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ABSTRACT

This thesis advances our understanding of three important aspects of biological sys-
tems engineering: analysis, design, and computational methods. First, biological
circuit design is necessary to engineer biological systems that behave consistently
and follow our design specifications. We contribute by formulating and solving novel
problems in stochastic biological circuit design. Second, computational methods
for solving biological systems are often limited by the nonlinearity and high di-
mensionality of the system’s dynamics. This problem is particularly extreme for the
parameter identification of stochastic, nonlinear systems. Thus, we develop amethod
for parameter identification that relies on data-driven stochastic model reduction.
Finally, biological system analysis encompasses understanding the stability, perfor-
mance, and robustness of these systems, which is critical for their implementation.
We analyze a sequestration feedback motif for implementing biological control.

First, we discuss biological circuit design for the stationary and the transient distri-
butional responses of stochastic biochemical systems. Noise is often indispensable
to key cellular activities, such as gene expression, necessitating the use of stochastic
models to capture their dynamics. The chemical master equation is a commonly
used stochastic model that describes how the probability distribution of a chemi-
cally reacting system varies with time. Here we design the distributional response of
these stochastic models by formulating and solving it as a constrained optimization
problem.

Second, we analyze the stability and the performance of a biological controller
implemented by a sequestration feedback network motif. Sequestration feedback
networks have been implemented in synthetic biology using an array of biological
parts. However, their properties of stability and performance are poorly understood.
We provide insight into the stability and performance of sequestration feedback net-
works. Additionally, we provide guidelines for the implementation of sequestration
feedback networks.

Third, we develop computationalmethods for the parameter identification of stochas-
tic models of biochemical reaction networks. It is often not possible to find analytic
solutions to problems where the dynamics of the underlying biological circuit are
stochastic, nonlinear or both. Stochastic models are often challenging due to their
high dimensionality and their nonlinearity, which further limits the availability of
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analytical tools. To address these challenges, we develop a computational method
for data-driven stochastic model reduction and we use it to perform parameter iden-
tification. Last, we provide concluding remarks and future research directions.
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C h a p t e r 1

INTRODUCTION

1.1 A brief introduction to synthetic biology
The field of synthetic biology engineers novel organisms, devices and systems
for the purposes of improving industrial processes [Nar+16; Hem+10; SWS08;
CG10; DKM10], discovering the principles of biological systems [GCC00; EL00;
GHM14], and performing computation and compact information storage [Thu17;
Hsi+16]. In synthetic biology, we build systems inspired by natural biological sys-
tems, but we do not restrict ourselves to parts and designs already available. The
numerous applications of synthetic biology include industrial fermentation [GM12],
waste detection [Sim+08], biosensors development [Hsi+16], diagnostics detec-
tion [Par+14], materials production [Ngu+15; CG08], novel protein design [Arn98],
information storage [Thu17], and biological computation [Moo+12]. Since synthetic
biology is a relatively novel field, its applications and capabilities are still expanding.

However, synthetic systems have a unique set of challenges and limitations. A
goal of synthetic biology has been to engineer reliable, robust circuits composed of
standardized parts that can easily be combined together [CLE08; Ark08; Kwo10;
KC10; QD17]. Nevertheless, it has been demonstrated that synthetic circuits depend
on their biological implementation [DM15; Yeu+14; Yeu+17]. Slight differences
in the circuit’s tuning, implementation in a different model organism [KZH09],
or different experimental conditions can all cause synthetic circuits to cease func-
tioning [GMB16; PW09]. This limits the modularity of synthetic circuits and the
engineering of larger circuits. Additionally, synthetic systems are often subjected to
strict resource limits that result in limited functionality and in competition with the
host organism [QMD17; GD14]. Furthermore, synthetic systems oftentimes rely
on transcriptional parts, which results in slower response timescales than natural
biological systems, particularly when the product is a protein [Ngu+15].

For a comprehensive introduction to synthetic biology, we suggest the review pa-
pers [CLE08; Ark08; Kwo10; KC10; PW09] and the textbooks [DM15] and [Alo06].
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1.2 Biochemical kinetics
Notation
Let Z and R be the integer set and the real set, respectively.

Let n ≥ 1 be an integer. Let P ∈ [0, 1]n be the n-dimensional probability vector set.
For p = (p1, . . . , pn) ∈ P, it must be that pi ≥ 0 and

∑n
i=1 pi = 1. We denote by AT

the transpose of the matrix A.

Let the symbols A−B and A : B represent the binding of two molecules A and B
into a complex.

For our synthetic circuit diagrams, we adhere to the conventions of the Synthetic
biology open language [Gal+12].

Deterministic chemical kinetics
Our assumptions for deterministic chemical kinetics are that they employ either
unimolecular or bimolecular reactions and mass action kinetics, unless otherwise
specified. The law of mass action states that the rate of a chemical reaction is
proportional to the product of the concentrations of the reactants. We consider a
chemically reacting network with N species {S1, . . . , SN } and M chemical reactions
{R1, . . . , RM}. Then we can express the mass action kinetics as

dx
dt
= Wv(t), (1.1)

where x is the concentration of the chemical species, t ∈ R≥0 is the time,W ∈ RN×M

is the stoichiometry matrix, and v(x) ∈ RM×1 is the reaction flux vector. Each row
of the flux vector v(x) corresponds to the rate at which a given reaction occurs.
The columns of the stoichiometry matrix denote the changes in concentration of the
chemical species. Wedescribe the stoichiometrymatrix inmore detail in Section 1.2.

Example 1. We derive the deterministic model of an example biochemical reaction
network. Let the following chemically reacting system with species S1 be described
by the two reactions:

S1
k2−−−⇀↽−−−
k1
∅. (1.2)

Here species S1 can represent mRNA or protein that is being created at rate k1 and
degraded at rate k2. Then the stoichiometry matrix is W = (1,−1) and the reaction
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flux vector is v(t) = (k1, k2S1(t))T . Therefore, the mass action kinetics are given by:

dS1(t)
dt

= k1 − k2S1(t). (1.3)

In addition to mass action kinetics, we employ Hill kinetics to describe the coop-
erative binding of ligands to a macromolecule [Hil10]. Cooperative binding means
that the binding of a ligand to a macromolecule is enhanced by the presence of
other ligands that are already bound to the macromolecule. Moreover, the Hill co-
efficient quantifies the degree of cooperativity between ligand binding sites. In the
famous example of the O2 molecule binding haemoglobin in red blood cells to form
oxyhaemoglobin and be transported to body tissues, the Hill equation models these
saturated binding dynamics. At low oxygen concentrations, there is haemoglobin
in the blood and almost no oxyhaemoglobin in body tissues. However, at high
oxygen concentration, there is almost no haemoglobin in the blood and lots of
oxyhaemoglobin in body tissues. Each haemoglobin molecule can bind up to four
O2 ligands, which would suggest a Hill coefficient of four. In practice, the Hill
coefficient is 2.8 due to the limitations of the Hill modeling framework and due
to the haemoglobin molecule existing in multiple states. The Hill equation can be
represented as

Hb + 4 O2
ka−−−⇀↽−−−
kd

Hb−4 O2, (1.4)

where ka and kd are the association and disassociation constants,Hb is the haemoglobin
molecule, and Hb−4 O2 is the oxyhaemoglobin molecule. We let the dissociation
constant Kd be the ratio of kd and ka. Then the concentration of oxyhaemoglobin,
[Hb−4 O2], can be computed as:

fHill(O2) =
[O2]4

Kd + [O2]4
. (1.5)

In this thesis, we employ theHill function tomodel the transcription of a gene product
when its DNA is regulated by multiple transcription factors such as activators
and repressors [Alo06]. It is assumed that the transcription factors bind DNA
cooperatively. Let A and R be the activator and the repressor, respectively, with
basal expression levels of A0 and R0 and dissociation constants KA and KR. Let nHill
be the Hill coefficient and α be the maximal transcription rate of the gene. Then the
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Hill functions associated with the activator, f a
Hill(A), and the repressor, f r

Hill(R), are
as follows:

f a
Hill(A) =

α
(

A
KA

)
1 +

(
A

KA

)nHill + A0, f r
Hill(R) =

α

1 +
(

R
KR

)nHill + R0. (1.6)

For more details, we refer the reader to [Alo06] and [DM15].

Stochastic modeling with the chemical master equation
Stochasticity in biochemical systems comes from the thermodynamics of molecu-
lar reactions [DM15]. We consider a chemically reacting network with N species
{S1, . . . , SN } and M monomolecular or bimolecular chemical reactions {R1, . . . , RM},
as in [Gil07]. The dynamical state of the system at time t ≥ 0 is described by the
state vector x(t) = (x1(t), . . . , xN (t)), where xi(t) is the integer population of species
Si at time t for all 1 ≤ i ≤ N . The M chemical reactions change the state of the
system according to the propensity function associated with each reaction.

The chemicalmaster equation (CME) describes how stochastically reacting chemical
species behave in a well-stirred solution at thermal equilibrium in a fixed, finite
volume [Gil07]. The chemical kinetics of the N reacting molecular species are
modeled as a discrete-state, continuous-time Markov process. A state x of the
Markov process is a combination of counts of the N reacting molecular species,
while the distribution state vector p(x, t) denotes the probability that the system will
be in state x at time t. The CME gives the time evolution law for p(x, t) as the
ordinary differential equation

∂p
∂t
(x, t) =

M∑
j=1
(a j(x − ξ j)p(x − ξ j, t) − a j(x)p(x, t)), (1.7)

where ξ j is the j th column of the stoichiometry matrix and a j is the j th propensity
function associated with the chemical reaction network [Gil00].

More compactly, the CME can be written as an ordinary differential equation

dp
dt
(x, t) = H(c)p(x, t), (1.8)

where c = (c1, . . . , cK) are the K rate reaction parameters of the M chemical
reactions, K ∈ Z.
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Figure 1.1: The Markov state space associated with the chemical master equa-
tion. We represent the two-dimensional, infinite Markov state space of a toy bio-
chemical reaction network with species S1 and S2 (N = 2) and chemical reactions
given in equations (1.9)-(1.11) (M = 4). The state x of the system is a two-
dimensional vector whose values are all possible combinations of counts of species
S1 and S2; therefore, x is infinite. The arrows represent the possible transitions be-
tween states, according to the four chemical reactions in equations (1.9)-(1.11) and
under the assumption that state counts must be at least zero. The state transitions
corresponding to the two chemical reactions in equation (1.9) are drawn as blue
bidirectional arrows since species S1 can either be created or degraded. The state
transitions for the chemical reaction in equation (1.10) are drawn as green arrows
pointing downwards to represent the degradation of species S2. Finally, the state
transitions for the chemical reaction in equation (1.11) are drawn as fuchsia arrows
to represent the creation of species S2; since species S2 cannot be created in the
absence of species S1, the states with zero counts of S1 do not have arrows. The
probability of the transition between two states is given by the propensity function
a j(x), associated to the j th chemical reaction in the system and dependent on the
value of state x. Therefore, transitions between some states are less likely to occur,
an observation which is the basis of the finite state projection method.
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Example 2. Wederive the chemical master equationmodel for an example biochem-
ical reaction network. Let the following chemically reacting system with species S1

and S2 be described by the set of reactions:

S1
k1−−−⇀↽−−−
k2
∅, (1.9)

S2
k3−−−→ ∅, (1.10)

S1
k4−−−→ S1 + S2. (1.11)

Here species S1 can represent mRNA and species S2 can represent protein.

Then the propensity functions associated with the four chemical reactions are
a1(x1, x2) = k1x1, a2(x1, x2) = k2, a3(x1, x2) = k3x2, a4(x1, x2) = k4 and the state-
change vectors are ξ1 = (−1, 0)T, ξ2 = (1, 0)T, ξ3 = (0,−1)T, ξ4 = (0, 1)T , where x1 is
the number of molecules of species S1 and x2 is the number of molecules of species
S2.

Therefore the CME associated to this system is as follows:

∂p
∂t

( [
x1

x2

]
, t

)
= k1(x1 + 1)p

( [
x1 + 1

x2

]
, t

)
+ k2p

( [
x1 − 1

x2

]
, t

)
+ (1.12)

+ k3(x2 + 1)p
( [

x1

x2 + 1

]
, t

)
+ k4p

( [
x1

x2 − 1

]
, t

)
− (1.13)

− (k1x1 + k2 + k3x2 + k4)p
( [

x1

x2

]
, t

)
, (1.14)

for x1, x2 ∈ Z, x1 > 0, x2 > 0.

A simulation of this system is illustrated in Figure 1.2.

The finite state projection algorithm
The finite state projection approach (FSP) [MK06] truncates the state space of
chemical master equation and collects the probability mass that leaves the truncated
region in a sink state, g(t). The CME state space is split into two complete and
disjoint sets, indexed by J and J′, such that the CME becomes

d
dt

[
pJ

pJ ′

]
=

[
HJJ HJJ ′

HJ ′J HJ ′J ′

] [
pJ

pJ ′

]
(1.15)

The states in J′ are then combined into a single sink state g(t). Probability mass
entering g(t) is restricted to remain there for all time (i.e. probability may not leave



7

Figure 1.2: The time-varying probability distributions of biochemical species
S2 computed using the chemical master equation. For chemical reactions in
equations (1.9)-(1.11) with reaction rate parameter values k1 = k4 = 100, k2 = 1,
k3 = 0.1, we ran 1000 simulations for 100 seconds each to generate the set of
probability distributions of the biochemical species S2. We subsequently fitGaussian
distributions to the probability distributions from the CME for ease of interpretation.

the sink state after exiting J). This new master equation is known as the finite state
projection, and can be written as

d
dt

[
pFSP

J

g(t)

]
=

[
HJJ 0
−1THJJ 0

] [
pFSP

J

g(t)

]
(1.16)

The FSP approximation is guaranteed to be a lower bound on the true solution,[
pFSP

J

0

]
≤

[
pJ

pJ ′

]
for all t > 0, (1.17)

and it yields an exact error in the approximation,�������
[
pFSP

J

0

]
−

[
pJ

pJ ′

] �������
1

= g(t), (1.18)

where |v|1 denotes the norm-1 of the vector. Proofs of these results are available
in [MK06; MK07].

While the FSP approximation can significantly reduce the state space, the exponen-
tial increase in states with the number of species still limits the FSP approximation
to be a practical choice for simulation of systems up to 10 species and for model
identification of systems with up to 3 species and relatively low (≈ 102) molecule
counts.
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Figure 1.3: The finite state projectionmethod. For chemical reactions in 1.9- 1.11,
we truncate the infinite state space of the associated CME to a finite state space J
(blue rectangle). The set J′ (purple) collects all the remaining probability and once
it enters it, probability does not escape it. The finite state space J is illustrated and
is often chosen to be a hyperrectangle, but it can have any shape.

The matrix exponential solution to the chemical master equation
Using the finite state projection algorithm in [MK06], we truncate the Markov state
space of the chemical master equation. Thus, we consider only a finite number of
states S in each species of a biochemical reaction network.

In Chapters 2 and 4, we assume that the propensity functions a j are linear in the
reaction rate variables for all 1 ≤ j ≤ M . Then the Markov transition matrix H(c)
is finite and we can represent it as the following sum:

H(c) = ΣM
j=1c j Hj, (1.19)

where each matrix Hj corresponds to chemical reaction Rj for 1 ≤ j ≤ M . The
matrices Hj are sparse and of size SN × SN .

Hence, equation (1.8) is equivalent to

dp
dt
(x, t) = ΣM

j=1c j Hj p(x, t), (1.20)
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which implies linearity with respect to the reaction rates c1, . . . , cM .

Therefore, the solution to equation (1.20) is given by

p(x, t) = eΣ
M
j=1cjHj t p(x, 0). (1.21)

Remark 1. The exponential operator eΣ
M
j=1cjHj t is not separable into the product∏M

j=1 ecjHj t , unless the matrices H1, . . . ,HM commute pair-wise. This is not usually
the case, unless all the M reactions in the system are monomolecular and all the
matrices are diagonal [JH07]. For bimolecular reactions, the correspondingmatrices
do not generally commute.

1.3 Control theoretical concepts for synthetic biology
In this section, we introduce the engineering perspective on the development of
synthetic circuits. The engineering design cycle described in Figure 1.4 can be
employed in synthetic biology; this approach has previously been used in me-
chanical and electrical engineering [AM08]. According to the engineering design
cycle, synthetic circuits can be iteratively designed, built, tested, and improved until
they achieve the desired performance standards. This thesis contributes to design
through the performance specifications in Chapter 2, to testing through the perfor-
mance properties in Chapter 3, and to improvement through the recommendations
in Chapter 3. The computational methods in Chapter 4 contribute to both the design
of synthetic circuits and to the evaluation of their performance.

Design

BuildImprove

Test

Figure 1.4: The engineering design cycle as a methodical approach to problem
solving. The design cycle is a process by which an engineering (or biological)
system is iteratively designed, built, tested, and refined until it becomes sufficiently
improved in performance. Engineers follow this series of steps to solve a problem
and to design a solution for it. The engineering design cycle and its repetitions
represent an iterative process.
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A common method to improve the performance of mechanical and electrical sys-
tems is feedback control. The principle of feedback control is to measure the error
between the desired and the current performance of a circuit and to take correc-
tive action as necessary [AM08]. Feedback is ubiquitous in endogenous biological
systems, where it serves to regulate their behavior. Examples of feedback control
found in endogenous systems include the regulation of body temperature [Wer10],
of circadian rhythms [Rus+07], of calcium [EGK02], and of glycolysis [CBD11].
Analogously, we are developing feedback control to regulate the behavior of syn-
thetic systems and to ensure that they behave robustly.

Feedback control provides undeniable benefits to biological, mechanical, and elec-
trical systems. The foremost benefit is robustness to uncertainty; should the system
undergo a change such an external disturbance, feedback corrects this change and
ensures the system retains good performance properties. Additionally, feedback
can stabilize and speedup an unstable or slow process. Yet, feedback control also
comes with several drawbacks. Feedback can inadvertently amplify noise inside a
system and it can also exacerbate instability if poorly designed. For a more detailed
understanding of feedback control, particularly in the context of synthetic biology,
see the textbooks [DM15; AM08].

In Figure 1.5, we introduce the reference tracking setup that we use for biological
feedback control throughout Chapter 3. The goal of reference tracking is for a
system’s output to track a pre-determined reference signal. The error signalmeasures
the difference between the output and the reference as a function of time. When the
error converges to a real value ess as a function of time, the system is deemed stable
and its steady state value is ess. Conversely, if there is no value ess ∈ R that the
error converges to, then the system is unstable. The magnitude of the steady state
error ess is a performance measure of the system in Chapter 3; a common goal is to
ensure a small magnitude of ess.

Several common types of feedback control include proportional, integral, and deriva-
tive control. As explained in [DM15; AM08], proportional control responds pro-
portionally to the error between the reference and the current output state for small
errors. By itself, proportional control does not ensure a small steady state error and
therefore it can result in poor performance. Integral control responds proportionally
to the integral of the error signal over time. If a steady state of the closed loop
system exists, then integral control guarantees zero steady state error (ess = 0).
Derivative control responds proportionally to the derivative of the error signal and it
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output - ref

Reference tracking

Figure 1.5: Reference tracking. The error measures the difference between the
output of the process and the reference specified by the user. When the error
converges to a real value as a function of time, we refer to it as the steady state
error. Additionally, the closed loop system is deemed stable. If the error does not
converge to a real value as a function of time, then the closed loop system is unstable.
The magnitude of the steady state error will be used as a performance measure in
Chapter 3 for the closed loop system. The reference can vary as a function of time.

aims to anticipate future errors; however, it can also amplify high frequency process
noise. In practice, proportional and integral control are used ubiquitously to regulate
mechanical and electrical systems [AM08].

There aremultiple differences between implementing feedback control in engineered
systems and in biological systems. One difference is that the reference signal may
not be an explicit signal, but rather the result of other biochemical dynamics;
additionally, when implemented by chemical reactions (such as the constitutive
production of a biochemical species in Chapter 3), the reference can be dependent
on temperature and pH, subjected to disturbances itself, or coupled to other dynamics
external to the circuit. The differences between engineered and biological systems
have created questions about the performance of synthetic circuits. We discuss this
topic in Chapter 3 and we also further address the differences between engineered
and biological feedback systems.

1.4 Contribution overview
In Chapter 2, we design the distributional response of stochastic biochemical net-
works whose dynamics are modeled by stochastic framework of the chemical master
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equation. When available [JH07; GLO05; GSN12; SS08; GD12; ACK10], analytic
solutions to the CME can greatly simplify the design of distributional responses
of biochemical networks. Nonetheless, analytic solutions are challenging to find
due to the high dimensionality of the Markov space underlying the CME model,
which scales exponentially with the number of species in the network. In Meng et
al. [Men+17], we have described recursive algorithms for gluing together simple
Markov state spaces at one or two vertices to derive analytic stationary solutions
to CME models with large Markov spaces [MHK14; MP15]. Using a recursive
algorithm, we have derived the analytic stationary solution to the transcriptional
network example in [GD12]. In Chapter 2, we illustrate how to use this analytic
stationary solution to design the transcriptional network’s stationary behavior. We
employ this transcriptional network example to illustrate how designing the stochas-
tic behavior of biochemical reaction networks is simplified by the availability of an
analytic solution to the CME model.

Subsequently, we propose a general framework for the design of stochastic behaviors
of biochemical reaction networks for which analytical solutions to their CME mod-
els may not be available [Bae+15]. Design specifications for distributions include
specifying their modality, the locations of their modes, and their rate of conver-
gence to stationarity [MG09]. We formulate these specifications as constraints in
an optimization program that finds the reaction rate values that achieve in the de-
sired distributional design. We apply our stochastic design framework to examples
of biochemical reaction networks such as a protein production-degradation net-
work [DM15], the Schlögl model [Gil91; Gun+05], and the genetic toggle switch
model [GCC00] to illustrate its strengths and limitations.

The content of Chapter 2 has been published in [Bae+15] and [Men+17].

Contribution summary in [Men+17]:

• Designed the behavior of a two-component transcription network using the
analytic form of its stationary distribution.

