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ABSTRACT

Quantum field theory (QFT) is a powerful theoretical framework for studying a wide
variety of physical phenomena, ranging from high energy scattering of elementary
particles to condensed matter physics. The behavior of QFTs can differ dramatically
between different energy or length scales. Renormalization group flows describe
how the behavior of a QFT changes with the energy scale, and a typical flow starts
and ends at fixed points. Such fixed points can often be described by non-trivial
scale invariant QFTs, which in many cases also enjoy an enchanced – conformal –
symmetry. Conformal quantum field theories (CFTs) are thus the simplest examples
of QFTs, living at the endpoints of renormalization group flows. Any complete
understanding of general RG flows (and thus general QFTs) must then necessarily
include the understanding of these basic fixed points.

While two-dimensional conformal field theory is by now a classical textbook subject,
only in the last decade has there been a significant advance in our understanding of
general higher-dimensional CFTs. The work of Rattazzi, Rychkov, Tonni, and Vichi
has revived the old subject of conformal bootstrap by applying numerical methods of
linear programming to the so-called bootstrap equations. Since then a lot of progress
has been made on both numerical and analytical frontiers. However, perhaps the
majority of the work up to date concerns itself mainly with correlation functions of
scalar local operators, which are the simplest objects in a conformal field theory.
While in part this is simply because these objects provide a natural starting point,
another important factor is the complexity of the description of non-scalar operators
in higher dimensions.

In this dissertation we attempt to fill this gap by generalizing the existing methods
to operators of general spin. This turns out to be a fruitful approach since in many
cases the generalized point of view reveals a beautiful mathematical structure which
allows us to obtain new results or find a more conceptual explanation of the existing
ones. And, of course, simply having the technology to work with new types of
objects allows us to perform calculations which were not possible before.

We begin in Chapter 2 by describing the kinematic structure of correlation functions
of operators with spin. We reduce classification and construction of conformally-
invariant tensor structures to simple representation-theoretic questions, generalizing
and simplifying pre-existing approaches in a way that is useful for both numerical
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and analytical analysis. In Chapters 2 and 3 we provide concrete tools for working
with kinematics of 3d and 4dCFTs, and in the latter casewe describe a Mathematica
package which greatly simplifies the calculations.

In Chapter 4 we turn to the problem of computation of conformal blocks, which
are the basic building blocks for four-point correlation functions. These functions
are parametrized by spin representation of four “external” and one “intermediate”
operator. It has been known for some time how to relate the conformal blocks
with different external representations (but the same intermediate one) by means of
conformally-invariant differential operators. We show that the basic objects in this
approach are in fact conformally-covariant (as opposed to conformally-invariant)
differential operators and give their complete classification. This point of view
allows us to observe a multitude of new properties of these operators and solve the
problem of changing the intermediate representation of a conformal block. This
gives a concrete algorithm for computation of any conformal block in terms of the
simplest one (with four external scalars).

However, this algorithm requires a non-trivial amount of symbolic calculation while
for numerical purposes it is desirable to reduce this amount to a minimum. To this
end, in Chapter 5 we generalize the exceptionally simple recursion relations for co-
efficients in a certain series expansion of scalar conformal blocks. These recursion
relations follow from Casimir differential equation, which we rephrase in terms of
representation-theoretic data, thus allowing a straightforward generalization. Our
new recursion relations pave a way to a completely numerical algorithm for comput-
ing general conformal blocks. As a byproduct, we find that the general conformal
blocks are naturally expanded in terms of SO(d) matrix elements in Gelfand-Tsetlin
basis, which replace the Gegenbauer polynomials found in the scalar case.

Moving to themore analytical side, inChapter 6we consider the problemof inversion
formulas, which give the scaling dimensions and three-point coefficients of primary
operators in terms of a four-point function in which they are exchanged. Such
inversion formulas in Euclidean signature have been known for a long time both for
scalar operators and for operators with spin. Recently an intrinsically Lorentzian
inversion formula was derived from these by Caron-Huot in the case of a four-point
function of scalar operators. This new formula helps to systematize analytic results
in large-spin perturbation theory and also shows that the three-point coefficients and
scaling dimensions of local operators can be analytically continued in spin. We
find a remarkably simple generalization of this formula to operators with spin. For
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this, we introduce a new class of conformally-invariant integral transforms, known
as Knapp-Stein intertwining operators in mathematical literature, and use them to
give a simple derivation of the Lorentzian inversion formula. Remarkably, we find
that a version of this formula exists at the level of operators, providing an analytic
continuation of physical operators in spin. The analytically-continued operators
are non-local and we argue that they are localized on a null line. We discuss the
relevance of these null-ray operators for Regge physics and prove a novel positivity
condition for the leading twist light-ray operators in CFTs with light scalars.

In the rest of the dissertation we present some concrete computations in conformal
bootstrap. First in Chapter 7 we discuss a simplified version of the bootstrap equa-
tions in a collinear configuration, in the limit of large external scaling dimensions
and for a four-point function of scalar primaries. We show that a subset of the
bootstrap equations can be solved analytically in this limit and imply a symmetry
property for the coarse-grained spectral density of the operator product expansion
(OPE). We also find another analytic bound, valid for finite scaling dimensions,
which marginally strengthens previous bounds on OPE convergence and has an
advantage of being a strict inequality instead of an asymptotic one.

Finally, in Chapter 8 we present a direct application of our analysis of conformal
kinematics in 3d by performing numerical bootstrap study for the four-point function
of the stress-energy tensor. We numerically reproduce the celebrated Hofman-
Maldacena bounds on the coefficients of stress-energy tensor three-point function
and find new universal upper bounds on the scaling dimensions of the lightest singlet
operators in various spin sectors, valid for general 3d CFTs. For example, it follows
from our analysis that any 3d conformal field theory must have light scalar operators
and we conjecture that the 3d Ising model maximizes the scaling dimension of the
lightest parity-odd scalar. Under reasonable assumptions, we put strong constraints
on the stress-energy three-point function in this model.
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C h a p t e r 1

INTRODUCTION

Conformal field theories (CFTs) play an important role in modern physics. In
general, physical systems which exhibit some form locality, Poincaré (or Euclidean)
invariance, and scale invariance can be reasonably expected to also enjoy conformal
symmetry.

A large class of examples of this kind of behavior is provided by low-energy (or
long-distance) limit of quantum field theories. To be more precise, if a quantum
field theory (QFT) has no gap in its energy spectrum above the vacuum state then
it can have a non-trivial low-energy scale-invariant fixed point. If the original QFT
is furthermore local and unitary, most often it is the case that its fixed point is also
conformally-invariant, thus being described by a CFT. Among the simplest ones are
the Wilson-Fischer [9] and Banks-Zaks [10] fixed points.

Another class of examples is provided by long-distance behavior of second-order
phase transitions in statistical physics systems, such as the critical point at the end of
liquid-vapor transition line in ordinary water, order-disorder transitions in various
types of magnets, and superfluid transition in 4He. In these cases the CFT is most
naturally understood in Euclidean signature and describes statistical correlations in
equilibrium. Quantum criticality, for example in thin-film superconductors, on the
other hand, leads to CFTs which are naturally Lorentzian and describe dynamics in
real time.

In asymptotically safe quantum field theories the high-energy (UV) behavior is also
often described by a CFT, and the original theory can be understood as a relevant
deformation of the UV CFT [11].

Finally, certain (or even all) conformal filed theories are believed to be equivalent
to theories of quantum gravity in Anti-de Sitter (AdS) space via the AdS/CFT
correspondence [12–15]. Namely, a conformal field theory on the d-dimensional
conformal boundary of (d + 1)-dimensional asymptotically AdS space is equivalent
to a UV-complete theory of quantum gravity inside the AdS space. Since conformal
field theory is perfectly mathematically well-defined, AdS/CFT correspondence
provides a rigorous handle on non-perturbative effects in quantum gravity.
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This ubiquity of appearances of conformal field theories in modern physics makes
them extremely interesting objects to study. In the rest of this chapter we first give a
brief introduction into a mathematical description of CFTs and conformal bootstrap,
and then overview the main results of the following chapters.

1.1 Formal conformal field theory
First and foremost, a conformal field theory is a quantum field theory. In this
dissertation we mostly keep in mind those conformal field theories which satisfy
the usual Wightman axioms [16], but of course our results on kinematics, which
depend only on the properties of the conformal group, are valid more generally. In
this section we review some of these axioms and specialize to the case of conformal
symmetry. For a change [17–19], our starting point will be in Lorentzian signature.

We consider a quantum field theory on R1,d−1, with a positive-norm Hilbert space
H of states defined on a spacial slice. Poincaré-invariance means that H is a
unitary representation of the universal cover of Poincaré group. This representation
can be described by anti-hermitian generators Pµ and Mµν subject to commutation
relations1

[Pµ, Pν] = 0, [Mµν, Pλ] = ηνλPµ − ηµλPν,

[Mµν, Mσρ] = ηνσMµρ − ηµσMνρ + ηνρMσµ − ηµρMσν . (1.1)

Physical momentum operators are given byPµ = iPµ. In particular, the Hamiltonian
is HPoincaré = iP0. We assume that the QFT satisfies energy positivity, which means
that

HPoincaré ≥ 0. (1.2)

Together with Poincaré invariance this implies that the spectrum of P µ is contained
in forward null cone. We also assume a unique vacuum state |Ω〉 which is invariant
under all symmetries.

A QFT further possesses a set of local operators, denoted by O(x), which transform
naturally under the Poincare group as specified by finite-dimensional representations
of the Lorentz group2 Spin(1, d−1). The local operators are assumed to be operator-
valued tempered distributions (in particular, we can take their Fourier transforms)
with a sufficiently large dense domain of definition. Furthermore, the span of states

1We use mostly plus convention for Lorentz metric.
2To simplify the notation, we often leave the Lorentz indices implicit.
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of the form ∫
dd x1 · · · dd xn f (x1, . . . , xn)O1(x1) · · · On(xn) |Ω〉 (1.3)

is dense inH .3 The axiom of micro-causality requires that for spacelike-separated
points x and y, (x − y)2 > 0,

[O1(x),O2(y)] = 0. (1.4)

A theorem of Osterwalder-Schrader [20, 21] says that the Wightman functions of
such a QFT, defined as the vacuum expectation values

〈Ω|O1(x1) · · · On(xn) |Ω〉, (1.5)

can be analytically continued to Euclidean signature to yield correlation functions

〈O1(x1) · · · On(xn)〉, (1.6)

satisfying Euclidean analogues of the above axioms and vice versa. The Euclidean
correlators are reflection-positive, permutation-symmetric and, of course, covariant
under Euclidean isometries.4 Due to this theorem there is no real difference between
studying Euclidean and Lorentizian QFTs.

We would like to study conformally-invariant QFTs, by which we mean QFTs
whose Euclidean correlation functions are covariant under finite conformal transfor-
mations. To bemore precise, the local operators split into primaries and descendants
(which are spacetime derivatives of primary operators), and the conformal group
acts homogeneously on primary operators (see chapter 2). Recall that for d > 2 the
connected Euclidean conformal group is SO(1, d + 1), and for d = 2 we will restrict
to the global conformal group SO(1, 3).

Invariance ofEuclidean correlation functions implies existence of newanti-hermitian
symmetry generators D and Kµ which correspond to dilatations and special confor-
mal transformations and satisfy the commutation relations

[D, Pµ] = Pµ, [D, Kµ] = −Kµ, [D, Mµν] = 0,

[Kµ, Kν] = 0, [Kµ, Pν] = 2ηµνD − 2Mµν,

[Mµν, Kλ] = ηνλKµ − ηµλKν . (1.7)

3More generally we can imagine states which can be created from the vacuum only by a non-local
operator. In this thesis we mostly study correlation function of local operators, so we will not take
this subtlety into account.

4We are omitting some details; for precise statements see [20, 21].
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In Lorentzian signature this implies conformal invariance of correlation functions
on the Lorentzian cylinder R × Sd−1 [22] (besides the obvious invariance under
infinitesimal conformal transformations in Minkowski space R1,d−1).

Conformal symmetry implies that the asymptotic operator product expansion (OPE)

O1(x)O2(0) '
∑
O

cO (x)O(0) (1.8)

valid for small x actually converges [23] on the vacuum in the form

O1(x)O2(0) |Ω〉 =
∑
O

∫
dd x′ fO (x, x′)O(x′) |Ω〉. (1.9)

Together with completeness of the states (1.3) this implies that the full Hilbert space
is densely spanned by single-operator states∫

dd x f (x)O(x) |Ω〉. (1.10)

It suffices to use primary operators above, and conformal symmetry implies orthog-
onality of such states corresponding to different primary operators. This is known
as operator-state correspondence.

In what follows O(x) denotes primary operators, unless stated otherwise. As noted
above, the two-point functions are diagonal in the sense

〈Ω|O†(x)O′(y) |Ω〉 ∝ δOO ′, (1.11)

and thus the form of the contribution of a primary O to the OPE (1.9) can be
computed from the three-point function5

〈Ω|O†(y)O1(x)O2(0) |Ω〉 =
∫

dd x′ fO (x, x′)〈Ω|O†(y)O(x′) |Ω〉. (1.12)

Since, as we discuss in chapter 2, the two- and three-point functions are fixed by
conformal symmetry up to a finite6 number of three-point coefficients (also known
as OPE coefficients), the function fO (x, x′) can be determined from this equality
in terms of OPE coefficients using only conformal symmetry. This implies that
the knowledge of the quantum numbers of primary operators and of the discrete

5Specifically, by going to momentum space, the convolution in the right hand side becomes
multiplication by the Fourier transform of the two-point function, and Fourier transform of fO is
trivially extracted. (Up to a natural ambiguity which arises due to the fact that O(x ′) |Ω〉 in (1.9)
contains only positive-frequency modes in x ′.)

6For each three-point function.
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set of their OPE coefficients allows one to compute any Wightman function (or a
Euclidean correlator) by a repeated application of (1.9). For this reason the set of
quantum numbers of primary operators and OPE coefficients is called “the CFT
data.”

The knowledge of the CFT data thus completely defines the conformal field theory,
at least as far as local correlation functions or the vacuum superselection sector is
concerned. The ultimate goal thus would be to compute this data from the basic
self-consistency conditions which we now discuss.

1.2 The conformal bootstrap
Since the operators at spacelike separations commute, it is possible to compute a
given Wightman function using the OPE in several different ways. For example,
consider a four-point function

〈Ω|O1(x1)O2(x2)O3(x3)O4(x4) |Ω〉. (1.13)

We can compute this four-point function by first taking O1 × O2 OPE on the left
vacuum and then O3 × O4 OPE on the right vacuum. A simple way to describe this
is to insert a complete set of states in the middle, and it is convenient to use the
momentum eigenstates

|O(p1)〉 ∝
∫

dd xeipxO(x) |Ω〉, (1.14)

normalized as7

〈O(p) |O(q)〉 = (2π)dδd (p − q). (1.15)

We then have

〈Ω|O1(x1)O2(x2)O3(x3)O4(x4) |Ω〉

=
∑
O

∫
dd p

(2π)d 〈Ω|O1(x1)O2(x2) |O(p)〉〈O(p) |O3(x3)O4(x4) |Ω〉. (1.16)

Since the three-point functions are kinematically determined up to a finite number
of OPE coefficients, the above sum can be rewritten as

〈Ω|O1(x1)O2(x2)O3(x3)O4(x4) |Ω〉 =
∑
O

f12O fO†34G1234,O (x1, x2, x3, x4),

(1.17)

7This formula is correct for scalar O, for operators with spin see discussion in [24].
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where G is a kinematically-determined function and f are the OPE coefficients (for
simplicity we assume that there is a single OPE coefficient for each three-point
function). Specifically, we have

G1234,O (x1, x2, x3, x4) =
∫

dd p
(2π)d 〈Ω|O1(x1)O2(x2) |O(p)〉〈O(p) |O3(x3)O4(x4) |Ω〉,

(1.18)

where in the right hand side we use some standard three-point functions instead
of physical ones. The function G is usually called the conformal block and the
expansion (1.17) is known as the conformal block expansion. This expansion can
be shown to converge exponentially fast for Euclidean configurations of xi [25].

Now let us assume that all xi are spacelike-separated. In this case, using micro-
causality, we can arbitrarily rearrange the operators in theWightman function (1.13)
and repeat the same procedure. For example, we can write

〈Ω|O1(x1)O2(x2)O3(x3)O4(x4) |Ω〉 = 〈Ω|O3(x3)O2(x2)O1(x1)O4(x4) |Ω〉

=
∑
O

f32O fO†14G3214,O (x3, x2, x1, x4). (1.19)

This leads to a non-trivial consistency condition∑
O

f12O fO†34G1234,O (x1, x2, x3, x4) =
∑
O

f32O fO†14G3214,O (x3, x2, x1, x4).

(1.20)

This equation is known as four-point crossing equation, or sometimes as the “boot-
strap equation.” It expresses a consequence of associativity of operator product
expansion, and in fact one can show that if all possible four-point crossing equations
are satisfied, then the operator product expansion is associative. In other words, no
new constraints come from higher-point functions.

The “bootstrap” philosophy [26–28] is then to study CFTs by solving the full set of
crossing equations (1.20). In 2-dimensional conformal field theory, where conformal
algebra enhances to infinite-dimensional Virasoro algebra, the notion of a primary
field is stronger and the sum in (1.20) can in rational theories be replaced by a
finite sum over Virasoro primaries. Similarly, the number of crossing equations for
Virasoro primaries becomes finite and an analytic solution is relatively simple [29].
However, little progress has been made for irrational theories in d = 2 or for general
CFTs in d > 2 until the work [30] which showed how highly non-trivial information
can be extracted even from a single crossing equation. For a comprehensive review
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we refer the reader to [18, 31]. Here we only review the subject as much as is useful
for motivating the questions addressed in this thesis.

1.3 Numerical conformal bootstrap
For simplicity, let us consider the crossing equation (1.20) when all operators are
identical real scalars φ. In this case it reduces to∑

O

| fO |2GO (x1, x2, x3, x4) =
∑
O

| fO |2GO (x3, x2, x1, x4). (1.21)

Since we are considering a Wightman function of scalars, the conformal blocks G

are scalar functions. From conformal invariance it follows that

GO (x1, x2, x3, x4) =
1

x2∆φ
12

1

x2∆φ
34

GO (u, v), (1.22)

where ∆φ is the scaling dimension of φ while u and v are the conformally-invariant
cross-ratios

u =
x2

12x2
34

x2
13x2

24
, v =

x2
23x2

14

x2
13x2

24
. (1.23)

The equation (1.21) then becomes∑
O

| fO |2FO (u, v) = 0, (1.24)

FO (u, v) = u−2∆φGO (u, v) − v−2∆φGO (v, u). (1.25)

In a way, the key idea of [30] is to lower our expectations. Instead of trying to find all
possible solutions of this equation, let us try to prove that it doesn’t have solutions.
Of course, this shouldn’t be possible since it is easy to construct a theory8 with
any value of ∆φ allowed by unitarity. But we can try to impose some restrictions
on what kind of operators O are allowed to appear in φ × φ OPE and show that
under these assumptions there is no solution, thus proving that these assumptions
are inconsistent. For example, we can try to prove that there must be a non-identity
scalar in φ × φ OPE by assuming that there are no scalars and showing that then the
equation has no solution.

How can we show that there is no solution? One way to do this is to find a linear
functional α that can act on functions of u and v such that α[FO] is non-negative for

8Generalized free theory of scalar field.
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∆φ

∆φ2

0.52

1.41

Figure 1.1: Schematic form of the allowed region (shaded) for pairs of ∆φ and the
dimension ∆φ2 of the lightest scalar in φ × φ OPE in d = 3. The boundary is given
by the plot of ∆min

φ2 (∆φ). The kink happens close to the dimensions ∆σ ≈ 0.52
and ∆e ≈ 1.41 of the spin and energy fields in 3d Ising CFT. The current best
bounds on these dimensions (obtained by bootstrap) are ∆s = 0.5181489(10) and
∆ε = 1.412625(10) [8].

all O allowed by unitarity and positive for O = 1 the unit operator. If we find such
a functional, then we can prove that (1.24) has no solutions by applying α to it,∑

O

| fO |2α[FO] = 0. (1.26)

Indeed, since this is a sum of non-negative terms which is equal to zero, all terms
have to be zero. But it is easy to check that f1 , 0 and by assumption α[F1] > 0, so
this is not possible.

As to be expected, it is impossible to find an α non-negative on all unitarity O
(since by the above argument that would disprove existence of unitary CFTs with
scalar operators), but a non-trivial result is that we can find an α which is non-
negative on all unitary O except non-identity scalars [30]. This disproves existence
of solutions to (1.24) without non-identity scalar operators and thus proves that
non-trivial scalars must appear in φ × φ OPE in any unitary CFT.

Before explaining how one can find such linear functionals in practice, let us com-
ment on how unreasonably powerful this general approach turns out to be. One can
try to get more refined information by trying to find α as above, but also non-negative
on scalars of scaling dimension above some ∆φ2 (here φ2 is just a notation and not
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a real operator). In other words,

α[F1] > 0, α[FO] ≥ 0 all non-scalar O allowed by unitarity,

α[FO], all scalar O with ∆O > ∆φ2 . (1.27)

If such an α exits it then follows that there must exist a scalar in φ × φ OPE
with dimension below ∆min

φ2 . We can ask what is the minimal value of ∆min
φ2 for

which such an α can be found. Of course, there is a possibility that ∆min
φ2 =

∞, but in practice it turns out that ∆min
φ2 is finite [30]. One can then plot the

dependence of ∆min
φ2 with respect to ∆φ in 2 ≤ d < 4 and find a curve which is

smooth everywhere except for a kink at ∆φ extremely close to scaling dimension of
spin field of d-dimensional Ising CFT and ∆φ2 extremely close to scaling dimension
of energy density field [32, 33] (figure 1.1). It is then a natural conjecture that
Ising CFT saturates this bound precisely at the kink. If this conjecture is correct
(for which we now have overwhelming evidence), this allows us to determine the
scaling dimensions ∆φ and ∆φ2 using the above methods. Development of this
idea has led to the most precise determinations of critical exponents of 3d Ising
CFT [8, 34, 35]. What’s more, using the fact that Ising CFT saturates the bound,
it turns out to be possible to determine the entire low-lying spectrum of operators
in φ × φ OPE and the corresponding | fO |2 from the single (or a few) crossing
equation (1.24) [31, 34, 36]. Other theories can be identified in a similar manner,
such as critical O(N ) models [8, 37, 38], Gross-Neveu-Yukawa models [39, 40], and
many others. Furthermore, even without singling out a concrete theory, numerical
bootstrap still yields strong universal bounds on CFT data [7, 41].

The search for α is most efficiently done numerically on a computer. For this, one
first writes u = zz and v = (1 − z)(1 − z) and looks for α in the form

α[F] =
∑
n,m

αn,m∂
n
z ∂

m
z F

����z=z=1
2
, (1.28)

where αn,m are real coefficients. In practice one truncates the search space by
n + m ≤ Λ for some large Λ. To check for positivity of α[FO] one uses the fact
that only traceless-symmetric tensors of even spin can appear in φ × φ OPE due to
conformal selection rules, and thus we can write α[F∆,J] where J is even and non-
negative and ∆ ≥ J+d−2 as required by unitarity [24, 42].9 It turns out that large-J
and large-∆ behavior of α[F∆,J] is such that it typically suffices to check positivity

9For J = 0 we have ∆ ≥ d−2
2 .
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for a finite number of spins J and a bounded range of ∆. In first papers [30, 43–46]
the approach was to discretize ∆ so that we get the inequalities, schematically,

α[F∆i,J] ≥ 0, J = 0 . . . Jmax, i = 1 . . . N, (1.29)

where ∆i = J + d − 2 + i
N (∆max − J − d + 2). One can also normalize α[F0,0] = 1.

The search for coefficients αn,m then becomes a finite-dimensional linear program
which can be solved numerically on a computer for any given value of ∆φ.

A more modern way [35–37, 47] to ensure positivity of α[F∆,J] is based on the fact
that the conformal blockG∆,J has ameromorphic representation in∆ [36, 37, 48, 49],

|ρ|−∆G∆,J = h(∞)
J +

∑
k

1
∆ − ∆J,k

h(k)
J . (1.30)

Here ρ and h are functions of z and z but not ∆. The first important feature of this
representation is that it can be truncated to keep only a finite number of poles in ∆,
in a quickly convergent manner. The second is that the poles ∆J,k are all below the
unitarity bound ∆ > J + d − 2. This implies that using this approximation we can
write for α[F∆,J] for a given J

α[F∆,J] = QJ (∆)
∑
n,m

αn,mPn,m
J (∆), (1.31)

where QJ (∆) is some explicitly positive prefactor and Pn,m
J (∆) are polynomials in

∆. We thus only need to make sure that∑
n,m

αn,mPn,m
J (∆) ≥ 0 (1.32)

for ∆ in some range, which depends on our assumptions and which for simplicity
we take to be ∆ > ∆0 ≥ J + d − 2. It is then a theorem that the positivity holds iff
we have a representation∑

n,m

αn,mPn,m(∆) =
∑

i

r2
i (∆) + (∆ − ∆0)

∑
i

p2
i (∆) (1.33)

for some polynomials ri and pi. Using this, one can phrase positivity as a finite-
dimensional semidefinite problemwhich can be efficiently solved on a computer [35].
The advantage here is that this approach does not require discretization or a cutoff
for ∆, which is nice conceptually and also simplifies and speeds up the calculations.
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1.4 Overview of the results
1.4.1 Chapters 2 and 3
Part of the goal of this thesis is to develop techniques which allow to extend the
methods of numerical bootstrap above to more general crossing equations (1.20).
Specifically, the most general Wightman function, restoring the Spin(1, d − 1) in-
dices, has the form

〈Ω|O
α1
1 (x1)Oα2

2 (x2)Oα3
3 (x3)Oα4

4 (x4) |Ω〉. (1.34)

Correspondingly, its conformal block decomposition has the form

=
∑
O

∑
a,b

f a
12O f b

O†34(Gα1α2α3α4
1234,O )(ab) (x1, x2, x3, x4), (1.35)

where a and b label the independent conformally-invariant tensor structures allowed
for three-point functions 〈O1O2O〉 and 〈O†O3O4〉 respectively.

Thus the very first step is to undertand the constraints of conformal invariance
on three-point functions and on four-point functions (equivalently, on the index
structure of the conformal block in (1.35), i.e., find the analog of (1.22)). This is
the subject of chapters 2 and 3.

In the literature these questions have been most often addressed using embedding
space (or essentially equivalent) methods [39, 50–56], which rewrite the correlation
functions in terms of objects on which the conformal group acts linearly. This makes
it easy to write out a few conformally-invariant building blocks and combine them
in all possible ways to write out some tensor structures for physical correlators. A
problem with this approach is that it often overcounts the tensor structures (i.e.,
produces an overcomplete basis), especially in the more physically relevant low
dimensions. For example, for a four-point function of stress-energy tensors in 3d,
which we discuss in chapter 8, these methods produce at least a hundred too many
structures.

In chapter 2 we take a different approach,10 which is based on the idea of “gauge-
fixing” conformal symmetry. Specifically, we use the fact that if a correlator is
known for some standard configuration of operator insertions, conformal symmetry
then determines its values for some other configurations. For 1-, 2-, and 3-point
functions just one standard configuration is enough to completely determine the
correlator. For n-point functions with n > 3 there exist non-trivial conformal

10A similar but less general and systematic analysis have been performed in [23, 51].
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moduli of n points, and we need a continuous family of standard configurations
parametrized by several conformally-invariant cross-ratios. Restricting attention
to standard configurations solves part of the constraints of conformal symmetry.
However, even the values of the correlator in standard configurations have to satisfy
certain invariance conditions.

We classify these invariance conditions and find counting rules for tensor structures
of the most general n-point functions. For example, for n > 2 the tensor structures
for an n-point function of distinct primaries in Spin(1, d − 1) representations ρi are
in one-to-one correspondence with the elements of the invariant subspace

(ρ1 ⊗ · · · ⊗ ρn)Spin(d+2−m), m = min(n, d + 2). (1.36)

Moreover, our analysis actually shows how one can not just count but also construct
these tensor structures. We explain this in detail in the case of d = 3 (which
will be used extensively in chapter 8). In general dimensions we work out the
constraints of permutation symmetries, conservation conditions,11 and establish a
one-to-one correspondence of counting of CFT tensor structures with counting of
tensor structures for massive scattering amplitudes in one dimension higher. We
also study how analyticity of Euclidean correlators is related to analyticity of the
functions of conformal-cross ratios u, v which multiply the conformally-invariant
tensor structures in generalizations of (1.22), a question important for numerical
bootstrap techniques.

In chapter 3 we review some results in the literature related to kinematics of 4d CFTs
and complete them using the analysis of chapter 2. Furthermore, we implement the
resulting techniques in a Mathematica package with a view towards applications
in numerical bootstrap.

1.4.2 Chapter 4
Another important problem in applying numerical conformal bootstrap to operators
with spin is to compute the general conformal blocks, especially in the form (1.30).
There exist many approaches to this problem. The most direct one is to use
Zamolodchikov-type recursion relations [36, 37, 48, 49], but it is problematic be-
cause these recursion relations are not known in general. Another approach is to
solve conformal Casimir equations, satisfied by the conformal blocks, either analyt-

11For counting only.
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ically [57, 58] or in power series [59, 60]. Analytic solution is difficult in general,12
but in even dimensions can be obtained by combining methods described below and
results of [57]. Power-series solutions are discussed in chapter 5.

Yet another approach is to use conformally-invariant differential operators to relate
more complicated conformal blocks to simpler ones [39, 61, 62]. Specifically, one
considers conformally-invariant differential operators D12 and D34 which act on
coordinates and spin indices only of operators 1 and 2 or 3 and 4. It turns out that
one can construct D which act on functions which transform according to one set
of Spin(1, d − 1) irreps, but produce functions which transform according to a new
set. In other words, they change the spin of external operators. One can show that
applying these differential operators to a conformal block

Dα1α2
12,α′1α

′
2
Dα3α4

34,α′3α
′
4
(G

α′1α
′
2α
′
3α
′
4

1234,O )(ab) (x1, x2, x3, x4), (1.37)

one obtains another conformal blockwhich corresponds to a new set of Spin(1, d−1)
irreps of external operators. To see this, one uses the representation (1.18) for the
conformal block and studies the action of these operators on three-point structures
〈Ω|O1(x1)O2(x2) |O(p)〉 and 〈O(p) |O3(x3)O4(x4) |Ω〉, which simply produces new
three-point structures of the same form, but with new representations.

This allows one towrite any conformal block in terms of a simplest “seed” conformal
block which exchanges O with given quantum numbers. For example, if O is
a traceless-symmetric tensor, the seed block is the well-studied scalar conformal
block [36, 37, 57, 63, 64]. However, since a scalar conformal block can only
exchange traceless-symmetric tensors, for other types of O the seed blocks are more
complicated and have to be computed in some other way.

In chapter 4 we greatly generalize these methods by observing that the conformally-
invariant operators D12 can be written as contractions of conformally-covariant
differential operators,

D12 = D
A
1D2,A, (1.38)

where A is an index in a finite-dimensional irreducible representation (irrep) W of
the conformal group, and operators Di act on coordinates and indices of a single
operator. We then show that these conformally-covariant operators Di can be
understood as computing the decomposition of tensor product of the Verma module

12Notably, it has been found in sufficient generality in 4d CFTs [58], although the solutions are
perhaps too complicated to be convenient for numerical computations.
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of Oi and the finite-dimensional irrep W into irreducible components, which allows
us to give a complete classification of operators Di. This also clarifies how these
operators should be constructed in general. Since these operators can change the
representation of the primary operator they act on, in what follows we call them
“weight-shifting operators.”

This generalized point of view allows us to observe new properties of these operators
and thus of the conformally-invariant operators. For example, applying a weight-
shifting operator to a three-point function and contracting with a conformal Killing
tensor, we find an object with transformations properties of a four-point function,

〈(DA
1 O1)(x1)O2(x2)O3(x3)〉wA(x4). (1.39)

Here w is a conformal Killing tensor, and as such satisfies a very constraining
differential equation. In fact, one can show that the space of four-point functions
which satisfy the same equation as (1.39) is finite dimensional. Moreover, we show
that the set of four-point functions of the form (1.39), over all D1 and O1 such that
the resulting four-point function has fixed quantum numbers, form a basis of this
space. But then so do the objects

〈O1(x1)(DA
2 O2)(x2)O3(x3)〉wA(x4), (1.40)

since there was nothing special in operator O1. This implies that there must exist
a linear relation between bases (1.39) and (1.40). These bases can be interpreted
as conformal blocks, and this linear transformation can be interpreted as a finite-
dimensional crossing transformation.

Using this transformation, we show how to compute expressions of the form

Dα1α3
13,α′1α

′
3
(G

α′1α2α
′
3α4

1234,O )(ab) (x1, x2, x3, x4), (1.41)

in terms of conformal blocks. This would be hard to do without our crossing trans-
formation, since the operator D13 acts simultaneously on 〈Ω|O1(x1)O2(x2) |O(p)〉
and 〈O(p) |O3(x3)O4(x4) |Ω〉 in (1.18). We show that this expression is equal to a
linear combination of conformal blocks exchanging operators in the tensor product
W ⊗ O, i.e., D13 changes the intermediate representation in a well-defined way.
This observation allows us to reduce all seed blocks (and thus all blocks) to scalar
conformal blocks, and even scalar O.

We thus find a relatively simple algorithm which allows one to compute arbitrary
conformal blocks. We explicitly reduce all seed blocks to the scalar case in 3d
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and 4d. Furthermore, our methods interact nicely with the other approaches to
conformal blocks and explain some previously known formulas. For example, if
one can find the scalar conformal block in a given dimension analytically (as is the
case in all even dimensions), our techniques immediately yield analytic expressions
for all conformal blocks. One can also use our techniques to derive Zamolodchikov-
type recursion relations for general conformal blocks, as we illustrate in the case of
fermionic blocks in 3d.

1.4.3 Chapter 5
In chapter 5 we study general conformal blocks from a more computational per-
spective. To facilitate numerical analysis of more general crossing equations, it is
desirable to have a computer program which would be able to efficiently compute
approximations of the form (1.30) for any required conformal block given the set of
data which specifies it. This data is

1. scaling dimensions and Spin(1, d − 1)-irreps of external operators,

2. Spin(1, d − 1)-irrep of the intermediate operator,

3. a pair of three-point tensor structures to use on the left and on the right
of (1.18),

4. technical information on the requested precision of the approximation.

While the methods described in chapter 4 do allow us to compute general conformal
blocks, they still require a non-trivial amount of case-by-case analysis and sym-
bolic calculation with differential operators. The goal of chapter 5 is to study the
possibility of having a more numerically straightforward algorithm.

Our discussion is based on the following observation in the case of scalar blocks.
Writing z = reiθ and z = re−iθ , one can show [59] simply from scaling and Spin(d)
invariance in Euclidean signature that the scalar conformal block in the right hand
side of (1.22) can be written as (recall u = zz and v = (1 − z)(1 − z))

GO (z, z) = r∆O
∞∑

n=0

jO+n∑
j= jO−n

Λn, jrnC
( d−2

2 )
j (cos θ), (1.42)

where C (ν)
j are the Gegenbauer polynomials and Λn, j are some yet undetermined

coefficients (which are understood to be equal to 0 for j < 0), while ∆O and jO
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are the scaling dimension and spin of O. Using the Casimir differential equation
satisfied by conformal blocks [57], one then shows that the coefficients Λn, j satisfy
a simple recursion relation

Λn, j = c+n−1, j−1Λn−1, j−1 + c−n−1, j+1Λn−1, j+1. (1.43)

for some known coefficients c±n, j . Starting from a normalization condition for Λ0, jO

this allows one to efficiently compute the coefficients Λn, j . In section ?? we discuss
how the series (1.42) can potentially be efficiently translated into approximations of
the form (1.30).

Our approach is then to generalize the representation (1.42) and the recursion re-
lation (1.43) to the case of arbitrary conformal blocks.13 We first explain that a
natural language to discuss the index structure of general conformal blocks is given
by so-called Gelfand-Tsetlin (GT) bases for Spin(d) representations. The elements
of a GT basis are classified by their transformation properties with respect to a chain
of subgroups

Spin(d) ⊇ Spin(d − 1) ⊇ Spin(d − 2) ⊇ · · · ⊇ Spin(2). (1.44)

This sequence of subgroups is natural from the point of viewof conformal correlation
functions since n ≥ 3 points in Euclidean Rd are left invariant by a Spin(d + 2 −
n) subgroup of the conformal group. In particular, we show that in general the
Gegenbauer polynomials in (1.42) should be replaced by a matrix element of a
particular rotation in a GT basis. We explain how these matrix elements can be
efficiently computed using the known facts about representation theory in GT bases
and provide lots of examples.

We then explain how the scalar recursion relation (1.43) can be derived from purely
representation-theoretic manipulations, bypassing the Casimir differential equation
(but still using the quadratic Casimir of the conformal group). This allows an almost
straightforward generalization of (1.43) to general conformal blocks. We find that
when the external operators have non-trivial spin, the appropriate generalization of
the coefficients c±n, j is expressed in terms of 6 j-symbols of Spin(d − 1). This makes
numerical implementation of the generalized recursion relations straightforward in

13Steps in this direction were also taken in [60], albeit on a case-by-case basis and using more
ad-hoc techniques. (A possible advantage of that work is that they write their recursion relations
for a faster-converging series expansion of [59], although these recursion relations are much more
complicated. It appears to us that it is perhaps easier to solve the recursion relations in our form and
then convert the resulting series to the form of [59, 60].)
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3d, 4d, and in some other cases whichwe discuss. We test our recursion relations in a
number of examples, finding a perfect agreement with the previously known results.
To demonstrate the power of our method, we explicitly compute the coefficients c±n, j
for general blocks in 3d and for fermion blocks in 2n dimensions.

1.4.4 Chapter 6
In chapter 6 we turn our attention to a rather different problem. A natural question
one can ask when attempting an analytic solution of (1.20) is whether given a
four-point function of primary operators one can recover the CFT data which it
contains, i.e., the scaling dimensions and products f12O fO†34 of OPE coefficients
for all the intermediate operators O. We will call any formula which accomplishes
this an inversion formula. The reason this might be useful is that then one can try
to plug the t-channel expansion (1.19) into an inversion formula for the s-channel
expansion (1.17) and try to directly constrain the CFT data.

The most straightforward way to invert the s-channel expansion is to expand the
four-point function in the OPE limit 1→ 2 and read off the contributing conformal
blocks. This is possible since the OPE limit expansion is organized according to
scaling dimension of intermediate operators. Another way to invert the expansion
comes from harmonic analysis on the Euclidean conformal group Spin(1, d+1) [65].
One first defines a function c(∆, j) as a conformally-invariant Euclidean integral

c(∆, j) =
∫

dd x1 · · · dd x4〈O1(x1) · · · O4(x4)〉F̃∆, j (x1, x2, x3, x4). (1.45)

Here F̃∆, j (x1, x2, x3, x4) is the conformal partial wave (CPW), a close cousin of
conformal block G. Unlike G, F̃ is single-valued in Euclidean space and can be
defined by

F̃∆, j (x1, x2, x3, x4) = αG̃∆, j (x1, x2, x3, x4) + βG̃d−∆, j (x1, x2, x3, x4) (1.46)

for some known constants α and β, where G̃ is the conformal block with external
dimensions ∆i replaced by their shadow dimensions d − ∆i. One then shows that
the function c(∆, j) has poles in complex ∆-plane at scaling dimensions of physical
operators appearing in O1 × O2 OPE with residues proportional to f12O fO†34.

Unfortunately, both these inversions methods turn out to be not very helpful for
analytic analysis of crossing equation, since they both probe the s-channel OPE
limit of the four-point function, and in this limit any finite number of terms of t-
channel OPE is useless. However, recently a Lorentzian inversion formula for scalar
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four-point functions was derived in [66, 67] which partially solves this problem.
This formula computes the same function c(∆, j) and has the form

c(∆, j) =κ∆, j

∫
dd x1 · · · dd x4〈O |[φ3, φ1][φ2, φ4]|Ω〉G̃ j+d−1,∆−d+1(x1, x2, x3, x4)

+ (1↔ 2), (1.47)

where the integral is now over Minkowski space with some restrictions on causal
relationship between the points and κ∆, j is some known coefficient given by a product
of Γ-functions. The advantage of this formula is that the poles in c(∆, j) come from
the integral probing a lightcone limit of operators 1 and 2. The part of this limit
which is important for large j is also the lightcone limit in t-channel, and the behavior
of the four-point function in that limit can be approximated by a finite number of
conformal blocks in t-channel, corresponding to the smallest values of “twist” ∆− j.
This allows to systematize and put on firm ground the analytical approach to solving
the crossing equation known as large-spin perturbation theory [68, 69].

Another interesting feature of (1.47) is that it is manifestly analytic in spin j.14 This
implies that the CFT data computed by (1.47)—the scaling dimensions of local
operators and the products of OPE coefficients—can be analytically continued in
spin.15 This implies that the local operators of different spins organize into families
connected by this analytic continuation.

In chapter 6 we generalize the Lorentzian inversion formula (1.47) in two important
directions: to operators of arbitrary spin and to operator level. In other words, we
show that one can define the operators

O∆, j (x, z) =
∫

dd x1dd x2K∆, j (x1, x2, x, z)O1(x1)O2(x2), (1.48)

where z is a null polarization vector, K∆, j is a kernel well-defined for complex j, and
as usual we suppress the Lorentz indices of local operators. The matrix elements of
O∆, j are then computed by an appropriate generalization of the scalar formula (1.47)
and for integer j the residues of O∆, j in ∆ are related to the local operators of the
theory. More generally, we argue that for any complex j the poles of O∆, j come
from the region of integration where O1 and O2 are confined to the light ray defined

14The conformal partial wave F̃∆, j can also be analytically continued in spin, but it is not single-
valued in the region of integration in (1.45) for non-integer j.

15This is true for the lowest dimension operators of every spin, but for higher-dimensional
operators one can imagine that c(∆, j) has cuts instead of poles at non-integral j. This question
requires further investigation.
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by z and thus the residues of these poles are non-local light-ray operators. For
example, in the theory of generalized free scalar fields we show that residues ofO∆, j
are proportional to

1
Γ(− j)

∫
dsdu φ1((s + u)z) φ2((s − u)z)u− j−1 (1.49)

when O∆, j is inserted at past null infinity. For non-negative integer j this localizes16
to u = 0 and becomes a null integral of a local operator.

The key to these generalizations is to notice that the conformal block appearing
in (1.47) has scaling dimension j + d − 1 and spin ∆ − d + 1, i.e., the roles of spin
and scaling dimension are exchanged. From mathematical point of view, this is a
particular affine Weyl reflection of a weight of the conformal group. It turns out
that this Weyl reflection is not related to harmonic analysis on Euclidean conformal
group Spin(1, d + 1) but instead to harmonic analysis on Lorentzian conformal
group S̃O(2, d). It is an element of the so-called restricted Weyl group which is
isomorphic to order-8 dihedral group. In harmonic analysis the restricted affineWeyl
reflections are implemented by so-called Knapp-Stein intertwining operators [70,
71]. One can translate these intertwining operators to the CFT language, where they
become conformally-invariant integral transforms which one can apply to primary
operators. By studying properties of these integral transforms we simplify the
derivation [66, 67] of (1.47) to the point where the generalizations discussed above
become straightforward. We furthermore manage to rewrite the generalization
of (1.47) in terms of natural objects so that the analogue of the non-trivial coefficient
κ∆, j gets replaced by (2πi)−1, thus giving an elegant formulation of the general result.

We also obtain other results which naturally follow from the above discussion. First,
we give a generalization of some of the formulas used in conformal Regge theory in
terms of the new integral transforms, arguing that the light-ray operators discussed
above dominate, in an appropriate sense, the Regge limit of a time-ordered four-point
function. Finally, we prove a novel continuous-spin version of (a higher-spin version
of) averaged null-energy condition [72, 73] for CFTs which contain a sufficiently
light scalar operator.

1.4.5 Chapter 7
In chapter 7 we study some truncations of the scalar crossing equation (1.21) and
related equations. The goal here is to clarify some general questions about conver-
gence rate and dominant contributions to the Euclidean OPE expansion.

16There is an appropriate iε-prescription which we have omitted for simplicity.
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The first simplification that we make is to consider (1.21) only for
√

u +
√
v = 1,

which is the same as z = z = x. We furthermore replace conformal blocks by their
large scaling dimension limit. In the case of identical external scalars this leads to
the following representation for the four-point function G(x)17,18

G(x) =
∫ ∞

0
d∆ ρ∆x−2∆φg(∆)d∆, (1.50)

where ρ = 4x
(1+
√

1−x)2 and for convenience we have replaced a discrete sum by an
integral over an “OPE density.” We then study the derivatives of the crossing
equation at x = 1

2 , which gives

∂2k+1
x G(x)

����x=1
2
= 0, k = 0, 1, 2, . . . . (1.51)

For large ∆ and ∆φ, derivatives with k �
√
∆ simplify as

∂2k+1
x ρ∆x−2∆φ ' *

,

∂x ρ
∆x−2∆φ

ρ∆x−2∆φ
+
-

2k+1

ρ∆x−2∆φ . (1.52)

Using this simplification we show, for example, that for x ≥ 1
2 the four-point

function (1.50) is dominated by states with

∆ < ∆x ≡
2∆φ
√

1 − x
, (1.53)

and furthermore bound the contribution of states above this threshold as

1
G(x)

∫ ∞

∆

d∆ ρ∆x−2∆φg(∆)d∆ ≤
2

1 + T2k+1
(
∆−∆x/2
∆x/2

) , (∆ ≥ ∆x) (1.54)

where T is the Chebyshev polynomial, and k �
√
∆φ. We interpret this in terms

of an approximate reflection symmetry which the crossing equations imply for the
integrand of (1.50): it must be approximately reflection-symmetric around ∆x/2.

We repeat the same kind of analysis for several other crossing equations: for the
modular invariance equation of 2d partition function, for “scaling block” version of
four-point function, and for the four-point function in large dimension limit. We
also derive a version of Cardy formula for these equations, which in the partition
function case is equivalent to that of [74].

17We use notation G(x) for the four-point function, which conflicts with our previous notation
for the conformal block to match the notation of chapter 7. We hope this does not cause confusion.

18There is another technical approximation which goes into this. It is explained in chapter 7.
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Finally, we consider the scaling block version of four-point function for finite scaling
dimensions. This version is obtained from (1.50) by replacing ρ → x and can be
interpreted as an exact truncation of the crossing equations. For it we derive an
analytic upper bound on

1
G( 1

2 )

∫ ∞

∆

d∆ x∆−2∆φg(s) (∆)d∆, (1.55)

where (s) superscript distinguishes the OPE density in this case from the OPE
density in (1.50). Our bound shows that this quantity decays exponentially at large∆,
improving the bounds of [25] in two aspects. First, it is asymptotically stronger by a
factor of ∆−

1
2 and second, it is valid for finite ∆ (i.e., it is not asymptotic as in [25]).

1.4.6 Chapter 8
In chapter 8 we perform numerical bootstrap analysis of a particularly important
four-point function—that of the stress-energy tensor. Importance of this four-point
function comes from its universality, since stress-energy tensor is present in any
local conformal field theory. We work in 3d and assume conservation of space
parity (although some results are valid also in parity-violating theories).

Analysis of this four-point function is complicated by the fact that the stress-energy
tensor is a conserved operator, i.e., we have

∂µT µν = 0 (1.56)

as an operator equation. This leads to differential equations on its four-point function.
Specifically, the Euclidean correlator can be written in the form

〈TTTT〉 =
97∑

I=1
QI (x1, x2, x3, x4)gI (z, z), (1.57)

where the conformally-invariant tensor structures QI carry all the spin indices and
are constructed in chapter 2. Conservation equation (1.56) then leads to a system of
first-order differential equations

97∑
I=1

(AJI∂z + AJI∂z + CJI )gI (z, z) = 0, J = 1, . . . , 188. (1.58)

There exist relations between these equations, which can be analyzed using methods
of [75] and chapter 2. The analysis shows that these equations determine all 97
functions gI in terms of 5 arbitrary functions and a set of boundary conditions. We
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carefully examine these equations and determine a complete and independent set of
Taylor coefficients of functions gI near z = z = 1

2 . Since the conservation equations
are crossing symmetric, it suffices to impose crossing symmetry only on this set.

Another challenge is the computation of the conformal blocks. For this we use the
methods described in chapter 4, although since all bosonic representations in 3d are
traceless-symmetric tensors the old results of [61] already suffice. Due to a large
number of tensor structures it turns out to be crucial to adapt these methods to work
with the construction of tensor structures in chapter 2.

After setting up the numerics, we first study lower bounds on the central charge CT ,
defined as the coefficient of two-point function of stress-energy tensor

〈TT〉 ∝ CT, (1.59)

as the function of the coefficients nF and nB of the three-point function

〈TTT〉 = nB〈TTT〉B + nF〈TTT〉F . (1.60)

Here 〈TTT〉B and 〈TTT〉F are the three-point functions in the theories of a single
free real scalar and a single free Majorana fermion respectively.19 We find that the
lower bound is of order 1 for non-negative nB and nF , but diverges if any of the
parameters is less than 0. In this way we recover the celebrated Hofman-Maldacena
bounds [76]

nB, nF ≥ 0. (1.61)

This represents a nice complement to the recent proof using analytic bootstrap
methods [73, 77].

We also study the lower bound on CT under additional assumptions about the
spectrum. In particular, by imposing a lower bound on the scaling dimension of the
lightest parity-odd scalar we find both upper and lower bounds on CT , which force
CT ∼ 1 and imply a small nF/nB ratio. We expect that 3d Ising CFT is consistent
with the assumption imposed on the light spectrum, which allows us to estimate nF

and nB in this theory by comparing our bounds with the known value of CT . We
find 0.01 . nF . 0.02.

We also study bounds on CT assuming dimension gaps in other sectors, finding
universal upper bounds on dimensions of lightest operators in these sectors. See
section 8.4 for a complete summary.

19Due to the Ward identity CT = nF + nB our parameter is actually tan θ = nF/nB.
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C h a p t e r 2

COUNTING CONFORMAL CORRELATORS

This chapter is essentially identical to:

P. Kravchuk and D. Simmons-Duffin, Counting Conformal Correlators, JHEP 02
(2018) 096, [1612.08987].

2.1 Introduction
To apply conformal bootstrap techniques [26, 27, 30] to operators with spin, one
must first understand the space of conformally-invariant tensor structures. This
problem has been addressed previously for various types of operators in various
dimensions [39, 50–56, 78, 79]. However, no completely general construction or
classification of tensor structures currently exists in the literature.

The approaches [39, 53–56, 79] follow the strategy of defining basic conformally-
invariant building blocks, and then multiplying them in all possible ways. While
this strategy makes it easy to build conformally-invariant structures, it is not always
convenient for bootstrap applications. This is because the building blocks satisfy
nontrivial algebraic relations, which give rise to redundancies between structures
built from them. As an example, of 201 possible parity-even combinations of the
building blocks of [53] for the four-point function of identical spin-2 operators,
only 97 are linearly independent in 3 dimensions. It is possible in principle to
find relations between the 201 structures, and then choose a “standard” basis of 97
independent structures. However, this task is technically complicated and one may
wonder if this step can be omitted completely.

In this chapter we discuss a different approach, which extends the formalism of [51,
78] to n-point functions. Based on the simple idea of “gauge-fixing” the conformal
symmetry, our approachmakes it possible to avoid the problem of algebraic relations
completely in many cases. Furthermore, it applies uniformly to any operators in
arbitrary representations of SO(d), being essentially equivalent to invariant theory
of orthogonal groups.

