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AB ST RA.CT 

I. Tests for Helicity Conservation and Spin-Parity Selection 

Rules in Diffraction Dissociation 

A phenomenological discussion of diffraction dissociation is 

presented in which the development of experimental tests for its con

jectured properties is emphasized. Of particular interest is the 

problem of distinguishing between the behavior of resonances and 

background. Simple tests for the helicity, spin-parity, and internal 

quantum number selection rules proposed for resonance production 

would be possible only if the nonresonant background were absent. 

These would include an isotropy in azimu~hal angle test for helicity 

conservation and a symmetry under parity· inversion test for the Chou

Yang and Carlitz-Frautschi-Zweig rules. The more general and realis

tic case is that in which nonresonant background is present as well 

as resonances. It is found that a nonresonant pion exchange 

mechanism can account for the production characteristics of the broad 

low mass enhancements seen in present diffraction dissociation data. 

These include the variation of momentum transfer dependence with in

variant mass and the spin-parity of the enhancements. It is unlikely 

that this background obeys the selection rules expected of resonance 

production. Nevertheless, the rapid variation in phase and possibly 

high spins of resonance contributions when interfered with the slow 

variation in phase and predominantly low spins expected of a pion 

exchange contribution should make possible tests for resonance pro

duction selection rules given adequate statistics, 
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ABSTRACT 

II. Independent Production of Pions 

We inves t igate theore t ical limitations on the possibility 

that multiparticle experiments at high energies are dominated by the 

independent production of uncorrelated pions. A description of pion 

produc t ion in coheren t states is developed in order to systematically 

study the effects of conservation laws. Charge conservation leads to 

modifications of Poisson distributions for charged particle production 

in purely hadronic reactions that agree well with experiment. Other 

systems such as + -e e ~ pions are so limited by charge conjugation 

considerations that production of uncorrelated pious is ruled out . . A 

formalism for the isospin analysis of pious with identical momentum. 

distributions is developed and applied to coherent states. The fixed 

phase of a coherent state is important for -minimizing the increase of 

<I2> with <n> The minimum that can be achieved with independent 

uncorrelated pious is a random walk in isospace. In this case the 

dominant contributions at present multiplicites come from the lowest 

isospins so that independent and coherent pious can be an approximation 

to experiment. Finally, the role of t wo pion correlations is studied. 

Independent emission of isoscalar pairs of pious solves the isospin 

problem and gives reasonable distributions of charged pions, but leads 

to negative correlations between charged and neutral pions that seriously 

disagree with experiment. Emiss i on of charged isovector pairs of pions 

would improve t~e agreement with the observed slightly positive corre-

lations. It is concluded that the effects of the many possible corre-

lations may be difficult to resolve in the present analysis of existing 

data. 
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PART I 

TESTS FOR HELICITY CONSERVATION Al'ID SPIN-PARITY 

SELECTION RULES IN DIFFRACTION DISSOCIATION 
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I. Introduction 

Diffraction is commonly understood in classical optics in tenns 

of Huygen's principle. In the case of light incident upon an opaque 

object this principle states that the scattering may be calculated by 

supposing that the object radiates a field which exactly cancels with 

the incident field directly behind it. Thus, even if the opaque object 

absorbs all light which strikes its surface (no reflection) it must 

also elastically scatter part of the incident light. One may calculate 

that a black sphere of radius R will have an elastic cross section of 

2 
TIR • The absorbed energy is presumably dissipated by other modes of 

radiation. The entire process of absorption and reradiation .is ine-

lastic scattering, and one may calculate that the inelastic cross 

section for scattering on a black sphere will also be TIR2 . 

This idea may be applicable to the scattering of strongly inter-

acting particles as well. At high energies the cross sections for 

elastic scattering appear to approach constant values. The inelastic 

cross sections ate typically three to five times the elastic ones. 

One may achieve this result in a dif fractive picture by making the tar-

get particles perfectly absorbing but with opacities decreasing with 

increasing distance from their centers. To calculate elastic scatter-

ing one presu.~ably needs some model of how inelastic scattering 

(absorption) takes place. 

There is, however, another class of reactions with constant 

cross sections at high energies for which no analogue in cla~sical 

optics exists. Diffraction dissociation is the name applied to all 
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inelastic reactions with asymptotically constant cross sections. One 

component of diffraction dissociation may be resonance formation 

reactions of the type a+ b -+ a+ d where d subsequently decays into 

a multiparticle final state. The other component of diffraction dis

sociation may be nonresonant formation of multiparticle final states. 

Diffraction dissociation cross sections are typically less than ten 

percent of elastic cross sections. 

Since diffraction dissociation and elastic scattering share a 

connnon asymptotic behavior, they may also share a common dynamical 

origin. Presumably the study of one may give insight into the other. 

In Part I of this thesis we present a phenomenological discussion of 

diffraction dissociation in which the development of experimental tests 

for its conjectured properties is ~~phasiz~d~ 

These tests will be applied to the analysis of data from an 

experiment on diffraction dissociation to be performed by the Caltech 

High Energy Users Group at the Stanford Linear Accelerator Center. One 

difficulty in testing the· properties of diffraction dissociation in the 

past has been the insufficient statistics of previous experiments. One 

must measure the four momenta of all final particles, which makes use 

of the bubble chamber the preferred experimental technique. Conventional 

bubble chamber procedures require one to photograph all expansions of 

the chamber. Since diffraction dissociation comprises only a small 

fraction of the total cross section for a given collision, only a small 

fraction of the photographs will contain events of interest. This can 

make the observation of large numbers of events prohibitively expensive. 
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In a novel experimental approach the Caltech Users Group will employ 

electronic counter techniques to determine that an event of interest 

has occurred, and only then trigger the cameras to photograph the 

expansion of the chamber. The Caltech experiment will collect up to 

one hundred times the typical number of events of previous experime~ts. 

The particular reactions to be investigated will be 14 ·Gev/c Tip col-

- + TI (TITIN) final states. We will make our 

discussion of experimental tests sufficiently general that they can be 

applied to other systems as well. 

In order to illustrate some of what is presently known about 

diffraction dissociation, we discuss some experimental examples. Con-

sider 
+ . + + 

TI p ~ TI (TIN) where + (TIN) denotes a pion nucleon system whose 

net charge is positive. By combining data from various charge states of 

the (TIN)+ system, one may isolate the contributions of particular 

isospins. This is illustrated in Fig. 1 where the contributions of 

I = 1/2 and I = 3/2 are given at 8 Gev/c and 16 Gev/c. We see a 

strong narrow enhancement . at 1236 Mev in the I= 3/2 system that cor-

responds to the well-known P
33 

resonance of pion nucleon phase shifts. 

The I = 3/2 contribution falls rapidly with increasing energy. In the 

I = 1/2 system we find a strong broad enhancement at 1400 Mev and a 

weaker narrow enhancement at 1680 Mev. The cross section for producing 

the I = 1/2 system falls more slowly with increasing energy and appears 

to approach a constant at high energies. Thus production of the 

I = 1/2 component fits the definition of diffraction dissociation. Like 

the elastic reactions it involves no change in internal quantum numbers 

between the initial particles and the final dissociated "particles". All 



I 
> 
G.> 

(.'.) 

.0 
E 

z 
0 
...... 
u 
w 
V) 

I.fl 
(/') 

0 
CZ: 
u 

Fig. 1. 

r---------------... -+-- --- ·---=-----·-··------ ·-- ·:·--·----- --- - G · 
~· ·- ff p~TI(Nn)1 . . --1 

lr~i~~~~-- -~ ;_~~;4 --=::,_: __ ~_-,6:G~~- ~~ ~;--1~ 
1 11 ,1690 . 
j H ~ I r.1{, 70 • '1 r~ 0M(nn)>066G-' i r~ff ~90 0M(nn)>OB6G<' h 
,~ . -~~~ -~ ·~ "l- . o~l_____ :.__~~- ~· 1L · ~.~f\.ef\ 6r~~,.lJ_j____J 

. I I • 
~ (lit,. b} I d) 

of l o M(nn)> 086 o,v I 

Jj ~ _ n - I ~ 
i ~ ~~-Ji~~!Hl~--1&1sll.n~ L£bdi~--

3 1 2 3 4 

(N fT) EFF. MASS, GeV 

(Nn) mass distributions for the 

8 and 16 Gev/c , respectively. 
I = l/~ and I = 3/2 

Taken from Ref. 28. 
states at 

I 
~ 
I 



-5-

other diffraction dissociation reactions also have this characteristic, 

o TI + "A "p e.g.) YP +pp, P 1 where by 11A
1

11 we mean an I = 1 predomi-

nantly JPG = l+- 31T enhancement, Kp + "Q"p where by 11 Q11 we mean an 

S = ±1 predominantly ~ = l+ KTITI enhancement, etc. 

We learn from the above examples that one interesting feature 

of diffraction dissociation is the existence of selection rules. The 

established selection rules ~re that there are no changes of I, I , C, 
z 

S, or B between initial and final particles. Other, at present 

unverified, selection rules for resonance production via diffraction 

dissociation have been suggested by various authors. Morrison has con

jectured on an empirical basis that ~ = (-l)~J where ~ and ~J 

are respectively the change in parity and spin between the initial and 

final particles. Chou and Yang have suggested that if the product of 

the parities· of the incoming and outgoing particles is odd, then the 

cross section for forward scattering is zero. The internal quantum 

number selection rules have been extended by Garlitz, Frautschi, and 

Zweig who suggest that in diffraction dissociation the SU(6) charac-

ter is preserved. There m~y also be selection rules that restrict the 

change in spin direction between initial and final particles. The type 

of spin or helicity selection rule has a special relation to the mech-

anism responsible for diffraction dissociation, which will be discussed 

further below. Naturally, one of the prime· objects of the Caltech 

experiment is to test these rules. 

To gain insight into the reactions with constant cross sections, 

it is useful to discuss the description of diffraction in scattering 

matrix theory. The conservation of probability impljes that the _ 
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scattering matrix is unitary 

l (ablsTjn)Cnlslcd) ( 1) 
n 

i.e., the probability that something happens is one. This means that 

the amplitude for a + b -+ c + d satisfies schematically 

..). 

Im(ab IT I cd) l (ab!T
1 
ln)(n!Tlcd) ( 2) 

n 

where S = 1 + iT. For elastic scattering (a,b) = (c,d), equation 

(2) says that large inelastic amplitudes may generate via unitarity the 

imaginary part of the elastic amplitude. 

We would like to show that via unitarity one may calculate 

properties of elastic scattering observed experimentally. For forward 

scattering 2 
t = (q - q ) = 0 unitarity relates the imaginary part of 

c a 

the elastic amplitude to the total cross section according to the 

"optical theorem" 

Im T j - 4k
2 

a el t=O - tot 
(3) 

where k is the center of mass momentum and a tot 
is the total cross 

section. If we asstune that the elastic amplitude is imaginary (perfect 

absorption) and ~hat for 

opacities), then 

This implies that 2a 

t I: 0 T ~ eat (Gaussian distribution of 
el 

2 
a tot 2at 

167f e 

2 
atot/167r ael . To the extent that these 

assumptions are true, a plot of X(t) = da/dt/da/dt jt=O versus 
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02 
t ot p = ( -t) should exhib it t he universal behavior X(t) = -P/4 

4TI 0 e l 
e 

+ + 
This i s plotted in Fig . 2 for TI-p, K- p, pp and pp reactions. The 

contribution to the lowest partial wave is 

which is bounded by 0 .:S. n
0 

.:S. 1 due again to unitarity (an object 

cannot be more than completely opaque at its center). As a conse-

quence C5 1/ C5 < • 25 . e tot -
Experimentally at high energies 

+ + 

(5) 

x = C5 
1

/cr is .17, .19, .23, and .21 for TI-p, K-p, pp, and pp 
e tot 

respectively. Finally, for most reactions x is approximately inde-

pendent of s even for moderate energies. One may express the 

elastic differential cross section in tenns of x and 0. 
1

. 
ine 

2 
C5. 1 ine 

2 
16TI(l-x) 

r(l-x) ) 
exp l16 0. lt TIX ine 

(6) 

The correlation of the behavior of the inelastic cross sections with 

the rate of fall with increasing -t is verified experimentally. 

Some intuition into why one expects selection rules may be 

gained by applying our S-matrix approach to diffraction dissociation. 

Equation (2) is, of course, valid for any reaction of the type 

a + b 7 c + d • If one assumes that the phases of the various ine-

lastic amplitudes which contribute to the sum are essentially unrelated 

to one another, then the maximum coherence of this sum should occur 

when a and b. have the same quantum numbers as c and d respec-

tively. Thus, the reactions which survive in the limit of high 
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energies should obey the selection rule that there is no internal 

quantum number change between initial and final particles, as we have 

for elastic scattering and have observed empirically for diffraction 

dissociation. One must remark, however, that this random phase 

approximation is not strictly justifiable, since one believes that 

the various amplitudes in (2) are related to one another by the 

dynamics which govern all of the strong interactions. 

One may naively argue that the diffraction model suggests that 

there be no change in spin between initial and final particles, but 

this could not be a relativistically invariant statement. A spin 

selection rule that can be true relativistically is that there be no 

change in "helicity" between initial and final particles. Helicity is 

defined as the component of spin along the direction of motion of a 

particle. The utility of states of definite helicity is that they are 

invariant under Lorentz boosts that bring a particle to rest. For the 

reaction a + b + c + d , which one calls the s channel reaction, 

the "s-channel helicities" are equal to the spin along (against) 

+ + 
pa = -pb for particle a(b) and the spin along (against) 

for particle c(d) in the s-channel center of mass. Another set of 

base states for the description of spin which is often discussed is 

where one quantizes along the direction of the incident particles a 

and b in the s-channel center of mass. We refer to these as states 

of definite "s-channel spin". Note that in the limit of high energies 

and fixed t the s-channel helicity and s-channel spin become iden-

ti cal. 
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Since in diffraction the wave elastically scattered by the 

absorber should cancel with the incident wave, it should have the same 

spin orientation as the incident wave. Hence, if a diffraction mech-

anism is responsible at high energies for elastic scattering and the 

resonance production component of diffraction dissociation, then one 

would expect as a selection rule that either the s-channel helicities 

or s-channel spins are conserved between initial and final particles. 

