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ABSTRACT
I. Tests for Helicity Conservation and Spin-Parity Selection

Rules in Diffraction Dissociation

A phenomenological discussion of diffraction dissociation is
presented in which the development of experimental tests for its con-
jectured properties is emphasized. Of particular interest is the
problem of distinguishing between the behavior of resonances and
background. Simple tests for the helicity, spin-parity, and internal
quantum number selection rules proposed for resonance production
would be possible only if the nonresonant background were absent.
These would include an isotropy in azimuthal angle test for helicity
conservation and a symmetry under parity inversion test for the Chou-
Yang and Carlitz-Frautschi-Zweig rules. The more general and realis-
tic case is that in which nonresonant background is present as well
as resonances. It is found that a nonresonant pion exchange
mechanism can account fér the production characteristics of the broad
low mass enhancements seen in present diffraction dissociation data.
These include the variation of momentum transfer dependence with in-
variant mass and the spin-parity of the énhancements. It is unlikely
that this background obeys the selection rules expected of resonance
production., Nevertheless, the rapid variation in phase and possibly
high spins of resonance contributions when inte;fered with the slow
variation in phase and predominantly low spins expected of a pion
exchange contribution should make possible tests for resonance pro-

duction selection rules given adequate statistics,
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ABSTRACT

II. Independent Production of Pions

We investigate theoretical limitations on the possibility
that multiparticle experiments at high energies are dominated by the
independent production of uncorrelated pions. A description of pion
production in coherent states is developed in order to systematically
study the effects of conservation laws. Charge conservation leads to
modifications of Poisson distributions for charged particle production
in purely hadronic reactions that agree well with experiment. Other
systems such as‘ e+e_ -+ pions are so limited by charge conjugation
considerations that production of uncorrelated pions is ruled out. A
formalism for the isospin analysis of pions with identical momentum
distributions is developed and applied to coherent states. The fixed
phase of a coherent state is important for minimizing the increase of
<12> with <n> . The minimum that can be achieved with independent
uncorrelated pions is a random walk in isospace. In this case the
dominant contributions at present multiplicites come from the lowest
isospins so that independent and coherent pions can be an approximation
to experiment. Finally, the role of two pion correlations is studied.
Independent emission of isoscalar pairs of pions solves the isospin
problem and gives reasonable distributions of charged pions, but leads
to negative correlations between charged and neutral pions that seriously
disagree with experiment. Emission of charged isovector pairs of pions
would improve the agreement with the observed slightly positive corre-
lations. It is concluded that the effects of the many possible corre-

lations may be difficult to resolve in the present analysis of existing

data.
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PART I

TESTS FOR HELICITY CONSERVATION AND SPIN-PARITY

SELECTION RULES IN DIFFRACTION DISSOCIATION



I. Introduction

Diffraction is commonly understood in classical optics in terms
of Huygen's principle. 1In the case of light incident upon an opaque
object this principle states that the scattering may be calculated by
supposing that the object radiates a field which exactly cancels with
the incident field directly behind it. Thus, even if the opaque object
absorbs all light which strikes its surface (no reflection) it must
also elastically scatter part of the incident light. One may calculate
that a black sphere of radius R will have an elastic cross section of
ﬂRz. The absorbed energy is presumably dissipated by other modes of
radiation. The entire process of absorption and reradiation is ine-
lastic scattering, and one may calculate that the inelastic cross
section for scattering on a black sphere will also be WRZ.

This idea may be applicable to the scattering of strongly inter-

acting particles as well. At high energies the cross sections for
elastic scattering appear to approach constant values. The inelastic
cross sections are typically three to five times the elastic ones.
One may achieve this result in a diffractive picture by making the tar-
get particles perfectly absorbing but with opacities decreasing with
increasing distance from their centers. To calculate elastic scatter-
ing one presumably needs some model of how inelastic scattering
(absorption) takes place.

There is, however, another class of reactions with constant

cross sections at high energies for which no analogue in classical

optics exists. Diffraction dissociation is the name applied to all
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inelastic reactions with asymptotically constant cross sections. One
component of diffraction dissociation may be resonance formation
reactions of the type a+b > a+d where d subsequently decays into
a multiparticle final state. The other component of diffraction dis-
sociation may be nonresonant formation of multiparticle final states.
Diffraction dissociation cross sections are typically less than ten
percent of elastic cross sections.

Since diffraction dissociation and elastic scattering share a
common asymptotic behavior, they may also share a common dynamical
origin. Presumably the study of one may give insight into the other.
In Part I of this thesis we present a phenomenological discussion of
diffraction dissociation in which the development of experimental tests
for its conjectured properties is emphasizgdf

These tests will be applied to the‘analysis of data from an
experiment on diffraction dissociation to be performed by the Caltech
High Energy Users Group at the Stanford Linear Accelerator Center. One
difficulty in testing the properties of diffraction dissociation in the
past has been the insufficient statistics of previous experiments. One
must measure the four momenta of all final particles, which makes use
of the bubble chamber the preferred experimental technique. Conventional
bubble chamber procedures require one to photograph all expansions of
the chamber. Since diffraction dissociation comprises only a small
fraction of the total cross section for a given collision, only a small
fraction of the photographs will contain events of interest. This can

make the observation of large numbers of events prohibitively expensive.
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In a novel experimental approach the Caltech Users Group will employ
electronic counter techniques to determine that an event of interest
has occurred, and only then trigger the cameras to photograph the
expansion of the chamber. The Caltech experiment will collect up to
one hundred times the typical number of events of previous experiments.
The particular reactions to be investigated will be 14 GeV/c mp col-
lisions to ﬂ_(ﬂN)+ and ﬂ—(ﬂﬂN)+ final states. We will make our
discussion of experimental tests sufficiently general that they can be
applied to other systems as well.

In order to illustrate some of what is presently known about
diffraction dissociation, we discuss some experimental examplés. Con-—-
sider ﬂ+p - W+kﬂN)+ where (WN)+ denotes a pion nucleon system whose
net charge is positive. By combining data from various charge states of
the (WN)+ system, one may isolate the contributions of particular
isospins. This is illustrated in Fig. 1 where the contributions of
I =1/2 and I = 3/2 are given at 8 Gev/c and 16 Gev/c. We see a
strong narrow enhancement at 1236 Mev in the I = 3/2 system that cor-
responds to the well-knowp P33 resonance of pion nucleon phase shifts.
The I = 3/2 contribution falls rapidly with increasing energy. In the
I =1/2 system we find a strong broad enhancement at 1400 Mev and a
weaker narrow enhancement at 1680 Mev. The cross section for producing
the I = 1/2 system falls more slowly with increasing energy and appears
to approach a constant at high energies. Thus production of the
I =1/2 component fits the definition of diffraction dissociation. Like
the elastic reactions it involves no change in internal quantum numbers

between the initial particles and the final dissociated '"particles'. All
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other diffraction dissociation reactions also have this characteristic,
) ‘ .
e.gey YP > P P> TP > ”Al"p where by "Al” we mean an I = 1 predomi~-

¢ 1™ o enhancement, Kp = "Q"p where by "Q" we mean an

nantly JP
S = £1 predominantly JP = l+ Kmm  enhancement, etc.

We learn from the above examples that one interesting feature
of diffraction dissociation is the existence of selection rules. The
established selection rules are that there are no changes of I, Iz, G,
S, or B between initial and final particles. Other, at present
unverified, selection rules for resonance production via diffraction
dissociation have been suggested by various authors. Morrison has con-
jectured on an empirical basis that AP = (-l)AJ where AP and AJ
are respectively the change in parity and spin between the initial and
final particles. Chou and Yang have suggested that if the product of
the parities  of the incoming and outgoing pérticles is odd, then the
cross section for forward scattering is zero. The internal quantum
number selection rules have been extended by Carlitz, Frautschi, and
Zwelg who éuggest that in diffraction dissociation the SU(g) charac—
ter is preserved.l There may also be selection rules that restrict the
change in spin direction between initial and final particles. The type
of spin or helicity selection rule has a special relation to the mech-
anism responsible for diffraction dissociation, which will be discussed
further below. Naturally, one of the prime objects of the Caltech
experiment is to test these rules.

To gain insight into the reactions with constant cross sections,

it is useful to discuss the description of diffraction in scattering

matrix theory. The conservation of probability implies that the



scattering matrix is unitary

g (ab|s’|n) (n]s|cd) = §__ 6,4 (1)

i.e., the probability that something happens is one. This means that

the amplitude for a + b + ¢ + d satisfies schematically

Im(ab|T|cd) = J (ab|T" |n)(a|T|cd) (2)
n

where S =1+ iT . For elastic scattering (a,b) = (c,d), equation
(2) says that large inelastic amplitudes may genefate via unitarity the
imaginary part of the elastic amplitude.

We would like to show that via unitarity one may calculate

properties of elastic scattering observed experimentally. For forward

scattering ¢t = (qC - qa)2 = 0 wunitarity relates the imaginary part of

the elastic amplitude to the total cross section according to the

"optical theorem"

1% o (3)

Im T =
el|t=0 tot

where k 1is the center of mass momentum and otot is the total cross

section. If we assume that the elastic amplitude is imaginary (perfect

absorption) and that for t # O Te o eat (Gaussian distribution of

1

opacities), then

2
dOel - Otot eZat
dt 16w

This implies that 2a = Oiot/l6ﬂ o To the extent that these

1
assumptions are true, a plot of X(t) = dG/dE//dG/dtlt=O versus
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2
Gtot
4 Uel

/4

p = (-t) should exhibit the universal behavior X(t) = e .

+ + — .
This is plotted in Fig. 2 for m p, K'p, pp and pp reactions. The

contribution to the lowest partial wave is

- : "\
i Ngep = 3 J Im rel d cos 0 = 40el/0tot (5)

which is bounded by O S_no < 1 due again to unitarity (an object

cannot be more than completely opaque at its center). As a conse-
quence Oel/atot < .25 . Experimentally at high energies

= sk ==
X = Oel/c is .17, .19, .23, and .21 for 7 p, K'p, pp, and pp
respectively. Finally, for most reactions x 1s approximately inde-

pendent of s even for moderate energies. One may express the

elastic differential cross section in terms of x and Ginel'

2
do o]
el inel (1-x%)
= exp | o, .t (6)
dt 16ﬂ(l—x)2 l6mx inel

The correlation of the behavior of the inelastic cross sections with
the rate of fall with increasing -t is verified experimentally.

Some intuition into why one expects selection rules may be
gained by applying our S-matrix approach to diffraction dissociation.
Equation (2) is, of course, valid for any reaction of the type
a+b-=>c+d . If one assumes that the phases of the various ine-
lastic amplitudes which contribute to the sum are essentially unrelated
to one another, then the maximum coherence of this sum should occur
when a and b have the same quantum numbers as ¢ and d respec-

tively. Thus, the reactions which survive in the limit of high
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energies should obey the selection rule that there is no internal
quantum number change between initial and final particles, as we have
for elastic scattering and have observed empirically for diffraction
dissociation. One must remark, however, that this random phase
approximation is not strictly justifiable, since one believes that
the various amplitudes in (2) are related to one another by the
dynamics which govern all of the strong interactions.

One may naively argue that the diffraction model suggests that
there be no change in spin between initial and final particles, but
this could not be a relativistically invariant statement. A spin
selection rule that can be true relativistically is that there be no
change in "helicity" between initial and final particles. Helicity is
defined as the component of spin along the direction of motion of a
particle. The utility of states of definite helicity is that they are
invariant under Lorentz boosts that bring a particle to rest. For the
reaction a % b+ c¢c+ d , which one calls the s channel reaction,
the "s-channel helicities" are equal to the spin along (against)

-
; = —gb for particle a(b) and the spin along (against) p

a =_pd

c
for particle c¢(d) in the s-channel center of mass. Another set of
base states for the description of spin which is often discussed is
where one quantizes along the direction of the incident particles a
and b in the s—-channel center of mass. We refer to these as states
of definite "s-channel spin'". ©Note that in the limit of high energies

and fixed t the s-channel helicity and s-channel spin become iden-

tical.
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Since in diffraction the wave elastically scattered by the
absorber should cancel with the incident wave, it should have the same
spin orientation as the incident wave. Hence, if a diffraction mech-
anism is resppnéible at high energies for elastic scattering and the
resonance production component of diffraction dissociation, then one
would expect as a selection rule that either the s-channel helicities
or s-channel spins are conserved between initial and final particles.

There is, however, another model for the réactions with
asymptotically constant cross sections which would suggest a different
spin selection rule and for which there is considerable theorétical
motivation. It is worthwhile to review the experimental situation
that suggests it to us. It is an empirical fact that for most strong
interaction reactions of the type a + b+ c + d above incident lab
energies of, say, 5 Gev/c the sizes and energy dependences of the
cross sections are correlated with the exchanged quantum numbers,
i.e., with thé quantum numbers of the reaction a + ¢ +Db+ d which
we refer to as the "t-channel'.

The elastic cross sections are largest and appear to approach
constant values of from 4 to 10 mb at high energies. They are fol -
lowed by the meson exchange cross sections which fall slowly with
increasing energy, then by the baryon exchange ones which fall more
rapidly with energy, and finally by those termed exotic exchange, down
at 1 yb or less, that correspond to the exchange of quantum numbers
possessed by no observed resonance. The energy dependence of the cross
section for production of the I = 3/2 component in our example

- + + .
mp > 7T (TN) falls neatly into this hierarchy at the position of meson
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exchange.

