
Astrophysical Applications of Quantum Mechanics

Thesis by

Elena M. Murchikova

In Partial Fulfillment of the Requirements for the

Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2018

Defended May 29, 2018



ii

© 2018

Elena M. Murchikova
ORCID: 0000-0001-8986-5403

All rights reserved



iii

ACKNOWLEDGEMENTS

I am grateful to:

Nick Scoville and Sterl Phinney for the help, insight, advice, unforgettable

discussions, for converting me to astrophysics, and for tolerating me all these

years;

Dr. David and Barbara Groce for always believing in me and supporting me

as a Groce Fellow at Caltech during a large part of my journey;

Kip Thorne, Peter Goldreich, Yuri Levin, Tom Prince, Chris Hull, Roger

Blandford, Elisabeth Krause, Gil Refael, and Ed Stone for inspiration, advice,

illuminating discussions and for influencing my path in one way or another;

Sherwood Richers, Casey Handmer, Pavel Putrov, Pavel Khromov, Ernazar

Abdikamalov, Tigran Kalaydzhian, Dmitry Duev, Anastasia Dueva, Alicia

Lanz, Irina Zhuravleva, Anna Komar, David Guszejnov, Anne Medling, Jamie

Rankin, Gina Panopoulou, Nadia Blagorodnova, Wenbin Yan, Zara Scoville,

Samaya Nissanke, Tzu-Ching Chang, Olivier Dore, Lee Armus, and JoAnn

Boyd for friendships without which I would not have made it;

Jason Meltzer and Lizzie Andrews for being the best housemates in the world;

the National Radio Astronomy Observatory Student Observing Support Pro-

gram for supporting my research for two years;

ALMA Observatory for all the time spent on my projects and all the observa-

tions conducted for me;

the KECK Observatory for 10 nights of unforgettable observing experience

and introducing me to observational astronomy;

and

the National Park Service, the Aero Association of Caltech/JPL, and in par-

ticular C152 N89084 for preserving my sanity.

I am grateful to my mother Tatiana, father Mikhail, aunt Tatiana, my late

babushka Valentina, my late dedushka Vasily, and cousins Paulina and Alenka

for being a true family, support, and rarely complaining about not seeing me

for years.



iv

ABSTRACT

From an outside point of view, astrophysics and quantum mechanics as sub-

classes of the physical sciences could not be further from each other. Yet these

two sides of nature are deeply intertwined. The influence of quantum mechan-

ics on astrophysics and astrophysics on quantum mechanics has been profound:

spectral lines as diagnostics, radiative transport, the interiors of celestial bod-

ies, neutrino oscillations, constraints on neutrino mass and graviton mass. In

this work, I discuss several applications of quantum mechanics in astrophysics:

(1) I examine the use of submm recombination lines of H, He and He+ to probe

the extreme ultraviolet luminosity of starbursts and Active Galactic Nuclei.

(2) I use the hydrogen recombination line H30α to study the accretion zone of

the Milky Way’s Galactic Center black hole. I discuss detection of an accretion

disk of radius <0.008 pc, consisting of ∼ 104 K gas the disk properties, and its

importance in the context of accretion on the black hole. (3) I carry out an

extensive study and comparison of M1 closure schemes for neutrino radiation

transport, using the protoneutron star interior as a background. (4) I study

first-order hydrodynamics of a chiral fluid on a vortex background, and in an

external magnetic field, as the precursor for a study of neutron star interiors. I

show that there are two previously undiscovered modes describing heat waves

propagating along the vortex and magnetic field.
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C h a p t e r 1

ASTROPHYSICAL APPLICATIONS OF QUANTUM
MECHANICS

1.1 Introduction

From an outside point of view, astrophysics and quantum mechanics as sub-

classes of the physical sciences could not be further from each other. One deals

with scales like the solar masses M� ∼ 1033 g and the parsecs pc = 3× 1018 cm

the other with the electron masses me ∼ 10−27 g and the Bohr radii a0 ∼

5 × 10−9 cm. Yet these two sides of nature are deeply intertwined.

McCrea (1950) reviewed quantum mechanical contributions to astrophysics

and concluded that there were not many. Almost 70 years later we here make

an attempt at a brief update on the subject. This update by no means claims

to be comprehensive. It only mentions the most prominent contributions such

as spectral lines, descriptions of the interiors of celestial bodies, neutrino os-

cillations, and constraints on the masses of elementary particles.

We do not discuss cosmology here mainly because covering this topic thor-

oughly would require a separate thesis. We only mention that today’s cosmol-

ogy is inseparable from quantum field theory and cannot be taught without it

(Baumann, 2013).

1.2 Spectral lines

In the second half of 19th century astronomers embraced spectroscopy and

photography, which revolutionized the field. At first, they relied on laboratory-

produced spectra of the elements and matched them with the lines seen in the

stars. With the development of quantum mechanics, it became possible to

calculate atomic and molecular transitions.

Modern astronomy is virtually impossible without spectroscopy and radiative

transport calculations. Spectral lines are used to study virtually everything

from stars and galaxies to molecular clouds and intergalactic medium. Spectral

lines and their profiles carry the information about the composition, temper-

ature, density, magnetic fields and redshift of astronomical objects.

The first and the only chemical element discovered using an astronomical ob-

ject was helium, first seen in the spectra of the Sun. It was first observed by
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Jules Janssen during a total solar eclipse on August 18, 1868, as a bright yellow

(587.49 nm) line in the spectrum of the chromosphere of the Sun (Kochhar,

1991). The same year in on October 20 Norman Lockyer observed a yellow line

in the solar spectrum (Lockyer, 1868) and concluded that it is from a chem-

ical element in the Sun unknown on Earth. Together with chemist Edward

Frankland, they named it after Helios, the Sun in Greek (Thomson, 1871). He-

lium was discovered on Earth in 1895 by Per Teodor Cleve and Nils Abraham

Langlet. It was emanating from a crystalline variety of the mineral uraninite.

Large reserves of helium were found in natural gas fields in the United States

in 1903.

Further attempts to find chemical elements unknown on Earth were less suc-

cessful. “Nebulium” lines (Huggins & Miller, 1864) ended up being the forbid-

den transitions of ionized O, N, and Ne (Bowen, 1927), while “Coronium” lines

(Gruenwald, 1887) turned out to be the forbidden transitions of highly ionized

Fe, Ni, Ca, and Ar, as identified by Walter Grotrian and Bengt Edlen (Mori-

son, 2008). These lines are only strong enough to be detectable at extremely

low densities unattainable on Earth.

If not new chemical elements, new molecules and materials are certainly ex-

pected to be in the outer space. The study of unidentified infrared emission

(UIR) bands – a prominent emission with the main features at around 3.3,

6.2, 7.7, 8.6, 11.2, and 12.7 µm from presumably unknown complex molecules

with aromatic C−H and C=C chemical bonds (Leger & Puget, 1984) became

a whole field in astrophysics. For a long time it was believed that the mate-

rials responsible should be polycyclic aromatic hydrocarbon (PAH) molecules

(Allamandola et al., 1989). However recent data from ESA’s Infrared Space

Observatory and NASA’s Spitzer Space Telescope suggests that the UIR emis-

sion bands arise from compounds that are far more complex in composition

and structure than PAH molecules (Kwok & Zhang, 2011). These unknown

spectral features wait to be produced in model spectra of newly synthesised

in the laboratory or in the simulations molecules or proven to be a previously

unknown excitation mode of known complex molecules. After all, materials

unknown on Earth are known to be created in the other parts of the universe,

such as the forbidden 5-fold crystals found in meteorites (Bindi et al., 2016).

1.3 Interiors of astrophysical bodies

Since the mid-1920s, when Ralph H. Fowler first applied quantum degeneracy

to explaining characteristics of white-dwarfs (Fowler, 1926), quantum theory
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has played a prominent role in describing the internal structure of the celestial

bodies. Electron degeneracy pressure prevents gas giants like Jupiter from

igniting nuclear fusion in their cores and prevents white-dwarfs from collapsing.

The interior of stars is composed of multiple zones in which various stages of

nuclear burning determine the star’s radius, luminosity, and internal structure.

We owe our own existence to the nuclear burning (Burbidge et al., 1957). The

three out of four atoms of life oxygen, hydrogen, carbon, nitrogen are produced

inside stars. A great amount of these elements sufficient to produce life in the

Universe and the fact that they are not converted into heavier elements are

due to (1) the existence of an excites state of 8Be, which is almost exactly the

energy of two alpha particles, allowing them to fuse directly, (2) the existence

of an excites state of 12C, which is almost exactly the energy of 8Be and an

alpha particle, allowing them to fuse directly, and (3) the absence of such a

state for oxygen in reaction 12C + 4He → 16O, preventing convertion of too

much C into O. The resonance state of 12C at 7.68 MeV was predicted by

Hoyle, in order for enough carbon to be formed in stars, and later discovered

experimentally (Dunbar et al., 1953). The existence of the excited state of 8Be

was confirmed by Salpeter (1952).

The other aspect of the influence of the quantum world on astrophysical

objects lies in the domain of dense matter. On Earth producing matter

at above nuclear density requires heavy ion collisions and was accomplished

on Brookhaven National Laboratory’s Relativistic Heavy Ion Collider and

CERN’s Large Hadron Collider (Pb-Pb runs). In the colliders the state lasts

only a tiny fraction of a second and is hot. In celestial bodies, such matter

is routinely encountered in both cold and hot states. It comprises substan-

tial fraction of a neutron star’s interior. The difficulties involved in obtaining

matter above nuclear density in laboratory conditions complicate direct exper-

iments resulting in the greatly uncertain equations of state of neutron stars

(see for example Richers et al. (2017)).

The uncertainty in equations of state describing interiors of compact objects

(excluding black holes), influences their mass-radius relations, evolution, col-

lapse, the very ability of the star to go supernovae, the gravitational wave

signal from core-collapse supernovae, and more. Breakthroughs are yet to

come here, and the hopes largely lie in astrophysical observations.
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1.4 Neutrino oscillations

Bahcall (1964) and Davis (1964) proposed testing the Solar model using a neu-

trino detector. “When we started the Homestake solar neutrino experiment,

we thought we understood how the Sun worked and that a measurement of

the solar neutrino flux would confirm the theory. This clearly did not turn out

as planned,” wrote Ray Davis in his Nobel lecture. Indeed the observations

robustly showed that only 1
3 of the expected neutrino flux from the Sun was

detected on Earth (Davis et al., 1968). Theorists considered the discrepancy an

experimental error, while experimentalists blamed astrophysics uncertainties.

Yet no serious mistakes were found on either side. The solar neutrino prob-

lem prompted/revived interest in neutrino oscillations, and was completely

resolved in the early 2000s when SNO Collaboration confirmed the appear-

ance of νµ and ντ in the solar neutrino flux (Ahmad et al., 2002) and the

KamLAND collaboration confirmed the disappearance of νe from terrestrial

reactors (Eguchi et al., 2003).

1.5 Constrains on neutrino mass and graviton mass

The great distance from astrophysical events to the observer on Earth affords

us an opportunity to constrain the mass of the elementary particles by mea-

suring the lag between the arrival of the signal at different locations or the lag

between the arrival of the signals of different carriers.

Arnett & Rosner (1987) set a limit on neutrino mass at mν < 12 eV by mea-

suring the difference between the time of arrival of the neutrinos from the

supernova 1987A at Kamiokande and IMB detectors.1

Using a similar technique: measuring the difference between the time of arrival

of the gravitational signal at Hanford and Livingston detectors, LIGO has put

an upper limit on the mass of graviton at 1.2× 10−22 eV (Abbott et al., 2016).

1.6 In this thesis

In this work, I discuss several applications of quantum mechanics to astro-

physics:

In Chapter 2 we examine the use of submm and mm recombination lines of H,

He and He+ to probe the extreme ultraviolet (EUV) luminosity of starbursts

and Active Galactic Nuclei. We find that the mm-submm recombination lines

1If only the neutrino observatories had high-precision clocks the limit would have been
much stronger.
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of H, He and He+ are in fact extremely reliable and quantitative probes of the

EUV continuum at 13.6 eV to above 54.6 eV.

In Chapter 3 we put the result of Chapter 2 to the test and investigate the

accretion zone of the Milky Way’s Galactic Center black hole – Sagittarius A*

– in the hydrogen recombination line H30α. The Galactic Center black hole is

the nearest supermassive black hole and thus provides a unique opportunity for

observing the black hole’s immediate environment and accretion. We detected

and spatially resolved an accretion disk of radius <0.008 pc, consisting of ∼ 104

K gas. Previous work has found only X-ray emitting quasi-spherical hot gas at

much larger radii, and nonthermal synchrotron-emitting electrons. We discuss

the properties of the disk and their importance in the context of accretion on

Sagittarius A*.

Chapter 4 is dedicated to the problem of neutrino transport. Carefully ac-

counting for neutrino transport is an essential component of many astrophys-

ical studies particularly in supernovae and collisions of neutron stars. Solving

the full transport equation is too expensive for most realistic applications, es-

pecially those involving multiple spatial dimensions. For such cases, resorting

to approximations is often the only viable option for obtaining solutions. One

such approximation, which recently became popular, is the M1 method. It

utilizes the system of the lowest two moments of the transport equation and

closes the system with an ad hoc closure relation. The accuracy of the M1

solution depends on the quality of the closure. Several closures have been

proposed in the literature and have been used in various studies. We perform

an extensive study and quantitative comparison of these closures We compare

the results of M1 calculations with precise Monte Carlo calculations of the ra-

diation field around spherically-symmetric protoneutron star models. We find

that no closure performs consistently better or worse than others in all cases.

The level of accuracy of a given closure depends on the matter configuration,

neutrino type, and neutrino energy. Given this limitation, the maximum en-

tropy closure by Minerbo yields accurate results in the broadest set of cases

considered in this work.

In Chapter 5 we discuss the properties of chiral fluids. In certain circumstances,

chiral (parity-violating) medium can be described hydrodynamically as a chiral

fluid with microscopic quantum anomalies. Possible examples of such systems

include strongly coupled quark-gluon plasma, liquid helium 3He-A, neutron

stars and the Early Universe. We study the first-order hydrodynamics of a
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chiral fluid on a vortex background and in an external magnetic field. We

show that there are two previously undiscovered modes describing heat waves

propagating along the vortex and magnetic field. This chapter is a first step of

a program to use chiral fluid to describe (a part of) the neutron star interior,

which is a long-term goal of the author.
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C h a p t e r 2

SUBMM RECOMBINATION LINES IN DUST-OBSCURED
STARBURSTS AND AGN

We examine the use of submm recombination lines of H, He, and He+ to probe

the extreme ultraviolet (EUV) luminosity of starbursts (SB) and AGN. We find

that the submm recombination lines of H, He, and He+ are in fact extremely

reliable and quantitative probes of the EUV continuum at 13.6 eV to above 54.6

eV. At submm wavelengths, the recombination lines originate from low energy

levels (n = 20 – 50). The maser amplification, which poses significant problems

for quantitative interpretation of the higher n, radio frequency recombination

lines, is insignificant. Lastly, at submm wavelengths the dust extinction is

minimal. The submm line luminosities are therefore directly proportional to

the emission measures (EMion = ne × nion × vol) of their ionized regions. We

also find that the expected line fluxes are detectable with ALMA and can be

imaged at ∼ 0.1′′ resolution in low redshift ULIRGs. Imaging of the HI lines

will provide accurate spatial and kinematic mapping of the star formation

distribution in low-z IR-luminous galaxies. And the relative fluxes of the HI

and HeII recombination lines will strongly constrain the relative contributions

of starbursts and AGN to the luminosity. The HI lines should also provide an

avenue to constraining the submm dust extinction curve.

2.1 Introduction

The most energetic periods of evolution in galaxies are often highly obscured

by dust at short wavelengths, with the luminosity reradiated in the far infrared.

Merging of galaxies will concentrate the interstellar gas and dust (ISM) in the

nucleus since the gas is very dissipative where it can fuel a nuclear starburst or

AGN. The Ultraluminous Infrared Galaxies (ULIRGs) and Submm Galaxies

(SMGs) emit nearly all their radiation in the far infrared (Carilli & Walter,

2013; Sanders et al., 1988). Although their power originates as visible, UV

and X-ray photons, the emergent IR continuum only weakly differentiates the

power source(s) – starburst or AGN – and their relative contributions. This

is a significant obstacle to understanding the evolution of the nuclear activity

since the star formation and AGN fueling may occur at different stages and

with varying rates for each. Many of the signatures of star formation or black
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hole activity (e.g. X-ray, radio or optical emission lines) can be indicative

that starbursts or AGN are present but provide little quantitative assessment

of their relative contributions or importance (a summary of the various SFR

indicators is provided in Murphy et al., 2011).

In this paper we develop the theoretical basis for using the submm recombi-

nation lines of H, He, and He+ to probe star formation and AGN. We find

that the emissivities of these lines can provide reliable estimates of the EUV

luminosities from 13.6 eV to ∼102 eV and hence the relative luminosities as-

sociated with star formation (EUV near the Lyman limit) and AGN accretion

(harder EUV).

Although the extremely high infrared luminosities of ULIRGs like Arp 220

and Mrk231 are believed to be powered by starburst and AGN activity, the

distribution of star formation and the relative contributions of AGN accretion

is very poorly constrained. This is due to inadequate angular resolution in

the infrared and the enormous and spatially variable extinctions in the visible

(AV ∼ 500 − 2000 mag). The submm lines will have minimal dust extinction

attenuation. And, given the large number of recombination lines across the

submm band, lines of the different species may be found which are close in

wavelength and provide the capability to move to longer wavelengths to further

reduce the dust opacity (in the most opaque sources). Although mid-IR fine

structure transitions of heavy ions have been used in some heavily obscured

galaxies, the line ratios depend on density, temperature and metallicity; in

contrast, the H and He+ lines have none of these complications. Lastly, we

find that the expected fluxes in the lines are quite readily detectable with

ALMA.

In the following, we first derive the emissivities and line opacities for the

submm recombination lines as a function of density and temperature (Sec-

tion 2.2). Then using simplified models for the ionizing continuum associated

with OB stars and with AGN, we derive the relative emission measures of the

H+, He+, and He++ regions for these two EUV radiation fields (Section 2.3).

Lastly, we compare the expected line fluxes in HI and HeII with the sensitivity

of ALMA and find that the lines should be readily detectable from ULIRG

nuclei at low z. The observations of these lines can therefore provide the first

truly quantitative assessment of the relative contributions of starbursts and

AGN to the luminosity of individual objects.
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2.2 Submm Recombination Lines

The low-n HI recombination lines at mm/submm wavelengths trace the emission-

measure of the ionized gas and hence the Lyman continuum production rate

associated with high mass stars and AGN. In contrast to the m/cm-wave radio

HI recombination lines which can have substantial maser amplification (Brown

et al., 1978; Gordon & Walmsley, 1990; Puxley et al., 1997), the submm re-

combination emission is predominantly spontaneous emission with relatively

little stimulated emission and associated non-linear amplification (see Section

2.2.4). Since the submm HI lines (and the free-free continuum) are also op-

tically thin, their line fluxes are a linear tracer of the ionized gas emission

measure (EM =
∫

nenpd3r). Therefore these lines are an excellent probe of the

EUV luminosity of OB stars and AGN (assuming the EUV photons are not

appreciably absorbed by dust). Lastly, we note that in virtually all sources,

the dust extinction of the recombination lines at λ ∼ 350µm to 1mm will be

insignificant.

Early observations of the mm-wave recombination lines were made in Galactic

compact HII regions – in these regions the continuum is entirely free-free and

hence one expects fairly constant line-to-continuum flux ratio if the mm-line

emission arises from spontaneous decay in high density gas with little stim-

ulated emission contribution. This is indeed the case – Gordon & Walmsley

(1990) observed the H40α line at 99 GHz in 7 HII regions and found a mean

ratio for the integrated-line brightness (in K km s−1) to continuum of 31.6

(K km s−1/K). Less than 3% variation in the ratio is seen across the sample.

The optically thin free-free emission provides a linear probe of the HII region

emission measure (EM) and hence the OB star Lyman continuum production

rate. The observed constancy of the line-to-continuum ratios then strongly

supports the assertion that the integrated recombination line fluxes are also a

linear probe of the Lyman continuum production rates.

