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ABSTRACT

In the year 1918, the Indian mathematician Srinivasa Ramanujan proposed a set
of sequences called Ramanujan Sums as bases to expand arithmetic functions in
number theory. Today, exactly a 100 years later, we will show that these sequences
re-emerge as exciting tools in a completely different context: For the extraction
of periodic patterns in data. Combined with the state-of-the-art techniques of
DSP, Ramanujan Sums can be used as the starting point for developing powerful
algorithms for periodicity applications.

The primary inspiration for this thesis comes from a recent extension of Ramanujan
sums to subspaces known as the Ramanujan subspaces. These subspaces were
designed to span any sequence with integer periodicity, and have many interesting
properties. Starting with Ramanujan subspaces, this thesis first develops an entire
family of such subspace representations for periodic sequences. This family, called
Nested Periodic Subspaces due to their unique structure, turns out to be the least
redundant sets of subspaces that can span periodic sequences.

Three classes of new algorithms are proposed using the Nested Periodic Subspaces:
dictionaries, filter banks, and eigen-space methods based on the auto-correlation
matrix of the signal. It will be shown that these methods are especially advantageous
to usewhen the data-length is short, orwhen the signal is amixture ofmultiple hidden
periods. The dictionary techniques were inspired by recent advances in sparsity
based compressed sensing. Apart from the l1 norm based convex programs currently
used in other applications, our dictionaries can admit l2 norm formulations that have
linear and closed form solutions, even when the systems is under-determined. A
new filter bank is also proposed using the Ramanujan sums. This, named the
Ramanujan Filter Bank, can accurately track the instantaneous period for signals
that exhibit time varying periodic nature. The filters in the Ramanujan Filter Bank
have simple integer valued coefficients, and directly tile the period vs time plane,
unlike classical STFT (Short Time Fourier Transform) and wavelets, which tile
the time-frequency plane. The third family of techniques developed here are a
generalization of the classic MUSIC (MUltiple SIgnal Classification) algorithm
for periodic signals. MUSIC is one of the most popular techniques today for
line spectral estimation. However, periodic signals are not just any unstructured
line spectral signals. There is a nice harmonic spacing between the lines which
is not exploited by plain MUSIC. We will show that one can design much more
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accurate adaptations of MUSIC using Nested Periodic Subspaces. Compared to
prior variants of MUSIC for the periodicity problem, our approach is much faster
and yields much more accurate results for signals with integer periods. This work
is also the first extension of MUSIC that uses simple integer valued basis vectors
instead of using traditional complex-exponentials to span the signal subspace. The
advantages of the new methods are demonstrated both on simulations, as well as
real world applications such as DNA micro-satellites, protein repeats and absence
seizures.

Apart from practical contributions, the theory of Nested Periodic Subspaces offers
answers to a number of fundamental questions that were previously unanswered.
For example, what is the minimum contiguous data-length needed to be able to
identify the period of a signal unambiguously? Notice that the answer we seek is
a fundamental identifiability bound independent of any particular period estimation
technique. Surprisingly, this basic question has never been answered before. In this
thesis, we will derive precise expressions for the minimum necessary and sufficient
datalengths for this question. We also extend these bounds to the context of mixtures
of periodic signals. Once again, even thoughmixtures of periodic signals often occur
in many applications, aspects such as the unique identifiability of the component
periods were never rigorously analyzed before. We will present such an analysis as
well.

While the above question deals with the minimum contiguous datalength required
for period estimation, one may ask a slightly different question: If we are allowed to
pick the samples of a signal in a non-contiguous fashion, how should we pick them
so that we can estimate the period using the least number of samples? This question
will be shown to be quite difficult to answer in general. In this thesis, we analyze a
smaller case in this regard, namely, that of resolving between two periods. It will be
shown that the analysis is quite involved even in this case, and the optimal sampling
pattern takes an interesting form of sparsely located bunches. This result can also
be extended to the case of multi-dimensional periodic signals.

We very briefly address multi-dimensional periodicity in this thesis. Most prior DSP
literature on multi-dimensional discrete time periodic signals assumes the period to
be parallelepipeds. But as shown by the artist M. C. Escher, one can tile the space
using a much more diverse variety of shapes. Is it always possible to account for
such other periodic shapes using the traditional notion of parallelepiped periods?
An interesting analysis in this regard is presented towards the end of the thesis.



vii

PUBLISHED CONTENT AND CONTRIBUTIONS

Journal Articles

1. S. V. Tenneti and P. P. Vaidyanathan, “Nested PeriodicMatrices andDictionar-
ies: New Signal Representations for Period Estimation", IEEE Transactions
on Signal Processing, vol.63, no. 14, pp. 3736 - 3750, July, 2015. DOI:
10.1109/TSP.2015.2434318

2. S. V. Tenneti and P. P. Vaidyanathan, “AUnified Theory of Union of Subspaces
Models for Period Estimation", IEEE Transactions on Signal Processing, vol.
64, no. 20, pp. 5217 - 5231, Oct 2016. DOI: 10.1109/TSP.2016.2582473

3. S. V. Tenneti and P. P. Vaidyanathan, “Arbitrarily Shaped Periods in Multi-
Dimensional Discrete Time Periodicity”, IEEE Signal Processing Letters,
vol.22, no.10, pp. 1748 - 1751, Oct. 2015. DOI: 10.1109/LSP.2015.2431993

4. S. V. Tenneti and P. P. Vaidyanathan, “MinimumDatalength for Integer Period
Estimation”, IEEE Transactions on Signal Processing, vol. 66, no. 10, pp.
2733 - 2745, May 2018. DOI: 10.1109/TSP.2018.2818080

Conference Articles

1. P. P. Vaidyanathan and S. V. Tenneti, “When does periodicity in discrete-time
imply that in continuous-time”, Proc. IEEE Int. Conf. Acoustics, Speech,
and Signal Proc., Canada, April 2018.

2. S. V. Tenneti and P. P. Vaidyanathan, “MUSIC and Ramanujan: MUSIC-like
Algorithms for Integer Period Estimation Using Nested Periodic Subspaces”,
Proc. Asilomar Conference on Signals, Systems, and Computers, Monterey,
CA, Nov 2017. DOI: 10.1109/ACSSC.2017.8335717

3. S. V. Tenneti and P. P. Vaidyanathan, “Minimum Number of Possibly Non-
Contiguous Samples to Distinguish Two Periods”, Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Proc., New Orleans, March 2017. DOI:
10.1109/ICASSP.2017.7952872



viii

4. P. P. Vaidyanathan and S. V. Tenneti, “Efficient Multiplier-less structures for
Ramanujan Filter Banks”, Proc. IEEE Int. Conf. Acoustics, Speech, and Sig-
nal Proc., New Orleans, March 2017. DOI: 10.1109/ICASSP.2017.7953400

5. S. V. Tenneti and P. P. Vaidyanathan, “Detection of Protein Repeats Using
Ramanujan Filter Bank”, Proc. Asilomar Conference on Signals, Systems
and Computers, Monterey, CA, 2016. DOI: 10.1109/ACSSC.2016.7869058

6. S. V. Tenneti and P. P. Vaidyanathan, “Critical Data-length for Period Estima-
tion”, Proc. IEEE International Symposium on Circuits and Systems, Canada,
May. 2016. DOI: 10.1109/ISCAS.2016.7527468

7. S. V. Tenneti and P.P. Vaidyanathan, “Detecting Tandem Repeats in DNA
Using Ramanujan Filter Bank”, Proc. IEEE International Symposium on Cir-
cuits and Systems, Canada, May. 2016. DOI: 10.1109/ISCAS.2016.7527160

8. S. V. Tenneti and P. P. Vaidyanathan, “Minimal Dictionaries for Spanning
Periodic Signals”, Proc. Asilomar Conference on Signals, Systems, and
Computers, Monterey, CA, Nov. 2015. DOI: 10.1109/ACSSC.2015.7421183

9. S. V. Tenneti and P. P. Vaidyanathan, “Period Estimation and Tracking: Filter
Bank Design using Truth Tables of Logic”, Proc. Asilomar Conference
on Signals, Systems, and Computers, Monterey, CA, Nov. 2015. DOI:
10.1109/ACSSC.2015.7421410

10. S. V. Tenneti and P. P. Vaidyanathan, “Ramanujan Filter Banks for Estimation
and Tracking of Periodicity”, Proc. IEEE Int. Conf. Acoustics, Speech, and
Signal Proc., Brisbane, April 2015. DOI: 10.1109/ICASSP.2015.7178692

11. P. P. Vaidyanathan and S. V. Tenneti, “Properties of Ramanujan Filter Banks”,
Proc. European Signal Processing Conference, France, August 2015. DOI:
10.1109/EUSIPCO.2015.7362898

12. S. V. Tenneti and P. P. Vaidyanathan, “Dictionary Approaches for Identifying
Periodicities in Data”, Proc. Asilomar Conference on Signals, Systems, and
Computers, Monterey, CA, Nov. 2014. DOI: 10.1109/ACSSC.2014.7094814

13. P. P. Vaidyanathan and S. V. Tenneti, “Ramanujan Subspaces and Digital
Signal Processing”, Proc. Asilomar Conference on Signals, Systems, and
Computers, Monterey, CA, Nov. 2014. DOI: 10.1109/ACSSC.2014.7094770



ix

Contributions

All the above papers resulted from research carried out by S. V. T. and Prof. P. P.
Vaidyanathan. Hence they are all two-author papers. The papers where S. V. T. is
the first author correspond to research where he was the primary contributor. The
papers where he is the second author correspond to research which was primarily
carried out by Prof. P. P. Vaidyanathan, andwhere S. V. T. assistedwith experimental
validations, simulations, demonstrations of theorems etc. Please refer to Chapter 1
for an overview of the content of all the above papers.



x

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . vii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline and Contributions of This Thesis . . . . . . . . . . . . . . . 6

Chapter II: Ramanujan Sums And Subspaces . . . . . . . . . . . . . . . . . 13
2.1 Ramanujan Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Early Use of Ramanujan Sums in DSP . . . . . . . . . . . . . . . . 14
2.3 Generalizing Ramanujan Sums to Ramanujan Subspaces . . . . . . . 15
2.4 The Ramanujan Periodicity Transform (RPT) Matrix . . . . . . . . . 16
2.5 Estimating the period beyond a particularVP . . . . . . . . . . . . . 17
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter III: Nested Periodic Matrices And Dictionaries . . . . . . . . . . . . 20
3.1 Nested Periodicity Matrix: Definition . . . . . . . . . . . . . . . . . 20
3.2 NPM Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Examples of NPMs . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Nested Periodic Dictionaries . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Real World Examples . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter IV: A Unified Theory of Union-of-Subspaces Representations of
Periodic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Review of Existing Subspace Methods . . . . . . . . . . . . . . . . 49
4.3 Insights into the Relationships Between Various Techniques . . . . . 55
4.4 Fundamental Properties of Subspaces That Admit Unique Periodic

Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 From Subspaces to Dictionaries . . . . . . . . . . . . . . . . . . . . 61
4.6 Fundamental Properties of Periodic Dictionaries . . . . . . . . . . . 66
4.7 Effect of Dictionary Redundancy on Period Estimation: ANumerical

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.8 The Case of Mixtures of Periodic Signals . . . . . . . . . . . . . . . 73
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.10 Chapter Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter V: The Ramanujan Filter Bank and Its Applications . . . . . . . . . 77
5.1 The Ramanujan Filter Bank . . . . . . . . . . . . . . . . . . . . . . 77



xi

5.2 Connections to Dictionaries . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Protein Repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5 Detecting Tandem Repeats in DNA . . . . . . . . . . . . . . . . . . 91
5.6 Adapting the Ramanujan Filter Bank to Detect Tandem Repeats in

DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.7 Absence Seizure Detection Using Ramanujan Filter Banks . . . . . . 98
5.8 Unique Representation Filter Banks: Removing Redundancy in the

RFB Using Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . 104
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter VI: iMUSIC: A Family ofMUSIC-like Algorithms for Integer Period
Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1 MUSIC and Periodicity: An Overview of Prior Works . . . . . . . . 116
6.2 The Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3 Generalizing iMUSIC From Farey Atoms to Other NPS Bases . . . . 121
6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.6 Chapter Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Chapter VII: Minimum Datalength for Integer Period Estimation . . . . . . . 137
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2 Minimum Datalength for the Single Period Case . . . . . . . . . . . 140
7.3 Mixtures of Periodic Signals . . . . . . . . . . . . . . . . . . . . . . 145
7.4 Minimum Datalength for Estimating The Hidden Periods . . . . . . 150
7.5 Connection to Dictionaries Spanning Periodic Signals . . . . . . . . 154
7.6 Non-Integer Periodicity and Connections to Caratheodory’s Results . 157
7.7 Examples of DNA Repeats . . . . . . . . . . . . . . . . . . . . . . . 160
7.8 Minimal Non-Contiguous Sampling For Period Estimation . . . . . . 162
7.9 Simulations Under Noise . . . . . . . . . . . . . . . . . . . . . . . . 167
7.10 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.11 Chapter Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Chapter VIII: Arbitrarily Shaped Periods in Multi-Dimensional Periodicity . . 172
8.1 A Note on Translational Matrices . . . . . . . . . . . . . . . . . . . 179
8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Chapter IX: Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 182



xii

LIST OF ILLUSTRATIONS

Number Page
1.1 Examples of signals with periodicity. (a) repeats in ProteinMolecules (PDB

1n11), (b) DNAmicrosatellites used in forensics, (c) EEG waveform during
an episode of absence seizure, (d) periodicity in art: (left) Tesellations by
M. C. Escher (1943), (right) periodicity in the weave pattern of paintings,
commonly used in art forensics [1], (e) The chirp waveform that led to the
recent discovery of gravitational waves [2], and (f) periodicity in ECG. . . . 2

1.2 100 samples of a signal that is a mixture of randomly generated period 3,
period 7 and period 11 signals. . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The spectra of periodic signals have a regular harmonic structure as shown.
(a) The ideal spectrum when the datalength is infinitely long. (b) The DFT
spectrum when the datalength is finite. . . . . . . . . . . . . . . . . . . 3

1.4 The 100 point DFT magnitude spectrum for the signal shown in Fig. 1.2. . . 4
1.5 Strength vs. Period plots produced for the signal in FIg. 1.2 using Nested

Periodic Dictionaries, one of the techniques presented in Chapter 3. . . . . 5
1.6 Srinivasa Ramanujan (1887 - 1920). . . . . . . . . . . . . . . . . . . . 6
1.7 The Ramanujan Filter Bank can be used to track time varying periodicity. . 8
1.8 Two signals with periods 4 (Top) and period 10 (Bottom) that share the first

11 samples shown in black. What is the minimum datalength needed to
identify the period in general? . . . . . . . . . . . . . . . . . . . . . . 10

1.9 How many samples do we need to distinguish between periods 8 and 50?
(Top) The minimum contiguous data-length we need is 56 samples as de-
rived in Chapter 7. (Bottom) If we allow the samples to be non-contiguous,
then just 8 are sufficient! The locations of these samples are shown using
impulses in the above plots. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Examples of Ramanujan Sums with one period shown in each case. . . . . 14
2.2 Part (a) 256 samples of a period 64 signal. (b) The coefficients αk’s for the

expansion in (2.4). (c) The energies in the various Ramanujan subspaces
obtained by solving (2.13). See text for details. . . . . . . . . . . . . . . 17



xiii

2.3 (Top) 100 samples of a noise-less period 10 signal. (Middle) Noise cor-
rupted input (SNR = 5dB). (Bottom) The projection energies plotted vs. the
period for the various Ramanujan subspaces. Notice that the LCM of the
peak periods 2, 5 and 10 is indeed 10. . . . . . . . . . . . . . . . . . . . 19

3.1 Part (a) and (b) – Strength vs period plots for a period 10 signal using
30×30Natural Basis and Ramanujan Periodicity Transformmatrices
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Part (a) and (b) - Strength vs period plots for a period 70 signal using
70×70Natural Basis and Ramanujan Periodicity Transformmatrices
respectively. The period 70 signal was generated as a sum of period
7 and period 10 signals. . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 The Ramanujan Nested Periodic Dictionary . . . . . . . . . . . . . 32
3.4 (a) A noisy period 70 signal that was generated as the sum of a

period 7 and a period 10 signal (SNR = 5.5dB). Parts (b), (c), (d)
and (e) – The strength vs period plots for the solutions of the convex
program (3.24) using Ramanujan, DFT, Random and Natural Basis
dictionaries respectively. . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Strength vs Period plot for the signal in Fig. 3.4(a). Part (a) – using the
solution of the convex program (3.24). Part (b) – using the solution
for the convex program (3.29). . . . . . . . . . . . . . . . . . . . . 36

3.6 Part (a) – Strength vs period plots for a period 104 signal generated
as a sum of period 8 and period 13 signals using the Ramanujan
dictionary. Parts (b), (c) and (d) – Strength vs period plots for shifted
versions of the signal, where the shifts are 25, 50 and 75 samples
respectively (see text for details). . . . . . . . . . . . . . . . . . . . 37

3.7 Part (a) – Strength vs period plots for a period 104 signal generated
as a sum of period 8 and period 13 signals using the Natural Basis
dicitionary. Parts (b), (c) and (d) – Strength vs period plots for
shifted versions of the signal, where the shifts are 25, 50 and 75
samples respectively (see text for details). . . . . . . . . . . . . . . 38

3.8 Periodic decomposition by l1 methods. Parts (a) and (c) show the
strength vs period plots for the solutions of (3.31) for a noiseless
period 70 signal that was generated as a sum of period 7 and period 10
signals, using Ramanujan and natural basis dictionaries respectively.
Parts (b) and (d) show the strength vs period plots for the same
dictionaries using the solutions to the convex program (3.32). . . . . 39



xiv

3.9 Part (a) – A period 70 signal generated as a sum of period 7 and period
10 signals. Parts (b) and (c) – Triangular and sinusoidal functions
were multiplied respectively to the signal in part (a). Parts (d) and
(e) show the strength vs period plots for the signals in parts (b) and
(c) respectively using the convex program (3.24) and the Ramanujan
dictionary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Parts (a) and (b) – Amino acid sequence of the Antifreeze Protein
from Tenebrio Molitor, numerically mapped according to two differ-
ent metrics (refer text for details). Parts (c) and (d) – Corresponding
strength vs period plots using the convex program (24) and the Ra-
manujan dictionary. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.11 Part (a) - ECG waveform of a 23 year old female patient. Part (b) -
DFT coefficients for positive frequencies. . . . . . . . . . . . . . . . 44

3.12 Strength vs Period plot for the ECG signal of Fig. 3.11 using the
convex program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 The set of frequencies needed to span all periodic signals whose
periods lie in the range 1 ≤ P ≤ 8. See Sec. 4.5. . . . . . . . . . . . 48

4.2 An example to illustrate that the projection energies obtained on the
differentVP’s depend on the order of projections. Refer Sec. 4.2 for
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 An example to illustrate that orthogonal subspaces result in unique
projections irrespective of the order of decomposition. Refer Sec. 4.2
for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 An example to illustrate that one can obtain a unique decomposition
using parallelogram completion as long as the subspaces are linearly
independent. Refer Sec. 4.2 and Sec. 4.4 for details. . . . . . . . . . 57

4.5 Parts (a) and (b): Two different decompositions of a period 8 signal
onto {V1,V2, . . . ,V8}. Part (a) involves V2, V3, V6 and V8, while
Part (b) involves V2, V4 and V8. Clearly, it is difficult to determine
the component periods in the signal using these subspaces. Notice
that the LCM property results in an incorrect period estimate in
Part (a). Parts (c) and (d) use subspaces that offer unique periodic
decompositions: Ramanujan Subspaces in Part (c) and the Natural
Basis subspaces in Part (d). Both involve only subspaces with period
8 and its divisors. The LCM property correctly identifies the period
as 8 in both these cases. Please see Sec. 4.4 for a discussion. . . . . 62



xv

4.6 Effect of Redundancy on Signal Recovery: Part (a) - A randomly
generated, noiseless, period 6 signal of length 56 samples. Part (b) -
A noisy version of the signal in Part (a) (AWGN with SNR = 0dB).
Part (c) - Reconstructed signal using the Ramanujan dictionary, with
the threshold factor T = 0.15. Parts (d), (e) and (f) - Reconstructed
signals using the Identity dictionary, with the threshold factor T

being 0.15, 0.525 and 0.9 respectively. Please see Sec. 4.7 for the
corresponding reconstruction errors and more details. . . . . . . . . 71

4.7 Parts (a) and (b) - Strength vs Period plots using the Identity and Ra-
manujan Dictionaries respectively for the signal shown in Fig. 4.6(b),
after solving (3.24). The dotted lines indicate the thresholding pa-
rameter T discussed in Sec. 4.7. . . . . . . . . . . . . . . . . . . . . 72

5.1 Part (a) - Block diagram of the Ramanujan Filter Bank. Part (b) - An
example of the impulse response of an RFB filter, h10(n). Part (c) and (d) -
Frequency responses of h10(n) for L = 5 and L = 20 respectively. . . . . . 78

5.2 The first 50 rows of the Pseudo-inverse matrix in (3.26) for N = 200 and
Pmax = 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Parts (a) and (b)- Strength vs period plots for a period 70 signal that was
generated as a sum of period 7 and period 10 signals. Part (a) shows the
plot obtained by using (3.26), and Part (b) shows the plot obtained by using
(5.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Parts (a) and (b) - The time vs. period plane for a signal exhibiting localized
periodicities using RFB and shifted RFB. Parts (c) and (d) show the time-
frequency plane using STFT with window sizes 128 and 32 respectively.
Refer text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Part (a) - Sampled inverse chirp signal. Part (b) - The time vs. period plane
using shifted RFB. Parts (c) and (d) show the timefrequency plane using
STFT with window sizes 256 and 32 respectively. Refer text for details. . . 84

5.6 HetL: A protein with 40 tandemly repeating pentapeptide repeats. The red
arrows indicate two insertion loops that can be predicted using the RFB.
See Sec. 5.4 for details. (Image source: [47], [54]–[56]) . . . . . . . . . . 86

5.7 The period vs location plot produced using the RFB for HetL from Fig. 5.10,
indicating the period 5 repeats. See Sec. 5.4 for details. . . . . . . . . . . 88



xvi

5.8 The output power of the fifth Ramanujan filter for the example of HetL. (Its
time-period plane using the RFB is shown in Fig. 5.7.) The region in green
above, marks the residues constituting the pentapeptide repeats, as revealed
by the crystal structure of this protein [47]. The red regions, L1 and L2, are
insertions loops of sizes 6 and 9 residues respectively. These loops can be
seen in the crystal structure of this protein shown in Fig. 5.10. Notice that,
by observing the valleys in the output of the fifth Ramanujan filter, one can
predict the existence of these insertion loops. . . . . . . . . . . . . . . . 90

5.9 The time-period plot produced using an RFBwith K = 5, for the β-propeller
PDB:1hxn shown in Fig. 5.10. See Sec. 5.4 for details. . . . . . . . . . . 91

5.10 Protein repeats that were applied as inputs to FTwin [50], the wavelet based
method of [53], RADAR [48], REPwin [50], and the RFB. These are ab-
breviated as FTw., WAV., RAD., REPw., and RFB in the top row. The first
column indicates the type of repeat family being considered. The secondary
structure of a representative member of each repeat family is also shown.
The second column contains the Protein Data Bank (PDB) ID number for
each example. For the ANKK1 protein exhibiting ankyrin repeats, its NCBI
reference sequence number is shown instead. The wavelet based algorithm
in [53] was not available publicly. Hence, we only show their results for
two examples from [53]. See text for details. (Image sources: Jmol:
http://www.jmol.org/ and JSmol http//wiki.jmol.org/index.php/JSmol.[47],
[54], [63]–[68]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.11 The section of the Time vs Period plane containing the tandem repeat of
Table 5.3. Notice that the end location does not match with Table 5.5. See
Sec. 5.6 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.12 An example of the 3Hz spike and wave discharge pattern in the EEG during
an absence seizure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.13 RFB’s test of sensitivity. See Sec. 5.7 for details. . . . . . . . . . . . . . 100
5.14 (Top) The entire record of sampled EEG containing Seizure 2 in Patient 1,

as measured across the F8-C4 channel. (Bottom) The RFB’s time vs period
plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.15 Comparison of the RFB with STFT. See Sec. 5.7 for details. . . . . . . . 103
5.16 Demonstrating a URFB for Table 5.7. See Sec. 5.8 for details. . . . . . . 112
6.1 Part (a) - An arbitrary line spectrum; Part (b) - The harmonic line

spectrum of a periodic signal. Can we use the additional structure in
the spectrum of a periodic signal to improve MUSIC? . . . . . . . . 114



xvii

6.2 Applications with Integer Periodicity: The protein AnkyrinR (PDB 1n11)
that enables red blood cells to resist shear forces. Its period 33 structural
repeats can be clearly identified in the plot on the right, produced by the
proposed techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Simple Integer Alternatives to Complex-Exponentials: Bases of (a) The
Natural Basis Subspaces, and (b) The Ramanujan Subspaces. . . . . . . . 116

6.4 Demonstrating the proposed iMUSIC method using a Farey dictionary on
a mixture of periods 3, 10 and 13. (a) The noisy periodic signal, (b)
conventional MUSIC, and (c) the new iMUSIC method in (6.19). . . . . . 119

6.5 Demonstrating the NPS based iMUSIC methods on the signal shown in
Fig. 6.4 using (a) a Ramanujan dictionary, (b) a natural basis dictionary and
(c) a randomly generated NPS dictionary. . . . . . . . . . . . . . . . . 122

6.6 The effect of K < K ′ on the pseudo-spectrum of (a) Ramaujan Subspaces
(Farey basis) (b) Ramanujan Subspaces (integer basis) (c) Natural Basis
Subspaces and (d) Randomly generated NPSs. . . . . . . . . . . . . . . 126

6.7 Probability of Estimating both the component periods exactly. Comparison
of the proposed Farey-MUSIC with other techniques. See . . . . . . . . . 128

6.8 Probability of Estimating both the component periods exactly. Compari-
son of the various NPSs. HMUSIC and MUSIC have been included for
reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.9 A comparison of the CPU Times. See Sec. 6.4 for details. . . . . . . . . . 130
6.10 Pseudospectra of the proposedNPSbased techniques for theAnkyrin protein

repeats shown in Fig. 6.2. . . . . . . . . . . . . . . . . . . . . . . . . 131
6.11 Top: The protein Ribonuclease Inhibitor (PDB: 1dfj) exhibiting luciene-

rich repeats. The psuedo-spectra obtained from (a) Ramanujan Subspaces
(Farey basis) (b) Ramanujan Subspaces (Integer Basis) (c) Natural Basis
Subspaces and (d) a randomly generated NPS, are shown. See . . . . . . . 133

6.12 Top: An example of DNA microsatellites that are used in DNA fingerprint-
ing. The psuedo-spectra obtained from (a) Ramanujan Subspaces (Farey
basis) (b) Ramanujan Subspaces (Integer Basis) (c) Natural Basis Subspaces
and (d) a randomly generated NPS, are shown. See . . . . . . . . . . . . 134

7.1 Part (a) - An arbitrary line spectrum; Part (b) - The harmonic line
spectrum of a periodic signal. Can we use this additional structure in
the spectrum of a periodic signal to reduce the data length required
for period estimation? . . . . . . . . . . . . . . . . . . . . . . . . . 139



xviii

7.2 An example illustrating the necessity of Lmin (Eq. (7.5)) samples.
Part (a) - A period 6 signal; Part (b) - A period 15 signal. The initial
17 samples shown in black are common to both signals. . . . . . . . 141

7.3 Error Rate vs Data-Length for a fixed SNR. “Th" refers to the thresh-
old. SNR = 0dB. See text for details. . . . . . . . . . . . . . . . . . 146

7.4 Demonstration of Theorem 7.2.3 using DNA repeats. (a) Period 4
repeats used in DNA fingerprinting applications (GenBank G08921).
(b) A period 10 sequence constructed such that its first 11 samples
(shown in black) are the same as in the sequence (a). . . . . . . . . . 160

7.5 DFT spectra for the sequences in Fig. 7.4. The periods (2π/ω values)
corresponding to the peak frequencies are shown in parenthesis. See
text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.6 Demonstration of Theorem 7.2.1 using DNA repeats. (a) Period 5
repeats used in DNAfingerprinting applications (GenBankM86525).
(b) A period 6 sequence constructed such that its first 9 samples
(shown in black) are the same as in the sequence (a). See text for
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.7 Finding the period of x(n)when (P1, P2) = G , P1. See text for details.165
7.8 Re-drawing Fig. 7.7 for analysis. See text for details. . . . . . . . . . 166
7.9 Error rate vs. Number of Samples. P1 = 9, P2 = 13, SNR = 0dB.

See Sec. 7.9 for details. . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.10 Error rate vs. SNR for theMinimum Samples Case. P1 = 9, P2 = 13,

Number of samples = P1 = 9. See Sec. 7.9 for details. . . . . . . . . 169
8.1 Part (a) -A twodimensional periodic signal according to the definition

in (8.1), whose period is represented by the matrix in (8.2). The grid
of dots is the set Z2. The numbers shown indicate the value of the
signal at those integer points. Part (b) - A convenient way to indicate
repetition regions for such periodic signals. . . . . . . . . . . . . . . 173

8.2 A two dimensional periodic signal with a non-parallelogram repeti-
tion region (shaded in black) tiling the plane. . . . . . . . . . . . . . 174

8.3 Another example of a two dimensional periodic signal with a non-
parallelogram repetition region (shaded in black) tiling the plane. . . 174

8.4 A parallelepiped repetition region always exists for any signal follow-
ing Definition 8.0.1. Indicating this for the signal of Fig. 8.2. . . . . . 180



xix

LIST OF TABLES

Number Page
3.1 Comparison of CPU times for solving (3.32) and (3.24) . . . . . . . . 40
5.1 Period Estimation using STFT and the RFB. . . . . . . . . . . . . . 84
5.2 Example 1: Human Frataxin Gene . . . . . . . . . . . . . . . . . . . 95
5.3 Base pairs 684 - 720 in Example 1 . . . . . . . . . . . . . . . . . . 95
5.4 Example 2: Human Genome Sequence AC010136 . . . . . . . . . . 97
5.5 Ramanujan Filter Bank: Period to Filters Map . . . . . . . . . . . . 105
5.6 Tables Mapping Periods To Unique Sets of Filters. The Table on the

Left is Unimplementable. . . . . . . . . . . . . . . . . . . . . . . . 106
5.7 A URFB for periods 1 to 4. . . . . . . . . . . . . . . . . . . . . . . 111
7.1 Comparison between (7.30) and (7.41) for Pmax = 20. . . . . . . . . 156



1

C h a p t e r 1

INTRODUCTION

One of the most beautiful patterns in nature is periodicity: the ripples on the surface
of a pond, the cyclic phases of the moon, chirps of birds, gravitational waves from
distant stars - these are just a few among countless examples of periodicity and its
variations. Even in our very own human-made world, periodicity is ubiquitous,
for example in machine vibrations, communication waves, RADAR and SONAR
signals, artistic renditions etc. In fact, onemaywonder if the notion of “a pattern” can
imply anything but repetitions of some form. Fig. 1.1 shows many other examples.

From the perspective of a DSP researcher, the simplest way to capture periodicity
is as follows: A sequence x(n), n ∈ Z is said to be periodic if there exists an integer
P such that:

x(n + P) = x(n) ∀ n ∈ Z (1.1)

Any such P is called a repetition index of the signal, and the smallest positive
repetition index is known as the period. Notice that the period is an integer
according to this model. In this thesis, we are primarily interested in estimating the
period, given a finite-length, and possibly noisy version of x(n).

1.1 A Motivating Example
Period estimation is a classical problem in DSP. A number of techniques have been
proposed for this over many years in various application domains. Why then do we
revisit at this problem here? Let us motivate our contribution in this thesis using
a simple example. Consider the signal shown in Fig. 1.2. The 100 samples shown
were generated by adding randomly-generated signals with periods 3, 7 and 11. Our
task is to estimate these three hidden periods from the 100 samples shown.

Most of the popular techniques today for estimating periods are based on theDiscrete
Fourier Transform or DFT (for e.g. [3]–[7]). The main idea is as follows: in the
frequency domain, a periodic signal’s spectrum has a nice harmonic structure as
shown in Fig. 1.3 (a). When the data-length is infinitely long, the spectrum consists
of lines, spaced at harmonic multiples of a fundamental frequency. Ideally, from
such a spectrum, we should be able to identify the fundamental frequency, whose
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Examples of signals with periodicity. (a) repeats in Protein Molecules (PDB
1n11), (b) DNA microsatellites used in forensics, (c) EEG waveform during an episode of
absence seizure, (d) periodicity in art: (left) Tesellations by M. C. Escher (1943), (right)
periodicity in the weave pattern of paintings, commonly used in art forensics [1], (e) The
chirp waveform that led to the recent discovery of gravitational waves [2], and (f) periodicity
in ECG.
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Figure 1.2: 100 samples of a signal that is a mixture of randomly generated period 3, period
7 and period 11 signals.

Input Signal

DTFT



Input Signal

DFT

 

  

(a)

(b)

Figure 1.3: The spectra of periodic signals have a regular harmonic structure as shown.
(a) The ideal spectrum when the datalength is infinitely long. (b) The DFT spectrum when
the datalength is finite.

inverse yields the period:
P =

2π
ω0

(1.2)

Unfortunately, when the available data-length is short, the spectrum computed using
the DFT tends to spread out as shown in Fig. 1.3 (b). This becomes problematic,
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Figure 1.4: The 100 point DFT magnitude spectrum for the signal shown in Fig. 1.2.

especially when the input is a mixture of mutiple periodic signals, as is the case here.
Fig. 1.4 shows the 100 point DFT magnitude spectrum for the signal in Fig 1.2. The
tallest peaks correspond to the DFT indices:

k = 14, 15, 18, 27, 29, 33, 34, 36, 43, 45, 46 (1.3)

What periods do these indicate? A peak in the 100 point DFT at k = k0 corresponds
to the complex exponential e j2πk/100. There are two ways to interpret its period:

1. By comparing it with the continuous time signal e jωt , whose period is period
2π/ω, we may infer the period of e j2πk/100 as:

P =
100

k
(1.4)

This approach has been commonly used in the literature, but notice that it may
not yield an integer estimate for every k. The peaks in Fig. 1.4 according to
(1.4) correspond to the following periods:

7.14, 6.67, 5.55, 3.70, 3.45, 3.03, 2.94, 2.78, 2.32, 2.22, 2.17 (1.5)

Clearly, it is difficult to identify the true periods 3, 7 and 11 from this set.
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Figure 1.5: Strength vs. Period plots produced for the signal in FIg. 1.2 using Nested
Periodic Dictionaries, one of the techniques presented in Chapter 3.

2. If we follow the strict integer period definition of (7.19), then the period of
e j2πk/100 can be shown to be:

P =
100

GCD(100, k)
(1.6)

Unfortunately, the detected periods by this approach can only be divisors of
the DFT length, which is 100 in this case. In Fig. 1.4, the peaks correspond
to the following periods according to (1.6):

100, 50, 25, 20 (1.7)

Once again, these do not indicate the true periods 3, 7 and 11. Clearly, neither
of the two approaches using DFT works in this example.

As a motivating preview of what we are going to develop in this thesis, Fig. 1.5
shows the results of using Nested Periodicity Dictionaries, one of the techniques that
we propose in this thesis. Unlike the DFT spectrum in Fig. 1.4, the x-axis here is
directly the period. The y-axis shows the strength of the various periods present in
the signal. Notice that the correct periods 3, 7 and 11 can be seen muchmore cleanly
in this plot. This plot was in fact produced using an overcomplete dictionary, but
using a simple and fast l2 norm based convex programwill be explained in Chapter 3.

While this was just one example, in the following chapters, we will develop a
number of techniques that outperform classical methods in applications where the
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Figure 1.6: Srinivasa Ramanujan (1887 - 1920).

datalength is short, or when there are multiple hidden periodic components in the
signal. The applications we study include DNA microsatellites, protein repeats and
absence seizures. Apart from practical contributions, the theory that we develop in
this thesis enables us to answer a number of fundamental questions in the context of
periodicity that were never addressed before. A summary of our main contributions
in this thesis is as follows:

1.2 Outline and Contributions of This Thesis
Chapter 2: PriorWork - Ramanujan Sums and Subspaces - The building blocks
for the work presented in this thesis are sequences known as Ramanujan Sums.
These were introduced in 1918 by the Indian mathematician Srinivasa Ramanujan
(Fig. 1.6) [8]. He showed that several arithmetic functions in number theory such
as the divisor function and the Euler totient function can be expanded as a series in
Ramanujan sums.

In 2014, it was shown by Vaidyanathan [9] that the Ramanujan sums have several
useful properties in a completely different context, namely periodicity analysis. They
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were used to construct a set of mutually orthogonal subspaces known as Ramanujan
subpaces, which could span any given periodic sequence. It was shown that by
projecting a given periodic signal onto the Ramanujan subspaces, one could easily
estimate its period. Chapter 2 presents a short overview of these results.

Chapter 3: Nested Periodic Subspaces and Dictionaries - In Chapter 3, we first
generalize Ramanujan subspaces to an entire family of such subspaces. These,
called Nested Periodic Subspaces, share all the essential properties of Ramanujan
subspaces. From a theoretical perspective, the Nested Periodic Subspaces provide
interesting connections between Ramanujan subspaces and well known transforms
such as DFT and Hadamard transforms. New dictionary based period estimation
algorithms are proposed using these subspaces. In addition to the conventional l1
norm based support recovery [10], [11], the dictionaries constructed using nested
periodic subspaces can also admit new l2 norm based convex programs that have
closed form solutions. These result in orders of magnitude faster solutions than the
l1 methods, and give much cleaner period estimates than convenitional tehcniques.

Chapter 4: A General Theory of Subspace Models for Periodic Signals - Are
Nested Periodic Subspaces the only possible subspaces that span periodic signals?
We will show in Chapter 4 that this is not the case. In fact a few other examples of
such subspaces had already been proposed in prior literature [12]–[14]. However,
Nested Periodic Subspaces have some very unique properties compared to arbitrary
union-of-subspaces models for periodic signals, such as (a) offering unique decom-
positions, (b) offering the least redundant dictionaries, (c) exhibitng the so-called
lcm property, and so on. We will study these in Chapter 4.

So far, most of these other subspace-models for periodic signals were developed
independent of each other. There is no unified theory analyzing them from a common
perspective. In Chapter 4, all such methods are first unified under one general
framework. Further, several fundamental aspects of such subspaces are investigated
from a generic perspective, such as the conditions under which a set of subspaces
offers unique periodic decompositions, their minimum required dimensions, etc. A
number of basic questions in the context of dictionaries spanning periodic signals
are also answered. For example, what is the theoretically minimum number of atoms
required in any type of dictionary, in order to represent periods 1 ≤ P ≤ Pmax?
For each period P, what should be the minimum dimension of the subspace of
atoms representing the Pth period itself? It will be shown that the Nested Periodic
Subspaces turn out to be unique examples of subspaces that satisfy the above
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Figure 1.7: The Ramanujan Filter Bank can be used to track time varying periodicity.

minimality criteria. Interestingly, it will be seen that the Euler totient function from
number theory plays an important role in providing the answers to all such questions.

Chapter 5: The Ramanujan Filter Bank and Its Applications - In a number of
applications, the periodicity in the signal changes across the samples. Examples
include chirps and signals with localized periodicity such as DNA microsatellites
or epileptic seizures (see Fig. 1.1). One of the ways to process such signals is to
use the Nested Periodic Dictionaries in a block-by-block fashion, but this has some
limitations. Computational complexity is one. But more importantly, larger periods
would require lager block-lengths, while smaller periods may need smaller block-
lengths for good localization. The dictionaries on the other hand impose a common
block-length across all periods.

In order to efficently deal with such signals, a new filter bank implementation is
developed using Ramanujan sums. This, which we call the Ramanujan Filter Bank,
will be derived in Chapter 5 (see Fig. 1.7). It will be shown that if the input has
period P, then the lcm of the indices of those filters that have non-zero outputs will be
exactly equal to P. Three real world applications will also be shown: namely, DNA
microsatellites, Protein repeats and Absence seizures. In each of these applications,
the Ramanujan filter bank is compared with the state-of-the art techniques.

A further extension of the Ramanujan Filter Bank to what are known as Unique
Representation Filter Banks is also presented. While the Ramanujan Filter Bank is
itself quite efficient computationally, it will be shown that for applications where
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the signal is a single periodic signal (as opposed to a mixture), one can design filter
banks with far fewer filters.

Chapter 6: iMUSIC - Integer Basis Alternatives to MUSIC for Periodicity
- The MUSIC algorithm [15] is one of the most popular techniques today for
line spectral estimation. But if the line spectrum is that of a periodic signal,
can we adapt MUSIC to exploit the additional harmonic structure in the spectrum
(Fig. 1.3)? Prior work in this direction includes the Harmonic MUSIC (HMUSIC)
algorithm [16] and its variations [17]. These involve rather complicated non-convex
optimizations to search for harmonically spaced peaks in the conventional MUSIC
psueduo-spectrum.

For applications where the period of the discrete signal is an integer (or can be
well approximated by an integer), we introduce a new and much simpler class of
variants of MUSIC. This new family, called iMUSIC, includes techniques where
simple integer valued vectors are used in place of complex exponentials for both
representing the signal subspace, and for computing the pseudo-spectrum. It will be
shown that the proposedmethods not onlymake the computationsmuch simpler than
prior adaptations of MUSIC, but also offer significantly better estimation accuracies
for applications with integer periods.