The basic idea is simple. Consider a three-point function 〈Oa1
1 (x1)Oa2

2 (x2)Oa3
3 (x3)〉,

where the operators Oi transform in representations ρi of the rotation group SO(d),
and ai are indices for those representations. Using conformal transformations,

http://dx.doi.org/10.1007/JHEP02(2018)096
http://dx.doi.org/10.1007/JHEP02(2018)096
https://arxiv.org/abs/1612.08987
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we can place the operators in a standard configuration, say 〈Oa1
1 (0)Oa2

2 (e)Oa3
3 (∞)〉,

where e is a unit vector. The correlatormust then be invariant under the “little group"
for this configuration, which is the group SO(d − 1) of rotations that preserve the
line through 0, e,∞. Such invariants are given by

*.
,
ResSO(d)

SO(d−1)

3⊗
i=1

ρi
+/
-

SO(d−1)

, (2.1)

where ResG
H denotes restriction from a representation of G to a representation of

H ⊆ G, and (ρ)H represents the H-invariant subspace of ρ (i.e., the singlet sub-
representations).

We generalize this argument in several directions: to arbitrary n-point functions, to
incorporate permutation symmetries between identical operators, and most nontriv-
ially to deal with conserved operators like currents J µ and the stress-tensor T µν. For
three-point functions involving conserved operators, the conservation conditions
become linear relations between tensor structures. However, for general n-point
functions, conservation constraints become differential equations which are quite
complicated to analyze [75]. The conclusion of [75] is that such correlators can
be parametrized by a smaller number of functions of the conformal invariants of
n points. For example, a parity-even four-point function of stress-tensors in 3d is
parameterized by 5 scalar functions of conformal cross-ratios. We find a simple
group-theoretic rule for counting these functions.

Besides simplicity, there are several motivations for characterizing the space of ten-
sor structures in representation-theoretic language. Firstly, it is an obvious first step
towards finding a general representation-theoretic formula for conformal blocks in
d > 2 dimensions. Many examples of conformal blocks (not to mention supercon-
formal blocks) have been computed using a variety of techniques [36, 37, 49, 54, 56–
61, 63, 64, 80–82], but no one technique has yet proved completely general and effi-
cient. Secondly, similar language might be helpful in classifying superconformally-
invariant tensor structures, about which much less is known.

Importantly for numerical applications, our approach allows us to construct the
tensor structures explicitly. We work out the tensor structures of non-conserved
operators in 3d as an example.

It is well known [53, 56, 76] that the number of conformally-invariant tensor struc-
tures for a correlator in d-dimensions is equal to the number of Lorentz and gauge
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invariant tensor structures for a flat space scattering amplitude in d + 1-dimensions.
We demonstrate this relation by interpreting our group-theoretic counting rules in
the S-matrix context.

2.2 Conformal correlators of long multiplets
In this sectionwe describe in detail the construction and counting of tensor structures
for correlators of long conformal mulptiplets (local operators not constrained by
differential equations).

2.2.1 Conformal invariance
Consider a Euclidean CFTd on Rd .1 A conformally-invariant correlation function
of n primary operators Oai

i (xi) in representations ρi of SO(d) can be expressed as

〈
O

a1
1 (x1) . . .Oan

n (xn)
〉
=

N∑
I=1
Qa1...an

I (xi)gI (u), (2.2)

where gI are scalar functions of the conformal invariants u of n points, and the
possible tensor structures Qa1...an

I are constrained by conformal invariance. When
some of the operators Oi are identical, these structures are further constrained by
symmetry with respect to permutations. When one or more of the operators is a
conserved current, the correlator also satisfies nontrivial differential equations.

Let SO0(d + 1, 1) be the identity component of the conformal group. Conformal
transformations U ∈ SO0(d + 1, 1) act on primary operators as

UOa (x)U−1 = Ω(x′)∆ρa
b(R(x′)−1)Ob(x′), (2.3)

where
Ω(x′)Rµ

ν (x′) =
∂x′µ

∂xν
, (2.4)

with Ω(x) > 0 and R(x) ∈ SO(d). This leads to the following transformation of
the correlator

〈
O

a1
1 (x1) . . .Oan

n (xn)
〉
=



n∏
i=1

Ω(x′i)
∆i ρai

i bi (R(x′i)
−1)



〈
O

b1
1 (x′1) . . .Obn

n (x′n)
〉
.

(2.5)
1Actually, we work on the conformal compactification Sd of Rd , which means we can place op-

erators at infinity. We will sometimes use the non-standard definition O(∞) ≡ limL→∞ L2∆OO(Le),
with e a fixed unit vector. The advantage of this definition is that we don’t apply an inversion to
O, so O is treated more symmetrically with other operators in the correlator. The disadvantage is
that the definition depends on e, so it breaks some rotational symmetries. However, in most of our
computations these symmetries will already be broken by other operators in the correlator.
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When some of the operators are fermionic, a small clarification is required. By
construction, R(x) is an element of SO(d). However, it is the double cover Spin(d)
of SO(d) that acts on a fermionic representation. One therefore must lift R(x) ∈
SO(d) to some R (x) ∈ Spin(d). A natural point of view is to assign R (x) to an
element r of the double cover Spin(d + 1, 1) of the conformal group SO0(d + 1, 1):
first we assign R (x) ≡ id to the identity of Spin(d + 1, 1) and then define R on
the rest of Spin(d + 1, 1) by continuity. This is consistent because Spin(d + 1, 1)
is simply-connected. The invariance of correlation functions under the center of
Spin(d + 1, 1) is then simply the selection rule that the correlation function has to
contain an even number of fermions.

To faciliate group-theoretic arguments, we write

ga1...an (x1, . . . , xn) =
〈
O

a1
1 (x1) . . .Oan

n (xn)
〉
, (2.6)

and define the action of the conformal group on g as follows. Let r ∈ Spin(d + 1, 1)
be a conformal transformation. It uniquely defines elements

Rr (x′) ∈ Spin(d), Ωr (x′) > 0, (2.7)

as described above. We define the action of r on g by

(rg)a1...an (xi, . . . , xn) =
n∏

i=1
Ω(xi)−∆i ρai

i bi (Rr (xi))gb1...bn (r−1x1, . . . , r−1xn).

(2.8)
With this definition, conformal invariane of the correlator is simply the statement
that

rg = g. (2.9)

We will often parametrize operators by polarizations, O(s, x) = saO
a (x). In this

case g becomes a function of si as well as xi, and the above action becomes

(rg)(si, xi) =
n∏

i=1
Ωr (xi)−∆ig(Rr (xi)−1si, r−1xi), (2.10)

where for simplicity of notation we implicitly assume that si transforms in the dual
representation ρ∨i .

In a parity-preserving theory the above analysis should be extended to include
reflections in O(d). When fermions are present, one must specify a double cover
Pin(d) of O(d) which will act on the spinor representations. In the following
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discussion this choice will be encapsulated in the representation theory of Pin(d),
and we therefore simply assume that a choice has been made which consistently
defines an action of the disconnected conformal group on the correlators. In the
following we will often refer to SO(·) or O(·) groups when we really mean their
double covers if fermionic operators are involved. We hope that this will not cause
confusion.

2.2.2 Conformal frame
Consider a four-point function of scalars,

g(x1, x2, x3, x4) =
〈
O1(x1)O2(x2)O3(x3)O4(x4)

〉
. (2.11)

It is well-known that g(xi) only depends on two variables, the cross-ratios u and v,

u =
x2

12x2
34

x2
13x2

24
, v =

x2
14x2

23

x2
13x2

24
, (2.12)

where xi j = xi − x j . The usual way to see this is to “fix” the conformal symmetry:
choose a 2d half-plane α, a vector e ∈ ∂α, and use conformal symmetry to set
x1 = 0, x3 = e, and x4 = ∞. The remaining symmetry is just the SO(d − 1) of
rotations that fix e. Using these, we can put x2 in α. Let us call the set of such
configurations (when x1, x3 and x4 are fixed and x2 ∈ α) a conformal frame.

Since any configuration can bemapped by a conformal transformation to a conformal
frame configuration, it’s clear that the full correlator g is uniquely fixed by its
restriction g0 to conformal frame configurations. These are parametrized by two
coordinates for the point x2 in α, which we can choose to be u and v.

With the coordinates xi brought to a conformal frame configuration yi, g0 must still
be invariant under the “little group.” More precisely, let St(y) ⊂ SO0(d + 1, 1) be
the group of conformal transformations that stabilize the yi. Conformal invariance
requires that for any h ∈ St(y),

g0(yi) = (hg0)(yi). (2.13)

For scalars this is automatic, since St(y) is always a rotation group, and scalars
are invariant under rotations. (For y in the interior of conformal frame, St(y) is
the SO(d − 2) of rotations orthogonal to α, and for y on the boundary St(y) is the
SO(d − 1) that fixes e.) Assuming that (2.13) holds, we can consistently define the
full correlator g starting from g0 by writing

g(xi) = (rxg0)(xi), (2.14)



28

where rx is any conformal transformation such that yi = r−1
x xi is in the conformal

frame. The definition (2.14) doesn’t depend on the choice of rx for the usual reason:
any other r′x satisfies r′x = rx h for some h ∈ St(y), and this gives rise to the same
g(xi) because of (2.13).

This approach clearly generalizes to n-point functions of operators in arbitrary
SO(d) representations— the only new ingredient is that the invariance (2.13) under
the stabilizer subgroup St(y) is now a non-trivial constraint. Quite generally, the
configuration space of n points on the sphere splits into orbits under the action of
the connected conformal group; we define the conformal frame to be a submanifold
of the configuration space which intersects each orbit at precisely one point. Then
all of the above works verbatim.

This is perhaps most striking for four-point functions in 3 dimensions. In this case,
the stabilizer subgroup is generically the trivial SO(3 − 2) = SO(1)! So spinning
four-point functions in 3d are almost no different from scalar ones. We return to this
point in section 2.4.3.

Note that the above discussion showed that St(y)-invariance of g0 is sufficient for
g to be well-defined, but not necessarily smooth. If we require g to be smooth,
we must impose more refined conditions for g0 on the boundaries of the conformal
frame. We discuss this point in appendix A.1. As we discuss in section 2.4.4, these
conditions are important for formulating the bootstrap equations.

2.2.3 n-point functions
Consider the general case of n ≥ 3 points. For convenience, we define m =

min(n, d + 2). To specify a conformal frame, we choose a flag of half-subspaces2
αi, i = 2, . . .m − 2, such that

dim αi = i,

∂αi = αi−1, i > 2,

∂α2 = Re, (2.15)

and αi is the linear subspace spanned by αi. We first put operators 1, 2, 3 at 0, e,∞,
as before. We then use the remaining SO(d− i+3) to bring the i-th operator to lie in
αi−2, for i = 4, . . . ,m. If n > m, we have already used all the conformal symmetry

2If m = d + 2, then αd should be the full linear subspace instead of a half-space. This is because
when we fix the position of the last operator, we can only use SO(d + 3 − m), which is trivial in this
case.
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to fix the positions of the first m operators, and the remaining n − m operators can
be anywhere.

After this is done, a generic conformal frame configuration has stabilizer subgroup
SO(d + 2 −m). It follows that the conformally-invariant tensor structures are given
by

*.
,
ResSO(d)

SO(d+2−m)

n⊗
i=1

ρi
+/
-

SO(d+2−m)

. (2.16)

Again, ResG
H denotes the restriction of a representation of G to a representation of

H ⊆ G,3 and ρi are the SO(d) representations of the Oi, and (ρ)H denotes the
H-singlets in ρ.

This counting rule is consistent with the result of [56]. For simplicity, consider
three-point functions. In [56], they show that the number of three-point structures
for general tensor operators is the same as the number of traceless-symmetric tensors
(TSTs) of SO(d) in

3⊗
i=1

ρi . (2.17)

This is equivalent to (2.16) because the only SO(d) representations that give singlets
after restriction to SO(d − 1) are TSTs, and each TST gives exactly one singlet.

We can also count the dimension of the conformal moduli spaceMn =Mn/SO(d+

1, 1) of n points, whereMn is the configuration space of n points on the sphere. By
counting the unconstrained coordinates of the operators in conformal frame we get,

dimMn =

m−2∑
i=2

dim αi + d(n − m) =
m(m − 3)

2
+ d(n − m). (2.18)

This is of course also equal to

dimMn = dimMn − dim SO(d + 1, 1) + dim SO(d + 2 − m). (2.19)

Examples. Let us work out some simple examples of (2.16) in 3d. Let ` denote
the spin-` representation of SO(d), and (s) denote the charge-s representation of
SO(2) = U (1). For the trivial representation of the trivial group, we write •.

3BecauseResGH is a functor, we can restrict the representations before taking their tensor products.
This sometimes simplifies calculations.
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Consider an n-point function of non-identical vectors in 3d. When n = 3, the
structures are given by SO(2)-singlets in(

ResSO(3)
SO(2)1

)⊗3
=

(
(1) ⊕ (0) ⊕ (−1)

)⊗3

= (3) ⊕ 3(2) ⊕ 6(1) ⊕ 7(0) ⊕ 6(−1) ⊕ 3(−2) ⊕ (−3). (2.20)

In particular, there are 7 structures.

Let us emphasize that, despite the title of this chapter, (2.16) actually gives the space
of structures, not just the number. For example, consider a three-point function of
vectors Ji (si, xi) = sµi Jiµ(xi), where sµi are polarization vectors. Restricting to the
conformal frame configuration 〈J1(s1, 0)J2(s2, e1)J3(s3,∞)〉, we can write seven
invariants under the SO(2) of rotations in the 2-3 plane:

s1
1s1

2s1
3, s1

1 δabsa
2 sb

3, s1
2 δabsa

3 sb
1, s1

3 δabsa
1 sb

2,

s1
1 εabsa

2 sb
3, s1

2 εabsa
3 sb

1, s1
3 εabsa

1 sb
2, (2.21)

where δab and εab are the two-dimensional metric and epsilon symbol.

The correlator is then given by (2.14). Alternatively, we can map the structures
(2.21) to the embedding-space structures of [53] using the dictionary4

s1
i 7→ Vi,

δabsa
i sb

j 7→ Hi j + ViVj,

εabsa
i sb

j 7→ 2ε i j . (2.22)

The resulting expressions will automatically be free of redundancies.

When n ≥ 4, the stabilizer SO(5 − m) is trivial, and(
ResSO(3)

1 1
)⊗n
=

(
3•

)⊗n
= 3n•, (2.23)

so we have 3n structures. In embedding space structures for n ≥ 5, this corresponds
to the fact that there are 3 linearly-independent V structures for each operator, and
all H structures are redundant. For n = 4, we have two V structures per point and
the H structures are replaced by ε (Zi, P1, P2, P3, P4) in the notation of [53].

4Here, we use the nonstandard definition of an operator at infinity described in footnote 1.
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2.2.4 Parity
If one wishes to distinguish parity-even and parity-odd structures, one has to note
that the stabilizer group is actually O(d + 2 − m) (for n ≥ 3). There are two cases
now, n < d + 2 and n ≥ d + 2.

In the former case, n < d+2, the stabilizer subgroup contains a parity transformation.
Therefore, parity of the correlator can be naturally defined on the conformal frame
— parity-even structures are scalars under O(d + 2 − m) and parity-odd structures
are pseudo-scalars. Another way to state this is that reflection fixes the conformal
frame and thus all the conformal invariants u of n points are parity even, and parity
is a property of the tensor structure.

In the latter case, n ≥ d + 2, the stabilizer subgroup is trivial. Looking at the
construction of the conformal frame, we see that parity actually acts within the
conformal frame.5 This means that there exist parity-odd conformal invariants u
of n points, and it is actually quite easy to construct one. In the embedding-space
formalism of [53] it can be written as

ε (P1 · · · Pd+2)√
P12P23 · · · Pd+1,d+2Pd+2,1

. (2.24)

Note that the condition n ≥ d + 2 enters this construction naturally. Using this
invariant, all the tensor structures can be chosen to be parity-even. Parity of the
correlator is then the property of the coefficient functions gI .6

Examples. Let us apply the above discussion to n-point functions of parity-even
vectors in 3d. We denote the parity-even/odd spin-` representations of O(3) by `±.
The spin-` representations of O(2) are denoted ` and the scalars/pseudoscalars are
denoted 0±.7,8 Finally, the parity-even/odd representations of O(1) are denoted •±.

5This is consistent with our definition of conformal frame, since that definition used only the
connected component of the conformal group.

6If in the definition of conformal frame we used the full conformal group, then parity would not
act on the conformal frame, but it also would not be a part of the stabilizer. Rather, rx would contain
the parity transformation for some xi , and in that case the parity of the correlator would be supplied
as extra information in the definition (2.14).

7Thoughwe sometimes use the same notation for representations of different groups (for example
scalars/pseudoscalars of O(2) and O(3)), we hope that the relevant group will be clear from context.

8Note that spin-` representations of O(2) do not come in distinct parity-even and parity-odd
versions. This is because εµν gives an isomorphism between the parity-even vector and the parity-
odd vector in 2d. For spin-` representations, we can act with εµν on one of the vector indices to get a
parity-changing isomorphism. The only exception is the scalar representation, which comes in two
versions 0±, differing by a sign under reflections. Because of the ε isomorphism, we have 0± ⊗ ` = `.
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For three-point functions, we have(
ResO(3)

O(2)1
+
)⊗3
=

(
1 ⊕ 0+

)⊗3
= 3 ⊕ 3 2 ⊕ 6 1 ⊕ 4 0+ ⊕ 3 0−, (2.25)

so 4 of the 7 structures are parity-even and 3 are parity-odd, which is consistent with
the explicit expressions (2.21). For four-point functions, we have(

ResO(3)
O(1)1

+
)⊗4
=

(
2 •+ ⊕ •−

)⊗4
= 41 •+ ⊕ 40 •−, (2.26)

so 41 of the 81 structures are parity-even, and 40 are parity-odd. For n ≥ 5, parity-
odd cross-ratios exist and all structures can be chosen to be parity even. This is
easily seen to be in accordance with the discussion after (2.23).

2.2.5 Permutation symmetry
In this section we consider the constraints of permutation symmetries from the point
of view of the conformal frame. Derivations of some technical results of this section
are collected in appendix A.2.

Correlators involving identical operators are (anti-)symmetric under permutations
of those operators.9 We can define the action of permutations on the correlator g by

(πg)a1...an (x1, . . . , xn) = ±gaπ (1) ...aπ (n) (xπ(1), . . . , xπ(n)), (2.27)

with a − sign for an odd permutation of fermions. In terms of polarizations,

(πg)(si, xi) = ±g(sπ(i), xπ(i)). (2.28)

Invariance under a permutation π is simply the statement that

πg = g. (2.29)

Of course, in order to impose this consistently with conformal invariance, the
quantum numbers of the exchanged operators should be equal.

Applying a permutation π to a conformal-frame configuration p = {xi} yields a
new configuration πp which is generically not in the conformal frame. To compare
the value of the correlator at πp with the value at p, one must find a conformal
transformation that brings πp back to the conformal frame. More precisely, choose
for every π a conformal transformation rπ such that the configuration x′i = r−1

π xπ(i)

9In principle it might be interesting to consider also permutations which exchange non-identical
operators, in order to switch between conformal frames differing only by the ordering of operators.
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belongs to conformal frame (in general rπ can depend on xi). Then invariance (2.9)
and (2.29) of the correlator requires

rππg = g. (2.30)

By construction both the left hand side and right hand side depend only the values
of g on the conformal frame and thus this requirement can be phrased in terms of
g0.

Depending on whether x′i = xi, this either restricts the number of tensor structures
allowed for g0 by constraining its value at a single point of the conformal frame, or
simply relates values of g0 at different points in the conformal frame. An example
of the latter case is the crossing-symmetry equation for four-point functions. In the
former case we say that the permutation is “kinematic”. The permutations which
satisfy x′i = xi (and thus preserve the cross-ratios u) form a subgroup Skin

n ⊆ Sn.

For n ≤ 3 the conformal frame consists of a single point, so permutations simply
give linear relations between tensor structures and we have Skin

n = Sn. For four-
point functions, Skin

4 is the group of permutations that preserve u and v. This is
Skin

4 = Z2
2 = {e, (12)(34), (13)(24), (14)(23)} in cycle notation. For higher-point

functions, Skin
n is trivial because no nontrivial permutation preserves all the cross-

ratios.

Let us be more explicit and assume that the correlator is invariant under a subgroup
Π ⊆ Sn. In terms of polarizations we have for any π ∈ Π, using (2.8) and (2.27),

(rππg)(si, xi) = (πg)(Rrπ (xi)−1si, r−1
π xi)

n∏
i=1

Ω
−∆i
rπ (xi) = g(s′i, x′i)

n∏
i=1

Ω
−∆i
rπ (xi),

(2.31)
where

s′i = Rrπ (xπ(i))−1sπ(i), (2.32)

and the scaling factor withΩ’s is trivial if the scaling dimensions are invariant under
π, which we assume. Suppose that the permutation is kinematic, π ∈ Πkin, then the
invariance condition becomes

g0(si, xi) = g0(s′i, xi), (2.33)

and basically constrains the value of g0(·, xi) ∈
⊗

i ρi. Therefore, we see that there
is an action of Πkin on

⊗
i ρi which both permutes and twists the tensor factors.

The tensor structures should be invariants of this action.
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Since only Skin
3 and Skin

4 are non-trivial, it is easy to consider the permutations on
a case by case basis. We do this in appendix A.2. In particular we describe there
all rπ and the induced Rrπ , which are required for practical calculations with tensor
structures. For example, we use these results in our account of 3d tensor structures
in section 2.4.

In the remainder of this section we derive group-theoretic rules for counting the
permutation-symmetric tensor structures.

2.2.5.1 Three-point structures

In the case of three-point structures with non-trivial permutation symmetry we can
have either Πkin = S2 or Πkin = S3.

Let us start with Πkin = S2, where we have two identical operators O1 = O2. Instead
of going to the usual conformal frame, it is convenient to choose the configuration
〈O1(−e)O3(0)O1(e)〉, where e is a unit vector. This gives a function g̃(si, e). By
analogy with the usual conformal frame, it is sufficient to ensure that g̃(si, e) is
covariant under SO(d) rotations (where we allow e to rotate as well as the si).

Before taking permutation symmetry into account, the tensor structures are in one-
to-one correspondence with traceless symmetric tensors in ρ1 ⊗ ρ2 ⊗ ρ3. (As we
explained in section 2.2.3, this is equivalent to the space of singlets in 2.16.) Each
such tensor of spin ` can be contracted with eµ1 . . . eµ` to give the corresponding g̃.
Now, permutation symmetry demands

g̃(s1, s2, s3, e) = ±g̃(s2, s1, s3,−e) = ±(−1)`g̃(s2, s1, s3, e), (2.34)

where the± sign is determined by the statistics of the operators O1 = O2, and the last
equality is valid if g̃ comes from a spin-` traceless-symmetric tensor in ρ1⊗ ρ2⊗ ρ3.
We find

Proposition 1 (S2). S2-symmetric tensor structures are in one-to-one correspon-
dence with even-spin traceless symmetric tensors in Ŝ2ρ1 ⊗ ρ3 plus odd-spin
traceless-symmetric tensors in ∧̂2

ρ1⊗ ρ3. Here, Ŝ2 denotes the symmetric square for
bosonic arguments and exterior square for fermionic arguments, and ∧̂2 is defined
analogously.

Now consider the case of S3 symmetry with 3 identical operators. The full symmetry
group is generated by permutations (12) and (123). We have already discussed



35

(12). We can generate the cyclic permutation (123) by exponentiating the action of
(Pµ + K µ)eµ. This moves the operators along the line spanned by e but does not
rotate their polarizations, giving the condition

g̃(s1, s2, s3, e) = g̃(s3, s1, s2, e). (2.35)

Together, (2.34) and (2.35) give the trivial representation of S3 when ` is even and
the sign representation when ` is odd. This leads to

Proposition 2 (S3). S3-symmetric tensor structures are in one-to-one correspon-
dence with even-spin traceless symmetric tensors in S3ρ1 plus odd-spin traceless-
symmetric tensors in ∧3ρ1.10

In both propositions 1 and 2, the parity of the structure is determined by the intrinsic
parity of the traceless symmetric representations.

2.2.5.2 Four-point structures

Let us now count four-point structures. Recall that in the absence of permutation
symmetries, the space of tensor structures is

*.
,
ResO(d)

O(d−2)

4⊗
i=1

ρi
+/
-

O(d−2)

. (2.36)

The most natural generalization to symmetric correlators would be to symmetrize
the tensor product by the kinematic symmetries of the correlator, including factors
of (−1) for odd permutations of fermions. It turns out that this is almost correct,
except that one does not need the (−1)’s. This is due to the fact that the conformal
transformation that compares the permuted and unpermuted correlator also gives a
(−1) for an exchange of fermions. The general statement is

Proposition 3 (Z2 and Z2
2). The space of tensor structures for four-point functions

with permutation symmetry Πkin is

*...
,

ResO(d)
O(d−2)

*.
,

4⊗
i=1

ρi
+/
-

Πkin

+///
-

O(d−2)

, (2.37)

10The distinction between Ŝ and S has disappeared because all three operators are necessarily
bosonic.
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where Πkin acts by a simple permutation on the tensor factors, regardless of the
fermion/boson nature of the operators, and the parentheses mean taking the invariant
subspace.11

We prove proposition 3 in appendix A.2.2.2. There are two non-trivial options for
Πkin: Z2 and Z2

2. In the former case we simply need to compute the symmetric
square of a representation. Indeed, without loss of generality assume that the non-
trivial permutation is (13)(24), and so ρ1 = ρ3 and ρ2 = ρ4. It is easy to see that

*.
,

4⊗
i=1

ρi
+/
-

Z2

= S2(ρ1 ⊗ ρ2). (2.38)

The latter case is a bit more involved. First, all the representations have to be
identical, ρ1 = ρ2 = ρ3 = ρ4 = ρ. The relevant formula is then, as we show in
appendix A.3,

*.
,

4⊗
i=1

ρi
+/
-

Z2
2

= ρ4 	 3
(
∧2ρ ⊗ S2ρ

)
, (2.39)

where 	 represents the formal difference12 in the character ring.

Examples. As examples, consider n-point correlators of identical parity-even vec-
tors in 3d. For n = 3, we have the following identities among O(3) representations:

S31+ = 3+,

∧31+ = 0−. (2.40)

By proposition 2, it follows that there are no nontrivial three-point structures. For
n = 4, using proposition 3 with Πkin = Z2

2 and equation (2.39), we have

(2 •+ ⊕ •−)4 	 3
(
∧2(2 •+ ⊕ •−) ⊗ S2(2 •+ ⊕ •−)

)
= 17 •+ ⊕ 10 •−, (2.41)

so there are 17 parity-even structures and 10 parity-odd structures in a four-point
function of identical vectors. Finally, for n ≥ 5, kinematic permutations are absent,
so there are 3n structures (which can be taken to be parity-even).

11One can also project to singlets of Πkin after applying ResO(d)
O(d−2) .

12One can think about representations in terms of characters. Since characters are functions, there
is no problem with taking differences. Alternatively, one can think of a reducible representation as a
formal sum of irreducible representations with non-negative coefficients. Then, taking a difference of
representations is equivalent to taking differences of these coefficients. Some coefficients may end up
being negative, in which case the result is called a “virtual" representation. The representation (2.39)
is guaranteed not to be virtual.
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Consider an examplewith two identicalMajorana fermions and two identical scalars,
all parity-even. We have the following O(2, 1) identity

S2 1
2
= 1+. (2.42)

Using proposition 3 with Πkin = Z2 and equation (2.38), we find the space of
four-point structures

2 •+ ⊕ •−, (2.43)

so there are 2 parity-even structures and 1 parity-odd structure. This agreeswith [81].
Note that it was essential not to include (−1) for a permutation of fermions in
proposition 3.

2.2.6 Summary: tensor structures of long multiplets
The discussion above can be summarized as the following theorem.

Theorem 1. The conformal correlator involving n ≥ 3 operators in representations
ρi can be written as 〈

O
a1
1 (x1) . . .Oan

n (xn)
〉
=

∑
I

Qa1...an
I gI (u), (2.44)

where u is a set of coordinates on the conformal moduli space Mn of n points
x1 . . . xn,

dimMn =
m(m − 3)

2
+ d(n − m), m = min(n, d + 2), (2.45)

and the conformally-invariant tensor structures QI are in one-to-one correspon-
dence with scalars (for parity-even structures) and pseudo-scalars (for parity-odd
structures) in the representation of O(d + 2 − m) given by

ResO(d)
O(d+2−m)

n⊗
i=1

ρi . (2.46)

If parity is not conserved, one simply replacesO(·) groups with SO(·) groups above.
If n ≥ d + 2, then one can form parity-odd cross-ratios, and parity of the correlator
is rather a property of the functions gI rather that the structures QI , which can all
be chosen to be parity-even.

When n = 3 or n = 4 the correlator (2.44) can have a group Πkin of permutation
symmetries which leave u invariant, and thus impose constraints on the structures
QI . The spaces of structures in these cases are described in propositions 1, 2, and 3.
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2.3 Conservation conditions
We now consider correlation functions of operators that satisfy conservation condi-
tions. We are mainly interested in the number of “functional degrees of freedom"
in such correlators — i.e., the number of functions of cross-ratios needed to com-
pletely specify the correlator [75]. For simplicity, we mostly restrict our attention
to traceless symmetric tensor conserved currents, of which spin-1 currents and the
stress tensor are prime examples. We describe the modifications required for more
general operators at the end of this section.

Correlation functions involving conserved currents are constrained by differential
equations such as

∂

∂xµ1
1

〈
J µ1...µ` (x1) . . .

〉
=

∂

∂xµ1
1

N∑
I=1
Q
µ1...µ` ...
I (xi)gI (u) = contact terms. (2.47)

When n ≥ 4, these are differential constraints on the functions gI (u). In general,
the full set of conservation equations is not independent and this makes it not
immediately clear how many degrees of freedom there actually are. The purpose
of this section is to classify the relations between these equations and motivate a
group-theoretic rule for the number of degrees of freedom of such correlators for
n ≥ 4.

Our rule will also classify “generic” three-point functions—i.e., three-point corre-
lators where at least one operator has generic dimension ∆. When the dimensions
of operators are non-generic, extra three-point structures can appear. The simplest
example occurs for a three-point function of a conserved current and two scalars,
〈Jµφ1φ2〉. Generically, no structure exists for such a correlator, but a special struc-
ture becomes possible when the scalars have equal dimensions ∆1 = ∆2. These
special structures are related to the contact terms on the right-hand side of (2.47).
For higher-point correlators, non-generic structures have a fixed xi dependence, so
they do not contribute to the number of functional degrees of freedom.

Our strategy is to understand the relations between equations (2.47). In general, if
we have a system of equations

D1g = 0, (2.48)

where g is a vector of N0 unknown functions and D1 is a N1×N0 matrixwith differen-
tial operator coefficients, we say that there are relations between the equations (2.48)
if there is an N2 × N1 matrix D2 such that

D2D1 = 0. (2.49)
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Note that here D2D1g = 0 independently of (2.48). There is a sense in which D2

can be complete. Namely, we say that D2 is a compatibility13 operator for D1 iff
any other D̃2 satisfying D̃2D1 = 0 can be expressed as D̃2 = QD2 for some matrix
differential operator Q. It can happen that there are further relations between the
relations D2, i.e., an N3 × N2 matrix D3 such that

D3D2 = 0, etc. (2.50)

If at some point this sequence of compatibility operators terminates— i.e., for i > i0

we have Ni = 0 — then we can compute a version of the Euler characteristic

N =
∞∑

i=0
(−1)i Ni . (2.51)

We expect that N is the true number of functional degrees of freedom parametrizing
a solution to (2.48). Note that by the number of functional degrees of freedom we
mean the functional parameters which depend on the same number of variables as
the original equation.

Consider first the simplest case of conservation of a spin-` traceless-symmetric
current,

∂

∂xµ1
J µ1...µ` (x) = 0, (2.52)

which can be phrased as setting to zero a spin-(` − 1) operator

V µ1...µ`−1 (x) =
∂

∂xµ
J µµ1...µ`−1 (x). (2.53)

If the current J has scaling dimension ∆J = d+`−2, then the conservation equation
is conformally-covariant, meaning simply that V transforms as a primary operator.
Note that V is still conserved, but ∂V = 0 does not constitute a relation between the
conservation equations in the above sense — it only holds if the original equation
is satisfied. In fact, there is no differential operator which annihilates the left hand
side of (2.52).

Since V is a primary, inserting it into a correlator we find

〈
V µ1...µ`−1 . . .

〉
=

N1,N∑
I=1,J=1

Q̃
µ1...µ`−1...
I (D1)I

Jg
J (u) = 0, (2.54)

13This name comes from considering the equation D1g = f. The function f is compatible with
this equation only if D2f = 0. Systems of equations for which a non-trivial D2 exists are known as
overdetermined systems.



40

where the structures Q̃I are the conformally invariant structures suitable for the
correlator on the left. Note that the structures Q are in one-to-one correspondence
with singlets in

[` ⊗ ρ2 ⊗ . . .] = [`] ⊗ [ρ2] ⊗ . . . , (2.55)

where we use [ · ] to denote the restriction to SO(d + 2−m). On the other hand, the
structures Q̃ are given by the singlets in

[(` − 1) ⊗ ρ2 ⊗ . . .] = [` − 1] ⊗ [ρ2] ⊗ . . . . (2.56)

If there is only one current in the correlator, then there are no relations between the
equations and the number of degrees of freedom is given by the number of singlets
in(

[`] ⊗ [ρ2] ⊗ . . .
)
	

(
[` − 1] ⊗ [ρ2] ⊗ . . .

)
=

(
[`] 	 [` − 1]

)
⊗ [ρ2] ⊗ . . . . (2.57)

Here the 	 is the formal difference14 in the character ring of SO(d + 2 − m). The
idea now is to note

ResSO(d)
SO(d−1)` 	 ResSO(d)

SO(d−1) (` − 1) = `′, (2.58)

where `′ is the spin-` traceless symmetric representation of SO(d−1).15 Therefore,
we see that the number of degrees of freedom is given by the singlets in

[`′] ⊗ [ρ2] ⊗ . . . (2.59)

One may wonder if this rule holds more generally — i.e., whether one can compute
the number of degrees of freedom in any correlator involving conserved operators by
simply replacing the SO(d) representations of these operators with their “effective”
SO(d − 1) representations in Theorem 1. This is indeed so16, and in section 2.3.1
we show in examples how this rule works in the situations when we have several
conserved operators or when there are permutation symmetries.

In the example considered above the primary V obtained from J did not have any
null states of its own, so it was easy to count the number of degrees of freedom in
the correlator (2.54). For operators J satisfying more general conformally-invariant
differential equations it may turn out that V itself has a null descendant V ′, and thus

14See footnote 12.
15Note that SO(d −1) is the little group for massless particles in d +1 dimensions. We will make

use of this fact in section 2.5.
16As we note in the beginning of this section, for three point functions this is only true for

sufficiently generic scaling dimensions of the operators.
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satisfies a conformally-invariant differential equation expressed as V ′ = 0. Now V ′

can turn out to have null descendants V ′′, and so on. A simple class of examples
when this happens are the differential forms from the de Rham complex. Repeating
the above analysis, we see that the effective SO(d − 1) representation we should use
in this situation is

[ρ] 	 [v] ⊕ [v′] 	 [v′′] ⊕ . . . , (2.60)

where ρ is the SO(d) representation of J and v is the SO(d) representation of V

and so on.

We expect that quite generally this alternating sum gives an actual representation of
SO(d − 1). Indeed, we have V = D J for some conformally invariant differential
operatorD. Because of translation invarianceD has constant coefficients, and thus
the equation

D J = 0 (2.61)

is in momentum space a simple linear equation for the amplitude J. In particular, for
each fixedmomentum p, the space of solutions is a finite-dimensional representation
of SO(d − 1) which leaves p invariant. It is easy to convince oneself that this is the
representation which (2.60) is computing.

In applications to unitary conformal field theories we are only interested in operators
J with the scaling dimension saturating some unitarity bound — these are the only
operators which are unitary and have null descendants at the same time. A detailed
classification of such operators can be found in section 5 of [83] (see also [42, 84]),
here we only give a short summary. Among these operators, some can be classified
as free and the rest, which we will call the unitary conserved currents, satisfy
first-order differential equations. In 3d and 4d all unitary conserved currents are
generalizations of (d − 1)-forms and they do not have the analogue of V ′. In 5d
and 6d there appear unitary conserved currents which generalize (d − 2)-forms, and
they have V ′ but not V ′′. Given the classification in [83], it is an easy exercise to
find the effective SO(d − 1) representation for arbitrary unitary conserved currents
in d ≤ 6.

2.3.1 Multiple conserved operators and permutation symmetries
Let us see how the rule (2.59) behaves when there are several conserved currents in
the correlator. Consider for example the case of two currents J1 and J2. We then
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have the equations

〈V1 J2 . . .〉 = 0, (2.62)

〈J1V2 . . .〉 = 0. (2.63)

But there is a relation between these equations. Taking the remaining divergences
in both equations we arrive in both cases at

〈V1V2 . . .〉 = 0, (2.64)

and by taking the difference we obtain 0 regardless of whether Vi = 0 or not. This
thus leads to a number of relations. This number is equal to the number of tensor
structures in 〈V1V2 . . .〉. Therefore, we need to add it to the number of degrees of
freedom,(

[`1] ⊗ [`2]
)
	

(
[`1] ⊗ [`2 − 1]

)
	

(
[`1 − 1] ⊗ [`2]

)
⊕

(
[`1 − 1] ⊗ [`2 − 1]

)
= [`′1] ⊗ [`′2]. (2.65)

It is easy to see that this generalizes to any number of conserved operators.

Consider now the case when the operators J1 and J2 are identical, `1 = `2 = ` and
there is a kinematic permutation expressing this. Assume that n = 4 and the other
operators are scalars for simplicity. In this case the equations (2.62) and (2.63)
are equivalent, since the tensor structures for 〈J1 J2 . . .〉 are chosen to be symmetric.
Then we can use just one equation, say (2.62). However, it is still subject to relations.
In particular, if we take an extra divergence to get to the equation (2.64), we will
find that it is symmetric in permutation of V ’s, and thus antisymmetrizing the V ’s
we get 0. Since it is a non-trivial operation which we applied to (2.62), it constitutes
a relation among equations (2.62). Therefore we need to look for scalars in

S2[`] 	
(
[`] ⊗ [` − 1]

)
⊕ ∧2[` − 1]. (2.66)

Incidentally, the following relation holds in the character ring,

S2 (
χ1 − χ2

)
= S2 χ1 − χ1 χ2 + ∧

2 χ2. (2.67)

It can be easily derived from the character formulas (A.32) and (A.33). We therefore
see that the prescription works even when there is a permutation symmetry,

S2[`′] = S2[`] 	
(
[`] ⊗ [` − 1]

)
⊕ ∧2[` − 1]. (2.68)

The techniques above also allow us to keep track of parity by simply replacing SO

groups with O groups.
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Examples (Conserved four-point functions in 3d and 4d). As examples, let us
compute the number of functional degrees of freedom in a four-point function of
identical, conserved, parity-even, spin-` currents in 3d and 4d. Applying propo-
sition 3, equation (2.39), and the discussion above, we must find the number of
O(d − 2) scalars •+ and pseudoscalars •− in

ρ = [`′]4 	 3
(
∧2[`′] ⊗ S2[`′]

)
. (2.69)

In 3d, [`′] is the restriction of the spin-` traceless symmetric tensor of O(2) to O(1),
which is simply [`′] = •+ ⊕ •−. Plugging in we easily find

ρ3d = 5 •+ ⊕ 2 •−, (2.70)

so there are 5 parity even and 2 parity odd degrees of freedom. Note that the answer
is independent of `. As we will see in section 2.5, this is related to the fact that
massless particles in 4d always have two degrees of freedom, regardless of helicity.

In 4d, it is convenient to use characters of O(2). O(2) is a semidirect product

U (1) o Z2 = {(x, s) : x ∈ U (1), s = ±1}, (2.71)

with the multiplication rule

(x1, s1)(x2, s2) = (x1xs1
2 , s1s2). (2.72)

The spin- j representation j has character

χ` (x, s) =
1 + s

2
(x j + x− j ), (2.73)

while the scalars •+ and pseudoscalars •− have characters 1 and s, respectively. [`′]
is the restriction of the parity-even spin-` representation of O(3) to O(2), namely

[`′] = ` ⊕ (` − 1) ⊕ · · · ⊕ 1 ⊕ •+, (2.74)

which has character

χ[`′](x, s) =
1 + s

2
x`+

1
2 − x−`−

1
2

x
1
2 − x−

1
2
+

1 − s
2

. (2.75)

Plugging (2.75) into equation (A.36) for the character of a Z2
2-invariant tensor

product, we find

χρ4d (x, s)

=
1 + s

2
*..
,

1
4

*.
,

x`+
1
2 − x−`−

1
2

x
1
2 − x−

1
2

+/
-

4

+
3
4

*
,

x2`+1 − x−2`−1

x − x−1
+
-

2+//
-
+

1 − s
2

(3`2 + 3` + 1)

=
(4` + 3)(` + 2)(` + 1)

6
+

(4` + 1)`(` − 1)
6

s + . . . , (2.76)
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where “. . . ” represents sums of spin- j characters (2.73). The constant term in
(2.76) is the number of parity-even structures and the coefficient of s is the number
of parity-odd structures. Plugging in ` = 1, 2, we obtain 7 + 0s and 22 + 3s,
respectively, in agreement with [75].

2.4 Correlation functions in 3d
In this section we consider in detail correlation functions in three dimensions, in
order to exemplify how our formalism gives the tensor structures rather than just
their number, and how this can be applied in practice.

2.4.1 Conventions for SO(2, 1)

In this section we will be working in Lorentzian signature in order to allowMajorana
spinors. Our conventions for spinors will be those of [39]. In this subsection we
describe the basic notation.

The primary operators in2+1 dimensions transform in representations of Spin(2, 1) '
Sp(2,R). The smallest such representation is the two-component Majorana spinor
1
2 , the fundamental of Sp(2,R)

ψα . (2.77)

This representation is equivalent to its dual

ψα, (2.78)

due to the invariant symplectic form of Sp(2,R)

Ω
αβ = Ωαβ =

*.
,

0 1
−1 0

+/
-
, ψα = Ωαβψ

β . (2.79)

We have 1
2 ⊗

1
2 = S2 1

2 ⊕ ∧
2 1

2 = 1 ⊕ 0. The equivalence between S2 1
2 and the vector

representation of Spin(2, 1) is established by the gamma matrices (γµ)α β,

γ0 =
*.
,

0 1
−1 0

+/
-
, γ1 =

*.
,

0 1
1 0

+/
-
, γ2 =

*.
,

1 0
0 −1

+/
-
. (2.80)

More precisely, we have
vµ = Ωασ (γµ)σ βv (αβ) . (2.81)

Generally, all finite-dimensional representations of Spin(2, 1) are the symmetric
powers of theMajorana representation, ` = S2` 1

2 . We therefore represent an arbitrary
real operator O of spin ` as

O (α1...α2` ) (x), (2.82)



45

and we will use index-free notation by introducing a polarization spinor s,

O(s, x) = sα1 . . . sα2`O
(α1...α2` ) (x). (2.83)

We need tomake a choice of Pin(2, 1) group to consider parity. Reflection x1 → −x1

is generated by
ψ → ±γ1ψ, (2.84)

and reflection x2 → −x2 is generated by

ψ → ±γ2ψ, (2.85)

as can be checked by considering the induced action on the vector representation.
The sign ambiguity reflects the fact that it is a double cover Pin(2, 1) of O(2, 1)
which acts on spinors, so there are twice as many “reflections” as in O(2, 1).

2.4.2 Three-point structures
We choose the standard positions for the three operators by picking

x1 = (0, 0, 0), (2.86)

x2 = (0, 0, 1), (2.87)

x3 = (0, 0, L), (2.88)

and considering the correlator

g0(s1, s2, s3) = lim
L→+∞

L2∆3
〈
O1(s1, x1)O2(s2, x2)O3(s3, x3)

〉
. (2.89)

The connected component of the stabilizer subgroup in this case consists of boosts
si → e−iλK1 si with

K1 =
1
2

*.
,

i 0
0 −i

+/
-
. (2.90)

Writing

(si)α =
*.
,

ξi

ξi,

+/
-

(2.91)

we see that ξi has charge +1/2 under these boosts, and ξi has charge −1/2.

According to the general rule, the three-point functions are in one-to-one correspon-
dence with stabilizer-invariant functions g0(si). Clearly, one can choose a basis for
such functions consisting of monomials

[q1q2q3] =
3∏

i=1
ξ
`i+qi
i ξ

`i−qi
i , (2.92)
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with qi ∈ {−`i, . . . , `i} subject to
3∑

i=1
qi = 0. (2.93)

If parity is conserved, then stabilizer subgroup also contains parity transformation
si → γ1si. This simply exchanges ξi and ξi. Therefore, structures of definite parity
are given by

[q1q2q3]± ≡
3∏

i=1
ξ
`i+qi
i ξ

`i−qi
i ±

3∏
i=1

ξ
`i−qi
i ξ

`i+qi
i , (2.94)

and now sets qi and −qi are identified.

Permutations. Consider the permutations, starting with the transposition (12).
According to the general rule, we need to apply a transformation which brings
the operators back to the conformal frame position after the permutation. We are
interested in the Spin(3) elements

R−1
rπ (xi) (2.95)

induced at the insertions of the operators. These are computed in the appendix A.2
with the result that for all transpositions there are e±iπ/2 at all insertions, inducing
si 7→ ±γ

0sπ(i), under which ξi 7→ ±ξπ(i) and ξi 7→ ∓ξπ(i). Taking into account the
precise signs, we find the action of the permutations

(12) : [q1q2q3]± 7→ ±(−1)`1+`2−`3[q2q1q3]±, (2.96)

(13) : [q1q2q3]± 7→ ±(−1)`1+`2+`3[q3q2q1]±, (2.97)

(23) : [q1q2q3]± 7→ ±(−1)−`1+`2+`3[q1q3q2]±. (2.98)

If the permutations are symmetries of the correlator, the signs in front of `i above
can all be chosen to be +, since, e.g., for permutation (12) `3 has to be integral for
the full correlator to be bosonic. Under these permutations the tensor structure has
to be symmetric or anti-symmetric depending on whether the exchanged operators
are bosons or fermions. Redefining the permutations as

(12)′ : [q1q2q3]± 7→ ±(−1)`3[q2q1q3]±, (2.99)

(13)′ : [q1q2q3]± 7→ ±(−1)`2[q3q2q1]±, (2.100)

(23)′ : [q1q2q3]± 7→ ±(−1)`1[q1q3q2]±, (2.101)

we now have the requirement that the tensor structure is symmetric regardless of the
nature of the operators.
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Counting. Let us now count the number of structures, assuming all the operators
to be different. By counting all possible combinations of qi one easily recovers the
result of [53] for the number of 3-point structures,

N3d (`1, `2, `3) = (2`1 + 1)(2`2 + 1) − p(p + 1), (2.102)

where p = max(`1 + `2 − `3, 0) and `1 ≤ `2 ≤ `3. Unless all three operators are
bosons, qi ≡ 0 is not a solution, and thus there is an equal number of parity-even
and parity-odd structures. In case all three operators are bosons, qi ≡ 0 gives a valid
parity-even structure. In this case the number of parity-even structures is larger
than the number of parity-odd structures by 1. We then have for the number of
definite-parity structures

N±3d (`1, `2, `3) =
N3d (`1, `2, `3) ± κ

2
, (2.103)

where κ = 1 when all the operators are bosonic, and κ = 0 otherwise.

In the case when there are identical operators, there are two options. The first option
is that there are two identical operators, say `1 = `2. The second is that all three
operators are identical. In the first case one can show

N±3d (`1 ↔ `2, `3) =
N±3d (`1, `1, `3)

2
+

(−1)`3

2
[
`1 +

1±κ
2 ±min(b`1 +

1
2c, b

`3+1−κ
2 c)

]
,

(2.104)

and in the second case

N±3d (`) =
1
6

[
N±3d (`, `, `) + (−1)`

(
3` + 3

2 ± 3b `2c ±
3
2

)
+ 1 ± 1

]
. (2.105)

These formulas can be obtained either from propositions 1, 2 and character formulas
of appendix A.3 or from the above description of permutations by computing the
character of S2 or S3 on the space of tensor structures [q1q2q3]±.

2.4.3 Four-point structures
For four operators, we choose the following conformal frame

x1 = (0, 0, 0), (2.106)

x2 = (t, x, 0), (2.107)

x3 = (0, 1, 0), (2.108)

x4 = (0, L, 0), (2.109)
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and consider the correlator

g0(si, t, x) = lim
L→+∞

L2∆4
〈
O1(s1, x1)O2(s2, x2)O3(s3, x3)O3(s4, x4)

〉
. (2.110)

We will mostly use the parameters

z = x − t, z = x + t, (2.111)

such that under the continuation to Euclidean time tE = it, we will get the usual
holomorphic and anti-holomorphic coordinates.

Note that the stabilizer subgroup is just theO(1) of reflections x2 → −x2. Therefore,
any function of si with appropriate homogeneous degrees will give us a valid 4-point
structure. More precisely, we can write

g0(si, z, z) =
∑

qi

[q1q2q3q4]g[q1q2q3q4](z, z), (2.112)

where

[q1q2q3q4] =
4∏

i=1
ξ
`i+qi
i ξ

`i−qi
i (2.113)

with ξ, ξ as in (2.91) and qi ∈ {−`i . . . `i}.

The action of spatial parity is, according to (2.85), si 7→ γ2si or ξi 7→ ξi, ξi 7→ −ξi.
Therefore,

[q1q2q3q4] 7→ (−1)
∑

i `i−qi [q1q2q3q4]. (2.114)

We see that the structures we have chosen already have definite parity.

Permutations and crossing symmetry. Consider now how the four-point func-
tions transform under the permutations. Since we are working in Lorentzian signa-
ture now, we need to perform an analytic continuation of the phases in appendix A.2.
Doing this, we obtain the following formulas for the nontrivial permutations,

(12)(34) : [q1q2q3q4] 7→ n((z − 1)q1+q4−q2−q3 )[q2q1q4q3], (2.115)

(13)(24) : [q1q2q3q4] 7→ n(zq3+q4−q1−q2 (1 − z)q1+q4−q2−q3 )[q3q4q1q2], (2.116)

(14)(23) : [q1q2q3q4] 7→ n((−z)q3+q4−q1−q2 )[q4q3q2q1]. (2.117)

Here n(x) = x/
√

xx, where x is x with z and z exchanged. The possible (−1)’s from
permutations of fermions are already taken into account. Note that if a structure
is fixed by a permutation, the phase factor is automatically 1. This is due to the
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hidden triviality of these phases mentioned in the appendix A.2. This means that
any structure can be symmetrized to give a non-zero result,

〈
q1q2q3q4

〉
z =

1
nq1q2q3q4

∑
π∈Πkin

π[q1q2q3q4] , 0, (2.118)

where nq1q2q3q4 is the number of elements in Πkin stabilizing [q1q2q3q4]. With this
notation a Πkin-symmetric four-point function can be rewritten as

g0(si, z, z) =
∑

qi/Πkin

〈
q1q2q3q4

〉
z g[q1q2q3q4](z, z), (2.119)

where the sum is over some set of representatives of orbits of Πkin action on the set
of all tensor structures (possibly of definite parity).

For four-point functions it is convenient to also consider the action of the permutation
(13), which is often used to write down a bootstrap equation for a four-point function
containing identical operators. From the results of appendix A.2, it acts as

(13) : [q1q2q3q4] 7→ (−1)q1+q2−q3−q4[q3q2q1q4], (2.120)

and this already accounts for the (−1) sign coming from a possible permutation
of fermions. For the symmetrized structures the action is, including the change
z → 1 − z 〈

q1q2q3q4
〉

z 7→ (−1)q1+q2−q3−q4
〈
q3q2q1q4

〉
z . (2.121)

The crossing equation for the full four-point function, in the case when the operators
1 and 3 are identical, is∑

qi/Πkin

〈
q1q2q3q4

〉
z g[q1q2q3q4](z, z)

=
∑

qi/Πkin

〈
q3q2q1q4

〉
z (−1)q1+q2−q3−q4g[q1q2q3q4](1 − z, 1 − z). (2.122)

Note that the crossing permutation (13) maps orbits of Πkin into orbits, so this basis
essentially diagonalizes the crossing equation.

