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ABSTRACT

PART 1

Polya's group theoretical method for calculating the permutation
isomers of a rigid molecular framework is extended to certain nonrigid
systems. Symmetry operators are defined which allow the high
symmetry of freely rotating, rapidly inverting, or ring-flipping mole-
cules to be handled by group theoretical methods.

In the second portion of this discussion the effect of chiral ligands
on the number of possible permutation isomers is discussed and a number

of unusual possible meso compounds are presented.

PART II

The unusually high rate of energy dissipation in coumarin is
discussed. In the raman spectrum of ultraviolet irradiated coumarin at
98°K evidence is found for the formation of an oxabicyclobutane deriva-

tive via the rearrangement:

hy
0] 0] ©
Bands at 875 and 1231 cm™" in the raman spectrum appear to arise
from the oxabicyclobutane.
When coumarin (or N-alkyl o-coumaramides) is irradiated in
amine solution, N, N’ -dialkyl-o-tyrosine amide derivatives are
formed. This is a new pathway to o-tyrosine derivatives, but its

generality is not known.,
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I. STUDIES IN ISOMERISM: PERMUTATIONS, POINT GRQUP
SYMMETRIES, AND ISOMER COUNTING

A. Introduction to the Classification of Isomers

In a very thoughtful paper written in 1936 entitled ""On Certain
(1)

Chemical Definitions," J. K. Senior'"’ argued that there were basically
two ways of defining chemical concepts:

(a) in terms of verifiable observations and reproducible
laboratory operations;

(b) in terms of the theory adopted to explain certain phenomena.
That is to say, a particular part of chemistry may be
defined as the field of application of a given chemical theory.

He defended the thesis that, insofar as it is possible, concepts
should be defined by the first method, both because of its pedagogical
straightforwardness, and because "'if a concept is defined in terms of
a theory, any future observation which invalidates the theory at the
same time annihilates the concept."

Senior's thesis, though praiseworthy, did not outlast the first
page of his work. For in order to define "isomerism' he not only
introduced the observational bases of elemental analysis (leading to an
elemental formula), and molecular weight determination, but he was
also forced to admit the atomic-molecular hypothesis, for without it
the numerical data are gibberish. But his analysis is valuable not
because of its success as a thesis, but for its clarity in setting forth
the basis on which our concept of isomerism is, in fact, based, or
rather, was in 1936. And he did judiciously employ Ockam's razor--

he did not unnecessarily multiply hypotheses.
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In surveying the changes in our understanding of isomerism
since 1936, two developments stand out. Foremost is the growth of
diffraction techniques--x-ray, electron, and neutron--as tools for
structural determinations, even for the determination of the absolute
configuration of enantiomeric compounds. Second is the growing use of
molecular symmetry as a key to physical properties, especially in
Raman, infrared, and magnetic resonance spectroscopy.

Thus, a new basis for a study of isomerism should expand on
Senior's definitions to include the immense possibilities opened up by
diffraction methods and symmetry analysis. One of two far ranging

(2)

papers in the past decade, the system of Noyce" ' moves in the
direction of a less, rather than more, operational basis for distinguishing
types of isomers.

Noyce distinguishes stereoisomers into two basis classes:
inversional and rotational.

Rotational isomers are stereoisomers which are formally

convertible by the rotation of one part of the molecule with

respect to the rest of the molecules about a sigma bond

without the necessity of disrupting and reforming sigma

bonds.
Examples of such compounds are I - V below. Compounds Ia, b and Ila,
b exhibit m-bond hindrance to rotation. Compounds IIla, b and IVa, b
exhibit nonbonded hindrance to rotation. Sigma bond hindrance to

rotation characterizes compounds Va, b, ¢, d.
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Noyce continues:
Inversional isomers are stereoisomers which are formally
interconvertible only by inversion of one or more carbon
atoms with the breaking of one or more sigma bonds and the
formation of a corresponding number of sigma bonds.
The strengths of Noyce's classification scheme are threefold.
First, it very easily includes conformational analysis as a natural
division. (In Noyce's terminology, a rotational isomer is a confor-
mation; an inversional isomer is a configuration.) Second, it levels
the misleading distinction between optical and geometric isomers.

Thus, the dibromoallenes, IIa and b, are geometrical isomers by the

usual definition. ("'Isomerism depending on restricted rotation about
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a carbon-carbon bond is known as geometrical isomerism''. (3)) Yet
they are also optical isomers. Finally, it appears to be a complete
definition of stereoisomer types.

