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ABSTRACT

This thesis is a study of the electrodynamic phenomena which can

occur in strong magnetic fields (on the order of 4.41x1013

gauss).
These phenomena are studied by means of a perturbation formalism, deve-
loped here to be exact to all orders in the field strength, and which
is closely analogous to the diagrammatic formalism of empty-space elec-
trodynamics. Using this method, the rate for pair production by single
photons is calculated, as well as an approximation to it. The index of
refraction of the strong field region is also calculated, as is the
low-frequency photon splitfing amplitude. In addition, this thesis
studies some phenomena occurring at very high field strengths, in par-
ticular the energy of the ground state to first order in the fine-

structure constant, and the counter-intuitive non-annihilating states.

Numerical calculations are made where relevant.
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1. INTRODUCTION

In this thesis I analyze the consequences of conventional quantum
electrodynamics in the presence of a strong magnetic field, on the order

of 4x1013

gauss. This work was originally stimulated by the suggestion
that fields of this size may exist around pulsars, in models where the
pulsar is taken to be a neutron star. Later, it became apparent that
when the fields became extremely strong, there were some counter-
intuitive phenomena, which were then studied for their own sake.

A number of authors(l) have developed models of neutron stars
which postulate strong magnetic fields resulting from the compression
of the star's original field during its collapse to nuclear density.
Several electrodynamic processes, which are negligible under more nor-
mal circumstances, can occﬁr in the postulated strong fields. Prin-
cipally these are electron-positron pair production by single photons
and the splitting of one photon into two or mofe. In addition, due to
the absorption of photons by ;hese processes, the strong-field region
has an index of refraction greater than 1, reducing the photon velo-
city below c.

These problems have been partially analyzed previously. Toll(z)
and Klepikov(3) have calculated the pair production rate by high-energy
photons, and Toll has calculated the low-field index of refraction by a
dispersion relation from this pair production rate. Skobov(#) has made
an erroneous (not gauge-invariant) calculation of the‘photon splitting.
Recently, Bialnicka-Berula and Bialnicki—Berula(S) and Adler, Bahcall,
Callen and Rosenbluth(®) have calculated the photon splitting rate to

lowest order in the external field, and the former also calculated the
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index of refraction to lowest order in the field. A more recent paper by
Adler(7) cortains exact calculations of the index of refraction and pho-
ton splitting for photons below the ete™ production threshold.

In this thesis I develop a formalism for making strong-field calcu-
lations and evaluate the pair-production rate, index of refraction, and
;ome very strong field effects. The pair calculation is given in Section
3 as well as two complementary approximations to the pair production
rate, which are valid when many final states are kinematically allowed.
That section also gives a numerical calculation and graph of the rate in
a typical situation where these approximations are not good, and a
numerical evaluation of an integral appearing in one of these approx-
imations. Section 4 gives an exact calculation (except for radiative
corrections) of the effects of vacuum polarization on the propagation of
‘photons of arbitrary 4-momentum. When this is evaluated on the photon
mass-shell, it gives the index of refraction of the strong-field region,
which is then evaluated numerically and plotted. In Section 5, I give
a summary of the work which ﬁas been done on photon splitting.

The pair-production rate has an exponential decrease in the quan-
tity Tgﬁ (where E is the photon energy and ﬁ=c=l), and thus drops off

e
sharply with the field. This makes it possible for photon-splitting to
dominate the total photon absorption rate, even above the pair-production
threshold, in spite of its smaller numerical coefficient. The range of
variables where this occurs is where the splitting distance is on thg
order of a kilometeerr so, and thus interesting éstrophysically.

The only constant-field process which is currently observable

experimentally is the well-known synchrotron radiation. There is
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extensive liferature(s) on this process, both classically and quantum-
mechanically, and I will not consider it, even though the methods and
approximations developed here could easily be applied. Pair production
and photon splitting are not quite experimentally observable, although
these processes may be observable in the not-too-distant future.