There is, however, another model for the reactions with 

asymptotically constant cross sections which would suggest a different 

spin selection rule and for which there is considerable theoretical 

motivation. It is worthwhile to review the experimental situation 

that suggests it to us. It is an empirical fact that for most strong 

interaction reactions of the type a + b + c + d above incident lab 

energies of, say, 5 Gev/c the sizes and energy dependences of the 

cross sections are correlated with the exchanged quantum numbers, 

i.e., with the quantum numbers of the reaction a+ c + b + d which 

we refer to as the "t-channel 1
'. 

The elastic cross sections are largest and appear to approach 

constant values of from 4 to 10 mb at high energies. They are fol-

lowed by the meson exchange cross sections which fall slowly with 

increasing energy, then by the baryon exchange ones which fall more 

rapidly with energy, and finally by those termed exotic exchange, down 

at 1 µb or less, that correspond to the exchange of quantum numbers 

possessed by no observed resonance. The energy dependence of the cross 

section for production of the I = 3/2 component in our example 

+ + + TI p + TI (TIN) falls neatly into this hierarchy at the position of meson 
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exchange. 

One of the most important developments in the past ten years of 

particle physics has been the qualitative understanding of this order-

ing of cross sections in terms of "regge or regge-like" theories. 

Intuition gained from the study of non-relativistic potential scatter-

ing led to the proposal that the energy dependences of cross sections 

are connected to the particle spectrum. The resonances in the 

t-channel are found to lie along straight lines called "trajectories" 

in a plot of spin versus mass squared. A property of quantum electro-

dynamics assumed to be true as well of strong interactions is "crossing 

symmetry" which says that the amplitude which describes scattering in 

one channel may be analytically continued to give the scattering 

amplitude in another channel. Regge or regge-like theories parameter-

ize the amplitude in terms of the t-channel resonances and then anal-

ytically continue to describe the s-channel reaction at high energies. 

The value of the spin extrapolated to zero mass squared, called the 

"intercept" a 
. 2 
J(m = O) governs approximately the energy dependence 

of the s-channel reaction a + b + c + d according to 

dcr 

dt t=O 

2Ci- 2 
0: s (7) 

where the incident lab energy is proportional to s at high energies. 

The intercepts a for meson trajectories range from 0.5 to 0 and for 

baryon trajectories from 0 to -1. If exotic mesons exist they are 

presumably of high mass, since they have not been seen as yet experi-

mentally. As a consequence the intercepts for exotic trajectories 

should be even more negative, and hence the exotic exchange cross 
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sections should fall the most rapidly with energy. 

Elastic scattering and diffraction dissociation represent 

anomalies in the regge picture· Their intercept, obtained by fit-

ting to (7) at high energies, is a~ 1 which does not correspond to 

any observed trajectories. Nor has the degree to which these pro-

cesses resemble the meson and baryon exchange reactions been 

established. Nevertheless, they are described in regge language by 

saying that they proceed via "Pomeron" exchange. The Pomeron is 

assigned the quantum numbers of the vacuum to ensure its exchange in 

elastic scattering and diffraction dissociation. 

A logical extension of this approach is that the Pomeron 

carry no information about spin either. If a regge mechanism is re-

sponsibleat high energies for elastic scattering and the resonance 

component of diffraction dissociation, then one would expect as a 

selection rule that the "t-channel helicities 1
' are conserved. For 

the reaction a + c + b + d , the t-channel helicities are equal to 

the spin along (against) for particle a(c) and the spin 

along (against) 
+ + 
P"i) =-pd for particle b (d) in the t-channel center 

of mass. When an amplitude for t-channel scattering from and into 

states of definite t-channel helicities is analytically continued to 

describe the s-channel reaction, the resulting amplitude is in general 

a linear combination of the amplitudes for scattering from and into 

states of definite s-channel helicities. Hence, in general conserva-

tion of t-channel helicities is not equivalent to the conservation of 

s-channel helicities. 
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In summary, apart from the question of possible particles on 

a Pomeron trajectory, the primary difference between regge and dif-

fractive viewpoints is that the former suggests that high energy 

scattering looks simple when expressed in terms of t-channel variables 

while the latter suggests that s-channel variables are preferable. 

At the time of writing, s-channel helicity conservation has 

been observed experimentally in TIN -+ TIN and yp -+ p0 p, while 

t-channel helicity conservation has been seen in TIN -+ "A "N 
1 

and 

KN -+ "Q"N • One way to resolve this rather confused experimental 

situation is to observe that in the latter two reactions the nonreso-

nantcomponent of diffraction dissociation may be dominating the cross 

sections. In order to justify this interpretation one needs a model 

for the nonresonant component that can explain the properties of these 

reactions. Deck, Drell, and Hiidahave suggested that a simple multi-

pheral model involving pion exchange can give the observed enhance-

ments in the 3TI and KTITI masses. In Part I of this thesis we shall 

show that the pion exchange model accounts for most of the other 

properties of the broad low mass enhancements observed in diffraction 

dissociation. 

Pion exchange, like all regge exchanges, is calculated by 

parameterizing the amplitude in terms of the pion and its recurrences 

in the t-channel and then analytically continuing to describe the 

s-channel reaction. The intercept for the pion trajectory is a = -.02. 

The value of the-intercept implies that an amplitude dominated by pion 

exchange is predominantly real. One may derive this by appeal to 
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the relativistic extension of dispersion theory, which is worthwhile 

discussing briefly. 

In the case of optics, one may express the real part of the 

&~plitude for forward scattering by light of a fixed frequency w as 

an integral over the cross section for absorption by atoms of light 

of all frequencies. Via the optical theorem this cross section is 

proportional to the imaginary part of the forward scattering amplitude. 

One derives this "dispersion relation" by establishing that the forward 

scattering amplitude is analytic in the upper half of the w plane, a 

mathematical property based on the physical .limitation of "causality" 

which states that electromagnetic signals cannot travel with a speed 

greater than that of light. 

The belief that the strong interactions also obey causality 

lead one to expect that similar dispersion relations may be written 

for the strong interaction amplitudes, except that in the extension of 

this idea to a relativistic theory one acquires a contribution to the 

integral from the "u-channel" c + b + a + d • An amplitude may be 

expressed as a functlon of t and v , where for positive values v 

is proportional to the incident lab energy in the s-channel and for 

negative values v is proportional to the incident lab energy in the 

u-channel. The dispersion relation is then schematically · 

0 

T(V,t) = ; f 
-oo 

Im T(V' ,t)dv' + 1. 
v' - v 1T .J

oo 

0 

Im T(V' ,t)dv 
v' - v . 

where Im T(V,0_) is related to the total cross sections in the s 

and u channels via the optical theorem. 

(8) 
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Let us consider the case of the power law behavior which charac~ 

· 1 · Im T(' 1 , t) -- a(t) ' 1a(t). terizes regge t1eories v µ v An amplitude is said 

t o be even or odd under crossing from s to u channels depending on 

whether T in T(-v,t) = TT(V,t) is +l or -1. Then, one may derive 

from (8) 

T (v, t) 
B ( t) ( T + e +i 1m ( t 2> v a ( t) 

sin 1Ta(t) 
(9) 

a ~ 0 for the pion trajectory, one derives that 

pion exchange is indeed predominantly real at least in the forward 

direction. This will be useful in establishing tests for resonance 

production selection rules. One raay also note that the pion pole at 

a(t = . 02) = a(m 2 ) = 0 is very near the forward scattering of the 
1T 

s-channel where t = 0 • This means that an amplitude dominated by 

pion exchange will fall rapidly with increasing -t . It is pri-

marily this aspect of pion exchange, which is true of both the data 

and all theoretical models, that will be sufficient to establish in 

Part I that pion exchange can account for the properties of the low 

mass enhancements observed in diffraction dissociation. 

(Elastic scattering and diffraction dissociation are dominated 

by a(O) = a 1 which (9) says would be a purely imaginary contri-

bution if it appears only in amplitudes which are even under crossing. 

The optical theorem tells us that evenness under crossing may be 

checked experimentally by observing whether s and u channel total 

cross sections become equal at asymptotic energies. At incident lab 

energies + around 40 Gev/c , 0T(1T p) ~ 25 mb while 



-17-

oT(K+p) ~ 17 mb while oT(K-p) ~ 20.5 mb, OT(pp) ~ 39.0 mb while 

oT(pp) ~ 45.0 mb. That s and u channel total cross sections do 

indeed approach one another as the energy increases appears to be the 

trend of the present data, except for the recent but unverified small 

discrepancies reported from Surphukov.) 

While exchanges arise from resonances in the t-channel, a 

scattering amplitude may also receive contributions from resonances 

in the s-channel. In the partial wave expansion of a two-body ampli-

tu de 

T(s,t) 
00 

l (2£+1) fi(s) P£(cos 8) 
£=0 

a resonance contribution may be approximated by a Breit-Wigner 

Im ££ 
er+ rt)/4 rt/2 

(/S -M)
2 

- r 2 /4 
t 

er +rt) 14 c IS - M) 

,.-:- 2 2 
(vs - M) - r I 4 

t 

where M is the mass of the resonance, rt its total width, and 

(10) 

(11) 

f its partial width. The imaginary part peaks at the position of .the 

resonance and falls as r -2 (vs - M) away from the resonance mass, 

whereas the real part changes sign at the resonance mass and falls 

only as ,.-:- -1 
(vs - M) _ far from the resonance. In Part I of this thesis 

we shall argue that the contrast between the rapid variation in phase 

of a resonance and the relative_ constancy of the pion exchange phase 

should prove valuable in testing selection rules for resonance produc-

tion. 

One of the more significant developments of the past few years 

in hadron physics has been the suggestion that the direct channel 
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resonances are related to the nondif fractive regge exchanges (inter-

cept a< 1). The term "duality" designates the assumption that 

amplitudes exist with the properties: 1) at least at low energies, 

their imaginary parts can be approximated by direct channel resonance 

contributions; 2) at least at high energies, regge exchange also 

describes their imaginary parts; and 3) a region of energies and 
( 

angles exists over which both these approximations may be simul-

taneously employed. Obviously, since resonant contributions are 

bumpy, while a regge exchange gives a smooth energy dependence, these 

two descriptions can be equivalent only in some average sense. This 

hypothesis has been used to derive a number of experimentally valid 

constraints on the regge intercepts. 

Because diffraction can occur in reactions where s-channel 

resonances have not been observed, duality cannot be true for elastic 

scattering amplitudes. However, it has been conjectured that, even 

for elastic scattering, amplitudes with diffractive contributions 

removed can be constructed in which the average of the resonance 

contributions to the imaginary parts equals the regge exchange contri-

butions. When combined with the optical theorem this conjecture 

explains a correlation observed among total cross sections. This 

observation is that in reactions such as K+p and pp where no 

strong s-channel resonances have been observed,. the o fall at most tot 

slowly with energy and approach their asymptotic values at low 

energies, while in reactions such as pp, Tip, and K p where there 

are many s-channel resonances the otot fall rapidly in energy and 

approach their asymptotic values only at high energies. In regge 



-19-

language, one would say that the various exchanges with a < 1 are 

cancelling against one another in the imaginary parts of elastic 

amplitudes when s-channel resonances are absent, while they contribute 

substantially when s-channel resonances are present. 

In view of our separation of the contributions to diffraction 

dissociation into resonance production and pion exchange components, 

the important question is whether duality can be true for the real 

parts of scattering amplitudes. The objection is that the empirical 

correlation we have noted for the imaginary parts of elastic amplitudes 

· b d f h 1 v+ is not o serve or t e rea parts, e.g.,~ p and pp elastic ampli-

tudes have large real parts whose average energy dependence is 

governed by a < 1 even though s-channel resonances are absent. Hence 

one must in general expect that s-channel resonances and the real parts 

of regge exchanges are distinct components of scattering amplitudes. 

Equation (8) tells us that these real parts may be generated by the 

existence of resonances in the u-channel K p and pp reactions. 

Another way to state this is to note that the contribution of a reso-

nance is localized to a small energy region only in the imaginary part, 

while resonances in other channels can make significant contributions . 

to the real parts. 

In this thesis diffraction dissociation is discussed phenom-
-· 

enologically with emphasis upon the development of tests for the 

helicity, spin-parity, and internal quantum number selection rules 

proposed for resonance production. It is argued that the alternative 

selection rules are distinguishable by their characteristic angular 

distributions for the decay products of produced resonances. Indeed, 
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if the nonresonant background were absent, then simple tests for 

selection rules could be performed without having to isolate the 

individual resonance contributions. In general, one must expect 

background as well as resonances. It is established that a simple 

. 11 d H .. d [ l] pion exchange model, such as Deck, Dre , an ii a have suggested 

to explain the "A]_ and "N*(l400)" enhancements,can account for most 

of the production characteristics of the broad low mass enhancements 

observed in present diffraction dissociation data. These include the 

variation of momentum transfer dependence with invariant mass and the 

spin-parity of the enhancements. It is likely that this pion 

exchange background does not obey the selection rules expected of 

resonance production. Therefore, the question of tests for resonance 

production selection rules in the presence of significant pion 

exchange background is addressed. 