However, it falls short at several places. Most seriously,
some compounds are clearly in both classes. Inversion of the starred
carbon atom in the cyclohexane conformation Va leads to compound
Vb, even as rotation does; similarly for Vc and Vd.

Furthermore (applying Senior's objection), the bonding theory
underlying Noyce's theory is inadequate, and hence the definitions
themselves are suspect. First of all, the sigma and pi bond designation
is an artifact of a particular mathematical approximation for handling
molecular quantum mechanical calculations. And even when calcula-
tions have been performed, the designations may be of little use for
Noyce's purpose. A good example is cyclopropane; bonds directed
along the C-C internuclear axes (the definition of sigma bonds) would
produce unrealistically large H-C-H bond angles. Calculations show
that cyclopropane does not have sigma bonds, so, by Noyce's
definitions, it can have neither rotational nor inversional isomers.

A different approach to the problem of classifying isomers was
taken in a recent paper by Ugi, Marquarding, Klusacek, Gobel, and

Gillespie, (3

The problems of classifying isomers and developing
nomenclature are interrelated. An ideal nomenclature system should
have a one-to-one correspondence between possible isomers and
possible names. Ugi and his co-workers approach the problem of

nomenclature through the idea of permutation isomerism. In this, a
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molecular skeleton is considered to be substituted by a set of ligands
which can be permuted between various skeletal positions, giving rise
to a set of isomers each of which can be uniquely named. Their system
even allows for the designation of the absolute configuration of
enantiomers in cases where the R, S nomenclature(4) of Cahn, Ingold,
and Prelog is not applicable. An approach to classifying isomers
through permutational isomerism was also utilized recently by Prelog
in his study of pseudo-asymmetry. ()

In this paper we have adopted the permutational isomer as the
basic structural category and show in Part B how it is possible to
mathematically calculate the number of possible structural isomers,
both in rigid systems and in systems having internal rotation, by

Polya's method. In Part C we consider the consequences of chiral

substitution on the number and type of possible isomers.



B. Isomer Counting in Rigid and Rotating Systems:

Permutation Isomers with Achiral Ligands

1. Historx of the Problem

As pointed out by Senior,(l) the problem of isomerism arises
only when molecular formulas can be determined and it is found that
compounds with the same formula have different chemical and physical
properties. A general theory of isomerism would be able to take a
molecular formula, calculate all the possible isomers, and provide a
convenient method for drawing and naming each isomer, without
resorting to trial and error model building. The only compounds for
which this is possible at present are the saturated acyclic hydrocarbons,
CnH2n+2’ and a few related compounds. In a series of papers in the
early 1930's, Henze and Blair(e) developed finite recursion formulas
for calculating the number of possible isomers for substituted paraffinic
hydrocarbons.

Henze and Blair's first ealeulations 0% 0

did not consider the
problem of stereoisomerism, which in saturated hydrocarbon systems
is related to the number of asymmetric carbon atoms in the molecule.
They later included stereoisomerism, but they did not fully consider
the problem of a molecule containing several equivalent asymmetric
carbon atoms. Allen and Dieh1(7) developed a method of considering
this problem by an "asymmetry number' index, and they applied it to

carbinols with up to twenty carbon atoms. Carr(s) utilized Polya's

method to develop a similar series of formulas for linear andbranched



8

hydrocarbons and their derivatives. Table I summarizes the results
of these calculations.

Since carbon atoms can be incorporated into chains, such
calculations are especially useful for isomers based on the saturated
hydrocarbons. However, with most elements, simplechain-forming
is not a major form of isomerism. Moreover, the asymmetric carbon
atom is not the only source of enantiomerism. For these reasons
the most general class of isomers for which routine numerical
computation of isomer numbers can be performed is the class of

(3)

permutation isomers' "’ of a given empirical formula.

2. Definitions

Before defining permutation isomers, it is necessary to define
chirality. The term, deriving from the Greek work for hand, was
apparently introduced into physical theory by Lord Kelvin in his
Baltimore 1ectures(g):

I call any geometrical figure or group of points chiral and

say it has chiralit;y if its image in a .plane. mirror, ideally

realized, cannot be brought to coincide with itself.

An achiral figure, of course, would be superimposable on its
mirror image. We have used the symbol > throughout to indicate
the operation of reflection in a plane mirror.