Contribution summary in [Bae+15]:

• Developed a framework for the design of stochastic behaviors of biochemical
reaction networks.
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• Mathematically described distributional design specifications of modality,
location of modes, and convergence to stationarity.

• Formulated and solved the distributional design problem as an optimization
problem constrained by the design specifications.

The development of synthetic biological controllers for microbes and fungi can help
address problems in human health through scheduled oral probiotic delivery, in
industrial fermentation through the improved commercial production of enzymes,
and inwaste recycling through the improved treatment of sewage effluent for drinking
water. In Chapter 3, we use methods from control theory to determine the properties
of stability and performance of biological controllers implemented by sequestration
feedback. Using these metrics of stability and performance, we provide guidelines
for the implementation of robust synthetic biological controllers.

First, we introduce biological control using sequestration feedback and we demon-
strate that the controller species’ sequestration binding strength, the process species’
degradation rates, and the controller species’ degradation rates affect their stability
and performance properties. We then derive an analytical criterion for stability and
we tune the stability margin by increasing either the process or the controller species
degradation rates.

Second, we determine the performance of sequestration feedback networks when
the controller species are degraded and diluted due to cell division or fungi budding.
It has been demonstrated that a stable sequestration feedback controller with no
controller species degradation implements perfect adaptation, which provides these
biological controllers with robustness and zero steady state error [BGK16]. More-
over, we derive performance results that consider the controller species degradation
and dilution and we provide robust implementation choices that guarantee a small
steady state error.

Finally, we describe a tradeoff between the stability and the performance of seques-
tration feedback networks. Additionally, we give guidelines for building sequestra-
tion feedback networks with respect to this tradeoff.

The content of Chapter 3 has been published in [Ols+17] and [Ren+17].

Contribution summary to [Ols+17]:

• Incorporated the degradation of the controller species in the model for the
sequestration feedback network.
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• Determined the stability and the performance of the sequestration feedback
controller with controller species degradation.

• Provided guidelines for the implementation of sequestration feedback net-
works.

Contribution summary to [Ren+17]:

• Analyzed the cell population controllers implemented using sequestration
feedback networks.

In Chapter 4, we introduce a novel method for parameter identification of stochas-
tic biochemical reaction networks. Probabilistic models are necessary to accurately
represent the stochastic dynamics of biochemical reaction networks [Elo+02]. Since
analytical solutions to stochastic models of biochemical reaction networks are rarely
known [JH07; DS66; GLO05; GD12; MHK14; Men+17], these models are often
solved computationally. However, stochastic models grow exponentially in com-
plexity with the number of biochemical species considered [MNO12]. Thus, pa-
rameter identification methods such as the Metropolis-Hastings algorithm [Bro+11;
Gel+14], which require computing the solution of the stochastic models for each
parameter set, are very computationally intensive. Efficient and scalable computa-
tional methods for the parameter identification of stochastic biochemical methods
are still being developed [KRS15].

Our method proposes to reduce the computational cost of solving stochastic models
by two sequential projections of their dynamics. First, the finite state projection
algorithm [MK06; MK07] reduces the state space of stochastic models by rendering
the state space finite and by eliminating states with low probability. Subsequently,
we project this reduced stochastic model onto a subspace spanned by radial basis
functions [Fas07]. Other projections of stochastic models of biochemical reaction
networks have been discussed in [MK08; JU10; TFM12; Zha+10; KRS15]; however,
our method differs in that the radial basis functions are computed from simulated
single-cell data of the stochastic model using the adaptive residual subsampling
algorithm in [DH07]. We demonstrate that performing parameter identification on
these reduced stochastic models results in a small loss in parameter accuracy, but in
a large gain in computational efficiency.

The content of Chapter 4 has been developed in collaboration with Huy Vo, Zachary
Fox, and Brian Munsky (Colorado State University).
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Contribution summary to Chapter 4 by the author:

• Contributed to computing the finite state projections of the two chemical
master equation models.

• Contributed to the code for the radial basis function projections.

• Performed parameter identification using the adaptive Metropolis-Hastings
algorithm for the bursting gene example.



16

C h a p t e r 2

STOCHASTIC BIOCHEMICAL SYSTEMS DESIGN

Stochasticity plays an essential role in the dynamics of biochemical systems. Stochas-
tic behaviors of bimodality, excitability, and fluctuations have been observed in
biochemical reaction networks at low molecular numbers. These stochastic be-
haviors can be described by modeling the biochemical system using the chemical
master equation, a forward Kolmogorov equation in the biochemical literature. The
chemical master equation describes the time evolution of probability distributions
of biochemical species in the system. Analytic solutions to the chemical master
can help expedite multi-scale simulations, identify system parameters, and design
desirable stochastic behaviors. However, due to the large dimensionality of the state
space of the chemical master equation, analytical solutions are rarely known.

In this chapter, we provide methods to design the behavior of stochastic biochem-
ical systems by tuning the rates of the underlying biochemical reaction network
model. We first demonstrate how to design the stationary stochastic behavior of
a transcriptional network with a known analytical solution of its chemical master
equation model. Then we introduce a method for the design of stochastic behaviors
of biochemical systems when an analytical solution is not available. We focus on
specifying the behaviors of the time evolving probability distributions that describe
these stochastic behaviors. Our design specifications include the probability dis-
tributions’ modality, the locations of their modes, and their rate of convergence to
stationarity. We formulate these specifications as constraints in an optimization pro-
gram that finds the optimal reaction rate parameters of the underlying biochemical
network. We apply our stochastic design framework to examples of biochemical re-
action networks to illustrate its strengths and limitations. We hope that our stochastic
design method can contribute to the design-built-test engineering cycle for synthetic
biology.

The results in this chapter were published in [Men+17] and [Bae+15]. With respect
to [Men+17], the author contributed by designing the behavior of a transcriptional
network using the analytic form of its stationary distribution. In [Bae+15], the
author contributed by developing a framework for the design of stochastic behaviors
of biochemical reaction networks. The author mathematically described design
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specifications for the number of modes, location of modes, and convergence to
stationarity of probability distributions. Then the author formulated and solved the
stochastic design problem as an optimization problem constrained by the design
specifications. The descriptions of the work contained in this chapter were written
by the author.

2.1 Motivation
Biological behavior is commonly described using deterministic, nonlinear, continuous-
time models [DM15; Van92]. Yet, the deterministic description of biochemical
reaction network kinetics is not appropriate if the biochemical species are at low
molecular numbers or if stochastic fluctuations are important in the time evolution of
the system [Elo+02]. As such, biochemical reaction network kinetics inside living
cells are better captured by discrete stochastic models since reactant molecules are
often at low copy numbers and subject to random motion [Gil00; MA97; JH07].
Experimental evidence highlights stochastic effects in living cells by showing copy-
number fluctuations in genetically identical cells and distinct cell fate decisions in
populations of clonal cells [Elo+02; RO08; EE10; MRD07; Cho+08; ARM98].

To capture the observed discrete stochastic behaviors in biochemical systems, the
network reactions can be modeled as a Markov jump process [Gil00]. The state
of this process is a vector of the concentration of species in the reaction net-
work. The state vector evolves in time with dynamics given by a forward Kol-
mogorov equation, known in the biochemical literature as the chemical master
equation (CME). The distribution of states evolves in time according to an infinite-
dimensional ordinary differential equation (ODE) specified by the CME. The coef-
ficients in the ODE are determined by the rate constants and by the stoichiometry
and propensity functions of the chemical reaction network. Analytical solutions to
the CME are only available for a few examples of biochemical reaction networks
(e.g. monomolecular reaction networks [JH07], first-order networks [GLO05], a
genetic negative feedback system [GSN12], two- and three- stage models of gene
expression [SS08], a transcriptional network in [GD12], deficiency zero chemical
reaction networks [ACK10]); even fewer of these analytical solutions capture tran-
sient stochastic behaviors. Most commonly, no analytical solutions are available
and Monte Carlo-based techniques are used to approximate the solutions [Gil07;
MK06; GMK17]. Alternatively, analytical moment equations for the chemical
master equation are sometimes used [Eng06].
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Figure 2.1: Schematic representation of the fluorescence of an E. coli cell pop-
ulation that carries the genetic toggle switch. The stochastic gene expression of
red fluorescent reporter proteins in E. coli cells that carry the genetic toggle switch
from [GCC00] creates a distribution of phenotypes. The reporter protein fluoresces
red such as mCherry [Sha+04]. In panels A, the cell phenotypes form a unimodal
distribution that peaks at a low (dark red) fluorescence level. A few cells have
high (bright red) fluorescence levels and they represent the tail of the distribution
of phenotypes. In panel B, the cell phenotypes form a bimodal distribution with
peaks at both a low (dark red) and a high (bright red) fluorescence level. In panel
C, the cell phenotypes form a unimodal distribution that peaks at a high (bright
red) fluorescence level. Data measurements and discussion corresponding to this
schematic are available in [GCC00; Por+07].

The shortage of analytical solutions to the CME model poses a challenge to the
engineering design cycle in Chapter 1 for the field of synthetic biology. In this
chapter, we aim to mitigate the lack of analytical solutions to the CME through our
design framework, which does not make use of analytic solutions. We first design
the stationary behavior of a transcriptional network for which we have computed an
analytical solution to the CME model [GD12; Men+17]. Subsequently, we propose
a framework for the design of stochastic behaviors of biochemical reaction networks,
irrespective of the analytical solutions to their CME models.

In engineered systems, stochasticity is often an inconvenience and therefore, the
engineering design goal is to minimize stochastic effects. Several examples of
systems where stochastic effects are undesirable include semiconductors [Ian+94;
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MA09] and power systems that use renewable energy sources such as wind or solar
power [GA14]. Nonetheless, stochasticity can sometimes confer increased flexi-
bility to uncertainty, as demonstrated by bet hedging strategies in bacterial persis-
tence [VSK08; Bal+04] and in delayed seed germination in plants [Coh67]. There-
fore, designing for stochastic behaviors is beneficial to some systems. Stochastic
design specifications are encountered in applications where stochasticity is essential
and stochastic models are ubiquitous, such as turbulent flow models for aerodynam-
ics and for oceanography [GM13]. There, mathematical tools for stochastic PDEs
inform the stochastic design constraints for turbulent flow models [Pop02].

The design features we propose for biological systems are inspired by unanswered
questions in the design of genetic regulatory circuits. Our insight comes from
the problem of designing the stochastic behavior of the genetic toggle switch
in [GCC00]. Gene expression levels in cells of an E. coli population carrying
the toggle switch form a distribution of phenotypes due to the heterogeneity of the
cell population [Por+07], as illustrated in Figure 2.1. This distribution of cellular
phenotypes follows either unimodal, bimodal, or trimodal stochastic transient and
stationary behaviors [KRS15; Sch+10]. The phenotypic heterogeneity of the cell
population is not typically designed for or specified. We can help control this hetero-
geneity by specifying the modality of the transient distributions: uni-/multi-modal,
the protein expression levels, and the switching time. We mathematically formulate
these design specifications similarly to [MG09] and we discuss how they result in
remarkably different behaviors in a cell population.

Our design framework captures both stationary and transient distributional behaviors
of biochemical networks such as uni-/multi-modality, the locations of the modes,
and the rate of convergence to stationarity. These design features could not be
captured by a deterministic framework; even the first moment, the single mode of a
unimodal distribution, might be altered by stochastic effects [PBE00].

Even after selecting features relevant to the design of biochemical reaction networks,
the stochastic design problem is difficult to solve. Our main challenge is that the
exponential operator in the solution to the truncated CME from Chapter 1 has a
dearth of exploitable mathematical properties [MV03] and a prohibitive computa-
tional cost. The exponential is not separable, which prevents us from leveraging a
problem formulation in terms of relative entropy optimization as in [CS16]. We also
considered its tensor projections as in [HG11; JH08; NHK12], but the orthogonal
bases that we projected on were depleted of biological meaning; it was unclear how
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to combine orthogonal basis polynomials in the space of projection so that they ex-
pressed the design features of uni-/multi-modality of distributions. This formulation
would create overly elaborate problems that lose track of biological implementa-
tion. To avoid these issues, we simply consider the Taylor approximation to the
exponential operator and we compute bounds on the error of this approximation.

If we use a first order Taylor approximation to the exponential operator, the de-
sign problem reduces to solving a linear program and a semi-definite optimization
program [XB04; BV04]. There exist very efficient, scalable convex optimization
tools, such as CVX [GBY08; GB08], that solve these programs. If the error of the
first order Taylor approximation is large, we suggest using polynomial optimization
methods as an alternative. Solving the design problem depends on the number of
design features and the number of molecule counts of each biochemical species,
particularly in the polynomially constrained case. Ultimately, we show that we can
find accurate solutions for biochemical reaction networks with several species by
using a first order Taylor approximation.

This chapter is organized as follows: In Section 2.2, we solve the design problem
for a transcriptional network with a known analytical solution to the CME model.
In Section 2.3, we set up the design problem and evaluate the error in the ap-
proximation of the exponential operator. In Section 2.4, we implement and solve
design problems for classic examples of biochemical reaction networks: protein
production-degradation, the Schlögl model, and the genetic toggle switch. Sec-
tion 2.5 contains discussion of the applicability and limitations of our stochastic
design framework, as well as an outline for future work.

2.2 The Design Of Stationary Stochastic Behaviors Of Biochemical Reaction
Networks Using Analytical Solutions

In this section, we illustrate how the design of the stationary behavior of the tran-
scriptional network in [GD12] is simplified by the availability of an analytical
solution to its CME model. The analytical solution was first derived in [GD12]
by applying the deficiency zero theorem from [ACK10] and then in [Men+17] by
adapting the graph gluing technique proposed by Mélykúti et al. [MHK14; MP15].
No analytical transient solutions to the CME model of this transcriptional circuit
are available, although an approximation was derived in [GD12] using singular
perturbation theory [DM15].

Here, we use the analytical stationary solution derived in [GD12; Men+17] to de-
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sign the equilibrium behavior of the transcriptional circuit simply by tuning the
reaction rate parameters. This corresponds to altering the transcription factor’s
production or degradation rates, or its binding and unbinding rates to the down-
stream DNA. Tuning these rates can be implemented by choosing a transcription
factor with the desired strength of binding and unbinding to DNA, by making more
RNA polymerases or coactivators available to increase the transcription rate, by
adding ubiquitin [DRH00], by tagging for phosphorylation [Gri+98] to increase the
transcription factor’s degradation rate, or even by changing the response element.

We first describe the two-component transcriptional system in Figure 2.2 [GD12].
The two transcriptional components are connected to each other through the action
of the transcription factor Z . In the upstream component, Z is both produced and
degraded. In the downstream component, transcription factor Z binds to DNA
binding sites P and forms the complex C. The total amount of DNA, which is the
sum of free binding sites P and of the complex C, is assumed to be conserved. We
model the two-component transcriptional system stocastically using the chemical
reactions in equation (2.1):

Z
k−−−⇀↽−−−
δ
∅,

Z + P
kon−−−⇀↽−−−
koff

C.
(2.1)

We let c be the number of molecules of the complex C and z be the number of
molecules of transcription factor Z .

In [Men+17], we derived the analytical solution to the joint stationary distribution
of transcription factors C and Z . The analytic solution of the stationary distribution
was derived by recursively reconstructing its FSP-truncated finite state space from
simpler shapes. First, simple “T” shapes were glued together sequentially at one
vertex and then the proportionality condition in [MP15] was checked for the missing
edges. Thus, the analytical solution over the finite state space was computed by
reconstructing the state space from simple “T” shapes. Subsequently, the state space
was allowed to be infinite and the analytic solution of the stationary distribution was
obtained in that limit. We refer the reader to the derivation in [Men+17] for more
information and we restate the analytical solution of the joint stationary distribution
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Figure 2.2: A biological system of two interconnected transcriptional compo-
nents [GD12]. In the upstream component, protein Z is transcribed from the DNA
at rate k and degraded at rate δ. In the downstream component, protein Z acts as
an activator that binds the DNA binding sites P and forms a complex C with it.
Transcription factor Z and DNA sites P bind together with rate kon and unbind with
rate koff. The total DNA is conserved, so the amount of DNA bound to transcription
factor C and the amount of free DNA binding sites P is assumed to be constant.

of transcription factors in equation (2.2):

P(c, z) =
(
1 +

κκon
δκoff

)−N (
N
c

) (
κκon
δκoff

)c

e−κ/δ
(κ/δ)z

z!
(2.2)

for c ∈ {0, . . . , N} and z, N ∈ Z≥0.

At stationarity, the upstream and downstream transcriptional systems are indepen-
dent since the product of the stationary distributions of transcription factor Z and
complex C equals their joint stationary distribution. This indicates that the system
is not subjected to retroactivity at stationarity, meaning that the interconnection
between the upstream and downstream modules does not slow down the dynamics
of the upstream module [DM15; DDQ16]. Consequently, the expected value of
their joint stationary distribution can be determined from the expected values of the
transcription factor Z and of the complex C.

We formulate and find solutions for several design problems in Theorem 2.1, Propo-
sition 2.2, and Corollary 2.3. We consider the following design features: the mean
and the variance of the marginal probability distributions, and the location of the
global maximum of the joint stationary distribution. For the latter, we prove that the
stationary distribution has a unique global maximum if and only if the conditions in
Proposition 2.2 are satisfied. Considering only stationary distributions with a unique
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global maximum simplifies the subsequent design of its location, as illustrated in
Figure 2.3. We present the proof of Theorem 2.1 in Appendix A.

Theorem 2.1. Consider the system of two interconnected transcriptional compo-
nents that are modeled by reactions as given in equation (2.2), where κ > 0, δ > 0,
κon > 0, and κoff > 0 are the corresponding reaction rate constants. Let P, Z , and
C be the numbers of promoters, transcription factors, and complexes, respectively.
Let α = κκon

δκoff
, β = κ

δ , and γ =
Nα−1
α+1 , where N is a constant given by N = P + C due

to the conservation of DNA. In (i)–(iii), we set up and solve three design problems
using the marginal stationary distributions of Z andC. Here, α and β are the design
variables.

(i) Since the marginal stationary distribution of Z is a Poisson distribution, its
mean and variance are equal. The design problem of fixing the mean of Z at
an objective value µz > 0 is feasible, and the solution is β = µz, with N and
the reaction rate constants being arbitrary otherwise.

(ii) The design problem of setting the mean ofC at an objective value µc ∈ (0, N) is
feasible, and the solution is α = µc

N−µc , with N and the reaction rate constants
being arbitrary otherwise.

(iii) The design problem of choosing the variance ofC to be an objective valueσ2
c >

0 is feasible if and only if σ2
c ≤ N

4 , and the solutions are α =
N−2σ2

c±
√

N2−4Nσ2
c

2σ2
c

,
with N and the reaction rate constants being arbitrary otherwise.

We now consider designing the location of the global maximum of the joint sta-
tionary distribution in equation (2.2). In Proposition 2.2, we find necessary and
sufficient conditions for the existence of a unique global maximum and provide its
location. Corollary 2.3 shows how the uniqueness of the global maximum simpli-
fies the design of its location. The notation bc represents the integer part of a real
number. The proofs of Proposition 2.2 and Corollary 2.3 are found in Appendix A.

Proposition 2.2. Consider the system of two interconnected transcriptional compo-
nents that are modeled by the reactions in equation (2.2). With the same notation
as in Theorem 2.1, the stationary distribution in equation (2.2) has a unique global
maximum if and only if N > 1, β > 1, 0 < γ < N − 1, and β, γ < Z. In this case,
the maximum is at (c∗, z∗) = (bγc + 1, bβc).
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Corollary 2.3. Under the constraints N > 1, β > 1, 0 < γ < N − 1, and β, γ <
Z, designing the location of the unique global maximum of the two-component
transcriptional system modeled by the reactions in equation (2.2) is equivalent to
finding N , β, and γ such that (bγc + 1, bβc) is the objective location.

When the global maximum of the two-component transcriptional system exists and
is unique, there are infinitely many parameter values that can lead to the objective
location of the global maximum. Since any α, β, γ, and N that satisfy the conditions
in Corollary 2.3 lead to the desired global maximum design, this implies relative
insensitivity with respect to experimental implementation.

Figure 2.3: Designing the global maximum of the joint stationary distribution
of the complex species and the transcription factor species using its analytical
form. We consider the transcriptional circuit in [GD12] and we state the analytical
form of the stationary distribution of the complex and the transcription factor species
in equation (2.2). We then apply Proposition 2.2 and Corollary 2.3 to design the
location of its global maximum. The parameter values we use are as follows:
N = 10 molecules, α = 2, β = 5.5, γ = 6.33. The joint probability distribution has
a unique global maximum at 7 molecules of the complex C and 5 molecules of the
transcription factor Z .

Theorem 2.1, Proposition 2.2, and Corollary 2.3 illustrate how the availability of
analytical solutions to the CME greatly facilitates the design of stationary behaviors.
Solving the four design problems in Theorem 2.1, Proposition 2.2, and Corollary 2.3
is equivalent to simply tuning the ratio of the production and decay rates of the
transcription factor, the ratio of the binding and unbinding rates of the transcription
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factor with promoters, and the total amount of DNA, as illustrated in the example in
Figure 2.3. In Section 2.3, we consider designing similar features for distributions
of reactant species in biochemical reaction networks when analytical solution to
their CME models are unknown.

2.3 The Design Of Transient And Steady State Stochastic Behaviors Of Bio-
chemical Reaction Networks

The design problem formulation
Our formulation of a stochastic design framework for biochemical reaction networks
is a two-part contribution. We mathematically describe the desired transient and
stationary behaviorwith design features andwefind a solution for the design problem
under these constraints. We then illustrate this stochastic design framework on
several examples of biochemical reaction networks.

