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Abstract

This thesis is primarily based on the paper (Dong et al., 2018) which we’ll refer to
in this thesis as [DMMM]. This paper studies phase transitions in three dimensional
quantum gravity (3D gravity). The main technical tools are the spectral theory
of hyperbolic manifolds, especially as they’re formulated in the study of Kleinian
groups.

This thesis will work through background material in Chapters 1-3, will summarize
the key results of [DMMM] in 4, and then will briefly describe unpublished results
in 5.
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Chapter 1

Introduction

As the media has sensationalized to death, one of the most outstanding questions
in modern physics is to discover and then understand a theory of quantum gravity
("QG"). Physicists have already discovered candidate theories, such as string theory.
However, understanding these theories – carrying out all of the relevant computations
to confirm that they are consistent with Nature and then doing experiments to verify
their novel predictions – is still beyond our ability. Surprisingly, without knowing
the specific theory of QG that guides Nature’s hand, we’re still able to say a number
of universal things that must be true for any theory of QG. The most prominent
example being the holographic principle which comes from the entropy of black
holes being proportional to the surface area encapsulated by the black hole’s horizon
(a naive guess says the entropy should be proportional to the volume of the black
hole; such as the entropy of a glass of water). Universal statements such as this
serve as guideposts and consistency checks as we try to understand QG.

It’s exceedingly rare to find universal statements that are true in physically realistic
models of quantum gravity. The holographic principle is one such example, but
it pretty much stands alone in its power and applicability. By physically realistic
I mean: (3 + 1)-dimensional and with the curvature of the universe being either
flat, or very mildly positively curved. However, we can make additional simplifying
assumptions where it’s easier to find universal properties. For example, we can re-
duce the number of spatial dimensions so that we’re considering (2+1)-dimensional
quantum gravity (3D gravity). Or we can investigate spacetimes that are negatively
curved (anti-de Sitter space) as in the AdS/CFT correspondence. Or we can make
both assumptions which is the setting for this thesis. The hope is that what’s learned
in these limited situations will back-propagate insights towards reality.
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The motivation for going to (2 + 1)-dimensions is that gravity (general relativity)
is much simpler here. We’ll say more later but in (2 + 1)-dimensions the physical
degrees of freedom of Einstein’s equations are exactly balanced by the flexibility
offered by the symmetries of the theory which means there are no local degrees
of freedom. This in turn means there are no gravitiational waves in the context of
general relativity and no gravitons in the context of quantum gravity.

The standard motivation for considering negatively curved spacetimes is that it puts
us in the domain of AdS/CFT , which is the best understood model of quantum
gravity. However, it’s worth pointing out that most of the results in this thesis
don’t rely on AdS/CFT . We consider negatively curved spacetimes (negatively
curved Lorentzian manifolds) because they’re related to what mathematicians call
hyperbolic manifolds (negatively curved Euclidean manifolds), and mathematicians
know a great deal about these objects. It’s just a helpful coincidence that because
we’reworkingwith negatively curvedmanifoldswe also get to unpack our statements
in AdS/CFT .

This thesis makes both of these assumptions: we’ll be studying gravity in nega-
tively curved 3-manifolds. This work was originally motivated out of a desire to
deeply understand the simplest non-trivial toy examples in AdS/CFT , which are
called multiboundary wormholes (MBWs.) MBWs are given as quotients of AdS3

by discrete subgroups of Isom(AdS3). To every Lorentzian MBW there is a corre-
sponding hyperbolic 3-manifold that is obtained by analytic continuation. The goal
of this work was to shed light on how things like Ryu-Takayanagi and bulk-boundary
reconstruction behave in MBWs by using the mathematical rigidity of hyperbolic 3-
manifolds. Progress was made towards better understanding both of these questions,
but the main result of this thesis was the discovery of a universal phase transition –
similar to the Hawking-Page phase transition between thermal AdS and AdS black
holes – which follows from properties of the spectrum of the associated hyperbolic
3-manifold.

Outline

This thesis is organized as follows:

• In Chapter 2, we review multiboundary wormholes, sketch out how a few
examples work, and review the quantum gravity partition function.
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• In Chapter 3, we provide the necessary mathematics background. There are a
number of significant results that aren’t found in the physics literature so we
spend extra time introducing them as a placeholder for future work.

• In Chapter 4, we review the key results from [DMMM] and provide additional
intuition.

• InChapter 5, we describe someof the non-published results obtained regarding
MBWs, especially as related to analytic continuation in AdS3 and classification
of MBWs.

• In Chapter 6, we introduce some of the follow-up questions that we would like
to pursue in the future.
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Chapter 2

Introduction to Multiboundary
Wormholes

This chapter describes multiboundary wormholes and some of their associated
physics. First, we recall the definition of AdS3 (both the Lorentzian and Euclidean
versions). Then we introduce multiboundary wormholes as quotients. We then
work through a few examples. Finally, we review one general form of the quantum
gravity partition function.

2.1 Anti de-Sitter space

Recall that AdSd+1 is the d + 1-dimensional vacuum solution of Einstein’s field
equations with constant negative curvature. In this thesis it’s helpful to differentiate
between Lorentzian and Euclidean solutions by adding a superscript (AdSL

d+1 /
AdSE

d+1). The Lorentzian version can be thought of as an infinite cylinder given by
R × Hd , where each time t ∈ R indexes a copy of d-dimensional hyperbolic space.
The Euclidean version is just d+1 dimensional hyperbolic spaceHd+1. In this thesis
we’ll restrict to d = 2.

AdSL
3

There are a few different coordinate systems that will be useful. This section uses
the notation of (Maxfield, 2015) [Maxfield1] because it’s particularly well suited
for studying quotients and especially their entanglement properties via (Ryu and
Takayanagi, 2006). For more detail we recommend referring to [Maxfield1]. The
most obvious coordinate system comes from thinking of AdSL

3 as a submanifold of
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R2,2 given by

AdSL
3 =

{
(U,V, X,Y ) ∈ R2,2 | U2 + V2 − X2 − Y2 = L2

AdS

}
. (2.1)

The metric on AdSL
3 is the induced metric from that on R2,2

ds2 = −dU2 − dV2 + dX2 + dY2. (2.2)

This presentation can be rewritten showing that AdSL
3 is isomorphic to the group

manifold SL(2,R). First, write R2,2 as

R2,2 =

{
p =

(
U + X Y − V

Y + V U − X

)
where U,V, X,Y ∈ R

}
(2.3)

with metric given by
ds2 = −L2

AdS det(p). (2.4)

The constraint to obtain AdSL
3 as a submanifold of this is simply that det(p) = 1

showing that indeed AdSL
3 � SL(2,R). The group manifold presentation will be

helpful when we introduce quotients of AdSL
3 .

It’s also important to introduce coordinates that make the temporal structure more
obvious. One common coordinate system is given by the substitution

X = r cos φ (2.5)

Y = r sin φ (2.6)

U =
√

1 + r2 cos t (2.7)

V =
√

1 + r2 sin t (2.8)

with induced metric

ds2 = −(1 + r2)dt2 +
dr2

1 + r2 + r2dφ2 (2.9)

where φ and t are periodic in 2π. Note that all of these constructions yield closed
time-like curves. This is normally addressed by lifting from AdSL

3 to the universal
cover. This can be done by extending t ∈ S1 to t ∈ R. However, when dealing
with MBWs, the closed time-like curves disappear so we don’t need to consider this
subtlety.

It should be plausible from the submanifold presentation that the the isometry group
of AdSL

3 is
Isom

(
AdSL

3

)
= SO(2, 2). (2.10)



6

We can use the group manifold presentation to see that the connected part of
Isom(AdSL

3 ) is isomorphic to (SL(2,R) × SL(2,R)) /Z2. There are a few ways to
show this but one is to chose a group action, such as p 7→ gL pgT

R for gL and gR

each in SL(2,R) with the equivalence relation (gL, gR) ∼ (−gL,−gR). In this group
action, gL, gR, p ∈ SL(2,R) and the multiplication is matrix multiplication. Note
that this choice of action is not the most natural from the perspective of group theory,
where the action would normally be written as p 7→ gL pg−1

R . This action is chosen
so that when gL = gR the action fixes the t = 0 plane. We’ll exploit this structure and
often abuse notation by writing Γ ⊆ PSL(2,R) when in reality we mean elements
gL = gR = Γ so that the action is (Γ, Γ) acts on p by p 7→ ΓpΓT . Points with t = 0
correspond to V = 0 which in turn corresponds to symmetric matrices in the group
manifold picture. It’s easy to check that for p, Γ ∈ SL(2,R) with p symmetric the
action p 7→ ΓpΓT yields another symmetric matrix.

There’s one final coordinate system we need to introduce that’s also useful when
introducing quotients of AdS3. We can map the t = 0 slice of AdSL

3 onto the upper
half-plane model of H2 by setting

p =

(
U + X Y

Y U − X

)
:=

1
Im(z)

(
|z |2 Re(z)

Re(z) 1

)
(2.11)

where z = x + iy ∈ H2 and this is the upper half-plane model so that x ∈ R, y ∈ R+.

It’s worth mentioning that, using the group manifold presentation, the distance
between two space-like separated points p, q ∈ SL(2,R) can be calculated using the
formula

`(p, q) = 2 cosh−1
(
Tr(p−1q)

2

)
. (2.12)

This formula is especially convenient when calculating entanglement entropies via
the Ryu-Takayanagi formula. Note that there’s an ambiguity for points on the
boundary which was described eloquently in (Maxfield, 2015).

AdSE
3

We can analytically continue AdSL
3 by sending Y 7→ iY so that

p =

(
U + X Y − V

Y + V U − X

)
7→ pE =

(
U + X Y − iV

Y + iV U − X

)
∈ SL(2,C). (2.13)
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We’ll abuse notation and usually also refer to pE as p. It’s also convenient to make
a connection with the standard presentation of hyperbolic space H3 by relabeling

U 7→ T (2.14)

V 7→ Y (2.15)

X 7→ Z (2.16)

Y 7→ X (2.17)

so that

pE 7→

(
T + Z X − iY

X + iY T − Z

)
(2.18)

where the constraint det(pE ) = 1 implies that T2 − X2 −Y2 − Z2 = 1. Also note that
the metric on R2,2 that we started with gets mapped to

ds2 = −dU2 + dX2 + dY2 + dZ2 (2.19)

on R3,1. In the group manifold language this metric is still given as ds2 = − det(dp).
We obtain the ball model of H3 from the substitutions

X =
2x

1 − r2

Y =
2y

1 − r2

Z =
2z

1 − r2

T =
1 + r2

1 − r2

so that
ds2 =

4(dx2 + dy2 + dz2)

(1 − r2)2
(2.20)

where r2 = x2 + y2 + z2.

For AdSE
3 the connected part of the isometry group is SO(3, 1) � PSL(2,C), using

the action p 7→ gp†g. The t = 0 slice was obfuscated using the double relabeling
but it’s given by the pE with Y = 0. Again, these correspond to symmetric matrices
in PSL(2,R). The t = 0 plane is fixed by Γ ∈ PSL(2,R) ⊂ PSL(2,C). The fact
that there’s a matching diagonal copy of PSL(2,R) in both Isom(AdSL

3 ) and also in
Isom(AdSE

3 ) becomes important when trying to perform analytic continuation with
quotients.
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The formula for the distance between points (lengths of geodesics connecting them)
is the same as in the Lorentzian case

`(pE, qE ) = 2 cosh−1
(
Tr(p−1q)

2

)
. (2.21)

Again, there’s a subtletly when computing the distance between boundary points
because the distance is infinite. A natural regularization procedure relevant to
Ryu-Takayanagi calculations was described in (Maxfield, 2015).

2.2 Quotients of Anti de-Sitter Space

Before describing quotients of AdS we’ll motivate why this is a reasonable thing to
do by introducing a simple theorem from General Relativity.

Quotients in General Relativity

Recall that Einstein’s Field Equations (EFE) for General Relativity take the form

Rµν −
1
2

Rgµν + Λgµν =
8πG
c4 Tµν (2.22)

where Rµν is the Ricci curvature tensor (which only depends on local curvature), R

is the Ricci scalar which depends on global curvature, gµν is the metric tensor, Λ is
the cosmological constant, and Tµν is the stress-energy tensor. In this thesis we’ll be
studying vacuum solutions, so Tµν will be set to zero. Hence the EFE can be written
as

Rµν −
1
2

Rgµν + Λgµν = 0. (2.23)

If we contract each term with the inverse metric tensor gµν we obtain a formula for
R in terms of Λ and the dimension of the spacetimes manifolds we’re considering
(let’s once again consider d + 1-dimensional spacetimes)

Rµνg
µν −

1
2

Rgµνgµν + Λgµνgµν = 0 (2.24)

=⇒ R −
d + 1

2
R + (d + 1)Λ = 0 (2.25)

=⇒ R =
2(d + 1)

d − 1
Λ (2.26)

which we can plug back into equation (2.23) to obtain

Rµν =
2

d − 1
Λgµν . (2.27)

Rewriting the vacuum field equations in this form shows that they only depend on
local curvature. This leads to the following important fact
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Theorem 1 If M is a solution of the vacuum EFE and Γ is a discrete subgroup of
Isom(M) then the quotient M/Γ is also a solution of the vacuum EFE.

This follows trivially from formula 2.27 because quotients by isometries don’t change
either its left or right hand sides (but they’ll change the coordinate ranges and global
topology). We need to consider discrete subgroups because otherwise we can create
singularities and alter the dimension of the spacetime.

As a simple example for intuition, consider 2+1-dimensional Minkowski spacetime
R2,1 which can be thought of as a stack of copies of R2 indexed by time. The topo-
logical structure is isomorphic to R × R2. The isometry group contains translations
in space. Let Γ be the cyclic group generated by a single translation, say translation
along the x-axis by 10 meters. The quotient R2,1/Γ where Γ = 〈x ∼ x + 10〉 yields
a cylindrical spacetime where every constant time slice is a cylinder with diameter
10 meters. The topological structure of this spacetime is R × (R × S1), where S1 is
the unit circle and the parentheses is just for emphasis.

Quotients of AdS3

We can now use theorem 1 and the isometry groups from section 2.1

Isom
(
AdSL

3

)+
= SO(2, 2)+ �

SL(2,R) × SL(2,R)
Z2

(2.28)

Isom
(
AdSE

3

)+
= SO(3, 1)+ � PSL(2,C). (2.29)

to introduce quotients of AdS31.

Definition 1 A Multiboundary Wormhole (MBW) is a quotient of AdS3 (Lorentzian
or Euclidean) by a discrete subgroup Γ of Isom(AdS3) (the Lorentzian or Euclidean
isometry group, respectively).

Whether we’re considering Lorentzian or EuclideanMBWs should be clear from the
context. The diagonal part of 2.28 and the group 2.29 are extremely well studied,
with discrete subgroups of SL(2,R) being called Fuchsian groups and discrete
subgroups of PSL(2,C) being called Kleinian groups. The physics of MBWs is
intimately tied to the mathematics of these groups.

This construction was introduced in the time-symmetric case in a series of papers
(D. R. Brill, 1996; Aminneborg, Bengtsson, D. Brill, et al., 1998); and then in

1Note that the superscript + indicates we’re considering the connected part of a group.
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the general case in (Aminneborg, Bengtsson, and Holst, 1999). It’s easiest to
understand the construction in the time-symmetric (‘non-rotating’) case when Γ is a
subgroup of the diagonal PSL(2,R) acting on the t = 0 slice. One can check that for
g ∈ Γ ⊂ PSL(2,R) the actionwe chose says wewant to identify the points p ∼ gpgT .
After some algebra you’ll see that in terms of the upper half-plane coordinates on the
t = 0 slice (2.11), this identification corresponds to identifying z with its image after

fractional linear transformation gz. More specifically, if g =

(
a b

c d

)
∈ PSL(2,R)

then z gets identified with az+b
cz+d .

In other words, time-symmetric Lorentzian MBWs are given as quotients AdSL
3 /Γ

where Γ ∈ PSL(2,R). The t = 0 slice will be given by H2/Γ which is an open
Riemann surface. The global topology has a ‘tent-like’ form that was described
in (D. R. Brill, 1996). We’ll work through a few examples in section 2.3. In the
more general case, when Γ is not a subset of PSL(2,R) the identifications are less
intuitive and these correspond to spacetimes with spinning wormholes in the bulk,
where one needs to identify every point with all of its translations by the formula:
for every (gL, gR) ∈ (ΓL, ΓR) ⊂ SL(2,R) × SL(2,R)/Z2 and p ∈ AdSL

3 � SL(2,R)
we need to identify p 7→ gL pgT

R. It’s easy to write this down algebraically but it’s
hard to gain intuition. Analytic continuation is also more subtle for MBWs with
rotation in the bulk. This will be described in section 5.1.

The story in the Euclidean picture is similar, where the MBWs are simple to de-
scribe when Γ ⊂ PSL(2,R) ⊂ PSL(2,C). We can use the same upper-half-plane
coordinates for the t = 0 plane because again, using the coordinates from 2.13, the
points in the t = 0 plane correspond to symmetric matrices in PSL(2,R). This
convenience also makes it easy to analytically continue time-symmetric MBWs (in
both directions between Lorentzian and Euclidean).

2.3 Examples

The machinery behind these constructions becomes more apparent after investigat-
ing a few examples. We’ll go through the nitty gritty in simple examples so that
someone would be able to reproduce the important calculations if they wanted to
(such as doing Ryu-Takayanagi calculations), but one doesn’t need to understand
these calculations in order to appreciate the high level results in the rest of the paper.
If a reader wants to learn more about entanglement entropy in these spacetimes
we recommend reading (Maxfield, 2015). If one wants to understand the causal
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structures they should consult (D. R. Brill, 1996; Aminneborg, Bengtsson, D. Brill,
et al., 1998; D. Brill, 1998).

Static BTZ black hole

We’ll start with the simplest example, which is a time-symmetric spacetime obtained
as the quotient by a single generator. This is called the static BTZ black hole. It’s
obtained by the quotient AdSL

3 /〈A〉 where A is of the form

A =

(
e

r+
2 0

0 e−
r+
2

)
. (2.30)

The notation 〈G1, . . . ,Gn〉 for arbitrary generators G1, . . . ,Gn is meant to denote the
associated free group. When there’s only one generator, such as in the BTZ case,
this notation means the cyclic group generated by A.

We introducedmany equivalent coordinate systems above. On themost fundamental
level we should think of a quotient by A meaning that to every p ∈ SL(2,R) we
identify all the points p ∼ ApAT , p ∼ A2p(A2)T , etc. It’s not hard to trace through
what this means but it’s tedious. It’s much simpler to understand what’s happening
using the coordinates z ∈ H2 that we introduced by identifying the t = 0 slice
of AdSL

3 with the upper half-plane model of hyperbolic space. Recall that the
identification was that

p =

(
U + X Y

Y U − X

)
:=

1
Im(z)

(
|z |2 Re(z)

Re(z) 1

)
(2.31)

where z ∈ H2 and the action of an element A of the isometry group p 7→ ApAT

becomes z 7→ A.z where A.z denotes fractional linear transformation. Hence for
this specific example, in the t = 0 plane the point z is identified with

z ∼ A.z =
er+/2 · z + 0
0 · z + e−r+/2

= er+ z (2.32)

Because we’re quotienting by the cyclic group 〈A〉 we need to consider higher
powers of A. It’s easy to show that for An the identification will be

z ∼ enr+ z, (2.33)

where n ∈ Z.

Figure 2.1 puts this algebra into picture form. The map z 7→ Az maps the smaller
solid black circle onto the larger one. The dashed red line is a horizon, meaning that
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Figure 2.1: This figure shows the t = 0 slice of a BTZ black hole. The solid
black lines are identified with each other via the generator A. The dashed black
lines are examples of higher order identifications. The identification gives a surface
that’s topologically a cylinder. It has two asymptotic boundary regions which in the
original picture live on the x-axis. The dashed red line becomes an event horizon in
the quotient. The length of the horizon is r+. This is only the t = 0 slice. The full
spacetime diagram is given as a stack of these surfaces index by time. However, the
causal structure is a bit subtle. It was described in (D. R. Brill, 1996)
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the two asymptotic boundary regions are causally disconnected when one lifts this
t = 0 slice to a full 2 + 1-dimensional spacetime diagram. See (D. R. Brill, 1996)
for the details on this. However, it’s worth mentioning that in this form, it’s easy to
calculate the length of the horizon using the formula for the distance between two
points z1, z2 ∈ H

2 in the hyperbolic upper half plane

d(z1, z2) = cosh−1
(
1 +
(Re(z2) − Re(z1))

2 + (Im(z2) − Im(z1))
2

2 Im(z1) Im(z2)

)
(2.34)

so that plugging in the points z1 = ie−r+/2 and z2 = ier+/2 we see that the generator
was chosen so that the horizon length is r+. This can also be seen from equation
2.12 taking p and q = A.p for any arbitrary p corresponding to a point in the t = 0
slice. The distance between p and q becomes

`(p, Ap) = 2 cosh−1
(
Tr(p−1q)

2

)
(2.35)

= 2 cosh−1
(
Tr(A)

2

)
(2.36)

= 2 cosh−1
(

er+/2 + e−r+/2

2

)
(2.37)

= r+ (2.38)

which for more complicated generators provides a convenient way to calculate
horizon lengths.

