Hierarchical Composition

of
VLSI Circuits

Thesis by
Telle Elizabeth Whitney

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California
1985

(Submitted May 21, 1985)

i

©1985
Telle Elizabeth Whitney
All Rights Reserved

il

to my parents
Din, Beverly, and June

iv

Acknowledgments

Special acknowledgment is due to Dr. Ivan Sutherland whose ideas on using circles and
lines for representing geometry, from his polygon package, inspired the work presented
in this thesis.

I’d also like to express my deepest appreciation to Carver Mead, my advisor, for
his warmth, his insights, his constant support and patience. He has been a tremendous
inspiration and has contributed greatly to my life through the expression of his philosophy
in our many lengthy discussions, his views on science, and his incredible humanism.

I"d like to thank my committee, each contributed to this thesis in a unique way:
to Chuck Seitz for his concern and help over the years, to Dick Lyon whose careful study
and extensive comments made the final weeks a real joy, and to Al Barr and Dr. David
Rutledge for their comments and help.

The formation of “the group” created an environment of comradeship that allowed
scientific study, and 1 am grateful for the chance to participate. I'd like to thank all of
my fellow students for their friendship and support. An extra special thanks is due Jim
Campbell for doing all those things that need to be done in order to maintain a productive
lab.

Thanks to the many participants of the Silicon Structures Project, who are too
numerous to mention. The people associated with the project made the initial years of
my graduate study both productive and a pleasure.

I am truly indebted to John Wawrzynek for both his constant support and re-
markable insights. He always provided a reason for trying a little harder when things
were going wrong. He was a sounding board for my ideas, and examined each one
carefully and thoroughly. He pointed out when I was wrong, and sometimes applauded
when I made progress. He was always there.

This thesis was formatted using Donald Knuth’s TgX, and printed on an Apple
LaserWriter, with figures described in Postscript directly incorporated into the text using
Textset software. My thanks to the people at Adobe systems, Inc., and Textset, Inc. for
their help in making this formatting approach possible. Glenn Gribble deserves special
appreciation since he pulled the various software pieces together, and locally made it
possible. Also, thanks to Lounette Dyer for originating and suggesting this formatting
approach, and providing software support. An extra special thanks to Calvin Jackson,
who was always there to answer questions, offer suggestions, and provide technical
support.

I owe many thanks:
to my colleagues in the field who provided fruitful interactions over the years,

to my family who always encouraged me to strive for the best,
and to my friends who made the day-to-day worthwhile.
This work was supported by the System Development Foundation.

Abstract

A transistor level representation for VLSI circuits is presented. This representation is
simple but general, technology independent, hierarchical, and maintains connectivity,
circuit schematic information, and the information for mask geometry.

A transistor level cell is represented as the interconnection of devices along with
their types, sizes and placement, and the cell’s typed ports. Connection is represented
explicitly by shared connection points. The ports describe the interface between this cell
and other cells. This representation, together with a set of synthesis and analysis rules,
enforces the description of strictly legal designs. The synthesis rules ensure that each
structure is correct by construction. The analysis rules check for geometrical design rule
violations which cannot, by their nature, be enforced by construction.

A file of technology dependent information indicates how to implement each
transistor type, interconnect type and commnection point type, as well as how structure
types may interact.

Cells described in this representation may be composed hierarchically to form
larger cells. Given a valid composition, the topology, geometry and connectivity of the
composite structure is guaranteed to be legal.

A working system supporting this hierarchical representation is also described.
This system currently supports design rules for ntMOS and cMOS/bulk, and has produced
chip descriptions that have been both fabricated and tested.

Chapter 1.
1.1
1.2

Chapter 2.
2.1
22
23
24
2.5
2.6
2.7

Chapter 3.
3.1
32
33

Chapter 4.
4.1
4.2
43

Chapter 5.
5.1
5.2
53
5.4

Chapter 6.
6.1
6.2
6.3
6.4
6.5

Chapter 7.
7.1

vi

Table of Contents

Acknowledgments i i e iv
PN 011 o 1o A \%
List Of FigUures . ..ottt ettt ene e viii
Introducton.o e 1
Structural Design Representationscovvivueneaenenen. 2
Overview of the Thesis it 6
The Pooh Representationt iiiiiiiiniiinennens. 8
The Pooh Topological Representation.................c..c.o.e. .. 8
GDR Representation. .. c..vvetrtereeiitrreiennerreeaernnennesss 11
Geometrical and Topological Representation..................... 13
Circuit Synthesis Rules 14
Circuit Analysis Rules. i 16
Simulation Interface ittt e 18
Geometry Generation.vuur ittt enneerieatrienaneanennnn 18
Synthesis Algebra. ..ottt e 20
Primitive Representationsuuiiiiienniiineanenns 20
Path Synthesiso e 23
Point Calculationst 30
Node Synthesisooevnt i 32
Node Equivalence ...t 33
Path Connectivity Representation.............coovuiiieinnannn. 33
Node Propagation Algorithm...........coiiiiiiiiiiiainen.... 36
Analysis Algebra..........oo i 39
Primitive Operations.ttt aeeaean 39
The Geometrical Design Rules oot 42
Point Analysis e 45
Path Analysis e 48
Pooh Hierarchical Composition...........coviiiiniiiiianen, 54
Cell Representation.ovutiit i it iaeiaaen.s 54
A Composition Algorithmo i 56
Composition COnnectivityo.iuuiiriniiiiiiiiineaenenn. 63
Composition GDR Verification................oooiiiiin. 65
Proof of Closure Under Compositioncoovvveiiiiiiiinn.. 73
System Considerations.o.uuiuiiiit i 82

Circle ApproxXimation.o vrr it 82

7.2
73

Chapter 8.
8.1
8.2
8.3

Appendix L
1
2
3

Appendix IL

vii

Storing Paths and Pointsc.ooo i 88
Integer PoODc.oieiit i 91
A PoOh SysStem . ..o.veii i 101
AnEmbedded Pooh 101
Tigger: An Interactive Circuit Editor 106
Comparison with Other Approachesooiiiiit 113
Experimental Layout Format......................oiiiie, 116
23 0 N 11 116
Property Syntax and SemanticS.............coiiiiiiiiiiii.n. 118
Technology Dependent Information.................ooooenin.... 121
Geometrical Design Rules ..., 124
GlOSSaTY - et i ettt e e 129

Biblographyoovii e 131

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 6-1

Figure 6-2 (a)
Figure 6-2 (b)
Figure 6-2 (c)

Figure 6-3
Figure 6-4

viii

List of Figures

Cells and Interconnection of Cells...............
Design Representations......oooevvineeenneenn.

Circuit to Geometry Representations

The Pooh Systemooiriiii e e

Topological Sized Schematic For A Register Cell

Paths, Segments and Transistorscooiviieeennn..
Register Cell Stick Diagram
Segments, Points and Transistors................
Synthesis Rules.........oooiiiii i
Legal Angle of Connection.....................
“Miss” DISIANCE . .ottt e e s

AnalysisRules ...,

Line Calculation..........cooitiriiiriiinnieeinrieneens
Arc Calculation.ooiii i e
Arc Representation...........coiiiinienn...
Minimum Radius Segment.............. ...
Wide Path Segment...........coviiiiiiiiiniinnnnaen..
Arc Interferenceot
AnIllegal Segment i,
Transistor Overlapcooviiii ..
Intersection Pointst
Connected Paths i i i
Interconnection Path il
Connection Regions.........cooiiiiiiiiiiiiiiiiiiiinins
Two Transistor Pathsot

Arc Overlap Detectionc..oioioa

Line-Arc Proximity Detection...................
Path End Conditionscooii e,
A Transistor Pointcooervrer it e
Contacts Spacingcovvieieiinnriineennnn...
Legal and Illegal Segment Connections..........
Legal Connections between Segments
Example Paths...... ..o oo
Bit Serial Multiplier Leaf Cell
Full Geometry Of One Bit Stage................

Compositionof Cells ...t

Cell Abstractionccoviiiiiiiniiinnne.
Concave Connecting Sides.................oo.n.
Connecting Sides

..........

..........

0 N b W

11
15
15
16
17
21
22
23
24
25
26
27
28
31
32
34
35
36
40
41
44
46
47
49
49
50
55
57
58
59
60
62

Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 8-1
Figure §-2
Figure §-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7

Internal cONNECHONS . ..\t \ve ittt cee e, 64
Legal and Illegal Cells oo, 67
GDR Interesting Paths and Points 68
Actual GDR Interface oo 70
Geometry Generated From Circle 83
A twelve sided circle approximation.............ccoviununn. 83
Polygon Error ... 84
PoINt GeOMEITY . . ittt e e 85
ATC GEOMEIIY Lo vttt e et eee et eeenaannns 86
The POINt AITaY . o ti it iere ettt et iee o 89
A Segment ATTAY ... oiittt it 50
Transistors and Wires in the Integer Pooh.................. 92
The integer grid and Unit Circle 92
Octagon Error........ooiiii 93
Circles, Lines and Arcsoovviiiii i e, 94
Distance Between Two Points......................... ... 97
Possible Invalid Elements............... oo 99
The Integer Pooh version of the Bit Serial Multiplier Cell... 99
The Siclops Silicon Compiler.................cooiiiaan, 102
A Datapath Generated by the Datapath Compiler........... 104
ASetof PoohPads........... ..o o o il 105
Tigger INteractionSovvutinneet i iininennns 107
Tigger “missing” Interactionsc.ooviviiiiianaes 108
Possible Edit Functions..............cooiiiiiiiiiiiiain, 110
The wiring diagram for the Two Dimensional Retina 112

1. Introduction

The design of a correct integrated circuit has become an increasingly difficult problem as
the complexity has increased [Moore 79]. Current Very Large Scale Integrated Circuit
(VLSI) chips contain over 100,000 transistors, and million transistor chips are foreseen in
the near future. Using the well-known structured design methodology [Mead 80, Mead
83], the complexity of designing these large systems is drastically reduced by adopting
a hierarchical design methodology and by maintaining consistent design representations
throughout the design process.

A hierarchical design methodology defines a large system design problem in
terms of a set of smailer more manageable problems. A hierarchical integrated circuit
design is defined recursively as a cell where a cell is the interconnection of cells and
transistors.

This definition allows us to view each cell as an abstraction. Each cell is rep-
resented by its ports and port characteristics. With this information, cells may be inter-
connected without detailed knowledge of their internal structures. The interconnection
then produces a new cell abstraction, as shown in Figure 1-1. Internally, each cell is
characterized by three unique representations: (1) a functional specification, (2) a timing
model, and (3) a structural description.

The functional specification of the cell is an abstraction of the behavior of the cell
circuit. Initially, this functional description may be a circuit description, but a low level
circuit description quickly becomes unwieldy. Instead, there is often a concise description
that completely characterizes the cell behavior. The key to the functional hierarchy is
cell functional descriptions that are composed to form the functional description at the
next level of the hierarchy [Chen 83]. Thus the behavior of a cell may be derived
from that of its sub-cells and is used to describe and simulate the design. Often cells
are semantic units [Chen 83], where only the fixed point behavior of the cell affects
connected cells. Otherwise, the cells are syntactic units, and are treated differently during
system simulation. In either case, functional descriptions are composed hierarchically,
and may be used for simulation or formal verification.

The timing model is a description of the dynamic delay thorough a cell [Lin 84].
At the lowest level, the timing may be derived directly from the circuit. As with the
functional description, the timing information is composed to form the timing description
at the next level in the hierarchy. Each cell, at every level in the hierarchy, includes a
timing abstraction that fully characterizes the cell and may be used to evaluate the delay
through the design.

The structural description of the cell is a description of the cell topology. Each
cell is an interconnection of transistors and other cells. A structural cell abstraction indi-
cates the topology of interest during composition. As with the functional description and

-] 1] ET =1 | e =1 T
- =l g 3
i
Regcell 2 R g
g o egarray d
] e
q—L [1 T’C B o o o.n [a] I
single cell abstraction new cell abstraction
o Lr 3 =4 [H
sl e g . .
Regell Regeell | internal connections
H—4 T g5
wl v a}
Regcell Regcell .
< external connections
ai o . nl a nu
composition

Figure 1-1: Cells and Interconnection of Cells

the timing abstraction, the cell structural abstraction is composed to form the structural
description at the next level in the hierarchy.

In the structured design methodology described in this thesis, cells are defined
by these three abstractions. Assuming consistent representations at the lowest level of
the hierarchy, composition produces consistent representations at all other levels. This
thesis focuses on the structural aspects of a cell, but the structural representation always
has a corresponding functional and timing definition.

1.1 Structural Design Representations

The design of a cell spans many structural design representations. Each representation
incorporates information important to the overall design. Often the difference between
two related descriptions, or “levels” of the design, is that one contains an abstraction of
the other, which has implementation details. A typical structural approach to a VLSI
design incorporates the following design representations: (1) architectural floorplan,
(2) logic diagram, (3) circuit diagram, and (4) mask geometry description. Figure 1-2
illustrates an example of the four design representations of a simple register. Larger
designs will, of course, have more levels. An architectural floorplan is a definition of the
large blocks which together comprise the system. A logic diagram is the interconnection
of logic blocks. Each logic block is a small unit such as a multiplexor or an adder. A
circuit diagram is the interconnection of transistors. The mask geometry description is
a collection of colored polygons.

Given multiple levels, a designer is faced with ensuring consistency between

Regcell Regeell

Regcell Regeell

architectural floorplan

J——

load clock read D

logic diagram

, + read
__:f‘"[__ D
load
D F :“— ¢, + notload

circuit diagram

¢+ notload ¢, + read

X

Gnd :— ----x.ac;-&‘:)l _______ -__ i}) Gnd

¢+ load 9, ¢,+ noticad ¢, + read

mask geometry
Figure 1-2: Design Representations

4

the different abstractions. It is absolutely necessary that the logic diagram correctly
implements the architectural specification, that the circuit correctly implements the logic
diagram, and that the layout corresponds to the circuit.

Given the ability to view a single cell as an abstraction, we now focus on the
problems of specifying the implementation of the abstraction at the lowest level. The
problems are of the same type the designer encounters at every level of design: ensuring
that one level of representation or refinement matches the other. At the circuit level, it
is essential that the mask geometry implements the circuit.

Several representations are used in generating mask geometry from a circuit
diagram (shown in Figure 1-3): (1) Circuit Diagram, (2) Sized Schematic, (3) Topological
Sized Schematic, (4) Sticks Diagram, and (5) Mask Geometry. Each is a refinement
of the previous one. The process can be thought of as a successive binding of the
necessary attributes of a finished design. First, a designer must assign sizes to each of
the circuit’s transistors, to form a sized schematic. Then, the designer decides on the
relative placement of the cell’s interfaces or ports. The ports determine a large portion
of the topology of the cell. Next, the designer worries about relative placement of the
transistors to create the topological sized schematic. Then, layers are assigned to the
circuit elements and the interconnect to form the sticks diagram. Finally, the designer
generates a set of boxes and polygons on different fabrication layers to define the mask
geometry. In actual practice expert designers often skip one of more of these steps, and
carry the information informally.

The designer then faces the task of determining whether the mask geometry
implements the sized schematic. This job is typically done by extracting the circuit [Baker
80] from the geometrical description and then checking to see if the sized schematic and
the extracted circuit are the same. Finally, after ensuring circuit consistency, the designer
processes the geometry using a Design Rule Checker (DRC) program to find geometrical
design rule (GDR) violations. The methods available for checking consistency and
performing DRCs tend to be time consuming and error prone.

This thesis describes an alternative approach in which both a sized schematic and
the mask geometry are generated from a single representation. Rather than performing
the time-consuming and error-prone task of checking the consistency between these two
levels of design representation, circuit diagram and mask geometry, a designer specifies
the circuit in a uniform representation. The problem of checking the consistency between
the two representations is eliminated. Also, the representation embodies a natural but
precise way of expressing rules dictated by the fabrication technology. Design Rules
such as device sizing and GDRs may be expressed at the level of the structures of the
technology, namely, devices and interconnection.

The approach of describing a circuit at a symbolic level was first addressed by
John Williams in his “sticks” representation {Williams 77]. He proposed a scheme in
which a cell is described in terms of structures such as devices and interconnection wires.
He then proposed a “compaction” scheme where a program moves structures as close
together as possible according to the GDRs. Several compactors are currently working
[Mosteller 81, Hsueh 80]. These systems have many nice properties, but they have not
been widely accepted. A fundamental limitation of existing compaction approaches is
that they separate the inherently two-dimensional problem of geometrical design rule

¢+ read
1
—t G D
¢, + load
‘ L
D >—‘J_tv—{ { :l}— 4, + notload
-4 L
circuit diagram
¢, +load & ¢, + notload ¢, + read

o t; mﬁy '

¢, +load &

Gnd

$,+ noticad ¢, + read

topological sized schematic

¢+ notload ¢+ read

¢+ notioad ¢+ read

stick diagram

4, + load L% ¢+ notload ¢, + read

6,+ ioad [N

6.+ noticad ¢+ read

mask geometry
Figure 1-3: Circuit to Geometry Representations

6

checking into two separate one-dimensional problems. Compaction is done first in the
x-direction and then in the y-direction (or vice-versa). Rules that are two-dimensional
in nature are either ignored or mapped into one of the two static dimensions. Another
peculiar quirk of current sticks systems is that devices may extend in only one dimension.
Thus if the length of the device is in the x-direction, then the width can only be in the
y-direction and the transistor may not bend.

This thesis describes a symbolic “sticks-like” representation and a set of opera-
tional algorithms called Pooh [Whitney 83]. It has the following attributes: (1) simple
but general (2) independent of any particular technology, (3) capable of expressing the
designer’s intent [McGrath 80], (4) expresses the design rules in terms of the represen-
tation primitives, (5) represents high density designs, (6) contains connectivity, circuit
schematic, and mask geometry information, and (7) is hierarchically composible.

Figure 1-4 indicates how the Pooh representation is used. Pooh provides a
service to the user by defining an automatically checked representation for designs at the
circuit level. From this representation switch level simulator input, circuit level simulator
input, geometry, and a schematic diagram are easily generated. The user interface may
either be graphical or language based. Alternatively, Pooh is used as the base level cell
representation for a silicon compiler.

switch level

graphics simulator input

circuit level

simulator input

\ geome[ry

language 3]

- O O

program

circuit schematic

oulput
Figure 1-4: The Pooh System

Pooh was designed with MOS technology in mind. Currently both nMOS and
cMOS/bulk are supported, though other technologies are easily expressed. All the simple
illustrative examples in this thesis are nMOS. Some of the actual designs are cMOS.

1.2 Overview of the Thesis

There are four pieces of work presented in order to establish the representation presented
in this thesis:
1) the representation of transistors and interconnection,

7

2) the synthesis algorithms for constructing these elements,
3) the analysis algorithms for detecting illegal interactions between elements, and

4) a general technique for abstracting the topology of a cell and composing cells
into topologically and geometrically correct high-level cells.

Chapter 2 is an overview of the transistor level Pooh representation. The primitive
elements in the Pooh representation are lines, arcs and circles. Transistors, interconnec-
tion wires, and connection points are defined in terms of these elements.

There are three types of algorithms necessary to ensure the correct description of
the topology, geometry, and connectivity of the Pooh representation. Chapter 3 describes
the Pooh synthesis algorithms. The synthesis algorithms allow the construction of GDR
correct transistors, wires and connections points. Chapter 4 describes the algorithms
for propagating the node information of the circuit. Chapter 5 introduces the Pooh
analysis algorithms. The analysis algorithms check the interactions between the elements
necessary in order to guarantee the GDR correctness of the circuit. Since each element
is constructed according to the GDRs, these interactions are typically simple and small
in number.

The composition of circuits is the key to making the Pooh representation a viable
solution for describing VLSI. Chapter 6 describes the composition of Pooh cells. First,
an abstraction of the cell is derived. Then cells are composed to form the next level
in the hierarchy. In Pooh, a legal composition guarantees the topology, geometry and
connectivity of the composite structure.

Chapter 7 addresses some of the considerations of a system that supports the
Pooh representation. An actual Pooh system uses a circle approximation instead of a
true circle, and the affect of the circle approximation is explored. Interactions between
the Pooh paths and points must be quickly detected to make Pooh a useful tool. A data
structure that allows easy access to the Pooh elements is described. This chapter also
describes a simplified version of the Pooh algorithms. These algorithms support vertical,
horizontal and forty-five degree lines, and are integer based.

Chapter 8 concludes this thesis by describing an implementation of a Pooh sys-
tem. This implementation supports two separate interfaces. The original Pooh system
was an embedded language, used as the base level representation for the Siclops silicon
compiler. The second system described is Tigger, a graphical circuit editor that enforces
GDRs interactively.

2. The Pooh Representation

2.1 The Pooh Topological Representation

The standard circuit-level representation of basic cells for a VLSI design is the topological
sized schematic. To date, the information conveyed by this level in the design has
had no formal representation. It incorporates relative placement, transistor sizes and
interface ports. In addition, layer information is usually attached to interconnect by
either convention or context. Interconnect either connects to a transistor, or goes around
it. A sized schematic does not depend on absolute placement, but is drawn with relative
placement. The relative placement of the interface ports in a cell determine a large
portion of its internal topology. Thus the step from a topological sized schematic to the
Pooh representation is a small one.

A topological sized schematic cell is specified by its devices, interconnection
wires and ports. Each device is a transistor with a position and an orientation. Each
interconnection wire is a single electrical node between two or more devices. Each port
is a connection point of one of the cell’s electrical nodes to nodes of other cells. Figure
2-1 illustrates a Pooh topological sized schematic.

¢, + load o, ¢,+ notload ¢, + read
Vdd T ! Vdd
E‘ 8/2 i‘ a
D ? 1 * D
L 272 212 22
i &
E - [|-
Gnd Gnd
¢, + load ¢, 6,+ notload ¢, + read

Figure 2-1: Topological Sized Schematic For A Register Cell

A topological sized schematic is expressed in Pooh using three primitive struc-
tures: (1) a typed point, (2) a segment and (3) a path. A typed point is a position
along with associated type information. It is used to represent both devices—where the

9

type indicates the type of transistor, and connection points. Each transistor definition
includes strength information in the form of Length/Width, an orientation, and three
electrical nodes—source, drain and gate. A segment is a directed line segment and an
arc. The end of the line segment is the tangent point on a circle of radius r centered at
the segment end point. The arc is defined by the end of the line segment, the segment
end point, and a direction. If the arc radius r is zero, then the arc is of zero length, and
the end of the line segment is the segment end point. Paths are sequences of segments.
An interconnection wire is represented as a set of connected paths of the same electrical
node. A connection point is a typed point (or “dot”) where a connection occcurs between
either two paths, or a path and a device. Ports are represented as typed points where
the type indicates what type of connection may occur at this port. Figure 2-2 shows
examples of these elements.

O o
\O
connection
points O
Segment Path

!

Transistors

Figure 2-2: Paths, Segments and Transistors

A topological sized schematic differs from a standard circuit schematic in several
important ways. In particular, additional information is present in a topological sized
schematic that is not in the normal schematic.

A circuit schematic may be represented as a bipartite graph, with vertex partitions
representing the nodes and the transistors. The edges between the two partitions represent
the connectivity. The information conveyed by this circuit schematic can be fully captured
using a one-dimensional representation. For example, let ny...n, denote the node
vertices, and t; ...t, denote the transistor vertices. Then, we may represent the circuit
as two arrays: N of length m, and T of length 3p, and represent the connectivity as
stored indices from one array into the alternate array. Obviously, this representation is
one dimensional, and vet it contains sufficient information to fully represent the circuit
graph.

A topological sized schematic incorporates information beyond the normal sche-
matic. The device sizes are necessary attributes of the transistor vertices in any actual
design. The crucial step, however, is the relative placement of the ports and the intercon-
nect. This step takes the schematic from the realm of a one-dimensional representation
to the two-dimensional world of integrated circuits.

10

Relative placement is the process of basing the position of an object, in this case
interconnect or ports, on the placement of other objects. Previous work has focused on
automatically generating a stick diagram from a circuit schematic coupled with device
sizes and a partially ordered set of ports [Ng 84, Wolf 83]. This work separates the
potentially non-planar circuit graph into a set of planar graphs, which must correspond
to the different interconnection layers on the target chip. The next step is to create
two constraint graphs from these circuit graphs, which describe the ordering of the
components in the x-dimension and in the y-dimension, similar to the constraint graphs
used in one-dimensional sticks compactors [Mosteller 81, Hsueh 80].

In fact, the ordering inherent in the topological sized schematic is not one-dimen-
sional at all. A topological sized schematic contains lines, representing interconnection,
and components, representing transistors and ports. This schematic’s relative placement
information is two-dimensional in nature, and is naturally representing by lines “missing”
or “going around” components.

A stick diagram [Williams 77] is a topological sized schematic with “colored”
interconnect and devices. The color indicates the layer on the silicon implementation for
the interconnect and transistors. A stick diagram is shown in Figure 2-3. A stick transistor
level design is represented as the interconnection of transistors along with their types,
sizes and placement. The primitives of the representation are transistors, interconnect
and connection points. Transistors are the devices of the technology, each of which
have a length and a width. Each transistor is either a path or a point. Interconnect is
implemented by typed paths connected by two or more connection points. Connection
points are points, with associated type information, where an electrical connection occurs

between two or more paths.

6,+ notioad ¢, + read

Vdd Vdd
[N
L~

D D
]

Gnd «i""@ in Gnd

6, + load 6, 6+ notload ¢, + read

Figure 2-3: Register Cell Stick Diagram

In the Pooh topological representation, the notion of relative placement is imple-
mented in the following manner: transistors and interconnect are represented as a series

11

of segments as shown in Figure 2-4. Each segment may either connect to a point, or
go around it. Connectivity is represented explicitly by multiple references to the same
point. If a segment goes around a point, the distance is a “miss distance” and forms an
arc around the point. Small transistors are often conveniently formed by the intersection
of two segments as shown in Figure 2-4,

intersection

of 2 segments

shared

points \

miss distance
Figure 2-4: Segments, Points and Transistors

A circuit described in this manner maintains the connectivity information through
shared points and represents a properly connected set of transistors. This information is
more than enough to represent a topological sized schematic and a stick diagram, and is
nearly sufficient to construct design-rule correct mask geometry.

The Pooh representation formalizes the notions of shared points, segments, and
“miss” distances into a complete topological circuit representation. This representation,
together with the Pooh synthesis and analysis rules, form the Pooh algebra of circuits.

Interconnect and transistor paths are a sequence of path segments. Every path
segment is a directed line segment and an arc. The placement of each path segment is
defined by two connection points. Other connection points may be attached along the
straight portion of a path segment.

Connection and transistor points express the connectivity of the paths. A tran-
sistor point is formed at the intersection of the channel and gate path segments. A
connection point is formed either by placing the end point of a path segment or by
connecting one path to another.

This representation coupled with the Pooh synthesis and analysis rules ensure the
description of strictly legal designs. The synthesis rules allow only valid interconnection
between points and paths and construct transistor paths such that they meet the length
and width constraints. The analysis rules ensure that path segments cross only at valid
connection and transistor points.

2.2 GDR Representation

A stick diagram differs from a schematic in that the stick interconnect wires, transistors
and connection points are “colored” according to the Geometrical Design Rules (GDRs).

12

GDRs are rules dictated by the fabrication technology that govern how structures may
be placed together. A stick diagram demonstrates some of the assumptions about a
particular technology, such as that there are multiple interconnection layer types, and
multiple transistor types.

Since a chip description is an interconnection of transistors, it make sense to
represent the GDRs in terms of transistors and their connections instead of the traditional
technique of representing GDRs in terms of the fabrication layers. Thus the Pooh GDR
representation contains a list of technology dependent information that describes how to
create transistors, interconnect and connection points, and how to connect these structures

together.

The GDR descriptions are generic definitions for a particular technology. Each
element in a cell is an instance of one of the definitions. The GDRs fall into two
categories—descriptions of legal structures and descriptions of legal interactions between
structures. The descriptions of individual structures include a logical layer type. This
layer type is symbolic as opposed to a physical or geometrical layer [Williams 77]. For
example, in nMOS, polysilicon, diffusion and metal are logical layer types. Each of
these have a single physical layer—polysilicon, diffusion and metal. A Low Resistance
Connector (LRC) is an nMOS logical layer that is comprised of three physical layers—
polysilicon, diffusion and buried. In cMOS, there are at least four logical layers—
polysilicon, metal, p-diffusion, and n-diffusion. Both the p-diffusion and the n-diffusion
logical layers are often composed of multiple geometrical layers.

Each interconnect type description consists of:
1) a logical layer type, '
2) a minimum width,
3) the geometrical layers that comprise this logical layer, and
4) the geometrical overlap rules.
Each transistor type description has a:
1) transistor type,
2) channel logical layer,
3) gate logical layer,
4) minimum gate width,
5) minimum channel width,
6) minimum extension of gate and channel layers beyond the gate region,
7) the geometrical layers that comprise this transistor, and
8) the geometrical overlap rules.

Connection points are connections between one or more paths. If these paths

are of the same type, then the ccnnection point rules are defined by the transistor and

interconnect rules. However if the connection point is between paths of different types,
then the connection point is called a contact and has its own unique GDRs. Each contact

description consists of:
1) the connection point type,
2) the number of physical connection points,

13

3) for each point, the legal logical connection layers,
4) the legal angle or angles of connection for each legal interconnect type, and
5) reference to the geometrical implementation description.