The design features

The design features we choose to constrain the stationary and transient probability
distributions of biochemical species are as follows:

(i) uni- or multi-modality
(ii) the locations of the modes
(iii) the rate of convergence to stationarity

Our inclusion of design feature (i) is motivated by experimental evidence that
demonstrates the presence of multi-modality in the genetic switching of the λ

phage in the lactose operon [CLL10], in stochastic gene expression [SS08], and
in cellular signal transduction pathways in mammalian cells [TB06]. The Gardner
et al. genetic toggle switch [GCC00] is the first synthetic gene regulatory circuit
to display multi-modality. An illustration of the genetic toggle switch’s stochastic
behavior is presented in Figure 2.1. Further discussion of the genetic toggle switch
is available in Gardner et al. and Portle et al. [GCC00; Por+07]

Multi-modality is a purely stochastic behavior that cannot be reproduced or ac-
counted for by deterministic modeling. Currently, there are no CME-based analyti-
cal tools to control its impact on the cell population heterogeneity. We aim for our
mathematical formulation of multi-modality to fill this gap. Additionally, design
features (ii) and (iii) control the expression levels across the cell population and the
time to reach stationarity, respectively.
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The design problem as an optimization program

We now consider the mathematical formulation of the design problem that incorpo-
rates the design features (i) - (iii). We assume a biochemical reaction network model
with unknown reaction rate parameters subjected to these design constraints. We use
the same notation for the biochemical reaction network and for the chemical master
equation as in Chapter 1, but we replace the transition matrix H(c) corresponding
to the continuous CME with the matrix D(c) that corresponds to the approximate
discrete time dynamics:

D(c) = dtH(c) + IM×M (2.3)

In the design problem formulation we want to find the reaction rate vector c =

(c1, . . . , cM) of the biochemical reaction network such that the transient (or station-
ary) probability distribution vector p(x, t) is constrained according to our choice of
design features at time points t ∈ T = {t1, . . . , tk}, where k ≥ 1 is the number of
time points. Additionally, the dynamics of the probability distribution vector p(x, t)
are constrained by the CME. Lastly, we want to control the convergence rate of the
transients to stationarity. These constraints and variables result in the following
optimization program:

Find c = (c1, . . . , cM) such that

f0p0 ≤ µ0, f p∗ ≤ µ f , (2.4)

fieH(c)ti p0 ≤ µi, (2.5)

(D(c) − p∗1M)T (D(c) − p∗1M) ≤ µ2IM×M, (2.6)

D(c)p∗ = p∗, (2.7)

H(c) = ΣM
j=1c j Hj, (2.8)

p0 ∈ X0, p∗ ∈ X f , pti ∈ Xi, (2.9)

X0, Xi, X f ⊆ P, ∀1 ≤ i ≤ k, (2.10)

where p0 and p∗ are the initial and stationary distributions, respectively; f0, fi, f

are pre-selected projection operators that result in uni- or multi-modality of distri-
butions; X0, Xi, X f are pre-selected subsets of P; µ, µi, µ f are the tightness of the
bounds, for all 1 ≤ i ≤ k.

The inequalities in equations (2.4) and (2.5) impose design features (i) and (ii) at time
points {t1, . . . , tk} under appropriate choices of operators. The initial, transient, and



27

stationary distributions are constrained by projection operators f0, fi, f , respectively
for 1 ≤ i ≤ k. An example of operator that imposes unimodality and the location m

of the mode is the function g : R≥0 → R≥0, g(x) = (x−m)2 [MG09]. In Section 2.4,
we give more examples of projection operator choices.

As shown in [XB04], the inequality in equation (2.6) uses the bound µ to tune the
largest singular value of matrix H(c). Thus, µ controls the rate of convergence to
the stationary distribution. The inequality reduces to a semi-definite constraint by
using the Schur complement formulation in [BV04].

The equality in equation (2.7) specifies that p∗ is the stationary probability distribu-
tion vector of the Markov process, as explained in [XB04].

Remark 2. We clarify that design features (i) and (ii) apply to the marginal prob-
ability distributions of biochemical reactants in networks with more than just one
species, N > 1. In order to marginalize the probability distributions, we multiply
the operators f , f0 and fi, 1 ≤ i ≤ k, by the appropriate marginalization matrices of
sizes M × MN−1.

Remark 3. In practice, we choose to implement the design problem to minimize the
linear objective function given by the sum of the bounds µ0 + µ1 + . . .+ µk + µ f + µ

with respect to the rate reaction rate vector c = (c1, . . . , cM) under the constraints in
equations (2.4- 2.10). When the bounds µ0, µ1, . . . , µk, µ f , µ are pre-specified, the
design problem reduces to finding a reaction rate vector c that satisfies equations
(2.4- 2.10), if c exists. Thus, the optimization program simplifies to a feasibility
problem.

Finding a solution to the design problem

Our main challenge in finding a solution to the design problem is the exponential
operator present in equation (2.5). Our best approach has been to consider the
Taylor approximation to the exponential operator and calculate the error of this
approximation. Using the Taylor approximation of order l ≥ 1 of the exponential
operator, the inequality in equation (2.5) is replaced by

fi
l∑

v=0

1
v!
(H(c)ti)vp0 ≤ µi, ∀1 ≤ i ≤ k . (2.11)

Subsequently, the design problem has linear constraints in equations (2.4) and (2.8),
a semi-definite constraint in equation (2.6), and polynomial constraints in equations



28

(2.7) and (2.11). The problem is polynomial of degree l + 1 in variables c, p0,
and p∗ [BV04]. In Section 2.4, we find it useful to assume knowledge of p0 and
p∗, acquired either through experimental data or by computer simulations. This
reduces the degree of the polynomial problem to l, eliminates equation (2.4), and
makes equation (2.7) linear. The design problem in equations (2.4-2.11) is now a
polynomial optimization program of degree l. In Section 2.4, we assume l = 1, so
the equality in equation (2.11) is also linear. We then use CVX [GBY08; GB08] to
solve the resulting optimization problems in Section 2.4.

Remark 4. There is a clear trade-off between choosing a larger truncation order l

with the effect of decreasing the approximation error and keeping the degree of the
polynomial inequalities in the design problem low.

2.4 Implementation of the Stochastic Design Framework
The protein production-degradation reaction network
We implement our design problem formulation to the gene regulatory network of
protein production and degradation in [DM15]. Here, protein production and degra-
dation are modeled stochastically as a birth-death Markov process. The chemical
reaction network has only two reactions:

A
c1−−−⇀↽−−−c2
∅. (2.12)

The reactions in equation (2.12) model the production and degradation of protein
species A. The rates of the two reactions are c1 and c2. The birth occurs according
to a Poison process with probability c1 per unit time and the death occurs with
probability per unit time proportional to c2 A(t). The analytic solution to its chemical
master equation is p(t) = c2

c1
(1 − e−c1t) [GS01].

We choose the transient distribution to be unimodal with a single mode at 100
proteins using the operator f (x) = (x − 100)2 and find the chemical reactions that
satisfy this constraint. We assume that the stationary distribution is pre-determined
by a Gaussian distribution with the same mean. The initial probability distribution
is a Dirac delta function of height 1. Matrices H1 and H2 in equation (1.19) of
Chapter 1 are the same as in [MG09].

Our stochastic design framework finds optimal reaction rates c1 = 3.9894 and
c2 = 0.0397. The number of states in the FSP truncation is S = 201 and the
convergence rate to the stationary distribution is µ = 0.1. The approximation error
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Figure 2.4: Solution to the design problem for a protein production-degradation
reaction network. Time evolution of the unimodal transient distributions in the
birth-death process in chemical reactions 2.12. The transient distribution after 100
seconds is displayed in orange and it has a single mode at 100 protein counts.
The previous transient distributions are displayed in blue and they are indeed uni-
modal. The black arrow indicates the transients’ progression towards stationarity as
a function of time.

is O(10−9). The results are illustrated in Figure 2.4. For a comparison of the last
transient in Figure 2.4 and the stationary distribution, see Figure A.1 in Appendix A.

Remark 5. The solution to the optimization problem is not unique. The reaction
rates c1 and c2 can take other values and they can certainly be adjusted by tuning
the bounds µ0, µ1, . . . , µk, µ f in equations (2.4-2.10).

The Schlögl chemical reaction network
The Schlögl chemical reaction network [Gil91] exhibits bistability in the determin-
istic model and bimodality in the CME model. See Gunawan et al. [Gun+05] for an
in depth discussion of the Schlögl chemical reaction network. The set of chemical
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reactions in the Schlögl network are as follows:

A + 2X
a1−−−⇀↽−−−a2

3 X,

B
a3−−−⇀↽−−−a4

X.
(2.13)

The concentrations of chemical species A and B are buffered and the four propensity
functions are as follows:

a1(X) = k1 A
1
2

X(X − 1),

a2(X) = k2
1
6

X(X − 1)(X − 2),

a3(X) = k3B,

a4(X) = k4X,

(2.14)

where k1, k2, k3, and k4 are the reaction rates.

We return to our previous notation by setting c1 = k1 A, c2 = k2, c3 = k3B, and
c4 = k4. The analysis of the deterministic model of the reaction network informs
us that there exists a bifurcation with two equilibrium values of s1 = 84.79 and
s2 = 569.9. We construct our projection operators to be centered around these
values.

Using operator funimodal(x) = (x − s1)2, we impose unimodality on the transient
distributions and we find optimal rate reaction values c1 = 1.0710 × 10−5, c2 =

21.9939 × 10−15, c3 = 0.3668, and c4 = 0.0049. We expect the reaction rate
values to span several orders of magnitude [Gun+05]. The convergence rate in
the application of our stochastic design framework is µ = 0.001. This result is
illustrated in Figure 2.5.

Alternatively, we can also impose a bimodal transient constraint as in [MG09] using
projection operator

fbimodal(x) =
{

min((x − s1)2, 14920) if x ≥ 328
min((x − s2)2, 14920) otherwise.

(2.15)

and, simultaneously, a unimodal stationary constraint f ∗(x) = (x − s1)2. A plot of
the bimodal projection operator is available in Figure A.2 in Appendix A.

The results of stochastic design framework are illustrated in Figure 2.6. We start
from an initial distribution p0 consisting of two Dirac delta functions with different
weights and we move through a bimodal transient towards the unimodal steady state
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Figure 2.5: Solution to the design problem for the Schlögl reaction network
with unimodal transient constraints. We plot the time evolution of the unimodal
transients and compare it to the the stationary distribution. We find optimal rate
reaction values c1 = 1.0710 × 10−5, c2 = 21.9939 × 10−15, c3 = 0.3668, and
c4 = 0.0049 with a convergence rate to stationarity of µ = 0.001. Not all transients
are displayed.

distribution p∗. It is possible to find a solution to the problem almost irrespective
of the placement and the heights of the Dirac delta functions. We demonstrate this
in Figure 2.7 with a different unimodal stationary distribution choice of f ∗(x) =
(x − s2)2. It is also possible to define an initial distribution p0 with Gaussian
distributions replacing the Dirac delta functions. We can also replace the piece-
wise function with a sum of Gaussian distributions centered at s1 and s2. In all these
cases, we are able to obtain solutions to the stochastic design problem.

Remark 6. When we impose a bimodal steady state distribution constraint, we can
not find a satisfactory solution. The reason for this issue is that we implement
equation (2.7) as the relaxation ‖D(c)p∗ − p∗‖ ≤ γ for small γ. Hence, p∗ is not
forced to be an eigenvector of the matrix D(c) and we do not guarantee that there are
no other eigenvectors corresponding to eigenvalues closer to 0. In the biochemical
reaction network examples in Figures 2.6, 2.7, and 2.9, the transient approaches
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Figure 2.6: Solution to the design problem for the Schlögl reaction network with
bimodal transient constraints. We plot the time evolution of the distributions. In
part a, the initial distributions is pictured. We move through the bimodal transients
in parts b-e. Part f has the stationary distribution. Not all transients are displayed.

the desired stationary distribution p∗, but it ultimately decays to a stationary dis-
tribution corresponding to the eigenvector with the largest eigenvalue. We choose
not to implement equation (2.7) without the relaxation because the problem can be
infeasible.

The genetic toggle switch
The genetic toggle switch is constructed from two promoters that mutually repress
each other [GCC00]. The toggle switch flips between stable states using transient
chemical or thermal induction. The bimodality property of the transients arises
from the mutual inhibition of the two repressor genes, according to the diagram in
Figure 2.8. Let A be the number of molecules of repressor A, B be the number of
molecules of repressor B, I be the number of molecules of inducer I, according to the
diagram in Figure 2.8. The mathematical model for the switch is adapted from the
model in [GCC00] to consider only one inducer and to include the basal expression
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Figure 2.7: Solution to the design problem for the Schlögl reaction network with
bimodal transient constraints We plot the time evolution of the distributions. In
part a, the initial distributions is pictured. We move through the bimodal transients
in parts b-e. Part f has the stationary distribution. Not all transients are displayed.

Inducer I

ReporterRepressor B Promoter B Repressor APromoter A

Figure 2.8: The biological circuit diagram for the genetic toggle switch adapted
from [GCC00]. Repressor A inhibits transcription from promoter A. Repressor
B inhibits transcription from promoter B. Additionally, repressor A is inhibited by
induction with inducer I. The reporter gene fluoresces red.
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rates of the two repressor proteins. The propensity functions are as follows:

a1(A, B) = A0+c1/(1 + B)β,
a2(A, B) = c2 A,

a3(A, B) = B0 + c3/(1 + (A/(1 + I/K)η)γ,
a4(A, B) = c4B.

(2.16)

In this model, c1 and c2 are the rates of transcription and degradation of repressor
A, respectively. Similarly, c3 and c4 are the rates of transcription and degradation of
repressor B. β and γ are the cooperativity of repression of promoter B and promoter
A, respectively. We use the parameter values from [GCC00]: β = 2.5, γ = 1, η =
2.0015,K = 2.9618 × 10−5, I = 3.25 × 10−5, along with the basal levels of protein
expression A0 = 5, B0 = 0.1.

We constrain the transients to be bimodal and the stationary distribution to be
unimodal. The results of our stochastic design framework are illustrated in Figure 2.9
for repressor A.

Reducing the error bound
If the error bound of the approximation is deemed too large, we can use a larger
order approximation of the exponential operator to adjust it. In this case, the
design problem becomes a polynomial optimization problem of order equal to that
of the new Taylor approximation. Polynomial optimization problems (POPs) are
computationally NP-hard [Par03]; but, in practice, solutions can usually be found for
problems of small to moderate size [Wak+05b; Wak+05a]. Using our formulation,
we expect the polynomial optimization problems to be solvable for biochemical
reaction networks with several species. Our ability to obtain a solution to the POP
will also depend on the number of design features we specify and on the number of
molecule counts allowed for each species.

2.5 Conclusion and Future Work
In this chapter, we introduce methods for designing the stochastic behavior of bio-
chemical reaction networks modeled by the chemical master equation. To perform
biological design, we find reaction rate parameters to match desired stochastic dis-
tributions. Biological design is an underdeveloped area of research, even though
the problem of choosing parameters that match measured stochastic distributions,
known as parameter identification, has been well studied (Chapter 4).
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Figure 2.9: Solution to the design problem for the genetic toggle switch with
bimodal transient constraints. We plot the time evolution of the distribution of
repressor A. In part a, the initial distributions is pictured. We move through the
bimodal transients in parts b-e. Part f has the stationary distribution. The rate
reaction values we find are as follows: c1 = 150.7, c2 = 0.97, c3 = 1.57, c4 = 0.12.
Not all transients are displayed.

First, we consider designing the stochastic behavior of a transcriptional network with
a known analytical stationary solution to its chemical master equation model. We
determine the reaction rates that resulted in the desired mean, variance, and global
maximum of the joint stationary distribution of transcription factor and transcription
factor bound to DNA. We demonstrate that these optimization problems are greatly
simplified by the availability of an analytical solution to the chemicalmaster equation
model.

Additionally, we develop and implement a stochastic framework for the design of
biochemical reaction networks when a solution to their chemical master equation
may not be available. Our formulation of the stochastic design problem uses bio-
logically meaningful design features to set up optimization problems and to find the
optimal reaction rates of biochemical reaction networks. We illustrate this stochastic
design framework with the two examples of the Schlögl chemical network and the
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genetic toggle switch. We constrain the transient distributions of these two exam-
ple biochemical networks to be either unimodal or bimodal and we determine the
optimal reaction rates for their stochastic models.

Our stochastic design framework is particularly valuable for specifying the behav-
iors of biochemical reaction networks when analytical solutions to the chemical
master equation model are unknown. This is often the case, though recently effi-
cient approximations to stationary solutions [GMK17] and efficient algorithms for
running the finite state projection algorithm have been proposed in [Vo17]. Nev-
ertheless, transient analytical solutions to the chemical master equation model are
almost never known and it has been difficult to even approximate them. Therefore,
designing behaviors and finding solutions for specific transient stochastic behaviors
of biochemical reaction networks is an open area of research.

The main limitation of our stochastic framework lies in the size of the problems we
can accurately solve. A better approximation to the exponential operator might avoid
the "curse of dimensionality", but none that we considered were viable. Hence, the
polynomial optimization portion of the design problem formulation can only be
accurately solved for problems with several biochemical species. Yet, this might
be sufficient to offer insight into the behavior of larger gene regulatory circuits,
when combined with results in reducing multiscale stochastic models [Bal+06] or
when using quasi-steady-state and quasi-equilibrium approximations [MHK14]. In
particular, we hope to use our framework to design multiscale genetic circuits with
partial knowledge of rate reaction values.

Beyond the research in this chapter our stochastic design framework could offer
insight into what is even biologically possible to build. For example, we might want
to know if it is possible to build a genetic switch with a transient distribution with
four modes. In particular, when designing gene regulatory circuits, it is challenging
to predict what transient behavior might arise, how long the transient would the
last for, or if the stationary behavior will even follow our specifications. Using the
design feature language we have developed, we can test for these questions. Future
work will include applying our stochastic design framework to the class of genetic
switches and testing out what is possible to build. When combined with forward
simulation techniques, theoretical design work can be done by iterating between the
two, similar to the design process followed in engineering problems.
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C h a p t e r 3

IMPLEMENTING BIOLOGICAL CONTROL WITH
SEQUESTRATION FEEDBACK

As discussed in Chapter 1, developing biological controllers using synthetic biology
can help address problems in human health, industrial fermentation, and waste
recycling. Since controller design tools have already been developed for engineered
systems, we have considered applying them to the design of biochemical controllers.
Nonetheless, biochemical and engineered systems differ in several important ways,
such as biochemical systems’ limited ability to record only a positive error signal
when tracking a reference. Therefore, the controller design tools developed for
engineering systems are not directly transferable to biochemical systems. In this
chapter, we consider a sequestration controller for biochemical systems that relies on
the sequestration reaction of two species, as illustrated in Figure 3.1. The unbound
amount of controller species captures the error between the current and the desired
state of the system and it is always a positive quantity. We develop guidelines for
the biological implementation of sequestration feedback networks using properties
of the controller and of the process species.

Several examples of possible parts for the sequestration controller species include
transcriptional parts such as a mRNA and antisense RNA pair; protein parts such a
sigma and anti-sigma pair or a toxin and antitoxin pair. Depending on the choice of
parts, the sequestration reaction strength and the controller species degradation rates
can vary over several orders of magnitude. Briat et al. [BGK16] studied stochastic
sequestration feedback systems with no controller species degradation and demon-
strated that they can achieve perfect adaptation when they are stable. Nevertheless,
we have found the assumption of zero controller species degradation to be too re-
strictive for a realistic implementation of sequestration feedback networks [Ang+10;
Ren+17; QD18; Ols+17]. In this chapter, we demonstrate that the controller species
sequestration strength, as well as the process and controller species degradation
rates affect the stability and the performance (steady state error) of sequestration
feedback networks. We then use this analysis to provide guidelines for the biological
implementation of sequestration feedback networks.

First, we find that the stability margin of the sequestration feedback network with
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Figure 3.1: Sequestration feedback network diagram. The sequestration feed-
back network consists of a sequestration controller that controls the output of the
process species network. The sequestration controller relies on the binding of two
biochemical species Z1 and Z2 into the inactive complex Z1 : Z2. The rate of
binding of species Z1 and Z2 is assumed to be much higher than their rate of unbind-
ing. The sequestration controller and the process species network are connected by
interactions that are further described in Figure 3.3.

controller degradation can be improved by increasing either the process species
or the controller species degradation rates. We derive an analytical criterion for
the stability of the sequestration feedback network by comparing the values of
the process and the controller degradation rates under the assumption of strong
sequestration feedback.

Second, we consider how the process and the controller species degradation rates
influence the steady state error of the sequestration feedback system. A stable
sequestration feedback system with no controller species degradation implements
perfect adaptation, which implies zero steady state error. Additionally, we find
another optimal controller degradation rate that ensures zero steady state error.

Last, we uncover a tradeoff between the stability margin and the steady state error
in sequestration feedback systems by allowing both the process and the controller
degradation rates to vary. Increasing either the process or the controller species
degradation rate improves stability, but this can result in a large steady state error.
We also find that the steady state error is more sensitive to changes in the process
species degradation rate than the controller species degradation rate. Hence, we
have more options to tune the controller species without negatively impacting the
sequestration feedback system’s performance.
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Using our understanding of steady state error and stability margin, we provide
general guidelines for the implementation of sequestration feedback networks. We
suggest simple tuning options to improve the stability of sequestration networks.
When the process is already specified by experimental constraints, we explain how
to choose a controller for good stability and performance. We also suggest robust
parts for the implementation of sequestration feedback networks.

The results in this chapter were published in [Ols+17] and [Ren+17]. With respect
to [Ols+17], the author contributed by considering the implementation of sequestra-
tion feedback networks. The author incorporated the degradation of the controller
species in the model for the sequestration feedback networks and then determined
their properties of stability and performance. The author also developed guidelines
for the implementation of sequestration feedback networks. In [Ren+17], the author
contributed to the mathematical analysis of cell population controllers implemented
by sequestration feedback networks. The description of the work contained in this
chapter was written by the author.

3.1 Motivation
Biological control with sequestration feedback
Negative feedback is a ubiquitous motif in endogenous biological systems; the nega-
tive autoregulation motif is present in 40% of genes in E. coli [REA02]. Similarly to
endogenous systems, synthetic biological feedback controllers have also typically re-
lied on an implementation that uses negative feedback loops to achieve homeostasis.
Examples of synthetic negative feedback circuits include the cell growth regulator
in [You+04], the two-gene transcriptional network for RNA production matching
in [Fra+14], the stochastic feedback implemented with integrases in [Fol+17], the
co-culturing of two populations of microbes with different growth rates in [Sco+17],
and the optogenetics-based real time genetic compensator in [HME18].