One of the most important developments in the past ten years of
particle physics has been the qualitative understaﬁding of this order-
ing of cross sections in terms of ''regge or regge-like' theories.
Intuition gained from the study of non-relativistic potential scatter-
ing led to the proposal that the energy dependences of cross sections
are connected to the particle spectrum. The resonances in the
t-channel are found to lie along straight lines called "trajectories'
in a plot of spin versus mass squared. A property of quantum electro-
dynamics assumed to be true as well of strong interactions ié "crossing
symmetry'" which says that the amplitude which describes scattering in
one channel may be analytically continued to give the scattering
amplitude in another channel. Regge or regge-like theories parameter-
ize the amplitude in texrms of the t—channel resonances and then anal-
ytically continue to describe the s-channel reaction at high energies.
The value of the spin extrapolated to zero mass squared, called the
"intercept" a = J(m2= 0) governs approximately the energy dependence
of the s-channel reaction a+ b + c + d according to

do 20 = 2

« g (7N
ge t=0

where the incident lab energy is proportional to s at high energies.
The intercepts o for meson trajectories range from 0.5 to 0 and for
baryon trajectories from O to -1. If exotic mesons exist they are
presumably of high mass, since they have not been seen as yet experi-
mentally. As a consequence the intercepts for exotic trajectories

should be even more negative, and hence the exotic exchange cross



-13-

sections should fall the most rapidly with energy.

Elastic scattering and diffraction dissociation represent
anomalies in the regge picture-. Their intercept, obtained by fit-
ting to (7) at high energies, is o v 1 which does not correspond to
any observed trajectories. Nor has the degree to which these pro-
cesses resemble the meson and baryon exchange reactions been
established. Nevertheless, they are described in regge language by
saying that they proceed via 'Pomeron' exchange. The Pomeron is
assigned the quantum numbers of the vacuum to ensure its exchange in
elastic scattering and diffraction dissociation.

A logical extension of this approach is that the Pomeron
carry no information about spin either. If a regge mechanism is re-
sponsibleat high energies for elastic scattering and the resonance
component of diffraction dissociation, then.one would expect as a

"t-channel helicities" are conserved. For

selection rule that the
the reaction a + c + b + d , the t-channel helicities are equal to
the spin along (against) 33.= —;E for particle a(c) and the spin
along (against)b StJm-Ed for particle B(d) in the t-channel center
of mass. When an amplitude for t-channel scattering from and into
states of definite t-channel helicities is analytically continued to
describe the s-channel reaction, the resulting amplitude is in general
a linear combination of the amplitudes for scéttering from and into
states of definite s-channel helicities. Hence, in general conserva-

tion of t-channel helicities is not equivalent to the conservation of

s-channel helicities.
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In summary, apart from the question of possible particles on
a Pomeron trajectory, the primary difference between regge and dif-
fractive viewpoiﬁts is that the former suggests that high energy
scattering looks simple when expressed in terms of t-channel variables
while the latter suggests that s-channel variables are preferable.

At the time of writing, s-channel helicity conservation has
been observed experimentally in 7N - 7N and Yp > pop, while

1

KN ~ "Q'N . One way to resolve this rather confused experimental

t-channel helicity conservation has been seen in TN -+ "A."N and

situation is to observe that in the latter two reactions the nonreso-
nant component of diffraction dissociation may be dominating the cross
sections. In order to justify this interpretation one needs a model
for the nonresonant component that can explain the properties of these
reactions. Deck, Drell, and Hiida have suggested that a simple multi-
pheral model involving pion exchange can give the observed enhance-
ments in the 3w and Xmm masses. In Part I of this thesis we shall
show that the pion exchange model accounts for most of the other
properties of the broad low mass enhancements observed in diffraction
dissociation.

Pion exchange, like all regge exchanges, is calculated by
parameterizing the amplitude in terms of the pion and its recurrences
in the t-channel and then analytically continuing to describe the
s-channel reaction. The intercept for the pion trajectory is o = -.02.
The value of the intercept implies that an amplitude dominated by pion

exchange is predominantly real. One may derive this by appeal to
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the relativistic extension of dispersion theqry, which is worthwhile
discussing briefly.

In the case of optics, one may express the real part of the
amplitude for forward scattering by light of a fixed frequency w as
an integral over the cross section for absorption by atoms of light
of all frequencies. Via the optical theorem this cross section is
proportional to the imaginary part of the forward scattering amplitude.
One derives this '"dispersion relation' by establishing that the forward
scattering amplitude is analytic in the upper half of the w plane, a
mathematical property based on the physical limitation of 'causality"
which states that electromagnetic signals cannot travel with a speed
greater than that of light.

The belief that the strong interactions also obey causality
lead one to expect that similar dispersion relations may be written
for the strong interaction amplitudes, except that in the extension of
this idea to a relativistic theory one acquires a contribution to the
integral from the "u-channel" ¢ + b + a + d . An amplitude may be
expressed as a fﬁnction of t and Vv , where for positive values Vv
is proportional to the incident lab energy in the s-channel and for
negative values V 1is proportional to the incident lab energy in the

u-channel. The dispersion relation is then schematically

0
1 [ ImT(V,0)dy' . 1 [C Im T(V',t)dv
t(v,e) - -2 [ ImIOLOw, L[ In (VL0 (8)
-0 O

where Im T(V,0) is related to the total cross sections in the s

and u channels via the optical theorem.
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Let us consider the case of the power law behavior which charac-
. . a(t) . . .
terizes regge theories Im T(v,t) = B(t) Vv . An amplitude is said
to be even or odd under crossing from s to u channels depending on

whether T in T(-v,t) = TT(V,t) 1is +1 or -1. Then, one may derive

from (8)

+iwa(t)l vu(t)

Tovgy = BEI(T + e

sin mo(t)

(9)

Using T =+ and a =0 for the pion trajectory, one derives that
pion exchange is indeed predominantly real at least in the forward
direction. This will be useful in establishing tests for resonance
production selection rules. One may also note that the pion pole at
ot = .02) = a(m y = 0 1is very near the forward scattering of the
s-channel where t = 0 . This means that aﬁ amplitude dominated by
pion exchange will fall rapidly with increasing -t . It is pri-
marily this aspect of pion exchange, which is true of both the data
and all theoretical models, that will be sufficient to establish in
Part I that pionvexchange can account for the properties of the low
mass enhancements observed in diffraction dissociation.

(Elastic scattering and diffraction dissociation are dominated
by 0(0) =o =1 which (9) says would be a purely imaginary contri-
bution if it appears only in amplitudes which are even under crossing.
The optical theorem tells us that evenness under crossing may be
checked experimentally by observing whether s and u channel total
cross sections become equal at asymptotic energies. At incident lab

energies around 40 Gev/c, GT(ﬂ+p) ~ 25 mb while OT(W_p) ~ 23.5 mb,
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o] (K%p) ~ 17 mb while GT(K—p) ~ 20.5 mb, GT(pp) = 39.0 mb while

T
OT(Eb) = 45,0 mb. That s and u channel total cross sections do
indeed approach one another as the energy increases appears to be the
trend of the present data, except for the recent but unverified small
discrepancies reported from Surphukov.)
While exchanges arise from resonances in the t-channel, a
scattering amplitude may also receive contributions from resonances

in the s-chamnel. In the partial wave expansion of a two-body ampli~

tude

[ee]
T(s,t) = ) (20+1) £,(s) P, (cos 8) (10)
= 2 L
2=0
a resonance contribution may be approximated by a Breit-Wigner

(T +T)/4 rt/z (r +1“t)/4 (Vs = M)
Im £ = Re £, = -~

g g
/s -m? - ri/a

(11)
/5-w? - T2/4
where M is thé mass of the resonance, Tt its total width, and
I' its partial width. The imaginary part peaks at the position of the
resonance and falls as (Vs - M)”2 away from the resonance mass,
whereas the real part changes sign at the resonance mass and falls
only as (/s - M)-_'1 far from the resonance. In Pa;t I of this thesis
we shall argue that the contrast between the rapid variation in phase
of a resonance and the relative constancy of the pidn exchange phase
should prove valuable in testing selection rules for resonance produc-
tion.

One of the more significant developments of the past few years

in hadron physics has been the suggestion that the direct channel
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resonances are related to the nondiffractive regge exchanges (inter-
cept o < 1). The term "duality' designates the assumption that
amplitudes exist with the properties: 1) at least at low energies,
their imaginary parts can be approximated by direct channel resonance
contributions; 2) at least at high energies, regge exchange also
describes their imaginary parts; and 3) a region of energies and
angles exists over which both these approximatfons may be simul-
taneously employed. Obviously, since resonant contributions are
bumpy, while a regge exchange gives a smooth energy dependence, these
two descriptions can be equivalent only in some average sense. This
hypothesis has been used to derive a number of experimentally wvalid
constraints on the regge intercepts.

Because diffraction can occur in reactions where s—channel
resonances have not been observed, duality cannot be true for elastic
scattering amplitudes. However, it has been conjectured that, even
for elastic écattering, amplitudes with diffractive contributions
removed can be qonstructed in which the average of the resonance
contributions to the imaginary parts equals the regge exchange contri-
butions. When combined with the optical theorem this conjecture
explains a correlation observed among total cross sections. This
observation is that in reactions such as K+p and pp where no

strong s—channel resonances have been observed, the o 5 fall at most

to
slowly with energy and approach their asymptotic values at low
energies, while in reactions such as Eb, T, and K—p where there .
are many s-channel resonances the Gtot fall rapidly in energy and

approach their asymptotic values only at high energies. In regge
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language, one would say that the various exchanges with o <1 are
cancelling against one another in the imaginary parts of elastic
amplitudes when s-channel resonances are absent, while they cont¥ibute
substantially when s-channel resonances are present.

In view of our separation of the contributions to diffraction
dissociation into resonance production and pion exchange components,
the important question is whether duality can be true for the real
parts of scattering amplitudes. The objection is that the empirical
correlation we have noted for the imaginary parts of elastic amplitudes
is not observed for the real parts, e.g., K+p and pp elastic ampli-
tudes have large real parts whose average energy dependence is
governed by o <1 even though s—-channel resonances are absent. Hence
one must in general expect that s-channel resonances and the real parts
of regge exchanges are distinct components §f scattering amplitudes.
Equation (8) tells us that these real parts may be generated by the
existence of resonances in the u-channel K—p and Eb reactions.
Another way to state this is to note that the contribution of a reso-
nance is localized to a small energy region only in the imaginary part,

while resonances in other channels can make significant contributions

to the real parts.
In this thesisldiffraction dissociation is discussed phenom-—
enologically with emphasis upon the development of tests for the
helicity, spin-parity, and internal quantum number selection rules
proposed for resonance production. It is argued that the alternative
selection rules are distinguishable by their characteristic angular

distributions for the decay products of produced resonances. Indeed,
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if the nonresonant background were absent, then simple tests for
selection rules could be performed without having to isolate the
individual resonance contributions. In general, one must expect
background as well as resonances. It is established that a simple

N
pion exchange model, such as Deck, Drell, and Hllda[ ]have suggested

1

of the production characteristics of the broad low mass enhancements

to explain the "A! and "N#(1400)" enhancements, can account for most
observed in present diffraction dissociation data. These include the
variation of momentum transfer dependence with invariant mass and the
spin-parity of the enhancements. It is likely that this pion
exchange background does not obey the selection rules expected of
resonance production. Therefore, the question of tests for resonance
production selection rules in the presence of significant pion
exchange background is addressed. |

For the sake of convenience, let us summarize here the selec-
tion rules we wish to test. For a reaction a + b - ¢ + d helicity

conservation is defined by

< xcxle(s,t) ]xaxb> = éxckasxdxb< Aaxb]tr(s,t) lxaxb> (12)

There are three types of helicity conservation that could be expected:
1) t-channel helicity conservation based on concepts of a t-channel

origin for the asymptotic behavior (Pomeron exchange); 2) s—channel

[2,3]

spin conservation; and 3) s-channel helicity conservation based

on concepts of an s—channel origin for the asymptotic behavior analo-

[4]

gous to the diffraction of classical optics. Morrison has conjec-

tured AP = (-—l)AJ , although there is no current theoretical
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justification for this rule except when the initial dissociating
particle is spinless. Chou and Yang[5} (CY) have suggested that if
the product of the parities is odd in a quasi-two-body reaction with'
an asymptotically constant cross section, then dO/dt =0 at t =20 .

(

Carlitz, Frautschi, and Zweig 6] (CFZ) have suggested that in diffrac-
tion dissociation the SU(6) <character is preserved between initial
and final particles.

In Section II we derive the general angular distributions for
the description of diffraction dissociation and we propose a set of
null tests for selection rules which would be valid if the nonresonant
background were absent. In Section III we demonstrate that the pion
exchange model can account for much of the currently available diffrac-
tion dissociation data. In view of this success, in Section IV we
propose new tests for resonance production selection rules. Section V

includes a summary and some concluding remarks concerning the interpre-

tation of present experiments.
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II. Angular Distribution and Null Tests

A. Definitions
Our purpose in this section is to derive the general angular

distributions for reactions of the type

a+b>c+d > c+a+?B (13)

where d denotes intermediate states of varying spin and parity, and

to observe the manner in which these distributions simplify due to the

(7]

various selection rules . Inasmuch as we are interested in measuring

the properties of the state d , the most convenient Lorentz frame in
which to view this reaction is that in which d is at rest. One must
therefore understand how the various sets of helicity and spin base
states appear in this frame (Fig. 3)[7].