(3)

Ugi and his co-workers' ' have called attention to a class of

amphichiral objects which are chiral under Lord Kelvin's definition,

but behave physically as achiral objects. For the purposes of the

present work, however, we need not consider this complication.



Table I

Number of .Possible C,, Saturated Alcohols.

Primary Secondary Tertiary Nonenantiomorphic Total -
Henze and Blair(®® 2,156,010 2,216,862 1,249,237 - 5,622,109
Henze and Blair®¢) 11,759 82, 300, 275+
Allen and Dieh1(”) 27,012,286 40,807,200 14,480,699 11,1759 82,300,275
carr® 19,059 82, 300, 275

* Henze and Blair made a numerical error which was corrected by Allen and Diehl. L

It is corrected here.
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There is another useful definition of a chiral configuration which
had long been applied to enantiomorphism, namely, a configuration
which lacks an alternating axis of symmetry. Wheland(lo) shows that
the existence of such an axis renders an organic molecule non-

superimposable on its mirror image. P. Woodward(u)

had suggested
as a defining characteristic for achirality: the presence of an inversion-
rotation axis. However, these crystallographic axes are equivalent to
the alternating axes of point group symmetry--inversion center (i = 1),
mirror plane (¢ =2), and improper rotation or rotation-reflection axes
(S =3, S, =4, etc.). Since we will be employing point group sym-
metries, (12) we will use Wheland's formulation.

Note that we have implicitly distinguished between physical and
conceptual symmetry operations. For molecular isomerism, the only
relevant physical symmetry operations arerotation and vibration. As
we will discuss further below, such physical operations can be
properties of the molecule as a whole (rigid rotation or molecular
vibration) or of a portion of the molecule. Nonphysical or conceptual
operations are represented by the alternating axes of symmetry. Note,
however, that in some cases, such as nitrogen inversion in ammonia
derivatives, vibration can lead to the same result as an alternating axis.

Calculations are performed on figures--they may or may not
represent the actual structure of the molecule under the conditions of
a given structure determination. Thus, for an appropriately substituted

amine (such as methyl ethyl amine), there certainly are enantiomorphs

(representations which are not superimposable), but there are not
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chemically isolable enantiomers (enantiomorphic isomers), although

such solutions at any given moment are probably an equimolar
mixture of the two enantiomers.

Permutation isomers are isomers based on an achiral skeleton
such as a tetrahedral carbon or a benzene ring, which is substituted
with a given set of ligands. By permutation of these ligands among the
possible skeletal positions, isomers which are not physically identical
may be obtained. These isomers are permutation isomers. In the
words of Ugi and his co-workers(S):

Two molecules will be called permutational isomers if,
and only if, they can be shown to cerive from the same
achiral skeleton, S,, with n ligand positions by substitution
with the same set of n ligands, Lp, but they cannot be

superimposed on one ancther by any allowed rotation of
the molecule.

Two kinds of ligands will be considered: chiral and achiral. A
ligand is chiral if it contains no alternating axis of symmetry when its
directed valence is considered an achiral substituent. Examples of

such ligands are shown in Figure 1.

H // CO //
I /OH N’-_-—-N’—/>

Figure 1
Chiral Ligands
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We will use Prelog's notatz‘.on(5) for chiral and achiral ligands; the
basis for this notation is explained in Part C.
Chiral ligands: GJLNPQR?Z
Achiral ligands: ABDEKMTUVWXY or a blank ligand position.
In this part we will only consider substitution by achiral ligands:
we will postpone the problem of chiral substituents until Part C.
Permutation isomers are of two types: structural or stereo-
isomeric. Structural isomers such as compounds VIia and VIb differ
in connectivity, that is, in which ligands are attached to which atom.
In Via one carbon has a ligand set {A, A, A, CB,}and the other has the
set {B, B, B, CA,}. In VIb the sets are {A, A, B, CAB, } and
{B, B, A, CA,B}.

