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ABSTRACT

Studying the cnidarian jellyfish, we have pursued basic biological questions related

to self-repair mechanisms and sleep behavior. Working in Aurelia we have dis-

covered a novel strategy of self-repair; we determined that they can undergo body

reorganization after amputations that culminates in the recovery of essential radial

symmetry without rebuilding lost parts [1]. Working with Cassiopea, we have,

for the first time, identified a behavioral sleep-like state in an animal without a

centralized nervous system [2], supporting the hypothesis that sleep is ancestral in

animals.
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C h a p t e r 1

INTRODUCTION

In my thesis, I focus on two main areas of inquiry: how animals respond to

injuries and animal sleep behavior. These involve basic biology questions that have

been pursued across animal models, and yet many of their underlying mechanisms

remain only partially understood [1, 2]. We chose to investigate the schyphomedusae

Aurelia aurita and Cassiopea spp. because each has essential traits that allow us to

gain new insights into sleep behavior and self-repair.

1.1 Cnidaria: a sister group to Bilateria

Due to their strange shapes and propensity to regenerate, cnidarians were

initially considered plants. This changed in the mid-1700s [3] as naturalists began

to classify organisms based on more specific traits. This effort has continued, and

with ever expanding databases of published genomes from animals in ancient phyla,

it has become clear that among the non-bilaterian metazoans (ctenophores, sponges,

placozoans and cnidarians), Cnidaria is the closest lineage to Bilateria (Figure 1.1A)

[4].

Though aspects of the tree of life are frequently revised, the number of se-

quenced species is increasing, and we are gaining confidence in the phylogenetic

relationships between organisms (Figure 1.1A). The crown-group Metazoa likely

originated in the early-mid Neoproterozoic (1000-720Ma), before the onset the

"Snowball Earths" of the Cryogenian (720-635Ma) [5–8]. Molecular evidence sug-

gests that Cnidaria, and the total-group Bilateria, also emerged in the small window

before the first global freeze (819 - 686Ma) [9–11].

Cnidaria is composed of a diverse set of animals that form five monophyletic
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Figure 1.1: Phylogenetic relationships between cnidarians and other metazoans. A) This is
a consensus tree of the phylogenetic relations betewen metazoa. Choanoflagelates are sister group
of metazoa and inside metazoa, cnidarians are the sister group to Bilateria; taken from ref. [12].
B) Working hypothesis for cnidarian relationships with selected hypothesized ancestral characters
mapped at nodes; taken from ref. [13], and the diagrams representing taxa, from ref. [14, 15].
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classes (Figure 1.1B): Anthozoa, sister group toMedusozoa, which tend to be sessile

and polypoid (e.g., corals and sea anemones), and the medusozoans: Staurozoa,

Cubozoa, Scyphozoa and Hydrozoa, which can have an additional medusa life stage

(e.g., jellyfish) [13, 16–19].

1.2 The life cycle of cnidarians can involve two adult forms

Cnidarians evolved life stages that have radially symmetrical body architectures

[20]. Interestingly, recent morphological, genomic and fossil evidence points to-

wards the ancestral cnidarian being a polyp-like organism, and that medusae evolved

in the branch leading to Medusozoa [4, 21–26].

As in all other animals studied to date, the asymmetrical deposition of maternal

transcripts establishes a primary body axis during embryogenesis in cnidarians

(Figure 1.2A) [28, 29]. Cnidarian embryo cleavage patterns are highly variable

but generally result in two common forms of blastulae: a hollow coeloblastula or

a solid stereoblastula [30]. Following gastrulation that produces two cell layers,

the endoderm and ectoderm, differentiation begins, and a cylindrical ciliated larve

emerges, called a planula (Figure 1.2B) [28, 31, 32].

Most planula larvae, upon settling on a substrate, metamorphose into polyps

(Figure 1.2C) by transforming the blastopore site into an oral opening, around which

tentacles develop through the evagination of bodywall ectoderm and endoderm [33].

Polyps are sac-like animals with supportive gelatinous mesoglea between their two

cell layers. The mesoglea is comprised of collagen, an insoluble fibrous protein

that composes the extracellular matrix and connective tissue of all animals [34].

Polyps attach to the substrate with their aboral side, and have a circle of tentacles

surrounding their oral side. The polyps can be solitary or colonial, and reproduce

asexually through budding.

The larva-to-polyp transition can involve many factors. The level of dissolved

oxygen may influence settling behavior in Aurelia aurita larvae [35]. For Hydrac-

tinia echinata, the neuropeptide LWamide (Leu-Trp-NH2) induces the transition
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Figure 1.2: Life cycle of the medusozoan Aurelia (A) Embryogenesis forms a two cell layered
blastula, and continues develops into a planula (B). The planula metamorphoses into a sac-like polyp
(C), which is an adult stage. In a process called strobilation (D), the polyp undergoes fission, and
each segment forms an ephyrae (E). Ephyrae develop into the adult medusa stage (F) over several
weeks. (ref. [27])

from larva to polyp [36]. Notably, although anthozoans are sessile as adults, they

produce free-swimming larvae that use light as a cue for settlement behavior [37].

The attachment of Cassiopea larva to substrate is initiated by a Vibrio sp. bacteria

[38]. Hence, there does not appear to be a broadly conserved settling cue.

There are two main types of cnidarian life cycle. In anthozoans, the polyp

is the gamete-producing form and the cycle is embryo>larva>polyp. However,
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Medusozoans generally have an additional life cycle stage, the medusa (Figure 1.2D-

F), which is typically the sexual form [39]. The polyp-to-medusa transition involves

three successive phases: induction, strobilation and jellyfish morphogenesis. The

initiation of the transverse segmentation, or fission, of the polyp body is called

strobilation (Figure 1.2D). Each disk-shaped segment develops to form a young

jellyfish called an ephyra (Figure 1.2E), which then detaches from the polyp and

begins a planktonic life.

Ephyra are generally 3-5mm in diameter, with eight arms in discrete radial

symmetry, with a manubrium (an orifice that opens for food and waste) in the center

of their bodies. They develop quickly over several weeks, growing in size as they

form bell tissue in the space between their arms. This continues, and they develop

specialized gamete pouches that connect to their gastric cavity, at which point they

are sexually mature jellyfish (Figure 1.2F) [40].

The induction of strobilation is also mechanistically diverse, though it is tightly

regulated by environmental stimuli and depends on seasonal rhythms [35, 41–44].

Some jellyfish have been studied for their seasonal synchronous production of mil-

lions of jellyfish, which can have major impacts on the marine ecosystem [45].

Cassiopea have long been known to strobilate upon infection by their mutualistic

symbiont, symbiodinium [46]; however, recent screening for pharmacological stim-

ulation of strobilation led to the discovery that indole-containing compounds trigger

metamorphosis in many schyphomedusae, including Aurelia and Cassiopea [47].

We take advantage of this capability, so that we can frequently produce thousands of

ephyrae for experimentation. However, these inducers do not effect metamorphosis

in two hydromedusae species; suggesting that strobilation and the medusa stage is

apomorphic in Medusozoa.

Medusae, or jellyfish, vary widely in size and morphology (Figure 1.1B and

Figure 1.2F). Generally, they have bell-shaped bodies with a manubrium, a stalk-

like structure that opens into the gastrovascular cavity and hangs from the center

of their subumbrella. Often oral arms surround this structure and connect to the
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manubrium where it meets the base of the bell. As with the polyps, mesoglea

buttresses the two cell layers and acts as a hydrostatic skeleton [48]. Spaced around

the bell rim are rhopalia, ganglion-like nerve clusters that integrate information

collected by a diffuse nerve net and also organize muscular activity and behavior

(described in Section 1.4) [49, 50]. In the next sections, I discuss what is known

about the capacity for self-repair in cnidarians and how their neuromuscular systems

can exhibit complex behaviors.

1.3 Regeneration in cnidarians

Traditionally self-repair is divided into two general classes: wound healing and

regeneration. Both processes across Metazoa involve cellular proliferation, dediffer-

entiation, migration and redifferentiation [53–56]. Though wound healing [57, 58]

and regeneration of bell, manubrium [59] and the complex eye of somemedusozoans

[60, 61] has been reported, here we focus on the regenerative abilities of cnidarian

polyps [62–65], in which there is a richer understanding. Comparative -omics play

a critical role in resolving the mechanisms of self-repair, and the genomes of one

hydrozoan (Hydra vulgaris) and three anthozoans (Nematostella vectensis, Aiptasia

pallida and Acropora digitifera) have recently been reported [66–69]. Analysis indi-

cates that cnidarian wound healing and regeneration rely on many genes shared with

Bilateria. Though metabolic and stress response pathways have been implicated in

regeneration, [35, 70–77], considerably more focus has been spent on the role of

deeply conserved signaling pathways [11, 78–81].

How cnidarians, and other animals, regulate their regenerative state is thought

to involve the redeployment of signaling pathways also used in development [2, 52,

70] (Figure 1.3A-C). Many of the main signaling pathways, including Wnt, TGF-β,

RTK, Notch, Hedgehog and Jak–Stat are present in sponges [82, 83], indicating

that many components of the genetic toolkit existed before cnidarian-bilaterian

divergence. Molecular analysis in Hydra vulgaris, for example, has shown that

the Wnt signaling system is involved in axial patterning during head regeneration
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Figure 1.3: Bilaterian signaling pathways involved in self-repair (A) Expression patterns of
Wnt genes during Hydra head regeneration; modified from ref. [51] (B) Comparison of “head”
vs. “tail” gene expression in the regeneration of Nematostella vectensis and Planaria. Highlighted
in light green are bona fide orthologs that are expressed as expected according to this comparison,
while yellow marks polarized genes that are expressed in an ‘inverted’ position, which can indicate
evolutionary change in the regeneration program. Wnts and Wnt pathway genes in red and orange,
homeobox factors in light blue and transcription factors in dark blue; modified from ref. [52].

and development [51, 52, 84–86] (Figure 1.3A). There also appears to be similar

Wnt signaling, homeodomain and other transcription factor involvement between

the bilaterian flatworm Planaria and Nematostella vectensis during "head" and "tail"
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regeneration (Figure 1.3B) [52, 72]. In bilaterian and cnidarian development, these

same components also play key roles in neurogenesis. WNT-β-catenin signaling in

these systems activates basic helix-loop-helix (bHLH) proneural genes, including

the transcription factor SOXB2 (also involved in regeneration as seen in Figure

1.3B) [87]. Functional perturbation in Nematostella vectensis recently revealed that

Wnt signaling mediates the oral-aboral axis patterning of two hox homeodomain

genes [88]; in bilaterians, neural regions are also established by the restricted

expression of hox genes [89–91]. Though we are still limited in our knowledge

of how neurogenesis is functionally regulated in Cnidaria, from histological and

physiological assessments we know they have a well organized nervous system.

1.4 The cnidarian neuromuscular system

The ability of an organism to detect and respond to their environment through

neurologically controlled movements is a shared trait across nearly all animals

and led to the incredible diversification of animal behavior. To understand what

structures cnidarians are capable of self-repairing, and how they elicit behaviors

like sleep, we must have an understanding of their neuromuscular system.

Action potentials in cnidarians are transmitted throughout the neuromuscular

systemusing voltage-gated ion channels [93, 94]. Characterization of hyperpolarization-

activated channels inNematostella vectensis indicates that they are functionally sim-

ilar to their bilaterian counterparts, and are critical for their neuronal rhythmicity.

Cnidaria organize their sensory neurons in a diffuse nerve net (FMRF positive cells

in Figure 1.4B, D, F and G), and their processes are interspersed among the ep-

ithelial cells of both layers [83, 95]. The cnidarian nervous systems rely on many

of the same neurotransmitters and neurohormones as bilaterians [96]. Cnidarian

neuropeptides are located in neuronal dense-core vesicles and are synthesized as

preprohormones. SeveralHydra neuropeptide genes have been cloned and shown to

express in specific subpopulation of neurons [97–103]. Signals transmitted through

the nervous system control animal actions, but for more complex behaviors nervous
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Figure 1.4: The neuromuscular network of an Aurelia ephyra Confocal sections of Aurelia
sp. 1 ephyrae labeled with antibodies against tyrosinated tubulin (tyrTub), taurine (Tau), and/or
FMRFamide (FMRF). (A–D) radial (rm) and circular (cm) muscle fibers are labeled with phalloidin
(Pha). (H) nuclei (nu) are labeled with the fluorescent dye TOTO. In all subpanels, ephyrae are
viewed from the oral side: (A and B) manubrium and surrounding subumbrellar epithelium of the
bell, (C–H) rhopalar arm. The tyrTub antibody strongly labeled the motor nerve net (MNN) (A,
C, F), which contains large bipolar neurons (white arrow in F) with longitudinally oriented thick
neuronal processes (arrowheads in F). TyrTub-IR cnidocytes with apically located region devoid of
staining, presumably occupied by nematocysts (nm), are also seen in the ectoderm (red arrow in
C, F, H; inset in H). The taurine antibody labeled a subset of MNN neurons and sensory cells in
the rhopalium (rh) (arrows in E). The FMRFamide antibody labeled the diffuse nerve net (DNN)
(B, D,F,G), which contains multipolar neurons with thin neuronal processes (arrows in F). The
tyrTub-IR cnidocytes lie alongside FMRFamide-IR DNN neuronal cell bodies and neurites (see red
arrows in F), potentially indicating the presence of nervous communication. cm circular muscle,
mn manubrium, gf gastric filaments, mnn motor nerve net, dnn diffused nerve net, rh rhopalium, cn
cnidocil, nm nematocyst, nu nucleus; modified from ref. [92].

system subfunctionalization is required.

Significant nerve net specialization exists in cnidarians, and is evident in their

complex feeding and swimming behaviors. These movements are coordinated by

neuron dense sensory-motor integrative units, and cnidarians have varying levels of
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nervous system subfunctionalization. For example, in addition to their diffuse nerve

net, cnidarian medusae and polyps possess a circular neural network, called a nerve

ring (motor nerve net in medusae) (tyrTub positive cells in Figure 1.4A, C, E and F),

which can be highly specialized allowing for complex swimming contractions [96,

98, 101, 104]. The medusozoans tend to have more elaborate sensory systems and

behavioral repertoire enabling more sophisticated behavioral patterns [105, 106].

Sensory information in medusae is integrated at rhopalia (rh in Figure 1.4C-E),

which is also the location of the pacemaker, allowing it to send regular electrical

impulses to cause swimming contractions [92, 96]. Well-developed nerve nets

correlate with the presence of basiepithelial muscle fibers directly innervated by

nerve net neurons (Pha labeled in Figure 1.4A-D) [96, 107–110], indicating a

possible evolutionary connection between musculature, and a system of sensory-

effector circuits.

Signals from the cnidarian nervous system control muscle contractions. There

is striking ultrastructural similarity in the straited muscles of animals, and it was

thought to reflect a common evolutionary origin [111]. Many of the proteins involved

in straited muscle existed prior to Metazoa, for example, Myosin type II forms a

contractile ring in yeast [112, 113]. However, muscle in cnidarians and ctenephores

lacks proteins (Troponin and Titin) critical for the functionality of bilaterian mus-

cle. This is consistent with the theory that straited muscle evolved independently

in non-bilaterian metazoa, perhaps building on pre-existing, ancestral contractile

systems[114, 115]. No matter the extent of the mechanistic conservation, cnidarian

muscle is fully capable of being neurologically controlled to elicit behaviors.

Feeding behaviors exist in every animal and depend on their morphological

capabilities. Cnidarians, being gelatinous, are rather delicate animals, but they

have evolved a unique stinging cell, nematocysts, for defense and prey capture.

Nematocyts vary in morphology and are highly specialized cells (many contain a

harpoon-like structure) [116]. The cnidocil, the trigger of a nematocyst (red arrows

pointed at nm and cn in Figure 1.4 in C, F and inset H), can be stimulated in
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nanoseconds [117] by a variety of chemicals, amino acids and prey [83, 118–123].

In medusae, the tentacles on the umbrella margin sting and stick to the prey on

contact, then contract to bring the prey to the bell margin. From there, the oral

arms perform a licking motion and bring the prey, using ciliary currents, from the

margin to the the mouth, where it selects what to eat and what to reject [124]. It is

interesting to consider the evolutionary feedback loop between body shape and prey

capture capabilities.

