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ABSTRACT

The use of effective field theories to attack new and seemingly disparate problems
has proliferated in the past several decades. In this thesis, we develop effective
field theories for systems of fermionic quasiparticles possessing Fermi surfaces,
with a particular focus on Fermi surfaces proximal to Van Hove singularities. Such
systems are a fruitful source of complex and novel behavior in condensed matter
physics. We begin with an overview of the renormalization group procedure at the
heart of effective field theory by analyzing a simple example. We emphasize the
concept that the RG relates the observables of one theory to those of another theory
with precisely the same form but different numerical parameters. We also note the
generality and extensibility of these concepts. We then apply this perspective to
the study of quasiparticles with a round Fermi surface, employing the technique of
binning the quasiparticle fields in momentum space to translate previous treatments
into a more modern form. We next develop an effective field theory describing the
excitations ofmodes around a Fermi surfacewith a VanHove singularity. We resolve
lingering questions about the presence of nonlocal interactions in similar models.
We find a rich and complicated theory capable of describing deviations from typical
Fermi liquid behavior that nonetheless displays some universal dependence on the
interactions involving modes in the vicinity of the Van Hove point. We close with
an analysis of the instabilities of this Van Hove effective field theory.
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C h a p t e r 1

INTRODUCTION

This thesis chronicles an application of effective field theory (EFT) to the investiga-
tion of Fermi surfaces. In particular, it explores the behavior of systems of fermions
in two spatial dimensions at zero temperature where the Fermi surface passes close
to a Van Hove singularity, a point where the density of states diverges. The mo-
tivation is twofold. First, these systems serve as a novel testbed for understanding
how we should modify an EFT when the interesting observables are situated along
an extended manifold in momentum space. This is opposed to the setting of tradi-
tional EFTs, where we are interested in the neighborhood of a single point at zero
energy and momentum. Second, a variety of materials with interesting properties
have quasi-two-dimensional Fermi surfaces in the proximity of Van Hove singular-
ities, including the cuprate superconductors [1]. Furthermore, previous treatments
from the perspective of effective field theory have been afflicted by nonlocal diver-
gences [2], a surprising result given the experience with similar EFTs in high-energy
physics [3, 4]. The application of certain methods from these other EFTs clarifies
the situation.

Chapter 2 reviews the Wilsonian view of effective field theory. We focus on the
perspective that the renormalization group relates a subclass of observables from one
theory to those of another, more useful theory and work through a simple example.
We then briefly detail how it is possible to relate the low-energy theories that result
from this procedure to the high-energy theories from which they descend, and we
comment upon how to deal with the situation when the high-energy theory is not
well understood. Finally, we emphasize that it is possible to generalize this strategy
to focus on different regions of momentum space.

In Chapter 3, we begin with a review of the application of the methodology of
effective field theory to nonsingular Fermi surfaces. In the process, we discover
a complication involving the conservation of momentum that was not carefully
addressed in the original, classic treatments [5, 6]. This leads us to introduce
the concept of momentum space binning, a feature of several modern EFTs with
multiple scales. In contrast to the conclusions of previous works, we find that within
the binned formalism all interactions are irrelevant at the classical level. Despite this,
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we determine that the large size of the Fermi surface can enhance various quantum
effects, leading to nontrivial behavior in the low-energy theory. We conclude by
recapitulating several famous results of Fermi liquid theory using the binned EFT.

Chapter 4 formulates the EFT for a Fermi surface with a Van Hove singularity.
Resolving the issue of nonlocal divergences requires us to once again subdivide
momentum space. The presence of the Van Hove singularity forces us to introduce
a momentum-dependent coupling function, threatening the predictive power of the
theory. Fortunately, the Van Hove singularity also simplifies the renormalization
group flow, leading to universal predictions for the strong coupling scale. The
presence of a large logarithm in the beta function leads to an enhancement of this
scale compared to the analogous result for a round Fermi surface. This suggests
the superconducting transition temperature is also enhanced, in agreement with
previous findings [7–10]. We also discover that modes along the flat sections of
the Fermi surface accompanying a van Hove singularity represent a microscopic
realization of the marginal Fermi liquid, a phenomenological model describing the
normal state of certain high-TC superconductors [11].

Finally, in Chapter 5, we explore the instability of the Van Hove EFT to other
ground states. The logarithmic enhancement found in Chapter 4 results in two poles
in the two-particle Green’s function at zero net momentum. One of these is physical
and suggests that the system is unstable to Cooper pairing when the coupling is
attractive, in agreement with the evidence provided by the beta function. Finally,
we demonstrate the existence of another instability to a density-wave state, and we
investigate how the presence of a finite chemical potential, which shifts the Fermi
surface away from the Van Hove singularity, modifies this result.
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C h a p t e r 2

A PRIMER ON EFFECTIVE FIELD THEORIES

Effective field theories are a class of models used to describe systems in terms
of the degrees of freedom (DOFs) relevant to some limited set of observations.
Fundamentally, EFTs are useful because of the intuitive concept that if one is
only interested in a small subset of all the potential behaviors of a system, it is
often possible to simplify the description of that system by discarding irrelevant
information. In the context in which the tools of effective field theory were first
codified, this simplification involves focusing on the low-energy observables of
a complicated quantum field theory, such as scattering amplitudes of low-energy
particles. It is then possible to remove the high energy DOFs of the system, in this
case the modes of the quantum field with short wavelengths, so these low-energy
observables continue to be encoded in the theory. An extremely early example
of such a theory is the Euler-Heisenberg Lagrangian, which describes the self-
interaction of light below the mass of the electron and the positron. Another famous
example is chiral perturbation theory, an EFT that describes the interactions between
hadrons formed from the confined quarks and gluons of quantum chromodynamics
[12]. More recent examples include effective field theories describing the low-
energy dynamics of string theories [13]. We will discuss several more examples in
Section 3.6 of the next chapter.

Despite this historical context, the set of systems amenable to description in terms
of EFTs extends well beyond the low-energy limits of traditional quantum field
theories. For example, the methodology has been applied to the study of the
large-scale structure of the universe [14], hydrodynamics [15], and (of particular
relevance to this thesis) Fermi liquids and superfluids [5, 6, 16]. In Chapters 3
and 4, we explore effective field theories of Fermi surfaces in two dimensions. This
subject is particularly relevant to the observation of anomalous behavior in various
quasi-two-dimensional materials that appear to possess a Fermi surface and display
exotic behaviors such as high-temperature superconductivity [17, 18]. This chapter
is dedicated to understanding effective field theory in a simpler context.

There are several technical requirements to describe a given physical system with an
EFT. First, there should be something playing the role of spacetime in the system, a
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domain on which the fields of the system will be defined. Second, we need fields,
functions on this spacetime (it is field theory, after all). Note that the values of
these fields are rarely the actual observable quantities of the theory. In the context
of many-body quantum mechanical systems, these fields can often be thought of as
being related to the wavefunctions of the particles in the system. Third, we must be
able to formulate the dynamics of the fields in terms of an action principle. Fourth
and finally, there should be some kind of transformation on the fields which allows
us to “zoom in” on a particular set of DOFs. This will take the form of a coarse-
graining operation where we eliminate the degrees of freedom that are not relevant
to the observations we wish to make, absorbing their effects into other elements of
the system. In the simplest examples of effective field theories, these eliminated
DOFs corresponded to massive particles which cannot be produced at low energies.

The fact that the fields are governed by an action principle allows us to construct a
mathematical object called a path integral. In quantum mechanics, this object is a
weighted sum of the probability amplitudes for the various paths the system can take
to move between states. We generally extract observables from the path integral
by considering the correlation between the values of the fields at different points
in spacetime. This information can then be used to compute particle scattering
amplitudes, which can then be related to cross-sections for the scattering process
[19]. From this, we can find the expected particle counts in a detector. These are
more or less what we actually observe in real world experiments.

The definitive aspect of EFTs is the coarse-graining procedure. It is what allows us to
describe the system in terms of a restricted, effective set of DOFs. In general, it can
take many forms. In the context of quantum field theories, which we will focus on
here, the procedure usually involves computing the part of the path integral involving
the DOFs we wish to eliminate from the theory, leaving behind an expression which
only describes the fields we are actually interested in. This is called integrating out
the eliminated modes of the field. Let us turn now to an example.

2.1 A simple example
Following the example of Chapter 12 of [19], we consider an effective field theory
involving real scalar fields in four dimensions. This analysis will closely follow
theirs, which is in turn mostly based on [20]. Similar treatments can be found
in [21] and, to a lesser degree, [5]. The focus of the presentation here is the
motivation for rescaling momentum and the fact that we are constructing a different
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theory. Special attention is paid to the simplification of the correlators in the
new theory. This allows us to write down simple expressions for a subset of the
correlators in the original theory using the new theory. In particular, our presentation
makes it clear the renormalization group acts as a sort of generalized symmetry,
demonstrating that fundamentally different theories produce the same correlators
(at least perturbatively), up to rescalings.

Take a theory of a single real scalar field in four dimensions with an explicit
momentum cutoff and a Z2 symmetry ϕ → −ϕ. We assume the action can be
expanded in powers of the field and its derivatives (i.e. local operators). Working in
momentum space, the action is

S[ϕ, {λ};Λ] = Sk[ϕ;Λ] +
∑
{r },n

λ{r },nSmn[ϕ;Λ], (2.1)

where

Sk[ϕ;Λ] ≡
∫ Λ

d4k
1
2

(k2 + m2)ϕ(k)2, (2.2)

Smn[ϕ;Λ] ≡
∫ Λ n∏

i

[d4ki]δ4 *
,

∑
i

ki+
-

k {r }ϕn. (2.3)

The momentum space arguments of the fields have been suppressed, and k {r } repre-
sents the different possible symmetrized combinations of m copies of the momenta
of the fields. The UV cutoff is most conveniently defined after we have passed
to the Euclideanized action, in which case we integrate over a ball of radius Λ in
momentum space for each ki. The delta function ensures the interactions are in fact
local in position space. Finally, the sum over n includes only even numbers of the
fields because of the aforementioned Z2 symmetry.

The time-ordered correlators of this theory can be found by analytically continuing
from the Euclideanized correlators, which are given by the following path integral
expression:

〈ϕ(p1)ϕ(p2) . . .〉 =

∫
[Dϕ(k)]Λϕ(p1)ϕ(p2) . . . e−S[ϕ,{λ};Λ]∫

[Dϕ(k)]Λe−S[ϕ,{λ};Λ]
. (2.4)

The path integral is defined by assuming momentum space is a discrete lattice of
finite size (governed byΛ) and spacing, treating the field at each point in momentum
space to be a variable to be integrated over, then taking the limit of the resulting
expression as we reduce the lattice spacing to zero size. The momenta then play the
role of continuous labels on the integration variables. The path integral measure
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is a product over the (infinitely many) differential elements associated to the field
variable at each point in momentum space. We will ignore the technical difficulties
in actually taking the continuum limit here. p1 and p2 are then labels of particular
fields in momentum space.

The utility of effective field theories hinges on their ability to simplify the calculation
of observable quantities by restricting the types of questions we ask. Here, that will
mean only probing the low-momentum behavior of the theory, which means taking
pi � Λ in Eq. (2.4). Our approach will be to relate the correlators in the given
theory to those in another theory where we have rescaled all of the momenta. We
call the original theory the UV theory and the final theory the IR theory.

To this end, consider a correlator where all of the external momenta are scaled by a
factor ζ , where ζ < 1:

〈ϕ(ζp1)ϕ(ζp2) . . .〉 =

∫
[Dϕ(k)]Λϕ(ζp1)ϕ(ζp2) . . . e−S[ϕ,{λ};Λ]∫

[Dϕ(k)]Λe−S[ϕ,{λ};Λ]
. (2.5)

To relate this expression to a correlator with unscaledmomenta, we perform a change
of variables in the path integral (also known as a field redefinition), taking

ϕ(ζ k) = ζ−3ϕ′(k). (2.6)

The expression for the action in terms of the new field variables will be altered. The
overall scaling factor of the fields is chosen so the kinetic term in the action remains
the same after the change of variables:

Sk[ϕ;Λ] =
∫ Λ

d4k
1
2

k2[ζ−3ϕ′(ζ−1k)]2

=

∫ ζ−1Λ

d4k′
1
2

k′2ϕ′(k′)2
= Sk[ϕ′; ζ−1

Λ]. (2.7)

In the second equality, we have made a change of variables in momentum space,
taking k′ = ζ−1k. The third equality holds because k′ is a dummy variable. Choos-
ing the field redefinition in this way ensures the form of the free field propagator
remains unchanged under rescaling.

Smn transforms under the rescaling:

Smn[ϕ;Λ] =
∫ ζ−1Λ n∏

i

[d4ζ k′i ]δ
4 *

,

∑
i

ζ k′i +
-

(ζ k){r }ζ−3nϕ′n

= ζ−4+(n+r)Smn[ϕ′; ζ−1
Λ]. (2.8)
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The exponent in the scaling factor is the naive scaling dimension of the interaction.
It suggests the contributions from interactions with larger and larger values of r

and n (more copies of the fields and derivatives of the fields) will make suppressed
contributions to the correlators. We will see why this is the case shortly.

Consider the effect of the change of variables in the path integral on Eq. (2.5). From
Eq. (2.6), we have

dϕ = ζ−3dϕ′. (2.9)

This leads to a formally infinite Jacobian determinant in the path integral measure.
However, because the correlators involve a ratio of two path integral expressions,
this multiplicative factor cancels. Therefore

〈ϕ(ζp1)ϕ(ζp2) . . .〉 = ζ−3F

∫
[Dϕ′]ζ

−1Λϕ′(p1)ϕ′(p2) . . . e−S[ϕ′,{ζ−4+(r+n)λ};ζ−1Λ]∫
[Dϕ′]ζ−1Λe−S[ϕ′,{ζ−4+(r+n)λ};ζ−1Λ]

,

(2.10)
where F is the number of fields in the correlator on the left. After this point, we will
drop the primes on the fields because they are dummy variables that are integrated
over.

The right-hand side of Eq. (2.10) looks nearly like a correlator of fields with unscaled
momenta pi, Eq. (2.4), but with modified values for the coupling constants of the
theory. If they were exactly the same, we could show that the correlators involving
scaled momenta are exactly equal to the correlators in another theory with unscaled
momenta, but with different values for the couplings. Expressions in this theory
would then be much simpler, because we should be able to ignore the effects of the
higher dimensional operators. However, at this point we cannot yet make this claim,
because the cutoffs in the two theories are not the same.

To resolve this, separate the path integral measure into modes with energy below Λ
(the “slow” modes) and between Λ and ζ−1Λ (the “fast” modes):

[Dϕ]ζ
−1Λ = [Dϕs]Λ[Dϕf]ζ

−1Λ
Λ

. (2.11)

The original field in the action can then be written as a sum of fast and slow modes,
with themodes defined to have zero value outside their respectivemomentum ranges,
so

ϕ = ϕs + ϕf . (2.12)

Once we have made this division, the kinetic term (and the interaction term with
n = 2, r = 0, which corresponds to the mass) in the action neatly divides into one
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term for the slow modes and one term for the fast modes. On the other hand, the
other interaction terms decompose into three pieces: one which involves only the
slow modes, one which involves only the fast modes, and one which mixes the two.
We write

S[ϕ, {ζ−4+(r+n)λ}; ζ−1
Λ] = Ss + S(f)

kin + Smix + Sf . (2.13)

The part of the action involving the slow modes is simple,

Ss = S[ϕs, {ζ
−4+(r+n)λ};Λ], (2.14)

and looks just like the original action. The kinetic term for the fast modes is also
straightforward,

S(f)
kin =

∫ ζ−1Λ

Λ

d4k
1
2

(k2 + m2)ϕf
2. (2.15)

The “mixed” piece involves a binomial expansion of terms of the form (ϕs + ϕf)n.
We can write it as

Smix =
∑
{r },n

ζ−4+(r+n)λ{r },nS(mix)
mn (2.16)

with

S(mix)
mn =

q=n−1∑
q+p=n

Cn,p

∫ ζ−1Λ n∏
i

[d4ki]δ4 *
,

∑
i

ki+
-

k {r }ϕp
s ϕ

q
f . (2.17)

Note that we have defined the fast modes to be zero when their momenta are less
than Λ, and the slow modes to be zero when their momenta are greater than Λ,
which restricts the actual range in the momentum integrals. Finally, the interactions
between only fast modes take the form

Sf =
∑
{r },n

ζ−4+(r+n)λ{r },nS(f)
mn (2.18)

with

S(f)
mn =

∫ ζ−1Λ

Λ

n∏
j

[d4k j]δ4 *.
,

∑
j

k j
+/
-

k {r }ϕn
f . (2.19)

The numerator of Eq. (2.10) becomes∫
[Dϕs]Λϕs(p1)ϕs(p2) . . . e−Ss

∫
[Dϕf]ζ

−1Λ
Λ

e−S(f)
kin e−Smix e−Sf . (2.20)

We have assumed here that the modes in the correlator are all slow; this is where
we enforce the precept that we are only interested in observables involving small
momenta.
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We wish to construct a path integral which depends on the slow modes alone. To
accomplish this, we must evaluate the path integral over the fast modes. At this
point, we assume the perturbative approximation is valid for all interactions. Then
we can expand the exponentials involving Smix and Sf as a series in the coupling
constants λ, and we can evaluate correlators between the fast modes in the resulting
expression using Wick’s theorem with a propagator defined by Eq. (2.15). The
results are conveniently organized in terms of Feynman diagrams with internal lines
corresponding to the fast modes and external lines corresponding to slow modes
in a particular interaction term. The vacuum diagrams come from evaluating the
correlators in Sf and cancel against the corresponding terms from the denominator
of Eq. (2.10).

To get a feel for the results of this procedure, consider a term which comes from
expanding the six-point interaction in Smix with four slowmodes and two fast modes:

λ0,6(ϕs + ϕf)6 = Cλ0,6ϕ
4
sϕ

2
f + . . . (2.21)

Integrating out the fast modes in this expression corresponds to evaluating the
Feynman diagram corresponding in Fig. 2.1, where the double line corresponds to
the propagator for the fast modes running in the loop. This diagram then represents
a modification of the effective four-point coupling for the remaining slow modes.

Figure 2.1: A contribution to the four point interaction in the effective action from
integrating out fast modes.

Imagine we have made a small rescaling step, so ζ = 1−δΛ/Λ and ζ−1 = 1+δΛ/Λ.
This implies we can drop the rescaling factor for λ0,6 from the expression, since
it will only contribute at order δΛ2. The change in the four point coupling due to
integrating out the fast modes goes like

δλ0,4 ∼ λ0,6

∫ Λ+δΛ

Λ

d4k

(2π)4
1

k2 + m2 , (2.22)

where we have used the usual result for the momentum space propagator for a real
scalar field. The integration limits indicate we should perform the integral over
the range of |k | between Λ and Λ + δΛ, that is, the momenta at the edge of a
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four-dimensional ball of radius Λ + δΛ. We have not been careful in keeping track
of the numerical factor arising from the binomial expansion. Assuming m � λ,
which should be true since we wish to describe particles which are not so massive
that they should be integrated out of the theory, we have

δλ0,4 ∼ λ0,6

∫
dΩ3
Λ3δΛ

(2π)4
1
Λ2 + O

(
m2

Λ2

)
. (2.23)

∫
dΩ3 = 2π2 is the surface area of a four-dimensional ball. Therefore to leading

order in m2/Λ2,
δλ0,4 ∼ ΛδΛ

λ0,6

8π2 . (2.24)

While this particular termwas independent of themomentum of the slowmodes, that
will not always be the case. For example, the corrections arising from evaluating the
diagram in Fig. 2.2 will depend on the momentum of the slow modes corresponding
to the external lines. Since that dependence comes from the propagators of the fast
modes, we will be able to expand these corrections in powers of q/Λ, where q is an
external momentum. As a result, this diagram corrects the derivative interactions
of the slow modes.

Figure 2.2: A diagram that depends on the momenta of the external modes and
hence modifies the derivative couplings.

Fig 2.2 illustrates another important feature of the activity of integrating out the fast
modes in that it involves two copies of the λ0,6 coupling. Diagrams involving more
than one vertex come from higher-order terms in the expansion of the exponential
exp (−Smix) in powers of the coupling constants. These involve copies of different
vertices at different spacetime points, and the fast modes of the different vertices
can be contracted against each other. These terms then re-exponentiate to modify
the couplings in the effective action of the slow modes.
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It is a very important point that the contributions of the interactions involving many
powers of the fields and couplings are not at all small at the beginning of this
procedure. For example, it is not true that the contribution of the six-point vertex
to the new value of the effective four-point interaction between the slow modes is
suppressed relative to the four-point interaction’s contribution. The point here is
that contributions to observables from the effective six-point coupling is small. This
is because we are absorbing the important effects of the original six-point coupling
into the effective four-point coupling. In other words, it is not true that the results in
the IR theory are independent of the values of the irrelevant interactions in the UV
theory. What is true is that the important effects of these irrelevant interactions are
absorbed into the value of the marginal and relevant parameters of the theory.

Our results show that besides being rescaled, a generic interaction between the slow
modes is modified by the effects of the integrated-out fast modes. Despite this
fact, we see that the effective interactions between slow modes generated by this
procedure will always take the form of local interactions. Thus, they serve to alter
the values of the coupling constants that already exist in Ss. Also note that even if we
had initially begun with a finite set of interactions between the modes of the theory,
this procedure would (generically) generate all effective interactions consistent with
the symmetries of the theory. This is a general feature of the Wilsonian approach to
effective field theory.

Next, consider the diagram in Fig. 2.3. This diagram depends on the external
momentum of the slow modes, and it involves two external slow lines. Hence, it
should act to correct the kinetic term for the slow modes, k2ϕs. However, we want
the new theory we produce upon rescaling and integrating out the fast mode to have
the same Feynman rules, with only the value of the couplings changing. This will
not be the case if we modify the kinetic term for the soft modes. To rectify the
situation, we introduce a second field redefinition which removes these effects:

ϕ′ =
√

Zϕϕs . (2.25)

Zϕ is referred to as the field strength renormalization. As before, the field redefinition
yields an infinite multiplicative factor which cancels between the numerator and
denominator of Eq. (2.4) and a number of leftover factors corresponding to the
number of fields in the correlator. The final expression relating the correlators of
the UV and IR theories is

〈ϕ(ζp1)ϕ(ζp2) . . . 〉S0 = ζ
−3F Z−F/2

ϕ 〈ϕ(ζp1)ϕ(ζp2) . . . 〉S′ . (2.26)
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The values of the couplings in the new IR theory defined by S′ have been modified
by the “classical” scaling of the fields, the quantum corrections due to integrating
out the fast modes, and the field strength renormalization. This process as a whole
is called the renormalization group (RG) flow.

Figure 2.3: A diagram which corrects the kinetic energy of the slow modes and
therefore induces a field strength renormalization.

2.2 Predictive power
The necessity of keeping an infinite set of interactions in the effective theory is
disturbing. We want to make predictions. If there are an infinite number of tuning
parameters corresponding to the values of the couplings, how can we possibly
succeed? Fortunately, our prior results regarding the scaling dimensions of the
couplings comes to the rescue. We found above that the couplings with n fields
and r derivatives are scaled by a factor of ζ−4+r+n if we ignore the quantum effects
associated with loop diagrams. Since z < 1, this means the numerical value of
these couplings in the IR correlator shrink as we iterate the process of scaling and
integrating out modes. We have restricted ourself to the study of the perturbative
features of the theory, which means only positive powers of the couplings can show
up in the IR correlator. As a result, the parts of the correlators involving these
higher-order interactions shrink to zero as we continue the RG, and we are left
with only a finite number of couplings which do not shrink to zero in the IR. The
couplings that do shrink are called the irrelevant couplings. The couplings that do
not shrink are further subdivided into two classes: relevant couplings, which grow
as we scale down, and marginal couplings, which remain the same.

If we do take into account the quantum effects described above, we generically find
that the effective scaling dimension of the couplings is modified. The difference
between the classical scaling dimension and the one with the quantum effects in-
cluded is referred to as the anomalous dimension of the interaction associated with
the coupling.

This definition allows us to state the requirement for our procedure to function
correctly with a fair level of precision: the anomalous dimensions from integrating
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out the high-energy modes should not overwhelm the naive scaling dimensions. In
particular, the quantum effects should be small enough that no naively irrelevant
interactions become relevant. An interaction for which this does occur is called
a dangerously irrelevant interaction. Of course, this is not necessarily an insuper-
able obstacle, if we also continue to track the dangerously irrelevant interaction
throughout the flow.

Let us summarize these results. We find the small-momentum correlators of our
UV theory are equal to the correlators of a distinct IR theory with the same cutoff
but modified values of the couplings. For all the interactions with a negative mass
dimension (modulo issues of large anomalous dimensions), the effective couplings
shrink throughout the RG flow. Since the functional form of the correlators is
identical in each theory, and we assume the correlation functions are perturbative
in the coupling constants, we may conclude the contributions from any particular
irrelevant interaction will eventually be suppressed relative to the marginal/relevant
interactions. Thus, if we are sufficiently far in the IR, the observables of the theory
look independent of the effective irrelevant couplings. In the words of traditional
QFT, we are left with a renormalizable effective theory in the IR.

2.3 Higher-derivative interactions
Higher-derivative terms in the effective action must be treated more carefully than
those with higher powers of the fields. To see why, consider the contribution of
the ∂2ϕ4 interaction to some correlation function. While the scaling argument we
have made in the previous sections goes through without modification, we see the
suppression of the coupling constant is offset by the simultaneous rescaling of the
external momenta in the correlation function. As a result, the contribution of this
interaction to the correlation functions of the IR theory is not suppressed relative to
those of the UV theory.

To see the resolution to this quandary, notice that the contributions from these
interactions must always be accompanied by powers of the external momenta. This
follows immediately from dimensional analysis: the naive scaling dimension of
an interaction with n derivatives must be n, so we can always write the coupling
constant as λ = λ̃/Λn, where λ̃ is a dimensionless number and where Λ is the
original UV cutoff. We are interested in this discussion only in instances where an
external momentum shows up in a correlator involving this coupling. As a result,
if we assume the correlators are analytic in λ, we must always end up with positive
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powers of the external momenta in the correlators, so the contributions look like( p
Λ

)r
λ̃ (2.27)

for some positive r . Therefore the contributions from these interactions are guaran-
teed to be suppressed even in the UV theory.

2.4 Relevant operators and naturalness
We now know that any field theory looks renormalizable if we flow sufficiently far
into the IR. However, notice that effective couplings with positive mass dimension,
the relevant couplings, tend to quickly grow unless there is a precise cancellation
due to the loop effects. Thus, if we imagine starting out in some random initial field
theory in the UV, the effective values of these relevant couplings tend to become as
large as the UV scale itself. If the coupling corresponds to an interaction, we should
expect the perturbative approximation to quickly break down. In our example,
there are no interactions which are classically relevant. However, the mass of the
particle, the coefficient of ϕ2, is relevant. This means that unless there is a precise
cancellation in the theory, the mass should be too large to allow the particle to exist
in the IR theory at all. Such a cancellation is referred to as a fine tuning of the
model.

In the context of an effective theory describing a condensed matter system where
we have control of the experimental parameters (such as temperature, pressure, or
doping), it makes sense to consider fine-tuned models, because it may very well be
possible to tune the necessary parameters in the lab. The same cannot be said of
fundamental theories of nature. In that case, the existence of a relevant coupling or
mass in the theory is surprising. For this reason, we call a theory with no relevant
operators (which hence requires no fine tuning) natural.1 In particular, a low mass
fundamental scalar particle in four spacetime dimensions is unnatural.

Until recently [22, 23], no such particle had been observed. The observation of
the Higgs boson changed this situation. The fact that the Higgs exists is one of
the stronger pieces of theoretical evidence for the existence of a new UV theory at
energy scales not too far above what is accessible with today’s technology.

1This is often generalized to include theories with relevant couplings that restore a symmetry of
the theory when the coupling is taken to zero. This is referred to as the t’Hooft naturalness condition.
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Figure 2.4: The leading contribution to the beta function for the four point coupling.

2.5 The beta function
Let us simply take the tuning to produce a small mass for the particle in our simple
example as an axiom. Our analysis indicates that the behavior of the low-energy
observables of our system depend most strongly on the value of the marginal (and
relevant) couplings between the fields. Consider the model after we have already
flowed into the IR for a bit, so the effective couplings of the irrelevant interactions
are small. There is a single marginal interaction in the Lagrangian, the four point
coupling. Call the coupling λ. As we continue the RG flow, the dominant effect on
the flow of λ will come from λ itself. Furthermore, there is no classical scaling at
all because the coupling is marginal. Finally, the field strength renormalization only
affects the flow at higher orders in λ.

The lowest-order contribution to the flow is from diagrams like the one in Fig. 2.4.2
Being cavalier about the numerical coefficient, this diagram results in a modification
to the effective four-point coupling given by

δλ = Cλ2
∫

d4k

(2π)4
1

k2 + m2
1

(k + q)2 + m2
, (2.28)

where q is the momentum flowing into the diagram. We can drop q from the
expression since we assume the momenta of the soft modes are much smaller than
Λ, and because this correction will modify a different interaction. Furthermore, we
drop m2 under our assumption that we have tuned the mass to a small value. The
resulting expression is then

δλ = C′λ2 δΛ

Λ
, (2.29)

where C′ is some positive constant.
2In fact there are three such diagrams, each corresponding to ways to route different external

momenta through the loop. They all give the same contribution.
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We can take the limit where the iterative process we have described becomes a
continuous transformation between theories. In that case, Eq. (2.29) becomes a
differential equation governing the behavior of the effective coupling as we flow to
the IR. The resulting expression, called the beta function, is

Λ
dλ
dΛ
= C′λ2 + O(λ3). (2.30)

To order λ2, the solution is

λ(Λ) =
λ0

1 + C′λ0 log Λ
Λ0

. (2.31)

We see that the behavior of the effective coupling as we flow to the IR depends on
the sign of λ0.

2.6 Polchinski RG and matching
We have shown that the effects of the irrelevant terms in the UV action are absorbed
into the effective marginal and relevant parameters and the observables in the IR
theory are independent of the effective values of the nonrenormalizable couplings.
However, notice that this observation only holds if we have flowed sufficiently far
into the IR. If we want to consider external momenta and energies near the original
cutoff, we are faced with a problem: the suppression we have found is not small,
and therefore the entire infinite tower of irrelevant interactions contributes to the
observables.

This is not an issue if we restrict ourselves to low-energy observables. However,
we sometimes want to understand the low-energy effective field theory in terms
of another theory living immediately above some physical cutoff, like the mass
of a heavy particle. The Wilsonian approach described above demonstrates that
whatever effective field theory we generate by integrating out this massive particle
will eventually give useful descriptions in the IR. However, it does not give us a
calculational method to relate these contributions to the original theory. We will see
that it is possible to find a description of the low energy theory that can be related
to the high energy completion. This process is often referred to as the construction
of a top-down effective field theory [24, 25].

