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ABSTRACT

Granular materials are ubiquitous in both everyday life and various engineering and
industrial applications, ranging from breakfast cereal to sand to rice to medical pills.
However, despite the familiarity of granular materials, their behavior is complex
and efforts to characterize them are currently broad research areas in physics and
engineering. Research of granular materials, as is the case with the research of
other engineering materials such as rocks and metals, is beset with two gaps: the
gap between reconciling macroscopic behavior with microscale (particle-scale, in
the case of granular materials) behavior, and the gap between reconciling experi-
mental and computational results. In this dissertation, we bridge these gaps through
the “avatar paradigm.” The avatar paradigm is a two-step process that numerically
characterizes (from experimental images) and simulates the shapes and behavior of
individual particles, which we call avatars. First, we validate that our avatars are
indeed capable of faithfully capturing particle kinematics and interparticle contact,
then apply the characterization process, level set imaging (LS-imaging), to two ex-
perimental specimens to compute particle kinematics and contact statistics. We then
detail a computational method, the level set discrete element method (LS-DEM),
that is able to simulate the behavior of avatars, and apply it (and LS-imaging) to
two other experimental specimens, calibrating the model to one specimen and using
the results to predict the behavior of the other, thus providing some reconciliation
between experimental and computational results. Finally, we use the avatar process
to characterize and simulate yet another experimental specimen, this time analyz-
ing the results at length scales ranging from particle behavior to local behavior to
macroscopic behavior, further validating the ability of the avatar paradigm to bridge
experiments and computations and showing its power to reconcile different length
scales.
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C h a p t e r 1

INTRODUCTION

1.1 Objective
The objective of this thesis is to present a complete platform for the characterization
and simulation of granular materials at the particle scale—the “avatar paradigm,”
named for its ability to numerically model the shapes and behavior of individual
particles, which are called avatars—and to apply it to laboratory-scale systems of
real granular materials. The avatar paradigm addresses two themes of connection
central to this thesis: 1) the connection between experimental and computational
results, and 2) the connection between the discrete and continuum scales. Through
making these connections, the avatar paradigm has the potential to elevate our
understanding of granular materials to new levels.

1.2 Background and overview
Granular materials are ubiquitous in both everyday life and various engineering and
industrial applications, ranging from breakfast cereal to sand to rice to medical pills.
However, despite the familiarity of granular materials, their behavior is complex
and efforts to characterize them are currently broad research areas in physics and
engineering. Granular materials research, as is the case with the research of other
engineering materials such as rocks and metals, is beset with two gaps: the gap
between reconciling macroscopic, or continuum-scale behavior with microscale
(particle-scale, in the case of granular materials) behavior, and the gap between
reconciling experimental and computational results. The gaps will be referred to as
the multiscale and accuracy gaps, respectively.

The continuum and particle scales
Granularmaterials research has long existed at the continuum scale, where a granular
material, despite consisting of discrete particles that interact with each other and
voids between the particles, is viewed as an aggregate—a continuous chunk of
material with no distinction between individual particles or between particles and
void regions. Generally, research in the continuum realm falls into modeling using
theory and computations, and performing experiments. Oftentimes, models are
developed based on and calibrated to experimental considerations.
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The oldest and most basic continuum model is the Mohr-Coulomb yield criterion,
which predicts failure (or lack thereof) as a function of only the largest and smallest
principal stresses (Labuz and Zang 2012). Since then, continuum models have
become increasingly complex, incorporating more parameters such as all three
stress invariants (Matsuoka and Nakai 1974) and physical phenomena such as the
ability to model liquefaction (Wobbes et al. 2017), the compactive and dilative
tendencies of sand (Borja and Andrade 2006), and anisotropy (Taiebat and Dafalias
2008). These models work acceptably; however, because continuum models do not
take into account the properties and behavior of individual particles, they fail in the
commonplace scenario where strain is localized in regions so small that granular
structure cannot be ignored—landslides, hourglass orifice flow, and jamming, for
example. Furthermore, even though continuum models can account for and capture
many physical phenomena, they do not explain why they happen, and the answers
may be found at the particle scale.

In the experimental realm, the triaxial compression test has long been the workhorse
laboratory test to determine properties of granular materials (Bishop and Henkel
1957), as illustrated in Figure 1.1.

The triaxial compression test

C
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Figure 1.1: Schematic and imposed stress states of the triaxial compression
test and typical test results. The platens are grey and the granular specimen,
enclosed by a membrane, is brown.
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The triaxial compression test is a 3-D laboratory test that is used to measure
properties of granular materials (Bishop and Henkel 1957). An assembly of
a granular material is confined by a cylindrical rubber membrane, usually
twice as tall as it is wide. The ends of the membrane are affixed to porous
platens that allow interstitial fluids to move in or out of the specimen under
so-called “drained loading” conditions, of which all triaxial experiments and
simulations in this thesis are. The membrane is then pressurized to a typically
constant cell pressure σr while one of the platens is compressed axially at a
varying pressure σz. Figure 1.1 illustrates the triaxial compression test and
typical test results, which include the stress ratio σz/σr and the change in
volume as a function of axial strain. All of the triaxial specimens in this thesis
were approximately 2.5cm in height and 1.2cm in diameter.

Since the triaxial compression test only measures the macroscopic stress, strain,
and volume of the specimen, it cannot directly probe the effects of particle-scale
properties. For example, it cannot probe the effects of interparticle friction and
particle shape on how strain localizes into shear bands in the specimen, which can
have considerable impacts on macroscopic behavior.

Thus, in order to characterize the entire gamut of granular behavior and to bridge the
multiscale gap, it is important that both computational and experimental methods
can model behavior at the particle scale. At this scale, familiar continuum concepts
like stress and strain can only be thought of as average quantities of collections of
particles and are the result of interparticle forces and the motion of particles relative
to each other. For example, plasticity, the non-reversible deformation of a material
under load, in granular materials is due in part to the rearrangement of particles1
(Davis and Selvadurai 2005). But rather than attempting to inject particle-scale
behavior into a continuum framework in order to capture its effects, we choose
to begin at the particle scale, modeling particles, their kinematics and particle-to-
particle interactions—and build up from there to extract continuum quantities from
the particle scale. Fortunately, recent advances in experimental technology and
computational power have made this possible.

1The other part, the fracturing of particles, is outside the scope of this thesis.
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Experiments and computations at the particle scale
Since the 1970s, particle-scale research of granular materials has become much
more prevalent. Of the research that exists in investigating granular materials at
the particle scale, there are broadly two camps: one which seeks to characterize
granular assemblies, through experiments and often with X-ray computed tomo-
graphic (XRCT) scans (Andò 2013; Desrues et al. 1996; Rechenmacher and Finno
2004), and one which seeks to simulate granular behavior, typically through the
discrete element method (DEM) (Cundall and Strack 1979). However, unlike the
relationship between the experimental and modeling camps at the continuum scale,
there has been little integration and validation between the two particle-scale camps;
attempts at bridging the experimental-computational divide have focused on simple
particle shapes such as spheres (Cil and Alshibli 2014a) or limiting the scope of
comparison (Katagiri, Matsushima, and Yamada 2010; Lee 2014). This leaves a
conundrum: experimental methods, though well-equipped to characterize granu-
lar materials, lack predictive power, while computational methods, though by their
nature are predictive, have difficulty predicting anything that resembles reality.

Research on how granular materials evolve at the particle scale in response to load-
ing was instrumental in spurring further particle-scale research. Through a series
of classic triaxial compression tests (Oda 1972), researchers compressed sands and
“froze” the microstructure in place by injecting polyester resin into the interstitial
voids. Once the resin hardened and the arrangement of particles was preserved, the
specimens were sliced open and quantities such as the orientations of particles and
interparticle contacts were manually measured under a microscope. It was found
that there indeed were strong trends between the continuum mechanical properties
of granular materials, such as the results of the triaxial compression test, and the
physical and spatial properties of their constituent particles, both in and of them-
selves and with respect to each other. However, this so-called “destructive” method
were extremely labor-intensive and, because a specimen had to be destroyed to be
analyzed, could not analyze a specimen at different stages of loading. Experimen-
tal particle-scale analysis did not gain much traction until faster, less destructive
methods such as XRCT were developed and popularized.

The importation of XRCT technology, often used in the medical industry to image
internal organs and bones, into granular materials research greatly decreased the
labor cost and the destructiveness of particle-scale experimental methods and is
now the most polular technology in this realm.
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XRCT imaging of granular materials

Figure 1.2: Left, a triaxial compression test apparatus with X-ray generator
and detector. Right, a 2-D image slice of a 3-D XRCT image of a specimen
of Hostun sand. The specimen is 2.5cm tall and 1.2cm in diameter.

XRCT is often used in the imaging of specimens of granular materials un-
dergoing triaxial compression at various load stations throughout loading.
At each imaging station, the specimen is rotated while X-ray projections are
taken such that a large number, typically over a thousand, are obtained that
equally span an entire rotation. The projections are then used to reconstruct
a three-dimensional image via reconstruction techniques based on the Radon
transform (Radon 1986) and backprojection (Hsieh 2003). The resulting
three-dimensional image (“XRCT image”) must have a voxel resolution small
enough to accurately characterize the geometry of each particle and the con-
tacts between particles. A triaxial compression test setup augmented with
X-ray capabilities and a 2-D slice of a 3-D XRCT image are shown in Figure
1.2.

Thanks to XRCT imaging, quantities such as particle kinematics and orientations,
contact orientations, and porosity can be computed throughout the loading of an
experimental specimen and have, for example, been used to probe the mechanics of
shear localization (Andò et al. 2012b). However, interparticle forces—the origin of
stress in granular materials—cannot be measured from XRCT images. And while
developments have been made in inferring interparticle forces from photoelastic
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discs (Majmudar and Behringer 2005) and strain in the particles themselves (Hurley
et al. 2014), they have limitations. In the case of the former, particles are required
to be made of photoelastic materials, while in the case of the latter, are still in
infancy and are unable to characterize systems of a few hundred particles. Another
drawback of research using XRCT imaging is that it is usually limited to the triaxial
compression test, which, while certainly useful, can only probe a narrow range of
stress paths and is not an entirely conclusive test for granular materials. Finally, as
previously mentioned, experimental methods are not predictive. These three draw-
backs, inability to measure forces, restriction to the triaxial compression test, and
non-predictability, in part, have motivated particle-scale computational methods,
which do not have such limitations.

The most popular particle-scale computational method is the discrete element
method (DEM), which simulates the behavior of every individual particle in a
granular system.

The discrete element method

Figure 1.3: Left, contact detection in DEM. Right, a small DEM assembly of
25 discs.

DEMwas developed in 1979 (Cundall and Strack 1979) and has similarities to
molecular dynamics methods in that it tracks the movements of particles and
the forces between them. The key differences are that particles in granular
materials typically only transmit forces through contact and that energy is
dissipated through friction between contacting particles. Traditionally, DEM
particles are discs (in 2-D) or spheres (in 3-D) that are allowed to overlap.
Figure 1.3 illustrates contact detection in DEM; contact occurs when the



7

distance between two particles is less than the sum of their radii. Interparticle
forces are computed between two contacting particles based on the amount
of overlap, which produces a normal force, and the amount of relative shear
motion, which produces a frictional force. After forces are computed for
each contact and each particle, they are integrated in time to update kinematic
quantities such as the positions and orientations of each particle, and the
process is repeated for some number of timesteps.

Since the computation of interparticle forces is an inherent feature of DEM and
the computational implementation of different boundary conditions and stress paths
is relatively easy, DEM seems like an ideal tool to supplement and expand upon
experiments. Unfortunately, because the particle shapes of DEM are limited to
discs and spheres, DEM does a poor job of modeling reality, where particles come
in many different shapes. This drawback is primarily responsible for the lack of
integration and validation between the experimental and computational camps and
has kept DEM from achieving prominence and respect in some research commu-
nities and industry, as particle shape plays an enormous role in determining the
properties of granular assemblies (Cho, Dodds, and Santamarina 2006). Particle
shape has typically been quantified in two parameters, sphericity and roundness,
which describe the particle’s volume deviation from a sphere and the sharpness of
its corners, respectively. Efforts have been made to modify DEM to account for
particle shape, often by clumping spheres (Garcia et al. 2009) or using polyhedra
(Cundall 1988). White these geometric representations can represent the higher-
order sphericity parameter well, they leave particles looking “clumpy” or “blocky”
in the cases of clumping and polyhedra, respectively, and thus cannot adequately
capture the lower-order roundness parameter and have had little success at reproduc-
ing experimental results without heavy numerical treatment or reducing the scope
of the comparison. An attempt to improve the fidelity of particle representation by
using B-splines as the geometric basis of particles (Andrade et al. 2012b) has been
successful in replicating experimental results (Lim et al. 2016), but this method is
computationally expensive in that it has only able to simulate a maximum of around
one thousand particles. In order to be able to both simulate a reasonable amount
of particles—even small triaxial specimens such as the ones in this thesis have be-
tween thousands and tens of thousands of particles—while being able to faithfully
represent particle geometries, a new method was needed.
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The avatar paradigm
The avatar paradigm is a complete experiment-to-simulation process that extracts
mathematical descriptors (“avatars”) of particles from 3-DXRCT images of granular
specimens through a method called level set imaging (LS-imaging) and simulates
the kinematic and mechanical behavior of these particles through a method called
the level set discrete element method (LS-DEM). While the idea for an experiment-
to-simulation process has been in place for several years (Andrade et al. 2012a)
and LS-imaging (Vlahinic et al. 2013) was developed before any of the content in
this thesis, continued work on LS-imaging and the development of LS-DEM have
allowed the avatar paradigm to fully come to fruition.

Level set imaging

Filtered image

Edge markers

Segmented image

Avatar
(overlaid on image)

Binarization
& watershed

Image
gradient

Level set
imaging

Figure 1.4: The level set imaging process. Note that this illustration is a 2-D
slice of a 3-D operation. All LS-imaging in this thesis is performed in 3-D.

LS-imaging is the cutting edge in high-fidelity particle-scale characterization.
Through level set algorithms common in the medical industry (Li et al. 2010;
Gao and Chae 2008), an XRCT image of a particle is transformed into a
mathematical descriptor (an “avatar”) of the particle. First, the filtered XRCT
image is segmented via binarization and watershed. The gradient of the
image is also taken to denote the grain edge. Then, the segmentation and
edge markers are used as inputs to LS-imaging, which outputs the avatar.
Algorithmically, LS-imaging minimizes an energy functional that measures
how far the avatar’s surface is from the edge marker as denoted by the image.
Thus, when the energy functional is minimized, the avatar’s surface and the
surface of the particle in the image coincide. Figure 1.4 illustrates the LS-
imaging process. An entire assembly can be characterized via LS-imaging
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through repeating the process for every particle in the assembly.

