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ABSTRACT

The purpose of this study is to gain a better understanding of
the nonlinear stall-spin phenomenon through numerical analysis and

interactive 3-D graphics.

The linear aerodynamic range was thoroughly examined for the
NAVION, a 1light aviation aircraft. Nonlinear aerodynamic behavior
was modeled by adding nonlinearities to the 1lift, pitching and
rolling moments. The results of this analysis are promising;
however, a more sophisticated model is needed to fully simulate the

stall-spin phenomenon.

A graphic tool is described which allows the user to interact
with the simulation process. This gives the user a "feel" for the

dynamics of aircraft and effectively displays the characteristic

features of the dynamic model.
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NOMENCLATURE
Devevrnnns Wing reference span
Covennanns Wing mean aerodynamic chord
Coennnnnnn Dimensionless drag coefficient

CGovuvnnns Center of gravity
CL........Dimensionless lift coefficient

Cl' ...... .Dimensionless rolling moment coefficient
Cm" ...... Dimensionless pitching moment coefficient
Cn........Dimensionless yawing moment coefficient

Cy........Dimensionless side force coefficient

Devievannn Drag force

F,-++--...Aerodynamic and propulsive force

Beeevons ..Acceleration due to gravity
Geovernnnn Gravity force
hoooans ...Altitude

IX’Iy IZ..Moments of inertia referred to body axis
’

I geeee...Product of inertia referred to body axis
Leverenaen Rolling moment about the x-body axis due to

aerodynamic torque (positive right wing down)
L...... ...Lift

M.........Mass

Mevivaann .Pitching moment about the y-body axis due to
aerodynamic torque (positive nose up)

| Yawing moment about the z-body axis due to

aerodynamic torque ( positive nose right)



Pevesocons Roll rate, angular velocity about x—-body axis
(positive right wing down)

Qevensanns pitch rate, angular velocity about y-body axis
(positive nose up)

Qeovnnenns Dynamic pressure, % p V?

| S ....Yaw rate, angular velocity about z-body axis
(positive nose right)

S.........Reference wing area

U.........Forward velocity along x-body axis

Ugsesseo..Steady-state forward veloclity

Veeasnna ..Velocity along the y-body axis
Vieeeeeonas Magnitude of the velocity vector
Voeevanann Reference velocity: 2 mg=p S V2
W.eosvesssVelocity along the z-body axis
Woeonsonas Steady~state downward velocity

Weieoveoo .Weight of the aircraft

X,¥,Z.....Inertial axis (Z pointing downward)
X,¥,2.....Body axis (x pointing forward, z downward)
Qevesnes ..Angle of attack

Ag...0.....5teady-state (trim) angle of attack

®g........Stall angle of attack

Biveens ...51ideslip angle
Y.euoouuoouo...Flight path angle
geceeeene Aileron control surface deflection (positive

for positive rolling moment)

Ge........Elevator control surface deflection

( positive for nose-down pitching moment)
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Ceeiiennns Rudder control surface deflection
( positive for nose-left yawing moment)
Note positive for negative yawing moment,
Betnnennes Pitch angle, positive nose up
Boesenconn Steady-state pitch angle
Devesnsons Mass density of air
Devenans ..Roll angle, positive right wing down
Yosaweo...Yaw angle, positive for right nose
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NONDIMENSIONAL DERIVATIVE DEFINITIONS
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CHAPTER I

INTRODUCTION

The potential hazard associated with accidental stalling and
spinning of aircraft has received different attention depending on
the type of aircraft. For a military aircraft, the high angle of
attack range is part of the maneuver domain, but for a general
aviation aircraft the high angle of attack range is certainly not a
part of normal operation. However, the safety concern, for all
types of aircraft, motivates interest in this area due to the high

fatality rate associated with such accidents,.

In an effort to improve the safety record, which is of prime
concern for general aviation aircraft, several controversial issues
have arisen, including pilot training; e.g., Should spin recovery
be part of pilot testing and aircraft certification? Should an

aircraft be able to recover from a fully developed spin?



Although a lot of work has been done 1in this area, the
stall-spin phenomenon is still poorly understood and seems to be
dependent on many parameters [1], [2]. In contrast, the theory of
flight dynamics in the low angle of attack range is well developed,
and in most cases the calculations are sufficient to give confidence

in a specific design.

In the late 70's a significant research effort concentrated on
that area [3], [4]. An extensive experimental program was launched,
which included several standard testing methods ranging from easy to
complex. Wind tunnel tests are usually the first to be performed.
In conjunction with water channel flow visualizations, they provide
an understanding of the general structure of the flow, as well as
knowledge of the static stability of the airplane under study. The
second stage is usually dynamic testing (forced oscillations)[5].
Combined with data obtained with a rotary balance, this set of
experiments produces the information necessary for an analytical
prediction method. However, the most reliable source of information
on stall-spin characteristics, prior to actual flight tests, which
are done last, is obtained by testing dynamically scaled airplane
models. These models may be dropped from a helicopter or an
aircraft , powered and radio-controlled, or flown in a spin tunnel.
The most noticeable fruits of this work are the observation of the
high nonlinearity of the phenomenon and the strong coupling between

the different modes of motion. The inherent nonlinearities of stall



behavior prevent the generalization of tests from one configuration
to another, and even a minor change in the geometry can induce some
drastic effects , e.g., pitch-up moment at stall instead of
pitch-down moment. No characteristic trends have been displayed by

the studies other than the high costs of the experiments and the

high sensitivity to many factors.

The decreasing cost of numerical studies relative to
experimental studies can only strengthen the interest in analytical

tools. Two main approaches are taken in the literature to study

this problem numerically.

In the first approach [6], [7], the forces and moments of the
airplane are computed using a table lookup method which yields
coefficients based on test data (rotary balance and dynamic
testings). The results are reliable, being in close agreement with
experiments, and the computations are not complex.
The second, and by far the most ambitious approach , aims for a
thorough analysis through the use of lifting surface theory ([8].
Inputs to the program are typically geometry specifications and a
2-D 1lift curve. This method [9],[10] is complex and requires
extensive computation. It is still in a development phase and the
assumptions made are very restrictive. However, an obvious

advantage is that an airplane need not actually be built before



using this method. Therefore, it can be used in the design phase.
It should be emphasized that the reliability of this analytical tool

has not been determined.



PRESENTATION OF THE SUBJECT

The purpose of this study is to gain a better understanding of
the stall-spin phenomenon and its associated nonlinear behavior , by
using analysis and interactive 3-D graphics. The originality of
this work resides in its use of graphics. Computational output is
usually displayed by using plots of the several dependent variables
as functions of time. However, with plots, even a slightly complex
motion may become obscure and difficult to visualize. An example is
given in Figure (1.a): The fuselage of the airplane is, in fact,

decribing a cone while the airplane is rolling around its x body

axis.

The graphic output designed for this study displays a plane
"flying" in real time, some flight instrumentation and control input
devices. Output files are generated for further study and/or
playback . This arrangement allows the user to see the motion as it
is computed and to influence it through the controls. The
interaction feature is very important in testing a numerical model
of the aerodynamics and to quickly point out the interesting
characteristics of the flight dynamics associated with it. The code
developed here is intended to be more a learning device than a

simulator and no special efforts were made to have the model respond



as a specific airplane. The underlying idea was inspired by linear
aerodynamics for which computations can be made easier by omitting
those parameters which had little or no influence. Exploring the
relative importance of the parameters through this interactive tool

is the main goal of this work.



CHAPTER II

EQUATIONS OF MOTION

The motion of an aircraft is a 6-degree of freedom problem and
therefore can be fully described by a set of six nonlinear coupled
differential equations of the second order, representing the
translational and rotational accelerations of the airplane in a

body-fixed coordinate system [11].

du
F = _— + W-=-T1rvj;
x=m g3 )
F - ¥ s ru-pw);
y (x u-pw)

F_ a2 n (QE +pVv-qu);
(2.1)

d d
= =R dar - .
Nx - Ix dt * Ixz dt * (Iz Iy) ar* Ixz P as

y X dt (Iy - I)rp+Iy,pP

- 4p dr - -
Nz Ixz dt * Iz dt ¥ (Iy Ix)p q Ixz Qr.

In most airplanes, the y plane is a plane of symmetry; therefore,

Ixy = Iyx = 0



The last two terms of each of the equations are the kinematic
coupling terms due to the rotation of the axis of the aircraft.
These terms represent the inertial nonlinearities in the system.
Other sources of nonlinearities are the aerodynamic forces and
moments which depend on angle of attack, angle of sideslip, velocity
and rotatiocnal rates. In order to minimize the complexity of the
equations (expressions of aerodynamic forces and moments), another
set of variables was chosen, The equations of motion were

transformed to (u,8,a) form. (Appendix I)

This body-fixed reference system is convenient for describing
the aerodynamic forces and moments. However, a representation of
the gravity field through Euler angles is then also necessary [12].
The Euler angle representation is as follows (see figure (2.a)). To
transform the inertial axis into body axis, the inertial system is
first rotated with respect to its Z-axis with an angle ¥y, yéw angle,
then by an angle 8, pitch angle, with respect to the new y-axis and
finally, by an angle ¢, roll angle with respect to the x-body axis.

The transformation matrix is consequently:

cosycoso sinycose -8ing
R{Y,8,¢) =94 -sinpcos¢+cosysingsing cosycos¢+sinysinesing cosgsing

sinysing+cosycosssing -cosysing+sinycos¢sing cosgcosdl.

The order in which the rotations are performed is important.



