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ABSTRACT 

This thesis is a study of the electrodynamic phenomena which can 

occur in strong magnetic fields (on the order of 4.4lxlo13 gauss). 

These phenomena are studied by means of a perturbation formalism, deve­

loped here to be exact to all orders in the field strength, and which 

is closely analogous to the diagrammatic formalism of empty-space elec­

trodynamics. Using this method, the rate for pair production by single 

photons is calculated, as well as an approximation to it. The index of 

refraction of the strong field region is also calculated, as is the 

low-frequency photon splitting amplitude. In addition, this thesis 

studies some phenomena occurring at very high field strengths, in par­

ticular the energy of the ground state to first order in the fine­

structure constant, and the counter-intuitive non-annihilating states. 

Numerical calculations are made where relevant. 
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1. INTRODUCTION 

In this thesis I analyze the consequences of conventional quantum 

electrodynamics in the presence of a strong magnetic field, on the order 

of 4xlo13 gauss. This work was originally stimulated by the suggestion 

that fields of this size may exist around pulsars, in models where the 

pulsar is taken to be a neutron star. Later, it became apparent that 

when the fields became extremely strong, there were some counter­

intuitive phenomena, which were then studied for their own sake. 

A number of authors(l) have developed models of neutron stars 

which postulate strong magnetic fields resulting from the compression 

of the star's original field during its collapse to nuclear density. 

Several electrodynamic processes, which are negligible under more nor­

mal circumstances, can occur in the postulated strong fields. Prin­

cipally these are electron-positron pair production by single photons 

and the splitting of one photon into two or more. In addition, due to 

the absorption of photons by these processes, the strong-field region 

has an index of refraction greater than 1, reducing the photon velo­

city below c. 

These problems have been partially analyzed previously. Toll( 2) 

and Klepikov(3) have calculated the pair production rate by high-energy 

photons, and Toll has calculated the low-field index of refraction by a 

dispersion relation from this pair production rate. Skobov(4) has made 

an erroneous (not gauge-invariant) calculation of the photon splitting. 

Recently, Bialnicka-Berula and Bialnicki-Berula(5) and Adler, Bahcall, 

Callen and Rosenbluth( 6) have calculated the photon splitting rate to 

lowest order in the external field, and the former also calculated the 
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index of refraction to lowest order in the field. A more recent paper by 

Adler( 7) contains exact calculations of the index of refraction and pho-

ton splitting for photons below the e+e- production threshold. 

In this thesis I develop a formalism for ~aking strong-field calcu-

lations and evaluate the pair-production rate, index of refraction, and 

some very strong field effects. The pair calculation is given in Section 

3 as well as two complementary approximations to the pair production 

rate, which are valid when many final states are kinematically allowed. 

That section also gives a numerical calculation and graph of the rate in 

a typical situation where ·these approximations are not good, and a 

numerical evaluation of an integral appearing in one of these approx-

imations. Section 4 gives an exact calculation (except for radiative 

corrections) of the effects of vacuum polarization on the propagation of 

-photons of arbitrary 4-momentum. When this is evaluated on the photon 

mass-shell, it gives the index of refraction of the strong-field region, 

which is then evaluated numerically and plotted. In Section 5, I give 

a summary of the work which has been done on photon splitting. 

The pair-production rate has an exponential decrease in the quan­
me3 

tity ~ (where E is the photon energy and h=c=l), and thus drops off 
eBE 

sharply with the field. This makes it possible for photon-splitting to 

dominate the total photon absorption rate, even_ above the pair-production 

threshold, in spite of its smaller numerical coefficient. The range of 

variables where this occurs is where the splitting distance is on the 

order of a kilometer or so, and thus interesting astrophysically. 

The only constant-field process which is currently observable 

experimentally is the well-known synchrotron radiation. There is 
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extensive literature<8 ) on this process, both classically and quantum-

mechanically, and I will not consider it, even though the methods and 

approximations developed here could easily be applied. Pair production 

and photon splitting are not quite experimentally observable, although 

these processes may be observable in the not-too-distant future. 

Aside from the processes which may be important near neutron stars, 

there are some phenomena of intrinsic interest which occur in very strong 

13 fields, B >> 4xl0 gauss. First, due to its anomalous magnetic moment, 

an electron has an energy slightly less than me in its ground state in 

a magnetic field. This has led to speculations(9) that the energy of an 

electron might drop to zero in a sufficiently strong field. However, 

the electron is sufficiently "bent" by the strong field that the energy 

drops and then rises as the field strength is increased. Section 6 con-

-tains a calculation and numerical evaluation of this ground-state energy. 

Another interesting phenomenon in very strong fields is the exis-

tence of non-annihilating states. These are electron-positron states 

which overlap strongly in space (having nearly the same probability dis-

tribution), but which are absolutely forbidden from annihilating. These 

states, being electrically neutral, have well defined momenta perpendi-

cular to the magnetic field. Section 6 contains an examination of these 

states and some of their properties. 

There are a number of notations used throughout this thesis. First, 

the symbol TIT (pronounced "serk", short for "circle") is a generally 

useful abbreviation for 2rt: TIT = 2rt = 6.283185 .. : This is the number 

which naturally arises in mathematics rather than .the historically 

accidental rt. I will use units so that h=c=l, and will employ 



- 4 -

rationalized electromagnetic units) e 2 = 2ma= (=4'Jl0:) = 2TTi/137.03 ... 

It is also useful to select units so that eB=l. This quantity has the 

dimensions of a mass squared) so that in this convention a strong field 

corresponds to a numerically small electron mass) and a small field to 

a numerically large mass. To avoid confusion with indices I will use 

the letterµ for the electron mass. 

The space-time metric will have signature + - - -, and if Pv is a 

four-vector) p standing alone will mean PvYv· In many circumstances it 

is useful to separate the components of a vector perpendicular to the 

magnetic field (x and y) from those parallel to it (t and z), where the 

strong constant field is in the z-direction. When this is done) the 

letter for a vector standing alone will correspond only to the appro-

priate directions, i.e., Pll = PtYt - PzYz ; P..L = -pxYx - PyYy· oi 

will mean 0/oxi ; oz = ofoz, etc. 

If we examine the simple non-relativistic spinless particle in a 

magnetic field we find much of the characteristic physics of the more 

complex Dirac particle. In this simple case we have the Hamiltonian 

H~ = ~ (-iv - eA) 2 ~ ( 1. 1) 
2µ 

~ ~ ~ 

where A is the 3-vector potential, satisfying \/XA = B = (O,O,B)) 

corresponding to a magnetic field in the z-direction. If we use an 

~ 

asymmetrical gauge, A = B (O)x,O)) then the Hamiltonian becomes 

1 2 2 2 2 2. 
H = 

2
µ(-0 2 - d:x - oy + 2ieBxoy + (eB) x ) (1.2) 

This operator commutes with ioz and ioy) so that these will be constants 

of the motion. If we select eigenfunctions of the form 
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,1,( ) = cp(x) e+ipyy+ipzZ 'I' x, y, z 

then Hijt = ~µ (p
2 

2 + Py 
2 

- Ox 2 - 2eBpy>< + (eB) 
2
x

2
)cp(x)e+iPyY+ipzz 

(1.3) 

The equation for cp is the familiar equation for a harmonic oscillator, 

so that we have 

cp(x) (1.4) 

1 2 
2

µ(p 2 + (2n+l)eB)o/ (1.5) 

where hn(x) (1.6) 

are the normalized harmonic oscillator eigenfunctions. 

The unusual feature of the solution is th~t the energy does not 

depend on the quantum number Py: all states with given Pz and n are 

degenerate. As a result of this, we may select any complete set of 

functions of Py as our basis ~et, instead of being restricted to the 

functions 6(p-py) alone, as would be the case with more ordinary 

Hamiltonians. 

The structure of this infinite degeneracy is elucidated by working 

~ 

in the symmetrical gauge A The eigenfunctions 

of the Hamiltonian in this gauge are exp(+ieBxy/2) times those for the 

gauge used above: 

eBxy 
W = e +i(pzz + PyY· - -2- ) (eB)l/4 hn(feB x - ~) 

{ eB 

1 2 
-(iv - eA) ~ 
2µ 

1 2 
= 

2
µ (p 2 + (2n+l)eB) ~ · • 

(1. 7) 
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Using units where eB = 1) we have for n = 0 that 

. 2 2 
2 1/4 (+i·pzz _ (x+iy)(x-iy)_ (x+~-2py) +Py). 

= (Tlf~ exp 
4 4 2 

(1.8) 

In this form it is clear that the quantum number Py affects the depen­

dence of the wave function on x iy only: by superposing states of 

various Py's, one can get any arbitrary analytic function of (x+iy). 

A similar procedure can be carried out for harmonically excited states. 

One can easily understand the harmonic motion of the particle 

intuitively: a classical non-relativistic particle circulating in a 

magnetic field moves in a circle with a period independept of the energy) · 

while quantum-mechanically one would expect the energy to be restricted 

to multiples of the circulation frequency. The infinite degeneracy of 

the states is a result of the translational invariance of the system) 

with Py representing the x-position of the center of the orbit. The 

degeneracy is an expression of the translational invariance of the phys-

ics resulting from non-invariant equations. In fact, using the syrnrne-

trical gauge, if we wish to translate the center of coordinates by e in 

the x-direction, x - x - e, the Hamiltonian will return to its origi~al 

-+ --+ 1 
form only if we also make the gauge transformation A__., A+ 2eB(O,c,O), 

~ __., exp(ieB 8 y/2)'+1. Similarly) to move the origin int he y-direction, 

. - ~ 1 
it is necessary to make a gauge transformation A -+A + -eB(- 8 ,0,0), 

. 2 

~ __., exp(-ieB 8x/2)w· Since these transformations change the x and y 

dependence of the eigenfunctions, it is clear that the states must be 

infinitely degenerate. In Section 2 this analysis of the eigenfunctions 
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is made more complete and abstract. 