The iMUSIC algorithms are based on Ramanujan Subspaces and Nested Periodic
Subspaces. So the resulting signal space bases are non-Vandermonde in structure,
unlike MUSIC. Consequently, many aspects of classical MUSIC that were based
on the Vandermonde structure of complex-exponentials, such as guarantees for
identifiability of the frequencies (periods in our case), are addressed in new ways in
this work.

Chapter 7: Minimum Datalength for Integer Period Estimation - Consider
Fig. 1.8. There are two signals shown, with periods 4 and 10. The first 11 samples,
shown in black, are common to both signals. Clearly, given these 11 or fewer
samples of these signals, it is impossible to estimate what the true underlying period
is. More generally, suppose we have a signal x(n) whose period is known to belong
to the integer set:

P = {P1, P2, . . . , PK} (1.8)

For example, this could be the set of all positive integers less than 100. Then, what
is the absolute minimum datalenth needed to be able to identify the true period?

In spite of period estimation having a rich history, this particular question has
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(a)

(b)

Figure 1.8: Two signals with periods 4 (Top) and period 10 (Bottom) that share the first 11
samples shown in black. What is the minimum datalength needed to identify the period in
general?

surprisingly received very little attention from a fundamental perspective. Notice
that the answer we seek must be a fundamental bound, i.e., independent of any
particular period estimation technique. Common intuition suggests the minimum
datalength as twice the largest expected period. However, this is true only under
some special contexts. Chapter 7 derives the exact necessary and sufficient bounds
to this problem. The above question is also extended to the case of mixtures of
periodic signals. First, a careful mathematical formulation discussing the unique
identifiability of the component periods (hidden integer periods) is presented. Once
again, a rigorous theoretical framework in this regard was missing in the past
literature, but is a necessary platform to derive precise bounds on the minimum
necessary datalength. The bounds given here are generic, that is, independent of
the algorithms used. Specific algorithm-dependent bounds are also presented in
the end for the case of dictionary based integer period estimation using Ramanujan
subspaces.
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𝐿𝑚𝑖𝑛 = 56

𝑀𝑚𝑖𝑛 = 8

Figure 1.9: How many samples do we need to distinguish between periods 8 and 50?
(Top) The minimum contiguous data-length we need is 56 samples as derived in Chapter 7.
(Bottom) If we allow the samples to be non-contiguous, then just 8 are sufficient! The
locations of these samples are shown using impulses in the above plots.

A further question in this direction is, suppose we are allowed to pick samples in
a non-contiguous fashion. Then, how should we select those samples such that we
can estimate the period using the least number of samples? This question is quite
difficult to answer in general. In this thesis, we address a smaller case in this regard,
namely, that of resolving between two periods. It will be shown that the analysis is
quite involved even in this case, and the optimal sampling pattern takes the form of
sparsely located bunches as shown in Fig. 1.9.

Chapter 7: Multi-Dimensional Discrete Time Periodicity - We address a very
basic aspect regarding multidimensional periodicity here: Traditionally, most of
the analysis in DSP has been based on defining the period as a parallelepiped.
In this chapter, we study whether this framework can incorporate signals that are
repetitions of more general shapes than parallelepipeds. For example, the famous
Dutch artist M. C. Escher constructed many interesting shapes such as fish, birds and
animals, which can tile the continuous 2-D plane1. Inspired from Escher’s tilings,
we construct discrete time signals that are repetitions of various kinds of shapes.
We look at periodicity in the following way - a given shape repeating itself along
fixed directions to tile the entire space. By transcribing this idea into a mathematical

1See http:www.tessellations.orgeschergallery1thumbs.shtml for many interesting examples.
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framework, we explore its relationship with the traditional analysis of periodicity
based on parallelepipeds.

Notations
Before proceeding, it will be useful to list some notations we use throughout the
thesis:

1. D |P denotes that D is a divisor of P.

2. (k, d) denotes the greatest common divisor (gcd) of k and d. The least
common multiple of k and d is denoted by lcm(k, d).

3. φ(d) is the Euler-totient function of d. It is equal to the number of positive
integers ≤ d and coprime to d.

4. Vectors are denoted by bold lower case font (e.g. x), matrices by bold upper
case font (e.g. A), and sets by blackboard font (e.g. B).

5. A† denotes the Hermitian transpose (or conjugate transpose) of the matrix A.

6. Z denotes the set of all integers. R denotes the set of all real numbers. And C
denotes the set of all complex numbers.
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C h a p t e r 2

RAMANUJAN SUMS AND SUBSPACES

The work that motivated this thesis was the development of Ramanujan subspaces
in [9], [18]. These subspaces were proposed as a generalization of number theoretic
sequences known as Ramanujan sums [8]. In this chapter, we will summarize
some of the important properties of Ramanujan sums and subspaces. These will
be important for understanding the results developed in later chapters. Most of the
results presented in this chapter were published in [9] and [18].

2.1 Ramanujan Sums
In 1918, the Indian mathematician Srinivasa Ramanujan introduced a set of se-
quences known as Ramanujan Sums [8]. For every integer q > 0, the qth Ramanujan
sum was defined as follows:

cq(n) =
q∑

k=1
(k,q)=1

e j2πkn/q (2.1)

The notation (k, q) denotes the GCD of k and q. Notice that the sum involves those
columns of a q × q DFT matrix, whose indices are co-prime to q.

Ramanujan showed that these sequences have several interesting properties [8]. The
following are the most relevant for us:

1. Periodicity: cq(n) is periodic. Its period is exactly equal to q (and not a
proper divisor of it). Notice that adding together arbitrary columns of the
q× q DFT matrix can result in any divisor of q as the period. The Ramanujan
sums are special, since the period is exactly q.

2. Integer Valued: A surprising property is that cq(n) is real and integer-valued
for ∀n. Fig. 2.1 shows some examples.

3. Orthogonality: cq(n) is orthogonal to cp(n) for any p , q, when considering
segments that are of length a common multiple of p and q.

In his original application, Ramanujan showed that many arithmetic functions in
number theory can be expanded as a series using Ramanujan sums. For instance,
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Figure 2.1: Examples of Ramanujan Sums with one period shown in each case.

the divisor function d(n), which denotes the number of divisors of an integer n can
be expanded as:

−d(n) =
log 1

1
c1(n) +

log 2
2

c2(n) +
log 3

3
c3(n) + . . . (2.2)

Similarly, Euler’s totient function can be written as:

φ(n) =
6n
π2

(
c1(n) −

c2(n)
22 − 1

−
c3(n)
32 − 1

−
c5(n)
52 − 1

+ . . .

)
(2.3)

2.2 Early Use of Ramanujan Sums in DSP
From a signal processing perspective, the above expansions of arithmetic functions
lead naturally to the following question: Given a signal x(n), are there any merits to
an expansion as follows?

x(n) =
∞∑

q=1
αqcq(n) (2.4)

The periodicity of cq(n) led many signal processing researchers to suspect that one
may be able to detect hidden periodic components in x(n) using such an expansion
([19]–[22]). For instance if say α8 is significantly larger than other coefficients for a
particular x(n), then this was considered suggestive of a strong period 8 component.
This idea was tested on many applications, including cardiology [20], RADAR [22],
DNA [21] and so on.
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Unfortunately, there is limited mathematical justification for the above idea. For
example, suppose x(n) = c8(n − 1). While this is clearly a period 8 sequence, it can
be shown that c8(n − 1) is orthogonal to cq(n) for every q, including q = 8. So an
expansion of the form (2.4) will yield all the αq’s to be 0.

2.3 Generalizing Ramanujan Sums to Ramanujan Subspaces
Motivated by the above limitation, a generalization of Ramanujan sums to subspaces
known as Ramanujan Subspaces was proposed in 2014 [9], [18]. Instead of using
just one sequence cq(n) to represent period q as in (2.4), it was proposed to use an
entire subspace Sq instead:

Sq = span{e j 2πk
q n : (k, q) = 1} (2.5)

This was called the qth Ramanujan subspace. Just like the Ramanujan sums, the
Ramanujan subspaces have some very interesting properties. The most significant
are the following:

1. Periodicity and Dimension: Sq is a subspace where every non-zero signal
has period exactly q (and not a proper divisor of q). It is easy to see from
(2.5) that its dimension is φ(q).

2. Integer Basis: While (2.5) shows that Sq can be spanned by a basis of
complex exponentials, one can in fact construct much simple integer valued
bases instead. For example, shifted versions of the Ramanujan sums can also
be used:

Sq = span{cq(n − m) : 0 ≤ m ≤ φ(q) − 1} (2.6)

In Chapter 3, we will discuss many other ways to construct integer bases
for Sq, including connections with some well known transforms such as the
Hadamard transform [23].

3. Orthogonality: Just like the Ramanujan sums, the Ramanujan subspaces are
mutually orthogonal:

Sq ⊥ Sp ∀ p , q (2.7)

4. Direct Sum Property: The set of all period q signals is not a linear space,
since adding two period q signals can reduce their period to a proper divisor
of q. However, the set of all signals that repeat after q samples is indeed a
linear space:

Vq = {x(n) : x(n + q) = x(n)} (2.8)
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We will keep referring to this space often throughout this thesis. Now, the Ra-
manujan subspace Sq by itself cannot span all period q signals. Its dimension
is only φ(q), whereas the number of degrees of freedom in period q signals is
q. However, it can be shown that:

⊕d |qSd = Vq (2.9)

That is, all the Ramanujan subspaces corresponding to divisors of q together
span signals inVq.

2.4 The Ramanujan Periodicity Transform (RPT) Matrix
To understand how the above properties can be used for period estimation, it is
useful to look at the following square matrix. Let P be a positive integer and let
d1, d2, . . . , dK be its divisors. Consider the following P × P matrix:

A =
[
Cd1 Cd2 . . . CdK

]
(2.10)

Here, each Cdi is a P × φ(di) matrix whose columns are:
cdi (0 − m)

cdi (1 − m)
...

cdi (P − 1 − m)


, 0 ≤ m ≤ φ(di) − 1 (2.11)

An example for P = 8 is shown below, where the first column is periodic with period
1, the second with period 2, the third and fourth with period 4 and the rest with
period 8:

A =



1 1 2 0 4 0 0 0
1 −1 0 2 0 4 0 0
1 1 −2 0 0 0 4 0
1 −1 0 −2 0 0 0 4
1 1 2 0 −4 0 0 0
1 −1 0 2 0 −4 0 0
1 1 −2 0 0 0 −4 0
1 −1 0 −2 0 0 0 −4



(2.12)

Notice that the columns of Cdi form a basis for Sdi using (2.6). Using the orthogo-
nality property of Ramanujan subspaces, it is easy to see that A has full rank.

Using the direct sumproperty, it can be seen that the columns ofA, when periodically
extended, form a basis for VP. Not only this, but one can identify exactly which
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(b)(a) (c)

Figure 2.2: Part (a) 256 samples of a period 64 signal. (b) The coefficients αk’s for the
expansion in (2.4). (c) The energies in the various Ramanujan subspaces obtained by solving
(2.13). See text for details.

divisor of P the period of the signal is. This follows from the following theorem,
proved in [9]:

Theorem 2.4.1. Let x be a P×1 vector of a signal x(n) ∈ VP. Suppose the period of
x(n) is q |P. Let A be the P×P RPT matrix. Then, the following system of equations
has a unique solution for y:

x = Ay (2.13)

Further, if P1, P2, . . . PM are the periods of those columns of A that multiply with
non-zero entries in y, then

q = LCM{P1, P2, . . . , PM} (2.14)

As an example, Fig. 2.2(a) shows 256 samples of a period 64 signal. Fig. 2.2(b)
plots the coefficients αk’s of an expansion based on (2.4). It is clearly difficult to
identify the true period 64 from this plot. Fig. 2.2(c) plots the energy in the solution
y for various Ramanujan subspaces. The LCM of the non-zero periods is 64, which
is indeed the true period.

Notice that in Theorem 2.4.1, we assumed it to be known a priori that the signal
lies in a particular VP , and then found its exact period using (2.13). This period
can turn out to be any divisor of P. However, in practice, we do not usually know
beforehand if a signal belongs to a particularVP . How can we use the Ramanujan
subspaces in such situations? This is discussed next.

2.5 Estimating the period beyond a particularVP
Suppose x(n) is a signal whose period is known to lie in the range 1 ≤ P ≤ Pmax . Let
L = LCM{1, 2, 3, . . . , Pmax}. In principle, ifwe have long enough datalength, we can



18

construct an L × L RPT matrix and use it to determine the period by Theorem 2.4.1.
However, L could be too large in practice, and the available datalengthmuch smaller.
There are two ways to deal with this:

1. Projections: Note that, due to the orthogonality of Ramanujan subspaces,
one way to solve Eq. 2.13 is to take projections onto the various Ramanujan
subspaces. When the data-length is smaller than L, we can still try plotting
the projection energies of the signal along the various Ramanujan subspaces.
Fig. 2.3 shows an example. We found empirically in all our simulations that
the LCM property could still be used to give the correct period estimates,
unless the data-length is too small. The precise minimum datalength for this
to work is however not known so far.

2. Dictionaries: An alternative to projections is to use sparsity based dictionary
approaches. These will be discussed in Chapter 3.

2.6 Conclusion
We summarized the most important properties of Ramanujan Subspaces in this
chapter. In [9], [18], a number of other interesting properties of these subspaces
were derived. In the next chapter, we will show that the Ramanujan subspaces are
in fact one example of an entire family of such subspaces called the Nested Periodic
Subspaces. We will show that several novel period estimation techniques can be
designed using the Ramanujan subspaces and other Nested Periodic Subspaces,
which offer unique advantages over the existing methods.
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Peaks: 2, 5, 10
LCM = 10

Figure 2.3: (Top) 100 samples of a noise-less period 10 signal. (Middle) Noise corrupted
input (SNR = 5dB). (Bottom) The projection energies plotted vs. the period for the various
Ramanujan subspaces. Notice that the LCM of the peak periods 2, 5 and 10 is indeed 10.
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C h a p t e r 3

NESTED PERIODIC MATRICES AND DICTIONARIES

In this chapter, we will introduce a general family of subspaces that include the
Ramanujan subspaces as specific examples, sharing similar properties. These are
called Nested Periodic Subspaces [23]. We will start by first generalizing the
Ramanujan Periodicity Transfrommatrix from Sec. 2.4 to what are called the Nested
Periodicity Matrices. It will be shown that these matrices can be used in a similar
fashion as the RPT in Theorem 2.4.1 for period estimation. Important connections
with well-known transforms such as the DFT and the Hadamard transforms will
be presented. These matrices will then be used to develop dictionary based period
estimation techniques.

3.1 Nested Periodicity Matrix: Definition
Let P be a positive integer. Let di, 1 ≤ i ≤ K denote the divisors of P in increasing
order, so that and d1 = 1 and dK = P. Let φ(·) denote the Euler totient function.
Now consider a matrix of the form:

A =
[

Cd1 Cd2 . . .CdK
]

(3.1)

with the following properties:

1. Each Cdi is a P × φ(di) matrix so that the total number of columns in A is∑
di |P φ(di) = P (from [24]) . Thus A is a P × P matrix.

2. Each column of Cdi is a length P segment of a sequence with period di.

3. A has full rank .

Since A has full rank, its columns form a basis for CP, so that by periodically
extending the columns of A we can obtain a basis for VP (from Eq. 2.8). Such a
matrix A will be referred to as a Nested Periodic Matrix (NPM).

Notice that the Ramanujan Periodicity Transform matrix in Chapter 2 is an example
of an NPM. Later in this chapter, we will show several other examples of NPMs.



21

3.2 NPM Properties
The word “Nested” is used to indicate a very special property of such matrices:
In the following lemma, we show that the set of signals obtained by periodically
extending the columns of a nested periodic matrix not only form a basis forVP, but
also contains subsets that are bases for every divisor q of P. Note that this would
not be true for an arbitrary P × P full rank matrix.

Lemma 3.2.1. For any integer q |P, there are precisely q columns of A with period
q or a proper divisor of q. Furthermore, any P × 1 vector with period q can be
spanned by these q columns.

Proof. : Let qi, 1 ≤ i ≤ L be the divisors of q. Then A has φ(qi) columns Cqi with
period qi. Since

∑
i φ(qi) = q, the submatrix of A given by

C =
[

Cq1 Cq2 . . .CqL
]

(3.2)

has size P × q. The matrix C has full column rank because the original matrix A
has full rank . Furthermore it has the form

C =


D
D
...

D


(3.3)

where D is q × q. Since C has full column rank, it is clear that D has to have full
rank. This means that any q × 1 vector can be spanned by the columns of D. It then
follows that any P × 1 vector with q period can indeed be spanned by the columns
of C. We note here that D itself is a q × q NPM. 5 5 5

In general, when we add two periodic signals with periods P1 and P2, the resulting
signal is periodic too, but its period can be any divisor of LCM(P1, P2). But the
columns of an NPM have a special property, which forms the backbone of the period
estimation techniques developed in later chapters.

Lemma 3.2.2. Let A be a P × P NPM. Consider the linear combination of a subset
of L distinct columns.:

v =
L∑
i

βiai (3.4)

Let ni be the period of ai, and assume all βi , 0 without loss of generality. Then the
period of v is precisely LCM{ni} (i.e., it cannot be a proper divisor of this lcm).
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Proof. Let v be the period of v. Then

v |LCM{ni} (3.5)

And since ni |P, it follows that v |P so that (by Lemma 3.2.1) there is a submatrix V
of A such that v ∈ span(V). We will now argue that ai ∈ span(V) for each i.

To see this, let us rewrite (3.4) as:

β1a1 = Vα −
∑
i,1

βiaki (3.6)

where v = Vα. So the L.H.S. and the R.H.S. are now expressed in terms of columns
of A. Since A is a full rank matrix by definition, (3.6) can only happen if a1 is a
column of V. So the period of a1, viz. n1, has to be a divisor of v. Similarly, it can
be shown that ni |v for each i, so that:

LCM{ni}|v (3.7)

Eqs. (3.5) and (3.7) imply v = LCM{ni}, which proves the theorem. 5 5 5

Combining the above two Lemmas, we get:

Lemma 3.2.3. Given a P × P NPM , any P × 1 vector y with period q |P can be
expressed as:

y = Ac (3.8)

where the LCM of the periods of those columns of A that correspond to non-zero
entries in c, is exactly equal to the period of y.

The above Lemma gives us a way of estimating the periods of signals in VP. That
is, we can identify which divisor of P the actual period of the signal is. Notice that
this cannot be done using arbitrary P×P matrices instead of an NPM. For example,
in a different framework (discussed in Chapter 4), the authors of [13], [25] use the
identity matrix to generate a basis forVP. To see why this can be problematic, let us
consider an example. Suppose we have 6 samples of a period 3 signal. If we expand
it in terms of the columns of the 6× 6 identitiy matrix, in general each of the 6 basis
vectors would require non-zero coefficients. So it will not be possible to estimate
the period of that signal just by looking at its support on the identity matrix. But if
we use any of the NPMs for V6 , then only the period 3 and period 1 columns of
those matrices would be involved in spanning the signal. So we can readily infer
that the period is 3.

Another interesting property of NPMs is as follows:
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Lemma 3.2.4. Let z be a column of A with period d |P. Then it cannot be expressed
as a finite sum

z =
∑

i

zi (3.9)

where zi have periods ri |P with ri < d.

Proof. Suppose that (3.9) were possible. Then, in view of Lemma 3.9, each zi is a
linear combination of columns of A that have period less than d. That is z, which is
a column of A with period d, is a linear combination of other columns of A. This
contradicts the fact that has A full rank. 5 5 5

This result can be extended to the following: Suppose z is a period d column of a
P × P NPM. When z is periodically extended to a period d signal, then that signal
cannot be written as a sum of signals, all of whose periods are strictly smaller than
d. This will be studied in detail in Chapter 7.

3.3 Examples of NPMs
There is a lot of freedom in designing NPMs. Here we illustrate five different types
of constructions:

1. Natural Basis Matrices

2. DFT Matrices

3. Ramanujan Matrices

4. Hadamard Matrices

5. Random Matrices

Natural Basis Matrices
Consider the identity matrix as a basis for VP. Obviously it does not have the
nested periodic matrix structure. But we can construct a very simple matrix with
the desired structure starting from identity matrices of sizes the divisors of P. For
each divisor d of P, we only take the first φ(d) columns of the identity matrix and
periodically extend them to length P. By collecting such columns for all the divisors
of P , we obtain a matrix satisfying the conditions of a nested periodic matrix. For
example, consider the following 8 × 8 example. The first column is periodic with
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period 1, the second with period 2, the third and fourth with period 4 and the rest
with period 8.

A =



1 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0



(3.10)

This construction is very sparse and involves only 0’s and 1’s. This is quite useful
from a computational point of view, for example when solving (3.8). We observed
experimentally that the inverses of these matrices have 1’s, −1’s and 0’s only and
are quite sparse. No proof has been possible for this at this time. For example, the
inverse of the above 8 × 8 matrix is shown below.

A−1 =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 −1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1



(3.11)

This too is useful, for example to find the solution of in the context of Lemma 3.2.3.
These matrices seem to satisfy another interesting property - their determinant was
always 1 or −1 depending on the parity of their size in our experiments. Again, no
proof is available at this time.

DFT Matrices
The well known DFT matrices are also examples of NPMs. They are full rank
since they are Vandermonde with distinct rows. Additionally, given a sequence W kn

P

where WP = e− j2π/P and k is an integer such that 1 ≤ k ≤ P, we can always rewrite
it as W kin

di
where di is a divisor of P such that (di, ki) = 1 and 1 ≤ ki ≤ di. Regarded
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as a sequence in n, the signal W kn
P = W kin

di
therefore has period di |P. Since there are

φ(di) such values of ki, it follows that there are φ(di) signals of the form W kn
P with

period in exactly equal to di. Thus, if we consider the family xk(n) = W kn
P for all

values of k in 1 ≤ k ≤ P, we see that for each divisor di of P all sequences of the
form W kin

di
are generated where (ki, di) = 1. For each di there are obviously φ(di)

such sequences because there are φ(di) values of ki with (ki, di) = 1 (in 1 ≤ ki ≤ di).
The total number of such sequences is∑

di |P

φ(di) = P (3.12)

Summarizing, we have proved this:

Theorem 3.3.1. The columns of the P × P DFT matrix can be partitioned into K

classes, one for each divisor di |P. In class i there are φ(di) columns (which can be
gathered into a P×φ(di)matrix Cdi ) and they have the formW kin

di
where (ki, di) = 1,

and all these have period exactly di. None of the columns of this DFT matrix can
have a period other than a divisor di |P.

For example, for the (column permuted) 8 × 8 DFT matrix shown below, the first
column is periodic with period 1, the second with period 2, the third and fourth with
period 4 and the rest with period 8.

A =



1 1 1 1 1 1 1 1
1 −1 − j j e− j π4 e− j 3π

4 e j 3π
4 e j π4

1 1 −1 −1 − j j − j j

1 −1 j − j e− j 3π
4 e− j π4 e j π4 e j 3π

4

1 1 1 1 −1 −1 −1 −1
1 −1 − j j e j 3π

4 e j π4 e− j π4 e− j 3π
4

1 1 −1 −1 j − j j − j

1 −1 j − j e j π4 e j 3π
4 e− j 3π

4 e− j π4



(3.13)

Note that, using the DFT matrix for identifying hidden periods as explained in
Lemma 3.2.3 is not the same thing as analyzing the peaks in the DFT of the signal
x(n). The latter identifies the exponential W kn

P with the ‘period’ P/k, which need
not even be an integer. We instead classify it as a signal with period P/(P, k).
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Ramanujan Periodicity Transform
The Ramanujan Periodicity Transform (RPT) matrix was described in Sec. 2.4, and
it clearly satisfies the definition of an NPM in Sec. 3.1. We will now show a very
interesting property of the RPT matrix here:

Theorem 3.3.2. Let A be a P × P NPM as defined in (3.1) where di |P, and let the
column spaces Tdi of Cdi be pairwise orthogonal, that is, C†diCdj for di , d j . Then
Tdi has to be the dth

i Ramanujan subspace Sdi for each di.

Proof. We use induction on P to prove the theorem. For P = 1, we know T1 = S1

(one dimensional space spanned by [1 1 1 1 . . .]T ). This is the basis for induction.
Now consider the P × P matrix for an arbitrary P and let the divisors of P be
d1, d2, . . . , dK . For induction, assume that the first K−1 spaces Td1,Td2, . . . ,TdK−1 are
the Ramanujan spaces Sd1,Sd2, . . . ,SdK−1 . We will prove that TdK is the Ramanujan
space SdK . Since the spaces Td1,Td2, . . . ,TdK−1 are orthogonal, their outer sum, call
it S, has dimension given by:

n = φ(d1) + φ(d2) + . . . + φ(dK−1) (3.14)

The space TdK ⊂ CP has dimension φ(P), which is clearly equal to P − n. If this
space is orthogonal to S, then it has to be unique. 1 But since the Ramanujan space
SdK is one such orthogonal space, it follows that TdK = SdK . 5 5 5

This theorem shows that ifA is anNPM inwhich the subspaceswith different periods
are mutually orthogonal, then these subspaces must necessarily be the Ramanujan
subspaces. A corollary is that the columns of the DFT matrix in the previous
subsection also span the Ramanujan subspaces. We will next show another well
known transform that also spans the Ramanujan subspaces.

Hadamard Transform
A Hadamard matrix is defined to be a square orthogonal matrix whose every entry
is either 1 or −1. It has been postulated that Hadamard matrices of size P × P exist
for some special P, for example multiples of 4 (Hadamard Conjecture). But when
P is a power of two, Sylvester showed that such matrices do exist and proposed a
simple recursive way to construct them as shown below, where Hn is of size 2n ×2n:

H0 = 1, Hn =

[
Hn−1 Hn−1

−Hn−1 Hn−1

]
∀n ∈ N (3.15)

For the Sylvester construction, it can be shown that the matrices are in fact NPMs:
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Theorem 3.3.3. For n = 0, 1, 2, 3, . . ., the 2n × 2n Hadamard matrix constructed
using the Sylvester method is an NPM.

Proof. We shall prove this by induction. For the n = 0, the statement of the theorem
is obviously true. We assume it to be true for n = 0, 1, 2, . . . ,m − 1. That is, let the
columns of Hm−1 be partitionable into m − 1 sets {Ck}

m−1
k=0 as in (3.1), where the

columns in Ck are 2k−1 in number and are periodic with period 2k . The matrix Hm

is then constructed as: [
Hm−1 Hm−1

−Hm−1 Hm−1

]
(3.16)

Note that the first 2m−1 columns are just repeated versions of the columns of Hm−1:[
Hm−1

Hm−1

]
(3.17)

So these columns have the same periods as the corresponding columns in Hm−1. So
they can be partitioned into the sets as {Ck}

m−1
k=0 in (3.1).

It remains to be shown that the last φ(2m) = 2m−1 columns of Hm are periodic with
period 2m: [

Hm−1

−Hm−1

]
(3.18)

This is easy to see, since if any of these columns had period less than 2m, then this
period must be a proper divisor of 2m. This is because, in this section, when we say
that a column of a P × P matrix has period d , we mean that the signal obtained by
periodically repeating this P × 1 vector is periodic with period d . For this to be
true, d must divide P . So if any column in (3.18) has a proper divisor of 2m as its
period, then the top 2m−1 entries of that column must be the same as its bottom 2m−1

entries. This means that the corresponding columns of Hm−1, denoted by hm−1 say
satisfy:

hm−1 = −hm−1 (3.19)

so that hm−1 = 0. This is a contradiction, since Hadamard matrices are by definition
orthogonal and hence must satisfy the full rank property. 5 5 5

An example of an 8×8 Hadamard matrix is shown below. Again, the first column is
periodic with period one, the second with period 2, the third and fourth with period
4 and the rest with period 8.
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A =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1



(3.20)

The Sylvester construction is not the only class of Hadamard matrices. Two
Hadamard matrices of the same size are said to be equivalent and belonging to
the same class if one of them can be obtained from the other by negating or inter-
changing rows or columns. For N = 1, 2, 4, 8, and 12 there exists only one class
of Hadamard matrices, but for N = 16 for example, there exist 5 different classes
of Hadamard matrices. We found by inspection that for N = 16 , one of the five
classes does not satisfy nested periodic matrix structure. For N = 20, there are three
classes of Hadamard matrices and none of them satisfy the nested periodic matrix
structure. (Note that a Sylvester construction is not possible for N = 20 since 20 is
not a power of 2.)

Note that, if a Hadamard matrix is satisfying the nested periodic matrix structure,
then by Theorem 3.3.2, the various periodic subspaces spanned by Cdi of that
Hadamard matrix are same as the corresponding Ramanujan Subspaces.

Hadamard matrices have been used in the past as Hadamard Transforms in various
applications, for example in DSP such as in JPEG XR and MPEG-4 AVC, data en-
cryption, quantum computing etc. Their main advantage is the ease of computation
compared to the DFT.

Random Periodic Matrices
We observed that it is very easy to construct nested periodic matrices by choosing
the entries in a random way. For each divisor d of P, we generate a d × 1 vector
with random entires, and repeat it to length P to get the first column of Cd . The
other φ(d) − 1 columns can be obtained by cyclically shifting this first column, or
by randomly generating other period d signals. The P × P matrix so obtained was
observed to be full rank with a high probability. Once again, an 8 × 8 example is
shown below:
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A =



6 7 0 2 4 8 4 5
6 4 2 0 5 4 8 4
6 7 1 2 4 5 4 8
6 4 2 1 8 4 5 4
6 7 0 2 4 8 4 5
6 4 2 0 5 4 8 4
6 7 1 2 4 5 4 8
6 4 2 1 8 4 5 4



(3.21)

Even though this might not be the best way to generate nested periodic matrices, it
never-the-less illustrates that such matrices are not ‘very rare’.

Simulations
We illustrate two different examples of period identification using nested periodic
matrices.

In our first example, the input data was 30 consecutive samples of a period 10 signal.
We solved the equation y = Ac in Lemma 3.2.3, taking y to be the 30×1 data vector
and by choosing A to be the 30 × 30 Natural Basis and Ramanujan Periodicity
Transform matrices in Fig. 3.1(a) and (b) respectively. For each divisor of 30, we
have plotted the sum of squares of those entries of c that correspond to columns of
A that are periodic with period being that divisor. For example, if G(d) represents
the function that has been plotted vs the period d, where d |P, then G(·) is defined
as follows:

G(d) =
K+φ(d)∑
k=K+1

|c(k)|2 , K =
∑
p |P
p<d

φ(p) (3.22)

We will call such plots as strength vs period plots. As expected from Lemma 3.2.3,
we see that the strength vs period plot is zero except at divisors of 10 in both the
plots of Fig. 3.1. This indicates that the input signal had period 10.

The second experiment in Fig. 3.2(a) and (b) show the strength vs period plots for a
period 70 signal using the Natural Basis and the Ramanujan Periodicity Transform
matrices respectively. In this case, the input signal was generated as a sum of
two periodic signals with periods 7 and 10. The matrix A was chosen to be of
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Figure 3.1: Part (a) and (b) – Strength vs period plots for a period 10 signal using
30× 30 Natural Basis and Ramanujan Periodicity Transform matrices respectively.

size 70 × 70. According to Lemma 3.2.1, the period 7 component can be spanned
by columns of A that have as periods divisors of 7. Similarly for the period 10
component. So we would expect the strength vs period plots for the sum of these
two signals to be non-zero only at periods that are divisors of either 7 or 10. This is
indeed the case in Fig. 4.

In these examples, there was no noise. But when the input signal was corrupted
by noise, we observed that Ramanujan Periodicity Transform and DFT matrices
perform the best. We will consider noisy data in the simulations of the next section.

3.4 Nested Periodic Dictionaries
Just like the RPT matrix in Chapter 2, NPMs can only be used to estimate the period
within a particularVP. That is, in Lemma 3.2.3, we assumed it to be known a priori
that the signal lies in a particularVP , and then found its exact period using the LCM
property. This period can be any divisor of P. However, in practice, we do not
usually know beforehand if a signal belongs to a particular VP . How can we use
the NPMs in such situations?

We approach this problem by modeling the periodic signal in terms of an over-
complete dictionary. We formulate the period identification and hidden period
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Figure 3.2: Part (a) and (b) - Strength vs period plots for a period 70 signal using
70 × 70 Natural Basis and Ramanujan Periodicity Transform matrices respectively.
The period 70 signal was generated as a sum of period 7 and period 10 signals.

estimation problem as a ‘data-fitting’ problem by re-interpreting the process of
finding hidden periods as trying to fit the given data with signals having periods
as small possible (it will be shown in Chapter 7 that such a decomposition is
guarenteed to yield a unique set of hidden periods). This allows us to formulate a
convex program with a closed form expression for its solution. An alternate view
point based on sparse representations of periodic signals using the same dictionaries
will be discussed in Sec. 3.4.

We first show how a periodic signal can be modeled as a linear combination of the
columns of a dictionary.

Dictionary Construction
Suppose that the input data is x(n), n = 0, 1, 2, . . . , N − 1. Consider a particular
family of NPMs - for example, the Ramanujan construction. For each d going from
1 to Pmax , where Pmax is the largest expected period, construct the nested periodic
matrix and take only its φ(d) columns that have period d. Extend these columns
periodically to length N , truncating the last period if necessary.

We form a dictionary A by collecting such columns for each d going from 1 to Pmax .
We will call such a dictionary as a Nested Periodic Dictionary. An example is
shown in Fig. 3.3 using the Ramanujan construction. The first column corresponds
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1 21 −1 2 0 4

1 −1−1 2 0 2 −1

1 −11 −1 −2 0 −1

1 2−1 2 0 −2 −1

1 −11 −1 2 0 −1

Period 1
φ(1) = 1

Period 2
φ(2) = 1

Period 3
φ(3) = 2

Period 4
φ(4) = 2

Period 5
φ(5) = 4

−1

4

−1

−1

−1

−1

−1

4

−1

−1

−1

−1

−1

4

−1

Figure 3.3: The Ramanujan Nested Periodic Dictionary

to period 1, the second to period 2, the third and fourth to period 3, the fifth and
sixth to period 4 and the remaining to period 5.

Note how some of the columns do not end in complete periods. Also, typically Pmax

is of the order of the length of the data, while the sum of Euler totient function from
1 to Pmax is O(3P2

max/π
2) [24]. So A is generally a fat matrix having many more

columns than rows.

If the given signal x(n) is periodic with period less than Pmax , then it has to be
a linear combination of the columns of the dictionary. This is because, if it was
periodic with period P, then the columns with periods being divisors of P must
be able to span it (follows from Lemma 3.2.1). So the following system of linear
equations must have a solution y, where x = [x(0), x(1), . . . , x(N − 1)]T :

x = Ay (3.23)

But since the dictionary is fat, it is likely that x = Ay has multiple solutions. The
solution that we are interested in is the one that involves subspaces corresponding
to period P and its divisors. We discuss next a way to find this solution.
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Formulating a Convex Program
Asmentioned earlier, oneway to look at the problem of finding hidden periods is that
we are trying to fit the given signal with signals having periods as small as possible.
If we could relate this problem to those dictionary problems that have closed form
solutions, for example finding the least norm solution to an over-determined linear
system, then we can compute the solution in a fast way. Of course, there is no reason
why wemight expect the least norm solution of (3.23) to yield us a decomposition of
the signal into its hidden periods. But consider the following optimization problem:

min ‖Dy‖2 s.t. x = Ay (3.24)

where D is a diagonal matrix whose ith diagonal entry is f (Pi) , where Pi is the
period of the ith column of A and f (·) is some increasing function. By introducing
D in (24), the columns in A that have larger periods contribute more towards the
objective function than those with smaller periods for similar entries in y. So in a
way, the columns with larger periods are being penalized more and the algorithm
will try to use columns of A with as small periods as possible to fit x(n).

An example using this approach is shown in Fig. 3.4. Part (a) shows two complete
periods and a third incomplete period of a period 70 signal contaminated with noise
(ENR = 5.5dB). The period 70 signal was generated as a sum of period 7 and
period 10 signals. Parts (b), (c), (d) and (e) show the results of solving (3.24) using
dictionaries constructed with Ramanujan, DFT, random and natural basis designs
respectively. (The entries of the random dictionary were chosen to be integers from
1 to 1000 uniformly). The penalty function was chosen to be f (P) = P2 and Pmax

was chosen to be 90, but we only show the periods 1 to 40 in the plots for clarity.
For each period, the plots show the sum of squares of those components of the
optimal solution of (3.24) that corresponding to columns of the dictionary with that
particular period. These are similar to the strength vs period plots of Sec. 3.3. We
deliberately do not show the period 1 component in all such plots, since it is just a
DC signal. For example, if G(P) represents the function that has been plotted vs the
period P, then G(·) is defined as follows:

G(P) =
K+φ(P)∑
k=K+1

|c(k)|2 , K =
P−1∑
q=1

φ(q) (3.25)
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Figure 3.4: (a) A noisy period 70 signal that was generated as the sum of a period 7
and a period 10 signal (SNR = 5.5dB). Parts (b), (c), (d) and (e) – The strength vs
period plots for the solutions of the convex program (3.24) using Ramanujan, DFT,
Random and Natural Basis dictionaries respectively.

In parts (b), (c) and (d), we see peaks at periods 2, 5, 10 and 7. From Lemma 3.2.3,
any linear combination of the columns of with periods 2, 5 and 10 results in a signal
that is periodic with period 10. Similarly, there is also a period 7 component in the
signal. So using Lemma 3.2.3 again, we can conclude that the given signal was
periodic with period 70, but can be decomposed into a period 10 and a period 7
signal.

We would like to make a few remarks at this point:

1. We need to be careful while interpreting the results of Section IV in the context
of dictionaries. For instance, when we used Lemma 3.2.3 in the previous
paragraph to conclude that the sum of period 7 and period 10 columns of
the dictionary A is a period 70 signal, we considered a 70 × 70 sub-matrix
composed of the columns of A that have divisors of 70 as their period. We
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use Lemma 3.2.3 on this sub-matrix to conclude that the resulting signal was
periodic with period 70.

2. Note that the Natural Basis dictionary does not perform well here. The
Natural Basis dictionary was in general found to be very sensitive to noise. In
this example, when we reduce the noise level further, even the Natural Basis
dictionary works well.

3. Wewould like to remind the reader that findingmultiple hidden periods within
a signal includes the case when there is only one periodicity in the signal. For
example, the given input signal could have just been a period 10 signal, in
which case only 2, 5 and 10 would show up in plots similar to Fig. 5.

The advantage of such a method as (3.24) is that we have a closed form expression
for the optimal solution y?:

y? = D−2AT
(AD−2AT )−1x (3.26)

This is obtained as follows. Under the transformation z = Dy, the convex program
(3.24) changes to:

min ‖z‖2 s.t. x = Bz (3.27)

where B = AD−1. This has a closed form solution given by:

z? = BT (BBT )−1x (3.28)

Substituting y = D−1z and B = AD−1 gives us the solution in (3.26). Note that the
above expressions are for real valued dictionaries and signals. For the complex case,
we can derive similar expressions.

The equivalence of the convex programs (3.24) and (3.27) indicates that using the
penalty matrix is similar to rescaling the columns of A. But does that mean that
instead of solving (3.24) with a penalty matrix , we could have just normalized the
columns of A to obtain an Â and solved the following problem instead?

min ‖y‖2 s.t. x = Ây (3.29)

This is similar to taking the ith entry of D matrix as the norm of the ith column A of
in the convex program (3.24), but not rescaling the solution z? of the corresponding
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Figure 3.5: Strength vs Period plot for the signal in Fig. 3.4(a). Part (a) – using the
solution of the convex program (3.24). Part (b) – using the solution for the convex
program (3.29).

equivalent problem in (3.27). Fig. 6(a) and (b) show the strength vs period plots
for the solution of (24) and (29) respectively for the signal in Fig. 5(a). We used
the DFT subspaces for constructing . Notice the spurious peaks at higher periods in
part (b). These are due to the absence of rescaling as described before.

Also, we observed that not all designs of periodic subspaces work equally well
for this approach in the presence of noise. The Ramanujan and DFT dictionaries
were generally much better than the random and natural basis dictionaries at low
SNRs. As far as the choice of the penalty function is concerned, we observed
that in all our computer generated examples of periodic signals corrupted by noise,
many increasing functions work but f (P) = P2 seemed to give good results. Also
there is another penalty function which worked very well, especially for real world
data, namely f (P) = φ(P) . We show examples in Sec. 3.5. Although φ(P) is
not a monotonically increasing function of P, it is related to the dimension of the
subspace spanned by the P-periodic columns in the dictionary.

Shifting the Input Signal
How do the strength vs period plots change if we had a shifted version of the
input? Fig. 3.6(a) shows the strength vs period plot using (3.24) and the Ramanujan
dictionary for a length 250 signal that was generated as a sum of period 8 and period
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Figure 3.6: Part (a) – Strength vs period plots for a period 104 signal generated as
a sum of period 8 and period 13 signals using the Ramanujan dictionary. Parts (b),
(c) and (d) – Strength vs period plots for shifted versions of the signal, where the
shifts are 25, 50 and 75 samples respectively (see text for details).

13 signals. In parts (b), (c) and (d), we have shown the strength vs period plots for
x(n−25), x(n−50) and x(n−75). The data length was fixed at 250 for each of these
cases too (that is, n goes from 0 to 249). We did not add noise in this experiment so
that we could study the effects of shifting the signal in an exclusive manner. As is
evident from the plots, the strength vs period plots do not seem to change with such
shifts.