The GDR interaction rules include both spacing and angle rules. Each spacing
description includes both a rule that applies to structures of different electrical nodes,
and a second rule that applies to structures of the same node. Angle rules are always
between paths of the same node. Spacing rules are:

1) Minimum Interconnect to Interconnect Spacing,
2) Minimum Interconnect to Transistor Spacing,
3) Interconnect to Contact Spacing,
4) Transistor to Transistor Spacing,
5) Transistor to Contact Spacing, and
6) Contact to Contact Spacing.

Angle rules are:
1) Minimum Interconnect to Interconnect Angle,
2) Minimum Interconnect to Transistor Angle, and

3) Minimum Transistor to Transistor Angle.

2.3 Geometrical and Topological Representation

Pooh constructs the geometry of a circuit in a manner aimed at reducing the design-
rule enforcement task. Devices and interconnect are expressed as a center-line, and
are generated algorithmically. The geometry of transistors and interconnect is formed by
maintaining a constant radius around each line segment and point. Connection points are
expressed as points and are constructed as circles. We can use simple Euclidean geomet-
rical operations between center-lines and points to perform all design rule calculations.
The problem of performing operations between the complex edges of mask polygons is
completely avoided. This section describes these instances of the GDR definitions.

Transistors are either a path or a point. A “wide” transistor path is defined with:
1) a transistor type,
2) a name,
3) a list of the segments that form the path of the gate,
4} a length and width,
5) one or more transistor points where connections occur,
6) two Or more connection points,
7) the distance from the start of the path to the transistor’s gate region,
8) the point indicating the end of the gate region, and
9) three electrical node numbers (source, drain and gate).

A “long” transistor path is similarly defined with the channel, rather than the gate, as
the center-line layer. A transistor point has the following attributes:

1) a transistor type,

14

2) a name,

3) an X,Y coordinate,

4) the channel segment or segments,

5) the gate segment, and

6) three electrical node numbers.
Each interconnect path has the following attributes:

1) an interconnect type,

2) a width,

3) a list of the segments that form the path,

4) multiple connection points,

5) an electrical node number, and

6) the electrical capacitance of this path.
Each connection point has these attributes:

1) atype,

2) an X,Y coordinate,

3) an orientation,

4) a node number, and

5) a list of the path segments that share this point.

2.4 Circuit Synthesis Rules

There are several types of synthesis rules in Pooh. Some rules are inherent to the Pooh
system and govern how points and segments are composed to form structures. For
example: a path segment may “miss” a connection point, but is restricted to connect
(“miss” distance equal to zero) to a transistor. The other types of rules govern both
how structures are connected together and how structures are physically made. These
rules are kept in the technology description, and include information such as the actual
distance a path segment must “miss” a connection point, and how to make a particular
type of connection point or transistor.

Pooh enforces the construction of correct interconnect and transistor paths as
shown in Figure 2-5. It enforces a minimum width on all interconnect paths, and a
minimum width and length on transistor paths. For a transistor path, the length and
width parameters coupled with the transistor overlap rules yield the end point of the
transistor gate area. Such a path then continues as an interconnect path with the logical
layer of the center-line.

Pooh applies a set of rules to the construction of the sequence of segments that
form the interconnect and transistor paths. Each segment may include many connection
points, but two points define its physical placement—the first and last points. A segment,
rather than connecting to these two points, may instead “miss” them. The arc of this
segment is defined by its last point, a “miss” distance and the next segment. The sign
of the “miss” distance indicates the sense in which the segment goes around the point.
If the “miss” distance is zero, then the last point is indeed a connection point, and the
arc is of zero length. Pooh then ensures that the path layer is one of the legal logical

15

segment without

segment with miss distance

miss distance

last path point perpendicular

1

st H
17 path paint legal connection)
dis=0 transistor
. overlap
length rules

min distance

" start of gate area

end of gate area

depletion mode
diffusion centerline

Figure 2-5: Synthesis Rules
connection layers for the point type, and adjusts the angle of the connection point to
match the legal angle of connection as shown in Figure 2-6. The first and the last point

of the path must have a zero “miss” distance. Figure 2-7 illustrates the use of the “miss”
distances.

double connection angle

single connection angle

Figure 2-6: Legal Angle of Connection

16

The spacing rules govern the segment to point “miss” distances based on the path
to point spacing and the path to path spacing. If the current segment is the first segment
to “miss” a point, or if there isn’t a spacing rule between this segment and the point’s
other segments, then the “miss” distance is calculated as the spacing rule between this
segment’s path type and the point’s type. Otherwise Pooh finds the point’s segment
with the largest “miss” distance that interferes with this segment and adds to the “miss”
distance the spacing rule between this segment’s path type and the interfering segment’s
path type.

path-path

spacing
no interference

point-path

spacing

Figure 2-7: “Miss” Distance

Pooh enforces an additional set of rules in the construction of transistor points.
The channel and the gate segments must connect (“miss” distance equal to zero) to a
transistor point. If the transistor point is not part of a transistor path, the gate segment
and the channel segment must be perpendicular as shown in Figure 2-5.

There are paths that define entire regions: the well in ¢cMOS is one example.
These “surround” paths are similar to other pooh paths, except that the polygons de-
scribed by the paths are closed — the first point is equivalent to the last point. Pooh
constructs these paths by enforcing a direction during segment synthesis; all surround
paths are clockwise.

2.5 Circuit Analysis Rules

Most GDRs are enforced correct by construction during the creation of the Pooh paths.
Some analysis is necessary to enforce the remaining GDRs. Analysis determines ille-
gal interactions between interconnect paths, transistor paths and connection points. The
synthesis rules ensure the correct construction of the individual structures, so what re-
mains at the analysis phase is ensuring correct spacing and angles between adjacent
structures. During the analysis phase Pooh only looks at structures that are “close” to
the current structure, i.e., within the maximum GDR bounding box that surrounds the
current structure. Figure 2-8 illustrates possible interactions.

17

segment-arc .
contact-segment spacing error

spacing efror

contact-contact

spacing error

point-segment

spacing error

transistor overlap

ar¢-arc

spacing error violations

A}

N connected

) contact-contact
~ spacing error

Figure 2-8: Analysis Rules

The distance from each point to surrounding connected and unconnected points
and lines is compared to the minimum spacing rules. If the point is a transistor, then
the four closest points are checked for valid overlap. Often the transistor overlap is
GDR correct by construction, but existing points may violate transistor overlap rules
and thus must be checked. If the point is a contact, then the closest connected contacts
are checked for valid connected contact spacing. Finally the point’s distance from sur-
rounding segments and points is calculated and compared to both the minimum point to
point (contact—contact) and point to path (contact—interconnect and contact-transistor)
distances.

Pooh checks to ensure that the distance from each segment to surrounding points
and segments is greater than or equal to the minimum GDR spacing rules. First, it marks
all directly connected segments, ensuring that connected path—path spacing rules are met.
Next, it checks that this segment’s distance from surrounding contacts is greater than
the appropriate point-path spacing rule. It then checks that this segment’s distance from
the two end points of all unmarked surrounding segments is greater than or equal to the
appropriate path to path spacing rule, and that the segments do not cross. If either of
the two segments contain non-zero arcs, the arc—arc or line-arc distance is calculated
and compared to the spacing rule. Finally, for each of this segment’s connection points,
Pooh checks the angle between this segment and the point’s other connecting segments.
The angle between two segments that connect to the same point must be greater than or

18

equal to the minimum path to path angle.

The analysis of surround paths is similar to that of other paths with a single
exception: distances are signed. If points and segments occur inside the surround path,
with a negative distance, then the distance must be greater than or equal to the inside
GDR spacing rule. Otherwise, the points and segments occur outside the surround path,
with a positive distance, and the distance must be greater than or equal to the outside
GDR spacing rule.

2.6 Simulation Interface

Simulation is a necessary and important part of the verification of a design. The GDR al-
gorithms guarantee design rule correct circuits, and the typed ports provide a mechanism
for statically checking the composition of signals. But, it is still necessary to simulate
a circuit, and have some degree of assurance that the geometry is equivalent to the sim-
ulated circuit. Simulation input is easy to generate from the same Pooh representation
from which geometry is generated.
Pooh supports three different kinds of simulation—depending on the level of

detail a designer is interested in. The three types are:

1) an analog device simulator, such as SPICE [Nagel 75],

2) a logical switch level simulator such as Mossim [Bryant 82], and

3) a dynamic timing simulator such as the one developed by Tzu-Mu Lin, at Caltech
[Lin 84].
The information necessary to interface to these various simulators is easily derived, since
Pooh maintains a list of the transistors, along with their types and strengths, and the node
numbers of all the interconnection wires, along with their sizes.

2.7 Geometry Generation

At the completion of a design, a geometrical description may be generated from the
Pooh representation. Since Pooh enforces GDRs, a designer may use a strict Pooh
representation up until the time of mask description for fabrication. Therefore geometry
generation is a very small part of the computation necessary to complete a design.

For each technology, Pooh maintains the information needed to go from the Pooh
representation to geometry. This information is:

1) for each logical layer and transistor type the geometrical layers and the overlap
rules between the geometrical layers, and
2) for each connection point a reference to the geometrical object that implements
this point.
Points are modeled as fixed geometrical objects. Paths are modeled as algorithmic
geometrical objects and therefore each path generates a unique set of polygons. This
information is kept in the technology file along with the design rule data.

Often, fabrication houses or silicon foundries find it necessary to modify or
process geometry files for a particular technology. The processing often includes bloats,
shrinks and scaling. Shrinking geometry while maintaining the electrical connectivity is
a very difficult problem for general polygons and wires. Since the centers-lines of Pooh

19

paths are connected, called skeletal connectivity, it is equally easy to perform bloats,
shrinks and scaling of designs generated by Pooh.

20

3. Synthesis Algebra

This chapter describes how we may construct each path such that it meets the GDR con-
straints. The computational complexity of calculations between paths is minimized by the
choice of elementary structures: points, lines and arcs. Points are represented as circles.
Lines are represented by their directed and normalized line equation. Interconnection,
transistors, ports and connection points are composed from these elements.

In the following section, let P, denote a Pooh path, where a Pooh circuit is a set
of paths P and P, € P. Each path includes an initial point po and a set of m segments
Sy = {s1,82,... sm}. The placement of each path segment s; is based on the two points
pi—1 and p; and both the segment’s arc radius r;, and the last segment’s arc radius r;_.
Given a point pj, let z;, y; denote the point’s x-coordinate and y-coordinate respectively.

3.1 Primitive Representations

Circles

A unit circle is a convenient way of representing both points and arcs, of which larger
constructs may be composed. A circle allows calculations to be performed between lines
and points without introducing polygonal edges. Mask geometry cannot, however, be
created using perfect circles—therefore Pooh uses an n-point circle approximation. The
polygonal approximation and its effect on the calculations presented in this chapter are
discussed in detail in Chapter 7. The next section assumes perfect circles.

Lines

The line segment portion of a segment s; is represented by the normalized line equation:

Li(z,y)= Aiz + Biy + C; (3-1)
where A+ B} =1
and, for a point z,y on the line:

Li(z,y)=0.

In Figure 3-1, the point p; is the end point of the segment s if the segment radius is
zero. Otherwise p; is the starting point of the segment’s arc. This figure illustrates the

line calculation for the line L(z,y):

21

g+]

P
Figure 3-1: Line Calculation

Given two points p; and p;, the normalized coefficients A, B, and C are computed as
follows:

Len = \/(z2 — 21)*+(v2 - w1)?

A= —sinf = (y; — y2)/Len
B =cosf = (z3 — z1)/Len (3-2)
C = ‘—AII - Byl

The slope of this line is —A/B or tand. An equivalent line L'(z,y), in the opposite
direction (from p; to p;), is computed based on the angle §' = 6 + =

sing' = sin(f + 7) = —sind Al=-4A
cos ' = cos(f +m) = —cosf B'=-B
C'=-cC.

The distance D between the line equation L;(z, y) and a point p, is found by [Sutherland
78]
D= A,‘.’Eq -+ Bqu + C,' (3-3)

where the sign of D indicates the direction of the point with respect to the line. The
Pooh line equation was chosen such that a negative D indicates the point is on the right
hand side of the line and a positive D indicates the point is on the left hand side of the
line.

The intersection point p;,; between the two lines Li(z,y) and Ly(z,y) is found
as follows [Sutherland 78]:

det = B1A; — A1 B>
Pint = <(B2C1 — B1(y)/ det, (A,C2 — ACh)/ det). (3-4)

Arcs

Arcs, like line segments, are directional and the sign of the arc radius r; indicates its
direction. A positive radius indicates a counter-clockwise direction, and a negative radius
indicates a clockwise direction. In the following section, let A; denote the arc associated
with the segment s;, af be the arc’s starting point, and af be the arc’s ending point.

An arc A; is determined by three points p;_1, p;i, p;+1, and three radii r;_;, ry,
ri+1. The pair p;_, ri—1 determines the starting point of the arc af, the pair p;, 7
indicates the placement of A;, and the pair p;41, ;4 determines the ending point of
the arc, a. The following equations present the calculations necessary for finding the
line segment L;(z, y).that joins the arcs A;—1 and A;, with r; > 0 and r;_; < 0. From
there, we may generalize the calculation to all signed radii. Figure 3-2 illustrates this

calculation.

22

Figure 3-2: Arc Calculation

|Le| =71 = ric1

|Ly| = z; — zi-1

Lyl = vi —yic1 Li | Ls
Lol = /LR + P bt
L =L - L
§' =61+ 0,
Lo lLy — LT
cos; (') = —= ;‘Lp?_ £
BPSRIATARIAY,

Lpl?

23

The arc starting point @} = (z; — rycos;(8'), yi — risin;(6')). Let us define a

point on the unit circle:
pi = (—cos;(8'), —sin; (8")) . (3-5)

Then, the arc beginning point o} = (z; + rizf, yi + riyf)= p; + ripf and the last
arc’s ending point af_; = pi — lri—1/pf. But, r;_1 < O by definition, therefore af_; =
pi +ri—1p¢. In general, we may compute the tangent point p{ on the unit circle, and then
use the sign of the radii to determine the ending point of A;_1, and the beginning point
of A;. The ending point of 4, is found while calculating the starting point of 4;;;. The
calculation is:

AR—
ai_y = pi-1 + ri—1p;. (3-6)

The arc representation is A; = (ri, p;i, p§, Ai+1) from which we may easily
compute a? and a¢ from (3-6). An illustration of a positive and a negative arc, based on
the same unit circle points py and pi, is shown in Figure 3-3. In practice, the points on
the unit circle are chosen from a set of pre-calculated points, as is discussed in Chapter
7.

Figure 3-3: Arc Representation

3.2 Path Synthesis

Pooh constructs a path P, “correct” according to the GDRs. The following definitions
of GDRs are introduced:

mw(Ty) = minimum width of a path of type T}
mr(Ty) = mw(T:)/2
minSpace(s;, s;) = minimum spacing between paths of type Ty and T,
where s; € S and s; € §
PminSpace(s;, py) = minimum spacing between a path of type T} where s; € Sk

and the point p,.

24

A path Py is defined by a path type T}, a width Wy, where Wi > mw(T%), an
initial point po, and a set of m segments Sx. Each of the path segments is synthesized in
sequence to construct a valid path. Each path segment has four points of possible interest.
These points are the first and last points of the segment, and the first and last points of
the segment’s line segment. Let us define four functions to aid in the description of a
path segment: [p(s;) for the last (previous) point of the segment s, Ir(s;) for the last
radius of the segment s;, bp(s;) for the starting point of the line segment L;(z,y), and
ep(s;) for the ending point of the line segment, as follows:

po, .7 =1
pj-1, otherwise.

lp (s5), Ir(s;)=0

=1
{rJ 1, otherwise.

aj_1, otherwise.
ep(s;) = {7 =0
P\Sj) = a%, otherwise.

A minimum width path Py is defined by the locus of points exactly half the minimum
width, or mr(T}), distance away from the path center-line. A path P, whose width is
greater than the minimum width is defined by the locus of points exactly mr(7}) distance
away from the path skeleton. This skeleton is the path center-line expanded by the width
W,; minus the minimum radius.

A minimum width path segment s; where s; € S of the path P, is shown in

Figure 3-4. Notice that the starting point bp(s;) is surrounded by a half circle whose
radius is mr(Ty). In fact, the path P; is defined by the locus of points exactly mr(Ty)
distance away from the path center-line. This path Py is defined as a set of m segments,
rm = 0, where each segment consists of a composition of an arc and a line identical to
the one shown in Figure 3-4.

N bp(s,)

Figure 3-4: Minimum Width Segment

A path P where W, > mw(T;) is defined by the locus of points exactly mr(T})
distance away from the path skeleton. The path skeleton surrounds the center-line by

25

a distance d = W;/2 — mr(T}) as shown in Figure 3-5. The line segment portion of
each segment s; € S is defined as three parallel lines L;(z,y), Li(z,y) and L!(z,y)
where C! = C; + d, and C}' = C; — d. Each path segment arc is identical to the arc of
a minimum width path. The line L; | (z,y)= —Biz + A;y. The calculation of a wide
path’s end conditions at the points po and py,, is based on Li(z,y), Li{z,y), L (z,v),
Ly (z,y), and Ly, (z,y), L. (z,y), Ly (2,), Lmo(z,y), respectively. The offsets from
po to the two points p; and p,, as shown in Figure 3-5, are:

p = (Aid, Bid)
pr = (—A1d, —Bd). (3-7)

from equation (3-4). The point offsets from p,, are similarly calculated.

Figure 3-5: Wide Path Segment

Segment Synthesis

Each segment s; is initially designated by a point p;, a direction ¢; = %1, and a con-
nection status. Let ValidConnect(s;,p,) denote a function that indicates whether or
not there is a valid connection between s; and p,. If s; connects to the point p; and if
validConnect(s;,p;), then r; is the design rule correct connection radius, often equal to
zero. Otherwise, if the segment does not connect, r; is calculated based on the design
rules. If other segments have not previously “missed” the point p;, then r; is equal to
PminSpace(s;,p;). Otherwise we must detect interference between this arc A; and all
other arcs A; where p; = p;, as illustrated in Figure 3-6. In order to detect arc inter-
ference, A; must be defined, which in turn implies that r; # O to use equation (3-6).
Therefore, initially we let r; = ¢;. :

Let U(Ay) denote a unit arc defined as:

26

U(’qq) = (P;, p;+1) dir)

. 1, r,>0
dir = {—1, re <O0.

interference

no interferencel,

Figure 3-6: Arc Interference

These functions detect interference between two unit arcs Uy and Us:

define in(U{,U;): boclean
arc ranges overlap
enddef
define otherhalf(Uy): U
Pq * —P3 Pat+1 * —Paysls
enddef
define reverse(U;): U
dir «— —dur;
enddef
define interfere(U;,U,;): Dboolean
interfere « if dir; >0 and dira >0 then in(U;,Us)
ef diry >0 and dir; <0 then in(U;,octherhalf (reverse(lh)))
ef diri «0 and dira >0 then in(otherhalf(reverse(U;)), U;)
else in{(reverse(U;), reverse(lU;))
fi
enddef

The detection of arc overlap is simplified when defined in terms of the underlying
circle approximation. Therefore, the definition of the function in is postponed until the
circle approximation is described. Chapter 7 includes the definition of in.

If we assume that the segments that depend on a point p; are maintained in a
list sorted by increasing arc radius |r|, then the following algorithm finds the minimum
design rule correct “miss” distance between s, and p,:

27

define minimum distance(s,, p,): distance
var min _dis : distance;
min dis « PminSpace(sq, pg);
while there is another segment missing p, do
8"« next segment;
if interfere(U(s,), U(s')) then
if munSpace(s,, s'}> 0 then
min_dis « |r'|+ minSpace(s,, s')
fi
£i
od
minimum distance « if r; <0 then -min dis else min_dis fi
enddef

Once the segment arc radius r; is calculated using minimum distance, A; is
defined by (3-6), and L;(z,y) is calculated using (3-1). Given this complete segment
definition, it is possible to detect and prevent an invalid segment. It is possible to
indicate a miss direction such that a segment loops, as shown in Figure 3-7, which is
never desirable. The dot product between the line L;(z, y) and the line connecting a? and
a?, shown in the figure as L., detects this condition between two consecutive segments.
If the segment is found to be invalid, Pooh replaces the two segments by a single segment
as shown in the figure. ‘

Figure 3-7: An Illegal Segment

The point af? represents the tangent point of the segment s; on the circle of radius
\r;| centered at p;, and the point af represents the tangent point of the segment s;4; on
the same circle. In order to prevent these two line segments from crossing, the angle ¢

28

between s; and the line connecting a? and a must be greater than or equal to 90°. If
~90° < 8 < 90° then s; is ignored.

Dot=s;-L.=cos8 = A; A, + B; B,

The segment construction rules described thus far allow us to define any legal
interconnection path. The rules must be extended to incorporate transistor paths.

Transistor Synthesis

With respect to synthesis algorithms, transistor paths differ from interconnection paths
in two ways: (1) the presence of two logical layers—channel and gate, and (2) a
Length/Width parameter that determines when one of the logical layers ends. A transis-
tor path is composed of the center-line layer and the outside layer, one of which is the
channel, the other the gate. If the center-line layer is the gate, then the outside layer is
the channel and the path is a “wide” transistor, otherwise the path is a “long” transistor,
as shown in Figure 3-8. Let us call these two layers Center(T}) and Outside(T}y) for a
transistor of type Tk. Let [, denote the Length/Width parameter that determines when
the Outside(T}) layer ends. The path width W} governs the width of the center-line
layer as shown in Figure 3-8. The parameter £; governs the length of the outside layer
Outside(Ty). There is a set of overlap design rules for each transistor type that dictate
the distance each of the logical layers must overlap the gate region. The two definitions
for the overlap rules are OutsideOver(T}) for the outside overlap, and CenterOver(T})
for the center-line overlap.

OutsideOver(T))

"Long" “Wide"

Figure 3-8: Transistor Overlap

Figure 3-8 illustrates the beginning of a transistor path. We must calculate the
point offsets p; and p, such that the OutsideOver(Tx) and CenterOver(T}y) rules are
satisfied. The lines L;(z,y), Li(z,y), and L(z,y) are the same lines used in Figure

29

3-5. The line L;, (z,y)= —Biz + A;y + E. Let the minimum overlap be defined as:

mo(Tk, py) = (C’enterOver(Tk) mr(Center (T))) max
(PminSpace(Outside(Tk), pq)>.

The two point offsets p; and p, are calculated (from equation (3-4)) by:

E = mo(Ty, py)+mr(Outside(T}))
R =W /2 + OutsideOver (T,)—mr(Outside(Ty))

= (AR + BE, B;R — AE) (3-8)
pr = (—AiR+ B;E, -B;R — AE).

This equation allows us to calculate the beginning of a transistor path. We must
also end the transistor region. Pooh uses the parameter £} to determine the segment s,,,
such that 1 < n < m, and on which the center-line length achieves (.

The parameter [governs the size of the transistor along the center-line. If
Center(T}) is the channel then the parameter is the transistor length, and Wy is the
transistor width. If Center(T}) is the gate then the parameter is the transistor width and
Wy is the transistor length. Given that the length is less than the total path length, or

Lk + mo(Tk, po)+mo(Tk, ep(sn)) < Simi1(|Li(z,y)| + arclen(4;)), then we must find
the segment s,, such that:

1

3
|

(]

(1Zi(2, y)| + arclen(4,))
1

Ly + mo(Tk, po)+mo(Tk, ep(sn))

n-1

.Ej: (z,y)] + D _ arclen(4;).

1=1

-

IA

IN

This condition assumes that L is achieved on the line segment portion of a path segment.
A segment that meets these constraints may not exist, if the length is achieved on the
arc portion of a segment, which implies that for some g¢:

g—1

\Li(z,y)| + Z arclen(4;)

1 1=1
+ mo(T, po)+mo(Tk, ep(sq))

e

IA

||M-Q S

(I1L;(z,y)| + arclen(4;)).

If this second condition is true, then we insert a segment &' that approximates
the arc A, at the position that L dictates between the segments s, and s,.1. Then, Li
is achieved on the segment s' by design, and thus the segment s, = s'.

We may use the segment s, to determine the two point cffsets p; and p, that
vield a transistor path that meets the specified L constraint. We let

30

n n-1
E =3 (Li(z,9))+)_ arclen(4:)~ L — mo(Tk, po)+mr(Outside(T%)),
i=1 i=1

and then compute the points using equation (3-8). The transistor path continues in the
center-line logical layer as if it were an interconnection path of type Center(T}).

Surround Path Synthesis

The synthesis of a surround path P, differs from other paths in three ways: (1) the path
width is always twice the minimum radius, or Wy = 2 x mr(T}), (2) the first and last
points of the path are the same, or for a path P, with m segments, pp = p,,, and (3) the
sign of the segment arc radius r;, for s; € Sk, indicates whether the point p; is inside
or outside the path. Surround paths define entire regions and are clockwise paths by
construction. Pooh enforces these three restrictions, and otherwise constructs surround
paths in the usual manner.

3.3 Point Calculations

The placement of a point determines the placement of one or more path segments, but it
may also be determined by one or two line segments using the line intersection equation
(3-4). Itis possible to designate a point as placed at the intersection of two line segments.
The placement of such a point may be computed directly from (3-4). It is even possible
to designate a segment s; as placed perpendicular to segment s;, where s; and s; are in
general not members of the same path’s set of segments.

Given the segments s;, s; and p1=bp(s;), we may calculate the point p;, with
r;=0, ensuring that s; L s;. The point p; is either at the intersection of s; and sj, as
shown in Figure 3-9, or there is another point p, at the intersection of s; and s; and p;
is some distance Ezt past p,, as shown in Figure 3-9. This latter type of calculation
is used to construct a point that meets the transistor overlap rules, given the transistor
point p,. The calculation to find the point p; at the intersection of s; and s; is:

L,'(I:, y) == —Bj:c + Ajy -+ Ci
Ci = Bjz1 — Ajui
Di = (B,C,- - AJ'CJ', -—AjC,' - BjCJ') (3-9)

from equation (3-4). Equation (3-9) may be extended to calculate a point beyond the
intersection of s; and s;. If s; is of type T, and the transistor point pg, at the intersection
of s; and sj, is of type T;, then the calculation is:

Ezt = if Tp = Center(T;) then CenterOver(T:) else OutsideOver(T:) fi
Dy = (BJ-C,- - Aj(Cj + Ext), -A;Cy — B]-(Cj + E:Et)) . (3-10)

Contacts may or may not be symmetrical, according to the target set of GDRs.
If a contact type is asymmetrical, then the point’s orientation is important. If the GDRs

31

Figure 3-9: Intersection Points

dictate that the connection angle of a path type is fixed with respect to a contact, then
Pooh orients the contact according to the GDRs. If more than one segment with a fixed
connection angle connects to the same contact, then additional points, with different
orientations are superimposed. Figure 2-6 illustrates oriented contacts.

The orientation angle ¢ of the contact point p, is easy to compute, given the
segment s; of type Tk. If the point p, is a contact of type ¢,, then let the function
fizedAngle(c,, Ti) denote the GDR specified connection angle of ¢, with respect to
s;. Then:

9 = arccos(B;) from (3-2)
¢ =0+ fizedAngle(cq, Tk).

In this chapter I have described how, given a minimal amount of information, we
may construct each path such that it meets the design rule constraints. This section has
alluded to the circuit connectivity several times. The next chapter discusses synthesizing
the connectivity of a collection of paths. I will then examine the calculations necessary
to detect problems between paths.

32

4. Node Synthesis

The Pooh representation must express the connectivity of the transistors and their inter-
connection. There are two aspects to this problem. First, the description must contain
sufficient information to provide the possibility of detecting whether or not two elements
are connected. An element, in this context, is either a path or a point. Second, given
any two elements within a Pooh circuit, there must be a quick way of detecting their
underlying connectivity.

The first condition affects the composition of Pooh paths and points. The under-
lying philosophy is that any circuit level representation must express the designer’s intent
[McGrath 80]. In Pooh, any two elements that are connected share at least one reference
to the same point. That is, connectivity is represented explicitly in the representation.

A simple example of shared references is shown in Figure 4-1. Two metal paths,
Py and P, each consisting of a single segment, are shown in the figure. These two metal
paths are obviously connected since at one point they cross. The Pooh composition rules
state that Py is connected to P, if and only if there exists a point pg such that p, is
contained in both the P, and P, path definitions. Otherwise P; is not connected to P
and the Pooh analysis rules (described in Chapter 5) detect a spacing violation between

Py and P».

Figure 4-1: Connected Paths

The second condition mandates that there is a quick algorithm for determining
whether or not any two elements are connected. Pooh uses Martin Rem’s Equivalence
class algorithm [Dijkstra 76] to note the elements’ connectivity. Pooh elements are
separated into equivalence classes using this algorithm, and then connectivity is detected
by checking whether two elements are in the same equivalence class.

33

4.1 Node Equivalence

Pooh assigns each element a unique increasing positive node number, and then uses
Rem’s Algorithm to record connected elements. For each collection of paths there is an
array nodenumbers that indicates the connectivity. Two elements with node numbers
Ny and N; are connected if and only if nodenumbers [Ny]=ncdenumbers [N,]1. Given
the array nodenumbers, the algorithm for asserting connectivity can be expressed:

define equivalence(N;, N; : integer)
var al, a2 : integer;
al + nodenumbers{N;];
a2 + nodenumbers[N;];
while al # a2 do
if a2 < al then
nodenumbers[Ni] «~ aZ2;
Ny « al;
al «— nodenumbers{al];
else
nodenumbers [N,;] + al;
Ny, — a2;
a2 < nodenumbers[a2];
fi
od
enddef

The algorithm works by equating both node numbers N and Nz, two nodes of a
tree, to the smallest integer k reachable from either N1 or N;. Initially all node numbers
are in separate equivalence classes, represented as trees of numbers. Then, each time
equivalence (N;, N;) isinvoked, a new tree is implicitly created that includes both
N and N;. If there are n node numbers, then the longest tree’s path length may be n, in
which case the worst case cost of executing n equivalence statements is O(n?). But,
since each time equivalence is invoked, it flattens out the reachable tree, the expected
height of any given tree remains less than log(n), in which case the cost of executing n
equivalences is O(nlog(n)).