Rotating BTZ black hole

The simplest example of a non-static multiboundary wormhole is obtained by taking
two different cyclic groups living in theft and right copies of SL(2,R) respectively.
We’ll only provide a sketch for how this example works. Recall that

Isom(AdSL
3 ) �

SL(2,R) × SL(2,R)
Z2

. (2.39)

Consider the subgroup 〈AL〉 × 〈AR〉 ⊂ SL(2,R) × SL(2,R) where

AL =

(
e

r+−r−
2 0

0 e−
r+−r−

2

)
(2.40)

AR =

(
e

r++r−
2 0

0 e−
r++r−

2

)
(2.41)

(2.42)
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with r+ ≥ r− ≥ 0. The case r− = 0 recovers the static example from the previous
subsection. The case r+ = r− is the extremal rotating BTZ black hole. In terms of
the inner and outer horizon radii (r− and r+ respectively) the physical parameters are
M = r2

+ + r2
− with angular momentum J = 2r+r−. Again see (Maxfield, 2015) for

details on the modern notation and (Aminneborg, Bengtsson, D. Brill, et al., 1998)
for details on the causal structure. The reason for including this example is to show
that this framework can also incorporate non-static spacetimes.

Three boundary wormhole

We saw in the previous subsections that when there’s only one generator we obtain
the BTZ black hole (obtained by glueing two circles to each other). When there are
two generators there are four initial circles and only two topologically distinct ways
of glueing them together. If the initial circles are adjacent then we obtain the three
boundary wormhole, see figure 2.2. If the initial circles are opposite each other then
we obtain the torus wormhole, see figure 2.3. We’ll start with the three boundary
wormhole example.

We’re only going to introduce the static three boundary wormhole, which corre-
sponds to taking generators that live in the diagonal copy of SL(2,R) inside the full
isometry group of AdSL

3 . Consider the generators

A =

(
cosh L1

2 sinh L1
2

sinh L1
2 cosh L1

2

)
(2.43)

B =

(
cosh L2

2 eα sinh L2
2

e−α sinh L2
2 cosh L2

2

)
(2.44)

with L1, L2 > 0 and α large enough so that eα > coth
(

L1
4

)
coth

(
L2
4

)
. This constraint

is chosen so that the initial circles don’t overlap, which would lead to a non-physical
quotient. The quotient by 〈A, B〉 gives a spacetime where each constant time slice
is a pair of pants geometry. Each funnel is causally disconnected from the others by
a horizon. The horizon lengths will be L1, L2 and L3 where L3 has a complicated
form. It’s obtained by calculating

L3 = 2 cosh−1
(
Tr(−AB−1)

2

)
. (2.45)

The matrix −AB−1 was chosen because if one traces the path of a point on the third
horizon after applying this sequence of matrices they’ll return to where they started.
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Figure 2.2: This figure shows the t = 0 slice of a three boundary wormhole. Note
that the identifications are drawn so that everything sits on the upper half plane. In
the upper half plane the algebra is simpler but the illustrations are simpler in the
disk model. It’s helpful to think of the x-axis as being identified at ±∞. When
the blue circles are glued together the two blue boundary segments and the dots
are glued together to create a single segment The colors are only there to help one
keep track of where different regions go after making identifications. The generator
A glues the two black semicircles together. After this identification the solid red
segment becomes an asymptotic boundary region. The dashed red line becomes
a horizon. The generator B glues the green semicircles together. The solid blue
segment in between the green semicircles becomes an asymptotic boundary region.
The dashed blue line becomes a horizon. However, there’s a third boundary region
that’s created. It’s not as clear from the figure what it corresponds to but it’s obtained
by gluing the yellow and orange segments together. The yellow and orange dashed
arcs get glued together to become the third horizon.



16

Once again, (Maxfield, 2015) works through this example carefully. The circles
CA 7→ Ca and CB 7→ Cb that are glued together in figure 2.2 have centers and radii
(center, radii)

CA =
©­­«−

cosh
(

L1
2

)
sinh

(
L1
2

) , 1

sinh
(

L1
2

) ª®®¬ (2.46)

Ca =
©­­«

cosh
(

L1
2

)
sinh

(
L1
2

) , 1

sinh
(

L1
2

) ª®®¬ (2.47)

CB =
©­­«−

eα cosh
(

L2
2

)
sinh

(
L2
2

) ,
eα

sinh
(

L2
2

) ª®®¬ (2.48)

Cb =
©­­«

eα cosh
(

L2
2

)
sinh

(
L2
2

) ,
eα

sinh
(

L2
2

) ª®®¬ (2.49)

One can obtain a spinning three boundary wormhole by considering a more general
group 〈AL, BL〉 × 〈AR, BR〉 ⊂ SL(2,R) × SL(2,R). Note that there will be a variety
of constraints on the generators to ensure that the spacetime they yield is physical
(which in this case means there won’t be any ‘bad’ singularities).

Torus wormhole

The other topological possibility with two generators is to create the torus wormhole.
This happens when A and B pair circles that are across from each other, such as in
figure 2.3. A convenient parameterization sets

A =

(
eλ 0
0 e−λ

)
(2.50)

B =

(
cosh µ + cosα sinh µ sinα sinh µ

sinα sinh µ cosh µ − cosα sinh µ

)
. (2.51)

We can calculate the horizon length by applying formula 2.12 to ABA−1B−1, or any
of its cyclic permutations. Once again, these words were chosen so that if one traces
the path of a point on the horizon after applying this sequence of letters then one
ends up back where one started.
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Figure 2.3: This figure shows the t = 0 slice of a torus wormhole. Circle CA is
glued to Ca. Circle CB is glued to Cb. After tracing through a series of diagrams,
one will see that they’re left with a torus with a hole removed. The four dashed arcs
are all glued together and they become the event horizon.

2.4 3D Gravity Partition Function

In this section we’ll provide a brief sketch of the three dimensional gravity partition
function and then review a motivating example: the Hawking-Page phase transition
(Hawking and Page, 1983). We’ll go into more detail about the partition function
in the context of AdS/CFT in section 4.2. A nice review of the three dimensional
partition function in quantum gravity can be found in (Maloney and Witten, 2010).

We know that the general form of the partition function will be Z =
∫

eiI , where
I is the action for the theory of interest and the integral is over all solutions that
satisfy the appropriate boundary conditions. Eventually we’ll consider quantum
field theory in curved spacetimes and the partition functions will need to sum over
both field and spacetime variations. As a warmup we’ll first recall the partition
function in quantum field theory. In quantum field theory the partition function is
given by Z =

∫
DφeiI[φ]. It’s not guaranteed that these integrals will converge so

one normally performs a Wick rotation τ = it to obtain the Euclidean path integral
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Z =
∫
Dφe−I[φ], which converges.

We can connect this to statistical mechanics by thinking of this as a trace over states.
For time-invariant systems the transition amplitude to go from field configuration
φ1 at time t1 to field configuration φ2 at time t2 can be written as 〈φ2 |e−iH(t2−t1) |φ1〉.
If we set φ1 = φ2 = φ and Wick rotate so that i(t2 − t1) = τ2 − τ1 := β, and then
integrate over all possible field configurations, we obtain

Z = Tr exp(−βH), (2.52)

where the path integral is now taken over all fields that are periodic in imaginary time
with period β. In other words this is the partition function at inverse temperature β.
The dominant contribution to the partition function is given by the minima of the
action where δI = 0.

In curved spacetime the partition function needs to sum over variations in spacetime
geometry in addition to fields. Consider a field φ propagating from an initial
configuration φ1 on a two-dimensional surface Σ1 with metric g1 to a field φ2 on
surface Σ2 and metric g2. The partition function is given by

Z =
∫
D[g, φ]eiI[φ] (2.53)

where the path integral is taken over all fields φ and spacetime manifolds M so
that the fields have the correct initial and final configurations and the spacetime
manifolds have the correct initial and final time slicings (with appropriate induced
metric.) We perform aWick rotation to get a convergent path integral (but now with
Euclidean contributions)

Z =
∫
D[g, φ]e−I[φ]. (2.54)

The action is the usual Euclidean version of the Einstein-Hilbert action

I =
∫
M

dn+1x
√
g

R − 2Λ
16πGN

(2.55)

where GN is Newton’s constant, n are the number of spatial dimensions, g is the
determinant of the metric tensor, R is the Ricci scalar,Λ is the cosmological constant
andM is the spacetime manifold of interest. Note that the full action would also
include a Gibbons-Hawking-York boundary term, but this won’t be important in the
Hawking-Page example, or in the rest of this paper so we didn’t include it.
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Hawking-Page phase transition

The Hawking-Page phase transition is more interesting in 3+ 1 dimensions so we’ll
review it there. In this section we’ll set c = ~ = GN = 1, but restore the AdS

radius of curvature LAdS. Before describing the phase transition in AdS lets recall
some facts about 3+ 1-dimensional Schwarzschild black holes. The temperature of
a Schwarzchild black hole is given by the formula TH =

1
8πM where M is the mass

of the black hole. The specific heat is given by

∂E
∂T

����
V
=
∂M
∂T
= −

1
8πM2 . (2.56)

The negative specific heat shows that Schwarzschild black holes are thermodynam-
ically unstable.

However, things are more interesting in anti de-Sitter space, where AdS-black holes
have a positive specific heat. Hawking and Page realized that although black holes
can be in stable equilibrium with thermal equilibrium, below a certain critical
temperature they are not the preferred state. AdS4 is the maximally symmetric
solution of Einstein’s equations with constant negative curvature. Set LAdS = ` for
convenience of notation. We can think of AdS4 as a submanifold in R2,3 given by
the constraint

AdS4 =
{
(x0, x1, x2, x3, x4) ∈ R

2,3 | − x2
0 − x2

4 + x2
1 + x2

2 + x2
3 = −`

2} . (2.57)

As with AdS3 there are many different coordinate systems that can be put on this
manifold. Without going through all the details we’ll only need the ‘static’ coordi-
nates which are obtained via a series of substitutions. First set

x0 = ` cosh ρ cos t, x4 = ` cosh ρ sin t, xi = ` sinh ρΩi (2.58)

where t ∈ S1, ρ > 0, i ∈ {1, 2, 3} and
∑

i Ωi = 1. The metric becomes

ds2 = `2
(
− cosh2 ρdt2

+ dρ2 + sinh ρdΩ2
2

)
(2.59)

where dΩ2
2 is the spherical metric on S2. These coordinates have closed time-like

curves which can be removed by lifting t ∈ S1 to t ∈ R. The static coordinates are
then obtained by making the substitution t = `t and r = ` sinh ρ so that the metric
becomes

ds2
AdS4
= −

(
1 +

r2

`2

)
dt2 +

(
1 +

r2

`2

)−1

dr2 + r2dΩ2
2. (2.60)
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We also need the metric for AdS-Schwarzschild black holes which is given by

ds2
AdS−BH = −

(
1 −

2M
r
+

r2

`2

)
dt2 +

(
1 −

2M
r
+

r2

`2

)−1

dr2 + r2dΩ2
2. (2.61)

Note that at small r this metric looks like the typical Schwarzschild metric in
Minkowski space and at large r it looks like the metric for AdS4. The AdS black hole
has an event horizon at r = r+ where r+ is the largest root of V(r) =

(
1 − 2M

r +
r2

`2

)
.

The temperature of the AdS black hole is given by

TBH =
`2 + 3r2

+

4π`2r+
. (2.62)

This value can be obtained either by calculating the surface gravity in the Lorentzian
solution, or analytically continuing via aWick rotation τ = it, and finding the period
of τ so that there isn’t a conical singularity at the horizon. The black hole temperature
is the inverse of this period, which we’ll call βBH

βBH =
4π`2r+
`2 + 3r2

+

. (2.63)

Note that the black hole temperature is not monotonically decreasing as a function
of mass. There’s a critical temperature T0 =

√
3

2`π below which AdS-Schwarzschild
black holes can’t exist.

We’re now in a position to compare contributions to the partition function. Note
that by contracting Einstein’s field equations with the inverse metric tensor we see
that R = 4Λ. After plugging this back into the Einstein-Hilbert action we see that
the classical action reduces to volume integrals

I =
Λ

8π

∫
d4x
√
−g. (2.64)

We can ignore the Gibbons-Hawking-York boundary terms because they’ll cancel
when we consider the difference IBH − IAdS. However, these volume integrals are
each infinite so we need to regularize them somehow. The standard way is to put a
cut-off surface in the radial direction, so that instead of integrating r all the way to
infinity we only integrate to r = K . The contributions become

IAdS =
Λ

8π

∫ βAdS

0
dτ

∫ K

0
r2dr

∫
S2

dΩ2 =
ΛK3

6
βAdS (2.65)

for the AdS metric and

IBH =
Λ

8π

∫ βAdS

0
dτ

∫ K

r+
r2dr

∫
S2

dΩ2 =
Λ(K3 − r3

+)

6
βBH . (2.66)
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βBH is fixed by the formula 2.63 but βAdS can take any value. We’ll fix it by requiring
the metrics to agree at the r = K hypersurface, where

ds2
AdS4
=

(
1 +

K2

`2

)
dτ2 + K2dΩ2

2 (2.67)

ds2
AdS−BH =

(
1 −

2M
K
+

K2

`2

)
dτ2 + K2dΩ2

2. (2.68)

In particular, these will match if the time coordinates have the same period which
requires

βAdS = βBH

√
1 − 2M

K +
K2

`2√
1 + K2

`2

. (2.69)

Now if we look at the difference I := IBH − IAdS and take the limit as K → ∞ we
obtain

I = IBH − IAdS =
πr+(`2 − r2

+)

`2 + 3r2
+

. (2.70)

In this form it’s clear that when r+ < ` the AdS4 contribution is smaller so it will
be the dominant contribution in the partition function. When r+ > ` the black hole
contribution dominates the partition function. When r+ = ` there is a first order
phase transition. The temperature when these phases exchange dominance is given
by plugging r+ = ` back into the formula for an AdS black hole’s temperature (2.62)
to obtain the critical temperature: TH =

1
π` .
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Chapter 3

Spectral Theory Background

This section goes into more detail than is needed, but we figured it might be valuable
for the physics community to summarize the key results from the relevant mathemet-
ics literature. This section draws heavily from (McMullen, 1999) and (Borthwick,
2007) which organized results of (Sullivan, 1979), (Sullivan et al., 1987)) and
(Bishop and Jones, 1997), into a form which makes the relationship between the
Hausdorff dimension of the limit set, H. dim(Λ(Γ)), and the first resonance of the
Laplacian, λ0(Γ), particularly clear.

To set some notation, let Hd+1 be the upper half-plane model of hyperbolic space
with constant curvature -1 and let Sd

∞ = R
d ∪ {∞} denote its boundary. Note that

all of the following results hold for any model of hyperbolic space (and in particular
these quantities will be invariant under conformal maps).

3.1 Schottky groups

Not all Kleinian groups give us spacetimes that have a physical interpretion. The
groups of interest live in a subgroup of PSL(2,C) and they are called Schottky
groups. Schottky groups are Kleinian groups such that each generator, call it
A, maps a circle CA to another disjoint circle Ca. Thinking of A as a Mobious
transformation, A maps the interior of CA to the exterior of Ca. We will use lower-
case/upper-case letters to denote transformations and their inverses respectively. In
our notation

A : CA 7→ Ca (3.1)

a : Ca 7→ CA (3.2)

(3.3)
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which should be clear from figure 2.2 and figure 2.3. Note that there are two types
of Schottky groups: ‘classical’ and ‘non-classical.’ Classical Schottky groups have
a finite number of generators and these generators pair honest-to-goodness circles
to other circles. All of the circles need to be disjoint from each other. Non-classical
Schottky groups can have infinitely many generators and the circle pairings can be
to objects that are only homeomorphic to circles, such as pairing closed Jordan
curves. For non-classical Schottky groups we’ll still need the condition that all
of the “circles” are disjoint from each other. Non-classical Schottky groups still
give physically relevant spacetimes; they correspond to solutions that have spinning
black holes in the bulk, or correspondingly, angular momentum on their boundary.

There’s a trick from “Indra’s Pearls” that makes it easy to find new Schottky groups
given a starting Schottky group. They call it ‘the power of conjugation’ and itt
comes from the following simple algebra. If A ∈ PSL(2,C) maps the circle CA to
the circleCa and G is an arbitrary element of PSL(2,C) then GAG−1 maps the circle
GCA onto the circle GCa. By GCA we mean taking every point on the circle CA

and finding its image by G after fractional linear transformation. It’s convenient to
denote the circles GCA and GCa as CGA and CGa respectively. We’ll use this trick in
section 5.2 to find new multiboundary wormholes given simple starting generators.

3.2 Schottky space

For each fixed genus g ≥ 2, Schottky space Sg is the space of Schottky groups of
genus g. Basically each point in Schottky space corresponds to a set of g elements
of PSL(2,C) that generate a Schottky group, up to Mobius transformations. This
space has complex dimension 3g − 3 which follows from the fact that each Schottky
group generates a genus g Riemann surface Σg. Σg can be decomposed into 2g − 2
pairs of pants, each of which is described by 3 complex degrees of freedom. But
we glue all of the pairs of pants together so the number of degrees of freedom is
3g − 3. The universal covering space of Sg can be identified with the Teichmuller
space of compact genus g Riemann surfaces. The notion of Schottky space provides
a convenient way to keep track of the contributions one needs to sum over the three
dimensional quantum gravity partition function. A more familiar parameterization
of the space of Riemann surfaces of fixed genus g is given by the moduli space
Mg. Schottky space and moduli space are related in that they are both covered
by Teicmuller space. Any of these parameterizations can be used in the partition
function, but Schottky space makes it particularly easy to avoid double counting
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Cylinder Torus

Figure 3.1: These figures show the “limit sets” that are obtained when lifting a point
from R2/〈x ∼ x + 1〉 and R2/〈x ∼ x + 1, y ∼ y + 1〉, respectively, to their covering
spaceR2. The limit sets create regularly spaced grids that have Hausdorff dimension
equal to zero.

contributions.

3.3 Limit sets

For intuition, let’s think about quotients of R2 for a moment. If one quotients R2 by
the subgroup generated by translating x by coordinate distance one, 〈x ∼ x + 1〉,
then the quotient R2/〈x ∼ x+1〉 is a cylinder with infinite length and circumference
of length 1. If one quotients R2 by a subgroup generated by two translations, such
as R2/〈x ∼ x + 1, y ∼ y + 1〉, then one is left with a torus. Imagine drawing a
point on both of these quotient spaces and then lifting to its covering space. In the
cylinder case, the image of the point will be infinitely many points located at each
of the integers along the real line. In the torus case, the image of the point will be
an infinite 2d lattice with images at the tuples of integers (a, b) ∈ Z × Z. See figure
3.1 for an illustration of this.

We started with these examples because they illustrate the concept of limit sets.
Note that in the case of quotients of R2 the images of a point accumulate all over
the plane and there’s no sense of “stacking up.” The fractal dimensions of limit sets
in Euclidean space will be zero. However, when we repeat this lifting procedure
in hyperbolic space, the points will accumulate near each other due to the negative
curvature, creating infinitely nested fractals.

Let’s now proceed to the definition of limit sets for Kleinian groups. Let Γ ⊆
Isom(Hd+1) be a Kleinian group. The limit set Λ(Γ) is the subset of the boundary
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sphere Sd
∞ = R

d ∪ {∞} defined for any x ∈ Hd+1 by

Λ(Γ) = Γx ∩ Sd
∞. (3.4)

This is equivalent to taking the union of the limits of orbits, gnx as n → ∞ for all
words g ∈ Γ, where gn acts on x by fractional linear transformation when d = 2.
This definition corresponds exactly to the intuition you should have from theR2 case.
You start with a point in the quotient space and then lift it to Hd where every image
corresponds to the image of x by some reduced word g ∈ Γ. See figures 3.2 and
3.3 for examples of limit sets. These particular limit sets correspond to complicated
spacetimes that have three asymptotic regions connected by a wormhole, where
each of the throats is spinning rapidly. They were chosen so that the quotients
of their boundaries, Ĉ/Γ, are genus two Riemann surface with a Z3 symmetry.
These surfaces arise when investigating n = 3 Rényi entropies. Moreover, these
two in particular correspond to non-classical Schottky groups with large Hausdorff
dimension (greater than one).

3.4 Hausdorff dimension

In an attempt to be self-contained, this subsection introduces Hausdorff dimension,
denoted H. dim(E) for the set E . Hausdorff dimension generalizes the concept
of dimension to sets with non-integer dimension, such as fractals. The general
definition is a bit involved, but it simplifies when the set of interest is self-similar,
such as the sets we care about in this paper.

Let X be a metric space. If E ⊂ X and d ∈ [0,∞), the d-dimensional Hausdorff
content of E is defined as

Cd
H(E) := inf

δ

{∑
i

rd
i = δ s.t. there is a cover of E by balls with radii ri > 0

}
.

(3.5)
With this definition in mind, the Hausdorff dimension of E is defined to be

H. dim(E) := inf
d

{
d ≥ 0 s.t. Cd

H(E) = 0
}
. (3.6)

For a self-similar set, E , the definition simplifies. We can consider coverings with
the same sized balls. For balls of diameter ε , let Nε be the number of balls we need
to cover E . The Hausdorff dimension corresponds to the d where Nε is proportional
to ε−d , so that for self-similar E , we have

H. dim(E) = − lim
ε→0+

ln Nε

ln ε
(3.7)
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Figure 3.2: Example of a limit set generated by a Schottky group that corresponds
to a Riemann surface with a Z3 symmetry. Using the parameterization 4.8 this has
q = .8 + .443i. This Schottky group lives close to the boundary of Schottky space,
where the limit sets are particularly rich. The Hausdorff dimension here is greater
than 1.5. The Z3 symmetry results from this being a Riemann surface of interest for
calculating n = 3 Rényi entropies.
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Figure 3.3: Example of a limit set generated by a Schottky group that corresponds
to a Riemann surface with a Z3 symmetry. Using the parameterization 4.8 this has
q = .4 + .572i. This Schottky group lives close to the boundary of Schottky space,
where the limit sets are particularly rich. The Hausdorff dimension here is greater
than 1.4.
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Let’s take the Cantor set as an example. At the n-th level we have 2n line segments
each of length 3−n. Plugging in ε = 3−n the formula reduces to

H. dim(E) = − lim
n→∞

ln 2n

ln 3−n =
ln 2
ln 3

(3.8)

which recovers the well known value for the Hausdorff dimension of the Cantor set.

