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ABSTRACT 

How do we make economic decisions in everyday life? How do we make decisions in the 

face of uncertainty regarding the statistics of the environment? These are the questions that 

played a pivotal role in the formation of the field “Decision Neuroscience”. In each chapter 

of this thesis, we investigated the computational and neural mechanisms to tackle these 

questions using behavioral and neural data acquired through fMRI experiments.  

In the first chapter, we investigated the computational and neural basis of economic 

decision-making in a binary choice task between two food items. We analyzed behavioral 

and neural data in a task where participants conducted a sequence of binary choices under 

the manipulation of fixation-based attention. We developed and calibrated a computational 

model based on evidence sampling and accumulation to show that the model not only 

accurately captured basic properties such as choice and reaction time (RT) but also the 

effect of attentional manipulation in participants’ behavior. We found that the evidence 

accumulation process predicted by the model to drive a decision was implemented in the 

areas of frontoparietal network including dmPFC and IPS. These regions also exhibited 

increased functional connectivity with the activity in vmPFC during choice period where 

sampled evidence was represented. Our results suggest the involvement of these areas in 

value-based binary choice.  

In the second chapter, we examined the computations involved in the decision making 

under uncertainty. In particular, we aimed to pin down the computations related to temporal 

change detection. Temporal change detection is the capacity to detect change in the 



 

 

vii 
statistics that govern the timing of occurrence of events. We analyzed behavioral data from 

a novel task where participants observed a sequence of images presented at irregular 

timings and tasked to detect a change in the frequency of image presentations. We 

developed and compared computational models from Bayesian to heuristic models and 

found that all the models captured quantitative aspects of participants’ behavior equally 

well despite the difference in their computational complexity. Thus, we could not 

distinguish computations involved in temporal change detection solely from the behavioral 

data.  

In the third chapter, we aimed to elucidate the computations involved in temporal change 

detection from the perspective of neural implementation using fMRI data by leveraging the 

computational models examined in the previous chapter. We found that the key variable to 

guide a decision derived from a computationally frugal heuristic model correlated with the 

activity of the frontoparietal network including dlPFC and IPS, while similar variables 

derived from more computationally taxing Bayesian models did not show significant 

correlation with any of the brain regions. Our results suggest that humans might be relying 

on a simple heuristic model to implement temporal change detection.  
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C h a p t e r  1  

OVERVIEW 
 

“Decision Neuroscience” is an interdisciplinary field in neuroscience that bridges ideas from 

economics, psychology, artificial intelligence, and cognitive neuroscience to understand 

computational and neural mechanisms underlying human decision-making. The key questions 

include but are not limited to how we make economic choices (Krajbich et al., 2010; Rangel and 

Hare, 2010; Hare et al., 2011; Hunt et al., 2012), how we make decisions in the face of uncertainty 

regarding the statistics of the environment (Behrens et al., 2007; Rushworth and Behrens, 2008; 

Nassar et al., 2010, 2012; Payzan-LeNestour et al., 2013; McGuire et al., 2014), how we infer the 

intention of other individuals in the social interaction (Hampton et al., 2008; Yoshida et al., 2008, 

2010; Dunne and O’Doherty, 2013; Suzuki et al., 2015), and how we engage in and arbitrate 

between habitual and goal-directed control of behavior (Daw et al., 2005; Lee et al., 2014; 

O’Doherty et al., 2017).  

 

In this thesis, I tackle some of these questions by conducting cognitive neuroscience experiments 

when scanning participants in the fMRI scanner and analyzing behavioral and neural data using the 

method called “Model-based fMRI analysis” (O’Doherty et al., 2007). In this approach, a rigorous 

computational model that captures quantitative aspects of the behavioral data is first developed and 

fitted to participants’ behavior. Then, computational variables in the model that play a crucial role 

implementing a decision are correlated against BOLD signal. By using this approach we can do 

more than test the areas of the brain that are involved in a particular cognitive process: we are 

capable of identifying which areas of the brain implement an exact computation prescribed by the 

computational model of the decision making. The structure of this thesis is as follows.  
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In Chapter 2, we investigate our decision making in an economic context. More specifically, we 

focus on the binary choice between two food items. Previous studies showed that sequential 

sampling models such as drift diffusion model that are based on evidence sampling and evidence 

accumulation process describe quantitative aspects of participants’ behavior in value-based binary 

choice tasks. These models were first fitted to participants’ behavior, and then indirect model-

related stimulus or a model-derived quantity, which served as a good proxy for but does not 

necessarily represent the evidence accumulation process, were correlated against BOLD signal. 

Here, we directly correlated the time course of evidence accumulation process predicted by a fitted 

sequential sampling model against BOLD signal. In order to obtain a reliable time course of 

accumulator values, acquiring the information of participants’ attention guided by visual fixations is 

crucial. We achieved this in a task where we externally manipulated the fixation to the items by 

sequentially displaying the two items. The information of fixation-based attention is utilized in a 

novel computational model we developed called attentional neural drift diffusion model (anDDM). 

The time course of accumulator value estimated by anDDM correlated with the activity in the areas 

of the frontoparietal network including dmPFC and IPS. Moreover, these regions showed increased 

functional connectivity during choice period to vmPFC where item values used as the input to the 

accumulators are represented. Our results corroborate the involvement of the regions in the 

frontoparietal network in the evidence accumulation process in value-based binary choice. 

 

In Chapter 3, we investigate our decision making under uncertainty about the statistics of the 

environment. Specifically, we examine the computational mechanisms underlying temporal change 

detection in human behavior. Temporal change detection is the capacity to detect changes in the 

statistics governing the timing of the occurrence of events. This ability is crucial for producing 

adaptive behavior in a volatile environment, yet little is known about its underlying computational 



 

 

3 
and neural mechanisms. Here, we applied computational models of varying degrees of 

sophistication to the behavioral data from human participants performing a novel temporal change 

detection task when they were scanned with fMRI. We found that a parsimonious heuristic model 

performed equally as well as more sophisticated Bayesian models. The result is interesting in its 

own right in that the computational models we tested explain variance in participants’ behavior 

equally well regardless of the difference in the computational complexity across models, and also in 

that we cannot distinguish computational models solely from behavioral data. This result leads to 

our analysis of fMRI data in Chapter 4 to differentiate computational models using neural data. 

 

In Chapter 4, we investigate the neural computations involved in temporal change detection. We 

apply the computational models that explained participants’ behavior equally well in Chapter 3 to 

fMRI data in order to identify which model is most plausible from the perspective of neural 

implementation. We found that the heuristic model correlated with activity in the regions of 

frontoparietal network including dlPFC and IPS, which furthermore accounted for activity in these 

areas significantly better than the Bayesian models. Our results suggest that the brain implements an 

approximate strategy to detect temporal change points and that the computations behind the model 

are implemented in brain areas also implicated in evidence accumulation in perceptual and value-

based decision making. 
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C h a p t e r  2  

NEURAL CORRELATES OF BINARY CHOICE  

GUIDED BY VISUAL ATTENTION 

 

Adachi R, Jessup R, O’Doherty JP. Neural correlates of binary choice guided by visual attention.  

R.J. and J.P.O. deigned the experiment. R.J. collected the data. R.A. and R.J. performed the data 

analysis. R.A., R.J, and J.P.O. wrote the manuscript. J.P.O. supervised the research. 

 

INTRODUCTION 

How do we choose between two alternatives? Elucidating the neural computations underlying 

binary choice has been a key challenge in neuroscience in both perceptual and value-based decision 

making domains (Gold and Shadlen, 2007; Heekeren et al., 2008; Rangel and Hare, 2010; 

Summerfield and Tsetsos, 2012). In both humans and non-human primates, a widely acknowledged 

mechanism posits that evidence in favor of one choice over the other is sampled from stimulus 

properties and accumulated until a decision criterion is met. This mechanistic account is compatible 

with the computations underlying sequential sampling models (Ratcliff et al., 2016), which have 

been shown to accurately describe quantitative aspects of participants’ behavior in binary choice 

tasks (Usher and McClelland, 2001; Bogacz et al., 2006; Bogacz, 2007; Ratcliff and McKoon, 

2008). In recent years, neural correlates of the computational variable associated with sequential 

sampling models have been examined in humans using fMRI, MEG, and EEG (Mulder et al., 2014; 

Forstmann et al., 2016). In particular, there has been growing interest in identifying brain regions 

involved in the evidence accumulation process, which is the key computation of the model.  
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To find brain regions implementing the accumulation of evidence in a binary choice task, the time 

course of accumulator value predicted by a sequential sampling model could be directly correlated 

against BOLD signal. Alternatively, previous studies correlated other indirect model-related 

stimulus (Heekeren et al., 2004; Basten et al., 2010; De Martino et al., 2013a) or a model-derived 

quantity (Hare et al., 2011) that served as a proxy for but does not necessarily represent evidence 

accumulation process. This is partly because a reliable estimate of the time course of accumulator 

value within a trial cannot be attained in a binary choice task where two options are presented 

simultaneously without additional information of attention driven by visual fixations. The 

information of fixation-driven attention enables the computational model to incorporate the 

knowledge of which of the two options is more relevant to the accumulation process for the 

participants at each time point during the trial. Therefore, the description of how the decision 

unfolds over time within a trial can be estimated at a higher precision.   

 

The importance of attention in a choice task has been shown in a number of previous reports (Armel 

et al., 2008; Krajbich et al., 2010; Krajbich and Rangel, 2011; Lim et al., 2011; Towal et al., 2013; 

Tavares et al., 2017). In the choice process, we shift our gaze between the two alternatives back and 

forth and the pattern of fixation exerts a significant effect on the final choice. We refer to this 

fixation-driven attentional effect on choice as attentional bias. There are two approaches to obtain 

the information regarding the fixation-driven attention of the participants: first, we present the 

options in the choice set simultaneously and measure visual fixation directly using an eye-tracking 

device when participants are freely moving their fixations (Krajbich et al., 2010; Krajbich and 

Rangel, 2011; Towal et al., 2013; Tavares et al., 2017) or when participants are instructed to fixate 

on a particular item (Lim et al., 2011). Second, we explicitly control fixations by displaying only 

one option at a time and achieve comparison by presenting alternatives in the choice set sequentially 
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(Armel et al., 2008). The latter approach is easier to implement and exogenous control of the 

fixated option enables us to obtain the time course of the accumulator value at a decent temporal 

resolution. 

 

The information of fixation-based attention has been incorporated in a variant of sequential 

sampling model called attentional drift diffusion model (aDDM, Krabich et al., 2010). The model 

has been shown to capture attentional bias in participants’ behavior in various experiments 

(Krajbich et al., 2012; Tavares et al., 2017). However, this is a psychological model intended to 

describe only the behavioral data and its equivalent cortical model that has the capacity to describe 

both the firing rate of cortical neurons and the behavioral data has not yet been explored (Bogacz, 

2007).  

 

The goal of the present study is two-fold: first of all, we aimed to develop a neurally plausible 

computational model of binary choice in the value-based decision making domain that could 

capture attentional bias in participants’ behavior. Secondly, we aimed to identify brain regions 

representing quantities associated with the computational model. In particular, we tested neural 

correlates of the time course of accumulator value during trials. 

 

To address these questions, we developed a behavioral task and ran participants through this task 

while they were scanned with fMRI. In the task, participants conducted a sequence of binary 

choices between two food items. To manipulate the fixation-driven attention of the participants and 

control which item is more relevant for the evidence accumulation process to guide a choice, we 

alternated the item presented on the screen every 1 second. This information is reflected in a variant 

of sequential sampling model we developed such that it flexibly changes the sampled evidence 

every 1 second depending on which item is currently presented on the screen.  
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Behaviorally, we hypothesized that the participants’ choice behavior will show a strong attentional 

bias as a result of sequential presentation of the two items under comparison. At the 

neuroanatomical level, we first hypothesized that the ventromedial prefrontal cortex (vmPFC) 

would be involved in representing item values as shown in a number of previous reports (Chib et 

al., 2009; Clithero and Rangel, 2013; McNamee et al., 2013) and the activity in this area would be 

modulated by participants’ attention guided by visual fixations. Secondly, the activity in the 

dorsomedial prefrontal cortex (dmPFC) and intraparietal sulcus (IPS) would reflect the evidence 

accumulation process predicted by the computational model. These are the findings from previous 

studies of value-based binary choice mechanisms under voluntary visual fixations (Hare et al., 

2011; Lim et al., 2011), and yet we hypothesized that the same mechanisms would be involved in 

our task of binary choice under exogenous manipulation of visual fixations.  

 

MATERIALS AND METHODS 

Participants 

21 right-handed participants performed the experiment (18-26 years old, 14 males). The participants 

were prescreened to exclude those with a prior history of neurological or psychiatric illness. The 

School of Psychology Research Ethics Committee at Trinity College Dublin approved the 

experiment and all the participants gave informed consent. 

 

Experiment tasks 

The experiment contained the following three phases in order. In the first stage participants made a 

sequence of binary choices of food items that they were willing to consume at the end of the 

experiment (choice phase; Figure 1A). There were 65 trials in the choice phase and the item pair 

used for each trial was selected randomly without replacement from 130 different food items 
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including snacks, candies, and condiments. We selected food items that were easily obtainable at a 

local grocery store so that the participants were familiar with them. The set of items was fixed for 

all the participants but the item pair used in each trial was randomized for each participant. At the 

beginning of each trial, one item was shown on either the left- or right-hand side of the screen for 1 

second, followed by the presentation of the paired item on the other side of the screen for 1 second. 

In the current paper the items presented first and second are referred to as item1 and item2, 

respectively. The side of item1 presentation was randomized across trials for each participant. The 

presented item and its location on the screen alternated between the two every 1-second until the 

participant made a choice with the button press. There was no restriction on reaction time (RT). The 

choice was enabled after 1 second from the start of a trial, which coincided with the timing of the 

first item2 presentation, to ensure that the participant went through the comparison process of the 

two items to make a choice. The button press was made with either the left or right index finger to 

choose the item presented on the corresponding side of the screen. Importantly, the choice of either 

item was possible irrespective of which item was displayed on the screen at the time of button press. 

The presentation of a fixation cross (6-18 seconds, mean 12 seconds) immediately following the 

button press separated the trials.  

 

In the second stage the participants reported their willingness-to-pay (WTP) for the 130 food items 

used in the choice phase (pricing phase; Figure 1B). We adopted the Becker-Degroot-Marschak 

(BDM) auction paradigm to measure the valuation of items specific to each participant (Becker et 

al., 1964). Importantly, the participants did not have incentives to deviate from reporting their true 

WTP in this paradigm. At the beginning of each trial, the participant was given an endowment of 3 

euros that could be spent on purchasing the item involved in the trial. The item was presented on the 

screen until the participant reported the amount of money he/she would be willing to pay in 

exchange for the item by an integer amount between 0 and 3 euros. There was no restriction on RT 
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and each trial was separated by the presentation of a fixation cross (2-6 seconds, mean 4 seconds). 

The order of items used in the trials was randomized for each participant. At the end of the 

experiment, we randomly selected a trial; if the reported WTP for the item in the trial was greater 

than the number drawn from the uniform distribution between 0 and 3, the participant paid the 

amount of money equal to the number drawn from the endowment of 3 euros in exchange for the 

item and kept the remaining amount. Otherwise, the participant did not get the item but kept the 

endowment of 3 euros. In the current paper we use the terms WTP and item value interchangeably.  

 

In the third stage the participants rated how familiar they were with each of the 130 food items used 

in the choice and pricing phase (familiarity phase). The paradigm of the task was the same as the 

pricing phase except that the participants were rating their familiarity with each item on an integer 

scale from 1 (not familiar) to 5 (very familiar). We obtained familiarity ratings to ascertain that the 

participants were familiar with the items and uncertainty related to unfamiliar items when making 

binary choices and reporting WTPs would be negligible (Plassmann et al., 2007).  

 

At the end of the experiment, the participants could consume the food item obtained in the trials 

randomly selected from each of the choice phase and the pricing phase (1 or 2 food item(s) 

depending on the outcome of BDM auction in the pricing phase). We instructed the participants not 

to eat for 4 hours prior to the experiment to increase the overall valuation of the items. Since it was 

crucial for our experiment that the participants reported their preferred item in every trial in the 

choice phase and the true valuation of each item in the pricing phase, we also instructed the 

participants that they would have to stay in the lab for up to an hour after the experiment and that 

the only foods they could consume in the waiting period were those they obtained from the choice 

phase and the pricing phase. Further, we explained the structure of BDM auction extensively to the 

participants to make sure that they understood that it was optimal for them to report their true WTP 
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of each item in the pricing phase. The participants conducted the choice phase and the pricing 

phase in the fMRI scanner but the scanning data from only the choice phase was used for the fMRI 

analysis.  

 

Computational model 

We developed a computational model to describe participants’ behavior quantitatively. We aimed to 

construct a model that is plausible at the neural level and capable of capturing participants’ choice, 

RT, and attentional bias associated with external manipulation of visual fixation unique to our task. 

We combined the ideas from the model used in two previous studies. One was the neural drift 

diffusion model (nDDM), which is a neurally plausible implementation of the drift diffusion model 

that can accurately capture participants’ choice and RT in a binary choice task (Hare et al., 2011). 

The other was the attentional drift diffusion model (aDDM) that can describe not only participants’ 

choice and RT but also attentional bias in the choice behavior in a binary choice task (Krajbich et 

al., 2010). We refer to our model as attentional neural drift diffusion model (anDDM). We provide 

the description of anDDM here (Figure 2A). 