The momenta in a+b *+ c¢+d define a plane in the s-channel
center of mass. Thus, the normal to this plane which we choose to call

the §-axis is invariant under the Lorentz transformation that brings d
to rest. In the s-channel center of mass the s-channel heliciFy of d
is the spin along Sd==—§C. Clearly under a Lorentz boost that brings
d to rest, the s—channel helicity of d remains the spin against the
direction of gc_. This choice of z-axis when d 1is at rest defines

the "helicity frame'. In the t-channel center of mass the t-channel

-

helicity of d is the spin along 3& = =Py - Clearly under a Lorentz

boost that brings d to rest, the t-—channel helicity of d remains
the spin against the direction of ;E-. Under crossing from the t to
the s—channel ;§-+-S£. Hence, in the s-channel, the t-channel heli-
city for particle d in its rest frame is the spin along the direction
of Sg . This choice of z-axis when d 1s at rest defines the

18]

"Gottfried-Jackson" frame The helicity and Gottfried-Jackson
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The reaction a+b =+ c+d > c+a+B in the d rest frame

The vectors ;a, Et, ;C are in the plane of the paper

> ~
while ga==—p6 may be out of the plane. The y-axis
is perpendicular to the page. Zys Zps 2y denote the

z-axis in the helicity, Adair, and Gottfried-Jackson

frames respectively. These frames are related by rotations
about the y-axis as denoted by angles ®H+GJ anf eH+A'

Vos is the polar angle of the decay direction n in the
GJ frame.
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frames are related by rotation about the §~axis by the "crossing

angle' GH+GJ : Clearly, the angle between the helicity frame

“and that for quantization of s-channel spin is the s—-channel center of
mass scattering angle 6 . This third choice of z-axis when d is at
rest is called the "Adair" frame[g]-

The choice of z-axis for discribing the angular distribution is -
therefore to be chosen according to the type of helicity conservation
selection rule one wishes to test. Test for t-channel helicity conser-
vation in the Gottfried-Jackson frame, test for s-channel spin conser-
vation in the Adair frame, and test for s-channel helicity conservation

in the helicity frame. To move from one frame to another, one rotates

about the §—axis by:

) e el e ey ey
eos Op,07 = 2.1/2 2.1/2 2.1/2 2.1/2
[8={e=d)"1™ "I = {etd)™]™ [t~ (b~d)"] [t - (b+d)™]
cos OH+A = cos © (14)

Note that for forward scattering, © = 0 , all frames are equivalent and,
except for reactions where double helicity £1lip is possible, helicity
conservation is a consequence of angular momentum conservation. For a

. é ‘ . A A ~
given choice of z-axis, x =y X z . The decay angles {y and ¢ are
then defined as the polar and azimuthal angles of the vector ‘A , which

in the case of two-particle decays denotes the direction of one of the

decay particles in the d rest frame.

B. Two-Particle Decays

We divide the scattering amplitude into two factors, one for

the production of an intermediate state d of spin and parity JP
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and the other for its subsequent decay into o and 8

<Po kaksxcls(s,t)] A Ay >

_ P P
- PZA Yo A g |G|l3"A> <3 xeclmcs,t)]Abxa> (15)
b 3 J
where[lo]
1A= =A))0
P _ J a "B J
<yo AaxB[G|J A = e AJ,A g (W) gx e (16)
and
s +s,-J
JP a B JP
g _ =P P,P(-1) g (17)
Xq KB o B A XB ,
where gx 2 is the reduced matrix element for the decay of a state of

o B

spin-parity J  into o and f with helicities Au and KB .
Experiments with unpolarized targets in which the final helicities
are not measured can then be described by the general angular distri-
bution

2

A, Yo (,0) ' (18)
2=0 mz-z L

0~ 8

W,9) =
where

LAy
fm %y zx zx T
3*Mg J P J',P ’XJ

1 . =4
6T ol ,Q,AJ, AJ)

1 . = — )\'J
x C(J,; A A gsA AL 22+1 1+ 22" (-1)%) ((-1) GA Alm +
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A

1 1
+ (-1) J s o B

JP P
_ Co) gy ed ) L ST ALA|TIA A >
AJ+XJ,m Xa 8 AaAB Xb>0 ka’xc Je b’"a

x <3P AL T A" (19)
The C(J,J”,Q;KJ,kj) are Clebsch-Gordan coefficients. (A more
thorough derivation of this angular distribution is given in Appendix
.

In this section we are interested in the simplifications that
result in (18) from helicity conservation and other selection rules in
the presence of many interfering resonances of varying spin and parity.
These predicted simplifications will provide experimental tests of the
selection rules. In the first part of this discussion we will ignore
the problem of a possible nonresonant contribution to the reaction

a+b>rc+a+B.

Helicity conservation (equation (12)) predicts that the A

2m

2

are zero for m > 0 in (14). Thus, the angular distribution (18) is

characterized by the absence of an azimuthal dependence. Isotropy in

¢ d1is a simple test for consistency with helicity conservation. It

can be applied without having to isolate the contributions of spin and

: 11 o o , .
Earltz[ ]. It is a necessary but not sufficient test, since ¢ inde-

pendence without helicity conservation could conceivably be achieved
if: 1) the density matrices for production of all resonances are
diagonal; and 2) the interference terms between contributions of dif-
fering spin and parity contribute no ¢ dependence.

The angular distributions (18) may be used to test the validity
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of the spin-parity and CFZ rules by observing the patterns of inter-
ference between contributions of differing J and P din the various
moments of the distribution. At 6 =0 or for © # 0 in the case of
helicity conservation simpler expressions achieved by invoking Eq. (12)
in Eq. (19) may be used. The important feature to notice in Eq. (19)
is that because of the factor (lﬁ-PP‘(—l)Q), the coefficients of the
odd & spherical harmonics involve only terms mixed in parity. If
a=c 1in reaction (2), the CY rule requires d to have the same
parity as b . If we restrict our considerations to low mass N¥*'s
where all the established resonances are classified in SU(6) as mem-

[13]

bers of either a 56, L=0 or 70, L=1 , then the CFZ rule forbids

production of odd parity N%'s. Thus, in certain cases the CY and CFZ

rules predict that the Ap, are zero for % odd . Equivalently, they

predict that in certain reactions the decay angular distributions will

be symmetric under parity inversion Y = T - VY, ¢ > T+¢ . Again,

this simple test may be performed without having to isolate the indi-
vidual resonance contributions.
Both of these null tests are of course valid only to the extent

that the nonresonant background is absent.

C. Three-Particle Decays

In the case of three-particle decays where the reaction is

a+b+c+d > cH+a+B+Yy (20)

there are two ways one may analyze the data. The first is to identify
two of the three decay products as forming a resonance and study the

angular distribution as a quasi-two-body decay according to the
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prescription of the preceding section. The difficulty with this
approach is that such identifications are often difficult to make and
in any case can never be precise. Therefore it is useful to know what
information can be learned without having to attempt this identifica-
tion. Our second approach is to follow the suggestion of Berman and

Jacob and study the angular distribution of the normal to the three-

particle decay plane. We will show that the tests of the preceding

section will continue to be applicable.
We briefly summarize the formalism of Berman and Jacob. A

three-particle state is written
A 3oL A >
LRI E ST (21)

In the d rest frame the three momenta form a triangle in a plane,
whose normal we take to be the n of Fig. 3. The orientation of this
plane is specified by three Euler angles: Y and ¢ are the polar
and azimuthal angles of the normal with respect to a z-axis chosen
according to the type of helicity conservation we wish to test as in
the preceding seétion; and Y corresponds to the rotation of the
plane about the normal. In terms of these angles the state may be

rewritten as
WA LW AL L,W A LU0,y > 22
|9, A s0ghg s A 20, Y (22)
A state of definite angular momentum is specified in this case by

A
three quantum numbers: J the spin, m the eigenvalue along the z-axis,

and M the eigenvalue along the normal.
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Then, in analogy to the preceding section, we divide the scat-
tering amplitude into two factors, one for the production of a
: P ;
resonance d of spin and parity J and the other for its subsequent

decay into o, B, and Y.

<W¢Y;>\G,AB,>\Y’>\C Js<s’t)l>\a)\b>
(23)
—— . P P
. pr <Y,0,730 2, ,wskg,wY)\Y[G]J Ap><d xeclT(s,;)lxbx;
3 b} J
where
J ix.¢ )
P J¥ J iMy
<YOYW A LWaA W A, |G]T A> = Y e a; . (We
oo’ TRTB Y Y A A M
JP ,
X Gy (waka,wBXB,wyky) (24)

For constraints analogous to (17) due to parity conservation and iden-
tical particles, we refer the reader to Berman and Jacob's paper. Again
for experiments with unpolarized targets in which we do not measure the
final helicities, the angular distribution, after integrating over Y

and the dalitz plot variables, is given by

WW,0) = ] Ay YoW,0) | (25)
where
S S
e M'E—J'(—1)_MC(J’J"2;AJ’—X3)
@ prty Tty ety
Al

X G, 05,08, VT2 (1L+PP' (-1)%y ((-1) I
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b
J Jp Jrpiw
T ('l) 6_>\J+)\3’m) GM <}\Ci,)\6’>\'\{) GM' <}\0L,>\B’>\'Y)
x 1T < I T <P ana Jofa > (26)
Xb>0 Aa,kc

Note the similarities between this and equation (19). We see imme-

diately that for the angular distribution of the normal to the three-

particle decay plane helicity conservation predicts A“m= 0 for m>0,

Al

and the CFZ and CY rules in certain reactions predict A0m= 0 for

% odd. So again we have that helicity conservation predicts isotropy
in ¢ , and the CFZ and CY rules predict invariance under Y->T -1,
¢ +~ ¢+ T in certain reactions. Again, these tests are only true to

the extent that nonresonant background is absent.
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III. The OPE Model

Our purpose in this section is to establish a model for the
nonresonant component of diffraction dissociation. We sh.il exploit

[1]

the suggestion by Drell and Deck that a simple pion exchange model
could give enhancements in mass distributions similar to those
observed for genuine resénances. Essentially, their proposal corre-
sponds to the diagram of Fig. 4 wherein the incoming b dissociates
into a and B and o scatters elastically off particle a = c .
In general o 1is taken to be a pion, but the importance of the O mass
being small will be an essential result of our discussion. We shall
show that this model can account for most of the properties of the
broad low mass enhancements observed in diffraction dissociation.

We shall first summarize the kinematic expressions we will need

for our analysis. If we denote q, = (pa,ug), etc., then we may choose

the five independent kinematic invariants to be:

2

' 2
= (qa “* qb) s

(0]
|

2 _ 2 _
oy = M, FE sep = (4 tg)” = d

2 B
(q, - qa) tap = (qB -qb)

2

ct
I

(27)

In the d rest frame

2 2 L _ 2_ 2 2_ 2,2
lpOL = pB = 4SOLB[(SQ’B G B ) 4o B ]
2 L 2_ 2_ 2
Py = 7s [<8a8+b t) 4b SaB]

P. = %s [(s-—gz— sa8)2~ 4C28aB]



Fig. 4. The Feymman diagram for the pion exchange contribu-
tion to diffraction dissociation. The s, t, Scoc’
saB, tBb denote the five independent kinematic

invariants. The particle o is a pion.
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2 _ 1
Py 4s

(5 &= bRy " - 4sa6a2] . (28)

o

Thus, in the Gottfried-Jackson coordinate system

8%+ b2- 2w

tBb gy ~ ZPBPbCOS Y (29)

2,2 : . .
cTta+ 2wcwoc + 2pcpa[cos Y cosy - sinyP sin X cos o]

S
co

where ¥ is Ch+GJ given in equation (14). Then, the differential

cross section for reaction (13) is given by

4 p
dsd gt - l 2 - 4 /0‘_ f W(Y,9)d cosy do (30)
aB (AwawaI) (2m)" 8 Sag
where
(éwawaI)z = 82+a4+b4 —25a2—25b2—2a2b2 (31)

A. The Deck Effect

At the time of writing, there is no universally accepted or suc-
cessful model for pion exchange. The relative or even absolute validity
of evasion, conspiracy, or absorption models is not settled, and it is
not our purpose here to compare them. These models disagree on ques-
tions of energy dependence and helicity couplings which for our purposes
are irrelevant. They and the data all agree that pion exchange is
characterized by'a very rapid variation with momentum transfer in the
range between 0 and mﬁ , and this is a;l the physics of pion
exchange necessary to explain the'properties discussed here.

We wriﬁe the contribution to the scattering amplitude[l3] for

reaction (13) that corresponds to the diagram of Fig. 4 as
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<YM ISCs, e Ay > = <T A 0 (X, >—t— v, (tg) (32)

tBb—(x B'b

where <-XC[A(sCa,t){X;> is the off mass shell «aa elastic scatter-

[14]

ing amplitude 5 l/tBb-—OL2 the o propagator, and,VA A (t,,) 1is a

8% Bb
helicity coupling form factor at the a-f-b vertex which, with the
above points in mind, we will set equal to one until part D of this

discussion. At high S elastic scattering is dominated by diffrac-

tion so we may set

<'XC]A(sCa,t)rxa > « is e (33)

co & %

Again, questions of helicity couplings are irrelevant and we will set

8T T equal to one in what follows. We then find at high s that
ca

d40 Py eBt sz[wa+pa(cos Y cos X - siny sin X cos cb)]2
— « d cos 1 d¢
ds_,dt 2 f 2,2 v
o s BVSQB saB(tBb—u )
(34)

In the forward direction t = 0 we have X 0 and

2 <Su8—b2) ]
lim t,, - o  — ————[w +p_ cos Y (35)
e=0 °° oy O °
aB
which yields
2 P
- d” o - o 1 (36)
0B £=0 Sa8 (SaB—b )

This function is plotted in Fig. 5a. Thus, the OPE exchange results
in a low mass enhancement which qualitatively fits the observed

N#*(1400)where b=B8=N, Al(lO70) where b=7 and B=p, K¥(1320).
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Fig. 5a. The differential cross section of the simple OPE model.
The vertical scale is arbitrary.
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Fig. 5b. Comparison of the effective slope parameters for pion

exchange and 0 exchange.
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where b=K and B=K*(890), and L(1790) where b =K and
B=K*(1420). Furthermore, at sufficiently high s where the approxi-
mation (33) is valid, the cross section (36) is independent of s and
therefore fits the definition of diffraction dissociation.

Note that (36) does not depend on az [13]

. Thus, at this stage
the importance of the pion mass being small is only in justifying the

approximation (33) by arguing that the pion pole is very near the

physical scattering region tBb <0 .