This apparent shift invariance can be related to one of the properties of Ramanujan
subspaces. Notice that, if the data length is sufficiently large, the Ramanujan sus-
bapces S1 to SPmax are approximately mutually orthogonal. So finding the solution
to (3.23) becomes the same thing as decomposing the signal into its projections onto
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Figure 3.7: Part (a) – Strength vs period plots for a period 104 signal generated as
a sum of period 8 and period 13 signals using the Natural Basis dicitionary. Parts
(b), (c) and (d) – Strength vs period plots for shifted versions of the signal, where
the shifts are 25, 50 and 75 samples respectively (see text for details).

the orthogonal Ramanujan subspaces. By a slight extension of Theorem 6 in [9],
one can show that if a signal has a particular projection energy on some Ramanujan
subspace, then any of its shifted versions also have the same projection energy on
that subspace. So if the data length is sufficiently large, it might be reasonable to
expect the strength vs period plots to not change too much with such shifts. It must
be noted though that the subspaces spanned by arbitrary Nested Periodic Bases in
general do not have this shift invariance property. The effect of shifting the signal
on the strength vs period plots of the natural basis dictionary is shown in Fig. 3.7.

Minimizing l1 Norm Instead of l2 Norm
The only reason we suggested the l2 norm in (3.24) was to have a closed form
expression for the optimal solution. We could have used any other norm instead of
l2 and still applied the penalty matrix idea. Vaidyanathan and Pal in [26] proposed
to look at the problem of finding hidden periods as a sparse vector recovery problem
instead of the data-fitting approach. That is, in place of (3.24), they formulate the
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Figure 3.8: Periodic decomposition by l1 methods. Parts (a) and (c) show the
strength vs period plots for the solutions of (3.31) for a noiseless period 70 signal
that was generated as a sum of period 7 and period 10 signals, using Ramanujan and
natural basis dictionaries respectively. Parts (b) and (d) show the strength vs period
plots for the same dictionaries using the solutions to the convex program (3.32).

following:
min ‖y‖0 s.t. x = Ây (3.30)

where Â is a dictionary constructed using the DFT design as in the previous sections,
but with the columns normalized to unit norm. They call this the Farey dictionary.
As is well known in the sparse vector recovery field, this can be relaxed to the
following linear program under certain conditions:

min ‖y‖1 s.t. x = Ây (3.31)

Unfortunately, this does not have a closed form expression for the optimal solution.
Fig. 3.8 shows the strength vs period plots for a noise-free period 70 signal that
was generated as a sum of a period 7 and a period 10 signals, using the l1 method.
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Dictionary type l1 CPU time (sec) l2 CPU time (sec)
Natural Basis 0.90 1.74 × 10−4

Ramanujan 5.84 2.03 × 10−4

Random 5.96 1.86 × 10−4

DFT (Farey) 26.23 5.59 × 10−4

Table 3.1: Comparison of CPU times for solving (3.32) and (3.24)

The plots on the left, i.e, (a) and (c) are the strength vs period plots for solutions of
(3.31) using Ramanujan and Natural Basis dictionaries respectively, each of whose
columnswere normalized. While there are clear peaks at 10 and 7 for the Ramanujan
dictionary, there are many spurious peaks for the Natural Basis dictionary. Instead
of normalizing the columns, if we introduce a matrix and solve the following convex
program:

min ‖Dy‖1 s.t. x = Ay (3.32)

where D is a pentalty matrix as described in the previous section with f (P) = P2,
then we obtain the plots on the right side of Fig. 3.8. Now we have clear peaks
at period 2, 5, 7 and 10 for all the designs. This suggests that maybe the penalty
matrix based data-fitting view point is more appropriate than a sparsity based model.
Making the natural dictionary work is of practical significance too as illustrated by
the CPU times for solving (3.32) and (3.24) in Table 3.1 (using Matlab 2012b on
an Intel Core i7 processor with 2.2 GHz CPU speed): Summarizing, by using the
penalty matrix idea, we could make the Natural Basis and the other dictionaries
work for the norm based sparsity technique of [26]. These other dictionaries offer at
least an order of magnitude faster computations by avoiding the second order cone
programming needed for the complex-valued DFT based Farey dictionary.

3.5 Real World Examples
All the examples that we showed till now were signals that were generated as
periodically extended random sequences generated by a computer. Here we apply
our methods to three examples of more realistic periodic signals.

Periodic Signals With an Envelope
Here we consider periodic signals multiplied by other relatively slowly varying
signals. Fig. 3.9 shows two such examples. The original periodic signal, shown in
part (a) was generated as a sumof randomly generated period 7 and period 10 signals.
Wemultiply it by a triangular window and by a sinusoidal signal to obtain the signals
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Figure 3.9: Part (a) – A period 70 signal generated as a sum of period 7 and period
10 signals. Parts (b) and (c) – Triangular and sinusoidal functions were multiplied
respectively to the signal in part (a). Parts (d) and (e) show the strength vs period
plots for the signals in parts (b) and (c) respectively using the convex program (3.24)
and the Ramanujan dictionary.

shown in parts (b) and (c) respectively. Such signals might arise for-example in real
world applications where the input signal has non-zero rise and fall times, or due
to slow modulation. Parts (d) and (e) show the strength vs period plots obtained
by solving (3.24) using the Ramanujan dictionary and as the penalty function. We
can clearly see peaks at 10, 7 and their divisors, indicating the underlying 10 and
7 periodicities. In our simulations, we observed that as long as the multiplying
functions vary slowly as compared to the underlying periodic signal, we were able
to recover the hidden periodicities.
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Protein Repeats
Proteins are important bio-molecules that are sequences of amino acids. The amino
acids that make up proteins belong to a set of 20 as specified by the genetic code.
So a protein can be viewed as a discrete-time signal with values chosen from an
alphabet of size 20. If we assign numerical values to these amino acids, we can map
proteins to discrete ‘time’ signals and process them.

In a significant fraction of proteins (about 14%), the amino acid sequences ex-
hibit repeating periodic patterns. Such patterns are of interest to biologists since
they affect the binding and structural properties of the proteins. So detecting and
characterizing such repeats has been of interest in various works in the past (see
Sec. 5.4).

As an example, we consider a protein called Antifreeze from the beetle Tenebrio
Molitor (PDB 1EZG). It consists of a sequence of 84 amino acid residues with an
underlying periodicity of 12. We apply two different mappings proposed in [27]
to convert the amino acid sequence into a sequence of numbers. The first of these
is related to the secondary structure while the second is related to the molecular
size and volume of the amino acids. Fig. 3.10(a) and (b) show the corresponding
discrete time signals. Parts (c) and (d) shows the strength vs period plot for these
two mappings using a Ramanujan dictionary and the convex program (3.24) with
the penalty function f (P) = φ(P). The distinct peaks at 12, 6, 4, 3 and 2 clearly
indicate the underlying periodicity of 12.

Electrocardiography
An electrocardiogram (ECG) is an electrical recording of the activity of the heart.
It is an approximately periodic waveform as show in Fig. 3.11 (a), generated by the
cyclic polarization and depolarization of the cardiac tissue. ECG recordings are
extremely valuable to cardiologists for monitoring the condition of the heart and
also in diagnosing abnormalities.

Fig. 3.11(a) shows a sampled and filtered ECG recording obtained from a 23 year
old female patient (source: ECG ID Database, PhysioNet [28]). The original
sampling rate was 500 Hz, but we downsampled the signal further by 4 for ease
of computations. We manually calculated the average time period as 0.8644 s.
Fig. 3.12 shows the strength vs period plot for this signal using the Ramanujan
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Figure 3.10: Parts (a) and (b) – Amino acid sequence of the Antifreeze Protein from
Tenebrio Molitor, numerically mapped according to two different metrics (refer text
for details). Parts (c) and (d) – Corresponding strength vs period plots using the
convex program (24) and the Ramanujan dictionary.

dictionary and the convex program (3.24). The penalty function was f (P) = φ(P).
The peaks at 108, 54, 36, 18 and 12 indicate a periodicity of 108 which corresponds
to a period of 0.8640 s. Fig. 3.11(b) shows the DFT of this signal. The fundamental
frequency, which is the first peak in the plot, corresponds to a time period of 0.8372
s from this plot. This is an example where our methods out-perform the DFT in
terms of a more accurate estimate.

3.6 Conclusion
In this chapter, we presented new methods to identify periodicities in data. Apart
from being able to estimate the unknown period of a signal, our methods look for
hidden periodicities within the data. We took the idea of the complex-valued Farey
dictionary [26] a step further by generalizing it to other much simpler real valued
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Figure 3.11: Part (a) - ECG waveform of a 23 year old female patient. Part (b) -
DFT coefficients for positive frequencies.

Figure 3.12: Strength vs Period plot for the ECG signal of Fig. 3.11 using the convex
program .
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dictionaries. Just as the Farey dictionary uses DFT matrices as building blocks, our
new designs of dictionaries use a family of alternatives to the DFT matrix called the
Nested Periodic Matrices. The theory we developed for this family unifies several
important transforms that were relevant to the periodicity problem such as the DFT,
Walsh-Hadamard and the Ramanujan Periodicity Transform matrices.

We also proposed a way of replacing the computationally expensive l1 norm based
second order cone programming of the Farey approach of [26] by an l2 norm based
method with closed form solutions. This change resulted in several orders of mag-
nitude faster computations. We also modified the convex programs to incorporate a
much larger class of dictionaries than the Farey dictionary. Finally, as a proof of our
concept, we applied our methods to two real world applications - analyzing protein
repeats and ECG data.

In terms of performance under noise, we observed that dictionaries constructed us-
ing either the Ramanujan Periodicity Transform or the DFT matrices offer the best
results. This might have to do with the orthogonality property mentioned in Theo-
rem 3.3.2. As is evident from that theorem, the Ramanujan Periodicity Transform
matrices provide an integer basis alternative to the same periodic subspaces that are
spanned by the columns of the DFT matrix. A more thorough performance analysis
and comparisons between the various dictionaries will be a useful direction to pur-
sue in the future. Additionally, an analysis on the choice of the penalty functions in
(3.24) and (3.32) will be of interest to us in our future work.
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C h a p t e r 4

A UNIFIED THEORY OF UNION-OF-SUBSPACES
REPRESENTATIONS OF PERIODIC SIGNALS

4.1 Introduction
The Nested Periodic Matrices and Dictionaries of the previous chapter generalize
Ramanujan subsapces to amuch bigger family of subspaces. However, as mentioned
in Chapter 1, there have been a few more subspace models for periodic signals that
have been used for period estimation in the past [12]–[14], [25], [29]. Most of these
other works use the column-extended versions of Identity matrices to span period-P
signals. This results in a dimesnion P subspace for each period P, unlike the Nested
Periodic Dictionaries which have a dimension φ(P) subspace for each period P. As
we will explain in this chapter, this additional redundancy in the other techniques
can cause some fundamental problems.

Inspite of many such works that use subspace models for periodicity, there is no
unified theory in the literature that studies and compares all such models under one
framework. As such, the connection between the elegant Exactly Periodic Subspaces
theory of Muresan and Parks [14], the novel periodicity transforms of Sethares and
Staley [13], the dictionary approach of Nakashizuka [25], the theory of intrinsic
periodic functions of Pei and Lu [30], and the nested periodic dictionaries [23], has
not been studied in the literature. Thus, all these above methods remain mostly as
isolated pieces of work. Furthermore, there are a number of unanswered questions
in the context of dictionaries constrcuted using such subspaces. For example, (a)
what is the provably minimum required dictionary size for the periodicity problem?
(b) What are the required dimensions of the various subspaces representing hidden
periods in the dictionary? (c) What is aminimal set of conditions on the dictionary
so that it yields a unique representation for a periodic signal? (d) If a dictionary
is based on single-frequency exponentials (Fourier atoms) then how should these
frequencies be spaced on the unit circle? If the intuitively appealing uniform-grid
is not the best, then what is the best grid to use? Many such questions remain
unanswered so far.
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Chapter Scope and Outline
The purpose of this chapter is therefore two-fold. First, we unify many of the above
methods based on nested periodic matrices and subspaces. For this, a brief (but
important) review of the relevant past methods is first given in Sec. 4.2. The con-
nection between the methods is then described. For example, we show in Sec. 4.3
that the exactly periodic subspaces (EPS) of Muresan and Parks [14] are precisely
the Ramanujan subspaces defined in [18] (Theorem 4.3.1). The complex theoreti-
cal framework of [14] which arrives at these spaces through an orthogonalization
approach can therefore be replaced by the direct methods of [9], [18] and [23]. In
the EPS theory, the dimensions of the periodic subspaces are not properly explained
or specified. We show, based on the connection with Ramanujan spaces, that this
dimension is precisely the Euler totient function φ(P), where P is the period asso-
ciated with the subspace. (In a later section, we will show that the Euler totient
is even more fundamental than this, please see below.) Third, we also show that
the intrinsic integer periodic functions (IIPF), defined from a very different point of
view in [30], are in fact identical to the Ramanujan space approach (Theorem 4.3.2).

The second purpose of this chapter is to go beyond this unification, and place the
dictionary approaches [23], [25] on a firm theoretical footing. This gives rise to
a number of theorems which answer several basic questions about the dictionary
approaches, not addressed in any of the earlier papers including [23]. For example,
what is the theoretically minimum number of atoms required in any type of dictio-
nary, in order to represent periods 1 ≤ P ≤ Pmax? For each period P, what should
be the minimum dimension of the subspace of atoms representing the Pth period
itself? The answers are found in Theorems 4.6.1 and 4.6.2 (Sec. 4.6). In particular,
the answer to the second question is precisely the Euler totient φ(P). We will also
see, rather surprisingly, that a larger-than-minimal dictionary creates difficulties in
the process of uniquely identifying periods even in the absence of noise (Sec. 4.6).

Next, what is the set of properties of the subspaces in a dictionary, which allows a
signal to be decomposed into periodic components in a uniqueway? Wewill answer
this in Sec. 4.4, and show that among all the past approaches, there are very few
methods which allow such a unique solution, and this set includes Ramanujan-space
based methods. We answer this in Sec. 4.4. These results, presented as Theo-
rems 4.4.1, 4.4.2 and 4.4.3, are much stronger than earlier results in the sense that,
an absolutely minimum set of conditions are imposed on the dictionary subspaces
(the LIPS conditions, Sec. 4.4) which make all the previously imposed conditions
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0 2π

Figure 4.1: The set of frequencies needed to span all periodic signals whose periods
lie in the range 1 ≤ P ≤ 8. See Sec. 4.5.

[23] such as the Euler structure, the Nested Periodic Property, and so forth, come
out as natural consequences of this!

When a signal is expressed as a linear combination of periodic subspace signals
then it is sometimes possible to uniquely identify the period of the original signal
from a mere knowledge of the indices (= periods) of the participating subspaces.
Namely, the period is exactly the LCM of these participating indices. This is a very
important practical property, whenwe have to estimate the period from the dictionary
representation. This LCM property is true for the Nested Periodic Dictionaries in
Chapter 3 but not for the methods in [12], [13], [25]. What then is the fundamental
theoretical condition under which this LCM property holds? Is there a broader class
of methods than the Nested Periodic Subspaces methods, with the LCM property?
This question is addressed in Sec. 4.6 (Theorem 4.6.3).

Fourier dictionaries and frames are popularly used in a number of signal processing
applications such as DOA estimation [31], [32] and [33]. These dictionaries are
usually chosen such that the frequency grid is uniformly sampled. In order to avoid
the inaccuracies in representation caused by the grid, it is customary to increase
the number of atoms in the dictionary to decrease the grid size.1 We will show
that for the case of period estimation, the correct representation departs from this
conventional approach in two ways. First, increasing the size of the dictionary is
detrimental to the period estimation problem (Sec. 4.6, Sec. 4.7), and second, the
best frequency grids are necessarily nonuniform, and patterned after the so-called
Farey series of number theory [24] (please see Fig. 4.1). While such a dictionary
was first reported in [26], the fact that this is the only dictionary that works if the
atoms are Fourier exponentials is new and is proved for the first time in [37], as
elaborated in Sec. 4.5.

1There also exist gridless methods, which take a different approach, e.g., MUSIC [15], or more
recent methods [34] and [35], [36].
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Finally in Sec. 4.7 we provide some numerical examples to demonstrate the effect
of redundant versus minimal dictionaries in the representation of periodic signals in
the presence of noise. We also demonstrate how denoised versions of noisy periodic
signals can be reconstructed from such representations.

4.2 Review of Existing Subspace Methods
In this section, we analyze several existing period estimation techniques that, either
directly or indirectly, utilize union of subspaces models for representing periodic
signals. We will start by defining some basic linear algebra on sets of periodic
signals (most of the notations are adapted from [13]). We will begin with the formal
definition of a periodic signal:

Definition 4.2.1. A discrete time signal x(n) is said to be periodic if there exists a
positive integer P such that:

x(n + P) = x(n) ∀n ∈ Z (4.1)

Such a P is known as a repetition index of x(n). The smallest repetition index is
called the period.

Now, consider the following linear space:

VP = {x : x(n + P) = x(n) ∀n ∈ Z} (4.2)

VP is the set of all signals that have P as a repetition index. Notice that apart from
period P signals,VP also contains signals that have proper divisors of P as periods.
We can further define a setV as follows:

V = ∪∞P=1VP (4.3)

V can be shown to be an inner product space [13], with the following definition for
the inner product:

〈x, y〉 = lim
k→∞

1
2k + 1

k∑
n=−k

x(n)y∗(n) (4.4)

In practice though, only finite durations of the signals are available to us. Ap-
pendix 4.10 discusses techniques to approximate (4.4) in the finite data length
situation.

The most important application of defining an inner product over V is that we can
now define notions such as orthogonality, projections, and so on. For example, to
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take the projection of a periodic signal x(n) onto an N dimensional subspace G, we
start with an orthogonal basis {g0(n), g1(n), . . . , gN−1(n)} for G. The projection of
x(n) onto G, denoted by πG(x), is defined as follows:

πG(x) =
N−1∑
s=0

〈x, gs〉

‖gs‖
2 gs (4.5)

With this background, we will now start our discussion on some important period
estimation and periodic decomposition techniques.

Maximum Likelihood (ML) Period Estimators
An ML framework for period estimation was proposed in [12] in the following
way. Suppose we want to find the period P of a signal s(n) from a finite duration,
and noise corrupted version of it. Let s = [s(1), s(2), . . . , s(K)]T denote the signal
vector, and let us assume that it is corrupted by uncorrelated zero mean Gaussian
noise n ∼ N(0, σ × IK×K), resulting in r = s + n. The goal is to estimate P from r.

If q = [q(1), q(2), . . . , q(P)] denotes one period of s(n), then the likelihood of r
given (q, P, σ2) is:

P(r|q, P, σ2) =
1

(2πσ2)K/2
exp

(
−

1
2σ2 ‖r − s‖2

)
(4.6)

where,

‖r − s‖2=
b KP c−1∑

i=0

P∑
n=1
(r(n + iP) − q(n))2

+

K−b KP cP∑
m=1

(
r
(
m + b

K
P
cP

)
− q(m)

)2

If (q̂, P̂, σ̂2) is the global maximizer of (4.6) over all possible triplets (q, P, σ2),
then P̂ is defined as the ML estimate of the period. This turns out to be the same
as projecting r onto each of the VP’s (4.2) for 1 ≤ P ≤ Pmax , where Pmax is the
largest period expected, and choosing the P for which πVP (r) (4.5) has the maximum
energy.

A major difficulty with the above formulation was that instead of the period itself, a
multiple of the period was being estimated. This is because,VP ⊂ VNP for N > 1.
To overcome this challenge, a heuristic modification is added to the maximizer of
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(4.6) to suppress larger periods compared to the smaller ones. If EP denotes the
energy of πVP (r), then instead of comparing the EP’s directly, [12] proposes to
compare the following:

GP = EP −
P
K
Φr(0) (4.7)

where, Φr denotes the autocorrelation function of r.

This same issue due toVP ⊂ VNP is encountered in the period estimation algorithms
proposed by Sethares and Staley in [13]. We will briefly discuss them next.

Sethares and Staley’s Periodicity Transforms
Independent of the ML framework, Sethares and Staley in [13] proposed several
methods that involve comparing the projection energies of the signal onVP’s. Unlike
in [12], where the signal was simultaneously projected onto the different VP’s, the
authors in [13] proposed several sequential projection schemes to overcome the
challenge caused by VP ⊂ VNP. The main idea is to project the signal onto
a particular VP, and if the projection is of significant energy, then the signal is
declared to have a period P component. The resulting residue is then projected
onto a different subspace VQ to search for a period Q component. This process
is continued until all the subspaces V1,V2, . . . ,VPmax are covered. The important
question is, in which order do we choose these subspaces for the projections?

The non-orthogonality between the various VP’s causes the projection energies
obtained in the algorithms of [13] to depend on the order in which we do these
projections. For example, consider Fig. 4.2(a), where we have three vectors x, a and
b. In Fig. 4.2(b), we project x on a first to obtain xa and then project the residue
x − xa onto b to give rab. Based on the relative sizes of xa and rab, we might declare
that x is closer to a than to b. But on the other hand, if we first project x on b
and then project the resulting residue on a, we get the vectors shown in Fig. 4.2(c),
which give us the exact opposite conclusion. How can we know a priori which order
of projections to choose? The various iterative algorithms presented in [13] can be
interpreted as sophisticated ways of selecting an appropriate order of projections.

To avoid this problem, Muresan and Parks in [14] proposed a decomposition of
periodic signals onto a set of orthogonal subspaces. Notice that if a and b were
orthogonal as shown in Fig. 4.3, then any order of projections gives us the same
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rba

Figure 4.2: An example to illustrate that the projection energies obtained on the
differentVP’s depend on the order of projections. Refer Sec. 4.2 for details.

xa

xb a

x
b

Figure 4.3: An example to illustrate that orthogonal subspaces result in unique
projections irrespective of the order of decomposition. Refer Sec. 4.2 for details.

decomposition. In fact, we can project x on both a and b simultaneously to get that
decomposition. We will discuss this in more detail next.

The EPS Method of Muresan and Parks
An exactly period-P signal was defined as follows in [14]:

Definition 4.2.2. Exactly Periodic Signals: A signal x(n) ∈ VP is of exactly period
P if its projection ontoVQ is zero for all Q < P. ♦

It was shown in [14] that the collection of all exactly period P signals is in fact a
subspace of dimension less than P. Such a subspace was called the Exactly Periodic
Subspace of period P (EPS(P)).

Moreover, the following two properties were noted for Exactly Periodic Subspaces:

1. Direct Sum Property: ⊕d |PEPS(d) = VP .

2. Orthogonality: EPS(P) ⊥ EPS(Q) when P , Q.



53

These two properties together ensure that if we take projections of a period P

signal x(n) onto the subspaces EPS(1) to EPS(Pmax), for some Pmax ≥ P, then the
projections can be non-zero only on those subspaces EPS(di), where di |P. This can
be used to estimate the period of the signal. Also, we do not have to do a sequential
process of projecting the signal on a subspace, and then projecting its residue onto
the next subspace, like in the algorithms of [13]. Since the subspaces are orthogonal
to each other, we can simultaneously project the signal on all of them (Fig. 4.3). In
practice though, when the signals are of finite duration, this orthogonality is only
approximately true. But if the signals are reasonably long, then the approximation
is good, as was demonstrated in [14].

Ramanujan and Nested Periodic Subspaces
The Ramanujan subspaces also satisfy the direct sum and orthogonality propoerties
of the EPSs. But recall from Chapter 2 that they also have the following two
properties:

1. Euler-structure: For every period P, the Ramanujan subspace SP has dimen-
sion φ(P).

2. LCM Property: Let xi1(n), xi2(n), . . . , xiK (n) be non-zero signals lying in the
Ramanujan subspaces Si1,Si2, . . . ,SiK respectively. Then, the sum xi1(n) +

xi2(n) + . . . + xiK (n) has its period given by2

P = lcm(i1, i2, . . . , iK) (4.8)

The significance of the Euler structure was unknown previously. In Sec. 4.4, we
will show that it has a fundamental significance in the context of unique periodic
decompositions. The LCM property on the other hand, gives a systematic way of
estimating the period from the projections. It tells us that the lcm of the periods of
those subspaces that have non-zero projections is exactly equal to P. For example,
if a signal x(n) has non-zero projections only on S2 and S3, we can infer from the
LCM property that its period must be 6.

To bring theNested Periodic Dictionaries formally into the context of our discussion,
we will define Nested Periodic Subspaces based on them in the following way:

2in general, the period of a sum of periodic signals can be either the lcm or a proper divisor of
it. Whenever we say lcm, it is a strong statement indicating that the period is not a proper divisor.
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Definition 4.2.3. Nested Periodic Subspaces (NPSs): Let T = {T1,T2, . . . ,TPmax }

be a set of subspaces such that Ti = span{Ci} for some NPM A = [C1 C2 C3 . . .].
Here, as in Sec. 3.1, each Ci represents the columns in A with period i. Then, T is
called as a set of Nested Periodic Subspaces.

Notice that in the above definition, we required that theNPMA contain columnswith
every possible period in the range 1 ≤ P ≤ Pmax . This is possible by choosing the
number of columns in A to be any multiple of lcm(1, 2, . . . , Pmax). The Ramanujan
Subspaces are special cases of NPSs. If T = {T1,T2, . . . ,TPmax } is a set of Nested
Periodic Subspaces such that Ti ⊥ Tj whenever i , j, then, for every i, Ti must
necessarily be the ith Ramanujan Subspace (Theorem 3.3.2). NPSs can be used for
period estimation in the following way:

Theorem 4.2.1. Period Estimation via NPSs: Let T = {T1,T2, . . . ,TPmax } be a set
of Nested Periodic Subspaces. For each i, let Ri denote a basis for Ti. Then,

1. Given any periodic signal x(n) with period P ≤ Pmax , it can be uniquely
expressed as a sum of the elements in ∪iRi.

2. If signals from Ri1,Ri2, . . . are involved in spanning x(n), then the period of
x(n) must be equal to lcm(i1, i2, . . .).

The proof follows from the fact that {R1,R2,R3, . . .} can be extended to form an
NPM, and then using Lemma 3.2.3.

While theNPSs also satisfy the direct sum property like the EPSs and the Ramanujan
subspaces, not all sets of NPSs are orthogonal. So how do we interpret the above
result in terms of our discussions on Fig. 4.2 and Fig. 4.3? The answer is that
period estimation using the NPSs was not based on taking projections along these
subspaces. Instead, it uses a different idea based on the fact that the NPSs are linearly
independent subspaces. Notice that in Fig. 4.2, if a and b are linearly independent,
then we can obtain a unique decomposition of x by completing the parallelogram as
shown in Fig. 4.4 instead. By comparing the sizes of the components, we can easily
estimate whether x was closer to a or to b. In practice, such a decomposition is
done, not using projections, but using dictionaries, as will be explained in Sec. 4.5.
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4.3 Insights into the Relationships Between Various Techniques
As mentioned in Sec. 7.1, most of the works discussed in the previous section have
so far been studied independent of each other. However, there are some interesting
theoretical connections between them that have been largely unexplored. This
section aims to fill this gap.

Notice that, as derived in [14], the EPSs are in fact the outcomes of a Gram Schmidt
orthogonalization of the subspaces used in [12], [13] and [25], namely theVP’s.

Relationship between EPSs and Ramanujan Subspaces
Although EPS(q) and Sq were formulated in completely different ways, it can be
shown that they are in fact the same subspaces. We derive this in the following
Theorem.

Theorem 4.3.1. EPS and Ramanujan Subspaces: EPS(P) is the same subspace
as the Pth Ramanujan Subspace SP. ♦

Proof. Let x(n) ∈ SP. Let Q < P. Using the direct sum property of the Ramanujan
subspaces, ⊕d |Q Sd = VQ. Since SP ⊥ Sd for all d < P, it follows that SP ⊥ VQ.
Since this is true for all Q < P, it follows that x(n) ∈ EPS(P). This implies that
SP ⊆ EPS(P).

Conversely, assume that x(n) ∈ EPS(P). Then, x(n) ⊥ Sd for every proper divisor
d of P. But x(n) ∈ VP (since EPS(P) ⊆ VP) and ⊕d |P Sd = VP. This implies
that x(n) ∈ SP. Hence, EPS(P) ⊆ SP. These two results together show that
SP = EPS(P). 5 5 5

The authors of [9], [18] and [14] were not aware of this connection. Moreover,
using the special properties of Ramanujan Sums, many more properties of these
subspaces such as the LCM property and the Euler structure were derived in [9] and
[18], which were previously unknown for the EPSs. For example, if a signal had
non-zero projections on EPS(6) and EPS(8), then previously, it was not possible to
say whether the period of the signal was 24, or a proper divisor of 24 (such as 12).
This is because, it was not known whether one could apply the LCM property for the
EPSs. However, using the equivalence between EPSs and the Ramanujan subspaces,
we can conclude that the periodmust be exactly equal to 24. Similarly, the dimension
of EPS(P) was noted to be less than P in [14], but unknown analytically. Using
Theorem 4.3.1, we can conclude that the dimension is in fact φ(P).
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Relationship between Ramanujan Subspaces and IIPFs
Apart from the EPSs, the Intrinsic Integer-Periodic Functions (IIPFs) introduced in
[30] can also be used to define the Ramanujan subspaces. Any periodic signal x(n)

with period P was defined to be a P-IIPF if, for every d |P, and for every integer l,

P
d −1∑
k=0

x(kd + l) = 0 (4.9)

IIPFs are related to the Ramanujan subspaces in the following way:

Theorem 4.3.2. IIPFs and Ramanujan Subspaces: The set of all P-IIPFs is the
Pth Ramanujan Subspace. ♦

Proof. Let x(n) be a signal inVP . Let d be a divisor of P. Then, saying that every
downsampled-by-d version of x(n) sums to zero in a period, is equivalent to saying
that 〈x, δ(s)d 〉 = 0 for all 0 ≤ s ≤ d − 1, where δ(s)d is defined in the following way:

δ
(s)
d (n) =


1 if n mod d = s

0 otherwise
(4.10)

Since {δ(s)d (n)}
d−1
s=0 forms an orthogonal basis forVd , it follows that x(n) ⊥ Vd . So,

a signal x(n) is a P-IIPF iff x(n) ⊥ Vd for every proper divisor d of P.

Now, we will show that if x(n) is a P-IIPF, then x(n) ∈ SP. If x(n) ⊥ Vd for every
proper divisor d of P, then since Sd ⊆ VP , it follows that x(n) ⊥ Sd for every
proper divisor d of P. From the direct sum property of Ramanujan subspaces, it
follows that x(n) ∈ SP.

To prove the converse, let y(n) be a signal in SP. We will prove that y(n) must be
a P-IIPF. From the orthogonality property of Ramanujan subspaces, y(n) ⊥ Sd for
every proper divisor d of P. From the direct sum property of Ramanujan sums, it
then follows that y(n) ⊥ Vd for every proper divisor d of P. So y(n) must be a
P-IIPF. 5 5 5

Relationship between Ramanujan Subspaces and NPSs
The Ramanujan Subspaces are special cases of NPSs. If T = {T1,T2, . . . ,TPmax }

is a set of Nested Periodic Subspaces such that Ti ⊥ Tj whenever i , j, then, for
every i, Ti must necessarily be the ith Ramanujan Subspace. The proof follows from
Theorem 3.3.2.
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Figure 4.4: An example to illustrate that one can obtain a unique decomposition
using parallelogram completion as long as the subspaces are linearly independent.
Refer Sec. 4.2 and Sec. 4.4 for details.

This completes the interrelationship between all the previous techniques. Unlike the
VP’s, the NPSs have a very special property: Any periodic signal can be uniquely
decomposed into its components along those subspaces. Are there more general
subspaces that have this property? This is explored in the next section.

4.4 Fundamental Properties of Subspaces That Admit Unique Periodic De-
compositions

The basic idea behind using NPSs (including EPS/Ramanujan subspaces) for pe-
riod estimation is as follows: A given periodic signal can be decomposed into its
components along a set of linearly independent subspaces, revealing its period (the
parallelogram completion idea of Fig. 4.4). These components turn out to be the
projections in the case of Ramanujan subspaces and the EPSs, due to their orthog-
onality. The parallelogram completion idea of Fig. 4.4 would not work when using
theVP’s since every periodic signal can be expressed in an infinite number of ways
as a sum of its components along the VP’s. This is due to the linear dependence
among the various VP’s3 A natural question then is as follows: Beyond the NPSs,
are there more general subspaces that have this linear independence property? An
analysis of this question reveals some surprising results. We start with the following
definition:

Definition 4.4.1. Linearly IndependentPeriodic Subspaces: LetG = {G1,G2, . . . ,GPmax }

be a set of subspaces such that the following hold:

1. Linear Independence: G is a linearly independent set of subspaces. That is,
if for each i, Ri is a linearly independent set of signals in Gi, then ∪iRi is a
linearly independent set of signals too.

3An easy way of seeing this linear dependence is using the fact thatVP ⊂ VNP, ∀N > 1.
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2. Direct Sum Condition: ⊕d |P Gd = VP.

Such a setG will be called a set of Linearly Independent Periodic Subspaces (LIPS).
♦

Notice that, unlike in the definitions of EPSs, Ramanujan Subspaces or the Nested
Periodic Subspaces, we have imposed very few conditions while defining LIPS here.
For example, we did not even insist that Gi must consist of period i signals. While
the linear independence condition in the above definition is motivated by the need for
unique periodic decompositions, the direct sum condition ensures that only those Ti,
with i |P, are involved in spanning a period P signal. The latter makes it convenient
to be able to estimate the period based on the indices of the subspaces along which
the signal has large components. It is easy to verify from the discussion in Sec. 4.2,
that the EPSs (equivalently Ramanujan Subspaces) and all other Nested Periodic
Subspaces are specific examples of subspaces that satisfy the conditions of being
LIPS.

We will now derive some fundamental properties of subspaces that satisfy the LIPS
conditions.

Linear Independence Necessitates Euler Structure
First, we prove the following theorem:

Theorem 4.4.1. Origin of the Euler-structure: Let BP be a basis forVP such that
for every divisor d of P, there exists a subset of BP that is a basis forVd . Then BP

must have exactly φ(d) vectors with period d, for every divisor d of P. ♦

Proof. Let d be a divisor of P. A basis forVd must consist of signals with periods
that are divisors of d, since each basis vectormust itself belong toVd . The rank of the
set of all signals inBP that have proper divisors of d as periodsmust be ≤

∑
di |d

di<d

φ(di)

(see Appendix 4.10). So for BP to contain a basis for the d dimensional space Vd ,
there must be at least d −

∑
di |d

di<d

φ(di) = φ(d) [24] linearly independent signals in
BP with period d. But the maximum number of vectors in BP must be P, and∑

d |P φ(d) = P [24]. So for each divisor d of P, there are exactly φ(d) vectors with
period d in BP. 5 5 5

In [23], it was shown that the Euler-structure of the NPMs leads to their nested
basis property (Sec. II-E). But the above theorem shows that the converse is also
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true. Namely, if A is a P × P matrix satisfying the nested basis property, then
Theorem 4.4.1 states that A must have exactly φ(d) columns with period d for every
d |P, making it an NPM.

We will now show that every set of LIPS must necessarily have the Euler-structure.

Theorem 4.4.2. The Euler-structure in LIPS: Let G = {G1,G2, . . . ,GPmax } be a
set of LIPS. Then for each i, Gi has to be a φ(i) dimensional subspace consisting of
period i signals only. ♦

Proof. For every i, let Ri denote a basis for Gi. It follows from the direct sum and
the linear independence conditions in Definition 4.4.1 that ∪d |iRd is a basis forVi.

We will first prove that Gi consists of period i signals only. It follows from the
direct sum condition of LIPS that Gi ⊆ Vi, and so Gi must consist of signals that
are periodic with period i or a proper divisor of i. To show that Gi consists of only
period i signals, (and not signals with periods that are proper divisors of i) we use
a proof by contradiction. Suppose there was a signal y(n) with period j in Gi such
that j < i and j |i. In that case, ∪dj | jRdj must be able to span y(n). But y(n) can
also be spanned by Ri, which is a basis of Gi. This violates the linear independence
condition in the definition of LIPS. Hence, Gi must consist of period i signals only.

To show that the dimension of Gi is φ(i), notice that if d |i, then ∪dj |dRdj , which is
a subset of ∪d |iRd , is a basis for Vd . So ∪d |iRd is a basis for Vi that satisfies the
conditions of Theorem 4.4.1. And since Ri must consist of period i signals only, it
follows that Ri must consist of exactly φ(i) period i signals. Hence, the dimension
of Gi must be φ(i). 5 5 5

The above Theorem shows that the Euler-structure is necessary when one tries
to design subspaces that offer unique decompositions for periodic signals. The
Nested Periodic Subspaces, by definition, have their dimensions given by the Euler
totient function (Definition 4.2.3). It follows from the properties of Nested Periodic
Matrices that that this leads to unique decompositions of periodic signals (see
Theorem 4.2.1). However, Theorem 4.4.2 gives us a converse result. Namely, it
shows that if one wants unique periodic decompositions, then the dimensions of the
subspaces must necessarily be given by the Euler totient function.

This leads us to suspect whether the Nested Periodic Subspaces (Definition 4.2.3)
are the only examples of subspaces that offer unique periodic decomposition. This
is indeed true, as shown by the following theorem:
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Theorem 4.4.3. NPSs are the only examples of LIPS: G = {G1,G2, . . . ,GPmax }

is a set of LIPS iff it is a set of NPS. ♦

Proof. For every i, let Ri denote a basis for Gi. Let L = lcm{1, 2, . . . , Pmax}.
And let HPmax+1,HPmax+2, . . . ,HL represent bases for the Ramanujan Subspaces
SPmax+1,SPmax+2, . . . ,SL respectively. Now, consider the set:

B = {R1,R2, . . . ,RPmax,HPmax+1,HPmax+2, . . . ,HL} (4.11)

If we form a matrix B whose columns are the signals in B, truncated to their first
L elements, then we can show that such a matrix is a Nested Periodic Matrix. The
three conditions of an NPM from Sec. 3.1 are met as follows:

• Conditions 1 and 2: From Theorem 4.4.2, we know that each Ri corresponds
to an L × φ(i) matrix consisting of period i signals. And by construction, the
Ramanujan Subspaces have the φ−structure.

• Condition 3: {R1,R2, . . . ,RPmax } is a linearly independent set because of the
linear independence condition in Definition 4.4.1 of LIPS. And the following
set:

{HPmax+1,HPmax+2, . . . ,HL} (4.12)

is also a linearly independent set because of the orthogonality of the Ramanu-
jan Subspaces. Moreover, from Theorem 4.3.1, {HPmax+1,HPmax+2, . . . ,HL}

is orthogonal to {R1,R2, . . . ,RPmax }. Hence, B in (4.11) has full rank L.

So, we have proved that G is a set of NPS according to Definition 4.2.3. 5 5 5

This Theorem shows that, although NPSs were proposed in [23] as basic generaliza-
tions of the Ramanujan Subspaces, especially inheriting their φ−structure in an ad
hoc fashion, they arise as the only subspaces that offer unique decompositions of pe-
riodic signals. This result will be used in Sec. 4.6 to prove some important properties
of dictionaries that span periodic signals (Theorem 4.6.3 and Corollary 4.6.1).

Importance of the correct choice of subspaces: An example
Let us now illustrate the concept of unique periodic decomposition using an ex-
ample. Consider a period 8 signal x(n), whose one period is given by the vector
[1, 2, 3, 3, 3, 3, 2, 1]. In Fig. 4.5(a) and (b), we have shown two possible
decompositions of this signal along the set of subspaces {V1,V2, . . . ,V8}:
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x(n) =
8∑

i=1
xi(n) (4.13)

where, for each i, xi(n) indicates the component alongVi. Due to the lack of linear
independence among these subspaces, we can obtain an infinite number of such
decompositions of the same signal. Notice that the LCM property does not apply to
the decomposition in Fig. 4.5(a). The LCM property, if blindly applied, estimates
the period to be lcm(2, 3, 6, 8) = 24, which is incorrect. This is because the VP’s
are not linearly independent.

Next, let us decompose the same signal along subspaces that offer unique periodic
decompositions. We used the Ramanujan subspaces {S1,S2, . . . ,S8} in Fig. 4.5(c)
and the Natural Basis subspaces {T1,T2, . . . ,T8} in Fig. 4.5(d). The Natural Basis
subspaces are an example of non-orthogonal NPSs, proposed in [23]. The decom-
positions shown in Fig. 4.5 are the only possible decompositions of x(n) along these
subspaces. In Fig. 4.5(c), the subspaces with non-zero components are S4 and S8,
while in Fig. 4.5(d), they are T2, T4 and S8. Notice that the LCM property correctly
predicts the period of the signal as 8 in each case. In these plots, we have ignored
the period 1 components, since it is just DC.

4.5 From Subspaces to Dictionaries
Previously, there have been three works that proposed dictionaries for period estima-
tion. These are Nakashizuka’s work [25], Vaidyanathan and Pal’s Farey dictionary
[26], and the Nested Periodic Dictionaries (NPDs) of [23]4. While each of these
works analyzes a specific type of dictionary, there can be several fundamental ques-
tions that apply to any generic dictionary that spans periodic signals. For example,
(a) what is the provably minimum required dictionary size to represent periods
1 ≤ P ≤ Pmax? (b) For each period P, what should be the minimum dimension
of the subspace of atoms representing the Pth period itself? (c) What is a min-
imal set of conditions on the dictionary so that it yields a unique representation
for a periodic signal? In order to answer such questions, we need a much more
general framework than in [25], [26] and [23]. In this section, we formulate such
a framework by proposing a very general definition of a periodic dictionary, that in
particular captures [25], [26] and [23] as special cases. We also derive an important

4The Farey dictionary is a special case of the Nested Periodic Dictionaries.
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Figure 4.5: Parts (a) and (b): Two different decompositions of a period 8 signal
onto {V1,V2, . . . ,V8}. Part (a) involvesV2,V3,V6 andV8, while Part (b) involves
V2, V4 and V8. Clearly, it is difficult to determine the component periods in the
signal using these subspaces. Notice that the LCM property results in an incorrect
period estimate in Part (a). Parts (c) and (d) use subspaces that offer unique periodic
decompositions: Ramanujan Subspaces in Part (c) and the Natural Basis subspaces
in Part (d). Both involve only subspaces with period 8 and its divisors. The LCM
property correctly identifies the period as 8 in both these cases. Please see Sec. 4.4
for a discussion.
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new property of the Farey dictionary. In the next section, we use this new definition
of periodic dictionaries to answer the questions mentioned above.