Any vector v expressed in the inertial reference system can be

resolved in the body axis system :

Vx vX
Vz VZ
This representation is valid and unique for -g.< 8 < %,

0< ¢y smand 0K ¢ S =

The gravity force is along the Z-inertial axis, so

GF = (m g cose sing , -m g sine , m g cosd cos¢ ), (2.3)

in body axes.

The equations to be solved are :

u = if -q u tana + r u g%g%,

a i:i? [FZCOSa - Fxsina} - p tgB8cosa *+ q - sinatgg r,

: =99%?%9§§ [coss Fy - singcosa F, - singsina FZ] - r cosa + p sina,
NX = I, %E + Ixz %% + (IZ - Iy) qr+I,,pa,

(2.4)
- dq -
NY Iy & © (Ig-I)rp+I,0paq,

Vet ke @ Ttz T Uy IR AT I ar

$ =p + tgd (q sing + r cosé),



8 = q cos¢ - r sing,

b = sing + Cos¢

r
cosf cose

with: F --m g sine - D sing cosg + L sina + T,

F

y= M g cose sing - D sing, (2.5)

F,= m g cos8 cos¢ - D sina cosf - L cosa.

Note here that § = q, w r, ¢ = p is true only in the linear

range. The equations (2.5) are a complete representation of the

mechanics of the system.

They have several singularities, Some of them, at B8 = + 90°9,
u=0 and a = % 90°, were ignored because of their unusual
occurrence, The singularities at 6 = + 90° could not be discarded
as they can occur in maneuvers which are of interest to our study,
i.e., looping and terminal phase of a spin. This singularity in the
pitch angle is not in the physics of the problem but is introduced
by the Euler representation: at 8= *90°%, both roll and yaw angle
are referenced with the same axis (the Z-inertial axis is then
aligned with the x-body axis) so that the system can detect only
oy, This can also be sSeen in the transformation matrix
R(¢,68=90°,¢) for 8 = 90°, ¢ and ¢ cannot be determined

individually; thus, the equations have to be singular.



0 0 -1
R(¢,0=90°,y) = sin(e-y) cos (¢-y) 0 (2.6)

cos(¢-y) -sin(¢-y) O

An analysis around these singularities was performed and 1is

presented in Appendix II. However,because of a variable time step
feature, which <checks the value of the error, no further
modifications of the program are necessary. The differential

equation system solver, MODDEQ [13], sucessfully handles those
singularities, This software subroutine uses a Runge-Kutta-Gill
scheme featuring automatic control of truncation error and variable
step size. The code is reasonnably fast ( 1000 time steps require
about 15 CPU s). Results are presented and discussed in Chapter IV

and Chapter V.



CHAPTER III

INTERACTIVE DISPLAY

3.1 General description of the PS300

The Evans and Sutherland PS300 is a graphic device which,
through a Motorola 6800 microprocessor, can handle all graphic
transformations independently from the host computer, in this case,
a VAX-VMS; the interface 1is then best suited for infrequent
communications of small amounts of data. The PS300 display rate is
about 60 Hertz for a structure of up to 50,000 vectors; thus, the
animation of the picture is smooth. A more technical description

follows,

JU‘} | 2
GCP |- MM lesl| DP

e

HOST

VAX PS300
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GCP : Graphics Control Processor
*controls communications with the host

¥processes commands and creates data structures in the Mass

Memory (MM)

¥*performs memory management.
MM Mass Memory of 1 Megabyte

DP : Display Processor

¥*generates a picture on the screen.

Internal communications
*Interface 1 is a 16 bit-path.

¥Interface 2 is an 8 bit-path.

External communications
¥*Interface 3 is an asynchroneous line of 19.2 K baud.

*Interface 4 is a 16-bit parallel direct memory access 1

mbyte/s

3.2 Operation

First an ASCII file is downloaded through the serial interface
to the PS300, This file will create all the display structure. For
example, it will include a list of vectors representing the airplane
as well as a function network. The function network establishes
connections between transformations, a rotation, for example, and an

object to be transformed (Appendix III). When all the display
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structures are in the PS300 memory, a FORTRAN program is run on the
VAX, which determines the airplane motion by solving the equations.
The translations and rotations are then sent down to the nodes of
the function network in the P3S300 memory, and information such as
control surface deflections and thrust setting are requested from
the graphic device where they can be set interactivally by turning
the control dials. The flowchart below summarizes the organization
of the program. At each step of time, the VAX requests the
elevator, the rudder, the aileron deflections, as well as the thrust
setting from the PS300 using fast subroutines developped at CALTECH
by Professor Antonsson; the program calculates then the new
position in space and velocities of the airplane and sends

translations, rotations and values to the PS300 functions network.

t =20
Request &, 8a. S, Tr —© elevator
from the PS300
'0) aileron Mass
mo) rudder Memory
h ti
Compute the motion B O thrust

Send translations &
rotations to PS300

[~

t = t + dt ;J




All the communications between the VAX and the PS300 are
through the parallel interface. The VAX program writes directly
into the PS300 memory, bypassing the graphics control processor that
usually deals with communications with the host. The GCP can then
process the display commands faster. Figure (3.a) shows the
physical graphic setup. Figure (3.b) represents a looping maneuver
through a series of three pictures. On Figure (3.c), a typical
display 1is represented. The biplane is an EVANS and SUTHERLAND
design (it was in a demonstration program). On the top left, the
control surfaces panel 1is showing the deflections of the surfaces.
On the bottom left , the angle of attack indicator is next to the
speed indicator. The attitude instrument on the right shows the
pitch angle (distance from the horizontal line), the sideslip angle
(distance from the vertical line), and the roll angle (angle between
the horizontal line and the symbolized airplane). The number on the
bottom far left is the iteration number, giving to the display a

time reference.
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CHAPTER IV

LINEAR AERODYNAMICS

4.1 Linear aerodynamic model
The first step of this study is to reproduce the well-known
motion of an airplane [11] corresponding to small angles of attack .

In this range of angle of attack, the aerodynamic is linear; i.,e

the aerodynamic coefficients are expressed as linear functions of
the different angles and velocities. The expansions of these

coefficients are chosen as follows:

L= C, * O (@ a0 * Crge 8,
CD = CDO + CDQ (Q. - ao),

CYB B+ CYGr Gr'
(4.1)

C1 = Cig 8B+ Cpup*Cinr+ Crgn 8+ Crgp 8,

m= Cmg (@ ~@0) + Cpg q * Cpge S,
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C =
n=Cng 8 * Cnp P *Crp 7 * Cpgp 80 * Crga Sa-

The derivatives are assumed constant. The value of these
derivatives for the NAVION and the CHEROKEE 180 are shown in
Appendix IV. This representation is very close to reality in the

small angle of attack range. When the angle of attack is close to

®g, the stall angle of attack, C;, changes drastically and this

a
model is no longer valid .

4,2 Longitudinal motion

In the equations of motion described in Chapter II , the
longitudinal mode can be uncoupled from the lateral modes; 1i.e., a
longitudinal motion stays longitudinal as long as no lateral

perturbation occurs [14].

F =m[_d_9+qw]

X dt
Foaom[ ¥-qu (4.2)
z dt
N =149,
Yy dt
. = ds F . F =
where: q T and F Fa + G .
These equations are the longitudinal equations of motion. No

assumptions have yet ©been made concerning the mechanics of the

system, but since the aerodynamic model limits the problem to small



angles of attack , the equations of motion can be linearized.

First, they are nondimensionalized; then each variable is expressed
as the sum of an equilibrium value and a perturbation part

Finally, the new expressions are introduced in the equations where
the second-order terms are neglected (see Appendix V for this

derivation). The resulting linear system is:

2 du.¢ u - C  cosg, 6
]

dt Xu
d(a-8) _ .
4 CZU u CLO Sind, 6 (4.3)
k
g _X 2 d2
u (2 28 = S
where: p = B
pSc’
k I
(.._Y_)z . _.l
c me?*
This motion can be studied analytically . Two characteristic
motions are found: the phugoid mode, which is a long period,

typically 20 seconds, lightly damped oscillation of the pitch angle
and the velocity; and the short period, which is a rapid, heavily
damped oscillation acting mostly on the angle of attack. When the
short period is excited, an oscillation dies out in about 2 periods,
typically 2 seconds. Consequently, this mode 1is difficult to
display. In Figure (4.a) the short period mode is noticeable during
the first few seconds, after which the phugoid mode takes over,

However, crude estimates of 1its period and its damping are 1.4
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seconds and -2.6, respectively. The period of the phugoid displayed
in figure (4.b) is about 30.8 seconds and the damping -0.0155.
Another example of a phugoid mode is given Figure 4.c, where the
airplane describes a looping before the long period oscillation.
The analytical values (Appendix VII) are, for the NAVION [15]:
Phugeid: T=30.1 seconds and damping=-0.0149
Short period: T=0.99 seconds and damping=-2.13.
The results from the numerical analysis are close to those of the

theoretical.

4,3 Complete motion

The full set of equations (2.4) is then used in order to obtain
the lateral modes of motion. The numerical model used to get the
results described in this paragraph includes the complete
nonlinearized , 6 degrees-of-freedom equations of motion as well as
the linearized aerodynamic model discussed in paragraph (4.1). The
program was first sucessfully tested in the case of longitudinal

motion, and similar results to those in paragraph 4.2 were found.

The lateral motion is characterized by three modes, the roll
subsidence, the spiral mode and the dutch roll. The roll subsidence
is a stable mode, predominantly a heavily damped rolling motion.
The spiral mode consists mostly of a heading change with small roll

and sideslip angles. The dutch roll mode is a damped oscillation
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where the three angles ¢, B8, Yy have approximately the same
magnitudes. Typically, the time it takes to damp to half-amplitude
is approximately one period. In the dutch roll mode, as the
alrplane yaws to the right, it slips to the left and rolls to the
right; then the motion reverses; 1i.e, it yaws to the left, slips

to the right and rolls to the left in a continuous process.