 

The model contains two accumulators representing two pools of neurons, each of which accrue 

evidence toward the choice of item1 or item2. The input to each accumulator changes according to 

the attended item (i.e., on-screen item) at the time of accumulation. It scales with the value 

difference of the two items under comparison with a discount factor on the value of unattended item 

(i.e., off-screen item) capturing the effect of fixation-driven attention toward the attended item. For 

instance, when item1 is on the screen the input to the accumulator supporting the choice of item1 is 

the value of item1 minus the value of item2 discounted by the attentional bias parameter 𝛼 (i.e., 

𝑉# − 𝛼𝑉%). The input to the accumulator supporting the choice of item2 is opposite in sign (i.e., 



 

 

12 
𝛼𝑉% − 𝑉#). The interpretation of the attentional bias parameter 𝛼 is that there is a full attentional 

bias toward the attended item when 𝛼 = 0 ignoring the value of unattended item in the sampled 

evidence. On the other hand when 𝛼 = 1, there is no attentional bias toward the attended item and 

the value of attended and unattended items are weighted equally. During the initial 1 second of a 

trial when the identity of item2 is not yet revealed, we set the value of item2 to be equal to its 

expected value of 1.5. Each of the two inputs is then perturbed by an independent identically 

distributed noise 𝜀~𝑁	(0, 𝜂%) before its value is added to the corresponding accumulator. Also, 

there are inhibitory connections between the two accumulators with the magnitude of inhibition 

controlled by the parameter 𝜈. In summary, the accumulator value for the attended item i and for the 

unattended item -i at time step 𝑡 + 1 , which are denoted by 𝐴56#7  and 𝐴56#87 	 respectively, is 

calculated as  

 

𝐴56#7 = max	{0, 𝐴57 + (𝑉7 − 𝛼𝑉87)𝛿𝑑𝑇 − 𝜈𝐴587 + 𝜀7 𝑑𝑇} 
(1) 

			𝐴56#87 = max	{0, 𝐴587 + (𝛼𝑉87 − 𝑉7)𝛿𝑑𝑇 − 𝜈𝐴57 + 𝜀87 𝑑𝑇}. 

 

Here, 𝛿 is the drift rate stipulating the average slope of evidence accumulation per 1 ms for the unit 

input value. 𝑑𝑇 is the duration between two successive accumulation time steps in milliseconds and 

it is arbitrarily set to 100 ms. Another parameter 𝜅 was introduced to restrict the accumulator values 

computed in Equation (1) during the initial 1-second from the start of the trial such that  

 

𝐴56#7 = min	{𝜅, 𝐴56#7 } 
(2) 

𝐴56#87 = min	{𝜅, 𝐴56#87 }. 
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This restriction made the model prediction in accordance with our experimental manipulation that 

the choice of an item during the initial 1-second of a trial was not allowed. To justify the 

introduction of this parameter, we compared this model against a model without 𝜅 . It simply 

assumes that the accumulator value could not exceed the threshold value of 1 during the initial 1-

second. The model with 𝜅 was preferred in terms of Bayesian Information Criterion (BIC=5582 

against 5623 of the model without 𝜅). The two accumulator values are set to zero at the start of each 

trial and they are updated every 100 ms until the value of either of the two accumulators exceeds the 

fixed threshold of +1, resulting in the choice of corresponding item.  

 

Model fitting to participants’ behavior 

We calibrated anDDM to participants’ behavior at the group level using maximum likelihood 

estimation by grid search. The model contains five free parameters: 𝛼, 𝜂, 𝜈, 𝛿, and 𝜅. The model 

fitting procedure is as follows. First, we discretized the range of each parameter and set up a grid in 

the joint parameter space. The grid is the Cartesian product of the following range of five 

parameters: 𝛼: 0: 0.1: 0.5 , 𝜂: 0.005: 0.005: 0.04 , 𝜈:	0: 0.1: 1.0 , 𝛿: 2.0: 1.0: 7.0×108K , and 

𝜅: 0: 0.1: 1.0. Second, for each point on the grid defining a set of parameter values 𝛩, we computed 

the empirical joint distribution of choice and RT (RT was categorized into one of 9 bins with the 

duration of 1 second each: from 1-2 seconds to 9-10 seconds) by simulating the model 5000 times 

for each item value pair. Note that the item value pair takes into account the information of which of 

the two items is presented first. Thus, there are 16 pairs of item1 and item2 values denoted by 𝑉 =

(𝑉#, 𝑉%) (item values 𝑉# and 𝑉% are integers between 0 and 3 euros measured in the pricing phase 

of the experiment). We did not differentiate whether item1 was presented on the left- or right-hand 

side of the screen because there was no significant difference between the probability of choosing 

item1 when item1 was presented on the left-hand side and the right-hand side of the screen (𝑝 =
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0.31, Wilcoxon signed-rank test). All the simulation runs with RT exceeding 10 seconds were 

discarded from the calculation of joint probabilities to adjust for the range of RT observed in 

participants’ behavior. Third, the log-likelihood value (LL) for a set of parameter values 𝛩 was 

calculated by summing the log-probability from the previous step across trials (N = 1355) using the 

information from participants’ behavior of choice 𝐶P and RT bin 𝑇P given the item value pair 𝑉P =

(𝑉P#, 𝑉P%) in each trial j:  

	

𝐿𝐿 = log𝑃(𝐶P, 𝑇P|𝑉P, 𝛩).
W

PX#

 

 

Fourth, log-likelihood values for all the points on the grid were compared to set up a smaller grid to 

start another grid search in a more confined joint parameter space. We iterated these steps three 

times by narrowing the range of parameters tested to the values around the best fitting parameter 

values from the previous iteration. We obtained the best fitting parameter value of 𝛼 = 0, 𝜂 =

0.0175, 𝜈 = 1.0, 𝛿 = 4.75×108K, and 𝜅 = 0.575 with −𝐿𝐿 = 2773 (See Table S1 for the detail 

of each iteration). 

 

Creating the accumulator value regressor  

To examine the brain regions implementing the accumulation of evidence to guide participants’ 

choice, we estimated the time course of accumulator value during each trial at 100ms time 

resolution and correlated it directly against BOLD signal. The accumulator value time course that 

conforms to each trial’s item value pair, choice (item1 or item2 chosen) and RT (RT was 

categorized into one of 9 bins with the duration of 1 second each: from 1-2 seconds to 9-10 

seconds) was created as follows. For each of the 16 possible item value pairs of item1 and item2 



 

 

15 
(each item had an integer value between 0 and 3 euros measured in the pricing phase of the 

experiment), we first simulated the behavior of anDDM 100,000 times using Equation (1) and (2) 

with the set of best fitting parameter values obtained by the process of model fitting. Notice that the 

order of fixations to the two items under comparison was taken into account in the definition of item 

value pair: for instance, (1,2) and (2,1) value pairs were treated differently. Second, we categorized 

the time courses obtained from simulation runs by the combination of choice and RT bin. Finally, 

time courses in each category were averaged at every time point separately for accumulators 

accruing evidence toward the choice of item1 and item2. Thus, we created a total of up to 18 

estimated average accumulator value time course pairs for each item value pair (See Figure 2B for 

examples of these time courses). Note that there were some combinations of value pair, choice, and 

RT bin where no simulation runs were categorized (e.g., for (3,0) value pair, no simulation runs 

resulted in the choice of item2 having the value 0 with RT of 8-9 seconds). Nonetheless, we could 

obtain the accumulator value time courses for all the combinations of value pair, choice, and RT 

observed in the participants’ behavior due to an appropriate model calibration and a large number of 

simulation runs. In fMRI analysis we assumed that the two pools of neurons in anDDM, each 

implementing the accumulation process toward the choice of one item, would probably be spatially 

intermingled. Thus, the BOLD signal we measured would reflect the sum of activities of these two 

pools of neurons. Given this assumption we correlated the time course of the sum of two 

accumulator values predicted by anDDM against BOLD signal. For each trial the accumulator value 

time course for the trial’s value pair, observed choice, and RT bin was used in the first-level 

participant-specific general linear models (GLMs) after being convolved with canonical 

hemodynamic response function (HRF) (See GLM1 in Materials and Methods).  
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fMRI data acquisition 

The task was conducted in a Philips Achieva 3T scanner using a phased-array eight-channel head 

coil. The imaging data was acquired at a 30 degree angle from the anterior commissure-posterior 

commissure line in order to avoid the signal dropout in the orbitofrontal cortex (Deichmann et al., 

2003), using a gradient echo T2* weighted echo planar imaging sequence. 39 axial ascending slices 

were acquired with a slice gap of 0.35mm with the following scan parameters: echo time 28 ms, 

repetition time 2000 ms, field of view 240×240 mm, and voxel size 3×3×3.55 mm. High-resolution 

T1 images were collected at the beginning of each participant’s session.  

 

fMRI data preprocessing   

SPM8 (Wellcome Department of Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.uk/spm) 

was used to preprocess and analyze the fMRI data. The functional images for each participant were 

spatially realigned to the first volume using a 6-parameter rigid body spatial transformation and 

then slice time corrected to the middle (i.e., 20th) slice. The high-resolution structural image was 

then coregistered to the mean functional image generated from the realignment procedure. The 

realigned functional images were spatially normalized to the MNI template with a resample voxel 

size of 2 mm isotropic by applying the warping parameters from the segmentation process of the 

coregistered structural image. Finally, the normalized functional images were spatially smoothed 

using a Gaussian kernel of 8 mm isotropic.  

 

fMRI statistical analysis  

We estimated several participant-specific GLMs to test our hypotheses. All the regressors in the 

GLMs were convolved with a canonical HRF provided by SPM8. Participant-specific contrasts 

from the estimated GLMs were used for second-level random effect analyses. For the whole-brain 

analyses, unless otherwise noted, we applied the correction for multiple comparisons at the cluster 
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level p<0.05 with the underlying voxel-wise threshold of p<0.005 and the minimum spatial extent 

of 191 voxels, calculated by using a version of 3dClustSim in AFNI that does not assume Gaussian 

spatial correlations, and which is therefore not susceptible to inflated false positives (Cox et al., 

2017). For display purposes all the statistical maps are presented at p<0.005 uncorrected, with a 

more stringent p<0.001 uncorrected overlaid. In the tables the coordinates reported are in MNI 

coordinates of the peak voxel in each of the activation clusters. All the GLMs included boxcar 

functions for excluded trials, 6 movement regressors generated from the realignment procedure in 

the image preprocessing accounting for the head motion, and a constant term as regressors of no 

interest. SPM default serial orthogonalization was applied to parametric modulators in each GLM. 

 

GLM1  

The first GLM was estimated to test for the regions correlating with (i) task relevant properties such 

as stimulus values and motor responses by the button press to report a choice, and (ii) the time 

course of accumulator value, which was the main effect of our interest. This GLM included (1) 

indicator function for item presentation on the left-hand side of the screen, parametrically 

modulated by (2) the corresponding item value, (3) indicator function for item presentation on the 

right-hand side of the screen, parametrically modulated by (4) the corresponding item value, (5) 

button press by the left index finger, (6) button press by the right index finger, and (7) indicator 

function of every 100 ms from the start of each trial to the button press, parametrically modulated 

by (8) the time course of accumulator value predicted by anDDM (See Creating the accumulator 

value regressor in Materials and Methods). The contrasts of interest were (i) stimulus value (Figure 

4A), (2)+(4); motor response, (5)+(6); and (ii) the time course of accumulator value, (8) (Figure 

5A). For small volume correction for contrast (ii), we used a sphere of 10 mm radius around 

average peak coordinates in left IPS (x=-34, y=-55, z=44) found in relevant previous studies (Basten 

et al., 2010; Hare et al., 2011; Hunt et al., 2014). See Table S3 for all the activations.  
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ROI analysis  

A previous study showed that the activity in vmPFC is modulated by fixation-driven attention and 

represents the difference between the value of attended item and the value of unattended item (Lim 

et al., 2011). Given these findings we conducted a set of region of interest (ROI) analyses (See 

GLM2 and GLM3 below) to investigate the attentional modulation of the value representation 

within an independent ROI in vmPFC: a 10 mm sphere centered at the peak activation coordinates 

(x=-6, y=44, z=-5) of a cluster showing correlation with food item value in a previous report (Hare 

et al., 2011). All the ROI analyses were implemented using Marsbar toolbox (Brett et al., 2002). 

 

GLM2  

We tested if the activity in vmPFC represented the value of attended item minus the value of 

unattended item as found in a previous study (Lim et al., 2011). This GLM contained the following 

regressors: (1) indicator function for item presentation on the left-hand side of the screen, 

parametrically modulated by (2) the value of left-hand side item minus the value of right-hand side 

item, (3) indicator function for item presentation on the right-hand side of the screen, parametrically 

modulated by (4) the value of left-hand side item minus the value of right-hand side item, (5) button 

press by the left index finger, and (6) button press by the right index finger. The contrasts of interest 

were the value of left- minus right-hand side item when fixating on the left-hand side item, (2), and 

the value of left- minus right-hand side item when fixating on the right-hand side item, (4) (Figure 

4B). 

 

GLM3  

We investigated if the value difference representation in vmPFC found by GLM2 was driven by 

either the value of attended item, the value of unattended item or both. This GLM contained the 

following regressors: (1) indicator function for item presentation on the left-hand side of the screen, 
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parametrically modulated by (2) the value of left-hand side item and (3) the value of the right-hand 

side item, (4) indicator function for item presentation on the right-hand side of the screen, 

parametrically modulated by (5) the value of right-hand side item and (6) the value of left-hand side 

item, (7) button press by the left index finger, and (8) button press by the right index finger. The 

contrasts of interest were the value of attended item, (2)+(5), and the value of unattended item, 

(3)+(6) (Figure 4C). 

 

Bayesian model selection analysis (BMS)  

Previous studies reported that the activity in vmPFC represents the output of the choice process in 

the form of the value of chosen item minus the value of unchosen item (Boorman et al., 2009; 

Jocham et al., 2012), which tends to be highly correlated with the value of attended item minus the 

value of unattended item due to the observation that attended item tends to be chosen. Therefore, we 

conducted a Bayesian model selection analysis (Stephan et al., 2009) within an independent ROI in 

vmPFC (See ROI analysis in Materials and Methods) to test whether the activity in this area was 

better explained by (i) the value of attended and unattended item or (ii) the value of chosen and 

unchosen item. We used GLM3 for (i) and created another GLM4 for (ii). GLM4 included the 

following regressors: (1) indicator function for item presentation on the left-hand side of the screen, 

parametrically modulated by (2) the value of chosen item and (3) the value of unchosen item, (4) 

indicator function for item presentation on the right-hand side of the screen, parametrically 

modulated by (5) the value of chosen item and (6) the value of unchosen item, (7) button press by 

left index finger, and (8) button press by the right index finger. This BMS procedure yielded a 

voxelwise exceedance probability that assigned a probability to the event that the GLM3 containing 

the value of attended and unattended items explained the neural activity in vmPFC ROI better than 

the GLM4 containing the value of chosen and unchosen items.  
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PPI analysis  

We conducted psychophysiological interaction (PPI) analysis to test the interaction between brain 

regions that represent quantities related to anDDM. At each time step, the model samples evidence 

from item values and adds it to the accumulators. Therefore, vmPFC representing item value should 

have increased functional connectivity with dmPFC and left IPS that are involved in the evidence 

accumulation process during the decision period. We examined this with a GLM that contained the 

following regressors: (i) BOLD signal time course within 5 mm sphere surrounding the vmPFC 

activation peak coordinates (x=-6, y=36, z=-12) obtained by the contrast of item value in GLM1, 

and (ii) interaction between BOLD signal time course in vmPFC and decision period modeled by a 

boxcar function. The model also included all the other regressors in GLM1. Notice that the 

psychological regressor (i.e., a boxcar function representing the decision period) was contained in 

the regressor of GLM1 ((1)+(3) of GLM1; see GLM1 in Materials and Methods). We report the 

parameter estimate in 5 mm sphere surrounding the peak activation coordinates within dmPFC and 

left IPS clusters that were significantly correlated with the time course of the accumulator value 

identified by GLM1 (Figure 5B). 

 

RESULTS 

Behavioral results  

Average WTP across participants was 1.17 (SD = 0.94), and about 72% of the reported WTPs had 

positive values. The average familiarity rating was 3.82 (SD = 1.26), indicating that the participants 

were familiar with most of the items used in the choice and pricing phases. Among the total of 1365 

trials in the choice phase from 21 participants, 10 trials with extreme RTs ( ≥  third 

quartile+3× interquartile range) were excluded from further analysis. In the choice phase, the 

participants’ choice behavior was significantly modulated by the value difference between the two 
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items under comparison and its interaction with the sum of item values (Table S2; 𝑝 < 0.001 for 

value difference and 𝑝 = 2.79×108\ for interaction, mixed effect logistic regression). The result 

justifies our model calibration procedure based on item value pair (i.e., item1 and item2 value pair), 

rather than only on the value difference of the two items.  

 

Model fitting to participants’ behavior  

To describe participants’ behavior quantitatively, we developed attentional neural drift diffusion 

model (anDDM, Figure 2A; see Materials and Methods). The model was constructed to be plausible 

at the neural level and capture not only choice and RT but also attentional bias. This is achieved by 

the following two key components of the model: (i) the input to the accumulators changes 

according to which item is attended to at each step of accumulation, and (ii) the value of unattended 

item is discounted relative to the value of attended item so that the value of attended item has a 

greater influence on the sampled evidence added to the accumulators than the value of unattended 

item. We calibrated anDDM to participants’ choice and RT at the group level by using maximum 

likelihood estimation procedure (See Materials and Methods). The model is flexible enough to 

capture quantitative aspects of participants’ behavior (Figure 3A for choice and Figure 3B for RT; 

see Figure S1). 

 

Attentional bias in participants’ choice  

Participants’ choice exhibited a strong attentional bias as observed from greater than 0.5 probability 

of choosing attended item when the value difference between the two items was zero (Figure 3C;	

𝑝 = 1.35×108K, Wilcoxon signed-rank test, see Figure S2). In the computational model the best 

fitting attentional bias parameter was 𝛼 = 0, suggesting that the value of unattended item was fully 

discounted in the sampled evidence. These observations indicate that the calibrated model 
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accurately captured the effect of fixation-driven attention in participants’ behavior. To examine 

whether the attentional bias parameter 𝛼 reflected the variability of the magnitude of attentional bias 

in the choice behavior across participants, we fitted anDDM to the behavior of each individual 

participant by varying this parameter alone. The other four parameters were fixed to the best fitting 

parameter values to the participants’ group data. We found that as the value of attentional bias 

parameter decreased, meaning that the input to the accumulators was more dominated by the value 

of attended item, the probability of choosing the attended item increased (Figure 3D; 𝑟 = −0.50, 

𝑝 = 1.97×108%, Spearman’s rank correlation).  