Once LS-imaging has been performed to generate an avatar of every particle in an
assembly, LS-DEM—described in detail in Chapter 3 and the crux of this thesis—is
used to simulate the assembly computationally, where parameters such as interpar-
ticle friction are calibrated to match simulation results, at both the particle scale and
the continuum scale, with those of the experiment. The resulting LS-DEM output is
valuable because it provides crucial interparticle force and local stress information
that the experiment does not, which can help to better explain granular phenomena,
such as the behavior of shear bands. Finally, the avatars may be used again with
LS-DEMbut this time to simulate and explore other loading conditions and tests that
may be difficult to perform experimentally, knowing that they have been calibrated
and validated to some extent.

1.3 Thesis contents
Although the following chapters of this thesis are independent and can be read
separately, they detail, in order, the development and continued improvement of the
avatar paradigm. Since the chapters are individual journal articles that have been
published or are in preparation, there may be some content repetition between them.

Chapter 2 shows the ability of the characterization process, LS-Imaging, to generate
avatars from 3-D XRCT images of specimens of triaxial experiments and track
particle and interparticle quantities such as kinematics and contacts. LS-Imaging
was verified for accuracy using synthetic images with respect to image resolution
and noise, then was applied to two types of granular materials.

Chapter 3 describes the first use of the entire avatar paradigm, from LS-Imaging
to LS-DEM, which is introduced and detailed here, to simulate the macroscopic
stress-strain and volume-strain behavior of two triaxial specimens of approximately
3,000 particles each of aMartian-like sand. The LS-DEM simulation was calibrated
to the behavior of one specimen and used to predict the behavior of the other.

Chapter 4 expands greatly on the avatar paradigm described in Chapter 3, which
was used to characterize and simulate a triaxial specimen of approximately 53,000
particles of Hostun sand. Modeling of boundary conditions—the loading platen
and membrane—was improved to allow a shear band to form as in the experiment.
Although the LS-DEM simulation was calibrated only to the macroscopic behavior
of the specimen, it was also able to capture similar particle kinematics and local
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behavior, such as that of the shear band, as the experiment. The LS-DEM results of
the shear band were analyzed to shed light on its formation and properties.

Chapter 5 summarizes this thesis and provides a future outlook.
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C h a p t e r 2

FROM COMPUTED TOMOGRAPHY TO MECHANICS OF
GRANULAR MATERIALS VIA LEVEL SET BRIDGE

The content in this chapter is adapted from:

Vlahinic̀, Ivan, Reid Kawamoto, Edward Andò, Gioacchino Viggiani, and José
Andrade (2017). “Towards a more accurate characterization of granular media: ex-
tracting quantitative descriptors from tomographic images”. English. In: Granular
Matter. doi:10.1007/s10035-013-0460-6, pp. 1–13. ISSN: 1434-5021.

Painstaking work by Oda and colleagues throughout the 1970s yielded discoveries
of how granular materials evolve at the grain level in response to loading. At the
time, via a series of classic triaxial compression experiments, Oda and colleagues
first deformed sand to different levels of strain and then “froze” the microstructure
in place by injecting polyester-resin, a hardening agent, . This preserved the spatial
arrangement of granular particles of sand, or grain fabric, under load. Sand samples
were subsequently sectioned and behavioral tendencies of the material during defor-
mationwere described in detail. Of specific interest were the patterns of deformation
at the grain scale as sand approached critical state – defined macroscopically as the
state at which sand maintains a constant shear strength without undergoing further
volume change (Schofield and Wroth 1968). The motives of their decade-long
studies, as described in the seminal paper by Oda (Oda 1972), were clear:

“In order to realize mechanical properties of granular materials, one
must first study in detail morphological and physical properties of gran-
ular particles and their configuration relations.”

Four decades later, the above statement rings as true as it did then—except that today,
nondestructive 3-DX-RayComputed Tomography (3-DXRCT) experiments replace
destructive (and extremely laborious) experiments by Oda et al.While 3-D XRCT
exhibits remarkable potential for truly quantitative grain-scale insight, the continuing
challenge has been the interpretation of 3-DXRCT data. Themicrostructural images
coming from 3-D XRCT—3-D fields of X-ray attenuation—are subject to random
noise, blur, and geometrical artifacts. To enable quantitative insight, which can
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only come from statistical evaluation of grain motion and grain interactions, any
approach utilizing these experiments must be able to do the following:

1. Identify individual grains and “extract” them from a 3-D XRCT image, cap-
turing particle morphology.

2. Track these individual grains from image to image, or rather load state to load
state, accurately inferring spatial and temporal evolution of grain contacts and
grain kinematics.

With respect to the first requirement, the key difficulty lies in the irregularity of
individual particles and also in the fact that particles in the image are touching, with
each particle having multiple contact points. Overcoming these challenges to gain
a mathematical description of each particle, in the form of a level set function, was
the subject of our previous work (Vlahinic et al. 2013). In this work, we focus on
the second requirement above.

Specifically, we present a methodology based on a level set platform that serves
as a total solution for the inference of all geometric quantities that, at present, can
be extracted from 3-D XRCT. These include grain contacts (location and contact-
normal orientation) and grain kinematics (translation and rotation). Grain contacts
or grain fabric can serve as a proxy to stress. For example, Oda and colleagues found
that the evolution of fabric is related to the mechanical properties such as mobilized
strength and dilatancy (Oda 1972). Also, modern continuummodels such as those of
Li and Dafalias (Li and Dafalias 2012) have been specifically developed to take into
account evolution of grain fabric, which in turn controls the evolution of constitutive
properties at the macro scale (Oda and Iwashita 1999). Grain kinematics are directly
convertible to strain quantities of choice, for example approaches such as Bagi strain
(Bagi 1996) allow a given strain tensor to be derived locally on tetrahedra connecting
four grain centroids, from the measured displacement of these four points. Grain
rotations, which are particularly relevant during strain localization (Andò et al.
2012a), have a much less immediate connection to continuum strain quantities -
which is precisely the reason for studying strain localization at the grain scale in the
first place.

We term the proposed platform ‘level set bridge’ precisely because of its potential
to relate grain-scale images to continuum mechanics of geomaterials. At the grain
scale, the platform is shown to be remarkably accurate, with mean kinematic errors
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not exceeding 0.2 voxels and 0.5 degrees (translation and rotation) andmean contact-
normal orientation errors not exceeding 0.65 degrees for a wide range of image noise
and grain sizes.

In addition to presenting the level set platform, we also report some notable results
on real, opaque granular media. For the first time, we show changes in grain fabric
in the shear band at the start and the end of a triaxial compression experiment.
We quantitatively show that at a granular level, a shear band is characterized by a
significant loss of contacts in the direction ofminimumprincipal stress (compression
positive) and a significant gain in contacts in the maximum principal stress direction.
Changes in contact statistics are not nearly as pronounced in the bulk, i.e., outside
of the shear band, though they still track the same tendencies.

Grain kinematics inside the shear band also show some interesting features. Grain
translations appear quite predictable, with all grains moving roughly parallel to the
orientation of the band, though with a slight normal component due to dilatancy.
On the other hand, grain rotations during shearing are much less organized, with
polarization of the rotation axes only becoming apparent on average.

As a side note, based on the conclusions above, it can be said that neither 2D experi-
ments nor 3-D experiments containing spherical particles are capable of mimicking
grain scale complexities encountered in natural 3-D materials. For this reason,
we urge adoption of 3-D codes capable of incorporating complex particle shapes,
particularly when discussing statistical results on grain fabric evolution and grain
rotations.

The presentation in the rest of the chapter is as follows: Section 2.1 provides a
brief recap of a previous paper on LS-imaging. Section 2.2 contains the technical
content. In Section 2.3 the results are presented. Finally, in Section 2.4, we provide
a summary of main conclusions.

2.1 Review of previous studies
3-D X-Ray CT procedure - experimental viewpoint
XRCT is revolutionizing the field of experimental mechanics due to its ability to
image the microstructure in opaque materials. Particularly promising is the ability
of XRCT to capture a sequence of images of a deforming material non-destructively,
with the promise of quantifying the microstructural origins of macroscale phenom-
ena.
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During the experimental process, 2D radiographs (“projections”) are acquired from
the sample at a number of different angles from 0 to 360 degrees. The 3-D image is
reconstructed, slice by slice (slices are normal to the rotation axis), from 2D radio-
graphs at different angles by solving the inverse problem of the Radon transform.
The result is a greyscale 3-D field of X-ray attenuation of a material in a given state
(3-D XRCT). There is a strong correlation between X-ray attenuation and material
density. Of great importance for the imaging of a given microstructure at the right
scale is the resolution of the image (ideally not far from the pixel-size of the image,
which describes the physical volume that each 3-D pixel, or “voxel” occupies).

Coupled with an X-ray transparent loading apparatus, 3-D XRCT also allows an
uninterrupted sequence of 3-D snapshots, each containing thousands of grains,
to be collected over the course of a single experiment. Comparing successive
snapshots gives insight into the incremental microstructural changes as a function
of an external state (e.g.,load). Unlike at any point in history, this experimental
process has created significant opportunities for relating discrete microstructural
features to continuum macroscopic quantities (Calvetti, Combe, and Lanier 1997;
Andrade and Tu 2009; Oda and Iwashita 1999). The process has also helped steer
research focus from phenomenology towards a more physics-based approach, with
the promise of validating and improving models for granular media, and just as
importantly, unmasking the physical origins of observed phenomena such as shear
bands (Andrade et al. 2010; Rechenmacher and Finno 2004; Andò et al. 2012b).

Extracting grains from 3-D X-Ray CT - a birds-eye view
A significant challenge in using imaging (such as 3-D XRCT) for quantitative anal-
ysis lies in the the translation of what are essentially three dimensional photographs
into palatable “quantities”. In other words, the photographs need to be converted
into quantitative descriptors of particle morphology and kinematics that can then
be used in quantitative analysis. This step helps reduce what are extremely large
data sets (typically 1500x1500x1500 voxels) into a smaller set of geometric and/or
statistical descriptors. From a physical perspective, the key difficulty lies in iden-
tifying grains as individual units, i.e.discriminating grains from voids (separating
phases), and also grains from other grains (separating objects). This is challenging
because grains can take on complex shapes and touch at contacts, which complicates
differentiating grains from other grains.

To generate quantitative descriptors of these 3-D XRCT images, we use an edge-



15

Figure 2.1: Overview of proposed method versus current methods. The bridge is
a total solution for characterization, while current methods require separate algo-
rithms. See (Vlahinic et al. 2013) for more on extracting shape from 3-D XRCT
images.

based variational level set (LS) method (Caselles et al. 1993; Kichenassamy et al.
1996; Li et al. 2005; Li et al. 2010; Osher and Sethian 1988) that is free from
voxelated structures. Instead, the algorithm works directly on greyscale 3-D XRCT
images to translate these to smooth descriptions of particle morphology by locating
a grain surfaces in a reconstructed 3-D XRCT image via locally minimizing an
appropriate energy functional. To this end, an LS function which is the same size as
the image domain is created, and its zero LS contour is subsequently evolved until
the scalar energy functional of its LS function is minimized.

Figure 2.1 provides a brief snapshot of the results available using the proposed
LS-based methodology. That we can visually discriminate morphology (rounded
versus angular) of the individual grains on the order of 100 microns speaks to both
the success of the 3-D XRCT experiments and also of the LS based platform for
interpreting the data.

2.2 Algorithms for grain fabric and kinematics
In a typical experiment on sand, a “representative” sample may be comprised of
tens of thousands of grains, which provides an impetus for devising a computer-
automated process for analysis. This process should, from a single 3-D XRCT
image, identify individual particles, determine their shape and morphology, and
determine orientation of contacts between particles. Furthermore, using multiple
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3-D XRCT images at successive stages of loading, such a process should also be
able to track particles from image to image (translation and rotation) based on their
morphological footprint as well as the evolution of contacts. Ultimately, this process
should shed insight into the incremental microstructural changes of the sample as
a function of external state (e.g. loading). In practice, however, such a process has
been absent until now. We describe this new process below using level sets as a
platform for interpreting 3-D XRCT images.

Grain description via Level Sets In our previous contribution (Vlahinic et al.
2013), we introduced a level set methodology to extract individual grains from 3-D
XRCT images. The advantage of LS in describing complex geometric shapes is that
it resides on a regular Eulerian grid identical to that of the underlying image. In this
way, different grain shapes take on different functional values, while the underlying
computational grid remains the same.

In mathematical terms, a grain surface Γ is defined as a zero-level contour of the
level set function φ(x), where x describes a 3-D domain. In the grain interior,
namely in the region Ω−, φ is negative, while in the grain exterior, namely in the
region Ω+, φ is positive, such that:

φ(x) < 0, region inside grain surface, denoted by Ω−

φ(x) = 0, grain surface Γ, denoted by ∂Ω

φ(x) > 0, region outside grain surface, denoted by Ω+

In principle, any function satisfying the above criteria can be used as an LS function.
However, a signed distance function is typically adopted because it provides the
following convenient properties:

|∇φ| = 1; n =
∇φ

|∇φ|
= ∇φ (2.1)

where ∇ is the gradient operator and n is the vector normal.

A signed distance function also enables a quite accurate determination of a grain
centroid, via a volume integral. Recall that all material points belonging to the
grain, x ∈ Ω−, are simply those satisfying the constraint φ(x) < 0, while on the
grain surface x ∈ ∂Ω, φ(x) = 0. In this way, we may define a volume integral on
Ω−, such that

volume integral
∫
Ω

H(−φ(x)) dx
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with H(φ) representing the integral of the Heaviside function, the solution of which
is a volume of Ω−. In practice, for improved numerical accuracy, H(φ) is typically
smeared over a finite distance ε = 1.5 (Osher and Sethian 1988), expressed in grid
units:

H(φ) =


0 : φ ≤ −ε
1
2 +

φ
2ε +

1
2π sin

( πφ
ε

)
: −ε ≤ φ ≤ ε

1 : ε ≤ φ

A centroid may then be calculated as

xc =

∫
Ω

H(−φ) x dx∫
Ω

H(−φ) dx
(2.2)

The rest of the technical sections assume LS functions of individual grains is avail-
able to the user, determined per recipe discussed in our previous work.