Counting. It is easy to count the number of four-point structures. Clearly, the total
number of structures is

N3d (`1, `2, `3, `4) =
4∏

i=1
(2`i + 1), (2.123)
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and as discussed in section 2.2.3, this result is valid for all higher-point functions,

N3d (`1 . . . `n) =
n∏

i=1
(2`i + 1), n ≥ 4. (2.124)

One can see from (2.114) that if there is at least one half-integer spin, then the
number of parity even structures is equal to the number of parity odd structures
(for such a spin `i − qi is even exactly as often as it is odd). Performing an explicit
computation in the case when all spins are integral, we arrive at the direct analog
of (2.103)

N±3d (`1, `2, `3, `4) =
N3d (`1, `2, `3, `4) ± κ

2
, (2.125)

where κ = 1 when all spins are integral and κ = 0 otherwise.

If there are non-trivial kinematic permutations, these are Πkin = Z2 or Πkin = Z2
2. In

each case we can either use proposition 3 and (A.36) or count the number of orbits
of Πkin action on [q1q2q3q4] structures, which can be done using Burnside’s lemma.
The result in Z2 case is

N+3d (`1 ↔ `2, `3 ↔ `4) =
1
2

[
N+3d (`1, `1, `3, `3) + (2`1 + 1)(2`3 + 1)

]
, (2.126)

N−3d (`1 ↔ `2, `3 ↔ `4) =
1
2

N−3d (`1, `1, `3, `3). (2.127)

The result in Z2
2 case is

N+3d (`) =
1
4

[
N+3d (`, `, `, `) + 3(2` + 1)2

]
, (2.128)

N−3d (`) =
1
4

N−3d (`, `, `, `). (2.129)

2.4.4 Example: 4 Majorana fermions
As an example, let us consider in detail the case of four identical Majorana fermions.
This is a relatively simple yet non-trivial case for which we can compare to [39].

Let us start by analyzing the generic three-point functions for operators which
appear in the OPE expansion. First, consider the three point function of two distinct
Majorana fermions and a spin-`3 operator. Using (2.94) and (2.93), we find the
following structures,

[1
2,

1
2,−1]±, [1

2,−
1
2, 0]±. (2.130)

For `3 = 0 we can only have q3 = 0, and thus only 1 parity-even and 1 parity-odd
structures remain. If the fermions are identical, then we need only the structures
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symmetric under the exchange (12)′ given by (2.99). This leaves for even `3

[1
2,

1
2,−1]+, [1

2,−
1
2, 0]±, (2.131)

and for odd `3

[1
2,

1
2,−1]−. (2.132)

This is in complete agreement with [39].

Let us now turn to four-point functions. First, using (2.123), we immediately find
that there are 24 = 16 tensor structures. According to (2.125), 8 of them are
parity-even and 8 are parity-odd. Using (2.114) we can write down the parity-even
structures, denoting q = +1

2 with ↑ and q = −1
2 with ↓,

[↑↑↑↑], [↓↓↓↓],

[↑↑↓↓], [↓↓↑↑],

[↑↓↑↓], [↓↑↓↑],

[↑↓↓↑], [↓↑↑↓].

(2.133)

Assuming that the fermions are identical, we simply perform the Z2
2 symmetriza-

tion (2.118) of these structures, obtaining 5 = (8+3·22)/4 (c.f. (2.128)) independent
parity-even structures,〈

↑↑↑↑
〉
,
〈
↑↑↓↓

〉
,
〈
↑↓↑↓

〉
,
〈
↓↑↑↓

〉
,
〈
↓↓↓↓

〉
. (2.134)

We can also easily form crossing-symmetric and anti-symmetric structures us-
ing (2.122),

symmetric:
〈
↑↑↑↑

〉
,
〈
↑↓↑↓

〉
,
〈
↓↓↓↓

〉
,
〈
↑↑↓↓

〉
+

〈
↓↑↑↓

〉
, (2.135)

anti-symmetric:
〈
↑↑↓↓

〉
−

〈
↓↑↑↓

〉
. (2.136)

We thus have 4 crossing-even structures and 1 crossing-odd structure, which lead
to 4 crossing-even equations and 1 crossing-odd equation.17 This again coincides
with the results of [39].

We can very explicitly write down the standard basis of crossing equations,

∂n∂
m
g[↑↑↑↑] = ∂

n∂
m
g[↓↓↓↓] = ∂

n∂
m
g[↑↓↑↓] = ∂

n∂
m

(g[↑↑↓↓] + g[↓↑↑↓]) = 0, n + m odd,
(2.137)

∂n∂
m

(g[↑↑↓↓] − g[↓↑↑↓]) = 0, n + m even,
(2.138)

17Note however that “crossing parity” is not a real invariant and can be modified by a structure
redefinition.
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where all functions are evaluated at z = z = 1/2. However, there is an important
subtlety. When we expand the four-point function in conformal blocks, we will find
that the result is smooth (as a function of xi). As we discuss in appendix A.1, not
any choice of g[q1q2q3q4](z, z) leads to a smooth correlator, and a finite number of
boundary conditions need to be imposed on derivatives of g[q1q2q3q4](z, z) at z = z.
This effectively gives relations between equations (2.137) and (2.138). These are
easy to classify, and we work out the present example in appendix A.1.

Note that [39] used 4-point tensor structures constructed using embedding-space
building blocks. They did not have to perform the aforementioned analysis of
the boundary conditions. However, there was a different problem which required a
similar analysis— since their coefficient functions, unlike those in the present work,
do not represent physical values of the correlator but rather have to be multiplied by
their tensor structures first, it is not guaranteed that they do not have singularities.
In fact, it was found in [39] that their coefficient functions for conformal blocks
diverge as (z − z)−5 near z = z. The solution was to multiply these functions by
(z − z)5 at the cost of introducing relations between the Taylor series coefficients,
which are similar to ours. What is different is that in our case we have a simple
classification of these relations, whereas in [39] they were handled in a brute-force
way by numerically finding linearly independent vectors of crossing equations.

2.5 Scattering amplitudes
In this section we establish the equivalence of the counting of conformal correlators
in CFTd with counting of scattering amplitudes18 in flat space QFTd+1, generalizing
results of [53, 56, 76] to arbitrary spin representations. The basic idea is quite
simple — the conformal frame approach can be applied to scattering amplitudes in
QFTd+1, and it yields equivalent group-theoretic formulas.

Let us formulate the counting problem for amplitudes in the simplest case of
traceless-symmetric spin ` particles (we will generalize to other representations
later in this section). We can describe the scattering amplitude A(pi, ζi) as a
Lorentz-invariant function of the momenta pi, p2

i = −m2
i ,

∑
i pi = 0, and trace-

less symmetric polarizations ζ µ1...µ`i
i . For all particles the polarizations satisfy the

transversality condition (pi)µ1ζ
µ1...µ`i
i = 0. For massless particles we in addition get

18The spaces of scattering amplitudes of spinning particles have been considered, for example,
in [85–91]. We thank Massimo Taronna for pointing out these references to us.
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the gauge equivalence

ζ µ1...µ`i ∼ ζ µ1...µ`i + p(µ1λµ2...µ` ), (2.139)

where λ is the parameter of the gauge transformation which is itself transverse. The
scattering amplitude A(pi, ζi) should be invariant under this transformation. That
is, A should be a function of the gauge equivalence classes of ζi.

A general solution to the above requirements has the form

A(pi, ζi) =
N∑

I=1
TI (pi, ζi) f I (s, t, . . .), (2.140)

where TI are the tensor structures encoding the non-trivial dependence on the
polarizations and momenta, and s, t, . . . are the kinematic invariants of n particles,
i.e., the Mandelstam variables. Our goal in this section is to find the number N of
tensor structures and prove that it is equal to the number of tensor structures in a
certain conformal correlator.

2.5.1 Little group formulation
Note that for a fixed p, the solutions ζ to the transversality constraint pµ1ζ

µ1...µ` = 0,
as well as the gauge equivalence classes of such solutions are transformed into each
other by the little group L(p) which is the subgroup of the Lorentz group leaving p

invariant. The little group in QFTd+1 is SO(d) in the massive case and SO(d − 1)
in the massless case (formally it is ISO(d −1), but for particles with a finite number
of internal degrees of freedom the translations of ISO act trivially). In the case
considered above ζi live in traceless symmetric representations of the respective
little groups.

In order to have a general treatment, we will adopt this little group point of view
on the particle polarizations. Instead of specifying a polarization ζ , we specify
an element ε of some representation of L(k), where k is a standard19 momentum
with k2 = p2. Accordingly, for each momentum p we specify a standard Lorentz
transformation20 R(p) such that R(p)k = p. Now instead of A(pi, ζi), we have a
function of the little group polarizations εi which we denote S(pi, εi).

19For concreteness, for massive particles of mass m we can choose k = (m, 0, 0, . . .) and for
massless particles k = (1, 1, 0, 0, . . .) with signature (−,+,+, . . .).

20In general we need to allow R(p) to belong to the disconnected components of the Lorentz
group, since in general we may want to have momenta in the past lightcone (or treat in and out
particles separately). Alternatively, we may consider the complexification of the whole setup, as
anyway is required for the treatment of 3-point on-shell amplitudes. Either way, for simplicity of the
discussion we ignore these subtleties.
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To see the correspondence between the two descriptions, for example in the case of
massless traceless symmetric particle, we can put ε into correspondence with a po-
larization ζk (ε) with transversality and gauge invariance defined by the momentum
k. This then specifies ζp(ε) = R(p)ζk (ε), which now satisfies transversality and
gauge invariance defined by p. We can now set

S(pi, εi) = A(pi, ζpi (εi)). (2.141)

This establishes the isomorphism between the descriptions S(pi, εi) and A(pi, ζi).
It also makes it easy to see how the Lorentz invariance is stated for S(pi, εi) — since
for each Lorentz transformation Λ we have

A(Λpi,Λζi) = A(pi, ζi), (2.142)

then in terms of S(pi, εi) we should have

S(Λpi, R(Λpi)−1
ΛR(pi)εi) = S(pi, εi). (2.143)

This formula makes sense because

R(Λpi)−1
ΛR(pi)ki = ki (2.144)

and thus

R(Λpi)−1
ΛR(pi) ∈ L(ki), (2.145)

which can act on εi. This condition appears more complicated than (2.142), but
the advantage is that this is the only condition we require of the amplitude (in
contrast to requiring the gauge invariance and imposing the transversality constraints
for A(pi, ζi)). This makes it extremely easy to classify tensor structures for the
amplitudes, as we now show.

2.5.2 Conformal frame for amplitudes
We now simply repeat the analysis of section 2.2.2 for the amplitudes. The Lorentz
group acts on the configuration space of the momenta pi, and splits this space
into orbits. We chose a “scattering frame” — a submanifold of the momenta
configuration space which intersects each orbit at precisely one point. It is easy to
show that the dimension of scattering frame is the same as the dimension of the
conformal frame at the same n (number of operators or particles) and d.
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A scattering amplitude is now completely specified by its values on the scattering
frame. These values, as in section 2.2.2, have to be invariant under the subgroup of
Lorentz group which fixes the scattering frame.

It is easy to see what this subgroup is. First, n generic momenta, due to the
conservation condition

∑
i pi = 0, span an (m − 1)-dimensional linear space P,

where m = min(d + 2, n). The subgroup which fixes P depends only on the rank
of the restriction of the Lorentz metric onto P, which coincides with the rank of
Gram matrix G of any n − 1 momenta in P. The determinant det G is an algebraic
function of the particle masses mi and the kinematic invariants s, t, u, . . ..

For n ≥ 4 we have non-trivial kinematic invariants, and thus for a generic set of
these invariants det G , 0 and the metric on P is full rank. This implies that P is
stabilized by a subgroup SO(d + 1 − (m − 1)) = SO(d + 2 − m).

For n = 321 we have no non-trivial kinematic invariants, and det G is determined
solely by the masses. For a generic set of masses, det G , 0, and we again get
SO(d + 2 − m). This case corresponds to the generic three-point functions as
discussed in section 2.3. For simplicity, we only consider this generic case.

Now, we need to understand how the stabilizing subgroup St = SO(d + 2 − m) acts
on the little group polarizations. Assume that Λ fixes all the pi. In this case, we
have

εi → R(pi)−1
ΛR(pi)ε. (2.146)

We can say, alternatively, that St is naturally a subgroup of each L(pi), which in
turn are put in an isomorphism with L(ki) by

L(ki) = R(pi)−1L(p)R(pi). (2.147)

This defines a restriction of representations of L(ki) to representations of St =

SO(d + 2 − m). Assume that the particles transform in representations ρi of L(ki).
We then immediately find that the space of tensor structures for scattering amplitudes
is

*.
,

n⊗
i=1

ResL(ki )
SO(d+2−m) ρi

+/
-

SO(d+2−m)

. (2.148)

Its dimension is equal to the number of tensor structures in a conformal correlator
if the SO(d) representations of the non-conserved local operators in CFTd are

21For n = 3 we need to consider complexified kinematics in order to have an on-shell amplitude.
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identified22 with the representations of the massive little group SO(d) in QFTd+1,
and the effective SO(d − 1) representations of local operators (as described in
section 2.3) are identified with the representations of the massless SO(d − 1) little
group. It is in principle straightforward to extend this result to include parity and
permutations symmetries. For example, it is not hard to check that kinematic
permutation groups match in CFTd and QFTd+1.
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C h a p t e r 3

GENERAL BOOTSTRAP EQUATIONS IN 4D CFTS

This chapter is essentially identical to (with the omission of section 5 of the original
paper):

G. F. Cuomo, D. Karateev and P. Kravchuk, General Bootstrap Equations in 4D
CFTs, JHEP 01 (2018) 130, [1705.05401].

3.1 Introduction
In recent years a lot of progress has been made in understanding Conformal Field
Theories (CFTs) in d ≥ 3 dimensions using the conformal bootstrap approach [26–
28, 92, 93] (see [18, 19] for recent introduction). In this chapter we focus solely on
d = 4. The 4D conformal bootstrap allows to study fixed points of 4D quantum field
theories relevant for describing elementary particles and fundamental interactions.
It promises to address the QCD conformal window [10] and may be useful for
constraining the composite Higgs models; see [94] for discussion.

In the conformal bootstrap approach CFTs are described by the local CFT data,
which consists of scaling dimensions and Lorentz representations of local primary
operators together with structure constants of the operator product expansion (OPE).
The observables of the theory are correlation functions which are computed by
maximally exploiting the conformal symmetry and the operator product expansion.
Remarkably, the CFT data is heavily constrained by the associativity of the OPE,
which manifests itself in the form of consistency equations called the crossing or
the bootstrap equations.

The bootstrap equations constitute an infinite system of coupled non-linear equations
for the CFT data. In a seminal work [30] it was shown how constraints on a finite
subset of the OPE data can be extracted numerically from these equations. In 4D
the approach of [30] was further developed in [35, 43–47, 94–101]. In 3D a major
advance came with the numerical identification of the 3D Ising [32, 34] and the
O(N ) models [8, 36–38]. An analytic approach to the bootstrap equations was
proposed in [68, 69] and further developed in [31, 102–110]. Other approaches
include [101, 111–114].

http://dx.doi.org/10.1007/JHEP01(2018)130
https://arxiv.org/abs/1705.05401
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Most of these studies, however, focus on correlation functions of scalar operators,
and thus only have access to the scaling dimensions of traceless symmetric operators
and their OPE coefficients with a pair of scalars. In order to derive constraints on the
most general elements of the CFT data, one has to consider more general correlation
functions. To the best of our knowledge, the only published numerical studies of a
4-point function of non-scalar operators in non-supersymmetric theories up to date
were done in 3D for a 4-point function of Majorana fermions [39, 40] and for a
4-point function of conserved abelian currents [115].

One reason for the lack of results on 4-point functions of spinning operators is
that such correlators are rather hard to deal with. In order to set up the crossing
equations for a spinning 4-point function, first, one needs to find a basis of its tensor
structures and second, to compute all the relevant conformal blocks. The difficulty
of this task increases with the dimension d due to an increasing complexity of the
d-dimesnional Lorentz group. For instance, the representations of the 4D Lorentz
group are already much richer than the ones in 3D.

The problem of constructing tensor structures has a long history [39, 50–53, 56,
78, 79, 116, 117]. In 4D all the 3-point tensor structures were obtained in [54] and
classified in [55] using the covariant embedding formalism approach. Unfortunately,
in this approach 4- and higher-point tensor structures are hard to analyze due to a
growing number of non-linear relations between the basic building blocks. This
problem is alleviated in the conformal frame approach [1, 23, 51]. In [1] a complete
classification of general conformally invariant tensor structures was obtained in a
non-covariant form.

The problem of computing the conformal blocks for scalar 4-point functinons was
solved by a variety of methods in [32, 37, 54, 59, 118–121]. Spinning conformal
blocks were considered in [39, 49, 54, 56, 60, 61, 81, 82, 122, 123]. Remarkably,
in [61] it was found that the Lorentz representations of external operators can be
changed by means of differential operators. In 3D, this relates all bosonic conformal
blocks to conformal blocks with external scalars. These results were extended to
3D fermions in [39, 81] completing in principle the program of computing general
conformal blocks in 3D.

Results of [61] concerning traceless symmetric operators apply also to 4D, but are
not sufficient even for the analysis of an OPE of traceless symmetric operators since
such an OPE also contains non-traceless symmetric operators. The first expression
for a 4D spinning conformal block was obtained in [122] for the case of 2 scalars and
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2 vectors. A systematic study of conformal blocks in 4D with operators in arbitrary
representations was done in [62], where the results of [61] were extended to reduce a
general conformal block to a set of simpler conformal blocks called the seed blocks.
In the consequent work [58] all the seed conformal blocks were computed.

The goal The results of [1, 55, 58, 62] are in principle sufficient for formulating
the bootstrap equations for arbitrary correlators in 4D. Nevertheless, due to a large
amount of scattered non-trivial and missing ingredients there is still a high barrier
for performing 4D bootstrap computations. The goal of this chapter is to describe
all the ingredients needed for setting up the 4D bootstrap equations in a coherent
manner using consistent conventions and to implement all these ingredients into a
Mathematica package.

In particular, we first unify the results of [55, 58, 62] with some extra develop-
ments and corrections. We then use the conformal frame approach [1] to solve the
problem of constructing a complete basis of 4-point tensor structures in 4D in an
extremely simple way. We provide a precise connection between the embedding
and the conformal frame approaches making possible an easy transition between
two formalisms at any time.

We implement the formalism in a Mathematica package which allows one to work
with 2-, 3- and 4-point functions and to construct arbitrary spin crossing equations
in 4D CFTs. The package can be downloaded from

https://gitlab.com/bootstrapcollaboration/CFTs4D.

Once it is installed one gets an access to a (hopefully) comprehensive documentation
and examples. We also refer to the relevant functions from the package throughout
the chapter as [function].

Structure of the chapter In the main body of the chapter we describe the basic
concepts applicable to the most generic correlators with no additional symmetries
or conservation conditions. We comment on how these extra complications can be
taken into account, and delegate a more detailed treatment to the appendices.

In section 3.2 we outline the path to the explicit crossing equations for operators of
general spin, abstracting from a specific implementation. In section 3.3 we describe
the implementation of the ideas from section 3.2 in the embedding formalism. In

https://gitlab.com/bootstrapcollaboration/CFTs4D#cfts4d
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section 3.4 we give an alternative implementation in the conformal frame formalism.
We conclude in section 3.5.

Appendices B.1 and B.2 summarize our conventions in 4DMinkowski space and 6D
embedding space, as well as cover the action ofP- andT -symmetries. appendix B.2
also contains details of the embedding formalism. In appendix B.3 we give details
on normalization conventions for 2-point functions and seed conformal blocks.
Appendices B.4 and B.5 contain details on explicitly covariant tensor structures. In
appendixB.6we describe all 3 Casimir generators of the four-dimensional conformal
group. Appendices B.7 and B.8 cover conservation conditions and permutation
symmetries.

3.2 Outline of the framework
The local operators in 4D CFT are labeled by (`, `) representation of the Lorentz
group SO(1, 3) and the scaling dimension ∆.1 In a CFT one can distinguish a
special class of primary operators, the operators which transform homogeneously
under conformal transformations [92]. In a unitary CFT any local operator is either a
primary or a derivative of a primary, in which case it is called a descendant operator.
A primary operator in representation (`, `) can be written as2

O
β̇1... β̇`
α1...α` (x), (3.1)

symmetric in spinor indices αi and β̇ j . Because of the symmetry in these indices,
we can equivalently represent O by a homogeneous polynomial in auxiliary spinors
sα and s β̇ of degrees ` and ` correspondingly

O(x, s, s) = sα1 · · · sα` s β̇1
· · · s β̇`O

β̇1... β̇`
α1...α` (x). (3.2)

We often call the auxiliary spinors s and s the spinor polarizations. The indices can
be restored at any time by using

O
β̇1... β̇`
α1...α` (x) =

1
`! `!

∏̀
i=1

∏̀
j=1

∂

∂sαi
∂

∂s β̇ j
O(x, s, s). (3.3)

In principle the auxiliary spinors s and s are independent quantities; howeverwithout
loss of generality we can assume them to be complex conjugates of each other,

1In this chapter we consider only the consequences of the conformal symmetry. In particular, we
do not consider global (internal) symmetries because they commute with conformal trasformations
and thus can be straightforwardly included. We also do not discuss supersymmetry.

2Our conventions relevant for 3+1 dimensional Minkowski spacetime are summarized in ap-
pendix B.1.
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sα =
(
sα̇

)∗. This has the advantage that if O with ` = ` is a Hermitian operator,
e.g., for ` = ` = 1,

Oα β̇ (x) =
(
Oβα̇ (x)

)†
, (3.4)

then so is O(x, s, s),
O(x, s, s) =

(
O(x, s, s)

)† . (3.5)

More generally for non-Hermitian operators we define

O(x, s, s) ≡
(
O(x, s, s)

)† ; (3.6)

see (B.8) for the index-full version.

Conformal field theories possess an operator product expansion (OPE) with a finite
radius of convergence [23, 25, 78, 124]

O1(x1, s1, s1)O2(x2, s2, s2) =
∑
O

∑
a

λa
〈O1O2O〉

Ba (∂x2, ∂s, ∂s, . . .)O(x2, s, s), (3.7)

where Ba are differential operators in the indicated variables (depending also on
x1 − x2, s j, s j , where j = 1, 2), which are fixed by the requirement of conformal
invariance of the expansion. Here λ’s are the OPE coefficients which are not
constrained by the conformal symmetry. In general there can be several independent
OPE coefficients for a given triple of primary operators, in which case we label them
by an index a.

The OPE provides a way of reducing any n-point function to 2-point functions,
which have canonical form in a suitable basis of primary operators. Therefore, the
set of scaling dimensions and Lorentz representations of local operators, together
with the OPE coefficients, completely determines all correlation functions of local
operators in conformally flatR1,3. For this reasonwe call this set of data the CFT data
in what follows.3 The goal of the bootstrap approach is to constrain the CFT data by
using the associativity of the OPE. In practice this is done by using the associativity
inside of a 4-point correlation function, resulting in the crossing equations which
can be analyzed numerically and/or analytically. In the remainder of this section we
describe in detail the path which leads towards these equations.

3Besides the correlation functions of local operators one can consider extended operators, such
as conformal defects, as well as the correlation functions on various non-trivial manifolds. In order
to be able to compute these quantities one has to in general extend the notion of the CFT data.
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3.2.1 Correlation functions of local operators
We are interested in studying n-point correlation functions

fn(p1 . . . pn) ≡ 〈0|O (`1,`1)
∆1

(p1) . . . O (`n,`n)
∆n

(pn) |0〉, (3.8)

where for convenience we defined a combined notation for dependence of operators
on coordinates and auxiliary spinors

pi ≡ (xi, si, si). (3.9)

We have labeled the primary operators with their spins and scaling dimensions.
In general these labels do not specify the operator uniquely (for example in the
presence of global symmetries); we ignore this subtlety for the sake of notational
simplicity. For our purposes it will be sufficient to assume that all operators are
space-like separated (this includes all Euclidean configurations obtained by Wick
rotation), and thus the ordering of the operators will be irrelevant up to signs coming
from permutations of fermionic operators.

The conformal invariance of the system puts strong constraints on the form of (3.8).
By inserting an identity operator 1 = UU†, where U is the unitary operator imple-
menting a generic conformal transformation, inside this correlator and demanding
the vacuum to be invariant U |0〉 = 0, one arrives at the constraint

〈0|
(
U†O (`1,`1)

∆1
U

)
. . .

(
U†O (`n,`n)

∆n
U

)
|0〉 = 〈0|O (`1,`1)

∆1
. . .O (`n,`n)

∆n
|0〉. (3.10)

The algebra of infinitesimal conformal transformations, as well as their action on
the primary operators are summarized in our conventions in appendix B.1.

The general solution to the above constraint has the following form,

fn(xi, si, si) =
Nn∑
I=1

gI
n(u) TI

n(xi, si, si), (3.11)

where TI
n are the conformally-invariant tensor structures which are fixed by the con-

formal symmetry up to a u-dependent change of basis, and u are cross-ratios which
are the scalar conformally-invariant combinations of the coordinates xi. The struc-
tures TI

n and their number Nn depend non-trivially on the SO(1, 3) representations
of Oi, but rather simply on ∆i, so we can write

TI
n(xi, si, si) = Kn(xi)T̂I

n(xi, si, si), (3.12)
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where all ∆i-dependence is in the “kinematic” factorKn4 and all the the ∆i enterKn

through the quantity

κ ≡ ∆ +
` + `

2
. (3.13)

Note that T and T̂ are homogeneous polynomials in the auxiliary spinors, schemat-
ically,

TI
n, T̂

I
n ∼

n∏
i=1

s`ii s`ii . (3.14)

In the rest of this subsection we give an overview of the structure of n-point corre-
lation functions for various n, emphasizing the features specific to 4D.

2-point functions A 2-point function can be non-zero only if it involves two
operators in complex-conjugate representations, (`1, `1) = (`2, `2), and with equal
scaling dimensions, ∆1 = ∆2. In fact, it is always possible to choose a basis
for the primary operators so that the only non-zero 2-point functions are between
Hermitian-conjugate pairs of operators. We always assume such a choice.

The general 2-point function [n2CorrelationFunction] then has an extremely
simple form given by

〈O
(`,`)
∆ (p1)O (`,`)

∆
(p2)〉 = c

〈OO〉
x−2 κ1

12︸︷︷︸
=K2

[
Î12

]` [
Î21

]`︸        ︷︷        ︸
=T̂2

, (3.15)

where c
〈OO〉

is a constant. There is a single tensor structure T̂2, and the building
blocks Îi j are defined in appendix B.4. Changing the normalization of O one
can rescale the coefficient c

〈OO〉
by a positive factor. The phase is fixed by the

requirement of unitarity, see appendix B.3. We can make the following choice

c
〈OO〉
= i`−`, c

〈OO〉
= (−)`−`c

〈OO〉
= i`−`, (3.16)

where the factor (−)`−` appears due to the spin statistics theorem.

3-point functions A generic form of a 3-point function [n3ListStructures,
n3ListStructuresAlternativeTS] is given by5

〈O
(`1,`1)
∆1

(p1)O (`2,`2)
∆2

(p2)O (`3,`3)
∆3

(p3)〉 = K3

N3∑
a=1

λa
〈O1O2O3〉

T̂a
3, (3.17)

4This does not uniquely fix the factorization, and we will make a choice based on convenience
later.

5For notational convenience we use lowercase index a instead of capital index I to label the
3-point tensor structures.
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where the kinematic factor [n3KinematicFactor] is given by

K3 =
∏
i< j

|xi j |
−κi−κ j+κk . (3.18)

The necessary and sufficient condition for the 3-point tensor structures T̂a
3 to exist

is that the 3-point function contains an even number of fermions and the following
inequalities hold,

|`i − `i | ≤ ` j + ` j + `k + `k, for all distinct i, j, k . (3.19)

A general discussion on how to construct a basis of tensor structures T̂a
3 is given in

section 3.3. For convenience we summarize this construction for 3-point functions
in appendix B.5.

The fact that the OPE coefficients enter 3-point functions follows simply from using
the OPE (3.7) and the form of (3.15) in the left hand side of (3.17). It is also clear
that one can always choose the bases for Ba and T̂a

3 to be compatible.

There is a number of relations the OPE coefficients λa
〈O1O2O3〉

have to satisfy. The
simplest one comes from applying complex conjugation to both sides of (3.17). On
the left hand side one has

〈O1O2O3〉
∗ = 〈O3O2O1〉. (3.20)

Using the properties of tensor structures under conjugation summarized in ap-
pendix B.4, one obtains a relation of the form(

λa
〈O1O2O3〉

)∗
= Cab λb

〈O3O2O1〉
, (3.21)

where the matrix Cab is often diagonal with ±1 entries. Other constraints arise from
the possible P- and T -symmetries (see appendix B.1), conservation equations (see
appendix B.7), and permutation symmetries (see appendix B.8). Importantly all
these conditions give linear equations for λ’s, which can be solved in terms of an
independent set of real quantities λ̂ as

λa
〈O1O2O3〉

=

N̂3∑
â=1

P a â
〈O1O2O3〉

λ̂ â
〈O1O2O3〉

, N̂3 < N3. (3.22)

It will be important for the calculation of conformal blocks that we can actually
construct all the tensor structures Ta

3 in (3.17) by considering a simpler 3-point
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function with two out of three operators having canonical spins (`′1, `
′

1) and (`′2, `
′

2),
chosen in a way such that the 3-point function has a single tensor structure

〈O
(`′1,`

′

1)
∆′1

O
(`′2,`

′

2)
∆′2

O
(`3,`3)
∆3

〉 = λ Tseed . (3.23)

A simple choice is to set as many spin labels to zero as possible, for example

`′1 = `
′

1 = `
′
2 = 0, `

′

2 = |`3 − `3 |. (3.24)

As we review in section 3.3.2 one can then construct a set of differential operators
Da acting on the coordinates and polarization spinors of the first two operators such
that

Ta
3 = D

a Tseed . (3.25)

We will call the canonical tensor structure Tseed a seed tensor structure in what
follows. Our choice of seed structures is described in appendix B.3. When the third
field is traceless symmetric, one has obviously `

′

2 = 0, thus relating a pair of generic
operators to a pair of scalars [61].

4-point functions and beyond In the case n = 4 one has

〈O
(`1,`1)
∆1

(p1)O (`2,`2)
∆2

(p2)O (`3,`3)
∆3

(p3)O (`3,`4)
∆4

(p4)〉 =
N4∑
I=1

gI
4(u, v) TI

4, (3.26)

where gI
4(u, v) are not fixed by conformal symmetry and are functions of the 2

conformally invariant cross-ratios [formCrossRatios]

u =
x2

12x2
34

x2
13x2

24
, v =

x2
14x2

23

x2
13x2

24
. (3.27)

In most of the applications it will be more convenient to use another set of variables
(z, z) [changeVariables] defined as

u = zz, v = (1 − z)(1 − z). (3.28)

We classify and construct all the 4-point tensor structuresT4 [n4ListStructures,

n4ListStructuresEF] in section 3.4. Following the literature we choose the
kinematic factor [n4KinematicFactor] of the form6

K4 =

(
x24
x14

) κ1−κ2 (
x14
x13

) κ3−κ4

×
1

xκ1+κ2
12 xκ3+κ4

34
. (3.29)

6In section 3.4 we never separate the kinematic factor which has an extremely simple form(
zz

)− κ1+κ2
2 in the conformal frame.
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The case of n ≥ 5 point functions is similar to the n = 4 case with a difference that
the number of conformally invariant cross-ratios is 4n − 15. We briefly discuss the
classification of tensor structures for higher-point functions in section 3.4.

In general 4- and higher-point functions are subject to the same sort of conditions
as 3-point functions. Reality conditions and implications of P- and T -symmetries
are not conceptually different from the 3-point case. However, implications of
permutation symmetries and conservation equations are more involved than those
for 3-point functions, see [75], due to the existence of non-trivial conformal cross-
ratios (3.27). See also appendices B.8 and B.7 for details.

3.2.2 Decomposition in conformal partial waves
Since the OPE data determines all the correlation functions, the functions gI

4(u, v)
entering (3.26) can also be computed. To compute gI

4(u, v) we use the s-channel
OPE, namely the OPE in pairs O1O2 and O3O4. One way to do this is to insert a
complete orthonormal set of states in the correlator

f4 =
s−OPE

〈O1O2O3O4〉 =
∑
|Ψ〉

〈O1O2 |Ψ〉〈Ψ|O3O4〉. (3.30)

By virtue of the operator-state correspondence, see for example [18, 19], the states
|Ψ〉 are in one-to-one correspondence with the local primary operators O and their
descendants ∂nO. This allows us to express the inner products above in terms of the
3-point functions 〈O1O2O〉 and 〈OO3O4〉with the primary operator O and its conju-
gate O, resulting in the following s-channel conformal partial wave decomposition

〈O1O2O3O4〉 =
∑
O

∑
a,b

λa
〈O1O2O〉

W ab
〈O1O2O〉〈OO3O4〉

λb
〈OO3O4〉

. (3.31)

The objects W ab are called the conformal partial waves (CPWs).7 The summation
in (3.31) is over all primary operators O which appear in both 3-point functions
〈O1O2O〉 and 〈OO3O4〉 and we can write explicitly∑

O

=

∞∑
|`−` |=0

∞∑
`=0

∑
∆,i

, (3.32)

where i labels the possible degeneracy of operators at fixed spin and scaling di-
mensions (coming, for example, from a global symmetry). Note that according to

7In this chapter “conformal partial waves” are what we usually call “conformal blocks” and
“conformal blocks” mean what we would normally call “components of conformal block”. We hope
that this doesn’t cause confusion.
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properties of 3-point functions (3.19), there is a natural upper cut-off in the first
summation

∞∑
|`−` |=0

=

|`−` |max∑
|`−` |=0

, (3.33)

where
|` − ` |max = min(`1 + `1 + `2 + `2, `3 + `3 + `4 + `4). (3.34)

Furthermore, if the operator O is bosonic then |` − ` | assumes only even values;
if the operator O is fermionic |` − ` | assumes only odd values. The CPWs can be
further rewritten in terms of conformal blocks (CB) and tensor structures as

W ab
〈O1O2O〉〈OO3O4〉

=

N4∑
I=1

GI,ab
〈O1O2O〉〈OO3O4〉

(u, v) TI
4, (3.35)

inducing the conformal block expansion for gI
4

gI
4(u, v) =

s−OPE

∑
O

∑
a,b

λa
〈O1O2O〉

GI,ab
〈O1O2O〉〈OO3O4〉

(u, v)λb
〈OO3O4〉

. (3.36)

Computation of conformal partial waves The computation of CPWs is rather
difficult. Luckily there is a way of reducing them to simpler objects called the seed
CPWs by means of differential operators [61, 62].

For example, the s-channel CPW appearing due to the exchange of a generic operator

O(`,`)
∆

, p ≡ |` − ` | (3.37)

by using (3.25) can be written as

W ab
〈O1O2O〉〈OO3O4〉

= Da
〈O1O2O〉

Db
〈OO3O4〉

W seed
〈F

(0,0)
1 F

(p,0)
2 O〉〈OF

(0,0)
3 F

(0,p)
4 〉

, (3.38)

where Fi are the operators with the same 4D scaling dimensions ∆i as Oi, see
section 3.3.2. The seed CPWs are defined as the s-channel contribution of (3.37) to
the seed 4-point function

〈F
(0,0)

1 F
(p,0)

2 F
(0,0)

3 F
(0,p)

4 〉. (3.39)

An important property of the seed 4-point function (3.39) is that it has only p + 1
tensor structures. We will distinguish two dual types of seed CPWs, following the
convention of [58],

W (p)
seed ≡ W seed

〈F
(0,0)

1 F
(p,0)

2 O〉〈OF
(0,0)

3 F
(0,p)

4 〉
, i f ` − ` ≤ 0, (3.40)

W (p)
dual seed ≡ W seed

〈F
(0,0)

1 F
(p,0)

2 O〉〈OF
(0,0)

3 F
(0,p)

4 〉
, i f ` − ` ≥ 0. (3.41)
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The case W (0)
seed = W (0)

dual seed reproduces the classical scalar conformal block found
by Dolan and Osborn [118, 119]. The seed CPWs [seedCPW] can be written in
terms of a set of seed conformal blocks H (p)

e (z, z) and H
(p)
e (z, z) as8

W (p)
seed = K4

p∑
e=0

(−2)p−e H (p)
e (z, z)

[
Î42

] e [
Î42
31

] p−e
, (3.42)

W (p)
dual seed = K4

p∑
e=0

(−2)p−e H
(p)
e (z, z)

[
Î42

] e [
Î42
31

] p−e
, (3.43)

where the tensor structures are defined in appendix B.4.

The seed conformal blocks H (p)
e (z, z) and H

(p)
e (z, z) were found9 [plugSeedBlocks,

plugDualSeedBlocks] analytically in (5.36) and (5.37) in [58] up to an overall
normalization factors, denoted there by cp

0,−p and cp
0,−p. Given the choice of seed 3-

point tensor structures (B.96)-(B.99) and normalization of 2-point functions (3.16),
we can fix these factors as

cp
0,−p = (−1)` ip and cp

0,−p = 2−p (−1)` ip; (3.44)

see appendix B.3 for details. Other relevant functions are [plugCoefficients,
plugKFunctions, reduceKFunctionDerivatives, plugPolynomialsPQ].

The Casimir equation A very important property of the CPWs is that they satisfy
the conformal Casimir eigenvalue equations [119, 120]10 which have the form(

Cn − En

)
W ab
〈O1O2O〉〈OO3O4〉

= 0, (3.45)

where n = 2, 3, 4 and C2, C3 and C4 are the quadratic, cubic and quartic Casimir
differential operators respectively [opCasimirnEF, opCasimir24D]. They are
defined in appendix B.6 together with their eigenvalues [casimirEigenvaluen],
where the conformal generators LM N given in appendix B.2 are taken to act on 2
different points

LM N = Li M N + L j M N, (3.46)

with (i j) = (12) or (i j) = (34) corresponding to the s-channel CPWs11.
8The factors (−2)p−e are introduced here to match the original work [58].
9Notice slight change of notation Hhere (z, z) ≡ Gthere (z, z). This change is needed to distinguish

Hhere (z, z) = Ghere (u(z, z), v(z, z)).
10DK thanks Hugh Osborn for useful discussion on this topic.
11Notice that the eigenvalue of C3 taken at (i j) = (34) will differ by a minus sign from the

eigenvalue of C3 taken at (i j) = (12).
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The n = 2 Casimir equation was used in [58] for constructing the seed CPWs. Given
that the seed CPWs are already known, in practice the Casimir equations can be
used to validate the more general CPWs computed using the prescription above.

Conserved and identical operators, P− and T −symmetries As noted in sec-
tion 3.2.1, in general there are various constraints imposed on 3- and 4-point func-
tions, such as reality conditions, permutation symmetries, conservation, and P−
and T − symmetries. Recall that the most general CPW decomposition is given
by (3.36),

gI
4(u, v) =

s−OPE

∑
O

∑
a,b

λa
〈O1O2O〉

GI,ab
〈O1O2O〉〈OO3O4〉

(u, v)λb
〈OO3O4〉

. (3.47)

According to the discussion around (3.22), the general solution to these constraints
relevant for this expansion is

λa
〈O1O2O〉

=
∑

â

P a â
〈O1O2O〉

λ̂ â
〈O1O2O〉

and λb
〈OO3O4〉

=
∑

b̂

P b b̂
〈OO3O4〉

λ̂ b̂
〈OO3O4〉

.

(3.48)
Besides that, if the pair of operators O1 and O2 is the same as the pair of operatirs
O3 and O4, there has to exist relations of the form

λb
〈OO3O4〉

=
∑

b

N b c
〈OO3O4〉

λc
〈O1O2O〉

. (3.49)

Once the relations (3.48) and (3.49) are inserted in the general expression (3.47), the
resulting 4-point function will satisfy all the required constraints which preserve the
s-channel.12 In particular, the “reduced” CPWs corresponding to the coefficients
λ̂ will also satisfy these constraints automatically. Note that by construction the
reduced CPWs are just the linear combinations of the generic CPWs.

3.2.3 The bootstrap equations
The conformal bootstrap equations are the equations which must be satisfied by the
consistent CFT data. They arise as follows. The s-channel OPE (3.30) is not the
only option to compute 4-point functions, there are in fact two other possibilities.

12Possible constraints which do not preserve s-channel are permutations of the form (13), etc.
Such permutations, if present, are equivalent to the crossing equations discussed below.
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One can use the t-channel OPE expansion

f4 =
t−OPE

〈O1(p1)O2(p2)O3(p3)O4(p4)〉 =

±〈O3(p1)O2(p2)O1(p3)O4(p4)〉
����p1↔p3

= ±〈O1(p1)O4(p2)O3(p3)O2(p4)〉
����p2↔p4

(3.50)

or the u-channel OPE expansion

f4 =
u−OPE

〈O1(p1)O2(p2)O3(p3)O4(p4)〉 =

±〈O4(p1)O2(p2)O3(p3)O1(p4)〉
����p1↔p4

= ±〈O1(p1)O3(p2)O2(p3)O4(p4)〉
����p2↔p3

.

(3.51)

In the above relations we permuted operators in the second and third equalities to
get back the s-channel configuration. Minus signs are inserted for odd permutation
of fermion operators.

In a consistent CFT the function f4 is unique and does not depend on the channel
used to computation it, leading to the requirement that the expressions (3.30), (3.50)
and (3.51) must be equal. These equalities are the bootstrap equations. To be
concrete we write the s-t consistency equation using (3.31) and (3.50)

f4 =
s−OPE

∑
O

λa
〈O1O2O〉

W ab
〈O1O2O〉〈OO3O4〉

λb
〈OO3O4〉

, (3.52)

f4 =
t−OPE

±
∑
O

λa
〈O3O2O〉

W ab
〈O3O2O〉〈OO1O4〉

λb
〈OO1O4〉

������p1↔p3

. (3.53)

In this example the tensor structures T̂I
n transform under permutation of points

pi ↔ p j as
T̂I
〈O3O2O1O4〉

����p1↔p3
= M I J

p1↔p3 T̂
J
〈O1O2O3O4〉

, (3.54)

since they form a basis. Further decomposing these expressions using the basis of
tensor structures one can compute the unknown gI

4(z, z)

gI
4(z, z) =

s−OPE

∑
O

∑
a,b

λa
〈O1O2O〉

GI,ab
〈O1O2O〉〈OO3O4〉

(z, z)λb
〈OO3O4〉

, (3.55)

gI
4(z, z) =

t−OPE
±M I J

p1↔p3

∑
O

∑
a,b

λa
〈O3O2O〉

GJ,ab
〈O3O2O〉〈OO1O4〉

(1 − z, 1 − z)λb
〈OO1O4〉

.

(3.56)



71

Equating (3.55) and (3.56) we get N4 independent equations. In a presence of addi-
tional constraints discussed in appendices B.1, B.7 and B.8, not all the N4 equations
are independent, and one should chose only those equations which correspond to the
independent degrees of freedom. In the conventional numerical approach to confor-
mal bootstrap, when Taylor expanding the crossing equations around z = z = 1/2,
one should also be careful to understand which Taylor coefficients are truly inde-
pendent. Among other things, this depends on the analyticity properties of tensor
structures T4, see appendix A of [1] for a discussion.

3.3 Embedding formalism
This section is meant to be a summary and a review of the embedding formalism
(EF) [52–54, 125] approach to 4D correlators. The discussion is based on the
works [55, 62] with some developments and corrections.

The key observation is that the 4D conformal group is isomorphic to SO(4, 2), the
linear Lorentz group in 6D. It is then convenient to embed the 4D space into the
6D space where the group acts linearly, lifting the 4D operators to 6D operators.
In particular, the linearity of the action of the conformal group in 6D allows one to
easily build conformally invariant objects. However, non-trivial relations between
these exist, posing problems for constructing the basis of tensor structures already
in the case of 4-point functions. This motivates the introduction of a different
formalism described in section 3.4.

The details of the 6D EF, its connection to the usual 4D formalism, and the relevant
conventions are reviewed in appendix B.2. In this section we discuss only the
construction of n-point tensor structures and the spinning differential operators.
Our presentation focuses on the EF as a practical realization of the framework
discussed in section 3.2.13

Embedding Let us first review the very basics of the EF. We label the points in
the 6D space by X M = {X µ, X+, X−}, with the metric given by

X2 = X µXµ + X+X−. (3.57)

The 4D space is then identified with the X+ = 1 section of the lightcone X2 = 0,
and the coordinates on this section are chosen to be xµ = X µ.

13Note that most of the results discussed in section 3.2, like the explicit construction of 2- and
3-point tensor strucutures [53–55] and the existence of the spinning differential operators [61, 62]
were originally obtained within the EF.
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A generic 4D operator O β̇1... β̇`
α1...α` (x) in spin-(`, `) representation can be uplifted ac-

cording to (B.66) to a 6D operator Oa1...a`
b1...b`

(X ) defined on the lightcone X2 = 0 and
totally symmetric in its both sets of indices. We can define an index-free operator
O(X, S, S) using the 6D polarizations Sa and S

b by

O(X, S, S) ≡ Oa1...a`
b1...b`

(X )Sa1 . . . Sa`S
b1
. . . S

b` . (3.58)

The 6D operators are homogeneous in X and the 6D polarizations,

O(X, S, S) ∼ X−κ S` S
`
, κ = ∆ +

` + `

2
. (3.59)

It is sometimes useful to assign the 4D scaling dimensions to the basic 6D objects
as

∆[X] = −1 and ∆[S] = ∆[S] = −
1
2
. (3.60)

According to (B.69) there is a lot of freedom in choosing the lift O(X, S, S). We
can express this freedom by saying that the operators differing by gauge terms
proportional to SX, SX or SS are equivalent. Note that O(X, S, S) is a priori defined
only on the lightcone X2 = 0, but it is convenient to extend it arbitrarily to all values
of X . This gives an additional redundancy that the operators differing by terms
proportional to X2 are equivalent.

The 4D field can be recovered via a projection operation defined in appendix B.2,

O(x, s, s) = O(X, S, S)
�����proj

, (3.61)

which essentially substitutes X, S, S with some expressions depending on x, s, s

only. All the gauge terms proportional to SX, SX, SS or X2 vanish under this
operation.

Sometimes it is convenient to work with index-full form Oa1...a`
b1...b`

(X ) and to fix part
of the gauge freedom by requiring it to be traceless. We can restore the traceless
form from the index-free expression O(X, S, S) by

Oa1...a`
b1...b`

(X ) =
2

`! `! (2 + ` + `)!
*.
,

∏̀
i=1

∂ai+/
-

*..
,

∏̀
j=1

∂bj

+//
-

O(X, S, S), (3.62)
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where14
∂a ≡

(
S ·

∂

∂S
+ S ·

∂

∂S
+ 3

)
∂

∂Sa
− S

a
(

∂

∂S · ∂S

)
, (3.63)

∂b ≡

(
S ·

∂

∂S
+ S ·

∂

∂S
+ 3

)
∂

∂S
b − Sb

(
∂

∂S · ∂S

)
. (3.64)

Correlation functions A correlation function of 6D operators on the light cone
must be SO(4,2) invariant and obey the homogeneity property (3.59). Consequently,
it has the following generic form

〈O(`1,`1)
∆1

(P1) . . .O(`n,`n)
∆n

(Pn)〉 =
Nn∑
I=1

gI (U)T I (X, S, S), (3.65)

where T I (X, S, S) are the 6D homogeneous SU (2, 2) invariant tensor structures and
gI (U) are functions of 6D cross-ratios, i.e. homogeneous with degree zero SO(4,2)
invariant functions of coordinates on the projective light cone. We also defined a
short-hand notation

P ≡ (X, S, S). (3.66)

Tensor structures split in a scaling-dependent and in a spin-dependent parts as

T I (X, S, S) = KnT̂ I (X, S, S), T I, T̂ I
n ∼

n∏
i=1

S`ii S
`i
i . (3.67)

The object Kn is the 6D kinematic factor and T̂ I are the SO(4, 2) invariants of degree
zero in each coordinate. The main invariant building block is the scalar product15

Xi j ≡ −2 (Xi · X j ). (3.68)

The 6Dkinematic factors[n3KinematicFactor, n4KinematicFactor] are given
by

K2 ≡ X
−
κ1
2

12 , K3 ≡
∏
i< j

X
−
κi+κj−κk

2
i j , (3.69)

14These operators are constructed to map terms proportional to SS to other terms proportional to
SS. In the equivalence class of uplifts, given an operator O(X, S, S) one can find another operator
O′(X, S, S) = O(X, S, S)+ (SS)(. . .)O which differs fromO by terms proportional to SS and encodes
a traceless operator Oa1...a`

b1...b`
(X ). Since after taking the maximal number of derivatives the SS terms

can only map to zero, we can safely replace O by O′. The action on O′(X, S, S) is proportional to
the action of ∂

∂Sa
and ∂

∂S
a and thus provides an inverse operation to (3.58).

15Notice a difference in the definition of Xi j compared to [55, 58, 62]: Xhere
i j = −2X there

i j .
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and

K4 ≡

(
X24
X14

) κ1−κ2
2

(
X14
X13

) κ3−κ4
2

×
1

X
κ1+κ2

2
12 X

κ3+κ4
2

34

. (3.70)

We also define the 6D cross-ratios by taking products of Xi j factors. For n = 4 only
two cross ratios can be formed

U ≡
X2

12X2
34

X2
13X2

24
, V ≡

X2
14X2

23

X2
13X2

24
. (3.71)

With these definitions, under projection we recover the usual 4D expressions:

Xi j
����proj
= x2

i j, Kn
����proj
= Kn, U

����proj
= u, V

����proj
= v. (3.72)

Finally, given a correlator in the embedding space one can recover the 4D correlator

〈O
(`1,`1)
∆1

(p1) . . .O (`n,`n)
∆n

(pn)〉 = 〈O(`1,`1)
∆1

(P1) . . .O(`n,`n)
∆n

(Pn)〉
����proj

, (3.73)

with the projections of the 6D invariants entering the 6D correlator given in the
formula (3.72) and appendix B.4.

3.3.1 Construction of tensor structures
Let us discuss the construction of tensor structures T̂ I

n (X, S, S). In index-free nota-
tion, this is equivalent to finding all SU (2, 2) invariant homogeneous polynomials in
S, S. All SU (2, 2) invariants are built fully contracting the indices of the following
objects:

δa
b, εabcd, ε

abcd, Xi ab, Xab
j , Sk a, S

a
l . (3.74)

With the exception of taking traces over the coordinates tr[XiX j . . .XkXl], 16 all
other tensor structures are built out of simpler invariants of degree two or four in S

and S.

List of non-normalized invariants By taking into account eq. (B.50) and the
relations (B.68) and (B.72), it is possible to identify a set of invariants with the
properties discussed above. These can be conveniently divided in five classes. The
number of possible invariants increases with the number of points n. Below we
provide a complete list of them for n ≤ 5 and indicate their transformation property
under the 4D parity. In what follows the indices i, j, k, l, . . . are assumed to label
different points.

16All such traces can be reduced to the scalar product Xi j = −Tr[XiXj]/2.
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Class I constructed from Si and Sj belonging to two different operators.

n ≥ 2 : Ii j ≡ (SiSj )
P
−→ −I ji,

n ≥ 4 : Ii j
kl ≡ (SiXkXl Sj )

P
−→ −I ji

lk,

n ≥ 6 : . . . . . . . . .

(3.75)

Class II constructed from Si and Si belonging to the same operator.

n ≥ 3 : Ji
j k ≡ (SiX jXk Si)

P
−→ −Ji

k j = Ji
j k,

n ≥ 5 : Ji
j klm ≡ (SiX jXkXlXmSi)

P
−→ −Ji

mlk j,

n ≥ 7 : . . . . . . . . .

