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Abstract

For many problems that involve the discrete representation of a function on a
two—dimensional region, a single rectangular gridvis inappropriate. However, any
compact region with a smooth boundary can be discretised- using a composite grid,
which provides boundary-fitted coordinates and allows stretched coordinates for
boundary layers and internal layers wherever these are needed. We have developed
interactive software for specifying composite grids, and general-purpose subroutines
for using them in discretising PDE boundary-value problems. The discretisation of
an elliptic BVP with an internal layer and of a supersonic flow problem are given

as examples of the uses of composite grids and the capabilities of the software.
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Introduction

For many problems that involve the discrete representation of a function on a
two-dimensional region, a single rectangular grid is inappropriate. For example,
a rectangular grid is poorly suited to the discretisation of a partial differential
boundary-value problem on any region but a rectangle, as the boundary of the region
will not in general correspond to a line of the grid. As a result, the accuracy of the
solution may be significantly degraded, as demonstrated by Henshaw [12]. Many
methods have been devised to construct a one-to-one transformation from a region
bounded by piecewise smooth curves onto a rectangle. See, for example, the review
article by Eiseman [9] and the conference proceedings edited by Thompson [22].
A cartesian coordinate system on the rectangle then corresponds to a curvilinear
coordinate system on the region, and at least for the case of a simply-connected
region, the boundary of the rectangle corresponds to the boundary of the region.
A rectangular grid on the rectangle corresponds to a curvilinear grid on the region,
and the boundary of the region corresponds everywhere to a gridline. One difficulty
faced by all of these methods is that for a region of complex geometry they have very
limited control over the distribution of coordinate lines, and hence of the gridlines.
This difficulty is addressed with some success by the elliptic grid generation methods
of Thompson and Mastin [15] and the adaptive grid generation methods of Brackbill
and Saltzman [4]. However, even for a region of relatively simple geometry such
as a simply-connected region consisting of two discs connected by a narrow strip,
the density of gridlines will inevitably be greater on the narrow strip than on the

discs. Another difficulty is that any transformation from a multiply-connected
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region (other than a doubly-connected region) to a rectangle must have a singularity
somewhere on the boundary. Both of these difficulties are consequences of using a

single grid to cover the entire region.

An alternative is to cover the region with a composite grid consisting of several
overlapping curvilinear grids, each of which is the image, under a smooth trans-
formation, of a rectangular grid, and chosen so that the boundary of the region
is composed entirely of edges of the curvilinear grids. The density of gridlines on
each curvilinear grid is independent of the other grids and is determined by the
transformation specified for that grid. Using enough of these transformations and
grids it is possible to discretise problems on complicated regions for which a sin-
gle grid is hopelessly inadequate. A composite grid can be constructed for any
compact region with a piecewise smooth boundary, even for a multiply-connected
region. It provides boundary-fitted coordinates and allows stretched coordinates for
boundary layers and internal layers wherever these are needed. The concept of a

composite grid extends easily to regions with cylindrical or toroidal symmetry and

to n-dimensional regions.

We have developed software for the interactive construction of composite grids
for compact regions in the plane and for regions with cylindrical or toroidal symme-
try, and general-purpose subroutines for using them in discretising PDE boundary-
value problems. These include subroutines for reading in a data file containing
a description of a composite grid, for calculating the coefficients in the centered
second-order discretisation of a linear combination of derivatives on a nine-point
stencil, for interpolating data between the grids of a composite grid in the regions
of their overlap, and for the second-order discretisation and direct solution of a
second-order linear elliptic equation with mixed boundary conditions on a compos-
ite grid. We have generalised the procedure of B. Kreiss [14] for construction of

a pair of overlapping grids for a simply-connected region with a smooth boundary
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so that we can construct a composite grid for any compact two-dimensional region
with a piecewise-smooth boundary, even a multiply-connected region periodic in
one or both directions. Further generalisations we have included allow for the use
of stretched coordinates on the component grids to resolve boundary layers and in-
ternal layers, the discretisation of a PDE and its boundary conditions to any order
of accuracy, the interpolation of function values between the component grids to
any order of accuracy, and the construction of sequences of composite grids for use
with multigrid methods. The discretisations of an elliptic boundary value problem
with an internal layer and of a supersonic flow problem with multiple shocks are

given as examples of the uses of composite grids and the capabilities of the software.



CHAPTER 1

Curvilinear Grids

Numerical simulations in fluid mechanics and many other problems involving
the computation of a solution field on a bounded region in the plane are often
carried out on a rectangular computational grid chosen so that the boundary of the
region follows lines of the grid. This is only possible for regions bounded by curves
consisting of line segments intersecting at right angles. Although regions bounded
by such curves are involved in many interesting fluid flow problems, numerical
simulations are carried out on such regions less often for this reason than because of
the ease of accurately applying boundary conditions on a grid fitted to the boundary
of the region. For some applications it may not be important to use a boundary-
fitted grid; a rectangular grid may suffice. However, boundary conditions for the
discretisation of partial differential equations are difficult to apply when the grid is
not boundary-fitted, and for a problem with a boundary layer, truncation error in
the boundary condition results in an inaccurate solution. Examples of this effect
are given in [12]. Boundary conditions for a partial differential equation may be
accurately discretised on a region with a piecewise-smooth boundary if a boundary-
fitted curvilinear grid can be found. For this reason the construction of such grids

is of interest.

1.1 Notation for Curvilinear Grids
We shall consider only curvilinear grids in two dimensions. Although the con-

cepts discussed here extend easily to three or more dimensions, the notation becomes
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difficult and regions and their boundaries become difficult to describe or imagine.
Since the principal use for curvilinear grids is the discretisation of PDE boundary-
value problems by finite-difference methods, we shall consider only “logically rect-
angular” grids, those on which the gridpoints can be labelled by two indices (7, 7)
so that gridlines drawn through all of the gridpoints with the same index ¢ do not
intersect, and likewise for gridlines of constant j. Such curvilinear grids may be
continuously deformed from a uniform rectangular grid. This leads to the following

definition of a curvilinear grid.

Definition 1.1.1 A curvilinear grid for a compact region D in the plane, on a

cylinder or on a torus is a continuous transformation d from the unit square onto
D,

D ={d(r,s):0<r<1,0<s< 1},

and a uniform rectangular grid G on the unit square,

-1 5—-1 . .
G:{(z ,] >:z:1,...,m,]:1,...,n}.
m—1"n—1

We shall henceforth say “grid” whenever it is clear from the context that we mean

“curvilinear grid.” Just how smooth the transformation d needs to be will depend
on the specific application the grid is to be used for.

The boundary of a multiply-connected region, such as an annulus, consists of
two or more disjoint curves. Under any continuous transformation d from the unit
square onto such a region D, the boundary curves of D are the image of parts of
the boundary of the unit square; other parts of the boundary of the unit square
are mapped onto curves called “branch cuts” in the interior of D that connect the
boundary curves. Branch cuts may also be introduced, as explained below, so that
the cylinder and the torus may be represented in the plane. However, these need
not add to the confusion if they are chosen to follow the above branch-cuts wherever

they intersect D.
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A cylinder may be represented in the plane by a “period strip” bounded by
a pair of parallel lines C; and C, which correspond to a single line, a branch
cut, on the cylinder. If corresponding points on C; and C, are parametrised by
ci1(€) = a; + b€ and c;(&) = a; + b¢, any function on the cylinder corresponds to
a periodic function in the plane, with periodicity c¢;3 = a; — ay. It is sometimes
convenient to choose a curve other than a straight line for the branch cut on the
cylinder. In that case the period strip in the plane is bounded by curves C; and C,
on which corresponding points may be parametrised by functions ¢; and ¢, which
differ by the constant vector ¢z = ¢1(€) — cz(€). For example, if the the image
of the boundary of the unit square under the transformation d crosses the branch
cut on the cylinder, the corresponding transformation from the unit square onto
the period strip in the plane is discontinuous. To avoid this problem the branch
cut must be chosen so that the image of the boundary of the unit square under the
transformation d does not cross it; this is achieved by choosing the branch cut in
the cylinder so that it follows a branch cut due to the transformation d wherever
it intersects D. At the risk of some confusion, we use the same variables (z,y) to
label coordinates on both the cylinder and the period strip in the plane, and use
the same name for a function on the cylinder and the corresponding function on

the period strip.

A torus may likewise be represented in the plane by a “period box” bounded
by a trapezoid. Each pair of opposite; sides of the trapezoid corresponds to a single
line segment, a branch cut, on the torus. More generally, if the branch cuts on
the torus are chosen to be curves, then the period box in the plane is bounded by
two pairs of curves (C;,C;) and (Cs,C4) on which corresponding points may be
parametrised by two pairs of functions (¢,(£),c2(€)) and (c1(€),co(€)) which differ
by the constant vectors ¢;; = ¢1(&) — ¢3(€) and ¢34 = ¢3(&) — c4(§).‘ Any function

on the torus corresponds to a doubly-periodic function in the plane with periods
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c;2 and cs4. The branch cuts on the torus should be chosen so that the image of
the boundary of the unit square under the transformation d does not cross them.
We use the same variables (z,y) to label coordinates on both the torus and the
period box in the plane, and use the same name for a function on the torus and the

corresponding function on the period box.

1.2 PDEs on Curvilinear Grids

The principal use for curvilinear grids is in discretising PDE boundary-value
problems using finite-difference methods on a region D whose boundary consists of
smooth curves. To be useful for this purpose the grid must satisfy certain smooth-
ness constraints that depend on the PDE. If the grid is constructed as the image
under the transformation d of a rectangular grid, the constraints on the smoothness
of the grid can be expressed as constraints on the transformation d. Consider a

PDE boundary value problem

a d
F <"é;, —(%,u> =0 fOI‘ (.'E,y) - D (121)

where F represents the PDE in the interior of D and the boundary conditions on
the boundary of D, and it is understood that higher derivatives may be involved.
We can define a function u' which represents u in cartesian coordinates on the unit
square,

u'(r,s) = u(d(r,s)) for (r,s) e [0,1]% (1.2.2)
If the Jacobian of the transformation d is non-singular, we can use it to express the

problem F in (r,s) coordinates. Let

J(r,s) = 83(1) = [; ;] : (1.2.3)

Then the inverse of J(r,s) is

1 _
JV1 5 Z——————————[ Ys :[:‘q]:[rI Ty]. 2.
(r S) TyYs — YrTs ~Yr Zr Sz Sy (1 2 4)
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With the understanding that by r,, r,, s, and s, we mean the functions of (r, s)
which form the inverse of the Jacobian, we can express the problem (1.2.1) in (r,s)

coordinates as

d d o) %)
F (rzgr— tsagrym sy%,u') =0 for (r,s)€](0,1)% (1.2.5)

If the boundary-value problem involves at most first-order derivatives and r,, r,, S,
and s, are continuous, the problem expressed in (r,s) coordinates is equivalent to
the original problem. If the BVP involves nth derivatives, the transformation must
satisfy the additional constraints

ortid
odrros?

continuous for all p 4+ ¢ < n. (1.2.6)

A problem may arise when parts of the boundary of the unit square do not
correspond, under the transformation d, to the boundary of D. This occurs when
part of the boundary of the unit square corresponds to a branch cut. If all of
the required derivatives of d are continuous across the branch cut, the appropriate
periodicity conditions are obvious. For example, if the branch cut is the image of
the two sides r = 0 and r = 1 of the unit square and the Jacobian of d extends
smoothly to a function periodic in r {(with period 1) then the appropriate periodicity
condition is that u' must extend smoothly to a function periodic in r. It may be
useful to note in passing that curvilinear grids may also be used for problems, such
as the graphical representation of data on a region with a smooth boundary, where
no differentiation is involved. For such problems the transformation may not need
to be smooth at all; there may be no conditions at all on the Jacobian and its
inverse.

If a sufficiently fine uniform rectangular grid on the unit square and an appropri-
ate difference method are used, an accurate discrete solution to the pfoblem (1.2.1)

may be obtained. The following second-order central difference approximations may



be used for many problems:

—gﬁ = 7 Dot + s, Dot + O(Ar2, Asz)

T

du ' ! 2 2

o ryDosu' + 8y Dosu’ + O(Ar*, As™)
Yy

d*u 202, ! 20 12,1

352 = (rs)*(Du') + 2rps. (D, Dou') + (s,)°(D5u')
T

+ [72(Dorre) + 82(Doerz)|(Dort') + [72(Dorss) + 82(Dossz)](Dosut')

+ O(Ar?, As?)

‘—“2 1.2.7
aigy - TZT,}(DEU') + (rys. — syr2) (D, Du') + 5.8, (D) (1.2.7)
4 [re(Dormy) + 82(Deury))(Dort!) + [r2(Dorsy) + 52(Dos,)] (Do)

+ O(Arz,Asz)
gy = () (D7) £ 28, (D Do) ()" (D)
+ [ry(Do,ry) + SV(DOSTLJ)I(DOTUI) + [ry(Dorsy) + Sy(DOsSu”(DOsu')
+ O(Ar?, As?)
where : | ( |
v{Tris1,8;) —UI{Ti—1,S;
Do,v(ri,s5) = *1 J2Ar 1,5
Dyv(ri,85) = U(ri"s?“)z;:(ri’sj—l)
i+l ) "‘“’2 1354 i—1s .
Dlv(ri,s;) = v(risi; 5;) U(Arr:]) + v(ri-1,85)
Div(ri,s;) = v(ri, 8j41) — QU(AH,;J') + (e, 85-1) (1.2.8)
S
1 1
Ar = ——— and As= ———.
m—1 n—1

The following second-order one-sided differences may in many instances be used

instead of Dg, and/or Dy, for boundary conditions involving first derivatives:

D_,v{r;,s;) = 2u(ry, 55) — Bv(rio1,85) 4 v(rica, sy)

Ar
—v(rize, 8;) + 3v{rip1, 85) — 2v{ry, 5
D+rU(7'ia3j) = v(rive, ;) + "U(Ar” '53) vr SJ)
2.9
2v(ri, ;) — 3v{riys;o1) + v(ri, 85 2) (1.2.9)
D_wv(ri,s;) = A

—v(ri, 8542) + 3v(ri, s541) — 2v(ry, ;)
Ar )

Dyv(ri,sj) =
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Periodicity conditions are easy to discretise on a branch cut that is the image under
the transformation d of two opposite sides of the unit square and the Jacobian
of the transformation extends smoothly to a function periodic in the appropriate
coordinate, r or s. Periodicity is represented by the discrete condition that the

index 7 or j is to be interpreted modulo m — 1 or n — 1:

Periodicity in r:  v(r,s;) = v(rigm-1, ;)
(1.2.10)
Periodicity ins: v(ri,s;) = v(ri, s;4n-1).

1.3 Curvilinear Grid Construction

Many methods have been devised to construct a one-to-one transformation from
the unit square onto a bounded region D in the plane, under which a rectangular
grid on the unit square corresponds to a boundary-fitted curvilinear grid on D.
These methods generally fall into one of three classes: those which construct the
transformation as the solution to a PDE (usually elliptic) with boundary conditions
specifying that the edges of the unit square are mapped to the boundary of D, those
which construct the transformation algebraically as a weighted sum of points on the
boundary or of functions that describe the boundary (and in some cases other points
or functions describing curves interior to D also), and those which construct the
transformation from commonly known coordinate transformations by the appropri-
ate choice of parameters. The latter methods readily provide transformations for
such simple regions as a trapezoid or an annulus, but lack the versatility to handle
regions of general shape. More sophisticated examples are the conformal Schwartz-
Christoffel transformations for general polygonal regions, but these can be written
in closed form only for a small class of regions. Generally, as the shape of the region
becomes more complicated, these methods offer diminishing return for the effort
of finding an appropriate transformation. Algebraic methods are more versatile in
that they can provide transformations for regions whose boundaries néed not be de-

scribed in terms of simple functions. These methods can handle regions of relatively
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complex geometry with a minimum of effort and computation. Methods based on
PDEs are the most versatile and can be used for regions of quite general shape,
but at the expense of the transformation being much slower to compute than one
constructed by an algebraic method. Some PDE methods have the advantage of a
maximum principle that ensures the resulting transformation is one-to-one. Some
algebraic and PDE methods provide control, to a limited degree, over the density
of the curvilinear gridlines. The following sections describe the most popular of
these methods and some of their strengths and their limitations; Thompson [22]

and Eiseman [9] give a more complete survey.

1.3.1 Algebraic Methods of Grid Construction

Given a description of the boundary of D, and in some cases, curves in the
interior of D also, the algebraic methods construct a transformation from the unit
square onto D using various forms of interpolation. These methods are usually
described as they apply to regions in three dimensions. However, to avoid notational
complexity we shall consider only two-dimensional examples. All of these methods
are quick to compute in comparison to the PDE methods. Some of them can handle

regions of quite complicated shape. The simplest algebraic method is the shearing

transformation

d(r,s) = (1 = r)ci(s) + rea(s)

from the unit square onto the region bounded by two curves Cy = {ci(s):0 < s <
1} and the line segments joining their endpoints at s = 0 and at s = 1. This
transformation may be used for any region D whose boundary consists of two line
segments joining the endpoints of two curve segments, provided that functions ¢,
parametrising the curves Cy can be found. If the curved part of the boundary of D is
described only by discrete data points, the parametrisations ¢, may be constructed

as spline functions through the data points. The main strength of this method is
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the speed with which the transformation may be computed, since it requires only
two function evaluations. Its main weaknesses are that it can handle only regions
with at least two straight sides, one opposite the other, and that the transformation
resulting from a region with a convoluted boundary may not be one-to-one; it may
have folds where its Jacobian derivative is singular. Most of the other algebraic
methods are essentially generalisations of the shearing transformation, designed to
overcome one or more of these weaknesses or to provide additional features.
Hermite interpolation is a generalisation of the shearing transformation to allow

control over derivatives of the transformation at the curved boundary segments of

D. For example,
d(r,s) = (1= 37" — 2r¥)cyo(s) + r*(3 — 2r)eg0(s) + r(1 ~ r)%cqy(8) + 73 (1 — r)cyy(s)

allows both d and dd/dr to be specified at r = 0 and r = 1:

d(0,s) = cyo(s), gg(o,s) = ¢11(s)
d(1,s) = cy(s), —g—(:(l,s) = ca1(s).

This control over the derivative at the boundary is useful when coordinate transfor-
mations for two adjacent regions must be found such that their Jacobian derivatives
are identical along their common boundary. Hermite interpolation suffers the same
weaknesses as the shearing transformation.

Another generalisation of the shearing transformation, the “multisurface trans-
formation” proposed by Eiseman [8], provides control over the transformation and

its derivative on curves in the interior of D, so that

od

d(rg,s) = crols), _87(””8) = ¢y ()

may be specified on arbitrary lines 0 = ry,79,...,ry = 1. The multisurface transfor-
mation, like Hermite interpolation, is a linear combination of the functions ¢,y and

¢k with polynomial coefficients; the coefficients of the polynomials are determined
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by a linear system of equations. It maps the unit square onto the region bounded
by C;, Cy and two curves that pass through the points {cxo(0):k = 1,...,N}
and {cg;(1):k = 1,...,N}, respectively. It may be used for regions D of more
complicated shape. Another advantage it has over the shearing transformation is
additional control over the transformation (and over resolution in the r-direction) in
the interior of D. A one-to-one multisurface transformation can be found in many
cases where a one-to-one shearing transformation cannot.

Still another generalisation of the shearing transformation is the “Coons patch,”
[7] or “transfinite interpolation.” The simplest formulation of this,

d(r,s) = (1 — s)ey(r) + sca(r) + (1 — r)es(s) + req(s)
— (1= 8)(1 = r)ci(0) — (1 — s)res(0) — s(1 —r)ey (1) — srea(l),
maps the unit square onto the region D bounded by four curves Cy = {c(s):0 <
s < 1} whose parametrisations are chosen so that they intersect at ¢;(0) = c3(0),
c1{1) = c4(0), c2(0) = c3(1) and c2(1) = c4(1). Like the shearing transformation,
the simple Coons patch is fast to compute, requiring only four function evaluations.
Its advantage is that it can handle a region whose boundary consists of four given
curve segments. It has the same trouble with regions that have convoluted bound-
aries; the resulting transformation may have folds where its Jacobian derivative
is singular. A more general formulation of the Coons patch allows d(r,s) to be
specified on more than two curves in each direction,
d(ri,s) =cyls) fori=1,...,.M
d(r,s;) = cgy{s) forj=1,...,N,

with a specified number of derivatives continuous across these curves. This gener-

alisation can handle regions with more complicated boundaries.