Implementing synthetic biological controllers using negative feedback has been
appealing due to the properties it confers. Negative feedback is known to reduce
noise in gene expression and to improve response speed [DM15; Alo06]. The
strength of the negative feedback is usually proportional to the deviation from the
desired set point [Fra+14; You+04], which means that it behaves as a proportional
controller [AM08]. This implies that negative feedback cannot guarantee adaptation
to stimuli and that it confers limited, parameter-dependent disturbance rejection
properties. To maintain homeostasis, multiple feedback loops are usually employed,
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such as in the temperature control of the human body [Wer10]. Accordingly,
synthetic controllers that use negative feedback must be carefully tuned to provide
good performance.

It has been natural for synthetic biology to consider alternative feedback strategies
that result in better controller performance. Incoherent feedforward loops often
display the property of perfect adaptation [Goe+09; Ma+09], which means that the
system returns to the desired set point with no steady state error after responding
to a stimulus. The incoherent feedforward motif has also been identified in the
regulation of endogenous systems [Man+06; Alo06]. Yet, incoherent feedfoward
loops are challenging to engineer in synthetic biology because they rely on an
engineered combinatorial promoter [DKM10] or on an enzyme in the saturation
regime [Ma+09]. A synthetic incoherent feedback loop based on an activator and a
repressor binding to the same promoter was engineered in [GHM14].

Sequestration feedback, as introduced in Figure 3.1, has been another potential im-
plementation of perfect adaptation through integral control. Examples of synthetic
circuits that use sequestration feedback include the concentration tracker in [Hsi+14],
the two bacterial growth controllers in [McC+17; Ann+17], and the gene expression
controller in [Ann+17]. An endogenous sequestration feedback system relies on
the binding of sigma factor σ70 to anti-sigma factor Rsd [JI99]. Other biochemical
reaction network designs that implement robust perfect adaptation through integral
control are studied in [XD18] and a proportional integral derivative controller design
is studied in [Che+18].

Another advantage of using sequestration feedback to implement synthetic control
has been that it emulates the ability of electrical and mechanical controllers to per-
form two-sided subtraction. Biochemical systems differ from classical engineering
systems in that they can only perform comparison and control for non-negative con-
centrations of biochemical species. Therefore, biochemical systems can not exactly
implement two-sided subtraction (of either positive or negative sign) and thus can not
compute the two-sided error signal often required for control action. In particular,
negative feedback in biological systems often only performs one-sided subtraction
because it is active only once a quantity is above the set point. One approach to
approximating two-sided subtraction with biochemistry is to use sequestration feed-
back to perform two one-sided subtractions, as illustrated in Figure 3.1. If there are
more molecules of Z1 than Z2, then the sequestration feedback encodes the quantity
Z1 − Z2, whereas if there are more molecules of Z2 than Z1, then it encodes the
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quantity Z2 − Z1. To build controllers that can encode a two-sided error signal,
two-sided subtraction must be approximated for biological control.

Chapter contribution
Previous literature has suggested implementing sequestration feedback networks
with no controller species degradation to ensure that they achieve perfect adapta-
tion [BGK16]. Two advantages of this strategy are good performance (zero steady
state error if the closed loop system is stable) and a flexible implementation of
the process network. However, it has become clear that the controller species are
degraded [Ang+10; Ren+17; QMD17] and that the stability of the sequestration
feedback network depends on both the process and the controller parameters, as we
explain in Section 3.4. We suggest another possible implementation of sequestration
feedback networks that accounts for the controller species’ degradation and ensures
zero steady state error (if the closed loop system is stable) in Section 3.5. Neverthe-
less, this implementation depends on an exact relationship between the controller
and the process network parameters, which renders it inflexible and impractical.

Perfect adaptation (integral control) is a property that can be found in endoge-
nous biological and engineering systems [Fer16; Goe+09; EGK02; Yi+00; AM08].
Nonetheless, current synthetic biological controllers may or may not be able to
achieve perfect adaptation in a practical, flexible implementation. In Sections 3.6
and 3.7, we relax the requirement that the sequestration controller achieve perfect
adaptation andwe simulate a set of sequestration controllers with good performance,
large stabilitymargin, and good disturbance rejection properties. Furthermore, these
controllers are advantageous because they do not require a precise implementation
of their biological parameters.

In the previous literature for sequestration feedback networks, both the process and
the controller networks have been simultaneously built [McC+17; Hsi+14; Fol+17;
Lil+17]. Consequently, sequestration controllers have been built and optimized for
a single process network, which could limit their generality for future use; a class of
optogenetics-based real time controllers could be a more versatile option [HME18].
Moreover, these process networks have occasionally been complicated to ensure
good performance of the sequestration feedback [Lil+17; McC+17]. This approach
differs from the work flow of engineering systems [AM08], where the process
network is often assumed to be fixed and unchangeable and the controller is built
to stabilize the process and to achieve good performance. Thus, we also consider
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the problem of building a sequestration controller for a fixed process network in
Section 3.7.

This chapter is organized as follows: In Section 3.2, we introduce implementation
considerations for the process and the controller species such as the strength of the
controller species’ sequestration reaction, as well as the degradation of both the
process and the controller species. In Section 3.3, we introduce a model of the
sequestration feedback controller and we use it to derive a stability criterion for the
sequestration feedback networks based on comparing the process and the controller
degradation rates in Section 3.4. In Section 3.5, we discuss the performance of
sequestration feedback networks based on the value of the controller species degra-
dation rate. We ascertain a tradeoff between the stability and the performance of
sequestration feedback networks in Section 3.6. In Section 3.7, we give guidelines
for the design of sequestration feedback networks. Finally, we conclude and propose
future research directions in Section 3.8.

3.2 Implementation Considerations for Sequestration Feedback Networks
Sequestration feedback networks can be built using a variety of biological parts
for the two sequestering controller species. Several examples of parts for the two
controller species are illustrated in Figure 3.2. They include transcriptional parts
such a mRNA and antisense RNA pair, sigma factors such a sigma and anti-sigma
pair, or protein parts such as a toxin and antitoxin pair.

Transcriptional parts can be obtained from systems such as the hok-sok type I toxin-
antitoxin system in E. coli or from parts already mined for synthetic biological
systems. The hok gene product is a toxin that kills cells without its antidote, the
antisense RNA sok that is complementary to the hok mRNA [Ger88]. A synthetic
system of RNA and antisense RNA that originally performed translation initiation
control is adapted to regulate transcriptional elongation in [Liu+12]. Protein parts
can be obtained from type II toxin-antitoxin bacterial systems such as CcdA-CcdB.
The toxin CcdB targets DNA gyrase and induces the breaking of DNA and subse-
quently cell death, while its antitoxin CcdA inhibits CcdB toxicity by sequestering
it into a very stable CcdA-CcdB complex [De +09]. Protein parts can also be sigma
and anti-sigma factors such as σ70 binding to bacteriophage T4 AsiA and inhibiting
RNA polymerase, which slows transcription and inhibits E. coli growth [SC08].

Depending on the choice of parts for the controller species in sequestration feedback
networks, the binding affinity of the sequestration reaction can vary over several
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transcriptional parts
mRNA : antisense RNA

𝞂 𝞂
𝛔# 𝛔#

10-2 – 102 nM

10 – 102 nM

10.33 nM

Weak sequestration

1 nM 103 nM10-3 nM

Strong sequestration 

sigma factors
sigma : anti-sigma

protein parts
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Figure 3.2: The strength of the sequestration reaction. The controller seques-
tration reaction can be implemented with a multitude of biological parts. Example
transcriptional parts are mRNA and antisense RNA. Antisense RNA inhibits the
translation of complementary mRNA by base pairing to it and physically obstruct-
ing the translation machinery of the cell. Anti-sigma factors bind sigma factors
to inhibit transcriptional activity. Protein parts include the toxin-antitoxin module
CcdA-CcdB in E. coli. When CcdB outlives CcdA, it kills the cell by poisoning
DNA gyrase. The antitoxin CcdA blocks the activity of the toxin CcdB by bind-
ing together into a complex, thus allowing cells to grow normally. We include
representative ranges of the binding constants (Kd values) for the transcriptional
parts [Wal+02], the sigma factors [SC08], and the toxin parts [De +09]. For small
Kd values, the association rate of the two molecules is high and the sequestration
reaction is considered strong. In contrast, for large Kd values, the sequestration
reaction is considered weak. This figure includes a partial reproduction of a figure
in [De +09] with permission from the author.

orders of magnitude, as illustrated in Figure 3.2 and Table B.5. Yet, the binding
affinity of the sequestration reaction influences the stability of the sequestration
feedback network, as discussed in Section 3.4. Accordingly, we need to carefully
consider whether our implementation choice for the controller parts results in stable
closed loop control.

Additionally, depending on the choice of implementation of the controller species,
their degradation rates can also vary, as illustrated in Table 3.1. Typically, the
half-life of proteins inside the cell is long since they are slowly degraded, at a rate
between 1 hr−1 and 2 hr−1. However, the half-life of mRNA inside the cell is very
brief (Table B.4), so we must include this degradation rate in our model. The
degradation rate of the controller species influences the stability of the sequestration
feedback network, as we discuss in Section 3.4.
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mRNA Hok RpoS CcdA
6.9 hr−1 - 20.8 hr−1 2 hr−1 1.39 hr−1 1.39 hr−1

Table 3.1: The degradation rates of biological parts that could be used to build
sequestration controllers. We compute the degradation rates of mRNA, toxin Hok,
sigma factor RpoS, and antitoxin CcdA. The degradation rate of mRNA is between
6.9 hr−1 and 20.8 hr−1 [Ber+04]. The degradation rate of toxin Hok in the type I
toxin-antitoxin pair in E. coli is 2 hr−1 [SM12]. The degradation rate of the sigma
factor protein RpoS is 1.39 hr−1 when the E. coli cells are in stationary phase at 37◦C
or under stress conditions [ZG98]. The antitoxin CcdA is degraded in wild-type
cells with a rate of 1.39 hr−1 in the absence of toxin CcdB and a rate of 0.69 hr−1

when bound in a complex with toxin CcdB [De +09]. These degradation rates were
computed from the half-lives in Table B.4.

The controller species degradation rate is particularly important when analyzing the
stability and the performance of cell population growth controllers. Cell population
growth control can be implemented using sequestration feedback with two proteins
or RNAs as the controller species [Ren+17; McC+17]. In these implementations,
the controller species are subject to both degradation and dilution. In addition to the
degradation rate, the dilution rate equals the growth rate of the cells and thus can not
be neglected in the controller’s dynamics. Hence, cell population growth controllers
lose the property of perfect adaptation due to the degradation and dilution of the
controller species.

To recover the property of near-perfect adaptation in the presence of dilution of
the controller species, Qian et al. propose a time-scale separation between the
controller species reactions and their dilution [QD17]. In section 3.3, we introduce
a model of sequestration feedback that includes the controller species degradation
and dilution. We employ this model to perform a general analysis of the stability
and the performance of sequestration feedback systems. Furthermore, we discuss
how our biological implementation of the sequestration feedback network results in
good stability and performance properties.

3.3 ModelingSequestrationFeedbackNetworkswithController SpeciesDegra-
dation

In Figure 3.3, we introduce a mathematical model of a sequestration feedback
network with nonzero controller species degradation and dilution rates. We only
include the controller species equations in this section. For the full model, we refer
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Figure 3.3: The sequestration feedback network’s controller and process net-
works. The goal of the sequestration controller is for the process output species Xn
to track the reference, as explained in Figure 1.5. The controller species Z1 and Z2
bind together in a sequestration reaction to form an inactive complex that is repre-
sented by an empty set. The reference acts on the sequestration feedback network
as the constitutive production of controller species Z1. We assume that the process
species X1, . . . , Xn are reactants in bimolecular chemical reactions. They interact
with each other, as well as with the controller species. The controller species Z1
acts on the process input species X1. The process output species Xn acts on the con-
troller species Z2. The controller and process species are subjected to degradation
and dilution, which is indicated by arrows pointing to empty sets. This diagram
extends the setup in [BGK16].

the reader to Appendix B.

The two controller species Z1 and Z2 sequester each other into an inactive complex
at rate η. The reference signal comes in through controller species Z1’s constitutive
production at rate µ. Controller species Z1 actuates the process network input
species X1 at rate θ1, while the process network output species Xn acts on the
second controller species Z2 (the sensing species) at rate θ2. For simplicity, we
assume that the controller species are degraded at the same rate γc and that the
process species are also degraded at the same rate γp. Under these assumptions and
notation, the chemical reactions that describe the sequestration feedback network
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are as follows:

∅
µ
−→ Z1, Z1

θ1−→ Z1 + X1, Xn
θ2−→ Xn + Z2,

Xi
γp−−→ ∅, ∀1 ≤ i ≤ n, Z1

γc−−→ ∅, Z2
γc−−→ ∅,

Z1 + Z2
η
−→ ∅.

We let t denote time and x1, . . . , xn denote the concentrations of the process species
X1, . . . , Xn. We let z1 and z2 denote the concentrations of the controller species Z1

and Z2, respectively. Thus, the sequestration controller can be modeled as follows:

Ûz1 = µ − ηz1z2 − γcz1,

Ûz2 = θ2xn − ηz1z2 − γcz2.
(3.1)

If we define the error signal as e(t) = µ
θ2
− xn(t), then the controller species have the

following dynamics with respect to it:

d
dt

(
z1(t) − z2(t)

)
= θ2e(t) − γc(z1(t) − z2(t)). (3.2)

Therefore, the control action z1(t) − z2(t) integrates the error signal e(t) as follows:

z1(t) − z2(t) = θ2

∫ t

0
eγc(s−t)e(s)ds. (3.3)

If the closed loop sequestration feedback network is stable, then equations (3.1) have
a steady state and we can evaluate the magnitude of the steady state error. An in
depth discussion of this topic is presented in Appendix B.

Assuming stability, when the controller species do not degrade, the sequestration
feedback network exhibits the property of perfect adaptation since the error equals
zero at steady state and since it is integrated by the controller. As explained in
Chapter 1, perfect adaptation is a desirable property of biological systems because
it guarantees zero steady state error and robustness to disturbances, irrespective of
the process network (as long as the closed loop system remains stable). This allows
for an imprecise implementation of the process network, although the zero con-
troller degradation rate requires a very precise implementation of the sequestration
controller.

With a nonzero degradation of the controller species, the sequestration controller
is a lag compensator that integrates the error signal [AM08; Ren+17]. When the
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controller species degradation rate is small, this sequestration controller approaches
integral control, whereas when the controller species degradation rate is large,
it approaches proportional control. It is not immediately apparent whether this
controller retains the properties of zero steady state error or perfect adaptation.
In Section 3.5, we show that while integral control guarantees zero steady state
error under a variety of process network implementations, the performance of the
lag compensator depends on the parameters of the sequestration feedback network.
Consequently, we analyze the performance of sequestration feedback networks in
Section 3.6. Furthermore, the stability criterion changes between sequestration
feedback networks with zero and nonzero controller species degradation rate, as we
discuss in Section 3.4.

Since both the process and the controller networks can only be imprecisely built
with biological parts, we consider how this affects the properties of stability and
performance of sequestration feedback networks in Section 3.6. In particular, we
replace the stringent performance requirement of zero steady state error with a more
flexible and practical performance requirement of small steady state error [AM08].
In Section 3.7, we formulate guidelines for implementing sequestration feedback
networks with large stability margin and small steady state error.

3.4 Stability Analysis of Sequestration Feedback Networks
In this section, we derive an analytic criterion for the stability of sequestration
feedback networks with nonzero controller species degradation. For simplicity,
we assume strong sequestration binding of the controller species. We refer to this
condition as the "strong sequestration feedback" regime, as defined in [Ols+17], and
we restate it mathematically in the stability criterion.

First, we motivate the stability analysis by assessing the effect of varying the pro-
cess species degradation rate, while keeping the controller species degradation rate
constant (Figure 3.4). As we decrease the value of either the process species degra-
dation rate (or the controller species degradation rate), the sequestration feedback
network’s stability margin decreases, as evidenced by the oscillations in the output
species. For a small value of the process degradation rate, the sequestration feedback
network becomes unstable, as evidenced by the sustained oscillations in panel B of
Figure 3.4, and the controller becomes unable to track the reference signal. Hence,
depending on the values of the controller and the process species degradation rates,
the sequestration feedback network can be either stable or unstable.
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A second insight we derive from Figure 3.4 is applicable to the implementation
of sequestration feedback networks; we must measure the process degradation rate
before choosing a sequestration controller to ensure that the controller can stabilize
it. Intuitively, the process and the controller should not operate at vastly differ-
ent speeds under the assumption of strong sequestration binding of the controller
species; the opposite is true for weak sequestration feedback [Ols+17]. A controller
with either a higher value of the degradation rate or under a "weak sequestration
feedback" [Ols+17] might be able to stabilize the output species in panel B of
Figure 3.4, as discussed in Section 3.6.

Figure 3.4: The stability of the sequestration feedback network with vary-
ing process species degradation rate and strong sequestration feedback. We
illustrate the stability of sequestration feedback networks by assuming strong se-
questration binding, indicative of a sigma factor implementation of the controller
species. In panel A, we use a process degradation rate of 2 hr−1, corresponding to a
protein implementation of the process species. We note stability since the process
output species X2 (red) tracks the reference concentration of 50 nM (orange dashed
line). In panel B, a process species degradation rate of only 0.25 hr−1 results in
instability, as evidenced by the sustained oscillations in the process output species
X2. The parameters used for this simulation are given in Table B.7.

As the insights from Figure 3.4 suggest, the criterion for the stability of sequestration
feedback networks with controller degradation is derived by comparing the process
degradation rate and the controller degradation rate. The comparison between the
process and the controller species degradation rates is also motivated by the ratio
of the two degradation rates appearing as a term in the characteristic polynomial
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associated with the stability of the linearized sequestration feedback network:

(s + 1)n
(
s +

γc

γp

) (
s +

γc

γp
+
α +

β
α

γp

)
= − β

γ2
p
, (3.4)

where α = θ1θ2
∏n−1

i=1 ki
γnp

and β = ηµ are constants and s ∈ C is the variable. The value
of the ratio of the process and the controller degradation rates informs the location
of the complex roots of the characteristic polynomial.

We formalize the stability criterion in Theorem 3.1 below and we include its deriva-
tion in Appendix B and in [Ols+17]. We consider three possible comparisons
between the process degradation and the controller degradation rates: γp � γc,
γp ≈ γc, and γp � γc.

Theorem 3.1. We consider the sequestration feedback network with controller
degradation described in equations (3.1) under the assumption of strong seques-
tration feedback (β � α2, αγp). The closed loop stability criterion depends on the
relationship between the process degradation rate γp and the controller degradation
rate γc. We consider the following three cases:

Case I: If the controller species degradation rate is much smaller than the process
species degradation rate, the stability criterion is the same as the production-
degradation inequality in [Ols+17], which we reproduce here as:

γp � γc,

γp >
n+1

√√√
θ1θ2

∏n−1
i=1 ki

tan
(
π
2n

) (
1 + tan

(
π
2n

)2) n
2
.

(3.5)

Case II: If the controller and process species degradation rates are approximately
equal, then the closed loop system is stable if

γp ≈ γc,

γp >

n+1
√
θ1θ2

∏n−1
i=1 ki√

tan
(
π

n+1
)2
+ 1

.
(3.6)
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Case III: If the controller species degradation rate is much larger than the process
species degradation rate, then the closed loop system is stable if

γc � γp,

γp >

n

√
θ1θ2

∏n−1
i=1 ki

n
√
γc

√
1 + tan

(
π
n

)2
.

(3.7)

When the process degradation rate is much larger that the controller degradation
rate, then the stability criterion is the same as the production-degradation inequal-
ity in [Ols+17]. Intuitively, the stability criterion requires the degradation of the
process species to be faster than their production such that the process can respond
effectively to the control action. When the process and the controller degradation
rates are similar, the stability criterion only differs by a constant from the first case.
Finally, when the process degradation rate is much smaller than the controller degra-
dation rate, then the stability criterion relies on the controller degradation term to
compensate for the slow process degradation rate. Since the process network is slow,
the sequestration feedback network is challenging to stabilize and its performance
can be very poor, as illustrated in Figure 3.6. In this case, stability may not be
sufficient to ensure that the sequestration controller tracks the reference well. We
study the performance of sequestration feedback networks in Sections 3.5 and 3.6.

3.5 The Performance of Sequestration Feedback Networks
When the controller species degradation is negligible, the sequestration feedback
network exhibits the property of perfect adaptation, as discussed in Section 3.3
and in Appendix B. The controller implements integral control, which ensures
that the steady state error equals zero, provided that the closed loop system of the
sequestration feedback network is stable.

When the controller degradation rate is not negligible, we must include it in the
model for the sequestration feedback network. In this case, the closed loop system
has zero steady state error for zero controller species degradation, as well as for a
unique value of the controller degradation rate, whichwe call the "critical" controller
degradation rate. We illustrate the critical controller degradation rate in Figures 3.5
and B.1.

We illustrate the effect of the controller degradation rate for an example sequestration
feedback network with two process species in Figure 3.5. When the controller
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degradation rate has value zero, then the steady state error is also zero. Similarly,
at the critical controller degradation rate, the steady state error also equals zero.
Indeed, the degradation rate values of zero and of the critical degradation rate are
the only ones for which the network tracks the reference with zero steady state error.
We can use the theorems in this section to determine the conditions under which the
critical degradation rate exists and to compute it.

Figure 3.5: The critical controller species degradation rate. For a sequestration
feedback network with only two process species, we vary the controller species
degradation rate and measure the steady state error. With no controller species
degradation (blue), the steady state error is zero (purple dashed line). When the
controller species degradation rate is γc = 2 hr−1 (green), the steady state error
has a value of 0.3 nM. However, at the critical controller species degradation rate,
γc = 0.56 hr−1 (red), the steady state error has value zero. The parameters used for
this simulation are given in Table B.1.