Aside from the processes which may be important near neutron stars,
there are some phenomena of intrinsic interest which occur in very strong
fields, B >> 4x1013 gauss. First, due to its anomalous magnetic moment,
an electron has an energy slightly less than mg in its ground state in
a magnetic field. This has led to speculations(g) that the energy of an
electron might drop to zero in a sufficiently strong field. However,
the electron is sufficiently "bent" by the strong field that the energy
drops and then rises as the field strength is increased. Section 6 con-

-tains a calculation and numerical evaluation of this ground-state energy.

Another interesting phenomenon in very strong fields is the exis-
tence of non-annihilating states. These are electron-positron states
which overlap strongly in spaee (having nearly the same probability dis-
tribution), but which are absolutely forbidden from annihilating. These
states, being electrically neutral, have well defined momenta perpendi-
cular to the magnetic field. Section 6 contains an examination of these
states and some of their properties.

There are a_number of notations used throughout this thesis. First,
the symbol TI (pronounced "serk", short for "circle") is a generally
useful abbreviation for 2x: TT = 2x = 6.283185... This is the number
which naturally arises in mathematics rather than the historically

accidental w. I will use units so that ﬂ=c=1, and will employ
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rationalized electromagnetic units, e? = 2ma= (=4w) = 2T7/137.03...
It is also useful to select units so that eB=1l. This quantity has the
dimensions of a mass squared, so that in this convention a strong field
corresponds to a numerically small electron mass, and a small field to
a numerically large mass. To avoid confusion with indices I will use
the letter p for the electron mass.

The space-time metric will have signature + - - -, and if Py, is a
four-vector, p standing alone will mean P,Yy In many circumstances it
is useful to separate the components of a vector perpendicular to the
magnetic field (x and y) from those parallel to it (t and z), where the
strong constant field is in the z-direction. When this is done, the
letter for a vector standing alone will correspond only to the appro-
priate directions, i.e., p| = PeYe = PyYy, 5 Py = “Py¥y - pyyy. 33
will mean 3/3xi ; d, = d/dz, etc.

If we examine the simple non-relativistic spinless particle in a
magnetic field we find much of the characteristic physics of the more

complex Dirac particle. 1In this simple case we have the Hamiltonian

1 5 =
By = - (19 - ek)? . (1.1)

- - —_
where A is the 3-vector potential, satisfying yxA = B = (0,0,B),
corresponding to a magnetic field in the z-direction. If we use an

asymmetrical gauge, A=38 (0,x,0), then the Hamiltonian becomes

H = l_(_azz - sz_“ ayz + 2ieBx),, + (eB)zxé) (1.2)
2p d ‘

This operator commutes with i3, and iay, so that these will be constants

of the motion. If we select eigenfunctions of the form



¢, y,2) = o(x) e PyyHipaz

1 2 2 2 2 2 Hpyytip,z
. - - T ¥ e
then H 211(pz + Py - 3 - 2eBpyx + (eB) x7)p(x)e

(L.3)

The equation for ¢ is the familiar equation for a harmonic oscillator,

so that we have

96 = (@B ny (58 x - 2oy (1.4)

Hf = 2—-(pz2 + (2n+1)eB)Y (1.5)
il

20/4 1 =detxn _-x%/2
) G e (1.6)

where hy(x) =

are the normalized harmonic oscillator eigenfunctions.

The unusual feature of the solution is that the energy does not
depend on the quantum number Py* all states with given p, and n are
degenerate. As a result of this, we may select any complete set of
functions of py as our basis set, instead of being restricted to the
functions 6(p-py) alone, as would be the case with more ordinary
Hamiltonians.

The structure of this infinite degeneracy is elucidated by working

- 1 oy il
in the symmetrical gauge A = - 5 5B = 5 B(-y,x,0). The eigenfunctions

of the Hamiltonian in this gauge are exp(tieBxy/2) times those for the

gauge used above:

. o eBxy
¢ = gz + pyy = —5—) (eB)lM h,(JeB x - ;—_Z_-ﬁ)
e

(1.7)

Lo em? y = 202 + (2n41)eB) 4
Zplv e Qj‘wzppz T e v .