1.3.2 Grid Construction Based on PDEs
PDE methods for construction of coordinate transformations from the unit

square onto a region D are generally more versatile than algebraic methods in
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that they can handle regions of more complicated shape and that they offer greater
control over resolution and skewness. This versatility comes at the expense of high
computational cost. The most popu]ar‘ of these methods construct the transforma-
tion as the solution to an elliptic PDE boundary-value problem. Other methods
use hyperbolic PDEs (Starius [17], for example) or parabolic PDEs.

The best-known elliptic method for construction of a coordinate transformation
is conformal mapping. A conformal map can be found for any simply-connected
region D in two dimensions, as the solution to the Cauchy-Riemann equations

or Js Js or

9z 9y’ 9z By

in the interior of D with boundary geometry (r,s) = ¥(z,y) specified, where ¥ is
a function (to be determined) that maps the boundary of D onto the boundary of
the unit square. By differentiating and combining the Cauchy-Riemann equations,
we get Laplace’s equation V?(r,s) = 0 in the interior of D. With the Cauchy-
Riemann equations as additional boundary conditions these may alternatively be
used in the interior of D. Conformal maps offer no control over resolution in the
interior or on the boundary; gridlines nearby the boundary of D are always more
dense where the boundary is concave than where it is convex. Conformal maps
usually have singularities on the boundary of D where the Jacobian derivative
becomes zero or infinite. For example, the conformal map from a circular disc
onto the unit square is singular at the points corresponding to the corners of the
unit square, and the inverse mapping is singular at the corners of the unit square.
Furthermore, conformal mapping methods do not generalise to three dimensions.
For these reasons conformal maps are not always appropriate.

As a more useful method for generating coordinate transformations, Winslow
[23] proposed using Laplace’s equations V%(r,s) = 0, as in the conformal mapping
method, but relaxing the boundary conditions. The boundary condition (rys) =

¥(z,y) is imposed, with the function W specified; the Cauchy-Riemann equations
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are not imposed at the boundary. Godunov and Prokipov [10] have shown that a
maximum principle guarantees that the Jacobian of the resulting transformation
is nonsingular. This approach has the advantage over conformal mapping that it
allows some control over the transformation near the boundary. In particular the
boundary conditions can be chosen so that corners of D correspond to corners of
the unit square, so that the transformation need not have singuarities. Also, the
transformation is faster to compute since it involves solving only a linear problem.
This method generalises easily to three dimensions. A disadvantage is that the

resulting grid is no longer orthogonal.

The use of elliptic systems for generating coordinate transformations was fur-
ther generalised by Thompson, Thames and Mastin [21] with the inclusion of forcing
terms in the elliptic equations, and branch cuts to allow for multiply-connected re-
gions. The terms f and g in the equations V*(r,s) = (f,g) allow much greater
control over the density of gridlines, not only near the boundary but throughout
the interior. Constraints on f and g have been found so that a maximum principle
still guarantees that the Jacobian of the transformation is non-singular. The intro-
duction of more than one branch cut, as neccessary for many multiply-connected
regions, results in a region D with more than four corners. In such cases some of
the corners of D cannot correspond to corners of the unit square, and the transfor-

mation must have singularities there.

Brackbill and Saltzman [4] generate coordinate systems using a variational for-
mulation. They find the transformation that maximizes a functional I = I, + A, [, +
Aolfy, where I, is a global measure of the smoothness of the transformation, I, is
a global measure of resolution and [ is a global measure of orthogonality. The
Euler equation of this variational problem is an elliptic system of which the system
considered by Thompson is a special case. The variational formulatbion is used to

specify the forcing functions in the elliptic problem. This method provides more
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systematic global control over the resolution and other properties of the grid. This

systematic control makes possible the automatic adaptive generation of grids.
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CHAPTER 2

Composite Grids

Two limitations apply to the use of a single curvilinear grid on a region with a
curved boundary. One is that even on a region with a fairly simmple geometry the
density of gridlines will inevitably be highly nonuniform. For example, a curvilinear
grid for an oblong region with a narrow waist will inevitably have a much higher
density of gridlines in the narrow waist than in some other parts of the region. The
other limitation is that if the region D is not doubly-connected, any transformation
must have a singularity somewhere on the boundary. For example, the Jacobian of
any transformation from the unit square onto a disc (a simply-connected region) will
be singular at some of the corners of the square; if polar coordinates are used, the
Jacobian will be singular all along the side of the square corresponding to the center
of the disc; if a non-periodic transformation which maps the corners of the square
to points on the boundary of the disc is used, the Jacobian will be singular at all
the four corners. Both of these problems can be overcome by the use of composite
grids consisting of several overlapping curvilinear grids. Since the component grids
of a composite grid may be much simpler than a single curvilinear grid for the
same region, many of the methods of curvilinear grid construction discussed in the
Chapter 1 are adequate to construct the component grids. In fact, any region may
be broken up into enough sub-regions so that the shape of each is simple enough

that even the least sophisticated methods may be used to construct the component

grids.
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2.1 Notation for Composite Grids

We shall consider only composite grids in two dimensions, although all of the
concepts extend to three or more dimensions. One-dimensional composite grids may
be useful as models for higher-dimensional composite grids in the study of stability
and convergence of PDE discretisations, but they have no practical advantage over

a single stretched grid for the same interval. So we define composite grids as follows.

Definition 2.1.1 A composite grid for a compact region D in the plane, on a cylin-
der or on a torus is a set of N component curvilinear grids consisting of continuous
transformations d, from the unit square onto sub-regions D, chosen such that the
union of the D, contains D and the union of the boundaries of the D, contains the

boundary of D,
DC UD" and 9D C UBDk, where
k k

Dy = {dk(r,s):0<r <1,0<s <1}, and
and uniform rectangular grids G, on the unit square,

1—1 j5-—1 . )
G, = , =1, me,1=1,...,n% ¢,
me—1 n,—1

for1 <k < N.

The component grids of a composite grid are curvilinear grids as defined in the
Chapter 1. All of the remarks there about branch cuts due to the transformations
and branch cuts on the cylinder or torus apply to these grids. Any region D may
be broken up into enough subregions so that each may have a simple geometry. For
example, a multiply-connected region D in the plane whose boundary consists of
n smooth closed curves may be broken up into a rectangular grid on a rectangle
that encloses D and n annular grids each following one of the boundary curves.
Those parts of the recangular grid which extend beyond the boundary of D can
be ignored. The transformation used for the rectangular grid introdﬁces no branch

cuts. It can be a linear function of (r,s). The transformations used for the annular
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grids can be chosen to map one side of the unit square onto the boundary curve,
the opposite side of the unit square onto a nearby closed curve in the interior of
D and the other two sides of the unit square onto a branch cut. The Jacobian
of each of these transformations extends to a function periodic in the tangential
direction and the transformation can be chosen so that its Jacobian is nonsingular

and continuous, even across the branch cut.

2.2 PDEs on Composite Grids

Consider a PDE boundary value problem

F (%,%,u) =0 for (z,y)€D (2.2.1)

where F represents the PDE in the interior of D and the boundary conditions on
the boundary of D, and it is understood that higher derivatives may be involved.
For each k we can define a function u; which represents u in cartesian coordinates

on the part of the unit square which is mapped by d; onto D,
ug(r,s) = u(dig(r,s)) for dg(r,s) € D. (2.2.2)

If the Jacobian of the transformation d; is non-singular we can use it to express the

problem F in the (r,s) coordinates of each component grid. Let

_ddy (z, =z,
Ji(r,s) = s (yr " ] : (2.2.3)

Then the inverse of Ji(r,s) is
I rs) = [_ﬂy‘“ “Z} = (“‘ v ] . (2.2.4)
ToYe — YpLe Yr T, Sz Sy
With the understanding that by r., r,, s, and s, we mean the functions of (r,s)
which form the inverse of the Jacobian, we can express the boundary value problem

in (r,s) coordinates as

%, d 0 17
F (rz—a‘r— + szfd;,'ryé—r + S”é;"”‘) =0 for dg(r,s) € D. (2.2.5)
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The transformation d; must satisfy the smoothness constraints (1.2.6).

Parts of the boundary of the unit square may not correspond, under the trans-
formation dg, to the boundary of D. A periodicity condition applies on those parts
of the boundary of the unit square which correspond to branch cuts. To specify
the problem completely we will in general need to impose matchiné conditions on
the remaining parts of the boundary of the unit square. Actually since some parts
of the unit square may correspond to the exterior of D and other parts of the unit
square may correspond to parts of D that are represented on other grids, the PDE
and boundary conditions (2.2.5) may apply only on part of the unit square, and the

matching conditions need only be applied on the boundary of this part.

We will in general need to apply matching conditions in the regions of overlap
between the D;. In order to do this in a systematic way it helps to be able to
order the transformations d; so that wherever two or more of the D overlap at
the boundary of D, this occurs at the boundary of the D, with the highest index
k of those involved. Although it is not always possible to order a given set of
transformations in this way, it is always possible to choose an appropriate set of
transformations that can be so ordered. To help in deciding on an appropriate
sequence of transformations, imagine drawing D; in the plane, next drawing D,
erasing that part of D; which overlaps D,, and so on, finally drawing Dy and
erasing those parts of each underlying D, which it overlaps. The result will be that
the entire region Dy remains, along with those parts of each underlying D; which
are not covered by some D; with y > i. If the sequence was chosen properly, the

boundary of D is composed only of visible parts of the boundaries of the Dy.

Figure 2.1 illustrates how an appropriate sequence D, D,, D3 of subregions may
be chosen for a periodic channel D. First D, is chosen to be a rectangle enclosing
D. Then D; is chosen so that it follows the lower boundary of D and overlaps D;.

Finally D3 is chosen so that it follows the upper boundary of D and overlaps both
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D, and D,, with care that it does not overlap the lower boundary of D. If D; and
D, had been chosen in the reverse order, part of the upper boundary of D would

have been hidden and the sequence of subregions would have been inappropriate.

™ M
‘ L !
b T

The Region O Subregion D, Unt Square
o G,
P M P
8
Subregions O, Dy, Dy Subregion D, Unit Square
for G,

T T — ] )

Relevant Parts of 5ubre§ion D, Unit Square
D,, Dy, Dy For 63

B: Boqndar): M: Mtzfc/rin_g P f%_r,‘odicr'fy

Figure 2.1: Overlapping Subregions of a Periodic Channel

Now we are ready to specify the neccessary matching conditions. First we
specify conditions identifying uy with u; on regions of overlap between Dy and the
underlying regions D;. Where Dy overlaps other regions we apply the matching
condition uy(r,s) = uj(dj"l(dN (r,s))), where j is the highest index of those regions
which underlie Dy at dy(r,s). The matching condition is applied énly on those

edges of Dy where neither boundary conditions nor periodicity conditions apply.
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Depending on the type of PDE involved, some higher derivatives of uy and u; may
also need to be matched in the same way. In this way Dy is divided into two parts:
the part (A) where the PDE and boundary conditions are applied and the part
(B) of its boundary where the matching condition is applied. Matching conditions
for the underlying regions are similarly specified. Where region D, overlaps other
regions we apply the matching condition u,(r,s) = uj(d;l(d,-(r, s))), where 7 is
the highest index of those regions which overlap or underlie D; at d;(r,s). The
matching condition is applied on a curve (or curves) chosen so as to divide D; into
three parts: the part (A) where the PDE and boundary condition are applied, the
curve or curves (B) where the matching condition is applied, and a part (C) which
includes any of D; that is exterior to D. Where ¢ > j this curve will lie along
edges of D; on which neither boundary conditions nor periodicity conditions apply;
where ¢ < 7 the curve lies on that part of D; where the PDE and boundary condition
would otherwise be applied. By induction we can demonstrate that it is possible
to cover D with overlapping parts of all the D; where the PDE is applied, each of
which is separated from parts exterior to D by curves where a matching condition

is applied. At this point the problem F is completely specified in (r, s) coordinates.

Figure 2.1 shows how the curves may be chosen where matching conditions
are applied on the three regions Dy, Dy, D of the periodic channel. On D, the
matching condition u,(r,s) = uy(d;'(d;(r,s))) is applied on the lower halves of
curves that separate parts of Dy at the left and right, where the PDE applies,
from a part which extends beyond the boundary or D; the matching condition
u,(r,8) = uz(d;'(di(r,s))) is applied on the upper halves of these curves. On D;
the matching condition uy(r,s) = u;(d;*(dz(r,s))) is applied on a curve which cuts
off part of the top of Dy; the matching condition uy(r,s) = us(d;'(dz(r,s))) is
applied on the remainder of the top edge of D;. On D3 the matching condition

us(r,s) = uy(d;*(ds(r,s))) is applied on parts of the bottom edge of Ds at the
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left and right; the matching condition us(r,s) = uy(d;'(ds(r,s))) is applied on the
remainder of the bottom edge.

Each region Dy is divided into parts of three types: parts (A) where the PDE
and boundary condition apply, curves (B) where matching conditions apply, and
parts (C) which are either redundant (covered by some other D; with y > k) or
exterior to D. The PDE and boundary conditions (2.2.5) are discretised at all of the
gridpoints of Gy which lie in the part of unit square corresponding to the parts (A)
of D;. For example, the difference approximations (1.2.7) may be appropriate.
The discretisation at some of the gridpoints near the curves (B) may involve other
gridpoints not in parts (A). The value of u at these other gridpoints is given by
the matching condition, approximated discretely using bivariate interpolation for-
mulas. The set of gridpoints where the discrete matching condition is applied are
the discrete analogue of the curves (B) of Dy; gridpoints (A), where the PDE and
boundary conditions are discretised, are separated by this set (B) from redundant
and/or exterior points (C), where uy is not defined.

The matching condition

w,(r, s) = up (A5 (du(r, 5))) (2.2.6)

mk~1’ nk——l

may be approximated at the point (ri,s;) = (—’:1— J‘_1> of grid G using the

interpolation formula

uy(ri,s;) = Z (1, 7,7 7V (ri, 850 ) + O(Ar'", As) (2.2.7)
(1.3")
where Ar’ = mk],_l, As' = Wl:?’ (ri,sh) = <"’:kl‘_11,rfk"__11> and ayp is a matrix

of coefficients chosen to provide interpolation from grid Gy onto grid Gj to the
desired order of accuracy. For example, bilinear interpolation of u(r,, s;) from grid
Gy takes a linear combination of u;: at the four gridpoints of G at the corners of
a rectangle with sides of length Ar' and As' centered nearest to the point (r',s') =

d;'(dk(r:,s;)). The weights in the linear combination are the nonzero coefficients of
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app (2,7,7,J') given in Table 2.1, where 6" = (r' —ri. ) /Ar', 6¢' = (s'—s},)/As', and
(1, 55) are chosen such that ¢, — 1 < r'/Ar' <4 and jy—1 < s'/As' < jg. This gives
second-order accuracy (p = ¢ = 2) in equation (2.2.7). Biquadratic interpolation of
ui(r;,s;) from grid Gy takes a linear combination of u; at the nine gridpoints of
G, within a rectangle with sides of length 2Ar' and 2As’ centered- nearest to the
point (r',s'), with the weights given in Table 2.2, where (ij, 7)) are chosen such that
iy — 1.5 < 7'/Ar' <4y — 0.5 and 3} — 1.5 < s'/As' < 3/ —0.5. This gives third-order

accuracy (p = ¢ = 3) in equation (2.2.7).

(ilhjl) akk'(znvjv Z"’j’)
(65 75) (1—06r"){(1-265)
(15 + 1, 7)) or'(1 —6s')
(14,70 + 1) (1 —6r')és
(1 + 1,78 + 1) or'ds’

(', 5" e (7,7,7', 5"
(o — 1,5~ 1) §r'(1 — 67')6s'(1 — 65') /4
(i6s00 — 1) — (14 6r")(1 ~ 6r')8s'(1 — 68') /2
(o + 1,55 — 1) ~(1+ 6r')6r'65'(1 — 65') /4
(1~ 1,5) —6r'(1— 6r")(1 + 65")(1 — 65')/2
(755 Jo) (1+ 6r')(1 — 67')(1 + 65')(1 ~ 65)
(tp + 1,7)) (L+6r)6r'(1+68")(1 — 65')/2
(1o — 1,70 + 1) —67'(1— 6r')(1 + 65')65' /4
(10,06 + 1) (14 6r)(1 — 67')(1 + 6s')6s'/2
(¢ + 1,70+ 1) (1+ 6767 (1 + 6')65' /4

Table 2.2: Biquadratic Interpolation Weights

2.3 Composite Grid Construction
The method used here for the construction of composite grids is a generalisa-

tion of the method used by B. Kreiss [14] to construct two-component composite
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grids for simply-connected regions. Atta and Vadyak [1] also have constructed two-
component composite grids, and show that composite grids are useful for three-
dimensional problems. Benek et al. |2] have constructed two-component composite

grids.

A composite grid for a region D is a set of curvilinear grids for subregions Dy
whose union contains D and the union of whose boundaries contains the boundary of
D. To construct a composite grid for D we (1) decide on the sequence of overlapping
subregions, (2) construct curves forming the boundary of D and of the subregions,
including any branch cuts, (3) use these curves to construct a curvilinear grid for
each Dy, and (4) decide which points on each grid are used for discretisation of the
PDE and boundary conditions, which points are interpolated from other grids, and
which points are not used at all. The first step is somewhat of an art, and would
be difficult to automate. The second and third steps are straightforward, as they
require only choosing the parametrisations ¢; of the curves and the transformations
dy from a small class of available functions and choosing the number of gridlines in
each direction. The fourth step would be tedious except that it has been automated.

The details of these four steps are given below.

The first step in construction of a composite grid for a region D is to decide how
D may be broken up into a sequence of N overlapping sub-regions D; whose union
contains D and the union of whose boundaries contains the boundary of D, so that
the shape of each D, is simple enough that a grid can be constructed for each. A
single grid will suffice if D is simple enough. For example, it is easy to construct
a grid for a convex region with four corners (éomething like a rectangle). It is also
easy to coustruct a grid for an annular region each of whose two boundary curves
deviates only slightly from a circle. However, in general a composite grid consisting
of two or more grids is appropriate and is much easier to construcﬁ than a single

grid for the same region. For PDE boundary-value problems with boundary layers,
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interior layers or other regions where the solution varies rapidly, an appropriate
composite grid consists of fine grids in the regions of rapid variation and coarse grids
elsewhere. The choice of sub-regions will depend on the application. However, the
method outlined in §2.1 applies to a rather general class of problems. In order that
matching conditions may be applied, the sequence of subregions must be chosen in

accordance with the principles given in §2.2.

The second step is to construct curves forming the boundary of D and of the
subregions. We parametrise each curve C; by a smooth function ¢; such that C; =
{ci(£):0 < & < 1}. These functions may be specified analytically if a formula for
the boundary curve shape is known, or by a spline function if only some points on
the boundary are known. In order that each transformation d, may be smooth
and its Jacobian may be nonsingular, we require that the boundary of D; and
any branch cuts consist of smooth curves intersecting at four corners with included
angles smaller than 7, and choose d; so that the corners of the unit square are
mapped to these points. Each side of the unit square is mapped to part of a
curve which falls into one of three categories: (1), those curves C? which form
the boundary of D; (2), those curves CP which have been chosen as branch cuts
ecither of D (in case D lies on a cylinder or torus; i.e., is periodic) or of a subregion
(in case the subregion is annular); and (3), any other curves C! in the interior of
D where two or more subregions overlap. A boundary curve CZ or branch cut
CP of D may form parts of the boundary of more than one of the subregions. In
such a case, since the subregions overlap to cover D, those parts of the boundaries
of the subregions overlap to cover the curve. Other parts of the boundary of Dy
éonsis’c of curves which typically do not form any part of the boundary of another
subregion. Branch cuts of D appear in the plane as pairs of identical curves, shifted
with respect to each other by the corresponding period vector. It is important in

the discretisation of boundary-value problems that the transformations dy from the
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unit square constructed using the parametrisations of these curve should have the
same periodicity and be smooth across the branch cut. To facilitate this we require

that the parametrisations differ by a constant vector, the period vector.

The third step is to construct each component curvilinear grid. We specify
the rectangular grid Gj on the unit square by choosing the numbers n, and n,
of gridlines in each direction. We construct the transformation di from the unit
square onto D using the parametrisations of the curves, segments of which form
the boundary of D,. Each side of the unit square is mapped onto a segment of one
of these curves, and each corner of the unit square is mapped onto an intersection of
two of these curves. In order that each corner may be well-defined, we require that
these intersections not be tangential. Any of the methods discussed in Chapter 1
may be used to construct the transformation. However, since the principal appli-
cation for composite grids is the discretisation of PDE boundary-value problems,
it is usually important to use only those methods which result in a transformation
which is smooth, even across branch cuts. Since enough subregions may always be
chosen so that the shape of each is very simple, even the simplest methods are usu-
ally adequate to construct the transformation d;. In particular, the “Coons Patch”
transformation is guaranteed to be as smooth as the boundary curve parametrisa-
tions. To compute it requires only four evaluations of the curve parametrisations,
so it is very fast. It is easily modified to allow stretched coordinates for boundary

layers and interior layers. For these reasons it is the method of choice in most cases.