2.2.1 HII Line Emissivities

To calculate the expected HI line emission we make use of standard recombi-

nation line analysis (as described in Osterbrock & Ferland, 2006). The volume

emissivity, ε is then given by

ε = nu Aul hν

= bnunu(T E) Aul hν, (2.1)
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Figure 2.1: The emissivities of the HI α recombination lines are shown for
T = 104 K. The emissivity is given per unit emission measure and has di-
mension erg cm−3 s−1 and the x-axis has the lower quantum number of the Hα
transitions. The emissivities were calculated for ne = 10, 1000, and 104 cm−3;
and the curves for all densities are coincident.

where nu and nu(T E) are the actual and thermal equilibrium upper-level pop-

ulation densities. The exact HI spontaneous decay rates from levels u to l, Aul ,

are available in tabular form online from Kholupenko et al. (2005). The most

complete and up to date departure coefficients (from TE)(bn and d(ln bn)/dn
are from Hummer & Storey (1987); Storey & Hummer (1995a,b). The latter

work includes population transfer by electron and ion collisions and has emis-

sivities for HI and HeII up to principal quantum number n = 50. They also

calculate optical depth parameters for a wide range of electron temperature

(Te) and electron density (ne). We make use of these numerical results in this

paper; Figure 2.1 shows the Storey & Hummer (1995b) HI recombination line

emissivities at T = 104K.

Figure 2.2 shows the submm HI-nα line emissivities ε per unit emission mea-

sure, for T = 7500 and 104 K. These volume emissivities were computed for

density n = 102 and 104 cm−3 but the separate density curves are essentially

identical. This is because, for these low energy levels, the spontaneous decay

rates are very high (A∆n=1(HI) > 200 s−1 for n < 30). The level populations

are therefore determined mainly by the radiative cascade following recombi-
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Figure 2.2: The emissivities of the HI submm recombination lines are shown
for T = 7500 and 104 K. The emissivity is given per unit nenp. The top border
has the quantum number of the α transitions and their rest frequencies are on
the bottom axis. The emissivities were calculated for ne = 10, 1000, and 104

cm−3; and the curves for all densities are coincident.

nation to high levels. The latter is proportional to the recombination rate and

hence nenp.

To translate the curves in Figure 2.2 into expected emission line luminosities,

one needs to multiply by the total emission measure of each source. Consider

the detectability of a luminous star forming region in a nearby galaxy. In

Section 2.3 we show that for a starburst type EUV spectrum with integrated

luminosity in the ionizing continuum at λ < 912Å, LEUV = 1012 L� , the

total Lyman continuum photon production rate is QLyC = 1.20 × 1056 s−1.

Scaling this down to the luminosity of an OB star cluster with LEUV = 106

L� gives QLyC = 1.20 × 1050s−1. For Case B recombination in which all the

ionizing photons are absorbed (i.e the HII is ionization bounded) and the n ≥ 2
photons escape. (In fact, most of the Lyα may be absorbed by any residual

dust.) In this case, the standard Strömgren condition equating the supply

of fresh Lyman continuum photons (QLyC) to the volume integrated rate of
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recombination to states above the ground state,

QLyC = αBnenpvol, (2.2)

implies an HII region emission measure (EM = nenpvol) of EM = 4.60 × 1062

cm−3 (using αB = 2.6 × 10−13 cm3s−1 at Te = 104 K). Using the specific emis-

sivity of 3×10−31 ergs cm−3 s−1 for HI-26α from Figure 2.2, the recombination

line luminosity will be LH26α = 1.38 × 1032erg s−1. For a source distance of 1

Mpc and a line width of 30 km s−1, this corresponds to a peak line flux density

of ∼ 3.3 mJy. This flux density is readily detectable at signal to noise ratio

10σ within ∼ 1 hr with ALMA Cycle 1 sensitivity.

2.2.2 He Line Emission

HeI has an ionization potential of 24.6 eV and its photoionization requirements

are not very different than those of HI. Thus the HeI recombination lines probe

the ionizing UV radiation field in much the same way as HI (see Section 2.3).

Since the HeI submm lines will be weaker than those of HI due to the lower He

abundance, we don’t examine the HeI emission extensively here and instead

focus on HeII.

The ionization potential of HeII is 54.4 eV corresponding to photons with

λ = 228 Å for conversion of He+ to He++. Since the Wolf-Rayet / the most

massive star in a starburst will have surface temperatures ∼ 50000 K, the

ionizing EUV from such a population will have only a very small fraction of

the photons with energy sufficient to produce He++. Thus the recombination

lines of HeII (He+) which are produced by recombination of e + He++ can be a

strong discriminant for the existence of an AGN with a relatively hard EUV-X-

ray continuum. In starbursts there can be some HeII emission associated with

Wolf-Rayet stars. However, the emission measure of the He++ region relative

to that of the H+ region will be much less than for an AGN.

The emissivities of the HeII recombination lines are taken from Storey & Hum-

mer (1995a,b). For the interested reader, a simple model for the scaling of rate

coefficients between Hydrogen and hydrogenic ions is developed analytically

in Appendix 2.7 and those relations are compared with the numerical results

from Storey & Hummer (1995b) in Appendix 2.8.

The HeII submm α lines near a given fixed frequency are at higher quantum

numbers n than those of HI since the energy levels scale as the nuclear charge

Z2, i.e., a factor of 4 larger for the same principal quantum number n in He+.
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Figure 2.3: The emissivities of the HeII submm recombination lines are shown
for T = 7500 and 104 K. For HeII it is per unit nenHe++ .The top border has
the quantum number of the α transitions and their rest frequencies are on the
bottom axis. The emissivities were calculated for ne = 10, 1000, and 104 cm−3;
and the curves for all densities are coincident. Note that the emissivities
for HeII per unit nenHe++ are 4-5 times greater than those for HI at similar
frequency – this partially compensates for the lower He abundance relative to
H if their ionized volumes are similar (as would be the case for a very hard
ionizing continuum).

For the submm HeII transitions, n = 30 - 50, versus 20 - 35 for HI. In Figure 2.3

the expected HeII line emissivities per unit nenHe++ are shown for the submm

band. The values of these emissivities are ∼ 5 times those of HI (Figure 2.1;

however, since the He/H abundance ratio is 0.1 the actual values per unit nenp

are quite similar in a plasma where all the H is ionized and all the He is He++.

2.2.3 HeII/HI Emission Line Ratios with Te and ne

In Figure 2.4 the ratios of HeII/HI α recombination line emissivities (Storey

& Hummer, 1995a) are shown as a function of principal quantum number for

large ranges of both Te and ne. Note two cautions in viewing these plots: 1) as

noted above the lines of HI and HeII are not at the same frequency for each

n and 2) the emissivity ratios are per ne nHe++ and per ne np for HeII and HI,

respectively. In the case of the latter, the EM for He++ will be almost always
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Figure 2.4: The emissitvity ratios of HeII to HI in the unit of their subsequent
emission measure are shown as a function of principal quantum number n
for ne = 102 − 108 and Te =7500, 10000, and 15000 K. [The emissivities are
normalized to HI at 104 K and density 104 cm−3 so one can see the dependence
on ion, temperature and density. The line ratios are very nearly independent
of density for all the temperatures but they do depend on temperature as T−4/3

e
for quantum number n ∼ 10 to 50. The latter is clearly shown in the lower-right
panel where the emissivity ratio is shown for 5 temperatures at ne = 104 cm−3.
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< 0.1 of that for H+ due to the lower cosmic abundance of He.

Figures 2.4-top and lower-left clearly show that at a given temperature, Te, the

HeII/HI line ratio is virtually constant as a function of both quantum num-

ber and electron density. Thus, varying density in the ionize gas should have

almost no influence on the line ratios of HeII to HI. On the other hand, it is

clear from these figures that increasing Te leads to a decrease in the HeII/HI

emissivity ratio. In Figure 2.4-lower-right, the ratio is shown for a single den-

sity ne = 104 cm−3 but Te = 5000 to 20,000 K and the temperature dependence

is clear and the same for all n transitions. Thus, the temperature and density

dependence of the HeII to HI line ratios at fixed nα can be empirically fit by:

εHeII−nα
εHI−nα

∝ n0
e T−4/3

e . (2.3)

Although the HeII/HI line ratios are temperature dependent, the actual range

of temperatures expected for the ionized gas is very limited, Te = 7500 −
10000 K in star forming HII regions due to the strong thermostating of the

cooling function which decreases strongly at lower temperatures and increases

steeply at higher temperatures (see Osterbrock & Ferland, 2006). For the

AGN sources, it is also unlikely that the temperatures will be much higher

since most of the heating is still provided by LyC photons near the Lyman

limit (even though there are harder photons in their EUV spectra).

In Appendix 2.7, we show that the recombination rates coefficients scale as

αHe+ (Te) = ZαH (Te/Z2) with Z = 2 for He+. (2.4)

However, the line emission rates also depend on the radiative and collisional

cascade through the high n levels and it is not possible to derive the emissivity

scaling analytically to better than a factor of 2 accuracy.

2.2.4 Maser Amplification?

As noted above, it is well known that the m/cm-wave recombination lines

(n > 100) of HI have substantial negative optical depths and hence maser

amplification of the line emission. In such instances, the recombination line

intensity will not accurately reflect the ionized gas emission measure and the

associated Lyman continuum emission rates of the stellar population. For the

submm HI and HeII lines we can analyze the possibility of maser amplifica-
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Figure 2.5: The specific optical depths of the HI and HeII recombination
lines are shown with level populations calculated for T = 5000 to 20,000 K
and density ne = 104 cm−3. A fiducial line width of 100 km s−1was adopted.
The specific optical depth is per unit nenpLpc, where Lpc is the line of sight
length, and the lines are dashed where the optical depth is negative, implying
a population inversion and possible maser amplification. A likely maximum
line-of-sight emission measure is

∫
nenpdl ∼ 109 cm−6 pc, corresponding to a

ULIRG starburst nucleus.

Figure 2.6: The specific optical depths of the HI and HeII recombination
lines are shown with level populations calculated for T = 104 K and densities
ranging between ne = 102 and 108 cm−3. A fiducial line width of 100 km s−1was
adopted. The specific optical depth is per unit nenpLpc and the lines are
dashed where the optical depth is negative, implying a population inversion
and possible maser amplification. A likely maximum line-of-sight emission
measure is

∫
nenpdl ∼ 109 cm−6 pc, corresponding to a ULIRG starburst

nucleus.
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tion using the optical depth information of Storey & Hummer (1995a). They

provide an optical depth parameter Ωn,n′ which is related to the line center

optical depth τn,n′ by

τn,n′ = nenionΩn,n′L, (2.5)

where L is the line-of-sight path length. Ωn,n′ is inversely proportional to the

line width in Hz, ∆n,n′, and in their output they used a thermal doppler width,

implying a velocity full width at half maximum intensity

∆vFW H M =

(
8 ln 2 kTe

mion

)1/2
(2.6)

or 21.7km s−1 for HI at 104 K. In most situations relevant to the discussion here,

the line widths will exceed the thermal width due to large scale bulk motions

within the host galaxies. We have therefore rescaled the optical depths to

∆vFW H M = 100 km s−1. We have also scaled the optical depth to a specific

optical depth τ per unit nenionLpc where Lpc is the path length in parsecs and

the volume densities in cm−3.

Figures 2.5 and 2.6 show the specific optical depths for the HI and HeII lines

as a function of Te and ne. The actual optical depths for a particular source

may be obtained by scaling these curves by the factor nenpLpc/∆v100. In these

plots, the dashed lines are for transitions with a population inversion and hence

negative optical depth.

The submm transitions of HI and HeII are principal quantum number n ∼ 20
to 32 and 32 to 50, respectively. For both HI and HeII these particular tran-

sitions have positive specific optical depths and hence no maser amplification

at virtually all densities and temperatures shown in Figures 2.5 and 2.6. The

exceptions to this are that at very high densities, ne > 106 cm−3, there can

be population inversions (see Figure 2.6). However, even at these high densi-

ties, significant amplification would occur only if the scale factor is sufficiently

large.

An extreme upper limit for the HII in a ULIRG starburst nucleus might be

nenpLpc ∼ 104 × 104 × 10 = 109 cm−6 pc and nenHe++Lpc ∼ 108 cm−6 pc for

HeII. Applying the first scale factor to the curves shown in Figure 2.6 yields
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upper limits to the negative optical depth |τ | < 0.1, implying insignificant

amplification even for these extreme conditions.

In summary, the observed emission line fluxes for the submm recombination

lines will provide a linear probe of the HII and HeIII EMs; they will not be

affected by non-linear radiative transfer effects, either maser amplification or

optically thick saturation of the emission.

As an aside, it is interesting to note that the behavior of the HI opacities

shown in Figure 2.5-left is reflected in the HeII opacities (Figure 2.5-left )

but translated to higher nα transitions. This is of course expected since HeII

is hydrogenic and the energy levels are scaled by a factor 4, implying higher

principal quantum number in HeII to obtain similar line frequencies and A

coefficients.

2.2.5 Excitation by Continuum Radiation in Lines?

Lastly, we consider the possibility that absorption and stimulated emission

could alter the bound level populations away from those of a radiative cascade

following recombination. Wadiak et al. (1983) analyzed this effect on the cm-

wave recombination lines in powerful, radio-bright QSOs. For the submm lines

considered here, the radiative excitation would be provided by the infrared

continuum. Significant coupling of the level populations to the local radiation

field at the line frequencies occurs when the net radiative excitation rate (i.e.,

absorption minus stimulated emission) is comparable with the spontaneous

decay rate. It is easily shown that this happens when the local energy density

of the radiation field exceeds that of a black body with temperature greater

than Tx, where Tx is the excitation temperature characterizing the cascade level

populations. (This is the radiative equivalent of the critical density often used

to characterize the collisional coupling of levels to the gas kinetic temperature.)

Neglecting departures from thermal equilibrium and letting Tx ∼ 104 K, the

effective radiation temperature TR must be therefore be > 104 K at the submm

line frequencies.

This scenario is probably only of conceivable relevance for an AGN and not

for a starburst. For example, suppose the AGN luminosity is ∼ 1012 L� ,

then the effective black body radius for 104 K is 0.007 pc. Inside this radius

the radiation energy density will exceed that of a 104 K black body, but at

larger radius the induced radiative transitions become much less important.

For the ionization case of an AGN as discussed below (Section 2.3), the radii
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Figure 2.7: The input ionizing continua are shown for starburst and AGN
sources. The starburst EUV down to λ =90Å was computed from Starburst99
with a Kroupa IMF, solar metallicity and a constant SFR. The AGN EUV
continuum was taken as a power-law with specific luminosity index ν−1.7. Both
EUV spectra were normalized so that the integrated EUV luminosity (at λ <
912 Å) was 1012L� . The ionization thresholds for H, He, and He+ are shown
as vertical lines on the bottom axis. The dotted line along the SB spectrum
is a power-law fit to the Starburst99 spectrum with Lν ∝ ν−4.5 used for the
analytic treatment in section 2.3.1.

of the HeIII and HII regions are 16 and 27 pc respectively, as shown in Figure

2.9. For this very simplified example, we do not therefore expect radiative

excitation in the bound-bound transitions to be significant in the bulk of the

ionized gas. For other instances, one can easily perform a similar analysis as

a check.

2.3 Ionization Structure of Starbursts and AGN Sources

To evaluate the expected line luminosities for the HI and HeII lines, we now

calculate the ionized gas emission measures for the typical EUV spectra as-

sociated with starbursts and AGN. With the derived EMs for H+ and He++

as scale factors for HI and HeII emissivities per unit EM (Section 2.2.2 and

2.2.1), one can then calculate the line luminosities.

For the starburst (SB) spectrum, we adopt a Kroupa IMF (0.1 to 100 M�)
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and use the Starburst99 spectral synthesis program (Leitherer et al., 1999) to

calculate the EUV spectrum at solar metallicity for a continuous SFR. For

starburst durations longer than 10 Myr, the EUV at λ < 912 Å saturates at a

duration-independent value since the early type star population has reached a

steady state with equal numbers of new massive stars being created to replace

those evolving off the main sequence. This EUV continuum can then be taken

to represent a steady state SFR – applicable to starbursts lasting more the

107 yrs. For the AGN EUV-X-ray continuum, we adopt a simple power-law

Lν ∝ ν−1.7 (e.g. Osterbrock & Ferland, 2006). We scale both the SB and AGN

Lν to have integrated EUV luminosity = 1012 L� at λ < 912Å. For the star-

burst spectrum, this EUV luminosity corresponds to a steady-state SFR = 874
M�yr−1 for a Kroupa IMF. These two ionization spectra are shown in Figure

2.7. The figure clearly demonstrates the significant difference between the SB

and AGN EUV spectra, with the former having almost no photons capable of

ionizing He+ to He++, compared to the number of HI ionizing photons.

Using these EUV continua, we have computed the ionization structure for a

cloud with H density n = 104 cm−3, assuming all EUV photons are used for

ionization, i.e., the plasma is ionization bounded and no EUV is absorbed

by dust within the ionized gas. The He/H abundance ratio was 0.1. The

EUV continuum was assumed to originate in a central point source and the

specific luminosity of the ionizing photons at each radius was attenuated by

the optical depth at each frequency due to H, He, and He+ along the line

of sight to the central source. The secondary ionizing photons produced by

recombinations with sufficient energy to ionize H or He were treated in the

“on the spot” approximation, i.e., assumed to be absorbed at the radius they

were produced. Lastly, we simplified the analysis of these secondary photons

by assuming a fraction 0.96 and 0.66 of the He+ recombinations yielded a

photon which ionizes HI at electron densities below and above 4000 cm−3 (see

Osterbrock & Ferland, 2006), respectively.

Figures 2.8 and 2.9 show the relative sizes of the HII, HeII, and HeIII regions

for the SB and AGN. These figures clearly show the marked contrast in size

(and hence EM) of the He++ regions in the two instances. Much less contrast is

seen in the He+ emission measures between the two models. The HeIII region

is much smaller relative to the HII region for the starburst, while in the AGN

with more highly ionizing photons, the difference is size is more modest.

From ionization equilibrium calculations for the SB and AGN EUV spectra,
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Figure 2.8: For a starburst EUV spectrum with LEUV = 1012 L� and Hydrogen
density n = 104 cm−3, the radii of the H+, He+, and He++ regions are shown.
The He/H abundance ratio was 0.1.

we derive the EM of the ionized regions in HII, HeII, and HeIII (Table 2.1).

For both ionizing sources the spectra were normalized to have LEUV = 1012

L� . From the EMs shown in Table 2.1, we draw two important conclusions: 1)

despite the very different spectral shapes, the bulk of the ionizing continuum

is absorbed in the HII region and the EMH+ provides a reasonably accurate

estimate of the total EUV luminosity, differing less than a factor 2 between the

two cases, and 2) the EM ratio, EMHe++/EMH+ , is 50 times greater for the AGN

than for the SB, indicating that this ratio provides an excellent diagnostic of

AGN versus SB ionizing sources.

2.3.1 Ionization Structure – Analytics

In the previous section, we made use of a full ionization equilibrium model us-

ing Starburst99 for the starburst EUV spectrum and a power law approxima-

tion for the AGN EUV. In this numerical treatment, we track the competition

of all three species (HI, HeI, and HeII) for ionizing photons at each wavelength.

However, an analytic treatment, which turns out to reproduce quite well the

full numerical approach, can be developed using a few simplifying assumptions
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Figure 2.9: For an AGN power-law EUV-X-ray spectrum with LEUV = 1012

L� and Hydrogen density n = 104 cm−3, the radii of the HII, HeII, and HeIII
regions are shown. The He/H abundance ratio was 0.1.

Emission Measures of Ionized Regions

EUV LEUV SFR/Ṁacc QLyc nenpvol nenHe+vol nen++He vol LH26α
/LHeII−42α

L� M�/yr s−1 cm−3 cm−3

Starburst 1012 674 1.20 × 1056 4.61 × 1068 4.59 × 1067 1.59 × 1065 0.0017
AGN 1012 0.65 6.97 × 1055 2.68 × 1068 2.21 × 1067 4.64 × 1066 0.084

Table 2.1: Lν for the SB and AGN were normalized to both have 1012 L� in
the Lyman continuum at λ < 912 Å(Column 2). Based on comparing Figures
2.2 and 2.3, the HeII-42α line has 4.82 times larger flux per unit EM than
the H26α line; this factor is used to estimate the line luminosity ratio given in
column 8. Line ratio is for T = 104K. The emission measures (EM) are given in
cm−3. Here SFR/Ṁacc stands for SFR or AGN accretion rate required to give
this LEUV . The SFR assumes a Kroupa IMF; it would be factor 1.6 higher for
a Salpeter IMF. The AGN accretion rate assumes 10% of the mass accretion
rate is converted to EUV luminosity. Note that H26α and HeII-42α are at
353.623 and 342.894 GHz respectively, separated by 10.7 GHz and therefore
observable in a single tuning with ALMA Band 7.
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regarding the EUV spectra and the competition between the 3 species for the

ionizing photons in the energy regimes above 24.6 ev.

