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ABSTRACT 

My thesis is primarily focused on the single-neuron representations of visual categories, 

memory, and choice in the medial temporal lobe (MTL) and the medial frontal cortex (MFC) 

of the human brain. Most of the data presented here comes from single-unit recordings 

conducted in neurosurgical patients who were implanted with depth electrodes used to 

monitor their epileptic seizures. Given the significance of the data, it seems only appropriate 

that Chapter II (the first data chapter) of this thesis is dedicated to detailing the process of 

acquiring such recordings. The chapter provides extensive detail on the surgical techniques, 

anatomical targets, data acquisition, and post-processing procedures that produced the data 

we analyze here.  

In Chapter III, we will focus on representations of visual categories in single cells in the 

amygdala. One very special brand of visual categories is faces. We know that neurons in the 

primate amygdala respond prominently to socially significant stimuli, such as faces, yet the 

contribution of these responses to social perception remains poorly understood. In the first 

part of this thesis, we evaluated the representation of faces in the primate amygdala during 

naturalistic conditions by recording from both human and macaque amygdala neurons during 

free viewing of identical arrays of images with concurrent eye tracking. Among the notable 

differences, we found that in both monkeys and humans, the majority of face-selective 

neurons preferred faces of conspecifics, a bias also seen behaviorally in their fixation 

preferences. We found that response latencies, relative to fixation onset, were shortest for 

conspecific-selective neurons. Our data suggests that overt attention to faces gates amygdala 

responses, which in turn prioritize species-typical information for further processing. 

In Chapter IV, we investigated how visual representations in the medial temporal lobe are 

subsequently used to make two types of decisions: a recognition memory choice ("Have 

you seen this image before?"), and a stimulus categorization choice ("Is this a face?"). We 

show that: (1) there are distinct populations of cells in the medial frontal cortex (including 

dorsal-anterior cingulate cortex and pre-supplementary motor cortex) encoding recognition 

memory or categorization-based choices; (2) category-selective cells in the medial 
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temporal lobe are insensitive to such task conditions; and (3) spike-field coherence 

between field potentials in the medial temporal lobe and action potentials in the medial 

frontal cortex are enhanced during recognition memory choices. This suggests that inter-

areal communication between these two brain regions may be facilitated selectively in 

tasks that rely on recognition memory-based information.   

Overall, we have been able to show, using concurrent eye-tracking and single-unit 

recordings, that the visual representations of objects (and specifically faces) in the MTL 

are gated by fixations, as measured in a free-viewing task. Additionally, we have also 

observed representations of abstract choice in the medial frontal cortex during a memory –

recognition and visual categorization task. Based on our coherence analysis between MFC 

cells and local field potentials in the MTL, we believe that this representation of choice in 

MFC is enabled by internal representations of recognition memory in MTL.  
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Chapter I: General Introduction 

1.1 Overview 

Imagine that you are walking down a crowded New York City street. If you are a local, you 

are largely ignoring the deluge of information all around you. If you are a tourist, you are 

eagerly sampling the sights, sounds, and smells the city has to offer as you walk by. You 

shift your gaze to sample the many different objects in your environment and you may choose 

to linger on things that pique your interest (ex. an interesting face or an advertisement). This 

scenario highlights the incredibly dynamic nature of the world we live in. And yet, despite 

this, our brain has relatively stable representations of the objects in our world. For example, 

we can effortlessly tell if what we are looking at is a face. If probed, we can also answer 

different questions about the face: “Does it seem happy?” or “Is that my cousin Alba?” We 

can extract a lot of visual information from the objects we encounter in the world, and we 

can parse this information in a task-dependent way.  Much of what we know about the visual 

representation of objects in the human brain (and specifically representations of faces in the 

amygdala) has been learned from experiments that do not necessarily capture the 

information-rich and dynamic nature of the world where we might encounter these objects. 

For example, most of what we know about the processing of faces in the amygdala has been 

learned from the presentation of static stimuli. While much has been learned from such 

experiments, it is unclear how the associated neural responses generalize to cases where (1) 

there is competition for the subject’s attention, and (2) the subject is free to look at whatever 

they prefer (free-view). One of the first objectives in this thesis is to determine what these 

visually evoked responses to faces in the amygdala look like when we lift some of the 

experimental restrictions that have been used in past experiments (i.e. enforced fixation, 

single static image). Understanding how the representation of faces is affected during free 

viewing is only the first step. The second objective of this thesis is to understand how visual 

representations in the medial temporal lobe (specifically amygdala and hippocampus) allow 

us to make decisions about what we are looking at. For example, I could show you an image 

and ask if it is an image of a human face. This is a trivial task and most people would be able 

to answer this question very quickly. Separately, I can show you the same exact image, and 

ask if you have ever seen it before. The second question is a little more difficult because it 
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requires memory (i.e. a memory-guided decision). These two tasks require that you extract 

two relatively orthogonal pieces of information about the same stimulus and yet we are able 

to flexibly address these questions as they are presented to us. Therefore, throughout this 

thesis, our objectives are twofold: (1) characterize visual representations in the amygdala 

under natural viewing conditions (specifically for faces), and (2) understand how the visual 

representations in MTL can allow us to make simple decisions about what we are looking at 

(e.g. “It’s a face” or “I have never seen that before”).   

Most of the data that is collected to address the objectives outlined above comes from 

neurosurgical patients who were implanted with depth electrodes used for monitoring their 

epileptic seizures. Typical targets for these electrodes include bilateral hippocampus and 

amygdala in the medial temporal lobe and pre-supplementary motor (pre-SMA), dorsal-

anterior cingulate cortex (dACC) in the medial frontal cortex. This data is made up of 1973 

isolated putative cells. The contributions to this number from all the areas recorded are as 

follows:  594 in amygdala, 404 in the hippocampus, 399 in pre-SMA, and 576 in dACC. This 

data was collected over 49 independent sessions, from 19 different patients, and represents a 

total recording time of 22.3 hours (this number represents only the portions of the recordings 

that were directly used for this thesis, not the total amount of recording).   

1.2 Visually-selective neurons in the human amygdala 

There is an extensive body of literature detailing the response properties of visually selective 

neurons in the human amygdala. About 20% of the human amygdala neurons show high-

level visual category selectivity (Fried, MacDonald et al. 1997, Kreiman, Koch et al. 2000, 

Rutishauser, Ye et al. 2015). The response latency of the visually selective cells in the 

amygdala is approximately 400ms (Mormann, Kornblith et al. 2008, Rutishauser, Ye et al. 

2015) , and it can be both excitatory and inhibitory (Rutishauser, Tudusciuc et al. 2011). 

Some studies have also noted a difference in the responses between right and left amygdala. 

Category-specific responses to animals for example seem to be more prevalent in the right 

amygdala (Mormann, Dubois et al. 2011). Certain categories of images are represented more 

in the population of visually selective amygdala cells. Up to 50% of human amygdala cells 
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respond in some manner to faces (Rutishauser, Tudusciuc et al. 2013) and these face 

responses can show selectivity for face-parts (such as eyes or nose) while others only respond 

to the presence of the entire face. Some studies have explored responses to emoting faces 

and have noted that the responses of face-selective cells in the amygdala correlate more with 

the subject’s choice (i.e., subjective perception of the face) than with the sensory evidence 

(Wang, Tudusciuc et al. 2014). On a follow-up study, it was also found that the face 

responses in the amygdala encode the intensity of a specific facial emotion (Wang, Yu et al. 

2017). Together, this body of literature shows robust visual responses in the human amygdala 

but it does a poor job of explaining what the computational purpose of these responses might 

be. The latter studies mentioned above (specifically by Wang et al.) have started to address 

this by linking the face responses to behavioral measurements (e.g. the subject’s 

perception/choice). It still remains unclear however what the computational purpose of such 

visually highly-selective neurons (which be found throughout the MTL not just amygdala 

(Mormann, Ison et al. 2014)) actually is.   

1.3 Face processing in the primate amygdala 

Faces are a category of images that deserve special consideration when looking at visual 

responses in the primate amygdala. The purpose of this section is to catalogue what is 

currently known about face responses in the primate amygdala and it is mostly derived 

primarily from work that has been done in humans and monkeys.  

In the macaque, face responsive cells in the amygdala are predominantly found in the lateral 

and basolateral nuclei (Hoffman, Gothard et al. 2007). Subsets of these face-selective cells 

have been shown to respond only to a specific monkey (i.e., identity coding cells) or only to 

a specific facial expression (expression-coding cells)  (Gothard, Battaglia et al. 2007). Using 

movies of conspecifics, a population of cells in the amygdala was shown to have eye-contact 

sensitive responses (Mosher, Zimmerman et al. 2014) that were only apparent when the gaze 

of the monkey in the movie met the gaze of the monkey viewing the movie.  This suggests 

that face responses in the amygdala are not just a coarse response but actually contain a lot 

of structure that might only be apparent by monitoring neural activity while also tracking eye 
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movements. The diverse tuning properties of face-responsive amygdala cells, which we 

describe here, also allude to a possible computational role that might distinguish face 

processing in the amygdala from that seen in areas of the cortex. These responses are not 

passive (i.e., simply signal the presence of a face), but could be used to make inferences in a 

social setting. They can possibly be used to infer emotion (recall the study by Wang et al. 

which showed parametric encoding of the intensity of an emotion), or facilitate social 

communication through eye gaze. The latter is one of the most powerful instances of non-

verbal communication; it can be used to signal (e.g. you can cue someone to look at 

something with your eyes) or to cue for intimacy (among others).  

Evidence of finer structure in the face responses has also been found in humans. In a study 

using stimuli that only revealed parts of a face, Rutishauser et al. discovered cells that were 

selective for regions of interest within the face (i.e., mouth, left eye, and right eye) as well as 

cells that only responded to the presence of the entire face (Rutishauser, Tudusciuc et al. 

2011). These kinds of responses can also be seen outside of the amygdala (in face patches 

for example) so again the question arises, what is the computational advantage of having 

cells with tuning for face-parts in the amygdala? One possible explanation could be that 

amygdala responses do not only reflect the perception of faces but are actually used in the 

production of facial expressions (Livneh, Resnik et al. 2012). This hypothesis is based on 

anatomical evidence of projections from the amygdala to cingulate motor areas. This is a 

very exciting hypothesis because it suggests that the amygdala forms a closed control-system 

suited for adaptive social behavior; on the one end monitoring the environment for socially 

relevant cues and on the other end using these cues to generate contextually meaningful 

behaviors.   

1.4 Using more naturalistic stimuli in probing amygdala responses 

In relating behavior to patterns of neural activity, most electrophysiological experiments 

(specifically visual experiments in human and non-human primates) tend to use stimuli that 

have been stripped of all non-essential elements. The reason for this is that the more variables 

you remove from the experimental paradigm, the easier it becomes to interpret the associated 
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neural patterns. As an example, most of the literature detailing the properties of face cells 

in the primate amygdala has been based on the presentation of static images of faces. This 

experimental scenario is far removed from our own experience as we move around the world. 

In the real world, we are constantly updating our view by directing our gaze at different 

objects in our environment. Furthermore, we rarely experience these objects in isolation; they 

are usually embedded in a sea of other objects (i.e. crowdedness), they are often themselves 

animate (moving and emoting), and their relationship to us can vary (ex. far or close).  Given 

this constant competition for our attention, on average we sample the items in our 

environment for brief periods of time (200-500ms) before moving to the next items that 

attract our attention. Of course, the actual numbers can vary widely depending on what we 

are doing and what is around us, but the point is that the processes underlying naturalistic 

viewing behavior usually occur on short timescales and under information-rich conditions.  

On the one hand, the importance of using more ethologically valid behavioral tasks cannot 

be understated. On the other hand, neural data is much easier to interpret if the number of 

variables is small. Improvements in sensors that allow us to measure behavior, such as eye 

trackers, and methodological innovations in automatic labeling of behavior using machine 

vision, have allowed researchers to probe more and more interesting behaviors in the 

laboratory. In some cases, these new experimental paradigms have expanded our 

understanding of the associated brain structures involved in the behavior, and in other cases, 

they have reshaped it (Sheinberg and Logothetis 2001). As an example, the use of more 

naturalistic stimuli in recent years (e.g. movies) has led to findings that would have otherwise 

been overlooked. In a recent study, Mosher et al. (Mosher, Zimmerman et al. 2014) annotated 

instances when the monkey (frame-by-frame annotation, under free-viewing conditions) 

fixated on the eyes of conspecifics in the video. In doing so, they found eye cells in the 

macaque amygdala that are modulated by directed versus averted gaze. They discovered 

these cells only after they replaced static images with videos of conspecifics and allowed the 

monkey to freely view the movie (Gothard, Mosher et al. 2017). 
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1.5 Representation of memory and visual category in the human medial temporal lobe 

So far, we have focused on face processing in the amygdala, but cells in the medial temporal 

lobe -- anatomically comprised of the hippocampus, amygdala, fornix, and the surrounding 

perirhinal, entorhinal, and parahipocampal cortices – are selective for a wide variety of visual 

categories and concepts (of which faces are an instance). Other cells in the MTL signal 

whether a stimulus is new or old. This memory signal can emerge even after a single 

exposure (Rutishauser, Mamelak et al. 2006). Furthermore, it has been shown that this 

memory signal is not binary, but rather is modulated by memory strength (as measured by 

subjective confidence ratings). One important thing to note is that the visual category of a 

particular image, and whether it is novel or familiar, are independent pieces of information 

and therefore not correlated (this mostly true, since we do have a better memory for particular 

categories of images). Accordingly, the groups of cells that carry these two types of 

information are largely disjoint. While these two types of signals in the MTL have been well 

characterized, it is still unknown if these representations of visual category and memory are 

modulated by task. The memory signal carried by cells in the human MTL for example, was 

identified in the context of a recognition task. It is unclear however if this signal would still 

be present if the subjects were not asked a memory related question.  

1.6 Interactions between the medial temporal lobe and the medial frontal cortex 

While much is known about the representations of declarative memory in the human medial 

temporal lobe, little is known about how these representations are accessed in order to make 

a memory-based decision. The retrieval and use of memory representations for decisions is 

thought to rely on interactions between the hippocampus and the medial frontal cortex, two 

areas that are correlated in memory demanding tasks in humans (Anderson, Rajagovindan et 

al. 2009), macaques (Brincat and Miller 2015), and rodents (Siapas, Lubenov et al. 2005). 

There is anatomical evidence for both direct (Lavenex, Suzuki et al. 2002) and indirect (Ito, 

Zhang et al. 2015) pathways between the hippocampus and the medial frontal cortex. 

Furthermore, electrophysiological studies have shown that theta rhythms in the hippocampus 

entrain cells in the MFC (Jones and Wilson 2005, Siapas, Lubenov et al. 2005). The extent 

to which MFC cells cohere to hippocampal oscillations is correlated with performance in 
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spatial navigation and working memory tasks in animals (Hyman, Zilli et al. 2005, Hyman, 

Zilli et al. 2010). It is unclear however if this inter-area coherence between MFC and 

hippocampus is needed for accessing representations of declarative memory in the MTL in 

order to make a memory-based decision.  

1.7 Overview of the thesis 

In Chapter II, I will detail the methodology we use to collect single-cell recordings from 

human subjects. The detail is extensive and covers everything from the surgical methods for 

implantation of the electrodes to the processing pipeline that we use for the collection and 

analysis of the neural and behavioral data. In Chapter III of this thesis, I will focus on data 

collected from single cells in the monkey and human amygdala using concurrent eye-

tracking during a free-viewing task as well as a covert attention task (the latter was done in 

humans only). From there, in Chapter IV, we will look at representations of abstract choice 

as a function a visual stimulus and task demands. This is the only chapter that includes data 

recorded outside of the medial temporal lobe. Methodologically, it is also a departure from 

the rest of the chapters because we also look for the first time at evidence of inter-area 

communication through measures of spike-field interactions. In Chapter V, I will expand on 

the implications of these results, while also presenting some additional, related data, as well 

as a few ideas about follow-up studies and future work.  
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Chapter II: Surgical and Electrophysiological Techniques for Single-Neuron 

Recordings in Human Epilepsy Patients 

 

2.1 Overview 

Extracellular recordings of single-neuron activity in awake behaving animals are one of 

the principal techniques used to decipher the neuronal basis of behavior. While only 

routinely possible in animals, rare clinical procedures make it possible to perform such 

recordings in awake human beings. Such human single-neuron recordings have started to 

reveal insights into the neural mechanisms of learning, memory, cognition, attention, and 

decision-making in humans. Here, we describe in detail the methods we developed to 

perform such recordings in patients undergoing invasive monitoring for localization of 

epileptic seizures. We describe three aspects: the neurosurgical procedure to implant depth 

electrodes with embedded microwires, electrophysiological methods to perform 

experiments in clinical settings, and data processing steps to isolate single neurons. 

Together, this chapter provides a comprehensive overview of the methods needed to 

perform single-neuron recordings in humans during psychophysical tasks. 

 

2.2 Introduction 

Invasive intracranial EEG (iEEG) monitoring is routinely performed in patients who are 

believed to have localization-specific epilepsy, but the exact source of the seizure onset 

cannot be identified using non-invasive methods such as scalp EEG, MRI scans, PET and 

SPECT studies, or MEG.  For these patients, either surface “grid” electrodes or penetrating 

“depth” electrodes provide a precise method to better identify seizure onset and spread 

patterns.  “Grid” electrodes are sheets of electrodes imbedded in a thin sheet of silicone.  

They are typically used to identify the site and spread pattern of neocortical seizures on the 

brain surfaces, and perform cortical functional mapping via electrical stimulation. In 

contrast, depth electrodes penetrate the brain surface and pass through both cortical grey 

and white matter.  The distal end of the electrode typically rests in deep cortical or 
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subcortical locations such as the amygdala, hippocampus, primary visual cortex, or 

insula. Depth electrodes are typically used to identify seizure onsets in patients suspected 

of mesial temporal or mesial frontal seizures, although more recently the use of many small 

stereotactic EEG  (SEEG) electrodes has been used as an alternative to grids (Mullin, 

Shriver et al. 2016). In addition to seizure monitoring, depth-electrode monitoring offers 

the unique opportunity to address important research questions on the function of the 

human nervous system (Fried, Rutishauser et al. 2014). For example, our current choice of 

electrode, called the Behnke-Fried (BF) hybrid depth electrode (Fried, Wilson et al. 1999), 

has a standard array of 4-8 circular platinum-iridium ECoG electrodes spaced at 5 mm 

intervals along the electrode shaft, and has a hollow core. Through the hollow core, we 

thread a bundle of 9 microwires (40 µm diameter, platinum-iridium) (see Fig. 1A).  These 

wires are contained in an insulated covering except on the distal end, where they come out 

in a “flower spray” configuration. The microwires and associated macro-electrode external 

sheath are FDA approved, and manufactured by Adtech Instrument Corp (Racine, WI).  

The wires extend 15 mm from the shaft. Eight of the wires are insulated while an additional 

single referential ground wire is uninsulated.   The assembly also has a green shrink-wrap 

sheath that sits over the insulation and is used during insertion to protect the wires (see 

below for details).  We use the BF electrodes specifically to record multiunit and single 

unit extracellular activity at the most medial aspect of the electrode target. At present, we 

have not found any other electrodes that can reliably record single unit activity along the 

shaft of the main electrode, although newer technologies are being developed for this 

purpose. Importantly, no additional risk over standard clinical procedures is incurred by 

inserting microwires in addition to standard depth electrodes (Hefft, Brandt et al. 2013, 

Schmidt, Wu et al. 2016). The focus of this chapter is to provide a detailed description of 

the surgical methodology involved in the insertion of hybrid depth electrodes. In addition, 

we also briefly summarize subsequent methods to obtain reliable single unit recordings 

from the microwires in a clinical scenario.  Our intention is that this detailed, step-by-step 

description will prove a useful guide to others interested in performing recordings in 

humans at the single-neuron level.  Of note, there are several alternate techniques for 

inserting depth electrodes (see (Mehta, Labar et al. 2005, Misra, Burke et al. 2014)).   We 
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describe the method we have successfully employed for the last 12 years, but 

acknowledge that other methods or modifications may be equally successful.  

 

Figure 2.1: Electrodes used and postoperative MRIs. (a) Sketch of the hybrid macro-micro depth electrode. (b) 

Example postoperative MRIs illustrating the depth electrode placement. 

 

2.3 Surgical Methods 

2.3.1 Target Selection 

Placement of depth electrodes must always be dictated primarily by clinical concerns.   

Patients are undergoing depth electrode monitoring for the primary purpose of identifying 

a seizure focus.  Because insertion of depth electrodes can carry substantial risks such as 

brain bleeding, stroke, infection, and even death, strict ethical standards must be 

maintained at all times (Mamelak 2014).  Thus, it is unethical and unjustified to insert 

electrodes in non-clinically relevant areas, or regions used only for research application.  
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Failure to follow such strict ethical standards is likely to lead to potential harm to 

patients, which can never be justified.  

In general, patients undergoing depth electrode monitoring fall into two categories:  (1) 

seizures are suspected to arise from a medial temporal or limbic structure, but non-invasive 

monitoring and imaging tests are not sufficient to justify proceeding directly to a surgical 

intervention.  Common examples of this include patients with suspected unilateral onset of 

seizures in the hippocampus or amygdala, but patients do not meet so called “skip” criteria, 

so that depth electrode monitoring is used to confirm that all the seizures arise from one 

mesial temporal lobe versus having bilateral independent seizure onsets, or evidence that 

the seizures do not arise from the mesial temporal lobe at all.  Another common situation 

is a case where the patient is believed to have localization specific epilepsy, but non-

invasive monitoring cannot reliably identify the site. In those cases, depth electrode 

monitoring is used both to determine lateralization (i.e. what hemisphere does a seizure 

focus arise from) and localization (i.e. from what lobe of the brain or general region does 

the seizure arise from).  Often in these cases, patients subsequently go on to subdural grid 

or high density SEEG monitoring to further localize the seizures.   