One interesting aspect of this non-relativistic problem is that 

there is a simple Green's function in position space for this Hamiltonian. 

The Green's function is a function G(x, t; x', " t') which satisfies 

-+ -, 63(;-; - ~') t' G(x, t· x ' t) = t = ' 
(1.9) 

OG 
H(~',t')G(~,t,~',t') t' > t and i = 

ot' 

If the eigenfunctions Wa of H are known, then 

G(x,t,x',t') = 2: * (x' )e i(t-t' )E'.a ~ *(x) 
a a a 

(1.10) 

satisfies the above equations, where a runs over a complete orthonormal 

set of eigenstates of H. 

Using the relation 10.13 (22) (Mehler's formula) from Erdelyi(lO) 

one has 

(1.11) 

This identity makes it possible to do the sums completely, giving the 

Green's function 

G(x,t,x',t') = 
2m312sin(T/2µ) 

exp[~<+! cot .1..((x - x' )
2 

+ (y -y')
2

) + ET(z - z')
2
+ ~ ~· ·k)J 

2 2 2µ 

(t' > t) (1.12) 



- 8 -

where T = t'-t and k is a unit vector in the z direction. This Green's 

function and the identity leading to it can be derived more directly 

using the methods described in R. P. Feynman and A.R. Hibbs, Quantum 

Mechanics and Path Integrals(ll). (They are actually given as pro­

blems there.) Schwinger< 12) gives an integral representation for the 

Green's function of a Dirac electron in a magnetic field, which can be 

integrated to give the above (times a phase exp(iµT)) for low field 

strengths, large times, and disregarding spin. 

The Dirac particle in a magnetic field is quite similar to the 

spinless, non-relativistic particle described above. The states have 

the same infinite degeneracy and integer spacing as above; however, as 

might be expected, the uniform spacing is in E2 rather than in E. The 

effect of spin is to displace the states one-half unit in either direc­

tion, so that E2 = m2 + p2
2 + 2keB, where k is an integer. There is one 

state with k = O, two with k =l (one in the harmonic oscillator ground 

state, spin against the field; the other with one harmonic oscillator 

excitation and spin with the field), two with k = 2,3,4, ... , etc. This 

has the interesting consequence, mentioned above, that due to the 

anomalous magnetic moment of the electron, the ground-state energy is 

slightly less than the electron mass. 
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2 • FORMALISM 

In this section I develop a formalism for working with a Dirac 

1 . t. f. ld I h 1 · . · B/ 2 · e ectron in a magne ic 1e . n t e re ativistic case, e µ is a 

pure number and gives a dimensionless parameter for the strength of the 

field: eB/µ 2 << 1 is a small field, with different characteristics 

from a strong field, eB/µ 2 >> L The critical field- strength Be 

(eBc/µ 2 = 1) is 4.4143xlo13 gauss (4.4143xl09 weber/m2). 

The formalism developed is similar to the normal perturbation 

formalism for electrodynamics; the principal difference is that I use 

the eigenstates in the magnetic field as my basis set of states. The 

propagator thus takes a simple form, but the vertex functions become 

complicated. 

The addition of relativity and spin makes two changes from the non-

relativistic situation: first, it is the square of the energy which has 

uniform spacing, rather than the energy; 2 2 2 thus E = µ + 2eBk + Pz where 

k is an integer. Second, the . magnetic moment makes an additional contri-

bution of eB/2 to the energy, cancelling, for the lowest state, the 

zero-point energy of the harmonic oscillator. 

The magnetic field will be taken in the -z direction: B = (O,O,-B). 

This field can be produced by a vector potential Aµ = (O,ay, -~x, 0), 

where a and ~ are constants so that a+~ = 1. (The different values of 

a and ~ satisfying this relation are related by a gauge transformation.) 

I will normally use a= ~ = !. 
2 

The Dirac equation in this field is 

(2.1) 
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(ia/at; -iv), 

= -eFxy = -eB • 

'Jlx - i'Jl y 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

If we select our system of units so that eB = 1, (which will be done 

in the rest of this thesis unless otherwise stated) then 

(2.7) 

which are the commutation relations of a harmonic oscillator, with 'Jl+ 

the raising operator and 1l_ the lowering operator. I will write 

= Yx - iyy 
Y_ 2 

(2.8) 
and 

~ = = 

Vectors will be written in the notation 

v = (2.9) 
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L:+ = 
1 + 2:: 

2 

This gives the following useful algebraic table 

y+y+ = 0 'X+Y- = -22:+ y I:+ = 0 
+ 

y y = -2L y_y = 0 y_t- = y_ 
- + -
:+ - + 0 L:+l::+ = L+ I: Y+ - Y+ 2:: y_ = 

I:-Y+ = 0 - }:-2:+ = 0 I: y_ = y 

TABLE 2.1 

Y+L = 

y_ 2:: = 

2::+ L- = 

2: ~ = 

In terms of this notation, the Dirac equation is 

Using this twice, we get: 

(n·y)(n·y)~ = µ2w 

= (n2-L:)'ft 

= (nt
2 

- nz
2 

- 2n+n- .- 2L+)* 

(2.10) 

(2 .11) 

Y+ 

0 

0 

~ 

(2.12) 

(2.13) 

where in this last equation the operators n have been normal ordered. 

The above equation depends on only two quantum numbers (besides 

spin): nz and the harmonic oscillator index n+n_. nz = Pz' the momen-

tum in the z-direction, and the harmonic oscillator index corresponds 
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to the circulation of the electron in the field. This is as in the 

nonrelativistic case) where the levels are infinitely degenerate and 

where one of the three quantum numbers required to index a state makes 

no contribution to the Hamiltonian. This degeneracy is made most readily 

apparent on the ground state IO) defined by n_jO) = O. Since [n_,x-iy] 

= O, we have that n_f(x-iy) IO) = O, and thus the ground state is defined 

only up to an arbitrary analytic function of (x-iy). 

Using the symmetrical gauge, eAµ = (O,y/2, -x/2,0), the ground 

state functions can be written (disregarding z dependence) as 

111 (x y) = f (x - iy) exp - ~ - ~ 
[ 

x2 y2 J 
'f aO ' a 4 4 

(2.14) 

and we have for any harmonic oscillator level, 

(2.15) 

There are two physically useful sets of functions fa(x - iy), 

corresponding to linear momentum and angular momentum representations. 

The easiest way to handle the angular momentum representation is to 

define the operators 

and (2.16) 

corresponding to the position of the orbit center in the x-y plane. 

These operators commute with n±' and thus with the Hamiltonian, but 

not with each other: 

(2.17) 
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(Note that p_ is the raising operator and P+ the lowering operator.) 

If we use the quantity 

2 
p = = (2.18) 

as our additional quantum number) we may start from a ground state jO) 

such that P+!O) = O. We may thus describe the (x)y) variation of the 

states in terms of a basis !m)n)) where 

- p 2 !m) n) = (2n+l) jm) n) 

P+!m)O) = 0 n_ jO)n) = 0 (2.19) 

The orbital angular momentum operator Lz in this representation is 

Lz = PxY - Pyx 

= i (P+X- - p_x+} 

= n+n- - P-P+ (2.20) 

and Lzlm,n) = (m-n) !m,n) (2.21) 

Thus these states are eigenstates of angular momentum as well as 

energy. The probability density for the ground state in this repre-

sentation is concentrated in a circle with radius Jzn+l . 

In the linear momentum representation) the additional quantum 

number is selected to be the momentum in some direction, here the 

x-direction. We thus wish 

l. y) exp t x 2 - y42 J W (x)y) = f(x -
4 ao 
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to have x variation at y = 0 of the form eixPx. This requires 

x - iy + p f( . ) 2 2 ...,J 
f(px,x - iy) = exp L 

4 
i Px(x - iy) - ; 

2 

[ 
(y - Px) __ ix

2

y ] = exp i x Px - ~~~~ 
2 

( 2. 22) 

To quantize in a direction at an angle ~ from the x-axis we substitute 

ei~(x - iy) for (x - iy) in f above. The probability density of the 

ground state here is concentrated in lines running in the x-d:irection. 

Excited states can be formed by using the raising operator n+, which 

com.mutes with the above qua r:.tum number p . The complete set of states x 

in this representation are Hermite polynomials in the y-direction, 

centered around a point laterally displaced a distance Px from the 

origin, and with an x variation ix(px-y/2) e • The electron in this 

case is harmonically oscillating in the y-direction around a point dis­

placed by an amount Px from the origin. -ixy/2 The term e drops out, 

if instead of the synnnetrical gauge we use the gauge where eA = µ 

(O,y,O,O). It is interesting that the x momentum, Px' has no effect 

on the energy, yet, as will be shown below, must still be conserved. 

This leads to some surprising consequences, which will be elaborated 

in a later section. 

As was noted in the non-relativistic case, the operator correspond-

ing to a change in the origin of coordinates is not the normal {px,Py), 

but requires in addition a gauge transform. The operators which do this 

Much of the abstract discussion of the states in this sectioJ has 

. . (13) paralleled that of M. H. Johnson and B.A. Lippmann . 
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I will generally use the linear momentum as my additional quantum 

number, since the quantum number labelling the degenerate states normally 

has no effect, and the algebra is simpler in the linear momentum repre­

sentation. 