 

fMRI results 

Stimulus value representation in vmPFC was affected by attentional manipulation 

In the choice phase the inputs to the two accumulators prescribed by anDDM necessitate the neural 

representation of the value of two items under comparison. In accordance with a number of 

previous studies (Chib et al., 2009; Clithero and Rangel, 2013; McNamee et al., 2013), a whole 

brain analysis revealed that the activity in vmPFC correlated with the value of the food item the 

participants were fixating at (i.e., attended item) (Figure 4A; p<0.05 whole brain corrected at cluster 

level, see Table S3 for other activated areas, see GLM1 in Materials and Methods).  

 

We then conducted a set of region of interest (ROI) analyses within an independent ROI in vmPFC 

to further investigate the effect of attentional manipulation of alternating the presented item every 1 

second. First, we tested a claim from a previous study using a similar paradigm that vmPFC 

encoded the value of attended item minus the value of unattended item (Lim et al., 2011). We found 

that vmPFC activity was significantly modulated positively and negatively by the value of left item 

minus the value of right item when the participants were fixating on the left-hand side and the right-
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hand side item, respectively (Figure 4B; 𝑝 = 7.1×108^  and 𝑝 = 9.6×108^  in order, Wilcoxon 

signed-rank test, see GLM2 in Materials and Methods). Second, we investigated an observation 

from our model fitting result that the inputs to the two accumulators were dominated by the value of 

the attended item at least at the group level (i.e., 𝛼 = 0). Therefore, we hypothesized that the 

modulation of vmPFC activity by the difference between the value of attended item and the value of 

unattended item was driven by the value of attended item under the strong attentional manipulation 

in our task. This ROI analysis revealed that the activity in vmPFC was indeed significantly 

correlated with the value of attended item but not with the value of unattended item (Figure 4C; 𝑝 =

2.50×108% for attended item value and 𝑝 = 0.38 for unattended item value, Wilcoxon signed-rank 

test, see GLM3 in Materials and Methods). As a robustness check, we changed the order of 

parametric modulators for attended and unattended items in GLM3 and confirmed that the effect of 

attended item was significant while the effect of unattended item was not (𝑝 = 4.57×108% for 

attended item value and 𝑝 = 0.41 for unattended item value, Wilcoxon signed-rank test). 

 

Attended and unattended item values better captured the vmPFC activity than chosen and 

unchosen item values 

A number of previous studies have reported that the activity in vmPFC was representing the value 

of the chosen item minus the value of the unchosen item (Boorman et al., 2009; Jocham et al., 

2012). As the participants had a tendency to choose the attended item (mean 78.7%, SEM 3.8% of 

trials), our findings could have been explained by the use of the value of chosen and unchosen items 

instead of the value of attended and unattended items. To examine this possibility, we performed a 

Bayesian model selection analysis (BMS) between these two models (See BMS in Materials and 

Methods). We found that the model with the value of attended and unattended items had the mean 

exceedance probability of 0.72 (SEM 0.01) within an independent ROI in vmPFC. The result 
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indicates that the value of attended and unattended items captures the activity in vmPFC better than 

the value of chosen and unchosen items. 

 

Neural correlates of anDDM-derived time course of accumulator value in dmPFC and IPS 

Using the value of attended item perturbed by noise as sampled evidence, anDDM accumulates the 

evidence in favor of each of the two alternatives until the decision criterion is met. Since we 

explicitly manipulated which of the two items the participant was attending to at each time point 

during the decision period, we could obtain a reliable estimate of the time course of accumulator 

value by simulating the model using the best fitting parameter values (Figure 2B; see Materials and 

Methods). We examined the neural correlates of the predicted time course of accumulator value to 

pin down areas implementing evidence accumulation to guide participants’ choice (See GLM1 in 

Materials and Methods). We found that dmPFC and left IPS were involved in this process (Figure 

5A; p<0.05 whole brain corrected at cluster level for dmPFC and small volume correction (SVC) 

for left IPS, see Table S3 for other activated areas).  

 

dmPFC and IPS exhibited model-predicted increased functional connectivity with vmPFC 

Our model makes the following prediction about the functional connectivity between distinct brain 

regions: the areas of dmPFC and left IPS representing the time course of accumulator value should 

exhibit increased functional connectivity with vmPFC encoding the item value. This is because 

anDDM stipulates that the accumulators in the model accrue evidence sampled from item values. 

We conducted PPI analysis to test this prediction. We found that the areas of dmPFC and left IPS, 

which was identified to be involved in evidence accumulation process, showed increased functional 

connectivity with vmPFC during the decision period (Figure 5B; 𝑝 = 4.19×108K for dmPFC and 

𝑝 = 2.1×108^ for left IPS, Wilcoxon signed-rank test, see PPI analysis in Materials and Methods).  
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DISCUSSION 

Here we investigated the computational and neural mechanisms of binary choice in the value-based 

decision making. We manipulated fixation-driven attention of the participants externally by 

alternating the item displayed on the screen every 1 second. This manipulation biased participants’ 

choice behavior significantly such that the participants showed a tendency to choose the attended 

item. To describe participants’ behavior quantitatively, we developed and fitted anDDM against the 

behavioral data. The model switches input flexibly depending on the item presented on the screen 

and the participants’ attention is directed to. As a result, it could not only capture choice and RT but 

also attentional bias in participants’ behavior. In the fMRI analysis we first confirmed that the item 

value representation in vmPFC reflected the effect of attentional manipulation: the activity in this 

area correlated with the value of attended item but not with the value of unattended item. Moreover, 

we directly correlated the time course of the accumulator value calculated using the fitted anDDM 

against BOLD signal. We found that this variable showed a significant correlation with the activity 

in dmPFC and left IPS.  

 

Our findings that the participants’ choice showed attentional bias and neural activity in vmPFC was 

modulated by fixation-driven attention are consistent with previous reports (Krajbich et al., 2010; 

Krajbich and Rangel, 2011; Lim et al., 2011; Towal et al., 2013; Tavares et al., 2017). However, the 

magnitude of attentional bias was greater in the present study: we found that anDDM fitted to 

participants’ behavior produced a smaller attentional bias parameter value of 𝛼 = 0 compared to 𝛼 = 

0.3 (Krajbich et al., 2010) and 𝛼  = 0.36 (Tavares et al., 2017). This implies that the value of 

unattended item was fully discounted and ignored in the sampled evidence while it was discounted 

and yet relevant in the previous reports. In the fMRI analysis we observed the neural effect of 

attentional manipulation that was consistent with the behavioral effect: the activity in vmPFC 
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showed a significant correlation with the value of attended item but not with the value of 

unattended item while it was modulated by both item values in a previous report (Lim et al., 2011). 

The observed discrepancy in the magnitude of attentional effect can be explained by the difference 

in the task structure: the attentional bias is stronger in a binary choice task when two items are 

presented sequentially and only one item is displayed on the screen compared to when two items are 

presented on the screen simultaneously. This is compatible with a recent report that the information 

acquired through peripheral vision has an effect on the choice process (Wästlund et al., 2018). 

 

The time course of accumulator value predicted by anDDM was represented in dmPFC and left IPS. 

This result is consistent with previous reports that these areas of the frontoparietal network are 

involved in the evidence accumulation process in value-based decision making tasks (Basten et al., 

2010; Hare et al., 2011; Gluth et al., 2012; Hunt et al., 2012; Rodriguez et al., 2015; Pisauro et al., 

2017). However, our study is novel in terms of the analysis method that we directly correlated the 

time course of accumulator value against BOLD signal. We could utilize the time course of 

accumulator value because our model reflected which of the two items was more relevant for the 

accumulation process at each time point of the trial attained by explicitly controlling the attention of 

the participants. One advantage of correlating the time series of accumulator value directly is that 

the observed neural effect is expected to be less confounded by other effects such as trial difficulty 

(i.e., absolute difference of the two item values). In general, it is inevitable that the neural signature 

of accumulator related activity and trial difficulty are highly correlated because more difficult trials 

tend to result in a longer accumulation period to reach a decision. In previous studies, additional 

analysis methods such as PPI and BMS were combined to dissociate these two effects. In the 

present task, the correlation between the two signals was indeed lower (r=-0.624) than a previous 

report (r=-0.930; Hare et al., 2011). We can decrease the correlation further by increasing 

behavioral variability by increasing the number of trials in the experiment. In all, our result provides 
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additional evidence that the areas of the frontoparietal network are involved in the evidence 

accumulation process to guide our choices.  

 

An important avenue to pursue in future research will be to elucidate the distinct role of dmPFC and 

IPS in value-based decision making. One possibility is that IPS is involved in the accumulation of 

evidence per se as analogous to the involvement of lateral intraparietal (LIP) neurons in this process 

in non-human primates (Shadlen and Newsome, 2001; Roitman and Shadlen, 2002) while dmPFC 

is encoding the consequence of choice process utilized to trigger a motor response. The idea comes 

from previous reports that the activity in dmPFC reflected the post decision signal of the value of 

unchosen item minus the value of chosen item (Wunderlich et al., 2009; Lopez-Persem et al., 2016). 

Moreover, another study combining methodologies from fMRI and EEG showed that the decision 

output signal of chosen value propagated from parietal to frontal region during a trial before the 

value difference signal was observed in dmPFC only in the later period of the trial (Larsen and 

O’Doherty, 2014). We examined this by including both the decision output signal and the time 

course of accumulator value in the same GLM (Incorporated regressors (7) and (8) of GLM1 into 

GLM4; see Materials and Methods). We found that the clusters of dmPFC and left IPS remained 

significantly correlated with the time course of accumulator value. The result supports the 

observation from previous reports that the evidence accumulation is implemented in parallel in 

these areas of the frontoparietal network in value-based decision making (Hare et al., 2011; Polanía 

et al., 2014, 2015). This parallel evidence accumulation process is also supported by the result of 

our PPI analysis that both dmPFC and left IPS showed increased functional connectivity during the 

decision period with vmPFC where the sampled evidence from the item value is represented.  

 

In conclusion, the present study investigated the neural computations underlying binary choice in 

the value-based decision making domain. In a novel task, we manipulated the attention of the 
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participants by sequentially presenting the two items under comparison. We directly correlated the 

time course of accumulator value predicted by the computational model we developed that captured 

attentional bias in participants’ choice behavior. Our results corroborate the involvement of vmPFC 

in representing input to the accumulators reflecting the effect of fixation-driven attention, and 

dmPFC and IPS in implementing the evidence accumulation process to guide the decision.  
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FIGURES AND TABLES 

 

 

Figure 1. Illustration of task structure. 

A. In the choice phase, participants engaged in 65 trials of binary choice with a free reaction time 

(RT). Two items were displayed on the screen sequentially until the participants indicated their 

choices by the button press. The presented item and its location on the screen (left or right) 

alternated every 1 second. The choice was enabled at the onset of second item presentation and the 

participants could choose either of the two items irrespective of the on-screen item at the time of 

button press. 

B. In the pricing phase, participants reported their WTP for 130 items used in the choice phase by 
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INTRODUCTION

•Deliberative choices dynamically emerge 
through time (e.g., ordering food from a 
menu)
•Temporal components

•Ignored in traditional economic 
theories (Tversky & Kahneman, 1979; 
von Neuman & Morgenstern, 1944)
•Incorporated in psychological choice 
models (Busemeyer & Townsend, 
1993; Usher & McClelland, 2004; 
Vickers & Smith, 1988)

•Ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC) play 
crucial roles in value computation and comparison (Chib et al., 2009; Plassman et 
al., 2007; Wunderlich et al., 2009; Walton et al., 2004)
•Supplementary motor area (SMA) prepares for manual responses
•We wanted to see if we could utilize the temporal properties of the BOLD 
response in order to determine if these models sufficiently characterize neural 
responses during value-based choice

METHODS

Participants and Procedure
•21 hungry participants 

•Choice phase
•65 binary choices, no 
repetition of items
•Variety of sweet, salty snacks, 
condiments, pickled items, etc.
•Items displayed separately and 
bilaterally, in 1 sec intervals 
until an item was selected
•ITI mean 12 sec

•Pricing phase
•130 items from choice phase
•Obtained willingness to pay (WTP) values
•Valued on €0-3 scale
•ITI mean 4 sec

•Familiarity phase
•Payoff phase

Fig 5. Psychometric data: Choice probability 
by difference in WTP value, together with model predicted 
choice probability.

Fig 1. Temporal nature of choice

Fig 3. Choice phase task sequence and timing

Fig 4. Pricing phase

MODELING

Race model (Vickers & Smith, 1988)
•Two independent accumulators
Pm = Pm + ɷ ∙ (ɷ > 0)
Pn = Pn + ɷ ∙ (ɿ ∙ (ɷ < 0))
ɷ�= h ∙ (w .∙ WTP) + яh ∙ (w .∙ [ɻ ɻ])
w(m) = 1, w(n) = 0
•Decision criteria: choose max(Pi)
when max(Pi) > ɽ

Option 1

Option 2

Option 1

Diffusion model (Ratcliff, 1979)
•Single accumulator
P = P + ɷ
ɷ�= ʅm ∙ h + ɻ�∙ яh
ʅA =  WTPA – ɿ�∙ WTPB
ʅB = - WTPB + ɿ�∙ WTPA
•Decision criteria: choose option A if 
P > ɽ, choose option B if P < -ɽ. 

RESULTS

Behavioural

-2∙LL ɻ ɽ ɿ
Race 5588 1.67 7.52 0.55
Diffusion 5855 1.88 3.50 0.01

Neuroimaging Acquisition and Analyses
•Oblique acquisition to increase OFC sensitivity
•SPM8 used for data preprocessing and analysis
•Separate GLMs for each model were fit to the data
•Averaged  accumulator signal from consistent simulations entered as 
parametric modulator in 200 ms increments throughout timecourse of trial

•Race: signals for left and right accumulators entered separately
•Diffusion: signal for loser entered alone

Fig 6. RT histogram: RT for choice trials, together 
with model predicted RT.
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•Neurophysiological research on perceptual choice 
support these psychologically-inspired models 
(Gold & Shadlen, 2000; Platt & Glimcher, 1999; 
Sugrue et al., 2005)
•Sensory (e.g., area MT) and motor preparatory 
areas (e.g., LIP) correlate with model components
•However these models have not been linked to 
neural activity during value-based choice

Shared Parameters
•P = preference state
•h = time step, fixed at 0.2
•ɷ = change in preference state
•ɿ = weight on unseen option

•Fitting Procedure
•ɽ, ɿ, and ɻ were free to vary
•Two tiered grid search over parameter space
•Minimized negative log likelihood (LL) of data, using simulations

Fig 2. Example time course 
of value-based decision

Table. Fit and parameters: Minimized fit value and best fitting parameter values for each model.

•ɻ = noise term
•ɽ = decision boundary
•m = on-screen option
•n = off-screen option

1 sec

1 sec

1 sec

•Both models performed better than chance
•The race model outperformed the diffusion model

RESULTS (continued)

Neuroimaging All tmaps are shown at p<.0001 uncorrected and k>50

Fig 7. Diffusion model negative 
correlation with loser signal tmap: Reveals 
significant modulation of ACC/SMA activity by diffusion signal. 
Shown at peak MNI: [-6, 10, 44]. 

Fig 8. Diffusion model negative correlation 
with loser signal percent signal change: Percent 
signal change in ACC/SMA (shown in Fig. 7) separated by signal strength.

Fig 10. Race model positive correlation with both signals tmap: Reveals significant modulation of vmPFC activity by 
diffusion signal. Shown at peak MNI: [10, 34, -8]. 

Fig 9. Race model positive correlation with 
both signals percent signal change: Percent signal 
change in vmPFC (shown in Fig. 10) separated by signal strength.

SUMMARY

•As predicted, multiple neural regions correlate with the temporal integration signals from both models, most 
prominently ACC/SMA and vmPFC
•These  results resonate with previous findings on output signals from a value comparison process
•We aim to:

•Compare and contrast the neuroimaging results from the two models in order to see which better 
explains the data
•further improve the fits of the models to the behavioral data (e.g., Krajbich et al., 2010)

•Using the temporal resolution afforded by fMRI it is possible to detect the temporal integration signals 
involved in choice and gain insight into how these computations are implemented in the human brain

Race Model

Diffusion Model

etc.
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•Oblique acquisition to increase OFC sensitivity
•SPM8 used for data preprocessing and analysis
•Separate GLMs for each model were fit to the data
•Averaged  accumulator signal from consistent simulations entered as 
parametric modulator in 200 ms increments throughout timecourse of trial

•Race: signals for left and right accumulators entered separately
•Diffusion: signal for loser entered alone
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(Gold & Shadlen, 2000; Platt & Glimcher, 1999; 
Sugrue et al., 2005)
•Sensory (e.g., area MT) and motor preparatory 
areas (e.g., LIP) correlate with model components
•However these models have not been linked to 
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Shared Parameters
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•Fitting Procedure
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prominently ACC/SMA and vmPFC
•These  results resonate with previous findings on output signals from a value comparison process
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•Compare and contrast the neuroimaging results from the two models in order to see which better 
explains the data
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•Neurophysiological research on perceptual choice 
support these psychologically-inspired models 
(Gold & Shadlen, 2000; Platt & Glimcher, 1999; 
Sugrue et al., 2005)
•Sensory (e.g., area MT) and motor preparatory 
areas (e.g., LIP) correlate with model components
•However these models have not been linked to 
neural activity during value-based choice

Shared Parameters
•P = preference state
•h = time step, fixed at 0.2
•ɷ = change in preference state
•ɿ = weight on unseen option

•Fitting Procedure
•ɽ, ɿ, and ɻ were free to vary
•Two tiered grid search over parameter space
•Minimized negative log likelihood (LL) of data, using simulations

Fig 2. Example time course 
of value-based decision

Table. Fit and parameters: Minimized fit value and best fitting parameter values for each model.