At photon energies between 24.6 to 54.4 eV, both HI and HeI can be ionized,

and at energies above 54.4 eV all three species (HI, HeI, and HeII) can be

ionized. However, for all three species, the ionization cross sections are highest

at the thresholds and drop as ν−3 above their respective thresholds. At 24.6 eV

(the HeI ionization threshold), the HeI ionization cross section is 8 times larger

than that of HI at the same energy. Thus, provided HI is mostly ionized, the

photons above this energy are largely used to ionize HeI. These two factors (the

higher cross section and the fact that HI is mostly ionized) more than make

up for the fact that the He/H abundance ratio is 0.1 (see Figures 2.8 and 2.9).

A fraction of the HeI recombination photons can ionize HI so effectively that

each of the photons above 24.6 eV will ionize both HeI and HI. This fraction

varies between 0.96 (for ne < 4000 cm−3) and 0.66 (for ne > 4000 cm−3)

(see Osterbrock & Ferland, 2006). Thus, one can approximate the number of

photons available to ionize HI as all those above 13.6 eV. Above 54.4 eV, the

photons are predominantly used for HeII ionization since the abundance of HI

will be very low in the HeII region. (This last assumption presumes that the

ionizing continuum is hard enough that the gas is easily ionized to HeII.)

In comparing the ionization associated with a SB versus an AGN, we assume

that the ionized regions are ionization bounded and that dust within the ion-

ized regions does not significantly deplete the EUV. The latter could be a

significant issue for very young ionized regions but is perhaps less likely for

SB and AGN ionized regions where the timescales are > 107 yrs and the dust

within the ionized gas is likely to have been destroyed. Under these assump-

tions, the standard Strömgren relation implies that the total volume integrated

emission measure of each species ionized region will be determined by the total

production rate of fresh ionizing photons. For comparing the SB and AGN

cases, we normalize both EUV spectra to have the same total integrated EUV

luminosity,

L =

∞∫
νth

Lνdν, (2.7)

where νth is the ionization threshold frequency. The production rate of ionizing

photons is then given by Q, with



24

Q =

∞∫
νth

L/hν dν. (2.8)

We consider the three regimes in the EUV

1. hν ≥ 13.6 eV and hνth = hν0 = 13.6 eV

2. hν ≥ 24.6 eV and hνth = hν1 = 24.6 eV

3. hν ≥ 54.4 eV and hνth = hν2 = 54.4 eV

corresponding to H ionization, He to He+ ionization, and He+ to He++ ioniza-

tion.

For the EUV spectra we make the assumption that both SB and AGN EUV

spectra can be represented by power-laws with Lν = CSBν
−αSB and CAGNν

−αAGN .

For the AGN, this is a commonly used assumption with αAGN = 1.7. For the

SB this assumption may appear surprising but Figure 2.7 clearly shows that

the EUV spectrum obtained from the spectral synthesis of a continuous SB

can be fit by a power-law with αSB = 4.5. For these simple power-laws, the

luminosity normalization yields the relation

CAGN
CSB

=
(1 − αAGN)
(1 − αSB)

ν−αSB+αAGN
0 (2.9)

and for αAGN = 1.7 and αSB = 4.5, this reduces to CAGN/CSB = 5ν2.8
0 .

The Strömgen ionization equilibrium for a power-law ionizing spectrum then

yields
QHe++

QH+
=

(
ν2
ν0

)−α
= 4−α (2.10)

since ν2 = 4ν0. For the AGN with αAGN = 1.7, QHe++/QH+ = 0.095 and for the

SB, αSB = 4.5, QHe++/QH+ = 1.95 × 10−3.

For Case B recombination, the Qs are related to the emission measures of their

respective Strömgren spheres by the recombination coefficients to states above

the ground state and the electron density

QH+ = nenp αb(H) vol

' 2.60 × 10−13n2 (T/104)1/2 vol (2.11)
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and

QHe++ = nenHe++ αb(He+) vol

' 1.85 × 10−12nnHe++ (T/104)1/2 vol, (2.12)

where n is the number density of H nuclei, vol is the volume of the ionized

region and we set ne = 1.1 × nH and 1.2 × nH for the H+ and He++ regions

respectively.

For T = 104K and [He/H] = 0.1, the emission measures are

EMH+ = QH+/2.60 × 10−13

= 3.85 × 1012QH+ (2.13)

and

EMHe++ = QHe++/1.85 × 10−12

= 5.41 × 1011QHe++ . (2.14)

The emission measure ratio is therefore

EMHe++/EMH+ = 0.141QHe++/QH+ . (2.15)

Thus, EMHe++/EMH+ = 1.34×10−2 and 2.75×10−4 for the AGN and SB EUVs,

respectively. From the results of the numerical calculation given in Table 2.1,

the ratios were 1.73×10−2 and 3.45×10−4, respectively. We therefore conclude

that the simple analytic approach provides excellent agreement with the results

quoted above for a full numerical ionization equilibrium calculation obtained

using the detailed SB99 spectrum for the starburst.

Lastly, we note that the change in the AGN / SB ratio of EMs (He++/H+) is

easily shown from Eq. 2.10 to be

EM (He++/H+)AGN
EM (He++/H+)SB

= 4−αAGN+αSB = 48.5 (2.16)

as compared with 49.4 from the numerical analysis above. Contrasting this
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HI and HeII Paired Submm Lines

HI ν HeII nα ν (GHz) ∆ν (GHz) εHI εHeII
nα GHz nα GHz GHz erg s−1 cm3 erg s−1 cm3

20 764.230 32 766.940 -2.710 1.21×10−30 4.45×10−30

21 662.404 34 641.108 21.296 9.05×10−31 3.09×10−30

22 577.896 35 588.428 -10.531 6.85×10−31 2.59×10−30

23 507.175 37 499.191 7.985 5.25×10−31 1.85×10−30

24 447.540 38 461.286 -13.746 4.06×10−31 1.57×10−30

25 396.901 40 396.254 0.647 3.17×10−31 1.15×10−30

26 353.623 42 342.894 10.729 2.50×10−31 8.47×10−31

27 316.415 43 319.781 -3.366 1.99×10−31 7.32×10−31

28 284.251 45 279.432 4.818 1.60×10−31 5.50×10−31

29 256.302 46 261.787 -5.485 1.29×10−31 4.79×10−31

30 231.901 48 230.713 1.187 1.05×10−31 3.67×10−31

31 210.502 50 204.370 6.132 8.67×10−32 2.83×10−31

32 191.657 51 192.693 -1.036 7.18×10−32 2.48×10−31

Table 2.2: In ALMA Band 7 (275 to 365 GHz), the IF frequency is 4 GHz and
the correlator has a nominal coverage of 4 × 2 GHz or 8 GHz in each sideband.
Therefore a single tuning can cover ∼16 GHz of bandwidth.

large change in the He++ between the SB and AGN EUVs, Table 2.1 shows

only ∼ 10% change in the ratio of He+ relative to H+ between the two cases,

implying that the HeI recombination lines cannot be used to discriminate AGN

and SB EUVs.

As an aside, we note that we were surprised to find that the SB99 EUV spec-

trum shown in Figure 2.7 could be fit by a power-law. Upon investigating

this further, we found that there is enormous variation in the model EUV

spectra depending on which stellar atmosphere model was employed, and due

to the very uncertain contributions of Wolf-Rayet stars. Given these large

uncertainties in the predicted SB EUV spectra, the specific power law index

adopted above should only be taken as illustrative. Instead, it would be more

appropriate to take the power-law as a “parameterization” which allows sim-

ple exploration of the EUV spectral properties and HI and HeII emission line

ratios. In fact, measurements of the EM (He++/H+) ratio might be used to

constrain the very uncertain EUV spectra of SB regions and OB star clusters.

An alternative parameterization might be to model the SB EUV as a black-

body. For TBB = 45, 000K, QHe++/QH+ ' 2.8 × 10−4, implying a similar ratio

for the emission measures. This is effectively a factor 10 lower than the ratio
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obtained for SB99 EUV and the αSB = 4.5 power-law used above.

2.4 Paired HI and HeII Recombination Lines

In Table 2.2 we provide a list of the submm HI recombination lines together

with their closest frequency-matched HeII lines. The ALMA IF frequency is

4 GHz and each correlator has a maximum bandwidth of 1.8 GHz, thus in

a single tuning the spectra can cover up to 16 GHz. One prime pairing for

simultaneous coverage of HI and HeII occurs at 350 GHz where HI-26α and

HeII-42α can be observed within a good atmospheric window (ALMA Band 7).

In Table 2.1, the last column gives the expected line ratio, HeII-42α/HI-26α

derived from the EM given in Table 2.2. The emissivities are shown in Figures

2.2 and 2.3. The line ratio varies by a factor 50 between the two cases, clearly

demonstrating the efficacy of the HeII/HI submm line ratios to discriminate

the nature of the ionizing sources. By contrast, the ratio EMH+/EMHe+ is

different only by a factor 10% between the SB and AGN cases, indicating

that the HeI/HI recombination line ratios are not a good SB versus AGN

discriminant.

2.5 Star Formation Rates and AGN Luminosity

Derivation of SFRs and AGN accretion rates from the HI and HeII recombina-

tion lines are potentially quite straightforward provided the form of each EUV

spectrum can be parameterized. For the preceding analysis we normalized the

EUV luminosity to 1012 L� for both the SB and AGN. For a continuous SB

(extending over > 107 yrs) the EUV luminosity will be constant. This EUV

luminosity (1012 L� ) translates to the steady state SFR = 874 M�yr−1 for a

Kroupa IMF. The implied SFR is a factor 1.6 higher for a Salpeter IMF. (The

total stellar luminosity integrated over all wavelengths would be 5.5 × 1012

L� at 107 yrs.) For an AGN with LEUV = 1012 L� , this EUV luminosity

corresponds to an accretion rate of 0.65 M�yr−1 assuming 10% conversion of

accreted mass to EUV photon energy. [Note that the above luminosities refer

to that in the EUV, not the total bolometric luminosities.]

For galaxies with these luminosities, the submm recombination lines of both

HI and HeII are detectable with ALMA out to distance ∼ 100 Mpc in a few

hours integration. As an example, consider the H-26α line in a ULIRG like

Arp 220 (or NGC 6240) at a distance ∼ 100 Mpc with an HII emission measure

EMH+ (see Table 2.1). For a specific emissivity ε , emission measure EM and

source distance D (all in cgs units), the velocity-integrated line flux in observer
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units Jy km s−1 is given by

S∆V =
ε EMH+

4πD2
c
νobs

1018 Jy km s−1.

Using the volume emissivity of ε = 2.5 × 10−31 ergs cm−3 s−1 / nenpvol from

Figure 2.1, one finds the velocity-integrated line flux for H-26α:

SHI−26α∆V = 7.17
EMH+

4 × 1068 D−2
100Mpcν

−1
350GHz Jy km s−1. (2.17)

The frequency-paired HeII42α line will have an integrated flux ∼ 8% of HI−26α
in the case of AGN. Both lines should be simultaneously detectable in a few

hours with ALMA. For reasonable densities, the emission in these lines will

be directly proportional to the EM of the gas. Even at ne = 106 cm−3, the

emission rate in the HI−26α and HeII42α lines are altered by only 1 and 2%,

respectively. If the source is known to be a ’continuous’ starburst, one may

substitute SFR/(674 M�yr−1) for EMH+/(4 × 1068) in the equation above,

SHI−26α∆V = 1.06
SFR

100M� yr−1 D−2
100Mpcν

−1
350GHz Jy km s−1. (2.18)

We have recently detected the HI−26α in Arp 220 in ALMA Cycle0 observa-

tions with a line flux indicating a SFR ' 100 M�yr−1 (Scoville et al., 2015).

Yun et al. (2004) also report detection of HI−41α at 90 GHz yielding a similar

SFR.

As noted earlier, the free-free (Bremsstrahlung) continuum emission can also

be used to probe the ionized gas EM. For completeness, the free-free flux

density in the submm regime is given by

S f f = 75.0
EMH+

4 × 1068 ν−0.17
300GHz T−0.5

104K D−2
100Mpc mJy, (2.19)

where we have included a factor 1.1 to account the the He+ free-free emission

assuming [He/H] = 0.1 and ν−0.17 is the frequency dependence of the Gaunt

factor at submm wavelengths. In most instances the thermal dust emission
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will dominate the free-free so the latter is not generally a useful tracer of the

ionized gas EM.

2.5.1 Dust Extinction

We have stressed that a major advantage of the submm recombination lines

is that they are at sufficiently long wavelengths that dust extinction should

be negligible, since for standard dust properties the extinction should be

A(λ) ∼ 10−4(λµm/300µm)−1.8 AV at submm and longer wavelengths (e.g. Bat-

tersby et al., 2011; Planck Collaboration et al., 2011a,b). Thus for AV < 1000
mag, extinction at λ > 300µm should be minimal. However, there are a few

extreme cases such as Arp 220 and young protostellar objects which may have

somewhat higher dust columns. In these cases, the recombination lines pro-

vide a unique probe of the dust extinction through measurements of HI lines

at different submm wavelengths. Their intrinsic flux ratios can be determined

from Figure 2.2; the extinction is then obtained by comparison of the intrinsic

and observed line ratios. In sufficiently bright recombination line sources with

high extinction, such observations could potentially be used to determine the

frequency dependence of the dust extinction in the submm – this has been a

major uncertainty in the analysis of submm continuum observations.

2.6 Conclusions

We have evaluated the expected submm wavelength line emission of HI, HeI,

and HeII as probes of dust embedded star formation and AGN luminosity.

We find that the low-n α transitions should provide a linear probe of the

emission measures of the different ionized regions. Although their energy levels

will have population inversions, the negative optical depths will be � 0.1 for

the maximum gas columns expected and hence there is no significant maser

amplification.

The submm HI and HeII lines have major advantages over other probes of SF

and AGN activity: 1) the dust extinction should be minimal; 2) the emitting

levels (n < 30 for HI and < 50 for HeII) have high critical densities (ncrit >

104 cm−3, Sejnowski & Hjellming, 1969) and hence will not be collisionally

suppressed; 3) they arise from the most abundant species and therefore do not

have metallicity dependences; and 4) they will not be little affected by masing.

The emission line luminosities of the HI (and HeI) submm recombination lines

are therefore a direct and linear probe of the EUV luminosity and hence SFR

if the source is a starburst.
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The emission ratios of HI to HeII can be a sensitive probe of the hardness of

the EUV ionizing radiation field, providing a clear discriminant between AGN

and SBs, and the test for evolution of the characteristics of EUV spectra of

SBs at different redshifts.

The observed ratios of the submm HI recombination lines may also be used to

determine the extinction in highly extincted luminous sources and to constrain

the shape of the submm extinction curve.

Lastly, we find that these lines should be readily detectable for imaging with

ALMA in luminous galaxies out to 100 Mpc and less luminous sources at

lower redshift. We note that the far infrared fine structure lines observed with

Herschel often show line deficits in the ULIRGs relative to the IR luminosity,

possibly indicating either dust absorption of the EUV or collisional suppression

of the emission rates at high density (Graciá-Carpio et al., 2011); the latter

will not be a problem since the HI and HeII lines are permitted transitions

with high spontaneous decay rates.
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2.7 Appendix: Scaling Relations for Hydrogenic Ions

The aim of this appendix is to lay the basis of partial analytical explanation of

HeII to HI emissivities scaling relation discussed previously. To this end, in this

following sections of this Appendix, we analyze radiative processes involving

Hydrogen-like atom consisting of Z charged nucleus and single electron orbiting

it and put them in use in Appendix B. In this notations HI corresponds to Z = 1
and HeII to Z = 2.

Below we refer to Landau & Lifshitz (1977) and Berestetski et al. (1982), as

examples of standard course in quantum mechanics and QED. The choice is

dictated by our personal preferences. The reader is free to refer to any standard

textbook in quantum mechanics and QED or original papers, references to

which can be found in Landau & Lifshitz (1977) and Berestetski et al. (1982).
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2.7.1 Radiation

Scaling of the Einstein A-coefficients for spontaneous radiative decay can be

explicitly derived in the dipole approximation. The probability of dipole tran-

sitions between two states of the hydrogenic ion is given by

An1→n2 =
4(ωn1→n2 )3

3~c3 d2
n1→n2, (2.20)

where wn1→n2 = Z2 me4

2~3

(
1
n2

2
− 1

n2
1

)
= Z2wH

n1→n2 is the frequency of radiated photon

and d2
n1→n2 is the average over l′s and m′s of the transition dipole moment

dn1l1m1→n2l2m2 . Here

d2
n1→n2 =

1
n2

∑
l1,m1,l2,m2

d2
n1l1m1→n2l2m2

and (2.21)

d2
n1l1m1→n2l2m2

= 〈dx〉
2 + 〈dy〉

2 + 〈dz〉
2 (2.22)

with 〈di〉 = −〈ψn2l2m2 |er j |ψn1l1m1〉, j = x, y, z and r j is the component of electron

radius vector in atom (we neglect the motion of nucleus). The wave functions

ψin = ψn1l1m1 and ψ f = ψn2l2m2 are the initial and final wave functions of the

electron on n1l1m1 and n2l2m2 levels of hydrogenic ion.

One can show (see any standard course in quantum mechanics, for example,

Landau & Lifshitz (1977)) that the transition dipole moment can be written

as

〈d j〉 = −
a0
Z

∞∫
0

ψ̃†n2l2m2
(r̃)er̃ j ψ̃n1l1m1 (r̃)d3r̃ =

1
Z
〈dH

j 〉, (2.23)

where r̃ = Zr/a0 is a dimensionless variable, a0 = ~
2/me2 is the Bohr radius

and ψ̃nionlionmion are the wave functions of the electron in the Hydrogen-like atom

written in terms of r̃ . The integral is independent of Z . We observe that there

is a simple scaling for the A-coefficients between hydrogenic Z ion and H

An1→n2 = Z4 4(ωH
n1→n2 )3

3~c3 (dH
n1→n2 )2 = Z4 AH

n1→n2 . (2.24)

2.7.2 Recombination Rate Coefficients

Recombination coefficients and recombination cross sections for a free electron

with the hydrogenic nucleus in its exact form cannot be simply scaled from HI.

However, for our application, the recombining electrons are non-relativistic and
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we restrict our attention to this limit to obtain the scaling in the leading, dipole

approximation. Assuming that the recombining electrons are non-relativistic

implies that the energy of the emitted photon is much less than the electron

mass1 ω � m. The recombination cross section can then be written as (see

Berestetski et al. (1982) and references there in)

dσrec ' e2ωm
πp
|evi f |

2dΩ, (2.25)

where p is the momentum of the incoming electron, ω is the energy of the out-

going photon, e is the photon polarization vector, dΩ is the angular measure

and vi f is the transition element vi f =
∫
ψ†f vψid3x and v = − i

m∇. Here ψi and

ψ f are the initial and the final wave functions of the electron.

The initial electron wave function is the continuous spectrum wave function in

the attractive potential of the hydrogenic nucleus V = −Ze2/r . For its explicit

form see, for example, Landau & Lifshitz (1977). The final wave function of

the electron is the discrete spectrum wave function in the attractive potential

of the Z-ion nucleus, i.e., the electron wave function in the hydrogenic ion with

Z charged nucleus discussed in the previous section.

One can show that the transition element can be written as

vi f (p→ nlm) = −
i
m

(
Ze2m

)−1/2
∫

ψ̃†f (r̃)∇̃ψ̃i (r̃)d3r̃

= Z−1/2vH
i f (

p
Z
→ nlm). (2.26)

Here ψ̃i and ψ̃ f are the initial and final wave functions written in terms of

dimensionless variables r̃ = Ze2mr and p̃ = p
Ze2m, and ∇̃ = ∂/∂r̃.

Change of the momentum from p for the hydrogenic ion to p/Z for HI becomes

obvious if we examine the energy conservation relation,

p2

2m
= EZ

n + ω vs.
(p/Z )2

2m
= EH

n + (ω/Z2),

where EZ
n = Z2EH

n = −
Z2e4m

2n2 is the energy of an electron on n’s level of hydro-

genic ions. For the recombination cross section we find

dσrec(p→ nlm) = e2Z
1
Z
ω/Z2m
πp/Z

|eṽH
i f |

2dΩ = dσH
rec(

p
Z
→ nlm).

1In this section we work in the standard for QED units ~ = c = 1 to avoid cluttering.
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After integration over angles dΩ and averaging over projections of the orbital

moment m and the photon polarizations e, we find σrec(p→ nl) = σH
rec(p/Z →

nl).

Lastly, to obtain recombination coefficients αnl (T ), we need to average uσnl

over a Maxwellian distribution for the electrons,

αnl (T ) =

∞∫
0

uσnl (p) f (u,T )du, f (u,T ) =
4
√
π

( m
2kT

)3/2
u2e−

mu2
kT , p = mu.