We will first discuss the connection between dictionaries and the subspace models
discussed in the previous sections. Suppose we want to estimate the period of a
signal x(n), with the prior knowledge that the period lies in the range 1 ≤ P ≤ Pmax .
The main idea in the previous sections is that we can design a set of subspaces
T = {T1,T2, . . . ,TPmax } such that x(n) lies in their union. To find the period of x(n),
we need to find the exact subset of these subspaces that are involved in spanning
x(n).

A popular approach to this problem is to use dictionaries. Let us assume that we
have N consecutive samples of x(n) available to us in the form:

x = [x(0), x(1), . . . , x(N − 1)]T (4.14)

For every i, let Ri denote a basis for Ti. We can form a dictionary A, whose columns
are the signals in ∪iRi, truncated to the data length N . That is:

A = [R1 R2 . . . RPmax ] (4.15)

Then, the following system of equations will always have a solution for y:

x = Ay (4.16)

By looking at the locations of the non-zero entries in y, we can find out those
columns of A (and hence the subspaces in T) that are involved in spanning x(n).
This can be used to estimate the period, as was done for NPDs in Chapter 3.

Typically though, for practical data lengths, A is a fat matrix. So (4.16) can have
multiple solutions for y. How do we solve for the one that involves subspaces with
period P and its divisors? Several techniques have been proposed in the past for
this, ranging from the sparsity based techniques from the compressive sensing world
([11], [38]–[41] etc.), to simple l2 norm convex programs with closed form solutions
[23] (Chapter 3).

Periodic Dictionaries - A General Definition
We begin our analysis with the following general definition of a periodic dictionary,
that, in particular, captures all the previously proposed dictionaries of [25], [26] and
[23] as special examples.
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Definition 4.5.1. Periodic Dictionaries: A set of signals B is said to be a Periodic
Dictionary of order Pmax if, given any periodic signal x(n) whose period P lies in
the range 1 ≤ P ≤ Pmax , x(n) is representable in terms of a linear combination of
the signals in B. ♦

Notice that the signals in a periodic dictionary are infinitely long, defined over all
values of the time index n. One may ask an important question in this regard. In
practical applications, since we only have finite duration signals, requiring that our
dictionaries span the whole of x(n) may be restrictive. If x(n) was available for
n ∈ [1, 2, . . . , N], then, compared to the number of dictionaries that can span the
whole of x(n), we might be able to construct many more dictionaries that span x(n)

only over that finite length N duration.

Indeed, there can be many such dictionaries that work for specific data lengths.
But again, in practice, the length of the available data might be arbitrary, or even
unknown a priori. So it is desirable to have dictionaries that work for arbitrary data
lengths, in which case, it is necessary that it span periodic signals completely, for all
time indices n ∈ Z. If a dictionary B can span a periodic signal x(n) over all n ∈ Z,
then in particular, it can also span this signal over n belonging to any subset of Z.

Examples of Periodic Dictionaries
Definition 4.5.1 captures all the previously proposed examples of dictionaries that
span periodic signals. For example, in [25], Nakashizuka constructed a periodic
dictionary as follows. The signals obtained by periodically extending the columns
of a P× P identity matrix form a basis forVP. By collecting together such columns
from identity matrices of all sizes from 1 to Pmax , a periodic dictionary B can be
obtained. An example for Pmax = 4 is shown below:

B =



...
...

...
...

...
...

...
...

...
...

1 1 0 1 0 0 1 0 0 0
1 0 1 0 1 0 0 1 0 0
1 1 0 0 0 1 0 0 1 0
1 0 1 1 0 0 0 0 0 1
1 1 0 0 1 0 1 0 0 0
1 0 1 0 0 1 0 1 0 0
...

...
...

...
...

...
...

...
...

...



(4.17)
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The first column has period 1, the second and third columns have period 2, fourth to
sixth have period 3 and so on. We refer to the columns as atoms. It will be shown
in the following that this dictionary has a lot of redundancy. The number of atoms
in B is given by:

N(Pmax) =

Pmax∑
P=1

P =
Pmax × (Pmax + 1)

2
(4.18)

We will refer to this dictionary as the Identity dictionary.

Notice that, instead of using the identity matrix to generate a basis forVP, one may
use any full rank P × P matrix. In [26], the authors chose the P × P DFT matrix for
this purpose. Doing so reduces the number of atoms in the dictionary significantly,
since many of the DFT matrices of different sizes give rise to the same columns. It
was shown in [26] that removing the repeating copies gives a dictionary of size:

N(Pmax) =

Pmax∑
P=1

φ(P) =
3P2

max

π2 + O(Pmax log Pmax) (4.19)

This dictionary was named as the Farey dictionary in [26]. The difference between
(4.18) and (4.19) goes as O(P2

max) [24]. We will now derive an important new
property of the Farey dictionary:

Theorem 4.5.1. Uniqueness of The Farey Dictionary: A set of complex exponen-
tials5 B will be a periodic dictionary of order Pmax , if and only if, for each period
P in 1 ≤ P ≤ Pmax , B contains the φ(P) unique complex exponentials that are
periodic with period P, namely {e j 2πk

P n : gcd(k, P) = 1}. ♦

Proof. Consider a particular P in 1 ≤ P ≤ Pmax . One can show that among the set
of all possible complex exponentials, there are exactly φ(P) complex exponentials
with period P. These are in fact the set {e j 2πk

P n : gcd(k, P) = 1}. Suppose B does
not contain one of these φ(P) complex exponentials. Then clearly, B does not have
a basis for VP since none of the other complex exponentials can span this missing
complex exponential.

Moreover, if for each P in 1 ≤ P ≤ Pmax , all the φ(P) P-periodic complex exponen-
tials are present in B, then the set of all complex exponentials with periods that are
divisors of P are in fact the columns of the P × P DFT matrix. So they will form a
basis forVP. 5 5 5

5 A complex exponential is a signal of the form x(n) = e jωn
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The above result says that the Farey dictionary must necessarily be a subset of any
periodic dictionary that consists entirely of complex exponentials. This result is
of significance when one tries to connect the Farey dictionary with recent works
on sinusoidal frequency estimation, such as [42] and [43]. These works target
the problem of estimating the frequencies in a mixture of complex exponentials.
Dictionaries consisting of complex exponentials as atomswere used for this purpose,
with their frequencies lying on a uniform grid over 0 to 2π. Since any periodic
signal is a mixture of complex exponentials (Fourier series), in principle, one
might consider using such techniques for period estimation. However, as shown in
Theorem 4.5.1, a complex-exponential dictionary for periodic signals has to have a
nonuniform grid as demonstrated in Fig. 4.1.

In [23], the authors showed that the Farey dictionary is an example of a more
general set of dictionaries called the Nested Periodic Dictionaries (NPDs). They
are based on the NPMs (Sec. 3.1). Consider an NPM A with number of columns
= lcm(1, 2, . . . , Pmax). LetB be the set of signals obtained by periodically extending
those columns of A that have periods in the range 1 to Pmax . It follows from the
properties of NPMs that B is actually a periodic dictionary of order Pmax . Such
dictionaries were called as Nested Periodic Dictionaries (NPDs). NPDs have the
same size as a Farey dictionary. In fact the Farey dictionary is also an NPD, since the
DFT matrix is itself an NPM [23]. Notice that the NPDs have exactly φ(P) signals
with period P for every P in the range 1 ≤ P ≤ Pmax by construction. An example,
the Natural Basis dictionary for Pmax = 4, is shown below. Note its smaller size
compared to (4.17).

B =



...
...

...
...

...
...

1 1 1 0 1 0
1 0 0 1 0 1
1 1 0 0 0 0
1 0 1 0 0 0
1 1 0 1 1 0
1 0 0 0 0 1
...

...
...

...
...

...



(4.20)

4.6 Fundamental Properties of Periodic Dictionaries
In this sectionwewill show that dictionaries satisfyingDefinition 4.5.1 automatically
satisfy certain fundamental properties. In particular, these properties shall apply to
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the dictionaries of [25], [26] and [23].

Minimum Number of Atoms
Let us first look at the number of signals a periodicity dictionary is required to have:

Theorem 4.6.1. Minimum number of atoms needed: Any periodicity dictionary
of order Pmax must have at least

∑Pmax

P=1 φ(P) number of linearly independent signals.
♦

Proof. The signals in B must be able to span the complex exponentials in the
Farey dictionary. But the complex exponentials in the Farey dictionary are linearly
independent signals. SoBmust contain at least as many linearly independent signals
as in the Farey dictionary, namely,

∑Pmax

P=1 φ(P) signals. 5 5 5

Since the Nested Periodic Dictionaries (NPDs) satisfy Definition 4.5.1, and fur-
thermore have

∑Pmax

P=1 φ(P) atoms, it follows from Theorem 4.6.1 that the NPDs are
examples of minimum size dictionaries for periodic signals.

The Basis Inclusive Property
In [25], [26] and [23], the dictionaries have a special feature. For everyVP, there is
a subset of the dictionary that is a basis for VP. We shall refer to this as the basis
inclusive property. Is this a necessary requirement for a periodic dictionary? The
answer is no. For example, consider the Farey dictionary. The basis for V1 is the
signal: [

u(n)
]
=

[
. . . 1, 1, 1, 1, 1, 1, . . .

]
(4.21)

while the basis forV2 are the signals:[
u(n)

v(n)

]
=

[
. . . 1, 1, 1, 1, 1, 1, . . .

. . . 1, −1, 1, −1, 1, −1, . . .

]
(4.22)

As discussed earlier, the Farey dictionary is a linearly independent set. Replacing a
vector in a linearly independent set by its sum with another element in the same set
doesn’t change the linear independence or the span of that set. So, if we replace u(n)

by u(n) + v(n) in the Farey dictionary, we will still have a valid periodic dictionary.
But u(n) + v(n) is the vector:[

. . . 2, 0, 2, 0, 2, 0, . . .
]

(4.23)
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And so this new periodic dictionary no longer has any basis forV1. This illustrates
that we can have a periodic dictionary that does not contain a basis for everyVP, in
1 ≤ P ≤ Pmax .

Nevertheless, the basis inclusive property is very useful for support based period
estimation. It ensures that all period P signals can be spanned by the same subset
of atoms in the dictionary. If the dictionary does not contain a basis for VP, then
different period P signals might require different supports in the dictionary, making
support based period estimation difficult. The following result shows an interesting
connection between the basis inclusive property and the Euler structure:

Theorem 4.6.2. Basis inclusivity and the Euler structure: Let B be a periodicity
dictionary of order Pmax satisfying the basis inclusive property. Then for each P

in 1 ≤ P ≤ Pmax , B must contain at least φ(P) linearly independent signals with
period P. ♦

Proof. Consider a P such that 1 ≤ P ≤ Pmax . A basis for VP would consist of
signals with periods that are divisors of P, since each basis vector must belong toVP.
The rank of the set of all signals inB that have proper divisors of P as periodsmust be
≤

∑
d |P
d<P

φ(d) (follows from Theorem 4.10.1 in Appendix 4.10). So for B to contain
a basis for the P dimensional spaceVP, there must be at least P−

∑
d |P
d<P

φ(d) = φ(P)

linearly independent signals in Bwith period P, since
∑

d |P φ(d) = P for any integer
P > 0 [24]. 5 5 5

The LCM property
Consider the identity dictionary shown in (4.17). Let c2 and c3 be the second and
third columns of this dictionary. Consider the linear combination x = α1c2 + α2c3.
Clearly, x will have period 1 if α1 = α2, and period 2 otherwise. This illustrates that
one cannot determine the period of x just by looking at its support on this dictionary.
One needs to know the values of the coefficients α1 and α2 as well. Even then, in
general, there is no simple mapping that relates the coefficients and the support of a
signal to its period.

However, if one uses a Nested Periodic Dictionary (NPD) [23], then there is an
easy mapping from the support of a signal to its period. More so, this mapping is
independent of the coefficients. For example, if a signal is a linear combination of a
set of atoms of an NPD, then its period must be equal to the LCM of the periods of
those atoms. This clearly makes support based period estimation very convenient.
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Under what conditions does a generic periodic dictionary have the LCM property?
Our result in Theorem 4.6.3 shows that any periodic dictionary that satisfies (i) the
basis inclusive property and (ii) linear independence of the underlying subspaces
corresponding to different periods, will automatically have the LCM property.

Theorem 4.6.3. Let B be a periodic dictionary of order Pmax , satisfying the basis
inclusive property. Further, suppose the periodic signals forming the atoms of the
dictionary are linearly independent. Then, if x(n) is a linear combination of a subset
of atoms in B, then the period of x(n) has to be the lcm of the periods of those atoms
(i.e., it cannot be a proper divisor of this lcm). ♦

Proof. From Theorem 4.6.2, we know that Bmust contain at least φ(P) signals with
period P for each P in 1 ≤ P ≤ Pmax . But if it contains > P signals with period
P, then the total number of signals in B that belong to VP would be greater than∑

d |P φ(d) = P. This is against B being a linearly independent set. Hence, B will
have exactly φ(P) signals with period P.

Now, let TP denote the span of all period P signals in B. Then, it is easy to verify
that T = {T1,T2, . . . ,TPmax } is a set of LIPS (Definition 4.4.1). However, every set
of LIPS must necessarily be a set of NPSs (from Theorem 4.4.3). Condition 2 in
Theorem 4.2.1 completes the proof. 5 5 5

The proof of this result reveals an important corollary. In [23], a Nested Periodic
Dictionary was essentially defined as follows: A set of linearly independent signals
containing exactly φ(P) signals with period P for every P. The basis inclusive
property and the LCM property for the NPDs were derived as consequences of this
definition.

The above proof on the other hand, shows that the basis inclusive property and the
linear independence condition make it necessary for the dictionary to have exactly
φ(P) atoms periodic with period P, for every P. This leads to the following corollary.

Corollary 4.6.1. The NPDs are the only dictionaries that satisfy the basis inclusive
property and the linear independence conditions. ♦

The Notion of Union of Subspaces
At this point, we would like to explain the phrase “union-of-subspaces” which
appears in many of our discussions. A signal with a particular period belongs to a
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certain subspace of the column space of a periodic dictionary, defined by a subset
of atoms from the dictionary. The problem of identifying the period, or a set of
hidden periods can be regarded as the problem of identifying this subspace from
the measured data x (4.16). Before this subspace has been identified, the signal is
therefore considered to belong in the union of the various subspaces representing
various possible periods. For example, a signal whose period is known to belong
to the set 1 ≤ P ≤ Pmax , lies in the union of the subspacesV1,V2, . . . ,VPmax . The
period identification problem is thus solved by extracting a specific subspace from
this union of subspaces to best fit the measured data.

4.7 Effect of Dictionary Redundancy on Period Estimation: A Numerical
Example

In this section, we demonstrate the practical importance of less redundancy in
periodic dictionaries using an example. Wewill use periodic dictionaries to estimate
the period of a noisy segment of a periodic signal, and also try to recover the original
signal. We will use the convex program in Eq. (3.24) for recovering the signal’s
support. In the following example, we compare two dictionaries:

• The Ramanujan dictionary (an NPD proposed in [23]), which, according to
Theorems 4.6.1 and 4.6.2, is a least redundant dictionary, and

• The Identity dictionary shown in (4.17).

A Period Estimation Example
Fig. 4.6(a) shows a randomly generated period 6 signal of length 56 samples.
Fig. 4.6(b) shows a noisy version of the same signal (AWGN, SNR = 0dB). We
solved (3.24), with x being the noisy signal vector, f (P) = P2, and Pmax = 40.
Let y? denote the optimal solution of (3.24). Fig. 4.7 show the strength vs period
plots, which, for every period, show the sum of the squares of the entries in y? that
correspond to columns of A with that particular period. Fig. 4.7(a) shows the results
for the Identity dictionary, while Fig. 4.7(b) shows the same for the Ramanujan
dictionary. In Fig. 4.7(b), the prominent peaks are at periods 2, 3 and 6. Using
the LCM property of the NPDs, we can conclude that the signal has period 6. The
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(a) Original Signal

(b) Noise Corrupted Version

(c) Recovered Signal 

Ramanujan Dictionary,  T=0.15

(d) Recovered Signal 

Identity Dictionary,  T=0.15

(e) Recovered Signal 

Identity Dictionary,  T=0.525

(f) Recovered Signal 

Identity Dictionary,  T=0.90

Figure 4.6: Effect of Redundancy on Signal Recovery: Part (a) - A randomly
generated, noiseless, period 6 signal of length 56 samples. Part (b) - A noisy version
of the signal in Part (a) (AWGN with SNR = 0dB). Part (c) - Reconstructed signal
using the Ramanujan dictionary, with the threshold factor T = 0.15. Parts (d), (e)
and (f) - Reconstructed signals using the Identity dictionary, with the threshold factor
T being 0.15, 0.525 and 0.9 respectively. Please see Sec. 4.7 for the corresponding
reconstruction errors and more details.
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T = 0.9

T = 0.525

T = 0.15 T = 0.15

(a) (b)

Identity Dictionary Ramanujan Dictionary

Figure 4.7: Parts (a) and (b) - Strength vs Period plots using the Identity and
RamanujanDictionaries respectively for the signal shown in Fig. 4.6(b), after solving
(3.24). The dotted lines indicate the thresholding parameter T discussed in Sec. 4.7.

Identity dictionary on the other hand has a strong peak at period 6, but there are
several spurious peaks, such as at periods 9 and 11, and cannot therefore identify
the period correctly. This is due to the high amount of linear dependence between
the underlying subspaces corresponding to different periods in this dictionary. For
instance, the period 6 and period 9 subspaces in the Identity dictionary, namelyV6

and V9, have an entire subspace of dimension 3 in common. Even if the Identity
dictionary had shown the same periods as the NPDs, one cannot justify the use of
the LCM property in this case, as explained in Sec. 4.6.

A Signal Recovery and Denoising Example
A simple way to do signal denoising using a periodic dictionary is to replace the
solution y?with a thresholded version, and reconstruct a cleaner version of x. Let E0

be the height of the largest peak in the strength vs period plot. Let {P1, P2, . . . PN }

be the periods whose strength is more than T × E0 in the strength vs period plot,
where T is a threshold parameter. We may now retain in y? only those entries,
which correspond to periods {P1, P2, . . . , PN }, and set everything else to 0. Let the
resulting vector be denoted as yth. Then, the recovered signal is:

x̂ = A × yth (4.24)

Fig. 4.6(c) shows the recovered signal using the Ramanujan dictionary. Notice that
it looks very similar to the original noiseless signal in Fig. 4.6(a). The signal to
reconstruction error ratio was found to be 10dB. The threshold T was chosen as
0.15, which, through numerous simulations, was found to perform well for most
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examples using this dictionary. This threshold is shown on the strength vs period
plot in Fig. 4.7.

Fig. 4.6(d) shows the recovered signal using the Identity dictionary, and T = 0.15.
Notice from Fig. 4.7 that this threshold chooses a number of incorrect periods due to
the several spurious peaks present in the plot. Accordingly, the recovered signal in
Fig. 4.6(d) does not resemble the original signal. The signal to reconstruction error
ratio in this case was 0.8 dB. Increasing T to around 0.5 does not help much, and
results in the recovered signal shown in Fig. 4.6(e). The resulting reconstruction
error has an SNR = 0.2 dB. Choosing a threshold of 0.9 would cause only the period
6 component to be chosen in Fig. 4.7. However, even in this case, the recovered
signal (shown in Fig. 4.6(f)) does not resemble the original signal well enough
(Recovery error SNR = 1.7 dB). This is because, the period 6 component of the
original signal must have been spread over several other subspaces such asV9, that
are linearly dependent withV6.

This example clearly demonstrates that having linearly independent subspaces, and
less redundancy in the union-of-subspaces model, is beneficial for period estimation
and signal recovery.

4.8 The Case of Mixtures of Periodic Signals
Before concluding this chapter, we would like to point out that all the results in this
chapter also apply to the case of mixtures of periodic signals. For example, suppose
we had a mixture of periodic signals, where the period of each component lies in the
range 1 ≤ P ≤ Pmax . Such a mixture may not even “look" periodic if the data length
is smaller than the lcm of the hidden periods. References [13], [14], [18], [23], [25]
show examples of estimating the periods of the components in such mixtures using
projection based techniques and dictionaries.

In this context, if one were to ask, what is the minimum number of atoms required
in a dictionary to span such periodic signal mixtures, then the answer is again given
by Theorem 4.6.1. The basis inclusive property, described in Sec. 4.6, is once again
important to be able to infer the component periods in a signal from its support
on the dictionary. Without it, different periodic signal mixtures that have the same
component periods, might require very diverse supports, making support based
period estimation difficult. Imposing the basis inclusive property on the dictionaries
results in the Euler structure, as proved in Theorem 4.6.2.

Sec. 4.6 showed that the LCM property of periodic dictionaries is a consequence
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of (i) the basis inclusive property, and (ii) linear independence of the underlying
periodic subspaces. In the context of estimating the component periods in a mixture
of periodic signals, one needs a slight generalization of the LCM property. To see
this, let us consider a simple example. If a signal was a mixture of period 3 and
period 8 signals, then such a signal would have peaks at periods 1, 2, 3, 4, and 8 in
the strength vs period plot, using an NPD [23]. Directly using the LCM property
would reveal that the periodic signal mixture has a net period of 24, which is in fact
correct. However, the set {1, 2, 3, 4, 8} can be divided into two subsets {1, 3} and
{1, 2, 4, 8}, and by using the LCM property on each of these subsets, we can infer
that that the signal is actually a sum of period 3 and period 8 signals. Although this
process is intuitive, a careful formulation of the estimation of hidden periods shall
be presented in an upcoming work, since it requires a much deeper discussion.

The importance of least redundant dictionaries becomes magnified in the context
of mixtures of periodic signals. This is because, in this case, the strength vs period
plots inherently have more peaks even when there is no noise (due to a larger number
of periodic components). The presence of spurious peaks due to linear dependence
between the underlying subspace, such as those in Fig. 4.7(a), would make the
identification of hidden periods very complex.

4.9 Conclusion
This chapter derived several fundamental properties of union-of-subspaces models
for periodic signals. Previously, several specific examples of such subspaces were
proposed in various works, and their properties had been analyzed largely in an
independent fashion. This chapter brings together all such subspace models un-
der one unifying framework, deriving not only some important interrelationships
between them, but also a number of new properties that apply generically to any
union-of-subspaces model for periodic signals. A number of results relating to
various aspects of such subspace models, such as unique periodic decompositions,
linear independence of the subspaces, minimum dimensionality, the role of the Euler
totient function, the origin of the LCM property etc. were derived. In the context
of dictionaries, a similar unifying analysis was shown to reveal several interesting
properties such as the minimum required size of a dictionary, the minimum number
of atoms required with each period, sufficient conditions for period estimation from
support information, and so on. Finally, the importance of reducing redundancy in
the subspaces was demonstrated using a signal recovery example.
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4.10 Chapter Appendix
Computing 〈x, y〉 in practice
Notice that (4.4) seems to requires us to know the values of x(n) and y(n) for all
time indices n. However, if the periods of x(n) and y(n) are known a priori, say Px

and Py respectively, then (4.4) reduces to:

〈x, y〉 =
1
K

K−1∑
n=0

x(n)y∗(n) (4.25)

where K = lcm(Px, Py). Generally, in many practical applications where 〈x, y〉
is to be computed, the period of only one of x(n) or y(n) is known a priori. For
example, x(n) could be a signal whose period is to be estimated, while y(n) is a
basis vector of some periodic subspace with a known period Py. Further, x(n) is
typically available only over a finite data length, say L samples (where L need not
be a common multiple of Px and Py). In that case, (4.4) is approximated by the
following in [12]–[14]6:

〈x, y〉 =
1
L′

L ′−1∑
n=0

x(n)y∗(n) (4.26)

where L′ = Py b
L
Py
c. It was observed in [13] and [14] that (4.26) is a good approxi-

mation to (4.4) when the data length is sufficiently large.

The dictionary based techniques proposed in [23] and [25] do not need to compute
any inner products between periodic signals. So an approximation of (4.4) is not
needed in their formulation.

The Nested Basis Property of NPMs
The following theorem was used in proving Theorem 4.4.1, to show that the NPMs
are the only square matrices that satisfy the Nested Basis Property. It was also
used in Theorem 4.6.2 to show that the Euler structure is fundamental to periodic
dictionaries.

Theorem 4.10.1. Let B be a set of periodic signals whose periods are proper
divisors of P. Then the maximum number of linearly independent signals in B is
= P − φ(P). ♦

Proof. Consider any P × P Nested Periodic Matrix A. The columns of A that have
proper divisors of P as periods, when periodically extended, must be able to span the

6A slight modification of (4.26), namely 〈x, y〉 = 1
L

∑L−1
n=0 x(n)y∗(n) is used in [12].
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signals in B. There are
∑

d |P
d<P

φ(d) = P − φ(P) such (linearly independent) columns
of A. Hence the number of linearly independent signals in B must be less than or
equal to P − φ(P). 5 5 5
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C h a p t e r 5

THE RAMANUJAN FILTER BANK AND ITS APPLICATIONS

In the previous chapters, we introduced techniques based on projections and dictio-
naries using union-of-subspaces models for periodic signals. One of the limitations
of such methods is when dealing with time-varying periodic behavior. For example,
to use them for signals such as chirps, we will have to break the signal into multiple
blocks and apply these methods on each block separately. This can be computa-
tionally expensive. Moreover, it would be beneficial to use smaller block lengths
for detecting smaller periods and larger block lengths for detecting larger periods to
obtain good localization. This cannot be easily done using dictionaries.

In this chapter, we propose an elegant way to address this problem using a new filter
bank structure. This filter bank, which we call the Ramanujan Filter Bank (RFB),
can be derived in two ways. First, we will derive it in a fundamental manner, starting
with the properties of Ramanujan sums. The second approach is a heuristic one,
which makes insightful connections with the dictionary based methods of Chapter 3.
We will present both of these in the following. The RFB yields a non-uniform tiling
of the time vs period plane, similar in spirit to the wavelet tiling of the time frequency
plane. But it is fundamentally different from the wavelet tiling as we shall see.

We will illustrate the advantages of the RFB using three different applications:
Protein repeats, DNA micro-satellites and Absence seizures.

5.1 The Ramanujan Filter Bank
The RFB is a collection of filters as shown in Fig. 5.1 (a). for every integer q > 0,
the qth RFB filter has the following impulse response:

hP = {cP(0), cP(1), . . . , cP(LP − 1)} (5.1)

That is, it is the Pth Ramanujan sum cP(n), truncated to L complete periods for
some integer L.

To see how the RFB can be used for period estimation, consider the following
theorem:

Theorem 5.1.1. Any periodic signal x(n) can be expressed as a sum of exponentials
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x(n) h1(n)

h2(n)

h3(n)

(a) (b)

(c) (d)

Figure 5.1: Part (a) - Block diagram of the Ramanujan Filter Bank. Part (b) - An example
of the impulse response of an RFB filter, h10(n). Part (c) and (d) - Frequency responses of
h10(n) for L = 5 and L = 20 respectively.

in a unique way as

x(n) =
K∑

i=1
αie

j 2πki
qi

n
αi , 0 (5.2)

where ki and qi are integers satisfying (ki, qi) = 1 ∀i. The period of x(n) is exactly
equal to lcm{qi}, rather than a proper divisor of it.

Proof. Eq. 5.2 is just the Fourier series expansion of x(n). The essence of the proof
is to note that e j 2πki

qi
n belongs to the qth

i Ramanujan subspace when (ki, qi) = 1, and
to then use the LCM property of Ramanujan sums (See Chapter 2 or Theorem 12
of [9]). 5 5 5

Suppose x(n) is a signal that is periodic with period P. It can be expressed as a sum
of complex exponentials in the form of (5.2) in a unique way through its Fourier
series expansion:

x(n) =
P∑

k=1
αk e j 2πk

P n, αk =
1
P

P∑
n=1

x(n)e− j 2πk
P n (5.3)



79

by reducing each k/P to its lowest form. From Theorem 5.1.1 and (5.3), to estimate
the period of x(n) we need to find among the set of all frequencies of the form:{

2πki

qi
: (ki, qi) = 1

}
(5.4)

the ones at which the signal’s spectrum has non-zero energy. We can then take the
lcm of the periods qi of those complex exponentials as an estimate for the signal’s
period.

This is exactly what is happening in the RFB as the length of the filters tends to
infinity. The spectrum of the qth

i Ramanujan filter with impulse response cqi (n) is
non-zero only at the frequencies shown in (5.4) (Fig. 5.1 (c) and (d)). So its output
will be non-zero if and only if x(n)’s decomposition into the form (5.2) has a qi

periodic exponential. So taking the lcm of the indices of those Ramanujan filters that
have non-zero outputs (the lcm property) is indeed a valid estimate for the period of
the signal.

In practice though, we cannot use infinitely long filters since they would provide no
localization for time varying periodicity. Instead, we truncate each Ramanujan filter
to L repeats. In the frequency domain, this tends to spread out the spectrum a little as
shown in Fig. 5.1 (c) and (d). A large L will yield more accurate period estimates,
while a smaller L will result in better time localization. This is a fundamental
trade-off that one has to deal with when using FIR Ramanujan filters.

We will now show how to derive the RFB using the dictionaries of Chapter 3.

5.2 Connections to Dictionaries
Among the different choices of periodicity matrices for constructing the dictionary,
we specifically consider the Ramanujan dictionary. We consider the l2 norm based
convex program in (3.24). Looking more closely at the form of its leftinverse in
(3.26),

P = D−2AT (AD−2AT )−1 (5.5)

we noticed that its rows have an interesting pattern. Similar to (the transpose of) the
dictionary itself, the rows of the left-inverse seem to be periodic, with exactly φ(P)
rows with period P. For instance, Fig. 5.2 shows a section of the first 50 rows of a
left-inverse matrix obtained from a Ramanujan dictionary with parameters N = 200
and Pmax = 200. Clearly, the first row has period 1, the second has period 2, the third
and fourth have period 3 and so on. Moreover, for many of the periods, the φ(P)
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Figure 5.2: The first 50 rows of the Pseudo-inverse matrix in (3.26) for N = 200 and
Pmax = 200.

rows corresponding to them are approximately shifted versions of each other. Such
a strong pattern raises the question if we could directly design suitable ‘leftinverses’
with the same structure without having to formulate it as an optimization problem
like (3.24). For instance, we experimentally observed that the following expression
instead of (3.26) gives equally good results (see Fig 5.3):

y? = D−1AT x (5.6)

Using has an advantage. We can implement it efficiently using a filter bank. To
see this, consider the case when the input data is of infinite length (streaming data).
One way to process the signal in that case is to apply on successive input blocks of
length N , each shifted by one sample. When we use the Ramanujan dictionary, for
every period P we are taking the inner product of the input blocks with the following
φ(P) vectors (assuming that N , the data length, is reasonably larger than the signal’s
period P):

C(P0) =
[
cP(0) cP(1) . . . cP(N − 1)

]
(5.7)

C(P1) =
[
cP(1) cP(2) . . . cP(N)

]
(5.8)

and so on till C(Pφ(P) − 1), where cP(n) represents the Pth Ramanujan sum. After
dividing these inner products by the penalty function f (P), we sum their squares to
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(b)(a)

Figure 5.3: Parts (a) and (b)- Strength vs period plots for a period 70 signal that was
generated as a sum of period 7 and period 10 signals. Part (a) shows the plot obtained by
using (3.26), and Part (b) shows the plot obtained by using (5.2).

define the strength of that period in Fig. 5.2 (b):

yP =

φ(P)−1∑
i=0

����� 〈x,C(i)P 〉

f (P)

�����2 (5.9)

Notice that the C(i)P ’s are periodic vectors with period P. Moreover, they are nearly
shifted versions of the same vector C(0)P . Based on this observation, we propose a
slightly modified implementation for (5.9):

yP(n) =
n∑

i=n−φ(P)+1

���� x ∗ hP(i)
f (P)

����2 (5.10)

where x ∗ hP denotes convolution and hP is a filter with impulse response:

hP = {cP(0) cP(−1) . . . cP(−LP + 1)} (5.11)

for some integer L. That is, hP consists of L consecutive repeats of the Pth

Ramanujan sum. Due to symmetry of the Ramanujan sums, hP can be re-written
as:

hP = {cP(0) cP(1) . . . cP(LP − 1)} (5.12)

Choosing the filter length as LP instead of a fixed N as in (5.2) effectively enables
us to detect smaller periods using smaller blocks and larger periods using larger
blocks. A collection of such filters for all periods going from 1 to Pmax , as shown in



82

Fig. 5.1, is nothing but what we called as the Ramanujan Filter Bank (RFB) in the
previous section . A plot of the outputs yP(n) as a function of P and n will be called
as the RFB time vs period plane.

5.3 Simulations
We will start with two examples here. Fig. 5.4 (a) shows the time vs period plane
for a length 668 signal that has a randomly generated period 3 component between
samples 201 and 218 and a sum of randomly generated period 15 and period 11
components from samples 319 to 469. The sum of the period 15 and period 11
signals is actually a signal with period 15 × 11 = 165. L = 15 and f (P) = P2

were chosen for the RFB. In part (a), the localized period 3 component is detected
initially. This is followed by periods 3, 5, 11 and 15 showing up, and using the
lcm method, we can conclude that the signal exhibits a periodicity of 165 and is a
sum of period 15 and period 11 components. The period 1 DC component is not
shown. The outputs of all the filters beyond period 50 were 0 and hence not shown.
Note that the qth Ramanujan filter’s output is delayed by qL/2 due to the causal
implementation (5.12). This causes different divisors of 15 to be detected with
different delays. To avoid this, part (b) was obtained from part (a) by advancing the
output of each Ramanujan filter hq by bqL/2c so that all the divisors of a particular
period are expressed concurrently.

Parts (c) and (d) show the time vs frequency plane using STFT (assuming 1 Hz
sampling rate). In part (c), we had to use a rectangular window of size 128 to
reasonably identify the period 11 and 15 components. The peaks in the spectrogram
correspond to periods 15.06, 11.13, 7.53, 5.56, 5.02, 3.82, 3.66, 3.01, 2.75, 2.51,
2.21 and 2.13. These numbers roughly correspond to 11, 15 and their harmonics.
But this window was too wide to detect the period 3 component present between
samples 201 and 218. So in part (d), a window of size 32 was chosen. Although
the localized period 3 component gets detected well, this window is not sufficient
to identify the period 11 and 15 components. We do not have to worry about
having different analysis for different periods in the RFB since the length of the
each filter was chosen proportional to its period. Moreover, if the periodic signal
is a superposition of a number of signals with smaller periods such as the 11 and
15 case, then using the lcm method of the RFB might be more convenient than
searching for fundamental frequencies in spectrograms.

In the second example, we consider the inverse chirp signal x(t) = sin(1/at) in the
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Figure 5.4: Parts (a) and (b) - The time vs. period plane for a signal exhibiting localized
periodicities using RFB and shifted RFB. Parts (c) and (d) show the time-frequency plane
using STFT with window sizes 128 and 32 respectively. Refer text for details.

interval t ∈ [2, 10] seconds, with a = 0.01/2π, sampled every 0.01s (Fig. 5.5 (a)).
The instantaneous period of this signal is 2πat2. This quadratic behavior is evident
in the time vs period plane in part (b) (L = 5). Part (d) shows the time frequency
plane obtained from STFT using a length 32 rectangular window. It captures the
small periods well as shown in Table 1. But the larger periods are mis-estimated.
When the frequency is very small, the finite frequency resolution of STFT limits
the accuracy of the P = 1/ f estimate. If we increase the window size to 256 to
better estimate the higher periods, as in Fig. 5.5(c), the smaller periods are smeared
out in the time frequency plane. The estimate for larger periods is still not very
accurate (Table 5.1). The RFB on the other hand offers good estimates for both
small and large periods. f (P)was chosen as (φ(P))2 here to show that a wide choice
is available for its selection.
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Figure 5.5: Part (a) - Sampled inverse chirp signal. Part (b) - The time vs. period plane
using shifted RFB. Parts (c) and (d) show the timefrequency plane using STFT with window
sizes 256 and 32 respectively. Refer text for details.

Table 5.1: Period Estimation using STFT and the RFB.

t Instantaneous
Period STFT (32) STFT (256) RFB

2.1 s 44.1 ms 44.9 ms 71.1 ms 40 ms

7.5 s 562 ms 639 ms 512 ms 560 ms
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We will now present some real world applications of the RFB.

5.4 Protein Repeats
Proteins are essentially sequences of amino acids. Tandem repeats in proteins are
segments within the amino acid sequence that exhibit local periodicity. For example,
the sequence . . . MW ACF ACF ACSY . . . has 2 complete, and a partial cycle of the
repeat ACF.

Such repeats induce several important structural and binding properties on proteins.
For instance, they manifest as characteristic periodic patterns in 3D (for e.g., see
Fig. 5.6), offering important cues for the prediction of the protein’s structure from its
sequence. Functionally, they lead to an enlargement of the binding surface area in
the protein. This results in enhanced evolutionary prospects, with some studies even
showing a correlation between the complexity of a cell’s functions and the number
of repeats in its proteins [44]. Tandem repeats have also been known to admit
a much higher mutation rate than the background regions. Such mutations have
been associated with several diseases. For example, a naturally occurring mutation
between glutamine and lysine at position 703 in the ankyrin repeats of ANKK1,
causes addictive behaviors to alcohol, nicotine and so on [45]. A different member
the same ankyrin family, p16, is known to act as a tumor suppressor [46]. Protein
repeats play an important role in several other diverse contexts as well, such as in
intracellular transport, DNA repair, cell adhesion, initiating plant responses to UV
light, nitrogen fixation and so on [44], [47].

Detecting such repeats from amino acid sequences is not easy in practice, due to
(a) high mutation rate in the form of substitutions and insertion-deletions, and (b)
small number of repeating copies. Several techniques have been proposed for this
problem in the past. They can broadly be divided into the following categories:

• Those based on comparing a sequence with itself using alignment algorithms
(trace matrices and dynamic programming). Examples include RADAR [48],
TRUST [49], REPwin [50], and so on.

• Hidden Markov Models (HMMs) trained on a set of known repeats. E.g.,
Pfam [51], SMART [52], etc.

• Classical signal processing techniques such as Short Time Fourier Transform
(STFT) [50] and wavelets [53].
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Figure 5.6: HetL: A protein with 40 tandemly repeating pentapeptide repeats. The red
arrows indicate two insertion loops that can be predicted using the RFB. See Sec. 5.4 for
details. (Image source: [47], [54]–[56])

With the current exponential growth of genomic and proteomic databases1, algorith-
mic complexity is increasingly becoming an important parameter to evaluate these
techniques. In this regard, although the alignment based methods offer good detec-
tion performances, they incur very high computational complexities. For instance,
dynamic programming based alignment algorithms such as by Smith andWaterman
[57] or Gotoh [58] require O(N3) and O(N2) complexities respectively, where N is
the length of the protein molecules. The HMMbasedmethods, although performing
well for detecting known repeats, are not suited to discover new ones. On the other
hand, traditional signal processing techniques such as STFT and wavelets, while
offering low computational complexities, have not been as popular. This is due
to their relatively poor performance in the presence of mutations and small repeat
lengths.

In this section, it will be shown that the RFB performs remarkably well in the context
of protein repeats, by comparing its performance with some of the most popular
techniques from the literature.

Using the RFB for Detecting Protein Repeats
While the RFB can find periodic segments in sequences of numbers, proteins are
sequences of amino acids. In order to apply the RFB to proteins, we need a way to
map amino acids to numbers. An arbitrary mapping, in general, may not be useful
in this regard. For instance, consider the following sequence:

ADLY R AILRE ADLTG AKLVK (5.13)
1RCSB PDB statistics: www.rcsb.orgpdbstatic.do?p=general information pdb statis-

ticsindex.html
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A.A. K.D.

I 4.5

V 4.2

L 3.8

F 2.8

C 2.5

M 1.9

A 1.8

G -0.4

T -0.7

W -0.9

A.A. K.D.

S -0.8

Y -1.3

P -1.6

H -3.2

E -3.5

Q -3.5

D -3.5

N -3.5

K -3.9

R -4.5

Table 1:  Kyte Doolittle Scale

A.A. =  Amino Acid
K.D. = Kyte Doolittle Score

This is a segment from the protein HetL (Fig. 5.6), which is known to contain tandem
period 5 repeats [47]. However, looking at the above sequence, it is difficult to see
any similarity between adjacent segments of length 5. This example illustrates that
we need a notion of ‘distance’ between the amino acids, so that sequences such
as the above can be modeled as periodic segments corrupted by noise (which in
this case, is substitution and insertion-deletion noise). In prior works that studied
the relationships between protein sequences and their structure, several different
mappings have been used for this purpose. These include mappings based on
the molecular volume of the amino acids [59], their relative composition (namely,
the relative weight of carbon to no-carbon atoms) [59], their relative accessible
surface area (rASA) to a solvent [60], electron ion interaction potential [61], relative
hydropathy scores [62] and so on.

In this work, we use the Kyte-Doolittle (KD) hydropathy scale, which was pro-
posed in [62] by combining several experimental metrics that measure the average
hydrphobicity of an amino acid across several proteins. Each amino acid was qual-
itatively assigned a number between 4.5 and −4.5 as shown in Table 1, with 4.5
being the most hydrophobic, and −4.5 being the most hydrophilic amino acids. The
hydrophobicity of an amino acid is useful in structural analysis of proteins since it
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Figure 5.7: The period vs location plot produced using the RFB for HetL from Fig. 5.10,
indicating the period 5 repeats. See Sec. 5.4 for details.

plays a significant role in determining the shape into which a protein molecule folds
in solvents. From a heuristic perspective as well, we observed in our simulations that
the KD scale does result in good location vs period planes from the RFB compared
to the other mappings.