So far, we have calculated only the eigenstates of the square of 

the Dirac operator, with no spin effects included. If we consider any 

state X satisfying 

then the state 

W = (n·y + µ) X (2.23) 

satisfies the Dirac equation 

(n·y - µ) ~ = 0 . (2.24) 

If we go to the original form of the· Dirac equation, we have 

(2.25) 

which also is satisfied by the states (n·y + µ)~. 

The energy spectrum is determined by the equation 

(2.26) 

or, in more familiar variables, E2 = Pz 2 + µ 2 + 2n + 2~+. 

It is clear here that the operator n + ~+ is more significant than 

either of its constituents, and this excitation operator, usually 

called k, will normally be used. There is one state with k = O, and two 

states with k = 1, k = 2, etc. This spectrum is plotted below in Fig.2.1. 
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n=2 

·. E2 f 
k=3 G 

n=I 
k =2 

n=O 
k = 1· 

m2 + 2 k =O Pz ~=+ 
~=-

FIGURE 2.1 

When there is an exact degeneracy of states, as above, it is 

1.ntere.sting to see whether there is a symmetry operation relating 

them. In the case above, if we consider the operators 

we get essentially the commutation relations of SU(2); {actually 

80(2,1)) 

[~ , a]= ib ; [b, ;J= ; [:.,+ (-2k) 
il: 

ia 
2 

In the ground state, ajO) = b!O) = 0 and (~/2)!0) = (- !) 10). The 
2 

ground state is thus a singlet under this pseudo-spin, and thus in some 

I: sense has pseudo-spin O, although displaced half a unit in 
2 

In the 

bigher states, if we work with a/{-2k and b/J-2k, then the operators 

obey exactly the SU(2) commutation relations. The higher states thus 

1 
have pseudo-spin 

2 
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All of the above is exact only in the approximation that the 

absorption and emission of photons can be ignored: only the external 

magnetic field has been included in the vector potential. The effects 

due to the rest of the field are most easily handled by a perturbation 

formalism similar to the one conventionally used in quantum electro-

dynamics. 

Several conventions are useful in developing a perturbation expan-

sion. The additional degenerate quantum number will be taken as the 

momentum in the x-direction. By "momentum" will be meant (pt,pz,px) 

only, and thus d3p/nr 3 and o3(p) will refer to these directions only. 

p·q will mean Ptqt - pzqz. (This definition is useful because of the 

degeneracy in Px·) The "excitation" of a state will mean the value of 

the operator k = n+n- + ~+ on it; a will be used for the operator 

+ - 2 n y_ + n Y+' and a = 2(n+n- + ~+), so that acting between two states 

a will normally reduce after the spinology calculation to {2.k, where k 

is the excitation of the state. A particle state will be specified by 

the triple (p,k,r), denoting ·respectively the momentum, excitation and 

spin of the state. Finally, in writing Aµ for the vector potential, I 

will exclude the vector potential due to the magnetic field, i.e., Aµ 

refers only to the perturbation field. 

The complete Dirac equation in the field then is: 

{p + a - µ + A) ~ = 0 • (2.27) 

It is relatively simple to develop a perturbation theory for this 

equation. 
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If we consider the external field acting in first order, then we 

need only the ·matrix element of A between the two states. If we agree 

to apply the projection operators (p + a + µ) on the external electrons, 

-corresponding to the normalization ~ ~ = 2µ, then we need only the 

matrix elements of A between the states x satisfying the squared Dirac 

equation, (p 2 - 2n - 2L+ - µ 2) X = O. Since the spin and momentum of 

the photon can be treated independently, this matrix element (p,k,rlAlp', 

£,s) between two (momentum, excitation, spin) states can be written as 

the sum of matrix elements with the various spin projections, between 

the harmonic oscillator statts. For a photon with polarization av and 

wave function eiqµxµ, we have 

where 

[<r[L-a2:-ls)T(k, £,qJ..) + (r Ji:- a2:+Js)T(k, ,e,-1,qJ..) 

+ (r I 2:+a2r js)T(k-1~ £,qJ.) + (r J I:+ai:+ls)T(k-1, i-1,q.L)] 

(2.28) 

T(k, J,,qJ.)= r'dy hn (y - Px) e iqyY hn(Y - Px - qx) (2.29) 
-oo 

and is independent of Px· The o function shows that the 3-momenta 

(pt,pz,px) are conserved, although all the various Px states have the 

same energy. Similarly, the T is the matrix element of the photon 

between the harmonic-oscillator part of the states. I will use the 

-f+ +- -+ --abbreviations T , T , T , T for the T's with the respective 

arguments above. (Here k and £are not written explicitly.) The 
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evaluation of T is best done 11sing creation and destruction operators 

(writing qy as the sum of raising and lowering operators, and trans­

lating in Px with the difference). The result is (in several equiva-

lent forms) 

T(k, ,e,q.L) 

k-r ,e-r 
-q 2;4 ~ q_ (-q+) 

= e l. V K~i,~ 2: ------
r (k-r) ! (,e- r) !r! 

2 

= 
i(k- ,e)cp t q.L (k+ t) I 2 

e (-1) (2) • 

(-q.L2/ 2)-r 
2:: --- ----
r (k-r)!(t-r)!r! 

2 
k 'k' -q /4 2 

= e J. q_ -t J--; 1F1(-k,k-t+l; q.L /2) 
£. 

2 
k-~ Jlf Lk-~ ( 2/ 2) -q /4 

= e .L 
q_ k ! t ql. (2.30) 

where cp is the angle between the photon and the x-axis, 1 F1 is the 

k-£ confluent hypergeometric function, and Lt are the Laguerre poly-

nomials. 
. 2 

Below, I will set z = ql. /2 and assume the photon is travelling 

in the x-direction. T(k,£) satisfies the following identities: 

lz
. 0 2 

(-) 
oz 

T-+ = 

+-T = 

T = 

(2.31) 

-
1
- [k- ~+2z 0 1 

T++ + zJ 2fkz oz 

-
1
- [k- ~-2z £... -

1 
T++ zJ (2.32) 

2 {tz oz 

_ l_ G+~-2z 0 - z] T++ 
2 ~ k.Q, oz 
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The expression for the matrix element can be rewritten 

( k IAI ' ) = n-rl 3~3(p+q- -p'). eiqx(Px+qy/2) p, ) r p ) £, S J 11 U 

(2.33) 

This matrix element is for the squared Dirac equation solutions only; 

to work with actual particles, one must use the projection operators 

(p +a + µ) on the external lines. 

For processes which operate in higher order in the photon field, 

-1 we may put the Dirac equation into iterative form, o/ = (p +a - µ) eA~. 

It seems simplest to work with the harmonic oscillator states as the 

basis for~' in which case (p +a - µ)-l is diagonal (except for spin). 

Then we have 

p +a+µ 
(2.34) 

This new o/ is of higher order in eA, so that substituting it back into 

the perturbation series will give us higher order terms. We can write 

the theory in terms of diagrams, like empty-space electrodynamics, 

using a propagator (p +a + µ)/(p 2 - 2k - µ 2), a vertex as in equation 

(2.33) above, and (p +a + µ) on each external electron line. The 

relation of the relativistic matrix elements to the rates, cross-

sections, etc., requires the normal (l/2E) and 1/2 from spin averag-

ing; and the set of diagrams used (including the signs due to statis-

tics) are the same as in empty-space electrodynamics. Positrons are 

represented, as usual, with negative momenta; however, they have positive 

excitations. 
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Schwinger<12) also has developed a formalism treating electrons in 

a constant field. The principle difference between the formalism he 

uses and that used here is that he uses a position basis for the wave 

functions, rather than using space-time eigenstates. The effect of this 

is that he has relatively simple vertices, but a more complicated prop-

agator (involving irreducible integrals over proper time). Stated 

briefly, he puts the physics of the constant .field into the propagator, 

whereas the formalism above puts it into the vertices. 

Schwinger's formalism, when the various equations are put together, 

seems to me to be slightly more complicated than that used here. It has 

been applied to the problem of photon splitting in a weak field by 

Skobov(4 ) ; incorrectly, since his results are not gauge invariant, and 

disagree with results obtained by conventional electrodynamics. (Skobov's 

(14) 
results are quoted by Erber ) . Schwinger's formalism seems to me to 

be considerably more abstract, since the properties of the electron 

motion are never apparent. For these two reasons, I decided at the 

beginning of this research to develop an independent formalism. It is 
' ~ .. ~ ' 

not clear now whether this decision minimized the labor involved in 

calculations, at least for closed electron-loop processes, since a 

number of transformations used on the vertex functions in this case 

essentially put the system into proper-time notation. 

Schwinger's formalism has wider validity than that used here, 

since it has no requirement that E·B = 0. Adler(l) has recently 

obtained identical results fo~ a few of the problems considered here, 

using the Schwinger formalism. 
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Klepikov (3) has developed a formalism for electrodynamics in a 

constant field which has some similarities to that used here. His 

method, however, is based on Hamiltonian rather than space-time methods, 

is only developed enough to work in first order, and is not very concise. 

He has applied it to synchrotron radiation, 1-photon pair annihilation, 

and 1-photon pair production in the region E >> µ. 