For the NAVION, both roll subsidence and spiral mode are stable
[11]. The roll mode 1is very heavily damped (g=-8.435),
Consequently, both of these modes are almost impossible to notice,
whereas the dutch roll has a strong influence and is easily
characterized (see Figure 4.d). According to this plot, the period
of the dutch roll is about 2.75 seconds and its damping is ¢=-0.L422.
By linearizing the equations around an equilibrium position and by
looking for a nontrivial solution of the form exp(A t), a period of
2.69 seconds and a damping of -0.46 can be found analytically

(11,15]. These results are, again, very close.

For the Cherokee 180, the roll subsidence is also damped but
the spiral mode is a diverging mode [11] and the characteristic

change of heading, y, is shown in Figure (4.e),

This finishes a complete analysis of the linear aerodynamic

case; the agreement of the numerical and analytical results

validates the mechanics of the model.
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CHAPTER V

NONLINEAR AERODYNAMICS

5.1 Nonlinear aerodynamic model

Near stall, the general picture of the flow becomes more
complex with cells of separation, stalled surfaces and vortex
arrangement [11]. These phenomena interact in a manner which makes
theoretical analysis difficult and the aerodynamic behavior highly
nonlinear. A few degrees of change in the angle of attack can

trigger drastic changes in the aerodynamic coefficients of the

aircraft.

Autorotation phenomenon, an interesting behavior associated
with the nonlinearities, was first explained by Glauert [16] as
follows: For an aircraft flying at an angle of attack a,, a roll
rate p can be damped or amplified depending upon the initial angle
of attack a,. The angle of attack on the right wing, for a positive
rolling moment, increases as the angle of attack of the left wing
decreases. If the initial angle of attack is below stall, then the

1ift curve slope is positive and the difference in local angle of
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attack creates a damping moment; i.e., the 1lift 1increases on the
right wing and decreases on the left wing. If a, 18 in the range of
the negative lift curve slope, as the lift decreases on the right
wing and 1increases on the left wing, the resulting positive

aerodynamic moment amplifies the rolling motion (see Figure 5.a).

This can explain how the slightest nonsymmetrical perturbation
encountered near stall transforms a symmetrical departure into a
spin departure; i.e, the nonsymmetry is amplified by the same
mechanism, However, experiments show that the autorotation leads to
a steady roll rate [17] [20]. The experimental setup used to get
these results restrains the degrees of freedom of the plane to a
rotation. In the case of the actual airplane, the strong coupling
between the degrees of freedom can be one of the reasons a steady
autorotation rate is not reached.Since the spin entry appears to be
related to the autorotation phenomenon, an aercdynamic model
designed to produce such behavior should have the same
instabilities, 1i.e., a negative 1lift curve slope and uncoupled
wings, allowing the rolling amplification. A simple model gives
insight into the driving mechanisms involved. The analysis done
with the first model computes the angle of attack on each wing from

the average angle of attack and the rolling rate (see Figure 5.a):

¢, = Arctan ( tana + H )

(5.1)
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Gy = Arctan ( tana - -H )

The 1ift and rolling moment are then computed :

If -0.2 s a < 0.2, then CL = 0.406 + 4.U4 (a-a,) + 0.2 &, ;
if 0.2 $ a < 0.362, then CL =(80-2.32)% - 8a +3.26 + 0.28, ;

if 0.3625 a , then CI.. = 0.56 *+ 0.2 & (5.2)

if -0.285 a < -0.2, then CL =(8a+2.32)® - 8a - 2.46 + 0.2 Sg

if a < -0.28, then CL = -0.219 + 0.2 &, .

Cl = ~0.,074 8 + 0.5 (CLrw - CL.lw) + 0.0t r + 0.01 cSr. + 0.13 ‘Sa ,
; _ = S

and finally, L =g 5 ( CLr‘w + CLlw)'

Figure (5.b) represents the lift curve.

As long as the system is experiencing a longitudinal motion,
the behavior of the airplane is coherent. Some interesting features
of this regime are reviewed in the next paragraph. When the angle
of attack is greater than ap, i.e., deep-stall range, the airplane
is very stable and responds accurately to the controls. On the
contrary, a small lateral perturbation occurring in the negative
lift-curve range (ag < a < ap) is drastically amplified and induces
some violent variations in the angles and velocities (see Figure

5.¢). The solutions seem to be reaching a chaotic stage and the
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airplane displayed on the interactive graphics device goes through

erratic maneuvers.

5.2 Longitudinal motion

The 6-degree of freedom system has some strong instabilities
that the longitudinal system does not have. The longitudinal motion
computed with this model has some interesting features studied in
further detail with a simplified 3-degree-of-freedom system
including only the longitudinal variables. The system to be solved
is then uth order, It is interesting to compare the linearized
longitudinal nondimensional equations (2.4) to this set of nonlinear
longitudinal nondimensional equations. (Appendix VI contains the

derivation. )

C
. : D sina .
u = -sing - 2 2 ! - u tana;
cosa ¥ Cos’a CLu T ® *
& = Ccos(8-a) cosa _ U _ Tt cosq sina + 6 (5.3)
u cos?a @ ¢
e:ACmuz,
McVv? = T . .
where A =—— 2 and T=— and C, , C_ as defined 1in
g Mg L m

paragraph (5.1).
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A typical solution of these equations is shown in Figure (5.d),
a plot of the angle of attack variation versus time . The angle of
attack diverges first and then reaches a stable oscillatory motion.
This Dbehavior 1is called a 1limit cycle; A representation in
phase-space is given in Figure (5.e), where the angle of attack is
plotted versus the pitch angle. For a positive or null 1lift slope
at equilibrium (¢ = § = 0 = 0) the motion is stable; i.e., a
trajectory starting in the neighborhood of the equilibrium point
will eventually spiral in to this point, but if the starting point
is too far from the equilibrium point, the trajectory will reach a
limit cycle. Figure (5.f) shows a typical phase-space plot for an
equilibrium angle of attack of 12°. The equilibrium point and the
unstable limit cycle (dashed line) as well as the stable limit cycle
are represented here. When the trajectory starts inside the first
curve (unstable limit cycle), it converges to the equilibrium point.
When it starts outside this curve it tends to reach the stable limit
cycle (the second curve) and stays there. The sequence of stable
equilibrium point, unstable limit cycle and stable limit cycle is a
typical configuration in a nonlinear dynamical system [18]. It
should be noted that for a on the negative lift slope, no unstable
limit cycle can be found; 1i.e, it does not matter how close to the

equilibrium point the trajectory starts; it always goes back to the

limit cycle.
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Another major observation is that, depending on the control
path, the results can be very different even if the same final
control setting is reached., 1In Figure (5.g), two elevator setting
histories are displayed as well as the associated angle of attack
variations. 1In the plots on the left, a small positive elevator
deflection provides, at first, the system with an excess in forward
speed., Then the elevator is set to its final negative deflection;
the airplane goes through a series of loopings and seems to reach a
steady state in this looping mode., On the contrary, when the
elevator is set directly to its final negative value (the same as
before), the airplane encounters an oscillation in angle of attack

which is amplified until it reaches a steady state.

Prior to pursuing this course of study , 1t is necessary to
address the question: " Is this phenomenon relevant to the stall
behavior or is it a parasite solution occurring because of an
inaccurate model?". No definitive answer can be given. This limit
cycle phenomenon, while possibly part of the driving mechanism of
stall-spin departure, may not be observed in real tests because the
strong lateral instabilities such as autorotation cause a spin
departure. However, the model is very simple and consequently may
include some major flaws. In particular, the straight Cm curve is
an oversimplification that may have led to inaccurate results.
Therefore, more complex models have been tested, and these results

are presented below.
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5.3 Other nonlinear aerodynamic models

The negative lift slope range is of prime importance to the
stall phencmenon; 1i.e, it triggers the strong lateral instabilities
responsible for spin departure,. A variable 1lift curve as
represented in Figure (5.h) has been incorporated in the previous
aerodynamic model. The parameter A is the slope of the curve in the
stall range. Surprisingly, the results show little sensitivity to
this parameter. The limit cycle behavior is not changed. The

period of the oscillations changes very slowly.

The biggest flaw of the model is then the linear variation of
the pitching moment versus a. Some airplanes may experience a
pitch-up moment at stall, The loss of efficiency in the controls is
also usual because the control surfaces stall when the angle of
attack is too high. Both effects are integrated into the model
through the pitching moment shown in Figure (5.j). In this figure,
the solid line represents the pitching moment coefficient when the
elevator setting is zero. The new feature here is mainly the change
of slope of this curve around stall. The slope is negative in the
linear range and in the deep-stall range but positive for the
stall-development range ( ag < a < ap ). The dotted line represents
the pitching moment coefficient for an elevator setting of -0.05
radian. For large angles of attack, the dotted line lies on top of
the solid line because, at these angles of attack, the elevator

surface is stalled and has lost its efficiency. In the linear
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range, the distance between the two lines is constant as predicted
by the linear model (see Chapter IV). 1In the stall-development
range, the efficiency of the control surface 1s decreasing
exponentially. With this model, the airplane experiences a stall
from which recovery is difficult (the elevator loses almost all its
efficiency). The solution still has limit cycles, but the results
look quite different. Introduction into the system of some further
damping by the means of CL; creates drastic changes; i.e., the
limit cycles disappear. As the longitudinal equations of motion are

back to a more stable behavior, we can try the 6-degree-of-freedom

model.