Calculating the Hausdorff dimension of limit sets of Schottky groups is usually
difficult, but McMullen introduced a numerical algorithm in (McMullen, 1998)
which we’ll introduce later in this section and then work through examples in
section 4.5.

3.5 First resonance of the Laplacian

Let us now go into more detail by recalling that the Laplacian on Hd+1 is defined to
be

∆ :=
1√
| det g |

∂µ

(√
| det g |gµν∂ν

)
(3.9)

which is invariant under isometries (for any metric)

∆ ◦ g = g ◦ ∆, for g ∈ Isom(Hd+1) (3.10)

so it descends to a well defined Laplacian, ∆Γ, on quotients Hd+1/Γ.

It’s worthmentioning that themathematics and physics literatures use a different sign
convention, which can oftentimes be confusing. Mathematicians add an extra minus
sign in equation (3.9), which makes eigenvalues positive for positive eigenfunctions,
f ≥ 0. Physicists do not include this minus sign, which has the drawback that
eigenvalues corresponding to L2 functions are negative, but it has the advantage
of keeping the expected sign in the wave equation. Also note that mathematicians
sometimes call the first resonance the “bottom” of the Laplacian.

The first resonance of the spectrum of the Laplacian is defined to be

λ0(Γ) := − inf
f ∈C∞0

{∫
Hd+1/Γ

|∇ f |2∫
Hd+1/Γ

| f |2

}
(3.11)

= − sup
f ∈C∞0

{
λ ≥ 0

���� ∃ f > 0 on Hd+1/Γ with ∆ f = λ f
}

(3.12)

= inf
f ∈C∞0

{
λ ≤ 0

���� ∃ f > 0 on Hd+1/Γ with ∆ f = λ f
}
≤ 0 (3.13)
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where again, please note that this is the physics sign convention. Equation (3.12)
is related to (3.13) by using − sup(x) = inf(−x). The relationship between (3.11)
and (3.12) was shown in (Cheng and Yau, 1975). This value, λ0(Γ), is important
because it separates the spectrum between its L2 and its ‘positive parts.’

For a concrete example, let d = 1 so that ∆H2 := y2(∂2
y +∂

2
x ). The eigenfunctions are

given by ys with associated eigenvalue s(s − 1). The resonance is given by taking
s = 1

2 which implies λ0(H
2) = −1

4 .

3.6 Critical exponent of the Poincaré series

The Poincare Series is defined for x ∈ Hd+1 ∪Ω(Γ) by

Ps(Γ, x) =

{∑
g∈Γ e−sd(x,gx) if x ∈ Hd+1∑
g∈Γ |g

′(x)|s if x ∈ Ω(Γ)
(3.14)

where the derivative g′(x) is measured in terms of the canonical spherical metric

σ = 2|dx |/(1 + |x |2) (3.15)

on Sd
∞. The Poincare series has a critical exponent for convergence given by

δ(Γ) = inf
{
s ≥ 0

���� Ps(Γ, x) < ∞
}

(3.16)

which is independent of the x chosen. The Poincaré series is related to the method
of images and to Greens functions.

3.7 Invariant conformal densities

A Γ-invariant conformal density of dimension α is a positive measure µ on Sd
∞ such

that
µ(gE) =

∫
E
|g′|αdµ (3.17)

for every Borel set E and g ∈ Γ. A density is normalized if µ(Sd
∞) = 1. This is

just a fancy way of saying that it’s a measure that will associate the same volume
to sets related by isometries g ∈ Γ. Conformal densities aren’t used directly in
this paper but they’re at the heart of how McMullen’s numerical algorithm can
efficiently estimate Hausdorff dimension. It’s also sitting in the background because
technically, when doing field theory in these quotient spaces, the measure used in the
action will be a Γ-invariant conformal density. Hence, on a technical level they are
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related to the coupling between bulk fields and boundary operators in AdS/CFT .
The critical dimension of Γ is defined to be

α(Γ) = inf
{
α ≥ 0

���� ∃ a Γ-invariant density of dimension α
}
. (3.18)

Note that there is an equivalent definition using the functorial point of view: a
conformal density of dimension α is a map

µ : ( conformal metrics ρ(z)|dz | on Sd
∞) → (measures on Sd

∞) (3.19)

such that
dµ(ρ1)

dµ(ρ2)
=

(
ρ1

ρ2

)α
. (3.20)

Conformal maps acts on densities in a natural way and (3.17) shows that g∗(µ) = µ
for any conformal map g.

3.8 Summary of key spectral theory results

With all of these definitions in place we’re now ready to summarize the key re-
sults from the mathematics literature. For any nonelementary complete hyperbolic
manifold M = Hd+1/Γ the following are equivalent

1. The Hausdorff dimension, H. dim(Λ(Γ)), of the limit set of Γ

2. The critical exponent, δ(Γ), of the Poincaré series,

3. The minimum dimension, α(Γ), of a Γ-invariant conformal density

4. The asympotic length spectrum of the prime geodesics: if π(`) := |{γ ∈ P :
`γ < `}| is the prime geodesic counting function, we have the prime geodesic
theorem

π(`) ∼
eδ`

δ`
(3.21)

(This can be improved to π(`) = li(eδ`) +O(e(δ−ε)`) for some positive ε .)

5. The first zero/pole in various definitions of Selberg zeta functions

Moreover, the first resonance of the Laplacian is given in terms of the above quanities
via the relationship

λ0(Γ) =

{
− d2

4 if δ(Γ) ≤ d/2,
δ(Γ)(δ(Γ) − d) if δ(Γ) ≥ d/2

(3.22)
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where δ is any of the quantities above but usually interpreted as the Hausdorff
dimension of the limit set. This relationship is central in this paper because it shows
that we can gain information about the spectrum of the Laplacian from geometrical
quantities that are oftentimes easier to compute.

3.9 McMullen’s Algorithm

Given a Euclidean spacetime obtained as a quotient Hd+1/Γ, calculating the spec-
trum of the Laplacian is often difficult to do directly. Coming at this question from
a different direction, McMullen introduced a numerical algorithm that efficiently
calculates the associated Hausdorff dimension, which indirectly provides informa-
tion about the spectrum via the results in appendix 3.8. This subsection introduces
McMullen’s algorithm (McMullen, 1998).

The algorithm works by iteratively approximating a Γ-invariant conformal density.
Appendix 3.7 goes into more detail, but recall that a Γ-invariant conformal density
with dimension α is a probability measure µ on ∂Hd+1 such that

µ(γE) =
∫

E
|γ′|αdµ (3.23)

for any Borel set E and γ ∈ Γ. Think of this as a probability measure that gives
consistent values for two subsets of the limit set that only differ by an isometry γ.
There’s a result due to Sullivan showing that the limit set of a geometrically finite
Kleinian group has a unique nonatomic Γ-invariant density µ of total mass one. This
is important because the dimension of this unique density is equal to the Hausdorff
dimension of the limit set by the theorem in appendix 3.8.

McMullen’s algorithm works by starting with a coarse-grained superset that covers
the limit set and iteratively looking at finer and finer approximations. We’ll restrict
ourselves to a description of the algorithm for classical Schottky groups where the
algorithm is simpler to describe. Moreover, we’ll consider groups that don’t have
any parabolic elements (these are Mobius transformations that only have one fixed
point and therefore correspond to cusps in the quotient space).

The algorithm starts by finding a Markov partition 〈(Di, fi)〉 for the group Γ. A
Markov partition is a set of connected compact balls Di ⊂ Sn and maps γi ∈ Γ

defined on Pi such that:

1. γi(Di) ⊃ ∪i 7→ j D j , where the relation i 7→ j means µ(γi(Di) ∩ D j) > 0;
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depth one depth two

Figure 3.4: This figure illustrates a Markov partition for a Schottky group with
two generators corresponding to a pair of pants quotient. The Markov partition at
the first level has four disks, D1 = Da,D2 = DA,D3 = DB and D4 = Db, with
corresponding maps A, a, B, b. The points y21, y31 and y41 correspond to the three
images of the sample point x1. When checking the definition of a Markov partition
remember that Schottky groups are defined so that the interiors of disks are mapped
to the exterior of their target disk. For example, in this picture A maps the interior
of Da to the exterior of DA.

2. γi is a homeomorphism of a neighborhood of Di ∩ γ
−1
i (D j), when i 7→ j;

3. µ(Di) > 0;

4. µ(Di ∩ D j) = 0 if i , j; and

5. µ(γ(Di)) = µ(∪i 7→ j Pj) =
∑

i 7→ j µ(Pj),

where µ is the canonical measure (spherical measure if you’re considering ∂Hd to
be a sphere; Euclidean measure if you’re considering it to be the complex plane with
point at infinity).

All this notation can be intimidating at first, but the ideas are simply illustrated with
a picture, such as figure 3.4. This example illustrates a Schottky group 〈A, B〉 with
two generators. The generator A maps the interior of Da to the exterior of DA and
the generator B maps the interior of Db to the exterior of DB. The quotient under
these maps gives a pair of pants. The most natural initial Markov partition is given
by 〈(Da, A), (DA, a), (Db, B), (DB, b)〉 = 〈(Di, γi)〉i=1,4. It should be clear that this
satisfies the definition of a Markov partition after chasing through a few pictures.

There are two more ingredients that we need to describe before introducing the
algorithm. In addition to starting with a Markov partition one also needs sample
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points xi ∈ Di. These will be important because we’re going to keep track of how
the distance between points changes as we apply the γi. We also need to introduce
a refinement of the Markov partition 〈(Di, γi)〉 which is defined to be

〈(Di j, γi)〉 (3.24)

for i 7→ j and where
Di j = γ

−1
i (D j) ∩ Di . (3.25)

In the language of Schottky groups this translates to taking each disk and breaking it
into disks that are one depth smaller (where by depth we mean disks corresponding
to words with one extra letter). Note that we don’t change the maps γi at each level,
they’re the same as what we started with. Figure 3.4 shows how this works for a
pair of pants geometry. The four initial disks get split into 12 disks. At level n + 1
there will be 4 · 3n disks. For Schottky groups with k generators at the n+ 1-th level
there will be 2k · (2k − 1)n disks.

With these definitions in hand we can write downMcMullen’s algorithm to compute
the dimension δ of the density µ:

1. For each i 7→ j, solve for yi j ∈ Di such that γi(yi j) = x j ;

2. Compute the transition matrix

Ti j =


��γ ′i (yi j)

��−1 if i 7→ j,

0 otherwiseL
(3.26)

3. solve for α ≥ 0 such that the spectral radius of the matrix [Tα
i j ] is equal

to one. Note that here Tα
i j is entry-wise exponentiation rather than matrix

exponentiation!

4. Output α as an approximation to the Hausdorff dimension;

5. Replace the Markov partition with its refinement and iterate steps 1-5.

McMullen was able to show that this algorithm converges to the Hausdorff dimen-
sion. Specifically he showed that at most O(N) refinements are needed to compute
the Hausdorff dimension to N digits of accuracy.

Note that McMullen’s algorithm isn’t guaranteed to work when Γ has parabolic
elements. The necessary and sufficient condition is that the invariant density µ can’t
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have any ‘atoms’ at the cusp points (basically non-zero measure at the cusps.) If it
can be argued that the Γ-invariant density doesn’t have any atoms then McMullen’s
algorithm will apply, albeit with ‘worst-case’ convergence properties. McMullen
used these ideas to approximate the Hausdorff dimension of the Apollonian gasket
in (McMullen, 1998). This subtlety about parabolic elements is important when
investigating the n → ∞ limit of Rényi entropies because the quotient surface has
cusps.
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Chapter 4

Phase Transitions in AdS3

This chapter is heavily based on [DMMM]. In this chapter we show that for three
dimensional gravity with higher genus boundary conditions, if the theory possesses
a sufficiently light scalar, there is a second order phase transition where the scalar
field condenses. This three dimensional version of the holographic superconducting
phase transition occurs even though the pure gravity solutions are locally AdS3. This
is in addition to the first order Hawking-Page-like phase transitions between different
locally AdS3 handlebodies. This implies that the Rényi entropies of holographic
CFTs will undergo phase transitions as the Rényi parameter is varied, as long as the
theory possesses a scalar operator which is lighter than a certain critical dimension.
We show that this critical dimension has an elegant mathematical interpretation as
the Hausdorff dimension of the limit set of a quotient group of AdS3, and use this to
compute it, analytically near the boundary of moduli space and numerically in the
interior of moduli space. We compare this to a CFT computation generalizing recent
work of Belin, Keller and Zadeh, bounding the critical dimension using higher genus
conformal blocks, and find a surprisingly good match.

4.1 Outline

Three dimensional gravity has proven a remarkably rich testing ground for our ideas
about classical and quantumgravity. Even thoughEinstein gravity possesses no local
degrees of freedom, three dimensional theories of gravity nevertheless have many
of the rich features of their higher dimensional cousins, including holography (J. M.
Maldacena, 1999) and black hole solutions (Banados, Teitelboim, and Zanelli, 1992)
whose Bekenstein-Hawking entropy can be computed microscopically (Strominger,
1998). Theories of gravity in AdS3 are dual to two dimensional conformal field
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theories, allowing one to use CFTmethods to gain insight into classical and quantum
gravity in AdS. In this chapter we will use CFT methods to motivate the existence
of a new class of phase transitions in three dimensional gravity. We will then verify
their existence directly in classical AdS gravity, and explore their features.

Our central result is simple, and is easiest to state for AdS3 gravity in Euclidean
signature. Such theories can be defined with a variety of boundary conditions: one
can take the boundary of (Euclidean) space-time to be any smooth, two dimensional
Riemann surface B. With appropriate boundary conditions (Brown and Henneaux,
1986) the theory will depend only on the conformal structure of B, so can be studied
as a function of the conformal structure moduli of B. The bulk gravity path integral
with these boundary conditions is, via AdS/CFT, equal to partition function of the
dual CFT on the surface B. We will be interested in gravity theories in the semi-
classical limit, where this bulk path integral is dominated by the classical geometry
which minimizes the (appropriately regularized) gravitational action. For example,
when the boundary is a sphere the dominant contribution comes from Euclidean
AdS3, i.e. hyperbolic space H3, which is the unique constant negative curvature
metric on the solid ball which “fills in" the boundary sphere. At higher genus,
however, this path integral can have many saddle points, each of which correspond
to a gravitational solution whose boundary is the surface B. For example, when the
boundary is a torus the bulk saddles are constant negative curvature metrics on a
solid donut which fills in the boundary torus. There are many such saddles, which
are distinguished bywhich cycle in the boundary torus is contractible in the bulk (see
e.g. (J. M. Maldacena and Strominger, 1998; Dijkgraaf et al., 2000; Maloney and
Witten, 2010)). For example, the geometry for which the Euclidean time coordinate
is contractible is the (Euclidean) BTZ black hole, while the geometry where the
angular coordinate is contractible is interpreted as the “thermal AdS" geometry
used to compute finite temperature observables in a fixed AdS background. As one
varies the moduli of the torus, these two saddles will interchange dominance in the
bulk gravity path integral – this is the three dimensional version of the Hawking-
Page phase transition (Hawking and Page, 1983) describing black hole formation in
AdS.

We are interested in the case where the boundary B has genus g ≥ 2. Just as
in the torus case, there are many different bulk solutions which give saddle point
contributions to the partition function, and which can be characterized by a choice
of cycles of the boundary surface B which become contractible in the bulk. The
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simplest of these solutions are handlebodies, where the bulk solution is the constant
negative curvature metric on a solid genus g surface which fills in the boundary
B. There will be phase transitions where these geometries interchange dominance:
these are the higher genus versions of the Hawking-Page phase transition. As in the
torus case, these handlebodies can be regarded as the Euclidean continuation ofAdS3

black holes; they are analytic continuations not of the BTZ black hole, but instead
of multi-boundary black holes in AdS (D. R. Brill, 1996; Aminneborg, Bengtsson,
D. Brill, et al., 1998), as described in (Krasnov, 2000). In the holographic context,
these handlebodies describe contributions to the higher genus partition functions
of holographic CFTs, which can be used to compute entanglement Rényi entropies
(Headrick, 2010), to constrain OPE coefficients (J. Cardy, Maloney, and Maxfield,
2017; Cho, Collier, and Yin, 2017a; Keller, Mathys, and Zadeh, 2017), or as models
of multi-party holographic entanglement (Balasubramanian et al., 2014).1

The bulk solutions described above are all locally H3, so can be written as quotients
of hyperbolic space of the formH3/Γ, where Γ is a discrete subgroup of the isometry
group of H3. Indeed, Einstein gravity in three dimensions has no local degrees of
freedom, so any solution of pure Einstein gravity must be locally H3. We are
interested in more complicated theories of gravity, however, which have additional
degrees of freedom. In this paper we will consider theories where we have an
additional scalar field φ of mass m2. This means that the dual CFT has an operator
O of dimension ∆, with m2 = ∆(∆ − 2).2 All of the solutions described above have
φ = 0, and are dual to CFT configurations on the Riemann surface with 〈O〉B = 0.

Our central result is the following: in some regions of moduli space, and for
sufficiently light scalar fields, the handlebody solutions described above are unstable.
This is because the kinetic operator (∇2−m2) will have a negative eigenvalue. Thus
the solution with least action will not be a quotient of AdS, but rather a non-Einstein
solutions with φ , 0. In the dual CFT, the expectation value of the scalar operator
〈O〉B , 0 will be non-zero. This means that as the moduli are varied there will be
phase transitions where these scalar fields condense. Although the general structure
of these φ , 0 solutions is quite complicated – we expect the construction of these

1There are other “non-handlebody" solutions as well (Yin, 2008b; Yin, 2008a), which will not
concern us in this paper. Near boundaries of moduli space – i.e. where cycles in the surface B
become small – the handlebody solutions will always dominate (Yin, 2008b; Yin, 2008a). Moreover,
one can compute numerically the action of the non-handlebodies in the interior of moduli space,
and – at least in the cases which have been studied – they are always subdominant compared to
handlebodies (Maxfield, Ross, and Way, 2016). We will therefore focus only on handlebodies in this
paper.

2We are working in units where the AdS radius is LAdS = 1.
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solutions to be a difficult numerical problem – we are able to prove rigorously the
existence of the instability.

We will see that these phase transitions have several important features, including:

Instabilities occur only when the dual operator is sufficiently light. In order for
a given handlebody to be unstable, ∆ must be lighter than a certain critical
value∆c whichwewill compute. The value of∆c will depend on the conformal
structure moduli as well as on the choice of handlebody. Whenever the
dimension ∆ < 2 (i.e. the bulk scalar φ has m2 < 0) there is some region of
moduli space where a given handlebody will be unstable.3

Instabilities occur only in the interior of moduli space. At the boundary ofmod-
uli space one of the handlebody phases will always dominate, and will be
stable against the condensation of any scalar field. In other words, ∆c → 0
for the dominant handlebody as we approach the edge of moduli space. As
one moves into the interior of moduli space ∆c increases so the handlebody
becomes more unstable to condensation of the scalar, until the first-order
Hawking-Page transition is reached, and a topologically distinct handlebody
becomes dominant.

For example, if B is a genus g = n − 1 surface constructed as an n-fold cover
of the sphere branched over 4 points, parameterized by their cross-ratio x, the
handlebody which dominates when x → 0 will become more unstable as x is
increased. For this geometry, ∆c is a monotonically increasing function of x.4

Handlebodies become more unstable as the genus increases. Instabilities only oc-
cur when B has genus g ≥ 2. If B is the genus g = n − 1 surface constructed
as an n-fold cover of the sphere branched over 4 points, then if we hold the
cross-ratio x of the four points fixed, the corresponding handlebodies will be-
come more unstable as n is increased. In other words, ∆c is a monotonically
increasing function of n. As we take n → ∞ with fixed x, ∆c approaches a
finite value which depends on x but is always greater than 1

2 .
3If we require the handlebody to be invariant under a Z2 time reflection symmetry, so that it can

be Wick rotated to a real Lorenztian solution, then this condition becomes ∆ < 1; this would require
that the scalar field have −1 < m2 < 0 and be quantized with alternate boundary conditions.

4It is important here that we are referring to the handlebody which dominates at small x. For
the handlebody which dominates as x → 1, ∆c will be a monotonically decreasing function of x
between 0 and 1.
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This new phase transition in three dimensional gravity is quite similar to the holo-
graphic superconducting phase transition in higher dimensions (Gubser, 2008; Hart-
noll, Herzog, and Horowitz, 2008). There is, however, one crucial difference, which
is that in the present case the solutions which become unstable are locally AdS3,
and have no external potentials (aside from metric moduli) turned on. Our insta-
bility occurs because of global properties of the handlebody, not due to any local
properties of the metric.5 Although at first sight surprising, our results are a three
dimensional version of a famous fact in two dimensions: the spectrum of the hyper-
bolic Laplacian on a Riemann surface depends not just on the local structure of the
metric (which is always hyperbolic) but also on the moduli of the Riemann surface.
Indeed, this spectrum is the central object of interest in the study of arithmetic and
quantum chaos, and many of our results are borrowed from this literature.