Any transistor, either a path or point type, is assigned three node numbers:
source, drain and gate. Each interconnection path and connection point is assigned a
single node number. Assuming that each time two elements are connected, equiva-
lence of the two connecting node numbers N} and N; is invoked, then detecting whether
or not any two elements are connected is simply whether or not nodenumbers (N;] =

nodenumbers [N;].

4.2 Path Connectivity Representation

This section describes the construction of a set of Pooh paths such that they fully maintain
the circuit connectivity. It uses the notation introduced in Chapter 3. A Pooh circuit
consists of a set of paths P = {Py, P5,... P,}, and a set of points p = {p1,p2,... pr}-
Each transistor, either a path P or a point pg, includes three node numbers sourceg,
draing, and gate,. Each interconnect path A or connection point p; includes a single

34

node number node;. Let transistor(Py) denote a function that indicates whether or
not the path Py is a transistor path, and let ptran(p,) denote a function that indicates
whether or not a point p, is a transistor point.

In the following discussion, a path segment is designated for convenience as sy ;.
The notation sy ; is shorthand for the J** segment of the path P, or 8j € Sy in the path
Py.

Each path segment maintains a set of points p, ; = {p1,p2,..- pn}, and a con-
nection status for the points ¢sp; = {cs1,¢s2,... csn}. The points are maintained
strictly for connectivity reasons, with the exception of p,, that also determines the seg-
ment’s placement. The point p, may or may not be connected, all other points p;,
J < n, are connected by construction. This point p, = p; on segment s; € S as-
sociated with the path P, described in the last chapter. Each connection status entry
cs; € {NoConnect,Connect,CSource,C Drain, PSource, PDrain}. The first four
connection status values denote the following: not connected, connected, connected to
the source of a transistor point, and connected to the drain of a transistor point, respec-
tively. The last two status values denote connecting a point to the source of a transistor
path and connecting a point to the drain of a transistor path. The Pooh construction rules
restrict the exact connection status values a particular point may have associated with it.

Pooh constructs an interconnect path P, with a set of m segments S; as a single
node. This restriction implies that the connection status cs, of a point pg, where p; € p,,
may be equal to C'Source or C'Drain only if p, is either the first point or last point
of the path and if p, is a transistor point. Each segment s) ; may “miss” its last point
p; in which case the connection status is NoConnect. All other connected points may
be connection points or transistor points where the segment connects to the gate of the
transistor. In either case, the connection status is Connect. Figure 4-2 illustrates an
nMOS interconnection path P;, with three segments. In the figure, dotted lines indicate
connected path segments that are not elements of Pj, circles indicate connection points,
and crosses indicate transistor points,

Figure 4-2: Interconnection Path

In this path, the segments, points and connection status have the following values:

Sy ={s1,s2,83}

35

P11 = {p1,p2}
¢s1,1 = {Connect,Connect}
P12 = {p3,pa}
csy 2 = {Connect, NoConnect}
P13 = {ps,ps}

cs13 = {Connect,CSource}

A transistor path Py of type T; includes three nodes—source;, drain;, and gate;.
The connectivity of the transistor depends on the center layer Center(T}). If Center(T})
is the gate layer then possible valid connection regions are shown on the left side of
Figure 4-3. Otherwise Center(T}) is the channel, and the possible valid connection
regions are shown on the right side.

source

gate source

Figure 4-3: Connection Regions

The points that occur along a transistor path fall into two categories: 1) points
that occur outside of the transistor region, and 2) points that occur within the transistor
region. Points that occur outside the transistor region are constructed in the same manner
as points that occur along an interconnection path of type Center(T}). Notice, however,
in Figure 4-3 that there are two points that bound the transistor region whose connection
status indicate the connectivity of the regions outside the transistor. The connection status
of these two points must be either Connect, for connect to the gate of the transistor,
PSource, to connect to the source, or PDrain, to connect to the drain. Points that
occur within the transistor region are: 1) transistor points if they occur directly on the
line—with connection status equal to Connect, or 2) connection points if they occur
along the side of the transistor—with connection status equal to PSource, PDrain or
N oConnect for a gate center transistor, or Connect or NoConnect for a channel center
transistor. Figure 4-4 illustrates two transistor paths P; and P», and their connection
status values.

36

2.1

PZ
Figure 4-4: Two Transistor Paths

S1={s1,1,812} S ={s21,822}
P11 = {p1,p2,p3} P21 = {p7,p8,p9}
csy 1 = {Connect,Connect, PSource} ¢sy; = {PSource, Connect, NoConnect}
P12 = {p4,ps,p6} P22 = {p10, ps}

cs1 2 = {Connect,Connect,Connect} sy = {PDrain,Connect}

The possible connection status designations allow the description of all valid
interconnection and transistor paths. Pooh assigns the actual connection status during
the circuit synthesis. It is always possible to detect the appropriate valid connection
status from the circuit element context.

4.3 Node Propagation Algorithm

Pooh assigns nodes numbers to each element, and then propagates these node numbers,
based on the connectivity, using Rem’s equivalence algorithm. Pooh assigns each
point and each path unique node numbers. Then, it uses the following algorithm to
ensure that two elements, represented by the node numbers Ny and N, are connected if
and only if nodenumbers[N;] = nodenumbers{N].

Given a point p,, a node number Ny, and a connection status cs,, then the following
algorithm ensures that the node number of point p, is equivalent to Ng.

37

define point_equivalence (Ni, cs4, pg)

if ptran(p,) then
if ¢sy = CSource then equivalence (Ng, source;)
else if ¢sy = CDrain then eguivalence (Ng, drain,)
else equivalence (Ng, gatey)
fi

else equivalence (Nk, nodeg)

£i

enddef

The following algorithm ensures that connected paths maintain the same node numbers:

define interconnect equiv(FPy : interconnect)
for s; € § do
for P E P,y €8 ECS; do
point equivalence (nodex, c¢s, p):
od
od
enddef

define transistor equiv(F; : transistor)
EndOfTransistor «— false;
for s; € § do
for p €pg;, cs €Sk do
if EndOflransistor then
point equivalence (nodex, cs, p)
else
if ptran(p) then equivalence all three nodes
else if cs = PSource then
point_equivalence (sourcex, c¢s, p)
else 1if cs = PDrain then
point_equivalence (dratng, cs, p)
else point equivalence (gatex, cs, p)
fi
if EndOfTransistorPoint(p) then
EndOfTransistor «— true;
nodey «+— appropriate node number based on cs;
fi
fi
od
od
enddef

define path equiv(Fx)
if transistor(Px) then transistor_equiv (Fg)
else interconnect equiv(F) fi

enddef

38

The top level node propagation algorithm takes a description of a Pooh circuit—z
paths and r points. First it assigns a unique node number to each path and point. Thus the
number of node numbers is ~ z+r. Then, for each of the z paths, P, € P, the algorithm
invokes path_equiv. The number of times equivalence is invoked is within a factor
of three of the number of times point_equivalence is invoked. For a path P, withm
segments, each with an average number of n points, point_egquivalence is invoked
nm times. Both n and m are small, therefore we may define a constant K that is
the average constant cost of executing path_equiv. The expected cost of executing
equivalence is log(z+r). Thus the time complexity of the node propagation algorithm
is C=2zx K xlog(z+r) or O(zlog(z +r)).

The algorithms described in this chapter allow us to construct valid interconnec-
tions of circuit elements. These algorithms coupled with the previous algorithms ensure
GDR correct circuit elements and valid declared interconnection. In order to ensure a
fully functional circuit, we need to be able to detect illegal interactions between elements.
The next chapter describes these algorithms.

39

5. Analysis Algebra

This chapter describes a set of operations that allow the detection of illegal interactions
between the Pooh structures. Pooh creates the interconnection and transistor paths,
contacts and transistor points in a way guaranteed to meet the GDRs by construction.
Most of the difficult and context sensitive geometrical rules are met during the synthesis
phase. There are a few simple interaction rules between elements that must be checked
in order to guarantee the GDR correctness of the Pooh circuit. The GDRs that Pooh
must detect are spacing and angle rules between transistors, interconnection wires and
contacts. The primitive operations that allow Pooh to detect possible violations are point-
point, line-point, arc-line and arc-arc interference detection. The first section presents
the primitive operations, and the second section shows how the circuit GDR rules are
mapped onto these operations.

5.1 Primitive Operations

The first and most straightforward operation is point-point distance calculation. The
distance between any two points p; and p;, according to Pythagoras, is simply:

PointDis(p1,p2)= \/(:1:1 — 22)%4+(y1 — v2)°. (5-1)

The following function decides whether or not two point are too close:

define points_too_close(p;, p, min_dis): Dboolean
points _too close « PointDis(pi,p2)< min_dis;
enddef

The second operation is deciding if a point p; is too close to a line Ly(z,y).
The line is represented by the normalized line equation, described in equation (3-1),
Li(z,y)= Aiz + By + C;. The distance from a point to the line, as shown in equation
(3-3), is:

LineDis(Li,pg)= Aizq + Byyg + Ci.

The line equation represents an infinite line but the line Ly(z,y) is a finite line
segment. This check must ensure that either the point really falls between the line's two
end points, in which case the distance 1s valid, or the point is too close to one of the end
points. Pooh calculates the point p;n; on the line Ly(z,y) where a line from pip to
p1 is perpendicular to Ly(z,y), and then uses this point to detect a true violation. This
straightforward calculation, as shown in equation (3-9), is:

40

Cj = Bizg — Aiyq
print(Li,pg) = (BiC; — A;Cy, —ACj — BCy).

The following function determines if there is a GDR violation:

define between end points{pi, P2+ pine: point): boolean
between_end points « (zyminz)< z;, < (z;1maxz,;) &
(y1 miny2) < yine < (y1 maxy,);
enddef

define point line too_close(L;: line; bpi, ep;, p2: point;
min dis: distance): boolean
if |LineDis(Li,pz)| < min_dis then
point_line too_close « between_end points(bpi, ept, PLint)
OR PointDis(bpi,p2)< min_dis OR PointDis(epi,p2)< min_dis;
else point_line too close « false;
fi
enddef

Pooh must detect the GDR interference between two arcs, A1 and 4;. An arc,
as defined in Section 3.1, is A; = (ry, pi, P§, Ai+1). Pooh uses both arc radii, r; and r;,
and the point distance between p; and p; to determine if the arcs could conceivably be
too close, as shown in Figure 5-1. If the distance between the circles determined by r;
and r; is less than the GDR spacing rule, then the arcs themselves must be examined.
The two arcs A1 and A, interfere if and only if the line from p; to p; intersects A2 and
the line from p, to p; intersects Aj.

(-c0S,-5inB) PR

P
Figure 5-1: Arc Overlap Detection
A line from the point p; to p; intersects the arc A3 if the point on the unit circle

(- cos 9, —sinf) is on the unit arc U(A2), as shown in Figure 5-1. The definition of a
unit arc U(A,), as described in Section 3.2, is:

41

Figure 5-2: Line-Arc Proximity Detection

U(Aq) = (P;, p;+l7 d“’)

1, 1>
dir:{ I
-1, ry <O.

The functions otherhalf, and reverse from the same section are used in the following
algorithm. The function point_in is defined in terms of the circle approximation. The
actual definition of this function is described in Chapter 7. This algorithm detects
interference between two arcs A; and Aj:

define point in(U;, p,;): boolean
arc overlaps with point
enddef
define arc_inbetween(p;, p;j, U;; point_dis: distance): boolean

if dir;<0 then U; « otherhalf (reverse (U;)); fi
"(—cosf,~siné)"
arc_inbetween + point_in(U;

[(z; — z7) /point_dis, (yi—y;)/point_dis]);

enddef
define arcs__interfere(ﬂl, Az: arc; min_dis: distance): boolean
var point dis: distance:;

point dis « PointDis(pi,ps);
if (point_dis—|ri|—|r;|]) < min_dis then
arcs_interfere + arc_inbetween(pi, p2, U(A2), point_dis)
AND arc_inbetween(pz, p1, U(A1), point_dis);
else arcs_interfere + false;
fi
enddef

Pooh must also detect GDR interference between a line Li(z,y) and an arc 47. A
possible violation may be detected using the line-point distance method, and representing
the arc A, as a circle of radius r, as shown in Figure 5-2. Given a possible violation,
the line-arc interference check is half of the arc-arc detection check, using the calculated
point p;,;, as shown in the figure.

42

The function that performs the line-arc check is as follows:

define line__arc.__interfere(L;, Ax: min dis: distance): boolean
if (|LineDis(Li,p2)| — |r2])< min_dis then
if between_end points (bpi, epi, Piint) then
line_arc_interfere « arc_inbetween(
plints P2, Ul(A2), |LineDis(Li, p2)|) ;
else
line_arc_interfere « (PointDis(bp;,p;)<min_dis AND
arc_inbetween (bp1, p2, U(A2), PointDis(bp1,p2)))
OR (PointDis(ep1,p2)<min_dis AND arc_inbetween (
ept, p2, U(A2), PointDis(epi,p2)));
fi
else line arc_interfere « false;
fi
enddef

Finally, Pooh must calculate the angle between two line segments L;(z,y) and
Ly(z,y). The dot product of two lines L;(z,y) and L;(z,y) emanating from a common
point yields the cos @ of the angle & between the two lines. This result may then be
compared to cosp, where ¢ is the minimum legal angle, to detect an illegal angle.
Notice that the value cos ¢ is calculated once by Pooh, and not each time an angle
comparison is make. The dot product is simply:

DOtPTOd(Ll, L2)= Ly Ly =cos8 = A{Ap + B1B».

The function that detects an illegal angle is:

define check angle(L;, L2, cosp): boolean
ensure the directions of Ly and L are the same
check_angle « DotProd(Li, L2}< cosp;
enddef

The errors Pooh must detect are distance and angle errors. The four functions:
1) points_too_close,
2) point_line too_close,
3) arcs_interfere, and
4) line arc_interfere,

provide Pooh with the capability of detecting distance errors between lines, points, and
arcs. The spacing analysis of transistors, interconnection and contacts is performed using
these functions. The function check_angle allows Pooh to detect angle errors between
lines. Interconnection and transistor angle checks are performed using this function.

5.2 The Geometrical Design Rules

The geometrical design rules, as mentioned before, are the rules dictated by the fab-
rication technology that govern how elements may be constructed, and how they may

43

legally interact. The elements are transistors, interconnection wires and contacts. A
contact is a connection point between paths of different logical layer types. Transistors
are the devices of the technology, and interconnection wires are the paths that connect
the devices together. Surround paths are interconnection wires that define entire regions.
This section presents the interaction GDR definitions. These definitions are extensions
of the synthesis GDR definitions, presented in Section 3.2,

First, let us define some Boolean functions that differentiate between the different
kinds of Pooh elements. In Pooh, points may either be transistors, contacts or g-points.
A g-point is a connection point between one or more paths of the same logical layer
type. Paths may either be transistors or interconnection wires. Let transistor(T}) and
ptran(p,) denote functions that indicate whether or not a path type or a point is a
transistor. Let contact(py) and g-point(p,) indicate whether a point is a contact or a
g-point respectively.

Every element in Pooh is typed. As described earlier, a path P, has a path
type Ty. Points are also typed. Since a g-point is always part of a path, the type of a
g-point p, is a path type T,, specified by the function PathType(p,). Since transistor
points represent the same type of devices as transistor paths, the type of a transistor
point p, is a path type T, denoted by the function TranType(p,). Finally contacts have
unique types cq. This type represents the different contacts in the target technology. Let
ContactType(p,) denote a function that indicates the contact type of a contact p,.

The following are the definitions of Pooh’s GDR spacing rules:

minUnC Space(Ty,Ti) = minimum edge to edge spacing between
unconnected paths of type Ty and T,
minC Space(Ty, T;) = minimum edge to edge spacing between
connected paths of type Ty and T;
minInsideSpace(Ty, T;) = minimum inside spacing between a surround
path of ype Ty, and a path of type T},
minOutsideSpace(Ty, Ti) = minimum outside spacing between a surround
path of ype Ty and a path of type T,
minUnCContactSpace(cq, c,) = minimum unconnected point-point spacing
between contacts of type ¢, and c,
minCContactSpace(cq, ¢,) = minimum connected point-point spacing between
contacts of type ¢q and c,
minUnCC PSpace(Ty, ¢q) = minimum unconnected spacing between a
path edge of type Ty and a contact of type c,
minCCPSpace(Ty, c;) = minimum connected spacing between a path
edge of type Ty and a contact of type c,
minInsideCSpace(Ty,c,) = minimum inside spacing between a surround
path of type Ty and a contact of type c,

minOutsideC Space(Ty, ¢q) = minimum outside spacing between a surround

44

path of type Ty and a contact of type ¢,
minAngle(Ty, T;) = minimum angle between paths of type
Ty and Ty.

The spacing GDRs indicate legal distances between the edges of the paths. The
spacing rules are defined in this manner because center-line distance depends on a par-
ticular path radius. Thus we define a set of functions that gives the actual spacing rules
for the particular elements we are analyzing.

The distance between two line segments is determined by the distance between a
line Li(z,y) and a point p,, plus the line radius and the point radius. The radius of the
line Ly, j(z,y) is Wi/2, and the radius of the two parallel lines L} ;(z,y) and L} (z,y),
as shown in Figure 3-5, is mr(T%). The radius of a point depends on the kind of point.
The two ends of a path are constructed according to the minimum radius of the path type
mr(T}) rather than the actual radius Wy, as shown in Figure 5-3. The minimum radius
is maintained to allow perpendicular connection between paths of different widths. The
circle surrounding pg of radius r = W}, /2 does not properly represent the path end. Thus
Pooh must examine the two points po; and por to fully determine the dimensions of the
path end. These two points are intermediate points, and not actually represented, but
rather calculated from the point py and the line Li(z,y), using equation (3-7). Every
path has at least four such points for the two end conditions—pg;, pors Pmi, and ppy, for a
path of m segments. In a minimum width path the intermediate points are redundant, i.e.,
Po = por = por and Py = Pyt = Pmr. Let IntPoint(p,) denote a function that indicates
whether a point is an intermediate point, and IntLine(L;(z,y)) denote a function that
indicates whether a line is an intermediate line L(z,y) or L}(z,y).

Figure 5-3: Path End Conditions

Two functions that yield the radius of the point pj ,, meaning the point p, on the
path Py, and the radius of the line Ly ;, meaning the line segment L;(z,y) associated
with the segment s; on the path Py, are:

mr(Ty), IntPoint(pg,)
Pathprad(Pk,q) = {er/‘z otherwise. :

mr(Outside(Ty)), IntLine(Ly j)Atransistor(Ty)
mr(Tk), IntLine(kaj)

Wy /2 4+ OutsideOver(Ty), transistor(Ty)

Wi/2, otherwise.

Pathlrad(Ly ;) =

45
The design rule functions are:

ppspace(Lyg j,pi,4) = minUnCSpace(Ty, T;)+ Pathlrad(Ly ;)+Pathprad(pi)
Cppspace(Ly ;,p;) = minCSpace(Tk, T;)+Pathlrad(Ly)+ Pathprad(p; ;)
Ippspace(Ly, ;,pq) = InsideSpace(Ty, Ti)— Pathprad(piq)
Oppspace(Ly ;,p,) = OutsideSpace(Ty, Ti)+Pathprad(p; q)

cpspace(Ly ;,pq) = minUnCCPSpace (Tk,C'ontactType(pq)) + Pathlrad(Ly ;)

Ccpspace(Lg,j,pq) = minCCPSpace(Tk,ContactType(pq)) + Pathlrad(Ly,;)
ccspace(pg, pr) = minUnCContactSpace (ContactType(pq),

ContactType(p,.))

Cccspace(pg, pr) = minCContactSpace (ContactType(pq), ContactType(p,))

cosAngle(Ly j, Li ;) = cos (minAngle(Tk, Tz)) .

5.3 Point Analysis

Pooh must check that its points’ interactions with other elements do not violate any
GDRs. There are three types of points: contacts, transistors, and g-points. There are
also two types of checks: point-point and point-line. The possible combinations of the
types with the checks are large, but fortunately unnecessary. G-points are only used to
represent the ends of path segments, thus the checks associated with the g-points may
be ignored in this section since interaction checks between paths will detect any possible
violations involving g-points. Transistor point analysis is necessary only in a very local
area. Thus most of the point checks involve contacts.

Transistor Points

Transistor points either represent a connection on a transistor path, as described in Section
4.2, or they occur at the intersection of interconnect segments. If a transistor point
occurs along a transistor path, it has no GDR significance, since the checks applied to
the transistor path will catch any GDR violation. Thus the only transistor point of interest
to the analysis phase is the transistor point at the intersection of interconnect segments.
These interconnect segments must be perpendicular as part of the construction criteria
enforced by Pooh.

The transistor overlap rules, as described in Section 3.2, dictate how far the
channel and the gate layers must extend beyond the gate region. Pooh either calculates
the four points surrounding a transistor point p, using equation (3-10), or checks to see
if an existing point is too close to a new transistor point. Examples of these four points
are shown in Figure 5-4.

Given a transistor point py, there must be at least three segments: 8 gateqs Ssourceqs
and 8raing, With the line equations Laourceg (2,y)= Laraing (£,y). The line Lgare, (, y)

46

source

drain
Figure 5-4: A Transistor Point

is perpendicular to the lines Lysurceq (z,y) and Liraing (z,y). These constraints are
maintained by Pooh during the construction of any transistor point. Pooh finds the four
closest interesting points by looking along each of the three segments, and then checks
that valid overlap rules are met.

The following algorithm checks for valid transistor overlap:

GateOver (TranType(pq)) g-point(p.) A
—mr (Gatc(TranType(pq))) +w, Gate(p,,p,)
ChannelOver (Tra.nType(pq)) g-point(p,) A

—mr (C’hannel(TranType(pq))) +w, Channel(p,,p,)

TOverLap(p,, pryw)=
minCC PSpace (TranType (pq),

C'ontactType(p,.)) + w, contact(p,)
minC Space (TranType(pq) ,
TranType(p,.)) + w + Width(p,) ptran(p,).
\
define point illegal(pg, pr, twidth): boolean

if calculated point then point_illegal « false
else point illegal «
points _too_closel(py, pr» TOverLap(p,,pr,twidth)) fi
enddef

define transistor overlap_illegall(p,;): boolean
transistor overlap illegal +«
point_illegal(p,, NeztlnterestingPoint(ssource,)r Length(p,)/2) OR
point_illegal(p,, Nea:t]nterestinng'nt(sdmmq), Length(pg)/2) OR
point_illegal(p,, LastInterestingPoint(sgate,), Width(p,)/2) OR
point_illegal(p,, NeztInterestingPoint(sgates), Width(p,)/2) ;
enddef

47

Once Pooh ensures that the overlap rules for a transistor point p, are met, the
point does not need to be included in any other GDR check. Since the segments Syateq,
Ssourceq> ANd Sdraing surround p, on four sides, and since Pooh’s model of a transis-
tor dictates that connections to a transistor point must be perpendicular to the other
connecting segments, it is not possible for any other segment to be connected to p, ex-
cept through Sgate;, Ssourceqs OF Sdraing- Any element that is connected to the transistor
through these segments will be on the other side of the four surrounding points, since
Pooh used the first interesting point along each segment to check overlap. Thus any
other connected element’s design rule distances will be limited by the transistors four
overlap points, and not by the transistor itself. Assuming that the design rule spacing for
the transistor point to unconnected elements is less than or equal to the transistor overlap
rules plus the overlap point spacing to the same elements, then all unconnected elements
will be in violation with one of the four overlap points or the segments s;ateq, Ssourceq
and sgrain, before there is GDR violation with the transistor point. This assumption is
reasonable for all known design rules. Thus we may exclude all transistor points from
the remaining analysis.

Contacts

Contacts are structures in the technology that allow connections between the different
interconnection layers. They have a unique set of GDRs. The contact checks however are
straightforward. First, contact-contact spacing rules use point-point distance calculations.
Second, contact-path spacing rules use point-line and point-arc distance calculation. The
point-arc comparison is a degenerate case of an arc-arc comparison.

Pooh’s model of legal interactions involving contacts is simple. Two contacts
must be the connected contact spacing distance apart—Cleccspace, if their node num-
bers are the same, denoted as Same Node(p,, p,), and the unconnected contact spacing,
ccspace, apart otherwise. Often these two spacing rules are the same. A contact must be
the connected contact-path distance apart, Ccpspace, if the two share a common node,
otherwise they must be contact-path spacing, cpspace, apart. Figure 5-5 illustrates the
contact spacing rules.

Ccpspace
) PP

<>
ccspace
' O
(‘X‘) cpspace \J
pa _/
Ccespace

Figure 5-5: Contacts Spacing

The algorithms to analyze contacts and contacts and lines are:

48

define contact_contact_illegal(p,, p;): boolean
if SameNode(p,,p.) then
contact_contact_illegal « points_too_close(p,, pr, Cccspace(pg,pr))
else
contact_contact_illegal « points_toco_close(p,, pr, ccspace(py,pr))
fi
enddef

define contact_path_illegal(p,, Fx): boolean
error_found « false;
for s; € § do
if SameNode(p,, Px) then
error_found « error_found OR
point_line_too_close(Lj, bp(s;), ep(s;), pqr
Ccpspace(L;(z,y), pg))
OR arcs_interfere(4;, [p,, 01, Ccpspace(L;(z,y),pq)) ;
else
error_ found « error_ found OR
point_line_too_close(Lj;, bp(s;), ep(s;)s pqs
cpspace(L;(z,y), py))
OR arcs_interfere(A;, [p,, 01, cpspace(L;(z,y),p,)) ;

fi
if transistor(Tx) AND EndOfTransistor(s;) then Ty « Center(Ty); fi
od
contact_path_illegal « error_ found;
enddef

5.4 Path Analysis

Pooh must ensure that each path’s interactions with other elements is legal. The algorithm
that detects a path’s illegal interactions with points was described in the last section.
What remains is interactions between paths. There are two types of paths: intercon-
nection and transistors, and three types of path interactions: interconnect-interconnect,
transistor-interconnect, and transistor-transistor. All of these interaction checks are very
similar. For a particular path, Pooh performs two different checks: checks between
connected segments, and checks between unconnected segments.

Connected Segments

Pooh has a model of what constitutes a legal interaction between unconnected and con-
nected path segments, independent of a particular set of GDR values. The angle between
two segments s ; and s; ; sharing a common point must be greater than the minimum
angle rule minAngle(Py,). Two segments si; and s;; connected through another
segment, whose shortest distance is less than the minimum connected spacing are GDR
correct if: 1) the angle between Ly ;(z,y) and a constructed line L} ,(z,y), parallel to
Ly i(z,y) through the closest end point, is greater than a fixed angle +, and 2) the end
points bp(s;,;) and ep(sk ;) are both on the same side of the line Ly ;(z,y). Figure 5-6
illustrates legal and illegal connected segments. Pooh uses the angle # = 45°. In fact

49

—

d’? | d<Cppspace 3
CYiJ C_J¥>

Legal Illegal

‘QQ(_R____ Illegal
N N J
Figure 5-6: Legal and Iilegal Segment Connections

this model not only applies to segments that share the same node, it also applies to
segments connected through a point transistor. Figure 5-7 illustrates examples of legal
interactions between segments. All other pairs of segments must meet the specified path-
path spacing rules. If two segments share a common node, then they must be Cppspace

apart, otherwise they must be ppspace apart.

Figure 5-7: Legal Connections between Segments

The algorithm to check all connected interactions for the segment si ; is:

e(Lky, Lij, PointInMiddle): boolean
— 1if pointInMiddle then

check_angle(Lgi, Lij;, cosAngle(Liy, Li)

BND check_angle ([—Akx;,—Bk:l, Lij, cosAngle(Lk;, Lis))

else check angle(Lgi, Li;, cosAngle(Li;, Li;)) £1

check line angle

enddef

50

define segment connections_illegal (sgy): boolean
error found « false;
for pepg, do
for s; € segments connecting to p do
error found + error_found OR
check line angle (Lgj, Li, p # lp(skj)Ap # py) 7
if not error_found then
for ppep; do
error found « error_found OR
removed_ segments_illegal(sg;, p2)7
od
£i
od
od
segment connections_illegal « error_found;
enddef

Segment Interactions
Pooh must detect path segments that violate the spacing rules maintained in the GDR
description. Thus for each path segment, Pooh examines “interesting” other segments that
may create potential spacing violation. How exactly Pooh might decide what constitutes
an “interesting” segment is not addressed in this chapter. Chapter 7 describes an approach
to this segment proximity problem. This section describes how, given two segments,
Pooh detects a GDR violation.

Each Pooh path is composed of path segments. Each path segment includes a
line segment and an arc. Figure 5-8 illustrates examples of interconnection and transistor
paths.