To understand the tools involved, it is useful to understand the traditional point
of view of renormalization and renormalizability in quantum field theory. In that
approach, the UV cutoff is regarded as an unphysical calculational crutch that we
wish to remove at our earliest convenience. The Lagrangian is specified at the
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outset to only include the interactions that we have termed marginal or relevant.
The reason for this requirement is intimately tied to the technical details of loop
computations. If we only include the renormalizable terms, we find it is possible
to remove the divergences associated with the UV cutoff by allowing the values of
these couplings to vary as we send the cutoff to infinity. However, this procedure
fails if we include irrelevant interactions. In that case, we find we must include an
infinite collection of interactions to remove all of the divergences generated by the
loop diagrams (as opposed to the finite number when only marginal and irrelevant
couplings are included). This then ruins the predictability of the theory [26, 27].

It is not too hard to understand why this happens from the point of view of effective
field theory. The problem is that we are holding an irrelevant interaction constant
while simultaneously sending theUV cutoff to an infinite value. Fromour discussion
above, it is clear the irrelevant coupling should naturally be pushed to lower values
by the RG as we flow further into the IR, with a limiting value of zero for all
irrelevant couplings if we are infinitely far from the UV cutoff. Therefore we see
there is an inherent contradiction in such a procedure from the EFT perspective.

In [28], Polchinski formalizes and extends the connection between EFT and the
traditional view. He asks us to consider two different theories: one defined with all
irrelevant couplings set to zero at the UV scale and another with nonzero values for
at least some of these couplings. He then considers integrating out the high-energy
modes (without the momentum rescaling we have discussed). He shows that the
“distance” between the RG trajectories of these two theories becomes small in the
IR.3 In other words, we can always find a choice of values for the theory with only
renormalizable couplings at the UV scale that will reproduce the observations of the
theory with other, irrelevant couplings included, up to errors suppressed by powers
of the final IR scale over the original UV scale.4 This makes the connection with
the traditional view clear: no matter what “true” theory we start with in the UV,
it is always possible to find another “fake” theory containing only renormalizable
interactions that will reproduce the observations we make in the IR.

If we wish to reduce the size of the errors, we must keep additional irrelevant
interactions. However, we can stratify the space of interactions that we must keep

3Note that without the rescaling, the irrelevant parameters generated by the RG flow do not take
on small values. However, they do approach the same low-dimensional manifold parameterized by
the marginal (and relevant) couplings of the theory.

4The only exception to this is if the anomalous dimension of an operator (the part of the scaling
due to the loop effects) overwhelms the classical scaling and promotes an irrelevant operator to
relevancy.
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Figure 2.5: A representation of the RG trajectories of two theories. The vertical
axis represents the space of couplings. As the RG scale is lowered, the two paths
approach a submanifold parameterized by the marginal couplings alone.

to reproduce the predictions of the true effective field theory up to a given error.
This stratification corresponds exactly to the power counting of the dimensions of
the interactions described in the previous sections.

Besides connecting two disparate understandings of the renormalization group, [28]
shows us how to relate the low-energy effective theory to a UV theory living above
the cutoff. We will call this UV theory the full theory, although it is also often an
EFT. To recap, the problem is that the true effective theory living directly below
the physical cutoff, the one we would find by directly integrating out the modes of
the full theory, is horribly complicated. It contains a huge number of unsuppressed
interactions, and they generically all contribute to the RG flow. The key is to realize
that by Polchinski’s argument, we can replace this true theory by one containing
only renormalizable interactions between the remaining degrees of freedom. This
other theory will differ wildly from the true effective field theory in the vicinity of
the cutoff, but it will be guaranteed to only make errors relative to the true EFT that
are power suppressed once we consider IR observables.

The strategy, then, is to first calculate a set of observables in the fake theory
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containing only the renormalizable interactions between the remaining degrees of
freedom at a scale around the cutoff. Next, we calculate the same set of observables
in the full theory living above the cutoff at the same scale. We then adjust the values
of the couplings in the fake theory to reproduce the full theory results. Finally, we
flow down to the scale we are actually interested in by using the RG, confident in
our knowledge that the fake theory will reproduce the results of the true EFT up
to small errors. To reduce the size of the errors, we simply increase the number
of interactions in the fake theory to include the next rung of irrelevant couplings.
Instead having to track the infinite set of couplings near the transition from one
theory to the next, we have reduced the problem to finding an effective theory that
will reproduce our results in the IR with a finite collection of couplings specified at
the boundary. This whole procedure is known as matching [24, 25, 29, 30].

2.7 Bottom up EFTs
The top-down approach described in the previous section may be contrasted with a
bottom-up approach, where the full theory describing the behavior above the cutoff
is unknown, too complicated, or too strongly coupled to be useful in extracting
information relevant to the low energy theory. Good examples of this include the
chiral Lagrangian (strongly coupled full theory) and the standard model (unknown
full theory). In these cases, we make no attempt to relate the values in the effective
theory to the full theory. However, we can be confident that as long as there is some
effective description of the system in terms of fields and a sufficiently large range
of energies in which this description is useful, the dynamics should be described by
the marginal and relevant interactions of the effective degrees of freedom.

This suggests a strategy for dealing with these scenarios: identify the possible forms
the fields and interactions can take by enumerating the symmetries of the system
involved, either by making use of some knowledge of the complicated full theory or
through an appeal to experiment.5 Then, write down all the relevant and marginal
local interactions that satisfy the symmetry requirements and can be constructed
from the fields. This theory should then be able to describe the dynamics of the
system as long as we only consider observables within the domain of applicability
of the theory.

5Finding the correct IR degrees of freedom can often be something of an art. An interesting
example of the challenges involved in this process is given by the development of nonrelativistic
quantum chromodynamics (NRQCD), the theory of nonrelativistic bound states of heavy quarks. In
that case, it required several iterations before the correct description was found [31–33].
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In the next chapter, we will meet an example of a thoroughly complicated UV theory,
a high-density collection of strongly interacting electrons inside the atomic lattice
of a material. There is not much hope of trying to understand the dynamics of this
full theory. Instead, we will attempt to construct a bottom-up EFT to describe the
behavior of the system for low excitation energies.

2.8 Generalizations of the RG
In our simple example, we chose to rescale all components of the momentum, and
hence the spacetime coordinates of the fields, in a uniform manner. This made
sense here, because we wished to preserve the Lorentz invariance of the system
throughout the flow. However, nothing within the formalism of the RG necessitated
that choice. In fact, we even could have chosen to rescale fields in different regions
of momentum space differently. The only requirement for the procedure described
above to function is that we should return the action to its original form (up to
a change in the parameters of the theory). With this freedom, we can imagine
focusing on different regions of momentum space to investigate particular classes
of observables relevant to a given experimental question. We will meet examples of
theories that do exactly this in the next chapter.
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C h a p t e r 3

THE ROUND FERMI SURFACE

3.1 The free electron model
The first theories of the behavior of electrons in the crystalline lattice of metals were
developed at the beginning of the 20th century. In these models, the electrons were
treated as nearly free classical particles bouncing off a lattice of stationary atomic
nuclei. While this did a fairly good job explaining the electronic conductivity of
metals, it failed in many respects, such as in predicting the heat capacity. The next
major advance, pioneered by Arnold Sommerfeld, was to treat the electrons as a gas
of nearly free particles obeying Fermi statistics.

In this picture, we imagine filling an empty box with noninteracting fermions. The
energy eigenstates of the potential represented by the box correspond to sinusoidal
wavefunctions in position space, which means they look like states of definite and
discrete momentum in momentum space. The states with the longest wavelengths
(and hence the smallest momentum) have the lowest energies. At low temperatures,
the particles go into the lowest possible energy states. However, because these
particles are fermions, the Pauli exclusion principle implies that it is impossible
for more than one identical particle to occupy the same quantum state. If we take
the particles to be spin-1/2, as electrons are, this means that we can place at most
two into each energy eigenstate. As a result, as we place more and more particles
into the box at zero temperature, the low momentum states are filled, and the new
particles we introduce must go into higher and higher energy states.

If we plot the filled and unfilled states in momentum space, the filled states cluster
around the origin at zero momentum. As a result, the shape of the space of filled
states looks like a ball of the dimension appropriate to the system. Therefore, for
example, the filled states at zero temperature look like a filled circle in two spatial
dimensions, and they look like a filled sphere in three dimensions. The boundary
between the filled and unfilled states in the system is called the Fermi surface. The
region of filled states within the Fermi surface is called the Fermi sea.

The excitations of such a system involve adding energy to one of the particles in the
Fermi sea, moving it into an unfilled state above the Fermi surface. While the total
energy of the excited state is relatively large, the amount of energy to move a particle



22

from within the Fermi sea to just outside the Fermi surface can be very small — in
the limit where we take the volume of our box to be infinite, the minimum energy
required to produce this excited state actually goes to zero. Applying this model to a
real metal explains why arbitrarily small electric fields can produce electric currents
within the material: the small electric field puts the “conduction” electrons near the
Fermi surface into a state with momentum in the direction of the field, leading to
the transport of charge within the system.

Given this picture of the filled and unfilled states with the Fermi surface as the
boundary, we can ask what what simultaneous amount of energy and momentum
must be injected into the system to excite a state near the Fermi surface. To do this,
we can linearize the energy of the electrons near the Fermi surface as a function of
momentum. Since they are free electrons, the Fermi surface resides at a constant
magnitude of momentum PF , and we have

E(P) =
P2

2m
=

(PF + δP)2

2m
= VFδP + EF + O(δP2/m), (3.1)

where the Fermi energy EF = P2
F/2m is the energy of the electronic state living right

at the Fermi surface and the Fermi velocity VF = PF/m is the speed associated with
these states. Then we see that we can excite the system by simultaneously adding
an energy E(P) − EF = VFδP and a momentum δP. In other words, the dispersion
for the excitations of the system looks like

E = VF P (3.2)

at small momentum, where E and P refer to energy and momentum of the excitation
relative to the ground state at zero temperature. This allows us to think of the
excitations of the system as independent of the underlying electrons that make up
the Fermi sea.

The process of exciting the electron into a state above the Fermi surface leaves
behind an unfilled state below the Fermi surface. Compared to unexcited state, this
looks like the absence of an electron. As a result, it takes on the character of a
positively charged particle called a hole. From this point of view, the promotion of
the fermionic particle into an excited state looks very similar to pair production in
QED, where a sufficiently energetic photon can (in the presence of other particles,
which is necessary to conserve momentum) produce an electron-positron pair. The
major difference here is thatwhile there is aminimumenergy to produce the electron-
positron pair, there is no minimum energy to produce the electron-hole pair in a
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metal. This can be seen by observing that the energy associated with the excitations
in Eq. (3.2) goes to zero as P goes to zero. Such a system is described as being
gapless.

Amazingly, this treatment did an excellent job describing many properties of metals
at low temperatures, despite the fact that the electrons in a metal are by no means
nearly free. Indeed, they should constantly interact both with each other and the
underlying lattice of atomic nuclei. Thus, it was a mystery why the model was so
successful.

3.2 Landau Fermi liquid
In a series of papers in the late 1950s [34] [35] [36], Lev Landau greatly clarified
the situation. His major idea was to consider starting with a gas of free electrons in
a box at zero temperature and turning on the interactions between the electrons (and
with the underlying lattice) adiabatically, that is, slowly enough that the eigenstates
and energy levels of the system shift in a continuous matter and the higher energy
states are not excited. Intuitively, this means that the boundary between the filled
and unfilled states, the Fermi surface, should persist throughout the process of
turning on the interaction. The excitations of this new system should then have a
similar character to those in the free electron gas. The resulting state is called a
Fermi liquid. The underlying particles are called quasiparticles to emphasize the
fact that the process of turning on the interactions will modify some aspects of their
behavior, such as their effective mass. Note that the quasiparticles will still display
fermionic statistics. Landau’s basic idea here was to elevate the importance of the
Fermi surface, making it the defining characteristic of the new model. This picture
is explained in a particularly straightforward manner in [37].

Within this model, we find an explanation for the approximation that the interactions
between the quasiparticles can be regarded in some sense as small. In particular,
the restriction of conservation of energy and momentum, combined with the Pauli
exclusion principle, implies that pairs of quasiparticles with generic configurations
of momenta can only scatter into states with nearly the same momenta. This then
restricts the ability of the interaction to modify the behavior of the system. For
example, it means that the probability of a given quasiparticle decaying into a
pair of quasiparticles and a hole with lower energy goes like (E − EF )2 (at low
temperatures) or T2 (at higher temperatures) [37]. We will see that the methods of
effective field theory reproduce this result, and place it in a more general context.
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3.3 Effective field theory
Let us now postulate that we can describe the behavior of a system with a Fermi
surface and quasiparticles in terms of an effective field theory, where fermionic
fields will correspond to the quasiparticles. We will work directly in momentum
space and in two spatial dimensions, and we will mostly ignore the issues of the
spins of the quasiparticles by making the assumption of spin-singlet interactions.
This treatment will mostly follow [5] and [6]. The first works to revisit the Fermi
liquid theory from the perspective of renormalization and effective field theory were
[38] and [39]. Historically, the increased interest in this point of view stemmed
from an attempt to understand the possible ways in which Fermi liquid theory could
fail. This was due to the discovery of high temperature superconductivity [40], and
the observation that the materials displaying high temperature superconductivity
do indeed seem to posses a Fermi surface [17, 41], but nonetheless appear to have
properties qualitatively and quantitatively different fromwhat is expect within Fermi
liquid theory [42].

In analogy with the dispersion relation Eq. (3.2) for the free Fermi gas, we take the
kinetic term in the Lagrangian for the quasiparticles to be∫

dω d2kψ†[ω − ε(k)]ψ, (3.3)

where the dispersions will be assumed to only depend on the perpendicular distance
from the Fermi surface:

ε(k) = VF k⊥ + O(k2
⊥). (3.4)

This will be justified momentarily by the observation that within the effective field
theory, higher order terms in this expansion will be irrelevant in the RG sense.
For simplicity, we will focus on a circular Fermi surface with a constant Fermi
velocity, that is, a rotationally invariant theory. The conclusions of the analysis
will remain the same in the case of a general round Fermi surface where the Fermi
velocity is always nonzero, given that we use a system of coordinates where k⊥ is
the component of the momentum locally perpendicular to the Fermi surface.

Our previous discussion of the Fermi liquid detailed how the low-energy excitations
of the system represent states in the vicinity of the Fermi surface. Therefore in order
to construct a low-energy effective theory of this system, the high energy states (fast
modes) that we integrate out during the renormalization process should be those far
from the Fermi surface. We therefore cut off the theory such that the momenta lie in
a band around the Fermi surface of width Λ/VF . The renormalization process will
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involve rescaling in the component of momentum perpendicular to this surface, then
integrating out the modes at the edge of the allowed region of momentum space in
order to return the cutoff to its original numerical value. As in our example system in
Chapter 2, we will be relating the low-energy correlators (in this case, corresponding
to correlators in the vicinity of the Fermi surface) to correlators of another theory.
The new theory should then produce a simpler description of the system in terms of
a small number of effective operators appearing in the Lagrangian.

The UV theory of this particular example is in fact not a quantum field theory at
all. Instead, the degrees of freedom are the atoms inside the lattice of the material.
This emphasizes the versatility of effective field theory, in that we may describe the
low-energy dynamics of a system with a completely different character in terms of
the effective fields of the quasiparticles.

3.4 Classical scaling
To understand the behavior of this theory under the renormalization procedure
described above, consider a particular correlator with an action S0 that is perturbative
but otherwise arbitrary,

〈ψ(ζ−1ω, ζ−1p⊥, θ) . . . 〉S0 . (3.5)

As in the example of the scalar ϕ4 theory in the introductory chapter, z > 1 is a scale
factor emphasizing that we are interested in the low energy modes of the system.
The choice of the scaling, while arbitrary, is motivated by the observation that it
will preserve the form of the kinetic term, allowing us to use the same propagator
in the scaled and unscaled theories. Furthermore, it is physically motivated by the
observation that if we wish to understand the low energy behavior of the system, we
should focus on modes near the Fermi surface.

We perform an analogous rescaling of the modes in the path integral. The path
integral expression for the correlator is

1
Z

∫
[Dψ†Dψ]Λ−Λψ(ζ−1ω, ζ−1p⊥, θ) . . . exp (iS0), (3.6)

where
Z=

∫
[Dψ†Dψ]Λ−Λ exp (iS0). (3.7)

The limits on the path integral measure emphasize that we must include momenta
both above and below the Fermi surface to properly account for the presence of
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holes. Also, we place limits on ε(k) = VF k⊥, so we include only the modes in
momentum space with −Λ < k⊥ < Λ, where

k⊥ = |~k − KF k̂ |/VF . (3.8)

The integral in the kinetic part of the action in terms of k⊥ then looks like∫
dω

∫
|k | d|k | dθ =

∫
dω

∫ Λ/VF

−Λ/VF

(k⊥ + KF ) dk⊥ dθ. (3.9)

The term that is linear in k⊥ will scale more quickly than that involving KF , so it
will be irrelevant in the sense of the renormalization group. Hence we can drop it
from the theory. We will choose to define the theory without a cutoff on energy
because it is convenient and does not lead to additional divergences.

Performing a field redefinition

ψ(ζ−1ω, ζ−1k⊥) = ζψ′(ω, k⊥), (3.10)

ψ(ω, k⊥) = ζ [ψ]ψ′(ζω, ζ k⊥) (3.11)

transforms the path integral measure and the kinetic term in the action:

[Dψ†Dψ]Λ−Λ = [Dψ′†Dψ′]ζΛ−ζΛ, (3.12)

Sk =

∫
dω d2kζ2[ψ]ψ′(ζω, ζ k⊥)[ω − VF k⊥]ψ(ζω, ζ k⊥). (3.13)

Changing variables in the kinetic term to k′⊥ = ζ k⊥ and ω′ = ζω and dropping the
primes yields

Sk = ζ
2[ψ]−3

∫
dω d2kψ†[ω − ε(k)]ψ, (3.14)

which implies that we should choose the scaling dimension [ψ] = 3/2 for the fields
in momentum space in order to preserve the kinetic term throughout the RG.

Let us analyze the scaling interactions in the theory. The general form is∫
(dω d2k)

n
δ
(∑

ω
)
δ2

(∑
k
)
gm,n,pkm

⊥ω
p(ψ†ψ)

n/2
. (3.15)

The delta functions enforce conservation of energy and momentum. Crucially,
we also define gm,n,p to be an arbitrary function of the angular coordinates of the
particles; we will comment on this further below. The number of powers of ζ that
multiply the interaction is

[gm,n,p] = −2n + 1 − m − p +
[
δ2

(∑
k
)]
+

3
2

n

= −
n
2
− (m + p) + 1 +

[
δ2

(∑
k
)]
. (3.16)
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We have left the scaling of the momentum conserving delta function ambiguous for
now. However, we should expect 0 ≤ [δ2(k)] ≤ 1, because only the perpendicular
component of each momentum is rescaled. The ambiguity of the scaling of this
delta function will be the topic of the next section.

In the limit where the coupling constants are all small, we may neglect the effects
arising from the integrated-out “fast” modes of the field, just as in Chapter 2.
Eq. (3.16) then implies that in this approximation, the correlators of the scaled (IR)
theory will then take exactly the same functional form as those in unscaled (UV)
theory, but with gm,n,p → ζ [gm,n,p]gm,n,p. Given the constraint on the scaling of the
delta function, all interactions with six or more copies of the field and any number of
powers of k⊥ or ω should be irrelevant under the rescaling, that is, gm,n,p is replaced
by smaller and smaller values as we scale further into the IR. Furthermore, any
interaction with four fields and one or more powers of k⊥ or ω should be irrelevant,
as is any interaction with two fields and two or more powers of k⊥ or ω.

If we assume for now that the interaction involving four fields is marginal, we arrive
at the conclusion that the most general action containing only relevant or marginal
interactions (i.e. containing only terms that are not scaled to zero) is given by

S = Sk + Si, (3.17)

where
Sk =

∫
dω d2kψ†[ω − VF (θ)k⊥]ψ (3.18)

and

Si =

∫
(dω d2k)

4
δ
(∑

ω
)
δ2

(∑
k
)
g(θ1, θ2, θ3, θ4)(ψ†ψ)

2
. (3.19)

If we enforce rotational invariance, VF (θ) becomes independent of the angle of the
particle. However, the coupling function will still depend on the three independent
differences of the angular coordinates of the scattered particles.

A careful reader will notice that we have omitted a term from the Lagrangian: a
momentum- and energy-independent constant multiplying ψ†ψ. Call the constant
µ, so that the term in the Lagrangian is µψ†ψ. From the perspective of an effective
field theory, this term is particularly worrisome, because it is a relevant operator.
In a “normal” relativistic field theory, this term would correspond to a mass for the
particles, and its relevance would imply that it is unnatural for it to have a small
value in the IR theory. However, the situation is different here.
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Including this in the kinetic term of the Lagrangian yields

ψ†[ω − VF (θ)k⊥ + µ]ψ. (3.20)

Consider the following field redefinition:

ψ(k⊥) = ψ(k′⊥ − µ/VF ). (3.21)

The kinetic term becomes

ψ′†(k⊥ − µ/VF )[ω − VF (θ)k⊥ + µ]ψ′(k⊥ − µ/VF ). (3.22)

Changing variables to k′⊥ = k⊥ − µ/VF then restores the original form of the kinetic
term, but with the primed fields and perpendicular components of the momentum.

Thus, we can eliminate the constant term in the quadratic part of the action by
making a field redefinition. What has happened here is that we have “shifted” the
location of the true Fermi surface. In the vocabulary of condensed matter physics,
µ corresponds to a shift in the chemical potential of the particles. The important
point here is that the excitations of the system with the shifted chemical potential
continue to remain gapless.

As we iterate the process of integrating out the high energy modes, we will have to
continually shift the location of the Fermi surface via field redefinitions. However,
the modifications to the location of the Fermi surface will always be smaller than
the width of the band around the Fermi surface defined by the cutoff as long as
the theory remains perturbative. This is because the corrections from loops to the
chemical potential will always take the form

δµ ∼ gn(Λ0 − Λ). (3.23)

Fig 3.1 demonstrates this shifting of the position of the Fermi surface.

It is important to observe that the kind of field redefinition used here would not
be possible in the case of a massive relativistic particle. The simplest way to see
why this could not work is to notice that if we tried to define a new momentum k′

such that k′2 = k2 +m2 (working in Euclideanized momentum space), the topology
of the allowed modes of the field would change. Instead of looking like a ball in
momentum space centered at the origin, the allowed space of modes would look like
a hollow ball, with inner radius k′ = m. As a result, the structure of the correlators
of the redefined theory would not look massless at all. The point in this case is
that the topology already looks like a hollow ball, so the correlators of the redefined
fields will look like those of the original fields.
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|ε(k)| < Λ0

|ε(k′)| < Λ

New Fermi surface

Original Fermi surface

Figure 3.1: Shifting of the position of the Fermi surface due to renormalization of
the chemical potential.

3.5 Issues with the scaling
Now we must return to the issue of the scaling of the momentum-conserving delta
function. [6] and [5] have two different approaches to this problem. Polchinski
claims that the scaling of the delta function differs depending on the relative ori-
entation of the momenta of the interacting particles. To understand this point of
view, let us write out the form of the two dimensional momentum-conserving delta
function. Writing it in terms of |k | and θ, the delta function in the kx direction is

δ(|k1 | cos θ1 + |k2 | cos θ2 − |k3 | cos θ3 − |k4 | cos θ4). (3.24)

Replacing |k | = k⊥KF , the argument of this becomes

k1⊥ cos θ1 + k2⊥ cos θ2 − k3⊥ cos θ3 − k4⊥ cos θ4

+ KF (cos θ1 + cos θ2 − cos θ3 − cos θ4); (3.25)

the ky-conserving delta function has the same argument with sin→ cos.

His reasoning runs as follows: we may assume that the k⊥ are small compared to
KF since we are interested in the behavior of the theory deep in the IR, where only
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a thin band of modes around the Fermi surface remains. Then we may drop the k⊥
from Eq. (3.25), presumably in some sort of multipole expansion. In this case the
delta function no longer depends on the k⊥ at all, and therefore it will not scale, so
[δ2(k)] = 0 and the interaction is irrelevant.

However, exceptional behavior occurs when we take two of the particles to be
approximately back-to-back, so that (for example) θ1 = θ2 + π. In that case, the
argument kx delta function becomes

(k1⊥ − k2⊥) cos θ1 − k3⊥ cos θ3 − k4⊥ cos θ4 − KF (cos θ3 + cos θ4). (3.26)

Once again dropping the k⊥ parts of this expression relative to KF , we see that the
delta function constrains cos θ3 = − cos θ4. This is possible if either θ3 = θ4 + π

or θ3 = π − θ4. It is generically impossible to satisfy the second condition if all of
the momenta lie in a thin band around the Fermi surface. Therefore the kx delta
function alone constrains the momenta of particles 3 and 4 to point in opposite
directions, given that the momenta of 1 and 2 are opposite. The argument of the ky
delta function then becomes

(k1⊥ − k2⊥) sin θ1 − (k3⊥ − k4⊥) sin θ4. (3.27)

In this expression, the dependence on KF has entirely dropped out. Therefore the
ky delta function must scale with k⊥, and we have [δ2(k)] = 1. Note that if we had
first used the ky delta function, the roles of the two delta functions would have been
reversed, but the result would have been the same.

In general, this argument implies that the interaction is marginal only in certain
kinematic configurations. In particular, the two incoming particles must be back-
to-back, so that k1 = −k2, or we must have forward scattering, where k1 = k3 or
k1 = k4.

While the logic here is initially convincing, trying to make the argument more
rigorous reveals several problems. First, what precisely is the meaning of “taking”
θ1 = θ2 + π in the action? Second, what is the nature of the expansion of the delta
function that allows us to neglect the perpendicular components of the momenta?
Finally, what happens if we simultaneously “take” θ1 = θ2 + π and θ3 = θ4 + π?
This final issue is particularly troublesome, because under those circumstances, it
appears that both the kx and ky delta functions will scale with k⊥. This would
mean [δ2(k)] = 2, resulting in a relevant interaction. It turns out that this issue is
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k1

k2

k3

k4

(a) Back-to-back scattering

k1

k2

k3

k4

(b) Forward scattering

Figure 3.2: The two possible configurations of momentum that allow for the con-
servation of momentum in the limit where the cutoff is taken to zero. The arrows
in the figure on the right are of different lengths only to make them visible in the
figure.

particularly subtle for a theory with a Fermi surface with a Van Hove singularity,
the topic of the next chapter.

In light of these difficulties, let us turn to the point of view put forward in [5]. In
that work, the delta function is used to evaluate the integral over the fourth particle’s
momentum before the scaling analysis. If we do this, the interaction becomes∫

(dω d2k)
3
g(θi)θ(Λ − VF |KF − |k1 + k2 − k3 | |)

× ψ†(k1)ψ†(k2)ψ(k3)ψ(k1 + k2 − k3). (3.28)

The step function is a result of the constraint that the fourth momentum must also
reside within a small band around the Fermi surface; it is a residual effect of the
cutoffs in momentum space for the integrated variables.

Consider generic values of θ1 and θ2 when they are not back-to-back. Unless θ3

is in the vicinity of θ1 or θ2, it will be impossible to satisfy the constraints in the
step function. This is most easily seen by taking the limit Λ → 0, so that the only
allowed momenta lie on the Fermi surface itself. The we see that if we add three
arbitrary momenta lying on a circle (corresponding here to k1, k2, and −k3), the
resulting vector −k4 will not lie on the circle at all. This means that the step function
forces k3 to be approximately equal to k1 or k2 — the other interactions are simply
not allowed. The only exception occurs when k1 and k2 are back-to-back. In that
case, the step function will be automatically satisfied as long as k3 is within the
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small band around the Fermi surface. The remaining allowed interactions (Fig. 3.2)
are the same as the marginal interactions found by Polchinski.

From Shankar’s point of view, then, it is simply not possible to ask about low energy
scattering events between particles at arbitrary positions on the Fermi surface,
because momentum conservation will always force one of the particles to be very
energetic unless they are in one of the special kinematic configurations described
above. What about the scaling? The kinetic term remains the same in this version of
the theory, but the measure in the interaction Eq. (3.28) has changed, and the delta
function is gone. If we simply naively count count the scaling dimension of the
remaining terms in the action and the fields, we find that the four point interaction
goes like

[dω dk⊥] × 3 + [ψ] × 4 = −2 × 3 +
3
2
× 4 = 0. (3.29)

Thus, it appears to be marginal. According to this, we should simply regard any
interaction that satisfies the momentum constraints as marginal. From this point of
view, all other interactions have already been integrated out of the theory.

Unfortunately, there is also a problem here. Instead of choosing to evaluate both the
θ4 and k4⊥ integrals using the two delta functions in Eq. (3.19), imagine choosing
to perform the θ3 and θ4 integrals. Then there are no remaining delta functions in
the action, but the measure involves d4k⊥. Thus, if we follow the same logic as in
the argument above, we see that the scaling dimension of the interaction should be

[dω] × 3 + [dk⊥] × 4 + [ψ] × 4 = −1. (3.30)

We get a different answer for the scaling just becausewe evaluated the delta functions
differently! Furthermore, we could instead choose to evaluate two of the integrals
under the perpendicular components of the momentum. This would imply that all
interactions are relevant, which would make our effective theory useless.

Clearly, something has gone wrong here. It should not be possible to alter the
scaling dimension simply by choosing to evaluate the expression for the action in a
different way. The resolution to this issue is to realize that we have forgotten a step
in the RG process: we must perform a field redefinition to return the action to its
original form. For the first three fields in the action, with momenta k1, k2, and k3,
this is perfectly fine — the field redefinition necessary to return the kinetic term in
the action to its original form acts correctly on those fields. However, the argument
of the fourth field does not scale correctly for generic values of k1, k2, and k3.
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k1

k2

−k3

−k4

(a) Before rescaling

k1

k2

−k3

−k4

(b) After rescaling

Figure 3.3: In general, an inhomogeneous scaling of the momenta is not compatible
with conservation of momentum. In this figure, we see the effect of scalingmomenta
towards the Fermi surface.

It is simplest to illustrate this with a picture. For illustrative purposes, consider
a theory where there is no UV cutoff, but we still scale the momenta towards the
Fermi surface. Within this theory, consider the interaction between the four fields
in Fig. 3.3a. k1, k2, and −k3 are on the Fermi surface but point in approximately the
same direction. This implies −k4 must be in nearly the opposite direction and be far
from the Fermi surface. Upon rescaling (Fig. 3.3b), the first three momenta remain
on the Fermi surface, since k⊥ = 0 for them already. However, k4⊥ is rescaled
drastically. Therefore the act of scaling momentum towards the Fermi surface is
incompatible with conserving momentum for general scattering events.