In Appendix B.3, we analytically derive the critical controller species degradation
rate such that the steady state error of a sequestration feedback network with a
general process network equals zero. We also derive conditions such that the
critical controller degradation rate is achievable by the network parameters and we
demonstrate that it is unique. Here, we only state the analytical result for a simplified
process network.

Theorem 3.2. The critical controller degradation rate for a simplified process
network (i.e. each process species Xi is created by the previous process species Xi−1
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and creates the next process species Xi+1, ∀2 ≤ i ≤ n − 1, as in Figure B.2) is:

γc =
θ1θ2

∏n−1
i=1 ki

γn
p

−
ηµγn

p

θ1θ2
∏n−1

i=1 ki
. (3.8)

It can be achieved if and only if

γp <
n

√
θ1θ2

∏n−1
i=1 ki√
ηµ

. (3.9)

The critical controller species degradation rate offers the possibility of implementing
sequestration feedback networks that achieve zero steady state error even when the
controller species degrade. Yet, as the mathematical expression in Theorem 3.2
suggests, the critical controller degradation rate is dependent on all the parameters of
the sequestration feedback network. Therefore, the implementation of the controller
could be sensitive and impractical. This motivates us to analyze the performance of
an enlarged class of sequestration feedback networks with small, but nonzero steady
state error.

3.6 The Tradeoff Between Stability and Performance
As discussed in Sections 3.4 and 3.5, the critical controller species degradation
rate and the zero controller species degradation rate confer advantageous properties
to sequestration feedback networks, but can be impractical to implement. In this
section, we evaluate how sensitive the steady state error and the stability margin
are to the process and to the controller degradation rates. We are interested in
sequestration feedback network implementations with a small steady state error and
a large stability margin.

First, we define the stability margin of a sequestration feedback network with two
process species as:

S(γp, γc) =
γp(γp + γc)2

θ1k1θ2
(3.10)

The stability criterion in [Ols+17] states that the sequestration feedback network is
stable when S ≥ 0.5. For simplicity, we assume that the process species production
rates are equal: θ1 = θ2 = k1. Therefore, we can define the normalized process and
controller degradation rates as: γ ′p =

γp
k1

and γ ′c =
γc
k1
, respectively. The normalized
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Figure 3.6: The tradeoff between small steady state error and large stability
margin. We plot both the steady state error and the stability margin as functions
of the normalized process species degradation rate and of the normalized controller
species degradation rate for an example sequestration feedback network with two
process species. A. The red lines indicate zero steady state error, corresponding to
no controller degradation and to the critical controller degradation rate. We note
that perturbing the process degradation rate by a small amount will deviate from
the red line more than perturbing the controller degradation rate. In white, we draw
contours for a steady state error of 5 nM. B. Increasing either the process degradation
rate or the controller species degradation rate improves the stability margin. The
white arrow in the top right corner indicates the increasing stability margin. The
white region in the bottom left corner is unstable. This simulation was generated by
Yoke Peng Leong.
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process and controller rates, γ ′p and γ ′c, are unitless, according to Table B.3. The
steady state error can also be written in terms of the normalized process and con-
troller degradation rates. We use the normalized process and controller degradation
rates throughout Sections 3.6 and 3.7.

There is a tradeoff between achieving a large stability margin and a small steady
state error in sequestration feedback networks, as illustrated in Figure 3.6. To
obtain a small steady state error corresponding to good performance, the process
and the controller degradation rates must be close to one of the two red lines that
represent the zero controller species degradation rate and the (normalized) critical
controller species degradation rate in Figure 3.6A. Simultaneously, to obtain a large
stability margin, the process and the controller species degradation rates should be
as large as possible, as in Figure 3.6B. This result matches the stability criterion
in Appendix B.4; increasing either the process degradation rate or the controller
degradation rate improves the stability margin. Since the two objectives cannot be
simultaneously maximized, there is a tradeoff between achieving a large stability
margin and a small steady state error in sequestration feedback networks.

Second, Figure 3.6A indicates that the steady state error of sequestration feedback
networks is more sensitive to the process species degradation rate than to the con-
troller species degradation rate. Accordingly, we have more freedom to tune the
controller species degradation rate without negatively impacting the sequestration
feedback network’s performance.

In addition, we observe that slow process networks (small ratio between the process
species’ degradation and production rates) are difficult to stabilize for any controller,
as indicated in Figure 3.6B. Increasing the controller degradation rate can improve
stability, but can result in a large steady state error, as illustrated in Figure 3.6A.
Hence, sequestration feedback networks with a small ratio between the process
species’ degradation and production rates are challenging to stabilize and their
tracking performance can be very poor.

Last, we consider the problem of designing sequestration feedback controllers, as
part of the engineering cycle introduced in Chapter 1. In the next section, we provide
guidelines for the selection of a sequestration controller that achieves good stability
and performance properties.
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3.7 Implementation Guidelines for Sequestration Feedback Networks
In the previous sections of this chapter, we have determined the properties of
sequestration feedback networks. Subsequently, we consider the design step of the
engineering cycle and we determine sequestration feedback controllers for specified
process networks. We use Figure 3.6 to provide guidelines for the implementation of
sequestration feedback networks that have good stability and performance properties.

First, we note that there are process networks for which the tradeoff between steady
state error and stability margin is severe. Hence, designing a sequestration controller
that ensures stability and good performance may not be possible. We refer to the
ratio between the process species’ degradation and production rates as the "process
speed". In the previous section, we have observed that process networks with a small
process speed value such as 0.1 can only be stabilized by a sequestration controller
with a high controller species degradation rate; however, even then, the resulting
steady state error is very large. Therefore, sequestration feedback networks with
small process speed are difficult to stabilize and their tracking performance is poor.
Similarly, process networks with a large process speed value such as 1.4 require a
small controller species degradation rate in order to keep the steady state error low,
as illustrated in Figure 3.6A. However, this can result in a small stability margin.
Thus, sequestration feedback networks with a large process speed value can be close
to instability.

Subsequently, we consider a process network with a medium process speed value.
Let us consider a process speed value of 0.6. This results in a small steady state
error when the controller degradation rate is at most three times the process species
production rate (Figure 3.7A). Accordingly, the design problem simplifies to finding
a controller degradation rate that ensures stability. In Figure 3.7B, we observe that
a controller degradation rate that is at least twice as fast as the process production
rate results in a good stability margin. Depending on our implementation of the
process species, achieving a controller degradation rate that is at least twice as fast
as the process production rate could require a transcriptional implementation of the
controller species (Table 3.1). Figure 3.7 suggests that a robust implementation of
sequestration feedback networks uses a medium process speed since this allows for a
range of controller species degradation rates. The corresponding controller species
implementation can be determined using the degradation rates in Table 3.1.

Using Figure 3.7, we can first determine whether a specified process network is
subject to a severe tradeoff between performance and stability. If the process speed
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value is in the severe tradeoff region of Figure 3.7, building a sequestration controller
for the specified process network might not be possible or might require a controller
degradation rate outside the range of values given in Table 3.1. In this case, wemight
have to modify the process network to achieve a process speed that is subject to a
less severe tradeoff between performance and stability. Additionally, Figure 3.7 and
Table 3.1 can be used to decide the implementation of the sequestration controller
when the process species’ production and degradation rates have been measured.
Depending on the ratio between the controller species degradation rate and the
process species production rate, the implementation of the controller species is
informed by the values in Table 3.1.

3.8 Conclusion and Future Work
The development of a first generation of synthetic biological controller for microbes
is hopefully the beginning of an era when synthetic biology can help address new
problems in human health, industrial fermentation, and waste recycling. In this
chapter, we evaluate the stability and the performance of synthetic biological con-
trollers implemented by a class of sequestration feedback networks. Using control
theoretical methods, we develop conditions on the parameters of the sequestration
feedback network that ensure stability and good performance. We tune the strength
of the controller species’ sequestration reaction, as well as the degradation of both
the process and the controller species to obtain a large stability margin and a small
steady state error. Moreover, we discuss practical considerations for the biological
implementation of sequestration feedback networks and we suggest guidelines for a
robust implementation.

The application of control theory to synthetic biological controllers aims to ensure
that they function robustly, in different host organisms, despite perturbations in fluc-
tuating environments. Nevertheless, almost all sequestration feedback controllers
in the current synthetic biology literature have been concurrently built with the
process networks they control [McC+17; Hsi+14; Fol+17; Lil+17]. This approach
will likely limit the versatility of these biological controllers as they will be optimal
to a single host organism (microbe or fungus) and to its environment; a potentially
more general class of synthetic controllers are described in [HME18]. Therefore,
we believe that it is important to continue assessing the constraints imposed by
building sequestration feedback controllers for fixed process networks. By incorpo-
rating these constraints in our design of sequestration feedback controllers, we can
guarantee that they function robustly, across a variety of biological host organisms.
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Figure 3.7: Guidelines for designing sequestration controllers. We design the
controller of a sequestration feedback network for a specified process network. We
first measure the process species’ production and degradation rates and we render
the process speed in the plots in Figure 3.6 (orange solid lines). In this example,
we consider a process speed value of 0.6. This results in a small steady state error,
as indicated in panel A. Accordingly, the design problem simplifies to finding a
controller species degradation rate that ensures a good stability margin. In panel
B, we observe that a controller species degradation rate that is at least twice the
process species production rate results in a stability margin of at least 5 nM3 (pink).
We can match this controller species degradation rate with the values in Table 3.1
to inform our choice of controller species. We consider this to be a good controller
implementation. If we want a higher stability margin value, we can increase the
controller species degradation rate to match its value in panel B.
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Moreover, we will concurrently expand to consider other mechanisms for biological
control in addition to sequestration feedback. Several mechanisms for biological
control that are currently being explored include: paradoxical extracellular signaling
inspired by process regulation [Har+14] and post-translation mechanisms such as
multi-protease regulation. Using control theoretical tools, we will develop models
for these biological controllers and we will similarly assess their properties of
stability and performance. Depending on the application of interest to synthetic
biology, we will benefit from multiple mechanisms of feedback control to choose
the most suitable implementation.



59

C h a p t e r 4

COMPUTATIONAL METHODS

4.1 Introduction
The ability to model biochemical reaction networks has significant ramifications in
the scientific fields of synthetic biology, molecular biology, and medicine. When
biochemical species exist in large numbers, they can be treated as continuous quan-
tities modeled by deterministic ordinary differential equations [Hig08]. In contrast,
at the single cell level, biochemical species such as RNAs are produced at low copy
numbers during gene expression, thus requiring a stochastic representation of their
dynamics [Elo+02].

Probabilistic models such as the chemical master equation offer an accurate rep-
resentation of stochastic biochemical networks, but they grow exponentially in
complexity with the number of species considered [MNO12]. Therefore, it is chal-
lenging to study these stochastic, nonlinear models and to develop theoretical and
computational methods for them. In particular, an important aspect of modeling
stochastic biochemical reaction networks is the identification of parameter values
that fit experimental data obtained by measuring the output species of that network.
Most methods for parameter identification, such as the Metropolis-Hastings algo-
rithm [Bro+11; Gel+14], require a very large number of solutions to the underlying
model, one for each parameter evaluation. Hence, stochastic models of biochemi-
cal reaction networks are very computationally intensive to fit parameters for, even
when we have data measurements of the networks they represent.

In this chapter, we demonstrate the benefits and the disadvantages of reducing the
dimensionality of stochastic models of biochemical reaction networks prior to per-
forming parameter identification for them. Our method proposes two sequential
projections of these models; the finite state projection eliminates states with low
probability and an additional interpolation using radial basis functions further sim-
plifies the dynamics. We demonstrate that performing parameter identification on
these two types of reduced models results in a small loss in parameter accuracy, but
in a large gain in computational performance.

The results in this chapter were derived in collaboration with Zachary Fox, Huy Vo,
and Brian Munsky (Colorado State University). The author contributed to the code
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used by the projection methods. Additionally, the author performed parameter iden-
tification using the Metropolis-Hastings algorithm for the bursting gene example.
The descriptions of the work contained in this chapter were written by the author
based on a manuscript developed in collaboration with Huy Vo and Zachary Fox.
For more details on the adaptive Metropolis-Hastings algorithm used for parameter
identification, we refer the reader to [Bro+11; Bae+16].

4.2 Motivation
Biological processes in single cells can bemodeled probabilistically using continuous-
time, discrete-state Markov processes [MTK09; Neu+13; She+13]. Each state of
the process is the integer vector with entries that are the number of molecules of
all species. Finding the probability distribution over these states amounts to solv-
ing a first-order, linear, infinite system of ordinary differential equations known in
biochemistry as the chemical master equation (CME [MG67; Gil92]). We have
previously introduced the CME model in Chapter 1.

A critical task in understanding stochastic gene expression networks is the identi-
fication of parameters that fit experimental data. Parameter identification methods
such as the Metropolis-Hastings algorithm [Has70; Bro+11] rely on maximizing the
value of a likelihood function [MFN15]. For measurements obtained using RNA
FISH [OJ16], the likelihood of a parameter combination given the data is computed
by comparing the CME model predictions to the discrete data measurements. The
evaluation of this likelihood function requires the solution of the CME for each
parameter combination and a very large number of evaluations are required to fit
parameters to the data.

Since analytical solutions to the CME are known only for special classes of bio-
chemical reaction networks [JH07; DS66; GLO05; MHK14; Men+17], the CME
has to be solved computationally. The most popular approach is to sample trajecto-
ries of the Markov process using Gillespie’s stochastic simulation algorithm [Gil77]
variants such as τ-leaping [CGP07], or to solve a continuous approximations to the
CME instead; two such approximations are the chemical Langevin equation and the
Fokker-Planck equation [Gil00]. These continuous state alternatives to solving the
CME can sometimes be solved analytically or more easily computed, but they lose
the advantage of directly matching discrete data.

The finite state projection (FSP) [MK06; MK07] approach computes the discrete
probability distribution directly from the CME. The principle of FSP is to retain
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only states with significant probabilities and to discard the rest of the state space,
thus effectively truncating the CME into a finite problem. Nonetheless, this finite
state problem is still too large to solve efficiently for a general biochemical reaction
network. This hinders the effective use of the FSP for the parameter identification
of these stochastic models.

In this chapter, we further reduce the computational cost of the FSP approximation
to the CME model by interpolating the FSP approximation using a small number
of radial basis functions. While similar ideas have been previously investigated
in [MK08; JU10; TFM12; KRS15], our work differs in that the interpolation bases
are derived from simulated single-cell data. This projection method is closely
related to proper orthogonal decomposition (POD) [Ker+05], a popular method in
other computational science and engineering fields. Yet, directly applying the POD
projection to the data is difficult because single-cell data snapshots are often sparse
and they are collected only at a few time points.

Instead, we implement a projection based on radial basis functions (RBFs) [Fas07]
that we derive from the data. Previous work demonstrates that projecting the
CME model onto RBFs can yield a significant reduction in computational time
and resources [Zha+10; KRS15]. The RBFs are easily described since they are
defined by only two parameters, the locations of their centers and the values of
their shape parameters. They have also proven advantageous for the interpolation
of high-dimensional data in the field of machine learning [BL88; CCG91; CS09].

Single-cell measurement data can be approximated by a linear combination of dis-
crete RBFs using a modification of the adaptive residual subsampling algorithm
proposed by Driscoll and Heryudono [DH07]. The RBFs we compute from single-
cell data interpolate the CME model for every parameter combination explored
by the Metropolis-Hastings algorithm. The reduced RBF-based model is evalu-
ated to provide an approximation to the likelihood function. Since the reduced
model requires less time to solve than the FSP model, the combination of the
Metropolis-Hastings algorithm with the interpolation of the FSP model using RBFs
can potentially decrease the computational cost of parameter identification.

This chapter is organized as follows: In Section 4.3, we describe the projection-based
model reduction of stochastic biochemical reaction models. We also introduce the
likelihood function that matches these models and single-cell data measurements.
In Section 4.4, we discuss model reduction using radial basis functions computed
from single-cell data. Our method is described and then applied to two stochastic
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models of gene regulatory networks in Section 4.5. We conclude and discuss future
directions in Section 4.6.

4.3 Background
Projection-based model reduction of the chemical master equation
In this section, we introduce a general framework for projection-based model re-
duction of the chemical master equation. First, we truncate the state space of the
chemical master equation using the finite state projection algorithm; subsequently,
we reduce it through another projection on a set of vectors. In our work, these
vectors are RBFs derived from measured data.

We assume that the projection state space J of the FSP model includes all experi-
mentally observed states from the data. For instance, J could be a hyper-rectangular
domain delimited by the lower and upper bounds of the observed molecular copy
numbers. Let positive integer R ∈ Z be such that R � N represents the order of
the interpolated CME model. Assuming that we have been given a set of N vectors
v1, . . . , vR ∈ R1×N , we collect them into the matrix Φ = [v1 . . . vN ] of dimension
N × R. Then the FSP-reduced probability vector pFSPJ can be projected onto Φ,
yielding a reduced representation

q = Φ−L pFSPJ , (4.1)

where Φ−L := (ΦTΦ)−1ΦT is the left inverse of Φ. Thus, we can define an infinites-
imal generator for the reduced system as

B = Φ−L AΦ. (4.2)

The dynamics in the reduced basis are given by

d
dt

q(t) = Bq(t), q(0) = Φ−L pFSPJ (0). (4.3)

This projection reduces the FSP approximation to a R × R dimensional dynamical
system. The efficiency and the accuracy of approximating the FSP model with
the reduced system in equation (4.3) depends on the choice of the basis vectors
{v1, . . . , vR}, which we obtain from single-cell data measurements.

Parameter identification using single-cell data measurements
Avariety of experimentalmethods are used to collect single-cellmeasurements, such
as RNA FISH [OJ16], hybridization chain reactions [Cho+10], and flow cytome-
try [Sha05]. By using single-cell data measurements, we can perform parameter
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identification for stochastic models of gene regulation. We introduce a likelihood
function L to quantify the probability of the data D, depending on the parametriza-
tion Λ of the underlying CME model of the system. For details on deriving this
likelihood function from RNA FISH data, we refer the reader to [MFN15]. The log-
arithm of the likelihood of observing single-cell data D given amodel parameterized
by the set Λ can be expressed as

log L(D |Λ) =
∑
i∈ID

di log(P(xi |Λ)), (4.4)

where di is the number ofmeasured cells in state xi andID is the set of states observed
experimentally. The quantities P(xi |Λ) represent the probabilities to observe the data
in state xi conditional on the parameter values Λ. To compute P(xi |Λ) for i ∈ ID,
we solve the CME using the FSP approximation. We ensure that the set of observed
states ID ⊂ J, where J is the state space of the FSP approximation. Then the
log-likelihood function quantifies the quality of the fit for a parameter set Λ. Every
evaluation of the log-likelihood function for a parameter set Λ requires solving the
FSP model once.

The best parameter fit is given by the set Λ that maximizes the log-likelihood
function. The optimal value of the likelihood function can be determined using
Monte Carlo methods [Bro+11]. The most expensive component of the Metropolis-
Hastings approach is the evaluation of the likelihood of each parameter set, which
requires the CME model solution corresponding to each of those parameter com-
binations. Since the Metropolis-Hastings algorithm requires a large number of
samples, speedup in the CME solver would have tremendous impact on the perfor-
mance of parameter identification. Our method aims to implement this speedup by
interpolating the FSPmodel using a linear basis derived from the datameasurements.

4.4 Model Reduction Using Radial Basis Functions
There is a body of literature that uses projection-based model reduction of the FSP
approximation to improve computational performance. Recently proposed methods
include Krylov subspaces, wavelet bases, and polynomials bases [Bur+06; JU10;
TFM12]. Our choice of projection uses Gaussian radial basis functions for model
reduction. Radial basis functions are easily implemented and scale well with the
dimensionality of the function they interpolate [BL88; Buh00; Zha+10; KRS15].
This makes them attractive for interpolating the multi-dimensional probability dis-
tributions that result from the FSP truncation of the CME model. This basis family
has been recently used in the context of solving the CME model [Zha+10; KRS15].
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An overview of Gaussian radial basis functions
In this section, we introduce the radial basis functions for our projection and we
discuss their properties. A standard Gaussian radial basis function is defined as

φc,ε (x) = exp
(
−ε2‖x − c‖22

)
, (4.5)

where ‖‖2 represents the Euclidean norm, c the interpolation center, ε the shape
parameter, and x the point at which the RBF is being evaluated.

A vector pdata of dimensions K × 1 collects the frequencies of states x1, . . . , xK

observed from experimental data at a single time step. This vector can be decom-
posed into a linear combination of K Gaussian RBF functions and its entries can be
recovered via the formula

pdata(i) =
K∑

j=1
λ jφxj,εj (xi). (4.6)

We let Λ = {λ1 . . . λK} be a K × 1 dimensional vector of expansion coefficients.
Then Λ must satisfy the equation

ΦΛ = pdata, (4.7)

where the elements Φ(i, j) = φxj,εj (xi) and 1 ≤ i, j ≤ K . To interpolate the data, the
expansion coefficients Λ must be determined from solving equation (4.7).

We use a discrete variation of the adaptive residual subsampling algorithm in [DH07]
to interpolate the data. This method requires successive steps of refinement and
coarsening to choose RBF centers and shape parameters. As we iteratively inter-
polate the data using radial basis functions, the matrix Φ in equation (4.7) will be
replaced with matrices Φk , where k denotes the iteration count.

Remark 7. The interpolation matrix Φ is not symmetric because it uses state-
dependent shape parameters ε j, 1 ≤ j ≤ K . Moreover, the matrix Φ can be-
come severely ill-conditioned, which means spectral convergence is difficult to
achieve [Sch07]. As explained in [DH07], this is a linear algebra issue, where the
solution accuracy and the dimensionality of matrix Φ trade-off each other. Choos-
ing the locations of Gaussian RBF centers and their scaling is also a challenging
problem, particularly for high-dimensional systems [For+02; PD05; Sch07].
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Choosing the centers and the shape parameters of the radial basis functions
The choice of RBF centers and of scaling parameters is paramount for the interpo-
lation, yet there is not a systematic method to determine them. We describe how the
centers and the shape parameters can be iteratively computed. Our method is based
on the residual subsampling algorithm in Driscoll et al. [DH07].