Psc P3 Py

Poi Ps Por
Figure 3-8: Example Paths

51

Pooh compares two segments s; and s, by comparing the two lines L;(z, y) and
Ly(z,y), the two arcs A7 and A3, and the arcs to the lines L;(z,y) and 43, and L;(z,y)
and A;. Obviously, if one or both of the arcs is of zero radius, then some or all of the arc
checks are unnecessary. The arcs_interfere algorithm detects an arc-arc violation,
and the line_arc_interfere algorithm detects a line-arc violation. Two lines may be
compared by noticing: given two non-intersecting lines L; (z, y) and L,(z,y), the closest
point to Li(z,y) on Ly(z,y) will always be at one of the end points of L,(z,y). Thus,
Pooh may detect a spacing violation between two line segments Li(z,y) and Ly(z,y)
by first checking for intersection. If there is no intersection, then Pooh compares the end
points of the Ly(z,y) line to Ly(z,y), and vice-versa. Intersection may be determined
by using the signed distance LineDis(L;(x,y),pq). Two lines intersect if and only if:

Sign (Lz'neDis(Ll (z,y),bp(L2(z, y)))) # Sign (LineDis(Ll(x, y), ep(L2(=, y)))) .

The radius of the beginning and ending of a Pooh path P, is constructed accord-
ing to the minimum radius of the path, mr(T%), rather than the path radius W} /2. This
construction allows perpendicular connection between paths of different widths. While
this approach to path ends has been found to be extremely convenient, it adds some
complexity to the analysis of two path segments. If the first or the last point of an m
segment path, points pg Or pr,, is found to be too close to another line segment L;(z,y),
based on the GDR ppspace, which uses the point radius Pathprad(py), an error might
be detected where none exists. If this condition is detected, Pooh must recalculate the
distance using the intermediate points po; and po, or ppy and pm,. A similar situation
occurs with the line L;(z,y), at which point L!(z,y) and L}(z,y) must be introduced.

Finally, an additional level of complexity is introduced by transistor paths. A
transistor path Py, includes two logical layers, introduced as Center (T}) and Outside(T})
in Section 3.2. If Pooh were to assume that the transistor path radius was W, / 2, then
there are GDR violations that would not be caught, since this width is only the width
of the center layer and does not take into account the outside layer. But the radius of a
transistor path calculated by the function Pathlrad(Ly,;), assumes the worst case radius
everywhere. The transistor region of a transistor path begins on the first segment, or s;.
For an m segment transistor path there is a segment, denoted s,, where 1 < e < m, on
which the transistor region ends. Figure 5-8 illustrates a transistor path example where
the number of segments m = 3, and where the transistor region ends on the second
segment, or e = 2. If a potential error is detected on the segments s; or s,, Pooh must
examine the segment more closely. In fact the segment s, may be decomposed into
two separate line segments: (1) the line L.{z,y) with beginning point equal to bp(s.)
and ending point equal to ep(s,), path radius equal to Wy /2, and (2) the line L.(z, y)
with beginning point bp(s.), and ending point equal to the transistor end point ¢,, path
radius equal to W,/2 4+ OutsideOver(Ty). Given these two line segments, Pooh can
detect the existence of a true GDR violation. Segment s receives similar treatment. All
path segments included in a transistor path beyond the segment s, are identical to an
interconnect path of type Center(T}), as shown in the figure.

The functions that compare two lines L;i(z,y) and Ly(z,y), and introduce the interme-
diate lines and points as necessary, are:

52

define compare__lines_to_point(Lk,j, pii) @ boolean
compare lines to_point «
point_line_too_close(Ly,, bp(Ly), ep(Ly;)s pii, ppspace(Li ;, pii))
OR point_line_too_close (LY ;, bp(Lg,)s ep(Ly;)s priv
ppspace (L ;v pis)):
enddef
define compare_line to_points(Lx;, Lii, pi): beolean
compare line to points «
point line too_close(Lk;, bp(Lky), ep(Li ;). Prese; (Liis i)y
ppspace (Lejspiest, (Liir prsi)))
OR point_line“too_close(Lk,j, bp(Lk‘j), ep(Lk,j), Pright{(Ll,il DLil s
ppspace (Lgjs Pright; (Liis pri))) i
enddef

define compare_lines_to points(Lg;, Lii, pii): boolean
compare lines to points +
compare_lines_to_point (Lg;, Pleft; (Liir p1s))
OR compare lines_to_point (Lgj, Pright, (Liir pPri)) s
enddef

define compare two_lines{Lg;,Lis, kfirstorlast, lfirst, llast): boolean
error_found « segments_cross(Lgj,Lii):
if I[first then
error_found « error found OR
if kfirstorlast then compare_ lines to points (Lgj, Lii, bp(Lis))
else compare line to_points(Lyx;, L;;, bp(Li)) £i;
else
error found +- error_ found OR
if kfirstorlast then compare lines to point (Lg;, bp(Li:))
else point_line too_close (Ligj;, bp(Lky), ep(Lk;) bp(Lii),
ppspace (Lg;, bp(Lii))) £i;
fi
if llast then
error found + error_ found OR
if kfirstorlast then compare lines to points (Lkxj;, Lii, ep(Li;))
else compare line to points(Lgj;, Lii, ep(Li;)) f£i;
else
error found ¢« error_ found OR
if kfirstorlast then compare lines to point (Lg;, ep(Liy))
else point line_too_close(Lg;, bp(Lk;), ep(Liy) ep(Lii),

The algorithm that compares two interconnection paths for possible design rule violations

182

53

define wire_ in error(Fi): boolean
error_occured « false;
for s; € § do
for s;; not connected and close enough to be a potential violation do
error_occured + error_occured OR
compare_ two_lines(Lggj, Lii, first orlast segment in P,
first segment in Py, last segment in Py) ;
if r; #0 then
error_occured + error cccured OR
line arc_interfere(L;;, A;, ppspace(Lk;, L;;)); fi
if r; #0 then
error_occured + error_ occured OR
line_arc_interfere(Lx;, Ai, ppspace(Lg;, Lis)): fi
if r;#0 AND r; #0 then
error_occured +« error_occured OR
arcs_interfere(A;, Aii, ppspace(Lg,;, Lis)): fi
od
od
wire in_error - error_occured;
enddef

Algorithms that find violations involving transistor paths and surround paths are
similarly defined. Algorithms for transistor paths split the first segment of a path and the
segment where the transistor region ends s, into two segments if a potential violation
is discovered. The algorithm for surround paths uses a signed distance while detecting
potential violations.

These algorithms provide Pooh with the capability of detecting an illegal interac-
tion, either spacing or angle, between any Pooh elements. Thus the Pooh representation
has the capability of: (1) defining legal transistor elements and legal interconnect wires,
(2) fully synthesizing the transistor connectivity, and (3) detecting an illegal interaction
between two elements. Therefore Pooh can fully represent any transistor level design.

54

6. Pooh Hierarchical Composition

The Pooh design methodology supports and encourages the use of hierarchy. A cell is the
building block of a Pooh design. Pooh cells are composed together to form larger cells,
which in rurn are composed with other cells. Previous chapters have discussed how to
describe transistors and their interconnection, and how to: (1) ensure that these circuits
meet the GDRs, and (2) maintain the circuit connectivity. Circuits of 100,000 devices
are common today, and the device count is on its way up. It is no longer possible for a
single designer or even a team of designers to comprehend every detail in designs of this
magnitude without an abstraction capability. A design representation that merely detects
GDR violations and maintains connectivity on a fully instantiated design would not be
a useful tool. The massive amount of information present in a large design makes the
detection process too time consuming. Once an error is found, the designers must sort
through the design and fix the problem. Each iteration is extremely costly at best and
eventually impossible. But, if there is a way to connect two or more cells together and
derive information about the composite, then an abstraction is possible. Pooh supports
this type of design approach.

This chapter describes how to compose cells described in the Pooh representation.
The first section describes the representation of Pooh cell definitions. The next three
sections describe the composition algorithms that provide three important functions: 1)
verify logical connectivity, 2) maintain the electrical node information about the new cell
being formed by the composition, and 3) ensure the Geometrical Design Rule correctness
of the new cell. The last section presents a proof of closure under composition.

6.1 Cell Representation

Internal Topology

A Pooh cell definition, denoted as C;, contains enough information to represent both its
internal topology and its external interface. The topology of a leaf cell [Rowson 80], is
a set of paths P;, and a set of points p;. A cell’s external interface is defined by a set
of sides Q; = {Q1,Q2,... Qn} that form a simply connected polygon. The shorthand
notation Q; ; is used to mean a side Q; on the cell Cy, or Q; € Q,. Each directed
side Q; ; has a corresponding set of ports 0; ; = {01,02,... 0»} and a line equation
L; ;(z,y), where the ports are guaranteed by Pooh to be both on the line, and between
the two end points of the side. Figure 6-1 illustrates a cMOS leaf cell included in one
bit of a bit serial multiplier [Mead 85]. The figure shows both the internal topology and
the external interface.

In a hierarchical design, a cell’s internal topology includes not only paths but
instances of other cells. Thus, the internal topology of the cell C; includes not only the
sets P, and p;, but a set of instances I; = {I1, I, ... I,}, and a set of internal connections

55

ic; = {4c1,1¢c2,... icn}. The notation I;; is used to mean the k** instance in the cell
C;, or I, € I; and 4c;; is the ** internal connection in the cell C;, or i¢; € ic;. Each
cell instance I; i is a placed version of another cell definition, in this discussion denoted
as cell(I). Each internal connection 1¢;; notes a connection between two instances [
and I' where I, I' € I;. Thus a Pooh cell C; is fully characterized as [P, p;, Q;, X, ici].
When a cell is in the process of being defined, the values of these sets are considered to
be the current state of the cell C;.

PHi2

VDD Voo

PHI

PHI

PH2 PHi2

\ aout

AIN

AOQUTBAR

GND
AINBAR

PHI2 AVALBAR AVAL B M

Figure 6-1: Bit Serial Multiplier Leaf Cell

The cell ports O; = 01 U 02 U... Op, for a cell with n sides, are the external
connection points of the cell C;. The ports dictate how the cell interfaces to all other
cells. Each port is typed; the port type indicates the kind of signal the cell expects at
the port. The port types are analogous to data types in a programming language [Jensen
74]. A linear set of ports are grouped together as O;; along a side Q;;. A side is
characterized by a line segment and provides the mechanism by which two cells are
composed. The cell C; is composed with C}, by connecting two sides Q; and Q;, where
Q; € Q,,and Q; € Q,. The result of this composition forms the current staze of a new
cell Cy.

A hierarchical cell C; is incrementally defined by adding instances [, ¢=1...n
to the existing instances of the cell C;. Each composition takes the cell’s current state
to a next state based on information derived from the instance. The instance I, includes
placement information about its cell definition or C' = cell(l;). There is at least one
internal connection ic,, where ic, € ic;, that represents the connectivity between this

56

instance and all other instances, I € I;. Finally the cell C contributes zero or more ports
to the sides Q; in the next state of C;.

The cell instances J; indicate the cells composed to form the current topology
of the cell C;. Each instance provides placement information about the cell definition.
The placement information is simply represented as a two-dimensional graphics trans-
formation matrix [Newman 79], where the orientation information is provided when
composition is defined, and the translation information is derived from the composi-
tion. An instance is positioned in order to connect the two sets of ports defining the
composition.

Each internal connection i¢; ; is an indication that two ports from two distinct
instances are electrically equivalent within the cell C;. Each time a composition occurs
between two sides Q; ; and @q,,, an internal connection ¢¢ is defined for each pair of ports
that connect. The internal connections provide the representation of the cell’s internal
connectivity and allow the cell’s external interface Q; to reflect the cell’s connectivity.
Figure 6-2 illustrates a cell composed from several other cells.

External Cell Interface

Though it is important to fully represent a cell’s internal topology, it is perhaps more
important to be able to derive a cell abstraction E(C;). This cell abstraction must fully
represent the external interface of the cell Cy, while hiding the details of the cell imple-
mentation. Pooh actually uses E(C;) for composition instead of the cell C; and guaran-
tees the composition according to the three criteria — logical, electrical and geometrical.
The external cell E(C;) is fully characterized as [P/,p}, Q;]. The paths P/ and points
p; are those of geometrical interest along the cell interface. These sets are derived from
both the paths F; and points p; and other cell abstractions E(cell(I; ,)), where I; , € I;.
The size of P/ and p! is small as compared to an instantiation of C;. Figure 6-2 illustrates
the information present during the definition of the cell, and the cell abstraction of the
new cell. The cells in the figure comprise one bit stage of a cMOS bit serial multiplier
[Mead 85].

6.2 A Composition Algorithm

Given the current cell Cy, a composible interface £(C,), and two or more sides to be com-
posed, Pooh composition is a function that maps the current state of C; [P, p;, Q,, i, i¢]
into the next szate [P*,p2, QF, I7,ic}]. Initially the sets Q; = 0,1; = @, and ic; = 0.
If either Q; or Q, form a concave polygon, the composition may include more than one
pair of sides. For example, in Figure 6-3, C; connects to £(C,) by connecting Q;4 10
Q.2 and Q.5 to Q. This composition may be performed by iteratively connecting
paired sides and then checking for consistency. All side pairs must be connected before

Pooh checks the GDR correctness.

Two cells are connected by connecting two sets of sides Qf = {Q;,Q;41...
Qn} C Q;and QF = {Q;,Qj41 ... Q."} C Q. 'The sets Qf and Q7 consist ofcc?nnected
edges — that is given the set Q, the sides contained in the sets Q¢ and @ — Q¢ intersect
at two and only two points. The composition function must:

(1) order the sets of ports appropriately and syntactically verify that each pair of

ports, o; € OF, o;. € Oy, may logically be connected,

57

t Stage

(a) Full Geometry Of One Bi:

Figure 6-2

58

A
R

’\&m&&\\m\w

e e

Figure 6-2: (b) Composition of Cells

59

BENNININN

GND (A7T~E & (1)) GND
AINBAR (R B A yoR
M
KILL
PHIC PHIC
MBAR MBAR
VDD VDD

Figure 6-2: (c) Cell Abstraction

60

Figure 6-3: Concave Connecting Sides

(2) calculate the placement of the cell E(C;) based on the side abutment,
(3) add an instance I, representing the cell E(C,) to the set I,

(4) add an internal connection ¢ for each connection between the two port sets O; ;
and Oq,j,

(5) update the connectivity of the cell C;,

(6) verify the GDR correctness of C; and if necessary adjust the placement of the
new instance, and finally

(7) update the sets p;, P; and Q.

Logical Verification

In order to understand Pooh composition, it is easier to simplify the composition function,
describe how the simple function works, then introduce the additional functionality.
Assume for the moment that Pooh composition takes two side sets QF and Q¢Z, checks
that the ports may logically connect, adds a new placed instance, and updates the set Q..
This composition function is strictly a syntactic operation since it no longer maintains the
GDR integrity or the cell connectivity. For clarity, let us also assume that composition is
done by abutment [Rowson 80] — i.e., once the composition is complete |L{ ;(z,y)| =

ILZ,j(x>y)i'

Each port o is both typed and named. The port type is chosen from a small set of
allowable signal types {input, output,input/output, clock,vdd, ground}. The function
PortConnect(o) indicates the set of port types to which this port may connect. The
port name, if present, indicates the signal the port expects. For example, the port type
may be clock, and the signal may be ¢;. The algorithm to verify logical connectivity is
as follows:

61

define Connect Ports({;, 0,): boolean
Connect _Ports « true;
for oj € 0;,0; € 0y do
if PortType(o)¢ PortConnect(o;) OR PortType(o;)¢ PortConnect(o})
then Connect_Ports « false
fi
if ezists(PortName(oj)) AND ezists{PortName(o})) AND
~ CompatibleNames(Port Name(o;), PortName(o})) then
Connect_Ports +« false
fi
od
enddef

The ports O; of a cell definition C; specify where a connection may occur. A
particular instance of a cell may not use the complete set of ports, but instead use a subset
0! € O;. The unused ports may either be individual ports, where o,mi € O, in the cell
C, or entire sides, where Oypm;; is the entire set of ports on the side Q € Q,. For example
in the Figure 6-2, this cell is repeated n times to form an n bit bit-serial multiplier. The
last instance, or bit n, does not use any ports on the west side, therefore these ports are
omitted during the n* composition. Individual port omissions are common on buses
that occur along an edge and cover the intersection of two edges. A port to the same wire
may appear on two edges, and different instances omit one or the other. A composition
in Pooh requires the cell sides Q,, the sides to be composed, QF, and a set of sides
with the ports to be omitted Q¢ " The ports in the set ngitq may include both ports

omit
on the composition sides Q, and ports not on the composition sides, or @, — Q7. In
either case, the ports in the set ngitq are not connected and do not remain after the

composition. The paths and points used to define these omitted ports become normal
Pooh path and points, and are treated by Pooh accordingly.

The function that removes omitted ports from a side Qcompose 1S:

define Omit_Ports(Qcomposer Lomit)
for Q, € Q pmi: do
if Lo(z,y)= Leompoee(z,y) then
Ocompoae — Ocompose - Oo;
fi
od
enddef

define Omit_All Ports{Q.omposer Lomit)
for Q€ Qompose 40
Omit_Ports(Q, Q mie) ¢
od
enddef

In order to create a new set of sides QF, Pooh must first compute the placement
information for the new instance I,. The orientation, rotation and mirroring of the

62

instance is specified by the designer, since without this information the composition
operation is ambiguous. Assuming that the side Qg ; € Qg is oriented correctly, then
in order to compose Qg ; with Q;; € Qf, either A;; = Ag; and B;; = B, ; or
A;j = —Aq; and B;; = —B, ;. Itis thus a straightforward transformation to change
both side sets into clockwise polygons, as shown in Figures 6-3 and 6-4. Once the
directions of the sides are consistent, it is easy to calculate the translation factors Az
and Ay and ensure that all sides Q; ; and Q, ; abut using the translation factor.

.

>
>

&

Figure ©6-4: Connecting Sides

Once the translation factor is applied to all the ports, the function that takes the
two sets Q; and Q,, and maps them into a new set Q7 is:

[Li(z,9), 01U On], Al=AnAB =BaAC=Cp

Merge(Q;,Qm) = {{Qz,Qm}a otherwise.

ComposeSides(Q;, Q,,
Qjny Qi) = (2, —{Qj-1,Q5,Qj+1--- @n,Qnt+1})
U Merge(Qj-1,Qm+1)UMerge(Qny1, Q1)
U(Q, —{Qk-1,Q%,Qk+1--- Qm, Qm+1})-

The function that composes an external cell E(Cy) to the current state of C,
removes the omitted ports, and produces the next state of the cell is:

define Compose (C;, E(C,), QF, 25, Qam“{, Qom“q, orient: transform):
boolean
var composible: Dboolean;
I: instance;
composible « true;
I « newinstance (E(C,)) ;
orientCellSides (I(E(C,)), 2§, orient);
make sure Q. an are clockwise polygons

8 =
o Q

q

63

for Q; € Qf,Q; € Q; do

Omit_Ports(Qjr Qoms,)i

Omit Ports(Qjr Qomit,)?

if A; # —A} OR B; # —B; OR size(0;)# size(0]) then
composible « false fi

if =1 then Az, Ay« translation({0;, 0}

else if Az,Ay# translation(0;, ;) then composible « false

fi

apply_translation(0],Az,Ay);

composible + composible AND Connect Ports(0;, 0));

Cj+ C; — (AL x Az + By x Ay);

od
for Qe (Q,— QF) do
Omit_Ports(Q, Qopm,) 7
apply_translation (0, Az, Ay);
- od
Omit_All Ports(Q,, Qom,.ti) ;
if composible then
Q; + ComposeSides(Q,, Q,, 2, 23):
L—Lul;
fi
Compose « composible;
enddef

The function Compose simply takes too side sets £F, ;, makes sure that the
sides are in the same coordinate system, computes the actual placement of the proposed
instance, removes the omitted ports from the composition, and then syntactically verifies
that these sides may connect. In order to add semantic information to the cell C;, Pooh
must note the connectivity of the composition and verify that the GDRs are maintained.

6.3 Composition Connectivity

Maintaining the connectivity information at the composition level has two important
aspects: (1) the representation of the cell’s connectivity and (2) the algorithms to deduce
a cell’s electrical node information. The representation of connectivity of paths was
described in Chapter 4. The set ic; represents the connectivity between the instances ;.
Each internal connection indicates that two ports defined in separate cells are connected
in this cell. Figure 6-5 illustrates examples of internal connections.

icl = <I1 :Q4.01 = Iz . Q2.05>

tca = (I : Q.01 = I3 : Q3.06)

ic3 = (L :Qr.09 = [5:Q3.07)
Internal connections are a general connectivity representation between the in-
stances I; ; and I; ;. The connections between these two instances occur in the cell C;

and not in the cells where the instance’s ports are defined. An alternative method of
representing this connectivity would be to add a path to the set P; whose initial point is

64

A 4
Y

Figure 6-5: Internal connections

the port in I; ; and whose final point is the port in I; x. Since the two instances abut, the
two ports occupy the same position. This zero length path is artificial and unnecessary,
since the port connection is the only necessary piece of information. The number of
internal connections defined is equal to the actual number of connected ports and not to
the total number of defined ports, since it is possible for a particular composition to use
a subset of the actual number of cell ports. Without the set ic;, the cell C; would not
include a representation of its internal connections.

Each cell port o has a node number within its original cell definition, denoted
node(og). The placement of the port is given by a Pooh point p, that maintains a node
N,, as described in Chapter 4. The port node node(og)= N,. This node number is
important simply because all connected points have an equivalent node number. Thus

two ports o, and o, share a common signal if and only if node(o,)= node(o,).

Node Propagation Algorithm

The node propagation algorithm for composition level cells uses the equivalence
function introduced in Section 4.1. The following algorithm indicates how to propagate
node information as each composition occurs between the current state of the cell C;
and a cell abstraction E(C,). Since each cell represents its total internal connectivity,
it is also possible to design a “batch” node propagation algorithm that incorporates
information about the entire set I;.

The node propagation for an instance of E(C,) requires valid node numbers in
C; for all ports defined in the external interface E(C,), and that ports defined in E(C,),
where node(o)= node(d'), have the same node number in C;. The node numbers in the
cell C; are only valid in C; and are distinct from the original node numbers of the ports
in the cell C;. The function Ports_Eguivalence uses an array cellnodes to store
the node numbers of the cell C;. The indices for this array are the original node numbers
of the ports in C,. The array is a temporary mechanism to ensure that connected ports
in C, have an equivalent node number in C;. The function is:

65

define Ports_Equivalence (I(E(C,)))
for @Q; €9, do
for o € 0; do
if cellncdes(node(ox)]=0 then
cellnodes (node(ox)] + generate node number
£i
Ni + cellnodes [node(ok)];
od
od
enddef

Pooh composition connects ports together where every port has a local node
number. Node numbers are assigned locally within a cell, and are not valid giobally.
During the creation or modification of a cell, the array nodenumbe rs is used to maintain
the cell connectivity. When two ports are connected, not only does an internal connection
record the event, but the cell node numbers are modified accordingly. The function to
connect two port sets is:

define Note Port_Connections(0;, 0,)
for o; € 0;,0; € 0y do
add an internal connection ic; 4
equivalence (Ny, N;)
od
enddef

6.4 Composition GDR Verification

The final issue composition must address is Geometrical Design Rule (GDR) integrity at
the composition level. The external interface E(C,) must fully represent the transistors,
interconnection wires and contacts along the interface of the cell Cy, so that for every
composition of E(C,), Pooh can guarantee the design rule integrity of the composite
structure. The amount of information maintained in £(C,) must be both sufficient and
necessary. The external cell is characterized as [P/, p}, Q,] where the paths P/ and points
p; are derived from the sets 7, p; and I;.

The External Interface

The amount of information maintained in the external interface depends on the restric-
tions enforced by the composition methodology. For example, one approach is to rigidly
enforce a ring of half the maximum design rule distance between all non-interface ele-
ments and the edge of a cell [Mosteller 82]. This approach has the advantage that no
design rule violations can exist at the composition level, and the obvious disadvantage
that connections between cells are always dictated by the worst case design rule and not
by the individual compositions. The other extreme is to allow arbitrary overlap between
composed cells. In this case, a design rule violation may occur between geometry in

66

any two cells anywhere in the entire design, and therefore a cell abstraction is not pos-
sible. This second approach is equivalent to using fully instantiated geometry and is
unacceptable in designs of current day complexities.

The approach supported by Pooh is to derive the paths P/ and p} within an
“applicable” design rule spacing inside the cell sides Q,, to restrict all path center-lines
and points to fall within or on the cell boundary Q,, and to restrict the paths whose path
radius extend outside Q; as described in the following discussion. Figure 6-6 illustrates
examples of legal and illegal interface elements.

A path P; center-line may occur along one or more of the cell edges if and only
if: (1) the path radius is the minimum path radius mr(T}), or (2) for each and every
composition involving a non-minimum radius path segment, an identical redundant path
segment is defined in the cell C, to which the cell C; is being composed. An example
of a minimum radius path occurring along the edge of a cell is path P; shown in the
legal cell of Figure 6-6. A composition involving a cell whose definition includes this
path is valid if the interaction between the two composible interface regions are GDR
correct. An example of a non-minimum radius path whose center-line occurs along a
cell edge is path P, in the legal cell of the figure. Pooh places some restrictions on
the valid compositions of a cell containing a non-minimum path. In particular, given
a cell C;, where the paths P; include a non-minimum radius path P whose center-line
lies on the side Q;, @Q; € Q;, for each and every composition between this cell and a
cell Cy, there must be an identical path P!, P' € F,. These paths, called merge paths,
are single segment path that lie on one side. Multiple segment paths that lie on more
than one side may always be split into multiple paths. When composition occurs these
two paths P and P' are merged. A corollary to this restriction is that the geometry of a
non-minimum radius path may either extend beyond the cell boundary by the minimum
radius, or it must lie on the cell boundary. If the path lies on the cell boundary, the path
ends may only extend mr(T%) outside the cell boundary. Path merging is often used for
power, ground and other global buses. The capability of composing cells that include
paths whose radius is not minimum is important for the same reason ports are important
and is treated in a similar manner.

Path merging allows the designer to construct design rule correct cells. Often
large buses are shared between parts of the design, and without path merging each cell
could not contain a definition of the buses it used. However, allowing arbitrary overlap
between cells would destroy the ability to derive a cell abstraction. Path merging allows
wires to be defined in the cells where they are used, and still allows Pooh to guarantee
GDR integrity at the composition level. In Figure 6-6, path P;, in the illegal cell, is
illegal because its end points do not lie on a single side.

The paths and points P/ and p; of the external interface E(C;) are the Pooh
elements of GDR interest along the the edges Q;. Let D denote the largest minimum
design rule distance. If we shrink the polygon described by Q, by a distance D, then any
Pooh element residing inside the new polygon cannot possibly introduce a design rule
violation by the definition of D. Thus all the GDR-interesting elements pass through the
D wide region defined by the shrunk polygon and the original polygon Q;. Figure 6-7
indicates the elements of GDR interest from the cell in Figure 6-1. Since the placement
of each side Q; € Q; is defined by a line equation L;(z,y), a parallel line L(z,y), D

67

Legal Illegal
Figure 6-6: Legal and Illegal Cells

distance closer to the cell center is:

A=A
B'=B
C'=C+D. (6-1)

The points p; of external GDR interest are the subset of p; that occur between
the lines L;(z,y) and L(z,y), where Q; € Q;. The subset p; may easily be derived
simply by testing all point pr € p; for inclusion. A function to determine whether a
point is in the interface region along the side Q;, using (6-1), is:

define Interface_Point(py, @Q,, D): boolean
Interface_Point «— (A; Xzx+B; Xy +C;)<0 &
(AJ' X Tk + By X yx + (Cj + .D))Z 0;
enddef

The paths of GDR interest in the set P/ are composed from the segments of GDR
interest. Each path Py € 5, is composed of a GDR correct set of segments S;. Only
the segments of interface interest need be included in the interface description — not
the entire path of which these segments are members. Including incomplete paths could
create apparent internal GDR violations, but at the composition level Pooh does not heed
internal GDR violations. In fact Pooh does not even need to keep the complete definition
of interesting interface segments; instead for each interesting interface segment s, Pooh

68

prz w2

voo vbD

Pty PHIY

PHI2 PHI2

AOUT

NN
N A AN AN,

AN

7y

N\
28
g
§e

PHIZz AVALBAR AVAL 8 [

PHi2 AVALBAR AVAL

Figure 6-7: GDR Interesting Paths and Points

calculates a segment s} that lies completely in the GDR interface region. Figure 6-7
illustrates a GDR interface region with a width of D.

Given a segment sy that intersects the modified side L)(z,y), it is possible to
calculate the point of intersection, using equation (3-4). The point of intersection is:

det = By Aj — A B;
Pint(sk, Lj, D) = ((B;C — Bi(C; + D))/ det, (Ax(Cj + D)—A;Cy)/ det).