While this is an extreme example, the conclusion holds more generally. In fact, the
only interactions for whichmomentum is still conserved after the rescaling described
above are back-to-back and forward scattering.

To understand more precisely what is going on, let us look directly at the scaling
of the tree-level corrections to the four point correlator in a momentum conserving
theory at a fixed scale. This is analogous to performing the expansion of the
Feynman rules for the propagator in more standard EFTs, such as in HQET [43], to
determine the leading order terms in the propagators for the effective Lagrangian.
We can think of this as inserting the interaction vertex and four propagators inside
some larger Feynman diagram, and then seeing how this subdiagram scales as we
reduce the momentum of the system.

To follow this plan, consider the scaling of the product of four propagators in
momentum space, with the fourth propagator’s momentum k4 set equal to the
k1 + k2 − k3. Call this quantity G4/g. This is basically the unamputated tree-level
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contribution to the Green’s function of the theory. It will scale like

G4/g ∼
1

k1⊥

1
k2⊥

1
k3⊥

1
|k1 + k2 − k3 | − KF

. (3.31)

The denominator of the final factor is the interesting one. Define

k4⊥ =
√

k2
1 + k2

1 + k2
1 + 2k1 · k2 − 2k1 · k3 − 2k2 · k3. (3.32)

Note that
|k1 | = KF + k1⊥. (3.33)

To understand the scaling of Eq. (3.32), we may take k1⊥ = k2⊥ = k3⊥ = k. Then

k4⊥ ∼ (KF + k)
√

3 + 2χ, (3.34)

where
χ = cos θ12 − cos θ13 − cos θ23. (3.35)

Note that
θ23 = θ13 − θ12. (3.36)

We can write
k4⊥ = KF (

√
3 + 2χ − 1) + k

√
3 + 2χ. (3.37)

From this it is clear that for generic values of χ, the first term dominates and k4⊥

does not scale with k at all. On the other hand, if

χ(θ12, θ13) = −1, (3.38)

the first term will drop out of the expression. Plotting χ in terms of θ12 and θ13,
Fig. 3.4, immediately yields the solutions

θ12 = θ13, (3.39)

θ13 = 0, (3.40)

with θ12 any value, and
θ12 = π, (3.41)

with θ13 any value. Eq. (3.39) and Eq. (3.40) correspond to forward scattering and
Eq. (3.41) corresponds to back-to-back scattering.

The upshot of this discussion is the following: the contributions of scattering events
that do not satisfy one of the conditions in Eqs. [(3.39)-(3.41)] are suppressed relative
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Figure 3.4: Graphical solution to the condition of Eq. (3.38). The points where
more than one solution holds are saddle points.

to those that do. Thus, to reproduce the behavior of the theory at sufficiently low
energies, we may simply set the coupling function to zero outside a small region in
θ-space around the solutions to Eq. (3.38).

To find the size of this region and understand the suppressed corrections to the
theory, we should expand Eq. (3.37) around the solutions. Consider first the case
θ12 = θ13 + δ. Then

χ = cos θ12 − cos (θ12 + δ) − cos δ. (3.42)

Expanding to second order in δ,

cos (θ12 + δ) = cos θ12 cos δ − sin θ12 sin δ ≈
(
1 −

δ2

2

)
cos θ12 − δ sin θ12. (3.43)

Therefore
χ ≈ −1 + δ sin θ12 +

1
2
δ2(1 + cos θ12) (3.44)

and √
3 + 2χ ≈ 1 + δ sin θ12 +

1
2
δ2(1 + cos θ12 − sin2 θ12). (3.45)

Keeping only the first order terms in k and δ for now,

k4⊥ ∼ KFδ sin θ12 + k . (3.46)

This implies that k4⊥ scales like k under the condition

|δ | .
k

KF sin θ12
. (3.47)

The case θ13 = δ
′ yields

χ = cos θ12 − cos δ′ − cos θ12 − δ
′. (3.48)
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This is identical to Eq. (3.42) up to a minus sign, and therefore Eq. (3.47) holds for
the other type of forward scattering also.

Taking θ12 = π + δ12 gives us

χ = − cos δ12 − cos θ13 + cos (θ13 − δ12). (3.49)

Then √
3 + 2χ ≈ 1 + δ12 sin θ13 +

1
2
δ2

12(1 − cos θ13 − sin2 θ13), (3.50)

and the expression analogous to Eq. (3.46) is

k4⊥ ∼ KFδ12 sin θ13 + k . (3.51)

We are trying to find the effects of setting the coupling function to zero outside a
small range parameterized by δ, δ′, and δ12. Take, for example, the case of near-
forward scattering. The ratio of the unamputated Green’s function for small δ to the
unamputated Green’s function at δ = 0 exactly is

1/(KFδ sin θ12 + k)
1/k

=
k

KFδ sin θ12 + k
. (3.52)

If we take δ > Λ/KF (which is still a small number), we have

k
Λ sin θ12 + k

∼
k
Λ

(3.53)

as long as sin θ12 is not too small. This means that we only omit terms of order k/Λ

from the theory if we set the coupling function to zero for δ > Λ/KF . An analogous
statement holds for back-to-back scattering.

The preceding logic demonstrates that we can capture the leading order behavior
of the theory by setting the coupling function to zero for any interaction that is not
within Λ/KF of a special kinematic configuration. We would also like to craft an
effective theory that naturally handles conservation of momentum correctly. One
possible way of formulating this is to use an exact RG, which works by constructing
differential equations relating the flows of the exact vertices directly [44]. We
instead appeal to the example of EFTs that deal with these issues by binning modes
in momentum space.

3.6 Binning
In an EFT that implements binning, momentum space is divided into a large number
of discrete cells or bins. The position of the center of each such bin is denoted by
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a large momentum known as the label momentum, and the positions in momentum
space within the bin are written as a sum of the large label momentum and a small
residual momentum. Generally, it is this small residual momentum that is scaled in
the theory, although in some instances the label momenta are also scaled.

The the idea of this binning in momentum space was first advocated in [45] and [46]
as a way to analyze the decays of hadrons with a single heavy quark. The motivation
for these effective field theories was the heavy quark approximation, pioneered
in such papers as [47, 48], in which the heavy constituent quark was treated as a
nonrelativistic field interacting with the “brown muck” of QCD excitations bubbling
around it [25]. The expansion parameter in such a theory is the mass of the heavy
quark, and the fundamental observation allowing for the simplification of the system
is that small transfers of momentum cannot alter the velocity of that quark to leading
order. This, then, implies that as long as there is a large separation of scales between
ΛQCD, the momentum scale describing the light quark and gluon fields interacting
with the heavy quark, and m, the mass of the heavy quark, we can regard the heavy
quark as moving along at a constant velocity. See [43, 49] for a comprehensive
overview of the implications.

Georgi [46] in particular emphasized that we can construct this effective theory
through the idea of binning. In this picture, the size of the each small bin in
momentum space is set byΛQCD. These bins are then labeled by the largemomentum
of the constituent heavy quark of the system. We can then remove this large
momentum with a field redefinition. As a result, the antiquark field decouples from
the dynamics of the system, and we may integrate it out. The remaining degrees of
freedom all live within the small box in momentum space, and the resulting effective
field theory allows for calculation of various properties of the system.

HQET suffered from the inability to simultaneously treat bound states of multiple
heavy quarks. Another effective field theory, NRQCD, was formulated [50, 51] to
address this situation. Unfortunately, this formulation of the effective field theory
did not make the power-counting of the fields explicit at the level of the Lagrangian.
[31] showed a way to count powers consistently in a small parameter v, the velocity
of the bound state of the system. However, there are issues with treating on-shell
gluons using this method. Another approach, pioneered in [33], advocated using
a different coordinate rescaling for the transverse components of the gluon field in
Coulomb gauge to deal with these issues. This then calls for a multipole expansion
of the transverse components, and in turn momentum is not conserved at the vertices
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of the theory, much in the way that we encountered in the case of the Fermi surface.
However, this treatment fails to correctly account for potential scattering. [32]
resolved the conflict by including a second gluon field in the effective field theory.

Eventually, the idea to divide momentum space into bins was applied to NRQCD
[52]. By implementing the binning, it was possible to recast the Coulomb potential
as a local interaction depending only on the label momenta of the fields. This
demonstrated that the behavior of an effective theory can in the end depend nonan-
alytically on the label momenta of the fields while remaining analytic (and hence
local) in the residual momentum. This guarantees that we can make predictions
within this framework, despite a more complicated functional dependence of the
interactions. We will see an example of this phenomenon in the case of Fermi sur-
faces with Van Hove singularities. Soft-collinear effective theory (SCET), used to
describing situations with a light QCD particle boosted to a very large momentum,
such as the large three-momentum of a light constituent of a decaying heavy quark
or an energetic jet in a collider experiments, is yet another example of a theory that
organizes the modes of the field into bins in momentum space [3, 53]. A novel
feature of that theory is the necessity of introducing additional cutoffs separating
the various modes in momentum space [4, 54]. We will see a similar feature arise
in the next chapter.

3.7 Binning for the round Fermi surface EFT
The idea of dividing the momentum space around the Fermi surface into bins
was already implied in Shankar’s original treatment [5]. This is apparent from
his reference to the behavior of the theory as a sort of large-N limit, where the
N in question corresponds to the inverse of the size of the bins. [55] is another
example of a similar concept, where the Fermi surface is “sectorized” and the
renormalization group procedure is discretized in order to prove rigorously that
the diagrammatic expansions for a system with a Fermi surface have nonzero radii
of convergence, under certain circumstances. Other works analyzed the problem
of scaling the momentum towards a single point on the Fermi surface, with an
eye towards understanding other potential instabilities of the Fermi liquid, such as
coupling to an emergent gauge field [56–58]. In [59], Chapter 18, this scaling
towards a single point is also used to demonstrate the small but nonzero width of
the quasiparticles. However, these treatments do not accurately capture the effects
associated with back-to-back scattering. Here, we wish to treat the subject of the
binned effective theory with slightly more precision.
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3.8 Momentum scaling
We will break up the momentum a la SCET:

~k = ~K + ~k‖ + ~k⊥, (3.54)

where
~K = KF ( x̂ cos θ ~K + ŷ sin θ ~K ) (3.55)

is a label momentum on the Fermi surface, ~k‖ is tangent to the Fermi surface, and
~k⊥ is perpendicular to the Fermi surface. We can think of ~K as taking on a discrete
set of values denoting the centers of boxes in momentum space lying on the Fermi
surface. In analogy to HQET/NRQCD/SCET, we write the quasiparticle field as
a sum of fields with the large component of the momenta on the Fermi surface
explicitly factored out:

ψ =
∑
~K

exp
(
−i~K · ~x

)
ψ ~K . (3.56)

In principle, we should eventually take ~K to be continuous and then mod out the
extra dimensions of momentum space as in SCET. Practically, this corresponds to
resumming the bins into an integral when performing loop calculations while being
careful to avoid overcounting, which can be rather subtle due to the presence of
so-called zero bins [60]. Fortunately, there will not be any such complications for
us.

Drawing upon our experience in the Section 3.4, the kinetic term in the action is

Sk =
∑
~K

∫
dω dk⊥ dk‖L ~K, (3.57)

L ~K = ψ
†

~K
(ω + VF k⊥) ψ ~K . (3.58)

Note the sum over the large label momenta. We will not carefully track the factors of
π appearing in the action in these sections, since we are focused only on the scaling
behavior of the fields and interactions.

Following the same procedure as our toy example in Chapter 2, we state that we wish
to investigate the behavior of correlators of fields near the Fermi surface. This means
taking k⊥ in particular to be small. In order to conserve the residual momentum of
interactions on the Fermi surface, we are also forced to take the residual momentum
k‖ to scale in the same manner. This is a consequence of the fact that the direction
perpendicular to the Fermi surface changes as we move along it. We also want to
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maintain the form of the propagator, so we scale the energy of the fields in the same
way as the residual momenta. The correlators we are interested in look like

GN (ζ k) = 〈ψ ~K (ζω, ζ k⊥, ζ k⊥) . . .〉S0, (3.59)

where ζ < 1 is a small scale factor.

The path integral expression for this then looks like

GN (ζ k) =
1
Z

∫
D

∏
~Ki

[ψ†
~Ki

ψ ~Ki
]ψ ~K (ζ k) . . . exp (iS0), (3.60)

where
Z =

∫
D

∏
~Ki

[ψ†
~Ki

ψ ~Ki
] exp (iS0) (3.61)

and we have suppressed various labels. Our goal is to relate this correlator to that
of the IR theory between modes with momenta k. Therefore we perform a field
redefinition,

ψ(ζ k) = ζ [ψ]ψ′(k). (3.62)

The infinite product in the measure resulting from the field redefinition cancels, but
we are left an overall scaling of the Green’s function due to the extra copies of the
fields in the numerator. We will see after the following manipulations that

GN (ζ k) = ζN[ψ]〈ψ ~K (ω, k⊥, k⊥) . . .〉S . (3.63)

In other words, the correlators of fields near the Fermi surface in the original theory
will be given by the correlators of a theory with rescaled momenta and coupling
constants. We ignore (for now) the effects of the field strength renormalization.
This is handled via another field redefinition. We will choose [ψ] in order to make
the kinetic term invariant under the scaling procedure.

As we reduce the size of the bins in momentum space, we must simultaneously
increase the number of bins in order to continue to cover the entire Fermi surface.
More precisely, upon rescaling the residual momenta, the maximum value of both
k⊥ and k‖ within an individual bin is increased. We only integrate out the high
frequency modes with large values of k⊥ and not those with large value of k‖ . This
is because we do not wish to integrate out the soft particles from the theory, which
would in general produce nonlocality at the scale of the residual momenta. However,
we wish to keep each bin approximately square so that the form of the theory remains
invariant under the rescaling procedure. This means that we must repartition the
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modes into a larger number of bins as the scaling procedure progresses, effectively
increasing the value of KF . The width of the bins along the direction of the Fermi
surface is set by the scaling of the momentum tangent to the Fermi surface, so we
must take

[Σ] = −[k‖] = −1. (3.64)

The brackets here represent the power of ζ that accompanies the enclosed term upon
the RG transformation in the action, so for example

k‖ → ζ1k‖ . (3.65)

We choose [ψ] to render the kinetic term in the action invariant under the scaling,
which will allow us to use the same propagator in the calculation of observables.
Counting the powers of the scale factor ζ , we have

[Σ] + [ω] + [k⊥] + [k‖] + [ω] + 2[ψ] = 0, (3.66)

which implies
[ψ] = −

3
2
. (3.67)

3.9 Interaction terms
Now let us turn to the scaling of the four-point interaction term. We first investigate
an interaction that can depend arbitrarily on the four label momenta of the fields,
but has no dependence on the residual momenta or energies. This is given by

Si =
∑

~K1, ~K2, ~K3, ~K4

δ( ~K1+ ~K2− ~K3− ~K4)
∫

(dω dk⊥ dk‖)3g( ~Ki)ψ
†

~K1
ψ†

~K2
ψ

~K3
ψ

~K4
. (3.68)

We have already evaluated a delta function ensuring conservation of energy and
residual momentum. The remaining delta function in Eq. (3.68) enforces conser-
vation of the large label momentum, and is therefore not literally a Dirac delta
function.

The shape of the Fermi surface has a profound effect on the conservation of label
momentum. In particular, instead of the sum over label momentum reducing to
a sum over three arbitrary momenta with the fourth set by conservation, we end
up with three sums over two momenta. This is because the sum of three generic
momenta on the Fermi surface will not lie on the Fermi surface — there is an
additional constraint. This is just Shankar’s observation that only back-to-back and
forward scattering are allowed. The three sums correspond to taking three different
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pairs of particles to be back-to-back: 1 and 2, 1 and 3, and 1 and 4. In order to avoid
overcounting it is convenient to isolate the repeated terms in these sums. These
represent interactions in which all four particles are collinear. In other words, in
these interactions, two pairs of particles share the same label momenta, and the pairs
are also back-to-back. There are then two sums with a single free label momentum:∑

~K1, ~K2, ~K3, ~K4

δ( ~K1 + ~K2 − ~K3 − ~K4)ψ†
~K1
ψ†

~K2
ψ

~K3
ψ

~K4

=
∑

~K1, ~K2,~K1

ψ†
~K1
ψ†
−~K1

ψ
~K2
ψ
−~K2
+

∑
~K1, ~K2,~K1

ψ†
~K1
ψ†

~K2
ψ

~K1
ψ

~K2

+
∑

~K1, ~K2,~K1

ψ†
~K1
ψ†

~K2
ψ

~K2
ψ

~K1
+

∑
~K1

ψ†
~K1
ψ†
−~K1

ψ
~K1
ψ
−~K1

+
∑
~K1

ψ†
~K1
ψ†

~K1
ψ
−~K1

ψ
−~K1

. (3.69)

We will consider the case of a spin-singlet interaction here, which allows us to
combine the second, third, and fifth terms in the above sum into a generic forward-
scattering sum, ∑

~K1, ~K2,−~K1

ψ†
~K1
ψ†

~K2
ψ

~K1
ψ

~K2
. (3.70)

Note that we have separated out the overlap between forward and back-to-back
scattering in the fourth term in Eq. (3.69), which includes only a single sum over
momenta.

The scaling of the double-sum interactions is

2[Σ] + 3([ω] + [k⊥] + [k‖]) + 4[ψ] = −2 + 9 − 6 = 1, (3.71)

and the scaling of the single-sum interaction is

[Σ] + 3([ω] + [k⊥] + [k‖]) + 4[ψ] = 2. (3.72)

This implies that within the label-momentum formalism described here, the four-
point interactions are all irrelevant.

Interactions with more fields will be even more irrelevant. To see this, note that
label-momentum conservation implies that all fields must come in pairs with either
the same or opposite label momentum. This is due to the curvature of the Fermi
surface and the fact that the residual momentum cannot alter the label momentum.
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The power counting for a generic interaction of 2n fields with the maximal number
of sums is

n[Σ] + (2n − 1)([ω] + [k⊥] + [k‖]) + 2n[ψ] = −n + 6n − 3 − 3n = 2n − 3. (3.73)

More powers ofω or k⊥ or fewer sums (i.e. more restricted kinematic configurations)
only makes the interaction more irrelevant.

Including only the least irrelevant interactions, we have for the action of the IR
theory

SIR = Sk + SB + SF + SBF, (3.74)

where
SB =

∑
K1,K2,K1

∫
(dω d2k)

3
V (K1, K2)ψ†

~K1
ψ†
−~K1

ψ
~K2
ψ
−~K2

, (3.75)

SF =
∑

K1,K2,−K1

∫
(dω d2k)

3
F (K1, K2)ψ†

~K1
ψ†

~K2
ψ

~K1
ψ

~K2
, (3.76)

SBF =
∑
K1

∫
(dω d2k)

3
g(K1)ψ†

~K1
ψ†
−~K1

ψ
~K1
ψ
−~K1

. (3.77)

Technically Eq. (3.77) is power-suppressed relative to the other interactions. We
include it here because the discussion of loop effects would be less clear without it.
Note that we have adopted the naming convention of [5] for the back-to-back and
forward interactions.

An important feature of effective theories with binning is that the couplings can be
generic (even nonanalytic) functions of the label momentum. An example of this
occurs in NRQCD, where the potential interaction between quarks is nonanalytic in
the transfer label momentum [52]. Therefore there is no a priori constraint on the
forms of F and V in the above expression. This will have important ramifications
when we turn to the analysis of systems with a Van Hove singularity.

3.10 A puzzle
Eq. (3.72) and Eq. (3.71) indicate that all possible interactions in our theory are
irrelevant. What has happened? Our earlier analysis suggested that we should still
recover unusual behavior in the back-to-back and forward scattering amplitudes,
and we have found a result that disagrees with the two most famous analyses of the
problem. We do indeed have different behavior for those interactions: we have input
by hand the condition that these are the only interactions allowed by conservation of
label momentum. However, in the process of resolving the issue of homogeneously
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scaling the delta functions in the interaction (and ensuring locality and translation
invariance in the in the residual, IR coordinates), we have smoothed out the singular
behavior that arose in [6].

3.11 The back-to-back interaction
To understand the resolution of this issue, we must calculate the one-loop results.
Let us start first with the correction to the back-to-back scattering amplitude. We
will make the assumption of a constant coupling V and a spin-singlet interaction;
this will not affect the reasoning that follows. Consider first the one-loop s-channel
amplitude with two copies of the back-to-back vertices. After computing the ω
integral via contours, the amplitude is

AS,B = −
V 2

4π2

∑
P

∫
d2k

θ(εP(k))θ(ε−P(K − k)) − θ(−εP(k))θ(−ε−P(K − k))
εP(k) + ε−P(K − k) − E − iε sign εP(k)

;

(3.78)
see Appendix B. K in the above equation is the sum of the residual momenta of the
external particles and E is the net energy. P is the label momentum of the particle
in the loop. Substituting the appropriate expression for εK (k) for the loop particles
and remembering that they are in the vicinity of opposite sides of the Fermi surface,
we have

AS,B = −
V 2

4π2

∑
P

∫
dk‖ I⊥, (3.79)

where

I⊥ =
∫ Λ/VF

−Λ/VF

dk⊥
θ(k⊥)θ((k − K )⊥) − θ(−k⊥)θ(−(k − K )⊥)

VF (2k − K )⊥ − E − iε sign εP(k)
. (3.80)

The key to our quandary is the label momentum sum that appears in Eq. (3.78).
Under rescaling, this must grow by a factor of ζ−1, because the effective field theory
must contain a larger number of bins to cover the fixed Fermi surface in momentum
space. Another way to say this is that the circumference of the Fermi surface must
grow larger when measured in the units of the residual momentum, so

KF → K′F = ζ
−1KF (3.81)

as we rescale.

Continuing the calculation, we recombine the label momentum sumwith the parallel
momentum integral as in NRQCD [52] to find

AS,B = −
V 2

4π2

∫
KF dθI⊥(E, K ). (3.82)
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The omission of the single term in the sum corresponding to SBF does not affect this
result to leading order, since in the deep IR limit this corresponds to removing a
single point from the angular integration measure. Take K = 0 and change variables
to k = 2VF k⊥. Then

I⊥(E, 0) =
1

2VF

∫ 2Λ

0

dk
k − E − iε

−
1

2VF

∫ 0

−2Λ

dk
k − E + iε

. (3.83)

For scattering between particles with E > 0, there is a pole at E + iε . The integral
is equivalent to putting the pole on the real axis, avoiding it by integrating around
a semicircle of vanishing radius at the position of the pole, and taking the principle
value of the integral for the real part. The result is

I⊥(E, 0) =
1

VF

(
log

2Λ
E
+

iπ
2

)
(3.84)

up to power-suppressed terms. Then

AS,B = −
V 2

2π
KF

VF

(
log

2Λ
E
+

iπ
2

)
= −

m∗V 2

2π

(
log

2Λ
E
+

iπ
2

)
, (3.85)

where we have used the definition of the effective mass of the quasiparticles on the
Fermi surface,

m∗ =
KF

VF
. (3.86)

Consider the scaling of this result under the leading-order RG (that is, neglecting the
anomalous dimension introduced by this and other loop corrections). The coupling
goes like V → ζV , but as stated above KF → ζ−1KF and hence m∗ → ζ−1m∗, so the
overall “classical” scaling of this result is ζ1. As a result, it has the same scaling as
the tree level result due to the enhancement from loop label momentum sum. This
is very important, and we will investigate the implications shortly.

Now consider the contribution from the s-channel amplitude with two copies of the
forward-scattering vertex. We see immediately that there can be no sum over the
label momenta in the loop because the form of the forward scattering interaction
constrains the incoming and outgoing label momenta to match. As a result, there is
no loop enhancement in this diagram and the contributions are therefore suppressed
within our power-counting scheme.

We must next address the t-channel diagram (the u-channel is just given by ex-
changing the two outgoing particles). Inserting a back-to-back interaction at either
vertex constrains the label momentum in the loop to a single value, so there can be
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Figure 3.5: The leading-power contributions to the back-to-back scattering for the
first several loop orders.

no compensating loop sum. We can only insert forward-scattering vertices if the
interaction is both forward and back-to-back simultaneously. However, our power-
counting demonstrates that the coupling for this interaction must scale as ζ2, so the
enhancement from the label momentum loop sum is not sufficient to promote this
to a leading power effect.

In fact, we can extend the above reasoning to higher orders in the number of loops.
At each loop order, the only diagram with a loop enhancement to go along with
every factor of V in the vertex is the series of iterated bubble diagrams in Fig. 3.5.
This can be thought of as being due to a large-N limit, where N = KF/Λ depends
on the renormalization scale [5]. The fact that the leading-order contribution is
from these diagrams is not new at all, of course — [61] makes exactly the same
observation, for example. This presentation is only meant to continue the program
of [5, 6, 39] and put the reasoning in the terms of a more modern perspective on
effective field theories while simplifying the power counting.

3.12 Superconducting instability
The following treatment is very similar to that in [61], with appropriatemodifications
related to the bin summation implied by our effective theory.

Consider the following Green’s function in our effective theory:

〈ψ†ψ†(x)ψψ(y)〉. (3.87)

Wewill see that the Fourier transform of Eq. (3.87) has a pole in the upper half-plane
in complex frequency space, indicating an instability to Cooper paring. We can use
Eq. (3.56) to write this in terms of a sum over the label fields:∑

~Ki

ei( ~K1+~K2)xe−i( ~K3+~K4)y〈ψ†
~K1
ψ†

~K2
(x)ψ ~K3

ψ ~K4
(y)〉. (3.88)
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Since |Ki | = KF , the leading contribution comes from the terms in the sum where
~K2 = −~K1 and ~K4 = −~K3. Making a perturbative expansion in the couplings of
the theory, we see that the resulting sum of terms at leading power looks just like
insertions of the iterated bubble diagrams for the four-point amplitude. Thus, we
can investigate the poles in E of the four-point coupling to understand the stability
of the ground state.

The leading-power all-loop four-point diagram is given by a sum over the iter-
ated bubbles in Fig. 3.5. For the simple case of a constant back-to-back coupling
considered here, each additional bubble simply contributes a factor of

m∗V
2π

(
log

2Λ
E
+

iπ
2

)
. (3.89)

Therefore the sum is a geometric series, and (ignoring the momentum dependence)
we have

A(E) =
V

1 + m∗V
2π

(
log 2Λ

E +
iπ
2

) . (3.90)

For an attractive coupling V < 0, this has a pole at

E0 = 2iΛ exp
(
−

2π
m∗ |V |

)
. (3.91)

This implies the ground state is unstable to the formation of Cooper pairs. The
distance of the pole from the real axis is inversely proportional to the relaxation
time of the ground state and therefore gives an estimate of the binding energy of the
Cooper pairs. This then implies the existence of a gap in the quasiparticle spectrum.
A more detailed analysis, as in [61], shows that the size of the gap is given by the the
absolute value |E0 | exactly, and the critical temperature above which the gap closes
is given by

Tc =
eγ

π
|E0 |, (3.92)

where γ is the Euler-Mascheroni constant.

In the context of our effective theory, the important feature of Eq. (3.90) is the fact that
the product m∗V appears in the denominator. This means that despite the fact that
our interaction (and all of the bubble diagrams contributing toA(E)) have positive
scaling dimension and hence scale to zero in the IR, there will always be a pole in
the back-to-back scattering amplitude. This is entirely due to the enhancement from
the sum over the large label momenta. As a result, the instability of the ground state
of the theory persists despite the presence of only formally irrelevant couplings.
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Figure 3.6: The leading-power contributions to forward scattering for the first several
loop orders.

For a detailed treatment of the superconducting gap in a system without rotational
invariance and a nonconstant coupling, see [5] and particularly [16].

3.13 The forward interaction and zero sound
We turn now to forward scattering. The s-channel diagram includes no label sum
and is therefore power-suppressed. There can be no insertions of the back-to-back
interaction for the t-channel diagram. Therefore the only possible contribution
is from forward-scattering interactions in the t-channel diagram. Furthermore,
this implies that the leading contributions in our power-counting involving forward
scattering will simply be the sum of the iterated t-channel diagrams, such as in
Fig. 3.6.

The most striking effect of this simplification to a series of iterated diagrams is the
phenomenon of zero sound [36]. We have now seen within our effective theory
that the leading diagrams in the power counting consist of the iterated s- and t-
channel diagrams, because these diagrams are the only ones that will have a label
sum enhancement for every instance of the couplings. This means in particular
that collisions which change the momenta of the scattered particles are strongly
suppressed in the IR as long as Cooper pairing has not become the dominant
effect. As a result, it becomes impossible for normal hydrodynamic sound to
propagate in Fermi liquids at low temperatures [61]. However, another type of
sound, corresponding to oscillations of the shape of the Fermi surface that do not
change the enclosed volume [35], continues to propagate.

To see this within our model, consider the density-density correlator:

〈ψ†ψ(x)ψ†ψ(y)〉. (3.93)

The analytic structure of the Fourier transform of this object tells us about the density
oscillations of the system in response to an external perturbation [5]. Following that
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k +Q,ω + ωQ

k, ω

Figure 3.7: The first term in the expansion for the compressibility.

treatment, we define the compressibility χ by

(2π)3δ3(0) χ(Q, ωQ) = −〈ρ(Q, ωQ)ρ(−Q,−ωQ)〉. (3.94)

The quantity on the right is computed via the series of bubble diagrams with
propagators that have momenta k and k + Q and energy ω and ω + ωQ. From this
it is clear that the singularities of the expression, which determine the spectrum of
sound-like excitations in the Fermi liquid, must be very similar to the singularities
of the forward-scattering amplitude with transfer momentum Q and transfer energy
ω.

Taking the forward-scattering coupling to be a constant, assuming a spin-singlet
interaction, and working with a rotationally invariant Fermi surface is sufficient to
demonstrate the existence of the singularity associated with zero sound. The leading
term is given by the susceptibility I (Q, ωQ), given by i times the Feynman diagram
in Fig. 3.7. This is

I (Q, ωQ)

=
∑

P

∫
d2k
4π2

θ(εP(k))θ(−εP(k +Q)) − θ(−εP(k))θ(εP(k +Q))
εP(k) − εP(k +Q) + ω − iε sign εP(k)

. (3.95)

We have already performed the contour integral for the loop energy; see Appendix A
for a similar calculation.