Grain contacts (fabric) The level set platform provides a simple procedure for
determination of grain fabric. To this end, we first define a proximity function
between each “possibly contacting” pair of grains :

grain proximity f (φ1, φ2) = max [φ1(x), φ2(x)]

where φ1 and φ2 are the level set functions of a given pair of grains. Like the
level set functions, the proximity function is defined on the Eulerian grid. Min
f (φ1, φ2) identifies a grid point where the two level sets, and thus neighboring
grains, are closest together. A grid point does not represent a closest point between
the two surfaces, however. This is because a true grain surface is located at arbitrary
locations within the grid, being the zero contour of φ. As a result, contact location
and also the orientation need to be determined in an average sense, in terms of the
proximity function. The simplest approach is to perform weighted averaging, with
weights decaying quickly away from the contact region. Here, we adopt a function
of exponential form, such that:

contact weights w(φ1, φ2) =
1

exp
[

f − f0
]

where a normalizing constant f0 = min( f ). The constant is included to ensure that
the highest weight is unity at all contact pairs. With these expressions in mind, we
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create a definition for calculating the contact centroid and normal as follows:

contact centroid xcontact =

∫
Ω
w x∫
Ω
w

contact normal ncontact =
n?

| |n?| |
, where n? =

∫
Ω

w (∇φ1 − ∇φ2)

(2.3)

Note that contact normal has no preferred orientation, or rather n? and negative n?

identify the same contact normal.

Grain kinematics The level set platform provides a similarly simple procedure
for determination of grain kinematics. Both grain translation and rotation can be
found using a single algorithm. This is accomplished by minimizing an appropriate
cost function, dependent on the difference between LS functions at distinct (imaged)
load stations. In a physical experiment, recall that grains are imaged independently,
and the same grain at two different load stations will have a different orientation and
therefore different level set functions. Thus, a minimization procedure is required
to correlate the two different level set functions of the same grain in order to find
its kinematics. We assume that the grains are rigid, i.e., the incremental grain
movement entails rigid body motion only (a lack of grain deformation is a valid
assumption for sand-type materials). Furthermore, we assume that grains remain
whole, i.e., there is no particle breakage. This assumption is valid for the low-
confinement experiments studied in this chapter, but if particles do break, a more
robust algorithm would need to be developed. The ultimate goal is to characterize
grain rearrangement, leading to macroscopic plasticity phenomena.

A cost function to be minimized can be defined in terms of the displacement and
rotation vectors. Translation is simply a three-component vector t = (tx, ty, tz).
Defining rotational degrees of freedom is a slightly more involved. As a starting
point, it helps to adopt an axis-angle representation, where 3-D rotation is defined
by a unit vector b = (bx, by, bz) and rotation angle θ around the unit vector. In this
way, via a Rodrigues rotation formula, a 3-D rotation tensor r is defined such that
in indicial notation,

Ri j = cos θ δi j + (1 − cos θ) bib j − sin θ εi j k bk

where δ is the Kronecker delta and ε is the permutation or Levi-Civita tensor.
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Rather than using 4 rotational unknowns, with a restriction that b · b = 1, we intro-
duce the following parameterization: r = sin θ

2 b. This eliminates the trigonometric
functions, restriction on b, and leads to only three independent unknowns, namely
r = (rx, ry, rz) with θ(r) = 2 sin−1(r · r). Noting the identities 2 sin2 θ

2 = 1 − cos θ
and sin 2θ = 2 sin θ cos θ, the substitutions ultimately reduce the Rodrigues rotation
formula to,

Ri j = (1 − 2rlrl) δi j + 2rir j − 2
√

1 − rlrl εi j k bk

A scalar cost function can finally be constructed (Jenkinson et al. 2002), where

C(g) =
1
2

w∑
α=1

[
φn(xα) − φo(mα)

]2

where xα = t + r(r) · mα (2.4)

with g = [t , r]T being the parameter vector over which minimization will take
place. Vector mα represents a collection of relative distances between α number
of points in Ω− and the grain centroid, as determined at time step t = 0. Note
that φ is initially evaluated at a starting configuration, namely φo, and therefore its
interpolation is not needed. However, φn corresponding to a particle’s LS function
at any subsequent load station is evaluated at the arbitrary locations xα, which does
require interpolation.

There are several popular methods that can be used to minimize the residual C(g).
The quickest are gradient-based methods, which, at minimum, require evaluation of
the first-order gradient of C(g). Analytic expressions for the gradient of C can be
found in (Jenkinson et al. 2002), though they are not necessary to implement. A
quasi-Newton method available in MATLAB allows for a numerical evaluation of
the gradient of C(g), requiring on average 5-25 iterations to reach a final solution,
depending on the magnitude of the rotation angle. We found that a unit length
maximum must be imposed on the magnitude of vector r during each iteration.
Besides this restriction, we find no problems in terms of convergence. In real tests
using a MATLAB implementation (“fminunc”) on a standard Intel i7 laptop, even
for very large angular rotations of up 90 degrees, we find that the method converges
to a solution in approximately one second for the grid sizes used in this study. We
believe that this is a byproduct of a smooth profile of the LS function that describes
grains, in contrast to, for example, applying the same algorithm directly to noisy
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source images such as the grain-based Discrete Digital Volume Correlation (Andò
et al. 2012a).

Note that grain translation is estimated to a great precision from information about
the centroids. As such, vector of unknowns g can be modified to contain only rota-
tional unknowns, i.e., g = rT , reducing the 6 unknowns to 3. However, we also find
that keeping all 6 unknowns does two things: (1) it provides an independent check
on the converged results, without significant overhead with respect to minimization,
and (2) it can ultimately help improved particle characterization, with slightly better
matching between the reference and new state.

2.3 Results
We apply the algorithms presented in the previous section to three types of grains:
synthetic grains, glass ballotini, and Caicos ooid sand. We first apply our methods
to synthetic images to validate their accuracy, then to ballotini to examine a real
but idealized and simply-shaped material, and finally to Caicos ooids to analyze an
actual geological granular system. In the cases of ballotini and Caicos ooids, we
looked in particular at the behavior of grains and fabric in the shear band of a triaxial
test. Table 2.1 shows a summary of the analyses performed in this section.

Material Type Translation Rotation Contact
synthethic computer generated Y Y Y
ballotini engineered glass Y N Y
Caicos ooid natural sand Y Y Y

Table 2.1: Summary of experiments and statistical inferences performed as part of
this study.

Synthetic test: accuracy with respect to image resolution and image noise
In this section, we apply the algorithms presented in the previous section to synthetic
images of grains. Synthetic images are created by discretizing analytical functions
of geometric shapes into volumes over a voxelated grid, where image intensity
corresponds to the volume fraction of the shape(s) in each voxel. This process leads
to images analogous to XRCT images, whose intensity corresponds to the density
of each voxel (Vlahinic et al. 2013). The synthetic study is done to determine
the accuracy of the level set based algorithms. Image resolution (voxels per grain
diameter), white noise (signal to noise ratio) and also contact topology (convex
versus concave) vary in the expected range of 3-D XRCT images. This study is done
as a precursor to the analyses on real grains in the following two sections.
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For the test of accuracy of the contact normal calculations, we synthesize results of
one thousand 3-D XRCT-like images of two grains contacting at randomly assigned
orientations. A typical image of a synthetic contact is shown in Figure 2.2. Figure
2.3 shows the results of this test. Each column in the figure corresponds to a
particular contact geometry. The top row of the results varies the image noise σ
from 0 to 5% standard deviation of signal to noise ratio, keeping the average grain
diameter D fixed at 30 voxels. The bottom row varies the grain diameter between
20 and 40 voxels without introducing any noise.

Figure 2.2: An image of a convex-convex synthetic contact with random noise
(σ = 0.01) of two synthetic grains of diameter 30 voxels, typical of images of
synthetic contacts in this section. Note that the image shown is a 2-D slice of a 3-D
image.

The following are general conclusions, which can be gleaned from the histogram
data:

1. For the range of of image resolutions used in this study, between 20 and 40
voxels per grain diameter, image resolution has little influence on the overall
results, regardless of the contact type.

2. In relative terms, convex-convex grain contacts yield themost accurate results,
while convex-concave contact types yield the least accurate results. Contact
type appears to have the largest impact on accuracy. However, for all res-
olutions and noise levels, the mean error in contact orientations is below 1
degree.
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Figure 2.3: 2-D schematic of the three different contact types, with magnified
insets. Below, histograms of contact orientation errors for 1000 trials each of two
contacting grains in random orientations, for varying levels of white noise σ (signal
to noise ratio) and grain resolution D (voxels per grain diameter). Note that while the
schematic above is 2-D, all tests and reported results are based on 3-D geometries.

3. As expected, noise level and accuracy are shown inversely proportional. This
is most apparent for the convex-convex contact type, where the average error
with 5% noise is more than triple the average error with no noise. However,
even with 5% noise, the average error in contact orientation is still only 0.62
degrees. In the convex-flat and convex-concave cases, noise level makes little
difference.
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In the test of accuracy of grain kinematics, we synthesize results of a single grain in
one thousand random initial and final positions and orientations, and calculate the
displacement and rotation errors, comparing those results to the exact values used
to synthesize the images. A typical image of a grain used in this study is shown in
Figure 2.4. Figure 2.5 shows the results of this test. The left column corresponds
to rotation tests, while the right column corresponds to translation tests. Variations
in resolution and noise remain identical to the previous test, namely 0 to 5% std.
deviation of signal to noise ratio and 20 to 40 voxel grain resolution.

Figure 2.4: An image of a synthetic, randomly oriented grain with random noise
(σ = 0.01) and a diameter of 30 voxels used in the test of kinematic accuracy,
typical of images of synthetic grains used to track kinematics in this section. Note
that the image shown is a 2-D slice of a 3-D image.

The following again are our general conclusions:

1. In terms of grain rotation, noise level and accuracy appear inversely propor-
tional. The error, however, is very well controlled, not exceeding the mean
0.5 degrees (with respect to absolute values) at the highest noise level.

2. Higher resolution images lead to higher kinematic accuracy. There appears
to be a cutoff point at which a higher resolution ceases to significantly affect
accuracy. Nevertheless, in all cases, the error appears well controlled, with
subvoxel accuracy in all cases.

Glass ballotini
We now turn to the first of two sets of results on real granular materials imaged via
3-D XRCT. Ballotini, an engineered glass material, is chosen for its nearly spherical
grain shape and varied size, with diameters between 150 and 600µm.
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Figure 2.5: Histograms of rotation and translation errors for 1000 trials each of a
single grain translating and rotating from an initial position and rotation to a random
position and rotation, for varying levels of noise σ and grain diameter D. Note that
while the schematic above is in 2-D, all tests performed are 3-D.

Owing to their spherical shape, ballotini grains are constrained in terms of contact
type, experiencing only convex-convex contacts, though at different resolutions as
reflected by differences in their particle size. 3-D XRCT images taken at four time
stations are of particular note: time stations 1 and 2, representing the beginning of
loading, and time stations 16 and 17, representing the post-localized state of the
material under triaxial compression (see Figure 2.6).

In themiddle portion of the sample, incremental grain translations are first calculated
by subtracting the grain centroids of individual grains from successive load steps,
namely load step 1-2 and 16-17, per the procedure outlined in the previous section.
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Figure 2.6: 3-D XRCT images of ballotini specimen at the onset of loading and
post-localization (top), along with the macroscopicstress-strain. Contact statistics
are reported for a region inside and two regions outside of the shear band. Individual
grains belonging to these regions are shown as level set contours in top middle of the
figure. The overlay over 3-D XRCT images is colored by displacement magnitude
of individual grains, an indicator of the shear band location. Contact statistics
(bottom histograms) show the relative frequency of contacts occurring in a given
direction, indicated by the distance of a given triangle from the origin. We see a
significant loss of contacts in the horizontal directions (minimum principal stress;
compression positive) and significant gain in the contacts in the maximum principal
stress direction, as reported in multiples of mean contacts per grain in each region
(e.g.,1.3 corresponds to 130% of the mean contact frequency in a given direction).
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The translations are shown collectively, per a color overlay of the original 3-D
XRCT images a top left and right of Figure 2.6. Greatest incremental translations
correspond to roughly 3.5 voxel units, or just under 0.1 mm. Incremental rotations
cannot be determined because the ballotini grains are nearly spherical. Note that all
calculations are performed in 3-D, though for simplicity, only a 2D slice is shown
in Figure 2.6.

Based on the incremental translations, the shear band region can clearly be delin-
eated. For this study, in total, we choose three sub-regions to analyze: volumes
above and below the shear band, and a volume within the shear band. These regions
are clearly identified at top of Figure 2.6. In addition, extracted level set contours,
i.e., mathematical representations of the particles in these regions, are shown in top
middle of the figure.

For this example we are particularly interested in changes in the distribution of
contact normals between the onset of loading and post-localization in each of the
three regions. As discussed in the introduction, contact normals are an important
quantity for granular materials, as gravity forces dominate at scales roughly above
1/10 mm (Santamarina 2003) and and forces within the material are distributed via
physical grain-grain contacts. In this way, contact orientation serves as a proxy for
understanding changes the load-resisting network within the material (Behringer
et al. 2014).

Results from our statistical analysis, in the form of histograms plotted in spherical
coordinates, are shown in the lower part of Figure 2.6. The scale of its plots,
indicated by blue-to-red colors, is reported in multiples of the mean number of
contacts per grain. Directions are grouped into triangles of equal areas, as seen in
the histogram plots. X and Y axis were aligned such that the shear band lies in the
X-Z plane.

That the contact histograms look nearly spherical (or circular in 2D projections)
indicates that at the onset of loading contacts were evenly distributed in all directions.
Post-localization, however, a significant gain in contact density in the direction of
loading (vertical z-direction) is evident in all regions of the sample, though the
greatest gains are visible inside the shear band, where the gain in contact density is
roughly 150% of the mean. Conversely, the contact density in the sample decreases
in the direction of smaller principal compressive stress (radial specimen directions x
and y). Again, the greatest losses are concentrated in the shear band regions, where
density falls to 50% of the mean.
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Caicos ooids
Caiocs ooids, a highly rounded sand originating in thewarmwaters of the Caribbean,
presents a truly natural material. We apply level set methods to 3-DXRCT snapshots
taken at different time stations of a triaxial compression test on ooids. Stress-strain
for the material curve is shown in top middle of Figure 2.7, marked by post-peak
strength softening accompanied by shear band localization. Though rounded, the
particles are not constrained in terms of shape, with many exhibiting elongated
shapes and occasional non-convexity.

In terms of contact statistics, as in the case of ballotini, we examine contact normal
orientations at the onset of loading and at the post-localized material state. These
correspond to load stations 1 and 17. Changes in contact statistics are reported in
Figure 2.7. Only the shear band region is studied, containing roughly three thousand
independent contact surfaces. Tendencies of the material to gain contacts in the
direction of loading and lose contacts in the minimum principal stress direction
remain consistent with the previous example. Similarly, highest contact density
appears to be in the same direction as the principal loading direction.