This interplay between form and function is perhaps clearest in the functional

symmetry of jellyfish, where perturbations that affect this symmetry impair their

ability to generate propulsion. Propulsion systems consists of a source ofmechanical

power and a propulsor, the means of converting the power into propulsive force.

In medusae, the mechanical power comes from the muscle contractions, while

the propulsor is their visco-elastic body. Swimming is achieved by the calcium-

dependent phasic activation of the neuromuscular system, and the elastic recoil

of the medusae body [58, 125]. The full body pulse of medusae allows them

to efficiently pull themselves through the water, primarily via suction [126, 127].

Interestingly, water is relatively viscous for ephyrae, so the space between their

arms forms a hydrodynamically continuous surface (called a boundary layer in

Figure 1.5A and B), important for generating a balanced propulsive force. In both

ephyrae and medusae the propulsion system is require to generate the fluid flows that

facilitate prey capture, reproduction and the removal of waste [128–131]. Therefore

jellyfish depend on their radial symmetry for their overall function.

However, not all jellyfish use their propulsion system for swimming. The schy-

phomedusae Cassiopea (Figure 1.5C) have adopted a unique life style to enhance

their symbiots access to light: they lie with their umbrella pulsing on the ground

and their oral arms protruding upwards, hence their colloquial name, upside-down

jellyfish [132, 133]. This stationary pulsing behavior lends itself to quantifica-

tion, particularly for those interested in studying jellyfish activity decoupled from

swimming [134].
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Figure 1.5: Neuromuscular control of behavior and circadian rhythms Dye visualization
of boundary layer maintenance between lappets of a swimming ephyra when the bell is near full
relaxation. The ephyra (0.28 cm diameter) has passed through fluorescein dye. Dye remains along
entire exumbrellar surface of ephyra (A), including both the lappets (outlined in panel B) and the inter-
lappet spaces; from ref. [127]. (C) Cassiopea, in its natural upside-down orientation; photocredit
Jane Easter Photograph. (D) Temporal gene expression of NvCry1a, 1b, and 2 from three light
treatments and constant dark show a diverse degree of transcriptional regulation. NvCry1a was
significantly upregulated in subjective day in all light treatments with higher mean expression in
adults in the full-spectrum and blue-light treatments. When light was removed, expression decreased
in all treatments but remained significant throughout more than half of subjective night. Asterisks
indicate significant difference among treatments (* <0.05, ** <0.001, *** <0.0001) and error bars
are + s.d; modified from [135]

1.5 Behavioral rhythms and conservation with the bilaterian biological clock

Circadian rhythms are present in plants, bacteria, fungi and animals [136],

and they allow these organisms to anticipate and prepare for daily environment
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changes (e.g., light, temperature, food availability). Sleep in many animals is tied

to the circadian cycle, and the mechanisms that connect these separate processes

are an area of active study [137]. The presence of circadian rhythms in cnidarians

makes them an attractive model for characterizing a possible sleep-like state in a

non-bilaterian.

Many cnidarians display daily cycles in activity, including vertical migration in

direct response to light intensity, larval phototaxis, settlement behavior, expansion

and retraction of the body column, and feeding behaviors [138–140]. Gametogenesis

and spawning can also be cued to seasonal, lunar and daily changes in light intensity

and wavelength [141, 142]. Acropora millepora and Nematostella vectensis have

many diurnally-oscillating genes, some unique, but many in common with each

other [143]. Their rhythmicity also continued in the absence of the entraining cue

(e.g., light), considered a requirement for a behavior to be circadian, though this did

not persist for long [144–146].

Cnidarians detect and respond to light [105, 147, 148], and share at least

two classes of photosensitive molecule with Bilateria: opsins and cryptochromes,

and both can be involved in the entrainment of circadian rhythms (Figure 1.5D)

[135, 145, 149–151]. However, the ability to detect light does not define circadian

rhythms, it is the intrinsic underlying molecular clock that organizes and maintains

the rhythm.

Some components of the bilaterian transcription–translation feedback loop that

regulates the circadian clock exist in Cnidaira; however, with hundreds of millions

of years of evolution, cnidarian molecular clocks could be built with both conserved

and novel parts [135, 144, 150]. For example, some cnidarians have cryptochromes

that are expressed in in a diel cycle (Figure 1.5D), a common component of the

bilaterian feedback loop [135, 150]. Other genes, including melatonin, are known to

be involved in circadian rhythms and sleep, and inNematostella vectensis, melatonin

synthesis genes cycle their expression under diel conditions and melatonin can

initiate expression of circadian clock genes [146]. However, howmelatonin interacts
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with the circadian clock in this system, or regulates sleep in other systems, remains

largely unknown [137, 152, 153].

1.6 Jellyfish provide new insights into self-repair and sleep behavior

We leveraged the characteristics of jellyfish - their phylogenetic position, mor-

phology, and behavior - to gain insight into two fundamental questions in biology. In

Chapter 2, I describe how we discovered a new mechanism of self-repair in Aurelia

that does not involve the regeneration of lost parts but instead relies on the propulsion

system to power the reorganization of existing parts to regain essential body sym-

metry. In Chapter 3, I describe how we characterized a behavioral sleep-like state

in Cassiopea, extending the presence of sleep to an animal without a centralized

nervous system.
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C h a p t e r 2

SELF-REPAIRING ESSENTIAL SYMMETRY IN JELLYFISH

2.1 Abstract

What happens when an animal is injured and loses important structures? Some

animals simply heal the wound, whereas others are able to regenerate lost parts. In

this study, we report a previously unidentified strategy of self-repair, where moon

jellyfish respond to injuries by reorganizing existing parts, and rebuilding essential

body symmetry, without regenerating what is lost [1]. Specifically, in response to

arm amputation, the young jellyfish ofAurelia aurita rearrange their remaining arms,

recenter their manubria, and rebuild their muscular networks, all completed within

12 hours to 4 days. We call this process symmetrization. We find that symmetriza-

tion is not driven by external cues, cell proliferation, cell death, and proceeded

even when foreign arms were grafted on. Instead, we find that forces generated

by the muscular network are essential. Inhibiting pulsation using muscle relaxants

completely, and reversibly, blocked symmetrization. Furthermore, we observed that

decreasing pulse frequency using muscle relaxants slowed symmetrization, whereas

increasing pulse frequency by lowering the magnesium concentration in seawater

accelerated symmetrization. A mathematical model that describes the compres-

sive forces from the muscle contraction, within the context of the elastic response

from the mesoglea and the ephyra geometry, can recapitulate the recovery of global

symmetry. Thus, self-repair in Aurelia proceeds through the reorganization of ex-

isting parts, and is driven by forces generated by its own propulsion machinery. We

find evidence for symmetrization across species of jellyfish (Chrysaora pacifica,

Mastigias sp., and Cotylorhiza tuberculata).
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2.2 Introduction

Animals are capable of a broad array of self-repair mechanisms - the daily

maintenance of cellular components, tissues, and organs are all forms of self-repair

[2, 3]. As described in the introduction, there are two general classes of self-repair:

wound healing and regeneration. These processes have been well studied in a

number of vertebrate and invertebrate models [4–7].

However, it difficult to generalize about the role of self-repair. Some examples

appear adaptive (e.g., lizard tail or starfish arm regeneration after the intentional

loss of these structures through autotomy). However, species closely related to

those that regenerate, living in similar contexts, can show staggering differences in

regenerative ability [8]. Further, some animals lose their regenerative ability as they

develop (e.g., tadpoles [6]), while others maintain their ability as sexually mature

animals (e.g., axolotl [5]). Self-repair appears to span the spectrum from adaptive

and utilitarian to unintended or otherwise unexplainable, and there appears to be

similar diversity at the mechanistic level [9].

It has been hypothesized that certain examples of regeneration are epiphenom-

ena, linked pleiotropically to adaptationsmore useful than regeneration [10–12]. For

example, cardiomyocytes in zebrafish re-utilize core signaling pathways (e.g., FGF)

to regenerate heart structures that are surgically removed, which to some extent may

be adaptive, though it is hard to imagine a scenario in nature when the animal would

survive a wound that removes half of its heart [13, 14]. However, regeneration

is also often inextricably linked to the future usability of the reformed structure.

For example, amputated amphibian limbs will not regenerate without innervation

[15], nor will annelid worms regenerate anteriorly if the ventral nerve cord has been

removed [16]. This utilitarian imperative seems to prevent the wasteful allocation of

limited resources on useless regenerating structures [10]. It is with an eye towards

these theories that we approached studying self-repair in Aurelia aurita ephyrae.

We were particularly interested in this young free swimming stage because of their

dependence on radial symmetry for their overall functionality. We asked if jellyfish
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have a means to recover this functional symmetry, and the implications of these

findings could connect to theories that address the varying rational for self-repair

abilities in animals.

The moon jelly, Aurelia aurita, is one of the most plentiful jellyfish in oceans

across the world (Fig. 2.1A). Ranging from tropical seas to subarctic regions, from

the open ocean to brackish estuaries, the moon jelly occupies diverse habitats [17–

19]. The moon jelly varies greatly in size, from a few centimeters to a foot [17,

20, 21]. Transition into medusa may proceed over 1 month in the laboratory (with

abundant feeding), or longer in thewild. The ephyra stage is hardy and canwithstand

months of starvation [22]. Aurelia can even thrive in dirty, polluted, acidified, warm,

and oxygen poor waters [23–26]. Presently, jelly blooms have been increasing in

size and frequency worldwide, which has been interpreted as a troubling sign of a

disturbed ocean ecosystem [27], pitt2014jellyfish).

Injury is common in marine invertebrates. Examining 105 studies, Lindsay

[29] showed that, at any given time, about 33–47% of the benthic fauna is injured.

Some cited studies recorded entire starfish populations with at least one injured

arm. Injury may be due to numerous factors, including partial predation, autotomy,

cannibalism, competitive interaction, and human activities. Jellyfish have many

known predators. A well-studied group of predators are the sea turtles (e.g., the

leatherback and the loggerhead; Fig. 2.1C). Juvenile sea turtles have been observed

biting into foot-wide jellyfish, and adults gorge on an average of 261 jellyfish per

day [30]. In addition, over 124 species of fish, 11 species of birds, several species

of shrimps, sea anemones, corals, and crabs are reported to assail Aurelia [31–34].

Barnacles have been reported to catch and digest newly strobilated ephyrae [35].

Here, we ask how Aurelia responds to injuries. Marine invertebrates are known

for their regenerative ability. Reported cases of regenerating marine organisms

include jellyfish, sponges, corals, ctenophores, sea anemones, clams, polychaetes,

starfish, and brittlestars [29, 36–41]. Isolated striated muscle from hydromedusae

can transdifferentiate to regenerate various cell types [42]. The polyps of Aurelia,
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Figure 2.1: Life cycle and anatomy of Aurelia aurita. (A) Adult Aurelia. The blue color is due
to lighting. Image courtesy of Wikimedia Commons/Hans Hillewaert. Image © Hans Hillewaert.
(B) Aurelia life cycle. Fertilized eggs develop into larval planulae, which settle and develop into
polyps. Seasonally, or in the right conditions, the polyps metamorphose into strobilae and release
free-swimming, juvenile jellyfish (a process called strobilation). The young jellyfish, called ephyrae,
grow into medusae in 3–4 wk. Reprinted with permission from ref. [28]. (C) A juvenile green sea
turtle preying on Aurelia at Playa Tamarindo, Puerto Rico. Image courtesy of R. P. van Dam. (D)
An Aurelia ephyra has eight radially symmetrical arms, surrounding the manubrium at the center.
At the end of each arm is a light- and gravity-sensing organ, called rhopalium. (E) The epithelium
of ephyra is composed of two cell layers, the ectoderm-derived epidermis that faces the outer side
and the endoderm-derived gastrodermis that lines the gastric cavity. Between the two layers is the
gelatinous, viscoelastic mesoglea. Embedded in the subumbrellar side (mouth side) is the coronal
muscle (green).

and a number of other species, can regenerate tentacles, stolonts, and hydrants

[43–46], and an entire polyp can regrow from a single polyp tentacle [47]. In this

study, we investigated the repair capacity in the free-swimming forms of Aurelia

and discovered that Aurelia have evolved a fast strategy of self-repair, one that does

not involve regenerating lost body parts.

2.3 Aurelia rapidly reorganize their remaining arms and recover radial sym-

metry after amputation

To study how the free-swimming forms ofAurelia respond to injuries, we chose

to examine the ephyrae, the discrete symmetry of which gave us clear morphological

markers to follow (Fig. 2.1D). Newly strobilated ephyrae are typically 3–5 mm in

diameter (Movie S2.1). They have a disk-shaped body, with eight symmetrical
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arms. Also called lobes, lappets, or tentaculocytes by other authors, these arms

form a swimming apparatus in the ephyrae. Viscous boundary layers of fluid form

between the arms to create a hydrodynamically continuous paddling surface [48].

Symmetric pulsation of the arms generates fluid flow that facilitates propulsion and

prey capture [49, 50]. As ephyrae grow into medusae, bell tissues grow between the

arms, replacing a viscous bell with a physical one.

At the end of each arm is a sensory organ, called rophalium, which contains

ocelli, chemosensory pits, and a statocyst [36]. At the center of the body is the

manubrium, a muscular channel connecting the mouth to the gastrovascular cavity.

The stomach is surrounded by an epithelium composed of two cells layers, the

outer-facing epidermis (containing the stinging cells) and the gastrodermis lining

the stomach (Fig. 2.1E). Between the two cells layers is the mesoglea, a viscoelastic,

jelly-like substance composed predominantly of fibrous proteins and water [51].

We conducted the amputation experiments in the following way. Freshly

strobilated ephyrae were anesthetized and amputated using a homemade razor knife

(Fig. 2.2A and Materials and Methods). Ephyrae were immediately returned to

artificial seawater (ASW) to recover. Muscle contractions typically resumed within

minutes. Fig. 2.2 B and C shows a typical progression of recovery. The three-

armed and five-armed pieces here were cut from an individual ephyra. The process

commenced within minutes. The wound at the cut site closed within the first

hours. The arms gradually spread further apart, as the manubrium relocated to the

center of the body. Within 18 h in this experiment, we observed fully symmetrical

three-armed and five-armed ephyrae.

We call this process “symmetrization” to denote the recovery of radial sym-

metry, rather than regeneration of precise initial body parts, e.g., the missing arms.

Symmetrization was observed across amputation schemes. Fig. 2.2D shows sym-

metrical ephyrae that recovered from injury with two, three, four, five, six, and

seven arms. Symmetrization even proceeded in grafting experiments: a foreign arm

grafted onto a cut tetramer led to the formation of a fivefold symmetrical ephyra
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Figure 2.2: Aurelia ephyra reorganize existing arms to regain radial symmetry. (A) An
example of amputation schemes used in the study. Cuts were performed across the body using a
razor blade. (B and C) A three-armed and five-armed piece amputated from a single ephyra. Within
2 d, neither regenerated the lost arms. Instead, each reorganized to reform radial symmetry. (D)
Symmetrization was observed with two, three, four, five, six, and seven arms. The cartoons indicate
the initial forms after amputation. (E) Percentage of symmetrization across amputation schemes. The
ephyrae in the amputation experiments were 1–3 d old (after strobilation) and were examined daily
for 4 d. (F) Progression of symmetrization. In this experiment, we counted the number of ephyrae
that symmetrized at the indicated time. Data were collected from dimers, tetramers, pentamers, and
hexamers. There is a slight trend in the recovery speed across amputation scheme. The 12-h recovery
is typical for dimers. Symmetrical tetramers and pentamers often started appearing by day 1 onward,
as analyzed in more detail in Fig. 2.5H. (G and H) Ephyrae in these experiments were tracked
individually for 1 mo, fed daily, and imaged every 2–3 d. (G) Pentamers that symmetrized continued
growing into mature medusa (n = 19). (H) Pentamers that did not symmetrize grew abnormally with
oversized manubria (n = 10). (Scale bar in each photograph: 1 mm.)
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Figure 2.3: Symmetrization proceeded with foreign arms. (A) In this experiment, the ephyra
was cut in half. Subsequently, an arm from another ephyra (outlined in red) was grafted to the
tetramer, between arm 1 and 2. “m” indicates the manubrium. Grafting was performed by pinning
the ephyra segments next to each other on an agarose plate (1%agarose, madewith artificial seawater).
Pinning was done using cactus spines (ones from columnar Espostoa sp. worked best). The ephyrae
were kept pinned overnight (~12 h), unpinned the next morning, and allowed to recover in artificial
seawater. (B) By 4 d, the patchwork ephyra had become symmetrical. The grafted arm is outlined
in red. The location of grafting looked smooth, and the ephyra had healed without obvious scarring.
The extra arm was incorporated seamlessly into the host tetramer. The resulting patchwork pentamer
was symmetrical and pulsed synchronously. (C) Phalloidin staining shows that the axisymmetrical
muscle was rebuilt, and muscle from the extra arm was connected seamlessly into the host ephyra
(we discuss the muscle network in more detail in the main text and in Fig. 2.5)

(Fig. 2.3A-C).