The fourth step is to decide which points on each grid are used for discretisa-
tion of the PDE and boundary conditions, which points are interpolated from other
grids, and which points are not used at all. Points where the PDE or boundary
condition may be discretised will be called discretisation points, points which are
interpolated from other grids will be called interpolation points, and points which

are not used at all will be called exterior points. For simplicity it is assumed that the
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PDE and the boundary conditions are both discretised to the same order and that
the order is positive and even. If the discretisation is of order p, a square of points
(on the rectangular grid) with p 4+ 1 points on a side is used in the discretisation.
The discretisation of the PDE is assumed to be centered, while the discretisation
of the boundary condition is assumed to be one-sided. A point may>be an discreti-
sation point if all the neighbouring points required for discretisation of the PDE or
boundary condition are either discretisation points or interpolation points. Inter-
polation is assumed to be of order p, where p > 0. Interpolation of a point on grid k
from grid &' to order p using the formula (2.2.7) requires a square of points on grid
k' with p points on a side. The point on grid & may be an interpolation point if all
the points in the nearest such square on grid &' are discretisation or interpolation
points. An algorithm for finding which points may be discretisation points and
which points may be interpolation points, based on these criteria, is given in Chap-
ter 3. This algorithm attempts to minimize the total number of discretisation and
interpolation points. When the grids overlap sufficiently and the grids are ordered
in accordance with the principles given in §2.2, a PDE boundary-value problem of
the given order can be discretised using the discretisation and interpolation points

of the resulting composite grid.

2.4 Composite Grids for Multigrid

The multigrid method (see, for example, Brandt [5]) is a fast iterative method
for the discrete solution of linear elliptic PDEs. It is especially useful for problems
in which the large number points required for an accurate discretisation precludes
the use of a direct method to solve the resulting linear system of equations. The
multigrid method is usually discussed in the context of a rectangular grid. When
an elliptic problem is discretised on a composite grid, it is transformed into a set

of elliptic problems on rectangular grids in the (r,s) coordinates of each compo-
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nent grid, coupled by interpolation equations. Using this fact, Henshaw [12], [13]

(cf. Appendix 2) has implemented a multigrid algorithm for composite grids by in-
corporating the interpolation equations into the multigrid iteration. This algorithm
uses a finite sequence of related composite grids M’, where M! is the grid on which
the elliptic problem is to be discretised, and M! for | = 2,3,... are successively
coarser composite grids. Corresponding component grids at each multigrid level
are constructed using the same transformation d,. The rectangular grid G} (on
the unit square) of component grid k at multigrid level I contains twice the number
of gridlines in each direction as the corresponding rectangular grid Gﬂc“ at the next
multigrid level. To be precise, the numbers of gridlines in each direction on each
grid at each level are related by m} — 1 = 2(m.™! — 1) and n} — 1 = 2(n}"! - 1).
The multigrid algorithm requires the transfer of data from level [ to levels [ — 1
and [ + 1 at each point where the equation or boundary condition is applied. This
requirement must be taken into account when deciding which points of each grid
at each level are to be used for discretisation of the PDE and boundary conditions,
which points are interpolated from other grids, and which points are not used at
all. Because of this, the composite grids at all levels must be constructed simulta-
neously. The one-level algorithm given in Chapter 3 for finding which points may
be discretisation points and which may be interpolated generalises to any number

of multigrid levels.
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CHAPTER 3

Composite Grid Software

We have developed software for the interactive construction of composite grids
for compact regions in the plane and for regions with cylindrical or toroidal symme-
try. It may be used to specify composite grids consisting of an arbitrary number of
grids. A manual for this software is included as Appendix 1. This software has been
generalised to construct sequences of composite grids for use with multigrid meth-
ods. In addition we have developed general-purpose subroutines for using composite
grids in discretising PDE boundary-value problems. These include subroutines for
reading a data file containing a description of a composite grid, for calculating
the coeflicients in the centered second-order discretisation of a linear combination
of derivatives on a nine-point stencil, for interpolating data between the grids of a
composite grid in the regions of their overlap, and for the second-order discretisation
and direct solution of a second-order linear elliptic equation with mixed boundary
conditions on a composite grid. These subroutines have been generalised to act on
multigrid sets of composite grids, and Henshaw [13] (cf. Appendix 2) has generalised

the elliptic solver so that it may use the multigrid algorithm.

3.1 A Program for Composite Grid Construction

We have developed the interactive Fortran program CMPGRD for construction
of a composite grid, consisting of as many component grids as neccessary, for any
compact region in the plane bounded by piecewise-smooth curves. The region may

have cylindrical or toroidal symmetry, i.e., be periodic in one or two directions.
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The region may also be multiply-connected; the boundary of the region may consist
of any number of distinct closed or periodic curves. CMPGRD may be used to
construct the curves forming the boundary of the region, to construct the component
grids for subregions bounded by these and other curves, and to decide which points
on each grid are used for the discretisation of a PDE and its boundary conditions,
which points are interpolated from other grids, and which points are not used at

all. The algorithms for each of these steps are given below.

3.1.1 Construction of Curves

There are two methods by which CMPGRD may be used to constrﬁct the curves
C; that bound a region D and the subregions D, which overlap to cover D. They
may be specified either analytically by a Fortran subroutine supplied by the user or
as spline curves through data points given by the user. Segments of several curves
constructed by either method may be used to specify the four parts of the boundary
of any subregion D, corresponding under the transformation d, to the four sides
of the unit square, and curves specified by different methods may be used for the
same subregion. (CMPGRD is set up so that other methods of curve construction
may be incorporated later with a minimum of difficulty.) Instructions for using
CMPGRD to specify curves are given in §A1.4.2; the computations involved are

explained below.

To specify a curve C; analytically, the user must provide subroutine CURVE,
which, given the curve index 7 and the arcwise parameter ¢ in the range [0, 1], returns
the value (z,y) and the derivative (z¢,y.) of a function c;(¢) which parametrises
C;, and an integer code p; that indicates how the curve is to be used. General
specifications for subroutine CURVE are given in §A1.5.1. For example, if the
boundary of the region D consists of a single closed curve C,, this curve could

be specified analytically by a periodic function ¢; on the interval [0,1]; CURVE
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should return the value ¢;(¢) and the derivative of this function, and the integer
code p; = —1 to indicate that this curve is a boundary curve. One of the subregions
D, used in constructing a composite grid for D might be an annular region that
follows this boundary curve. In that case we would want to find a transformation
d; that maps one side of the unit square onto the curve Cj, the twé adjacent sides
onto a branch cut, and the opposite side onto a curve in the interior of D where D,
overlaps other subregions. The curve forming the branch cut might be labelled C,
and the other curve C;, and these might be specified analytically by functions c,
and c¢3. The branch cut should intersect C; at the point ¢;(0) = ¢;(1) and intersect
C; at c3(0) = c3(1), so that each side of the unit square may be mapped under the
transformation d; onto a part of a curve parametrised on a subinterval of [0,1]. In
general, every periodic curve should be parametrised on the interval {0,1] so that
it intersects a branch cut at each end of the interval. The integer code p, = 2
is used to indicate that curve C, is a branch cut, and that whenever one side of
the unit square is mapped by any transformation d, onto a segment of this curve,
the opposite side of the unit square will be mapped onto the same segment of the
same curve. In general, branch cuts occur as pairs of identical curves, so that if C;
is a branch cut then there must be a corresponding curve C;, identical to C; but
possibly shifted with respect to it by a constant vector. This correspondence would
be indicated by p; = 7 and p; = 7, of which p, = 2 is a trivial case. The integer code
p3 = 0 is used to indicate that the closed curve C; in the interior of D is neither a

boundary curve nor a branch cut.

CMPGRD may be used to specify a curve as a cubic spline through data points
given by the user either in a data file or through the use of interactive graph-
ics. Curves specified in this way are numbered consecutively in the order they are
specified, following the highest-numbered curve that was specified analytically by

subroutine CURVE. At the time a curve is to be specified, it must be declared as
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either a boundary curve, a branch cut or an interpolation curve, and it must be
declared whether the curve is to be periodic or not. Each “knot” through which
the spline is drawn may be specified either directly by giving its (z,y) coordinates
or indirectly by giving the coordinates of a point nearby another curve and taking
the knot to be the nearest point on that curve. A nearby point on the nearest
curve is determined by a global minimization over a large number (typically 100) of
points on each of the previously-specified curves. The nearest point on that curve
is determined using a bisection iteration. By this method it is possible to insure
that the new curve intersects another particular curve, and that the intersection
is at an endpoint of the new curve. In particular, if the new curve was declared
to be periodic, the first knot must be a point on a branch cut, and the last knot
will be taken to be the corresponding point on the opposite branch cut; if the two
branch cuts coincide, the first and last knots are identical and the curve is a closed
curve. At least two knots are required to specify a non-periodic curve; a cubic
spline éurve is constructed which passes through each of the knots in the order they
were entered, with zero second derivatives at the end-points. At least four points
are needed to specify a closed periodic curve, and at least two points are needed to
specify a periodic curve with distinct endpoints; in either case, a cubic spline with
periodic boundary conditions is constructed which passes through the knots in the
order they were entered, after the last point has been corrected to be the periodic
image of the first point. In all cases, the paranetrisation of the spline function is
chosen so that at the knots, its parameter (independent variable) is proportional to
the polygonal arc-length from the initial end-point through the knots. Since only
one new curve may be specified at a time, new pairs of distinct branch cuts cannot

be specified; any new branch cut is paired with itself.
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3.1.2 Construction of Grids

A grid for each subregion D, of D is constructed in several steps. First, the
boundary of Dy is specified as four segments of intersecting curves. Second, a
mapping from the unit square onto Dy is chosen. Third, a stretching function is
specified which maps the unit square onto itself, to allow some freedom to resolve
boundary and other layers. The transformation d; is obtained by first applying
the streching, if any, and then the mapping. Fourth, the number of gridlines in
each direction is specified. These steps are explained below. Instructions for using

CMPGRD to perform these steps are given in §A1.4.3.

The boundary of the subregion D, is specified as four segments of intersecting
curves; each side of the unit square is mapped under the transformation d; onto
one of these segments. In order that these intersections be well-defined, only non-
tangential intersections may be used to determine them. CMPGRD may be used
to specify these segments in terms of data points given by the user either in a
data file or through the use of interactive graphics, as follows. First, é curve C; is
chosen by giving the coordinates of a point nearby that curve. The nearest curve is
determined by a global minimization over a large number (typically 100) of points
on each of the curves. Then each endpoint of the segment of C; is chosen by giving
the coordinates of a point nearby the intersection of C; with another curve C; or
nearby an endpoint of C;. A nearby point on the nearest curve is determined by
global minimization over a large number of points on each of the curves. If the
given point is nearby the point ¢;(&) on C;, the endpoint of the segment is taken
to be the endpoint of C; nearest to ¢;(&) in terms of £. Otherwise, if the given
point is nearby the point ¢;(£;) on C; (with j # 7), the endpoint of the segment is
taken to be the nearest intersection of C; and C;. This intersection is determined
by first finding a point ¢;(&;) on C; nearby c;(&;) using a global minimiza‘cion over

points on C;, and then iterating simultaneously on &, and &; by Newton’s method
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until the intersection ¢;(&;;) = ¢;(&;;) is accurately found.

When four curve segments have been specified that together form the boundary
of a subregion D, of D, we can use these to construct a mapping from the unit
square onto Dy;. To construct the mapping it is only necessary to associate each
side of the unit square with a curve segment and to choose the ty>pe of mapping
to be constructed from this boundary data. First, a side of the unit square is cho-
sen. Second, a curve segment is chosen by giving the coordinates of a point nearby
that segment. The nearest segment is determined by a global minimization over a
large number (typically 100) of points on each of the segments. Third, the orien-
tation of the segment is chosen so that each endpoint of the segment corresponds
to the appropriate corner of the unit square. CMPGRD checks that the segments
associated with each side of the unit square are compatible with each other. In par-
ticular, it checks that each corner of the unit square corresponds to the intersection
of two curve segments at their endpoints, and that if one side of the unit square
corresponds to a segment of a branch cut then the opposite side of the unit square
corresponds to the identical segment of the opposite branch cut. When all sides of
the unit square are associated with compatible curve segments, parametrisations of
the curve segments may be used as boundary data to construct the the mapping
from the unit square onto D;. Although many types of mappings could be con-
structed, CMPGRD offers only one, a “Coons Patch” [7], also known as transfinte
interpolation. . This mapping is a linear combination of points on four segments of
curves which form the boundary D,. To avoid problems with notation, suppose we
have numbered the curves so that segments of curves C; and C, form two opposite

sides of the region D, and segments of C; and C,4 form the other two sides, so that

these curves intersect at

01(513) = Cs(fsl), C1(§14) = 04(541),

(3.1.1)
Cz(fzs) = 03(532), 02(524) = 04(542)-
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CMPGRD uses the Coons patch defined by
(z,y) = (1 — u)er(&iz + (E1a — E13)t) + uca(€as + (€24 — E23)t)
+ (1 —t)es(€sr + (Ea2 — Esr)u) + teg(Ea + (€a2 — En)u)

— (1 —u)(1 —t)ey(E1s) — u(l — t)eqa(bgs) — (1 — u)tes (€1) — utcy(€a4)
(3.1.2)

CMPGRD is set up so that other methods of grid construction may be incorporated
later with a minimum of difficulty. The only restrictions are that the mapping may
be evaluated anywhere on the unit square (not just at gridpoints), that it be smooth,
and that its Jacobian be invertible wherever D}, overlaps another subregion of D. If
the composite grid is to be used for discretising a PDE boundary-value problem, the
Jacobian must be invertible everywhere in the intersection of D, and D. CMPGRD
checks the Jacobian determinant of the mapping for zeros and changes of sign by
evaluating it on a 40 point by 40 point grid on the unit square; if no zeros or changes
of sign are found at these points, it searches for zeros or changes of sign nearby the
point where the smallest value of the determinant was found.

In order to allow some freedom to construct grids that resolve boundary layers
and interior layers, the transformation d from (r, s) coordinates on the unit square
to (z,y) coordinates is constructed as the composition of two functions, namely, a
“stretching” function from (r, s) coordinates on the unit square to (¢, u) coordinates
on the unit square (which maps the unit square onto itself), and the mapping func-
tion from (t,u) coordinates to (r,y) coordinates as constructed above. Although
many different stretching functions could be useful,‘CMPGRD provides only inde-
pendent exponential stretching functions in the r and s directions. Each of these is

a function of the form

RS » AU RTA0)

13 [oi(1) — 0:(0)]

(3.1.3)

where

o;(t) = a; tanh b;(t — ¢;) (3.1.4)
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if the problem is not periodic in r, and
0i(t) = a; tanh b; (t — ¢;) + Z a;[tanh b;(t — ¢; — j) + tanh b;(t — ¢; + j)]  (3.1.5)
=1
if the problem is periodic in r. Using trigonometric identities, the infinite series

(3.1.5) may be written as

2 a; sinh 2b;(t — ¢;)
() = a; tanh b;( _ 3.1.6
oilt) = aitan +Zcosh2l) —¢;) + cosh 275b; ( )

j=1
which converges quickly and requires only three evaluations of hyperbolic functions
(not including the constants cosh 25b;). Each term o;(t) has three free parameters:
the weight a;, the exponent b; and the location ¢;. Each term produces a stretching
in the ¢ coordinate centered at ¢ = ¢;. That is, the image in the (t,u) plane of a
uniform grid in the (r,s) plane is a nonuniform rectangular grid with a maximum
in density of gridlines for ¢ near each ¢;. The density of gridlines in the ¢-direction
at the point (¢,u) is proportional to the derivative r'(t), and may be adjusted by
varying the parameters a;, b; and ¢; in each term. In particular, a; is approximately
the ratio of the number of gridliﬁes in the stretched region of the grid near ¢; to the
total number of gridlines in unstretched regions, while b, is approximately the ratio
of the density of gridlines near ¢; to the density of gridlines in unstretched regions.
If the problem is periodic in r, an infinite serics of correction terms is needed to
ensure that the derivative ¢'(r) of the stretching is periodic. For example, if there
is one term in the stretching (n = 1), and we choose ay = 1, b; = 1 and ¢; = 0, the
¢t coordinate is stretched at t = 0; if the problem is periodic in r, the t coordinate is
equally stretched at ¢t = 1. Another sum of the same form expresses s in terms of u,
and together these specify (¢,u) = (¢(r),u(s)), where t(r) and u(s) are the inverses

of functions given by weighted sums of linear and hyperbolic tangent terms.

3.1.3 Construction of Composite Grids

Once the sequences of regions Dy, transformations d; and grids G, have been
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specified, CMPGRD may be used to decide which points on each grid are used for
the discretisation of a PDE and its boundary conditions, which points are inter-
polated from other grids and which points are not used at all. The algorithm for
determining these points is given below. In addition, the (r,s) coordinates (in the
unit square of the grid from which it is interpolated) of each intérpolated point
are computed, so that the coefficients oy in the interpolation formula (2.2.7) may
be calculated. This information, together with the (z,y) coordinates and Jaco-
bian derivative of each transformation d, at the gridpoints of Gy, is sufficient to

discretise a PDE boundary-value problem on the composite grid.

Each point on each grid of the composite grid is used either for the discretisa-
tion of a PDE or its boundary conditions, or as a point where function values there
are interpolated from another grid, or it is not used at all. A gridpoint which may
be used for the discretisation of a PDE or its boundary conditions will be called
a discretisation point, and a gridpoint where function values are interpolated from
another grid will be called an interpolation point. A point which is neither a discreti-
sation point nor an interpolation point will be called an exterior point. A gridpoint
may be a discretisation point if each adjacent point used in the discretisation at
that point is either a discretisation point or an interpolation point. The points used
in the discretisation depend on the order of the discretisation and whether the PDE
or the boundary condition is discretised. It is assumed that centered differences
are used for the PDE, so that, if second-order differences are used to discretise a
second-order differential operator then a nine-point stencil will be required, and
if fourth-order differences are used then a 25-point stencil will be required. It is
assumed that one-sided differences are used for the boundary conditions, using a
stencil of the same size as for the PDE. A gridpoint of G, may be an interpolated
point, interpolated from Gy, if each point in G, from which function‘values at that

point are to be interpolated is either a discretisation point or an interpolation point.
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It is assumed that bilinear or biquadratic interpolation is used, so that a square of

four or nine points, respectively, of G centered nearest to the (r,s) coordinates

(in Gy) of the interpolated point is required for the interpolation.

The first step is to mark each gridpoint on each grid as a discretisation point, so
that, unless it is later determined that the point cannot be a discretisation point, it
may be used in the discretisation formulae of adjacent discretisation points on the

same grid and in the interpolation formulae of interpolation points on other grids.

The second step is to mark non-boundary points that lie close to a boundary
side ‘of another grid as exterior points. (Boundary points and boundary sides are
those gridpoints and sides of the unit square which are mapped onto points and
segments, respectively, of curves which were declared to be boundary _curves.) This
is done so that if a grid covers a hole in a multiply-connected region, then those of

its gridpoints in the hole will be marked as exterior, as they should be.

The third step is to find which grid, if any, each point on each grid can be
interpolated from. Starting with the last (highest) grid and working down to the
first (lowest) grid, each gridpoint on each Gy is examined to find the highest Gy
with k' > k, if any, from which it can be interpolated. For each side of Gy, each
point which is neither a periodic point (a point on a side of the unit square which
is mapped onto a branch cut) nor a boundary point, and cannot be interpolated
from a higher grid, is then examined to find the highest Gy with k' < k, if any,
from which it can be interpolated. The points used in these latter interpolations
are marked as needed for interpolation, so that they may not be later marked
exterior. The end result is that each point that can be interpolated from a higher
grid is marked as interpolated from the highest such grid, each point on each non-
boundary, non-branch-cut side of each grid which can only be interpolated from a
lower grid is marked as interpolated from the highest such grid, and each point used

in the interpolation of a point on a higher grid is marked as needed for interpolation.
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The fourth step is to examine each remaining discretisation point to see if it
can really be a discretisation point. Each grid is swept to find any point which is
currently marked as a discretisation point but some of whose neighbours, required
for discretisation, are neither discretisation points nor interpolated points. Such
points are then marked as exterior points. If any of these points has been marked
as needed for interpolation, the composite grid will be useless and CMPGRD gives
an error message to that effect. Each grid is swept repeatedly until no more points
are found which must be changed to exterior points. The end result is that each
point marked as a discretisation point really can be a discretisation point, but that
some of the points marked as interpolated points can no longer be interpolated.
However, provided there is sufficient overlap between the grids, all the interpolation
points needed for discretisation at the remaining discretisation points can still be

interpolated.