B. Variation of Momentum Transfer Dependence with Invariant Mass

Empirically it is found that as a function of t{ls], the dif-

ferential cross section for the production of the above enhancements

can be approximated by

dzo _ dzc A(Sa8>t

ds .dt ~ ds .dt ¢ . (37)
o oB | e=0

where A(saB)v is large Vv 15-20 Gev-2 for small SaB near threshold

and drops to much smaller values for large SaB . A plot of A(s

aB)
for the Al at 8 Gev/c 1is given in Fig. 6b.
In order to give a simple argument for why the OPE model repro-

duces this behavior, we will consider two limits of SaB . First, in

the limit of small s near threshold

aB
. 2,2 . .
lim s = c™Ha” 4+ 20w independent of t (38)
N CuIt e © |

2
2B8(s +b“)
- 82+b2 _ o + Bt

L 2 B — =
S48 (0+B) 2 Zwéas /SaB

)

il

=]

ct
|
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Fig. 6a. Slope parameter for 7 Gev/c ﬂ_p - ﬂ—ﬂ+n . The solid line is
the effective slope parameter predicted by OPE model(inset)
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Fig. 6b. Same as 6a for 8 Gev/c wp > (T T™T)p
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For the Al in this limit t5b==—.lO-F.84t. Thus, if in equation

(32) o is small on the order of the pion mass, the differential cross
section for small S falls rapidly with increasing negative t . IL
o were large as for the exchange of a p-meson, the t dependence would

be much less pronounced. In the limit of large SuB we have as in

equation (35) X - 0 and

2 <Sa6’b2)

lim t,, -o° =+ —————— [w +p cos Y]

s large Bb s oo

oB & oB

independent of t . Thus
2 P .

1lim 20 5 eBt = - (40)

s.n large dsaBdt Vs . (s -bz)2

af & o “TaB

“fixed t

A(SaB) asymptotically approaches the slope §f the 0&a elastic scat-
tering for large S48 The effective A(SGB) at  t=-.1 predicted
by this model are compared with the 7 Gev/c data for ﬂ_p->ﬂ_(ﬂ+n) in
Fig. 6a and the 8 Gev/c . m o>(T p)p in Fig. 6b. We have adjusted
the B's to achieﬁe the best fit to the data, but this freedom changes
only the position and not the shape of these curves. In Fig. 5b we
demonstrate that such a variation in the slope A(sa8> with invariant
mass is indicativé of pion exchange dominance by comparing the pre-
dicted slopes for oa=m and a=p.

Note that the best fit to the ﬂ—p+(ﬂ_p)p data at 8 Gev/c 1is
achieved with B ~n 4 Gev_z. At first sight this may seem disturbing
since for ﬂ—p elastic scattering at high energies B5a9 Gev'_2 .

However, it should be noted that the dynamical restriction to small
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t which characterizes pion exchange also restricts 5 to be small

Bb
even though s may be large. In Fig. 7 we exhibit the bounds on SN
" in Tmp>mmmp for various momentum transfers. At 8 Gev/c SN is pre-

dominantly restricted to the resonance region of ﬂ—p elastic scatter-
ing where B Vv 4-7 Gev—z. These general considerations are confirmed
by the 25 Gev/c [16] data where B Vv 9 gives the best fit to A(Sa6> .

The restriction to nonasymptotic S,, at present energies is
probably also correlated with the observed fall of nearly a factor of
two between 5 and 25 Gev/c in the production cross section for the
"Al”.

Although the approximation (33) is less accurate when I is
small, the argument presented above for the variation in momentum

transfer dependence with invariant mass remains valid since, as we have

seen, s is independent of t 1in the two limits of saB small and

SaB large[l7]. Generally we expect A(S@B> to depend strongly on
§GB in any process where the dynamics can be described by a multi-

peripheral diagram such as Fig. 4 and the amplitude falls rapidly with

Eﬁb—; Indeed, in K—pﬁ-K*(890)p-+ (Kﬂ>—-p the absence of a contribution

from such a diagram is correlated with A(SKW) being roughly constant

[15]

C. Partial Wave Analysis of Kinematic Enhancements

Because of its sharp peripherality, one pion exchange contrib-
utes strongly to high partial waves in pion photoproduction. It may
therefore seem at first sight contradictory that kinematic enhancements
from pion exchange could be confused with low spin resonances. In this

section we examine more closely the partial wave analysis of the Deck
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Bounds on the subenergies as a function of momentum transfer
for 8 Gev/c m p -+ (mp) p . The outermost curve is the bound

for unrestricted momentum transfer. The inner curves are

the bounds for the momentum transfer restricted as indicated.
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effect[18’19].

From (15),(16) we have

1A ~(A =A,))0
o ; | - J o B J JB
<Y ¢AOLABAC[S|>\a A > ; PZA e dkﬂa'ke(w gAOLAB
3 3 J
P
X <J xJ,xc]ﬂs,t)]Aaxf (41)

The more rapidly (U,¢ AQXB&JSI Aalkb > varies with y and ¢ , the
higher the J's to which it contributes strongly. Were the amplitude

to consist of a pion propagator alone
2y 2.2 2
l/(tBb-o, ) = L/ (B™b" - -Zwab—Zpobcos V)

we would indeed have important contributions to high partial waves as
in pion photoproduction. However, an equally important contribution
comes from the «a elastic scattering so that in the extremely high

s limit
<PPA A xc\s!xaxb> « sca/(tBb—aZ) (42)

As noted in the previous sections, in the limits of t mnear zero or

SaB large )
(saB—b )
%b - ig*——-ma+%f%1ﬂ
af
s
g
B -+ - Lwa-i-pacos Y]

aB
so that their ratio (42) is independent of Y . Away from these

limits this cancellation is still approximately true. Therefore,

apart from helicity coupling factors, -the Deck effect is most impor-

tant in the lowest partial wave, i.e., the A1 enhancement is
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predominantly l+, and N#%(1400) enhancement predominantly J=1/2 .

In Fig. 8 we present a spin-parity analysis of this model for the A

(20]

1

using the most obvious pPTT coupling

D. What Can OPE Say about Helicities?

Up to this point we have based our discussion on the noncontro-
versial aspect of pion exchange; the rapid variation with momentum
transfer in the range between O and mﬁ,. In this section we discuss
something of more questionable validity, but which we nevertheless
believe to be an interesting point: the elementary OPE model is equiv;

alent to approximate t-channel helicity conservation and gives gl/g0
approximately one for the Al .

In the elementary OPE model for the A, where B=p and

1

b=m , we have

<Y ¢ Apxcls]x; o e"’»‘(}\p) " g (43)

Written in the Gottfried-Jackson frame

w_p,cos Y P.W
% [l e b
0) - = -
e*(0) * q, g 2 (44)
* R , +1¢ * | . -id
e (+1) qy ; pb81nd)e e (-1) q = —;-pb81nlpe‘

To the extent that the ratio (42) is independent of Y and ¢ , com-
parison with (41) shows that we do indeed have t-channel helicity

conservation and

n - -
gl/gO = p/wp = .93 at Vsﬂp = 1.070 Bev (45)



. Partial wave analysis of an elementary pion exchange model

ol B

- | i | ! | l -

s O'J’s at t=-.1GeV?

l | I
9 1.0 .25 .S .75 2.0 225 2.5

(20)

displayed as the differential cross sections for production
of a given spin and parity at t=-.1 . The vertical scale is
arbitrary. Solid curves are the contributions of individ-
ual spin and parity. The dashed curve is their sum.
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This is to be compared with the experiment on the A and Q enhance-

1
[21]

ments by the ABBCCHLV collaboration who find t-channel helicity

[22]

conservation, with the data of Crennell et al

+0.07y =1 (1.0%0.6)
-0.00’€

et a1l23] who find |g./g | = 0.48%0.13 .
1" %o

who find gl/gO =

(0.89 , and less successfully with the data of Ballam

A similar procedure for the N*(1400) in which one sets

Yo AA SN > = )Y ) (46)

yields in the Gottfried-Jackson frame

_ Py Py
uB(+l/2)Y5ub(+l/2) = &3;;5 = w6+3) cos Y/2

(47)
- Py Pg . ~id
u6<_l/2)Y5ub<+l/2> = —Q;;IE + w3+6) sin Y/2 e

again in approximate agreement with t-channel helicity conservation.
Now, however, in order to satisfy (17) the OPE must contribute strongly to

both parities in apparent violation of the Morrison, Chou-Yang and CFZ

[24]

rules
We will not discuss here the manner in which these results of
elementary OPE are modified by evasion, conspiracy, absorption or any
other version of ﬁion exchange. We only point out that the simplest
model in which one sets the couplings (44) and (46) equal to the

VA ) (tBb) of equation (32) is clearly wrong. Such a model introduces
S '

spurious factors of t into W(Yy,¢) that destroy the narrowness of

Bb

the Deck enhancement and rapid variation of A(s and so does not

[19]

aB)

fit the data. 1Indeed, in Fig. 3 of Rushbrook's analysis in which
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such a model is employed, one fails to find the characteristic Deck

shape.

Although the elementary pion exchange model may not be correct

for helicity couplings, the understanding of the other features of the

data, achieved by the noncontroversial property that pion exchange

entails a rapid variation with momentum transfer, we believe sufficient

justification to consider pion exchange as primarily responsible for

the nonresonant component of diffraction dissociation. It appears

unlikely that a pion exchange background would have the same helicity

couplings or obey the same selection rules that are expected of reso-

nance production.
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IV. OPE and Selection Rules

One is left with the question of the role played by one-pion
exchange in diffraction dissociation and its relation to resonance pro-
duction. Certainly the successes of OPE do not exclude the presence of
genuine resonances. Indeed, the best fit to po photoproduction is

[25]

achieved by Soding's model of a Breit-Wigner interfering with a
weaker Deck background. Nor can the N*(1680) and other enhancements
be explained as kinematic effects. Difficulties lie in establishing
the validity of selection rules, for at least the elementary OPE models
do not obey any of the proposed spin-parity selection rules nor do they
obey the s-channel helicity conservation that has been observed in 7N

2
elastic scattering and p° photoproduction[ ’31

[26]

One possibility is that the OPE contribution is equivalent

to resonance production in a '"duality'" sense. If the production of
accepted resonances obeys selection rules, the dual interpretation
would requirevthe OPE contribution to obey the same selection rules and,
therefore, the naive models must be wrong. However, one may expect such
local duality applies only to imaginary parts of scattering amplitudes
whereas pion exchange, at least in the forward direction, is predomi-
nantly real.

The other possibility is that the OPE contribution, or at least
its real part, should be considered as a nonresonant background. The
problem then is to determine whether the accepted resonances obey selec-
tion rules in the presence of a background that may not. In the case

of resonance dominance we had a series of "null tests" for helicity

conservation and spin-parity selection rules because many of the Azm
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in (18) and (25) were predicted to be zero. If resonance production
continues to obey selection rules, these Azm's would now consist only
of OPE-~resonance interference terms and OPE-OPE terms. The Agm's not
predicted zero in the null tests would have resonance-resonance terms
as well.

This means that, although the null tests are invalid in the
presence of an OPE background, there remains a qualitative test for
helicity conservation and spin-parity selection rules in resonance
production. We make the reasonable assumption that the OPE contribu-
tion is predominantly real and varies smoothly as a function of the
mass of the dissociated system, while the resonance contributions have
phases and magnitudes which vary approximately like Breit-Wigners as
a function of mass. The OPE-resonance interference terms which contrib-

ute to the A in the form
Lm

A ® Re aOPE a*res
2m

should then oscillate qualitatively like the real part of a Breit-Wigner
and actually pass through zero at the resonance mass. On the other
hand, the resonance-resonance terms should have no such simple behavior

and may even peak at the resonance mass. Thus, if resonance production

obeys selection rules the A£~ predicted zero in the null tests should

1Ir

in the presence of OPE have the simple behavior of a sequence of Breit-

Wigner real parts, apart from OPE-OPE terms.

We would like to emphasize that the OPE-resonance interference

terms should prove useful in isolating the contributions of individual

resonances, particularly in testing Morrison's rule for which no
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simple test has been proposed in this paper. Note that in (19) and

(26) a given term contributes to the various Alm in proportion to

well-defined Clebsch-Gordan coefficients. Such an observation is par-

ticularly valuable. if the nonresonant background is confined primarily
to the lowest partial waves. For example, if in T7N-> 77N the back-
ground is confined to J=1/2 and resonance production. obeys helicity

conservation, the A for m> 2 would be zero. Further, the

m
5/2+—background interference term would appear in A2m and A3m while
the 3/2 -background interference term would appear only in A and

1m

A2m' We stress, however, that we expect such simple background dis-
" : : . [18,19,20]
tributions to be only approximately true of pion exchange .

If the nonresonant background contributes strongly to several partial

waves, such comparisons would be more difficult but still informative.
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V. Summary and Discussion

We have found that if resonance production were to dominate
diffraction dissociation, then: (1) helicity conservation is charac-
terized by an isotropic ¢-dependence; (2) the Carlitz-Frautschi-Zweig
and Chou-Yang rules predict symmetrical angular distributions under
Y>m=-y , ¢>m+¢ in certain reactions (e.g., TN-> TN and
TN > T7mA) . Thus, there would be a series of "null tests'" with the A,le
for m>0 in Eqs. (18) and (25) predicted to be zero by helicity con-
servation, and the Azm for % odd predicted to be zero by the Chou-Yang
and Carlitz, Frautschi, Zweig rules in certain reactions. In general,
nonresonant background should be expected as well as resonances. A
simple pion exchange model appears to account for the properties of the

[27]

low mass enhancements observed in diffraction dissociation including
(1) the shape and position of the enhancements (the Deck effect);

(2) the variation of momentum transfer dependence with invariant mass;
(3) the low spin of the enhancements; and, in certain models, (4) the
observed gl/go for the ”Al" and t-channel helicity conservation. Thus,
one-pion exchangé, if not "dual" to resonance production, may be expected
to constitute the nonresonant background. It most likely does not obey
the selection rules resonances may obey and, therefore, would destroy
the simple null tésts. If resonance production continues to obey
selection rules, the AQm predicted zero in the null tests now would
consist of OPE-resonance interference terms as well as OPE-OPE terms.
This offers the possibility of a qualitative test for selection rules

in resonance production. The OPE-resonance interference terms should

also prove useful in isolating the contributions of individual resonances.
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In any event, it should by now be obvious that analyzing data

in terms of the moments of the angular distribution in the various

frames is the most informative way of presenting the results of ex-

periments on diffraction dissociation when many interfering contribu-

tions are present. We urge that present and future experiments be

analyzed in this manner. In view of the need for good resolution to
obtain information from the moments, there is a necessity for high
statistics experiments to determine the properties of diffraction dis-
sociation.