(2.27)

Changing variables T → T2/Z2 and p → p/Z in the integration, we find the

scaling

αnl (T ) = ZαH
nl (T/Z2). (2.28)

2.8 Application to He++

Here, we use the results from the Appendix A to partially explain the numer-

ical results from Storey & Hummer (1995a). To this end we make a simpli-

fying assumptions that the recombination line emissivities are dominated by

recombination rates of He++ and H+ (then scale this ratio by the energies of

their respective photons). The cascade following recombination is determined

largely by radiative decay as described by the A-coefficients and to a much

less extent by collisions. Under this assumptions we can write the emissivities

as linear combinations of the recombination rates:

ε (n1 → n2) ' ~ωn1→n2

An1→n2∑
An1→all

∑
m≥n1

αmCm→n1 . (2.29)

Coefficients Cm→n describe cascading down from m to n and are the functions

of branching ratios. The radiative branching ratios will be the same for HeII as

HI since all A-coefficients scale simply as Z4 (Section 2.7.1). Therefore Cm→n

are independent of nuclei charge Z.

The recombination coefficients for HeII and HI, as derived in the Appendix A,

scale as

αHe+
nl (T ) ' 2αH

nl (T/4). (2.30)
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For the emissivity of nα line we obtain

εHe+−nα (T ) ' 22~ωH
n+1→n

AH
n+1→n∑

AH
n+1→all

× 2
∑

m≥n+1
αH

m (T/4)Cm→n+1

' 8εH−nα (T/4). (2.31)

In Figure 2.10 the emissivity ratios from Storey & Hummer (1995b) are shown

for HeII at 20000 K compared to HI at 5000 K, illustrating that the numerical

results reasonably confirm the approximate analytic prediction of a factor 8

difference.

It is very hard and probably impossible to find exact scaling with temperature

of recombination coefficients. So we use the result we found numerically above

that

εH−nα (T1)
εH−nα (T2)

'

(
T1
T2

)−4/3
. (2.32)

Figure 2.10: The ratio of emissivities for HeII at 20000 K to HI at 5000 K
from the full numerical results of Storey & Hummer (1995b) for comparison
with the ’analytic’ expectation of a ratio = 8.

Combining Equations 2.31 and 2.32, we obtain the following relation between

HeII and HI emissivities for the same nα lines:

εHe+−nα (T )
εH−nα (T )

∼ 8
εH−nα (T/4)
εH−nα (T )

∼ 8
(

1
4

)−4/3
∼ 50. (2.33)

The true numerical scaling factor varies between 50 and 65 for nα ≤ 50 (see

Fig. 2.4), which reasonably confirms our ‘analytical’ prediction.
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C h a p t e r 3

THE ACCRETION DISK AROUND THE GALACTIC
CENTER BLACK HOLE SAGITTARIUS A*

3.1 Abstract

The Galactic Center black hole Sagittarius A* (SgrA*) is the nearest super-

massive black hole and thus provides a unique opportunity for observing the

black hole’s immediate environment and accretion. There exists a variety of

models describing black hole accretion mechanisms; however, little is defini-

tively known about the accretion processes. This is primarily due to the lack

of observational constraints to the accretion flow at < 105 Schwarzschild radii

(RSch) from the black hole. Our observations provide such a constraint.

In this work, we used a millimeter wavelength recombination line of Hydrogen

– H30α – to probe the accretion zone of SgrA* with Atacama Large Millimeter

Array (ALMA). We detected and spatially resolved an accretion disk of radius

≤ 0.008 pc (∼ 10 000 RSch), consisting of ∼ 104 K ionized gas. This is the first

detection of an accretion disk around the supermassive black hole at the center

of our galaxy, and provides a new window for probing black hole physics and

accretion.

3.2 Introduction

The supermassive black hole resides in the centre of our galaxy. Its location is

identified with a nonthermal radio source hole Sagittarius A* (SgrA*). There is

a discrepancy in the estimates of its mass and the distance to it: MSgrA∗ = 4.0×
106M� and DSgrA∗ = 8.0 kpc (Boehle et al., 2016), and MSgrA∗ = 4.3 × 106M�
and DSgrA∗ = 8.3 kpc (Gillessen et al., 2017). The black hole’s close proximity

and the angular size on the sky 2 × 10−5 arcsec large enough to be resolvable

with earth-sized interferometer such as Event Horizon Telescope (Doeleman

et al., 2009) make it an ideal candidate to study black hole environment,

accretion, and physics near the event horizon. A schematic plot of the inner

∼ 1 pc of the Galactic Center region indicating the main structures and the

directions of their rotations is on Figure 3.1.

Understanding accretion onto massive black holes is an important to under-

standing the evolution of galaxies, the growth of massive black holes, the
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The scale of the 
detected ionized disk 
with rotation: 

    
0.4 arcsec = 0.015 pc

Sagittarius A* black hole

The black hole's radius 
of influence

Nuclear star cluster

Mini-spiral

     The size of          
ALMA beam: 

      0.2 arcsec

Circumnuclear disk

26 arcsec=1 pc

Bondi radius

Galactic plane

Toward us
Away from us

1 arcsec=0.04 pc

8 arcsec=0.3 pc

The main structures in the Galactic Center

Clockwise  
stellar system

Figure 3.1: A schematic to scale plot of the inner two parsecs of the Galactic
Center region. The main structures are indicated by different colors. The
distances in pc calculated assuming that the distance to the Galactic Center
is DSgrA∗ = 8.0 kpc (Boehle et al., 2016). Yellow star: The Galactic Center
black hole Sagittarius A*. Red: The the molecular ring, or the circumnuclear
disk, containing molecular gas. It is a circle of a radius about 2 pc inclined
to the line of sight. Cyan: The mini-spiral consists of three streams of ionized

gas rotating counterclockwise either inflowing or orbiting the black hole (Zhao
et al., 2016). Filled grey circle: The nuclear star cluster. Most of its mass

∼ 1.0 × 106M� is concentrated within a radius of about 1 pc. The outer
boundary extends to a few pc. Yellow: The galactic plane. We look at it
edge on which makes it look like a line. The black hole’s radius of influence is
the radius at which the gravity of the black hole dominates the motion of
the stars is at 0.3 pc. The Bondi radius is 0.04 pc. The dark red dot on the
left-hand-side: The size half power width diameter of ALMA beam for the
present observations. The blue dot on the right-hand-side: The detected 104

K disk. The direction of rotation, where relevant, are shown with arrows,
the circled cross indicating going away from us, and the circled dot indicating
going toward us. The colours of the rotation markers coincides with the color
of the rotating structure.
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physics of jets, and the black hole physics in general. X-ray measurements

of the gas density and temperature at the outer edge of the accretion flow

couples with the spherical adiabatic and constant rate of accretion (Bondi,

1952) predicts that the hot-phase accretion rate onto the Galactic Center is

ṀBondi ∼ 10−5M� yr−1 (Baganoff et al., 2003; Quataert, 2002, 2004). In stan-

dard thin disk accretion onto a black hole, the disk radiates between 6% (0

spin) and 42% (maximal spin) of the rest mass of the material falling in. If

both the Bondi accretion rate and the thin disk efficiency applied, the luminos-

ity of Sgr A* ∼ 1041 erg s−1. This is ∼ 3 × 104 times greater than the observed

Lbol ∼ 3 × 1036 erg s−1 (Mahadevan, 1998).

Extensive theoretical efforts were put into resolving the mystery of Sgr A* ac-

cretion and similar black holes with the Radiatively Inefficient Accretion Flows

(RIAF): the Advection-Dominated Accretion Flow (Narayan & Yi, 1995), the

Advection-Dominated Inflow-Outflow Solution (Blandford & Begelman, 1999)

and the Convection-Dominated Accretion Flow (Quataert & Gruzinov, 2000).

All of the models deal with a disk which cannot efficiently cool (Phinney,

1981; Rees et al., 1982) and is geometrically thick. This is in contrast to

Sakura-Sunyaev disk model (Shakura & Sunyaev, 1973) in which gas cools

very efficiently and settles into a thin disk. The physics of the inefficiently

cooling disk is as follows. The macroscopic effects transfer energy primarily to

the ions. The ions lose only a small fraction of their energy to the electrons

through Coulomb scattering on an inflow/heating timescale. As the result the

radiation efficiency of such a flow is very low. The gas falling under the horizon

radiates only a fraction of 0.1Ṁc2.

Here is the brief overview of the RIAF models:

ADAF: Narayan & Yi (1995) proposed an Advection-Dominated Accretion Flow

(ADAF). This accretion flow resembles a thick disc rotating at an angular

velocity much less that Keplerian velocity Ω � ΩK. The amount of ra-

diation loss, i.e., the amount of energy transferred from ions to electrons

is set to be a free parameter. The black hole is fed at a constant rate

and no material escapes. The density of such a disk scales as ρ ∼ r−
3
2 .

ADIOS: An ADAF may be unstable to driving a wind. (The binding energy of

1 g of gas at a few RSch can drive off 500 kg of gas at ∼ 105 RSch.) The

possibility of outflow was pointed out in the original paper (Narayan &

Yi, 1995), and analysed by Blandford & Begelman (1999), who derived an
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Advection Dominated Inflow Outflow Solution (ADIOS). This accretion

model is characterized by the presence of both an inflow and an outflow.

It has the geometrical characteristics of the ADAF solution – a thick

disk rotating at an angular velocity much less that Keplerian velocity

Ω � ΩK. The disk also has a constant rate of accretion, but because

the material is inflowing and outflowing the density profile is less steep

ρ ∼ r−
3
2+p, where p is a constant parameter, and the absolute value of

the density is lower than the one of the ADAF.

CDAF: Quataert & Gruzinov (2000) pointed out that ADAF may be unstable

to convection. They proposed a Convection-Dominated Accretion Flow

(CDAF). This accretion flow is marginally stable when the convection

dominates advection in carrying the material in. A CDAF’s disk is also

a thick disc rotating at an angular velocity much less that Keplerian

velocity, and feeding the black hole at a constant rate, but the density

of such a flow scales as ρ ∼ r−
1
2 .

simulations: We should also mention that McKinney et al. (2012) obtained ρ ∼ r−1

in their numerical simulations which included magnetic fields and a jet.

A detailed fit of no-wind ADAF models to the observed Sgr A* spectra from

radio to γ-rays (Mahadevan, 1998; Mahadevan et al., 1997) led to the estimate

of the black hole accretion rate at

ṀSgrA∗ = 7 × 10−6
(
α

0.3

) M�
yr

. (3.1)

Here α is the dimensionless Shakura-Sunyaev viscosity parameter.

The no-wind ADAF cause a pile up of material in the accretion zone such

that it becomes inconsistent with the Faraday rotation measurements (Agol,

2000; Marrone et al., 2007; Quataert & Gruzinov, 2000). Assuming that the

magnetic field is ordered and at equipartition strength, the rotation measure

constrains the accretion rate at

Ṁ < 2 × 10−7 M�
yr

. (3.2)

Inclusion of an outflow solves the pile up issue. The detailed fit of the RIAF

models with an outflow to the spectrum of Sgr A* from radio to γ-rays (Yuan
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Figure 3.2: Schematic plot illustrating the recombination line technique. If
photons with energies Eγ ≥ 13.6 eV are present they ionize neutral hydrogen.
As the electrons and the protons recombine, some recombinations occurs to
n � 1. Then the electrons cascades down to the ground level. During the
cascade, some electrons pass through the levels of interest, in this case the
H30α : n = 31 → 30. The amount of radiation coming out in H30α give us
how many H30α transitions are happening, how many atoms are recombining,
how much ionized material is in the region, and the background flux of the
ionizing photons.

& Narayan, 2014) results in

ṀBondi ∼ 3 × 10−6M�/yr (3.3)

ṀSgrA∗ = 1.2 × 10−7M�/yr, (3.4)

which is consistent with the constraint from the Faraday rotation measure-

ments.

There is, however, no observational evidences for the presence of an outflow

near Sgr A*. There is no evidence excluding such a possibility either.

In their recent hydrodynamics simulations of the inner accretion flow of Sgr A*
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fueled by stellar winds Ressler et al. (2018) obtained

ṀSgrA∗ = 2.4 × 10−8 M�
yr

(
R

RSch

)1/2
. (3.5)

The general picture of the accretion onto Sgr A* is that the accretion at the

Bondi radius is MBondi ∼ 3 × 10−6 − 10−5 M�/yr, the accretion near the black

hole is MSgrA∗ ∼ 10−7 − 10−8 M�/yr, and what exactly happens in between is a

subject to debate.

It difficult to favor or rule out any of the RIAF models for Sgr A* primarily

due to the lack of model-independent observational probes of the gas at be-

tween ∼ 10−105 RSch. Part of the reason is that our main source of information

about the accretion zone around Sgr A* is X-ray observations by Chandra and

XMM, which only probes gas at T ≥ 107 K. However, there is a large reser-

voir of cooler gas in the Galactic Center in the circumnuclear disk and the

mini-spiral. X-ray emission cannot probe this gas and it is, therefore, uncer-

tain how much of this T ∼ 104 K gas accretes onto the black hole. Here we

provide such a constraint using a mm recombination line of hydrogen H30α.

Scoville & Murchikova (2013) discussed that submm and mm hydrogen recom-

bination lines can serve as a direct probe of the non-X-ray-emitting, ionized

gas around Active Galactic Nuclei and in particular Sgr A*. The schematic

plot illustrating the recombination line technique is presented on Figure 3.2.

3.3 Results

We observed a millimetre wavelength recombination line of hydrogen H30α line

– the transition n = 31 → 30 – at 231.9 GHz on ALMA for 5.1 hours. This

particular line was selected for it is in mm range and therefore not a subject to

dust extinction and it is free from known molecular emission (Crockett et al.,

2014). Our observations detect a 2200 km s−1 wide line with a double-peaked

profile centered at the frequency of H30α within 0.2 arcsec (0.008 pc) radius

around Sgr A*.1 The emission is spatially resolved (Figure 3.3). The spatial

distribution of the redshifted and blueshifted parts H30α emission are shown

in the bottom panel of Figure 3.3. They are displaced from the centre of the

continuum emission of Sgr A* indicated with the white contours. The spatial

1The extent of the emission is determined by analyzing the spectra within the apertures
of a various sizes. An increase in the aperture size beyond 0.2 arcsec does not increase the
amount of H30α flux within it. An amount of emission, if any, outside the 0.2 arcsec (0.008
pc) radius around Sgr A* is < 10% of what it is inside.
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and spectral structures are consistent with a rotating disk with position angle

on the sky ∼ 64 degrees.

Hydrogen recombination line            from Sgr A*

blueshifted redshifted

H30↵

Figure 3.3: Upper panel: The detection of recombination H30α line from
within 0.2 arcsec (0.008 pc) radius around SgrA* with ALMA Cycle 3. The
rest frequency of H30α is at zero velocity. Each point is averaging of the
observed spectral data over 50 km s−1. Lower panel: The spatial distribution
of the blueshifted and the redshifted H30α emission. The white contours
indicated the continuum emission from Sgr A* at ∼ 220 GHz. Continuum
emission is ∼ 3.5 Jy. The contour are 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5
Jy. The semitransparent white dotted circle indicates the Bondi radius. The
images in the bottom panel are 2.2 × 2.2 arcsec2. The units on the X-axes are
converted to the conventional for RA seconds of time versus DEC’s the seconds
of arc (arcseconds). The size of the ALMA beam is 0.4 × 0.3 arcsec2 with the
PA ' 0.

Let us derive the disk properties. The velocity-integrated line flux of H30α

(S∆VH30α), i.e., the integral under the line in Figure 3.3, allows us to estimate

the mass of the disk and the ionizing radiation flux to keep the gas ionized.

The H30α line luminosity is given by the integration over the line emitting
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region

LH30α =

∫
εH30αnenpd3r (3.6)

and the flux received by the telescope is

SH30α =

∫
εH30αnenpd3r .

4πD2 . (3.7)

Here εH30α is the emissivity of H30α which in general is a function of density

and temperature, ne is the electron number density, np is the proton number

density, and D is the distance to the emitting source.

The integrated line flux is then∫
Sdν =

∫
SdV

νobs
c
= S∆VH30α

νobs
c
=

∫
εH30αnenpd3r .

4πD2 , (3.8)

where S in the line flux, c is the speed of light, and V is the radio velocity

corresponding to the observed frequency shift from the rest frequency of H30α

line (νobs = νH30α). We arrive at

S∆VH30α =

∫
εH30αnenpd3r

4πD2
c
νobs

. (3.9)

Substituting νobs = νH30α = 231.9 GHz, DH30α = 8.0 kpc, 1Jy = 10−23 erg
s cm2 Hz

and εH30α (104 K, 106 cm−3) = 1.25×10−31 erg s−1cm3 (Storey & Hummer, 1995b),

we get

S∆VH30α = 2.1 × 10−60
∫

εH30α (T, n)
εH30α (104 K, 106 cm−3)

nenpd3r Jy km s−1.(3.10)

The emissivity εH30α (T, n) varies weakly with n. Here are a few examples:

εH30α (104 K, 107 cm−3)
εH30α (104 K, 106 cm−3)

=
1.359
1.251

and
εH30α (104 K, 106 cm−3)
εH30α (104 K, 105 cm−3)

=
1.251
1.08

.(3.11)

Therefore for simplicity in what follows we assume that

εH30α (T, n)
εH30α (104 K, 106 cm−3)

' 1. (3.12)

Integrating the observed spectra, Figure 3.3, we find the velocity integrated
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line flux is

S∆VH30α = 3.8 Jy km s−1, (3.13)

and the volume emission measure of the ionized hydrogen (EM) derived from

Equation 3.10 is

EM =

∫
nenpd3r = 1.8 × 1060 cm−3. (3.14)

Let us now estimate the physical properties of the disk and the accretion rate.

For simplicity we assume ne = np = n.

Let us consider an isothermal disk at T = 104 K with the outer radius rmax = 0.2
arcsec and the inner radius rmin = 0.1 arcsec, half opening angle φ, such that

h/r = tan φ, where h is the scale height of the disk measured from the midplane

to the top, the electron number density

n(r) = Cr−3/2, (3.15)

where C is the constant to be determined from Equation 3.14. The disk rotates

with the azimuthal velocity VΩ proportional to the Keplerian velocity VK with

the proportionality coefficient χ (VΩ = χVK).

For such a disk the emission measure is given by2

EM =

rmax∫
rmin

dr

r tan φ∫
−r tan φ

dz2πrC2r−3 = 4π tan φC2 ln
rmax
rmin

. (3.17)

Making use of the Equations 3.15, 3.14 and 3.17 we find

n =
1.2 × 105
√

tan φ

( r
0.2 arcsec

)−3/2 (
EM

1.8 × 1060

)1/2
cm−3. (3.18)

2If we generalize the electron number density to n(r) = Cr−3/2+p, where p is a constant
(see ADIOS), we find

EM = 4π tan φC2 r2p
max
2p


1 −

(
rmin
rmax

)2p
. (3.16)
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Then the mass accretion rate onto a black hole Ṁ is given by

Ṁ = 2πr2h(r)Vr ρ(r), (3.19)

where Vr is the radial inflow velocity of the gas at the radius r and ρ = nmp

is the gas mass density. Using the standard expression for the radial inflow

velocity in the accretion disk

Vr = α

(
h
r

)2
VΩ (3.20)

where cs is the speed of sound and α is the dimensionless Shakura-Sunyaev

viscosity parameter, we find

Ṁ = 4πr2nmpvΩα

(
h
r

)3

= 3.6 × 10−4 (
tan φ

)5/2
(
α

0.1

) (
VΩ

1100 km s−1

) (
EM

1.8 × 1060cm−3

)1/2 M�
.

yr

(3.21)

The scale height of the disk can be estimated using

cs
VΩ
=

h
r
. (3.22)

The speed of sound in the ideal gas is cs =
√

γp
ρ =

√
γ(ne+np )kBT

npmp
=

√
γ2kBT

mp
. We

have

cs = 16.6
(

T
104

)1/2
km s−1, (3.23)

then

h
r
' 0.02

(
T

104

)1/2
, (3.24)

and finally

n = 0.9 × 106
(

T
104

)−1/4 ( r
0.2 arcsec

)−3/2 (
EM

1.8 × 1060

)1/2
cm−3 (3.25)

Ṁ = 1.0 × 10−8
(

T
104

)5/4 (
α

0.1

) (
VΩ

1100 km s−1

) (
EM

1.8 × 1060

)1/2 M�
yr

. (3.26)
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A disk with these properties is gravitationally stable, since the Toomre Q is

Q =
Ωcs

πGρh
=

χΩ2
K

πGmpn
∼ 6 × 107

( r
0.2 arcsec

)−3/2
� 1. (3.27)

For the material in the disk to be ionized, we need an ionizing photon flux

large enough to counteract the recombination loses. Assuming that the disk is

in equilibrium, i.e., that the number of recombinations per unit time is equal

to the number of ionizations, we get

Q0 =

∫
αBnpned3r ' αBEM. (3.28)

Here Q0 is the flux of ionizing photons with energies Eγ > 13.6 eV, and αB is the

sum of the recombination coefficients to all levels n ≥ 2, i.e., the recombinations

resulting in the destruction of an ionizing photon. Using αB (T = 104K) =
2.59 × 10−13 cm3, we find

Q0 = 4.6 × 1047
(

EM
1.8 × 1060

)
s−1. (3.29)

This is more than we could expect from Sgr A*.

