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ABSTRACT

Researchers use concepts such as stress drop, breakdown energy, and available en-
ergy to describe earthquakes sources and study earthquake physics. These quantities
represent the spatially and temporally varying dynamic events by single, event-
averaged values. They are inferred indirectly from observations, often based on
simplified models. Thus, their relationship to fault constitutive properties, which
are local on the fault, is not straightforward.

Here, we use simulations of earthquake sequences in fault models with friction laws
motivated by laboratory experiments to examine how the event-averaged observ-
ables arise from spatially and temporally varying earthquake rupture. In particular,
we consider whether several typically used fault mechanisms, such as rate-and-state
friction, thermal pressurization of pore fluids, and flash heating, are consistent with
common observations such as magnitude-invariant stress drop, increasing break-
down energy with the event size, and radiation efficiencies of ∼0.5.

Stress drops, observed to be magnitude invariant, are a key characteristic used to
describe natural earthquakes. Theoretical studies and lab experiments indicate that
dynamic weakening, such as thermal pressurization of pore fluids, may be present on
natural faults. At first glance, these two observations seem incompatible, since larger
events may experience greater weakening and should thus have lower final stresses.
We hypothesize that dynamicweakening can be reconciledwithmagnitude-invariant
stress drops due to larger events having lower average prestress when compared to
smaller events. The additional weakening would allow the final stresses to also be
lower, but the stress drops may be similar.

To explore this hypothesis, we study long-term earthquake sequences on a rate-and-
state fault segment with enhanced dynamic weakening due to thermal pressurization
using a fully dynamic simulation approach with a seismogenic segment that has
uniform friction properties. Our results show, for a range of event sizes, that
such models can explain both observationally inferred stress drop invariance and
breakdown energy increase with event magnitude. Smaller events indeed have
larger average initial stresses than medium-sized events, and we get nearly constant
stress drops for events spanning up to five orders of magnitude in seismic moment.
Segment-spanning events have more complex behavior, which is dependent on the
properties of the velocity-strengthening (VS) region at the edges of the fault. Models



vi

with large values of velocity strengthening in their boundary regions do not allow
ruptures to propagate much into the velocity-strengthening region, thus containing
the rupture area and leading to higher stress drops for a larger amount of slip.
Decreasing the velocity strengthening of the boundaries leads to farther rupture
propagation into the velocity-strengthening region and thus lower stress drops.

In all models with the thermal pressurization of pore fluids that we have examined,
both the smaller and segment-spanning events exhibit increases in breakdown energy
consistent with observations. The breakdown energy is the portion of the dissipated
energy that governs the event dynamics, analogous to the fracture energy concept
of fracture mechanics. The increase in the breakdown energy is due to continuous
weakening of the fault with slip, as hypothesized in previous analytical studies.

We also examine the accuracy of seismically estimated breakdown energies GSE

for a range of models, by comparing the values computed directly from our fault
models and indirectly from seismically available observations. Observationally,GSE

is typically obtained as the difference between the seismically estimated available
energy ∆W0 per unit area and radiated energy ER. This defines the available energy
∆W0A as the sum of the breakdown energy and radiated energy. However, the
seismically estimated available energy ∆W0 is obtained as one-half of the product
of the (average) stress drop and (average) final slip, based on a simplified model.
As such, we examine the relation between the actual available energy ∆W0A and its
seismic estimate ∆W0 in our models. We find that, as rupture mode changes from
crack-like to pulse-like, the actual available energy ∆W0A, becomes increasingly
larger that the seismically estimated available energy ∆W0, due to significant and
increasing stress undershoot characteristic of pulse-like ruptures. The extra available
energy for more pulse-like ruptures either makes the breakdown energy much larger
than its seismically estimated value, or makes the radiated energy much larger than
the seismically estimated available energy ∆W0, or both. In the two latter cases, the
radiation ratio η (sometimes called radiation efficiency) between the radiated energy
and seismically estimated available energy increases beyond 1, consistent with some
observations that were previously thought to be aphysical.

Overall, we find that models with rate-and-state friction and thermal pressurization
of pore fluids, when resulting in continuous weakening of fault with slip and crack-
like ruptures, produce events with magnitude-invariant stress drops, increases in
breakdown energies with the event sizes consistent with observations, radiation
ratios consistentwith observations, and available energies similar to the ones inferred
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seismically. More pulse-like ruptures, which result occasionally in such models and
reliably in models that incorporate more severe enhanced weakening motivated by
flash heating, have increasingly more significant undershoot and hence extra energy
available for breakdown and radiation compared with the seismically estimated
available energy. Therefore, current seismic estimates of their breakdown energy
and radiation ratio are not reliable. More work is needed to understand the energy
budget of pulse-like events obtained in realistic fault models, especially since one
of the common paradigms in earthquake physics is that many large events occur as
pulse-like ruptures.
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C h a p t e r 1

INTRODUCTION

Stress drops and breakdown energy are important descriptors of natural earthquakes.
Stress drops characterize the average change in stress state before and after the
dynamic event (Kanamori and Brodsky, 2004). The stress drop distribution varies
along the fault and can be averaged in several different ways in order to produce a
single, representative value for an event (Section 2.2). There is a fair amount of
scatter in the inferred values of stress drops of natural earthquakes, from about 0.1
MPa up to values around 100 MPa (Kanamori and Brodsky, 2004; Baltay et al.,
2011). However inferred values of stress drop are magnitude-invariant; most events
have stress drops that fall between 1 MPa and 10 MPa, and this has been observed
for events ranging 9 orders of magnitude in moment (Ide and Beroza, 2001). The
interpretation and reliability of the stress drops estimates have been actively studied
recently, with indications that the current standard methods of estimating stress
drops can introduce some significant discrepancies between the actual and inferred
stress drops (e.g., Noda et al., 2013; Kaneko and Shearer, 2014; Kaneko and Shearer,
2015). However, the values can be both under- and overestimated, and hence there
are no indications at present that the overall magnitude-invariant trend should be
questioned.

Breakdown energy, a quantity thought to be the earthquake analog to fracture energy
from fracture mechanics, describes the energy consumed near the rupture tip that is
necessary to propagate the rupture forward. It is the frictional-rupture generalization
of the fracture energy of singular and cohesive zone models of fracture (Palmer and
Rice, 1973; Cocco et al., 2004), and is a potentially controlling factor of the dynamics
of the rupture front including its velocity and radiative aspects. Breakdown energy
is a part of the overall energy budget of a seismic event, with the total strain energy
released (∆W) typically divided into the breakdown energy G, radiated energy ER,
and other dissipation ED (Kanamori and Rivera, 2006). It is a more straightforward
concept for shear stress vs. slip behavior that follows slip weakening during dynamic
rupture (Kanamori and Heaton, 2000; Rice, 2000; Kanamori and Brodsky, 2004).
It is calculated by taking the area underneath the stress-slip curve for a single event
from initiation to its lowest dynamic level of stress and then subtracting off the
frictional energy dissipation (Figure 1.3 and Section 2.2.2). Breakdown energy
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Figure 1.1: Breakdown energies inferred for observed events from the work of a)
Rice (2006) and b) Viesca and Garagash (2015). Both show a trend of increasing
breakdown energy with increasing event size.

is inferred to increase with the event size in natural earthquakes (Abercrombie
and Rice, 2005; Rice, 2006; Viesca and Garagash, 2015). However, our analysis
shows (Section 4), that these inferred values may or may not be close to the actual
breakdown energies, depending on the mode of the rupture propagation.

Radiation efficiency η, the ratio between the radiated energy ER and the portion
of total strain energy available for radiation and breakdown (available energy), is
an important quantity for describing the dynamic character of an earthquake. The
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Figure 1.2: Radiation efficiencies inferred for large earthquakes fromVenkataraman
and Kanamori, 2004. The observed radiation efficiencies most often fall between 0
and 1.

actual available energy is defined as the sum of breakdown energy G and radiated
energy ER. Thus, if η ≈ 1, then radiation is dominating the dynamics of the
rupture, and if η << 1, then the microscopic breakdown process is dominating
the dynamics. Breakdown energy cannot be directly measured and thus available
energy cannot be directly calculated, even if radiated energy is measured. Using an
idealized energy budget with slip-weakening behavior, available energy is able to be
seismically estimated using average stress drop and average final slip (Venkataraman
and Kanamori, 2004). Observed radiation efficiencies are often between 0-1 with
many large events between 0.3 and 0.5 (Ye et al., 2016) and smaller events closer to
0 (Kanamori and Rivera, 2006).

It is clear that during dynamic rupture the fault shear resistance decreases resulting
in a stress drop. However the exact nature of this evolution is currently unknown.
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Models have been proposed that describe a decrease in shear stress in relation to
some other part of the dynamics of the system (e.g., slip, slip rate, etc.). Slip
weakening models, where the shear stress decrease depends on the slip accumulated
during the event, are commonly used (Ida, 1972; Palmer and Rice, 1973). Linear
slip-weakening (LSW) is a simplified model where the stress decreases linearly with
slip until it reaches a constant dynamic level (Section 2.3.1).

However, significant insights into the physics of shear resistance during earthquakes
have been obtained from the laboratory, showing much richer behavior. It is well es-
tablished that rate-and-state models explain fault behavior well at slip rates between
10−9 − 10−3 m/s. Studies using rate-and-state models have successfully reproduced
a number of earthquake source observations, including the decay of aftershock rate
(Dieterich, 1994), sequences of earthquakes on an actual fault segment (Barbot
et al., 2012), and repeating earthquakes (Chen and Lapusta, 2009).

At the same time, many experiments and theoretical studies have shown that en-
hanced dynamic weakening can be a dominating effect during earthquakes. This
type of weakening can be caused by several different mechanisms, many of them
due to shear heating. Thermal pressurization is caused by the shear heating of pore
fluids during slip. If the fluid is heated quickly enough and not allowed to diffuse
away, it will pressurize and relieve normal stress on the fault. This process continues
with slip and allows the fault to continue to weaken dynamically as it slips (Sibson,
1973; Andrews, 2002; Rice, 2006). Flash heating is another effect that allows rapid
weakening due to micro contacts between the two sides of the fault melting at small
scales and rapidly decreasing the effective friction coefficient (Rice, 1999; Goldsby
and Tullis, 2011; Passelegue et al., 2014). Thermal decomposition allows the rock
to undergo a chemical change during heating that can lead to the production of fluid
and then further thermal pressurization of this fluid (even if the fault is dry before-
hand) (Han et al., 2007; Sulem and Famin, 2009). Other weakening mechanisms
have been proposed, such as macroscopic melting and silica gel formation (Brodsky
and Kanamori, 2001; Goldsby and Tullis, 2002; Di Toro et al., 2004). Models
with dynamic weakening have also been successful in producing fault operation at
low overall prestress and low heat production (Lapusta and Rice, 2003; Rice, 2006;
Noda et al., 2009a) as supported by several observations (Brune et al., 1969; Zoback
et al., 1987; Hickman and Zoback, 2004; Williams et al., 2004). Different dynamic
weakening mechanisms produce different weakening behaviors, but here we focus
on thermal pressurization as a representative dynamic weakening mechanism that



5

can lead to continuous fault weakening with earthquake-source slip. We also add
flash heating (Section 4) to explore the effect of strong initial dynamic weakening
and its potential to create events with more pulse-like behavior.

There have been several attempts to reconcile these dynamic weakening effects with
some of the observed quantities in natural earthquakes. The work of Rice, 2006,
Viesca and Garagash, 2015 and others showed that thermal pressurization of pore
fluids can explain the inferred increase in breakdown energywith the increasing event
size. This has been shown using simplified theoretical arguments. Furthermore, it is
not clear how to reconcile enhanced dynamic weakening with magnitude-invariant
stress drops.

Here, we use fully dynamic simulations of earthquake sequences to investigate sev-
eral important issues related to laboratory-derived earthquake physics and relevant
observations, such as: Can dynamic weakening be compatible with magnitude-
invariant stress drops while also maintaining increasing breakdown energy with
increasing event size? How robust are seismic observations of available energy and
breakdown energy to different modes of earthquake rupture and what implications
do these measurements have for interpreting rupture mode of observed events?

Linear slip-weakening friction laws are relatively easy to reconcile with magnitude-
invariant stress drops, provided the peak shear resistance is within 1-2 stress drops
from the dynamic resistance, as commonly assumed. As long as the total slip
exceeds the slip-weakening distance Dc, the fault weakens with slip down to a
constant dynamic level of stress regardless of the amount of total slip. As events
grow larger, the amount of total slip increases, but the dynamic level of shear stress
does not change. Since the initial stress must fall somewhere between the peak stress
and the dynamic level of shear stress, as long as the peak shear resistance is within
several stress drops of the dynamic stress level, stress drops for small and large
earthquakes would be nearly constant (Figure 1.3a). However, another consequence
is that breakdown energies remain constant for events of different sizes, at least for
constant friction parameters. The standard rate-and-state friction law results in shear
stress evolution with slip, during dynamic rupture, similar to linear slip weakening
(Cocco and Bizzarri, 2002; Lapusta and Liu, 2009; Section 2.3.1). As such, we
expect the same trends with both breakdown energy and stress drop, as we find in
our simulations (Chapter 2).

It is less clear how enhanced dynamic weakening during events affects stress drops.
We present two possibilities in Figures 1.3b and 1.3c. First is the potentially more
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intuitive view of the process. Let us assume that smaller and larger events nucleate
at nearly the same level of average prestress. The smaller event has less slip and thus
weakens a smaller amount. This results in a smaller breakdown energy (the dotted
region) and a higher final stress. The larger event weakens more, and has a larger
breakdown energy and lower final stress. In this scenario, larger events would have
systematically larger stress drops and larger breakdown energy (Figure 1.3b).

However, this intuitive scenario may be incorrect. Indeed, both smaller and larger
events should nucleate at locations with similar levels of prestress. But we must
consider the average initial stress of all points involved in the rupture, not just those
involved in nucleation. Smaller events would tend to have smaller rupture areas
and therefore have average initial stresses that match more closely to the prestresses
of the nucleation zone, while larger events propagate further, dynamically weaken
more (which they must because they become large), and may be able to propagate
over areas of much less favorable (lower) prestress conditions. This means that
the average initial stress for larger events can be lower than that for smaller events.
Larger events would dynamically weaken more and arrest at a lower average final
stress, but they would also have occurred with lower average initial stress. Thus,
the average stress drop can be similar for smaller and larger events (Figure 1.3c).
However, the observed increase of the breakdown energy with event size is still
preserved.

We indeed find that the second scenario prevails in our simulations (Chapter 3)
reconciling enhanced dynamic weakening with magnitude-invariant stress drops.
Larger events have both lower average initial and final stresses in our models.
Why the difference is magnitude-invariant, e.g., why the average initial shear stress
decreases by about the same amount as the average final stress, and not systematically
more or less, requires further study.

