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ABSTRACT

Current flow in metal-GaSe-metal sandwiches is investigated.
These structures are particularly well suited to the study of current
flow mechanisms because sandwiches containing uniform, single crystal
films of gallium selenide can be easily fabricated. The well-defined
nature of these structures allows sufficient a priori knowledge of their
properties to make quantitative calculation of the predictions of
appropriate models of current flow meaningful.

As discussed in Part I, for gallium selenide films between
200 Z and 1000 2 thick, experimentally observed currents are in
excellent agreement with a simple model of thermionic contact-limited
current flow. This investigation presents the first unequivocal
evidence for contact-limited thermionic currents in solids.

In Part II films less than 100 R thick are studied. For this
thickness range, direct, inter-~electrode tunneling is shown to be the
dominant mechanism of current flow and an accurate energy-momentum
dispersion relation within the forbidden gap of GaSe is obtained.

This work represents the first quantitative calculation of tunneling
currents in a metal-insulator-metal structure with all parameters

relevant to the experiment independently determined.
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PART T

THERMIONIC CONTACT-LIMITED CURRENTS

I.1 INTRODUCTION

In this part we review the basic physics of contact-limited
current flow and apply a simple model to the analysis of data obtained
on well-defined MIM structures incorporating single crystal gallium
selenide as the thin insulating film. The bulk and interface properties
of gallium selenide were determined by independent experiments; these
properties were used in the calculation of theoretical currents. No
adjustable parameters were required. Both the magnitudes and functional
dependencies of observed currents are in excellent agreement with theo-
retical predictions. Experimental variables include voltage, temperature,
and insulator thickness. We believe that the excellent quantitative
agreement obtained between theory and experiment provides the first un-
equivocal evidence for thermionic contact-limited transport in solids.

Section I.2 presents a brief perspective on the study of con-
tact-limited currents. Section I.3 reviews experimental data previously
obtained on bulk gallium selenide. These data, in conjunction with the
discussion of sample preparation of Section I.4, are sufficient to fully
describe the experimental specimens and hence to permit theoretical
calculations of carrier transport phenomena without ‘the need for curve
fitting or the use of adjustable parameters. Section I.5 discusses cri-
teria for the observation of contact rather than bulk-limited currents

and applies these criteria to our experimental specimens. Section I.6
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discusses a simple theory of contact-limited thermionic currents and
compares the résults of numerical calculations with experimental data
obtained on Al-GaSe-Au structures. Excellent agreement is noted.

Section I.7 presents direct evidence for image-force (Schottky) barrier
lowering. In addition, this section includes a discussion of the

energy distributions of carriers contributing to contact-limited current
flow. These distributions give insight into the physical mechanisms which

yield contact-limited currents.



I.2 BACKGROUND

Contact limited emission was first studied for the metal-
vacuum interface. 1In this case three mechanisms of current flow may
be distinguished:

l. Thermionic emissionl (Schottky emission) occurs in the low
field, high temperature limit and is a flux of electrons on the high-
energy tail of the Maxwell-Boltzmann distribution over the image-force-
lowered work function barrier.

2. Field emissionz’3

(Fowler-Nordheim tunneling) occurs in
the high-field, low-temperature limit and is the direct quantum mechan-
ical tunneling of electrons from allowed states below the Fermi level
in a metal into allowed states in the vacuum.

3. Thermal-field emissionl}“7 (T-F emission) occurs when the
dominant contribution to the observed currents arises from the tunnel-
ing of thermally excited electrons through the narrow upper region of
the image-force-lowered work function barrier. This mechanism of
current flow is intermediate between thermionic emission and field
emission.

Murphy and Good8 showed that each of these mechanisms is a
limiting approximation observed under appropriate conditions of applied
field and temperature. Therefore, it is not in general fruitful to
classify contact-limited currents into these various mechanisms because
a significant portion of an observed current-voltage characteristic may,

in physical situations, arise from regions of crossover from one mechanism

to the next. Moreover, analytic integration of the equation of current
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flow 18 not usually possible and hence numerical computation s used.

To gain 1nsight Into the physics of carrier transport, one may also
numerically evaluate the relative contribution to the current of carrlers
with various energies. Such energy distributions are considerably more
informative than a mere classification of transport phenomena into the
three cases outlines above.

0f course, even in metal-vacuum-metal structures, currents
are not always contact limited. When more electrons are present in the
vacuum region than can be collected in a transit time, build up of free
charge in the vacuum region leads to the familiar space-charge-limited
conduction in which the virtual cathode is spatially displaced from the
physical cathode.

As interest in solids developed, it was natural to attempt
analysis of current flow in solid state MIM structures. However, solid
state insulators are far more complex than a vacuum and many additional
factors must be taken into consideration. Two types of considerations
arise:

a) the fundamental parameters of the insulator (e.g. carrier
effective mass and dispersion relationship, dielectric constants,
mobility-field relationship, interface barrier energies, trap densities
and locations, etc.) must be known if meaningful predictions are to be
made

b) experimental techniques for preparing reproducible
structures suitable for detailed study must be evolved.

These two types of considerations are not independent since values

of the parameters used in theoretical treatments are often inferred
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from the results of measurements on experimental structures.

Samples are usually fabricated by oxidation of a deposited
metal film or by similar techniques. These techniques yield amorphous
insulating films whose properties are ill-defined at best and are often
spatially non-uniform. Current flow observed in such structures ex-
hibits a generally exponential dependence on applied voltage and is
often temperature dependent.gull Since the bulk and interface proper-
ties of such insulating films are not known in detail, a rigorous
matching of observed currents with a given model of carrier transport
has not been possible. The usual procedure is to study the dependence
of current on one or more variable (e.g. applied voltage, temperature,
insulator thickness, electrode material, etc.), surmise an appropriate
carrier transport mechanism or model, and then choose the parameters of
the model (in fact these parameters are physical properties of the in-
sulating film) so that the '"predictions" of the model fit the observed
currents. Great caution should be exercised when following such a
procedure since physically distinct phenomena can lead to qualitatively
similar behavior.ll Even the distinctions between bulk and contact-
limited current flow are blurred.12 A real understanding of the under-
lying physics and its relevance to a given experimental situation can
only be obtained from a detailed analysis of a well-defined experimental

structure.



I.3 PROPERTIES OF GaSe

GaSe, used as the insulating material in all experiments
reported here, is a lgyer compound having the crystal structure13 shown
in Fig. I.1. This structure consists of tightly internally bound four-
fold (Se~Ga-Ga-Se) layers, stacked one on top of another to form a macro
crystal held together by Van der Waals forces. As a result of this
bonding configuration, it is possible to fabricate by peeling techniques
thin film structures in which the single crystal character of the
resulting GaSe thin film is maintained. Therefore, the properties of
the GaSe film which is thus incorporated within a metal-GaSe-metal
structure are necessarily identical with those of bulk GaSe crystals.

The ability to incorporate a single crystal thin film in MIM structures
permits interface, bulk, and thin film measurements to be performed on
one and the same well-defined material.

To characterize the bulk properties of GaSe, several experimental
techniques have been employed. Dielectric constants have been determined
by both low-frequency and infrared measurements.14 Capacitance measure-
ments on thin, fully depleted samples indicate the low-frequency dielectric
constant ch = 8.0+ 0.3 for the electric field parallel to the c-axis
(€'l' ¢). Analysis of infrared reflectivity for each polarization of
the electric vector yields K = 7.1, K, = 7.6 for &|| c; and

opt d

Koop = 845 K

spectra imply Kopt = 7.45 and ch = 9,89 for u€1 G

de = 10.2 for é°¢ c. Multiple interference channeled

Experiments on metal-GaSe interfaces yield other important data.