Let x1, . . . , xK be the states observed in the data and retained in the FSP state
space, with pdata being the vector storing the fraction of cells occupying those
states. Let ×N

i=1[`
0
i , u

0
i ] be a box containing these data points. The center of this

box will also be the center of our first RBF, while the box’s dimensions give rise
to the first shape parameter vector, chosen heuristically in our implementation as
ε0 = 10−3 ∏K

i=1(u0
i − `

0
i ). We can subdivide the initial box into 2K sub-boxes (by

halving each of its dimensions), which we will use for refinement later. The initial
boxwill be classified as a center box and its sub-boxes as check boxes. We implement
the hierarchy of boxes using a 2K-tree where the check boxes are always the leaves
of that tree and each check box has a center box as its parent.

Assume that at iteration k, we have the centers c(k)1 , . . . , c(k)mk
and the shape parameters

ε
(k)
1 , . . . , ε

(k)
mk

. We can then form the matrix Φk of size K × mk , where Φk(i, j) =
φc(k)j ,ε

(k)
j

(xi), 1 ≤ i ≤ K , 1 ≤ j ≤ mk . In other words, Φk contains the values of the
RBFs evaluated at the data points. We then use a least square solver to solve the
problem ΦkΛk = pdata. The residual rk := ΦkΛk − pdata will be used to decide the
refinement and coarsening of the boxes.

Refinement and coarsening depend on two prespecified parameters θr and θc (chosen
as 0.1θr in our numerical tests below). Note that each entry ri of the residual
corresponds to a data point xi for 1 ≤ i ≤ K . If ri > θr , meaning that the residual
at xi is above the tolerance threshold, the check box containing xi will change status
into a center box and its sub-boxes will be added to the tree as the new check
boxes. This is the refinement step. As in [DH07], we also look for opportunities
for coarsening. Specifically, if the residual at all data points within a center box are
below θc, we turn that box into a check box and its children are removed from the
tree. The algorithm terminates and outputs the set of centers and shape parameters
if the maximum number iterations is reached or if all residual values are below the
tolerance threshold θr .

Our variant differs from the original approach of Driscoll et al. [DH07] in three
aspects. First, we try to interpolate the data at all points in every iteration. Second,
the residual is evaluated at all data points and not just at the centers of the check boxes.
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Third, the original algorithm used multiquadric functions, while we use Gaussian
radial basis functions instead. The original adaptive residual subsampling algorithm
has no limits on the number of iterations since it was designed for interpolation on
continuous domains, but that is not the case with the discrete-state data of interest
here.

Choosing the right refinement and coarsening thresholds is crucial in decomposing
the data using RBFs. If the thresholds are too strict, the interpolant will try to
reproduce the noisy characteristics of the data and clutter the centers in a way that
exacerbates numerical instability; if the thresholds are too relaxed, the interpolant
will smooth away relevant features of the data such as multi-modality. A systematic
method to decide these thresholds remains unknown.

4.5 Numerical Examples
For the numerical examples in this section, we begin by simulating the data using the
Gillespie algorithm [Gil77]. We then apply our modified algorithm from [DH07]
to a snapshot in time of the simulated single-cell data to find a suitable RBF basis
representation. We use the RBF basis derived from single-cell data to interpolate
the FSP model and to derive the reduced RBF-FSP model.

To identify the biochemical reaction rate parameters that best fit the single-cell data,
we use the Metropolis-Hastings algorithm or we perform a parameter sweep. We
compare the performance of the FSP model and of the RBF-FSP model. We find
that the parameters we identify for the FSP model and for the RBF-FSP model are
similar in accuracy. Nonetheless, using the RBF-FSP model significantly decreases
the computational time of the parameter identification step.

The steps of our method are organized as follows:

1. Simulate single-cell data using the Gillespie algorithm or collect single-cell
data experimentally.

2. Choose a snapshot of the single-cell data at a point in time to represent the
system behavior.

3. Employ the modified residual subsampling algorithm from [DH07] to find an
RBF basis representation of the data snapshot.

4. Interpolate the FSP model using the RBF basis obtained from the data to
derive the RBF-FSP model.

5. Run the Metropolis-Hastings algorithm using both the FSP model and the
RBF-FSP model.
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6. For both the FSP and the RBF-FSP model, compute the posterior parameter
distributions that can represent the single-cell data.

7. Compare the parameter identification accuracy and the computational time of
the FSP and the RBF-FSP models.

When we substitute Metropolis-Hastings with a simple parameter sweep, we skip
steps 5 and 6.

Bursting Gene Expression

Gene onGene off

RNA

degrade

Figure 4.1: Bursting gene expression diagram. The two-state bursting gene
model captures RNA transcription and degradation for a single gene that can switch
between an active state (on) and an inactive state (off), depending on whether the
transcription factor is bound or unbound to the gene’s promoter. RNA is transcribed
when the gene is in the on state; subsequently, it is degraded by ribonucleases.

The bursting gene expression model in Figure 4.1 describes the changes in the
state of a gene’s promoter corresponding to the binding and unbinding of a tran-
scription factor. When a transcription factor binds to the gene, RNA is actively
translated at rate kr . For an RNA molecule R, this simple two-state view of gene
expression can result in a variety of RNA dynamics, depending on the system’s pa-
rameters [MNO12]. This gene regulatory network can be modeled by the following
biochemical reactions that describe the state of the gene G and the dynamics of the
RNA copy number R:

Goff
kon−−−⇀↽−−−
koff

Gon, (4.8)

Gon
kr−−−→ Gon + R, (4.9)

R
kdeg−−−→ ∅. (4.10)

We simulate the bursting gene data at 30 linearly-spaced time points between 0 sec
and 10 sec using the Gillespie algorithm. Figure 4.2(A) illustrates the RBF-based
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representation (green line) of the simulated data (black line) with 5 RBF centers
selected using the adaptive residual subsampling algorithm.

Number of RNA molecules
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Figure 4.2: Radial basis function interpolation of simulated single-cell data
for the bursting gene model. We interpolate the noisy data generated using the
Gillespie algorithm (black) with the approximation provided by the radial basis
functions (green) at time 10 sec. We use 5 RBF centers, positioned at the blue dots.
The RBF interpolation provides a smooth approximation to the noisy data.

We then perform parameter identification of the FSP and the RBF-FSP projections
of the busting gene model. We consider 2500 parameter combinations of the
transcription rate kr and of the gene off rate koff and we search for the best fit to the
simulated data. Our parameter combinations span one order of magnitude. The true
values (i.e. the values that were used to generate the data) are at the center of the
heat maps for both the FSP and the RBF-FSP models in Figures 4.3(A) and 4.3(B),
respectively.

The parameter combinations that best fit the simulated data, their associated like-
lihood function values, and the computational times are given in Table 4.1. Only
5 RBF centers are required to represent the data in the RBF-FSP model, while the
FSP model uses 80 states. Hence, the computational time required to identify the
parameters of the RBF-FSP is only a tenth of the time required for the FSP model,
while the accuracy of the identified parameter values is similar.
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Figure 4.3: Likelihood functions of the FSP and of the RBF-FSP for two param-
eter combinations of the bursting gene expressionmodel. We identify parameters
of the gene bursting model using both the model reduced through the FSP projection
and the model reduced through a subsequent RBF-FSP projection. We conduct a
search for the gene bursting model parameters using 30 equally spaced time points
from 0 sec to 10 sec. We compute and we plot the likelihood functions of param-
eter combinations of the RNA transcription rate kr and of the transcription factor
unbinding rate koff. To find the maximum of the likelihood functions, we search a
grid of potential parameter values centered around the true parameter values (bright
blue dots). The size of the grid equals one order of magnitude. We find that the two
likelihood functions are maximized along the bright yellow shapes and that the two
shapes mostly match each other in panels A and B, although the shape in B is more
restrictive.

Moreover, we perform a more in depth parameter search for the FSP approximation
and the RBF-FSP projection of the gene bursting model. We plot the probability
distributions of the four parameters of the bursting gene model in Figure 4.4, along
with the parameter values used for the simulated data. We observe a loss in the
accuracy of parameter identification, but a speedup in the simulation time of the
RBF-FSP model. We include additional details in Appendix C.

Mutually-Repressing Toggle Switch
The genetic toggle switch circuit in Gardner et al. [GCC00] describes two mutually
repressing promoter species lacI and λcI and their stochastic interactions. We have
already provided an illustration of the genetic toggle switch in Figure 2.8; however,
for an adaptation of the circuit diagram to the model in equations (4.11) and (4.12),
see Figure C.3 in Appendix C.
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kr koff L(D|Λ) time

FSP model 9.5410 1.3028 -9.2659e4 172.27
RBF-FSP model 9.5410 1.4311 -9.3031e4 16.03
True values 10.0 1.5 -9.2637e4 -

Table 4.1: The maximum values of the RNA transcription rate and of the
transcription factor unbinding rate for the FSP and the RBF-FSP reductions
of the gene bursting model. We performed a parameter sweep over a grid of
2500 parameter combinations for rates kr and koff with both the FSP model and the
RBF-FSP model. We identified the best fitting parameters and we computed their
associated likelihood function values. We obtain an order of magnitude decrease in
runtime at a small cost in parameter identification accuracy.
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Figure 4.4: The parameters of the bursting gene model, as identified using
a version of the adaptive Metropolis-Hastings algorithm. We run a chain of
100000 samples to identify the parameters of the gene bursting model using the
model reduced through the RBF-FSP. We plot the probability distributions of the
four parameters of the model. We report an acceptance rate of 76% of the proposed
samples. The true parameter values are {10, 30, 100, 2} and they are indicated in the
histograms by red dots. The Metropolis-Hastings algorithm takes 5 × 103 sec (one
and a half hours) and the initial search parameters are {5, 15, 10, 4}.

We assume that the reactions of this biochemical network are given by:

∅
w1−−−⇀↽−−−
w2
λcI, (4.11)

∅
w3−−−⇀↽−−−
w4

LacI, (4.12)
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Figure 4.5: Radial basis function interpolation of simulated single-cell data
for the genetic toggle switch in [GCC00]. (A) We obtain the genetic toggle
switch data from 1000 runs of the Gillespie algorithm. The genetic toggle switch is
implemented using two repressor proteins LacI and λcI.We plot the joint probability
mass of proteins LacI and λcI at 4 hrs. (B) The RBF interpolation of the simulated
data for the genetic toggle switch at 4 hrs. We use 137 radial basis functions centered
at the black dots to interpolate the data. To perform the interpolation, we use an
adaptive mesh grid algorithm for two-dimensional distributions, as in [DH07].

where the propensity functions of the chemical reactions are as follows:

w = {w1,w2,w4,w4},

w1 = bx +
kx

1 + LacInyx
,

w2 = γx · λcI,

w3 = by +
ky

1 + λcInxy
,

w4 = γy · LacI,

Here, bx and γy are the basal production rates of proteins λcI and LacI, γx and γy
are the degradation rates of proteins λcI and LacI, and kx and ky are the association
constants. We limit our search to the 6 parameters bx, by, kx, ky, γx, γy that enter the
CME model of the genetic toggle switch linearly, as explained in equation (1.20) in
Chapter 1. The Hill coefficients are assumed to be approximately equal to 2.

Remark 8. Identifying parameters that appear linearly in the CME model is com-
putationally advantageous. If the CME is linear in these parameters, then it can be
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separated as:
dp(t)

dt
=

( M∑
i=1
ΛiHi

)
p(t). (4.13)

Then the infinitesimal generator of the reduced CME system is also linear in these
parameters:

B =
( M∑

i=1
Λi(Φ−LHiΦ)

)
. (4.14)

The matrix products Φ−LHiΦ can be precomputed and do not change with different
parameter values. Thus, forming the projection of the CME model onto a linear
basis is more computationally efficient. Additionally, the matrices H1, . . . ,HM are
even sparser than the original CMEmatrix H. The linear dependence on parameters
in the reduced model significantly reduces our computation time; for the genetic
toggle switch, it provides a five fold reduction.

For this numerical example, we give the true model parameters in Table 4.2. We
then run the Metropolis-Hastings algorithm combined with the FSP model solution
and the RBF-FSP model solution at each step to find the parameter values that
maximize the likelihood function. We obtain the probability distributions of the
parameters for the FSP model and the FSP-RBF model and we give the mean values
in Table 4.2. In Figure 4.6, the 95% and 65% confidence intervals were computed
for the second half of a 100000 iteration-long MCMC chain that has been thinned
down to 10000 samples. The parameters are normalized by their true parameter
values in Figure 4.6.

by kx ky γy L(D |Λ) time(min)

FSP model 1.89e-3 1.46e-2 1.60e-2 3.46e-4 -3.0871e4 3000
RBF-FSP model 2.22e-3 1.65e-2 1.85e-2 4.31e-4 -3.114e4 200
True values 2.20e-3 1.60e-2 1.70e-2 3.8e-4 -3.022e4 -

Table 4.2: The parameters of the genetic toggle switch identified by the
Metropolis-Hastings algorithm. Both the parameters identified using the FSP
model and the RBF-FSP model match the values of the true parameters, as do their
likelihood function values. There is a large speedup obtained by using the RBF-FSP
model over the FSP approximation model. This speedup is much smaller (reduced
only in half) if the Hill coefficients are added into the parameter search.

Parameter identification with the RBF-FSP model requires less than a tenth of the
computational time of parameter identification with the FSP model. Nevertheless,
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Figure 4.6: The parameter distributions obtained from theMetropolis-Hastings
algorithm for the genetic toggle switch with the FSP and the RBF-FSP models.
We demonstrate that the parameter values identified for both the RBF-FSP model
and the FSP model are able to approach the true parameter values. The diagonal
contains the histograms for the toggle switch parameters by, kx , and ky, normalized
by their true values from Table 4.2, as identified for the FSP model (magenta) and
for the RBF-FSP model (cyan). We observe that the three pairs of probability
distributions are close to value one, as they should be following normalization to
the true values, but that only the pair for by includes value one. This indicates a
loss in parameter accuracy. Off the main diagonal, we illustrate the 95% (solid
lines) and the 65% (dashed lines) regions of the parameter distributions sampled
with Metropolis-Hastings for the FSP model (magenta) and for the RBF-FSP model
(cyan). The true values are marked in the center, at the intersection of the vertical
and horizontal lines. The parameter pairs we illustrate are (by, kx), in the second
from the top left plot, (by, ky), in the third from the top left plot, and (kx, ky), in the
second from the bottom right plot. The plot illustrations are symmetric across the
diagonal.

the mean parameters values identified with both models are close to the true param-
eter values, as illustrated in Figure 4.6. Thus, RBF interpolation has provided us
with improved computational time at a small cost in parameter accuracy.
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4.6 Conclusion and Future Work
Stochastic models of biochemical reaction networks are subject to the curse of
dimensionality [MNO12]. Their state spaces become extremely large, even for a
small number of biochemical species. As a result, computationally solving these
stochastic models is expensive. This becomes an extreme problem when fitting
parameters to stochastic models using algorithms such as Metropolis-Hastings.
These algorithms require a solution to the stochastic model for each parameter
evaluation; hence, they can necessitate hundreds of thousands of solutions to find the
best distribution of parameter values. Thus, parameter identification for stochastic
models of biochemical reaction networks is a very computationally challenging task
that the research in this chapter aims to address.

Frequently, despite its very large state space, the underlying dynamics of stochastic
models such as the chemical master equation are less complex when projected
onto a suitable interpolation basis. It is common to truncate the state space of
the chemical master equation using the finite state projection algorithm (FSP).
However, we propose that a subsequent projection-based model reduction, such as
an interpolation via radial basis functions, can retain the accuracy of parameter
identification, while reducing the computational burden of solving the chemical
master equation.

In this chapter, we perform parameter identification for the stochastic models of
two gene regulatory networks. First, we demonstrate the interpolation of simulated
single-cell data generated through forward runs of the Gillespie algorithm [Gil77]
using radial basis functions (RBFs). For the Gaussian RBF interpolation step, we
use the residual subsampling algorithm in [DH07] to reduce the dimensionality of
the stochastic models, after we truncate their state spaces using the FSP approxi-
mation. Then we employ the Metropolis-Hastings algorithm to perform parameter
identification of the FSP and of the RBF-FSP models. We compare the results of
parameter identification with the true parameter values; we observe a small loss in
parameter accuracy and a ten-fold gain in computational time.

There are a number of open questions left about the interpolation of data using
radial basis functions. The results in Figures 4.3 and 4.6 suggest that the RBF-FSP
model constrains the parameter values more tightly than the FSP model. This could
indicate that the RBF interpolation smooths out too much of the noise in the data;
therefore, how smooth the data itself is can play an important role in identifying the
underlying models. Yet, it is not yet understood how data sets with different levels
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of noise affect the parameter identification results.

Moreover, the RBF interpolation matrix becomes severely ill-conditioned during
successive iterations of refinement and coarsening, a possibility also indicated
by [DH07]. Even though radial basis functions have been used extensively in
solving PDEs [FS98], their practical implementation is well-known to be challeng-
ing [Sch07], particularly when they interpolate noisy data. The condition number
of the interpolation matrix is often high and it is recommended to first regular-
ize it through singular-value decomposition to eliminate the numerous eigenvalues
that are close to zero; however, the computational expense of the singular-value
decomposition increases with the size of the matrix and the truncation results in a
loss in accuracy. Since several interpolation matrices are used during the residual
subsampling algorithm, regularization could be expensive and lose the computa-
tional advantage afforded by the RBF interpolation. Furthermore, there are several
well-known tradeoffs in RBF interpolation such as the tradeoff between error and
stability when choosing smoothness; additionally, we observed a second common
tradeoff induced by scaling: our wide-scaled RBFs improve the error, but induce
instability.

Last, there is no theoretical method to choose the optimal thresholds for refinement
and coarsening in the residual subsampling algorithm [DH07]. We have found that
the RBF interpolation is very sensitive to these two threshold values since they
determine the locations of their centers and their shape parameters. Moreover, other
interpolation bases such as proper orthogonal decomposition and several wavelet
bases have performed worse than RBFs in our numerical experiments to interpolate
the genetic toggle switch data. Therefore, we believe that developing our under-
standing of RBF interpolation, of the numerical properties of their interpolation
matrices, and of the optimal values of the two thresholds will be crucial to tackling
problems in higher dimensions.
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C h a p t e r 5

CONCLUSION

This thesis contributed to three aspects of engineering biological systems: analysis,
design, and computational methods. First, we designed the stochastic behaviors
of biochemical reaction networks in Chapter 2. Second, we analyzed a biological
controller implemented by sequestration feedback in Chapter 3. Last, we employed a
model reductionmethod to efficiently perform parameter identification for stochastic
biological systems in Chapter 4. In this section, we describe the contribution of this
thesis and we suggest future research directions for each chapter.

In Chapter 2, we formulated and solved the problem of designing the stochastic
behaviors of biochemical reaction networks. When analytic solutions for stochastic
models are available, the design of stochastic behaviors is greatly simplified, as
we demonstrated using the two-component transcription network from [Men+17];
however, solutions for these stochastic models are often unknown [MNO12]. Thus,
we introduced a general framework for the optimization of the reaction rates of
biochemical systems rates such that their transient and stationary probability distri-
butions are constrained. Design constraints for these distributions included spec-
ifying their modality, the locations of their modes, and the rate of convergence to
stationarity [MG09]. Under these constraints, we determined the optimal reaction
rate values of the biochemical reaction networks by solving an approximation to
a polynomial optimization problem. We demonstrated this framework on three
examples of biochemical reaction networks: a protein production-degradation net-
work [DM15], the Schlögl biochemical network [Gil91; Gun+05], and the genetic
toggle switch [GCC00]. The content of Chapter 2 was published in [Bae+15] and
in [Men+17].

Future research directions for this chapter include increasing the size of the net-
works we can solve design problems for, incorporating other distributional con-
straints in the optimization problem, and approximating the exponential operator
using a polynomial series expansion. Polynomial optimization is an active research
field [BPT12; Wak+05a] that employs sums of squares and semidefinite relaxations
to find solutions to challenging optimization problems. These methods could be
used in stochastic design problems after we replace the exponential operator with
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a polynomial series approximation. This could ultimately help increase the size
of the biochemical networks that we can solve design problems for. In particular,
we anticipate that constraining the stochastic transients of biochemical reaction net-
works would be very helpful for design due to the almost complete lack of analytical
solutions for them.

In Chapter 3, we investigated the properties of stability and performance of a syn-
thetic biological controller implemented by a sequestration feedback motif. It was
established in [BGK16] that sequestration feedback implements perfect adaptation
under the two conditions of stability and of zero controller species degradation.
First, we demonstrated that the controller species degradation is often nonzero and
therefore, it must be included in the modeling of the sequestration feedback network.
Then we derived an analytical criterion for the stability of sequestration feedback
networks and determined their performance properties. We also found a trade-off
between achieving a large stability margin and a small steady state error. Last,
we provided guidelines for the implementation of sequestration feedback networks
that fulfill desired specifications of stability and performance. The content of this
chapter was published in [Ols+17] and [Ren+17].

Future research into synthetic biological controllers will include investigating other
mechanisms for biological control, as well as testing the versatility of the current
controllers. In addition to the sequestration feedback motif we analyzed, there
are multiple other options for implementing biological control such as paradoxical
extracellular signaling [Har+14] and post-translation mechanisms. The properties
of stability and performance of these biological controllers will be assessed using the
metrics introduced in Chapter 3. Furthermore, since the current synthetic biological
controllers [Hsi+14; McC+17; Fol+17; Lil+17] have been developed alongside the
processes they control, their versatility will have to be determined. It is likely
that these controllers will require additional tuning before being able to control
new processes. Future research includes the development of a more versatile class
of synthetic biological controllers, perhaps inspired by the controller developed
in [HME18].