Furthermore, we find that the properties of the velocity-strengthening areas can have
a profound impact on the stress drop of events that appreciably propagate into these
regions, mostly segment-spanning events in our case. Models with large values of
velocity-strengthening do not allow ruptures to propagate much into the velocity-
strengthening region, thus leading to higher stress drops. Whereas, models with
smaller values of velocity-strengthening allow farther propagation and thus lower
stress drops.

Note that herewe follow the assumption thatmost of the breakdown energy occurs on
the shearing surface (e.g., Rice, 2006; Viesca and Garagash, 2015). While it is clear



7

Smaller Event Larger Event

Possibility: Average initial stress is lower for larger events

Intuitive View for Enhanced Dynamic Weakening:

Smaller Event Larger Event

Smaller Event

Linear Slip Weakening:

Larger Event

a)

b)

c)

Figure 1.3: Stress drop and breakdown energy implications for both linear slip-
weakening and rate-and-state friction with additional dynamic weakening. a) In
linear slip weakening laws, smaller and larger events weaken to the same dynamic
levels of shear resistance over the same slip. This leads to the same breakdown
energies (dotted region) and similar stress drop (marked with stars). b) If smaller
and larger events both nucleate at the same levels of prestress, and larger events
weaken more than small events, one expects both larger breakdown energies and
larger stress drops for larger events. c) However, if dynamic weakening allows larger
events to propagate into areas of lower stress, then the average prestress of these
events may be lower than for smaller events. In this case, breakdown energies still
increase with event size, but stress drops may be magnitude-invariant.
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that some energy is dissipated in off-fault damage (Andrews, 2005), those amounts
may be negligible compared to seismic estimates of breakdown energy (Chester et
al., 2005). To consider the relative importance of the off-fault dissipation is beyond
the scope of this work.

We also examine the accuracy of seismically estimated breakdown energies GSE for
a range of models using standard rate-and-state friction laws as well as several with
enhanced dynamic weakening due to thermal pressurization and flash heating. We
compare the values computed directly from our fault models with inferred values
taken indirectly from seismically available observations. Breakdown energy cannot
be measured directly and is typically found through the use of available energy,
the portion of total strain energy release available for breakdown and radiation.
Thus, the available energy ∆W0A is defined as the sum of the breakdown energy
G and radiated energy ER. However, the seismically estimated available energy
∆W0, based on an idealized model of the earthquake energy budget, is dependent
on only the average stress drop of the event and the average final slip. Seismically
estimated breakdown energy GSE is typically obtained as the difference between the
seismically estimated available energy ∆W0 per unit area and radiated energy ER,
and so we focus on the relation between the actual available energy ∆W0A and the
seismically estimated available energy ∆W0.

We will see (Chapter 4) that rupture behavior can play an important role in the
accuracy of measuring available energy and can range from crack-like to pulse-like
(Heaton, 1990; Zheng and Rice, 1998; Xiao Lu and Rosakis, 2007; Noda et al.,
2009b). Crack-like ruptures behave like a growing opening crack, but in shear,
where nearly all points along the ruptured area, once they start slipping, continue
their slip until the overall rupture arrests. Thus, the local slip duration on the fault
is comparable to the overall rupture duration for most points. Pulse-like ruptures
exhibit a propagating slip pulse; each point along the fault slips for an amount of
time that is short compared to the overall rupture duration.

Associated with these two types of rupture modes are different shear stress evolu-
tions as the events arrest. The dynamic level of shear stress is determined by the
constitutive laws governing friction on the fault, and these describe the evolution of
stress with slip. However, the final level of shear stress is determined by the final
slip distribution and is not directly dependent on the dynamic level of shear stress.
Therefore, the dynamic level of shear stress from the constitutive laws need not
match the final shear stress consistent with the final slip on the fault. For crack-like
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events, often more stress is released than the dynamic level has suggested. Thus
a decrease in shear stress at final slip, termed stress overshoot, is often associated
with crack-like ruptures. However, the stress overshoot is often small relative to the
average stress change on the fault.

For pulse-like events, the final stress change is determined by the final slip over
the fault dimension along with the elastic constants of the system. However, the
dynamics of this pulse do not correlate with the final stress. Once slip at a portion
of the fault arrests, slip elsewhere reloads the points and thus a substantial increase
in shear stress enabled by fault restrengthening. Thus, an increase in shear stress
as the event arrests, termed stress undershoot, is associated with healing and thus
slip pulses. This undershoot may be large relative to the average stress drop on the
fault if there is significant restrengthening experienced as the event arrests and the
overall dynamic stress levels are low.

The stress overshoot/undershoot is unaccounted for in the typically used simplified
energy budget (Venkataraman and Kanamori, 2004, Abercrombie and Rice, 2005,
Rice, 2006, Ye et al., 2016), including seismically estimated available energy,
and thus can lead to a discrepancy between actual available energy ∆W0A and
seismically estimated available energy ∆W0, as well as other quantities of interest.
The importance of the overshoot and undershoot for some aspects of the energy
balance has been recognized in several studies (N. M. Beeler and Hickman, 2003;
Noda et al., 2013; Viesca and Garagash, 2015).

In our simulations, we indeed find that, for crack-like ruptures, there is a slight
overshoot and, as the result, the actual available energy ∆W0A is slightly smaller
than the seismically estimated energy∆W0 (Chapter 4). As the rupturemode changes
from crack-like to pulse-like, the actual available energy∆W0A becomes increasingly
larger than the seismically estimated available energy∆W0, due to increasingly larger
stress undershoot. Both breakdown energy and radiated energy increase beyond
seismically estimated available energy ∆W0, leading to the radiation ratios η beyond
1, and seismically estimated breakdown energies GSE that are negative. This is
consistent with observations previously thought to be aphysical.

We conclude in Chapter 5 with our overall conclusions and important questions for
future work.
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C h a p t e r 2

ESTIMATES OF STRESS DROPS AND BREAKDOWN
ENERGIES FOR MODELS WITH STANDARD

RATE-AND-STATE FRICTION

2.1 Fault Models and Simulated Events
2.1.1 Model of a seismogenic region with sequences of earthquakes
Our simulations are conducted following the methodological developments of La-
pusta et al., 2000 and Noda and Lapusta, 2010. We consider a mode III, two-
dimensional (2-D) model with a 1-D fault embedded into a 2-D uniform, isotropic,
elastic medium (Figure 2.1a). The earthquake sequences on the fault are simulated
in their entirety: the nucleation process, the dynamic rupture propagation, postseis-
mic slip that follows the event, and the interseismic period between events that can
last up to tens or hundreds of years (Figure 2.1b). In all models, the laboratory-
derived rate-and-state friction (section 2.1.2) operates on the fault. Our fault setup
(Figure 2.1a) consists of a 1D fault composed of a velocity-weakening (VW) region
surrounded by velocity-strengthening (VS) regions. The fault slip at the plate rate
(Vpl = 10−9 m/s) is prescribed at the edges of the model. We begin with a standard
rate-and-state model, but then add thermal pressurization of pore fluids (section 3).
Parameters for the specific models are listed in Tables 2.1 and 2.2.

While many events arrest within the VW region, some span the entire VW region
(Figure 2.1b). We will refer to the events that span the entire VW region as
"complete rupture" events, and those that arrest within the VW region as "partial
rupture" events.

2.1.2 Rate-and-state friction
We use the laboratory derived rate-and-state laws with the aging law proposed by
Dieterich, 1979 and Ruina, 1983:

τ = (σ − p) f = (σ − p)
[

f∗ + a ln
V
V∗
+ b ln

V∗θ
L

]
, (2.1)

dθ
dt
= 1 − Vθ

L
, (2.2)
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Figure 2.1: a) Model setup for our simulations. The fault is composed of a velocity-
weakening (VW) seismogenic section surrounded by two velocity-strengthening
(VS) patches. Outside of these regions, relative sliding with the plate rate is pre-
scribed. b) A portion (15 events) of a simulation with the standard rate-and-state
friction (L = 250 µm) is plotted showing accumulated slip along the fault through
time. Seismic events are illustrated by red dashed lines plotted every 0.1 s when
slip rate V exceeds 0.1 m/s. Interseismic slip is plotted in solid blue lines every 10
years.

where σ is (constant in time) normal stress, τ is the shear stress, f is the friction
coefficient, V is the slip velocity, p is the pore pressure, L is the characteristic
slip distance, θ is the state variable, f∗ is the friction coefficient corresponding to
a reference slip rate V∗, and a and b are constitutive parameters. At steady state
(constant slip velocity), the values of τ and θ evolve to be their steady-state values
τss and θss given by:

θss(V) =
L
V
, (2.3)

τss = (σ − p)
[

f∗ + (a − b) ln V
V∗

]
. (2.4)

These steady-state relations show that the difference between the parameters a and
b controls the fault behavior at steady state. If (a − b) > 0 then we have velocity-
strengthening (VS) behavior where increases in velocity give increases in shear
resistance. This leads to stable sliding on the fault. If (a − b) < 0 then we have
velocity-weakening (VW) behavior. In this case, an increase in velocity leads to
a decrease in shear resistance. This makes these regions of the fault potentially
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seismogenic (Rice and Ruina, 1983, Rice et al., 2001, Rubin and Ampuero, 2005).
Parameters for our models are shown in Tables 2.1 and 2.2.

Table 2.1: Parameters for All Simulations
Parameter Symbol Value

Loading slip rate Vpl 10−9 m/s
Shear wave speed cs 3464 m/s
Shear modulus µ 32 GPa

Reference slip velocity V0 10−6 m/s
Reference friction coefficient f0 0.6

Table 2.2: Parameters for R+S Models
Parameter Symbol Standard R+S Model

Fault length along strike λ 36 km
VW region length (total) WVW 6 km
VS region length (total) WVS 24 km
Effective normal stress σ̄ = (σ − p) 50 MPa

Rate-and-state direct effect (VS) a 0.019
Rate-and-state evolution effect (VS) b 0.015
Rate-and-state direct effect (VW) a 0.01

Rate-and-state evolution effect (VW) b 0.015
Characteristic slip L 0.125 mm - 4 mm

Cell size ∆x 0.625 m - 20 m
Cohesive Zone Λ0 5 m - 150 m

Nucleation Size (Rice & Ruina, 1985) h∗RR 12 m - 400 m
Nucleation Size (Rubin & Ampuero, 2005) h∗RA 30 m - 980 m

2.1.3 Representative Simulated Events
Our simulations produce sequences of dynamic events together with interseismic
creep, including aseismic nucleation processes (Figure 2.1b). However, here we
focus on the properties of individual dynamic events. A sample dynamic event from
our simulations is shown in Figures 2.2. In general, both slip throughout the event
and final slip vary along the fault. The spatially varying initial and final shear stress
distributions along the fault lead to a stress drop distribution that varies along the
fault. Most of the ruptured area experiences a decrease in shear stress during the
event, but both edges of the ruptured area in each of the events show an increase in
stress (and hence negative stress drop). The shear stress vs. slip evolution along the
fault is illustrated for three representative locations. Locations near the nucleation
region experience a small coseismic stress drop and slip an amount comparable to
the average. Much of the stress change at these points is achieved aseismically,
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during nucleation. Points near the middle of the ruptured area show the expected
increase in stress to a peak value, followed by a drop, controlled by our rate-and-
state laws, down to some near constant (Figure 2.2) dynamic value. Where the event
arrests, points only slip a small amount and do not completely weaken down to the
expected dynamic level of shear stress.

Observations of natural earthquakes cannot resolve these fine variations in stress,
slip, slip rate, etc. at all points along the fault as we are able to do in our simulations.
Thus, natural events are often described by a single, "average" value for stress
drop and average final slip. In the next sections, we discuss the various ways of
condensing heterogeneous slip and stress distributions into average values for the
seismic events.

2.2 Static Stress Drops and Breakdown Energy
2.2.1 Calculating Average Static Stress Drops ∆τ
We follow the averaging methodologies described in Noda et al., 2013 modified to
fit our two-dimensional model, since our relevant variables are scalar fields rather
than vector fields. The initial distribution of shear traction on the fault before an
earthquake is denoted by τi(x). An earthquake produces a slip distribution δ(x) and
the traction along the fault changes to τ f (x). The stress drop distribution is defined
as:

∆τ(x) = τi(x) − τ f (x). (2.5)

Averaging of Stress Drop Distribution Based on Seismic Moment

Seismically estimated values of average stress drop are based on the seismic moment
M0 of the event as well as the fault dimensions; the following formula is typically
used (Kanamori and Anderson, 1975):

∆τM = C
M0

ρ3 = C
M0

A3/2 , (2.6)

where A is the ruptured area, ρ = A1/2 is the characteristic spatial dimension, and
C depends on the shape and aspect ratio of the ruptured domain: C = 2.44 for a
circular ruptured area and increases for rectangular areas with larger aspect ratios
(Noda et al., 2013).
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Figure 2.2: A sample event for the standard rate-and-state model. Accumulated
slip is plotted every 0.1 s (Row 1). Initial and final stress (Row 2), and stress drop
distributions (Row 3) are shown along the fault. The stress vs. slip evolution at three
example points illustrate different behaviors along the fault (Row 4). Initial and final
stresses during the event are marked (open circles) for each point and some previous
slip history is also shown preceding the initial stress marker. The green point shows
the evolution for a point in the nucleation zone, the blue point is in the region where
the event arrests, and the red point shows behavior of a well-established rupture (the
majority of the ruptured points experience this behavior). Note that this event is
crack-like and the final stress is nearly equal to the dynamic level of stress for the
three representative points.
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If the actual stress drop is uniform over the ruptured domain Σ, then ∆τM is exactly
equal to that value. However, as we have shown in our example events (section
2.3), the stress drop across the fault is heterogeneous and given by the distribution
∆τ(x). In this case, ∆τM is a weighted average of ∆τ(x). This average is weighted
by the (elliptic) slip distribution E12 that gives a uniform stress drop over the same
ruptured domain (Madariaga, 1979):

∆τM =

∫
Σ
∆τE12dΣ∫
Σ

E12dΣ
. (2.7)

Spatial Averaging of Stress Drop

The spatially averaged stress drop can be expressed as the integral of the stress drop
of all ruptured points along the fault divided by the ruptured domain Σ:

∆τA =

∫
Σ
∆τdΣ∫
Σ

dΣ
. (2.8)

The stress change at every point has equal weighting of one in this averagingmethod,
unlike ∆τM where E12 weights points differently along the fault. Similarly to ∆τM ,
∆τA depends only on points in the ruptured domain. Considering the entire fault
can result in severely underestimating the average stress drop of the event.