Fig. I.1 Schematic representation of the layer compound GaSe (after
H. Kumimura and K. Nahao, Ref. 13), The tightly bound four-
fold (Se-Ga-Ga-Se) layers are 4.77 & across and are held
together at an interlayer separation of 3.17 R by pre-
dominantly Van der Waals forces. This material cleaves
easily perpendicular to its c—axis thus facilitating the
incorporation of a single crystal film within a MIM structure.



From measurements of capacitance as a function of voltage, our material
. _ 14 =3
was determined to be p-type with p = 3 x 10 cm ~ at room temperature.
1
Absorption edge measurements s indicate that the bandgap is 2.0 eV.
In addition, photoresponse measurements at photon energies less than

the band gap yield surface barrier energiesl6 (i.e., the energy of the

metal Fermi level above the GaSe valence band): Al-GaSe, ¢ = 1.05 eV;

Al

Au-GaSe, ¢, = 0.52 eV.

Au

The relative importance of trapping states in bulk GaSe samples
was appraised by determining (at constant applied bias) the sensitivity
to broad-band optical radiation of the capacitance of metal-semiconductor
interfaces (Schottky barrier depletion layer). No measurable change in
capacitance was observed for the specimens used in this series of experi-

8 cm—3) boules gave

mentsy : although material from highly doped (p = lOl
evidence of severe bulk trapping. In addition, measurements of capaci-
tance as a function of frequency, performed on these same interfaces,
failed to reveal any lifetime-dependent phenomena. This evidence for

the absence of dominant bulk trapping indicates that NT << p.

Tunneling measurements performed on metal-GaSe-metal structures
incorporating a GaSe film less than 100 Z thick indicate that the tunneling
effective mass for carriers near the valence band edge is approximately
0.1 of the free electron mass. Data obtained from tunneling experiments

are qualitatively different17 from those for the thicker films discussed

here and comprise an independent studylsawhich is the subject of Part II.



I.4 SAMPLE PREPARATION

Experimental structures used in this investigation were

constructed by the following technique:

1) Approximately 1000 R of metal (typically aluminum) was
vacuum evaporated on one side of a freshly cleaved GaSe
flake (= 5u thick).

2) The flake was then mounted, metal side down, on a brass
block. A 1007 solids, silver loaded epoxy was used both
to bond the flake to the block and to provide electrical
contact to the evaporated metal layer.

3) The GaSe flake was peeled, in air,19 to a thickness t
(150 R < t < 2000 X; i.e., 20 to 250 integral Se-Ga-Ga-Se
layers) by application of a flexible adhesive tape (Scotch
Magic Transparent Tape) to the exposed upper GaSe surface.
Care was taken to assure that a continuous GaSe film was
removed with each successive peeling step, thereby elimi-
nating the possibility of gross surface contamination by
the tape adhesive.

4) Counterelectrodes of a metal (typically gold) were formed
by vacuum evaporation through a fine mesh onto the freshly
exposed (0001) surface. Each separate metallic dot defines
an individual Al-GaSe-Au structure.

A schematic energy band representation of a typical (Al-GaSe-Au)

structure is shown in Fig. I.2. By virtue of the incorporation of a single

crystal thin film within the MIM sandwich, we are assured that the
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physical parameters of the structure are well defined. Since the GaSe
films in our specimens are much thinner than the zero bias, depletion
layer thickness (= 1lu), the electric field within the structures is
essentially uniform (in the absence of appreciable space charge, see

Section I.6). Hence, Fig. I.2 is an accurate energy band representation.



Fig. I.2

==

Energy band diagram of an Al-GaSe-Au structure under zero
applied bias. Hole energy, Ey, increases down. Eg is the
bandgap of GaSe, 2.0 eV. ¢Al is the Al-GaSe barrier
energy, 1.05 eV; ¢,,, 1s the Au-GaSe barrier energy,
0.52 eV. E; denotes the Fermi level. As discussed in the
text, this giagram is known to be accurate by virtue of the
incorporation of a single crystal GaSe film within the
structure.
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I.5 BULK LIMITATIONS

In the absence of direct tunneling between the metal electrodes,
current transport through MIM structures involves two serial processes.
Carriers are injected into the insulator at the metal-insulator inter-
face; they then traverse the insulating region. Either process can in
principle limit the current. However, it is possible to define some
criteria which, if fulfilled, insure that bulk limitations are not
dominant. Bulk-limited currents can arise via two mechanisms: space
charge and scattering (including for our purposes shallow trapping and
other processes yielding low effective mobility).

Space charge limitations dominate carrier transport in MIM
structures when the amount of uncompensated charge in the insulating
region is sufficiently large to terminate a significant fraction of the
field lines emanating from the metal electrodes. Both mobile charge
(i.e., carriers in transit) and trapped charge contribute to this un-
compensated charge. The mobile charge Q present in an insulator due
to a current I is given by Q = It, where 1T is the time fequired
for a charge carrier to tramsit the insulating film. If this charge is
much less than the charge on the metal electrodes given by Q =

electrode

CVT’ where C 1is the capacitance of the structure and VT is the
total voltage across the insulator (applied plus internal), then the
space charge due to the mobile carriers is negligible. This condition

is expressed by the inequality

It < CVT (I.5-1)
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An upper bound on the contribution of trapped charge can be obtained
from the total number of traps and the (worst case) assumption that

all traps are ionized. Again, the criterion for neglecting the trapped
space charge is that it be small compared to the total charge on the
metal electrodes. The inequality

eNtAt < CV (1.5-2)

T
where e 1is the electronic charge, Nt is the density of traps, t is
the thickness of the insulator, and A 1is the area of the structure,
expresses this condition.

In those cases where the charge carriers traverse the insulator
against the field before encountering the limiting barrier, both trapping
and strong scattering may lead to deviations from the simple ballistic
model of current transport discussed below.

If none of these mechanisms for bulk current limitation is
present, the current will be contact-limited.

As noted in Section I.4, the GaSe film incorporated within a
Au-GaSe-Al structure is single crystal material having the properties
of bulk specimens. Thus, the criteria for observing contact-(as opposed
to bulk) limited current can be checked in detail. For our material
the number of traps is less than the acceptor density (as discussed in
Section I.3) and hence the effect of the space charge due to ionized
acceptors and deep traps can be estimated from the acceptor demsity.

o
For p ~ 3 x 1014 cm S and t ~ 500 A, the change in potential across

the insulating layer due to ionized acceptors (eptz/ZKopteo) is less
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than lO__3 eV. The influence of trapped charge on the barriler shape
may thus be neglected.