For the sake of convenience, let us sununarize here the selec-

tion rules we wish to test. For a reaction a + b + c + d helicity 

conservation is defined by 

(12) 

There are three types of helicity conservation that could be expected: 

1) t-channel helicity conservation based on concepts of a t-channel 

origin for the asymptotic behavior (Pomeron exchange); 2) s-channel 

spin conservation; and 3) s-channel helicity conservation[ 2 , 3 ] based 

on concepts of an s-channel origin for the asymptotic behavior analo

gous to the diffraction of classical optics. Morrison[ 4J has conjec

tured ~p = (-l)~J , although there is no current theoretical 
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justification for this rule except when the initial dissociating 

particle is spinless. Chou and Yang[S] (CY) have suggested that if 

the product of the parities is odd in a quasi-two-body reaction with 

an asymptotically constant cross section, then do/dt = 0 at t = 0 • 

Carlitz) Frautschi, and Zweig[ 6] (CFZ) have suggested that in diffrac

tion dissociation the SU(6) character is preserved be.tween initial 

and final particles. 

In Section II we derive the general angular distributions for 

the description of diffraction dissociation and we propose a set of 

null tests for selection rules which would be valid if the nonresonant 

background were absent. In Section III we demonstrate that the pion 

exchange model can account for much of the currently available diffrac

tion dissociation data. In view of this success, in Section IV we 

propose new tests for resonance production selection rules. Section V 

includes a summary and some concluding remarks concerning the interpre

tation of present experiments. 
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II. Angular Distribution and Null Tests 

A. Definitions 

Our purpose in this section is to derive the general angular 

distributions for reactions of the type 

a + b + c + d + c + a + B (13) 

where d denotes intermediate states of varying spin and parity, and 

to observe the manner in which these distributions simplify due to the 

various selection rules[ 7J. Inasmuch as we are interested in measuring 

the properties of the state d , the most convenient Lorentz frame in 

which to view this reaction is that in which d is at rest. One must 

therefore understand how the various sets of helicity and spin base 

states appear in this frame (Fig. 3)[ 7]. 

The momenta in a+ b + c + d define a plane in the s-channel 

center qf mass. Thus, the normal to this plane which we choose to call 

the y-axis is invariant under the Lorentz transformation that brings d 

to rest. In the s-channel center of mass the s-channel helicity of d 
+ -r 

is the spin along pd= -pc. Clearly under a Lorentz boost that brings 

d to rest, the s~channel helicity of d remains the spin against the 

-)-- A 

direction of p . . This choice of z-axis when d is at rest defines 
c 

the "helicity frame". In the t-channel center of mass the t-channel 

helicity of d i~ the spin along -+ -r 
p d = -Pb . Clearly under a Lorentz 

boost that brings d to rest, the t-channel helicity of d remains 

the spin against the direction of I>:j;" . Under crossing from the t to 

the s-channel Hence~ in the s-channel, the t-channel heli-

city for particle d in its rest frame is the spin along the direction 

-r 
of pb . This choice of z-axis when d is at rest defines the 

"Gottfried-Jackson" frame[S]_ The helicity and Gottfried-Jackson 
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/\ 

n 

Fig. 3. The reaction a+ b -+ c+ d -+ c +a+ 6 in the d rest frame 
-+ -+ -+ 

The vectors pa, pb, pc are in the plane of the paper 
-+ -+ - /'. 

while p = -p
8 

may be out of the plane. The y-axis 
(l I 

is perpendicular t o the page. zH, zA, zGJ denote the 
/'. 

z-axis in the helicity , Adair, and Gottfried-Jackson 

frames respectively. These frames are related by rotations 

about the y-axis as denoted by angles 8H-+GJ an~ 8H+A· 

~GJ is the polar angle of the decay direction n in the 
GJ frame. 
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frames aro related by rotation about the y-axis by the "crossing 

angle'' GH-+GJ . Clearly, the angle between the helicity frame 

and that for quantization of s-channel spin is the s-channel center of 

"' . 
mass scattering angle e . This third choice of z-axis when d is at 

rest is called the "Adair 11 frame [
9
]. 

The choice of ~-axis for discribing the angular distribution is · 

therefore to be chosen according to the type of helicity conservation 

selection rule one wishes to test. Test for t-channel helicity conser-

vation in the Gottfried-Jackson frame, test for s-channel spin conser-

vation in the Adair frame, and test for s-channel helicity conservation 

in the helicity frame. To move from one frame to another, one rotates 

"' about the y-axis by: 

2 2 2 2 2 2 2 2 2 
[ (s+d - c ) ( t + d - b ) - 2d (a -c + d -b ) ] 

cos e (14) 

Note that for forward scattering, e = 0 , all frames are equivalent and, 

except for reactions where double helicity flip is possible, helicity 

conservation is a consequence of angular momentum conservation. For a 

"' given choice of z-axis, x = y x z • The decay angles ~ and ~ are 

"' then defined as the polar and azimuthal angles of the vector · n , which 

in the case of two-particle decays denotes the direction of one of the 

decay particles in the d rest frame. 

B. Two-Particle Decays 

We divide the scattering amplitude into two factors, one for 

the production of an intermediate state d of spin and parity JP 
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and the other for its subsequent decay into a and B 

where[lO] 

and 

(17) 

JP 
where gA A is the reduced matrix element for the decay of a state of 

a B 
spin-parity JP into a and S with helicities and 

Experiments with unpolarized targets in which the final helicities 

are not measured can then be described by the general angular distri-

but ion 

where 

00 !l 

W(IJ;,cp) = l l A!lm Y~(IJ;,cp) 
!l=O m=-!l 

I I . I 
A A JP A J' P' A' 
B' B ' ' J ' ' J 

(18) 
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(19) 

The C(J,J'',i;~J'~~) are Clebsch-Gordan coefficients. (A more 

thorough derivation of this angular distribution is given in Appendix 

1). 

In this section we are interested in the simplifications that 

result in (18) from helicity conservation and other selection rules in 

the presence of many interfering resonances of varying spin and parity. 

These predicted simplifications will provide experimental tests of the 

selection rules. In the first part of this discussion we will ignore 

the problem of a possible nonresonant contribution to the reaction 

a+b+c+a+S. 

Helidty conservation (equation (12)) predicts that the Aim 

are zero for m > 0 in (14). Thus, the angular distribution (18) is 

characterized by the absence of an azimuthal dependence. Isotropy in 

¢ is a simple test for consistency with helicity conservation. It 

can be applied without having to isolate the contributions of spin and 

parity[ll]. It is a necessary but not sufficient test, since ¢ inde-

pendence without helicity conservation could conceivably be achieved 

if: 1) the density matrices for production of all resonances are 

diagonal; and 2) the interference terms between contributions of dif-

fering spin and parity contribute no ¢ dependence. 

The angular distributions (18) may be used to test the validity 
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of the spin-parity and CFZ rules by observing the patterns of inter-

f e r ence be tween contributions of differing J and P in the various 

moments of the distribution. At e = 0 or for e I 0 in the case of 

helicity conservation simpler expressions achieved by invoking Eq. (12) 

in Eq. (19) may be used. The important feature to notice in Eq. (19) 

is that because of the factor (l+ PP'(-l)Q,), the coefficients of the 

odd Q, spherical harmonics involve only terms mixed in parity. If 

a= c in reaction (2), the CY rule requires d to have the same 

parity as b • If we restrict our considerations to low mass N*'s 

where all the established resonances are classified in SU(6) as mem

bers of either a 5_6, L = 0 or 7_0, L = 1 [ 13 ] , then the CFZ rule forbids 

production of odd parity N*'s. Thus, in certain cases the CY and CFZ 

rules predict that the AQ,m are zero for Q, odd . Equivalently, they 

predict that in certain reactions the decay angular distributions will 

be symmetric under parity inversion \jJ ->- Tr - \jJ, ¢ + Tr+¢ . Again, 

this simple t 'est may be performed without having to isolate the indi-

vidual resonance contributions. 

Both of these null tests are of course valid only to the extent 

that the nonresonant background is absent. 

C. Three-Particle Decays 

In the case of three-particle decays where the reaction is 

a+b-+ c+d -+ c+a.+(3+y (20) 

there are two ways one may analyze the data. The first is to identify 

two of the t .hree decay products as forming a resonance and study the 

angular distribution as a quasi-two-body decay according to the 
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prescription of the preceding section. The difficulty with this 

approach is that such identifications are often difficult to make and 

in any case can never be precise. Therefore it is useful to know what 

information can be learned without having to attempt this identifica-

tion. Our second approach is to follow the suggestion of Berman and 

Jacob and study the angular distribution of the normal to the three-

particle decay plane. We will show that the tests of the preceding 

section will continue to be applicable. 

We briefly sununarize the formalism of Berman and Jacob. A 

three-particle state is written 

(21) 

In the d rest frame the three momenta form a triangle in a plane, 

whose normal we take to be the n of Fig. 3. The orientation of this 

plane is specified by three Euler angles: ~ and ¢ are the polar 

and azimuthal angles of the normal with respect to a ~-axis chosen 

according to the type of helicity conservation we wish to test as in 

the preceding section; and y corresponds to the rotation of the 

plane about the normal. In terms of these angles the state may be 

rewritten as 

lw A ,W 0 A0 ,w A ,~,¢,y > 
Cl Cl µ µ y y 

A state of definite angular momentum is specified in this case by 

"' 

(22) 

three quantum numbers: J the spin, m the eigenvalue along the z-axis, 

and M the eigenvalue along the normal. 
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Then, in analogy to the preceding section, we divide the scat-

tering amplitude into two factors, one for the production of a 

resonance d of spin and parity JP and the other for its subsequent 

decay into a , (3 , and y . 

<l]J¢Y;f- ,AcpA ,A !scs,t) jA Ab> a µ y c a 

where 

J iAJ¢ J iM l e dA M(l]J)e y 
M=-J J 

x JP 
GM (w A ,w0 A0 ,w A ) a a µ µ y y 

(23) 

(24) 

For constraints analogous to (17) due to parity conservation and iden-

tical particles, we refer the reader to Berman and Jacob's paper. Again 

for experiments with unpolarized targets in which we do not measure the 

final helicities, the .angular distribution, after integrating over y 

and the dalitz plot variables, is given by 

where 

x 

J Ja 

2TI l l l l l (-1)-MC(J,J' ,£;AJ,-A~) 
Aa,A(3,Ay J,P,AJ J~P~A~ M=-J M'=-J' 

(25) 
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AJ JP J'P'* 
+ ( -1) 0 I I ' ) GM (A ) AD ) A ) Gi\1' (A 'AB, A ) 

-1\
3

+/\
3

,m u a µ y .. a y 

x (26) 

Note the similarities between this and equation (19). We see inune-

diately that for the angular distribution of the nonnal to the three-

particle decay plane helicity conservation predicts A~m=~O~_f_o_r~m~>_O_, 

and the CFZ and CY rules in certain reactions predict Aim= 0 for 

t odd. So again we have that helicity conservation predicts isotropy 

in <P , and the CFZ and CY rules predict invariance under 1jJ-+ Tr - ljJ, 

<P + <P +Tr in certain reactions. Again, these tests are· only .true to 

the extent that nonresonant .background is absent. 
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III. The OPE Model 

Our purpose in this section is to establish a model for the 

nonresonant component of diffraction dissociation. We s~~: l exploit 

the suggestion by Drell and Deck[l] that a simple pion exchange model 

could give enhancements in mass distributions similar to those 

observed for genuine resonances. Essentially, their proposal corre-

sponds to the.diagram of Fig. ·4 wherein the incoming b dissociates 

into a and S and a scatters elastically off particle a = c • 

In general a is taken to be a pion, but the importance of the a 'mass 

being small will be an essential result of our discussion. We shall 

show that this model can account for most of the properties of the 

broad low mass enhancements observed in diffraction dissociation. 

We shall first summarize the kinematic express ions ·we will need 

for our analysis. If we denote qa = (p ,w ), etc., then we may choose 
a a 

the five independent kinematic invariants to be: 

s 

t (27) 

In the d rest frame 

2 2 1 2 f3 2 ) 2 _ 4a 2 (3 2 ] ·pa P13 --[ (s - a -
4saB aB 

2 1 2 2 2 
Pb =-- [ (s +b - t) - 4b saBJ 

4saf3 a(3 

2 1 2 2 2 
Pc = 4saB 

[ (s - c - s ) - 4c saB] aB 
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Fig. 4. The Feynman diagram for the pion exchange contribu

tion to diffraction dissociation. The s, t, s , 
ca. 

sa.B' tSb denote the five independent kinematic 

invariants. The particle a. is a pion. 
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1 2 2 2 2 
4 

[ ( s + t - c -b ) ..... 4s o.Ba ] 
saB 

Thus, in the Gottfried-Jackson coordinate system 

s ca 
c2+a2+ 2w w + 2p p [cos 1j; cos X - sin 1j; sin X cos ¢] c a c a 

(28) 

(29) 

where X is A given in equation (14). 
n+GJ 

Then, the differential 

cross section for reaction (13) is given by 

(30) 

where 

2 4 4 2 2 2 2 s +a +b - 2sa -2sb -2a b , (31) 

A. The Deck Effect 

At the time of writing, there is no universally accepted or sue-

cessful model for . pion exchange. The relative or even absolute validity 

of evasion, conspiracy, or absorption models is not settled, and it is 

not our purpose here to compare them. These models disagree on ques-

tions of energy dependence and helicity couplings which for our purposes 

are irrelevant. They and the data all agree that pion exchange is 

characterized by a very rapid variation with momentum transfer in the 

range between 0 and m2 , and this is all the physics of pion 
7T 

exchange necessary to explain the properties discussed here. 