•ɻ = noise term
•ɽ = decision boundary
•m = on-screen option
•n = off-screen option
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•Both models performed better than chance
•The race model outperformed the diffusion model

RESULTS (continued)

Neuroimaging All tmaps are shown at p<.0001 uncorrected and k>50

Fig 7. Diffusion model negative 
correlation with loser signal tmap: Reveals 
significant modulation of ACC/SMA activity by diffusion signal. 
Shown at peak MNI: [-6, 10, 44]. 

Fig 8. Diffusion model negative correlation 
with loser signal percent signal change: Percent 
signal change in ACC/SMA (shown in Fig. 7) separated by signal strength.

Fig 10. Race model positive correlation with both signals tmap: Reveals significant modulation of vmPFC activity by 
diffusion signal. Shown at peak MNI: [10, 34, -8]. 

Fig 9. Race model positive correlation with 
both signals percent signal change: Percent signal 
change in vmPFC (shown in Fig. 10) separated by signal strength.

SUMMARY

•As predicted, multiple neural regions correlate with the temporal integration signals from both models, most 
prominently ACC/SMA and vmPFC
•These  results resonate with previous findings on output signals from a value comparison process
•We aim to:

•Compare and contrast the neuroimaging results from the two models in order to see which better 
explains the data
•further improve the fits of the models to the behavioral data (e.g., Krajbich et al., 2010)

•Using the temporal resolution afforded by fMRI it is possible to detect the temporal integration signals 
involved in choice and gain insight into how these computations are implemented in the human brain
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with model predicted RT.
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•Neurophysiological research on perceptual choice 
support these psychologically-inspired models 
(Gold & Shadlen, 2000; Platt & Glimcher, 1999; 
Sugrue et al., 2005)
•Sensory (e.g., area MT) and motor preparatory 
areas (e.g., LIP) correlate with model components
•However these models have not been linked to 
neural activity during value-based choice

Shared Parameters
•P = preference state
•h = time step, fixed at 0.2
•ɷ = change in preference state
•ɿ = weight on unseen option

•Fitting Procedure
•ɽ, ɿ, and ɻ were free to vary
•Two tiered grid search over parameter space
•Minimized negative log likelihood (LL) of data, using simulations

Fig 2. Example time course 
of value-based decision

Table. Fit and parameters: Minimized fit value and best fitting parameter values for each model.

•ɻ = noise term
•ɽ = decision boundary
•m = on-screen option
•n = off-screen option

1 sec

1 sec

1 sec

•Both models performed better than chance
•The race model outperformed the diffusion model

RESULTS (continued)

Neuroimaging All tmaps are shown at p<.0001 uncorrected and k>50

Fig 7. Diffusion model negative 
correlation with loser signal tmap: Reveals 
significant modulation of ACC/SMA activity by diffusion signal. 
Shown at peak MNI: [-6, 10, 44]. 

Fig 8. Diffusion model negative correlation 
with loser signal percent signal change: Percent 
signal change in ACC/SMA (shown in Fig. 7) separated by signal strength.

Fig 10. Race model positive correlation with both signals tmap: Reveals significant modulation of vmPFC activity by 
diffusion signal. Shown at peak MNI: [10, 34, -8]. 

Fig 9. Race model positive correlation with 
both signals percent signal change: Percent signal 
change in vmPFC (shown in Fig. 10) separated by signal strength.

SUMMARY

•As predicted, multiple neural regions correlate with the temporal integration signals from both models, most 
prominently ACC/SMA and vmPFC
•These  results resonate with previous findings on output signals from a value comparison process
•We aim to:

•Compare and contrast the neuroimaging results from the two models in order to see which better 
explains the data
•further improve the fits of the models to the behavioral data (e.g., Krajbich et al., 2010)

•Using the temporal resolution afforded by fMRI it is possible to detect the temporal integration signals 
involved in choice and gain insight into how these computations are implemented in the human brain

Race Model

Diffusion Model

etc.

Science Foundation IrelandSupported by:

Button press 
2-6 s 



 

 

30 

 

Figure 2. Computational model.  

A. A graphic representation of attentional neural drift diffusion model (anDDM). Accumulator that 

accrue evidence supporting the choice of the firstly presented item (item1) and the secondly 

presented item (item2) are depicted by A1 and A2, respectively. The sampled evidence serving as the 

input to the accumulator is the value difference of the two items under comparison and it changes 

according to which item is displayed on the screen at the time of accumulation. The effect of 

unattended item on the input is discounted by the attentional bias parameter α. The input is then 

perturbed by a Gaussian noise 𝜀 before being added to the accumulator. The accumulators have 

mutual inhibitory connections and the magnitude of inhibition is controlled by the parameter ν. The 

choice of either of the two items is made when the corresponding accumulator value reaches the 

threshold of +1.  
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Neural correlates of sequential sampling models under value-based decision making
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,V 2 � ↵V 1

Simulation by thinning algorithm

1 N = 0, t = 0, �⇤ = max0tT �(t).
2 Generate u1 ⇠ U[0, 1].
3 t t� (1/�⇤) log(u1). If t > T , stop.
4 Generate u2 ⇠ U[0, 1].
5 If u2  �(t)/�⇤

, N  N + 1 and tN = t.
6 Go back to step 2.
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B. The time course of accumulator value prescribed by anDDM for trials with item value pair 

(1,2). (Left) Estimated time course when item2 with value 2 is chosen between 3-4 seconds of RT; 

the item is chosen when it is attended. (Right) Estimated time course when item1 with value 1 is 

chosen between 3-4 seconds of RT; the item is chosen when it is unattended. To obtain these time 

courses, we simulated the model 100,000 times using the best fitting parameters. The simulation 

runs were categorized by the combination of choice (item1 or item2 chosen) and RT (1 second 

duration bins from 1-2 seconds to 9-10 seconds). The time courses in each category were averaged 

at each time point of the simulation to give the average time course of accumulator value 

corresponding to the chosen item (blue), unchosen item (green), and sum of the two (red). Shaded 

regions represent standard deviation (omitted for the sum for display purpose). These raw time 

courses were convolved with canonical HRF and used as a regressor of interest in GLM for fMRI 

analysis (See GLM1 in Materials and Methods). 
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Figure 3. Behavioral results.  

A. The probability of choosing item1 binned by the value difference between item1 and item2. Blue 

circles represent participants’ behavior. Bars denote SEM across participants. The behavior of the 

fitted model is depicted in red circles. 

B. RT distribution across participants. RT was sorted by 1-second duration bins from 1-2 seconds to 

9-10 seconds. Bars denote SEM across participants. Blue: participants, Red: model. 

C. The probability of choosing the last fixated item binned by the value difference between the last 

fixated item and paired item. Bars denote SEM across participants. Blue: participants, Red: model. 

D. Across participants’ correlation between the probability of choosing attended item and 

attentional bias parameter from model fitting to each participant. Circles represent each participant. 

Dashed line represents best-fit linear slope. The correlation coefficient r and associated p-value are 

noted (Spearman’s rank correlation). Inset shows the histogram of the fitted attentional bias 

parameter values across participants. 
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Figure 4. Fixation-driven attentional effect on the stimulus value representation in vmPFC. 

A. Activity in vmPFC correlated significantly with the value of item presented on the screen 

(p<0.05 whole brain corrected at cluster level; see Table S3 for other activated areas). Activation 

map is thresholded at p<0.001 (orange) and p<0.005 (red) for display purpose. 

B. Parameter estimates within an independent ROI in vmPFC for the effect of value difference 

between left and right item for each side of fixation on the screen (**: 𝑝 = 7.1×108^ and 𝑝 =

9.6×108^ for fixL and fixR, respectively, Wilcoxon signed-rank test). 

C. Parameter estimates within an independent ROI in vmPFC for the effect of value of attended 

(Vatt) and unattended item (Vunatt) (*: 𝑝 = 2.50×108%, n.s.: 𝑝 = 0.38, Wilcoxon signed-rank test). 
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Figure 5. Neural correlates of the time course of accumulator value and PPI result. 

A. Areas significantly correlated with the time course of accumulator value predicted by anDDM. 

dmPFC and left IPS are circled by the black dashed line (p<0.05 whole brain corrected at cluster 

level; see Table S3 for other activated areas). Activation map is thresholded at p<0.001 (orange) and 

p<0.005 (red) for display purpose. Inset displays clusters in dmPFC and bilateral IPS that showed 

significant correlation with accumulator value signal identified in a previous study (Hare et al., 

2011). Each cluster was approximated by a sphere surrounding peak activation coordinates with the 

radius computed from the cluster’s voxel size reported.  

B. Functional coupling between each of the two regions involved in evidence accumulation process 

(dmPFC and left IPS) and the region representing sampled evidence from item value (vmPFC) 

during the decision period (***: 𝑝 = 4.19×108K, **: 𝑝 = 2.1×108^, Wilcoxon signed-rank test). 
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Figure S1. Related to Figure 3A and Figure 3B. Joint distribution of choice and RT of 

participants’ behavior. 

The joint probability distribution of choice and RT for each of the 16 possible value pairs. The 

choice of item1 and item2 are depicted in the positive and negative domain of the y-axis, 

respectively. RT was sorted by 1-second duration bins from 1-2 seconds to 9-10 seconds. Blue: 

participants, Red: model. 
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Figure S2. Related to Figure 3C. Attentional bias in participants’ behavior. 

The probability of choosing item1 binned by the value difference between item1 and item2 when 

item1 (circle) and item2 (triangle) are displayed at the time of choice, respectively. Blue symbols 

represent participants’ behavior with bars denoting SEM across participants. The behavior of the 

fitted model is depicted in red symbols. 
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 -LL 𝛼 𝜂 𝜈 𝛿 𝜅 
First grid  0:0.1:0.5 0.005:0.005: 

0.04 
0:0.1:1.0 2.0:1.0: 

7.0×10-4 
0:0.1:1.0 

Best 
parameters 

2794 0 0.02 1.0 4.0×10-4 0.5 

 
Second grid  0:0.05: 

0.15 
0.0175:0.0025: 
0.0225 

0:0.05:1.0 3.5:0.05: 
4.5×10-4 

0.45:0.05: 
0.65 

Best 
parameters 

2778 0 0.0175 1.0 4.5×10-4 0.6 

 
Third grid  0:0.025: 

0.075 
0.01625: 
0.00125:0.01875 

0.475: 
0.025:1.0 

3.75:0.025: 
4.75×10-4 

0.475:0.025: 
0.625 

Best 
parameters 

2773 0 0.0175 1.0 4.75×10-4 0.575 

 

Table S1. Related to Figure 3. Details of the model fitting procedure.  

We iterated the steps involved in the grid search procedure three times by narrowing the range of 

parameters tested to the values around the best fitting parameter values from the previous iteration. 

Here, we provide the information of the parameter grid used in each iteration and the resulting best 

fitting parameter values.  

 

 

 

 

 

 

 



 

 

39 
 Coefficient Z score p value 
Intercept 1.68×10-3 0.01 0.99 
Value difference 2.54 10.91 <0.001 
Sum of item values 0.02 0.45 0.65 
Interaction -0.35 -4.69 2.79×10-6 

 

Table S2. Related to Figure 3. Effect of item values on participants’ choice behavior.  

The result of mixed effect logistic regression using the participant group data is presented. 

Dependent variable is 1 for the choice of item1 and 0 for the choice of item2. Independent variables 

are the value difference of two items (item1 value minus item2 value), the sum of two item values, 

and their interaction term.  
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Contrast Region Hemi Peak MNI 

coordinates 
t 
score 

Cluster size 
(voxels) 

Stimulus  
value 

  x y z   
Medial frontal gyrus 
(vmPFC) 

L -6 36 -12 6.03 660 

Parahippocampal gyrus R 26 -24 -18 5.34 196 
Superior temporal gyrus L -40 -60 24 4.25 492 
Superior frontal sulcus L -26 32 46 3.95 289 

 
Button press   x y z   
Left > Right Cerebellum L -14 -52 -22 8.10 1683 

Precentral gyrus R 38 -22 64 7.77 2948 
Pulvinar R 20 -26 4 5.05 233 
Insula R 40 -10 22 4.41 356 

Right > Left Precentral gyrus L -36 -26 64 8.46 3185 
Cerebellum R 18 -52 -22 6.44 756 

 
Time course 
of 
accumulator 
value 

  x y z   
Fusiform gyrus R 30 -58 -8 6.98 507 
Fusiform gyrus L -26 -60 -8 5.59 414 
Thalamus L -4 -22 0 5.20 387 
Medial central gyrus 
(dmPFC) 

L -6 10 48 5.17 250 

Precentral sulcus R 32 -6 46 4.78 232 
Intraparietal sulcus (IPS) L -28 -50 50 3.22 51 (SVC) 

  

Table S3. Related to Figure 4A and Figure 5A. MNI coordinates of peak activation voxels 

from the contrasts in GLM1.  

Reported activation clusters survived p<0.05 whole brain correction at cluster level with the height 

threshold of p<0.005 and the minimum spatial extent of 191 voxels. The significance of the cluster 

in left IPS representing the time course of accumulator value was tested by small volume correction 

(SVC) in a 10mm sphere surrounding the mean peak activation coordinates from previous studies 

(x=-34, y=-55, z=44). 
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C h a p t e r  3  

COMPUTATIONAL ACCOUNT OF  

TEMPORAL CHANGE DETECTION IN THE HUMAN BEHAVIOR 

Adachi R, Suzuki S, O’Doherty JP. Neural computations mediating temporal change detection in 

the human brain.  

R.A. and J.P.O. designed the experiment. R.A. and S.S. collected the data. R.A. performed data 

analysis with feedback from S.S. and J.P.O. R.A. and J.P.O. wrote the manuscript. J.P.O. supervised 

the research.  

 

INTRODUCTION 

Our brains are constantly receiving streams of information varying in temporal structure. Detecting 

changes in the temporal structure of events in the environment can enable one to make inferences 

about changes in the underlying causal processes operating in the world. For instance, such a 

capability could underlie the ability of an animal to detect whether a predator is approaching or 

departing their hiding place, or enable human traders to determine whether a financial market is 

about to crash by keeping track of changes in the frequency of trades (De Martino et al., 2013b). 

Thus, the capacity to detect changes in temporal information streams is a crucial part of the 

cognitive machinery required by humans and other animals to produce adaptive behavior in a 

dynamical and rapidly changing environment. 

 

A fundamental open question in cognitive and computational neuroscience concerns the nature of 

the computational algorithm that is actually used by the brain to infer changes in a generative 

process when there is no directly observable information explicitly signaling that change has 
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occurred. Here, we address this question with regard to change detection in the temporal domain 

by comparing and contrasting different computational strategies that can solve this particular 

computational problem. We analyze behavioral data in this chapter and fMRI data in Chapter 4 

from human participants as a means to determine which of these computational strategies provides 

the best account of how temporal change detection is implemented at the neural levels in humans. 

Computational approaches to understanding the psychological and neural mechanisms of change 

detection more broadly have tended to utilize two distinct approaches: the first of these involves 

taking a normative perspective in which Bayesian models are constructed for the purpose of 

describing the theoretically optimal manner in which to detect changes in a given context (Yu and 

Dayan, 2005; Behrens et al., 2007; Wilson et al., 2010; Payzan-LeNestour et al., 2013). However, 

while such normative approaches have the merit of optimality, it is unclear to what extent the brain 

can plausibly implement a full Bayesian inference scheme involving the encoding of full probability 

distributions, particularly under situations that might require the simultaneous maintenance and 

updating of many-fold belief distributions over numerous possible environmental states. 

Furthermore, well-characterized instances of capacity constraints in human cognition might auger 

against the likelihood that humans can implement the computationally expensive process of a full 

Bayesian solution to change detection in anything but the simplest task situations. 

 

As a result of these limitations, an alternative approach in the literature has involved developing 

strategies that can do reasonably well at detecting change points without incurring the 

representational and computational costs of the more optimal Bayesian approaches. These 

approaches have utilized simple model-free algorithms such as a delta-rule or other heuristics 

(Krugel et al., 2009; Nassar et al., 2010; Summerfield et al., 2011; McGuire et al., 2014).  
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The goal of the present study is to conduct a comprehensive assessment of which computational 

mechanism could best describe the computations involved in this form of change detection, by 

formally comparing optimal Bayesian models of change detection to simpler yet computationally 

more tractable approximate strategies. 

 

To address this question we developed a novel behavioral task and ran participants through this task 

while they were scanned with fMRI. In the task, participants observed a sequence of images that 

contained abrupt changes in the underlying frequency of image presentations. The observed 

sequence was corrupted by noise, and the participants were instructed to report a change if they 

attributed the perceived change to a change in the underlying statistics of the sequence, rather than 

to mere stochastic noise. 