We may combine the sum over label momenta with the integral over the parallel
component of the residual momenta as usual. The resulting expression is

I (Q, ωQ) =
1

4π2 (IF+ + IF−), (3.96)

where
IF+ =

∫
KF dθ dk⊥

θ(k⊥)θ(−(k +Q)⊥)
VF k⊥ − VF (k +Q)⊥ + ω − iε

, (3.97)
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IF− = −

∫
KF dθ dk⊥

θ(−k⊥)θ((k +Q)⊥)
VF k⊥ − VF (k +Q)⊥ + ω + iε

. (3.98)

The step functions constrain the loop momentum to live in a small region in the
vicinity of the Fermi surface whenQ is small. To see this, note that the step functions
in Eq. (3.98) constrain k⊥ < 0 while (k +Q)⊥ > 0. The second condition can be
written √

k2 + 2kQ cos θ +Q2 − KF > 0. (3.99)

Expanding this for small Q, we have

k⊥ > −Q cos θ. (3.100)

Then

IF− = −m∗
∫

dθ
∫ 0

−Q cos θ

dk⊥θ(cos θ)
−Q cos θ + ω/VF + iε

. (3.101)

The k⊥ integral is now trivial, and we have

IF− = −m∗
∫ π/2

−π/2
dθ

Q cos θ
ω/VF −Q cos θ + iε

. (3.102)

Partially evaluating IF+ gives the same integrand but the opposite constraint on the
sign of cos θ, so

I (Q, ωQ) = −
m∗

4π2

∫
dθ

cos θ
s − cos θ + iε cos θ

, (3.103)

where
s =

ω

VFQ
. (3.104)

Only the iterated forward scattering diagrams will be loop enhanced. Thereore the
leading-power contribution to the compressibility comes from a geometric series.
Including the signs from the Wick contractions and spin sums, we find

iχ(Q, ωQ) = iI (Q, ωQ) + iF[iI (Q, ωQ)]2 + · · · =
iI (Q, ωQ)

1 − m∗F
4π2 Iθ

, (3.105)

where
Iθ =

∫
dθ

cos θ
s − cos θ + iε cos θ

. (3.106)

Since we are interested in stable propagating modes of sound, we look for poles in
Eq. (3.105) that lie on the positive real axis for complex ω. F is real, so this can
only occur if Iθ is also real. Inspection of Eq. (3.106) demonstrates that this only
occurs for s > 1. Evaluating the integral under this condition yields

Iθ = 2π
(

s
√

s2 − 1
− 1

)
. (3.107)
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Figure 3.8: The nonzero result for the imaginary part of this diagram implies that
the quasiparticles are unstable. However, the diagram is power suppressed as we
flow to the IR. The result is that low energy quasiparticles have long lifetimes.

The condition for there to be a pole Eq. (3.105) is then

2π
m∗F

=

(
s

√
s2 − 1

− 1
)
. (3.108)

Eq. (3.108) has solutions for any positive value of the coupling F, so we see that
there is indeed a propagating sound mode at small Q and ω. The condition s > 1
implies that the speed associated with these modes, ω/Q, is always greater than the
Fermi velocity VF . In the limit of weak coupling, the left hand side of Eq. (3.108)
goes to infinity, which implies that s must approach one. Expanding in δs = s − 1,
we find

s = 1 +
(

m∗F
2π

)2
(3.109)

in the weak coupling limit.

3.14 Stability of the quasiparticles
We found above that all higher loop diagrams in the theory are power-suppressed,
with the exception of the iterated s- and t-channel diagrams. This means that in
particular all diagrams that can contribute to a finite width for the quasiparticles
must be suppressed. Furthermore, the quasiparticle width tells us about the lifetime
of the quasiparticles and hence provides an estimate of the resistivity of the Fermi
liquid. The sunrise diagram in Fig. 3.8 is the leading-order contribution to the width.
Based on the fact that there are two vertices and no loop enhancement, this diagram
must go like ζ2 as we lower the energy. This implies that the width goes like T2 at
low temperatures [6].
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3.15 Renormalization of the couplings
The result for the one-loop s-channel diagram with back-to-back external momenta
in Eq. (3.85) depends on theUV cutoffΛ. Thismeans that as we integrate out theUV
modes from the theory, the back-to-back interaction is renormalized. Following the
standard method of determining the change in the value of the effective coupling due
to integrating out the high-energy modes, imagine rescaling the residual momenta
by ζ−1 = (1 + δΛ/Λ). Then the path integral over the high-energy modes leads to
a leading-order contribution to the effective back-to-back coupling that looks just
like the one-loop amplitude in Eq. (3.78), but with k⊥ restricted to lie in the small
range Λ/VF to (Λ + δΛ)/VF . To understand the flow in terms of a continuous
RG transformation, we simply take the limit of infinitesimal δΛ and compute the
corresponding infinitesimal change in the coupling.

From the description of this procedure, it is clear that the contribution of the in-
finitesimal change can be performed by simply taking the derivative of the amplitude
with respect to Λ. In other words, we can write

δṼ = δΛ
dAS,B

dΛ
, (3.110)

where Ṽ = ζV . We have chosen to separate out the classical scaling here in light
of our previous observation that the higher-loop results in the bubble diagram all
have the same classical scaling as the tree level result (thanks to the label sum
enhancement), and because all other contributions to the beta function are power-
suppressed.

Taking the derivative of the one-loop result in Eq. (3.85) yields

Λ
dAS,B

dΛ
= −

m∗Ṽ 2

2π
. (3.111)

The beta function then reads
Λ

dṼ
dΛ
=

m∗Ṽ 2

2π
, (3.112)

and the solution is
Ṽ (Λ) =

Ṽ0

1 + Ṽ0m∗
2π log Λ0

Λ

. (3.113)

When V0 is negative, corresponding to an attractive potential, this implies that the
coupling becomes strong at exactly the scale of the Cooper pair binding energy we
found above. This is the indicator within the renormalization group that our effective
field theory will fail to be applicable below the energies associated with the Cooper
pairs.
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In the more general case of a back-to-back coupling function that depends on the
label momentum, the RG equation takes the form of an integral equation, and the
flow depends on the value of the coupling between various different bins [5]. The
details of that analysis demonstrate that the instability to a superconducting state is
fairly robust, in that if any eigenvalue of the eigenmodes of the Hermitian kernel
of the integral equation is negative, the system will tend toward a superconducting
ground state [16].

Our calculation of the one-loop forward-scattering amplitude for small transfer mo-
mentum and energy in Section 3.13 demonstrated that there was no dependence on
the UV cutoff. This implies that the forward coupling has no anomalous dimension
at leading order in the power counting in our theory. However, the next section
explores a subtle issue with this reasoning.

3.16 Subtleties in the binned theory
As an alternative to the binning we have performed above, we can instead simply
regulate the theory with a hard cutoff, allow the coupling function (including the
effects of both the forward and back-to-back interactions) to be an arbitrary function
of the external momenta, and calculate the one-loop beta function by taking the
derivative of the sum of the tree level and one-loop amplitudes and setting it equal to
zero. This is the “old-fashioned” renormalization procedure first pioneered in [62].

Appendix B contains the calculations described above, and Fig. 4.4 shows the
numerical results for the contributions to the beta function if we allow arbitrary
incoming net and transfer momenta for the s- and t-channel coupling assuming
constant, equal couplings for back-to-back and forward scattering. The s-channel
diagram produces unsurprising results: we see that whenever the net momentum
is less than Λ/KF , the coupling is strongly renormalized. For values of the net
momentum greater Λ/KF , the beta function rapidly falls to zero. This demonstrates
the consistency of our assumption that residual momentum and label momentum
must be conserved separately for the back-to-back interactions.

On the other hand, the renormalization due to the t-channel diagram ismuch stranger.
We see that for small values of the transfer momentum there is no contribution from
the one-loop diagram. This is entirely consistent with our observation in the previous
section that the exact forward scattering amplitude does not depend on theUV cutoff.
However, when the transfer momentum is within the range Λ/VF < Q < 2Λ/VF ,
the beta function increases to a nonzero and unsuppressed value. This situation
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Figure 3.9: The diagram leading to a strange contribution to the forward coupling
Gell-Mann and Low–style beta function. VF |Q | ∼ Λ here.

corresponds to Fig. B.2b in Appendix B. Note that it is possible to have a nonzero
transfer momentum flowing through the loop even with the external particles on the
Fermi surface. The topology of the associated diagram is shown in Fig. 3.9. The
situation described above represents forward scattering with a small opening angle.

The cause of this unusual behavior is the presence of an “anomalous” loop enhance-
ment in the diagram of Fig. 3.9. Within our effective theory, it is only possible
to satisfy conservation of label momentum at the two vertices if P = K2 or −K1.
However, within the Gell-Mann and Low–style scheme, the loop particles go far off
shell, allowing the residual momentum to mix with the label momentum. In the
terminology of the binned effective theory, this allows for the label P to take on
multiple values and enhances the loop contribution.

Fortunately, this phenomenon does not actually invalidate our effective theory. Re-
member that as we perform the RG, the Green’s functions in the UV theory are
mapped to Green’s functions in IR theories with larger and larger values of the
momentum. In other words, the momentum Q in the worrisome diagram becomes
larger when measured in units of the residual momentum. Imagine starting with
a dangerous momentum in the range Λ < VFQ < 2Λ. Initially the forward cou-
pling is strongly renormalized for this particular configuration of momenta. As we
continue to run the RG, VFQ eventually exceeds 2Λ. We see in Fig. 4.4 that the
beta function quickly drops off in this situation. Hence, the interaction in question
is only renormalized for a small period of RG time. The result is equivalent to a
power-suppressed contribution to the beta function for the entire flow. Note that
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the same phenomenon does not occur for the back-to-back coupling because an
arbitrarily small net momentum leads to a nonvanishing beta function, unlike the
forward-scattering case.

The subtleties we have seen here become even more important in the case of a
Fermi surface with long, flat sections. In that case, a large range of transfer and
net momentum can allow for loop enhancements. The Fermi surface we consider
in the next chapter is an example of such a case. To analyze it, we will forgo the
formulation of a binned effective theory, simply using the behavior of the one-loop
diagrams under the change of the UV cutoff to understand the theory.

3.17 Conclusion
The reinterpretation of Fermi liquid theory in terms of effective field theory does
not in itself yield new predictive power. In fact, the vast majority of quantitative and
qualitative predictions of the behaviors of Fermi liquids had already been worked
out by Landau in his original works on the theory; most everything else was known
by around 1965. The goal was actually to understand the diversity of possible
low-energy fixed points of a theory of fermions in the presence of a Fermi surface.
This was directly motivated by the observation of a Fermi surface in materials with
exotic properties, like high-TC superconductors. Therefore what was being sought
was either a new fixed point, not already understood by Landau and company,
or some kind of no-go theorem ruling out such a possibility. Indeed, the works
cited above did produce something like a no-go theorem. [6] in particular claims
that the only natural perturbative theories with a Fermi surface and only fermionic
quasiparticles take the form of Landau’s Fermi liquid at low energies. As with most
no-go theorems, we should be careful in interpreting its domain of applicability.
In the next chapter, we find that it is possible to construct a nontrivial theory that
reproduces some non-Fermi liquid behavior by tuning a single parameter.



56

C h a p t e r 4

EFFECTIVE FIELD THEORY OF 2D VAN HOVE
SINGULARITIES

4.1 Abstract
We study 2D fermions with a short-range interaction in the presence of a Van
Hove singularity. It is shown that this system can be consistently described by an
effective field theory whose Fermi surface is subdivided into regions as defined by a
factorization scale, and that the theory is renormalizable in the sense that all of the
counterterms are well defined in the IR limit. The theory has the unusual feature
that the renormalization group equation for the coupling has an explicit dependence
on the renormalization scale, much as in theories of Wilson lines. In contrast to
the case of a round Fermi surface, there are multiple marginal interactions with
nontrivial RG flow. The Cooper instability remains strongest in the BCS channel.
We also show that the marginal Fermi liquid scenario for the quasiparticle width is
a robust consequence of the Van Hove singularity. Our results are universal in the
sense that they do not depend on the detailed properties of the Fermi surface away
from the singularity.

4.2 Introduction
In the 1990s and early 2000s, extensive theoretical work was devoted to the study
of systems of fermions in 2D with the Fermi level close to a Van Hove singularity
[9, 10, 63–72]. In such a system, the Fermi velocity vanishes at isolated points
on the Fermi surface. We will refer to these points as Van Hove points. The
existence of saddle points in the phonon and quasiparticle dispersions was first
shown to be a generic feature of systems with a periodic lattice in [73]. We make
the assumption that the chemical potential of the system has been set such that the
Fermi surface passes through these points. From a theoretical standpoint, the Van
Hove singularity is one of the simplest situations in which deviations from standard
Fermi liquid theory are expected [74]. For example, the leading order computation

This chapter is an expanded and modified version of A. Kapustin, T. McKinney, and I. Z.
Rothstein, “Wilsonian effective field theory of 2D van Hove singularities,” submitted for publication
(2018), arXiv:1804.01713 [cond-mat.str-el].
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of the self-energy [63, 64] shows that with a short-range interaction the width of
the quasiparticles is linear in the energy, a characteristic behavior of the Marginal
Fermi Liquid (MFL) [11]. Since the MFL paradigm has been proposed to explain
some peculiar properties of the normal state of high-Tc superconductors, it was
speculated that high-Tc superconductors are special due to their proximity to a Van
Hove singularity [1, 8, 64, 75–77]. While this scenario has fallen out of favor,
understanding the effect of Van Hove singularities on the Fermi liquid remains an
important problem.

Most of the studies cited above focus on the 2D Hubbard model on a square lattice
at or near half-filling because of its relevance to cuprate superconductors. In this
model, the Fermi surface is diamond-shaped and features two inequivalent VanHove
points (i.e. points where the Fermi velocity vanishes) as well as nesting. These
features complicate the analysis, and it is hard to disentangle the effects of Van Hove
points and nesting. In this paper we study in detail the case of a single Van Hove
point from the point of view of Effective Field Theory (EFT). When applied to the
case of a nonsingular Fermi surface, the EFT approach explains the ubiquity of both
the Fermi liquid and BCS-type superconductivity [5, 6, 16, 38, 39].

As was previously noticed in [9, 67], the hyperbolic dispersion law characteristic of
electrons near a 2D Van Hove point leads to additional divergences not regulated by
the Wilsonian cutoff Λ, and necessitates the introduction of an additional regulator,
which we take to be a Fermi velocity cutoffΥ. Υ also plays the role of a factorization
scale, splitting the Fermi surface into two regions, vF > Υ and vF < Υ, where two
different power counting schemes apply. In each region momenta are split into
large “label” momenta and small “residual” components. Previous work on the
2D Van Hove singularity has been plagued by nonlocal divergences, and a recent
detailed study [2] concluded that the Van Hove EFT is not renormalizable when
the Fermi level is exactly at the Van Hove singularity and has a very narrow range
of applicability when the Fermi level is close to it. However, as we show, when
momenta are properly power counted, all of the counterterms are independent of
the residual momenta in each respective region and therefore should be considered
local. Furthermore, the coupling in each region can only depend upon the label
momenta. The coupling can be assumed to be independent of momenta only when
all components of the momenta are smaller than Λ/Υ.

In the BCS channel, the RG equation for the coupling function explicitly depends
on the logarithm of the ratio of theWilsonian cutoffΛ to the bandwidth W and leads
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to the well known double logarithmic running [9, 10, 67]. This dependence on the
UV scale W represents a form of UV/IR mixing and has interesting consequences
discussed below.

The situation is reminiscent of high energy scattering processes, such as the Sudakov
form factor, where the phase space of gauge bosons is split into two regions which
dominate the IR behavior. This splitting leads to additional (rapidity) divergences
that necessitate a new regulator [4, 54] to distinguish between soft and collinear
modes. Summing contributions from these two sectors leads to a cancellation of the
regulator but, as in the present case, the cancellation leaves behind a Cheshire log
in the beta function. This in turn leads to double logs in the renormalization group
flow.

We utilize our results to study how a Van Hove singularity modifies the low energy
behavior. In particular, we discuss the Cooper instability and the range of applica-
bility of the Marginal Fermi Liquid scenario. We show that the Cooper instability is
the strongest in the BCS channel, as in the case of the circular Fermi surface, but is
also present for other kinematic configurations. This happens because of additional
marginal interactions that lead to a breakdown of the Fermi liquid picture. We also
show that a certain generalization of the MFL scenario is a robust consequence of
the Van Hove EFT.

4.3 A toy model of a Van Hove singularity
In the 2DHubbardmodel on a square lattice, there are twoVH points in the Brillouin
zone: pV H = (0, π) and pV H = (π, 0). When the hopping parameters in the x and y

directions are not equal, the energies of these two points are different. If the Fermi
level is much closer to one than the other, the effective field theory of a single VH
singularity should apply. At both of the VH points, 2pV H ∼ 0. We assume there
is a unique VH point in the Brillouin zone and time-reversal (T) symmetry, which
takes p 7→ −p, is present. Therefore the singularity sits at the origin, a fixed point
under T .

Such a scenario is realized by expanding the nearest-neighbor Hubbard model
Hamiltonian around the point p = 0 to lowest order in momentum components and
assuming a zero-range interaction. The resulting action is

S =
∫

dt d2x
[
ψ†(i∂t − ε(−i∇) + µ)ψ −

g

2
(ψ†ψ)

2
]
, (4.1)
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where the dispersion relation is

ε(p) = p2 ≡ tx p2
x − typ2

y (4.2)

and is unbounded from below. p2 denotes the square of the 2D vector p with respect
to the indefinite metric diag(tx,−ty). It is convenient to set tx = ty = 1 by rescaling
px and py, such that metric becomes diag(1,−1), and absorbing a factor of 1/√txty
into g. If we regard px, py as periodic with period of order kB, then tx, ty are of order
W/k2

B, where W is the bandwidth.

As usual, all states with ε(p) < µ are assumed to be occupied, so in the free (g = 0)
limit the excitations of the system are particles and holes, both with nonnegative
energy. When the Fermi level µ vanishes, the system has a discrete symmetry,
ψ ↔ ψ†, x ↔ y, that exchanges particles and holes. Furthermore, the quadratic
dispersion relation has O(1, 1) invariance, and the short-range interaction preserves
this symmetry. Also, for µ = 0, the action (4.1) is invariant under dilatations

ψ(t, x) → λ−1ψ(λ2t, λx). (4.3)

Invariance with respect to Galilean boosts is spontaneously broken by the Fermi sea
for all values of µ. As usual, the dilatation symmetry is anomalous on the quantum
level. Internal symmetries includeU (1) particle-number symmetry and SU (2) spin
symmetry.

The interaction term in (4.1) has zero range, and in momentum space corresponds
to a four-point vertex with no momentum dependence. A naive justification for this
simple ansatz is that any vertex with more than four fermionic fields or polynomial
momentum dependence is irrelevant in the RG sense. Here we assume that under
the RG transformations the momenta scale as

px → λpx, py → λpy, (4.4)

so energy has scaling dimension 2 andψ has scaling dimension 1. Then the chemical
potential µ is relevant, the coupling g is marginal, andmore complicated interactions
are irrelevant.

This naive argument is, as well known, incorrect, due to the fact that momenta
tangent to the Fermi surface should not scale under RG flow. Moreover, the theory
defined with a contact interaction, eq. (4.1), is not consistent, as corrections to
the four-point function include nonlocal divergences that cannot be absorbed into a
renormalization of g [9, 67]. These divergences can be traced to the noncompactness
of the Fermi surface.
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4.4 Setting up the Van Hove EFT
To make the theory (4.1) well defined, one must impose a cutoff on momenta
to render the Fermi surface compact. This cutoff is imposed in addition to the
Wilsonian cutoff |ε(p) | ≤ Λ. We assume Λ is much smaller than the bandwidth
W ∼ k2

B. We also assume that |µ| � Λ, so the modes near the Fermi surface are not
integrated out.

Let Υ denote this momentum cutoff. The largest possible value for Υ is of order kB,
the size of the Brillouin zone, and thus it is natural to assume that Λ � Υ2. The
region

|p± | ≤ Υ, |p+p− | ≤ Λ, (4.5)

where p+ = px + py and p− = px − py, will be called the VH region.2 Within this
region, the dispersion law is

ε = p+p−. (4.6)

We are using Λ and Υ as both explicit regulators and factorization scales. Υ has
a natural value of order VF , the typical value of the Fermi velocity away from the
VH points, but it can also be chosen parametrically smaller. In any physical result
the dependence on Υ should cancel, since its role is merely to separate the VH and
NVH regions. On the other hand, in any physical prediction Λ is a placeholder for
the RG scale.

The VH region is the part of the Λ-neighborhood of the Fermi surface that is close
to the saddle point. In this region, the dispersion relation (4.6) implies that if both
components of momentum are of the same order, then p± ∼

√
Λ � Υ. In addition to

these “soft modes,” the VH region is populated by collinear and anticollinear modes
whose momenta scale as (Υ,Λ/Υ) and (Λ/Υ,Υ) respectively.

The rest of the Λ-neighborhood of the Fermi surface will be called the NVH region.
Within this region, the dispersion law is the standard

ε(p) = p⊥vF (p‖), (4.7)

where p⊥/p‖ are normal/tangential to the Fermi surface. We assume that the NVH
region is “featureless,” in the sense that the Fermi velocity does not change too
much there, and that it is free of nesting. The first assumption simply means that
there are no other Van Hove singularities nearby, while the importance of the second
assumption will be discussed in Section 4.11. Fig. (4.1) illustrates the division of a
representative Fermi surface into the VH and NVH regions.

2Note that Υ breaks the O(1, 1) symmetry but preserves the particle-hole symmetry.
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VH

NVH

Figure 4.1: An example of the division of the Fermi surface into Van Hove and
non-Van Hove regions.

In general, loop calculations involving modes from the VH region alone will depend
on Υ in such a way that the Υ → ∞ limit leads to additional divergences. Thus,
a sensible EFT must include both the VH region and the NVH region. We use
the term “full theory” for such an EFT. We make no assumptions about the shape
of the Fermi surface in the NVH region. As we will show below, our results are
universal to leading log accuracy in the sense that they only depend upon VF , the
typical Fermi velocity in the NVH region, and not the detailed shape of the Fermi
surface. Therefore, our results apply to any system with a VH singularity near the
Fermi surface that is weakly coupled at energies of order the bandwidth.

We will denote the fields annihilating electrons in the VH and NVH regions ψV and
ψN respectively. The interaction part of the action is

Sint =

∫
dt

4∏
i=1

d2pi

∑
αβγδ

gαβγδψ
†
α (p1)ψ†β (p2)ψγ (p3)ψδ (p4), (4.8)

where the indices α, β, γ, δ take values V and N . In general, gαβγδ can depend on
the momenta pi of the interacting modes. The couplings must match onto each other
as the VH modes approach the NVH region and vice versa. For example, gN NVV

must match onto gVVVV as p1 and p2 approach the VH region.

Naively, in light of the dispersion laws (4.6) and (4.7), one might think that the
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coupling functions in (4.8) should only depend on the p‖ of the NVH modes and
that the only marginal interaction between the VH modes should be a momentum-
independent constant. We will see in the next section that this is not self-consistent:
one-loop calculations imply that the couplings must depend onmomentum in amore
generic manner. This is because when both the rapidity cutoff Υ and the Wilsonian
cutoff Λ are present, a low momentum scale Λ/Υ also plays a role. We will call
Λ/Υ the ultrasoft scale.

We can achieve some simplification by recalling that momentum and energy conser-
vation limits the interactions of the NVH modes to special kinematic configurations
[5]. These configurations correspond to forward scattering and back-to-back (BCS)
scattering. This implies that interactions between NVH modes and VH modes are
of two kinds: (1) forward scattering between a VH mode and an NVH mode and
(2) scattering of nearly back-to-back VH modes to nearly back-to-back NVH modes
and vice versa. As a result, the numbers of VH and NVH particles are separately
conserved.

4.5 Specific heat
As an example of the anamalous behavior expected from systems with a van Hove
singularity, consider the specific heat. In the case of a normal Fermi liquid, the
specific heat is linear in temperature to leading order in the interactions between
the quasiparticles [37]. Note that it can be rather complicated to go beyond this
leading-order result [78]. In any case, we will find that even the leading order
result is modified in the van Hove case, with a logarithmic enhancement at low
temperatures.

The average energy density of the a Fermi liquid at finite temperature T in two
dimensions can be computed using the Fermi distribution:

〈E〉 = 2
∫

d2k

(2π)2
ε(k)

e−βε(k) + 1
, (4.9)

where β = 1/kBT (kB is the Boltzmann constant) and

ε(k) = tx k2
x − tyk2

y . (4.10)

We include a factor of two for the spin degeneracy. Changing variables to

k± =
√

tx kx ±
√

tyky, (4.11)

this becomes
〈E〉 =

1
√

txty

∫
d2k

(2π)2
ε(k)

e−βε(k) + 1
, (4.12)
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where ε(k) = k+k−. The derivative with respect to temperature gives us the specific
heat:

CV =

(
∂〈E〉
∂T

)
N
= −β2 ∂〈E〉

∂ β
. (4.13)

This yields

CV =
1
√

txty

∫
d2k

(2π)2
β2ε(k)2e−βε(k)

(e−βε(k) + 1)2 . (4.14)

We now institute the Fermi velocity cutoff |k± | < Υ and change variables via

k± = ke±η, (4.15)

with k > 0. The Jacobian is
�����
∂k+
∂k

∂k−
∂η
−
∂k+
∂η

∂k−
∂k

�����
= 2k . (4.16)

Note that this only works for the first quadrant in k± space. We will need to multiply
our final result by four to take into account the other quadrants. After changing
variables, Eq. (4.14) is

CV =
2
√

txty

∫
k dk

(2π)2

∫ logΥ/k

− logΥ/k
dη

(βk2)2e−βk2

(e−βk2
+ 1)2 . (4.17)

Evaluating the integral over η yields

CV =
2
√

txty

∫
k dk

(2π)2
(βk2)2e−βk2

(e−βk2
+ 1)2 log

Υ2

k2 . (4.18)

Changing variables yet again to u =
√
βk gives us

CV =
2

β
√

txty
(I1 log βΥ2 − I2), (4.19)

where

I1 =

∫ Υ
√
β

0

u du

(2π)2
u4e−u2

(e−u2
+ 1)2 , (4.20)

I2 =

∫ Υ
√
β

0

u du

(2π)2
u4e−u2

(e−u2
+ 1)2 log u2. (4.21)

For temperatures well below Υ2 these functions do not differ appreciably from their
value with the upper cutoff taken to infinity, and we have

I1 =
1

48
, (4.22)
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I2 ≈ 0.022. (4.23)

In the low temperature limit the term involving I2 is negligible. Including the factor
of four mentioned above, we have

CV =
kBT

6√txty
log
Υ2

kBT
. (4.24)

As mentioned previously, the Fermi velocity cutoff can by approximated by the
typical Fermi velocity in the non-van Hove region, VF . Therefore

CV =
kBT

6√txty
log

V 2
F

kBT
(4.25)

at low temperatures. This characteristic −T log T dependence has been observed in
cuprate superconductors under conditions where the superconducting transition has
been suppressed with strong magnetic fields [79], although the authors of that work
ascribe this to the existence of a quantum critical point instead of to the van Hove
singularity.

4.6 The one-loop beta function
Generic kinematic configuration
Consider the scattering of VH modes in a generic kinematic configuration. Conser-
vation of momentum implies the NVH modes will not contribute. Thus tree-level
interactions are described by a single coupling function of three independent VH
momenta. We would like to determine how this function is renormalized. It is
enlightening to first assume that the coupling is a momentum-independent constant,
as naive power counting suggests. The manner in which this assumption fails will
show us how to appropriately modify the theory.

We subdivide the VH region into three parts: the soft region, where p± ∼
√
Λ; the

collinear region, where p+ ∼ Υ and p− ∼ ΛΥ ; and the anticollinear region, where
p− ∼ Υ, and p+ ∼ ΛΥ . Fig. 4.2 illustrates the location of these subregions. This
separation is useful for categorizing the contributions to the beta function. Since in
this subsection the kinematic configuration is assumed to be generic, the differences
and sums of external momenta are of the same order as the momenta themselves.

As usual, we have three diagrams at one-loop level, which we refer to as s-channel
(AS), t-channel (AT), and u-channel (AU); see Fig. 4.3. These three diagrams
depend on K = p1 + p2, Q = p1 − p3, and Q′ = p1 − p4 respectively, and each
contributes independently to the beta function. The u-channel diagram is identical
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p+

p −

√
Λ

Υ

Υ

Anticollinear

Soft

Collinear

Fermi surface

Figure 4.2: Subdivision of the VH region.

(a) s-channel (b) t-channel

Figure 4.3: The diagrams contributing to the renormalization of the coupling at one
loop. Not shown is the u-channel diagram, which is given by interchanging the final
state particles in the t-channel diagram.

to the t-channel diagram if we take Q ↔ Q′, so we focus on the t- and s-channel
diagrams.

Wefind (seeAppendixA) that any one-loop diagramwhere a collinear externalmode
and an anticollinear external mode meet at a vertex leads to a power-suppressed
contribution to the beta function. This is because the K or Q involved in the
interaction always sets a large energy scale that acts to suppress the associated
diagram.
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Generic t-channel diagrams that do not involve collinear-anticollinear vertices make
order-one contributions to the beta function. For example, for a generic interaction
between soft modes,

Λ
dAT
dΛ
=

g2

4π2 (4.26)

plus power-suppressed terms. There are exceptions in certain special kinematic
configurations; see Section 4.6.

The behavior of the s-channel diagrams is more complicated. Defining

εK = K+K−, (4.27)

we find that generic s-channel diagrams that do not involve collinear-anticollinear
vertices interpolate between being log enhanced when εK � Λ and order one when
εK ∼ Λ. As an example, for generic interactions between soft modes,

Λ
dAS
dΛ
= −

g2

4π2 log
(
Λ

εK

)
(4.28)

plus suppressed terms. To avoid confusion, we note that εK is not the net energy of
the incoming particles.

Special kinematic configurations
Eq. (4.28) appears to imply that the beta function diverges as εK approaches zero,
thus necessitating the existence of a nonlocal counterterm, which would mean the
formalism lacked a systematic power-counting scheme. However, (4.28) does not
apply in the εK → 0 limit. The divergent behavior is an unphysical artifact of taking
the Van Hove region to be infinite in extent. If we take the rapidity cutoff Υ into
account, we find that when one component of K , say K−, satisfies

|K− | <
Λ

Υ
, (4.29)

such as for an interaction between only collinear modes, then

Λ
dAS
dΛ
= −

g2

4π2 log
(
Υ

K+

)
(4.30)

plus order-one terms. If both components of K are ultrasoft (i.e. smaller in
magnitude than Λ/Υ), we find to leading log order

Λ
dAS
dΛ
= −

g2

4π2 log
(
Υ2

Λ

)
. (4.31)
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We can summarize the detailed behavior of the s-channel contribution to the beta
function in the following manner:3

Λ
dAS
dΛ
=




−
g2

4π2 log
(

Λ
max (K+,Λ/Υ) max (K−,Λ/Υ)

)
, εK . Λ

O(1) × ΛεK g
2, εK & Λ.