Simulation Results
In this section, we will show some examples of protein repeats that were detected
using the RFB. Fig. 5.10 shows a set of representative examples from seven well
known repeat families. The performance of the RFB is compared with the following
four popular techniques mentioned in the previous section: (i) RADAR [48] (ii)
REPwin [50] (iii) the STFT based FTwin of [50] and (iv) the wavelet technique of
[53]. A red cross indicates that the repeat was not detected by the corresponding
algorithm, and a green tick indicates that the repeat was detected and the period was
estimated accurately. In all these examples, the RFB could successfully identify the
repeats. L = 5, and a threshold parameter of 0.3 for the period vs location plane
were used for the RFB. That is, all the outputs on the period vs location plane that
were less tha 30% of the largest peak on that plane were thresholded to 0.

Apart from detecting the repeats, the RFB can provide useful information about the
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internal 3D structure in the repeats. This is illustrated by the following example.

Example 1: Pentapeptide repeats in HetL

HetL (PDB:3du1 [47]) is a 237 amino acids protein containing 40 tandem pen-
tapeptide repeats (Fig. 5.10). This protein was known to play a role in the nitrogen
fixation process in cyanobacteria, but its exact mechanism in this process was largely
unknown. As a first step in understanding this, an X-ray crystallography analysis of
the molecule was done in [47]. The crystal structure revealed the following details
(Fig. 5.6):

• A 10−residue long α−helix between locations 3 and 12 at the N-terminus,

• Ten periodic coils between locations 15 and 227, consisting of the period 5
pentapeptide repeats,

• A protruding 6−residue long insertion loop between locations 129 and 134,

• A second 9−residue long insertion loop between locations 174 and 182,

• A two-stranded anti-parallel β−sheet between locations 228 and 237 at the
C-terminus.

Converting this protein into numbers using the KD scale and using the RFB, we
obtained the period vs location plot shown in Fig. 5.7. This plot shows a strong
period 5 component, indicative of the pentapeptide repeats.

The two discontinuities in the pentapetide repeats, in the form of the insertion loops
in the crystal structure (Fig. 5.6), can in fact be predicted directly from the RFB’s
period vs location plot. For instance, Fig. 5.8 shows the output of the fifth RFB
filter, which revealed the pentapetide repeats. The output power of this filter reduces
significantly at the locations where the insertion loops occur (see Fig. 5.8 for details).

Example 2: Four bladed β−Propeller in Rabit Serum Haemopexin

We now consider an example of a repeat with a particularly high amount of noise.
The four bladed β-propeller shown in Fig. 5.10 is from the protein rabbit serum
haemopexin (PDB: 1hxn [63]). Typically, each blade consists of anα-helix, followed
by 4 β-strands. However, due to several insertions of alpha helices and other loops,
it is a particularly difficult repeat to detect by most algorithms. The four blades
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Figure 5.8: The output power of the fifth Ramanujan filter for the example of HetL. (Its
time-period plane using the RFB is shown in Fig. 5.7.) The region in green above, marks
the residues constituting the pentapeptide repeats, as revealed by the crystal structure of this
protein [47]. The red regions, L1 and L2, are insertions loops of sizes 6 and 9 residues
respectively. These loops can be seen in the crystal structure of this protein shown in
Fig. 5.10. Notice that, by observing the valleys in the output of the fifth Ramanujan filter,
one can predict the existence of these insertion loops.

correspond to lengths 44, 48, 52 and 57 residues approximately. RADAR, a popular
technique, identifies only the first and third blades, reporting a period of 51. REPwin
and FTwin were unable to detect any repeats. The time-period plane of the RFB
(shown in Fig. 5.9) not only detects the repeats, but also estimates that the average
period of the blades increases from 44 to 54 through the repeats. The other smaller
periods that show up in Fig. 5.9 are not errors, but rather show (i) the finer periodic
structure within each blade of the propeller, and (ii) the harmonics of the period
44-54 repeats. In all our examples, we observed that the largest periods that show
up on the time-period plane of the RFB correspond to the most prominent repeats.
The smaller periods correspond to the finer internal structures within each repeat,
and the harmonics.
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Figure 5.9: The time-period plot produced using an RFB with K = 5, for the β-propeller
PDB:1hxn shown in Fig. 5.10. See Sec. 5.4 for details.

5.5 Detecting Tandem Repeats in DNA
A tandem repeat is a segment of a DNA sequence that is repeated successively
in a periodic manner. For instance, consider the following sequence, where the
emphasized segment has 4 copies of the base pairs T AG repeating in a tandem
fashion:

. . . AGCTAGTAGTAGTAGCAAT . . .

Such repeats in the DNA are of significance in a number of contexts. For example,
the number of copies of a particular repeat are highly variable in a given population,
and hence are used in DNA fingerprinting str_base. Moreover, these repeats are
inherited from a parent to an offspring, and hence are used in parentage analysis
and in studying population evolution [69]. In the field of medicine, it is known
that an increase in the number of repeating copies of certain repeats, present in
the intronic (i.e., non-coding) regions of genes, can lead to a number of diseases.
For example, fragile X syndrome, myotonic dystrophy, Huntington’s disease and
Friedreich’s ataxia [69] are known as triplet expansion diseases, and are caused by
copy number expansions of such period 3 repeats. Such mutations in the protein
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β propeller

Repeat type PDB ID FTw. WAV. RAD. REPw. RFB

1hxn

TIM barrel

1tim

LRR 1dfj

1lrv N.A.

4cil N.A.

HEAT

1b3u N.A.

Ankyrin
1n11 N.A.

NCBI:
NP_848
605.1

N.A.

Armadillo

3wpt N.A.

Pentapeptide N.A.

N.A.

N.A.

3du1

2bm4

3n90

1hxn

1tim (chain A)

1lrv

1b3u

1n11

3wpt

3du1

Figure 5.10: Protein repeats that were applied as inputs to FTwin [50], the wavelet based
method of [53], RADAR [48], REPwin [50], and the RFB. These are abbreviated as FTw.,
WAV., RAD., REPw., and RFB in the top row. The first column indicates the type of
repeat family being considered. The secondary structure of a representative member of
each repeat family is also shown. The second column contains the Protein Data Bank
(PDB) ID number for each example. For the ANKK1 protein exhibiting ankyrin repeats,
its NCBI reference sequence number is shown instead. The wavelet based algorithm in
[53] was not available publicly. Hence, we only show their results for two examples
from [53]. See text for details. (Image sources: Jmol: http://www.jmol.org/ and JSmol
http//wiki.jmol.org/index.php/JSmol.[47], [54], [63]–[68])
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coding regions of the genome can affect the corresponding protein actions. For
example, the Hand-Foot-Genital Syndrome is caused by length changes in tandemly
repeating regions in the polyalanine tracts within the HoxA13 gene [70].

Because of such applications, locating tandem repeats in DNA sequences has been
an important problem, and is addressed in several works. The approaches taken in
these algorithms are very diverse in nature, and include (sometimes, combinations
of) combinatorial searching [71], statistical inferencing techniques [69], spectral
estimation techniques such as the Short Time Fourier Transform [72], [73], subspace
decomposition based techniques [74], [75] and so on. A good review of these
algorithms is presented in [76] and [69].

Here, we demonstrate the applicability of Ramanujan Filter Bank to the DNA
repeats problem by proposing a simple algorithm to find DNA repeats. We compare
its performance with one of the most popularly used algorithms among the exiting
ones, namely, the Tandem Repeat Finder (TRF) [69]. In the simplest terms, the TRF
algorithm first finds all words of a small size k that repeat in the sequence, and then
uses statistical tests to determine if these words are parts of bigger tandem repeats.
Our results in the following sections demonstrate that the RFB is able to detect a
number of repeats that the TRF algorithm (with its default settings) could not find.

5.6 Adapting the Ramanujan Filter Bank to Detect Tandem Repeats in DNA
To use the RFB for detecting repeats in DNA, we need to add a few new features to
it. We explain these in the following subsections.

Mapping Nucleic Acids to Integers
While a DNA sequence is a string of nucleic acids A, T , C and G, the input to the
RFB must necessarily be numbers (real or complex). So, to be able to process DNA
sequences using the RFB, we must map each nucleic acid to a number. Since the
coefficients of the RFB filters are integers, it is convenient (in terms of computations)
to map the nucleic acids to integers. We chose the integers 1, 2, 3 and 4 in this
work. Notice however that any assignment of these four numbers to the four nucleic
acids results in an artificial notion of distance between them. For example, if A, T ,
C and G are assigned to 1, 2, 3 and 4 respectively, then A has been made ‘closer’ to
T than to G, while no such notion of distance exists in reality. This can create biases
such as the following: let T AGT AG be an example of a tandem repeat. Consider
two mutated versions of it: T AGTTG and T AGTGG. If we use the aforementioned
assignment of numbers, then T AGTTG will turn out to be closer to T AGT AG (and
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Figure 5.11: The section of the Time vs Period plane containing the tandem repeat of
Table 5.3. Notice that the end location does not match with Table 5.5. See Sec. 5.6 for
details.

hence closer to being periodic) than T AGTGG’s distance to T AGT AG.

To avoid such biases, we do the following. Notice that there are 4! = 24 ways of
assigning the integers 1, 2, 3 and 4 to the nucleic acids A, T , C and G. For each
of those 24 assignments, we produce a time (or location) vs period plane using the
RFB. We then take an average of all the 24 time vs period planes to get our final
“averaged time vs period plane”.

Choice of Parameters
There are five parameters to select while using the RFB:

1. Filter Repeat L: The first is the number of repeats in each filter, namely L in
(5.1). A small value for L yields better localization, while choosing a large value
for L gives more accurate period estimate. We observed in our experiments that
choosing L = 7 gave a good trade-off.

2. Adding an Averaging Filter: In the time vs period planes so far, we plot the power
at the output of each filter versus time. We modify this slightly to plot the average
power at the output of each filter. For instance, we average the square of the output
of the filter hP(n) over K′P samples for some integer K′. Choosing K′ = 3 gave us
good results in our experiments.

3. Number of Filters Pmax: Pmax is the largest period that we want to detect in the
DNA. Since most of the applications mentioned in Sec. 7.1 involve repeats with
small periods, we choose Pmax = 50.

4. Threshold T1: As mentioned above, we assign numbers to the four nucleic acids
in 24 ways. For each assignment, we obtain a time vs period plane. We threshold
each of those time vs period planes using the threshold parameter T1. That is, we
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Table 5.2: Example 1: Human Frataxin Gene

Location Period Copy No. % match % in-del RFB TRF
25-49 4 6 83.3 8.3

√

684-720 6 6 80.5 5.6
√

987-1009 6 4 87.5 12.5
√

2184-2211 3 9.7 100 0
√ √

822 - 854 14 2.4 89 0
√

2183-2211 44 2 90 0
√

2371 - 2401 13 2.8 87 0
√

Table 5.3: Base pairs 684 - 720 in Example 1

A.S.: gccc-g gcccag gcccag accctc acccgg gtcccgc g
F.S.: gcccag gcccag gcccag gcccag gcccag g-cccag g

set all the points in the time vs period plane that are less than T1 to zero. In our
experiments, we found that choosing T1 as 20% of the maximum value on the time
vs period plane gave good results. We did not consider the period 2 repeats in
compting this threshold, since period 2 repeats tended to give unusually high output
powers in the time vs period plane.

5. Threshold T2: We average the 24 (thresholded) time vs period planes correspond-
ing to the 24 different maps to obtain a final ‘averaged time vs period plane’. We
threshold this averaged time vs period plane too, using a threshold parameter T2. In
our experiments, we found that choosing T2 as 40% of the maximum value on the
time vs period plane gave good results. Once again, we did not consider period 2
repeats while computing the threshold.

Example 1: Human Frataxin Gene (Friedreich’s Ataxia), Intron 1
In our first example, we consider the human frataxin gene (Friedreich’s ataxia),
intron 1 (Genbank Accession Number U43748). This example was chosen for two
reasons: (a) Copy number expansion of the triplet repeat GAA present in the first
intron of this gene is responsible for the neurological disorder known as Friedreich’s
ataxia, and (b) this same example was also analyzed in the original paper of the TRF
algorithm [69].

Table 5.2 summarizes the outputs of both TRF and RFB. In the table, the location
column gives the base pair locations between which the repeats are found, copy
number is the number of repeating copies of a particular repeat, percentage match
indicates the extent of similarity between the copies of the repeat, and percentage
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in-del indicates the insertions and deletions in the repeats. A
√

in the column
corresponding to RFB or TRF indicates that the respective algorithm was able to
detect this repeat. For example, consider the period 6 repeats between base pairs 684
and 720 shown in Table 5.3. The first row, labeled A.S. (actual sequence), shows
the actual DNA segment. The lower row, labeled F.S. (Fitted Sequence) shows the
nearest periodic sequence to the actual sequence. A ‘-’ (dash) in the upper row
indicates a deletion error, while a ‘-’ in the lower row indicates an insertion error in
the DNA sequence. Notice that there are 7 mismatches and 2 insertions/deletions
for 6 copies of the repeat, and so the % match was caluclated to be 80.5% and the
% in-del was 5.6%.

The section of the time vs period plane that showed this repeat is shown in Fig. 5.11.
Notice that while the start location matches with the one mentioned in Table 5.2,
namely 684, the end location in the time vs period plane is around 712, whereas,
we have reported the end location as 720 in Table 5.2. This is because, we found
in our experiments that, looking for 1 or 2 cycles of a repeat on either side of the
region reported by the RFB often turned up more cycles of the repeat. This could
be because our choice of parameters in Sec. 5.6 makes the RFB a very conservative
repeat finder. For instance, notice that most of the mismatch and in-del errors in
Table 5.3 are towards the end of the segment relative to the first half of it. Hence,
the RFB, although estimating the beginning accurately, was not able to recognize
the last cycle. To detect repeats with higher mismatch and indel errors, lowering
the thresholds of Sec. 5.6 is an option. It is interesting to note that out of the sets
of four repeats found each by the RFB and the TRF, only the period 3 repeat that is
relevant to Friedreich’s ataxia is common.

Example 2: Human BAC clone AC010136
The GenBank sequence AC010136 is a 118522 base pairs long DNA sequence,
found on second chromosome of the human DNA. The period 4 repeats shown in
Table 5.4 between base pairs 66975 and 67076 (indicated by?) are used as markers
in DNA fingerprinting and forensics applications2 [69], [77], [78]. Both TRF and
RFB could identify these repeats. However, notice that there are several repeats that
could be identified by only one of either TRF or RFB.

Table 5.2 and Table 5.4 show that there are a number of repeats that the RFB could
detect, while TRF couldn’t, and vice versa. It seems that RFB is better than TRF
at detecting repeats with smaller periods, while TRF seems better with repeats that

2https://strbase.nist.gov/
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Table 5.4: Example 2: Human Genome Sequence AC010136

Location Period Copy No. % match % in-del RFB TRF
2813-2825 6 2 91.7 8.3

√

3662-3683 3 6.7 90 10
√

6506-6547 3 14 88 0
√

10862-10873 4 3 100 0
√

11792-11805 3 6.7 95 0
√

12121-12138 3 6 100 0
√

12139-12147 3 3 100 0
√

30684-30707 6 4 88 0
√

30708-30731 6 4 83 0
√

30732-30749 6 3 83 0
√

31023-31058 4 9 86 0
√

39988-40015 4 7 86 3.6
√

40207-40226 6 3 83 5.5
√

42753-42782 11 2.7 93 0
√

46648-46673 6 4 79 4
√

48057-48072 4 4 88 0
√

49458-49476 6 3 89 0
√

48625-48647 6 4 83 4.2
√

57291-57314 12 2 88 0
√

57829-57854 4 5.25 88 0
√

58508-58536 6 4.7 77 0
√

60406-60420 3 5 87 0
√

62794-62809 3 5 87 6.7
√

62810-62827 3 6 100 5.3
√

63539-63558 4 5 90 5
√

75567-75586 4 5 95 10
√

77116-77138 4 5.75 87 0
√

82092-82115 3 8 83 0
√

103964-103985 3 7 95 0
√

105070-105095 3 8.7 92 0
√

111827-111846 4 5 100 0
√

118239-118268 3 10 93 6.7
√

11470-11530 20 3 95 1.7
√ √

11531-11590 20 3 85 0
√ √

11411-11509 33 3 93 1
√ √

11510-11695 33 5.6 84 0
√ √

31023-31058 4 9 86 0
√ √

42084-42353 24 12 90 6.3
√ √

42153-42274 35 3.5 81 2.4
√ √

42085-42333 46 5.25 85 9.5
√ √

? 66975-67043 4 17 97 0
√ √

? 67043-67076 4 7 100 0
√ √

11432-11492 13 5.2 72 22
√

11518-11545 13 2.2 100 0
√

11669-11709 13 3.2 92 0
√

11637-11736 46 2.2 88 0
√

17271-17324 26 2.1 92 0
√

19445-19480 4 9.8 82 17
√

19443-19480 7 5.3 87 12
√

19445-19480 10 3.3 81 18
√

35208-35271 21 3.0 95 4
√

42034-42706 11 59.0 69 11
√

42755-42827 33 2.2 90 0
√

44812-44853 21 1.9 85 9
√

52497-52528 14 2.4 94 5
√

53579-53647 35 2.0 97 0
√

73366-73405 21 1.9 85 10
√

83031-83072 20 2.1 90 0
√

83061-83274 10 20.2 65 14
√

83067-83125 31 1.9 82 6
√

83097-83156 26 2.3 77 5
√

83591-83676 39 2.3 80 7
√

90266-90315 24 2.1 88 0
√

93049-93090 20 2.1 100 0
√

93122-93152 14 2.2 100 0
√

105387-105421 16 2.2 100 0
√

114836-114882 20 2.4 83 16
√
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have large periods but only a small number of repeating copies (typically 1.5-2.5
copies). An approach that seems encouraging to improve the performance of RFB
at larger periods is to use different thresholds for different periods. We will explore
this as a part of our future effort. In terms of computations, the RFB requires
O(NP2

max) integer multiplications (where the multiplicands are < Pmax) to produce
a time vs period plane, where N is the data-length and Pmax is the largest period we
are searching for. Please visit our website3 to access the Matlab codes related to this
section.

5.7 Absence Seizure Detection Using Ramanujan Filter Banks
A seizure is defined as a sudden uncontrolled surge in the electrical activity of
the brain. It is usually accompanied by physical symptoms such as alterations in
behavior, loss of consciousness, uncontrolledmuscle spasms and so on. Seizures are
generally causedwhen a large number of neurons get excited simultaneously, leading
to a sudden surge in the electrical activity of the brain. While some seizures are
hardly noticeable, others can be severely disabling. In both cases, it is important to
note the occurrence of a seizure, since the chances of a second seizure is ofter greater
than 50% after the first [79]. Since a seizure is essentially an electrical phenomenon,
the most common way to identify them is using electroencephalography (EEG).
Seizures produce characteristic EEG patterns, which can be used by doctors for
diagnosis.

Absence seizures, the subject of this section, are a type of seizures more commonly
occurring in children (ages 4 - 14). They derive their name from a “lack of con-
sciousness" state that occurs during this seizure. Typical symptoms include sudden
unresponsiveness, staring, fluttering of the eyelids, mild clonic jerks and possible
automatisms. They typically last for 5 to 20 seconds, and are often confused with
day dreaming or not paying attention. Currently, the only diagnostic test for these
seizures is EEG [80]. Typical absence seizures show a prominent 3 Hz periodic
spike and wave discharge pattern in the EEG [81], as shown in Fig. 5.12.

At present, the criterion standard for their diagnosis is EEG videomonitoring, which
involves monitoring a continuous recording of the EEG, along with a simultaneous
video recording of the patient for observing the clinical manifestations of the seizure
[82]. Visual inspection of EEG records for seizures is tedious and time consuming,
especially when patients are monitored over hours at a stretch. So a number of

3http://systems.caltech.edu/dsp/students/srikanth/Ramanujan/
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Figure 5.12: An example of the 3Hz spike and wave discharge pattern in the EEG during
an absence seizure.

methods have been proposed in the past few years for automatic detection of seizures
from EEG signals. An important class of such methods is based on the traditional
spectral estimation techniques from Digital Signal Processing (DSP), such as the
Short Time Fourier Transform (STFT) [83] and wavelets [84], [85]. These methods
were originally designed for estimating the spectrum of a signal. By identifying
the fundamental frequency of a periodic signal from among its harmonics in the
spectrum, one can estimate the period. Apart from these methods, there are others
based onmetrics such as theEEG signal’s amplitude [86], ormore complex statistical
features of the signal such as its average entropy and multi-scale variance [87].

Since the EEG waveform during an absence seizure is essentially periodic, the RFB
is a suitable technique to be applied here. In this section, we demonstrate that the
RFB indeed offers very useful diagnostic information by being able to detect the
occurrence of these seizures in the EEG.

Data
The source for the EEG data in this work is the public FTP site of the Sleep and
Sensory Signal Analysis Group from Tampere University of Technology4. This data

4ftp://sigftp.cs.tut.fi/pub/eeg-data/
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(a) (Top) Sampled EEG showing Seizure
1 in Patient 1 as measured across the F8-
C4 channel. (Bottom) The RFB’s time vs
period plane.
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(b) (Top) Sampled EEG showing Seizure
1 in Patient 1 as measured across the T5-
O1 channel. (Bottom) The RFB’s time vs
period plane.
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(c) (Top) Sampled EEG showing Seizure
2 in Patient 1 as measured across the F8-
C4 channel. (Bottom) The RFB’s time vs
period plane.
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(d) (Top) Sampled EEG showing Seizure
2 in Patient 1 as measured across the T5-
O1 channel. (Bottom) The RFB’s time vs
period plane.

Figure 5.13: RFB’s test of sensitivity. See Sec. 5.7 for details.

has been used in popular seizure detection papers such as [84], but is annotated to
a limited extent only. So our verification of the RFB’s detection of seizures in the
following experiments is based on (a) results from previously published works that
used the same data, such as [84], and or or (b) the information provided with the
data itself. Encouraged by the RFB’s performance on this data set, we are currently
trying to acquire completely annotated data from experts. The EEG signals used
in the following examples were sampled at 100 Hz (we downsampled the original
files by 2 for convenience). This means that the 3 Hz spike and wave discharges
associated with absence seizures would appear as periodic patterns with period
around 33 samples.
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Experiments
In the following, we have divided our examples into three categories. In the fol-
lowing, we test the sensitivity of the RFB in detecting absence seizures. That is,
we apply the RFB to multiple instances of absence seizures to see if we are able
to detect them in all cases. We also test for the specificity of detection. That is,
whether the RFB is able to distinguish absence seizures from normal background
EEG in a precise manner. Finally, in we compare the RFB to an STFT based method
to illustrate its advantages over the traditional spectral methods. In all the following
examples, we chose K = 5 for the RFB.

Testing Sensitivity

Fig. 5.13a and Fig. 5.13b show the (sampled) EEG signals of Patient 1, measured
between channels F8-C4 and T5-O1 respectively during a seizure. These two
channels are located on opposite sides of the scalp, so the seizure waveform appears
different in shape in each case. Fig. 5.13c and Fig. 5.13d show EEG signals from
the same patient, but during a different episode of absence seizure. In each of these
figures (and also in all the other examples in this work), a Time vs Period plane was
produced by an RFB with 60 filters. As shown in Fig. 5.13, in each case, the RFB
was able to identify a periodic segment with period around 30, which matches with
what we would expect during an absence seizure. For clearer plots, the color-bar
in these plots was chosen such that all the outputs below 10-15% of the maximum
output appear white.

Testing Specificity

The seizures shown in Fig. 5.13 occurred as short segments of much longer data
records, which, for most part, contained normal EEG measured during non-seizure
intervals. In Fig. 5.14, the red arrow indicates the instance at which the seizure of
Fig. 5.13c occurred in its complete data record. As shown in the time vs period
plane in Fig. 5.14, the RFB was able to identify this seizure event very precisely.

Comparison with STFT

Fig. 5.15(a) shows an EEG recording from Patient 2, with three epileptic seizures
shown by the red arrows. Fig. 5.15(a) shows the time vs period plane obtained using
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Figure 5.14: (Top) The entire record of sampled EEG containing Seizure 2 in Patient 1, as
measured across the F8-C4 channel. (Bottom) The RFB’s time vs period plane.

an RFB, and the three seizures can be easily identified. However, notice that the
three seizures manifest as a band of periods around period 30. This is because the
spike and wave discharges during an absence seizure need not always have a precise
periodicity of 3Hz [80]. Fig. 5.15(c) shows the time vs frequency plane obtained by
using STFT with a length 128 window. 3Hz in continuous time would correspond
to a frequency of around 0.03 on the shown (discrete time normalized) frequency
scale. Notice that apart from the seizure features (indicated by the red arrows), there
are many other strong features in the time vs frequency plane. This is because the
range of frequencies represented by the green band in Fig. 5.15(c) correspond to
periods 30 to infinity in the signal. Hence, most of the low frequency noise is being
captured in this narrow region of the time vs frequency plane, producing those other
features. The only way to increase the resolution in this region of frequencies is to
use larger window lengths. Fig. 5.15(d) shows that we only get a slight improvement
when we use length 512 STFT. Further increase in the window lengths produce a
bad resolution along the time axis. This is an example of a case where the RFB
offers clearer results than STFT.
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Figure 5.15: Comparison of the RFB with STFT. See Sec. 5.7 for details.

Since the annotation available to us was limited for this data set, we only intend to
use these results as a demonstration of RFB’s suitability for this application. One
of our next goals is to work with an EEG expert on a more formally annotated data
set, to demonstrate further the applicability of the RFB.
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5.8 Unique Representation Filter Banks: Removing Redundancy in the RFB
Using Truth Tables

Notice that, in addition to period estimation, the RFB can determine if a periodic
signal is actually a mixture of multiple periodic signals. For instance, adding a
period 5 signal to a period 9 signal can give rise to a period 45 signal. The RFB can
not only identify the period of the sum, i.e., 45, but also give us the periods of the
components, i.e., 5 and 9. However, in a number of applications, one does not care
to know whether the given signal can be decomposed into a sum of signals with
smaller periods (for example, in epileptic seizures, DNA and protein repeats, ECG
etc.). When this is the case, we show in this section that we can have filter banks
with far fewer filters than the RFB. For example, to detect periods 1 to 8, while
the RFB needs 8 filters, we can do the same with just 3 filters. We call these new
filter banks as “Unique Representation Filter Banks”, formally defining them in the
next subsection. As we will show, a convenient way to represent and analyze period
estimating filter banks is to use truth tables. In the following, we derive sufficient
and necessary conditions respectively, for the existence of Unique Representation
Filter Banks. The sufficiency proof is constructive, so that we have a technique to
construct them once their existence is proved. We will then demonstrate the period
estimation capabilities of the new filter banks using simulations.

Unique Representation Filter Banks
In a regular RFB, the period of the input is estimated by by taking the LCM of the
indices of filters with non-zero outputs (Sec. 5.1). Table 5.5 tabulates this LCM rule
for the example of Pmax = 8. In this table, F1 to F8 are the RFB filters, and if an
entry is 1, it indicates that the output of the corresponding filter is a non-zero signal.
For each period, Table 5.5 essentially lists all the possible ways in which the LCM
of the filter indices can be equal to that period.

Notice that the RFB does not map a period to a unique set of filters. For example,
period 6 can occur in 10 ways. In this section, we want to construct filter banks
that map a period to a unique set of filters. The advantage is that we can do the
same period estimation task using far fewer filters. For example, if we can construct
a filter bank that offers (either of) the mappings shown in Table 5.6, then we can
detect periods 1 to 8 using just 3 filters, rather than using 8 RFB filters. We will call
such filter banks as Unique Representation Filter Banks.
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Table 5.5: Ramanujan Filter Bank: Period to Filters Map

Period F1 F2 F3 F4 F5 F6 F7 F8 Hidden Periods
1 1 0 0 0 0 0 0 0 -
2 0 1 0 0 0 0 0 0 -

1 1 0 0 0 0 0 0 -
3 0 0 1 0 0 0 0 0 -

1 0 1 0 0 0 0 0 -
4 0 0 0 1 0 0 0 0 -

1 0 0 1 0 0 0 0 -
0 1 0 1 0 0 0 0 -
1 1 0 1 0 0 0 0 -

5 0 0 0 0 1 0 0 0 -
1 0 0 0 1 0 0 0 -

6 0 0 0 0 0 1 0 0 -
1 0 0 0 0 1 0 0 -
0 1 0 0 0 1 0 0 -
1 1 0 0 0 1 0 0 -
0 0 1 0 0 1 0 0 -
1 0 1 0 0 1 0 0 -
0 1 1 0 0 1 0 0 -
1 1 1 0 0 1 0 0 -
0 1 1 0 0 0 0 0 2, 3
1 1 1 0 0 0 0 0 2, 3

7 0 0 0 0 0 0 1 0 -
1 0 0 0 0 0 1 0 -

8 0 0 0 1 0 0 0 1 -
1 0 0 1 0 0 0 1 -
0 1 0 1 0 0 0 1 -
1 1 0 1 0 0 0 1 -
0 0 0 0 0 0 0 1 -
1 0 0 0 0 0 0 1 -
0 1 0 0 0 0 0 1 -
1 1 0 0 0 0 0 1 -



106

Table 5.6: Tables Mapping Periods To Unique Sets of Filters. The Table on the Left
is Unimplementable.

Period F1 F2 F3
1 0 0 0
2 1 0 0
3 1 1 0
4 0 1 0
5 1 0 1
6 0 0 1
7 1 1 1
8 0 1 1

Period F1 F2 F3
1 0 0 0
2 1 0 0
3 0 0 1
4 1 1 0
5 0 1 0
6 1 0 1
7 0 1 1
8 1 1 1

It turns out that arbitrary tables thatmap periods to filtersmay not have corresponding
filter banks that can achieve those tables. For instance, it can be proved that there
does not exist any filter bank that can result in the example shown on the left in
Table 5.6 (see the discussion after Theorem 5.8.2 in Sec. 5.8), whereas the example
shown on the right in Table 5.6 does have a corresponding filter bank.

Which tables result in feasible filters, and how to build those filters when they exist?
What are their properties? These are the questions we address in the following
sections. Before doing so, we will first introduce a concise notation to represent
tables such as those in Table 5.6:

Representing a Table as a Function: Consider the example on the right side of
Table 5.6. We can represent it as the following mapping f :

f (1) = {}, f (2) = {1}, f (3) = {3},

f (4) = {1, 2}, f (5) = {2}, f (6) = {1, 3},

f (7) = {2, 3}, f (8) = {1, 2, 3} (5.14)

Notice that f associates, to each period P, the indices of filters that have non-
zero outputs when the input is periodic with period P. We shall use this notation
throughout the rest of this section to represent tables.

At this point, it is useful to formally define Unique Representation Filter Banks:

Definition 5.8.1. URFB: Given a filter bank with filters {F1, F2, . . . FN }, suppose
we define a mapping GON (x) for every input signal x(n), that gives the indices of
filters that have non-zero output signals when the input is x(n). Then, the filter bank
is said to be a Unique Representation Filter Bank (URFB) for periods 1 to Pmax , if,
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given any pair of periodic signals x(n) and y(n), whose periods lie in 1 ≤ P ≤ Pmax ,

GON (x) = GON (y) (5.15)

iff both x(n) and y(n) have the same period. ♦

The above definition essentially says that a filter bank is a URFB if the following
property holds: Two periodic inputs result in the same set of filters with non-zero
outputs iff their periods are the same. It is obvious that a URFB, if it exists, can be
used for period estimation by looking at which set of filters have non-zero outputs.
We shall now derive sufficiency conditions for the existence of a URFB.

Sufficiency Conditions for the Existence of URFBs
The following result gives the sufficient conditions for a filter bank to exist given a
table f . (P(S) represents the power set of a set S, namely, the set of all its subsets).

Theorem 5.8.1. Sufficiency for the existence of a URFB: Let Pmax and N be
positive integers such that there exists amap f : {1, 2, . . . Pmax} → P({1, 2, . . . , N})
satisfying:

1. f (P) = f (Q) iff P = Q.

2. If1 ≤ d1 ≤ d2 ≤ . . . dK ≤ P ≤ Pmax are integers such that LCM(d1, d2, . . . , dK)

= P, then
∪i f (di) = f (P) (5.16)

Then, there exists a URFB with N filters, such that its GON (x) = f (P) iff period of
x(n) is P. ♦

Proof. Let the N filters, say F1, F2, . . . FN , be defined as follows:

Fi =
∑

1≤q≤Pmax

i∈ f (q)

cq(n) (5.17)

where cq(n) is the qth Ramanujan Sum. Suppose the input to these filters is a period
P signal, say x(n), where P ≤ Pmax . Further, let the coprime frequencies in its
Fourier series expansion (see (7.6)) have periods d1, d2, . . . dK . This implies that, if
Fi is a filter whose output is non-zero, then it must have a passband at at least one
coprime frequency with period d, for some d ∈ {d1, d2, . . . dK}. But from (5.17),
filter Fi will have such a passband only if i ∈ f (d).
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Now, by Theorem 5.1.1, we have

LCM(d1, d2, . . . , dK) = P (5.18)

So if i ∈ f (d), then i ∈ f (P) from Condition 2 in the statement of the current
Theorem, since d |P.

Hence, we have shown that if a filter Fi has a non-zero output, then i ∈ f (P). It
follows that GON (x) ⊆ f (P). We will now show that it is in fact equal to f (P).
Suppose Fj is a filter such that j ∈ f (P). Notice that if j ∈ f (P), then from
Condition 2 above, there must exist a d ∈ {d1, d2, . . . dK} such that j ∈ f (d). But if
j ∈ f (d), then Fj will have a passband at all the co-prime frequencies with period
d (from (5.17)). Now, by our assumption, the Fourier series expansion of the input
must have at least one coprime frequency with period d. Hence, the output of Fj

cannot be 0.

This shows that every filter in f (P) must have non-zero output when the input is
x(n). Hence, GON (x) = f (P). This, along with Condition 1, ensure that GON

satisfies (5.15). Hence, {F1, . . . , FN } is a URFB. 5 5 5

Notice that the example shown on the right in Table 5.6 satisfies the conditions
of Theorem 5.8.1. Hence, we can construct a corresponding URFB using (5.17).
However, the example shown on the left in Table 5.6 does not satisfy Condition 2.

URFBs: Necessary Properties
We will now show that the two conditions in Theorem 5.8.1 are in fact necessary for
any URFB. Further, we will also show that the filters in a URFB must necessarily
be of the form (5.17).

Theorem 5.8.2. Necessary Properties of a URFB: Let {F1, F2 . . . FN } be a URFB
for periods 1 to Pmax satisfying Definition 5.8.1. With GON as in Definition 5.8.1,
define a map f : {1, 2, . . . Pmax} → P({1, 2, . . . , N}) as follows:

f (P) = GON (x) (5.19)

where x(n) is a periodic signal with period P. Then, f must satisfy the following
properties:

1. f (P) = f (Q) iff P = Q.
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2. If1 ≤ d1 ≤ d2 ≤ . . . dK ≤ P ≤ Pmax are numbers such that LCM(d1, d2, . . . , dK)

= P, then
∪i f (di) = f (P) (5.20)

♦

Proof. Condition 1 follows directly from Definition 5.8.1. Let us now prove Con-
dition 2. Let d |P. We will first show that f (d) ⊆ f (P).

Let i ∈ f (d). Then, the filter Fi must have non-zero output for all period d inputs.
So in particular, it must have a non-zero output when the input is a co-prime
frequency with period d. Now, if we add a coprime frequency with period d with
another coprime frequency with period P, the resultant signal has period P (from
Theorem 7.2.2). If we feed this sum as the input to the filter bank, Fi must continue
to have non-zero output. But, by definition, f (P) is the set of filters that have
non-zero outputs when the input is periodic with period P. Hence, i ∈ f (P). This
proves that f (d) ⊆ f (P).

It follows that, in Condition 2, since d1, d2, . . . , dK are divisors of P,

∪K
i=1 f (di) ⊆ f (P) (5.21)

To prove that the above equation holds with an equality, we use proof by con-
tradiction. If possible, let i ∈ f (P), but i < ∪K

i=1 f (di). Then, i < f (d j) for each
j ∈ {1, 2, . . . ,K}. So Fi must have zero output for every d j periodic signal. In partic-
ular, it must have zero output for coprime frequencies with period d j . Now, consider
an input that is a sum of all coprime frequencies whose periods ∈ {d1, d2, . . . , dK}.
It must have period P according to Theorem 7.2.2. But from the above discussion,
the filter Fi must have a zero output for this particular input. This is a contraction to
i ∈ f (P). Hence,

∪K
i=1 f (di) = f (P) (5.22)

5 5 5

Let us now verify Theorem 5.8.2 on the examples shown in Table 5.6. For the
example on the left in Table 5.6, f (2)∪ f (4) , f (4). SoCondition 2 of Theorem5.8.2
is violated. Hence, no URFB is possible for this case. However, it is easy to check
that the example shown on the right in Table 5.6 does satisfy the conditions of
Theorem 5.8.2.
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We will now prove that the filters must necessarily be of the form (5.17). Consider
the following theorem:

Theorem 5.8.3. Let {F1, F2 . . . FN } be a URFB for periods 1 to Pmax satisfying
Definition 1, with the map f defined as in (5.19). Then, for each 1 ≤ i ≤ N and
1 ≤ P ≤ Pmax , filter Fi’s passband must include the coprime frequencies with period
P iff i ∈ f (P). ♦

Remark: Notice that the spectrum of any periodic signal is non-zero only at
frequencies that are rational multiples of 2π (see Theorem 7.2.2 for instance). So
the frequency response of the filters at frequencies other than rational multiples of
2π are irrelevant to period estimation (ideally, in the infinite data length case). The
above theorem says that, for any unique representation filter bank, the frequency
responses of the filters must match those of the following filters at rational multiples
of 2π:

Fi =
∑

1≤q≤Pmax

i∈ f (q)

αi,qcq(n) (5.23)

where αi,q , 0. Notice the similarity with (5.17).

Proof of Theorem 5.8.3: Suppose that Fi has a passband that includes the coprime
frequencies with period P. Then, if the input is cP(n), the output of Fi must be
non-zero. But if Fi has a non-zero output for a period P signal, then by the definition
of a URFB, it must have have non-zero outputs for all period P signals. That is,
i ∈ f (P).

Conversely, suppose i ∈ f (P). Now, if Fi does not have a passband at one of the
coprime frequencies with period P, say at the frequency 2πm0

P , where (m0, P) = 1,
then if the input is the signal e

j2πm0
P n, the output of Fi would be zero. However, this

signal has period P, and since i ∈ f (P), Fi should have given a non-zero output.
Hence, we obtain a contradiction. So Fi must have a passband at all the coprime
frequencies with period P. 5 5 5

A Simulation Example
In this section, we demonstrate a URFB for periods 1 to 4. Notice that Table 5.7’s
corresponding function f is given by:

f (1) = {}, f (2) = {1}, f (3) = {2}, f (4) = {1, 2}
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Table 5.7: A URFB for periods 1 to 4.

Period F1 F2
1 0 0
2 1 0
3 0 1
4 1 1

It is easy to check that f satisfies the conditions of Theorem 4.3.1. Using (5.17),
the two filters’ impulse responses are given by:

h1(n) = c2(n) + c4(n)

h2(n) = c3(n) + c4(n)

For a practical implementation, we truncated these filters to length 20. Fig. 5.16(a)
shows a signal whose period increases by 1 from 1 to 4 after every 100 samples.
Fig. 5.16(b) shows the output powers of the two filters. Note that they match with
Table 5.7.

We did not consider noise in this example, since we only wanted to demonstrate the
capability of a URFB to distinguish between different periods. In our experiments,
we found that increasing the filter lengths resulted in better noise performance, at the
cost of poorer time resolution (due to longer transients. Our current work involves
an analysis of how to optimize these filters under noise (for example, by choosing
the αi,q’s in (5.23) appropriately).

5.9 Conclusion
We introduced a new period estimation technique in this chapter called the Ra-
manujan Filter Bank (RFB). It was shown that the RFB is especially suited for
applications where the periodicity is localized, or is changing with time. Its per-
formance was compared with the state-of-the-art methods for applications such as
DNA and protein repeats, and for detecting absence seizures from EEG waveforms.
The promising performance of the RFB encourages us to futher tailor it for each
of these application areas by optimizing its parameters over much larger databases.
This could be a promising direction for the future.

By looking at the operation of the RFB in terms of a truth table, we also introduced
the so called “Unique Representation Filter Banks” (URFB) which have far fewer
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Input signal

F1 output

F2 output

Period 1 Period 2 Period 3 Period 4

0 1 0 1

1100

(a)

(b)

Figure 5.16: Demonstrating a URFB for Table 5.7. See Sec. 5.8 for details.

filters than the RFB.While the RFB can estimate the component periods in amixture
of periodic signals, the URFB are tailored for applications where the input is just a
single periodic signal. One of the questions we want to study in this regard is, what
is the least number of filters needed for a URFB to detect periods 1 to Pmax? One
might conjecture that we may need about log2 Pmax filters, but this requires further
study.
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C h a p t e r 6

iMUSIC: A FAMILY OF MUSIC-LIKE ALGORITHMS FOR
INTEGER PERIOD ESTIMATION

The MUSIC algorithm (MUltiple SIgnal Classification) [15] is one of the most pop-
ular techniques for estimating line spectra in discrete time signals. It has widespread
applications, including Direction of Arrival estimation [88]–[90], time delay estima-
tion [91], neuro-imaging [92], [93], and many more. But when the signal of interest
is periodic, its spectrum is not just arbitrary lines. There is a nice harmonic structure
in the spectrum as shown in Fig. 7.1, which can be modeled mathematically as:

x(n) =
K−1∑
k=0

ck e j kω0n (6.1)

where 2π/ω0 (possibly not an integer) is usually considered as the ‘period’. While
MUSIC itself does not exploit this additional harmonic structure, it was shown in
an important series of publications [16], [17], [94] that modifying MUSIC’s search
over complex exponentials so that we look for harmonically spaced peaks, improves
the period estimates significantly. These methods were called HarmonicMUSIC (or
HMUSIC). However, they are computationally much more complex than traditional
MUSIC, especially when the input is a mixture of multiple periodic signals.