The ruptured domain Σ is defined as the region with non-zero slip (which is a line
for our model, but a 2D area in general):

Σ = {x ∈ L |δ(x) > 0}. (2.9)

However, it is difficult to precisely determine Σ for observed events due to non-
uniqueness and smoothing when finding a solution. Furthermore, in our models,
the fault is prescribed to creep outside the locked, velocity-weakening region, and
thus there is small non-zero slip everywhere on the fault during every event. It is
appropriate to only consider points where the inertial term becomes significant, but
there is no exact quantitative criterion to define that, so we instead approximate this
by defining the ruptured domain Σ to consist of locations that exceed a slip rate of
0.1 m/s during the event:

Σ = {x ∈ L |V(x) > 0.1 m/s}. (2.10)
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Altering the seismic velocity threshold may change the effective rupture size. How-
ever, there is a sharp falloff in slip rate outside the ruptured area down to the
creeping rate many orders of magnitude below the seismic slip rate. Thus, chang-
ing this threshold by even an order of magnitude does not change the rupture size
appreciably.

Averaging of Stress Drop Distribution Based on Energy Considerations

The work of Noda and Lapusta, 2012 and Noda et al., 2013 introduced a third
method of averaging ∆τ(x) that is consistent with energy partitioning. This method
conserves both the total strain energy released ∆W as well as the dissipated energy
ED as will be discussed later (Section 2.2.2). Here, the final slip distribution δ f (x)
is used as the weighting function:

∆τE =

∫
Σ
∆τδ f (x)dΣ∫
Σ
δ f (x)dΣ

. (2.11)

In this method, the ruptured domain is implicitly defined by the slip distribution
δ f (x).

The three averaging methods (2.7 - 2.8) and (2.11) give similar but not identical
results for the average stress drop for a given event. Noda et al., 2013 proved
that ∆τE ≥ ∆τM and observed that ∆τM ≥ ∆τA in their simulations. Given that
computing seismic moment on our 1D faults requires additional assumptions of
rupture aspect ratio and shape, we focus on computing the energy based stress drop
∆τE and the spatially averaged stress drop ∆τA in this study.

2.2.2 Calculation of Breakdown Energy G in Simulations
In our dynamic simulations, the slip and stress evolution is determined at every
point along our fault at all times. As such, we are able to calculate the breakdown
energy directly in our model. This can be done using two methods: (I) integrating
the breakdown energies along the fault for all ruptured points and (II) constructing
a representative average curve for the event and using it to calculate breakdown
energy.

In the earthquake energy budget per unit area, illustrated in Figure 2.3, the total
strain energy released ∆W/A is partitioned into dissipated energy ED/A, which is
the area underneath the stress-slip curve, and radiated energy ER/A:
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Figure 2.3: Illustration of the earthquake energy budget and average stress drop
using average shear stress vs. slip curves. (a) The average curve for the single
event from a standard rate-and-state model from Figure 2.2. The shear resistance
weakens to a nearly constant dynamic value. (b) The average curve for the single
event with enhanced dynamic weakening from Figure 3.1. The fault continues to
weaken by more than an additional 5 MPa as it accumulates slip, leading to a larger
breakdown energy. In both (a) and (b), the energy-based static stress drop ∆τE is
the difference between the average initial and final shear stresses. The total strain
energy released ∆W/A is outlined by the black dashed line; the associated trapezoid
ends at the x-axis (not shown). The dissipated energy ED/A is given by the total
area underneath the stress vs. slip curve (dotted + grey). Breakdown energy G
is the subset of the dissipated energy labeled by the dotted area. Radiated energy
can be calculated by subtracting total dissipated energy from the total strain energy
released.

∆W/A = ED/A + ER/A. (2.12)

The total strain energy released ∆W/A has shown to be described by the average
shear stress on the fault during the event τ̄ = (1/2)(τ̄i + τ̄ f ) and the average final slip
δ̄ f as:

∆W/A = 1
2
(τ̄i + τ̄ f )δ̄ f . (2.13)

The total strain energy is divided into energy dissipated on the fault, dissipated
energy ED, and energy radiated off the fault as seismic waves, radiated energy ER.
Energy is dissipated on the fault due to friction, thus, the dissipated energy ED/A is
calculated by integrating the area under the shear stress vs. slip curve up to the final
slip δ f for the ruptured domain Σ (Section 3.1). For our 1D fault, let us define the
edges of the ruptured domain Σ as L1 and L2. Then we get:
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ED/A =
1

L2 − L1

∫ L2

L1

[∫ δf

0
τ(δ)dδ

]
. (2.14)

The remainder of the total strain energy released is the radiated energy:

ER/A = ∆W/A − ED/A. (2.15)

The dissipated energy ED/A can further be partitioned into the breakdown energy
G (Palmer and Rice, 1973; Rice, 1979) and frictionally dissipated energy EF/A
which makes up the remainder (labeled as "other dissipation" in Figure 2.3). The
breakdown energy GA is analogous to the fracture energy of fracture mechanics and
can be calculated as (Method 1):

GA =
1

L2 − L1

∫ L2

L1

[∫ δ(τmin(x))

0
(τ(δ) − τmin(δ))dδ

]
dx. (2.16)

Then, the frictionally dissipated energy EF/A can be found by subtracting GA from
ED/A:

EF/A = ED/A − GA. (2.17)

Method (II) involves creating an average stress vs. slip representation for each
event and calculating the energy balance, including the breakdown energy, from this
single plot. This approach has the advantage of giving a single illustrative stress
vs. slip plot for each event (Figure 2.3). We follow the averaging methodology of
Noda and Lapusta, 2012 to perform this calculation. This involves taking the stress
vs. slip evolution of every ruptured point and averaging them in slip rather than in
time. Thus this can only be done once the event is complete and the stress vs. slip
evolution is known everywhere. This averaging method preserves total strain energy
released∆W/A and total dissipated energy ED/A. Every ruptured fault location has,
in general, a different amount of total slip δ f (x), so the stress vs. slip curves at each
point are scaled in slip by δ̄ f /δ f (x) so that each point has the same average slip δ̄ f .
Then the stress values are scaled by the factor of δ f (x)/δ̄ f , thus preserving the areas
representing ED. Once all shear stress vs. slip curves are scaled, the stress values at
each value of slip are averaged among the curves. We achieve this by interpolating
the curves at 1000 evenly spaced points in slip. We can then calculate our energy
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quantities from this average curve. The total strain energy released ∆W/A can be
computed from the average curve as:

∆W/A = 1
2
δ̄ f (τ̄i + τ̄ f ),

τ̄i(E) =

∫
Σ
τiδ f (x)dΣ∫
Σ
δ f (x)dΣ

,

τ̄ f (E) =

∫
Σ
τ f δ f (x)dΣ∫
Σ
δ f (x)dΣ

,

(2.18)

where δ̄ f is the average final slip for the event, τ̄i is the average initial shear stress,
and τ̄ f is the average final shear stress. Dissipated energy ED can be found by
integrating the area under the average curve:

ED/A =
∫ δ̄f

0
τ̄(δ̄)dδ̄. (2.19)

One can also compute the breakdown energy from the average curve, here titled as
Gcurve:

Gcurve =

∫ δ̄(τ̄min)

0
(τ̄(δ̄) − τ̄min)dδ̄. (2.20)

The average curve construction has been shown to preserve total strain energy
released ∆W/A and dissipated energy ED/A (Noda and Lapusta, 2012). However,
it does not necessarily preserve the breakdown energy as the minimum shear stress
of the average curve does not have a simple relation to the minimums of the curves
of each ruptured point. We later show that the two methods give similar, but not
identical, results. Note that GA and Gcurve have units of energy per unit area,
while ∆W , ED, and ER denote the energies per event and have units of energy.
Representations of the type shown in Figure 2.3 show energies per unit area, and
that is why we have been considering quantities ∆W/A, ED/A, and ER/A. To
compute the corresponding energies per event, one needs to multiply them by the
total ruptured area.

2.2.3 Stress Drop ∆τ and Breakdown Energy G, from Observations
We seek to match the observed trends of magnitude-invariant stress drop and in-
creasing breakdown energy G with increasing event size (Ide and Beroza, 2001;
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Abercrombie and Rice, 2005; Viesca and Garagash, 2015). However, as discussed
earlier, these values cannot be directly measured in observed events and instead must
be inferred from other observations.

Stress drop is often calculated using the moment-based average (Equation 2.7). For
large events, the rupture shape and dimension is found from finite-fault inversions
(Somerville et al., 1999; Liu and Archuleta, 2000; Tinti et al., 2016). For small
events, for which finite-fault inversions are not feasible, the spectral representation
of the seismic waveforms is fitted by a model based on a circular crack with constant
rupture speed to obtain Ω0 (the long-period displacement amplitude) and fc (corner
frequency) measurements. These parameters are then used to calculate M0 from
Ω0 (Brune, 1970) and the source radius r from fc assuming a circular rupture and
constant rupture velocity of 0.9cs (Madariaga, 1976).

The breakdown energy can be estimated from observations as follows (Abercrombie
and Rice, 2005):

G′ =
S
2

(
∆σ − 2µER

M0

)
, (2.21)

where G′ is the approximation for the breakdown energy G, ∆σ is the (static) stress
drop, µ is the shear modulus of the rock material, S is the average slip of the event,
M0 is the seismic moment, and ER is the radiated energy. G′ assumes both that the
initial stress is the peak stress and that there is no stress overshoot or undershoot
at the end of the event, making it potentially different from the actual G. (see
Abercrombie and Rice, 2005, Figure 2). We refer to this G′ as seismically-estimated
breakdown energy GSE .

Average slip can then be calculated as:

S =
M0

µπr2 , (2.22)

and used along with Eshelby (1957) to infer stress drop:

∆σ =
7π
16

M0

r3 . (2.23)

The radiated energy ER can be estimated by a number ofmethods (Ye et al., 2016a;Ye
et al., 2016b).
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2.3 Results for Fault Models with Standard Rate-and-State Friction
We begin with a standard rate-and-state formulation with no additional dynamic
weakening. Thesemodels contain a 6 kmVWregion; parameters for our simulations
are given in Tables 2.1 and 2.2. An example sequence of events for the standard
rate-and-state case is shown in Figure 2.1b.

2.3.1 Theoretical Predictions
Based on previous studies and theoretical considerations (Cocco and Bizzarri, 2002,
Lapusta and Liu, 2009), we expect both the fracture energy and the static stress drop
to remain approximately the same for events of different sizes on a fault with given
rate-and-state properties. This is because, at the rupture tip, the fault governed by
the standard rate-and-state formulation behaves essentially as one governed by linear
slip-weakening friction:

τLSW = τp −W(δ − δini) for δ − δini ≤ Dc,

τLSW = τd for δ − δini > Dc.
(2.24)

For the standard rate-and-state formulation, one can write the initial stress τi from
(2.1):

τi = σ̄

[
f∗ + a ln

Vini

V∗
+ b ln

V∗θini

L

]
. (2.25)

As slip rate increases, due to the direct effect (assuming Vdyn > Vini), stress will
increase to some peak value τp at the dynamic slip rate Vdyn:

τp = τi + aσ̄ ln
Vdyn

Vini
. (2.26)

Stress further evolves to a steady state dynamic level given by:

τd = τss(Vdyn) = σ̄
[

f∗ + (a − b)
Vdyn

V∗

]
. (2.27)

This weakening effect occurs at weakening rate W :

W =
bσ̄
L
, (2.28)

and the evolution occurs over some critical slip-weakening distance DC:
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Dc = L ln
θiniVdyn

L
. (2.29)

Thus we expect:

∆τ = τi − τd = σ̄

[
a ln

Vini

V∗
+ b ln

V∗θini

L
− (a − b) ln

Vdyn

V∗

]
(2.30)

G =
1
2

(
τp − τd

)
Dc =

1
2

bσ̄L
(
ln
θiniVdyn

L

)2
. (2.31)

These quantities depend on the dynamics of the process through Vdyn and θini, but
this is a weak dependence since both are contained within logarithms and changes
of even an order of magnitude alter the final product by only a small amount. There
is a much stronger dependence on the friction parameters a, b, and L, which are
presumed to be constant in a given model.

2.3.2 Magnitude-Invariant G and variations in ∆τ for given a, b, and L

Indeed, our simulations show that for uniform frictional parameters a, b, and L

along the fault, both GA and ∆τ are nearly constant for events of different sizes.
Both trends are evident in the accumulated slip profiles and average curves for
three events of different sizes, but the same L = 250 µm (Figure 2.4). Larger
events accumulate more slip and rupture longer fault stretches, but the breakdown
energy (dotted area) and static stress drop are nearly equal for the three illustrated
events. This is not surprising considering that the effective weakening distance in
the standard rate-and-state model depends mostly on L (e.g., Cocco and Bizzarri,
2002).

There are some slights trends due to the dynamics of the process. Larger events
tend to have lower average initial stresses, due to rupturing longer fault stretches,
building more stress concentration, and entering slightly less favorably stressed
regions. All events weaken down to approximately the same dynamic level, as
expected. This leads to a slight decrease in the static stress drop from ∆τE = 3.3
MPa for the smallest event down to ∆τE = 1.8 MPa for the largest event. The peak
stress τp slightly increases with the event size, due to more stress concentration
during the larger event and higher initial values for the state variable θini from longer
recurrence times. The outcome is slightly higher breakdown energies as the event
size increases. However, these two effects produce relatively small variations in
both G and ∆τ.
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Figure 2.4: Three sample events from the standard rate-and-state simulation with
L = 250 µmand different average final slip. (top)Accumulated slip profiles illustrate
the total slip along the fault as well as the spatial extent of the rupture. (bottom)
Average shear stress vs. slip curves illustrate the average behavior on the fault
during the event. The initial and final stresses are marked by circles; the breakdown
energy is indicated by the dotted area. For a given value of L, the breakdown energy
remains nearly constant. The stress drop slightly decreases and the breakdown
energy slightly increases with the event slip, as discussed in the text. These three
events are marked with grey, downward-pointing triangles in Figure 2.5.

We find that these trends extend for all events in our simulations (Figures 2.5 and
2.6a). For L = 250 µm (black circles), events differ by nearly an order of magnitude
in slip, from 0.01 m to 0.1 m. The corresponding stress drops are nearly constant
around 2-3 MPa with a slight decreasing trend with the increasing event size. The
breakdown energies are also approximately constant, with a slight increasing but
saturating trend (Figure 2.6a) for all events.