(4.32)

If K+ ∼ Υ, the log in (4.30) will not be large, and hence the order-one “corrections”
cannot be ignored. As a result, the dependence on K+ becomes complicated.
Similarly, if one component of Q is large while the other is ultrasoft, the t-channel
diagram has a complicated dependence on the large component (though unlike the
s-channel diagram, it can never become log enhanced). These cases are discussed in
more detail in Section 4.11. Finally, the t-channel contribution to the beta function
vanishes if both components of Q are ultrasoft.

Binning and leading-log behavior
At first glance, the behavior of the beta function implied by the above results is
rather odd. The contribution from the s-channel diagram in Eq. (4.32) sometimes
depends nonanalytically on the momentum, and the functional forms of the results
change when the components of K or Q pass a particular threshold (around the scale
Λ/Υ). Previous authors [2] have particularly regarded the behavior of the t-channel
diagram as a sign of unavoidable nonlocality in the theory. However, as discussed in
the next section, similar behavior appears already for a circular Fermi surface, and
is dealt with using bins in momentum space of size Λ/KF . This notion of binning
allows for a clear separation between large and small momenta, and was previously
used in the context of the theory of nonrelativistic heavy quarks [52]. Binning is
also implicit in the standard Fermi-surface RG [5]. We apply the same method here.

We divide momentum space into bins of size Λ/Υ, each with a label momentum
corresponding to the center of the bin and a residual momentum, of order Λ/Υ,
corresponding to the position within the bin. The couplings are then indexed by the
discrete label momenta, and we can Taylor expand in the residual momenta. The
beta function then depends at leading order on the label momenta alone, and all
results are analytic in the residual momenta. The theory is therefore renormalizable,
although the couplings depend in an arbitrary way on the label momenta. The same
is true for a circular Fermi surface (see the next section).

3Note that for the s-channel diagram, taking εK & Λ is equivalent to injecting a large virtuality
into the loop, which is formally outside the range of validity of the effective theory. The effects of such
modes in intermediate states are properly accounted for in higher dimensional, power-suppressed,
operators. This is consistent with the result in (4.32).
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The nonanalytic dependence on the net momentum implies that our assumption of
a momentum-independent coupling was inconsistent, and the RG flow will generate
dependence on the label momenta even for modes within the soft region. While
this complicated behavior threatens the predictive power of the theory, we will see
in Section 4.8 that the enhancement of the beta function for modes with small net
momentum allows for several important simplifications.

4.7 Revisiting the round Fermi surface
Let us revisit some old results involving a round Fermi surface. In that context,
previous authors [5, 6, 16, 38, 39] found that only certain coupling functions are
present in the IR theory. In particular, only forward scattering and interactions
between back-to-back particles (the BCS channel) are marginal, in the language of
effective field theory. Furthermore, these authors found that only the BCS coupling
is renormalized (that is, corrections to forward scattering are power suppressed),
and that the beta function for the BCS interaction is in fact one-loop exact for generic
round Fermi surfaces [5, 16].

These results hold in the limit where the Wilsonian cutoff Λ on the energy of the
modes included in the theory (or, in other words, the “width” of modes around the
Fermi surface) is taken to zero while the size of Fermi surface itself is held fixed.
For nonzero Λ, near-forward and near-BCS scattering continue to be present in the
theory. To understand their role more precisely, let us consider their contributions
to the one-loop beta function.

We may parameterize a generic coupling function in terms K , Q, and Q′, the same
functions of the external momenta defined in Section (4.6). As before, the s-, t-,
and u-channel diagrams ([5] calls these the BCS, ZS, and ZS’ diagrams), depend on
K , Q, and Q′ respectively, and the t- and u-channel diagrams are exchanged under
Q ↔ Q′. BCS scattering occurs for K = 0 and forward scattering occurs when
either Q or Q′ is zero.

It is straightforward to show that when any of thesemomenta are order KF (the radius
of the Fermi surface), the presence of the Fermi surface forces the contribution from
the corresponding one-loop diagram to the beta function to be suppressed. For
example, the log derivative of the one-loop s-channel diagram is

Λ
dAS
dΛ

∼
Λ

vF |K |
g2 (4.33)

when |K | ≈ KF . A similar statement holds for the t-channel and u-channel diagrams.
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Figure 4.4: The log derivatives of the s- and t-channel diagrams measured in units
of g2 for a circular Fermi surface. We assume a constant coupling.

From this point of view, the one-loop contributions are generically power suppressed.
The exceptional behavior occurs when K (or Q or Q′) is of order Λ/vF . Unlike the
case for large K or Q, the behavior qualitatively differs between the s and t channels.

For the t-channel diagram tomake a nonsuppressed contribution to the beta function,
the following must hold:

Λ

vF
< |Q | < O(1) ×

Λ

vF
. (4.34)

Thus, there is a window of values where the contribution is nonzero, and the position
of the edges of thiswidowdepend onΛ. On the other hand, for the s-channel diagram
to make an unsuppressed contribution to the beta function, K must satisfy

|K | < O(1) ×
Λ

vF
. (4.35)

In particular, K = 0 gives an order-one contribution while Q = 0 does not. Fig. 4.4
demonstrates the behavior of the log derivatives assuming a constant coupling.

This difference has a profound effect. In the course of the RG flow, the condition
that K or Q is order Λ/KF changes, since we take Λ to scale down. If K is actually
zero from the beginning, there will always be an order-one contribution to the beta
function, and this condition is stable throughout the RG flow. This allows attractive
couplings with K = 0 (the BCS channel) to become strong at small Λ. On the other
hand, the condition for the t-channel diagram to give an unsuppressed contribution
to the beta function is not stable under the RG flow. Hence for any fixed Q, the t

channel only contributes to the beta function for a small period of RG time.

In summary, the contribution to the beta function is power-suppressed throughout
the RG flow for generic (large) K and Q. If K or Q is small enough, there are
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order-one contributions to the beta function, but only for a short RG time. The only
exception is “true” BCS scattering, where |K | < Λ/vF throughout the flow. If we
assume the UV coupling is weak, this means the only coupling that can be relevant
to the ground state instability involves the BCS configuration.

With this context, the startling results for the one-loopVHbeta function [Eqs. (4.26)-
(4.32)] are less surprising. Even with a round Fermi surface, the beta function, and
therefore the coupling, depends on K and Q. This is even true for the BCS coupling,
which is generically a function of two angular coordinates [5, 16] (playing the role
of label momenta) for noncircular Fermi surfaces.

Finally, the transition from zero contribution to the beta function from the t-channel
diagram to a finite contribution as we increase Q from zero is also present for the
circular Fermi surface. The major difference in the VH case is the long, flat section
of the Fermi surface, which guarantees that the window in Q for which the t channel
is not power suppressed is larger than for a circular Fermi surface. Fortunately, we
will see that we may once again neglect the contribution from the t channel relative
to the s channel, at least for certain observables.

4.8 The leading contribution at one loop
Section 4.6 demonstrates that only the s-channel diagram contains a logarithmic
enhancement at one-loop order. Furthermore, the largest possible contribution to
the beta function occurs when K ' 0. This indicates that the kinematic configuration
of near-zero net momentum, the BCS channel,4 dominates the low-energy behavior
of the theory.

With this in mind, assume the UV the dependence on the external momenta is
analytic. This condition will not be preserved under the RG, because the s-channel
introduces a nonanalytic dependence on the net momentum K in the four-point
coupling. However, if we focus on the BCS configuration we may ignore any
nonanalytic dependence on the other momenta to leading-log order.

In the following calculations, we sum the leadingVH andNVHcontributions. While
the precise form of the full results generically depends on the detailed shape of the
NVH portion of the Fermi surface, the leading contribution is independent of these
details. Instead, this summing procedure turns out to be identical to taking the VH
results and replacing the cutoff Υ with VF , its natural value.

4In this context, the term “BCS” means back-to-back up to an ultrasoft momentum. Generic
configurations of only ultrasoft modes therefore qualify as BCS.
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Parameterize the BCS coupling as gB(p1, p3), where p1 is the label momentum
of one of the incoming pair of particles (the other has label momentum −p1) and
p3 is the label momentum of one of the pair of outgoing particles. We find with
logarithmic accuracy (see Appendix A)

Λ
dgB(p1, p3)

dΛ
=

1
4π2gB(p1, 0)gB(0, p3) log

V 2
F

Λ
. (4.36)

An unusual feature of this equation is that the beta function has an explicit depen-
dence on Λ, as well as V 2

F . The latter can be regarded as an energy scale of order
of the bandwidth, V 2

F ∼ W . Thus the IR physics retains some information about the
UV scale W .

The solution to (4.36) is

gB(p1, p3;Λ) = gB(p1, p3;Λ0)

−

(
1

8π2

) gB(p1, 0;Λ0)gB(0, p3;Λ0)
(
log2 V 2

F

Λ
− log2 V 2

F

Λ0

)
1 + gB(0,0;Λ0)

8π2

(
log2 V 2

F

Λ
− log2 V 2

F

Λ0

) . (4.37)

The coupling in the vicinity of the Van Hove singularity, gB(0, 0), plays a special
role: it “drives” the RG for the other couplings, and when it is attractive at the scale
Λ0, it sets the one-loop estimate of the strong-coupling scale,

Λ
∗ = V 2

F exp *.
,
−

√
log2 VF

2

Λ0
+

8π2

|gB(0, 0;Λ0) |
+/
-
. (4.38)

As in the ordinary BCS theory [80] the strong-coupling scale is non-perturbative in
g(Λ0). However, the usual dependence of this scale on the microscopic parameters
differs from (4.38). While (4.38) simplifies considerably if we set Λ0 = V 2

F ∼ W ,
this choice may be unphysical if the Van Hove EFT is obtained by integrating out
some other degrees of freedom at a scale below W . For example, if the short-
range interaction arises both from the screened Coulomb repulsion and the phonon-
mediated attraction, the Van Hove EFT applies only up to energy scales of the order
of the Debye frequency ωD, which is usually much smaller than the bandwidth
W . Then the natural choice for Λ0 is ωD, and we have a hierarchy of scales
V 2

F ' W � ωD.

To understand some of the limitations of this formalism, consider the amplitude (as
opposed to the beta function) in the BCS configuration. If we assume a momentum-
independent BCS coupling, it is straightforward to evaluate the one-loop amplitude
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with logarithmic accuracy:

ABCS(E) =
g2

B
8π2

*
,
log2 V 2

F

Λ
− log2 V 2

F

E
− iπ log

V 2
F

E
+
-
, (4.39)

wherewe have kept only the leading terms in the real and imaginary parts. Taking the
log derivative of equation (4.39)with respect toΛ reproduces the beta function (4.36)
for gB(0, 0). However, the imaginary part of the amplitude depends on log V 2

F

E . This
large log is not resummed by the standard beta function and indicates that something
akin to the rapidity renormalization group introduced in [4, 54] would be necessary
to resum subleading logs.

In the special case Υ2 = Λ our scheme in the VH region resembles that of Ref. [66].
In that work it is implicitly assumed that g is repulsive, and that Λ can be taken as
high as the bandwidth, so that the NVH region is effectively absorbed into the VH
region. However, lowering Λ then results in integrating some low-energy modes
and requires nonlocal counterterms.

4.9 Higher-order renormalization
Let us discuss how higher-order corrections modify Eq. (4.39). This is particularly
important for the kinematic configuration with zero net momentum, which controls
the Cooper instability. Since the beta function at zero net momentum contains a
logarithm of a large ratio, log(V 2

F/Λ), one may wonder if the one-loop computation
is reliable in this kinematic configuration, or if one needs to resum the logs in the beta
function itself. We will call logs containing V 2

F , such as log(V 2
F/E) or log(V 2

F/Λ),
rapidity logs. We want to estimate the contribution of higher rapidity logs to the
beta function at zero net momentum.

We will limit ourselves to the analysis of 2-loop diagrams. We take Υ ∼ VF , in
which case there are no large rapidity logs in non-VH loops. The renormalized
coupling g is related to the bare coupling gb by

gb = gZ4Z−2
2 , (4.40)

where Z4 is the renormalization factor for the particle-particle four-point amplitude,
and Z2 is the wave function renormalization. Z2 is finite at one loop, and at two-
loop order is determined from the on-shell behavior of the self-energy diagram,
Fig. 4.5, whose imaginary part is finite even without the rapidity cut-off [63, 64],
and therefore does not contain rapidity logs.



73

Figure 4.5: The two-loop self-energy with finite imaginary part.

Two-loop contributions to Z4 arise from diagrams such as in Fig. 4.6. (Iterations of
one-loop diagrams do not contribute since their infinities are removed by one-loop
counter-terms.) Their contributions to the beta function can be estimated using what
we already know about the one-loop diagrams. For example, the diagram Fig. 4.6a
is obtained from the one-loop s-channel diagram by replacing one of the vertices
with the one-loop t-channel diagram. The latter does not contain rapidity logs, so
the contribution of the whole diagram to the beta function should behave in the same
way as that of the one-loop s-channel diagram. In particular, it contains at most a
single log(V 2

F/Λ) at zero net momentum. The diagram Fig. 4.6b can be regarded as
a one-loop t-channel diagram with one vertex replaced with a one-loop s-channel
diagram. The latter amplitude contains at most two rapidity logs, so the contribution
of Fig. 4.6b to the beta function contains at most log2(V 2

F/Λ). We conclude that
with logarithmic accuracy the two-loop beta function at zero net momentum has the
form

β(g) =
1

4π2 (g2 + Cg3) log
V 2

F

Λ
+ C′g3 log2 V 2

F

Λ
, (4.41)

where C and C′ are constants.

Now we can see if the resummation of rapidity logs in the beta function is neces-
sary. Eq. (4.37) indicates that the one-loop RG equations resum logs of the form
g log2(V 2

F/Λ). Thus we are assuming g log2(V 2
F/Λ) . 1, while g log(V 2

F/Λ) � 1.
This implies g3 log2(V 2

F/Λ) is parametrically suppressed relative to g2 log(V 2
F/Λ).

We conjecture that this behavior persists at higher loops, in the sense that every
extra power of g is accompanied by at most a single rapidity log. If this is true, then
resumming the rapidity logs in the beta function will not will not change qualitative
conclusions regarding the RG flow and the Cooper instability.
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(a) (b)

Figure 4.6: Examples of two-loop contributions to the beta function. The diagrams
with iterated loops are not shown. The diagram on the right can contribute a double
rapidity log to the beta function.

4.10 Kinematic requirements for s-channel dominance
We have seen that the s-channel diagram dominates the renormalization of the cou-
pling function in the BCS configuration, where the net momentum of the incoming
particles is very small. It is natural to ask to what degree this result holds for other
configurations of the momentum, that is, under what circumstances the s-channel
diagram alone will determine the leading log behavior. To answer this question, note
that whenever the s-channel diagram’s contribution to the beta function is enhanced
by a logarithm of the ultrasoft scale relative to the t- or u-channel diagrams, we can
drop those contributions. If we lower Λ using the RG such that the t- and u-channel
diagrams make only power-suppressed contributions to the beta function, we can
drop them in the computation of the leading log amplitudes. Therefore if the net
momentum K is ultrasoft in terms of the varying value of Λ whenever the t- and
u-channel diagrams make nonsuppressed contributions to the beta function, we can
ignore these diagrams without making an error at leading log.

The t- and u-channel diagrams make suppressed contributions once the transfer
momenta satisfy ε(Q) > Λ and ε(Q′) > Λ, respectively. The s-channel diagram
is maximally log enhanced (K is still ultrasoft) as long as both components of K

satisfy K± < Λ/Υ. Then as long asΛ > K±Υ, we can neglect the effects of the other
diagrams. Therefore from the perspective of the UV theory, we can find “universal”
results for the amplitudes (in that they depend only on the s-channel, and we can
drop any nonanalytic dependence on Q and Q′) when

max (K+, K−) <
min (ε(Q), ε(Q′))

Υ
. (4.42)
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Hence we can make universal predictions whenever the interaction is more back-to-
back than forward, in the sense of Eq. (4.42).

4.11 The collinear region as a marginal Fermi liquid
By definition, the collinear region is the part of the VH region where |p+ | is of order
of the rapidity cutoff Υ, while |p− | is less or equal than Λ/Υ. The anticollinear
region is defined similarly, but with p+ and p− exchanged. Each of the following
statements regarding the collinear region also applies to the anticollinear region.

Everywhere in the collinear region, the Fermi velocity is nonzero. Naively, one
might conclude that this region is no different from the NVH region. In particular,
one might think that the usual Fermi surface EFT [5] applies both in the NVH and
the collinear region, but this is incorrect. To see why, recall that canonical Fermi
surface EFT predicts that all interactions (apart from forward and BCS scattering)
are irrelevant, and thus the quasiparticle width scales like E2/vF kB for small E. In
the NVH region, vF is of order W/kB, thus the Fermi liquid theory applies for E

much smaller than W . But it is well known [5] that additional marginal interactions
arise when a portion of the Fermi surface is related to another portion of the Fermi
surface by a translation in momentum space (nesting). The translation vector Q is
called the nesting vector. The collinear region is an extreme example of this, since
the Fermi surface is approximately invariant with respect to arbitrary shifts with
Q = (Q+, 0). Following Wilczek and Nayak [58], we will refer to such a Fermi
surface as flat.

Wilczek and Nayak emphasized the failure of the Fermi liquid theory for flat Fermi
surfaces and proposed that the correct EFT for flat Fermi surfaces is quasi-1D, with
the component of momentum parallel to the Fermi surface playing the role of a
continuous label. In particular, the four-fermion interaction is marginal for generic
combinations of momenta rather than irrelevant.

But there is also an important difference between the collinear region and the model
of interacting 1D fermions (the Luttinger model). In the Luttinger model, the
coupling is exactly marginal (has vanishing beta function). This is most easily
seen using bozonization, which turns the Luttinger model into a free boson with
a linear dispersion law. The vanishing of the beta function does not apply to the
EFT describing the collinear region. The reason is that, unlike in the 1D case, the
Fermi velocity varies along the Fermi surface. For definiteness, let us consider the
collinear region and set µ = 0. Then the “small” component of momentum is p−,
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while the “large” one is p+. If we treat p+ as a continuous label, the Fermi velocity
is

vF (p+) = p+. (4.43)

As long as we consider generic scattering events between particles for which p+ is
O(Υ), the four-fermion coupling can be Taylor expanded in p−, but not in p+. Thus
the leading interaction term

Sint =

∫
dt

∫
d2p1d2p2d2p3

1
4
g(p1+, p2+, p3+)εα1α2εα3α4ψα1ψα2ψ

†
α3ψ

†
α4 (4.44)

depends on a function of three real variables g(p1+, p2+, p3+) that we take to be spin
independent. This choice of spin structure for the interaction corresponds to the
spin-singlet coupling, which we will focus on here. Furthermore, we take g to be
symmetric under p1 ↔ p2 and p3 ↔ p1+ p2− p3 independently, so the vertex factor
is

i(δα1α3δα2α4 − δα1α4δα2α3 )g(p1, p2, p3). (4.45)

It is straightforward to compute the beta function for g. We find:

dg(p1+, p2+, p3+)
d log µ

=
1

2π2

∫ Υ

K
dq

g(p1+, p2+, q)g(q, K − q, p3+)
2q − K

+
1

8π2Q

∫ min (Q,Υ)

Q−min (Q,Υ)
dq g(p1+, q, p3+)g(p2+, q +Q, p4+)

+
1

8π2Q′

∫ min (Q′,Υ)

Q′−min (Q′,Υ)
dq g(p1+, q, p4+)g(p2+, q +Q′, p3+) (4.46)

plus terms suppressed by ε(p)/Λ, where p is one of the external momenta. Here
K = p1+ + p2+ and Q = p1+ − p3+ are assumed to be positive, for definiteness.
Even if we take g to be independent of the “large” components of momenta at some
scale, the RG evolution is nontrivial and introduces momentum dependence. At
higher orders we will also have to take into account the renormalization of the Fermi
velocity function vF (p+). Finally, we neglected the spin-triplet coupling. Even if
it is set to zero in the UV, it will be generated by radiative corrections, and thus a
renormalizable theory should have both couplings. The above computation, which
takes into account only the spin-singlet coupling, merely illustrates our point that
the beta functions are nonzero in the collinear region.

The EFT that includes only the collinear region is sufficient to compute the width
of the quasiparticle whose momentum is in the collinear region, where |p+ | is of
order Υ. If one formally takes the limit Υ → ∞ and assumes that the coupling g
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Figure 4.7: Numerical results for the dependence of h on |p+ |/VF in units of g2

assuming a constant coupling. h is normalized to g2 for VF → ∞.

is independent of momenta, the leading-order computation can be performed in the
toy model and gives [63, 64]:

Γ(E) ∼ g2E. (4.47)

The linear dependence on E follows from dimensional analysis and is a hallmark
of the marginal Fermi liquid [11]. The computation in the toy model cannot be
extended to higher orders, since it is not a renormalizable theory. However, if we
include the NVH region by introducing the rapidity cutoff Υ = VF , dimensional
analysis gives a similar result:

Γ(E) ∼ h( |p+ |/VF )E, (4.48)

where VF is the typical Fermi velocity in the NVH region. At leading (two-loop)
order the function h(x) is of order g2, but is not a constant even if one assumes,
for simplicity, that g is a constant. Evaluating the imaginary part of the self-energy
diagram (Fig. 4.5) numerically, we find the result in Fig. 4.7. Appendix C describes
the calculations involved in determining this function.

Eq. (4.48) is valid provided we can neglect the chemical potential µ, a relevant
coupling. Thus it holds in the range |µ| � E � W . The corrections are of several
sorts. The NVH region contribution is of order E2/W , as usual. The corrections
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from a nonzero µ are of order µ2/E. Finally, higher orders in perturbation theory
will give the function h a weak (logarithmic) dependence on E.

One of the defining properties of the MFL is that the quasiparticle width, defined
via the imaginary part of the on-shell self-energy, is proportional to energy. The
above arguments show that the Marginal Fermi Liquid behavior [11] is a robust
consequence of the proximity to a Van Hove singularity. On the other hand, the
dependence of the width on the “large” component of momentum can be nontrivial,
unlike in the simplest models of Marginal Fermi Liquids.

4.12 Conclusions
We have presented a systematic effective field theory description of systems with a
Van Hove singularity. The formalism is valid to leading power in an expansion in
E/W and generalizes the classic results in [5, 6]. We have shown that the theory
is renormalizable with all counterterms being local in the sense that they are finite
in the zero energy limit. That such a formalism exists had to be the case given that
any well-defined microscopic local theory must yield a renormalizable description,
if it is properly formulated. A crucial ingredient in generating such a theory is
the inclusion of all the relevant modes on the Fermi surface. Given that the entire
surface is necessarily part of the IR description of the theory, it is not surprising that
focusing solely on one region leads to nonlocalities.

The EFT that we constructed depends on a coupling function g(k1, k2, k3,−k1 −

k2,−k3) that cannot be expanded in powers of momenta (except when all momenta
are ultrasoft). The appearance of an arbitrary function of six variables makes the
theorymuch less predictive than the usual Fermi surface RG,which has twomarginal
couplings that depend on two variables each (for a 2D Fermi liquid). Nevertheless,
we showed that in the BCS channel the EFT can be greatly simplified, provided we
keep only logarithmically-enhanced terms. In this channel, one is left with a single
function of two variables that satisfies a simple RG equation.

We have utilized our formalism to show that generic theories with Van Hove singu-
larities will lead to Marginal Fermi Liquid behavior as previously anticipated using
toy models [63, 64]. This behavior arises in both the soft and collinear subsectors
of the VH region, the latter of which can constitute a considerable fraction of the
Fermi surface. Thus our conclusions disagree with [66], where it was argued that
for E � µ the Fermi liquid picture is valid. Our treatment of the collinear region
clarifies the physics of Fermi surfaces with flat regions as discussed in [58]. We
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also show that the running of the coupling in the BCS channel is logarithmically
enhanced, and the coupling itself runs double logarithmically, in agreement with [9,
65].
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C h a p t e r 5

INSTABILITIES OF THE VAN HOVE EFT

In the previous chapter, we constructed an effective field theory to describe the
normal state of two dimensional fermionic systems with Van Hove singularities on
their Fermi surfaces. Understanding the instabilities of this theory is a particularly
important topic because of the rich structure of the phase diagram of materials
possessing van Hove singularities [77] and the observation of non-Fermi liquid
behavior in the normal state [11]. We began to address this issue by studying the
beta function, and we determined that the flow for the coupling between particles in
a nearly back-to-back configuration suggests an instability to Cooper pairing.

In this chapter, we address the question of the instabilities of the system using
another approach. In general, the analytic structure of the correlators in a field
theory provide a great deal of information about the behavior of the theory itself,
including the spectrum of excitations [19], bound states [81], and resonances. As
an example, we found in Chapter 3 that it is possible to deduce the existence of
the zero sound mode in Fermi liquids from the properties of the density-density
correlator. The analytic structures of these correlators also give us clues about
instabilities through their relationship to the response of the system to external
perturbations. For example, the existence of a pole in frequency space along the
positive imaginary axis for the retarded two-particle Green’s function indicates the
presence of an exponentially growing response and hence instability [61]. Analyzing
these correlators in standard Fermi liquid theory reveals the onset of charge-density
waves [82–85], spin-densitywaves [59, 86], and superconductivity [61], for example.
We will apply the same reasoning to our system, beginning with an investigation the
structure of the retarded two-particle Green’s function.

5.1 Poles in the two-particle Green’s function
From the arguments in Chapter 4, the strongest interactions in the IR should be
due to the BCS coupling between back-to-back particles. Therefore we consider
the analytic properties of the retarded two-particle Green’s function at zero net
momentum. This directly parallels our earlier analysis for the round Fermi surface
in Section 3.12. As in that discussion, we closely follow [61].
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We ignore the dependence of the coupling function on the transverse components
of the momentum. This will be justified if we focus on states in the vicinity of the
Van Hove singularity: the coupling between these modes drives the RG, so we can
resum logs associated with that configuration alone. Call the coupling g.

We have shown that the leading diagrams are the iterated s-channel bubbles, as
in the case of a round Fermi surface. Unlike in the round Fermi surface, where
other diagrams are power suppressed, these diagrams are only suppressed by powers
of the large logarithm log(V 2

F/Λ). Despite this fact, resumming the leading order
diagrams should at least allow us to derive approximate results for the ground-state
instability.

The two-particle Green’s function at zero net momentumwill have the same analytic
structure as the four-particle scattering amplitude at zero net momentum [61]. Call
the leading log contribution to the connected contribution to the four-particle scat-
tering amplitude at zero net momentum Γ. This is the sum of the iterated s-channel
diagrams, and it is given by a geometric series:

Γ(ω) =
g

1 − g

8π2

(
log2 V 2

F

Λ
− log2 V 2

F

ω/2 − iπ log V 2
F

ω/2 +
π2

6

) . (5.1)

We have dropped power-suppressed corrections but kept the order-one terms. At this
point, we analytically continue Eq. (5.1) and look for singularities. Poles in the lower
half-plane correspond to unstable excitations (i.e. those with a finite width), those
on the real axis to stable states (with branch cuts corresponding to a continuum of
multiparticle states), and poles in the upper half-plane to instabilities of the system.
Furthermore, the location of the pole in this final scenario determines both the
relaxation time of the unstable ground state and, via the uncertainty principle, the
binding energy of the Cooper pairs [61].

From Eq. (5.1),

gΓ−1 = 1 − g̃ *
,
λ2 − log2 V 2

F

ω/2
− iπ log

V 2
F

ω/2
+
π2

6
+
-
, (5.2)

where
g̃ ≡

g

8π2 (5.3)

and

λ ≡ log
V 2

F

Λ
. (5.4)
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We can write

log2 V 2
F

ω/2
+ iπ log

V 2
F

ω/2
= *

,
log

V 2
F

ω/2
+

iπ
2

+
-

2

+
π2

4
. (5.5)

Complexifying ω = |ω |eiϕ yields the analytic continuation of Eq. (5.2). The zeros
Eq. (5.2) are the locations of the singularities of Γ, and are given by

*
,
log

2V 2
F

|ω |
− iϕ +

iπ
2

+
-

2

= γ, (5.6)

where
γ ≡ λ2 −

1
g̃
−
π2

12
. (5.7)

We should also note that the presence of the logarithm implies that there is a branch
cut in Γ, which we will take to run along the negative real axis.

Since γ is real, the expression in the parentheses in Eq. (5.6) must be along either
the real or imaginary axis. Therefore either ϕ = π/2 or log 2V 2

F

|ω | = 0. If ϕ = π, we
must have

log
2V 2

F

|ω |
= ±
√
γ. (5.8)

Since the expression on the left is real, this can only hold if γ > 0. Solving for ω,
we find two poles:

ω = 2iV 2
F e±γ . (5.9)

If we instead take log 2V 2
F

|ω | = 0, Eq. (5.6) implies

− (ϕ +
π

2
)

2
= γ. (5.10)

Since (ϕ + π
2 )2 > 0, it is clear that this condition can be satisfied only if γ < 0.

Solving for the phase yields
ϕ =

π

2
±
√
−γ, (5.11)

and hence
ω = 2iV 2

F e±i√−γ . (5.12)

This implies that once again there should be two poles. However, instead of being
along the imaginary axis, these poles lie on the circle |ω | = 2V 2

F . If we take the
branch cut to be along the negative real axis, one of the poles will reach the branch
cut once γ < −(π/2)2.



83

When γ = 0 the two poles in Eq. (5.9) and Eq. (5.12) merge, and we are left with

ω = 2iV 2
F . (5.13)

We can summarize the preceding results by writing the location of the poles in Γ(ω)
as

ω± = 2iV 2
F e±

√
γ, (5.14)

with √γ understood to mean i
√
|γ | when γ < 0. Fig. 5.1 demonstrates the positions

of the poles and branch cut for several values of γ.
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Figure 5.1: Locations of the poles in Γ(ω) for different values of γ.