For most typical depth electrode cases, we rely upon orthogonal trajectories, and place 

bilateral symmetric electrodes.  The typical medial targets are: amygdala, mid-body of 

hippocampus, medial orbito-frontal cortex (OFC), anterior cingulate cortex (ACC), and 

pre-supplementary motor area (pSMA).  In addition, electrodes may often be placed in the 

parahippocampal gyrus, insula (frontal or temporal opercular regions), parietal cortex, or 

in any overt structural abnormalities such as cortical dysplasias or regions of gliosis.  Thus, 

in general, our patients are implanted with 5- 8 electrodes in each hemisphere (see Table 1 

for typical targets). Note that for all targets, the electrode tip is centered approximately 5 

mm more lateral than the desired recording site, to allow room for the microwires to 

protrude from the end of the macroelectrode into cortical structures.  
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Table 2.1: Example electrode locations 

 

 

2.3.2 Stereotactic targeting 

Depth electrodes need to be inserted with a high degree of precision.  Both the final target 

position as well as the trajectory from the surface of the brain to the target must be 

precisely planned to avoid injury to vascular structures such as veins and arteries on the 

brain surface and deep within the brain. Accidental puncture of veins and arteries is the 

primary cause of morbidity (brain injury) from depth electrode insertion, and these 

structures have substantial patient-specific variability.  To accomplish this task, we rely 

on the use of frame-based stereotaxis.  We utilize a Codman-Roberts- Wells (CRW) 

stereotactic frame (Integra) and an attachment to the CRW frame that has been 

specifically designed for orthogonal depth electrode placements (Cosgrove Depth 

Electrode Insertion Kit, Adtech Instrument Corp).   Unfortunately, we are not aware of a 

similar insertion kit design to work with other common stereotactic frames l, although the 

design could easily be modified for those systems. Frame-based stereotaxic methods have 

a targeting accuracy of less than 1 mm, and can be used with a variety of commercially 

available stereotactic planning software suites.  These stereotactic planning systems are 
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routinely utilized by the majority of neurosurgical centers around the world.  With this 

method, a metal frame is attached to the patient’s head using 4 disposable screws that 

penetrate the skin and press on but do not go into the skull (Figure 1). We utilize ear bars 

inserted into the auditory canals of the patient at the time of frame placement to ensure a 

perfectly centered and orthogonal frame placement. 

 

 

Figure 2.2: Stepwise process of depth electrode insertion (A) Stereotactic frame placement. (B) CT scan with 

fiducial localizer to create patient specific coordinate system. (C) Screenshot from planning system (Framelink, 

Medtronic) used to determine stereotactic coordinates and trajectories. (C) Tools used for implantation 

(Cosgrove Depth guide, coring tool, anchor bolt wrench, reducing tubes for electrodes). (E) CRW base frame 

with Cosgrove Depth Guide mounted on patient right. (F) Coring tool inserted to skin entry point, and lidocaine 

injection. (G) Hand held twist drill passed directly through coring tube to drill entry point and anchor bolt site. 

(H) Bolt insertion using hex wrench. (I) Anchor bolt inserted in skull, Cosgrove guide mounted with reducing 

tube for electrode insertion. (J) Marking length of electrode from end of reducing tube to target. (K) Inserted 

hybrid macro-electrode before removal of electrode stylet, inserted to length measured in (J). (L) Microwires 

(before cutting) together with green sheath. (M) Insertion of microwires through already implanted 

macroelectrode. (N) Final coupling of macro-and microelectrode. (O) Securing electrode by tightening anchor 

bolt after microwires are inserted. (P) Application of surgical glue to distal end to secure micro-and 

macroelectrode coupling. (Q) Insertion of ground/reference strip. (R) Assembled hybrid macroelectrode with 

microwires extending (after deplant). 
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2.3.3 Surgical protocol – pre-operative procedures 

 

Pre-operative Area: 

1) Full head shave.   

2) Intravenous propofol sedation given by anesthesiologist. 

3) CRW stereotactic head frame applied using standard neurosurgical methods (Fig. 2A): 

a. Local anesthetic injected at each pin site (Albright’s solution, a pH balanced mixture of 

1% Lidocaine, 0.25% Marcaine, sodium bicarbonate, and epinephrine). 

b. Frame positioned with ear bars in bilateral auditory canals and held by technician. Good 

orthogonal position in all three planes confirmed by direct visualization by surgeon.  

c. Skull pins inserted at each of the four posts of the frame and tightened to secure the frame 

in a good orthogonal trajectory. 

d. Apply CT or MRI compatible stereotactic localizer. 

CT or MRI scanner: 

1) Patient is taken to the CT or MRI suite for scanning once sedation has worn off (typically 

5-10 minutes).  Our preference is to obtain a high resolution 3T MRI prior to surgery, as 

this is a routine part of the pre-surgical epilepsy workup, and is therefore almost always 

available. On the day of the surgery, a CT scan is acquired (0º gantry angle, 1.2 mm slice 

thickness, axial images from the top of the frame base through the vertex, helical scan 

mode).  Iodine contrast is also given to better visualize vascular structures. The scan is 

performed with the patient’s head secured to a CT fixation holder to assure that the scan 

is orthogonal (see Fig. 2B).  The CT acquisition typically takes under 1 minute. We do 

not typically acquire a CT angiogram (CTA) sequence, although this can be used to better 

visualize surface and deep vasculature if desired.  

2) The localizer is removed and the patient is transferred to the operating room. 

Registration of patient-specific stereotactic space1: 

1) CT images are transferred to the stereotactic planning computer via a PACS server. 

                                                 
1  We use the Framelink® Stereotactic Planning Software suite (Stealth Station, Medtronic) for planning at our institution. 

There are however many alternative solutions that are just as reliable (e.g. Brain lab, Radionics). 
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2) The previously acquired MRI is also imported.  If an MRI is not available, then the CT 

is not acquired and we acquire a 1.5 T MRI with the stereotactic frame and localizer on, 

and use these images. MRI should include at least one high-resolution multi-slice (120-

180, typically 144) axial or coronal sequence and a similar high-resolution T2 weighted 

image for best anatomic imaging.  

3) Using the planning software (Framelink, Medtronic, Inc), the MRI and CT images are co-

registered and aligned (Auto-Merge feature). 

4) The fiducial rods from the localizer detected on the CT or MRI scan are then registered, 

generating a patient-specific stereotactic Cartesian coordinate system.  

5) Once this step is complete, a full Cartesian coordinate system is established in which 

each point in space is associated with a specific Lateral (x), Anterio-Posterio (y), and 

Vertical (z) coordinate that corresponds to identical x, y, z values on the frame. A full 

description of stereotactic methods is beyond the scope of this chapter.  

Target Calculation (see Fig. 2C): 

1) The most medial point for the electrode is chosen on the displayed axial, coronal, and 

sagittal MRI. Typical targets are listed in Table 1. The monitor cursor is placed on the 

target point.  

2) Clicking the computer mouse on the chosen target generates the x, y, and z coordinate 

values for that point on the screen in the lower corner of the image panel.  These points 

are recorded on an electrode targeting sheet.   The “set target” button on the software is 

selected.  

3) A point is then chosen on the lateral skin surface that is roughly parallel to the targeting 

the A-P and vertical planes.  Once selected, the x, y, and z coordinates are displayed by 

clicking the mouse similar to how the initial medial target was selected. The point is 

adjusted with small movements of the cursor to ensure that the A-P (y), and Vert (z) 

values for the entry point are within 1 mm of the same values for the chosen target point.  

This assures that the trajectory of the electrode will be orthogonal to the insertion guide 

and parallel to the base frame.  Once this point is established, the “set entry” button is 

selected, resulting in the display of the electrode trajectory from surface to medial point.  
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4) Using the trajectory path tool, the trajectory is then followed in multiple planes to 

ensure that no surface or deep vessels are violated, and that sulci are avoided as much as 

possible.  If need be, the trajectory is then iteratively adjusted until the surgeon is 

satisfied with the trajectory.  

5) This process is repeated for every electrode, generating an average of 10-16 trajectories. 

6) The insertion depth of each electrode then recorded on the target-planning sheet as 190 

mm minus the absolute value of the lateral coordinate. This measurement determines the 

stopping point for insertion of the electrode at the lateral edge of the insertion guide (see 

2.2.4 for details), as the system is designed so that the back end of the insertion guide 

with reducing tube in place measures exactly 190 mm from the center of the stereotactic 

frame. 

 

2.3.4 Surgical protocol – intraoperative procedures 

 

Once all target coordinates and trajectories have been defined, the patient is ready to be 

implanted. The patient is brought into the operating room. We typically perform these 

procedures under total general anesthesia with either laryngeal mask or endotracheal tube 

insertion.  However, the procedures can also be performed using only propofol sedation and 

local anesthetic if desired.  In our experience this is not necessary, slows the procedure, and 

increases patient discomfort.  The procedural steps for insertion are as follows. 

Patient positioning and prepping: 

1) Patient is placed in a semi-sitting “lounge chair” on the operating room table with the 

CRW frame secured in place using a standard neurosurgical head holder (Mayfield head 

holder with CRW adaptor plate).  The head is position almost upright with the frontal 

eminence (top of the forehead) uppermost in the field, allowing symmetric access to both 

lateral sides of the head.   

2) The entire head is prepped with an iodine-based antiseptic solution.  Care is taken to 

make sure the prep extends below the zygoma (cheek bone) on both sides and up to the 

frame rods.   
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3) The CRW base ring is attached to the head frame and secured with the locking knobs. 

4) A sterile “U” drape is draped around the base of the frame but below the base ring and 

extended around the front of the patient with a full or three-quarter sheet placed to cover 

the patient’s body.  This creates a sterile field (also see Note 1).   

Equipment Required: 

1. Bovie electrocautery unit and cautery pencil. 

2. Modified electrocautery stylus (custom-made 225 cm-long insulated rod with 2 cm tip 

exposed at end, inserts in coring tube). 

3. Cosgrove Depth Electrode Insertion Kit (see Fig. 2D), containing: 

a. CRW Stereotactic Electrode Insertion Guide. 

b. Reducing tube – non-slotted. 

c. Reducing tube – slotted. 

d. Slotted electrode guide insert (inserted in slotted reducing tube). 

e. Coring tool. 

4. Handheld neurosurgical twist drill. 

5. Disposable drill kit for depth electrode anchor bolts (Adtech DDK2-2.8-30x for standard 

and BF depths, DDK2-2.4-30X for SEEG anchor bolts and electrodes). 

6. Anchor bolts. 

7. Appropriate number of BF electrodes. 

8. 1x4 or 1x6 contact subdural strip electrode (for ground/reference). 

9. Basic surgical instrument tray with forceps, cocker clamps, etc. 

10. Small gauge K-wire or Steinman pin.  

Anchor bolt placement: 

The standard process of inserting BF hybrid depth electrodes using the  

Cosgrove Depth Insertion Kit is identical for all electrodes and insertion sites.  We typically 

perform all right-side insertions first, followed by all left-sided insertions, as this is far more 

time efficient.  
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1. The Cosgrove Depth Guide is placed on the A-P mount side of the CRW base frame 

and set to the A-P (y) coordinate for the electrode to be inserted (see Fig. 2E) (The CRW 

uses a Vernier scale to allow for accuracy up to 0.1 mm). 

2. The height of the Cosgrove Guide is adjusted to match the Vertical (z) coordinate of the 

target for the electrode to be inserted.  

3. The non-slotted reducing tube is inserted into the guide until flushed with it, and locked 

in place with the tightening screw. 

4. The coring tool is inserted through the reducing tube to the skin, marking the entry point. 

This point is injected with a 2-3 cm wheel of lidocaine 0.5% with epinephrine (see Fig. 

2F). 

5. The coring tool is twisted directly through the skin and muscle down to the skull.  The 

sharp edges on the coring tool allow it to cut through the skin and muscle but not 

penetrate bone.  Once making firm contact with bone, it is locked in place with the 

tightening screw. 

6. The modified Bovie tip is inserted directly through the hollow opening in the coring tool 

down to the bone and coagulation of the deep tissue carried out for several seconds. This 

prevents bleeding from the muscle that might occur from coring.   

a. If no modified Bovie tip is available, the K-wire can be inserted and the distal end of the 

K-wire touched to the Bovie to transmit current to the deep tissues. If this method is used, 

care is taken to make sure the K-wire does not touch the side walls of the coring tube, 

resulting in an electrical short and no tissue coagulation.  

7. The handheld twist drill is passed through the coring tube opening to the bone, and a 

twist drill hole is made in the bone.  An adjustable stop on the drill is set to minimize risk 

of plunging into brain.  Ideally, the drill penetrates the skull but stops at the dura.  

Standard neurosurgical techniques are applied to achieve this depth (see Fig. 2G). 

8. The drill is removed and the sharp end of the K-wire is inserted down the coring guide.  

This allows the surgeon to ensure that the bone has been completely breached and to 

palpate the dura.  The dura is then punctured with the K-Wire.  The process can be 

repeated as needed to ensure complete drilling and dural opening. 

9. The coring tool and reducing cannula are removed. 
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10. An anchor bolt is placed on the distal end of the hex wrench supplied with the 

Cosgrove Kit (see Fig. 2H).  This wrench is designed to match the hexagonal shape of the 

anchor bolt, with a width that is the same as the Cosgrove Guide.  This ensures that the 

insertion of the anchor bolt will be exactly in line with the drill hole and will remain 

orthogonal at all times. 

11. The hex wrench with anchor bolt is inserted through the insertion guide into the drilled 

hole through the skin and hand–tightened into the calvarium.  This typically requires 15-

20 half-turns of the wrench.  Care must be taken not to turn too quickly or with too much 

pressure to avoid fracturing of the anchor bolt or the underlying bone.  Typically, the 

anchor bolt is advanced until the hexagonal aspect of the bolt is touching the skin surface.  

This ensures excellent purchase in the bone but not too deep a penetration to cause 

epidural hematoma. 

12. Once in place, the hex wrench is removed and the surgeon confirms that the anchor bolt 

is tightly secured. 

Hybrid microwire insertion: 

1. The length of the electrode that had previously been measured (Step 6 in “Electrode 

Trajectory” section above) is noted.  The macro-contact portion of the BF hybrid 

electrode is measured to this length from the distal tip of the electrode on a ruler, with the 

length marked using a surgical marking pen (see Fig. 2J). 

2. The distal end of the microwire bundle is then cut as a single bundle using very sharp 

tonotomy scissors.  We typically cut the wires to be 4-5 mm long for optimal results (see 

Note 3 and Fig. 3L). 

3. The green protective sheath is gently pulled over the microwire bundle to protect the 

wires during insertion (see Fig. 3L). The sheath should just cover all the wires but not be 

pulled up too far to avoid it coming off or bending during insertion.  

4. The slotted reducing tube and slotted guide cannula are assembled so that the distal ends 

of both pieces are flush.  They are then inserted as a single assembly into the Cosgrove 

Guide (see Fig. 2I). 
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5. The K-wire is again passed though the guide cannula and the anchor bolt through the 

dura to ensure clear passage of the electrode. 

6. The BF macroelectrode is inserted through the guide cannula and opening in the anchor 

bolt and passed until the marked point on the electrode just aligns with the back end of 

the guide cannula (see Fig. 2K).  This is the target depth.   

7. With the surgeon carefully holding the end of the electrode that enters the anchor bolt (so 

that it cannot slip), the electrode stylet is removed.  The guide cannula and slotted 

reducing tube are then unscrewed and gently pulled back and disassembled, leaving only 

the electrode exiting from the Cosgrove Insertion Guide.  The distal electrode is then 

passed through the Cosgrove Guide opening so that the electrode sits completely outside 

the Cosgrove assembly.  The anchor bolt set screw is tightened one half-turn. 

a.  A slotted guide cannula is needed because the distal outer dimeter of the BF 

macroelectrode is larger than the proximal end, and if it were not slotted, it could not be 

freed from the guide assembly. 

b. Placement of the macro-contact and holding it in place while the distal end is removed 

from the Cosgrove Guide is the most precise portion of the procedure and the easiest 

place for the surgeon to accidentally move the electrode depth. Care should be taken to 

ensure that the surgeon has a secure grip on the electrode just as it enters the anchor bolt 

during this entire process to minimize risk of migration.  

8. The surgeon picks up the microwire assembly and hands the distal end of the 

microelectrode bundle to an assistant to hold and advance, while the tip is inserted in the 

macroelectrode. 

9. The surgeon holds the distal end of the macroelectrode, taking great care to not pull out 

or advance the electrode (it is not yet secured).  He/she then threads the microwire 

assembly into the hollow opening of the macroelectrode and gently advances it until the 

distal connecter bushing tightly connects with the distal connector on the macroelectrode 

(see Fig. 2M).   It is advanced until the collar on the back end of the microwire assembly 

aligns with the blue line present on the macroelectrode, indicating it has been fully 

inserted with the distal end protruding from the distal end of the macroelectrode by the 
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amount that was pre-cut in Step 2 (see Fig. 2N).  The collar should fit snugly into the 

distal end of the macrowire assembly.  

10. The tightening screw on the anchor bolt is then tightened, first finger tight and then 

further with a Kocher clamp to lock the entire electrode assembly in place (see Fig. 2O).   

11. A small drop of surgical glue (e.g. Dermabond, Indermil) is applied to the electrode-

coupling site at the distal end to prevent the assembly from separating (see Fig. 2P). 

The process (Steps 1-11) is then repeated for the next electrode, until all electrodes have been 

inserted. 

12. Once all electrodes are inserted, a 1-2 cm incision is made in the midline scalp at the 

parietal vertex.  A hemostat or similar clamp is used to create a small sub-galeal pocket 

and the 1x4 subdural strip is inserted into the subgaleal space with the contacts pointing 

outward.  This will serve as the ground and reference contacts for the recordings (see Fig. 

2O).  The incision is closed with a nylon suture, and the electrode tail is secured to the 

scalp. 

13. An A-P and lateral skull X-ray are taken after all electrodes are inserted but prior to 

completion of the procedure.  Review of the X-ray may identify electrodes that are 

misplaced or accidently pulled out.  Any misplaced electrodes are then re-inserted with 

final placement again confirmed by X-ray.  

14. The exact number and/or color scheme for each electrode and its location are double-

checked with a technician to ensure correct identification of each wire for subsequent 

EEG recordings.  

Completion of procedures: 

 Once all electrodes are in place, the head must be properly dressed to prevent infection: 

1. The entire head is cleaned as best as possible with several wet lap sponges, removing any 

dried blood and betadine paint. 

2. 1 cm wide x 2-3 cm long strips of Xeroform or similar bandaging material are cut and 

wrapped around the base of each anchor bolt. 

3. The surgeon holds the head while as assistant releases the frame from the Mayfield head 

holder, unscrews the four skull pins, and removes the CRW frame.   
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a. Care is taken not to hit any of the protruding anchor bolts or accidentally pull on the 

electrodes during removal.  

4. Several gauze sponges are placed on both sides of the head and a full head dressing is 

applied.  We use two Kerlix rolls for this purpose.  The electrode tails are brought out 

through the top of the dressing with care taken to ensure they are not buried in it.  The 

exiting tails are further covered with additional gauze sponges and secured with silk tape.  

A Spandage expandable bandage net is also applied.   

5. The patient is awakened and taken to the recovery room. 

Post-surgery procedures: 

1.  A non-contrast brain MRI is obtained within 4 hours of insertion.  This confirms each 

electrode tip location and identifies any sites of bleeding. 

a. A CT scan is not advisable as there is a tremendous metallic artifact making any 

interpretation difficult. 

2.  A-P lateral and submental vertex plain films are taken. 

3. The patient is transferred to the Epilepsy Monitoring Unit (EMU) for recovery, and 

electrodes are hooked up for continuous EEG monitoring, typically the following day. 

4. Evaluation of the microwires for detecting single unit and multiunit activity is typically 

first started 1-2 days after insertion to allow the patient to recover from the procedure.  

Removal of electrodes: 

Once monitoring is completed, the electrodes and anchor bolts must be removed.  This is a 

straightforward surgical procedure, typically done under propafol sedation.  The basic steps 

are as follows: 

1. In the OR, the patient is given propofol sedation.  The head dressing is cut off, with care 

taken not to accidentally cut the electrode wires. The head is placed on a gel donut for 

support. 

2. The head is not cleaned with betadine until after the electrodes are removed. 

3. Starting with the right side, the head is turned to the left.  The surgeon puts on gown and 

gloves. 
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4. Using the Kocher clamp, the tightening screw on each electrode is loosened.  We 

typically loosen all screws at one time. 

5. Each electrode is then pulled out from the anchor bolt and inspected.  The distal 

microwires should be visible (see Fig. 2R) and the entire electrode array removed (also 

see Note 2). 

6. Using the hex wrench, unscrew each anchor bolt and remove it.   

7. The entire side of the head where the bolts were removed is painted with betadine scrub 

paint. 

8. Each insertion site is closed with a single 2-0 or 3-0 nylon suture. The closing stich must 

tightly bring together the skin edges and should be inspected to ensure no egress of CSF. 

9. Once one side is completed, the head is turned to the other side and the same process (1-

8) repeated for the other side, 

10. Once all electrodes are removed, the head is cleaned with a moist lap sponge and water.  

Antibiotic ointment is then applied to each suture site. No other dressing is required. 

11. The patient is awakened and returned to his/her room. 

 

2.4 Methods for data acquisition and behavioral testing 

A typical intracranial recording setup relies on three separate computers: an acquisition 

system, a stimulus presentation system, and an eye-tracking system. Below, we briefly 

outline the configuration of each setup. Together, we have found this to be a very reliable 

setup for use in the clinical setting. 

 

2.4.1 Data acquisition system 

For data acquisition, we use the Atlas system from Neuralynx Inc. All signals from the 

microwires are pre-amplified on the head with small pre-amplifiers (headstages) that attach 

directly to the pig-tail connector of the microelectrode. All microwire recordings are 

performed broadband (0.1 Hz – 9 kHz bandpass filter) and are sampled at 32kHz. In addition, 

this system allows the monitoring of all signals originating from macroelectrodes (depth 

electrodes, grids) and to pass these signals on to a clinical system running in parallel. 
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Together, this configuration allows us to connect only a single system to the patient, which 

lowers noise and avoids interference (see Notes 4 and 5). While we monitor the broadband 

recordings throughout the experiment, all processing of the data (i.e. filtering, spike 

detection, spike sorting) is redone during offline analysis. We typically set the input range to 

±2500 µV, resulting in <1 µV resolution. This is especially critical for spike sorting (see 

below), which relies on the shape of the spike waveforms themselves. Alternative products 

from other manufacturers (including Blackrock Microsystems Inc. and TDT Inc.) offer 

similar solutions to the one we described. 

 

2.4.2 Stimulus Presentation and eye tracking 

We implement all experimental tasks in Matlab with Psychophysics Toolbox (Brainard 1997, 

Pelli 1997). This well-tested and extensively utilized toolbox has been utilized by numerous 

human intracranial experimenters and is well-suited for this purpose. We typically show 

stimuli on a 19-inch screen with a resolution of 1024 x 768 pixels. The screen is supported 

by an arm mount and also carries the camera and infrared light source for the eye-tracker. 