Let us then estimate the ionizing photon flux from the surrounding stars.

We assume that most of the ionizing flux comes from 15 Wolf-Rayet (WR)

stars on the orbits at around 4 arcsec. Most of these stars belong to the

counterclockwise disk. The bolometric luminosity of WR stars ranges from

LWR ∼ 104 − 106L� and we expect ∼ 39% − 69% of these luminosity emitted

at Eγ ≥ 13.6 eV (Crowther, 2007). Therefore these 15 WR stars produce the

flux of the ionizing photons of

QWR
0 ∼

15 × 105L� × 0.55
13.6 × 1.6 × 10−12 ×

π(0.2arcsec)2

4π(4arcsec)2 ∼ 0.9 × 1046 s−1. (3.30)

near the location of the disk.

This estimate can be considered as an upper limit, since the characteristics of

WR stars vary widely and the emitted EUV may sustain a considerable losses

before reaching the disk due to the presence of neutral hydrogen in the region.

There is a factor of ∼10 tension with our estimations from the H30α emission.

There is a more pressing issue, however. If we assume that the value of the

emission measure is in Equation 3.14 we must expect the detection of the disk
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in Brγ. Indeed

S∆V obs
Brγ

S∆VH30α
=

εBrγ

εH30α

νBrγ

νH30α
10−a/2.5 = 5.2 (3.31)

Here we used that the extinction toward the galactic center at the frequencies

of Brγ is a = 2.1. We expect to see a double peaked Brγ line with a maximal

value of the flux ∼ 15 mJy. But no Brγ from this region were observed. The

detection limit for Brγ is around ∼ 0.1 Jy. In order to see no Brγ our emission

measure must be al least a factor of ∼ 100 lower than the estimate in Equation

3.14: (
EM

1.8 × 1060

)
≤ 10−2. (3.32)

But how can we observe that much H30α emission as in Figure 3.3, if our emis-

sion measure is a factor of ∼ 100 times lower? For the estimations above we

used an extremely simplified model. In reality the disk is heated by magneto-

viscous dissipation and external radiation, most relevantly the continuum as-

sociated with the black hole with the temperature of ∼ 104 K and the peak

of the spectra at ∼ νH30α. Also at large values of n, the occupancy of the lev-

els is determined by collisions, whereas at low values of n (Brγ) spontaneous

emission dominates. At intermediate values of n ∼ 30 (H30α) collisions, spon-

taneous and stimulated emission and absorption are all important and possibly

enhance the emissivity of H30α relative to the Brγ. The exact calculation of

the relative fluxes requires further investigation.

3.4 Conclusion

We detected a cool 104 K accretion disk around the Milky Way’s Galactic

Center black hole Sgr A* using a novel probe for this region a mm recombi-

nation line of hydrogen H30α, which is a reliable probe of the 104 K gas in

the accretion on zone of Sgr A*, unobservable in X-rays. The disk is spatially

resolved. It extends to about 0.008 pc (0.2 arcsec) and has position angle on

the sky of ∼ 64 degrees. It rotates in the direction consistent with the main

structures at the Galactic Center. Our analysis shows that the disk is gravita-

tionally stable. If we assume the the temperature of the disk is T = 104 K we

conclude that it possesses thin disk geometry h/r ∼ 0.02. This would be in-

consistent with the RIAF accretion models (ADAF, ADIOS and CDAF) all of

which possess thick disk geometries. However, the observed emission, instead
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of coming from a smooth disk, might be distributed over a vast number of tiny

104 K cloudlets, similar to the broad region of quasars and Seyfert galaxies.

In this case the distribution of the cloudlets might easily form a thick torus.

This uncertainty can be resolved with higher resolution ALMA observations.

(We have proposed eight times higher resolution observations than the ones

presented here for ALMA Cycle 6.)

Our limits on the disk density and accretion rate are

n ≤ 1.7 × 105
(

T
104

)−1/4 ( r
0.2 arcsec

)−3/2 (
EM

1.8 × 1058

)1/2
cm−3 (3.33)

Ṁ ≤ 1.0 × 10−9
(

T
104

)5/4 (
α

0.1

) (
VΩ

1100 km s−1

) (
EM

1.8 × 1058

)1/2 M�
yr

. (3.34)

The inequalities are due to the limit set on the volume emission measure of

the disk from non-detection of Brγ and the necessity of a careful account for

the external radiation and inverted population on n ∼ 30, leading to potential

relative increase of H30α emission with respect to Brγ. This is the topic of our

followup study.

In our future observations we will study the extent of the line beyond ∼

3000 km s−1 unavailable in this observations and reach ∼ 20 000 km s−1 (the

ALMA Cycle 5). We also study the effects of the S2 star close flyby by Sgr

A* on the disk (the ALMA Cycle 4 and Cycle 5).

The discovery of a 104 K disk within ∼ 2 × 104RSch around Sgr A* provides a

new model independent window into studying the accretion onto supermassive

black hole, bringing us closer to understanding its mechanisms.
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Figure 3.4: ALMA spectral window configurations for our ALMA Cycle 3 observations.
The observations have two spectral windows (blue and red) positioned across the line with
an overlap. The frequency of the H30α line is marked with an arrow. The double peaked
line between 231 GHz and 233 GHz is a schematic drawing of the detected line.
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3.6 Appendix

3.6.1 Observations

These ALMA Cycle 3 observations in H30α line were obtained in 2016 April

and August for project 2015.1.00311.S.

The observations discussed here were conducter in receiver Band 6; the corre-

lator was configured in the time division mode (TDM) with 4 spectrometers.

Each spectrometer had a full bandwidth of 1875 MHz with 1.95 MHz resolu-

tion spectral channels. Because the width of the line was comparable with the

bandwidth of the individual spectrometers, we positioned two spectral win-

dows centred at 231.058 GHz and 232.608 GHz to overlap, see Figure 4.28;

the remaining two spectral windows were centred at 217.801 GHz and 215.801

GHz to image the SgrA* continuum.

The observations were primarily done in ALMA configuration C40-5 with base-

lines up to 1.1 km and one execution was done in configuration C36-2/3 with

baselines up to 460 m. For the C40-5 telescope configuration, good flux re-

covery is expected out to scales of ∼ 3.4 arcsec and for C36-2/3 it is expected

up to ∼ 10.7 arcsec. Extended emission with spatial size greater than this will

be partially resolved out. The data were taken with 43 12 m antennas and

the total AMA time used by the observations was 5.1 hours (including calibra-
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tions). The total integration time (excluding calibration) was 1.6 hours. The

synthesized beam size was 0.4 × 0.3 arcsec2 with PA' 0.

J1924-2914 was used as a bandpass calibrator. J1744-3116 or J1717-3342 were

used as a phase calibrators.

Following delivery of data products, the data was re-reduced and imaged using

the Common Astronomy Software Applications package (CASA). We did not

perform self-calibration, as it is a mathematically ill-defined procedure. The

images were made with the parameter Robust = 1. The cleaned images with

no continuum subtraction were used to identify the line free channels. We then

performed UV continuum subtraction using these channels. Further analysis

was performed in Python and Mathematica.

Channel averaging over 8 of the original channels was done to reduce noise,

resulting in data with velocity resolution of 40 km s−1 with no compromise rel-

ative to the observed line width (δV = 2200 km s−1). The 1σ (rms) sensitivity

is 0.3 mJy beam−1 in each 40 km s−1 channel.

The velocities given here are Vradio = c νrest−ν
νrest

relative to the LSR. The Sgr A*

observations were centered on VLSR = 0.0 km s−1.

3.6.2 Observational difficulties and reliability

We observed ∼ 2200 km s−1 wide ∼ 2 mJy line emission on top of the 3.5 Jy

of primarily synchrotron continuum of Sgr A*. To achieve this we needed

excellent bandpass calibrations, the bandpass to be repeated at least every 30

min.

The width of the line was comparable with the width of the spectral window,

so the observation required one line to be observed in two spectral windows.

But because the ALMA spectral windows are calibrated separately, and there

is usually a misalignment in the absolute value and the spectral slope of the

data taken with one spectrometer with respect to the other, we positioned

spectrometers with overlap and used the overlapping parts of the spectra to

ensure that separate spectra windows are consistently aligned. We used an

overlap of about 25 channels, which left us with ∼ 15 useful channels, as about

10 channels at the end of each spectral window are unusable.

To test the reliability of our data we performed the following tests:

1. We divided the data into pieces and processed them independently with-

out reference to each other and then compared the final spectra. We
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Figure 3.5: The spectrum of a continuum source J1572-2956 used as a check source. The
gap in the spectra around 230.5 GHz is due to the CO (2-1) emission. No similar double
peaked emission centered on νH30α = 231.9 GHz is seen here.

recovered the same spectral features as in the combined data;

2. We observed a continuum sources J2000-1748 or J1752-2956, which were

then calibrated in the same way as Sgr A*, to check for the possible

technical or data reduction errors (Figure 3.5). No spectral features

analogues to those on Figure 3.3 were detected.

3.6.3 Uncertainties

1. We assumed the mass of the black hole and the distance to the Galactic

Center as given in Boehle et al. (2016). Replacing these values by those

in Gillessen et al. (2017) we will see a 5% increase of our estimations of

the scale of the disk. And therefore ∼ 3% decrease in density.

2. The sensitivity of the observation is δS = 0.3 mJy in each 40 km s−1

channel.

3. We tested possible uncertainties which can be introduced by the com-

bination of the imperfect continuum subtraction, caused by the use of

incorrect “line free” channels, subsequent task TCLEAN applied to the

sloped spectra, and then matching the overlapping parts of the spectra

by removing the slope from the spectra through subtraction of a straight

line aν + b, with a and b constants. We experimented primarily with

the imperfect continuum subtraction resulting in the slope of the order

≤ 10 × Smax ∼ 30 mJy. We concluded that uncertainties introduced

this way are ≤ 7% relative to the value of each point in the spectra.

The trend is that the task TCLEAN makes point with a high value even

higher. We estimate the uncertainties due to variations in UV continuum

subtraction and subsequent TCLEAN at 5% on average.
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4. Overlapping channels constraining the alignment of the separate spectral

windows allow variation of the total alignment. The variations in the

spectral windows alignment might result in up to 10% discrepancy.

5. The molecules with lines within ∼ 1 GHz around H30α are too complex

to be present in substantial quantities in 104 K ionized gas – acetone,

methanol, sulfur dioxide 33SO2, and similar ones (Remijan et al., 2016).

However it is hard to exclude possibility of narrow absorption or emis-

sion features from the foreground. A presence of the absorption feature

might contribute to the to sharpness of the dip in the center of the double

peaked profile of the H30α line. The spectrum also shows a relatively

narrow 150 km s−1 bump at 231.43 GHz, which might be due to fore-

ground emission. This feature is responsible for 0.2 Jy km s−1 in the total

velocity integrated line flux S∆VH30α in Equation 3.13.

6. We explore a relatively narrow spectral range of frequencies, while the

wings of the line might extend further than ±1000 km s−1 from the central

frequency. We are unable to test this with the observations presented

here. This issue be resolved by our ALMA Cycle 5 observations which

will be conducted in the spectral scan mode and cover ∼ 20 000 km s−1.

Combining the above factors we access the uncertainties at ∼ ±20%.
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C h a p t e r 4

ANALYTIC CLOSURES FOR M1 NEUTRINO TRANSPORT

Carefully accounting for neutrino transport is an essential component of many

astrophysical studies. Solving the full transport equation is too expensive for

most realistic applications, especially those involving multiple spatial dimen-

sions. For such cases, resorting to approximations is often the only viable

option for obtaining solutions. One such approximation, which recently be-

came popular, is the M1 method. It utilizes the system of the lowest two

moments of the transport equation and closes the system with an ad hoc clo-

sure relation. The accuracy of the M1 solution depends on the quality of the

closure. Several closures have been proposed in the literature and have been

used in various studies. We carry out an extensive study of these closures by

comparing the results of M1 calculations with precise Monte Carlo calculations

of the radiation field around spherically-symmetric protoneutron star models.

We find that no closure performs consistently better or worse than others in

all cases. The level of accuracy a given closure yields depends on the mat-

ter configuration, neutrino type, and neutrino energy. Given this limitation,

the maximum entropy closure by Minerbo (1978) on average yields relatively

accurate results in the broadest set of cases considered in this work.

4.1 Introduction

Neutrinos play an important role in core-collapse supernovae (CCSNe), co-

alescence of binary neutron stars and many other astrophysical phenomena.

Their collective behavior is described by the distribution function that obeys

the Boltzmann transport equation. The state of the radiation field is character-

ized by spatial coordinates, the propagation direction (two angles), energy, and

time, making the problem seven-dimensional in the most general case. Many

astrophysical systems have dense and opaque central regions surrounded by

transparent low-density envelopes. Radiation moves within the dense central

regions via diffusion and, when it leaks into the outer regions, it streams freely.

The transport equation has a parabolic character in the former region, while

in the latter region, it has a hyperbolic character (e.g., Mihalas & Mihalas,

1984; Pomraning, 1983). In order to model such systems accurately, the so-

lution techniques must handle not only the two different regimes, but also
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the transition between the two. In the presence of scattering, the collision

terms on the right-hand side of the Boltzmann equation contains the angular

moments of the specific intensity, which makes the Boltzmann equation an

integro-differential equation. These aspects make solving the transport equa-

tion a challenging computational task. For this reason, often one has to resort

to approximations and simplifications to make the problem tractable.

One way of simplifying the problem is to assume spherical or axial symme-

tries to reduce the number of spatial dimensions. There are many situations

where such assumptions have been employed. Spherically-symmetric calcula-

tions have been performed by, e.g., Liebendörfer et al. (2005); Mezzacappa &

Bruenn (1993a,b,c); Rampp & Janka (2000); Sumiyoshi et al. (2005); Yamada

(1997). 2D axisymmetric simulations have been performed by, e.g., Brandt

et al. (2011); Burrows et al. (2016); Livne et al. (2004); Ott et al. (2008);

Skinner et al. (2016). In addition, ray-by-ray approaches, in which multi-

dimensional transport problem is approximated as a set of one-dimensional

problems along radial rays, has been used widely (e.g., Bruenn et al., 2013,

2016; Buras et al., 2006; Burrows et al., 1995; Lentz et al., 2015; Marek &

Janka, 2009; Melson et al., 2015a,b; Müller, 2015; Müller & Janka, 2015; Müller

et al., 2012a,b). Most realistic problems, however, do not possess spatial sym-

metries. For these problems, the transport equation has to be solved in full

three dimensions. The pioneering attempts to solve three-dimensional Boltz-

mann equation have been already taken (e.g., Radice et al., 2013; Sumiyoshi

& Yamada, 2012; Sumiyoshi et al., 2015), yet the computational cost remains

too high for solving it in realistic scenarios.

In order to further reduce the cost, one can approximate the Boltzmann equa-

tion either by neglecting the time dependence (steady-state solution) and/or

energy dependence (gray schemes). The simplest treatment of the transport

problem is the “light bulb” approach, in which simple parametrized neutrino

heating and cooling rates are imposed (e.g., Murphy & Burrows, 2008; Ohnishi

et al., 2006; Radice et al., 2016). The less cruder approximation, the so-called

leakage/heating scheme, has been used extensively in the literature (e.g., Ab-

dikamalov et al., 2015; Deaton et al., 2013; Mösta et al., 2014; O’Connor &

Ott, 2011; Ott et al., 2012, 2013a,b; Rosswog & Liebendörfer, 2003; Ruffert

et al., 1996). The leakage/heating scheme evaluates the local neutrino energy

and number emission rates, which are then locally subtracted from the matter.

A fraction of the emitted energy is deposited back as neutrino heating in the

“gain” region outside the protoneutron star (PNS)(e.g., O’Connor & Ott, 2010;



54

Ott et al., 2013b).

In this paper we focus on an alternative approach, employing the reduction of

the angular degrees of freedom of the problem, called the moment scheme. The

simplest version of the moment scheme is the diffusion approximation. One

takes the zeroth moment of the transport equation, which yields an equation

that contains the zeroth and first moments of the distribution function. For

non-static moving media, the third moment is also present (e.g., Just et al.,

2015). These three moments represent the energy density, flux, and pressure

tensor of radiation, respectively. In the optically thick limit, the first moment

can be approximated using the gradient of the zeroth moment via the Fick’s

law, while the second moment can be approximated as one-third of the zeroth

moment (e.g., Pomraning, 1983). These relations allows us to“close”the zeroth

moment of the transport equation. While the resulting equation is far simpler

than the original Boltzmann equation, the diffusion approximation is not valid

in the free-streaming regime and yields inaccurate results such as acausal flux.

This can be mitigated by using the flux limiter (e.g., Burrows et al., 2000; Smit

et al., 2000) or by using other advanced prescriptions (e.g., Dgani & Janka,

1992; Müller & Janka, 2015; Scheck et al., 2006). The way to obtain a more

accurate solution is to incorporate higher-order moments.

The first moment of the transport equation results in an equation containing

up to the second moments of the distribution function. In general relativity

and for non-static media, the third moment is also present (Cardall et al., 2013;

Just et al., 2015; Shibata et al., 2011). Together with the zeroth moment of

the transport equation the system has four sets of unknowns: the zeroth, first,

second, and third moments. There are two commonly used approaches for

closing the system. In the first method, using the first and second moments

as given, one can express the source terms of the Boltzmann equation due

to interaction with matter as functions of only space, time, and momentum

coordinates (Burrows et al., 2000; Rampp & Janka, 2002). This transforms

the Boltzmann equation from a non-linear integro-differential equation into a

linear differential equation. The solution of this simpler equations yields higher

moments to close the original system of the lowest two moment equations,

from which we can obtain updated zeroth and first moments. This procedure

is iterated until convergence. Depending on the method for obtaining the

closure, the approach can yield the full solution of the Boltzmann equation.

This method is usually called the variable Eddington tensor method (Burrows

et al., 2000; Cardall et al., 2013; Rampp & Janka, 2002).
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Another approach for closing the system is by expressing the second and the

third moments in terms of the lower-order moments using approximate ana-

lytical relations. This results in a closed system of two equations for the zeroth

and first moments. Originally proposed by Kershaw (1976); Levermore (1984);

Pomraning (1969), such methods are often called the M1 methods (Audit et al.,

2002; Pons et al., 2000; Smit et al., 1997) or the “algebraic Eddington factor”

methods (Just et al., 2015).

A common way to derive a closure relation by interpolating between optically

thick and optically thin limits. In these limits, the second and third moments

can be expressed precisely in terms of the zeroth and first moments1. The

Eddington factor, which ranges from 1/3 to 1 between these limits, serves as

an interpolation parameter. The functional form of the Eddington factor in

terms of the local energy density and flux of radiation is a relation often called

the M1 closure in the literature. Once this relation is established, the system

is closed (e.g., Shibata et al., 2011)2.

The M1 approach is particularly suitable for problems with not too complex

geometries such as CCSNe and remnants neutron star mergers. In these prob-

lems, the radiation field is often arranged in such a way that there exists

some approximate relationship between higher-order and lower-order moments.

That said, not all problems possess such properties. A prominent example is

a collision of radiation beams coming from multiple sources. For this problem,

the closure relation depends not only on the local values of the first and sec-

ond moments, but also on the spatial distribution of the radiation sources. In

general, if the second and third moments are assumed to be functions of the

zeroth and first moments, then the former two must be symmetric with re-

spect to rotation around the direction of the radiation flux (e.g., Cardall et al.,

2013). For problems with such symmetries, the M1 approach offers excellent

compromise between computational cost and accuracy.

Moreover, the moment equations constitute a hyperbolic system, which allows

1More specifically, in the optically thin limit, one can derive an expression for the second
and third moments for a freely propagating radiation beam (e.g., Shibata et al., 2011).