This last nonlinear aerodynamic model was tried on the complete
6-degree of freedom system. The results are promising. At stall, a
step-rudder input triggers a spin, but this motion is quickly damped
and the airplane reaches a straight flight path after about half a
turn. This behavior shows a lack in the aerodynamic model , more
specifically, in the yawing moment. No nonlinearities are included
in its expression . The steady developed spin requires a difficult

balance between aerodynamic and kinematic moments [1], and an

accurate description of these through the numerical method is

necessary.



CONCLUSIONS

This study has shown a high sensitivity of the results to the
chosen aerodynamic model, e.g, damping through CLa” ete. This fact
seems to imply that a small change in the model might produce a
completely different solution structure, and the validity of the
idea that a simple aerodynamic model can give insight in the full
phenomenon could be questioned. Furthermore, the stall-spin
behavior and more specifically the steady developed spin involve a
precise balance between kinematic and aercdynamic moments [1]. The
kinematics of the system are exactly reproduced in the numerical
analysis, but the aerodynamic model remains crude. Its major flaw
is the linear yawing moment coefficient. Changing this part of the
model is certainly the next logical step in reproducing stall-spin

departure and subsequent motion.

The numerical analysis developed in this study does not yet
provide a satisfactory simulation of the phenomenon, but much
progress has been made in this direction. The coding is complete
and the aerodynamic model can be changed without changing the main
program. The communication problem between the graphic device and
the VAX host computer is solved, and a fast information exchange
rate is now possible through the parallel interface. The graphic

tool 1s complete and provides the user with a rapid "feel" of the
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characteristic features of the computed motion as well as its
validity. This is difficult to do by just using plots. This tool
was heavily used throughocut the study. The pictures 3.a, 3.b, 3.c
are the only output from the PS300 shown in this thesis, not because
they are the only relevant things from the graphic display, but
because only a movie could reproduce accurately the help gained

through graphics and unfortunately a movie cannot be inserted into a

book.
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APPENDIX I

The (u,a,8) Form of the Equations of Motion

We already know that the equations which express the linear
velocities are:

Fo=m| Uy qw-rv]

X dt
F o=m| Do ru-pw ] (I-1)
y dt

F o=m| %% +pv-qu ]

If V is the magnitude of the velocity vector, o the angle of

attack and B the sideslip angle, then:

u =V cosa cosB

v = V sing (I-2)

%
1]

V sina cosBR.

tang
cosa

Therefore: vV =

W = tana u.

This representation reveals a singularity at a-:t% which will
not be considered because light aviation aircraft usually do not

reach such extreme angles of attack.
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We can then write:

d .
Sy _ tang du 8 .o tang tana u

dt cosa dt cosa cos?8 4 cosa
dw du (;,

— = tana — + —=— -

dt dt cos?g O (I-4)

Combining those equations with the above (I-1)equations we get

F
Cl = —— u tanB
m q cosa
. 0s ) '
*= inx? [ F, cosa - F, sina ] - tangcosa p + q - sinatang r
. s i ] . .
8 997§%§§9 [coss Fy' singcosa F, - singsina FZ] - cosa r + sina p.
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APPENDIX II

Study of the Singularity in Pitch Angle

The equations which govern the variation of Euler angles are

the following:

B = q cos¢ ~ r sing

¢ = p + tang (sing q + r cos¢) (I1-1)
. Sin¢ q+ cos r,
cose cos8

The equations have several singularities. In order to gain a
better understanding of them, we must first remember that they were
artificially introduced by the choice of Euler representation and
then we must analyze the behavior of the equations around these
singularities. Let us consider a pure longitudinal motion. We have

p=r=0, and the equations become:

B = q cos¢ - r sing

¢ = tane sing q (11-2)
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Y o= sing

cos8

The equilibrium position for ¢ or ¢ is ¢ =0 or %,
points where $ =0and y =0 . When ¢ =z 0, sine behaves like ¢ and

i.e.,

we get

$ = q tans ¢.
If both q and 6 were constants, then ¢ = exp(q tans t) for small
enough ¢, and ¢ would be a stable equilibrium position as long as

9 < 0; 1i.e., tang < 0 and unstable for 6 > 0. When 8 approaches

ki
E’ a small perturbation around ¢ = 0 would have an infinite

exponential growth, i.e., tane - » . In this case, the variation of
q and 8 can be considered slow in comparison to ¢. ¢ is expected to
jump close to the stable equilibrium position, ¢ =w, when 6 is

positive .,

This, in fact, is the result when the program is run. When ¢
is exactly zero, then the pitch angle goes through the value %. ir

¢ takes on a small nonzero value, the pitch angle remains less than

> and the roll and yaw angles jump by approximatively w. Figure

(II-a) presents some typical results.
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APPENDIX III

Presentation of the Function Network

Before any program is run on the VAX, a file containing PS300
commands is downloaded to the PS300. This file defines, 1in the
PS300 memory, objects and transformations. As an example, all the

PS300 commands affecting the speed indicator are pointed out in the
command file.

The Vax is sending data directly into the PS300 memory to speed
up the communication process. In order to avoid that a same buffer
be accessed by both the PS300 (reading process) and the VAX (writing
process), a double buffered structure is adopted. For example ,
when the VAX writes into the nodes called K*¥*  the PS300 GCP
traverses the nodes L¥*** and the process reverses; i.e., the VAX
writes into the nodes L*** and the PS300 reads the nodes K**¥,

The PS300 command file containing all the functions network is
shown below:

line:=vector_list n=2
-1,0 -0.75,0;

line100:=rotate in
line200:=rotate in
1ine300:=rotate in -77.14 then line301;
linel00:=rotate in z ~102.86 then lined01;
lines00:=rotate in z =128.57 then line;

1ine600:=rotate in z -154.28 then lineb01;
1ine700:=rotate in z -180 then line;

-25.7 then 1inel01;
~51.43 then line;

N N N N

tchl:=begin structure
character size 0.02 ;
translate by -1.2,-0.05;
set char screen_ ;
character '100';
end_structure;
line101:=instance of line,tchi;

tch3:=begin structure
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character size 0.02 ;
translate by -1.1,-0.2;
set char screen ;
character '300';
end structure;
line301:=instance of line,tch3;

tchl:=begin structure
character size 0.02 ;
translate by -1.075,0;
set char screen_ ;
character 'U400';
end structure;
linel01:=instance of line,tchl;

tch6:=begin structure
character size 0.02 ;
translate by -1.075,0 ;
set char screen_;
character '600';
end_structure;
linef01:=instance of line,tchb;

linem:=begin structure
scale by 0.2;
vector_list n=2
0,0 -1,0;
end_structure;

{ The nodes receiving information from the vax are then created }
{ The double buffered feature can be noticed }

k100:=rotate in z 0 then linem;
1100:=rotate in z 0 then linem;

velol:=instance of
line,1ine100,1ine200,1ine300,1inel00,1ine500,1ine600,1ine700;
velos:=scale by 0.2 then velol;

k101 :=instance of velos,k100;
1101 :=instance of velos,1100;



_39_

k102:=translate by 0,-0.95 then k101;
1102:=translate by 0,-0.95 then 1101;

K000:=SET CONDITIONAL BIT 1 ON APPLIED TO ABC;

ABC:=BEGIN_STRUCTURE

IF CONDITIONAL BIT 1 ON THEN KO21;
IF CONDITIONAL BIT 1 OFF THEN LO21;
END_STRUCTURE;

KOO1:=ROTATE IN Y O THEN k002;
LOO1:=ROTATE IN Y O THEN 1002;
K002:=ROTATE IN Z O THEN KOO03;
L002:=ROTATE IN Z O THEN LOO3;

KO03:=ROTATE IN X O THEN fu3;
LO03:=ROTATE IN X O THEN fu3;

K031 :=TRANSLATE BY ~-1,0.3,0 THEN KOO1;
LO31:=TRANSLATE BY -1,0.3,0 THEN LOO1;

k008 :=instance of k004,k007,k205;
1008:=instance of 1004,1007,1205;

KO0O5:=characters 'wait';
L0O05:=characters 'wait';

KOO6:=scale by 0.02 then K005;
LOO6:=scale by 0.02 then L005;

KOQ7:=translate by O.
LOO7:=translate by O.

then K006;

9, ,0
9 ,0 then L006;

O O

-0
,~0.
kOOU :=begin structure
a:=field of view 30
front boundary = 2
back boundary = U;
c:=set intensity on 0.75:1;
instance of k031;
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end structure;
1004 :=begin s
a:=field of view 30
front boundary = 2
back boundary = 4;
c:=set intensity on 0.75:1;
instance of 1031;
end_s;
DISPLAY KO0O0O;

- . ———— — - ———————— - ——————— — —— L~ ————

pri:=f:print;
prif:=f:print;

send 'reset cs' to <1>flabeli;
send 'reset th' to <1>flabel2;

strin:=characters -15,0 'AILERON
stri2:=characters -15,0 'ELEVATOR
stri3:=characters -15,0 'RUDDER
strili:=characters ~15,0 'THRUST

L
’
1.
t
1

.
r

.
T

{THIS ONE IS THE AILERON DEFLECTION}
roll:=characters '0';

{THIS ONE IS THE ELEVATOR DEFLECTION}
cora:=characters '0';