 

MATERIALS AND METHODS 

DATA COLLECTION 

Participants 

22 right-handed participants performed the experiment (18–35 years old; 12 males). The 

participants were prescreened to exclude those with a prior history of neurological or psychiatric 

illness. The data from one participant was excluded from both behavioral and fMRI analyses 

because of a large head displacement (>8 mm) during fMRI image acquisition. We also excluded 

the fMRI data of 1 out of 4 runs from two participants because of scanner failure in these runs. The 

Institutional Review Board of California Institute of Technology approved the experiment and all 

participants gave informed consent. 
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STATISTICAL ANALYSIS 

Performance measure of participants’ behavior 

We measured the participants’ behavioral performance using a distance metric – the “performance f 

measure” between participants’ button presses and actual change points calculated as follows: first, 

we computed the precision and sensitivity of the participant’s behavior. Precision and sensitivity 

were defined as TP/(TP+FP) and TP/(TP+FN), respectively (TP: true positive; FP: false positive; 

FN: false negative).  TP is a count of the number of times a participant’s button press was within a 

5-second window after an objective change point (task determined) occurred. FP is a count of the 

number of times that a participant’s button press occurred outside of a 5-second window after an 

objective change point occurred or when a participant’s button press was within the time window 

but there was another button press in the same window already categorized as being a TP. FN is a 

count of the number of times when there was no participant’s button press within a 5-second time 

window. By definition, precision described the fraction of the participant’s button presses that 

conformed to change points while sensitivity captured the fraction of change points that were 

correctly captured by the participant.  Finally, we put equal weight on precision and sensitivity and 

calculated the performance f measure as:     

  

                                       f	measure	 = 	2/(1/precision + 1/sensitivity).                                     (3) 

 

Comparison against a random agent 

To exclude the possibility that the participants’ behavior was random, we defined the behavior of 

agents that acted randomly and compared the agents’ behavior to participants’ behavior. The 

random agent made a random response in each bin using the rate of button presses equal to what 

was observed in individual participant’s behavior. We simulated the random agent model for each 

participant 5000 times and evaluated the performance using the performance f measure.  
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Computational models 
 
We tested three computational models of varying degrees of sophistication to describe participants’ 

behavior quantitatively. Two of these models employed Bayesian methods. One was an 

implementation of the Bayesian online change point detection model (BOCPD, Adams and 

MacKay, 2007), and another was an implementation of the dynamic belief model (DBM, Yu and 

Cohen, 2009). We augmented each of the above original models by adding a decision rule to detect 

change points in our task. The third model we tested was a computationally frugal one that in 

contrast to the above models did not require the encoding of probability distributions or Bayesian 

updating, which we named the temporal averaging model (TAM). In all of these models, we 

utilized 120 bins with 0.25-second duration for each 30-second trial used in the data generating 

process of image sequence and the decision variable employed to detect change points was 

computed at this time resolution. The data in each bin was denoted by x and took the value of 1 

when a sushi piece was produced at the bin and 0 when no sushi piece was produced at the bin. The 

index of each bin was subscripted by n (1 ≤ 𝑛 ≤ 120).  Below, we describe each of the three 

computational models in detail.  

 

Bayesian Online Change Point Detection model (BOCPD) 

The model tracked the posterior distribution over run length 𝑟, which was the number of bins since 

the most recent change point in the past. Suppose that the model was calculating the posterior run 

length distribution at the nth bin and let z (𝑧 < 𝑛) denote the bin number of the most recent change 

point. The value of 𝑧 was initialized to 𝑧 = 0 at the start of a trial. The range of run length the 

model considered increased as the bin number n increased (i.e., 𝑟q ∈ [0, 𝑛 − 𝑧]) and each run length 

𝑟 corresponded to a hypothesis that (𝑛 − 𝑟q)th bin was a change point. The posterior run length 

distribution at the nth bin given the past observations (𝑥#:q) was obtained as  
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𝑃(𝑟q|𝑥#:q) =
𝑃(𝑟q, 𝑥#:q)
𝑃(𝑥#:q)

=
𝑃(𝑟q, 𝑥#:q)
𝑃(𝑟q, 𝑥#:q)vw

, 

 

where its numerator was calculated as  

 

𝑃 𝑟q, 𝑥#:q = 𝑃 𝑟q, 𝑟q8#, 𝑥#:q =
vwxy

𝑃 𝑟q, 𝑥q|𝑟q8#, 𝑥#:q8# 𝑃(𝑟q8#, 𝑥#:q8#)
vwxy

= 𝑃 𝑟q|𝑟q8# 𝑃 𝑥q|𝑟q8#, 𝑥#:q8# 𝑃(𝑟q8#, 𝑥#:q8#)
vwxy

. 

 

Therefore, the joint distribution of run length and data had a recursive form and was computed by 

using the following two quantities: 

 

𝑃 𝑟q|𝑟q8# =
ℎ, 𝑟q = 0

1 − ℎ, 𝑟q = 𝑟q8# + 1
0, otherwise

 

 

and  

 

𝑃 𝑥q|𝑟q8#, 𝑥#:q8# = 𝑃 𝑥q, 𝜀|𝑟q8#, 𝑥#:q8# d𝜀
#

~
= 𝑃 𝑥q|𝜀 𝑃 𝜀|𝑥q8#v d𝜀

#

~

=
𝑃 𝑥q|𝜀 𝑃 𝑥q8#v |𝜀 𝑃(𝜀)d𝜀#

~

𝑃 𝑥q8#v |𝜀′ 𝑃(𝜀′)d𝜀′#
~

. 

 

Here, the abbreviation 𝑥q8#v  denoted the past observations conforming to run length 𝑟q8# at (n-1)th 

bin (i.e., 𝑥q8#v = {𝑥q8#, 𝑥q8%, . . . , 𝑥q8#8vwxy}). The Bernoulli probability of image presentation 

(production of a sushi piece) in each bin was represented by 𝜀. We assumed that the unconditional 
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probability of a change point in each bin was given by a constant hazard rate h, which was 

equivalent to prescribing a geometric distribution over the number of bins between the two 

successive change points. Thus, the model correctly specified the form of generating process of 

change points. After obtaining the posterior run length distribution, the model computed the change 

point probability (CPP) by summing all the probability masses in the posterior run length 

distribution conforming to the existence of a change point within the last T seconds. The optimal 

value of this parameter was 𝑇 = 5 because correct and incorrect button presses were rewarded and 

punished by an equal amount and any button presses after 5 seconds from a change point were 

deemed incorrect. We introduced this parameter to the model to take into account the following two 

possibilities: (1) the participants might have been using maladaptive values that varied across 

participants, and (2) even if the participants were subjectively using the optimal values, there is 

heterogeneous variability associated with the measurement of time (Jazayeri and Shadlen, 2010). 

The CPP served as the decision variable (DV) of this model and was formally written as 

 

𝐷𝑉q = 𝑃(𝑟q = 𝑘|𝑥#:q)

���(�����(K�),q8�8#)

�X~

.																																											(4) 

 

If the decision variable was greater than the threshold value 𝜃q, a change was detected and 𝑧 was 

updated to the location of the change point. We tested both a fixed threshold (𝜃q = 𝜃) and a 

collapsing bound having the form of Weibull function as 

 

𝜃q = 𝜃 − (1 − 𝑒8(q8�/�)�)(1 − 𝛿)𝜃.																																																					(5) 
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The initial value of the threshold after a change point was set to 𝜃 and three parameters 𝛼, 𝛽, and 𝛿 

controlled the shape of the decay. The collapsing bound was tested in all the three models because 

the computed decision variable was noisy for some period after the start of a trial and after a change 

point because only a small number of data points were available in the new regime.  

 

We tested the following parameter sets: P1) ℎ, 𝜃 , P2) 	ℎ, 𝜃, 𝑇 , P3) ℎ, 𝜃, 𝛼, 𝛽, 𝛿 , and P4) 

ℎ, 𝜃, 𝑇, 𝛼, 𝛽, 𝛿 . When not varied, we set 𝑇  to its optimal value of 𝑇 = 5 . For P1 and P2, the 

threshold was fixed throughout the trials. After detecting a change point, the model needed to reset 

the current run length to compute CPP in the subsequent bins. We tried three methods for this: M1) 

reset to 0, M2) set to posterior mean, and M3) set to posterior mode. M1) assumed a change 

occurred at the current bin, and M2) and M3) assumed that a change occurred at a bin in the past for 

the number of bins equal to posterior mean and mode of the run length distribution, respectively. 

Finally, we tested two distributions of unconditional Bernoulli probability 𝑃(𝜀)  of image 

presentation in each bin: D1) a true prior which had equal point masses at 𝜀 = 0.1, 0.15, 0.45, 0.5, 

and D2) a uniform prior over [0,0.6]. In all, we tested 24 sub-models (P1-4*M1-3*D1-2). 

 

Dynamic Belief Model (DBM) 

The model updated the posterior distribution over the Bernoulli probability of an image presentation 

(production of a sushi piece) 𝑃(𝜀) after observing the data in each bin, while taking into account the 

possibility of a change point occurrence at the bin. It took the form of Bayesian updating as follows:  

 

𝑃(𝜀q|𝑥#:q) ∝ 𝑃(𝑥q|𝜀q)𝑃(𝜀q|𝑥#:q8#) = 𝑃(𝑥q|𝜀q)((1 − ℎ)𝑃(𝜀q8# = 𝜀q|𝑥#:q8#) + ℎ𝑃(𝜀q))

= 𝜀q
�w(1 − 𝜀q)�w((1 − ℎ)𝑃(𝜀q8# = 𝜀q|𝑥#:q8#) + ℎ𝑃(𝜀q)). 
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Here, h was the probability that the observed data in the nth bin came from a Bernoulli distribution 

with mean 𝜀q, which was different from its value in the previous bin 𝜀q8#. Using the posterior 

distribution over Bernoulli probability incorporating the possibility of a change point, the model 

computed the maximum absolute difference of the posterior mean or mode (M1 or M2) between the 

current bin and any bin within the last T seconds after the most recent change point 𝑧. The value of 

𝑧 was initialized to 𝑧 = 1 at the start of a trial. The decision variable (DV) was written as  

 

𝐷𝑉q = max
#�7���� ����� K� ,q8�

𝑝𝑜𝑠𝑡q 	− 	𝑝𝑜𝑠𝑡q87 .																																				(6) 

 

A change point was detected if 𝐷𝑉q ≥ 𝜃q and the value of z was updated to the location of the 

change point (i.e., 𝑧 = 𝑛). We tested both a fixed threshold (𝜃q = 𝜃) and collapsing bound having 

the form of Weibull function (See Equation (5) under BOCPD for description). In addition to 

ℎ, 𝜃, 𝑇 , and three parameters 𝛼, 𝛽, 𝛿  related to the shape of threshold, another parameter 𝑘  was 

considered. The parameter k changed the threshold value based on the observed frequency of image 

presentation as 

 

𝜃q = 𝜃q + 𝑘×min{𝑝𝑜𝑠𝑡q, 𝑝𝑜𝑠𝑡q8�}, 𝚤 = argmax
#�7����(�����(K�),q8�)

|𝑝𝑜𝑠𝑡q 	− 	𝑝𝑜𝑠𝑡q87|. 

 

A positive value of 𝑘  complied with Weber’s law, which states that any noticeable difference 

between two stimuli is proportional to the magnitude of the stimuli. We tested the following 

parameter sets: P1)	ℎ, 𝜃, P2) ℎ, 𝜃, 𝑇, P3)	ℎ, 𝜃, 𝑘, P4)	ℎ, 𝜃, 𝑇, 𝑘, P5)	ℎ, 𝜃, 𝛼, 𝛽, 𝛿, P6) ℎ, 𝜃, 𝑇, 𝛼, 𝛽, 𝛿, 

P7) ℎ, 𝜃, 𝑘, 𝛼, 𝛽, 𝛿, and P8) ℎ, 𝜃, 𝑇, 𝑘, 𝛼, 𝛽, 𝛿. We tried two distributions of unconditional Bernoulli 

probability 𝑃(𝜀): D1) a true prior which has equal point masses at 𝜀 = 0.1,0.15,0.45,0.5, and D2) a 

uniform prior over [0,0.6]. In all, we tested 32 sub-models (P1-8*M1-2*D1-2).  
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Temporal Averaging Model (TAM) 

This model compared the average image presentation rate in the two different time windows and 

reported a change if the absolute difference of the two quantities was greater than a threshold value 

𝜃q. Because the computations it involves are arithmetic mean of stimulus values and subtraction, 

the model is highly generalizable to detecting changes in any domains. At the nth bin, the model 

first calculated the average frequency of image presentation (production of a sushi piece) per second 

from (𝑛 − 4𝑋 + 1)th to nth bin (i.e., during X seconds) and from max(𝑛 − 4𝑋 − 4𝑌 + 1, 𝑧)th to 

(𝑛 − 4𝑋)th bin (i.e., during up to Y seconds after the most recent change point z), which were 

denoted by 𝑋q and 𝑌q, respectively. The value of 𝑧 was initialized to 𝑧 = 1 at the start of a trial. 

Second, it computed the decision variable (DV), which was the absolute difference between 𝑋q and 

𝑌q: 

  	 	 	  

𝐷𝑉q = |𝑋q − 𝑌q|.																																																																	(7) 

 

The model detected a change point if 𝐷𝑉q ≥ 𝜃q and the value of z was updated to the location of the 

change point (i.e., 𝑧	 = 	𝑛 − 4𝑋 + 1). We tested both a fixed threshold (𝜃q = 𝜃) and a collapsing 

bound having the form of a Weibull function (See Equation (5) in BOCPD for description). In 

addition to 𝑋, 𝑌, 𝜃 and three parameters 𝛼, 𝛽, 𝛿 related to the shape of threshold, we considered a 

parameter k which reflected Weber’s law (See description under DBM) and scaled the threshold 

value as 𝜃q = 𝜃q + 𝑘×min{𝑋q, 𝑌q} . We tested the following sub-models of four different 

parameter sets: P1)	𝑋, 𝑌, 𝜃, P2) 𝑋, 𝑌, 𝜃, 𝑘, P3)	𝑋, 𝑌, 𝜃, 𝛼, 𝛽, 𝛿, and P4) 𝑋, 𝑌, 𝜃, 𝑘, 𝛼, 𝛽, 𝛿.  
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Delta-rule model (DRM) 

For completeness, we also evaluated the performance of a change detection algorithm based on a 

delta-rule process utilized in a number of previous studies of change detection in non-temporal 

domains (Nassar et al., 2010, 2012; McGuire et al., 2014). By utilizing a simple delta-rule, this 

model has been reported to achieve a significant reduction in computational complexity while 

attaining reasonable performance in describing participants’ behavior even compared to an optimal 

Bayesian model. In this model, the probability of a change point (cp) at nth-bin given the 

observation 𝑥q denoted by 𝛺q is computed using Bayes’ rule: 

 

𝛺q = 𝑝(𝑐𝑝|𝑥q) =
𝑝(𝑥q|𝑐𝑝)𝑝(𝑐𝑝)

𝑝(𝑥q|𝑐𝑝)𝑝(𝑐𝑝) + 𝑝(𝑥q|~𝑐𝑝)𝑝(~𝑐𝑝)
=

0.3ℎ
0.3ℎ + 𝜇q(1 − ℎ)

, 

 

where h denotes the unconditional change probability at each bin, and 𝜇q  denotes the current 

estimate of Bernoulli probability of sushi-piece production in each bin. 𝑝(𝑥q|𝑐𝑝) = 0.3 for two 

probable forms of prior distribution of Bernoulli probability: a true prior which has equal point 

masses at 𝜀 = 0.1, 0.15, 0.45, 0.5, and a uniform prior over [0, 0.6]. The Bernoulli probability 𝜇q is 

learned by delta-rule as 

 

𝜇q = 𝜇q8# + 𝛼q(𝑥q − 𝜇q8#), 

 

where 𝛼q denotes the learning rate given by  

 

𝛼q =
1 + 𝛺q𝑟q
1 + 𝑟q

. 
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Here, 𝑟q  is the expected run length. Instead of updating the full probability distribution of run 

length as in BOCPD (See the description of BOCPD), the model tracks its expected value:  

 

𝑟q6# = (𝑟q + 1)(1 − 𝛺q) + 𝛺q. 

 

The model detects a change if the decision value 𝐷𝑉q = 𝛺q is greater than the threshold value of 

𝜃q . We tested a collapsing bound having the form of a Weibull function (See Equation (5) in 

BOCPD for description). Thus, the model has five parameters: ℎ, 𝜃, and three parameters 𝛼, 𝛽, 𝛿 

related to the shape of threshold. 

 

Although the performance of this model was significantly better than the random model, it fell short 

of the other three models on the sequence of binary stimuli in our task (Figure S10).  For this 

reason, we do not consider this model further. A likely explanation for why the delta-rule model did 

not perform especially well for our task is that our temporal detection task differs substantially from 

the change detection tasks utilized in previous studies that have reported good performance for the 

delta-rule model. This is because the delta rule depends on generating a reliable estimate of the 

generative distributions from a relatively small number of observations. In the case of the present 

studies the observations are binary (i.e., drawn from a Bernoulli distribution), depicting whether the 

event has occurred or not, as opposed to being continuous where the event is a continuous variable 

drawn from a one-dimensional Gaussian distribution with a reasonably small variance. The 

individual binary observations utilized in the present tasks are thus less informative and noisier for 

the updating of the delta rule than the individual observations obtained in previous tasks in which 

this model variant has performed successfully. We think this is the primary reason this model does 

not perform adequately in our task. However, we acknowledge that it is possible that this model 
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variant could potentially be extended and elaborated on in subsequent work, which could 

potentially lead to it achieving better performance on the present task.   

 

Random model 

We also tested the performance of a random model as a benchmark. In this model, we used the 

response of the random agent described earlier who made responses randomly in each bin using the 

rate of button presses observed in individual participant’s behavior. We simulated the random 

model for each participant 5000 times and evaluated the performance.   

 

Model fitting to participants’ behavior 

We calibrated each of the three computational models to predict the timing of button presses in 

participants’ behavior. For each participant, we obtained the parameter values of each model by 

minimizing the f measure between the participant’s button presses and the button presses simulated 

by the model. The constituents of the f measure, precision and sensitivity, were defined as 

TP/(TP+FP) and TP/(TP+FN). TP corresponds to the total number of instances where a model-

produced button press was within a 10-second window around the button press made by an actual 

participant. FP corresponds to the total number of instances when a model-produced button press 

did not fall within a 10-second window of the participant’s button presses or when a model 

produced button press occurred within a 10-second time window of a participant’s actual button 

press but when there was also another button press in the same window already categorized as being 

a TP. FN corresponds to the total number of instances when there was no model button press within 

a 10-second time window. Therefore, precision described the fraction of the model’s button presses 

that conformed to the participant’s button while sensitivity captured the fraction of the participant’s 

button presses that were correctly captured by the model.  Finally, precision and sensitivity were 

combined to compute the overall f measure using Equation (3).   
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In the model fitting, we pooled participant’s behavior across runs because there were no significant 

differences in the behavior across runs (Figure S5). This confirmed that participants could not learn 

to better detect a change point without feedback regarding their performance. We adopted hold-out 

validation by using odd-numbered trials as the training set and even-numbered trials as the 

validation set. For each sub-model and participant, we first obtained parameter values that 

maximized the f measure defined above in the training set and then computed the f measure in the 

validation set by simulating the sub-model using the parameter values obtained in the previous step. 