Our results have important implications for entanglement entropies in two dimen-
sional conformal field theories. For any state in a two dimensional CFT, one can
consider the reduced density matrix associated to a particular spatial region. The
Rényi entropies 1

1−n log Tr ρn can then be used to characterize the spatial entangle-
ment structure of this state. When the spatial region is collection of intervals, the
Rényi entropy is – via the replica trick – equal to the partition function of a CFT
on a higher genus Riemann surface whose genus depends on n (see e.g. (Calabrese
and J. L. Cardy, 2004)). For example, the Rényi entropy for a pair of intervals in the
vacuum state is equal to the partition function on a genus g = n−1 Riemann surface.
The entanglement entropy is then computed by considering these Rényi entropies
as an analytic function of n, and continuing to n → 1. In this procedure one as-
sumes that the entropies are analytic functions of n. We have seen, however, that in
holographic CFTs the Rényi entropies can undergo a phase transition as n is varied,
at some finite value of n > 1. Thus the replica method for computing entanglement
(von Neumann) entropies must be treated with care.6 For example, if we consider
the Rényi entropies for a pair of intervals, two handlebodies will interchange domi-
nance precisely at cross-ratio x = 1/2 (Headrick, 2010); this is also exactly where

5A rather similar phenomenon was observed in higher dimensions in (Belin and Maloney,
2016), where hyperbolic black holes in AdS4 were observed to undergo similar phase transitions
even though the solutions were locally AdS. As in the present case, the instability only arose because
the hyperbolic black hole solutions differed globally from AdS4. Thus modes of the scalar field
which are not normally present (since they are non-normalizable in global AdS) suddenly become
normalizable and lead to a genuine instability of the locally AdS solution.

6Similar phenomena were observed for spherical entangling surfaces in higher dimensional
holographic CFTs in (Belin, Maloney, and Matsuura, 2013; Belin, Hung, et al., 2015), and for the
three dimensional O(N) model in (Metlitski, Fuertes, and Sachdev, 2009).
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the Ryu-Takayanagi formula for entanglement entropy (Ryu and Takayanagi, 2006)
will undergo a phase transition. Our results imply, however, that if the CFT has a
sufficiently light operator then the Rényi entropies will undergo a phase transition
at cross-ratio x < 1/2. For example, the n = 2 Rényi entropy will undergo a phase
transition if the theory has an operator with dimension ∆ < ∆c = 0.189124 · · · .
We note that this instability occurs for values of n which are strictly larger than
one – we do not expect a non-analyticity in a neighborhood of n = 1. It would be
interesting to revisit the arguments of (Faulkner, 2013; Hartman, 2013; Headrick,
2010; Lewkowycz and J. Maldacena, 2013) in this context.

Our results also make clear a sense in which higher genus CFT partition functions
differ qualitatively from those on the sphere or torus. The torus partition function, for
example, was shown by Hartman, Keller and Stoica to take a universal form at large
central charge, provided one assumes that the spectrum of light states (i.e. those with
dimension less than the central charge) does not grow too quickly (Hartman, Keller,
and Stoica, 2014). This universal form is precisely that of a dual three dimensional
theory of gravity which has a Hawking-Page transition between a thermal state and
a BTZ black hole, and the sparseness condition is obeyed by any bulk local quantum
field theory and even by string theories with string scale `string . `AdS. At higher
genus, however, we see that additional phase transitions are generic, and occur even
for duals of local quantum field theories in the bulk. Thus at higher genus there is
no analogous “universal partition function" at large central charge.

While our discussion will be entirely in the context of three-dimensional gravity,
similar phenomena will also occur in higher dimensions. The most direct analogue
is with locally AdS spacetimes, to which almost everything generalizes straightfor-
wardly. In particular, the critical dimension ∆c for an instability can be shown to
be equal to the Hausdorff dimension of an appropriate limit set, just as we will see
below for the three dimensional case.7 This is slightly less natural than in three di-
mensions, because solutions to Einstein’s equations need not be locally hyperbolic,
so it is not clear when such geometries would dominate the path integral. More
generally, the same mechanism of instability can apply, with global properties of the
solution moving the critical mass above the naïve Breitenlohner-Freedman bound.
Heuristically, scalars of negative mass squared can be stable because the reduction
in action from the mass term in a finite region is compensated for by the positive
contribution to the action from the gradient, required to match with the boundary

7Indeed, one can directly reinterpret the results of (Belin and Maloney, 2016) in this context.
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conditions at infinity; it is important here that the volume of a region does not grow
faster with size than its perimeter in negatively curved spaces. Without altering
the local curvatures, nontrivial topology can upset this mechanism for stability by
reducing the size of a region’s boundary, and hence the gradient contribution to the
action, for a given volume.

The discussion of the paper will be phrased in terms of the Euclidean solutions, but
the results have interesting implications in Lorentzian signature. The relevant CFT
states are defined by a Euclidean path integral on a Riemann surface with one or
more boundaries, generalizing the familiar examples of the path integral on the disc
preparing the vacuum state, and on the cylinder preparing the thermofield double
state on two entangled copies of the CFT Hilbert space. This defines the state at
t = 0, which can be evolved in Lorentzian time.

To find the semiclassical bulk dual of these states, wemust first find the Euclidean so-
lution that dominates the path integral on the ‘Schottky double’, the closed Riemann
surface formed by gluing the surface to its mirror image along each of the bound-
aries, by construction producing a Z2-symmetric surface. The dominant solution is
expected to respect this boundary time-reflection symmetry, so the bulk surface Σ
fixed by the reflection acts as an initial data surface for Lorentzian evolution, and the
quantum state of the bulk fields is the Hartle-Hawking wavefunction on Σ. For one
possible solution, the t = 0 slice Σ is conformal to the original Riemann surface,
describing a single-exterior black hole with topology hidden behind a horizon for
a single-boundary case, or a multi-boundary black hole with an exterior region for
each boundary, all joined by a non-traversable wormhole. Even in pure gravity,
there are several phases of the dominant bulk solution, so depending on the moduli
the bulk state can also be disconnected copies of pure AdS (but with fields in a state
different from the vacuum), or something else. For a more detailed review of these
states, see (Maxfield, 2015; Maxfield, Ross, and Way, 2016; Skenderis and Rees,
2011; Maloney, 2015).

Now, if there is a sufficiently relevant scalar operator in theCFT, there is an additional
second-order phase transition to a dominant bulk solution with a nonzero classical
value for the dual scalar field. This means that the initial data on Σ includes some
scalar field configuration, which will evolve in time. The fact that these states are
not stationary will then be visible even for a classical observer outside any horizon.
When the phase includes a black hole, the scalar outside the horizon will rapidly
decay away, falling into the black hole. A more interesting time evolution occurs
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when the dual state includes copies of pure AdS, whichmay now include some scalar
configuration. When the amplitude is small, aswill be the case close to the transition,
linearised evolution will suffice, with the field bouncing around periodically, but
eventually nonlinearities will likely become important, with resonances between
different modes. Perhaps the most likely evolution thereafter is a turbulent cascade
to excite higher and higher frequency modes, with the solution nonetheless being
regular for all time, as evidenced by numerical studies of amassless scalar interacting
only gravitationally (Bizoń and Jałmużna, 2013). This is different from the situation
in higher dimensions, in which a black hole forms after finite time; this cannot occur
in three dimensions, because there is a finite energy threshold between the vacuum
and the lightest black hole.

In 4.2 we will review briefly a few salient features of three dimensional gravity, as
well as the necessary aspects of CFT on Riemann surfaces. In 4.3 wewill give a CFT
argument for the existence of an instability, inspired by recent results of Belin, Keller
and Zadeh (Belin, Keller, and Zadeh, 2017). The main idea is that a free bulk scalar
field is dual to a generalized free field in the boundary CFT, and we can compute
the contribution of such a field to the higher genus CFT partition function. Using
the asymptotic value of the OPE coefficients of multi-trace operators built from a
generalized free field, along with higher genus conformal blocks in the appropriate
regime, one can show that these contributions diverge when the field is sufficiently
light, which signals the phase transition. This argument allows us to bound the
critical dimension of the scalar field; for example, for the genus two handlebody
relevant for the computation of the third Rényi entropy of two intervals at cross-ratio
x = 1

2 , we find ∆c ≥ 0.189121 · · · .

In 4.4 we will turn to the bulk instability. We will first review how the zero mode
of the instability relates to various notions from the spectral theory of the Laplacian
on a general bulk geometryM. We then specialize to the main case of interest, for
whichM is a quotient of hyperbolic spaceH3 such as a handlebody, and find that the
critical dimension has a rather beautiful mathematical interpretation. The quotient
is by a group of Möbius maps, which has a limit set, a subset of the Riemann sphere
(the boundary of Euclidean AdS3). This limit set has a finite Hausdorff dimension
δ > 0, which is sometimes referred to as the fractal dimension of the limit set. This
Hausdorff dimension is precisely equal to the critical dimension of the scalar field,
∆c = δ. In other words, a scalar is unstable if and only if its dimension is less than



43

the Hausdorff dimension of the limit set. The calculation in 4.3 can therefore be
regarded as a CFT estimate of this Hausdorff dimension, which provides explicit
lower bounds on δ.

In 4.5 we turn to the explicit computation of the critical dimension, using an al-
gorithm of McMullen for computing the Hausdorff dimension. We will use the
algorithm to compute the critical dimension analytically, finding the asymptotic
behaviour of δ as the boundary of moduli space is approached, for the handlebody
which dominates the partition function. We also describe what happens to the in-
stability at large genus. We will also use the algorithm to efficiently compute the
critical dimension numerically. For example, for the genus two surface described
above, the Hausdorff dimension is δ = 0.189124 · · · , close to our CFT bound. We
use the numerical data to provide plots of this critical dimension as a function of
moduli, and as a function of genus.

4.2 Review of higher genus partition functions in 3D gravity and 2D CFT

In this section we will review the description of higher genus Riemann surfaces,
and the construction of solutions to three-dimensional gravity with such boundaries,
which can be interpreted as saddle points for the higher genus partition function of
a holographic CFT. In particular, we describe a class of symmetric surfaces that
we will use as examples. We will also review the interpretation of these partition
functions in terms of Rényi entropies.

Moduli spaces and handlebodies

We are interested in studying holographic two-dimensional conformal field theories,
dual to three dimensional AdS gravity in Euclidean signature, in particular on a
Riemann surface B of genus g ≥ 2. The partition function of the theory on such a
surface, denoted Zg(τ), will depend on the conformal structure of the surface B.

Here τ is a collection of 3g−3 complex coordinates which parameterize the moduli
spaceMg of conformal structures on B.

At genus one, τ can be identified with the usual torus modulus. At higher genus
there are various different coordinates which can be used to describe the moduli τ,
some of which we will now describe.8

8 Because of the conformal anomaly the partition function will in addition depend on a choice
of metric within a given conformal class. Thus Zg should not – strictly speaking – be regarded
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Formany purposes in CFT and gravity, themost convenient way to realize a Riemann
surface B is as a quotient of the Riemann sphere C∗ by a Schottky group Γ, B =
Ω(Γ)/Γ. Here Γ is a discrete subgroup of PSL(2,C), which acts on C∗ in the usual
way byMöbius transformations, andΩ(Γ) is the set of points on the Riemann sphere
where this group ‘acts nicely’. More precisely, Ω(Γ) is the set of points z ∈ C∗

which have some neighborhood U containing no other images of z under the group:
γ · z ∈ U for γ ∈ Γ implies that γ is the identity. Equivalently, if we define the limit
set Λ(Γ) to be the set of accumulation points of the action of Γ on C∗ (a set about
which we will have much more to say later), then Ω(Γ) is just the Riemann sphere
with those points removed: Ω(Γ) = C∗ −Λ(Γ). More specifically, a Schottky group
Γ of genus g is a subgroup of PSL(2,C) that is freely generated by g loxodromic9
elements of PSL(2,C), having as a fundamental domain the exterior of 2g closed
curves (usually circles), such that each of the g generators of Γ maps one of these
boundaries to another in pairs. Intuitively, to obtain a Schottky representation, we
can cut the surface along g disjoint closed loops such that it stays in one piece and
becomes a sphere with 2g holes, flatten it onto the complex plane, and build the
Schottky group from the Möbius maps that glue the surface back together along its
g seams. A given Riemann surface can be written as a Schottky group in many
different ways, depending on the choice of g cycles to cut along. The presentation as
a Schottky group is equivalent to the plumbing construction used in (Cho, Collier,
and Yin, 2017b). A more detailed review of Schottky uniformization can be found
in (Krasnov, 2000; Faulkner, 2013; Barrella et al., 2013). A slightly different
approach to calculations in the Schottky coordinates was used in (Gaberdiel, Keller,
and Volpato, 2010).

A rather different presentation of the Riemann surface B is as an algebraic curve.
In this case we represent B as the set of solutions to an equation such as

yn =

N∏
k=1

z − uk

z − vk
. (4.1)

Here, B is a genus g = (N − 1)(n − 1) surface, represented as n-fold branched
cover over the Riemann sphere parameterized by the z-plane, with 2N branch points

a function of τ alone. This dependence, however, involves only the central charge and not any of
the other dynamical data of the CFT (such as operator dimensions or structure constants), so will
not be important for us here. We will therefore suppress this dependence and simply indicate the
dependence on the conformal structure moduli τ.

9A loxodromic element γ of PSL(2,C) is one which is conjugate to
(
q 0
0 q−1

)
for some q with

0 < |q | < 1.
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(uk, vk). As the resulting Riemann surface automatically possesses a Zn symmetry
(usually referred to as replica symmetry) where one permutes the n sheets, one
cannot describe a general point in moduli space Mg using this parameterization.
Instead, this equation describes only a 2N − 3 dimensional slice of moduli space, a
family of surfaces with an enhanced (Zn) automorphism group. Except in special
cases one cannot map out the full moduli space this way.10 The advantage of
this approach is that the moduli of this surface are easy to describe – they are the
locations (uk, vk) of the branch points. For physics, this presentation is natural for
describing Rényi entropies (or certain correlation functions in orbifold theories),
with the branch points uk and vk corresponding to the insertion points of twist and
anti-twist operators.

Except at genus one, or in special cases with very high symmetry, it is not possible to
find an explicit map between the moduli of the algebraic curve and Schottky groups,
or to find out whether two Schottky groups represent the same surface, sliced in a
different way. However, the problem of finding a Schottky group associated with a
particular algebraic curve, sometimes called ‘Schottky uniformization’, is equivalent
to solving a monodromy problem, which we now briefly describe.

To do this, we begin by denoting the locations of branch points (uk, vk) as zi (i =
1, . . . , 2N). We would like to find the map w(z) from the algebraic curve coordinate
z to the coordinate w of the complex plane on which the Schottky group acts. But
w(z) is not single-valued, because there are many possible values of w related by
elements of the Schottky group Γ. However, the Schwarzian derivative Tc(z) =

S(w)(z) =
(
w′′

w′

)′
− 1

2

(
w′′

w′

)2
is single-valued, since the Schottky group consists of

Möbius maps. If we take Tc(z) as given, a simple calculation shows that solving
Tc(z) = S(w)(z) for w is equivalent to solving the ordinary differential equation

ψ′′(z) + Tc(z)ψ(z) = 0, (4.2)

with w(z) = ψ1(z)
ψ2(z)

being the ratio of two linearly independent solutions ψ1,2(z) to the
ODE.

This is not much use if we know nothing about Tc(z). However, for the Riemann
surface (4.1) Tc(z) can be fixed up to a finite number of parameters, by using the fact

10One important special case is the genus two moduli space. Every genus two curve is hyperel-
liptic, so can be represented as a 2-fold cover of the sphere branched over 6 points.
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that it is a meromorphic function of z which transforms like a stress-tensor:

Tc(z) =
2N∑
i=1

(
1 − n−2

4(z − zi)
2 +

γi

z − zi

)
(4.3)

Here, we have assumed that the Schottky group respects the replica symmetry, so
Tc(z) is single-valued in z. The double poles are fixed by demanding smoothness in
the y coordinate of 4.1, and the γi are free parameters, called ‘accessory parameters’.
It is also constrained by smoothness at infinity, which demands that Tc(z) decays
like 1

z4 . This imposes three constraints on the γi, leaving 2N − 3 free parameters.

It remains to fix these free parameters. To do this, note that if we go around a closed
curve on the surface, a solution to the ODE will not usually come back to itself, but
undergo monodromy, so the value of w will change by a Möbius map:(

ψ1

ψ2

)
−→

(
a b

c d

) (
ψ1

ψ2

)
, so that w −→

aw + b
cw + d

(4.4)

The monodromies of the ODE form a representation of the fundamental group of
the surface π1(B) by Möbius maps. But in the Schottky representation, not all the
closed loops on the surface should take us to a different w, and a different copy of the
fundamental domain for Γ: the g special loops that bound the fundamental domain
should come back to the same value of w, and so correspond to trivial monodromy
of the ODE 4.2 (in fact, the monodromy matrix around these cycles is always minus
the identity).

Imposing these trivial monodromy conditions is precisely enough to fix the 2N − 3
free parameters. Once these parameters are fixed, we may solve 4.2 to find the
monodromy around g complementary cycles, which give the generators of the
Schottky group Γ. In 4.2 we go into more detail for a specific example, which we
will subsequently use for analytic and numerical calculations.

This monodromy problem also appears in computations of the semiclassical limit
of Virasoro conformal blocks (Al B Zamolodchikov, 1987), reviewed in (Harlow,
Maltz, and Witten, 2011; Hartman, 2013), and described in generality for higher
genus blocks in (J. Cardy, Maloney, and Maxfield, 2017).

Schottky representations, handlebodies, and gravity

The Schottky representation has a very natural interpretation from the bulk point
of view. To see this, note that the Möbius maps acting on the Riemann sphere can
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be extended into a bulk hyperbolic space H3, where they act as the orientation-
preserving isometries. We can therefore extend the action of a Schottky group Γ
into this bulk, obtaining a quotient of hyperbolic space with B as its boundary,
M = H3/Γ. Representing hyperbolic space in the upper half-space model, this
can be understood as taking the circles that bound the fundamental domain of
the Schottky group and extending them as hemispheres into the bulk, giving a
fundamental domain with the hemispheres identified by the generators of Γ.

A CFT partition function on the surface B can be computed holographically as the
bulk gravity path integral over Euclidean geometries whose conformal boundary is
B. Semiclassically, we just need to compute the action of a solution to the bulk
equations of motion with boundary B, which will depend on the moduli of B.
There are an infinite number of bulk solutions, which in general should include the
contribution of matter fields, but a particularly simple class of solutions are those
without matter fields turned on. Since pure gravity in three dimensions is locally
trivial, Einstein’s equations then imply that the bulk is locally H3, which means that
it must be a quotient of hyperbolic space. The Schottky group quotients therefore
provide a large class of solutions to the bulk problem, which are conjectured to
dominate the path integral in pure gravity.

Topologically, the Schottky group quotients are handlebodies, obtained by ‘filling in’
the surfaceB along a choice of g cycles. These contractible cycles are precisely those
we chose to cut the surface along to construct the Schottky group, or around which
we imposed trivial monodromy. The Schottky group describes the remaining non-
contractible cycles, in the sense that it is topologically interpreted as the fundamental
group of the handlebody.

Some geometric properties of the bulk can be read off easily from the Schottky
group, in particular the lengths of closed geodesics. A closed loop is represented
topologically as a conjugacy class in the fundamental group, or equivalently in
Γ, and since the eigenvalues of γ ∈ Γ are independent of the representative of
the conjugacy class, the smaller eigenvalue qγ of γ ∈ SL(2,C) (0 < |qγ | < 1) is
naturally associated with a closed curve. Writing qγ = e−

1
2 (`+iϑ), ` is in fact the

length of the closed geodesic, and θ is the amount the geodesic is twisted by (the
angle a normal vector rotates by after parallel transport round the curve). Explicitly
in terms of the trace, this length is

`γ = cosh−1

[����Tr γ
2

����2 + �����(Tr γ
2

)2
− 1

�����
]
. (4.5)
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For more detailed review and discussion, focussing on the Lorentzian versions of
these geometries, see (Maxfield, 2015).

Because there are many possible Schottky groups corresponding to the same surface
B, we must decide which geometry gives the correct semiclassical bulk dual for
given moduli of the boundary surface (even before considering bulk matter fields).
The naïve answer to this, and the one that reproduces CFT expectations, is that the
handlebody with least action dominates the path integral, so is the dual bulk. It
was shown how to compute this action in (Krasnov, 2000), from a particular higher-
genus ‘Liouville action’ (Zograf and Takhtadzhyan, 1988), depending crucially on
the IR cutoff imposed on the bulk, and hence on the choice of metric on the boundary
surfacewithin the given conformal class. In ametric appropriate for Rényi entropies,
flat away from conical singularities at branch points zi, and with a bulk preserving
replica symmetry, the derivative of the action with respect to zi is proportional to the
accessory parameter γi (Faulkner, 2013). In a constant curvature metric, for general
surfaces, a numerical algorithm to compute the action was given in (Maxfield, Ross,
and Way, 2016). As a heuristic, to choose the dominant saddle point, the g shortest
cycles of the surface should be filled in.