Our example event discussed earlier shows the expected behavior (Figure 2.2) for
the standard rate-and-state case. This event has the area-averaged stress drop of
∆τA = 2.4 MPa, which matches well with the stress drop distribution seen in Figure
2.2. The entire ruptured domain is plotted in Figure 2.2, including penetration into
the velocity-strengthening region. This is evident from the negative stress drops
found at the edges of the event, greater than 3 km away from the center of the
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Figure 2.5: (top) Stress drops ∆τA for events from several simulations with standard
rate-and-state friction and L ranging from 0.125 mm to 4 mm (no dynamic weak-
ening). Complete rupture events are marked with filled-in shapes. The stress drops
do not vary with L. (bottom) Average initial and final stresses for each event from
the same simulations. Average final stresses are similar for all events and agree with
the expected dynamic levels of stress for Vdyn = 0.01 - 0.1 m/s.

fault. Three representative points are chosen to show the variability of the stress
vs. slip evolution along the fault. The point at 2.4 km is in the nucleation zone
and experiences mostly aseismic stress evolution (solid line preceding initial stress
point) followed by little coseismic stress change with slip. The point in the arrest
zone (-3.6 km) shows a very different behavior, with an increase to a peak level and
a drop. However, the stress drop is negative (stress increase), owing to the velocity-
strengthening properties of the fault at this point. The point at the center of the
fault (0 km) is representative of the behavior of the majority of the fault. This point
shows the typical rate-and-state behavior with an increase to a peak level of stress
followed by a drop to a near-constant dynamic level of stress. This point experiences
a stress drop similar to the average for the entire event. All of the points on the fault
are averaged to create the illustrative average curve (Figure 2.3a). From the average
curve, it is apparent that the majority of points follow the behavior qualitatively
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Figure 2.6: a) Breakdown energies GA for events from several simulations with
standard rate-and-state friction and L ranging from 0.125 mm to 4 mm (no dynamic
weakening). Complete rupture events are marked with filled-in shapes. Increasing
L leads to an increase in the breakdown energy, but the breakdown energy only
slightly increases and saturates for events with the same L. The two largest values
of L lead to almost exclusively complete rupture events because the nucleation size
is too large to produce small events. b) Breakdown energies from simulated events
overlaid on results from Rice, 2006. The values are similar, although a standard
rate-and-state model produces breakdown energies that do not increase at the same
rate as those from observed events. Increasing L leads to an increase in breakdown
energy G, but does not match the same increase in the trend of the observed events.
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similar to the point at 0 km. Note that the energy-based stress drop from the average
curve is ∆τE = 4 MPa, which is higher than the ∆τA = 2.4 MPa as expected (Noda
and Lapusta, 2012).

2.3.3 Increasing G and magnitude-invariable ∆τ with Increasing Values of L

Breakdown energy has a weak dependence on the dynamics in a standard rate-and-
state fault model, but it strongly depends on the characteristic slip distance L. One of
theways to reproduce an increase inGA with average slip is to systematically increase
L, which also systematically alters the effective critical slip-weakening distance Dc

(Figure 2.7). The peak stress of each event also increases, predominantly due to a
longer recurrence time that results in fault strengthening. Increasing L increases the
nucleation size of the event and thus a stress increase must penetrate further into the
fault before an event nucleates, leading to a higher initial state variable θini, higher
initial stress τi, and higher peak stress τp. This is even the case for events with the
same amount of average slip (Figure 2.7a). However, the increase in the critical
slip-weakening distance is clearly the main contributing factor to the increased GA.
The dynamic levels of stress are nearly constant in all three cases as expected; this
level does not directly depend on L. The stress drops increase with increasing L

for these three events, due to the fact that we have chosen three events with very
similar slips (Figure 2.5a - star symbols). Stress drops for the entire sequence of
events do not change as we increase L (Figure 2.5a). This is illustrated by selecting
three other events that no longer have the same average final slip (Figure 2.7b), but
do have comparable stress drops.

Varying L over an order of magnitude from 125 µm to 4 mm leads to a clear increase
in breakdown energy (Figure 2.6a) that is much larger than the slight increasing trend
we find for larger events of a given L. There are clear groups of events with similar
breakdown energies, corresponding to simulations with each value of L. Increasing
L increases GA. The values for the breakdown energies compare favorably to those
from Rice, 2006, although they are lower for higher values of slip (Figure 2.6b).
For a given L, the simulated breakdown energies level-off and do not capture the
observed trend. Even increasing L is not completely sufficient to match the observed
trend.

Simulations with all values of L have comparable stress drops, determined by values
of σa and σb. All of our calculated stress drops fall into the 1-3 MPa range which
is consistent with inferred stress drops from natural events. We find two distinct
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a)

b)

Figure 2.7: a) Three sample events with comparable average final slip from rate-
and-state simulations with different L. (Row 1) Accumulated slip profiles illustrate
the total slip along the fault as well as the spatial extent of the rupture. (Row 2)
Average stress vs. slip curves illustrate the average shear stress vs. slip behavior on
the fault during the event. Increasing L increases both the slip weakening distance
Dc as well as the breakdown energy of an event with comparable average final slip.
These three events are marked with grey stars in Figure 2.5. b) Three sample events
with comparable stress drops, but varying final slips, from rate-and-state simulations
with different L. (Row 1) Accumulated slip profiles and (Row 2) average stress vs.
slip curves. Increasing L increases both the slip weakening distance Dc as well
as the breakdown energy, but does not affect the average stress drop. These three
events are marked with grey upward-pointing triangles in Figure 2.5.
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trends when separating partial rupture from complete rupture events (Figure 2.5).
The first trend is that the partial rupture events show a slight decrease in stress drop
with increasing slip. This is because all events arrest at similar levels of average final
stress. However, as discussed in the previous section, larger events initiate with lower
average levels of prestress (unless they are complete ruptures, as discussed below),
and thus have smaller stress drops. The second is for the complete rupture events;
these events have the same ruptured domain and the ones with larger slip correspond
to larger stress drop, reflecting variability in the prestress level for complete rupture
events.

2.4 Conclusions
The standard rate-and-state models reproduce realistic stress drops. However, the
breakdown energies are dependent on the rate-and-state characteristic slip L and
increase only slightly with the increasing event size for events of different sizes for
a given value of L, and then saturate for the largest events. This can be resolved by
using a non-constant value for L, perhaps one that evolves with slip or slip rate. One
can physically motivate this by imagining that the characteristic slip distance evolves
as the fault slips and undergoes physical changes including damage on the fault in
the form of gouge and off the fault in the form of cracking. These processes may
alter the "effective" characteristic slip distance on the fault during the dynamic event.
Evolving L during the event may serve as a proxy for these additional phenomena.
However, while increasing L leads to increasing breakdown energies, this alone is
not sufficient to match the observed trend, and because nucleation size increases
with larger L, the models with large L are no longer able to produce the smallest
events.
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C h a p t e r 3

MAGNITUDE-INVARIANT STRESS DROPS AND INCREASES
IN BREAKDOWN ENERGY IN EARTHQUAKE SEQUENCE

SIMULATIONS WITH THERMAL PRESSURIZATION

Here we extend our investigation from Chapter 2 into magnitude-invariant stress
drops and increasing breakdown energies with the event size, by adding enhanced
dynamic weakening to our rate-and-state models.

3.1 Additional Dynamic Weakening - Thermal Pressurization
Laboratory experiments have shown that the rate-and-state laws (Equations 2.1-2.4)
work well for relatively slow slip rates (10−9 to 10−3 m/s). However, at seismic
rates of ∼1 m/s, additional dynamic weakening mechanisms, such as thermal pres-
surization, can be present. Thermal pressurization occurs when fluids within the
fault heat up, expand, and pressurize during dynamic rupture, reducing the effective
normal stress (Sibson, 1973; Rice, 2006; Noda and Lapusta, 2010). The thermal
pressurization effect is governed in our model by the following coupled differential
equations for pressure and temperature evolution(Noda and Lapusta, 2010):

∂p
∂t
= αhy

∂2p
∂y2 + Λ

∂T
∂t
, (3.1)

∂T
∂t
= αth

∂2T
∂y2 +

τV
ρc

exp(−y2/2w2)
√

2πw
, (3.2)

where T is the temperature of the pore fluid, αhy is the hydraulic diffusivity, αth is
the thermal diffusivity, τV is the source of shear heating distributed over the shear
zone of half-width w, ρc is the specific heat, y is the distance normal to the fault
plane, and Λ is the coupling coefficient that gives pore pressure change per unit
temperature change under undrained conditions.

The efficiency of the thermal pressurization process depends on the interplay of
several of these parameters. Shear heating, τV , must be strong enough to raise
the temperature, given both the specific heat of the rock, ρc, and the half-width
of the shear zone, w. Furthermore, this heat generation must not be dissipated
too quickly by the thermal diffusivity, αth, of the system. If sufficient heat is
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generated, the temperature of the system increases, and this increase is coupled
into an increase in pressure of the fluid. The fluid then pressurizes as long as the
hydraulic diffusivity, αhy, is not too large. Several of these parameters are relatively
well constrained from laboratory experiments: αth = 10−6 m/s, Λ = 0.1 MPa/K, and
ρc = 2.7 MPa/K (Wibberley and Shimamoto, 2005; Rempel and Rice, 2006; Noda
and Lapusta, 2010). Thus, the efficiency of the process is effectively controlled by
the half-width w and hydraulic diffusivity αhy, which can vary significantly: w can
vary from 10−3 m to 10−1 m and αhy can vary from 10−2 m2/s to 10−5 m2/s (e.g.,
Rice, 2006). Changing these two parameters within these ranges can make thermal
pressurization either very efficient or completely negligible. The values we have
chosen are motivated by prior studies (Rice, 2006; Noda and Lapusta, 2010) and are
given in Tables 2.1 and 3.1.

Table 3.1: Parameters for Models with Thermal Pressurization
Parameter Symbol 12 km VW Zone 24 km VW Zone

Fault length along strike λ 72 km 96 km
VW region length (total) WVW 12 km 24 km
VS region length (total) WVS 60 km 48 km
Effective normal stress σ̄ = (σ − p) 50 MPa 50 MPa
Thermal diffusivity αth 10−6 m2/s 10−6 m2/s
Hydraulic diffusivity αhy 10−3 m2/s 10−3 m2/s

Specific heat ρc 2.7 MPa/K 2.7 MPa/K
Half width w 10 mm 10 mm

Coupling coefficient (when TP present) Λ 0.1 MPa/K 0.1 MPa/K
Rate-and-state direct effect (VS) a 0.050 0.025

Rate-and-state evolution effect (VS) b 0.003 0.005
Rate-and-state direct effect (VW) a 0.01 0.01

Rate-and-state evolution effect (VW) b 0.015 0.015
Characteristic slip L 2 mm 2 mm

Cell size ∆x 5 m 9 m
Cohesive Zone Λ0 75 m 75, 38 m

Nucleation Size (Rice & Ruina, 1985) h∗RR 200 m 200, 100 m
Nucleation Size (Rubin & Ampuero, 2005) h∗RA 490 m 490, 245 m

3.2 Representative Simulated Events
As in Section 2.1.3, we present a sample dynamic event from our simulations (Figure
3.1). Just as before, the spatially varying initial and final shear stress distributions
along the fault lead to a stress drop distribution that varies along the fault. The shear
stress vs. slip evolution along the fault is illustrated for three representative locations.
Locations near the nucleation region still experience a small coseismic stress drop.
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Points near the middle of the ruptured area show the expected increase in stress to
a peak value, followed by a drop, controlled by our rate-and-state laws, down to a
variable dynamic value. The additional weakening due to thermal pressurization
is evident in Figure 3.1, as shear stress continues to decrease with slip beyond the
dynamic level reached in Figure 2.2.

3.3 Results for Models with Thermal Pressurization
We begin by considering a 12 km long VW segment surrounded by two 24 km long
VS sections. We then increase our seismogenic zone from 12 km to 24 km in order
to further expand the range of the simulated event sizes.

3.3.1 12 km Fault
Our simulations produce a range of events, with average slips of 0.1 m up to 5 m.
One of the events (Event 2) is illustrated in more detail in Figure 3.1. It nucleates in
an area of higher prestress and propagates along the fault until it reaches lower levels
of prestress that are unfavorable enough to arrest the event. The shear stress vs. slip
behavior is shown for three representative points similar to those for the standard
rate-and-state event of Figure 2.2. All three points show continuous weakening with
slip, illustrating that thermal pressurization is acting effectively along the entire fault.
The point in the nucleation zone (-5.25 km) again shows significant aseismic stress
evolution (solid line preceding the initial stress point), followed by lesser coseismic
stress change with slip. The other two points along the fault (-3.75 km and -2.4 km)
show the expected behavior for most ruptured points with an initial increase and
rapid decrease in stress (similar to the standard rate-and-state behavior) followed by
a continuous decrease in stress with slip (due to dynamic weakening from thermal
pressurization). The average curve for this event (Figure 2.3b) shows the behavior
similar to the points outside the nucleation zone.

To illustrate how stress drop and breakdown energy vary with the event size, we
consider three representative events with progressively larger average slip (Figure
3.2). The smallest event (Event 64) has the highest average prestress and also the
highest average final stress. The intermediate-size event (Event 33) has a lower
prestress and it weakens more so it also has a lower final stress. The largest event
(Event 20) has the lowest average initial stress and it weakens the most, so it also
has the lowest average final stress. As a result, all three events have approximately
the same stress drop ∆τE of 7 MPa. As the average slip of the events increases, so
does the breakdown energy (Figure 3.2). This increase in the breakdown energy is
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Figure 3.1: A representative event for the model with thermal pressurization. The
plotting conventions are the same as on Figure 2.2. The three sample points exhibit
decreasing stress with slip throughout the event, illustrating the effect of additional
dynamic weakening due to thermal pressurization.
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due to the additional dynamic weakening, as expected, based on considerations in
Rice, 2006. A portion of the sequence of events produced by this model is shown
in Figure 3.3, and events 20 and 33 are plotted in blue to show their relative size to
the rest of the sequence.

However, we do observe slightly different behavior for complete rupture events;
this will be discussed further in the next section. These events only occur when the
prestress on the fault is favorable, meaning they never encounter areas of unfavorable
prestress that would both decrease the average initial stress of the rupture points as
well as arrest the events. These largest events rupture the whole domain and are
forcefully stopped by the velocity-strengthening regions rather than arresting due to
insufficient prestress. The properties of the VS regions then affect the stress drops of
these complete rupture events, as discussed in section 3.4. A comparison between
an intermediate-sized event and a complete rupture event for the 12 km fault shows
both the difference in initial stress distribution and stress drop distribution along
the fault (Figure 3.4). The partial rupture event (event 72) has an initial stress
distribution that dips around the middle of the fault. This prestress condition is
unfavorable enough that, even with the dynamic weakening, the event is not able
to propagate through this region and it arrests at around 1 km to the right of the
center of the fault. In contrast, the complete rupture event (event 15) has a prestress
distribution that is higher and favorable for the entire length of the fault.

Stress drop and breakdown energy trends are analyzed in more detail for all events
in the 24 km Model 1 sequence in the following section.

3.3.2 24 km Fault
Extending our fault to 24 km allows for a greater range of event sizes, with slips
ranging from 0.07 m to 10 m. Model 1 (24 km VW region) utilizes 50 MPa normal
stress and hydraulic diffusivity αhy = 10−3 m2/s along with all parameters shown in
Tables 2.1 and 3.1.