The influence of space charge associated with current carriers
in transit can be assessed on the basis of inequality I.5-1. By using
data from experimental current-voltage characteristics and the structure
capacitance, we may estimate an upper boumnd (Tub) on the value of the
transit time for which space charge limitations are important, i.e.,

T CVT/I. For a typical sample (the sample discussed in detail later
in this section), Tub varies quite widely. However, (except for

biases in the transition region from low forward to high forward where

the field is nearly zero) the inequality is easily satisfied for
physically reasonable values of effective carrier mobility. To illustrate
this point, it is useful to express T 1in terms of an effective mobility
“eff: T = tz/ueff Vt and to use the inequality Tt < Tub as a criterion

for a lower bound ) on the effective mobility. For

o)
.y Heff

greater than this lower bound, charge associated with carriers in transit

will not limit current flow. We find directly

= (I.5-3)

For samples discussed in this paper t2/C is of order 1. Since uoeff

becomes large for large I and small VT’ we will choose a 'worst"
case close to flat band: VT = 0,1 volt, I = 10‘6 amp. Therefore,

uoeff = 10_4 cmz/voltvsec; a value much below that expected for this

material even perpendicular to the layers. Thus, currents observed in

Au-GaSe-Al structures should be contact limited for all biases with the
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possible exception of forward bilases within 0.1 volts of ¢Al - ¢Au'

Within 0.1 volts of ¢Al - ¢ the total Internal field Is small

Au’

and hence gpace charge and other bulk limitations may be important.
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I.6 CONTACT-LIMITED TRANSPORT

A. Barrier Shape

An important consideration in any discussion of contact-limited
current is the assumed shape of the barrier potential. Simple discussions
assume the barrier to be trapezoidal in shape, neglect the influence
of space charge in the insulator, and correct the barrier shape for
single or multiple image charges induced in the metal electrodes. In
this approximation, including multiple image charges, the barrier poten-

tial is given by4

_ X _ e _ .
P(x) = ¢, +(0y-0-VIT -~ Tk & % - 81K X Z [(nt) =27 (1.6-1)
opt o op

where IOpt is the optical dielectric constant of the insulator; t is

the thickness of the insulating layer, ¢l and ¢2 are the barrier energies,
and V is the applied voltage.20 Except for the small range of biases
where the electric field in the barrier region is very nearly zero, charge
transport is limited by the energy barrier at one of the metal-insulator
interfaces (i.e., the limiting barrier). Consequently, approximations

to the barrier potential which are accurate near the limiting barrier

are appropriate to the discussion of contact-limited current. For definite-
ness, let us take the limiting barrier to be ¢1, and hence consider Eq.
I.6-1 for x near zero. In the appendix we show that in this region

the multiple image-force correction (the fourth term in Eq. 1.6-1) may

be neglected to very good approximation.z1 Thus, Eq. I.6-1 may be written
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P — __-——-——.—-——-——e
¢(x) = ¢o Gk 16K X
opt o

(1.6-2)

where we have introduced ¢o for the limiting surface barrier energy

and é° for the total field acting near the limiting barrier.

B. Contact-Limited Current-Voltage Characteristics

In general, the total injection-limited current is the alge-
braic sum of four contributions: both holes and electrons may flow from
either metal to the other. The relative importance of each of these
contributions can be easily assessed using a simple thermionic model of
carrier transport. To be specific, let us refer to the energy band
diagram of Fig. I.2 wherein the electrode materials are gold and aluminum.
Consider the case in which a negative bias V 1is applied to the gold
electrode. (Other bias conditions may be discussed in an analogous
manner). The hole current from Au-to-Al is proportional to exp[—(¢Al+V)/kT]
while the hole current from Al-to-Au is proportional to exp(—¢A1/kT).
Therefore, the ratio of the Au-to-Al hole current to the Al-to-Au hole
current is equal to exp(-V/kT). Thus, for V greater than a few kT we
can neglect the current contribution due to hole transport from Au-to-Al.
Similarly, we find that for V greater than a few kT we can neglect the
current contribution due to electron transport from Al-to-Au.

To assess the relative importance of hole current and electron
current, we may use the same simple model. The dominant electron current
is proportional to exp[—(Eg—¢Au)/kT], where Eg is the band gap of the

insulator; the dominant hole current is proportional to exp(—¢Al/kT).
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Therefore, the ratio of hole current to electron current is given by
exp[w(¢Au+¢Al—Eg)/kT]. Thus, for |¢Au+¢Al—Eg|>kT either hole or
electron current must dominate. If (¢Au+¢Al—Eg)>O, electron current
dominates; if (¢Au+¢Al—Eg)<O, hole current dominates.

In summary, if both the applied bias and the quantity
|¢Au+¢Al—Eg] are greater than a few kT then the major contribution to
the total injection limited current comes from one and only one of the
four possible contributions. Throughout the remainder of this paper,
the above criteria will be satisfied for applied biases greater than 0.05
volt, since |¢Au+d>A1—Eg|~ 0.4 eV >> kT (kT = 0.025 eV at room temperature).

The current-voltage characteristic of an asymmetric (¢Au<¢Al)
MIM structure in which current flow is contact-limited depends on two
factors: the source of the current carriers, and the barrier which
limits current flow. These two factors lead to a natural division of
the current-voltage characteristic into three distinct regions depending
upon which energy barrier is limiting current flow and which metal is
supplying most of the current carriers. As illustrated by the solid
curves and insets of Fig. I.3, these three distinct cases are "low
forward," "high forward," and "reverse." Using the definition that
positive bias results in- current flow from gold to aluminum, we define
the various cases in the following manner. Low forward occurs when
positive bias is less than ¢Al_¢Au' In this case the limiting barrier is
the ¢A1 barrier, the source of the current carriers is the gold electrode
and current flows against the internal field. For the low forward, the

current-voltage characteristic shows an exponential dependence of current
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Fig. 1.3
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Current-voltage characteristic of an Al-GaSe-Au structure.
Both directions of applied bias are shown on this figure.
The dots are experimental data; the solid line is numerically
calculated from the theory of thermionic contact-limited
current (Eq. L.6-3) using parameters determined from prior
experiments on bulk GaSe (no adjustable parameters were
employed). Excellent agreement between theory and experi-
ment is evident. The insets show partial band diagrams of
the Al-GaSe-Au structure and illustrate the bias condi-
tions we denote "low forward": 0 < V < (¢Al - ¢Au);

"flat band": V = (¢Al - ¢Au); "high forward":

v > (¢Al - ¢Au); and "reverse': V < 0. This descriptive
notation is helpful when discussing thermionic contact-
limited current flow because for a given structure it
conveys a knowledge of the direction of current flow, the

source metal, and the limiting barrier.
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on applied bias since the limiting barrier (¢A1—V) decreases linearly
with voltage. 1In the absence of scattering and direct carrier tunneling,
the slope of the log I vs. V curve is very nearly %E'. High forward
occurs when the applied bias is positive and greater than ¢A1_¢Au' In
this case the limiting barrier is ¢Au’ and the source of the current
carriers is the gold electrode. 1Image lowering of ¢Au and contributions
to the current from thermal-field and field emission mechanisms cause the
observed increases in current with increasing bias. Reverse occurs when
the applied bias is negative. In this case the limiting barrier is ¢Al’
and the source of the current carriers is the aluminum electrode. The
increase in current with increasing bias observed in this case is a
result of barrier lowering and tunneling, the same mechanisms which
operate in the high forward.

The solid curves of Fig. 1.3 are the theoretical current-voltage
characteristic of an Al-GaSe-Au structure incorporating a 6002 single
crystal film of GaSe. These curves were numerically calculated using
the known properties of GaSe (see Section I.3) and a theoretical model
(discussed below) of thermionic injection-limited currents adapted from
the treatment by Murphy and Good8’22 of the metal-vacuum interface.