(3.76)

Class III constructed from Si and Sj belonging to two different operators.

n ≥ 3 : K i j
k ≡ (SiXk Sj )

P
←→ K

i j
k ≡ (SiXk S j ),

n ≥ 5 : K i j
klm ≡ (SiXkXlXmSj )

P
←→ K

i j
klm ≡ (SiXkXlXmS j ),

n ≥ 7 : . . . . . . . . . . . .

(3.77)

Class IV constructed from Si and Si belonging to the same operator.

n ≥ 4 : Li
j kl ≡ (SiX jXkXl Si)

P
←→ L

i
j kl ≡ (SiX jXkXl Si),

n ≥ 6 : . . . . . . . . . . . .
(3.78)

Class V constructed from four S or four S belonging to different operators.

n ≥ 4 : M i j kl ≡ ε (SiSj Sk Sl )
P
←→ M

i j kl
≡ ε (SiS j Sk Sl ). (3.79)

Basic linear relations Simple properties [applyEFProperties] arise due to the
relation (B.50). For instance

Ji
j k = −Ji

k j, K i j
k = −K ji

k , K
i j
k = −K

ji
k (3.80)

for n ≥ 3. Consequently not all these invariants are independent and it is convenient
to work only with a subset of them, for instance Ji

j<k, K i< j
k , K

i< j
k . For n ≥ 4 other

properties must be taken into account:

Ii j
kl + Ii j

lk = −Xkl Ii j, Li
j kl = Li

[ j kl], M i j kl = M [i j kl], M
i j kl
= M

[i j kl]
. (3.81)

These can be used in analogous manner to work only with a subset of invariants, for
instance Ii< j

k<l , Ii> j
k>l , Li

j<k<l , M1234 and M
1234. Another important linear relation is

Ji
[ j k Xl]m = 0, (3.82)

where m is allowed to be equal to i.
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Non-linear relations Unfortunately, even after taking into account all the linear
relations above, many non-linear relations between products of invariant are present,
see equations (B.122) - (B.125) for n ≥ 3 relations [applyJacobiRelations]
and appendix A in [62] for some n ≥ 4 relations.17 We expect that they all arise
from (B.73).18 As an example consider the following set of relations

M i j kl = −2 X−1
i j

(
K j k

i K il
j − K jl

i K ik
j

)
, (3.83)

M
i j kl
= −2 X−1

i j

(
K

j k
i K

il
j − K

jl
i K

ik
j

)
. (3.84)

They show that M i j kl and M
i j kl can be rewritten in terms of other invariants; hence

class V objects are never used. All the relations obtained by fully contracting (3.74)
with (B.73) in all possible ways, involve at most products of two invariants in class
I − IV . In fact, we will see in section 3.4.2 that all non-linear relations have a
quadratic nature. However, these quadratic relations can be combined together to
form relations involving products of three or more invariants.19 See appendix B.5
for an example of such phenomena in the n = 3 case.

Normalization of invariants The T̂ I
n (X, S, S) are required to be of degree zero

in all coordinates. It is then convenient to introduce the following normalization
factors

Ni j ≡ X−1
i j , N i j

k ≡

√
Xi j

Xik Xk j
, Ni j k ≡

1√
Xi j X j k Xki

. (3.85)

Using these factors [normalizeInvariants, denormalizeInvariants] it is
possible to define normalized type I and type II tensor structures

Îi j ≡ Ii j, Îi j
kl ≡ Nkl I

i j
kl, Ĵi

j k ≡ N j k Ji
j k, Ĵi

j klm ≡ N j k Nlm Ji
j klm, (3.86)

and normalized type III and type IV tensor structures

K̂ i j
k ≡ N i j

k K i j
k , K̂ i j

klm ≡ NklmK i j
klm, L̂i

j kl ≡ N j kl Li
j kl, (3.87)

17Mind the difference in notation, see footnote 20 for details.
18In principle the Schouten identities might also contribute, see the footnote at page 26 of [54];

we found however that the Schouten identities, when contracted, give relations equivalent to (B.73)
for n ≤ 4.

19In other words, we have a graded ring of invariants and an ideal I of relations between them.
The goal is to find a basis of independent invariants of a given degree modulo I. In principle, I is
generated by a quadratic basis, but it is not trivial to reduce invariants modulo this basis. One would
like to find a better basis, e.g., a Gröbner basis, which then will contain higher-order relations.
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with the analogous expressions for parity conjugated invariants K̂
i j

k , K̂
i j

klm and L̂
i

j kl .
In appendix B.4 we provide an explicit 4D form of these invariants after projection.
Notice the slight change of notation from previous works20.

Basis of tensor structures Given an n-point function, one can construct a set of
tensor structures [n3ListStructures, n3ListStructuresAlternativeTS]
[n4ListStructuresEF] by taking products of basic invariants as

T̂ I
n =∏

i, j,...

[
Îi j

]#︸︷︷︸
n≥2

[
Ĵi

j k

]# [
K̂ j k

i

]# [
K̂

j k

i

]#︸                     ︷︷                     ︸
n≥3

[
Îi j
kl

]# [
L̂i

j kl

]# [
L̂

i

j kl

]#︸                     ︷︷                     ︸
n≥4

[
Ĵi

j klm

]# [
K̂ j k

ilm

]# [
K̂

j k

ilm

]#︸                         ︷︷                         ︸
n≥5

. . .

(3.88)

The subscripts stress that for a given number of points n not all the invariants are
defined. The non-negative exponents # are determined by requiring T̂ I

n to be of
degree (`i, `i) in (Si, Si). Generally, not all tensor structures obtained in this way
are independent, due to the properties and relations discussed above. The number
of relations to take into account increase rapidly with n. For n ≤ 3 the problem
of constructing a basis of independent tensor structures has been succesfully solved
in [54, 55]; we review the construction for n = 3 in appendix B.5. However
the increasing number of relations makes this approach inefficient to study general
correlators for n ≥ 4, mainly because many relations which are cubic or higher order
in invariants can be written. In section 3.4 an alternative method of identifying all
the independent structures is provided. Using this method we will also prove in
section 3.4.2 that any n-point function tensor structure is constructed out of n ≤ 5
invariants, namely the invariants involving five or less points in the formula (3.88).

3.3.2 Spinning differential operators
Let us now discuss the EF realization of the spinning differential operators used
in (3.25) which allow to relate 3-point tensor structures of correlators with different
spins21

〈O(`i,`i )
∆Oi

O(` j,` j )
∆Oj

O(`,`)
∆O
〉 ∼ Di j 〈O

(`′i,`
′

i )
∆′
Oi

O
(`′j,`

′

j )

∆′
Oj

O(`,`)
∆O
〉. (3.89)

20The correspondence with the notation of [55, 58, 62] is as follows: Î i j ∼ Ii j, −2 Î i j
kl
∼

Ĵi j, kl, −2 Ĵi
jk
∼ Ji, jk,

√
−2 K̂ i j

k
∼ Kk, i j,

√
−2 K̂

i j

k ∼ Kk, i j,
√
−8 L̂i

jkl
∼ Ki, jkl,

√
−8 L̂

i

jkl ∼

K i, jkl , where the expressions in the l.h.s. represent our notation and the expressions in the r.h.s.
represent their notation.

21This relation is of course purely kinematic, it holds only at the level of tensor structures and
does not hold at the level of the full correlator.
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The operators22 Di j are written as a product of basic differential operators which
were found in [62]

Di j =

{ ∏
i, j=1,2

∇#
i j I

#
i j d

#
i j d

#
i j D

#
i j D̃

#
i j

}
. (3.90)

The exponents are determined by matching the spins on both sides of (3.89). The
basic spinning differential operators are constructed to be insensitive to pure gauge
modifications and different extensions of fields outside of the light cone as stressed
in (B.74). The action of these operators in 4D can be deduced by using the projection
rules given in (B.76).

We provide here the list of basic differential operators23 entering (3.90) arranging
them in two sets according to the value of ∆` = |`i + ` j − `i − ` j | = 0, 2. For ∆` = 0
we have

Di j ≡
1
2

SiΣ
M
Σ

N
Si

(
X j M

∂

∂X N
i

− X j N
∂

∂X M
i

)
∼ SiSi,

D̃i j ≡ SiX jΣ
N

Si
∂

∂X N
j

+ 2Ii j Sia
∂

∂Sja
− 2I ji S

a
i
∂

∂S
a
j

∼ SiSi,

Ii j ≡ SiSj ∼ SiSj,

∇i j ≡
[
XiX j]b

a
∂2

∂Si a ∂S
b
j

∼ S−1
i S

−1
j .

(3.91)

For ∆` = 2 we have
di j ≡ Sj X i

∂

∂Si
∼ S

−1
i Sj

di j ≡ S j Xi
∂

∂Si
∼ S−1

i S j .
(3.92)

Note that for any differential operator Di j we necessarily have ∆` even, since it has
to preserve the total Fermi/Bose statistics of the pair of local operators.

The basic spinning differential operators described above carry the 4D scaling
dimension according to (3.60), thus it is convenient to introduce an operatorΞwhich
formally shifts the 4D dimensions of external operators in a way that effectively
makes the 4D scaling dimensions of Di j vanish. The action of Ξ on basic spinning
differential operators is defined as

Ξ[Di j] fn = (Di j fn)
����∆j→∆j+1

, Ξ[D̃i j] fn = (D̃i j fn)
����∆i→∆i+1

(3.93)

22We distinguish the operators D here and the operators D described in section 3.2.1 because
acting on the seed tensor structures they generate different bases. The basis spanned by D is often
called the differential basis.

23Notice a change in the normalization of the basic spinning differential operators compared
to [62].
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and
Ξ[op] fn = (op fn)

����∆i→∆i+1/2

����∆j→∆j+1/2
, (3.94)

where op denotes any of the remaining spinning differential operators.24 These
formal shifts of course make sense only if the scaling dimensions appear as variables
in fn. The use of the dimension-shifting operator Ξ allows to keep the same scaling
dimensions in the seed CPWs and the CPW related by (3.38).

The relevant functions in the package are [opDEF, opDtEF, opdEF, opdbEF,
opIEF, opNEF] and Ξ.

3.4 Conformal frame
For sufficiently complicated correlation functions one finds a lot of degeneracies in
the embedding space construction of tensor structures. There exists an alternative
construction [1, 51] which provides better control under degeneracies. More pre-
cisely, it reduces the problem of constructing tensor structures to the well studied
problem of finding invariant tensors of orthogonal groups of small rank.

Our aim is to describe the correlation function fn(x, s, s) whose generic form is
given in (3.11). The conformal symmetry relates the values of fn(x, s, s) at different
values of x. There is a classical argument, usually applied to 4-point correlation
functions, saying that it is sufficient to know only the value fn(xCF, s, s) for some
standard choices of xCF such that all the other values of x can be obtained from
some xCF by a conformal transformation. This conformal transformation then
allows one to compute fn(x, s, s) from fn(xCF, s, s). The standard configurations
xCF are chosen in such a way that there are no conformal transformations relating
two different standard configurations, so that the values fn(xCF, s, s) can be specified
independently. Following [1], we call the set of standard configurations xCF the
conformal frame (CF).

The usefulness of this construction lies in the fact that the values fn(xCF, s, s) have
to satisfy only a few constraints. In particular, these values have to be invariant
only under the conformal transformations which do not change xCF [1]. Such
conformal transformations form a group which we call the “little group”. The little
group is SO(d + 2 − n) for n-point functions in d dimensions.25 For example, for
4-point functions in 4D it is SO(2) ' U (1). One can already see a considerable

24The shift in the last formula can alternatively be implemented with multiplication by a factor
X−1/2
i j .
25For n ≥ 3 and generic x. The little group is trivial for n ≥ d + 2.
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simplification offered by this construction for 4-point functions in 4D, since the
invariants of SO(2) are extremely easy to classify.

We use the following choice for the conformal frame configurations xCF for n ≥ 3,

xµ1 = (0, 0, 0, 0), (3.95)

xµ2 = ((z − z)/2, 0, 0, (z + z)/2), (3.96)

xµ3 = (0, 0, 0, 1), (3.97)

xµ4 = (0, 0, 0, L), (3.98)

xµ5 = (x0
5, x1

5, 0, x3
5), (3.99)

where if n = 3 we can set z = z = 1/2 and if we have more than 5 operators, the
unspecified positions x≥6 are completely unconstrained.

Here L is a fixed number, and we always take the limit L → +∞ to place the
corresponding operator “at inifinity”. In this limit one should use the rescaled
operator O4

O4 → O4 L2∆4 (3.100)

inside all correlators to get a finite and non-zero result.

The variables z, z, x0
5, x1

5, x3
5, and the 4-vectors x6, x7, . . . are the coordinates on

the conformal frame and thus are essentially the conformal cross-ratios. Note
that we have 2 conformal cross-ratios for 4 points, and 4 n − 15 for n points with
n ≥ 5. Notice also that for 4-point functions the analytic continuation with z = z∗

corresponds to Euclidean kinematics. It is easy to check that there are no conformal
generators which take the conformal frame configuration (3.95) - (3.99) to another
nearby conformal frame configuration.

3.4.1 Construction of tensor structures
3.4.1.1 Three-point functions

As shown in appendix B.5, an independent basis for general 3-point tensor structures
is relatively easy to construct in EF, and there is no direct need for the conformal
frame construction. Nonetheless, in this section we employ the CF to construct
3-point tensor structures in order to illustrate how the formalism works in a familiar
case.26

26The CF construction of 3-point functions is not implemented in the package.
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The little group algebra so(1, 2) which fixes the points x1, x2, x3 is defined by the
following generators

M01, M02, M12; (3.101)

see appendix B.1 for details. According to our conventions, the corresponding
generators acting on polarizations sα are

S01 = −
1
2
σ1, S02 = −

1
2
σ2, S12 =

i
2
σ3, (3.102)

and the generators acting on sα̇ are

S
01
=

1
2
σ1, S

02
=

1
2
σ2, S

12
=

i
2
σ3. (3.103)

It is easy to see that if we introduce tα ≡ sα and t̃α ≡ σ3
α β̇

s β̇, then t and t̃ transform
in the same representation of so(1, 2).

General 3-point structures are put in one-to-one correspondence with the so(1, 2) '
su(2) conformal frame invariants built out of ti and t̃i, i = 1, 2, 3. This gives an
explicit implementation of the rule [1, 23, 51] which states that 3-point structures
correspond to the invariants of SO(d − 1) = SO(3) group(

(`1, `1) ⊗ (`2, `2) ⊗ (`3, `3)
)SO(3)

=
(
`1 ⊗ `1 ⊗ `2 ⊗ `2 ⊗ `3 ⊗ `3

)SO(3)
. (3.104)

Using this rule, we can immediately build independent bases of 3-point structures,
for example by first computing the tensor product decompositions

`i ⊗ `i =

`i+`i⊕
ji=|`i−`i |

ji, ( ji + `i + `i even) (3.105)

and then for every set of ji constructing the unique singlet in j1 ⊗ j2 ⊗ j3 when it
exists.

A more direct way, which does not however automatically avoid degeneracies, is
to use the basic building blocks for SO(3) invariants, which are the contractions
of the form tαi t j α, tαi t̃ j α and t̃αi t̃ j α. It is then straightforward to establish the
correspondence with the embedding formalism invariants

Ii j ∝ t̃it j, Ji
j k ∝ t̃iti, K i j

k ∝ tit j, K
i j
k ∝ t̃i t̃ j, (3.106)

where it is understood that i, j, k are all distinct. Up to the coefficients, this dictionary
is fixed completely by matching the degrees of s and s on each side.
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Correspondingly, as in the embedding space formalism, we have relations between
these building blocks, which now come from the Schouten identity27

(AB)Cα + (BC)Aα + (C A)Bα = 0. (3.107)

For example we can take A = ti, B = tk , C = t̃ j and contract (3.107) with t̃k to find

(titk )(t̃ j t̃k ) + (tk t̃ j )(ti t̃k ) + (t̃ jti)(tk t̃k ) = 0, (3.108)

which corresponds via the dictionary (3.106) to an identity of the form

#K ik
j K

j k
i + #I j k I ki + #I ji Jk

i j = 0. (3.109)

This gives precisely the structure of the relation (B.122). We thus effectively
reproduce the EF construction.

Finally, let us briefly comment on the action of P in the 3-point conformal frame.
The parity transformation of operators (B.26) induces the following transformation
of polarizations

sα → isα̇, s β̇ → is β =⇒ t → iσ3t̃, t̃ → iσ3t. (3.110)

The full parity transformation does not however preserve the conformal frame since
it reflects all three spatial axes and thus moves the points x2 and x3. We can
reproduce the correct parity action in the conformal frame by supplementing the
full parity transformation with iπ boost in the 03 plane given by e−iπS03

= iσ3 on t

and by σ3e−iπS03
σ3 = −iσ3 on t̃. This leads to

t → t̃, t̃ → −t. (3.111)

Note that according to (3.111) the transformations properties of (3.106) under parity
match precisely the ones found in (3.75) - (3.77).

3.4.1.2 Four-point functions

In the n = 4 case the little group algebra so(2) ' u(1) which fixes the points
x1, x2, x3, x4 is given by the generator

M12. (3.112)
27Which itself follows from contracting εβγ with the identity A[αBβCγ] = 0 valid for two-

component spinors.
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Note that the algebra so(2) is a subalgebra of the 3-point little group algebra so(1, 2)
discussed above. According to (3.102), its action on both t and t̃ is given by

S12 =
i
2
σ3. (3.113)

This generator acts diagonally on t and t̃, so that we can decompose

sα ≡
*.
,

ξ

η

+/
-
, s β̇ ≡

*.
,

ξ

η

+/
-
=⇒ t ≡ sα =

*.
,

ξ

η

+/
-
, t̃ ≡ σ3

α β̇
s β̇ = *.

,

η

ξ

+/
-
. (3.114)

Note that our convention sα̇ = (sα)∗ implies that ξ = ξ∗ and η = η∗. Appropriately
defining the u(1) charge Q we can say that

Q[ξ] = Q[η] = +1 and Q[η] = Q[ξ] = −1. (3.115)

Tensor structures of 4-point functions are just the products of ξ, ξ, η, η of total charge
Q = 0. These are given by [CF4pt,n4ListStructures]



q1 q2 q3 q4

q1 q2 q3 q4


≡

∏4
i=1 ξ

−qi+`i/2
i η

qi+`i/2
i ξ

−q1+`i/2
i η

qi+`i/2
i ,

qi ∈ {−`i/2, . . . , `i/2}, qi ∈ {−`i/2, . . . , `i/2},

(3.116)

subject to
4∑

i=1
(qi − qi) = 0. (3.117)

It is clear from the construction that these 4-point structures are all independent,
i.e. there are no relations between them. It is in contrast with the embedding space
formalism, where there are a lot of relations between various 4 point building blocks.

As a simple example, consider a 4-point function of a (1, 0) fermion at position 1, a
(0, 1) fermion at position 2 and two scalars at position 3 and 4. The allowed 4-point
tensor structures are then



+1
2 0 0 0

0 +1
2 0 0


and



−1
2 0 0 0

0 −1
2 0 0


. (3.118)

To compute the action of space parity, we need to supplement the full spatial parity
(3.110) with a π rotation in, say, the 13 plane in order to make sure that parity
preserves the 4-point conformal frame (3.95) - (3.98). In this case the combined
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transformation is simply a reflection in the 2’nd coordinate direction. It is easy to
compute that this gives the action

ξ → −iξ, ξ → iξ, η → −iη, η → iη. (3.119)

Note that this does not commute with the action of u(1) since the choice of the
13 plane was arbitrary – we could have also chosen the 23 plane, and u(1) rotates
between these two choices. It is only important that this reflection reverses the
charges of u(1) and thus maps invariants into invariants.

From (3.119) we find that the parity acts as

P



q1 q2 q3 q4

q1 q2 q3 q4


= i−

∑
i `i−`i



q1 q2 q3 q4

q1 q2 q3 q4


. (3.120)

From the definition (3.116) we also immediately find the complex conjugation rule



q1 q2 q3 q4

q1 q2 q3 q4



∗

=



q1 q2 q3 q4

q1 q2 q3 q4


. (3.121)

According to (B.36), by combining these two transformations we find the action of
time reversal

T



q1 q2 q3 q4

q1 q2 q3 q4


= i

∑
i `i−`i



q1 q2 q3 q4

q1 q2 q3 q4


. (3.122)

3.4.1.3 Five-point functions and higher

In the n ≥ 5 case there are no conformal generators which fix the conformal frame.
It means that all ξ, ξ, η, η are invariant by themselves.28 This allows us to construct
the n-point tensor structures



q1 q2 . . . qn

q1 q2 . . . qn


≡

n∏
i=1

ξ
−qi+`i/2
i η

qi+`i/2
i ξ

−q1+`i/2
i η

qi+`i/2
i , (3.123)

with the only restriction

qi ∈ {−`i/2, . . . `i/2}, qi ∈ {−`i/2, . . . `i/2}. (3.124)
28More precisely, there is still the Z2 kernel of the projection Spin(1, 3) → SO(1, 3), which gives

the selection rule that the full correlator should be bosonic (in this sense ξ, ξ, η, η are not individually
invariant).
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3.4.2 Relation with the EF
In practical applications, 3- and 4-point functions are the most important objects. It
is possible to treat 3-point functions in the CF or the EF. Since the latter is explicitly
covariant, it is often more convenient. On the other hand, 4-point functions are
treated most easily in the conformal frame approach. This creates a somewhat
unfortunate situation when we have two formalisms for closely related objects. To
remedy this, let us discuss how to go back and forth between the EF and the CF.

Embedding formalism to conformal frame It is relatively straightforward to find
the map [toConformalFrame] from the embedding formalism tensor structures to
the conformal frame ones. First one needs to project the 6D elements to the 4D ones
and then to substitute the appropriate values of coordinates according to the choice
of the conformal frame.

For 6D coordinates according to (B.65) and the definition of the conformal frame
(3.95) - (3.98) one has

X1 = (0, 0, 0, 0, 1, 0),

X2 = ((z − z)/2, 0, 0, (z + z)/2, 1,−zz),

X3 = (0, 0, 0, 1, 1,−1),

X4 = (0, 0, 0, L, 1,−L2),

(3.125)

and for the 6D polarizations according to (B.71) one has

(Si)a =
*.
,

(si)α
−xµi σ

α̇ β
µ (si)β

+/
-
, (Si)a =

*.
,

(si) β̇σ
β̇α
µ xµi

(si)α̇
+/
-
. (3.126)

In the last expression it is understood that all the coordinates x belong to the
conformal frame xCF (3.95) - (3.98).

The final step is to perform the rescaling (3.100) and to take the limit L → +∞.
There is a very neat way to do it by recalling that 6D operators O according to (3.59)
are homogeneous in 6D coordinates and 6D polarizations, thus

O(S4, S4, X4)L2∆4 = O(S4, S4, X4)L2κO−`4−`4 = O(S4/L, S4/L, X4/L2). (3.127)

It is then clear that the final step is equivalent to the following substitution of the 6D
coordinates at the 4th position

X4 → lim
L→+∞

X4/L2 = (0, 0, 0, 0, 0,−1) (3.128)
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and for the 6D polarizations

(S4)a → lim
L→+∞

(S4)a/L = *.
,

0
−σ

α̇ β
3 (s4)β

+/
-
, (S4)a → lim

L→+∞
(S4)a/L = *.

,

(s4) β̇σ
β̇α
3

0
+/
-
.

(3.129)

Conformal frame to embedding formalism As discussed in section 3.4.1.2, 4-
point tensor structures are given by products of ξi, ξi, ηi, ηi with vanishing totalU (1)
charge. It is easy to convince oneself that any such product can be represented (not
uniquely) by a product of U (1)-invariant bilinears

ξiξ j, ηiη j, ξiη j, ξiη j, (3.130)

where i, j = 1 . . . 4. For n ≥ 5-point a general tensor structure is still represented
by a product of bilinears, see footnote 28, but since there is no U (1)-invariance
condition, the following set of bilinears should also be taken into account

ξiξ j, ηiη j, ξiξ j, ηiη j, ηiξ j, ξiη j, (3.131)

where i, j = 1 . . . n.

These bilinears themselves are tensor structures with low spin. Noticing that the EF
invariants are also naturally bilinears in polarizations we can write a corresponding
set of EF invariants with the same spin signatures. Translating these invariants
to conformal frame via the procedure described above [toConformalFrame],
one can then invert the result and express the bilinears (3.130) and (3.131) in
terms of covariant expressions. We could call this procedure covariantization
[toEmbeddingFormalism]. The basis of EF structures is over-complete so the
inversion procedure is ambiguous and one is free to choose one out of many options.

Since there is a finite number of bilinears (3.130) and (3.131) there will be a finite
number of covariant tensor structures they can be expressed in terms of after the
covariantization procedure. It is then very easy to see that one needs only the class
of n = 4 tensor structures to cover all the bilinears (3.130) and the class of n = 5
tensor structures to cover all the bilinears (3.131).

The ambiguity of the inversion procedure mentioned above is related to the linear
relations between EF structures. Non-linear relations between EF structures arise
due to the tautologies such as

(ξiξ j )(ηkηl ) = (ξiηk )(ξ jηl ). (3.132)
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This observation in principle allows to classify all relations between n ≥ 4 EF
invariants.

Example. By going to the conformal frame we get

Ĵ1
23 =

z
z − 1

ξ1ξ1 −
z

z − 1
η1η1, Ĵ1

24 = −z ξ1ξ1 + z η1η1, Ĵ1
34 = −ξ1ξ1 + η1η1.

(3.133)
Inverting these relation one gets

ξ1ξ1 = −
z − 1

z (z − z)

(
(z − 1) Ĵ1

23 + Ĵ1
24

)
, η1η1 = −

z − 1
z (z − z)

(
(z − 1) Ĵ1

23 + Ĵ1
24

)
.

(3.134)
We see right away that the invariants J1

23, J1
24 and J1

34 must be dependent. One can
easily get a relation between themby plugging (3.134) to the third expression (3.133).
The obtained relation will match perfectly the linear relation (3.82).

Note that there is a factor 1/(z− z) in (3.134), which suggests that the structure ξ1ξ1

blows up at z = z. This is not the case simply by the definition of ξ and ξ; instead, it
is the combination of structures on the right hand side which develops a zero giving
a finite value at z = z. However, this value will depend on the way the limit is taken.
This is related to the enhancement of the little group fromU (1) = SO(2) to SO(1, 2)
at z = z. At z = z it is no longer true that ξ1ξ1 is a little group invariant. This
enhancement implies certain boundary conditions for the functions which multiply
the conformal frame invariants. See appendix A of [1] for a detailed discussion of
this point.

3.4.3 Differentiation in the conformal frame
Now we would like to understand how to implement the action of the embedding
formalism differential operators such as (3.91) and (3.92) directly in the conformal
frame. We need to make two steps. First, to understand the form of these differential
operators in 4D space. This is done by using the projection of 6D differential
operators to 4D given in appendix B.2. Second, to understand how to act with 4D
differential operators directly in the conformal frame. We focus on this step in the
remainder of this section. For simplicity, we restrict the discussion to the most
important case of four points.

A correlation function in the conformal frame is obtained by restricting its coordi-
nates x to the conformal frame configurations xCF . The action of the derivatives
∂/∂s and ∂/∂s in polarizations on this correlation function is straightforward, since
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nothing happens to polarizations during this restriction. The only non-trivial part is
the coordinate derivatives ∂/∂xi: in the conformal frame a correlator only depends
on the variables z and z which describe two degrees of freedom of the second
operator and it is not immediately obvious how to take say the ∂/∂x1 derivatives.

The resolution is to recall that 4-point functions according to (3.10) are invariant
under generic conformal transformation spanned by 15 conformal generators LM N .
By using (B.57) one can see that it is equivalent to 15 differential equations

(L1 M N + L2 M N + L3 M N + L4 M N ) f4(xi, si, si) = 0. (3.135)

The differential operators Li M N defined in (B.58) together with (B.76) and (B.77)
are given by linear combinations of derivatives ∂/∂xi, ∂/∂si and ∂/∂si. Out of
15 differential equations (3.135) one equation (for L12) expresses the little group
invariance under rotations in the 12 plane and thus when restricted to the 4-point
conformal frame (3.95) - (3.98) does not contain derivatives ∂/∂xi. The remain-
ing 14 equations allow to express the 14 unknown derivatives ∂/∂xµi restricted to
the conformal frame in terms of ∂/∂x0

2, ∂/∂x3
2, ∂/∂si and ∂/∂si. Higher-order

derivatives can be obtained in a similar way by differentiating (3.135).

Computation of general derivatives can be cumbersome, but in practice it is easily
automated with Mathematica. We provide a conformal frame implementation
of the differential operators (3.91) - (3.92) [opD4D, opDt4D, opd4D, opdb4D,
opI4D, opN4D] as well as of the quadratic Casimir operator [opCasimir24D]
acting on 4-point functions. As a simple example (although it does not require
differentiation in x), we display here the action of ∇12 on a generic conformal frame
structure

∇12



q1 q2 q3 q4

q1 q2 q3 q4


g(z, z)

= −
(`1 + 2q1)(`2 + 2q2)

4



q1 −
1
2 q2 q3 q4

q1 q2 −
1
2 q3 q4


zg(z, z)

+
(`1 − 2q1)(`2 − 2q2)

4



q1 +
1
2 q2 q3 q4

q1 q2 +
1
2 q3 q4


zg(z, z). (3.136)

Other operators, e.g. (3.91), give rise to more complicated expressions which how-
ever can still be efficiently applied to the seed CPWs.
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3.5 Conclusions
In this chapter we have described a framework for performing computations in 4D
CFTs by unifying two different approaches, the covariant embedding formalism and
the non-covariant conformal frame formalism. This framework allows to work with
general 2-, 3-, and 4-point functions and thus to construct the 4D bootstrap equations
for the operators in arbitrary spin representation, ready for further numerical or
analytical analysis.

In the embedding formalism we have explained the recipe for constructing tensor
structures of n-point functions in the 6D embedding space. We have also summa-
rized the so called spinning differential operators relating generic CPWs to the seed
CPWs. The conformally covariant expressions in 4D are easily obtained from the
6D expressions by using the so called projection operation. For the objects like
kinematic factors and 2-, 3-, and 4-point tensor structures we have performed the
projection operation explicitly.

The construction of a basis of tensor structures in the embedding formalism requires
however the knowledge of a complete set of non-linear relations between products
of the basic conformal invariants. Starting from n = 4 it is rather difficult to find
such a set of relations and thus the embedding formalism turns out to be practically
inefficient for n ≥ 4. This problem is solved using the conformal frame approach.

In the conformal frame we have provided a complete basis for (n ≥ 3)-point tensor
structures in a remarkably simple form. For instance in the n = 4 case the tensor
structures are simply monomials in polarization spinors with vanishing total charge
under the U (1) little group. In the n < 4 cases the little group is larger and
constructing its singlets becomes harder whereas the embedding formalism is easily
manageable. Since the embedding formalism is also explicitly covariant it becomes
preferable for working with 2- and 3-point functions.

With practical applications in mind, we have found the action of various differential
operators on 4-point functions in the conformal frame formalism. We have also
shown how to apply permutations in the conformal frame. These results allow
one to work with the 4-point functions (and, consequently, the crossing equations)
entirely within the conformal frame formalism.

We have established a connection between the tensor structures constructed in the
embedding and the conformal frame formalisms. The embedding formalism to
conformal frame transition is straightforward and amounts to performing the 4D
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projection of the 6D structures and setting all the coordinates to the conformal
frame. The conformal frame to the embedding formalism transition is slightly more
complicated since it is not uniquely defined due to redundancies among the allowed
6D structures. After “translating” all the basic 6D structures to the conformal frame
one inverts these relations by choosing only the independent 6D structures.

Finally, we have implemented our framework as a Mathematica package freely
available at https://gitlab.com/bootstrapcollaboration/CFTs4D. It can perform any
manipulationswith 2-, 3- and 4-point functions in both formalism switching between
them when needed. A detailed documentation is incorporated in the package with
many explicit examples.

In the appendices we made our best effort to establish consistent conventions; we
have provided a proper normalization of 2-point functions and the seed confor-
mal blocks and summarized all the Casimir differential operators available in 4D.
We have also given some extra details on permutation symmetries and conserved
operators.

It is our hope that this workwill aid the development of conformal bootstrapmethods
in 4D and will facilitate their application to spinning correlation functions, such as
4-point functions involving fermionic operators, global symmetry currents, and
stress-energy tensors.
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C h a p t e r 4

WEIGHT-SHIFTING OPERATORS AND CONFORMAL
BLOCKS

This chapter is essentially identical to:

D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and
Conformal Blocks, JHEP 02 (2018) 081, [1706.07813].

4.1 Introduction
Concrete results in conformal representation theory have played a crucial role in the
recent resurgence of the conformal bootstrap [6, 30–32, 34–39, 41, 43–47, 94–101,
110, 114, 122, 126–158]. Compact expressions for conformal blocks with external
scalars [57, 63] were crucial for the development of modern numerical bootstrap
techniques [30]. Subsequently, techniques for computing blocks of operators with
spin [2, 39, 53, 54, 58, 60–62, 81, 82] have led to universal numerical bounds on
wide classes of CFTs [39, 41, 159], in addition to analytical results like proofs of the
conformal collider bounds [77, 160–162] and the average null energy condition [73],
and new results on the Regge limit in CFTs [163–165]. In parallel developments,
harmonic analysis on the conformal group [65] has played an important role in
several recent works [66, 166–170], including the large-N solution of the SYK
model [171–174]. Relationships between Witten diagrams and conformal blocks
have also received recent attention [175–180].

More sophisticated analyses will require new results for operators with spin. Several
efficient techniques for dealing with spinning operators have been developed over the
last decade, including index-free/embedding-space methods [39, 53, 54, 61, 79, 82],
the shadow formalism in the embedding space [54], “differential bases” for three-
point functions [39, 61], and recursion relations [41, 49, 81]. While these methods
are superior to naive approaches, they still aren’t enough to solve some difficult
problems. For example, the shadow formalism lets one write integral expressions
for general blocks, but the integrals are difficult to evaluate in practice in all but the
simplest cases. The differential basis approach lets one compute spinning blocks
in terms of simpler “seed blocks,” but doesn’t explain how to compute the seed

http://dx.doi.org/10.1007/JHEP02(2018)081
https://arxiv.org/abs/1706.07813
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blocks.1

In this work, we introduce new tools that dramatically simplify computations in
conformal representation theory, particularly involving operators with spin. The
first key idea is to consider a (fictitious) operator w(x) that transforms in a finite-
dimensional representation W of the conformal group. By studying the OPE of
this highly degenerate operator with a non-degenerate operator O(x), we find (in
section 4.2) a large class of conformally-covariant differential operatorsDv

A that can
be used for computations. Here, A = 1, . . . , dim W is an index for W , and v is a
weight vector of W (i.e., a common eigenvector of the Cartan subalgebra).2

The action of Dv
A on O(x) shifts the weights of O by the weights of v, in addition

to introducing a free A index. For this reason, we call Dv
A a weight-shifting oper-

ator. For example, weight-shifting operators can increase or decrease the spin of
O.3 Weight-shifting operators can be written explicitly using the embedding space
formalism [27, 39, 52–54, 82, 92, 125, 186–188], e.g. (4.45) in general spacetime
dimensions, (4.72) in 3d, and (4.79) in 4d. However, our construction applies in-
dependently of the embedding space formalism, and in fact works for generalized
Verma modules of any Lie (super-)algebra.4

A second key observation is that weight-shifting operators obey a type of crossing
equation,

Dv
A,x1
〈O′1(x1)O2(x2)O3(x3)〉(a) =

∑
O ′2,v

′,b

{· · · } Dv′

A,x2
〈O1(x1)O′2(x2)O3(x3)〉(b),

(4.1)

whichwe derive in section 4.3. Here, a and b label conformally-invariant three-point
structures that can appear in a correlator of the given operators. The coefficients
{· · · } are examples of 6 j symbols (or Racah-Wigner coefficients) for the conformal
group (which in this case are computable with simple algebra). Equation (4.1) lets

1A recursion relation for seed blocks in 3d was guessed in [81] by solving the Casimir equation
order-by-order in an OPE expansion. Expressions for seed blocks in 4d were derived in [58] by
solving the Casimir equation using a suitable ansatz.

2Some examples of such operators appear in the conformal tractor calculus, which originally
deals with the case of tensor W [181, 182]. The theory of local twistors [183–185] deals with the
case of spinor W . The primary interest of these theories is in curved conformal manifolds. Part of
our results can be viewed as a classification of differential operators involving tractor or local twistor
bundles in the conformally flat setting. It is an interesting question whether our results generalize to
the curved setting.

3When Dv
A
lowers the spin of O, its missing spin degrees of freedom are (roughly speaking)

transferred to the index A for W .
4Our construction is based on the “translation functor” of Zuckerman and Jantzen [189, 190].
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us move a covariant differential operator acting on x1 to an operator acting on x2.
As we will see, this provides enough flexibility to perform a variety of computations
involving weight-shifting operators. We also introduce a diagrammatic language
that makes these computations easy to understand.

As an application, in section 4.4 we focus on computing conformal blocks and
understanding some of their properties. In section 4.4.3, we derive an expression
for a general conformal block involving operators (both external and internal) in
arbitrary representations of SO(d) in terms of derivatives of blocks with external
scalars.5 This generalizes the beautiful result of [61] for conformal blocks of
symmetric traceless tensors (STTs). Our weight-shifting operators also explain
where the differential operators of [61] come from (as we discuss in section 4.3.5).
Our formula can be simplified in special cases. For example, in section 4.4.4 we
give new expressions for so-called “seed blocks” in 3d and 4d CFTs in terms of
derivatives of scalar blocks.

Our techniques also give a new way to understand many identities and recursion
relations satisfied by conformal blocks. In section 4.4.5, we rederive and explain
diagrammatically several identities relating scalar conformal blocks with different
dimensions and spins.6 In section 4.4.6, we discuss how to use derivative-based
expressions for blocks to find recursion relations of the type introduced by Zamolod-
chikov [48, 193] and used in numerical bootstrap computations [36, 37, 41, 143,
149, 194].

In section 4.5, we comment on some additional applications beyond computing
conformal blocks. Weight-shifting operators are helpful for studying inner products
between conformal blocks that appear in inversion formulae [66, 168–170]. By
integrating weight-shifting operators by parts, one can reduce inversion formulae for
spinning operators to inversion formulae for scalars. In particular, one can express
6 j symbols for arbitrary generalized Verma modules of the conformal group in
terms of 6 j symbols for four scalar (and two STT) representations. We pursue this
idea in more detail in [195].

A related idea is “spinning-down” a crossing equation: by applying spin-lowering
operators to both sides of a crossing equation, we can express it in terms of a crossing

5The rough idea is that weight-shifting operators allow us to exchange a tensor product W ⊗V∆,` ,
where W is finite-dimensional, and V∆,` is the generalized Verma module of a symmetric traceless
tensor (STT) operator. This tensor product then contains many new types of generalized Verma
modules that can include operators in non-STT representations of SO(d).

6These identities can also be understood using techniques from integrability [123, 191, 192].



94

equations for scalar operators. Spinning-down may be useful in the numerical
bootstrap—it could perhaps obviate the need to explicitly compute spinning blocks.

Finally, in section 4.6, we discuss further applications and future directions. We
give several details and examples in the appendices.

4.2 Weight-shifting operators
4.2.1 Finite-dimensional conformal representations
Let W be a finite-dimensional irreducible representation of SO(d + 1, 1). We
can think of W in two different ways. Firstly, W is a vector space with basis eA

(A = 1, . . . , dim W ), in which the action of the conformal group is given by

g · eA = DB
A(g)eB, (4.2)

where DB
A(g) are representation matrices.

Secondly, W is the conformal representation of a (very) degenerate primary operator
wa (x). Under the subgroupSO(1, 1)×SO(d) ⊂ SO(d+1, 1) generated by dilatations
and and rotations, W decomposes into a direct sum7

W →
j⊕

i=− j

(Wi)i, j ∈ 1
2N. (4.3)

Here, (ρ)∆ denotes a representation of SO(1, 1) × SO(d) with dimension ∆ and
SO(d) representation ρ. The dimensions in the decomposition (4.3) are integer-
spaced and must be invariant under the Weyl reflection ∆→ −∆, which implies that
they are integers or half-integers.8

The lowest-dimension summand in (4.3) is spanned by themultipletwa (0) which has
scaling dimension− j and carries an index a for theSO(d) representationW− j (which
is always irreducible). Because it has the lowest dimension in W , it is annihilated
by Kµ and thus is a primary. The position-dependent operator wa (x) = ex·Pwa (0)
is a polynomial in x of degree 2 j because the representation W contains only 2 j + 1
levels of descendants. In other words, almost all descendants of wa (x) are null
and this is reflected in the fact that wa (x) satisfies a particular generalization of the
conformal Killing equation that admits only polynomial solutions.

We can relate these two pictures by expanding wa (x) in our basis

wa (x) = wa
A(x)eA. (4.4)

7 j is equal to the sum of all Dynkin labels of W , with spinor labels counted with multiplicity 1
2 ,

which is the same as the length of the first row of the SO(d + 1, 1) Young diagram for W .
8In general this Weyl reflection also acts non-trivially on the SO(d) representations.
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The coefficients in this expansion wa
A(x) are conformal Killing (spin-)tensors. As

an example, consider the adjoint representation of the conformal group. Under
SO(1, 1) × SO(d), it decomposes as (here and throughout, “•” denotes the trivial
representation)

→ ( )−1 ⊕ (• ⊕ )0 ⊕ ( )1. (4.5)

The operator wµ(x) is thus a vector with dimension −1. A basis for W = is
given by eA ∈ {K µ, D, M µν, Pµ}, and the coefficients w

µ
A(x) in this basis are the

usual conformal Killing vectors on Rd ,

wµ(x) = K µ − 2xµD + (x ρδ
µ
ν − xνδ

µ
ρ)Mνρ + (2xµxν − x2δ

µ
ν )Pν . (4.6)

In this case the differential equation satisfied bywµ(x) is the usual conformal Killing
equation,

∂µwν (x) + ∂νwµ(x) − trace = 0. (4.7)

4.2.2 Tensor products with finite-dimensional representations
Consider a primary operatorOwithSO(1, 1)×SO(d) representation (ρ)∆ for generic
∆. The conformal multiplet of O is a generalized Verma module which we denote
V∆,ρ.9 Under a conformal transformation x′ = g(x), O transforms in the usual way10

g · Oa (x) = Ω(x′)∆ρa
b(R(x′)−1)Ob(x′),

Ω(x′)Rµ
ν (x′) =

∂x′µ

∂xν
, (4.8)

where Rµ
ν ∈ SO(d) and ρa

b(R−1) is the action of R−1 in the representation ρ.

We would like to understand the decomposition of the tensor product

W ⊗ V∆,ρ, (4.9)

when W is finite-dimensional. This is equivalent to finding primary operators built
out of wa (x) and Ob(x). Formally, we must take an OPE between wa (x) and Ob(x),

9Recall that a generalized Verma module (also called a parabolic Verma module) is roughly-
speaking obtained by starting with a finite-dimensional representation of a subgroup (in this case
SO(1, 1)×SO(d)) and actingwith arbitrary products of lowering operators (in this case themomentum
generators Pµ). See, e.g. [196]. This is the usual construction of long multiplets in conformal field
theory.

10When we think of Oa (x) as an operator on a Hilbert space, then g · Oa (x) meansUgO
a (x)U−1

g ,
where Ug is the unitary operator implementing g. Equation (4.8) should thus be understood as
defining the action of g on the value O(x) rather than the function O.
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treating them as operators in decoupled theories.11 The simplest primary in the OPE
is

wa (0) ⊗ Ob(0), (4.10)

which is primary because it vanishes under the action of the special conformal
generator 1 ⊗ Kµ + Kµ ⊗ 1. This particular state is not generally in an irreducible
representation of SO(d). Decomposing it further, we obtain primary states in
irreducible representations λ ∈ W− j ⊗ ρ of SO(d) and with scaling dimensions
∆ − j.

To find the other primaries in the OPE, we can use the following trick. Define
M = W ⊗ V∆,ρ and consider the factor space M′ = M/(⊕µPµM), i.e., treat all total
derivatives in M′ as zero. Then any two states in M differing by a descendant will
be equal in M′. As we show in appendix C.2, for generic ∆ the tensor product M

decomposes into a direct sum of simple generalized Verma modules, and in this
case it is easy to see that the non-zero states in M′ are in one-to-one correspondence
with the primary states in M .

We can easily find a basis for M′: given any expression of the form ∂ · · · ∂wa (0) ⊗
∂ · · · ∂O(0), we can “integrate by parts” and move all the derivatives to act on w.
Thus a basis for M′ is given by the non-trivial states of the form12

∂µ1 · · · ∂µmw
a (0) ⊗ Ob(0). (4.11)

Note that because w has a finite number of non-zero descendants, M′ is finite-
dimensional.

To find the primaries in M corresponding to this basis, we need to add total deriva-
tives with the same scaling dimension to the above basis elements. This leads to the
following ansatz with some undetermined coefficients ck ,

c1∂µ1 · · · ∂µmw
a (0) ⊗ Ob(0) + c2∂µ1 · · · ∂µm−1w

a (0) ⊗ ∂µmO
b(0) + . . . . (4.12)

After projecting onto an irreducible SO(d) representation λ ∈ W− j+m⊗ ρ, we obtain
an ansatz for a primary in representation (λ)∆− j+m. We can fix the coefficients ck

11We are not assuming thatwa (x) is an operator in a physical theory— it is simply amathematical
object that serves as a useful tool for understanding consequences of conformal symmetry.

12If Ob (0) had null descendants (for example, if it itself were the primary of a finite-dimensional
representation), it would be possible that some of these states are total derivatives and thus vanish in
M ′. Since we assume that ∆ is generic, this does not happen.
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up to an overall normalization by requiring that the state (4.12) is annihilated by
1 ⊗ Kµ + Kµ ⊗ 1. In this way, we find a primary operator of scaling dimension ∆+ i

for each of the irreducible components in Wi ⊗ ρ and every i = − j, . . . , j.

It is not hard to confirm that these primaries account for all the states in W ⊗ V∆,ρ
by checking that the SO(1, 1) × SO(d) characters agree. We thus conclude

W ⊗ V∆,ρ =
j⊕

i=− j

⊕
λ∈Wi⊗ρ

V∆+i,λ, (generic ∆). (4.13)

As a simple example, consider the case whereW = is the vector representation of
SO(d+1, 1) and ρ is the trivial representation of SO(d). We have the decomposition

→ (•)−1 ⊕ ( )0 ⊕ (•)+1, (4.14)

so the primary state of W is the scalar w(0) of scaling dimension −1. We thus find

⊗ V∆,• = V∆−1,• ⊕ V∆, ⊕ V∆+1,•. (4.15)

According to the above discussion, we have the following ansatz for the primaries
in this decomposition

V∆−1,• : φ−(0) = w(0) ⊗ O(0),

V∆, : Vµ(0) = t1∂µw(0) ⊗ O(0) + t2w(0) ⊗ ∂µO(0),

V∆+1,• : φ+(0) = b1∂
2w(0) ⊗ O(0) + b2∂µw(0) ⊗ ∂µO(0) + b3w(0) ⊗ ∂2O(0).

(4.16)

Recalling that ∂µ is the same as the action of Pµ and using the conformal algebra in
appendix C.1, we find

(1 ⊗ Kµ + Kµ ⊗ 1) · φ−(0) = 0,

(1 ⊗ Kµ + Kµ ⊗ 1) · Vν (0) = 2δµν (∆t2 − t1)w(0) ⊗ O(0),

(1 ⊗ Kµ + Kµ ⊗ 1) · φ+(0) = 2(∆b2 − db1)∂µw(0) ⊗ O(0)

+ 2
(
b3

(
2∆ − d + 2

)
− b2

)
w(0) ⊗ ∂µO(0). (4.17)

It follows that these states are primary if

t1 = ∆t2,

b1 =
∆b3

d
(2∆ − d + 2), b2 = b3(2∆ − d + 2). (4.18)
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We must assume that ∆ is generic because e.g. for ∆ = 1, Vµ becomes a primary
descendant of φ−, Vµ = ∂µφ−. In this special case, there are not sufficiently
many primaries to account for all states of dimension ∆. In particular there is no
combination of descendants which gives ∂µw(0)⊗O(0), and consequently ⊗V1,•

does not decompose into generalized Verma modules of primary operators. These
subtleties will not be important in this work, and we will always assume ∆ to be
generic.

4.2.3 Covariant differential operators from tensor products
Consider now the primary state (4.12), and let us write it in the form

O′c(x) = eA ⊗ (DA)c
bO

b(x), (4.19)

where the differential operators DA are defined by13

(DA)c
bO

b(x) ≡ πc
abµ1···µm

(
c1∂

µ1 · · · ∂µmwa
A(x)Ob(x)

+c2∂
µ1 · · · ∂µm−1wa

A(x)∂µmOb(x) + . . .
)
. (4.20)

Again, the ci are chosen so thatO′c(0) is a primary transforming in the representation
(λ)∆′. Here, πc

abµ1···µm
is a projector onto the SO(d) representation λ ∈ W− j+m ⊗ ρ.

By construction, O′ transforms under a conformal transformation as

g · O′c(x) = Ω(x′)∆
′

λc
d (R−1(x′))O′d (x′). (4.21)

On the other hand, we also have

g · O′c(x) = g · eA ⊗ g · (DAO)c(x)

= DB
A(g)eB ⊗ g · (DAO)c(x). (4.22)

It follows that

g · (DAO)c(x) = Ω(x′)∆
′

λc
d (R−1(x′))DA

B (g−1)(DBO)d (x′). (4.23)

In other words, DA takes a primary operator that transforms in (ρ)∆ to a primary
operator that transforms in (λ)∆′, up to the additional action of the finite-dimensional
matrix DB

A(g−1). We summarize this situation by writing

DA : [∆, ρ]→ [∆′, λ]. (4.24)

13Note that DA depends explicitly on x. This is because Pµ acts non-trivially on W and thus
these operators are translation-covariant rather than translation-invariant.
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Here, for all practical purposes [∆, ρ] is just a convenient notation. We give it a
precise meaning in appendix C.2.

Notice thatDAO has a lowered index for W , so it transforms in the same way as the
basis elements of the dual representation W ∗. For this reason, we will say that DA

is associated with W ∗. Similarly, exchanging W and W ∗, DA is associated with W .
This convention will be useful when we discuss the action of differential operators
on tensor structures in section 4.3.1.

This general construction shows that there exists a huge variety of conformally co-
variant differential operators, corresponding to tensor products with different finite-
dimensional representations. In fact, as explained in appendix C.2, all conformally-
covariant differential operators acting on generic Verma modules arise in this way.
For reference, let us summarize this result in the following

Theorem 2. The conformally-covariant operators DA : [∆, ρ]→ [∆ − i, λ] associ-
ated with W are (for generic ∆) in one-to-one correspondence with the irreducible
components in the tensor product decomposition

W ∗ ⊗ V∆,ρ =
j⊕

i=− j

⊕
λ∈(Wi )∗⊗ρ

V∆−i,λ . (4.25)

When the Dynkin indices of ρ are sufficiently large, Brauer’s formula (also known
as Klimyk’s rule) [197, 198] implies that the tensor products simplify, giving

W ∗ ⊗ V∆,ρ =
⊕

(δ,π)∈Π(W ∗)

V∆+δ,ρ+π . (4.26)

Here, Π(W ∗) denotes the weights of W ∗ (with multiplicity). A consequence of
(4.26) is that for generic ∆, ρ, the number of differential operators acting on [∆, ρ]
and transforming in W is equal to dim(W ∗). Further, each operator is labeled
by a weight vector of W ∗ (i.e., an element of W ∗ which is an eigenvector of the
Cartan subalgebra) and shifts (∆, ρ) by that weight. For this reason, we call theDA

weight-shifting operators.