Symmetrization occurred at high frequency (Fig. 2.2E). We amputated hun-

dreds of ephyrae and observed frequency of symmetrization ranging from 72% to

96% across amputation schemes. In the ephyrae that did not symmetrize, the cut

wounds simply closed, with little traces of the initial injury. The speed of recovery

varied, but ephyrae typically symmetrized within 12 h to 4 d (Fig. 2.2F).

We tested whether ephyrae that regained radial symmetry could continue de-

veloping. Two- and three-armed ephyrae, which have no manubrium for feeding,

did not develop further, and typically died within 2 wk. We observed pronounced

effects in ephyrae with four to six arms. Ephyrae that reformed symmetry matured

into medusae; developed gonads, full bells, and oral arms (Fig. 2.2E; n = 19);

and showed active swimming (Movie S2.2). Ephyrae that remained asymmetrical

developed shrunken bells and disproportionately large manubria (Fig. 2.2F; n =

10), and remained sunken at the bottom of the aquaria (Movie S2.2). These results

suggest that regaining radial symmetry facilitates further development of injured

ephyrae into adult medusae.
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2.4 Symmetrization phenocopies developmental variation

Figure 2.4: Symmetrization phenocopies developmental variation. (A) Nonoctamers form
9.5%of theAurelia population in our laboratory. Ephyraewere scored immediately upon strobilation.
This histogram come from multiple strobilae in a single strobilation round. A single strobila may
produce 10–20 ephyrae, with variable numbers of arms. (B) A natural pentamer, hexamer, and
dodecamer. (C) White circles: body size of natural ephyrae. Black circles: body size of ephyrae
from symmetrization. Both plotted as a function of the arm number. The arrows indicate where
there are both black and white circles overlapping. Body size was measured as the diameter (the gray
region in the ephyra cartoons). We normalized body diameter to arm length (black regions of the
ephyra cartoons), to account for variation across ephyrae. The ephyrae also grew in size over time;
to account for this, we characterized the growth curve and normalized all measurements to 1-d-old
ephyrae (Materials and Methods). A total of 46 ephyrae was measured to generate this plot. Error
bars are SD from more than three ephyrae. Some error bars are not seen because they are smaller
than the circles.

Interestingly, radially symmetrical nonoctamers have been observed in Aurelia

populations in the wild [52–54], as well as cited by William Bateson [55] as an

example of meristic variation, and they are not rare. Scoring freshly strobilated

ephyrae, we observed that 9.5% of the ephyrae in our laboratory population are

nonoctamers (Fig. 2.4A), consistent with a previous study in marine aquaria [56].

The natural nonoctamers range from having 4 to 16 arms and are capable of ma-
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turing into medusae. These natural nonoctamers look indistinguishable from those

recovering from the amputation experiments (Fig. 2.4B). Furthermore, we found

that, in ephyrae, the body size scales with the number of arms and that this scaling

is conserved between the natural and the amputated ephyrae (Fig. 2.4C). The con-

served scaling is remarkable because the ephyrae were simply cut in the amputation

experiments and the amount of body lost was variable, suggesting an active geo-

metric regulation. These results show that symmetrization produces physiologically

relevant morphologies, recapitulating those generated by developmental variation.

2.5 Symmetrization is not driven by cell proliferation, cell death, or muscle

reconnection

Next, we investigated the mechanism that drives the recovery of radial symme-

try. We did not find obvious requirement for global external input. Symmetrization

proceeded in stagnant or moving water, in light or dark, and even when the ephyrae

were pinned upside down. Symmetrization also occurred when the ephyrae were

reared alone or in groups. Neither did we see an obvious global organizer within the

body. As Fig. 2.2C shows, ribbons of two or three arms, missing the majority of the

central body, recovered symmetry. Finally, symmetrization is not simply driven by

wound closure. The wound closed within hours, preceding symmetry reformation.

Moreover, the wound also closed in amputated ephyrae that did not symmetrize.

We next investigated other classes of mechanisms that could explain sym-

metrization. One possibility was that symmetrization might be driven by localized

cell proliferation that could push the arms apart (Fig. 2.5A). Local cell proliferation

in theDrosophila wing disk can generate global tension that rapidly drives changes in

tissue shape [57, 58]. To mark cell proliferation, we used 5-ethynyl-2’-deoxyuridine

(EdU), a thymidine analog that gets incorporated into newly synthesized DNA [59].

Fig. 2.5B shows EdU staining in the cut tetramers with no obvious localized pat-

terns (the green EdU stain here reflects the cumulative DNA synthesis over 4 d). We

saw similar staining in the uncut ephyrae (Fig. 2.6A). Denser stain was seen in the



35

Figure 2.5: Symmetrization is not driven by cell proliferation, cell death, or muscle recon-
nection. (A–D) Is symmetrization driven by cell proliferation? (A) Localized cell proliferation
(e.g., in the green regions) may push the arms apart. (B) EdU stain (green) in a symmetrized
tetramer, showing cumulative signal over 4 d. (C) EdU stain was abolished in the presence of 20
µM hydroxyurea. In this experiment, the cut ephyrae were incubated in EdU with or without 20 µM
hydroxyurea for 4 d. The solution was refreshed daily. Ephyrae were fixed and stained on day 4
(Materials and Methods). (D-F) Is symmetrization driven by cell death? (D) Localized cell death
(e.g., in the blue region) may pull the arms into the cut site. (E) Sytox stain (white) in a symmetrized
ephyra 3 d after amputation. (F) Sytox stain was abolished in the presence of a caspase inhibitor (100
µM Z-vad-fmk). Cut ephyrae were incubated in the inhibitor for 3 d, and then stained with Sytox
(Materials and Methods). (G–J) Symmetrization is accompanied by reconnection of coronal muscle.
(G) Staining of the musculature in an uncut ephyra. Muscle was visualized using phalloidin–Alexa
Fluor 488 (Materials and Methods). (H–J) Staining of muscle in symmetrizing ephyrae. Ephyrae
were fixed and stained at 15 min (H), 1 d (I), and 3 d after amputation (J). White arrows in K indicate
the extending edges of the muscle. (K–N) Is symmetrization driven by muscle reconnection? (K)
Reconnection of muscle (green) may pull the arms along. (L–N) Ephyrae were amputated, incubated
in 2 µM (L–M) or 500 nM (N) cytochalasin D for 4 d, and then stained with phalloidin–Alexa Fluor
488
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manubrium (circled) and rophalia. Moreover, when we blocked cell proliferation

using 20 µM hydroxyurea, the EdU stain was largely abolished (Fig. 2.5C), and

symmetrization progressed fully, and at a normal pace (n = 40). We observed the

same results using another inhibitor of cell proliferation, 5-fluoroacil (10 µM; n =

40).

Figure 2.6: Cell proliferation and cell death stains. (A) EdU stain (green) in an uncut ephyrae.
Total nuclei were stained using Hoechst (white). The magnified regions show the EdU and nuclear
stain separately. The circle indicates the manubrium. (B) Sparse baseline Sytox stain (white) in an
uncut ephyra. (C) Sytox stain was increased in the presence a caspase inducer (100 nM gambogic
acid; n = 19 of 20). In this experiment, cut ephyrae were incubated in the chemicals for 1–3 d, and
then stained with Sytox (Materials and Methods). The 1 µM gambogic acid was lethal to ephyrae,
giving us an upper limit.)

Alternatively, symmetrization may be driven by localized cell death, creating a

negative pressure space that pulls the arms around the body (Fig. 2.5D). Apoptosis
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in Drosophila embryogenesis can produce forces that pull in neighboring cells [60].

We assessed cell death using Sytox, a DNA-binding dye that does not cross intact

cell membranes and therefore only stains cells with compromised membranes, a

proxy for dying cells. As a positive control, we saw high Sytox stain when we fixed

the ephyrae (hence permeabilizing all cells), and when we treated the ephyrae with

an apoptosis inducer (100 nM gambogic acid; Fig. 2.6; n = 19 of 20). Fig. 2.5E

shows that there was little staining in the cut tetramers. We saw similarly little stain

in uncut ephyrae (Fig. 2.6A). We stained every 24 h after amputation and did not

see an increase in Sytox staining during symmetrization. High Sytox stain was seen

in the manubrium and rophalia; both are regions of high EdU staining, indicating

these are areas of high cell turnover. Finally, when we treated the ephyrae with a

caspase inhibitor (100 µM Z-vad-fmk), the Sytox stain was largely reduced (Fig.

2.5F, n = 17 of 20), and still symmetrization progressed normally.

Thus, neither cell proliferation nor cell death seems to play a significant role

in driving the recovery of body symmetry. Symmetrization appears to be primarily

driven by the reallocation of existing cells and tissues. What might be other sources

of force that could mediate rebalancing of existing body parts? A prominent struc-

ture in the ephyrae is the striated musculature network [36, 60, 61]. Phalloidin

staining in Fig. 2.5G shows actin enriched in the muscle, revealing the axisymmet-

ric architecture of the ephyra musculature, with a coronal ring in the central body,

and radial rays extending into each arm. Fig. 2.5H shows a freshly cut tetramer,

where the halved manubrium and the blunt muscle ends can be seen at the edge of

the wound. Fig. 2.5I show how the ends of the coronal muscle gradually extended

toward each other as the ephyrae symmetrized (see arrows), and reconnected to

reform axisymmetrical musculature (Fig. 2.5J).

We asked whether the musculature network plays a role in symmetrization.

First, we tested the idea that perhaps the muscle reconnection itself pulls the arms

along into symmetrical positions (Fig. 2.5K). To block muscle reconnection, we

treated the cut ephyrae with cytochalasin D, which inhibits actin polymerization.
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Pretreatment with cytochalasin D (for 1 d before amputation) blocked the wound

closure, and the ephyrae died. This suggests that wound closure requires actin

dynamics and that wound closure is a necessary first step in symmetrization, even

though it does not drive symmetrization because the wound also closes normally

in unsymmetrized ephyrae. To avoid the lethal effects, in subsequent experiments,

ephyrae were amputated first and then immediately incubated in cytochalasin D.

Treated ephyra continued pulsing and feeding (as also observed in [62]), and the

wound closed normally. At high doses of cytochalasin D (2 µM), the vast majority

of ephyrae failed to symmetrize (Fig. 2.5L; n = 66 of 76). Similar effects were

observed with other actin inhibitors, dihydro-cytochalasin B (n = 20 of 20) at 750

nM and latrunculin A at 60 nM (n = 19 of 20).

The lower dose, however, is more revealing. At 500 nM, cytochalasin D

treatment blocked reconnection of the coronal muscle (Fig. 2.5N), despite which

the ephyrae often symmetrized (n = 14 of 21). In fact, we also observed this with

2 µM cytochalasin D, but at a lower percentage (Fig. 2.5M; n = 10 of 76). Muscle

reconnection therefore does not fully explain symmetrization, because ephyrae could

symmetrize normally without it. We seem to have disentangled two effects here.

The higher doses of cytochalasin D may reveal the more nonspecific effects on

actin cytoskeleton beyond the muscle cells, possibly suggesting a role for actin

dynamics in tissue repositioning (as has been proposed in other systems [63, 64]).

The lower doses of cytochalasin D showed that actin polymerization is necessary

for the reconnection of the coronal muscle but that this can be decoupled from, and

more importantly does not drive, symmetrization.

2.6 Symmetrization is driven by muscle contractions in the propulsion ma-

chinery

To determine forces upstream of muscle reconnection, we turned to the muscle

function itself. The jellyfish muscle network generates contractile forces that drive

bell pulsation. This generates fluid flow that facilitates propulsion and prey capture
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[48–50, 65]. Muscle filaments are located in the basal extension of the epithe-

liomuscular cells, embedded in the subumbrellar mesoglea, and receive inputs from

the surrounding diffuse nervous systems and ganglionic pacemakers [36, 66]. To

inhibit muscle contraction, we tested a number of muscle relaxants that were solu-

ble in seawater (e.g., tricaine, bezoncaine, urethane), and most of them were fatal

within a day. However, two muscle relaxants, menthol and magnesium chloride,

proved to be gentle enough: the ephyra remained alive in the anesthetics for >3 wk.

Both anesthetics have been used in a number of studies in marine invertebrates [67–

69] and are thought to modulate the excitation–contraction coupling by blocking

voltage-gated ion channels [70, 71] that transmit electrical stimuli to the muscle.

In 400 µM menthol, all treated ephyrae were motionless and failed to sym-

metrize (Fig. 2.7A; n = 60 of 60). The arms remained asymmetrical, the manubrium

remained at the edge, and the cut muscle remained blunt (Fig. 2.7B). The effect was

reversible: ephyrae removed from menthol resumed symmetrization (Fig. 2.7C;

n = 20 of 20). We observed the same complete inhibition of symmetry recovery

with 2.5% (wt/vol) MgCl2 (n = 20 of 20). Because motionless ephyrae could not

feed effectively, we confirmed that all control-starved ephyrae symmetrized appro-

priately (n = 20 of 20). Thus, inhibiting muscle contraction completely blocked

symmetrization. This argues that forces generated by muscle contraction during

pulsation are necessary for symmetrization.

How might forces from muscle contraction drive the recovery of radial sym-

metry? To understand this, we consider muscle contraction in the context of its roles

in propulsion. A stroke cycle in jellyfish consists of alternating fast muscle con-

traction (the power stroke), followed by a slow elastic response from the gelatinous

mesoglea (the recovery stroke) (Fig. 2.7D; Movie S2.1 shows an ephyra swimming

in seawater) [65, 72, 73]. Activation of the axisymmetric musculature produces

symmetric bell contraction and a forward thrust. Recovery stroke, powered by the

elastic aspects of the mesoglea, brings the bell to its original shape and generates a

secondary thrust in the process. In ephyra, where there are discontinuous arms, a
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Figure 2.7: Symmetrization is driven by muscle contraction in the propulsion machinery.
(A–C) Inhibiting muscle contraction blocks symmetrization. (A) Amputated ephyrae were incubated
in 400 µMmenthol for 4 d, and then stained with phalloidin. All treated ephyrae failed to symmetrize
(n = 60 of 60). (B) A magnified view shows that the cut muscle remained blunt in the presence of
menthol. (C) Ephyrae removed from menthol (after 4 d) resumed and completed symmetrization
within 4 d (n = 20 of 20). (D and E) Proposed model of symmetrization. (D) A swimming stroke
consists of muscle contraction, which generates compression, followed by elastic response from the
mesoglea. We propose that, in the amputated ephyrae, this leads to angular pivoting into the cut site,
as there is less bulk resistance. With repeated cycles of compression and elastic repulsion, the arms
gradually relax into a more symmetrical state, until the forces are rebalanced. (E) Mathematical
simulation of the symmetrization of a tetramer, taking into account the compression generated by
the muscle contraction, the elastic response, and the ephyra geometry (see Supporting Information
for details of the model). The predicted time of symmetrization is computed based on the pulsation
frequency measured in seawater (Fig. 2.7F). (F–H) Frequency of muscle contraction dictates the
speed of symmetrization. (F) Incubation in reduced MgCl2 (50% of the normal seawater) increased
the frequency of muscle contraction, whereas incubation in 80 µM menthol decreased the frequency
of muscle contraction. The dashed gray line shows the full range of the data, whereas the black
lines indicate 95% confidence intervals. (G) Sample traces of ephyra pulsation in normal seawater
(blue), reduced magnesium (black), and 80 µM menthol (green). Frequency of muscle contraction
was counted by hand from time-lapse movies taken at 15 fps. A single pulse typically takes 0.5 s.
Full contraction was when the ephyrae fully closed in, and partial contraction was when the arms
only contracted halfway. (H) Cut ephyrae were incubated in normal seawater (blue), seawater with
reduced MgCl2 (black), or 80 µM menthol (green), and scored every day for symmetrization.
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continuous paddling surface is generated by viscous, overlapping boundary layers

between the symmetrically arranged arms [48].