The fifth step is to examine each interpolated point to see if it is needed for the
discretisation of any discretisation point or has been marked as needed for interpola-
tion. Starting with the lowest grid and proceeding to the highest, each interpolated
point on each grid is examined. Those interpolated points which are not needed
are marked as exterior points. Those points on higher grids required to interpolate
the remaining interpolation points are marked as needed for interpolation. The end
result is that all of the remaining interpolation points can really be interpolated,
provided there is sufficient overlap between the grids, and that each point needed

for interpolation of some point on another grid is marked as such.

At this point all the points on all the grids are marked truthfully as to whether
they may be discretisation points, interpolation points or neither. However, when
there is a choice, it may be preferable that a point be a discretisation point rather
than an interpolation point, since the system of interpolation equétions may be

better-conditioned if there are fewer interpolation points, and hence fewer equations.
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The sixth step is to examine each interpolation point to sée whether it could just
as well be a discretisation point, and if so, then mark it as such. The end result is
a composite grid with fewer interpolation points.

The seventh and final step is to output to a file all the information about the
composite grid relevant to discretising a PDE boundary-value préblem, namely:
the coordinate bounds of the region D, defining a bounding rectangle to help with
plotting; the number of grids; the number of gridlines in each direction on each
grid; a flag array indicating for each point on each grid whether the point is a
discretisation point, an interpolation point or neither; the boundary conditions on
each side of each grid, indicating also which curve the side is mapped to; a list of
interpolated points on each grid, indicating the grid from which it is interpolated
and the (r,s) coordinates of the point on that grid; the (z,y) coordinates and the
Jacobian derivative at each point on each grid. This file may be read, with the
help of a utility subroutine described in the next section, by a program written to
discretise a PDE boundary-value problem.

The above algorithm spends most of its time in computing the (r,s) coordinates

on one Gy of points on another G;. CMPGRD stores the coordinates

(z,9) = d(rs; s;) :dk( i—-1 j-1 >

mk—l’nk~1

of all the points on all grids, but must calculate the inverses of these transformations
(r',s') = d.}(z,y)

to determine, for example, whether the gridpoint (r;,s;) can be interpolated from
Gy . This function inversion is performed in several steps. First, it is determined
whether (z,y) lies within a previously-calculated rectangle which bounds Dy.. If
not, then the inversion does not proceed. Second, beginning with an arbitrary
gridpoint (7', j') on Gy, a sequence of adjacent gridpoints of Gy is followed which

finds a local minimum of |z — z'| 4+ |y — ¢'|. Third, if this local minimum occurs on
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the boundary of Gy, then |z —z'|+ |y — ¢'| is minimized globally over the boundary
of G, and the second step is repeated. At this point we have found the nearest
point (7', 7'} on Gy in the one norm. Fourth, Newton’s method is used to solve the
equation dy (r',s') = (z,y) starting from the coordinates of the point (i', 5'), taking
periodicity into account when neccessary. If the Newton interations take (r',s')

outside the unit square (beyond a small tolerance), the inversion does not proceed.

3.2 Subroutines for Using Composite Grids

We have developed several general-purpose subroutines for using composite
grids in discretising PDE boundary-value problems. These include subroutine CG-
DATA for reading a data file containing a description of a composite grid, subroutine
DISCRT for calculating the coefficients in the centered second-order discretisation
of a linear combination of derivatives on a nine-point stencil, subroutine INTERP
for interpolating data between the grids of a composite grid in the regions of their
overlap, and subroutine SOLVER for the second-order discretisation and direct so-
lution of a second-order linear elliptic equation with mixed boundary conditions on
a composite grid. The use of these subroutines is outlined below.

CGDATA is a Fortran subroutine that reads a file containing the description of
a composite grid and stores it in a form that can be used by other composite grid
subroutines.

DISCRT is a Fortran subroutine that, given a point (z,7) on G4 and a set of
coeflicients cgz, €y, €yy, €z, €y and c., computes the weights for the nine points in

the centered second-order discretisation of the operator

o + o o 9 + 9 + (3.2.1
Cox 7o Cr-— — ¢ Wi

L= SN
Cau dzdy T oy* i oz

on Gy using the difference approximations (1.2.7) and (1.2.8). This subroutine is

meant as a prototype to help in discretising PDE problems.
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INTERP is a Fortran subroutine that, given a function defined on the discreti-
sation points of a composite grid, computes interpolated values of the function at
the interpolation points using bilinear or biquadratic interpolation formulae. If
the interpolation formulae for any of the interpolation points involve interpolation
points on other grids, then the interpolation formulae become a coupled linear sys-
tem of equations. INTERP factors this sparse system using subroutines from the
Yale Sparse Matrix Package (YSMP) [11].

SOLVER is a Fortran subroutine that computes the second-order discretisation

and direct solution of a second-order linear elliptic equation

. 0%y 4 0%y N u N Ju + du + s (3.2.2
Tz - Cg c TN - U = olis
dz? Yozdy Yoyt oz T dy Cet )

with oblique mixed boundary condition

Ju Ju
b, — — + bu = 2.
8$+by8y+ U=y (3.2.3)

using the difference approximations (1.2.7), (1.2.8) and (1.2.9), and bilinear or bi-
quadratic interpolation. SOLVER factors this sparse system using subroutines from

the Yale Sparse Matrix Package (YSMP) [11].
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CHAPTER 4

Applications of Composite Grids

Composite grids are useful in discretising a wide variety of PDE boundary-value
problems by finite-difference methods. The primary .advantage of using a composite
grid rather than a single grid is the flexibility it allows in discretising problems on
regions of complicated geometry and problems with boundary layers and internal
layers. The high degree of control over the density of gridlines in a composite grid
permits accurate discretisation of problems using in some cases only a fraction of
the number of gridpoints a single grid would require. We have developed general-
purpose subroutines for using composite grids in discretising PDE boundary-value
problems. The discretisations of an elliptic boundary value problem with an internal
layer and of a supersonic flow problem with multiple shocks are given as examples

of the uses of composite grids and the capabilities of the software.

4.1 An Elliptic Problem With an Internal Layer

To demonstrate how effectively composite grids may be used in PDE boundary-
value problems with layers of rapid transition, we consider here a second-order
elliptic equation with Dirichlet boundary condition. ‘The coefficients in the equation
are chosen so that the solution will have an interior layer, and the forcing terms and
boundary data are chosen so that the exact solution is known. Numerical results
show that when the internal layer is very sharp, a composite grid can be used to
calculate an accurate solution, while a single rectangular grid cannof; the number

of gridpoints required to resolve the solution on a single grid is prohibitive.
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We consider an elliptic boundary-value problem of the form
a(z,y)Vw —w = f(z,y) (4.1.1)
inside the square D = [~1,1]* with Dirichlet boundary condition w(z,y) = g(z,v),
where a(z,y) = O(1), f(z,y) = O(1) and g(z,y) = O(1), and a(z;y) is bounded

away from zero independently of £ except near the circle of radius one half, where

a(z,y) = O(e?). In particular, we choose

] 2
alz,y) = | =——=—— ] , where
9= (Giren)

_ p+tanhz—’;—1 + tanh 2!

2 and P(z,y) = Vz?+y>

1 4 tanh 51; + tanh %

Q(p)

For positive values of g, Q(r) is a smooth, odd function of r, so a(z,y) is a smooth
function of z and y. For small, positive €, a(z,y) has approximately the value 9
over all of the unit square, except near the circle of radius one half where it drops
to approximately 9¢2. We choose the forcing function and boundary data so that

the exact solution is w = cos 7Q(P(z,y)). In particular we choose

QII 1
(@) " P@
g(z,y) = cosn@, where Q= Q(P) and P = P(z,y).

flz,y) = —(1 +7%) cos 7Q — { }Wsian‘ and

For small, non-zero values of e, w(z,y) and f(z,y) are smooth everywhere except
for O(1) transitions across a layer of width O{e) near the circle of radius one half,
and g(z,y) is smooth everywhere on the boundary of D. In the limit as ¢ — 0
w(z,y) tends to the function which is one inside the circle of radius one half and
zero on the rest of D.

In order to resolve the solution w(z,y) and the coefficient function f(z,y) on a
uniform rectangular grid on D, the numbers n, and n, of gridlines in each direction
must be taken large enough so that the gridline spacing is of the order of the layer

width or smaller. That is,

2 2
Az =—2—" =0(), Ay=——=0(),
re T =06, Ays =0
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and the total number of gridpoints is Ny = nyn, = 0(5“2). For example, if we take

€

Az = Ay =G and e = 41—0 then the total number of gridpoints is N; = 1.6 x 10°.
This number of gridpoints would be needed in order to discretise the problem using
second-order centered differences and obtain an accurate solution.

We can construct a composite grid, consisting of a radially strétched (nonuni-
form) annular grid covering part of D that includes the layer and a uniform square
grid covering the rest of D, which resolves w(z,y) and f(z,y) using a number of
gridpoints which is independent of the layer width e. We construct the composite

grid shown in Figure 4.1 using the two transformations
di(r,s) = (2r — 1,25 — 1)
from the unit square [0,1]* onto D; = D and
d;(r,s) = (0.2 + 0.6T(r))(cos 27s, sin 27s)

from the unit square onto the annulus Dy = {(z,y):0.2 < P(z,y) < 0.8}, where

T'(r) is the inverse of the function

R(1) = t + 3(tanh 21 +ltanh 51;)
1+ tanh 5
The radial stretching function R(t) concentrates gridlines in a layer of width e
around the circle of radius one half. Although a variety of functions could have been
used to achieve the same result, this particular R(t) was chosen because CMPGRD
readily provides stretching functions of this form.
In the new coordinates (r,s) given by the transformations d; and d; the so-
lution has no layer of rapid transition; the problem may be discretised and an
accurate solution obtained using a number of gridpoints which is independent of

€. In the scaled rectangular coordinates given by the transformation d;, equation

4.1.1 becomes
1 \*/8 @&
(§@7> <5ﬁ+a‘;z>wl‘““:f el - (412)
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Fig. 4.1: Comparison of a Single Rectangular Grid and a Composite Grid for an
Elliptic BVP with an Internal Layer
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where wy(r,s) = w(d;(r,s)). The coefficients of both d*w;/dr* and d*w,/ds* in
equation 4.1.2 are O(1) and bounded away from zero independently of ¢, and the
coeficients, the forcing function and the boundary values are O(1) and smooth in
the part of D where the square grid is used. Therefore, the number of gridpoints
needed to accurately discretise the problem on this part of D is independent of €. In

the stretched polar coordinates provided by the transformation d,, equation 4.1.1

becomes

R 2 3211)2 R" 1 sz 1 9 32,“)2 .
<-6Q'> { or? * {.(S(R’)Z-jL .GPR’:l or + (QWpQr 92 —W2 = f(dz(r, 8)),

(4.1.3)

where wy(r,s) = w(ds(r,s)). The coefficient of 8%w;/dr? in equation 4.1.3 is O(1)
and bounded away from zero independently of &, and the coeflicients, the forcing
function and the boundary values are O(1) and smooth for all (r,s) € [0,1]%. There-
fore the number of gridlines in the r-direction needed to accurately discretise the
problem on this part of D is independent of €. Since we know the solution is inde-
pendent of s, the number of gridlines in the s-direction does not affect the accuracy.
Hence, the number of gridpoints needed is independent of €.

Table 4.1 gives a comparison of numerical results for this problem for € in the
range of % to 4% on a single rectangular grid and on appropriately stretched com-
posite grids. It shows that a fixed number of gridpoints may be used to accurately

solve the problem with a composite grid, but not with a singular rectangular grid.

3 Single Grid Composite Grid
00 0062
1/10 0332 0112
1/20 4190 0196
1/40 0733

Table 4.1: Maximum Error

We can discretise the problem using a number of gridpoints independent of ¢
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in the above example only because the ratio R'/Q" is O(1) even where the solution
has a layer of rapid transition. That is, we were able to choose a function R(t) to
specify a transformation of coordinates so that (1) the gridlines are closely spaced
only in the layer where Q' is small, and (2) the density of gridlines in the layer is
high enough to accurately resolve the PDE coefficients and the sollltion on the grid.
In more general problems with layers this is possible only when the location and
width scale of the layers are accurately known. However, even for a problem with a
layer whose location is known only approximately, a composite grid can be used to
accurately discretise the problem with significantly fewer gridpoints than a single

grid would require.

4.2 A Supersonic Flow Problem

A typical feature of supersonic flow is the formation of shocks. In two dimensions
thése are curves across which some component of the flow is discontinuous. In
general these curves may intersect each other and they may appear, move and
disappear as the flow evolves. Wherever the flow is smooth, it may be modelled
by a nonlinear hyperbolic system. However, such a system cannot model shocks
unless, for example, it is regarded as the inviscid limit of a parabolic system, or some
special rules are applied wherever shocks appear. We shall take the former approach,
which has the advantage of being straightforward to apply and the disadvantage of

approximating shocks as layers of rapid transition instead of discontinuities.

Composite grids are well suited to the discretisation of steady supersonic flow
problems. By allowing the use of fine grids in the regions of shocks and relatively
coarse grids where the solution is smooth they significantly reduce the total number
of gridpoints needed to obtain an accurate solution. The position of the shocks
cannot in general be determined a priori, so a composite grid which will resolve

these shocks cannot initially be found. However, an iterative procedure may be used
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to construct such a grid and use it to calculate an accurate steady solution. Since
automatic refinement of composite grids is not currently available, this iteration
requires considerable human intervention. This approach is practical because only
a few iterations are needed in order to construct a composite grid on which the
solution is resolved. This approach is impractical for time-dependenf solutions with

moving shocks since a new composite grid may need to be constructed after every

few timesteps.
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Figure 4.2: A Duct With a Step

To demonstrate how composite grids may be used to discretise a supersonic flow
problem with a steady solution, we look at the problem of supersonic flow in a duct
with a step. This problem is similar to one considered by Woodward and Colella
[24]. In particular we consider a duct extending from —7 to 37 in the z-direction
and from O to 7 in the y-direction, with a curved step extending from (0,0) where
it intersects the bottom of the duct at right angles, to a point near (37,7 /2) at the

downstream end of the duct. The shape of the step is described by
z + 1y = log(1 + 1) for s > 0.

We consider the case of supersonic inflow so that we may specify all components of

the flow at the upstream end of the duct. In particular we specify p = 1.4, v = 3.0,

v=0.0 and p=0.2 at z = —7. At the downstream end the step narrows the duct
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to approximately half its full height, so we may anticipate that the outflow velocity
is higher than the inflow velocity. We assume that the flow at the downstream
end is supersonic and we do not specify any component of the flow at outflow.
We specify that there is no normal flow at solid boundaries. With these boundary
conditions the flow evolves to a steady solution independent of the initial condition.
The main feature of this steady flow is a shock intersecting the bottom wall of the
duct upstream of the step and extending to the top wall of the duct, where it is
reflected. The reflected shock becomes weaker toward the downstream end and
reflects once more from the step before it passes out of the duct.

The Euler equations for compressible flow in two dimensions are

Jdu JF 090G B

—t —— o+ —— =0 4.,2.1
5t "9z By (4.2.1)
where
p pu pv
_ | pu _ I ptopu _ | pw
u= |20, F= | POR L a= | AL (4.2.2)
e u(p + e) v(p + €)

p =density, p =static pressure, (u,v) =velocity and e =internal energy related
to the pressure by the equation of state e = p/(y — 1) + 3p(u? + v*). We would
like to use the Euler equations 4.2.1 to model supersonic flow in a duct with a
step. However, several shocks develop in this flow, and the corresponding solution
of the Euler equations becomes discontinuous. Once discontinuities develop in the
solution, these equations can no longer be used. To circumvent this difficulty, we
add a dissipation term
Jou JF 0G

i It AV 4.2.3
at * dx " dy eV ( )

and consider the limit € — 0. For small € the dissipative term has almost no effect
where u is smooth, but acts to smooth out shocks, where u varies rapidly in space.
To see this, consider the case of a steady solution independent of y, and suppose it

has a layer of width 6 that approximates a shock. That is, |du/dz| = O(|ul/é) =
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O(67Y) and |dF/dz| = O(|F|/6) = O(67') in the layer. This solution satisfies the
equation dF/dz = ed*u/dz? so in the layer we have |du/dz| = O(|F|/e) = O(e™1).
This shows that shocks are smoothed out to layers of width e.

The parabolic system of equations 4.2.3 requires boundary data for all compo-
nents of 1 on the entire boundary. The extra boundary conditions are chosen so
that they do not introduce boundary layers inté the solution where there were none
in the solution to the Euler equations 4.2.1. In particular, we bound the normal
derivative of each component for which we have no other boundary condition. To
bound the normal derivative of a component of the solution at the boundary, we
set the value of the component at the boundary points of each grid equal to its
value on the next line of gridpoints in the interior on the same grid. The boundary

conditions we use are given in table 4.2.

At Inflow At Outflow On Walls

p=14 dp/on bounded dp/on bounded
u = 3.0 d(u,v)/0n bounded (u,v) - m=0

v=0.0 dv/on bounded d((u,v) - t)/0n bounded
p=0.2 de/on bounded de/on bounded

Table 4.2: Boundary Conditions for Equation 4.2.3

We discretise the parabolic system 4.2.3 on a composite grid using leap-frog
time differencing with lagged dissipation and centered second-order differences in
(r,s) on each grid. We use this time-differencing as a relaxation method to find a
steady solution. Biquadratic interpolation is used in the regions of overlap between
grids. An accurate solution can be obtained if the grids are fine enough to resolve
the shock layers smoothly. If the positions of the layers are unknown then fine
grids must be used everywhere and the total number of gridpoints will be O(e7?).
However, if the positions of the layers are known a priori then we can construct a

composite grid with fine grids only where they are needed. This greatly reduces the
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total number of gridpoints.

We use an iterative procedure to calculate the steady solution to 4.2.3 in the
limit € — 0. At the first step in the iteration we take a modest value for € and a
reasonable initial condition such as the potential flow

p=14

2
U =34 —
u—1v =3+ T 2o oriv)

p=0.2
chosen to satis{y the boundary conditions. Using a composite grid composed of only
coarse grids we run the problem until the solution approaches a steady state. For
each subsequent step of the iteration we construct a new composite grid composed of

two coarse grids and one or more fine grids in the regions where the steady solution

from the previous step was least accurately resolved. Then we take a smaller value
for ¢, interpolate the final state from the previous step onto the new composite grid
as an initial condition and run the problem again until the solution approaches a
new steady state. These steps are repeated until a target value of ¢ is reached. In
particular, figures 4.3, 4.4 and 4.5 show the composite grids used and the steady

states obtained with ¢ = 0.5, ¢ = 0.02 and ¢ = 0.015, respectively.
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Fig. 4.3: Composite Grid and Steady State for the First Step (with € = 0.5)
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Fig. 4.4: Composite Grid and Steady State for the Second Step (with € = 0.02)
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Fig. 4.5: Composite Grid and Steady State for the Third Step (with € = 0.015)
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APPENDIX 1
CMPGRD: A Composite Grid Construction Program*

Al.1 Purpose

For many problems that involve the discrete representation of a function on a
two-dimensional region, a single rectangular grid is inappropriate. For example,
a rectangular grid is poorly suited to the discretisation of a PDE boundary-value
problem on any region other than a rectangle, because the boundary of the region
will not in general correspond to a gridline. One alternative is to cover the region
with several overlapping curvilinear grids, each of which is the image, under a
smooth transformation, of a rectangular grid, and chosen so that the boundary of
the region is composed entirely of edges of the curvilinear grids. Using enough of
these transformations and grids it is possible to discretise problems on complicated
regions for which a single grid is inadequate.

CMPGRD is an interactive FORTRAN program for generating composite grids
in the plane, on a cylinder or on a torus. Any compact region with a smooth
boundary can be covered with a composite grid, even a multiply-connected region.
A composite grid for a region D in the plane is a set of smooth transformations
from the unit square to regions in the plane which overlap to cover D, and uniform
grids on the unit square that are mapped by these transformations onto curvilinear
grids in the plane. It provides boundary-fitted coordinates and allows stretched

coordinates for boundary Jayers and internal layers wherever these are needed. The

* A User’s Manual for prograin CMPGRD
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above definition of a composite grid extends easily to regions with cylindrical or
toroidal symmetry, and to n-dimensional regions. Program CMPGRD also could be
generalised to generate n-dimensional composite grids, but at present it is restricted

to two-dimensional regions that can be represented in the plane.