While (6.1) generically applies to several instances of periodicity such as speech,
cardiology, EEG analysis and so forth, there is a second class of applications which
have more structure than what is captured by (6.1). These are periodic signals whose
periods are integers:

x(n + P) = x(n) ∀ n ∈ Z (6.2)

for some integer P. Such applications include repeats in protein and DNA sequences
(see Chapter 5). In fact, many state of the art methods for conventional periodicity
applications such as speech [12], [95], [96] are also based on integer period ap-
proximations. This chapter shows that the simplicity of the integer period model
(7.19) opens up the possibility for designing a more diverse class of MUSIC-like
algorithms than prior works.

More specifically, for such signals with integer periods, this chapter proposes a new
formulation of MUSIC called iMUSIC, using the Ramanujan Subspaces (Chapter 2)
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𝜔𝜔0 𝜔1 𝜔2 𝜔3
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0

0

(a)

(b)

Figure 6.1: Part (a) - An arbitrary line spectrum; Part (b) - The harmonic line
spectrum of a periodic signal. Can we use the additional structure in the spectrum
of a periodic signal to improve MUSIC?

33

11

3

Figure 6.2: Applications with Integer Periodicity: The protein AnkyrinR (PDB 1n11) that
enables red blood cells to resist shear forces. Its period 33 structural repeats can be clearly
identified in the plot on the right, produced by the proposed techniques.

and Nested Periodic Subspaces (NPSs) (Chapter 3). The frequencies corresponding
to signals with integer periods can be compactly represented by a non-uniform grid
known as the Farey grid (see Sec. 4.5, Fig. 4.1). Using the Farey grid, we propose an
alternative to the classical MUSIC pseudospectrum: All the complex exponentials
on the Farey grid belonging to a common Ramanujan subspace [9] are grouped
together when computing this proposed pseudo-spectrum. It will be shown that
the resulting algortihm yeilds much higher accuracies than classical MUSIC and
its prior periodicity variants such as HMUSIC, while keeping the computational
complexity very low.

Furthermore, the Ramanujan subspaces can alternatively be spanned by simple
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integer valued vectors instead of the Farey grid (Fig. 6.3). In fact, usingmore general
Nested Periodic Subspaces (Chatpter 3), one can construct many such examples of
simple integer valued vectors that can be used to compute the proposed iMUSIC
pseudospectrum instead of complex exponentials. Some of these new bases are very
sparse, consisting of only 1’s and 0’s (Fig. 6.3(a)). These new representations give
rise to a rich class of MUSIC-like algorithms that are well suited for integer period
applications. Their advantages are demonstrated using examples that include Protein
and DNA repeats. To the best of our knowledge, this is the first time MUSIC-like
methods have been used on such bio-molecular repeats.

It should be mentioned here that there are other interesting algorithms such as the
harmonic matching pursuit (HMP) [97], and expectation-maximization (EM) based
algorithms [98] for taking advantage of the harmonicity in line spectra. While our
focus in this work is only on MUSIC-like algorithms, we do include HMP and EM
in our comparisons.

The mathematical formulation of classical MUSIC benefits greatly from the Van-
dermonde structure of complex exponentials. For instance, this is used in deriving
the conditions for avoiding spurious peaks in the MUSIC psuedospectrum [15],
[89]. The absence of a Vandermonde structure in NPSs introduces many new, but
interesting challenges. For example, while we cannot guarantee the absence of
additional (spurious) peaks in the iMUSIC pseudo-spectrum, we can still prove that
any such peak will not affect the estimated period. These, and other such deviations
from classical MUSIC will be rigorously addressed throughout this chapter.

Chapter Outline
Sec. 6.1 summarizes MUSIC and its prior adaptations to periodic signals (the
HMUSIC algorithms). Sec. 6.2 introduces the proposed iMUSIC framework, first
using the Farey grid of complex exponentials. This is generalized to iMUSIC using
other NPSs in Sec. 6.3, allowing the use of integer valued vectors for spanning the
signal subspace. The conditions for identifiability of the true periods using such
integer bases are rigorously derived here. Sec. 6.4 contains several simulations and
comparisons with other techniques, including examples of protein and DNA repeats.
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Figure 6.3: Simple Integer Alternatives to Complex-Exponentials: Bases of (a) The Natural
Basis Subspaces, and (b) The Ramanujan Subspaces.

6.1 MUSIC and Periodicity: An Overview of Prior Works
In this section, we will briefly outline the MUSIC algorithm [15], [99], and its prior
adaptations to periodic signals. Let us begin with the following signal model:

x(n) =
K−1∑
k=0

ck e jωkn + e(n), (6.3)

where ωk are distinct frequencies in [−π, π) and e(n) is zero-mean white noise with
variance σ2

e . Most prior MUSIC-based works model ck ∈ C as random variables
[16], [99], [100]. But we will assume them to be constants here, since such is the
case in most applications of periodicity.

Assume that there are L samples of x(n), 1 ≤ n ≤ L, and define the ith block of data
as

x(i) =
[
x(i) x(i + 1) · · · x(i + N − 1)

]T
, (6.4)

where N < L is the blocksize. We can call x(i) the ith “snapshot" but note that
successive blocks are not independent (they have an overlap of N − 1 samples).
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There are

M = L − N + 1 (6.5)

blocks. Note that we can write the ith block as

x(i) =
[
a0(i) a1(i) · · · aK−1(i)

] 
c0

c1
...

cK−1

︸ ︷︷ ︸
c

+e(i) (6.6)

where ak(i) are Vandermonde vectors up to scale:

ak(i) =
[
e jωk i e jωk (i+1) · · · e jωk (i+N−1)

]T

= e jωk i
T[

1 e jωk · · · e jωk (N−1)
]

︸                            ︷︷                            ︸
wk

Thus

x(i) = AΛω(i)c + e(i) (6.7)

where

A =



1 1 · · · 1
e jω0 e jω1 · · · e jωK−1

e j2ω0 e j2ω1 · · · e j2ωK−1

...
...

. . .
...

e j(N−1)ω0 e j(N−1)ω1 · · · e j(N−1)ωK−1


(6.8)

is a Vandermonde matrix independent of i, and

Λω(i) = diag {e jω0i, e jω1i, · · · , e jωK−1i} (6.9)

Define the data matrix to be

X =
[
x(1) x(2) · · · x(M)

]
. (6.10)

Then the sample autocorrelation matrix is

R̂ =
1
M

XX† =
1
M

M∑
i=1

x(i)x†(i) (6.11)



118

For large M this can be approximated as

R̂ ≈ AΛcA† + σ2
e IN (6.12)

where Λc = diag {|c0 |
2, |c1 |

2, · · · , |cK−1 |
2}. (Please see the Appendix for a proof

of (6.12)).

Let λ1 ≥ λ2 ≥ . . . ≥ λN be the eigenvalues of R̂. Since Rank(AΛcA†) = K ,
it can be shown that λK+1 = λK+2 = . . . = λN = σ2

e . These are commonly
referred to as the noise eigenvalues, and their corresponding eigenvectors Ue =

[uK+1, uK+2, . . . , uN ], as the noise eigenvectors. Using (6.12), we obtain

AΛcA†Ue = 0 (6.13)

As long as N ≥ K , Λc will have a full rank and A will have a full column-rank,
because ck , 0 and ωk are distinct in [−π, π). So (6.13) is equivalent to:

A†Ue = 0 (6.14)

That is, the complex-exponentials in (6.3) turn out to be orthogonal to the noise
eigenspace. So one can then use the following to estimate the ωk :

min
ω∈(−π,π]

‖a†(ω)Ue‖
2
2 (6.15)

where a(ω) = [1, e jω, e2 jω, . . . , e(N−1) jω]T . It can be proved [15], [89] that as long
as N > K , the only complex-exponentials that are orthogonal to the noise eigenspace
are those in (6.3). Hence, there will be no spurious estimates when solving (6.15).

Now, for applications with periodicity, MUSIC by itself does not exploit the fact
that the lines in the spectrum are harmonically spaced (Fig. 7.1). Taking this into
account, Christensen et al. [16] proposed to modify (6.15) as

min
ω∈(−π,π]

min
K

‖B†(ω)Ue‖
2
F

KN(N − K)
(6.16)

where B(ω) = [a(0), a(ω), a(2ω), . . . , a((K − 1)ω)]. The factor of KN(N − K)

is a normalization term. The resulting algorithm was called the Harmonic MUSIC
(HMUSIC) algorithm. It was further generalized to the case of mixtures of periodic
signals in [17] as follows:

min
{Kl}

Q−1
l=0

min
{ωl}

Q−1
l=0

Q−1∑
l=0

‖B†(ωl)Ue‖
2
F

KN(N − K)
(6.17)
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(a) (b) (c)

Normalized Frequency  (mul. of 𝜋)

Figure 6.4: Demonstrating the proposed iMUSIC method using a Farey dictionary on a
mixture of periods 3, 10 and 13. (a) The noisy periodic signal, (b) conventional MUSIC,
and (c) the new iMUSIC method in (6.19).

where Q is the number of component periods in the mixture, and K is the total
signal space dimension. These algorithms were shown to offer better estimates than
MUSIC in the context of pitch estimation [16], [17]. However, notice that both (6.16)
and (6.17) involve computationally intensive discrete optimizations. For signals that
can be approximated well by the integer period model of (7.19) (such as DNA and
Protein repeats), we can developmuch simpler techniques with a significantly higher
accuracy as well. We shall present these next.

6.2 The Proposed Methods
As explained above, when the Vandermonde vectors (columns of A) in Eq. (6.8)
have a harmonic structure, it can be exploited to improve the MUSIC algorithm (e.g.
HMUSIC [16]). Now, when x(n) has integer period ≤ Pmax , the frequencies ωi in
(6.8) can only have the specific form:

2π
k
q
, 1 ≤ k ≤ q, (k, q) = 1 where 1 ≤ q ≤ Pmax (6.18)

That is, the Vandermonde vectors are similar to the atoms in the Farey dictionary
(Chapter 3). In this case there is a different way to define theMUSIC spectrumwhich
works much better than traditional MUSIC and HMUSIC. We refer to this as Farey
MUSIC; as we shall see below, this is more than just restricting the computation of
traditional MUSIC spectrum to the Farey grid. Since the Farey MUSIC algorithm
is specifically designed to find integer periods, we also call it iMUSIC (where the
i stands for integer period). Also, replacing the Farey atoms with other types of
nested periodic bases leads to several generalizations of iMUSIC, as we shall see in
Sec. 6.3.

Let us begin by assuming that x(n) in (6.3) is a period-P signal. So the K columns
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of A in (6.8) are a subset of the atoms of the Farey dictionary, with periods being
divisors of P. We can follow the derivation in Sec. 6.1 to obtain (6.14). That is,
the atoms of the Farey dictionary that span the signal turn out to be orthogonal to
the noise subspace. As long as N , the size of the snapshots in (6.4), is larger than
K , no other Farey atoms will satisfy (6.14). At this point, we propose the following
alternative to the MUSIC (Eq. (6.15)) and HMUSIC pseudo-spectra (Eqs. (6.16)
and (6.17)): For every integer P, we compute

SF(P) =
1

φ(P)

φ(P)∑
m=1

1
‖Ue

†s(m)P ‖
2
2

(6.19)

where {s(m)P }
φ(P)
m=1 are the φ(P) period-P atoms of the Farey dictionary. The φ(P)

term in the denominator is a normalizing factor. A plot of (6.19), with the integer P
as the x-axis is the discrete iMUSIC pseudospectrum based on the Farey dictionary.

Note that Eq. (6.19) is not just restricting ordinary music to a special non-uniform
grid. It is differs from classical MUSIC and HMUSIC in the following ways:

1. Ramanujan Subspaces: Eq. (6.19) consolidates all the Farey atoms in each
Ramanujan subspace into one sum. In this way each iMUSIC spectrum line is for
one Ramanujan subspace. The LCM property of the Ramanujan subspaces applied
to the peaks of (6.19), yields the period. The number of lines is therefore different
from the number of lines in ordinary MUSIC.

Notice that HMUSIC in (6.16) and (6.17) also groups together harmonic multiples
of a fundamental frequency. But while HMUSIC combines all the harmonics of the
fundamental, in Farey-MUSIC, for every period P, we only combine those e j2πkn/P

for which (k, P) = 1.

2. Mixtures of Periodic Signals: Unlike HMUSIC in (6.17), the complexity of
iMUSIC does not increase with the number of component signals in a mixture, or
with the number of harmonics for each component. The complexity of HMUSIC
increases exponentially with the number of hidden periodic componentsQ in (6.17).
This is because the number of ways in which Kl’s in (6.17) can be chosen to add up
to the total signal space dimension K increases exponentially with Q. This follows
from the theory of partitions [101]. The proposed iMUSIC on the other hand just
needs to compute (6.19), irrespective of the number of hidden periodic components.

3. The Period of a Complex-Exponential: There is a subtle distinction in how we
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interpret the period of a complex exponential. In prior works, the period of e j2πkn/P

was interpreted as P/k. However, we follow the strict integer period definition as
given in (7.19), so that the period is actually P/gcd(P, k).

All these differences when put together, result in significantly better accuracies and
much simpler algorithmic complexity for integer period estimation, as will be seen
in Sec. 6.4. Before proceeding, we will show a simple demonstration of the iMUSIC
equation (6.19). Fig. 6.4(a) shows a sum of randomly generated signals with periods
3, 10 and 13 and SNR 5dB. The total signal length (L in Sec. 6.1) was 400. This
signal was broken down into successive blocks of length 101 samples (N in (6.4)).
K , the number of complex exponentials in (6.3), turns out to be 24 for this choice
of periods. In practice, this true value of K is unknown a priori, so we estimate
it here using a simple metric: all the eigenvalues of the auto-correlation matrix
smaller than 5% of the maximum eigenvalue were considered as noise eigenvalues.
Fig. 6.4(b) shows the conventional MUSIC pseudospectrum for reference. The
peaks correspond to periods 12.79, 9.85, 6.56, 5.02, 4.34, 3.32, 3.24, 3.01, 2.59,
2.51 and 2.17. Notice that it is quite inconvenient to spot the true periods 3, 10 and
13 from this set. Fig. 6.4(c) shows the iMUSIC pseudospectrum computed using
(6.19). It is easy to identify distinct peaks at periods 2, 3, 5, 10 and 13. Using the
LCM property, we can deduce that these correspond to periods 3, 10 and 13.

6.3 Generalizing iMUSIC From Farey Atoms to Other NPS Bases
Eq. (6.19) can alternatively be implemented using integer valued basis vectors
instead of complex exponentials. This can be done using the Nested Periodic
Subspaces (NPSs) [23], [37] described inChapter 3. TheNPSs are generalizations of
Ramanujan subspaces, and include several examples of integer bases for representing
periodic sequences (Fig. 6.3). In fact, as explained in Chapter 3, the Ramanujan
subspaces can themselves be spanned by integer valued vectors instead of the Farey
atoms.

Algorithmically, generalizing the iMUSIC spectrum using such NPSs is done as
follows: We compute the following for every integer P instead of (6.19):

SN (P) =
1

φ(P)

φ(P)∑
m=1

1
‖Ue

†b(m)P ‖
2
2

(6.20)

where {b(m)P }
φ(P)
m=1 are the φ(P) period-P NPS basis vectors. Using the LCM property

of NPSs, we can once again determine the period from the peaks of Eq. (6.20).
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(a) (b) (c)

Figure 6.5: Demonstrating the NPS based iMUSICmethods on the signal shown in Fig. 6.4
using (a) a Ramanujan dictionary, (b) a natural basis dictionary and (c) a randomly generated
NPS dictionary.

For example, Fig. 6.5 shows plots of Eq. (6.20) vs. P for various integer valued
NPS bases, for the signal shown in Fig. 6.4(a). When the atoms b(m)P come from a
Ramanujan dictionary (Fig. 6.3(b)), we call (6.20) as Ramanujan MUSIC. Natural
basis MUSIC and RandomNPSMUSIC can be defined similarly using their respec-
tive dictionaries [23]. All these plots have clean peaks at periods 2, 3, 5, 10 and 13.
Using the LCM property of NPSs, it is easy to see that they represent periods 3, 10
and 13.

Although the above idea is simple, the non-Vandermonde nature of the NPS bases
introduces several challenges in the mathematical formulation of (6.20) when com-
pared to classical MUSIC. So in the remainder of this section, we will study (6.20)
in a rigorous fashion. To start with, let us assume that x(n) is a period P signal.
Following the derivations of Sec. II, we can arrive at (6.13). Now, since x(n) has
integer period, the columns of A themselves have integer periods (atoms of the Farey
dictionary), and hence can be spanned by any other set of NPSs (such as say natural
basis). We can write this as:

AN×K = BN×K ′TK ′×K (6.21)

where the K′ columns of B are the basis vectors of the other NPS. It can be shown
[23] that the lcm property applied to the columns of either A or B yields the same
answer, namely P. It is useful to consider two separate cases at this point, depending
on whether K equals K′.

The Case When K = K′

In general, K and K′ can be different. But to start with, we assume K = K′ since
it is the most common situation in applications with integer periods. Conceptually,
K = K′means that one would require the same number of NPS basis vectors to span
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the snapshots, no matter which NPS is chosen. For instance, if x(n) was randomly
generated, say by repeating a P × 1 Gaussian random vector xP, then it can be
shown that K = K′ with probability 1. This also applies to mixtures of periodic
signals, when each component signal is randomly generated. In applications such
as DNA and protein repeats, where the nucleotides or the amino acids are mapped
to numbers using scales such as the molecular size, hydrophobicity etc. [102], it is
quite natural to expect that K = K′. The case of K , K′ will be addressed later in
Sec. 6.3.

We can re-write (6.13) using (6.21) as follows:

BTΛcT†B†Ue = 0 (6.22)

In (6.21), as long as N > K , Awill have a full column rank (Vandermonde property).
This implies that B and T will also have full column ranks K (= K′), and hence
BTΛcT† will have a full column rank in (6.22). So (6.22) is equivalent to:

B†Ue = 0 (6.23)

Notice that this is similar to (6.14), but involves the columns of an NPS dictionary
rather than complex exponentials. So given such an NPS dictionary, plotting (6.20)
for every period ≤ Pmax will result in peaks at periods corresponding to the columns
of B. So we may think of using the LCM property on those peaks to estimate the
period. But before we can do so, just like in classical MUSIC, we need to address
the following question first: Can there be NPS basis vectors other than the columns
of B that are also orthogonal to Ue?

We have an interesting deviation from classical MUSIC in this aspect. While
we cannot guarantee the absence of such additional (spurious) NPS basis vectors
producing peaks in (6.20), we can nevertheless prove that any such additional peaks
will not affect the period estimate. To see this, we first need the following result
which will be proved in Chapter 7:

Theorem 6.3.1. Let x(n) be a noiseless periodic signal whose period is known to
lie in the integer set P = {P1, P2, . . . , PK}. To be able to uniquely identify its period
using L consecutive samples, it is both necessary and sufficient that:

L ≥ Lmin = max
Pi,Pj∈P

Pi + Pj − (Pi, Pj) (6.24)

♦



124

The above result is a fundamental identifiability result that is independent of which
estimation technique is used myPrep. We will use it to prove the following:

Theorem 6.3.2. Suppose the period of x(n) in (6.3) is known a priori to lie in the
integer set P = {P1, P2, . . . , PK}. If N , the length of the snapshots in (6.4), satisfies:

N ≥ Lmin = max
Pi,Pj∈P

Pi + Pj − (Pi, Pj) (6.25)

then the LCM of the periods of all the NPS basis vectors that are orthogonal to Ue,
will be equal to the true period of the signal.

Proof: Let us assume that the input’s period is P. As mentioned earlier, the LCM of
the periods of the columns in A in (6.8) and B in (6.21) will be equal to P. Suppose
b is an NPS basis vector that is not a column of B, but still satisfies b†Ue = 0. There
are two possibilities:

Case (i) Period of b divides P. In this case, even if b†Ue = 0, a peak in the
psuedospectrum at period of b will not change the LCM estimate. So such a
spurious peak will not lead to a false period estimate.

Case (ii) Period of b does not divide P. We will show using contradiction that such
a b cannot exist. If there was such a b, then b, along with the columns of B will
constitute K + 1 vectors in the K dimensional null-space of U†e. When N satisfies
(6.25), it follows in particular that N > Pmax ≥ K . N > K implies that A in (6.21)
will have full column rank (Vandermonde property), and so B will also have full
column rank K (recall that we assumed K = K′ to start with). This would mean that
B is a basis for the null space of U†e, and so:

b = Bv (6.26)

for some vector v. Notice that the L.H.S. is a length N segment of a signal whose
period does not divide P. The R.H.S. is a segment of a signal whose period
necessarily dividesP, since the columns inB areNPSbasis vectorswhose periods are
divisors of P. As long as N ≥ Lmin according to Theorem 6.3.1, such an ambiguity
in identifying the period is not possible. Hence we arrive at a contradiction to the
existence of such a b.

Remark1: When the set of possible periods inTheorem6.3.2 isP = {1, 2, 3, . . . , Pmax},
Lmin turns out to be 2Pmax − 2.
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Remark 2: Theorem 6.3.2 can be generalized to mixtures of periodic signals. If
x(n) were a mixture of M periodic signals with periods in {1, 2, 3, . . . , Pmax},
then the minimum N is approximately:

N ≥ 2MPmax (6.27)

For readers already familiar with Chapter 7, (6.27) is in fact an approximation of
the following precise lower bound:

N ≥ Nmin = max
Pi,Pj⊂P
Pi,Pj are

M−sets o f size =N

∑
d∈D.S.({Pi∪Pj })

φ(d) (6.28)

The proof is based on the generalization of Theorem 6.3.1 to mixtures of periodic
signals myPrep. The details are quite similar to the above proof, so we will skip
them here.

Remark 3: Theorem 6.3.2 is tight in the following sense: It is possible to construct
examples of NPSs for which spurious peaks will affect the period estimate when
N doesn’t satisfy (6.25). But for most NPSs, a smaller N may be sufficient. For
instance, if we use the Farey atoms, it is easy to show using their Vandermonde
structure [89] that we just need:

N > max
Pi∈P

Pi (6.29)

instead of (6.25) in Theorem 6.3.2. However, deriving the precise necessary and
sufficient bounds for otherNPSs that do not have aVandermonde structure is difficult.
Theorem 6.3.2 is useful in this regard.

So we have so far shown that as long as K = K′, and the snapshot length satisfies
(6.25), the period of the signal can be estimated using (6.20). We will now discuss
the case of K , K′.

The case of K , K′

Let us consider the following two cases separately:

Case A: K > K′: This will not happen as long as the snapshot length N > K ,
because then A in (6.21) will have full column rank K . So at least K linearly
independent columns are needed in B in the R.H.S. of (6.21).

Case B: K < K′: This can occur in some cases. For instance, if x(n) = e j2πn/P,
then K = 1, as only one Farey column is required to span the snapshots of x(n). But
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Figure 6.6: The effect of K < K ′ on the pseudo-spectrum of (a) Ramaujan Subspaces
(Farey basis) (b) Ramanujan Subspaces (integer basis) (c) Natural Basis Subspaces and (d)
Randomly generated NPSs.

if we use natural basis subspaces (Fig. 7.1), then K′ = P, as it can be shown that P

basis vectors of the natural basis subspaces are needed to span each snapshot of this
x(n).

When K < K′, T in (6.21) will not have a full rank. Hence, (6.22) does not imply
(6.23). So it is quite possible that some of the columns of B are not orthogonal to
Ue. So using (6.20) and lcm property is not theoretically guaranteed to give the
correct period estimate. This is a fundamental limitation of any non-Farey NPS
basis. Nevertheless, it was experimentally observed that:

• For iMUSIC using Ramanujan subspaces, (6.19) gave the correct period
estimates even for the non-Vandermonde integer basis vectors.

• For Natural Basis subspaces and randomly generated NPSs, the only spurious
peaks observed were smaller peaks at multiples of the true period. So the
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period could still be estimated upto a multiple.

As an illustration, let us consider the following signal: x(n) = e j2πn/10. For this
signal, we would need only one Farey basis vector to span its snapshots, while we
would need 10 basis vectors from Ramanujan integer basis, and similarly from the
Natural Basis subspace. For randomly generated NPSs as well, we would need 10
basis vectors with probability 1. So for each of these other NPSs, we have K′ = 10
in (6.21). Fig. 6.6 shows the pseudo-spectra obtained from each of these NPSs
using (6.20). As is evident, K < K′ wasn’t really an issue when using Ramanujan
subspaces, even for the non-Vandermonde integer basis vectors. There were no
spurious peaks or missing peaks. For the natural basis and the randomly generated
NPSs, we can see spurious peaks at multiples of the true period, which is 10. So
the period can only be estimated up to a multiple of the true period. Hence in
practice, for signals such as pure sinusoids, it is recommended to use the Ramanujan
subspaces instead of more general NPSs.

This completes the formulation of the NPS based iMUSIC algorithms.

6.4 Experiments
In this section, we present several examples and comparisons to highlight various
aspects of the proposed methods.

Comparison of Estimation Accuracies
Figs. 6.7 and 6.8 compare the accuracy of period estimation for several techniques
as a function of SNR. For each SNR shown, 200 Monte Carlo trials were carried out
with randomly generated signals, each signal being an additive mixture of periods
10 and 14. The total datalength for each signal was L = 500 samples. The snapshot
length (N in (6.4)) was chosen as 150. K , the number of complex exponentials in
(6.3), turns out to be 23 in this case. Since the signals were randomly generated, K′

in (6.21) turns out to be equal to K for all NPSs. For simplicity, we assumed that
the value of the total signal space dimension K is known to all the methods here,
including MUSIC and HMUSIC. Pmax , the maximum period that is searched for
in the signal, was chosen to be 20. The probability of correct estimation is plotted
for each method1, which is the fraction of trials in which the detected periods were

1Mean Squared Error (MSE), a popular metric in general, is not appropriate here due to two
reasons: (a) Different methods could detect different number of component periods. It is not
straightforward to compare vectors of different lengths using MSE. (b) Estimating the period upto a
multiple may be acceptable in many applications. For example, in Fig. 6.2, proteins with Ankyrin



128

SNR (dB)

Pr
ob

ab
ili

ty
 o

f 
Co

rr
ec

t  
Es

tim
at

io
n

Comparison of Estimation Accuracy - I

(new)

Figure 6.7: Probability of Estimating both the component periods exactly. Comparison of
the proposed Farey-MUSIC with other techniques. See

exactly equal to the set {10, 14}. For visual clarity, we have split the different
methods into two figures, Figs. 6.7 and 6.8. Our observations are as follows:

1. Traditional MUSIC and HMUSIC: Both MUSIC and HMUSIC [16], [17],
[94], evaluated on a frequency grid that has the same size as the Farey grid, yield
probability of correct estimation close to 0 even at high SNRs. They required at
least four times denser grids than the Farey grid to reach the performances shown in
Figs. 6.7 and 6.8. Further increase in the grid size did not improve their accuracy
significantly. For a fair comparison, the period estimates of both these methods were
rounded to the nearest integers. In fact, HMUSIC here was given the true value of
the number of hidden periodic components in the mixture (Q in (6.17)) as an input.
It was also given the number of harmonics for each component signal (Kl in (6.17))
as inputs. Still, both HMUSIC and MUSIC do not perform as well as the proposed
iMUSIC methods (unless we use randomly generated NPSs for iMUSIC). With four
times denser grids, HMUSIC and MUSIC are able to outperform random NPSs.

2. Prior Ramanujan-Subspace based methods: An alternate way of using
NPSs for period estimation is using compressed-sensing based dictionary methods
[23], [26]. While they work very well compared to other methods for very short

repeats are known to have periods in the range 30 - 40. So it might be more acceptable to estimate 66
as the period, instead of say 40, since we can readily deduce that 66 might actually indicate period
33 repeats. MSE on the other hand penalizes 66 more than 40. In any case, probability of correct
estimation is in fact a stricter metric than MSE.
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datalengths [23], [37], for the parameters considered here, the dictionaries turn out
to be tall. Least squares based approach using such dictionaries can be efficiently
implemented as a filter bank called the Ramanujan Filter Bank (RFB) [103], [104].
As seen in Fig. 6.7, the proposed iMUSIC methods outperform RFB, especially at
smaller SNRs. It is useful to note however that the most appropriate applications for
the RFB are signals exhibiting localized or time varying periodicity such as chirps
[103], [104].

3. Harmonic Matching Pursuit and Expectation Maximization: Fig. 6.7 also
shows the performance of two othermulti-pitchmethods: ExpectationMaximization
[94], [98] and the Harmonic Matching Pursuit [94], [97] algorithms. Once again,
both these methods give close to 0 probability of correct estimation when their
frequency grid sizes are comparable to those of the Farey dictionary. Both of them
required at least 10 times denser grids than the Farey grid to achieve the accuracies
shown in Fig. 6.7, which made them significantly more computationally expensive.

4. The proposed iMUSIC methods: As seen in Figs. 6.7 and 6.8, iMUSIC using
the Farey dictionary clearly outperforms all othermethods considered here. iMUSIC
based on natural basis performs equally well at higher SNRs (Fig. 6.8). Recall that
the natural basis vectors are very sparse with a few 1’s and mostly 0’s (Fig. 6.3).
An interesting observation is that, although Farey and Ramanujan dictionaries both
span the same (Ramanujan) subspaces, Farey based iMUSIC performs better. This
might be because the Farey columns tend towards orthogonality for large enough N ,
while the Ramanujan integer basis vectors do not.

Apart from the methods considered above, there are several other techniques that
are popular in the literature such as [3]–[7], [95], [105]. While being the state-of-the
art for applications such as pitch estimation, these methods cannot be directly used
in the above example since they are not easily extended to the case of mixtures of
periodic signals. It is important to note that, although iMUSIC outperforms the other
techniques in Figs. 6.7 and 6.8, these other methods, including the aforementioned
papers on single pitch estimation, can handle the more general case of non-integer
periods. Whether the iMUSIC algorithms can be adapted to such applications
requires a detailed analysis in itself, and will be a part of our future research. In a
following subsection, wewill compare the iMUSICmethodswith the state-of-the-art
for an application with inherently integer periods: namely, protein repeats.
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Figure 6.8: Probability of Estimating both the component periods exactly. Comparison of
the various NPSs. HMUSIC and MUSIC have been included for reference.
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Figure 6.9: A comparison of the CPU Times. See Sec. 6.4 for details.

Comparison of CPU times for Eigenspace Methods
To show the computational savings that iMUSIC algorithms achieve over prior
variants of MUSIC, Fig. 6.9 compares the average CPU times (MATLAB 2014b
on a 2.4GHz CPU with 8GB RAM) as a function of the size of the autocorrelation
matrix (which is also the size of the snapshots N in (6.4)). The total datalength of
the signal, L was chosen as 3N , and the dimension of the signal subspace K was
fixed at 25 for simplicity. MUSIC and HMUSIC were implemented with a uniform
frequency grid of the same size as the Farey grid. Recall however that both these
methods typically require much more denser grids than Farey MUSIC (Sec. 6.4).
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Figure 6.10: Pseudospectra of the proposed NPS based techniques for the Ankyrin protein
repeats shown in Fig. 6.2.

Notice that our natural basis (NB) MUSIC is the fastest in Fig. 6.9. Farey-MUSIC
and MUSIC are similar to each other in terms of CPU time due to identical grid
sizes. In Fig. 6.9, HMUSIC(≤ T) denotes using (6.17) with the prior knowledge
that the number of hidden periodic components in the signal Q ≤ T . As mentioned
previously, the complexity of HMUSIC(≤ T) increases exponentially with T . In
contrast, since we check the NPS basis vectors one-by-one in (6.19), the complexity
of our proposed techniques does not depend on T . From Figs. 6.8 and 6.9, it is
evident that our methods offer much better accuracy for integer period estimation
than prior variants of MUSIC, while keeping the computational complexity low at
the same time.

Examples of Protein Repeats and DNA Microsatellites
We will now demonstrate the proposed iMUSIC algorithms on repeats in proteins.
We refer the reader to Sec. 5.4 for an introduction to protein repeats. To the best
of our knowledge, this is the first time any MUSIC based approach is being used
for this application. In the following examples, we used the popular Kyte-Doolittle
hydrophobicity scale [62] to map amino acids to numbers. To estimate the signal
space dimension, we used the same 5% criteria mentioned in Sec. 6.3 (Fig. 6.4).

In our first example, we consider the protein AnkyrinR (PDB 1n11) that enables
red blood cells to resist shear forces during circulation. The period 33 repeats in
AnkyrinR can easily be identified in the pseudo-spectra shown in Fig. 6.10. These
plots show the results of applying the proposed methods using Ramanujan (integer
basis), Natural Basis and Random Integer NPSs (The Farey basis can also be used;
it was shown earlier in Fig. 1). All four plots have clear peaks at 33 and its divisors.
Notice that the Ramanujan (integer basis) plot in Fig. 6.10(c) has a weak peak at 33.
However, the LCM of the peaks at 11 and 3 indicate the presence of the period 33
repeats.
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Fig. 6.11 shows a second example, the protein Ribonuclease Inhibitor, which con-
tains 15 luciene-rich repeats, alternately 28 and 29 residues long [106]. So according
to our definition of periodicity in (7.19), the period of these repeats is 57. This can
once again be easily identified in the pseudo-spectrum plots shown in Fig. 6.11. In
all our experiments, we observed that the Ramanujan Subspaces (both Farey and the
integer basis) gave the cleanest plots, followed by randomly generated NPSs. The
Natual Basis Subspaces, although showing the tallest peaks at the correct periods,
often had smaller spurious peaks. Recall that the natural basis subspaces performed
well in Sec. 6.4 at higher SNRs. But the noise there was additive, whereas here
we have substitution and insertion-deletion errors. It seems that the natural basis
subspaces are more sensitive than the other NPSs for such errors.

For comparison, Table I shows the period estimates of various techniques for three
examples of protein repeats2. Apart from the examples shown in Figs. 6.10 and
6.11, we also consider the protein HetL (PDB:3du1), which is 237 amino acids long
and contains tandem pentapeptide (period 5) repeats. This protein is known to play
an important role in the nitrogen fixation process in cyanobacteria [47]. In Table I,
notice that the estimates of HMUSIC and MUSIC are not as accurate as those of
iMUSIC. Moreover, it can be seen that HMUSIC and MUSIC were very sensitive
to errors in the estimation of signal space dimension. On the other hand, iMUSIC
was very robust in this regard. While Figs. 6.10 and 6.11 used a cut-off of 5%
for identifying the noise eigenvalues, the plots were very similar at 10% as well.
The ‘(s)’ next to natural basis iMUSIC’s estimates in Table I indicates the presence
of smaller spurious peaks in its pseudospectrum (such as the one at period 38 in
Fig. 6.11).

Table 1 also compares three state of the art techniques used for protein repeats.
RADAR [48] and TRUST [49] algorithms are based on self-alignment techniques
(trace matrices and dynamic programming), while HHrepID HHrepID uses Hid-
den Markov Models. Once again, iMUSIC performs well in comparison to these
methods.

As a final example, we show an instance of tandem repeats in the human DNA in
Fig. 6.12. Such repeats in the DNA are of significance in a number of contexts(see

2HMUSIC, as described in [16], [94], uses a computationally intensive discrete optimization to
find the signal space dimension. However, the implementation of HMUSIC provided by its author
Christensen (as a part of [94]) requires the user to specify the signal space dimension as an input.
For simplicity, we used the same 5% (and 10%) rule that we used with iMUSIC, for estimating the
signal space dimension for HMUSIC and traditional MUSIC as well.
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Ribonuclease
Inhibitor

(PDB 1dfj)

Farey MUSIC Ramanujan MUSIC

Natural Basis MUSIC Random MUSIC

5719

35719
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(a) (b)

5719

3 38
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Figure 6.11: Top: The protein Ribonuclease Inhibitor (PDB: 1dfj) exhibiting luciene-
rich repeats. The psuedo-spectra obtained from (a) Ramanujan Subspaces (Farey basis)
(b) Ramanujan Subspaces (Integer Basis) (c) Natural Basis Subspaces and (d) a randomly
generated NPS, are shown. See
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Figure 6.12: Top: An example of DNAmicrosatellites that are used in DNA fingerprinting.
The psuedo-spectra obtained from (a) Ramanujan Subspaces (Farey basis) (b) Ramanujan
Subspaces (Integer Basis) (c) Natural Basis Subspaces and (d) a randomly generated NPS,
are shown. See
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Protein 1n11 1dfj 3du1

True Period 33 57 5

HMUSIC (5%) 66 82 40

HMUSIC (10%) 66 59 5

MUSIC (5%) 33 28 39

MUSIC (10%) 33 28 5

RADAR 27 26 23

TRUST 33 57 10

HHrepID 33 57 10

iMUSIC Farey  33 57 5

iMUSIC Ramanujan 33 57 5

iMUSIC Natural Basis 33 57 (s) 5 (s)

iMUSIC Random 33 57 5

Table 1:  Protein Repeats Comparison

Sec. 5.5 for details). For example, they are the primary bio-markers used today
in DNA fingerprinting, kinship analysis etc. [69], [77], [78]. They are also as-
sociated with several genetic disorders such as the fragile X syndrome, myotonic
dystrophy, Huntington’s disease and Friedreich’s ataxia [69]. Fig. 6.12 shows an
example of repeats (GenBank G08921) that are used in DNA fingerprinting. We
mapped nucleotides to numbers using a randomly generated mapping. The iMUSIC
psuedospectra can easily identify the period 4 repeats.

While the above examples do demonstrate the proposed methods as good candidates
for these applications, amore thorough experimental evaluation of their performance
in comparison with prior works in these application domains is still necessary. Such
an analysis merits a much broader discussion than the scope of this chapter. Our
focus here has been to introduce and establish these methods on a sound theoretical
footing. Tailoring them for specific applications such as DNA and protein repeats
will be a part of our future work.

6.5 Conclusion
This chapter presents a new family of MUSIC-like algorithms for integer period
estimation, based on Ramanujan subspaces [18] and nested periodic subspaces [23].
These new algorithms offer very simple integer valued basis vectors for spanning the
signal space, and result in significantly better accuracy and computational simplicity
than existing techniques for integer periods. The non-Vandermonde nature of the
basis vectors introduces a number of subtle differences from the traditional MUSIC
formulation. Thesewere carefully addressed in this chapter. A number of simulation
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experiments were presented demonstrating these algorithms, including examples
from protein and DNA repeats.

While the model in (7.19) is especially relevant to applications with inherent integer
periodicity, many state of the art methods for conventional periodicity applications
such as in speech [12], [95], [96] also use integer period approximations. Adapting
our techniques for such applications will be of interest to us in our future work. Even
for integer period applications such as proteins andDNA repeats, we are interested in
specifically tailoring our algorithms for each of these applications in a more through
fashion by optimizing over larger databases, and comparing their performance with
the existing state of the art methods in those domains. Finally, apart from MUSIC,
techniques such as ESPRIT [107] and the recent atomic norm based methods [108],
[109] are also popularly used for various line spectral applications. While we
specifically focused on MUSIC in this chapter, it will be very interesting to see if
we can similarly adapt these other techniques for harmonic spectra in the future.

6.6 Chapter Appendix
Proof of (6.12): Substituting from (6.7), the signal component of (6.11) is

V

(
1
M

M∑
i=1

Λω(i)cc†Λ†ω(i)

)
V†. (6.30)

The noise component is

1
M

M∑
i=1

e(i)e†(i), (6.31)

and the cross terms are

V

(
1
M

M∑
i=1

Λω(i)ce†(i)

)
, (6.32)

and its transpose conjugate. The matrix inside bracketts in Eq. (6.30) has ml-th
element

cmc∗l
1
M

M∑
i=1

e j(ωm−ωl)i (6.33)

For m , l we have ωm − ωl , 0 mod 2π, so (6.33) approaches zero for large
M . So, (6.30) has the form VΛcV† where Λc is a diagonal matrix with diagonal
elements |ck |

2. Secondly, for large M Eq. (6.31) approaches σ2
e I. Thirdly the matrix

inside bracketts in Eq. (6.32) has ml-th element cm
∑M

i=1 e jωmie∗l (i)/M . This is a
zero-mean random variable with variance |cm |

2σ2
e /M → 0 for large M . These three

observations justify (6.12). 5 5 5
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C h a p t e r 7

MINIMUM DATALENGTH FOR INTEGER PERIOD
ESTIMATION

7.1 Introduction
Let us consider again the integer periodicity model that we started with in Chapter 1:
A signal x(n) is said to be periodic if

x(n + P) = x(n) (7.1)

for all n for some integer P. The smallest such nonzero integer P is said to be the
period of x(n).