The difference here, however, is that the magnitude of the contact gains and losses
is more exaggerated than that of the ballotini experiment. We believe this to be a
product of non-spherical grain shape. In other words, as grain shape becomes less
spherical, contacts densities in minimum and maximum principal stress directions
tend toward greater extremes. This is evident by simply looking at the shape of the
histogram, which visually reflects its color values. Also, contact densities in and
out of the plane of shearing (X-Z and Y-Z planes) become more dissimilar, despite
the fact that macroscopically, principal stress is the same in all radial directions.

At bottom of Figure 2.7, incremental translations (in voxel units) and rotations (axis
and magnitude) are shown for the twelve grains that remain inside the subregion
during all 16 loading stages. Each colored line identifies a cumulative path of a
different grain. Grains that enter or leave the region during all load steps are not
shown, though they follow the same pattern of behavior described next. Primarily,
we observe that the direction of grain motion very predictably reflects the orientation
of the shear band. Also, as expected, it can be seen that the grains are also slightly
moving apart fromone another, i.e., with a small band-normal component, indicating
dilative tendencies of the Caicos sample.

More interesting, however, is the rotational freedomof grains, or rather a lack thereof.
Specifically, cumulative grain rotations plotted in vector form (vector magnitude =
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Figure 2.7: 3-D XRCT images of Caicos ooid specimen at the onset of loading (left)
and post-localization (right), with the analyzed subvolume encompassed by a blue
square. In the middle, statistical histogram of contacts is shown for loads steps 1
and 16. Description of the axis and scale is the same as for glass ballotini. At the
bottom, incremental translations (in voxel units) and rotations (axis and magnitude)
are shown for the 15 grains that remained inside the subregion during all 16 loading
stages. Note the grain rotations appear entirely random, seemingly unaffected by
shear band orientation or loading direction. The kinematics of one of the grains
during all loading stages (shown in blue) exemplifies typical temporal resolution
available in a 3-D XRCT experiment.
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magnitude of rotation; vector direction = axis of rotation) indicate that rotations
within shear band vary wildly. To the authors, at least, it is quite surprising that
grain rotations display little to no correlation with shear band orientation or loading
direction. In other words, in natural 3-D materials, rotations appear subservient to
translational degrees of freedom, with grains relieving their frustration by rotating
in any direction possible, as dictated by local geometric constraints.

In terms of relativemagnitude, cumulative grain kinematics during loading to critical
state are significant. We consistently find cumulative rotations up to 180 degrees
(though in diverging incremental directions) for each translational equivalent of two
particle diameters.

2.4 Conclusions
In this work, we present our level set platform, termed “level set bridge.” The
platform provides a crucial link betweenX-ray CT experiments andmicromechanics
of granular media. In particular, it enables us to not only extract particle morphology
from 3-D XRCT images, but also to leverage this information to report with great
accuracy the spatial interactions between particles (contact statistics) as well as
grain-level kinematics (particle rotations and translations) as a function of load
state. The following studies were performed as part of this work:

First, motion and contact of synthetic grains was studied in order to determine the
accuracy of the platform. It was found that the proposed platform produces excellent
results - indicating the rotation error does not exceed half a degree at typical 3-D
XRCT noise level and resolution. Grain kinematics between successive load steps
also proved quite accurate, with mean translation error limited to a fraction of a
voxel and mean particle rotation error at a fraction of one degree in 3-D.

Second, the algorithm was applied to two real materials, glass ballotini and Caicos
ooids, sieved to limit the particle size to those of typical sand (with mean grain
diameter in the range of 0.2 mm). At this scale, gravity forces dominate1. 3-D
quantitative statistics in the regions inside the shear band for non-spherical particles
are reported for the first time in literature.

This represents the highest resolution quantitative (i.e., grain-scale kinematics and
fabric) in-situ experimental study of its kind on 3-D real materials thus far. Level
set based algorithmic accuracy enabled new insight into material state before and

1along with capillary effects, but in this study, the specimens were tested dry and not affected by
capillary effects
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after localization. Main findings were summarized in the introduction section, and
detailed in the results section. Ultimately, what made this study possible were
advances in both experimental 3-D XRCT technology (Andò et al. 2012b; Andò et
al. 2012a) and also advances in interpretation of image-based data (Li et al. 2010),
as exemplified by our previous published works (Andrade et al. 2012a; Vlahinic
et al. 2013).
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C h a p t e r 3

LEVEL SET DISCRETE ELEMENT METHOD FOR
THREE-DIMENSIONAL COMPUTATIONS WITH TRIAXIAL

CASE STUDY

The content in this chapter is adapted from:

Kawamoto, Reid, Edward Andò, Gioacchino Viggiani, and José E. Andrade. “Level
set discrete element method for three-dimensional computations with triaxial case
study”. In: Journal of the Mechanics and Physics of Solids 91, pp. 1–13. doi:
http://dx.doi.org/10.1016/j.jmps.2016.02.021. ISSN: 0022-5096.

In this chapter, we describe and validate the level set discrete element method (LS-
DEM) which enables the simulation of systems of arbitrarily-shaped 3D particles
using level set functions as a geometric basis. LS-DEM is similar to the classic
discrete element method (DEM) (Cundall and Strack 1979) in that it simulates the
kinematics and mechanics of a system of discrete particles, with the only difference
being its ability to model arbitrary shapes as opposed to only spheres as in DEM.
LS-DEM was motivated for three reasons:

1. Particle shape plays an enormous role in determining the macroscopic prop-
erties of an assembly, particularly strength, which has been shown both exper-
imentally (Cho, Dodds, and Santamarina 2006) and computationally (Jerves,
Kawamoto, and Andrade 2016), thus having a method able to account for
particle shape is paramount. Level set functions represent the next step in
high-fidelity shape representation and are able to fully capture the complex
morphology of real granular materials.

2. Recent developments in the characterization of grain assemblies from X-ray
computed tomographic (XRCT) images of granular systems using level set
imaging methods (Vlahinic et al. 2013) have provided particular reason to
develop a level set-based simulation method that can directly use the level set
data from characterization of XRCT images as an input, avoiding the need to
switch geometric formulations.

3. The level set framework is computationally time-efficient, even at high reso-
lutions, due to its formulation.
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Figure 3.1: Illustration of this chapter’s contents, LS-DEM and its validation (bold-
italicized), which are the links that allow us to fully connect the four areas between
experiments and computations. Note that the experimental images are 2D slices of
a 3D XRCT image, and the virtual specimen is 3D.

With these motivations in mind, we describe the level set-based shape representation
and contact algorithms unique to LS-DEM, then verify the method by applying it to
two virtual assemblies obtained from XRCT images of experimental specimens. As
shown in Figure 3.1, LS-DEM and its validation represent the the links in being able
to fully bridge the gap between experiments and computations in discrete modeling
with full-sized specimens.

3.1 Level set discrete element method
Here, we detail the level set discrete element method, starting with level set func-
tions, moving to interpolation and computation of inertial properties using level set
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functions, and ending with contact, forces and moments, and motion in LS-DEM.

Level set functions
A level set function is a scalar-valued implicit function φ(p) whose value is the
signed distance from a point p to an interface (Osher and Fedkiw 2003). In the
context of LS-DEM, the interface is the particle’s surface. Consider a grain particle
surface such as the one in Figure 3.2a. Contour lines can be added around the grain
surface as in Figure 3.2b. These contour lines represent the distance or ‘elevation’
from the grain surface, positive outside the grain and negative inside the grain. Next,
a grid can be superimposed over the contours as in Figure 3.2c and the elevation
can be found at each grid point. Figure 3.2d illustrates the elevation at each grid
point, and this is the level set function which is stored in computer memory and is
the geometric basis of LS-DEM.

Although level set functions can be constructed through the method above, i.e.,
using point-distance formulas to arrive at Figure 3.2d, all of the level set functions
in this chapter are generated from XRCT images of experiments on real grains using
level set-based imaging algorithms in (Vlahinic et al. 2013).

Through interpolation of values at surrounding grid points, the value of the level set
function at any point can be evaluated (Figure 3.2e). We defineΩ+ = {p | φ(p) > 0}
as the outside of the grain andΩ− = {p | φ(p) < 0} as the inside of the grain. Then,
the original grain surface (Figure 3.2f) can be reconstructed by finding the set of
points ∂Ω = {p | φ(p) = 0} (the “zero level set”) via interpolation.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Illustration of a level set function. (a) Grain particle surface. (b) Contour
lines representing signed distance from surface. (c) Superimposition on grid. (d)
Discretized level set function. (e) Level set function with interpolation between grid
points. (f) Reconstruction of original grain surface via interpolation. Note that the
level set functions shown here are 2D for illustrative purposes only.

Interpolation in level set functions
For use in the level set discrete element method, we must be able to compute two
quantities from a level set function φ: its value φ(p) and its gradient ∇φ(p) at any
point p within its grid boundaries. This is done through interpolation of values
of the discretized level set function at grid points surrounding p. Any order of
interpolation can be used, but linear interpolation was used here for its simplicity
and speed. Let:

1. φ be stored on a uniform grid with grid spacing g in all directions.
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Figure 3.3: Schematic of point p with surrounding grid points pabc.

2. p be a point in space with components px , py, and pz and surrounded by grid
points pabc with a, b, c ∈ {0, 1} as shown in Figure 3.3. Furthermore, let p000

have components (x0, y0, z0).

3. x =
(px − x0)

g
, y =

(py − y0)

g
, z =

(pz − z0)

g

4. φabc = φ(pabc) for convenience in notation.

Using trilinear interpolation to find φ(p),

φ(p) =
1∑

a=0

1∑
b=0

1∑
c=0

φabc[(1−a)(1−x)+ax][(1−b)(1−y)+by][(1−c)(1−z)+cz] (3.1)

The gradient of the level set function ∇φ(p), using trilinear interpolation, is

∇φ(p) =

©­­­­­­­«

1∑
a=0

1∑
b=0

1∑
c=0

φabc(2a − 1)[(1 − b)(1 − y) + by][(1 − c)(1 − z) + cz]

1∑
a=0

1∑
b=0

1∑
c=0

φabc[(1 − a)(1 − x) + ax](2b − 1)[(1 − c)(1 − z) + cz]

1∑
a=0

1∑
b=0

1∑
c=0

φabc[(1 − a)(1 − x) + ax][(1 − b)(1 − y) + by](2c − 1)

ª®®®®®®®¬
(3.2)

Note that the interpolation functions to find φ(p) and ∇φ(p) are not functions of
grid size. Therefore, the time complexity of these calculations are constant; they do
not increase if φ is refined to a finer grid.



36

Inertial properties
The inertial properties, i.e., mass, center of mass, and moment of inertia, of a given
grain must be known for its use in LS-DEM. These quantities are computed directly
from the grain’s level set function. Defining the smoothed Heaviside function H(φ)

as

H(φ) =


0 if φ < −ε

1
2
(1 +

φ

ε
+
sin( πφε )
π
) if − ε < φ < ε

1 if φ > ε

(3.3)

where ε is a smoothness parameter. ε = 1.5 was used in this study. The mass of a
grain of uniform density ρ and grid spacing g represented by level set function φ is

m = ρg3
I∑

i=1

J∑
j=1

K∑
k=1

H(−φ(xi, y j, zk)) (3.4)

where φ(xi, y j, zk) is the value of φ at grid point (xi, y j, zk), and I, J, and K are
the number of grid points in the x, y, and z directions, respectively, of φ. In other
words, the mass is proportional to the summation of H(−φ) over every grid point of
φ. The components of its center of mass are

cx =
ρg3

m

I∑
i=1

J∑
j=1

K∑
k=1

H(−φ(xi, y j, zk))xi

cy =
ρg3

m

I∑
i=1

J∑
j=1

K∑
k=1

H(−φ(xi, y j, zk))y j

cz =
ρg3

m

I∑
i=1

J∑
j=1

K∑
k=1

H(−φ(xi, y j, zk))zk

(3.5)
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Finally, the components of its moment of inertia are

I11 = ρg
3

I∑
i=1

J∑
j=1

K∑
k=1

H(−φ(xi, y j, zk))[(y j − cy)2 + (zk − cz)
2]

I22 = ρg
3

I∑
i=1

J∑
j=1

K∑
k=1

H(−φ(xi, y j, zk))[(xi − cx)
2 + (zk − cz)

2]

I33 = ρg
3

I∑
i=1

J∑
j=1

K∑
k=1

H(−φ(xi, y j, zk))[(xi − cx)
2 + (y j − cy)2]

I23 = I32 = −ρg
3

I∑
i=1

J∑
j=1

K∑
k=1

H(−φ(xi, y j, zk))(y j − cy)(zk − cz)

I13 = I31 = −ρg
3

I∑
i=1

J∑
j=1

K∑
k=1

H(−φ(xi, y j, zk))(xi − cx)(zk − cz)

I12 = I21 = −ρg
3

I∑
i=1

J∑
j=1

K∑
k=1

H(−φ(xi, y j, zk))(xi − cx)(y j − cy)

(3.6)

Boundary node discretization
LS-DEM uses a node-to-surface contact algorithm that is utilized in finite element
models (Laursen 2002) as well as discrete element models (Lim, Krabbenhoft, and
Andrade 2014) for the handling of nonconvex particles with multiple contact points
as well as computational ease, whereby nodes are seeded onto the surface ∂Ω of
each particle (Figure 3.4). The density of nodes on a given particle is a matter
of choice and has implications on particle behavior; however, we find that seeding
with a maximum node-to-node spacing of less than d/10, where d is the particle
diameter, is adequate to capture particle morphology as higher nodal densities have
a negligible impact on behavior. Contact is then determined by checking each node
of a master particle against the boundary of a slave particle for penetration. Because
each node is checked for contact, the computational cost of contact is proportional
to the number of nodes seeded onto the master particle.

Note that the number of nodes seeded onto a particle does not change its underlying
geometry, which is defined by its level set function, unlike polyhedra and clumping
methods where changing the number of vertices or spheres completely modifies
their geometries. Thus, more advanced schemes such as adaptive seeding near areas
of contact during time integration are possible if such precision is desired.
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Figure 3.4: Example of boundary node discretization with nodes in white seeded
on the grain surface. This is shown in 2D for illustrative purposes only.