We monitor monocular gaze position with a 500Hz sampling rate with an Eyelink 1000 

system (SR Research Inc.). We utilize a 9-point calibration grid to determine the eye-to-

screen coordinate transformation. Throughout a typical experiment, we can monitor eye 

position with an accuracy of 0.42 DVA ± 0.15.  

 

2.4.3 Response boxes and keyboards 

To collect responses from the subjects, we primarily use the RB-740 and the RB-844 

response pads (Cedrus Inc.) These response pads offer more reliable timing compared to a 

regular keyboard. Also, they are fully customizable, contain only a few buttons, and can be 

changed from experiment to experiment. As a result, we find response pads to be easier to 

use for patients.  
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2.4.4 Synchronization and data transfer 

Since the three systems are independent, it is essential to synchronize behavioral events. We 

use the stimulus presentation system as the master system. Whenever a significant behavioral 

event occurs (stimulus onset, stimulus offset, button press), this system sends an event to 

both the acquisition system as well as the eye-tracking system. This is achieved by utilizing 

the parallel port to send a signal to the transistor-to-transistor logic (TTL) input port on the 

data acquisition system. The same events are also sent to the eye-tracking system utilizing 

an Ethernet IP connection and the EyeLink toolbox (Cornelissen, Peters et al. 2002). This 

way, the point of time at which each behavioral event occurred is known on all three systems, 

despite the underlying clocks not being synchronized. Also see (Rutishauser, Kotowicz et al. 

2013) for further technical details on how to communicate between the three systems 

involved and how to utilize these connections for real-time closed-loop experiments. 

 

2.4.5 Methods for data processing 

Spike sorting is the process of extracting action potentials from the raw intracranial recording 

and attributing them to a particular neuron (“unit”). As is the case with all unsupervised 

clustering problems, one of the main challenges of spike sorting is estimating the number of 

neurons (i.e. clusters) that a given electrode is “listening” to. While there are many spike-

sorting solutions available (see Table 2), they all execute a similar workflow: signal 

conditioning and filtering of the raw trace, followed by spike detection and alignment, feature 

extraction, and finally, clustering (Lewicki 1998, Gibson, Judy et al. 2012).  The features 

used for clustering are either the raw spike waveforms or derivatives thereof. To judge the 

quality of sorting, additional properties of the spike train associated with a given cluster have 

to be considered, including the distribution of inter-spike intervals, firing rates, and 

autocorrelations. Together, these pieces of information provide evidence for whether a given 

cluster can be considered representative of a single neuron or not. While the focus of this 

chapter is on the surgical aspects of depth electrode implantation, we briefly summarize the 

standard steps we utilize below. Please see (Rutishauser, Cerf et al. 2014) for further details. 
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2.4.6 Filtering 

The first step in the processing pipeline is to remove low frequency content from the raw 

trace (Fig. 3a) by band-pass filtering the raw signal in the 300-3000 Hz frequency range (Fig. 

3b). In order to preserve the shapes of the spike waveforms, it is important that the filtering 

process does not introduce phase distortions (Quiroga 2009), which is achieved by using a 

zero-phase digital filter ((Fig. 7). For real-time applications, such filtering is not possible 

because it is non-causal. In that case, the alternative is to use a linear phase FIR filter and 

directly account for the group delay introduced by the filter (delay = (L-1)/2, where L is the 

filter length).  

 

Figure 2.3: Zero-phase filtering (a) Bandpass filtering is a common first step in improving the signal-to-noise 

ratio of spike waveforms. By retaining spectral information in a specific frequency range (300-3000 Hz for the 

example shown here), we can improve detection and sorting of spike waveforms. The way in which the filtering 

is performed however, can greatly change your results. Here we show the results when we filter the raw data 

(blue trace, Fs = 32000Hz) with no phase distortion (red trace) and when we filter in the conventional way 

(yellow trace). Zero-phase filtering was implemented with the Matlab function filtfilt. (b) While both methods 

preserve the waveform shape, conventional filtering delays the spike waveform while zero-phase filtering does 

not.  

 

2.4.7 Spike detection and extraction 

In order to extract the action potentials from the filtered signal, we assume that the individual 

spikes are above the noise floor.  Since the noise floor may not necessarily be stationary, we 

use a time-dependent threshold that is a function of the underlying noise properties of the 



 

 

30 

signal. Specifically, the threshold is set to be a multiple (typically around 5) of the 

estimated standard deviation of the filtered trace. While this may work perfectly well for 

spikes that have large waveforms, it may miss some of the smaller spikes that are much closer 

to the noise floor. A few simple techniques can help improve the signal-to-noise ratio of 

spikes and therefore improve detection. One such technique is to use the energy of the signal 

instead of the raw trace (Bankman, Johnson et al. 1993). The energy operator amplifies small 

differences between the spike amplitude and the noise floor, making it easier to set a 

threshold for spike detection. Since the processes that we are interested in (i.e. spikes) unfold 

over approximately 1ms, we compute the local energy of the signal at that time scale by 

convolving it with a rectangular kernel of 1ms width. This results in an “energy signal (Fig. 

3c), which is then thresholded. The threshold is set to a multiple of the standard deviation of 

the energy signal (here, 5x s.d.). The threshold parameter (i.e. the multiple of the standard 

deviation) can vary case by case. For a channel that has very few spikes, we may need to set 

this parameter higher than usual to avoid picking up noise. On the other hand, in situations 

with cells of very high firing rates with large amplitude waveforms, the threshold has to be 

set lower than usual (i.e. 3 or 4x s.d.). For each threshold crossing, we extract a fixed number 

of samples before and after from the raw signal (typically, 2.5ms total length). This 2.5ms 

long trace is the waveform of the spike and forms the basis for all processing that follows.  

 

 

2.4.8 Spike sorting (clustering) 

Spike sorting involves two steps: identification of features from each waveform followed by 

unsupervised clustering of these features. The most commonly used feature for clustering is 

the spike waveform. The goal is to identify features of the waveform that maximally separate 

different cells. On one extreme, we could use a single scalar, such as the peak-to-trough 

amplitude or the spike width. On the other extreme, we could use the entire waveform and 

clustered in this N-dimensional space (where N is the number of samples that make up the 

waveform). An alternative approach is to capture as much of the variance in the waveforms 

as possible using only a few dimensions. This can be achieved by utilizing a dimensionality 

reduction technique such as principal component analysis (PCA).  
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Once spike waveform features have been identified, an unsupervised clustering algorithm 

is used to partition the space. In practice, a variety of algorithms have been used for human 

single-neuron recordings, including OSort, Wave_clus, and variants of Klustakwik/Klusta 

(see Table 2). Some are parametric and make assumptions about the underlying distribution 

of the data (such as Gaussian Mixture Models). Others are nonparametric and rely on 

heuristics computed directly from the data. We utilize the OSort (Rutishauser, Schuman et 

al. 2006) algorithm for spike detection and clustering. OSort uses a distance metric between 

the raw waveforms for clustering, runs spike-by-spike (online), and determines the number 

of clusters automatically. Other spike sorting approaches used for human single-neuron 

recordings are example pipelines include Wave_clus (Quiroga, Nadasdy et al. 2004) and 

Klusta (Rossant, Kadir et al. 2016).  
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2.4.9 Quality metrics 

We rely a list of quantitative metrics to assess how likely a given cluster represents a single 

neuron and to assess whether a given cluster is over- or under-merged.   

Stable waveform: A key metric is the peak-to-trough amplitude of the spikes associated 

with a cluster as a function of time. Ideally, the amplitude of the spike should remain constant 

throughout the experiment (see Fig. 6B). Large deviations in the shape of the waveform are 

usually indicative of electrode movements (the electrode changes position with respect to the 

cell) or of an artifact of the spike-sorting algorithm (ex. two clusters were merged when they 

should not have been, or a single cluster was split into two when it should not have been). 

This can often be corrected by manually merging clusters. 

Stable firing rate (on long enough time scales): A second metric to tracking the stability 

of a cell is firing rate as a function of time. While there may be task-dependent modulation 

at finer time scales, on long enough time scales, the average firing rate should be relatively 

stable. As in the case of the peak-to-trough amplitude, a large deviation in the average firing 

rate of a cell is usually indicative of electrode movement or over-splitting in spike sorting 

(see Fig. 6B for an example). This can often be corrected by manually merging clusters. 

Inter-spike interval histogram: One of the unmistakable features of a cell is the distribution 

of its inter-spike intervals (ISIs). The ISI histogram can be used in two ways: (1) to tell the 

difference between cells that have similar waveform shapes but might be functionally 

different, and (2) to verify that there are no violations of the refractory period (i.e. there are 

few ISIs < 3ms). Violations of the refractory period are indicative of a cluster representing 

multi-unit activity.  

Alignment check: An important check of the quality of a cluster is the distribution of the 

peak amplitude across all the waveforms. This distribution should be unimodal and tightly 

clustered around the true mean. A multimodal distribution is indicative of over-clustering 

(two or more clusters have been mistakenly merged into one) or misalignment of the 

waveforms (see Fig. 6A).  

Cluster quality checks: We typically provide, for each cluster included in a paper, 

histograms of a number of spike isolation quality metrics to allow an assessment of how 

well-separated the cells included in a study were (see supplementary Figures in (Rutishauser, 
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Ross et al. 2010, Kaminski, Sullivan et al. 2017) for examples). These include: projection 

tests between all possible pairs of clusters on the same wire (Pouzat, Mazor et al. 2002, 

Rutishauser, Schuman et al. 2006, Rutishauser, Ye et al. 2015), isolation distance (for each 

cluster versus all other detected spikes on a wire), L-ratio (Schmitzer-Torbert, Jackson et al. 

2005, Hill, Mehta et al. 2011), %ISI violations <3ms, and signal-to-noise of the mean 

waveform of a cluster.  

 

 

Figure 2.4: Spike detection and sorting. (A) Example broadband recording from a microwire in the amygdala 

(with bipolar referencing). (B) The same trace as in (A) but bandpass filtered in the 300 – 3000 Hz band. (C) 

Signal used for spike detection (green line is the threshold). Signal shown is the local energy (with a 1ms kernel), 

which improves the SNR of spikes with respect to the baseline. (D) After spike detection and alignment, two 
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prominent waveform shapes, each one belonging to a different underlying unit (green and red), were 

identified on this channel. (E) The individual waveforms (256 samples per electrode) from the two clusters 

projected into principal component space. The clusters are well-separated. (F) Projection test to validate the 

separation between the two putative single-units (clusters). Shown are two overlapping histograms, each 

corresponding to one cluster. There was less than 1% overlap.  

 

 

Figure 2.4: Typical problems in spike sorting.  (A) One of the most common problems in spike sorting is 

over-merging of two clusters. This can happen if the within-group differences between spike waveforms are 

larger than that of across groups. In this case, the algorithm (in this case Osort) will merge the two clusters into 

a single cluster. There are a few simple ways to detect this kind of phenomenon. Illustrated here is the 

distribution of amplitudes at the alignment point (middle panel). If bimodal distribution, this is an indication 
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that this cluster is a composite of two (or more) other clusters. A projection of the individual spikes into PCA 

space confirms this (notice the two clusters in the third panel). (B) An example of under-merging of two clusters 

due to non-stationarities through the experiment (usually due to electrode movement). The firing rate and 

amplitude (second column) of the waveforms as a function of experiment time is a useful tool in diagnosing 

such problems. Note that during grey periods, recording was off. (C) High firing rates can bias the automatic 

threshold selection (dashed line), leading to missing spikes with lower amplitudes. For channels with high firing 

rates of high-amplitude spikes, the threshold has to be lowered manually. 

 

2.5 Notes  

Note 1: The CRW frame rods remain exposed during the procedure and are not sterile.  Thus, 

the surgeon must take care not to accidentally touch them during the procedure.  If touched, 

or even if there is a concern of possible touching, the surgeon gloves are changed.  We 

typically change gloves at least 3-4 times during a procedure.  

Note 2: During removal, if an electrode does not easily slide out from the anchor bolt and 

“hangs up,” the macro contact may be caught on the dura. Do not pull hard on the electrode, 

as this may shear the electrode and leave a residual in the brain. Rather, cut the electrode as 

close to the anchor bolt as possible. Then, when the anchor bolt itself is removed, the 

electrode will come out with it in the largest majority of cases.  

Note 3: Although we have experimented with various lengths ranging from 3-8 mm,  4-5 

mm seems to given optimal recordings.  Care is taken to cut quickly, and to not crush the 

distal ends of the microwires. A sharp scissor helps with this. The microwire bundle is 

examined and can be slightly fashioned with the scissor blades to make sure the wires 

protrude in a “flower spray” configuration.   

Note 4: The choice of grounds and reference electrodes is critical for stable single-neuron 

recordings with high signal-to-noise ratios and an absence of movement artifacts. Strips 

implanted below the scalp (see Surgical Methods), with the exposed contacts pointing away 

from the brain, provide the best ground and reference contacts. For single-neuron recordings 

alone, the best reference is local, i.e. one of the eight micro-wires serves as a reference for 

the other 7 micro-wires. Such bi-polar recordings have the highest signal-to-noise ratio 

because that way, all wires have approximately the same impedance, their tips are located 

within a few mm of each other and common low-frequency activity cancels out. However, 

this configuration cancels out much of the local field potential (LFP). Thus, if LFP is 

important, it is advisable to use either the local reference wire or a remote reference. 
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Note 5: Common sources of recording noise, including line noise, are devices connected 

to the patient. Before starting a recording, unplug all devices that are directly connected to 

the patient or which are being touched by the patient. All such devices should run on battery 

and be disconnected from the wall. This, in particular, includes IV pumps, leg warmers, 

remote controllers, cell phones, computers, etc. 
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Chapter III: Fixations Gate Species-specific Responses to Free Viewing of Faces in 

the Human and Macaque Amygdala 

3.1 Overview 

Neurons in the primate amygdala respond prominently to faces. This implicates the amygdala 

in the processing of socially significant stimuli, but its contribution to social perception 

remains poorly understood. We performed a comprehensive evaluation of the representation 

of faces in the primate amygdala during naturalistic conditions by recording from both 

human and macaque amygdala neurons during free viewing of identical arrays of images 

with concurrent eye-tracking. Neurons responded to faces only when they were fixated, 

suggesting that their activity was gated by visual attention. Further experiments in humans 

utilizing covert attention confirm this hypothesis. The majority of face-selective neurons 

preferred faces of conspecifics in both species, a pattern mirroring first fixation preferences. 

Response latencies, relative to fixation onset, were shortest for conspecific-preferring 

neurons, and were ~100ms shorter in monkeys compared to humans. This argues that 

attention to faces gates amygdala responses, which in turn prioritizes species-typical 

information for further processing. 

3.2 Introduction 

Faces are important stimuli for primate social behavior. Humans and macaques share a 

homologous set of cortical regions specialized for processing faces (Tsao, Moeller et al. 

2008), and in macaques, these “face patches” contain neurons almost entirely selective for 

faces (Tsao, Freiwald et al. 2006). Together, face patches constitute an interconnected system 

for constructing face representations from facial features (Moeller, Freiwald et al. 2008, 

Freiwald, Tsao et al. 2009). A key unanswered question is how this cortical representation 

of faces guides social behavior. The amygdala is a key structure in such subsequent 

processing: it is reciprocally connected with the cortical face patches (Grimaldi, Saleem et 

al. 2016), contains a large proportion of neurons selective for faces (Sanghera, Rolls et al. 

1979, Gothard, Battaglia et al. 2007, Rutishauser, Tudusciuc et al. 2011, Mosher, 

Zimmerman et al. 2014), and is critical for primate social behavior. 
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The amygdala processes stimuli with ecological significance, including not only social 

stimuli such as faces, but conditioned and unconditioned rewards and punishments (Paton, 

Belova et al. 2006, Adolphs 2010). Face-selective responses are prominent in the amygdala 

of both humans and monkeys (Sanghera, Rolls et al. 1979, Fried, MacDonald et al. 1997, 

Gothard, Battaglia et al. 2007, Rutishauser, Tudusciuc et al. 2011, Mosher, Zimmerman et 

al. 2014), as would be expected from the highly processed visual inputs the amygdala 

receives from the multiple areas where face-selective cells have been discovered (Gross, 

Rocha-Miranda et al. 1972, Bruce, Desimone et al. 1981, Perrett, Rolls et al. 1982, Rolls 

1984, Desimone 1991). This picture suggests a limited contribution of the amygdala to face 

processing: all its face selectivity might be explained by the inputs from face-selective 

cortical regions. In addition, it is commonly believed that the large receptive fields of the 

neurons that provide input to the amygdala would result in visual receptive fields of 

amygdala neurons that are not spatially restricted (Gross, Bender et al. 1969, Boussaoud, 

Desimone et al. 1991, Barraclough and Perrett 2011). It has been proposed that the amygdala 

responds to faces even when they are not attended (Vuilleumier, Armony et al. 2001) or 

consciously perceived (Tamietto and de Gelder 2010).  This view of the amygdala’s function 

fits with a long-standing debate about whether the amygdala mediates rapid automatic and 

relatively coarse detection of significant stimuli through a route of subcortical inputs 

(Cauchoix and Crouzet 2013). These views challenge observations that human amygdala 

neurons show exceedingly long visual response latencies (Mormann, Kornblith et al. 2008, 

Rutishauser, Mamelak et al. 2015), and that fMRI activation of the amygdala appears to 

require visual attention (Pessoa, McKenna et al. 2002). In the absence of comparative studies 

using the same stimuli and the same paradigm in both species, it is nearly impossible to 

determine whether these are differences between the two species or rather different 

experimental conditions. Resolving these disparate conclusions thus requires a more 

comprehensive investigation, which no single study has yet accomplished: assessing 

amygdala responses to faces at the single-unit level across both monkeys and humans, and 

investigating selectivity and response latency in relation to fixation onset during free-viewing 

with concurrent eye-tracking.   
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 Although we know much about how face-selective responses may arise from the  

geometric and semantic features of faces (Tsao, Freiwald et al. 2006), this knowledge has 

been derived from studies with static stimuli of single faces displayed on a featureless 

background and in the absence of eye movements. As such, little is known about face 

responses during natural vision and their potential modulation by attention. During natural 

vision, the visual system has to contend with complex and dynamic visual scenes in which 

multiple items compete for attention. Eye movements select from the multitude of possible 

fixation targets that are salient or behaviorally significant elements of the scene (such as 

faces).  Under these conditions, the response properties of cortical visual neurons can be 

modulated dramatically (Sheinberg and Logothetis 2001, Rolls, Aggelopoulos et al. 2003). 

Indeed, eye movements and the use of naturalistic stimuli change the selectivity and response 

reliability of neurons even in early visual areas (Gallant, Connor et al. 1998, David, Vinje et 

al. 2004). Similar modulation of attention-related neural activity has been found in parietal 

and prefrontal visual areas involved in the planning and elaboration of a sequence of fixations 

during natural vision (Zirnsak and Moore 2014). Likewise, neurons in the inferotemporal 

cortex that are selective for an item embedded in a crowded scene respond to their target 

stimulus only during fixations on that particular item (Sheinberg and Logothetis 2001). Thus, 

throughout the brain, visual processing is strongly influenced not only by the identity of 

objects, but also by how fixations select them. However, almost nothing is known about how 

fixations affect visual processing in the amygdala. 

In the context of natural vision, the amygdala is of particular interest because amygdala  

lesions are known to interfere with the efficient visual exploration of faces (Adolphs, 

Gosselin et al. 2005), and because amygdala neurons respond to dynamic social signals such 

as eye contact (Mosher, Zimmerman et al. 2014).  Moreover, lesions of the amygdala 

produce a complex constellation of impairments in social behavior (Adolphs, Tranel et al. 

1994, Adolphs, Tranel et al. 1998).  The amygdala is thus a prime candidate for mediating 

between the perceptual representations of faces in the cortical face-patch system and the 

mediation of social behaviors based on such perception.  Elucidating this role, however, 

requires both a more naturalistic presentation of stimuli and a better quantification of how 

they are attended.  Here we achieved both these imperatives by allowing subjects to freely 
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view a complex array of images that competed for attention while we monitored eye 

movements. Our focus was on the category selectivity of amygdala neurons during natural 

vision, with specific emphasis on the potential category selectivity for conspecific and 

heterospecific faces. We focused on faces not only because of their patent ecological 

relevance, but also because they are the visual category of stimuli consistently explaining the 

largest proportion of variance of the responses of amygdala neurons (Gothard, Battaglia et 

al. 2007, Rutishauser, Tudusciuc et al. 2011).  

In addition to using free viewing and eye-tracking, we sought to find convergent evidence  

by presenting identical stimuli to both monkeys and humans in an attempt to help generalize 

findings across species.  This allowed us to compare between responses to faces in each 

species, including differences in neuronal response selectivity and latency. To achieve this, 

we presented humans and monkeys with the same arrays of images for free viewing. The 

arrays contained images of monkey and human faces intermixed with images of non-face 

objects. We addressed three tightly related questions. First, do neural responses in the human 

and monkey amygdala depend on the visual category of attended stimuli as assessed by 

fixation location?  Second, are face-responsive neurons in the amygdala biased for faces of 

conspecifics? Third, are the response latencies to faces different in the two species? Together, 

this comparative study reveals that primate amygdala responses during free viewing are 

profoundly influenced by attention to socially relevant stimuli during natural vision. Our 

findings suggest a mechanistic basis for the role of the primate amygdala in attentional 

selection for social stimuli, by which amygdala responses in turn regulate responses in visual 

cortex in a top-down manner (Pessoa and Ungerleider 2004).  

 

3.3 Results 

3.3.1 Task and Behavior 

We tested a total of 12 human epilepsy patients (28 sessions, 50 ± 1 trials per session, ± s.d.) 

and 3 healthy macaques (16 sessions, 113 ± 13 trials per session, ± s.d.).  Subjects freely 

viewed complex visual stimuli (Fig. 1A). Each stimulus consisted of a circular array of eight 

images chosen at random from two face categories (human and monkey faces) and two non-
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face categories (either flowers and fractals or fruits and cars, depending on the version of 

the task performed). The non-face categories were later pooled for analysis as "distractors" 

(Distractor Group #1 contained cars and fractals and Distractor Group #2 contained fruits 

and flowers). Each image array was displayed for 3-4s, and subjects were free to view any 

location. Although stimuli were identical for the two species, each necessitated slightly 

different task conditions (see below for behavioral controls). Macaques received a fixed 

amount of reward after conclusion of a trial if they maintained their gaze position anywhere 

on the screen during the entire stimulus period. Trials were aborted and no reward was given 

if a monkey moved its gaze off the screen within the first 3s of stimulus onset. This achieved 

attention to the image array while encouraging free exploration. Human subjects were 

instructed to freely view the stimuli for a later memory test (Fig. 3.1A). To verify that our 

two tasks produced largely comparable fixation behaviors in the two species, we compared 

the scan-paths used by humans and monkeys to explore the image arrays (Fig. 3.1B shows 

an example).  