In such an interlinked system where the symmetry of the arm and muscle archi-

tecture is essential for driving propulsion, loss of symmetry would be immediately

sensed through imbalance in the interacting forces. In uncut ephyrae, muscle con-

traction produces an axisymmetric compression that is balanced in all directions.

In amputated ephyrae, where the geometric balance is disrupted, the asymmetrical

compression from muscle contraction, followed by the elastic response, may intu-

itively produce a net angular pivoting of the arms into the cut site, where there is

less opposing bulk (Fig. 2.7D). This is akin to squeezing an elastic ball at one end

and producing a protrusion on the other side. With each cycle of compression and

elastic repulsion, the arms may then relax to a new stable state. Through repetition

of this cycle, the arms may gradually ratchet into the cut site, until the morphology

is geometrically rebalanced (Fig. 2.7D).

Figure 2.8: Model geometry and coordinate. (A) We consider a ∆θi, the angular span between
arm i and arm i + 1. (B) The corresponding body area is denoted as A i. Muscle contraction
compresses the body by ∆A (C) and generates an elastic response (D), which in turn leads to angular
pivoting of the arms (E).

To test this intuitive model, we built a mathematical model that considers forces
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generated by themuscle contraction and themesoglea elastic response, in the context

of ephyra geometry (Fig. 2.8A-E). The dimensions of the ephyrae were measured

directly, and the elastic and tensile modulus of the body were obtained from previous

biomechanic studies[51, 74]. Simulation of the model (Fig. 2.7E and Movie

S2.3) shows that interactions between these local forces can indeed recover global

symmetry. Not only does the model recapitulate the symmetry recovery but it also

captures the timescale of symmetry recovery, predicting a recovery time of 1.3–2.7

d (see Supporting Information for detailed calculation). The force–balance model

makes a prediction: the speed of symmetrization is proportional to the frequency of

muscle contraction. If the ephyrae pulse more often, they will symmetrize faster.

To test the model prediction, we use gentle perturbations to modulate the fre-

quency of muscle contraction in the ephyrae. Muscle contraction can be stimulated

by reducing magnesium concentration in seawater, as was also observed in ref. [75].

Fig. 2.7 F–H shows that a 50% reduction in magnesium ions (referred to as “reduced

Mg”) increased the frequency of contraction in ephyrae (shown in black; also see

Movie S2.4, with the control in Movie S2.4). Under this increased frequency of

muscle contraction, symmetrization proceeded faster (Fig. 2.7H; n = 28). Within

a day, 36% of ephyrae in reduced Mg symmetrized, higher than the 7% in ASW

(P value < 0.01). In the parallel experiment, we slowed down muscle contraction

by treating ephyrae with 80 µM menthol. Under this condition, the ephyrae pulsed

less frequently (shown in green in Fig. 2.7 F–H and Movie S2.4) and symmetrized

more slowly (Fig. 2.7H; n = 29). By day 2, only 14% of ephyrae symmetrized in

80 µM menthol, compared with 38% in ASW (P value < 0.01). As predicted by the

model, the speed of symmetrization indeed correlates with the frequency of muscle

contraction. Higher frequency of muscle contraction delivers more work per unit

time and drives faster symmetrization.

Moreover, the simple model captures the orders of magnitude of the observed

symmetrization time. In reduced Mg, they pulse 92–215 per min (Fig. 2.7F),

which predicts a symmetrization time of 13 h to 1.25 d (see Supporting Information
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for detailed calculation). This corresponds nicely with the observed peak at day

1 in reduced Mg (Fig. 2.7H). In 80 µM menthol, they pulse 20–76 per min (Fig.

2.7F), which the model predicts would have a symmetrization time of 1.5–5.8 d,

corresponding to the broad spread we see in the menthol experiment (Fig. 2.7H).

The correlation between pulsation rate and symmetrization speed supports

the idea that muscle contraction plays a dominant role in driving symmetrization.

One potential caveat here is that menthol and magnesium may also affect ion flow

in nonmuscle cells. To further confirm the specific role of muscle contraction,

we used two different inhibitors of skeletal muscle myosin II, N-benzyl-p-toluene

sulfonamide (BTS) and 2,3-butanedione monoxime (BDM) [76, 77]. Similar to

those treated with menthol and reduced Mg, the myosin-inhibited ephyrae were also

incapable of pulsing and survived for over a week in the treatment. We saw no

symmetrization in ephyrae incubated in 150 µM BTS (n = 40 of 40) or 25 mM

BDM (n = 40 of 40), as shown in Fig. 2.9. Examining phalloidin staining in these

ephyrae showed blunt coronal muscle on the cut edge, indistinguishable from those

incubated in 400 µM menthol (compare Fig. 2.9 to Fig. 2.7).

Finally, might recovering symmetry, rather than precise body parts, be a more

general strategy across Scyphozoa? The Scyphozoa class in Cnidaria encompasses

some 200 extant species, the majority of which undergo an ephyra stage. Despite

the morphological diversity of the adult medusae, the ephyrae across species are

incredibly similar, in anatomy, in musculature, and in size (most known ephyrae

range between 3 and 5 mm; ref. [53]. Indeed, we observed symmetrization in

Chrysaora pacifica,Mastigias sp., and Cotylorhiza tuberculata (Fig. 2.10). Halved

ephyrae of these species did not regenerate lost arms, but reorganized and regained

radial symmetry within 1–4 d. Together with our observations in Aurelia, this

suggests that symmetrization is present across two major orders of the Scyphozoa

(order Semaeostomeae and Rhizostomeae).
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Figure 2.9: Inhibitors of skeletal myosin II blocks symmetrization. In this experiment, the
ephyrae were cut, and then incubated in (A) 2,3-butanedione monoxime (BDM) (25 mM) or (B)
N-benzyl-p-toluene-sulfonamide (BTS) (150 mM). In both inhibitors, the ephyrae did not pulse and
remained asymmetrical throughout the 4-d treatment, and the coronal muscle remained blunt (n =
40 of 40 for BDM; n = 40 of 40 for BTS). The phalloidin staining was performed on day 4 after
amputation.

2.7 Discussion

Wedescribe in this study a strategy of self-repair in jellyfish, where, in response

to severe injuries, Aurelia ephyrae do not regenerate lost parts or simply close the

wound; rather, the organisms reorganize existing parts and recover body symmetry.

The absence of regeneration of arms is interesting in light of the fact that Aurelia is

capable of regeneration—Aurelia polyps can regenerate from a single polyp tentacle

[47]. It appears that rapidly regaining body symmetry, rather than precise body parts,

may be more critical in the free-swimming ephyrae.

Radial symmetry in jellyfish is essential for propulsion, and it is interesting that

the propulsion machinery intrinsically facilitates both sensing the loss of symmetry,
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Figure 2.10: Symmetrization was observed across four species of Scyphozoan jellyfish. (A)
The moon jellyfish Aurelia aurita. Image courtesy of Wikimedia Commons/Hans Hillewaert. Image
© Hans Hillewaert. (B) The sea nettle Chrysaora pacifica. Image courtesy of Sofi Quinodoz. (C)
The lagoon jellyfish Mastigias sp. Image courtesy of Wikimedia Commons/Captmondo. (D) The
Mediterranean jellyfish Cotylorhiza tuberculata. Image courtesy of Wikimedia Commons/Antonio
Sontuoso. For each column, row 1 shows the adult medusa, row 2 shows the uncut ephyra, and row 3
shows the symmetrized tetramer from amputation. Freshly strobilated ephyrae were cut in half and
allowed to recover in seawater. Symmetrized tetramers were observed within 4 d in all species.

and the repair of symmetry. Symmetrization does not require making new cells

or losing cells through programmed death. Instead, it is clear from our work that

mechanical forces play the dominant role in this self-repair process. Rather than

activating a special module, self-repair in jellyfish uses constitutive physiological

machinery. It will be interesting next to investigate the molecular underpinnings

that transmit forces from muscle contraction into tissue reorganization. Our data

indicate the roles of actin polymerization. As mechanical forces and cytoskeletal

dynamics are increasingly implicated in morphogenesis, symmetrization in Aurelia

with discrete geometry, clear morphological readout, and amenability to molecular

tools, may emerge as a model system for probing such questions. Moreover, we
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observed that a given polyp generated ephyrae with a variable number of arms.

It will be interesting to investigate whether mechanical forces play a role during

development to maintain symmetry and facilitate the generation of natural variation.

The lack of an increase in cell proliferation during symmetrization partially

brings to mind wound healing in the hydromedusa Polyorchis penicillatus [78],

which relies on cell migration rather and not cell proliferation for wound closure,

as well as morphallaxis in hydra, in which lost structures are regenerated without

increase in cell proliferation [7, 40, 79, 80]. Our study therefore suggests a po-

tentially interesting pattern: there is evidence of three strategies of self-repair in

cnidarians that do not require cell proliferation: one for simple wounding healing

(P. penicillatus), another to restore lost parts (in Hydra), and now one that restores

functional symmetry without restoring lost parts (in Aurelia).

Our findings also connect to the theories surrounding the role of self-repair

across animals. In essence, symmetrization appears to fulfill the utilitarian im-

perative - when the arms are made dysfunctional, their reorganization does not

occur. Simultaneously, symmetrization could be the unintended positive outcome,

an epiphenomena, of wound healing and mechanical forces operating in a viso-

elastic material, combining to form an adaptive self-repair program. It is difficult to

know how symmetrization came to be, but there is no question that ephyrae that fail

to symmetrize do not thrive.

Two points have not been explicitly addressed in our model. First, the ratchet

aspect of symmetrization. Over hours or days, the arms gradually move into the

cut site, until symmetry is fully regained. The mesoglea is a viscoelastic material

that produces an elastic response over short timescales but behaves like a viscous

fluid over longer time periods [51, 74, 81, 82]. Therefore, the ephyrae behaves

like an elastic object in responding to fast muscular compression, and we speculate

that the viscous aspect of the mesoglea may then help relax the organism to a new

state with the arms slightly repositioned into the cut site. Symmetrization relies as

much on the force-generating muscle machinery as on the material properties of the
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reorganized tissues. Second, it is striking that, in all of our amputation experiments,

the recovering ephyrae remained planar. One way we successfully broke planarity

was by removing themanubrium altogether. These ephyrae recovered to a bilaterally

symmetrical fan shape (Fig. 2.11A), or a spiral shape (Fig. 2.11B). The manubrium,

lined with muscle and connected to the body through a dense actin-rich network,

may plausibly act as a source of rigid planarity.

Figure 2.11: Removing the manubrium broke planarity. (A) Punching out the manubrium led
the ephyrae to adopt a fan shape. We used a P200 pipette tip to make a clean hole and removed the
entire manubrium. (B) Punching out the manubrium and linearizing the ribbon led the ephyrae to
adopt a spiral shape, with threefold symmetry stacked on fivefold symmetry. The new symmetry
was observed within 1–4 d after amputation. The ephyrae pulsed synchronously and remained alive
for over 3 wk until the experiment was ended.

Our study suggests a different framework to reinterpret previously reported

lack of regeneration in other marine invertebrates. In Hydrozoa, Hargitt suggested

in 1897 that injured hydromedusae (Gonionemus vertens) did not regenerate but

instead recast themselves into “a morphological equivalent of their original form”

[83]. In Ctenophores, Coonfield noted in 1936 that, although ~50% of ctenophores

(Mnemiopsis sp.) regenerated after quartering, the other 50% did not regenerate

but rather “rounded up and behaved as normal animals” [84]. Our work establishes

the lack of regeneration in Scyphozoa, demonstrates reorganization to recover body
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symmetry as an active process that facilitates growth and development, and presents

the underlying mechanism. Symmetrization is an agile strategy: it proceeds from

various starting conditions, it uses constitutive physiological machinery, and it is

fast and plausibly energy conserving (as it does not require new cells). It will be

interesting to test whether symmetrization has evolved as a parallel or alternative

strategy to regeneration across radially symmetrical animals.

Finally, beyond biology, the finding of a self-repair strategy that is mechanically

driven may inspire biomimetic materials and technologies that aim to self-repair

functional geometries, without regenerating precise shapes and forms.

2.8 Materials and Methods

ASW preparation

ASW is prepared at 32 ppt from prepared from Instant Ocean mix using

deionized water. For experiments in Fig. 2.7, magnesium-free ASW was made

using recipe 4 in table 3A in the Marine Biological Laboratory Recipe Book [85]

and was mixed with regular ASW from the same recipe book to vary magnesium

concentration.

Jellyfish Nursery

Aurelia aurita polyps were obtained from the Cabrillo Marine Aquarium (San

Pedro, CA) and strobilated in the laboratory. Polyps, ephyrae and medusae were

reared at 54 °F in Kreisel tanks (Midwater Systems and ones we built in the labora-

tory). The colony was fed daily with brine shrimps (Artremia nauplii) enriched with

Nannochloropsis algae. Polyps were occasionally fed L-type rotifers (Brachionus

plicatilis). To induce strobilation, we used temperature or chemical induction. For

temperature-induced strobilation, polyps growing at 54 °F were moved to 68 °F

for 2–3 wk, and then returned to 54 °F. Strobilation typically occurred 2–3 wk

after. For chemical-induced strobilation, we used the recent finding in ref. [86].

Polyps were incubated in 50 mM 5-methoxy-2-methyl-indole (Sigma; M15451) at
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68 °F and replaced daily. Strobilation typically occurred 1 wk after. Chrysaora

pacifica, Mastigas sp., and Cotylorhiza sp. polyps were obtained from the Mon-

terey Bay Aquarium (Monterey, CA). C. pacifica was reared at 54 °F, and the other

species at 68 °F. C. pacifica andMastigias sp. strobilation happened naturally in the

laboratory. Strobilation in Cotylorhiza sp. was induced using 50 mM 5-methoxy-2-

methyl-indole at 68 °F.

Amputations were performed using a single-edged industrial razor blade.

Ephyrae were anesthetized using 0.08% MS-222 or 400 µM menthol. Each ephyra

was anesthetized for 2–5 min, amputated, and then returned to ASW. Recovering

ephyrae were maintained in an HAG rotator (FinePCR), altered to continually rotate

50-mL Falcon tubes at 7–10 rpm. Ten to 20 ephyrae were placed in each tube. Feed-

ing was performed daily unless otherwise noted. For quick chemical screenings,

ephyrae were reared in six-well plates.

Treatment with Inhibitors or Activators

For each treatment, we first screened a wide range of doses to determine

the effective doses. Ephyrae were amputated, and then placed in ASW with the

inhibitor or activator, at the concentration indicated below. Solutions were changed

daily. Ephyrae were tracked between 4 and 14 d. Ephyrae were not fed during

the treatment, and we confirmed that starved ephyrae symmetrized at the same rate

as fed ephyrae. Specifically, hydroxyurea (Sigma; H8627) was used at 20 µM,

5-fluorouracil (Sigma; F6627) at 10 µM, Z-vad-fmk (APExBIO; A1902) at 100 µM,

gambogic acid (Sigma; G8171) at 100 nM, menthol (Sigma; M2772) at 80–400 µM,

cytochalasin D (Sigma; C8278) at 500 nM to 2 µM, dihydrocytochalasin B (Sigma;

D1641) at 750 nM, latrunculinA (Sigma; L5168) at 60 nM,BTS (Millipore; 203895)

at 150 µM, and BDM (Sigma; B0753) at 25 mM.
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Staining Protocol

All steps were performed at room temperature, unless indicated otherwise.