Contact
Asmentioned in the previous section, contact in LS-DEM is handled through a node-
to-surface contact algorithm. Let grain i have nodes mi

a with {a ∈ Z | 1 ≤ a ≤ A},
where A is the number of nodes seeded onto i. Contact is determined between
master grain i and slave grain j by checking all nodes mi

a of grain i with the level
set function φ j of grain j. Then,

d j,i
a = φ

j(mi
a) (3.7)

n̂
j,i
a =

∇φ j(mi
a)

‖∇φ j(mi
a)‖

(3.8)

where d j,i
n and n̂

j,i
a are the penetration distance and outward contact normal of j,

respectively, between grains i and j at node mi
a (see Figure 3.5). These contact

equations are very simple and easy to compute due to the formulation of the level
set function, whose value at any point represents the distance from that point to the
surface, and its gradient at any point represents, in principle, the unit outward normal
at that point. However, due to the level set function’s discrete nature, the magnitude
of ∇φ j(mi

a) is very close, but not equal, to unity and therefore is normalized.

If at least one node mi
a of master grain i is penetrating slave grain j, that is, if

∃mi
a | φ

j(mi
a) < 0, then we consider the two grains to be in contact, and thus,

interparticle forces must be computed.
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Figure 3.5: Illustration of two contacting grains.

Forces and moments
To compute forces from penetrations, any contact model can be used, but we used a
linear elastic contact model for the purposes of this study. Thus, the contact normal
force contribution from node mi

a on grain i is

Fi
n,a =

{
−knd j,i

a n̂
j,i
a if d j,i

a < 0
0 else

(3.9)

where kn is the normal contact stiffness. By action and reaction, the contribution of
contact normal force F j

n,a from node mi
a on grain j is

F
j
n,a = −F

i
n,a (3.10)

The moment M i
n,a contributed by the contact normal force Fi

n,a at node mi
a on grain

i is

M i
n,a = (m

i
a − ci) × Fi

n,a (3.11)

where ci is the centroid of grain i. Similarly, the moment M j
n,a contributed by the

contact normal force at node mi
a on grain j is

M
j
n,a = (m

i
a − c j) × F

j
n,a (3.12)
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where c j is the centroid of grain j.

For the calculation of frictional forces, LS-DEM uses a Coulomb friction model
similar to those in Andrade et al. 2012b and Cundall and Strack 1979. For a given
node mi

a, frictional forces (and related moments) only exist if Fi
n,a , 0. The relative

velocity va of node mi
a to grain j is

va = vi + ω i × (mi
a − ci) − v j − ω j × (mi

a − c j) (3.13)

where vi, v j , ω i , and ω j are the translational and angular velocities of grains i and
j. The incremental shear displacement ∆sa is then

∆sa = [va − (va · n̂
j,i
a )n̂

j,i
a ]∆t (3.14)

The shear force Fi
s,a on grain i contributed by node mi

a is updated as such:

Fi
s,a ← ZFi

s,a − ks∆sa (3.15)

where Z is the rotation matrix that rotates the normal vector n̂
j,i
a at the current

timestep to the normal vector at the previous timestep and ks is the shear contact
stiffness. The Coulomb friction law dictates Fi

s,a be capped at a fraction of the
normal force Fi

n,a:

Fi
s,a ←

Fi
s,a

‖Fi
s,a‖

min(‖Fi
s,a‖, µ‖F

i
n,a‖) (3.16)

where µ is the interparticle friction coefficient. By action and reaction,

F
j
s,a = −F

i
s,a (3.17)

The moment M i
s,a contributed by node mi

a’s shear force on grain i is

M i
s,a = (m

i
a − ci) × Fi

s,a (3.18)

Similarly, the the moment M j
s,a contributed by node mi

a’s shear force on grain j is

M
j
s,a = (m

i
a − c j) × F

j
s,a (3.19)

The total contact force on grain i is found by summing all nodal contact forces:

Fi
tot =

A∑
a=1
(Fi

n,a + Fi
s,a) (3.20)
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By action and reaction,

F
j
tot = −F

i
tot (3.21)

The total contact moment on each grain is found by summing all nodal contact
moments:

M i
tot =

A∑
a=1
(M i

n,a + M i
s,a) (3.22)

M
j
tot =

A∑
a=1
(M

j
n,a + M

j
s,a) (3.23)

Motion
Given a grain’s inertial properties and the force and moment on it, the translational
velocity, angular velocity, position, and rotation of the grain are updated using an
appropriate time integration scheme. In this chapter, the scheme described in Lim
and Andrade 2014 and Walton and Braun 1993 was used to update the positions
of the center of mass and nodes of each grain. This scheme solves Newton’s and
Euler’s governing equations of motion

F = ma + mξv (3.24)

M1 = I1α1 − ω2ω3(I2 − I3) + ξ I1ω1 (3.25)

M2 = I2α3 − ω1ω3(I2 − I3) + ξ I2ω2 (3.26)

M3 = I3α3 − ω1ω2(I2 − I3) + ξ I3ω3 (3.27)

where F is the total force on a particle, m is its mass, ξ is a damping parameter, v is
its velocity, i = 1,2,3 are the three principal directions such that the particle’s moment
of inertia I is diagonal, and wi is its angular velocity. These equations of motions are
solved via an explicit time integration algorithmwith a predictor-corrector algorithm
to update the rotational kinematics as those equations are nonlinear.

It is important to note that, to minimize computational cost, the level set function of
each grain is never updated as it moves; each level set function remains in a reference
configuration. To accommodate this, when computing contact, the nodesmi

a of grain
i (in the global frame) are moved temporarily into the reference configuration of
grain j’s level set function. From there, contact forces and moments are found (in
the reference configuration of grain j) and then moved back to the global frame.
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3.2 Case study: Triaxial compression test
We test the validity of LS-DEM by simulating a triaxial compression (TXC) test
using XRCT data taken from two real TXC experiments on a Martian regolith-like
sand. Our goal is to capture, through LS-DEM, both the axial stress-axial strain and
volumetric strain-axial strain relations measured in the experiment. We calibrate the
parameters of the LS-DEM model to replicate the results of one experiment, then
use those parameters to predict the behavior of the other experiment.

The experiment
Two cylindrical specimens, each 11 mm in diameter and 24 mm in height, of a
Martian regolith-like sand are compressed isotropically to 100 kPa, then triaxially
compressed at an axial strain rate of Ûε1 = 0.1%/s and a constant radial pressure
of σ3 = 100 kPa. 3DXRCT images with voxel edge length 31.1 µm were taken
of each specimen at the onset of axial strain. The stress-strain and volume-strain
relations are plotted in Figure 3.6; the difference in behavior of the two specimens
is attributed to the difference in the number of grains and therefore initial porosity
of the two specimens; the looser specimen has 2,773 grains and an initial porosity
of 41%, while the denser specimen has 3,158 grains and an initial porosity of 36%.
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Figure 3.6: Stress-strain and volume-strain results of experiments. Note: experi-
mental volume-strain data for the looser specimen was stopped at 18%.

LS-DEM calibration of looser specimen
We apply the characterization technique described in Vlahinic et al. 2013 to produce
level set functions of every grain from the XRCT image of the looser specimen at the
onset of triaxial compression. In other words, we generate a virtual specimen where
each grain is represented 1:1 in both shape and position (Figure 3.7). Our goal is to
calibrate the values of the interparticle normal stiffness kn and interparticle friction
µ in an LS-DEM simulation to match experimental results. Grain density is set at
2500 kg/m3 and shear stiffness ks is held at 0.9kn. While we are not able to reproduce
the Ûε1 = 0.1%/s strain rate of the experiment due to computational limitations, as
such a low strain rate would take prohibitively long to simulate, values of Ûε1, global
damping, and ∆t are chosen to maintain quasi-static conditions, numerical stability,
and computational tractability (Tu and Andrade 2008). Rigid, frictionless walls
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were used and wall stiffness are set to be the same as grain stiffness kn. We apply
isotropic compression to the virtual specimen to a pressure of 100 kPa, then axially
compress the assembly to ε1 = 20% while maintaining radial pressure σ3 = 100
kPa, the final configuration of which is shown in Figure 3.7. The stress-strain and
volume-strain relations are plotted in Figure 3.8 with three different values each of
kn and µ.

Experimental Image Virtual Specimen Triaxial Compression

Looser Specimen

Figure 3.7: Left: 3D rendering of XRCT image of uncompressed looser specimen.
Center: Virtual level set function representation of looser specimen. Right: Virtual
specimen after triaxial compression.
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Figure 3.8: Stress-strain and volume-strain relations for LS-DEM simulations on
looser specimen. The values kn = 3 × 106 and µ = 0.65 are chosen as best-fit
parameters.

From Figure 3.8, the values of kn and µ that result in the closest match in both



46

stress-strain and volume-strain behavior are 3×106 N/m and 0.65, respectively. The
contact stiffness kn overall does not have a particularly large effect on the behavior
of the specimen, and a value of 3 × 106 N/m seems reasonable especially in the
context of DEM. As for the the interparticle friction coefficient µ, while there is a
wealth of experimental data on macroscopic rock friction at high pressures (Byerlee
1978; Hoskins, Jaeger, and Rosengren 1968), there is not much research at the
low pressures and small length scales in the regime of this case study. Grain-scale
experiments performed on quartz, a relatively “smooth” particle, have found an
interparticle friction coefficient of about 0.24 (Senetakis, Coop, and Todisco 2013).
While an interparticle coefficient of friction of 0.65 seems quite high in that context,
the sand used in this case study’s experiment consist of unweathered rock fragments
meant to mimic those of Mars. It is therefore not unreasonable that the grains have
a high amount of surface roughness unable to be captured by the resolution of the
XRCT image, which manifests itself in a high coefficient of interparticle friction,
especially at low pressures where friction is highly dependent on surface roughness
(Byerlee 1978).

LS-DEM simulation of denser specimen
We now seek to predict the experimental results of the denser specimen by using the
calibrated values obtained from simulations on the looser specimen to simulate the
denser specimen. The characterization process is repeated: from its XRCT image,
we generate a virtual specimen of the denser specimen (Figure 3.9). We then repeat
the LS-DEM process of isotropic compression and triaxial compression with the
calibrated values of kn = 3 × 106, µ = 0.65 and all other parameters the same as
before.

As Figure 3.10 of the stress-strain and volume-strain relations indicates, using the
calibrated parameters gives a reasonable prediction of the behavior of the denser
specimen (right), but it is not as accurate as the results from the looser specimen
with which we use to calibrate (left).

3.3 Discussion
In terms of assessing the validity of our LS-DEM model, further investigation can
be done. First, we can check if indeed the calibrated parameters kn and µ are
reasonable by performing experiments on individual grains of the specimens using
apparatuses and procedures in Cil and Alshibli 2014b and Senetakis, Coop, and
Todisco 2013 to compute kn and µ, respectively. Second, while slight bulging is
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Experimental Image Virtual Specimen Triaxial Compression

Denser Specimen

Figure 3.9: Left: 3D rendering of XRCT image of uncompressed denser specimen.
Center: Virtual level set function representation of denser specimen. Right: Virtual
specimen after triaxial compression.

seen in the experimental specimens, in our simulations, we use rigid, straight walls,
which prevent bulging from happening computationally. It would be interesting
to see if the implementation of a flexible membrane instead of rigid walls in our
simulations could improve results. Finally, the Coulomb friction model used was
the most simple of various friction models; more complex models invoke the rate
of slip rather than just the amount of slip (note that while macroscopic loading
is quasistatic, particle-to-particle interactions may not be and thus subject to rate-
based friction) as well other state variables (Dieterich 1979; Ruina 1983). Other
models have expanded on on these “rate and state” models to incororate concepts of
viscoplasticity (Perfettini and Molinari 2017) and atomistic considerations (Hatano
2015). Incorporating such friction laws may lead to improved results.

The shape-based nature of LS-DEM makes it rife with possibilities in studying the
mechanical properties of granular assemblies. One area that looks promising is
grain breakage and communition. Experiments and computations of grain breakage
at the grain-scale have been performed (Cil and Alshibli 2012; Cil and Alshibli
2014b; Parab et al. 2014), some of which were also investigated using DEM. De-
termining fracture criteria (a function of contact forces (Jaeger 1967), coordination
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Figure 3.10: Stress-strain and volume-strain relations for LS-DEM simulations on
looser (left) and denser (right) specimens with kn = 3 × 106 and µ = 0.65.

number (Casini, Viggiani, and Springman 2013; Sammis, King, and Biegel 1987),
and probability (Weibull 1939; Weibull 1951)) and direction of fracture planes (a
function of Mohr-Coulomb failure surfaces (Shen, Stephansson, and Rinne 2014)
and location of contact forces) for grains of arbitrary morphology are not a trivial
tasks. However, once fracture criteria and fracture planes have been determined,
the level set framework is convenient for modeling grain breakage as fracture planes
can be represented by level set functions which then can be used to split a grain
using binary operations between the level set function of the grain and the level set
functions of the fracture planes, which would allow replications of exact fracture
patterns that occur in experiments. Another area in which LS-DEM could be applied
is in multiscale methods, such as the one developed and implemented in (Andrade
et al. 2010; Lim et al. 2015), or using LS-DEM to infer continuum quantities such
as dilatancy and macroscopic friction angle to shed light on how these continuum
properties originate from the grain scale. Essentially, the potential applications of
LS-DEM fall under the same umbrella as those of classic DEM, but with its ability
to capture shape, LS-DEM will hopefully enable us to arrive at a deeper, more
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quantitative understanding of the behavior of granular materials.

There are also possible extensions and studies of LS-DEM in the computational
realm. The computational time complexity of LS-DEMdoes not scalewith increased
grid resolution and is relatively low compared to that of polyhedral or NURBS-based
methods as contact detection does not require traversal a tree of bounding volumes
(Ericson 2004; Lim and Andrade 2014) but rather is constant and only requires a
lookup of values at grid points. In this sense, level set functions work essentially as
lookup tables of penetration distances and contact normals where values between
grid points are estimates found via interpolation. Two interesting questions arise
as a result of this. First, how does grid fineness relate to accuracy? In this study,
grid fineness was held constant as the grains’ level set functions resided on grids
at the same resolution as the XRCT images themselves. Second, what effect does
memory consumption have on the computational cost and limitations of LS-DEM?
Because LS-DEM requires an underlying grid with a value of φ at every grid point,
it consumes a large amount of memory. A 40 × 40 × 40 level set function requires
64,000 values to be stored, while a NURBS curve with 20 knots in each direction
or a polyhedra with 400 vertices requires only 1,200 values to be stored, which
is a memory consumption of less than 2% than that of the aforementioned level
set function’s memory footprint. Even though LS-DEM’s contact algorithm has
constant time complexity with respect to grid resolution, a large memory footprint
nonetheless may lead to increased computation time due to cache misses. It could
even lead to crashes if memory overflows, limiting the amount of grains that can be
simulated. However, many clusters today have large amounts of memory; the cluster
onwhich our LS-DEM simulationswere run has 48 gigabytes of RAMper processor,
and the memory consumption of the entire simulation was around 1 gigabyte, which
means that, only taking into accountmemory constraints, it would have been possible
to run a simulation containing upwards of 140,000 grains. Furthermore, techniques
to reduce the amount of memory used by the level set functions are possible, such
as storing their values as floats instead of doubles and/or removing values either
outside or very deep inside the particles by storing the level set functions in trees
instead of on grids, but these techniques may affect accuracy or computational cost
and remain areas to be researched.