Toll (2) has done some work in this area, for fields with E2 - B2 = 

E·B = O. He was interested in the dispersi~n relations for light in this 

situation, so he calculated the pair-production rate and index of refrac~ 

tion. He has also extended his results for pair production by physical 

reasoning to a pure magnetic field in the region E >> µ. 

Somewhat more detailed discussions of parallel work are given in 

the appropriate sections. 
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3. PAIR PRODUCTION 

In this section I calculate the rate for production of electron-

positron pairs by single photons in a strong magnetic field (y B e+e-). 

For the region where only a few electron states are kinematically allowed, 

2 2 
_ q~ - 4µ ~ 1, the calculations can usually be done exactly. For the 

more useful region q~2 - 4µ 2 >> 1, it is possible to approximate the 

-vertex functions by a saddle-point method. For z, k, and £uniformly 

large, the expression 

~-1 
- . _ (k:- £) ! 

z = 

for the vertex 

may be ···rewritten using the integral representation 

(-)£ £! (k- £) ! 
F (- 11 k- 11+ 1 z) = -1 1 ;:;} )f.J J • k' 

l. • 

j [ J
dt 

exp zt + kln(l-t) - £lnt ~t 
c . 

(3.1) 

where the contour C circles the origin in the positive direction. 

The argument of the exponential has its maximum at 

k- £ .I k+£ k- £ 2 I 
1 - (7) ± ~l - 2(7) + (7) 

(3. 2) 
2 

Useful variables here are s and d for the sum and difference of the 

harmonic oscillator energies, and R for the square root above: 

s = d = R = ~1 - 2s + dz· . (3.3) 
z z 



This gives 

= 
1-d±R 

2 

- 2[:. -

(3.4) 

The variable R is also useful kinematically: for external particles, 

~ f z 2+µ2' 

z 
R 

2 2 2 The relative sizes of d and R, and the kinematic constraint, R > 4µ /q~ , 

require that the positive root be used for normal processes, such as 

e± ~ e± + y, and the negative root be used for the pair process being 

Studl..ed here. (y ~ e+e-). B lo I ·11 t (1 d R)/2 h / ~ e w wi use 
0 

= - - ; owever, 

these results can be used for normal processes by substituting R ~ -R. 

Letting t = t 0 eT, the argument of the exponential becomes 

s+d s-d 
zt + kln(l-t) - ~lnt = z(t0 + -ln(l-t ) - -lnt ) 2 0 2 0 

za ,-3 zb r3 zc -r4 
+ + + + ••. 

2 6 24 

s+d 
where a = t - - a(l-ta:) =Ra 

2 (3.5) 

s+d 
Ra - a 2(l+d-R) b = t - - a(l-ta) (1+2a) = 

2 

to 1-d-R 
a = = 

l-t0 l+d+R 

The integration contour C runs t through 0 in the positive imaginary 

direction, or, in the saddle-point approximation, from -ioo to ioo • In 

such an approximation, the term in ,3 is normally ignored. The neglect 

of this term, however, requires that (
2
;)

112 >> (2
:)

113 ; this condition 

is not satisfied if R is small. If the approximation is to be generally 
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valid, we must, therefore, include the T3 term as well. This term will 

always dominate the T4 term which will, therefore, be neglected. We 

may thus write 

(-1).e J,!(k-J,)! ] 
~ exp [zt0 + kln(l-t

0
) - p,lnt0 • 

i k! 

ico 

dT exp t 
-ico 

2 azT 

2 
Z;T

3
] (3.6) 

The above integral in T can be calculated by displacing the origin to 

eliminate the T
2 term, resulting in an Airy integral, finally giving, 

-ico_ .. 

r 
-ico 

2ia [za~ [za~ exp - Kl/3 -2 
3b2 3b 

(3.7) = 

AltO~t:LUt:.L' 

(-1)/,p,!(k-i,)! 
~------

k! 

~ [ 3 3] [ 3 3]1/ 2Ra R a zR a 
-- exp -- K --

Dffib 3b 2 l/3 3b 2 (3.8) 

This calculation is quite similar to that of Klepikov( 3), who in addi­

tion gives a bound of order .e- 2/ 3 to the error in the curly bracket term. 

- -· · - Using Stirling's approximation for the factorials, we get the 

jinal re~uLt for the vertex_ function, 
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( -1)£2Ra 3 3 

T(k' n,z) ~ (£)1/4 ( )(zR a ) 
i(J {3'mb k exp• Kl/3 3b2 

s 1 [1-s+R] d1 [(1-d-R) (1-1-d+R)J X = -R + - n -- + - n 
2 1-s-R 2 (1-d+R){l+d-R) 

2 b = Ra-a (1-1-d-R) 

1-d-R 
a= 

l+d+R 

zX/2 
e 

(3.9) 

Since R > 2µ/q~, (as will be shown in the kinematic calculation), 

if 4µ 3 >> q~, the K1/ 3 function has a large argument, permitting an 

asymptotic expansion. This yields 

;+ (-1)£ 1-s+R 1/4 
T := T (k, J;,z) = (--) exp 

( ffiRz) 1/2 1-s-R 

The derivative relations 2.32 and the relations 

(l+d±R.)(1-d±R) = 2(1-s±R) 

(l±d-R)(l±d+R) = 2(s±d) 

(1-s+R){l-s-R) = s 2-d2 

zX 
(-) 

2 

give syrrunetrical forms for this second approximation: 

T-t+ = (-)£ [(l+d+R)(l-d+R~Jl/4 
~TITRz (1-1-d-R)(l-d-R) 

exp 
zX 
{-) 

2 

T-+ = (-) t [(l+d-R)(l-d+R~J 1/4 
~llfRz {l+d+R){l-d-R) 

exp (zX) 
2 

T+- = (-)£ [(l+d+R)(l-d-R~J/4 
4TITRz (l+d-R)(l-d+R) 

exp (zX) 
2 

T -- = (-)£ [(l+d-R)(l-d-~)Jl/4 (zx) 
~ nrRz (1-1-d+R)(l-d+R) 

exp 
2 

(3.10) 

(3.11) 

(3.12) 
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The phase space for the process y - e+e-, with the diagram 

p,I 

FIGURE 3.1 

is 

2 2 
{d p d p' 2 2 ,2 2 2 2 
jm

2 
TIT

2 
mo(p -2k-µ ) mo(p -2.e-µ ) m 6 (p-p' -q 11 ) 

2 

= 2·~·(q~ - (k+f,+µ2)q112 + (k-f,)2)-1/2 (3.13) 

where q 11 is the (t,z) portion of the photon momentum. The factor of 2 

is necessary since either particle may have the positive momentum Pz• 

If the photon is on the empty-space mass-shell (which will be assumed 

from now on), then q 11 = q.L and the phase space becomes 

d2 a2 , 

J 
p p 2 2 2 2 2 

- .-. -- m6(p -2k-µ ) nro(p' -2,e,-µ ) m o(p-p' -q 11) rn2 m2 . 

!._(R2- 2µ\-1/2 
2z z ' 

(3.14) 

where I have defined r = 
2
µ as the electron mass in terms of the photon's 

q.t. 
perpendicular momentum; r = 1 is threshold. 

Since R depends on discrete final state variables k and ,e, as the 

photon energy increases across the threshold for a particular (k,,e,) 
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state) there is a square-root infinity in the rate. Physically, this 

is because just above threshold for a given state, the energy depends 

on the square of the z-momentum: a small energy interval can thus 

correspond to a large momentum interval. The area under each of these 

peaks is finite, however, so if we are averaging over a range of B or 

of q, we may consider k and ~to be continuous variables. 

If plotted accurately, the total rate has many of these square-root 

infinities as the photon energy crosses various (k,~) thresholds. The 

total number of edges below a given energy E is approximately 

= (3.15) 

giving a density 

(3.16) 

If E2 - 4µ 2 >> 1, then the edges are very close together, and we 

can assume without much error that the states are continuous. This is 

particularly true if there is variation in the magnetic field or uncer-

tain photon energies. 

The exact pair production rate, as a function of energy, is shown 

in Fig. 3.2 for the caseµ= 1.5 (B = l.962xlo13 gauss= .4444 Be)· 

A problem arises when we attempt to calculate the rate from the 

matrix element. Normally an S-rnatrix element has a m4o4 (Pin-Pout) 

which is removed before squaring. In this case, however, this factor is 



O"I 
N 

Figure 3.2 Pair production cross-section 
as a function of energy for µ = 1.5, B = 
.444 Be· The spikes are threshold effects 
due to various discrete harmonic oscillator 
states. The spikes are infinite but have 
been truncated. 
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instead. We cannot simply drop the extra term, since then the integral 

over the degenerate momentum variable Px will give oo. This is not a 

real infinity because the variable Px also represents the position of 

the center of the orbit in the y-coordinate, and we are assuming the 

electron to be in a box of finite size, which cancels with the normaliza-

tion of the state. We may µse the relation between the pair rate and 

the imaginary forward scattering amplitude to remove the difficulty in 

the following manner. In the normal m4 o4(Pin -Pout) case, we may 

alternatively use different variables for the momenta in the matrix 

element and in its conjugate. Integrating over intermediate states 

will reduce the pair of delta functions to a single one, which is then 

dropped to get the rate. In the situation above, if we again substitute 

different momenta and integrate, the exponential gives us the necessary 

fourth delta function, so that we may drop a factor of nf~64(qin-q' in) to 

get the actual rate. 