{THIS ONE IS THE RUDDER DEFLECTION}
ampl:=characters '0';

thr:=characters '315"';

st2:=translate by 0,3,0 then str2;
st3:=translate by 0,6,0 then str3;
stld:=translate by 0,9,0 then stri;

str2:=instance of stri2,cora;
str3:=instance of stri3,ampl;

stri:=instance of strin,roll;
stri:=instance of strili,thr;
string:=instance of stri,st2,st3,stl;
strinb:=scale by 0.02 then string;
strinc:=trans by -0.5,0.75,0 then strinb;
display strinc;



variable rudder,aileron,elevon,ITERATION, thrust;

rot:=f:dxrotate;
roy:=f:dxrotate;
rou:=f:dxrotate;
roth:=f:dxrotate;
send 10 to <3>rot;
send 10 to <3>roy;
send 10 to <3>rou;
send 50 to <3>roth;

printr:=f:print;
printy:=f:print;
printp:=f:print;
printth:=f:print;
COCA1:=F:CONCATENATEC;
COCA2:=F:CONCATENATEC;
COCA3:=F:CONCATENATEC;
cocald:=f:concatenatec;
limr:=f:1limit;
lima:=f:1limit;
lime:=f:1limit;
limth:=f:1limit;
send -15.0 to <3>1limr;
send =-15.0 to <3>lima;
send ~-15.0 to <3>lime;
send 0 to <3>limth;

send 15.00 to <2>limr;
send 15.00 to <2>lima;
send 15.00 to <2>lime;
send 800 to <2>1limth;

pri:=f:print;

send 0.0 to <1>rudder;
send 0.0 to <1>aileron;
send 0.0 to <1>elevon;
send 315.0 to <1>thrust;
SEND 0 TO <1>ITERATION;
conn dials<1>:<1>rot;
conn dials<2>:<1>roy;
conn dials<3>:<1>rou;
conn dials<d>:<1>roth;
conn rot<2>:<{1>1imr;
conn limr<i>:<1>rudder;
conn roy<2>:<1>1lima;
conn lima<1>:<1>aileron;
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conn rou<2>:<1>1lime;
conn lime<1>:<1>elevon;
conn roth<2>:<1>1limth;
conn limth<1>:<1>thrust;

conn printr<1>:<1>COCA3;

conn
conn
conn

SEND
SEND
SEND
SEND

CONN
CONN
CONN
conn

conn
conn
conn
conn
send
send
send
send

brou:

printp<1>:<1>COCAZ;
printy<i>:<1>COCA1;
printth<1>:<{1>cocal;

! ' TO <2>COCA1;
' ' TO <2>COCA2;
! ' TO <2>COCA3;
! ' TO <2>COCAlL;

COCA1<1>:<1>AMPL;
COCA2<1>:<1>CORA;
COCA3<1>:<1>ROLL;
cocald<t1>:<1>thr;

limr{1>:<1>printy;
lima<1>:<1>printr;
1imed1>:<1>printp;
limth<1>:<1>printth;
"AILERON' to <1>dlabel2;
'ELEVator'to <1>dlabel3;
'RUDDER' to <1>dlabelil;
"thrust' to <1>dlabeldy;

=f: broutec;

eqec:=f:eqe;
broth:=f:broutec;

eqet:

conn
conn
send
send
send
conn
send
conn
conn
conn

=f:eqc;
fkeys<i>:<{1>eqc;
fkeys<1>:<{1>eqct;
fix(2) to <2>eqct;
fix(1) to <2>eqc;
0.00 to <2>brou;
eqe<1>:<1>brou;
315.0 to <2>broth;
eqct<1>:<1>broth;
brouci>:<1>roth;
broth<i>:<2>roth;

send 315 to <2>roth;

conn

broui>:<1>rou;
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conn brouci>:<2>rou;
conn brouk1>:<2>rot;
conn brouc1>:<1>rot;
conn brou<i1>:<2>roy;
conn brou<i>:<1>roy;

TR e s e L T e e B e T B B = e e e - = e - - = = > A " = ) e = . - . " " " > - s o w sy

TS e T e s > Ty TP o o S g o Y o Ty . " o oy > e T T " - A " > . "~ > o 0 A "y oy T o e o ot o

scri=vector_list n=10
-0.1,0.2 -0.2,0.1 =-0.2,-0.1 =-0.1,~-.2 0.1,-.2
.2,=0.1
.2,0.1 0.1,.2 =-0.1,.2;
gage:=vector_list itemized n=2
p .2,01-.2,0
p0,.210,~.2;
temoin:=vector_ list n=4
0.04,0 0.004,0 0,0.01 -0.004,0 -0.04,0;

k020:=translate by 0,0,0 then k010;
1020:=translate by 0,0,0 then 1010;

k022:=translate by 0.75,-0.75,0 then k023;
1022:=translate by 0.75,-0.75,0 then 1023;

k023:=instance of scr,gage,k020;
1023:=instance of scr,gage,1020;

k021 :=instance of k022,k008,k102;
1021 :=1instance of 1022,1008,1102;

KO10:=ROTATE IN Z O THEN TEMOIN;
LO10:=ROTATE IN Z O THEN TEMOIN;

at_lin:=vector_list itemized n=6
0,-1 10,1

-0.1,0.2 1 0.1,0.2
-0.05,0.362 1 0.05,0.362
-0.05,0 1 0.05,0
-0.1,-0.26 1 0.1,-0.26;
at_rw:=vector_list n=1 0.5,0 0,0;
at_lw:=vecton_list n=1 -0.5,0 0,0 ;
k206:=translate by 0,0,0 then at_rw;

holholh ol olhol
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1206:=translate by 0,0,0 then at_rw;

k207:=translate by 0,0 then at_1lw;
1207:=translate by 0,0 then at_lw;

k205:=begin structure
translate by -0.8,-0.5,0;
scale by 0.2;
instance of k207,k206,at_lin;
end_structure;
1205:=begin structure
translate by -0.8,-0.5,0;
scale by 0.2;
instance of 1207,1206,at_lin;
end structure;

PLANE := BEGIN_S

VECTOR_LIST BLOCK ITEMIZED N=157

P 0.08936,-0.07446, 0.0

L 0.08936,-0.08191, 0.07446
L -0.05957,-0.08191, 0.07446
L -0.05957,~0.07446, 0.0
L -0.05957,-0.08191,-0.07446
L 0.08936,-0.08191,~-0.07446
L 0.08936,-0.07446, 0.0
L 0.08936,-0.08936, 0.14893
L -0.05957,-0.08936, 0.14893
L -0.05957,-0.07446, 0.0
L -0.05957,-0.08936,-0.14893
L 0.08936,-0.08936,-0.14893
L 0.08936,-~0.07446, 0.0
L 0.08936,-0.09680, 0.22339
L -0.05957,-0.09680, 0.22339
L -0.05957,-0.07446, 0.0
L -0.05957,-0.09680,-0.22339
L 0.08936,-0.09680,-0.22339
L 0.08936,-0.07446, 0.0
L 0.08936,-0.10425, 0.29785
L -0.05957,-0.10425, 0.29785
L -0.05957,-0.07446, 0.0
L -0.05957,-0.10425,-0.29785
L 0.08936,-0.10425,-0.29785
L 0.08936,-0.07446, 0.0
L 0.08936,-0.11169, 0.37231
L -0.05957,-0.11169, 0.37231
L -0.05957,-0.11169,-0.37231
L 0.08936,-0.11169,-0.37231
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.08936,-0.07446, 0.0

.08936,-0.11914, 0.44678
.05957,-0.11914, 0.L4678
.05957,-0.07446, 0.0

.05957,-0.11914,-0.U44678
.08936,-0.11914,-0.44678
.08936,-0.07446, 0.0

.05957,-0.07446, 0.0

.01489, 0.05212, 0.28296
.02979,-0.10425, 0.29785
.07446, 0.05212, 0.28296
.02979,-0.07446, 0.0

.07446, 0.05212,-0.28296
.02979,-0.10425,-0.29785
.01489, 0.04468,-0.28296
.05957,-0.074846, 0.0

. 10425, 0.07446, 0.05957
.O4468, 0.07446, 0.05957
.0U468, 0.07446,-0.05957
.10425, 0.07446,-0.05957
. 10425, 0.07446, 0.05957
. 10425, 0.06702, 0.13403
.o4L68, 0.06702, 0.13403
.04u68, 0.07446, 0.05957
.O4468, 0.07446,-0.05957
.04468, 0.06702,-0.13403
. 10425, 0.06702,-0.13403
.10425, 0.07446,-0.05957
. 10425, 0.07446, 0.05957
.10425, 0.05957, 0.20850
.04468, 0.05957, 0.20850
.04468, 0.07446, 0.05957
.O4468, 0.07446,-0.05957
.04468, 0.05957,-0.20850
. 10425, 0.05957,-0.20850
. 10425, 0.07446,-0.05957
. 10425, 0.07446, 0.05957
.10425, 0.05212, 0.28296
.04468, 0.05212, 0.28296
.0L4468, 0.07446, 0.05957
.04468, 0.07446,-0.05957
.0uL468, 0.05212,-0.28296
.10425, 0.05212,-0.28296
. 10425, 0.07446,-0.05957
.10425, 0.07446, 0.05957
. 10425, 0.04468, 0.35742
.0LU68, 0.04468, 0.35742
.04468, 0.07446, 0.05957
.04468, 0.07446,-0.05957
.0uL68, 0.04468,-0.35742
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L
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-0.10425, 0.04468,-0.35742
-0.10425, 0.07446,-0.05957
~0.10425, 0.07446, 0.05957
-0.10425, 0.03723, 0.43188
0.04468, 0.03723, 0.43188
0.04468, 0.07446, 0.05957
0.04468, 0.07446,-0.05957
0.04468, 0.03723,-0.43188
-0.10425, 0.03723,-0.43188
-0.10425, 0.0Q7446,-0.05957
0.23828,-0.02979, 0.02979
~0.13403,-0.02979, 0.02979
~0.46167,-0.02979, 0.0
-0,13403,-0.02979,-0.02979
-0.05957,-0.02979,-0.02979
-0.05957,-0.07446, 0.0
-0.05957,-0.02979, 0.02979
-0.05957,~0.02979,~0.02979
0.08936,-0.02979,-0.02979
0.08936,-0.07446, 0.0
0.08936,-0.02979, 0.02979
0.08936,-0.02979,-0.02979
0.23828,-0.02979,-0.02979
0.23828,-0.02979, 0.02979
0.23828, 0.0, 0.02979
0.08936, 0.01489, 0.04468
-0.13403, 0.01489, 0.0u4468
-0.46167, 0.0, 0.0
-0.13403, 0.01489,-0.04468
0.08936, 0.01489,-0.04468
0.23828, 0.0,-0.02979
0.23828,-0.02979,-0.02979
0.23828, 0.04468,-0.02979
0.08936, 0.07446,-0.02979
0.04468, 0.07446,-0.02979
0.06702, 0.14893,-0.06702
0.08936, 0.07446,-0.02979
-0.13403, 0.07446,-0.02979
~-0.46167, 0.02979, 0.0
-0.13403, 0.07446, 0.02979
0.08936, 0.07446, 0.02979
0.06702, 0.1u4893, 0.06702
0.04468, 0.07446, 0.02979
0.08936, 0.07446, 0.02979
0.23828, 0.04468, 0.02979
0.23828,-0.02979, 0.02979
~0.13403,-0.04468, 0.0
-0.13403,-0.02979, 0.02979
-0.13403,-0.02979,-0.02979
~0.13403,-0.04468, 0.0
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INST PLANE 1;
END S;