Let us find the form of Γ(ω) in the vicinity of the poles. We will work under the
assumption that γ > −(π/2)2 for now to avoid any issues with the branch cut. Also,
note that taking γ < −(π/2)2 push the pole moving clockwise around the circle as
we decrease γ below the real axis, which would correspond to an unstable resonance.
Define

z = ω − ω±. (5.15)

Then

gΓ−1 = 1 − g̃

λ2 − *

,
log

2V 2
F

z + ω±
+

iπ
2

+
-

2

−
π2

12


. (5.16)

Since we assume that we are in the vicinity of the poles, |z | � |ω± |. Expanding the
logarithm, we see

log
2V 2

F

z + ω±
+

iπ
2
= log

2V 2
F

−iω±
+

z
ω±
= log e∓

√
γ −

z
ω±
= ∓
√
γ −

z
ω±

. (5.17)

As long as γ , 0, the poles remain separate. When γ → 0, they pinch together.
Assume γ , 0 for now. Substituting Eq. (5.17) in Eq. (5.16) then yields

gΓ−1 = 1 − g̃
(

1
g̃
∓ 2
√
γ

)
= ±2

√
γg̃

z
ω±

, (5.18)
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or

Γ(ω) =
±4π2ω±/

√
γ

ω − ω±
(5.19)

in the vicinity of the poles at ω±. Then the residues at ω+ and ω− are

Res(Γ, ω±) =
±4π2ω±
√
γ
=
±8π2V 2

F ie±
√
γ

√
γ

. (5.20)

If γ = 0, we instead have

gΓ−1 = 1 − g̃
(
λ2 −

z2

ω±
−
π2

12

)
(5.21)

with ω+ = ω− = 2iV 2
F . γ = 0 implies

λ2 −
π2

12
=

1
g̃
, (5.22)

so Eq. (5.21) becomes

gΓ−1 =
z2

ω2
±

(5.23)

or

Γ(ω) =
−4V 4

Fg

(ω − 2iV 2
F )2 (5.24)

in the vicinity of the double pole.

For γ > 0, the two poles lie on the imaginary axis. As γ increases, the poles move
away from 2iV 2

F . ω− moves towards the real axis, asymptotically approaching it as
γ becomes large, and ω+ moves to larger imaginary values at an exponential rate.
In both cases the residue is purely imaginary, similar to the situation for the single
pole in the BCS model with a constant coupling. As mentioned above, the position
of the pole on the positive imaginary axis sets the relaxation time of the unstable
Fermi liquid “ground state” and the binding energy of the Cooper pairs, with larger
values for the position of the pole corresponding to shorter relaxation times and
greater binding energies. This would naively imply that the pole at ω+ should be
the determining factor in the system.

However, the magnitude of the imaginary frequency at which that pole is located is
exponentially larger than 2V 2

F for large γ. Since V 2
F is by assumption greater than

or equal to the UV cutoff for our effective theory, it is reasonable to assume that ω+
represents an unphysical pole in this scenario.
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Now consider γ < 0. At γ = 0 both poles merge together at 2iV 2
F . As we lower

γ, √γ becomes imaginary and e±
√
γ is a pure phase with opposite signs for the two

poles. Thus, the poles separate and move along the circle |ω | = 2V 2
F . Eventually it

seems that ω− will merge into the branch cut along the negative real axis, while ω+
will go below the real axis. In any case, for values of γ slightly greater than −(π/2)2,
the two poles are close to the real axis, and hence the relaxation time associated
with these instabilities should be long (and the binding energies small). However,
given that the magnitude of the complex frequency for both of these poles is 2V 2

F ,
it is likely that they are also unphysical. In that case, the only physically relevant
situation is when ω− approaches the real axis along the imaginary axis for large,
positive values of γ.

Remember that a negative coupling corresponds to an attractive potential. In that
case, γ will be greater than zero whenever

log
V 2

F

Λ
+

8π2

|g |
>
π2

12
. (5.25)

The precise value of the order-one constant on the right-hand side of this equation
may be modified by higher-loop effects and the behavior of the coupling away from
the Van Hove point. Eq. (5.25) means that any theory with a negative coupling that
satisfies

|g | >
8π2

π2

12 − log2 V 2
F

Λ

(5.26)

will have a Cooper pairing instability, at least in the iterated one-loop approximation
considered here. The binding energy of the Cooper pairs is approximated by

∆E ∼ 2V 2
F exp *.

,
−

√
log2 V 2

F

Λ
−

8π2

g
−
π2

12
+/
-
. (5.27)

This is of course closely related to the strong coupling scale predicted by the RG
flow in Section 4.8. Note that as long as the effective coupling is negative when the
UV scale obeys

Λ < e−π/
√

12V 2
F ∼ 0.40V 2

F, (5.28)

Eq. (5.26) is automatically satisfied.

Interestingly, the reasoning above implies it is also possible for a positive coupling
to produce a pairing instability. This occurs whenever

|g | >
8π2

log2 V 2
F

Λ
− π2

12

. (5.29)
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If the UV cutoff is orderV 2
F , Eq. (5.29) would necessitate a nonperturbative coupling,

and hence we should not trust the result in that limit. On the other hand, if there is a
large separation of scales between the Fermi velocity and the cutoff of the effective
theory, g could be relatively small and still satisfy the condition for ω− to lie on the
imaginary axis. However, in that case we can write√

λ2 −
1
g̃
−
π2

12
≈ λ −

1
2λ

(
1
g̃
+
π2

12

)
, (5.30)

and therefore the binding energy of the Cooper pairs is approximately

∆E ∼ 2Λ exp
[

1
2λ

(
1
g̃
+
π2

12

)]
. (5.31)

The argument of the exponential is positive. This implies the binding energy must
be outside domain of validity of our theory, which suggests that positive values of
the coupling likely do not actually result in a pairing instability.

In summary, we have found that the only physical pole in the two-particle Green’s
function occurs at

ω− = 2iV 2
F e−

√
γ, (5.32)

which implies a binding energy of

∆E ∼ 2V 2
F exp *.

,
−

√
log2 V 2

F

Λ
−

8π2

g
−
π2

12
+/
-

(5.33)

for the Cooper pairs. This is consistent with our renormalization group analysis.
Higher loop effects are likely tomodify the order-one constant inside the exponential.
There are two interesting features of Eq. (5.33). First, the argument of the exponential
goes like 1/√g when g is small, unlike the behavior in a regular Fermi liquid,
where the binding energy goes like 1/g. Second, the scale being multiplied by the
exponential is V 2

F , as opposed to the usual UV cutoff, which acts as a stand-in for
either the bandwidth of the Debye frequency. Both of these effects imply a larger
binding energy, which is also suggestive of a higher superconducting transition
temperature.
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Figure 5.2: The diagram corresponding to the susceptibility.

5.2 The susceptibility
Let us turn now to the calculation of the particle-hole susceptibility represented
by the diagram in Fig. 5.2. Within standard Fermi liquid theory, this quantity is
omnipresent. This can be traced to its role as the leading contribution in perturbation
theory to the density-density correlator. The density-density correlator in turn
describes the response of various attributes of the system to an external forcing.
The susceptibility also clearly corresponds to the loop integral in the one-loop t-
channel diagram in a theory with constant coupling. Furthermore, as we noted in
Section 3.13, Landau showed that the analytic structure of this diagram at vanishing
energy and momentum relates the forward scattering amplitude to the phenomenon
of zero sound [36]. In one spatial dimension, the presence of a divergence in the
susceptibility at Q = 2KF and zero frequency indicates that the system is unstable
to various density wave states [59, 83–85, 87]. We will see that analogous behavior
appears for Fermi surfaces with Van Hove singularities.

As the response of the system depends on the density-density correlator, we will
focus on a related quantity, the compressibility. From [5], the compressibility
χ(Q, ωQ) is given by

(2π)3δ3(0) χ(Q, ωQ) ≡ −〈ρ(Q, ωQ)ρ(−Q,−ωQ)〉, (5.34)

where ρ is the Fourier transform of the fermion density ψ†ψ(x). As an example
of the importance of this quantity, acoustic excitations correspond to poles in the
compressibility at finiteωQ andQ [88]. We will focus on the case whereωQ is small
in this analysis because we are interested in low energy dynamics of the system. We
calculated this diagram in Section 3.13 in the case of a round Fermi surface. We
will follow a similar approach here.
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We will start by assuming a constant spin-singlet interaction. This is certainly not a
natural assumption (in the sense of effective field theory), since we have already seen
that quantum corrections are guaranteed to alter this condition upon renormalization.
Despite that, it will help us understand the nature of the interaction when we add
the complication of a momentum-dependent coupling. Call the regular part g. In
this approximation, each additional bubble contributes a single factor of gI (Q, ωQ)
to a given diagram, where

I (Q, ωQ) = i
∫

dω d2k

(2π)3
i

ω − ε(k) + iεsign ε(k)

×
i

ω + ωQ − ε(k +Q) + iεsign ε(k +Q)
(5.35)

is the susceptibility. All cutoffs have been suppressed for now.

The sum of all the contributing diagrams is a geometric series, so

χ =
I

1 − gI
. (5.36)

Therefore the poles in the compressibility occur when

I (Q, ωQ) =
1
g
. (5.37)

I is basically the same as the one-loop t-channel amplitude. Performing the energy
contour integral and changing variables to k± yields

I (Q, ωQ) =
1

8π2

∫
d2k

θ(−ε(k))θ(ε(k +Q)) − θ(ε(k))θ(−ε(k +Q))
ε(k +Q) − ε(k) − ωQ + iεsign ε(k)

. (5.38)

We have suppressed the cutoff dependence in the above expression. We will take the
Fermi velocity cutoff to be of the order of the typical Fermi velocity in the non-Van
Hove part of the Fermi surface. Assume ωQ > 0 and Q± > 0. Then the region
allowed by the step functions looks like rectangular strips of width Q+ and Q− along
the Fermi surface as long as both components of Q are ultrasoft. If either is larger
than the ultrasoft scale Λ/VF , the strips will intersect with the energy cutoffs on the
two particles, leading to a complicated shape.

We can perform the same rescaling used in Appendix A to deal with the situation
where the components of Q are not both ultrasoft. Choose Q+ > Q−. By changing
variables to

k+ = ηk′+, k− =
k′−
η
, (5.39)
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Figure 5.3: The integration region for calculating the contribution of bubbles in the
compressibility. The dotted lines show the location of the Fermi surface and Fermi
velocity cutoffs for the propagator with momentum k + Q. The solid lines are for
the propagator with momentum k. Note that the energy cutoffs and the restrictions
they impose on the integration regions are not shown.

where

η =
ε(Q)
√

Q−
=

√
Q+
Q−

, (5.40)

we can effectively set Q+ = Q− =
√
ε(Q) ≡ Q within the integral. This is due to the

O(1, 1) invariance of the problem in the absence of VF . Note that η is greater than
one. Under this change of variables, the step functions enforcing the rapidity cutoff
transform. For example, the one constraining k+ becomes

θ(VF − |k+ |) = θ
(
VF

η
− |k′+ |

)
, (5.41)

the one constraining k− becomes

θ(VF − |k− |) = θ(ηVF − |k′− |), (5.42)

and similarly for those constraining k +Q.
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Writing out the integrand of Eq. (5.38),

1
k+Q + k−Q + ε(Q) − ωQ + iεsign ε(k)

=

(
1

ε(Q)

)
1

k+/Q + k−/Q + 1 − ω∗Q + iεsign ε(k)
, (5.43)

where ω∗Q ≡ ωQ/ε(Q), suggests another change of variables to k̃± = k±/Q. Then
Eq. (5.38) is

I (Q, ωQ) =
1

8π2 (IA − IB + IC − ID), (5.44)

with each integral corresponding to one of the strips labeled in Fig. 5.3. Each of the
these integrals can be written in the form

IA =

∫ V ∗F/η−1

0
dk̃+

∫ 0

−1
dk̃−

f A

k̃+ + k̃− + 1 − ω∗Q ∓ iε
, (5.45)

where
V ∗F ≡

VF

Q
, (5.46)

the sign of iε matches the sign in of the corresponding term in Eq. (5.44), and
f A contains the information about the energy cutoffs. Note that the sign in the
pole prescription is reversed in IB and ID compared to IA. The limits come from
measuring the strips in Fig. 5.3 in units where Q+ = Q− = 1 and remembering that
the cutoff has been scaled to VF/η in the k+ direction and ηVF in the k− direction.
Walking through the various changes of variables shows us

f A = fC = θ(Λ∗ + k̃+ k̃−)θ(Λ∗ − (k̃+ + 1)(k̃− + 1)), (5.47)

f B = f D = θ(Λ∗ − k̃+ k̃−)θ(Λ∗ + (k̃+ + 1)(k̃− + 1)), (5.48)

where
Λ
∗ ≡

Λ

ε(Q)
. (5.49)

We should change variables again to

x = k̃+ + k̃−, (5.50)

y = k̃+ − k̃−, (5.51)

so
k± =

1
2

(x ± y). (5.52)
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Figure 5.4: An example of the integration region for IA in the rotated coordinates x
and y. Λ∗ = 4, V ∗F = 12, and η = 2. The red and green hyperbolas are the energy
cutoffs, while the purple line is the rapidity cutoff.

Then
IA =

1
2

∫
dy dx

1
x + 1 − ω∗Q − iε

. (5.53)

This change of variables is a rotation, flip, and rescaling, and it moves the strip to a
diagonal orientation. The energy cutoffs in terms of the new variables are

f A = fC = θ(4Λ∗ + x2 − y2)θ(4Λ∗ − (x + 2)2 + y2), (5.54)

f B = f D = θ(4Λ∗ − x2 + y2)θ(4Λ∗ + (x + 2)2 − y2). (5.55)

Λ∗ is the cutoff measured in units of ε(Q). Therefore we always have Λ∗ > 1 for
momenta within the domain of applicability of the effective theory. Fig. 5.4 shows
the effects of the energy cutoffs on the rotated integration region.

In these coordinates, it is not hard to see that the hyperbolas describing the energy
cutoffs intersect at x = 2Λ∗ − 1 for IA. Furthermore, the hyperbolas both intersect
the straight edges of the strip at x = Λ∗ − 1. The rapidity cutoff is the line

y = 2
(
V ∗F
η
− 1

)
− x, (5.56)
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where
Vη ≡

V ∗F
η
=

VF

Q+
. (5.57)

The pole in the integrand occurs at the vertical line x = ω∗Q − 1 and must therefore
always occur before the point at which the hyperbolas intersect the edges of the strip.

The integrand approaches its pole at x = ω∗Q − 1. Performing the integration with
the iε prescription is equivalent to choosing an integration contour along the real
axis except for a positively oriented semicircle of vanishing radius passing below
the real axis at the location of the pole. Therefore

1
x + 1 − ω∗Q − iε

= P.V.
1

x + 1 − ω∗Q
+ iπδ(x + 1 − ω∗Q). (5.58)

In fact, it is straightforward to see that the imaginary part of IA is proportional to
the height in the y direction of the rotated strip for constant x = ω∗Q − 1. The fact
that the pole always occurs before the intersection with the hyperbola means we can
ignore the energy cutoffs. Then

Im IA =




πmin (ω∗Q, 1), ω∗Q < Vη − 1

π
(
Vη − 1 − ω∗Q

)
, Vη − 2 ≤ ω∗Q < Vη − 1

0, ω∗Q ≥ Vη − 1,

(5.59)

where we have remembered to divide by 2 due to the change of variables to x and
y. An identical result holds for Im IC with Vη → ηV ∗F . IB and ID do not make
contributions to the imaginary part because we have assumed that ωQ > 0 and
Q± > 0. The roles of these integrals would have been interchanged with IA and IC

if we had assumed the signs of ωQ and ε(Q) differed.

We can recover the results of [63] by letting the Fermi velocity cutoff go to infinity.
Then Im IA = Im IC = πmin (ω∗Q, 1), implying

Im I (Q, ωQ) =
1

4π
min

(
ωQ

ε(Q)
, 1

)
, (5.60)

which agrees with Eq. (14) in [63] up to a difference in normalization.

To determine the real part, we must consider the different possible cases for the
location of the rapidity cutoff relative to the onsets of the effects of the energy
cutoffs. The rapidity cutoff matters whenever Vη is small enough that the line
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impinges on the integration region. Using Eq. (5.56), the requirements for the
rapidity cutoff to modify the integration region will take the form

Vη <
x + y

2
+ 1, (5.61)

where x and y will be the coordinates of some point on the boundary of the strip
with the hyperbolic energy cutoffs included.

The position of the intersection of the hyperbolas is x = 2Λ∗ − 1, y =
√

4Λ∗2 + 1.
Therefore the rapidity cutoff first matters when

Vη <
1
2

(√
4Λ∗2 + 1 + 2Λ∗ + 1

)
≡ 2Λ̄ ≈ 2Λ∗. (5.62)

Similarly, when
Vη < Λ∗ + 1, (5.63)

the rapidity cutoff prevents the upper hyperbola from having any effect. Finally,
when

Vη < Λ∗, (5.64)

neither of the energy cutoffs play a role at all for IA and IB. The role of Vη and ηV ∗F
are reversed for the strips along the k− axis, IC and ID. Therefore the energy cutoffs
are guarantee to drop out of the calculation when

ηV ∗F < Λ∗, (5.65)

which corresponds to the situation when both components of the momentum are
ultrasoft.

We analyze three cases. First, we find the susceptibility in the limit where the energy
cutoff Λ is low enough that the rapidity cutoff has no effect. This corresponds to
the inverse of the condition in Eq. (5.62) above. Second, we analyze the situation
where the rapidity cutoff affects the strips along one axis and not the other. This
corresponds to

Λ∗ + 1
η

< V ∗F < ηΛ∗. (5.66)

This is only possible when Q+ and Q− are sufficiently different. Finally, we consider
the scenario where Eq. (5.65) holds. We will not focus on the “transition zones”
where a given strip is partially affected by the rapidity cutoff and partially by the
energy cutoffs. These situations correspond to artefacts of the hard cutoffs we have
implemented and will not give us insight into the behavior of the system.
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Neither component ultrasoft, V ∗F > 2ηΛ̄
In this case, the rapidity cutoff has no effect. We will cut the integration region into
three pieces,

IA =
1
2

(IA1 + IA2 + IA3), (5.67)

and we will take the principal value in each case, since we have already determined
the imaginary part.

IA1 =

∫ 0

−1
dx

∫ x+2

−x
dy

1
x + 1 − ω∗Q

, (5.68)

IA2 =

∫ Λ∗−1

0
dx

∫ x+2

x
dy

1
x + 1 − ω∗Q

, (5.69)

IA3 =

∫ 2Λ∗−1

Λ∗−1
dx

∫ √
x2+4Λ∗

√
(x+2)2−4Λ∗

dy
1

x + 1 − ω∗Q
. (5.70)

IA1 and IA2 are straightforward:

IA1 =

∫ 0

−1
dx

2(x + 1)
x + 1 − ω∗Q

= 2 *
,
1 + ω∗Q log

������

ω∗Q − 1
ω∗Q

������
+
-
, (5.71)

IA2 =

∫ Λ∗−1

0
dx

x + 2 − x
x + 1 − ω∗Q

= 2(log |Λ∗ − ω∗Q | − log |ω∗Q − 1|). (5.72)

For IA3, we have

IA3 =

∫ 2Λ∗−1

Λ∗−1
dx

√
x2 + 4Λ∗ −

√
(x + 2)2 − 4Λ∗

x + 1 − ω∗Q
. (5.73)

The indefinite integral of the first term is

∫
dx

√
x2 + 4Λ∗

x + 1 − ω∗Q
= x1 + (ω∗Q − 1) log(x1 + x)

+ 2Λ1{log(x + 1 − ω∗Q) − log[4Λ∗ + (ω∗Q − 1)x + 2x1Λ1]}, (5.74)

where
x1 ≡

√
x2 + 4Λ∗ (5.75)

and
Λ1 ≡

1
2

√
4Λ∗ + (ω∗Q − 1)2. (5.76)
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The indefinite integral of the second term is

∫
dx

√
(x + 2)2 − 4Λ∗

x + 1 − ω∗Q

= x2 − 2Λ2 arctan *
,

2 − 4Λ∗ + 2ω∗Q + (1 + ω∗Q)x

2Λ2x2
+
-

+ (1 + ω∗Q) log *
,

2 + x + x2
ω∗Q

+
-
, (5.77)

where
x2 ≡

√
(x + 2)2 − 4Λ∗ (5.78)

and
Λ2 ≡

1
2

√
4Λ∗ − (ω∗Q + 1)2. (5.79)

With this, we can substitute the appropriate limits from Eq. (5.73) and find the
precise result for IA. However, this is not particularly enlightening. Instead, we can
simply take the limit of the various expressions as ω∗Q → 0, corresponding to the
condition for small values of the transfer energy, and Λ∗ → ∞, corresponding to
small values of the transfer momentum in the model without a rapidity cutoff. In
the ω/ε(Q) → 0 limit, we have

IA → 2 + log
Λ∗

2
= 2 + log

Λ

2ε(Q)
. (5.80)

Since IC is identical to IA under the exchange k+ ↔ k−, it must have the same
value (the rapidity cutoff does not come into play). IB requires a bit of work. After
changing variables to k̃±, we have

IB =

∫ −1

−V ∗F/η
dk̃+

∫ 0

−1
dk̃−

f B

k̃+ + k̃− + 1 − ω∗Q + iε
. (5.81)

After changing variables to x and y, the rotated strip has corners at (−2, 0), (−1,−1),
(−Vη,−Vη ), and (−Vη − 1,−Vη + 1). The energy hyperbolas are given by

y = −
√

x2 − 4Λ∗ (5.82)

and
y = −

√
(x + 2)2 + 4Λ∗. (5.83)

The intercepts with the edges of the strip occur at x = −Λ∗ − 1, and the hyperbolas
intercept each other at x = −2Λ∗ − 1. Then we have

IB =
1
2

(IB1 + IB2 + IB3), (5.84)
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IB1 =

∫ −Λ∗−1

−2Λ∗−1
dx

∫ −
√

x2−4Λ∗

−

√
(x+2)2+4Λ∗

dy
1

x + 1 − ω∗Q
, (5.85)

IB2 =

∫ −2

−Λ∗−1
dx

∫ x+2

x
dy

1
x + 1 − ω∗Q

, (5.86)

IB3 =

∫ −1

−2
dx

∫ −2−x

x
dy

1
x + 1 − ω∗Q

. (5.87)

Evaluating IB2 and IB3 is straightforward:

IB2 =

∫ −2

−Λ∗−1
dx

2
x + 1 − ω∗Q

= 2(log |ω∗Q + 1| − log |Λ∗ + ω∗Q |), (5.88)

IB3 =

∫ −1

−2
dx
−2 − 2x

x + 1 − ω∗Q
= −2 *

,
1 + ω∗Q log

������

ω∗Q

ω∗Q + 1

������
+
-
. (5.89)

IB1 is ugly,

IB1 =

∫ −Λ∗−1

−2Λ∗−1
dx

√
(x + 2)2 + 4Λ∗ −

√
x2 − 4Λ∗

x + 1 − ω∗Q
, (5.90)

but if we change variables to x′ = −x − 2, we see that it is actually given by

IB1 =

∫ 2Λ∗−1

Λ∗−1
dx

√
(x + 2)2 − 4Λ∗ −

√
x2 + 4Λ∗

x + 1 + ω∗Q
, (5.91)

which is identical to −IA3 with ω∗Q → −ω
∗
Q.

Under the current circumstances, the rapidity cutoffs do not matter, which means
that ID has the same value as IB. Then

Re I (Q, ωQ) =
1

8π2 (IA1 + IA2 + IA3 − IB1 − IB2 − IB3), (5.92)

where the factors of one half in Eq. (5.67) and Eq. (5.84) have been canceled by IC

and ID having the same values as IA and IB. Taking the limit ω → 0, Λ∗ → ∞ of
the expressions found above using a computer algebra system, we find

I (Q, ωQ) =
1

2π2

(
2 + log

Λ

2ε(Q)
+

iπ
2

ω

ε(Q)

)
, (5.93)

plus terms of order ε(Q)/Λ or ω/Λ, in the ω/ε(Q) → 0 limit for small ε(Q) when
both components ofQ are not ultrasoft. There is no cancellation between the positive
and negative strips, and they each contribute half of the real part of Eq. (5.93).
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One component ultrasoft
The condition in Eq. (5.66) implies that the strip along the original k+ axis will be
affected by the rapidity cutoff. Thus, the values of the real parts of IA and IB will be
modified from those found in the previous section. Fortunately, the strips maintain a
rectangular shape under the currently considered circumstances, greatly simplifying
the analysis.

We again cut IA into three pieces,

IA =
1
2

(IA1 + IA2 + IA3), (5.94)

with the same IA1 from before, Eq. (5.68), and

IA2 =

∫ Vη−2

0
dx

∫ x+2

x
dy

1
x + 1 − ω∗Q

, (5.95)

IA3 =

∫ Vη−1

Vη−2
dx

∫ 2Vη−2−x

x
dy

1
x + 1 − ω∗Q

, (5.96)

where as before we take the principal value. The expression for IA2 here is the same
as Eq. (5.69) with Λ∗ → Vη − 1, so

IA2 = 2(log |Vη − ω∗Q − 1| − log |ω∗Q − 1|). (5.97)

For IA3, we have

IA3 = −2
∫ Vη−1

Vη−2
dx

x + 1 − Vη
x + 1 − ω∗Q

= −2 *
,
1 + (ω∗Q − Vη ) log

������

Vη − ω∗Q
Vη − ω∗Q − 1

������
+
-
. (5.98)

Summing these gives us

IA = ω
∗
Q log

������

ω∗Q − 1
ω∗Q

������
+ log

������

Vη − ω∗Q − 1
ω∗Q − 1

������
+ (Vη − ω∗Q) log

������

Vη − ω∗Q
Vη − ω∗Q − 1

������
. (5.99)

The calculation of IB is similar. We write

IB =
1
2

(IB1 + IB2 + IB3), (5.100)

with

IB1 =

∫ −Vη

−Vη−1
dx

∫ x+2

−2Vη−x
dy

1
x + 1 − ω∗Q

, (5.101)

IB2 =

∫ −2

−Vη
dx

∫ x+2

x
dy

1
x + 1 − ω∗Q

, (5.102)
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and IB3 from Eq. (5.89). We find

IB1 = 2 + 2(Vη + ω∗Q) log
������

Vη + ω∗Q − 1
Vη + ω∗Q

������
(5.103)

and

IB2 = 2 log
������

ω∗Q + 1
Vη + ω∗Q − 1

������
. (5.104)

Summing the contributions gives us

IB = (Vη +ω∗Q) log
������

Vη + ω∗Q − 1
Vη + ω∗Q

������
+ log

������

ω∗Q + 1
Vη + ω∗Q − 1

������
−ω∗Q log

������

ω∗Q

ω∗Q + 1

������
. (5.105)

Taking ω → 0 yields

IA − IB = 2[Vη log Vη − (Vη − 1) log (Vη − 1)]. (5.106)

We are considering the limit where Q− is ultrasoft and Q+ is not. There is nothing
inconsistent with taking the Λ∗ → ∞ limit with this condition in place (we simply
decrease Q− at fixed Q+), which allows us to compare directly to the scenario
described by Eq. (5.93). As mentioned above, the contributions from IC and ID are
one half the result with no rapidity cutoff. Realizing that the imaginary part should
not be affected because we are taking the ω → 0 limit, we have

I (Q, ωQ) =
1

4π2

[
VF

Q+
log

VF

Q+
−

(
VF

Q+
− 1

)
log

(
VF

Q+
− 1

)
+2 + log

Λ

2ε(Q)
+ iπ

ω

ε(Q)

]
, (5.107)

plus terms of order ε(Q)/Λ or ω/Λ, in the ω/ε(Q) → 0 limit for small ε(Q) when
only one component of Q (in this case, Q−) is ultrasoft.

Both components ultrasoft
When both components are ultrasoft, IC and ID are given by expressions identical
to IA and IB in the last section but with Q+ ↔ Q−. The solution is therefore

I (Q, ωQ) =
1

4π2

[
VF

Q+
log

VF

Q+
−

(
VF

Q+
− 1

)
log

(
VF

Q+
− 1

)
+

VF

Q−
log

VF

Q−
−

(
VF

Q−
− 1

)
log

(
VF

Q−
− 1

)
+ iπ

ω

ε(Q)

]
, (5.108)
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plus terms of order ε(Q)/Λ or ω/Λ, in the ω/ε(Q) → 0 limit for ultrasoft Q.
Dropping terms of order Q±/VF gives us

VF

Q+
log

VF

Q+
−

(
VF

Q+
− 1

)
log

(
VF

Q+
− 1

)
→ log

VF

Q+
+ 1, (5.109)

so Eq. (5.108) becomes

I (Q, ωQ) =
1

4π2


log

V 2
F

ε(Q)
+ 2 + iπ

ω

ε(Q)


. (5.110)

We should regard the imaginary part as vanishingly small but positive in this limit.

5.3 Discussion of susceptibility
Eq. (5.93), Eq. (5.107), and Eq. (5.108) are the results for the susceptibility when
zero, one, or two of the components of the momentum are ultrasoft. Perhaps
unsurprisingly, we see that the rapidity cutoff and the UV cutoff effectively exchange
roles as we vary the size of the components of the momentum. The real part of
the susceptibility diverges for small values of the transfer momentum with ω = 0 in
each case. We may summarize the leading log results:

I (Q, ωQ) =
1

4π2

(
log

Λ

Q+max (Q−,Λ/VF )
+ log

Λ

Q−max (Q+,Λ/VF )

)
(5.111)

as ωQ → 0.

In fact, the form we have found for the susceptibility is basically the only choice
consistent with the t-channel beta function calculation in Appendix A. We found in
that calculation that the log derivative of the susceptibility is nonzero for Q outside
the ultrasoft region. This must persist in the soft region if we take the rapidity
cutoff to infinity. Therefore the only energy scale that can show up in the logarithm
once we take ω → 0 is ε(Q), and the divergent part of the susceptibility must be
proportional to log(Λ/ε(Q)). As we reduce the momentum into the ultrasoft region,
Λ should be eliminated in favor of the energy scale set by the rapidity cutoff, V 2

F .
We see that this is exactly what happens.

It is straightforward to see how this occurs within the calculation. If we ignore the
complicated curved region of the strip along the k+ direction that depends on the
energy cutoffs, we see that the remaining rectangular region extends out toΛ∗−1 in
the x − y coordinate system. The integral over this long strip (when ε(Q) is small)
is the origin of the logarithmic divergence. As we reduce the size of Q−, the end of
the rectangle is replaced with Vη − 1. Therefore we see that the effect of the rapidity
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cutoff is precisely to substitute VF/Q+ for Λ/ε(Q) when Q− is small for one of the
strips, reducing the strength of the divergent log.

The fact that we can trace the appearance of ε(Q) in the divergent logarithm to a
paucity of alternative energy scales strongly suggests that introducing another scale,
namely the chemical potential, will alter our results. µ will act to regulate the
divergences at small values of ε(Q), so each instance of ε(Q) in the ω → 0 limit of
the susceptibility found above will be replaced with max (ε(Q), µ). This is actually
also straightforward to see from the calculation. If we include a chemical potential,
the step functions constraining the signs of ε for each of the loop momenta will take
the form θ(ε(k) − µ). Note that the integrand will remain unchanged, because the
µ in the denominators of the propagators will cancel against each other when we
perform the contour integration over the energy. The form of these step functions is
exactly the same as those which appear in the step functions related to the UV cutoff,
but with µ taking the place of Λ and with the signs reversed. These will therefore
set the lower limits on the strip integrals. The fact that µ shows up in exactly the
same manner as Λ (up to a sign) means that we can approximately write down the
lower limit that shows up in the strip integrals in the transformed coordinates; it
must basically be µ/ε(Q). The shape of the strip will also be slightly deformed,
but this will be a lower order effect. Therefore we immediately see that the large
logarithm from the strip will be proportional to∫ Λ∗

µ∗
dx

1
x + 1 − ω∗Q

∼ log
Λ∗

µ∗
= log

Λ

µ
, (5.112)

where µ∗ ≡ µ/ε(Q), when µ is large compared with ε(Q).