The rate for the process y + -
~ e e , summed over the autoing pair 

spins, for an initial photon with polarization e and 4-momentum qµ,q 2=0, 

is then 

}:: Tr (( p+a+p.)( 2:-T+t-et:;- + }::-T+ - e }::+ + t:;+T- +e I;- + 2=-h_r- - e I;+) • 
k,,e 

(3.17) 
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Calculating the integrals (but not the sum) using the above phase-space 

calculation, and dropping the delta functions as discussed above, gives 

Rate (3.18) 

where the integral over the degenerate quantum number in the final state 

has already been done. 

In calculating the total rate, it is also necessary to sum over the 

final k and £. In the same approximation used for the vertex functions, 

one can convert this sum to an integral, with the result (using R as the 

integration variable rather than s) 

CX) 1 
I; f(k+,e,k- .£,) = z 2 ~ RdR 

k, t=O r 

1-R j dd f(~(l+d2-p2),zd) 
0 

(3.19) 

for any f. 

All that remains to be done in the rate calculation is the spinology 

of the trace and the evaluation of the integrals. The complex angular 

factor ei~(k-£) drops out on absolute squaring, so I will take ~ = 0 

(photon momentum in the x-direction). This gives for the trace 

(ez2) = Trace for z polarization = 

Tr((p+a+µ)(2:-T*eL::- + L:-T+-eI;+ + L;-fir-+eL:- + I;+r--eL:+) 

(p'+a+µ)(I:-T+t*e~- + I;-T+-*eI;+ + I;-fir-+*eL:- + I:~--*eL:+)) 

= !(T++2 + T-- 2)Tr((p+µ)y 2 (p'+µ}yz) + 2..[k"i T-I+T--Tr(Y+YzY-Yz) 
2 

(ez2) = 4 {~(T-t+Z + T-- 2)(p·p' + 2pzp'z-µ 2) - 2{kf, T+t>r--} (3.20) 
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Similarly, 

(e/) = 4{~ (T+- 2 + T-+2 )(p ·p 1 -µ2) -2/ki, T+- T-+} 

The following kinematic relations are helpful in using the above: 

p·p' = -z(l-s-µ 2/z) 

Z 
[

l-2s2-rd2 4µ2] 2 2 
- - = z(R -r ) 

q 2 
J. 

(3.21) 

Assembling all these factors and dropping the photon momentum o 

function, we have 

Rate (z pol.) = 
-2.az 

(3.22) 

where s = (1 + d2 - R2)/2, and the T's are as defined in section 2, using 

k = z{s+d)/2, £ = z(s-d)/2. 

If we attempt to use the vertex function approximation directly, 

the formulae become quite complicated. It is possible, however, to 

develop two overlapping approximations which cover the entire region of 
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validity of the original vertex approximation. These two limits are 

2 2 
qJ. "'4µ (r 1) and q 11 >> l-t

2 (r << 1). 

(1) 
2 2 

q.L "' 4µ , (r "' 1) 

2 2 2 2 We still assume q.L - 4µ = q 11 - 4µ >> 1. 

Since z and µ 2 are both large 3 3 and r "' 1, zr = 4µ /q.L and the 

argument of the Bessel function is everywhere large. We may thus use 

the second vertex approximation, Eq. 3.12. The result is 

= d(R -r ) \ dd 
2.az ~l 2 2 1/2 1-R {sR2+(1-s)r2}· exp (zX) 

qt r J
0 

sR2 rrrR(s 2-a2)1/2 

where s = (l+d2-R2)/2, and 

l-r2 l+r q2 2 
x = (-r + ln -)(1 - - . -) 

1-r2 2 1-r 2 

On integration, this becomes 
J [ 1-r

2 
l+rJ1 

z o:r expl-z Lr--2-lnl-r j 
Rate ( ) = -

Y 2qt (lnl+r)l/2(r-~r21nl±.r)l/2 

where 

1-r 2 1-r 

If r is small, this simplifies to 

Rate 

2zr3 

3 
= 

8µ3 

3q.l(eB) 

(2) 2 
q II >> µ ' (r << 1). 

l+r 
- (R-r)r ln (-) 

1-r 

If we expand the argument of the K1; 3 function in Eq. 3.9, for 

' 

(3.23) 

(3.24) 

(3.25) 



- 34 -

small R, we see that it becomes zR3/3(1-d 2). Since z is large, and 

~113 drops expo~entially, the integral will be dominated by the region 

where z{R3-r3) is small. Since r is small, R must be also. It can be 

shown that the argument of the Kl/3 always increases with R, so there 

is no ~dditional region of importance. Expanding for R small, we get: 

. T*= 
(-) 1.z R 

f3 ITT {l-d2) 1/2 Kl/3 

o r* = 
oz 

Rate(z) = 

Rate(y) = 

2· 1 1 
8az r .. . 2. 2 1/2 \ 

2 J d(R -r ) J 
3 TIT qt · R=r o 

R2 
(-)2 [ 2 d2K2 J 

2 Kl/3 + 2/3 ' 1-d 

(3. 26) 

1 

~ dd• 

0 

(3.27) 

dd • 

where the K's have argument -zR3/3(1-d 2). These integrals can be made 

less sing,11lar by substituting R=r cosh x and d = tanh y. In this form 

it becomes clear that the result depends only on zr3 = 4µ3/eBq~ and 

is thus (except for an overall factor of l/µ) independent of the value 

of photon energy giving the particular value of zr3. When the above 

substitution is made and the result averaged over initial polarizations, 

this is the form of the result given by KlepikovC3). 
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It is possible) by expanding the K's in Airy integrals and symmetriz-

ing the variables) to reduce the above expressions to single integrals: 

2zr3 
2 

K2/ 3 (- ch y) + 
3 

4zr
3 

2 2zr
3 

2 J + -
3
- sh y K1/ 3 (-

3
- ch y) (3.28) 

This result agrees with that of 

Toll( 2)J if one expresses his Airy functions in terms of Bessel functions 

and does the necessary algebra. 

If zr3 is small) we have 

a(4zr
3
)1/3 

Rate( ~ ) ~ 3 

unpol. 14µ 

r (5/6)( 3 J 
r (7/6) 5J2 ) 

(3.29) 

and in the limit r << lJ zr3 >> 1, the region of validity of this approx-

imation overlaps that of the previous approximation) and gives the same 

rate~ In the high-energy limit, if we shift from the large zr3 approx­

imation (Eq. 3.25) to the low zr3 approximation (Eq~ 3.29) at a value 

of zr3 of .29 for y polarization or .47 for z polarization, then the approx:i.ma-

tions differ by only 35 and 39 percent respectively from the exact values. 

If we use the expressions 

{ 

3 1-2 3 (~~-1/2 Rate(z) a [ r (5/6) 4zr 1/3 (32)J' + 332 e+4zr /3 
Y =; 14r(7/6) <-3-) 

(3.30) 

for the rate, then o~er the entire range the result is in error by at 

most 13 percent for y polarization and 20 percent for z polarization. 

Fig.3.3 shows the rate approximations, Equations 3.28 and 3.30. 
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Using these two approximations allows us to calculate the pair 
. 2 

production rate anywhere that q~ 2 2 4µ >> 1. If we allow q~ 

then there are only a few states available, and it is necessary to use 

exact vertex functions and direct summation over final states. Fig. 

3.2 above was calculated by this method. 

The results calculated above can be extended t? the case whete the 

electric field is not zero, so long as E·B = O. In fact, it is possible 

to extend the result even to the case E2 - B2 = 0 and at the same time 

understand the dependence of the limit E >> 2µ only on zr3 = 4µ3/q~(eB). 

The only relativistic invariants in this case are F2 = FµvFµv and 

jqµFµvl
2 

• Now if F2µ 2 << lqµFµvl
2

, then there is a Lorentz frame where 

the photon en~rgy is high (compared to µ), but where B2 ~ E2• The rate 

in this frame should not depend on slight fluctuations in E or in B, 

which correspond to large proportional changes in E2 - B2 = F2; and 

thus the rate should depend strongly only on jqµFµvl = (qiB). If we 

now select the Lorentz frame where Fµv is pure magnetic, the photon 

energy will be very high. Thus the high-energy limit will depend only 

on qiB. If E2 - B2 = O, then this limit should be exact, if we use 

!eqµFµvl where Eq. 3.28 has q~. If Ey = Bz = B', then the argument of 

the exponential is 2µ3/qxB', where in the pure magnetic case it was 

4µ3/qxB· 

Toll( 2) has used essentially the above argument to get the high-

energy limit of pair production in a pure magnetic field from his 

rates f~r the case E2 - B2 = E•B = 0. 

It is interesting in some circumstances to know the distribution 

of the pairs in p2 , the momentum along the field. According to Eq. 3.21, 
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? - µ -

If the photon momentum has no z-component, then p
2 

= p'
2 

(corresponding 

to opposite physical momenta by the convention for the positron momentum) 

and~= 2(p2 + µ 2)/z; RdR = 2pdp/z. Making these substitutions and 

integrating over d will give the z-momentum distribution. In the 

simplest case) E >> 2µ and zr3 = 4µ3/q~ >> 1, the distribution becomes 

approximately 

= 

(2) fix _ 1~)1/2 
l 8 {2µ\8 IDµ 

o:f3 e-2zr3 /3 ( q ) 1/2 
<i) ~ 

8f 2 µ 8TITµ 
(3.31) 

It can be seen from this that the z-momentum distribution is very 

narrow, with the pair having much less than µ 2 average z-momentum. This 

can be most easily seen from the strong dependence of the exponential 

on the mass, and from the intuitive fact that the z-momentum acts like 

additional mass, so far as the magnetic field effects are concerned. 