It is worth mentioning that in choosing experiments in which to

; ; + .
test selection rules for N¥* production T p reactions are to be pre-
ferred to ﬂnp reactions. The reason is that at finite energies there
may be significant contributions from nondiffractive exchanges. In
. I . e o
reactions such as T p> 7 (TN) where there is a definite isospin in
. <

the s-channel, one may isolate the I=1/2(7N) system from the I=

[28] : . o o
3/2 . Hence, some of the nondiffractive contamination may be
removed.

Two remarks are in order concerning the interpretation of present
experiments. The first is that the apparent disagreement between
experiments which show s-channel helicity conservation for some reac-
tions and those which show t-channel helicity conservation for others
may be removed by the likelihood that the resonance production com-
ponent of diffraction dissociation dominates the former class of reac-
tions while the nonresonant component dominates the latter class. The
procedures of Section IV applied to higher statistics experiments will

help to determine whether this is indeed the case.
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The second remark is that, in view of the likelihood that a

nonresonant mechanism dominates Tp=> (3T)p, it is questionable to take

the experimentally measured values of gl/gO for the diffractively

produced "A." as evidence against symmetry schemes such as SU(6)y

1
. ; ++

which predict gl/go = o for the I=11  meson of the quark model.

One should measure the properties of the Al’ and other low spin reson-

ances which can be produced diffractively from stable particles, in

reactions other than diffraction dissociation where the identification

of resonances is less ambiguous.
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Appendix 1: Angular Distributions

In the case of experiments with unpolarized targets where the
final helicities are not measured, the general angular distribution

for two-particle decays is given by

.0 = ; X | <A AGA, IS (s, A >
o’ B: a’p’e
LG=AD0

‘w7 I I = a O )
Aaxs J,Boh; JLPLAL AJ"QFAB‘ AJ’Aa—AB

Jp J'p! P
X g g* ) <IAA |T(s,t) |A A >
Mg EA AL e a’’'b

PI
x <J' X&ACIT(s,t)IXaXb>* (A.1)

From M. E. Rose, Elementary Theory of Angular Momentum, John Wiley &

Sons, 1957, equations (4.17) and (4.25) we have

LA AN 1 A= (hgAg)
e d ay, = (~1)
XJ,AQ—AB XJ,AQ-AB
(A.2)
_)\3

A
< LTI LA DOW,I S R3A A, A ) e IR R

Using parity conservation, we obtain

P P *
x I AJAC|T<s,t)]xaAb><J' Al ACIT(s,t)]Aa Ay>
a’b’"¢
_ P B' *
) <J Ach[T<s,c)}xaxb> <J'AL AC[T(s,t)|xaxb> +

Xb>0,Xa,AC



-53~

AFAL

J+J" JJ

+ Y (-1)""T PP'(-1)

P

KT =N A |T(s,t) | A A >

X >0,% A B &%
b a’ ¢

x <1 A&XCIT(s,t)]XaAb>* (A.3)

Combine equations (A.1l), (A.2), and (A.3). Then in the sums over AJ
and k& corresponding to the second term in (A.3), make the trans-
formation XJ-+—XJ and X&-*—Xj . Using Rose (3.16a) which states
J+J'=%

€I, 83h5,m0)) = (-1) C(T, 3", 85-A 554 0) (A.4)

we derive (18) and (19). Analogous considerations apply to three
particle decays.

From the general expressions (18), (19) and (25), (26), one
may derive angular distributions for the analysis of specific experi-
ments by using tables of Clebsch-Gordan coefficients such as

M. Rotenberg, R. Burns, M. Metropolis, and J. Wooten, The 3-J and 6-J

Symbols, The Technology Press (1959).
As an example of the type of expressions that result, we give

the angular distributions for 7N = W(TMN) in the case of helicity

conservation. We identify from (15) and (16)

JP

J
&+1/2

<3P+ 1/2|7] +1/2> = 53

Using (17) it is found that (19) simplifies to

o T C(3,3',8351/2,-1/2) C(3,3' ,2;-1/2,1/2)

A, = (-2) [=——
2m 24+1 I Jvp

2,2
(PR (-1 T T

% 4 p °7pr
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Then for J X 5/2

2
b JE [181/2!2+ 181/2!2+ _IL_|83/2l2+ ;lsi/zinr —1~l55/2|
00 + - -
+—l-|85/2[2+ ]
3 -
_ [am /2,172, 1 %3/2 3/2, 2 %5/2.5/2
Alo = |3 [2 Re Si S+ S Re S+ S~ ™ 35 Re S+ S~
+ 2 Re (3*1/2 3/2, *1/2 3/2>+ Re(Sj_B/zsf/z *3/2 5/2)+ oo ]
4m 11.3/2 3/2)2 5/228 §5/2)2
Ay = AT 12532 % 11s3/2)2 £155/212, Bys5/2)2,
% 2Re(S:’:_l/2Si/2 x1/2 3/2>+2 R (s“l/zsi/2+ Sfl/zs_s_/z)
2 %3/2.5/2, x3/2.5/2
+ 5 Re(Sy7 TS T STTITSTI ) 4 k]
_ ﬂ 2 %x3/2.3/2 _1_5_) *5/2 5/2 <l/2 5/2 7<l/2 5/2
Ayg =7 [T Re 877787 "7z Re 5, +2 Re (S} sy’ )
4 %3/2.5/2, *3/2.5/2,, ...
+ = Re(SYT TSN 8T8 ]
, o [&m 0 2).5/2)2 g9/2y2, 12 x3/25/2, *3/2 5/2
Brs =I5 [71 |2+ | |+ =5 Re(s]7 750 Y+ eee ]
_ [4m 100 o o%5/2.5/2 .
by = J 1Tgg Be B B j

Aﬁm

0 for m# 0 .

Although this particular distribution is true only if helicity is con-
served, it exhibits features which were mentioned in Sections II and

IV to characterize angular distributions in general: e.g., (1) the
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Alm for 2 odd involve only terms mixed in parity; (2) the 5/2 -

1/2 interference term appears only in A2m and A3m while the 3/2 -

1/2 term appears only in Alm and Azm; and (3) a given term such as

+ 4 : : ’
3/2 -5/2 contributes to the various Azm such as AZO and A40 in

proportion to numbers calculable from C-G coefficients (in this case

A, 32 - 57254, (328 - 5721 = 1)
20 40 2/5
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PART II

INDEPENDENT PRODUCTION OF PIONS



-60~-

I. Introductiodon

The phenomenology of inelastic reactions at high energies is
unavoidably more complicated than that of two-body scattering. There
are typically a bewildering variety of variables upon which the scat-
tering amplitudes may depend. It is unclear which variables, if any,
are of particular significance. The absence of a theory of strong
interactions precludes a priori knowledge of which features should be
expected to dominate the data. Our present understanding of two-body
scattering suggests the existence of a number of competing effects in
inelastic reactions, but, so far, few have been unambiguously identi-
fied.

Despite these practical difficulties, it is clear that inelastic
reactions are important to an overall view of the strong interactions,
if only because they are related by unifarity to two-body scattering.
In fact, this. connection provides some insight. The s and u chan-
nel reactions have differing degrees of resonance formation and yet
there is an apparent asymptotic equality between s and u channel
inelastic cross sections. This suggests that direct channel resonance
formation accounts for only a small portion of the inelastic cross
sections at high energies. It is also apparent from the sizes of dif-
fraction dissociation cross sections that they, as well, constitute
only a small fraction of inelastic reactions.

For the remaining majority of inelastic reactions a variety of
widely divergent models have been proposed, each attempting to

describe some aspects of the data but with little predictive power. It
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is preferable to discuss the model independent statements that appear
to characterize inelastic reactions. In this introduction we shall
review the salient features of the data and the experimental situation
that motivates the work of this thesis. These points shall be illus-
trated primarily with the published and unpublished data of the
ABBCCHW collaboration(l’z).

We begin by examining the distributions of final particles in
momentum space. These are commonly expressed in terms of the momenta
along and transverse to the direction of the incident particles in the
center of mass of the collision. In Fig. 1 we exhibit the average
longitudinal and transverse momenta for various configurations of final
particles resulting from T p collisions at 16 Gev/c. This figure
illustrates behavior common to most multiparticle reactions.

Instead of occupying uniformly the available phase space, the
outgoing particles have low transverse momenta whose average is
roughly 300 Mev/c. This average may. be estimated from the observed
total and elastic cross sections as follows. From the assumptions that
the elastic amplitudes are purely imaginary and vary exponentially with
t , which we showed in Part I to be a good approximation at high

energies, one can derive that the inelasticities are given by

2
o 78T o
l-n, =4 sl exp-(’— _______el) (L)
i o] 2 2
tot k™ O
tot

The inelastic cross section for a given partial wave is

L 24D

inel kZ

(- np) (2)



77 p  INTERACTICHS AT 18 GeV/e

7 |
2.0L pri S p?_ﬁ‘f_{ﬂ'ﬁo R —
PH'AT e PIFLTT  moeooes
Pt 27T e D% 17545 ple—

(o)

. o ) ‘
v’r‘!‘!"rﬂ"’r‘f'ﬁ'?‘?"f’ﬁ"‘?""f‘f‘“"jt|x[11rv

‘ T P2t 3T —r—en pLrEi® — .
PROTON } v ,

T TS S U OO0 T LT T O VW 0 J T O WS S O O

AVERAGE TRANSVERSE MOMENTUM , GeVle
’ o

0
0.5F s 1
. |
O: ) K] | \ 1:
05 i I
: . [/ \ :
0t . ] ' 1 : plam i X ! ¢ 3

-2 ~1 0 +} +«2

AVERAGE c.m.. LONGITUDINAL MOMENTUM , GeVic

Fig. 1. Vectors of the average momenta of various particles in different modes observed

in the ﬂ_p experiment. Taken from Ref. 2



=45 T

Thus the radius of interaction for inelastic reactions is given

2

approximately by R~ = diot/Sﬂce The uncertainty in transverse

1

momentum is related to the uncertainty in position by

[T o
ot 1_ [__ el ,
bpp = 735z = R ° 9 (3)

O-tot
Using Otot(ﬂ p) = 23.5 mb and Oel/ctot = ,17, we obtain
ApT = 250 Mev/c . Despite the crudeness of this calculation, one sees

that the approximate magnitude of the cutoff in transverse momenta may
only be as fundamental as the asymptotic values of strong interaction
' cross sections.

Without making any assumptions, the statement that the trans-
verse momenta should be limited by the sizes of observed cross sections
can be justified quite simply. Note that in (2) unitarity limits the
contribution of a given angular momentum. To achieve Ginel of the
size seen experimentally, the number of partial waves which contribute
strongly should increase with increasing energy. By angular momentum
conservation the distribution of final particles becomes less and
less isotropic for fixed oinel as the energy increases, a phenomenon
which can be approximately described by fixing the average value of
Pp -+

Figure 1 also illustrates that outgoing particles with the
same quantum numbers as the incident particles fend to have longitu-
dinal momenta comparable to those of the incident particles, while the

other produced particles have longitudinal momenta which average

around zero in the center of mass. This i1s further demonstrated in
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Fig. 2 which is a scatter plot of the momenta in 16 Gev/c T p =
pﬁ+ﬁ—ﬂ—wo. One says that the two "leading particles' have momenta
near the limit set by energy momentum conservation, while the ''mon-
leading particles'" have low longitudinal momenta. The T distribu-
tion includes nonleading as well as leading pions.

It is possible that, except for the low transverse momenta,
the distributions of nonleading particles may be largely understood
in terms of phase space. The main products of high energy collisions
are pions, which is certainly the mode favored by phase space. The
peaking at low longitudinal momenta may arise from the relativistic
phase space ng/E enhancing the distribution of low momentum pions
in whatever frame we choose to view them. A more meaningful statement
is that the distributions are the most symmetrical when viewed in the
center of mass of the collision. If one assumes that the prime effect

of the dynamics is to restrict the transverse momenta, then the cross

section for producing a particle may be crudely approximated by

2
: dp., dp '
§ 2
¢ = J L exp(-pg/top) )
vV m2+ 2+ P2
Pg™ *,
Since the longitudinal momenta are limited by energy conservation to
Vs/2 dpy,
values less than vs/2 , this integral looks like f fg— at large
L

s . We thus calculate that the average multiplicities of produced

particles should be proportional to 4&n s , as is observed empirically.
Leading particles may also be resonances that are emitted with

low momentum trahsfers from the incident particles. An interesting

question is whether one can distinguish between nonleading pions
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and pions which result from the decay of leading resonances. Consider
the production of a leading N%* which subsequently decays into a pion

and a nucleon. The velocity of the N* is given by

. ~ poeT —-Zg at large s (5)

Then, the average longitudinal momentum for the pion is

mWV Vs m,’T
<p.> = = (6)

L 2
/1-v2/c2 Ty

For 16 Gev/c Tp collisions, a pion from N*(1236) decay would have

<PL> - 300 Mev/c which is the same order of magnitude as the longi-
tudinal momenta of nonleading pions. These pions should on the
average, of course, move in the direction of'the-incident N . A pion
from a leading P should have <PL>TT = 500 Mev/c and should on the
average move in the direction of the incident 7 . Higher mass reso-
nances would yield even smaller average longitudinal momenta for their
decay products. Hence, resonances could also produce distributions of
pions with predominantly low longitudinal momenta as aré observed
experimentally.

The model in which all inelastic reactions proceed via the
formation of leading resonances is termed the "two-fireball model".
The model in which the nonleading pions are considered to be the debris
left over from the collision of the two incident hadrons is termed

"pionization'". Various other models range themselves in a rather

smooth spectrum between these two extremes. Clearly, experiments at
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higher energies would agid greatly in establishing which, if any, of
these qualitative descriptions is correct.