We refer to the f measure resulting from hold-out validation as the “predictive f measure”. We 

assessed the performance of each sub-model by averaging the predictive f measure across 

participants. Finally, we compared and selected the best sub-model for each of the three models. 

Once the best sub-model for each model was selected, we calibrated the model for each participant 

to all the trials across runs. We refer to the resulting f measure as the “fitted f measure”.  

 

We checked how dependent the result of model fitting is to the size of time window chosen to 

calculate the f measure. To this end, we fit the best sub-model for each of the three model classes 

using 6-second, and 14-second time windows alongside the 10-second window used in the main 

analyses. Consistent with the result found using a 10-second time window, we found no significant 

differences between the goodness of fit of the different model class (6-second time window: 

t(20)=0.07, p=0.94 between BOCPD and DBM, t(20)=0.44, p=0.66 between DBM and TAM, and 

t(20)=0.43, p=0.67 between TAM and BOCPD, paired-sample t test; 14-second time window: 

t(20)=1.06, p=0.30 between BOCPD and DBM, t(20)=1.61, p=0.12 between DBM and TAM, and 

t(20)=0.59, p=0.56 between TAM and BOCPD, paired-sample t test). Thus, our model fitting 

results are robust to arbitrary choices of time window and not an artifact of a specific time window. 
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Note that for model fitting we used the method described above instead of a likelihood 

maximization method. The maximum likelihood method is inappropriate to use here because it 

would test for the accuracy of the model predictions for single responses emitted at each unit of 

time (i.e., at a single-bin level of temporal precision), which is not a reasonable test for any of the 

three models, as no model could be expected to predict response accuracy to that arbitrary level of 

precision.  

 

DATA AVAILABILITY  

The behavioral data has been deposited in GitHub: https://github.com/RyoAdachi/tcd. 

 

CODE AVAILABILITY  

Key analysis codes written in MATLAB and behavioral analysis results have been deposited in 

GitHub: https://github.com/RyoAdachi/tcd. 

 

RESULTS 

Temporal change detection task: “The sushi chef task” 

In the experiment, participants observed a chef making sushi pieces represented by a sequence of 

images while being scanned with fMRI (main task; Figure 6). Participants were instructed that there 

are two chefs; one is diligent and productive while the other is lazy and unproductive. Participants 

were also told that the diligent chef has a higher average rate of production than the lazy one 

although the exact number of production by each chef fluctuates from time to time. Participants 

were also informed that while both of these two chefs work in the kitchen only one of them is 

working at a particular time, and that the chef who is making sushi pieces might or might not 

change from one to the other during a given trial. The participants were instructed to press a button 
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on the keypad using their right finger anytime they thought that a changeover had occurred 

between the two chefs. We instructed the participants that there could be either zero, one or multiple 

switches between the chefs in each trial and no information was provided to participants regarding 

the timing of changes. The specific image used to denote the sushi pieces and the location of the 

sushi pieces on the screen was kept fixed throughout the trials for all the participants and thus the 

only relevant information in the main task was the timing of image presentations. Each trial began 

after the presentation of a white fixation cross (2-6 seconds, mean 4 seconds). Each trial lasted for 

30 seconds. 

  

In the main task, the timing of production of sushi pieces was determined as follows: in a 30-second 

trial, we set up 120 bins each having the duration of 0.25 second and a sushi piece was presented in 

each bin with probability p for 0.125 second around the middle of the time bin. We manipulated the 

value of p to achieve two levels of difficulty; p jumped between 0.1 and 0.5 and between 0.15 and 

0.45 at a change point in easy and hard conditions, respectively. The numbers of trials from easy 

and hard conditions were balanced and whether a sequence started with the low or high value of p 

was randomized within each condition. The change points were prescribed as follows: there was no 

change point during the first 20 bins (i.e., 5 seconds) at the start of the trial and then a change point 

location was drawn from a geometric distribution with a mean of 60 bins (i.e., 15 seconds). Once a 

change occurred, there was no change point during the following 20 bins (i.e., 5 seconds) and the 

next change point was drawn from the same geometric distribution. We omitted change points 

during the last 20 bins (i.e., 5 seconds) of a trial because the participants would not be able to detect 

these change points on the basis of a relatively small number of data points available thereafter until 

the end of the trial. 
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We also included a control condition designed to account for the effects of visual and motor 

properties that were not specifically related to temporal change detection. This involved trials in 

which participants were tasked with detecting subtle visual oddballs in the image sequence. The 

control task started with the presentation of a green fixation cross (2-6 seconds, mean 4 seconds). 

The participants observed the production of sushi pieces similar to the main task and they were 

instructed to press the button using their right index finger as soon as they observed an oddball. The 

oddball, which was described to the participants as a sushi piece that was not fresh, was slightly 

different in contrast from other sushi pieces, and the identity of the oddball remained the same 

throughout the experiment for all the participants. We calibrated the contrast of the oddball image 

using the data from a pilot experiment such that the average difficulty of the main and the control 

task across participants was comparable (Figure S6). The timing of production of sushi pieces was 

determined by the same process as the main task with the parameter p fixed to 0.3 throughout the 

trials. This parameter value was chosen to match the mean production rate in the main task, which 

was the probability of sushi piece production in each bin. Oddball locations were determined using 

the same protocol that specified the change points in the main task. After oddball locations were 

specified, the sushi piece in the sequence that was closest in time to each of these locations was 

replaced by the oddball image. We explicitly instructed the participants that trials from the control 

task contained no switches between the chefs and there was no need to track the rate of production 

of sushi pieces.  

 

After practice trials (3 trials each for the two difficulties of the main task and 2 trials of the control 

task in a randomized order within participants), the participants engaged in a total of four runs, each 

containing 18 trials of the main task (9 trials for each difficulty) and 6 trials of the control task 

randomly intermixed. We used two pseudo-random sets of sequences: 50% of the participants 

underwent one sequence set, and the other participants underwent the second sequence set. These 
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two sets of sequences were selected so that the distribution of the number of change points and the 

timing of change points in each set were close to its expected value (See Figure S3 for their 

properties). This procedure reduced the possibility that the behavioral and/or neural effects we 

observed were driven by peculiar properties existent in a set of sequences and thus lacked 

generality. The order of sequences used in the trials was randomized within participants.  

 

The participants were incentivized to maximize the number of correct detections of change points 

while minimizing the number of incorrect detections as follows (See Figure S4 for the description 

used in the experiment): at the end of the experiment, we randomly selected 25% of the trials. For 

each of the selected trials, a correct detection and an incorrect detection were rewarded and 

punished by $2, respectively. The first button press within 5 seconds after a change point and 1 

second after an oddball presentation counted as a correct detection. If there were multiple button 

presses within 5-second and 1-second time window for the main and control tasks, respectively, the 

button presses other than the first one in time within the window were deemed incorrect. All the 

button presses outside these time windows were incorrect detections. Importantly, there was no 

feedback given to participants about their performance during the trials and thus no feedback-based 

learning could take place during the experiment. 

 

Task performance 

The average number of participants’ button presses per trial was significantly greater than the actual 

number of changes per trial in both easy and hard conditions (Figure 7A; t(20)=2.23, p=0.037, and 

t(20)=4.12, p=5.3×10-4 for the easy and hard conditions, respectively, one-sample t test). The 

participants showed a significant increase in the rate of button press (Figure 7A; t(20)=4.57, 

p=1.9×10-4, paired-sample t test) and a significant decrease in the performance f measure (Figure 

7B; t(20)=4.95, p=7.7×10-5, paired-sample t test) for the hard condition compared to the easy 
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condition. The performance f measure is our metric of participants’ performance based on the 

distance between task-determined actual change points and participants’ button presses (See 

Statistical Analysis section in Materials and Methods). Although the human participants performed 

considerably short of the theoretical optimum (Figure S7 shows the comparison of performance 

between the participants and an optimal Bayesian agent), they performed significantly better than 

the random agent in both conditions (Figure 7B; t(20)=11.6, p=2.7×10-10 and t(20)=12.0, p=1.3×10-

10 for easy and hard conditions, respectively, paired-sample t test), indicating that the participants 

were capable of detecting temporal change points considerably beyond that expected by chance. 

The participants were not increasing the number of button presses randomly in the hard condition 

because if they were random, the sensitivity (i.e., the proportion of actual change points correctly 

detected by the participants) would have increased. This was not the case, and in fact we observed a 

significant decrease in sensitivity for the hard compared to easy condition (Figure S6; t(20)=3.19, 

p=0.0046, paired-sample t test). In the control task, we successfully matched the average difficulty 

of the two tasks in terms of the performance f measure (Figure S6; non-significant as t(20)=1.36, 

p=0.19, paired-sample t test), although there was a significant increase and decrease in precision 

and sensitivity, respectively (Figure S6; t(20)=5.11, p=5.3×10-5 and t(20)=6.83, p=1.2×10-6, paired-

sample t test), compared to the main task.  

 

Model fitting to participants’ behavior 

To describe participants’ behavior quantitatively, we calibrated three computational models of 

various complexity: two Bayesian models inspired by the Bayesian Online Change Point Detection 

model (BOCPD; Adams and MacKay, 2007) and the Dynamic Belief Model (DBM; Yu and Cohen, 

2009), alongside a computationally frugal model which we named the Temporal Averaging Model 

(TAM). We fit each model to predict the timing of individual button presses within each trial (See 

Statistical Analysis section in Materials and Methods for the description of each model). For each 
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model, we compared the performance of sub-models (i.e., different set of parameters used within a 

class of model) by means of predictive f measure averaged across participants. Predictive f 

measures for each participant were obtained by calculating the f measure (i.e., the distance between 

participants’ button presses and button presses prescribed by the computational model) on the even-

numbered trials using the best fitting parameter values estimated on the odd-numbered trials (See 

Methods; Table S4 reports the detailed result of this procedure). All the models performed 

significantly better than the random model (Figure 7C; t(20)=17.1, p=2.1×10-13 for BOCPD, 

t(20)=17.5, p=1.3×10-13 for DBM, and t(20)=17.6, p=1.2×10-13 for TAM, paired-sample t test). 

However, in a model comparison, when comparing the predictive f measures between each of the 

models we found no significant differences among the models in terms of their capacity to account 

for human performance (Figure 7C and Figure S8A; t(20)=0.95, p=0.35 between BOCPD and 

DBM, t(20)=1.80, p=0.088 between DBM and TAM, and t(20)=0.75, p=0.46 between TAM and 

BOCPD, paired-sample t test). Note that because we used different behavioral data (odd trials) to fit 

the parameters for each model than we used to validate each model (even trials), it is not necessary 

to adjust our model comparison process to take into account differences in model complexity.   

 

After identifying the best sub-model for each model, we fit each model again using the data from all 

trials for each participant (Figure S8B; Figure S9 reports fitted parameter values). Although we did 

not differentiate model’s button presses by the distance to the participant’s button presses as long as 

they were in the 10-second window around a participant’s button press, all the models fitted to 

replicate the timing of participants’ button presses reasonably well (Figure 7D).  The models also 

captured trial-by-trial variability in the number of button presses in participants’ behavior. As the 

number of participants’ button presses per trial increased, the average number of button presses 

prescribed by the model increased (Figure 7E).  
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Taken together our behavioral results demonstrate that all three candidate models do equally well 

in capturing participant’s behavioral data. Even the very simple TAM performed as well as the most 

sophisticated Bayesian model in explaining participant’s change detection behavior. Given this 

situation of equivocation on the model predictions against the behavioral data, in order to 

understand better which model provides a best account of the neural computations underlying 

change detection, we next turned to the fMRI data analysis in Chapter 4. 

 

DISCUSSION 

This study investigated the computational basis of temporal change point detection. We tested three 

different computational models of varying degree of sophistication against behavioral data to 

examine the capacity of each model in describing participants’ behavior. All the models captured 

important aspects of participants’ behavior, and in fact there were no significant differences among 

the models in their predictive performance using the validation set despite the difference in their 

complexities.  

 

We could successfully modify and apply computational models of change detection aimed to solve 

non-temporal domain tasks to our novel temporal change detection task. This is because our task is 

conceptually similar to tasks from previous reports where participants inferred changes in non-

temporal domain and utilized the inference to their decision making (Behrens et al., 2007; Nassar et 

al., 2010, 2012; Summerfield et al., 2011; Payzan-LeNestour et al., 2013; McGuire et al., 2014). For 

instance in one study, participants were tested in a predictive inference task where they predicted 

the spatial location of stimulus appearance on the following trial located on a 1-dimentional line. 

Here, the position of stimulus in each trial was drawn from a Gaussian distribution containing 

occasional jumps in its mean value and these jumps had to be inferred for a successful performance 
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in the task (McGuire et al., 2014). Our task can be interpreted in a similar manner such that the 

participants inferred jumps in the mean of Bernoulli probability that governed the production of 

sushi pieces by observing existence and non-existence of the production in each time bin of 0.25-

second. Alternatively, our task can be regarded as a modified-version of the one-armed bandit task 

(Behrens et al., 2007). The participants observes only one bandit and reports jumps in reward 

probability instead of selecting one of two bandits, which is thought to be associated with higher 

reward probability.  

 

Despite of these conceptual resemblances, there are two important aspects that make our task 

subjectively very distinct from previous ones in non-temporal domains. First, we explicitly asked 

the participants to detect and report change points rather than utilizing the knowledge of inferred 

change points to other decision making tasks (e.g., prediction regarding the stimulus in the 

following trial in the aforementioned predictive-inference task). Second, participants were required 

to update their beliefs about the statistics of the environment much more frequently than previous 

tasks required. In our task, the participants observed a sequence of existence or non-existence of 

stimulus updated every 0.25-second and the variables relevant to the computational models we 

tested were calculated at this time resolution. Because previous studies adopted a traditional trial-

by-trial design, observing a stimulus and updating the belief about the task environment occurred at 

a much lower frequency of around every 10 seconds.  

 

These differences could be helpful in understanding why simple heuristic model performed as 

equally well as complex Bayesian models in our task. The superiority of a Bayesian approach 

comes from encoding explicit probability distributions of the task environment and updating the 

belief in an optimal manner. However, Bayesian models added little benefit over the heuristic 

model in our task. Since we informed the participants explicitly that a temporal change point 
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involved a switch between binary states either from high to low or from low to high probability of 

sushi piece production in each bin, detecting a change point in our task necessitated only a less 

precise estimate of the Bernoulli probability compared to a case where states were continuous (e.g., 

location on a 1-dimentional line in a predictive-inference task). Also, due to the high frequency 

nature of the observations of existence and non-existence of sushi piece productions, a simple 

arithmetic mean of image frequency provided a good approximation to the Bernoulli probability of 

the generative process in a short period of time (e.g., 5 seconds). 

 

This finding could be compatible with previous reports that favor approximate or non-fully 

Bayesian strategies when task demands are high (i.e., require storing large amount of information 

and/or complex computation of posterior distribution) and/or when the task environment is volatile 

(Summerfield et al., 2011; O’Reilly et al., 2012). In the present study, during each step of Bayesian 

updating, the BOCPD model required the updating of joint probability distributions of observed 

data and run length while the DBM only computed the posterior distribution of one parameter: the 

Bernoulli probability of the appearance of a sushi piece in each bin. Although one step of updating 

was less complex compared to models in other studies that updated joint distribution of three 

parameters (Behrens et al., 2007), the high frequency of updating which was a feature of our task 

added considerable computational demand. Thus in our task, implementing the Bayesian models 

was in fact computationally very taxing.  

 

In conclusion, we investigated the computational account of temporal change detection in the 

human behavior in this chapter. A simple heuristic model relying on arithmetic mean and 

subtraction performed as equally well as Bayesian models in describing participants’ behavior. 

Thus, the behavioral data alone could not differentiate computational accounts underlying temporal 
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change detection. To further elucidate this, we tested the computational models against the fMRI 

data in the next chapter.  
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FIGURES AND TABLES 

 

 

Figure 6. Illustration of task structure. 

In the main task, participants observed sushi pieces produced by either one of the two chefs 

differing in their productivity in a trial of 30 seconds. The chef in production switched unexpectedly 

during a trial and participants were tasked to report changes between the chefs by the button press. 

In the illustrated example, participants observed a sudden increase in the rate of production. Some 

participants would press the button by reasoning that the perceived increase was due to the switch 

of chefs while others would not press the button by speculating that the observed increase was due 

to randomness and the chef in production did not change. In the control task, participants observed 

sushi pieces being produced as in the main task but the sequence contained sushi pieces that were 

not fresh represented by an image that was slightly different in contrast from other sushi pieces. 

Participants were tasked to detect these visual oddballs by pressing the button as soon as they 

appeared on the screen. 

t [s] 30 

0 

Button press? 
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Figure 7. Behavioral results.  

A. The average number of button presses across participants was significantly greater than the 

number of actual change points represented by a dashed line for both conditions (t(20)=2.23, 

p=0.037, and t(20)=4.12, p=5.3×10-4 for the easy and hard conditions, respectively, one-sample t 

test). The participants also showed a significant increase in the rate of button press in the hard 

condition compared to the easy condition (***: t(20)=4.57, p=1.9×10-4, paired-sample t test). 

Circles denote individual participant. Bars denote SEM across participants.  
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B. The participants showed a significant decrease in their performance f measure in the hard 

condition compared to the easy conditions (***: t(20)=4.95, p=7.7×10-5, paired-sample t test). The 

performance f measures of the participants was significantly better than that of the random agent in 

both conditions (***: t(20)=11.6, p=2.7×10-10 and t(20)=12.0, p=1.3×10-10 for easy and hard 

conditions, respectively, paired-sample t test). Circles denote individual participant. Bars denote 

SEM across participants.  