In general, the expression for current as a function of applied
voltage consists of the integral over all energies of two factors: a
supply function which gives the flux of carriers from the source electrode,
and a transmission function which gives the probability that a carrier
incident on the limiting barrier is transmitted through it. 1In the

approximation that the transmission function depends only on the
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component of the carrier's energy normal to the metal-insulator interface

and on the applied bias (via the electric field £), the current may be

written as

(W) = e[dE P(E,,V) N(E,,V) (1I.6-3)

where E| is the component of the carrier energy which is perpendicular
to the plane of the interface and V is the applied bias. P(E,,V)
N(E,,V) are the transmission and supply functions, respectively. The
limits on the integral in eqn. I.6-3 are such that all the contributions
to the current are taken into account. Following Murphy and Good,8 we

assume that the metal may be described23 by a single parabolic band with

%
effective mass moo In this case the supply function is given byza’25
*
4ﬂmm —B[E—EF(V)]
N(E,V) = —— A fn {1+e (I.6-4)
Bh®

where A 1is the area of the sample, EF is the Fermi energy of the metal
supplying the carriers,26 and B = 1/kT.

In determining the dependence of the transmission function on the
perpendicular component of the energy two cases must be distinguished.
In the first case, the carrier has a perpendicular energy which is
greater than the maximum in the limiting barrier (eqn. I.6-2), and the
transmission function (neglecting possible reflections at the interface27)

is taken to be one. In the second case, the carrier has a perpendicular

energy which is less than the maximum in the limiting barrier and must
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tunnel through a portion of this barrier 1if it 1s to contribute to the

current. If the behavior of the carrier for energles lying inside of

*
’

the forbidden gap is adequately described by an effective mass m,

then following the derivation of Murphy and Good8

m** 1 3 3
_ 2 (i Y e 4 H 2
P(E,V) = |-3 <ﬁ2> <m< €> &'y v(y) (1.6-5)
opt o

90
= 2 - . . .
where y = (eéV4ﬂKopt€0) /(¢o EL). Physically, y 1is the ratio of the

image lowering of the barrier energy to the difference between the per-
pendicular component of the carrier energy and the surface barrier energy

¢o. The function v(y) 1is given by28

< LY. L 3
vy = 27 F) HEEE - -aRE2)* (1.6-6)

where a = VE:;E ,and R and E are complete elliptic integrals of the
first and second kind, respectively.

From the discussion of sections I.3, I.4 and I.5, we know that
our experimental structures correspond to the energy band diagram of
Fig. 2 and hence that the previous discussion of the ideal MIM structures
is directly applicable. We therefore expect that experimental current-
voltage characteristics should correspond to the results of theoretical
calculations based on this band diagram. The theoretical current-voltage
characteristic (solid line) appearing in Fig. I.3 has been calculated29

for an Al-GaSe-Au structure 6.21 x 10-5 cm2 in area and incorporating a

o
GaSe film 600A thick. The calculation is simply a numerical evaluation
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of eqn. I.6-3 using the previously measured properties of bulk GaSe
(see Section I.3). The solid black dots which also appear in Fig. 3
are data measured on a structure having a gold counterelectrode area
6.21 x 10_5 cm2 and incorporating a 6002 thick GaSe film. (Film
thickness is determined directly from the electrode area and a measure-
ment of structure capacitance at zero bias: t = chsoA/C). Excellent
agreement between theory and experiment is evident from the figure.
This agreement, in and of itself, gives strong support to the contact-

limited transport model. Other predictions of this model must now be

investigated.

C. Temperature Dependence

For external conditions such that both thermal-field emission
and field emission are negligible the simple model of thermionic contact-
limited current flow predicts that (at fixed applied bias) current should

=00/ KT
be exponentially dependent on temperature: I ~ e , where ¢o is
the effective barrier energy limiting current flow. To confirm the
thermionic origin of the currents observed in Al-GaSe-Au structures,
it is necessary to experimentally check these predictions. Data obtained
from such measurements are shown in Figs. I.4 and 1.5. Values of applied
bias were chosen such that current was limited either by the Al-GaSe
barrier or by the Au-GaSe barrier.

From the inset of Fig. 4, it is clear that the slope of a line
drawn through the data points should yield a value for the effective

barrier height associated with the GaSe-Au interface. Evaluation of

this experimental slope gives ¢O = 0,514 eV which differs only slightly
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Fig. I.4 Current as a function of 1000/T for a V,, =+ 0.75 V (high
forward) biased 600 X thick Al-GaSe-Au structure. The
dots are experimental data; the solid line is calculated by
numerical evaluation of Eq.(Iv6-3) as a function of temperature.
The correspondence between theory and experiment confirms the
thermionic nature of current flow at the Au-GaSe interface.
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from the .52 eV value found by photoresponse experiments performed on
bulk specimens. This slight deviation is due to lowering of the effec-
tive barrier which results from both the image-force and thermal-field
emission. For larger biases (higher fields) this effective lowering
becomes even larger.

From the inset to Fig. I.5, it is clear that the slope of the
line of data points should yield a value for the effective barrier
energy associated with the GaSe-Al interface. Evaluation of this slope
gives ¢o = 1.02 eV, compared with the bulk photoresponse value of
1.05 eV. Image-force lowering (which is larger in this case than in
the case discussed above because of the built-in field) accounts for a
deviation of 0.046 eV.

For a comparison of observed behavior with detailed theoretical
predictions, the solid lines plotted in both Fig. I.4 and Fig. I.5 were
numerically computed directly from Eq. I.6-3. This calculation takes
into account the entire distribution of carriers and hence the theoretical
curves in Figs. I.4 and I.5 deviate slightly from the perfectly straight
lines predicted by a purely thermionic model. As is evident from the figures,
the agreement between theory and experiment is excellent. The corres-
pondence between the barrier energies measured by photoemission experiments
on bulk GaSe specimens and those measured thermally on MIM structures
leaves no doubt concerning the thermionic origin of the observed currents,

nor of their contact-limited nature.
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Current as a function of 1000/T for a Var = 0.1 V (reverse)
biased 600 & thick Al-GaSe-Au structure. The dots are
experimental data; the solid line is calculated by numerical
evaluation of Eq.(I.6-3) as a function of temperature. The
correspondence between theory and experiment confirms the
thermionic nature of current flow at the Al-GaSe interface.
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I.7 BARRIER SHAPE AND CARRIER DISTRIBUTION

A. Photoresponse Measurements

The photoresponse technique30 is perhaps the best method of
determining interface barrier energies on bulk specimens. We have
applied this technique to MIM structures to directly investigate the
electric field dependence of the interface barrier energy. Results of
this investigation unambiguously established the barrier potential to
be in fact as deduced in Section I.6.

In the absence of appreciable tunneling,31 photoresponse

threshold (viz, ) is the energy difference between the Fermi

¢photo
level in the source metal and the maximum with respect to x of the

barrier potential. Solving Eq. I.6-2 for its maximum yields

=¢ - (1.7-1)

photo o aﬂKopt €

This result is the well-known Schottky lewering in which the effective
interface barrier decreases as the square root of the total field £.
Data obtained from photoresponse measurements performed on
the same structure whose current-voltage characteristic appears in
Fig. 1.3 are presented in Fig. I.6. For a given applied bias, the
barrier energy ¢Al was obtained from the intercept of a plot of the
square root of photoresponse per incident photon as a function of
photon energy.30 The voltage dependence of ¢A1 was obtained directly

+
from the Al voltage dependence of photoresponse at fixed photon
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theory and experiment confirms that the barrier energy exhibits Schottky
lowering and is strong evidence that the barrier potential is, to good
approximation, trapezoidal.
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energy. As shown in Fig. I.6, this barrier energy exhibits the

Schottky lowering predicted by the image-force correction to the

barrier potential.