We write the contribution to the scattering amplitude[l3
J for 

reaction (13) that corresponds to the diagram of Fig. 4 as 
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< \jJ¢;\ 0 ;\clscs,t) lf-a;\b > =<"I IACs ,t) IX > 
1 

2 VA A (tBb) (32) 
µ c ca. a t _ 0 b 

Sb a. µ 

where < Xe I A(s , t) JI > is ca. a 
the off mass shell a.a elastic scatter-

ing amplitude[l4J, l/tBb-a.2 
the a propagator, and_ VA A (tSb) is a 

· B b 
helicity coupling form factor at the a-S-b vertex which, with the 

above points in mind, we will set equal to one until part. D pf this 

discussion. At high s elastic scattering is dominated by diffrac-
ca 

tion so we may set 

< X IACs ,t) IX > c ca a 
ex: is ca 

)3t 
2 

e gxx 
c a 

(33) 

Again, questions of helicity couplings are irrelevant and we will set 

gX X equal to one in what follows. We then find at high s that 
c a 

0: 

In the forward direction · t = 0 we have X+ 0 and 

2 
lim tBb - a 

t = 0 

which yields 

d
2

0 

ds 0 dt 
aµ t=o · 

ex: 

(34) 

(35) 

(36) 

This function is plotted in Fig. Sa. Thus, the OPE exchange results -

in a low mass enhancement which qualitatively fits the observed 

N;"(l400)where b- B = N, A1 (1070) where b =Tr · and S = p, K''~Cl320). 
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Fig. Sa. The differential cross section of the simple OPE model. 

Fig. 

The vertical scale is arbitrary. 
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exchange and p exchange. 
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where b = K and 13= K~"(890), and 1(1790) where b =K and 

B =I<>" (1420). Furthennore, at sufficiently high s where the approxi-

mation (33) is valid, the cross section (36) is independent of s and 

therefore fits the definition of diffraction dissociation. 

Note that (36) does not depend on a 2 [13] Thus, at this stage 

the linportance of the pion mass being small is only in justifying the 

approx~~ation (33) by arguing that the pion pole is very near the 

physical scattering region tBb < 0 . 

B. Variation of Momentum Transfer Dependence with Invariant Mass 

Empirically it is found that as a function of t[lS], the dif-

ferential cross section for the production of the above enhancements 

can be approximated by 

(37) 

where A(sa.B) · is large 'V 15-20 -2 near threshold Gev for small saf3 

and drops to much smaller values for large s cx,f3 . A plot of A(saS) 

for the Al at 8 Gev/c is given in Fig. 6b. 

In order to give a simple argument for why the OPE model repro-

duces this behavior, we will consider two limits of saf3 • First, in 

the limit of small near threshold 

s 
CO'. 

independent of t (38) 
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-38-

For the A
1 

in this limit t Qi = - .10 + . 84 t. 
po 

Thus, if in equation 

(32) a is small on the order of the pion mass, the differential cross 

section for small falls rapidly with increasing negative t . If 

a were large as for the exchange of a p-meson, the t dependence would 

be much less pronounced. 

equation (35) X + 0 and 

1
. 2 
im tBb-a 

saB large 

independent of t • Thus 

d2<J 
lim 

dsrvQ dt 
sas large v.µ 

· fixed t 

In the limit of large 

Bt 
o: e 

we have as in 

(40) 

A(saB) asymptotically approaches the slope of the aa elastic scat-

tering for large saS . The effective A(saB) at t=-. 1 predicted 

by this model are compared with the 7 Gev/c data for - - + TI p + TI (TI n) in 

Fig. 6a and the 8 Gev/c TI-p+(TI-p)p in Fig. 6b. We have adjusted 

the B's to achieve the best fit to the data, but this freedom changes 

only the position and not the shape of these curves. In Fig. Sb we 

d&~onstrate that such a variation in the slope A(saB) with invariant 

mass is indicative of pion exchange dominance by comparing the pre-

dieted slopes for a= TI and a= p. 

Note that the best fit to the TI-p+(Tr-p)p data at 8 Gev/c is 

achieved with 

since for Tr p 

-2 B rv 4 Gev . At first sight this may seem disturbing 

elastic scattering at high energies -2 
B rv 9 Gev • 

However, it should be noted that the dynamical restriction to small 
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tSb which characterizes pion exchange also restricts s to be small ca 

even though s may be large. In Fig. 7 we exhibit the bounds on sTIN 

in np+TITI1Tp for various momentum transfers. At · 8 Gev/c s1TN is pre-

dominantly restricted to the resonance region of 1T p elastic scatter-

ing where -2 B "v 4-7 Gev . These general considerations are confirmed 

by the 25 Gev/c [l6] data where B "v 9 gives the best fit to A(saB) • 

The restriction to nonasymptotic s at present energies is ca 

probably also correlated with the observed fall of nearly a factor of 

two between 5 and 25 Gev/c in the production cross section for the 

"A II 1 . 

Although the approximation (33) is less accurate when s is 
ca 

small, the argument presented above for the variation in momentum 

transfer dependence with invariant mass remains valid since, as we have 

seen, sea is independent of t in the two limits of saS small and 

saB large[llJ. Generally we expect A(saS) to depend strongly on 

~B in any process where the dynamics can be described by a multi

peripheral diagram such as Fig. 4 and the amplitude falls rapidly with 

.E.sb-· Indeed, in K-p+K~~(890)p+ (KTI) p the absence of a contribution 

from such a diagram is correlated with A(s KTI) being roughly constant 

(15] 

C. Partial Have Analysis of Kinematic Enhancements 

Because of its sharp peripherality, one pion exchange contrib-

utes strongly to high partial waves in pion photoproduction. It may 

therefore seem at first sight contradictory that kinematic enhancements 

from pion exchange could be confused with low spin resonances. In this 

section we examine more closely the partial wave analysis of the Deck 
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2.0 2.5 
/5.:p GeV 

1TP->Tr1TTrp 
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3.0-- 3.5 

Fig. 7. Bounds on the subenergies as a function of momentum transfer 
for 8 Gev/c TI-P ~ (np)-p . The outermost curve is the bound 
for unrestricted momentum transfer. The inner curves are 
the bounds for the momentum transfer restricted as indicated. 
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ff (18,19] e ect . 

From (15) , (16) we have 

\ i(AJ-(Aa-AS))¢ J JP 
l e dA A -A (~) gA A 

J,P,AJ J a B a B 

x < JP A : A I T ( s , t) I A A > 
J c a b 

(41) 

The more rapidly (~, ¢ A ABA j S j A . A > varies with ~ and ¢ the 
a c a · b 

higher the J's to which it contributes strongly. Were the amplitude 

to consist of a pion propagator alone 

we would indeed have important contributions to high partial waves as 

in pion photoproduction. However, an equally important contribution 

comes from the aa elastic scattering so that in the extremely high 

s limit 

(42) 

As noted in the previous sections, in the limits of t near zero or 

large 

s ca. 

2 
(saB-b ) 

[w + p cos ~] · a a 

s 
[w +p cos ~] 

r- a a 
vsaB 

so that their ratio (42) is independent of ~ . Away from these 

limits this cancellation is still approximately true. Therefore, 

apart from helicity coupling factors, the Deck effect is most impor-

tant in the lowest partial wave, i.e., the A1 enhancement is 
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. + predominantly 1 , and N*(l400) enhancement predominantly J= 1/2 . 

In Fig. 8 we present a spin-parity analysis of this model for the A
1 

using the most obvious pTITI coupl i ng[ 20]. 

D. \,foat Can OPE Say about 1-Ielici ties? 

Up to th i s point we have b ased our discussion on the noncontro-

versial aspect . of pion exchange; the rapid variation with momentum 

transfer in the range between 0 and m2 • 
Tr 

In this section we discuss 

something of more questionable validity, but which we nevertheless 

believe to be an interesting point: the elementary OPE model is equiv-

alent to approximate t-channel helicity conservation and gives g
1
/g

0 

approximately one for the A
1 

. 

In the elementary OPE model for the A
1 

where · [3 = p and 

b = TI , we have 

< 1jJ ¢ /.. /.. I S I /.. > a: e ~·~ ( /.. p) • qb 
p c a 

(43) 

Written in -the Gottfried-Jackson frame 

e* (0) • qb 
wpp0 cos 1jJ _ ppwb 

p . p (44) 

e * (+l) • q = _l_ p sin 1jJ e +i¢ 
b /2 b 

* 1 -i<P e ( -1) • qb = - p sin 1jJ e 12 b . 

To the ex tent that the ratio (42) is independent of 1jJ and ¢ , com-

parison with (41) shows that we do indeed have t-channel helicity 

conservation and 

.93 at Is--= 1.070 Bev Trp (45) 
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A, 
Fig. 8. Partial wave analysis of an elementary pion exchange model(

2
0) 

displayed as the differential cross sections for production 
of a given spin and parity at t=-.1 . The vertical scale is 
arbitrary. Solid curves are the contributions of individ-
ual spin and parity. The dashed curve is their sum. 
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This is to be compared with the experiment on the A
1 

and Q enhance

ments by the ABBCCHLV collaboration[ 2l] who find t-channel helicity 

conservation, with the data of Crennell et al[ 22 ] who find er /g = 0 1 0 

(0.89~~:~~)e-i(l.0±0. 6 ), and less successfully with the data of Ballam 

et a1[ 23] who find jg/g
0

j = 0.48± 0.13 . 

A similar procedure for the N*(l400) in which one sets 

0:: (46) 

yields in the Gottfried-Jackson frame 

Pb PB 
(-- - --) cos 111 / 2 w +b w +B \j/ 

b B 
(47) 

Pb PB ·cp 
(-- + --) sin 11 •/2 e-1 

- w +b w +B \j/ 

b B 

again in approximate agreement with t-channel helicity conservation. 

Now, however, in order to satisfy (17) the OPE must contribute strongly to 

both parities in apparent violation of the ' Morrison, Chou-Yang and CFZ 

rules[ 24 J. 

We will not discuss here the manner in which these results of 

elementary OPE are modified by evasion, conspiracy, absorption or any 

other version of pion exchange. We only point out that the simplest 

model in which one sets the couplings (44) and (46) equal to the 

VA A (tSb) of equation (32) is clearly wrong. Such a model introduces 
B b 

spurious factors of tSb into W(~,¢) that destroy the narrowness of 

the Deck enhancement and rapid variation of A(saB) and so does not 

fit the data. Indeed, in Fig. 3 of Rushbrook's analysis[l9] in which 
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such a model is employed, one fails to find the characteristic Deck 

shape. 

Although the elementary pion exchange model may not be correct 

for helicity couplings, the understanding of the other features of the 

data,achieved by the noncontroversial property that pion exchange 

entails a raoid variation with momentum transfer, we believe sufficient 

justification to consider pion exchange as primarily responsible for 

the nonresonant component of diffraction dissociation. It appears 

unlikely that a pion exchange background would have the same helicity 

couplings or obey the same selection rules that are expected of reso-

nance production. 
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IV. OPE and Selection Rules 

One is left with the question of the role played by one-pion 

exchange in diffraction dissociation and its relation to resonance pro-

duction. Certainly the successes of OPE do not exclude the presence of 

genuine resonances. Indeed, the best fit to p
0 

photoproduction is 

achieved by Soding's model[ 2S] of a Breit-Wigner interfering with a 

weaker Deck background. Nor can the N*(l680) and other enhancements 

be explained as kinematic effects. Difficulties lie in establishing 

the validity of selection rules, for at least the elementary .OPE models 

do not obey any of the proposed spin-parity selection rules nor do they 

obey the s-channel helicity conservation that has been observed in TIN 

elastic scattering and p0 photoproduction[ 2 , 3 ~ 

One possibi1i ty [ 26 ] is that the OPE c.ontribution is equivalent 

to resonance production in a "duality" sense. If the production of 

accepted resonances obeys selection rules, the dual interpretation 

would require the OPE contribution to obey the same selection rules and, 

therefore, the naive models must be wrong. However, one may expect such 

local duality applies only to imaginary parts of scattering amplitudes 

whereas pion exchange, at least in the forward direction, is predomi-

nan tly real. 

The other possibility is that the OPE contribution, or at least 

its real part, should be considered as a nonresonant background. The 

problem then is to determine whether the accepted resonances obey selec

tion rules in the presence of a background that may not. In the case 

of resonance dominance we had a series of "null tests" for helicity 

conservation and spin-parity selection rules because many of the A£m 
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in (18) and (25) were predicted to be zero. If resonance production 

continues to obey selection rules, these A 's would now consist only 
£m 

of OPE·-resonance interference terms and OPE-OPE terms. The A£m's not 

predicted zero in the null tests would have resonance-resonance terms 

as well. 

This means that, although the null tests are invalid in the 

presence of an OPE background, there remains a qualitative test for 

helicity conservation and spin-parity selection rules in resonance 

production. We make the reasonable assumption that the OPE contribu-

tion is predominantly real and varies smooFhly as a function of the 

mass of the dissociated system, while the resonance contributions have 

phases and magnitudes which vary approximately like Breit-Wigners as 

a function of mass. The OPE-resonance interference terms which contrib-

ute to the A£m in the form 

should then oscillate qualitatively like the real part of a Breit-Wigner 

and actually pass through zero at the resonance mass. On the other 

hand, the resonance-resonance terms should have no such simple behavior 

and may even peak at the resonance mass. Thus, if resonance production 

obeys selection r~les the A predicted zero in the null tests should 
£rn 

in the presence of OPE have the simple behavior of a sequence of Breit-

Wigner real parts, apart from OPE-OPE terms. 