One of the most important weight-shifting operators comes from the adjoint repre-
sentation of the conformal group, W = . The tensor product ⊗ V∆,ρ always
contains V∆,ρ itself as a factor. The corresponding DA : [∆, ρ] → [∆, ρ] are the
usual differential operators generating the action of the conformal algebra (see e.g.
[19]),

DA = wA · ∂ +
∆

d
(∂ · wA) −

1
2

(∂µwAν)Sµν, (4.27)
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where wAµ are conformal Killing vectors (4.6), and Sµν are the generators of SO(d)
rotations in the representation ρ.

4.2.4 Algebra of weight-shifting operators
What is the algebra of weight-shifting operators?14 Before answering this question,
let us rephrase our construction in a slightly different language. Recall from (4.19)
and (4.20) that we identify primaries in W ⊗ V∆,ρ of the form

O′c(0) = eA ⊗ (DA)c
bO

b(0). (4.28)

Note that O′c(0) ∈ W ⊗ V∆,ρ but it transforms in the same way as the primary of
V∆′,λ . This means that (4.28) gives a homomorphism

Φ : V∆′,λ → W ⊗ V∆,ρ, (4.29)

defined by mapping the primary of V∆′,λ to the right hand side of (4.28). The action
of Φ on descendants follows by acting with Pµ ⊗ 1 + 1 ⊗ Pµ on (4.28).

Composition of differential operators is equivalent to composition of the corre-
sponding homomorphisms in the opposite order. Specifically, suppose

Φ1 : V∆′,ρ′ → W1 ⊗ V∆,ρ,

Φ2 : V∆′′,ρ′′ → W2 ⊗ V∆′,ρ′ . (4.30)

Then

(1 ⊗ Φ1) ◦ Φ2 : V∆′′,ρ′′ → W2 ⊗W1 ⊗ V∆,ρ

(1 ⊗ Φ1)(Φ2(O′′(x))) = eB
2 ⊗ eA

1 ⊗ D2BD1AO(x). (4.31)

Thus, to find the algebra of weight-shifting operators, we must express the right-
hand side of (4.31) in terms of homomorphisms associated to the irreducible factors
of W2 ⊗W1.

As we will see in the next section, the embedding formalism lets us define weight-
shifting operators that make sense even when ρ is a generic (i.e., not necessarily
dominant) weight. For example, the spin ` of a symmetric traceless tensor operator
can be written as Z · ∂

∂Z , where Z is a polarization vector. The operator Z · ∂
∂Z is

then well-defined when acting on functions of non-integer homogeneity in Z .
14The results of this section are not used in the rest of this work. The reader should feel free to

skip this section on first reading.
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The correct way to understand differential operators with generic weights is to
consider homomorphisms betweenVermamodules as opposed to generalizedVerma
modules. Consider the triangular decomposition

g = g− ⊕ h ⊕ g+, (4.32)

where h is the Cartan subalgebra, and g± are generated by positive/negative roots
of g. Let Mλ be the Verma module of g with highest-weight λ, and denote the
corresponding highest-weight vector by xλ .15

Let W be a finite-dimensional representation of g. For each weight-vector16 w ∈ W ,
we can construct a g-homomorphism

Φ
w
λ : Mλ → W ⊗ Mµ, µ = λ − wtw, (4.33)

such that

Φ
w
λ (xλ ) = w ⊗ xµ + . . . . (4.34)

Here, “. . . " is a sum of terms of the form

eα1 · · · eαk
w ⊗ e−αk+1 · · · e−αm xµ, (4.35)

where e±α ∈ g± are raising/lowering operators. Their coefficients are fixed by
demanding that Φw

λ (xλ ) is g+-primary, i.e., that it is killed by 1 ⊗ eα + eα ⊗ 1 for
all positive roots α. Finally, the action of Φw

λ on g−-descendants of xλ is fixed by
g-invariance. The construction of Φw

λ is completely analogous to the construction
of Φ in (4.29) above. The vector (4.34) is the analog of the primary state (4.12).

Weight-shifting operators in the embedding space are in one-to-one correspondence
with the homomorphisms Φw

λ . In particular, they are labeled by weight-vectors of
W . This is consistent with our argument based on Brauer’s formula in the previous
section.

The homomorphisms (4.34) have been studied in [199]. Given twofinite-dimensional
representations V,W with weight-vectors v ∈ V , w ∈ W , they satisfy the algebra

(1 ⊗ Φw
λ−wt v) ◦ Φv

λ = Φ
J (λ)(v⊗w)
λ , (4.36)

15When λ = (∆, ρ) with ρ a dominant weight of so(d), then Mλ is reducible and contains the
generalized Verma module V∆,ρ as a subfactor.

16Not to be confused with the conformal Killing tensors wA from the previous section.
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where

J (λ) ∈ Aut(V ⊗W ) (4.37)

is an invertible operator called the fusion operator. The fusion operator thus com-
pletely encodes the algebra of weight-shifting operators. It satisfies a number of
interesting properties, and is closely related to solutions of the Yang-Baxter equa-
tions and integrability [199]. Most importantly for our discussion, the Arnaudon-
Buffenoir-Ragoucy-Roche equation gives an explicit expression for J (λ) in terms of
generators of g [200]. In principle, this answers the question posed at the beginning
of this section. In practice, we will not need such a general answer in this work. We
leave further exploration of the fusion operator and its applications to the future.

Another point of view on the algebra of weight-shifting operators is given by a
special kind of 6 j symbols, as we explain in appendix C.4.

4.2.5 Weight-shifting operators in the embedding space
Our construction of weight-shifting operators is extremely general, but it is in-
convenient for computations because it is cumbersome to find the primary states
O′. For practical computations, we can use the embedding formalism [27, 39, 52–
54, 82, 92, 125, 186–188], where the conformal group acts linearly. The tradeoff is
that coordinates in the embedding space satisfy constraints and gauge redundancies,
and we must take care to find differential operators respecting these conditions. The
above construction tells us precisely when this should be possible.

The formalism described in [53] makes it easy to study operators in tensor repre-
sentations of SO(d). Symmetric traceless tensors (STTs) of SO(d) are particularly
simple. We will describe this case first in order to make contact with the examples
above. However, our primary interest is in general representations, and for these it
will be useful to use specialized formalisms for different spacetime dimensions.

4.2.5.1 General dimensions

In the embedding formalism, the conformal compactification of Rd is realized as
the projective null cone in Rd+1,1. We take the metric on Rd+1,1 to be

X2 = ηmnX m X n = −X+X− +
d∑
µ=1

XµX µ. (4.38)

A primary scalar O(x) lifts to a function on the null cone O(X ) with homogeneity

O(λX ) = λ−∆OO(X ). (4.39)
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It is convenient to arbitrarily extend O(X ) outside the null cone, introducing the
gauge redundancy

O(X ) ∼ O(X ) + X2
Λ(X ). (4.40)

A tensor operator Oµ1···µ` (X ) lifts to a tensor Om1···m` (X ) in the embedding space,
subject to gauge redundancies and transverseness

Om1···m` (X ) ∼ Om1···m` (X ) + X miΛ
m1···m̂i ···m` (X ), (4.41)

XmiO
m1···mi ···m` (X ) = 0, (4.42)

in addition to the homogeneity condition (4.39). For symmetric tensors, it is useful
to introduce a polarization vector Zm and define

O(X, Z ) ≡ Om1···m` (X )Zm1 · · · Zm` . (4.43)

Because of (4.41), we must take Z · X = 0, and because of (4.42), we must identify
Z ∼ Z + λX . Finally, when Om1···m` is traceless, we can impose Z2 = 0.

We can summarize these constraints as follows. Let I be the ideal generated
by {X2, X · Z, Z2}, and let R be the ring of functions of (X, Z ) invariant under
Z → Z + λX . Symmetric tensor operators are elements of R/(R ∩ I) which are
homogeneous in both X and Z . For a differential operator in X, Z to be well-defined
on this space, it must take R→ R and also preserve the ideal R ∩ I.

The construction in section 4.2.3 tells us when such operators should exist. For
example, consider the case whereW = is the vector representation of SO(d+1, 1)
andO(X, Z ) has spin ` and dimension∆. Given the decomposition (4.14), we should
be able to find differential operators with a vector index in the embedding space,
taking17

D−0
m : [∆, `]→ [∆ − 1, `],

D0−
m : [∆, `]→ [∆, ` − 1],

D0+
m : [∆, `]→ [∆, ` + 1],

D+0
m : [∆, `]→ [∆ + 1, `]. (4.44)

17There will also exist differential operators producing other representations in the tensor product
of the vector and spin-` representations of SO(d) (generically there is also the hook Young diagram).
According to (4.26), when acting on general (non-STT) representations generically there are d + 2
operators corresponding to the vector representation. However, to describe these we would need a
formalism with more polarization vectors as in [82].
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Our strategy for finding them is to start with a suitable ansatz and fix the coefficients
by requiring thatDm preserve R and R∩ I. (We give more details in appendix C.3.)
We find

D−0
m = Xm,

D0−
m =

(
(∆ − d + 2 − `)δn

m + Xm
∂

∂Xn

)
*
,
(d − 4 + 2`)

∂

∂Zn − Zn
∂2

∂Z2
+
-
,

D0+
m = (` + ∆)Zm + Xm Z ·

∂

∂X
,

D+0
m = c1

∂

∂X m + c2Xm
∂2

∂X2 + c3Zm
∂2

∂Z · ∂X
+ c4Z ·

∂

∂X
∂

∂Zm

+ c5Xm Z ·
∂

∂X
∂2

∂Z · ∂X
+ c6Zm Z ·

∂

∂X
∂2

∂Z2 + c7Xm

(
Z ·

∂

∂X

)2
∂2

∂Z2 ,

(4.45)

where the coefficients ci are given in appendix C.3. For now, we simply quote

c1
c2
= −2

(
d
2
− 1 − ∆

)
. (4.46)

Thus, when acting on scalar operators O(X ), D+0
m is proportional to the familiar

Todorov operator [201]

D+0
m ∝

(
d
2
+ X ·

∂

∂X

)
∂

∂X m −
1
2

Xm
∂2

∂X2 +O
(
∂

∂Z

)
. (4.47)

This simplified version of D+0
m (together with D−0

m ) appears in tractor calculus,
where it is known as Thomas operator [181, 182].

The overall normalization of our differential operators is a convention. It is useful to
choose conventions where the coefficients ci are polynomials in ∆, ` of the smallest
possible degree. If we like, factors of ∆, ` can then be replaced with

∆ = −X ·
∂

∂X
, ` = Z ·

∂

∂Z
, (4.48)

so that D can be expressed without reference to the operator it acts on.

Note that when acting on scalar O there a unique non-vanishing operator of the
lowest scaling dimension, D−0

m . According to theorem 2, this is true in general.
From the discussion in section 4.2.2 it follows that this operator should correspond
to multiplication by the conformal Killing tensor wa

A(x) as in (4.10). This gives a
general way of finding wa

A(x) from embedding space formalism.
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For example, one can check that the primary operator w(x) corresponding to the
vector representation of the conformal group is given by

w(x) = wm(x)em = emD−0
m = X mem = e+ + xµeµ + x2e−, (4.49)

where e+, e− and eµ form the light cone coordinate basis of the vector representation.
It solves the equation

∂µ∂νw(x) − trace = 0. (4.50)

Let us now revisit the example from section 4.2.2. Let O(x) be a scalar primary of
dimension ∆, as in section 4.2.2. We then compute18

em ⊗ D−0
m O(x) = w(x) ⊗ O(x),

em ⊗ D0+
m O(x) = zµ

(
∆∂µw(x) ⊗ O(x) + w(x) ⊗ ∂µO(x)

)
,

em ⊗ D+0
m O(x) =

c1∆

d
∂2w(x) ⊗ O(x) + c1∂µw(x) ⊗ ∂µO(x) + c2w(x) ⊗ ∂2O(x),

(4.51)

where ci are as in (4.45). It is easy to see that this is consistent with (4.16) and (4.18).
Naturally, em ⊗ D0−

m O(x) vanishes when O(x) is a scalar.

4.2.5.2 1 dimension

To find the most general conformally-covariant differential operators, it is useful to
employ a formalism specialized to the given spacetime dimension. The simplest
case is 1-dimension, where the conformal group is Spin(2, 1).19 The Lorentz group
is Spin(1) = Z2 (see below) and the primary operators are labeled by a scaling
dimension ∆ and a spin s = ±. We will denote the corresponding Verma modules
by V∆,s. Because the global 2-dimensional conformal group is a product of 1-
dimensional groups, the results of this section can also be applied in 2-dimensions.

Note that the simply-connected conformal group is Spin(2, 1) ' SL(2,R). It acts
by Möbius transformations,

*.
,

a b

c d
+/
-

: x →
ax + b
cx + d

, ad − bc = 1. (4.52)

18Recall that on the Poincare section we have X = (1, x2, xµ) and Z = (0, 2(x · z), zµ) = zµ∂µX
where the coordinates are ordered as (X+, X−, Xµ).

19We use the conventions of [39] for 2+1 dimensions.
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The subgroup which fixes the origin is given by b = 0. We can exclude special
conformal transformations by setting c = 0. The remaining subgroup is a product
of dilatations R+ parametrized by |a | and the Lorentz group Z2 parametrized by the
sign of a. This is why we say that Spin(1) = Z2.20

The vector representation of Spin(2, 1) is equivalent to the symmetric square of the
spinor represenation, and in the embedding formalism we can define

X(αβ) = γ
m
(αβ) Xm, γm

(αβ) = Ωαα′ (γm)α
′

β . (4.53)

In this notation the constraint X2 = 0 can be solved as

X(αβ) = χα χ β, (4.54)

where χα is a real spinor in the fundamental representation of SL(2,R). Note that
χ is odd under the center of SL(2,R). This parametrization has the advantage that
now the embedding-space operators can be taken to depend on χα,

O(λ χ) = λ−2∆OO( χ), λ > 0. (4.55)

Notice that both χ and −χ correspond to the same X . The correct transformation
property of O( χ) under this transformation comes from the Z2-spin,

O(−χ) = sO( χ). (4.56)

This property will be important for the construction of tensor structures in sec-
tion 4.3.4.1.

The embedding formalism in terms of χ is useful because the conformal group
still acts linearly, but now there is no analogue of the ideal I which needs to be
preserved by the embedding space differential operators. We have the following
relation between χ and X derivatives,

∂

∂ χα
= (γm) βα χ β

∂

∂X m . (4.57)

Using this relation in an arbitrary differential operator written in terms of χ will
automatically produce the terms necessary to preserve the ideal I in X-space. For
example, we can recover the 1-dimensional version of the operatorD+0

m (c.f. (4.47)),

(γm)(αβ) ∂

∂ χα
∂

∂ χ β
∝

(
X ·

∂

∂X
−

1
2

)
∂

∂Xm
−

1
2

X m ∂2

∂X2 . (4.58)

20The fields which have spin s = + are the usual scalars on the circle. The fields which have
s = − are anti-periodic fermions.
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A general embedding space differential operator is an arbitrary combination of χα
and ∂α = ∂

∂ χα . The combinations irreducible under Spin(2, 1) are

D
j,i
α1...α j

= χ(α1 · · · χα j−i∂α j−i+1 · · · ∂α2j ), i = − j, . . . j . (4.59)

Of course, we can also add combinations of χα∂α, but these simply act as scalars
due to (4.55), so we can ignore this possibility. By construction, this differential
operator transforms in the spin- j representation of Spin(2, 1), changes the scaling
dimension by i, and exchanges bosons with fermions if j is half-integer,

D j,i : [∆, s]→ [∆ + i, (−1)2 j s]. (4.60)

It is easy to find the group-theoretic interpretation for D j,i. Indeed, the spin- j

representation decomposes as

j →
j⊕

i=− j

((−1)2 j )i, (4.61)

which means that for a generic ∆ we have the tensor product decomposition

j ⊗ V∆,s =
j⊕

i=− j

V∆+i,(−1)2j s . (4.62)

Thus, we find explicitly the expected one-to-one correspondence between the differ-
ential operatorsD j,i and the terms in this tensor product. We also see explicitly that
the differential operators are labeled by the weights of the spin- j representation, in
accordance with (4.26).

Let us see what our operators look like in x-coordinate space. It is easy to check
that the usual Poincare section X+ = 1 corresponds to χ1 = x, χ2 = 1.21 We can
therefore write the embedding space operator in terms of the x-space operator as
(multiplying also by sign χ2 for s = −)

O( χ) =
1

| χ2 |2∆
O *

,

χ1

χ2
+
-
. (4.63)

We therefore see that χ1 and χ2 derivatives act as

∂1 =
∂

∂ χ1 =
∂

∂x
, (4.64)

∂2 =
∂

∂ χ2 = −x
∂

∂x
− 2∆. (4.65)

These formulas are valid for higher order derivatives if we follow the convention
that ∆ in the last formula is increased by 1

2 by every ∂α.
21And also to minus these values, since there is a redundancy χ ∼ −χ.
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4.2.5.3 3 dimensions

In 3-dimensions, we use the formalism and conventions of [39].22 The confor-
mal group is SO(3, 2), which has Sp(4,R) as a double cover. The most general
Lorentz representation is the 2`-th symmetric power of the spinor representation
of SO(2, 1), where ` ∈ 1

2N. An operator Oα1···α2` (x) lifts to an embedding space
operator Oa1···a2` (X ) with 2` indices for the fundamental of Sp(4,R), satisfying the
homogeneity property

Oa1···a2` (λX ) = λ−∆O−`Oa1···a2` (X ). (4.66)

It is useful to introduce a polarization spinor Sa, and define

O(X, S) ≡ Sa1 · · · Sa2`O
a1···a2` (X ). (4.67)

The polarization spinors are constrained to satisfy

Sa X a
b = 0, where X a

b ≡ X m(Γm)a
b, (4.68)

where (Γm)a
b are generators of the Clifford algebra of SO(3, 2). For convenience,

we also introduce the notation

Xab = Ωac X c
b, X ab = X a

cΩ
cb, (4.69)

where Ωac = Ω
ac is the symplectic form for Sp(4,R).

Arbitrary finite-dimensional representations of SO(3, 2) can be obtained from ten-
sors of the spinor representation S. Thus, all the weight-shifting operators in
3d can be obtained from products of weight-shifting operators for S. Under
SO(3, 2) → SO(1, 1) × SO(2, 1), we have the decomposition

S → (S)
− 1

2
⊕ (S) 1

2
. (4.70)

Thus, we should be able to find differential operators with a fundamental index for
Sp(4,R) that take

D±±a : [∆, `]→
[
∆ ± 1

2, ` ±
1
2

]
. (4.71)

22In particular, we use Lorentzian signature in this section.
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Note that again the differential operators are labeled by weights of S, consistently
with (4.26). They are given by

D−+a = Sa

D−−a = Xab
∂

∂Sb

D++a = 2(∆ − 1)(∂X )abΩ
bcSc + Sa

(
SbΩ

bc(∂X )cd
∂

∂Sd

)
D+−a = 4(∆ − 1)(1 + ` − ∆)Ωab

∂

∂Sb
− 2(1 + ` − ∆)Xab(∂X )bc

Ωcd
∂

∂Sd

− Sa *
,

∂

∂Sc
Xcd (∂X )de

Ωe f
∂

∂S f
+
-
. (4.72)

We have determined the coefficients by demanding that these operators preserve the
ideal generated by X2 and Sa X a

b. The differential operators (4.72) are analogous
to χα and ∂

∂ χα in the 1-dimensional case. By taking products of them, we can build
weight-shifting operators in arbitrary representations of SO(3, 2), analogous to the
1d operators (4.59). See also appendix C.4.

4.2.5.4 4 dimensions

In 4d, we can use the embedding space formalism of [2, 54, 55, 58, 62, 202]. Our
conventions are those of [2]. A general Lorentz representation is now labeled by two
weights (`, `), where `, ` ∈ Z≥0. (Spin-` symmetric traceless tensor representations
correspond to the case ` = `.) An operator Oα1···α` α̇1···α̇` (x) lifts to an embedding
space operator

O(X, S, S) = Sa1 · · · Sa`S
b1
· · · S

b`O
a1···a`
b1···b`

(X ), (4.73)

where we have introduced polarization spinors Sa, S
a transforming as left- and right-

handed spinors of SO(4, 2), or equivalently fundamentals and anti-fundamentals of
SU(2, 2). The polarization spinors satisfy

SaXab
= 0, S

aXab = 0, S
a
Sa = 0, (4.74)

where23

Xab ≡ Σ
m
abXm, Xab

≡ Σ
ab
m X m. (4.75)

23Our conventions for the conformal algebra and embedding space in 4d are those of [2].
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Let us also introduce the shorthand notation

∂S,a ≡
∂

∂S
a , ∂a

S ≡
∂

∂Sa
,

∂ab ≡ Σ
m
ab

∂

∂X m , ∂
ab
≡ Σ

m ab ∂

∂X m . (4.76)

General representations of the conformal group SO(4, 2) can be obtained by ten-
soring with the left and right-handed spinors. Thus, our algebra of differential
operators is generated by those associated with the spinor representations. To label
these operators, it is convenient to use (4.26). Let us denote the weights so that the
highest weight of the Verma module for O is (2∆, `, `). Then the representations S
and S consist of the following weights,

Π(S) = {(−,+, 0), (−,−, 0), (+, 0,+), (+, 0,−)}, (4.77)

Π(S) = {(−, 0,+), (−, 0,−), (+,+, 0), (+,−, 0)}. (4.78)

Note that basis vectors for S are ea (so that we can contract them with Sa) and for
S the basis vectors are ea.

According to (4.26), the operators Da associated with S are then labeled by the
weights (4.78) ofS∗ = S, and the operatorsDa associated withS are labeled by the
weights (4.77) of S

∗
= S. These operators have the following explicit expressions,

Da
−0+ ≡ S

a
,

Da
−0− ≡ Xab

∂S,b,

Da
++0 ≡ a∂

ab
Sb + S

a
(S∂∂S),

Da
+−0 ≡ bc∂a

S + bS
a
(∂S∂S) + cXbc∂

ab
∂c

S − S
a
(Xbc∂

bd
∂c

S∂S,d),

D
−+0
a ≡ Sa,

D
−−0
a ≡ Xab∂

b
S,

D
+0+
a ≡ a∂abS

b
+ Sa (S∂∂S),

D
+0−
a ≡ bc∂S,a + bSa (∂S∂S) + cXbc

∂ab∂S,c − Sa (Xbc
∂bd∂S,c∂

d
S ), (4.79)

where

a = 1 − ∆ + `
2 −

`
2, a = 1 − ∆ − `

2 +
`
2,

b = 2(` + 1), b = 2(` + 1),

c = −2 + ∆ − `+`
2 . (4.80)
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The coefficients above come from requiring that the operators preserve the ideal
generated by the relations (4.74), together with X2 = 0. We have added these
operators to the CFTs4DMathematica package described in [2].

4.3 Crossing for differential operators
The results of section 4.2 give us a large variety of conformally-covariant differential
operators. In the present section we consider their action on conformally-invariant24
correlation functions of local operators. The result of such an action is a conformally-
covariant n-point function, which can also be interpreted as a conformally-invariant
(n+1)-point function that includes the degenerate fieldwa (x). Wewill first describe
the structure of such correlation functions and then establish a convenient graphical
notation for the action of the differential operators. This will help us elucidate a rich
structure of such actions at the end of this section.

4.3.1 Conformally-covariant tensor structures
Consider an n-point correlation function with an additional formal insertion of
an element eA of the finite-dimensional representation W of the conformal group
SO(d + 1, 1),

〈O
a1
1 (x1) · · · Oan

n (xn)〉A ≡ 〈Oa1
1 (x1) · · · Oan

n (xn)eA〉. (4.81)

Note that this is a purely formal construct, i.e. this expression is simply a shorthand
for a function of n points which carries indices ai, A, and has transformation
properties identical to those satisfied by a correlation function under the assumption
that

UgeAU−1
g = g · eA, (4.82)

and g · eA is defined by (4.2).

As discussed in section 4.2.1, we can also view (4.81) as a (n+1)-point conformally-
invariant correlation function with the primary wb(y) of W ,

〈O
a1
1 (x1) · · · Oan

n (xn)wb(y)〉 ≡ 〈Oa1
1 (x1) · · · Oan

n (xn)eA〉wb
A(y), (4.83)

subject to the conformal Killing differential equation satisfied by wb(y). This
interpretation will be useful to us later on. In this section we stick with (4.81).

24We are making a distinction between conformally-covariant and conformally-invariant objects.
For us, the former carry finite-dimensional SO(d + 1, 1) labels, whereas the latter do not.
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Similarly to the usual conformally-invariant correlation functions, we have an ex-
pansion in tensor structures,

〈O
a1
1 (x1) · · · Oan

n (xn)eA〉 = Ta1...an,A
I (xi)gI (u), (4.84)

which now carry the SO(d + 1, 1) index A. Here u are the conformal cross-
ratios of points xi. The structures Ta1...an,A can be constructed using embedding
space methods, since there one explicitly works with objects which transform in
fundamental representations of SO(d + 1, 1). In this subsection we are going to
classify such tensor structures by extending the conformal frame approach of [1, 23].

The basic idea is to maximally use conformal symmetry to bring as many xi as
possible to some standard positions x′i. The resulting configuration x′i will be
invariant under the subgroupGn ⊂ SO(d+1, 1) of the conformal group that stabilizes
n points. In particular

Gn =




SO(1, 1) × SO(d) n = 2,

SO(d + 2 − m) n ≥ 3,
(4.85)

where m = min(n, d + 2). The tensor T(x′i) transforms as an element in25

W ⊗
n⊗

k=1
(ρk )∆k

, (4.86)

and by construction is invariant under Gn. It is easy to check [1] that this is the
only restriction for the tensor Ta1...an,A(x′i) and the conformally-covariant tensor
structures are then in one-to-one correspondence with the invariants of Gn,26

*.
,
W ⊗

n⊗
k=1

(ρk )∆k

+/
-

Gn

. (4.87)

In practice we always use the decomposition (4.3) in this formula and identify the
tensor structures with

j⊕
i=− j

*.
,
(Wi)i ⊗

n⊗
k=1

(ρk )∆k

+/
-

Gn

. (4.88)

25In writing a tensor product of representations of different groups, we assume that each rep-
resentation is restricted to the largest common subgroup. In (4.86), we implicitly restrict W to
SO(1, 1) × SO(d) ⊂ SO(d + 1, 1).

26The notation (ρ)H denotes the H-invariant subspace of ρ, where ρ is a representation of G and
H ⊆ G.
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4.3.2 Tensor structures and diagrams
Let us work through some examples of covariant n-point functions and the counting
rule (4.88). At the same time, we will introduce a useful diagrammatic language for
describing tensor structures and differential operators.

4.3.2.1 Invariant two-point functions

Let us denote a conformally-invariant two-point structure by

〈O1O2〉 = O1 O2 . (4.89)

It is well-known that there is at most one such structure, but let us re-derive this fact
in the language of section 4.3.1, where it corresponds to the case n = 2 and W = •.

Given x1 and x2, we can apply a conformal transformation to set x1 = 0 and
x2 = ∞. Then the group G2 = SO(1, 1) × SO(d) which fixes the two points
consists of dilatations and rotations around 0. Sending the second operator to
infinity has the effect that O2 effectively changes the sign of its scaling dimension,
and transforms in the reflected representation27 ρP

2 under SO(d). Thus, two-point
structures correspond to the G2-invariants in

(ρ1)∆1 ⊗ (ρP
2 )−∆2 . (4.90)

There is at most one such invariant, which exists iff ρ1 = (ρP
2 )∗ and ∆1 = ∆2. The

dual-reflected representation, which we denote by (ρP
2 )∗ ≡ ρ†2 is the same as the

complex conjugate representation in Lorentzian signature.

4.3.2.2 Differential operators

A differential operator DA : O → O′ takes a conformally-invariant structure for O
to a conformally-covariant structure for O′, or equivalently an invariant structure for
O′ and W :

DA〈O · · ·〉 ∼ 〈eAO′ · · ·〉. (4.91)

27Given a representation ρ with generators ρµν the reflected representation is defined as ρPµν =
Pµ

′

µ Pν
′

ν ρµ′ν′ , where P is a spatial reflection matrix. Formally, conjugating by reflection is an outer
automorphism of SO(d), and hence permutes the representations of SO(d).
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We denote such a differential operator by

D (a) A = a

O

O′

W . (4.92)

The label a runs over the possible operators classified by theorem 2. We use a wavy
line to indicate a finite-dimensional representation.

4.3.2.3 Covariant two-point functions

Consider acting with a differential operator D (m)A : [∆1, ρ1] → [∆′1, λ1] on an
invariant two-point function. In diagrammatic language, this is denoted by connect-
ing an outgoing arrow from the two-point function with an incoming arrow for the
differential operator,

(D (m)A)c
a〈O

a
1 (x1)Ob

2 (x2)〉 = m

O2

O′1

W . (4.93)

The result can be interpreted as a covariant two-point structure for O′1, O2, and W .
Such structures are counted by SO(1, 1) × SO(d)-invariants in

j/2⊕
i=− j/2

(Wi)i ⊗ (λ1)∆′1 ⊗ (ρP
2 )−∆2 . (4.94)

Invariants exist whenever∆′1 = ∆2−i = ∆1−i and λ1 ∈ (Wi)∗⊗ (ρP
2 )∗ = (Wi)∗⊗ρ1.28

Note that these are exactly the conditions for the existence ofDA in theorem 2. Thus,
the number of non-vanishing diagrams (4.93) is precisely equal to the number of
tensor structures for 〈O2O

′
1eA〉. In other words, all covariant two-point structures can

be obtained by acting with differential operators on an invariant two-point structure.
28We have assumed that ∆1 = ∆2 and ρ1 = (ρP2 )∗ so that 〈O1O2〉 is nonvanishing.
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4.3.2.4 Invariant three-point functions

We denote conformally-invariant three-point structures by

〈O1O2O3〉
(a) = a

O1

O2

O3 . (4.95)

The label a runs over possible tensor structures, which are classified by G3 =

SO(d − 1) singlets

(ρ1 ⊗ ρ2 ⊗ ρ3)SO(d−1) . (4.96)

A physical three-point function is a sum over tensor structures with different OPE
coefficients λm,

〈O1O2O3〉 =

N3∑
m=1

λm 〈O1O2O3〉
(m), (4.97)

where N3 = dim(ρ1 ⊗ ρ2 ⊗ ρ3)SO(d−1). When there is a unique three-point structure
(N3 = 1), we often omit the index m.29

4.3.2.5 Covariant three-point functions

Consider now acting on an invariant three-point structure with a differential oper-
ator. Let us begin with a three-point structure 〈O1O2O

′
3〉

(a), and suppose that O′3
transforms in the representation [∆3 + i, λ]. The label a runs over singlets in

(ρ1 ⊗ ρ2 ⊗ λ)SO(d−1) . (4.98)

By theorem2, we have a differential operatorD (b)A : [∆3+i, λ]→ [∆3, ρ3]whenever

ρ3 ∈ (Wi)∗ ⊗ λ ⇔ λ ∈ Wi ⊗ ρ3. (4.99)

By acting withD (b) A on 〈O1O2O
′
3〉

(a), we can form a covariant three-point structure
for 〈O1O2O3eA〉,

(D (b) A)a3
c〈O

a1
1 (x1)Oa2

2 (x2)O′c3 (x3)〉(a) = a b

O1

O2 O3

W

O′3
. (4.100)

29Since we never work with physical three-point functions (4.97), there is no danger of confusion.
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Let us count the number of diagrams (4.100) by summing over the allowed O′3, a

and b. Taking into account the selection rule (4.99), we have

j∑
i=− j

∑
λ∈Wi⊗ρ3

dim
(
ρ1 ⊗ ρ2 ⊗ λ

)SO(d−1)

= dim
*..
,

j⊕
i=− j

⊕
λ∈Wi⊗ρ3

ρ1 ⊗ ρ2 ⊗ λ
+//
-

SO(d−1)

= dim
*..
,

j⊕
i=− j

Wi ⊗ ρ1 ⊗ ρ2 ⊗ ρ3
+//
-

SO(d−1)

.

(4.101)

According to (4.88), this is precisely the total number of covariant three-point struc-
tures for 〈O1O2O3eA〉. In other words, generically, every conformally-covariant
three-point structure can be obtained by actingwith differential operators on conformally-
invariant three-point structures.

Note that according to the discussion in section 4.2.1we can interpret the conformally-
covariant three-point functions as conformally-invariant four-point functions involv-
ing a degenerate primarywa (x). Analogously, we can interpret (4.100) as conformal
blocks for these four-point functions. We have just proven a highly degenerate case
of the folklore theoremwhich states that that the number of such conformal blocks is
equal the dimension of the space of degenerate four-point functions.30 Importantly,
in our case this number is finite. This brings us to a very powerful observation.

4.3.3 Crossing and 6 j symbols
The diagrams (4.100) give a basis for the finite-dimensional space of covariant three-
point structures 〈O1O2O3eA〉. However, this is not the only interesting basis. The
distinguishing feature of (4.100) is that it selects a particular operator O′3 appearing
in the O1 × O2 OPE. In other words, it diagonalizes the action of the Casimir
(L1 + L2)2 acting simultaneously on O1,O2 (equivalently O3,w). However, we may
wish to select an operator in a different channel, e.g. O′1 ∈ O2 × O3. This would
correspond to starting with a three-point structure 〈O′1O2O3〉

(m) and acting with a
differential operator D (n)A : O′1 → O1.

These two bases are related by a linear transformation, which gives a type of crossing
30In the non-degenerate case we have the number of families of conformal blocks and the number

of “functional degrees of freedom.”
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equation for differential operators,

a b

O1

O2 O3

W

O′3
=

∑
O ′1,m,n




O1 O2 O′1
O3 W O′3




ab

mn

m

n

O1

O2 O3

W

O′1
. (4.102)

In equations, (4.102) reads

D
(b)A
x3 〈O1(x1)O2(x2)O′3(x3)〉(a)

=
∑
O ′1,m,n




O1 O2 O′1
O3 W O′3




ab

mn

D
(n) A
x1 〈O

′
1(x1)O2(x2)O3(x3)〉(m) . (4.103)

Note that the sum over O′1 is finite with O′1 taking values in the tensor product
O1 ⊗ W . The coefficients in this transformation are called Racah coefficients, or
6 j symbols.31,32 The 6 j symbols for operator representations (generalized Verma
modules) of the conformal group have seen some recent interest for their role in
the crossing equations for CFT four-point functions [168–170]. Here, we have a
degenerate form of these objects, where one of the representations appearing is
finite-dimensional. These degenerate 6 j symbols enter in a degenerate crossing
equation (4.102) where the objects on both sides live in a finite dimensional space.
One can ask what happens if we consider 6 j symbols with more finite-dimensional
representations. As we show in appendix C.4, such 6 j symbols are related to the
algebra of conformally-covariant differential operators.

A useful analogy for understanding (4.102) is to consider a four-point function
containing at least one degenerate Virasoro primary in a 2d CFT. The shortening
condition on the degenerate primary implies that its four-point function lives in
a finite-dimensional space spanned by a finite number of conformal blocks. The
crossing transformation for these blocks is a finite-dimensional matrix. Similarly in
(4.102), the left-hand side can be interpreted as the conformal block for O′3 exchange

31Technically, Racah coefficients and 6 j symbols are sometimes defined to differ by various
normalization factors. We will not distinguish between them and use both terms to refer to the
coefficients in (4.102).

326 j symbols depend only on a set of representations and three-point structures. However, for
brevity, we often label them with operators Oi transforming in those representations, as in (4.102).
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in a four-point function 〈O1O2O3w〉. Because w satisfies a highly-constraining dif-
ferential equation, the crossing transformation for this block is a finite-dimensional
matrix.

4.3.4 Examples
Because the space of covariant three-point structures is finite dimensional (its di-
mension is given by (4.101)), it is straightforward to find the degenerate 6 j symbols
by direct computation: we apply differential operators on both sides and invert a
finite-dimensional matrix. Let us work through some examples.

4.3.4.1 6 j symbols in 1 dimension

3-point functions Before computing the 6 j symbols, we need to choose a basis of
three-point structures. The three-point functions in 1-dimension are not completely
trivial, and it is important to get them right in order to have well-defined 6 j symbols.

According to the discussion of section 4.2.5.2, there are two types of fields with
different “spins” s = ±. The fields with s = + are the usual scalars. The simplest
three-point function for the scalars is

〈Φ+1 ( χ1)Φ+2 ( χ2)Φ+3 ( χ3)〉(+) =
1

| χ1 χ2 |∆1+∆2−∆3 | χ2 χ3 |∆2+∆3−∆1 | χ3 χ1 |∆3+∆1−∆2
.

(4.104)

Here we have added the label (+) to indicate that this is a parity-even three-point
structure. We need this because there in fact exists a parity-odd three-point structure,

〈Φ+1 ( χ1)Φ+2 ( χ2)Φ+3 ( χ3)〉(−) =
( χ1 χ2)( χ2 χ3)( χ3 χ1)

| χ1 χ2 |∆1+∆2−∆3+1 | χ2 χ3 |∆2+∆3−∆1+1 | χ3 χ1 |∆3+∆1−∆2+1 .

(4.105)

This is related to the fact that unless we allow reflections, all conformal transforma-
tions preserve the cyclic ordering of three points on the circle S1. One can see that
this structure is parity-odd from the parity transformation χ → γ2 χ.

We will compute the 6 j symbols for differential operators in the fundamental rep-
resentation which, according to (4.60), change the spin s. Therefore, we will also
need the parity even and parity odd structures for the three point function with two
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s = − operators,

〈Φ−1 ( χ1)Φ+2 ( χ2)Φ−3 ( χ3)〉(−) =
( χ3 χ1)

| χ1 χ2 |∆1+∆2−∆3 | χ2 χ3 |∆2+∆3−∆1 | χ3 χ1 |∆3+∆1−∆2+1 ,

(4.106)

〈Φ−1 ( χ1)Φ+2 ( χ2)Φ−3 ( χ3)〉(+) =
( χ1 χ2)( χ2 χ3)

| χ1 χ2 |∆1+∆2−∆3+1 | χ2 χ3 |∆2+∆3−∆1+1 | χ3 χ1 |∆3+∆1−∆2
.

(4.107)

The difference between s = + and s = − tensor structures is in their transformation
properties under (4.56).

6 j symbols As noted above, we will specialize to W = F being the fundamen-
tal representation of SL(2,R), which has weights ∆ = ±1

2 . The corresponding
differential operators are

D+α = ∂α, D−α = χα . (4.108)

It will be convenient to contract each differential with a polarization spinor χ4,
giving χα4D

±
α . This spinor may be interpreted as the coordinate of the fourth

operator in representation [−1
2,−]. The operator χ4D

+ is even under space parity,
while the operator χ4D

− is odd under space parity.

The definition of 6 j symbols in this case is

a

[∆1, s1]

[∆2, s2] [∆3, s3]

F

[∆3 ±
1
2,−s3]

=
∑

∆=∆1±
1
2

m




[∆1, s1] [∆2, s2] [∆,−s1]
[∆3, s3] F [∆3 ±

1
2,−s3]




a·

m·

m

[∆1, s1]

[∆2, s2] [∆3, s3]

F

[∆,−s1] . (4.109)

We don’t need to label the vertices for differential operators, since there is always
a unique choice of differential operator for the given dimensions. For example, on
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the left-hand side, when the internal line has dimension ∆3 ±
1
2 , the F-differential

operator must be D∓. The notation “·” on the 6 j symbols means there is a unique
corresponding structure or differential operator.

It is now straightforward to compute the objects above. Let us take for example
s1 = s2 = +, s3 = − and specialize to the case when both sides of (4.109) are
parity-odd. For the left-hand side we then have,

+

[∆1,+]

[∆2,+] [∆3,−]

F

[∆3 +
1
2,+]

=
( χ4 χ3)

| χ1 χ2 |∆1+∆2−∆3−1/2 | χ2 χ3 |∆2+∆3−∆1+1/2 | χ3 χ1 |∆3+∆1−∆2+1/2 ,

−

[∆1,+]

[∆2,+] [∆3,−]

F

[∆3 −
1
2,+]

=
−(∆1 + ∆3 − ∆2 − 1/2)( χ4 χ1)( χ1 χ2)( χ2 χ3)

| χ1 χ2 |∆1+∆2−∆3+3/2 | χ2 χ3 |∆2+∆3−∆1+1/2 | χ3 χ1 |∆3+∆1−∆2+1/2

+
(∆2 + ∆3 − ∆1 − 1/2)( χ4 χ2)( χ1 χ2)( χ3 χ1)

| χ1 χ2 |∆1+∆2−∆3+3/2 | χ2 χ3 |∆2+∆3−∆1+1/2 | χ3 χ1 |∆3+∆1−∆2+1/2 .

(4.110)
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For the right-hand side,

+

[∆1,+]

[∆2,+] [∆3,−]

F

[∆1 +
1
2,−] =

( χ4 χ1)( χ1 χ2)( χ2 χ3)
| χ1 χ2 |∆1+∆2−∆3+3/2 | χ2 χ3 |∆2+∆3−∆1+1/2 | χ3 χ1 |∆3+∆1−∆2+1/2

−

[∆1,+]

[∆2,+] [∆3,−]

F

[∆1 −
1
2,−] =

(∆1 + ∆3 − ∆2 − 1/2)( χ4 χ3)
| χ1 χ2 |∆1+∆2−∆3−1/2 | χ2 χ3 |∆2+∆3−∆1+1/2 | χ3 χ1 |∆3+∆1−∆2+1/2

+
−(∆1 + ∆2 − ∆3 − 1/2)( χ4 χ2)( χ1 χ2)( χ3 χ1)

| χ1 χ2 |∆1+∆2−∆3+3/2 | χ2 χ3 |∆2+∆3−∆1+1/2 | χ3 χ1 |∆3+∆1−∆2+1/2 .

(4.111)

After using the Schouten identity

( χ4 χ1)( χ2 χ3) + ( χ4 χ2)( χ3 χ1) + ( χ4 χ3)( χ1 χ2) = 0, (4.112)

we can solve for the 6 j symbols




[∆1,+] [∆2,+] [∆1 +
1
2,−]

[∆3,−] F [∆3 +
1
2,+]




+·

+·
= −

∆1 + ∆2 − ∆3 − 1/2
2∆1 − 1

, (4.113)




[∆1,+] [∆2,+] [∆1 −
1
2,−]

[∆3,−] F [∆3 +
1
2,+]




+·

−·
=

1
2∆1 − 1

, (4.114)




[∆1,+] [∆2,+] [∆1 +
1
2,−]

[∆3,−] F [∆3 −
1
2,+]




−·

+·
= −

(
∆1 + ∆3 − ∆2 − 1/2

) (
∆1 + ∆2 + ∆3 − 3/2

)
2∆1 − 1

,

(4.115)



[∆1,+] [∆2,+] [∆1 −
1
2,−]

[∆3,−] F [∆3 −
1
2,+]




−·

−·
= −

∆2 + ∆3 − ∆1 − 1/2
2∆1 − 1

. (4.116)
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4.3.4.2 6 j symbols in 3 dimensions

3-point functions It is also possible to find the general 6 j symbols for the spinor
representation S of the 3d conformal group. To do that, it is convenient to use the
conformal frame basis of three-point structures from [1].33 To construct this basis,
one contracts the 3d primary operators with polarization spinors sα,

O(s, x) = sα1 · · · sα2`O
α1...α2` (x). (4.117)

The three point-functions are then evaluated in the configuration

f3(s1, s2, s3) = 〈O1(s1, 0)O2(s2, e)O3(s3,∞)〉, (4.118)

where e = (0, 0, 1) and O(s3,∞) = limL→∞ L2∆3O(s3, Le). The polynomial f3

should be invariant under boosts in the 0-1 plane. A basis for such polynomials is
given by the monomials

[q1q2q3] =
3∏

i=1
ξ
`i+qi
i ξ

`−qi
i , (4.119)

where si = (ξi, ξi) and qi = −`i . . . `i, subject to the constraint
∑

i qi = 0.

It will also be convenient to think about the covariant three-point functions as four-
point functions with the degenerate spinor primary wα (x) of dimension −1

2 . We
construct an analogous basis for four-point tensor structures by evaluating

〈O1(s1, 0)sαwα (ze)O2(s2, e)O3(s3,∞)〉, (4.120)

leading to a monomial basis [q1, q, q2, q3], where q = ±1
2 .34 The configuration

(4.120) is still invariant under boosts in the 0-1 plane, so we again have the condition
q +

∑
qi = 0. We have introduced only one cross-ratio z because wα (x) is a

degenerate field. In fact, the general solution to its Killing equation is given by

w(x) = w0 + xµγµw1, (4.121)

and thus it is sufficient to know its values for x = ze to determine it completely.
Note also that this equation implies that a general four-point function of such form
is linear in z.

33Our conventions in this section are those of [1, 39, 81].
34Notice that we used a configuration different from the one used for four-point functions in [1].
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To obtain these degenerate four-point functions, we think about the three-point
functions as four-point functions with an identity operator at coordinate x and act
with the operators

D±±i = Ω
abD−+a,xD

±±
b,xiΣ

∓∓
i , (4.122)

where x = ze, and Σ∓∓i formally shifts the scaling dimension and spin of the operator
i, so that D±±i doesn’t change the dimensions and spins.35 In this notation we have36

D±±3 [q1q2q3] ≡ qi

[∆1, `1]

[∆2, `2] [∆3, `3]

sαwα

[∆3 ∓
1
2, `3 ∓

1
2 ]

,

D±±1 [q1q2q3] ≡
qi

[∆1, s1]

[∆2, s2] [∆3, s3]

sαwα

[∆1 ∓
1
2, `1 ∓

1
2 ] . (4.123)

Our goal is therefore to find the transformation between the bases D±±3 [q1q2q3] and
D±±1 [q1q2q3]

6 j symbols It is obvious that since the operators D±±i contain a finite number of
derivatives in the polarization spinors, they take a three-point structure [q1q2q3]
to four-point structures [q′1, q, q

′
2, q
′
3] for (4.120) with q′i differing from qi by only

finite shifts. We can say that D±±i are local in q-space. It turns out that the
inverse operation, which expresses an arbitrary four-point function (4.120) in terms
of D±±i [q1q2q3], is also local in q-space. In this language the 6 j symbols essentially
give the composition of the inverse to D±±1 with D±±3 and are thus also local in
q-space. This allows us to write down a general expression for these 6 j symbols.

The number of shifts in q for which the 6 j symbols are generically non-zero is how-
ever rather large. We therefore take an indirect approach in this section, describing

35In other words, the components of D−+a are essentially the conformal Killing spinors sαwαa (x).
36As in the 1d case, we omit the labels for the differential operators in the diagrams (4.123)

because the differential operator is always fixed by the given representations.
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how the 6 j symbols can be straightforwardly generated from relatively simple ex-
pressions. Our strategy will be to write the action of D±±1 and D±±3 on [q1q2q3] in a
form from which both the direct action and the inverse can be easily obtained. One
can then simply substitute the inverse of D±±1 into the expressions for D±±3 [q1q2q3]
to generate the general 6 j symbols.

First, we evaluate the expressions for D±±3 [q1q2q3] and D±±1 [q1q2q3]. This can be
done relatively easily in a computer algebra system. The result can be expressed in
terms of the four-point tensor structures [q1, q, q2, q3], for instance,

D−−1 [q1q2q3] = z(`1 + q1 +
1
2 )[q1 −

1
2,+

1
2, q2, q3] − z(`1 − q1 +

1
2 )[q1 +

1
2,−

1
2, q2, q3].
(4.124)

We will now describe these actions in a compact form. We first define

A±1 [q1q2q3] =
(
−D−−1 ∓ (`1 ∓ q1 +

1
2 )D−+1

)
[q1q2q3], (4.125)

These operators satisfy

A±1 [q1q2q3] = ∓z(2`1 + 1)[q1 ∓
1
2,±

1
2, q2, q3]. (4.126)

Note that this solves the inversion problem for the linear terms z[q1, q, q2, q3] and
is also sufficient to find the action D−±1 [q1q2q3]. We then define the analogous
operators

B±1 [q1q2q3] =
(
−D+−1 ∓ (`1 ∓ q1 +

1
2 )D++2

)
[q1q2q3] + C±1 [q1q2q3], (4.127)

where the correction term C±1 is a linear combination of A±1 given below. The
operators B±1 act on [q1q2q3] as follows,(

(∆1 ± q1 −
3
2 )B±1 + (`1 ∓ q1 +

1
2 )B∓1

)
[q1q2q3] =

= 4(2`1 + 1)(∆1 −
3
2 )(`1 + ∆1 − 1)(`1 − ∆1 + 2)[q1 ∓

1
2,±

1
2, q2, q3]. (4.128)

This solves the inversion problem for the constant terms [q1, q, q2, q3] and is also
sufficient to write down the action of B±1 and thus also of D+±1 .

We can describe the action of D±±3 and its inverse in a similar fashion. In particular,
we define

A±3 [q1q2q3] =
(
−D−−3 ∓ (`3 ∓ q3 +

1
2 )D−+3

)
[q1q2q3], (4.129)

B±3 [q1q2q3] =
(
−D+−3 ∓ (`3 ∓ q3 +

1
2 )D++3

)
[q1q2q3] − C±3 [q1q2q3]. (4.130)
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The correction term C±3 is defined below. For these operators we have the analogue
of (4.126)

A±3 [q1q2q3] = ±(2`3 + 1)[q1,±
1
2, q2, q3 ∓

1
2 ], (4.131)

and the analogue of (4.128),

B±3 [q1q2q3] = − 4z(2`3 + 1)(∆3 −
3
2 )(∆3 ∓ q3 −

3
2 )[q1,±

1
2, q2, q3 ∓

1
2 ]

+ 4z(2`3 + 1)(∆3 −
3
2 )(`3 ∓ q3 +

1
2 )[q1,∓

1
2, q2, q3 ±

1
2 ]. (4.132)

We can use these expressions to find the action of D±±3 and then substitute the expres-
sions (4.126) and (4.128) for the four-point functions z[q1, q, q2, q3] and [q1, q, q2, q3]
in terms of D±±1 to find the 6 j symbols. As a simple example, we find for `i = 0,

D−−3 [000] = −
∆1 + ∆2 − ∆3 − 2

2(2∆1 − 3)
D−−1

(
[−1

2, 0,
1
2 ] + [1

2, 0,+
1
2 ]

)
+

1
8(∆1 −

3
2 )(∆1 − 2)

D+−1

(
[−1

2, 0,+
1
2 ] − [+1

2, 0,−
1
2 ]

)
, (4.133)

from where we can read off the for example the following 6 j symbol,




[∆1, 0] [∆2, 0] [∆1 +
1
2,

1
2 ]

[∆3, 0] S [∆3 +
1
2,

1
2 ]




[000](−−)

[−1
2 ,0,+

1
2 ](−−)

= −
∆1 + ∆2 − ∆3 − 2

2(2∆1 − 3)
. (4.134)

The correction term C±1 is given by

C±1 [q1q2q3] =(`1 + q1 ∓
1
2 )(`3 − q3)A±1 [q1 − 1, q2, q3 + 1]

− (`1 − q1 ±
1
2 )(`3 + q3)A±1 [q1 + 1, q2, q3 − 1]

− (`1 + q1 ∓
1
2 )(`2 − q2)A±1 [q1 − 1, q2 + 1, q3]

+ (`1 − q1 ±
1
2 )(`2 + q2)A±1 [q1 + 1, q2 − 1, q3]

∓ 2(`3 ∓ q3)(∆1 − 2)A∓1 [q1 ∓ 1, q2, q3 ± 1]

± 2(`2 ∓ q2)(∆1 − 2)A∓1 [q1 ∓ 1, q2 ± 1, q3]

± 2(∆1 ∓ q1 −
3
2 )(∆1 + ∆2 − ∆3 −

3
2 )A±1 [q1, q2, q3]

± 2(`1 ∓ q1 +
1
2 )(∆1 −

3
2 )A∓1 [q1, q2, q3]. (4.135)

The correction term C±3 is obtained from the above expression by replacing 1 ↔ 3
in the coefficients, replacingA1 byA3, and exchanging the shifts applied to q1 and
q3 in the three-point structures. Note that C±3 enters (4.130) with a minus sign.