In Chapter 4, we introduced a method for the parameter identification of stochastic
biochemical reaction networks using simulated single-cell data. Stochastic models
of biochemical reaction networks are often expensive to solve computationally;
this problem is exacerbated when performing parameter identification for them
using methods such as the Metropolis-Hastings algorithm that requires hundreds
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of thousands of solutions to find the best parameter distribution. Therefore, we
proposed to first truncate the state space of stochastic models and then to perform a
projection-based model reduction step. Our projection step relies of Gaussian radial
basis functions determined from the simulated data [DH07]. The model reduction
steps decreased the computational time of parameter identification by an order of
magnitude, although they introduced a small loss in accuracy. We demonstrated
our method on two example networks of gene regulation: a bursting gene network
and the genetic toggle switch in [GCC00]. The content of Chapter 4 was developed
in collaboration with Huy Vo, Zachary Fox, and Brian Munsky (Colorado State
University).

Future research into the interpolation of discrete, noisy data using radial basis
functions could expand the dimension of stochastic biochemical reaction networks
that we can perform parameter identification for. The practical implementation of
RBFs is challenging [Sch07; FS98], particularly when they interpolate noisy data; a
good reproduction of noisy data requires handling several ill-conditioned matrices.
Hence, the development of preconditioners and of regularization methods could
improve the computational efficiency of RBF interpolation. Understanding how to
choose optimal thresholds for refinement and coarsening in the residual subsampling
algorithm [DH07]would also help the parameter identification of higher dimensional
biochemical reaction networks.
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A p p e n d i x A

THEOREM PROOFS FOR THE DESIGN OF STOCHASTIC
BIOCHEMICAL REACTION NETWORKS

Theorem 2.1. Consider the system of two interconnected transcriptional compo-
nents that are modeled by reactions as given in equation (2.2), where κ > 0, δ > 0,
κon > 0, and κoff > 0 are the corresponding reaction rate constants. Let P, Z , and
C be the numbers of promoters, transcription factors, and complexes, respectively.
Let α = κκon

δκoff
, β = κ

δ , and γ =
Nα−1
α+1 , where N is a constant given by N = P + C due

to the conservation of DNA. In (i)–(iii), we set up and solve three design problems
using the marginal stationary distributions of Z andC. Here, α and β are the design
variables.

(i) Since the marginal stationary distribution of Z is a Poisson distribution, its
mean and variance are equal. The design problem of fixing the mean of Z at
an objective value µz > 0 is feasible, and the solution is β = µz, with N and
the reaction rate constants being arbitrary otherwise.

(ii) The design problem of setting the mean ofC at an objective value µc ∈ (0, N) is
feasible, and the solution is α = µc

N−µc , with N and the reaction rate constants
being arbitrary otherwise.

(iii) The design problem of choosing the variance ofC to be an objective valueσ2
c >

0 is feasible if and only if σ2
c ≤ N

4 , and the solutions are α =
N−2σ2

c±
√

N2−4Nσ2
c

2σ2
c

,
with N and the reaction rate constants being arbitrary otherwise.

Proof. Using the analytical solution of the joint probability distribution of species Z

and C in equation (2.2), we prove that the marginal stationary distribution of species
Z is a Poisson distribution with mean and variance equal to β and that the marginal
stationary distribution of species C is a binomial distribution with the number of
trials and the success probability in each trial being N and α

1+α , respectively.

First, we use the new notation to restate the joint probability distribution as

P(c, z) = (1 + α)−N αc
(
N
c

)
e−β

βz

z!
(A.1)
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for c ∈ {0, . . . , N} and z, N ∈ Z≥0.

We can compute the marginal stationary distribution P1 of species Z as

P1(z) =
N∑

c=0
(1 + α)−N αc

(
N
c

)
e−β

βz

z!
(A.2)

for z, N ∈ Z≥0.

By rearranging the terms, we rewrite the marginal distribution P1 as

P1(z) = e−β
βz

z!

N∑
c=0

(
N
c

) (
α

1 + α

)c (
1

1 + α

)N−c

(A.3)

for z, N ∈ Z≥0.

Since we are summing over the probability of getting exactly c ∈ {0, . . . , N} suc-
cesses in N trials of probability α

1+α , this is equivalent to computing the probability
mass of the binomial distribution, which equals 1. Thus, the marginal distribution
of species Z is

P1(z) = e−β
βz

z!
, (A.4)

which represents the Poisson distribution of mean and variance equal to β.

We then prove that the marginal stationary distribution P2 of species C is a binomial
distribution with the number of trials and the success probability in each trial being
N and α

1+α , respectively. By definition, the marginal distribution of species C is

P2(c) = (1 + α)−N αc
(
N
c

) ∞∑
z=0

e−β
βz

z!
(A.5)

for c ∈ {0, . . . , N}.

Since we are summing over the Poisson distribution of mean β, this is equivalent to
computing its mass, which equals 1. Thus, the marginal stationary distribution P2

is the binomial distribution

P2(c) =
(
N
c

) (
α

1 + α

)c (
1

1 + α

)N−c

(A.6)
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for c ∈ {0, . . . , N}.

In design problem (i), setting the mean and variance of Z at µz > 0 is equivalent to
specifying β = µz, which is always feasible.

Design problem (ii) corresponds to setting Nα
1+α = µc. A solution exists if and only

if 0 < µc < N , in which case the solution is α = µc
N−µc .

Design problem (iii) is equivalent to solving Nα
(1+α)2 = σ

2
c , leading to solution α =

N−2σ2
c±
√

N2−4Nσ2
c

2σ2
c

when 0 < σ2
c ≤ N

4 . �

Proposition 2.2. Consider the system of two interconnected transcriptional compo-
nents that are modeled by the reactions in equation (2.2). With the same notation
as in Theorem 2.1, the stationary distribution in equation (2.2) has a unique global
maximum if and only if N > 1, β > 1, 0 < γ < N − 1, and β, γ < Z. In this case,
the maximum is at (c∗, z∗) = (bγc + 1, bβc).

Proof. Let ‖·‖ denote the l1-norm on R2. For x ≥ 0, let bxc denote the integer
part of x. Since N is the total number of promoters P and complex molecules C,
it is reasonable to assume that N > 1. The sample space of the probability mass
function in equation (2.2) is Ω = {(c, z) | c = 0, 1, . . . , N and z ∈ Z≥0}. Let Ω∂
denote the boundary of Ω, namely, Ω∂ = ({0, N} × Z≥0) ∪ ({0, 1, . . . , N} × 0). The
probability mass in equation (2.2) has a strict local maximum at (c∗, z∗) ∈ Ω \Ω∂ if
and only if, for all (c, z) ∈ Ωwith ‖(c−c∗, z− z∗)‖ ≤ 1, we have Pr(c, z) < Pr(c∗, z∗).
Solving these inequalities simultaneously gives γ < c∗ < γ + 1 and β − 1 < z∗ < β.
Since (c∗, z∗) ∈ Ω \ Ω∂ , a unique solution exists if and only if N > 1, β > 1,
0 < γ < N − 1, and β, γ < Z. When these conditions hold, the unique strict local
maximumonΩ\Ω∂ is at (c∗, z∗) = (bγc+1, bβc). Moreover, basic algebra shows that,
for all c ∈ {0, 1, . . . , N}, we have Pr(c, z) < Pr(c, z + 1) for all z ∈ {0, 1, . . . , z∗ − 1}
and Pr(c, z) > Pr(c, z + 1) for all integers z ≥ z∗. It is also straightforward to
verify that Pr(c, z∗) < Pr(c + 1, z∗) for all integers c ∈ {0, 1, . . . , c∗ − 1}, and
Pr(c, z∗) > Pr(c + 1, z∗) for all integers c ∈ {c∗, c∗ + 1, . . . , N}. Therefore, the
stationary distribution of the two-component transcriptional system has a unique
global maximum at (c∗, z∗) if and only if N > 1, β > 1, 0 < γ < N − 1, and
β, γ < Z. �

We include additional figures to complement the chemical reaction network results
obtained using our stochastic design framework in Section 2.4. In Figure A.1, we
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demonstrate that the transients approach the pre-specified stationary distribution for
the protein production-degradation reaction network with the reaction rate values
found by our framework. In Figure A.2, we plot an example of a projection operator
that constraints a corresponding transient distribution to be bimodal through the
inequality in equation (2.11).
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FigureA.1: Solution to the designproblem for aprotein production-degradation
reaction network. We compare the transient distribution of the birth-death process
in chemical reactions 2.12 after 100 seconds (orange) to the pre-specified stationary
distribution (mauve). We find a very good match between the two probability
distributions.
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Figure A.2: A piece-wise projection operator that constrains a corresponding
transient distribution to be bimodal. We plot an example of a piece-wise projec-
tion operator with two local minima (pink). This operator constrains a correspond-
ing distribution to be bimodal (blue), according to the inequality in equation (2.11).
There are many other choices of projection operators that result in corresponding
bimodal transient distributions.



98

A p p e n d i x B

THEOREM PROOFS FOR SEQUESTRATION FEEDBACK
NETWORKS

B.1 Sequestration feedback networks with no controller species degradation
We provide the following model for the two controller species, according to Fig-
ure 3.3:

Ûz1 = µ − ηz1z2,

Ûz2 = θ2x2 − ηz1z2.
(B.1)

For a complete model of the sequestration feedback network, we refer the reader to
the system of equations (B.9).

We set the reference of the tracking problem at value µ
θ2

and we define the error
signal as e(t) = µ

θ2
− xn(t).

Then the controller species implement integral control since

d
dt
(z1(t) − z2(t)) = θ2e(t). (B.2)

The control action z1(t) − z2(t) integrates the error signal e(t) as follows:

z1(t) − z2(t) = θ2

∫ t

0
(e(s)) ds. (B.3)

If the sequestration feedback network is stable, then the model has a steady state and
the integral controller ensures that the property of perfect adaptation holds since

dz1(t)
dt

=
dz2(t)

dt
= 0 =⇒ xss

n =
µ

θ2
. (B.4)

Perfect adaptation is a desirable property of the sequestration feedback system
because it allows for a variety of process network dynamics. We investigate whether
this property is retained by including the controller species degradation in themodel.
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B.2 Sequestration feedback networks with controller species degradation
Incorporating the degradation of the controller species in the model description
changes the controller equations (B.1) to the following:

Ûz1 = µ − ηz1z2 − γcz1,

Ûz2 = θ2x2 − ηz1z2 − γcz2.
(B.5)

The resulting controller is a lag compensator that integrates the error signal weighed
by an exponential of the controller degradation rate:

d
dt
(z1(t) − z2(t)) = µ − θ2xn(t) − γc(z1(t) − z2(t)), (B.6)

z1(t) − z2(t) = θ2

∫ t

0
eγc(s−t)

(
µ

θ2
− xn(t)

)
ds. (B.7)

With the same notation for the error signal, we obtain that:

z1(t) − z2(t) = θ2

∫ t

0
eγc(s−t)e(s)ds. (B.8)

The exponential of the degradation rate biases the error measurement towards recent
past over the distant past since 0 ≤ s ≤ t.

Integral control has the property of perfect adaptation, provided that the closed loop
system in stable. This implies that the closed loop system has zero steady state error.
The lag compensator can also exhibit zero steady state error for a second controller
degradation rate, as demonstrated in Section B.3.

B.3 The critical controller species degradation rate
The closed loop system can have zero steady state error for no controller species
degradation, as well as for a value of the controller degradation rate, which we refer
to as "critical". Assuming stability, zero controller species degradation guarantees
perfect adaptation of the closed loop system, but can be challenging to implement. In
this section, we derive a value of the critical controller species degradation rate such
that the steady state error of a general stable sequestration feedback network with
n process species equals zero. Depending on the parameters of the sequestration
feedback system, the critical value of the degradation rate may or may not be
achievable.
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Figure B.1: The steady state error as a function of the controller degradation
rate. For an example sequestration feedback network with only two process species,
we plot the steady state error (blue line) as a function of the controller degradation
rate, while keeping the other parameters of the network fixed. We obtain perfect
adaptation for no controller degradation (blue square) and zero steady state error
at the critical controller degradation rate (red square). The steady state error is
nonzero at other controller species degradation rates (green square). Zero and the
critical controller species degradation rate are the only two degradation rate values
for which the steady state error equals zero (orange dashed line). This property holds
for a general class of sequestration feedback networks, as discussed in Theorem B.1.
For a given sequestration feedback network, we can analytically compute the steady
state error as a function of the controller species degradation rate from equation
(B.15).

We plot the steady state error as a function of the controller species degradation
rate for an example sequestration feedback network with two process species in
Figure B.1. When the controller degradation rate has value zero, then the steady
state error is also zero. Similarly, at the critical controller degradation rate, the
steady state error equals zero. Indeed, the degradation rate values of zero and of the
critical degradation rate are the only ones for which the network tracks the reference
with zero steady state error. In this section, we determine the conditions under
which the critical degradation rate exists and how to compute it.

We consider the general deterministic sequestration feedback networkwith n process
species, as illustrated in Figure 3.3 (i.e. the n process species can be reactants in any
bimolecular reactions within the process network). Then the model of its dynamics
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η γp µ k1 θ1 θ2

1 nM−1 1.6 hr−1 8 nM hr−1 1 hr−1 2 hr−1 4 hr−1

Table B.1: The parameters used for the simulation in Figure 3.5. The critical
controller degradation rate is γc = 0.56 hr−1. The reference concentration is 2 nM.
The initial concentrations of the four species in the sequestration feedback network
are 1 nM.

is given by the following system of equations:

dx1
dt
= θ1z1 + α1,1x1 + · · · + α1,nxn,

dx2
dt
= α2,1x1 + · · · + α2,nxn,

...

dxn

dt
= αn,1x1 + · · · + αn,nxn,

dz1
dt
= µ − ηz1z2 − γcz1,

dz2
dt
= θ2xn − ηz1z2 − γcz2.

(B.9)

We define the following notation:

A =
©«
α2,1 α2,2 . . . α2,n−1
...

...
...

...

αn,1 αn,2 . . . αn,n−1

ª®®®¬ ,
α1 = (α1,1, . . . , α1,n−1), αn = (α2,n, . . . , αn,n)T , and Γ = θ−1

1 (α1 A−1αn − α1,n).

Theorem B.1. The critical controller degradation rate of a general sequestration
feedback network with n process species is given by

γc =
θ2
Γ
− Γηµ

θ2
(B.10)

and it only exists if and only if the closed loop system is stable and Γ < θ2√
ηµ
, where

Γ = θ−1
1 (α1 A−1αn − α1,n).

Proof. In a 1-node sequestration feedback system, the degradation rate

γc =
θ1θ2
γp
−
γpηµ

θ1θ2



102

results in zero steady state error. This degradation rate value can only be achieved
when γp <

θ1θ2√
µη
.

Assuming that the closed loop system is stable, at equilibrium, equation (B.9)
reduces to

0 = θ1z1 + α1,1x1 + · · · + α1,nxn

0 = α2,1x1 + · · · + α2,nxn

...

0 = αn,1x1 + · · · + αn,nxn

µ = ηz1z2 + γcz1,

θ2xn = ηz1z2 + γcz2.

(B.11)

Our system of equations in (B.11) reduces to

z1 = Γxn,

µ = ηz1z2 + γcz1,

θxn = ηz1z2 + γcz2.

(B.12)

First, it must be the case that constant Γ > 0 and matrix A is invertible. Otherwise,
the system cannot have a positive steady state. This is equivalent to α1 A−1αn > α1,n.
The input species should not be depleted to create the output species. The system
in equation (B.12) simplifies to a single equation

x2
n(Γηθ2 + Γ

2ηγc) + xn(Γγ2
c − Γµη) − γcµ = 0. (B.13)

Equation (B.13) always has a positive solution

xn =
(Γµη − Γγ2

c ) +
√
(Γγ2

c − Γµη)2 + 4γcµ(Γηθ2 + Γ2γcη)
2(Γηθ2 + Γ2γcη)

. (B.14)

Thus, the steady state error signal is

e =
−(Γγ2

c + 2Γ2γc
ηµ
θ2
+ Γµη) +

√
(Γγ2

c − Γµη)2 + 4γcµ(Γηθ2 + Γ2γcη)
2(Γ2γcη + Γηθ2)

. (B.15)

If we want the output of the dynamical system to follow the reference signal µ
θ2
, then

it must be that
γc =

θ2
Γ
− Γηµ

θ2
, (B.16)
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which can only be achieved if and only if Γ < θ2√
ηµ
. �

Xn
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Z1
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output
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η
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θ2

θ1

Figure B.2: A sequestration feedback network with a simplified process. The
diagram matches Figure 3.3, but the process network is simplified to only allow
bimolecular chemical reactions between species with consecutive numbering; each
process species Xi is created by the previous process species Xi−1 for 2 ≤ i ≤ n− 1.
For simplicity, the process species degradation rates are assumed to be equal and
represented as γp (orange). Similarly, the controller species degradation rates are
assumed to be equal and represented as γc (orange). The sequestration reaction rate
η is illustrated in blue and the process species production rates θ1, θ2, k1, . . . , kn−1 are
illustrated in green. A process network that follows these assumptions implements
the process species as proteins subjected to dilution inside a bacterial cell.

Theorem 3.2. The critical controller degradation rate for a simplified process
network (i.e. each process species Xi is created by the previous process species Xi−1

and creates the next process species Xi+1, ∀2 ≤ i ≤ n − 1, as in Figure B.2) is:

γc =
θ1θ2

∏n−1
i=1 ki

γn
p

−
ηµγn

p

θ1θ2
∏n−1

i=1 ki
. (3.8)

It can be achieved if and only if

γp <
n

√
θ1θ2

∏n−1
i=1 ki√
ηµ

. (3.9)
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Proof. In this particular case, the matrix

A−1 =

©«

1
k2

γp
k2k3

. . .
γn−2
p

k2...kn−1θ2

0 1
k3

. . .
γn−3
p

k3...kn−1θ2
...

...
...

...

0 0 . . . 1
θ2

ª®®®®®®¬
,

the vectors β1 = (−γp, 0, . . . , 0), βn = (0, . . . , 0,−γp)T , β1,n = 0, and the expression
Γ =

γnp∏n−1
i=1 kiθ2

. Hence, the critical controller degradation rate is

γc =
θ1θ2

∏n−1
i=1 ki

γn
p

−
ηµγn

p

θ1θ2
∏n−1

i=1 ki
. (B.17)

The critical controller degradation rate can be achieved if and only if

γp <
n

√
θ1θ2

∏n−1
i=1 ki√
ηµ

. (B.18)

�

B.4 Stability analysis of the sequestration feedback network with controller
species degradation

In this section, we derive the stability criterion for the sequestration feedback net-
work with controller degradation. The stability criterion depends on comparing the
process and the controller degradation rates. To assess the stability of the sequestra-
tion feedback network, we derive the characteristic polynomial associated with its
linearization.

First, we clarify our model assumptions. We assume that all process species degrade
at the same rate and that the two controller species also degrade at the same rate.
Additionally, we also assume a simplified process structure, as in Figure B.2 because
otherwise it may be difficult to analytically derive the characteristic polynomial and
its roots. For a more detailed discussion, see [Ols+17]. Thus, our model equations
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are as follows:

dx1
dt
= θ1z1 − γpx1

dx2
dt
= k1x1 − γpx2

...

dxn

dt
= kn−1xn−1 − γpxn

dz1
dt
= µ − ηz1z2 − γcz1

dz2
dt
= θ2xn − ηz1z2 − γcz2.

(B.19)

We introduce the following notation:

α =
θ1θ2

∏n−1
i=1 ki

γn
p

,

β = ηµ.

Then the linearized dynamics of the sequestration feedback network can be expressed
according to the block matrix M ∈ R(n+2)×(n+2), where A ∈ Rn×n, B ∈ Rn×2,
C ∈ R2×n, and D ∈ R2×2. Here,

M =

[
A B

C D

]
,

A =


−γp 0 · · · 0
k1 −γp · · · 0

0 . . .
. . .

...

0 · · · kn−1 −γp


, B =


θ1 0
...

...

0 0

 ,
C =

[
0 · · · 0
0 · · · θ2

]
,D =

[
−ηz∗2 − γc −ηz∗1
−ηz∗2 −ηz∗1 − γc

]
.

where z∗1 and z∗2 are the steady state values of controller species z1 and z2. The
steady state values of the controller species satisfy the equations:

µ = ηz∗1z∗2 + γcz∗1,

αz∗1 = ηz∗1z∗2 + γcz∗2.
(B.20)
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We can solve this system of equations and obtain that

z∗1 =
β − γ2

c +
√
(β − γ2

c )2 + 4βγc(α + γc)
2η(α + γc)

, z∗2 =
µ − γcz∗1
ηz∗1

. (B.21)

By performing block matrix manipulations, we can compute the characteristic poly-
nomial of matrix M as follows:

p(s) = det(sI − M) = det(sI − A) det[(sI − D) − C(sI − A)−1B]
=(s + γp)n

[
(s + ηz∗1 + γc)(s + ηz∗2 + γc) − η2z∗1z∗2

]
+ αηz∗1γ

n
p,

(B.22)

where I is the identity matrix of dimensions (n + 2) × (n + 2).

By substituting in the values of z∗1 and z∗2 from equation (B.21), we obtain that

p(s) =(s + γp)n
[
s2 + s

(
2αβ

β − γ2
c +
√
∆n
+
αγc + β

α + γc

)
+

(
2αβγc

β − γ2
c +
√
∆n
− γc(γ2

c − β)
α + γc

)]
+
α(β − γ2

c +
√
∆n)

2(α + γc)
γn

p,

(B.23)

where ∆n = (β − γ2
c )2 + 4βγc(α + γc) = (β + γ2

c )2 + 2βγc(2α + γc).

To simplify the form of the variable ∆n in the characteristic polynomial, we make
the new "strong feedback" assumption that β � αγc. Consequently,

√
∆n ≈ β + γ2

c

since β2 � 4αβγc.

Therefore, the characteristic polynomial simplifies to

p(s) = (s + γp)n
[
s2 + s

(
α +

β

α + γc

)
+

(
αγc +

γc(β − γ2
c )

α + γc

)]
+

αβ

(α + γc)
γn

p .

(B.24)

Thus, the roots s ∈ C of the characteristic polynomial satisfy the following equation:

(s + γp)n
[
s2 + s

(
α +

β

α + γc

)
+

(
αγc +

γc(β − γ2
c )

α + γc

)]
+

αβ

(α + γc)
γn

p = 0.