A A

C
A

/
/

PN

PRy
o

VI

All other permutation isomers are stereoisomers. Both

(1) (2)

Senior'"’ and Noyce'"’ argue convincingly that distinguishing stereo-
isomers into geometric and optical isomers is a false dichotomy, and

I do not intend to revive it here. Indeed, using the nomenclature system
proposed by Ugi, even the cis, trans nomenclature of geometric

isomerism is unnecessary.
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Since the reflection of a molecular representation in a plane
mirror is incapable of altering connectivity, enantiomers are stereo-
isomers of each other., Stereoisomers which are not enantiomers of

each other are diastereomers. This usage is somewhat broader than

customary (for example, it makes cis- and trans-2-butenes diastereo-
mers), but it is the only consistent usage. (5)
For the purposes of counting isomers, we need to define

another term, diamutamer, to indicate the relationship between

permutation isomers which are not enantiomorphic. Thus, for a

given framework and ligand set, the diamutamers constitute a set of
permutation isomers, none of which can be made equivalent to any

other member of the set by reflection of the molecular representation

in a plane mirror. When there are enantiomorphic permutation isomers,
there are at least two non-equivalent sets of diamutamers, but every

set has the same number of members.

This classification scheme has, in addition to preciseness, a
great utility in the calculation of the number of possible permutation
isomers. In particular, it is the scheme which arises naturally from
the application of Polya's group theoretical method of counting isomers.

3. Polya's Method in Rigid Molecules

The use of permutational analysis for calculating isomers
numbers, both by recursion formulas such as Henze and Blair's, and
by group theoretical methods such as Polya's, had its inspiration in a
pivotal paper by A. C. Lunn and J. K. Senior in 1929, (13) In it they
showed the value of this approach and gave tables for use in isomer

counting in certain systems.
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The great advance made by Georg Polya(14) was the introduction
of Polya's theorem (below) which reduced the tables of Lunn and Senior
to a matter of algebraic manipulation. The method used herein is that
of Polya, modified by using point groups rather fhan permutation groups.
This modification was introduced by Kennedy, McQuarrie, and
Brubaker. {15}

In counting permutation isomers we are given an achiral
molecular skeleton Sn with n ligand positions which has point group
symmetry H (a group of order h). Each operation in H corresponds to

a permutation of the n ligand positions. For example, consider the

cyclopropane skeleton under the operations of the rotation group D,.
3

D,: E2C,3C, 1\/[&/5
/

AN

2 6

Under the three-fold rotation operation C,, position 1 goes to
position 3 which goes to position 5 which goes to position 1. Thus, the
cycle includes the permutation of three positions, and is usually
written (135). The cycle (135) is said to be of length three. In addition,
C; also carries out the simultaneous permutation (246), so that the
operation C, corresponds to the permutation (135) (246), or two cycles
of length three. We can represent this permutation as fza, which is read
as two cycles of length three. The other three-fold operation, C: is

also f32. The two-fold operations are of the type (12)(36)(45), or fzs.
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The identity operator is (1)(2)(3)(4)(5)(8) or fls. Thus, by knowing n,
the number of points to be permuted, and the group H, we can define

a cycle index, Z(H;n). In this case,
4] 2 3
Z(Dy6) = £lf,” + 2t +31,)

If we had only three points in D,, such as the vertices of an equilateral

triangle, we would have obtained
1 (.3
Z(Dy3) = g [f, +2fy + 36,1

In general, a pqrmutation of n points can be represented as

.. . n .
tligle. £ Mor W . f;!. Note that the sum 23j, is equal to n, the
'
n ji.
number of points. It should be clear that any given Hl f, ~ has several
1 =

ji equal to zero. The general cycle index is defined as

| i _]___E n ji
2(0) = 5 a5 T

n
where the summation is over all sets {ji } " consistent with the above
i =

condition that 2J i]'i =n. The coefficient ajljz" sy is the number of
permutations of H which consist of j, cycles of length 1, j, cycles of
length 2, etc. These coefficients depend on both H and n and are either
zero or a positive integer. Thus the cycle index carries information
about both the number and type of possible permutations.

Given a set of possible ligands {x, }lng. 4 We can define 2

configuration counting series, F(x,,%,,...,X ) which gives us the total
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number of possible distinct substitutions of these m ligands (any one of
which can occur from 0 to n times) on the n ligand positions of Sn"
This series is

m k

Hxﬂ

Pl By Xy = DAy g

where the summation is over kl =0 to n for each £ from 1 to m. The
coefficient A is the number of isomers possible when the
kk,.. .km
molecular framework is substituted with k, ligands of type x,, k, of
type x,, etc.
Polya's theorem (14, 16) allows us to derive the configuration

].
counting series from the cycle index by replacing fil by
m ji
> A
L =1

This substitution gives rise to a new cycle index, Z[H;n;f(xl,xz, %45

xm)] . We can summarize Polya's theorem by the equation

F(Xy, %,...,%) = ZHmEE,x,...,x ).