Using units where eB = 1, we have for n = 0 that

21 , , ixy (X"py)2
Yo —-gﬂ) exp (+1pzz + 1pyy+—-§— - - )

2 2
1/4 . (x+iy) (x-iy) (x+iy-2py)~ P
=(_ﬂ2?) exp (Hp,z - . = Z Py + -5-7 )

(1.8)

In this form it is clear that the quantum number Py affects the depen-
dence of the wave function on x iy only: by superposing states of
various py's, one can get any arbitrary analytic function of (x-+iy).
A similar procedure can be carried out for harmonically excited states.

One can easily understand the harmonic motion of the particle
intuitively: a classical non-relativistic particle circulating in a
magnetic field moves in a circle with a period independent of the energy,
while quantum-mechanically one would expect the energy to be restricted
to multiples of the circulation frequency. The infinite degeneracy o=f
the states is a result of the translational invariance of the system,
with Py representing the x-position of the center of the orbit. The
degeneracy is an expression of the translational invariance of the phys-
ics resulting from non-invariant equations. In fact, using the symme-
trical gauge, if we wish to translate the center of coordinates by ¢ in
the x-direction, x - x - ¢, the Hamiltonian will return to its original

- = 1

form only if we also make the gauge transformation A - A + ieB(O,e,O),
- exp(ieBey/2)¢. Similarly, to move the origin in the y-direction,
it is necessary to make a gauge transformation &aa A+ ieB(—e,0,0),
§ - exp(—ieng/Z)w. Since £hese transformations change the x and y
dependence of the eigenfunctions, it is clear that the states must be

infinitely degenerate. 1In Section 2 this analysis of the eigenfunctions
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is made more complete and abstract.
One interesting aspect of this non-relativistic problem is that
there is a simple Green's function in position space for this Hamiltonian.

The Green's function is a function G(X, t; X', t') which satisfies

GEX, t; ', t) = &(X - %) t =t
(1.9)
. G - I
and i— = HE',t)e(x,t,x',t") >t
3t
If the eigenfunctions ¢a of H are known, then
i(t-t' KX
G(x,t,x',t") = g ¢ (x")e ( )Eu ¥ (x) © (1.10)
a ¢ o

satisfies the above equations, where O runs over a complete orthonormal
set of eigenstates of H.
Using the relation 10.13 (22) (Mehler's formula) from Erdelyi(lo)

one has

z z'h (x)h (y) =

2 1 4xyz - (x2 + yz) (1+ zz)
N (22172 ©F 2(1-22)

(1.11)

This identity makes it possible to do the sums completely, giving the

Green's function

[Tt

21113/ 25 in(z/21)

G(X:t)x'at') =
exp[3(+ L sae Bilw - 27 + (5 =y + e - &Y% F 2'-k)]
2 2 » 2n T

(' > t) (1.12)
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where T = t'-t and k is a unit vector in the z direction. This Green's

function and the identity leading to it can be derived more directly
using the methods described in R. P. Feynman and A.R. Hibbs, Quantum

Mechanics and Path Integrals(ll). (They are actually given as pro-

blems there.) Schwinger(lz) gives an integral representation for the
Green's function of a Dirac electron in a magnetic field, which can be
integrated to give the above (times a phase exp(ipT)) for low field
strengths, large times, and disregarding spin.