Given these tools, one can then attempt to construct the the higher genus partition
function Zg(τ) via a bulk path integral, as a sum over geometries. The handlebodies
described above give semi-classical saddle point contributions to this bulk path
integral, and the full partition function should be given be a sum over these semi-
classical saddles along with a set of loop corrections. The loop corrections to
these semi-classical contributions can be computed exactly at genus g = 1 and
perturbatively at higher genus (see e.g. (Maloney and Witten, 2010; Headrick et al.,
2015)). In pure gravity – i.e. in theories with no degrees of freedom aside from
the metric – there is some hope that one could compute the higher genus partition
function exactly (Witten, 2007). We will be interested in more general theories,
which contain scalar fields in addition to the metric. In this case the theory has
local bulk degrees of freedom, and there is little hope of an exact computation.
Nevertheless, the computations described above give contributions to the partition
function of a holographic CFT which will be valid in the semi-classical (large c)
limit.
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A Zn symmetric family of genus n − 1 surfaces

We now illustrate this general discussion with an example, specifically a family of
genus n − 1 surfaces with an enhanced Zn symmetry. As an algebraic curve, this
family of Riemann surfaces is given by

yn =
z(z − 1)

z − x
. (4.6)

This is the N = 2 case of (4.1), where we have used PSL(2,C) transformations to
put u1 = 0, u2 = 1 and v2 = ∞. The remaining parameter is the cross-ratio x, which
is the modulus of this family of Riemann surfaces. In general x can be any complex
number, but for simplicity (and for the purposes of applications to Rényi entropies,
described below) we will take it to be a real number between zero and one.

To find a Schottky group, or equivalently a bulk geometry, we can now solve the
monodromy problem described above. Choosing to preserve the replica symmetry,
the most general ansatz for the ODE 4.2 is

Tc(z) =
1 − n−2

4

(
1

(z − x)2
+

1
z2 +

1
(z − 1)2

−
2

z(z − 1)

)
− γ

x(1 − x)
z(z − 1)(z − x)

, (4.7)

where we have imposed the constraints (which are slightly different, because there
is a branch point at infinity), leaving the single accessory parameter γ. To fix
this parameter, we must first choose the cycles around which we impose trivial
monodromy. For our purposes, it suffices to take the cycles surrounding 0 and
x; this gives a loop on the z plane enclosing one zero and one pole of yn, so
remains on the same sheet of the branched cover, forming a closed loop on the
surface. There are n of these, one on each sheet, but only n − 1 of them are in fact
independent: the product (in the fundamental group) of the n loops, described by
a loop enclosing z = 0 and z = 1, then moving to the next sheet, and repeating
n times, is topologically trivial. Because we have imposed Zn symmetry already
on our ansatz for Tc(z), imposing trivial monodromy on any one of the sheets is
sufficient.

Having chosen the accessory parameters to trivialize the monodromy around these
cycles, we would like to read off the Schottky group. To do this, it is convenient to
take full advantage of the symmetry of the situation, using the automorphisms of the
surface (which are preserved by the handlebody). In the language of the quotient, an
(orientation-preserving) isometry of the bulk is represented by an additional element
γ ∈ PSL(2,C) (so it is an isometry on the covering space H3) that commutes with
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the group Γ (γΓ = Γγ, so it has a well-defined action on the quotient). Including
some such elements, we can form an extended group Γ̂, of which Γ forms a normal
subgroup. The largest possible Γ̂, including all elements of γ ∈ PSL(2,C) such that
γΓ = Γγ is the normalizer N(Γ) of Γ, and the isometry group of the bulk is then
Isom(M) ' N(Γ)/Γ.

The most obvious extension providing an automorphism is the Zn replica symmetry
R, represented as the monodromy around a loop containing 0. This comes back to
a different sheet, so is not an element of Γ, but we can include it in Γ̂ as an elliptic
Möbius map of order n. From the point of view of the monodromy problem, these
elements correspond to monodromy along curves that may not return to the same
point on the surface, but go between some point and its image under the isometry.
Near z = 0, the independent solutions to the ODE 4.2 look like ψ±(z) ∼ z

n±1
2n , with

corrections forming a power series in z and not affecting the monodromy around
zero; choosing these as our basis ψ± of solutions (w(z) = ψ+(z)

ψ−(z)
), the loop around

zero, enacting the replica symmetry, acts on the w coordinate as R : w 7→ e
2πi
n w.

In fact, this family of surfaces automatically has more symmetry, containing an
additional Z2 extending the Zn to a dihedral group D2n11. From the z coordinate,
this can be understood as a map swapping 0 with 1 and x with∞, z 7→ x

z , along with
reversing the order of the sheets of the cover. It is straightforward to check that this
leaves the ODE invariant, after transforming ψ as a weight −1

2 field. In terms of the
monodromy, this extra symmetry is enacted by taking the solutions ψ±(z), following
the solution from 0 to ∞, and reading off the coefficients of z

n±1
2n in these solutions

near∞, giving some order two Möbius map S.

In practice, except for the special case n = 2, finding S requires doing the calculation
numerically, but we can deduce a lot about it, reducing the unknown parameters
from the three numbers specifying a general Möbius map, to just one. Firstly, note
that doing S twice corresponds to going round a loop with trivial topology, which
implies that S is order two, S2 = 1, which means it is specified by its fixed points.
Secondly, without altering the form of R, we can change coordinates by rescaling
and rotating in the w plane, and use this to remove one other parameter of freedom.
We will use this freedom to set the product of the fixed points of S to be unity, which
fixes S to act as S : w 7→ w−ζ

ζw−1 for some (in general complex) ζ .
11Even further than this, these surfaces all have another additional Z2 commuting with this

dihedral group, acting as z 7→ x z−1
z−x , which is a hyperelliptic involution of B. We will not make use

of this extra symmetry, but in the parameterization used below, it can be included as w 7→ 1
w .
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Now, the extended group Γ̂ is generated by just R and S (in fact, it is the free group
generated by those elements with the only relations being those given by the orders
of the elements: Γ̂ = 〈R, S |Rn = S2 = 1〉), so we are interested in the one-parameter
family of groups generated by one Möbius map of order 2, and one of order n. The
actual Schottky group Γ appears as a normal subgroup of this, generated by the loops
that actually return to the same point on the surface (but are still non-contractible
in the bulk), requiring an even number of S generators to appear, and also for the
sheets to map back to themselves, rather than being permuted. The first of these is
the element γ1 = SRSR, taking a loop round zero by R, then going from 0 to ∞
by S, then a loop round to infinity by R again, and finally back to the starting point
at zero, creating a closed loop surrounding zero and infinity, or equivalently x and
1. The remaining generators are similar, but starting on a different sheet, achieved
by conjugating with R: γk = R1−k SRSRk . There are n of these, but they are not
all independent, since γ1γ2 · · · γn = 1. Any n − 1 of these (a number equal to the
genus) generate Γ. To relate this to the general discussion of symmetries above,
the group of isometries Γ̂/Γ described by this extension is the dihedral group of
order 2n, since modding out by Γ is equivalent to imposing the additional relation
γ1 = SRSR = 1, giving the presentation Γ̂/Γ = 〈R, S |Rn = S2 = SRSR = 1〉 ≡ D2n.

This prescribes the family of Schottky groups we are interested in, parameterized
by ζ = cos θ, though it is important to note that this only describes a Schottky group
when ζ is sufficiently close to one (or θ close to zero). An alternative, more geometric
parameterization is by q, defined as the smaller eigenvalue of γ1 = SRSR ∈ SL(2,C)
(noting that this is independent of the sign chosen for the matrix representatives of
S and R), defined as above so that q = e−

1
2 (`+iϑ) gives the length and twist of a curve

in the bulk geometry. In the case n = 2, q = tan2 θ
2 is the usual elliptic nome of the

boundary torus, lying in the punctured open unit disc, though for larger n it must be
contained in a strictly smaller region.

In practice, to map from any given x to find the corresponding value of ζ (or θ
or q), it is sufficient to compute the trace of any of the γk (all are equal), from
the trace of the monodromy of any loop containing x and 1. It is also possible
to solve the monodromy problem perturbatively in small cross-ratio, as described
in (Barrella et al., 2013), and in our parametrisation, the result to leading order is
θ =

√
x

n (1 + O(x)). Real x between 0 and 1 corresponds to real θ, or 0 < ζ < 1, or
0 < q < 1. Real negative x (or equivalently x > 1) also results in a Fuchsian group
Γ, and corresponds to ζ > 1 (but bounded by sec π

n so the group is Schottky). In
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this paper we’ll use the case n = 3 in a number of our examples so it’s worth writing
down an explicit form for the generators in terms of q. One such parameterization
for the Z3 symmetric Schottky groups yields

〈R, S |R3 = S2 = 1〉 � 〈A, B〉 (4.8)

where

A =

©­­­­­«
−

q
(
q+ 3√
−1

)
+1

(−1+(−1)2/3)q

(−1)2/3(q+1)(q+(−1)2/3)
√
(−1)2/3q+1
q+(−1)2/3

(−1+(−1)2/3)q

(q+1)
(

3√
−1q−1

)√
(−1)2/3q+1
q+(−1)2/3

(−1+(−1)2/3)q
q((−1)2/3q+(−1)2/3+1)+(−1)2/3

(−1+(−1)2/3)q

ª®®®®®¬
(4.9)

B =

©­­­­­«
−

q
(
q+ 3√
−1

)
+1

(−1+(−1)2/3)q
−
(q+1)

(
3√
−1q−1

)√
(−1)2/3q+1
q+(−1)2/3

(−1+(−1)2/3)q

−
(−1)2/3(q+1)(q+(−1)2/3)

√
(−1)2/3q+1
q+(−1)2/3

(−1+(−1)2/3)q
q((−1)2/3q+(−1)2/3+1)+(−1)2/3

(−1+(−1)2/3)q

ª®®®®®¬
(4.10)

We can also find different handlebodies for the same surface by trivializing mon-
odromy around some different cycle, but the only possibilities preserving the replica
symmetry are much the same, the most obvious being to take the loop to surround x

and 1 rather than 0 and x. There is a phase transition between the two corresponding
handlebodies at Re(x) = 1

2 (Headrick, 2010).

Relationship with Rényi entropies

The bulk computation of higher genus partition functions can be applied to the
computation of Rényi entropies in holographic CFTs (see (Calabrese and J. Cardy,
2009) for a review). For a density matrix ρ, the nth Rényi entropy is defined as

Sn =
1

1 − n
log Tr ρn. (4.11)

In the n → 1 limit this becomes the von Neumann entropy S = −Tr(ρ log ρ). In
order to probe the spatial entanglement structure of the theory, we can take ρ to be
the reduced density matrix for a spatial region A in the vacuum state. Then ρ is
defined by a Euclidean path integral on the sphere (with cuts introduced at A), and
the Rényi entropy may be computed by gluing n copies of this sphere together along
these cuts. Explicitly, we have

Sn =
1

1 − n
log

Zn

Zn
1
. (4.12)
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Here Zn is the partition function on a manifold Mn, which is the n-fold branched
cover defined by gluing n copies of the original spacetime manifold along A, and
the normalization constant Z1 is the sphere partition function. If A consists of N

disjoint intervals, this is precisely the n−fold cover of the sphere branched over 2N

points (the endpoints) described above.

We will focus on the case where A consists of two disjoint intervals [u1, v1] and
[u2, v2]. Then the conformal structure of Mn is completely determined by the cross
ratio

x =
(u1 − v1)(u2 − v2)

(u1 − u2)(v1 − v2)
. (4.13)

As this cross-ratio is varied, we sweep out a one (real) dimensional slice of themoduli
spaceMn−1 of genus n−1 dimensional Riemann surfaces. This is precisely the case
described in the previous subsection. There are two handlebodies which compute
the pure-gravity contribution to the Rényi entropies, which exchange dominance at
the point x = 1/2. When n = 2 these saddles are precisely the thermal AdS and
Euclidean BTZ black hole solutions, and the phase transition at x = 1/2 is the usual
Hawking-Page phase transition. The scalar instabilities we describe in this paper
will occur for n > 2 when the theory has an operator of dimension ∆ which is
sufficiently light. In particular, we will find that there are two new phase transitions
as x is varied, one at x = xc(∆) < 1/2 and one at x = 1 − xc(∆), where these two
handlebodies will become unstable to the formation of scalar hair.

4.3 The phase transition from CFT

In this section we will make a CFT argument for the instability, by considering
the contribution of a generalized free field – the boundary avatar of a free bulk
scalar field – to the higher genus partition function of a CFT with large central
charge. The result is that if the corresponding operator is sufficiently light, then the
generalized free partition function will diverge somewhere in the interior of moduli
space. This signals that the free approximation has broken down, so interactions
become important, and the partition function will undergo a phase transition. We
give an analytic lower bound on the critical dimension ∆c in terms of the Schottky
moduli of the surface. As the field becomes lighter, the phase transition will occur
closer to the boundary of moduli space; in particular, for a sufficiently light field
the corresponding bulk phase transition will occur before the usual “Hawking-
Page" transition where (locally Einstein) bulk saddles are interchanged. In the
bulk, this would be interpreted as the condensation of a bulk scalar field in a
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handlebody background. The discussion in this section is a refinement of the
arguments presented in (Belin, Keller, and Zadeh, 2017).

The partition function and conformal blocks

A higher genus partition function can, at least in principle, be computed from the
basic dynamical data of the CFT, namely the spectrum of dimensions and spins
(∆i, si) of primary operators, along with their three-point coefficients Ci j k . To do
this, we can insert a complete set of states on a handle of the surface to reduce
the computation to sum over two-point functions on a surface one genus lower, and
repeat this (along with use of the OPE) until the computation has been reduced
to three-point functions on spheres. A complete decomposition like this can be
understood by cutting up the surface into pairs of pants: any genus g ≥ 2 surface
can be decomposed (in manyways) into 2(g−1) pairs of pants, joined along a total of
3(g − 1) cuffs. Along each of these cuffs, we can insert a complete set of states and,
by the state-operator correspondence, the amplitude between three states defined by
the path integral on the pair of pants is determined by a three-point coefficient.

Along with inserting complete sets of states in this way, we can use the fact that
the states are arranged in multiplets of the Virasoro algebra, by summing up all
contributions from a givenmultiplet appearing in the sums over states. The resulting
object, collecting the contributions from a given primary on each of the 3(g − 1)
cuffs along with all their descendants, is a higher genus conformal block F . This
is determined by kinematics alone, depending only on the scaling dimensions and
spins of the primaries chosen, the central charge, and the moduli of the surface12.
In the partition function this conformal block will be multiplied by the product of
2(g − 1) OPE coefficients corresponding to the primaries.

Summing over all possible choices of primaries, the result is a general expression
for the partition function of the form

Zg(τ) =
∑
{i}

C2(g−1)
{i} F ({∆i} , c; τ) (4.14)

Here the sum is over all choices of the 3(g − 1) primary operators, and C2(g−1)
{i}

denotes the product of 2(g − 1) OPE coefficients corresponding to the primary
operators propagating down the legs of each pair of pants. This expression may

12The blocks also factorize into the product of holomorphic and antiholomorphic blocks, though
we will not explicitly use this fact here.
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Figure 4.1: A genus 2 surface, which is cut into two pairs of pants glued together
along the three black circles. Along each of the three circles we can insert a
projection onto the descendants of a primary of dimension ∆i (i = 1, 2, 3) to obtain
the block F ({∆i}, c; τ). The dual handlebody is found by ‘filling in’ the surface, as
indicated by the shaded disks. The block F ({∆i}, c; τ) can be computed in the bulk
in a semi-classical approximation, valid in the limit 1 � ∆i � c, by computing the
action of the network of bulk geodesics indicated in red.

look very different for different pair-of-pants decompositions of the surface, but the
result must be equal whichever decompositions is chosen; this is the statement of
higher-genus crossing symmetry, which can be exploited to constrain CFT data (J.
Cardy, Maloney, andMaxfield, 2017; Cho, Collier, and Yin, 2017a; Keller, Mathys,
and Zadeh, 2017).

In the case g = 2, there are two possible distinct types of decomposition into pairs
of pants, depending on whether we choose to insert a complete set of states on a
cycle dividing the surface into two pieces. Assuming we do not, the decomposition
looks like two pairs of pants joined to one another along each of their three cuffs, as
illustrated in 4.1, and C2(g−1)

{i} is just C2
i j k , where i, j, k denote the primaries chosen

on each of these seams.

In general, it is rather difficult to compute 4.14 explicitly, and even the conformal
blocks cannot be calculated exactly in closed form. It is possible to calculate
perturbatively in moduli of the surface, or using recursion relations exploiting the
structure of degenerate representations (Cho, Collier, and Yin, 2017a; Cho, Collier,
andYin, 2017b), or in various semiclassical limits (J. Cardy,Maloney, andMaxfield,
2017; Kraus et al., 2017). In particular, one needs to choose a conformal frame,
and to account carefully for the way in which the surface is glued together from its
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constituents. Fortunately we will not need to work with this expression in generality,
only requiring the blocks in a particular ‘semiclassical global’ limit.

Semiclassical global limit of higher genus blocks

We will require the blocks in a limit of large central charge, where the dimensions
of exchanged operators are large also large (with ratios between different ∆i fixed in
the limit), but small compared to c: 1 � ∆i � c. This limit has a dual holographic
description in terms of semiclassical gravity coupled to particles in a probe limit,
for which only the global conformal sl(2) subalgebra of the Virasoro algebra is
important; hence the name ‘semiclassical global’ blocks.

In this limit the blocks simplify, becoming

F ({∆i} , c; τ) = e−cS0(τ)−∆S1({∆i/∆j};τ)+O(1,∆2/c), (4.15)

The functions S0 and S1, depend on the moduli and (in the case of S1) on the ratios
of conformal dimensions, and have semi-classical gravity interpretations which we
will describe below. The fact that the blocks exponentiate in this limit large c limit is
most well known in the case of four-point functions (A. B. Zamolodchikov, 1984),
but has not been rigorously proven. It is, however, physically well-motivated, for
example by considering a semiclassical limit of Liouville theory (Harlow, Maltz,
and Witten, 2011).

First, S0 can be interpreted as the semiclassical vacuum block, i.e. the block for
which all operators are taken to be the identity. It is equal to the on-shell action
of the handlebody where each of the cycles in the pair-of-pants decomposition are
chosen to be contractible.13 This depends on a choice of conformal frame (the
conformal anomaly precisely takes the form of a shift in S0), and in general can
only be computed exactly by numerics (Hartman, 2013; Faulkner, 2013; Maxfield,
Ross, and Way, 2016). The frame-independent information contained in S0 is the
difference between its value in different channels, and this data is required to impose
crossing symmetry. Luckily, for our purposes we will only need to express the
partition function in one channel, so we can entirely disregard this piece.

For us, the more important contribution is S1, encoding the dependence on the
dimensions. The important point is that in the limit c → ∞ with fixed ∆i the con-

13This only depends on the choice of g cycles, not the full decomposition, which is consistent
because of the fusion rules of the identity: choosing the identity module along g cycles is enough to
imply that the identity must be present in the other 2g − 3.
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tribution of the Virasoro descendants is unimportant after we factor out the vacuum
block contribution S0. So the block reduces to a ‘global’ block, where only the L−1

descendants are kept (Cho, Collier, and Yin, 2017b)14. The gravitational interpre-
tation is clear: as c→∞, the backreaction from the matter and the loop corrections
from the graviton can be ignored, and we need only the classical background action.

This global block is still tricky to compute at higher genus, but if we further
assume that the internal dimensions ∆i are large (but still much smaller than c), it
simplifies to a ‘semiclassical global’ block. This can be determined by considering
a network of geodesics in the handlebody spacetime, determined by the pair-of-
pants decomposition. Specifically, for each pair of pants, assign a trivalent vertex
in the bulk, and join these vertices by a geodesic for each seam joining the pairs of
pants. This geodesic is interpreted as the worldline of a particle of mass mi ∼ ∆i,
determined by the dimension of the primary operator assigned to the corresponding
cuff of the pants decomposition, and is assigned an action ∆i ì, where ì is the
length of that geodesic segment. We finally must specify the bulk locations of the
vertices; these are chosen to minimize the total particle action

∑
i ∆i ì. The value of

e−min
∑

i ∆i`i at this minimum obeys the semiclassical limit of the Casimir equations
for the global conformal blocks, as shown in (Kraus et al., 2017), so reproduces
the correct moduli dependence of the blocks.15 This limit can be used as a starting
point for a systematic perturbative expansion for the blocks, developed in terms of
worldline quantum field theory coupled to gravity in (Maxfield, 2017).

The only thing that remains to fix is the overall normalization. The geodesic network
prescription comes with an unambiguous normalization, but rather than being the
canonical one, where we multiply by the appropriate OPE coefficients to find the
contribution to the partition function, it comeswith some nontrivial OPE coefficients
Ĉ(∆i) built in, depending on the dimensions of the operators meeting at each vertex.
To compute these, consider taking the pinching limit in which all cuffs of the pairs
of pants become small, suppressing the descendants so only the product of primary
three-point functions remains. The function Ĉ(∆i) can therefore be computed by
using a geodesic approximation to a three-point function, with three geodesics going

14What constitutes a global descendant is a little ambiguous for higher-genus surfaces, since it is
not invariant under general conformal transformations. The statement here requires a Schottky, or
plumbing frame, for which all transition maps are Möbius maps.

15For some values of the dimensions andmoduli, the action can beminimizedwhen one ofmore of
the geodesics shrink down to zero size, in which case the block is given instead by some complexified
saddle point. From the bulk point of view, this happens when the leading order amplitude in the
large ∆ limit comes from double-trace contributions, rather than the case we would like to consider,
where these are exponentially suppressed in ∆ relative to the single traces (Maxfield, 2017).
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from the boundary of AdS and meeting at a trivalent vertex (Chang and Lin, 2016):

Ĉ(∆i) = eP(∆i), where (4.16)

P(∆i) =
1
2
∆1 log

[
(∆1 + ∆2 − ∆3)(∆1 + ∆3 − ∆2)

∆2 + ∆3 − ∆1

]
+ (2 permutations)

+ 1
2 (

∑
i ∆i) (log

∑
i ∆i − log 4) −

∑
i ∆i log∆i

Alternatively, the same result can be obtained from an appropriate limit of the
DOZZ formula (Dorn and Otto, 1994; Alexander B. Zamolodchikov and Alexei
B. Zamolodchikov, 1996). The function P is homogeneous of degree one in
the dimensions, so gives a contribution scaling linearly with dimension in the
exponential, as required. We will make particular use of the special case where all
dimensions ∆i are equal to ∆p, for which P = −3

2 log(43 )∆p.

