is plotted by a dashed line.
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Figure 7.12: Finite element models resembling as-fabricated center-notched tensile geometries. (A-
C) SEM image and corresponding finite element model. (D-E) Octet unit cells are composed of shell
elements.

Finite element simulations show that the Young’s modulus of unnotched nanolattices was the

highest among all samples at 1.73GPa, and that of the notched nanolattices decreased from 1.68GPa

to 1.31GPa as the notch orientation varied from 0 to 90 degrees with respect to the loading direc-

tion. The unnotched nanolattices also attained the highest tensile strength of 39.34MPa among all

the samples; tensile strengths of notched nanolattices decreased monotonically from 31.101MPa in

vertically notched sample to 8.197MPa in orthogonally notched sample, as plotted in Fig. 7.14.

The numerical results appear to be in good agreement with the experimental results.

Nano-mechanical experiments showed that for the tensile failure of notched hollow-tube octet

architected nanolattices always initiated at the notch roots and instantaneously evolved into brittle

fracture along a lattice plane of nodal junctions orthogonal to the loading direction. Similar results

were also obtained from FE simulations as shown in Fig. 7.15E,F. In addition, FE simulations

also support the experimental observations by revealing that the largest local stress concentrations

occurred at nodal junctions near the notch root, and for unnotched nanolattices, the highest stress

concentrations occurred at the nodal junctions near the edges (Fig. 7.15C, D). Fig. 7.15C shows

the simulated stress distribution for the orthogonally notched sample, which reveals the evolved von

Mises stress landscape shortly before failure at a globally applied uniaxial stress of 8.014MPa, with

regions of high stress concentrations of 5.098GPa located at the nodal junctions closest to the notch

roots. These locations serve as the weakest links within the hollow-tube network and eventually as



58
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Figure 7.13: Fracture surface morphology and stress-strain response for notched and unnotched
nanolattices from finite element simulations. (Rows A, B) Finite element models of octet nanolattices
for each notch orientation before and after tensile failure. (Row C) Stress-strain response (solid line)
for notched and unnotched nanolattice samples under uniaxial tensile loading were plotted. The
point of catastrophic failure is denoted by an ‘x’ for all samples and the Young’s modulus for each
notch orientation is plotted by a dashed line.

sites of failure initiation. The magnitude of local stresses at the nodal junctions at the edges of the

unnotched nanolattices is a factor of 1.05 higher than those away from the edges, and thus failure is

likely to initiate at these stress-concentrated zones. The path of crack propagation in nanolattices

depends on the stress distribution at the nodal junctions. The complex local stresses within hollow

tube nodes lead to a non-uniform distribution of stresses within the octet unit cell that induce stress

concentrations at crevices, i.e. tube intersections, which act as elastic hinges during the tensile

loading and dominate the deformation of the unit cell. Failure then extends along the path of high

tensile stress concentrations (Fig. 7.15).

These numerical results along with the experimental analysis imply that failure of the hollow octet

nanolattices occurs solely by means of tube wall fracture, in the absence of buckling, and the fact

that failure propagation trajectory is always orthogonal to the loading direction implies that Mode

I fracture plays a dominant role in brittle fracture of these hollow nanolattices. Failure surface

morphology and stress-strain response obtained from experiments and finite element simulations

closely resemble one another and demonstrate that initial failure always occurred at the nodal

junctions with the highest local stress concentrations – at the notch roots in the flaw-containing

samples and at the gauge section edges in the unnotched ones – by tearing of the 50nm-thick

alumina nodal junction walls. After this incipient tube wall tearing, global fracture occurred via
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Figure 7.14: Experimental and finite element simulation results for tensile strength of notched and
unnothced nanolattices as a function of notch orientation.

brittle fracture of all nodal junctions within parallel lattice planes that emanate from the initially

highest stress concentrations that are oriented orthogonally to the applied load, forming fracture

planes.

Finite element simulations also enabled the evaluation of crack propagation path as a function of

notch geometry and loading conditions. Fig. 7.16 contains FE-generated images of the nanolattice

gauge sections with all six notch orientations, with crack propagation contours generated by FE

simulations at different strains. The crack deflection plot (Fig. 7.13) and these profiles demonstrate

that cracks always extend from the notch roots along the axis of the hollow beams towards the adja-

cent nodes, and follow a nodal lattice plane that is orthogonal to the loading direction. This failure

mechanism stems from the lattice architecture: it provides a percolating surface of least resistance

along the nearest-neighbor nodes, which depends on its connectivity. This failure mechanism of

nodal-driven fracture is materials- rather than structure-based and marks a key distinction in crack

propagation through continuum solids versus architected materials. After the initial failure, the

pre-defined lattice connectivity drives subsequent rupture such that the fractured surface is oriented

orthogonally to the loading direction regardless of the notch orientation. Simulations indicate that

cracks emanate from the notch roots. Our numerical simulations revealed that the critical strain of