Let us consider the stress drops for all events. Both energy-based stress drops
∆τE and area-averaged stress drops ∆τA are calculated (Figure 3.5a). For the partial
rupture events, the stress drops are approximately constant, for the final average slips
ranging from 0.1 m to 1 m, an order of magnitude. The energy-based stress drops
are consistently higher than the area-averaged ones, consistent with Noda et al.,
2013. The complete rupture events break the magnitude-invariant trend, exhibiting
increasing stress drop with the the increasing event size for the area-averaged case.
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Figure 3.2: Three sample partial rupture events from the simulations with thermal
pressurization and a 12 km long velocity-weakening region. (top) Accumulated slip
profiles of the three events. (bottom) Average shear stress vs slip curves. The initial
and final stresses are marked by circles; the breakdown energy is indicated by the
dotted area. As event size increases, both the average initial stress and average final
stress decrease, so that the stress drops calculated from the average curves remains
nearly constant at ∼7 MPa.

These findings confirm our hypothesis that larger events weaken more but also tend
to occur at lower average initial stress, thus keeping stress drops relatively constant
over a range of event sizes. In fact, for the entire sequence of partial rupture events,
both average initial and average final stresses decrease with the increasing event
size (or slip) (Figure 3.5b). Complete rupture events have different behavior from
partial rupture events. However, the stress drops of these complete rupture events
are only slightly larger than their partial rupture counterparts. This is likely due to
compensation from the increased penetration into the VS region by the complete
rupture events. Including more points with the VS behavior into the ruptured region,
which experience a stress increase during the events, decreases the average stress
drop of the events. This is further explored in section 3.4.

Breakdown energyGA increaseswith increasing event size (Figure 3.6a) andmatches
the behavior of GA in the 12 km model. Using our numerical models, we can
compare the actual values of GA computed from simulations with estimates using
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Figure 3.3: Accumulated slip profiles for a portion of the sequence of events pro-
duced by the model with thermal pressurization and a 12 km VW region. Two of
the events in blue (20 and 33) are shown in Figure 3.2.

seismological methods (e.g., Abercrombie and Rice, 2005). In other words, we
compute estimates GSE for our events using Equation (2.21). The comparison
(Figure 3.6b) shows that the actual and estimated values agree relatively well in
the majority of cases. This is likely because the resulting ruptures are close to
being crack-like, without significant undershoot characteristic for pulse-like ruptures
(Heaton, 1990; Kanamori andRivera, 2006; Garagash, 2012). We examine this issue
in more detail in Chapter 4.

Next, we compare breakdown energies GA to breakdown energies estimated for
natural events (Rice, 2006). Our results agree well, (Figure 3.6c), as expected from
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Figure 3.4: Comparison between a complete rupture event (event 15) and partial
rupture event (event 72) for the simulation with thermal pressurization and a 12
km long velocity-weakening region. (Top) Accumulated slip profiles for the two
events. (Middle and Bottom) Initial and final stress distributions along the fault for
each event. The complete rupture event has significantly higher initial stresses and
no region of unfavorable prestress, and thus it is able to propagate across the entire
fault and into the velocity strengthening region. The partial rupture event has lower
initial stress across almost the entire fault and arrests when it reaches the area of
lowest prestress.

the simplified theoretical considerations in Rice, 2006.

Comparing GA to breakdown energy calculated from the average curves Gcurve

we see good, but not perfect agreement (Figure 3.7). This is expected since the
averaging process preserves the total strain energy release and the dissipated energy,
but not theminimum dynamic level of stress. Therefore, the averaged curve provides
a good illustration of G but not the exact value of it. The estimate of breakdown
energy from the average curve may underestimate the actual breakdown energy if
there is any restrengthening with slip after the minimum shear stress level is reached.
Some points on the fault may continuing weakening with slip beyond this slip value,
and thus will contribute to the actual breakdown energy. However, the average curve
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Figure 3.5: top) Stress drops ∆τA and ∆τE for events in the simulation with thermal
pressurization and a 24 km long velocity-weakening region. Complete rupture
events have filled-in symbols. bottom) Average initial stress τ̄i (circles) and final
stress τ̄ f (diamonds) in the simulation with thermal pressurization and a 24 km
long fault. Partial rupture events exhibit a decrease in both average initial and final
stresses with increasing slip, such that the stress drops are invariant to event size.

shows restrengthening behavior beyond this average slip and thus will not count any
of these contributions toward breakdown energy.

3.4 Varying VS properties and effect on stress drop
We further explore how altering the properties of the velocity-strengthening barrier
can affect the stress drops of the complete rupture events using six different models
(VS1-VS6) with progressively less velocity-strengthening regions (Table 3.2). In
other words, the VS regions surrounding the VW seismogenic zone become closer to
velocity-neutral. We only alter the properties of the VS region; all other parameters
match those from the 12 km model from section 3.3.1 and Tables 2.1 and 3.1. Each
model is allowed to produce several complete rupture events and stress drops are
plotted against average slip (Figure 3.8 top) and rupture length (Figure 3.8 bottom)
for each event.

The model with the most velocity-strengthening regions (VS1) matches the results
from our earlier model (section 3.3.1). The stress drops for partial rupture events are
magnitude-invariant over about 1 order of magnitude increase in slip. The largest
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Figure 3.6: a) Breakdown energiesGA for the simulationwith thermal pressurization
and a 24km VW region. Complete rupture events have filled-in symbols. b)
Comparison of seismically estimated breakdown energy GSE to GA. There is
reasonable agreement for the majority of events. c) Breakdown energies from our
simulations compared to those inferred for natural events by Rice, 2006. Our models
are able to match the trend of the observed events quite well.
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Figure 3.7: Comparison of breakdown energy calculated from the average curves
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slightly underestimate breakdown energy compared to GA. As such, the averaged
curve provides a good illustration of G but not the exact value of it, as expected.

complete rupture events slip that more are still unable to propagate appreciably
further into the velocity-strengthening region (Figure 3.8 bottom). Thus, their stress
drops must increase due to larger slip in nearly the same spatial region.

As we decrease the amount of VS in the VS regions, complete rupture events with
larger slip propagate further into the VS region and their rupture length increases
(Figure 3.8 bottom). Correspondingly, the stress drop of these largest complete
rupture events decreases. In fact, for models with the least VS regions (VS4, VS5,
and VS6) the trend for the complete rupture events changes from that of stress drop
increasing with their size to the decreasing trend. Even the partial rupture events
are affected. The smaller, partial rupture, events are able to propagate further into
the VS region and thus their average stress drops are decreased. For the two models
with the least VS regions (VS5 and VS6), we see stress drop slightly decrease with
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Figure 3.8: Comparison of stress drops for events produced by six different models
with a 12 km longVW region surrounded byVS regions of different properties. (top)
Stress drops vs. average slip for all events in each of these simulations. Complete
rupture events are indicated by filled circles. Stress drops shows a magnitude-
invariant trend for VS regions with stronger behavior and a decreasing trend with
increasing event size for VS regions with weaker behavior. (bottom) Stress drops vs.
rupture length for each event produced in the six simulations. Weaker VS regions
allow for greater propagation outside the VW region and thus longer rupture lengths
for the complete rupture events.
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Table 3.2: Parameters for models of Section 3.4 with different VS properties

Model a b (a − b)
VS1 0.050 0.003 0.047
VS2 0.025 0.005 0.020
VS3 0.025 0.010 0.015
VS4 0.020 0.010 0.010
VS5 0.019 0.015 0.004
VS6 0.017 0.015 0.002

increasing event size for all events. The largest events, those that are complete
ruptures, also have the lowest stress drops, close to ∼1 MPa. It is clear that the
properties of the velocity-strengthening region can have a profound effect on the
average stress drops. The exact nature of this effect is best studied in 3D models
with 2D faults, where the relation of the VS boundary of events to their VW region
can be different than in the 1D faults considered in this work.

3.5 Conclusions
We have shown that fully dynamic simulations involving dynamic weakening due to
thermal pressurization can explain both the increasing trend in breakdown energy
with increasing event size as well as the magnitude-invariant trend with respect to
stress drop. Our simulations are able to match the increase in breakdown energy
with event size first inferred by Abercrombie and Rice, 2005 and later improved
on by Rice, 2006 and Viesca and Garagash, 2015. Similarly, our stress drops are
consistent with observations of stress drops in the 1-10 MPa range for all of our
event sizes, excluding the complete rupture events in some models.

We follow Rice, 2006, motivated by results of laboratory studies that show the
presence of dynamic weakening during seismic slip, and investigate the viability
of utilizing dynamic weakening during the event as a mechanism to increase the
breakdown energy with event size. Thermal pressurization alone is able to recon-
cile the increases in breakdown energy while simultaneously keeping stress drops
magnitude-invariant. The additional weakening allows breakdown energies to grow
with slip and thus with event size. Our calculated breakdown energies GA match
very well the observed trend from Rice, 2006. Furthermore, by looking at average
levels of initial and final stresses along the fault, we are able to confirm that with
dynamic weakening, larger events will nucleate at lower average levels of prestress.
These events will also weaken more than smaller events and arrest at lower levels of
final stress. Our simulations reproduce this effect for events ranging several orders
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of magnitude in size (5 orders of magnitude in moment and 2 orders of magnitude
in slip).

All partial rupture events exhibit magnitude-invariant stress drops, but our complete
rupture events do not follow this trend. They are influenced by additional factors that
do not affect the smaller and medium sized events, such as being forcibly arrested
by the velocity strengthening region. This arises from the fact that the largest
events only occur when prestresses are favorable throughout the velocity weakening
region. These events never encounter unfavorable prestresses which would inhibit
their propagation, and instead are held to a limited rupture domain by the velocity-
strengthening regions, no matter their slip. The partial rupture events arrest in the
velocity weakening region and do so because they encounter low levels of prestress
that inhibit their propagation.

We also find that the properties of the velocity-strengthening region can have an
impact on the average stress drop of events that significantly propagate into this
region. This is most important for our complete rupture events. We see that varying
the VS properties across a range of values is able to produce a range of stress drop
behaviors for the largest events. A strong VS region will prevent propagation and
lead to sharply increasing stress drops as events slip more, but are unable to increase
is physical size. A weak VS region allows for significant propagation and can lead to
decreasing stress drops as event size increases. Furthermore, very weak VS regions
may lead to lower stress drops overall.

Though our models reproduce magnitude-invariant stress drops, the exact mecha-
nism for this remains unknown and will need to be further investigated in future
work.
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C h a p t e r 4

ESTIMATES OF BREAKDOWN ENERGY AND RADIATION
EFFICIENCY: INSIGHTS FROM NUMERICAL EARTHQUAKE

SOURCE MODELS

Here we investigate the earthquake energy budget beyond just the breakdown en-
ergy. We utilize both standard rate-and-state models as well as some with enhanced
dynamic weakening to reproduce a variety of rupture behaviors and see how these
behaviors affect seismically estimated quantities such as breakdown energyG, avail-
able energy ∆W0, and radiation ratio η.

4.1 Motivation and notion of available energy: actual and idealized
Let us recall the energy budget from Chapter 1:

∆W = EG + ER + EF, (4.1)

which can be written per unit area as:

∆W/A = G + ER/A + EF/A. (4.2)

The breakdown energyG is the part of the dissipated energy that affects the dynamics
of the rupture, the so-called frictionally dissipated energy EF is the rest of the
dissipated energy and is related to heat generated on the fault, and the radiated
energy ER describes how much energy is radiated away from the rupture. The total
strain energy released per unit area on the fault ∆W/A is given by:

∆W/A = 1
2
(τ̄i + τ̄ f )δ̄, (4.3)

where τ̄i is the average initial stress, τ̄ f is the average final stress, δ̄ is the average
final slip, and A is the fault area. Thus, calculating the total strain energy released
requires knowing the absolute stress levels on faults, which remains elusive.

One possible solution (Venkataraman and Kanamori, 2004) is to consider the avail-
able energy, i.e. the total energy available for both the breakdown process and for
radiation:
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Strain Energy Released ( W/A)

Breakdown Energy (G)
Radiated Energy (ER/A)

Available Energy Change ( W
0/A)

Figure 4.1: Idealized view of earthquake energy budget showing slip weakening
behavior from an initial stress τ̄i, equal to τ̄p, down to a dynamic level of stress τ̄d ,
equal to τ̄ f over the slip weakening distance Dc. The total strain energy released
(area encompassed by dotted lines) is defined to be the sum of breakdown energy
G, radiated energy ER, and frictionally dissipated energy EF (unshaded area under
the curve). Seismically estimated available Energy ∆W0 can be neatly divided into
breakdown energy G and radiated Energy ER in this idealized case. Actual available
energy ∆W0A is the sum of G and ER/A.

∆W0A/A = G + ER/A, (4.4)

where W0A is the actual available energy per unit area for the event given as the sum
of breakdown energy per unit area G and radiation energy per unit area ER/A. We
can compare the relative magnitudes of breakdown and radiated energy through a
radiation ratio (Noda et al., 2013), often called radiation efficiency (Venkataraman
and Kanamori, 2004).

ηA =
ER/A

G + ER/A
=

ER

∆WOA
, (4.5)

where ηA is the (actual) radiation ratio. These quantities are rigorously defined, but
their observability for natural events is an important question.
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Indeed, it is possible to determine the available energy given an idealized energy
budget (Venkataraman and Kanamori, 2004; Kanamori and Rivera, 2006; Kanamori
andHeaton, 2000; etc.) (Figure 4.1). In this idealized case, the shear stress evolution
follows simplified linear slip weakening where stress drops linearly from an initial
value τ̄i until slip reaches a critical value Dc, at which the stress remains constant
τ̄d for the remainder of slip, with τ̄ f = τ̄d . The available energy is the sum of
the breakdown energy G (dotted area) and the radiated energy ER/A (shaded area).
Thus, in this idealized case, the available energy may be written as:

∆W0A = GA + ER/A =
1
2
∆τδ̄A = ∆W0, (4.6)

where ∆W0 is the seismically estimated available energy, a quantity that depends
on seismically observable quantities such as stress drop ∆τ and average final slip δ̄.
We can define the seismically estimated radiation ratio to compare the magnitudes
of breakdown energy and radiated energy in this idealized case:

η =
ER

∆W0
=

ER
1
2 (τ̄i − τ̄ f )δ̄A

. (4.7)

This quantity can be, and has been, estimated from seismological observations
(Venkataraman and Kanamori, 2004; Ye et al., 2016) because it does not depend on
any absolute value of stress, but instead depends on the stress drop produced by the
event, the radiated energy, average final slip, and rupture area, all of which may be
inferred from seismic observations.