It turLs out that one-photon pair production in a magnetic field 

is not quite observable experimentally at present. With the magnetic 

field variable reinsert ed, we have for Eq. 3.25, 

Rate (unpol.) (3. 32) 

To get a conversion of about 10-6 /cm. for fields near 107 gauss, 

µ/q~(Bc/B) can be no larger than about 8. With 200 GeV photons, this 



- 39 -

requires a field of 1. 3xl0 7 gauss. 

Near a neutron star, for photons of a few MeV energy, high conver­

sion probabilities again requires µ/q~(Bc/B) to be less than about 8. 

In this region, a 3 percent fluctuation in either q~ or in B will cause 

a factor of e difference in the rate of pair production. What this 

effectively means is that for a given photon energy, there will be a 

surface from inside of which no photons can emerge. 

If we assume the field is somewhat less than the critical field, 

(µ 2 >> 1), and if there are many high-energy photons in this region, 

the object should emit a background of y-rays with a large fraction 

of an MeV energy. This is because, as shown above, the transverse 

energy of the pair is much less than their mass. Since the field is 

relatively small, most annihilations will produce two photons. Also, 

the pair density should be small enough that most electrons (or posi­

trons) will lose their orbital energy by synchrotron emission before 

any annihilation can take place. This should also be true, to a lesser 

extent, if the pairs escape from the strong-field region before annihi­

lating, since the annihilation cross-section drops inversely with the 

center-of-mass energy, so that the positrons will normally annihilate 

only when they have dropped to an MeV or so energy. The garruna-ray 

spectrum around .5 MeV could thus test whether appropriate combinations 

of high-energy photons and field strengths exist around various astrono­

mical objects. 
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4. INDEX OF REFRACTION 

In this section I calculate the effect of vacuum polarization on 

the propagation of photons of arbitrary 4-momentum. The contribution 

of lowest order in ex comes from the diagram 

FIGURE 4.1 

which acts as a correction to the diagram 

FIGURE 4.2 

If we write Pµv(q) for the bubble alone (without the - sign from 

statistics) the photon propagator becomes 
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-i o + -2i f-P (q)J-i 
q2 µv q ... µv q2 

(4.1) 

The imaginary part of P corresponds to a change in electric charge, or, 

in principle, to a photon mass (actually excluded by gauge invariance). 

In the case here, where the field violates the Lorentz invariance of the 

rest of the system, the correction can change the speed of photon propaga-

tion by depending on the space-like par~s of the momentum differently 

from the time-like parts. This means that the index of refraction of the 

high-field region can differ from 1. 

If we take as our base polarization states y and z linear polariza-

tion, then there is no vacuum polarization term connecting the two. This 

is clear from the invariance of the system under reflection in the z 

plane (which leaves the field invariant.) Adler( 7) has shown that this 

is formally CP invariance. For a photon polarized in the direction e, 

the propagator will then be 

-i -i(-1) -i -i(-1) 
~{-l) + 2 pee(q) ""'2 ~ 2 
q q q q +iP e e ( q) 

(4. 2) 

If the vacuum polarization correction has the form -i(aqt2 - bqx2), then 

the propagator becomes 
i 

This moves the photon pole to a "slower" position: free photons now 

travel at a velocity 

v = 
l+b 1/2 

<1+) 
1 

,...., 1 - -(a-b) 
"' · 2 

(4.3) 
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The index of refraction n will then be n = ! ~ 1 + !(a-b). Since n 
v 2 

is nearly 1, we can assume in calculating it that qt 2 = qx 2 the fact 

that the photon is . not on mass-shell will be of higher order in the fine 

structure constant. Thus 

i Pee(q) 
n = 1 + -

2 
(4.4) 

For low field strengths and off-shell photons, P (q) is the normal ee 

vacuum polarization correction to photon propagation(l5). 

At first glance, it might seem that P could be most easily calcu-

lated via a dispersion relation from the previously calculated pair-

production rate. However, in that calculation a number of approximations 

were made, which would make the dispersion result only approximate. In 

addition, it turns out that there is an exact method which simplifies 

the results nearly as much as they were in the pair-production calcu-

lation. 

We thus wish to calculat~ the value of the term corresponding to 

the diagram 

p,k 

FIGURE 4.3 

where the photon polarization e can be in the y or z directions. The 
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invariant matrix elements for this process are 

3 3 · qx 
2~d p d p' iq (px+~2 ) ~ 3 

B - e " e m.J ~ (p p ' + q) 
(zz'J - TIT3 m3 t..J u -
yy k.e 

iqy' (Px '+qx 1 /2) 3 3 . p+a+µ 
e TTlo (p' - p - q') Tr(T(y ,q) 

~ p2-2k-µ2 

where T is as given in Equation 2.31. The calculation of the factor 

Tr({p+a+µ)·T·(p'+a+µ)·T)was made in the pair-production problem, Equa-

tion 3.20. Doing the trivial integrations and removing the photon 

momentum conservation TITo functions, we have 

2 2 ~(T+- 2+T-+2 ) [(p~) • {p-~)-µ2]-2fi.Zl T+-T-+ 
p = 4e f d p L: 2 2 2 

yy m J ,,,2 kn q 2 2 q 2 2 
Ill ~ ((p+:) -2k-µ )((p--) -2,e-µ ) 

2 2 (4.6) 

1 -1+2 --2 [ q q q q 2] ~ +h --2 2 -(T +T ) {p+-)·(p--)+2(p+:) (p--) -µ -2l~£T T 
P z z = 4e J d p 2: 2 2 2 2 z 2 z 

m m2 k,e q 2 2 q 2 2 
((p+2) -2k-µ )((p-2) -2.e -µ ) 

We can do the two-momentum integrals by assembling the denominators 

with a Feynman parameter T\, and using the basic 2-dimensional integrals 

d2k 1 -1 

~m2 = (lnL+c) 
(k2-2p •k- [l+ie:) 2mi 

d
2
k ( 1 ; k j ; k j k _e) -1 

(4. 7) 

)m2 = 1 Pj. PjP_e j.f, 
(k2-2p. k- [l+ie:) 2 2mi <r.; --I- (lnL+c+l)) 

L ' L 2 
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where L = p2 + ~ and C is an infinite constant (consistent between the 

two expressions)~ We can further put the denominators into an exponen-

tial using the relation l/D = du exp (-uD), where the parameter u is 

conjugate to the mass, and thus represents the proper time along the 

electron's trajectory~ This gives the result 

2 ol 2 
2ie2 ~1 ~ (° -u{kT\+µ - -(l-11 )) 

p yy = T1T 2 J 2 j du l: e 4 
-1 0 k,.e, 

(4.8) 
2 2 o:l 2 

-- 2i e ( 1 d 11 r -u (k +µ - - ( 1-11 ) ) 
p zz J J du L: e 11 4 

nr2 -1 2 o k,.e, 

[
l +1-2 __ Q (J)

2 2 2 .r;:--:;; +t: --J 2<T +T P)(-"4(1-11 )-µ )-2~k,.e,T T 

where k
11 

= k+,.e,+11(k-,.e,) and (J) =qt. The reason for putting the denomina-

tors into the exponential is to make the expression a power series in 

the discrete variables k and ,.e,. 

T+-, T-+, and T-- can be expressed in terms of T* and its deriva-

tives, according to Equation 2.32, so it is only necessary to have one 

basic sum in order to do all the above sums. The required identity 

follows from Equation 10.12(20) of Erdelyi(l6) (see Appendix 1): 

~ JT* j 2 -u{k+ ,.e,)-'flu{k- ,.e,) eu [ chu-ch Tµ J 
LJ e = -- exp - z 
k,.e, 2shu shu 

(4.9) 

2 where sh u and ch u are hyperbolic sines and cosines, z = qx /2 and u 

and 11 u are arbitrary. One can obtain sums with various integer powers 
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of k and t (as needed for T+-, T- -1; and T--) by taking appropriate 

derivatives with respect to u and 11 u. 

Applying this · to Equation 4.8, and further simplifying by inte­

grating terms of the form µ2f(u) e-µ
2 

du .by parts with respect to u 

(to force all µ 2 dependence into the exponent) we get the result 

ie
2 

Jl d] Jo::> du [ m2 2 _ q
2
- chu-chTf-1] • 

Pyy = - - - exp -µ 2u + u-(l-11) 
2 -1 2 

0 
shu 4 2 shu 

{

m
2 

ifhu sh11u q
2 

} 
-( - ch'T}l) + -

2 
(chu - ch'T}l) 

2 shu sh u 

. 2 ,1 d c:o 
= ie J ...1\ \ 

2 -1 2 Jo 
du [ m

2 
exp -µ 2u + u-

4 shu 

q
2 

chu-chrp] 

2 shu 

{ 

2 2 } m 2 q 1fhu sh 11u 
- -(1-11 )chu + - (- + chTJU) 

2 2 shu 

(4 .10) 

On doing the parts integration mentioned above, one gets infinite 

integrated parts, due to the quadratic divergence of the integral at 

short distances {small u). This can be repaired by using the normal 

gauge-invariant regularization techniques, as in Feynman(lS). This is 

done by int~grating over a mass spectrum G(m2), which satisfies 

jam2 G(m2) = O, Jam2 m2 G(m2) = O, and which approaches &(m2
-µ

2) for 

2 2 
fixed m as the cutoff parameter A ~ oo. (A typical function would be 

2 2 2 2 2 2 2 2 
= o(m -µ )-2 o(m -/\-µ) + o(m -2/\-µ ).) The net effect of 

this is to zero out the integrated part. 