 

To further ensure that our memory task does not introduce fixation preference biases, we  

also asked two groups of healthy human control subjects to perform the identical task (Fig. 

3.2): one with the same instructions as the patients (“memory controls”) and one that did not 

know that a memory test would follow (“free viewing control”). Patients had good 

recognition memory (average across n=14 sessions, 70%, p=0.001 vs. chance, one-sided 

binomial test), showing that they attended to the stimuli. The patients’ performance was 

somewhat lower than that of the memory group but not the free viewing group (Fig. 

3.2D, t(19)=2.845, p=0.01 and t(19)=1.467, p=0.16 respectively). Crucially, the probability 

that the first fixation landed on a human face was not influenced by task instruction and did 

not differ between any of the groups (t(19)=0.8538, p=0.40 and t(19)=0.3013, 

p=0.77, respectively). Subjects in all three groups explored all stimuli extensively regardless 

of task instructions (Fig. 3.2A,B), confirming that informing subjects of a subsequent 

memory test without further specific information does not affect fixation preferences for 

faces. 
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Figure 3.1: Task, behavior, and recording locations. (a) Task performed by human and monkey subjects. 

Task version #1 is shown. (B) Example scan paths from a human (top) and monkey (bottom) viewing the same 

stimuli. Dots are fixations, and lines are saccades. The first saccade (starting at the center) targets the face of a 

conspecific. Trial time is encoded by color. (C) Look duration (“dwell time”) on each stimulus category for 

humans (black) and monkeys (gray). Monkeys fixated longer on conspecific faces and on flowers, while humans 

fixated longer on conspecific faces and on fractals (three stars indicates p<0.001 and one star indicates p<0.05, 

two-tailed t-test). (D-E) Recording locations. Amygdala nuclei are indicated in color. (D) Recording sites in the 

three monkey subjects (R,G,Q in different color dots) collapsed onto a representative coronal section. (E) 

Human recording sites (red dots) in MNI152 space. Abbreviations: LA = Lateral Nucleus, BLD = Dorsal 

Basolateral, BM = Basomedial, CE = Central, CM = Cortical and Medial Nuclei, BLV = Ventral Basolateral.  
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Figure 3.2: Comparison of behavior of human neurosurgical subjects with normal control subjects, 

related to Figure 3.1. (A) The average look time for each image for three groups of subjects: memory controls 

(brown), free-view controls (green), and neurosurgical subjects (yellow). Each dot represents the average across 

one session (n=7, n=7, n=14 for the memory, free-viewing, and subject groups respectively). For the subjects, 

we only used the sessions that used the same stimuli as the control group. (B) Average number of images visited 

during each trial. (C) Proportion of all first fixation that landed on a human face was comparable across all 

subject groups. (D) Memory retrieval performance of the three subject groups. While on average control 

subjects that knew of the later memory test performed better than the free-view control subjects, it was not 

statistically significant (t(12)=1.674, p=0.12). Neurosurgical subjects performed significantly above chance 

(p=0.002, binomial test) but worse than the memory control group (t(19)=2.845, p=0.01).   
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The majority of all fixations landed on one of the eight images in both human patients and  

macaques (84% and 89%, respectively; Fig. S1F) and subjects looked longer and earlier at 

faces of conspecifics compared to faces of heterospecifics (Fig. 1C, see legend for statistics). 

A reliable viewing pattern for both species was that the probability of looking first at a 

conspecific face was higher than that of first looking at a heterospecific face (32% vs. 24%, 

t(54) = 3.63, p=0.0006, in humans and 32% vs. 20%, t(30) = 2.77, p=0.01, in monkeys, paired 

t-tests, chance is 25%, Fig. S1A-B). Also, in both species some sequences of fixations (i.e. 

human followed by monkey face) were more likely than others (Fig. S1C-D), which shows 

that fixation location was influenced by image content throughout. This suggests that even 

before launching a sequence of exploratory eye movements, conspecific faces competed 

successfully for fixation priority in both humans and monkeys. Together, this argues that the 

location of the faces on the screen was attended to and influenced the fixation patterns of 

both humans and monkeys, a mechanistic hypothesis that we tested further with a covert 

attention task in the human subjects that is described below.  

 



 

 

49 

 

Figure 3.3: Comparison of human and monkey behavior, related to Figure 3.1. (A) Proportion of fixations 

that landed on a given image category as a function of fixation number and category for human subjects. (B) 

The same plot as in (A) but for monkeys. (A,B) Note how, for the first fixation, both species were more likely 

to look at faces of their own species compared to the other species. (C,D) Frequency with which each of the 16 

possible category transitions occurred for human (C) and monkey (D) subjects. While all possible transitions 

occurred, some were more likely (i.e. human face – monkey face, and monkey face – human face). (E) Look 

duration as a function of fixation number. Both humans and macaques modulated look duration as a function 

of time in the trial (p=0.01 and P=10-7, respectively, 1x10 ANOVA). However, this difference was entirely 

accounted for by the difference between the first and second fixation in humans, but not macaques (p=0.09 and 

P=10-5, respectively, 1x9 ANOVA). (F) Heat maps showing the eye-tracking data for all sessions in humans 

(left) and monkeys (right). Both humans and monkeys sampled all 8 images.  
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3.3.2 Electrophysiology 

We isolated 422 and 195 putative single units from the human and macaque amygdala, 

respectively (on average 19 and 12 per session, respectively). We only analyzed cells with a 

mean firing rate of >0.5 Hz (290 and 148 units, respectively; mean firing rates 2.28 Hz and 

5.6 Hz, range 0.5-26.4 Hz and 0.5-72.8 Hz). Throughout the manuscript, we use the terms 

neuron or cell to refer to a putative single unit, and we only used units satisfying multiple 

conservative criteria (see Methods for details). To facilitate direct comparison between 

species, all spike detection, sorting, and data analysis was performed using the same methods 

for all recordings from both species (see Fig. 3.4 for electrophysiological properties of cells 

in both species).  
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Figure 3.4: Electrophysiological properties of neurons in both species, related to Figure 2. (A) Mean 

waveform shapes for all tuned cells in the human amygdala (n=85). The waveforms were all peak-normalized, 

and aligned by their peak (in the case of a positive peak, we flipped the waveform in order facilitate alignment).  

(B) Mean waveform shape for all tuned cells in the monkey amygdala (n=61). (C) Trough-to-peak distances (in 

ms) as a function of firing rate for neurons recorded in humans (n=85). Trough-to-peak distances were 

bimodally distributed (p<0.0001, Hartigan dip test). (D) Same as (C), but for all cells recorded from the monkey 

amygdala.  There was no evidence for a bimodal distribution of trough-to-peak distances (p=0.3, Hartigan dip 

test). (E-H) Mean waveforms for al Hh, Mh, Hm, and Mm cells, respectively. (I) Mean firing rates for all Hh 

(yellow, 2.18 ± 0.38 Hz) and Hm cells (purple, 1.70 ± 0.40 Hz). There was no significant difference between 

these two populations (p=0.40, 2-sample t-test). (J) Mean firing rates for all Mh (yellow, 6.08 ± 1.50 Hz ) and 

Mm cells (purple, 7.60 ± 2.01 Hz). There was no significant difference between these two populations (p=0.62, 

2-sample t-test).  
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3.3.3 Fixation-target sensitive neuronal responses 

We first determined whether the responses of amygdala neurons were modulated by the 

identity of the fixated stimuli. For each neuron, we tested whether the firing rate following 

fixation onset co-varied with the identity of the fixated images (see Methods). When 

features within an image were successively fixated, time of fixation onset was determined 

by the first fixation that fell within that image’s region (“look onset”, see Methods and Fig. 

S2). We found that 20% (n=85/422) of human and 31% (n=61/195) of macaque neurons 

significantly modulated their firing rate after fixation onset (Fig. 2). These “fixation-target 

sensitive” responses appeared transiently, shortly after fixation onset (see below for a 

latency analysis). 
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Figure 3.5: Example single neurons with fixation-related activity.  (A,B) Example trial from a human (A) 

and monkey (B) face-selective neuron. Spikes are indicated by black dots. Whenever gaze fell onto a conspecific 

face (colored patch), the neuron increased its activity. (C-F) Rasters (top) and mean firing rate (PSTH, bottom) 

for neurons recorded in humans (C,E) and monkeys (D,F). Neurons are selective for conspecific (C,D) and 

heterospecific (E,F) faces. (C,D) show the activity of the neurons depicted in (A,B). t=0 marks fixation onset. 

Trials were sorted by category of the fixated image (color code) and fixation duration (black line). Stars above 

the PSTHs indicate bins of neural activity (of 250ms duration) with a significant (1x4 ANOVA, p<0.01) 

difference in firing rate. Horizontal scalebar for waveforms is 0.2mV. The four neurons are from different 

subjects.  
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We further characterized the category selectivity of fixation-target sensitive responses  

(Fig. 2C,D). We first classified each fixation-target sensitive cell according to the category 

to which it responds most strongly (highest firing rate) at the point of time at which neurons 

provided most category information (see Methods and Fig. 3.6). 

 

 

 

Figure 3.6: Using mutual information to determine the position of the analysis window for selectivity 

analysis, related to Figure 3. (A) Time-course of information, quantified as mutual information (MI; peak 

normalized) between the firing rate and visual category for all neurons recorded in monkeys (N=195, light 

gray) and humans (N=422, black). The point of time at which MI was maximal (t=325ms and 229ms, 

respectively) was used to place the analysis window for all further analysis. 

 

The majority of fixation-target sensitive neurons preferred faces of conspecifics: 49% 

(n=42/85) and 39% (n=24/61) in humans and macaques, respectively (Fig. 3A). A smaller 

proportion preferred faces of heterospecifics (that is, faces of the opposite species): 32% 

(n=27/85) and 18% (n=11/61) in humans and macaques, respectively. Together, about 71% 

of all fixation-sensitive neurons preferred faces (Fig. 3A, 81% in humans and 58% in 

macaques). In contrast, only 19% (n=16/85, in humans) and 42% (n=26/61, in macaques) 

were sensitive to the non-face categories we used (flowers, fractals, fruits, and cars). Since 

subjects were free to look at any of the images, we had no way of ensuring that they would 

sample uniformly from the different image categories. In order to ensure that the tuning of 

the cells was not confounded by the number of fixations on each category, we carried out a 

control analysis in which we selected cells after equalizing the number of fixations for each 
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image category by subsampling. This revealed similar proportions: 50±3% and 40±2.2% 

of neurons preferred faces of conspecifics, respectively (±s.d. across 100 bootstraps). Thus, 

most primate amygdala fixation-target sensitive neurons responded to faces rather than 

nonsocial object categories, and there were two groups of such neurons: those that increase 

their firing rate whenever fixations are made onto faces of conspecifics, and those that 

increase their firing rate only when looking at faces of heterospecifics (Fig. 3B-E shows the 

average response of all four types of face cells). For clarity, we label each type of face-

sensitive cell with a capital letter to signify the species in which the cell was recorded (H or 

M) and with a lowercase letter to signify the tuning of the cell to human or monkey faces (h 

or m). 
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Figure 3.7: Population analysis and cross-species comparison of fixation-related visual category-

selectivity. (A) Preferred stimulus of all recorded visually selective cells in human (left) and monkey (right) 

amygdala. The largest proportion of neurons responded maximally to faces of conspecifics: 49% (N=42) and 

39% (N=24) of selective neurons in humans and monkeys, respectively. (B-E) Average normalized PSTHs of 

the four groups of face cells we identified (Hh, Mm, Hm, Mh). The middle row (B,C) shows neurons selective 

for conspecifics in humans (left, Hh, N=42) and monkeys (right, Mm, N=24). The bottom row (D,E) shows 

cells selective for heterospecifics in humans (left, Hm, N=27) and monkeys (right, Mm, N=11). Errorbars are 

±s.e.m. across cells. Notation: Hh = human cell selective for human faces; Hm = human cell selective for 

monkey faces; Mm = monkey cell selective for monkey faces; Mh = monkey cell selective for human faces.  
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We next determined whether fixation-target sensitive neurons differentiated between  

multiple categories, i.e., whether they also responded to images from a non-preferred 

category with firing rates that were different from the baseline (Fig. 2C-D, Fig. 3B-E). 

Indeed, some neurons showed a pattern of response that appears optimized to differentiate 

between all of our categories. To quantify this effect, we calculated two metrics for each 

cell: (1) the number of pairs of image categories discriminated by each neuron (i.e. human 

faces vs. monkey faces) and (2) the depth of selectivity (DOS) index (Rainer, Asaad et al. 

1998) commonly used to determine the extent to which visual neurons differentiate 

between stimuli.  

 We found that neurons in the human amygdala differentiated between, on average, 

3.47±0.1  

pairs of categories (out of 6), while neurons in the monkey amygdala differentiated 

between 4.15±0.2 pairs (Fig. 4A-B). Thus, neurons in humans differentiated between 

significantly fewer (p = 0.002, 2-sample KS test) pairs of categories compared to neurons 

in macaques. Similarly, the depth of selectivity (DOS), an index of the narrowness of 

tuning to a specific category, of all human neurons was larger than that of macaque neurons 

(0.54±0.02 vs. 0.43±0.03, p=0.0003, 2-sample KS test, Fig. 4C), but was at the same time 

significantly lower than 1 (p<1e-37, 2-sample KS test). Note that a DOS value of 1 means 

exclusive tuning to one stimulus, but no response to all other stimuli; in contrast, a DOS 

value of 0 implies no preferred tuning. We observed DOS values of 0.18-0.87 in humans 

and 0.11-0.90 in macaques (Fig. 4C-D). DOS values for neurons recorded in humans were 

significantly larger than those for neurons recorded in monkeys (Fig. 4E), a result 

compatible with the sparser response profile over categories as shown in Fig. 4B. While the 

DOS differed between species (see above), it did not differ significantly between cells 

tuned to conspecific and heterospecific faces (1x2 ANOVA, F(1,67)=1.75, p=0.19 and 

F(1,33)=0.52, p=0.47 in humans and monkeys, respectively). We also estimated DOS 

values using fixations (50/50 split) not previously used to select neurons and found that 

DOS values are highly reliable and significantly larger than those of unselected cells (Fig. 



 

 

58 

4C,D, see legends for statistics). Taken together, these observations show three important 

similarities between neurons in the human and monkey amygdalae: both contain fixation-

target sensitive neurons; these neurons show category-specific responses; and the largest 

subset of such neurons responds preferentially to conspecific faces. A difference between 

the species was that human neurons have a sparser response profile over categories.  

 

Figure 3.8: Monkey and human amygdala cells differ in their depth-of-selectivity. (A) Single-cell ROC 

analysis example. The monkey cell shown (identical to that in Fig. 2D) responded only to images of 

conspecifics, allowing it to discriminate 3 pairs of categories (dashed colored lines). (B) Distribution of the 

number of significant contrasts (see A) for all visually tuned neurons in humans (black) and monkeys (gray). 

Cells recorded in monkeys differentiated significantly more contrasts (4.15±0.2) than human cells (3.47±0.1, 

p<0.002, 2-sample KS test). (C,D) Population summary. Comparison of depth-of-selectivity (DOS) values for 

tuned and untuned cells in human (C) and monkey (D). In both species, the DOS values are significantly greater 

in the tuned population (p<1e-16, in humans and p<5e-5 in monkeys, 2-sample KS test). For tuned cells, DOS 

values were calculated for a subset of fixations that were not used in the selection of that cell (i.e. to determine 

its tuning). (E) Depth-of-selectivity (DOS) for all visually tuned neurons in humans (black) and monkeys (gray). 

Human cells had significantly larger DOS values (0.51±0.02 vs. 0.43±0.03, p<0.0003, 2-sample KS-test).  

 

 

3.3.4 Interspecies comparison of response latencies of face-selective neurons 

We next compared the latency of the fixation-target sensitive neurons between species. We 

estimated the response latency for each cell to test whether the time at which the modulation 

of firing rate was first detectable systematically co-varied as a function of species and 
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stimulus type. We first quantified latency differences using a single-neuron moving-

window regression model to estimate the amount of variance in the firing rate that can be 

explained at any point of time by the visual category of the fixated stimulus (Fig. 5A-D, 1x4 

ANOVA, moving window of 250ms, step size = 8ms). We then estimated the effect size ω2 

as a function of time separately for each neuron to determine the point of time, relative to 

fixation onset, at which ω2 first became significant (Fig. 5A-D). We found that the onset of 

the fixation-sensitive neurons in macaques was, on average, 76 ms earlier than in humans 

(101±7.5 ms versus 177±8.7 ms, p=5e-8, 2-sample KS test, Fig. 5D). Also, the proportion of 

neurons that became visually selective increased earlier in macaques compared to humans 

(Fig. 5E), and the point of time at which neurons provided the most information (peak of ω2) 

was 113 ms earlier in macaques compared to humans (209±8.9 ms vs. 322±7.5 ms, p<1e-14, 

2-sample KS test, Fig. 5F). Together, this shows that, regardless of stimulus selectivity, cells 

in the human amygdala respond approximately 100ms later relative to fixation onset 

compared to cells recorded in the macaque amygdala. 
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Figure 3.9: Interspecies comparison of response latency relative to fixation onset.  (A,B) Effect size (Ω2) 

for all visually selective human (A) and monkey cells (B) as a function of time and sorted by earliest point of 

significance (only cells that are significant at the p<0.01 level are shown). Each cell’s effect size is normalized 

to its peak. (C) Mean normalized effect size for all visually selective cells recorded in humans (N=85) and 

monkeys (N=61). (D) Cumulative distribution of the onset latency computed using the effect size (see A-B). 

The mean onset latency was significantly earlier in monkeys (101±7.5 ms) compared to humans (177±8.7 ms, 

p<5e-8, two-sample KS test). (E) Proportion of all recorded cells that were sensitive to the identity of the fixated 

stimulus as a function of time (bin size 250ms, step size 8ms). Shading shows the 99th percentile of the bootstrap 

distribution. (F) Cumulative distribution of the time from fixation onset until peak effect size. Peak effect size 

was reached significantly earlier in monkeys compared to humans (209±8.9 ms vs. 322±7.5 ms, p<1e-14, 2-

sample KS test).  
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We next compared, within each species, whether there were latency differences between 

cells tuned for different stimuli. We used two methods (Fig. 6) to measure the response 

latency difference between the two most prominent cell categories that we found: face cells 

for conspecific and heterospecific faces (Hh versus Hm in humans and Mm versus. Mh in 

macaques). Using our selection criteria, we computed the number of cells that would be tuned 

for each category as we shifted the point of analysis from 500ms before the onset of fixation, 

until 1000ms after the onset of fixation (step size = 8ms). Our measure of latency was the 

point in time where the proportion of cells tuned exceeded that expected by chance for the 

first time (see Methods). Using this approach, we found that cells that were selective for 

conspecific faces responded significantly earlier than cells that were selective for 

heterospecific faces in both species (Δhuman=70ms, Δmonkey=90ms, Fig. 6 A,B). In addition, 

we also confirmed this result using a moving-window ROC analysis and found a similar 

difference (Δhuman=62ms, Δmonkey=38ms, Fig. 6 C, D). Together, this shows that information 

about conspecific faces is available at an earlier point of time relative to information about 

faces of other species in both humans and monkeys.  
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Figure 3.10: Face cells responded earlier and more strongly to conspecific compared to heterospecific 

faces. (A) Proportion of all recorded cells in humans (out of N=422) selective for fixations on conspecific (Hh, 

yellow) and heterospecific faces (Hm, purple). Shading indicates the 99% confidence interval. (B) Proportion 

of all recorded cells in monkeys (out of N=195) selective for fixations on conspecific (Mm, purple) and 

heterospecific (Mh, yellow) faces. (C,D) Average AUC as a function of time. Dotted colored lines indicate the 

99% confidence interval.  

 

 

3.3.5 Category-preference of fixation-sensitive neurons during covert attention 

In this experiment, we asked whether fixation-target sensitive cells retain their tuning for 

peripherally presented stimuli when these are attended but not fixated. In a separate 

experiment, we recorded 119 cells (6 human subjects, 8 sessions) during a covert attention 

task with enforced central fixation. Images were identical to those used in the free-viewing 

task except that only a single image was shown at one (randomized) array location in 

isolation. Subjects maintained fixation at the center of the screen while a single stimulus was 

shown in the periphery (Fig. 4.1A). We found that of all the tuned cells in the covert condition 

(n=31/119, 26%), 25/31 of neurons were tuned to either human or monkey faces (1x4 

ANOVA, n=16, Fig. 4.1B,E; n= 9, Fig. 4.1C,F respectively). For a subset (n=10) of these 
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face-selective neurons, we also recorded responses during the free-viewing task. Of these 

10 cells, all maintained their face selectivity across the two task conditions and a comparison 

of all cells recorded in both tasks (n=31) revealed a high probability for cells to either be 

tuned in both tasks or neither tasks (p=0.004, Odds Ratio: 22.8, Fisher’s test of association). 

Also, the proportion of face selective cells was not significantly different across the two tasks 

(25/31 and 69/85 in covert and free viewing task respectively, 𝜒2 = 0.0042, p = 0.94). 

Notably, cells responded significantly earlier in the free-viewing condition compared to the 

cells recorded in the covert attention condition (Δpeak = 191ms, Fig. 4.1D). This is expected 

because during the covert attention condition, the location of the stimulus was unpredictable, 

and thus deployment of covert attention could only be initiated following stimulus onset. In 

addition, the depth of selectivity was significantly larger in the covert compared to the free-

viewing condition (p<0.01 for all n=422 cells in free viewing and n=119 in covert condition, 

p<0.05 for all n=85 tuned cells in free viewing and n=31 cells in covert condition, 2-sample 

KS test). Together, this data supports the hypothesis that amygdala neurons selective for 

faces and other complex visual objects are responsive to the currently attended visual 

stimulus, both during free viewing as well as during covert attention. 
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Figure 3.11: Face-selective amygdala neurons recorded in humans during covert tasks respond to 

covertly attended faces. (A) Subjects fixated at the center of the screen and indicated by button press whether 

a peripheral image shown showed a car. Shown is a single example trial, with eye-tracking data (blue) indicating 

that subjects maintained fixation. (B-C) Example face-selective neurons with a response selective to the identity 

of the peripheral stimulus. t=0 is stimulus onset. (D) Comparison of response of face cells in covert and free-

viewing sessions for the subset of cells which were recorded in both tasks (4/7 sessions, n=10). The average 

effect size is shown fixation-and trial onset aligned. (E) PSTH of all human face-selective neurons (Hh, n=16) 

during the fixation-enforced covert attention condition. (F) PSTH of all monkey face-selective neurons (Hm, 

n=9) during the fixation-enforced covert attention condition. (G,H) Population-level comparison between the 

covert and free-viewing tasks for all recorded (G) and only visually tuned (H) cells. (G) DOS values were 

significantly larger in the covert attention task compared to the free-viewing task (p<0.01, 2-sample KS test). 