We would like to emphasize that the OPE-resonance interference 

terms should prove useful in isolating the contributions of individual 

resonances, particularly in testing Morrison's rule for which no 
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simple test has been proposed in this paper. Note that in (19) and 

(26) a given tcr:n contributes to the various A£m in proportion to 

well-defined Clebsch-Gordan coeffic ients. Such an observation is par~ 

ticularly valuable if the nonresonant background is confined primarily 

to the lowest partial waves. For example, if in 1TN-+ 1T1TN the back-

ground is confined to J = 1/ 2 and resonance production. obeys helicity 

conservation, the A£m for m> 2 would be zero. Further, the 

5/2+-background interference term would appear in A2m and A3m while 

the 3/2--background interference term would appear only in A 
lm 

and 

A
2
m. We stress, however, that we expect such simple background dis-

. [18 19 201 tributions to be only approximately true of pion exchange ' ' J. 

If the nonresonant background contributes strongly to several partial 

waves, such comparisons would be more difficult but still informative . 
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V. Swnmary and Discussion 

We have found that if resonance production were to dominate 

diffraction dissociation, then: (1) helicity conservation is charac-

terized by an isotropic ¢-dependence; (2) the Carlitz-Frautschi-Zweig 

and Chou-Yang rules predict synunetrical angular distributions under 

1J;-+ 7T - 1J; , ¢ -rn + ¢ in certain reactions (e.g. , TIN-+ 7TTTN and 

nN-+ TTTTll) • Thus, there would be a series of "null tests" with the Aim 

for m > 0 in Eqs. (18) and (25) predicted to be zero by helicity con-

servation, and the Aim for ,Q, odd predicted to be zero -by the Chou-Yang 

and Garlitz, Frautschi, Zweig rules in certain reactions. In general, 

nonresonant background should be expected as well as resonances. A 

simple pion exchange model appears to account for the properties of the 

1 h b d . d. f .C • d. . . [ 27 ] . 1 d. ow mass en ancements o serve in l l.raction issociation inc u ing 

(1) the shape and position of the enhancements (the Deck effect); 

(2) the variation of momentum transfer dependence with invariant mass; 

(3) the lows.pin of the enhancements; and, in certain models, (4) the 

observed g1/g
0 

for the . 11A
1

11 and t-channel helicity conservation. Thus, 

one-pion exchange, if not "dual" to resonance production, may be expected 

to constitute the nonresonant background. It most likely does not obey 

the selection rules resonances may obey and, therefore, would destroy 

the simple null tests. If resonance production continues to obey 

selection rules, the Aim predicted zero in the null tests now would 

consist of OPE-resonance interference terms as well as OPE-OPE terms. 

This offers the possibility of a qualitative test for selection rules 

in resonance production. The OPE-resonance interference terms should 

also prove useful in isolating the contributions of individual resonances. 
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In any event, it should by now be obvious that analyzing data 

in· terms of the moments of the angular distribution in the various 

fr'ames is the most informative way of presenting the results of ex-

periments on diffraction dissociation when many interfering contribu-

tions are present. We urge that present and future experiments be 

analyzed in this manner. In view of the need for good resolution to 

obtain information from the moments, there is a necessity for high 

statistics experiments to determine the properties of diffraction dis-

sociation. 

It is worth mentioning that in choosing experiments in which to 

test selection rules for N* production + 7T p reactions are to be pre-

ferred to 7T p reactions. The reason is that at finite energies there 

may be significant contributions from nondiffractive exchanges. In 

reactions such as 
+ + + 7T p+7T (TIN) where there is a definite isospin in 

the s-channel, one may isolate the I= 1/ 2 (TIN)+ system from the I= 

3/2 [ 28]. Hence, some of the nondiffractive contamination may be 

removed. 

Two remarks are in order concerning the interpretation of present 

experiments. The first is that the apparent disagreement between 

experiments which show s-channel helicity conservation for some reac-

tions and those which show t-channel helicity conservation for others 

may be removed by the likelihood that the resonance production com-

ponent of diffraction dissociation dominates the former class of reac-

tions while the nonresonant component dominates the latter class. The 

procedures of Section IV applied to higher statistics experiments will 

help to determine whether this is indeed the case. 
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The second remark is that, in view of the likelihood that a 

nonresonant mechanism dominates 7Tp _.,. (37T) p, it is questionable to take 

the experimentally measured values of g
1

/g
0 

for the diffractively 

produced 11 A1" as evidence against symmetry schemes such as SU(6)w 

which predict g /g = 00 for the 
1 0 

+t 
I= 1 1 meson of the quark model. 

One should measure the properties of the A
1

, and other low spin reson

ances which can be produced diffractively from stable particles, in 

reactions other than diffraction dissociation where the identification 

of resonances is less ambiguous. 
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Appendix 1: Angular Distributions 

In the case of experiments with unpolarized targets where the 

final helicities are not measured, the general angular distribution 

for two-particle decays is given by 

W(IJ;,¢) 

l < JP AJA I T ( s ' t) I A ' Ab> 
A A A .. c a 
a' b' c 

P' 
x <J' A'A jT(s,t)jA A>* 

J c ab (A. l) 

From M. E. Rose, Elementary Theory of Angular Momentum, John Wiley & 

Sons, 1957, equations (4.17) and (4.25) we have 

Using parity conservation, we obtain 

A'-(A -A) 
(-l) J · a B 

(A. 2) 
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(A. 3) 

Combine equations (A. l) , (A. 2), and (A. 3). Then in the sums over AJ 

and A' 
J 

corresponding to the second term in (A.3), make the trans-

formation A +-A 
J J 

and .A, -r -.A' 
J J 

. Using Rose (3.16a) which states 

(A. 4) 

we derive (18) and (19). Analogous considerations apply to three 

particle dec.ays. 

From the general expressions (18), (19) and (25), (26), one 

may derive angular distributions for the analysis of specific experi-

ments by using tables of Clebsch-Gordan coefficients such as 

M. Rotenberg,- R. Burns, M. Metropolis, and J. Wooten, The 3-J and 6-J 

Symbols, The Technology Press (1959). 

As an example of the type of expressions that result , we give 

the angular distributions for TIN -r TI(TIN) in the case of helicity 

conservation. We identify from (15) and (16) 

'JP <JP 1/2 IT I + 1/2> = SJ 8+1/2 + p 

Using (17) it is found that (19) simplifies to 

(-2) !I_ I I C(J , J ' ,,Q,;1/2 , -1/2) C(J ,J' ,,Q,;-1/2,1/2) J 2i+I J , P 3 , , P , 

x 
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Then for J _:::. 5/2 

Aoo J4TI [ ls~/212+ !s~/2!2+ ~1s:1212+ ~ls~/212+ ~ls~/212 

+ 1.jsS/212+ ···] 
3 -

A10 = ~ (2 Re st112s:12+ ~ Re s:312s~/ 2+ 3~ Re s~5 1 2s:1 2 

+ 2 Re(s*l/283/2+ s*l/283/2) +.§. Re(s*3/28s/2+ s*3/28s/2)+ .•• ] 
+ - - + 5 + - - + 

[.loo R s;~s128 s12 + ... J 
63 e + -

A£m = 0 for m ~ O . 

Although this particular distribution is true only if ·helicity is con-

served, it exhibits features which were mentioned in Sections II and 

IV to characterize angular distributions in general: e.g., (1) the 
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A for 9., odd involve only terms mixed in parity; (2) the 5/2 -
9..m 

1/2 interference term appears only in A2m and A3m while the 3/2-

1/ 2 te1111 appears only in A and lm and (3) a given term such as 

3/ 2 + - S/ 2 + contributes to the various Aim £?uch as A
20 

and A
40 

in 

proportion to numbers calculable from C-G coefficients (in this case 
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INDEPENDENT PRODUCTION OF PIONS 
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I. Introduct ion 

The phenomenology of inelastic reactions at high energies is 

unavoidably more complicated than that of two-body scattering. There 

are typically a bewildering variety of variables upon which the scat

tering amplitudes may depend. It is unclear which variables, if any, 

are of particular significance. The absence of a theory of strong 

interactions precludes a priori knowledge of which features should be 

expected to dominate the data. Our present understanding of two-body 

scattering suggests the existence of a numher of competing effects in 

inelastic reactions, but, so far, few have been unambiguously identi

fied. 

Despite these practical difficulties, it is clear that inelastic 

reactions are important to an overall view of the strong interactions, 

if only because they are related by unitarity to two-body scattering. 

In fact, this . connection provides some insight. The s and u chan

nel reactions have differing degrees of resonance formation and yet 

there is an apparent asymptotic equality between s and u channel 

inelastic cross sections. This suggests that direct channel resonance 

formation accounts for only a small portion of the inelastic cross 

sections at high energies. It is also apparent from the sizes of dif

fraction dissociation cross sections that they, as well, constitute 

only a small fraction of inelastic reactions. 

For the remaining majority of inelastic reactions a variety of 

widely divergent models have been proposed, each attempting to 

describe some aspects of the data but with little predictive power. It 
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is preferable to discuss the model independent statements that appear 

to characterize inelastic reactions. In this introduction we shall 

review the salient features of the data and the experimental situation 

that motivates the work of this thesis. These points shall be illus-

trated primarily with the published and unpublished data of the 

ABBCCHW collaboration(l, 2). 

We begin by examining the distributions of final particles in 

momentum space. These are commonly expressed in terms of the momenta 

along and transverse to the direction of the incident particles·in the 

center of mass of the collision. In Fig. l we exhibit the average 

longitudinal and transverse momenta for various configurations of final 

particles resulting from TI p collisions at 16 Gev/c. This figure 

illustrates behavior COilliuon to most multipar~icle reactions. 

Instead of occupying uniformly the available phase space, the 

outgoing particles have low transverse momenta whose average is 

roughly 300 Mev/c. This average may.be est~mated from the observed 

total and elastic cross sections as follows. From the assumptions that 

the elastic amplitudes are purely imaginary and vary exponentially with 

t , which we showed in Part I to be a good approximation at high 

energies, one can derive that the inelasticities are given by 

1 - n z 4 
0el ( Z28TI 0el) 
0 exp - 2 2 
tot k 0 tot 

The inelastic cross section for a given partial wave is 

z 
0. 1 ine 

(1) 

(2) 
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Thus the r adius of interaction for inelastic reactions is given 

approximately by 2 2 R = cr /Swcr 1 • 
tot e 

The uncertainty in transverse 

momentlml is related to the uncertainty in position by 

1 
l::.x = 1 - = 

R 

and 

j8rr cr el 

cr2 
tot 

cr /cr = .17, we obtain el tot 

(3) 

!::.p ~ 250 Mev/c • Despite the crudeness of this calculation, one sees 
T 

that the approximate magnitude of the cutoff in transverse momenta may 

only be as fundamental as the asymptotic values of strong interaction 

cross sections . . 

Without making any assumptions, the statement that the trans-

verse momenta should be limited by the sizes of observed cross sections 

can be justified quite simply. Note that . in (2) unitarity limits the 

contribution of a given angular momentum. To achieve cr. 
1 

of the 
ine 

size seen experimentally, the number of partial waves which contribute 

strongly should increase with increasing energy. By angular momentum 

conservation the distribution of final particles becomes less and 

less isotropic for fixed a. 1 as the energy increases, a phenomenon 
ine 

which can be approximately described by fixing the average value of 

Figure 1 also illustrates that outgoing particles with the 

same quantum numbers as the incident particles tend to have longitu-

dinal momenta comparable to those of the incident particles, while the 

other produced particles have longitudinal momenta which average 

around zero in the center of mass. This is further demonstrated in 
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Fig. 2 whiGh is a scatter plot of the momenta in 16 Gev/c 7f p -)

+ - - 0 p7T 7T 7T 7T • One says that the two "leading particles" have momenta 

near the limit set by energy momentum conservation, while the "non-

leading particles" have low longitudinal momenta. The 7T distribu-

tion includes nonleading as well as leading pions. 

It is possible that, except for the low transverse momenta, 

the distributions of nonleading particles may be largely understood 

in terms of phase space. The main products of high energy collisions 

are pions, which is certainly the mode favored by phase space. The 

peaking at low longitudinal momenta may arise from the relativistic 

phase space d3P/E enhancing the distribution of low momentum pions 

in whatever frame we choose to view them. A.more meaningful statement 

is that the distributions are the most symmetrical when viewed in the 

center of mass of the collision. If one assumes that the prime effect 

of the dynamics is to restrict the transverse momenta, then the cross 

section for producing a particle may be crudely approximated ·by 

(4) 

Since the longitudinal momenta are limited by energy conservation to 
./8/2 dpL 

values less than /;/2 , this integral looks like J at large 
·pL 

s • We thus calculate that the average multiplicities of produced 

particles should be proportional to in s , as is observed empirically. 

Leading particles may also be resonances that are emitted with 

low momentum transfers from the incident particles. An interesting 

question is whether one can distinguish between nonleading pions 
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and pions which result from the decay of leading resonances. Consider 

the production of a leading N* which subsequently decays into a pion 

and a nucleon. The velocity of the N* is given by 

P c .• m. rs 1 = - at arge s inc 2 

Then, the average longitudinal momentum for the pion is 

<P > 
L 7T 

(5) 

(6) 

For 16 Gev/c 7Tp collisions, a pion from N*(l236) decay would have 

'V 
<P > 300 Mev/c which is the same order of magnitude as the longi-

L 'IT 

tudinal momenta of nonleading pions. These pions should on the 

average, of course, move in the direction of the· incident N . A pion 

from a leading p should have 
'V . 

<P > = 500 Mev/c 
L 7T 

and should on the 

average move in the direction of the incident 7T • Higher mass reso-

nanceswould yield even smaller average longitudinal momenta for their 

decay product~. ·Hence, resonances could also produce distributions of 

pions with predominantly low longitudinal momenta as are observed 

experimentally. 