Equation 4.10 is an exact expression for the first-order effect 

of vacuum polarization on photon propagation in a magnetic field. If 
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we take the limit of small fields, (µ 2 ~ co, q ~ co, q/µ constant) this 

expression agrees with the normal vacuum polarization calculation, 

where the vacuum current Jµ~ = iPµ~ (cf. reference 3). 

This can be easily verified by working in the approximation µ 2 

large. The e-µ
2

u term in the integral then requires that u be small. 

Expanding the various hyperbolic functions in this region gives for 

both amplitudes 

pyy = pzz 
.2 { 2 2 ~ 2 ie f di\ co du [ 2 CD -q .2] \1-'f\ 2 2 

= - - \ - exp u - µ + ~-(1-q) j - (q -CD) 
m2 _ 1 2 ~ u 4 2 

( 4 .11) 

When these integrals are done (with one subtraction near u = O), the 

result is the empty-space electrodynamic result. The u integral is 

logarithmically divergent at small u, and must be renormalized in the 

conventional manner. 

As shown above, the index of refraction for the high-field region 

is nee= 1 + i/2 P6 e(q)/qt 2 , where the photon momentum is assumed to 

be on the empty-space mass shell. At this point, the log-divergent 

parts of the integral disappear, giving a convergent result. For a 

photon with polarization e and momentum qµ = (q,q,O,O), z = q2/2, we have 

n -l __ e
2

z jl d] Joo du t 2 u 2 chu-chT)U J exp -µ u + z(-
2

(1-'f\ ) - ) 
YY 2m2 2 shu shu 

1 0 

{
Tfhu shTju 

- ch 'fill 
shu 

2 1 co 

= ~ \ ~ \ du_!__ 
2 m2 _Ji 2 ~ shu 

[ 
2 u 2 ch u - ch 1\U J 

exp -µ u + z(-(l-11 ) - - ) 
2 shu 

{ 
2 i]chu sh·nu } 

-(1-T\ ) chu - + chT\u 
shu 

(4.12) 
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If the photon energy qt << 2µ, then we can approximate 

e2 -u2u 
nyy-1 :::: - 2z \ e · (- chu sh2u + 2u2chu - ushu J 

m2 Ju3sh3u 
(4.13) 

This result can be obtained somewhat more simply from the Euler­

Heisenberg effective Lagrangian(l 7) which has also been derived by 

Schwinger(lZ). This effective Lagrangian is the (renormalized) effect 

of single electron loops in a strong field. In the low-energy limit, 

the field due to the photon is slowly varying in comparison to the dis-

tances over which the electron loops actually occur, so this effective 

Lagrangian can be treated as an additional term to the original Maxwell 

Lagrangian, and the above result can be derived by taking appropriate 

. derivatives. This is done by Bialnicka-Birula and Bialnicki-Birula( 5 ) 

and by Adler< 7 ). The correction to the photon pole obtained in this 

way is the same as that calculated above. 

Figure 4.4 is a plot of the index of refraction at 3 energies. As 

can be seen, in the elastic region the indexdoes not depend a great deal 

on the energy. The plot shows that the index for y polarization does not 

depend strongly on z/µ2. For z polarization an approximate correction 

factor is: 
1-nzz(z) .19 z 1.8 

= 1 + (-) (4.14) 

1-nzz(O) µ 2 
µ 

If the external field is small, (µ 2 >> 1) we ·may expand this result 

in powers of the field strength, giving a first term 
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(4.15) 

where the magnetic field has been replaced in the equations, the substi­

tution e 2 = 2rrra has been made, and w is the photon energy. 

The results of Equations 4.10 through 4.13 apparently diverge 

exponentially if q2 > 4µ 2• This is because in deriving the identity 

used to sum over the discrete variables, the u integration contour was 

rotated away from the real direction, i.e., u as used above is the 

imaginary proper-time. To work in the inelastic region one should give 

the mass a small negative imaginary part, and integrate u from 0 to +ioo. 

(In the derivation of identity 4.9, it was in fact necessary to use this 

contour; the identity was later put into the above form to make the 

identity explicitly real. See Appendix l for details.) 

Adler( 7) has calculated the index of refraction for arbitrary 

energies using Schwinger's methods, and has also calculated the low­

energy approximation. Bialnicka-Birula and Bialnicki-Birula(S) have 

also calculated the low-energy limit of the index of refraction from 

the Euler-Heisenberg Lagrangian. 
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5. PHOTON SPLITTING 

In the presence 9f a magnetic field, the process y ~ yy is allowed: 
B 

by this means a single photon can be split into two photons of lower 

energy. If we disregard index of refraction effects the two outgoing 

photons must have momenta parallel to that of the original photon. 
. . 

Photon splitting is represented to lowest order in the fine-structure 

constant by the Feynman diagram: 

FIGURE 5.1 

. . 

(where x is a number between 0 and 1) plus the diagram with outgoing 

photons exchanged. 

I .have made an attempt to calculate the photon splitting rate, but 

using the methods developed here, the algebra gets excessively compli-

cated. One may put the discrete indices of the propagator into the 

exponent by assembling the denominators with two Feynman parameters, 

doing the time and z integrals and putting the remaining denominators 

into the exponent. If one then represents the vertices by an integral 
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of Hermite polynomials (Eq. 2.29 with qy = O, corresponding to a momen­

tum basis), then he can do the sums over intermediate states using the 

identity 1.11. We - are left with the exact matrix elements in terms of 

three coupled Gaussian integrals. However, due to limitations of avail-

able time, I have not been able to finish the ~lgebra to get a usable 

identity. (In the two photon case, this method can be used to calcu-

late the identity Eq. 4.9J 

Adler(7) has calculated the exact resuit using the Schwinger method, 

which would be related to the above by a Fourier transform. The exact 

result given in the preprint of Adler's paper takes an entire page, and 

numerical calculations by him indicate that below pair-production thresh-
. . 

old this result differs by at most 20% from the result calculated by 

taking appropriate derivatives of the Euler-Heisenberg Lagrangian. This 

low-frequency result, also derived by Bialnicka-Berula and Bialnicki­

Berula (5), is: 

a,312 
Amplitude (y - yy) = 

)
duu -µ 2u 1 [ 3 2 2 3 J e ~ -2u (2sh u+3) + 3u sh u + 3chu sh u 

usli u 

a,3/2 
Amplitude (y - zz) = - ~- ro0 ro1ro2 2m2 

(5.1) 

1 [ 3 2 2 2 J 
3 2u shu+2u chu(sh u+3) + 3u shu - 9sh u chu 

3ush u 

where ro0 , ro1 and ro2 are the three photon energies, and the polarizations 

refer to the electric vector. These amplitudes are plotted in Fig.5.2. 
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The second amplitude is also valid for any permutation of the 

polarizations. The amplitudes -for any other polarization states are 

required to be 0 by CP invariance, as explained in the previous section. 

These two amplitudes have the low-field limits 

(5.2) 

and one can verify explicitly the cancellation of the terms of first 

order in B (the four-vertex "box" Feynman diagram). The above formula 

gives the behavior of the hexagon diagrams at arbitrary energies, since 

there is no inner product which can give a measure of the energy. 

Due to index of refraction effects, there are additional kinematic 

constraints which disallow some processes. Adler gives an extensive 

analysis of the effects which might be expected near a neutron star, 

and a reader with a deeper interest in the subject is referred to his 

paper. 
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6. THE HIGH FIELD LIMIT 

In this section I examine some of the phenomena which can occur 

in very strong fields, corresponding, in the units eB = 1, to µ 2 << 1. 

Under these conditions, the first excited state lies much higher than 

the ground state, so that, for example, an electron in the first 

excited state will rapidly degrade emitting a photon. Except for a 

small region in the direction (±) of the magnetic field, this photon 

will normally be absorbed, creating an electron-positron pair. However, 

as the mass goes to zero, the polar phase space does also; and thus 

excited states will usually result in the emission of 2 electrons and 

1 positron. The discussion of this section will relate to particles in 

the stable ground state. 

The first interesting problem in a very strong field is the energy 

of the ground state. In this state, the energy due to the electron's 

magnetic dipole moment is negative, and for a Dirac electron this energy 

is - 1/2, exactly cancelling the + 1/2 ground-state energy of the har­

monic motion. However, the electron has a slightly positive anomalous 

magnetic moment, which brings the ground state energy below the fr_ee 

space value. Some authors have speculated that the energy would become 

negative at sufficiently high fields(lS~ However, the magnetic field will 

alter the character of the self-interaction terms, since the electron 

must propagate through the magnetic field rather than empty spaceo 

Intuitively, the electron is confined by the field, so that at very 

high field strengths·, the self-energy approaches the classical value 

more closely. It is thus necessary to calculate the change in the 
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electron self-energy due to the magnetic field to all orders in the 

field strength. This is easily done using the formalism developed in 

Section 2. 