Correlations may be observed in "inclusive" hadronic reactions
by measuring the n-particle probability distributions. Inclusive
reactions are those in which a few of the final particles are measured
and the rest are ignored. They are to be contrasted with "exclusive"
reactions wherein all of the final particles are measured. If P(kl)
is the single particle distribution and P(kl,---,kn) 7 the

n-particle distribution, the quantity of interest is
G(n)(k "'k)=P(k "‘k)—P(k)"'P(k)
iy >"n 1’ ’"n 1 n
which in the quantum theory of optics is called the nth order correla-

tion function. A state of produced particles in which the correlation

functions through order n are zero is called "nth order uncorrelated”

or "nth order coherent".
Since ‘inclusive n-particle distributions have not as yet been

measured, we will examine the evidence for correlations among particles

: : : ’ ’ ; ; ; : gt
in exclusive reactions. Figure 3 gives the dlstrlbutlon(3> in ™

. = s f I ;
invariant mass for w p ~> 37w ,2m ,p . Clearly, it is difficult to dis-
cern appreciable p or £ . Uncorrelated pions would naturally have

the qualitative behavior indicated, but it may be that the various
resonant effects among the final particles are difficult to resolve.
To test further the absence of second order correlations, we should
ideally look at a six-dimensional plot of two pions. Instead we
restrict ourselves to a check of the correlation between longitudinal

(1)

momenta. Figure 4 shows the longitudinal cénter of mass distribution
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+ - - 4+ - - ) ,
of one T in Tp>Tph TTWTT for several choices of the longitu-

dinal momenta of the other W+ (these choices are (0,-0.1 Gev/c),
(-0.2,-0.3), (-0.4,-0.5) for the three shown distributions). The
general trend is a uniform decrease in agreement with uncorrelated
production. One may argue that since W+ﬂ+ is an exotic channel it
should not exhibit strong correlations whereas the ﬂ+ﬂo channel
should. A similar check of ﬂ+ﬂ° shows a far less regular behavior
than Fig. 4. ©Nevertheless, it is still true that the bulk of the
events are concentrated around low longitudinal momenta in the center
of mass. We may conclude that uncorrelated production may be a crude
approximation to the data. |

We define the emission of pions as independent if the same
P(K) can be used in all configurations of outgoing particles. In
addition we take independence to mean that if the cross section for
producing n pions in a certain fraction of phase space is propor-
tional to

&k, .
T TR0 e g PG )

the cross section for producing n+1 pions is proportional to

d3kl d3kn d3kn+l
—2“w°- fP(kl) co 50 fP(kn) o fP(k
1 n n+l

n+l)

fP(ﬁ) may in principle depend on the charge of the pion, but is sup=
posed to be fixed for any given momentum of the incident particles.
If the emission is independent one expects to find distribu-

tions of many particle events similar to Poisson distributions. The



" .

(1)

distributions for charged particle production are given in Fig. 5,
and are well described by Poisson-like distributions. Of oourse,
independent emission is not the only explanation for these distribu-
tions, but it is suggested. TFigure 6 shows the center of mass
longitudinal momentum distributions(l) of the ﬂ+ in two different
configurations. The similarity between the dominant features of these
two curves would also be implied by independent production of ﬂ+ .
We may also expect independence to imply that the energy dissipated
into the pion cloud is proportional to the number of produced pions.
Consequently the energy of the leading particles will decrease with
increasing pion multiplicity. Figure 1 demonstrates that the average
momenta of the proton and leading w  indeed follow this behavior.
The other pions' behavior does not change nearly as drastically.

We are thus led to consider as a possibility that an approxi-
mate phenomenological description of multipion production at high
energies may Be that pions are produced independently and are essen-
tially uncorrelated. Such descriptions have in fact played a signif-

icant historical role in the development of our current ideas
concerning the relation between elastic and inelastic reactions.
Beginning with the pioneer work of Van Hove<4), attempts have been

made to calculate via unitarity observed properties of elastic scat-

tering from assumed models for inelastic scattering. In specific
d
9a3

dt

has been "derived'". It has also been possible to connect constancy

uncorrelated models the experimental linearity of n in £

of the average transverse momenta to the asymptotic constancy of

total and elastic cross sections, as we have in the intuitive
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arguments presehted above. Many models with approximate independence,
known as ''factorable" models, achieve Poisson-like distributions for
the n-particle cross sections.

The question we address in Part II of this thesis is an
obvious one. To what degree can independent emission of uncorrelated
pions be true when there are some obvious constraints which must be
obeyed, i.e., four-momentum conservation, charge cohservation; parity
and charge conjugation invariance, and isospin conservation?

A state of pions uncorrelated to all orders, emitted indepen-
dently, and in which also the phase of the pion wave function (whose
norm is fP(k)) is fixed as a "coherent state'. This phase is
obviously unmeasurable, since measuring cross sections involves looking
at the square of the pion wave function. This phase will be important
when we discuss the isospin question. As an example of independent
production of uncorrelated pions, we will discuss in the next section
how a coherent state may be employed in a scattering matrix descrip-
tion of many pion production(s). Since we apply the method to the
description of pions emitted with low energies in the center of mass
of the collision, it can be called 'coherent pionization'.

In the following sections we will systematically discuss the
effects of strong interaction symmetries on independent emission, and
we will examine briefly independent emission of two-pion resonances.
Several results will be achieved for which we will give model-
independent justifications.

A word about the relation of our work to other models for

multipion production; currently fashionable proposals such as the



B

multiperipheral model and scaling in inclusive hadronic reactions
concern the distribution in momentum space of the produced particles.
Inasmuch as we focus on the effects of symmetries and conservation
laws, our work is complementary rather than orthogonal to the other
approaches. The single particle distribution will be irrelevant to
our considerations, and we will make no proposal concerning its
behavior.

Sections II and III discuss the emission of a coherent state.
Section IV concerns the distribution of pions resulting from charge
conservation; Section V, parity and charge conjugation; Sections VI
and VII, implications of isospin conservation; Section VIII, two-pion

correlations such as resonances; and Section IX, conclusion.
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II. The Coherent State

A coherent state of bosons is quite unique in its physical
interpfetation and mathematical structure. It is the quantum mechani-
cal state that is closest to a classical system in its dynamical
properties(6>. Thus, a coherent state of particles is the quantized
description of classical radiation of the corresponding field. It is
used in describing electromagnetic radiation in quantum optics as well
as in the analyses of bremstrahlung and the related infrared
catastrophe(7>. In the present section we apply this concept to
pions. For the moment we will disregard their quantum numbers and
use only the fact that they are bosons. Modifications introduced in
the following sections can be simply implemented within the formalism

of Sections II and III.

We start with creation and annihilation operators satisfying
S 3
[a®),a"&N] = 2x_(2m3 6D @-B) (8)
Then a coherent state of bosons is defined by

a(®)|£> = £@|£> (9)

>
where f(k) 4is the momentum space wave function for each boson, k
. ‘ 2 2 > . :
is the four-momentum and ko =w=Vk™H u . f£(k) is a relativistic

invariant function of k . The solution to (9) is given by

£> = e [ an@® 1£®a’ B - 22| %1} Jo>

exp{ [ au® [£@a’ (&) - £x®a@)1}]0> (10)



o

where du(k) = dzk/Zw(Zﬂ)3, and we have normalized [f> so that

<flf> = 1 . The basic equation (9) gives the clue to the classical
behavior: the expectation value of a second quantized boson field
within the state |f> will be given by a classical field with momentum

distribution f(k)

The expectation value of the four-momentum operator PU is
<flp £> =< f|f du<K>kua+(K)a<K)|f>»= f du(i)kulf<i>|2 (11)

Obviously ]f > 1is a combination of all n-particle states, i.e., if

W= f au( @ |

B G 17 AU T T . ik~ "N
= J du (e ) du(kn)|<kl knlf>] =B (12)

a Poisson distribution in n .
In dealing with the production of a coherent state we have to

project out of it the piece that corresponds to a definite four-

momentum K . We will denote this new state by ]f,K> . It is given
by
|£,k> = = A J d4x N exp{—'%+-J du(ﬁ)f(ﬁ)aT(i)eik'x}|O>
(2m)
(13)
and obeys
4 -
dK |[£,Kk> = |£> (14)
-1K e r 1lc e
< £]£,k> 2 p () = —1 f d%% &% oypf | du(® | £ |2 *-1))
2m

(15)
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<,k |£,%> = 649 e () (16)

The quantity pf(K) corresponds to the distribution of the
coherent state in momentum space. To see this we decompose pf(K) in

a series of n-particle contributions

[oe]

p @ = I ol = {6 @ +—5ltw | Do)

n=0 (2m)
el 2 22 2 2 2
+ éz J d4klf(k)| £ (K-k) | 76 (k“=u“) 8 [ (K-k) “-u ]e(ko)e(Ko_ko)+,,,}
(17)
Equation (17) reveals the momentum spectrum one would expect: a
2 2

contribution at K = 0 from the vacuum component, one at K =y
from the one-particle state, and a continuum that starts from the
threshold of two particles.

For the sake of further use we also list some properties of

scalar products of two different coherent states:

<g|f> = exp{ -'% J du(§5(|f]2+ lglz‘ 2g%£) } (18)

Equation (18) shows that two different coherent states are not
orthogonal to each other (they are not eigenstates of Hermitian
operators). Nevertheless, they do form an over-complete set(6). The

analogue of (15) is

<gl|f, K> = pg f(K) = (21)4 J d4x e Rl exp{—'% J du(k)(lflz+|g]2
? T

- 2g*f eikx)} (19)



iy

The calculation of quantities like pf(K) or p;(K) is

n .
not an easy matter. Thus pf(K) can be rewritten as

mJl

k) = S | auyeedudt Y@y |2 254 ke =
PR = f du (k) du(kn)lf(kl)] If(kn)] 8§ (oo +k_—K)

(20)
To simplify matters we can define normalized distributions O?(K)

such that

: - 0 . =5
oltxy = & L2 o) f d'% pg(®) = 1 (21)

One can then use the central limit theorem to find that

an(K) s A YOSET exp{— 2. (KU_ﬁEU)cKV_ﬁEV)} ' (22)
£ 2 2 2n YV
n- 4m
where
1 - Ty P
W= :J dp (R KM | £(k) |
n
(23)
n .
v V=N, O o 2 i o
%},Jm—k>w-k>u&ﬂdmm= N
n
This result was given by Van Hove(4) and the corrections to the
approximation (22) were analyzed in detail by Lurcat and Mazur<8).

Let us discuss here briefly the expected form for p? if f£(k) has
the characteristics of the distribution functions described in the

introduction. A reasonable guess would be k = (6;0) with nUV a
2

diagonal matrix with elements (Géz, G; 5 Oiz) where T and L desig-

nate transverse and longitudinal directions respectively. There is

2 2 2 2

obviously a connection given by o = 2GT = UL =t uz— w “ . It then

follows from (22) that
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= 2 2 2

= (K - nw)

PH) = 5 EXP{" e ] (24)
n~ 4T C UEO'L ZUE ZGT ZCL

H3ro |

Equation (24) tells us that the overall distribution of pions is peaked
around a linearly increasing energy with an increasing width as expected

from a typical random walk problem.
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ITI. Emission of a Coherent State

In this section we discusé a formalism that describes a process
in which the two incoming particles (with momenta 4y and q2) pro-
duce two outgoing leading particles (with momenta Py and p2) and
n mesons of momenta kl’.'.’kn which are part of a coherent state.

‘For the moment we continue to ignore the quantum numbers of the
pions. We propose now, in analogy to the bremstrahlung case, the fol-
lowing S-matrix structure.

<plp2kl-..k [S|q q,> =1 J d4x eix‘(pl+p2_ql—q2)
n 172

ikx\ > r
<pypky vtk |S(fe)T|qq,> (25)

To the extent that the incoming particles are not mesons of the kind
appearing in the coherent cloud (or, if they are such mesons, they
have momenta outside the range of £(k)) independent emission means

that the S-matrix can be brought into the factored form

. 4 4 (4
<pyPok;t k [S]qiq,>= 1 f d 'K(2m) 5¢ )(K+ P1tP,=477d,)

<ky ek £,% <plp2]51qlq2> (26)

~

T acts only on fhe leading particles qquPlp that form what we

2
call the "skeleton'" of the process. It can thus depend on the

invariant variables:

2 - 2 2 - 2
S:‘(ql+ q2> Y S=(P1+P2) > t=(ql"Pl) 3 t=(q2'P2) s’

u = (ql—pz)2 y U= <q2’P1)2 (27)



st t+udtntEdn =B 3 (28)
where
L o B 2. 3 3
K=aq+t 49" P~ Py £ = gy ta,tp te,

Note that f(ﬁ) is an invariant function of k and depends there-
fore on the four momenta of the skeleton. We refer to this fact by
using the notation qu(ﬁ).

The form (26) leads to the following result for the cross sec-—

tion of n meson production
0, = | (dp) 0% (ay*+a,~p;-p,)|<p|T|q>]? (29)
2+n qu 1"*2 1 *2

where (dp) stands for the invariant phase Space element of the out-
going leading particles and the relevant flux factor. Equation (29)

is formally similar. to the two-particle production cross section

o, = f <dp>§(“><ql+q2~pl—p2>l<pIqu>12 (30)

with the pn replacing the 6-function. Thus again we see that pn
describes the distribution of four momenta absorbed in the mesonic
cloud. We will discuss later whether the recipe (29) can be smoothly

continued to n =0 to give 62 = 0 vwhere

QR
It

f (@) b (ap+a,p;-p,) | <p|T|q>|?
Pq (31)

ey _
f (dp)é(a)(pl+p2-ql-q2)e Pd|<p|T|q>|?

Equation (24) told us that we may expect pn(K) to be concentrated



=

around KO==ﬂa, K=0. If we assume *<p]§]q> is independent of K2
then, at least until the end of phase space is reached, we can
approximate (29) by
4 n &), 2 2
Oppr = J(dp) d'K pp (K& (R+pytpyma;=a,) |<p|T|q>]
Pq
4 = = 2 4
« [ @@ err-ololilel? [ e} ©
_ Pq
pq (m )"
4 2 e
= f(dpw‘ ) (p-) | <p|T] > | ———PL (32)

which means a Poisson distribution for the differential cross section

LE, further, n depends only on q we have

)

- |
. S m ¢ | (33)

2+n n!