126

4.3.5 Differential bases from 6 j symbols
The crossing equation (4.102) will be our key computational tool in this work.
Using it, we can perform a variety of calculations with differential operators. As a
brief example, consider contracting both sides of (4.102) with a differential operator
D

(c)
A : O1 → O

′′
1 , which we denote

O1 W

c

O′′1

. (4.136)

Here, the incoming arrow for W indicates that this operator is associated to the dual
representation W ∗. Let us connect the incoming W line in (4.136) with the outgoing
W line in (4.102), i.e., contract the A indices. In equations, we find

D
(c)
A,x1
D

(b)A
x3 〈O1(x1)O2(x2)O′3(x3)〉(a)

=
∑
O ′,m,n




O1 O2 O′1
O3 W O′3




ab

mn

D
(c)
A,x1
D

(n) A
x1 〈O

′
1(x1)O2(x2)O3(x3)〉(m), (4.137)

where we have given the differential operators subscripts xi to indicate which leg
they act on.

The composition of differential operators D (c)
A,x1
D

(n)A
x1 on a single leg corresponds

to a bubble diagram

D
(c)
A D

(n) A =

O′1

n

c

O′′1

WO1 =
*.
,

O′1
O1 W

+/
-

cn

δO ′1O
′′
1
. (4.138)

This vanishes unless the representations for O′1 and O
′′
1 are the same, in which case

it is proportional to the identity (at least for generic scaling dimensions ∆′1,∆
′).

The reason is that (4.138) represents a homomorphism between generalized Verma
modules, which are irreducible when the scaling dimensions are generic. The
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constant of proportionality, given by the symbol in parentheses on the right-hand
side of (4.138), is actually related to another type of 6 j symbol, as we explain in
appendix C.4. For now, we take (4.138) as a definition of these symbols.

Using (4.138) with O′1 = O
′′
1 , we can simplify the right-hand side of (4.137) to

obtain

a b

O1

O2 O3

W
c

O′1

O′3
=

∑
m,n




O1 O2 O′1
O3 W O′3




ab

mn

*.
,

O′1
O1 W

+/
-

cn

m

O′1

O2 O3

.

(4.139)

The left-hand side of (4.139) is a conformally-invariant differential operatorD (c)
A,x1
D

(b) A
x3

acting on a three-point structure at two different points. The right-hand side is a
sum of structures where the representations at those points have been modified. The
existence of such invariant two-point differential operators was a key observation
of [61]. Here, we see that they factorize into a product of covariant differential
operators, each acting on a single point. Indeed, it is easy to verify that all “basic”
differential operators in [61] are of this form, with W being either the vector or the
adjoint representations of the conformal group. Furthermore, from the discussion
in section 4.2.4 and appendix C.4 it follows that arbitrary compositions of the basic
differential operators of [61] are also of the form (4.139) with more complicated
representations W . In this sense, (4.139) gives a more fundamental point of view
on such operators.

The main purpose of the differential operators in [61] was to raise the spins of the
operators they act on. Here, we see that it is also possible to lower spins, an idea
that we discuss briefly in section 4.5.

Another observation of [61] is that (4.139) can sometimes be inverted to express
a basis of tensor structures in terms of differential operators acting on simpler
structures. For example, when one of the operators O` is a traceless-symmetric
tensor, one can write three-point structures involving O` in terms of derivatives of
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three-pt structures involving scalars. In our notation, this reads

O1

a

O2

O`
=

∑
W,b,c

(. . . )

O1

b

c

O2

O`W

φ1

φ2

. (4.140)

Here, the dashed lines denote scalar operators φ1, φ2. Note that the labels b, c

determine the dimensions of φ1, φ2 in terms of ∆O1,∆O2 , respectively. Thus, the
right-hand side will involve derivatives of scalar structures with dimensions shifted
by half-/integers from those of O1,O2. In equations, we write

〈O1O2O`〉
(a) = D (a)O1O2

φ1φ2
〈φ1φ2O`〉, (4.141)

where D is a combination of derivatives ∂x1, ∂x2 and formal operators Σi, j : ∆i →

∆i+ j that shift the dimensions∆1,∆2. We have suppressed SO(d) indices in (4.141)
for simplicity.

The coefficients (. . . ) expressing D (a)O1O2
φ1φ2

in terms of products of weight-shifting
operators D (b)AD

(c)
A are determined by inverting (4.139). In writing (4.140), there

are infinitely many possible choices of representationW and labels b, c. Generically,
we expect that it should always be possible to choose enough W, b, c’s to solve
(4.140). This was shown explicitly in [61] when O1,O2 are traceless-symmetric
tensors.37

For simplicity, we will sometimes write (4.140) as

O1

a

O2

O`
=

O1

O2

O`a . (4.142)

37It would be interesting to characterize the minimal set of W ’s needed to build all possible
structures.
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4.4 Conformal blocks
4.4.1 Gluing three-point functions
A general conformal block can be expressed as the integral of a product of three-
point functions. For simplicity, consider the case where the external and inter-
nal operators are scalars. Given three-point functions 〈φ1(x1)φ2(x3)φ(x)〉 and
〈φ(y)φ3(x3)φ4(x4)〉, the following object is a solution to the conformal Casimir
equation with the correct transformation properties to be a conformal block,

1
N∆

∫
dd x ddy〈φ1(x1)φ2(x3)φ(x)〉

1
(x − y)2(d−∆) 〈φ(y)φ3(x3)φ4(x4)〉, (4.143)

where ∆ = ∆φ. This can be understood, for example, by writing the integral in a
manifestly conformally-invariant way [54].38,39

Let us denote the operation which glues two φ-correlators by40

|φ〉 ./ 〈φ| ≡
1
N∆

∫
dd x ddy |φ(x)〉

1
(x − y)2(d−∆) 〈φ(y) | = φ φ .

(4.144)

We should choose the normalization N∆ by demanding that

φ φ = φ φ . (4.145)

That is, we demand that the shadow integral acting on a two-point function 〈φφ〉
gives the identity transformation. In the case of scalars, this fixes the normalization
factor to be [54, 63, 65]

N∆ =
πdΓ(∆ − d

2 )Γ( d
2 − ∆)

Γ(∆)Γ(d − ∆)
. (4.146)

38In Euclidean signature, we take the range of integration of x, y to be all of Rd . In this case
(4.143) produces a solution to the conformal Casimir equation with the wrong boundary conditions
to be a conformal block. However, the conformal block can be extracted by taking a suitable linear
combination of analytic continuations of the integral [54]. One can alternatively isolate the conformal
block by performing the integral in Lorentzian signature over a domain defined by the lightcones
of the four points x1, x2, x3, x4 [203]. Calculations involving differential operators are insensitive to
these issues because the differential operators always transform trivially under monodromy. Thus,
our methods allow us to study spinning versions of any of the solutions to the Casimir equation.

39We expect that (4.143) only converges when ∆ lies on the principal series ∆ ∈ d
2 + iR. We

obtain a general conformal block by analytically continuing in ∆.
40Instead of thinking of the gluing operation (4.144) in terms of shadow integrals, we can

alternatively think of it as simply a sum over normalized descendants of φ. The only properties of the
gluing procedure that we use in this work are that it is bilinear, conformally-invariant, and satisfies
the normalization condition (4.145).
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For spinning operators, O glues to its dual-reflected representation O† — i.e., the
representation with which O has a nonzero two-point function,

|O∆,ρ〉 ./ 〈O
†

∆,ρ†
| ≡ O O†

≡
1
N∆,ρ

∫
dd x ddy |O∆,α (x)〉

tαα (x − y)
(x − y)2(d−∆) 〈O

†

∆,α
(y) |. (4.147)

Here, tαα (x − y) is the tensor structure appearing in the two point function of the
shadow operators 〈ÕÕ†〉. We will not need the explicit expression, but simply the
normalization condition

O O = O O . (4.148)

A general conformal block is given by

W ab ≡ 〈O1O2O〉
(a) ./ (b)〈O†O3O4〉 = a b

O1

O2 O3

O4

O†O
.

(4.149)

To perform computations with differential operators and shadow integrals, we must
understand how to move differential operators from one side of a shadow integration
to another — i.e., how to integrate by parts. This can be done purely diagrammati-
cally, just from the definition (4.148).

First, consider a two-point function. Moving a differential operator past a two-point
vertex is a special case of the definition of a 6 j symbol,

c

O†

1 O′

W

O
=

∑
m




O† 1 O′†

O′ W O




·c

·m m

O†

1 O′

W

O′†
. (4.150)

A three-point vertex where one of the legs is the unit operator 1 is simply a two-
point vertex. We could of course omit the unit operator from the above diagram,
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but we have temporarily included it to emphasize that (4.150) is a special case of
(4.102).41 Again, the notation “·" means there is a unique corresponding structure
or differential operator.

Now, let us add shadow integrals onto both O and O′ in the above diagram. Using
(4.148), we find

cO O′†

W

O′
=

∑
m




O† 1 O′†

O′ W O




·c

·m
mO O′†

W

O†

(4.151)

Equation (4.151) essentially implements two integrations by parts in the double
integral (4.144), allowing us to move a differential operator from one side of a
shadow integral to another. In symbolic notation it has the form

|D (c)AO〉 ./ 〈O′† | =
∑

m




O† 1 O′†

O′ W O




·c

·m
|O〉 ./ 〈D (m)AO′† |. (4.152)

4.4.2 Spinning conformal blocks review
The expression (4.149) for a general block can be combined with the “differential
basis" trick (4.140) to express certain conformal blocks as derivatives of scalar
blocks [61]. Suppose the exchanged operator O = O` is a traceless-symmetric
tensor of spin `. Applying (4.140) twice, we find

a b

O1

O2 O3

O4

O`O`
=

O1

O2 O3

O4

a b
O`O`

.

(4.153)

Note that the right-hand side is a differential operator acting on conformal blocks
with external scalars. In equations (4.153) reads

G(a,b)O1O2O3O4
∆,`

(xi) = D (a)O1O2
φ1φ2

D (b)O3O4
φ3φ4

Gφ1φ2φ3φ4
∆,`

(xi). (4.154)
41To be precise, we have established (4.102) only for non-degenerate operators Oi . However,

as explained in section 4.3.2.3, the objects on either side of (4.150) span the space of covariant
two-point functions, which provides the missing ingredient.
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The objects in (4.154) and (4.141) carry SO(d) indices which we have suppressed
for simplicity.

Note that symmetric traceless tensors (STTs) are the only representations that can
appear in an OPE of two scalars. Because D

(a)OiOj

φiφ j
can’t change the representation

of the exchanged operator, the expression (4.154) only works for conformal blocks
with an exchanged STT. This is sufficient to compute all bosonic blocks in 3d, since
all bosonic (irreducible) 3d Lorentz representations are STTs. However, in general
there exist blocks which cannot be computed using (4.154).

To compute more general blocks, an approach advocated in [54, 61] is to identify the
simplest set of blocks with general exchanged representations — so-called “seed”
blocks — compute them using some other method and apply the trick (4.154) to
those.42 However, our new techniques will make it simple to modify (4.153) and
(4.154) to compute any type of conformal block (including seed blocks).

4.4.3 Expression for general conformal blocks
The basic idea is to allow the differential operators acting on the left and right to be
conformally-covariant, instead of simply invariant,

G(a,b)O1O2O3O4
O

(xi) = D (a) A
left D (b)

rightAGφ1φ2φ3φ4
∆,`

(xi), (4.155)

where A is an index for some finite-dimensional representation W of SO(d + 1, 1).
The exchanged operator then lives in the tensor product W ⊗V∆,`, which can contain
primaries with more general Lorentz representations. We must be careful to choose
D (a)A

left and D (b)
rightA so that precisely one irreducible subrepresentation of W ⊗ V∆,`

contributes. However, this can be done easily and systematically using the techniques
we have developed.

Let us begin with the object we would like to compute: a conformal block for the
exchange of an operator O transforming in V∆,ρ,

G(a,b)O1O2O3O4
O

(xi) = a b

O1

O2 O3

O4

O†O
. (4.156)

42Seed blocks for 4d theories were classified in [62] and computed in [58] using the Casimir
equation. In 3d, there are two types of seed blocks: external scalars with exchange of spin ` ∈ Z, and
external fermion+scalars with exchange of spin-` ∈ Z + 1

2 . A recursion relation for the latter type of
3d seed block was computed in [81].
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Let W be a finite-dimensional representation of the conformal group such that
W ∗ ⊗ V∆,ρ contains a spin-` STT representation O`. We can introduce a bubble of
W and O` in the middle of the diagram, so that the shadow integral itself involves a
spin-` representation. Note that

O m n O†

W

O`

=
∑

p




O† 1 O`

O` W O




·m

·p
O p n O†

W

O`

=
∑

p




O† 1 O`

O` W O




·m

·p

*.
,

O†

O`W
+/
-

pn

O O†
, (4.157)

where we have used (4.151) to move the differential operator D (m) A from one side
of the shadow integral to the other, and (4.138) to simplify a product of differential
operators D (p)AD

(n)
A on a single leg. Thus, we have

G(a,b)O1O2O3O4
O

(xi) =
1

Mmn
a b

O1

O2 O3

O4

m n
O†O`O

W

, (4.158)

where

Mmn ≡
∑

p




O† 1 O`

O` W O




·m

·p

*.
,

O†

O`W
+/
-

pn

. (4.159)

We do not sum over m, n in (4.158) — rather we can choose any m, n such that Mmn

is nonzero.

Now we use crossing to move the W vertices to the external legs. Let us focus on



134

the left-hand side of the diagram (4.158),

a m

O1

O2

O`

W

O
=

∑
O ′,r,s




O1 O2 O′

O` W O




am

rs

r

s

O1

O2

O`

W

O′ (4.160)

Now O2 and O′ participate in a three-point vertex with an STT operator O`, so we
can use (4.140) to obtain

=
∑
O ′,r,s




O1 O2 O′

O` W O




am

rs

r

s

O1

O2

O`

W

O′
. (4.161)

Thus, we find

D (a)A
left 〈φ1φ2O`〉 =

1
√

Mmn
D

(m)A
x 〈O1O2O(x)〉(a),

where D (a)A
left ≡

1
√

Mmn

∑
O ′,r,s




O1 O2 O′

O` W O




am

rs

D
(s)A
x1 D (r)O ′O2

φ1φ2
, (4.162)

where the x subscript indicates that D (m)A
x acts on the operator O(x). Similarly,

D (b)
rightA〈φ4φ3O`〉 =

1
√

Mmn
D

(n)
A,x〈O4O3O

†(x)〉(b)

D (b)
rightA ≡

1
√

Mmn

∑
O ′,t,u




O4 O3 O′

O` W ∗ O†




bn

tu

D
(u)
x4,A

D (t)O ′O3
φ4φ3

. (4.163)

Together with (4.159), this gives (4.155).

Schematically, applying D (a)A
left D (b)

rightA to a scalar block results in a graph with the
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topology

=
∑

. (4.164)

The inner object is a conformal block for external scalars (dashed lines). Weight-
shifting operators dress it in a way such that (a component of) the tensor W ⊗ O`
propagates from left to right.

The above calculation has the advantage of being extremely general. However, it
requires us to make non-canonical choices of W and the differential operators m, n.
Different choices for these objects will result in naively different, but equivalent
expressions for our conformal block in terms of derivatives of scalar blocks. In
some cases, to obtain the simplest possible expression, we may want to proceed
slightly differently.

4.4.4 Expression for seed blocks
Let us consider for example the problemof computing the seed blocks. For simplicity
of discussion, wewill restrict to the case of even d. The case of odd d can be analyzed
similarly43 (for example, we construct the 3d seed block in section 4.4.4.1).

As mentioned above, seed blocks are the simplest conformal blocks that exchange
a primary O in a given SO(d) representation. In particular, we can always choose
the external operators in a way such that there exists a single three-point structure
on either side of the block, for example

O1

O2 O3

O4

O†O
, (4.165)

43The complication in the case of odd d is that when O is a fermion, we cannot choose the
external operators so that there is a single tensor structure on each side of the seed block. Instead,
the minimum is two. This is related to the fact that the irreducible fermionic representations of
SO(d − 1) are necessarily chiral when d is odd.



136

where O1 and O3 are scalars, while O2 and O4 transform in representations which
are obtained from that of O by, for example, removing the first row of the SO(d)
Young diagram.

To express this seed block in terms of scalar blocks, let us first focus on the left
three-point structure. We can write

O1

O2

O
=

1
Cmn

n

m

O1

O2

O

O`

W

O′2 , (4.166)

where due to the uniqueness of the tensor structures, we are free to choose n,m and
W as long as O′2 is a scalar and O` is a STT. In what follows, we will perform
manipulations with the operator labeled by m, but we will leave n untouched. For
this reason, it is convenient to choose W and n so that n is a 0-th order differential
operator. According to theorem 2, this means that the primary of W ∗ should
transform in the same representation as O2, i.e., (W ∗)− j = (W j )∗ = ρ2, where ρi is
the SO(d) representation of Oi.44 On the other hand, the condition for existence of
the structure on the left is

(ρ ⊗ ρ2)SO(d−1) , 0, (4.167)

where ρ is the representation of O. This is equivalent to saying that there is a STT
in the tensor product ρ ⊗ ρ2 = ρ ⊗ (W j )∗. In turn, this leads to

ρ ∈ STT ⊗W j . (4.168)

According to theorem 2, this implies that we can use an order-(2 j + 1) differential
operator associated to W ∗ in place of m.

44Such a W ∗ always exists. In fact, there are infinitely many choices differing by the value of j,
and the W ∗ with minimal j is obtained by prepending a 0 to the list of Dynkin labels of ρ2 (in the
natural ordering where the vector label is the first and the spinor labels are the last).
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We can now use (4.151) to move m to the right three-point structure to find the piece

∑
c




O` 1 O†

O W ∗ O`




·m

·c
cO`
O†

W

O`

O3

O4

, (4.169)

to which we can apply a crossing transformation to find

=
∑

c

∑
O ′3,a,b




O` 1 O†

O W ∗ O`




·m

·c




O3 O4 O′3
O` W ∗ O†




·c

ab

b

aO`

O′3

W

O`

O3

O4

.

(4.170)

We now use (4.140) to write the full seed block as

1
Cmn

∑
c

∑
O ′3,a,b




O` 1 O†

O W ∗ O`




·m

·c




O3 O4 O′3
O` W ∗ O†




·c

ab

O1

O2

n b

a

O′3

W

O`

O3

O4

.

(4.171)

The advantage of this over the more general (4.164) is that we have been able to
choose the differential operator n to be of zeroth order, and we also avoided acting
with differential operators on one of the legs. This reduces the order of the full
differential operator acting on the scalar conformal block relative to the general
expression. Let us now consider some examples.

4.4.4.1 Example: seed block in 3d

Our first example is the fermion seed block in 3 dimensions. The SO(3) representa-
tions are labeled by a single (half-)integer `. If ` is integral, then the representation
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is bosonic, and operators O` can be exchanged in a four-point function of scalars. If
` is half-integral, then the representation is fermionic and O` can be exchanged in a
scalar-fermion four-point function45

〈ψ∆1 (s1, x1)φ∆2 (x2)φ∆3 (x3)ψ∆4 (s4, x4)〉. (4.172)

It is therefore possible to express any conformal block in terms of a scalar or
fermion-scalar block. The latter were computed in [81] by a Zamolodchikov type
recursion relation. In this section we will show how the fermion-scalar block can be
expressed as a third-order differential operator acting on a scalar conformal block,
thus reducing all conformal blocks in 3d to derivatives of scalar blocks.

For ease of comparison, we will follow the conventions of [81]. Let us review basic
properties of (4.172). On each side of conformal block there exist 2 three-point
structures, which can be defined using the 5d embedding formalism as

〈ψ∆1φ∆2O∆,`〉
(+) = +

ψ1

φ2

O` =
〈S1S0〉〈S0X1X2S0〉

`− 1
2

X
∆1+∆2−∆+`−

1
2

2
12 X

∆2+∆−∆1+`−
1
2

2
20 X

∆1+∆−∆2+`+
1
2

2
01

,

〈ψ∆1φ∆2O∆,`〉
(−) = −

ψ1

φ2

O` =
〈S1X2S0〉〈S0X1X2S0〉

`− 1
2

X
∆1+∆2−∆+`+

1
2

2
12 X

∆2+∆−∆1+`+
1
2

2
20 X

∆1+∆−∆2+`−
1
2

2
01

,

(4.173)

and analogously for the right three-point function (1→ 4, 2→ 3). Here the index 0
refers to the intermediate operator O` of dimension∆, and we labeled the three-point
structures by their P-parity. Accordingly, there exist 4 conformal blocks, which can

45Since our analysis is purely kinematical, we will label operators by their scaling dimensions
and spins.
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be expanded in a basis of four-point tensor structures,

Gab
seed(s1, s4, xi) = a b

ψ1

φ2 φ3

ψ4

O`O`
=

4∑
I=1

gab
I (z, z)TI

4(s1, s4, xi).

(4.174)

As indicated, there exist 4 four-point tensor structuresTI
4. Out of them, two structures

are parity-even and participate in conformal blocksG++,G−−, and two are parity-odd
and participate in G+− and G−+. We give their exact form in appendix C.5.

We now compute the seed blocks using the algorithm46 from section 4.4.4, and we
will use the spinor representation W = S of the 3d conformal group to translate
traceless-symmetric representations into fermionic representations. The first step is
to write the left three-point structures in the form (4.166). Let us define the scalar
three-point structures as

〈φ∆1φ∆2O∆,`〉 =

φ1

φ2

O`
=

〈S0X1X2S0〉
`

X
∆1+∆2−∆+`

2
12 X

∆2+∆−∆1+`
2

20 X
∆1+∆−∆2+`

2
01

. (4.175)

In (4.166) we will use the zeroth order operator D−+a in place of n. For m we can
take any differential operator of the appropriate parity. A simple choice is to use
D−+a for the parity even structure, and D−−a for the parity-odd structure. We then
have

〈ψ∆1φ∆2O∆,`〉
(±) =

1
C±
〈D−+1 D

−±
0 〉〈φ∆1+

1
2
φ∆2O∆+1

2 ,`∓
1
2
〉. (4.176)

It is easy to find by a direct computation that

C+ = 1, C− = 2` + 1. (4.177)

Note that O
∆+

1
2 ,`∓

1
2
is the operator which is going to be exchanged in the scalar

block. If we chose different operators for m (i.e., D+∓) in (4.166), then we would
relate the seed block to different scalar blocks (in particular, it doesn’t make sense
to mix these choices).

46Because we want to follow the conventions of [81], some minor modifications to the algorithm
are required, such as reordering of the operators.
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Crossing of 2-point functions The next step is to learn how to push the operators
D−±a through the shadow integral. For that we need to fix the normalization of
two-point functions, which we choose to be

〈O∆,` (S1, X1)O∆,` (S2, X2)〉 = i2` 〈S1S2〉
2`

X∆+`
12

. (4.178)

The definition of 6 j symbols (4.150) is in our case

D−±2,a 〈O∆+1
2 ,`∓

1
2
(S1, X1)O

∆+
1
2 ,`∓

1
2
(S2, X2)〉 =

=




O
∆+

1
2 ,`∓

1
2

1 O∆,`

O∆,` S O
∆+

1
2 ,`∓

1
2




·(−±)

·(+∓)

D+∓1,a 〈O∆,` (S1, X1)O∆,` (S2, X2)〉. (4.179)

We can explicitly compute




O
∆+

1
2 ,`−

1
2

1 O∆,`

O∆,` S O
∆+

1
2 ,`−

1
2




·(−+)

·(+−)

=
i

8`(∆ − 1)(∆ − ` − 1)
, (4.180)




O
∆+

1
2 ,`+

1
2

1 O∆,`

O∆,` S O
∆+

1
2 ,`+

1
2




·(−−)

·(++)

=
i(2` + 1)

4(∆ − 1)(∆ + `)
, (4.181)

and use these coefficients in (4.151) to arrive at (4.169). At this point, we have
expressed the seed block in the form

G±b
seed(s1, s4, xi) =

=
1

C±




O`∓ 1
2

1 O`

O` S O`∓ 1
2




·(−±)

·(+∓)

Ω
cdD−+1,c 〈φ∆1+

1
2
φ∆2O∆+1

2 ,`∓
1
2
〉 ./ D+∓0,d 〈O∆,`φ∆3ψ∆4〉

(b),

(4.182)

where ./ stands for shadow integral.
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Crossing of three-point functions Now we are going to perform the crossing
transformation on the right three-point function to write it as

D+∓0,d 〈O∆,`φ∆3ψ∆4〉
(b) =

∑
b′




φ∆3 ψ∆4 ψ
∆3+

1
2

O∆,` S O
∆+

1
2 ,`∓

1
2




b(+∓)

b′(−−)

D−−3,d 〈O∆+1
2 ,`∓

1
2
ψ
∆3+

1
2
ψ∆4〉

(b′)

+




φ∆3 ψ∆4 ψ
∆3−

1
2

O∆,` S O
∆+

1
2 ,`∓

1
2




b(+∓)

b′(+−)

D+−3,d 〈O∆+1
2 ,`∓

1
2
ψ
∆3−

1
2
ψ∆4〉

(b′) .

(4.183)

To proceed, we need to choose a basis of tensor structures for three-point functions
of the type 〈O

∆+
1
2 ,`∓

1
2
ψ
∆3±

1
2
ψ∆4〉. We define

t1 =
〈S1S2〉〈S3X1X2S3〉

`

X `
12

+
〈S1S3〉〈S2S3〉〈S3X1X2S3〉

`−1

X `−1
12

, (4.184)

t2 =
〈S1S2〉〈S3X1X2S3〉

`

X `
12

+ 2
〈S1S3〉〈S2S3〉〈S3X1X2S3〉

`−1

X `−1
12

, (4.185)

t3 =
〈S3X1X2S3〉

`−1

X
`+

1
2

12 X
−

1
2

23 X
−

1
2

31

X23〈S1S3〉〈S2X1S3〉, (4.186)

t4 =
〈S3X1X2S3〉

`−1

X
`+

1
2

12 X
−

1
2

23 X
−

1
2

31

X13〈S2S3〉〈S1X2S3〉, (4.187)

where the first two structures are parity-even and the second two are parity-odd.47
In terms of these structures we set

〈ψ1ψ2O`〉
(b) =

tb

X
∆1+∆2−∆3−`+1

2
12 X

∆2+∆3−∆1+`
2

23 X
∆3+∆1−∆3+`

2
31

. (4.188)

47We choose this peculiar basis only for the purposes of presentation, because in it 6 j symbols
have the simplest form. In practice we used the basis (4.119), in which we know the general 6 j
symbols for the spinor representation.
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Wecan nowcompute the 6 j symbols in (4.183). For example, the only non-vanishing
symbols for b = + and D++ on the left of (4.183) are




φ∆3 ψ∆4 ψ
∆3+

1
2

O∆,` S O
∆+

1
2 ,`+

1
2




+(++)

1(−−)

= (−1)`+
1
2

(∆ − 3
2 )(∆ + ` + ∆3 − ∆4 −

1
2 )(∆ + ` + ∆3 + ∆4 −

3
2 )

∆3 −
3
2

, (4.189)




φ∆3 ψ∆4 ψ
∆3+

1
2

O∆,` S O
∆+

1
2 ,`+

1
2




+(++)

2(−−)

]

= (−1)`+
1
2

(∆ + ` + ∆3 − ∆4 −
1
2 )((∆ − 1)(∆ + ` + ∆3 + ∆4 −

5
2 ) − 1

2 )

∆3 −
3
2

, (4.190)




φ∆3 ψ∆4 ψ
∆3−

1
2

O∆,` S O
∆+

1
2 ,`+

1
2




+(++)

3(+−)

= (−1)`+
1
2

(∆ + ` + ∆3 − ∆4 −
1
2 )

4(∆3 −
3
2 )(∆3 − 2)

, (4.191)




φ∆3 ψ∆4 ψ
∆3−

1
2

O∆,` S O
∆+

1
2 ,`+

1
2




+(++)

4(+−)

= (−1)`+
1
2

(∆ − 1)(∆ + ` − ∆3 + ∆4 +
1
2 )

2(∆3 −
3
2 )(∆3 − 2)

. (4.192)

The other symbols vanish due to space parity. The are 12 more non-vanishing 6 j

symbols for other choices of b and of the operator on the left, which we won’t list
here since they represent only an intermediate step in our calculation.

Differential basis The final step is to express the three-point structures

〈O
∆+

1
2 ,`±

1
2
ψ
∆3±

1
2
ψ∆4〉

(b) (4.193)

in terms of derivatives acting on scalar thee-point structures. This is standard, and
this particular case was solved in [39], so we do not explain it in detail. We only
note that the operators which create the parity-even structures t1 and t2 should be
parity even,

t1, t2 ∼ 〈D
++
3 D

++
4 〉, 〈D

−+
3 D

−+
4 〉, (4.194)

while operators which create parity-odd structures have to be parity-odd,

t3, t4 ∼ 〈D
−+
3 D

++
4 〉, 〈D

++
3 D

−+
4 〉. (4.195)
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The recursion relation Assembling everything together, we arrive at the following
expressions for the seed blocks in terms of third-order differential operators acting
on scalar blocks,

G++seed,G
−−
seed =v1〈D

−+
1 D

−−
3 〉〈D

−+
3 D

++
4 〉〈φ∆1+

1
2
φ∆2φ∆3+1φ

∆4−
1
2
〉

+ v2〈D
−+
1 D

−−
3 〉〈D

++
3 D

−+
4 〉〈φ∆1+

1
2
φ∆2φ∆3φ∆4+

1
2
〉

+ v3〈D
−+
1 D

+−
3 〉〈D

++
3 D

++
4 〉〈φ∆1+

1
2
φ∆2φ∆3−1φ

∆4−
1
2
〉

+ v4〈D
−+
1 D

+−
3 〉〈D

−+
3 D

−+
4 〉〈φ∆1+

1
2
φ∆2φ∆3φ∆4+

1
2
〉, (4.196)

G+−seed,G
−+
seed =v1〈D

−+
1 D

−−
3 〉〈D

++
3 D

++
4 〉〈φ∆1+

1
2
φ∆2φ∆3φ∆4−

1
2
〉

+ v2〈D
−+
1 D

−−
3 〉〈D

−+
3 D

−+
4 〉〈φ∆1+

1
2
φ∆2φ∆3+1φ

∆4+
1
2
〉

+ v3〈D
−+
1 D

+−
3 〉〈D

−+
3 D

++
4 〉〈φ∆1+

1
2
φ∆2φ∆3φ∆4−

1
2
〉

+ v4〈D
−+
1 D

+−
3 〉〈D

++
3 D

−+
4 〉〈φ∆1+

1
2
φ∆2φ∆3−1φ

∆4+
1
2
〉. (4.197)

The coefficients vi are different for each of the blocks, and we give the explicit
expressions in appendix C.5. The scalar blocks in the above expressions for G+±seed
correspond to exchange of [∆ + 1

2, ` −
1
2 ], while for G−±seed the exchanged primary is

[∆ + 1
2, ` +

1
2 ].

Decomposition into components Note that the scalar conformal blocks have the
form

〈φ∆1φ∆2φ∆3φ∆4〉 =
1

x∆1+∆2
12 x∆3+∆4

34

*
,

x2
14

x2
24

+
-

α

*
,

x2
14

x2
13

+
-

β

Gα,β
∆,`

(z, z), (4.198)

where α = −1
2∆12, β = 1

2∆34, and depend essentially only on α and β and not the
individual dimensions ∆i. We then see that e.g. for G++seed we only need the scalar

blocks G
α−

1
4 , β−

1
4

∆+
1
2 ,`−

1
2
and G

α−
1
4 , β+

3
4

∆+
1
2 ,`−

1
2
. There exists a second-order differential operator

(see [64] and section 4.4.5) which relates these two blocks,

G
α−

1
4 , β+

3
4

∆+
1
2 ,`−

1
2

(z, z) ∼ (∂z∂z + . . .)G
α−

1
4 , β−

1
4

∆+
1
2 ,`−

1
2

(z, z). (4.199)

In (4.196) only a first order operator acts on G
α−

1
4 , β+

3
4

∆+
1
2 ,`−

1
2
, and thus we can use (4.199)

to reduce (4.196) to another third-order operator acting on the single scalar block.
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In particular, we can write

G++seed = g++1 (z, z)
[−1

2, 0, 0,−
1
2 ] + [1

2, 0, 0,
1
2 ]

2
+ g++2 (z, z)

[−1
2, 0, 0,

1
2 ] + [1

2, 0, 0,−
1
2 ]

2
,

(4.200)

where the tensor structures are defined in appendix C.5 and

g++k (z, z) =
i(−1)`−

1
2

`(∆ − ` − 1)(∆ − 1)
(zz)−

∆1+∆2+
1
2

2 D
++
k G

α−
1
4 , β−

1
4

∆+
1
2 ,`−

1
2

(z, z). (4.201)

The differential operators D++k are given by48

D
++
1 (z, z) =z∂z Dz − z∂z Dz − (z∂z − z∂z)

zz
2(z − z)

(
(1 − z)∂z − (1 − z)∂z

)
+

(∆ − `)(∆ − ` − 3)
4

(z∂z − z∂z) +
∆ − ` − 3

2
(Dz − Dz), (4.202)

D
++
2 (z, z) =∇z Dz + ∇z Dz + (∇z + ∇z)

zz
2(z − z)

(
(1 − z)∂z − (1 − z)∂z

)
−

(∆ − `)(∆ − ` − 3)
4

(∇z + ∇z) +
(2` + 1)(∆ − ` − 3)(∆ − 3

2 )
4

,

(4.203)

where

Dz = z2(1 − z)∂2
z − (α′ + β′ + 1)z2∂z − α

′β′z, α′ = α − 1
4, β

′ = β − 1
4,

(4.204)

∇z = z∂z +
z

z − z
, (4.205)

and Dz, ∇z are defined by exchanging z and z.

The same reduction to a single block happens for G−−seed. For G+−seed and G−+seed the
situation is a little trickier since there is a second order differential operator acting
on the “wrong” scalar block. However, it turns out that its second-order piece is
in fact coming precisely from the dimension shifting operator, and we again can
reduce to a third-order differential operator acting on a single scalar block. Explicit
expressions for these blocks can be written in a compact form given in appendix C.5
together with an explanation of the normalization conventions.

48In simplifying these expressions for the differential operators we made use of the quadratic
Casimir equation satisfied by the scalar conformal blocks.
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4.4.4.2 Example: seed blocks in 4d

In 4-dimensions the operators in a generic spin representation are labeled by 2
non-negative integers49 ` and `

O∆,ρ = O
(`,`)
∆

. (4.206)

It is convenient to distinguish different classes of representations by a parameter p

defined as
p ≡ |` − ` |. (4.207)

Operators with p = 0 are the symmetric traceless tensors. Using (4.96) one can
easily check that any given four-point function can exchange operators with only a
finite number of different values of p. This implies that contrary to the 3-dimensional
case, in 4-dimensions we need infinitely many seed conformal blocks, parametrized
by p.

A calculation of the general 4-dimensional seed conformal blocks was first per-
formed in [58], where the explicit expressions for p ≤ 8 were found. In this section
we perform an alternative computation of the seed blocks by using our new ma-
chinery and the strategy outlined in section 4.4.4. Our approach is to express the p

seed blocks in terms of the p − 1 seed blocks. Knowing such a relation allows one
to apply it recursively p times to get an expression of the p seed block in terms of
the derivatives of the scalar p = 0 Dolan-Osborn block [57, 63]. Since the latter
is known in terms of 2F1 hypergeometric functions, this also gives hypergeometric
expressions for the seed blocks, equivalent to those in [58].50

Let us note that the explicit hypergeometric expressions of [58] are quite complex
already for p = 2. In numerical conformal bootstrap one usually requires simple
rational approximations to conformal blocks [35, 36, 47], which are hard to construct
from these expressions. On the other hand, our differential recurrence relation is
rather simple, and we thus hope that it will find applications in the numerical
bootstrap.

As in section 4.2.5.4, it will be convenient to use the 6d embedding formalism
described in [2, 54, 55, 58, 62]. In what follows we use the conventions of [2],
and all the computations are performed using the Mathematica package described

49Notice a difference in conventions relative to the 3-dimensional case where ` can be half-integer
for fermionic operators.

50With normalization conventions derived in [2]. We performed the check for p ≤ 4.
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therein. To avoid repetition, the notation and conventions from [2] will be used in
this section without explanation.51

A simple choice for the seed four-point function where the operator O (`,`)
∆

with a
given p can be exchanged in the s-channel is52

〈F
(0,0)

1 F
(p,0)

2 F
(0,0)

3 F
(0,p)

4 〉. (4.208)

The conformal block associated to the exchange of O (`,`)
∆

in the seed 4-point function
is

W (p)
`,`
≡ 〈F (0,0)

∆1
F (p,0)
∆2
O

(`,`)
∆
〉 ./ 〈O

(`,`)
∆ F (0,0)

∆3
F (0,p)
∆4
〉. (4.209)

We distinguish 2 cases depending on the sign of ` − `. Using the convention of [58]
we define the “seed"53 and “dual seed" conformal blocks as

W (p)
seed ≡ W (p)

`,`
, ` ≤ `, (4.210)

W
(p)
dual seed ≡ W (p)

`,`
, ` ≥ `. (4.211)

The seed and the dual seed conformal blocks can be further decomposed into
components as

W (p)
seed = K4

p∑
e=0

(−2)p−eH (p)
e (z, z)

[
Î42

] e [
Î42
31

] p−e
, (4.212)

W
(p)
dual seed = K4

p∑
e=0

(−2)p−eH
(p)
e (z, z)

[
Î42

] e [
Î42
31

] p−e
. (4.213)

The parameter e = 0, . . . , p labels the possible 4-point tensor structures. In this
section we focus solely on the seed blocks H (p)

e (z, z). The case of the dual blocks
H

(p)
e (z, z) is completely analogous and will be addressed in appendix C.6.

The calculation essentially follows the algorithm in section 4.4.4, themain difference
being that we go from exchange of (`, `+ p) to (`, `+ p−1) instead of going directly
to an STT exchange. The calculation is also largely analogous to the 3-dimensional

51The only difference is that we avoid using the terminology of [2, 58, 62] in which “conformal
partial waves” refer to what we normallymean by conformal blocks, while “conformal blocks” refer to
the coordinates in a basis of four-point tensor structures. When there is a danger of misinterpretation,
we call the latter simply the components of conformal blocks. We do so to avoid the possible
confusion with conformal partial waves from harmonic analysis.

52The seed 4-point functions are chosen so that there is a unique conformal block for the exchange
ofO (`,`)

∆
. There is an ambiguity in choosing the seed 4-point function, and here we use the convention

of [58].
53In this paper we sometimes use “primal seed” to distinguish from the dual seeds.
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calculation in section 4.4.4.1. For convenience, we start the algorithm from the right
three-point structure instead of going from the left.

We first rewrite the right three-point function entering (4.209) as

〈O
(`+p,`)
∆ F (0,0)

∆3
F (0,p)
∆4
〉 = (D

−+0
0 · D4,−0+) 〈O

(`+p−1,`)
∆+1/2 F (0,0)

∆3
F (0,p−1)
∆4+1/2 〉. (4.214)

The subscript 0 indicates that D−+0
0 acts on the internal operator O. We would like

to move it across ./ (integrate by parts) using the rule (4.152).

Crossing of 2-point functions The definition of the 6 j symbol entering (4.152)
in the present case is

D
+0−
2 a 〈O

(`+p,`)
∆ (X1, S1, S1)O (`,`+p)

∆
(X2, S2, S2)〉

= AD
−+0
1 a 〈O

(`+p−1,`)
∆+1/2 (X1, S1, S1)O (`,`+p−1)

∆+1/2 (X2, S2, S2)〉, (4.215)

where

A ≡




O
(`+p,`)
∆ 1 O

(`+p−1,`)
∆+1/2

O
(`,`+p−1)
∆+1/2 S O

(`,`+p)
∆




·(+0−)

·(−+0)

= 2i(` + p)(∆ − p
2 − 1)(∆ − ` − p

2 − 2).

(4.216)
Applying (4.152) and (4.214) to (4.209) we arrive at

W (p)
seed = A

−1 (D
+0−
0 · D4,−0+)〈F (0,0)

∆1
F (p,0)
∆2
O

(`,`+p)
∆

〉 ./ 〈O
(`+p−1,`)
∆+1/2 F (0,0)

∆3
F (0,p−1)
∆4

〉,

(4.217)
where D+0−

0 now acts on the left three-point function.

Crossing of 3-point functions We now use the crossing equation for the 3-point
function

D
+0−
0 a 〈F

(0,0)
∆1

F (p,0)
∆2
O

(`,`+p)
∆

〉 =

2∑
n=1
B (n)D

−−0
1 a 〈F

(1,0)
∆1+1/2F (p,0)

∆2
O

(`,`+p−1)
∆+1/2 〉(n)+

2∑
n=1
C (n)D

+0−
1 a 〈F

(0,1)
∆1−1/2F (p,0)

∆2
O

(`,`+p−1)
∆+1/2 〉(n), (4.218)

where B (n) and C (n) denote the 6 j symbols

B (n) ≡




F (0,0)
∆1

F (p,0)
∆2

F (1,0)
∆1+1/2

O
(`,`+p−1)
∆+1/2 S O

(`,`+p)
∆




·(+0−)

(n)(−−0)

,

C (n) ≡




F (0,0)
∆1

F (p,0)
∆2

F (0,1)
∆1−1/2

O
(`,`+p−1)
∆+1/2 S O

(`,`+p)
∆




·(+0−)

(n)(+0−)

. (4.219)



148

The 3-point functions in the right-hand side of (4.218) have the following form

〈F (1,0)
∆1+1/2F (p,0)

∆2
O

(`,`+p−1)
∆+1/2 〉(i) = K3[Î32]p−1[ Ĵ3

12]`−1 *.
,

Î32K̂13
2

Î31K̂23
1

+/
-
,

〈F (0,1)
∆1−1/2F (p,0)

∆2
O

(`,`+p−1)
∆+1/2 〉(i) = K ′3[Î32]p−1[ Ĵ3

12]`−1 *.
,

Î13 Î32

Î12 Ĵ3
12

+/
-
. (4.220)

Again, we can find the 6 j symbols B (n) and C (n) by an explicit calculation,

B (1) = B (2) −
`(∆1 + ∆2 + ∆ − ` − p − 6)

4(∆1 − 2)
×(

4(` + p + 1)(∆1 − ∆2 + ` +
p
2
+ 1) + (∆1 − ∆2 + ∆ + `)(2∆ − 4` − 3p − 6)

)
,

B (2) = −
p(∆1 − ∆2 + ∆ + `)(2∆ − 2` − p − 4)(∆1 + ∆2 + ∆ − ` − p − 6)

4(∆1 − 2)
,

C (1) = −
`(2∆ + p − 2)(∆1 − ∆2 − ∆ + ` + p + 2)

4(∆1 − 3)(∆1 − 2)
,

C (2) =
p(−2∆ + 2` + p + 4)(∆1 − ∆2 − ∆ + ` + p + 2)

4(∆1 − 3)(∆1 − 2)
. (4.221)

Differential basis The last step is to relate the 3-point functions entering (4.218)
to the seed 3-point functions 〈F (0,0)

∆′1
F (p−1,0)
∆′2

O
(`,`+p−1)
∆+1/2 〉 with shifted dimensions by

using the differential basis trick. This is standard [61, 62], so we simply note that
we use the following differential operators

〈F (1,0)
∆1+1/2F (p,0)

∆2
O

(`,`+p−1)
∆+1/2 〉(n) ∼ (D

−+0
1 · D2,++0), (D1,++0 · D

−+0
2 ),

〈F (0,1)
∆1−1/2F (p,0)

∆2
O

(`,`+p−1)
∆+1/2 〉(n) ∼ (D

+0+
1 · D2,++0), (D1,−0+ · D

−+0
2 ). (4.222)

The recursion relation Combining the expressions (4.217), (4.218), and the dif-
ferential basis (4.222) we find the following recursion relation

W (p)
∆,`; ∆1,∆2,∆3,∆4

=

A−1*
,
v1(D

−−0
1 · D4,−0+)(D

−+0
1 · D2,++0) W (p−1)

∆+
1
2 ,`; ∆1+1,∆2−

1
2 ,∆3,∆4+

1
2

+v2(D
−−0
1 · D4,−0+)(D1,++0 · D

−+0
2 ) W (p−1)

∆+
1
2 ,`; ∆1,∆2+

1
2 ,∆3,∆4+

1
2

+v3(D
+0−
1 · D4,−0+)(D

+0+
1 · D2,++0) W (p−1)

∆+
1
2 ,`; ∆1−1,∆2−

1
2 ,∆3,∆4+

1
2

+v4(D
+0−
1 · D4,−0+)(D1,−0+ · D

−+0
2 ) W (p−1)

∆+
1
2 ,`; ∆1,∆2+

1
2 ,∆3,∆4+

1
2

+
-
,

(4.223)
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where the coefficients vi are given explicitly by

v1 =
(∆ + ∆1 − ∆2 + `)(−∆ − ∆1 + ∆2 + ` + 2)(∆ + ∆1 + ∆2 − ` − p − 6)

4(∆1 − 2)(2∆2 + p − 4)
,

v2 =
(−∆ + ∆1 − ∆2 + ` + p + 2)(∆ + ∆1 − ∆2 − ` − 2p − 2)(∆ + ∆1 + ∆2 − ` − p − 6)

8(∆1 − 2)(∆1 − 1)
,

v3 =
−∆ + ∆1 − ∆2 + ` + p + 2

4(∆1 − 3)(∆1 − 2)2(2∆2 + p − 4)
,

v4 = −
(−∆ + ∆1 − ∆2 + ` + p + 2)(−∆ + ∆1 + ∆2 + ` + 2p − 2)(∆ + ∆1 + ∆2 − ` − p − 6)

8(∆1 − 3)(∆1 − 2)
.

(4.224)

Decomposition into components By using (4.212) one can write the recursion
relation (4.223) at the level of components of the seed conformal blocks H (p)

e (z, z).

First let us notice that according to [58] the components H (p)
e (z, z) of the seed blocks

depend on the external scaling dimensions ∆i only via the quantities

ap
e ≡ a(p), bp

e ≡ b(p) + p − e, cp
e ≡ p − e, (4.225)

where
a(p) ≡ −

∆1 − ∆2 − p/2
2

, b(p) ≡ +
∆3 − ∆4 − p/2

2
. (4.226)

Let us now analyze the expression (4.223). Almost all the conformal blocks entering
the right hand side of (4.223) correspond to the same parameters a(p) and b(p) (the
difference in p is compensated by a difference in ∆i). The only exception is the
conformal block

W (p−1)

∆+
1
2 ,`; ∆1+1,∆2−

1
2 ,∆3,∆4+

1
2
, (4.227)

which contains a(p)−1 and b(p). Just as in the case of 3-dimensions in section 4.4.4.1,
we can use a dimension shifting operator to simplify the structure of the recursion
relation (4.223). The only difference is that we need to shift the external dimensions
of a general seed block. This can be done by generalizing the construction of
dimension-shifting operator outlined in section 4.4.5. We find

W (p−1)

∆+
1
2 ,`; ∆1+1,∆2−

1
2 ,∆3,∆4+

1
2
= E−1(D1,+−0·D

−−0
2 )(D1,++0·D

−+0
2 )W (p−1)

∆+
1
2 ,`; ∆1,∆2+

1
2 ,∆3,∆4+

1
2
,

(4.228)
where

E ≡ −(p + 1)(∆1 − 1)(∆1 − 2)(∆ + ∆1 − ∆2 + `)(∆ + ∆1 − ∆2 − ` − 2). (4.229)
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Note that this is in fact completely analogous to the differential basis trick, except
that instead of changing the external spins, we change the external dimensions.

Plugging the relation (4.228) in (4.223), stripping off the kinematic factor and
decomposing this relation into components according to (4.212) one obtains a
recursion relation for the seed blocks of the form

H (p)
e (z, z) = −

A−1

z − z

(
D0 H (p−1)

e (z, z) − 2D1 H (p−1)
e−1 (z, z) + 4cp−1

e−2 zzD2 H (p−1)
e−2 (z, z)

)
,

(4.230)
where the conformal block in the l.h.s depends on [∆, `; ∆1,∆2,∆3,∆4] while the
conformal blocks in the r.h.s. depend on [∆ + 1

2, `; ∆1,∆2 +
1
2,∆3,∆4 +

1
2 ]. The

differential operators Di are given by

D0 ≡∇z[b
p−1
e ]D(p−1,e)

z − ∇z[bp−1
e ]D(p−1,e)

z

+ k
(
D(p−1,e)

z − D(p−1,e)
z

)
− (cp−1

e + 1)L[bp−1
e ]B


−

k (k − 2)

1 + cp−1
e


, (4.231)

D1 ≡z∇z[b
p−1
e−1 + cp−1

e−1 ]D(p−1,e−1)
z − z∇z[bp−1

e−1 + cp−1
e−1 ]D(p−1,e−1)

z

+ k
(
zD(p−1,e−1)

z − zD(p−1,e−1)
z

)
+ (2cp−1

e−1 + 1)zzL[bp−1
e−1](z − z)−1L[a] − (k − 2)(k − cp−1

e−1 − 1)(z − z)B[k],
(4.232)

D2 ≡D(p−1,e−2)
z − D(p−1,e−2)

z − L[a]B
[
k − cp−1

e−2 − 1
]
, (4.233)

where the coefficient k is
k ≡

4 − ∆ + `
2

+
3p
4
. (4.234)

The elementary differential operators54 used here are

D(a,b;c)
x ≡ x2(1 − x)∂2

x −
(
(a + b + 1)x2 − cx

)
∂x − abx, (4.235)

∇x[µ] ≡ −x(1 − x)∂x + µ x, (4.236)

L[µ] ≡ ∇z[µ] − ∇z[µ], (4.237)

B[µ] ≡
zz

z − z

(
(1 − z)∂x − (1 − z)∂z

)
+ µ, (4.238)

and we also use the following short-hand notation

D(p,e)
x ≡ D(ap

e ,b
p
e ;cpe )

x . (4.239)
54Exactly the same differential operators (except for ∇x[µ]) enter the quadratic Casimir equation

for the seed blocks [58]. Note that here the definition of L differs by a factor of z − z.
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4.4.5 Dimension-shifting and spin-shifting
Using our techniques, we can explain some of the identities for scalar conformal
blocks whichwere derived byDolan andOsborn in [64]. For the ease of comparison,
in this section we use the notation of [64], which we now briefly recall. The scalar
conformal block is defined as

〈φ∆1 (x1)φ∆2 (x2) |O∆,` |φ∆3 (x3)φ∆4 (x4)〉

=
1

x∆1+∆2
12 x∆3+∆4

34

(
x24
x14

)−2a (
x14
x13

)2b

Fλ1λ2 (a, b, x, x), (4.240)

where x and x are the standard Dolan-Osborn coordinates denoted by z and z in the
rest of this paper,

xx =
x2

12x2
34

x2
13x2

24
, (1 − x)(1 − x) =

x2
23x2

14

x2
13x2

24
, (4.241)

and

a = −
1
2
∆12, b =

1
2
∆34, (4.242)

while the parameters λi are defined as

λ1 =
1
2

(∆ + `), λ2 =
1
2

(∆ − `). (4.243)

Operators Hk Let us consider acting on (4.240) with the following contraction
of the vector operators (4.45),

−2D−0
1 · D

−0
4 = −2X1 · X4 = x2

14. (4.244)

The resulting four-point function will have scaling dimensions at positions 1 and 4
shifted by −1. Accordingly, we can remove the prefactor for the new set of scaling
dimensions to find the resulting action of this operator on Fλ1λ2 ,

(xx)−
1
2 Fλ1λ2 (a, b, x, x). (4.245)

This operation is equivalent to the following diagram,

[∆1 − 1, 0]

[∆1, 0]

[∆2, 0]

[∆, `]

[∆3, 0]

[∆4 − 1, 0]

[∆4, 0]
, (4.246)
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and thus according to our general analysis can be expanded using the finite-
dimensional crossing (4.102) in terms of scalar conformal blocks with shifted
external dimensions and the internal representations appearing in

⊗ [∆, `] = [∆ − 1, `] ⊕ [∆, ` + 1] ⊕ [∆, ` − 1] ⊕ [∆ + 1, `] ⊕ . . . , (4.247)

where . . . represents non-STT representations which do not appear in a four-point
function of scalars. In the notation of [64], this corresponds to an equality of the
form

(xx)−
1
2 Fλ1λ2 (a, b) = r F

λ1−
1
2 λ2−

1
2

(a + 1
2, b +

1
2 ) + s F

λ1+
1
2 λ2−

1
2

(a + 1
2, b +

1
2 )

+ t F
λ1−

1
2 λ2+

1
2

(a + 1
2, b +

1
2 ) + u F

λ1+
1
2 λ2+

1
2

(a + 1
2, b +

1
2 ),

(4.248)

where the coefficients r, s, t, u are some combinations of the 6 j symbols (4.102).
This is precisely the equation (4.18) in [64]. Dolan and Osborn also introduce k-th
order differential operators Hk for k = 1, 2, 3, which act on Fλ1λ2 in the same way
but with different sets of coefficients rk, sk, tk, uk . In particular, they all increase a

and b by 1
2 . In our formalism we can also find 3 other operators with such a property,

D13 = D
−0
1 · D

+0
3 ,

D24 = D
+0
2 · D

−0
4 ,

D23 = D
+0
2 · D

+0
3 , (4.249)

all of which also exchange the vector representation in a way similar to (4.246),
and thus act in the same way as Hk . In fact, one can express Hk in terms of these
operators, and we provide explicit expressions in appendix C.7.