2This is not the only approach for closing the system that exists in the literature. In
principle, if the second and third moments are assumed to be functions of the local values
of the lowest two moments, then the second moment can be expressed in terms of the latter
two via the Eddington factor (e.g., Just et al., 2015). Similarly to the second moment, the
third moment can be expressed in terms of the lowest two via the “third-order counterpart”
of the Eddington factor. To close the system, this factor must be expressed in terms of the
radiation energy density and flux, which has been achieved by, e.g., Vaytet et al. (2011) and
Just et al. (2015) for two different closures.
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us to utilize a wide variety numerical methods developed for solving hyperbolic

system of conservations laws (e.g., Godunov-type methods) to calculate the

solution of the transport problem (Pons et al., 2000). For these reasons and

because of their relatively modest computational cost, such methods recently

gained significant popularity in astrophysics.

The M1 method has been applied to a wide range of problems such as core-

collapse supernovae (e.g., Kuroda et al., 2016; O’Connor & Couch, 2018;

Roberts et al., 2016), evolution of protoneutron stars (Pons et al., 2000), ac-

cretion disks (e.g., Foucart et al., 2015; Just et al., 2015, 2016; Shibata &

Sekiguchi, 2012), and many more in AGN accretion literature. A number of

analytical closures have been suggested in the literature. The accuracy of the

M1 solution depends on the quality of the closure used and it is a priori unclear

which closure yields the best results for a given problem. While the quality of

individual closures has been examined in different contexts (e.g., Janka, 1991;

O’Connor, 2015; Smit et al., 1997), a systematic analysis for neutrino transport

has been performed only by Janka (1991), Smit et al. (2000), and Just et al.

(2015)3. The aim of this work is to extend these two works, consider a wider

selection of M1 closures, verify them using a wider range of test problems that

are relevant to neutrino transport, and present a quantitative assessment of

their quality.

In this work, we evaluate the quality of various closures proposed in the lit-

erature by comparing the radiation field distribution in and around radiating

objects obtained with the M1 method with the one obtained analytically or

with Monte Carlo. We consider two types of radiating objects: a uniform

sphere with a sharp surface and a protoneutron star with a hot envelope ob-

tained from core-collapse simulations. These two objects possess the opaque

central radiating source surrounded by a transparent envelope, i.e. the impor-

tant characteristics common to many astrophysical systems. Since our goal is

to study the quality of the analytical closures and in order not to contaminate

our results with errors emanating from other sources such as hydrodynam-

ics and non-linear radiation-matter coupling, we consider only static matter

configurations in our tests. For simplicity, we limit ourselves to spherical sym-

3Note that there is a relation between the M1 scheme and the flux-limited diffusion
approximation and each flux limiter is associated with an M1 closure relation (Levermore,
1984; Smit et al., 2000). The quality of some of the flux limiters has been explored by,
e.g., Burrows et al. (2000); Just et al. (2015) using the flux-limited diffusion framework for
neutrino transport in the context of core-collapse supernovae.
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metry and ignore spacetime curvature around PNSs. Implications of these

assumptions will be discussed in Section 4.5.

The uniform sphere problem consists of an opaque radiating sphere with a

sharp surface surrounded by vacuum, and it has an analytical solution (cf.

Section 4.4.2). In the PNS problem, we take three different post-bounce con-

figurations (obtained from simulations of Ott et al. 2008) of a 20M� progenitor

star at 160, 260, and 360 ms after bounce. We obtain precise solution of this

problem by performing Monte Carlo radiation transport calculations using the

code of Abdikamalov et al. (2012) (cf. Section 4.4.3). These solutions are

compared to M1 solutions obtained using the GR1D code (O’Connor, 2015;

O’Connor & Ott, 2011, 2013) available at http://www.GR1Dcode.org.

We consider seven different closures. These are the closures by Kershaw (1976),

Wilson et al. (1975), Levermore (1984), the classical maximum entropy closure

of Minerbo (1978), and the maximum entropy closure with the Fermi-Dirac

distribution by Cernohorsky & Bludman (1994). In addition, we consider two

closures by Janka (1991) that are constructed by fitting closure relations to

exact Monte Carlo solutions of the radiation field around PNSs (Janka, 1991).

This paper is organized as follows. In Section 4.2, we give a theoretical

overview of the neutrino transport problem and the M1 scheme. In Section 4.3,

we give a brief description of the seven closures we study in this work. Section

4.4 presents the details of the test problems. We also describe our tools for

systematic quantitative assessment of the quality of the closure relations and

present the results of our analysis. Our conclusions are provided in Section

4.5. In Appendix 4.6, we describe the two codes that we use in our analysis:

the GR1D code for M1 transport and the Monte Carlo code of Abdikamalov

et al. (2012).

4.2 Boltzmann Equation and M1 method

Neutrinos are described by the distribution function F , which characterizes

the number of neutrinos in a phase-space volume element and which obeys the

relativistic Boltzmann equation (e.g., Lindquist, 1966; Mezzacappa & Matzner,

1989):

dxα

dτ
∂F

∂xα
+

dpi

dτ
∂F

∂pi = (−pαuα)S(pµ, xµ, F ) . (4.1)

http://www.GR1Dcode.org
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Here, τ is an affine parameter of the neutrino trajectory, uµ is the four-velocity

of the medium, and pµ is the four-momentum of radiation, from which one

can obtain the neutrino energy in the rest frame of the medium via relation

ε = −pαuα. The Greek indices µ, α = 0, 1, 2, 3 run over space-time components

and the Latin indices i = 1, 2, 3 runs over the spatial components. S(pµ, xµ, F )
is the collision term that describes the interaction of radiation with matter

via absorption, emission and scattering. The evaluation of S(pµ, xµ, f ) is a

domain of a separate field of study and it is beyond the scope of this work

(e.g., Bruenn, 1985; Burrows et al., 2006). In this work, we treat neutrinos as

massless particles and fix units using ~ = c = 1.

The zeroth, first, and second moments of the distribution function represent

the energy density,

Eν =
∫

εF (pµ, xµ)δ(hν − ε)d3p , (4.2)

the radiation flux,

F j
ν =

∫
p jF (pµ, xµ)δ(hν − ε)d3p , (4.3)

and the radiation pressure,

Pi j
ν =

∫
pi p jF (pµ, xµ)δ(hν − ε)

d3p
ε

. (4.4)

Here, Eν, F j
ν , and Pi j

ν are the functions of neutrino energy ε = p0 = |~p|. In

order to obtain the total energy density, flux, and pressure, one has to integrate

(4.2)-(4.4) over energy, as discussed in, e.g., Novikov & Thorne (1973); Thorne

(1981).

The zeroth and the first moments of the Boltzmann equation constitute the

system of equations for Eν and F j
ν . In Minkowski space, spherical symmetry,

and neglecting the velocity of the medium, these two evolution equations are

∂

∂t
Eν +

1
r2

∂

∂r

(
r2Fr

ν

)
= S[0]ν (4.5)

∂

∂t
Fr
ν +

1
r2

∂

∂r

(
r2Prr

ν

)
= S[1]r

ν, (4.6)

where S[0]ν and S[1]ν are accordingly the zeroth and first moments of the

collision term S(pα, x β, F ). Note that, since we consider flat spacetime and
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static matter, the third moment does not appear in this equation. As we

pointed out above, this system is not closed. There are two equations (4.5)

and (4.6), but three unknowns Eν, Fr
ν , and Prr

ν . This is a simple reflection of

the fact that, although the system (4.5)-(4.6) is obtained from the Boltzmann

equation, it does not capture all the information contained in the Boltzmann

equation. To capture the complete information, one has to solve the complete

system, which can be expressed as

Function(M[0]...M[k + 1]) = S[k], (4.7)

where

M[k]α1...αk
ε0 =

∫
ε2F (pµ, xµ)δ(hν − ε)

pα1

ε
...

pαk

ε

d3p
ε
, (4.8)

is the moment of order k. Note that subscripts and superscrips are omitted in

this equation to avoid clutter. This is an infinite system of an infinite number

of unknowns M[k], which is not feasible to solve in practice.

This situation is somewhat analogous to the Taylor expansion. Function f (x)
can be represented through the infinite sum

f (x) =
∑

N

1
N!

dN f (x)
dxN

����x=x0
(x − x0)N . (4.9)

This allows one to express the value of f (x) at an arbitrary point x through

its properties at a given point x0. In order to calculate f (x) exactly, one has

to incorporate all the terms in the infinite series. The low-order terms yield

accurate results only in the vicinity of the point x0. Similar is true for the

moments of the distribution function. When we constrain ourselves to the

first few moments, we sacrifice the accuracy of our description. To capture

all the information contained in the distribution function one needs to employ

the whole infinite set of moments.

The M1 approach used in the literature is based on an interpolation of the

radiation pressure Pi j between optically thick and thin limits (e.g., Shibata

et al., 2011)

Pi j
ν =

3p − 1
2

Pi j
thin +

3(1 − p)
2

Pi j
thick, (4.10)

where Pi j
thick and Pi j

thin are the radiation pressure in these limits. In the former
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limit, radiation is in thermal equilibrium with matter and is isotropic. This

results in Fi
ν = 0 and

Pi j
thick =

1
3

Eνδi j (4.11)

for the gas of ultrarelativistic particles such as photons and neutrinos (Mihalas

& Mihalas, 1984). In the free-streaming limit, radiation propagates like a beam

along a certain direction n and exerts pressure only along this direction, giving

us Fn
ν = Eν and Fi,n

ν = 0 and

Pnn
thin = Eν

Fn
ν Fn

ν

|Fν |2
, and Pi j

thin = 0, if i or j , n. (4.12)

The parameter p in equation (4.10) is known as the variable Eddington factor

and it plays the role of the interpolation factor between the two regimes. The

functional form of p in terms of the lower moments is referred to as the M1

closure.

Equation (4.10) is derived based on the assumption that the radiation is sym-

metric around the direction parallel to the flux. While the assumption is valid

for the spherically symmetric matter and radiation distributions, it does not

always hold in more general cases. Colliding radiation beams emanating from

different sources is a prominent example. Therefore, equation (4.10), even

before we fix the form of the function p, already contains an approximation.

Note that equation (4.10) in its modern form is often cited as derived by

Levermore (1984) in the literature. While it is true, Kershaw (1976) also

proposed the interpolation between thick and thin regimes like (4.10). He

then suggested using the simplest among such interpolation

Pi j
ν = E f i f j +

E
3
δi j

(
1 − f 2

)
, (4.13)

where

f i = Fi
ν/Eν (4.14)

and f 2 = f i fi. This relation is equivalent to equation (4.10) with a closure

relation p = (1+ 2 f 2)/3, which is known as the Kershaw closure. Even earlier,

a formulation similar to M1 was discussed by Pomraning (1969).
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Figure 4.1: The closure relations for the Eddington factor p = Prr
ν /Eν as the

function of flux factor f = Fr
ν /Eν . The MEFD closure is a two parameter function

and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9.
The bottom curve is the limit of maximal packing. In the limit e → 0, the
MEFD closure reduces to its classical limit, the ME closure, represented by the
solid sky blue line. (see Section 4.3.4).

4.3 Closures

In this section, we present a list of seven different closures most commonly

used in the literature and describe their main properties.

4.3.1 Kershaw Closure

The Kershaw (1976) closure is a simple interpolation between the optically

thick ( f → 0) and the optically thin ( f → 1) limits. In the spherically

symmetric, case the Kershaw closure reads

p =
1 + 2 f 2

3
. (4.15)

This closure is shown with the solid red line in Fig. 4.1. In the following, we

refer to this closure as the Kershaw closure.
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4.3.2 Wilson Closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux-limiter for

neutrino diffusion, which corresponds to the closure

p =
1
3
−

1
3

f + f 2. (4.16)

Physically, this expression is equivalent to an interpolation of the diffusive and

free-streaming fluxes via harmonic averaging (Smit et al., 2000). This ensures

correct diffusive and free-streaming limits, but may yield imprecise results in

the intermediate regime. This closure is shown with the solid yellow line in

Fig. 4.1. Hereafter, we refer to this closure as the Wilson closure.

4.3.3 Levermore Closure

The Levermore closure can be derived assuming that the radiation is isotropic

and satisfies the Eddington closure (Pi j
ν = Pi j

thick
or p = 1/3 everywhere) in the

“rest frame” of radiation, i.e., in the frame in which the radiation flux is zero

(Levermore, 1984; Sa̧dowski et al., 2013):

p =
3 + 4 f 2

5 + 2
√

4 − 3 f 2
. (4.17)

This closure is shown with the solid green line in Fig. 4.1. We refer to this

closure as the Levermore closure.

4.3.4 MEFD: Maximum Entropy Closure for Fermionic Radiation

The idea to use the maximum entropy principle to construct the closure rela-

tion was first suggested by Minerbo (1978), who applied it to photons assuming

a classical distribution. Later, Cernohorsky & Bludman (1994) applied it to

fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (4.18)
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under the constraints that the dimensionless zeroth and first moments,

e =
Eν
ν3 =

2π∫
0

dφ

1∫
−1

F dµ, (4.19)

f =
Fν
Eν
=

2π∫
0

dφ

1∫
−1

µF dµ, (4.20)

are given, one can obtain a distribution of radiation in terms of Lagrange

multipliers η and a (e.g., Smit et al., 2000):

F =
1

eη−aµ + 1
, (4.21)

where µ = cos θ. The second moment of equation (4.21) yields p as a function

of η and a. The closure relation is obtained by expressing η and a in terms of

e and f through inversion of e(η, a) and f (η, a):

p =
1
3
+

2
3

(1 − e)(1 − 2e) χ
(

f
1 − e

)
, (4.22)

where χ(x) = 1 − 3/q(x) and q(x) is the inverse Langevin function L(q) ≡
coth q − 1/q. The lowest-order polynomial approximation to function χ(x)
that has the correct free-streaming and diffusive limits is

χ(x) = x2(3 − x + 3x2)/5, (4.23)

which is ∼ 2% accurate (Cernohorsky & Bludman, 1994; Smit et al., 2000).

The substitution of this approximation into equation (4.22) yields an analytical

closure that is a function of both f and e. We refer to this closure as the MEFD

closure. It is shown in Fig. 4.1 as a a series of curves for e = 0.1, 0.3, 0.5, 0.7,
and 0.9 with dashed lines. Note that, in the limit of maximum packing, the

MEFD closure reduces to (e.g., Smit et al., 2000)

p =
1
3

(
1 − 2 f + 4 f 2

)
. (4.24)

This closure, shown with the bottom curve in Fig. 4.1, represents one boundary

of the MEFD closure. The other boundary is the classical limit of this closure,

the Maximum Entropy (ME) closure, discussed below.
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4.3.5 ME: Maximum Entropy Closure in the Classical Limit

The classical limit of the MEFD closure is the closure by Minerbo (1978). It can

be obtained from equations (4.22)-(4.23) by formally taking the e → 0 limit:

p =
1
3
+

2 f 2

15
(3 − f + 3 f 2). (4.25)

This closure is shown with the solid sky blue line in Fig. 4.1. We refer to this

closure as the ME closure.

4.3.6 Janka Closures

Based on extensive Monte Carlo neutrino transport calculations in PNS en-

velopes, Janka (1991, 1992) constructed several analytic fits to energy-averaged

radiation fields, which were parametrized as

p =
1
3

[
1 + a f m + (2 − a) f n] , (4.26)

where a, n, and m are the fitting parameters. We consider two closures cor-

responding to sets {a = 0.5, b = 1.3064, n = 4.1342} Janka_1 and {a = 1, b =
1.345, n = 5.1717} Janka_2. The former is obtained by combining the MC out-

puts for electron neutrinos from two matter distribution models corresponding

to extended hot shocked mantle and compact post bounce configuration. The

latter closure is obtained from the νµ radiation field of the matter configura-

tion at 300 ms after bounce. These two closures are shown in Fig. 4.1 with

dark and bright purple colors, respectively.

4.4 Results

In order to asses the quality of M1 results, we consider the radiation field

in and around the uniform sphere (Section 4.4.2) and a set of protoneutron

star models (Section 4.4.3). The former case has an analytical solution, while

the latter is calculated with the MC method using the code of Abdikamalov

et al. (2012). Both of these problems have the central opaque region and outer

transparent envelope common to many astrophysical sources.

4.4.1 Quantitative Estimate of Accuracy

In order to estimate the accuracy of the M1 results, we use the normalized

mean square deviation and the spectrum-weighted mean square deviation. The
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former is defined as

δY (X ) =

√√√
1

NX

X max∑
X min

[
1 −

Y (Xi)
Y0(Xi)

]2
. (4.27)

Here, Y stands for any quantity we want to compare (e.g., energy density, flux

factor, and etc.), while Y0 is the “exact” value of this quantity obtained from

the analytical solution or a Monte Carlo calculation. X is a variable on which

both Y and Y0 depend (e.g., the radial coordinate) and Xi are its discrete values

ranging from X min to X max. Thus, δY provides an estimate of how well the

closure solution approximates the exact solution in the entire range from X min

to X max.

The spectrum-weighted mean square deviation is defined as

δ̄Y =
∑
wiδYi∑
wi

, wi = Si/S max, (4.28)

where i is the index of the neutrino energy group and δYi is defined by equa-

tion (4.27) for each energy group independently. The spectral weights wi are

obtained using the spectral energy density Si at energy εi and the peak value

of spectral energy density S max. In our analysis of the spectral weighted quan-

tities, we restrict ourselves to the energies lying near the spectral peak. More

specifically, we consider only the energy groups with spectral energy densities

greater than 0.3S max in order to cut out low statistics energy groups.

4.4.2 Uniform Sphere

The uniform sphere problem consists of a static homogeneous and isothermal

sphere of radius R surrounded by vacuum. Matter inside the sphere can ab-

sorb and emit radiation. This problem has an analytical solution and possesses

important physical and numerical characteristics. The central opaque source

with transparent outer regions are characteristics of many astrophysical sys-

tems, while the sharp surface represents a serious challenge for many numerical

techniques. For this reason, this problem is often used as a test problem for

radiation transport codes (O’Connor, 2015; Rampp & Janka, 2002; Schinder

& Bludman, 1989; Smit et al., 1997)

The analytical solution for the distribution function is given as

F (r, µ) = B
[
1 − e−κRs(r,µ)

]
, (4.29)
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Figure 4.2: The flux factor f and the Eddington factor p as a function of
radial coordinate. The matter background is a uniform radiative sphere with
κR = 7500. The dim gray line is the analytical solution and the colorful lines
are the M1 approximations. The performance of the closures is quantitatively
evaluated in Table 4.1. The dashed yellow line (Fit) belongs to (4.31), which
is the fit to analytical closure obtained from (4.29).
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Figure 4.3: The closure reconstructed from the exact solution (4.29) of the
uniform radiative sphere problem (solid black line) and analytical fit (4.31) to
that solution (dashed yellow line). This closure is noticeably different from the
analytical closures shown in Fig. 4.1. This explains why these closures yield
poor results for the uniform sphere problem.
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Closure prescription δ fν (r) δpν (r)
Kershaw 0.13 0.32
Wilson 0.05 0.14
Levermore 0.10 0.22
ME 0.07 0.17
MEFD 0.07 0.17
Janka_1 0.07 0.13
Janka_2 0.10 0.21
Fit Closure 0.01 0.01

Table 4.1: Mean square deviation of the flux and the Eddington factors ob-
tained with closure prescriptions from the analytical solution for the radiative
uniform sphere problem. The sum in the formula for the normalized mean
square deviation (4.27) is taken over radii from r min = 1.0 to r max = 2.0.

where r is the radial coordinate, R is the radius of the sphere, µ = cos θ,

s(r, µ) =




r
R
µ + g(r, µ) if r < R, −1 ≤ µ ≤ 1

2g(r, µ) if r ≥ R,
√

1 −
(

R
r

)2
≤ µ ≤ 1

0 otherwise

and

g(r, µ) =

√
1 −

( r
R

)2
(1 − µ2) . (4.30)

Inside the sphere the absorption coefficient κ and emissivity B are constants.

Outside the sphere, there is no emission and absorption. For our test, we use

κR = 7500 and B = 1, which ensures that radiation is fully isotropic inside

the sphere and a tiny region ∼ 1/κ � R separates it from the free-streaming

regime outside the sphere.

The flux factor f (top panel) and the Eddington factor p (bottom panel) as

a function of the radial coordinate are shown on Fig. 4.2. The dim gray

line represents the analytical solution, while the rest of the lines represent the

solutions obtained with M1 approximations. The values of normalized mean

square deviations of these solutions from the analytical result are listed in

Table 4.1.



68

As we see, all closures perform poorly for this problem. The Kershaw closure

yields significantly worse results than the rest of the closures. The normal-

ized mean square deviation of the flux and Eddington factors obtained with

closure prescriptions from analytical result are 0.13 and 0.32, respectively (cf.