3.4 Conclusion
Along with factors such as friction and void ratio, grain shape is an important
factor that affects nearly every macroscopic quantity (Cho, Dodds, and Santamarina
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2006) of granular systems. We have presented a method, LS-DEM, to simulate
systems of arbitrarily-shaped particles that can directly use outputs of level set-
based characterizationmethods as its geometric basis. Furthermore, we have applied
LS-DEM to two full virtual triaxial specimens with particle morphology coming
directly fromXRCT images of real experiments, being able to capture quantitatively,
through LS-DEM, both the stress-strain and volume-strain relations observed in the
experiments. By calibrating the parameters of our model to match the results of one
experiment, we formulated a prediction of the behavior of the second experiment.
Finally, we have highlighted some areas in which LS-DEM can be further explored,
in mechanical, computational, and algorithmic respects.
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C h a p t e r 4

ANALYSIS OF SHEAR BANDING OF GRANULAR
MATERIALS IN TRIAXIAL COMPRESSION USING LS-DEM

The material in this chapter is adapted from:

Kawamoto, Reid, Edward Andò, Gioacchino Viggiani, and José E. Andrade. “All
you need is shape: predicting shear banding in sand with LS-DEM”. In: Journal of
the Mechanics and Physics of Solids 111 (Supplement C) 375–392.
doi:https://doi.org/10.1016/j.jmps.2017.10.003

Despite its familiarity as an everyday material, the mechanical behavior of sand is
complex. Sand can bemodeled either as a continuousmedium responding to Cauchy
stress or as an assembly of individual particles following Newton’s laws. Continuum
models of sand (MiDi 2004; Schofield and Wroth 1968) are in demand to analyze
field problems, and by their very nature they ignore particles and make use of such
abstract concepts as stress and strain. In general, these models work acceptably;
however, they fare less well in the commonplace yet complex scenario where strain is
localized in regions so small that the granular structure cannot safely be ignored (e.g.,
landslides, hourglass orifice flow). Models such as micropolar theory (Kafadar and
Eringen 1971) inherently possess a length scale that allow them to capture strain
localization such as shear banding (Mühlhaus and Vardoulakis 1987); however,
studies have been limited to 2D conditions (Ebrahimian, Noorzad, and Alsaleh
2012; Tejchman 2008) and many of their parameters’ physical interpretations are
not known and must be back-calculated from experimental data (Ehlers and Scholz
2007). Thus, in order to handle 3D strain localization problems, it is generally
agreed that an explicit modeling of the particle scale is needed.

As an alternative to continuum modeling, the discrete element method (DEM),
directly simulates the interactions between thousands of spherical particles with
physical, well-understood parameters such as particle size, stiffness, and coefficient
of friction (Cundall and Strack 1979); however, DEM does not adequately reproduce
the bulk behavior due to its poor representation of reality as sand particles (andmany
other types of particles!) are far from spherical. DEM’s lack of ability to capture
particle shape has spurred the development of variants able to capture particle
shape, ranging from sphere clumping (Garcia et al. 2009) to polyhedra (Cundall
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1988) to ellipsoids (Rothenburg and Bathurst 1991; Yan, Regueiro, and Sture 2010)
to NURBS (Lim andAndrade 2014). While clumping and polyhedra-basedmethods
can approximate the volume and general shape of sand particles, it has been shown
experimentally and computationally that not only do the overall shape of particles
(“sphericity”) affect bulk granular behavior, but surface curvature at a lower, local
scale (“roundness”) also affects behavior (Cho, Dodds, and Santamarina 2006;
Jerves, Kawamoto, and Andrade 2016). Unfortunately, clumping methods usually
underestimate and polyhedra methods overestimate roundness unless a very large
number of spheres or vertices are used (Gao et al. 2012); however, “a 3D DEM
simulation using a statistically valid number of clumps to faithfully simulate a real
soil problem is still somewhat unrealistic” (Zheng and Hryciw 2017). Ellipsoid-
based particles usually overestimate roundness and are inherently convex. Although
clumping, polyhedra, and ellipsoid methods have had modest success in replicating
experimental results at the bulk scale (Li et al. 2017; Lee, Hashash, and Nezami
2012; Ting et al. 1993), they have not been compared to experimental results at lower
length scales, such as that of strain localization. NURBS-based methods accurately
capture particle shape at both length scales and can accurately simululate granular
behavior in shear bands, but are computationally time-expensive and have only
been able to simulate unit cells of about one thousand particles at most (Lim et al.
2015). One method of overcoming these impasses in both continuum and discrete
modeling is the avatar paradigm, able to both characterize and simulate the behavior
of granular assemblies through a DEM framework. This characterizes particle
shapes (“avatars”) directly from experimental images, can simulate laboratory-scale
amounts of particles (over 50,000), and captures the same 3D strain localization
trends seen in experiments.

The avatar paradigm is also significant in that it helps to close the gap between
experiments and simulations of granular materials. Of the research that exists in
investigating granular materials at the particle scale, there are broadly two camps:
those who seek to characterize granular assemblies, often through experiments in-
volving X-ray computed tomographic (XRCT) scans or photoelastic discs, and those
who seek to simulate granular behavior, typically through DEM, with unfortunately
little integration and validation between the two camps. In recent years, an over-
arching characterization and simulation framework, the avatar paradigm, has been
developed. It consists of two parts: one, level set imaging (LS-Imaging) (Vlahinic et
al. 2013), which characterizes granular assemblies from XRCT images into avatars,
or mathematical representations of individual particles within the assemblies, and
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two, the level set discrete element method (LS-DEM) (Kawamoto et al. 2016), a
DEM variant which can take avatars from LS-Imaging as an input and simulates
their mechanical behavior.

LS-Imaging is the cutting edge in high-fidelity particle-scale characterization. Char-
acterization of granularmaterials has come a longway since the days of “destructive”
methods, which involved dismantling experimental specimens to measure particle-
scale quantities (Oda 1972), and 3D XRCT scans and other methods of digital
imaging of experiments are now the norm in experimental particle-scale mechanics
(Rechenmacher and Finno 2004; Andò 2013). Increases in image fidelity and resolu-
tion have led to the current state of the art characterization approach of LS-Imaging,
which invokes the use of LS methods to extract surfaces of individual particles
(“avatars”) from XRCT images (Gao and Chae 2008; Li et al. 2010; Vlahinic et al.
2013).

Although characterization techniques such as the aforementioned LS-Imaging have
seen tremendous progress, they lack the ability to probe one crucial aspect of
granular materials: interparticle contact forces. The stress-force-fabric relationship
derived from interparticle contact forces (Rothenburg and Bathurst 1989) has been
shown to be one of the key ingredients in the description of constitutive models for
granular materials. Therefore, a micromechanical model such as DEM (Cundall and
Strack 1979) remains a necessary component for the inference of contact forces and
related quantities. LS-DEM is one such model that is able to handle real, complex
particle morphologies, which then enabled reproduction and prediction of the bulk
behavior of small experimental specimens consisting of about 3,000 particles each
(Kawamoto et al. 2016).

In this study, the avatar paradigm is built upon and used to characterize and simulate
the behavior of a complete and much larger experimental specimen of natural sand,
this time consisting of over 53,000 particles, reproducing the behavior of the experi-
ment across three scales: macroscopic, local, and particle level. At the macroscopic
level, the simulations using LS-DEM capture very closely the macroscopic stress-
strain curve and the dilatancy-strain curve. These results have been obtained before
using continuum models and well-calibrated DEMmodels such as those of Sun and
Xiao 2017 and Lee, Hashash, and Nezami 2012. However, in this study, the results
are able to go to deeper levels of prediction, which have not been attained before.
For example, at the local level, the simulations show striking similarity with shear
strain levels in the shear band and other parts of the specimen. Furthermore, the
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model is able to predict the shear band orientation, inclination and thickness. This
is something where both continuum and discrete models have struggled in the past.
Finally, at the particle level, the model predicts particle rotations that on average
compare well with those obtained in the experiment. Well beyond reproduction,
the avatar paradigm affords the ability to see the evolution of interparticle forces,
which are currently impossible to obtain from regular experiments, and which are
an active area of research for single-crystal spherical particles (Hurley et al. 2016).
Two modeling advancements afford the avatar paradigm higher fidelity: shape and
more accurate boundary conditions. We present a model to replicate the boundary
conditions of triaxial experiments. In particular, the deformability of the rubber
membrane confining the specimen is modeled, as well as the displacement and rota-
tion of the loading platen. Results show that these features are necessary to capture
the evolution observed in the experiment, especially the onset and evolution of shear
banding. By analyzing the kinematics and interparticle forces in the shear band,
insights are gained regarding its formation, positioning, and evolution.

4.1 The experiment: triaxial compression test and imaging of specimen
The experiment considered herein is a triaxial compression test on a small specimen
of HN31 Hostun sand, which is performed within an X-ray scanner. The results
of this test have appeared previously in (Andò et al. 2012b) and are summarized
here; more details can be found in (Andò 2013). The triaxial apparatus is much
smaller than those used in conventional soil mechanics testing, and the specimen
itself measures only 11 mm in diameter and 22 mm in height. This is because of
constraints of the field of view of the XRCT imaging equipment, which is chosen
to be able to adequately capture the features of individual particles, which in turn
limits the specimen size. Nevertheless, the size of the sample is large enough to be
representative of a continuum response of the material, displaying classic features
such as stress-strain and volumetric responses observed in triaxial tests on standard-
sized specimens, as well as the appearance of shear banding. Figure 4.1 shows
XRCT image slices of the specimen.

Hostun HN31 has D50 = 338 µm, and poor grading. Particles are angular and
non-spherical, especially compared to other ‘standard’ sands used in geomechanics
research, such as Toyoura and Ottawa sand. Hostun sand is chosen for its particularly
challenging particle shapes to showcase the ability of LS-DEM to simulate particles
of arbitrary shape.
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Figure 4.1: 3-D XRCT image slice of the experimental specimen prior to triaxial
compression and the specimen’s particle size distribution.

The experiment is as follows: a flexible latex membrane 10 mm in diameter and 0.3
mm thick is stretched into a cylindrical mould and filled with Hostun sand using dry
pluviation. On the top and bottom of the specimen, the sand is in contact with two
ceramic discs, one of which, together with a metal cylinder onto which the loading
ram pushes, makes up the loading platen (this important detail is further discussed in
Section 4.3). The specimen is then compressed isotropically by increasing the radial
cell pressure with the ram out of contact to 100 kPa, and then compressed triaxially
by keeping the cell pressure constant at 100 kPa and prescribing a displacement
to the ram. Air can escape or enter the through a small hole in the ceramic disk
opposite the loading platen which gives for drained loading conditions. The ram is
loaded at a rate of 12 µm per minute, except when loading is suspended to image
the specimen, to a total axial strain of 15% (3.3 mm).

The “classic” triaxial test results of the experiment are shown in Figure 4.2 and are



56

typical of a drained experiment on sand. The stress ratio σ1/σ3, the ratio of axial
stress to cell pressure, increases to a peak around 5% axial strain, then decreases and
appears to level off around 13% axial strain. Meanwhile, the specimen undergoes
a slight contraction at the beginning of loading and then dilates until the end of
loading when it seems to level off. Other specimens of Hostun sand tested in
the same apparatus experienced similar behavior, so this particular experiment is
representative of Hostun sand tested in the particular apparatus under the particular
loading conditions and offers a good reproduction of key features of the mechanical
response of larger specimens (Andò 2013).

Figure 4.2: Stress-strain responses from the experiment. Positive values of volu-
metric strain indicate dilation. The stress relaxation in the stress-strain response is
because axial loading is stopped during the imaging process. It is observed that,
during imaging, no granular rearrangement takes place, which implies that stopping
axial loading for imaging has a negligible impact on experimental results.

In addition to the triaxial test itself, the specimen is also imaged at various load
stations throughout loading. At each imaging station, the specimen is rotated
through 360◦ while taking 1024 X-ray projections, in approximately two hours. The
X-ray projections are then used to reconstruct a three-dimensional image by filtered
backprojection (Hsieh 2003). The resulting three-dimensional image has a pixel size
of 14.7 µm/pixel edge, which means that the 11mm × 22mm specimen has a total
of about 750 × 750 × 1500 voxels. A slice of the three-dimensional reconstructed
XRCT image and the specimen’s particle size distribution curve are shown in Figure
4.1.
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4.2 Bridging the experiment and computation: The avatar specimen with
LS-Imaging

In order to be able to simulate the experiment, it is necessary to convert the experi-
mental output into a format palatable by computational methods. This intermediate
step consists of converting the 3D XRCT image taken from the load station after
isotropic compression but before triaxial compression into an avatar specimen, i.e., a
computational representation of the specimen that can be simulated with LS-DEM.
The XRCT image in this study has a resolution of 15 µm/voxel (D50 = 23 voxels),
and dimensions of approximately 750×750×1500 voxels. First, the image is bina-
rized via thresholding (Otsu 1979), which determines which voxels are solids and
which voxels are voids. Then, the binarized image is segmented using watershed al-
gorithms (Beucher and Lantuéjoul 1979), which label the solid voxels as belonging
to individual particles. The segmentation, as well as the gradient of the grayscale
image, filtered using a non-local means filter, are used as inputs to level set-imaging
algorithms (Gao and Chae 2008; Li et al. 2010; Vlahinic et al. 2013), which yield
the particle “avatars” that are used in this study. The accuracy of the avatars in terms
of their ability to preserve the same fabric as the particles in the image has been
investigated in (Vlahinić et al. 2017). Figure 4.3 illustrates the avatar conversion
process described above.

Filtered image

Edge markers

Segmented image

Avatar
(overlaid on image)

Binarization
& watershed

Image
gradient

Level set
imaging

Figure 4.3: Avatar conversion process for a single avatar. The filtered image is
both segmented and used to find particle edges, which are then fed into the level
set imaging algorithm, which outputs an avatar. Note that these operations are
performed in three dimensions; a slice is shown here for clarity.

4.3 Computations: Modeling and simulation of avatar specimen
The simulation of the avatar specimen is performed using LS-DEM (Kawamoto
et al. 2016) under the same external loading conditions as the experiment. Since
one of the objectives of this study is to provide the best possible replication of the
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experiment, two crucial experimental details are implemented in silico: the actual
kinematics of the loading platen that compresses the specimen and the flexible
membrane used to confine the specimen.