Pooh derives a (possibly empty) set of paths PJ-" within the interface region from
a single path P; by detecting each consecutive sequence of segments contained in the
region, and optionally computing the sequence end points. Since Pooh ensures that all
center-lines and points are within the polygon defined by Q;, it does not need to detect
intersection between a segment and a side. The following algorithm extracts this set of
paths P; from a path P; within a distance D from the side Q;:

define arc_intersection(s;, La(z,y)): point
the point where the arc of s intersects with Ly(z, y)
enddef

define all inside(s, @, D) :booclean
all inside « Interface Point {(bp(s), Q, D) &
Interface Point(ep(s),Q, D);
enddef

69

define outside_interface(py, Q;, D): boolean
outside_interface « (4; X zx + B x yx + (C; + D))< G;
enddef
define all outside(s, @, D):boolean
all outside « outside_interface(bp(s), Q, D) &
outside_interface(ep(s),Q, D);
enddef
define cross_in(s, Q, D) :boolean
cross_in « outside_interface (bp(s), Q, D) &
Interface Point (ep(s), @, D);
enddef
define cross out(s, @, D):boolean
cross_out « Interface Point (bp(s), @, D) &
outside_interface(ep(s), @, D);
enddef
define Interface Path(FPx,Q;,D): setof paths
var Pg: set of paths;
P': path;
Po+9; P' « nil;
for s, € S do
if all outside(s;, Q;, D) then
if ezists(P') then
addarcsegment (arc_intersection(s,_1, Lj(z,y)))
Pg+— PouUP'y P+ nil;
£i
else if all inside(sy, Q;, D) then
if ~ ezists(P') then P’ «— newpath(P;) fi
addsegment (s;) ;
else 1f cross_in (s, ij D) then
P’ —newpath (Py) ;
addnewseg (pint(se, Ly D)y res pt)
else if cross_out(s;, @;, D) then
if ~ ezists(P') then P'«— newpath(P,) fi
addnewsegment (bp(s¢), 0, pint (3¢, L, D)) ;
Poe—PguUP; P« nil;
fi
od
if ezists(P’) then
Po—FPouP; P« nil;
fi
Interface Path « Py
enddef

A cell abstraction E(C;) of a leaf cell C; is derived by finding all points py € p;
and all paths P, € P, within some distance D of the cell sides Q. In fact the distance D
does not have to be a single value representing the maximum GDR distance. Since both

70

the Interface Point and Interface_Path algorithms evaluate based on a distance
D, the parameter may vary based on the point and path type. Therefore a path or a
point remains in the interface region if and only if it is within the maximum GDR rule
applicable to this type of element. Figure 6-8 illustrates the paths and points contained
in the interface E(C;) for the multiplier cell shown in Figure 6-1.

PHI2

VDD

VDD

PHIY PHIY

PHi2

PHi2

ACUT

AIN

GND
AINBAR

QUTBAR

PHI2 AVALBAR AVAL B M

Figure 6-8: Actual GDR Interface

The GDR interface for a hierarchical cell is incrementally derived by incorporat-
ing the relevant GDR interface elements of each of the instances I; € I;. Each time an
instance is added to the cell Cj, the paths P; and the p; are updated to include transformed
paths and points contained in the cell abstraction E(cell(I})).

The algorithm to take a cell C; and create the cell interface E(Cy) is:

define Cell interface(C;): cell interface
var Py, P: set of paths;
Pg: set of points;
in interface: boolean;

Po—0: pg—¥;

71

for P, P, do

in_interface « false;

for Q€ Q; AND ~ in_interface do
P « Interface_Path(P;, Q, maximum design rule distance for Ty)
if P#6 then

Po PQ UP; in_interface « true;

fi

od

od
for p; ep; do

in_interface « false;
for Q € Q; AND ~ in_interface do
p «— Interface_ Point(p;, Q, maxmum design rule distance for Ty)
if p#4@ then
Pg —PoUP; 1in_interface « true;
fi
od
od
Cell_interface « [Pg,pq, Q7
enddef

The Composition Algorithm

A Pooh cell definition contains internal topology information in the form of paths, points
and instances, and external interface information in the ports and sides. Each time a
composition occurs, Pooh checks that the composition does not introduce any GDR
violations. Then, the next state of the cell currently being defined not only inherits
a new side specification, but incorporates additional internal connectivity and updates
its path and point sets to include new GDR interface information. This definition of
compose guarantees that at all levels in the hierarchy each cell is well-formed. The
updated Compose function is:

define Compose(Ci, E(Cq), Qfr Q5r LQomit;r Qomitgr Orient: transform) :
boolean
var composible: boolean;
I: instance;
Ports_Equivalence (E(Cy)) ;
composible « true;
I — newinstance (E(Cy)) ;
orientCellSides (I(E(C,)), 25, orient);
make sure Q; and Q, are clockwise polygons

72

for Q; € Qf,Q; € Qg do
Omit_Ports(Qj, Qomi,) i
Omit_Ports(Qj, Lomit,)’
if A; #—A} OR B;j# ~B; OR size(0;)# siz¢(0[) then
composible « false fi
if j=1 then Az, Ay« translation(0;, 0))
else if Az, Ay # translation(0j, CU) then composible « false
fi
apply_translation (0], Az, Ay);
Note_Port_Connections(0;, 0j);
composible « composible AND Connect_Ports((C;, O]) AND
GDR_check (p;, 7., p;,.%);
Cj — C; — (4} x Az + B} x Ay);
od
for Qe (Q, - Q5) do
Omit_Ports(Q, Qomit,)
apply translation(0,Az, Ay):
cod
Omit_all _Ports(Q;, Qoma)
if composible then
Q, — ComposeSides(Q,, Q,, 9f, Q5);
L—Lul; P —FPUP; p;—p;Upyi
fi
Compose + composible;
enddef

The algorithm presented in this chapter places some restrictions on how compo-
sition occurs. The function Compose only detects GDRs — and invalidates the compo-
sition if a GDR violation is detected. A simple extension is to modify the translation
factors Az and Ay based on the minimum design rule distance of the limiting two el-
ements: one in the current state of C;, and the other in the instance of E(C,). This
composition no longer requires strict abutment but rather places two instances some small
distance apart. Such a composition function must also take into account the minimum
connected spacing of the paths and points along the connecting sides.

Simple river routing is another method of composing two cell’s together. Pooh
does not support stretching [Rowson 80], since it assumes that if a designer wanted a cell
to be larger, the cell would have been designed with a larger pitch. Occasionally the need
might arise to connect two cells with mis-aligned ports. Martin Tompa developed an
optimal river routing algorithm [Tompa 80] using Pooh-like wires for interconnection.
Each wire consists of line segments and arcs. The Pooh composition methodology
supports Tompa routing as one form of composition.

The Compose function can be accommodating when it comes to GDR spacing,
but it cannot extend similar help to logical errors. If a logical error occurs between two
connecting ports it is similar to a syntax error in a programming language, and similarly
must be fixed before a valid composition may continue.

The composition algorithm presented in this chapter allows Pooh to represent

73

large designs by supporting a hierarchical design methodology. The key to the method-
ology is to derive a cell abstraction E(C,) from the original cell C,. This abstraction
fully represents the external interface of a cell while removing the internal details. The
Compose function presents a way of combining two or more cell abstractions to form a

new abstraction.

6.5 Proof of Closure Under Composition

Cells with only geometry and not any instances, i.e., leaf cells, are generally
small and therefore easy to prove correct, both logically and geometrically. The infor-
mation content of these cells is small enough that a person can normally guarantee these
cells correct by examination. Experience has shown that the overwhelming majority of
problems occur at the interface between cells. Thus the key to the correctness of a large
system is proving the composition of two or more cells correct.

Definition 1. Given the 5t side, Q;, in the set of n sides Q, the two end points of the
side, based on equation (3-4) in Chapter 3, are:

) p' L',L‘——l 3 j> 1
stdeBp(Q;) = {Pi::EL;’Li‘)’) j=1

' y o [Pint(L5 Liv1), J<m
szdeEP(QJ) - {p‘nt(L,’, LI): j=n

Definition 2. Given a path P and a set of sides Q, the path is a merge path if and
only if: (a) the path radius Wy /2 > mr(T}), (b) the path consists of a single segment,!
(c) the path centerline lies on a line segment L;(z,y), where Q; € Q, and (d) the path
end points are between the end points side Bp(Q;) and side Ep(Q;), inclusively, and (d)
the path does not extend more than mr(T}) outside any other side, Q' € Q, Q; # Q.
[Section 6.4]

Definition 3. A pooh cell C is well-formed if and only if:

(1) There is a non empty set of sides Q that forms a clockwise simply-connected
polygon and defines the cell boundary. The sides Q bound all path center-lines
in the set P and points contained in the set p. [Section 6.1]

(2) There is a (possibly empty) set of ports O distributed over the cell sides 2, i.e.,
given m sides 0 = 01U 02 U...U Oy, that defines the cell’s external connection
points. The ports O; associated with each side Q; € Q are sorted, and every
port o € O; is both on the line that defines the side L;(z,y), and between the
two end points sideBp(Q;) and sideEp(Q;), inclusively. [Section 6.1]

t Multiple segment paths may always be broken into multiple paths. This restriction
simplifies the description without any loss of generality.

74

(3) There is a path P, € P or a point p; € p for every geometrical element in the
fully instantiated geometry of C' within the maximum applicable GDR distance
from the sides Q. [Section 6.4]

(4) For every path P, € P, either: (a) the path geometry does not extend more than
the minimum radius mr(7T}) outside the cell boundary Q, or (b) the path is a
merge path.

(5) The fully instantiated geometry of C is GDR correct.

Definition 4. Let Inter facePoint(p, Q, D) denote a function that indicates whether
or not a point is within a distance D of the polygon described by @. Given a set of
points p, the external interface points p' is the set of points, such that for every point
p € p', this point is also a member of the original set, or p € p, and for D equal to the
maximum applicable GDR to p, the function Inter facePoint(p, Q, D) is true; and for
every point not in the set p', or p’ € (p — p'), the function Inter facePoint(p', @, D) is
false.

Definition 5. Let P, ;. (...(P, @, D) denote the (possibly empty) set of paths, derived
from the set P, within a distance D of the polygon described by Q. Given a set of 2
paths P, the external interface paths P' = U; Pipter face(Pi» @, D), P; € P where D is

the maximum applicable GDR to P.

Definition 6. Given a well-formed cell C, characterized as [P,p, Q,], ic], the external
interface E(C) of the cell is characterized as [P',p’, Q]. The external interface paths
P! and the external interface points p' are those of GDR interest along the cell sides Q,
and are derived directly from the sets P and p. [Section 6.4]

Definition 7. A composible side sequence Q° of size w is a connected sequence of
sides, or Q¢ ={Q1,Q2,...,Qw}. [Section 6.2]

Definition 8. The port size of 0; on the side Q;, is the number of ports o € O;.

Definition 9. Let PortType(o) denote the type of the port o, and PortConnect(o)
denote the set of valid port types to which a port o may connect. Then two ports o and
o' are connectable if and only if PortType(o)€ PortConnect(d') and PortType(o')E
PortConnect(o). [Section 6.2]

Definition 10. A translation factor Az, Ay maps a side Q with m ports into a side Q'
with m ports, as follows [Section 6.1]:

75

L'(z,y) = [A4,B,C — (A x Az + B x Ay)]
T(o) = [z(0)+Az,y(0)+AY]
O0'={T(01),T(02),..-T(om)}

Note: The orientation and mirroring of a cell are specified by the user, and incorporated
before the composition occurs, since without this information the composition
operation is ambiguous.

Definition 11. The length of the side Q; is:

Length(Q;)= |sideEp(Q;)—sideBp(Q;)).

Definition 12. The reverse side of a side Q with a line equation L(z,y) and a set of m
ports O is:
Reverse(0) = {om,0m—1,...,02,01}
Reverse(L(z,y)) = —L(z,y)
Reverse(Q) = [Reverse(L(z,y)), Reverse(0)].

Definition 13. The set of reverse sides of a set of m sides Q is:

Reverse(Q)= {Reverse(Qm), Reverse(Qm—1),..., Reverse(Q3), Reverse(Q1)}.

The following definition assumes that: (a) there is a function, denoted Points-
Equivalence(01, 02), that takes two sets of ports and notes their connectivity, as de-
scribed in Chapter 4 and Section 6.3, and (b) there is a a function, denoted GD RCor-
rect(Py,py, Py, P,), that determines whether or not a GDR violation occurs between the
geometry defined in the sets of paths and points P, and p;, and the geometry defined by
the sets P, and p,, using the approach described in Chapter 5 and Section 6.4.

Definition 14. Given two cells C| and C3, and two composible side sequences QF of
size a, and Q% of size b, there is a valid composition of these two cells if:

(1) The size of the two composible side sequences is equal, or a = b,

(2) The port size of o; is equal to the port size of o;., and the side lengths are equal,
or Length(Q;)= Length(Q}), for Q; € QF, Q} € Q3.

(3) The ports o and o' are connectable, for o € 0j, o' € Reverse(0;) on the sides
Q; € QF, Q;- € 25.

(4) There is a translation factor Az, Ay that maps the composible sides Q™ into
the composible sides Q°; and for Q; € Qf, Q' € Reverse(Q$), the line equa-
tions are equal, or L;(z,y)= Reverse(L}(z,y)); and the ports occupy the same
position, or for o € 0j, o' € Reverse(0;),z{0)= z(0') and y(o)= y(o').

76

(5) The intersection of the polygon described by Q, and the polygon described by
the translated set of sides Az, Ay(Q,), minus the composible side sequence
is two points, or the intersection of (Q, — Qf)N(Az, Ay(Q,)—Q5) is exactly
two points. [Notice that if the polygons described by Q, and Q, overlap, the
intersection between these two polygons is greater than two points.]

(6) There is a (possibly empty) set of merge paths P in C1, and another set 7y in
C,, where the size of P is equal to the size of P, and for every path P, € Pf
on the side Qj, there is a corresponding path Py € Py on the side Q’. Given
these two paths, the path type, path width and two end points are equal, or
Ty = Ty, Wi = W, po = pp, and p1 = pi.

(7) Given that the nodes of the ports on the two composible side sequences are set as
equal, there is not a GDR violation in the geometry derived to represent the cell in
the external interfaces E(C}) and E(C,); or given Points Equivalence(0;, 0}),
for Q; € Qf, Q} € Q3, then GDRCorrect(P| — P{,py, P, — P£,p3).

Notice that for a valid composition, a GDR violation cannot be introduced by
the merge paths in the sets P’ and Py, since for a merge path in the set P either (a)
there is an equivalent corresponding merge path in the other set that will be merged with
P during composition, and therefore the path already exists in the cell geometry and is
GDR correct from the definition of well-formed, or (b) there is not an equivalent path
in the other set in which case this composition is not valid.

It is worth noting that given a clockwise simply connected polygon Q composed
of a closed sequence of directed line segments, Q = {Q1,Q2,...,Qn}, and a composible
side sequence Q° that is a subset of these polygonal sides, or Q¢ C Q, there is always
a partitioning of the polygon Q into Q° and Q — Q°. These two partitions intersect at
exactly two points.

Definition 15. Given two sets of sides: Q of size n and Q' of size m, and two composible
side sequences of size w, Qj._ (j+w) a0d Qi (41, the composition side set Qompose
that results from superimposing the two composible side sequences is [Section 6.2]:

Merge(o1.y,0)) = {01,02,...04,0},0),...,0,}
L(z,y), Merge(QU 0")], A=A'AB=B'AC=C
n o { sY) ’
Merge(Q,Q7) = { {Q,Q'}, otherwise.

. oy Q-1 1>1
LastSide(Qj,n) = {Qna =1
v : oy _ [Qi+1, I <n
NeztSide(Q;,n) = {Qn, i=n

Qcompose = (2 — {LastSide(Q;,n), Qj,- . Qi+w, NeztSide(Q iw)})
U Merge(LastSide(Q;,n), NextSide(Q),,,,m))
U Merge(LastSide(Q%_1,m), NextSide(Qj1w,n))
U (Q' = {LastSide(Q},,m),Qk, ... Qkrr, NextSide(Qliu)})-

77

Lemma 1. Given two clockwise simply connected polygon sides Q; and Q,, and two
composible side sets Qf and Q3 of size w, where for Q; € Qf and Q' € Reverse(Q3),
Length(Q;)= Length(Q’) and L;(z,y)= Reverse(L’(z,y)), and if the intersection
(9, — 95)N(Q, — Q5) is exactly two points, then Q.,...,. is @ clockwise simply
connected polygon.

Proof: The two sets of line segments @, — Qf and Qf intersect at exactly two points,
from the definition of simply connected polygons, as do the two sets 9, — Q4 and Q5.
Since Q¢ and Reverse(Q$) define the same sequence of line segments, the sets Q1 — Q§
and @, — Qf intersect at two points. Since both of these sequences are clockwise, the
set defined as Q,,p0se Creates a simply connected polygon by concatenating the two
sequences @1 — Qf and Q2 — Q§, and merging equivalent line segments. ®

There are several important properties of the boundary and the interior points of
the polygons @, Q, and @ ,pp,s, Of Lemma 1:

(1) The intersection of the two polygons @, and Q,, or 2, N Q,, is the sequence of
line segments Q¢ = Qf = @5, from the definition of the polygons.

(2) The interior points of the polygons Q, and Q, are also interior points of the
polygon Q.0 from the definition of the boundary of Q. ,mpose-

(3) The boundary points of Q; occurring along the sequence Q; — Qf and the
boundary points of @, occurring along the sequence Q, — QF are also boundary
points of Q from the definition of the Q,,,,0, boundary.

compose?
(4) The points on the line segment sequence Q°¢, minus the two end points of the
sequence, are interior points of Q .;ms04. from the definition of simple polygons.

Definition 16. Given two sets of paths, P/ and £, the composition path set P, 005, =
PlU P

Definition 17. Given two sets of points, pj and p}, the composition point set P,ompose
P U P}

Definition 18. The polygon described by the set of sides Q bounds a point p if and
only if either: (a) the point p is an interior point of the polygon @, or (b) the point p is
a boundary point of the polygon Q.

Lemma 2. Given the side sets Q, and 5, from Lemma 1, the path sets Py and 7, and
the point sets p; and p,, if the polygon Q, bounds all path center-lines P € P, and points
p € py, and the polygon Q, bounds all path center-lines P' € P, and points p’ € p,,
then the polygon described by Q. ,.,.,,,, bounds the path center-lines P € Peompose> and
the points p € Peompose-

Proof: The area bounded by the polygon Q,,,0.. 1S the area bounded by the union
of the two polygons Q, and Q,, from the definition of Q.,,,,,,. Therefore it is not
possible to find a point or a path that is bounded by Q, or bounded by Q, that is not

78

bounded by Q.ompose- ®

Lemma 3. Given the two side sets Q; and Q,, from Lemma 1, if the ports o € 0;
are in sorted order along each side Q; € Q, and the ports o € O} are in sorted order
along each side Q; € Q,, then the ports o € O; are in sorted order along each side

Qs' S Qcompaae'

Proof: There are two types of sides Q; € Q ,mpos. included in the definition of Q ;0.
The first type of sides is mapped directly from the sets Q; or Q,. The ports on this
type of side are sorted by assumption. The second type of sides is a side defined by
Merge(Q,Q') and only occurs when one of the two points of intersection between the
two side sets Q1 — Qf and Q, — Q5 is the end point of the side Q and the beginning
point of Q', or p = side EP(Q)= sideBp(Q'). If the equation of the lines are not equal,
then these two sides are mapped into Q .., 05 Unchanged, and are sorted by assumption.
Otherwise the two sets O and O' are concatenated. Since both polygons are clockwise
by assumption, and the ports 0; occur on the line before the point p and the ports O;
occur on the same line after the point p, this concatenation is sorted. ®

Lemma 4. Given the side sets Q; and Q, from Lemma 1, where every port o € 0;,
on the sides Q; € Q, is both on the line L,;(z,y) and between the two end points
sideBp(Q;) and sideEp(Q;), and every port o € 0O}, on the sides Q} € Q,, is both
on the line L;(z,y) and between the two end points side Bp(Q}) and sideEp(Q}), then
every port, o € O; on the sides Q; € Q.ompose 1S ON the line L;(z,y) and between the
two end points sideBp{Q;) and side Ep(Q;), inclusively.

Proof: There are two types of sides Q; € Q. ompos. iNcluded in the definition of Q ., p5se-
The first type of sides is mapped directly from the sets Q, or Q,. The ports on this
type of side are both on line and between the two side end points by assumption. The
second type of sides is a side defined by Merge(Q,Q’') and only occurs when one
of the two points of intersection between the two side sets Q1 — Qf and Q2 — Q%
is the end point of the side @ and the beginning point of Q', or p = side EP(Q)=
stde Bp(Q'). If the equation of the lines are not equal, then these two sides are mapped
into Q@ .,mpose Unchanged, and are on the line and between the end points by assumption.
Otherwise the two sets O and Q' are concatenated. Since the line equation in this case
is the same, or Lj(z,y)= Li(z,y)= Lcompose(%,y), the ports are on the line. Since
side Bp(Q;)< (0 € 0;)< sideEp(Q;) and sideBp(Q')< (o € 0))< sideEp(QY) by
assumption, and the ports are sorted in Q; = Merge(Q;, Q') from Lemma 3, this implies
(sideBp(Q;)= sideBp(Q:))< (0 € 0;)< (sideEp(Q})= stdeEp(Q;)). w

Lemma 5. Given the external interface points pj and p} that describe the points of
geometrical interest within the maximum applicable GDR of the polygons described by
Q, and Q,, respectively, then the composition point set p,,,,,,,, includes every point
of interest within the maximum applicable GDR to the polygon described by Q.,.p0se-

Proof: The distance between a point p and a side @, is the distance between the point
p and the line L,(z,y), as described in equation (3-3) in Chapter 3. Since the line
equations of Qi € Q0. are the same as the line equations of a subset of Q, and
a subset ofQ,, from the definition of Q.,mpoqes and the polygon Q.,,,,,,, bounds all

79

points p} and p}, from lemma 2, every point within the maximum applicable GDR is
present in Peompose = Py U P ®

Lemma 6. Given the external interface paths P/ and P, that describe the paths of
geometrical interest within the maximum applicable GDR of the polygons described by
Q, and Q,, respectively, then the composition path set 7,,,,,,,. includes every path of
interest within the maximum applicable GDR to the polygon described by Q.00

Proof: Since the placement of a path is described by a set of points from the definition
of a path, 7,,,,,,,. includes all paths of GDR interest from Lemma 5. »

Lemma 7. Given a path P, € P that does not extend more than the minimum radius
mr(T}) outside the polygon described by @, and given a second set of sides Q', then
the path P, does not extend more than the mr(T}) outside the polygon described by

Q compose’

Proof: Since the polygon described by Q.,,,p,s, DOunds all points and paths bounded
by Q, from Lemma 2, the path P, cannot extend more than the original distance mr(T})
outside of Q1 p0sc- ®

Lemma 8. Given a merge path P, € P, on the side set @, and given a valid composition
with a second set of sides Q,, then the path Py either: (a) is a merge path on the sides

Q compose OF (b) does not extend more than mr(T}) outside the polygon described by

Qcompose‘

Proof: The path center-line of Py is bounded by Q,,,,,,s from Lemma 2. If there is
a side Q; such that the path Py lies on this side, and Q; € Q; and Q; € Q@ ympose
then (a) is true, from the definition of Q ;504 Otherwise there is a side Q; € Q on
which the path P lies, from the definition of Q; and Q ,mpes.- Since this composition
is valid, by assumption, there is a corresponding path P}, on the side Q;- € Q5. These
paths do not extend more than mr(T}) outside any side Q; —{Q,} and Q, — {Q}} from
the definition of merge paths. Since Q.,mpos. 18 defined from the sides @, — Qf and

Q, — Q5, from the definition of Q50 (b) is true. m

Lemma 9. Given the external interface paths P| and PJ, and two side sets Q; and Q,,
where for a path P, € P/ and P € P}, either (a) the path geometry does not extend
more than mr(T}) outside the polygon described by QO and @, respectively, or (b) the
path is a merge path on @, and Q,, respectively. Then for each path Py € P,,pp0se
either (a') the path geometry does not extend more than mr(T}) outside the polygon
describes by Q.05 OF (b') the path is a merge path on Qg0

Proof: Each path P; € P{ and P} € P, fall into either (a) or (b) by assumption. If (a)
is true then (a') is true from Lemma 7, otherwise (b) is true and either (a') is true or (b')
is true from Lemma &. =

Definition 19. The composition of two cells C| and C; is characterized as:

80

{Pcomposu Pcomposes Qcompaac, {[1: I2}> ’.C}

where [; represents the cell C, and I represents the cell C,, and ic represents the
connectivity between the two cells. [Section 6.1]

Theorem 1. Given the well-formed cells C; and Cj, and given a valid composition
between the two cells, the fully instantiated geometry of the composition of the two cells
is GDR correct.

Proof: Since each cell is GDR correct independently, from the definition of well-formed,
a GDR violation may only be introduced along the interface, or where Q¢ is superim-
posed on Q5. Every geometrical element from the fully instantiated geometry within
the maximum applicable GDR is present in P}, p;, 7, and p,, from the definition of
well-formed, and therefore in the external interface sets P/, p}, 7;, and p} by definition.
There is a valid composition, by assumption, and therefore the composition of the ge-
ometry in P/, p}, P,, and p} is GDR correct from the definition of a valid composition.
u

Theorem 2. Given two well-formed cells C; and C;, with composible side sequences
Q7 and Q%, a valid composition of the two cells produces a well-formed cell.
Proof: The two cells C and C, may be characterized as

{Pl)pl’Ql)Ilaicl] and [P2>p2’ QZyIZaiCZ}'

The geometrical information of interest, from the definition of external interface, is

{Pllip’l: Ql] and [PZ,’p;.) 92}
(1) Given the sides @, and Q, from well-formed cells, Q ;0. i 2 clockwise
simply connected polygon from Lemma 1, and bounds all path center-lines in

P.ompose and POINtS in P,,ppn,,, from Lemma 2.

(2) Given Oy and O, from well-formed cells, the ports O;, where Q; € Q. mposes 1€
sorted from Lemma 3, and on the line L;(z,y) and between the two end points
side Bp(Q;) and side Ep(Q;), inclusively, from Lemma 4.

(3) Given P/, p{, P;, and p} derived from well-formed cells, there is a point p €

for every point within the maximum applicable GDR from the sides

Q compose from Lemma 5, and a path P € P,,,,,,, for every path within the

maximum applicable GDR from the sides @.,,,,,,, from Lemma 6.

(4) Given P{ and P;, from well-formed cells, for each path P € P,,,,,,. €ither: (a)
the path does not extend more than mr(T}) outside the polygon described by
Q compose> OF (D) the path is a merge path on Q.,,5s,, from Lemma 9.

(5) Given two well-formed cells C; and C,, the fully instantiated geometry in the
composition is GDR correct from Theorem 1. =

pcomposc

Definition 20. Given a cell Cy, the omit ports are a list of ports ordered on the list of
sides Q. » where Q. € Q). Forevery port o € 0;, where Q; € Q. , the port
is also defined in the cell ports Oy, or o € O;. [Section 6.2}

81

Definition 21. The omitted port side that results from removing the omit ports from the
side @Q is:

. (e L(2,9)# Lomit(z,9)
Om1t51d€(Q:Qomxt)" {{L(.’E, y)’ 0 — Oomit]; L(I’y): Lomit($>y)~

Corollary 1. Given two well-formed cells €1 and C,, with composible side sequences
QT and Q7, and two omit port sets Q and @ a valid composition of the two
cells produces a well-formed cell.

Proof: The sides @, and Q, may be mapped into two new side sets Qf and Q% by
removing all omitted ports contained in 0;, where Q; € Q and Q; € @ using
OmitSide. The two new cells, characterized as

omity omity?

omit) omity

[’Dl)ph Q,I)II:icl] and [P2:p2$ Q'Z) IZ>ic2]

are well-formed, from (2) in the definition of well-formed. A valid composition of these
two cells produces a well-formed cell from Theorem 2. =

Corollary 2. Given m + 1 cells {C1,C2,...Cpn+1} and m pairs of composible side
sequences {(QgI , Q’;z>, Qs Q"mz)}, a sequence of m valid compositions produces
a well-formed cell.

Proof: The proof is by induction on valid composition. The 1 valid composition
between cell C; and C; produces a well-formed cell from Theorem 2. Assume that
the m — 1 valid composition produces a well-formed cell C},_;. Then the composition
between this cell and the m!* cell C,, produces a valid composition from Theorem 2. m

82

7. System Considerations

This chapter describes some of the major considerations of a system that supports the
Pooh representation. Any design system supporting Pooh runs on a computer with
finite resolution and speed. There are always issues such as computational efficiency
versus accuracy faced by the implementor. Two approaches to a Pooh system have been
implemented, and Chapter 8 describes both systems. The first approach is batch oriented,
where a user executes a program that creates a Pooh circuit from an input specification.
The second approach is interactive, where a designer receives immediate feedback from
the system as the circuit is designed.

The primitive elements used in the synthesis and analysis algorithms described
in the preceding chapters are lines, arcs and circles; and the algorithms based their
validity on the existence of perfect circles and arcs. The first section presents a circle
approximation, indicates how the approximation affects the algorithms, and then analyzes
the potential errors introduced by the approximation.

Any Pooh system that detects GDR violations between elements must have quick
and easy access to the paths and points surrounding a given path segment or Pooh point.
The second section describes a data structure that allows a Pooh system to find all paths
and points “near” a path.

Part of the motivation for developing the Pooh representation was the observation
that designs have always used 45° degree angles, and that their addition introduces addi-
tional complexity over a strictly vertical and horizontal approach (a manhattan approach).
We were interested in finding a general representation. Once the limits of a representa-
tion such as Pooh have been explored, it is often useful to look for simplifications. The
third section presents an integer based Poch that uses an octagon circle approximation
and supports vertical, horizontal and 45° lines.