Returning to cyclopropane, we can compute number of isomers
with all possible combinations of two different ligands, A and B.
Z[Dy;6:1(A,B)] = £ [(A"+ B +2(4°+ BY +3(4° + B)")

- 1[6A° +6A'B + 244" B’ + 24A°B’ + (24B'A" + 6B°A +6B")]

A’ + A'B+4A"B +4AB 4 K(A,B)
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where K(A, B) is a polynomial containing redundant information, denoted
by the parenthetic material in the second line of the equation. Thus,
there is one possible isomer with six identical ligands, one possible
with one ligand substitution, four isomers with four A ligands and two
B ligands, etc.

If, instead of considering only the rotation operators, we had
included the alternating axes, we would generate the cycle index for

Dg,,» Which consists of the operations E, 2C;, 3C,, o, 28, 30,:
Z(Dg6) = Tylf, + 28, 35" + £ + 26 + 3878

15 [0+ 26 + 48" + 26" + 36"

Again substituting the appropriate Al + B! binomials, we obtain

the configuration counting index for two different ligands:

Z[Dg,;6:f(A,B)] = A’ +A’B +3A'B + 3A°B’ + K(A, B)

The decrease from 4 to 3 of the coefficients of A'B’ and A’B’
indicates that the rotationally distinct permutation isomers in each
case includes an enantiomorphic pair which leads to only three
diamutamers when the alternating axes are included. Figure 2 shows
the A2B6-£ isomers of cyclopropane for £ =3 to 6.

William J. Taylor(”)

showed that by introducing to the point
group D3h a permutation operator which permutes the two ligand
positions on each skeletal atom, one could render all isomers except
structural isomers indistinguishable, so that there are only two isomers

each of C;A,B, and C,A B, as shown in Figure 3.
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Figure 2
Isomers of CA B, (£ = 3 to 6)

A's are omitted for clarity

4
g
i

CeAB,
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A, A
A,B AA’B

Figure 3

A,B
A,B\ A B

Structural Isomers of Cyclopropane

with Two Achiral Ligands



20

Kennedy, McQuarrie, and Brubaker(ls)

give the cycle indices
of a number of rigid systems of interest to inorganic chemists.
Additional applications of Polya's method to rigid systems are listed
in Reference 18. Table II gives the indices for a number of organic

skeletons not previously published.

4. DPolya's Method in Nonrigid Molecules

There has been; to my knowledge, no previously reported
attempt to calculate the number of isomers in a freely rotating system
by Polya's method. The problem is well illustrated by considering the
isomers of dichloroethane, which is usually represented as based on

an ethane skeleton in the staggered form of D3d symmetry.

The cycle index Z(D3d;6) is the same as Z(D3h;6). Thus, the
number of isomers should be the same as in the case of the C,A B,
system: four. However, attempts to isolate isomers in this sytem
have only succeeded in obtaining two forms, 1,1- and 1, 2-dichloro-
ethane. Thus, the system as a whole is for many chemical purposes
best represented as two isomers, even though, as we noted above, the
system actually is probably a mixture of the rotamers which are
counted by Polya's method on the rigid skeleton. Figure 4 shows the

four dichloroethane isomers.
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Table II

Cycle Indices of Certain Rigid Organic Structures

Sn Cycle Index

i2

Z(Ce:12) = £ (4" 48

6
Z(Cy12) = 3 (6 + 5’ + 2870

4 2
1>: 4 Z(Dy;4) = (6" + 38
- . .
2 3 Z(Dgy:4) = 508" + 38,7 + 21, + 28,",)
8 2 8
. 1 Z(Dy:8) =5, + 3,
-4

3 Z(Dyy:8) =5 +58," +21))

[%4
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Table II (Continued)

Cycle Index

4 7
Z(D3;14) =%'[f114 + Zflzfa + 3L }

Z(D,;;8) :%(f18 ) 5f24 ¥ 2f42)

Z(D4h38) ==i]:76’(f18 + 9f24 + 2f42 + 2f81 + 2£22f14)

7(T:16) =351, + 88,'t, + 3¢, ]