B. Carrier Distributions

Having thus established that the actual barrier potential is
well described by the simple Schottky model, we can use the contact-
limited transport theory of Section I.6 to gain insight into the de-
tailed mechanisms of current flow.

Results of detailed numerical calculations, specifically for
the case of the 600 R thick sample discussed above, are plotted in
Fig. I.7. For each applied bias the solid curves illustrate the actual
image-force lowered barrier potential; the dotted curve represents the
(normalized) relative contribution per unit energy to the current of
carriers with a given value of E,. The extent to which any given
carrier injection mechanism contributes to the observed current under
a specific set of external conditions can be seen directly. As illus-
trated by this figure, the dominant mechanism of current transport
shifts continuously, with increasing internal field, from thermionic
emission to field emission. For reverse bias > 1.0 volt, a large
portion of the current is contributed by carriers tunneling through the

upper portion of the image-lowered barrier.
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Theoretical (normalized) current distribution for a reverse
biased 600 X thick Al-GaSe-Au structure. The solid curves
illustrate the shape of the image-force-lowered potential
barrier; the dotted curves represent the distributions, as
a function of hole energy E, of injected carriers. We
note that the dominant injection mechanism shifts continu-
ously with increasing bias from thermionic emission to
thermally assisted tunneling. These curves have been
calculated from the simple contact-limited current flow
model discussed in the text. The validity of this model
is assured by the previously discussed quantitative
agreement between experiment and the predictions of this
model.
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I.8 CONCLUSION

Current flow In metal-insulator-metal structures is often very
complex. In many cases physically distinct mechanisms can lead to
qualitatively similar current-voltage characteristics. Interpretation
of experimental observations is particularly difficult when the proper-
ties of the insulating layer are unknown. Hence, great care must be
taken to avoid translating a lack of knowledge of the parameters of a
structure into ambiguities about the physics of carrier tramnsport. Many
potential difficulties can be avoided if the parameters of an experi-
mental structure are known from measurements which are independent
of those performed to study current flow. With such a structure the
physics governing current flow can be studied in detail because quan-
titative tests of the predictions of a given physical model are feasible.

In this study we have fabrigated MIM structures containing
single crystal films of the layer compound gallium selenide. Prior
experiments on bulk specimens of single crystal gallium selenide provide
data with which both the applicability and predictions of various models
of current flow can be calculated. On the basis of such calculations we
were able to deduce that space charge limitations would be unimportant
and to anticipate thermionic, contact-limited currents. Extensive
measurements performed on the MIM structures are in excellent quanti-
tative agreement with these calculations. We therefore believe that
this study provides the first unequivocal evidence for contact-limited

current flow in solids.
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I.A APPENDIX

Multiple image-force corrections to the barrier shape should
be considered in a discussion of contact-limited current only if they
significantly change the shape of the barrier potential near that con-
tact which is limiting the current. For samples with insulating layers
which are thick enough to rule out the possibility of a significant con-
tribution to the total current from direct tunneling of carriers from one
metal electrode to the other (t z 150 ;), and for electric fields which
are large enough to define one barrier as the limiting barrier, the in-
fluence of multiple images is quite small. To illustrate this point
consider the deviation, A¢(x), of the multiple image-force-corrected
barrier potential from the single image-force-corrected barrier for x

values near the limiting electrode. A¢(x) 1is given by (See Eq: I.6-1)

]
_ e = 1.2 eV-A _
A (x) = K et £(d) X © £(d) (A-1)
opt "o opt
where
00 d2
=1 n(n ~d )

and d = x/t. In Fig. 1.8 we have plotted £(d) for d in the range
0 to 0.5 (for d greater than 0.5, we should correct the barrier
shape for the image in the second electrode). This figure demonstrates

that f£(d) 1is less than one throughout the range of d from 0 to 0.5.
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Fig. 1.8 Dependence of the function f (see appendix) on the
normalized distance d. This function measure the relative

importance of the multiple image correction to the single
image-force barrier lowering.
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Thus, a crude upper bound for the contribution of multiple images to the
barrier shape can be obtained by evaluating the numerical factor multi-
plying £(d) in Eq. A-1 for typical values of KO t(=7) and t(= 200 K);'

P
this yields

A < 3.6 x 10 3ev . (A-3)

This estimate is very conservative. Values of d which are important
in determining the current are frequently less than 0.5. Hence, a more
appropriate bound of £(d) would be between ].O_2 and 10_1. We con-
clude that for all cases discussed herein, the effect of multiple

image~force corrections to the barrier shape is negligible.
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potential barrier may be assessed by computation of the quantum
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(referenced to ¢ ). As long as the energy range over which a

photo

significant number of the incident carriers can tunnel through the

barrier is small compared with the energy range over which photo-
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response measurements are made, the primary effect of tunneling
will be to contribute a "tail" to the photoresponse data. If this
tail is ignored, the barrier energy measured by photoresponse will
be ¢

photo”’
F. A. Padovani, Rev. Sci. Imnstr. 39, 772 (1968).



PART II

TUNNELING CURRENTS

II.1 INTRODUCTION

Although the basic concepts of tunneling are firmly rooted
in the early quantum mechanicsl, only recently has progress been made in
gaining a quantitative understanding of tunneling in solidsz. Perhaps
the greatest impediment has been the experimental problems associlated
with the fabrication of suitable structures.

Since the probability amplitude of a tunneling electron is
exponentially damped in space3, the "forbidden" region through which
tunneling is to occur must be extremely thin (<lOOK) to favor tunnel-
ing over other current flow mechanisms. It has not in general been
possible to cleave single crystal solids into films this thin and hence
other techniques of fabricating a thin forbidden region are tradition-
ally employed. Perhaps the best known technique is the controlled
oxidation3 of a metal, followed by vacuum deposition of counter-elect-
rodes thus forming metal-insulator-metal structures. Early studie35’6’7
of direct inter-electrode tunneling in solids were conducted using
structures fabricated by this or similar techniques. It was observed
that currents flowing in such structures were often temperature in-
dependent and exhibited ammeadwdy:obmic-.r dependence on applied voltage
for small applied voltages. This sort of behavior is in qualitative
agreement with the predictions of simple tunneling theory. However,
when attempts were made to obtain quantitative agreement between theory

and experiment, perplexing discrepancies arose.
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The theoretical model first applied to tumneling in MIM
structures8 dealt explicitly with a symmetric barrler potential; the
forbidden region within this potential was assumed to behave like a
vacuum (except for a dielectric constant different from unity). In
many cases the gross differences between theory and experiment could be
minimized by using an "effective thickness' for the insulating film or

an "effective mass"

for the tunneling electron. These parameters were
chosen specifically to bring theory and experiment into agreement, could
not be independently determined, and bore little relation to the actual
parameters of the structure under study. Although this approach served
as a convenient method for classifying experimental data, it did not
provide a deep understanding of tunneling, or even unequivocal evidence
that tunneling was indeed being observed.