While this model has been very popular in many applications such as speech,
ECG, EEG, protein and DNA repeats, there is one fundamental question which
has surprisingly never been addressed before. Namely, given a sequence x(n) with
integer period, what is the absolute lower bound on the data-length required to be
able to identify its period? More generally, given a mixture of periodic signals, what
is the absolute minimum data-length required to identify the periods of the hidden
components? Notice that the bounds we seek are generic, i.e., independent of any
particular technique we may choose to estimate the periods. We will also see that
the definition of “hidden" integer periods is rather tricky, if we have to get unique
and meaningful answers (Sec. 7.3). Some effort is therefore spent in this chapter to
develop a formal definition, and also to study some interesting properties of hidden
integer periods. It is rather surprising that none of these questions has been raised
in the signal processing literature in the past.

Even though the bounds we seek are generic for the most part (i.e., independent of
any particular technique we may choose to estimate the periods), we also address
the special case of the dictionary based techniques reported in Chapter 3. For these
specific methods the minimum number of samples is, not surprisingly, larger than
the theoretical minimum. These method-dependent-bounds are also given in this
chapter, in view of the practical usefulness of the dictionary based methods.

At the outset we would like to make it clear that development of faster and better
methods for estimation of periods (integer or otherwise) is not the main goal of
this chapter. Rather, the purpose is to develop algorithm-independent theoretical
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bounds on the number of samples required for estimation of integer periods and
integer hidden periods in discrete time data. True, the proof techniques that are
involved in this chapter (to justify the expressions for minimum data length) are
constructive, and therefore place in evidence some procedures for estimation of
integer periods with minimum number of samples. But these should be regarded as
proof-of-concept algorithms. They are not computationally efficient, nor robust to
noise.

Chapter Outline
A general rule of thumb in prior works has been the following: To estimate the
period, we need a data-length that is at least twice the largest expected period (for
e.g., [95], [110]). While this was observed to be true for some particular methods
such as [95], it is not a fundamental bound in the sense that it need not apply to all
possible period estimation techniques. A natural question is, is there a fundamental
lower bound on the data-length that applies regardless ofwhich techniquewe choose?

In Sec. 7.2 we show that such a lower bound does in fact exist: To estimate the period
from the plausible set P = {P1, P2, · · · , PN } of integers, the absolute minimum
necessary and sufficient data-length is

Lmin = max
Pi,Pj∈P

Pi + Pj − (Pi, Pj) (7.2)

where (Pi, Pj) denotes the greatest common divisor. For example, to estimate the
period from the set {7, 24, 100}, classical theory tells us that we need Nmin = 200
samples, whereas the actual bound is just 120 samples. In the special case when the
set of plausible periods is:

P = {1, 2, · · · Pmax} (7.3)

Lmin turns out to be 2Pmax − 2, close to the previously used rule of thumb of 2Pmax

samples [95].

In Sec. 7.3 and 7.4, we derive similar results for the case of mixtures of periodic sig-
nals, where each component signal satisfies (7.1). Defining the component periods
(or hidden integer periods) in a mixture in a unique and meaningful manner is rather
subtle. The existing literature on period estimation has been rather informal in this
regard, lacking a careful mathematical analysis on the uniqueness and identifiability
of such component periods. One of our contributions in this work is to fill this gap
in the theory. This is done in Sec. 7.3. Following this, in Sec. 7.4 we derive precise
bounds on the minimum data-length required to estimate each of the component
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Figure 7.1: Part (a) - An arbitrary line spectrum; Part (b) - The harmonic line
spectrum of a periodic signal. Can we use this additional structure in the spectrum
of a periodic signal to reduce the data length required for period estimation?

periods (Theorems 7.4.2 and 7.4.3). In this case, the fundamental lower bound
significantly differs from the 2Pmax rule of thumb.

While the primary goal of this chapter is to derive algorithm-independent bound
on data lengths for period estimation, we also extend these results to one family of
algorithms in Sec. 7.5. This is for the recently proposed dictionary based integer
period estimation techniques (Chapter 3, [23]). Such dictionaries were shown to
offer useful advantages compared to traditional methods, especially for mixtures
of periodic signals. However, the minimum data-length required for the dictionary
based algorithms in [23] was not reported earlier. It should be clear that any
algorithm-specific bound on the data length that might have been reported earlier in
the literature is necessarily at least as large as the generic bound derived here.

In Sec. 7.6, we briefly explore the datalength requirements when the period of x(n) is
not exactly an integer. Such signals typically arise as sampled versions of continuous
time signals. Even though they might not be strictly periodic according to (1), their
spectrum still has a harmonic structure as shown in Fig. 7.1 (b). An analysis of
the minimum required data-length for estimating the period of such signals yields
some rather interesting results. For instance, it will be shown (Theorem 7.6.1) that
the minimum datalength depends only on the number of harmonics expected in the
signal, with more datalength being required as the number of harmonics increases.
Connections to the classical result by Caratheodary and Fejer [111] on the datalength
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requirements for the identifiability of complex exponentials is also discussed. In
Sec. 7.7, we demonstrate some of the theorems derived in this chapter by using
tandem repeats in DNA sequences as examples.

All the above mentioned sections deal with contiguous datalengths. Sec. 7.8 ad-
dresses the following question: If we are allowed to pick the samples in a non-
contiguous fashion, what is the least number of samples needed to estimate the
period? And how should we choose those samples? This question is quite diffi-
cult to answer in general, but the smaller case of resolving between two periods is
analyzed in this section.

Special Notations

1. The divisor set of a set of integers P is defined as:

D.S.(P) = {d : ∃P ∈ P, d |P} (7.4)

That is, D.S.(P) is the union of the divisors of each P ∈ P. For example, if
P = {6, 8}, then D.S.(P) = {1, 2, 3, 4, 6, 8}.

7.2 Minimum Datalength for the Single Period Case
In this section we study the minimum data length required to identify a single integer
period. The main result of this sectiion is the following:

Theorem 7.2.1. Minimum Required Data-Length for Period Estimation: Let
x(n) be a periodic signal, whose period is known to lie in the integer set P =
{P1, P2, . . . , PK}. To estimate the period using L consecutive samples, it is both
necessary and sufficient that:

L ≥ Lmin = max
Pi,Pj∈P

Pi + Pj − (Pi, Pj) (7.5)

♦

Remark: By necessity, we mean that for any L′ < Lmin, there exist vectors of length
L′, that can be segments of both period Pi and period Pj signals, for some Pi , Pj .
For example, if P = {6, 15}, then Lmin = 6 + 15 − (6, 15) = 18. Fig. 7.2 shows a
segment of length 17 (indicated in black) that can be expressed as a part of both
period 6 and period 15 signals. So given such a segment, one can never tell whether
it belongs to a period 6 or a period 15 signal. Sufficiency on the other hand implies
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(a)

(b)

Figure 7.2: An example illustrating the necessity of Lmin (Eq. (7.5)) samples. Part
(a) - A period 6 signal; Part (b) - A period 15 signal. The initial 17 samples shown
in black are common to both signals.

that, given an additional 18th sample, one can immediately estimate whether the
period is 6 or 15.

In order to derive the above result, we first need a smaller result. This is discussed
next.

Identifying The Period From a Set of Size Two
Let us first consider the case where the set P in Theorem 7.2.1 has just two integers.
That is, P = {P1, P2}. While this case is too simple to be of practical importance, the
result itself is nontrivial, and lays the foundation for more general results in the next
few sections. We start with the following theorem, which follows from Theorem 12
of [9].

Theorem 7.2.2. A Reinterpretation of Fourier Series: The decomposition of a
periodic signal x(n) into a sum of complex exponentials1 is unique. Further,

1. This decomposition can be written in the following form:

x(n) =
∑

1≤d≤P
d |P

∑
1≤k≤d
(k,d)=1

α
k,d

e j 2πk
d n (7.6)

where P is the period of x(n).
1In this theorem and the rest of the thesis, the term “complex exponential” denotes a signal of

the form e jωn, where ω ∈ R.
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2. Let PC be the set of periods of all those complex exponentials that have
non-zero coefficients in (7.6). Then, the following holds true:

P = lcm(PC) (7.7)

♦

Remark 1: The complex exponential e jωn has period d iff ω = 2πk
d for some

(k, d) = 1. So there are precisely φ(d) complex exponentials with period d, and
these are the terms in the inner summation of (7.6). Further, since

∑
d |P φ(d) = P

[24], there are P complex exponentials in total in (7.6).

Remark 2: The second part of the theorem is called the the LCM property.
In general, when signals with periods P1, P2, . . . , PN are added together, then the
resulting signal can have any divisor of lcm{P1, P2, . . . , PN } as its period. So
Theorem 7.2.2 is special, since the period of x(n) in (7.6) is exactly equal to the lcm

and not a proper divisor of it.

We are now ready to derive the following result:

Theorem 7.2.3. Distinguishing between two periods: Let x(n) be a periodic
signal, whose period is known to lie in the integer set P = {P1, P2}. To estimate the
period using R consecutive samples, it is both necessary and sufficient that:

R ≥ T = P1 + P2 − (P1, P2) (7.8)

♦

Proof of sufficiency: Let B be the set of all complex exponentials whose periods
belong to D.S.(P) (defined in Eq. (7.4)). Since, for every d, there are precisely
φ(d) complex exponentials with period d (Remark 1 above), the total number of
complex exponentials in B is equal to

∑
d∈D.S.(P) φ(d). This number is in fact equal

to T in (7.8) (see Lemma 7.11.3 in the Appendix). Further, x(n) can be uniquely
represented as a linear combination of the signals in B, as given by Eq. (7.6). We
can re-write this in matrix notation as follows:

x∞×1 = B∞×T z (7.9)

Here, x∞×1 = [. . . , x(−2), x(−1), x(0), x(1), x(2), . . .]T denotes the signal x(n) writ-
ten as a column vector, and B∞×T is an infinitely tall matrix whose columns are the
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signals in B. According to Theorem 7.2.2, the lcm of the periods of those columns
of B∞×T that have non-zero entries in z, is equal to the period of x(n).

Notice however that we obtain the same z as in (7.9) by solving the following system
of equations instead:

xT×1 = BT×T z (7.10)

where xT×1 is any contiguous segment of x∞×1 of length T , and BT×T is the corre-
sponding T ×T submatrix of B∞×T . This is because, BT×T is a Vandermonde matrix
with distinct columns, and hence has full rank. So any T consecutive samples of
x(n) are sufficient to recover z, and hence to estimate the period.

Proof of necessity: Let B(T−1)×T be the (T − 1) ×T sub-matrix of BT×T , obtained by
dropping the last row of BT×T . Clearly, there exists a vector s , 0 such that,

B(T−1)×T s = 0 (7.11)

This can be re-written as follows:

B(P1)
(T−1)×T s(P1) = −B(P2)

(T−1)×T s(P2) (7.12)

where B(Pi)

(T−1)×T consists of those columns of B(T−1)×T that are complex exponentials
with divisors of Pi as periods. Those columns ofB(T−1)×T that have common divisors
of P1 and P2 as their periods are included in both B(P1)

(T−1)×T and B(P2)
(T−1)×T , by dividing

the corresponding entries in s in half.

Let x1(n) be the signal obtained by considering the infinitely tall version of the
L.H.S. of (7.12). That is,

x1(n) = B(P1)
∞×T s(P1) (7.13)

Then, from Theorem 7.2.2, the period of x1(n) must be the lcm of the periods of
those columns of B(P1)

∞×T that have non-zero entries in s(P1). Now, s(P1) cannot have
any zero entry, since s cannot have any non-zero entries (this is a subtle point; see
Lemma 7.11.1 in the Appendix). Hence, the period of x1(n) has to be P1. Similarly,
the period of x2(n) = B(P2)

∞×T s(P2) has to be P2.

So given any T ′ < T , let us construct a T ′ × 1 vector y by choosing it to be any T ′

consecutive samples of B(P1)
(T−1)×T s(P1). Evidently, for such a y, we can never say

whether it came from a period P1 signal, or a period P2 signal. This shows that at
least T samples are necessary to estimate the period from the set {P1, P2}.
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Identifying The Period From a Set of Arbitrary Size
We will now use the above theorem to prove Theorem 7.2.1.

Theorem 7.2.1 - Proof of necessity: For every L′ < Lmin, there exists a pair Pa, Pb ∈

P, Pa , Pb, such that
L′ <

∑
d∈D.S.({Pa,Pb})

φ(d) (7.14)

So from Theorem 7.2.3, there must exist a vector y ∈ CL ′×1 that can be expressed
as a segment of both period Pa and period Pb signals. So the period of y can never
be estimated. This shows that Lmin samples are necessary to estimate the period.

Theorem 7.2.1 - Proof of sufficiency: Let Pi, Pj ∈ P. Let T = Pi + Pj − (Pi, Pj).
Let xT×1 be any T × 1 contiguous segment of x(n). If we try to solve the following
system of linear equations as in the proof of Theorem 7.2.3,

xT×1 = BT×T z (7.15)

then, since BT×T is a full rank matrix, there is a unique solution z. Further, there
are three possible outcomes. The lcm of the periods of those columns of BT×T that
have non-zero coefficients in z can be

1. Pi,

2. Pj , or

3. neither Pi nor Pj .

Now, P (which is the period of x(n)) is the unique element in P such that, for any
pair P, P′ ∈ P, solving (7.15) always results in the lcm being P. This follows from
Theorem 7.2.3. This can be used to identify P. Clearly, Lmin samples are sufficient
for this approach.

Remark 1: The method we used in the above proof of sufficiency is to be viewed
only as a ‘proof technique’. There are much easier ways to estimate the period. For
example, we may use the DFT or the autocorrelation. Although such techniques
are computationally much better, it is not clear how they can be used to prove an
algorithm-independent result such as Theorem 7.2.1.

Remark 2: Even though the theoretical bounds on the minimum data length derived
here are insightful, the accuracy of estimation in the presence of noise will be poor



145

if we just use this minimum number. This is demonstrated in Fig. 7.3. In this plot,
P = {1, 2, . . . , 6}. Theorem 7.2.3 shows that at least 10 samples of the signal x(n) are
needed for period estimation. However, x(n) now is contaminated by AWGN with 0
dB SNR. For each data-length shown, 10,000 independent realizations of x(n) with
period 3 were generated. A least squares modification of (7.15) was used to estimate
the period, where, if zmax is the entry in z with the maximum absolute value, then
all the entries in z less than a threshold times |zmax | were set to zero. The error
rate (the fraction of times the period was estimated incorrectly) is plotted for three
different values of the threshold. As shown, the error is large when data length is
close to the the theoretical minimum, and improves significantly as more datalength
becomes available. Once again, there are many excellent works such as [16], [95]
for estimating the period under noise. Fig. 7.3 is just a simple demonstration that
one may typically need more than the minimum data-length for reliable estimation
under noise.

A special case of Theorem 7.2.1 is the following result:

Corollary 7.2.1. For the special case when P = {1, 2, 3, . . . , Pmax}, the minimum
necessary and sufficient datalength in Theorem 7.2.1 becomes:

Lmin = 2Pmax − 2 (7.16)

♦

Proof. It is easy to see that Pmax and Pmax − 1, being co-prime, maximize (7.5) in
Theorem 7.2.1. 5 5 5

So when P = {1, 2, 3, . . . , Pmax}, Lmin in (7.16) turns out to be close to the 2Pmax

rule of thumb used in prior works such as [95]. The difference is that, we have
now proved that necessity of (7.44) in fact is an algorithm-independent fundamental
bound.

7.3 Mixtures of Periodic Signals
Our goal in this and the next sections is to answer the following question: Given a
mixture of periodic signals, what is the absolute minimum data-length required to
estimate all its hidden periods2? Clearly, to begin answering this question, we first

2Keeping in line with our papers [9], [18], [23], [37], we will refer to the ‘component’ periods
in a mixture as the ‘hidden’ periods in the mixture.
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Figure 7.3: Error Rate vs Data-Length for a fixed SNR. “Th" refers to the threshold.
SNR = 0dB. See text for details.

need a precise mathematical definition of what we mean by the ‘hidden periods’
in a mixture. Intuitively, we may visualize hidden periods in the following way.
Given a signal, if we can decompose it as a sum of periodic signals with integer
periods {P1, P2, . . . , PN }, then we may want to call these integers as the hidden
periods. However, there are some subtle issues with this, that have never been
formally addressed in prior literature.

For example, let xP(n) be a period P signal. Let d be any divisor of P. Then xP(n)

can be trivially rewritten as

xP(n) = xd(n) + x̃P(n) (7.17)

where xd(n) is almost any arbitrary period d signal, and x̃P(n) = xP(n) − xd(n) is
still a period P signal. Thus, for a period P signal, it is meaningless to declare any
of its divisors d as another hidden period.

By insisting that the distinct hidden periods in a mixture should constitute an M-set
as defined below, we can eliminate this redundancy:

Definition 7.3.1. M-set: A set of numbers F is defined to be anM-set, if the following
holds:

fi 6 | f j ∀ fi, f j ∈ F, fi , f j (7.18)

That is, no member of an M-set is a divisor of another member3. ♦

For example, {6, 7, 10} is an M-set, whereas {3, 6, 10} is not.
3The ‘M’ stands for Mutliple-free.
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There is a second type of ambiguity that arises while defining hidden periods.
We can always associate different M-sets to any mixture of periodic signals. For
example, consider adding period 3 and period 8 signals to give a period 24 signal.
Since {3, 8} is an M-set, we may want to call them as the hidden periods. However,
given the periodic components {3, 8}, we can add and subtract any arbitrary period
5 signal from these two components, to get periods {15, 40}. These new signals
with periods 15 and 40 will also add to give the same period 24 signal. Moreover,
{15, 40} is also an M-set. So now, which among {15, 40} and {3, 8} should one
declare as the hidden periods of the period 24 signal?

In the above example, it turns out that periods {3, 8} represent the finest periodic
structure in the mixture. That is, one cannot further decompose the period 3 signal
into a sum of signals with periods are strictly smaller than 3. Similarly, one cannot
further decompose the period 8 signal into a sum of signals with periods strictly
smaller than 8. On the other hand, in this example, both the period 15 and the period
40 signals can be further decomposed into signals with periods strictly smaller
than 15 and 40 respectively (namely, into periods 5 and 3, and periods 5 and 8
respectively). This can also be seen when above period 15 signal is decomposed as
in (7.6), where it will not have any terms of the form e j 2πk

15 n with (k, 15) = 1. And
the same holds for the period 40 signal.

We will now show that if we define the hidden periods of a signal as those repre-
senting the finest periodic structure (in the above sense), then the hidden periods
become unique for anymixture of periodic signals. That is, we define hidden periods
formally in the following way:

Definition 7.3.2. Hidden Periods: A signal x(n) is said to have hidden periods
PH = {P1, P2, . . . , PN } if the following hold true:

1. PH is an M-set (see Notations in Sec. 7.1).

2. x(n) can be written as follows:

x(n) = xP1(n) + xP2(n) + . . . + xPN (n) (7.19)

where each xPi (n) has period Pi, and cannot be further decomposed into a
sum of periodic signals, all of whose periods are strictly smaller than Pi.

♦
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The following uniqueness result can now be proved:

Theorem 7.3.1. Uniqueness of Hidden Periods: Let x(n) satisfy Definition 7.3.2,
with PH as its hidden periods. Further, let x(n) be decomposed as in (7.6)4. If PC is
the set of periods of all those complex exponentials that have non-zero coefficients
in (7.6), then PH ⊆ PC . More precisely:

PH = {Pi ∈ PC : MPi < PC ∀M > 1} (7.20)

♦

Remark 1: In (7.20), the R.H.S. is the set of all those numbers in PC that do not have
any multiples also present in PC . For example, if PC = {1, 3, 5, 10}, then the R.H.S.
of (7.20) is {3, 10}. We will call this as the extracted M-set of PC .

Remark 2: The extracted M-set of PC is unique, since PC itself is unique for any
signal (Theorem 7.2.2). Hence, the set of hidden periods, PH , is also unique.

Remark 3: As an example, consider the following three signals:

1. e j 2πn
6 has period 6. There are no hidden periods (other than 6 itself).

2. e j 2πn
2 + e j 2πn

3 has period 6. The hidden periods are 2 and 3, but 6 is not a
hidden period.

3. e j 2πn
2 + e j 2πn

3 + e j 2πn
6 has period 6. There are no hidden periods other than 6

itself, since this signal can never be written as a sum of signals, all of whose
periods are strictly smaller than 6. Also, as discussed earlier, calling 2 and 3
as hidden periods in addition to 6 is redundant in this case, since any period
6 signal x6(n) can always be written as

x6(n) = x2(n) + x3(n) + x̃6(n) (7.21)

for some non-zero signals x2(n), x3(n) and x̃6(n), with periods 2, 3 and 6
respectively. So Definition 7.3.2 simply gives 6 as the only hidden period.

Proof of Theorem 7.3.1: The proof involves three steps:

1. Showing that PH ⊆ PC .
4Any mixture of periodic signals must also be a periodic signal.
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2. Showing that PC ⊆ D.S.(PH).

3. Using Lemma 7.11.2 from the Appendix to conclude that PH is as in (7.20).

Proof of Step 1: Since x(n) has hidden periods PH , it will have a decomposition
similar to (7.19). Let us now decompose the L.H.S. and each term in the R.H.S. of
(7.19) in a manner similar to (7.6). While the decomposition of the L.H.S. is given
in (7.6), each xPi (n) in the R.H.S. can be written as:

xPi (n) =
∑

1≤dPi ≤Pi
dPi
|Pi

∑
1≤k≤dPi
(k,dPi

)=1

α
k,dPi

e
j 2πk
dPi

n
(7.22)

This decomposition of xPi (n)must have at least one complex exponential with period
Pi with a non-zero coefficient. Else, xPi (n) can be written as a sum of signals, all
of whose periods are strictly smaller than Pi, which contradicts Condition 2 in
Definition 7.3.2.

Further, if xPi (n) has a complex exponential with period Pi, then that complex
exponential cannot be canceled in the R.H.S. of (7.19) by the complex exponentials
in some other xPj (n). This is because, such a cancellation can occur only if xPj (n)

has a period Pi complex exponential, meaning Pi |Pj . This is not possible because
PH is an M-set. Hence, when the R.H.S. of (7.19) is expressed as a sum of complex
exponentials, there has to be at least one complex exponential with period Pi, for
every Pi ∈ PH .

Since complex exponentials are linearly independent signals, when both the L.H.S.
and the R.H.S. of (7.19) are expressed in terms of complex exponentials, we must
have the same complex exponentials on both sides. This implies that the decompo-
sition of x(n) in (7.6) must also have at least one complex exponential with period
Pi, with a non-zero coefficient. Hence, PH ⊆ PC .

Proof of Step 2: Let q ∈ PC . From (7.6), the DTFT of x(n) must have an impulse at
the frequency 2πr

q , for some (r, q) = 1. But if q < D.S.(PH), then none of the xPi (n)

in (7.19) have an impulse in their DTFT at the frequency 2πr
q (This is because, from

Theorem 7.2.2, a period P signal can have non-zero DTFT only at frequencies that
are of the form 2πm

d , where (m, d) = 1 and d |P). Hence, we obtain a contradiction.
So q ∈ D.S.(PH), and hence PC ⊆ D.S.(PH).

Finally, using Lemma 7.11.2 from the Appendix, we can conclude that PH = {Pi ∈

PC : MP < PC ∀M > 1}.
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The above result has an intuitively reassuring corollary:

Corollary 7.3.1. Let x(n) be a signal with period P and hidden periods PH . Then,
the following holds true:

P = lcm(PH) (7.23)

i.e., the lcm of the hidden periods of a signal is exactly equal to the period of the
signal. ♦

Proof. From Theorem 7.2.2, it follows that P = lcm(PC). Notice that PC and the
R.H.S. of (7.20) have the same lcm. And so (7.23) follows. 5 5 5

Remark 1: Readers familiar with Ramanujan Subspaces and Nested Periodic Sub-
spaces (NPSs) [18], [37] may recall the following: Suppose we decompose x(n)

along a set of NPSs [37]. If PNPS is the set of periods of all the non-zero components
in the decomposition, then the extracted M-set of PNPS was intuitively interpreted
as the hidden periods in those works. It can be proved that this in fact turns out to be
exactly equal to the set of hidden periods as defined in Definition 7.3.2. Moreover,
Theorem 7.3.1 shows that although PNPS for a given signal may depend on which
NPS is used, the extracted M-set would always be the same.

Remark 2: In many applications such as speech, the signal of interest may arise
naturally as a sum of periodic signals. While the hidden periods in Definition 7.3.2
represent the finest periodic structure in a mixture, how do they relate to the original
set of component periods that generated that mixture? It can be shown that if x(n)

is a mixture of randomly generated periodic signals, say by periodically extending
Gaussian random vectors with periods P = {P1, P2, . . . , PK}, then the extracted M-
set from P is in fact exactly equal to the hidden periods as given by Definition 7.3.2
with probability 1. We will skip the proof in this regard. Once again, determining
the divisors of the integers in the extracted M-set as also component periods in the
mixture is mathematically meaningless.

7.4 Minimum Datalength for Estimating The Hidden Periods
Now thatwe have shown that the hidden periods in amixture can be uniquely defined,
the following question can be posed unambiguously: What is the minimum required
data length to estimate all the hidden periods in a signal? Similar to Sec. 7.2, we
start with a simple case first.
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Theorem 7.4.1. Distinguishing between twoM-sets: Let x(n) be a periodic signal,
whose set of hidden periods is known to be one of the following two M-sets: P1 or
P2. To estimate the hidden periods of x(n) using R consecutive samples, it is both
necessary and sufficient that:

R ≥ T =
∑

d∈D.S.(P1∪P2)

φ(d) (7.24)

where D.S. is the divisor set defined in Eq. (7.4). ♦

Proof of sufficiency: Similar to (7.9), we can write the following equation:

x∞×1 = B∞×T z (7.25)

where, B∞×T now has as its columns the set of all complex exponentials whose
periods belong to D.S.(P1 ∪ P2).

Let PC be the set of periods of those columns of B∞×T , that are multiplied by non-
zero entries in z. Then, from Theorem 7.3.1, the set of hidden periods of x(n) is
given by:

PH = {P ∈ PC : MP < PC ∀M > 1} (7.26)

However, using similar arguments as in the proof of Theorem 7.2.3, we can obtain
the same solution for z as in (7.25) by solving the following system instead:

xT×1 = BT×T z (7.27)

where xT×1 is any contiguous segment of x∞×1 of length T , and BT×T is the corre-
spondingT ×T sub-matrix of B∞×T . So we have proved thatT samples are sufficient
to find the hidden periods of x(n).

Proof of necessity: Similar to the proof of Theorem 7.2.3, we can write the following
equation:

B(P1)
(T−1)×T s(P1) = −B(P2)

(T−1)×T s(P2) (7.28)

where, s(P1), s(P2) do not contain any zero entries, and B(P1)
(T−1)×T and B(P2)

(T−1)×T consist
of complex exponentials with periods in D.S.(P1) and D.S.(P2) respectively. Now,
let x1(n) = B(P1)

∞×T s(P1). Then from Theorem 7.3.1, the set of hidden periods of x1(n)

is given by the following set:

{P ∈ D.S.(P1) : MP < D.S.(P1) ∀M > 1} (7.29)
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Using Lemma 7.11.2 from the Appendix (with G = D.S.(P1 and S = P1), we can
conclude that the above set is in fact equal to P1. This shows that x1(n) has hidden
periods P1.

Similarly, x2(n) = B(P2)
∞×T s(P2) has hidden periods P2. So given any T ′ < T , we can

construct a vector y by choosing it to be any T ′ consecutive samples of B(P1)
(T−1)×T s(P1).

For such a y, we can never estimate its hidden periods. This shows that T samples
are necessary to find the hidden periods.

Using the above result, we next address the more general case:

Theorem 7.4.2. Min. Data-Length for Hidden Periods Estimation: Suppose
x(n) is known to have N hidden periods belonging to the integer setP = {P1, P2, . . . , PK}.
To estimate the hidden periods of x(n) using M consecutive samples, it is both nec-
essary and sufficient that:

M ≥ Mmin = max
Pi,Pj⊂P
Pi,Pj are

M−sets o f size =N

∑
d∈D.S.({Pi∪Pj })

φ(d) (7.30)

♦

Proof of necessity: By definition of Mmin (7.30), it follows that for every M′ < Mmin,
there must exist a pair of M-sets, P1 and P2 in P, such that

M′ <
∑

d∈D.S.(P1∪P2)

φ(d) (7.31)

So from Theorem 7.4.1, there must exist a vector y ∈ CM ′×1 that can be expressed
as a segment of a signal with hidden periods P1, as well as a signal with hidden
periods P2. Hence, at least Mmin samples are necessary to find the hidden periods.

Proof of sufficiency: Let Pi and P j be two M-sets of size N in P. Let T =∑
d∈D.S.(Pi∪Pj ) φ(d). Let xT×1 be any T × 1 segment of x(n). If we try to solve

the following system of linear equations as in the proof of Theorem 7.4.1,

xT×1 = BT×T z (7.32)

then, since BT×T is a full rank matrix, there is a unique solution z. Further, there are
three possible outcomes. If PC is the set of periods of all those columns of BT×T

that have non-zero coefficients in z, then the set {Pi ∈ PC : MP < PC ∀M > 1} can
be any of the following:
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1. Pi.

2. P j .

3. Neither Pi nor P j .

Now, PH (which is the actual set of hidden periods in x(n)) is the unique M-set of
size N in P such that, when PH is paired with any other M-set of size N from P,
solving (7.32) always results in the following outcome: {Pi ∈ PC : MP < PC ∀M >

1} = PH . This follows directly from the proof of Theorem 7.4.1. Clearly, Mmin

samples are sufficient for this algorithm.

Interestingly, (7.30) is very similar to (7.5). The latter can be re-written in terms
of the Euler-totient function using the following result (see Lemma 7.11.3 in the
Appendix):

Pi + Pj − (Pi, Pj) =
∑

d∈D.S.({Pi∪Pj })

φ(d) (7.33)

So the quantity Lmin in (7.5) can be written as:

Lmin = max
Pi,Pj∈P

∑
d∈D.S.({Pi∪Pj })

φ(d) (7.34)

This indeed resembles (7.30) in form. Wemaximize over all pairs of allowedM-sets
of size N in (7.30), just as we maximize over all pairs of periods in (7.34).

Theorem 7.4.2 assumed that the number of hidden periods is known (equal to N).
This can be easily generalized to the case when the number of hidden periods is
unknown. We state the following result without proof, since the idea is similar to
that in the proof of Theorem 7.4.2.

Theorem 7.4.3. Let x(n) be a signal whose number of hidden periods is known to
belong to the set NH . Further, suppose the hidden periods are known to belong
to the integer set P = {P1, P2, . . . , PK}. To estimate these hidden periods using R

consecutive samples of x(n), it is both necessary and sufficient that:

R ≥ max
Pi,Pj⊂P
Pi,Pj are

M−sets whose size ∈NH

∑
d∈D.S.({Pi∪Pj })

φ(d) (7.35)

♦
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7.5 Connection to Dictionaries Spanning Periodic Signals
As discussed in the previous sections, the period or the hidden periods in a signal
can be identified from (7.6), using (7.7) or (7.20) respectively. In a recent work
[26], a dictionary known as the Farey dictionary was proposed to directly obtain
the decomposition in (7.6) for arbitrary periodic signals. For every period P,
the Farey dictionary consists of the following complex exponentials as columns:
{e j 2πk

P n : (k, P) = 1}. Given an input signal, one can solve the following system:

xL×1 = BL×W s (7.36)

where, xL×1 is the signal vector [x(0), x(1), x(2), . . . , x(L − 1)]T , and BL×W is the
Farey dictionary with L rows and W columns, where W depends on Pmax in the
following way [24]:

W =
Pmax∑
P=1

φ(P) = O(
3P2

max

π2 ) (7.37)

If L > W , BL×W has full rank. The set of periods of those columns in BL×W that are
multiplied by non-zero entries in s, is equal to the set PC in (7.7) and (7.20). Hence,
the period and the hidden periods of x(n) can be estimated from s.

What happens when L < W? One of the ways to recover a signal’s support in that
case is to solve the following problem:

min
s
‖s‖0 s.t. xL×1 = BL×W s (7.38)

In [23] and [26], (7.38) was relaxed to l1 norm based convex programs. Further,
[23] proposes a computationally efficient weighted l2 norm based convex program
as well. These approaches were shown to offer important advantages over traditional
period estimation techniques in [23]. From a theoretical perspective however, one
question remained unanswered in those works. Namely, it was not known howmuch
datalength L these techniques required to recover the support of s.

In this regard, we are able to derive the following theorems for the Farey dictionary,
using tools similar to those used in the previous sections:

Theorem 7.5.1. Farey Dictionary: Single Period Case Let xL×1 be a segment of a
signal whose period is known to lie in the set {1, 2, . . . , Pmax}. Then, for the support
recovered from solving (7.38) using a Farey dictionary, to involve the same complex
exponentials as those with non-zero coefficients in (7.6), it is both necessary and
sufficient that:

L ≥ L(D)min = 2Pmax (7.39)
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♦

Proof of sufficiency: The Kruskal rank R of BL×W is the largest integer such that,
any set of R columns is linearly independent. Let xL×1 = BL×W s0 represent the
decomposition in (7.6). Then, it is well known [11] that solving (7.38) yields s0 as
the unique optimum solution if the support size of s0 is ≤ R/2. Now, if x(n) had
period P, then the support size of s0 is ≤ P from Theorem 7.2.2. So if R ≥ 2Pmax ,
then for any x(n) with period in 1 ≤ P ≤ Pmax , we can recover its support as given
by (7.6) using (7.38).

Now, the Kruskal rank of BL×W is equal to L, as long as L ≤ W . This is because, for
L ≤ W , any L × L submatrix of BL×W is Vandermonde with distinct columns, and
hence, will have full rank. Hence, L ≥ 2Pmax is sufficient to recover the support of
x(n).5

Proof of necessity: Let L′ = 2Pmax − 1. Consider an L′ × 2Pmax matrix, call it A,
whose column set can be partitioned as A = [A(Pmax), Â], where A(Pmax) consists of
the columns of BL ′×W that have periods equal to divisors of Pmax , and Â consists
of any other Pmax columns of BL ′×W . Since A is a fat matrix, there exists an r , 0
(with non-zero entries, using Lemma 7.11.1 from the Appendix), such that Ar = 0.
We can re-write this as:

A(Pmax) r(Pmax) = −Â r̂ (7.40)

Clearly, if x(n) was the period Pmax signal obtained by extending the complex
exponentials in the L.H.S. of (7.40), then, its support on BL ′×W cannot be recovered
using (7.38), since the R.H.S. of (7.40) also has the same support size. Notice that
this holds true for any L < L′ as well, by considering the first L samples of the
L.H.S. of (7.40). This shows that 2Pmax − 1 samples are necessary.

Remark: The above proof of necessity might remind some readers of the well known
Kruskal rank result from [11], which says that, therewill always exist a set of columns
in BL×W of size > R/2, such that, if xL×1 is a linear combination of these columns,
then (7.38) cannot identify the true support of this signal. However, in our case,
notice that xL×1 in (7.38) cannot be a linear combination of any arbitrary columns
in BL×W . It must necessarily be periodic, with period in the range 1 ≤ P ≤ Pmax .
So, is it possible that the counter-examples in the general Kruskal rank result do not

5This proof is a generalization of Lemma 1 from [26], which states that the Kruskal rank of
BPmax×W is equal to Pmax .
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Table 7.1: Comparison between (7.30) and (7.41) for Pmax = 20.

Number of
hidden periods

Mmin from
(7.30)

M (D)min from
(7.41)

2 70 76

3 94 108

4 116 140 ?

5 128 164 ?

correspond to any periodic signal, with period in the range 1 ≤ P ≤ Pmax? The
above necessity proof shows that this is in fact not the case.

Theorem 7.5.1 shows that (7.39) requires only 2 additional samples than (7.16) in
Corollary 7.2.1, and this indeed matches with the datalength requirements of some
of the popular period estimation techniques in the literature such as [95]. This was
for the estimation of one period. The equivalent of Theorem 7.5.1 for the case of
hidden periods is as follows:

Theorem 7.5.2. Farey Dictionary: Hidden Periods Case: Let xL×1 be a segment
of a signal with N hidden periods from the set P = {1, 2, 3, . . . , Pmax}. Then, for
the support recovered from solving (7.38) using a Farey dictionary, to involve the
same complex exponentials as those with non-zero coefficients in (7.6), it is both
necessary and sufficient that:

L ≥ M (D)min = max
Pi⊆P
Pi is an

M−set o f size N

2 ×
∑

d∈D.S.({Pi})

φ(d) (7.41)

♦

The proof is similar to Theorem 7.5.1.

For a quantitative perspective on these results, Table 7.1 compares (7.41) with the
algorithm-independent bound from (7.30) when P = {1, 2, . . . , 20}. For this case,
the number of columns in the Farey dictionary isW = 128 (from (7.37)). Notice that
the minimum required datalength M (D)min from (7.41) turns out to be greater than W

when the number of hidden periods is more than 3 in Table 7.1 (indicated by?). But
if we do have more than W samples of the signal, (7.36) becomes over-determined,
and we do not need a sparsity based approach to solve for the signal’s support s.
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M (D)min > W simply means that (7.38) cannot be used to find the hidden periods when
the available datalength L is smaller than W .

There are two important extensions still required for Theorem 7.5.1 and Theo-
rem 7.5.2. First, for practical implementations, (7.38) is often relaxed to l1 norm
and l2 norm based convex programs [23]. As expected, we found that such l1 and
l2 norm based approaches typically require more data-length than (7.38). Precise
expressions for such relaxations are yet to be derived, and are of interest to us in
our future research. A second extension needed is to the case of the more general
Nested Periodic Dictionaries (NPDs), proposed in [23], [37]. The Farey dictionary
was shown to be only a special case of NPDs, with the more general NPDs offering
several advantages, particularly in terms of computations.

7.6 Non-Integer Periodicity and Connections to Caratheodory’s Results
A classical result by Caratheodary and Fejer [111] shows that, if s(n) is a sum of
exponentials as follows:

s(n) =
K−1∑
k=0

ck e jωkn (7.42)

then, 2K contiguous samples of s(n) are necessary and sufficient to estimate
{ck, ωk}

K−1
k=0 . Now, if a signal x(n) satisfies (1), then it’s Fourier series expansion is

given by:

x(n) =
P−1∑
k=0

ck e j 2πk
P n (7.43)

So, using Carathoedary’s result, we can deduce the following: if the period of x(n)

is to be estimated from the integer set P = {P1, P2, . . . , PN }, then the following
number of samples are sufficient:

Nmin = max
Pi∈P

2Pi (7.44)

While this is a sufficiency bound, it is not also a necessity bound unlike the results
of this chapter. For periodic signals with integer periods, the Nmin above is strictly
larger than the actual necessary and sufficiency bound derived in Theorem 7.2.1. For
example, if P = {7, 24, 100}, then Nmin = 200, while Theorem 7.2.1 shows that just
120 samples are enough. This is because, in using Caratheodary’s result directly,
we have completely ignored the special harmonic structure between the frequencies
ωk’s in the case of integer-periodic signals.

Caratheodary’s result, although not giving the tightest bounds for integer periods,
offers useful insights for non-integer periodicity. When a continuous time periodic
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signal is sampled, and the sampling rate is sufficiently high, the spectrum of the
sampled signal will be as shown in Fig. 7.1(b). The lines in this spectrum are spaced
at integer multiples of a fundamental frequency ω0. Such a sampled signal need not
satisfy (1) for any integer P. As discussed in Sec. 7.1, the approximate period of
this sampled signal is usually considered to be:

P =
2π
ω0

(7.45)

which is typically not an integer, and there are several excellent algorithms for its
estimation [3]–[7], [16], [95], [105]. However, one can again ask a similar question
as in the previous sections of this chapter: Namely, is there a fundamental, generic,
lower bound on the minimum required data-length for the identifiability of such
non-integer periods? While a generally agreed upon rule of thumb in prior works
has been that we need a data-length of at least twice the largest period (sometimes
empirically justified for specific algorithms such as [95]), an algorithm-independent
analysis on the identifiability issue itself has been missing in prior literature to the
best of our knowledge.

For simplicity in analysis, let us consider the signal in Fig. 7.1(b) to have no k = 0
component. In time domain, it can be expressed as:

x(n) =
K∑

k=1
ck e j kω0n (7.46)

Once again, applying Caratheodary’s result directly without considering the har-
monic relationship between the frequencies, tells us that 2K samples are sufficient
to estimate the fundamental frequency. But can we leverage the harmonic structure
to use fewer samples? The following result gives us a surprising answer:

Theorem 7.6.1. Non-Integer Periods: Let ω0 and ω1 be distinct frequencies in
[0, 2π) such that the following two sets do not intersect:

{ω0, 2ω0, . . . ,Kω0} and {ω1, 2ω1, . . . ,Kω1}

Then, there will always exist signals x0(n) and x1(n), with fundamental frequencies
ω0 and ω1 respectively, such that:

x0(n) = x1(n) ∀ n ∈ {0, 1, 2, . . . , 2K − 2}

That is, the true fundamental frequency cannot be uniquely identified from these
2K − 1 samples. ♦
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Proof: The proof is similar to that of Theorem 7.2.3, where we need to consider
null-space vectors of the (2K − 1) × 2K Vandermonde matrix constructed using the
following complex exponentials as its columns: {e j kω0n}Kk=1 and {e

j kω1n}Kk=1. Since
the arguments are similar, we will skip further details here.

The above result reveals some interesting facts: Firstly, notice that the number
of variables has reduced significantly as we go from (7.42) to (7.46). While we
have K unknown frequencies in (7.42), we only have one frequency parameter ω0

in (7.46). But there seems to be no benefit in terms of the minimum required
data-length to identify the frequencies. The number of necessary and sufficient
samples is still 2K in both cases. Secondly, one might intuitively expect that having
more harmonics in the signal should help in estimating the fundamental frequency.
However Theorem 7.6.1 suggests the exact opposite, showing that we in fact require
more data-length when additional harmonics are present in the signal.