Operators Fk Another class of operators introduced in [64] can be interpreted as
exchanges of the adjoint representation of conformal group. The simplest of such
exchanges is given by

F0 = 8D−0
1,[mD

−0
2,n]D

−0,[m
3 D

−0,n]
4 , (4.250)

whose action on the functions Fλ1λ2 is equivalent to

F0 =
1
x
+

1
x
− 1, (4.251)
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which is precisely how F0 is defined in [64]. The action of this operator on a
conformal block corresponds to the following diagram,

[∆1 − 1, 0]

[∆1, 0]

[∆2 − 1, 0]

[∆2, 0] [∆, `]

[∆3 − 1, 0]

[∆3, 0]

[∆4 − 1, 0]

[∆4, 0]
, (4.252)

where the individual differential operators have indices in the vector representation
and are then joined into the adjoint representation ∈ ⊗ . Therefore, it
decomposes into scalar blocks appearing in the tensor product

⊗ [∆, `] = [∆ − 1, ` + 1] ⊕ [∆ − 1, ` − 1] ⊕ [∆ + 1, ` + 1] ⊕ [∆ + 1, ` − 1] ⊕ [∆, `] ⊕ . . . ,
(4.253)

where “. . .” represents non-STT representations which do not appear in scalar
conformal blocks. Thus there exists an identity of the form

F0Fλ1 λ2 = r0Fλ1 λ2−1 + s0Fλ1−1 λ2 + t0Fλ1+1 λ2 + u0Fλ1 λ2+1 + w0Fλ1 λ2, (4.254)

with coefficients r0, s0, t0, u0,w0 being some combinations of the 6 j symbols (4.102).
This is precisely (4.28) of [64]. The operators Fk with k = 1, 2, 3 can be constructed
analogously.

Operator D (ε) Finally, let us consider the identity (4.50) of [64], which is55

(xx)ε−b+1D (ε) (xx)b−εFλ1 λ2 (a, b, x, x) = (λ1 + b)(λ2 + b − ε )Fλ1 λ2 (a, b + 1, x, x).
(4.255)

We see that the left hand side of this expression gives a differential operator which
shifts b by 1. In our formalism, it is extremely easy to construct this operator, namely

(xx)ε−b+1D (ε) (xx)b−ε =
D+0

3 · D
−0
4

(∆3 − 1)(d − 2 − ∆3)
. (4.256)

From the definition it is clear that it simply shifts b by 1. The coefficient in the right
hand side of (4.255) can be easily expressed in terms of 6 j symbols (4.102).

55Note that there is a typo in the second part of (4.43) in [64]. The correct definition is
D (ε) = (xx)−

1
2H2.
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4.4.6 Recursion relations for conformal blocks
In sections 4.4.3 and 4.4.4 we have managed to express an arbitrary conformal block
in terms of derivatives of scalar blocks, schematically

G∆,ρ =
∑

k

ck (∆)DkGscalar
∆+δk,`k

, (4.257)

where [∆, ρ] is the representation of the exchanged operator, Dk are some ∆-
independent differential operators, and ck (∆) are rational functions. All ingredients
in this formula implicitly depend on the dimensions and representations of the ex-
ternal operators, as well as on ρ. In practice we often have a generic spin parameter
` in ρ, and we can keep it generic in this formula as we did in the examples in
sections 4.4.4.1 and 4.4.4.2. The spins `k are then finite shifts of `, `k = ` + δ`k .

Explicit examples of such expressions are given in (4.196), (4.197) and (4.223).
They readily allow us to compute the spinning conformal blocks numerically. But
they also allow us to analytically infer properties of the spinning blocks from the
known properties of the scalar blocks.

For example, a general method for numerical computation of conformal blocks is
based on Zamolodchikov recursion relations [48, 193]. The basic idea is that for
certain values ∆i of the scaling dimension ∆ the generalized Verma module for
the representation [∆, ρ] has null descendants [∆′i, ρ

′
i], which lead to poles in the

conformal block for [∆, ρ] with the residue being proportional to the conformal
block for [∆′i, ρ

′
i],

G∆,ρ ∼
Ri

∆ − ∆i
G∆′i,ρ

′
i
, (4.258)

where Ri are certain coefficients, which in the case of spinning blocks generically are
matrices rotating the left and right three-point structures in G. For fixed ρ there are
in general several infinite families of poles ∆i. If we know the asymptotic behavior
of the conformal blocks for ∆→ ∞,

G∆,ρ ∼ r∆h∞,ρ, (4.259)

where r is the radial coordinate of [25, 59] and h∞,ρ is some relatively eas-
ily computable function, then we can write the conformal block as a sum over
residues [37, 49]. The resulting approximation is perfectly suited for numerical
applications based on semidefinite methods [36, 37, 41].

To accomplish this program, one needs to understand the pole positions ∆i, the
representations of null states [∆′i, ρ

′
i], and the residue matrices Ri. This data has
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been determined for general scalar blocks [36, 37] as well as some examples of
spinning blocks [41, 49, 81]. Although the classification of the poles ∆i and the null
states [∆′i, ρ

′
i] is known [49, 196, 204], the computation of the residue matrices Ri

may not be an easy task.

Our expression (4.257) is perfectly suited for this problem. Indeed, from it the pole
structure of G∆,ρ is completely apparent. In particular, the poles in G∆,ρ are given
by the poles of the scalar blocks in the right hand side, and a finite56 number of poles
of the coefficients ck (∆). The residues of the poles are easy to compute. Indeed,
any residue is given by a sum of differential operators Dk acting on some scalar
blocks. Using the techniques of section 4.4.3, it is easy to express the action of Dk

on a general scalar block as a sum over conformal blocks which can appear for the
given external operators,57

DkGscalar
∆,` ∼

∑
∆′,ρ′

G∆′,ρ′ . (4.260)

In other words, our techniques allow us to translate the known recursion rela-
tions for scalar blocks into recursion relations for general conformal blocks. This
approach has already been used in [41] for the exchange of traceless-symmetric
representations. The new ingredient here is that we can now derive the recursion re-
lation for general internal representations. For example, using the equations (4.196)
and (4.197), we re-derived the recursion relation of [81] for the scalar-fermion seed
blocks exchanging a fermionic representation.

In [49] the residues of the conformal blocks were computed explicitly by considering
the action of the differential operators Di corresponding to the null states on the
three-point functions, and the behavior of the norm of the null state near the pole.
We expect that the conformally-covariant differential operators can be useful also in
this approach. For example, the null state differential operators Di can be obtained
by the translation functor from a set of basic operators [205]. In our language this
means that one can write the operators Di as

Di ∝ DAD
′
iD

A, (4.261)

whereD′i are some simpler differential operators (for instance, many null states can
be obtained from D′ = d the exterior derivative acting on differential forms.). The
action ofDi on a three-point function can then be computed by applying a crossing
transformation to move DA on a different leg and then acting with D′i .

56For a fixed `.
57In particular, substituting these expressions in (4.257), we get a tautology.



156

4.5 Further applications
4.5.1 Inversion formulae and “spinning-down” a four-point function
Orthogonality relations between conformal blocks are useful tools for analyzing
crossing symmetry. By exploiting orthogonality, we can derive inversion formulae
that express OPE data in terms of an integral of a conformal block against a four-
point function [65, 201]. Applying an s-channel inversion formula to a t-channel
conformal block expansion, we can study crossing directly in terms of CFT data.58
The coefficients relating t-channel blocks and s-channel blocks are sometimes called
“crossing kernels.” Inversion formulae and crossing kernels for scalar operators
have been discussed recently in [66, 168–170]. Here, we briefly describe how our
techniques are perfectly suited for studying inversion formulae and crossing kernels
for spinning operators. We will omit details, and simply highlight how weight-
shifting operators can be used in these computations. We leave detailed discussion
and examples for later work [195].

Our starting point is a conformally-invariant pairing between a four-point function of
operatorsOi in representations [∆i, ρi] and a four-point function of shadow operators
Õi in representations [d − ∆i, ρ

∗
i ]. This can be written

〈F,G〉 =
1

Vol(SO(d + 1, 1))

∫
*.
,

4∏
i=1

dd xi
+/
-

Fa1a2a3a4 (xi)Ga1a2a3a4 (xi)

= F G

O1

O2 O3

O4

. (4.262)

In our diagrammatic language, an incoming line for O is equivalent to an outgoing
line for Õ, and connecting lines means contracting indices and integrating over
Euclidean space. To get a finite result for 〈F,G〉, we must divide by the volume of
the conformal group acting on all four points xi. In practice, this means gauge-fixing
and inserting the appropriate Faddeev-Popov determinant.

Consider first the case of scalar operators Oi. An orthogonal basis with respect to
the pairing 〈·, ·〉 is given by linear combinations of blocks that are single-valued in

58Note that the integral in an inversion formula in general does not commute with the sum over
conformal blocks in the t-channel, so this analysis must be done carefully.
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Euclidean space,

F∆,` =
1
2

(
G∆,` + S∆,`Gd−∆,`

)
, (4.263)

where ∆ = d
2 + iν is restricted to the principal series.59 The constant S∆,` depends

on ∆, ` and the external dimensions ∆i, and will not be important for the current
discussion. We call the F∆,` “Euclidean partial waves.” Orthogonality follows
from the fact that the Casimir operator is self-adjoint with respect to 〈·, ·〉, together
with the fact that F∆,` is single-valued so there are no boundary contributions from
integrating by parts. See [66] for more details.

A four-point function of scalars has a Euclidean partial wave decomposition of the
form

g(xi) = 1 +
∑
`

∮ d
2+i∞

d
2−i∞

d∆
2πi

c(∆, `)F∆,` (xi) + discrete series. (4.264)

The decomposition (4.264) is not the usual conformal block decomposition, but it
is closely related. When g(xi) is a four-point function in a unitary CFT, we expect
that c(∆, `) has (shadow-symmetric) simple poles in ∆ on the real axis

c(∆, `) ∼
∑

i

−c∆i,`
*.
,

1
∆ − ∆i

+
S−1
∆,`

d − ∆ − ∆i

+/
-
. (4.265)

We can then deform the ∆-contour in (4.264) to the right for G∆,` and to the left for
Gd−∆,` to obtain

g(xi) = 1 +
∑
∆i,`

c∆i,`G∆i,` (xi). (4.266)

Thus, positions of poles in c(∆, `) encode the spectrumof the theory, and the residues
encode products of OPE coefficients.60

For spinning operators, the Euclidean partial waves F (a,b)
∆,ρ

and their coefficients
c(a,b) (∆, ρ) are additionally labeled by a pair of three-point structures (a, b). An
inversion formula for the coefficients is given by61

M (c,d)(a,b) (∆, ρ)c(a,b) (∆, ρ) = 〈F̃ (c,d)
∆,ρ

, g〉, (4.267)

59We must also include the so-called “discrete series" in non-even dimensions [65].
60When deforming the ∆-contour, one must take into account poles in the blocks themselves,

which interact in an intricate way [65, 66, 166].
61We sum over raised and lowered pairs of three-point structures (a, b).
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where, roughly speaking,62

〈F̃ (c,d)
∆′,ρ′

, F (a,b)
∆,ρ
〉 ∼ M (c,d)(a,b) (∆, ρ)δρρ′δ(∆ − ∆′). (4.268)

Pictorially,

〈F̃ (c,d)
∆,ρ

, g〉 = c d g
OO†

O1

O2O3

O4

. (4.269)

One of our main observations is that spinning conformal blocks can be written as
derivatives of scalar blocks. Schematically, we have

F̃spin
∆,ρ
= DFscalar

∆,` ,

D =
∑

t

dt (∆, ρ)t ABCDD
(a)A
1 D

(b)B
2 D

(c)C
3 D

(d)D
4 . (4.270)

The operators D (ai )Ai

i are spin-raising operators transforming in Wi, acting on the
point xi. Here, t runs over invariant tensors in (W1 ⊗W2 ⊗W3 ⊗W4)∗.

To compute the pairing (4.269), it is useful to integrate D by parts,

〈F̃spin
∆,ρ

, g〉 = 〈Fscalar
∆,` ,D∗g〉, (4.271)

where D∗ is the adjoint of D under the pairing 〈·, ·〉, given by replacing each D (a)
i

with its adjoint (D (a)
i )∗ (since we can integrate by parts individually on each leg).

The adjoints (D (ai )
i )∗ are spin-lowering differential operators, and the right-hand

side of (4.271) is a pairing between scalar four-point functions. We can thus proceed
to study it in the same way as we study four-point functions of scalars. For example,
one can derive spinning versions of the CFT Froissart-Gribov formula [66] using
these techniques.63 We call this trick “spinning-down” a four-point function.

62We are neglecting an additional term proportional to δ(∆ + ∆′ − d) that is unimportant for the
current discussion.

63One of the consequences of the Froissart-Gribov formula is that CFT data can be analytically
continued in spin. When non-STTs can appear as internal operators, analytic continuation in spin
can be understood by expressing V∆,ρ as a subrepresentation of V∆′,` ⊗W for some fixed W , and then
analytically continuing in `. This is equivalent to analytically continuing in the length of the first
row of the Young diagram for ρ.
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In pictures, the right-hand side of (4.271) is

〈F̃spin
∆,ρ

, g〉 ∼
∑

t

g

t

, (4.272)

where the dashed lines represent scalars.
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4.5.2 6 j symbols for infinite-dimensional representations
If we plug in a t-channel partial wave for g, then we can simplify (4.272) further by
using crossing to move the differential operators to the internal leg:

=

t

=
∑ {

· · ·

}4
t

=
∑ {

· · ·

}4 (
· · ·

)

(4.273)

The symbol {· · · }4 represents a product of four 6 j symbols of the type in (4.102), and
the factor (· · · ) is the result of taking a conformally-invariant product of differential
operators on the right internal leg. For simplicity, we have omitted labels and shown
only the topology of the various diagrams. Dashed lines represent scalar operators,
and solid lines represent operators with spin.
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Equation (4.273) expresses an inner product of general spinning blocks in terms of
inner products of scalar blocks. Such inner products are examples of 6 j symbols for
the conformal group, where all the representations are infinite-dimensional principal
series representations. The corresponding graphs have the topology of a tetrahedron.
The equality (4.273) is an example of a general set of relations between infinite-
dimensional 6 j symbols that we can derive as follows. We start with a tetrahedron
graph and introduce a bubble with a finite-dimensional representation W on one of
the lines. We can then move the vertices of the bubble to a different internal line
and collapse it.

=

(
· · ·

)
=

∑ (
· · ·

) {
· · ·

}2

=
∑ (

· · ·

) {
· · ·

}3
=

∑ (
· · ·

)2 {
· · ·

}4

(4.274)

The above is essentially the pentagon identity for a mixture of finite-dimensional
(degenerate) and infinite-dimensional representations. Because the crossing kernel
for degenerate four-point functions is so simple, the pentagon identity becomes a
useful tool for computing infinite-dimensional crossing kernels. The 6 j symbol for
six scalar representations of the conformal group was computed in [206] in terms
of a four-fold Mellin-Barnes integral. That result, along with relations of the type
illustrated in (4.274) in principle allows one to compute an arbitrary 6 j symbol.
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4.6 Discussion
In this work, we introduced new mathematical tools for computations in confor-
mal representation theory. These include the construction of weight-shifting op-
erators summarized in theorem 2, the observation that they satisfy the crossing
equation (4.102), and our discussion of how weight-shifting operators interact with
conformally-invariant projectors (4.151). For concrete computations, we introduced
the embedding space operators (4.45), (4.72), and (4.79). We explored in detail how
these tools can be applied to compute conformal blocks. We also discussed some
applications to harmonic analysis and inversion formulae. We plan to expand on the
latter in future work [195].

However, many directions remain unexplored. One natural question is how weight-
shifting operators interact with short multiplets of the conformal group. For sim-
plicity, we specialized to simple generalized Verma modules (long multiplets) in
this paper. However, we expect new phenomena in the presence of shortening con-
ditions. Some questions include: How is the tensor product decomposition 4.13
modified for short multiplets? How are shortening conditions reflected in the zeros
and poles of 6 j symbols? Is the spinning-down procedure of section 4.5.1 useful
when external operators are in short multiplets?

Our construction of weight-shifting operators and their crossing equations is very
general. As noted in the introduction, it also applies to generalizedVermamodules of
any Lie (super-)algebra.64 In particular, supersymmetric weight-shifting operators
should be useful for computing and studying superconformal blocks and tensor
structures. It will be interesting to construct such operators and explore their
applications. The question of howweight-shifting operators interact with shortening
conditions becomes even more interesting in the superconformal case, since there
are a wide variety of interesting short superconformal multiplets (see e.g. [83]).

As discussed in section 4.2.4, the algebra of weight-shifting operators is governed
by the fusion matrix J (λ), which is closely related to solutions to the Yang-Baxter
equation and integrability [199]. Does this structure have an interesting role to play
in conformal field theory? Is it related to the “superintegrability” of conformal
blocks discussed in [123, 191, 192]?

It may also be interesting to explore the role of weight-shifting operators in holo-
64In the language of [168], it works in a GFT for any group G.
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graphic calculations.65 We expect that they should help in the computation ofWitten
diagrams for operators with spin. Natural questions include: What is the flat-space
limit of weight-shifting operators? Are they useful for amplitudes calculations (for
example are they related to the differential operators introduced in [208])? Weight-
shifting operators may also be helpful for exploring spinning amplitudes in the
conformal basis of [209].
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C h a p t e r 5

CASIMIR RECURSION RELATIONS FOR GENERAL
CONFORMAL BLOCKS

This chapter is essentially identical to:

P. Kravchuk, Casimir recursion relations for general conformal blocks, JHEP 02
(2018) 011, [1709.05347].

5.1 Introduction
Numerical conformal bootstrap is a very general and powerful approach to quantum
conformal filed theories (CFTs), based on the idea of analyzing the crossing symme-
try [26–28] of correlation functions in unitary CFTs by methods of semidefinite pro-
gramming [30, 35–37, 47]. In recent years, this approach has proven to be extremely
useful in extracting non-perturbative information about concrete CFTs, such as the
critical exponents and structure constants of 3d Ising CFT, O(N ) and Gross-Neveu
models [8, 31, 32, 34, 36–40], as well as a host of other results [6, 41, 43–46, 94–
101, 110, 114, 122, 126–158]. Crossing symmetry of the four-point functions of
such fundamental operators as spin-1 conserved currents or the energy-momentum
tensor has also been instrumental in deriving universal constraints valid for general
CFTs [7, 41].

The practical implementation of numerical conformal bootstrap relies heavily on
two technical requirements: the knowledge of conformal blocks and the ability to ef-
ficiently solve the semidefinite programs. An efficient semidefinite solver SDPB, de-
signed specifically for bootstrap applications, was introduced in [35]. This solver is
able to solve the most general semidefinite programs which typically arise in confor-
mal bootstrap, thus eliminating the technical obstructions related to semidefinite pro-
gramming. The situationwith conformal blocks is different. The simplest conformal
blocks—thosewith external scalar operators—are verywell studied by nowand there
exist simple and efficient techniques for their computation [37, 57, 59, 63, 64, 80].
Some of these techniques, such as Zamolodchikov-like recursion relations, iterative/-
analytic solutions of conformal Casimir equations or shadow integrals have been
extended to conformal blocks of operators with spins [41, 49, 54, 58, 60, 81, 82, 122].
Another approach to spinning conformal blocks is to relate them to simpler confor-

http://dx.doi.org/10.1007/JHEP02(2018)011
http://dx.doi.org/10.1007/JHEP02(2018)011
https://arxiv.org/abs/1709.05347
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mal blocks by means of differential operators [39, 61, 62]; recently it was shown that
the most general conformal blocks can be reduced in this way to scalar blocks [3].
While these methods do allow us to calculate any given non-supersymmetric con-
formal block, all of them currently require a nontrivial amount of case-specific
analysis.

In order to facilitate the conformal bootstrap studies with spinning operators it is
therefore desirable to have a simple and general algorithm for numerical computation
of conformal blocks which can be implemented on a computer, ideally avoiding
the need for symbolic algebra. The first step in this direction was undertaken
in [1], where a general classification and construction of conformally-invariant
tensor structures was given. In this paper, we take another step towards this goal
by formulating a general Casimir recursion relation for the z-coordinate series
expansion of general spinning conformal blocks in any number of dimensions. For
a conformal block exchanging a primary operator O, the recursion relation takes the
form

(C(∆p+1, m̃d) − C(O))Λba
p+1,m̃d

=
∑

md∈ ⊗m̃d

(γp,md,m̃d
Λp,md

γp,md,m̃d
)ba, (5.1)

where the matrices Λp,md
encode the contribution of descendants at level p and in

Spin(d) representation md in z-coordinates, ∆p = ∆O + p, C give the conformal
Casimir eigenvalues, while γ and γ are some matrices. Similar recursion relations
have been recently considered in [60]. Our improvement over these results is in
that the structure of our recursion relation is much simpler (in particular, it is one-
step, i.e., it relates levels p and p + 1, similarly to the scalar recursion relation
in [59]) and we are able to remain completely general and write the coefficients γ
and γ in terms 6 j symbols (or Racah coefficients) of Spin(d − 1). Thus, in our
form, the Casimir recursion relations can be immediately translated into a computer
algorithm in all cases when the 6 j can be computed algorithmically. This includes
the general conformal blocks in 3 and 4 dimensions as well as seed blocks in general
dimensions. Importantly, since we solve all representation-theoretic questions in
terms of Clebsch-Gordan coefficients and 6 j symbols, our analysis is applicable to
all spin representations without any caveats, i.e., it applies equally well to spinor
representations and is free from the redundancies which plague the less abstract
approaches in low dimensions.1

1Assuming, of course, that Clebsch-Gordan coefficients are known.
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This paper consists of three main parts. The first part is section 5.2 in which we
review the basics of the representation theory of Spin(d) and give a brief summary
of the required facts from the theory of Gelfand-Tsetlin (GT) bases. The advantage
of GT bases is that they allows us to work very explicitly with completely general
representations in arbitrary d, at the same time being perfectly compatible with the
conformal frame construction of [1]. Moreover, many explicit formulas for matrix
elements and Clebsch-Gordan coefficients are available in these bases. These facts
make them our main computational tool in this paper.

In section 5.3 we use these tools to study the contribution of a general R × Spin(d)
(dilatations×rotations) multiplet to a given four-point function. In section 5.3.1 we
express the answer in terms of an explicit basis of three- and four-point functions
(constructed using the Clebsch-Gordan coefficients of Spin(d − 1)). The functions
P which replace the Gegenbauer polynomials (which appear in scalar correlation
functions) are some particular matrix elements of eθM12 in a GT basis. In sec-
tions 5.3.2-5.3.5 we consider the R × Spin(d) contributions in some simple special
cases. In section 5.3.6 we prove the folklore theorem which states that the number
of four-point tensor structures is equal to the number of classes of conformal blocks.
In section 5.3.7 we study the properties of P-functions and explain how they can be
efficiently computed in practice by organizing them in so-called “matroms” [210]
and deriving a recursion relation for these matroms. We also discuss the simplifica-
tions in the low-dimensional cases of d = 3 and d = 4. In appendix D.4 we relate
the functions P to irreducible projectors studied recently in [82] in the case of tensor
representations.

In section 5.4 we study the Casimir recursion relations for general conformal blocks.
We start by rederiving the scalar result of [59] in section 5.4.1 using an abstract
group-theoretic approach. In section 5.4.2 we extend this approach to general
representations and derive the formulas (5.280) and (5.281) for γ and γ in terms
of 6 j symbols of Spin(d − 1). In sections 5.4.3-5.4.4 we discuss how these 6 j

symbols simplify in the case d = 3 and for the seed blocks in general d.2 For more
specific examples we explicitly work out the recursion relations for scalar-fermion
seed blocks in d = 3 and d = 2n and compare them to the known results. In
section 5.4.5 we briefly discuss the problems associated with a practical solution of
the Casimir recursion relation and suggest some possible workarounds.

2We do not discuss the case of general blocks in d = 4, where these 6 j symbols are also known,
only to keep the size of the paper reasonable – the application of the general formula is completely
mechanical.
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We conclude in section 5.5. The appendices D.1 and D.2 contain some explicit for-
mulas and details on our conventions. The appendix D.3 elaborates on comparison
to known results. In appendix D.4 we explain the relation between GT and Cartesian
bases for tensor representations.

5.2 Representation theory of Spin(d)

We will be studying conformal blocks for the most general representations of
Spin(d), which requires a certain amount ofmathematicalmachinery. In this section
we review the relevant representation theory and establish important notation.

We will be working exclusively in the Euclidean signature (the results can be easily
translated to Lorentz signature by Wick rotation). This means that we work with
the compact real form of Spin(d), which double covers SO(d). As is well known,
the basic properties of these groups depend on the parity of d. If d = 2n, then the
Lie algebra of Spin(d) is the simple3 rank-n Lie algebra Dn with Dynkin diagram
shown in Fig. 5.1a. If d = 2n + 1 then the relevant algebra is the simple rank-n Lie
algebra Bn with Dynkin diagram shown in Fig. 5.1b.

λ1 λ2 λ3
λn−2

λn−1

λn

(a) Dn algebra

λ1 λ2 λ3 λn−1 λn

(b) Bn algebra

Figure 5.1: Dynkin diagrams of so(d) algebras.

It is standard to specify the irreducible representations4 by non-negative integral
Dynkin labels λi associated to the nodes in the Dynkin diagram. The representa-
tions in which only one λi is non-zero and equal to 1 are called the fundamental
representations. The fundamental representation associated with λ1 (i.e., the one
with labels λi = δi1) is the fundamental vector representation Rd .5 More generally,
the fundamental representations associated with λi with i < d/2− 1 are the exterior
powers of the vector representation, ∧iRd . The nodes λn−1 = a, λn = c in Dn case

3Semi-simple for d = 4: D2 = A1 ⊕ A1 is equivalent to two copies of su2 algebra.
4We are interested in representations over C, since the physical Hilbert space is complex.

However, we often treat the representations which are real (in the sense of being representable by
real matrices) as being over R.

5Unless d ≤ 4 when λ1 corresponds to one of the spinor representations.
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correspond to the two chiral spinor representations. Similarly, the node λn = b

corresponds to the unique spinor representation in Bn case. A general representa-
tion can be obtained by tensoring the above “fundamental” representations together
and taking the irreducible component with the highest weight (i.e., by imposing the
maximal symmetry and tracelessness conditions on the resulting tensors).

For us it will be more convenient to label the representations by generalized Young
diagrams, constructed as follows. To a given set of Dynkin labels of Spin(d) we
associate a vector of numbers md with components, for d = 2n,

md,1 = λ1 + λ2 + . . . + λn−2 +
a + c

2
, (5.2)

md,2 = λ2 + λ3 + . . . + λn−2 +
a + c

2
, (5.3)

...

md,n−2 = λn−2 +
a + c

2
, (5.4)

md,n−1 =
a + c

2
, (5.5)

md,n =
a − c

2
, (5.6)

and for d = 2n + 1,

md,1 = λ1 + λ2 + . . . + λn−1 +
b
2
, (5.7)

md,2 = λ2 + λ3 + . . . + λn−1 +
b
2
, (5.8)

...

md,n−1 = λn−1 +
b
2
, (5.9)

md,n =
b
2
. (5.10)

This gives all possible sequences satisfying

md,1 ≥ md,2 ≥ . . .md,n−1 ≥ |md,n |, for d = 2n,

md,1 ≥ md,2 ≥ . . .md,n ≥ 0, for d = 2n + 1,
(5.11)

and consisting either entirely of intergers (bosonic representations) or entirely of
half-integers (fermionic representations). The dimensions of these irreducible rep-
resentations are given in appendix D.2.

When md is bosonic, we can think of |md,k | as giving the length of k-th row in
a Young diagram, with the caveat that for d = 2n the diagrams of height n can
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correspond to self-dual tensors (md,n > 0) or anti-self-dual tensors (md,n < 0).
Because of that, we will often represent the vectors md by Young diagrams, for
example,

(5, 0, 0, . . .) = , (5.12)

(5, 3, 1, 0, . . .) = , (5.13)

(0, 0, . . .) = •. (5.14)

Note that we denote the empty diagram corresponding to the trivial representation
by •. We will also sometimes use the notation

j ≡ · · · ( j boxes), (5.15)

(j, ) ≡ · · · ( j boxes in 1st row). (5.16)

Note, however, that we do not restrict our analysis to bosonic representations only.

For future convenience, we define

|md | =

n∑
k=1
|md,k |, (5.17)

which gives the number of boxes when md can be represented by a Young diagram.

Examples For example, consider d = 2. Strictly speaking, this case does not fall
under the above discussion, since Spin(2) is not semi-simple. However, the vectors
m2 can still be used to label the representations, and this will be important to us in the
following. The vectors m2 are one-dimensional, with a single (half-)integral entry
m = m2,1. The corresponding representation is the one-dimensional representation
which associates to rotation eφM12 the phase factor e−imφ.6 This is 4π-periodic for
half-integral m, corresponding to the need to consider the double-cover Spin(2)
instead of SO(2).

Now consider d = 3 corresponding to B1 case. In this case the vector m3 consists
of a single component equal to b/2, where b is the unique Dynkin label. In other
words m3 = ( j), where j is the usual spin of Spin(3).

The case d = 4 corresponds to D2. We have two Dynkin labels, which we will
denote by lL = a/2, lR = c/2. For example, the vector representation is given by

6We choose the minus sign for future convenience.
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(lL, lR) = ( 1
2,

1
2 ), while the Dirac spinors are ( 1

2, 0) ⊕ (0, 1
2 ). The vector m4 is two

dimensional with the components,

m4 = (lL + lR, lL − lR). (5.18)

We see that for traceless-symmetric representations with lL = lR we recover the one
row Young diagram, while for example for the representations (1, 0) or (0, 1) we
recover the diagram with self- or anti-self-duality condition.

5.2.1 Dimensional reduction
Labeling the representations by the vectors md is convenient for describing the
rule for dimensional reduction from Spin(d) to Spin(d − 1). More precisely, an
irreducible representation md decomposes into a direct sum of irreducible represen-
tations md−1 of Spin(d − 1), which we can write as

md =
⊕

md−1∈md

Nmd
md−1 md−1, (5.19)

where Nmd
md−1 denote the multiplicity with which md−1 appears in the irreducible

decomposition of md . It turns out that all multiplicities are equal to one,

Nmd
md−1 = 1, ∀md−1 ∈ md . (5.20)

We say that dimensional reduction is multiplicity-free. The representations md−1 ∈

md are described by the following rule [210]:

From Spin(2n+1) to Spin(2n): For an irreducible representation md of Spin(d),
d = 2n + 1, and an irreducible representation md−1 of Spin(d − 1) the relation
md−1 ∈ md holds iff both representations are of the same statistics (fermionic or
bosonic) and satisfy

md,1 ≥ md−1,1 ≥ md,2 ≥ md−1,2 ≥ . . . ≥ md,n ≥ |md−1,n | ≥ 0. (5.21)

From Spin(2n) to Spin(2n−1): For an irreducible representation md of Spin(d),
d = 2n, and an irreducible representation md−1 of Spin(d − 1) the relation md−1 ∈

md holds iff both representations are of the same statistics (fermionic or bosonic)
and satisfy

md,1 ≥ md−1,1 ≥ md,2 ≥ md−1,2 ≥ . . . ≥ md−1,n−1 ≥ |md,n | ≥ 0. (5.22)
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Examples Consider first the reduction from Spin(4) to Spin(3). The constraint is

m4,1 ≥ m3,1 ≥ |m4,2 |, (5.23)

which in terms of j, lL, lR reads

lL + lR ≥ j ≥ |lL − lR |. (5.24)

Together with the constraint that the Fermi/Bose statistics is preserved, we find that

j = |lL − lR |, |lL − lR | + 1, . . . , lL + lR. (5.25)

This is the same as saying that j ∈ lL⊗ lR, where lL and lR are interpreted as Spin(3)
spins, which coincides with the familiar reduction rule.

Consider now the reduction from Spin(3) to Spin(2). For a given m3 = ( j) we
have the following constraint on m2 = (m),

j ≥ |m | ≥ 0, (5.26)

and m should be (half-)integral simultaneously with j. In other words, m = − j,− j+

1, . . . j. It is no accident that the relation between j and m is the same as in the
basis elements | j,m〉, because the Spin(2) irreps are one-dimensional. This in fact
is a very powerful observation which generalizes to higher dimensions, as we now
discuss.

5.2.2 Gelfand-Tsetlin basis
The fact that the dimensional reduction is multiplicity-free allows one to define a
convenient basis for the irreducible representations of Spin(d). To construct it, one
first fixes a sequence of subgroups

Spin(d) ⊃ Spin(d − 1) ⊃ Spin(d − 2) ⊃ . . . ⊃ Spin(2). (5.27)

In practice, we pick an orthonormal basis e1, . . . ed in Rd , and the Spin(d − k)
subgroup in the above sequence is defined as the one preserving the basis elements
e1, . . . , ek . Then, given a representation md , we can consider an irreducible com-
ponent md−1 ∈ md with respect to Spin(d − 1). Since the dimensional reduction is
multiplicity-free, by specifying the numbersmd−1 we uniquely select an Spin(d−1)-
irreducible subspace inside the representation space Vmd

of the representation md .
We can then continue to build a sequence

md 3 md−1 3 md−2 3 . . . 3 m2, (5.28)



172

which uniquely selects a Spin(2)-irreducible subspace inside Vmd
. Since Spin(2) is

abelian, all such subspaces are one-dimensional. Therefore, if we in addition make
a choice of phases, the above sequence specifies a unit vector in Vmd

.

Let us now denote a sequence of mk , k = d, d − 1, . . . , 2 by Md . Call a sequence
Md admissible if (5.28) is satisfied. The above construction associates to each
admissible sequence a vector |Md〉 in Vmd

. It is an easy exercise to show that the
set of |Md〉 over all admissible sequences (with md fixed) forms an orthonormal
basis in Vmd

. This is the Gelfand-Tsetlin (GT) basis [211], and the sequences Md

are known as Gelfand-Tsetlin patterns.

Analogously to the well-known formulas for the matrix elements of Spin(3) gen-
erators between the | j,m〉 states, Gelfand and Tsetlin have derived formulas for the
matrix elements of Spin(d) generators in Gelfand-Tsetlin basis for arbitrary rep-
resentations [210–213]. We provide these formulas for reference in section 5.2.3
and appendix D.2. Availability of such general formulas is one of the reasons why
Gelfand-Tsetlin bases are useful. For our purposes the more important reason is
that these bases play nicely with the inclusions (5.27), which appear naturally in
construction of conformally invariant tensor structures [1].

Choice of phases Before proceeding further, let us make a general comment about
the choice of phases for vectors |Md〉. This choice is not going to be important in
the discussion that follows – it only influences the explicit expressions for Spin(d)
matrix elements, Clebsch-Gordan coefficients, etc. Therefore, we should only worry
about it when we compute these quantities, and we can make a choice which is the
most convenient for our purposes. For example the formulas given in appendix D.2
correspond to some particular choice of phases. We have made this choice so that
it is compatible with the explicit constructions in the the examples below, unless
explicitly stated otherwise.

Notation As we mentioned above, for us the utility of GT bases comes from
their compatibility with the nested sequence (5.27), which plays an important role
in classification of conformally-invariant tensor structures [1]. Unfortunately, this
means that we will have to dive into the structure of the sequencesMd quite often.
Because of that, it is important to establish a well-defined notation.

Firstly, we will always explicitly write the space dimension d to which a weight md

corresponds as a subscript. Secondly, the GT patterns in representation with highest
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weight md will be denoted by the capital Fraktur letterMd . Distinct patterns in the
same md will be distinguished by primes, i.e., M′d . The subscript on the pattern
indicates the dimension d corresponding to the first weight in the pattern. This
weight is kept fixed and equal to md when we write summation as∑

Md

. (5.29)

In all summations it is assumed implicitly that only admissible sequences are in-
cluded.

Furthermore, mk for k ≤ d′ is always used to denote the components of the GT
patternMd ′. In particular, this means that the patternMd−1 is the tail7 of the pattern
Md and we have, for example, ∑

Md

≡
∑
md−1

∑
Md−1

. (5.30)

We also occasionally writeMd = md Md−1, etc, arranging the right hand side either
vertically or horizontally, whichever way leads to more compact expressions. We
also sometimes write out the GT patterns explicitly as

Md ≡ md,md−1, . . . ,m2. (5.31)

If we have mk = •, then necessarily mi = • for i ≤ k. We therefore often write the
patterns out only to the first trivial representation, replacing the rest by dots. For
example,

Md = , , •, . . . (5.32)

has mk = • for all k ≤ d − 2.

Different representations and patterns are distinguished either by different letters
(i.e., ud and Ud vs md andMd), accents other than primes (i.e., m̃d and M̃d vs md

andMd), or upper indices (i.e., m1
d andM1

d vs md andMd). To reiterate, the lower
index only “addresses” inside one pattern.

Our final comment concerns the use of GT patterns as indices. We will assume that
the upper GT indices, such as

OMd, (5.33)

7This is slightly in tension with our convention on primes. We will understand thatM′
d−1 is the

tail of M′
d
, i.e., m′

d−1 is not necessarily the same as md−1 (which would be the case if we gave the
priority to the prime notation rule and understoodM′

d−1 as another pattern in md−1). Note also that
by this convention m′

d−1 ∈ md , etc.
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behave as ket states |Md〉, while the lower indices behave as the dual bra states 〈Md |,
i.e.,

[Mµν,O
Md (0)] =

∑
M′

d

〈M′d |Mµν |Md〉O
M′

d (0), (5.34)

[OMd
(0), Mµν] =

∑
M′

d

〈Md |Mµν |M
′
d〉OM′d

(0). (5.35)

5.2.2.1 Bilinear parings

The most basic invariants of Spin(d) are the bilinear parings, such as the paring
between a representation and its dual, or the invariant inner product in real repre-
sentations. A bilinear pairing between irreducible representations md and ud is a
singlet in the tensor product

md ⊗ ud . (5.36)

Schur’s lemma implies that there is atmost one such singlet, which exists iffmd = ud ,
i.e., when the representations are mutually dual (equivalently, complex conjugate).
The duality acts on the Spin(d) irreps as follows. For odd d all irreps are self-dual,
m2n+1 = m2n+1, as well as for d divisible by 4, m4k = m4k . For d = 4k + 2 the
duality acts non-trivially by exchanging the spinor nodes on D2k+1 Dynkin diagram,
resulting in

m4k+2,i = m4k+2,i, i < n = 2k + 1, (5.37)

m4k+2,2k+1 = −m4k+2,2k+1. (5.38)

It is quite easy to write down the formula for the singlet in md ⊗ md in GT basis.
Indeed, it has to be singlet under all groups in 5.27 and thus the above discussion
implies that it must be of the form∑

Md

ζMd
|Md〉 ⊗ |Md〉, (5.39)

where Md is obtained from GT pattern Md by replacing all representations with
their duals, and the coefficients ζMd

are yet to be determined. Let us define

(−1)m2n+1 = 1, (5.40)

(−1)m4k = 1, (5.41)

(−1)m4k+2 = (−1)m4k+2,2k+1, (5.42)

(−1)Md =

d∏
k=2

(−1)mk . (5.43)
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With the choice of phases as in appendix D.2, the coefficients ζMd
are proportional

to (−1)Md .8 In what follows, we will use the notation

〈Md,M
′
d |0〉 ≡ ζMd

δMd,M
′
d
, (5.44)

so that the singlet (5.39) can be written as∑
Md,M′d

〈Md,M
′
d |0〉 |Md〉 ⊗ |M

′
d〉. (5.45)

Note that this is a special case of Clebsch-Gordan coefficients, which suggests the
normalization condition∑

Ud,Md

〈0|Md,Ud〉〈Md,Ud |0〉 ≡
∑
Ud,Md

(〈Md,Ud |0〉)∗〈Md,Ud |0〉 = 1. (5.46)

It corresponds to the requirement that (5.45) has unit norm. This implies

〈Md,M
′
d |0〉 ≡

(−1)Md

√
dim md

δMd,M
′
d
. (5.47)

Whenever md = md these coefficients have a definite symmetry under permutation
of the two tensor factors. For bosonic representations they are always symmetric,
while for fermionic they are symmetric if d = 0, 1, 7 mod 8 and anti-symmetric for
d = 3, 4, 5 mod 8, as can be easily verified by using the explicit formula above.9
Fermionic representations are never self-dual for d = 2, 6 mod 8.

5.2.2.2 Vector representation

To gain some familiarity with GT bases, it is perhaps a good idea to start with the
vector representation of Spin(d). The vector representation is also going to play an
extremely important role in section 5.4.

First of all, for d > 3, under dimensional reduction the d-dimensional vector repre-
sentation splits into two irreducible components – a scalar and a (d−1)-dimensional
vector. For d = 3 we obtain three representations, the +1, •,−1 representations of
Spin(2). This means that the GT basis for vector representation consists of the

8We have not proven this statement, but we have checked it on a large sample of representations
in various dimensions.

9If these coefficients are symmetric, then the self-dual md is real and otherwise it is pseudo-real
(quaternionic). This statement is specific to Euclidean signature (in Lorentzian dual and complex
conjugate representations are not the same), but the symmetry properties are signature-independent.
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following elements,

| , •, •, . . . , •, •〉, (5.48)

| , , •, . . . , •, •〉, (5.49)

| , , , . . . , •, •〉, (5.50)
...

| , , , . . . , , •〉, (5.51)

| , , , . . . , ,+1〉, (5.52)

| , , , . . . , ,−1〉. (5.53)

Given that each sequence contains the d − 1 irreps (5.28), it is easy to see that the
above gives exactly d basis vectors.

Let us consider the element (5.48). By definition, it lives in the trivial representation
of Spin(d − k) for k ≥ 1 and thus has to be proportional to e1. Similarly, (5.49) is
invariant for k ≥ 2 and thus has to be a linear combination of e1 and e2. Since it
also has to be orthogonal to (5.48), it can only be proportional to e2. Repeating this
argument, and making a choice of phases, we find

| , •, •, . . . , •, •〉 = (−1)de1, (5.54)

| , , •, . . . , •, •〉 = (−1)d−1e2, (5.55)

| , , , . . . , •, •〉 = (−1)d−2e3, (5.56)
...

| , , , . . . , , •〉 = (−1)3ed−2, (5.57)

| , , , . . . , ,+1〉 = (−1)2 ed−1 + ied
√

2
, (5.58)

| , , , . . . , ,−1〉 = (−1)1 ed−1 − ied
√

2
. (5.59)

In the above expressions the phases are chosen to be consistent with the formulas for
the matrix elements in appendix D.2 and the interpretation that Mi j “rotates from i

to j”,

Mi jei = e j . (5.60)

Note that according to our conventions for Spin(2) representations described earlier,
we have

Md−1,d | , , , . . . , ,±1〉 = ∓i | , , , . . . , ,±1〉. (5.61)
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This approach generalizes to other representations. In appendix D.4 we consider
the relation between GT and Cartesian bases in tensor representations of Spin(d).

Let us now look at the inner product between vectors. Note that m4k+2,2k+1 is only
non-zero in the GT patterns (5.58) and (5.59) and for k = 0. Thus (−1)Md is −1 for
these two patterns and 1 otherwise. Finally, these two patterns are mutually dual,
while all other patterns are self-dual, so that according to (5.45) and (5.47) we get
the following pairing, up to normalization,

| , •, . . .〉 ⊗ | , •, . . .〉 + | , , •, . . .〉 ⊗ | , , •, . . .〉 + . . .

− | , . . . , ,+1〉 ⊗ | , . . . , ,−1〉 − | , . . . , ,−1〉 ⊗ | , . . . , ,+1〉.
(5.62)

From (5.54)-(5.59) we see that this is equal to
d∑

i=1
ei ⊗ ei, (5.63)

which is the usual pairing between vectors.

5.2.2.3 General representations in 3 dimensions

We now consider the case of general representations in d = 3 (n = 1). As before,
the representations m3 are labeled by a (half-)integer j ≡ m3,1 ≥ 0, which is the
usual spin, and the representations m2 are labeled by a (half-)integer m ≡ m2,1. The
representations m2 ∈ m3 are given by m = − j,− j + 1, . . . , j. The GT basis vectors
are then

|M3〉 ≡ |m3,m2〉 ≡ | j,m〉. (5.64)

We can choose conventions such that this coincides with the basis of Spin(3)
representations familiar from the theory of angular momenta. Indeed, let us first
define the anti-Hermitian generators

Iµ = 1
2ε µνλMνλ, (5.65)

which are then subject to the commutation relation (see appendix D.1),

[Iµ, Iν] = ε µνλ Iλ . (5.66)

Their Hermitian analogues Jµ = iIµ satisfy the familiar Spin(3) commutation
relations

[Jµ, Jν] = iε µνλ Jλ . (5.67)
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If we now define

1̂ ≡ 2, 2̂ ≡ 3, 3̂ ≡ 1, (5.68)

then the operators Jµ̂ satisfy the same commutation relations. By definition, we
have

J3̂ | j,m〉 = iI1 | j,m〉 = iM23 | j,m〉 = i(−im) | j,m〉 = m | j,m〉. (5.69)

We have performed the index relabeling (5.68) precisely so that | j,m〉 are eigenstates
of J3̂, making contact with standard angular momentum conventions. In particular,
the standard [214] formulas for action of Jµ̂ coincide with d = 3 case of formulas
in appendix D.2.

5.2.2.4 General representations in 4 dimensions

In d = 4 (n = 2), we have

m4 = (`1, `2) = (lL + lR, lL − lR), (5.70)

m3 = j = |lL − lR |, |lL − lR | + 1, . . . , lL + lR, ⇔ j ∈ lL ⊗ lR, (5.71)

m2 = m = − j,− j + 1, . . . , j, (5.72)

and thus we can write

|M4〉 ≡ |lL, lR; j,m〉. (5.73)

It will be convenient to connect this to the basis which arises from the exceptional
isomorphism Spin(4) ' SU (2) × SU (2). To define this latter basis, we write

Qµ ≡ M1µ, Iµ ≡
1
2
ε µνλMνλ, µ, ν, λ ∈ {2, 3, 4}, (5.74)

where ε234 = 1. Then the Hermitian operators

JL
µ ≡ iIL

µ ≡
i
2

(Iµ +Qµ), JR
µ ≡ iI R

µ ≡
i
2

(Iµ −Qµ) (5.75)

obey the commutation relations

[JL
µ , JL

ν ] = iε µνλ JL
λ , (5.76)

[JR
µ , JR

ν ] = iε µνλ JR
λ , (5.77)

[JL
µ , JR

ν ] = 0. (5.78)
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We can then define, similarly to 3 dimensions,

1̂ ≡ 3, 2̂ ≡ 4, 3̂ ≡ 2, (5.79)

and construct the conventional basis states for the algebras JL
µ̂ , JR

µ̂ ,

|lL,mL; lR,mR〉 (5.80)

subject to the usual condition

JL
3̂ |lL,mL; lR,mR〉 = mL |lL,mL; lR,mR〉, (5.81)

JR
3̂ |lL,mL; lR,mR〉 = mR |lL,mL; lR,mR〉. (5.82)

Let us now relate the bases (5.73) and (5.80). First, note that the generators Jµ̂ ≡ iIµ̂
of the Spin(3) which preserves the first axis are given by

Jµ̂ = JL
µ̂ + JR

µ̂ , (5.83)

and thus under this Spin(3) the state (5.80) transforms as a tensor product state in
lL ⊗ lR. We can therefore simply set

|lL, lR; j,m〉 ≡
∑

mL+mR=m

〈lL,mL; lR,mR | j,m〉|lL,mL; lR,mR〉, (5.84)

where

〈lL,mL; lR,mR | j,m〉 (5.85)

are the Clebsch-Gordan coefficients of Spin(3). It is easy to check that this definition
is consistent with the definition of GT basis. Note that (5.84) essentially fixes our
choice of phases through the phases of Spin(3) CG coefficients. The resulting
phase conventions are consistent with appendix D.2 if one uses CG coefficients
〈 j1,m1; j2; m2 | j,m〉 which differ from [214] by a factor of i j− j1− j2 .10

For future reference, let us give the expression for M12 = Q2. We have

M12 = Q2 = −i JL
2 + i JR

2 = −i JL
3̂ + i JR

3̂ . (5.86)
10These CG coefficients will still differ from the vector CG coefficients of D.2 by a factor of −i

when j = j1 and j2 = 1, but the matrix elements in 4d will be consistent.
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5.2.3 Clebsch-Gordan coefficients and matrix elements
In the next sections we will find that a lot of calculations (for example, three-
point tensor structures and Casimir recursion relations) involve manipulations with
Clebsch-Gordan coefficients (CG coefficients). In this section we therefore discuss
the structure of these coefficients in GT bases.

CG coefficients essentially establish an equivalence between a tensor product and
its decomposition into irreducible representations,

Vm1
d
⊗ Vm2

d
'

⊕
md∈m1

d
⊗m2

d

Vmd
. (5.87)

More specifically, we have the relation between basis vectors

|M1
dM

2
d〉 =

∑
md∈m1

d
⊗m2

d

∑
Md

〈Md |M
1
dM

2
d〉 |Md〉, (5.88)

where 〈Md |M
1
dM

2
d〉 are the CG coefficients. This equation has to be modified

somewhat if there are multiplicities in the tensor product,

|M1
dM

2
d〉 =

∑
(md,t)∈m1

d
⊗m2

d

∑
Md

〈Md, t |M1
dM

2
d〉 |Md, t〉. (5.89)

Here t counts the possible degeneracy. Inverse transformation is given by

|Md, t〉 =
∑
M1

d
M2

d

〈M1
dM

2
d |Md, t〉 |M1

dM
2
d〉, (5.90)

where 〈M1
dM

2
d |Md, t〉 = 〈Md, t |M1

dM
2
d〉
∗. Note that there is an ambiguity in the

definition of CG coefficients. Indeed, the decomposition

|M1
dM

2
d〉 =

∑
(md,t)∈m1

d
⊗m2

d

∑
Md,t ′

Utt ′〈Md, t′|M1
dM

2
d〉 |Md, t〉, (5.91)

where U is a unitary matrix, is also perfectly fine from the point of view of Spin(d)
invariance. One thus has to fix this freedom for every choice of m1

d and m2
d . We

will not try to fix the general conventions here, and work on a case-by-case basis in
the examples.