8 8 5
Z(Td§16) =-§—4&- {f11 + 3f, + 8f,f, + Sf: A 6f14f26}

14 2 4 6
Z(Dgp:14) =2 lf, " + 28,8, + 48,7 + 2871, + 36,5, ]

(44
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Cycle Index

7(0;8) =gglf,’ + 6, +9%," + 8.t ]

Z(Oh§8) 2'4;?3" [f18 + 12f42 + 13F24+6f14f22 +3f§f12 +8f12f:]

IN)
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Ci
1 Cl
N
2
Cl Cl
Cl
trans-1, 2~ gauche-1, 2~
Cl
Cl
1,1-
Figure 4

Isomers of Dichloroethane in D3 d Symmetry

The problem, then, is to find a way in which Polya's method can
be made to represent the state of the chemical system rather than the
individual molecules. In order to do this we need to reduce the effective
number of isomers. Now for any given n in Polya's method, a reduction
in the number of isomers corresponds to going to a group of higher
order symmetry., Hence, the ethane skeleton shows a chemical behavior
of a symmetry higher than D3h or DBd‘ Chemists have long known
that this higher effective symmetry derives from rotation about the
C-~C bond which occurs more rapidly than chemical separations can be
performed. However, to my knowledge, this knowledge has never

been formalized into a symmetry group representation.
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In the ethane skeleton above, let us define one free rotation
operation as the permutation (123)(4)(5)(6), that is, we hold the right
end of the skeleton fixed and rotate the left end by 27/3. We can
designate this operation F,. Operating twice gives us F: or (132)(4)(5)(6).
A similar rotation can occur about the right end of the skeleton,
yielding F, = (1)(2)(3)(456) and F, = (1)(2)(3)(465). Combining the free
rotations with the rigid rotations of point group D3, we obtain a new
point group D,F 2 where the notation indicates that two three-fold free
rotation axes have been added to the D3 rotation group. Table III
shows the group D3F32 and its character table and irreducible
representations.

The cycle index for the ethane skeleton in the group D3F32 is
Z(Dy6) =15 [£,° + 48, + 38" + 48, + 6£,]. Table IV gives the number
of substituted ethanes expected.

The number of diamutamers and enantiomorphs is calculated
from the rotation-reflection group:

DgyFs: E, 2C,, 3C,, 2F Cy, 6F Gy, 1,28y, 36, 4F," 1, 2F S, 6F 64
Z(Dgy,i6) = Z(Dgyi6) =95 [f, + 4f, +6F, 448, F, + 121, + 0£,"8,"].

Ferrocene is a molecule which similarly shows free rotation,
with a preference for a staggered configuration of the cyclopentadienyl
anions. It belongs to the rotation group D5F52 and the reflection group

D5dF52. Table V shows the operations and cycle indices for these groups

and the possible isomers of ferrocene.
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Empirical
Formula

C,A,

C,AB
C,A,B,
C,A,BD
C.AB,
C,A.B,D
C,ABDE
C,A,B,D,
C,A,B,DE
C,A,BDEK
C,ABDEKM
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Table IV
Permutation Diamutamers
Isomers
1 1
1 1
2 2
3 2
2 2
4 3
8 4
6 5
10 6
20 10
40 20

Enantiomorphic
Pairs

0

O . T e == o B =)

10
20
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Table V

Isomerism of Ferrocene

2

D.E.: E, 2C,, 5C,, 4[2F,, 3F, C;, 5Fy C,]

Z(D,Fy 510) = gylt,’ + 168, + 58" + 81, + 20£,)]

Dy yFs’: E, 2C,, 2C,, 5C,, i, 28,, 504, 2[4F,, 6F,-C,, 10F, C,,

4F i, 2(Fy Cy-i), 2(F;+C; 1), Fy'Cy+i, Fy - Cyri, 10Fy ay]
Z(Dg 4 F52310) = 7o [f," + 16 + 408, + 168,°F, + 256", "]

2,
= Z(Dg, F5“;10)

X = Ferrocene Skeleton: C, ;Fe

Permutation Enantiomorphic
Formula Isomers Diamutamers Pairs
XA, 1 1 0
XA B 1 1 0
*XA B, 3 3 0
*XA.B, 4 4 0
XAB, 6 6 0
XA, B, 6 6 0
*XABD 5 3 2
**XA,B,D 12 8 4
XA BsD 20 12 8
XAB,D, 32 22 10

XA.B,D 26 16

[y
(=]