This calculation makes sense only provided phase space restrictions
can be avoided; in other words, if the numbér of pions is smaller than
the maximum allowed by energy conservation mw < s -m= m, . This
works best for an .f(ﬁ) concentrated around the c.m. with a narrow
width. TFor high n that violate this inequality, we have to expect

distortions of (33).

By "elastic skeleton" we mean that the outgoing particles are

the same as the incoming one. This does not imply 02 =0 . An
"inelastic skeleton' can have resonances among its outgoing particles.
For elastic skeletons Fig. 7 gives experimental evidence(3> that (33)

cannot be extended to n =0 . In all other multiplicities the reac-
; ; ) : ;
tions without a T form a small minority of the events. We have

therefore to rely on unitarity to give us the elastic amplitude in terms
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of the inelastic reactions. As a crude approximation one may consider
a model in which all inelastic reactions are described by (26) with an

elastic skeleton. Unitarity then leads to

: T =y 1 4
1[<pp, T [aqq,> - <plple!qlq2>]-I du(pl>du<32)(2ﬂ)

4 Tio ,
x 6 %pi-+p§j-ql—q2) <pyp,|T [p1py> <p1P5[ Tl 9> (34)

[}
- - 4
= ] [ du(pddu(py) (2m” oz o (gy+a,~p =P
=] pp''p'q

< <oy, 1loppy <eip;ltleg,>

where p? £ is the object of the type defined in equation (19).
pp' 'P'q

The right hand side of (34) is analogous to Van Hove's "overlap

integral' that determines the t structure of the elastic amplitude.

(4)

In fact, Van Hove used a formalism similar to the one presented
here to show how the properties of elastic scattering are correlated

with the properties of inelastic scattering.

At this point it is interesting to see how the bremstrahlung

theory solves the unitarity problem(7). The function qu is given
in this case by
(2ﬂ)3/2f (E) = el g°p, + e! €°p, - e, €°q, - e, €°q {35)
Pq 1 1 2 Z "1 1 2 2
k'pl » k'pz k'ql k'q2

where ei's are the various charges and € the photon's polarization
vector. Clearly £ is peaked around k=0 and the whole treatment

is valid in QED only in the limit k - O . Then it turns out that



indeed

. -n_/2
<p|T]qg> = <p|T|q> e P4 ‘ (36)

and unitarity is satisfied provided T satisfies elastic unitarity.

To see this we rewrite (34) as

if<p|T [q> -<p|Tlq>] = J du(?i)du<$é)<pl'}+|p'> <p'|T|q>

3>
A A 1 [ K ;) 2
x (2m) j d'x exp{— > J o ([fp,p! - ]fp'q!
. o ix(pltpi-q,-q,)
_ 2f*, elk X ¢ ' } 5 152 *1 *2
p'p p'q
Replacing the e~ * in the integrand by 1 (the limit k - 0!) we

find
] -n_ /2 5
ip|T' [q> -<p|T|q>] = e P9 Jdu(gi)ducgé)q]ﬁ[p»
x <p'|T|q> (2ﬂ>46<4>(pi+p§—ql-q2) (37)

which shows the énsatz (36) works provided <p|%|q> obeys by itself
a unitarity equation.

There are clearly several important differences between the
formalism of bremétrahlung and the emissioﬁ of the mesons in high
energy collisions. The first is that experimentally the identification
(36) is invalid. Another is that the limit k -~ 0 is not justifiable
and cannot be obtained with massive (and energetic) mesons. This can
be circumvented by having a skeleton matrix element that does not

vary significantly with K . A very important third difference is that



ol o

we may choose £ to depend on ¢q only. In the introduction we

show characteristic distributions that depend on kT and kL .
These variables can be given an invariant definition in terms of
k‘ql, k‘qz, 919, and the masses involved. Thus, present experi-
ments can be described approximately without a p dependence. This
makes it possible to go from (32) to (33) and get simple relations
for integrated cross sections.

The explicit construction of an example of coherent production
shows that independent uncorrelated emission can take place. Coherence
is also a statement about the phases that are not directly measurable.
They will, however, be important when we discuss the isospin question.
The easiest things to measure are of course the cross sections. Their
distributions, suggested by equation (28), Vill get modified in con-
sideration of the quantum numbers of the pions to which we turn in

the next sections.
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IV. Distributions of Charged Pions

The second constraint we will consider is that of charge con-
servation. In the'model discussed in the previous sections, the
coherent state must have a fixed electric charge that matches the
charge of the skeleton. This is not true of simple charged coherent

states

> = e - 3 [ )% [ e daleo} lo>
for i = +,0,- (38)

One way to deal with the problem can be to start from the state

F¥ = {(f.2 [fo> £ > (39)

and project out the required charge. An alternative is to define a

state |f+f_,Q> obeying the equation

> - l £ — - - If £ 5
which has definite charge Q . This is analogue of equation (9) and

can serve as a definition of a coherent state of charged particles. The

solution to (40) is

|£,£0> = ¢H2 ! R TaT (] ancoe, @a) )™

( j e @a @) |o> (41)

where the sum starts from n = 0 for positive Q and from n =-Q

for negative Q . The normalization constant C turns out to be



"

G = (-—i)QJQ(Zix) (42)
where
«? = j aud £, @ |° Jdu(i)]f*(i)ﬁ (43)

It is straightforward to show that the projection of [F> onto a

specific charge Q does indeed contain this state. It is
|£.Q> = [£ > [£.£_,Q> (44)

which we will regard as the right choice to take the place of ]f >
in equation (26). The distribution of charged particles that results

from this state is

' .Q _2nt+Q
Q _ (=@ _ i~ x
Pe = Tk TQ(Z0n! () ! | (45)

One can, however, give an argument for the validity of this
distribution independent of the specific model that suggests it to us,
as follows:

Most inelastic reactions at available accelerator energies
involve primarily the emission of pions. One can argue that the
gross features (multiplicities) of the events should be independent of
the specific prodgction mechanisms, which suggests that one should
approach the problem on a statistical basis. There are several overall
constraints that have to be obeyed by the system, namely, momentum,
isospin, and charge conservation. Since experimentally the emitted
pions occupy a small fraction of the available phase space, we expect
momentum conservation to be a weak constraint. By summing over all

neutral pions, we may expect the constraint of total isospin
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conservation to be weak also. We are thus left with the obvious con-
straint of charge conservation.

It is quite straightforward to arrive at the desired distribu-
tion. If the pions are emitted independently one would expect a
Poisson distribution for each kind of pion. Because of the charge
constraint we ask for the conditional probability of emitting n
positive and n negative pions simultanepusly. If the Poisson dis-

tributions for the positive and negative pions are given by

-x, 0
+ = (%)
P o B (46)
n!
the resulting distribution for n charged pairs is(9)
2n
1 X
P = n 7
n JO(le) (n!)2 ’
where x2=x+x_ . It follows that
<n>= Z nP = -ix ———— (48)
n Jo(zix)

n
which gives a one-to-one correspondence between <n> and x . We

find also el = 2

2
. k2l )
¢ m<p®> ~ <ndC = x2 (1+ I S (49)
: JZ(Zix)
o
For high values of n , one can use Stdirling's approximation to show
that
1 {2y~
n Jo(le) (2n)!(2n)l

/2 ' (50)

which differs slightly from a Poisson distribution in 2n .



-9]-
In Fig. 8 we compare the predictions of equation (47) with the

(10)

data compilation by Wang of many ﬁip,pp, and nn inelastic produc-
tion experiments below 27 Bev. The number of charged pions (nc)

should be related to our n by n, = 2n+2 (in the case of nn collisions
n_ = 2n). The data are assembled in a way that tests just the character
of the distribution, namely, it is a plot of the probability for a cer-
tain n, to occur provided <nc> is given. Hence there is no free
parameter to be adjusted. Wang tried to fit the data with two of the
distributions shown in Fig. 8: WI is a Poisson distribution in

1 I , . : ’ . ; ;
-E(nc—Z) and W is built of the even terms in a-Poisson distribution
in nc~2 . The data points seem to follow a universal curve that is not
very well reproduced by either WI or WII. Although WI‘fits the low-
nC and low—<nc> region, it fails at higher n, and higher <nc> .

We note that the curve of distribution (47) does depict correctly the
experimental behavior.

In view of the success of distribution (47), we mention at this
point that in plotting all the experiments together, we are closer to
the case of a statistical ensemble. One may expect that some remnants
of the momentum and isospin constraints are still left in any particu-
lar type of experiment. We anticipate that higher statistics experi-
ments will show deviations from universal curves for individual reac-
tions.

The agreement achieved in Fig. 8 raises the question of whether

this can serve as proof that all the reactions are mainly of one type,

namely, A+B - A+B+pions, where obviously the pion cloud is neutral.

Q)

In order to answer that, we look for the probability Pn

of finding
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n+Q positive and n negative pions. This will then correspond to the
expected behavior from a cloud of pions of overall charge Q . Fol-
lowing a similar line of reasoning to the one used above we find

equation (45) where

<ng> = -ix JQ+1(2ix)/JQ(2ix) ' (51)

In Fig. 9 we plot the predictions of P (2) in the

0) p(D) 4

same way as in Fig. 8. It turns out that they all coincide in the
region where most data points are available. This may even be the
reason for the universal character of the experimental data. For

example, in T p reactions, one finds outgoing '"leading'" particles

m and p following the initial momenta of the incoming ones, and a

cloud of pions with relatively low momenta in the center of mass

5(0)

system. This cloud of pions should fit the P description.

However, as the multiplicity increases the leading T  loses momentum

and eventually will be indistinguishable from the T particles in the

(0)

cloud. Thus one should perhaps expect a smooth transition from P

(1)

to P . We will discuss this question further with respect to the

implications of isospin conservation.
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V. Parity and Charge Conjugation

Questions of parity conservation are invariably intertwined
with the distribution in momentum space of produced pions, which we
do not care to speculate on here. However, given a specific dis-
tribution the effect of parity conservation can be established. For
example, consider the extreme case of isotropic pionic distribution
f(ﬁ) = £(k). Then clearly the transitions in the skeleton conserve
j . However, in the case of an even number of pions we have even
(odd) 2 - even (odd) & whereas if the number of pions is odd we find
even(odd) 2 >odd(even)? . Hence, in the emission of an odd number of
pions in this limit a spin transition must be involved. One expects
that the more spins there are in the skeleton the easier it is to
emit pions independently. It is interesting to note in this connec-
tion that the direction of the inequalities in Ginel(ﬂﬁ) < Ginel(ﬂp)
< Ginel(pp) is also that of the number of spins involved.

Several selection rules arise from charge conjugation consid-

erations. Thus a skeleton of four pions can be connected only to
even numbers of bions, which is the same condition as that of parity
conservation in the case of isotropic pions. A neutral system of
uncorrelated pions with identical momentum distributions has positive
charge conjugation. Thus it cannot couple, e.g., to e+e~ (via a
photon). Similarly Eb annihilation at rest is restricted by charge

ST -

conjugation. Both e e and pp annihilations are different from
mp and pp collisions, because in annihilations it should not be
meaningful to distinguish leading from nonleading particles. Our

conclusion is that uncorrelated production is possible in systems



O~

such as elastic scattering where charge conjugation and four-momentum

conservation are not severe constraints.
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VI. Isospin Analysis of Identical Pions

As a necessary preliminary to our discussion in the next sec-~
tion of the implications of isospin conservation, we develop here a
formalism for the isospin analysis of pions with identical momentum
distributions. We limit ourselves to identical pions, since this case
may be treated in an elegant and simple manner, but a similar analysis
is possible for non-identical pions.

We start by defining a normalized momentum space distribution

¢(£} satisfying

f au@ Je@1]%= 1 (52)

The fact that the momentum distributions of the pions are identical is

summarized in the assumption
- -
£, = £.400) ,  1=+,0,- (53)

where the fi. are three constants. The magnitudes and phases of the
fi determine the isospin structure of a definite combination of iden-
tical pions.
Let us now define three operators
+ o> > T > '
a, = f du) oy, (54)
which obey the commutation relations

The isospin generators for a system of identical pions can be simply

expressed in terms of these operators



-> + >
1 = a, T.. &, (56)
i i 73
where

0O 1 O 0-1i O / 1 0 O

Tx = ey 1 0 1 Ty =-§t i 0. -1i Tz = 0O 0 O

210 1 0 230 1 0 0 0 -1
(57)

The number operators are

. -
N, = a; a N =N+ N +N_ (58)

The bilinear isoscalar creation and annihilation operators are

-+ -+
A= aa, + 2a+a_ [I,A] =[I,A]1= 0 . (59)

The three operators play a key role in the isospin analysis. They

close on the algebra

[N,A] = -24 N,AT] = 27 [AAT] = 4N+6 (60)

Their importance stems from the fact that the operator 12 can be

written in terms of them as

-+
1% - N(N+1) - AJFA (61)

It follows from (61) that a state of n identical pions will have

isospin I = n 1if and only if
AL =n,n> = 0 - (62)

One may construct such a state by using
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T T T T
T = -a_ + /§~ao + a (63)

which obeys
1 B PO _ = Ty
E-[A,l ] = a, + V2 a-a_ = u, [U,T'] =0 (64)

Because of these properties it is evident that

ACTH®0> = 0 (65)

ol
Hence every Iz projection of the state (T')n]O> has an isospin
of I =n . Actually this state contains all 2n+l Iz projections.

From (65) we obtain

I +p
II =n,l ,n> = B—l/2 z L (-ai) z
“ p (I _tp)!ip!(n-2p-I )!
Z . 2z
+ n=2p-I o
x(V2 a) Z @hH? |o> (66)

where the sum is over all integer p such that the factorials can
be defined. B 1s a normalization constant equal to

n—2p—Iz

2
- nl)” 2
B= ) (T_+p) 'p! (n=2p-1 ) !