The model.in which all inelastic reactions proceed via the 

fonnation of leading resonances is termed the "two-fireball model". 

The model in which the nonleading pions are considered to be the debris 

left over from the collision of the two incident hadrons is termed 

"pionization". Various other models range themselves in a rather 

smooth spectrum between these two extremes. Clearly, experiments at 
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higher energies would aid greatly in establishing which, if any, of 

these qualitative descriptions is correct. 

Correlations may be observed in "inclusive" hadronic reactions 

by measuring then-particle probability distributions. Inclusive 

reactions are those in which a few of the final particles are measured 

and the rest are ignored. They are to be contrasted with "exclusive" 

reactions wherein all of the final particles are measured. If P(k
1

) 

is the single particle distribution and P (k · • • k ) ( 7) the 
l' ' n 

n-particle distribution, the quantity of interest is 

G(n)(k ·•· k) = P(k ··· k) - P(k )···P(k) 
l' ' n l' ' n 1 n 

which in the quantum theory of optics is called the nth order correla-

tion function. A state of produced particles in which the correlation 

functions through order n are zero is called "nth order uncorrelated" 

or "nth order coherent". 

Since ·inclusive n-particle distributions have not as yet been 

measured, we will examine the evidence for correlations among particles 

in exclusive reactions. Figure 3 gives the distribution( 3) in + -1T 1T 

invariant mass for - + 
1T p + 31T ,21T ,p . Clearly, it is difficult to dis-

cern appreciable p or f . Uncorrelated pions would naturally have 

the qualitative behavior indicated, but it may be that the various 

resonant effects among the final particles are difficult to resolve. 

To test further the absence of second order correlations, we should 

ideally look at a six-dimensional plot of two pions. Instead we 

restrict ourselves to a check of the correlation between longitudinal 

momenta. Figure 4 shows the longitudinal center of mass distributiojl) 
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of one in 
- - + + - -TI p -+ TI pTI TI TI TI for several choices of the longitu-

dinal momenta of the other + TI (these choices are (0,-0.1 Gev/c), 

(-0.2,-0.3), (-0.4,-0.5) for the three shown distributions). The 

general trend is a uniform decrease in agreement with uncorrelated 

d . 0 1 . ++. . h l' pro uction. ne may argue t~at since TI TI is an exotic c anne it 

should not exhibit strong correlations whereas the + 0 
TI TI channel 

should. A similar check of + 0 TI TI shows a far less regular behavior 

than Fig. 4. Nevertheless, it is still true that the bulk of the 

events are concentrated around low longitudinal momenta in the center 

of mass. We may conclude that uncorrelated production may be a crude 

approximation to the data. 

We define the emission of pions as independent if the same 

-+ 
P(k) can be used in all configurations of outgoing particles. In 

addition we take independence to mean that if the cross section for 

producing n pions in a certain fraction of phase space is propor-

tional to 

2w 
fP(k ) 

n 
n 

the cross section for producing n + 1 pions is proportional to 

d3k 
1 

-- fP(k ) · · · 2LD 1 1 . 

3 
d kn+l 

fP(kn) fP(kn·+l) 
2wn+l 

(7) 

fP(k) may in principle depend on the charge of the pion, but is sup-

posed to be fixed for any given momentum of the incident · particles. 

If the emission is independent one expects to find distribu-

tions of many particle events similar to Poisson distributions. The 
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distributions(!) for charged particle prod~ction are given in Fig. 5, 

and are well described by Poisson-like distributions. Of course, 

independent emission is not the only explanation for these distribu-

tions, but it is suggested. Figure 6 shows the center of mass 

longitudinal momentum distributions(l) of the + 
1T in two different 

configurations. The similarity between the dominant features of these 

two curves would also be implied by independent production of 1T+ 

We may also expect independence to imply that the energy dissipated 

into the pion cloud is proportional to the number of produced pions. 

Consequently the energy of the leading particles will decrease with 

increasing pion multiplicity. Figure 1 demonstrates that the average 

momenta of the proton and leading 1T indeed follow this behavior. 

The other pions' . behavior does not change ne.arly as drastically. 

We are thus led to consider as a possibility that an approxi-

mate phenomenological description of multipion production at high 

energies may be that pions are produced independently and are essen-

tially uncorrelated. Such descriptions have in fact played a signif-

icant historical role in the development of our current ideas 

concerning the relation between elastic and inelastic reactions. 

(4) . 
Beginning with the pioneer work of Van Hove , attempts have been 

made to calculate via unitarity observed properties of elastic scat-

tering from assumed models for inelastic scattering. In specific 

d 0el 
uncorrelated models the experimental linearity of 2n in t 

dt 

has been "derived". It has also been possible to connect constancy 

of the average transverse momenta to the asymptotic constancy of 

total and elastic cross sections, as we have in the intuitive 
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Fig. 5. Distributions of cross sections for non-strange 
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1. The cross represents the value.obtained for nch= 2 

if the elastic reaction is included. 



· n(Tt•) 

800 

700 
n-p-n-prt0 rc•n-n•n-n-Tt- n-p -n-p Tt 0n•n •n-Tt • 

600 

500 

L.00 

300 

200 

100 

-2 -t5 -1 -0.5 0 0.5 1.5 2 PL (Bel./) 

Fig. 6. Distributions .of TI+ events vs. their longitudinal center of mass momentum 

for two different final configurations. Unpublished data of Ref. 1. 

I 
-.....J 
w 
I 



-74-

arguments presented above. Many models with approximate independence, 

known as 11 factorable 11 models, achieve Poisson-like distributions for 

the n-particle cross sections. 

The question we address in Part II of this thesis is an 

obvious one. To what degree can independent emission of uncorrelated 

pions be true when there are some obvious constraints which must be 

obeyed, i.e., four-momentum conservation, charge conservation, parity 

and charge conjugation invariance, and isospin conservation? 

A state of pions uncorrelated to all orders, emitted indepen

dently, and in which also the phase of the pion wave function (whose 

norm is fP(k)) is fixed as a "coherent state". This phase is 

obviously un..'lleasurable, since measuring cross sections involves looking 

at the square of the pion wave function. This phase will be important 

when we discuss the isospin question. As an example of independent 

production of uncorrelat.ed pious, we . will discuss in the next section 

how a coherent state may be employed in a scattering matrix descrip

tion of many pion production(S). Since we apply the method to the 

description of pions emitted with low energies in the center of mass 

of the collision, it can be called "coherent pionization". 

In the following sections we will systematically discuss the 

effects of strong interaction symmetries on independent emission, and 

we will examine briefly independent emission of two-pion resonances. 

Several results will be achieved for which we will give model

independent justifications. 

A word about the relation of our work to other models for 

multipion production; currently fashionable proposals such as the 
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multiperipheral model and scaling in inclusive hadronic reactions 

concern the distribution in momentum space of the produced particles. 

Inasmuch as we focus on the effects of symmetries and conservation 

laws, our work is complementary rather than orthogonal to the other 

approaches. The single particle distribution will be irrelevant to 

our considerations, and we will make no proposal concerning its 

behavior. 

Sections II and III discuss the emission of a coherent state. 

Section IV concerns the distribution of pions resulting from charge 

conservation; Section V, parity and charge conjugation; Sections VI 

and VII, implications of isospin conservation; Section VIII, two-pion 

correlations such as resonances; and Section IX, conclusion. 
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II. The Coherent State 

A coherent state of bosons is quite unique in its physical 

interpretation and mathematical structure. It is the quantum mechani-

cal state that is closest to a classical system in its dynamical 

properties( 6). Thus, a coherent state of particles is the quantized 

description of classical radiat ion of the corresponding field. It is 

used in describing electromagnet ic radiation in quantum optics as well 

as in the analyses of bremstrahlung and the related infrared 

catastrophe( 7). In the present section we apply this concept to 

pions. For the moment we will disregard their quantum numbers and 

use only the fact that they are bosons. Modifications introduced in 

the following sections can be simply implemented within the formalism 

of Sections II and III. 

We start with creation and annihilation operators satisfying 

(8) 

Then a coherent state of bosons is defined by 

a c"k) I£ > = f c"k) I £ > (9) 

-+ 
where f (k) is the momentum space wave function for each boson, k 

is the four-momentum and k = w = J k 2+ µ2 
f (k) is a relativistic 

0 

invariant function of k The solution to (9) is given by 

If> 
-+ -+ .L. -+ 1 -+ 2 

=exp{ J dµ(k) [f(k)a 1 (k) . ~ ~jf(k)! J} jd> 

exp{ J dµ(k) [f (k)a t (k) - f~~(k)a(k)]} j.O> (10) 
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3 

where dµ(k) d~k/2w(2n) 3 , and we have normalized jf> so that 

<f J f > = 1 . The basic equation (9) gives the clue to the classical 

behavior: the expectation value of a second quantized boson field 

wi'thin the state jf> will be given by a classical field with momentum 

distribution f (k) . 

The expectation value of the four-momentum operator P is 
.µ 

Obviously j f > is a combination of all n-particle states, i.e., if 

n = J ~ct> ltct> 12 

. - n -
1 J + + I + + I I 2 ( n) -n - dµ(k )···dµ(k) <k ···k f> = -- e 
n! 1 n · 1 n n! 

(12) 

a Poisson distribution in n . 

In dealing with the production of a coherent state we have to 

project out of it the piece that corresponds to a definite four-

momentum K .. We will denote this new state by 1£,K> • It is given 

by 

If ,K > = 

(13) 

and obeys 

If> (14) 
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< f ) K' I f 'K > ;:: 8 ( 4) (K' -K) p (K) 
f 

(16) 

The quantity pf (K) corresponds to the distribution of the 

coherent state in momentum space. To see this we decompose pf (K) in 

a series of n-particle contributions 

00 

pf (K) = I p~(K) 
n=O 

-n = e 

+ ; 1 J d4kjf(k)J 2 jf(K-k)j 20(k2-µ 2)0[(K-k) 2-µ 2]9(k
0

)9(K
0
-k

0
)+···} 

(17) 

Equation (17) reveals the momentum spectrum one would expect: a 

'b . K 0 f h Kz_ -- µ 2 contri ution at = rom t e vacuum component, one at 

from the one-particle state, and a continuum that starts from the 

threshold of two particles. 

For the sake of further use we also list some properties of 

scalar produc_ts of two different coherent states: 

<gjf> =exp{ - ; J dµ{k°)(jfj 2+ JgJ 2- 2g*f)} (18) 

Equation (18) shows that two different coherent states are not 

orthogonal to each other (they are not eigenstates of Hennitian 

operators). Nevertheless, they do form an over-complete set( 6). The 

analogue of (15) is 

1 J 4 -iK. x { 1 J I I 2 I I 2 
4 

d x e exp - 2 dµ(k)( f + g 
(21T) 

.kx 
- 2g*f el )} (19) 



-79-

The calculation of quantities like pf (K) or p;(K) is 

not an easy matter. Thus p~(K) can be rewritten as 

p~(K) = ~ J dµ(k:1)···dµ(k:n)jf(k1)J
2
···Jf(kn)j

2
o(

4
)(k1+···+kn-K) 

(20) 

To simplify matters we can define normalized distributions P~(K) 

such that 

1 (21) 

One can then use the central limit theorem to find that 

"n 1 /<let D { 1 µ -;j..l V -v } p (K) "' - - exp - -
2 

n (K -nk ) (K -nk ) 
f - n2 4TI2 n µv 

(22) 

where 

k11 = 1 I dµ(k:)kµjf(k) i2 
n 

(23) 

nµv J (kv- °k'1)(kcr- k°)jf(k) Jzdµ(k:) = 
n 

This result was given by Van Hove( 4) and the corrections to the 

approximation (22) were analyzed in detail by Lurcat and Mazur(S). 

Let us discuss here briefly the expected form for if f (k) has 

the characteristics of the distribution functions described in the 

introduction. A reasonable guess would be k = (w, O) with a 

-2 -2 -2 
diagonal matrix with elements (0E , 0T , 0L ) where T and L desig-

nate transverse and longitudinal directions respectively. There is 

obviously a connection given by It then 

follows from (22) that 
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- 2 2 2 

( 
1 [ (K 0 - nw) KT KL J} 

exp - - + -- + --
n 2cr2 2cr2 2cr2 

E T L 

(24) 

Equation (24) tells us that the overall distribution of pions is peaked 

around a linearly increasing energy with an increasing width as expected 

from a typical random walk problem. 
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III. Emi ssion of a Coherent State 

In this section we discuss a formalism that describes a process 

in which the two incoming particles (with momenta ql and q2) pro-

duce two outgoing leading particles (with momenta P1 and P2) and 

n mesons of momenta k ••. k 
l' ' n 

which are part of a coherent state. 

For the moment we continue to ignore the quantum numbers of the 

pions. We propose now, in analogy to the bremstrahlung case, the fol-

lowing S-matrix structure. 