4.1.1 General View of Earthquake Energy Budget
However, as we have seen in Chapters 2 and 3 (Figure 4.2), the fault behavior during
seismic events is always more complex. The initial stress is not equal to the peak
stress experienced at the onset of slipping. The final average shear stress is not the
same as the dynamic level of shear stress. This can be due to either overshoot (Figure
4.2a), as is often the case for crack-like ruptures, or undershoot (Figure 4.2b), as
is typical for pulse-like events (McGarr, 1999; Kanamori and Rivera, 2006; Viesca
and Garagash, 2015). Enhanced dynamic weakening can occur at seismic slip rates
and cause shear stress to continue to decrease with accumulating slip instead of
dropping to a constant dynamic level (Sibson, 1973; Wibberley and Shimamoto,
2005; Rice, 2006).
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Figure 4.2: Representative rupture behaviors that differ from the idealized model. a)
Crack-like event with thermal pressurization that allows for continuous weakening.
This event experiences a small stress overshoot at arrest as well as a strength excess
during initial slip. b) Pulse-like event with flash heating present. This event shows
a much larger stress undershoot at arrest. The initial increase in stress leads to a
much larger (relatively) region of breakdown energy above the small hatched area
of seismically estimated available energy.
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The average shear stress vs. slip curve can vary greatly depending the specific
rupture behavior (crack-like vs. pulse-like, dynamic weakening vs. no additional
weakening, negligible strength excess vs. large strength excess). Let us consider
several different simplified rupture behaviors and see the effect on actual available
energy ∆W0A and seismically estimated available energy ∆W0 (Figure 4.3). The
actual available energy ∆W0A is rigorously defined as:

∆W0A/A = ∆W/A − EF/A. (4.8)

As discussed previously, frictionally dissipated energy EF is defined to be energy
dissipated below the lowest dynamic level of shear stress τ̄d reached on the fault.
Thus, the actual available energy per unit area ∆W0A can be rewritten as:

∆W0A/A =
1
2
(τ̄i + τ̄ f )δ̄ − τ̄d δ̄. (4.9)

This expression for the actual available energy is accurate as long as the fault
does not recover from the minimum level of dynamic stress appreciably before
the final slip (Figure 4.3 a, c-e). Our generalized shear stress vs. slip evolution
with dynamic weakening (Figure 4.3b) illustrates extra dissipated energy after the
minimum dynamic level of stress is reached (darker shaded region). Equation (4.9)
is valid as long as this area is negligible compared to W0A.

There may also be some extra energy dissipated after the fault reaches its minimum
dynamic level of stress if it restrengthens with slip rather than only at the final
slip. This can be seen in our schematic of a general rupture behavior (Figure
4.3) and should contribute to frictionally dissipated energy, but we will see that
for our simulations this effect is normally negligible compared to the other energy
quantities.

If the rupture behavior includes a stress undershoot γ∆τ (Figure 4.3c), as occurs in
all pulse-like ruptures, the actual available energy may be written in terms of the
stress undershoot and the seismically estimated available energy ∆W0:

∆W0A/A =
1
2
∆τδ̄ + (τ̄ f − τ̄d)δ̄.

∆W0A/A = ∆W0/A + γ∆τδ̄
(4.10)

∆W0A

∆W0
= 1 + 2γ. (4.11)



55

Strain Energy Released ( W/A)

Breakdown Energy (G)
Radiated Energy (ER/A)

Available Energy Change ( W
0/A)

Idealized View

a) b)

c) d)

e)
Peak Stress > Initial Stress 

with Undershoot
Idealized with Undershoot

General Curve with 
Dynamic Weakening

Extra Dissipated 
after Min Stress

Idealized with Overshoot

Figure 4.3: Various possible stress vs. slip behaviors. These different behaviors can
have a large effect on the accuracy of seismically estimated available energy ∆W0
as well as various methods of calculating G. a) Idealized view of the earthquake
energy budget from Figure 4.1. b) More general event with strength excess, non-
constant dynamic level of stress, and restrengthening that occurs before the final
slip of the event. In this event there is additional dissipated energy released after
the fault reaches the minimum level of dynamic shear stress. c) Idealized view
with an additional stress undershoot γ∆τ at the end of slip. d) An event with both
initial strength excess and stress undershoot at final slip. e) Idealized view with an
additional stress overshoot γ∆τ at the end of slip.
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If γ = 0, we have the idealized case (Figure 4.3a) and∆W0A = ∆W0. If there is a non-
negligible undershoot (Figures 4.3c, d), then γ > 0 and ∆W0A > ∆W0. Thus, if we
have an undershoot comparable to the average stress drop (γ = 1), actual available
energy ∆W0A is three times larger than seismically estimated available energy ∆W0.
An undershoot twice larger than the average stress drop (γ = 2) leads to available
energy ∆W0A being five times larger than the seismically estimated available energy
∆W0. These values of γ are reasonable based on pulse-like ruptures from our
simulations, as demonstrated later.

Note that rupture behavior with the strength excess β∆τ, the increase from initial
average stress to the peak level of stress (τ̄p − τ̄i), (Figure 4.3d) does not alter the
available energy. This initial increase affects how available energy is partitioned
into breakdown energy G and radiated energy ER/A, but does not change the actual
available energy ∆W0A of the rupture. The strength excess increases the breakdown
energy G at the expense of radiated energy ER/A.

The same argument can be made for rupture behaviors with an overshoot (Figure
4.3e), as is often the case with crack-like ruptures, and Equation (4.11) still applies.
This behavior would result in∆W0A < ∆W0, but in most simulations, including ours,
|γ | << 1 for crack-like ruptures, and thus ∆W0A ∼ ∆W0.

4.1.2 Seismic estimates of breakdown energy: GSE , GDFE , and GMax

There have been attempts to estimate breakdown energy G for natural events based
on the seismically estimated available energy ∆W0 and assuming behaviors similar
to the idealized, slip-weakening version of the energy budget (Abercrombie and
Rice, 2005). it is assumed that the contribution due to strength excess (τ̄p − τ̄i)
is negligible. Using a similar definition for energies to our idealized model, they
subtract the radiated energy ER/A from the seismically estimated available energy
∆W0, thus leading to the seismically estimated contribution of breakdown energy
G′. We title this quantity GSE for "seismically estimated" breakdown energy:

GSE = ∆W0/A − ER/A. (4.12)

Substituting values that can be inferred seismically, we get:

GSE =
1
2
δ̄

(
∆τ − 2µER

M0

)
, (4.13)
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where ∆τ is the average stress drop of the event, µ is the shear modulus, and M0

is the seismic moment of the event. The seismically estimated breakdown energy
has been shown to agree well (within a factor of 2) with the true breakdown energy
G for crack-like events with thermal pressurization (Chapter 3). If the seismically
estimated available energy ∆W0 underestimates the actual available energy ∆W0A,
and we still subtract off the actual radiated energy ER/A, then we are left with a
significant underestimation of the true breakdown energy G.

To obtain another estimate of G, let us consider:

G = ∆W0A/A − ER/A
G = ∆W0/A + γ∆τδ̄ − ER/A

G = GSE + (τ̄ f − τ̄d).

(4.14)

To distinguish this expression of G from others, we call it GDFE (based on the
dynamic and final levels of stress):

GDFE = GSE + (τ̄ f − τ̄d)δ̄. (4.15)

GDFE accounts for a stress undershoot or overshoot, and hence provides the closest
estimate to the actual G, not accounting only for the extra part of EF that can occur
during restrengthening after the fault has reached its minimum level of dynamic
shear resistance (Figure 4.3b, dark grey region). If this portion of EF is negligible
compared to the actual available energy ∆W0A, then GDFE = G. However, this
estimate for G requires knowing the absolute level of final stress and the dynamic
level of stress during the event.

The work of Viesca and Garagash, 2015 used (Equation 4.15) (without linking it
to the concept of available energy), and additionally assumed a complete coseismic
strength loss (τd = 0) during large pulse-like events. Thus, they define Gmax as:

Gmax = GDFE |τd=0,

Gmax = GSE + τ̄ f δ̄ =
1
2
δ̄

(
∆τ − 2µER

M0

)
+ τ̄ f δ̄.

(4.16)

To calculate Gmax , the absolute final stress on the fault still must be known, but the
dynamic level of stress no longer needs to be found. Viesca and Garagash (2015)
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assume τ̄ f = 15−∆τ where the stresses are inMPa. Note thatGmax can dramatically
overestimate G if the fault does not weaken to zero strength.

4.1.3 Actual and Seismically Estimated Radiation Ratios
As discussed in section 4.1, one can define η = ER/∆W0 and ηA = ER/∆W0A. Note
that 0 ≤ ηA ≤ 1 by definition, but η can in principle exceed 1. In that sense, ηA can
be called radiation efficiency but η is more accurately radiation ratio. For example,
if the fault experiences a stress undershoot of magnitude γδτ (Figure 4.3c), then:

∆W0/A =
1
2
∆τδ̄

ER/A =
1
2
∆τδ̄ + γ∆τδ̄ − 1

2
(1 + γ)Dc

η =
ER

∆W0
= 1 + 2γ − (1 + γ)Dc/δ̄.

(4.17)

Thus, ER will exceed ∆W0 for any undershoot such that:

γ >
Dc/δ̄

2 − Dc/δ̄
. (4.18)

This leads to negative GSE (unphysical) and a radiation ratio η > 1. If γ >

1, meaning the undershoot is larger than the average stress drop, then the stress
undershoot is large enough that ER will always exceed ∆W0, no matter the slip-
weakening distance Dc. Consistent with the discussion in section 4.1.2, if ∆W0 ≈
∆W0A, as is the case for crack-like ruptures, η ≈ ηA. But, for pulse-like ruptures, we
expect ηA < η.

4.2 Fault Models and Additional Dynamic Weakening Due to Flash Heating
We consider several fault models that produce crack-like, crack-to-pulse-like, and
pulse-like ruptures and analyze their energy budget to check the relationships dis-
cussed in section 4.1. Our simulations follow the same development as those from
Chapters 1 and 2. Model 1 of this chapter is governed by the standard rate-and-state
friction with L = 2 mm and no additional dynamic weakening. Models 2 and 3 uti-
lize thermal pressurization with parameters motivated by prior studies (Rice, 2006,
Noda and Lapusta, 2010).

In addition to thermal pressurization, we also consider enhanced dynamicweakening
due to flash heating (Rice, 2006). This effect occurs when the tips of fault gouge
grains heat up during a seismic event and weaken dynamically. This process is
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often modeled with a characteristic slip velocity Vw at which flash heating activates.
The friction coefficient then drops to a residual level fw and remains there. To
model flash heating, we make slight modifications to our steady state rate-and-state
equations to take into account the weakening following, Noda, 2008:

fss(V) = f (V, θss(V)) =
f (V, L/V) − V

|V | fw
1 − |V |/Vw

+
V
|V | fw (4.19)

dθ
dt
=

Vθss(V)
L

− Vθ
L
=

V
L
(θss(V) − θ), (4.20)

where V is the slip rate on the fault, Vw is the characteristic slip velocity at which
flash heating becomes effective, and fw is the residual friction coefficient. Model
3 utilizes flash heating in addition to thermal pressurization, and Model 4 has only
a stronger form of flash heating. Parameters for all models are given in Tables 2.1
and 4.1. We also include a sample event from an extended version of Model 3
that includes a 100 km VW region. This type of larger model is computationally
challenging and will be further analyzed in future work.

Table 4.1: Parameters for Models Investigating Available Energy

Parameter Symbol Model 1 Model 2 Model 3 Model 4
Characteristic slip velocity Vw - - 0.6 m/s 0.14 m/s
Residual friction coefficient fw - - 0.45 0.01

Thermal diffusivity αth - 10−6 m2/s 10−6 m2/s -
Hydraulic diffusivity αhy - 10−3 m2/s 10−3 m2/s -
Coupling coefficient Λ 0 MPa/K 0.1 MPa/K 0.1 MPa/K 0 MPa/K

4.3 Results
Models 1, 2, and 3 produce both crack-like events, pulse-like events with relatively
broad pulses, and events with behavior somewhat transitory between a crack and a
pulse. Model 4 produces sharp pulse-like events. We investigate the energy budget,
specifically the actual available energy∆W0A, seismically estimated available energy
∆W0, and breakdown energies, and the relation between them for different rupture
modes.

4.3.1 Crack-Like Events
Our standard rate-and-statemodel (Model 1) and the twomodels that include thermal
pressurization (Model 2 and Model 3) produce many events that are crack-like
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(Figures 4.4, 4.5, 4.6). We have shaded a section of slip, accumulated with 0.1
seconds (Figures 4.4 and 4.6) or within 0.5 seconds (Figure 4.5), for each event
(Row 1 of each figure) in order to illustrate their crack-like behavior.

The initial stress (Row 2), final stress (Row 2), and stress drop (Row 3) distributions
illustrate the variability of the stress state on the fault before and after the event.
As in Chapters 2 and 3, we illustrate the average overall behavior using the average
curve (Row 4). Energy quantities from the earthquake energy budget are labeled
in the same fashion as in Figure 4.3. Note that the areas representing EF/A and
total strain energy released ∆W/A extend all the way down to zero shear stress; the
figures are cropped for clarity.

In Model 1, seismically estimated available energy ∆W0 = 0.42 MJ/m2 is a reason-
able approximation for the actual available energy ∆W0A (∆W0A/∆W0 = 0.9). The
slight discrepancy here is due to some restrengthening before final slip. Though
this event does experience some restrengthening, it is relatively small (0.01 MJ/m2)
compared to the actual available energy ∆W0A = 0.38 MJ/m2.

GA, Gcurve, and GDFE all agree quite well for this event, producing values around
0.27 MJ/m2. GSE = 0.31 MJ/m2 slightly overestimates the breakdown energy as
expected but is still quite good. GMax is more than an order of magnitude larger, due
to the event operating at about 26 MPa rather than experiencing a complete strength
drop, but the GMax approximation is not intended for use in such cases. The
seismically estimated radiation ratio η is a reasonable value, 0.26; actual radiation
ratio ηA = 0.29 is also similar.

4.3.2 Transition Between Crack and Pulse-Like Events
Models 1, 2, and 3 also produce events that transition from crack-like behavior into
more pulse-like behavior as slip is accumulated. Three such events are shown in
Figures 4.8, 4.7, and 4.9.