C. Predictive f measure from hold-out validation procedure of model fitting. For each model and 

participant, the model’s predictive performance on the even-numbered trials was calculated using 

the best fitting parameters obtained from the calibration to the odd-numbered trials. There were no 

significant differences among the performance of BOCPD, DBM, and TAM (n.s., non-significant 

as t(20)=0.95, p=0.35 between BOCPD and DBM, t(20)=1.80, p=0.088 between DBM and TAM, 

t(20)=0.75, p=0.46 between TAM and BOCPD, paired-sample t test). All the three models 

performed significantly better than the random model (t(20)=17.1, p=2.1×10-13 for BOCPD, 

t(20)=17.5, p=1.3×10-13 for DBM, t(20)=17.6, p=1.2×10-13 for TAM, paired-sample t test). Error 

bars represent SEM. Red: BOCPD, Cyan: DBM, Green: TAM, Black: random model.  

D. Histogram of the average number of button presses predicted by each model compared to the 

timing of participant’s button presses. We created 1-second bins from -4.5 to 4.5 seconds around 

participant’s button presses and counted the number of model button presses that fell into each bin. 

Bars denote SEM across participants. Red: BOCPD, Cyan: DBM, Green: TAM. 

E. Comparison of the trial-by-trial number of button presses of the actual participants vs. each 

model prediction. We categorized the trials by the number of button presses prescribed by the 

model and computed the average number of participant’s button presses for trials in each category. 

Bars denote SEM across participants. Red: BOCPD, Cyan: DBM, Green: TAM.  



 

 

68 

 

 

Figure S3. Related to Figure 6. Experimental design.  

Characteristic of the two sets of sequences used in the main task. For each of the 72 trials in the 

main task, we generated temporal change points (See Results) and counted the number and recorded 

the timing of change points. We iterated this process for 1000 times and averaged the number of 

change points contained in each set (left). We also averaged the timing of change points for trials in 

which there were one, two or three change points, separately (right). Bars denote the standard 

deviation of the simulation result. Open and filled circles denote the two sets of sequences used in 

the main task of the experiment.  
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Figure S4. Related to Figure 7. Performance metric.  

Illustration of the incentive scheme of the main task used in the instruction for the participants. A 

correct button press was when a change occurred and a button press was made within 5 seconds 

after the change point (A in Figure). Each correct button press was rewarded by $2. There were two 

instances of an incorrect button press. One was that there was a button press but no change occurred 

within 5 seconds before the button press (B in Figure). The other was that there was a change point 

within 5 seconds before the button press, but after the change point and before the button press there 

was another button press (C in Figure). An incorrect button press was punished by $2. For the 

control task, the same incentive scheme was used with 1-second time window.  
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Figure S1. Related to Figure 1. Experimental design.  

A. Characteristic of the two sets of sequences used in the main task. For each of the 72 trials in the main 

task, we generated temporal change points (See STAR Methods) and counted the number and recorded the 

timing of change points. We iterated this process for 1000 times and averaged the number of change points 

contained in each set (left). We also averaged the timing of change points for trials in which there were one, 

two or three change points, separately (right). Bars denote the standard deviation of the simulation result. 

Open and filled circles denote the two sets of sequences used in the main task of the experiment.  

B. Illustration of the incentive scheme of the main task used in the instruction for the participants. A 

correct button press was when a change occurred and a button press was made within 5 seconds after the 

change point (A in Figure). Each correct button press was rewarded by $2. There were two instances of an 

incorrect button press. One was that there was a button press but no change occurred within 5 seconds 

before the button press (B in Figure). The other was that there was a change point within 5 seconds before 

the button press but, after the change point and before the button press, there was another button press (C 

in Figure). An incorrect button press was punished by $2. For the control task, the same incentive scheme 

was used with 1-second time window.  
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Figure S5. Related to Figure 7. Participants’ behavior across runs.  

Participants’ behavior in the main task across runs. No significant differences were observed across 

runs in terms of the number of button presses per trial, performance f measure, precision, and 

sensitivity of participants’ performance (n.s., non-significant with associated p value denoted in the 

parentheses, one-way repeated measure ANOVA). Bars represent SEM. 
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Figure S6. Related to Figure 7. Participants’ behavior across conditions.  

A. Precision and sensitivity of participants’ behavior in easy and hard conditions. Participants 

showed a significant decrease in both precision and sensitivity in the hard condition compared to the 

easy condition (***: t(20)=5.64, p=1.6×10-5, **: t(20)=3.19, p=0.0046, paired-sample t test). Open 

circles denote each participant. Bars denote SEM. 

B. Comparison of participants’ behavior in the main and the control task. We matched the difficulty 

of the two tasks in term of performance f measure (n.s., non-significant as t(20)=1.36, p=0.19, 

paired-sample t test). There were significant differences between the participants’ behavior in the 

two tasks with regard to precision (***: t(20)=5.11, p=5.3×10-5, paired-sample t test), sensitivity 

(***: t(20)=6.83, p=1.2×10-6, paired-sample t test), and the number of button presses per trial (***: 

t(20)=8.33, p=6.2×10-8, paired-sample t test). Black: participants’ behavior in the main task, 

Orange: participants’ behavior in the control task. Open circles denote each participant. Bars 

represent SEM.  
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 Figure S7. Related to Figure 7. Performance of the optimal Bayesian model. 

Comparison of the performance between the participants and an optimal Bayesian agent. The 

optimal Bayesian agent employed the BOCPD with the optimal parameter values (i.e., h=1/80, 

𝜃=0.5, T=5[s]). The task was difficult for the participants as seen from the discrepancy in the 

performance f measure (left). On aggregate, the number of button presses of the participants was 

comparable to that of the optimal Bayesian agent (right). Black: participants’ behavior, Blue: 

Optimal Bayesian agent. Open circles denote each participant. Bars represent SEM.  
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Figure S8. Related to Figure 7. Performance of computational models. 

A. Predictive performance in terms of precision and sensitivity. Best parameter values calibrated on 

the odd-numbered trials were used to obtain predictive precision and sensitivity on the even-

numbered trials. Bars denote SEM across participants. Red: BOCPD, Cyan: DBM, Green: TAM, 

Black: random model. 

B. The performance of each model in terms of fitted f measure, precision, and sensitivity resulting 

from model fitting using data from all the trials. For each participant, we first identified the best 

sub-model for each model using hold-out validation, and then fitted the model using all data points. 

Bars denote SEM across participants. Red: BOCPD, Cyan: DBM, Green: TAM, Black: random 

model. 
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Figure S9. Related to Figure S8B and Figure S11. Best fitting parameter values for the best 

sub-model of each computational model of participants’ behavior. 

A. BOCPD. The estimated hazard rate was close to the true hazard rate of logℎ = −4.382. The 

threshold value was close to its optimal value of 0.5 on average although there was a great 

heterogeneity across participants. Most participants employed greater than optimal size of time 

window (𝑇 = 5[𝑠]) to compute change point probability. Open circles denote each participant. Bars 

represent SEM.  

B. DBM. On average, the estimated hazard rate was greater than the true hazard rate. Although the 

average estimated parameter value associated with Weber’s law was zero, there was a great 

variability across participants. 

C. TAM. Participants were using larger number of data points before than after the change point as 

seen from 𝑋 < 𝑌  on average to determine the average rate of image presentations. This was 

sensible because the larger number of data points a participant used, the better estimate of 
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underlying rate of image presentations he/she could obtain under the stable period before the 

change point. Also, the duration of the time window X used to calculate the average rate of image 

presentations after perceived change points was close to 5 seconds. This was plausible given that 

the participants were informed that they would be rewarded for a correct button press within 5 

seconds from a change point. Furthermore, the value of the parameter k was greater than zero on 

average, Therefore, the greater the current rate of image presentation was, the greater the threshold 

to detect a change point became. This effect conformed to Weber’s law. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

76 

 

 

Figure S10. Related to Figure 7. Performance of the computational model based on delta-rule.  

Comparison of the performance of the delta-rule model against the three models analyzed in the 

main text (See Figure 7C). The performance of DRM fell short of the other three computational 

models (***: t(20)=5.18, p=4.6×10-5  between BOCPD and DRM, t(20)=5.23, p=4.0×10-5 between 

DBM and DRM, t(20)=4.69, p=1.4×10-4 between TAM and DRM, paired-sample t test). DRM 

performed significantly better than the random model (***: t(20)=12.0, p=1.3×10-10, paired-sample 

t test). Error bars represent SEM. Red: BOCPD, Cyan: DBM, Green: TAM, Gray: DRM (Delta-rule 

model), Black: random model.  
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BOCPD (All sub-models included free parameters θ and h.) 
True prior 
Parameter - T α,β,δ T,α,β,δ 
Reset to 0 0.636 0.6593 0.658 0.6591 
Posterior mean 0.607 0.637 0.636 0.634 
Posterior mode 0.593 0.609 0.631 0.630 
Uniform prior 
Parameter - T α,β,δ T,α,β,δ 
Reset to 0 0.605 0.634 0.625 0.634 
Posterior mean 0.585 0.644 0.602 0.623 
Posterior mode 0.568 0.592 0.611 0.626 
 

DBM (All sub-models included free parameters θ and h.) 
True prior 
Parameter - T k T,k α,β,δ T,α,β,δ k,α,β,δ T,k,α,β,δ 
Post. mean 0.590 0.620 0.597 0.617 0.661 0.667 0.669 0.656 
Post. mode 0.454 0.477 0.442 0.463 0.648 0.652 0.641 0.654 
Uniform prior 
Parameter - T k T,k α,β,δ T,α,β,δ k,α,β,δ T,k,α,β,δ 
Post. mean 0.567 0.588 0.554 0.585 0.641 0.646 0.640 0.655 
Post. mode 0.445 0.468 0.451 0.472 0.659 0.639 0.645 0.630 
 

TAM	 (All sub-models included free parameters X,Y and θ.) 
Parameter - k α,β,δ k,α,β,δ 
 0.621 0.626 0.626 0.653 

 

Table S4. Related to Figure 7C. Details of model fitting and comparison. 

Model comparison using hold-out validation for Bayesian Online Change Point Detection model 

(BOCPD), Dynamic Belief Model (DBM), and Temporal Averaging Model (TAM). The values 

reported are the predictive f measures obtained by simulating the model on even-numbered trials 

using the best fitting parameter values to odd-numbered trials. For each model, we tested sub-

models that varied in the number of free parameters. The best sub-model within each class of 

models is written in bold and italic. See Materials and Methods for the description of each model 

and parameter.  
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C h a p t e r  4  

NEURAL COMPUTATIONS MEDIATING  

TEMPORAL CHANGE DETECTION IN THE HUMAN BRAIN 

Adachi R, Suzuki S, O’Doherty JP. Neural computations mediating temporal change detection in 

the human brain.  

R.A. and J.P.O. designed the experiment. R.A. and S.S. collected the data. R.A. performed data 

analysis with feedback from S.S. and J.P.O. R.A. and J.P.O. wrote the manuscript. J.P.O. supervised 

the research.  

 

INTRODUCTION 

In spite of the importance of understanding how the brain solves change detection problems where 

inference about the change point has to be inferred as opposed to being explicitly observable, the 

literature on this topic is surprisingly sparse to date, and has focused on only a small subset of 

domains. In value-based learning, some studies have identified neural systems involved when 

inferences about changes in reward contingencies in the absence of explicit signaling of change 

point result in changes in behavior (Cools et al., 2002; O’Doherty et al., 2003; Gläscher et al., 

2009a). Computational fMRI studies have characterized the neural computations underlying 

detection of changes in reward contingencies (Hampton et al., 2006; Behrens et al., 2007; Payzan-

LeNestour et al., 2013). Related work has also been conducted in the domain of perceptual category 

learning (Summerfield et al., 2011), while others have characterized the mechanisms underlying 

change detection in the occurrence of stimuli at different spatial locations (McGuire et al., 2014). In 

spite of existing work on change detection in perceptual, spatial, and value-domains, the neural 

mechanisms underlying change detection in the temporal domain (beyond the trivial case of oddball 
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paradigms in which the change is directly signaled and need not be inferred) is largely unexplored. 

 

The goal of the present study was two-fold: first of all, we aimed to describe the neural mechanisms 

of change detection in the temporal domain. Secondly, we aimed to conduct a comprehensive 

assessment of which computational mechanism could best describe the neuronal processes involved 

in this form of change detection, by formally comparing optimal Bayesian models of change 

detection to simpler yet computationally more tractable approximate strategies. 

 

At the neuroanatomical level, we hypothesized that regions of the frontoparietal network would be 

involved in temporal change detection. This is because this network has been implicated not only in 

oddball detection (Kim, 2014), but also in change detection in non-temporal domains (McGuire et 

al., 2014), as well as in perceptual decision-making more generally (Heekeren et al., 2004, 2006; 

Gold and Shadlen, 2007). 

 

MATERIALS AND METHODS 

FMRI DATA PREPROCESSING 

fMRI data acquisition 

The task was conducted in a Siemens Trio 3T scanner using a 32-channel radio frequency head coil. 

The imaging data was acquired at a 20-degree angle from the anterior commissure-posterior 

commissure line in order to maximize orbital sensitivity (Deichmann et al., 2003), using a multi-

band echo planar imaging sequence with the acceleration factor of 4. 56 axial slices were acquired 

with no slice gap with the following scan parameters: echo time 30 ms, repetition time 1000 ms, 

field of view 200×200 mm, and voxel size 2.5 mm isotropic. High-resolution T1 images were 

collected at the beginning of each participant’s session.  
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fMRI data preprocessing  

SPM12 (Wellcome Department of Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.uk/spm) 

was used to preprocess and analyze the data. The functional images for each participant were slice 

time corrected to the beginning of each TR (0 ms) and then spatially realigned to the first volume 

using a 6-parameter rigid body spatial transformation. The high-resolution structural image was 

then co-registered to the mean functional image generated from the realignment procedure. The 

realigned functional images and co-registered structural image were spatially normalized to the 

MNI template by using warping parameters obtained through segmentation process. Finally, the 

normalized functional images were spatially smoothed using a Gaussian kernel of 8 mm isotropic. 

 

STATISTICAL ANALYSIS 

Creating the decision variable regressor  

To examine the brain regions implementing the decision variable to detect temporal change points, 

we estimated the time course of the decision variable derived from each model during each trial at 

250 ms time resolution. For each participant and model, we simulated the model using the best 

fitting parameters to all the trials and timing of the image presentations (production of sushi pieces) 

actually experienced by the participant in each trial (Figure S11, Table S5). This time course was 

used in the first-level participant-specific general linear models (GLMs) after being convolved with 

a canonical hemodynamic response function (HRF) provided by SPM12.  

 

fMRI statistical analysis  

We estimated several participant-specific GLMs to test our hypotheses. All the regressors of interest 

in the GLM were concatenated across runs and convolved with a canonical hemodynamic response 

function provided by SPM12. The contrasts obtained from the estimated first-level GLM of each 

participant were used for second-level random effect analyses. For the whole-brain analyses, we 
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applied correction for multiple comparisons at the cluster level p<0.05 with the underlying voxel-

wise threshold of p<0.001 and a minimum spatial extent of 97 voxels, calculated by using a version 

of 3dClustSim in AFNI that does not assume Gaussian spatial correlations, and which is therefore 

not susceptible to inflated false positives (Cox et al., 2017). For display purposes, all the statistical 

maps presented are thresholded at p<0.001 uncorrected. In the tables, the coordinates reported are in 

MNI coordinates of the peak voxel in each of the activation clusters. All the GLMs included the 

following regressors of no interest: 6 movement regressors for each of the 4 runs generated from the 

realignment procedure in the image preprocessing accounting for head motion, a constant term 

throughout the runs, and a constant term for each run except the last one. SPM’s default serial 

orthogonalization was turned off and each regressor in the GLMs captured the unique variance in 

the acquired signal.  

 

GLM1  

This GLM was estimated to test for regions showing greater activation with the button press in the 

main task than in the control task. It included (1) image presentations, (2) button presses in the main 

task, (3) button presses in the control task. The contrast of interest was (2)-(3) (Figure 8A), and (3)-

(2). See Table S7 for all the activations.   

 

GLM2 

Neural correlates of the variables relevant for the BOCPD were tested. The model included (1) 

image presentations, (2) button presses, (3) the decision period in the control task, (4) a stick 

function set to occur every 250 ms from the start to the end of a trial, parametrically modulated by 

(5) change point probability (i.e., the DV in Equation (4)), and (6) the variance of the posterior run 

length distribution. The contrast of interest was (5) (Figure 9A). See Table S8 for all the activations 

and for other contrasts.   
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GLM3 

This GLM was estimated to investigate the regions representing the variables derived from the 

DBM. The model included (1) image presentations, (2) button presses, (3) the decision period in the 

control task, (4) a stick function set to occur every 250 ms from the start to the end of a trial, 

parametrically modulated by (5) posterior mean of Bernoulli probability in the current bin (i.e., 

𝑝𝑜𝑠𝑡q in Equation (6)), (6) the posterior mean of the Bernoulli probability within the last T seconds 

that showed maximum absolute difference from the value in (5) (i.e., 𝑝𝑜𝑠𝑡q87 in Equation (6)), (7) 

the absolute difference between (5) and (6) (i.e., DV in Equation (6)), and (8) the variance of 

posterior Bernoulli probability distribution. The contrast of interest was (7) (Figure 9A). See Table 

S8 for all the activations and for other contrasts.   

 

GLM4 

Areas correlating with the variables in the TAM were tested here. The model included (1) image 

presentations, (2) button presses, (3) the decision period in the control task, (4) a stick function set 

to occur every 250 ms from the start to the end of a trial, parametrically modulated by (5) the mean 

image presentation rate per second at -X-Y~-X second (i.e., 𝑌q in Equation (7)), (6) the mean image 

presentation rate per second at -X~0 second (i.e., 𝑋q  in Equation (7)), and (7) the absolute 

difference between (5) and (6) (i.e., DV in Equation (7)). The contrast of interest was (7) (Figure 

9A). See Table S8 for all the activations.   