We study the characteristic polynomial’s roots to determine the stability of the
sequestration feedback network with controller species degradation.
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First, we make the change of variable s = γpz and obtain a new formulation of the
characteristic polynomial in equation (B.35) as the following:

(z + 1)n
[
z2 + z

(
α

γp
+

β

γp(α + γc)

)
+

(
αγc

γ2
p
+
γc(β − γ2

c )
γ2

p(α + γc)

)]
= − αβ

γ2
p(α + γc)

.

(B.25)

By using the strong feedback assumption, we know that β � α2, αγc, therefore the
characteristic polynomial simplifies to

Let z be a complex root of the characteristic polynomial in equation (B.26). We use
the characteristic polynomial in equation (B.26) to derive the stability criterion for
the sequestration feedback system. We consider the following three cases: γc � γp,
γc and γp the same order of magnitude, and γc � γp.

Theorem 3.1. We consider the sequestration feedback network with controller
degradation described in equations (3.1) under the assumption of strong seques-
tration feedback (β � α2, αγp). The closed loop stability criterion depends on the
relationship between the process degradation rate γp and the controller degradation
rate γc. We consider the following three cases:

Case I: If the controller species degradation rate is much smaller than the process
species degradation rate, the stability criterion is the same as the production-
degradation inequality in [Ols+17], which we reproduce here as:

γp � γc,

γp >
n+1

√√√
θ1θ2

∏n−1
i=1 ki

tan
(
π
2n

) (
1 + tan

(
π
2n

)2) n
2
.

(3.5)

Case II: If the controller and process species degradation rates are approximately
equal, then the closed loop system is stable if

γp ≈ γc,

γp >

n+1
√
θ1θ2

∏n−1
i=1 ki√

tan
(
π

n+1
)2
+ 1

.
(3.6)
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Case III: If the controller species degradation rate is much larger than the process
species degradation rate, then the closed loop system is stable if

γc � γp,

γp >

n

√
θ1θ2

∏n−1
i=1 ki

n
√
γc

√
1 + tan

(
π
n

)2
.

(3.7)

Proof. Case I: γp � γc

In this case, the controller species degradation rate is much smaller than the process
species degradation rate and therefore it does not influence the stability of the closed
loop sequestration feedback system.

In particular, the characteristic polynomial in equation (B.26) reduces to the follow-
ing characteristic polynomial:

(z + 1)n
[
z2 + z

(
α

γp
+

β

γp(α + γc)

)
+

(
αγc

γ2
p
+
γc(β − γ2

c )
γ2

p(α + γc)

)]
= − αβ

γ2
p(α + γc)

.

(B.26)

(z + 1)n
(
z +

α +
β
α

γp

)
= − β

γ2
p
. (B.27)

We know from [Ols+17] that the solution of the stability problem is provided by
the production-degradation inequality. Consequently, in order for the closed loop
sequestration feedback system to be stable, we must have that:

γp � γc,

γp >
n+1

√
θ1θ2

∏n−1
i=1 ki

∆n
.

(B.28)

Case II: γp ≈ γc

Let us assume that β = γ2
c . Equivalently, the characteristic polynomial for z must

satisfy the following equation:

(z + 1)n
[(

z
γp

γc
+ 1

) (
z
γp(α + γc)
β − γ2

c
+ 1

)]
= − αβ

γc(β − γ2
c )
. (B.29)
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Since γp ≈ γc, then we must have that

(z + 1)n+1
(
z
γc(α + γc)
β − γ2

c
+ 1

)
= − αβ

γc(β − γ2
c )
. (B.30)

Since we are in the strong feedback limit of β >> α2, αγp. We multiply both side
of the characteristic polynomial by factor γpα

β .

Hence we obtain that

(z + 1)n+1

(
z
γpα

β
+
γpα

β
+
α2

β
+ 1

)
= − α

γp
, (B.31)

which, under the strong feedback assumption, simplifies to

(z + 1)n+1

(
z
γpα

β
+ 1

)
= − α

γp
, (B.32)

Thus, the largest real root is at value ≈ −1 − β
γpα

.

If n is even, then the characteristic polynomial in (B.32) has two negative real roots
and the remaining roots are conjugate complex pairs.

To determine the stability criterion, we analyze the bifurcation point at which the
system goes from stable to unstable. Accordingly, we assume that there is a complex
root z = iδ. Then themagnitude and phase of the characteristic polynomial are given
by

(δ2 + 1) n+1
2 =

α

γp
,

tan−1(δ) = π(2k + 1)
n + 1

,

(B.33)

where 0 ≤ k ≤ n
2 .

The second real root corresponds to index k = n
2 .
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We follow the proof in [Ols+17] and we obtain that stability is guaranteed if

n is even,

γp ≈ γc,

γp >

n+1
√
θ1θ2

∏n−1
i=1 ki√

tan( π
n+1 )2 + 1

.

(B.34)

If n is odd, then the characteristic polynomial in (B.32) has only one negative real
root, located at value ≈ −1− α+

β
α

γp
. The other roots are conjugate complex pairs. The

rest of the argument is similar and stability is guaranteed for an analogous criterion.

Case III: γp � γc

(s + γp)n
[
s2 + s

(
α +

β

α + γc

)
+

(
αγc +

γc(β − γ2
c )

α + γc

)]
+

αβ

(α + γc)
γn

p = 0. (B.35)

We can equivalently write the characteristic polynomial in equation (B.26) as the
following:

(s + 1)n
(
s
γp

γc
+ 1

) (
s
γp(α + γc)
β − γ2

c
+ 1

)
= − α

γc
(B.36)

Since γp
γc

and γp(α+γc)
β−γ2

c
are very small, we can infer that the characteristic polynomial

(B.36) has two large negative real roots at values ≈ − γcγp and ≈ − β−γ2
c

γp(α+γc) . Here
we have assumed that β � γ2

c in addition to the strong feedback assumption of
β � αγc.

We only consider the case n even. The case n odd has a similar proof with an
additional real root.

Then the magnitude and the phase of the characteristic polynomial are given by:

(δ2 + 1) n2 = α

γc
,

tan−1(δ) = π(2k + 1)
n

,

(B.37)

where 0 ≤ k ≤ n
2 − 1.
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All the roots are conjugate complex and they occur in pairs.

If the following conditions

γp � γc,

γp >

n

√
θ1θ2

∏n−1
i=1 ki

n
√
γc

√
1 + tan

(
π
n

)2
,

(B.38)

hold, then the stability of the closed loop sequestration feedback system is guaran-
teed.

�

Remark 9. The sequestration feedback network in FigureB.2 can not simultaneously
fulfill the strong feedback assumption and have a critical controller degradation rate
since the inequalities in equation (B.3) and in β � α2 contradict each other for
n ≥ 3.

B.5 Additional details about the numerical experiments
Scaling the sequestration feedback network model
We first rescale the sequestration feedback network to produce the simulations in
Figures 3.4, B.1, and ??, as well as throughout Section B.6. For simplicity, we only
describe the rescaling step for the process network with two species (Figure B.3).
However, this rescaling step is applicable for a general linear process network. The
unscaled model of the sequestration feedback network is:

Ûx1 = θ1z1 − γpx1,

Ûx2 = k1x1 − γpx2,

Ûz1 = µ − ηz1z2 − γcz1,

Ûz2 = θ2x2 − ηz1z2 − γcz2.

(B.39)

The units of these biochemical species and rates are given in Table B.2.

To rescale, we let x1 = x
′

1 · 109, x2 = x
′

2 · 109, z1 = z
′

1 · 109, z2 = z
′

2 · 109, t = t
′

3600 ,
θ1 = θ

′

1 · 3600, θ2 = θ
′

2 · 3600, γp = γ
′
p · 3600, γc = γc · 3600, k1 = k

′

1 · 3600,
η = η

′ · 10−9 · 3600, and µ = µ′ · 109 · 3600.

Then the units of the rescaled biochemical species and rates are given in Table B.3.
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X2

X1

Z2

Z1

Controller Process

output

𝛾c

𝛾c

μ
η

θ1

k1

θ2

𝛾p

𝛾p

Figure B.3: A sequestration feedback network with two process species. For
the numerical simulations in this section, we consider this sequestration feedback
network with only two process species X1 and X2. We assume that process species
X1 and X2 are degraded at the same rate γp and that the controller species Z1 and Z2
are degraded at the same rate γc. We give the model of this sequestration feedback
network in equation (B.39).

x1 x2 z1 z2 t θ1 θ2 γp µ η γc k1

M M M M s s−1 s−1 s−1 M s−1 M−1 s−1 s−1 s−1

Table B.2: The units of the biochemical species and rates in the sequestration
feedback network. Species X1, X2, Z1, and Z2 have units of molar (M) and time t
has units of seconds (s). Thus, the degradation and the production rates θ1, θ2, γp,
γc, and k1 have units of s−1 since they correspond to first order reactions. Rate µ
has units of M s−1 since it corresponds to a zero order reaction. Rate η has units of
M−1 s−1 since it corresponds to a second order reaction.
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x
′

1 x
′

2 z
′

1 z
′

2 t′ θ
′

1 θ
′

2 γ
′
p µ

′
η
′

γ
′
c k

′

1

nM nM nM nM hr hr−1 hr−1 hr−1 nM hr−1 nM−1 hr−1 hr−1 hr−1

Table B.3: The units of the biochemical species and rates in the scaled seques-
tration feedback network. Biochemical species X

′

1, X
′

2, Z
′

1, and Z
′

2 have units of
nanomolar (nM) and time t′ has units of hours (hr). Thus, the degradation and the
production rates θ ′1, θ

′

2, γ
′
p, γ

′
c, and k

′

1 have units of hr−1 since they correspond to
first order reactions. Rate µ′ has units of nM hr−1 since it corresponds to a zero
order reaction. Rate η′ has units of nM−1 hr−1 since it corresponds to a second order
reaction.

Following rescaling, the model of the sequestration feedback network can be de-
scribed as:

Ûx ′1 = θ
′

1z
′

1 − γ
′
px
′

1,

Ûx ′2 = k
′

1x
′

1 − γ
′
px
′

2,

Ûz′1 = µ
′ − η′z′1z

′

2 − γ
′
cz
′

1,

Ûz′2 = θ
′

2x
′

2 − η
′
z
′

1z
′

2 − γ
′
cz
′

2.

(B.40)

We compute representative values of the controller’s and the process’ degradation
rates from the half-life values in Table B.4. We compute the degradation rates in
Table 3.1 in units of hr−1 by taking the inverses of the half-life values andmultiplying
them by the constant log(2). We gave the representative values of the controller’s
and the process’ degradation rates in Table 3.1.

mRNA Hok RpoS CcdA
0.5 − 6 min 20 min 30 min 30 min

Table B.4: The half-lives of biological parts that could be used to build seques-
tration controllers. We present the half-lives of mRNA, toxin Hok, sigma factor
RpoS, and antitoxin CcdA. The median mRNA half-life is measured as 0.5-6 min
in [Ber+04]. The half-life of toxin Hok in the type I toxin-antitoxin pair in E. coli
is 20 minutes [SM12]. The half-life of the sigma factor protein RpoS is 30 min
when the E. coli cells are in stationary phase at 37◦C or under stress conditions.
When sigma factor proteins RpoS are actively degraded by protease ClpXP during
the exponential phase, their half-life is only 2 minute [ZG98]. The antitoxin CcdA
is degraded in wild-type cells with a half-life of 30 min in the absence of toxin CcdB
and a half-life of 60 min when bound in a complex with toxin CcdB [De +09].

Lastly, we present representative values of the sequestration binding on-rates in Ta-
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bleB.5. The rate η′ in the rescaled sequestration feedbackmodel (equationB.40) rep-
resents the on-rate of the sequestration reaction between the two controller species.
The off-rate of the sequestration reaction is much smaller than the on-rate. The
values of the dissociation constants in Figure 3.2 can be computed as the ratios
between the off-rates and the on-rates of the sequestration reaction.

mRNA : antisense RNA sigma factor : anti-sigma factor

0.005 nM−1 hr−1 - 1.62 nM−1 hr−1 18 nM−1 hr−1 - 72 nM−1 hr−1

Table B.5: The on-rate of the sequestration reaction. Tomatch Table B.3, we give
the on-rates of the sequestration reactions in units of nM−1 hr−1. From [Wal+02],
we compute representative on-rate values of mRNA binding to antisense RNA.
The values of the on-rates are between 0.005 nM−1 hr−1 and 1.62 nM−1 hr−1.
From [Raj+16], we compute representative on-rate values of sigma factors binding
anti-sigma factors. The values of the on-rates are between 18 nM−1 hr−1 and 72
nM−1 hr−1, depending on the temperature and the presence of zinc. To the best of
our knowledge, the on-rate of the toxin CcdB binding the antitoxin CcdA has not
been accurately determined [KHM99].

Details of numerical experiments
For the two-species process network in Figure B.3, both quantities α = θ1θ2k1

γ2
p

and
β = ηµ have units of hr−1. For a transcriptional implementation of the controller
species and a protein implementation of the process species, this network satisfies the
assumption of strong sequestration feedback for the parameter values in Table B.6.

γ
′
c η

′
γ
′
p µ

′
k
′

1 θ
′

1 θ
′

2 α
′

β
′

10 hr−1 1 nM−1 1 hr−1 50 nM hr−1 1 hr−1 1 hr−1 10 hr−1 10 hr−1 50 hr−1

Table B.6: The parameters used for a simulation with controller species imple-
mented by transcriptional parts and process species implemented by protein
parts. The values of parameters γp, γc, and η are found in Tables 3.1 and B.5 for
both the transcriptional and the protein parts. The reference concentration is 5 nM.

B.6 Other modeling assumptions
In this section, we consider differentmodeling assumptions than the setup introduced
in Figure 3.3.

Firstly, we assume that the process species in the sequestration feedback network in
Figure 3.3 degrade at different rates. If the process species are degraded at different
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Figure B.4: The sequestration feedback network with the controller species im-
plemented with transcriptional parts and the process species implemented with
protein parts. The sequestration feedback network simulated using the parameters
in Table B.6 is stable and has oscillations that settle within 5 hours. The reference
concentration is 5 nM and the steady state error is 1.1 nM.

γ
′
c η

′
µ
′

k
′

1 θ
′

1 θ
′

2

1 hr−1 50 nM−1 50 nM hr−1 10 hr−1 1 hr−1 1 hr−1

Table B.7: The parameters used for the simulation in Figure 3.4. In panel A, the
process degradation rate is γp = 2 hr−1. In panel B, the process degradation rate is
γp = 0.25 hr−1. The reference concentration is 50 nM.

rates, the characteristic polynomial in equation (B.26) does not necessarily factor
the term (s + 1)n. Therefore, finding an analytical approximation to the roots of the
characteristic polynomial can be challenging and finding an analytical criterion for
the stability of sequestration feedback networks may not be possible. However, we
consider the model with different process degradation rates:

Ûx1 = θ1z1 − γp1 x1,

Ûx2 = k1x1 − γp2 x2,

Ûz1 = µ − ηz1z2 − γcz1,

Ûz2 = θ2x2 − ηz1z2 − γcz2.

(B.41)

As indicated by Figure B.5, the smaller of the two process species degradation rates
results in instability. Although the larger process species degradation rate dampens
the oscillations (compare Figures B.5B and 3.4B), it is not able to fully compensate
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Figure B.5: The stability of the sequestration feedback network with differ-
ent process species degradation rate and strong sequestration feedback. We
illustrate the stability of sequestration feedback networks by assuming strong se-
questration binding, indicative of a sigma factor implementation of the controller
species. In panel A, we use large process degradation rates of 2 hr−1. We note
stability since the process output species X2 (red) tracks the reference concentra-
tion of 50 nM (orange dashed line), albeit with a large steady state error. In panel
B, we employ a process species with a small degradation rate (0.25 hr−1) and a
process species with a larger degradation rate (2 hr−1). This results in instability,
as evidenced by the sustained oscillations in the process output species X2. The
parameters used for these simulations are given in Table B.8.

γ
′
c η

′
µ
′

k
′

1 θ
′

1 θ
′

2

1 hr−1 50 nM−1 50 nM hr−1 10 hr−1 1 hr−1 1 hr−1

Table B.8: The parameters used for the simulation in Figure B.5. In panel
A, the process degradation rates are γ ′p1 = γ

′
p2 = 2 hr−1. In panel B, the process

degradation rates are γ ′p1 = 2 hr−1, γ ′p2 = 0.25 hr−1. The reference concentration is
50 nM.
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for the small degradation rate of the other process species. Therefore, the smallest
process species degradation rate must be carefully tuned to ensure stability of the
sequestration feedback network.

Secondly, we consider the reactions between the process and the controller networks
to be enzymatic. We note that the relationship between the process and the controller
networks in Figure 3.3 can also be represented by the following chemical reactions:

Z1
θ1−−−→ Z1 + X1,

Xn
θ2−−−→ Xn + Z2.

(B.42)

Alternatively, we can assume that the transformation of controller species Z1 into the
process input species X1 is catalyzed by the enzyme E1 and that the transformation
of the process output species Xn into the controller species Z2 is catalyzed by the
enzyme E2. Then the dynamics of these catalytic reactions can be modeled using
the Michaelis–Menten kinetics as follows:

E1 + Z1
a1−−−⇀↽−−−
d1

C1
k1−−−→ E1 + X1,

E2 + Xn
a2−−−⇀↽−−−
d2

C2
k2−−−→ E2 + Z2,

(B.43)

where the rates satisfy the inequalities k1 � a1, d1 and k2 � a2, d2.

We make the simplifying assumptions that the concentration of enzymes E1 and E2

are much smaller than the concentrations of species Z1 and X1 [MVA00; DM15].
We let the Michaelis constants be

K1
m =

d1 + k1
a1

,

K2
m =

d2 + k2
a2

.

(B.44)

The Michaelis constants K1
m and K2

m that correspond to biological enzymes range
between 10−6 M and 10−2 M [MVA00], which renders them to be much larger
than the concentrations of species Z1 and Xn. Therefore, the propensity functions
associated with these kinetics are linear.

We let θ1 =
k1E0

1
K1
m

and θ2 =
k2E0

2
K2
m
, where E0

1 and E0
2 are the initial concentrations of

enzymes E1 and E2, respectively. Using this notation, the sequestration feedback
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model remains unchanged from Figure 3.3 due to the linearity of the first-order
kinetics.

Thirdly, we consider additional reactions between the controller and the process
species.

The updated model of the system is:

Ûx1 = θ1z1 − γpx1 − k1x1,

Ûx2 = k1x1 − γpx2 − θ2z2,

Ûz1 = µ − ηz1z2 − γcz1 − θ1z1,

Ûz2 = θ2x2 − ηz1z2 − γcz2.

(B.45)
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A p p e n d i x C

ADDITIONAL COMPUTATIONAL RESULTS FOR
PARAMETER IDENTIFICATION

C.1 Results for the bursting gene model
The propensity functions of the bursting gene model’s reactions in (4.8)-(4.10) are:
kon, koff, kr and kdegR. Their stoichiometry matrix is:

1 0
−1 0
0 1
0 −1


For the bursting gene model, we use the parameters identified from the FSP and the
RBF-FSP projections using a parameter sweep to compare the resulting distributions
with the original data, as illustrated in Figure C.1. Since the original data is discrete
and the radial basis functions continuous, we can only hope to approximate the
original data with these two probability distributions.

We then use a version of adaptive Metropolis Hastings for the RBF-FSP model with
the covariance matrix 0.7 × V , where

V =

©«
0.001 0.005 0.003 0.000
0.005 0.031 0.022 −4.293 × 10−5

0.003 0.022 0.016 0.000
0.000 −4.293 × 10−5 0.000 0.000

ª®®®®®¬
.

The joint distributions of the parameter values are illustrated in Figure C.2

C.2 Results for the genetic toggle switch model
In Figure C.3, we describe the setup of the genetic toggle switch that reflects the
model in equations (4.11) and (4.12) in Section 4.5.

In Figure C.4(A) and (B), we compare the toggle switch data with distributions
generated by the parameters that maximized the likelihood function for the FSP
model (top panel) and the RBF-FSP model (bottom panel) of the genetic toggle
switch. The results are qualitatively similar with Figure 4.5(B).
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Figure C.1: The probability distributions generated by the parameters iden-
tified using the two projections and the simulated data for the bursting gene
model. We compare the probability distribution of the simulated data (black) to
the probability distributions obtained from the gene bursting model by using the
parameters that maximized the likelihood of observing the data L(D|Λ) in the RBF-
FSP projection (green) and in the FSP projection (blue). We observe that the three
probability distributions match.
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Figure C.2: The joint distributions of the parameters identified using the
Metropolis Hastings algorithm for the bursting gene model. We identify proba-
bility distributions of the parameters of the bursting gene model using an adaptation
of the Metropolis Hastings algorithm. By plotting the joint probability distribu-
tions of pairs of parameters, we can evaluate their correlations. We expect that the
correlations are represented by compact, not diffuse shapes; this indicates that the
chain has a sufficient number of accepted samples. We also look for odd shapes in
the two-dimensional pairwise projections of the four-dimensional joint distribution;
we observe that parameters kr and koff are anti-correlated. This result matches our
expectation of the bursting gene model.

Repressor LacI Promoter PLs1coRepressor λcIPromoter Ptrc-2

Figure C.3: Illustration of the genetic toggle switch, adapted to the example in
Section 4.5. The two repressor proteins LacI and λcI mutually repress each other’s
promoters; LacI represses promoter PLs1co that drives the expression of λcI and
λcI represses promoter Ptrc-2 that drives the expression of LacI. Additionally, both
repressor proteins are subjected to degradation (represented using the empty set
symbol).



122

Number of LacI molecules

N
um

be
r o

f λ
cI

m
ol

ec
ul

es
A

B

Probability

FigureC.4: Theprobability distributions generatedby theparameters identified
using the two projections for the genetic toggle switch model. We compare the
simulated data for the genetic toggle switch in Figure 4.5(B) to the probability
distributions for the parameters that maximized the likelihood of observing the data
L(D|Λ) in the FSP model (A) and in the RBF-FSP model (B). We use parameters
identified after 100000 runs of the Metropolis-Hastings algorithm.
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