In the sample event fromModel 2 (Figure 4.7), the shaded slip (Row1) approximately
illustrates the stage during the event that the rupture shifts from crack-like to pulse-
like behavior. The initial stress (Figure 4.7, Row 2) is higher in the region of the
crack-like behavior and this leads to a higher stress drop in this region, 5 - 10 MPa,
similar to the crack-like events from the previous section. As the event propagates
to the right, into lower initial stress, it transitions into a more pulse-like rupture.
The stress drops in this region are smaller to negative. This combined crack-like
to pulse-like behavior likely results in the small amount of restrengthening present
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Figure 4.4: Sample event from model 1 showing crack-like behavior. Row 1)
Accumulated slip profile with slip distribution along the fault plotted every 0.1
seconds. A portion of slip accumulated is shaded to emphasize the crack-like
behavior. Row 2) Initial and final shear stress distributions along the fault. Row
3) Stress drop distribution along the fault. Row 4) Average shear stress vs. slip
curve with relevant energy quantities labeled. Initial and final stresses are marked
with black squares. The minimum dynamic level of shear stress is marked with a
black triangle. The event exhibits slight overshoot and, as derived in section 4.1,
the actual available energy ∆WOA is slightly smaller than the seismically estimated
∆W0, with their ratio being 0.9. However, ∆W0A/∆W0 is ∼1, and GSE gives a good
approximation for GA.
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Figure 4.5: Representative event from model 2 showing crack-like behavior. Row
1) Accumulated slip profile with slip distribution along the fault plotted every 0.5
seconds. Row 2) Initial and final stress distributions along the fault. Row 3) Stress
drop distribution along the fault. Row 4) Average shear stress vs. slip curve with
relevant energy quantities labeled. Initial and final stresses are marked with black
squares. The minimum dynamic level of shear stress is marked with a black triangle,
and is higher than the final stress, due to a small stress overshoot. Correspondingly,
the actual available energy ∆WOA is smaller than the seismically estimated ∆W0,
with their ratio being 0.79. GSE overestimates GA by about a factor of 1.5.
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Figure 4.6: Representative event from model 3 showing crack-like behavior. Row
1) Accumulated slip profile with slip distribution along the fault plotted every 0.1
seconds. A portion of slip accumulated in the same time period is shaded to
emphasize the crack-like behavior. Row 2) Initial and final stress distributions along
the fault. Row 3) Stress drop distribution along the fault. Row 4) Average shear
stress vs. slip curve with relevant energy quantities labeled. Initial and final stresses
are marked with black squares. The minimum dynamic level of shear stress is
marked with a black triangle and is greater than the average final stress due to a
small overshoot. ∆W0A/∆W0 is < 1. Again, GSE slightly overestimates GA.



64

near the end of slip, resulting in small undershoot. In this case, the seismically
estimated available energy ∆W0 = 2.6 MJ/m2 is smaller than the actual available
energy ∆W0A = 3.3 MJ/m2. This ∼30% difference manifests itself when calculating
the seismically estimated breakdown energy GSE = 0.92 MJ/m2, as GSE is nearly
only half of the actual breakdown energy GA (Gcurve and GDFE agree well with GA

as expected). While this difference is still relatively small, the disparity is greater
than for the events with more crack-like behavior discussed in the previous section.
Although G and ER sum to be larger than ∆W0, they are each individually smaller
than ∆W0. In part, the radiation ratio η = 0.65 is reasonable and less than 1 and the
actual radiation ratio ηA = 0.51.

The event from Model 1 (Figure 4.8), shows a similar transition from crack-like
to more pulse-like behavior. However, in this event the minimum dynamic shear
stress is reached relatively early in the event, and the fault mildly restrengthens
for nearly 80% of the total slip (Row 4). The extra dissipated energy after the
event reaches its minimum stress is shaded in darker gray. Though the rupture
restrengthens a relatively small amount of shear stress, the relatively large amount
of slip over which this occurs increases the amount of this extra dissipated energy
(0.06 MJ/m2). Due to the early restrengthening, the seismically estimated available
energy ∆W0 = 0.57 MJ/m2 is less than the actual available energy ∆W0A = 0.70
MJ/m2 (∆W0A/∆W0 = 1.23, and thus GSE underestimates GA by about a factor of
2.

The event from Model 3 (Figure 4.9), also shows early restrengthening even with
both thermal pressurization and flash heating present. However, though the re-
strengthening in shear stress is greater, it occurs over a much smaller amount of slip
and thus the extra dissipated energy is relatively small, only 0.02 MJ/m2. The actual
available energy∆W0 is nearly 2 times larger than the seismically estimated available
energy ∆W0, which is expected, given that our stress undershoot is approximately
half the average stress drop of the event (γ ≈ 0.5 from Equation (4.11)). This leads
toGSE underestimatingGA by a factor of 3. There is also a greater disparity between
the η = 0.61 and ηA = 0.37 than seen for the previous crack-like events.
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Strain Energy Released ("W) = 23.77 MJ/m2

Dissipated Energy = 22.09 MJ/m2

Available Energy Change (" W0) = 2.6 MJ/m2

Breakdown Energy (G) = 1.62 MJ/m2

Radiated Energy (ER) = 1.68 MJ/m2

Extra Dissipated after Min Stress = 0.11 MJ/m2

GA  = 1.63 MJ/m2, Gcurve = 1.62 MJ/m2

GSE  = 0.92 MJ/m2, GDFE = 1.71 MJ/m2

GMax = 23.26 MJ/m2

2 = 0.65,  2A  = 0.51,  "W0A/"W0 = 1.27

Figure 4.7: Representative event from model 2 showing crack-like behavior that
transitions to pulse-like behavior. Row 1) Accumulated slip profile with slip dis-
tribution along the fault plotted every 0.5 seconds. Accumulated slip is shaded to
emphasize the transition from crack-like to pulse-like behavior. Row 2) Initial and
final stress distributions along the fault. Row 3) Stress drop distribution along the
fault. Row 4) Average shear stress vs. slip curve with relevant energy quantities
labeled. Initial and final stresses are marked with black squares. The minimum
level of shear stress is marked with a black triangle and occurs late in the event
due to continuous weakening from the thermal pressurization. In this case, the
crack-like-to-pulse-like behavior corresponds in a small undershoot, and the actual
available energy ∆WOA is now slightly larger than the seismically estimated ∆W0,
with their ratio being 0.9. GSE underestimates GA by a factor of 2.
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Available Energy Change (" W0) = 0.57 MJ/m2

Breakdown Energy (G) = 0.47 MJ/m2

Radiated Energy (ER) = 0.21 MJ/m2

Extra Dissipated after Min Stress = 0.05 MJ/m2

GA  = 0.5 MJ/m 2, Gcurve = 0.47 MJ/m2

GSE  = 0.37 MJ/m2, GDFE = 0.51 MJ/m2

GMax = 12.2 MJ/m2

2 = 0.36,  2A  = 0.29,  "W0A/"W0 = 1.23

Figure 4.8: Representative event from model 1 showing crack-like-to-pulse-like
behavior that begins to restrengthen early on in the event. Row 1) Accumulated slip
profile with slip distribution along the fault plotted every 0.5 seconds. Slip shaded
to emphasize the transition from crack-like to pulse-like behavior. Row 2) Initial
and final stress distributions along the fault. Row 3) Stress drop distribution along
the fault. Row 4) Average shear stress vs. slip curve with relevant energy quantities
labeled. Initial and final stresses are marked with black squares. The minimum level
of shear stress is marked with a black triangle and occurs relatively early in slip.
Again, due to a small undershoot, one has ∆W0A/∆W0 > 1. GSE underestimates
GA. Early stress recovery causes a 30 percent discrepancy between GDFE and GA
due to non-negligible dissipation after the minimum dynamic stress level is reached.
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Avg Curve: / =0.36 m, "=E = 5.2 MPa
Strain Energy Released ("W) = 8.92 MJ/m2

Dissipated Energy = 8.35 MJ/m2

Available Energy Change (" W0) = 0.93 MJ/m2

Breakdown Energy (G) = 0.82 MJ/m2

Radiated Energy (ER) = 0.57 MJ/m2

Extra Dissipated after Min Stress = 0.02 MJ/m2

GA  = 0.95 MJ/m2, Gcurve = 0.82 MJ/m2

GSE  = 0.36 MJ/m2, GDFE = 0.83 MJ/m2

GMax = 8.68 MJ/m2

2 = 0.61,  2A  = 0.37,  "W0A/"W0 = 1.63

Figure 4.9: Representative event from model 3 showing pulse-like behavior that
restrengthens before final slip. Row1)Accumulated slip profilewith slip distribution
along the fault plotted every 0.5 seconds. Slip accumulated between the thirteenth
and fourteenth timesteps is shaded to emphasize the pulse-like behavior. Row 2)
Initial and final stress distributions along the fault. Row 3) Stress drop distribution
along the fault. Row 4) Average shear stress vs. slip curve with relevant energy
quantities labeled. Initial and final stresses are marked with black squares. The
minimum level of shear stress is marked with a black triangle. ∆W0A/∆W0 = 1.63.
The undershoot here is slightly larger than in the previous cases, leading to a higher
ratio. GSE underestimates GA by a factor of 3. The early stress recovery is not
significant enough to cause a great discrepancy between GDFE and GA.
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4.3.3 Pulse-Like Events
While Models 1 and 2 exhibit events that transition from crack-like to pulse-like
behavior, utilizing flash heating in Models 3 and 4 produces events with sharply
pulse-like behavior (Figures 4.10). We further extend Model 3 into a 100 km
VW region to achieve even sharper pulses (Figure 4.11). The shaded regions of
accumulated slip (Row 1) illustrate the dramatic pulse-like behavior of these events.
Correspondingly, they have significant restrengthening and a stress undershoot on
the order of 5 - 10MPa in both events, much larger than the average stress drop of ∼2
MPa. This results in much larger actual available energy ∆W0A than the seismically
estimated ones, by factors of 6 and 9, respectively. The much larger ∆W0A is nearly
equally split between GA and ER/A, and both of them are significantly larger than
∆W0. Thus seismically observed radiation ratios η are much greater than 1 (η =
3.22 and 5.57 respectively) while the actual radiation ratios remain reasonable (ηA =

0.53 and 0.61 respectively).

Because ER/A is larger than ∆W0, the seismically estimated breakdown energy GSE

is now negative as occurs for ∼ 20% of events in the study from Abercrombie and
Rice, 2005. However, GA is still a reasonable value on the order of 1-10 MJ/m2 for
these events. GDFE provides a much better estimate of GA, as we expect, within
25% of the true value.

The event from Model 4 (Figure 4.10) experiences a nearly total dynamic stress
drop before recovering to around 8 MPa final shear stress. GMax gives a much
better approximation of GA in this case, here within a factor of 2. However, it still
overestimates GA, even when the assumption of nearly complete strength drop is
valid.
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Breakdown Energy (G) = 2.81 MJ/m2

Radiated Energy (ER) = 7.63 MJ/m2
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GA  = 2.84 MJ/m2, Gcurve = 2.81 MJ/m2
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GMax = 7.08 MJ/m2
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Figure 4.10: Representative event from model 4 showing pulse-like behavior that
weakens a dynamic level of shear stress very near to 0. Row 1) Accumulated
slip profile with slip distribution along the fault plotted every 0.1 seconds. Slip
accumulated during a single time period is shaded to emphasize the pulse-like
behavior. Row 2) Initial and final stress distributions along the fault. Row 3) Stress
drop distribution along the fault. Row 4) Average shear stress vs. slip curve with
relevant energy quantities labeled. Initial and final stresses are marked with black
squares. The minimum dynamic level of shear stress (black triangle) gives nearly
a complete strength drop. The pulse-like nature of the rupture leads to significant
restrengthening and a large stress undershoot at final slip, larger than the average
stress drop, leading to ∆W0A/∆W0 = 4. As such, the seismically estimated available
underestimates the actual available energy by a factor of 4. Since the radiated energy
is larger than the seismically estimated available energy, the seismically estimated
GSE gives an unphysical (negative) value.
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Figure 4.11: Representative event from extended model 3 (100 km VW Region)
showing stronger pulse-like behavior. Row 1) Accumulated slip profile with slip
distribution along the fault plotted every 1 second. A portion of slip accumulated
is shaded to emphasize the pulse-like behavior. Row 2) Initial and final stress
distributions along the fault. Row 3) Stress drop distribution along the fault. Row
4) Average shear stress vs. slip curve with relevant energy quantities labeled. Initial
and final stresses are marked with black squares. The minimum level of shear
stress (black triangle) occurs late in the event due to continuous weakening from the
thermal pressurization. The sharp pulse-like nature of the rupture leads to significant
restrengthening and a large stress undershoot at final slip, which is several times
larger than the average stress drop, leading to ∆W0A/∆W0 >> 1. Again, GSE gives
an unphysical (negative) value.
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4.3.4 Trends in G, η, and ∆W0A/∆W0

The entire suite of events from each of the 4 models further corroborates our
conclusions from the specific sample events shown in the previous section. The
sample events illustrated in detail in the previous 3 sections are shown in gold stars
amongst the rest of the events from each sequence.

The trends of the breakdown energy with the event average slip in Models 1-3
are as expected based on Chapters 2-3 (Figures 4.12 - 4.16). Model 1, with the
standard rate-and-state formulation, shows a saturation of GA with slip with the
increasing event size. Both Models 2 and 3 include thermal pressurization and
show a significant increase in the breakdown energy with the event size. There
are significantly more events that have somewhat of a pulse-like nature in Model 3
and this leads to some much lower GSE values in that model. Model 4 with strong
flash heating produces sharp pulses without much complexity in terms of the event
sizes. Similar to the models with the standard rate-and-state formulation, G does not
increase much with the increasing event size in Model 4, since the peak stress and
the effective slip weakening distance vary relatively insignificantly with the event
dynamics. The different trends are more obvious when viewed side-by-side (Figure
4.16).
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Figure 4.12: Breakdown energies GA, GSE , and GDFE for all events in Model 1.
Sample events shown in previous figures are given by gold stars.
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Figure 4.13: Breakdown energies GA, GSE , and GDFE for all events in Model 2.
Complete rupture events are indicated by filled markers. Sample events shown in
previous figures are given by gold stars.
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Figure 4.14: Breakdown energies GA, GSE , and GDFE for all events in Model 3.
Complete rupture events are indicated by filled markers. Sample events shown in
previous figures are given by gold stars.
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Figure 4.15: Breakdown energies GA, GSE , and GDFE for all events in Model 4.
Complete rupture events are indicated by filled markers. Sample events shown in
previous figures are given by gold stars. Nearly all GSE values are negative and thus
the only positive value is shown.
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Figure 4.16: Breakdown energies GA, GSE , and GDFE for all events in each of the 4
models; the different trend for each model is evident. Complete rupture events are
indicated by filled markers. Sample events shown in previous figures are given by
gold stars. All GSE values for model 4 are negative and thus not shown.

How well the seismically estimated available energy ∆W0 approximates the actual
available energy ∆W0A depends on the mode of the rupture (Figures 4.17-4.21).
For crack-like-ruptures, broad pulse-like ruptures, and transitional rupture modes,
they are within a factor of 2 and often closer. Crack-like ruptures tend to produce
a relatively small overshoot, in which case ∆W0 overestimates ∆W0A but not much
more than 20% or so. More complex ruptures may experience restrengthening
towards the end of slip and then a small overshoot or undershoot, resulting in
the discrepancy closer to 100%. As ruptures become more pulse-like (Models 3
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and 4), their undershoot increases and the actual available energy ∆W0A becomes
increasingly larger than the seismically estimated one by a factor of up to 15 in some
of the simulated events. This much larger available energy typically corresponds to
both breakdown energy and radiated energy that each individually are also larger
than the available energy, leading to negative values of the seismically estimated
GSE and values of the seismically estimated radiation efficiency η larger than 1.