(H) DOS values were selectivity higher in the covert attention task (p<0.05, 2-sample KS test). 
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3.4 Discussion 

Our results reveal that amygdala activity during active exploration of complex scenes is 

strongly modulated by the currently fixated stimulus. In contrast, previous studies in the 

amygdala of humans (Fried, MacDonald et al. 1997, Kreiman, Koch et al. 2000, Rutishauser, 

Tudusciuc et al. 2011) and macaques (Rolls 1984, Leonard, Rolls et al. 1985, Desimone 

1991, Nakamura, Mikami et al. 1992, Gothard, Battaglia et al. 2007) relied on isolated single 

objects and were thus unable to investigate whether responses were modulated by gaze or 

not. Indeed, the assumption so far has been that because inferotemporal cortex neurons have 

large receptive fields for images shown in isolation (Tanaka 1993, Tovee, Rolls et al. 1994), 

the response of amygdala neurons should not depend on fixation location. However, here we 

find that the effective receptive field is relatively small in our task. This finding is similar to 

the response properties of “eye cells” in the macaque amygdala, which respond only when a 

monkey fixates on the eyes of another monkey (Mosher, Zimmerman et al. 2014).  

 

Little is known about the effective receptive field sizes and their dependence on stimulus  

density for human and macaque amygdala neurons. In higher visual cortical areas in 

macaques, receptive fields encompass the entire hemifield (Gross, Bender et al. 1969, 

Boussaoud, Desimone et al. 1991, Barraclough and Perrett 2011). At the same time, many 

such neurons have heightened sensitivity to information present at the fovea (Moran and 

Desimone 1985, Rolls, Aggelopoulos et al. 2003). Once animals are allowed to actively 

explore complex visual scenes, however, receptive fields of neurons in macaque TE can 

shrink considerably (Sheinberg and Logothetis 2001, Rolls, Aggelopoulos et al. 2003). While 

it is possible that neurons in the amygdala inherit some of their properties from the same 

higher visual cortical areas (Amaral, Price et al. 1992, Rolls, Aggelopoulos et al. 2003, 

Barraclough and Perrett 2011), the significantly increased response latencies and complex 

selectivity changes we show make it unlikely that the responses we document are simply 

representing cortical input.  

 

Our results show that the fixation-dependent responses were likely an effect of attention. This 

is because covert attention produced the same conclusions, even in some of the very same 
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cells.  The strength of this result is limited to humans, because we did not perform the same 

task in monkeys due to the difficulty of training monkeys accustomed to free viewing on a 

covert attention task.  An additional difference between covert and overt attention is that the 

sharpness of tuning (sparsity) was greater (more sparse) during covert compared to overt 

attention.  A plausible explanation for this result is that the overt attention task still permits 

some influence from the other concurrently presented (unattended) images. In contrast, this 

source of competition is removed in the covert task (since only a single stimulus was 

presented).  Indeed, unattended task-irrelevant peripheral faces can impair performance in a 

variety of settings (Landman, Sharma et al. 2014), and it is possible that the reduction of 

selectivity we observed here is a reason for this effect.   

   

3.4.1 Role of face cells in social behavior 

Our findings underscore the importance of using more naturalistic stimuli with inherent 

biological significance, in conjunction with behavioral protocols that better approximate 

natural vision.  The finding that face-selective neural responses in the amygdala are strongly 

related to visual attention is ecologically important, because, in real social situations, 

directing one’s gaze towards or away from faces and parts thereof (in particular the eyes) is 

a crucial social signal and sets the affective tone of the social interaction (Emery 2000). The 

amygdala is crucially involved in this process (Adolphs, Gosselin et al. 2005, Rutishauser, 

Mamelak et al. 2015), and impairments in directing gaze to faces are a prominent deficit in 

autism that is thought to be partially due to amygdala dysfunction (Baron-Cohen, Ring et al. 

2000, Rutishauser, Tudusciuc et al. 2013). While a preference for features, such as the eyes, 

can be explained by perceptual properties (Ohayon, Freiwald et al. 2012), the conspecific-

preference we showed cannot be attributed to low-level stimulus properties. Together, this 

indicates that face-sensitive cells in the amygdala might report not only the presence, but also 

the relative salience of stimuli. No such observations have been reported for cortical face 

cells, making it possible that this species-specific face signal might be computed locally 

within the amygdala. 
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3.4.2 Information represented by face cells 

Face cells also responded to several other categories, either by a decrease or by a more 

moderate increase in firing rate relative to baseline. Indeed, both the number of pairs of 

categories that a cell’s response differentiates and depth of selectivity indicated that neurons 

in both species differentiated between more pairs than would be expected by a sparse and 

specific response to just one category. Notably, cells in macaques differentiated between 

more pairs and had lower DOS values, indicating that macaque cells were less specifically 

tuned. Together, this suggests that primate amygdala neurons, including face cells, carry 

information about several categories, but that human neurons are more selective. Category 

selectivity is a prominent feature of visually responsive neurons in several areas of the human 

(Fried, MacDonald et al. 1997, Kreiman, Koch et al. 2000) and macaque (Bruce, Desimone 

et al. 1981, Perrett, Rolls et al. 1982, Gothard, Battaglia et al. 2007) temporal lobes. However, 

the amygdala of both species also contains more specific cells, such as “concept cells” that 

only respond to the face of a particular individual (Quiroga, Reddy et al. 2005), cells that 

signal certain emotions or facial expression (Gothard, Battaglia et al. 2007), and cells that 

signal the familiarity of stimuli (Rutishauser, Ye et al. 2015). It remains to be investigated 

whether these cells are similarly sensitive to fixation location. 

 

3.4.3 Latency Differences 

We found that, in both species, face-cells responded significantly earlier to faces of 

conspecifics relative to heterospecific faces. Behaviorally, both macaques and humans 

preferentially process faces of conspecifics more efficiently and are better at differentiating 

individuals of the same species (Pascalis and Bachevalier 1998, Dufour, Pascalis et al. 2006). 

In macaques, face-sensitive cells in the inferotemporal cortex differentiate between human 

and macaque faces (Sigala, Logothetis et al. 2011) and respond earlier to human compared 

to non-primate animal faces (Kiani, Esteky et al. 2005). The same neurons, however, showed 

no latency difference when comparing humans versus macaques (Kiani, Esteky et al. 2005). 

A new hypothesis motivated by our result is that the human versus macaque same-species 
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latency advantage is first visible in the amygdala as the result of the higher social 

significance attributed by the amygdala to conspecific faces.  

  

Human single-neuron onset latencies are considerably slower compared to those of macaques 

(Leonard, Rolls et al. 1985, Mormann, Kornblith et al. 2008, Rutishauser, Mamelak et al. 

2015) in many brain areas, including the amygdala (Mormann, Kornblith et al. 2008). 

However, inter-species comparisons of latencies are challenging because of variable 

experimental conditions, tasks, and stimuli. In particular, previous work in humans has 

argued that because receptive fields are large, control for eye movements is not necessary 

(Mormann, Kornblith et al. 2008). Here, we showed that this assumption is not valid. Instead, 

we performed a rigorous comparison of response latencies by comparing the fixation-aligned 

responses of face-cells tuned to conspecifics. This ensured that in both species, we relied on 

the earliest and strongest known amygdala response. With this approach, we determined that 

human amygdala neurons had response latencies that were on average ~100ms longer than 

those in macaques. Thus, our work shows that this frequently observed inter-species 

difference (Mormann, Kornblith et al. 2008) cannot be explained by methodological 

differences. This raises the important question of whether this latency difference is already 

present in higher visual areas or whether it first emerges in areas of the medial temporal lobe. 

This will require human single-neuron latency estimates in higher cortical visual areas, which 

have not been performed to date. Notably, recordings from early visual areas V2/V3 in 

humans indicate that the response latencies in these areas do not differ between monkeys and 

humans (Self, Peters et al. 2016). This raises the possibility that local processing in higher 

areas specific to humans is responsible for this substantial increase in response latency.  

 

3.5 Conclusions 

Faces are stimuli of high significance for primates, and the brains of several species contain 

multiple areas connected in a network specialized for face processing (Desimone 1991, 

Emery 2000, Tsao, Freiwald et al. 2006, Tsao, Moeller et al. 2008). Exploring the division 

of labor among the different nodes in this network has been a fruitful approach to capturing 

more general, circuit-level principles of neural computation.  Indeed, a detailed analysis of 
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face cells throughout the brain revealed a distributed but interconnected system of cortical 

face patches specialized for different components of face processing (Kanwisher and Yovel 

2006, Tsao, Moeller et al. 2008). However, most of what is known about this network has 

been derived exclusively from work in macaques, even though it is often assumed that the 

properties of this system are the same in humans (Barraclough and Perrett 2011). Here, we 

present critical, direct evidence for significant differences and commonalities. It is likely that 

the face-responsive properties of amygdala neurons arise, at least in part, through convergent 

inputs from several cortical areas where face cells have been identified. However, the face 

cells in the amygdala do not merely recapitulate the response properties of face cells in 

cortical areas, but show pronounced effects of species-specific relevance, and of attention. 

These findings revise our view of the amygdala’s contribution to face processing from that 

of an automatic and broad detector, to that of a highly selective and attention-dependent filter. 

These effects likely constitute an essential ingredient for guiding processing in downstream 

regions, and ultimately for generating social behavior in real-world settings where many 

stimuli constantly compete for attention.   
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Methods 

 

Human electrophysiology  

 

Human subjects were patients being evaluated for surgical treatment of drug-resistant 

epilepsy who provided informed consent and volunteered for this study. Monocular gaze 

position was monitored at 500Hz (EyeLink 1000, SR Research). The institutional review 

boards of Cedars-Sinai Medical Center and the California Institute of Technology approved 

all protocols. We recorded bilaterally from the amygdala using microwires embedded in 

macroelectrodes. From each microwire, we recorded the broadband 0.1-9000Hz continuous 

extracellular signal with a sampling rate of 32kHz (Neuralynx Inc). One microwire on each 

macroelectrode served as a local reference (bi-polar recording). All included patients had 

clearly distinguishable spiking activity on at least one electrode in at least one amygdala. 

 

 

Monkey electrophysiology  

 

A custom-built 7-channel Eckhorn drive (Thomas Recording, Germany) advanced 7 

microelectrodes (1-2 MΩ) to the recording targets in the right amygdala.  The reconstructed 

anatomical location of each neuron recorded relative to a generic coronal section through 

the mid-amygdala is shown in Figure 1. Single unit activity was pre-amplified via a built-

in head stage with 20 gain (Thomas Recording, Giessen, Germany), amplified and filtered 

(1,000 gain; 600-6,000 Hz filter, Lynx-8, Neuralynx, Bozeman, MT, USA), and sampled 

continuously at 40 kHz (Power 1401, Cambridge Electronic Design [CED], Cambridge, 

UK). Eye-position was monitored using ISCAN infrared eye tracker. Monkeys were seated 

in a primate chair 57 cm from a monitor and before each recording session began, they 

underwent a 9-point eye-position calibration with +1 dva resolution.  The stimuli were 

displayed and the monkeys’ behavior was monitored with the Presentation software 

(Neurobehavioral systems, Albany, CA, USA). 
  

Behavioral task: free viewing 

 

Monkeys were trained to fixate on a white cross.  If the monkeys maintained gaze on the 

fixation spot for at least 100ms, a circular array of images subtending 23.4 x 23.4 dva was 

presented.  Monkeys were allowed to freely scan the scene for 3-4 s, but were required to 

keep their gaze within the boundaries of the array for at least 3 s. Monkeys received a 0.5–1 

ml juice reward followed by a 3s inter-trial interval if this condition was met. If the monkey 

failed to fixate, or looked outside the boundary of the image, the trial was terminated, reward 

was withheld, and the array was repeated. Humans were instructed to freely observe the 

arrays for a fixed amount of time (4s). After each array, a blank screen with a fixation cross 

was displayed for 1s.  

 

 

 

Behavioral task: covert attention 
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This experiment was carried out only in humans.  Human subjects were instructed to 

maintain fixation at the center of the screen. The same stimuli were used. Stimuli were 

displayed in the periphery (6 DVA) in one of eight possible locations (Fig 7A). Subjects were 

instructed to maintain fixation and answer a yes/no question about the image (“does the 

image contain a car, yes or no”) with a button press. Images stayed on the screen until an 

answer was provided (with a time-out of 5s). In each session, subjects viewed 320 images 

chosen equally from the four stimulus categories (monkey face, human face, fruits, and cars).  

 

Spike sorting and single-neuron analysis  

 

The raw signal was filtered with a zero-phase lag filter in the 300-3000Hz band and spikes 

were detected and sorted using a semi-automated template-matching algorithm (Rutishauser, 

Schuman et al. 2006, Rutishauser, Cerf et al. 2014). In humans, channels with interictal 

epileptic spikes in the LFP were excluded. We used the same processing pipeline to process 

the monkey and human recordings (see supplementary methods). All PSTH diagrams were 

computed using a 250ms window with a step-size of 7.8ms. No smoothing was applied.  

 

Localization of electrodes (humans) 

 

Electrodes were localized based on pre-and post-operative T1 structural MRIs and a high-

resolution amygdala atlas with identified sub-nuclei (Tyszka and Pauli 2016). Only 

electrodes that could be localized to the amygdala were included. We used the following 

processing pipeline to transform the post-operative MRI into the same space as the Atlas. 

We extracted the brains from the pre-and post-operative T1 scans (Segonne, Dale et al. 

2004) and aligned the post-operative to the pre-operative scan with Freesurfer’s 

mri_robust_register (Reuter, Rosas et al. 2010). We then computed a forward mapping of 

the pre-operative scan to the CIT168 template brain (Tyszka and Pauli 2016) using a 

concatenation of an affine transformation followed by a symmetric image normalization 

(SyN) diffeomorphic transform computed by the ANTs suite of programs (Avants, Duda 

et al. 2008). This resulted in a post-operative scan overlayed on the MNI152-registered 

version of the CIT168 template brain (Tyszka and Pauli 2016). We then used Freesurfer’s 

freeview program to mark the electrodes as point sets to determine in which amygdala 

nucleus the tips of the microwires were located. 

 

Processing of human eye-tracking data 

 

Calibration was performed using the built-in 9-point calibration grid and was only used  

if validation resulted in a measurement error of <1 dva (average validation error was 0.62 

dva). We used the Eyelink system which automatically annotates fixations and saccades from 

the continuous stream of data using a motion, velocity, and acceleration threshold (default 

thresholds). In order to get reliable estimates of tuning and latency, we used stringent 

selection criteria to exclude fixations from analysis that were too short or those who landed 

on the same image as the previous fixation (Fig S3, “conservative criteria”). 
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Using look-onset instead of fixations 

 

In the monkey, fixations and saccades were annotated using Cluster Fix (Konig and Buffalo 

2014). In the human subjects, we used the annotation provided by the Eyelink system. 

However, to bypass potential differences in the two annotation approaches, we used the “look 

onset” instead of fixation onset for all analysis in this paper. The “look onset” is the point of 

time at which the first data point fell onto a particular image (Fig 3.11).  This way, we pooled 

all successive fixations that fell on the same stimulus into a single "look" (Fig 3.11B). While 

the look duration is thus typically longer than fixation duration (Fig 3.11E-F), our analysis 

depends only on the onset and is thus insensitive to this difference. Aligning with look-onset 

instead of fixation onset resulted in qualitatively similar neural responses (Fig 3.11C-D). At 

the same time, using look-onsets instead of fixation onsets has several advantages, including 

that it (1) is insensitive to idiosyncrasies that might arise from the two separate annotation 

methods in the two species, (2) provides a more conservative estimate of the neural response 

latency, and (3) ignores fine structure in the neural response that may be driven by successive 

fixations on the same stimulus. Throughout the manuscript, fixation onset refers to look onset 

unless mentioned otherwise (i.e. Fig 3.11). 
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Figure 3.12:  Comparison of fixation onset and look onset methods, related to Figure 1.  (A) Example scan 

path from a single trial from a human subject. See Fig 3.1 for notation. (B) Summary of eye-tracking data into 

discrete periods of "looks" (yellow squares). Successive fixations that fall on the same image are pooled together 

into a single "look". The y-axis denotes the location of the look in the array as indicated in (A). (C, D) 

Comparison of a single-cell response, aligned to fixation onset (C) and look onset (D). Note the virtually 

identical response of the cell using the two criteria. For each, Raster and PSTH are shown. (E) Cumulative 

distribution for fixation (red) and look (blue) duration. Look duration was longer because of the pooling of 

several fixations into one look. (F) Same as (E), but for monkeys.   

Selection of units  

 

We determined whether a cell’s response is sensitive to the identity of fixated stimuli using 

a 1x4 ANOVA of the spike counts during a 250ms-long time window centered on the point 

of time at which MI was maximal for each species (t=332ms and t=229ms, respectively). We 

excluded successive fixations that fall on the same category (Fig S3C, conservative criteria). 

To achieve this, we included only fixations that were not preceded or succeeded by 

fixation(s) on an image of the same category for at least 100ms. If the ANOVA was 

significant (p<0.05), we determined the category with the largest mean response in the same 

time window. This category was used as the preferred category of the cell. 
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Single-neuron ROC analysis  

 

Neuronal ROCs were constructed based on the spike counts in a 250ms long window,  

centered at the peak of the mutual information. We varied the detection threshold between 

the minimal and maximal spike count observed, linearly spaced in steps of 1 spike. The AUC 

of the ROC was calculated by integrating the area under the ROC curve (trapezoid rule). The 

AUC value is an unbiased estimate for the sensitivity of an ideal observer that counts spikes 

and makes a binary decision (present or absent) based on whether the number of spikes is 

above or below a threshold. We generated a bootstrap distribution of the AUC values by 

randomly scrambling the image labels and computing the AUC values 1000 times. All 

statistical tests were based on the 99% confidence interval of this bootstrap distribution.  

 

Mutual information (MI) 

 

In order to determine the post-fixation window of analysis in monkeys and humans, we  

computed the mutual information between the spike counts (S) and the image category (C) 

using: 𝐼(𝑆, 𝐶) =  ∑ 𝑃(𝑆, 𝐶) ∙ 𝑙𝑜𝑔2
𝑃(𝑆|𝐶)

𝑃(𝑆)𝑆,𝐶 , where C is a discrete variable that can take 1 of 

4 possible values, and S is also a discrete variable that can take 1 of N possible values, 

depending on the maximum firing rate of the cell. The mutual information was computed for 

each cell and at each point along the PSTH (from -0.5s to 1s around the fixation). The mutual 

information for each cell was then averaged to produce the mean trace. The location of the 

center of the fixed window for all follow-up analysis was set to the point of time at which 

MI was maximal (see Fig 3.6).   

 

Estimation of latency 

 

We relied on three different methods for latency estimation. (1) In the first case (Figure 5A),  

we compute for each cell the bootstrap distribution of the effect size, by scrambling the labels 

on each fixation. We then use the point where the cell’s effect size (Ω2) crosses the 99% 

confidence interval of the bootstrap distribution as our estimate of onset latency. (2) In a 

second method (Figure 6A, 6B), we systematically move our analysis window from 500ms 

before fixation to 1000ms after fixation (in increments of 8ms) and use our selection criteria 

to count the number of tuned cells. We also compute the bootstrap distribution of the number 

of tuned cells, by scrambling the labels on each fixation. We use the point where the number 

of tuned cells crosses the 99% confidence interval of the bootstrap distribution as our 

estimate of latency. Note that given our selection criteria (p<0.05), the chance level for tuning 

is 1/20. The chance level for a particular category (ex. to be tuned for human faces) is smaller, 

1/80.  (3) The third method (Figure 6C, 6D) relies on the average AUC, computed as the 

average of the individual cell AUCs for each category. We use the point where the average 

AUC cross the 99% confidence interval as our estimate of latency.  

 

Behavioral Controls 

  



 

 

75 

We conducted a separate control experiment in 14 healthy individuals, in order to address 

the role that task instructions played in the way that subjects look at the images on the array. 

These control participants were randomly assigned to either the memory or free-viewing 

group. The memory group (n=7) was explicitly told to remember the images presented in the 

arrays. The free-viewing group (n =7) on the other hand, was not told about the memory 

component of the task and was simply instructed to look at the images on the screen. All 

subjects inspected the same exact arrays of images (n=52 trials), populated with images of 

fruits, cars, monkey, and human faces. The instructions were intended to mimic the task 

“instructions” that our subjects and the monkeys received.  We compared the behavior 

between these two control groups as well as our subjects across 4 different metrics (Figure 

S5): (1) average looking time on an image in the array; (2) average number of images visited 

in a trial; (3) the proportion of first fixations that landed on a human face; and (4) 

performance on the recognition trials. 

 

 

Assessment of selectivity 

  

We used ROC analysis between all 6 possible pairs of stimulus categories to assess the 

number of pairwise comparisons that each neuron was able to differentiate. For each of the 

6 possible comparisons, we computed the moving window AUC and compared this to the 

bootstrap distribution, which was generated by shuffling the fixation labels and computing 

the AUC 1000 times. In addition, we quantified the depth of selectivity DOS of each neuron 

by 𝐷𝑂𝑆𝑖 =
𝑛−

∑ 𝑅𝑗
𝑛
𝑗=1

𝑅𝑚𝑎𝑥

𝑛−1
, where n is the number of categories (n=4), 𝑅𝑗 is the mean response to 

category j, and 𝑅𝑚𝑎𝑥 is the maximal mean response. D varies from 0 to 1, with 0 indicating 

an equal response to all categories and 1 exclusive response to one but none of the other 

categories. Thus, a DOS value of 1 is equal to maximal sparseness. 

 

Regression analysis 

  

We used the regression model 𝑆(𝑡) =  𝛼0(𝑡) + 𝐶 to estimate whether the firing rate S was 

significantly related to the factor category (C, 1-4). Spike counts S(t) were computed for a 

200ms window that was moved in steps of 50ms. We quantified the effect size of the factor 

category using ω2, which is less biased than percentage variance explained (Olejnik and 

Algina 2003). Models were fit and effect sizes calculated using the effect size toolbox 

functions mes1way and mes2way (Hentschke and Stuttgen 2011). The null distribution was 

estimated by randomly scrambling the fixation labels and fitting the same model 1000 times. 