Nuclei were stained using Hoechst 33342 (Sigma; B2261) at 1:10 concentration,

and 30-min incubation in the dark. For costaining, Hoechst staining was done at

the end of the procedure before imaging. Actin was stained using Alexa Fluor 488

Phalloidin (Life Technologies; A12379) at 1:20 concentration. Ephyrae were first

anesthetized. This step ensured that the ephyrae would not curl when they were

fixed. Ephyrae were next fixed in 3.7% (vol/vol) formaldehyde for 15 min, washed

in PBS, permeabilized in 0.5% Triton/PBS for 5 min, washed in PBS, and then

blocked using 3% (wt/vol) BSA for 1–2 min. Ephyrae were then incubated in 1:20

phalloidin solution (in PBS) for 1–2 h in the dark, washed in PBS, and imaged.

Dead cells were stained using Sytox Orange (Life Technologies; S34861).

Ephyrae were incubated in 1:1,000 Sytox solution (in ASW) for 30 min in the

dark at room temperature, and then thoroughly washed with ASW and immediately

imaged.

Proliferating cells were stained using Click EdU Alexa Fluor 594 (Life Tech-

nologies; C10339) according to the protocol, with the following modifications:

Ephyrae were incubated in 15 mL of 1:1,000 EdU in ASW, in the dark, for 24–96

h. In the following steps, a total volume of 10 mL was used in each step. Ephyrae

were washed in ASW for 1 h, fixed in 3.7% (vol/vol) formaldehyde/PBS for 15 min,

washed in PBS, blocked with 3% (wt/vol) BSA/PBS, permeabilized in 0.5% Triton

X-100/PBS for 20 min, and washed in PBS. Ephyrae were then placed in 500 µL of

the Click-iT reaction mixture, incubated for 30 min in the dark, followed by washes,

and were immediately imaged.

Except for Sytox, all stained ephyrae could be stored in PBS at 4 °C in the dark,

for at least 2 wk without significant loss in signal.
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Imaging

Dark-field, bright-field, and fluorescent ephyrae were imaged using the Zeiss

AxioZoom.V16 stereo zoommicroscope equippedwith anAxioCamHR13-megapixel

camera, and processed using the Zen software. Optical sectioning of the thick sam-

ples and removal of out-of-focus light scattering were performed using the Apo-

Tome.2 module. To facilitate imaging, ephyrae were typically imaged anesthetized

in MS-222 or menthol. Coverslips were sometime used to hold ephyrae in place for

better image quality. Movies were captured using CamStudio.

Allometry Measurement and Age Correction

For each data point, at least three ephyrae were measured. For every ephyra, the

body diameter and three arm lengths were measured. Body diameter was measured

by fitting a circle to the body (Fig. 2.12). Arms were measured to the intersection

of the body and the arm. Ephyrae increase in size over time. To account for this,

we characterized the growth in body diameter with age. With this correlation, we

normalized all measurements to 1-d-old ephyrae.

Figure 2.12: Correlation of age and size.(A) Line indicates arm length. Red area indicates the
body. (B) Body size increases linearly with age. Error bars were from more than three biological
replicates and technical replicates.

Ephyrae Grafting

To generate grafted ephyrae, ephyrae segments must heal together. This was

achieved by pinning the ephyrae segments next to each other and allowing them to

heal together for ~12 h. Ephyrae were pinned on 10-mL Petri dishes filled halfway
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with 1% agarose/ASW. These dishes were allowed to cool and were then filled with

ASW. A donor ephyrae was anesthetized in 400 µM menthol in ASW, and arms

were amputated and stored in menthol ASW until grafting. Host ephyrae were then

halved in menthol ASW to produce nonsymmetrical tetramer ephyrae. The host

ephyrae were then pinned on an agarose dish, to which an arm was then pinned.

Pinning was accomplished using cactus spines from Espostoa mirabilis. Ephyrae

were kept pinned overnight (~12 h) in ASW. The next day, they were unpinned and

allowed to recover.

Muscle Contraction Modulation. Menthol (Sigma; M2772) was dissolved in

ASW to make 20–400 µMworking solutions. MgCl2 at 2.5% (wt/vol) was prepared

inASW.Magnesium-freeASWwasmade using recipe 4 in table 3A in ref. [AswBB]

and was diluted in ASW to make 1:1 to 1:10 final working concentrations. Ephyrae

were amputated in an anesthetic and maintained in ASW plus inhibitor for 4 d in

six-well plates or rotisserie. For recovery experiments, we waited for 4 d, and then

ephyrae were moved back to ASW.
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2.9 Supporting Information

A Mathematical Model Describing Forces in Jellyfish Propulsion Captures the

Recovery of Global Symmetry

How does muscle contraction drive symmetry recovery? Here, placing muscle

contraction in the context of its function in propulsion and the ephyra geometry, we

show that consideration of forces that normally operate in propulsion can explain

the recovery of radial symmetry in injured ephyrae.

Mathematical Formulation

Figure 2.9: Model geometry and coordinate. (A)We consider a ∆θi, the angular span between arm
i and arm i + 1. (B) The corresponding body area is denoted as A i. Muscle contraction compresses
the body by ∆A (C) and generates an elastic response (D), which in turn leads to angular pivoting of
the arms (E).

The components of themodel are established properties of swimming pulsation

(contraction and elastic response) and parameters measured directly in ephyrae

(body dimensions, frequency of contraction, and percentage change of body area

in response to muscle contraction). We model the angular movement of each arm

with respect to the geometrical center of the body. Fig. 2.8 illustrates the model

coordinates. ∆θi is the angular span between the ith arm and the (i + 1)th arm (Fig.
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2.8A), where the corresponding body area is denoted as Ai (Fig. 2.8B). Contraction

leads to a change in the body area, ∆ A (Fig. 2.8C), which in turns generates an

elastic response, described using the Hooke’s law:

Felastic = kC
∆A
Ai
,

[S1]

where kC is the elastic modulus of the body materials. This elastic force results

into angular pivoting of the arms (Fig. 2.8D), as there is less resistance in the

amputated site:

Fpivot = kT
δθ

∆θi
,

[S2]

where kT is the tensile modulus of the body. Combining Eqs. S1 and S2, we

have the force balance on the ith arm:

kC
δA
Ai
= kT

δθ

∆θi
.

[S3]

The new steady-state angle ∆θi after every contraction cycle can be described

analytically by integrating Eq. S2:

θi,new = θi,old

(
e
kC
kT
×∆AAi − 1

)
+ θi,old.

[S4]
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Simulation.

To solve the model, we estimated some parameters directly in the ephyrae: the

body diameter was set at 1 mm, arm length was set at 1 mm, and the swimming

contraction (coded as a sinusoidal function) was set at ~0.5–4 pulses per s (see mea-

surements in Fig. 2.7F and G). The compressive elastic modulus of the body, kC,

was set at 20 Pa (based on measurements in refs. [74] and [51]). The tensile mod-

ulus of the body, kT, was set at 1 MPa (based on measurement in ref. [74]). Movie

S2.3 (www.youtube.com/watch?v=VpWf74BkAbE& feature=youtu.be) shows the

resulting model simulation. Every cycle of contraction and elastic recoil generates

a net push into the cut site. With every cycle, the ephyra relaxes into a new stable

configuration where the arms going slightly into the cut site. This continues until

spacing between the arms is rebalanced. Matlab codes are available upon request.

Thus, the mathematical model consisting of known mechanical properties of swim-

ming pulsation can recapitulate the recovery of global symmetry. Furthermore, the

mathematical model also recapitulates the timescale of symmetry recovery. Eq. S4

gives the angular pivoting per cycle as follows:

θi,new − θi,old
θi,old

=
(
e
kC
kT
×∆AAi − 1

)
∆N,

[S5]

where N is the number of contraction cycles. Because kC
kT is small (~10−5) , Eq.

S5 can be approximated as follows:

dθi
θi
=

(
e
kC
kT
×∆AAi − 1

)
dN.

[S6]

Then, for a tetramer, the total number of cycles N required to change ∆θi from
π
4 (the initial configuration) to π

2 (the final symmetrized configuration) is as follows:
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N
(
e
kC
kT
×∆AAi − 1

)
=

π
2∫

π
4

dθi
θi
= ln2.

[S7]

The timeT to recover symmetry can therefore be analytically derived as follows:

T =
∆ln2(

e
kC
kT
×∆AAi − 1

) ≈ 47∆thours.

where ∆T is the period of a contraction cycle (in seconds), or the inverse of

frequency (in pulses per s). The estimated pulse frequency of an ephyra swimming

in artificial seawater is 0.7–1.5 pulses/s (Fig. 2.7 E–G). Eq. S8 then predicts a

symmetrization time ranging from 1.3 d – 2.7 d, which corresponds to what we

typically observed in ephyra (Fig. 2.2F).

The frequency of the contraction cycle effects the elastic and viscous moduli,

though forAurelia, their frequency ofmuscle contractions is such that theirmesoglea

is much more elastic than viscous [51]. We tested our model for the effect of

contraction frequency within the range we observed, from 1/1.5 - 1/.7 pulses per

second, and variations in the elasticmodulus, varying from10 - 50 pascals, described

in ref. [51]. To recover symmetry, variation in pulsation alone produces a range of

1.3 to 2.9 days, while the elastic modulus alone produces a range of 0.8 to 4 days.

Together, using the extremes for both pulse frequency and the elastic modulus, we

find a range of 0.5 to 6 days. This represents a scenario where the two values are

fully correlated. We also tried a different approach where we assumed that these

ranges represented 95% of the observed variability, i.e. 2 standard deviations of a

normal distribution. In this case, 95% of the resulting symmetry times fall within

0.6 to 4 days. This approach assumes the two variables are fully independent, and

hence we see a lower final variability. Importantly, the scenarios we tested indicate

that our model recapitulates the observed range in symmetrization speeds.
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2.10 Supplemental Movies

Figure Movie S1: An Aurelia ephyra swimming in seawater. A 1-d-old ephyra. The
movie is in real time. The movie can also be viewed through the following YouTube link:
www.youtube.com/watch?v=fdFkjwWrI-U&feature=youtu.be.

Figure Movie S2: An Aurelia ephyra swimming in seawater. A 1-d-old ephyra. The
movie is in real time. The movie can also be viewed through the following YouTube link:
www.youtube.com/watch?v=fdFkjwWrI-U&feature=youtu.be.
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Figure Movie S3: Simulation of a tetramer symmetrizing using our mathematical model.
Every cycle of contraction and elastic recoil generates a net push into the cut site. With ev-
ery cycle, the ephyra relaxes into a new stable configuration where the arms go slightly into
the cut site. This continues until spacing between the arms is rebalanced. Matlab codes are
available upon request. The movie can also be viewed through the following YouTube link:
www.youtube.com/watch?v=VpWf74BkAbE&feature=youtu.be.
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C h a p t e r 3

SLEEP IN JELLYFISH

3.1 Abstract

Do all animals sleep? Sleep has been observed in many vertebrates, and there

is a growing body of evidence for sleep-like states in arthropods and nematodes [1–

5]. Here we show that sleep is also present in Cnidaria [6–8], an earlier-branching

metazoan lineage. Cnidaria and Ctenophora are the first metazoan phyla to evolve

tissue-level organization and differentiated cell types, such as neurons and muscle

[9–15]. In Cnidaria, neurons are organized into a non-centralized radially symmetric

nerve net [11, 13, 15–17] that nevertheless shares fundamental properties with the

vertebrate nervous system: action potentials, synaptic transmission, neuropeptides,

and neurotransmitters [15–20]. It was reported that cnidarian soft corals [21]

and box jellyfish [22, 23] exhibit periods of quiescence, a requirement for sleep-

like states. Within Cnidaria, the upside- down jellyfish Cassiopea spp. displays a

quantifiable pulsing behavior, allowing us to perform long-term behavioral tracking.

Monitoring of Cassiopea pulsing activity for consecutive days and nights revealed

behavioral quiescence at night that is rapidly reversible, as well as a delayed response

to stimulation in the quiescent state. When deprived of nighttime quiescence,

Cassiopea exhibited decreased activity and reduced responsiveness to a sensory

stimulus during the subsequent day, consistent with homeostatic regulation of the

quiescent state. Together, these results indicate that Cassiopea has a sleep-like state,

supporting the hypothesis that sleep arose early in the metazoan lineage, prior to the

emergence of a centralized nervous system [24].

3.2 Introduction

Sleep has long been a curitosity - Aristotle remarked upon the lack of alarm

exhibited by sleeping animals and their tendency to sleep at night in his Inquires
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into Animals [25]. Sleep-like states have been behaviorally defined in a diverse

array of animals, from worms to flies and fish to humans [1–5] (Figure 3.1A). Sleep

among these animals shows remarkable similarity in its genetic and pharmacological

control, which supports the hypothesis that sleepwas present in the common ancestor

of these bilaterians over 600 million years ago [23, 26], though the function sleep

plays in these animals is not well understood.

The behaviors associated with sleep have been recognized since the 1930s

[28], and are now widely accepted as the set of criteria that appear to define the

features of sleep that are indicative of its core functions [29–33]. Sleep-like states

can be defined by three behavioral characteristics [6, 7, 30], and to exemplify these

characteristics we use the zebrafish sleep system. The first is behavioral quiescence,

typically a reversible period of decreased motor activity (3.1B). Second, a reduced

responsiveness to stimuli during the quiescent state, suggesting that the sensory and

motor systems are less active (Figure 3.1C) [34]. Third, the homeostatic regulation

of sleep, is most evident when sleep is deprived, there is an intense buildup of a drive

to sleep, even during normally wakeful periods (the section after sleep deprivation

in Figure 3.1D). Homeostatic behaviors, such as feeding, are tightly regulated and

serve important functions, leading to the suggestion sleep acts as a restorative period

during which the animal recovers from the adverse effects of wakefulness [6, 35,

36]. Layered on top of these behaviors in certain animals are distinct physiological

processes. For example, the development and use of the electroencephalogram

(EEG) revealed that electrical patterns relate to the physiologically distinct states

of rapid eye movment (REM) and non-REM sleep [35, 37, 38]. However, these

may represent species-specific attributes, and for our purposes, are not considered

defining characteristics of a sleep-like state.

The obvious disadvantages of sleep, a period in which animals cannot eat, mate

or defend against predators, must be balanced by the positive functions of sleep.

It has been hypothesized that sleep must play important restorative roles, perhaps

replenishing the pools of macromolecules used during wakeful activities throughout
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Figure 3.1: The phylogenetic prevalence and behavioral components of sleep-like states (A)
Phylogenetic tree schematic highlighting animals in which sleep behavior has been described, the
presence of neurons (tan), and the emergence of a centralized nervous system (dark blue). See boxed
key. (B-D) Daily variation in locomotor activity and arousal threshold in larval zebrafish maintained
in constant darkness and a compensatory reduction in locomotor activity and increase in arousal
threshold following rest deprivation. Zeitgeber time (ZT) and horizontal white/black bars indicate
subjective day versus subjective night, according to 12:12 light–dark cycle prior to the beginning
of recording, with ZT0 corresponding to lights on time. Each data point represents mean ± S.E.M.
group locomotor activity for preceding 2 h of recording (pixels per minute). N = 560 for each group.
(B) behavioral quiescence observed during subjective night (ZT12–ZT24). (C) Arousal threshold
increased at night; measured in constant darkness during subjective day (ZT3–5) or subjective night
(ZT15–17); N=520 for each group. White bars – control; striped bars – rest deprivation. N520
for each group. *,0.05; **P,0.01. modified from [27]. (D) Homeostatic regulation of sleep; rest
deprivation was scheduled during subjective night (ZT0–ZT6). Closed diamonds – rest deprivation
group, open squares – control group. (E) An image of the upside-down jellyfish Cassiopea. (F)
Higher-magnification view of Cassiopea with labeled actin-rich muscle (phalloidin stain; cyan),
autofluorescent Symbiodinium (yellow), and a rhopalia, the sensory organ that controls pulsing,
which is free of symbiodinium.

the body, and more specifically for the optimal function of neural processes [6, 39–

41]. The fact that rats and flies die if they are chronically deprived of sleep [42,

43] also emphasizes the essential function sleep must play. While the physiological
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importance of sleep is evident, we lack understanding of its complex mechanistic

underpinnings. By defining a behavioral sleep-like state in an early branching

animal lineage that does not have a centralized nervous system we may reduce the

complexity of the state and perhaps lay the foundation for further comprehension of

its mechanistic regulation.