76

Slip (m)
10-1 100 101

"
W

0A
/"

W
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Model 1: Standard R+S

Figure 4.17: Ratio of actual available energy∆W0A to seismically estimated available
energy ∆W0 vs. average slip for all events in Model 1. Sample events shown in
previous figures are given by gold stars.
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Figure 4.18: Ratio of actual available energy∆W0A to seismically estimated available
energy ∆W0 vs. average slip for all events in Model 2.
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Figure 4.19: Ratio of actual available energy∆W0A to seismically estimated available
energy ∆W0 vs. average slip for all events in Model 3. Sample events shown in
previous figures are given by gold stars.
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Figure 4.20: Ratio of actual available energy∆W0A to seismically estimated available
energy ∆W0 vs. average slip for all events in Model 4.
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Figure 4.21: Ratio of actual available energy∆W0A to seismically estimated available
energy ∆W0 vs. average slip for all events in each of the four models. Values greater
than 1 (solid black line) signify that the seismically estimated available energy
is underestimating the actual available energy, due to stress undershoot during
the event which can be quite significant for sharp pulses. Values smaller than 1
indicate overestimates of the available energy due to stress overshoot; since the
stress overshoot tends to be small in comparison with stress drop, the values are
only slightly different from 1, indicating good estimates for crack-like ruptures.

The ratios GSE/GA and GDFE/GA (Figure 4.22-4.25) show the relation of the two
estimates of the actual breakdown energy GA. Models 1 and 2 produce many events
that are clearly crack like and Model 3 produces some. These events tend to have a
slight overshoot and their seismically estimated GSE overestimates GA, but not by
much, and certainly within a factor of 2. These models also produce some broad
pulse-like and transitional events, and those often have a slight undershoot, withGSE

then underestimating GA, again within a factor of 2. Adding flash heating (Model 3)
leads tomore pulse-like behavior in events, and thusGSE shows a greater discrepancy
with GA (Figure 4.24). Some of the largest events in this model event even result
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in a negative estimate of GSE (which means that the radiated energy exceeds the
seismically estimated available energy). Model 4 produces sharp pulses, most of
which show nearly complete dynamic stress drop during the event (Figure 4.25). The
disparity between GA and GSE is the largest in Model 4 among all models; all events
in this simulation produce negative GSE values. In all 4 models, GDFE estimates
GA better than GSE (Figure 4.26), as expected; however, as already noted, GDFE

requires knowing the difference between the final and dynamic levels of stress,
e.g., the amount of overshoot or undershoot, which are currently not accessible
observationally.
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Figure 4.22: Ratios of GSE to GA and GDFE to GA vs. average slip for all events in
model 1. Sample events shown in previous figures are given by gold stars. Values
near 1 (solid black line) signify good agreement between the two methods.
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Figure 4.23: Ratios of GSE to GA and GDFE to GA vs. average slip for all events
in model 2. Values above 1 (solid black line) are indicative of crack-like events
with non-negligible overshoot. Negative values correspond to seismically estimated
breakdown energies for the pulse-like ruptures that have higher actual radiated
energy than the seismically estimated available energy.
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Figure 4.24: Ratios of GSE to GA and GDFE to GA vs. average slip for all events
in model 3. Sample events shown in previous figures are given by gold stars.
Values near 1 (solid black line) signify good agreement between the two methods.
Negative values (below dotted line) are from negative GSE due to stress undershoot
in pulse-like events.
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Figure 4.25: Ratios of GSE to GA and GDFE to GA vs. average slip for all events in
model 4.
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Figure 4.26: GSE /GA and GDFE /GA vs. average slip for all events in each of the 4
models. Values near 1 (solid black line) signify that the method agrees well with
the true breakdown energy GA. Values larger than 1 are indicative of crack-like
events and values near and below 0 are indicative of pulse-like events. Note that the
vertical axis for model 4 has been extended to show the greater range of negative
ratios for that model.

Radiation ratios for all events in Models 1-4 confirm the same trends (Figures 4.27-
4.31). The actual radiation ratios ηA < 1, by definition, and tend to increase with
the event size in the same simulation. The trend is especially strong in Model 1,
in which the breakdown energy is relatively constant and independent of the event
size, resulting in the systematic increase of the radiation ratio approaching 1. As
events becomemore pulse-like, their seismically estimated radiation ratios both tend
to increase and to deviate more from the actual ratios, mirroring the trends in the
actual and seismically estimated available energies already discussed. Many events
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in Models 3 and 4 have seismically estimated radiation ratios that are greater than 1.
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Figure 4.27: Seismically estimated radiation ratios (η) and actual radiation ratios
ηA vs. average slip for all events Model 1. Values of η greater than 1 (solid black
line) signify that the radiated energy ER exceeded the available energy ∆W0 for these
events. 0 ≤ ηA ≤ 1 by definition.
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Figure 4.28: Seismically estimated radiation ratios (η) and actual radiation ratios ηA
vs. average slip for all events Model 2.
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Figure 4.29: Seismically estimated radiation ratios (η) and actual radiation ratios
ηA vs. average slip for all events Model 3. Values of η greater than 1 (solid black
line) signify that the radiated energy ER exceeded the available energy ∆W0 for these
events. 0 ≤ ηA ≤ 1 by definition.
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Figure 4.30: Seismically estimated radiation ratios (η) and actual radiation ratios ηA
vs. average slip for all events Model 4.
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Figure 4.31: Seismically estimated radiation ratios (η) vs. average slip for all events
in each of the 4 models. Values greater than 1 (solid black line) signify that the
radiated energy ER exceeded the available energy ∆W0 for these events, indicating
a more pulse-like rupture. All of the events for Model 4 have seismically estimated
radiation ratios exceeding 1.

Gmax should not be a good estimate for the events onModels 1-3, since their dynamic
level is relatively far from zero, and our results confirm that (Figure 4.32). If events
experience a nearly complete stress drop dynamically, as is the case for events in
Model 4, GMax does a better job of estimating GA. Even for these events, the
estimate is often too high by a factor of 2 or more.

Our average curves conserve both the total strain energy release ∆W and dissipated
energy ED. However, breakdown energy G is not necessarily conserved as can
be seen in Figure 4.33. Ratios of Gcurve to GA cluster around 1 for all 4 models,
meaning Gcurve is a good estimate for GA for any type of rupture behavior. The
largest discrepancy is about a factor of 2 and there is a slight trend for greater
disparity in larger events. This could be due to the fact that larger events tend
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Figure 4.32: Gmax/GA for all events in each of the 4models. Values close to 1 signify
that Gmax is a good approximation of GA. Gmax exceeds GA for all events produced.
Events with lower minimum dynamic stress levels produce better agreement, and
the best agreement for events from Model 4. However, for the other models Gmax
significantly overestimates the breakdown energy, as expected.

to have more points from the velocity-strengthening portions of the fault model
contributing to the average curve, which perhaps affects its shape, making is less
representative of the “typical” behavior of the breakdown energy. Thus, Gcurve is
not an accurate representation of GA but provides a good illustration for it, within a
factor of 2, on the average curves.

4.4 Conclusions
To summarize, for crack-like and broad pulse-like ruptures in ourmodels, seismically
estimated ∆W0, GSE , and η provide a reasonable estimate for the actual available
energy, breakdown energy, and radiation ratio, ∆W0 A, GA, and ηA, respectively,
generally within a factor of 2. Radiation ratios for crack-like events all fall within
the expected range from 0-1. This is because such models result in either much
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Figure 4.33: Gcurve/GA vs. slip for all events in each of the 4 models. Gcurve is a
good approximation to GA (nearly always within a factor of 2), but the two values
are rarely equal.

smaller overshoot or undershoot than the stress drop, and hence remain close to the
idealized behavior based onwhich the seismically estimated quantities are expressed
in terms of observable parameters. One exception may be extreme crack-like events,
which can potentially achieve much larger overshoot, in which case the available
energy would be significantly overestimated, and hence the radiation ratio would be
significantly underestimated. Our models did not include such a case but that does
not mean that this is physically impossible.

As events becomemore pulse-like, the stress undershoot, i.e. the difference between
the minimum dynamic and final stress, increases. The significant undershoot found
in many of our pulses leads to a significant underestimation of the available energy.
The difference between actual available energy ∆W0A and seismically estimated
available energy ∆W0 can be an order of magnitude for the sharpest pulses. A
large difference between ∆W0A and ∆W0 means that either breakdown energy G, or
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radiated energy ER, or both are significantly larger than the seismically estimated
available energy ∆W0, leading, in most cases, to negative GSE and seismically
estimated radiation ratios larger than 1.

The work of Viesca and Garagash, 2015 utilized the seismically estimated values of
the radiation energy, average slip, and stress drop from previous studies for natural
events, and hence most events in their catalog produce radiation ratios < 1, as
common for observations. At the same time, they envision that the largest natural
events are pulse-like ruptures with significant undershoot, and hence much larger
available energy than the seismically estimated one. The significant extra available
energy from the largest events is then all put into the breakdown energy, resulting
in the estimates of the breakdown energies that are (1) much larger than those of
Abercrombie and Rice (2005) and (2) much larger than the radiated energy, with
the actual radiation ratio being around 0.1 or less. In contrast, in our simulated
pulse-like events that have ∆W0A/∆W0 >> 1, the breakdown energy G and radiated
energy ER/A are comparable, resulting in the actual radiation ratios between 0.5 and
1 (and seismically estimated radiation ratios η > 1.) It remains to be seen whether
large and sharp pulse-like ruptures can be produced such that the breakdown energy
G is much larger than radiated energy ER, corresponding to a small actual radiation
ratio, as effectively assumed in the work of Viesca and Garagash, 2015. Such events
would need to have a combination of larger stress excess (τ̄p − τ̄i) and more gradual
weakening in order to substantially increase G.

There is no simple way to calculate G reliably for pulse-like ruptures using current
seismic observations. GSE underestimates G and can even be negative. GDFE can
estimate the breakdown energy accurately, but it requires knowing the amount of
the overshoot, e.g., the difference between the final and the dynamic levels of stress
on the fault, and this currently cannot be measured for natural events. Gmax used
in Viesca and Garagash, 2015 suffers from the same issue, the need to know the
absolute stresses on the faults; in addition, its assumption of zero dynamic shear
resistance may not be universally applicable.

The idealized model of the earthquake energy budget is often used to analyze
observed natural events, and values for GSE and η are normally, but not always,
positive and smaller than 1, respectively. Ambercrombie and Rice (2005) removed
events with negative GSE from their analysis and specify that 14 out of their 89
total events fall into this category. Perhaps these events are more pulse-like than
the others in their catalog. Similarly, Venkataraman and Kanamori, 2004 reported
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radiation ratios larger than 1 for some of their events.

The relative rarity of negative GSE and η greater than 1 suggests one of the three
possibilities: (i) the large sharp pulse-like ruptures are relatively rare; (ii) these
pulse-like ruptures have much larger breakdown energy than radiated energy, with
actual radiation ratios of 0.1 or less, as effectively assumed in Viesca and Garagash;
or (iii) the seismic estimates are inaccurate, e.g., the radiation energy is significantly
underestimated. Exploring the validity of the estimates of the radiation energy using
our models and commonly applied seismological techniques is another direction for
future work.
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C h a p t e r 5

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

We have explored models with both standard rate-and-state friction and well as
models with enhanced dynamic weakening due to thermal pressurization and flash
heating. We observed a variety of rupture behaviors from crack-like ruptures to
pulse-like ruptures.

The standard rate-and-state model produces magnitude-invariant stress drops with
interesting subtrends and breakdown energies mildly increasing with the event size,
for the same fault properties. It is able to emulate increasing breakdown energy
G with increasing event size through increasing values of the characteristic slip
distance L. However, we see that this behavior saturates as events get larger and thus
this model alone is not sufficient to match both the observed magnitude-invariant
stress drop trend and increasing breakdown energy trend. One option is that off-fault
dissipation, which we do not consider in our models, contributes to the observed
increase of the breakdown energy for larger events. In fact, one could take increasing
L as qualitative proxy for such behavior. However, it is not clear that the energies
involved in the actual off-fault inelastic processes in dynamic rupture are significant
enough. This is an important issue for future work.

The addition of thermal pressurization of pore fluids results in continuousweakening
of the fault with slip, resulting in increasing breakdown energies with the increasing
event size consistent with observations, as pointed out in previous studies. Interest-
ingly, such models also have magnitude-invariant stress drops due to larger events
having both lower average levels of prestress and and lower average final stresses.
Moreover, the stress drops have reasonable values consistent with observations. The
theoretical basis for this finding requires further study.

We also observe that the properties of the velocity-strengthening boundaries can
have a profound effect on the stress drops of events that arrest there. The more
velocity-neutral the VS region is, the more propagation into the VS region the
rupture achieves, leading to larger areas of relatively small slip and zero to negative
stress drops, and hence decreased average stress drops, especially for larger events.
This effect can be significant enough that it controls the trend of stress drops for
the largest events and is able to produce both an increasing or decreasing trend
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depending on the model.

Both fault models with standard rate-and-state properties as well as the ones with the
additional thermal pressurization of pore fluids produce, for the properties studied,
mostly crack-like ruptures and events with transitional crack-to-pulse like behavior
that still resembles a crack. These dynamic events have insignificant overshoot or
undershoot, the actual available energy similar to the seismically estimated one, and
both breakdown energy and radiation ratio similar to observations.

Pulse-like events are produced occasionally in our models with thermal pressuriza-
tion, but much more readily in models with severe weakening due to flash heating.
These events occur with significant stress undershoot and hence exhibit larger avail-
able energy than can be seismically estimated. This additional available energy can
make the breakdown energy much larger than its seismically estimated value, the
radiated energy much larger than the seismically estimated available energy ∆W0,
or, as is often seen in our simulations, lead to both. This makes the seismically
estimated breakdown energies unreliable for pulse-like events. The radiated energy
larger than ∆W0 would lead to negative values of the seismically estimated GSE and
η greater than 1, as inferred for a fraction of the natural events.

As discussed in section 4.3.4, the relative rarity of negative GSE and η greater than
1 suggests one of the three possibilities: (i) the large sharp pulse-like ruptures are
relatively rare; (ii) these pulse-like ruptures havemuch larger breakdown energy than
radiated energy, with actual radiation ratios of 0.1 or less, as effectively assumed in
Viesca and Garagash (2015); or (iii) the seismic estimates are inaccurate, e.g., the
radiation energy is significantly underestimated.

In the view of our findings, it is important to study in more detail the energy budget
and average quantities for pulse-like events, since the seismically estimated values
can be quite misleading for such ruptures, yet accumulating evidence suggests that
many large events behave as pulse-like ruptures. Simulating a broader range of
models that result in pulse-like ruptures would be needed to establish the likelihood
of possibility (ii), since much larger breakdown energy than radiation energy may be
inconsistent with pulse-like behavior. Exploring the validity of the estimates of the
radiation energy using our models and commonly applied seismological techniques,
to clarify the possibility (iii), is another direction for future work. Finally, it would
be important to confirm the conclusions in 3D models with 2D faults, rather than
the 2D models with 1D faults utilized in this work for numerical convenience.