LS-DEM
LS-DEM is a variant of DEM that models particle shape via level set functions
that represent the geometry of constituent particles (Kawamoto et al. 2016). When
used to represent a particle in LS-DEM, a level set function is an implicit function
whose value, at a given point, is the signed distance from that point to the surface
of the particle: negative if the point lies inside the particle, positive if the point lies
outside, and zero if the point lies on the particle’s surface. In a DEM framework, this
formulation is convenient because two of the most important ingredients in DEM
contact detection, interparticle penetration distance and contact normal, are given
as

d =φ(x)

n̂ =∇φ(x)

for a level set function φ and given point x, where d and n̂ are the penetration
distance and contact normal, respectively. In practice, the values of a level set
function are stored at discrete points on a grid, and interpolation is used to compute
values between grid points.

To determine contact between two particles, a master-slave approach is used, where
the surface of the master particle is discretized into nodes. Each node of the master
particle is checked against the level set function of the slave particle, and if the
value of the level set function is negative for any node, contact exists and forces
and moments are computed for each penetrating node, which are then summed to
give the total interparticle forces and moments. Figure 4.4 illustrates interparticle
contact in LS-DEM.

To compute the the normal force, any contact model such as linear contact or
Hertzian contact (Johnson and Johnson 1987) may be used. In this study, a linear
contact model is used (if a Hertzian model is used, the level set formulation allows
local radii of curvature to be computed easily). The tangential force is computed
via a Coulomb friction model.

The LS-DEM formulation only affects contact detection and the computation of
interparticle forces and moments; other aspects such as time integration are not
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Master

Slave

Figure 4.4: Contact between two particles in LS-DEM. Particles shown here are 2D
for simplicity; however, 3D particles are used in this study. Penetration depths are
exaggerated for clarity.

specific to LS-DEM and thus any implementation can be used such as those used
in DEM or contact dynamics (Jean 1999). In this study, an explicit time integration
scheme identical to that in DEM is used (Lim and Andrade 2014; Walton and Braun
1993).

Platen modeling
As shown in Figure 4.5, the loading platen is compressed axially by a ram, which
is observed not to slip on the platen due to friction. The no-slip condition limits the
platen’s degrees of freedom to (1) vertical displacement, prescribed by themovement
of the ram, and (2) rotation about the ram-platen contact point. In the simulation,
the platen is modeled using a cylindrical discrete element with the same properties
as the platen in the experiment, shown in Table 4.1, and is only allowed to move
vertically and rotate about the ram-platen contact point exactly as in the experiment.
While the rotational behavior of the loading platen may be seen as an axis-angle
rotation, it is more instructive to instead view the platen’s kinematics as the lateral
movement of the platen face that is in contact with the specimen, since the direction
of this movement is related to the direction of shear in the specimen.

Membrane modeling
As mentioned previously, the membrane is made out of latex and closely follows
the deformation of the specimen. Membranes and other soft materials such as
textiles have been modeled using DEM (Ballhause, König, and Kröplin 2008; Cil
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Ram displacement

Rotation of platen
about ram tipPlaten

No slip

Ram

Specimen

Figure 4.5: Behavior of the platen. The platen does not slip on the loading ram, so
it is limited to movement in the vertical direction and rotation about the ram tip.

Platen Parameter Value Units
Radius 7.5 mm
Height 11.4 mm
Density 2,500 kg/m3

Normal stiffness 3.0 × 104 N/m
Shear stiffness 2.7 × 104 N/m
Friction coefficient 0.5

Table 4.1: Values of parameters used in simulation of platen.

and Alshibli 2014a), and in this study, the membrane is modeled in a DEM-like
fashion by using thousands of bonded spheres in a hexagonal pattern shaped into
a hollow cylinder, as shown in Figure 4.6. The spheres’ centers are triangulated,
and adjacent spheres are connected by both normal and shear springs. In addition
to stiffness when interacting with adjacent spheres, the spheres also have a stiffness
when interacting with particles in the assembly. Confining pressure is applied in the
direction of the inward normal to each face, where faces are defined by the triangles
whose vertices are the centers of three adjacent spheres, and multiplied by the area
of each face; the resulting force is distributed evenly to each component sphere.
The size and stiffness of the membrane spheres are calibrated to values that allow
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them to stay aligned and not form gaps that would let particles escape (Table 4.2).
Finally, the top and bottom rows of membrane spheres are fixed to their respective
platens to represent the friction between the membrane and platen. The ability of
the membrane to deform is shown in Figure 4.7.

(a) (b)

Figure 4.6: Triangulation of three membrane spheres. (a) Neighboring spheres are
connected by normal and shear springs. (b) Pressure is applied in the direction of
the inward normal to each face.

Membrane Parameter Value Units
Sphere radius 0.22 mm
Number of spheres 5,760
Diameter 10 mm
Normal bond stiffness 100 N/m
Shear bond stiffness 100 N/m
Normal stiffness 3.0 × 104 N/m
Shear stiffness 0 N/m

Table 4.2: Values of parameters used in simulation of membrane.
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(a) (b)

Figure 4.7: Membrane (a) under isotropic stress and (b) at the end of triaxial loading.

Putting it all together: the LS-DEM simulation
Asmentioned previously, the simulation of triaxial compression on the avatar sample
is carried out using LS-DEM. To initialize the simulation, the particles are placed
in the same positions as given by the avatar conversion process, the platens are
put in the same positions as the experiment, and the membrane is fit around the
specimen, which is then loaded isotropically to a pressure of 100 kPa, the same as
that of the experiment. Table 4.3 shows the parameters used for the particles in the
LS-DEM simulation. The specimen is then compressed triaxially by imposing a
vertical displacement to the ram up to an axial compression of 15% while keeping
confining pressure constant at 100 kPa. Note that the loading rate of the simulation
is higher than the loading rate of the experiment since using the same strain rate
as the experiment would not be computationally tractable. However, parameters
such as damping are calibrated to keep the simulation quasi-static. The simulation
of 53,939 particles and 5,760 membrane particles was performed on San Diego
Supercomputer Center’s XSEDE cluster Comet using 480 cores and took 17 hours
to complete, which is faster than the “wall time” for the experiment due to X-ray
scanning time.

Figure 4.8 shows the avatar specimen at the beginning and end of triaxial loading.
By the shape of the specimen at the end of the test, a shear band appears to have
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Particle Parameter Value Units
Number of particles 53,939
Density 2,500 kg/m3

Normal stiffness 3.0 × 104 N/m
Shear stiffness 2.7 × 104 N/m
Friction coefficient 0.55

Table 4.3: Values of parameters used in simulation of particles.

formed from the top-left to the bottom-right. The axes in the visualization have
been aligned to show this deformation.

(a) (b)

Figure 4.8: Avatar specimen (a) under isotropic stress and (b) at the end of triaxial
loading.

4.4 Validation of simulation
Due to the wealth of information provided by the triaxial test and XRCT imaging,
the simulation is validated by comparing its results to the experimental results at
three length scales: the macroscopic scale, which considers values measured from
the boundary conditions such as global volume changes and axial stress, the local
scale, which considers the behavior of particles with respect to their neighbors, and
the particle scale, which considers the kinematics of individual particles.
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While the LS-DEM model parameters are calibrated to match the macroscopic
experimental results in Figure 4.2, it is important to note that all of the parameters
used have roots in physics. For example, the value of interparticle friction of 0.55
that is used in the simulation is within the range of experimentally observed values
of interparticle friction in sands (Sandeep and Senetakis 2017).

Macroscopic behavior
There is good agreement in both macroscopic stress ratio σ1/σ3 and volume change
as a function of axial strain between the experiment and LS-DEM simulation (Figure
4.9). As axial loading progresses, the stress ratio increases to a maximum value
then softens, tending towards a residual value after 10% axial strain. The specimen
exhibits a slight initial decrease in volume then dilates before reaching a maximum
volume around 10% axial strain and stays roughly at that volume for the remainder
of axial loading. The peak stress and the largest incremental change in volume
both occur very close to the same axial strain (4%). This is in good agreement with
classic stress-dilatancy theory and observations (Rowe 1962; Bolton 1986; Newland
and Allely 1957).

Figure 4.9: Macroscopic stress-strain responses from the experiment and LS-DEM
simulation.

Local behavior
In this study, the local results are found by looking at particle quantities with respect
to their neighboring particles; specifically, the strain in the vicinity of each particle,
which is computed using Cundall’s best-fit strain (Bagi 2006), represents the average
deformation of a set of points undergoing displacement:



65

( Np∑
p=1

x̃p
n x̃p

m

)
αni =

Np∑
p=1

dũp
i x̃p

m n,m, i = 1, 2, 3 (4.1)

where Np is the number of points, x̃p is the deviation of each point’s position from
the mean position, d ũp is the deviation of each point’s displacement from the mean
displacement, and Cundall’s best-fit strain ε is the symmetric part of α. In this study,
the centroids of each particle in the specimen are triangulated and the local strain of
a given particle is found by applying Cundall’s best-fit strain to the particle centroid
and its neighbor centroids as given by the triangulation. Finally, from Cundall’s
best-fit strain, the deviatoric invariant εs is computed by (Borja and Andrade 2006):

εs =

√
2
3
‖ε −

1
3
tr(ε )I ‖ (4.2)

Figure 4.10 shows the distribution of the incremental local deviatoric strain during
four strain increments for a shear band-aligned slice through the center of both
the experimental and computational specimens. Note that the slices have the same
orientation in three-dimensional space. While there is generally good parity between
the LS-DEM and experimental specimens, in the increment corresponding to the
3.9 to 5.1% axial strain increment (Figure 4.10b), the LS-DEM specimen shows
higher deviatoric strain that is more localized than the experimental specimen. This
is likely due to the fact that during that increment, the LS-DEM specimen reaches
peak stress, but it is not until the end of that increment that the experimental specimen
reaches peak stress.



66

(b) (c) (d)(a)

Experiment

LS-DEM
≥ 0.250

Figure 4.10: Experimental and simulation incremental local deviatoric strain be-
tween (a) 0.0 and 0.6%, (b) 3.9 and 5.1%, (c) 8.6 and 10.0%, and (d) 13.3 and 14.8%
axial strain.

Particle behavior
As a salient example of particle-scale quantities, particle rotations in the simulation
are compared to those measured by particle tracking in the experiment. While they
cannot be compared one-to-one, in other words, a particle and its avatar may not
necessarily have directly comparable kinematics, they should strongly correlate in
both an average sense and in regions where rotations are large, such as in the shear
band. Figure 4.11 compares incremental particle rotations (i.e.the angle of rotation
in the axis-and-angle representation of 3D rotations) during four strain increments
for a shear band-aligned slice through the center of both the experimental and
computational specimens. The slices have the same orientation in three-dimensional
space and the locations and quantities of incremental rotations are comparable. As
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with local deviatoric strain, and for the same reason, particle rotations are higher in
the 3.9 to 5.1% axial strain increment.

≥ 20◦

Experiment

0

(b)(a) (c) (d)

LS-DEM

Figure 4.11: Experimental and LS-DEM incremental particle rotations between (a)
0.0 and 0.6%, (b) 3.9 and 5.1%, (c) 8.6 and 10.0%, and (d) 13.3 and 14.8% axial
strain.

4.5 Shear band investigation
A shear band is a localized deformation pattern that is “smooth and continuously
varying”, characterized by very large amounts of shear strain, and formed when
a ductile solid is deformed well past its elastic limit (Rudnicki and Rice 1975;
Rice 1976). In granular materials, the thickness of the shear band ts is typically
measured in multiples of the mean particle diameter D50 and varies with particle
shape, specimen porosity, and mean stress (Guo 2012). In this study, ts/D50 is
found to be 10, which is consistent with values reported in literature (Galavi and
Schweiger 2010) as well as the experiment itself (Andò 2013) (for more, see Section
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4.5).

The inclination of the shear band with respect to the plane orthogonal to the loading
direction, represented by the inclination angle θ, has been found to be a function of
the stress-strain state, with different theories dictating this inclination angle (Sulem
and Vardoulakis 2004). On the other hand, the orientation of the shear band in that
plane, represented by the orientation angle φ, is correlated with the direction of
the movement of the platen. Figure 4.12 illustrates the inclination and orientation
angles of the shear band.

(a) (b) (c)

Figure 4.12: (a) Shear band and its normal n̂ in three-dimensional space, where z
is the direction of loading, normal to the x-y plane. (b) The shear band inclination
angle θ is measured with respect to the x-y plane. (c) The shear band orientation
angle φ is measured in the x-y plane.

Shear band inclination
The Mohr-Coulomb yield criterion gives the shear band inclination angle, mea-
sured from the direction of minimum principal stress σ3, which in a triaxial test is
orthogonal to the loading direction, as

θMC = 45◦ +
φmax

2
(4.3)

where φmax is the maximum friction angle, which is achieved at peak stress.

Roscoe’s solution for the shear band inclination angle (Roscoe 1970) is

θR = 45◦ +
ψmax

2
(4.4)
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whereψmax is themaximumdilatancy angle in the zone of deformation, also achieved
at peak stress. The two solutions differ due to the non-associativity between stress
and strain in granular materials; in the case of associativity, the solutions are equal.

With the discrete data available in the experiment and the simulation, the shear
band can of course be measured geometrically. Since particle rotations and local
deviatoric strains are very large in the shear band, best-fit planes are computed from
the positions of particles whose rotations and local deviatoric strains are more than
two standard deviations greater than the average incremental rotation and deviatoric
strain, respectively. Values are computed in increments of axial strain of 1%,
between 0 and 15% total axial strain.

(a) (b)

Figure 4.13: Simulation results (increment between 14 and 15%). Particles in red
are those with (a) incremental rotations or (b) incremental local deviatoric strains
larger than two standard deviations more than the mean, and corresponding best-fit
planes.

Figure 4.13 illustrates the shear band planes as defined by incremental rotations and
local deviatoric strains from the 14-15% increment of axial strain in the simulation.
Shear band planes are computed for 15 values of strain, in increments of 1%, us-
ing the incremental local deviatoric strains and incremental rotations. Shear band
volumes are defined as the planes (here, we choose the plane computed using incre-
mental local deviatoric strains) plus a shear band thickness ts/d50 = 10; thereafter
the average stress and strain states in the shear band volumes are computed. The
average stress σ̄ is given by Christofferson’s equation (Christoffersen, Mehrabadi,
and Nemat-Nasser 1981)
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σ̄ =
1
V

Nc∑
i

Fi ⊗ di (4.5)

where V is the volume, Nc is the number of contacts in the volume, and F and d

are the interparticle force and branch vector, respectively, of each contact. From the
average stress, the Mohr-Coulomb solution is found for the shear band inclination
angle at the peak stress state. The average strain is computed using Cundall’s best-fit
strain in Equation 4.2 using all particle centroids in the shear band volume as the
points, and Equation 4.4 is applied to find the Roscoe solution for the shear band
inclination angle at the peak stress state.