One of the first metazoan phyla to evolve tissue-level organization and dif-

ferentiated cell types, such as neurons and muscle [9–15], is Cnidaria (described

in Chapter 1). Neurons in these animals are organized into a non-centralized ra-

dially symmetric nerve net [11, 13, 15–17] that nevertheless shares fundamental

properties with the vertebrate nervous system: action potentials, synaptic trans-

mission, neuropeptides, and neurotransmitters [15–20]. It was also reported that

cnidarian soft corals [21] and box jellyfish [22, 23] exhibit periods of quiescence, a

requirement for sleep-like states. Additionally, several cnidarians have quantifiable

circadian behaviors and have biological clock components [44–46], often associated

with sleep-like states. However, the baseline activity of most cnidarians is difficult

to asses (they either move too much or not enough). From our other projects we

were aware of another cnidarian, the upside-down jellyfish, Cassiopea, which has a

unique upside-down pulsing behavior suitable for quantification. Initial anecdotal

observations indicated this pulsing activity responded to changes in light conditions.

Together, this prompted us to ask whether a sleep-like state is present in Cassiopea.

Cassiopea are found throughout the tropics in shallow ocean waters and mud-

flats (Figure 3.1E) [47, 48]. Like other jellyfish, Cassiopea are dimorphic, with

an assexually reproducing polyp stage, and a sexual medusae stage. The young

medusae, called ephyrae, are no more than a few milimeters in diameter, but these

quickly develop to mature jellyfish over a couple months. In the wild these animals

can grow to ~30cm in diameter, generally have brown bodies and bushy tenta-

cles, though occasionally they can be darkly pigmented. These jellyfish are not

particularly venomous, allowing for easy handling.

They are capable of swimming, but rarely do so and rather remain with their
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bell down against a surface, hence their name, the upside-down jellyfish (Figure

3.1E; Figure 3.2A; Figure 3.3A; Movie S1) [47, 48]. Cassiopea, like coral and

sea anemones, have a photosynthetic obligate endosymbiote, Symbiodinium (SYM

in Figure 3.1F), which have good access to light because of Cassiopea’s unique

upside-down pulsing behavior.

Figure 3.2: The Pulsing Behavior of the Upside-Down Jellyfish, Cassiopea spp., Is Trackable
(A-C) As Cassiopea pulse, the relaxation and contraction of the bell causes a corresponding change
in average pixel intensity. Pulsing behavior was tracked by measuring this change in pixel intensity
within the region of interest. (A) Representative frames and (B) corresponding normalized pixel
intensities for one pulse event. The local maximum in the pulse trace was used to count pulse events.
(C) A 10 second recording of one jellyfish shows multiple pulsing events. The interpulse interval
(IPI) was calculated as the time between the maxima. See also Figures 3.2 and 3.3 and Movie S1.

Cassiopea continuously pulse by relaxing and contracting their bell at a rate of

about 1 pulse per second (Figure 3.2A). This pulsing behavior generates fluid cur-
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rents that facilitate vital processes such as filter feeding, circulation of metabolites,

expulsion of byproducts, and gamete dispersion [47, 49]. The pulsing behavior is

controlled by light- and gravity-sensing organs called rhopalia (Figure 3.1F) [11,

13]. This stationary pulsing behavior makes Cassiopea a suitable jellyfish for be-

havioral tracking. Before we could ask whether the cnidarian jellyfish Cassiopea

exhibits the core behavioral characteristics of sleep, we had to develop a system

for long-term behavioral analysis. To track behavior in Cassiopea, we designed

an imaging system (Figures 3.3C–F) for counting the pulses of individual jellyfish

over successive cycles of day and night, defined as a 12 hr period when the light is

on or off, respectively. As Cassiopea pulse, the relaxation and contraction of the

bell causes a corresponding change in average pixel intensity, which was measured

for each frame of the recording, producing a pulse trace (Figure 1D). Pulse events

were counted using the peak of the pulse trace, and the inter-pulse interval (IPI) was

calculated as the time between the peaks (Figure 3.2A-C and Figure 3.4).

3.3 Continuous tracking of Cassiopea reveals pulsing quiescence at night

We observed that Cassiopea pulse less at night than during the day (Figure

3.4; Data S1). To quantify this difference in pulsing frequency, we tracked the

pulsing behavior of 23 jellyfish over six consecutive days and nights (Figure 3.4C).

We define “activity” as the total number of pulses in the first 20 min of each hour.

Although individual jellyfish showed different basal activity levels (Figure 3.4C), all

showed a large decrease in mean activity (32%) at night (781± 199 pulses/20 min,

mean±SD) compared to the day (1,155±315 pulses/20min, mean±SD; Figures 3.4C

and E). To determine whether fast- and slow-pulsing jellyfish change their activity

to a similar degree, we normalized activity of individual jellyfish by their mean day

activity. Despite variations in basal activity, the relative change from day to night

was similar between jellyfish (Figure 3.4D). Jellyfish activity decreased throughout

the first 3–6 hr of the night, with the lowest activity occurring 6–12 hr after the day-

to-night transition. Pulsing activity peaked upon feeding, occurring on the fourth

hour of each day (Figures 3.4C and D). To ensure that day feeding does not cause
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Figure 3.3: Cassiopea spp. diversity and behavioral tracking system, Related to Figure 1. (A)
Images of four Cassiopea spp. with different morphology (scale bar 1 cm). This is representative of
the range ofmorphologies used in the experiments. (B) Percent amino acid identitymatrix comparing
mitochondrial cytochrome C oxidase I (COI) amino acid sequences of seven Cassiopea spp. used in
this study (C.sp1 – C. sp7) with six previously described Cassiopea spp. (TaxonGeneBank number).
(C) For the behavioral tracking system jellyfish were placed in behavioral tracking arenas with
cameras recording from above. (D) Each jellyfish was placed in a clear, plastic container with white
sand layering the bottom. The white sand provides contrast, allowing better behavioral tracking.
(E) Images were captured at a rate of 15 frames per second and saved directly onto solid-state hard
drives. (F) A region of interest (ROI) around each jellyfish was selected for downstream processing.

the day-night behavioral difference, we tracked the activity of 16 jellyfish over three

consecutive days and nights without feeding and observed results consistent with

those including feeding (Figures 3.4F andG; Figure 3.5D). These results demonstrate

thatCassiopea have a quiescent state during the night. To test the reversibility of this

nighttime quiescent state, we introduced a food stimulus at night, which transiently

increased activity to daytime levels (Figure 3.5E). The nighttime quiescent state in

Cassiopea is thus rapidly reversible, consistent with a sleep-like behavior.

To better understand the nighttime quiescence, we compared day and night

pulse traces of individual jellyfish. The day and night pulse traces of one represen-

tative jellyfish are shown in Figure 3.4A. During the night, the IPI is typically longer

than during the day (Figures 3.4A and B; Data S1; Figure 3.5A). Two features con-
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Figure 3.4: Processing the jellyfish pulse-trace data to count pulse events, Related to Figure
1.Each color represents data from a different jellyfish (pink, orange, and green). (A) Smoothing the
pulse-trace for normalization. Black line represents the smoothed trace for a 20 min recording. (B)
Normalized pulsing traces for three different jellyfish with local maxima indicated by red dots. Many
local maxima are detected within pauses in activity due to noise (small fluctuations in intensity),
which are removed by thresholding. (C) Thresholding to identify local maxima at pulsing peaks.
Pulsing peaks are indicated by red dots. For more details see the ‘Cassiopea behavioral tracking’
section of the Materials and Methods.

tribute to this lengthening of the IPI: (1) the mode of the IPI distribution is longer at

night than during the day, and (2) night pulsing is more often interrupted by pauses

of variable length. These pauses are seen as a tail in the IPI frequency distribution

(Figure 3.4B; 95th percentile of night IPI frequency distribution (gray) is 13.9 s).

Such long pauses are rarely seen during the day (Figure 3.4B; 95th percentile of day

IPI frequency distribution (yellow) is 2.5 s). This pause behavior may be analogous

to long rest bouts observed in Drosophila and zebrafish, which are suggested to be

periods of deep quiescence with reduced responsiveness to stimuli [1, 50].
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Figure 3.5: ContinuousTracking ofCassiopeaReveals PulsingQuiescence atNight (A) Pulsing
traces for individual jellyfish during day and night over 120 s. (B) The distribution of IPI length for
a 12 hr day and a 12 hr night for the same jellyfish shown in (A). Tick marks below the distribution
show each IPI length during the day and night. This highlights the long-pause events, which are more
common at night (Figure S3A; Data S1). (C–G) Each blue line corresponds to a single jellyfish.
The black line indicates the mean activity of all jellyfish. Dark-gray shading indicates night periods.
Dark tick marks on the x axis indicate the time of feeding. (C) Baseline activity (pulses/20 min) of
23 jellyfish tracked for 6 days from four laboratory replicates. (D) Normalized baseline activity for
jellyfish shown in (C), where each jellyfish is normalized by its mean day activity. (E) Mean day
activity versus mean night activity for each jellyfish over the 6 day experiment shown in (C). Two-
sided paired t test, day versus night, p = 6 × 10−9. (F) Normalized baseline activity without feeding
of 16 jellyfish tracked over 3 days from two laboratory replicates, where each jellyfish is normalized
by its mean day activity. (G) Mean day activity versus mean night activity for each jellyfish over the
3 day experiment shown in (F). Two-sided paired t test, day versus night, p = 10−5.***p < 10−3 .
See also Figure S3.

3.4 Cassiopea show reduced responsiveness to a sensory stimulus at night

To test whether Cassiopea exhibit reduced responsiveness to stimuli during

their nighttime-quiescent state, we designed an experiment to deliver a consistent

arousing stimulus to the jellyfish. We observed in our nursery that Cassiopea prefer

staying on solid surfaces as is found in nature. If Cassiopea are released into the
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Figure 3.6: Cassiopea pulsing quiescence at night (A) Distribution of IPI length for four
Cassiopea during the day (yellow) and night (gray) showing each IPI event. Tick marks below the
distributions show each IPI length during the day (yellow) and night (gray). The ticks highlight the
long-pauses that are more common at night for all jellyfish (Data S1). Box plot of Cassiopea day
and night pulsing activity with feeding (B), and without feeding (C). Each dot represents a single
jellyfish, mean activity is calculated over 6 (feeding, B) or 3 (without feeding, C) days and nights.
For D and E each blue line corresponds to a single jellyfish. The black line indicates the mean
activity of all jellyfish. Dark gray shading indicates night periods. (D) Day and night activity of
Cassiopea without feeding. Baseline activity (pulses/20 min) without feeding of 16 jellyfish tracked
over three days. (E) Feeding induced arousal rapidly reverses the night quiescent state. Dark tick
marks on x-axis indicate time of feeding. Activity (pulses/20 min) and normalized activity of 30
jellyfish tracked over two day/nights from six laboratory replicates. Jellyfish were fed 4 hours into
each day and 4 hours into the second night.

water column, they quickly reorient and move to the bottom of the tank. We used

placement into the water column as a stimulus to compare responsiveness during

the night versus the day. Cassiopea were put inside a short PVC pipe with a screen

bottom (Figure 3.6A). This was lifted to a fixed height, held for 5 min to allow the
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Figure 3.7: Cassiopea Show Reduced Responsiveness to a Sensory Stimulus at Night. (A)
Schematic of experiment to test sensory responsiveness. Jellyfish were lifted and held at a fixed
height (hL) and then dropped to a fixed height (hD). hL and hD were kept constant throughout
experiments. (B and C) Boxplots of time to first pulse after drop (B) for 23 jellyfish and time to reach
bottom after drop (C) for 23 jellyfish during the day and night. Dots represent individual jellyfish
collected from two laboratory replicates. Two-sided unpaired t test, day versus night, (B) p < 10−4

and (C) p = 5× 10−4. (D) Time to first pulse after initial drop and after perturbation for both day and
night for 23 jellyfish. (E) Time to reach bottom after initial drop and after perturbation for both day
and night for 23 jellyfish. A two-way ANOVAwas performed for data shown in (D) and (E), followed
by post hoc comparisons between experimental groups using Bonferroni post test (*p < 5 × 10−2,
***p < 10−3). For the time to first pulse, a two-sided unpaired t test (B) and two-way ANOVA (D)
were performed after log transformation (Materials and Methods).

jellyfish to acclimate, and then rapidly lowered, placing the jellyfish free-floating

into the water column. We then scored the time it took for the jellyfish to first pulse
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and the time to reach the screen bottom (Figure 3.6; Methods and Methods). At

night, the jellyfish showed an increase in the time to first pulse and the time to reach

bottom compared to during the day (time to first pulse: day 2.1 ± 0.9 s versus night

5.9 ± 4.0 s; time to reach bottom: day 8.6 ± 2.9 s versus night 12.0 ± 3.2 s; mean

± SD; n = 23 animals) (Figures 3.5B and C). This increased latency in response to

stimulus indicates that Cassiopea have reduced responsiveness to stimulus during

the night.

To determine whether the increased latency at night is rapidly reversible, we

initiated a second drop within 30 s of the first drop,that is, after the jellyfish have

been aroused. Reversibility was tested during both the day and night for 23 jellyfish.

During the night, there is a large decrease in the time to first pulse and time to reach

the bottom after the second drop when compared to the first drop (Figures 3.6D and

E). During the day and night, the time to first pulse and time to bottom after the

second drop were indistinguishable, demonstrating that after perturbation, animals

have similar arousal levels during the day and night. These results indicate that

Cassiopea have rapidly reversible reduced responsiveness to a stimulus during the

night.