In the end, this gives the expressions for the blocks that we will use, applying in the
limit 1 � ∆i � c:

F (∆i, c) ∼ exp
−cS0 −min


∑
edges

∆i ì

 −
∑

vertices
P(∆i)

 (4.17)

We will apply this result in the specific case of the Z3 symmetric, genus 2 handle-
bodies, with time-reflection symmetry, corresponding to the n = 2 version of the
example in 4.2, with x (or θ) real. The relevant geodesic network for the channel of
interest is shown in red, in 4.1. Furthermore we will take the dimensions of the three
internal operators to be equal, ∆1 = ∆2 = ∆3 = ∆p. In this case, finding the location
of the vertices is straightforward, since they are fixed completely by symmetry, ab-
solving us of the need to solve the minimization problem. It is now a simple exercise
in hyperbolic geometry to work out the length of the geodesics connecting the two
vertices, finding ` = log

(
cot2 θ

4
)
. This, along with P = −3

2 log(43 )∆p as computed
above, gives the result we will need for the block:

Fg=2(∆p, c) ∼ e−cS0

(
4
3

tan2 θ

4

)3∆p

(4.18)

The intuition behind the derivation of this expression relies on the operators in the
internal channels being single trace operators, corresponding to single particle states,
in a theory with semiclassical gravity dual. But because the blocks are kinematic
objects, these restrictions are not required to apply the formula. We will use it in
the case where the internal operators are highly composite multi-traces built from a
primary of small dimension, for which the intuition behind the semiclassical blocks
certainly does not hold.



59

Applying the blocks to generalized free fields

Consider a scalar O of dimension ∆, dual to a weakly interacting bulk field. As long
as these interactions are unimportant, we can treatO as a generalized free field, which
means that we can sensibly talk about composite ‘multi-trace’ operators built from
products of O and derivatives, :∂#O · · · ∂#O:. In the generalized free approximation,
the dimensions of these products simply add, and they have vanishing connected
correlation functions, so the correlators can be computed by Wick contractions.

Now, let’s try to compute the genus two partition function using the conformal block
decomposition, accounting for such a free bulk scalar field. It is a slightly tricky
prospect accounting for all the possible multi-trace exchanges, so we will make
a slightly crude approximation, taking the contribution only of primary operators
: OK : without derivatives, of dimension K∆, and also taking the same operator to
propagate in all three legs. This gives us a lower bound for the partition function,
since the OPE coefficients are real and the blocks are positive16:

ZGF ≥
∑

K

C2
KKKFg=2(K∆, c) (4.19)

TheOPEcoefficients appearing can be computed from the combinatorics of theWick
contractions (Belin, Keller, and Zadeh, 2017), and for three identical operators :OK:,
in the limit of large K , the result is

CKKK ∼ 23K/2. (4.20)

Putting this together with 4.18 giving the blocks in the appropriate limit, the terms
in the sum for large K look like

C2
KKKFg=2(K∆, c) ∼ 23K

(
4
3

tan2 θ

4

)3K∆

. (4.21)

But now, if ∆ is sufficiently small, these terms grow exponentially, causing the
partition function to diverge! We can therefore put a bound on the critical dimension
∆c at which ZGF(∆) diverges:

∆c ≥
log 2

log
(

3
4 cot2 θ

4

) . (4.22)

16To prove this, note that when x is real, the surface can be constructed by gluing a pair of pants
directly to a reflected version of itself. The path integral on the pair of pants defines a state on three
copies of the CFT, and the block (times OPE coefficients) is the expectation value of a projection (a
positive operator) in this state, which is positive by unitarity.
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We do not expect this to be exact, since we have dropped the contribution of so many
operators, but we will see later that it becomes asymptotically equal to the correct
value at small θ, corresponding to small x. For cross-ratio x = 1

2 , numerically
solving the monodromy problem described around 4.2, we find the corresponding
value θ = .55128. This gives the bound ∆c ≥ 0.189219 on the critical dimension
(accurate to the number of quoted decimal places), in agreement with the analysis
of (Belin, Keller, and Zadeh, 2017).

A partition function should be well-defined for any surface, so it may seem puzzling
to get a divergent answer. The resolution is that the partition function is not truly
divergent, but our approximations on the spectrum andOPE coefficients do not apply
when K is parametrically large. Even if we do not give a potential to the bulk field,
it interacts through gravity, so the approximation of computing OPE coefficients of
multi-trace operators by Wick contractions will cease to apply when K is of order
√

c, though it could break down sooner if other interactions become important at a
lower energy scale. When we pass the critical dimension, the sum over blocks will
shift from being dominated by the vacuum, to being dominated by the multi-particle
states at a scale set by the interactions. This signals a second order phase transition,
which we will explain from the bulk as condensation of the scalar field.

4.4 The bulk instability

We have argued in Section 3 that the contribution of a free scalar to the genus two
partition function will diverge for sufficiently small conformal dimension, ∆ < ∆c.
This divergence comes from the contribution of multi-trace states which are dual
in the bulk to states with large particle number. It is therefore natural to expect
that the divergence signals an instability where the bulk scalar field condenses to
form a new solution with a nonzero classical value. This implies the existence of a
second-order phase transition, below which the semiclassical bulk path integral is
dominated by a new classical solution of the (nonlinear) bulk equations of motion:
a ‘hairy handlebody’.

The new classical solution will depend on the details of the theory, and in particular
the interactions of the bulk field. These interactions give anomalous dimensions
and couplings to the multi-trace operators in the theory, which become important
above the scale of the interactions.17 In particular, they will modify the asymptotic

17This scale could be the Planck scale for a free scalar minimally coupled to gravity, the AdS
scale for a strongly coupled bulk field, or some intermediate energy scale such as the string scale.
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behaviour of the sum described in section 3 in such a way as to cure the divergence.
The result is that the partition function will have some non-universal contribution
at the interaction scale of the bulk field.

While the full nonlinear solution depends on details of the theory, the onset of the
instability does not, and is sensitive only to the background geometry and the mass
of the scalar field. It is characterized by the appearance at ∆ = ∆c of a zero mode,
a nonzero solution of the linearized bulk wave equation with source-free boundary
conditions, which corresponds to a flat direction in the path integral. In this section,
we will show that such a zero mode exists in quite general circumstances, and
characterize the critical dimension ∆c in terms of the bulk geometry.

The zero mode and spectral theory

In a d-dimensional holographic CFT, a single-trace scalar operator O of dimension
∆ is dual to a bulk scalar field φ of mass m2 = ∆(∆ − d). The linearized bulk
equation of motion (∇2 − m2)φ = 0 has two linearly independent solutions with
different asymptotic behaviour near the boundary:

φ(x, z) ∼ J(x)zd−∆ + 〈O(x)〉z∆ (4.23)

Here J(x) is a source for the operator O in the CFT, which is fixed as a boundary
condition, and the expectation value 〈O(x)〉, in most circumstances determined
uniquely by the boundary condition J and regularity, describes the ‘response’ of the
scalar field in the presence of the linearized source J. We will be most interested
in relevant operators ∆ < d, corresponding to masses which are naïvely tachyonic,
but above the Breitenlohner-Freedman (BF) bound, − d2

4 < m2 < 0. In particular,
we recall that for − d2

4 < m2 < − d2

4 + 1, there are two possible choices of boundary
condition for the scalar field φ with unitary duals (Klebanov and Witten, 1999).
These two different boundary conditions correspond simply to a choice of which of
the two boundary behaviours in 4.23 one chooses to view as a source, and which as
a response.

This linearized Klein-Gordon equation suffices to find leading order correlation
functions (ignoring backreaction and other interactions), not just on pure AdS,
but any asymptotically AdS geometryM obtained altering the boundary geometry
or sourcing other fields, as long as φ = 0 on the background.18 This corner of

18In general, φ could have couplings to curvature or other nonzero fields which modify this
linearized equation, but we will be interested primarily in geometries which are locally AdS. Thus
all of these couplings may be incorporated into an effective bulk mass of the scalar field.
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AdS/CFT therefore reduces to the theory of the Laplacian on the manifoldM. Even
for geometries that are locally AdS, this spectral theory can be rich and interesting,
and we will import some ideas and results from the mathematics literature and
explore the physical consequences.

Our key result is that, even in the absence of a source for the operator O, it is
possible for φ to spontaneously acquire a nonzero classical expectation value. The
second-order transition to this behaviour occurs when there is a nonzero solution of
the bulk wave equation (

∇2 − ∆(∆ − d)
)
φ = 0 (4.24)

with vanishing source J = 0. In other words, as we vary the bulk solutionM (or
the dimension ∆), the solution will become unstable when there is an eigenfunction
of the Laplacian with boundary condition J = 0 and eigenvalue ∆(∆ − d). For a
given geometryM, we call the largest dimension for which this occurs the critical
dimension ∆c. Reducing ∆ further, this eigenfunction becomes a mode which
decreases the action of the solution, so a given geometry is unstable to condensation
of a scalar with ∆ < ∆c.

It is easy to see that the instability cannot happen if ∆ > d. In particular, for a scalar
field with (∇2 − m2)φ = 0 we can use the standard argument for negativity of the
Laplacian:

0 ≤
∫
M

(∇φ)2 = −

∫
M

φ∇2φ = −m2
∫
M

φ2 =⇒ m2 < 0 (4.25)

Here we have integrated by parts, and used the fact that the fast fall-off conditions
(J = 0 and ∆ > d

2 ) imply that all integrals converge and boundary terms vanish.
This instability is therefore ruled out for an irrelevant operator, but not immediately
excluded for relevant operators, for which the boundary terms do not automatically
vanish. We will see that such instabilities do occur, and are in fact quite generic.

Before giving our first characterization of the onset of the instability in terms of
spectral theory, we should first clarify some mathematical terminology. We are
seeking a solution φ of the equation ∇2φ = ∆(∆ − d)φ, with boundary conditions
J = 0. In the mathematics literature, this would be called an eigenfunction of
the Laplacian only if ∆ > d

2 , since in this case the boundary condition J = 0 is
equivalent to demanding square-integrability of the eigenfunction: φ ∈ L2(M). We
will also be interested in the alternate quantization of the scalar field, corresponding
to operators in the range 0 < ∆ < d

2 , where the boundary condition is imposed on
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the slowly-decaying mode. The dimension ∆ then corresponds to a resonance of the
Laplacian, which is defined as a pole of the resolvent operator R∆ = (∆(∆−d)−∇2)−1,
analytically continued in ∆. The resolvent is essentially the bulk Green’s function
(bulk-to-bulk propagator) G∆ on M; to compute the action of the resolvent on
a function, integrate it against G∆, which satisfies the bulk wave equation with
delta-function source:

R∆[φ](y) =
∫
M

dd+1y′G∆(y, y
′)φ(y′), (∆(∆−d)−∇2

y)G∆(y, y
′) = δ(y, y′) (4.26)

The critical dimension ∆c will therefore show up as a pole in the bulk Green’s
function G∆.

Another way to characterize the critical dimension∆c, is to note that the determinant
of the resolvent det(∆(∆−d)−∇2)−1 is precisely the square of the one-loop partition
function of φ. One can therefore find ∆c by looking for a divergence in the one-loop
contribution of a scalar field φ on the backgroundM.

As a final characterisation of ∆c, we can consider the linear response problem
of turning on some small source J(x), solving the bulk wave equation with the
corresponding boundary condition, and reading off the response 〈O〉J . At generic
values of ∆, this problem will have a unique solution, so defines a linear map
S∆ : J 7→ 〈O〉J between functions on the boundary B, known in the mathematics
literature as the scattering matrix. If we tune ∆ to the critical dimension ∆c,
however, there is an ambiguity, as we can always add a multiple of the zero mode
to the solution. The zero mode therefore also shows up as a pole of S∆, a scattering
pole.19 In the same way that the resolvent is related to the bulk Green’s function,
the scattering matrix is related to the CFT two-point function 〈O(x1)O(x2)〉B in
the relevant background. This will also diverge as a function of ∆ as the critical
dimension is approached (the familiar divergence in susceptibility at a second-order
phase transition), with a pole at ∆c, signalling the breakdown of the linearized bulk
theory when the scalar becomes unstable.

So farwe have been quite general. Wewill now focus on the case of three dimensions,
where we can make more concrete statements about ∆c.

19Scattering poles do not coincide with the resonances for two reasons. The first is that there
are also zeros of the scattering matrix, corresponding to solutions with a source but zero response,
which may cancel a pole, giving a resonance without corresponding pole in S∆. Secondly, the
scattering matrix has extra poles at half-integer values of ∆, even in pure hyperbolic space, related
to the logarithms that appear in the boundary expansion 4.23 when the asymptotic powers differ by
an integer, requiring additional counterterms.
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Locally hyperbolic spaces

Let us now consider the case where the bulk geometryM is a locally hyperbolic
space of the formM = H3/Γ. We will be primarily interested in the case whereM
is handlebody, so we will take Γ to be a Schottky group of genus g > 1. In fact, the
results of this section will apply in greater generality, to non-handlebodies, to some
geometries containing conical defects, as well as to hyperbolic manifolds of general
dimension.20

We will consider a bulk scalar propagating on this geometry, and characterize the
relevant spectral theory in terms of properties of the quotient group Γ. We will
only motivate and explain the results here, referring to the appropriate mathematics
literature for more details, precise statements, and proofs.

Consider first computation of the bulk two-point function of φ in the geometry
M = H3/Γ. This can be computed using the method of images, by starting with the
two-point function inH3 and summing over all elements of the group, corresponding
to sources at all image points. The result is

GM
∆
(y, y′) =

∑
γ∈Γ

GH
3

∆
(y, γ · y′) = −

1
2π

∑
γ∈Γ

e−∆d(y,γ·y′)

1 − e−2d(y,γ·y′)
(4.27)

where d(y, y′) is the geodesic distance between the points y and y′, with respect to
the H3 metric. Formally, this gives a function invariant under the group Γ, hence
well defined on M, and solves the Klein-Gordon equation with the appropriate
source. However, this function will not be well-defined if the sum over images fails
to converge. In particular, if the number of image points with d(y, γ · y′) less than
some distance d grows rapidly enough as d →∞ (for some fixed y, y′), then the sum
will diverge. More specifically, if the number of image points with d(y, γ · y′) < d

grows like eδd , then the sum will diverge for ∆ < δ. In fact, this is always the case
for some δ > 0, as stated in the following result of Sullivan (Sullivan, 1979):

Theorem 2 The series

GM
∆
(y, y′) = −

1
2π

∑
γ∈Γ

e−∆d(y,γ·y′)

1 − e−2d(y,γ·y′)
(4.28)

20 The technical assumptions required are only that Γ is not elementary, which excludes a few
simple cases, most notably the cyclic groups corresponding to the Euclidean BTZ geometry, and that
it is geometrically finite, which is true in physically relevant cases and in particular for the Schottky
groups with genus g > 1.
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converges in the right half-planeRe∆ > δ, where δ > 0, the exponent of convergence
of Γ, is the location of the first resonance of H3/Γ. The Green’s function GM

∆
(y, y′)

(analytically continued in ∆) has a pole at ∆ = δ, and the residue of that pole is
given by

Res
∆→δ

GM
∆
(y, y′) ∝ φ0(y)φ0(y

′), (4.29)

where φ0 is the zero mode function, the solution of the free bulk wave equation with
source-free boundary conditions.

As described in the previous section, this pole in the Green’s function, the resonance,
signals the onset of an instability. Thus the critical dimension∆c equals the exponent
of convergence δ. We emphasize that δ is strictly positive given our assumptions on
M, which implies that any handlebody of genus greater than one will be unstable if
there is a sufficiently light operator in the spectrum.

We may also compute the CFT two-point function of O in this background, by
taking the limit of the bulk Green’s function as the points approach the boundary.
The exact result for the two point function will depend on the conformal frame,
which corresponds to a choice of regulator as we take the points to the boundary, but
the convergence properties of the sum over images will be insensitive to this choice.
We can write a general metric on the boundary as ds2 = e2σ(w)dwdw̄, where w is
the complex coordinate on which Γ acts by Möbius maps. The conformal factor σ
is defined on the regular set Ω of Γ, and defines a metric on the quotient manifold
B = Ω/Γ under the condition σ(γ(w)) = σ(w) − log |γ′(w)| for all Möbius maps
γ ∈ Γ. The bulk computation of the two-point function on B gives a sum over
images:

〈O(w)O(w′)〉B = e−∆σ(w)e−∆σ(w
′)
∑
γ∈Γ

|γ′(w)|∆

|γ(w) − w′|2∆
. (4.30)

In the summation on the right hand side, the denominator corresponds to the two-
point function on the plane, and the numerator is the conformal factor appropriate
for each image. Once again, this sum converges in the right half-plane Re∆ > δ, and
the divergence in the two-point function signals the onset of a second-order phase
transition. In the mathematical literature, this CFT two-point function appears as
the kernel of the scattering matrix (S. Patterson, 1989).

This sum can be used to gain some intuition about the relationship between the
exponent of convergence δ and the geometry of the group Γ. The first thing to
note is that the tail of the sum, which controls the divergence, is closely related to
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the limit set Λ of the group Γ. The limit set is the set of points where the images
γ(w) accumulate, for any starting point w. More precisely, a point is in Λ if every
neighbourhood of that point contains infinitely many of the images γ(w). These are
the places where the quotient by Γ acts ‘badly’, which we must remove to form the
regular set Ω = C∗ − Λ, so we obtain the nice quotient space B = Ω/Γ. The tail of
the sum is controlled by the limit set, since only a finite number of terms in the sum
will lie outside of any arbitrarily small neighbourhood of Λ. In the simple case of
BTZ, Γ is the cyclic group consisting of the maps γn(w) = q2nw for n ∈ Z, and Λ
consists of the two points 0 and ∞. In most other cases, however, Λ is much more
complicated.

For any limit point (that is, element of the limit set), there is a sequence of images
of our starting point w that approach it, say γn(w) for some γn ∈ Γ (which are
independent of w). As n increases, γn will usually be a longer and longer word built
out of the generators. For the images to tend to some limit, the γn must eventually
start with the same string of generators, because if they don’t, they would map w to
places that are separated by some finite distance: as the sequence γn goes on, the
words built out of the generators get longer and longer, and only change later and
later on in the string. More precisely, the kth letter of the word γn is constant after
some sufficiently large n, for any k. For each limit point, we can in this way construct
a unique semi-infinite word built from the generators of the group, a sort of decimal
expansion, but using Möbius maps instead of digits. Such words are in one-to-one
correspondence with elements of Λ. For g ≥ 2, this set is not only infinite, but
uncountable. The ‘rational numbers’ in the analogy with decimals consist of strings
of generators that eventually repeat, and are in one-to-one correspondence with the
primitive elements P of the group Γ, that is, elements that cannot be written as γn

for any n > 1 (excepting the identity), corresponding to the attractive fixed point of
that element.

The resulting set Λ, which controls the tail of the sum over the group, has a rich
and beautiful fractal structure. For Fuchsian groups, generated by matrices with
real entries, the limit set is a subset of the real line, and closely resembles (indeed,
topologically, is homeomorphic to) a Cantor set. Allowing more general Schottky
groups, the limit set moves into the complex plane, forming a twisting, intricate,
self-similar pattern. Several examples arising when investigating the 3rd Rényi
entropy of two intervals are illustrated in 4.2. For many more images of limit sets,
and a playful semi-popular account of the mathematics involved, we encourage a
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(a) q = .8 + .3i, δ ≈ 1.09 (b) q = .8 + .44i, δ ≈ 1.29

Figure 4.2: The limit sets for two of the Z3 symmetric genus two Schottky groups
that arise when investigating n = 3 Rényi entropies. The parameter q defining the
groups is an eigenvalue of one of the generators as specified in 4.2. We give the
value of the Hausdorff dimension δ for these two limit sets, computed using the
methods of 4.5.

foray into (Mumford, Series, and Wright, 2002).

Secondly, we note that the size of the terms in the sum 4.30 is controlled primarily
by the factor |γ′(w)|∆, which describes how things scale under the action of γ (in
the flat or round metric on the Riemann sphere, not the metric pulled back from
B). Given some small set near w, the characteristic length of its image under γ
is scaled by |γ′(w)|, and its area is scaled by |γ′(w)|2, so it is natural generalise
this, and say that |γ′(w)|∆ characterises the scaling in a ∆-dimensional notion of
measure, where ∆ can be any positive real number. The convergence of the sum
is therefore determined by the trade-off between the accumulation of many points
at the limit set, and the shrinking of ∆-dimensional measure associated to images
at those points. The critical dimension will occur when these two effects precisely
balance, which is when the limit set itself can be assigned a ∆-dimensional measure
invariant under Γ. Hopefully this discussion makes plausible the following theorem
of Patterson (Samuel J Patterson, 1976), Sullivan (Sullivan, 1979; Sullivan et al.,
1987) and Bishop-Jones (Bishop and Jones, 1997), the precise statement of which
uses the notion ofHausdorff dimension, a non-integer dimension defined for fractals
in metric spaces.