Figure 4.14: Shear band inclination computed from best-fit planes computed from
particles with large incremental rotations and large incremental deviatoric strains,
inclination predicted by Mohr-Coulomb and Roscoe theories, and the converged
value of the inclination angle from experimental data.

Figure 4.14 summarizes the results computed from the best-fit planes corresponding
to large local incremental rotations and deviatoric strains, the prediction fromMohr-
Coulomb and Roscoe theories, and the converged value of the inclination angle from
experimental data. There are two notable remarks about these results; first, the fit
using strains seems to indicate the presence of, or at least a precursor to, a shear
band far earlier than the fit using rotations. In fact, as early as 2% axial strain, long
before peak stress at 4% axial strain, the deviatoric strain has already localized in a
zone that aligns with the shear band. On the other hand, particle rotations do not
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align with the ultimate shear band angle until after peak stress is reached. Second,
it appears as though Roscoe’s solution for the shear band inclination angle is much
closer (in fact, nearly identical) to the best-fit shear band inclinations compared to
the Mohr-Coulomb solution.

Shear band orientation
Many experimental studies of shear bands have been performed in plane strain, such
as plane strain compression, simple shear, or direct shear. This makes it easy to
determine the orientation of the shear band, as it will not have any component in the
direction of the third dimension. However, in a triaxial compression test, the shear
band may orient itself in any direction within the plane orthogonal to loading.

Figure 4.15 shows that the shear band orientation angle φ is strongly correlated
with the orientation of the incremental x-y displacements of the platen. While the
displacement of the platen may seem random, a function of the specimen’s natural
tendency to shift laterally under vertical loading, much like the buckling of a beam,
it is important to note that the direction of shear throughout loading is constant, and
if a coordinate system is defined such that two axes are aligned with the direction of
loading and the lateral direction of platen displacement, the vast majority of shear
in the specimen occurs along these two axes with little shear along the third axis,
which makes some two-dimensional analysis possible.

Figure 4.15: Shear band orientation angle computed from best-fit plane of large
incremental local strains and incremental platen displacements.
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Shear band thickness and kinematics
Another quantity of particular note is the thickness of the shear band. In Section 4.5,
we use the fact that local deviatoric strains and particle rotations are much higher
in the shear band to determine the location of the center plane of the shear band,
but this gives no notion of the shear band’s thickness. Figure 4.16a-b demonstrates
plots of the aforementioned quantities, local deviatoric strain and particle rotations,
versus distance (in the normal direction of the shear band plane) from the center
plane of the shear band, near the end of loading. These quantities are the highest
near the center plane of the shear band and decay as a function of distance from the
center of the shear band, as expected. The thickness of the shear band can be found
through various methods (Alshibli and Sture 1999) but for simplicity, we choose
ts/d50 = 10, represented by the gray stripe.
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Figure 4.16: (a-b) Plots of mean incremental local deviatoric strain and mean
incremental rotation between 13.3 and 14.8% axial strain versus distance from
the center planes of shear bands in the experiment and simulation (which do not
necessarily have the same location). The gray stripes represent a distance of 10D50,
or 3.4mm, the thickness of the shear band. (c-d) Histograms of incremental local
deviatoric strain and incremental rotation in the shear band (the gray stripes in a-b)
during the same axial strain increment.

Figure 4.16c-d shows histograms of kinematics in the shear band (the quantities
contained in the gray stripe in Figure 4.16a-b) in terms of incremental local deviatoric
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strains and incremental particle rotations, respectively, near the end of loading. In the
experiment, the mean incremental particle rotation is 7.7◦ and the mean incremental
local deviatoric strain is 0.100, while in the LS-DEM simulation those values are
8.4◦ and 0.092, respectively. The results indicate that, by the end of the experiment,
the shear bands in both the experiment and simulation are quantitatively similar in
terms of their kinematics.

Interparticle forces and stress
Because interparticle forces are an inherent quantity in LS-DEM computations,
LS-DEM provides the ability to enrich existing kinematic analyses (which can be
observed in experiments) with analyses of forces and stresses (which cannot be
obtained in this sort of experiment). Figure 4.17 shows the evolution of interparticle
forces throughout loading in a shear band-aligned slice 1.4mm thick through the
center of the specimen. Initially, interparticle forces are small and isotropic, having
no directional bias, but at 5% axial strain, which is near the peak stress, interparticle
forces become much larger and oriented in the direction of loading. However,
as the shear band develops, the forces in the shear band and out of the shear band
appear to lose coaxiality, which is most apparent in Figure 4.17d, where force chains
seem to change direction as they pass through the shear band. The anisotropy and
directionality of the interparticle forces can be quantified by a spherical histogram
(referred to as a “rose diagram” in literature (Kanatani 1984)) of forces, normalized
by unit volume. Figure 4.18 shows the evolution of the distribution of forces
inside and outside the shear band of the specimen between 0 and 15% axial strain.
Between 0 and 5% axial strain, the forces become much more anisotropic and
remain that way through 15% axial strain. In terms of directionality, inside the
shear band, the forces seem to undergo a rotation between 5 and 15% axial strain,
while outside the shear band, there is much less rotation. Given the effect that
the distribution of interparticle forces has on stress via the “stress-force-fabric”
relationship (Rothenburg and Bathurst 1989), one would expect the stress in the
shear band to also rotate, and indeed, it is observed that the stress state in the shear
band, computed via Equation 4.5, undergoes rotation as loading progresses.

Figure 4.19 shows the inclination angle of the major principal stress σ1 outside and
inside the shear band. The grayed-out sections of the lines are computed using the
shear band location at peak stress and show that before the shear band forms, the
inclination angle is nearly vertical and similar inside and outside the location where
the shear band forms. However, after the shear band forms, the inclination angle
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(a) (b) (c) (d)

Figure 4.17: Interparticle forces in a shear band-aligned slice 1.4mm thick through
the center of the specimen at (a) 0%, (b) 5%, (c) 10%, and (d) 15% axial strain.
Thicker, longer lines represent larger interparticle forces.

(b)

Outside shear band

Inside shear band

(c) (d)(a)

Figure 4.18: Spherical histograms of interparticle forces at (a) 0%, (b) 5%, (c) 10%,
and (d) 15% axial strain, inside and outside the shear band. The distributions at 0%
axial strain are computed using the shear band location at peak stress since the shear
band does not yet exist at 0% axial strain.
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outside the shear band deviates by less than 2◦. In stark contrast, inside the shear
band the inclination of σ1 essentially continuously decreases after the shear band
forms, from almost 90◦ to 81◦, with no sign of flattening by the end of loading.
While the specimen undergoes very little volume change between 10-15% axial
strain with very little change in the macroscopic stress ratio, which are necessary for
critical state (Muir Wood 1990), the stress state in the shear band continues to rotate
in this strain increment. Unfortunately, loading is terminated at 15% axial strain to
match the experiment so a minimum value of the inclination angle of σ1 is never
observed, so it is thus questionable, in light of recent suggestions of a ‘critical state
fabric’ (Fu and Dafalias 2011), whether or not the specimen actually reaches critical
state by the end of loading, and certainly provides an impetus for further research.
Finally, the stress rotations occur in a plane defined by the same orientation angle

Figure 4.19: Inclination of the direction of the largest principal stressσ1, both outside
and inside the shear band. The grayed-out sections of the lines are computed using
the shear band location at peak stress since the shear band does not exist prior to
that. Inset: 3-D view of the direction of σ1 outside and inside the shear band at the
end of loading. The gray line is vertical (90◦).

φ shown in in Figure 4.15; that is, the orientation angle of the σ1, once it deviates
from the vertical (90◦), is the same as the orientation angle of the shear band and
the platen displacement. This further reinforces the notion of planar mechanics in
the triaxial test despite it being 3-D.
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4.6 Conclusions and future outlook
This study is the largest and most predictive undertaking of using a discrete model,
LS-DEM, to quantitatively capture the results of a full triaxial test in real sands,
and demonstrates that LS-DEM can not only capture macroscopic behavior that is
the classic stress-strain and volume-strain results of the triaxial test, but can also
reproduce a shear band in a similar manner as the experiment, as well as local and
particle scale quantities such as local deviatoric stress and particle rotations. Hence,
the simulations show agreement with the experiments across macroscopic, local,
and particle scales. Furthermore, the behavior of the shear band in the specimen is
analyzed, leading to the following observations:

1. Shear strain localizes at an inclination that is the same as the inclination of
the shear band that ultimately forms long before peak stress is achieved.

2. While the specimen appears to reach critical state, that is, at some point in
loading, the volume and stress ratio become constant, the stress state continues
to rotate.

3. The orientation angle of the shear band, platen displacement, and largest
principal stress after it rotates away from the vertical all have the same value,
suggesting that even through the triaxial test is three-dimensional, nearly all
of the shear, deformation, and stress occur on a plane.

The results of this triaxial test, both experimental and computational, essentially rep-
resent a material point of Hostun sand that has been taken through a single loading
path. Further experiments and simulations via the avatar paradigm are forthcoming;
these would involve other stress paths like triaxial extension, cyclic loading, and true
triaxial. Hopefully, the calibration of the LS-DEM model to one test would allow
it to predict the results of the other tests. If this is true, it would make a very good
case for the avatar paradigm to be a true “predictive” method allowing the probing
of load paths that are impossible to perform experimentally, while starting from
identical initial conditions. The sensitivity of strain localization to initial conditions
can for the first time be probed quantitatively at the particle scale with such an
avatar. Furthermore, XRCT is now able to adequately capture the surface roughness
of the sand grains studied here, for a set of a few grains as the resolution needs to be
much higher, which limits the window size. This opens the possibility of injecting
higher-resolution LS-DEM particles into similar simulations to those presented to
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understand what scale of surface roughness is responsible for differences in the
interparticle friction coefficient—experimentally, it makes a significant difference
(Sandeep and Senetakis 2017)—and critically, the overall response.

To conclude, the avatar framework, which allows mechanical simulation of general
particle shapes, has been combined with a fine reproduction of an X-ray tomography
triaxial experiment on complex, angular sand grains. The success of the reproduc-
tion of the grain and sample-scale mechanics indicate that the avatar paradigm may
be able to simulate a great number of granular materials given their particle shapes.
Furthermore, given the success in capturing the constitutive behaviour of the studied
sample by injecting the shapes of its constituents means that we can cautiously state
that we have an in-silico constitutive model for this material.
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C h a p t e r 5

CONCLUSIONS AND FUTURE OUTLOOK

This thesis presented a complete platform for the characterization and simulation of
granular materials at the particle scale: the avatar paradigm, a process that is able to
bridge both the multiscale (particle-continuum scales) and accuracy (experiment-
simulation) gaps, which is crucial to a more complete understanding of granular
materials.

The avatar paradigmbeginswith LS-imaging, which takes anXRCT image of a gran-
ular assembly and outputs an avatar of each particle in the assembly. Each avatar
mathematically captures the shape, size, and position of its corresponding particle
in the assembly, giving a one-to-one correspondence between the experimental and
avatar assemblies. LS-imaging was tested on synthetic images to validate its accu-
racy in capturing particle kinematics (translations and rotations) and interparticle
contact (direction and location) with respect to image resolution and noise, then
applied to XRCT images of assemblies of glass beads and Caicos ooids to extract
kinematic and contact data.

The avatar paradigm continues with LS-DEM, which gives avatars the ability to
move and interact with each other in a computational framework based on DEM.
LS-DEM allows avatars to do more than just characterize granular assemblies in
situ; they can now predict the behavior of those assemblies if given an XRCT image
of the assembly at the onset of loading. An avatar specimen of about 3,000 particles
was generated from an XRCT image of an experiment, and an LS-DEM model
of the avatar specimen was calibrated to its macroscopic results. A second avatar
specimen of about the same number of particles was generated from an XRCT
image of another similar experiment, and the LS-DEM model was used to predict
its macroscopic behavior with good accuracy.

A more ambitious implementation of LS-DEM was performed, this time on an
assembly of over 53,000 particles. Boundary conditions (the loading platen and
membrane) were better modeled to be able to predict the response of the specimen,
ranging from the macroscopic stress-strain to local strain to particle kinematic
responses. The LS-DEM model was also able to predict the onset and evolution of
shear banding of the specimen, and the shear band was analyzed in its orientation,
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kinematics, and the states of interparticle forces and stress—quantities that are not
currently experimentally discernible.

Three immediate further implementations can extend the capabilities of LS-DEM
and the avatar paradigm. The first is the addition of the ability of LS-DEM to
model particle fracture, which is a source of plasticity in granular materials and has
applications ranging from defense to medical procedures, such as the breaking of
kidney stones. The second is the question of how XRCT image resolution affects
the behavior and properties of avatars. All XRCT images used in this study had
a resolution between 14-15 µm/voxel edge; however, smaller specimens may be
imaged at higher resolutions and SEMs can also be used to image particles. By
answering this question, we will gain knowledge on both computational (“How
coarse a resolution can we use to produce accurate results?”) and physical (“How is
interparticle friction affected by surface roughness and what level of resolution do
we need to be able to capture surface roughness geometrically?”) fronts. The third
extension is the further validation of LS-DEM to be able to predict other loading
conditions, which is an issue that continuum models often struggle with; they are
calibrated to the results of one load path but do not always predict the results of
other paths. While LS-DEM can predict the behavior of specimens under the same
load path but different initial conditions (Chapter 3) and the behavior of a specimen
at different length scales (Chapter 4), it remains to be seen if LS-DEM can predict
the behavior of specimens under different load paths.

Finally, the door is wide open for more ambitious usages of the avatar paradigm.
For example, if LS-DEM is indeed capable of predicting the behavior of a specimen
under different load paths, we will be able to use it to predict the behavior of granular
materials under a very wide array of loading conditions, including those that are
difficult to perform experimentally such as reduced or zero-gravity conditions, fully
bridging the accuracy gap and ushering in a new age of discrete computations.
Another possibility would be to use LS-DEM in multiscale frameworks to model
much larger, field-scale systems, further bridging the multiscale gap and giving the
avatar paradigm credibility in engineering practice which is generally concerned
with modeling large systems.

With the avatar paradigm, we have been able to bridge the multiscale and accuracy
gaps in granular materials, and this thesis has outlined ways in which the avatar
paradigm does and is poised to do so in the future.
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