7.1 Circle Approximation

At the heart of a Pooh system lies its circle approximation. The original Pooh implemen-
tation used a twelve sided circle. In this section we will look at the approximation for
an n-sided circle, where 8 < n < 100. Pooh uses this approximation when generating
polygons from its internal paths and points. The polygons for all of the segment ends
and arcs are generated based on this circle as shown in Figure 7-1. The GDR calculations
described in Chapters 3 and 5 perform calculations between center-lines, points, and arcs
assuming that the geometry will be composed of perfect circles. Obviously actual GDR
violations could be introeduced on the chip if the circle approximation introduced edges
that were closer together then the allowable distances, even though fabrication tends to
smooth out the edges.

83

contact segment ends

Figure 7-1: Geometry Generated From Circle

The Circle

Pooh uses an n-point unit polygon that circumscribes the unit circle. A twelve sided
polygon is shown in Figure 7-2. This unit circle is Pooh’s “grid”, similar to a box
in a manhattan system. One Pooh unit is calculated based on a circle of radius one.
Therefore a unit circle approximation cannot be smaller than the unit circle at any point.
The points p° for an n-point unit circle approximation are:

d= 1/cos(§)

2r 2
e . . .
pi = (d X cos(———n (1 + .5)),d x sm(——n (t + 5)))
pc = {p87pi) "pfm—l }

The factor d ensures that the line segments connecting any two consecutive points
lie outside the unit circle. If the number of points n = 3, then d = 2. As n increases,
the angle 7/n becomes smaller and d approaches 1.

2Tm

Figure 7-2: A twelve sided circle approximation

Each pie-shaped section approximates an arc by a straight line, as shown in

84

the figure. The actual arc length is (27r)/n = (2r)/n. The triangle side length a =
2dsin(Z)= 2sin(Z)/cos(Z)= 2tan(%). The triangle approximates each arc by a line,
or £ ~tan(Z), and d ~ 1.

Error Analysis

In Pooh, the geometry for contacts, arcs, and segment ends is generated based on this
circle approximation. GDR violations may be introduced if the circle approximation
diverges significantly from the actual circle. Each circular polygonal point, as shown in
Figure 7-3, is calculated as follows:

Error

XosYo

Figure 7-3: Polygon Error

Az =rxdXxcosf
Ay=rxdxsinf

D? = r2d*(cos® § + sin® 0)
D=rxd.

The maximum error is the actual distance D minus the expected distance r or:

Error=& =rxd—-r=r(d-1).

The following table indicates what r is equal to before the error £ > 0.5 for
different values of n.

3 12 16 20 50 100
1.0824 1.0353 1.0196 1.0125 1.0020 1.0005
0.0824 0.0353 0.0196 0.0125 0.0020 0.0005
6 14 25.5 40 253 1013

|
|
d-1

= — /3

The Pooh GDR culculations effected by the circle approximation fall into four
distinct categories: 1) point checks, 2) arc synthesis, 3) arc-segment checks, and 4)
arc-arc checks. Each of these categories uses the circle approximation in different ways.

All Pooh points are constructed using the circle approximation. Pooh points
include both g-points, used at the end of segments, and contacts. Transistor points occur

85

at the intersection of two segments and are guaranteed to have overlap on all sides, thus
the transistor point geometry is irrelevant to this discussion. Examples of polygonal
edges generated based on the circle approximation are shown in Figure 7-4.

Segment ends are either path ends or intermediate points. A segment end that is
also a path end is generated as two arcs connected by a line. The radius of these arcs is
the minimum radius of the path, thus the maximum possible error for the two path ends
is constant for each path type. The minimum radius for the path is half the minimum
width, typical values are between 1 and 1.5, therefore £ ~ d — 1. Segment ends that
are not path ends use the circle approximation to bend around comers. The arc radius
is the path radius, or half the path width. Typical values for path radii are between 1
and 4, therefore the worst case error is normally (d — 1)< & < 4(d — 1), which is quite
tolerable.

The geometry of a contact is generated from the circle approximation in a straight-
forward manner. Typical contact radii are between 1 and 2, and a very large contact
would have a radius of 4. Therefore the worst case error associated with a contact is
similar to the segment ends and is very tolerable.

)
1
)
1
1
]
I
|
]

\
~

Figure 7-4: Point Geometry

Many arcs may “miss” the same point p,, each arc having a unique arc radius
r. Given two arcs, A; and A; with radius ry and rp, respectively, where r; # ry, the
expected distance between these two arcs is Dg = [r; — rp|. The minimum actual
distance Dy = |d X ry — d X ry| = d|r1 —r2|. Since d > 1 the actual distance D4 > Dg,
therefore an error is not introduced.

Pooh performs the check between an arc A; and the line segment portion of
a segment s; by checking the distance between the point p, and the line Li(z,y) and
comparing this distance minus the arc radius r; to the GDR spacing rule. The expected
distance is Dg = |[LineDis(L1,p2)| — |r2| and the actual distance at the circle corners

is Dy = |LineDis(Li,p2)] — d X |rz|. The maximum error is £ = Dg — Dy =
d X |rz| — |r2| = |r2| x (d — 1). This error increases with the arc radius, as described
earlier.

A simple restriction on the line segments would allow a Pooh system to ignore
this type of error. If the slopes of the line equations (— A4, /B;) are chosen from a set of
allowable slopes parallel to one of the circle approximation sides, then it is not possible

86

to introduce the error of r(d — 1). A system that supports this type of approach would
allow n/2 possible line segment slopes where n is the number of points in the circle
approximation. A fixed number of line styles is reasonable for any real design and would
ensure that the separation between the arc and the line would always occur along one of
the straight edges of the arc, as illustrated in Figure 7-5.

The other possibility is to be conservative and always calculate the separation
between the line segment and the arc based on the worst case error. This simply means
changing the distance calculation in the function line_arc_interfere, in Chapter 5,
to |LineDis(Ly,p2)| — d x |r2].

Possible GDR Violation No GDR Violation
Figure 7-5: Arc Geometry

Pooh computes the expected distance between two arcs Ay and A, with radii
ri and r; as Dg = PointDis(p1,p2)—|r1| — |r2|. The actual distance is Dy =
PointDis(p1,p2)—|d X ri| = |d x rz] = PointDis(p1,p2)—d|r1 + r2|, therefore the
worst case error is £ = Dg — Dy =d X |[r1+ 12| — lri + 2] = |[r1 + r2|(d = 1).

The worst case error increases with the sum of the two arc radii. This error
cannot be ignored. In order to avoid a GDR violation, the arc-arc error detection function
arcs_interfere, from Chapter 5, simply uses the D4 calculation rather than the Dg
calculation.

The possible errors introduced by the circle approximation do not affect in any
fundamental way the approach supported by the Pooh algorithms. Any Pooh system may
easily compensate for the polygonal edges introduced by the circle approximation.

Arc Algorithms Using the Approximation

Arcs, unlike Pooh’s other primitive structures, can be computationally expensive to
handle properly. Fortunately, it is possible to exploit the circle approximation to minimize
the arc calculations. The Pooh arc representation, as described in Section 3.1, is 4; =
(ri, pi, p§, Aix1). From this information we may calculate the arc’s beginning and ending
points aﬁ? and af using two unit circle points pf and pf ;. The circle approximation p*
provides n points on the unit circle, and the unit points pf, from (3-5), may always be
chosen from p§, pS$,...p5 _,. Pooh exploits this fact in all of its arc calculations.

In Chapters 3 and 3, several arc functions were left undefined. There was no
reason to introduce a more complicated function definition, when by postponing their

87

definition, the functions could be defined in terms of the circle approximation. In Chapter
3, the function arclen(A4;) that calculates the length of an arc, and the function in (U5,
U,) that detects overlap between two arcs were undefined. In Chapter 5, the function
point_in (Ui, p,) that detects overlap between a point and an arc was undefined. We
may exploit the fact that the arc is defined in terms of the circle approximation to define
these functions.

The arclen function computes the length of the arc, based on the number of line
segments in the arc times the length of a single segment, or double the first y coordinate.
The arclen function is:

indez(p®)= position (0...n — 1) of p° in the circle approximation
define arclen(A;}: length
nseg « index(p{,)—indez(pf);
if 7, >0 & nseg<0 then nseg +« nseg +n
else if r; <0 & nseg>0 then nseg + nseg —n
fi
arclen — |nseg| x |ri| X y§ x 2;
enddef

The function in uses the unit point indices to determine overlap between two
arcs “missing” the same point. The function is:

define in_Range(b,e,g): boolean
in Range «—b<g<e;
enddef
define arcs_in_Range (b1,e1,b2,¢2) 1 boolean

if by < by then

arcs_in Range + in_Range (by,e3,b;) OR in_Range (b3, ez,¢;)
else arcs_in Range « in_Range (bj,e1,b2) OR in_Range (b1, e1,e2)
£i

enddef

define in(U;,U;): boolean
if indez(p{)> indez(p{,;) then
in « if indez(p§)> indez(pf,;) then TRUE
else arcs_in_Range (indez(pf),n — 1,indez(pf), indez(pS,;)) OR
arcs_in_Range (0,indez(pf,), indez(pf), indez(pf 1))
fi
else if indez(p})>indexz(pf,;) then
in « arcs_in_Range (indez(pf),n — 1,index(pf),indez(p;,;)) OR
arcs_in_Range (0,index(pS), indez(pf),indez(pi) ;
else in « arcs_in_Range (indez(p{),indez(pf,), indez(p}), indez(pj ())
fi

enddef

Finally the function pcint_in determines whether a point on the unit circle
occurs between the two end points of a unit arc. This function is:

88

define point_in(U;,p;): boolean
point_in « 1if indez(pf{)> indez(pf{,) then
in_Range (indez(p{), n ~ 1,indez(p)) OR
in_Range (0,indez(p?,), index(p))
else in_Range (indez(p{), indez(pf,), indez(p;))
fi
enddef

With the introduction of the circle approximation, all functions associated with
arc synthesis and analysis are defined.

7.2 Storing Paths and Points

The effectiveness of any system that creates and uses objects that span more than one
dimension depends in large part on how easily the objects may be stored and accessed in
time and space. Batch oriented design tools typically build up sorted lists while they are
processing the data [Mosteller 81, Baker 80, Baird 77, Whitney 81]. Interactive systems
face a different set of constraints. An intelligent approach to the data structure can be
the deciding factor in the feasibility of an approach [Ousterhout 81, Ousterhout 84]. The
Pooh representation presents a different set of issues than those of other approaches.
A Pooch system must be able to order both points and path segments in a reasonable
fashion.

The data structures that maintain the Pooh points and path segments depend on
the idea of a design area. The design area is a dynamic rectangle that is always bounded
by four edges — lxz,lly, urz, ury. This area is usually either the bounding box of the
current cell, or the screen area in an editor.

Pooh Points

The points provide the underlying structure for a Pooh circuit. A point provides both
placement and connectivity information. Any two paths that are directly connected share
at least one reference to the same point. Each time a path segment is created, the system
must either find an existing point, if defined, or create a new point for each of the
segment’s points. Therefore a Pooh system must be able to quickly detect whether or
not a particular point already exists. The following discussion presents a data structure
that allows fast access to any point. First the static structure is presented, and then
extended for dynamic use.

The point data structure is capable of representing all points in the design area,
but occupies an amount of space proportional to the number of actual points and not
the number of representable points. Given a cell C with r points p = {p1,p2,... Pr},
we may distribute these r points on a set of buckets that span the y-axis. The number
of buckets is /7 [Bentley 80], and each bucket spans an interval along the y-axis equal
to tnterval = (ury — lly)/+/r. Each bucket contains from 1 to r points. Assuming an
even distribution of points in the design, the expected number of points per bucket is
/7. The contents of each bucket is maintained sorted in increasing z order. Figure 7-6
illustrates the point data structure.

89

r=15
Figure 7-6: The Point Array

For each point lookup and/or insertion, the system computes the bucket as
[(yi — lly)/interval|, and then uses a binary search [Aho 74] to find the appropriate
location. The expected number of comparisons for each point insertion is 1 + log(y/7)
or O (log(y/7)). The space complexity is O(r) since all entries are used, and each entry
contains a single point.

The dynamic behavior of this structure is important because an interactive editor
is constantly adding points. Given an initial static configuration, it is easy to continuously
update it to accommodate new points. If the design area enlarges, i.e., lly becomes
smaller, or ury becomes larger, new buckets are added onto the two ends. Otherwise,
the only action occurs when the number of points r becomes larger than the square of
the number of buckets, or nbuckets?. Then nbuckets is incremented by a small number,
the ¢nterval is lowered, and the points are redistributed.

Path Segments

A trickier storage problem is that of storing Pooh path segments. A Pooh system must
have easy access to the segments surrounding a particular point. But the number of
comparisons needed to detect a GDR violation should be a function of the number of
elements in an area rather than of the total number of path segments. However, unlike
points, path segments occupy space. The data structure must reflect this fact, and allow
the program to move easily through both dimensions.

Pooh divides the design area into a coarse grid, represented as a two-dimensional
array. Each element in the array represents a rectangle in the design area space and lists
every path segment whose bounding box overlaps this rectangle. This approach allows
fast access to all path segments that cross a particular region of the design area, at the
expense of representing the entire design area, including the unused portions.

The data structure for storing paths is a two-dimensional array representing the
design area, where the z paths of cell C, P = { P, P5,... P,}, are distributed over the

90

array. If the average number of segments in each path is m, then the total number of
path segments is approximately m x z or mz. The rows are similar to the buckets in
the point array, in fact there are 2,/mz rows, each spanning an interval yinterval =
(ury — lly)/(2\/mz). The number of columns is constant across the segment matrix,
unlike the point structure. The length of each column is 2y/mz; each entry spans an
interval zinterval = (urz — llz)/(2\/mz).

Since all possible GDR violations must be detected, the single most important
criteria is that path segments are represented in the data structure at every point the path
geometry occupies in space. Path segments are stored based on their minimum bounding
box (MBB). Often the MBB is larger than the segment itself, but as a rough first order
approximation, it never allows geometry to go undetected.

The path segments’ MBBs are mapped onto the two dimensional array, and
segments are kept in a linked list at all entries that any part of the MBB overlaps. Figure
7-7 illustrates six segments mapped onto the array. In the figure, arrows indicate a
linked list entry, and an z indicates an empty entry. For each path segment, there are
four possible non-unique bounding entries, one at each of the MBB comers.

N \ / 9

€

xinierval

Figure 7-7: A Segment Array

For a cell with mz path segments, the total number of entries in the array is
2/mz x 2\/mz = 4 X mz or O(mz). Since the system may access an array entry
directly from a point p; as |[(yi — lly)/yinterval|, |(zi — llz)/zinterval], the number
of comparisons is proportional to the number of segments listed in a single entry. The
average number of entries in which each segment appears is the average MBB area, or
A, divided by the intervals, or nE = A/(zinterval X yinterval). Assuming a uniform
distribution of segments, the expected number of segments per entry is the average
number of entries in which each segment appears times the number of segments, divided
by the number of entries, or(nE X mz)/(4 x mz)= nE/4. Thus the expected time
complexity for accessing elements at a particular point is a constant.

91

The dynamic behavior of the system is similar to that of the point structure. Given
an initial array based on the number of paths, it is simple to add new path segments.
If the design area bounds change, then the size of the array increases accordingly. At
some point the number of path MBB edges, or four times the number of path segments,
becomes larger than the number of rows squared, or row?. At this time, the system
increases both the number of rows and the number of columns by a small number,
recalculates the intervals yinterval and zinterval, and redistributes the segments. The
array then covers the entire design area, and keeps the number of entries proportional to
the number of path segments.

The algorithm to look at interactions between a path segment and all paths “near”
the segment is:

define row(y): 1integer
row « |(y— ly)/yinterval;
enddef
define column(y): integer
column + |(z — lz)/zinterval];
enddef
define path_in error(FPg): boolean

error occured + false;
for s; € S do
check all connected segments and mark as checked
lz,ly, uz, uy + MBB(s;);
for r+ row(ly) to row{uy) do
for ¢+ column(lz) to column(uz) do
for s € segment_array(r,c] do
if s is not marked then
mark segment s
check GDR interactions
fi
od
od
od
od
enddef

7.3 Integer Pooh

A system that supports the complete Pooh representation is a useful tool for some
applications, but it may introduce unnecessary computational inefficiencies under many
circumstances. This section explores an integer Pooh. Designers have used 45° iines for
a long time. The use of diagonal lines in layout is almost universally related to avoiding,
or “missing”, another element. The approach described in this section uses an octagon
circle approximation to support vertical, horizontal and 45° lines. Using only these three
line styles, Pooh arcs and lines resemble a series of connected line segments, as shown
in Figure 7-8, but paths are still constructed by “missing” other structures, as shown in

92

the figure. The points of the unit octagon may be represented as integers, and all of the
basic Pooh calculations are both simplified and integer based, with obvious implications
for efficiency.

Figure 7-8: Transistors and Wires in the Integer Pooh

The Circle and the Grid

The integer Pooh uses an integer grid, where valid grid points are even integers. Figure
7-9 illustrates the integer grid. Valid grid points are designated by circles in the figure.
One unit in Pooh is equivalent to four grid points. Half an internal unit is two grid
points, and is the smallest increment between the coordinates of valid addressable points
in the integer Pooh. Points with odd coordinates are forbidden under all circumstances.

e]

Figure 7-9: The integer grid and Unit Circle

The underlying unit circle approximation in the integer Pooh is an octagon of
radius four, as shown in Figure 7-9. Using this circle as the basic unit of measure, the
range of the integer system is sufficient both in lambda units [Mead 80] and in microns.

93

For example, on a 32 bit computer, with one internal Pooh unit equal to a hundredth of
a micron, the largest representable design unit is 2%, For signed numbers, the range of
representable units is +2%° = £536,870,912. Typical chips today are a centimeter on a
side, or 10* microns. Wafers are approximately 10 — 20 centimeters on a side, or ~ 10°
microns, or 107 hundredths of a micron. Thus any design conceivable today is easily
representable in this numbering scheme, with plenty of resolution remaining for devices
of ultimately small dimension.

This particular octagon approximation was chosen primarily because its end
points are on a simple grid, i.e., an even grid, and the lines and arcs generated based
on this circle approximation are on the same grid. Although this octagon is not truly
circular, according to the criteria described in Section 7.1, its deviation from an actual
circle is very tolerable, as illustrated in Figure 7-10.

Figure 7-10: Octagon Error

The distance from the oblique edges of the octagon to the octagon center is
Dy = \/_ﬁ = 3v/2 ~ 4.24. The deviation from the circle radius is Dy — 4, or .24, with
an error of Ey = .24/4 = .06. The distance from the octagon corners to the center is
D, = /20 = 4\/5 ~ 4.47. The deviation from the circle radius is D, — 4, or .47, or
an error of E; = .47/4 = .118. These deviations are comparable to the d — 1 factor

described in Section 7.1.

Lines, Points and Arcs

The primitive elements of the Pooh representation are lines, points and arcs. All of the
Pooh algorithms are based on calculations between these elements. The first step in
exploring an integer based Pooh is to decide how to represent these elements.

Pooh points are circles, represented as octagons in the integer Pooh. An octagon
with radius four represents a unit circle, and points with radii larger than one are scaled
accordingly. Figure 7-11 illustrates example points of various radii.

Lines are restricted to be horizontal, vertical or 45° according to the orginal
criteria of the integer Pooh. If the line end points are guaranteed to be on valid grid
points, lines may be placed anywhere on the grid. The intersection of any two lines is
always on a valid grid point, with one exception that is described later in this section.
There are eight different directed lines available in the integer Pooh. The line equations
for each of these lines are shown in the foliowing table.

94

Points Lines ArCs
Figure 7-11: Circles, Lines and Arcs

A B C
- 0 -1 y
— 0 1 —y
7 -1 0 T
L 1 0 -z
/ -\—%; ? 1;}-2-(x—y)
D B A
SN m mn pl-o)
N -5 7 pmEty)

The line equation Az + By+C = 0 for valid integer Pooh lines may be rewritten
as -(A'z+ B'y+C")= 0, where the coefficients A', B' € {0, 1}, and C’ is always an
even integer. The values of both the original coefficient and the new coefficient for the
three types of lines are shown in the following table.

| A B Cc m A B

Horizontal 0 +1 Fy 1 0 x1 =y

Vertical | *1 0 Fz I =1 O Fz
45° 5:71-2- i;‘fi Q%(?x?y) V2 +1 %1 Fz ¥y

Pooh arcs are calculated based on a circle and a signed radius. In the integer
Pooh, arc radii must be multiples of the basic unit of measure, i.e., an arc radius may not
be on a half unit grid. The reason for this restriction is discussed later in this section.
Figure 7-11 illustrates examples of legal arcs.

Line Calculations

There are two important line calculations that all the Pooh algorithms depend on. If
these two calculations are integer based, all of the line calculations in Pooh become

95

integer based. These two calculations are: (1) the distance between a point and a line,
or equation (3-3), and (2) the line intersection calculation, or equation (3-4).

The distance calculation is:
D=Az+ By+C.

There are two important pieces of information in this calculation: the sign of the
distance and the actual distance from a point to a line. The sign of Az + By + C is the
same as the sign of A’z + B'y + C'. The square of the GDR distance may be stored by
the integer Pooh system and compared to the square of the line equation. If a point is
less than the GDR distance from a line, the square of the distance from the point to the
line is less than the square of the GDR distance. These two equations are:

Sign(D) = A'z + B'y + C'

1
D? = —(4z+ B'y+ c')2.

The number D? is guaranteed to be an integer. If the line is horizontal or vertical
thenm = 1, 1/m? = 1, A', B' € {0, %1}, z and y are integer, therefore D? is an integer.
If the line is 45°, then m = /2 and 1/m? = 1/2, and the 45° distance equation may be
rewritten as:

D= 172 x [2 x (£1(z/2)£1(y/2) +F= F 4)/2)]”
= 2[£1(z/2)£1(y/2)+(F= F y)/2)%.

Since both z and y are even, the bracketed computation is an integer, making the entire
computation an integer one.

Notice that the distance calculation is not susceptible to errors introduced from
the octagonal approximation, since all valid line types are parallel to an octagon edge,
as suggested in Section 7.1.

The line intersection calculation determines the point at which two lines intersect,
and is used by Pooh extensively, often in a simplified form. The intersection equation
is:

det= B1Ar) — A1 B,

Pint = ((Bzcl ~ B1Cy)/ det, (A1C2 — A2C1)/det).

If the determinant is zero, the two lines are parallel. The following discussion
assumes that the two lines of interest are not parallel.

If the two lines in question are vertical and horizontal, then the line coefficients
are 0 or =1, or A1, Az, By, B; < {0, %1}, thus det € {0, +1}. If the determinant is O, the
lines are parallel, and therefore uninteresting. Otherwise the only information of interest
is the sign of “det”. Multiplying by %1 is equivalent to dividing, thus the equation may
be rewritten as:

pine = det x ((BoCy = BICa), (A1C = 42C1)).

96

If both lines are 45°, the determinant is either 0 or +1, as is always true for
parallel and perpendicular lines. If the determinant is non-zero, then we may multiply
by “det”, rather than dividing. The form of the intersection between these two lines is:

Dine = det X { —\75 (—I—E(iz + y)) - :i:—\}_—z- (—\}—?:-(:t:vi y)) ,
(?1-_5(:&:33 + y)> - i\-/l_—i (—\/%(:i:z + y)ﬂ

1
ping = det XE x (B;C| — BiC}, A\C) — A5CY) .
The point p;n; is an integer because: (a) the coefficients A' and B' are +1, and

the C' coefficients are combinations of the even z and y coordinates, (b) the component
det is £1, and (c) the factor 1/2 applied to even integers produces integers.

If one line is 45°, and the other is vertical, then the calculation is of the form:

1
5o/ (£73).
/ 7))
1 i:n:i:y;) (1)]
t—Cy— A [Z2 U [
=504 (F5) /(25
Pint = [\/—(szl B{Cy, A,ICZ_AZCX)]
Dint = (BgCl - BICZ,AIICZ — AzCl).

The intersection between 45° and horizontal lines works in an identical fashion.
In general, the intersection between two lines may be calculated as:

det = Bl A, — A! B}

Pine = det’ X (— 13 max — —)x(B3C) — B{C3, A1Cy — ASCY).
mi mz
The remaining algorithms for lines are angle-angle detection. Since there are
only eight possible line types, the simplest solution is to calculate the angle between the
eight types of lines once, and perform a table lookup based on the types of the two lines
in question.

Point-Point Calculations

The final operation of importance is to convert to integers the calculation of the distance
between two points. The calculation, equation (5-1), is:

PointDis(pi,p2)= \V (z1 — x2)2+(y1 - yz)z-

One possibility is to remove the square root by comparing the point distance to the
GDR distance squared, the approach taken in the line to point calculation. This approach

97

is valid, however it is susceptible to errors introduced by the octagonal approximation
to the circle, especially when this calculation is used in conjunction with the arc-arc
distance calculation, as described in Section 7.1.

An alternative approach is illustrated in Figure 7-12. Notice that given two points
p1 and p, we may construct four lines through pz, parallel to the four unique sides of the
octagon surrounding p;. Each of these lines, denoted as L;, Ly, L3, and Lg4, represents
one side of an octagon centered at p;, with a radius equal to the distance between p;
and the line. The largest of these octagons includes the point p; on its boundary.

Figure 7-12: Distance Between Two Points

Given two points and the integer grid, it is always possible to construct an octagon
surrounding p;, with p; on its boundary. Since there are only four unique line types in
an octagon, at least one of the four lines Ly, Ly, L3, or L4 is on this octagon. Since the
line segments that comprise this octagon are evenly spaced around pi, it is not possible
to construct a line with a larger distance to p; that still intersects p;. Thus we define the
point distance between p; and p; to be the maximum of the line-point distances between
the lines through po, L1, L3, L3 and L4, and the point p;. This distance is the closest
octagon radius to the actual Euclidean point distance between the two points, is always
greater than or equal to the actual distance, and is not susceptible to circle approximation
erTors.

The sign of the line-point distance between these four lines and p; is not impor-
tant, thus we choose four of the eight possible line equation, each with a unique slope.
The four line equations of lines that intersect the point p; are shown in the following
table.

B C D=An1+ By +C
1 - Y1 — Y2
0 —z3 Ty — 2

! 1

3 B h —232"3/2) y

|
N (z1+y1— 12— ¥2)
_ } s -3 mm—m) HZE-witw-on)

J,“

<
o

(
!
2 VIV

98

The calculation is:

define points_tco_closel(pi, p2, D, D?): boolean
I~z —z2; L~y — vy
if |l max |[L|> D then points_too_close «— false
ef L[|(h+ L) max |(I - L)|]*> D? then
points_too close+« false
else points_too_close + true fi

enddef

This function is integer based since both I; and I, are defined by the even
coordinates z and y. This calculation performs fewer operations than the point distance
calculation, and the distance is based on the octagon circle approximation, thus circle
approximation errors are not present.

Problems

There are always problems in any system that attempts to restrict its domain. Usually
these problems are not insurmountable, but they must be addressed. For example, in a
strictly manhattan system that enforces GDRs, the system must decide what to do about
the non-manhattan distances of corner to corner spacings. In the integer Pooh, there
are two inherent problems with the interactions between valid line segments and valid
points.

The first problem is with the intersection of two 45° lines. It is possible for two
such lines to intersect at an odd grid point, as shown in Figure 7-13(a). The intersection
is still on an integer grid, but not on the valid even grid. A system supporting an
integer Pooh must detect and prevent this situation by moving one of the lines until the
intersection is at a valid grid point, as shown in the figure.

The second problem is with half unit arcs. The end points of the line segments
algorithmically generated for the half unit arc do not fall on valid grid points, shown
as invalid arcs “missing” p; in Figure 7-13(b). This problem may be addressed by
constructing the half unit arcs in terms of a related point, shown in the figure as p;. This
point produces valid arcs for the half unit arcs of py. It is illegal however to mix half
unit arcs and full unit arcs “missing” the same point.

The Pooh Algorithms

The Pooh algorithms are mapped directly into the integer Pooh with the restrictions
described, and using the integer based calculations. All of the calculations described
in Chapter 3 depend on the line equations and rely heavily on the line intersection
calculation. Most of the path construction calculations are simplifications of the line
intersection. The angle between lines may be calculated once, since there are a small
number of unique legal line slopes, and looked up for a particular interaction. The arc
calculations already exploit the circle approximation, as described in Section 7.1.

The analysis algorithms described in Chapter 5 use the line-point distance and
the point-point distance as the basis for all of its GDR violation detection techniques.
The point-point distance is also used to detect violations between arcs. A simplification

99

invalid

..... NN

>< P,

(a) (b)

Figure 7-14: The Integer Pooh version of the Bit Serial Multiplier Cell

of the line intersection calculation allows Pooh to detect whether a point is between the
two end points of a line segment. Thus the analysis algerithms may become integer
based.

Pooh composition uses the line equations to represent the cell sides. The integer
version of the composition restricts the valid sides to vertical, horizontal or 45°. In order
to preserve the integer grid, cell rotation and mirroring is restricted to multiples of ninety

100

degrees. The line intersection calculation is used during composition in the construction
of the cell interface. Finally the analysis algorithms are used to detect GDR violations
between composed cells. Thus the entire composition approach may also be integer
based.

By imposing some restrictions on the angle of valid lines, the Pooh representa-
tion and its associated algorithms may be both simplified and integer based. One further
observation about the integer calculations described in this section: most of the multipli-
cations use the coefficients 0, =1, and 2. None of these numbers actually require a real
multiplication, instead they may be implemented as shifts and sign changes to increase
the numerical efficiency even further. Figure 7-14 illustrates the multiplier cell, used in
Chapter 6, mapped into the integer Pooh. This integer version of the cell is the same
size as the original cell.