ThevDirac particle in a magnetic field is quite similar to the
spinless, non—relativistic particle described above. The states have
the same infinite degeneracy and integer spacing as above; however, as
might be expected, the uniform spacing is in E2 rather than in E. The
effect of spin is to displace the states one-half unit in either direc-
tion, so that E2 = m2 + pz2 + 2keB, where k is an integer. There is omne
state with k = 0, two with k =1 (one in the harmonic oscillator ground
state, spin against the field; the other with one harmonic oscillator
excitation and spin with the field), two with k = 2,3,4,..., etc. This
has the interesting comnsequence, mentioned above, that due to the

anomalous magnetic moment of the electron, the ground-state energy is

slightly less than the electron mass.
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2. FORMALISM

In this section I develop a formalism for working with a Dirac
electron in a magnetic field. 1In the relativistic case, eB/p2 is a
pure number and gives a dimensionless parameter for the strength of the
field: eB/u2 << 1 is a small field, with different characteristics
from a strong field,eB/p2 >> 1. The critical field strength B,

(eBo/n? = 1) is 4.4143x10"3 gauss (4.4143x10% weber/m?).

The formalism developed is similar to the normal perturbation
formalism for electrodynamics; the principal difference is that I use
the eigenstates in the magnetic field as my basis set of states. The
propagator thus takes a simple form, but the vertex functions become
complicated.

The addition of relativity and spin makes two changes from the non-
relativistic situation: first, it is the square of the energy which has

24—2eBk4—pzz where

uniform spacing, rather than the energy; thus E2 =n
k is an integer. Second, the magnetic moment makes an additional contri-
bution of eB/2 to the energy, cancelling, for the lowest state, the
zero-point energy of the harmonic oscillator.

The magnetic field will be taken in the -z direction: B = (O;O,-B).
This field can be produced by a vector potential A11 = (0,ay, -Bx, 0),
where o0 and B are constants so that o + B = 1. (The different values of
o and B satisfying this relation are related by a gauge transformation.)
I will normally use a = B = 7.

The Dirac equation in this field is

(py, - eAu)Yuv = ny (2.1)
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Writing

Ty = Pp T oAy (2.2)
and using

p, = (id/3t; -iv), ' (2.3)
we have

[ﬂu, nv] = -ieF . (2.4)
If we write

T o= fE_j;ifZ ; T = f§_:~ifz (2.5)

V2 2

we have

[ﬂ+,ﬁ;] = —eFXy = -eB . | (2.6)

If we select our system of units so that eB = 1, (which will be done

in the rest of this thesis unless otherwise stated) then

[, =] =1 (2.7)

which are the commutation relations of a harmonic oscillator, with T

the raising operator and n_. the lowering operator. I will write

Yx T ivy Yx - 1y
¥, 7 ———= § g ===
2 2
(2.8)
and 1
T = vy, = E[Y_: Y+]
Vectors will be written in the notation
' V, + iV v, - iV
X X
Vo= U,V = ——2 , v = 22— (2.9)

I
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with dot product

AB=AB. -AB, -AB -AB, . (2.10)
I will also write
_ 1 -39 + 1 +5
5T o= — 3 = — (2.11)
2 2
This gives the following useful algebraic table
= = - + + —] v =
¥y, =8 XY = =23 v,z =0 Y. =Yy
Yy, =23 vy =0 y_st = y_ Y5 =0
+ +ob _ o -
Sy, = vy Sy, =0 Sy = g 55 =0
- _ - _ - + _ - _ -
ZY,=48 Y. =Y EX =4 PHD D)
TABLE 2.1
In terms of this notation, the Dirac equation is
Tvp = ny . | (2.12)
Using this twice, we get:
(y)(y)y = nPy
= (x?-)y
= (% - w2 - 2m - 250y (2.13)

where in this last equation the operators = have been normal ordered.
The above equation depends on only two quantum numbers (besides

and the harmonic oscillator index myn_. =, = p,, the momen-

spin): = -

Z

tum in the z-direction, and the harmonic oscillator index corresponds
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to the circulation of the electron in the field. This is as in the
nonrelativistic case, where the levels are infinitely degenerate and
where one of the three quantum numbers required to index a state makes
no contribution to the Hamiltonian. This degeneracy is made most readily
apparent on the ground state |0) defined by =n.|0) = 0. Since [ﬁ_,x-iy]
= 0, we have that ﬁ_f(x—iy)‘O) = 0, and thus the ground state is defined
only up to an arbitrary analytic function of (x-iy).