Of course, it was realized that the chemical composition of
the grown insulating film was not uniform, and that the metal-oxide
interface was in all likelthood far from the idealized rectangular
barrier shape usually assumed. In fact, non-symmetric current-voltage
curves were often observed for nominally symmetric structures (e.g.
Al—A1203—Al). The extent to which these difficulties invalidated the
model was not clear, and hence fundamental inadequacies in the model
went unnoticed. A large stride toward overcoming the major experimental
difficulties was taken by McColl et gl? in the study of thin mica films
cleaved from bulk crystals. Despite crystal-to-crystal variation, great
consistency was observed in all measurement obtained on structures

fabricated from a given initial bulk crystal. Parameters required to

describe tunneling currents in thin mica films were in good agreement
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with the corresponding independently measured properties of the bulk mica.
Yet, certain problems remained including an apparent systematic deviation
between theory and experiment. Careful analysis of the data indicated
that characterizing the quantum mechanically forbidden region as a

simple vacuum was probably a misleading over-simplification.

A successful approach toward the resolution of this theoretical/
experimental problem was taken by Lewicki gg_gl}o’ll who studied current
flow in thin amorphous films of aluminum nitride (formed by plasma
discharge nitriding). Working with Strattonlz, they recognized the im-
portance of the E-k dispersion relation within the forbidden gap in des-
cribing tunneling through solids, and were able to piece together an
E-k relation for AIN by measuring the thickness dependence of the
tunneling pwobability at several values of applied bias. This experi-
mentally determined E-k relation successfully describes many of the
tunneling phenomena observed in AIN thin films.

In this paper we report a synthesis and extension of the
previously described techniques. By choosing to study thin films of
the layer compound gallium selenide we can fabricate nearly ideal
structures. All of the parameters relevant to current flow in these
structures can be determined by independent experiments. The thin
gallium selenide film under study is single crystal in character and
therefore has the properties of bulk material, and also well-defined
interfaces. An improved analytical technique for determining the
energy-momentum dispersion relation within the forbidden gap of a solid
(from appropriate current-voltage measurements) is discussed and

applied to data obtained from metal-Ga~Se~metal structures. The re~
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sulting E-k relation is shown to be an intrinsic property of GaSe.
Tunneling currents in GaSe can thus be quantitatively understood in
terms of this E-k relation, the independently determined parameters of

a given structure, and a simple model of current flow via tunneling.
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IT.2 THEORY OF TUNNELING IN METAL~INSULATOR-METAL STRUCTURES

Current flow arising from the direct tunneling of electrons
from one metallic electrode to another through an intervening insulating
layer provides a unique opportunity to study the quantum mechanical
interaction of electrons with solids. A tunneling electron interacts
continuously with the solid through which transport is occurring; the
details of this interaction can be unravelled only if a great deal of
information about the experimental structure is available. Ideally, one
seeks sufficient independent information about an experimental structure
to construct an accurate (and hopefully simple) energy band representation.
The potential barrier through which tumneling is occurring should be
well-defined and experimentally controllable. Having satisfied these
criteria, a straightforward model of tunneling can be constructed with
some assurance that it is a reasonable representation of the physical
situation. In the discussion that follows, we presume (and will in fact
demonstrate in Section II.3) that these criteria are fulfilled for the
metal-GaSe-metal structures discussed here, and that a simple trapezoidal
barrier potential is appropriate.

Discussions of tunneling are often based upon the transfer
Hamiltonian mode]l3’l4. In this description an idealized tumneling
structure, as schematically illustrated in Fig. II.1l, is divided into
three separate regions. For electrons with energies of interest, two
of the regions are allowed (electrodes); the third region is unallowed
(insulator). Current flow arises when there is a net transfer of

electrons from one electrode to the other due to the interaction of the
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Fig. II.1 Schematic energy band representation of an ideal metal-
insulator-metal tunneling structure in which electrode
II is biased V volts with respect to electrode I. ¢1, 93
are metal-insulator barrier energies; ¢(X) is the
(trapezoidal) barrier potential; £(X) is the energy of
an electron tunneling from electrode I to electrode II,
referenced to ¢(X); the spatial coordinate X is used
both as a continuous variable and to denote distinct
regions of the structure
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two electrodes through the insulator. This system is described by the

quantum mechanical Hamiltonian

H = HL + HR + HT (I1.2-1)

where HL is the Hamiltonian for the left electrode (see Fig. II.1l),

HR is the Hamiltonian for the right electrode and H (transfer

T
Hamiltonian) contains the interaction between the two electrodes due

to the insulating region. The transfer Hamiltonian may be expressed
simply in terms of basis states {]a>} and {|B>}. The set {|a>} is
the set of single particle solutions of the Hamiltonian for the left
electrode and the insulating layer which carry current toward the

insulating layer. The set {|B>} is a similar set of functions for

the right electrode. Using this basis, HT is given by the expression

_ + x4
Hy = Z (Mas C, Co+M o Cy cd) (I1.2-2)

- h 3 .
where MOB. i JaB(XB) and JaB(XB) is the matrix element of the
current operator between the states o and f integrated over a plane
parallel to the metal-insulator interface at some position, XB’ in the

insulating layerlB. That is,

Top g =/d~s ¢ 305 Xg)s (1I.2-3)
S “ :



~46-

where

guB(XB) = <a|£(XB)|B> and S 1is the plane described above.

Application of Fermi's Golden Rule to compute the net rate of

transfer produced by HT gives

1(V) = 2meh Z IJuBIZ{fL(ea) - fR<e6>}, (11.2-4)
o B

where I(V) is the current from left to right for an applied bias V;
fL and fR are the Fermi factors for the left and right electrode,
respectively; and €y and EB and the single particle energies of
the state o and the state B, respectively. In deriving equation
IT1.2-4 it is assumed that the electrodes are adequately described by
a single particle formalism.

Evaluation of the matrix element JuB fqr direct tunneling
in the standard way (see, for example, references 15,16,17) yields an

‘expression for the current density

2
d"k <
jv) = Z-E-/;m -__“_2 g(E,kH YL £, (B) ~ fR(E)]exp -2/- k(E,kH,X)dX ,
(2m)
5

(11.2-5)

where k“ is the parallel component of the wave vector of the electron

in the electrode. It is important to note that the exponential factor
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which dominates this expression results from the exponential decay of the
electronic wavefunction in the forbidden insulating region: k(E,kH,X)

is the attenuation constant. For single crystal insulators k may be

thought of, in band structure terms, as the imaginary part of the complex

18,19
wave vector

within the forbidden gap. In general, k is a function

of the electron energy, E; the parallel component of the wave vector, k“;
and position in the insulator, X. The dependence on X is due to the ap-

plied potential and interface potentials which change the features of the
band structure of the insulator relative to the electron's energy.

In Eq. II.2-5, g(E,ﬁl) is a pre—exponential factor which
results from the matching of the wavefunctions at the interfaces. Its
exact theoretical form will depend on the assumed boundary conditions.
Attempts at experimentally verifying the form of g(E,k”) from struc-
ture in the bias dependence of the tunneling current have failedlS.

Since k, the function of interest, is insensitive to the exact form

or value of g(E,kH) we will take it to be unity. This approximation
is supported by calculations on several simple models which all yield

g = 1.