Table 4.1). The next worse performers are the Levermore and Janka_2 clo-

sures. The normalized deviations of the Eddington factor are 0.22 and 0.21
for these two closures, respectively. The best performers are the Wilson and

the Janka_1 closures, for which the normalized deviations of the Eddington

factor are 0.14 and 0.13. The rest of the closures yield intermediate results.

Such a poor result of the analytical closures has a simple explanation. The

true closure for this problem, which can be reconstructed directly from the

solution (4.29), is shown with a solid black line in Fig. 4.3. This closure is

significantly different from all the aforementioned closures, as we can glean by

comparing Fig. 4.3 with Fig. 4.2. Therefore, the reason why our closures yield

inaccurate results is simply because these closures are different from the true

closure for this problem.

Interestingly, the true closure in Fig. 4.3 can be fit well with the following

simple analytical expression

p =



1/3 − 1/3 f + 2/3 f 2, f ≤ 1/2,
1/3 − 2/3 f + 4/3 f 2, f > 1/2,

(4.31)

which is shown with the orange dashed line in Fig. 4.3. If we perform M1

calculations with this closure, it reproduces the analytical result (4.29) with

excellent ∼ 1% accuracy (cf. Table 4.1). Note that this fit closure is not

expected to perform well for any other matter distributions except the uniform

sphere. It is specific to this particular model problem.

4.4.3 Protoneutron Star

In this section, we evaluate the ability of the M1 closures to model the neu-

trino radiation field around spherically symmetric models of protoneutron stars

(PNSs) formed in core-collapse supernovae. We take three different post-

bounce configurations (obtained from 2D radiation-hydrodynamics simulations

of Ott et al. 2008) of a 20M� progenitor star at 160 ms, 260 ms, and 360 ms

after bounce. We average the 2D profiles of Ott et al. (2008) over angle to

obtain spherically symmetric configurations of PNSs. The radial profiles of

density, temperature, and electron fraction are shown in the upper, center,



69

108
109

1010
1011
1012
1013
1014

D
en

si
ty

(g
cm
−

3 )

100

101
Te

m
pe

ra
tu

re
(1

010
K

)

0 50 100 150 200
Radius (km)

0.0

0.2

0.4

El
ec

tr
on

fr
ac

ti
on

160 ms
260 ms
360 ms

Figure 4.4: The radial profiles of density (upper panel), temperature (center
panel), and electron fraction (bottom panel) for protoneutron star models of
Ott et al. (2008) at 160 ms (solid line), 260 ms (dashed line), and 360 ms
(dash-dotted line) after bounce. The radial profiles are obtained by angular
averaging the 2D data of Ott et al. (2008).

and bottom panels of Fig. 4.4. The spectra of neutrino luminosity obtained

from MC code at the radius of 100 km are shown in Fig. 4.5. The top, center,

and bottom panels represent the PNS models at 160, 260, and 360 ms after

bounce, respectively.

The“exact”solution of the problem is obtained from MC calculations using the

code of Abdikamalov et al. (2012), while the M1 results are obtained using the

GR1D code (O’Connor, 2015). We evolve our time dependent MC code until we

reach steady-state neutrino radiation field for each model of PNS. This field

is then averaged over many timesteps until we get rid of the stochasticity in

the MC solution. Since the MC method does not use any approximations in

the solution procedure (Abdikamalov et al., 2012), the solution obtained this

way is exact for a given configuration of matter (i.e., a given configuration of

opacities and emissivities). In order to ensure the consistency of the results,
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Figure 4.5: The spectra of neutrino luminosity measured at a radius of 100 km
obtained from MC code. The top, center, and bottom panels represent the
PNS models of Ott et al. (2008) at 160, 260, and 360 ms after bounce, respec-
tively.

the two codes use identical microphysical inputs. Both use the Shen et al.

(1998) equation of state (EOS) table and a NuLib opacity table (O’Connor,

2015) that was generated with the same EOS table. In both codes, we use 48

logarithmic energy groups ranging from 0.5 MeV to 200 MeV. In the MC code,

we use 150 radial logarithmically spaced zones with the central resolution of

0.2 km. We have performed extensive resolution tests in order to ensure that

our results are convergent.

We examine the quality of the closures in the free streaming, semi-transparent,

and opaque regimes. We separate these regimes based on the value of the flux

factor f . We choose the transparent regime as the one where 0.9 < f < 1,

the semi-transparent as 0.5 ≤ f ≤ 0.9 and the opaque as 0.2 ≤ f ≤ 0.5. We

neglect the region of low f because the MC results suffer from noise in the

highly diffusive region. It is more appropriate to separate the different regimes

based on f rather than, e.g., the value of the radial coordinate, because at a
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Figure 4.6: The radial profiles of the flux factor f obtained using the seven
closures and from the Monte Carlo code (dotted line) for three different types
neutrinos and three PNS configurations at 160, 260, and 360 ms after bounce.
All quantities are measured at the neutrino energy groups corresponding to
the peak luminosity at 100 km for each neutrino type. The spectra of neutrino
luminosities at this radius are shown in Fig. 4.5 for each neutrino type and
three PNS models.
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Figure 4.7: The spectrum-weighed mean square deviation of energy density
e (left panel) and the flux factor f (right panel) for different neutrino types
for PNS models at 160, 260, and 360 ms after bounce. The top, center,
and bottom panels represent the transparent (0.9 ≤ f ≤ 1), semi-transparent
(0.5 ≤ f ≤ 0.9), and diffusive (0.2 ≤ f ≤ 0.5) regimes, respectively.
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given radius, neutrinos of different energies behave differently. For example,

low-energy neutrinos have lower opacity and hence they propagate more freely

compared to higher-energy neutrinos at the same radius.

The radial profiles of the flux factor f obtained using the seven closures and

from the Monte Carlo code (dotted line) for three different types of neutri-

nos and three PNS configurations at 160, 260, and 360 ms after bounce are

shown in Fig. 4.6. All flux factors are measured at the neutrino energy groups

corresponding to the peak luminosity at 100 km for each neutrino type (cf.

Fig. 4.5). As we can see, all M1 closures yield qualitatively correct results.

For a more precise quantitative estimate, we utilize the spectrum-weighed de-

viations of the flux factor and energy density from the MC results, equation

4.28. The spectrum-weighted deviation δ̄e of the energy density e in the trans-

parent regime for the seven different closures, for the three neutrino types, and

the PNS models at 160, 260, and 360 ms are shown on the top left panel of

Fig. 4.7. The deviations δ̄e are calculated using formula (4.28), in which the

spectrum is taken at 100 km. In order to verify that our results are not too

dependent on spectral information at different locations, we have calculated

δ̄e using spectra at several different radii and obtain results very similar to δ̄e
that use spectra at 100 km. This suggests that the values of δ̄e presented in

Fig. 4.7 are robust measures of errors of the M1 closures for the radiation field

around PNSs.

As we can see, different closures yield different levels of accuracy depending

on the neutrino type and PNS model. No single closure performs consistently

better (or worse) than other closures in all cases. That said, the Wilson

and the Levermore closures perform better than others in most cases in the

transparent regime, followed by the ME and MEFD closures. The Janka_1 and

the Janka_2 closures exhibit δ̄e & 0.04 in most cases, which is worse than δ̄e
for the rest of the closures. This is a remarkable result because the Janka_1

and Janka_2 closures were constructed from fitting to the exact solution for

the neutrino radiation field around PNS. This demonstrates that a closure

constructed for one PNS model (with a given EOS and opacity table) does not

necessarily yield a good result for all other PNS models.

The behavior of the deviation of the flux factor δ̄ f is shown on the top right

panel of Fig. 4.7. In this case, the Levermore closure performs better than

other closures in almost all cases and yields small δ̄ f ∼ 0.004. The Janka_2

closure performs only slightly worse than this closure, yielding 0.004 . δ̄ f .
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0.009. However, this is ∼ 2−3 times smaller than what the rest of the closures

yield, which is a surprising result because the Janka_2 closure yields relatively

poor result for the energy density compared to most of the closures, as we

discussed in the previous paragraph.

The Kershaw closure produces the least accurate f compared to the other

closures in all models except the PNS models at 160 ms after bounce, yielding

deviations of δ̄ f ∼ 0.015 in all cases. The Wilson closure yields intermediate

results in most situations except for the PNS model at 160 ms after bounce,

for which it yields the largest deviation of δ̄ f ∼ 0.015. This again shows that

a closure that yields the best result for the energy density does not necessarily

yield the best result for the flux factor. As we see below, the reverse of this

statement is also true.

The spectrum-weighed deviations δ̄e and δ̄ f for the semi-transparent regime

are shown in the left and right center panels of Fig. 4.7, respectively. In this

regime, both the ME and MEFD closures often – but not always – yield the

smallest deviations δ̄e. The Janka_1 and Janka_2 closures yield the largest

δ̄ f of ∼ 0.04 − 0.06 in all cases. The Wilson closure yields the smallest δ̄e in

most cases, but produces δ̄ f ∼ 0.03, which is roughly the mean of the values

of δ̄ f produced by all of the closures. On the other hand, the Kershaw closure

yields the smallest δ̄ f of ∼ 0.01− 0.02 in most cases, but yield relatively large

δ̄e of ∼ 0.035 − 0.05.

In the opaque region, the situation is significantly different. The Kershaw

closure, which often yields the largest δ̄e and δ̄ f in the transparent and δ̄e
in the semi-transparent regimes, produces the smallest δ̄e and δ̄ f of . 0.05
in the opaque regime. The Wilson closure yields slightly worse results than

the Kershaw closure with δ̄e ∼ δ̄ f ∼ 0.05. The Janka_1 and Janka_2 closures

yield the largest errors (δ̄e ∼ 0.1 and δ̄ f ∼ 0.1 − 0.15). This again shows that

a closure that yields good results for one model of PNS does not necessarily

produce good results for other PNS models.

In all cases, the ME and MEFD maximum entropy closures yield almost identical

results. This is direct consequence of the fact the former closure is the classical

limit of the latter and the radiation field, in the regions we considered, is

predominately in the classical regime.

Overall, these two closures yield relatively good results in all cases and never

result in the largest deviations compared to the other closures. This, in combi-

nation with the fact that the ME closure is simpler and requires fewer operations
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Figure 4.8: The closure relations obtained from Monte Carlo results as the
function of the neutrino type (top left), the neutrino energy (top right), and
the background matter distribution (bottom left). The bottom right shows the
variation in the closures as a function of neutrino energy. Here, twelve groups
are plotted together.

to compute than the MEFD closure, makes the former a more attractive option

for neutrino transport applications involving protoneutron stars.

These results demonstrate that no single closure performs the best or the

worst in all cases. Whether a specific closure is “correct” for a given problem

depends on the parameters of the problem, such as the matter configuration

(i.e., profiles of density, temperature, and composition) and the neutrino type.

We find a similar level of differences between deviations of e and f for different

neutrino energy groups (not shown here). Fig. 4.8 shows the functional form

of the closures p( f ) extracted from the MC simulations for different neutrino

types, different PNS models and different energy groups. We can clearly see

variations between closures p( f ) corresponding to different problems.

4.5 Conclusion

We conducted a systematic, quantitative study of the accuracy of analytical

closure relations for two-moment neutrino radiation transport schemes com-

monly used in the literature. We considered the neutrino field around two sets

of radiating objects: the uniform radiative sphere and PNS models at 160, 260,

and 360 ms after core bounce obtained from simulations of Ott et al. (2008). In

all cases, the matter configuration is assumed to be static. This restriction al-
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lows us to focus on the quality of the closure relations and exclude other sources

of errors such as those stemming from non-linear radiation-matter coupling.

We considered seven different closures. These are the closures by Kershaw

(1976), Wilson et al. (1975), Levermore (1984), and the maximum entropy

closures of Cernohorsky & Bludman (1994) and Minerbo (1978). In addition,

we considered two closures that are constructed by fitting to exact Monte Carlo

solutions of the radiation field around PNSs by Janka (1991).

We find that no single closure, among those studied here, is consistently better

or worse than any other. A closure that yields accurate results in one case may

not yield as good results in other situations. The level of accuracy that a given

closure yields varies for different quantities.

Given this limitation of the closures, the maximum entropy closure by Minerbo

(1978) and Cernohorsky & Bludman (1994), which yield almost identical re-

sults, often yield better results among all the closures studied. These two

closures never yielded the worst results compared to all other closures. In this

sense, these two are a safe choice, as they are less likely to yield extremely er-

roneous result over a wide range of problems and variables. Since the Minerbo

(1978) closure is simpler to compute than the one by Cernohorsky & Bludman

(1994), we conclude that the former closure is the most attractive choice for

problems involving neutrino transport around PNSs.

In this work, we assumed spherical symmetry, static matter, and flat space-

time. These assumptions limit the scope of the implications of our results. In

particular, the hydrodynamic and general relativistic effects introduce shifts

in the energy spectrum of neutrinos, which alter the moment equations (e.g,

Cardall et al., 2013; Just et al., 2015). Also, in non-spherically-symmetric

cases, we can have radiation sources at different spatial locations. Notable

examples are the accretion disks formed in neutron star mergers and hot spots

near the PNS surfaces in the context of core-collapse supernovae. The inter-

action of radiation beams from such sources cannot be modeled within our

spherically-symmetric setup. It is a priori unclear the extent to which our

results are valid in such cases. This will be the subject of a future study.
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4.6 Appendix: Methods

4.6.1 The GR1D Radiation-Hydrodynamics Code

We employ the M1 radiation transport solver that is part of the GR1D radiation-

hydrodynamics Code (O’Connor, 2015; O’Connor & Ott, 2011, 2013) available

at http://www.GR1Dcode.org. The matter in our calculations is static and the

metric is Minkowski. There is no coupling between different energy groups.

For these conditions, GR1D implements M1 closures by setting the pressure

tensor according to equation (4.10). Under these conditions, the transport

equations read

∂t Eν +
1
r2 ∂rr2Fr

ν = ην − κν,aEν , (4.32)

∂t Fr
ν +

1
r2 ∂rr2Prr

ν = −(κν,a + κν,s)Fr
ν +

Eν
1 − p

r
, (4.33)

where ην, κν,a, and κν,s are the neutrino emissivity, absorption opacity, and

scattering opacity, respectively. To numerically solve these equations we dis-

cretize the neutrino spectrum into 48 energy groups, logarithmically spaced

between 0.5 MeV and 180 MeV. For each energy group and species, we com-

pute the closure (p = Prr
ν /E), the spatial flux terms (∂rr2Fr

ν and ∂rr2Prr
ν ), and

the values of the neutrino interaction coefficients (ην, κν,a, and κν,s) explicitly

at the beginning of the time step (denoted via the index (n)). We then use a

first order, implicit/explicit time integration method to solve for the values of

the energy and momentum density at time t + ∆t (or the (n + 1) time step),

E (n+1)
ν = [E (n)

ν − ∆t(∂r (r2Fr,(n)
ν )/r2 + ην)] ×

1/(1 + κν,a∆t) , (4.34)

Fr,(n+1)
ν = {Fr,(n)

ν − ∆t[∂r (r2Prr,(n)
ν )/r2 +

E (n+1)
ν (1 − p(n)

ν )/r]}/[1 + (κν,a + κν,s)∆t] . (4.35)

The explicit calculation of the spatial flux remains valid in the diffusion limit

due to corrections applied to the Riemann solution in high optical depth re-

http://www.GR1Dcode.org


78

gions (O’Connor, 2015). The neutrino interaction coefficients are computed

using NuLib, an open-source neutrino interaction library available at http:

//www.nulib.org (O’Connor, 2015). For PNS calculations, we include elastic

scattering of neutrinos on nucleons, and coherent elastic scattering on alpha

particles and heavy nuclei as contributions to κν,s. Charged current absorption

of electron neutrinos on neutrons and heavy nuclei and electron antineutrinos

on protons is included in κν,a and in ην via Kirchhoff’s law. For heavy lep-

ton neutrinos we determine the emissivity ην from pair processes (electron-

positron annihilation and nucleon-nucleon Bremsstrahlung) and an effective

absorption opacity via an approximation that works well for supernova condi-

tions (O’Connor, 2015).

4.6.2 The Monte-Carlo Neutrino Transport Code

In order to asses the quality of the M1 closures, we compare the M1 results to

Monte Carlo radiation transport calculations using the code of Abdikamalov

et al. (2012). Here, we outline some salient aspects of such methods, while

more in-depth discussion can be found in Abdikamalov et al. (2012).

Monte Carlo methods have been used for many applications (e.g., Burrows

& van Riper, 1995; Densmore et al., 2007; Dolence et al., 2009; Janka, 1991,

1992; Janka & Hillebrandt, 1989; Kasen et al., 2006; Keil et al., 2003; Lucy,

2005; Richers et al., 2015; Wolf et al., 1999; Wollaeger et al., 2013). Such

methods use sequences of pseudo-random numbers to simulate the transport

of radiation using the concept of Monte Carlo particles. Each MC particle

represents a group of physical particles with a given location, direction, and

energy (or frequency). The number of physical radiation particles (i.e., photons

or neutrinos) represented by a MC particle is called the weight of the MC

particle. The smaller the weight, the larger the number of MC particles that

are needed to model a given problem, which means higher precision at the

price of higher computational cost.

The spatial problem domain is divided into a number of interconnected cells,

and matter in each cell has its own temperature, density, and composition.

Using this information, one calculates the number of MC particles that has to

be emitted in each cell within a timestep. These particles are then randomly

placed in each cell by randomly sampling their coordinates. The propaga-

tion direction is sampled randomly with isotropic distribution. The frequen-

cies/energies of particles are chosen using the form of the energy-dependence

of the emissivity function.

http://www.nulib.org
http://www.nulib.org
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Once the MC particles are placed in each cell, they are then transported within

a timestep. This can be achieved by calculating three distances for each par-

ticle: the distance to collision (absorption or scattering), the distance to the

boundary of its cell, and the distance the particle would travel until the end

of timestep if it were to travel freely (i.e., assuming that no collision happens).

What happens to a particle depends on which of these distances is the smallest.

If the distance to collision is the smallest, then the particle is either absorbed

or moved to its new location and scattered. The probabilities of absorption

and scattering are proportional to their relative opacities. If the distance to a

cell boundary is the smallest, then the particle is moved to the boundary of

the next cell and transported further in the new cell by calculating a new set

of three distances. If the particle crosses the outer boundary of the compu-

tational domain, it is removed from the system. Finally, if the third distance

is the smallest, then the particle moves by that distance within its cell. Once

this step is accomplished for all of the MC particles, the remaining particles,

i.e., the ones that have not been absorbed or left the domain, are stored in

memory as a preparation for the next timestep. At the next timestep, the cells

are populated with newly emitted MC particles, which together with the MC

particles remaining from the previous step are then transported further within

the second timestep. Subsequent timesteps are performed in the same manner

until the end of the simulation.
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C h a p t e r 5

THERMAL CHIRAL VORTICAL AND MAGNETIC WAVES:
NEW EXCITATION MODES IN CHIRAL FLUIDS

In certain circumstances, chiral (parity-violating) medium can be described hy-

drodynamically as a chiral fluid with microscopic quantum anomalies. Possible

examples of such systems include strongly coupled quark-gluon plasma, liquid

helium 3He-A, neutron stars and the Early Universe. We study first-order

hydrodynamics of a chiral fluid on a vortex background and in an external

magnetic field. We show that there are two previously undiscovered modes

describing heat waves propagating along the vortex and magnetic field. We

call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic

Wave. We also identify known gapless excitations of density (chiral vortical

and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We

demonstrate that the velocity of the chiral vortical wave is zero, when the

full hydrodynamic framework is applied, and hence the wave is absent and

the excitation reduces to the charge diffusion mode. We also comment on the

frame-dependent contributions to the obtained propagation velocities.

5.1 Introduction

Understanding of the transport phenomena in chiral systems progressed a lot

in recent years. It was mainly driven by the realization that microscopic quan-

tum anomalies (such as the axial and mixed gauge-gravitational anomalies)

can lead to macroscopic effects (Erdmenger et al., 2009; Isachenkov & Sad-

ofyev, 2011; Neiman & Oz, 2011; Son & Surówka, 2009), such as generation

of unusual electric or axial currents and propagating excitations in rotating

samples as well as in external electromagnetic fields. Interestingly, such phe-

nomena are potentially observable in a wide span of physical situations, in,

e.g., the Weyl/Dirac semimetals, strongly coupled quark-gluon plasma, in cold

gases, superfluids and neutron stars; see Refs. (Kharzeev, 2015; Miransky &

Shovkovy, 2015) for a review. Hydrodynamics is a natural and widely used ap-

proach for the studies of anomalous dynamics in such many-body systems (Za-

kharov, 2013). The anomaly-driven effects appear already at the first order of

derivative expansion.