A1.2 Elements of a Composite Grid

The essential elements of a composite grid for a compact region D in the plane,
on a cylinder or on a torus are a set of smooth transformations d;:[0,1)? — R*
chosen such that the union of the images D, of the unit square under d; contains
the region D and the union of the boundaries of D, contains the boundary of D,

and a set of uniform rectangular grids G, on the unit square.
DC|JD; and 0D C|JOD,, where
k k

Dy = {di(r,s):0<r<1,0<s <1}, and

1—1 — 1 . .
G, = ,j r=1,...,mg, ) =1,...,n%p .
mk—l nk—l

The choice of transformations is free to the extent that there is more than one way

to.choose the Dy to cover D and there is more than one way to choose a smooth
transformation d; under which the unit square is mapped onto D;. The choice of
D, is restricted by the requirement that the transformations d; must be smooth.
Just how smooth the di need to be will depend on the specific application the grid
is to be used for. For example, if the grid is to be used to discretise a second-order
partial differential equation, the jacobian derivative of dy must be continuous and
nonsingular for d € D. Anticipating this use, we shall consider only composite
grids composed of transformations d; with continuous, nonsingular jacobians. A
consequence of this restriction is that the boundary of each D must consist of four
smooth sides and four corners with interior angles smaller than m, but even with

this restriction there is considerable frecdom in the choice of the regions D,. The
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boundary of D consists of smooth closed curves; the boundary of Dy consists of

segments of these and other smooth curves. The following sections describe how
these curves may be specified, how D, may be specified in terms of these curves,
and how the transformations d; may be specified in terms of the boundary of Dy.
For the sake of clarity we will first consider only regions D in the plane. The

generalisation to regions on the cylinder or torus is then straightforward.

A1.2.1 First A Simple Example
Most of the concepts involved in constructing a composite grid for any two-

dimensional region are illustrated by the simple case of the unit disc in the plane,
D = {(z,y) € R*: 2% + y* < 1}.

For this region we can construct, for example, a composite grid consisting of two
transformations
dy(r,s) = ((0.4 + 0.67) cos 2ms, (0.4 -+ 0.67) sin 27s))
d,(r,s) = (-0.6 + 1.2r,—-0.6 + 1.2s)
from the unit square [0, 1]* onto the regions
D, = {(z,y):04 < 2 + y* < 1.0}
D, = {(z,y): —0.6 < £ < 0.6, 0.6 < y < 0.6}

as shown in Figure Al.1, and uniform grids

1—1 g5—1 ) . .
G1: e e ;Z:l’_,,,’?,]:l,...,sg
6 32
1—1 7-1 . .
G, = —_— ]t =1,...,13,75=1,...,13
12 12

on the unit square, as shown in Figure A1.2. The two regions overlap, and their
union is the region D, so the two grids and transformations are a éomposite grid

for D. This composite grid can be constructed in three steps:
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(1) Specify parametrisations on [0,1] for the curves forming the boundary of the

images, under the proposed transformations dy, of the unit square.

c4(€) = (—0.6 + 1.2¢,—0.6)
ci(¢&) = (cos2m&,sin27¢E)

cs(€) = (—0.6 + 1.2¢,+0.6)
cz(€) = (0.4cos27m€,0.45in27¢)

es(€) = (~0.6,-0.6 + 1.2€)
cs(€) = (0.4 + 0.6¢,0)
c7(¢) = (+0.6,-0.6 + 1.2¢)
(2) Use these curves to specify the transformations ds. One option is to use a simple
“Coons patch” [7] transformation to specify
di(r,s) = (1 — s)es(r) + sca(r) + (1 = r)cz(s) + reafs)
— (1= )(1 = r)es(0) — (1 —r)es(0) + (1 — s)res(1) — sreg(1)
=[(1 = r)ea(s) + res(s)] + [es(r) — (1 —r)es(0) — res(1)]
= (1 — r)cy(s) + rey(s) = ((0.4 + 0.67) cos 27s, (0.4 + 0.6r) sin 27s)
dy(rys) = (1 — s)es(r) + ses(r) + (1 — r)co(s) + req(s)
— (1 - ) (1 — r)eq(0) — s(1 — r)es(0) + (1 — s)reg(1) — sres(1)
= [(L = r)es(s) + res(s)] + (1 = s)[ca(r) — (1 = r)eq(0) — req(1)]
+ sles(r) — (1 - r)es(0) — res(1))
— (1 - r)els) + req(s) = (~0.6 + 1.2r, —0.6 + 1.25)
(3) Specify the grids G; and G on the unit square by giving the number of gridlines

in each direction on each grid:

my =17, ny=233, my=13, ng=13.

A1.2.2 Regions in the Plane
Consider a compact region D in the plane, with a smooth boundary. In order
to describe the boundaries of regions D, whose union contains D and the union of

whose boundaries contains the boundary of D, we must define three categories of

curves:
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D, D

Figure A1.1: The unit square is mapped by d; and d; onto D; and D,.

S ®w
A & )
74

? X

Figure A1.2: Grids G; and G, are mapped onto curvilinear grids.

(1) The closed curves C? which form the boundary of D. The boundary of a
simply-connected region consists of exactly one such curve; that of a doubly-
connected region consists of two, and so forth. These curves will be referred to
as boundary curves.

(2) Curves C¥ of which a segment is the image of two opposite sides of the unit
square under a periodic transformation d,. Every d; which maps one side of
the unit square onto a segment of one of these curves must be periodic and map

the opposite side of the unit square onto the same segment of that curve. These

curves will be referred to as branch cuts.
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(3) Other curves C;. No segment of one of these curves may lie on the bound-
ary of D or be the image of two opposite sides of the unit square under any
transformation dy.

Every curve used in constructing a composite grid falls into one of these categories.
In order to specify the transformations dj in temis of segments of these curves,

we must parametrise the curves. That is, we must specify continuous functions

¢i:[0,1] = IR? such that

Ck = {ck(f):O S 6 S 1}

For the example of the unit disc we defined parametrisations for one boundary curve

C?%, one branch cut C?r, and five other curves C, c!, CI, Cl and C{. The following

three restrictions on the parametrisations ¢, are neccessary but not sufficient to

ensure that the transformations d; may be smooth and have nonsingular jacobian
derivatives:

(1) The functions ¢, must have continuous, non-vanishing derivatives.

(2) The parametrisation c; of every closed curve C; must be periodic. Without
loss of generality, we may insist that the period be one.

(3) Every closed curve C; must intersect a branch cut and the intersection must not
be tangential. Without loss of generality, we may insist that such an intersection
occur at ¢(0) = c,(1).

In the unit disc example C? and C} were closed curves. Their parametrisations c;

and ¢, were periodic and they intersected curve C{ at ¢;(0) = ¢;(1) = (1,0) and

¢2(0) = c3(1) = (0.4,0), respectively, at right angles to curve C{.

When we have specified and parametrised enough curves so that every edge of
every Dy is a segment of some curve, then we are ready to specify the transforma-
tions dj. To avoid problems with notation, suppose we have numbered the curves
so that segments of curves C; and C, form two opposite sides of Dy, and segments

of C; and C,4 form the other two sides, as indicated in the diagram, so that these
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Figure A1.3: Curves Bounding a Region

curves intersect at

C1(§13) = c3(&s1), C1(§14) = c4(&41),
02(523) = Cs(fsz), C2(§24) = C4(f42)-

Then we must find a smooth transformation d, such that
di(r,0) = c1(&1s + (&1a — &s)r),  di(r,1) = co(bas + (€24 — Eas)r),
de(0,8) = c3(&a1 + (&s2 — &a1)r),  di(l,s) = ca(€ar + (Ea2 — Ear)rT).
It may not be clear how best to choose such a transformation. The simplest option
is a Coons patch, which is a linear combination of points on the edges of Dy, in
particular
di(r,s) = (1 — s)di(r,0) + sdi(r, 1) + (1 — r)di(0, s) + rdi(1,s)
— (1 —8)(1 = r)di(0,0) — s(1 — r)d,(0,1)
— (1 — s)rd,(1,0) — srdy(1,1)
A Coons patch will be adequate if the boundary of Dy, is not too convoluted and the
parametrisations of the curves are appropriate; otherwise, the transformation may
contain folds. This problem can always be avoided by a careful ch(;ice of enough

regions Dy so that the shape of each is simple enough that a Coons patch is adequate.
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Another option is a conformal map. A conformal map from the unit square onto Dy
can always be found, but it is not generally possible to ensure that the corners of
the unit square correspond to the corners of D, under such a transformation. Even
.when this is possible, the transformation will have a singularity at any corner of Dy
that does not form a right angle. Related but more versatile methods exist (23],
[21], [4] to determine a smooth transformation as the solution to a system of elliptic
equations. However, if the boundary of D; is too convoluted, these methods will
result in a highly non-uniform transformation. As a result, these methods have in
practice at most limited advantage over the less sophisticated Coons patch. For the
example of the unit disc we used Coons patches for both d; and d;, but conformal

maps would have given exactly the same transformations in each case.

A1.2.3 Regions on a Cylinder or Torus
In case D lies on a cylinder or torus, we represent these as a strip and a box,
respectively, in the plane. The period strip of the cylinder is specified by a pair of

curves (CF,CY) parametrised by two functions ¢, which differ by a constant vector

c1(€) — e2(§) = ez

and have continuous, non-vanishing derivatives. The parametrisation should be
chosen so that ¢(0) and c,(1) lie on the boundary of D. The period box of the
torus is similarly specified by two pairs of curves (CF', CY) and (CY, CY), each pair

parametrised by two functions ¢, which differ by a constant vector

01(5) - Cz(E) = Cy2, c3(§) - (‘»4(5) = C34

and have continuous, non-vanishing derivatives. In this case, the derivative of ¢£ (§)

should be periodic with period one

dey . dc,
— 1 = A = e 4
dg (S + ) dE (5)7 1’ ’
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and the curves should intersect only at the four points

c1(0) = ¢5(0), e1(1) = €4(0),

c2(0) = ¢3(1), c2(1) = cy(1).
In most cases it is convenient for the curves specifying a period strip or period box
to be straight lines. For example, if D is periodic in x with period a, bounded below

by y = 0 and bounded above by y = 1 then we could specify the period strip by

curves (C¥, C}) parametrised by

Cl(&) = (0’ 5)3 C2(€) = (a’ 5)

These curves do not at present fit into the category of branch cuts (those curves
indicated by the superscript P) defined earlier. In order to accommodate them,
that category is extended to include pairs of curves of which corresponding segments
are images of opposite sides of the unit square under a transformation d; whose

derivative is periodic.

A1.3 PDEs on Composite Grids

The primary use of composite grids is the discretisation of partial differential
equations. With appropriate difference methods they can be used to discretise ellip-
tic, parabolic or hyperbolic PDE boundary-value problems. While a discussion of
difference methods is beyond the scope of this work, the discretisation of a partic-
ular elliptic boundary-value problem is given as an example. Aside from that, the
discussion is limited to how a PDE boundary-value‘ problem may be expressed in
cartesian coordinates on the unit square using the transformations of a composite

grid.

A1.3.1 A Simple Example

Before looking at more general problems, it is instructive to consider the simple
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example of Poisson’s equation on the unit disc with Dirichlet boundary conditions:

A*u  0'u

rt oyt
u = g(z,y) on oD = {(z,y): z* 4+ y* = 1}.

= f(z,y) on D:{(x,y)::c2+y2<1}

This problem may be discretised using the composite grid discussed-earlier, in par-
ticular the transformations

di(r,s) = ((0.4 + 0.6r) cos 27s), (0.4 + 0.6r) sin 27s))
dy(r,s) = (—0.6 + 1.2r, —0.6 + 1.2s)
from the unit square onto the regions
D; = {(z,y):0.4 < 2* + y* < 1.0}

D, = {(z,y): —0.6 <z <0.6,-0.6 <y < 0.6}

t—1 5—1 - .
G, = it =1,...,7,7=1,...,33

r—1 7—-1\ . . ’
Gy=4|—,2—):ii=1,...,13,5=1,...,13
2 {( 125 12 > ? ) J }

on the unit square. We represent the solution u by functions u; and u; on the unit

and grids

square
uy(r,s) = u(dy(r,s)), wuq(r,s) = u(dz(r,s))

and write the boundary value problem in terms of «; and u,. In the polar coordi-

nates defined by d;, Poisson’s equation becomes

? ' 2
1 A%,y 1 O, 1 9%,
g d o
(0.6> ort <0.6(0.4+0.6r)) ar (27r(0.4 n 0_6,)> 5o = 4 (dil(r8))

and in the scaled coordinates defined by d; it becomes

1\? /0% 9%
<§> ( 8r22 + 3322> = f(dy(r,s)).

The boundary condition becomes

ui(1,s) = g(d;(1,s)).
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In order to complete the specification of the problem in (r,s) coordinates and to

make sure that u; and u, agree in the region of overlap, we apply matching condi-

tions
ui(r,) = us (45(di(r,9)))

on the inner edge of Dy,

uy(r,s) = u1(d1_1(d‘2(r’ SD)

on all four sides of D,, and the periodicity condition

' Ju
ul(T,O) = ul(ral)? 35(730) = gg(ra 1)

for 0 < r < 1. A well-conditioned discretisation of the problem can be obtained
using the grids G; and G, on the unit square. Using centered second-order dif-
ferencing for the PDE and bilinear (second-order) interpolation for the matching
conditions, a solution can be obtained which is second-order accurate in the limit
that the number of gridlines in both directions on both grids tends to infinity while
the two transformations remain fixed. This statement is misleading, since in prac-
tice as finer grids are considered, the transformations will be changed in such a
way that the amount of overlap between grids decreases inversely as the number
of gridlines. In this limit biquadratic (third-order) interpolation must be used to

obtain a second-order accurate solution [12, §5.1].

A1.3.2 More General PDEs

Consider an arbitrary PDE boundary value problem

g J
Ir ('a—l’, -a.—y,u> =0 for (IE,y) D

where T represents the PDE in the interior of D and the boundary conditions on

the boundary of D, and il is understood that higher derivatives may be involved.
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Suppose we have a composite grid for D consisting of n transformations d; from

the unit square to regions
Dj = {dk(r,s):0<r <1,0<s <1}

For each k we can define a function u, which represents u on the part of the unit

square which is mapped by d, onto D,
ug(r,s) = u(dg(r,s)) for di(r,s) € D.

If the jacobian of the transformation d; is non-singular we can use it to express the

problem F in (r,s) coordinates. Let

— adk _ Zy xs]
Jk(r,s) - 8(7’,8) - [yr Ys )

Then the inverse of Ji(r,s) is

1 _
-1 . Ye Ts N Tz Ty
Jk (r,S) B I,Ys — YrZs [ —Yr Ly ] B ( Sz Sy ] ’

With the understanding that by r;, r,, s, and s, we mean the functions of (r,s)

which form the inverse of the jacobian, we can express the boundary value problem

in (r,s) coordinates as

0 0] o )
F <r"5; —1—528—8-,”5—; + sy—a—;,uk> =0 for di(r,s) €D.

To specify the problemn completely we will generally need to impose matching
conditions in the regions of overlap between the D,. In order to do this in a
systematic way it helps to be able to order the transformations d; so that wherever
two or more of the D overlap at the boundary of D, this occurs at the boundary of
the Dy with the highest index & of those involved. Although it is not always possible
to order a given set of transformations in this way, it is always possible to choose an
appropriate set of transformations that can be so ordered. To help in deciding on

an appropriate sequence of transtormations, imagine drawing D; in the plane, next
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drawing D, erasing that part of Dy which overlaps D;, and so on, finally drawing
D,, and erasing those parts of each underlying D, which it overlaps. The result will
be that the entire region D,, remains, along with those parts of each underlying D;
which are not covered by some D; with 7 > 1. If the sequence was chosen properly,
the boundary of D is composed only of visible parts of the boundarAies of the Dy.
Now we are ready to specify the neccessary matching conditions. First we
specify conditions identifying u, with u, on regions of uvverlap between D,, and the
underlying regions D;. Where D,, overlaps other regions we can apply the matching

condition
ta(r,8) = e (d; (dar, ),

where k is the highest index of those regions which underlie D,, at d,(r,s). The
matching condition is applied on those sides of D,, which are specified in terms of
curves C! (other than boundary curves and branch cuts). Depending on the type of
PDE involved, some higher derivatives of u,, and u; may also need to be matched
in the same way. In this way D, is divided into two parts: the first part where the
PDE and boundary conditions are applied and the second part a curve where the
matching condition is applied. Matching conditions for the underlying regions are

similarly specified. On region D; we apply the condition

u,(r,s) = u; (d;l(di(r,s))>,
where j is the highest index of those regions which overlap or underlie D; at d;(r, s).
The matching condition is applied on a curve (or curves) chosen so as to divide D;
into three parts: the first part where the PDE and boundary condition are applied,
the second part a curve where the matching condition is applied, and a third part
which includes any of D; that is exterior to D. This curve will lie along sides of
D; which are specified in terms of of curves C' (other than bounda_ry curves and
branch cuts) wherever ¢ > j, while for 7 < j the curve lies on that part of D, where

the PDE and boundary condition are applied. By induction we can demonstrate
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that it is possible to cover D with overlapping parts of all the Dy where the PDE
is applied, each of which is separated from parts exterior to D by parts (curves)
where a matching condition is applied. At this point the problem F is completely

specified in (r,s).

Al.4 Using Program CMPGRD

CMPGRD is an interactive FORTRAN program for generating composite grids
in the plane, on a cylinder or on a torus. It can generate a composite grid for
any compact region with a smooth boundary, or even with a boundary that is only
piecewise smooth (that is, a region with corners). The program and the instructions
given in this manual both rely heavily on the use of an interactive graphics terminal,
but it is possible with practice, patience and a good sketch of the region, to use
the program without a graphics terminal or even in a batch mode. Specification
of a composite grid is accomplished in three steps. First, curves which form the
boundary of the region and of the individual grids are specified. Second, grids and
transformations which form the composite grid are specified in terms of these curves.
Third, the composite grid is specified in terms of these grids and transformations.
Although composite grids are defined in terms of smooth transformations and the
program also represents them internally as such, their primary use is in discretising
PDE boundary value problems. For this purpose CMPGRD produces as output
data a discrete description of the composite grid. This data may then be used by
other programs to provide a finite-diflerence approximation to a PDE boundary

value problem.

Al1.4.1 Getting Started
Program CMPGRD is designed to be used interactively. At every step where it

requires input it either gives instructions or supplies a menu of possible responses.
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When the program starts, it gives the prompt

and waits for a response. If you type
HELP

then the program lists the menu

COMP  Specify a new composite grid.

CURVE Specify a new curve.

EXIT Exit after specifying one or more composite grids.
GRID Specify a new grid.

HELP  Type this list.

PARAMS Specify new parameters.

QUIT

READ Read command input from a file.

SAVE Save command input in a file.

and repeats the > prompt. This menu lists all of the commands accepted after the >
prompt. Any other response will result in an error message suggesting that you type
HELP. The most important commands (other than HELP, of course) are COMP, CURVE
and GRID. The prompt will change to COMP>, CURVE>, GRID> or PARAMS> when the
corresponding command is entered; instructions are given after other commands
whenever input is required. Use of the commands accepted after the > prompt is
explained below.

COMP When one or more grids have been specified, this command is used to specify
a composite grid for a region as a sequence of grids that overlap to cover
the region. If the resulting composite grid is satisfactory then a discrete
description of it may be saved in a data file in a form uséful for discretising
PDE boundary value problems. This command causes the prompt to change

to COMP>, al which point a new menu of recognised commands is available.

A later section of the manual is devoted to the use of this commmand.



CURVE

EXIT

GRID

HELP

PARAMS

QUIT

READ

SAVE
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Curves used as the sides of grids may be specified either by a subroutine
supplied by the user or interactively using the cursor of a graphics terminal.
This command is used to specify spline curves through data points entered
by the graphics cursor. This command causes the prompt to change to
CURVE>, at which point a new menu of recognised commands is available. A
later section of the manual is devoted to the use of this command.

This command is the normal way to finish a session with CMPGRD. If no

composite grid data has been saved in a file yet an error message to that

effect is typed and the > prompt returns.

When several curves have been specified, this command is used to specify
a transformation from the unit square onto a region bounded by segments
of these curves and a uniform grid on the unit square that corresponds to a
curvilinear grid on this region. This command causes the prompt to change
to GRID>, at which point a new menu of recognised commands is available.
A later section of the manual is devoted to the use of this command.

This command types a menu of recognised commands with a brief explana-

tion of each.