3.5 Cassiopea quiescence displays homeostatic rebound

To test whether Cassiopea nighttime quiescence is homeostatically regulated,

we deprived jellyfish of behavioral quiescence for either 6 or 12 hr using amechanical

stimulus (Figure 3.7). The stimulus consisted of a brief (10 s) pulse of water every 20

min, which caused a transient increase in pulsing activity (Movie S2). This increase

in pulsing activity lasts for approximately 5 min after the 10 s pulse of water. Thus,

the perturbation disrupts quiescence for approximately 25% of the perturbation

period (either 6 hr or 12 hr). When the perturbation was performed during the

last 6 hr of the night (Figure 3.7A), we observed a significant decrease in activity

(12%) during the first 4 hr of the following day relative to the pre-perturbation day

(mean of first 4 hr of pre-perturbation day: 1,146 ± 232 pulses/20 min; compared
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Figure 3.8: Homeostatic Rebound in Cassiopea. Each blue line corresponds to a single jellyfish.
The black line indicates the mean activity of all jellyfish. Dark-gray shading indicates night periods.
Maroon shading indicates perturbation periods with 10 s water pulses every 20 min. Jellyfish were
exposed to different perturbation lengths (6 or 12 hr) at different times (day or night). The normalized
activity of all jellyfish tracked over multiple days is plotted. Maroon horizontal lines show the mean
activity of pre-perturbation day (solid) and pre-perturbation night (dashed). (A) Perturbation of 30
jellyfish for the last 6 hr of the night. (B) Perturbation of 26 jellyfish for the first 6 hr of the day. (C)
Mean day and night activity pre- and post-perturbation for experiments shown in (A) and (B). (D)
Perturbation of 16 jellyfish for an entire 12 hr night. (E) Perturbation of 16 jellyfish for an entire
12 hr day. (F) Mean day and night activity pre- and post-perturbation for experiments shown in
(D) and (E). Black-horizontal lines in (A), (B), (D), and (E) indicate the windows of time used for
calculating pre- and post perturbation means shown in (C) and (F) for both the night (bottom lines)
and day (top lines). For the 6 hr experiments, we compared the first 4 hr of the post-perturbation day
to the equivalent time pre-perturbation and also compared the first 6 hr of post-perturbation night to
the equivalent time pre-perturbation. For the 12 hr experiments, we compared the full 12 hr days
and nights pre- and post-perturbation. Two-way ANOVA followed by post hoc comparisons between
experimental groups using Bonferroni post test, *p < 5 × 10−2. Both day and night 6 hr perturbation
experiments include data from four laboratory replicates. Both day and night 12 hr perturbation
experiments include data from two laboratory replicates. See also Figure 3.8 and Movie S2.
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Figure 3.9: Regulation of quiescence in Cassiopea. Each blue line corresponds to a single
jellyfish. The black line indicates the mean activity of all jellyfish. Dark gray shading indicates night
periods. (A) Sensory responsiveness was tested during periods of decreased activity before (pre)
and after (post) either the 6-hour or 12-hour perturbation periods (10 s water pulses every 20 min)
using the assay described in Figure 3. Time to first pulse after drop and time to reach bottom after
drop were measured during the day pre or post perturbation. After perturbation (post), an increased
response latency was observed. Two-sided paired t-test, pre versus post, *P < 5×10−2, ** P < 10−2,
***P < 10−3. (B) Maroon horizontal lines show the mean activity of pre-perturbation day (solid)
and pre-perturbation night (dashed). Maroon shading indicates perturbation periods with 10 s water
pulses every 20 min. In these experiments jellyfish were exposed to different perturbation lengths
(either 6 or 12 hours) during the night. Plotted here is the normalized mode and 95th percentile of
the IPI length for all jellyfish tracked over multiple days. Perturbation of either 30 jellyfish for the
last 6 hours of the night or 16 jellyfish for an entire 12-hour night. For both the 6-hour and 12-hour
perturbation there is an increase in the mode and 95th percentile of the IPI length after perturbation
(black arrowhead).(C) Empirical cumulative distribution function (ECDF) of daytime IPI length for
all jellyfish pre (gray) and post (maroon) perturbation (thin lines, single jellyfish; dots, all jellyfish).
Jellyfish exhibited increased IPI lengths after perturbation compared to before perturbation. These
results suggest that the increased quiescence observed in Figure 3.4 results from both a decreased
frequency of pulsing and an increase in the length of pause events.
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to post-perturbation day: 1,008 ± 210 pulses/20 min; mean ± SD; n = 30 animals;

Figure 3.7C). This period of decreased activity is due to both decreased pulsing

frequency (increased mode of IPI length) and increased pause length (increase in

the IPI length 95th percentile) (Figures 3.8B and C). This result is consistent with

an increased sleep drive after sleep deprivation. After a single day of decreased

activity, the jellyfish return to baseline levels of day and night activity. Similar

results were observed after an entire night of perturbation (12 hr; Figure 3.7D), with

a large decrease in activity (17%) throughout the following day (mean of 12 hr of

pre-perturbation day: 1,361 ± 254 pulses/20 min; compared to post-perturbation

day: 1,132 ± 263 pulses/20 min; mean ± SD; n = 16 animals; Figure 3.7F). The

decrease in activity caused by the 12 hr perturbation was larger than that of the 6 hr

perturbation, indicating that the amount of sleep rebound is dependent on the level

of sleep deprivation. During periods of decreased activity after either the 6 hr or 12

hr perturbation, we also observed increased response latency to a sensory stimulus

(Figure 3.8A), indicating a sleep-like state.

If the reduced activity after nighttime perturbation is due to sleep deprivation

rather than muscle fatigue, then applying the perturbation during the day, when

Cassiopea are much less quiescent, should not result in reduced activity. To dis-

tinguish between sleep deprivation and muscle fatigue, we performed the 6 or 12

hr mechanical stimulus experiments during the day (Figures 3.7B and E). We ob-

served no significant difference between pre- and post- perturbation activity levels

(Figures 3.7C and F), indicating that the rebound response is specific to deprivation

of nighttime quiescence. Taken together, these results demonstrate that Cassiopea

have a nighttime-quiescent state that is homeostatically controlled.

3.6 Nighttime quiescence in Cassiopea may be under circadian regulation

In many animals, sleep is regulated by both homeostatic and circadian systems

[35], but this is not always the case [4–7, 51]. For instance, the nematode C. elegans

exhibits a developmentally regulated sleep state, and adult C. elegans show a non-
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Figure 3.10: Monitoring activity with different light or dark conditions suggests that night-
time quiescence may be under circadian regulation in Cassiopea, Related to Figure 3.7. Each
blue line corresponds to a single jellyfish. The black line indicates the mean activity of all jellyfish.
Dark gray shading indicates night periods. (A) Prolonged light exposure of Cassiopea shows no
circadian cycling. 16 jellyfish were exposed to either 36-hours of continuous low-intensity light
(light-gray shading) from hour 36 to hour 72, 36-hours of continuous mid-intensity light (yellow
shading) from hour 36 to hour 72, or 36-hours of continuous full-intensity light from hour 24 to hour
60. Each experiment represents two laboratory replicates using a mixed population of Cassiopea
spp. (B) Prolonged exposure to dark conditions of jellyfish shows circadian cycling when using
a clonal population of medusa (Cassiopea xamachana), see Methods. 16 jellyfish were exposed
to dark conditions from hour 36 to hour 72 or full-intensity light from hour 24 to hour 60. With
this clonal population of jellyfish, circadian cycling of behavior is only observed for constant dark
conditions and not constant full-intensity light conditions, consistent with results seen in the mixed
population of Cassiopea shown in (D).

circadian stress-induced-sleep state [4, 5, 52]. A fully functioning circadian system

is also not essential for sleep to occur; animals with null mutations of circadian

rhythm genes still sleep, though sleep timing is altered [51]. To test whether

nighttime quiescence in Cassiopea is regulated by a circadian rhythm, we first

entrained the jellyfish for 1 week in a normal 12 hr:12 hr light/dark cycle and then

shifted them to constant lighting conditions for 36 hr. We tested low-intensity ~0.5

photosynthetic photon flux [PPF]), mid-intensity (~PPF), and full-intensity (~200
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PPF) light, as well as dark (Figure 3.9A and B). If jellyfish activity is regulated by a

circadian rhythm, cycling activity should persist in the absence of entraining stimuli,

such as light. We observed no circadian oscillation of jellyfish activity under any

of the constant-light conditions (Figure 3.9A). However, we did observe circadian

oscillation of activity in constant-dark conditions (Figure 3.9B). This result suggests

that the quiescent state may be under circadian regulation. Cassiopea display the

key behavioral characteristics of a sleep-like state: a reversible quiescent state

with reduced responsiveness to stimuli and both homeostatic and possibly circadian

regulation. To our knowledge, our finding is the first example of a sleep-like state in

an organism with a diffuse nerve [7, 8], suggesting that this behavioral state arose

prior to the evolution of a centralized nervous system.

3.7 Cassiopea activity is depressed in the presence of deeply conserved sleep

promoting molecules

Though at least 600 million years of evolution separate cnidarians from bi-

laterians [10–15, 53], many aspects of the nervous system are conserved, includ-

ing neuropeptides and neurotransmitters [15–20]. One such conserved molecule,

melatonin [54], promotes sleep in diurnal vertebrates, including zebrafish [50] and

humans [55], and induces quiescence in invertebrates [56]. We observed that mela-

tonin induces a reversible decrease in activity in Cassiopea during the day in a

concentration-dependent manner (Figures 3.10A-C), suggesting that melatonin has

a conserved quiescence-inducing effect in Cassiopea. Pyrilamine, a histamine H1

receptor antagonist that induces sleep in vertebrates [57], also induces concentra-

tion dependent quiescence inCassiopea (Figure 3.10A). These results suggest that at

least some mechanisms involved in vertebrate sleep may be conserved in Cassiopea.
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Figure 3.11: Cassiopea exhibit a decrease in activity in response to melatonin and pyrilamine
exposure during the day. Each blue line corresponds to a single jellyfish. The black line indicates
themean activity of all jellyfish. Dark gray shading indicates night periods. (A) Treatment with either
pyrilamine or melatonin effects pulsing activity. The colored lines represent different concentrations
of compounds tested. Activity was monitored before and after treatment. Time of treatment is
indicated by a black arrow. Both melatonin and pyrilamine induce a concentration-dependent
decrease in pulsing activity. (B) Activity of 18 Cassiopea exposed to 125 µM melatonin solubilized
in ethanol compared to 19 Cassiopea treated with ethanol vehicle control from four laboratory
replicates. Cassiopea were monitored for 20 min before (baseline), during (treatment), and after
(washout) either melatonin or vehicle treatment. Two-sided paired t test, before/during melatonin
treatment: P = 4 × 10−7, and before/during vehicle treatment: P = 7 × 10−1. ***P < 10−3, ns
not significant (ns) P > 5 × 10−2. (C) Comparison of the normalized mean activity between the
melatonin and control treatment. Error-bars represent the standard error of the mean.

3.8 Discussion

Although future studies are required to test whether other cnidarians sleep,

field studies showing behavioral quiescence, diel vertical migration, and swimming

speeds that vary with diel period [21–23, 58] suggest that a sleep-like state may not
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be specific to Cassiopea. A cnidarian sleep-like state could result from either diver-

gent or convergent evolution. The observation of behaviorally and mechanistically

conserved sleep-like states across the animal kingdom [6, 7] strongly supports the

possibility for an early-rooted sleep state rather than many instances of convergent

evolution. It has been hypothesized that sleep has multiple functions, including

synaptic homeostasis, regulation of neurotransmitters, repair of cellular damage,

removal of toxins, memory consolidation, and energy conservation [7], although the

ancestral role and selective advantage of sleep remains elusive. Our discovery of

a sleep-like state in an ancient metazoan phylum suggests that the ancestral role of

sleep is rooted in basic requirements that are conserved across the animal kingdom.

The ancestral function of sleep may be revealed by further study of early-branching

metazoa.

3.9 Materials and Methods

Experimental model and subject details

Cassiopea spp. medusae used in this study were originally collected from the

FloridaKeys. For themajority of the experiments, a collection ofmultipleCassiopea

species were used (Figure 3.1A and B). For the experiments shown in Figures 3.8A,

3.9B, and 3.10F, a young (2-4 months old) clonal population of medusa were used

(Cassiopea xamachana). This clonal polyp line was generated in Monica Medina’s

lab at Pennsylvania State University and raised at Caltech in the Goentoro Lab.

Cassiopea were reared in artificial seawater (ASW, Instant Ocean, 30-34 ppt)

at pH 8.1-8.3, 26-28 ◦ C with a 12 hr day/night cycle. During the day, 450 and

250 W light sources were used to generate 200-300 PPF (Photosynthetic Photon

Flux, a measurement of light power between 400 and 700 nm). To limit waste

buildup, the Cassiopea aquarium was equipped with a refugium (Chaetomorpha

algae aquaculture), a protein skimmer (Vertex Omega Skimmer), carbon dosing

bio-pellets (Bulk Reef Supply), activated carbon in a media reactor (Bulk Reef

Supply), and a UV sterilizer (Emperor Aquatics 25 W). Waste products were kept at
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or below the following levels: 0.1 ppm ammonia, 5 ppb phosphorus, 0 ppm nitrite,

and 0 ppm nitrate.

Cassiopea were fed daily with brine shrimp (Artremia nauplii, Brine Shrimp

Direct) enriched with Nannochloropsis algae (Reed Mariculture), and they were fed

oyster roe once per week (Reed Mariculture). Cassiopea were group housed in a

60 gallon holding tank. Animals were randomly assigned to experimental groups.

Medusae between 3-6 cm in diameter were used for experiments.

Cassiopea genotyping

Cassiopea is a genus with many species that have not been classified. All of our

experiments were performed with Cassiopea spp. of a range of sizes, ages, sex and

morphologies (Figure 3.2A and B). To assess the diversity of Cassiopea spp. within

our population we genotyped several animals by amplification and sequencing of

the Mitochondrial cytochrome c oxidase I (COI). Genomic DNA extractions were

performed as described [59]. Jellyfish fragments, about 2 mm of tissue from the

tentacles, were placed in 400 mL DNA extraction buffer (50% w/v guanidinium

isothiocyanate; 50 mM Tris pH 7.6; 10 mM EDTA; 4.2% w/v sarkosyl; 2.1% v/v b-

mercaptoethanol). Samples were incubated at 72C for 10 min, centrifuged at 16,000

g for 5 min, and the resulting supernatan mixed with an equal volume of isopropanol

and incubated at –20C overnight. The DNA was precipitated by centrifugation at

16,000 g for 15 min and the DNA pellet washed in 70% ethanol and resuspended

and stored in water.

Amplification of COI was performed using primers designed by Folmer et al.

[60], which amplify a 710 base pair fragment of COI across the broadest array of

invertebrates. COI primers:

LCO1490 forward primer: 5’ -ggtcaacaaatcataaagatattgg-3’ HC02198 reverse

primer: 5’ -taaacttcagggtgaccaaaaaatca-3’

Amplifications were performed under the following PCR conditions: 2 min at

92C, 30 cycles of 94◦ C for 30 s, 55◦C for 30 s and 72◦C for 45 s, with a final 72◦C
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extension for 7 min. Amplification products were then TOPO-cloned using OneTaq

(NEB) and sequenced.

Multiple sequence alignment ofCassiopea spp. COI sequences were generated

using Clustal Omega software. Sequences were aligned with each other (see Figure

3.2B), and to the previously identified cryptic species Cassiopea ornata, Cassiopea

andromeda, and Cassiopea frondosa [48]. The level of identity between these

sequences is presented in Figure 3.2B. Of the 15 Cassiopea spp. sequenced there

were 8 identical COI sequences and 7 COI sequences with 45%–90% identity.

Cassiopea behavioral tracking

Individual jellyfish were placed into 700 mL square clear plastic containers

(cubbies), with white sand bottoms, in 10 gallon glass tanks (Figure 3.2C–F). Eight

containers can fit in each tank, so eight jellyfish can be simultaneously recorded per

tank. Tanks were housed inside Sterilite utility cabinets (65 cm W x 48 cm L x

176 cm H) with a door to eliminate ambient light in the recording setup. During

the 12 hr day (lights on) tanks were illuminated with 24-inch florescent lamps,

each containing four florescent bulbs that provide a combination of wavelengths

optimized for photosynthesis in water: two 24 W, 6000 K Mid-day lights, and two

24 W Actinic lights (Giesemann), which combined provided 200-300 PPF. During

the 12 hr night (lights off) low-intensity red-LEDs were used to illuminate jellyfish

to enable visualization. For all jellyfish recordings we used Unibrain 501b cameras

above the tank running Firei software capturing at 15 frames per second. Camera

aperture and Firei settings were adjusted to increase the contrast between jellyfish

and background. Recordings were saved directly onto hard drives.

Jellyfish were acclimated in the recording tank in their cubbies for 2-3 days

before starting recordings. 24 hr recordings were taken for successive days (7 am

– 7 pm) and nights (7 pm – 7 am), unless otherwise indicated. Cassiopea were

fed each day at 10:30 am, 3.5 hr after the lights turn on. Each jellyfish received

5 mL of 16 g/L brine shrimp. For each circadian rhythm experiment a different
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light condition was left on for 36 hr: dark conditions, low-intensity light conditions

(an array of white-LED lights, 0-0.5 PPF), mid-intensity light conditions (two 24

W, 6000 K Mid-day lights, 75-150 PPF), or full light conditions (two 24 W, 6000

K Mid-day lights, and two 24 W Actinic lights, 200-300 PPF). For 6 hr and 12 hr

rebound experiments the mechanical stimulus (Movie S2) was applied for 10 s every

20 min.

All analysis was done using open-source packages in the SciPy ecosystem [61,

62]x. To monitor jellyfish activity, pulsing information was extracted from the

individual frames of each recording. Approximately 648,000 frames were collected

every 12 hr. To quantify pulsing activity, we processed the first 18,000 frames of

every hour (20 min). As Cassiopea pulse, the relaxation and contraction of the bell

causes a corresponding change in average pixel intensity. To measure this change in

average pixel intensity we drew a rectangular region of interest (ROI) around each

jellyfish (Figure 3.1D and Figure 3.2F). A user manually selected a ROI around each

of the eight jellyfish in the first and last of the 18,000 frames. This was done so that

the selected ROI accounts for any movement of the jellyfish. To control for noise

from oscillations in ambient lighting, we perform background subtraction using a

similarly sized ROI containing no jellyfish.