Formula
XAB,D,
XA B,D,
XA B,D,
**XA.BDE
XA.B,DE
XA.B,DE
XA.B,D,E
XA.B,DE
XA B.D,E
XA B,D,E,
XA B;D.E
XA, B,D,E,
XA,BDEK
XA.B,DEK
XA B, DEK
XA B,D,EK
XA B,D,EK

XA B,D,E,K
XA,B,D,E,K,

XA,BDEKM

XA ,B,DEKM
XA B, DEKM

29

Table V (Continued)

Permutation Enantiomorphic

Isomers Diamutamers Pairs
52 32 20
66 42 24
84 48 36
24 12 12
60 32 28
104 52 52
156 84 72
126 66 60
252 132 120
384 201 183
336 168 168
504 264 240
120 60 60
310 155 155
504 252 252
756 390 366
1010 505 505
1512 762 744
2280 1176 1104
624 312 312
1512 756 756
2016 1008 1008
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Table V (Continued)

Permutation Enantiomorphic
Formula Isomers Diamutamers Pairs
XA B,D,EKM 3024 1512 1512
XA,B,D,E,KM 4536 2270 2266
XA ,BDEKM 3024 1512 1512
XA B, DEKMT 6048 3024 3024
XA,B,D,EKMT 9072 4536 4536
XA BDEKMTU 12,096 6048 6048
XA,B,DEKMTU 18,144 9072 9072
XABDEKMTU 72,576 36,288 36,288

¥ These values agree with those in Schligl. (19)
** These values have been checked with models; Schlijgl(lg) has

incorrect values for them.
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Up to now we have only considered molecules of symmetries in
which the two rotating groups are related by n dihedral axes. Lower
symmetry skeletons with free rotation are present in propane and in

dicyclopentadienyl manganese dicarbonyl.

O\ %,O
c... aC
SRS
2 2
CZVF3 C2VF5

There is also no need for the two rotating groups to have the
same rotation order. Excellent examples of this are benzenechromium
tricarbonyl and cyclopentadienyl manganese tricarbonyl which belong

to the Cg, F¢F; and C_F,F; symmetry groups.
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C?)V,FSF3 CSF5F3

In these cases, as indeed in all cases in which Polya's method is
employed, the problem can be simplified by only considering positions
which are symmetrically equivalent. Thus, we can consider substitution
of the ring apart from substitution of the carbonyl moieties, Table VI
shows the cycle index and results for benzenechromium tricarbonyl.

Table VII summarizes the free rotation groups of a number
of molecular skeletons.

A special kind of free rotation occurs in ring systems, such as

the cyclohexane skeleton which is nominally D3d'

Figure 5

Ring Flip-Rotation Operation in the Cyclohexane Structure
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Table VI

Isomerism of Benzenechromium Tricarbonyl

I
\% 152} [o2]
ol )
/O
]
5O
I
@)

C
C/s\\\c 0
A C N

\

2 2 8 4 5 2 2
ggE—ﬁE3: E’ C3’ C3 J FG’ FG 9 FS bl FG L FG 2 FS? F3 2 FG‘ FS? FG“ FS 9

2 2 3 3 2 4 5 5 2
Fo-Fg, FgFy, Fe ' Fy, Fg*Fy, Fg°F;, Fg ° F,

Z(C,FFy6) = 15 (3, + 68, +6f, + 35,]

[y

L0g,° 28, + 26, 4 £,7]

(ox

2 3 2 2 2
Q3V..F_‘6_E3: E, 2C,, 2F, 2Fg, Fg, 2F;, 2Fy F;, 2F, F;, 2F; "Fs,

2 2 3 2
2F, - F, , 2F, F,, 30,, 2Fy 0, 2F, - q,, 2F o,
. 2 2 2 3
2Fg F, Oy 2F¢" Fy - Oy 2Fg " Fy - Oy 2Fs " Fy Ty
Z(Cg,FoFsi6) = 3536 + 68, +6f, + 125, + 08,1,
= e 7428+ 28, 4 487 4 3878

X = Benzenechromium tricarbonyl skeleton = Cr(CO),C,

Permutation Enantiomorphic
Formula Isomers Diamutamers Pairs
XA, 1 1 0

XAB 1 1 0
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Table VI (Contimied)

Permutation Enantiomorphic
Formula __Isomers Diamutamers Pairs
*XA B, 3 3 0
*XA,B, 4 3 1
*XA,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>