<pp k ···k jsjq q > 
1 2 1 n 1 2 

ix• (pl+p2-ql-q2) 
e 

To the extent that the incoming particles are not mesons of the kind 

appearing in the coherent cloud (or, if they are such mesons, they 

have momenta outside the range of f (k)) independent emission means 

that the S-matrix can be brought into the factored form 

(26) 

"" 
T acts only on the leading particles q

1
q

2
p

1
p

2 
that form what we 

call the "skeleton" of the process. It can thus depend on the 

invariant variables: 

u (27) 
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s + t + u + s + t + u (28) 

where 

K 

Note that f (k) is an invariant function of k and depends there-

fore on the four momenta of the skeleton. We ref er to this fact by 

using the notation f (k). 
pq 

The form (26) leads to the following result for the cross sec-

tion of n meson production 

(29) 

where (dp) stands for the invariant phase space .element of the out-

going leading particles and the relevant flux factor. Equation (29) 

is formally similar to the two-particle production cross section 

(30) 

with the pn replacing the 6-function. Thus again we see that pn 

describes the distribution of four momenta absorbed in the mesonic 

cloud. We will discuss later whether the recipe (29) can be smoothly 

continued to n = 0 

cr = I 

= I 

to give (J = (J 
2 

where 

c d p) P ~ c q 1+q2-p1-p2) l < P I :r I q > 12 
pq 

(4) -n 2 
(dp)c (p1+p2-q1-q2)e pql<plT!q>l 

(31) 

Equation (24) told us that we may expect pn(K) to be concentrated 
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around 
-+ 

K = nw K = 0 . 
0 ' 

If we assume < p IT I q > is independent of 

then, at least until the end of phase space is reached, we can 

approximate (29) by 

J (dp) d4K p~ (K)0(4) (K+ pl+p2-ql-q2) J<pJTJq>J2 
pq 

J (K) 

(32) 

which means a Poisson distribution for the differential cross section 

If, further, n depends only on q we have 

0
2+n = 

(-;;) n 0 
n! 

(33) 

This calculation makes sense only provided phase space restrictions 

can be avoided; in other words, if the number of pions is smaller than 

the maximum allowed by energy conservation nw < IS - m
1 

- m
2 

• This 

works best for an 
-+ 

f (k) concentrated around the c.m. with a narrow 

width. For high n that violate this inequality, we have to expect 

distortions of (33). 

By "elastic skeleton" .we mean that the outgoing particles are 

the same as the incoming one. This does not imply 0
2 

= a • An 

"inelastic skeleton" can have resonances among its outgoing particles. 

For elastic skeletons Fig. 7 gives experimental evidence( 3) that (33) 

cannot be extended to n = 0 . In all other multiplicities the reac

tions without a ·n° form a small minority of the events. We have 

therefore to rely on unitarity to give us the elastic amplitude in terms 
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of the inelastic reactions. As a crude approximation one may consider 

a model in which all inelastic reactions are described by (26) with an 

elastic skeleton. Unitarity then leads to 

x o( 4)Cp' +p' -q -q ) <pp !Ttlp ' p'> < p'p' ITlq q > 
1 2 1 2 1 2 1 2 1 2 1 2 

(34) 

00 

I 
n=l 

where 
n 

pf f is the object of the type · defined in equation (19). 
pp' p'q 

The right hand side of (34) is analogous to Van Hove's "overlflp 

integral" that determines the t structure .of the elastic amplitude. 

In fact, Van Hove( 4) used a formalism similar to the one presented 

here to show .how the properties of elastic scattering are correlated 

with the properties of inelastic scattering. 

At this point it is interesting to see how the bremstrahlung 

theory · solves the unitarity problem(?). The function f is given 
pq 

in this case by 

( 27f) 312£ (k) 
pq 

e' s·p · + e' s·p - e
1 

s·q
1 

~ e s·q 
1 1 2 2 2 2 

k•p 
1 

-- -
k•p 

2 
k•q 

1 
k•q 

2 

(35) 

where e. 's are the various charges and s the photon's polarization 
]. 

vector. Clearly f is peaked around k = 0 and the whole treatment 

is valid in .QED only in the limit k + 0 . Then it turns out that 
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-n /2 
<p I 1 l q > e pq 

...., 

(36) 

and unitarity is satisfied provided T satisfies elastic unitarity. 

To see this we rewrite (34) as 

Replacing the 
ik•x 

e in the integrand by 1 (the limit k + O!) we 

find 

x 
...., 4 (4) 

<p' ITlq> (27T) cS (p'+p'-q -q ) 1 2 1 2 
(37) 

which shows the ansatz (36) works provided <p!Tlq> obeys by itself 

a unitarity equation. 

There are clearly several important differences between the 

formalism of. bremstrahlung and the emission of the mesons in high 

energy collisions. The first is that experimentally the identification 

(36) is invalid. Another is that the limit k + 0 is not justifiable 

and cannot be obtained with massive (and energetic) mesons. This can 

be circumvented by having a skeleton matrix element that does not 

vary significantly with K . A very important third difference is that 
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we may choose to depend on q only. In the introduction we 

show characteristic distributions that depend on kT and ~ • 

These variables can be given an invariant definition in terms of 

k•q
1

, k•q
2

, q
1

·q
2 

and the masses involved. Thus, present experi

ments can be described approximately without a p dependence. This 

makes it possible to go from (32) to (33) and get simple relations 

for integrated cross sections. 

The explicit construction of an example of coherent production 

shows that independent uncorrelated emission can take place. Coherence 

is also a statement about the phases that are not directly measurable. 

They will, however, be important when we discuss the isospin question. 

The easiest things to measure are of course the cross sections. Their 

distributions, suggested by equation (28), will get modified in con-

sideration of the quantum numbers of the pions to which we turn in 

the next sections. 
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IV. Distributions of Charged Pions 

The second constraint we will consider is tha~ of charge con-

servation. In the model discussed in the previous sections, the 

coherent state must have a fixed electric charge that matches the 

charge of the skeleton. This is not true of simple charged coherent 

states 

for i = +,0,- (38) 

One way to deal with the problem can be to start from the state 

IF> If> 1£ > if> + 0 -
(39) 

and project out the required charge. An alternative is to define a 

state If .f ,Q> obeying the equation ,.. -

(40) 

which has definiie charge Q . This is analogue of equation (9) and 

can serve as a definition of a coherent state of charged particles. The 

solution to (40) is 

( J dµ(k)f_(k)a~(k))n lo> (41) 

where the sum st~rts from n = 0 for positive Q and from n =-Q 

for negative Q . The normalization constant C turns out to be 
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2 
x 

c 
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(-i)QJ (2ix) 
Q 

(42) 

(43) 

It is straightforward to show that the projection of IF> onto a 

specific charge Q does indeed contain this state. It is 

(44) 

which we will regard as the right choice to take the place of jf > 

in equation (26). The distribution of charged particles that results 

from this state is 

(-Q) 
p -l-Q n. 

.Q 2n+Q 
l x 

J Q ( 2ix) n ! ( n+Q) ! 
(45) 

One can, however, give an argument for the validity of this 

distribution independent of the specific model that suggests it to us, 

as follows: 

Most inelastic reactions at available accelerator energies 

involve primarily the emission of pions. One can argue that the 

gross features (multiplicities) of the events should be independent of 

the specific production mechanisms, which suggests that one should 

approach the problem on a statistical basis. There are several overall 

· constraints that have to be obeyed by the system, namely, momentum, 

isospin, and charge conservation. Since experimentally the emitted 

pions occupy a small fraction of the available phase space, we expect 

momentum conservation to be a weak constraint. By summing over all 

neutral pions, we may expect the constraint of total isospin 
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conservation to be weak also. We are thus left with the obvious con-

straint of charge conservation. 

It is quite straightforward to arrive at the desired distribu-

tion. If the pions are emitted independently one would expect a 

Poisson distribution for each kind of pion. Because of the charge 

constraint we ask for the conditional probability of emitting n 

positive and n negative pions simultaneously. If the Poisson dis-

tributions for the positive and negative pions are given by 

p(±) = 
n n! 

the resulting distribution for n charged pairs is( 9) 

where 

p 
n 

1 
J ( 2ix) 

0 

2n 
x 

It follows that 

< n > = l nP 
n 

n 
-ix 

J (2ix) 
0 

(46) 

(47) 

(48) 

which gives a on·e-to:-one correspondence between < n > and x • We 

find also <n2 > = 
2 x 

2 2 2 (1 + 
Ji< 2ix) 

) C5 =<n > - <n> = x 
J2

(2ix) 
0 

(49) 

For high values of n , one can use St.irling 's approximation to show 

that 

p -+ 
n 

1 
J (2ix) 

0 

( 2x) 2n 

(2n)!(2n) 112 

which differs slightly from a Poisson distribution in· 2n . 

(50) 
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In Fig. 8 we compare the predictions of equation (47) with the 

data compilation by Wang(lO) of many 
+ 

11-p,pp, and nn inelastic produc-

tion experiments below 27 Bev. The number of charged pions (n ) 
c 

should be related to our n by n 
c 

2n+2 (in the case of nn collisions 

n = 2n). The data are assembled in a way that tests just the character 
c 

of the distribution, namely, it is a plot of the probability for a cer-

tain n to occur provided <n > is given. Hence there is no free 
c c 

parameter to be adjusted. Wang tried to fit the data with two of the 

distributions shown in Fig. 8: WI is a Poisson distribution in 

1 -(n -2) 
2 c 

in n -2 
c 

and WII is built of the even terms in a Poisson distribution 

The data points seem to follow a universal curve that is not 

very well reproduced by either w1 or WII. Although WI fits the low-

n and low-<n > region, it fails at higher n and higher <n > . 
c c c c 

We note that the curve of distribution (47) does depict correctly the 

experimental behavior. 

In view of the success of distribution (47), we mention at this 

point that in plotting all the experiments together, we are closer to 

the case of a statistical ensemble. One may expect that some remnants 

of the momentum and isospin constraints are still left in any particu-

lar type of experiment. We anticipate that higher statistics experi-

ments will show deviations from univers al curves for individual reac-

t ions. 

The agreement achieved in Fig. 8 raises the question of whether 

this can serve as proof that all the reactions are mainly of one type, 

namely, A+B ~ A+B+pions, where obviously the pion cloud is neutral. 

In order to answer that, we look for the probability of finding 
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n+Q positive and n negative pions. This will then correspond to the 

expected behavior from a cloud of pions of overall charge Q . Fol-

lowing a similar line of reasoning to the one used above we find 

equation (45) where 

(51) 

In Fig. 9 we plot the predictions of in the 

same way as in Fig. 8. It turns out that they all coincide in the 

region where most data points are available. This may even be the 

reason for the universal character of the experimental data. For 

example, in 7T p reactions, one finds outgoing "leading" particles 

7T and p following the initial momenta of the incoming ones, and a 

cloud of pions with relatively low momenta in the center of mass 

system. This cloud of pions should fit the ·p(O) description. 

However, as the multiplicity increases the leading 7T loses momentum 

and eventually will be indistinguishable from the 7T particles in the 

cloud. Thus one should perhaps expect a smooth transition from P(O) 

to We will discuss this question further with respect to the 

implications of isospin conservation. 
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V. Parity and Charge Conjugation 

Questions of parity conservation are invariably intertwined 

with the distribution in momentum space of produced pions, which we 

do not care to speculate on here. However, given a specific dis-

tribution t he ef fect of parity conservation can be established. For 

ex~~ple, consider the extreme case of isotropic pionic distribution 

+ 
f (k) = f(k). Then clearly the transitions in the skeleton conserve 

j . However, in the case of an even number of pions we have even 

(odd) t + even (odd) t whereas if the number of pions is odd we find 

even (odd) t +odd (even) t . Hence, in the emission of an odd number of 

pions in this limit a spin transition must be involved. One expects 

that the more spins there are in the skeleton the easier it ~s to 

emit pions independently. It is interesting to note in this connec-

tion that the direction of the inequalities in cr. 
1

(nn) < cr. 
1

(np) 
ine ine 

< cr (pp) is also that of the number of spins involved. inel 

Several selection rules arise from charge conjugation consid-

erations. Thus a skeleton of four pions can be connected only to 

even numbers of pions, which is the same condition as that of parity 

conservation in the case of isotropic pions. A neutral system of 

uncorrelated pions with identical momentUi.~ distributions has positive 

charge conjugation. Thus it cannot couple, e.g., to e+e- (via a 

photon). Similarly pp annihilation at rest is restricted by charge 

conjugation. Both + -e e and pp annihilations are different from 

Tip and pp coll isions, because in annihilations it should not be 

meaningful to distinguish leading from nonleading particles. Our 

conclusion is that uncorrelated production is possible in systems 
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such as ·elastic scattering where charge conjugation and four-momentum 

conservation are not severe constraints. 
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VI. Isospin Analysis of Identical Pions 

As a necessary preliminary to our discussion in the next sec-

tion of the implications of isospin conservation, we develop here a 

formalism for the isospin analysis of pions with · identical momentum 

distributions. We limit ourselves to identical pions, since this case 

may be treated in an elegant and simple manner, but a similar analysis 

is possible for non-identical pions. 

We start by defining a nonnalized momentum space distribution 

-+ 
cp(k) satisfying 

f dµ(k) 1~<k)1 2 = l (52) 

The fact that · the momentum distributions of the pions are identical is 

summarized in the assumption 

-+ -+ 
f. (k) 

l 
f. cp (k) 

l 
i +,0,- (53) 

where the f. are three constants. The magnitudes and phases of the 
l 

f. determine the isospin structure of a definite combination of iden
l. 

tical pions. 