PLANE 1 := ROTATE IN X 0. THEN PLANE 2;

=-0.40210,-0.
~0.43188,~0.
-0.46167,-0.
-0.46167, 0.
~-0.49890, O.
-0.49890,-0.
~0.46167,-0.
~0.46167,
-0.46167,
-0.43188,
-0.40210,
~0.43188,
“0.498900
~0.49890,
~0.46167,
-0.49890,
-0.49890,
-0.46167,
~0.07446,
-0.02979,-0.
0.01489, 0.
0.05957,-0.
0.01489, 0.
0.01489, 0.
0.05957,-0.
0.01489, 0.
=-0.02979,-0.
L -0.07446, O.

0

0.

(@

« o+ . a & e o
OO O0O0O0OO0OO0OOo

. W W W W e e o=

0
0
0
0
0
0.
0
0
0
0

O
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02979,
13403,
13403,
02979,
02979,
13403,
13403,

.0

[
[eNeoNeoNoNoNoNeNeNe e

]

.0

1

[oNeoNoNoNoNoNe]
e e ¢ e o o

07446,-0.
10425,-0.
05212,-0.
10425,-0.
oT7446,-0.
07446, O,

10425, 0O
05212,

07446,

[oNoNeoNoNoNe

0

.0,-0.114893
. 14893
. 14893

. 14893
. 14893
.01489

.01489
. 14893
. 14893

02979
29785
28296
29785
02979
02979

.29785

0.28296
10425, 0.
0

29785

.02979

PLANE_2 := VECTOR_LIST BLOCK ITEMIZED N=8

oo oo oo
[oNoNeoNoNoNeNo ol

ful:=begin structure
rotate in x 180;
scale by 0.4;
instance of plane;
end_structure;

PLANE_3 := F:CLFRAMES;
PLANE_4 := F:MODC;
PLANE 5 := F:XROTATE;

.23828, 0.
.26807, O.
.27551,
.26062,-0.
.23828, 0.
.26062, 0.
.27551,-0.
.26807, 0.

0.

0, 0.0
0, 0.0

01489, 0.09680
01489, 0.09680

0, 0.0

01489,-0.09680
01489,-0.09680

0, 0.0 ;



CONNECT PLANE_5<1>:<1>PLANE_1;
CONNECT PLANE 4<1>:<1>PLANE 53
CONNECT PLANE_ _3<2>: <1>PLANE by
CONNECT PLANE 3<2>: <5>PLANE 3;
SEND FIX(360.) TO <2>PLANE_ 4,
SEND FIX(2.) TO <1>PLANE_3,
SEND FIX(1.) TO <2>PLANE_3;
SEND FALSE TQO <3>PLANE_3;
SEND FIX(=34.) TO <4DPLANE 3;
SEND FIX(0.) TO <5>PLANE_3;

-.L‘8..
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Appendix IV

Linear Aerodynamic Coefficients for the NAVION and the CHEROKEE 180

¢2]

(ft2?)
b (ft)

¢ (ft)

=

(1b)

=]

(slugs)

I, (slug-ft?)
Iy (slug-ft?)
Iz (slug-ft?)
Ixz (slug~ft?)
Ve, (Ft/s)

a, (deg)

180
33.4
5.7
2,750
85.4
1,048
3,000

3,530

176
0.6

NAVION [15]

mée
¥y8

y§a
yér

ma

=0.406
=4, 44
=0.355
=0.05
=0, 33
==9.96
==1.T4

=~0.564

=0.,157

==0.683

Cip
1r

15a
Cldr

ng

Cop

C

néa

Cnﬁr

=~0.074
==0.410
=0.107
=0,1342
=0.0118
=0.0701
=—~0.0575
==0.125
=-0.0035

==0.0717



S (ft?)
b (ft)

c (ft)

X

(1b)

m (slugs)

Ix (slug-ft?)

Iy (slug-ft?)

Iz (slug-ft?)

I, (slug-ft?)
Vto (ft/s)

a, (deg)

160
25.77
5.25
2,400
T4.5
170
1,249

1,312

164
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CHEROKEE 180 [11]

mée
y8

yéa
yér

Mo

=0.543
=4.68
=0.934
=0.06
=0. 44
==7.42
==2.40

==0.396

=0,117

==0.741

Cls

Clp

Clr

=-0.099
==0.429

=0.198

Cygq =0.0531

Cis

CnB

Chp

nr

Cné

Cné

. =0.0105

=0,0672
=-0.0905

=-0.0873

a

r =-0.0509
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APPENDIX V

Linearized Longitudinal Equations

From the general longitudinal equations of motion :

F:m[%lé'*qw],

F=m{%"qu],

a linearization around a trim position is done . Each term 1is
expressed as the sum of an equilibrium value and a perturbation

part. The equilibrium values are noted ( ), as the varying parts

are noted ( )'.
u=u, (1+ u")

1
W= W U, Wo=0

Fx = q3S ( cx° + c; + ngo + c;g),

Because the linearization is done around an equilibrium position,

Fz = q S (CZ + ng), where Cx and Cz are the nondimensional forms

of F_ . and f,,» and ng ,ng are the dimensionless forms of Gy, and
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mu

t
Gpoo ' = <, Where Tt = E—EJE. Note that the ( )' terms are
dimensionless. This gives the nondimensional longitudinal

linearized equations of motion.

.q_l.l—'. C + C
e’ T Ux Xg
d(a-8) 1
dt! ) ( 2 ng)

Estimates of the derivatives,

T - D cosa + sina

F = 0

~L cosa - D sina

where T is the thrust, L is the lift and D the drag.

For o=0 we get: F = 0

Therefore, for a propeller aircraft where T u =const, we have:

Cx = Chp u* Cpp oy where C ., = =3 Cy and C,. = C, ~Cp..

The gravity field is:

-m g 3ind
Gf = 0

-m g cO0SH .
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Therefore:

m g cosf, 6'
G! = 0

-m g sing, 8' .

With a small, we can assume that -L, = m g;

therefore, ng = ~CLo cos8, 8' and C,, = =CLo sing, 8'.

g
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APPENDIX VI

Derivation of the Nondimensional Longitudinal Equations.

The equations of motion (2.4) are simplified to get the

dimensional longitudinal equations by letting 8 = ¢ = ¢y = p =r = 0.

4 _ Fx

at. —n—l'-qutana;

49 _ cosa

(F, cosa - F, sina] + q 3

dt m u
M =1 49
X dt
ds
at q
where Fx = -m g 8ing - D cosa + L sina + T and
F,=mgcose - D sina -~ L cosa.

dy = ~g sing = D cosa L sina T

dt m m T o@ T autana;

d L cosq sin a de
4y _ cosa N . cosa _ a ds,
dt u g cos(8-a) mu T mu * dt
d?s M

dt? I
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In order to nondimensionalize these equations, some reference

velocity and time have to be chosen.
The reference velocity, V,, is defined by : m g = % p S V2
The reference time, t,, is defined by : ¢t, = %f;

2
therefore, the reference length has to be: 1, = Yy

g’
* * t * T s .
Let u =4 = T = ——; writing again the
7, " g, ad m g g ag
equations we get:
4 = -sine - D x + Sina *2 . 7% 3 0" tana;
cosa ¢ cosZq & u '
* % .
S - cos(8-a) cosa _ U_ - 1¥ cosa sina + 8§
* cos?a
u
*
g =AC_ y?

2
where A = _U.l__c__!_l
y g

Dropping the * we recognize equation (5.3).

above
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APPENDIX VII

Approximation to Phugoid and Short Period Modes

PHUGOID MODE.

Assume that a = 0 and ignore rotational energy and damping in pitch.

Equation (4.2) becomes then:

Looking for a nontrivial solution of the form exp (A t) , we find

that A has to satisfy the following equation.

2 - - =
4o 2C A C, Chy =0

The solutions in A are:

\/// c 2
Xu
( —CL C -

zu) 4

C
y a XY

u RN

-

where CXu = 3 Cyand C,, = -2 Cp.