We analyzed pixel intensity data, and identified pulse events and inter-pulse

intervals (IPI) in a four-step process. Step 1: Gaussian smoothing of the mean

intensity over time to eliminate high frequency oscillations (Figure 3.3A). This

smoothed trace was used to account for large movements in the mean intensity due

to jellyfish translational movement within the selected ROI. Step 2: Normalization

of the mean intensity values with the max mean intensity and the smoothed mean

intensity:

Tn =
Tn

r aw − Tn
s mooth

Tmax − Tn
s mooth

Where Traw is the raw intensity trace, Tsmooth is the smoothed trace generated

in Step 1, Tmax is maximum intensity across the raw trace, and n is the index of
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each frame of the recording. Step 3: find the indices (time) of local maxima and

minima in the normalized trace. Because of noise in the pulsing trace there is a high

rate of false positives when finding local maxima and minima (Figure 3.3B). We

have used a set of criteria to identify a true pulse event from the local maxima and

local minima. Step 4: identifying pulses from local maxima and minima (Figure

3.3C). A local maximum can be defined as a pulse peak if it meets two criteria. First,

it must be above a set threshold (to eliminate local maxima due to noise in pause

regions of the pulse trace). Second, it must be above a set distance from the next

local maxima (to prevent double counting of a single pulse). The standard deviation

of the Gaussian smoothing, the threshold level, and the minimum distance between

pulses can all be changed from one jellyfish to another. For all data analysis these

parameter values were optimized to quantify pulsing events for each animal.

We calculated the total number of pulses and the IPI for each 20 min time

bin. With some jellyfish the difference in pixel intensity from the contracted to

non-contracted state was not big enough to easily identify pulsing above the noise.

These jellyfish were excluded from analysis. During the 20 min recordings jellyfish

would occasionally move out of the selected ROI. We would then exclude that 20

min recording for that jellyfish from the analysis. In compiling data to generate

activity versus time plots we excluded jellyfish that we could not analyze for more

than three 20 min recordings during a 12 hr day or night period.

For the arousal assay we designed an experiment to systematically test this

sensory responsiveness. Cassiopea respond to being placed in the water column

by rapidly orienting themselves and moving toward a stable surface. For the ex-

perimental system, Cassiopea were placed inside a 20 cm tall, 12 cm diameter,

PVC pipe with a 53 mm filter screen bottom, called a Cassiopea dropper (CD). The

experiment consists of four steps, as seen in the four panels in Figure 3.6A. Step 1,

the jellyfish were placed on the screen bottom of the CD, which was positioned two

cm below the water surface (hL) and were acclimated for five min. At night jellyfish

took less than five min to return to quiescence after being placed in the CD. Step 2,
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the CD was then “dropped” to a set depth (18 cm from the surface, hD). This action

leaves the jellyfish free-floating, two cm below the water surface. Step 3, the time

to first pulse was measured. Step 4, the time to reach bottom was measured. To

determine if the nighttime arousal latency is reversible, a second drop experiment

was performed within 30 s of the initial drop. The CDwas returned to two cm below

the water surface, but instead of waiting for five min, steps 2 and 3 were performed

immediately. Time to first pulse and time to bottom are not completely independent

measures, though there is also not a perfect correlation. A jellyfish could pulse

quickly but be delayed in reaching the bottom due to, for example, inactivity after

the first pulse.

Cassiopea staining and imaging

Actin was stained using Alexa Fluor 488-Phalloidin (ThermoFisher A12379).

Jellyfish were anesthetized in ice-cold 0.8 mM menthol/ ASW, and then fixed in

4% formaldehyde on ice for 45 min. Fixed jellyfish were permeabilized in 0.5%

Triton/PBS for 2 hr and blocked using 3% BSA for 1 hr. They were then incubated

in 1:100 Phalloidin solution in 0.5% Triton/PBS, for 18-24 hr in the dark at 4 C

[63]. Stained jellyfish were mounted in refractive index matching solution [64] and

imaged using a LSM 780 confocal microscope (Zeiss).

Cassiopea staining and imaging

Quantification and Statistical analysis

The following statistical tests were used: two-sided paired Student’s t tests,

two-sided unpaired Student’s t tests, and two-way ANOVAwith Bonferroni posttest.

We performed D’Agostino’s omnibus K2 normality test on all datasets to assess

whether or not to reject the null hypothesis that all values were sampled from a

population that follows a Gaussian distribution. For paired values, we tested if the

pairs were sampled from a population where the difference between pairs follows a

Gaussian distribution. Experimental groups that were statistically compared were
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tested for equal variance. The normality tests showed that all datasets were approxi-

mately Gaussian distributed with the exception of the time to first pulse arousal data.

The time to first pulse data also showed grounds for rejecting the null hypothesis

that there was equal variance between experimental groups. Tests of the log trans-

formed time to first pulse data showed that the transformed data was approximately

Gaussian distributed with equal variance between experimental groups, validating

the use of standard two-way ANOVA and unpaired t tests on the transformed data.

Statistical tests were performed using either statistical functions from the SciPy

ecosystem or GraphPad Prism (version 6.04 for Windows, GraphPad Software, San

Diego California USA, http://www.graphpad.com). No statistical methods were

used to predetermine sample size. For these experiments we performed at least

two laboratory replicates within our recording setup, which is limited to 8 jelly-

fish. Investigators were not blinded to allocation during experiments and outcome

assessment. No specific method for randomization was used.

DATA AND SOFTWARE AVAILABILITY

Code used for tracking jellyfish activity and analysis is available at

https://github.com/GradinaruLab/Jellyfish
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3.10 Supplemental Movies

Figure Movie S1: Cassiopea Pulsing Behavior Two jellyfish pulsing during the day with ruler
for scale.

Figure Movie S2: Cassiopea Exposed to Brief Water Pulse Perturbation A mechanical
stimulation perturbs a single jellyfish. .
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C h a p t e r 4

DISCUSSION

I described in this thesis two main discoveries within cnidarian schyphome-

dusae. First, in Chapter 2, a new strategy of self-repair in the moon jellyfish Aurelia,

where in response to severe injuries, ephyrae reorganize their remaining parts to

recover body symmetry. Second, in Chapter 3, a behavioral sleep-like state in the

upside-down jellyfishCassiopea, the first in an animal without a centralized nervous

system. Here I discuss some of the implications and limitations of these findings

and several possible future directions.

To study Aurelia and Cassiopea we designed new setups and assays to address

our questions, often re-purposing tools and techniques developed for other models.

Histology and pharmacology have proven useful in characterization and perturbation

of our systems. In the future we could try more directed approaches, for example,

neuronal recordings using electrophysiology [1] or non-invasive magnetometry [2],

and in vivomorpholinos to perturb specific pathways [3, 4]. Genomes in both Aure-

lia, by the Jacobs Lab at the University of California Los Angeles, and Cassiopea,

by the Medina Lab at Pennsylvania State University, are being annotated and will

facilitate forward genetic approaches. This, in combination with transcriptomics,

already published for certain developmental stages in Aurelia [5, 6] and soon to

be completed in Cassiopea, also by the Medina Lab, support further comparative

-omics and epigenetic analysis. Together, further investigations using jellyfish will

continue to make these organisms more accessible to deeper analysis.

4.1 Self-repair strategies in Aurelia

Recovery processes tend to be inhibited if the restored structure cannot be used,

known as the utilitarian imperative (described in the introduction of Chapter 2), and
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this may be a lens through which to interpret symmetrization in Aurelia. The recov-

ery of body symmetry is driven by mechanical forces generated by the propulsion

system, which itself relies on radial symmetry to function [7, 8]. Ephyrae that

fail to regain symmetry, either naturally or by preventing pulsation, have impaired

swimming and do not develop properly, so the functional recovery of the propulsion

system during symmetrization appears to both adaptive and utilitarian. Previous

examples of the utilitarian imperative involve tissue remodeling to recover specific

structures lost to injury in order to regain function [9], making our finding a novel

expansion of the concept.

Reorganization is involved in many self-repair mechanisms; we know, for in-

stance, that in response to spinal cord injury, corticospinal tract fibers reorganize

to allow recovery of dexterous movements in primates [10]. A similar overarching

strategy of reorganization is also employed by neurons in the brain after a stroke

[11], and by muscle spindle fibers after spinal cord injury [12]. These strategies

may be analogous to what we see in jellyfish, in the sense that they both reorganize

existing parts to regain lost function. Moreover, the similarity may extend to the

underlying mechanism, as mechanical forces have been implicated in the reorga-

nizing of neurons [13], blood vessels [14], bones [15] and muscle [12]. Cells are

influenced by mechanical forces in their environment, such as softness or rigidity

of extracellular matrix (ECM), differentiated adhesion to substrate or the tension

exerted by neighboring cells [16]. The differentiation of cells can also be affected

by microenviornmental signals, for example, the loss of contact with the basement

membrane and the transfer of cells to a higher layer can direct them to terminally

differentiate [17]. Together, is clear that internally generated mechanical forces can

have substation impact on an animals self-repair capabilities.

Many methods that aid in wound closure (e.g., stitches, staples and tapes)

involve the broad application of mechanical forces [18]. Recent advances in bio-

inspired materials, including tough adhesives that stick to diverse wet surfaces [19],

allow for the application of mechanical forces without some of the deleterious effects
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of more invasive techniques. It is also known that cycles of mechanical force can

increase bone mass at the healing site post-fracture [20]. It is possible to image

how a combination of adhesives and electroactivley-contractile materials could aid

in self-repair, and progress towards this aim has already begun [21]. Our work in

Aurelia supports a deep and central role for mechanical forces in self-repair and the

recovery of function.

In addition to self-repair, our work may also connect mechanical forces to

development in ephyrae. The naturally occurring non-octamers we observed are

frequently radially symmetrical; how ephyrae develop additional arms while main-

taining radial symmetry has not been studied. Ephyrae begin pulsing early in

strobilation, and it would be interesting to test if blocking pulsation affects the

formation of symmetry in both octamers and non-oxtamers. We have shown that

symmetry can be achieved through force-balancing, though mechanical forces also

play an important role in developmental patterning [22, 23]. Gene expression can be

visualized in Aurelia using in situ hybridizations [5], and we may be able to deter-

mine if genes known to be involved in bilaterian patterning change their expression

based on the level of pulsation. Through this analysis we would begin to understand

how symmetry in ephyrae is generated during strobilation.

We also wonder why ephyrae tend to have eight arms, is this number somehow

adaptive? While the medusae stage can have considerable variation in morphology,

ephyrae across species are similar in size and proportion with eight radially placed

arms. However, with the prevalence of non-octamers and their capacity to sym-

metrize, ephyrae may be an interesting model for studying how bodyplan impacts

fitness. We know the spacing of their arms would affect the formation of a viscous

boundary layer important for the functionality of the propulsion system [8, 24, 25].

By closely tracking ephyrae as they swim and eat, in conjunction with particle im-

age velocimetry, we could determine how arm number impacts survival, and the

formation of the paddling surface. Perhaps eight arms is optimal; however, it is

also possible that this number of arms, in combination with symmetrization, creates
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a buffer against having fewer arms, whether naturally or from injury. This would

allow ephyrae the capacity to lose arms without severely impacting their swimming

and feeding capacity.

Finally, it interesting to consider a potential role for symmetrization in self-

repairing robotics. Soft robots are useful for interacting with uncertain and dynamic

task environments, and could be especially useful when working with humans [26].

However, because of their intrinsic softness, these robots are susceptible to cuts,

shears, punctures and over-pressured pneumatics. Recent advances in materials sci-

ence has allowed for self-healing polymers to be made into soft pneumatic actuators,

including artificial muscle and grippers [27, 28]. Through the proper application of

mechanical forces and functional geometries, it may be possible to drive self-repair

in soft robots.

4.2 A sleep-like state in Cassiopea

Though future studies in other cnidarians are required before we can broadly

claim the presence of sleep in this early branchingmetazoan lineage, some field stud-

ies have reported cycles in behavior that are often associated with sleep-like states,

indicating sleep may not be specific to Cassiopea [29–32]. Our observations of

significant behavioral, and possible mechanistic, conservation of sleep in Cassiopea

acts as evidence that sleep may have been present before the cnidarian-bilaterian

divergence over 700 million years ago. To gain insight into the role of sleep in

Cassiopea it will be important to determine their level of conservation of bilaterian

sleep mechanisms.

Sleep in other systems, detected through local field potential recordings and

calcium imaging, involves neuronal down-regulation during sleep [33–35]. There

is a central debate in the sleep field around how this global brain state arises. There

are two major theories: specialized regions control the switch between wakefulness

and sleep (a top-down mechanism) [36]; alternatively, neural networks may have

an emergent bias towards certain global states that are affected by local regulatory
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circuits (a bottom-up mechanism) [35, 37, 38]. Our finding of a sleep-like state

in Cassiopea gives us a unique opportunity to determine how sleep functions in

an early nerve network. Tracking neural activity throughout the Cassiopea as they

transition between wake and sleep, react to stimuli in either state, or respond to

sleep regulators such as melatonin, would give us insight into how the global sleep

state emerges in Cassiopea. As described in Chapter 1, Cassiopea have important

neural network subfunctionalizations (rhopalia), and it would be fascinating if sleep

is controlled by these regions. We could also determine if each neural cluster falls

asleep independently or if it is an organized global process. By characterizing their

neural activity it may even be possible to see if Cassiopea have sleep stages.

Understanding how Cassiopea shifts between behavioral states will require

analysis at the mechanistic level. Exogenous melatonin is known to have sleep-

promoting effects in diurnal vertebrates from zebrafish to humans [39–42], and

can entrain [43, 44] and phase shift [45] the circadian clock in some contexts.

Melatonin has been proposed as an indirect promoter of sleep by phase advancing

the circadian clock [46] or by inhibiting the circadian drive for wakefulness [47];

therefore, melatonin is generally considered a regulator of circadian rhythms [48].

The overall function of melatonin, however, is complicated by a recent study that

found endogenous melatonin acts downstream of the circadian clock components

in zebrafish [49]. Though we have evidence of circadian behavior in Cassiopea,

we have not yet determined if sleep in these animals is regulated by clock genes.

Similarly, we have evidence that melatonin induces quiescence in Cassiopea, yet we

have not shown that it induces sleep. It will be important to determine if exogenous

melatonin in Cassiopea can entrain the circadian rhythm, or if it can directly drive

sleep behavior. Perhaps, as transgenic techniques are developed in Cassiopea, we

can determine the endogenous role of melatonin in this ancestral lineage.

Another fundamental question in the sleep field involves understanding the

complex interplay of circadian and metabolic inputs that regulate sleep homeostasis

[50]. One issue is that circadian andmetabolic circuits regulate each other, making it
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difficult to decouple one from the other to determine their hierarchy [51]. Cassiopea

utilizes the photosynthetic output of its algal-like (dinoflagellate) symbiote as a

main source of metabolic inputs, in a way similar to coral. Therefore, we may be

able to molecularly affect the circadian components of the jellyfish without directly

affecting amajor source of its energy. It is also possible to swap dinoflagellate strains

for ones with different metabolic characteristics, thereby allowing us to modify the

metabolism ofCassiopeawithout changing its genetic circuitry [52–54]. In this way

we can gain insights into the ancient hierarchy between metabolism and circadian

rhythms in regulating sleep homeostasis.

It has been hypothesized that sleep has multiple functions, including synaptic

homeostasis, regulation of neurotransmitters, repair of cellular damage, removal of

toxins, memory consolidation, and energy conservation [55]. Each of these potential

roles for sleep involve certain assumptions about the capabilities of the animals in

which sleep functions. It is an open question whether sponges, animals without

neurons, or a metazoan sister group (e.g., choanoflagellates), could have sleep-like

states. Though quantifying behaviors in these organisms may be possible, it will be

critical and challenging to detect the three core behavioral components to a sleep-

like state in these organisms. However, even reversible quiescence would be an

interesting finding, showing perhaps a step in the evolution of sleep. Our discovery

of a sleep-like state in an ancient metazoan phylum suggests that the ancestral role of

sleep is rooted in basic requirements that are conserved across the animal kingdom.
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