This command is used to set the size of the plotting area and parameters
which determine the action taken by CMPGRD when it detects errors. This
command causes the prompt to change to PARAMS>, at which point a new
menu of recognised commands is available. A later section of the manual is
devoted to the use of this command.

This command causes a session with CMPGRD to end immediately.

This command is used to read command input from a file saved with the

SAVE command in a previous run of CMPGRD.

This command is used to save command input in a file for use in later runs

of the program. The resulting file may be edited to remove erroneous input
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or to insert other command input. The command input files saved from
several runs may be combined and used as input to a subsequent run. In
this way the individual curves and grids used to specify a composite grid
may each be specified in separate runs of the program, followed by a run

that specifies a composite grid.

A1.4.2 Specifying Curves

Curves are divided iﬁto three categories according to how they are used in
specifying the grids and transformations of a composite grid. Some curves form
parts of the boundary of the region to be covered by the composite grid. These
are called boundary curves. Segments of some curves or pairs of curves are used as
opposite sides of grids on which the problem is periodic. These are called branch
cuts. Segments of all other curves are used only as sides of grids where they overlap
other grids. Each side of a grid must be a segment of a curve that belongs to only one
of these categories. Adjacent sides of a grid must be segments of different curves, so
the endpoints of these segments are specified as intersections of cﬁrves. To ensure
that these endpoints are well-defined and to avoid the possibility of highly-skewed
grids, these intersections may not be tangential.

CMPGRD provides two methods by which curves may be specified. One is to
to specify a cubic spline curve passing through data points entered using the cursor
of a graphics terminal or from a data file. The other is to use a subroutine (supplied
by the user) which specifies parametrisations for one or more curves. Spline curves
have the advantage that they are easy to use in modelling regions whose boundaries
cannot be described in terms of known functions. Curves specified by subroutine
have the advantage that their parametrisations may be arbitrarily smopth functions,
while cubic splines have discontinuous third derivatives. Grids may be specified in

terms of curves specified by either method, and segments of curves specified by
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different methods may be used as different sides of the same grid. Curves used
as opposite sides of the period strip of the cylinder or the period box of the torus
must occur in pairs. Spline curves may not be used for this purpose since they are
specified only one at a time.

Subroutine CURVE must be supplied by the user. If the para;netrisations of
any curves are to be specified by subroutine, then CURVE gives these parametri-
sations. CURVE also gives the number of such curves, so even if there are none
subroutine CURVE must still be supplied. At the beginning of a session, CMP-
GRD calls subroutine CURVE to find how many curves it specifies. Then it checks
that the parametrisation of each curve has a non-vanishing derivative and that the
parametrisations of pairs of branch cuts have identical derivatives. General specifi-
cations for subroutine CURVE and two examples are given in an appendix.

The CURVE command in the main menu (after the > prompt) is used to specify
curves interactively. This command changes the prompt to CURVE>, at which point
the curves currently specified are plotted for reference and the following menu of

commands is available:

EXIT Exit after specifying a curve.

HELP  Type this list.

QUIT

SPLINE Specify a spline curve.
This menu lists all of the commands accepted after the CURVE> prompt. The use of
these commands is explained below.

EXIT This command is the normal way to return to the main menu and the >
prompt after specifying a curve. If no new curve has been specified yet, an
error message Is typed and the CURVE> prompt returns.

HELP This command types a menu of recognised commands with a brief explana-

tion of each.

QUIT This command abandons the curve currently being specified and returns to
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the main menu and the > prompt.

This command is used to specify a spline curve through data points entered
interactively using the cursor of a graphics terminal. A spline curve is spec-
ified in three steps. First, CMPGRD asks whether the curve is a boundary
curve, a branéh cut or a curve used only for interpolated sidés of grids. Sec-
ond, CMPGRD asks if the problem is periodic on the curve. In particular,
the problem is periodic on any curve which joins corresponding points on a
pair of branch cuts. To help avoid the mistake of trying to specify a grid
two opposite sides of which are incompatible segments of a pair of branch
cuts, CMPGRD will not allow a non-periodic curve to begin or end on a
branch cut. To help avoid the mistake of tryiﬁg to specify a grid one side of
which is a segment of a closed curve which is not parametrised continuously,
CMPGRD will not allow a closed curve to begin or end anywhere except on
a branch cut. Third, CMPGRD asks for points through which the spline
passes. Four or more points are needed to specify a closed curve; other
curves need at least two. Each point chosen may be either the cursor point
or the nearest point on another curve, with the restrictions noted above. Af-
ter all the points on a periodic curve have been entered, CMPGRD checks
that the endpoints are compatible; the first point lies on a branch cut, so
CMPGRD moves the last point to the corresponding point on the opposite

branch cut.

A1.4.3 Specifying Grids and Transformations

The curvilinear grids which make up a composite grid are the images under

smooth transformations of uniform grids on the unit square. To specify a grid we

must specify a uniform grid on the unit square in the (r,s) plane and a transforma-

tion from the (r, s) plane to the (z,y) plane. The uniform grid on the unit square is
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specified by the number of gridlines in each direction. The transformation from the
(r,s) coordinates to (z,y) coordinates is specified in two stages. First, to allow for
stretched coordinates we specify a transformation from the unit (r,s) square onto
the unit (¢,u) square. This transformation will be called the stretching function.
Second, we specify a transformation from the unit (¢;u) square ontok a region D, in
the (z,y) plane bounded by segments of curves. This transformation will be called
the mapping function. The transformation from the unit (r, s) square onto Dy, is the
composition of the stretching and mapping functions. Unless otherwise specified,
the stretching is taken to be the identity function and the transformation is just
the mapping function. Although the transformation could be specified in a single
step, these two steps make stretched coordinates for boundary layers and interior
layers easier to tailor to the needs of a specific problem.

CMPGRD provides a choice of two types of stretching functions from the unit
square in the (r,s) plane to the unit square in the ({,u) plane. One option is
the identity function (¢,u) = (r,s). The other option is an exponential stretching
function. In this case ¢ is a function of r only and u is a function of s only, and
both of these functions have the same form. The inverses of these functions are
weighted sums of a linear function and one or more terms involving hyperbolic

tangent functions. In particular, ¢ is related to r by the function

r(t) = t+ >0 loit) —_Ui(o)]

L+ Y0 e (1) — 0(0)]

where
oi(t) = a; tanh b; (1 — ¢;)
if the problem is not periodic in », and

o;(t) = a; tanh b;(t — ¢;) + Z a;{tanh b;(t — ¢; — 7) + tanh b;(t — ¢; + J)]

j=1 _
if the problem is periodic in r. Each term o0;(¢) has three free parameters: the

weight a;, the exponent b; and the location ¢;. Each term produces a stretching
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in the t coordinate centered at t = ¢;. That is, the image in the (t,u) plane of a
uniform grid in the (r,s) plane is a nonuniform rectangular grid with -a maximum
in density of gridlines for ¢ near each ¢;. The density of gridlines in the t-direction
at the point (t,u) is proportional to the derivative r'(t), and may be adjusted by
varying the parameters a;, b; and ¢; in each term. In particular, a; is approximately
the ratio of the number of gridlines in the stretched region of the grid near ¢; to the
total number of gridlines in unstretched regions, while b; is approximately the ratio
of the density of gridlines near ¢; to the density of gridlines in unstretched regions.
If the problem is periodic in 7, an infinite series of correction terms is needed to
ensure that the derivative t'(r) of the stretching is periodic. For example, if there
is one term in the stretching (n = 1), and we choose‘al =1,b6; =1 and ¢; = 0,
the ¢ coordinate is stretched at ¢ = 0, as shown in Figure Al.4; if the problem is
periodic in r then the ¢ coordinate is equally stretched at ¢ = 1. Another sum of the
same form expresses s in terms of u, and together these specify (¢,u) = (¢(r), u(s)),
where (r) and u(s) are the inverses of functions given by weighted sums of linear

and hyperbolic tangent terms.

CMPGRD provides only one type of mapping function from the unit square in
the (¢, u) plane to the region Dy in the (z,y) plane, namely a Coons patch [7]. This
mapping is a linear combination of points on four Segments of curves which form
the boundary D;. To avoid problems with notation, suppose we have numbered the
curves so that segments of curves C; and C; form two opposite sides of the region
Dy, and segments of C; and Cy4 form the other two sides, so that these curves

intersect at

c1(&is) = e3(&s1),  c1(ua) = c4(&ar),
Cz(fzz) = Cs(f32), Cz(fm) &= C4(f42)-
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Exponential Stretching Functions
n=1, a; =1, b; =5, ¢, =0.
Figure Al.4: Examples of Stretching Functions

CMPGRD uses the Coons patch defined by
(z,y) = (1 — u)er(€as + (&1s — E13)t) + uca (o + (€24 — Ea3)t)

+ (1 = t)es(€ar + (&2 — &an)u) + teg(€ar + (Eao — Ea1)u)

= (L= u)(1 = t)es(€is) — u(l = t)ea(&as) — (1 — u)ter(Era) ~ utea(Eas)
Since the parametrisations of the curves are smooth functions this mapping is also a
smooth function. However, the constraint on the curve parametrisations that their
derivatives not vanish does not imply that the jacobian derivative of the mapping
is nonsingular or that the mapping is locally invertible. For example, if one of the
sides of Dy has zero length then the jacobian will be singular on that side. In this
case the resulting grid may still be useful for discretising a PDE boundary value
problem if this singularity is taken into account. However, even if none of the sides
has zero length the mapping may have folds, in which case it is not locélly invertible

and the resulting grid cannot be used for discretising a PDE. If this problem occurs,
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one remedy is to subdivide the region Dy into two or more overlapping regions and
try again. Despite this difficulty, the Coons patch mapping is still a useful tool.
The GRID command in the main menu (after the > prompt) is used to specify
grids and transformations. This command causes the prompt to change to GRID>, at
which point the curves currently specified are plotted for reference and the following

menu of commands is available:

EXIT Exit after specifying a grid.
HELP Type this list.
- LINES  Specify the number of gridlines in each direction.
MAPPING Select a mapping function (t,u) --> (x,y).
QUIT
SEGMENT Specify a segment of a curve.
SIDE Associate a side of the grid with a segment.
STRETCH Specify a stretching function (r,s) --> (t,u).

This menu lists all of the commands accepted after the GRID> prompt. The prompt
will change to MAPPING> or STRETCH> when the corresponding command is entered:;
instructions are given after other commands whenever input is required. Use of the
commands accepted after the GRID> prompt is explained below.

EXIT This command is the normal way to return to the main menu and the >
prompt after specifying a grid. If no new grid has been specified yet, an
error message is typed and the GRID> prompt returns. |

HELP This command types a menu of recognised commands with a brief explana-
tion of each.

LINES This command is used to specify the numbers m; and 7, of gridlines in the
r and s directions respectively on the unit square.

MAPPING This command is used to select a mapping function and check that its
jacobian is nowhere singular. At this time there is no choice of mapping
function; a Coons Patch is always used. This command causes the prompt
to change to MAPPING>,at\thh.pohﬁ;thefoHo“dngInenu-ofrecognmed

commands is available:
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COONS Use a Coons Patch mapping function.
EXIT Exit after specifying a mapping function.
HELP Type this list.

The COONS command is used to specify the Coons patch mapping function described

above.

If this mapping has a singular jacobian anywhere on the unit square then

CMPGRD types a warning message to that effect.

QUIT

SEGMENT

SIDE

This command abandons the grid currently being specified and returns to
the main menu and the > prompt.

This command is used to specify a segment of a curve that forms one or
more sides of the region in the (z,y) plane that the unit square is mapped
onto. The curve and the endpoints of the segment on the curve are specified
interactively using the cursor of a grap}ﬂcs terminal. First, the curve is
chosen by entering a cursor point on or near it. The curve which passes
nearest to the cursor point will be chosen. Second, the endpoints of the
segment are chosen one at a time by entering cursor points at or near them.
If the nearest curve to the cursor point is the curve already chosen then
the endpoint will be the end of the curve nearest, in terms of its arcwise
parameter, to a nearby point on the curve. Otherwise the endpoint will be a
nearby intersection of the chosen curve and the curve nearest to the cursor
point.

This command is used to specify which segment of a curve is associated
with a side of the unit square in the (r,s) plane. CMPGRD displays the
unit square and the segments that have so far been specified. First, a side
of the unit square is chosen by entering a cursor point on or near it. Next,
the associated segment is chosen by entering a cursor point on or near it.
Finally, the orientation of the segment is reversed, if necessar&, so that each

endpoint of the side corresponds to the proper endpoint of the segment.
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STRETCH This command is used to select a stretching function. The only available
stretching function other than the identity is an exponential stretching. This
command causes the prompt to change to STRETCH>, at which point the

following menu of recognised commands is available:

EXIT Exit after specifying a stretching function.
EXPO Specify an exponential stretching function.
HELP Type this list.

IDENT Use the identity stretching function.

The EXPO command is used to specify an exponential stretching of the type described
above. CMPGRD first prompts for the direction (r or s) in which stretching is to
be specified, then for the number of terms, and finally for the three coefficients a;,
b; and ¢; (discussed in §A1.4.3) for each term 7. If the problem is periodic then the
exponent in each term of the stretching in the periodic direction must be at least
1.0 so that the infinite series of correction terms converges quickly. This command

must be repeated if stretching in both r and s is required.

A1.4.4 Specifying Composite Grids

A composite grid for a region D is a set of smooth transformations from the
unit square onto regions which overlap to cover D, and uniform grids on the unit
square which are mapped by these transformations onto curvilinear grids. To be
useful in discretising PDE boundary value problems, the grids and transformations
comprising a composite grid must be given a hierarchy. That is, the composite grid
is specified as a sequence of grids chosen so that wherever twb or more grids overlap
at the boundary of D, the boundary corresponds to an edge of the grid that occurs
latest in the sequence. Think of the grids as being laid down in sequence, so that
the second grid obscures part of the first grid, the third grid obscures parts of the
first and second grids, and so forth. All of the last grid in the sequence remains

visible. 1f the sequence has been chosen correctly the boundary of D will consist
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only of parts of visible edges of the grids.

The COMP command in the main menu (after the > prompt) is used to specify

a composite grid and to save a discrete description of it in a data file in a form useful

for discretising PDE boundary value problems. This command causes the prompt

to change to COMP>, at which point the following menu of commands is available:

COORD Find coordinates of a point on composite grid.
EXIT Exit after writing out data for composite grid.
GRIDS Specify the sequence of overlapping grids.

HELP Type this 1list.

QUIT

SAVE Save composite grid data in a file.

This menu lists all of the commands accepted after the COMP> prompt. The use of

these commands is explained below.

COORD

EXIT

GRIDS

This command prompts prompts for cursor input of points (z,y) on D and
returns (r,s), such that (z,y) = di(r,s) and k is the highest index of any
grid from which the point can be interpolated. The results are also put into
the log file.

This command is the normal way to return to the main menu and the >
prompt after specifying a composite grid and saving data for it in a file. If
data for a composite grid has not been saved yet, an error message is typed
and the COMP> prompt returns.

This command is used to specify a sequence of overlapping grids that make
up a composite grid for a region D. First, CMPGRD prompts for the
number of grids in the composite grid. Next, it prompts for the sequence
of grids, which must conform to the principle explained at the beginning
of this section. Next, it prompts for the order of the PDE discretisation
and of the interpolation. The order of the discretisation must be an even
positive integer, and it determines the size of the computational molecule.

For example, if the order of the discretisation is two then the computational
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QUIT

SAVE
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molecule will consist of nine points, while if the order of discretisation is
four then the computational molecule will consist of 25 points. The order
of the interpolation must be a positive integer, and it determines the type
of interpolation and the number of points needed for interpolation. For
example, if the order of the interpolation is two then bilineaLr interpolation
can be used, which involves four points, while if the order of the interpolation
is three then biquadratic interpolation will be used, which involves nine
points. After the number of grids, their sequence and the order of the
discretisation and of the interpolation is specified, CMPGRD determines
which gridpoints will be used for the PDE and which for the matching
conditions. If a valid sequence of grids was specified, all other gridpoints
are either redundant or lie outside the region D. Otherwise, the regions of
overlap do not separate all of the parts of the grids where a PDE could be
discretised from parts that are exterior to the region D. CMPGRD plots
those parts of each grid on which the PDE or the matching condition will
be applied, leaving blank all unneeded parts. If the grids were specified in
an invalid sequence or there was insufficient overlap between the grids then
CMPGRD types an error message which reports that one or more of the
grids will be null or that points needed for interpolation were deleted. In
this case the composite grid cannot be used .to discretise a PDE, and the

sequence of grids must be respecified.

This command types a menu of recognised commands with a brief explana-

tion of each.

This command abandons the composite grid currently being specified and

returns to the main menu and the > prompt.

This command is used to save data for the composite grid in a file for later

use by programs that discretise PDI boundary value problems. The format
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of the data in such a file is described in an appendix.

A1.4.5 Specifying Parameters

The PARAMS command in the main menu (after the > prompt) is used to set

the size of the plotting area and parameters which determine the action taken by

CMPGRD when it detects errors. This commmand causes the prompt to change to

PARAMS>, at which point the following menu of recognised commands is available:

BOUNDS Specify new bounds for the plotting region.
DEBUG Specify which items to save debug data for.
ERROR Specify a new error handling procedure.
EXIT

HELP  Type this list.

This menu lists all of the commands accepted after the PARAMS> prompt. The use

of these commands is explained below.

BOUNDS

DEBUG

EXIT

HELP

ERROR

This command is used to specify new bounds for the plotting region. Ini-
tially, bounds of the plotting region are determined by extrema of the curves
defined by subroutine curve, supplied by the user. These bounds may be
inadequate if more curves are to be specified.

This command is used for debugging. Internal variables used in generating
a composite grid may be saved in a readable form in the log file. In addition,
the common blocks may be saved when the program exits.

This command is used to return to the main menu and the > prompt.
This command types a menu of recognised commands with a brief explana-
tion of each.

This command is used to specify a new error handling procedure. Initially
the procedure for handling errors is to crash the j)rogram (to get a traceback)
only on fatal errors. Other errors (such as unrecognised commands) cause

an error message to be typed and control to return to the terminal if a
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command input file was being read at the time. Warnings are typed, but
commands continue to be taken from a command input file if any was being
read at the time. Informational messages are ignored. If the program is run

as a batch job it is best to set the program to crash on all errors.

A1.5 Appendices

The following appendices give specifications and examples of subroutine CURVE,
which must be supplied by the user; of the graphics package, which is specific to the
graphics terminal and operating system; and of the composite grid data file which

CMPGRD produces for later use by programs that discretise PDE boundary value

problems.

A1.5.1 Subroutine CURVE
Subroutine CURVE must be supplied by the user. The details of the subroutine
will vary with the geometry and topology of the region for which a composite grid
is to be generated. General specifications and two examples are given here.
subroutine CURVE(k, s, z,y, zs, ys, kp)

Purpose:

Specify smooth curves ¢ for 1 < k < kinaz, namely C? functions

¢£:(0.0,1.0}— IR? their derivatives and information regarding
their use.

Arguments on input:

k Type: Integer
Range: 0,1,...,kmazx

If k& = 0, subroutine CURVE returns as kp the highest number,
kmaz, for which the subroutine defines a curve. The first call to
subroutine CURVE is with k& = 0, and all subsequent calls are
with 1 <k < kmaz. If k > 1 then k is called the curve number.



—86—

S Type: Real
Range:  [0.0,1.0] (see below)

s is the arc parameter of the curve, and should be in the range
[0.0,1.0]. However, sometimes subroutine CURVE is called with
s outside this range, and although it may be a lot to ask, the
definition of the curve should be extended to accommodate s at
least in the range [—0.1,1.1]. It is not essential that the.deriva-
tive should be continuous on the extended interval. Just keep in
mind that Newton’s method is used extensively and is expected
to work even when it involves calling subroutine CURVE near
the endpoints of the interval [0.0,1.0].

Arguments on output:
T,y Type:  Real

The value of the kth curve function at s. If £ < 1 or k& > kmaz
then z and y need not be defined.

zs,ys Type: Real

The derivative of the kth curve function at s. If K < 1 or k >
kmaz then zs and ys need not be defined.

kp Type: Integer
If kK =0, set kp = kmaz, the highest number for which a curve
is defined by subroutine CURVE. If 1 < k < kmaxz then kp

indicates how curve k is to be used:

(a) If curve k is used as some part of the boundary of the region
to be described, then kp = —1.

(b) If the composite grid is generated for a problem which is
periodic on any of the component grids and curve k is used
as a branch cut on one or two corresponding sides of such a
grid, kp is the number of the curve which forms the branch
cut on the opposite side. In this case the derivatives of curves
k and kp must be equal for each s.

(c) If curve k is used only as an edge of a grid where that grid
overlaps another grid, then kp = 0.