Note that in the preceding equations everything is dimensionless.
To get the damping and the frequency in hertz we need to divide A by

3CH 8
IV

1, the time scale. We get: g = T C

LV
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SHORT PERIOD MODE

It is mostly a rapid incidence adjustment. Assume a constant
forward speed; i.e., u =0, This implies clearly that 8 = a.

Therefore, the angular momentum equation gives:

d?e
2Kdt2=cmae+c

mg °°

Looking for a nontrivial solution in A as before gives:

-
C C
1 ma m8
A=‘____ '¢——-———2
TR Cme 1 Vogg (5 ()7




—58—

APPENDIX VIII

Program Listing

INCLUDE 'PROCONST.FOR/NOLIST'
COMMON /PSBUF/JCT,JBUF(1000)
INTEGER*2 JCT,IRATE

LOGICAL*1 JBUF,CHAR(8)

DATA JCT/1000/

integer*Y4 IRETRY,ICHAN,IVALI?1,IVALI2,IVALI3,ivalil,i
INTEGER*2 IADRLO1,IADRLO2,IADRLO3,IADRHIT,IADRHI2,IADRHI3
integer*2 iadrlod,iadrhii,iwrite

real*4 X(3),x2(3),atr,atl,t

REAL Y(9),DETE,TE,yd,ydo,u(3),ui(3),a(3,3),xfov,angle
REAL YDOT(9),RUD,AIL,ELE,ite,dins(3),thr,clal,x3
CHARACTER*80Q DEVSPEC,label,string

COMMON rud, ele,ail,thr,clal

EEEEEEEEEEREEERER R EEE R A RN R ERER R R R R R R R R R R RN
$$

EXTERNAL cherokee
EXTERNAL FUlila
OPEN (UNIT=07,FILE='DEF,IN',6STATUS='QLD')
OPEN (UNIT=23,FILE='command.in',STATUS='0OLD')
OPEN (UNIT=22,FILE='input.in',STATUS='OLD')
read(23,¥)string
¢ If idata=0, no output files are generated, if idata=1 then output
files
c are created. For example attac.out will contain the angle of
attack
¢ versus time variations.

read(23,%*)idata

if (idata.eq.1) then
call open

end if

x2(3)=2

;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

¢ If the motion is not interactive then the user has decided which
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¢ motion to run, According to this choice, the program must run
different

¢ sequences.

ERPEEEEERREEEERREREEEEREEEEEERERRREEEEEEEEREEEEEREREEEER R R
$

READ(23,*)iinter

IF (IINTER.EQ.1) THEN

OPEN (UNIT=02,FILE='PLAYBACK.IN',STATUS="'NEW')
END IF

IF (IINTER.EQ.10) THEN

OPEN (UNIT=02,FILE='playback.in',STATUS="'0ld")
END IF

IF (IINTER.EQ.15) THEN
OPEN (UNIT=02,FILE='looppb.in',STATUS="'0ld")
END IF

READ(23,*)idisplay
read(22,*)string
READ(22, *)DETE
write(¥*,*)'DETE="',6dete
READ(22,*)ITER
read(22,*)devspec

READ(22,*)Y(1)
READ(22,*)Y(2)
READ(22,*)Y(3)
READ(22, %)Y (1)
READ(22,%*)Y(5)
READ(22,*)Y(6)
READ(22,%)Y(7)
READ(22,*)Y(8)
read(22,*)y(9)

read(22,*)devspec
read(22,%)clal
read(22,%*)ail
read(22,%*)ele
read(22,*)rud

thr=315.00
CS P85 588585855585555533533533358358335835833553583585585583883
TE=0
K=1
CP S 8888888838808 583088555558335533555335583335833533555859%9%
¢ If the program is to be run interactivaly, then the VAX and the
PS300
¢ are linked to allow fast communication rates.



-60_

if (iinter.eq.1) then
CALL PS3_PHY ATTACH(ICHAN)

GEERERREEREER R R R R LR PR E R R R LR R R R LR R R R
IRETRY=10

¢ In order to achieve a fast communication rate, the GCP is bypassed

¢ and the VAX program will request directly from a location in the

PS300

¢ memory a value needed in the computation. For that, the VAX has to
kKnow
¢ the location in memory of some variables, i.e., rudder deflection.
¢ Those subroutines were developped at CALTECH by Doctor Antonsson
label="'rudder’
CALL PS3_PHY GET_ADDR(label,IRETRY,ICHAN,IADRHI1,IADRLO1)
label="aileron'
CALL PS3_PHY_GET_ADDR(label,IRETRY,ICHAN,IADRHIZ,IADRLOZ)
label="'elevon'
CALL PS3_PHY_GET_ADDR(label,IRETRY,ICHAN,IADRHI3,IADRLO3)
label="thrust'
CALL PS3_PHY_GET_ADDR(label,IRETRY,ICHAN,IADRHIM,IADRLOM)
end if

CEsE s e83380888350508833585333505833355555355555855558555558553358583
¢ Then to send and display information on the screen, some PS300
subroutines
¢ were used .

if (idisplay.eq.t) then

CALL PSINIT('K',IRATE)

end if

ifnum=10

if (iinter.eq.1) then

write(2,10)t,ail,ele,rud,thr

end if

if (i.ge.ifnum) then
ele=0
ail=0
rud=0
c Now that we have the address, it is fast to get a value from
¢ the PS300 memory. Those subbroutines were also developped by
Doctor Antonsson.
if (iinter.eq.1) then
CALL
PS3_PHY READ VAR(ICHAN,IADRHI1,IADRLO?1,IRETRY,RUD,IVALI1)
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CALL

PS3_PHY READ VAR(ICHAN,IADRHI2,IADRLO2,IRETRY,AIL,IVALI2)
CALL

PSB_PHX_READ_VAR(ICHAN,IADRHI3,IADRLOB,IRETRY,ELE,IVALI3)
CALL
PS3_PHY_READ_VAR(ICHAN,IADRHIH,IADRLOU,IRETRY'thr,IVALIM)
RUD=RUD*3.1416/180
AIL=AIL*3.1416/180
ELE=ELE*3.1416/180
write(2,10)te,ail,ele,rud,thr
end if
if (iinter.eq.10.or.iinter.eq.15) then
read(02,10)t,ail,ele,rud,thr
end if
10 format(5(x,e12.5))
ifnum=ifnum+10

end if

if (iinter.ne.14) then

CALL MODDEQ(FUlila,K,9,TE,Y,YDOT,DETE,1.E-4)
goto 01

end if

CALL MODDEQ(cherokee,K,9,TE,Y,YDOT,DETE,1.E-4)

SEEREEREREERREEEEEEEEEEEERERE R EEELEEEEEEEEEEE R R R R R EEEEEERRERER AR

$338358%
¢ COMPUTATION OF THE SPACE POSITION OF THE AIRPLANE

CEHESB5583533535358535335533335555555555555855853355333353333338333333

$35353535%
01 if (idisplay.eq.1) then

YD=~Y(U)+TAN(Y(8) ) *(Y(S)*SIN(Y(T7))+Y(6)*COS(Y(T)))
YDO=Y (5)*COS(Y(7))-Y(6)*SIN(Y (7))

u(1)=y(1)

u(2)=y(1)*tan(y(3))/cos(y(2))

u(3)=y(1)*tan(y(2))

a(1,1)=cos(y(9))*cos(y(8))

a(1,2)=-3in(y(9))*cos(y(7))+cos(y(9))*sin(y(8))*sin(y(7))
a(1,3)=s8in(y(9))*sin(y(7))+cos(y(9))*sin(y(8))*cos(y(7))

a(2,1)=sin(y(9))*cos(y(8))

a(2,2)=cos(y(9))*cos(y(7))+sin(y(9))*sin(y(8))*sin(y(7))
a(2,3)=-cos(y(9))*sin(y(7))+sin(y(9))*sin(y(8))*cos(y(7))

a(3,1)==-sin(y(8))
a(3,2)=cos(y(8))*sin(y(7))
a(3,3)=cos(y(8))*cos(y(7))

do 30 j=1,3
ui()=a(j,N*u(1)+a(j,2)*u(2)+a(j,3)*u(3)
x{J)=x(j)+ui(j)*dete/2000



_.62..

30 CONTINUE

X3=x3+ui(3)*dete/2000

end if
g§§§:§§$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C WRITE THE RESULTS
g:i:§:§:$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

atr=atan(tan(y(2))+y(4)%*8.35/(Y(1)/(COS(Y(2))*C0S(Y(3)))))

atl=atan(tan(y(2))-y(4)%¥8.35/(Y(1)/(COS(Y(2))*¥COS(Y(3)))))

if (idata.eq.1) then

call write(y,te,x)

end if

SEEEERREEERRRREEEEEEEEEERE R R EEEEEEREEEEEEEERRE R ERRE LRI LEERE SRR R RS
$$555583

C SEND DOWN ALL THE INFORMATION TO THE PS300
C333333080385358835885338583883535333533838335555535353838335353853838
$353838%%
if (idisplay.eq.1!) then
x2(1)=x(1)
x2(2)=-x(3)
x2(3)=-x(2)
if (x2(3).gt.l4) then
x2(3)=1
end if
if (x2(3).1t.1) then
x2(3)=4
end if
xfov=x2(3)*0.2588

if (x2(1).gt.xfov) then
x2(1)=-~xfov
x2(2)=-x2(2)/2
end if

if (x2(1).1t.-xfov) then
x2(1)=xfov
x2(2)=-x2(2)/2
end if

if (x2(2).gt.xfov) then
x2(2)=-xfov
x2(1)=-%x2(1)/2
end if

if (x2(2).1t.-xfov) then
x2(2)=xfov
x2(1)=-x2(1)/2



-63..