In this note we study first-order relativistic hydrodynamics with a single U (1)
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charge and U (1)3 triangle anomaly, in a background of a single vortex or

external magnetic field. The hydrodynamic equations in their general form

read

∂µT µν = Fνα Jα, ∂µJ µ = C EαBα , (5.1)

where T µν is the energy-momentum tensor, Jµ is the current, Eµ = F µνuν and

Bµ = 1
2ε

µνα βuνFαβ are the electric and magnetic fields in the fluid rest frame,

uµ is the fluid four-velocity, and C is the axial anomaly coefficient. The choice

of a single U (1) is due to simplicity, and the generalization for several charges

is straightforward. In what follows, we will identify new propagating excita-

tions, namely thermal chiral vortical and magnetic waves. Even though there

were many instances when the vortical and magnetic waves were mentioned

in the literature (see Ref. (Chernodub, 2016) and references therein), to our

knowledge, there was no systematic study made in the hydrodynamic frame-

work. The goal of our paper is to fill this gap and to identify the anomalous

propagating modes.

5.2 Chiral vortical wave

In the absence of electromagnetic fields, the dynamics of a fluid is governed by

the conservation laws

∂µT µν = 0, ∂µJ µ = 0 . (5.2)

The velocity of the fluid in its own rest frame is uµ = (1, 0, 0, 0) and, in general,

uµ = (1 − v2)−1/2(1, v). We choose the Minkowski metric ηµν = diag(−1, 1, 1, 1)
so u2 = −1 and the transverse projector is defined as ∆µν ≡ ηµν + uµuν. In

what follows we perform the calculations in the Landau frame (projections of

first order terms in T µν and J µ on uµ vanish). This choice is due to the fact

that we consider the case of zero average charge density, which is ill-defined in

the Eckart frame. Constitutive relations for the chiral fluid are the standard

constitutive relations for ordinary fluid, but with an additional vortical term

in the current (Son & Surówka, 2009),

T µν = εuµuν + p∆µν − η∆µα∆ν β

×

(
∂αuβ + ∂βuα −

2
3
ηαβ∂λuλ

)
− ζ∆µν∂λuλ, (5.3)

J µ = nuµ − σT∆µν∂ν (µ/T ) + ξ ωµ , (5.4)
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where n is the charge density, µ is the chemical potential, σ is the conductivity,

ωµ ≡ 1
2ε

µνα βuν∂αuβ is vorticity and ξ is the chiral vortical coefficient (Neiman

& Oz, 2011)

ξ = cTT2
(
1 −

2µn
ε + p

)
+ Cµ2

(
1 −

2
3

µn
ε + p

)
. (5.5)

The second term in ξ is uniquely fixed by the requirement on the entropy

current sµ to satisfy ∂µsµ ≥ 0, see (Son & Surówka, 2009). The prefactor

for T2 in the first term cannot be derived from hydrodynamics only (Neiman

& Oz, 2011) and is a manifestation of additional microscopic properties of

the chiral degrees of freedom (Kalaydzhyan, 2014). In a wide class of physical

situations it is defined by the mixed gauge-gravitational anomaly (Jensen et al.,

2013; Landsteiner et al., 2011; Volovik, 2006). In the simplest case, when the

chirality is carried by non-interacting massless fermions of one chirality, flavor

and color, cT = 1/6 and C = 1/(2π2) (Vilenkin, 1979).

Linearization of equations (5.2) around equilibrium leads to vortical term drop-

ping out, as a higher order correction, and recovery of the purely ordinary fluid

dynamic equations studied in the literature (Minami & Kunihiro, 2009). In

order to preserve the vortical term, we consider a vortex background given by

the following velocity profile:

uµv =
(
1,−ε i j k x jΩk

)
≡ (1, vv) . (5.6)

This corresponds to a constant external ω = Ω. It is important to emphasize

that the rotation is driven by an external force and the velocity profile (5.6)

is time-independent. In order to avoid relativistic corrections in uµ coming

from background rotation motion, we assume R � 1/Ω, where R is the vortex

radius (or a distance to the vortex center) and Ω = |Ω|. The same will allow

us to neglect contributions with ω0 = v · (∇×v)/2 and its variations. Consider

now fluctuations on top of this background,

ε = ε̄ + δε, p = p̄ + δp, uµ = uµv + δuµ, δuµ = (0, δv),

n = n̄ + δn, µ = µ̄ + δµ, T = T̄ + δT, s = s̄ + δs . (5.7)

We can treat the background values as constants, because the leading vari-

ations of the thermodynamic parameters due to the external rotation are at
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least quadratic in Ω 1, e.g., ∆ε̄/ε̄ ∼ (ΩR)2 � 1. At the same time, we allow

the variations of the velocity δv to be the same order as the velocity v, so they

play the same role in the power counting. Substituting the variations into the

conservations laws (5.2), we get

∂tδε + w̄∇ · δv = 0, (5.8)

w̄∂tδv = −∇δp + η∇2δv + (ζ + η/3)∇(∇ · δv), (5.9)

∂tδn + n̄∇ · δv − σT∂µ∆µν∂ν (µ/T )

+ 2cTT̄
(
1 −

2µ̄n̄
w̄

)
Ω ·∇δT + 2C µ̄Ω ·∇δµ

−
2cTT̄2 µ̄n̄

w̄2 Ω ·∇
(
w̄

µ̄
δµ +

w̄

n̄
δn − δε − δp

)
−

2C µ̄3n̄
3w̄2 Ω ·∇

(
3w̄
µ̄
δµ +

w̄

n̄
δn − δε − δp

)
= 0 , (5.10)

where w̄ ≡ ε̄ + p̄ is the enthalpy density. Here we also used the identity

∇ · vv = 0 and dropped v ·∇δX terms.

Let us now perform the Fourier transform of the hydrodynamic equations with

the following convention

Φ(t, r) =
∫ ∞

−∞

dω
∫ ∞

−∞

dk e−iωt+ik·r
Φ(ω,k) . (5.11)

Note that Ω enters equations in a scalar product with k, and, therefore, com-

ponents of k perpendicular to Ω do not contribute to anomalous terms. There-

fore, to make the contribution of the anomaly more pronounced and for the

additional simplicity, we assume that the wave-vector k is oriented along Ω.

For some of the effects related to the general orientation k, see Ref. (Abbasi

et al., 2016). We further decompose v = v‖ + v⊥ into a sum of components

parallel and transverse to k, respectively. After that the system of equations

1Odd powers of Ω would lead to the change of sign with the change in rotation direction
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(5.8)-(5.10) becomes

ω δε = kw̄ δv‖ , (5.12)

ω δv‖ = kδp/w̄ − ik2γsδv‖ , (5.13)

ωδv⊥ + i
η

w̄
k2δv⊥ = 0 , (5.14)

ω
(
δn −

n̄
w̄
δε

)
+ iσk2δµ − iσ

µ̄

T̄
k2δT

− 2cTΩT̄ k
(
1 −

2µ̄n̄
w̄

)
δT − 2CΩµ̄kδµ

+
2cTT̄2 µ̄Ωk

w̄2

(
w̄n̄
µ̄
δµ + w̄δn − n̄δε − n̄δp

)
+

2C µ̄3Ωk
3w̄2

(
3w̄n̄
µ̄
δµ + w̄δn − n̄δε − n̄δp

)
= 0 , (5.15)

where we denoted γs ≡ (ζ + 4η/3)/w̄, k = |k|, δv‖ = |δv‖ |. Below we analyze

the possible hydrodynamic modes arising from the equations above.

Hydrodynamic modes in case n̄ = 0
We have five linearized equations (equation (5.14) is a vector equation) and

expect to obtain five dispersion relations. Firstly, we notice that Eq. (5.14) is

decoupled from all other equations, and we can write

ω = −i
η

w̄
k2 , (5.16)

which is the viscous relaxation mode for the transverse velocity fluctuations.

Such ω trivially satisfies all other equations, because we can set all fluctuations

but δv⊥ to zero. Secondly, the condition n̄ = 0 decouples Eq. (5.15) from all

other equations. Focusing on Eq. (5.15) with δT = 0, we obtain

ω = 2Ωµ̄
(

C
χ
−

C µ̄2

3w̄
−

cTT̄2

w̄

)
k − i

σ

χ
k2 , (5.17)

where χ = (∂n/∂µ)µ=0 is the susceptibility. Formally, the dispersion relation

above corresponds to the (“isothermal”) chiral vortical wave (Jiang et al., 2015).

Its speed of propagation is given by the factor in front of k in the linear term.

In our case it vanishes, since µ̄ = n̄/χ = 0, and we reproduce the usual charge

diffusion. It is important to notice that, since the term nv is missing in the

definition of the current in Ref. (Jiang et al., 2015), their case is equivalent to

n̄ = 0, and the wave obtained in (Jiang et al., 2015) should not actually exist.
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Finally, in case n̄ = 0 and arbitrary δT , we have a useful relation s = cvc2
s ,

where cv = ∂ε/∂T is the specific heat and cs =
√
∂p/∂ε is the speed of sound.

This allows us to rewrite equations (5.12), (5.13), (5.15) in the following form

ω cvδT = kw̄ δv‖ , (5.18)

ω δv‖ = kcvc2
s δT/w̄ − ik2γsδv‖ , (5.19)(

ω + i
σ

χ
k2

)
δn = 2cTΩT̄ kδT , (5.20)

where µ̄ was already put to zero. From here we obtain charge diffusion (5.17)

together with the usual sound modes,

ω = ±csk − i
γs

2
k2 . (5.21)

Above we reproduced the 5 familiar modes: two transverse relaxation modes,

two sound modes and one thermal diffusion mode. Let us stress once again

that the special case n̄ = 0 does not give rise to any new modes, contrary to

(Jiang et al., 2015).

Hydrodynamic modes in case n̄ , 0
It is easy to see that the two transverse relaxation modes are still the same as

in n̄ = 0 case, since δv⊥ are still decoupled from other fluctuations. Further,

using the standard thermodynamic relations

dε = Tds + µdn, dp = sdT + ndµ, (5.22)

w = ε + p = T s + µn , (5.23)

we rewrite the Eq. (5.15) in a more convenient form

n̄2T̄
w̄

δ(s/n)
(
ω +

2cTΩT̄2 µ̄k
w̄

+
2CΩµ̄3k

3w̄

)
= i

σk2

n̄T̄

(
T̄δp − w̄δT

)
− 2cTT̄Ωk

(
1 −

2µ̄n̄
w̄

)
δT

+

(
2C µ̄s̄T̄

n̄w̄
−

2cTT̄2

w̄

)
Ωk

(
s̄δT − δp

)
−

(
2C µ̄3n̄

3w̄2 +
2cTT̄2 µ̄n̄

w̄2

)
Ωkδp . (5.24)



86

Let us consider first the case δp = 0. We get

ω = vΩk − iDT k2, DT ≡
σw̄2

n̄2T̄cp
,

vΩ ≡ 2Ω
(
C µ̄s̄2T̄

n̄2cp
−

cTT̄
n̄cp

(2w̄ − 3µ̄n̄)
)

−
2µ̄Ω
w̄

(
cTT̄2 +

C
3
µ̄2

)
, (5.25)

where cp ≡ nT (∂(s/n)/∂T )p is the specific heat at constant pressure. The

obtained dispersion relation corresponds to the usual thermal diffusion mode

with diffusion coefficient DT, in the limit Ω → 0. However, in the presence of

the vortex, this mode propagates with the speed vΩ along the vortex. To our

knowledge, it has never been discussed in the literature. We call this excitation

the“thermal chiral vortical wave”. We also note that this excitation is different

from the chiral heat wave described in Ref. (Chernodub, 2016).

Physical meaning of the second term for the velocity (5.25) is the subtraction

of the difference between the no-drag and Landau frame velocities (Stephanov

& Yee, 2016)2,

uµLandau = uµno−drag +
2µ
w

(
cTT2 +

C
3
µ2

)
Ω
µ

+
1

2w
(
cTT2 + Cµ2

)
Bµ . (5.26)

The seeming sign mismatch between the corresponding terms in Eqs. (5.25)

and (5.26) comes from the fact that the velocities of the waves are defined with

respect to the fluid flow.

To find the other modes, one has to perform a more general calculation, similar

to (Kovtun, 2012; Minami & Kunihiro, 2009). In order to do so, we consider a

system of coupled equations (5.12), (5.13), and (5.24) and employ the following

thermodynamic identities, to reduce the number of independent variables to

2Since the wave excitations are considered on a background of fluid resting in the direc-
tion parallel to k, the wave velocity vND in the no-drag frame is given by the wave velocity
vL in the Landau frame with addition of the extra terms from Eq. (5.26).
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three

δp =
w̄c2

s

γ

(
αpδT +

1
n̄
δn

)
, (5.27)

δ(s/n) =
1
γn̄

*
,

cp

T̄
δT −

w̄c2
sαp

n̄
δn+

-
, (5.28)

δε =
cp

γ
δT +

w̄

n̄
*
,
1 −

T̄c2
sαp

γ
+
-
δn, (5.29)

where cs =
√

(∂p/∂ε)s/n is the speed of sound, αp = −(1/n)(∂n/T )p is the

thermal expansivity at constant pressure and γ = (∂(s/n)/∂T )p/(∂(s/n)/∂T )n

is the ratio of specific heats, see Appendix A in (Minami & Kunihiro, 2009) for

useful relations between thermodynamic derivatives. With these substitutions

made, the full system of equations can be written in the matrix form

A
*...
,

δn
δv‖

δT

+///
-

= 0 , (5.30)

where the matrix A is defined as

A =

*........
,

−
ωT̄c2

sαp

γ − iσw̄c2
s k2

n̄2γ
0 ωn̄cp

w̄γ + iσw̄k2

n̄T̄

(
1 − c2

sαpT̄
γ

)
+α11Ωk +α13Ωk

ω
(
1 − c2

sαpT̄
γ

)
−kn̄ ω

cp n̄
γw̄

−
c2
s k

n̄γ ω + iγsk2 −
c2
sαp

γ k

+////////
-

. (5.31)

Here the coefficients in front of Ωk are given by

α11 =
2Cc2

s µ̄
3

3γw̄

(
1 − αpT̄ +

3s̄T̄ w̄
µ̄2n̄2

)
−

2cT c2
s T̄3

γw̄n̄

(
αp µ̄

2n̄ + s̄
)
, (5.32)

α13 = − 2cTT̄
(
1 −

2T̄ s̄
w̄

)
−

2C µ̄s̄2T̄
n̄w̄

+
2cpn̄ µ̄
γw̄2

(
cTT̄2 +

C µ̄2

3

)
+

c2
sαp

γ

(
−

2cTT̄3 s̄
w̄

+
2C µ̄3n̄

3w̄
+

2C µ̄s̄T̄
n̄

)
. (5.33)

Three dispersion relations can be obtained from the condition det(A) = 0. One

of them is Eq. (5.25). The other two are straightforward to obtain, but they

are too long to be written in this paper. The speed of propagation of these
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modes is a function of Ω and thermodynamic quantities. This mode describes

a modified sound propagation. We can demonstrate it by taking the limit

Ω→ 0, and recovering the familiar sound modes

ω = ±csk − i
γ̃s

2
k2 , (5.34)

where

γ̃s = γs +
σw̄2

n̄2T̄cp

[
γ − 1 + c2

s T̄
(cp

w̄
− 2αp

)]
(5.35)

is the modified damping rate that coincides with the one obtained in (Minami

& Kunihiro, 2009).

5.3 Chiral magnetic wave

It is easy to repeat the analysis for the case of the chiral magnetic wave (Kharzeev

& Yee, 2011). To this end we add two terms, σF µνuν + ξB Bµ, to the right-

hand side of Eq. (5.4), where ξB is the chiral magnetic coefficient in the Landau

frame (Neiman & Oz, 2011)

ξB = Cµ
(
1 −

1
2

nµ
ε + p

)
−

cT

2
n

ε + p
T2 . (5.36)

We keep the electric field equal to zero, in order to satisfy the current con-

servation and keep the transverse velocity equations decoupled. Vorticity ω is

defined on the fluctuations of velocity (no vortex background). The Eq. (5.9)

becomes

w̄∂tδv +∇δp − η∇2δv − (ζ + η/3)∇(∇ · δv)

=
(
n̄δv − σT∇(µ/T ) + ξω

)
×B

+ σB(B · δv) − σB2δv . (5.37)

Let us focus first on the equations involving fluctuations in the transverse

velocity δv⊥ = (δv1
⊥
, δv2

⊥
). Assuming k‖B for the same reason as for k the

vorticity in the previous section, we obtain

(−iw̄ω + ηk2 − iξkB/2 + σB2)δv1
⊥
− n̄Bδv2

⊥
= 0, (5.38)

(−iw̄ω + ηk2 − iξkB/2 + σB2)δv2
⊥
+ n̄Bδv1

⊥
= 0, (5.39)
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where B = |B |. Condition on the zero determinant of the coefficient matrix

gives us two modes,

ω = ±
Bn̄
w̄
−
ξB
2w̄

k − i
(
η

w̄
k2 +

σ

w̄
B2

)
, (5.40)

where the first term corresponds to the Larmor frequency, and the second

term describes a general form of the Chiral Alfvén Wave (Yamamoto, 2015)

propagating with the speed vCAW =
ξB
2w̄ in the direction opposite to B. It is

important to notice that the original velocity vCAW = cTT̄2B/(2w̄) obtained in

Ref. (Yamamoto, 2015) in the limit T � µ is nothing but the difference in

velocities between the no-drag and Landau frames, see (5.26).

Let us switch to the fluctuations of density/temperature along the magnetic

field. With the new terms in the current, Eq. (5.15) becomes

ω
(
δn −

n̄
w̄
δε

)
+ iσk2δµ − iσ

µ̄

T̄
k2δT − CBkδµ

+
cTT̄2Bk

2w̄2

(
2w̄n̄

T̄
δT + w̄δn − n̄δε − n̄δp

)
+

C µ̄2Bk
2w̄2

(
2w̄n̄
µ̄
δµ + w̄δn − n̄δε − n̄δp

)
= 0 . (5.41)

In the case n̄ = 0, we obtain the chiral magnetic wave dispersion relation,

ω = vχk − iDχk2 ,

vχ ≡
CB
χ
−

cTT̄2B
2w̄

, Dχ ≡
σ

χ
. (5.42)

We see that the first term in vχ, as well as the damping rate Dχ, reproduce

the ones from Ref. (Kharzeev & Yee, 2011), while the second term in vχ is due

to the velocity difference (5.26). Let us now generalize the situation to n̄ , 0
and rewrite Eq. (5.41) as

n̄2T̄
w̄

δ(s/n)
(
ω + C µ̄2 Bk

2w̄
+ cTT̄2 Bk

2w̄

)
= i

σk2

n̄T̄

(
T̄δp − w̄δT

)
+

CBs̄T̄ k
n̄w̄

(
s̄δT − δp

)
+

cT BT̄ k
w̄

δT −
(
CB µ̄2n̄k

2w̄2 +
cT BT̄2n̄k

2w̄2

)
δp . (5.43)
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With δp = 0, this leads to a new “thermal chiral magnetic wave” mode

ω = vT
χk − iDT k2, (5.44)

vT
χ ≡

BT̄
n̄2cp

(cT + Cs̄2) −
B

2w̄
(
cTT̄2 + C µ̄2

)
. (5.45)

To our knowledge, this mode has never been discussed in the literature before.

The second term for the velocity in (5.45) is, again, due to (5.26).

5.4 Conclusions and outlook

The main result of this work is the discovery of new excitation modes in chiral

fluid. They are described by wave solutions given in (5.25) and (5.45), and cor-

respond to heat waves propagating along the vortex or magnetic field due to the

quantum anomalies. We reproduced a general form of the chiral Alfvén wave

(5.40), the chiral magnetic wave (5.45) and demonstrated that the discussed

in the literature chiral vortical wave (Jiang et al., 2015) is absent and simply

reduces to the charge diffusion mode (5.17). We identified frame-dependent

contributions to the velocities of these waves. In particular, velocity of the

chiral Alfvén wave from Ref. (Yamamoto, 2015) is simply a difference between

velocities of the no-drag and Landau frames, meaning that the wave should

be absent in the no-drag frame. As an outlook, we propose to study a more

realistic situation with two charges: one vector and one axial. The equation on

the current conservation in (5.2) will be replaced by two equations, ∂µJ µV = 0
and ∂µJ µA = 0, and, therefore, we expect an additional hydrodynamic mode.

The expressions for the chiral magnetic and vortical coefficients will slightly

change (Gahramanov et al., 2012; Kalaydzhyan, 2014; Kalaydzhyan & Kirsch,

2011; Neiman & Oz, 2011). The proposed calculations will be straightforward

and similar to the presented in this paper.
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