Theorem 3 (Patterson-Sullivan) The exponent of convergence δ is equal to the
Hausdorff dimension of the limit set Λ of Γ:

δ = H. dim(Λ) (4.31)
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This result connecting spectral theory and fractal geometry is certainly beautiful,
which would be justification enough to include it in a mathematics paper, but
amazingly enough it is also useful. Firstly, it gives us a new tool to intuit how the
critical dimension ∆c depends on the geometry, particularly in certain limits. But
more importantly, it provides a method to accurately and efficiently compute δ for
any group Γ, which is far better than naïvely solving the bulk Laplace equation
numerically, or the method of extracting δ from the asymptotics of the terms in the
sums introduced above. We will discuss an algorithm to compute δ in 4.5, and use
it to present both numerical and analytic results.

Divergence of the partition function

In this section we will offer one final perspective on the phase transition, to make
a direct connection with the CFT argument discussed in section 3. In that section
we summed up the contributions to the partition function from of a generalized free
field, using the global limit of higher genus blocks with the spectrum. From the
bulk point of view, this object is precisely the one-loop partition function of the bulk
scalar field φ:

ZGF = Z1-loop =
1√

det
(
m2 − ∇2) . (4.32)

Thismakes it apparent that the zeromode should again be visible as a zero eigenvalue
of the operator ∇2 − m2 (defined with suitable boundary conditions). In this way,
the calculations of section 3 put a lower bound on ∆c.

The bulk computation of this one-loop partition proceeds much as the Green’s
function computation given above. In particular, one can compute this one-loop
determinant using heat kernel methods and a sum over images (Giombi, Maloney,
and Yin, 2008). For higher genus surfaces this one-loop determinant can be written
as an infinite product

ZH
3/Γ

1-loop(∆) =
1√
ζΓ(∆)

, where ζΓ(∆) ≡
∏
γ∈P

∞∏
n,n̄=0

(
1 − q∆+2n

γ q̄∆+2n̄
γ

)
. (4.33)

Here, qγ is the smaller eigenvalue of γ, as previously introduced. The product is over
primitive conjugacy classes γ ∈ P of the group Γ; these are conjugacy classes of
elements which cannot be written as a power γn of another element with n > 1, and
qγ is the smaller of the eigenvalues of γ when written as an SL(2,C) matrix. Note
that this definition counts γ−1 separately from γ, so that terms come in matching
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pairs. We have written the one-loop partition function terms of the Selberg zeta
function ζΓ associated to the group Γ, as defined in (S. Patterson, 1989)21. We note
that the product in 4.33 converges in the same right half-plane Re∆ > δ as the
image sums we have already introduced. In fact, the Selberg zeta function can be
analytically continued to an entire function, with zeros precisely at the eigenvalues
and resonances of the Laplacian on M, as expected (Samuel J Patterson, Perry,
et al., 2001). In particular, the first resonance, corresponding to the phase transition
of interest, leads to the one-loop partition function diverging as (∆ − ∆c)

−1/2. This
is the divergence found from the CFT analyses of (Belin, Keller, and Zadeh, 2017)
and 4.3.

The product 4.33 has a simple geometric interpretation in terms of the closed
geodesics on the bulk manifold M = H3/Γ. Since Γ is the fundamental group
of M, its conjugacy classes are in one-to one correspondence with homotopy
classes of closed loops in the bulk, and in a hyperbolic manifold, there is a unique
closed geodesic in each class. The primitive conjugacy classes P correspond to
prime geodesics that do not trace over their image multiple times. The geometric
parameters associated to a closed geodesic are its length `γ, and its twist θγ, the angle
through which a normal vector gets rotated after being parallely transported around
the curve, and are related to the associated conjugacy class of Γ by q2

γ = e−`γ+iθγ .
The convergence of the product is therefore controlled by the asymptotics of the
length spectrum of the bulk manifold. A precise statement of this is given by the
prime geodesic theorem, so called because of its close analogy with the prime
number theorem (provable using the analytic properties of the Selberg and Riemann
zeta functions respectively):

Theorem 4 (Prime geodesic theorem) The prime geodesic counting function πM(`),
defined as the number of prime geodesics of length at most `, satisfies the asymptotic
formula

πM(`) ∼
eδ`

δ`
as ` →∞. (4.34)

In this way, the instability of the scalar field is controlled by the asymptotic properties
of the spectrum of very long geodesics. This relation between the spectrum of the

21There are several closely related definitions of the Selberg zeta function. The definition we
have given is appropriate for hyperbolic three-manifolds where Γ is a Kleinian group; another, more
common definition is in the context of hyperbolic surfaces, where Γ is a Fuchsian group, so qγ is
real, and the product over n̄ is absent.
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Laplacian and the lengths of closed geodesics is a special case of the Selberg trace
formula (or an appropriate generalization).

Consideration of the partition function leads to an alternative approach to the com-
putation of δ, which we will not pursue further here, by numerically computing the
Selberg zeta function, which can be done efficiently (though not directly from the
product definition), and locating its zeros.

When Γ is Fuchsian

In the case when the group Γ is Fuchsian, i.e. when all elements are in SL(2,R)
and so fix the real line (perhaps after conjugation with some Möbius map, for
example fixing the unit circle instead), the discussion simplifies somewhat. Instead
of requiring the full three dimensional geometry, all the main results discussed here
can be reduced to the two-dimensional slice Σ fixed by complex conjugation. In this
section we briefly describe this reduction and its consequences.

Fuchsian groups are, in many circumstances, the most physically interesting cases,
primarily because they correspond to geometries that have a real Lorentzian descrip-
tion. Interpreting the action of complex conjugation as a time-reversal symmetry,
the slice Σ fixed by time-reversal has vanishing extrinsic curvature, and hence can
be interpreted as an initial Cauchy surface for Lorentzian evolution. Very explicitly,
the Euclidean bulkM can be written as

ds2 = dχ2 + cosh2 χ dΣ2 (4.35)

where dΣ2 is the hyperbolic metric on the χ = 0 slice Σ. The Lorentzian geometry
(or, rather, a patch of it) is obtained by analytic continuation χ → it. This gives a
locally AdS3 solution to the equations of motion in an FRW-like coordinate system,
where the spatial slices have constant negative curvature.

It is important to note that while all Fuchsian groups have a reflection symmetry, and
corresponding Lorentzian interpretation, the converse is not true: a non-Fuchsian
Schottky group may have a time-reflection symmetry and good Lorentzian con-
tinuation. To take one example, the pure entangled state on three copies of the
CFT obtained by the path integral on a pair of pants is, for certain moduli, dual
in the Lorentzian section to disconnected copies of pure AdS and BTZ (Maxfield,
Ross, and Way, 2016), but the corresponding (connected) Euclidean geometry is
not described by a Fuchsian group.
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The bulk metric is not static, so to simplify the Laplacian it is not as straightforward
as choosing a time-independent ansatz. But it is not much harder than that; instead,
look for a separable eigenfunction F(σ, χ) = f (σ)g(χ), finding that if f is an
eigenfunction of the Laplacian on the χ = 0 slice with eigenvalue ∆(∆ − 1), and
obeys the correct AdS boundary conditions, then

F(σ, χ) = (sech χ)∆ f (σ) (4.36)

is an eigenfunction of the full handlebody Laplacian with eigenvalue ∆(∆− 2), with
the correct boundary conditions. From this, the critical dimension of the handlebody
is determined by the bottom of the spectrum of the slice Σ, and computing the actual
profile of the zero mode is no longer a three-dimensional problem.

4.5 Results for the critical dimension ∆c

We have seen that a scalar field on a handlebody H3/Γ will be unstable if the
dimension is sufficiently small: ∆ < ∆c. We now turn to an explicit computation
of the critical dimension ∆c, which will be a function of the moduli. A direct
approach, where one studies the Laplacian directly on the geometry of interest, is a
complicated numerical task. Our approach will be to instead use 3 to calculate ∆c

from the Hausdorff dimension of the limit set of Γ.

Using this, we will obtain analytic results for ∆c near the boundary of moduli space,
as well as analytic bounds on ∆c in the interior of moduli space. We will also obtain
accurate numerical results. Our main tool will be an algorithm due to McMullen
(McMullen, 1998), which we now describe.

McMullen’s algorithm

This section is somewhat technical and is not necessary to understand the results
described in later sections. Readers who are not interested in the details of how the
results are obtained can safely skip to section 4.5.

To begin, will we need to introduce an additional structure on the limit set Λ: a
Γ-invariant δ-dimensional measure µ. A measure µ (though we will not give a
precise definition here) allows us to integrate functions on the limit set, in particular
assigning a number µ(E) =

∫
E dµ ≥ 0 to subsets E ⊆ Γ, providing a measure

of the ‘content’ of E . We require the additional property that it transforms as a
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δ-dimensional density under element of the group22:

µ(γ(E)) =
∫

E
|γ′|δdµ for γ ∈ Γ (4.37)

A nontrivial measure with this property exists when, and only when δ equals the
Hausdorff dimension of Λ (in which case it is unique, up to normalization, for
Schottky groups). The only feature of the right hand side that we require is that it is
bounded by the measure of the set µ(E), times the extrema of the integrand |γ′|δ:

µ(E) inf
w∈E
|γ′(w)|δ ≤ µ(γ(E)) ≤ µ(E) sup

w∈E
|γ′(w)|δ (4.38)

McMullen’s algorithmworks by splitting the limit set into a finite number of disjoint
pieces Ei, and attempting to approximate (or bound) the value of the measure µ on
each of these pieces, µi = µ(Ei). For a detailed explicitly worked example of this
and the following, see 4.3. We begin by imposing (4.37). Specifically, suppose we
have some Möbius map γi ∈ Γ, and one of the pieces Ei, whose preimage under γi

is the union of some pieces E j1, E j2, . . . E jn (one of which may be Ei itself):

Ei =

n⋃
k=1

γ(E jk ) (4.39)

If we pick some points z j ∈ E j , then (4.37) implies that

µi ≈

n∑
k=1
|γ′i (w jk )|

δµ jk . (4.40)

This is not an exact equality because the scale factor |γ′i | is not constant on the limit
set. However, by taking the Ei to be small |γ′i | will be approximately constant, so
the error will be small. To be more precise, we may replace the factors of |γ′i (w j)|

by upper or lower bounds on this scaling over the set E j , and use 4.38 to replace the
approximate equation by inequalities.

With an appropriately chosen partition {Ei} and maps γi, a similar argument can be
repeated for every i. Our approximate formula 4.40 can then be written in terms of a
square matrixT , the transition matrix, whose entriesTi j are equal to |γ′i (z j)| for each
of the E j in the preimage γ−1

i (Ei), and zero otherwise. Invariance of the measure
22Here, |γ′ | computes the local scaling of lengths under the map γ; we may use any metric on

the boundary Riemann sphere for this purpose, for example a round metric, and the result for δ is
insensitive to this choice. For practical computations the flat metric is often most convenient, in
which case |γ′ | is the absolute value of the derivative of the Möbius map. It is then simplest to
require that the point at infinity is not in Λ, which we will implicitly assume.
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Figure 4.3: An example of computing the transition matrix for McMullen’s algo-
rithm, in the case of a Kleinian group freely generated by two loxodromic elements
g, h, so that C∗/Γ is a genus two surface. In the figure, we have drawn a fundamental
domain for Γ, the exterior of the four outermost circles (those corresponding to g−1,
h−1 are not shown in their entirety). Break the limit set into the four pieces Eγ
contained in each of these circles, labelled by γ = g, h, g−1, h−1 corresponding to the
element of the group that maps the fundamental domain to the interior of the circle,
and choose points wγ ∈ Eγ, for example the attractive fixed point of γ. The piece of
the limit set Eg can be broken up into three disjoint pieces, inside the circles labelled
g2, gh and gh−1, which are the images under g of Eg, Eh and Eh−1 respectively. The
scalings of these limit sets under the action of g go into the top row of the transition
matrix:

T =
©­­­«
|g′(wg)| |g′(wh)| 0 |g′(wh−1)|

|h′(wg)| |h′(wh)| |h′(wg−1)| 0
0 |(g−1)′(wh)| |(g

−1)′(wg−1)| |(g−1)′(wh−1)|

|(h−1)′(wg)| 0 |(h−1)′(wg−1)| |(h−1)′(wh−1)|

ª®®®¬
The other three rows repeat the same exercise for the other three regions, and finding
δ such that the spectral radius ofT δ is unity gives an approximation for the Hausdorff
dimension. This can be refined by breaking the limit set up into the 3× 4n−1 regions
Eγ labelled by words of length n in g, h, g−1, h−1, and applying the δ-invariance
imposed by considering the preimage of Eγ under the first element (g, h, g−1, or
h−1) appearing in the word γ. Then T will be a sparse matrix, with three nonzero
elements in each row and column, and the algorithm has error decreasing exponen-
tially with n. The figure includes labels for words of length two, but also shows the
images of circles under words of length three (unlabelled).
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is then the statement that µi is a unit eigenvector of T δ, where the power is taken
element-wise. Since the matrix T δ has nonnegative entries it is guaranteed to have
a unique eigenvector with positive components; furthermore this is the eigenvector
with largest eigenvalue.23 If µ is to satisfy the invariance criterion, this eigenvalue
should be one. Thus to find the Hausdorff dimension, we find the value of δ such
that the largest eigenvalue of T δ equals one.24 An analogous result holds when we
replace the approximate equations by inequalities, so by choosing upper or lower
bounds on the transition matrix elements, we can obtain rigorous bounds on δ.

For a given partition {Ei} of the limit set this gives an estimate for δ, and to
obtain a more accurate estimate we can refine the partition into a larger number
of pieces. With an appropriate refinement, the result converges rapidly to the
Hausdorff dimension, and in practice it is sufficient to use a rather coarse partition
of Λ. Although this discussion is rather abstract, the explicit implementation of this
algorithm is quite straightforward; see figure 4.3 for a simple example.

Analytic results

Our first analytic results are for Fuchsian groups; this includes the surfaces described
in 4.2 with real cross-ratio 0 < x < 1. In this case we note that the limit points
must all lie on the real axis of the w-plane, corresponding to the slice fixed by time-
reflection symmetry. Since Λ is a subset of the one-dimensional line, it must have
dimension δ ≤ 1. Thus ∆c ≤ 1. So the only potentially unstable fields are those
with ∆ < 1, which correspond to bulk scalars which are quantized using alternate
boundary conditions.

In the rest of this section we will focus on the case of the genus g = n − 1 surfaces
with Zn symmetry, described in 4.2, relevant for computing the nth Rényi entropy
of a pair of intervals. We begin by applying the above algorithm in this case at
the coarsest level of approximation, to obtain analytic bounds. These are especially
useful at the edge of moduli space where x → 0, because in this limit the different
pieces of the limit set become well-separated and small, so the scale factor does not
vary much over it. These bounds thus become tighter and tighter as x → 0.

23This is the Perron-Frobenius theorem. Since some of the entries of T are zero, we must also
require that T is irreducible. This means, roughly speaking, that when we apply T repeatedly all of
the regions Ei will eventually mix.

24This δ exists and is unique since the spectral radius ofT δ decreases monotonically as δ increases
from zero to infinity.

http://lmgtfy.com/?q=perron-frobenius+theorem
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As described in 4.2, we can extend the group Γ to Γ̂, generated by R : w 7→ e2πi/nw

and S : w 7→ w−ζ
ζw−1 , by including a dihedral group of holomorphic automorphisms.

This extension of the group does not alter the limit set, and a Γ-invariant measure
constructed on it will also be invariant under Γ̂. Using this, we will divide the limit
set into n pieces, all related by the Zn symmetry R, and hence having equal measure,
and use the mapping under S to constrain the dimension of this measure. This is
somewhat simpler than using the original presentation of Γ such as in 4.3.

There are n pieces of the limit set Ek , each centred at a root of unity e2πik/n, with
size of order θ2 for small θ, and related to each other by R. A simple way to show
this is by constructing a fundamental domain for Γ̂, bounded by the radial lines from
the origin at angles ±πi/n, related by action of R, and a circle Cn mapped to itself
by S, centred at sec θ with radius tan θ (recall ζ = cos θ). Then En is the part of
the limit set inside this circle, and the remaining Ek are inside corresponding circles
Ck = Rk(Cn) obtained by rotations by angle 2πk/n. This immediately bounds the
size of the limit set by the size of the circles Ck , of order θ, which is a sufficiently
strong result for our immediate purposes25.

By the Zn symmetry, and the fact that the action of R doesn’t scale (|R′| = 1), the
sets Ek must all have equal measure µk = µ. We can then apply the action of S,
which maps E1, E2, · · · , En−1 onto En. The amount by which Ek scales under S can
be computed from

S′(e2πik/n +O(θ2)) =
θ2

(e2πik/n − 1)2
+O(θ4) (4.41)

so 4.40, equating the sum of the scaled measures of E1, E2, · · · , En−1 to the measure
of En, gives us

n−1∑
k=1

(
θ

2 sin πk
n

)2δ

= 1 +O(θ2). (4.42)

This requires δ to tend to zero as θ goes to zero, and solving to leading order for
small δ, we get the result that

δ ∼
log(n − 1)
2 log |θ |−1 +O

(
1

(log |θ |)2

)
as θ → 0 (4.43)

with the first corrections coming from solving the equation to higher order in δ,
rather than the order θ2 variation of the scaling relation giving the correction to

25To obtain an improved bound, note that En must be contained in a smaller set, namely the union
of the interiors of S(Ck), which is concentrated in a region with size of order θ2.
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4.42. With only minor modifications, this derivation continues to apply if we allow
θ to be complex, which is why we have included the modulus in the result. The case
n = 3, with real θ, was treated in (McMullen, 1998), though instead of using S, that
paper uses a reflection, which requires θ to be real26.

To facilitate comparison between different values of n, we write this in terms of the
cross-ratio x. With the monodromy methods outlined in 4.2, the map from x to the
Schottky parameter θ can be computed as a series expansion, with the leading order
result that θ =

√
x

n (1 +O(x)):

δ =
log(n − 1)
log |x |−1 +O

(
1

(log |x |)2

)
as x → 0 (4.44)

Note that this is the asymptotic behaviour for fixed n as x → 0, but clearly must
break down if n is parametrically large. In the first instance, it is not self-consistent
if nx is of order one, since in that case the leading order term in the expansion would
be of order one. But we can take a different order of limits to understand what
happens at large n.

Starting with the scaling relation 4.42 at small fixed x, and naïvely taking the large
n limit term by term, we arrive at

2
∞∑

k=1

( √
x

2πk

)2δ

≈ 1 (4.45)

where the factor of two is to count contributions both from fixed k and fixed n − k.
The first thing to notice is that the tail of the series decays as k−2δ, so convergence
of the sum immediately requires δ > 1

2 . Summing the series, we arrive at

1
2

(
4π2

x

)δ
≈ ζ(2δ) (4.46)

from which we see that the left hand side is large for small x, since δ cannot be
small. The zeta function must therefore be close to the pole at δ = 1

2 , and we can
find a perturbative solution:

lim
n→∞

δ =
1
2
+

√
|x |

2π
+O(x) (4.47)

This result should be interpreted as the limit of δ as n → ∞, for fixed but small x.
It turns out this naïve argument is, in essence, correct, and can be made completely

26For comparison, the parameter θ used in that paper is half of the θ used here.
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precise by repeating the argument for the group generated by one parabolic element
and one elliptic element of order 2, equivalent to Theorem 3.6 of (McMullen, 1998)
(for real cross-ratio). In fact, the result that the Hausdorff dimension does not go to
zero as x → 0 is a consequence of a general result, that δ > 1

2 whenever the group
in question contains a parabolic element (Corollary 2.2 in (McMullen, 1999)).

This Schottky group with R parabolic, instead of elliptic order n, corresponds to the
‘n = ∞’ version of the geometry described in 4.2. This complex one-dimensional
family of Kleinian groups is known in the mathematics literature as the ‘Riley
slice’ of Schottky space. It is a little tricky to think about the n → ∞ limit of the
handlebody, bounded by a Riemann surface of infinite genus, but it is rather simpler
to understand the geometry after taking a quotient by the Zn replica symmetry, as
suggested in (Lewkowycz and J. Maldacena, 2013). The boundary of this geometry
is just the original Riemann sphere, and the bulk has conical defects, of opening angle
2π/n, going from 0 to x and from 1 and ∞. Taking a formal analytic continuation
of the geometry to n = 1, the conical defects become the Ryu-Takayanagi surface,
lying on geodesics (Lewkowycz and J. Maldacena, 2013), but we are taking the
opposite limit, in which the defects become cusps, in particular receding to infinite
proper distance.

At this point, let us pause briefly to understand the physical consequences. This
result means that the x → 0 and n → ∞ limits of the critical dimension do not
commute, so that while for any fixed n, any dimension of scalar will be stable for
sufficiently small x, if there is a scalar of dimension less than 1/2, it will be subject
to the phase transition for any cross ratio, if n is taken sufficiently large. Note
that this is all in a limit where we have taken c to infinity first, and new behaviour
dominated by quantum corrections may take over when n is parametrically large in
c. In particular, the large n limit of the Rényi entropy is controlled by the largest
eigenvalue of the reduced density matrix, or the ‘ground state energy’ of the modular
Hamiltonian HA = − log ρA, but it is unclear whether the semiclassical description
is sensitive to a single lowest eigenvalue, or a dense collection of parametrically
many low-lying eigenvalues of HA.