Further simplification of Eq. II1.2-5 can be realized by
noting the rapid variation of the exponential factor with kH. This
allows us to use the saddle point method to obtain a useful approximation

for the integral. Taking the dependence of k(E,kH,X) on kﬁ to be

given by

K(E,k|,X) = ‘Ikz(E,o,x) + kﬁ (11.2-6)
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we have

§ e

X
e - x(g,0,x
21Thde exp f (E,0,X)dx
N X
dx
K(E,0.%)

[fL(E)—fR(E)] (11.2-7)

Since most tunneling experiments are performed at low temp-
erature (to minimize thermionic currents) it is often a good approxi-
mation, and always theoretically handy, to take the temperature to be
zerc. This approximation makes sense if the natural width of the
energy distribution of tunneling electrons is appreciably greater than
the width added by the thermal tail on the Fermi distribution in the
source electrode.20

There remains one useful simplification of II.2-7 to be
discussed. The energy E may be related to the spatial coordinate X
such that ' k becomes a function of a single variable &(X). This new

variable &(X) is the difference in energy between the conduction

band and the energy of an electron located at X:
EX) = ¢(X) - E . (11.2-8)

Re-expressing j(V) in terms of &(X)
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E(X)
7 KE)
2

X))

) =

E(

fXR

)
(d¢/dX)k(5)

£(x))

(1I1.2-9)

This expression, although somewhat approximate, is of adequate

precision and contains the basic physics of tunneling.

A quantitative

interpretation of experimental data using this expression requires

£(x)]

[and hence

¢ (X)

tunneling currents.

Assuming now the trapezoidal barrier potential21

in Fig. II.1

90 = ¢, + (9, -

and for an applied bias22

becomes

21

- NX/t,

v ¢, +EV
~2t
7 hﬁE exp - dg k(&)
- ﬁ 5 ¢2 ¢1 ¢1+E
da¥d = 9, BV
dé t

6,76,-Dk(®

¢1+E

be known independent of the measurement of

as shown

(11.2-10)

in the range - ¢l <V < ¢2, Eq. II.2-9

(1I1,2-11)



-50-
This equation 18 a sultable basls for Interpreting tunneling currents In
structures known to have a trapezoldal barrier shape.

To interpret tunneling I-V characteristics in terms of
k(§) (i.e., the dispersion relation for the imaginary part of the wave
vector) Eq. II.Z—ll must be solved for k(&) given J(V) and the
other parameters in the equation. For certain values of barrier
energy and applied voltage, and for certain k(&) functions, the
distribution in energy of the tunneling electrons can be accurately
approximated by a single sharp peak. In this case éxpression 11.2-11
reduces to the familiar simple form12 used by Stratton et al, and the
interpretation may be accomplished by simple mathematical manipulations.
However, in general, Eq. II.2-12 must be solved without simplifying
approximations. Thus, one is faced with solving a nonlinear integral
equation of the Volterra type of the first kind. Numerical solution is
unavoidable.

Equations of the type given in Eq. II.2-~11 are usually solved
by an adaptation of the well-known Newton's method for obtaining the
roots of a system of nonlinear equationSZB. Basically, this technique
consists of making an initial guess and then computing corrections to

this guess from the integral equation. In detail, let

9o +E-V
ZﬂhﬁE exp{ -~ Wf k() d&
U
£{jexp(v)’k(€)} - jexp(v) - ¢2+E~
i

w® 6,6,
¢1+E

(11.2~12)
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where jexp(v) is the experimental current density as a function of
bias and & 1is a function of both jexp(V) and k(£). Obviously, &
will be identically zero when a solution is attained. Let ko(E) be
the function which makes & = 0, that is, kO(E) is the solution.

In general, ko(E) is unknown. However, some initial guess at ko(E)

is made. This guess k(§), is related to ko(E) by an equation

k(g) = ko(a) - S8k(£) (11.2-13)

where Jk(&) is the correction required to make k(&) equal ko(E).
Substituting II.2-13 into Eq. II.2-12 and expanding in a Taylor's series

about k(&), we have

0= {3, (D), K(E)} +f5k® 3 g (VKDV} BR(E) dE + ...

(1I1.2-14)

where 6 & /8k(£) is the functional derivative of § with respect to
k(€). Neglecting higher order terms in Eq. II.2-14, this equation gives

a value of 6k(§)

$ sl ey
§1(E) = —fiv T Uy R@TEL 0 (1) k(D))

(II.2-15)

where 6£_l/6k(§) if it exists is the inverse of the integral operator
appearing in Eq. II1.2-14., Existence of the inverse determines that
range of jexp(V) which is required to specify G&k(§) and ko(g)

over a specific range of &. This point will be discussed in more de~

tail below.
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Evaluation of &&£/8k(£) may be accomplished by substituting
k(&) + k(&) for k(&) 1in Eq. 1T.2-12 and expanding in J&k(f). The
term linear in Ok(£) gives O£/6k(£). The result of such a calcula-
tion is shown in Fig. II.2 where the explicit dependence of §£/8k(§)
on V and & is shown. If the array in Fig. II.2 is evaluated on a
mesh in V and & with equal number of points in & and V (as is
done in the numerical solution of II.2-13), then one obtains a square
matrix. If this matrix has a determinant which is different from zero,
then the finite set of numerical equations which replace II.2-13 has a
unique solution. This condition determines the range of V which will
give a unique set of values of ko on the mesh of £. Thus, it is
possible to test the uniqueness of the calculated solution by computing
the inverse of this matrix. While this method does not provide a
rigorous mathematical test for uniqueness, it does suffice for the
problém at‘hand.

Numerical solution proceeds in a straightforward mannerl7’24.
Some difficulty is encountered in solving the linear Eq. II1.2-13 as a
result of numerical instabilities. These difficulties may be overcome
by the use of a powerful technique recently developed by Franklin for
converting an ill-posed linear problem into a well-posed stochastic

problemzs.
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The functional derivative d&/dk(£), used in the cal-
culation of the energy-momentum dispersion relation from
appropriate experimental current-voltage data, is shown
along with a diagram of the plane in voltage-energy space
over which this functional derivative is to be evaluated.
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IT.3 EXPERIMENTAL CONSIDERATIONS

A. Gallium Selenide

Ideally one would like to take a well characterized bulk
insulator, cleave it into thin section ( 100 2 thick), and incorporate
these thin sections into MIM structures. Such an approach 1s not
usually feasible for a variety of practical reasons. There does exist,
however, a family of solids (the layer compounds) which is well suited
to this approach.

Layer compounds are distinguished by their unusual crystal-
lographic structure. Each layer (typically several atoms thick) is
strongly bonded internally but only weakly bonded to its neighbors.
Hence, thin single crystal films can be obtained by pulling or peeling
a macro single crystal apart. This technique for fabricating well-
defined MIM structures was pioneered by Foote and Kazan26 and used by
McColl in his study of current flow in thin films of mica.