This is consistent with the intuition that once the scale µ becomes comparable to
the UV cutoff, the Fermi surface will start to behave in a manner more similar to
that of a round Fermi surface. In that case, the replacement ε(Q) → µ in Eq. (5.93)
(the theory without the rapidity cutoff) will eliminate the logarithmic divergence in
the ω → 0 limit of the susceptibility entirely. There will be a residual finite part,
but that is to be expected — the fact that the ω → 0 limit yields a nonzero result for
the round Fermi surface is intimately connected to the phenomenon of zero sound.

This argument also allows us to see what happens to the value of the large log for
an ultrasoft transfer momentum with a chemical potential. The integral analogous
to Eq. (5.112) will look like∫ Vη

µ∗
dx

1
x + 1 − ω∗Q

∼ log
Vη
µ∗
= log

VFQ−
µ

(5.113)
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Figure 5.5: The integration region for the strips is modified in the presence of finite
chemical potential.

for one of the strips and
log

VFQ+
µ

(5.114)

for the other, so summing them will yield

log
V 2

Fε(Q)

µ2 . (5.115)

Since by definition ultrasoft momenta satisfy Q± < Λ/VF , the large log from
Eq. (5.115) is strictly less than that of Eq. (5.112) and disappears in the ε(Q) → 0
limit, confirming the intuition that the system should act like a round Fermi surface
in the limit of large µ.

5.4 Density wave instability
When we take the chemical potential to zero, there is a divergence in the real part of
the susceptibility at zero frequency. Due to the relationship with the density-density
correlator and the response of the system to external perturbations, this behavior is
usually taken as a sign of the instability of the ground state to a density wave state.
For example, the divergence of the susceptibility in one spatial dimension for zero
frequency andQ = 2KF is the hallmark of the charge-density wave in one dimension
[84].
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In the more physical case of a small but finite chemical potential, we see that the
divergence is regulated. However, we still find a pole in the sum of the iterated t-
channel bubble diagrams if there is a sufficiently large separation of scales between
the UV cutoff and the chemical potential. Including the effects of the chemical
potential, we may write

I (Q, ωQ) ∼
C(Q)
4π2 log

Λ

min (ε(Q), µ)
(5.116)

where C(Q) varies between approximately one for generic collinear Q+ and two
when the large log approaches its maximum value as Q+ approaches the ultrasoft
region. The condition for a pole to exist in the summed bubble diagram, Eq. (5.37),
then implies that the system should be unstable to a density-wave state when

µ . exp
(
−

2π2

g

)
. (5.117)

Note that the sign in this expression implies that the instability occurs for positive
values of the coupling, unlike the instability to a superconducting state.

There are several caveats to our conclusion regarding the instability of the system.
First, we have totally ignored the momentum dependence of the couplings. Second,
and relatedly, there is no reason to expect that the bubble sum gives a particularly
good approximation to the true compressibility in this situation. Unlike the case of
the round Fermi surface, there is no power-suppression of the higher-loop diagrams
for generic collinear scattering. We may say that this one-loop result provides
evidence for the existence an instability but not conclusive evidence. The nature of
the order parameter describing this state, and features of the resulting theory (such
as the opening of a gap in the spectrum of the Fermi liquid), will be left to future
work. Possible techniques for that analysis include constructing a mean field theory
for the order parameter describing the broken symmetry of the new phase [59, 85]
or creating a new effective theory for the order parameter field by integrating out the
quasiparticle fields as in Hertz’s treatment of quantum critical phenomena [59, 89].

Our results are broadly consistent with the conclusion in [85] that the half-filled
Hubbard model, the prototypical example of a system with Van Hove singularities,
is unstable to the generation of a charge- or spin-density wave, andwith the treatment
in [90], where divergent susceptibilities are also found in a system with several Van
Hove points. In those treatments, it is stated that the instability is due to the existence
of a momentum space nesting vector in the half-filled Hubbard model. While we
do not have a single nesting vector for our Fermi surface, there is a continuous form
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of nesting: translations in momentum space along the Fermi surface take one leg of
the Fermi surface into itself (up to issues involving the Fermi velocity cutoff, which
should be small if the translations are sufficiently small). This is indeed partially
responsible for the phenomenon observed here.

We mention in passing that various authors find divergent susceptibilities from the
spin correlators in the Hubbard model [7, 9, 91] and more generally in the presence
of Van Hove singularities [92]. These divergent susceptibilities are then indicative
of the existence of ferromagnetic or antiferromagnetic order [93]. We have not made
an attempt to analyze the spin correlators here, so we cannot comment on whether
this behavior is to be expected within our effective theory, or what role it may have
in competing with superconductivity.
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C h a p t e r 6

CONCLUSIONS

This thesis reviews the tools of effective field theory and applies them to systems
with Fermi surfaces. It clarifies several issues in the traditional approach to this
subject by using some modern methods from EFTs describing elementary particles.
It also constructs a rich and complicated effective theory for Fermi surfaces with a
Van Hove singularity and explores some of the implications.

In Chapter 2, we walk through a toy model of an effective field theory to see
the renormalization group in action. We find that it is possible to relate certain
observables of our original UV theory to those in another IR theory with different
values of the coupling constants. As a result of the changing values of the coupling
constants, the calculation of the low energy observables of the original theory
become simple in terms of the new description. We find that creating the effective
theory in general generates all interactions between the effective fields, but that
the effects of most of these interactions are suppressed in a way that preserves the
predictive power of the theory to any given order in the ratio of the IR scale to the
UV scale. We saw that this expansion of the interactions corresponds to the scaling
dimension we assigned to the fields, but that the scaling is modified by the effects
of quantum corrections from integrating out high energy modes. We discuss how it
is possible to relate the predictions of the effective theory to knowledge of the full
theory from which it descends via the matching procedure in terms of Polchinski’s
argument about the RG. Finally, we note how the procedure can be generalized by
altering the scaling procedure and scaling fields in various regions of momentum
space differently.

Chapter 3 applies the ideas of Chapter 2 to a system of fermionic quasiparticles at
finite density with a circular Fermi surface in two spatial dimensions. We find that
previous work on the subject tacitly ignores the issue of momentum conservation
when the allowed range of momenta around the Fermi surface is nonvanishing, and
that the appropriate way to address this is to bin the modes in momentum space in
analogy to theories like NRQCD. In this formalism, we find that all interactions are
technically irrelevant, but that the theory does not look free in the IR because of
anomalous loop enhancements stemming from the large size of the Fermi surface



105

from the perspective of the IR theory. We comment on the instability of the
resulting theory to a superconducting ground state and explore the phenomenon of
zero sound. Finally, we comment upon several subtleties related to the nonvanishing
contributions to the beta function for small transfer momentum.

Building upon this intuition, we construct an effective field theory in Chapter 4 for
Fermi surfaces in two spatial dimensions that pass through a Van Hove singularity,
a point where the Fermi velocity vanishes. This situation is particularly relevant to
the cuprate superconductors and the understanding of the strange metal phase above
the superconducting transition. We find that the subtlety discussed in Chapter 3
becomes a full-blown complication that vastly modifies the theory, allowing for
a much greater range of allowed interactions. Despite this complication, we find
that double logs associated with the back-to-back interactions with quasiparticles
localized in momentum space around the Van Hove singularity result in certain
universal behaviors. In the process, we address lingering questions about the nature
of these double logs and nonlocal operators generated by the RG flow. Finally, we
comment on the deviations from standard Fermi liquid behavior for the modes along
the long, flat stretches of the Fermi surface proximal to the Van Hove singularity.

Chapter 5 explores in more detail the possible instabilities of the Van Hove EFT by
analyzing the analytic structure of several correlators computable using perturbation
theory in the EFT.We find that double log behavior generically leads to the existence
of two poles in the two-particle Green’s function, but that these poles are often
unphysical and outside the domain of validity of the effective theory. However,
when the coupling is attractive in the vicinity of the Van Hove singularity, we find
that one of the poles is physical and represents the instability of the system to a
superconducting ground state, in agreement with the RG analysis in Chapter 4. We
also discover a divergence in the susceptibility, a hallmark of the instability to a
density-wave state. We find that this divergence is regulated by the presence of a
finite chemical potential moving the Fermi surface slightly away from the Van Hove
singularity, but that the instability is likely to persist for relatively weak repulsive
couplings as long as the separation of scales between the chemical potential and the
UV cutoff of the theory is large.
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A p p e n d i x A

THE ONE-LOOP BETA FUNCTION FOR THE VAN HOVE CASE

We consider only the spin-singlet interaction. The interaction part of the Lagrangian
is

g

4
εabε cdψ†aψ

†

bψcψd . (A.1)

The tree-level four-point amplitude is

Sabcdg, (A.2)

where
Sabcd = εabε cd (A.3)

is the spin structure of the amplitude. Momentum conservation means the coupling
is a function of three momenta (six real variables) g(p1, p2, p3) which we take to be
symmetric under p1 ↔ p2 and p3 ↔ p1 + p2 − p3.

The one-loop four-point amplitude has contributions from the s, t, and u channels.
To understand the spin dependence and symmetry factors, let us momentarily take
the coupling to be a constant and analyze the four-point correlation function in
position space at tree level and one-loop. From this, we will be able to extract the
contributions to the scattering amplitude. The tree level result is the connected part
of

Gtree =
∑
α,β,γ,δ

1
4

igεαβεγδ〈abα† β†γδc†d†〉, (A.4)

where we have labeled the fields by their spin indices alone, reserving Greek indices
for terms corresponding to the insertion of the interaction vertex, and suppressed
the position-space arguments of the fields. The brackets should be interpreted to
denote a time-ordered product of the fields in the interaction picture.

UsingWick’s theorem, we can right the time ordered product as a sum of products of
normal-ordered terms (whose expectation vanishes) and contractions of fields cor-
responding to free-field propagators [19]. Only the fully contracted terms survive.
We use the convention

N (ψ1ψ2ψ
†

3ψ
†

4) = − ψ1ψ
†

3 N (ψ2ψ
†

4) (A.5)
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to properly deal with the exchanges of the anticommuting fields. Also note that
we are only interested in the fully connected topology of contractions, as the others
represent vacuum bubbles whose effects are canceled by the normalization of the
interacting Green’s function.

The propagator just involves a Kronecker delta for the spins, so

〈abα† β†γδc†d†〉 = (−12)(δaαδbβδcγδdδ − δaαδbβδcγδdδ

− δaαδbβδcγδdδ + δaαδbβδcγδdδ) × (position space). (A.6)

We have explicitly written out the antisymmetrization of the spin labels here that
occurs due to the fact that we have found the time-ordered product of fermionic
fields. “Position space” represents the part of the function involving the position
space propagators. Since we are looking at the tree-level contribution here, there are
no loop integrals involved. Therefore we discard the position space from the external
propagators to find the contribution to the amplitude. Finally, the delta functions
in Eq. (A.6) contract against the antisymmetric symbols from the interaction in
Eq. (A.4) to yield

iAtree = 4 ×
1
4

iεabε cdg = iεabε cdg. (A.7)

Let us turn now to the one-loop corrections. The contribution to the Green’s function
is

GS =
∑ 1

2!

(
1
4

ig
)2
εαβεγδε ρσε τλ〈abα† β†γδρ†σ†τλc†d†〉S, (A.8)

where the sum is over the Greek indices and the subscript S denotes that we will
only include the contractions with the correct topology for the s-channel diagram.
This means that we only include diagrams where a and b are contracted against
fields from a single vertex (at a single spacetime point) and c† and d† are contracted
against fields at the other vertex, with a pair of contractions spanning the two vertices.
Fig. A.1a demonstrates an example of one such contraction.

The antisymmetry of the contractions in the normal ordering and the antisymmetric
symbols ensure that each contraction with the same topology contributes with the
same sign. It requires three “swaps” for the daggered and undaggered fields to be
next to each other: b ↔ α, δ ↔ ρ†, and λ ↔ c†. Therefore there is an overall
sign of (−1)3 from the normal ordering process. Now we can count contractions.
There are four ways to contract a against the daggered vertex fields. Once this is
chosen, there is only one way to contract b against the other daggered field in the
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b

a

d†

c†

β†
α†

δ

γ

σ†
ρ† τ

λ

(a) s-channel
b

a

d†

c†

σ†λ
ρ†τ

α†γ
δβ†

(b) t-channel

Figure A.1: Examples of topologies of contractions for different diagrams.

vertex. Then there are two ways to contract d† against the undaggered fields on the
remaining vertex, and one way to contract c† once that is chosen. Finally, there are
two ways to contract the remaining fields in the vertices with each other in the loop,
so we have a total of

4 × 2 × 2 = 16 (A.9)

possible contractions for this topology.

To compute the sum over the spin indices, consider the following representative
contraction:

〈abα† β†γδρ†σ†τλc†d†〉. (A.10)

The spin sum becomes

εabε cd

∑
ε ρσε τλδγρδδσ = 2εabε cd . (A.11)

Note that the s channel has the same spin-singlet structure as the tree-level amplitude.
Putting this together, we have

GS = 16 ×
1
2!

(
1
4

ig
)2
× 2εabε cd × (−1)3 × (position space). (A.12)

Amputating and going to momentum space yields the following loop integral:

Iloop,S =

∫
dω d2k

(2π)3
i

ω − ε(k) + iεsign ε(k)

×
i

E − ω − ε(K − k) + iεsign ε(K − k)
, (A.13)
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where E = E1 + E2 is the net incoming energy and K = p1 + p2 is the net incoming
momentum. We can write this as

Iloop,S = −i2
∫

d2k

(2π)2 Iω,S, (A.14)

where
Iω,S =

∫
dω
2π

1
ω − ωA

1
ω − ωB

(A.15)

and
ωA = ε(k) − iεsign ε(k), (A.16)

ωB = −ε(K − k) + E + iεsign ε(K − k). (A.17)

For Iω,S to yield a nonzero result, the poles must lie on either side of the real axis,
because otherwise we could simply close the contour on the opposite side from the
poles. Choosing to close the contour above,

Iω,S =
2πi
2π

(
θ(ImωA)θ(−ImωB)

ωA − ωB
+
θ(ImωB)θ(−ImωA)

ωB − ωA

)
(A.18)

because 1/(ω−ωB) is analytic in the upper half-plane when ImωB < 0 and similarly
for ωA. Then

Iω,S = −i
(
θ(ε(k))θ(ε(K − k)) − θ(−ε(k))θ(−ε(K − k))

ωA − ωB

)
. (A.19)

Next, it is convenient to change variables to k± = kx ± ky, so

kx =
1
2

(k+ + k−), (A.20)

ky =
1
2

(k+ − k−). (A.21)

The Jacobian determinant associated with this is
�����
∂kx

∂k+

∂ky
∂k−
−
∂kx

∂k−

∂ky
∂k+

�����
=

1
2
. (A.22)

Combining the various expressions together, we find

iAS = (−1)iεabε cdg
2

×
1

8π2

∫
dk+ dk−

θ(ε(k))θ(ε(K − k)) − θ(−ε(k))θ(−ε(K − k))
ε(k) + ε(K − k) − E − iεsign ε(k)

. (A.23)

Thus as long as the external energy E is negligible the integral is positive, and
therefore the s-channel result is negative compared to tree level amplitude. This
will then imply a positive contribution to the beta function.
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The t-channel diagram differs only in the topology of contractions. We will use as
our “reference” the contraction given in Fig. (A.1b). It requires 12 swaps to place
the contracted fields next to each other, so there is no negative sign from the Wick
contractions. Let us count the number of topologically equivalent contractions.
There are four ways to contract a against either of the daggered fields in either
vertex. Then there are two ways to contract b against the daggered fields in the
other vertex. There are two ways to contract c† against the undaggered fields in the
vertex that a is contracted against, and two ways to contract d† against the vertex b is
contracted against. Finally, there is only one way to contract the remaining vertices
in a loop. This gives us

4 × 2 × 2 × 2 = 32 (A.24)

ways to contract the fields and match the topology of the diagram. As before, the
antisymmetry of the ε in the interaction guarantees that all contractions give the
same sign.

The spin sum for the t-channel diagram is∑
εaβε cδε δbε βd =

∑
β

εaβε βd

∑
δ

ε cδε δb = (−δad)(−δcb). (A.25)

We can write this as

δadδbc =
1
2

(δacδbd + δadδbc) −
1
2

(δacδbd − δadδbc)

=
1
2

(δacδbd + δadδbc) −
1
2
εabε cd . (A.26)

The first term is a contribution to the spin-triplet interaction and the second is a
contribution to the spin-singlet interaction. We will see below that the u-channel
diagram will produce a contribution to the spin-triplet interaction with the opposite
sign. This implies that in the case of a momentum-independent coupling, contribu-
tions to the beta function from the t- and u-channels for the spin-triplet interaction
cancel if we constrain our initial Lagrangian to only include a spin-singlet interac-
tion. In other words, the assumption of a purely spin-singlet interaction is stable
under the RG flow if the coupling can be regarded as a momentum-independent con-
stant. As we will see, this assumption must fail in the case at hand, so in principle a
spin-triplet interaction should be radiatively generated even if it is not present in the
UV Lagrangian. Nonetheless, to simplify this analysis, we ignore the spin-triplet
contributions entirely.
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Isolating the singlet contribution, amputating, and going to momentum space yields

iAT = (−1)12 × 32 ×
1
2!

(
1
4

ig
)2
× (−1) ×

1
2
εabε cd × Iloop,T. (A.27)

We can write
Iloop,T = i2

∫
d2k

(2π)2 Iω,T, (A.28)

where
Iω,T =

∫
dω
2π

1
ω − ωC

1
ω − ωD

, (A.29)

ωC = ε(k) − iεsign ε(k), (A.30)

ωD = ε(k +Q) − ET − iεsign ε(k +Q). (A.31)

Q = p1 − p3 is the transfer momentum and ET = E1 − E3 is the transfer energy. This
is the same form as Iω,S, and we find

Iω,T = (−i)
(
θ(ε(k))θ(−ε(k +Q)) − θ(−ε(k))θ(ε(k +Q))

ωC − ωD

)
. (A.32)

As before, there is a final factor of 1/2 from changing variables to k±. Combining
the expressions, we find the contribution to the spin-singlet interaction is

iAT = iεabε cdg
2

×
1

16π2

∫
dk+ dk−

θ(ε(k))θ(−ε(k +Q)) − θ(−ε(k))θ(ε(k +Q))
ε(k) − ε(k +Q) + ET − iεsign ε(k)

. (A.33)

As long as the transfer energy ET = E1 − E3 is negligible, the t-channel is positive
compared to the tree level contribution.

For the u-channel, there is a factor of −1 from swapping c ↔ d in the Green’s
function. However, the spin sum becomes∑

βδ

= εaβεdδε δbε βc = δacδbd =
1
2

(δacδbd + δadδbc) +
1
2
εabε cd . (A.34)

This implies that the overall contribution to the singlet is the same sign as for the
t-channel diagramwhile the contribution to triplet has the opposite sign as promised.
Isolating the singlet then gives us

iAU = iεabε cdg
2

×
1

16π2

∫
dk+ dk−

θ(ε(k))θ(−ε(k +Q′)) − θ(−ε(k))θ(ε(k +Q′))
ε(k) − ε(k +Q′) + EU − iεsign ε(k)

, (A.35)



118

where Q′ = p3 − p2 and EU = E3 − E2.

Since we have isolated only the spin-singlet contributions from the t- and u-channel
diagrams and the s-channel diagram only makes a spin-singlet contribution, we have
found that the full one-loop amplitude takes the form

Aabcd = Sabcd (AS +AT +AU). (A.36)

We will focus on the s and t channels because the u channel is identical to the t

channel if we replace Q → Q′ and ET → EU. Besides the momentum dependence
of the coupling, the s- and t-channel diagrams only depend on the external momenta
through K = p1 + p2 and Q = p1 − p3, respectively.

Restoring the momentum dependence of the coupling yields

AS = −
1

8π2

∫
d2k

θ(ε(k))θ(ε(K − k)) − θ(−ε(k))θ(−ε(K − k))
ε(k) + ε(K − k) − E − iε sign ε(k)

× g(p1, p2, k)g(k, K − k, p3) f (k) f (K − k). (A.37)

f contains all information regarding the cutoffs:

f (k) = θ(Λ − |ε(k) |)θ(Υ − |k+ |)θ(Υ − |k− |). (A.38)

Similarly, the t-channel amplitude is

AT =
1

16π2

∫
d2k

θ(ε(k))θ(−ε(k +Q)) − θ(−ε(k))θ(ε(k +Q))
ε(k) − ε(k +Q) + ET − iε sign ε(k)

× g(p1, k, p3)g(k +Q, p2, k) f (k) f (k +Q). (A.39)

To compute the contribution to the beta function, we only need the logarithmic
derivative of the these expressions with respect to Λ. Note that

d
dΛ

θ(Λ − |ε(k) |) = δ(Λ − ε(k)) + δ(Λ + ε(k)). (A.40)

The delta function implies that each term in the beta function reduces to a one-
dimensional integral. Next,

d
dΛ

f (k) f (K − k)

= [δ(Λ − ε(k)) + δ(Λ + ε(k))]θ(Υ − |k+ |)θ(Υ − |k− |) f (K − k)

+ (k ↔ K − k). (A.41)
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These two terms are exchanged under the change of variables k′ = k−K , and the rest
of the integrand in (A.37) (including the coupling functions, due to their exchange
symmetry) is invariant under this exchange. Then

Λ
dAS
dΛ
= −

1
4π2 (IS+ + IS−), (A.42)

Λ
dAT
dΛ
=

1
8π2 (IT+ + IT−), (A.43)

where

IS± ≡ ±Λ

∫
d2k

δ(Λ ∓ ε(k))θ(±ε(K − k))θ(Υ − |k+ |)θ(Υ − |k− |) f (k − K )
ε(k) + ε(K − k)

× g(p1, p2, k)g(k, K − k, p3), (A.44)

IT± ≡ ±
1
2
Λ

∫
d2k

δ(Λ ∓ ε(k))θ(∓ε(k +Q))θ(Υ − |k+ |)θ(Υ − |k− |) f (k +Q)
ε(k) − ε(k +Q)

× [g(p1, k, p3)g(k +Q, p2, k) + g(p1,−k −Q, p3)g(−k, p2,−k −Q)]. (A.45)

We have dropped E and ET because they lead to power-suppressed terms in the beta
function, and the iε term because the delta functions ensure the denominator never
approaches zero. The remaining integrals are similar to each other. They involve
integrating over the one-dimensional space where one of the particles in the loop
has ε = ±Λ and the other has either the same sign for ε (for the s channel) or the
opposite sign (for the t channel).

Define P to be equal to K for the s-channel diagram and −Q for the t-channel
diagram. We exploit the O(1, 1) invariance of the dispersion to replace P by
P̃ =
√
|ε(P) |(sign P+, sign P−) in each of the integrals by changing variables:

k+ = k′+/η, (A.46)

k− = ηk′−, (A.47)

with

η ≡

√
|ε(P) |
|P+ |

=

√
�����
P−
P+

�����
. (A.48)

We may take η to be less than one by exchanging k+ and k− if necessary. The
step functions involving the rapidity cutoff Υ are not invariant under this change of
variables. In particular,

θ(Υ − |k+ |) → θ(ηΥ − |k+ |), (A.49)
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θ(Υ − |k− |) → θ(Υ/η − |k− |), (A.50)

θ(Υ − |k+ − P+ |) → θ(ηΥ − |k+ −
√
|ε(P) | sign P+ |), (A.51)

θ(Υ − |k− − P− |) → θ(Υ/η − |k− −
√
|ε(P) | sign P− |). (A.52)

These set the limits of integration on the remaining k+ integrals (once we have
performed the k− integrals with the delta function) if the energy constraints do not
set stricter limits. With that in mind, let us first analyze the limits in the absence of
a rapidity cutoff.

Integration limits
We can write generic expressions for the various possible integration limits in each
of the four remaining integrals. As before, take P to be either K or −Q. Define

s± = sign P±, (A.53)

sk =




1 for IS+, IT+,

−1 for IS−, IT−,
(A.54)

sp =




1 for IS+, IT−,

−1 for IS−, IT+.
(A.55)

In terms of these quantities, the four integrals all contain the following factor in the
integrand:

δ(ε(k) − skΛ)θ(spε(k − P))θ(Λ − spε(k − P)). (A.56)

We have used the fact that ε(p) = ε(−p) here. This factor restricts the values of
ε(k) and ε(k − P). It implies that once we use the delta function to perform the
k− integral, the remaining limits of the k+ integral must come from the intersection
of the hyperbola ε(k) = skΛ with either the hyperbola ε(k − P) = spΛ or the
degenerate hyperbola ε(k −P) = 0, which is equivalent to the pair of lines k± = P±.
Therefore we should simply find the locations of these intersections.

The intersection with the lines occur at

λA ≡ s+
√
|ε(P) |, (A.57)

and
λB ≡ s−sk

Λ
√
|ε(P) |

. (A.58)
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These two values will then always serve as limits for the remaining k+ integral. Note
that

λA =
s+s−skΛ

λB
. (A.59)

This is a result of the k+ ↔ k− symmetry of the integrals (without a rapidity cutoff)
combined with the fact that the delta function constrains ε(k) = skΛ. Whenever
the quantities

λ± ≡
1
2
√
|ε(P) |

(
s+ + s−(sk − sp)

Λ

|ε(P) |

±

√
1 − 2s+s−(sk + sp)

Λ

|ε(P) |
+ (sk − sp)2 Λ

2

ε(P)2
+/
-

(A.60)

are purely real, the remaining integrals also have limits at λ± as a result of intersec-
tions of the nondegenerate hyperbolas. In that case the integration region splits into
two disjoint pieces.

For IS+ and IS−, sk = sp and Eq. (A.60) simplifies to

λ± =
1
2
√
|ε(P) | *.

,
s+ ±

√
1 − 4s+s−sk

Λ

|ε(P) |
+/
-
. (A.61)

For IT+ and IT−, sp = −sk and this simplifies to

λ± =
1
2
√
|ε(P) | *.

,
s+ + 2s−sk

Λ

|ε(P) |
±

√
1 +

4Λ2

ε(P)2
+/
-
. (A.62)

Therefore the t-channel integrals always split into two pieces. The s-channel inte-
grals split unless

|ε(K ) | ≤ 4Λ, (A.63)

in which case ISsign ε(K ) is over a single contiguous region bounded by λA and λB.
In that case,

ISsign ε(K ) =

∫ max (λA,λB)

min (λA,λB)
. . . (A.64)

We will see that this integral (and only this one) is generally divergent as ε(K ) → 0,
and that this divergence is cured by the rapidity cutoff.

For the remaining three integrals (and for ISsign ε(K ) if (A.63) is not satisfied), the
integration regions are bounded on one side by either λA or λB and on the other by
either λ+ or λ−. The remaining integrals take the form

I =
(∫ λ2

λ1

+

∫ λ4

λ3

)
dk+ . . . (A.65)

where λ1 through λ4 are the limits sorted in ascending order.
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Rapidity limits
At this point, let us simplify the discussion by taking g to be a momentum-
independent constant. We will find that this assumption is not consistent, because
the beta function depends on the momentum. Suppressing the integration limits,
the remaining integrals take the following form:

I (P+, P−, sk, sp) = g2
∫

d2k
δ(ε(k) − skΛ)θ(spε(k − P))F (k, P)

1 + sp
ε(k−P)
Λ

, (A.66)

where
F (k, P) = θ(Υ − |k+ |)θ(Υ − |k− |) f (k − P). (A.67)

Note that the step function constrains the value of the denominator to be between 1
and 2 throughout the integration region, so all of the integrals are nonnegative.

Under P+ → −P+ or P− → −P−, IS+ ↔ IS− and IT+ ↔ IT−. Thus we can take both
components of K and Q to be positive without loss of generality. This simplification
would have held earlier if we had assumed the coupling function obeys particle-hole
symmetry, but this symmetry is generically broken by the NVH region.

We can now find the effect of the rapidity cutoff on the integration limits for the
various integrals. The lower limit on k+ imposed by the rapidity cutoff for IS+ and
IS− is

λR1 = η max
(
Λ

Υ
, P+ − Υ

)
, (A.68)

where η =
√
|P−/P+ |. The upper limit is

λR2 =



ηΥ, P− ≤ Υ

η min
(
Υ, Λ

P−−Υ
,
)
, P− > Υ.

(A.69)

λR1/λR2 replaces the lower/upper limits in (A.64) or (A.65) when it is within either
integration region. Alternatively, if it is less than/greater than both limits in one of
the integrals, the integral is set to zero.

For IS− and IT−, one of the integration regions has negative k+ and the other has
positive k+. There are four possible rapidity limits:

λR3 = η(P+ − Υ), (A.70)

λR4 = −
ηΛ

Υ
, (A.71)

λR5 =
ηΛ

Υ − P−
, (A.72)

λR6 = ηΥ. (A.73)
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λR3/λR4 replaces the lower/upper limit for the negative integration region and
λR5/λR6 replaces the lower/upper limit for the positive region, or they set the ap-
propriate integrals to zero, acting in a manner analogous to that described above for
λR1 and λR2.

Indefinite integrals
Evaluating the delta function in (A.66) and changing variables to x = k+√

Λ
yields

I = g2
∫

dx
|x |

1
1 + sk − spα(x + sk/x − α)

, (A.74)

where

α ≡

√
|ε(P) |
Λ

. (A.75)

We can directly compute the indefinite integrals for IS± and IT± as long as we make
use of the restrictions on the integration limits implied by Section A. We find

IS+(x) =
g2

√
α4 + 4

log
������

−2 − α2 +
√
α4 + 4 + 2αx

2 + α2 +
√
α4 + 4 − 2αx

������
, (A.76)

IS−(x) =
g2sign x
√
α4 + 4

log
������

−2 + α2 +
√
α4 + 4 − 2αx

2 − α2 +
√
α4 + 4 + 2αx

������
. (A.77)

For IT+, the appropriate indefinite integral depends on the magnitude of α, or in
other words on the relative size of |ε(Q) | and Λ:

IT+(x) =



−
2g2

α
√

4−α2 arctan
(
α−2x√
4−α2

)
, |ε(Q) | < 4Λ,

g2

α
√
α2−4

log
����
α+
√
α2−4−2x

−α+
√
α2−4+2x

����, |ε(Q) | > 4Λ.
(A.78)

Finally,

IT−(x) =
g2sign x

α
√
α2 + 4

log
������

−α +
√
α2 − 4 + 2x

α +
√
α2 − 4 − 2x

������
. (A.79)

Collinear-anticollinear limit
Consider scattering between generic collinear and anticollinear particles. In this
case, |ε(P) | � 4Λ, so α � 2. In the α → ∞ limit,

1
α
√
α2 + 4

≈
1

α
√
α2 − 4

≈
1

√
α4 + 4

→
1
α2 =

Λ

|ε(P) |
. (A.80)

This suggests the beta function is suppressed byΛ/|ε(P) | for collinear-anticollinear
scattering, although we must also check the behavior of the log functions.
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Figure A.2: The log derivatives of the s- and t-channel diagrams in units of g2 with
no rapidity cutoff for a Fermi surface with a Van Hove singularity. We assume a
constant coupling.