101

8. A Pooh System

This chapter describes the implementation of a system that supports the Pooh represen-
tation. The first section describes a Pooh embedded language system developed as the
underlying representation for the Silicon Structure Project (SSP) Siclops silicon com-
piler. The second section presents Tigger: an interactive circuit editor that supports the
Pooh representation and interactively detects and prevents GDR violations. The third
section compares the Pooh approach to existing alternatives.

8.1 An Embedded Pooh

The original Pooh was implemented as an embedded language [Whitney 82], embedded
in the programming language Mainsail [Wilcox 79]. It served as the base representation
for the Siclops silicon compiler [Hedges 82]. This Pooh system is a set of procedures
in the programming language Mainsail whose purpose is to aid in the definition of cells.
There are two types of cells: leaf cells and composition cells. A leaf cell contains the
interconnection of transistors and no references to other cells. A composition cell is a
cell that contains instances of other cells and their interconnection. The various siclops
subsystems communicated through blocks described in Pooh.

Overview of Siclops

The Siclops silicon compiler was based on Dave Johannsen’s Bristle Block silicon com-
piler [Johannsen 81]. The design of siclops included the following goals:

An automatic wire routing system, including power and ground,
Modularity of the silicon compiler,

A flexible floorplan,

portability,

technology independence, and

A A

support of simulation.

Figure 8-1 is a diagram of the complete siclops compiler. The automatic wire
routing was handled by the General Interconnect (G.1.). The modularity of the system
was met by implementing each subsystem as a stand-alone tool that communicated by
using a consistent base level representation — Pooh. The flexible floorplan was possible
because of the availability of a G.1. The portability was provided by the implementation
language — Mainsail. The technology independence was addressed both by keeping any
technology dependent information outside the high level subsystems, and by using the
Pooh system, that supports multiple technologies. The simulation support was provided
by a translation from the Pooh representation to a switch level simulator.

Siclops was designed and implemented in only six months in the spring of 1982.
Consequently, not all of the pieces were completed. Most of the participants left shortly

102

Siclops Executive

Siclops
input :~> / \

spee Datapath Finite State Pad General
Compiler || Machine Parser Parser Interconnect
Cell PLA Pad
Library Generator Generator

POOH
] l L

CIF ELF Information
and
Errors

Figure 8-1: The Siclops Silicon Compiler

thereafter, thus a fully working version of Siclops was never completed. The following
describes some of the subsystems that were completed and how they interfaced to Poch.

The datapath compiler was designed and implemented by Ken Slater of Dig-
ital Equipment Corporation. A datapath generated by the compiler is composed of
columns of functional elements. Each column consists of vertically stacked bit cells.
The framework for the datapath is completely technology independent. The actual cells
are described in a cell library. The Mainsail language supports run-time linking, thus a
cell header is defined and used by the datapath compiler without any detailed knowledge
of the individual cells. The datapath compiler queries each cell for its size and power
requirements, and then adjusts the entire datapath based on the information supplied by
the cells. Each cell informs the datapath compiler at runtime as to the parameters it
understands, making each cell as flexible or inflexible as appropriate.

The original cell library was nMOS, supporting the Mead and Conway [Mead 80]
design rules. Each cell is a Mainsail module, with a standard interface. The topology of
the cell is described by a set of calls to the procedures which comprise the Pooh embedded
language. The cells are formed into columns by invoking the Pooh composition system.
Further calls into the composition system form the columns into a datapath. Pooh
provides no stretching capability as the composition occurred. Instead, the datapath
compiler controls the pitch of the cells. The compiler determines the placement of the
seven buses that provide communication between the columns, based on the maximum
size required by any of the cells used in a datapath. The topology of the cells in the
cell library is defined in terms of these seven buses. Thus, rather than the Pooh system

103

attempting to guess the optimal pitch of a cell, the datapath compiler performs stretching
in a controlled manner appropriate to the application. Figure 8-2 is a plot of one of the
datapaths generated by the Siclops silicon compiler.

The pad generator takes an input specification and generates a row of Pooh pads.
The actual pads were designed by Tony Bell of Fairchild, and are parameterized both in
the speed of the pads, and in the number of TTL loads the pad will drive. There are
a set of high and low profile pads. Pads in Pooh are represented as connection points,
with a very large radius and are round, as are all connection points. The GDR analysis
of pads is no different than for any other contact: only the actual rules are different.

Figure 8-3 is a plot of seven low profile Pooh pads that were recently fabricated
and successfully tested. These pads are VDD, ground, clock, input and output pads, are
slow speed and drive a .5 TTL load. Other pads available in the Pooh pad library are a
multiplexor and tristate pad.

The Embedded Language Pooh

The original Pooh [Whitney 82] used by Siclops was very limited in its scope. There
were a set of functions available in Mainsail that allowed the definition of transistors
paths, interconnections paths, and the ability to connect these elements together. There
were a second set of functions that supported the interconnection of cells. The original
Pooh supported both nMOS and cMOS/SOS.

The synthesis algorithms, described in Chapter 3 were the first set of functions to
be supported. All primitive elements were constructed correct according to the current
set of GDRs. If the embedded specification was inconsistent, the Pooh system reported
an error and attempted to leave the circuit in a consistent state.

The original Pooh composition was implemented by Tom Hedges, from Cal-
ma Corporation, one of the Siclops participants. Pooh cells were defined with sides
and ports, and composed by connecting two sides. The composition system supported
logical verification of the connection between the two sides; and supported the syntactic
composition described in Chapter 6.

The original Pooh supported two output formats: Caltech Intermediate Form
(CIF) [Mead 80, Hon 80], and the Experimental Layout Format (ELF). CIF is a hierar-
chical geometrical description and is commonly used as a geometry interchange format.
ELF is a file format developed at Caltech that includes all the pieces of information
present in a Pooh circuit in an easy to parse but terse format.

The original simulation interface was written by Mike Schuster from Burroughs,
another Siclops participant, and converted ELF to a Mossim specification [Bryant 82,
Bryant 81]. ELF describes the interconnection of transistors and interconnection wires,
but did not maintain the connectivity or propagate node information. The results of
the original conversion attempt affected the way in which connectivity information was
eventually maintained in the Pooh representation.

Later versions of the embedded Pooh supported the complete analysis algorithms
described in Chapter 5. Since the embedded Pooh is simply an executable circuit de-
scription, the interface to the analysis routines is “batch” oriented. If Pooh detects a
GDR violation, it reports an error, and continues processing the circuit. Since GDR
errors may occur, Pooh cannot guarantee the GDR correctness of the circuit, rather it

104

>

TY

==
s 2
EeS
.

g

=
i
y
i

g

b ¥

g

ifd

83

2y e =l § BT
SiTAE 3
=
= - = -
. . 4 e
.y & S “
i oy o
e ¥)
o o
1%
R o
b = N
= = =
)5 -4 .
B,
F u T
N i
= il
-)
o= v
I H =)
H 0
)]
= g p S =
)
" = = 0
iR}
K o
4 5 g
= § = z
;i
B AN 1
N)
b
W W D
3
»
:)
. N = 5
| 3

A Datapath Generated by the Datapath Compiler

8-2

Figure

Figure 8-3: A Set of Pooh Pads

106

marks the circuit as correct or incorrect.

Shortly after the Siclops project, the embedded Pooh was extended to maintain
the. connectivity of a circuit, both within a cell and during composition, as described
in Chapters 4 and 6. Pooh generates simulation input directly from the representation
rather than going through a conversion program; since all the information is present, the
simulation generation is straight-forward.

The embedded Pooh was a useful tool for developing the Pooh algorithms, and
it provided a consistent interface to a larger system — Siclops. A language is, however,
not a very convenient interface for describing the basic circuits. The system is slow to
respond each time a change occurs, as is always true with a “batch” system.

8.2 Tigger: An Interactive Circuit Editor

Tigger is an interactive graphical circuit editor, written in Mainsail, that supports
the Pooh representation. Individual cells are designed in Tigger, and cells are then
composed with the embedded language composition system. Tigger provides immediate
feedback to the designer as the transistors and the interconnection wires are positioned
graphically, and guarantees the GDR correctness of the circuit by detecting the GDR
violations as they occur, and not allowing the circuit to remain in an illegal state. Tigger
allows the designer to edit the circuit by either removing elements or by moving individual
points and segments. Tigger requires that the Pooh algorithms and data structures support
fully dynamic behavior since the interactive program is constantly changing the circuit.

Tigger supports the description of transistor and interconnection paths and their
connection, and uses constant graphical feedback to indicate the current state of the cell.
Currently, Tigger is running on a Silicon Graphics, Inc. Iris workstation, although it
has run on other workstations through the use of a different system-dependent graphics
module. The graphical interface to the system is a three button mouse. The three buttons,
during the creation of a path, map to: place a point, connect and make a transistor. Figure
8-4 illustrates several of the Tigger operations. The current path is “rubber banded”, i.e.,
the path outline moves as the cursor moves, giving the user constant visual feedback as
to the placement of the path. If a path moves “too close” to an existing element, the
offending element is highlighted, indicating to the user the existence of a GDR violation.
The designer may then move to a legal srate, at which point the highlighted element
returns to its normal display. The designer may also connect to or make a transistor
with the offending element, using the two alternate mouse buttons, and if the situation
is legal, the path continues on an optional new path segment. In fact the designer may
indicate “connection” or “transistor” at any time during the creation of a path, including
when the path starts, and the system will find the closest element, and attempt to make
a connection or a transistor.

If the side of the current path “bumps into” an existing point, often it is possible
for the path to “go around” the offending point. Figure 8-5 illustrates these Tigger
interactions. Tigger highlights an element when a GDR exists between the current path
and an existing element. If this element is a point, then Tigger attempts to “miss” the
point with the appropriate GDR spacing rule. If the situation is legal, the path continues
on a new path segment after creating a segment arc around the point. If the user moves
to where the segment arc is no longer valid, then the arc is removed.

107

Initial Connection

~

Angle Rule Violation

5oy
nsistor

Figure

8-4: Tigger Interactions

108

Path Start

Legal Path

Path UnWrap

Legal Path

Legal Paths

Constructed Paths

Figure §-5: Tigger

“missing” Interactions

109

Tigger and the Pooh Algorithms

The Pooh algorithms support Tigger, but the application is unique because Tigger is
interactive. The circuit is dynamically evolving and the use of the algorithms reflect this

constant change.

In Tigger, the synthesis and analysis algorithms interact in a unique way. Each
time the current path segment moves a half unit, the analysis routines are invoked to
determine if there is a GDR violation in this new configuration of the path. The synthesis
algorithms are used to update the current path, often incorporating information provided
by the analysis algorithms. If a GDR violation is detected, the user may connect to or
make a transistor with the element in violation. Tigger connects the current path to the
offending element, using the synthesis techniques, and then invokes the analysis routines
to determine if this connection is legal. If it is legal, then the new segment is valid
and the path optionally continues, otherwise the connecting segment is removed and
the new offending element is highlighted. A similar interaction occurs if the analysis
routines detect a GDR violation between the line of the current segment and a point.
Tigger constructs a segment arc around the offending point, and then invokes the analysis
routines to determine if the arc is legal. If the arc does not create a violation, the new
segment remains, otherwise it is removed. Tigger calculates the dot product between the
current path segment and the last segment and decides whether the last arc should be
removed, using the algorithm described in Chapter 3.

The node synthesis routines allow Tigger to maintain the full circuit connectivity.
Given an initial configuration for the cell, Tigger uses the node propagation algorithm,
described in Chapter 4 to determine the connectivity. Tigger incrementally updates the
connectivity each time a path is added to the circuit. If an element is deleted, or a
transistor is placed on an existing path, the circuit connectivity is modified, and the node
propagation algorithm is invoked.

Editing the Circuit

There are two types of editing functions currently supported in Tigger: delete and move.
Delete allows the user to remove a path or a point from the circuit. Move allows a
path segment or a point to be moved without changing the circuit connectivity. More
sophisticated editing capabilities are desirable, but these two operations represent the ba-
sic functionality upon which more sophisticated editing functions depend. For example,
currently one point or one path segment may be moved; eventually a user will be able
to define a group of objects and move the entire group. Currently a single segment may
be stretched, eventually the user will be able to stretch an entire cell.

Delete removes an interconnection path segment, a surround path, a transistor
path or an unwanted point from the circuit. Individual path segments may be removed,
but a transistor path and a surround path function as a single entity, thus the entire path
is removed. Points may be removed if they are not critical to any path segments. For
example, in ntMOS, a buried contact cannot be removed if there is both a polysilicon path
and a diffusion path connecting to the contact. But the same contact may be removed
once the polysilicon path is removed.

The delete operation removes the designated element, synthesizes the connec-
tivity, and then invoke the analysis routines on the elements directly connected to the

110

deleted element. A GDR violation may occur between two elements that were connected
through the deleted element, and are no longer connected. If there is a GDR violation,
the circuit must be further modified by the user.

Move allows either a point or a path segment to move, while still maintaining the
circuit connectivity. For a particular point, Tigger determines the segments that constrain
the point. If there is only a single segment, then the point may move freely, similar to the
current point in a new path. If there is more than one segment connecting to the point,
but the segment lines are unconstrained, then the point moves freely, and the segments
follow. If a segment line is constrained, then the point moves along the line. If more than
one segment line is constrained, then the point is constrained and unable to move. For
a particular segment, Tigger determines the points that constrain the segment, and the
corresponding segments that constrain these points. The segment moves by moving its
points along other connecting segments. If other segments are not present, then the point
moves freely. In all editing functions, the movement is bound by the nearest constrained
points in each direction. Figure 8-6 illustrates examples of editing functions, where a
cross indicates the moving point in (a) and (b), and a line indicates the moving line in
(¢) and (d); the arrows indicate possible directions of movement.

(b)

() (d}
Figure 8-6: Possible Edit Functions

Design Examples

Describing circuits in Tigger is very different than interacting with the graphical layout
editors currently available. The system is constantly calculating distances between ele-
ments and providing feedback to the designer as to the relative positions of wires and
points, even when they are not on a typical grid. In order to use the embedded Pooh,
designers had to first sketch the circuit on graph paper, thus the designs often followed
traditional layout techniques. Unlike the embedded Pooh, Tigger removes the grid and
allows the designer to see the constraining elements of the current circuit.

Tigger has been used to design several projects. The bulk ¢cMOS bit serial

111

multiplier presented in Chapter 6 was designed in Tigger. This multiplier was previously
designed with a simple box layout tool called Wol [Mead 84] that supports strictly
Manhattan geometry. A comparison of the area usage of these two designs for the same
set of GDRs is shown in the following table. The units are lambda [Mead 80]. The
actual set of ¢cMOS design rules are listed in appendix II.

Wol Tigger

Top Row Height 50 51
Bottom Row Height 47 46
Column Width 92 81.5
Column Height 97 97

Area 8924 790S.5

Area Difference | 1018.5
Percentage Difference 11%

The purpose of Pooh and Tigger is certainly not to try and squeeze the last
micron out of a design, even though a designer will typical gain at least ten percent
over a strictly Manhattan layout. To the contrary, Pooh is a general hierarchical circuit
representation that allowed us to face into the issues of representing true circuits.

Researchers at Caltech are examining novel chip architectures that model bio-
logical systems; the current interests include modeling retinas [Mead 84] and exploring
motion detection strategies [Tanner 84, Tanner]. A hexagon has many appealing char-
acteristics as the form of the basic computational elements for systems that work in two
dimensions. Figure 8-7 is the wiring diagram for the two-dimensional version of the
retina. Currently the circuit design for the computational elements has not been com-
pleted, since the one-dimensional version recently returned from fabrication. Motion
detection is another application of the hexagonal array. The number of interconnection
wires between elements is reduced from four to three if a hexagon is used.

Tigger and the embedded Pooh share the same computational engine. The system
is capable of supporting both batch and interactive design. Current unimplemented
features are the integer Pooh and the GDR analysis during composition. The following
table lists the components of the Pooh system, and the number of lines of source code
in Mainsail.

Component Source Lines
Data Structures 584
Analysis 4238

Pad Generator 2745
Technology 1184
Utilities 3924
Output Routines 2985
Tigger 7302

Node Synthesis 2543
Composition 1806
Total 27311

Figure 8-7: The wiring diagram for the Two Dimensional Retina

113

8.3 Comparison with Other Approaches

There are two complementary ideas in Pooh: the representation itself and the algorithms
that perform operations on the representation. The algorithms are simple because care
was taken in the design of the representation. Often these two ideas become entangled and
inseparable. For example “sticks” [Williams 77] is a representation, where as compaction
[Mosteller 81] is a set of algorithms that perform calculations on a Manhattan sticks
representation. The two ideas are distinct; and thus treated separately in the following
discussion.

Pooh is a “stick” representation, in that the devices of the fabrication technol-
ogy are represented explicitly, and wires are connections between these devices. This
semantic-based representation differs radically from the traditional approach of repre-
senting the mask layers. Many systems today still use layout as the representation of
a design. These systems include Wol [Mead 84], Caesar [Ousterhout 81], and Earl
[Kingsley 82]. More sophisticated tools such as Magic [Ousterhout 84] recognize where
a transistor occurs, but represent the transistor area as another layout layer, and do not
keep the transistor as an integral structure.

Other systems use a topological “sticks” representation. These systems com-
monly support a strictly Manhattan style of design, though there are exceptions. The
most common model of a transistor is as a fixed symbol with three connection points
for source, drain and gate. This transistor expands in two dimensions, based on two
parameters length and width. Examples of this approach include the original sticks work
[Williams 77] by John Williams, the ICSYS system [Buchanan 80], the Mulga system
[Weste 81], the Rest systems [Mosteller 81] and the Cabbage system [Hsueh 80]. There
are simple extensions to this transistor model that allow the definition of actual devices.
For example, rather than using three single connection points, the transistor connections
are lines along the three edges. One of the more sophisticated systems that supports
this approach is Electric [Rubin 83]. A system that supports the definition of unique
transistors is the inMos system {Barton 84]. Another extension to the transistor model is
to push the complexity of the transistor layout into a fixed number of transistor symbols,
similar to very small cells, where the transistor symbols still have three definitive connec-
tion points. This particular way of defining transistors is rather ad hoc, but circumvents
the rigid approach supported by typical stick systems. Pooh, on the other hand, models
transistors as algorithmic structures. The Pooh transistor points resemble the standard
stick transistor. The Pooh transistor paths allow the description of legal devices in a
general way. Each device is designed for the particular context. The path parameters are
not limited to the length and width, but rather use the length, width and path center-line
to algorithmically generate a unique transistor.

The geometrical algorithms used in conjunction with preventing GDR violations
fall into three categories: (1) layout geometrical design rule checking, (2) compaction,
and (3) sticks GDR detection. The first type is standard design rule checking. Rule
checks are performed between edges of the layout. This approach is error prone, since
the DRC must attempt to reconstruct part of the circuit in order to check many of the
GDR rules; since the program is guessing the function of the layout, errors occur. DRC
programs today often restrict the layout to Manhattan [Ousterhout 84], because in general,
performing operations between the complex edges of polygons is a hard problem, subject

114

to numerical inaccuracies.

Compaction is a batch oriented approach that does not detect GDR violation,
but rather uses the GDR rules to determine the spacing between topologically ordered
devices and interconnect. The representation for compaction is usually “sticks”, and
the algorithms are either graph based [Mosteller 81, Hsueh 80] or rely on a virtual
grid [Weste 81]. All of these systems restrict the sticks to Manhattan, and separate the
inherently two dimensional GDR representation into two one dimensional compactions.
The advantage to compaction is that the technology rules may completely change, and
designs are simply compacted with the new rules. The disadvantage is that the user ends
up fighting the compactor. A designer has a model of the cell, and its interactions with
other cells. Compactors inevitably end up moving cell elements around in an unsuitable
manner. This problem is a common one in batch systems, and may or may not be
acceptable for a particular problem.

The third approach, and the one supported by Pooh, is to detect GDR violations
on a “sticks” representation. Electric also performs DRC on sticks, but although Electric
does not restrict the cell elements to Manhattan wires, the DRC only works on Man-
hattan edges. The Electric DRC actually calculates distances between the edges of the
layout contained in the sticks description rather than truly exploiting the representation.
Pooh, by choosing circles and lines as its primitive structures, provides the luxury of
allowing arbitrary angle geometry while still defining the GDR violation detection algo-
rithms in terms of the transistors and wires, rather than mask layers. Tigger provides a
unique interactive envirenment, where designers may interactively “compact” their cells
in the manner appropriate to the application. Currently, work is in progress on full two-
dimensional compaction of Pooh-like circuits using an annealing approach, with very
interesting results [Mosteller].

All designs must eventually be described as a circuit in order to check the validity
of the layout. Systems that maintain a layout representation must extract the circuits,
whereas systems, such as Pooh, that maintain the connectivity may generate a circuit
description trivially. Extractors tend to be error prone, since they must reconstruct the
circuit from the layout, and often there is ambiguity.

The composition of cells is the single most important component in any system.
The composition must be able to either detect or prevent GDR violations at the composi-
tion level. Layout editors, such as Magic, perform DRC during composition by flattening
out the geometrical hierarchy at the cell interface; This approach to hierarchical GDR
detection is well understood [Whitney 81, Scheffer 81]. There are many different forms
of sticks composition. One approach is to ensure that each cell includes an interval of
half the maximum spacing rule around the entire cell [Mosteller 82], thus not allowing
any possible GDR violation, and also making the area of each cell subject to the worst
case design rule. Another approach is to put the entire design on a virtual grid [Weste
81] and compact the entire chip. Earl [Kingsley 82], although it is a layout tool, supports
a hierarchical constraint graph [Rowson 80]. The constraints do not include any GDR
information, although hierarchical compaction using constraints on cells connectors (or
ports) is implemented [Kingsley 84]. Electric does not do any GDR checking at the
composition level. Pooh maintains the GDR relevant information at each level in the
hierarchy, thus circumventing the need to instantiate the geometry during composition.

115

Although simple heuristics may eventually be applied when Pooh connects two cells,
general stretching is usually unnecessary and inappropriate in many real designs.

Composition not only places two pieces of geometry together, but often assembles
cells that are semantic units. Ports represent the interface to the cells and describe the
signals the cells expect; ports are not truly represented by geometry alone. *“Layout only”
systems do not include any consistent mechanism for representing the cell. Systems such
as Electric and Mulga do maintain a hierarchical description, rather than regenerating
the description each time. Pooh is intrinsically linked to a hierarchical representation,
and maintains the information necessary at the composition level in the cell external
interface. This information is sufficient for composition, and creates a true abstraction.
Pooh is a representation for hierarchical ceils and provides a mechanism for topological
design abstraction. This topological abstraction coupled with a semantic and timing
abstraction of cells provides a complete and homogeneous design methodology.

116

Appendix I. Experimental Layout Format

The Experimental Layout Format (ELF)! is the file format used by the Pooh system to
maintain the necessary information between design sessions. The file format expresses
the notions inherent in the Pooh representation. ELF is considered object code generated
by a higher level design system. In ELF, human readability was sacrificed for parsing
efficiency, although the file format is ASCII for machine independence. An ELF file
should never be created by a text editor.

An ELF file is based on the notion of lists. In fact the ELF file uses a LISP-like
syntax. List indices are used to reference elements, rather than names. An ELF file
consists of a list of cell definitions. Each cell definition is a list of: 1) Points, 2) Paths,
3) Instances of other cells, 4) Connectors, 5) Internal Connections, and 6) Constraints.
Each element in a list may have a property list associated with it. A property provides
additional information about the eiement not present in the formal syntax.

1 ELF Syntax

This section presents a formal definition of the ELF syntax. The following conventions
are used: production rules use equals = to relate identifiers to expressions, non-terminal
identifiers are surrounded by brackets, e.g., (point), terminal identifiers are always charac-
ters and are in a distinct font, e.g., W; double parenthesis (()) are used to group alternatives
together; a vertical bar | indicates an or between alternatives; curly brackets {} indicate
repetition any number of times including zero; square brackets [| indicate optional ele-
ments — 1i.e., zero or one repetitions; rules are terminated by a period. First the parsing
syntax is presented, and then the full syntax including some redundant production rules
present to indicate the semantics.

Parsing Syntax:

(Digit) —((o11121314151617181]29).

(BlankC) = ((| linefeed | carriage return | tab))
{(BlankC)}.

(NonBlankC) = ((Any Character but a (BlankC), ’)).

(IdentChar) = ((Any Character but a (BlankC), (Digit),

G =)

! The ELF format was originally a joint effort between John Tanner, Chris Kingsley,
Richard Mosteller, and Telle Whitney, all graduate students at Caltech, and was intended as a
way of communicating between various high level design tools. Once the Pooh system adopted
it as its base format, the file format became more specific to the needs of representing Pooh, but
many of the ideas expressed by the members of the original team remain in ELF.

(PositiveInteger)
(Integer)
(CharacterSequence)
(Identifier)
(Token)

(Element)
(List)

Full Syntax:

(Point)
(Name)
(Index)
(Property)
(Properties)
File

(Version), (Date),

(Time), (Technology) =

(Cells)
(CellDefinition)

(A), (B)
(PtEntries)
(PtEntry)
(Instances)
(Instance)

(Transform)

(MirrorCommand)
(RotateCommand)

(TranslateCommand)

(Paths)

(Path)
(PathType)

(PathPoints)

(PathPoint)
(Radius)

(Connectors)

(Connector)
(Side)

(IConnects)

Il

117

(Digity {(Digit)} (BlankC).

[<] (Positivelnteger).

* {{NonBlankC)} (BlankC).
(IdentChar) (BlankC).

(((CharacterSequence) | (Integer) |
(Identifier))).

(((Token) | (List)).

({(Element)}).

(Integer) (Integer).
(CharacterSequence).

(Positivelnteger).

((Identifier) {(Element)}).

({{Property)}).

({Version) (Date) (Time) (Technology)
(Properties) (Cells)).

(CharacterSequence).

({(CellDefinition}}).

((Name) (A) (B) (PtEntries) (Instances)
(Paths) (Connectors) (IConnects)
(Constraints) [(Properties)]).
(Positivelnteger).

({(PtEntry}}).

((Point) [(Properties)]).

({(Instance)}).

((Index) (Transform) [(Properties)]).

([MirrorCommand| [RotateCommand]
[TranslateCommand]).

(M (BlankC) (X 1 Y))).

(R (BlankC) (Point)).

(T (BlankC) (Point)).

({(Path)}).

((PathType) (Properties) (PathPoints)).
(Identifier).

((PathPoint) {(PathPoint)} (PathPoint)).
((TypePoint) [Radius] [(Properties)]).
(Integer).

({{Connector)}).

((Side) (TypePoint) [(Properties)]).
(w1 E S| NI I{Positivelnteger))
(BlankC).

({{IConnect)}).

118

(IConnect) = ((TypePoint) (TypePoint)).
(TypePoint) = ((p (BlankC) (Index) |
I (BlankC) (Instancelndex) (ConnectIndex))).
(InstanceIndex),
(ConnectIndex) = (Index).
(Constraints) = ({{Constraints)} ;.
(Constraint) = ((TypePoint) (X | Y | 2)) (= | >)) (Integer)

(TypePoint)).

2 Property Syntax and Semantics

The ELF file format provides a framework in which designs may be described. The
notions of points, paths, connectors and instances form a design skeleton. In order to
actually describe designs, information about the nature of the skeleton must somehow be
present in ELF. Property lists are the mechanism through which ELF assigns interesting
information to the various components in the file.

This section presents both the syntax and the semantics of the properties currently
defined in ELF. The target for this particular set of properties is to describe pooh designs.
Therefore the properties provide sufficient information for both the geometrical and
topological elements of the design.

Each ELF property is surrounded by a set of parentheses, and consists of a single
character identifier, and zero or more elements. Each element may either be a character
sequence, an integer, an identifier, or a list.

(File) Properties

The ELF format provides the capability of many different design tools communicating
through a file or set of files. ELF provides information— it does not in any way guarantee
the designs it describes. Often it is convenient to tag a file. This tag, for example could
be interpreted as an indication of Geometrical Design Rule Integrity. The (Generation)
property allows a design system to tag the file.

(G BlankC (CharacterSequence)).
[{Generation)].

It

(Generation)
(FileProperty)

{CellDefinition) Properties

Often a cell definition is simply represented by an “abutment box” and a set of connec-
tors. An abutment box is a box that abuts to other cell instances during the composition
process. An abutment polygon is a generalization of the abutment box—where a polyg-
onal edge rather than a box edge abuts to other cell instances. The (AbutBox) and
(AbutPoly) properties supply this information.

(AbutBox}) = (B (BlankC) (Box))

(Box) = (Left) (Bottom) (Right) (Top).
(Left),(Bottom),
(Right),(Top) = (Integer).

(AbutPoly) = (P (BlankC) (PolyPoints)).
(PolyPoints) = ({(Side) (Point)}).

I

(CellProperty) (((AbutBox) | {AbutPoly))).

119

(PtEntry) Properties

ELF represents each important point in the design as a (PtEntry). A PtEntry always has
a position, but PtEntries need type information to fully describe the point they represent.
There are three possible types for a PtEntry: 1) a contact, 2) a transistor, and 3) a
geometrical point. A contact may include more than one physical point, in which case
the (Index) is used to differentiate between the points. If the contact is asymmetrical,
then the (Orientation) property describes the orientation of the contact. A transistor
point may have all the properties described in (TranProperty). Any point may have a
(PointName) and a (PointNodeNumber).

(Contact) = (C (BlankC) (ConDesc)).
(ConDesc) = (Contype) [(Index)].
(ConType) = (Identifier).