To conclude the discussion of analytic results, let us briefly describe the other limit
of the geometry, when x → 1, corresponding to the horizon sizes of the multi-
boundary wormhole becoming small. This limit is of less direct physical interest,
since it is well past the first-order phase transition of the partition function, so is not
the dominant saddle-point geometry, but is nonetheless useful to hone intuition. In
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the case that x is real, so Γ is a Fuchsian group, it is sufficient to describe the bulk
geometry in terms of the two-dimensional hyperbolic surface making up the t = 0
slice. In this limit, it is helpful to separate the geometry into the exterior pieces, lying
between each boundary and a horizon, and the ‘convex core’ or ‘causal shadow’
region linking them together, bounded by the n horizons. In the x → 1 limit, the
horizons become very small, and the centre of the geometry recedes down a long,
narrowing neck. The core then approximates the geometry of the negatively curved
metric on some compact surface with punctures, though the punctures do not quite
pinch off, rather reaching a minimum radius at the narrow horizons where they join
to the exterior funnels. On such a surface, the critical dimension approaches one,
the maximal eigenvalue of the Laplacian (on the t = 0 slice, not the Laplacian in
the three-dimensional bulk: see 4.4) being small and positive. The corresponding
eigenfunction is roughly constant on the convex core, and small in the exterior
funnels, with an interpolation over the long, narrow necks connecting them. The
asymptotic behaviour of ∆c in this limit can be computed by directly approximating
this Laplace eigenfunction (the zero mode of the instability) (Dodziuk et al., 1987).

Taking x → 1 through complex values is much more complicated, so we will
not be able to say much about it. Schottky space, perhaps parameterized in this
case by the values of ζ corresponding to some complex x, itself has a complicated
fractal boundary, and the features of the handlebody depend sensitively on how this
boundary is approached. This is a deep and beautiful subject, but goes far beyond
the scope of this article. In any case, the numerical computations we describe next
show that it is possible to obtain dimensions δ > 1 in this limit, for example the
limit sets illustrated in 4.2.

Numerical results

These analytic results are very useful to understand the behaviour of the critical
dimension at the edges of moduli space, and as genus is varied, but McMullen’s
algorithm is also useful to quickly compute the Hausdorff dimension numerically,
to many digits of precision. We conclude by presenting the results of these compu-
tations.

Firstly, 4.4 plots the Hausdorff dimension as a function of cross-ratio x for various
values of n, including also the limit as n → ∞. With this parameterization, for
generic values of x, the convergence of the algorithm is remarkably rapid. Indeed,
the plot includes shaded regions to indicate the rigorous bounds obtained by applying
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Figure 4.4: The critical dimension ∆c = δ as a function of cross-ratio x for the
handlebodies corresponding to the Rényi entropies of a pair of intervals. From top
to bottom, the curves correspond to genus 2, 3, 4, 5, 6, and finally the n → ∞ result
in black. The shading visible on the right side of the plot indicates the bounds
achieved by applying McMullen’s algorithm at the crudest level of approximation.

the algorithm at the crudest level. These are computed by numerically solving the
equation 4.42, but replacing the terms on the left hand side with upper or lower
bounds for |S′(w)|δ over w ∈ Ek , rather than the estimates used there. The allowed
regions for δ are in many cases not even visible until x is rather close to 1. Refining
further, the algorithm gives results with ten or more digits of precision in a fraction
of a second on a laptop of modest specifications. In fact, by far the larger source
of computing time and error comes from the conversion between the cross-ratio
and Schottky variables, rather than the algorithm to compute δ from the group
generators.

A physically motivated value to consider is at the boundary with the Hawking-Page
phase transition x = 1

2 , which will give the maximum value of ∆c within this class
of geometries, while in the dominant phase. At genus 2 (n = 3), this value is
∆c = 0.189124003, which is rather close to (and the correct side of) the bound
∆c ≥ 0.18912109 obtained in 4.3 from refining the CFT methods of (Belin, Keller,
and Zadeh, 2017). Staying at x = 1

2 and increasing the genus, we find that the
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Figure 4.5: The critical dimension for the x = 1
2 Rényi surface as a function of

replica number n. The asymptote is the computed limit as n → ∞. On the right is
a log-log plot showing convergence to this value.

critical dimension increases rapidly at first, before slowly approaching the limiting
value ∆c → 0.599 as n→∞, as shown in 4.5.

In our last plot, 4.6, we indicate how the Hausdorff dimension behaves for complex
values of the cross-ratio, for genus two. Note that this is invariant under inversion
in the circle of unit radius centred at one. This is because the extended groups
Γ̂ corresponding to these geometries are the same, though Γ consists of different
subgroups in each case. From the geometric point of view, taking the Zn quotient
of the handlebody gives the same geometry, with conical defects at the fixed points,
though the original geometries are distinct (being branched around the defects in
different ways). This relates a cross-ratio 0 < x < 1 with a negative cross-ratio
− x

1−x , which corresponds to swapping the location of twist and anti-twist operators,
relevant for computing Rényi negativity of two disjoint intervals (Calabrese, J.
Cardy, and Tonni, 2012). The correspondence between the geometries implies a
correspondence between the classical limits of Rényi entropy and Rényi negativity
for two intervals, and taking an analytic continuation to n = 1, the logarithmic
negativity of two intervals must vanish (to leading order in c) in the regime x < 1

2
where this geometry dominates the path integral.

Finally, it is interesting to ask what the largest possible value of ∆c could be for a
geometry that dominates the path integral. A lower bound (precluding surprising
new symmetry-breaking phases that dominate the path integral) comes from our
numerics for the infinite genus limit, giving examples where ∆c as large as .599
can be achieved. An interesting result that may bound this in the other direction
comes from (Hou, 2016), showing in particular that every Riemann surface admits
a uniformization by a Schottky group of Hausdorff dimension less than one. As a
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Figure 4.6: The Hausdorff dimension of the Z3 symmetric genus two handlebody,
as a function of the (complex) cross-ratio x. Note that the Hausdorff dimension
goes to zero at the origin (x = 0) and approaches one as x → 1− along the real axis.

heuristic, matching our expectations in limits of moduli space, the dominant saddle-
point seems to be that with minimal Hausdorff dimension, so this is suggestive,
though not conclusive, that there may never be a dominant geometry with ∆c > 1.
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Chapter 5

Going Further in AdS3

This chapter describes some of our results in AdS3 beyond what’s in [DMMM],
specifically related to analytic continuation and then to classifying multiboundary
wormholes.

5.1 Analytic Continuation in AdS3

This section rapidly surveys Kiril Krasnov’s program for analytic continuation in
AdS3 and then comments on how to complete it. Recall that the isometry groups of
AdS3 have the following forms

Isom
(
AdSL

3

)
=

SL(2,R) × SL(2,R)
Z2

(5.1)

Isom
(
AdSE

3

)
= PSL(2,C). (5.2)

On the highest level, wewant a way to go back and forth fromLorentzian quotients to
Euclidean quotients. For example, given a subgroup ΓL × ΓR ⊂ SL(2,R) × SL(2,R)
we want a procedure to obtain a subgroup ΓE of PSL(2,C). And also to be able to
go in the reverse direction1.

It’s obvious how to perform analytic continuation when there’s a global timelike
Killing vector. You just do the normal t 7→ −iτ. This shows how to analytically
continue AdSL

3 to AdSE
3 � H3 and vice-versa. However, it’s not obvious how to

proceed when there’s no global timelike Killing vector, which is the case with non-
trivial multiboundarywormholes, where timelikeKilling vectors can only be defined

1Note that we only need to be able to do this for physically realistic spacetimes. For example,
on the Lorentzian side of things, we need ΓL and ΓR to have the same number of generators. We
also need each of their individual circle pairings to not intersect. Finally we need the two groups to
generate a spacetime where the angular momentum of the horizons is below extremal bounds.
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for each asymptotic region; not globally. Kiril Krasnov introduced a program to
analytically continue multiboundary wormholes in the series of papers (Krasnov,
2000; Krasnov, 2002; Krasnov, 2003).

The first paper in this series showed how to perform analytic continuation when
there’s a time-reflection symmetry. Recall that time-reflection symmetric MBWs
correspond to when ΓL = ΓR. On the Lorentzian side of things, his approach follows
from the fact that there’s a natural embedding of PSL(2,R) into PSL(2,C). On the
Euclidean side of things, time reflection symmetry means that ΓE ⊂ PSL(2,R) ⊂
PSL(2,C). Using a diagramatic notation to organize this, with time-reflection
symmetric spacetimes the analytic continuation procedure works simply by setting
G = ΓL = ΓR = ΓE and identifying

AdSL
3 /G ←→ AdSE

3 /G. (5.3)

It’s less obvious how to proceed when the time reflection symmetry is broken.
Krasnov argued in (Krasnov, 2002; Krasnov, 2003) that one can go from Euclidean
quotients to Lorentzian quotients by performing a Fenchel-Nielsen deformation.

In order to complete the program, one needs to understand how to analytically
continue from rotating Lorentzian spacetimes to Euclidean spacetimes. Specifically,
this means that one starts with ΓL, ΓR ⊂ PSL(2,R) and wants to obtain a ΓE ⊂

PSL(2,C).

There’s a natural way to do this using Bers’ simultaneous uniformization theorem
(Bers, 1960). The full details of this theorem are extremely beautiful but outside
the scope of this document. For intuition, we recommend reviewing Brock’s note
(Brock, 2007). In particular, the proof relies on techniques from the theory of
quasiconformal mappings. However, for a summary version of the theorem, it says
that given closed Riemann surfaces, Σ1, Σ2 ⊂ one can obtain a Quasi-Fuchsian
group ΓQF ⊂ PSL(2,C) so that the quotient Ĉ/ΓQF gives a disjoint union of the two
initial Riemann surfaces. Bers’ procedure is unique up to an identification of the
fundamental groups π1(Σ1) and π1(Σ2). See figure 5.1 for intuition.

Start with initial closed Riemann surfaces given by the Schottky doubles of ΓL

and ΓR, given as Ĉ2/ΓL and Ĉ2/ΓR. Taking the trivial identification between the
fundamental groups of Ĉ2/ΓL and Ĉ2/ΓR, the simultaneous uniformization theorem
gives a unique way to analytically continue from Lorentzian quotients to Euclidean
quotients by identifying

AdSL
3 /(ΓL, ΓR) 7−→ AdSE

3 /ΓQF . (5.4)
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Figure 5.1: This figure sketches how the simultaneous uniformization procedure
works. Start with two closed Riemann surfaces. The theorem says there exists a
unique ΓQF ⊂ PSL(2,C) and a partition of the complex sphere Ĉ = Ω+ ∪Ω− ∪ γQF
(γQF is just a Jordan curve that forms the boundary between Ω+ and Ω−) such that
the quotients of the Ωs by ΓQF give the appropriate initial Riemann surfaces. The
quotientH3/ΓQF gives a hyperbolic three-manifold that has the topological structure
R×ĈC/ΓL but limits toΩ+/ΓQF at positive infinity and toΩ−/ΓQF at minus infinity.

Note that there are a number of subtleties here that we haven’t fully worked out.
Especially that here we’re applying the simultaneous uniformization theorem to
the Schottky doubles rather than to the non-compact surfaces H2/ΓL and H2/ΓR,
respectively. In order to obtain a result that matches what we’d expect for the time-
reflection symmetric case one needs to solve a highly non-trivial inverse problem.
This quick sketch is only an outline for how to complete Krasnov’s program.

5.2 Classification of Multiboundary Wormholes (MBWs)

This chapter attempts to classify multiboundary wormholes. Much of this is scat-
tered throughout the literature but there’s no resource that puts it all together. First
we’ll describe the allowed topologies. We saw in chapter 2 that if one starts with
a Fuchsian Γ ⊂ PSL(2,R) then the associated Lorentzian spacetime is the quotient
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AdSL
3 /Γ which has topology isomorphic to R × H2/Γ. We can classify all possible

MBW topologies by restricting to Fuchsian groups because going to more general
quotients simply turns on angular momentum in the asymptotic regions (reference
Krasnov.)

Let’s define G to be the genus of the Schottky double Ĉ/Γ, h to be the number of
holes in H2/Γ and b to be the number of boundary regions in H2/Γ. The Schottky
double must obey the following formula

G = 2h + b − 1. (5.5)

Imagine glueing together two copies of a Riemann surface with h holes and b

boundaries (disks removed.) Each hole in the single copy leads to two holes in the
double, but for every boundary region, the first just makes the surfaces connected
and then for each after we get another hole in the Schottky double. The allowed
topologies correspond to solutions of G = 2h+b−1 where G, h, b ∈ N. When b = 0
the solutions correspond to vacuum diagrams and it’s not exactly clear how they’ll
contribute to the partition function (or if they should.) Table 5.1 demonstrates the
pattern.

There are a few things to clarify from this table. The entries with asterisks next to
them correspond to vacuum contributions. It’s not clear whether or not they should
be counted in the partition function. However, it’s worth mentioning that strictly
speaking they are genuine solutions of Einstein’s equations except at a finite number
of points that correspond to singularities. Another subtlety with these solutions is
that they don’t obey the equation G = 2h + b − 1. They don’t have any boundaries
so they obey the formula G = 2h. Also note that their Schottky doubles will be
disconnected. These vacuum contributions correspond to Fuchsian Schottky groups
where the paired circles are all kissing. See Figure 5.3 for an example.

Also note that this argument only described the topology. There are still interesting
questions regarding the geometry, such as finding constraints on the angular mo-
mentum of different horizons (similar to the extremal Kerr and BTZ black holes.)
This latter point will be bounded geometrically by entanglement inequalities via
the Ryu-Takayanagi correspondence. There’s also a question about the placement
of horizons (both inner and outer.) Finally, note that this table only describes the
multiboundary wormhole solutions. There are other possible solutions, such as the
thermal solutions which strictly speaking aren’t always multiboundary wormholes.
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Figure 5.2: This figure shows the options for the first few entries in table 5.1. For
G = 2 there’s a vacuum contribution given as a closed torus, the three boundary
wormhole and the torus wormhole. Each of these surfaces should be thought of as
the t = 0 slice with the global (Lorentzian) topology thought of as a product of each
of one of these surfaces times R.

Figure 5.3: This shows the torus vacuum contribution, showing the topology ob-
tained when all of the Schottky circles kiss. The result is a closed Riemann surface
with the topology of a torus. In this figure, the blue circles and red circles are
identified, respectively.
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G h b Name of MBW
0 0 0 Pure AdS3
1 0 2 BTZ black hole
*2 1 0 Torus vacuum contribution
2 0 3 Three boundary wormhole
2 1 1 Torus wormhole
3 0 4 Four boundary wormhole
3 1 2
*4 2 0 2-torus vacuum contribution
4 0 5 Five boundary wormhole
4 1 3
4 2 1
5 0 6 Six boundary wormhole
5 1 4
5 2 2
*6 3 0 3-torus vacuum contribution
6 0 7 Seven boundary wormhole
6 1 5
6 2 3
6 3 1
7 0 8 Eight boundary wormhole
7 1 6
7 2 4
7 3 2
*8 4 0 4-torus vacuum contribution
8 0 9 Nine boundary wormhole
...

...
...

Table 5.1: This table shows the allowed global topologies of multiboundary worm-
holes. G is the genus of the Schottky double, h is the number of holes in the t = 0
slice and b is the number of boundaries in the t = 0 slice. The asterisks correspond
to pathological entries with no boundary regions; it’s not clear how to treat these in
the partition function. Not all entries are named.

Two torus wormhole example

I’d like to describe the power of this classification process through an example. Say
one wanted to construct a solution that has one asymptotic region and a two-torus
behind the horizon. I’ve never seen a solution like this in the literature and it would
be hard to construct naively. However, with this classification machinery it’s easy.
In order to have one asymptotic region and two holes we know that b = 1 and
h = 2 so the number of generators we need 4 generators. We now need to choose
a circle pairing that gives the right topology. Chasing circle pairings directly gets
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unwieldy quickly: even following the identifications with the torus wormhole can
be error-prone. To proceed with the two torus wormhole example, we can guess that
the circle pairing in figure 5.4 has the right topology.

All that we need to do to check that this gives the right topology is to confirm
that the pairing in 5.4 only has one boundary region. Because G = 4, the formula
G = 2h + b − 1 then verifies that there’s a two-torus living behind the horizon. In
order to check that there’s only one boundary region, we need to make sure all of
the identifications lead to a single closed cycle. More specifically, the chosen circle
pairings tell us that the following points are identified

a1 ∼ e2

a2 ∼ e1

b1 ∼ f2

b2 ∼ f1

c1 ∼ g2

c2 ∼ g1

d1 ∼ h2

d2 ∼ h1.

Furthermore, the boundary segments are (a2, b1), (b2, c1), (c2, d1), etc. If we also
write these as identifications we want to make sure there’s only one closed cycle
starting from a1 and ending back at a1. The ‘identifications’ from the boundary
segments are

a2 ∼ b1

b2 ∼ c1

c2 ∼ d1

d2 ∼ e1

e2 ∼ f1

f2 ∼ g1

g2 ∼ h1

h2 ∼ a1

.

If we follow the path that comes from alternating between identifications of points
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and identifications of boundary segments we see that there’s only one cycle

a1 ∼ e2 ∼ f1 ∼ b2 ∼ c1 ∼ g2 ∼ h1 ∼ d2 ∼ e1 (5.6)

∼ a2 ∼ b1 ∼ f2 ∼ g1 ∼ c2 ∼ d1 ∼ h2 ∼ a1. (5.7)

This was only a rough sketch but it shows that there is only one boundary region.

One may ask how we guessed at this initial circle pairing? This comes with
experience but there are some tricks that make it obvious. For example, for every
pair of neighboring circles that are identified there will be an asymptotic boundary.
See figure 5.5 for a sketch. No matter how the four black circles are paired there
will be at least two asymptotic boundaries here, one that corresponds to the back
line segment in between the blue endpoints and another for the other black boundary
segment between the green endpoints. In this example, there are 4 generators so the
equation G = 2h + b − 1 becomes 5 = 2h + b which implies that there are an odd
number of boundary segments. If one pairs the black circles to their neighbors then
we’ll be left with the 5-boundary wormhole. If one pairs to opposite black circles
then we’ll be left with an MBW with three boundary regions and one hole.

Once we know the order of circle pairings to give a desired topology it’s easy to
find explicit generators using the circle pairing trick from section 3.1. The horizon
is given by the word ABCDA−1B−1C−1D−1. We can use formula 2.21 to calculate
its length `H

`H = 2 cosh−1
(
Tr(ABCDA−1B−1C−1D−1)

2

)
. (5.8)

This example was meant to demonstrate how efficiently the MBW machinery fits
together.



90

Figure 5.4: This is an example for how to glue circles to obtain a two-toruswormhole.
The points a1 and e2 are identified, for example.

Figure 5.5: Example showing how there’s a new boundary region created for every
pair of neighboring circles that are identified. In this example, the blue circles and
green circles are glued together, respectively. The short black boundary arc between
the blue circles will become an asymptotic boundary region, as will that between
the green arcs. Using the formula G = 2h + b − 1, we know that we are starting
with G = 4 because there are 2 × 4 circles being glued together. With this choice
of pairing for the blue and green circles we know that b ≥ 2. There are only two
topologically distinct choices for how to glue the black circles together. One glueing
will yield the five boundary wormhole. The other glueing will yield an MBW with
three boundary regions and two holes.
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Chapter 6

Conclusions and Future Work

This thesis grew out of a desire to deeply understand the simplest non-trivial ex-
amples in three dimensional quantum gravity. The main contribution in this thesis
was the introduction of a phase transition that emerges when the bulk has matter
fields with scaling dimension less than the Hausdorff dimension of the limit set of
the bulk geometry. Small progress was made towards understanding these examples
but there’s still work to be done. Some of the questions that we’re leaving for future
work include:

• To explore the bulk-boundary correspondence in quotients. The mathematical
tools reviewed in Chapter 3 should be important when trying to understand
how to reconstruct boundary operators given bulk data in quotients.

• To work through higher genus Ryu-Takayanagi examples, such as the two-
torus wormhole from section 5.2. Especially when there’s angular momentum
turned on in the bulk. In this case, it would be interesting to understand the
horizon dynamics.

• This work was basically a one-way flow of tools from mathematics to physics.
It would be interesting to import tools going in the other direction. For exam-
ple, the Ryu-Takayanagi phase diagrams in (Maxfield, 2015) oftentimes have
critical points at quotients that correspond to highly symmetrical Riemann
surfaces, such as the Klein quartic. The same can be said for the behavior
of Rényi entropies. This yields a different way to view highly symmetrical
Riemann surfaces and a way to parameterize moduli space. Another direc-
tion is that the paper (Belin, Keller, and Zadeh, 2017) hints at another way
to numerically estimate Hausdorff dimension via CFT arguments. It would
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also be interesting to explore whether or not entanglement inequalities have a
geometric interpretation in moduli space.

• We would like to explicitly use the simultaneous uniformization theorem to
analytically continue a spinning three boundarywormhole from theLorentzian
to Euclidean picture.

• Of course it would be interesting to try to extend some of these ideas to higher
dimensions. There are multiple things that make this challenging, such as that
there will be local degrees of freedom and that the isometry groups aren’t as
well studied.

• Finally, and related to the last item, we would like to study how a con-
formal field theory operator behaves after applying a quasiconformal map.
Quasiconformal maps are generalizations of conformal maps, but instead of
infinitesimal circles getting mapped to infinitesimal circles; circles can get
mapped to elipses with a bounded amount of distortion. Quasiconformal
maps play a prominent role in modern mathematics but have barely entered
into the physics literature. One of the most important theorems about quasi-
conformal maps is the measurable Riemann mapping theorem which enables
one to extend much of the power of the Riemann mapping theorem to higher
dimensions. This is the context within which these objects may be useful in
the study of conformal field theories.
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