ε = 2.256% was the highest for the unnotched sample and decreased monotonically fromε = 1.844%

to ε = 0.627% for the notched samples as the center notch orientation varied from 0 to 90 degrees
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Figure 7.15: Fractographic examination of tensile samples and corresponding finite element simula-
tions. (A) SEM image of a notched sample after tensile failure with arrows pointing at the initial
notch. Failure occurred at all nodes along two parallel lattice planes that were adjacent to the notch
ends, orthogonal to the loading direction (scale bar: 10µm). (B) Zoomed-in SEM image of fractured
nodal junctions and neighboring hollow tubes within those failure planes (scale bar: 2µm). (C)
FE-generated contour plots of von Mises stress distributions in the specimen notched at 90 degree
with respect to applied tension. Red boxes denote the most stressed nodal junctions, with a max-
imum stress of 5.167 GPa, where brittle fracture initiated. (D) FE-generated contour plots of von
Mises stress distributions in the unnotched nanolattices. (E and F) FE-generated fracture surface
morphology of notched nanolattices displayed in the same orientation and relative magnification as
SEM images in (A,B).
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with respect to the loading direction. Once cracks start to propagate, the maximum stress con-

centration shifts to the nodes along the nodal plane orthogonal to the loading direction. Since the

nodal junctions are the weakest links of the nanolattice structures, the nodal junction failure along

the nodal plane orthogonal to the loading direction become inevitable. This mechanism also drives

fracture in the unnotched nanolattices. The above analysis supports the experimental observations

and suggests that crack propagation deflection is a direct consequence of the discrete nature of archi-

tected materials. Finite element analysis revealed the detailed information on the stress distribution

in hollow-tube octet lattices, where the crack initiated at a node near the notch root and propagated

through the nodes aligned with the plane orthogonal to the applied load.

90.0°

63.4°

45.0°

26.6°

7.1°

0.0°

Figure 7.16: Failure propagation paths as a progressing of applied strain of all notched nanolattices
subjected to uniaxial tensile loading.
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Chapter 8

Conclusions

As the characteristic features of three-dimensional architected materials are reduced to microscale,

a question arises of whether they are better described as discrete structures or continuum-like ma-

terials. This work reveals that such architected materials, i.e. hollow ceramic nanolattices, have

discrete-continuum duality, i.e. they can be treated like continuum materials in the context of flaw

sensitivity and failure regardless of the presence, nature, or orientation of the flaws while the discrete

lattice architecture enables predictability and control of failure trajectory. Tensile specimens were

fabricated and in-situ uniaxial tension experiments on nano-architected 50nm-thick hollow alumina

nanolattices were conducted, with some containing pre-fabricated center through-notches oriented at

different angles with respect to the loading direction. Nanomechanical experiments revealed that all

samples loaded elastically until catastrophic brittle failure along a plane of nodes that is orthogonal

to the loading direction. The unnotched samples failed at 27.4MPa and the notched ones had a

strong dependence of failure strength on notch orientation, decreasing from 26.8MPa to the lowest

strength of 7.2MPa in the samples whose notch was oriented at 90 degrees with respect to the load-

ing direction. The specific tensile strength of 146 kPa kg−1 m3 of the 6.5% dense hollow alumina

nanolattices is a factor of ∼ 4 higher than what has been previously reported for all architected

and bulk materials with similar densities. Treating the geometry of center-notched samples to an

equivalent monolithic plate with the same notch, linear elastic fracture mechanics can accurately

predict failure stresses and crack trajectory with prior knowledge of the lattice connectivity. The

analysis presented in this work demonstrates the characterization of fracture initiation of architected

materials based on conventional fracture mechanics for linear elastic materials. These findings reveal

that architected materials whose geometries lie within a similar parameter space can be treated like

continuum materials in the context of flaw sensitivity and failure regardless of the presence, nature,

or orientation of the flaws it might contain. This work demonstrates that prior knowledge of the

lattice architecture leads to full control of crack path trajectories in architected materials and has

significant implications for designing advanced new materials whose prescribed architecture may

allow for engineering the possible crack trajectories upon in-use mechanical loading.
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8.1 Open Questions

Over the course of this study, several questions were raised that are outside the scope of this thesis.