Using the symmetrical gauge, ehy = (0,y/2, -x/2,0), the ground

state functions can be written (disregarding z dependence) as

2 2
Y20 (x,y) = £,(x - 1iy) exp{} %: - %—] (2.14)

and we have for any harmonic oscillator level,

oy = £x - 1) Sl 27 (2.15)
¢ (x,y) = £ (x - iy exp |- — - — |. 2.15
an a n! 4 4

There are two physically useful sets of functions f (x - 1iy),
corresponding to linear momentum and angular momentum representations.
The easiest way to handle the angular momentum representation is to

define the cperators

= p., + eA

py y y (2.16)

P = B + eAy énd

corresponding to the position of the orbit center in the x-y plane.
These operators commute with Ty and thus with the Hamiltonian, but

not with each other:

[px,py} =i, or, [o+,p_] =1 (2.17)
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(Note that p_ is the raising operator and Py the lowering operator.)
I1f we use the quantity

2

o) = 2p_p+ +1 = Pl + o (2.18)

as our additional quantum number, we may start from a ground state lO}
such that p+]O> = 0. We may thus describe the (x,y) variation of the

states in terms of a basis [m,n}, where

' pzlm,n> (2n+l)lm,n} : 2ﬂ+ﬂ_[m,n> = 2m|m,n}

Il

P4 |m,;0) 0 3 7m_|0,ny= 0 (2.19)

The orbital angular momentum operator L, in this representation is

Ly = PxY ~ Py¥

i_&+x_ = p_x+)

Ty - PPy (2.20)
and Ly |m,n) = (m-n)|m,n) (2.21)

Thus these states are eigenstates of angular momentum as well as
energy. The probability density for the ground state in this repre-
sentation is concentrated in a circle with radius V 2n+l .

In the linear momentum representation, the additional quantum
number is selected to be the momentum in some direction, here the
x~-direction. We thus wish

2 2
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to have x variation at y = 0 of the form e™¥Px . This requires

-y 27
(x - iy) Px
f(p,,x - 1iy) = exp (———-—— + i pe(x - iy) - —
X2 L 4 ‘ X 2

d .
& - P iﬁ’] (2.22)

(pg) = exp |ix p, -
¥olPx % 2 2

To quantize in a direction at an angle @ from the x-axis we substitute
ei@(x - iy) for (x - iy) in f above. The probability density of the
ground state here i1s concentrated in lines rumning in the x-direction.
Excited states can be formed by using the raising operator ﬁ+, which
commutes with the above quartum number P - The complete set of states
in this representation are Hermite polynomials in the y-direction,
centered around a point laterally displaced a distance py from the
origin, and with an x variation eiX(Px°V/22 The electron in this

case is harmonically oscillating in the y-direction around a point dis-

-ixy/2 drops out,

placed by an amount py, from the origin. The term e
if instead of the symmetrical gauge we use the gauge where eA}1 =
(0,y,0,0). It is interesting-that the x momentum, p,, has no effect

on the energy, yet, as will be shown below, musf still be conserved.
This leads to some surprising consequences, which will be elaborated

in a later section.

As was noted in the non-relativistic case, the operator correspond-
ing to a change in the origin of coordinates is not the normal (px,py),
but requires in addition a gauge transform. The operators which do this
are the operators (px,py).

Much of the abstract discussion of the states in this sectioua has

paralleled that of M. H. Johnson and B.A. Lippmann(l3),
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I will generally use the linear momentum as my additional quantum
number, since the quantum number labelling the degenerate states normally
has no effect, and the algebra is simpler in the linear momentum repre-
sentation.

So far, we have calculated only the eigenétates of the square of
the Dirac operator, with no spin effects included. 1If we consider any
state X satisfying

-(ﬂeY)Zx = n?x

then the state

§ = @y +p)x (2.23)
satisfies the Dirac equation

(t'y - ) § =0 . (2.24)
If we go to the original form of the Dirac equation, we have

U R A TE R SR O (2.25)

which also is satisfied by the states (sw-y + p)y.