Two examples of subroutine CURVE are given below. The first specifies no
curves at all. The second specifies seven curves, three of which may be used to form

the boundary of an annular region, including a branch cut, and four of which bound

a square.

1 subroutine curve(k,s,x,y,xs,ys,kp)
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This subroutine specifies no curves at all.
kp=0

return

end

subroutine curve(k,s,x,y.xs,ys, kp)
The curves specified here can be used to spec1fy a composite
grid for a disc of radius 1 consisting of two grids: -
(1) an annular grid on the region between circles of radii 0.4
and 1.0 centered at the origin
(2) a rectangular grid on the square [-0.6,0.6]x[-0.6,0.6]
parameter(twopi=2.+3.14159265359)
if(k.eq.0)then
Seven curves are defined.
kp=7
elseif (k.eq.1)then
Curve 1 is the circle of radius 1.0 centered at the origin.
x=cos (twopi+s)
y=sin(twopi+s)
xs=-twopiisin(twopi+s)
ys= twopitcos(twopi*a)
Curve 1 forms the boundary of the region.
kp=-1 '
elseif (k.eq.2)then
Curve 2 is the circle of radius 0.4 centered at the origin.
x=0.4*cos (twopi+s)
y=0.4%sin(tvopi+s)
xs=-twopii044*sin(twopi*s)
ys= twopi#0.4s*cos(twopits)
Curve 2 is the edge of the annular grid which overlaps the
rectangular grid.
kp=0
elseif(k.eq.3)then
Curve 3 joins curves 1 and 2 by a radial line.
x=0.4+0.6+%s
y=0.
x8=0.6
ys=0.0
Curve 3 forms two opposite sides of the annular grid.
kp=3 '
elseif (k.eq.4)then
Curve 4 is the line y=-0.6 for -0.6.1le.x.1le.0.6

x=1.2%8-0.6
y -0.6

=1.2
y8=0.0

Curve 4 is an edge of the rectangular grid which overlaps the
annular grid.

kp=0

elseif (k.eq.5)then

Curve 5 is the line y=0.6 for -0.6.le.x.1e.0.8

x=1.2+8-0.6 -

y=0.6

xs=1.2

ys=0.0

Curve b is an edge of the rectangular grid which overlaps the
annular grid.

kp=0

elseif (k.eq.6)then

Curve 6 is the line x=-0.6 for -0.6.le.y.1le.0.6
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56 x=-0.6

57 y=1.2%8-0.6

58 x8=0.0

59 ys=1.2

60 ¢ Curve 6 is an edge of the rectangular grid which overlaps the
61 ¢ annular grid.

62 kp=0

63 elseif (k.eq.7)then

64 C Curve 7 is the line x=0.6 for -0.6.le.y.le.0.6

65 x=0.6

GG y=1.2+%8-0.6

67 xs8=0.0

68 ys=1.2

69 ¢ Curve 7 is an edge of the rectangular grid which overlaps the
70 ¢ annular grid.

71 kp=0

72 endif

73 return

74 end

A1.5.2 The Graphics Package
All graphic input and output is handled by the following routines, which are
specific to the graphics terminal and operating system and so must be written by
the user. General specifications for these subroutines are given here, along with two
examples of implementations of the graphics package.
subroutine SETUP (ploter)
Purpose:
Initialise graphics package and graphics terminal. This subrou-
tine needs only to set the value of ploter. However, it may
be used for any initialisation required by the graphics package
and/or the graphics terminal.

Calling sequence:

This subroutine is called only once, before any other subroutine
in the graphics package is called.
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Arguments on output:

ploter Type: Integer

(a) If the terminal used does not have graphics capabilities then
ploter = 0. In this case no other subroutines of the graphics
package will be called.

(b) If the graphics terminal used is such that parts of a plot
cannot be erased by plotting them over in the background

colour, then ploter = 1. This is the case for most graphics
terminals.

(c) If the graphics terminal used is such that parts of a plot can
be erased by plotting them over in the background colour,
then ploter = 2. This is case for some raster graphics termi-
nals.

subroutine RESET
Purpose:

Reset the graphics package and terminal. This subroutine may

be used for any resetting required by the graphics package and/or

the graphics terminal.

Calling sequence:

This subroutine is called only once, after which no other subrou-
tine in the graphics package is called.

subroutine STRTPL
Purpose:
Put the terminal into graphics mode.
Calling sequence:
This subroutine is called before each item is plotted. After the
call to STRTPL and before the next call to ENDPLT, no al-
phanumeric output will be sent to the terminal by subroutine
REPLY and no alphanumeric input will be expected by subrou-
tine RQUEST of the input/output package.
subroutine ENDPLT

Purpose:

Take the terminal out of graphics mode.
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Calling sequence:

This subroutine is called after each item is plotted. After the
call to ENDPLT, alphanumeric output to the terminal from sub-
routine REPLY may be sent and alphanumeric input may be
expected by subroutine RQUEST of the input/output package.

subroutine ERASE
Purpose:
Erase the graphics area of the terminal.
" subroutine WINDOW (iw, za, zb, ya, yb)
Purpose:

Set up a linear transformation onto the graphics area. CMP-
GRD often needs to draw two plots to be seen both at the same
time. For this purpose the graphics area is conceptually divided
up so that it contains two square regions called the primary and
secondary windows. The primary window should take up most
of the graphics area; the size of the secondary window is unim-
portant, but the two should not overlap. Subroutine WINDOW
sets up a linear transformation from [za,zb] X [ya, yb] onto one
of two windows.

Arguments on input:

w Type: Integer
Range: 1,2

If tw = 1 then use the primary (larger) window. If tw = 2 then
use the secondary (smaller) window.

za,zb Type: real
Range: za < xb

za and zb are coordinates of the left and right sides of the window
under the linear transformation.

ya,yb Type: real
Range: ya < yb

ya and yb are coordinates of the bottom and top of the window
under the linear transformation.
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subroutine SHADE(sh)

Purpose:

Set colour, intensity or dash pattern for plotting. If the graphics
terminal is capable of plotting in different colours, choose two
different colours for sh = 0.5 and sh = 1.0, and use the back-
ground colour for sh = 0.0, which is used for erasing.. If the
graphics terminal is not capable of plotting in different colours
or intensities then set up a dash pattern distinct from a solid
line for use when sh = 0.5, set the dash pattern to solid for
sh = 1.0 and to null for sh = 0. Bear in mind that items plot-
ted with sh = 0.5 may be plotted over with sh = 1.0, and if
ploter = 2, then items plotted with sh = 1.0 may be plotted
over with sh = 0.5 or sh = 0.0 and items plotted with sh = 0.5
may be plotted over with sh = 0.0.

Arguments on input:

sh Type: real
Range: {0.0,0.5,1.0}

If sh = 0.0, set the colour to the background colour, or set the
dash pattern to null. If sh = 0.5, set the colour to dim or gray,
or set the dash pattern to something distinguishable from a solid
line. If sh = 1.0, set the colour to bright or white, or set the
dash pattern to solid.
subroutine MOVE(z, y)
Purpose:

Move the “pen” point to the image of (z,y) under the linear
transformation set up by the most recent call to subroutine WIN-
DOW. The point (z,y) should be in [za,zb] X [ya, yb], but may
be outside in some unimportant cases.

Arguments on input:

z,y Type: real
Range: |za, zb] X [ya,yb] (see above)

The coordinates of the point.
subroutine DRAW (z, y)
Purpose:

Move the “pen” point to the image of (z,y) as in subroutine
MOVE, and draw a line from the previous “pen” point.
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Arguments on input:

z,y Type: real
Range: |za, zb] x [ya,yb] (see above)

The coordinates of the point.
subroutine MARK(z, y)
Purpose:

Move the “pen” point to the image of (z,y) as in subroutine
MOVE, and draw a small circle or other recognizable symbol
there.

Arguments on input:

T,y Type: real
Range: |za, zb] x [ya,yb] (see above)

The coordinates of the point.
subroutine CURSOR(z, y, key)
Purpose:

Obtain a cursor report from the graphics terminal using its joy-
stick or equivalent, if any, and return the result (X,Y) under
the transformation set up by the most recent call to subroutine
window. Also return a one-character key entered from the key-
board. For example, on a Tektronix graphics terminal this can
be the key that was hit in order to send the cursor report. This
subroutine might be tricky to write since it may require that
input from the terminal be read which is not terminated by a
carriage-return. If this is too difficult or the graphics terminal
has no joystick, then a simple way out is to enter (z,y) and the
key directly from the keyboard using simple read statements.

Arguments on output:
z,y Type: real

The coordinates of the cursor under the transformation set up
by the most recent call to subroutine window.

key Type: character#(+)

key(1:1) should be set to a one-character key entered from the
the keyboard of the terminal.

"I'wo examples of implementations of the graphics package are given below. The

first is an implementation for use with no graphics terminal. This is not of much
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use, since CMPGRD relies heavily on interactive graphics capabilities. Next is an
implementation for use with a Tektronix 4107 graphics terminal. The final two
listings contain system-dependent subroutines used by the latter implementation.

They are for use on computers running the DEC VMS and BSD 4.2 Unix operating

systems, respectively.

I c

2 c Graphics package for use with no graphics terminal.
3 c

4 subroutine setup(ploter)
5 integer ploter

6 ploter=0

7 return

8 entry reset

o entry strtpl
10 entry endplt
11 entry erase
12 entry window
13 entry shade
14 entry move
15 entry draw
16 entry mark
17 entry cursor
18 end

1c

2 C Graphics package for Tektronix 4107 terminal.
3 c

4 subroutine setup(ploter)

5 character buffer«b12,str+3

6 integer ploter,buflen

7 logical alpha

8 common/graph/alpha,xs,x0,ys,y0,buffer buflen
9 data alpha,buflen/.true.,0/

10 call opterm

11 ¢ Select TEK code, clear dialog scroll and set dialog area to 10 lines.
12 call encint(10,str,n)

13 call bufout

14 + (char(27)//'%10"//char(27)//*L2"//char(27)// LL"//str(:n))

15 call erase

16 ¢ Set ploter=2 for raster graphic display

17 ploter=2

18 return

19 end

20

21 subroutine reset

22 character buffer+512,str+3

23 integer buflen

24 logical alpha

a5 common/graph/alpha,xs,x0,ys,y0,buffer,buflen

26 call erase

27 ¢ Clear dialog scroll, set dialog area to 32 lines and select ANSI code.
28 call encint(32,str,n)

29 call bufout
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30 + (char(27)//°LZ’//char(27)//°LL"//str(:n)//char(27)// %!11")
31 call wrterm(buffer,buflen)

32 call clterm

33 return

34 end

35

36 subroutine strtpl

37 return

38 end

39

40 subroutine endplt

41 ¢ Put the terminal back into alpha mode.
42 character buffer+512

43 integer buflen

44 logical alpha

45 common/graph/alpha,xs,x0,ys,y0,buffer,buflen
4G call bufout(char(31))

47 call wrterm(buffer,buflen)

48 alpha=.true.

49 return

50 end

51

52 subroutine erase

53 ¢ Erase the graphics area.

o
N

character buffer:#512

integer buflen

logical alpha
common/graph/alpha,xs,x0,ys,y0,buffer,buflen
call bufout(char(27)//char(12))

el

<

@

<A B I o v o ]
~3

9 call wrterm(buffer,buflen)

Gu return

Gl end

62

63 subroutine window(iw,xa,xb,ya,yb)
64 ¢ Set up a transformation from [xa,xblx[ya,yb] onto a square.
G5 character buffer+bi2

66 integer buflen

67 logical alpha

68 common/graph/alpha,xs,x0,ys,y0,buffer,buflen
[<]s) if(iw.eq.1)then

70 € Use the primary plotting region.
71 ia=256

72 ib=2303

73 ja=1024

74 jb=3071

75 else

76 ¢C Use the secondary plotting region.
77 ia=2816

78 ib=3839

79 ja=1636

80 jb=25669

8l endif

8o xs=(ib-ia)/(xb-xa)

83 x0=ia-xa*x8

84 ys=(jb-ja)/(yb-ya)

85 yO=ja-yarys

86 return

87 end

88

89 subroutine shade(sh)

90 ¢ Set the colour to black, light gray or vhite
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character+3 string
if(sh.le.0.)then
k=0
elseif(sh.1t.1.)then
k=15
else
k=1
endif
call encint(k,string,n)
call bufout(char(27)//°ML*//string(:n))
return
end

subroutine move(x,y)
Move the pen point to (x,y) with the pen up.
character buffer+512,string+b
integer buflen
logical alpha
common/graph/alpha,xs,x0,ys,y0,buffer,buflen
call enccrd(x,y,string,n)
call bufout(char(29)//string(:n))
alpha=.false.
return

end

gsubroutine draw(x,y)
Move the pen point to (x,y) with the pen down.
character buffer+#512,8tring+b
integer buflen
logical alpha
common/graph/alpha,xs,x0,ys,y0,buffer,buflen
if (alpha)then
call bufout(char(29)//char(5))
alpha=.false.
endif
call enccrd(x,y,string,n)
call bufout(string(:n))
return
end

subroutine mark(x,y)
Move the pen point to (x,y) ard drav a small box there.
character buffer+b12,stri+3,str2+5
integer buflen
logical alpha
common/graph/alpha,xs,x0,ys,y0,buffer,buflen
call encint(8,stri,nl)
call enccrd(x,y,str2,n2)
call bufout
(char(27)// M’ //str1(:n1)//char(27)// LH" //str2{(:n2))
return
end

subroutine cursor(x,y,key)
Get a cursor report.
character key+(#),buffer+512,string- (8)
integer buflen,hix,lox,sex,hiy,loy,fex
logical alpha
common/graph/alpha,xs,x0,ys,y0,buffer,buflen
Enable GIN.
call bufout{char(27)// 'IEC1*)
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call wrterm(buffer,buflen)

Read GIN report.

call rdterm(string,len(string))
Reset bypass mode.

call bufout(char(10))
hiy=iand(ichar(string(2:2)),31)
fex=ishft (iand(ichar(string(3:3)),12),-2)
sex=iand(ichar(string(3:3)),3)
loy=iand{(ichar(string(4:4)),31)
hix=iand(ichar(string(5:5)),31)
lox=iand(ichar(string(6:6)),31)
i=128+hix+d+lox+sex
j=128:+hiy+d4+loy+fex

x=(i-x0)/xs

y=(3-y0)/ys

key=string(1:1)

return
end

subroutine encint(i,string,n)
Encode an integer.
character strings ()
ii=iabs(i)
il=iand(ii,1B)
if(i.ge.0)il=ior(it,16)
i2=iand(ishft(ii,-4),63)
i3=iand(ishft(ii,~10),63)
if(i3.ne.0)then
n=3
string=char(ior(i3,64))//
char(ior(i2,64))//char(ior(i1,32))
elseif (i2 ne.0)then
n=2
string=char(ior(i2,64))//char(ior(ii,32))
else
n=1
string=char(ior(i1,32))
endif
return
end

subroutine encecrd(x,y,string,n)
Encode an (x,y) coordinate.
character string:(+),buffer+512
integer buflen,oxl,oy!
logical alpha
common/graph/alpha,xs,xO,ys,yO,buffer,buflen
data oxl,oy1/2+-1/
i=x+x8+x0
J=ytys+y0
nyl=iand(ishft(j,-7),31)
ny2=iand(ishft(j,-2),31)
ny3=iand( j )
nxl=iand(ishft(i,-7),31)
nx2=iand(ishft(i,-2),31)

nx3=iand( i , 3)

n=0

if(ny!.ne.oyi)then
n=n+1

string(n:n)=char(ior(ny1,32))
endif
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n=n+1
string(n:n)=char(ior(ior(ishft(ny3,2),nx3),96))}
n=n+}
string(n:n)=char(ior(ny2,96))
if(nx1.ne.ox1)then
n=n+1
string(n:n)=char(ior(nx1,32))
endif
n=n+1
string(n:n)=char (ior(nx2,64))
ox1=nx1
oyi=nyl
return
end

subroutine bufout(string)
Buffer a string to the terminal.
character string*(+),buffer+512
integer buflen
logical alpha
common/graph/alpha,xs,x0,ys,y0,buffer,buflen
do 10 i=1,len(string)
buflen=buflen+1
buffer{(buflen:buflen)=string(i:i)
if(buflen.ge.512)call wrterm(buffer,buflen)
continue
return
end

subroutine opterm
Open the terminal for read and write.
integer chan,flag,lib$get_ef,sys$assign
common/termio/chan,flag
if(.not.lib$get_ef (flag))stop’Error in OPTERM’
if(.not .sys$assign('sys$output’,chan,,))stop’Error in OPTERM'
return
end

subroutine clterm
Close the terminal for read and write.
integer chan,flag,lib$free_ef ,sys$dassgn
common/termio/chan,flag
if(.not.lib$free_ef (flag))stop’Error in CLTERL’
if(.not.sys$dassgn(%val (chan)))stop’Error in CLTERM’
return
end

subroutine rdterm(buffer,buflen)
Purge terminal input and read the next buflen bytes into buffer
vith no echo and no interpretation of control characters.
parameter(io$_readvblk=49,io$m_noecho=64,io$m_purge=2048)
parameter(iocode=io$_readvblk.or.io$m_noecho.or io$m_purge)
character buffer: ()
integer buflen,chan,flag,trmblk(2),sys$qiowv
common/termio/chan,flag
data trmblk/0,0/
if(.not.sys$qiow(¥%val (flag), %val(chan),%val(iocode)
..., href (buffer),Yval(buflen),, Yref (trmblk),,))
stop’Error in RDTERHK’
return
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subroutine wrterm(buffer,buflen)

Write buflen bytes to the terminal from buffer with no
interpretation of control characters; reset buflen to O.

parameter (io$_writevblk=48,io$m_noformat=256)
parameter{(iocode=io$_writevblk.or . .io$m_noformat)

ch

aracter buffer: ()

integer buflen,chan,flag,sys$qiow
common/termio/chan,flag

if

(buflen.gt.0)then

if (.not .sys$qiow(fval(flag),%val(chan),%val(iocode)
.. href (buffer),%val(buflen),,,,))stop Error in WRTERM’

buflen=0

endif
return

end

#include <sgtty.h>
opterm_()
/* Open the terminal for read and write. #/
{return;}
clterm_()
/* Close the terminal for read and write. #/
{return;}
rdterm_(buffer,buflen)
/# Flush terminal input and read the next
buflen bytes into buffer with no echo. =/
char buffer[]; long *buflen;

{

int n; struct sgttyb stateO,statel;

if (ioctl(0,TIOCGETP,&state0) == -1) printf("error in rdterm");

statel=gstatel;
statel .sg_flags=state0.sg flags+CBREAK-ECHO;

if (ioctl(0,TIOCSETP, &statel) == -1) printf(Yerror in rdterm");
for ( n=0; n<+buflen; n++ )

if (read(0,buffer+n,i) != 1) printf("error in rdterm");
if (ioctl(0,TIOCSETP,&state0) == -1) printf("error in rdterm");
return;
}

wrterm_(buffer,buflen)
/% Write buflen bytes to the terminal

“f

o/

from buffer; reset buflen to 0. +/
char buffer(];long *buflen;
{
it (#buflen == 0 ) return;
if (write(1,buffer, (int):buflen) '= (int) buflen)
printf (*error in vwrterm");
*buflen = 0;
return;
}
long iand_{i,j)
/# integer valued function to return logical AND of i and j #/
/+ i and j are assumed to be 4 byte integers
long #i,#j; {
return(=i&-j);
}
long ior_(i,j)
/+ integer valued function to return logical DR of i and B
/% 1 and j are assumed to be 4 byte integers

i/
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42 long +i,%j; A

44 return(+i]«j);

45 }

46 long ishft_(i,nshift)

47 /# shift the 4 byte integer i by nshift bits «/

48 /% if nshift is negative, right shift end off zero £ill #/
49 /# if nshift is positive, left shift end around =/

<

/+ the routine behaves properly if magnitude of nshift > 32 =/

5

51 long #i,*nshift; {

52 long jshift,nbits,

53 if (#nshift<0) {

54 nbits = (+nshift < -32 ? 32 : -+nshift);

55 jshift = (+i>>nbits) & (0L17777777777>>(nbits~1));
56 }

57 else {

58 nbits = #nshift % 32;

59 jshift = (wi<<mbits) | ( (#i>>(32-nbits))

GO & ((037777TT77T77<<nbits)) );
61 }

62 return(jshift) ;

63 ¥

A1.5.3 The Composite Grid Data File

CMPGRD produces an unformatted data file that contains all the information
about a composite grid that is needed in order to discretise PDE boundary-value
problems on it. This file may be read by a program written to discretise a PDE
boundary-value problem. Its contents are explained below.