 

GLM5 

After identifying areas significantly correlated with the DV from the TAM in GLM4, in order to 

determine where in the brain the TAM model uniquely explained variance over and above the 

predictions of the other models, we ran a further GLM in which we included in the same design 
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matrix all three model time series (with orthogonalization disabled). This meant that all three 

model variables could compete for variance, and according to the sum of squares principle we could 

therefore report regions responding to one of the models over and above the variance explained by 

any of the other models. The model included (1) image presentations, (2) button presses, (3) the 

decision period in the control task, (4) a stick function set to occur every 250 ms from the start to 

the end of a trial, parametrically modulated by (5) DV of the BOCPD ((5) in GLM2), (6) DV of the 

DBM ((7) in GLM3), and (7) DV of the TAM ((7) in GLM4). The decision variables from the three 

computational models were z-scored before the convolution with HRF to make the regression 

coefficients comparable across the models. The contrast of interest was (7) (Figure 10; see Table S6 

for the correlation between regressors; see Table S9 for all the activations).  

 

ROI analysis 

To illustrate the relationship between the task-related variable and the BOLD signal, we conducted 

two ROI analyses. First, we tested how much the activity in the right dlPFC changed in response to 

button presses in the main and the control task using GLM1 (Figure 8B). Second, we explored 

using GLM4 if the activity in right dlPFC and right IPS scaled with the value of decision variable 

derived from the TAM. We categorized the value of the decision variable at each bin into low, 

medium, and high using tertiles and then fit this variable to the BOLD signal to plot the average 

effect size for each category (Figure 9B). We specified ROIs using a leave-one-subject-out cross-

validation procedure to ensure statistical independence. For each ROI analysis, we ran a second-

level analysis of the associated GLM excluding one participant and identified peak voxel of 

activation nearest to the peak of activation from second-level analysis using all the participants. For 

the participant excluded from this procedure, we computed the effect size of the variable of interest 

in the identified peak voxel. We repeated this analysis for the number of participants excluding one 

different participant for each analysis. When we selected the peak activation coordinates in right 
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dlPFC and right IPS from the second-level analysis of GLM4 using all the participants, we 

restricted our search to the voxels within independent ROIs in these areas because the activation 

clusters extended to areas outside right dlPFC and right IPS. We defined our independent ROI as a 

sphere of 10 mm radius around average peak coordinates in right dlPFC and right IPS found in 

relevant previous studies to be involved in perceptual and value-based decision making: x=43, 

y=18, z=38 for right dlPFC (Gluth et al., 2012; Suzuki et al., 2012, 2016; McGuire et al., 2014) and 

x=37, y=-41, z=42 for right IPS (Daw et al., 2006; Hare et al., 2011; Hunt et al., 2014; McGuire et 

al., 2014). We used rfxplot toolbox for this analysis (Gläscher, 2009b). 

 

CODE AVAILABILITY  

Key analysis codes written in MATLAB, and fMRI analysis results have been deposited in GitHub: 

https://github.com/RyoAdachi/tcd. 

 

RESULTS 

Brain regions showing different magnitude of activity associated with button presses in the main 

and control task  

We first investigated which areas in the brain showed differential activations associated with the 

button presses in the main compared to the control task (See GLM1 in Statistical analysis in 

Materials and Methods). This analysis assessed the regions exhibiting an involvement in temporal 

change detection relative to a visual oddball detection task, with very similar visuomotor properties 

and matched difficulty levels. We found that activity in the regions of the frontoparietal network 

including right dorsolateral prefrontal cortex (dlPFC) and right intraparietal sulcus (IPS) showed 

significantly greater correlation with the button press in the main task than in the control task 

(Figure 8, p<0.05 whole brain corrected at cluster level; see Table S7 for other activated areas). We 
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also found that activity in various areas including ventromedial prefrontal cortex (vmPFC) and 

cingulate cortex exhibited significantly greater correlations with button presses in the control task 

than in the main task (p<0.05 whole brain corrected at cluster level; see Table S7 for other activated 

areas).  

 

Neural correlates of decision variables derived from three computational models of temporal 

change detection 

We tested for brain regions representing the time course of the decision variables derived from each 

of the BOCPD, DBM, and TAM models. Using the best fitting parameter values for each model, we 

generated an estimated time course for the decision variable at the resolution of 250 ms for each of 

the three computational models. We directly correlated each model-predicted time series against the 

BOLD signal after convolving each time series with a canonical HRF in separate GLMs (See 

GLM2-4 in Statistical analysis in Materials and Methods). We found that the time course of the 

decision variable of the TAM showed a significantly positive correlation with activity in the 

frontoparietal network of right dlPFC and bilateral IPS (Figure 9, p<0.05 whole brain corrected at 

cluster level; see Table S8 for other activated areas). We did not find areas showing significant 

positive correlations with the time course of the decision variables of either the BOCPD or DBM 

(Figure 9, p<0.05 whole brain corrected at cluster level; see Table S8 for activated areas in other 

contrasts of BOCPD and DBM).  

 

We further tested whether the correlation with the decision variable of the TAM in areas of the 

frontoparietal network survived when we included the decision variable from the other two 

computational models simultaneously so that each model time series could compete for variance 

(See GLM5 in Statistical analysis in Materials and Methods). We found that right dlPFC and right 

intraparietal lobule (IPL) encompassing IPS remained significantly correlated with the variable even 
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after the inclusion of the other model time series (Figure 10, p<0.05 whole brain corrected at 

cluster level; see Table S9 for other activated areas).  This result therefore indicates frontoparietal 

voxels in which activity can be explained as being consistent with the TAM model over and above 

any variance accounted for by the other two models. In other words, the findings show that activity 

in both dorsolateral prefrontal cortex and IPL incorporating IPS are significantly better explained by 

the TAM compared to the other two models. 

 

DISCUSSION 

Here we investigated the computational and neural basis of temporal change detection. We tested 

three different computational models of varying degrees of sophistication against behavioral and 

fMRI data to examine the neural mechanisms behind each model. All of these models captured 

important aspects of participants’ behavior, and in fact there were no significant differences among 

the models in their predictive performance about behavior using the validation set despite the 

difference in model complexities. Yet, participants’ behavior did not enable us to determine which 

model can best account for temporal change detection because each of the models made equally 

good predictions about behavioral performance on the task. Thus, we could not determine which 

model best accounts for human performance, based purely on behavioral analyses alone. However, 

when we examined correlates of the model variables in the brain using fMRI, there was a clear 

difference in the degree to which the different models could adequately explain variance in the 

BOLD signal. The simple heuristic model robustly captured brain activity in a frontoparietal 

network, whereas we found very little evidence throughout the brain for regions positively 

correlating with the output of the other models. Thus, when taking the fMRI data together with the 

behavioral data, our findings support the superiority of the simple heuristic model as a means of 
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describing the computations being implemented in the human brain during temporal change 

detection.  

 

This finding could be compatible with previous reports that favor approximate or non-fully 

Bayesian strategies when task demands are high (i.e., require storing large amount of information 

and/or complex computation of posterior distribution) and/or when the task environment is volatile 

(Summerfield et al., 2011; O’Reilly et al., 2012). In the present study, during each step of Bayesian 

updating, the BOCPD model required the updating of joint probability distributions of observed 

data and run length while the DBM only computed the posterior distribution of one parameter: the 

Bernoulli probability of the appearance of a sushi piece in each bin. Although one step of updating 

was less complex compared to models in other studies that updated joint distribution of three 

parameters (Behrens et al., 2007), the high frequency of updating which was a feature of our task 

added considerable computational demand. Thus in our task, implementing the Bayesian models 

were in fact computationally very taxing.  

 

The decision variable from the TAM was represented in dlPFC and IPS. In the TAM, the mean 

image presentation rates in two time windows (current and past time windows) are compared to 

detect change points. As the number of samples from the new regime increased in the current 

window following a change point, the mean image rate in the current window gradually increased 

or decreased. Since the samples in the past time windows were from the old regime and the mean 

image rate within the past time window was stable, it resulted in a gradual increase in the decision 

variable with random fluctuations due to the stochasticity of the data generating process. Thus, the 

time series of the decision variable of TAM resembled an evidence accumulation process toward a 

threshold, even though TAM was not in itself an evidence accumulation model per se such as the 

drift diffusion model (Ratcliff, 1978; Krajbich et al., 2010; Hare et al., 2011). As a consequence, the 
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present findings are broadly compatible with previous reports that dlPFC and IPS are involved in 

an evidence accumulation process to reach a decision in perceptual and value-based decision 

making tasks (Heekeren et al., 2004, 2006; Hare et al., 2011). 

 

An important avenue to pursue in future research will be to elucidate the more general functional 

contributions of the dlPFC and IPS to change detection beyond the specific characteristics of the 

present task and temporal domain. Although the results of our simple subtraction analysis suggest 

that these regions are more involved in temporal change detection than in detecting explicitly 

observable changes in stimulus properties as in an oddball task, a deeper question concerns whether 

these regions are recruited in detecting hidden and non-directly observable changes in task relevant 

variables across other domains beyond the temporal sequences measured here. Furthermore, even 

though the present results pertain specifically to temporal change detection, it is feasible that the 

computational strategy for change detection embodied by the temporal averaging model could also be 

utilized for other forms of change detection beyond the temporal domain. However, work will be needed 

to test for this possibility. 

 

The present study provides an example of how fMRI data can be used as an important complement 

to behavioral measurements in order to elucidate the computational mechanisms underlying human 

cognition. In the present case, behavioral data alone was insufficient to enable us to determine 

which out of several candidate models could best account for how temporal change detection is 

implemented. It was only by examining the degree to which activity in the brain could be accounted 

for by internal decision variables produced by each model that we could discriminate clearly 

between the models, ultimately favoring our simple heuristic model over the more normative 

Bayesian approaches.  
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One important limitation of the use of brain activity to arbitrate between models is that it is 

possible that the relationship between the numerical time series produced by the algorithm that 

describes the internal decision variable and the neural implementation of the relevant decision 

variable might not be as straightforward as is assumed. Future work will be needed to bridge the 

gap between the algorithmic level descriptions of the models being used here, and biologically 

plausible implementation schemes. It is possible that once armed with more detailed 

neurobiologically plausible implementation schemes, the predictions about the BOLD responses as 

described by each model might turn out to be very different. This notwithstanding, the finding of 

the superiority of the heuristic model in capturing brain activity does seem reasonable from the 

point of view of the principle of model parsimony in which the simplest model would tend to be 

favored, all else being equal. Furthermore, the heuristic model is also the more plausible one given 

likely constraints in cognitive capacity. It also important to note that although in our hands with the 

present task, the behavioral data alone could not discriminate between the models, it is also possible 

that novel behavioral tasks could be designed that would be more sensitive to differences in the 

model predictions, so as to adequately discriminate the model predictions solely based on 

behavioral data. 

 

In conclusion, our study provides the first behavioral and neural investigation of temporal change 

detection, which is an important capacity necessary to facilitate adaptive behavior. A frontoparietal 

network including dlPFC and IPS was found to manifest activity consistent with the decision 

variable produced by a simple heuristic model, suggesting that the human brain relies on a 

computationally frugal strategy to detect changes in the environmental statistics of temporal 

sequences.  
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FIGURES AND TABLES 

 

 

Figure 8. Brain areas showing greater activity associated with button presses in the main task 

than in the control task.  

A. Activity in right dlPFC and right IPS showed significantly greater correlation with the button 

press in the main task than in the control task (p<0.05 whole brain corrected at cluster level; see 

Table S7 for other activated areas). Activation map is thresholded at p<0.001 for display purposes.  

B. Plot of the button press effects in the main task and the control task in right dlPFC ROI identified 

by leave-one-subject-out cross-validation procedure. Error bars represent SEM. BP: button press, 

a.u.: arbitrary unit. 
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Figure 9. Neural correlates of the time course of the decision variables derived from each of 

the three computational models of temporal change detection.  

A. Activity in right dlPFC and bilateral IPS showed a significant correlation with the model-

predicted time course of the decision variable from the TAM (p<0.05 whole brain corrected at 

cluster level; see Table S8 for other activated areas). The activation map is shown thresholded at 

p<0.001. The model-predicted time course of the decision variable from the BOCPD or the DBM 

showed no significant positive correlations with any of the brain regions (See Table S8 for activated 

areas in other model-related contrasts). 

B. Effect size of decision variable of TAM in right dlPFC and right IPS ROI identified by leave-

one-subject-out cross-validation procedure. To obtain this plot, we categorized the decision variable 

estimated by using the fitted model at every 250 ms bin into low, medium, and high value for each 

participant and computed the average neural effect size in each category. Error bars represent SEM. 

a.u.: arbitrary unit. 
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Figure 10. Brain regions that uniquely correlated with the time course of the decision 

variables derived from the TAM.  

Activity in right dlPFC and right IPL encompassing IPS showed a significant correlation with the 

model-predicted time course of the decision variable from the TAM when including the decision 

variable from the other two models as confounds (p<0.05 whole brain corrected at cluster level; see 

Table S9 for other activated areas). The activation map is shown thresholded at p<0.001. 
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Figure S11. Related to Figure S9, Figure 9, and Figure 10. Illustration of the decision variable 

regressor. 

We show the time course of the decision variable derived from each model for two example trials in 

one participant. We simulated the model using the set of best fitting parameters to all the trials 

across runs and the timing of image presentations experienced by the participant. Each row and 

column corresponds to each model and trial, respectively. Red: BOCPD, Cyan: DBM, Green: 

TAM. Thick colored lines denote the time course of decision variable. Thin black lines represent 

threshold value. Blue and black vertical lines are the timing of model’s and participant’s button 

presses, respectively. Open black circles on the x-axis are the timing of image presentations.  
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Table S5. Related to Figure S11. Properties of the decision variables.  

We report the minimum, 25th percentile, median, 75th percentile, and maximum of the decision 

variable of each of the three computational models.  

 

 

 BOCPD vs DBM DBM vs TAM TAM vs BOCPD 
DV time course 0.172 0.127 0.091 
Convolved DV time course 0.195 0.186 0.231 

 

Table S6. Related to Figure 10 and Figure S11. Average correlation between the time courses 

of the decision variables.  

We computed the correlation between the time courses of the decision variable for each pair of 

computational models for each participant separately and calculated the average of the absolute 

value of the correlation across participants. DV: decision variable. 

 

 

 

 

 

 

 

 

 

 Min 25th Median 75th Max 
BOCPD 0.005 0.049 0.058 0.075 0.586 
DBM 7.84×10-4 0.032 0.083 0.165 0.367 
TAM 0.00 0.133 0.364 0.714 4.00 
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Contrast Region Hemi Peak MNI 

coordinates 
t score Cluster size 

(voxels) 
BP(main) - 
BP(control) 

  x y z   
Superior frontal gyrus R 23 8 55 7.33 334 
Precuneus R 16 -67 60 6.72 220 
Middle frontal gyrus R 43 40 22 5.18 102  
Intraparietal sulcus  R 33 -40 32 4.94 102 

 
BP(control) - 
BP(main) 

Medial frontal gyrus R 8 53 -2 8.11 5943 
Cingulate gyrus L -4 -37 40 7.98 
Cingulate gyrus L -2 6 28 7.69 
Hippocampus R 30 -22 -12 6.60 571 
Angular gyrus L -42 -70 40 5.58 312 
Postcentral gyrus R 53 -14 52 5.20 212 
Fusiform gyrus R 36 -44 -22 4.93 116 

 

Table S7. Related to Figure 8A. MNI coordinates of peak activation voxels from the contrasts 

in GLM1.  

Reported activation clusters survived p<0.05 whole-brain correction at cluster level with the height 

threshold of p<0.001 and the minimum spatial extent of 97 voxels. BP: button press. 
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Contrast Region Hemi Peak MNI 

coordinates 
t score Cluster size 

(voxels) 
BOCPD 
DV - - - - - - - 
 
Variance of 
run length 
distribution 

Lingual gyrus L -14 -47 -5 9.33 15393 
 Superior temporal gyrus R 60 -42 10 9.31 
 Superior temporal gyrus R 48 -50 8 8.80 
 Postcentral gyrus L -30 -32 50 5.92 235 
 
DBM 
DV - - - - - - - 
 
Variance of 
posterior 
distribution 
on 
Bernoulli 
probability 

Insula R 30 18 0 6.70 213 
Cingulate gyrus R 8 20 42 6.20 359 
Occipital gyrus R 26 -97 5 6.04 159 
Precentral gyrus R 43 8 28 5.77 470 
Insula L -27 26 -2 5.66 102 
Occipital gyrus L -20 -97 5 5.36 196 

 
TAM 
 
 
DV 

Precuneus (incl. bilateral IPS) R 10 -64 65 8.46 3025 
Precentral gyrus (incl. dlPFC) R 20 16 60 6.84 2321 
Cerebellum L -10 -77 -30 5.69 137 
Middle temporal gyrus R 60 -50 -12 5.63 163 
Middle frontal gyrus L -24 10 58 5.28 134 
Inferior frontal gyrus L -44 46 -18 4.97 102 

 

Table S8. Related to Figure 9A. MNI coordinates of peak activation voxels from the contrasts 

in GLM2-GLM4.  

Reported activation clusters survived p<0.05 whole-brain correction at cluster level with the height 

threshold of p<0.001 and the minimum spatial extent of 97 voxels. DV: decision variable. 
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Contrast Region Hemi Peak MNI 

coordinates 
t score Cluster size 

(voxels) 
TAM-
DV 

Precentral gyrus (incl. dlPFC) R 18 18 65 6.48 1040 
Inferior parietal lobule R 63 -52 18 4.34 172 

 

Table S9. Related to Figure 10. MNI coordinates of peak activation voxels from the contrasts 

in GLM5.  

Reported activation clusters survived p<0.05 whole-brain correction at cluster level with the height 

threshold of p<0.001 and the minimum spatial extent of 97 voxels. DV: decision variable. 
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