The energy spectrum is determined by the equation

2
ﬂtZW = (ﬂzz + 2+ 22+ + )y
(2.26)

. s . 22, .2 +
or, in more familiar variables, E® = p,“ + n“ + 2n + 23.
It is clear here that the operator n + 2+ is more significant than
either of its constituents, and this excitation operator, usually
called k, will normally be used. There is one state with k = 0, and two

states with k = 1, k = 2, etc. This spectrum is plotted below in Fig.2.1.



- 16 -

n=2
2_ k=3 e
E f n=|
k=2
n=0
k =1
m2+pi——— k=0 ¢ 5.,
x=-
FIGURE 2.1

When there is an exact degeneracy of states, as above, it is
interesting to see whether there is a symmetry operation relating

them. 1In the case above, if we consider the operators

1 :
g 5 5 (yy. + 7yy) = a 5 (mpy. - “-Y+l“= b,

we get essentially the commutation relations of SU(2); (actually
S0(2,1))

- [ T tasfas)e oo &

In the ground state, a|0) = b|0) = 0 and (5/2)|0) = (- é)IO). The
ground state is thus a singlet under this pseudo-spin, and thus in some
sense has pseudo-spin 0, although displaced half a unit in 5 . In the
higher states, if we work with a/{:ii and b/{-2k, then the operators
obey exactly the SU(2) commutation relations. The higher states thus

have pseudo-spin i.
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All of the above is exact only in the approximation that the
absorption and emission of photons can be ignored: only the external
magnetic field has been included in the vector potential. The effects
due to the rest of the field are most easily handled by a perturbation
formalism similar to the one conventionally used in quantum electro-
dynamics.

Several conventions are useful in developing a perturbation expan-
sion. The additional degenerate quantum number will be taken as the
momentum in the x-direction. By "momentum" will be meant (pi,P,,Py)
only, and thus d3p/TIT3 and 63(p) will refer to these directions only.
p-q will mean pgq¢ - P,4,- (This definition is useful because of the
degeneracy in py.) The "excitation" of a state will mean the value of

the operator k = ot st on it; a will be used for the operator

ﬁ+y_ + ﬂ-y+, and a2 = 2(ﬂ+ﬁ- + z?), so that acting between two states

a will normally reduce after the spinology calculation to JEE, where k
is the excitation of the state. A particle state will be specified by
the triple (p,k,r), denoting respectively the momentum, excitation and
spin of the state. Finally, in writing Ap for the ﬁector potential, I
will exclude the vector potential due to the magnetic field, i.e., A11

refers only to the perturbation field.

The complete Dirac equation in the field then is:
(p+a-p+A)§y=0. ' (2.27)

It is relatively simple to develop a perturbation theory for this

equation.
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If we consider the external fiéld acting in first order, then we
need only the matrix element of A between the two states. If we agree
to apply the projection operators (p + a + p) on the external electrons,
corresponding to the normalization @ ¢ = 2p, then we need only the
matrix elements of A between the states x satisfying the squared Dirac
equation, (p2 - 2n - 25t - uz) x = 0. Since the spin and momentum of
the photon can be treated independently, this matrix element (p,k,r|Alp',
4,s) between two (momentum, excitation, spin) states can be written as
the sum of matrix elements with the various spin projections, between
the harmonic oscillator states. For a photon with polarization a, and

. iqux
wave function e M H, we have

(p,k,r ]AIP': 4,8) = (p,k,r laeiquxulp':ﬂy s)

i + qx/2
= w330 + q - pyeldy(Px qx/2)

[c]5ax |91k, 10y + | Fas |)1Ck, 41,0 ))

+ (| gtar [9)1(-1, pra)) + (| Sast|o)TCk-1, 4-1,q)) ]