Gallium aelenide27 is the particular layer semiconductor
chosen for this study. GaSe was chosen because it is easy to work
with, large single crystals-camnbe easily grown by the modified Bridge-
man techndque, and prior experiments have well characterized the pro-
perties of bulk specimens. In Part I the advantages of utilizing
GaSe for the fabrication of thin MIM structures have been confirmed.
That study provided an excellent example of contact-limited thermionic
current flow. The quantitative agreement between theory and experiment

which was observed is good evidence that the bulk and interface properties



of GaSe

while.

specimen which are relevant to tunneling currents

tures:

Listed below are those properties
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27,28

Band gap

Low frequency dielectric constant
Optical dielectric constant
Al-GaSe interface barrier energy
Au~GaSe interface barrier energy
Cu-GaSe interface barrier energy
Trap density

Carrier density at 300°K

are sufficlently well known to make a tunneling study worth-

of our "as grown' GaSe

in thin film struc-

Eg = 2.0eV

éo = 8

éiOpt =7

¢Al = 1.08eV
¢Au = 0,52eV
¢Cu = 0.68eV
N, < 1014/cm3

g = B x 10 e
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B. Fabrication of MIM Structures

The technique by which MIM structures containing thin films
of GaSe are fabricated 1s straightforward, but worthy of mention.
Single crystal films of GaSe,  perhaps 10u thick, are peeled from
a large boule and electroded on one side by vacuum evaporating aluminum
from a tungsten filament at .a residual pressure of 10-7 torr. Aluminum
is chosen because it adheres well to the rather inert GaSe surface.
The GaSe flakes are then bonded with 1007% solids, silver loaded epoxy
to a brass block of convenient dimensions. The exposed surface of the
GaSe film is thereafter peeled away by successive application and re-
moval of Scotch Transparent Tape (3M #810). Care is taken that a con-
tinuous film of GaSe 1is removed at each peel to avoid possible
contamination of the GaSe surface with adhesive from the tape. As
the film thins, interference colors become visible. With continued
peeling, the film becomes too thin to generate interference colors. At
this juncture it is, of course, not at all clear to the experimenter
that any film remains. The specimen is then again placed in the vacuum
system and gold or copper counter-electrode evaporated onto the freshly
exposed GaSe surface. A fine wire mesh is used to define a regular
array of square dots, 4.5 x lO—3 cm2 in area, as counter-electrodes.
The specimen is now complete and ready for preliminary testing to
determine if it contains MIM structures of appropriate and uniform

thickness.
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C. Preliminary Calculations

The properties of the single crystal GaSe film incorporated
within metal-GaSe-metal structures are known, and hence the shape of the
potential barrier presented by this insulating film may be calculated.
If image force barrier lowering and space charge within the GaSe film

may be neglected, the barrier potential will be trapezoidal:

b - 0, - eV
60 = b, - ( B ) (11.3-1)

Space charge distorts the potential barrier shape because
field lines originate or terminate on the trapped charge. Using the
worst case assumption that all traps are ionized, integration of Poisson's
equation yields AV = eNtt2/2€ < 10—3 which is totally negligible.
Carriers in transit induce image chairges in the metallic
electrodes. The attraction between a charge in transit and its images
modifies the barrier potential. The extent to which this modification

is significant can be estimated from the leading term in the complete

(infinite series) multiple image force correction.

o)

T S E X’ (I1.3~2)
lé6meX 8met n[((nt)z_le
n=1

The magnitude of this correction depends on the choice of dielectric

constant. Since a tunneling electron interacts with the barrier during
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its entire passage, tunneling is, as indicated by the magnitude of the
RC tunneling time, a slow process; atoms within the insulating layer
have sufficient time to react to the passing charge and hence the low
frequency dielectric constant is appropriateZl. Using the value of
Eo for GaSe, it follows that the image force correction to the
barrier shape amounts to a lowering of the barrier by less than 30 milli-
volts and a narrowing of less than one %. These corrections are within
the experimental error of our measurements, and may be neglected.29

Being now assured that the actual potential barrier within
metal-GaSe-metal structures is well approximated by the simple trape-
zoidal model, an estimate of the conditions under which direct inter-
electrode tunneling is likely to be the dominant mechanism of current
flow can be made. Bulk limitations have been shown28.to;be negligible
even for 6008 films and hence can be neglected here. Thermionic
currents have an exponential dependence on barrier height and
temperature28
=0/l T
e

Jpry = J

T™H o (11.3-3)

where Jo ~ 120T2 amp/cm2 and kB is Boltzman's constant. Tunneling

probability (and hence tunneling current) increases exponentially

with decreasing tunneling path 1engthlO

gp = 3! ks (I1.3-4)
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2.2 *
where R"k"/2m = E (parabolic band approximation) and Jé =
(m/S?Th)((b/tz)z 1.5 x 10”6 ¢[eV]/t2[cm2] amp/eV. Assuming ¢ = .6eV,

and t ® .10“6 cm, Jé a 102 amps/cmz. Tunnel Ing will be the dominant

mechanism of current flow .4f: JT > JTH i.e.

) /KT
. e 2kt 3 e ‘3 (IT.3~5)

J

This expression is a condition on both t and T. Since the
thickness dependence of the tumneling probability is its most striking
feature, it is worthwhile working at as low a temperature as possible,
thus extending the thickness range over which tunneling is the dominant
current flow mechanism. The 'lowest barrier with which we are concerned
is ¢Au ~ 0.5eV. Taking k = 0.42—1 (E = 1/2ev, m* = 1) as a rough
estimate, tunneling is thus expected to dominate for t << 1008 at

77°k  and for t << 308 at 300°k.
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D. Measurement Technigque

An important experimental question is the temperature at which
current-voltage measurements are to be made. Room ambient is most con-
venient but the interface barrier energies in GaSe structures are
sufficiently low that thermionic currents are expected to be dominant
except in extremely thin structures, thus unduly restricting the thick-
ness range over which measurements can be taken. Liquid helium tempera-
tures are ideal for eliminating thermionic currents, but the inability
to temperature cycle GaSe MIM structures without mechanically destroy-
ing them, and the need to sample many structures to assure reliable
data, make working in this temperature range extremely difficult.

As a workable compromise between the limitations of ambient and
liquid helium environments, a measurement technique for use at liquid
nitrogen temperature was evolved. The specimen bearing substrate is en~
tirely immersed in liquid nitrogen after fabrication, and remains immersed
through the entire measurement process. Viewing of the specimens to
locate suitable individual structures for probing (with a fine gold wire)
and measurement is accomplished with a specially constructed 'under
nitrogen viewer." This viewer30 is an evacuated thin walled stainless
steel conical tube fitted with sapphire windows at either end. The
thermal conductivity of this viewer is sufficiently small that one end
can be immersed under the surface of a liquid nitrogen bath, and permit
viewing of objects therein, without excessive bubbling or boil-off and
without frosting at the exposed end. With this viewer a given specimen
could be probed for a period of several hours, and many structures
investigated. Care was taken to choose a fine, springy probe wire with

a rounded #4p to avoid mechanically damaging the structure under test.
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E. Selection of Structures

Preliminary measurements consist of determining the capacitance
of each MIM structure on a given substrate to ascertain which structures
have insulator thickness within the interesting (<1008) range. Quest-
ions of insulator uniformity, the validity of the trapezoidal barrier
approximation, and the dominance of tunneling as mechanism of current
flow must be answered before detailed analysis is undertaken. These
questions are coupled and may be simply resolved. Assuming the simple
trapezoidal barrier model (Fig. II.1l) with an arbitrary E-k relation
in the forbidden gap of the insulator, the simple ideas of an exponent-
ially damped wavefunction lead to a tunneling probability which decreases
exponentially with increasing tunneling pathB. Near zero bias the
tunneling probability is inversely proportional to the tunneling time

RC and is given by10

m
=
RC = 2Te mH

—= cexp [2tk(E)] (I1.3-6)
k(&)

where mH is the electronic effective mass parallel to the direction

of current flow, and m, the electronic effective mass<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>