Estimates of latency were based on the first time the actual value was located outside of the 

99% confidence interval. 
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Chapter IV: Distinct Neuronal Populations Signal Choice for Recognition Memory 

and Categorization-based decisions in the Human Medial Frontal Cortex 

 

4.1 Overview 

Decision-making relies on the accumulation of evidence in favor of a particular choice 

(Gold and Shadlen 2007). While this process is relatively well-understood for perceptual 

decisions, little is known about decisions that rely on internal representations such as 

memories. Here, we investigated the neural mechanisms of decisions that depend on two 

types of internal representations: a recognition memory and a visual categorization 

decision. Across 23 sessions in 9 patients, we recorded simultaneously from single neurons 

in the human medial-frontal cortex (MFC, n = 399) and medial temporal lobe (MTL, n = 

360). We show that (1) there are distinct populations of cells in the MFC encoding 

recognition memory (49/399) or categorization-based choices (38/399); (2) visually-

selective MTL cells are insensitive to such task conditions; and (3) theta-band spike-field 

coherence between field potentials in the MTL and action potentials in the MFC are 

enhanced during the memory compared to visual categorization decisions. This suggests 

that inter-areal communication between MTL and MFC may be facilitated selectively in 

tasks that rely on recognition memory-based information.  These results suggest that 

memory representations are conveyed from the MTL to the MFC, and that specific neurons 

within the MFC represent abstract action-independent choices.    

 

4.2. Introduction 

There are few things more pervasive in everyday life than having to make decisions. Some 

decisions are effortful and require a lot of deliberation (“Which college should I go to?”) 

while others are trivial to make (“Is this portion of food bigger than that one?”). Most of 

what we know about the cellular mechanisms facilitating decision-making comes from the 

domain of perceptual decisions (see (Gold and Shadlen 2007) for a review). Despite being 

domain specific (i.e. perceptual), these studies have collectively sketched a conceptual 

framework for what constitutes a decision process. A decision process must include a 
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representation of the task-relevant information, a choice space (“yes” versus “no” or 

potentially more options), and in between, a way of accumulating evidence in favor of a 

particular decision (i.e. using a decision variable). There might also be additional 

facilitating processes; on the input end, task and sensory data would need to be processed 

into task-relevant information, and on the output end, there could be additional processes 

that map a choice onto a particular action (e.g. a button press or saccade). In this paper, we 

adopt a similar conceptual framework to study decisions that rely on internal 

representations of image category and recognition memory. We operationalized these two 

conditions by presenting an image and asking one of two different types of questions: “Is 

this an image of a car” and “Have you seen this image before?” The decision processes we 

study here are different from perceptual decisions in two important ways. The first has to 

do with the nature of the stimuli. In most perceptual decision tasks, the stimuli are dynamic 

whereas the stimuli we use here (i.e. a single static image) reveal all the available 

information at once. Secondly, in perceptual decisions, sensory processes give rise to 

momentary evidence, which can be accumulated in a decision variable. In the decision 

processes we study in this paper, the stimulus itself does not contain all the relevant 

information, and the moment-by-moment evidence is computed based on an association or 

memory retrieval process (Shadlen and Shohamy 2016). The key question that we address 

in this paper is whether we can observe evidence of this decision process (which relies on 

internal variables) at the level of single cells. With our recordings, we target several brain 

areas we believe are good candidates for observing single cell evidence for such a decision 

process. Given the memory component of our task, a prime candidate for representing the 

necessary evidence for such a decision is the medial temporal lobe. Specifically, we target 

two areas in the temporal lobe, the hippocampus (mid-body to anterior hippocampus) and 

the amygdala. It has been shown in human single-unit recordings, that both of these areas 

contain novelty-responsive cells (Rutishauser, Ye et al. 2015). Furthermore, given the time 

scales of the visual memories we are probing (on the order of minutes), we can expect them 

to be strongly MTL dependent (Squire 1992, Jeneson and Squire 2012). Given these 

findings, we believe that in our task, the MTL contains the signals that are precursors of 

choice. This speaks to the recognition memory component of the task. In a separate 



 

 

84 

condition, we also ask about the broad visual category of the image (e.g. “Is this a human 

face?”). Unlike the recognition memory questions, we do not believe this is MTL 

dependent. Even though there is a strong category signal in cells within the MTL, their 

response latency (Rutishauser, Ye et al. 2015) is not consistent with the decision times we 

observed here on the visual categorization trials.  

In terms of the representation of task–demands and the necessary decision variables, a 

likely candidate is the medial frontal cortex, which has been implicated in both memory 

and decision-making (see (Euston, Gruber et al. 2012) for review1). Here we target two 

areas in the MFC, namely the dorsal anterior cingulate cortex (dACC) and pre-

supplementary motor area (pre-SMA) in order to look for representations of task and 

decision variables.  Evidence of representation of decisions variables from the medial 

frontal cortex of humans comes both from fMRI studies (Wunderlich, Rangel et al. 2009) 

as well as single-units recordings (Mukamel, Ekstrom et al. 2010).  

One key component of this paper is to demonstrate functional interactions between these 

two areas (i.e. hippocampus/amygdala, pre-SMA/dACC). There is a plethora of anatomical 

and electrophysiological studies, primarily in rats, that demonstrate the existence of a 

monosynaptic pathway from the hippocampus to the medial pre-frontal cortex (Swanson 

1981, Siapas, Lubenov et al. 2005). These functional interactions are also of particular 

interest since animal studies have shown that they are severely impaired in clinical 

conditions such as schizophrenia (Sigurdsson, Stark et al. 2010).  

Given this past work, our hypotheses in this paper are four-fold: (1) representations of 

decision variables are present exclusively in the medial frontal cortical cells; (2) these 

representations are modulated by task demands; (3) MTL representations are not sensitive 

to task demands; and (4) the interaction between the two areas is mediated by theta-band 

phase-locking MFC cells and hippocampal local field potentials.   

 

                                                 
1 The authors focus primarily on medial pre-frontal cortex whereas most of our electrodes are a little more posterior (dACC and 

pre-SMA). 
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4.3 Results 

 

4.3.1 Task and Behavior 

Subjects were shown single images of objects chosen from 4 visual categories (cars, fruits, 

human and monkey faces). For each image, subjects were asked to answer a single question. 

The question was either: “Have you seen this image before?” or, “Is this an image of a fruit?” 

The first question required access to recognition memory, whereas the second requires access 

to high-level visual representations to perform categorization. Subjects gave yes/no 

responses with a button press or a saccade (Figure 4.1A). Subjects were not given any 

feedback until the end of the experiment. Except when responding with saccades, they were 

asked to maintain fixation on the image. Subjects fixated well, as measured by the number 

of eye-tracking data points that fell within the boundary of the image during a trial (94 ± 

1.7%, see Figure 4.1C for example session, hand trials are shown in the left panel and eye 

trials in the right panel). Accuracy was higher on the categorization trials (97.8 ± 0.6%) 

compared to the memory trials (72.7 ± 1.4%). This condition difference was also evident in 

the decision times, with response time on memory trials being significantly slower (~300ms) 

than categorization trials (Figure 4.1F, 1.24s ± 0.02, and 0.94s ± 0.03 respectively, p<1e-22, 

2-sample t-test). Performance on the memory task was a function of image category, with 

the performance being lowest for images of monkeys and cars, and higher for human faces 

and images of fruits (Figure 4.1H; pairwise t-tests, monkey-car, 1.43e-7; car-human, 7.06e-

8; human-fruits, 0.037). This category separation was also evident in the ROC analysis of 

the behavior. Subjects generated fewer false positives for images of fruits and human faces 

than they did for cars and monkeys (see Figure 4.1 I, J; p = 1.45e-8, paired t-test). When 

asked about strategies for remembering the items in the different image categories, subjects 

consistently mentioned the fact that images of fruits could be named (ex. “strawberry”) as 

one of the reasons why they thought the fruits were easier to remember. As expected, the 

subjects’ performance improved as a function of time, demonstrating incremental learning 

of the repeated stimuli (Figure 4.1G, p =3.9e-49, mixed effects logistic regression). 

Performance on the visual categorization trials, in contrast, did not change as a function of 

time, demonstrating that learning was not required to answer this question. We also observed 
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differences in reaction time within condition, between the two different responses (i.e. 

“yes” and “no”). In the memory condition, subjects were significantly slower at saying “no” 

than “yes” (Figure 4.2 A). This is a common pattern in recognition memory tasks, and thus 

shows that subjects utilize recognition memory (Stern and Hasselmo 2009) .  In contrast, in 

the visual categorization condition, subjects were slower at saying “yes” than “no” (Figure 

4.2 B). These condition differences were evident at the level of individual sessions (Figure 

4.2C, p = 1.4e-7 for memory condition, p = 0.03 for category condition, t-test). Making a 

particular image the target category on the visual categorization trials did not improve 

memory for that image category on the following memory blocks (Figure 4.2D). Together, 

this behavioral data shows that the subject’s performance reflected the task demands, with 

longer decision times, error rates, and learning happening specifically during the memory 

condition.  
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Figure 4.1: Task, behavior, and electrode locations (a) The subjects responded using either their hands 

(example trial on top) or by saccading to one of the target locations on the left and right of the image (example 

trial on the bottom). Yes and No responses are always on the left and right respectively. The subject is told how 

to respond (i.e. hand versus saccade) and to what question (i.e. recognition memory versus image categorization) 

to address at the beginning of each block (40 images/block). The question varied block by block, with category 

and recognition memory questions interleaved over the 8 blocks. The first block was always an image 

categorization block. For each of the categorization blocks, the target category was randomly assigned to one 

of the four available image categories. (b) Locations of the MTL electrodes, with hippocampal electrodes shown 

in yellow and amygdala electrodes shown in magenta. (c) MFC electrodes with pre-SMA electrodes shown in 

red and dACC electrodes shown in blue. (d) Eye-tracking data from an example session, showing only the trials 

with button press (160/320 trials). (e) Same as (c) but for eye response (160/320 trials).  Note that the subject 

only breaks fixation on the center of the image in order to make the response. (e) Reaction time differences 

between the two conditions (memory condition, mean ± sem, 1.22 ±0.017s; category condition, 0.89 ± 0.02s; p 

= 2.5e-216, 2-sample KS test). (g) Performance on memory questions improves over the course of the 

experiment (p<1e-10, logistic regression, mixed effects model). (h) Memory performance by image category. 

(i) Performance on categorization questions across the 4 image categories. (j) Behavioral ROC for memory 

trials for the monkey and car categories. The red cross marks the mean and 95% confidence interval for the 

distribution of points (k) Same as (i) but for fruits and human faces.  
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Figure 4.2: Yes vs. No differences in memory and categorization trials and effect of target 
(a)  Cumulative distribution of reaction times for “yes” and “no” responses during the memory trials shown 

for all included sessions.  Subjects were significantly slower at saying “No, I have not seen that image before” 

than “Yes, I have seen that image before.” (b) Same as (a) but for the categorization trials. (c) Plotted for 

each session, is the mean difference between “yes” and “no” responses shown separately for memory trials 

(green, p= 1.2773e-16, t-test) and categorization trials (yellow, p = 6.2e-6, t-test).  (d) Making a category the 

target on a categorization block does not enhance memory for that category on follow-up memory blocks. (e) 

Same as (d) but shown separately for each category. The only category that receives a small boost is that of 

monkey images (p=0.03, paired t-test). 
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4.3.2 Electrophysiology 

We recorded from 360 neurons in the amygdala and hippocampus (MTL, n=191 in 

amygdala and n=169 in hippocampus), and 399 neurons in the dorsal anterior cingulate 

cortex and pre-supplementary motor area (MFC, n=202 in dACC and n=197 in pre-SMA) 

in eight neurosurgical epilepsy patients, across 23 sessions. In MFC, we identified 78/399 

(20%) cells that signaled the choice made by the subject. Selection for choice cells was 

done using a 1s window centered at 700ms after stimulus onset [200 – 1200ms]. The choice 

of window center was determined from the peak of the choice Ω2-effect size, computed 

across the entire population, prior to selection. Spike counts in this bin were regressed 

against the response (binary, “yes” or “no”) independently in the visual categorization and 

memory conditions using the linear model: FR ~ 1 + β1Response + β2RT. We explicitly 

controlled for reaction time differences between the two different answers by including a 

reaction time term in the regression. Cells that showed a significant β1 coefficient were 

selected and included in the pool of choice cells. Response preference for “yes” or “no” 

was determined from the signal of the β1 coefficient (positive = yes, negative = no). Note 

that the selection was done using completely independent trials for memory choice cells 

and categorization choice cells. Of these selected cells, 49/78 signaled the choice made in 

the memory condition, 38/78 signaled the choice made in the visual categorization 

condition and 9/78 that signaled both (i.e. significant β1 coefficient in both selection 

regression models). The small overlap between these two populations highlights one of the 

key properties of the choice cells, namely that they specialize in 1 type of decision, either 

memory or visual categorization.  

We isolated an additional set of 62/399 cells in the MFC that discriminated between the 

image categories. Selection was done using all available trials, with a 1x4 ANOVA and 

spike counts measured in a 1-second window [200 – 1200ms]. The set of cells selective for 

image category and choice in the MFC were largely disjointed, with only 15/399 showing 

tuning for both. In the MTL, we isolated 79/360 cells that showed visual selectivity for one 

of the four image categories (Ω2 effect size = 0.08±0.01).
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4.3.3 Distinct Populations of Cells in MFC Encode Choice in the Recognition Memory and 

Categorization Task 

In the medial frontal cortex, 78/399 (20%) of neurons signaled the choice that the subject made. 

Here, by choice, we refer to the answer provided, which was either "yes" or "no". Figure 4.3 A, B 

shows two example choice cells recorded in the anterior cingulate cortex (left) and pre-

supplementary motor area (right) in two different patients. The cell in Panel A shows a preference 

for a “yes” response in the memory condition, while the cell in Panel B shows a preference for a 

“no” response in the memory condition. Figure 4.4 A, B show three more examples of memory 

choice cells and categorization choice cells respectively.  The t-statistic is shown in Figure 4.3E for 

both categorization choice cells (yellow), memory choice cells (green), for cells that single choice in 

both conditions (purple). The numbers for memory and categorization choice cells were both highly 

significant when compared to the null distribution (Figure 4.4 E, p<0.001). To demonstrate that the 

choice cells specialize in either condition, we show the average PSTH for preferred and non-

preferred responses for both the categorization choice condition (Figure 4.3C) and memory choice 

condition (Figure 4.3D). The top panel of Figure 4.3C shows the PSTH for categorization choice 

cells, split by preferred versus non-preferred responses only during the categorization trials. 

Performing the same split for the memory trials (bottom panel) shows that these cells do not contain 

choice information in the memory condition. Visa versa, the memory choice cells in Figure 4.3D 

contain no choice information during the categorization trials.  

We next tested whether the response of choice cells could be explained by activity related to the 

novelty/familiarity and/or the category of the stimulus. To test this possibility, we quantified the 

amount of information that cells carried about choices, new/old, and visual category separately for 

the two task conditions  (Figure 4.3G, blue bar) (Figure 4.3G, red bar). For this, we used an ROC 

analysis approach, by which we quantified the amount of information carried by each cell using the 

area-under-the-curve (AUC) metric.  The AUC was computed between preferred versus non-

preferred responses during the memory condition, new versus old ground truth in the categorization 

condition, and new versus old ground truth in the memory condition. We first focused on memory-

choice cells (n=49).  We found that memory-choice signaling cells carried significantly more 

information about choices (yes versus no, regardless of whether this choice was correct or incorrect, 
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p = 0.59, paired t-test) compared to information about whether a stimulus was old or new (ground 

truth; 0.61 ± 0.01 vs , 0.55 ± 0.01; p=6.8321e-07, paired t-test). In addition, we examined whether 

memory-choice cells continued to provide information about the novelty/familiarity of stimuli 

during the categorization task, where this variable was not relevant. This revealed that the AUC 

value for new/old information during categorization trials (blue condition) was not significantly 

different from chance (0.51 ± 0.007, p = 0.34). Together, this shows that memory-choice cells predict 

choices better than ground truth, and that they do not signal new/old information during the 

categorization task.   

We next performed a similar analysis for categorization-choice cells. The key difference between 

the two conditions is that while “yes’’ and “no” responses can be mapped directly onto “new” and 

“old” respectively (allowing for direct comparison), no such clear mapping exists for category. The 

reason for this is that the target category was randomly selected for each categorization block.  

In order to test whether category choice cells contain information about the ground truth (in this case, 

the image category) rather than choice, we collapsed the image categories onto a preferred and non-

preferred binary variable. The preferred image category was dictated by whatever image category 

was selected as the target for the block. For example, asking the subject to answer the question, “Is 

this an image of a monkey?” would set the target to monkey faces, and therefore the preferred 

category. This allowed us to map “yes” responses to the preferred category, and “no” to the non-

preferred category for a direct comparison. The amount of information for preferred versus non-

preferred in categorization choice cells was not different from the null distribution (p = 0.54).  

Next, we tested whether choice cells were sensitive to the response type, hand versus saccade. Figure 

4.3 F shows the AUC values for preferred versus non-preferred responses in the subset of choice 

cells that were recorded in sessions with both hand and saccade response types (see Figure 4.4 C 

for a single cell example).  While choice cells show some preference for one versus the other 

response type, there is no significant effect at the population level (p = 0.18, paired t-test).   

Lastly, we compared the choice information at the population level across all MTL and MFC cells. 

To do so, we created a pseudo-population (Meyers, Freedman et al. 2008) from all available cells, 

separately in MTL and MFC (see Methods).  We compared choice information for all trials and 
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separately only for memory trials in MFC and MTL (Figure 4.4 D, left panel included all trials, right 

panel is only for memory choice trials). In both tests, choice information was significantly stronger 

in the MFC population than in MTL (p = 1.87e-24 for all trials;   p = 4.58e-21 mem trials; paired t-

test, measured at t = 750ms after stimulus onset). This shows a clear functional separation between 

these two areas, with MTL cells representing features that pertain to the stimulus itself and MFC 

cells representing choice.  

 

Figure 

4.3: Separate neuronal populations in medial frontal cortex signal choice in a recognition memory and 

categorization task. (a) Example choice cells in MFC. This example ACC cell fires preferentially for “yes” (i.e. “I have 

seen this before”) responses in the memory condition. Raster condition PSTH (i.e. memory versus visual categorization), 

and choice PSTH (each condition is split into “yes” versus “no” traces) correspond to the top, middle, and bottom panels 

respectively. (b) An example cell recorded from pre-SMA that preferentially fires for “no” (i.e. “I have not seen this 

image before”) responses in the memory condition. (c) Average PSTH for cells that separate “yes” versus “no” in the 

visual categorization condition only (top panel). Also shown, is the average PSTH for the “yes” and “no” responses 

made in the memory condition (bottom panel). The PSTH collapses, suggesting that these cells do not have carry any 

choice information in the memory condition.  (d) Same as (c) but for memory choice cells. (e) t-statistic shown for 

memory (green) and categorization (yellow) choice cells  (f) Choice cells are insensitive to response type (eye vs. hand 

AUC, p = 0.54, sign test). (g) On the left, green bar = “yes” versus “no” information in memory choice cells (n=49) as 

measured by AUC (mean ± sem) on recognition memory trials, blue bar = new (corresponds to “no”) versus old 

(corresponds to “yes”) information in memory choice cells as measured by AUC on categorization trials, red bar = new 

versus old information in memory choice cells as measured by AUC on memory trials. Note that the red and green 

conditions share all correctly answered recognition memory questions. Memory choice cells do not contain memory 
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information on categorization trials (blue condition, p=0.32, permutation test of the mean). Memory choice cells represent 

choice and not a recognition memory signal during the recognition trials (green vs. red trace, p<0.005, paired t-test). On 

the right, yellow bar = “yes” versus “no” information in category choice cells (n=32) as measured by AUC (mean ± 

sem) on categorization trials, blue bar = “preferred category” versus “non-preferred category” on recognition memory 

trials, where preferred is defined by the target in the preceding categorization block. Category choice cells do not contain 

category information (blue condition, p=0.41 permutation test).  

 

 

Figure 4.4:  MFC and not MTL neurons represent choice. (a) Three additional example cells that were selected as 

memory choice cells. Example 1 satisfies criteria for both a categorization choice cell as well as a memory choice cell. It 

does however, show clear preference for one condition over the other. (b) Example categorization choice cells. The first 

example responds to “yes” while the second and third examples respond preferentially to the “no” response during the 

categorization condition. (c) An example cell that shows tuning for a “yes” memory choice is indifferent to response 

type. The first panel shows the raster and PSTH only for hand trials, while the second shows only eye trials. The third 

panel shows the preferred response, for both hand and eye trials (no significant difference). (d) Pseudo-population 

decoding of choice (4 possible outcomes, 25% chance level) using MFC cells (red trace) and MTL cells (blue trace). On 

the left, decoding results using all available trials. On the right, memory trials only (see Methods for detailed description 

of approach). (e) Null distribution of choice cell selection, 1000 permutations. Observed numbers are shown in yellow 

(categorization choice cells) and green (memory choice cells).  
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4.3.4 Cells in MTL encode image category but not choice 

In the medial temporal lobe, we recorded from in total 360 cells from the amygdala (n=191) and 

hippocampus (n=169) combined. Of these, the response of 79 (22%) cells was visually selective. For 

selection, we used a 500ms window, centered at 350ms [100ms – 600ms] after stimulus onset. We 

performed a 1x4 ANOVA between spike counts and image category through all trials in the selection 

window and included all cells for which p<0.05. The preferred category was determined based on 

firing rate; each cell was assigned the image category that elicited the largest response as the 

preferred category (non-preferred included the other three image types, Figure 4.5C). Most cells in 

MTL preferred images of human faces (Minxha, Mosher et al. 2017) and fruits (Figure 4.5 B). 