(2.28)
@
i
where T(k, 4,9,)= S dy by, (v - py) e dy” h (y - px - 9x) (2.29)
J _

and is independent of p . The § function shows that the 3-momenta

(pt,pz,px) are conserved, although all the various py states have the

same energy. Similarly, the T is the matrix element of the photon

between the harmonic-oscillator part of the states. I will use the
+

abbreviations T++, T+”; T Y, T for the T's with the respective

arguments above. (Here k and g are not written explicitly.) The
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evaluation of T is best done using creation and destruction operators
(writing dy as the sum of raising and lowering operators, and trans-

lating in p, with the difference). The result is (in several equiva-

lent forms)

k-r 4T
-q,%/4 - (99
T(kJ,Q:qeL) =e + kigt o
r (k-r)!(g-r)'ir!
2 (k- 2) 0, (/2
-qis 4 1 1 i -le (P - fl _;L_ 'e .
e kil e -1 2 )

(-q,2/2)°F
E (k=)' (gx)'r!

2 Mo
- 4 k-g tk! 2
= e/ q. % Jz: 1F1(-k,k-g+L5 q,7/2)

2
-q, /4 k=g gt ka2
e q iR IR (2.30)

where @ isthe angle between the photon and the x-axis, ;F; is the
. -
confluent hypergeometric function, and L£ L are the Laguerre poly-

nomials. Below, I will set z = q¢2/2 and assume the photon is travelling

in the x-direction. T(k, ) satisfies the following identities:

32 3 (e’ bl s . s o (2.1
Z(g'z') +('é;)" 4z + 2 'Z T(k, 4,2z) = 0 (2.31)

o

Tt = 1 - 1 k- g+22 g +z] T
2{kz L oz N
1 [ 5
T = k-g-2z & - z| Tt (2.32)
20z L oz -

R ot prie B = %] ot
oz
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The expression for the matrix element can be rewritten

. | ) :
(p,k,rlAlp',,Q,s) = mBéB(P'HI“p') equ(PXﬂY/ )

(r[g‘aT’H,{ + ysari s+ gar Ty + z+aT"z+|s) (2.33)

This matrix element is for the squared Dirac equation solutions only;
to work with actual particles, one must use the projection operators
(p + a + p) on the external lines.

For processes which operate in higher order in the photon field,
we may put the Dirac equation into iterative form, § = (p + a - p)-leAw.
It seems simplest to work with the harmonic oscillator states as the
basis for {, in which case (p + a - p)—l is diagonal (except for spin).

Then we have

pt+ta+n
¢ = I eAy (2.34)

p° - 2k - p
This new { is of higher order in eA, so that substituting it back into
the perturbation series will éive us higher order terms. We can write
the theory in terms of diagrams, like empty-space electrodynamics,
using a propagator (p + a + u)/(p2 - 2k - pz), a vertex as in equation
(2.33) above, and (p + a + p) on each external electron line. The
relation of the relativistic matrix elements to the rates, cross-
sections, etc., requires the normal (1/2E) and 1/2 from spin averag-
ing; and the set of diagrams used (including the signs due to statis-
tics) are the same as in empty-space electrodynamics. Positrons are
represented, as usual, with negative momenta; however, they have positive

excitations.
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Schwinger(lz) also has developed a formalism treating electrons in
a constant field. The prinéiple difference between the formalism he
uses and that used here is that he uses a position basis for the wave
functions, rather than using space-time eigenstates. The effect of this
is that he has relatively simpie vertices, but a more complicated prop=-
agator (involving irreducible integrals over proper time). Stated
briefly, he puts the physics of the constant field into the propagator,
whereas the formalism above puts it into the vertices.