One record of four words: za, zb, ya, yb.

The rectangle za < z < zb, ya < y < yb bounds the region D. This
information is useful for plotting functions on the grid.

One record of one word: ng.
ng is the number of component grids.
One record of 2ng words: (my, n,, for k =1,...,ng).

my, and ny are the number of gridlines in the r and s directions, respec-
tively, on grid G,.

One record of ) 17, myny words: (((krijp, fori=1,...,my), for j =1,...,n;4),
for k=1,...,ng).

kr.;. indicates whether the point (7,5) on grid G, is a discretisation
point, an interpolation point or neither. If kr;;; > 0 then the point is a
discretisation point; if k7r;;; < 0 then the point is an interpolation point;
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if krijx = O then the point is not used. The discretisation and inter-

polation points are numbered consecutively by |kr;;,| as first ¢, then
and then k increase. The exception to this is that corresponding points
on corresponding branch cuts are given the same value of kr;;;. In this
way, when a PDE boundary-value problem is discretised on the com-
posite grid, the discrete equation that applies at each discretisation and
interpolation point is given a unique number, with the exception that
the identical equations that apply at corresponding points on branch
cuts share the same equation number.

One record of 5ng words: (bey, (tbey, for i = 1,...,4), for k = 1,...,ng).

bey and 1bey;, indicate the boundary conditions on each side of each grid
Gy. bey is an integer which indicates the directions, if any, in which
grid Gy is periodic. In particular, be, = 0 if grid Gy is not periodic;
ber, = 1 if grid Gy is periodic in the r direction only; be, = 2 if grid Gy is
periodic in the s direction only; and bc, = 3 if grid G, is periodic in both
directions. If ¢be;y, # O then |tbe;y| is the number of the curve that side ¢
of grid G is mapped to. tbe;;, > 0 indicates that side 7 corresponds to a
boundary curve, tbc;, < 0 indicates that side 7 corresponds to a branch
cut, and tbe;; = O indicates that side 7 is only interpolated from other
grids.

Omne record of ng words: (nby, for k =1,...,ng).
nb; is the number of interpolated points on grid Gy.

One record of ) 7, 3nb, words: ((¢bi, Jbig, kb, for 1 = 1,...,nb,), for k =
1,...,ng).

(tb;x, 7bsy) form a list of the interpolated points on grid Gy, and kb
indicates the grid from which each point is interpolated. Each interpo-
lated point of grid Gy, appears in the list as (b, 7b;) for some ¢. The
point (b, 7b;x) is interpolated from grid Gy, .

One record of Y 37, 2nb, words: ((rbi, sbiy, for 1 = 1,...,nb;), for k =
1,...,ng9).
(rbix, sby) are the coordinates of the interpolated point (ib;, 7b;;) on the

grid Gy, from which it is interpolated. The points used for interpola-
tion and their interpolation weights can be computed from (rb,y, sbx).

Omne record of Y 77, 2myn, words: (((zijk, Yk, for 1 = 1,...,my), for j =
1,...,ng), for k =1,...,ng).

(%ijk, vijr) are the coordinates of the point (¢,7) on grid G; under the
transformation d.

Fork=1,...,ng,forj=1,...,n,forv=1,...,my, one record of four words:
TTi5ks YTighs TSijks YSijk-

TTijky YTijk, TSijk» YSijr are the components of the Jacobian derivative
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‘ ] at the point (¢,7) on grid Gy.
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APPENDIX 2

Multigrid on Composite Meshes*

W.D. Henshaw and G. Chesshire
Department of Applied Mathematics 217-50
California Institute of Technology

Pasadena CA 91125

Abstract. The multigrid method is applied to numerical solution of elliptic
equations on general composite overlapping meshes. Computational results show

that good convergence rates are obtained.

Xey words. Composite meshes, overlapping grids, multigrid.

A2.1 Introduction

We describe the application of the multigrid method to the solution of elliptic
partial differential equations (PDIs) on two dimensional regions which have been
discretized using composite overlapping grids. A general purpose code, CGMG,
has been developed (in FORTRAN) which can solve problems on composite meshes
created by the grid construction program CMPGRD, Chesshire [6]. With CMPGRD
the user may create a composite grid containing any number of component grids
at any number of multigrid levels. CGMG can then be used to solve elliptic PDE

boundary value probleins.

* Submitted to SIAM J. Sci. Statist. Comput.
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A composite overlapping grid consists of a number of simpler component grids.
These component grids cover a region and overlap where they meet. Functions
defined on the composite mesh are matched by interpolation at the overlapping grid
boundaries. The problem of generating grids for regions of complicated geometry
can be difficult, especially for those grid generation algorithms which attempt to fit
a single global grid. With a composite overlapping grid, however, the component
grids can be generated almost independently of each other. Each component grid
can be stretched and refined with little effect on the other component grids. The
numerical solution of PDEs on such grids has been e'xamined by, among others,
Starius (18], [19], Reyna [16], Kreiss [14], Atta [1], Benek et al. [2], Henshaw [12]

and Berger [3].

The multigrid method is a fast iterative method for the solution of elliptic
problems. Multigrid utilizes a sequence of grids of varying degrees of coarseness to
accelerate the convergence of the solution on the finest grid. The basic principle
rests on the fact that it is possible to obtain iterative procedures (smoothers) for
which the high frequency components of the solution converge rapidly. This means
that after a few smoothing iterations, the part of the solution yet to converge is

smooth and hence can be accurately solved for on a coarser grid.

In the rest of this paper we outline the implementation of the multigrid algo-
rithm on fairly general composite meshes. Multigrid on a model composite mesh
is described in Stiben and Trottenberg {20} and, for more general two component
meshes, in Henshaw {12]. Numerical results are presented for some test cases. These
results show that the good convergence rates expected {rom multigrid can be ob-

tained on composite meshes.

Acknowledgements. Computations were performed on the Fluid Dynamics
Vax 11/750 at the California Institute of Technology. Support for this work came

{rom the National Science Foundation under contract DMS-8312264 and the Office
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of Naval Research under contract N00014-83-K-0422.

A2.2 Description.

The multigrid code CGMG was written to solve linear, variable coefficient el-

liptic PDEs of the form

(1a) L A*u N A%y N A%y N Ju N du N / inn
a Wi Cop s T Coy ) Ty a cU =
ozt " “Vozoy | Wayr T “op T Way T U o
' 3] 0
(1b) Bu := bzgg + byb-g +bu=g¢ on 9.

Periodic boundary conditions are also allowed. Currently a second order difference
app'roximation' has been implemented.

Let us first describe how the above PDE boundary value problem is discretized
on a composite mesh, without any references to multigrid. The grid construction
program CMPGRD can be used to generate a composite overlapping mesh for the
region {). This mesh is composed of one or more component meshes. See, for
example, the composite meshes of figures A2.1 and A2.2. Fach component mesh
is logically rectangular, although some points in overlap regions are discarded. A
point on a component grid will be one of the following four types :

(i) An interior point where the PDE (1a) should be applied.

(i) A boundary point, which corresponds to 911, where the boundary condition

(1b) holds.

(iii) A point where the solution is matched, by interpolation to the solution on
other component grids. We sometimes call the set of all such interpolation
points the interpolation boundary.

(iv) A point in a region of overlap which is not used.

There are a number of possible ways to generate the discrete approximations to the
PDE (1a) the boundary conditions (1b) and the interpolation equations. The ap-

proach we take is a mapping method and proceeds as follows. Each component grid
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is simple enough so that it can be mapped smoothly to a unit square (coordinates

(r,$)). The PDE can be written in these (r,s) coordinates.

T 82u+ 82u+ 82u+ 8u+ au+cu‘—f
U = Cpp arz Crs aras Cse 832 Cr ar G as ‘ B
du du
Bu = r b“_ bc -
w=b 3 + M tou=g

The coeflicients in these equations depend on derivatives of the mapping. These
derivatives are supplied as output from the composite grid construction program
CMPGRD. The solution of a PDE on a composite mesh can then be considered as
the solution of PDE’s on a sequence of unit squares. The solutions on the squares
are coupled to each other through the interpolation boundaries. Let the discrete
solution at point (4,7) on component grid k be denoted by vi(z,5). Then, for
each k we obtain discrete approximations to the elliptic equation and the boundary

conditions of the form

(2&) Lk’Uk = fk

(Zb) Bkvk = G-

A point (2,7, k) on an interpolation boundary is interpolated from some other com-
ponent grid k'. CMPGRD supplies the position (r',s') of the point (7,7, k) on grid

k'. Hence, standard interpolation formulae for rectangulér grids can be applied :
(2¢) v(i,7) = Z o (2, 5,7, J)oe (7', 7).
g
These equations (2a), (2b) and (2¢) will be written as a single linear system
(3) Av =1,

The vector v of all unknowns will be called a composite mesh function. A is an
example of a composite mesh operator, mapping one composite mesh function to

another composite mesh function.
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The mesh equations (3) can be solved in any number of ways; using multigrid is
but one possibility. If there are not too many equations, the system can be solved
directly. Sparse matrix routines {11] have been used for this purpose. For large
systems iterative methods become attractive. Many standard iterative methods are
applicable. The matrix is not symmetric, however, so that some schemes do not
apply. In general it is best to try and solve all the equations simultaneously, rather
than iterating for too long on one component grid. In Stiiben and Trottenberg
[20] it was shown that an iteration based on the Schwartz alternating procedure
(where the equations on each component grid are solved exactly before updating
interpolation boundaries) is slower and sensitive to the amount of overlap. The
general principle to follow seems to be to iterate in such a way that, at any time,

all equations have converged to about the same degree.

A2.2.1 Multigrid.

The multigrid algorithm can be applied to the solution of the mesh equations
(3). Discussions of the multigrid method in general can be found, for example, in
Brandt [5], or Stiiben and Trottenberg [20].

Once a composite mesh has been constructed using CMPGRD it is a simple
matter to have CMPGRD generate the sequence of coarser composite meshes which
are used for the multigrid algorithm. Figures A2.1 and A2.2 show some composite
meshes which have been generated for multigrid. Denote the finest cofnposite mesh,
level 1, by M and successively coarser meshes by M!, ! = 2.3,.... Note that for
simplicity the composite meshes at the different levels all have the same number of
component meshes. The elliptic PDE boundary value problem can be discretized
on each of the composite meshes M!. Let v! denote th.e composite mesh function

for level I. Then at each level [ there will be mesh equations of the form (3)

(4) Al = £t
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Now let us outline the multigrid algorithm as it applies to composite meshes.

Let v!(p) be the pth iterate in the solution of the mesh equations on the finest mesh

M.

Multigrid Algorithm
while not converged do

smooth v, times
vi(x) « (81)"v!(p)

compute the defect and transfer to the céarser grid
f2 — Rl-*?(fl . Alvl(*))

“solve” the defect equation on the coarser grid
v? (Az)—lfz

correct the fine grid solution from coarse grid solution
vi(xx) « vi(x) + PE~lv?

smooth vy times
vip+ 1)« (81)vi(xx)

end while

This is the basic defect correction scheme. The smoothing operator S!, the
restriction operator R'™% and the prolongation operator P?~! will be described in
the context of composite grids. The defect equation need only be “solved” approxi-
mately. This approximate solution can be obtained by multigrid, in which case the

algorithm becomes recursive. At the coarsest level the equations are usually solved

directly.

Smoothers. The smoothing operator S for composite grids consists of smooth-
ing each component grid and updating the interpolation boundaries. A component
grid may be smoothed with any of the standard smoothers that exist. The program

CGMG allows the user to choose from a number of possibilities including Gauss—
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Seidel, Red-Black-Gauss-Seidel, Zebra line smoothers and alternating Zebra line
smoothers. Each component grid can have a differentv smoother; the smoother
can be tailored to the grid. For example, a particular component grid might be
stretched to resolve a boundary layer, in which case one can use a line smoother in
the appropriate direction.

There is some freedom as to the order of smoothing and interpolation. One pos-
sibility is to smooth all component grids before updating the interpolation bound-
aries :

Smooth first component grid
Smooth second component grid

st =

Smooth last component grid
Interpolate

From experience, however, it seems that a good procedure involves interpolating

after each component grid is smoothed :

Smooth first component grid
Interpolate

o Smooth second component grid .
Interpolate

The latter composite smoother requires more interpolations but this extra work is

usually small compared to the smoothing operations.

Restriction Operators (Fine to Coarse Grid Transfer). The defect com-
puted on a given level is transferred to the next coarsest level by the restriction
operator R'™?. (The superscript 1 — 2 indicates that this operator maps mesh
functions on M' to mesh functions on M?.) A typical restriction operator de-
termines the value at points on the coarse grid as somne weighted aﬂferage of the
surrounding points on the fine grid. We use the so called full weighting restriction.
The defects in the boundary equations are averaged separately from the defects
in the interior equations; boundary defects are averaged along the boundary line.

Since the final stage of the smoothing operation involves an interpolation, the de-



-109-
fects in the interpolation equations are all zero. Hence, no defect need be transfered

at these points.

Prolongation Operators (Coarse to Fine Grid Transfer). The prolon-

gation operator P!

maps the coarse grid solution to the fine grid. This mapping
usually takes the form of an interpolation. We use second order interpolation. In-
terpolation boundary values could be corrected as well. However, once all other
values have been corrected, the interpolation equations can be solved to update the

interpolation boundary. It turns out that less overlap is needed on finer meshes for

the latter approach.

Choice 'of Parameters and Cycle. An important part of the multigrid
algorithm is the choice of the parameters vy, v,, etc. and the choice of cycle. Cycle
is the term used to denote the sequence in which the different levels of grids are
traversed. The progllam dynamically determines the type of cycle and the values
for 1y and v, in a manner similar to that described by Brandt [5]. There are two
basic principles :

(i) Perform smoothing iterations until the smoothing rate (the reduction in

residual per iteration) becomes larger than some value 5, where n ~ .6.
The smoothing typically starts out very fast but then slows down once the
high frequencies have been reduced compared to the low frequencies.

(ii) Return to a finer grid once the residual at this level has been reduced by a

certain factor 6 with é ~ .1. |
Ideally the program should automatically choose the types of component smoothers
a.n.d the parameters n and 6. This could be done, for example, by examining com-
ponent grids for stretching and by monitoring the smbothing rates. A program with
this level of sophistication has not yet been developed. Currently one must make
some educated guesses and then examine the results to determine any changes that

might improve convergence rates.
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Remarks on Grid Construction. For practical reasons the amount of overlap
between component grids is kept fairly small. This reduces the number of compu-
tational points. With sufficient overlap, points on an interpolation boundary can
be explicitly interpolated from non-interpolation points on other component grids.
However, as the amount of overlap decreases the interpolation points may become
coupled through the interpolation equations. In this case a system of equations
must be solved to obtain values on the interpolation boundaries in terms of other
values. Of course, as the overlap goes to zero these equations may become singular.
The behaviour of the numerical solution to a model elliptic problem, as a function
of the amount of overlap, was considered in Henshaw [12]. Suppose that the amount
of overlap goes to zero as the grid is refined. To maintain accurécy, the order of
accuracy of the interpolation formulae must be greater than the order of accuracy
of the interior formulae. In the results presented here we use second order accurate
approximations to the elliptic equations and require the amount of overlap to be
greater than one half a grid line. In this case the interpolation formulae should be
third order accurate.

To make th(; restriction and prologation operators simple, the composite meshes
at different multigrid levels are strongly related. For example, interior points on
a coarse grid coincide with interior points on finer grids. In Henshaw [12] the
coarse grid was generated first and all finer grids were generated by simply doubling
the number of grid lines. This gave reasonble results for composite grids with 2
component grids. However, this method does not immediately generalize to more
component grids, and it tends to lead to more overlap on the finer grids than is
really necessary. Hence, the grid construction program CMPGRD was designed

explicitly to meet the requirements of the multigrid routine [6].

Remarks on Programming. A computer code for solving problems on com-

posite meshes is somewhat more complicated than a code written for a single grid.
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One of the major difficulties arises in the handling of all the data that descibe the
composite grid. We have worked out a scheme for storing the composite grid data
in an eflicient and flexible manner. Physically, all the data is stored on a single
array. Logically, the data are stored in a “directory-tree” fashion. Variables can
be stored or accessed by name using utility routines. Arrays 'ca,nv-be stored with

a minimum of wasted space. With this storage structure, the composite grid data

can be easily passed to subroutines.

A2.3 Numerical Results

In this section we present results from the multigrid solver CGMG. The com-
posite grids used in the examples are shown in figures A2.1 and A2.2. Grid 1 (figure
A2.1) has 3 levels and Grid 2 (figure A2.2) has 2 levels. The interpolation points

are marked with small circles. In both examples we solve

A%u  9%u
4 =
) o=t
f = —2n*cosmz cosmy.

The boundary conditions are chosen so that the true solution is
Utrue = COS T COS TY.

Test 1 The Poisson equation (4) is solved on Grid 1. This grid might to be used
to study flow around an obstacle in a varying channel. Periodic boundary conditions
are applied at the left and right ends of the channel. Dirichlet boundary conditions,
U = Ugye, are given at all other boundaries. For smoothers we chose Red-Black
on the rectangular grid and line-Zebra smoothers for the 3 curvilinear grids. The
Zebra smoothers are on lines normal to the boundaries, since this is the direction in
which the grids are stretched. Smoothing was performed until the smoothing rate
became greater than n = .6. The residual at level 2 had to be decreaséd by a factor

of 6 = .01 before the program would return to level 1. These parameters resulted in
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Grid 1 Grid 2
Iteration | r(p)/r(p-1) | ECR r(p)/r(p-1) ECR
p=1 019 71 001 73
p=2 065 72 033 63
p=3 055 71 11 5
p=4 .85 .89 .14 a7

Table A2.1: Convergence Rates
a “W?” cycle; the levels were traversed in the order (1,2,3,2,3,2,1). A value of 6 = .1
resulted in a “V” cycle, (1,2,3,2,1), which gave slightly inferior results.

Test 2 Equation (4) is solved on Grid 2 with Dirichlet boundary conditions at
all boundaries. Grid 2 is meant to represent an airfoil with a flap. Alternating Zebra
smoothers were used on all component grids, since they all are stretched in both
the r and s directions. A value of n = .36 = (.6)? was chosen since the alternating
smoothers are compriséd of two sweeps.

Convergence results for the two tests are summarized in table A2.1. r(p) is the

residual on the finest composite mesh after the pth multigrid iteration.

r(p) = [If' — Alvi(p)||

Define WU (p) to be the number of work units used for the pth iteration. A work
unit is the amount of work to perform one iteration of SOR on the composite mesh.

The effective convergence rate, ECR, is defined as

Bor() = (220" L b o),

Theoretically the ECR for multigrid should be independent of the grid spacing h
as h — 0. In contrast the (effective) convergence rate for many other standard
iterative schemes deteriorates as h — 0. For optimal SOR, ECR ~ 1 — ¢;h, and
for Gauss—Seidel, ECR &~ 1 — cyh%. In table A2.1 the ECR increases on the fourth

iteration for Grid 1, since the solution has almost converged to single precision

accuracy.
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In tables A2.2 and A2.3 the errors in the solution to the elliptic problem are
given. The problem was solved on the fine mesh (level 1) and also on each of the
coarser meshes. The error on level [, e(l), is the maximum difference between the
calculated and true solution. The number of points on the component grids in the r
and s directions is given by n, and n,, respectively. Not all the points are used, since
there is overlap between the grids. Level 1 of Grid 1 has 8431 computational points
while there are 7431 computational points on the finest level of Grid 2. Contour

plots of the calculated solutions are shown in figures A2.1 and A2.2.

[ k n, ns e(l) e(l)/e(1)
1 1 93 77 1.5x1078 1.
2 81 21 1.1x1072 1.
3 81 21 1.1x1073 1
4 93 17 1.7x1078 1.
2 1 47 39 7.4x1073 5.
2 41 11 5.4x1072 4.8
3 41 11 5.4x1073 4.8
4 47 9 7.4%x1073 4.4
3 1 24 20 3.7x1072 25.
2 21 6 2.6x107% 23.
3 21 6 2.6x1072 23.
4 24 5 3.3x1072 20.
Table A2.2: Errors in Solution for Grid 1
[ k n, 7, e(l) e(l)/e(1)
1 1 101 61 1.8x107% 1
2 121 13 2.0x1072 1
3 111 13 5.7x1073 1.
2 1 51 31 9.8x1072 5.4
2 61 7 8.7x107? 4.4
3 56 7 2.7x1072 4.7

Table A2.3: Errors in Solution for Grid 2
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Fig. A2.1. Grid 1: Composite meshes for multigrid levels 1, 2 and 3 and a contour
plot of the calculated solution.
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