The diagram we wish to calculate is 

p,O 

p+q,k 

FIGURE 6.1 

where the initial and final electrons are in the ground (k=O) state, 

and we integrate over all intermediate photon four-momenta. We thus 

have 

+ T(O,(k-1),q)~+) {p+a+µ)(~-T{k,O,-q)+~+T{k-1,0,-q))y~~-J 

(6.1) 

where we have dropped some terms from the vertices by using the fact 

that the electron spin is down. 
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Doing the spin calculation and using the vertex function 2.28, 

the factor in brackets above becomes 

[] [ 
zk zk-11 _ 

= r.- 2µ - + ( - 2 ( p+a) + 2µ) -- e - z r, 
k ~ (k-1) '. 

where z = 2 
ql. /2 

Uniting the denominators with a Feynman parameter, calculating the 

(qt,qz) integrals by Equation 4.7, putting the denominator into an 

exponent with a proper time integral, and then calculating the sum 

and the (qx,qy) integrals, the self-energy correction reduces to 

2µa 

m 

(6. 2) 

(6 .3) 

As expected, this integral diverges logarithmically as s approaches O, 

-µ2x 2s (l+x) requiring us to subtract e from the integrand. For small 
2s 

fields, (µ 2 large) we get 5µ ~ -a/2mµ, which is the same as the value 

calculated from the free-space anomalous magnetic moment. 

B. Jancovici(lg) has shown that for µ2 small (B large), the inte­

grals in Equation 6.3 are proportional to (lnµ) 2, and reports the rising 

asymptotic value 

aµ~ 2 3 2 J 8µ ...., - ( ln ( - ) - y - -
2

) + A , 
2m µ 2 (6.4) 

where y = .577216 ... is Euler's constant, and -6 <A <7. I have 

evaluated this integral numerically, with the results plotted in Fig. 

6.2. O:µ 
The electron's energy reaches a minimum of E = µ - -(.0396) at 

TIT 

a field strength of eB/µ2 = .255. 



+.02 

J\ 
U1 + 

I 
t t-.02 
f 

.r._ - • 04 

Figure 6.2 TTioµ as a function of eB/µ 2 • It is clear 
aµ 

that the mass correction reaches a minimum and then 

rises. The ·irregularity is due to computer truncation 

error. 

.25 .50 / 1
• • 75 



- 58 -

Another interesting phenomenon in very high fields is the existence 

of pair states where the two particles have a high probability to be at 

the same point, but are rigorously forbidden from annihilating. This is 

due to the infinite degeneracy of the electron and positron states and 

the conservation of the degenerate quantum number. 

Using the. linear momentum eigenstates, suppose we have an electron-

positron pair in the ground state, with Pz = O, Px =a, k = O; Pz' = O, 

Px' = a, k' = 0, where the pri.med variables refer to the positron. (The 

positron momenta here are the physical momenta, without the conventional 

change in sign.) In terms of position variables, the wave function is 

12 { r. x x' ' J ( -a) 
2 

( y' +a) 
2

} ~ = inrexp il_8(x+x') - ~ + --f - Y
2 

-
2 

• (6.5) 

It is clear that the total x-momentum of this state is 2a. If a > µ, 

then the state cannot annihilate, since any combination of photons with 

total momentum greater than 2µ need an energy greater than 2µ, the 

energy of the pair state. If the field is strong, µ 2 << 1, the wave 

functions of the electron and positron may be only slightly displaced 

from each other in the y-direction. The probability distribution is 

2 2 2 2 
P = I w I = m exp ( - ( y-a) - ( y' +a) ) ( 6 • 6) 

If 1 >> a > µ, the state will be forbidden from annihilating; yet the 

particles have strongly overlapping probability distributions, as shown 

in Fig. 6.2 for a = .1. 
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FIGURE 6.3 

It is clear that we may select the degenerate momentum variable in 

any direction, so that there are non-annihilating states with momentum 

2a in any given direction. To quantize an electron, using as the index 

of degenerate states the momentum in a direction at an angle ~ from the 

x-direction, we take as a basis the states (cf. Equation 1.8, 2.22) 

_ ( 2) 1/4 1 [ ( 2 2) ( i~ ( . ) 2 ) 2 + Za~ 2 J .1, = -m exp 
4
- - x +y + e x-1y - ia 

'a 
(6.7) 

The basis set for a positron can be taken to be ~+ = (~- f. An electron 
a -a 

and positron quantized in the same direction ~' each with momentum a, 

then have the combined wave function 

2 1/2 1 [ 2 2 2 2 2 
Va,~(x,y,x' ,y') = Cm) exp 4 -(x +y +x' +y' ) +4a 

. + (ei~(x-iy)-2ia) 2 + (e-i~(x'+iy')-2ia) 2 l 
..J 

(6.8) 

= (!) l/Z exp Z (-(x+x- + x+' x_ 1
) + t,a 2 + (e iq>x_ - Zia) 2 + ( i<+>x+' -2ia )2 ) 
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where x+ = x+iy, x_ = x-iy, etc. 

We may obtain non-annihilating states in the angular momentum 

representation by superposing states quantized in various directions, 

getting 

{2 
~a,L = 3/2 

lTf 

m 
\ l[ 2 . 2 J d~ exp 4 -(x+x- + x+'x_') + 4a + (e1~x_ - 2ia) 

0 

(6.9) 

f2 1 2 
= ViiT exp 4 (-(x+x- + x+'x_') -4a) 

co x+'x- · 
1 

1/2 . 2j+L x+' L/2 
Ij (-

2
-) J 2 ·+L (2a(x+ x_) )(-1) (-) 

J X-

j=-c:o 

where I is a modified Bessel function. Intuitively speaking, this state 

is a state of total momentum a and angular momentum L. 

Unlike the individual momenta, which are required by translational 

invariance to have no effect on the energy, the sum of the electron and 

positron momenta in a non-annihilating state is clearly physically signi-

ficant, since it controls a physical process. In fact, since the dis-

tance between the electron and positron in the perpendicular coordinate 

depends upon the total momentum 2a, the Coulomb energy of the pair 

should also depend on the total momentum. 

Unlike the degenerate momenta of the individual particles (the p 

operators of section 2, defined in Eq.2.16), the x and y components of 

the degenerate momentum of the pair commute with each other and thus are 

simultaneously valid quantum numbers; 
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[ (Px + Px'), (Py + Py')] -- +i - i = 0 

The pair thus has a well-defined momentum. This is a direct result of 

the overall neutrality of the state and the translational invariance of 

the system. A neutral particle cannot require a gauge transformation 

when it is moved, and thus the invariance of the physical system in the 

x, y plane requires that it have a well-defined momentum. The calcula­

tion of the dependence of the energy on the total momentum does not 

lead to any simple results. 
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APPENDIX 1: DERIVATION OF INDEX OF REFRACTION IDENTITY 

In this Appendix, I give the derivation of the identity 4.9: 

L: jT*j2 e-u(k+,e)-l}l(k-,e) eu [ chu-ch:ru] 
k,e = 2shu exp Lz shu 

Using the form 

T-H- = e-z/2 [e! z(k-,e)/2 Lk-,e(z) 
. ~k! .e 

(which assumes that the pho.ton momentum is in the x-direction), we have 

L: 
k, ,e=O 

-z 
= e 

,e! k_[ k- ]2 -2,eu -(u+v)k-
L: z Li, (z) e e 

k,t k! (Al. l) 

where k+ = k + ,e; k_ = k-,e, and v = 1}1· 

Erdelyi(l6 ) gives the relation (Eq. 10.12(20)) 

00 .e ! ~Cf, 
L; L 

,t=O ( ,e+a ) ! .t 
12 -1 [ 

(z~ = (1-z) exp [z 2x J -ex - x 
1-z 

-ex I 2 [2x {ZJ 
z Icx--' 

1-z 

jz I < 1 . 
(Al. 2) 

where Ia is a modified Bessel function. Substituting ex - k_, z - exp(-2u), 

x - z, we have 

L: 
. ,t=O ( ,e+k_) ! 

z 
-k_ 

-2,eu 
e 

(Al.3) 
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This gives 

~ IT++ 
1
2 e -uk+-vk_ 

k,f,=0 

= eu exp[-ze-u)r [~] e-vk_ 
2shu shu k_ shu • 

co 

k.:= - co 

(Al.4) 

We now take u and v to be pure imaginary, u = iu', v =iv', which 

causes the u integral to converge for any value of q2, given that µ
2 has 

a small negative imaginary ·part. Bessel's integral representation for 

the 1cx then becomes 

- i ( U I +v I ) k _ Z 

e Ik (-. -. -, ) = 
- 1.SJ.IlU 

~ ae -i(u'+v')k_ -i 1Tr/4 k- + i (z/shu') sin8-ik_8 • 
= J me 

0 

Summing k_ from -co to co now gives 

co 

~ 

k_= 

-v'k- z 
e I (--) = 

k- isinu' 
-oo m= 

exp [ i z s in8] , 
shu' 

m 
{ dB m 
j01Tf 0 ( e + U I + VI + 4 + mm) 

-co 

where m is an integer which drops out when the e integral is done. 

We thus have the result 

kf,=0 

-iu'k+ -iv'k_ e . = iu' [ J e exp -z cosu'-cosv' 

2isinu' isinu' 

(Al.5) 

(Al.6) 
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If we are working below threshold, q2 < 4µ 2, all the u' integrals 

will converge ·if we rotate the contour back to its earlier position, 

iu' = u, iv' = v, so that all functions appearing are real: 

~ IT+l-12 e-u(k+t)-rp(k-t) = 

kt 

eu exp [z chu-chT)u] 
2shu l shu 

I have slightly violated mathematical rigor in using the above 

(Al. 7) 

relations Al.4 and Al.5 for k_ negative. The derivation can be made 

rigorous by using k_ slightly away from any integer, k_ = k-' + e, where 

k_ is an integer and e is very small, and then taking the limit e - O. 

Alternatively, one can handle the regions k ~ t and k > t separately, 

bringing them together only in Eq. Al.5. Either way leads to the 

above result. 
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