When a > 2, there are always two disjoint integration regions. Exchanging k+ and
k− exchanges the two regions, so when we ignore the rapidity cutoff they must have
the same value. Evaluating the integral between

λ+
√
Λ
=

1
2
α *

,
1 + (sk − sp)

1
α2 +

√
1 − 2(sk + sp)

1
α2 + (sk − sp)2 1

α4
+
-

(A.81)

and
λA
√
Λ
= α, (A.82)

reversing the order if λ+ > λA, and taking the α → ∞ limit yields the same result
for each integral:

I = (2 log 2)
Λ

|ε(P) |
g2 + O

(
Λ2

ε(P)2

)
(A.83)

for collinear-anticollinear scattering. All one-loop contributions to the beta function
are therefore power suppressed in this limit. This remains true when we include
the rapidity cutoff, since it can only reduce the size of the integration region.
Furthermore, such interactions continue to be power suppressed after we drop the
assumption of a momentum-independent coupling, since the integration region
always shrinks to zero size as ε(P) becomes large.

Collinear limit
Consider the scenario where all scattered particles are restricted to the collinear
region and assume the external momenta pi+ and their sums/differences (K+, Q+,
andQ′+) are all orderΥ andmuch larger than

√
Λ. Furthermore, assume the scattered
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Figure A.3: Plots demonstrating how the rapidity cutoff modifies Fig. (A.2).

particles have energies well below the cutoff, so ε(p) � Λ. Together, these imply
that the perpendicular components of the momenta are small:

pi− =
ε(pi)
pi+

= O

(
ε(pi)
Υ

)
�
Λ

Υ
. (A.84)

The following results also hold, with appropriate modifications, if all momenta lie
in the anticollinear region.

In this limit, only the rapidity cutoff on the collinear components of momenta comes
into play. Furthermore,

ε(K ) = ε(p1)
(
1 +

p2+
p1+

)
+ ε(p2)

(
1 +

p1+
p2+

)
� Λ (A.85)

since we have assumed that the collinear components of the incoming particles are
all of the same order. As a result,

α =

√
ε(K )
Λ
� 1. (A.86)

Similar statements hold for the t- and u-channel contributions.

After a change of variables, the integration limits for both the IS+ and IS− integrals
are
√
|ε(K )/Λ| = α and ηΥ/

√
Λ = αΥ/|K+ |. Only one of the integration regions

for IS− remains after we impose the rapidity cutoff. Substituting these limits into
the indefinite integrals and taking the small-α limit yields

IS+ ≈ IS− →
g2

2
log

(
2Υ
K+
− 1

)
. (A.87)
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Figure A.4: Integration region for collinear external momentum.

For the IT+ and IT− integrals, only one of the two integration regions remains. The
limits are

λ∓
√
Λ
=

1
2
α *

,
1 ±

2
α2 ∓

√
1 +

4
α4

+
-
, (A.88)

with λ− for IT+ and λ+ for IT−, and λA/
√
Λ = α. Substituting these into the

appropriate indefinite integrals gives

IT+ ≈ IT− →
g2

2
(A.89)

in the collinear limit.

There are two important features of (A.87) and (A.89). First, the contributions from
the s, t, and u channels will all be order g2. Second, the integrals are independent of
the small (anticollinear) components of the external momenta. These conclusions do
not depend on our assumption of a momentum-independent coupling. Backtracking
through our derivation and restoring the momentum dependence yields (4.46).

Forward scattering
If both components of Q are smaller than Λ/Υ, both integration regions for IT+

and IT− shrink to zero size. Thus, the t-channel contribution to the beta function
disappears in the forward-scattering limit in the presence of a rapidity cutoff; see
Fig. A.3. This is analogous to the situation discussed in [5], where the forward
scattering function makes no contribution to the beta functions for a round Fermi
surface. As in the case of a round Fermi surface, there is a sharp change in the
contribution to the beta function once ε(Q) exceeds a threshold; compare Fig. 4.4
and Fig. A.3.

BCS limit
Consider IS+ in the K± → 0 limit. Since ε(K ) < 4Λ, there is a single contiguous
integration region, bounded by λA =

√
|ε(K ) | and λB =

√
Λ/|ε(K ) |. The extent of

this region diverges as we lower ε(K ). We find

IS+ =
g2

√
α4 + 4

log *
,

(−2 + α2 +
√
α4 + 4)(α2 +

√
α4 + 4)

(−α2 +
√
α4 + 4)(2 − α2 +

√
α4 + 4)

+
-
. (A.90)

Taking the small α limit yields

IS+ →
1
2
g2 log

4Λ
ε(K )

, (A.91)
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which diverges at ε(K ) = 0. This is the divergence that forced us to introduce the
rapidity regulator. IS− has the same value as IS+ in the small α limit.

Introducing the rapidity cutoff regulates the divergence. The rapidity cutoff restricts
the IS+ integral to run from η

√
Λ/Υ to ηΥ/

√
Λ and the IS− integral to run from η to

ηΥ/
√
Λ. Plugging these into (A.76) and (A.77) and taking the α → 0 limit yields

I± →
1
2
g2 log

Υ2

Λ
, (A.92)

so
Λ

dAS
dΛ
= −

g

4π2 log
Υ2

Λ
(A.93)

for back-to-back interactions.

Generic BCS beta function
The previous results indicate that we may take the coupling for fixed ultrasoft net
momentum (the BCS configuration) to be analytic in the other momenta to leading-
log order. Furthermore, we may drop all but the s-channel diagram to this order.
Parameterize the BCS coupling gB(p1, p3) in terms of one of the incoming momenta
p1 and one of the outgoing momenta p3 at fixed ultrasoft K . The log derivative of
the amplitude is (A.42), with

IS± ≡ ±Λ

∫
d2k

δ(Λ ∓ ε(k))θ(±ε(K − k))F (k, K )
2ε(k) − E

gB(p1, k)gB(k, p3) (A.94)

and F (k, K ) from (A.67). Take the components of K to be positive but infinitesimal
to avoid ambiguity from the definition of the step functions. Eq. (A.94) receives con-
tributions from several one-dimensional regions of momentum space; see Fig. A.5.

Call I++ the contribution from the region with k+ > k− > 0. Evaluating the k−
integral with the delta function yields

I++ =
1
2

∫ Υ

√
Λ

dk
k
gB(p1, k)gB(k, p3) (A.95)

up to power-suppressed terms. Assume it is possible to expand the coupling function
in k+ and k−. The resulting expression for I++ will include terms of the form∫ Υ

√
Λ

dk+
k+

km
+

(
Λ

k+

)n

∂m
k+∂

n
k−[gB(p1, 0)gB(0, p3)]. (A.96)

The natural scale for the derivatives is (1/VF )m+n. As a result, terms with m , n give
at most order-one contributions to the beta function. When m = n, terms in (A.96)
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Figure A.5: The integration regions for IS±.

take the form
*
,

Λ

V 2
F

+
-

n ∫ Υ

√
Λ

dk+
k+
=

1
2

*
,

Λ

V 2
F

+
-

n

log
Υ2

Λ
. (A.97)

Since we assume Λ � V 2
F , these are suppressed unless n = 0. The n = m = 0 term

is log enhanced, and the leading-log result is therefore

I++ =
1
4
gB(p1, 0)gB(0, p3) log

Υ2

Λ
. (A.98)

A similar analysis holds for each of the the terms in IS+ + IS−. Adding the NVH
region cancels the Υ dependence. Finally, setting the log derivative with respect
to Λ of the sum of the tree-level amplitude gB(p1, p3) and the one-loop amplitude
equal to zero implies

Λ
dgB(p1, p3)

dΛ
=

1
4π2gB(p1, 0)gB(0, p3) log

V 2
F

Λ
. (A.99)

The beta function for the the coupling between modes in the vicinity of the VH
point, gB(0, 0), is independent of the other couplings, and the solution is

gB(0, 0;Λ) =
gB(0, 0,Λ0)

1 + gB(0,0,Λ0)
8π2

(
log2 V 2

F

Λ
− log2 V 2

F

Λ0

) . (A.100)
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Using this, the beta function for gB(p1, 0) becomes

Λ
dgB(p1, 0)

dΛ
=

1
4π2

gB(p1, 0)gB(0, 0,Λ0)

1 + gB(0,0,Λ0)
8π2

(
log2 V 2

F

Λ
− log2 V 2

F

Λ0

) log
V 2

F

Λ
, (A.101)

with solution

gB(p1, 0;Λ) =
gB(p1, 0;Λ0)

1 + gB(0,0,Λ0)
8π2

(
log2 V 2

F

Λ
− log2 V 2

F

Λ0

) . (A.102)

An analogous result holds for gB(0, p3;Λ). Substituting these into the beta function
for gB(p1, p3) and solving yields

gB(p1, p3;Λ) = gB(p1, p3;Λ0)

−

(
1

8π2

) gB(p1, 0;Λ0)gB(0, p3;Λ0)
(
log2 V 2

F

Λ
− log2 V 2

F

Λ0

)
1 + gB(0,0;Λ0)

8π2

(
log2 V 2

F

Λ
− log2 V 2

F

Λ0

) . (A.103)

We see that the expressions for gB(0, 0;Λ), gB(p1, 0;Λ), and gB(0, p3;Λ) are in fact
special cases of this general result.
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A p p e n d i x B

THE ONE-LOOP BETA FUNCTION FOR A ROUND FERMI
SURFACE

We make the same assumption of a spin-singlet interaction as in the calculation of
the beta functions for the Van Hove case in Appendix A. We also choose to combine
the forward and back-to-back couplings into a single coupling function g. As in the
Van Hove calculation, the one-loop diagrams will depend on the net momenta K

and the transfer momenta Q and Q′. We absorb the sum over label momenta into
the integral over the parallel component of momentum. It will be sufficient for our
purposes to assume an initial condition of a constant coupling g and a circular Fermi
surface. The initial part of the calculation closely follows that of the Van Hove case,
and we find

Λ
dAS
dΛ
= −

1
2π2 (IS+ + IS−), (B.1)

Λ
dAT
dΛ
=

1
4π2 (IT+ + IT−), (B.2)

where
IS± ≡ ±Λg

2
∫

d2k
δ(Λ ∓ ε(k))θ(±ε(K − k))

ε(k) + ε(K − k)
, (B.3)

IT± ≡ ±Λg
2
∫

d2k
δ(Λ ∓ ε(k))θ(∓ε(k +Q))

ε(k) − ε(k +Q)
. (B.4)

There is a factor of two difference because we do not change variables to k±.

The interesting behavior is due to the fact that the net and transfer momenta crucially
affect the step functions in the above expressions. In Eq. (B.3), the momentum k is
constrained to lie at k⊥ = ±Λ, while simultaneously the step function demands that
ε(K − k) have the same sign as ε(k). This means that for IS+ the integral is over
the parts of a circle of radius |k | = KF +Λ/VF that intersects an annulus with inner
and outer radii Λ/VF and Λ/VF + KF and which is displaced from the origin by a
distance K ; see Fig. B.1.

Using the step function to evaluate the k⊥ integral and realizing that the step function
acts to constrain the angular integral, we have for example

IS+ =
g2

VF

(∫ θmax

θmin

+

∫ −θmin

−θmax

)
KF dθ

1 + ε∗(θ)/Λ
. (B.5)
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Integration region

0 < ε(K − k) < Λ

0 < ε(k) < Λ

(a) VF |K | > Λ

Integration region

0 < ε(K − k) < Λ

0 < ε(k) < Λ

(b) VF |K | < Λ

Figure B.1: The integration region for IS+. The two copies of the Fermi surface are
displaced by the net momentum K .

The energy of the loop particle with momentum K − k is given by

ε∗(θ) = VF

[√
(K2

F + Λ)2
− 2(KF + Λ) |K | cos θ + K2 − KF

]
. (B.6)

The minimum and maximum values in the angular integral can be found by straight-
forward geometry to be

θmin = Re
(
arccos

K2 + 2KFΛ + Λ
2

2|K |(KF + Λ)

)
, (B.7)

θmax = Re
(
arccos

|K |
2(KF + Λ)

)
, (B.8)

where θ is measured relative to the direction of K . When VF |K | < Λ, the minimum
value is θ = 0 and the two integrals in Eq. (B.5) combine into a single integral from
−θmax to θmax.

The analysis for IS− and IT± is similar. However, the integrals IT± differ in an
important manner. Whenever VF |Q | < Λ, they are identically zero. Fig. B.2a
shows that the integration region is only of nonzero size when VF |Q | > Λ. Once
VF |Q | > 2Λ, it divides into two small integration regions that shrink as Q is
increased. Fig. 4.4 in Chapter 4 demonstrates the results of numerically integrating
the resulting expressions.
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Integration region

−Λ < ε(k +Q) < 0

0 < ε(k) < Λ

(a) VF |Q | < Λ

Integration region

−Λ < ε(k +Q) < 0

0 < ε(k) < Λ

(b) Λ < VF |Q | < 2Λ

Integration region

−Λ < ε(k +Q) < 0

0 < ε(k) < Λ

(c) VF |Q | > 2Λ

Figure B.2: The integration region for IT+. The two copies of the Fermi surface are
displaced by the transfer momentum Q.
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A p p e n d i x C

THE IMAGINARY PART OF THE SELF-ENERGY

We begin with the imaginary part of the susceptibility in the presence of a Fermi
velocity cutoff. We found the value of this quantity in Chapter 5 for zero chemical
potential, but we extend the analysis to nonzero chemical potential here. Starting
with Eq. (1) from [63] with ~ = 1 and εF = µ, perform the trivial kz integral:

Im χ̃ =
1
2

∫
dk− dk+θ(ε(k + q) − µ)θ(µ − ε(k))

× δ(q+k− + q−k+ + ε(q) − ω). (C.1)

The hard cutoff on the Fermi velocity shows up in this calculation as a cutoff Υ on
|k+ |, |k− |, |k+ + q+ |, and |k− + q− |. Therefore Eq. (C.1) is modified:

Im χ̃ =
1
2

∫
dk− dk+θ(ε(k + q) − µ)θ(µ − ε(k))

× δ(q+k− + q−k+ + ε(q) − ω)θ(Υ − |ki |)θ(Υ − |ki + qi |). (C.2)

This is the correct expression forω ≥ 0 only. As usual, q corresponds to the transfer
momentum injected into the loop.

C.1 Transfer momentum outside the first quadrant
Change variables in Eq. (C.2) to ki → −ki:

Im χ̃ =
1
2

∫
dk− dk+θ(ε(−k + q) − µ)θ(µ − ε(−k))

× δ(−q+k− − q−k+ + ε(q) − ω)θ(Υ − |ki |)θ(Υ − | − ki + qi |). (C.3)

Since ε(p) = p+p− = ε(−p),

Im χ̃ =
1
2

∫
dk− dk+θ(ε(k − q) − µ)θ(µ − ε(k))

× δ(−q+k− − q−k+ + ε(−q) − ω)θ(Υ − |ki |)θ(Υ − |ki − qi |). (C.4)

Therefore
Im χ̃(−q, ω) = Im χ̃(q, ω). (C.5)

From [63], Im χ̃ for ω < 0 is given by

Im χ̃(q,−ω) = − Im χ̃(−q, ω). (C.6)
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(C.5) then implies
Im χ̃(q, ω) = signω Im χ̃(q, |ω |). (C.7)

Change variables again:

k′+ = k+ + q+, (C.8)

k′− = −k− − q−. (C.9)

Then
ε(k + q) = −ε(k′) (C.10)

and
ε(k) = −(k′+ + q+)(k′− − q−) = −ε(k + q̃) (C.11)

where q̃ = (q+,−q−). The argument of the delta function in Eq. (C.2) can be written

ε(k + q) − ε(k) = −ε(k′) + ε(k′ + q̃). (C.12)

Dropping the primes gives us

Im χ̃ =
1
2

∫
dk− dk+θ(ε(k + q̃) + µ)θ(−µ − ε(k))

× δ(ε(k + q̃) − ε(k) − ω)θ(Υ − |ki |)θ(Υ − |ki + q̃i |). (C.13)

Along with Eq. (C.7), this implies

Im χ̃(q+, q−, ω, µ) = signω Im χ̃( |q+ |, |q− |, |ω |, sign q+sign q−µ). (C.14)

Thus we need only find Im χ̃ for q in the first quadrant for positive ω and arbitrary
values of µ to determine its value everywhere. In fact, we can also exchange k+ → k−
and vice versa to see that Im χ̃(q+, q−) = Im χ̃(q−, q+), so we only need the value
of Im χ̃ in the first quadrant for q− > q+ to reproduce everything.

C.2 The integration region for zero chemical potential
Call D1 the region where ε(k) < 0. For µ = 0, this is the union of the second and
fourth quadrants of k-space. Call D2 the region where ε(k + q) > 0. For µ = 0,
this is the union of the first and third quadrants in k-space displaced by −q. Finally,
call L the line where

k+q− + k−q+ = ω − ε(q). (C.15)

Imagine doing the k+ integral with the delta function. Then Im χ̃ is given by one
half of the width in k− space of the intersection of D1, D2, and L divided by q−, as
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Figure C.1: Regions to calculate the imaginary part of the susceptibility with zero,
positive, and negative chemical potential and a Fermi velocity cutoff.

long as q− , 0. If q− does equal zero, we should do the integral over k− instead;
the result will be the same as with q+ = 0 but with the indices exchanged. Fig. C.1
has three plots of the regions and lines. All three have q+ = 0.1, q− = 0.2, and
ω = 0.07, while their chemical potentials differ, with µ = 0, 0.01, and −0.01.

When µ = 0, we see that D1 ∩ D2 consists of two skinny rectangles with small
dimension |q+ | and |q− |. Increasing ω increases the k+-intercept of the line, while
varying q+ and q− modify both the slope and the k+-intercept.

If we hold q+ and q− fixed, the cutoff will begin to modify Im χ̃ once the k+-intersect
is large enough that the line intersects the corner of the skinny regions. Take µ = 0
for simplicity. For small µ, the results will be qualitatively similar: we replace the
straight boundaries of the rectangles with sections of hyperbolas, but the intersection
must occur far out along the Fermi surface if the cutoff is large compared with |q |,
so the location of the intersection will not change much. If q− > q+ > 0, the line
will first intersect the bottom right corner of the lower rectangle as we increase ω.
The corner of this rectangle is at k+ = −q+ and k− + q− = Υ, so it occurs when

− q+q− + (Υ − q−)q+ = ω − ε(q) (C.16)

or
ω = q+Υ − ε(q). (C.17)

If q+ and q− have nearly the same value, the line will intersect the top left corner
of the vertical rectangle before it reaches the upper right corner of the horizontal
rectangle. Otherwise, Im χ̃ will then decrease linearly with increasing ω until the
line intersects the top right corner of the horizontal rectangle, where k+ = 0 and
k− + q− = Υ, so

ω = q+Υ. (C.18)
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At this point Im χ̃ will be half of its value without the cutoff. Im χ̃ will then remain
constant until the line intersects the top left corner of the vertical rectangle. Notice
that exchanging the 1 and 2 labels reverses the roles of the two rectangles, so we can
deduce that this second drop occurs when

ω = q−Υ − ε(q) (C.19)

and ends when
ω = q−Υ, (C.20)

at which point Im χ̃ becomes zero.

C.3 The integration region for nonzero chemical potential
We can find the general formula for values of ω at which Im χ̃ drops or stops
dropping by identifying when the line intersects with both the hyperbolas and
the cutoffs. Work in the first quadrant of q-space; we can then generalize using
Eq. (C.14). Define qs to be the component of q with smaller magnitude and qb to
be the component with larger magnitude. The first drop in Im χ̃ relative to its value
without a cutoff will occur when the line first intersects the corner of one of the
skinny regions. This occurs when kb + qb = Υ on the hyperbola

(ks + qs)(kb + qb) = µ, (C.21)

which implies
ks =

µ

Υ
− qs, (C.22)

so the value of ω for which the first drop begins is given by(
µ

Υ
− qs

)
qb + (Υ − qb)qs = ω − ε(q) (C.23)

or
ω = qsΥ +

qb
Υ
µ − ε(q). (C.24)

The first drop ends once
ω = qsΥ +

qb
Υ − qb

µ, (C.25)

and exchanging ks and kb tells us the second drop begins once

ω = qbΥ +
qs
Υ
µ − ε(q) (C.26)

and ends once
ω = qbΥ +

qs
Υ − qs

µ. (C.27)
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Therefore the points at which Im χ̃ changes behavior only differ from the µ = 0
case by terms O(qiµ/Υ). Finally, we can use Eq. (C.14) to generalize the location
of these drops:

ω1 = |qs |Υ +
|qb |

Υ
µsign qssign qb − |ε(q) |, (C.28)

ω2 = |qs |Υ +
|qb |

Υ − |qb |
µsign qssign qb, (C.29)

ω3 = |qb |Υ +
|qs |

Υ
µsign qssign qb − |ε(q) |, (C.30)

ω4 = |qb |Υ +
|qs |

Υ − |qs |
µsign qssign qb. (C.31)

In the case with no cutoff, if we take either component of q to be zero the line will
only intersect one of the skinny rectangles. In other words, Im χ̃ as a function
of q+ has point discontinuities at q+± = 0. The effect of the cutoff is to smooth
out these point discontinuities, so that when one of the components of q drops
below ω/Υ, Im χ̃ already begins to decrease. This indicates that our results will
converge nonuniformly to the results without a cutoff as we take Υ to infinity. The
nonuniform convergence is not a problem since the we will always smear over a
range of momentum.

C.4 The imaginary part of the susceptibility
Take q− > q+ > 0 and ω > 0. As long as we are in the regime where the cutoff has
no effect, the line intersects the −q displaced curve on the right when

(k+ + q+)(k− + q−) = µ (C.32)

and
k+q− + k−q+ = ω − ε(q), (C.33)

which implies

k− =
ω − ε(q) +

√
[ω + ε(q)]2 − 4ε(q)µ

2q+
. (C.34)

We know that we should take the positive root because we are looking for the
intercept where k− > k+. Now let us find the right intercept of the line with
k+k− = µ when ω is big enough that there are in fact two such intercepts but not so
big that Υ comes into play. This happens when

k+ =
µ

k−
, (C.35)
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so

k− =
ω − ε(q) +

√
[ω − ε(q)]2 − 4ε(q)µ

2q+
. (C.36)

Once again we take the positive (right) root. Clearly the difference of Eq. (C.34)
and Eq. (C.36) gives the extent of the interval in k−-space. Once we divide by q−
to deal with the factor from the delta function, these expressions will be symmetric
in the labels 1 and 2. This tells us that the width of the interval on the other skinny
section must be the same, since we can interchange the two labels to interchange the
legs.

We have now nearly recovered the final expression from [63], save for the issue
when ω is small enough that the discriminant in Eq. (C.36) becomes negative, at
which point ω is small enough that the line no longer intersects k+k− = µ. To deal
with this, we take the result from [63], which we can write as

Im χ̃ =
1
2

Re
[

1
q−

(
α+
2q+
−
α−
2q+

)
+

1
q+

(
α+
2q−
−
α−
2q−

)]
, (C.37)

where
α± ≡ ω − ε(q) +

√
[ω ± ε(q)]2 − 4ε(q)µ, (C.38)

and note that the effect of the cutoff is to replace the roots from Eq. (C.34) and
Eq. (C.36) with Υ − qb or Υ − qs once ω reaches the values in Eqs. (C.28)–(C.31).
Therefore the full expression for Im χ̃ is

Im χ̃ =
1
2

signω

× Re
{

1
|qb |

[
α̃+

2|qs |
θ(ω1 − |ω |) + (Υ − qb)θ(|ω | − ω1)

−
α̃−

2|qs |
θ(ω2 − |ω |) − (Υ − qb)θ(|ω | − ω2)

]

+
1
|qs |

[
α̃+

2|qb |
θ(ω3 − |ω |) + (Υ − qs)θ( |ω | − ω3)

−
α̃−

2|qb |
θ(ω4 − |ω |) + (Υ − qs)θ( |ω | − ω4)

]}
, (C.39)

where
α̃± ≡ |ω | − |ε(q) | +

√
[|ω | ± |ε(q) |]2 − 4ε(q)µ. (C.40)

Fig. C.2 contains a plot comparing the behavior of Im χ̃ with and without the cutoff.
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Figure C.2: A comparison of the imaginary part of the susceptibility with and
without a cutoff. q+ = 1, q− = 2, µ = 0.05, and Υ = 10.

C.5 Integration region for the imaginary part of the self-energy
Consider now the imaginary part of the self-energy Im Σ, Eq. (17) in [63]. The
energy argument of Im χ̃ in this equation is

ε(k) − ε(k + q) = −(k+q− + k−q+ + q+q−) = −(k+q− + k−q+) − ε(q). (C.41)

The step functions constrain the integration region such that

µ < ε(k + q) < ε(k). (C.42)

This ensures that the integrand is always positive in the region where we are inte-
grating. Fig. C.3 contains a plot showing the modification of the integrand by the
presence of a cutoff on the van Hove region.

C.6 Boundary of the modified region
We can also from figure C.3 that the integrand is modified in the region satisfy-
ing (C.42) in the vicinity of the negative q+0 and q− axes and far out along the legs
of the allowed hyperbolic region. We will now find the equations for the curves
indicating the onset of the first drop.

(C.28) tells us that the first drop within the integrated region occurs when

− (k+q− + k−q+) − ε(q) = |qs |Υ +
|qb |

Υ
µsign qssign qb − |ε(q) |. (C.43)

If |q+ | < |q− |, we have

q− = −
(k− +

µ
Υ

sign q+)q+ + (1 − sign q+sign q−)ε(q)
Υsign q− + k+

. (C.44)
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Figure C.3: The integrand for the imaginary part of the self-energy is modified by
a Fermi velocity cutoff differently for different values of the loop momentum. The
integral is only performed over the shaded region. k+ = 1, k− = 2, µ = 0.05, and
Υ = 10.

If |q+ | > |q− |,

q− = −
(sign q+Υ + k−)q+ + (1 − sign q+sign q−)ε(q)

µ
Υ

sign q− + k+
. (C.45)

Inspection of Fig. C.3 indicates that there are in fact eight curves emanating from
the origin that bound the region of momentum space with an unmodified value for
Im χ̃. These eight curves correspond to the two possibilities for the relative sizes of
|q+ | and |q− | and the four combinations for the signs of q+ and q−. Fig. C.4 contains
plots of the eight curves corresponding to the parameters given for the momentum
space in Fig. C.3.

C.7 Cutoff dependence of the imaginary part of the self-energy
As stated above, these plots indicate that for small enough µ and ε(k), there are
six regions between the hyperbolas ε(k + q) = µ and ε(k + q) = ε(k) where the
integrand of Im Σ is modified by the presence of a cutoff: the two regions along
the negative q+ and q− axes near the origin and the four regions far out along the
legs of space between the hyperbolas. Fig. C.5 demonstrates that as we increase Υ,
the two regions near the origin shrink in size while the regions along the legs are
pushed out to larger and larger values of q. The value of Im χ̃ in the region near
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Figure C.4: The eight curves denoting the onset of the effects of the rapidity cutoff,
with their equations given below. Curves are in red. k+ = 1, k− = 2, µ = 0.05, and
Υ = 10.
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(a) Υ = 10 (b) Υ = 20 (c) Υ = 100

Figure C.5: The effect of changing the Fermi velocity cutoff on the region where
the integrand for the loop integral is modified. k+ = 1, k− = 2, and µ = 0.05 for
each of the plots, while Υ takes on different values.

the origin is approximately constant for small values of µ, so we expect that the
difference caused by the cutoff in this region will become smaller and smaller as the
regions shrink. For the regions along the legs, Im χ̃ drops of like 1/|qb | along the
legs of the hyperbolic region, and the width of the hyperbolic region also shrinks
like 1/|qb |. Therefore the contribution from these regions should also shrink as we
push them out to larger values of q.

Numerical analysis (Table C.1) indicates that that the contribution to Im Σ from these
regions is bounded and shrinks with increasing Υ, and hence that Im Σ converges
to the results from [63] in the limit Υ → ∞. Im ΣΥ indicates the value of Im Σ
with a cutoff, while Im Σ is the value without a cutoff. Fig. C.6 shows that Im ΣΥ
is still linear in ε(k) even when one of the components of k is near the cutoff.
The presence of a finite cutoff merely alters the slope of the line. Finally, Fig. C.7
shows how this dependence on the Fermi velocity cutoff modifies the expression for
the imaginary part of the self-energy for large values of the momentum along the
collinear direction.
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k+ k− µ Υ Im ΣΥ Im Σ
0.5 1 0.05 10 1.344 1.438
0.5 1 0.05 100 1.431 1.438
0.5 1 0.05 1000 1.437 1.438
0.5 1 0.05 10000 1.438 1.438
0.5 1 0.05 100000 1.438 1.438

0.1 5 0.05 10 1.030 1.438
0.1 5 0.05 100 1.407 1.438
0.1 5 0.05 1000 1.436 1.438
0.1 5 0.05 10000 1.438 1.438
0.1 5 0.05 100000 1.438 1.438

0.02 5 0.01 10 0.206 0.287
0.02 5 0.01 100 0.281 0.287
0.02 5 0.01 1000 0.287 0.287
0.02 5 0.01 10000 0.287 0.287
0.02 5 0.01 100000 0.287 0.287

Table C.1: Numerical analysis of the effects of a cutoff on Im Σ. Im ΣΥ converges
to Im Σ as we increase Υ.
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Figure C.6: Plot demonstrating that Im ΣΥ is linear in ε(k) for various values of the
large component of k. µ = 0, Υ = 10.



144

0.0 0.2 0.4 0.6 0.8 1.0

|k+|/VF

0.0

0.2

0.4

0.6

0.8

1.0

Im
Σ

(|k
+
|/V

F
)

Figure C.7: Numerical results for the dependence of the imaginary part of the self-
energy on |k+ |/VF in units of g2 assuming a constant coupling. Im Σ is normalized
to one for VF → ∞.
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