Figure 4.5A shows an example of a human-face selective cell. Decoding accuracy was higher than 

chance level for all categories (Figure 4.5D). A cell that can discriminate across all image categories 

(i.e. has perfect information about all four categories) and a cell that can only discriminate 1 out of 

the 6 possible pairs (i.e. 𝑛𝑐𝑜𝑚𝑏𝑜𝑠 =  (4
2
) = 6) can equally qualify as visually selective using the 

selection criteria that we outline here. In order to determine the amount of information across all 

visually selective cells, we computed AUC between all six possible image pairs (Figure 4.5E). The 

peak of this distribution is at 3, which corresponds to a cell that can discriminate a single category 

from all the other three. This suggests that tuning in MTL is not mixed across categories, but 

individual cells tend to only respond to a single image category (see Figure 4.6A for 2 additional 

examples).  Next we compared how visual representations in MTL change with task condition. Using 

a combination of metrics that include Ω2- effect size (Figure 4.5F), AUC (Figure 4.5G), and 

population decoding (Figure 4.6 B, C), we compared the amount of image category information in 

the two different task conditions. Peak Ω2- effect size was not significantly different between the 

two task conditions (p = 0.81, paired t-test, tested at t = 363ms). The AUC comparison between the 

two trial types also showed no difference between the two conditions across the whole population (p 

= 0.33, paired t-test, shown in black) and the visually selective cells (p =0.38, paired t-test, shown in 

cyan).  

 

We next asked if MTL cells represent choice-related variables.  Using the same selection criteria that 

we used to select choice cells for the MFC population, we find n = 17/360 cells (p=0.53, permutation 

test) tuned for memory choice, and n = 23/360 (p=0.1, permutation test) cells for category choice 
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cells (Figure 4.5H). At the population level, representation of image category is much stronger in 

MTL than in MFC, both when we use all available trials (Figure 4.6B, p = 3.1e-66, paired t-test, 

evaluated at peak decoding accuracy for each area independently) and when we only use memory 

trials (Figure 4.6C, p = 6.7410e-38, paired t-test, evaluated at peak decoding accuracy). Together, 

this result shows that representations in the MTL population are stable and not sensitive to task 

demands. Furthermore, this data again highlight the difference between the stable, stimulus-specific 

representations in the MTL, and the representations of task-specific variables that we find in MFC 

cells.   

 

 

 

 

Figure 4.5: Visually selective cells in MTL are not sensitive to task demands 
(a) Example cell, selective for images of human faces (left amygdala). (b) Proportion of tuned cells that are selective for 

each category with the largest one being for human faces.  (c) Average normalized PSTH of the preferred category versus 

non-preferred categories across all visually selective cells (n = 79/360). Selection is done with a 1-way ANOVA 

(selection window is 100ms – 600ms after stimulus onset), and preferred category is based on maximum firing rate. (d) 
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Decoding results across each of the subpopulations that are tuned to the different image categories. Average decoding 

performance is above chance (99 % CI of the null distribution shown with the black dotted line) and qualitatively 

comparable across all categories. (e) Number of significant pairwise AUC comparisons (4 categories = 6 possible 

pairwise comparisons). (f) Average effect size for all visually selective cells, split by condition, shows no preference for 

task type. (g) Comparison of AUC values for category and memory trials shows no difference (p = 0.38, t-test). (h) Using 

the same selection criteria as that outlined for the choice cells, we find n = 17/360 cells (p=0.53) tuned for memory 

choice, and n = 23/360 (p=0.1) cells for category choice, much weaker than MFC cells.  

 

 

 
 
Figure 4.6: Visual information is stronger in MTL than it is in MFC 

(a) Two additional example cells. Left is a cell tuned to faces of humans, right is a cell that responds selectively to monkey 

faces. (b) Pseudo-population decoding of image category (4 groups, 25% chance level).  Category information is stronger 

and available earlier in MTL. (c) Same as (b) but computed only for memory trials. While there is more category 

information in MFC cells during the memory trials, MTL is still much stronger. 
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4.3.5 Category information in the MFC cells is modulated by task demands 

We next tested to see if category information was also present in MFC cells.  Selection for visually 

selective MFC cells was done using a 1s window centered at 700 after stimulus onset [200 – 

1200ms]. Note that this is the same window that was used for the choice-selective cells in MFC. We 

isolated 62/399 visually selective cells using a 1x4 ANOVA with a threshold of p<0.05. Unlike the 

MTL cells, category tuning in the MFC was strongly modulated by task condition (see Figure 4.7 

A, B for examples). When we computed Ω2- effectize (Figure 4.7 C) for image category in the 

memory and categorization conditions separately, we found that it was signitifantly higher in the 

memory condition, both at the population level (p  = 1.5e-6, paired t-test) and for the selected cells 

(p = 1.7e-4, paired t-test). When selecting for visually tuned cells indepednetly in the memory and 

categorization condition, we found a significantly larger proportion of cells in the memory condition 

(Figure 4.7 D, 60 vs. 29 cells; χ2 – 12.15, p = 4.9e-4). This difference was also apparent at the 

population level, as revealed by the decoding results (Figure 4.7 E). For the decoding, we used the 

entire population of cells, not just the visually selective ones. The decoding method is the same as 

that outlined in the previous sections (see Methods).  

 

Figure 4.7: Category information in the MFC cells is modulated by task 
(a) Example raster of a cell in the medial-frontal cortex. The raster plots are split by image category. The left panel shows 

all the trials from the visual categorization condition and the right panel shows all trials from the memory condition. (b) 

Same as (a). This particular cell is selected from the pool of cells that are both choice and category cells (example cell 1 

from Figure 2). (c) Scatter of image category effect size of all MFC cells (pink) and MFC cells that are visually selective 
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(cyan). Cell selection was done using all trials. Effect size was then measured independently on memory trials and 

categorization trials. The effect size is greater during the memory condition. d) Selecting independently, using only 

categorization trials or memory trials yields a much larger number of cells in the memory condition versus the 

categorization condition. (e) Decoding accuracy across the entire pseudo-population of MFC cells is much higher during 

the memory condition than the categorization condition.  

4.3.6 Choice cells are distinct from visually selective cells in the MFC 

We have identified choice-selective and visually-selective cells in the medial frontal cortex. The next 

step is to determine if these two pieces of information are carried by the same set of cells or if they 

are distinct populations. To do so, we computed the Ω2- effect size for choice (4 possible responses, 

yes/no ⊗ categorization\memory) as well as the Ω2- effect size for image category (4 image 

categories). Figure 4.8A shows the effect sizes for choice (x-axis) and image category (y-axis) 

across the entire population (in pink), choice cells (in green), and image category cells (in blue). The 

populations were largely disjointed, with only 15 cells showing tuning for both image category and 

choice.  

 

Figure 4.8: Choice cells are distinct from visually selective cells in the MFC. (a)  Ω2- effect size for image category 

and choice computed across all trial. (b) Proportion of cells selected as choice and as visually selective (here termed 

category cells) cells in the MFC.  

 

4.3.7 Phase locking of hippocampal cells to local theta 

 . 

Phase locking to theta is a prominent feature of both hippocampal and cortical neurons. In 

our recordings, as expected, hippocampal cells phase-locked to theta-band LFP activity (80/169 
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[47%] of hippocampal cells had a significant preference to theta-frequency LFP; See Figure 4.9A-

E). This data is important for two reasons: (1) it shows that hippocampal theta is prominent in our 

task and that we are able to record it, and (2) it allows us to observe whether cells recorded in the 

MFC functionally interacted with the hippocampus and whether this interaction was modulated by 

task demands. Task modulation is not observed locally in the hippocampus, as shown in Figure 

4.9G-F. Figure 4.9F shows that there is no difference in the spike triggered power of the theta 

oscillations while Figure 4.9G demonstrates that there is no difference in how well hippocampal 

cells cohere to theta as a function of task. 

 

 

Figure 4.9: Hippocampal theta and phase locking of hippocampal cells. (a) Example LFP from a high-impedance 

microelectrodes placed in the hippocampus. (b) Spectra of the example trace shown in (a). (c)  Average spike-triggered 

power (STP) across all n=169 hippocampal cells recorded. All spikes recorded were used for each cell. (d-e) Activity of 

hippocampal cells is phase-locked to hippocampal theta. (d) Rayleigh Z value as a function of time delay (-200 to 200 

ms) for each cell for the 3-8Hz band. The peak coherence as a function of delay is indicated by the black dots for all cells 

that are significantly coherent, and with white dots for cells that are not significantly coherent. The bottom shows the 

average Z value across all cells. Z-values are peak normalized. (e) Histogram of Rayleigh’s z-value for all cells (at 
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offset=0). Threshold for significance is set at p = 0 .05. Significance was determined using a null distribution computed 

by scrambling the timing of the spikes with respect to the phase of the theta oscillations (phase is estimated by computing 

the Hilbert transform of the bandpass-filtered LFP in the 3-8 Hz) in the local field potential recorded on the same 

electrode. (f) Spike-triggered power (averaged in the 3-8 Hz band) for all 169 cells, split by task condition. The two 

conditions were not significantly different (p=0.87, sign test). (g) Spike-field coherence for all cells, split by condition. 

The two conditions were not significantly different (p = 0.35, sign test).  

 

 

4.3.8 Inter-area spike field coherence between MFC cells and MTL local-field potential is 

modulated by task demands 

We next tested to see if the task effects were apparent in the inter-area coherence between MTL theta 

oscillations and MFC cells (see Figure 4.10A for an outline of the measurement we performed). For 

numerous methodological reasons, we decided to measure spike-field coherence with respect to the 

high impedance contacts and not the clinical contacts (see LFP-processing pipeline in Methods). We 

looked for coherence specifically in the 3-8Hz band of the hippocampal LFP (Figure 4.10b). 

Overall, MFC cells showed strong phase locking to hippocampal theta (54/399 cells selected, FDR 

corrected across number of channels, see Figure 4.10B bottom panel for an example). This 

proportion changed drastically however as we shifted the alignment of the spikes with respect to the 

hippocampal theta (Figure 4.10C, left panel) with the peak selection occurring -150ms. A negative 

shift in this case means that MFC cells cohered best to the past of the local field potential in the 

hippocampus. This result is particularly striking when we compare the selection numbers as a 

function of delay time for the local field potential measured in the MFC itself (Figure 4.10C, right 

panel). In the latter case, the selection numbers are highest at an offset of 0, which is what we would 

expect. The numbers of cells that are significantly coherence is also larger for the inter-area case 

than for the local case (103 cells at -150ms vs. 77 at 0ms). This finding has been documented in the 

rat as well (Siapas, Lubenov et al. 2005). Lastly, if we look at selection over time as a function of 

task condition, clear differences arise. Comparing the strength of coherence (Rayleigh z-value) 

across the two conditions reveals a significant difference at t = -150ms (Figure 4.10D, p = 0.003, t-

test).   
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Figure 4.10: MFC cell coherence with MTL theta is modulated by task 
(a) Outline of the inter-area spike-field coherence measurement between spikes recorded in MFC and local-field potential 

recorded in the hippocampus. (b) Top: Example aligned trace and spikes. Shown in light gray is the raw, unfiltered trace 

(apart from antialiasing filter prior to down sampling to 250 Hz) and the 3-8 Hz filtered blue trace. Superimposed on top 

of the raw and filtered trace, are the spike locations. Bottom: A polar histogram of the extracted phase from the filtered 

trace (blue) for every spike recorded from this cell. The mean resultant vector is shown in red. The p-value from the 

Rayleigh test for this cell is p = 1e-12, shown very strong phase preference. (c) Selecting MFC cells as a function of delay 

in both inter-area coherence with hippocampal LFP (left) and within area coherence (right). (d) Number of tuned cells as 

a function of delay time, shown for all spikes (gray area), memory condition (blue area), and categorization condition 

(red area). The trace at the bottom shows the p-value from a t-test comparing Rayleigh’s z-value for selected cells, during 

the two task conditions.  
 

4.4 Discussion 

We show that human MFC cells signal abstract choices (decisions), with most doing so 

selectively for either categorization or recognition-memory based choices. Like in rodents, spike 

timing of human MFC cells was coordinated with hippocampal theta-frequency LFPs. Here, we 

demonstrate that such inter-areal coordination is increased selectively for decisions relying on 



 

 

102 

declarative memory. Importantly, such modulation occurred following verbal instruction alone in 

the presence of otherwise identical sensory inputs and motor outputs.  

This shows that, in humans, MFC- hippocampal coordination can be engaged flexibly and 

selectively when needed, making this mechanism suitable for inter-areal information routing of 

memories. In contrast, the activity and phase-locking of MTL neurons was not modulated by task 

demands and was not related to choices, demonstrating specificity. Together, our work suggests that 

the human MFC plays a critical role in integrating memory-based internal variables to make 

decisions.  

In primates, the strongest efferent connections from the hippocampus to the MFC are formed 

by the anterior hippocampus, which is the part of the hippocampus we recorded from in humans. In 

contrast, the large majority of work on MFC-hippocampal interactions in rodents has examined the 

dorsal hippocampus, which is thought to correspond to the posterior hippocampus. Future work will 

be needed to determine whether posterior hippocampal neurons in humans also engage with MFC 

in a similar manner than the anterior neurons examined here. 

Our findings are of relevance also to the pathophysiology of psychiatric diseases. While it 

has long been appreciated that impaired frontal-hippocampal synchronization in schizophrenia has 

devastating consequences, the underlying reasons remain unclear. Mouse models (Sigurdsson, Stark 

et al. 2010) have provided much insight, but limitations in modeling human behaviors and significant 

evolutionary differences with unclear homologies in frontal cortex make it necessary to investigate 

this question directly in humans. Here, we were able to do so by observing in behaving humans 

action potentials of isolated neurons, a necessity to test the hypothesis advanced. We make two 

contributions towards this goal: coordination of spike timing relative to hippocampal theta-frequency 

oscillations is a mechanism of inter-areal communication in humans and this mechanism is engaged 

selectively whenever a decision requires access to declarative memories. This mechanistic insight 

indicates that selective on-demand restoration of inter-areal coordination by electrical stimulation 

should be investigated as potential treatment approach.   

 

 

4.5 Conclusions 

In our data, we have observed several components of a decision process that relies on internal-

representations (recognition memory and image category). First, we observe two distinct 

populations of cells that communicated the subject’s choice: one population specializes in 
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memory-based decisions (“Have you seen this image before?”) and another in visual 

categorization (“Is this an image of a human face?”). Secondly, we observed that while 

representation of the stimulus category is not dependent on task in the MTL, it is strongly 

modulated by task in the MFC. Thirdly, we observe that spike field coherence between MFC cells 

and MTL cells shows task-specific modulation of communication between the two areas. The task 

modulation is specific to the inter-area coherence, and cannot be observed locally when we 

measure spike-field coherence of MFC cells with local-field potentials recorded on the same 

electrode or when we compute SFC with hippocampal LFP using spikes from another brain area. 

This data shows for the first time in primates (to the best of our knowledge) that MFC-hippocampal 

phase locking is selectively engaged based on task demands.  
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Methods 

Human electrophysiology  

 

Human subjects were patients being evaluated for surgical treatment of drug-resistant epilepsy that 

provided informed consent and volunteered for this study. Monocular gaze position was monitored 

at 500Hz (EyeLink 1000, SR Research). The institutional review boards of Cedars-Sinai Medical 

Center and the California Institute of Technology approved all protocols. We recorded bilaterally 

from the amygdala and hippocampus in MTL and ACC and pre-SMA in MFC using microwires 

embedded in macroelectrodes. From each microwire, we recorded the broadband 0.1-9000Hz 

continuous extracellular signal with a sampling rate of 32kHz (Neuralynx Inc). We tested two 

different referencing techniques: (1) one microwire on each macroelectrode served as a local 

reference (bi-polar recording), (2) global referencing for all ipsilateral electrodes to a contact in pre-

SMA. Given that all of our local-field potential analysis was carried out on virtual contacts (i.e. 

pairwise differences between electrodes), it did not matter much whether we used local or global 

references during recording. All included patients had clearly distinguishable spiking activity on at 

least one electrode in any of the MFC or MTL microwires.  

 

Behavioral task 

 

Subjects were given instructions on the task prior to the beginning of the experiment. They were told 

to follow the cues concerning effector (i.e. “eyes” or “hands”) as well as what question they had to 

address (memory versus visual categorization). If they were cued to respond by hand, they registered 

their response using a low-latency response pad manufactured by Cedrus Inc.  In the eye condition, 

they registered their response by saccading to the target on the left or right of the image. During the 

task, “yes” and “no” responses were always associated with the same side (i.e. no response 

remapping). The experiment was organized in 8 blocks, with each block containing 40 images 

(always 20 new and 20 old, expect for the very first block). The subjects always started with a 

categorization block. The response type (i.e. eyes or hands), was selected randomly for each block, 

and was changed only once halfway through the block. In between image presentations, subjects 

were instructed to look at the fixation cross in the center of the screen. We eliminated all trials where 

the subject was looking outside of the boundaries of the image or where we temporarily lost tracking 

of the eyes (<0.5% of trials).  

 

Analysis of behavior 

 

For the group analysis of behavior, we used mixed-effects models of the form 𝑦 = 𝑋𝛽 + 𝑍𝑏 +  𝜀, 

where y is the response, X is the fixed-effects design matrix,  𝛽 is the fixed-effects coefficients, Z is 

the random-effects design matrix, b is the random-effects coefficients, and 𝜀 is the error vector. In 

all analysis, we used a random intercept model with a fixed slope. The grouping variable for the 

random-effects was the session ID. The reported p-values in the main text correspond to the fixed-

intercept for the relevant regressor. In the case of measuring the effect of number of expositions (i.e. 

number of times an image was seen) on the subject’s accuracy during the memory trials, we used a 

mixed-effects logistic regression with the independent variable as an ordinal-valued whole number 

ranging from 1-7. The response was a logical value indicating success or failure on each memory 

question. Prior to running any analysis of reaction time data, we excluded outliers from the 
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distribution using the following procedure: a sample was considered an outlier if it was outside the 

99th percentile of the empirical distribution.  

 

 

Spike sorting and single-neuron analysis  

 

The raw signal was filtered with a zero-phase lag filter in the 300-3000Hz band and spikes were 

detected and sorted using a semi-automated template-matching algorithm (Rutishauser, Schuman et 

al. 2006, Rutishauser, Cerf et al. 2014). All PSTH diagrams were computed using a 250ms window 

with a step-size of 7.8ms. No smoothing was applied.  

 

 

MRI processing and localization 

 

Electrode localization was performed based on post-operative MRI scans that were performed 

immediately after implantation of the electrodes. These scans were registered to pre-operative MRI 

scans using Freesurfer’s mri_robust_register (Reuter, Rosas et al. 2010) to allow accurate and 

subject-specific localization. To summarize electrode positions and to provide across-study 

comparability, we also aligned the pre-operative scan to the MNI152-aligned CIT168 template 

brain (Tyszka and Pauli 2016) using a concatenation of an affine transformation followed by a 

symmetric image normalization (SyN) diffeomorphic transform (Avants, Duda et al. 2008). This 

procedure provided the MNI coordinates that are reported here for every recording location. 

 

Processing of human eye-tracking data 

 

Calibration was performed using the built-in 9-point calibration grid and was only used if validation 

resulted in a measurement error of <1 dva (average validation error was 0.7 dva). We used the 

Eyelink systems which automatically annotate fixations and saccades from the continuous stream of 

data using a motion, velocity, and acceleration threshold (default thresholds).  

 

 

Selection of visually selective units 

 

Visually selective units in the MTL (amygdala and hippocampus combined) were selected using a 

fixed analysis window, 500ms in size, centered at 350ms after the stimulus onset (i.e. 100-600ms 

post stimulus onset). Cells were initially screened using a 1x4 ANOVA with a p<0.05 threshold. The 

preferred category of the cells that passed the ANOVA screening was defined as the category of 

images that had the highest mean firing rate across all trials (80 trials per category). All trials were 

used for the selection process.  

 

 

Selection of choice cells 

 

Choice cells were selected using a regression model applied to the firing rate in a 1s size window 

starting 200ms after stimulus onset. We fit the following regression model: spike count ~ 1 + 

β1Response + β2RT, where the response is binary (yes or no) and RT is is the reaction time. We 
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fit this model separately to trials in the memory-and categorization condition. RT was included as a 

regressor to control for RT differences between the two possible responses. A cell qualified as a 

choice cell if the t-statistic of the β1 term was significant at p<0.05 for at least one of the two task 

conditions. The response preference of significant cells for either yes or no was determined based on 

the sign of β1 (positive = yes, negative = no).  All trials regardless of whether the answer was correct 

or incorrect were used for the selection process. To estimate the significance of the number of 

selected cells, we generate a null distribution by repeating above selection process 1000 times after 

randomly re-shuffling the response label (keeping RT intact). We estimated this null distribution 

separately for choice cells in for the memory-and categorization condition and used each to estimate 

the significance of the number of selected cells of each type.  

 

Choice cell selection bootstraps 

 

To generate a null distribution for the number of selected cells, we repeated our selection process 

(see Selection of choice cells) 1000 times, each time shuffling the response label in the regression, 

while preserving the response time structure that the cells had. For both types of choice cells, we 

estimated likelihood of occurrence by comparing the true value with the null distribution.  

 

 

Single-cell decoding 

Single cell decoding (see Figure 4.3D) was done over the same window as that used for selection. In 

the case of the visually-selective cells, we counted spikes between 100-600ms after the stimulus 

onset. Category decoding was done using the naïve-bayes poisson decoder from the neural-decoding 

toolbox (Meyers 2013). The image category labels were converted to a binary label, indicating 

preferred versus non-preferred (chance level, 0.5). Since the number of examples from the preferred 

group is ¼ the size of the number of examples from non-preferred (1 out of 4 categories), the priors 

for the naïve-bayes decoder were not determined empirically but instead forced to be uniform.  

Population-level decoding 

Population decoding was based on a pseudo-population using an approach first described by Meyers 

et al. (Meyers, Freedman et al. 2008) Briefly, we started the procedure by randomly selecting 75% 

available cells in MTL and MFC (corresponds to 274 and 299 cells respectively). For each cell, we 

selected a subset of the available trials to be used for decoding. For category decoding, we used 

50/80 instances (320 trials total) from each of the four categories. For choice decoding, the number 

of instances in each of the four conditions, response (yes/no) ⊗ condition (memory\categorization), 

were varied from subject to subject. We used 30 trials for each of the 4 groups because it was a 

number across all subjects. Prior to concatenating the responses across the pseudo-population, we 

normalized the firing rates for each cell individually, using only the trials contained within the 

training set. The spikes were counted using bins of 250ms in width. Using the randomly selected 

subset of cells and trials, we performed 10-fold cross validation decoding using a linear support 

vector machine (SVM) algorithm. Finally, the entire procedure was repeated 50 times with different 

subsets of cells and trials in order to produce a smooth estimate of classification accuracy.  
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Selection of coherent cells 

In order to determine whether a cell was phase-locked to the local or distal field potential in the theta 

band (3-8 Hz), we used the Rayleigh statistic, corrected for multiple comparisons (Bonferroni, 8 

electrodes). Phase estimation for each of the 8 ipsilateral electrodes was done by first bandpass-

filtering in the 3-8 Hz band and then computing the instantaneous phase of the signal with the Hilbert 

transform. To compute coherence, we used all of the spikes recorded from a given cell throughout 

the task. We repeated this same procedure for several different comparisons: (1) spiking activity in 

MFC cells and oscillations recorded locally (ex. measure coherence between spiking activity of an 

SMA cell with respect to the 8 ipsilateral electrodes in SMA, one of which also recorded the spiking 

activity), (2) spiking activity in MFC and distal oscillations recorded in hippocampus, (3) spiking 

activity recorded in amygdala and oscillations recorded in hippocampus, and finally (4) spiking 

activity recorded in hippocampus and oscillations recorded locally (same as (1) but with LFP and 

spiking activity recorded in hippocampus).  