Schwinger's formalism, when the various equations are put together,
seems to me to be slightly more complicated than that used here. It has
been applied to the problem of photon splitting in a weak field by
Skobov(a) ; incorrectly, since his results are not gauge invariant, and
disagree with results obtained by conventional electrodynamics. (Skobov's
results are quoted by Erber(lé)). Schwinger's formalism seems to me to
be considerably more abstract, since the properties of the electron
motion are never apparent. For these two reasons, I decided at the
beginning of this research to develop an independent formalism. It is
not clear now.whether‘this decision minimized the labor involved in
calculations, at least for closed electron-loop processes, since a
number of transformations used on the vertex functions in this case
essentially put the system into proper-tim¢ notation.

Schwinger's formalism has wider validity than that usgd here,
since it has no requirement that E'B = 0. Adler(7) has recently

obtained identical results fo. a few of the problems considered here,

using the Schwinger formalism.
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Klepikov 3 has developed a formalism for electrodynamics in a
constant field which has some similarities to that used here. His
method, however, is based on Hamiltonian rather than space-time methods,
is only developed enough to work in first order, and is not very concise.
He has applied it to synchrotron radiation, l-photon pair annihilation,
and l-photon pair production in the region E >> n.

Toll @ has done some work in this area, for éields with EZ - 32 =
E'B = 0. He was interested in the dispersion relations for light in this
situation, so he calculated the pair-production rate and index of refrac-
tion. He has also extended his results for pair production by physical
reasoning to a pure magnetic field in the region E >> p.

Somewhat more detailed discussions of parallel work are given in

the appropriate sections.
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3. PAIR PRODUCTION

In this section I calculate the rate for production of electron-
positron pairs by single photons in a strong magnetic field (y g e+e').

For the region where only a few electron states are kinematically allowed,

q_L2 = 4p2 ~ 1, the calculations can usually be done exactly. For the

2 . 4p2 >> 1, it is possible to approximate the

more useful region q,
vertex functions by a saddle-point method. For z, k, and g uniformly
large, the expression

2
k- k! 1 1 -2
4 F 1F1(-g k-gtl; z = - —) e
L (k=)0 2

for the vertex (§ E

may be rewritten using the integral representation

(% 4 (k- ) j

dt
lFl(-,e,k-zH, z) = —— exp [zt + kln(1l-t) - glnt]-—
_ &

i k! C
(3.1)
where the contour G circles the origin in the positive direction.
The argument of the exponential has its maximum at
1o 4 sy - 28 4 y?
t=t, = (3.2)

2

Useful variables here are s and d for the sum and difference of the

harmonic oscillator energies, and R for the square root above:

k_ - »
s oo M2 g EE . gL - 25 + 42 . (3.3)

Z z
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This gives
t, = —— . (3.4)

The variable R is also useful kinematically: for external particles,

)
pzz+u2
R =

zZ

2

The relative sizes of d and R, and the kinematic constraint, R2> 41.12/q_L 3

require that the positive root be used for normal processes, such as
et o et + Y, and the negative root be used for the pair process being
studied here, (y - e+e-). Below I will use tj = (1-d-R)/2; however,
these results can be used for normal processes by substituting R - -R.

Letting t = toeT, the argument of the exponential becomes

s-+d s-d
zt + kln(l-t) - glnt = z(ty + —5’1n(1'to) - -E—lnto)

za'r3 sz3 zc'ﬁ4
+ + = e
2 6 24
where a=t - = a(l+) = Rx
2 (3.5)
s+d
b=t - == a(l40) (1420) = R - aZ(1+d-R)
to 1"'d"R
a -] ==

1"to 1+d'+'R

The integration contour C runs t through O in the positive imaginary
direction, or, in the saddle-point approximation, from -iew to iw . In
such an approximation, the term in T is normally ignéred. The neglect
of this term, however, requires that (-z-g-l)l/2 > (%?)1/3; this condition

is not satisfied if R is small. If the approximation is to be generally
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valid, we must, therefore, include the 73

&

term as well. This term will
always dominate the 7' term which will, therefore, be neglected. We
may thus write
'e’ ] 1
(-1)7 22 (k-2)"
i k!

1Fi (o, k-g+l,2z) = exp[zto + kln(l—to) - zlnto] .

ico 3

az'r2 zbT
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