Let us now define three operators 

"at 
i = I dµ (k) cp (k) a! (k) 

"l 

·which obey the conunutation relations 

t [a.,a.] 
l J 

0 .. 
lJ 

(54) 

(55) 

The isospin generators for a system of identical pions can be simply 

expressed in terms of these operators 
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+ -)-

a'. T .. a. (56) 
l J.J J 

1 
=-

12 : _: ) 
(57) 

(58) 

The bilinear isoscalar creation and annihilation operators are 

A a a + 2a+ao 0 

+ 
[I ,A] 0 (59) 

The three operators .play a key r ole in the ~sospin analysis. They 

close on the algebra 

[N ,A] .-2A 4N+ 6 (60) 

-+-2 
Their importance stems from the fact that the operator I can be 

written in tenns of them as 

(61) 

It follows from (61) that a state of n identical pions will have 

isospin I = n if and only if 

AjI n,n > 0 (62) 

One may construct such a state by using 
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-at + /2 at + at 
+ 0 

(63) 

which obeys 

t 
- U , [U, T ] 

Because of these properties it is evident that 

0 (64) 

(65) 

Hence every I 
z 

.l. 

projection of the state (T 1 )nlo> has an isospin 

of I = n • Actually this state contains all 2n+l I projections. 
z 

From (65) we obtain 

Ir n, I , n > 
z 

B-1/2 l ____ n_! __ _ 

.J.. n-2p-I 
x(/2 a 1

) 
2 (a~)P lo> 

0 

t Iz+p 
(-a ) 

+ 

(66) 

where the sum is over all integer p such that the factorials can 

be defined. B is a normalization constant equal to 

B l 
p 

n-2p-I 
(n!)2 2 z 

(67) 
(I +p)!p ! (n-2p-I ) ! 

z· z 

A system of identical pions can include in addition to I= n 

also all isospins of n-2, n-4,··· down to 0 or 1. All together 

l ' 
these form 2Cn+l)(n+2) states, characteristic of the completely 

symmetric combination. We can prove that this is the case by direct 

construction 0£ the isospin states. We have already seen that At 

is a creation operator of an I= 0 system, indeed 



Ir 0, n =2m> 

The general state is then 

I I , I , n = 2m+ I > 
z 
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1 

/(2m+l)! 

D is a normalization constant equal to 

D 
4m ml f( I 3 ) m+ +2 

f(I + ~) 

(68) 

(69) 

(70) 

The states (69) form an orthonormal system as may be seen by using 

(64). Simple calculation of the number of states shows that we con-

structed in this way all possible isospin states of identical pions. 

Let us apply this formalism to the coperent state IF> of 

equation (39) as an example of independent .. uncorrelated pions. We 

have 

. 2 
We see that if we choose f 

0 

contains only states with I 

- (71) 

-2f f we have a coherent state which + -
n, i.e., this choice of phase leads 

to maximal isospin content. In general 

·where 

n = <F!N!F > 

n(n+2) - jf2
+2f f !2 

0 + -

It follows from .(67) that <I2 > is minimal if 

2 arg(f ) 
0 

(72) 

(73) 

(74) 
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These are also the conditions that ensure that the state jF >has no 

->-
pref erred direction in isospace < F j I IF> = 0 • Thus the minimal 

value is achieved by random walk in isospace 

2n (75) 

We believe that in general a cloud of independently produced pions 

will have no pref erred direction on isospace and so will have distri-

butions in isospin whose average is given by (75). 

Consideration of non-identical pions cannot give a lower . 

value of <I 2
> • In this case, direct computation leads to 

(76) 

The minimal value is again achieved by (74) which is equivalent to 

saying that all the f. 
1. 

in (53) are relatively real. 
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VII . I mul icat ion s of Isospin Conservation 

Isospin conservation has t wo major consequences: 1) the iso-

spins of the pion cloud must match the isospins of the . skeleton, i.e. np 

can emit up to I = 3 and pp up to I= 2 for elastic skeletons; and 

2) the ampli t ude for the emission of a charged pion cloud is related 

by the Wigner-Eck.art theorem to the amplitude for the emission of a 

net neutral cloud of pions. 

Obviously a coherent state of identical pions contains all 

isospins and cannot exactly satisfy condition (1). The question of 

the severity of the isospin constraint concerns the degree to which 

a coherent state can approximately match the isospins of the skeleton. 

The result of equation (75) looks quite pessimistic in this regard. 

However, we should remember that j F > contains all possible I 
z 

projections. By limiting ourselves to j f ,Q = 0 > the situation 

improves considerably. The calculation in this case is more difficult 

because If ,Q = 0 > is no longer an eigenstate of and a 

separately. It is, however, an eigenstate of A 

Ajf,Q> < f 
2 

+ 2f+f ) I f , Q > , a l f , Q > 
0 - 0 

f l f ,Q > 
0 

Again we have limited ourselves to identical pions and retain the 

freedom to play with the phases and magnitudes of the 

parameter of interest is 

f. • 
1 

The 

(77) 

(78) 

By choosing ~ = 2 we reach the maximal isospin state. In Section 

VI we learned that minimal growth of <I2> with n is achieved for 
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negative ; . Before turning to the numerical evaluation we would like 

to point out that suitable choices of ~ can eliminate a particular 

isospin altogether from any combination of identical pions. To see 

this, note 

<I n, I = 0 n I f > = B -l/ 2 < 0 If> ( /2 f ) n l n ! ( 2~) -p 
z ' o p 1 p ! ( n- 2p) ! 

p (79) 

Hence a suitable choice of ~ leads to <I= n, I =O, nl f > = 0 • Once 
z 

this is achieved it follows from (65) that all <I,I =O, n+2mjf>= 0. 
z 

The choice ~ = -1 eliminates I = 2 and the choice ~ = -3 elimi-

nates I= 3 . 

Let us now turn to the question of minimal isospin content. We 

choose f+f- as real and denote it by x= f+f- . We then find 

<n> 

2 . 
2x J2(2ix) 2 I 12 2 
J ( 2ix) - 2x + 2 f 0 + 4 Re(f 0x) 

0 

(80) 
2xJ 

1 
(2ix) 2 < f IN If > = ---- +I f

0 
I = 2< n +> + < n > 

iJ
0

(2ix) TI TIO 

The results for <I> vs. < n > , where <I>< I+ l> = <I~ are plotted 

in Fig. 10 for several values of ~ We see that for negative ~ 

they all lie close to each other obeying 

:::::: <n> (81) 

Thus by going from the state jF > to If ,Q = 0 > we gained a factor 

+2 
of two in the minimal value of <I> . This is of course essential in 

order for independent uncorrelated emission subject to charge con-

straints to remain a good approximation to the experimental situation, 
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Fig. 10. Plots of <I> vs. < n >for various choices of the 

parameter t; in the coher~nt state · j f ,Q = 0 > 



-105-

and we see the importance of the phase of the pion wave function in 

mi ni mizing the restrictions isospin conservation places on independent 

emission. 

<n>) 

The absolute value of s is the asymptotic (i.e., for large 

ratio of the number of 0 
1i to the number of + 

'IT • Therefore we 

do not consider values that are too far from unity. In Figs. 11-13 

we show the distribution of <I > for various choices of s 9 Figure 

11 shows that for s = -0.5 all isospins higher than three are strongly 

quenched. Figure 12 has the choice s = -1 that eliminates I = 2 

and Fig. 13 is drawn with s = -3 that eliminates I = 3 . In all 

figures we see the important roles of low isospins for the presently 

observed ranges of < n > 

A similar calculation leads to the distributions of specific 

isospin values in the n-pion configurations.. Figure 14 shows these dis-

tributions for s -2 where I = 0 and 1 are important values. The 

relative amounts of the low isospins change slowly with s . We see 

from Fig. 15 that although the leading terms have low I spin values, 

one still encounters sizable contributions from forbidden isospins. 

We conclude that insofar as a cloud of identical uncorrelated 

pions is produced with no preferred direction in isospace, isospin con-

servation is a weak constraint compared to charge conservation. 

However, the approximation of independent production becomes less 

accurate with increasing n and increasing < n> • With regard to the 

second consequence, the exact manner of satisfying this depends on the 

details of the isospin recoupling coefficients which is a model depen-

dent problem we do not give a prescription for solving here. 
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in the coherent state If ,Q = 0 > plotted vs. < n > for 

the .choice ~ = -0.5 . 
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n particle states included · in If ,Q = 0 > plotted vs. n 

for the choice ~ = -0.5 . Note the two ·types of curves 

that describe even and odd ±so.spins· for even and odd n 

respectively. 
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Fig. 15. Same as Fig. 14 for ~ = -2 · 
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VIII. Two-Pion Correlations 

On~ possibility for eliminating the isospin problem alto-

gether is the production of pions in scalar isoscalar pairs .· This 

of course requires different skeletons for even and odd pionic 

reactions. As an exa.~ple of independent production of isoscalar 

pairs, we will examine the distributions that result from a coherent 

state of isoscalar pairs satisfying 

Ajg> = gig> 

The purely I = 0 solution is 

CL. J sinh g 

m 
g I I = 0 , n = 2m > - rg- I 

Jciuhg 
m /(2m+l)! 

The n pion distribution is given by 

1 
sinh g 

2m+l 
g 

(2m+l)! 

(.82) 

(83) 

(84) 

One important property of (83) is that the isoscalar state has the 

same multiplicities of all different charges 

<n > 
+ 

IT 

1 - <n> 
3 

The probability of finding r charged pairs in a state 

I I = 0 , n = 2m > is 

P(r,m) 

r 
m! m! (2m - 2r)4 
( 2m+ 1) ! m - r ' 

(85) 

(86) 
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From (86) and (84) we find the probability for r charged pairs in 

the coherent state I g > . It is 

( 28 ) 2r 

sinh g 

00 

\ 2p+l r (p+r)! )2 (Zp)! 
l g lp ! (2p+2r+l) ! 

p=O 
(87) 

Since I g > describes the production of neutral pion pairs, we may 

expect it to be similar to WI of Wang(lO). The distributions 

P(O) and WI are compared in Fig. 16 where we see that indeed P(g) 

resembles WI and both differ somewhat from the more successful distri-

bution P(O). 

However, the major difference between isoscalar pair emissions 

and independent emission is that now the probability of finding neutral 

pions is correlated to that of charged pions. Using the fact that the 

average number of pions is 

<n> g coth g - 1 (88) 

we may calculate the expected correlation of < n > vs. r for fixed 
7To 

<n> . These correlations are shown in Fig. 17 where <n > is plotted 
7To 

versus nch = 2+r in a way to be compared with Fig. 7. They clearly do 

not correspond to the trend of the data. 

Note the resemblance between our curve and that achieved with 

alternating I = 0 and I = 1 exchanges in a multiperipheral model. 

Since such a model corresponds to emission of isoscalar pairs of pions, 

this resemblance is to be expected. Caneschi and Scnwimmer(ll) have 

+ p and p presented other schemes involving the inclusion of pro-

duction with.in a multiperipheral model that achieve better f±ts to the 
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Fig. 17. The dependence of <n· > on n+ is shown for two 
'ITO 'TT 

different values of < n > = 3 <n > in the coherent 
'TT 'ITO 

state lg> to be compared with Fig. 7. 
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data. That this should be an improvement should be obvious from the 

fact that it introduces a positive correlation b~tween neutral and 

charged pious. As we may treat p production in an analogous manner 

to the way we treated isoscalar production above, the success of 

Caneschi and Schwinuner does not constitute evidence for the multiperiph-

eral model. Since the general trend of the data is at best only 

slightly rising, we conclude that either (1) there is little correla

tion in pion production, or (2) the various correlations are difficult 

to resolve. 
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IX. Conclusions 

Our purpose was to study the degree to which pions emitted in 

multiparticle production experiments can be independent and uncorre-

lated. As an example of independent uncorrelated emission we 

developed, in analogy to the bremstrahlung formalism, a model for 

pion production in coherent states. We showed that, insofar as the 

pion momentum distributions occupy only a small fraction of the 

available phase space, four-momentum conservation need not affect 

independence except at high multiplicities. Independence implies that 

the particle production cross sections are approximately Poisson dis-

tributed in the number of particles. Unlike bremstrahlung, such 

distributions cannot be continued to n = 0 to describe elastic 

scattering. Charge conservation as the most obvious quantum number 

constraint leads to modifications of the distributions for charged 

pions that agree well with experiment. The effects of parity are 

sensitive to the assumed distributions in momentum space of produced 

pions, about which we make no conjecture here. Charge conjugation 

implies a number of constraints on neutral systems such as 

+ -e e + pions or TITI + pions. One of the consequences of isospin con-

servation is that the isospins of the pion cloud must match the 

isospins of the skeleton. We developed a formalism for the isospin 

analysis of pions with identical momentum distribution and applied it 

to coherent states. The fixed phase of the pion wave function is 

important for minimizing the increase of <I
2> with <n > • The 

minimum that can be achieved with independent uncorrelated pions is a 

random walk in isospace. In this case the dominant contributions at 



-117-

present multiplicities come from the lowest isospins. Thus indepen

dent and coherent pions can be an approximation to experiment. 

Finally, we studied the role of two pion correlations. Independent 

emission of scalar isoscalar pairs of pions solves the isospin and 

parity problems and gives reasonable distributions for charged pions, 

but leads to negative correlations between charged and neutral pions 

that seriously disagree with experiment. Emission of isovector pions 

as well, as in recent multiperipheral models, improves the agreement 

with the observed slightly positive correlations. 

As we mentioned in the introduction, there are a number of 

essentially model-independent statements that characterize inelastic 

reactions. We have shown that the possibility of independent produc

tion of uncorrelated pions can be compatible with basic principles at 

the most only as an approximate statement. It is certainly not the 

only way of achieving the experimental results which suggest it. 

The distributions of charged pions, or topological cross sections are 

relatively insensitive to the presence of correlations. Much more 

sensitive are the distributions of neutral versus charged pions. The 

present experimental status is compatible either with independent 

emission, or with the possibility that there are various correlations 

whose effects are cancelling against one another. Similar considera

tions apply to the interpretation of mass distributions and longi

tudinal momentum distributions. Hopefully, measurements of the 

correlation functions will help to resolve the present ambiguities. 

We would suggest that whenever there are a large number of 

competing effects a statistical approach is often a good approximation. 
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It is in this sense that multipion production at high energies may 

resemble the independent production of uncorrelated pions. Whether 

in such a statistical approach the general quantum number considera

tions presented here will continue to apply is an open question. 
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