 

LFP-processing pipeline 

On our electrodes, we have the option of measuring local-field potentials on the low impedance (~10 

kΩ), clinical contacts of the Ad-Tech electrode, or on the finer, high impedance (~500 kΩ) contacts. 

Given the lower impedance of the electrode, the first option has a much larger “listening sphere” and 

would reflect more of an intracranial-EEG type signal. The second option is to use the microwires, 

the same electrodes that record the spiking activity.  Depending on the application, it is sometimes 

better to use one versus the other, but for the purposes of our study, we determined that using 

microwires is better or the following reasons: (1) activity measured on these electrodes is much 

closer to the canonical definition of LFP because the activity as a function of distance from electrode 

is attenuated much more aggressively; (2) given that we have 8 electrodes, we have 8 samples, and 

therefore a much better estimate of any underlying oscillations, whereas with the macroelectrode we 

only have one; and (3) pairwise subtractions can remove large unwanted artifacts (related to 

movement for example). In order to get a much more robust measurement of the local-field potential, 

we computed all 28 pairwise differences between the 8 microelectrodes. This was done after first 

high-pass filtering and normalizing (z-score) each trace, in order to remove low frequency artifacts 

and to match the amplitude across pairs prior to subtraction. We performed significance testing using 

two methods: (1) Rayleigh z-test on the phase estimate from each extracted snippet (the test assumes 

that the data is sampled from a von Mises distribution and that it is unimodal) and (2) we constructed 

a null distribution by extracting the phase at n instances (where n is the number of spikes emitted by 

a cell, in a given condition), selected randomly along the entire recording session. The second option 

controls for any non-uniformity that may be present in distribution of phase during the entire 

recording session. This procedure was repeated 1000 times in order to generate a null distribution 

individually for 2 metrics, (1) pairwise phase consistency (PPC), and (2) Rayleigh’s z-value. Our 

sessions were composed of a mix of locally referenced and globally referenced electrodes; therefore 

we only performed this procedure on the globally referenced sessions.  
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Chapter V: General Discussion and Future Directions 

In this chapter, I will briefly summarize the key results that we have shown in the thesis. I will also 

try to expand a little on the main topics that have been introduced so far in this thesis in the remaining 

sections of the discussion. These topics range from the task-dependence of eye movements and 

aligning neural data with fixations, to interpretations of the face response in the amygdala. 

Throughout, I will present some data which did not necessarily fit in elsewhere in the thesis but is 

relevant to what is being discussed.  

5.1 Summary of results 

One of the key findings in this thesis is related to the nature of the visual response in the amygdala 

and how this response is gated by fixations in a crowded visual scene. The key differences between 

our task and that used previously to study visual responses of this sort are: (1) the subjects can select 

the target they want to fixate on freely and (2) there is competition for attention. Consistent with our 

hypothesis, we found that amygdala cells responded to individual fixations and did not simply 

produce just a coarse response to the preference of faces in the scene. We also found that behavioral 

preferences (as measured by the way the subjects sampled the objects in the array) corresponded 

nicely with the neural representations that we found. Specifically, measures of eye movements, such 

as first fixation, showed that subjects preferred to look first at images of conspecifics. In turn, most 

of the visually selective cells we recorded from were tuned to images of conspecifics. In the section 

below, we talk about a different kind of preference, novelty, for which there is also strong 

representation in amygdala and more generally the medial-temporal lobe. In short, the fact that 

neurons in the amygdala responded to faces only when they were fixated, suggests that their activity 

was gated by visual attention. Our experiments in humans utilizing covert attention confirm this 

hypothesis.  

Our second set of results looks jointly at representations in the medial temporal lobe and the medial 

frontal cortex. We find that representations of image category are stronger in the medial temporal 

lobe, and as expected, they are independent of what the task is. Medial frontal cells on the other hand 

also represented category information but in a task-dependent way, namely there was more 

information related to image category during trials where the subject had to make a memory-guided 

decision. Our key finding is the representation of choice in MFC cells, with distinct cells representing 

choice in either image categorization trials or recognition trials. We qualified this signal as a “choice” 
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signal, because it was not dependent on the action that the subject took (i.e. saccade or button press) 

but simply reflected the abstract notion of “no” or “yes”. Our hypothesis was that to make such 

memory-guided choices, cells in MFC would need to access representations of memory that are 

available in the medial temporal lobe. To test our hypothesis, we measured the coherence between 

the MFC and MTL using metrics that measure spike-field interactions. We showed that MFC cells 

cohere to hippocampal theta more strongly during the memory trials than the visual categorization 

trials. In the discussion below, I will explore some possible extensions of this work that we are now 

taking into consideration.   

5.2 The importance of tracking eye-movements 

In Chapter III, we presented fixation-gated responses in amygdala neurons from monkeys and 

humans. This data underscores the importance of tracking eye-movements, but it also reveals how 

incredibly rich eye-movement data can be, even in a simple task. In a single session of the array task 

for example, a human subject may generate almost 1000 fixations and just as many saccades. A 

monkey can generate even more (inter-fixation time was shorter in monkeys). Understanding the 

sources of variance in the eye-movement data is of paramount importance, because it can reveal 

interesting dynamics that are not apparent on longer time-scales (over the time course of a single 

trial for example) just as easily as it can lead to artifacts and wrong conclusions if not properly 

controlled. These sources of variance can range from the trivial, such as level of crowdedness in the 

visual scene and task instruction, all the way to the individual preferences of the participant. Figure 

5.1 shows a trivial source of variance, where the level of crowdedness can change the nature of the 

eye-movement features. Here we focus on fixation duration and saccade duration, but there are many 

others features one could extract, such as blinks and pupil area. What becomes immediately apparent 

is that the fixation duration (Figure 5.1C, D) in the non-crowded case is longer than that during the 

crowded case (0.31s vs. 0.29s respectively, p = 1.6e-7, 2-sample KS-test). Furthermore, the 

difference between the saccade duration histograms for the two conditions (Figure 5.1E) reflects the 

different task structure, even though the actual images and their possible locations were the same.  

In addition to task structure, eye-movement features are also modulated by the preferences of the 

subject. In Figure 5.2A, we reproduce a result from Chapter III, namely that human subjects tend to 

fixate first on images of conspecifics (i.e. human faces). They do this so much more often than the 

next competing category of images, monkey faces (0.32 vs. 0.25, p <8e-04, paired t-test). Although 
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not shown here, we can also quantify a subject’s look preferences by their sampling sequence (see 

Figure 3.3), number of within-stimulus fixations, and look-time for each category (see Figure 3.1).   

Subjects also have preferences for novelty (Figure 5.2 B, C, D). When measured across the 

population, number of visitations is significantly correlated with the amount of time spent looking 

at the image (mixed-effects model across subjects, with random-effects on the intercept, p<2e-21). 

Furthermore, this effect can be seen on the individual categories, cars, humans, and fruits, but not on 

monkeys, which, across all subjects, are the hardest image category to remember (Figure, 5.2E, as 

measured on the recognition portion the subjects performed at the end of the array task). Looking 

time is often used in animal experiments as a proxy for whether something is perceived as familiar 

or novel (visual preference looking task, (Murray and Mishkin 1998, Zola, Squire et al. 2000).  

 

Figure 5.1: Labeling fixations and saccades from continuous eye-tracking data. (A) Example trial from the study 

described in Chapter III (top) and a less crowded version of the same task (2-3 images, bottom). Subjects are free to 

sample from any of the possible image locations for the duration of the trial. (B) The x-coordinate of the position of the 

subject’s eye. Labeled in blue are fixation periods. Shown in red are periods when the subject was making a saccade. The 

black trace at the bottom shows the velocity of the eye movement. (C) Histogram of all fixation durations. (C) Histogram 

of all fixation durations in the crowded (left) and non-crowded (right) conditions. (D) For the same subjects, fixation 

duration was significantly longer in the non-crowded condition than the crowded one. (E) Saccade durations for the 

crowded (left) and non-crowded (right) conditions. 
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Figure 5.2: Preferences for certain image categories and for novel images are apparent in the subject’s eye 

movements. (A) Proportion of first fixations on each of the four categories, computed over all recorded sessions. The 

preferred category is human faces, which is significantly more likely to be a target than the next best category, which is 

monkey faces (p <8e-04, paired t-test). (B) Look duration as a function of the number of fixations that landed on a 

particular image (bars are s.e.m). (C) Same as (B) but shown separately for three of the categories. (D) Same as (C) and 

(B) but for monkey fixations. For (B), (C), (D), the look durations were first standardized within the subject prior to 

averaging across the whole population. (E) Proportion of category instances remembered in the recognition memory task 

that followed the free-viewing task.  

 

Furthermore, just as the looking preference for faces in the human subjects was reflected in the 

population of visually selective cells (with most cells preferring human faces), the preference for 

novelty is also evident in cells recorded in the amygdala and hippocampus.  Figure 5.3 (panels A, 

B, C) shows 3 example cells that are modulated by the familiarity/novelty of the fixated stimulus, 

shortly after the onset of the fixation. Panel C shows an example of a cell that is both visually and 

novelty selective, firing preferentially for images of novel faces.  
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Figure 5.3: Fixation-aligned responses of cells in the human MTL encode the familiarity of the fixated item.  (A,B) 

Example cells recorded in the human hippocampus (left) and amygdala (right) during the array task described in Chapter 

III. (C) A cell that is preferentially modulated by a novel face (recorded in amygdala).  

 

5.3 Relating neural patterns with eye-movement data 

The post-stimulus time histogram is one of the most commonly used tools in neuroscience in 

summarizing neural responses aligned with some event. It is an incredibly useful tool, but one that 

can easily lead to artifacts with fixation-aligned neural responses. In a free-viewing paradigm such 

as the one that we presented here, features of the eye-movements, such as fixation duration, are a 

random process that the experimenter cannot control. Since there are currently no better ways of 

summarizing the neural response however, selection of fixations used for analysis becomes very 

important. To illustrate this point, let us consider the response of a population of 129 visually 

selective amygdala cells recorded on the array task. Figure 5.4 illustrates what the average response 

looks like for all selected cells when the subject fixated on the preferred image category (blue trace) 

and non-preferred image categories (black trace). In panel (A) of Figure 5.4, we can see what would 

happen if we were to include all fixations on the preferred category, independent of what came before 

and after. We notice that the baseline for fixations that land on preferred targets is actually lower 

than that landing on non-preferred targets. Furthermore, we notice a suppression of response for non-

preferred fixations. Both of these features of the PSTH however, are artifacts that can easily be 

removed if we only consider instances that were preceded by fixations on non-preferred images. This 

problem can be exacerbated by highly stereotyped viewing preferences (imagine a cell that responds 

selectively to faces and a subject that tends to look at several faces on a row). The selection process 

might vary depending on the analysis that you want to do. Figure 5.5 shows an example selection 
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process that was used for determining visually-selective cells in the array task. The selection criteria 

ranges from the most lax, which corresponds to a simple threshold on duration of fixation (or “look”), 

all the way to more strict criteria that only use the very first fixation on an image category.  

 

 

Figure 5.4: Averaging fixation-aligned neural responses can lead to artifacts. Fixation-aligned responses of 129 

amygdala cells split by preferred (blue) and non-preferred (black) targets. (A) The average normalized response including 

all fixations on the preferred, independent of what preceded it. (B) Filtering the fixations and excluding all fixations that 

were preceded by another fixation on a preferred image category. 
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Figure 5.5: Subsampling sequences of fixations to prevent artifacts from averaging. (A) Example scan-path recorded 

from a monkey. Numbers indicate “location on array”. (B) For trial shown in (A), summary of where the monkey looked. 

All successive fixations that fall on the same image are pooled into one "look" (Yellow patch). The looks are numbered 

1-10 and the y-axis indicates the location on the array. (C) Different selection criteria for “looks” that can be included in 

the analysis. In the most lenient case, we can use all fixations that are longer than 100ms, and in the most stringent case, 

we can use only the first fixation for each category in addition to the duration requirement.  

 

 

 

5.4 Covert spatial attention task with distractors 

As an extension to the covert attention task that we present in Chapter III, we also collected data on 

a version of the task that included a distractor (Figure 5.6A) in addition to the target image. I have 

included this piece of data here because I think it highlights the role of attention in modulating these 

visual responses that we measured in the amygdala. The goal of this task was to highlight the effects 

of spatial attention on the responses in the amygdala by making the screen more crowded. Briefly, 

subjects were instructed to never break fixation from the cross in the center of the screen. They were 

first cued to the spatial location of the object for which they had to answer a yes or no question. The 

question was always about the visual category of the image, for example, “Is this an image of a 

human face?” We presented them with two images on opposite ends of the fixation cross (distance 

~ 20º of visual angle). Of the 120-amygdala cells that were recorded on this task, 22 of them showed 
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preferential tuning for one of the image categories (selected with 1x4 ANOVA and assigned to the 

image category that elicited highest firing rate). Figure 5.6 B shows the responses from two example 

cells split across the four possible conditions. The conditions are: (1) both the cued and the distractor 

were preferred (blue); (2) only the cued image was from the preferred category (red); (3) only the 

distractor was from the preferred category; and (4) neither the preferred image nor the distractor 

were from the preferred category.  

 

Figure 5.6: Covert attention task with distractors. (a) Task design for the covert attention task. Subjects were cued to 

the spatial location of the stimulus for which they had to answer a question (e.g. “Is this a human face?”). After a short 

delay, two objects were presented on opposite ends of the array. Subjects responded with a button press, while always 

maintaining fixation. (b) Raster for two example cells showing the response in the four task conditions. (c) Population 

average across 22/120 amygdala cells that showed preferential tuning for one of the four possible image categories.  

 

 

5.5 On the role of face responses in the amygdala 

It was clear from the data presented in Chapter III how prevalent the face response is in the amygdala. 

This does however bring up two key questions: (1) why are the latencies so long (~322ms, peak 

effect size, fixation aligned), and (2) what is this response being used for in the brain, and in what 

ways is it different from the cortical response to faces. Given the long latencies, it is unlikely that the 

face response in the amygdala is guiding moment-to-moment attention, or that it is necessary for a 



 

 

118 

perceptual process. One possibility is that face responses in the amygdala are actually facilitating 

learning for socially relevant stimuli (i.e. faces of conspecifics). Given the extensive connectivity 

between the amygdala and other brain areas, such as the hippocampus and the neocortex (Pessoa and 

Adolphs 2010), it has been suggested that the amygdala could provide a modulatory signal during 

memory encoding that is specific to a particular category of images (i.e. human faces, and perhaps 

specific identities) (Phelps 2004). We have made two observations in the population of amygdala 

cells that make this hypothesis very credible. The first is the novelty-dependent responses (see 

Figure 5.3 for example responses) that we can directly measure during the array task. Of the 629 

amygdala cells that we recorded, 59 of them (9%) show novelty-dependent responses. This response 

is present despite the absence of a clear emotional expression, since all of the face stimuli we used 

are neutral. Furthermore, 29% of all amygdala cells show significant (through Rayleigh z-test) phase 

locking to theta oscillations (3-8 Hz) recorded on the same electrode (see Figure 5.5 for an example). 

Both the novelty response and the theta-phase locking are features of the amygdala cells that could 

be used to modulate learning about socially relevant stimuli. Given the population of cells that we 

have, the array task is a good candidate for testing this theory. Each frame of the array task contains 

two completely new stimuli, allowing us to see how these representations of familiarity are 

constructed fixation by fixation.  

Another interesting hypothesis on the computational value of the face response in the amygdala is 

motivated by a recent observation on the nature of the face response in cells within the face-patch 

network.  In their recent work (Chang and Tsao 2017) , Chang et al. show that the face response in 

the macaque face patches (specifically, middle lateral/middle fundus, and anterior medial) is actually 

a measurement that each cell performs along its preferred axis within the high dimensional face 

space.  It is possible that the face responses in the amygdala could be doing a similar kind of 

measurement, but along axes that are more relevant for social behaviors. Recent evidence from 

single-unit recordings, for example, has shown that individual cells in the human amygdala 

parametrically encode the intensity of specific facial emotions (Wang, Yu et al. 2017). Not all cells 

might perform such a clearly interpretable measurement, but the key is that these measurements are 

made specifically for computing something in the social domain.   
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Figure 5.7: Theta-frequency spike field coherence of an amygdala cell. (a) Example cell recorded during the array 

task with strong response for human faces. (b) The peak of the spike-field coherence (measured on same electrode as the 

cell) is at 7.8 Hz. This particular cell also shows strong phase locking in the gamma band (40-60Hz) (c) The spike 

triggered average computed over all available spikes for the cell (n = 2913, across three sessions). (d) The spike-triggered 

power, peaking at approximately 5Hz, provides a measurement of the frequency of the theta oscillations recorded on this 

electrode.  
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Appendix 

There is a variety of methods and tools that were developed and either not used or used too 

sporadically to be mentioned in the main text of this thesis. I am including them here because 

I believe that they still represent a unique way of looking at behavioral and neural data and 

could potentially be useful for future applications.  

7.1 A MATLAB interface for processing spikes 

It seems that building a spike-sorting tool is a rite-of-passage for any graduate student 

working in electrophysiology. I was no exception, and building a tool that allowed me to 

combine both manual and automatic spike sorting was essential. Most of the tools we use for 

analyzing neural data had been developed in-house over the years. This particular tool was 

intended as a complimentary tool to Osort (Rutishauser, Schuman et al. 2006), which is the 

default method for the filtering, detecting, and sorting of spikes used in our lab. Osort 

provides automatic solutions, which then need to be curated manually. Often times, I needed 

to reject the automatic solutions because of mistakes in the sorting algorithm. Some of the 

most common manual operations include: (1) mergers of clusters, (2) cluster splits, (3) 

mixing across different sorting solutions. Often times a simpler method, such as drawing 

boundaries by hand (in PCA space), can be the best sorting solution. Other times, a 

parametric method, such as Gaussian Mixture Models, can yield the best results. The tool 

outlined below combines all of those possibilities into one easy-to-use platform.  



 

 

 

   

Figure 6.1: MATLAB-based spike sorting tool. The tool gives the user the ability to manually separate the 

clusters in PCA space (top panel, 2D or 3D drawing). It allows the users to scan through individual channels, 

merge across clusters, perform projection tests, change visualization schemes, or delete the entire solution on a 

channel in favor of a parametric method using a Gaussian Mixture Model (bottom panel).  



 

 

7.2 A bin-free method for measuring onset latency 

We developed a bin-less method to compute the latency of response of each single cell  

(relative to fixation onset). The method involves the following three steps for each cell. First, 

for each fixation i, compute the time since the last spike as a function (TSLS, Fig 7.4B) of 

time 𝑇𝑆𝐿𝑆(𝑡, 𝑖). Second, use the interspike interval distribution P(ISI) to convert the TSLS 

to a probability: 𝑃𝑇𝑆𝐿𝑆(𝑡, 𝑖) = 𝑃(𝐼𝑆𝐼 > 𝑇𝑆𝐿𝑆(𝑡, 𝑖)) = ∫ 𝑃(𝐼𝑆𝐼 > 𝑥)𝑑𝑥
∞

𝑇𝑆𝐿𝑆(𝑡,𝑖)
 (Fig 7.1C-

D). This probability is equivalent to the proportion of ISIs that is larger than the currently 

observed time since the last spike. The larger the deviation of 𝑃𝑇𝑆𝐿𝑆(𝑡) from 0.5, the larger 

the deviation is of the firing of the cell from overall mean firing rate. Values >0.5 imply an 

increase in firing rate relative to baseline. Third, collapse the probabilities 𝑃𝑇𝑆𝐿𝑆(𝑡, 𝑖) across 

all fixations n by multiplication of the individual probabilities: 𝑃𝑇𝑆𝐿𝑆(𝑡) =

∏ 𝑃𝑇𝑆𝐿𝑆(𝑡, 𝑖) = ∑ 𝑙𝑜𝑔𝑃𝑇𝑆𝐿𝑆(𝑡, 𝑖)𝑛
𝑖=1

𝑛
𝑖=1 . This probabilistic interpretation of latency provides 

a robust latency estimate across all fixations regardless of tuning (Fig 7.4F).  

 

 

 

 



 

 

  

Figure 6.2: Bin-free time-since-last-spike (TSLS) latency estimation method. (A) Raster and PSTH of an 

example cell recorded from a monkey. (B) For each line (i.e. "look") in the raster in panel (A), we computed 

the TSLS(t) (gray line). Every time a spike occurs (magenta dots), the counter is reset to 0. 

(C) Histogram P(ISI) of all interspike-intervals (ISIs) observed for the cell shown in (A). (D) Same trial as (B), 

but converted to a probability. We converted the TSLS(t) values into probabilities based on how likely it is to 

observe a given ISI (see Methods for equation). For each observed TSLS value, this provides an estimate of 

how many ISIs are larger than the currently elapsed time. (E) Mean probability as a function of time and 

category. The TSLS method preserves information. The average of all traces within each category changes 

transiently shortly after fixation onset for the tuned category (i.e. monkey face). The firing rate for the tuned 

category increases, and consequently the average ISI decreases. This in turn results in a large probability (0.9 

in this case), the ISIs of the cell are larger than the current TSLS. (F) The product of probabilities (log) across 

all fixations of a cell is calculated using an element-wise sum of the observed log likelihoods for each fixation. 

The peak of the log-likelihood function (arrow) provides a robust, bin-less, estimate of the latency of the 

cell. (G) Alternative method to determine single-cell latency using TSLS. For each fixation, the location of the 

peak (maximum) of the TSLS is computed and the peak of this histogram is used as the estimate of latency of 

this cell.   



 

 

 

Figure 6.3: Reconstruction error of latency using the TSLS method. We simulated Poisson spiking with 

variable baseline firing rates (increasing from left to right) and variable signal-to-noise ratios (increasing from 

bottom to top). Plotted on each of the axes, is the true versus reconstructed latency of the cell for different 

combinations of baseline firing rate and signal to noise ratio.   



 

 

 