{Transistor) = (T (BlankC) (TranDesc)).
(TranDesc) = (Trantype) [(TranProperties)].
(Trantype) = (Identifier).

(GeometricPoint) = (P (BlankC) (Identifier)).

(PointName) = (N (BlankC) (Name)).

(PointNodeNumber) = (# (Positvelnteger)).

(Orientation) = (O (Integer)).

(PtEntryProperty) = (((Contact) | (Transistor) | (GeometricPoint) |

(PointName) | (PointNodeNumber) |
(Orientation))).

(Instance) Properties

Instances of cells often have a name, stored as the (InstName) property.

(N (BlankC) (Name)).
[(InstName)].

(InstName)
(InstanceProperty)

(Path) Properties

Paths may either be transistors or interconnection wires. An interconnection path may
have a size, node number or width. The size indicates the relative capacitance of the
path. A transistor path may have all the transistor properties (TranProperty); the gate
node number of a transistor path is the (NodeNumber) property.

It

(Size) = (K (BlankC) (Positivelnteger)).
(NodeNumber) = (# (BlankC) (Positivelnteger)).
(PathWidth) = (W (BlankC) (Positivelnteger)).
(PathProperty) = (((Size) | (NodeNumber) | (PathWidth) |

(TranProperty))).

Transistor Properties

Both PtEntries and Paths may be transistors. Any transistor may have a width, a length,
a strength, a source and drain node number, and an initial and final extension property.
The (TranConn) property contains the source and the drain node numbers. The (TExt)
property is the initial and final extensions from the beginning and ending of the path to
the start and the end of the gate regions, respectively.

(TranWidth) = (W (BlankC) (Positivelnteger)).

120

(Length) = (L (BlankC) (Positivelnteger)).
{Strength) = (S (BlankC) (Positivelnteger)).
(TranConn) = (D (BlankC) (Positivelnteger) (Positivelnteger)).
(TExt) = (E (Integer) (Integer)).
(TranProperty) = {({TranWidth) | (Length) | (Strength) |
(TExt))).
(TranProperties) = ({(TranProperty)}).

(PathPoint) Properties

Each path consists of a sequence of path points. The (ConnectionType) property indi-
cates the type of connection between the path and the point. If neither the path nor the
point are transistors then the path may either connect to the point (ConnectCenter—~
Line) or not connect to the point (NotConnected). If the point is a transistor point
then the path may connect to the source (ConnectSource), drain (ConnectDrain)
or gate (ConnectCenterLine) of the point. If the path is a transistor then the path
may be uncomnected (NotCcnnected) or the point is connected to the source (Con-
nectToSource), drain (ConnectToDrain) or gate (ConnectCenterLine). The
(PathType) property indicates the point’s position in the path. The point may: 1) start
the path (F), 2) end the path (L), 3) end the segment (S), 4) occur along the segment
(I), or 5) end the transistor region (E). The {CircleIndex) property indicate where on a
discrete circle this segment ends.

(PointConnect) (C (BlankC) (ConnectionType)).

{ConnectionType) = ((NotConnected | ConnectCenterLine |
ConnectDrain |ConnectSource |
ConnectToDrain | ConnectToSource)).
(01112131415).

(PathPointType) (P (BlankC) (PointType)).
(PointType) = (FILITIIEIS).
(CircleIndex) (I (BlankC) (Index)).
(PathPointProperties) (((PointConnect) | (PathPointType) | (CircleIndex))).

[l

(Connectors) Properties

Connectors may have properties designating their names and types. A (Signal) property
is a global name. An (InternalName) is the name of the connector inside the cell.
A (ConnectName) is the internal name of the connector to which this connector may
connect. The (Position} is an index into a list of connectors with the same name. The
(ConnectorType) indicates the type of this connector.

(Signal) = (S (BlankC) (SignalTypes)).
(SignalTypes) = ((’vdda | *gnd | "phil | "phi2 |
(CharacterSequence))) (BlankC).
(InternalName) = (N (BlankC) {(CharacterSequence)).
(ConnectName) = (C (BlankC) (CharacterSequence))
(Position) = (P (BlankC) (Positivelnteger)).
{(ConnectorType) = (T (BlankC) (CType))
(CType) = ((vddType | gndType | PhilType | Phi2Type |

(
InputType | ControllInputType | OutputType |

121

TristateIOType | TristateOutType | BusType |
PreChargeBusType | UserType)}(BlankC).
112131415161 718([9]10]11]20).
(((Signal) | (InternalName) | (ConnectName) |

(Position) | (ConnectorType)).

i

{ConnectorProperty)

3 Technology Dependent Information

This section describes the technology dependent identifiers. There are three
different identifiers:
1) (InterConnectType),
2) (TranType), and
3) {ConType).
Each identifier is followed by a phrase in quotes that indicates the type, for
example — D “Diffusion” indicates that D is the identifier for the diffusion layer.

nMOS Definitions

i

((o “Diffusion” |
P “Polysilicon” |
M “Metal”)).
(TranType) = ({ A “Depletion Mode Transistor, diffusion centerline” |
B “Depletion Mode Transistor, poly centerline” |
E “Enhancement Mode Transistor, poly centerline” |
F “Enhancement Mode Transistor, diffusion centerline”)).
(PathType) = (((InterConnectType) | (TranType)).

(InterConnectType)

{ConType) (B “Buried Poly To Diffusion” |
T “Butting Poly To Diffusion” |
P “Poly To Metal” |

D “Diffusion To Metal” |

X “Depletion Mode Buried Contact”)).

I

¢MOS SOS Definitions

(InterconnectType) = ((N “n-island” |
I “p-island” |
M “metal” |
P “polysilicon”)).
(TranType) = ((G “p type of transistor, p-island centerline” |

H “p type of transistor, poly centerline” |

K “n type of transistor, n-island centerline” |
L “n type of transistor, poly centerline”)).

((InterConnectType) | (TranType))).

]

(PathType)

122

(Contype) = ((N “n-island to poly” |
‘ D “n-island to p-island” |

P “poly to p-island” |
T “n-island to poly to p-island” |
R “poly to n-island to p-island” |
L “n-island to metal” |
M “poly to metal” |
O “metal to p-island”)).

¢MOS bulk Definitions

]

(N “n-active” |

I “p-active” |

M “metal” |

P “polysilicon” |

Z “metal2” |

W “well”).

(TranType) = ((G “p type of transistor, p-active centerline” |
H “p type of transistor, poly centerling” |

K “n type of transistor, n-active centerline” |
L “n type of transistor, poly centerline”)).

((InterConnectType) | (TranType))).

(InterconnectType)

(PathType)

(Contype) = ((L “n-active to metal” |
M “poly to metal” |
O “metal to p-active” |
U “ohmic contact metal to well” |
S “ohmic contact metal to substrate” |
X “metall to metal2”
V “poly to metal to metal2” |
W “n-active to metal to metal2” |
Z “p-active to metal to metal2”)).

The following is the ELF for the synthesis example, figure 2-5, of Chapter 2.
The example is fairly short, as ELF file go, but it illustrates most of the structures, and
how they are used.

(’3 "May-2-85 *16:38 'nmos ((G "POOH))

(Csynthesis 200 100 ((1000 1800((# 1)(P D)))(1900 1800((# 2)

(C P)2611 2112 ((# 3)(T A ((L 1200)(W 200)(D 1 4)))))

(3350 2150((# 5)(C D)))(3850 2150((# 4)(P D)))(1450 3300((# 6)
(P M)))(2200 3300((# 7)(C P)))(2950 3300((# 6)(C D)))(3550 3300
((# 6)(P M))X3900 3400((# 8)(P P)))(4100 3400((# 8)(T A

((L 200)(W 200)(D 9 10)))(4100 3200((# 9)(P D))

(4100 3600((# 10)(P D)))(4300 3400((# 8)(P P))))

0

123

(M ((W 300)(# 6))((P 6 ((P F)(C 1)))(P 7 -650 ((P S)(I 11)))
(P 8 (P SY(C DA 6)XP 9 (P LYC 1)XT)

(D (W 200)(# 9)((P 12 ((P F)(C 1)))(P 11 ((P L)(C 3) 11)))))
(D (W 200)# 10))((P 11 ((P F)(C 2))(P 13 (P L)(C 1) 11)))))
(P (W 200)(# 8))((P 10 ((P F)(C 1)))(P 11 (P I)(C 1)))

(P 14 ((P L)(C 1 8))))

(A ((W 200)(# 3)(L 1200)(D 1 4)(E -1060 -100))

(P 1 ((P F)(C 5))(P 2 -700 ((P SY(I 10)(P 3 ((P E)XC 2)))

(P 4500 ((P SYI TP 5 ((P LYC DT 11)))))

)

0

0

0

0

)

124

Appendix II. Geometrical Design Rules

The pooh design rule file! describes technology specific information. This file is
always coupled with a technology specific Mainsail module [Wilcox 79] that reads in this
technology file, builds a data structure describing how to graphically display the contacts
of the technology, and maintains any technology specific procedures. The technology
information in the file is;

1) the valid interconnect paths,

2) the contacts,

3) the transistors,

4) path to path spacing rules,

5) path to contact spacing rules,

6) contact to contact spacing rules, and

7) angle rules between paths.

The spacing rules may be four different types:

d only applies if the paths are different electrical nodes, otherwise the paths may
cross freely,

x applies regardless of the electrical node,

s one spacing rule applies if the paths are the same node, another if the paths are
different nodes,

q one spacing rule for paths inside (distance <0), and another rule for paths outside

(distance>0).

The format of the file is easy to parse, but not easy to characterize in BNF. The
file is a series of lists and upper diagonal matrices. The following conventions are used:
production rules use equals = to related identifiers to expressions, non-terminal identifiers
are surround by brackets, e.g., (item), terminal identifiers are always in a distinct font,
e.g., x; double parenthesis (()) are used to group alternatives together; a vertical bar
| indicates an or between alternatives; curly brackets {} indicate repetition either any
number of times including zero, or a specific number of times in a list; square brackets
[] indicate optional elements — i.e., zero or one repetitions; rules are terminated by a
period. Lists start with a number (n), and are followed by a set of (n) items. The syntax

for a list is:
(List) = (n) {{item)}.

! The format of the design rule file was a joint effort between Chris Kingsley and Telle
Whitney, both graduate students at Caltech, and was intended to span two distinct design tools.
Chris left shortly thereafter, and never used the design rule format, but the format remained intact.

125

Upper diagonal matrices are used to store interaction rules between elements. If
the rules are between a list of (n) elements and a list of (m) elements, the rules are

stored as a list of (m) elements, followed by a list of (m-1) elements, ...

list of (1) element. The syntax for these matrices is:

(Matrix)

= [(n) (m) (item)].

followed by a

The numbers (n) and (m) do not appear explicitly in the file, but rather are

implied. Comments may appear anywhere, and are delimited by double quotes ().

The parsing syntax is:

(Digit)
(BlankC)

(NonBlankC)
(IdentChar)
(Identifier)
(Positivelnteger)
(Integer)

(Boolean)
(CharacterSequence)
(Comment)
(SpacingRule)

(ConnectAngle)
(Token)

(List)
(Matrix)

Full Syntax:

(Index)

(n)
(Name)
File

(A), (B)
(CifLayers)

(CifLayer)
{Intercons)

(Intercon)

[

I

(011121314151 61718159).

((| 1inefeed | carriage return | tab)

{(BlankC)}.

(Any Character but a (BlankC),).
(Any Character but a (BlankC), (Digit), -
(IdentChar) (BlankC).

(Digit) {(Digit)} (BlankC).

[-] (Positivelnteger).

(T1F).

NonBlankC {(NonBlankC)} (BlankC).

"{(((BlankC) | (NonBlankC)))} ".

(((Positivelnteger) d | (Positivelnteger) x |
(Positivelnteger) s (Positivelnteger) |
(Positiveinteger) g (Integer)).

(Integer) ~(Integer).

(((CharacterSequence) | (Identifier) |
Integer) | (Positivelnteger) | (Comment) |

Boolean) | (SpacingRule) | (ConnectAngle))).

E
E n) {(1tem>}

(n) (m) (item)].

(PositiveInteger).

(Positivelnteger).
(CharacterSequence).

(A) (B) (CifLayers) (Intercons) (Transistors)
(Contacts) (Spacing) {Angles).
(Positivelnteger).

(n) {(CifLayer)}.

"Cif Name, minimum radius™
(CharacterSequence) (Positivelnteger).
(n) {{Intercon)}.

"[nterconnect name, minimum radius,
elf layer, path type, cif list"
(CharacterSequence) (Positivelnteger)
(Identifier) (PathType) (CifList).

)-

(PathType)
(CifList)

(CifEntry)
(Transistors)

(Transistor)

{Contacts)

{Contact)

(LegalC)

(Legal A)
(Spacing)
(PathPathSpace)

(PathConSpace)

{ConConSpace)

(Angles)

126

"center-line path, or surround path"

= (C | $)) (NonBlankC).

(n) (CifEntry).
"Cif layer index, layer radius offset,
layer end extension"

= (Index) (Positivelnteger) (Positivelnteger).
= (n) {(Transistor)}.

"Transistor name, gate layer index, elf gate

layer, gate width, minimum gate extension,
channel layer index, elf channel layer,

minimum channel width,

minimum channel extension, cif list"
{CharacterSequence) (Positivelnteger) (Identifier)
(PositiveInteger) (Positivelnteger) (Positivelnteger)
(Identifier) (PositiveInteger) (Positivelnteger)
(CifList).

"number of contacts, contact cif file,

list of contacts "

(m) (Charactersequence) {(Contact)}.

"contact name, elf name, number of connection
points, legal connections, legal angles for

legal connections, cif contact number"
{CharacterSequence) (Identifier) (Positivelnteger)
(LegalC) (LegalA) (Positivelnteger).

"for each interconnect layer,

if there is a valid connection"

{(Boolean)}.

"the legal angle of connection for each valid
connection

= {(ConnectAngle)}.
= (PathPathSpace) (PathConSpace) (ConConSpace).

“"The spacing rules between the (n) paths"

[(n) (n) (SpacingRule)].

"The spacing rules between the (n) paths and
(m) contacts™

{(SpacingRule)}.

"The spacing rules between the

(m) contacts™

[(m) (m) (SpacingRule)].

"The minimum connection angle between paths"

[(n) (n) (Integer)].

The following is an example GDR file for cMOS Bulk:

150 10

“cif layers #layers, layer name, min radius”

127

I9CMISCPIOCDIOCM2 15CCI0CW 10CS 15CV 10 CG 10
“interconnect types #layers, layer name, min radius,

elf layer, C(centerline path)/S(surround path)

#cif layers, —cif layer, min cif radius”™

6

metal 1I5SMC11015
metal2 15Z C14015
poly 10P C12010
ndiff 1IONC13010
pdiff 101 C2301072030
pwell 0 WS 16010

transistor types #trans, transistor type,

gate layer, elf gate name, min gate width, min ext gate,
chan layer, elf chan name, min chan width, min chan ext,
#cif layers, —cif layer distance beyond gate length,
distance beyond gate width” extralayer”

2

ptype 3H20255G2020320253200740203
ntype 3L 20254K20202202532000

’contact types #contacts, cif file of contact description,
contact name, elf contact name, #connection points,
array of legal connections for each connection type,
legal angle of connection for each legal connection,
cif symbol number”

9 scmoscon.cif

pm M 1 TFTFFF 0~0 0~0
pdm O 1 TFFFTF 0~0 0~0
ndm L 1 TFFTFF 0~0 0~0
ohmicp U 1 TFFFFT 0~0 0~0
ohmicn § 1 TFFFFF 0~0

mm2 X 1 TTFFFF 0~0 0~0 6
pmm2 V 1 TTTFFF 0~0 0~0 0~0 7
ndmm2 W 1 TTFTFF 0~0 0~0 0~0 8
pdmm2 Z 1 TTFFTF 0~0 0~0 0~0 9

B W N =

’spacing rules codes

d(only applies if different electrical nodes, otherwise

they may cross freely), x(applies regardless of

electrical nodes), s(one spacing rule if same node and another
for different nodes) and g(surround distance - one

distance; 0 - outside, one distance;0 - inside)”

“metal metal2 poly ndiff pdiff pwell ptype

30d

Ox
40d

Ox
Ox
20d

“metal metal2 poly

50d
50d
50d
50d
50d
50d
55d
55d
55d

»”

pm

O0x 50d
0x 30x
0x 30x
0x 30x
Ox 30x
60d 0x
65d 50d
65d 35x
65d 35x
pdm ndm

128

ntype”
Ox Ox Ox Ox 0x “metal”
Ox 0x Ox Ox 0x "metal2”
10x 10x Ox 20x 20x "poly”
40d 120x 40q-40 120x 40x “ndift”
40d 80q0 40x 120x "pdiff”
80d 80q0 0g-40 “pwell”
20x 120x “ptype”
20x "ntype”
ndiff pdiff pwell ptype ntype”
40x 40x Ox 40x 40x “pm”
140x 60d 100g0 60s30 140x "pdm”
60d 140x 60qg-60 140x 60s30 ”ndm”
50s30 120d 40q-40 120x 50x "ohmicp”
90d 60x 50q0 60x 90x "ohmicn”
0x 0x Ox Ox Ox “mm?2”
40x 40x Ox 40x 40x "pmm?2”
65d 145x 65q-65 145x 65530 "ndmm2”
145x 65d 105¢0 65530 145x "pdmm2”

chmicp ohmicn mm2 pmm2 ndmm?2 pdmm2”

80s40 70s60 70s60 70s60 70s60 70s30 80s40
80s60 70s30 75560

80s40 160x
80s40 80s50 110x

140x

80x

“angles for path to path”
“metal metal2 poly ndiff pdiff pwell ptype ntype”

90

0
90

0
0
80

0
0
85
70

0
0
85
0
70

90x
80x

0
0
0
0
0

90

70530 75560
70830 75560
70830 75560
80s50 85555

80s60

75555 75555

165x 85540
85540 165x
75x 145x

115x 85x

85s55 85555
90s65 90s65

90s60 170x
90s 60

0 0 “metal”
0 0 "metal2”
90 90 ’poly”
0 90 ndiff”
90 0 7pdiff”
0 0 7pwell”
90 90 ’ptype”
90 ’ntype”

s

»om’
»bdm”
"ndm

“ohmicp”

"ohmicn”

»mm2”
pmm?2”

"ndmm?2”

"pdmm2”

"

arc radius

cell

cell side

circuit

composition cell

connection point

contact

current state

external interface

instance

infernal connection

GDR

leaf cell

129

Glossary

a signed radius that defines a directed arc. A negative ra-
dius indicates a clockwise arc and a positive radius indicates
a counter-clockwise arc. The absolute value of the radius
indicates the circle radius that defines the arc.

either a leaf cell or a composition cell.

defined by a line equation, the cell side is a directed line that
forms one side of the polygon that defines the cell boundary.

a set of interconnected transistors.

recursively defined as a set of interconnected transistors and
instances of other cells.

a point where a connection occurs between one or more path
segments. If there is only one segment, or if the segments are
of the same path type, then the point is a geometrical point.
If the segments are of different path types, then the point is a
contact.

a technology specific connection point between two or more
paths with different path types.

the current topology of a cell in the process of being updated.
A cell is updated by incrementally adding instances of other
cells.

The information along the cell perimeter necessary during
composition. This information is the cell sides and ports, and
the paths and points occurring within the applicable design
rule spacing of the cell boundary.

a placed version of a cell, where the placement information is
a two-dimensional graphics transformation matrix. The matrix
incorporates rotation, mirroring and translation information.
a connection between two ports on two distinct instances in
the current cell.

Geometrical Design Rules are the rules dictated by the fab-
rication technology that indicate how to construct transistors,
wires, contacts, and the valid spacing and angle rules between
these elements.

a set of interconnected transistors, with ports.

merge path

“miss”’ distance

node number

path
path segment

path type

port

river router

silicon compiler

pad
transformation matrix

transistor

130

a single segment path whose centerline occurs along one of
the sides of the cell boundary, and whose width is greater than
minimum. During composition, if the two merge paths along
the composible sides are equivalent, then they are merged into
a single path, otherwise the composition is not valid.

the arc radius derived by Pooh, dictated by the GDRs, that
indicates the distance a segment goes around a point.

an integer which indicates the electrical node an element is
connected to. Two elements are connected if and only if the
element node numbers are equivalent.

a sequence of path segments.

is defined by a line segment and an arc. If the arc radius is
zero, then the segment is equivalent to the line segment. If
the arc radius is non-zero, then it defines the end point of
the line segment as the tangent point to a circle of radius r
centered at the segment end point. The beginning point of
the line segment is given by the arc of the previous segment
in the path definition.

a technology specific tag that indicates which of the allowable
types a particular path is an instance of.

an external connection point that indicates both the position
and the type of signal a cell expects. During composition,
cell ports on two or more cells are connected.

A program that accepts two parallel linear lists of ports and
connects the two port sets using a single interconnection layer,
i.e., there are no wires that cross.

a software system that accepts as input a high level structural
or functional specification, and automatically produces both
the geometry and a simulation model of a chip that implements
the specification.

a connection point between a chip and the outside world.

a two dimensional matrix (or three, but not for integrated
circuit design) that indicates the positioning information for an
element. Pooh uses these matrices to place cells. The matrix
incorporates rotation, mirroring and translation information in
six numbers.

a technology specific device with three distinct nodes: source,
drain and gate, where if the gate is “on”, the source is con-
nected to the drain.

[Aho 74]

[Baird 77]

[Baker 80]

[Barton 80]

[Barton 84]

[Bentley 80}

[Bryant 81]

{Bryant 82]

[Buchanan 80]

[Chen 83]

131

Bibliography

Aho, A.V., Hopcroft, J.E., Ullman, J.D.,
The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Massachusetts, 1974.

Baird, H.S.,
Fast algorithms for LSI Artwork Analysis,
Proceedings of 14th D.A. Conference, pages 303-311, June, 1977.

Baker, C.M., and Terman, C.,
Tools for Verifying Integrated Circuit Designs,
LLambda Magazine 4th Quarter:22-30, 1980.

Barton, E.E., Buchanan, 1.,
The Polygon Package,
Computer Aided Design 12(3):3-11, January, 1980.

Barton, E.E.,
private communication, July, 1984.

Bentley, J.L.., Haken, D., and Hon, RW,,

Statistics on VLSI Designs,

Technical Report # CS-80-111, Camegie-Mellon University, April,
1980.

Bryant, R.E,
A Switch-Level Simulation Model for Integrated Logic Circuits,
PhD Thesis, Massachusetts Institute of Technology, 1981.

Bryant, R., Schuster, M., and Whiting, D.,

Mossim I1: A Switch-Level Simulator for MOS LSI User’s Manual,
Technical Report # 5033, California Institute of Technology, August,
1982.

Buchanan, 1.,
Modeling and Verification in Structured Integrated Circuit Design,
PhD Thesis, Computer Science University of Edinburgh, 1980.

Chen, M.C,, and Mead, C.A,,
A Hierarchical Simulator Based on Formal Semantics,
Proceedings of The Third Caltech Conference on VLSI, March, 1983.

[Dijkstra 76]

[Hedges 82}

[Hon 80]

[Hsueh 80]

[Jensen 74]

[Johannsen 81]

[Kingsley 82]

{Kingsley 84]

[Lin 84]

[McGrath 80]

[Mead 80]

[Mead 83]

132

Dijkstra, EW.,
A Discipline of Programming,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.

Hedges, T.S., Slater, K.H., Clow, G.W., Whitney, T.E.,
The Siclops Silicon Compiler,
Proceedings of IEEE ICCC, pages 277-280, September, 1982.

Hon, R.W,, and Sequin, C.H,,

A Guide to LSI Implementation,

Technical Report # SSL-79-7, Palo Alto Research Centers, January,
1980.

Hsueh, M.,
Symbolic Layout and Compaction of Integrated Circuits,
PhD Thesis, University of California, Berkeley, 1980.

Jensen, K., Wirth, N,
PASCAL User Manual and Report, second edition,
Springer-Verlag, New York, 1974.

Johannsen, D.L.,
Silicon Compilation,
PhD Thesis, California Institute of Technology, 1981.

Kingsley, C.,
Earl: An Integrated Circuit Design Language,
Master’s Thesis, California Institute of Technology, June, 1982.

Kingsley, C,,
A Hierarchical Error-Tolerant Compactor,
Proceedings of 21st D.A. Conference, pages 126-132, June, 1984.

Lin, T-M,,

A Hierarchical Timing Simulation Model for Digital Integrated
Circuits and Systems,

PhD Thesis, Computer Science Dept., California Institute of Technol-
ogy, 1984,

McGrath, E.J., and Whitney, T.E,,

Design Integrity and Immunity Checking: A New Look at Layout
Verification and Design Rule Checking,

Proceedings of 17th D.A. Conference, pages 263-268, June, 1980.

Mead, C., and Conway, L.,
Introduction to VLSI Systems,
Addison-Wesley, Reading, Massachusetts, 1980.

Mead, C.A,,
Structural and Behavioral Composition of VLSI,

[Mead 84]

[Mead 84]

[Mead 85]

[Moore 79]

[Mosteller 81]

[Mosteller 82]

[Mosteller]

[Nagel 75]

[Newman 79]

[Ng 84]

[Ousterhout 81]

133

Proceedings of International Conference on VLSI, Trondheim, Nor-
way, pages 3-7, August, 1983.

Mead, C,,

The Wolery,

Technical Report # 5113:TR:84, California Institute of Technology,
January, 1984,

Mead, C., Mohowald, M.,

An Electronic Model of the Y-System of Mamalian Retina,
Technical Report # 5144:DF:84, California Institute of Technology,
1984.

Mead, C.A, Wawrzynek, J.,

A Discipline for cMOS Design: An Architecture for Sound Syn-
thesis,

Proceedings of the Chapel Hill Conference on VLSI, 1985.

Moore, G.,

Are We Really Ready for VLSI?,

Proceedings of Caltech Conference on VLSI, pages 3-14, January,
1979.

Mosteller, R.C.,
Rest: A Leaf Cell Design System,
Master’s Thesis, California Institute of Technology, December, 1981.

Mosteller, R.C.,

An Experimental Compostion Tool,
Proceedings of Conference on Microelectronics,
The Institution of Engineers, Australia, 1982.

Mosteller, R.C.,
PhD Thesis, in preperation.

Nagel, LW,

SPICE: A Computer Program to Simulate Semiconductor Circuits,
Technical Report # ERL-MS520, Electronics Research Laboratory,
University of California, Berkeley, 1975.

Newman, W.M.,Sproull, R.F,,
Principles of Interactive Computer Graphics, second edition,
McGraw-Hill Book Company, New York, 1979.

Ng, T-K.,
A Graph Model and the Embedding of MOS Circuits,
Master’s Thesis, California Institute of Technology, 1984.

Ousterhout, J.K.,
VLSI Design,
Fourth Quarter:34-38, 1981.

134

[Ousterhout 84] Ousterhout, J.K., Hamachi, G.T., Mayo, R.N,,
Scott, W.S., Taylor, G.S.,
Magic: A VLSI Layout System,
Proceedings of 21st D.A. Conference, pages 152-159, June, 1984.

[Rowson 80] Rowson, J.,
Understanding Hierarchical Design,
PhD Thesis, California Institute of Technology, 1980.

[Rubin &3] Rubin, S. M,,
An Integrated Aid for Top-Down Electrical Design,
Proceedings of International Conference on VLSI,
Trondheim, Norway, pages 63-72, August, 1983,

[Scheffer 81] Scheffer, LK.,
A Methodology for Improved Verification of VLSI Designs without
Loss of Area,
Proceedings of the 2nd Caltech Conference on VLSI, January, 1981.

[Sutherland 78] Sutherland, LE.,
The Polygon Package,
Technical Report # 1438, California Institute of Technology,
February, 1978.

[Tanner 84] Tanner, J.E., Mead, C.,
A Correlating Optical Motion Detector,
Proceedings of the MIT Conference on VLSI, January, 1984.

[Tanner] Tanner, J.E.,
PhD Thesis, in preperation.

[Tompa 80] Tompa, M.,
An Optimal Solution to a Wire-Routing Problem,
Proceedings of the Twelfth annual ACM Symposium on Theory of
Computing, April, 1980.

[Weste 81} Weste, N., Ackland, B.,
A Pragmatic Approach to Topological Symbolic IC Design,
Proceedings of Very Large Scale Integration,
University of Edinburgh, Edinburgh, Scotland,
pages 117-129, August, 1981.

[Whitney §1] Whitney,T.E.,
A Hierarchical Design Rule Checker,
Master’s Thesis, California Institute of Technology, May, 1981.

[Whitney 8§2] Whitney, T., and Hedges, T.,
Pooh User’s Manual,
Technical Report # 5029, California Institute of Technology, July,

1982,

135

[Whitney 8§3] Whitney, T., and Mead, C.A,,
Pooh: A Uniform Representation for Circuit Level Designs,
Proceedings of International Conference on VLSI, Trondheim,
Norway, pages 401-411, August, 1983.

[Wilcox 79] Wilcox, C.R., Dageforde, M.L., and Jirak, G.A,,
Mainsail(TM) Language Manual Version 4.0,
Xidak, 1979.

[Williams 77] Williams, J.,
Sticks—A New Approach to LSI Design,
Master’s Thesis, Massachusetts Institute of Technology, June, 1977.

[Wolf 83] Wolf, W., Newkirk, J., Mathews, R., and Dutton, R.,
Dumbo, A Schematic-to-Layout Compiler,
Proceedings of Third Caltech Conference on VLSI, pages 379-393,
1983.