(67)

A system of identical pions can include in addition to I=n
also all isospins of n-2, n-4,°*** down to O or 1. All together
these form -%(n+l)(n+2) states, characteristic of the completely
symmetric combination. We can prove that this is the case by direct
s

construction of the isospin states. We have already seen that A

is a creation operator of an I=0 system, indeed
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1T = 8, netns = ——i— @hi® s (68)
Y (2m+1) !
The general state is then
11,0 = 2mtI> = D'l/z(A"‘L)m [T,I,,n = I> (69)

D 1is a normalization constant equal to

& nl Tm+1+3) |
D = 5 70)
'z + '5)

The states (69).form an orthonormal system as may be seen by using
(64). Simple calculation of the number of states shows that we con-
structed in this way all possible isospin states of identical pions.
Let us apply this formalism to the coherent state |F> of
equation (39) as an example of independent.uncorreléted pions. We

have

AlF> = (g2 + 26,5 )|F> " (71)

]

We see that if we choose fi —2f+f_ we have a coherent state which

contains only states with I n , i.e., this choice of phase leads

to maximal isospin content. In general

1% = 2g|TP|p> = SMewD) - [f§+2f+f_12 (72)
where
n=<EN|E> = |, % |2 [P | |2 - (73)

-
It follows from (67) that <123> is minimal if

arg(fi) = arg(f.£ ) and |f+] = |£_] (74)
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These are also the conditions that ensure that the state ]F > has no
>
preferred direction in isospace ‘<F]I]F3> = 0 . Thus the minimal

value is achieved by random walk in isospace

-—)-2 —
<I™> = 2n (75)

min
We believe that in general a cloud of independently produced pions
will have no preferred direction on isospace and so will have distri-
butions in isospin whose average is given by (75).
Consideration of non-identical pions cannot give a lower

2 . . .
value of <I"™> ., 1In this case, direct computation leads to

£T% w 3m 4 [ Jdu(E(Ier(i)]?‘— £ @& 512

> o5 > > - 2
+ o [ ando regpde, @ - e (76)

The minimal value is again achieved by (74) which is equivalent to

saying that all the fi in (53) are relatively real.
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VIL. Implications of Isospin Conservation

Isospin conservation has two major consequences: 1) the iso-
spins of the pion cloud must match the isospins of the‘skeleton, i.e. Tp
can emit up to I=3 and pp up to I=2 for elastic skeletons; and
2) the amplitude for the emission of a charged pion cloud is related
by the Wigner-Eckart theorem to the amplitude for the emission of a
net neutral cloud of pions.

Obviously a coherent state of identical pions contains all
isospins and cannot exactly satisfy condition (1). The question of
the severity of the isospin constraint concerns the degree to which
a coherent state can approximately match the isospins of the skeleton.
The result of equation (75) looks quite pessimistic in this regard.
However, we should remember that |F > contains all possible L,
projections. By limiting ourselves to lf,Q = 0> the situation
improves considerably. The calculation in this case is more difficult
because [f,Q = 0> 1is no longer an eigenstate of a, and a_

<+

separately. It is, however, an eigenstate of A
2
Alf,Q> = (fo+2f+f_)]f,Q> ,aolf,Q> = folf,Q> (77)

Again we have limited ourselves to identical pions and retain the
freedom to play with the phases and magnitudes of the fi . The

parameter of interest is

2
E=n g lEF (78)
By choosing & = 2 we reach the maximal isospin state. In Section

VI we learned that minimal growth of <Iz> with n is achieved for
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negative & . Before turning to the numerical evaluation we would like
to point out that suitable choices of & can eliminate a particular
isospin altogether from any combination of identical pions. To see

this, note

(26)F
(79)

~ _ -1/2 n n!
<I=mn, I=0,n[f>=3 "“<0[f> (/2 ) g1ﬂmeQw!

Hence a suitable choice of & 1leads to <I=n, Iz=0, n[f> = 0 . Once
this is achieved it follows from (65) that all < I,Iz=(), n+2m|f> =0 .
The choice & = -1 eliminates I = 2 and the choice & = -3 elimi-
nates I=3 .

Let us now turn to the question of minimal isospin content. We

choose f+f_ as real and denote it by x==f+f_ . We then find
L, bxd (2ix) , =, ) )
<I™> =—]jo—(-él—x)—-(l+lfol ) ——T]:)—(—Z—:B-{)——"ZX +2!fol +4Re(fox)
(80)
: 2le(2iX) 9
<n> = <f|N!f> =—,—‘———.——+|f ] =2<n ,> +<n >
1JO(21X) o ﬂ+ i

‘ >
The results for <I> wvs. <n> , where <I>}I+1>= <I%> are plotted
in Fig. 10 for several values of & . We see that for negative §

they all lie close to each other obeying

2
<I“> = <n> (81)

Thus by going from the state |F>' to [f,Q = 0> we gained a factor
>
of two in the minimal value of <12> . This is of course essential in

order for independent uncorrelated emission subject to charge con-

straints to remain a good approximation to the experimental situation,
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Fig. 10. Plots of <I> vs. <n>for various choices of the

parameter § in the coherent state ]f,Q = 0>
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and we see the importance of the phase of the pion wave function in
minimizing the restrictions isospin conservation places on independent
emission.
The absolute value of & dis the asymptotic (i.e., for large
<n>) ratio of the number of 7° to the number of W+. Therefore we
do not consider values that are too far from unity. In Figs. 11-13

we show the distribution of <I> for various choices of & . Figure

11 shows that for & = -0.5 all isospins higher than three are strongly
quenched. Figure 12 has the choice & = -1 that eliminates I = 2 "
and Fig. 13 is drawn with §& = -3 that eliminates I = 3 . In all

figures we see the important roles of low isospins for the presently
observed ranges of <n> .

A similar calculation leads to the distributions of specific
isospin values in the n-pion configurations. Figure 14 shows these dis-
tributions for & = -2 where I = 0 and 1 are important values. The
relative amounts of the low isospins change slowly with & . We see
from Fig. 15 that although the leading terms have low I spin values,
one still encounters sizable contributions from forbidden isospins.

We conclude that insofar as a cloud of identical uncorrelated
pions is produced with no preferred direction in isospace, isospin con-
servation is a weak constraint compared to charge conservation.
uHowever, the approximation of independent production becomés less
accurate with increasing =n and increasing <n> . With regard to the
second consequence, the exact manner of satisfying this depends on the
details of the isospin recoupling coefficients which is a model depen-

dent problem we do not give a prescription for solving here.
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n particle states included in lf,Q = 0> plotted vs. n
for the choice & = -0.5 . Note the two types of curves
that describe even and odd isospins for even and odd n

respectively.
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VIII. Two-Pion Correlations

One possibility for eliminating the isospin problem alto-
gether is the production of pions in scalar isoscalar pairs.- This
of course requires different skeletons for even and odd pionic
reactions. As an example of independent production of isoscalar
pairs, we will examine the distributions that result from a coherent

state of isoscalar pairs satisfying

Alg> = g|g> _ (82)

The purely I = 0 solution is

m
- g g Tym -
18> = [oioh I%(?_m+l)! @ylo> -
m
= /Siih i y & |1=0, n=2m> (83)
m

Vv (2m+1) !

The n pion distribution is given by

1 g2m+l
sinh g (2m+1)! (84)

P(n=2m) =

One important property of (83) is that the isoscalar state has the

same multiplicities of all different charges

1
< > = £ > = < > = —=<n>
n oy - 0 3°0 (85)

The probability of finding r charged pairs in a state
|I=0, n=2m> is

m! m! 2m - 2r 4r
( )

R = Gyt Loy

(86)
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From (86) and (84) we find the probability for r charged pairs in

the coherent state [g >. 1t is

2r @
(), (28)" 2p+1 (ptxr)! 2
Pl‘ " sinh g pzo & (P! (2p+2r+1) 1} (2p)! (87)

Since ]g:> describes the production of neutral pion pairs, we may

expect it to be similar to WI of Wang(lo). The distributions

5(0)

p(8)
(g)

’

and WI are compared in Fig. 16 where we see that indeed P
resembles WI and both differ somewhat from the more successful distri-
bution P(O).

However, the major difference between isoscalar pair emissions
and independent emission is that now the probability of finding neutral

pions is correlated to that of charged pions. Using the fact that the

average number of pions is

<n> = g cothg -1 (88)

we may calculate the expected correlation of <n > wvs. r for fixed

o
™
<n> ., These correlations are shown in Fig. 17 where <n o is plotted
. - .
versus n_, =2+r in a way to be compared with Fig. 7. They clearly do

ch

not correspond to the trend of the data.

Note the ?esemblance between our curve and that achieved with
alternating I = 0 and I = 1 exchanges in a multiperipheral model.
Since such a model corresponds to emission of isoscalar pairs of pions,

(11)

this resemblance is to be expected. Caneschi and Schwimmer have
. . e + -
presented other schemes involving the inclusion of p and P pro-

duction within a multiperipheral model that achieve better fits to the
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=115~

data. That this should be an improvement should be obvious from the
fact that it introduces a positive correlation between neutral and
charged pions. As we may treat O production in an analogous manner

to the way we treated isoscalar production above, the success of
Caneschi and Schwimmer does not constitute evidence for the multiperiph-
eral model. Since the general trend of the data is at best only
slightly rising, we conclude that either (1) there is little correla-
tion in pion production, or (2) the various correlations are difficult

to resolve.
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IX. Conclusions

Our purpose was to study the degree to which pions emitted in
multiparticle production experiments can be independent and uncorre;
lated. As an example bf independent uncorrelated emission we
developed, in analogy to the bremstrahlung formalism, a model for
pion production in coherent states. We showed that, insofar as the
pion momentum distributions occupy only a small fraction of the
available phase space, four-momentum conservation need not affect
independence except at high multiplicities. Independence implies that
the particle production cross sections are approximately Poisson dis-
tributed in the number of particles. Unlike bremstrahlung, such
distributions cannot be continued to n = 0 to describe elastic
scattering. Charge conservation as the most obvious quantum number
constraint leads to modifications of the distributions for charged
pions that agree well with experiment. The effects of pafity are
sensitive tovthe assumed distributions in momentum space of produced
pions, about which we make no conjecture here. Charge conjugation
implies a number of constraints on neutral systems such as
e+e~ - pions or 7m - pions. One of the consequences of isospin con-
servation is that the isospins of the pion cloud must match the
isospins of the skeleton. We developed a formalism for the isospin
analysis of pions with identical momentum distribution and applied it
to coherent states. The fixed phase of the pion wave function is
important for minimizing the increase of <Iz> with <n>., The
minimum that can be achieved with independent uncorrelated piomns is a

random walk in isospace. In this case the dominant contributions at
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present multiplicities come from the lowest isospins. Thus indepen-
dent and coherent pions can be an approximation to experiment.
Finally, we studied the role of two pion correlations. Independent
emission of scalar isoscalar pairs of pions solves the isospin and
parity problems and gives reasonable distributions for charged pions,
but leads to negative correlations between charged and neutral pions
that seriously disagree with experiment. Emission of isovector pions
as well, as in recent multiperipheral models, improves the agreement
with the observed slightly positive correlations.

As we mentioned in the introduction, there are a number of
essentially model-independent statements that characterize inelastic
reactions. We have shown that the possibility of independent produc-—
tion of uncorrelated pions can be compatibie with basic principles at
the most only as an approximate statement. It is certainly not the
only way of achieving the experimental results which suggest it.

The distributions of charged pions, or topological cross sections are
relatively insensitive to the presence of correlations. Much more
sensitive are the distributions of neutral versus charged pions. The
present experimental status is compatible either with independent
emission, or with the possibility that there are various correlations
whose effects are-cancelling against one another. Similar considera-
tions apply to the interpretation of mass distributions and longi-
tudinal momentum distributions. Hopefully, measurements of the
correlation functions will help to resolve the present ambiguities.

We would suggest that whenever there are a large number of

competing effects a statistical approach is often a good approximation.
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It is in this sense that multipion production at high energies may
resemble the independent production of uncorrelated pions. Whether
in such a statistical approach the general quantum number considera-

tions presented here will continue to apply is an open question.



=119=

References

M. Deutschmann et al, ABBCCHW Collaboration; submitted to the Kiev
Conference on Elementary Particles, 1970, and unpublished informa-
tion. We would like to thank Dr. D. R. O. Morrison and this

collaboration for making their unpublished data available to us.

R. Honecker et al, ABBCCHW Collaboration, Nuclear Physics B13, 571
(1969) .

J. W. Elbert et al, Nuclear Physics B19, 85 (1970), and A. R.
Erwin, Report to the Conference on Expectations for Particle Reac-

tions at the New Accelerators, Madison, Wisconsin (1970).

L. Van Hove, Nuovo Cimento 28, 798 (1963); Rev.'Modern Physics 36,
655 (1964).

The possibility that pions are produced in coherent states or as
classical radiation has been suggested in several places. As
examples of different models based on this central idea we give the
following references:

H. W. Lewis, J. R. Oppenheimer, and S. A. Wouthuysen , Phys. Rev.

73, 127 (1948);

H. A. Kastrup, Phys. Rev. 147, 1130 (1966); Nuclear Physics Bl, 309
(1967) ;

M. G. Gundzik, Phys. Rev. 184, 1537 (1969);

P. E. Heckman, Phys. Rev. D1, 934 (1970);

C. G. Zipfel, Jr., Phys. Rev. Letters 24, 756 (1970).

R. J. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766 (1963),
For a general review and extensive list of references, see:

T. W. B. Kibble, Cargése Lectures in Physics, Vol. 2, edited by
M. Lévy (Gordan and Breach, 1968), p. 299.

T. W. B. Kibble, Lectures at Boulder Conference (1968), appeared
in Mathematical Methods in Theoretical Physics (Gordan and Breach,
1969), Vol. XID, p. 387.

F. Lurcat and P. Mazur, Nuovo Cimento 31, 140 (1964).



-120-
9. See also H. A. Kastrup, Nuclear Physics Bl, 309 (1967).

10. C. P. Wang, Phys. Rev. 180, 1463 (1968).

11. L. Caneschi, A. Schwimmer, SLAC-PUB-829 (1970), and SLAC-PUB-839
(1970).