end if

x(1)=x2(1)
x(2)=—x2(3)
x(3)=-x2(2)

dins(1)=y(3)/3

if (dins(1).ge.0.08) then
dins(1)=0.08

end if

if (dins(1).le.-0.08) then

dins(1)=-0.08

end if
ding(2)=(mod(y(8)+3.1416,2%3,1416)-3.1416)/5
if (dins(2).ge.0.19) then

dins(2)=0.19

end if

if (dins(2).le.-0.19) then
dins(2)=-0.19
end if

dins(3)=0

encode(4,126,char)i
126 format(il)
call tran(206,0,atr,0)
call tran(207,0,atl,0)
CALL TRAN(031,X2(1),X2(2),X2(3))
CALL ROT(001,Y(9),2)
CALL ROT(002,Y(8),3)
CALL ROT(003,-Y(7),1)
CALL TEXT(005,4,CHAR)
call tran(020,dins(1),dins(2),dins(3))
CALL ROT(010,Y(7),3)
call rot(100,-y(1)%*3.1416/700,3)
call rot(133,x3%3.1416,3)

CALL NUFRAM

end if

20 CONT INUE
1 FORMAT(E20.5)
CEEPP38 8838833808538 5885833583588833858355835535355535535555335588%
35588383
if (iinter.eq.1) then
CALL PS3_PHY_detACH(ICHAN)
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10

end if
END

subroutine open

..6“_.

OPEN (UNIT=11,FILE='VELO.OUT',STATUS="'NEW')
OPEN (UNIT=12,FILE='ATTAC.OUT',STATUS='NEW')
OPEN (UNIT=13,FILE='beta.OUT',STATUS="'NEW')
OPEN (UNIT=14,FILE='rora.OUT',STATUS='NEW')
OPEN (UNIT=15,FILE='PIra.OUT',STATUS="NEW')
OPEN (UNIT=16,FILE='yara.OUT',STATUS="'NEW')
OPEN (UNIT=17,FILE='phi.OUT',STATUS="'NEW')

OPEN (UNIT=18,FILE="teta.OUT',STATUS="'NEW')

OPEN (UNIT=19,FILE="'psi.OUT',STATUS='NEW')

OPEN (UNIT=20,FILE='verti.out',STATUS='new')

WRITE(11,*)'TITLE
WRITE(12,*)'TITLE
WRITE(13,*)'TITLE
WRITE(14,%*)'TITLE
WRITE(15,%)'TITLE
WRITE(16,*)'TITLE
WRITE(17,*)'TITLE
WRITE(19,*)'TITLE
WRITE(18,*)'TITLE
WRITE(22,*)'TITLE

return
end

VELOCITY VERSUS TIME'
ANGLE OF ATTACK'
ANGLE OF sideslip!’
roll rate'’

PITCH RATE®

yaw rate'

phi’

psi!

teta'

vertical trajectory'

subroutine write(y,te,x)

real y(9),te,x(3)

WRITE (11,10)TE,Y(1)
WRITE (12,10)TE,Y(2)
WRITE (13,10)TE,Y(3)
WRITE (14,10)TE,Y(4)
WRITE (15,10)TE,Y(5)
WRITE (16,10)TE,Y(6)
WRITE (17,10)TE,Y(T7)
WRITE (19,10)TE,Y(9)
WRITE (18,10)TE,Y(8)
write (20,10)te,x(3)
FORMAT(2(2X,E12.5))
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return
end

C THIS SUBROUTINE DETERMINES THE AERODYNAMIC OF THE PROBLEM
CREXRERERREERE LR ERE R IR EX AR AR R AR RERR AR R RRRERR R AR R RAR A AR R XA AR RN TR R
%% %

SUBROUTINE FUlila(NN,TE,Y,YDOT)

REAL CL,CD,CM,CY,CLL,CN,Q,L,D,SF,M,N,LL,FX,FY,FZ
REAL Y¥(9),YDOT(9),TE,A,B,MU
real RUD,AIL,ELE,thr,clal,effi
INTEGER NN
common rud,ele,ail,thr,clal

Y(1) IS THE FORWARD VELOCITY

Y(2) IS THE ANGLE OF ATTACK

Y(3) IS THE SIDE SLIP ANGLE

Y(4) IS THE ROLL RATE

Y(5) IS THE PITCH RATE

Y(6) IS THE YAW RATE

Y(7) IS THE ROLL ANGLE, PHI

Y(8) IS THE PITCH ANGLE, TETA

Y(9) IS THE YAW ANGLE, PSI
effi=1

OOO0O0O00O0O0000

C CL IS THE LIFT COEFFICIENT
C HERE FOR EXAMPLE CL ALPHA IS EQUAL TO 4., uy

CL=2%(0,203+2.22%(y(2)-0.0105)+0.1%ELE)
IF (y(2).GT.0.2.AND.y(2).LE.0.22) THEN
CL=1.247+0.2%effi*ele

END IF

IF (y(2).GT.0.22.and.y(2).1t.(0.22+0.7323/clal)) then
CL=1.247-clal*(y(2)-0.22)

END IF

if (¥(2).gt.(0.22+0.697/clal)) then
cl=0.55+0,2*%effi*ele

end if

IF (y(2).LT.-0.2.AND.y(2).GE.-0.22) THEN
CL=-0.4529
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END IF

IF (y(2).1T.-0.22.and.y(2).ge.(-0.22-0.2673/clal)) THEN

CL=~0.4529~clal*(y(2)+0.22)

END IF

if (y(2).1t.(-0.22-0.2429/clal)) then

cl=-0.21

end if
Ch S S0 0858585853383 5555583835558583%3
$35358553%3
C CD IS THE DRAG COEFFICIENT

333 CD=0.05 + 0.33*(Y(2)-0.00105)
C CY IS THE SIDE FORCE COEFFICIENT
CY=-0.564%Y(3) + 0.157*RUD

C CLL IS THE ROLL MOMENT COEFFICIENT

CLL=-0,074*Y(3)-0.039%y(4)+0.0101%Y(6)+0,0118%RUD+
1 0.1342*AIL

C CM IS THE PITCHING MOMENT COEFFICIENT
CM=-0.683*(Y(2)-0.0105)-0.161*Y(5)~1.7T662*ELE

C CN IS THE YAWING MOMENT COEFFICIENT

CN=0.0701%Y(3)-0.00546*Y(4)~-0.0118%Y(6)~0.0717*RUD-0.00346*AIL
C NOW THAT WE HAVE ALL THE COEFFICIENTS, LET'S COMPUTE THE FORCES.
Q=0.5%0.002378%(Y(1)/(COS(Y(2))*COS(Y(3))))**2
C THE LIFT:
L=Q*18Y4*CL
C THE DRAG:
D=Q*184%CD
C THE SIDE FORCE:
SF=Q*184*CY
C THE YAWING MOMENT;
N=QFCN*184%33,4
C THE ROLLING MOMENT:
LL=Q*CLL*¥184%33 4
C THE FORCE ALONG THE X-BODY AXIS:
FX==2750%*SIN(Y(8))~-D*COS(Y(2))*COS(Y(3))+L*SIN(Y(2))+thr
C THE FORCE ALONG THE Y-BODY AXIS:
FY=2750%COS(Y(8))*SIN(Y(7))-D*SIN(Y(3))
C THE FORCE ALONG THE Z-BODY AXIS:
FZ=2750*COS(Y(7))*COS(Y(8))
~D*SIN(Y(2))*COS(Y(3))-L*C0S(Y(2))
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C NOW, WE WRITE THE EQUATIONS OF MOTION AS DESCRIBED IN APPENDIX.

YDOT (1)=Y(6)*Y(1)*TAN(Y(3))/COS(Y(2))=Y(5)*Y(1)*TAN(Y(2))
1 + FX/85.4

C HERE THE PITCHING MOMENT IS COMPUTED
M=Q*184*CM¥*5,7

YDOT(2) ==Y (6)*SIN(Y(2))*TAN(Y(3))+Y(5)-Y(4)*TAN(Y(3))*COS(Y(2))
1 +COS(Y(2))/ (Y (1)*85.4)*(~-FX*SIN(Y(2))+FZ*COS(Y(2)))

YDOT(3)=
cos(y(2))*cos(y(3))*(cos(y(3))*fy-sin(y(3))*(cos(y(2))
1 *fx+ sin(y(2))*£z))/85.4/y(1)~y(6)*cos(y(2))+y(¥)*sin(y(2))
A=(3000-3530)*Y(5)*Y(6)+LL
B=(1048-3000)*Y(U4)*Y(5)+N
YDOT (4)=A/1048
YDOT (5)=M/3000-(1048-3530)*Y(6)*Y(4)/3000
YDOT (6)=B/3530

YDOT(7)=Y(4)+TAN(Y (8))*(Y(5)*SIN(Y (7)) +Y¥(6)*COS(Y(T)))
YDOT(8)=Y(5)*COS(Y(7))~Y(6)*SIN(Y(T))

ydot (9)=y(5)*sin(y(7))/cos(y(8))+y(6)*cos(y(7))/cos(y(8))
RETURN
END
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FIG.3.b LOOPING MANEUVER
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On the top left, the control panel indicating the elevator,
rudder, aileron deflections as well as the thrust setting. On the
bottom left, the angle of attack indicator. On the bottom center a
speed indicator in feet per second. On the bottom right an attitude
indicator . The symbolic airplane position displays the roll angle
(angle with the horizontal line), the pitch angle (distance from the

horizontal line) and the sideslip angle (distance from the vertical
line).

FIG.3.c DISPLAY ORGANIZATION
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