One of the most important outcomes of Theorem 7.6.1 is the following: For a signal
satisfying (7.46), the minimum required data-length to estimate the fundamental is
not really twice the largest expected period. Rather, the precise datalength depends
only on the number of expected harmonics in the signal. For instance, consider the
following two cases:

• If the original continuous time signal is sampled close to its Nyquist rate, the
expected number lines in the signal’s spectrum, K , is approximately b2π/ω0c,
which is the closest integer approximation to the period. So in this special
case, the minimum necessary and sufficient datalength using Caratheodary’s
result and Theorem 7.6.1 does come close to 2Pmax , where Pmax is the largest
expected period of the discrete time signal.

• However, if the sampling rate is sufficiently above the Nyquist rate, then the
number of lines in the spectrum will be less than b2π/ω0c. So the minimum
required samples can be significantly smaller than 2Pmax . For instance, if the
sampling rate is twice the Nyquist rate, then K cannot be more than bπ/ω0c.
This means that the minimum required datalength is only about Pmax samples.

How do these results generalize to mixtures of periodic signals with non-integer
periods? Once again, it can be shown that the minimum necessary and sufficient
datalength will depend only on the total number of lines in the spectrum. For
example, if x(n) is a mixture of N periodic signals with at most K harmonics
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AGAT  AGAT AGAT AGAT AGAT …  

AGATAGATAG  AGATAGATAG AGATAGATAG …

(a) Period 4 sequence:

(b) Period 10 sequence:

Figure 7.4: Demonstration of Theorem 7.2.3 using DNA repeats. (a) Period 4
repeats used in DNA fingerprinting applications (GenBank G08921). (b) A period
10 sequence constructed such that its first 11 samples (shown in black) are the same
as in the sequence (a).

each, then 2NK samples are both necessary and sufficient to find all the component
periods. The necessity proof is very similar to that on Theorem 7.6.1, while
sufficiency follows from Caratheodary’s result [111]. Here too, in the special case
when the sampling rate of the continuous time signal is close to the Nyquist rate,
this limit comes close to 2NPmax , where Pmax is the largest expected period in the
mixture.

7.7 Examples of DNA Repeats
To put the theorems derived in this chapter into perspective, let us consider examples
of tandem repeats inDNA.Fig. 7.4 and 7.6 show two examples from the humanDNA.
Such repeats are today the primary bio-markers used for fingerprinting, tracking
ancestry, studying population evolution and so on [77], [78]. They are also associated
with a number of genetic disorders such as Huntington’s disease and Friedreich’s
ataxia [69]. Given such a DNA sequence with repeats, what is the minimum data-
length needed to be able to identify the correct period? Our results in this chapter
can be used to address this question.

Let us start with a simple demonstration of Theorem 7.2.3. Consider the repeats
shown in Fig. 7.4(a). These particular repeats occurs at several places in the human
DNA (e.g. GenBank: X14720, G08921, M26434, M84567, X77751 etc.) and are
widely used in fingerprinting applications [77]. Suppose we were to determine the
true period of these repeats from the set of possible answers {4, 10}. Theorem 7.2.3
claims that, in general, we need at least 4 + 10 − (4, 10) = 12 samples. That is, if
there were < 12 samples, there could be sequences of periods 4 or 10 for which the
true period cannot be determined by any technique. Indeed, as shown in Fig. 7.4
for this DNA sequence, a segment of length < 12 samples can be extended to both
period 4 and period 10 repeats. The first 11 samples for the sequences shown in
Fig. 7.4(a) and (b) are common. So given those 11 samples, one cannot determine
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(8.3) (4.4)

(2.6)
(8.7) (4.8)

(3.4) (2.6)

(4.0)

(9.9)
(4.9) (3.3)

(2.5)

(a) Period 4 sequence
12 samples 

(b)  Period 10 sequence
12 samples 

(c)  Period 4 sequence
75 samples 

(d)  Period 10 sequence
75 samples 
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Figure 7.5: DFT spectra for the sequences in Fig. 7.4. The periods (2π/ω values)
corresponding to the peak frequencies are shown in parenthesis. See text for details.

whether the true period was 4 or 10 no matter which method is used.

To give a quantitative idea of how insightful this knowledge of minimum data is,
Fig 7.5 shows the DFT spectra for the sequences in Fig. 7.4. A simple mapping
of A = 1, T = 2, C = 3 and G = 4 was used to compute the DFT. As seen, a
data-length of 12 is too short for DFT to reveal the true periods for either sequence.
As the data-length increases to 75, the peak at period 4 in Fig. 7.5(c) is very distinct,
and the harmonics of the period 10 in Fig. 7.5(d) are clearer. On the other hand,
the technique used in the proof of Theorem 7.2.3 can provably identify the period
from just 12 samples. It may be quite possible to devise other simpler techniques
that can identify the period from data-lengths shorter than DFT’s requirements.
However, this chapter’s focus is not to develop such techniques, but rather to show
that there exists a fundamental mathematical bound (12 samples here), below which
no possible technique can identify the true period. The existence of, and the precise
expressions for such bounds were not known in prior literature.

Fig. 7.6 shows another example of human DNA repeats, demonstrating Theo-
rem 7.2.1. For the repeats shown in Fig. 7.6(a), suppose we were to estimate
the period from the set of possible values {1, 2, 3, 4, 5, 6}. Theorem 7.2.1 says that
at least 10 samples are required in general. And indeed, Figs. 7.6(a) and (b) show
two sequences, with period 5 and 6, for which the first 9 samples are common. So
given those 9 samples, one can never estimate what the true underlying period is.
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TTTTC  TTTTC TTTTC TTTTC …  

TTTTCT  TTTTCT TTTTCT TTTTCT …

(a) Period 5 sequence:

(b) Period 6 sequence:

Figure 7.6: Demonstration of Theorem 7.2.1 using DNA repeats. (a) Period 5
repeats used in DNA fingerprinting applications (GenBank M86525). (b) A period
6 sequence constructed such that its first 9 samples (shown in black) are the same
as in the sequence (a). See text for details.

7.8 Minimal Non-Contiguous Sampling For Period Estimation
An interesting question at this point is, if we are allowed to use non-contiguous
samples, can we estimate the period using fewer samples than (7.5) or (7.30)?
Notice that if this were possible, then those fewer samples must necessarily be
spread out over a larger data-length than (7.5) or (7.30) (because of Theorem 7.2.1
and Theorem 7.4.2). Such a generalization of Theorems 4.3.1 and 7.4.2 is yet
unknown. However, in this section, a smaller result is derived in this regard. It is
shown that:

Theorem 7.8.1. Given a periodic signal x(n) whose period P lies in the set P =
{P1, P2}, where P1 < P2, the following number of samples is necessary and sufficient
to identify P:

Mmin =


P2 if P1 divides P2

P1 otherwise
(7.47)

♦

When P = {P1, P2}, the quantity Lmin in Theorem 7.2.1 becomes P1 + P2 −

gcd(P1, P2), which is clearly ≥ Mmin from (7.47). In the following, the above
theorem is proved using ideas from classical number theory, and the Nested Peri-
odic Matrices of Chapter 3.

Proving Sufficiency
In order to prove the sufficiency part of Theorem 7.8.1, we will need the following
two lemmas.

Lemma 7.8.1. Let x(n) be a periodic signal with period P. Let y(n) be the M-fold
decimated version of x(n), that is,

y(n) = x(Mn) ∀ n ∈ Z (7.48)
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Then, y(n) is also a periodic signal, with its period being a divisor of P
(M,P) . ♦

Proof.

y

(
n +

P
(M, P)

)
= x

(
Mn + M

P
(M, P)

)
= x(Mn)

= y(n)

So P
(M,P) is a repetition index of y(n). A repetition index of a signal must always be

a multiple of its period (see Lemma 3 in [9]). 5 5 5

We also need the following lemma.

Lemma 7.8.2. Let x(n) be a periodic signal with period P , 1. Let M be an integer
coprime to P, and let y(n) = x(Mn). Then, y(n) is a periodic signal with period
, 1. ♦

Proof. From Lemma 7.8.1, it follows that y(n) must be a periodic signal whose
period is a divisor of P. So y(n) can have period 1 if and only if all the entries in
the following set are equal:

Y = {y(0), y(1), . . . , y(P − 1)} (7.49)

Using (7.48), we can re-write Y as:

Y = {x(0), x(M), . . . , x(MP − M)} (7.50)

Since x(n) is periodic with period P, we can re-write this further as:

Y = {x(0 mod P), x(M mod P), . . . , y(MP − M mod P)}

It is a well known result in Number Theory that when (M, P) = 1, the following two
sets are the same (permuted versions of each other):

{(0 mod P), (M mod P), . . . , (MP − M mod P)}

= {0, 1, . . . , P − 1}
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Hence the set Y is in fact (a permuted version of) the following set:

{x(0), x(1), . . . , x(P − 1)} (7.51)

Since x(n) has period P , 1, all the elements in the above set cannot be equal to
each other. Hence, there are at least two unequal entries in (7.49), due to which, the
period of y(n) cannot be 1. 5 5 5

We will now prove the sufficiency part of Theorem 7.8.1. We shall do this by
considering two distinct cases as follows:

Sufficiency when P1 |P2

In this case, Theorem 7.8.1 claims that P2 samples are sufficient. To prove this,
we can use the Nested Periodic Matrices proposed in Chapter 3. Let x(n) be a
signal whose period is either P1 or P2, and let x be a P2 × 1 vector consisting of P2

consecutive samples of x(n). Further, let A be a P2 × P2 Nested Periodic Matrix.
Then, since A is a full rank matrix, the following system of equations has a unique
solution for s:

x = As (7.52)

Moreover, it follows from Lemma 3.2.3 that the Least Common Multiple of the
periods of those columns of A that are multipled by non-zero entries in s, is equal
to the period of x(n) (either P1 or P2 in this case). Hence, P2 samples of x(n) are
sufficient to find its period.

Sufficiency when P1 - P2

When P1 - P2, P1 samples are sufficient to find the period. We will first prove this
for the case when P1 and P2 are coprime, and then extend the proof to the more
general case.

When P1 and P2 are coprime, consider downsampling x(n) by M = P2 to yeild y(n).
That is, y(n) = x(Mn). In this case, if x(n) had period P2, then, the period of y(n) is
1 from Lemma 7.8.1. However, if x(n) had period P1, then the output y(n) cannot
have period 1 according to Lemma 7.8.2. To check whether y(n) has period 1, we
need atmost P1 samples of y(n), since its period can be any divisor of P1. This
proves that P1 samples are sufficient to find the period in this case.

Let us now consider the more general case when (P1, P2) = G (G , P1, since
P1 - P2). We now propose to use the setup shown in Fig. 7.7. Let us first consider
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Figure 7.7: Finding the period of x(n) when (P1, P2) = G , P1. See text for details.

the case when x(n) has period P2. Then, it is easy to see that all the outputs
y0(n), y1(n), . . . , yG−1(n) will have period 1.

However, if x(n) has period P1, then atleast one of y0(n), y1(n), . . . , yG−1(n) will
have period > 1. To prove this, we re-draw Fig. 7.7 as Fig. 7.8. If x(n) had period
P1, and if P1 , G, then at least one of u0(n), u1(n), . . . , uG−1(n) must have period
> 1. This is because, if all of them are period 1 signals, then x(n) must satisfy:

x(n + G) = x(n) ∀ n ∈ Z (7.53)

which then necessitates that P1 |G (since the periodmust always divide any repetition
index). This is possible only if G = P1, which contradicts our assumption that
P1 - P2.

Let us assume that ui(n) has period > 1. Because of Lemma 7.8.1, the period of
ui(n) must be a divisor of P1

G . Further, since P1
G and P2

G are always co-prime, any
divisor of P1

G is also coprime to P2
G . So using Lemma 7.8.2, we can conclude that

the period of yi(n) must be > 1.

Notice that, using Lemma 7.8.1, u0(n), u1(n), . . . , uG−1(n) can have their periods as
any divisors of P1

G , and so the outputs y0(n), y1(n), . . . , yG−1(n) can have their periods
as any divisors of P1

G . So P1
G samples of each output are sufficient to check if they

have period 1. Since there are G such outputs, P1
G × G = P1 samples of x(n) are

sufficient to determine whether the period is P1 or P2. This completes the proof of
the sufficiency side of Theorem 7.8.1.

We will now prove the necessity part of Theorem 7.8.1.
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Figure 7.8: Re-drawing Fig. 7.7 for analysis. See text for details.

Proving Necessity
We will first show that at least P1 samples are necessary to find the period from
the set {P1, P2}, irrespective of whether P1 |P2 or P1 6 |P2. Later, we will show that
when P1 |P2, P2 samples are necessary.

Theorem 7.8.2. Given any set of L < P1 time indices NT = {n1, n2, . . . , nL} ⊂ Z,
there exist periodic signals xP1(n) and xP2(n) with periods P1 and P2 respectively
such that

xP1(n) = xP2(n) ∀ n ∈ NT (7.54)

♦

Proof. Since L < P1, there exists at least one integer in the set {0, 1, . . . , P1 − 1}
that does not belong to the set {(n1 mod P1), (n2 mod P1), . . . , (nL mod P1)}. Let m

be such an integer. We define xP1(n) as follows:

xP1(n) =


0 if n mod P1 = m

1 otherwise
(7.55)

It is easy to see that xP1(n) has period P1 (a zero occurs only once every P1 samples).
Notice that xP1(n) = 1 ∀ n ∈ NT . In the same way, we can construct a period P2

signal xP2(n) that satisfies xP2(n) = 1 ∀ n ∈ NT . Clearly, for these xP1(n) and xP2(n),
(7.54) is satisfied. 5 5 5

We will now prove that when P1 |P2, one needs at least P2 samples to estimate the
period.
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Theorem7.8.3. LetP1 |P2. Given any set of L < P2 time indicesNT = {n1, n2, . . . , nL} ⊂

Z, and any period P1 signal xP1(n), there exists a period P2 signal xP2(n) such that

xP1(n) = xP2(n) ∀ n ∈ NT (7.56)

♦

Proof. Let xP2(n) be defined to be equal to xP1(n) for all n ∈ NT . Doing so will not
violate the following condition:

xP2(n + P2) = xP2(n) ∀ n ∈ NT (7.57)

since, n + P2 = n + kP1 for some integer k.

Further, since L < P2, there exists at least one integer in the set {0, 1, . . . , P2 − 1}
that does not belong to the set {(n1 mod P2), (n2 mod P2), . . . , (nL mod P2)}. Let m

be such an integer. Moreover, let u and v be integers such that u > maxn xP1(n) and
v < maxn xP1(n). We define xP2(n) as follows:

xP2(n) =


xP1(n) if n mod P2 ∈ NT

u n mod P2 = m

v otherwise

(7.58)

It is easy to see that xP2(n) has period P2 (u occurs only once every P2 samples).
Hence, we have constructed a period P2 signal xP2(n) satisfying the conditions of
the theorem. 5 5 5

This completes the proof of Theorem 7.8.1.

7.9 Simulations Under Noise
We can easily adapt the period estimation algorithms proposed in Sec. 7.8 to deal
with noisy inputs. For the case when P1 |P2, one may use least squares to solve for
the vector s in (7.52). We refere the reader to Chapter 3 for more details. Here,
we analyze the case when P1 - P2. Recall that the period estimation techniques
presented earlier in this section for this case involve, apart from downsampling,
checking whether certain signals have period 1 or not. When there is noise, we can
compute the variance of ui(n) (in Fig. 7.8) to check whether its period is 1. If the
variance is less than a suitably chosen threshold, we may hypothesize that period is
1. To illustrate this, we consider the simple case when (P1, P2) = 1 here.



168

Number of Samples
0 20 40 60 80 100

E
rr

or
 R

at
e

0

0.05

0.1

0.15

0.2

0.25

Figure 7.9: Error rate vs. Number of Samples. P1 = 9, P2 = 13, SNR = 0dB. See
Sec. 7.9 for details.

When P1 and P2 are coprime, we considered the downsampler of Fig. 7.7, with
M = P2 (we will have only one channel in this case, since the GCD is 1). We argued
that if x(n) had period P2, then the period of y(n) is 1 from Lemma 7.8.1. However,
if x(n) had period P1, then the output y(n) cannot have period 1, and is in fact a
permutation of the input itself (see the proof of Lemma 7.8.2). Let us now assume
that the signal x(n) was contaminated by an independent AWGN process s(n) with
sample variance σ2

n . Further, suppose that x(n) was itself a randomly generated
periodic signal with sample variance σ2

x .

In this case, it is easy to see that the output y(n) would have sample variance σ2
y

given by:

σ2
y =


σ2

x + σ
2
n if x(n) had period P1

σ2
n if x(n) had period P2

(7.59)

So we may choose a threshold parameter T = σ2
n +

σ2
x

2 , and predict the input to have
period P1 if the observed variance of y(n) is larger than T , and predict the period as
P2 otherwise.

Using this technique, we performed the following two experiments. In the first, we
study the accuracy of the period estimate as a function of the number of samples
of y(n) used for computing σ2

y . We chose P1 = 9, P2 = 13, and SNR = 0dB. The
minimum number of samples needed in this case, as given by Theorem 7.8.1, is 9.
For each value of ‘number of samples’, we generated 10000 signals with periods
randomly chosen from the set {P1, P2}. Fig. 7.9 plots the fraction of times the period
was incorrectly estimated as the error rate. It is intuitive that the error rate decreases
as we have more samples.
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Figure 7.10: Error rate vs. SNR for the Minimum Samples Case. P1 = 9, P2 = 13,
Number of samples = P1 = 9. See Sec. 7.9 for details.

In our second experiment, we fixed the number of samples to be P1, and plotted the
error rate for various values of SNR. This is shown in Fig. 7.10. Once again, as is
consistent with intuition, we observed the error rate decrease as the SNR increases.

7.10 Concluding Remarks
This chapter derived fundamental bounds on the minimum necessary and suffi-
cient data-length needed to estimate the integer period and the hidden periods of
a sequence x(n). The notion of hidden periods in a mixture was carefully formal-
ized, including a discussion on their uniqueness and identifiability. While most of
the results in this chapter are algorithm-independent, the datalength requirements
for a particular case of the recently proposed dictionary based period estimators
of [23] was also presented. We also briefly analyzed the case where the discrete
signal’s period might not exactly be an integer. Finally, the question of whether
non-contiguous sampling helps to reduce the minimum number of samples required
for period estimation was investigated using a simple case.

A possible extension of this chapter would be to multi-dimensional periodic signals.
The extension of Caratheodary’s results to the multi-dimensional setting in [112]
provides useful initial insights. Wewould also like to theoretically study the accuracy
of period estimation and its dependence on the number of samples in the presence of
noise, under a rigorous statistical framework. Finally, from a practical perspective,
all the algorithms used in the sufficiency proofs in this chapter are computationally
intensive. This was not an issue in this chapter, since these algorithms were only
used as proof techniques. However, an interesting question is as follows: Can there
be algorithms that are both computationally efficient, as well as mathematically
guaranteed to work with the theoretical minimum number of samples? This is an
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open question we wish to address in the future.

7.11 Chapter Appendix

Lemma 7.11.1. Let A be a N × N matrix with distinct, Vandermonde columns. Let
B be the (N − 1) × N matrix obtained by removing the last row of A. Then, any
non-zero vector z in the Null space of B satisfies zi , 0 ∀ i. ♦

Proof. Assume the contrary, and thus let z be a vector in NULL(B), with say its ith

entry equal to 0. Let B′ be the (N − 1) × (N − 1) matrix obtained by deleting the ith

column of B, and let z′ be the (N − 1) × 1 vector obtained by deleting the ith entry
of z. Since Bz = 0, it follows that B′z′ = 0. However, notice that B′ is a square
Vandermonde matrix with distinct columns, and hence is full rank. So z′ must be 0,
which then implies that z = 0. 5 5 5

Lemma 7.11.2. Let F be an M-set. Let G ⊆ D.S.(F), such that F ⊆ G. Let H be the
following set:

H = {g ∈ G : Mg < G ∀M > 1} (7.60)

Then, H = F. ♦

Proof. Let f ∈ F. This implies that f ∈ G, since F ⊆ G. Suppose f < H, then,
M f ∈ G for some M > 1. But since G ⊆ D.S.(F), M f |l for some l ∈ F. This then
implies that f |l. However, we have obtained a contradiction, since F is an M-set.
Hence, f ∈ H. This proves that

F ⊆ H (7.61)

Now, suppose q ∈ G such that q < F. Since G ⊆ D.S.(F), Kq = p for some p ∈ F

and K > 1. But since F ⊆ G, this implies that Kq = p for some p ∈ G and K > 1.
So q < H. This proves that H ⊆ F. Combining it with (7.61), we can conclude that
H = F. 5 5 5

Lemma 7.11.3. For any two positive integers Pi and Pj , the following holds true:

Pi + Pj − (Pi, Pj) =
∑

d∈D.S.({Pi,Pj })

φ(d) (7.62)

♦
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Proof. For any positive integer P, the following is true (from [24]):∑
d |P

φ(d) = P (7.63)

Expanding each term in the L.H.S. of (7.62) using (7.63) gives us:

Pi + Pj − (Pi, Pj) =
∑
di |Pi

φ(di) +
∑
dj |Pj

φ(d j) −
∑
dk |G

φ(dk) (7.64)

where G = (Pi, Pj). Now, if dk |G, then dk |Pi and dk |Pj . So D.S.({P1}) ∩

D.S.({P2}) = D.S.({G}). Using the principle of inclusion and exclusion from set
theory on the setsD.S.({P1}), D.S.({P2}), D.S.({P1})∩D.S.({P2}) andD.S.({Pi, Pj}),
it is now easy to see that the R.H.S. of (7.64) is equal to the R.H.S. of (7.62). 5 5 5



172

C h a p t e r 8

ARBITRARILY SHAPED PERIODS IN MULTI-DIMENSIONAL
PERIODICITY

Traditionally, the above notion of periodicity has been generalized for multidimen-
sional signals in the following way [113], [114]: A signal x(n), n ∈ ZD is said to be
periodic if there exists a non-singular integer matrix P such that:

x(n + Pr) = x(n) ∀ n, r ∈ ZD (8.1)

Analogous to the one dimensional case, such a P can be called a repetition matrix of
x(n). For such an x(n), the parallelepipedwhose edges are represented by the column
vectors of P is known as a repetition region, since this parallelepiped when tiled
periodically along the directions represented by the columns of P, generates x(n).
Moreover, the absolute value of the determinant of P gives the number of integer
points inside the repetition region. If P is a repetition matrix with a determinant
that has the smallest absolute value among all possible repetition matrices for x(n),
then the parallelepiped whose edges are given by the columns of such a P is known
as a period of x(n). In this case, P is said to be a periodicity matrix of x(n). In other
words, a period is defined as the smallest parallelepiped that is a repetition region
for the signal. Fig. 8.1(a) shows an example of a two dimensional periodic signal
with period represented by the following matrix:

P =

[
2 1
0 2

]
(8.2)

For simplicity, we will indicate periodic signals such as the one in Fig. 8.1(a) by
plots similar to Fig. 8.1(b). (The horizontal direction in Fig. 8.1(a) and (b) represents
the first coordinate.)

The question we want to address in this chapter is whether the above notion of
periodicity captures all possible multidimensional periodic patterns. For example,
according to the above definitions, the period and repetition regions are paral-
lelepipeds. But there are many examples of signals with a much more diverse and
rich set of geometries for the period. For example, the Dutch artist M. C. Escher had
made several paintings consisting of figures that tile the two dimensional continuous
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Figure 8.1: Part (a) - A two dimensional periodic signal according to the definition
in (8.1), whose period is represented by the matrix in (8.2). The grid of dots is the
set Z2. The numbers shown indicate the value of the signal at those integer points.
Part (b) - A convenient way to indicate repetition regions for such periodic signals.

space plane. His tiles include many intricate shapes such as reptiles, fishes, men etc.
[115]. The website in the 1, for example, investigates some of the techniques behind
constructing Escher’s figures. By nature, all these paintings are continuous space
signals. But taking inspiration from them, we constructed the discrete space exam-
ples of Fig. 8.2 and Fig. 8.3. Such non-parallelepiped shaped tiles occur frequently
in the real world, for example in honeycombs, scales of animals such as fish, in art,
textile design, architecture and computer graphics. Such tilings are also useful in
crystallography [116], [117].

Can we have a formal notion of periodicity with repetition regions and periods
having such general shapes? Do each of these signals also have parallelepiped
shaped periods? If so, how are these parallelepiped periods related to the ones
shown here? Are there signals similar to Fig. 8.2 and Fig. 8.3 whose smallest
repeating unit is not a parallelepiped?

To address these questions, we will formulate a new definition of periodicity in the
following subsection, that is directly motivated from patterns such as in Fig. 8.2 and
Fig. 8.3. We will then derive and discuss some properties of signals that satisfy

1J. Britton, Escher in the classroom [Online]. Available: http://britton.
disted.camosun.bc.ca/jbescher.htm
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Figure 8.2: A two dimensional periodic signal with a non-parallelogram repetition
region (shaded in black) tiling the plane.

Figure 8.3: Another example of a two dimensional periodic signal with a non-
parallelogram repetition region (shaded in black) tiling the plane.
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this new definition. These properties show how such signals relate to the above
mentioned parallelepiped formulation (Eq. 8.1).

Multi-Dimensional Periodicity - An Alternate Definition
Consider the periodic signals in Fig. 8.2 and Fig. 8.3. The period (black area) is
some shape that when repeated along two directions tiles the plane. Whenwe look at
these figures, it is quite obvious to our intuition that there is a periodically repeating
pattern on the plane. This perception of periodicity can be transcribed into words
as follows: “copies of a shape, obtained by translating it along fixed directions, tile
the plane and the signal values on that shape are replicated on its copies”. We want
to model the same into a mathematical formulation. Hence the following definition:

Definition 8.0.1. A signal x(n), is said to be periodic if there exists a non-empty set
S ⊂ ZD and a matrix P ∈ ZD×N , such that if we define the sets:

Si = S + Pi (8.3)

then,

1. ∪iSi = Z
D

2. Si ∩ Sj = φ for Si , Sj

3. x(n + pr) = x(n) ∀ n ∈ S and r ∈ ZN .

Here, S + Pi indicates the set obtained by adding the vector Pi to every element of
S. As will be clear from the following discussion, for a signal x(n) satisfying the
above definition, the set {S,P} is not unique. Some remarks on Definition 8.0.1:

1. The set S: In the above definition, S represents the set of points that form the
shape that tiles the plane. For example, in Fig. 8.2 and Fig. 8.3, S can be the
shape shaded in black. We will call it a repetition region of the signal. Notice
that a group of those shapes taken together also represents a valid repetition
region that can tile the plane. So a signal satisfying Definition 8.0.1 will not
have a unique repetition region. Also, note that unlike in the parallelepiped
based periodicity framework in the beginning of this section, we are not
explicitly specifying any shape for the repetition region.
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2. The sets Si and the matrix P: Si is a translated version of S, translated along
the directions represented by the columns of P. For this reason, we will call
P as a translation matrix of S. For a given repetition region S, the translation
matrix is not unique. This is because, the set of all integer vectors spanned by
the columns of P is the same as that spanned by the columns of PU where U
is any integer unimodular matrix [113]. So if P is a translation matrix for S,
then PU will also be a valid translation matrix for S.

3. The size of P: The motivating idea behind Definition 8.0.1 involves a shape
being translated and copied along fixed directions. But along how many
directions do we need to translate? By taking a D × N translation matrix, we
are essentially choosing N such directions. In Section 8.1, we will point out
that if P has rank R < D, then the repetition region must be of infinite size
along D − R dimensions. For simplicity, we will not consider such signals
here. On the other hand, we will show that when P has rank D, one may
assume N = D without loss of generality. So in the following discussions, we
will assume P to be a full rank D × D matrix.

4. The three conditions: The first condition in the definition just says that the
set S and its shifted copies must cover the entire space. The second condition
requires that different shifted versions of S must not overlap with each other.
Finally, the third condition requires that the value of the signal x(n) on the
points in S must replicate themselves on all the shifted copies of S. These
conditions were directly motivated from signals such as those in Fig. 8.2 and
Fig. 8.3.

Notice that a repetition region S might itself not be the period. For instance, in
Fig. 8.2 and Fig. 8.3, a group of the indicated shapes taken together as one big
shape also represent a valid repetition region. We will now formally define what we
mean by a period of a periodic signal. To do so, we note that in the parallelepiped
based definitions for repetition regions and periods discussed earlier, the period was
defined as any parallelepiped that is a repetition region, and has the smallest number
of points among all such repeating parallelepipeds. We will generalize it to more
general shapes in the following definition:

Definition 8.0.2. For a signal that is periodic according to Definition 1, a repetition
region is said to be a period if for any other repetition region of the signal,
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Properties Arising From The New Definition
We will now prove some properties of signals that are periodic according to Def-
inition 8.0.1 of the previous subsection. In the process, we will relate them to
the conventional parallelepiped based formulation mentioned after (8.1). First we
prove:

Theorem 8.0.1. If x(n) is periodic according to Definition 8.0.1, then x(n + Pr) =
x(n)∀n, r ∈ ZD.

Note the difference between Theorem 8.0.1 and condition 3 of Definition 8.0.1.
Theorem 8.0.1 talks about all integer vectors n ∈ ZD whereas condition 3 required
only that n ∈ S.

Proof. Consider any n ∈ ZD. From conditions 1 and 2 in Definition 8.0.1,
there must exist a unique i ∈ ZD such that n ∈ Si. In that case, there must
exist a point m in S such that n = m + Pi because of (8.3). So x(n + Pr) =
x(m + Pi + Pr) = x(m + P(i + r)) = x(m), where the last equality follows from
condition 3 in Definition 8.0.1. Since m ∈ S, condition 3 in Definition 1 also
implies that x(m) = x(m + Pi) = x(n). Hence, x(n + Pr) = x(n). 5 5 5

The above theorem is important for the following reason. Let us say we have a set
S which was used in verifying Definition 8.0.1 to determine that a particular signal
x(n) is periodic. Irrespective of the shape of S, Theorem 8.0.1 tells us that we can
always have a parallelepiped repetition region for x(n). This is because, it is well
known in the literature ([113], [114] etc.) that for any signal x(n) that satisfies:

x(n + Pr) = x(n)∀n, r ∈ ZD (8.4)

a parallelepiped P ⊂ ZD that has the columns of P as its edge vectors, when tiled
periodically along the directions represented by the columns of P, generates x(n).
It can easily be shown that such a parallelepiped satisfies all the conditions of
Definition 8.0.1 too, and is hence a valid repetition region according to our new
definitions for periodicity. It’s translation matrix is in fact P. Consider the signal
in Fig. 8.2 for instance. Let S be the repetition region shaded in black, and let P be
its translation matrix. If we denote the parallelogram that has its edges along the
columns of P by P, then Fig. 8.4 shows the same signal as having P (shaded part) as
a repetition region.
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How is such a parallelepiped P related to the original repetition region S? Consider
the following Theorem.

Theorem 8.0.2. Let x(n) be periodic according to Definition 8.0.1, with repetition
region S and a translation matrix P. Let P be another repetition region for x(n) with
the same translation matrix. Then, |S| = |P| = |det(P)| .

Proof. Let S and P represent two possible repetition regions for x(n) that have the
translation matrix P. To every point in P, we can associate a point in S in the
following way. Let m be a point in P. Then, there exists a unique point n in S such
that m = n + Pv for some v ∈ ZD. This is because:

Existence of n: Follows from Condition 1 in Definition 8.0.1.

Uniqueness ofn: If therewere twopointsn andn′ inS such thatm = n + Pv = n′ + Pv′,
then n′ = n + P(v − v′). Let v − v′ = i. Then, from Definition 8.0.1, since n ∈ S,
n′ must belong to Si. But S ∩ Si is the null set unless i = 0 by Condition 2 of
Definition 8.0.1. This then implies that n′ = n + Pi = n . Hence, uniqueness has
been proved.

From the above arguments, we can define a mapping that relates every point in P
to a point in S. We now claim that this mapping is one-one. That is, two points in
P cannot be associated to the same point in S. We can prove this by contradiction.
Suppose there were two points P1 and p2 in P such that p1 + Pv1 = p2 + Pv2 = s,
for some s ∈ S. Then, p1 = p2 + P(v2 − v1). Since p1 and p2 are distinct points,
v1 , v2. But this leads to a contradiction, since P itself is a repetition region that
satisfies Definition 8.0.1, and using an argument similar to the uniqueness of n
argument above, p1 = p2 + P(v2 − v1) cannot be possible for v1 , v2.

So we have proved that there exists a one-one mapping from P to S. This means that
the number of points in P must be less than or equal to the number of points in S.

Interchanging P and S in the proof above, we can similarly construct a one-one
mapping from S to P. And hence, the number of points in S must actually be equal
to the number of points in P.

Finally, as we remarked earlier, the parallelepiped whose edges are represented
by the columns of P also satisfies Definition 8.0.1 as a repetition region with the
same translation matrix P. The number of points in such a parallelepiped is given
by |det(P)| [113], [114]. So from the above result, the number of points in any
repetition region with translation matrix P is |det(P)|. 5 5 5
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Theorem 8.0.1 tells us that any signal x(n) that is periodic according to Defini-
tion 8.0.1, having possibly arbitrary shaped periods such as in Fig. 8.2 or Fig. 8.3,
will also always have a parallelepiped shaped repetition region. Theorem 8.0.2
shows that the number of points in that parallelepiped is in fact equal to the num-
ber of points in the “irregular” repetition region S. This means, for example, that
the parallelograms shown in Fig. 8.4 have the same number of points as the region
shaded in black in Fig. 8.2. Moreover, combining Theorem 8.0.1 and Theorem 8.0.2
we can arrive at an important conclusion that the smallest repetition region for x(n)
can always be assumed to be a parallelepiped:

Theorem 8.0.3. Let x(n) be periodic according to Definition 8.0.1. Let S be an
arbitrarily shaped period of x(n) according to Definition 8.0.2. Then, there will
always exist a parallelepiped that is also a period of x(n), having the same number
of points as S.

Proof. Let P be the parallelepiped whose edges are represented by the columns
of the translation matrix of S. As discussed earlier, from Theorem 8.0.1, P is a
repetition region for x(n). And from Theorem 8.0.2, P and S have the same number
of points. However, no repetition region can have smaller number of points than S
by Definition 8.0.2. And hence no other repetition region can have smaller number
of points than P. So P is a period of according to Definition 8.0.2. 5 5 5

8.1 A Note on Translational Matrices
Wehad allowed the number of columns in the translationmatrixP in Definition 8.0.1
to be any natural number N . But we restricted our subsequent analysis to P being a
full rank square matrix. We will now discuss what happens when has rank < D, or
has rank = D but more than D columns.

First, consider the case when the rank of P is less than D. If a shape S were to tile
the entire space ZD using translations along the columns of such a P, then such a
shape S must have infinite extent along the D − rank(P) dimensional subspace that
is orthogonal to the space spanned by the columns of P. For simplicity, we did not
discuss such signals in this work.

On the other hand, if P has full rank but has N > D, then it can be shown that the
set of all copies of S obtained by translations along the columns of P would be the
same set as that obtained by translating along the D directions represented by the
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Figure 8.4: A parallelepiped repetition region always exists for any signal following
Definition 8.0.1. Indicating this for the signal of Fig. 8.2.

columns of the greatest left divisor of P . We will explain this in more detail in the
following.

A left divisor of P is defined as a matrix L ∈ ZD×D that satisfies P = LR for some
R ∈ ZD×N [113]. A left divisor of P, call it L0, that satisfies the property that any
left divisor of P is a left divisor of L0, is known as a greatest left divisor (gld) of
P. It can be shown that a gld of P exists when has rank D. Notice that gld’s are not
unique, since if L0 is a gld, so is L0U for any integer unitary matrix U. (For more
details on gld’s, see [118]–[120]).

Let L0 represent a gld of P. We claimed above that the set {Si : i ∈ ZD} obtained
by using P as a translation matrix is the same as that obtained by using L) as the
translation matrix. This follows from the following theorem that essentially states
that the lattice generated by P is the same as the lattice generated by L0.

Theorem 8.1.1. Let P ∈ ZD×N have rank D, and let L0 be its gld. Then, there will
exist z ∈ ZD and i ∈ ZN such that z = Pi iff there exits a j ∈ ZD such that z = L0j.

Proof. Let z = Pi. Since L0 is a left divisor of P, there must exist an integer matrix
R such that P = L0R. Substituting this into z = Pi gives z = L0Ri = L0j where
j = Ri.
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Conversely, let z = L0j. Let P = U[Λ0]V be the Smith-form decomposition of P
[121], where U and V are integer unimodular matrices, 0 is a (N − D) × D zero
matrix and Λ is an integer diagonal matrix. It can be shown that any gld of P can
be expressed as L0 = UΛA for some integer unimodular matrix A. So z = L0j can
now be re-written as:

z = L0j = UΛAj = U[Λ0]

[
Aj
n

]
(8.5)

where n can be any (N−D)×1 integer vector. We can further rewrite this as follows:

z = U[Λ0]

[
Aj
n

]
= U[Λ0]VV−1

[
Aj
n

]
= PV−1

[
Aj
n

]
(8.6)

Since V is a unimodular matrix, its inverse must also be an integer matrix. So if we
define:

i = V−1

[
Aj
n

]
(8.7)

then, we have z = Pi. 5 5 5

8.2 Conclusion
The above discussion tells us that the parallelepiped based analysis for periodic
signals is also suitable for signals that follow our new definition of periodicity,
and hence for signals such as those in Fig. 2 and Fig. 3, where the intuitively
apparent period might not be a parallelepiped to start with. This realization can
have many applications. For instance, in the previous chapters, expansions of
one dimensional periodic signals in terms of specially designed bases such as the
Nested Periodic Subspaces) was developed into a family of algorithms that estimate
unknown periods of signals. The Ramanujan subspaces have been generalized in
[122] for multidimensional signals that follow the traditional parallelepiped based
periodicity model. A natural question is whether those representations can be used
for signals having more arbitrary shaped tilings such as those in Fig. 8.2 and Fig. 8.3.
Our work here shows that this is indeed the case. Moreover, for such a signal, given
any period and its translationmatrix, we are able to identify the parallelepiped period
that can be associated to the same signal. This is a very useful fact in determining the
basis to represent the signal. More generally, these results enable us to incorporate
such signals into the traditional multidimensional multirate analysis, for example
[113], [114], [120]. Before we conclude, we would like to conjecture that similar
results exist for continuous-space multidimensional periodic signals.
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C h a p t e r 9

CONCLUDING REMARKS

This thesis explores the classical problem of period estimation from a new perspec-
tive. We started by developing the theory of Nested Periodic Subspaces (NPSs),
which were inspired from Ramanujan sums [8]. We showed that the NPSs are the
least redundant sets of subspaces to span periodic sequences. It was shown that this
minimality leads to several unique properties of the NPSs, which make them ideally
suited for developing new period estimation algorithms.

We presented three new algorithms here: the Nested Periodic Dictionaries in Chap-
ter 3, the Ramanujan Filter Bank in Chapter 5 and the iMUSIC family of algorithms
in Chapter 6. These new methods are especially advantageous when the available
datalength is short, or when there are multiple hidden periodicities in the signal. Us-
ing applications such as DNAmicro-satellites, protein repeats and epileptic seizures,
we compared their performances with some of the state-of-the-art methods in these
application domains.

Apart from practical contributions, this thesis answered a number of fundamental
questions regarding periodicity which were previously unknown. For instance, in
Chapter 7, we derived precise expressions for the minimum required datalength for
the identifiability of the period of a signal. It is somewhat surprising that in spite
of period estimation having a rich history in DSP, this question was never studied
previously in a fundamental manner. Most prior works assume (using heuristic
arguments) that one needs at least twice the the number of samples as the largest
expected period. However, as we showed in Chapter 7, this is only true under
some very specific situations. We also derived the exact bounds for the case of
mixtures of multiple periodic signals. The following extension of the minimum
datalength question was also addressed: If we are allowed to pick the samples in a
non-contiguous manner, can we estimate the period of a signal using a fewer number
of samples than in the contiguous case? For the case of distinguishing between two
potential periods, it was shown that this is indeed the case, and that the optimal
sampling patten takes an interesting form of uniformly spaced bunches. Extending
this non-contiguous samples analysis to more than two periods seems challenging,
but will be interesting to study in the future.
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There are two important directions to be pursued further. Firstly, most of the analysis
we presented in this thesis did not rigorously address the issue of noisy data. For
instance, how to optimally design the thresholds for the dictionary techniques of
Chapter 3 under noisy data? How resilient is the LCM property of the Ramanujan
and Nested Periodic Subspaces to SNR? How do the minimum datalength bounds
change with SNR for the results in Chapter 7? While we empirically analyzed some
of these aspects in this thesis, a thorough theoretical framework that incorporates
noise models is yet to come.

A second important direction to explore is the connection with deep learning, which
is currently the most popular way to approach many problems in engineering. In
our ongoing research, we have noticed that Convolutional Neural Networks (CNNs),
when trained for period extraction, have interesting connections with filter banks
designed using Ramanujan Sums. The various trained layers in such networks can
be related to DSP operations such as sub-band splitting. Even though the frequency
responses of such CNNs are difficult to interpret due to non-linearities, they turn
out to be strikingly similar to the characteristic coprime band structures of the
Ramanujan Filter Bank (such as in Fig. 5.1). The significance of such CNNs seems
limited in 1D periodicity applications, since the existing algorithms, including the
ones proposed in this thesis, seem to be performing much better in our preliminary
experiments. However, such CNNs can potentially make a significant difference for
periodic non-separable lattices in 2D, where classical methods are not competitive
computationally. This will be an important direction to follow going into the future.
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