These questions warrant further investigation. In monolithic materials, satisfying linear fracture

mechanics conditions enables measuring a valid fracture toughness (KIc), which is regarded as a

sample geometry-independent material property. LEFM requirements are based on the assumption

that the plastic zone at the crack tip is small compared to all relevant length scales associated with

the stress field parametrized by K [71]. Fracture toughness measurements are usually carried out

according to standardized tests (e.g., ASTM E399, ASTM E1820) developed to determine the point

value of plain strain fracture toughness. Fig. 8.1A illustrates a single-edge bending sample that is

geometrically similar to the ASTM standards. Microscopic samples, with dimensions on the order of

several microns, have been shown to adhere to LEFM assumptions [81], especially in materials with

small plastic zone sizes like ceramics, but the non-standard fabrication and testing instruments make

it difficult to satisfy the separation of scales required by standardized tests. Fig. 8.1B illustrates

the notion of fabricating a three-dimensional specimen whose unit cell length, l, is small compared

to the flaw size, 2a, and the global dimensions of the sample, W . Virtually no fracture experiments

that reveal credible fracture toughness on samples smaller than the standard sample dimensions

have been reported.

Measuring fracture toughness of architected materials, especially of nano- and micro-architected

materials like the ones in this work, introduces further challenges that emanate from additional lattice

parameters that influence their fracture resistance; e.g., relative density, beam slenderness ratio,

nodal connectivity, and a tube wall thickness [36]. A dedicated study that quantifies the influence of

each of these parameters on toughness must be conducted before the notion of fracture toughness for

architected materials can be defined (see, for example Refs. 24,26). Fracture toughness has yet to

be reliably defined for architected materials because of the multi-scale nature of this problem; with

separation of scales that includes local atomic processes, complex local mechanical deformation ahead

of the notch root—in the individual beams, junctions, and hollow tubes — is particularly challenging

and requires extensive computational development (Fig. 8.1C). Sophisticated models and simulations

are necessary to gain insights into fracture toughness of architected materials and to assess whether

a discrete-to-continuum transition exists where fracture of three-dimensional architected lattices

transitions from a structural analysis of truss-like networks to be fully described by LEFM, as

shown by this work.
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B
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Figure 8.1: Fracture toughness of architected materials. (A-B) SEM image of a single edge notch
bending specimen illustrating the notion of fabricating a three-dimensional specimen whose charac-
teristic features at the unit cell length (l) are small compared to the flaw size (a) and the global
dimensions of the sample (W ). (Row C) Images of FE efforts to characterize the complex stress
state of three-dimensional architected materials across multiple length scales. FEA images courtesy
of Yong Wei Zhang and Hunag Wei.
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Appendix A

Supplemental Videos

VIDEO S1: In-situ nanomechanical experiment of unnotched sample with corresponding load-
displacement data.

VIDEO S2: In-situ nanomechanical experiment of notched sample with corresponding load-
displacement data.
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VIDEO S3: Visualization of MATLAB script capable of generating a lattice geometry with a center
notch of varying orientation.
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Appendix B

Experimental Data
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Appendix C

Details of Experimental Setup

Figure C.1: Previous version of center-notched tension samples.
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Figure C.2: MATLAB scripts allowed for geometrically-indistinguishable samples and, more impor-
tantly, reproducible notch roots, which are the locations of high stress concentrations. For example,
for a 90◦-notched specimen, diagonal beams are present at the node closest to the notch root. If
focused-ion beam milling was used to create the notch, then the integrity of these structural ele-
ments might be compromised and the material composition at this location might change due to ion
bombardment.

Figure C.3: XeF2 etching enables the creation of the simple supports for three-point bending ex-
periments at the microscale. After deposition a polymeric plate on top of a silicon substrate, XeF2

can be used to selectively etch away the substrate and by tuning the etching parameters, a point
support can be fabricated. A microscopic three-point bending specimen with a lattice architecture
can then be placed on top of these supports.
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Appendix D

Details of Finite Element
Simulations

Figure D.1: Von Mises stress distribution from finite element analysis of the central region of the
90◦-notched sample. The location of highest stress is at the node closest to the notch root. The
finite element simulations were performed by Dr. Yong-Wei Zhang (Institute of High Performance
Computing, A*STAR, Singapore) and Dr. Huang Wei (Northwestern Polytechnical University, Xian,
China).
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Figure D.2: To evaluate the scaling of stress with distance from the notch root, the von Mises stresses
for half unit cells were averaged and plotted as a function of distance where the origin is located at
the first element closest to the notch. If the different averaging area is selected, the average stresses
will vary since there is a high stress concentration at the nodes; therefore, a dedicated study must
be performed to assign an appropriate area. The finite element simulations were performed by Dr.
Yong-Wei Zhang (Institute of High Performance Computing, A*STAR, Singapore) and Dr. Huang
Wei (Northwestern Polytechnical University, Xian, China).
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Figure D.3: The finite element simulations do not take into account the effect of the geometric and
material defects on the fracture strength of nanolattices, as shown by the SEM image. It would
be computationally expensive to model the details of the hollow tube intersections in the finite
element model. Scale bar denotes 4µm The finite element simulations were performed by Dr. Yong-
Wei Zhang (Institute of High Performance Computing, A*STAR, Singapore) and Dr. Huang Wei
(Northwestern Polytechnical University, Xian, China).
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