GT bases exhibit a set of relations between the CG coefficients of the nested
groups (5.27). Indeed, let us write the GT patters in CG coefficients (5.89) in
the formMd = md Md−1,

〈Md, t |M1
dM

2
d〉 ≡ 〈md Md−1, t |m1

d M
1
d−1; m2

d M
2
d−1〉. (5.92)
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Thinking about Spin(d − 1)-invariance, we see that must necessarily have

〈md Md−1 t |m1
d,M

2
d−1; m2

d M
2
d−1〉 =

∑
t ′

*.
,

md

md−1

������

m1
d

m1
d−1

m2
d

m2
d−1

+/
-tt ′

〈Md−1, t′|M1
d−1M

2
d−1〉

(5.93)

where the constants

*.
,

md

md−1

������

m1
d

m1
d−1

m2
d

m2
d−1

+/
-tt ′

(5.94)

are the so-called Spin(d) : Spin(d−1) isoscalar factors,11while 〈Md−1, t′|M1
d−1M

2
d−1〉

are the CG coefficients of Spin(d − 1). This can be iterated, and since the CG co-
efficients of Spin(2) are extremely simple,

〈m |m1m2〉 = δm,m1+m2, (5.95)

it follows that the knowledge of CG coefficients of Spin groups is equivalent to the
knowledge of the isoscalar factors.

For example, the Spin(3) : Spin(2) isoscalar factors are essentially the Spin(3) CG
coefficients, due to the aforementioned triviality of Spin(2) CG coefficients. One
can show that the Spin(4) : Spin(3) isoscalar factors are essentially equivalent to
Spin(3) 9 j symbols [215].

For our applications we in principle need the most general CG coefficients of
Spin(d − 1) groups – simply the knowledge of all possible conformally-invariant
three-point tensor structures already implies the knowledge of all possible Spin(d −

1) CG coefficients (see section 5.3.1). We are not aware of a general formula for
Spin(d − 1) CG coefficients valid for general d.12 For the most physically relevant
cases d = 4, 3 one can use the well-known CG coefficients of Spin(3) ' SU (2) or
the trivial CG coefficients of Spin(2) ' U (1). Due to the exceptional isomorphism
Spin(4) ' SU (2)× SU (2), we also know the general CG coefficients of Spin(d−1)
for d = 5. Let us note that the case d ≥ 6 is qualitatively different since tensor
products in Spin(5) and larger groups are not multiplicity-free. Luckily, for each
particular choice of a four-point function there is only a finite number of relevant
three-point tensor structures and thus also of Spin(d − 1) CG coefficients. For any
given tensor product, the problem of finding CG coefficients is a finite-dimensional

11Also known as reduced CG, reduced Wigner coefficients, or reduction factors.
12See [216, 217] for partial progress in this direction.
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linear algebra problem and can in principle be solved on a computer, although
phase conventions and resolution of multiplicities need to be carefully addressed.
See [218] for an approach to Spin(5) CG coefficients.

For the applications to Casimir recursion relations, we will need a special infinite
class of CG coefficients of Spin(d) – the CG coefficients involving a vector repre-
sentation. The good news are that these CG coefficients are known for general d in
closed form.

Spin(d) matrix elements and Clebsch-Gordan coefficients with vector repre-
sentation It turns out that Clebsch-Gordan coefficients for vector representation
are closely related to the matrix elements of Spin(d) generators. Indeed, let us
consider the matrix elements of M1µ,

M1µ |Md〉 =
∑
M′

d

〈M′d |M1µ |Md〉 |M
′
d〉, m′d = md . (5.96)

The piece M1µ |Md〉 transforms under Spin(d − 1) in the representation ⊗md−1.
The vectors on the right, on the other hand, transform in irreducible representations
of Spin(d − 1). For fixed md,md−1 this therefore has precisely the form required of
a CG decomposition, so that we have

〈M′d |M1µ |Md〉 = *
,

md

m′d−1

������
M

������

md

md−1
+
-
〈M′d−1 |Md−1, µ〉 (5.97)

for some constants

*
,

m′d
m′d−1

������
M

������

md

md−1
+
-

(5.98)

known as reduced matrix elements. This is essentially a version of Wigner-Eckart
theorem. Note that the tensor product with vector representation is always multi-
plicity free and thus we don’t need any extra labels. This follows from Brauer’s
formula [197] and the fact that all weights in the vector representation have multi-
plicity 1. The label for M is supposed to indicate that we are looking at M1µ,
which is a vector under Spin(d − 1).

Let us consider an example by setting µ = 2, which is equivalent to µ = [ , •, . . .]
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in terms of GT patterns. We then find

〈M′d |M12 |Md〉 =(−1)d−1*
,

md

m′d−1

������
M

������

md

md−1
+
-
〈M′d−1 |Md−1; , •, . . .〉

=(−1)d−1*
,

md

m′d−1

������
M

������

md

md−1
+
-

*.
,

m′d−1
m′d−2

������

md−1
md−2 •

+/
-
〈M′d−2 |Md−2; •, . . .〉

=(−1)d−1*
,

md

m′d−1

������
M

������

md

md−1
+
-

*.
,

m′d−1
m′d−2

������

md−1
md−2 •

+/
-
δMd−2,M

′
d−2
. (5.99)

Here we used the definition of the isoscalar factor (5.93) and the triviality of CG
coefficients when one of the factors is the trivial representation. We also made use
of the relation (5.55). Note that this implies the constraint m′d−1 ∈ ⊗md−1. Due
to the structure of the nested sequence (5.27) the matrix elements of Mk,k+1 for all
1 ≤ k ≤ d − 1 follow from the matrix elements of M12 for Spin(d − k + 1). It is an
easy exercise to show that Mk,k+1 generate the whole Lie algebra of Spin(d).

We therefore find that the reduced matrix elements (5.98) and the simplest vector
isoscalar factors

*.
,

md

md−1 •

������

m′d
md−1

+/
-

(5.100)

allow the computation of the most general Spin(d) matrix elements. There exist
relatively simple closed-form expressions for these quantities [212, 213], which we
provide in appendix D.2 for the ease of reference.13

These quantities in fact also completely determine the vector CG coefficients. In-
deed, given the isoscalar factor (5.100), it only remains to find the second isoscalar
factor14

*.
,

md−1
md−2

������

m′d−1
m′d−2

+/
-
. (5.101)

It can be easily computed by considering the expression

〈Md; , •, . . . |M12 |M
′
d〉 (5.102)

13Note that our phase conventions differ from those in [212, 213].
14For d = 3 we can have (±1) instead of lower in (5.101). The corresponding isoscalar factors

can be obtained completely analogously. See appendix D.2.3.
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and evaluating it via isoscalar factors and reduced matrix elements in two different
ways (acting with M on the left and on the right). Action on the left produces,
among other terms, the term

〈Md; , , •, . . . |M′d〉, (5.103)

which is proportional to the sought for isoscalar factor. See appendix D.2.2 for
details.

5.3 Structure of spinning correlation functions and conformal blocks
In this section we apply the formalism of GT bases to study the general structure
of radially-quantized correlators or conformal blocks. At this stage, no distinction
is made between correlation functions and individual conformal blocks, so we use
these two terms interchangeably.

5.3.1 Contribution of a R × Spin(d)-multiplet
Consider a 4-point correlation function, radially quantized so that the points 1 and
2 lie inside the unit sphere, whereas the points 3 and 4 lie outside (or on) the unit
sphere. One can then insert a complete basis of states on the unit sphere, organized
in representations of R × Spin(d) (dilatations × rotations), and ask what is the
contribution of a single representation. This question was answered in [59] for
four-point functions with external scalar operators, exchanging traceless-symmetric
tensors on the unit sphere (the only representations allowed in this this case). The
case of four-point functions of tensor operatorswas addressed in [60]. Unfortunately,
as mentioned in the introduction, the approach of [60] requires a non-trivial amount
of case-by-case analysis and the knowledge of irreducible projectors. The goal of
this section is to give a more general alternative treatment.

For concreteness, we will work in the radial kinematics of [59].15 Namely, we
chose an orthonormal basis in Rd , labeling the axes by integers from 1 to d, and we
introduce a complex coordinate w in plane 1-2 as

w = x1 + ix2. (5.104)

We then place all four operators in this plane, setting their coordinates to

w1 = −ρ, w2 = ρ w3 = 1, w4 = −1, (5.105)

15The same approach also works in other kinematics. For examples, we will switch to Dolan-
Osborn [57, 63] kinematics in section 5.4. The analysis in that case is only slightly different due to
the presence of an operator at infinity.
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for some ρ ∈ C. Any non-coincident configuration of four points can be brought
to a configuration of the above form by a conformal transformation, with ρ being
related to the familiar cross-ratios u and v. We assume |ρ| < 1.

We also fix the sequence of groups (5.27), defining Spin(d − k) to be the subgroup
of Spin(d) which fixes the first k axes. This defines for us Gelfand-Tsetlin bases for
the representations of Spin(d). We will accordingly denote the primary operators
by

O
Mi

d

i (wi), (5.106)

where the sequencesMi
d label the Gelfand-Tsetlin basis vectors as in section 5.2.2,

and we use the upper index i to label the operators in order to avoid confusion with
the dimension label,Mi

d = mi
d,m

i
d−1, . . . ,m

i
2.

We are interested in the radially-quantized four-point function

〈0|OM
4
d

4 (−1)O
M3

d

3 (1)O
M2

d

2 (ρ)O
M1

d

1 (−ρ) |0〉. (5.107)

It turns out that it is more convenient to work with

〈0|OM
4
d

4 (−1)O
M3

d

3 (1)r DeθM12O
M2

d

2 (1)O
M1

d

1 (−1) |0〉, (5.108)

where ρ = reiθ , D is the dilatation operator and Mµν is the anti-hermitian rotation
generator in the plane µ-ν.16 The relation between (5.107) and (5.108) is given by

〈0|OM
4
d

4 (−1)O
M3

d

3 (1)r DeθM12O
M2

d

2 (1)O
M1

d

1 (−1) |0〉 =

= r∆1+∆2
∑

M′1
d
,M′2

d

R
M1

d

M′1
d

(θ)R
M2

d

M′2
d

(θ)〈0|OM
4
d

4 (−1)O
M3

d

3 (1)O
M′2

d

2 (ρ)O
M′1

d

1 (−ρ) |0〉,

(5.109)

where R are the matrix elements of the rotations in the plane 1-2 in Gelfand-Tsetlin
basis,

R
Mi

d

M′i
d

(θ) = 〈M′id |e
θM12 |Mi

d〉. (5.110)

Recall that according to our conventions the primed patterns belong to the same
representations as unprimed ones. Clearly, the two forms can be used interchange-
ably. The reader may recognize the factor r−∆1−∆2 , which appears in many formulas

16See appendix D.1 for our conventions on conformal algebra. Our definition of Mµν differs by a
sign from e.g. [19].
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for scalar four-point functions, and is often stripped off as in here by multiplying by
r+∆1+∆2 . The matrices R play a similar role for the spinning degrees of freedom.17

Consider now a contribution from a R × Spin(d) multiplet with scaling dimension
∆ and in representation md of Spin(d),∑

Md

〈0|OM
4
d

4 (−1)O
M3

d

3 (1) |∆,Md〉〈∆,Md |r DeθM12O
M2

d

2 (1)O
M1

d

1 (−1) |0〉 =

=
∑
Md,M

′
d

r∆〈0|OM
4
d

4 (−1)O
M3

d

3 (1) |∆,Md〉〈Md |eθM12 |M′d〉〈∆,M
′
d |O

M2
d

2 (1)O
M1

d

1 (−1) |0〉.

(5.111)

Here m′d = md . This expression consists of three main ingredients: the two three-
point functions

〈0|OM
4
d

4 (−1)O
M3

d

3 (1) |∆,Md〉 and 〈∆,M′d |O
M2

d

2 (1)O
M1

d

1 (−1) |0〉, (5.112)

and the matrix elements

〈Md |eθM12 |M′d〉. (5.113)

In order to proceed further, we need to understand the structure of these objects.

5.3.1.1 Three-point functions

The three-point functions (5.112) are some tensors in the Gelfand-Tsetlin indices,
whose values are constrained by the requirement of conformal invariance. To be
precise, for three-point functions involvingR×Spin(d) multiplets, the only intrinsic
restrictions come from R × Spin(d) invariance.18 Of these, only the Spin(d − 1)
subgroup which fixes the first axis imposes the restriction directly on (5.112), while
the other generators in R × Spin(d) can be used to determine the values of these
three-point functions for different positions of Oi (we have essentially done this
above). Even in the case when the R× Spin(d) multiplet in question is a conformal
primary, Spin(d − 1)-invariance is the only restriction on the tensors (5.112) [1].

In particular, the allowed tensor structures for, e.g.,

〈∆,M′d |O
M2

d

2 (1)O
M1

d

1 (−1) |0〉 (5.114)
17Importantly, the action of R here is only on the labels of the external operators. Because it

commutes with the stabilizer group Spin(d − 2) of four points, it can be though of as a change
of the basis of four-point tensor structures. We study the matrix elements such as R further in
sections 5.3.1.2 and 5.3.7.

18The extrinsic restrictions, relating the contribution of the descendant multiplets to the primary,
are discussed in section 5.4.
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are in one-to-one correspondence with the Spin(d − 1) invariant subspace(
md ⊗ m1

d ⊗ m2
d

)Spin(d−1)
, (5.115)

where the bar indicates taking the dual19 representation. Because dimensional
reduction is multiplicity-free, such singlets are in one-to-one correspondence with
singlets in

m′d−1 ⊗ m1
d−1 ⊗ m2

d−1 (5.116)

over all m′d−1 ∈ md , mi
d−1 ∈ mi

d . Such a singlet exists whenever m′d−1 appears in
m1

d−1 ⊗ m2
d−2, in which case we write

(m′d−1, t
′) ∈ m1

d−1 ⊗ m2
d−1, (5.117)

where the extra label t′ is needed ifm′d−1 appears in the tensor productwithmultiplic-
ity.20 If (5.117) holds, we can build an invariant using Spin(d − 1) Clebsch-Gordan
coefficients. More explicitly, we have

〈∆,M′d |O
M2

d

2 (1)O
M1

d

1 (−1) |0〉 =
∑

t ′
λ

m1
d−1,m

2
d−1

m′
d−1,t

′ 〈M′d−1, t
′|M1

d−1,M
2
d−1〉, (5.118)

where λ’s are the three-point coefficients unconstrained by symmetry, and we recall
thatMd−1 is defined as

Md = md,md−1, . . . ,m2 =⇒ Md−1 ≡ md−1,md−2, . . . ,m2. (5.119)

It is understood that if m′d−1 < m1
d−1 ⊗ m2

d−1, then the Clebsch-Gordan coefficient
vanishes and the corresponding λ is undefined.

Analogously, for the second three-point function we have21

〈0|OM
4
d

4 (−1)O
M3

d

3 (1) |∆,Md〉 =
∑

t

λ
m3

d−1,m
4
d−1

md−1,t 〈0|M3
d−1,M

4
d−1,Md−1, t〉, (5.120)

where we now have a 3 j symbol instead of Clebsch-Gordan coefficients (the dis-
tinction is of course rather formal).

Note that (5.118) and (5.120) give a somewhat unusual way ofwriting the three-point
function, since the spin indices of the operators directly select which three-point

19Equivalently complex-conjugate, since all representations of compact Spin(d) are unitary.
20If d ≤ 5, then tensor products in Spin(d − 1) are multiplicity-free and the sum over t ′ can be

dropped.
21The coefficients λ are in general not complex conjugates of λ.
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coefficients λ appear in the right hand side. A perhaps more intuitive equivalent
form of (5.118) is∑

m̃i
d−1

∑
m̃′

d−1,t
′

λ
m̃1

d−1,m̃
2
d−1

m̃′
d−1,t

′

{
δm1

d−1,m̃
1
d−1
δm2

d−1,m̃
2
d−1
δm′

d−1,m̃
′
d−1
〈M′d−1, t

′|M1
d−1,M

2
d−1〉

}
,

(5.121)

where the object in the curly braces is the three point tensor structure, and it
is made explicit that the three-point coefficients are labeled by two Spin(d − 1)
representations m̃1

d−1 and m̃2
d−1 and a pair (m̃′d−1, t

′) ∈ m̃1
d−1 ⊗ m̃2

d−1. We will
sometimes use a shorthand notation to denote such composite labels. Namely, for
the right three point function we use the label

a = (m̃1
d−1, m̃

2
d−1, m̃

′
d−1, t

′), (m̃′d−1, t
′) ∈ m̃1

d−1 ⊗ m̃2
d−1. (5.122)

Similarly, for the left three-point function we use

b = (m̃3
d−1, m̃

4
d−1, m̃d−1, t), (m̃d−1, t) ∈ m̃3

d−1 ⊗ m̃4
d−1. (5.123)

It is instructive to consider the case of 3 dimensions. In this case, we are considering
the three-point functions

〈∆, j′,m′|O j2,m2
2 (1)O j1,m1

1 (−1) |0〉. (5.124)

The Spin(2) invariance basically tells us that the spin projection has to be conserved,
m′ = m1 + m2, and the Spin(2) Clebsch-Gordan coefficients are

〈m′|m1,m2〉 = δm′,m1+m2 . (5.125)

We can therefore write

〈∆, j′,m′|O j2,m2
2 (1)O j1,m1

1 (−1) |0〉 = δm′,m1+m2λ
m1,m2
m′ . (5.126)

Analogously, for the other three-point function we have

〈0|O j4,m4
4 (−1)O j3,m3

3 (−1) |∆, j,m〉 = λ
m3,m4
m δ0,m3+m4+m. (5.127)

We discuss the 3d case further in section 5.3.3.

In order to study the most general four-point functions, we need to know the most
general three-point functions (5.118) and (5.120) and thus the most general Spin(d−

1) CG coefficients. Unfortunately, as discussed in section 5.2.3, to the best of our
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knowledge there is no general closed-form expression for such CG coefficients valid
for general d available in the literature, but there are important special cases when
such expressions are available.

Besides the cases considered in section 5.2.3, an important scenario is when, say,
m1

d = m4
d = •, in which case the required CG coefficients are trivial in any d.

This happens, for example, in a certain choice of four-point functions for the so-
called seed blocks. These are the simplest conformal blocks which exchange a
given intermediate Spin(d) representation md . We discuss this case further in
section 5.3.5.

5.3.1.2 Matrix elements

Consider now the matrix elements (5.113). An important feature is that the Spin(d)
element eθM12 commutes with the standard Spin(d − 2) subgroup which fixes the
axes 1 and 2. On the other hand, the Spin(d) representation md decomposes into
irreducibles under Spin(d − 2), and by Schur’s lemma this implies that eθM12 acts
by identity times a constant inside of these irreducible components. More precisely,
we have

〈Md |eθM12 |M′d〉 = Pmd,md−2
md−1,m′d−1

(θ)δMd−2,M
′
d−2
. (5.128)

One can arrive at the same conclusion by examining (5.99). The functions Pmd,md−2
md−1,m′d−1

(θ)
will play the role of Gegenbauer polynomials for the spinning conformal blocks.
We will describe their structure, basic properties, and how to compute them in sec-
tion 5.3.7. For now, note that they are labeled by an Spin(d) representation md , two
Spin(d − 1) representations md−1,m′d−1 ∈ md , and one Spin(d − 2) representation
md−2 ∈ md−1,m′d−1.

It is again useful to look at the case of three dimensions. Here, Spin(d−2) = Spin(1)
is trivial, and according to (5.128) we have (recall that m3 ≡ j and m2 ≡ m)

P j
m,m′ (θ) = 〈 j,m |eθM12 | j,m′〉 = 〈 j,m |e−iθJ2̂ | j,m′〉 = d j

m,m′ (−θ), (5.129)

where d j
m,m′ (θ) is the small Wigner d-matrix familiar from the representation theory

of Spin(3). For other examples see section 5.3.7 and appendix D.4.
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5.3.1.3 Putting everything together

We can now combine (5.118), (5.120) and (5.128) to rewrite (5.111) in the following
terrifying form,∑
Md

〈0|OM
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d

4 (−1)O
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d

3 (1) |∆,Md〉〈∆,Md |r DeθM12O
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1 (−1) |0〉 =

=
∑
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′
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λ
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2
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′ λ
m̃3

d−1,m̃
4
d−1

md−1,t r∆Pmd,md−2
md−1,m′d−1

(θ)×

×



M3
d

M4
d

����
m̃3

d−1

m̃4
d−1

md−1, t
����md−2

����m
′
d−1, t

′
m̃1

d−1

m̃2
d−1

����
M1

d

M2
d


, (5.130)

where following selection rules on the summation variables hold,

m̃i
d−1 ∈ mi

d,

(m′d−1, t
′) ∈ m̃1

d−1 ⊗ m̃2
d−1,

(md−1, t) ∈ m̃3
d−1 ⊗ m̃4

d−1,

md−2 ∈ md−1,m′d−1 ∈ md . (5.131)

Using the shorthand notation (5.122) and (5.123) for the three-point tensor structures,
we can rewrite (5.130) as

=
∑
a,b

∑
md−2

λaλ
b
r∆Pmd,md−2

md−1,m′d−1
(θ) ×



M3
d

M4
d

����b
����md−2

����a
����
M1

d

M2
d


. (5.132)

We have also introduced a four-point tensor structure



M3
d

M4
d

����
m̃3

d−1

m̃4
d−1

md−1, t
����md−2

����m
′
d−1, t

′
m̃1

d−1

m̃2
d−1

����
M1

d

M2
d


(5.133)

which we will define momentarily. Before doing that, let us comment briefly on the
structure of (5.130) and (5.132).

There are two complications compared to the case of external scalar operators. First,
there are many possible three-point tensor structures, and we have to sum over the
contributions from different pairs of three-point structures. This is done in the first
two sums in (5.130) or equivalently the first sum in (5.132). Indeed, according to
the discussion around (5.118), the set a = (m̃1

d−1, m̃
2
d−1,m

′
d−1, t) such that m′d−1, t

selects an irreducible component in m̃1
d−1 ⊗ m̃2

d−1 uniquely determines a three-point
tensor structure for the operators 1 and 2, and an analogous statement holds for



191

b and the operators 3 and 4. Second, there are many four-point structures, and a
single pair of three-point structures can contribute to many four-point structures.
This is the last sum in (5.130) and (5.132). As we discuss below, the role of md−2

representation is to specify a way of gluing the two three-point structures into a
four-point structure. Note that the three-point structures do not depend on md−2, but
the angular functions P and the four-point tensor structures do. We stress that the
structures (5.133) form a basis of all four-point tensor structures, as we now explain.

The definition of (5.133) follows straightforwardly from the construction,


M3
d

M4
d

����
m̃3

d−1

m̃4
d−1

md−1, t
����md−2

����m
′
d−1, t

′
m̃1

d−1

m̃2
d−1

����
M1

d

M2
d


=

=
∑

Md−2,M
′
d−2

〈0|M3
d−1,M

4
d−1,Md−1, t〉δMd−2,M

′
d−2
〈M′d−1, t

′|M1
d−1,M

2
d−1〉×

× δm1
d−1,m̃

1
d−1
δm2

d−1,m̃
2
d−1
δm3

d−1,m̃
3
d−1
δm4

d−1,m̃
4
d−1
. (5.134)

Here m′d−2 = md−2. Note that for every choice of m̃i
d−1,md−1,m′d−1,md−2, t, t′, this

is a function ofMi
d , i.e., an element of

m1
d ⊗ m2

d ⊗ m3
d ⊗ m4

d . (5.135)

Furthermore, it is clear from the definition that it is Spin(d − 2) invariant. This
means that it is an element of(

m1
d ⊗ m2

d ⊗ m3
d ⊗ m4

d

)Spin(d−2)
, (5.136)

which is the space of four-point tensor structures [1, 123].

The set of structures (5.134) with the parameters restricted by (5.131) spans (5.136).
Indeed, we have(

m1
d ⊗ m2

d ⊗ m3
d ⊗ m4

d

)Spin(d−2)
=

⊕
m12
d−1∈m1

d
⊗m2

d

m34
d−1∈m3

d
⊗m4

d

(m12
d−1 ⊗ m34

d−1)Spin(d−2), (5.137)

where the sum is taken with multiplicities. Because the dimensional reduction is
multiplicity-free, we have that Spin(d−2) singlets in m12

d−1⊗m34
d−1 are in one-to-one

correspondence with m1234
d−2 ∈ m12

d−1,m
34
d−1.

This enumeration is implemented by (5.131) as follows. By specifying m̃1
d−1, m̃

2
d−1,m

′
d−1, t

′

we first select a general Spin(d−1) representation m12
d−1 ' m′d−1 in m1

d ⊗m2
d . Simi-

larly, m̃3
d−1, m̃

4
d−1,md−1, t select a general Spin(d−1) irrepm34

d−1 ' md−1 inm3
d⊗m4

d .
The “gluing” representation m1234

d−2 is then identified with md−2.
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5.3.2 Example: Scalar correlators
Let us see how we can recover the Genegenbauer expansion for scalar four-point
functions. For scalars we have mi

d = (0, . . . 0) = •, and the only Gelfand-Tsetlin
patterns are [•] ≡ (•, . . . •). Similarly, m̃i

d−1 = •. In (5.130) we only need to sum
over m′d−1 ∈ m̃1

d−1 ⊗ m̃2
d−1, thus only m′d−1 = • is allowed and there is no need in t′

label. Similarly, md−1 = •. The sum over md−2 is restricted to md−2 ∈ md−1,m′d−1,
and thus we only have md−2 = •. The unique component of the unique four-point
structure is

[
[•]
[•]

����
•

•
•

���� •
���� •
•

•

����
[•]
[•]

]
= 1. (5.138)

Equation (5.130) collapses then to∑
Md

〈0|O[•]
4 (−1)O[•]

3 (1) |∆,Md〉〈∆,Md |r DeθM12O
[•]
2 (1)O[•]

1 (−1) |0〉

= λ•,•• λ
•,•

• r∆Pmd,•
•,• (θ). (5.139)

We need md−1,m′d−1 ∈ md , and thus for scalars we get the condition md 3 •, which
is only satisfied if md is traceless-symmetric, md = j = ( j, 0, . . . , 0). Finally, as
we show in (5.202) later in this section, Pj,•

•,•(θ) is proportional to a Gegenbauer
polynomial. Taking (5.202) into account, we reproduce the result of [59]∑

Md

〈0|O[•]
4 (−1)O[•]

3 (1) |∆,Md〉〈∆,Md |r DeθM12O
[•]
2 (1)O[•]

1 (−1) |0〉

= λ•,•• λ
•,•

• r∆
C (ν)

j (θ)

C (ν)
j (1)

. (5.140)

5.3.3 Example: General 3d correlators
Consider now the case d = 3. Let us firstwrite the four-point tensor structure (5.134).
Since d = 3, the sums in (5.134) are trivial, as well as md−2 is. Furthermore,
Spin(d − 1) = Spin(2) tensor products are multiplicity-free, so the labels t and t′

are also trivial. We then find, using (5.127) and (5.126),
[

j3,m3
j4,m4

����
m̃3
m̃4

m
����
����m
′ m̃1

m̃2

����
j1,m1
j2,m2

]
= δm′,m1+m2δ0,m+m3+m4δm1,m̃1δm2,m̃2δm3,m̃3δm4,m̃4 .

(5.141)

Since the tensor product of Spin(2) representations m̃1, m̃2 contains only one rep-
resentation, m̃1 + m̃2, we do not need to specify m′ separately. The same holds for
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m. We can thus simplify this tensor structure as
[

j3,m3
j4,m4

����
m̃3
m̃4

m̃1
m̃2

����
j1,m1
j2,m2

]
≡ δm1,m̃1δm2,m̃2δm3,m̃3δm4,m̃4 . (5.142)

Before moving further, let us understand the meaning of this expression. It is a four-
point tensor structure in the sense that by fixing m̃i we have a tensor with indices
mi, i.e., an element of

j1 ⊗ j2 ⊗ j3 ⊗ j4. (5.143)

Note that these structures form a complete basis for such tensors, which is consistent
with the fact that Spin(d − 2) = Spin(1) is trivial and so there is no invariance
constraint on conformal frame four-point structures [1].22

As noted above, we can essentially drop md−1,m′d−1,md−2, t, t′ in (5.130). Us-
ing (5.129) and (5.142) we can rewrite (5.130) as∑

m

〈0|O j4,m4
4 (−1)O j3,m3

3 (1) |∆, j,m〉〈∆, j,m |r DeθM12O
j2,m2
2 (1)O j1,m1

1 (−1) |0〉 =

=
∑
m̃i

λm̃1,m̃2λ
m̃3,m̃4r∆d j

−m̃3−m̃4,m̃1+m̃2
(−θ)

[
j3,m3
j4,m4

����
m̃3
m̃4

m̃1
m̃2

����
j1,m1
j2,m2

]
, (5.144)

where summation is over

m̃i = − ji,− ji + 1, . . . ji, (5.145)

and the last line of (5.131) also restricts

|m̃1 + m̃2 |, |m̃3 + m̃4 | ≤ j (5.146)

as well as that m̃1+ m̃2 and m̃3+ m̃4 are integral or half-integral simultaneously with
j, so that small Wigner d-matrix is well-defined.

5.3.4 Example: General 4d correlators
We now consider the case of the general correlation functions in d = 4. The use-
fulness of this example comes from the fact that while being not very different from
the most general case, it can still be formulated using only the familiar ingredients
from representation theory of Spin(d − 1) = Spin(3) ' SU (2).

22One can be more pedantic by taking Spin(1) = Z2, in which case there is a constraint which
simply says that m̃1 + m̃2 + m̃3 + m̃4 (equivalently, j1 + j2 + j3 + j4) must be an integer, i.e., the
correlator should contain an even number of fermions.
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First, we need to construct the three-point tensor structures. Consider for example
the right tensor structure (5.118) parametrized by the data (5.122). We can write in
4d

a = ( j̃1, j̃2, j̃′), (5.147)

where j̃i ∈ li
L ⊗ li

R and j̃′ ∈ lL ⊗ lR where (lL, lR) is the representation of the
exchanged operator. The constraint in (5.122) then takes form j̃′ ∈ j̃1 ⊗ j̃2. In
particular, we do not need a multiplicity label because the tensor products in Spin(3)
are multiplicity-free. The three-point functions take the form

〈∆, lL, lR; j′,m′|O j2,m2
2 (1)O j1,m1

1 (−1) |0〉

= λ ( j1, j2, j ′)〈 j
′,m′| j1,m1; j2,m2〉

=
∑

a=( j̃1, j̃2, j̃ ′)

λ ( j̃1, j̃2, j̃ ′)
{δ j1 j̃1

δ j2 j̃2
δ j ′ j̃ ′〈 j

′,m′| j1,m1; j2,m2〉}. (5.148)

Here, for notational simplicity, we have omitted the mi
4 part of the GT pattern for the

primary operators Oi. The second line of this equation gives the more traditional
form of the three-point functions as a sum over tensor structures labeled by a.
Finally, 〈 j′,m′| j1,m1; j2,m2〉 is the SU (2) Clebsch-Gordan coefficient. Similarly,
for the left three-point function we have

〈0|O j4,m4
4 (−1)O j3,m3

3 (1) |∆, lL, lR; j,m〉

= λ ( j3, j4, j)〈0| j4,m4; j3,m3; j,m〉

=
∑

b=( j̃3, j̃4, j̃)

λ ( j̃3, j̃4, j̃)
{δ j3, j̃3

δ j4, j̃4
δ j, j̃〈0| j4,m4; j3,m3; j,m〉}, (5.149)

and the constraint from (5.123) is simply j̃ ∈ j̃3 ⊗ j̃4 since all SU (2) irreps are self-
conjugate. Here 〈0| j4,m4; j3,m3; j,m〉 is essentially the SU (2) 3 j symbol. Note
that this parametrization of three-point structures is essentially the same as the one
mentioned in [2].

The four-point tensor structures (5.134) can also be computed as


j3,m3
j4,m4

����
j̃3
j̃4

j
����m

���� j
′

j̃1
j̃2

����
j1,m1
j2,m2


= 〈0| j4,m4; j3,m3; j,m〉〈 j′,m | j1,m1; j2,m2〉δ j1, j̃1

δ j2, j̃2
δ j3, j̃3

δ j4, j̃4
. (5.150)

Recall that the labels mi parametrize the representations of the Spin(2) which rotates
in the plane 3-4. This plane is orthogonal to the plane 1-2 in which we place our
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operators, and thus this Spin(2) it the stabilizer group of the four points and, as usual,
the four-point tensor structures have to be invariant under it. Using the constraints
m4 + m3 + m = 0 and m = m1 + m2 coming from the CG coefficients, we find
m4 + m3 + m2 + m1 = 0 which is precisely the required invariance condition. Of
course, this comes as no surprise since it was guaranteed by construction. Note that
this basis of four-point tensor structures is different from the one in [2], since it is
not an eigenbasis for rotations in plane 1-2.

The final formula (5.130) takes the following form in 4d,∑
j,m

〈0|O j4,m4
4 (−1)O j3,m3

3 (1) |∆, lL, lR; j,m〉〈∆, lL, lR; j,m |eθM12r DO
j2,m2
2 (1)O j1,m1

1 (−1) |0〉 =

=
∑
a,b

∑
m

λaλ
b

[
j3,m3
j4,m4

����b
����m

����a
����
j1,m1
j2,m2

]
PlL,lR;m

j̃, j̃ ′
(θ), (5.151)

where the four-point tensor structure and the three-point labels a, b are described
above, while the P-function is given below in section 5.3.7 by equation (5.212). The
range of summation overm is restricted to be−min( j̃, j̃′),−min( j̃, j̃′)+1, . . . ,min( j̃, j̃′).

5.3.5 Example: Seed conformal blocks in general dimensions
Our last example concerns an especially simple case which occurs for every d. The
simplification is based on the fact that the CG coefficients are trivial when one of
the representations is trivial. Choosing two of the four operators operators to be
scalars, we can ensure that the CG coefficients for both the right and the left three-
point function simplify, with the correlator itself still being sufficiently general. If
fact, as will be clear from the construction, the so-called seed blocks for arbitrary
intermediate representations can be chosen to be of this form.

Let us choose the operators O1 and O3 to be scalars. Then the general result (5.130)
simplifies as∑

Md

〈0|OM
4
d

4 (−1)O3(1) |∆,Md〉〈∆,Md |r DeθM12O
M2

d

2 (1)O1(−1) |0〉 =

=
∑
m̃i

d−1

∑
md−2

λ
•,m̃2

d−1
m̃2

d−1
λ
•,m̃4

d−1

m̃4
d−1

r∆Pmd,md−2

m̃2
d−1,m̃

4
d−1

(θ)×

×



•

M4
d

����
•

m̃4
d−1

m̃4
d−1

����md−2
����m̃

2
d−1

•

m̃2
d−1

����
•

M2
d


, (5.152)
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with the four point-structures given by the specialization of (5.134),



•

M4
d

����
•

m̃4
d−1

m̃4
d−1

����md−2
����m̃

2
d−1

•

m̃2
d−1

����
•

M2
d


=

=
∑

Md−2,M
′
d−2

〈0|M4
d−1,Md−1〉δMd−2,M

′
d−2
〈M′d−1 |M

2
d−1〉δm2

d−1,m̃
2
d−1
δm4

d−1,m̃
4
d−1
=

=
∑

Md−2,M
′
d−2

(−1)M
4
d−1√

dim m̃4
d−1

δ
M4

d−1,Md−1
δMd−2,M

′
d−2
δM′

d−1,M
2
d−1
δm2

d−1,m̃
2
d−1
δm4

d−1,m̃
4
d−1
=

=
(−1)M

4
d−1√

dim m̃4
d−1

δm2
d−1,m̃

2
d−1
δm4

d−1,m̃
4
d−1
δm4

d−2,md−2
δm2

d−2,md−2
δ
M4

d−2,M
2
d−2
, (5.153)

where we made use of (5.47). The constraints (5.131) reduce in this case to

m̃i
d−1 ∈mi

d, i = 2, 4, (5.154)

md−2 ∈ m̃2
d−1 ∈ md, (5.155)

md−2 ∈ m̃4
d−1 ∈ md . (5.156)

Note that for any md there exists a choice of mi
d such that these constraints can be

satisfied, and thus arbitrary intermediate representations can be exchanged in this
simplified setup. In fact, for a given md , in even d, we can always choose mi

d so that
there is a unique choice available for m̃i

d−1 (and thus a unique three-point function
on either side). For this, set, for example23

m2
d,k = md,k+1, 1 ≤ k < n,

m2
d,n = 0 or 1

2,

m4
d = m2

d, (5.157)

where the choice in the second equality is determined by the statistics of md . In odd
d, this only reduces down to two choices for each of m̃i

d−1 if the representations are
fermionic (but still one choice for bosonic representations). This is because in the
case of odd d the outer automorphism of Spin(d−1) (given by reflection) necessarily
acts non-trivially on fermionic representations of Spin(d − 1), but trivially on the
representations of Spin(d). Therefore, the number of three-point tensor structures

23This is choice is different from the one used in d = 4 in [2]. In fact, in even d it doesn’t matter
what we choose m2

d,n
to be, and the choice in [2] corresponds to m2

d,n
= |md,n |. Our choice (5.157)

has the advantage that is also works in odd dimensions, see below. Also, note that there is some
freedom in choosing m4

d
independently of m2

d
.
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involving fermionic representations is always even, and we simply cannot have less
than 2 non-trivial structures.

If we think about the state |∆,Md〉 as being a conformal primary, then the choices
of external representations described above give us a valid choice for the so-called
seed blocks for exchange of primary md – they lead to the minimum number of
three-point tensor structures on both sides of the four-point function. The equa-
tions (5.152) and (5.153) then give the leading contribution to the OPE limit of such
seed conformal blocks.

As a concrete example, consider the scalar-fermion blocks in even dimensions.
Specifically, we take

m2
d = ( 1

2, . . . ,
1
2,+

1
2 ), (5.158)

m4
d = ( 1

2, . . . ,
1
2,−

1
2 ). (5.159)

This is slightly different from the prescription (5.157) unless d = 4k + 2, but it is
more convenient to have a uniform choice of representations for all even d. Under
dimensional reduction both m2

d and m4
d restrict to a single representation, and thus

necessarily

m̃2
d−1 = m̃4

d−1 = ( 1
2, . . . ,

1
2 ). (5.160)

These representations further restrict to a direct sum of ( 1
2, . . . ,+

1
2 ) and ( 1

2, . . . ,−
1
2 )

in d − 2 dimensions, so that there are two four-point tensor structures

t± ≡


•

M4
d

����
•

( 1
2, . . . ,

1
2 )

( 1
2, . . . ,

1
2 )

����(
1
2, . . . ,±

1
2 )

����(
1
2, . . . ,

1
2 )

•

( 1
2, . . . ,

1
2 )

����
•

M2
d


. (5.161)

Correspondingly, there are two types ofmd that can be exchanged, each with a single
three-point tensor structure on either side,

m±d = ( j, 1
2, . . . ,±

1
2 ). (5.162)

From (5.130) we find that the contribution of the representation m±d to the four-point
function (5.108) is given by∑

±

Λ±r∆ *
,
P

( j,12 ,...,±
1
2 ),( 1

2 ,...,+
1
2 )

( 1
2 ,...,

1
2 )( 1

2 ,...,
1
2 )

(θ)t+ + P
( j,12 ,...,±

1
2 ),( 1

2 ,...,−
1
2 )

( 1
2 ,...,

1
2 )( 1

2 ,...,
1
2 )

(θ)t−+
-
, (5.163)

where

Λ± = λ
•,m̃2

d−1
m̃2

d−1,m
±
d

λ
•,m̃4

d−1
m̃4

d−1,m
±
d

. (5.164)
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Here m±d index of OPE coefficients labels the exchanged representation. We find
explicit expressions for the above P-functions in section 5.3.7.3, with the result
given in (5.196).

5.3.6 Example: Conformal block/Four-point tensor structure correspondence
As another simple application of the above formalism, let us discuss the folklore
theorem which states that the number of classes of conformal blocks which con-
tribute to a given four-point function is equal to the number of four-point tensor
structures [55, 75]. We will consider the simplest case where the only relevant
symmetry is the connected conformal group (i.e., no space parity or permutation
symmetries for identical operators). In our formalism this theorem becomes essen-
tially a tautology. Because of that, this section basically reiterates what was already
said, with a slightly different focus.

First, let us explain what is meant by classes of conformal blocks. Each conformal
block contributing to a four-point function is parametrized by the dimension ∆ and
the Spin(d) representation md of the exchanged primary operator, as well as by
a pair of three-point functions a and b. From the previous discussion, we can
parametrize the three-point functions as follows,

a = (m̃1
d−1, m̃

2
d−1,m

′
d−1, t

′),

b = (m̃3
d−1, m̃

4
d−1,md−1, t), (5.165)

subject to (5.131). In particular, the constraint

m̃i
d−1 ∈ mi

d (5.166)

gives us finitely many choices for m̃i
d−1 for fixed mi

d and the constraints

(m′d−1, t
′) ∈ m̃1

d−1 ⊗ m̃2
d−1,

(md−1, t) ∈ m̃3
d−1 ⊗ m̃4

d−1, (5.167)

thus give us finitely many choices of (m′d−1, t
′) and (md−1, t). The intermediate

representation is then constrained by md−1,m′d−1 ∈ md . This leaves infinitely many
choices of md for a given four-point function. However, the allowed md organize
into natural families. Indeed, let us denote md = ( j, m̃d−2), i.e., j is the length of
the first row of the generalized Young diagram of j and m̃d−2 encodes the remaining
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rows.24 The following two statements are then equivalent,

md−1,m′d−1 ∈ md = ( j, m̃d−2) ⇐⇒ m̃d−2 ∈ md−1,m′d−1 and j ≥ md−1,1,m′d−1,1.

(5.168)

This leaves only a finite number of choices for m̃d−2.

The infiniteness of the number of conformal blocks is therefore only due to the
generic parameters ∆ and j. If we consider any two conformal blocks differing by
only these two parameters to belong to the same class, we obtain a finite set of classes
parametrized by a pair of three-point structures (5.165) subject to (5.166)-(5.167)
and a m̃d−2 subject to

m̃d−2 ∈ md−1,m′d−1. (5.169)

The statement of the theorem is that the number of such classes is equal to the
number of four-point tensor structures. Indeed, we already saw that the four-point
tensor structures (5.134) are parameterized by exactly the same data.

For conformal blocks this statement is, strictly speaking, only a counting statement
and thus it would be interesting to get a more physical understanding of this. Note
however that the matroms Pmd−1,m′d−1

, as discussed in section 5.3.7.3 link together,
in some sense, the spaces of R × Spin(d) blocks and four-point tensor structures.

5.3.7 P-functions
In this section we discuss general properties of the GT matrix elements P, as well as
their explicit calculation in various situations. This section is rather technical and
mostly independent from the sections to follow, and thus can be skipped on the first
reading.

5.3.7.1 Basic properties

First, recall the definition (5.128)

〈Md |eθM12 |M′d〉 = Pmd,md−2
md−1,m′d−1

(θ)δMd−2,M
′
d−2
. (5.170)

There are a lot of properties of P which follow immediately from this definition as
a matrix element. For example, the simplest property of P is given by substituting
θ = 0,

Pmd,md−2
md−1,m′d−1

(0) = δmd−1,m′d−1
. (5.171)

24Note that indeed m̃d−2 is always a dominant weight for Spin(d − 2).
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Furthermore, P is 2π-periodic for bosonic representations and 2π-antiperiodic for
fermionic representations. More generally, we know from the standard representa-
tion theory arguments that the spectrum of iM12 consists of (half-)integers ranging
from −md,1 to md,1, and thus all P-functions have the form

Pmd,md−2
md−1,m′d−1

(θ) =
md,1∑

m=−md,1

cmeimθ, (5.172)

where cm are coefficients which depend on the indices of P, some of which may
vanish.

Reality properties can be obtained by applying Hermitian conjugation to the defini-
tion above and noting that Mµν are anti-Hermitian, resulting in, for real θ,(

Pmd,md−2
md−1,m′d−1

(θ)
)∗
= Pmd,md−2

m′
d−1,md−1

(−θ). (5.173)

Note that we also have∑
M′

d

〈0|MdM
′
d〉〈M

′
d |eθM12 |M′′d〉 =

∑
M′

d

〈0|M′dM′′d〉〈M
′
d |e
−θM12 |Md〉 (5.174)

due to the invariance of 〈0|MdM
′
d〉. Contracting with 〈M′′′d M

′′
d |0〉 on both sides

we find

dim md

∑
M′

d
,M′′

d

〈0|MdM
′
d〉〈M

′
d |eθM12 |M′′d〉〈M

′′′
d M

′′
d |0〉 = 〈M′′′d |e

−θM12 |Md〉.

(5.175)

This implies, in terms of P-functions,

(−1)md−1−m′
d−1 Pmd,md−2

md−1,m′d−1
(θ) = Pmd,md−2

m′
d−1,md−1

(−θ) =
(
Pmd,md−2

md−1,m′d−1
(θ)

)∗
. (5.176)

The group composition property for the matrix elements∑
M′

d

〈Md |eθ1 M12 |M′d〉〈M
′
d |e

θ2 M12 |M′′d 〉 = 〈Md |e(θ1+θ2)M12 |M′′d 〉 (5.177)

gives the sum rule∑
m′

d−1

Pmd,md−2
md−1,m′d−1

(θ1)Pmd,md−2
m′

d−1,m
′′
d−1

(θ2) = Pmd,md−2
md−1,m′′d−1

(θ1 + θ2). (5.178)

In particular, substituting θ2 = −θ1, m′′d−1 = md−1, we find, for real θ,∑
m′

d−1

|Pmd,md−2
md−1,m′d−1

(θ1) |2 = 1, (5.179)

and thus

|Pmd,md−2
md−1,m′d−1

(θ) | ≤ 1. (5.180)
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5.3.7.2 Orthogonality relations

The matrix elements of group representations obey Schur orthogonality relations
which read as∫

Spin(d)
〈Md |R|M′d〉(〈M̃d |R|M̃′d〉)

∗dR =
1

dim md
δ
Md,M̃d

δ
M′

d
,M̃′

d
. (5.181)

Here the δ-symbols also compare md with m̃d . The group integral in the left hand
side is understood to be over Haar measure normalized as∫

Spin(d)
dR = 1. (5.182)

Let us set Md−1 = M̃d−1 and M′d−1 = M̃
′
d−1 in (5.181) and do Spin(d − 1) sums.

Equation (5.181) then becomes∑
Md−1,M

′
d−1

∫
Spin(d)

〈mdMd−1 |R|mdM
′
d−1〉〈m̃dM

′
d−1 |R

−1 |m̃dMd−1〉dR =

=
dim md−1 dim m′d−1

dim md
δmd,m̃d

. (5.183)

We then write R as R = K AK′, where A = eθM12 for some θ and K, K′ ∈ Spin(d −

1).25 In the left hand side K and K′ cancel out due to Spin(d − 1) invariance of the
contractions, resulting in∑
Md−1,M

′
d−1

∫
Spin(d)

〈mdMd−1 |eθ(R)M12 |mdM
′
d−1〉〈m̃dM

′
d−1 |e

−θ(R)M12 |m̃dMd−1〉dR =

=
∑
md−2

dim md−2

∫
Spin(d)

Pmd,md−2
md−1,m′d−1

(θ(R))
(
Pm̃d,md−2

md−1,m′d−1
(θ(R))

)∗
dR. (5.184)

By using explicit coordinates on Spin(d) one can show that, for d > 2∫
Spin(d)

f (θ(R))dR =
Γ( d

2 )
√
πΓ( d−1

2 )

∫ π

0
sind−2 θ f (θ)dθ. (5.185)

Putting everything together, we obtain the following orthogonality relation∑
md−2

dim md−2

∫ π

0
Pmd,md−2

md−1,m′d−1
(θ)

(
Pm̃d,md−2

md−1,m′d−1
(θ)

)∗
sind−2 θdθ =

=

√
πΓ( d−1

2 )

Γ( d
2 )

dim md−1 dim m′d−1
dim md

δmd,m̃d
. (5.186)

25This follows from a standard choice of coordinates on Spin(d), which follows from
Spin(d)/Spin(d − 1) = Sd−1 : an element on the sphere can be obtained from a fixed point by
K A and K ′ comes from Spin(d − 1) equivalence class.
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5.3.7.3 Computational techniques

In the remainder of this section we discuss how P-functions can be computed in
practice, first in general and then in specific examples.

The conceptually simplest computational scheme follows immediately from the
definition (5.128) as a matrix element of eθM12 . Indeed, since we know the matrix
elements of M12 (see section 5.2.3 and appendix D.2), we can find the matrix
corresponding to M12 in any given representation and then exponentiate it by the
standard methods. When doing this, one can reduce the amount of calculation by
taking note of the structure of the right hand side of (5.128). Following this strategy,
we simultaneously produce

Pmd,md−2
md−1,m′d−1

(θ) (5.187)

with fixed md and md−2 for all choices of md−1 and m′d−1.

This strategy is therefore somewhat of an overkill for our purposes, since in a four-
point function the possible choices of representations md−1 and m′d−1 are prescribed
by the spins of external representations, while md and md−2 take on all the values
allowed by each pair of md−1 and m′d−1.26 Fortunately, there exist techniques which
compute Pmd,md−2

md−1,m′d−1
(θ) for fixed md−1 and m′d−1.

Let us fix md−1 and m′d−1. Furthermore, write md = ( j, m̃d−2), i.e., define j ≡ md,1

and think of the rest of md as a (d − 2)-dimensional weight m̃d−2. Note that
md−1,m′d−1 ∈ md requires j ≥ max(md−1,1,m′d−1,1). Assuming that this holds, it is
easy to check that the following two statements are equivalent,

md 3 md−1,m′d−1 ⇐⇒ m̃d−2 ∈ md−1,m′d−1. (5.188)

In other words, m̃d−2 satisfies the same requirements as md−2. This means that
we can arrange P( j,m̃d−2),md−2

md−1,m′d−1
(θ) into a square matrix P j

md−1,m′d−1
(θ) with rows and

columns labeled by m̃d−2 and md−2 respectively. Such matrices are discussed, for
example, in [210] (and references therein), where they are shown to satisfy certain
second-order matrix differential equations, and methods for solving these equations
are developed. Following the terminology of [210], we will refer to these matrices
as “matroms.” Note that the size of the matrom is independent of j and is only
determined by md−1 and m′d−1. Furthermore, all (if any) components of a given
matrom appear in a given four-point function.

26Also, the size of the matrix which one needs to exponentiate grows with the spin md,1, which
makes this approach computationally more intensive.



203

Potentially, the results described in [210] may allow one to find analytic in j expres-
sions for thematromsP j

md−1,m′d−1
in terms of known special functions. Unfortunately,

we were not able to devise a complete computational algorithm based on these re-
sults.27 However, since in numerical applications one requires P j

md−1,m′d−1
for all j

up to a certain cutoff, it is convenient to use a recursion relation in j as described
below. Expressions analytic in j can still be obtained in a number of cases, as we
discuss in the next subsections.

The basic idea is to consider the product

〈Md |eθM12 |M′d〉〈 , •, . . . |eθM12 | , •, . . .〉 = 〈Md |eθM12 |M′d〉 cos θ. (5.189)

The left hand side is a matrix element in md ⊗ and thus can be decomposed as a
sum of matrix elements in various irreducible representations,

〈Md |eθM12 |M′d〉〈 , •, . . . |eθM12 | , •, . . .〉 =

=
∑

m̃d∈md⊗

〈m̃dMd−1 |eθM12 |m̃dM
′
d−1〉

*
,

md

md−1 •

������

m̃d

md−1
+
-

*
,

md

m′d−1 •

������

m̃d

m′d−1

+
-

∗

.

(5.190)

One can easily see that in terms of matroms this leads to the following recursion
relation,

A+j P j+1 + A−j P j−1 + B jP j = cos θ P j, (5.191)

where A±j , B j are some matrices,28 and we have suppressed the dependence of
everything on md−1,m′d−1 for simplicity of notation. Starting from the smallest
possible j (for which we can compute P j by, say, exponentiation), one can use this
relation to find P j for higher j.

As an example, consider the matroms in d = 2n with md−1 = m′d−1 = ( 1
2, . . . ,

1
2 ),

which will be useful in the example of section 5.3.5. There are two representations
in the dimensional reduction of md−1 = m′d−1, md−2 = ( 1

2, . . . ,±
1
2 ), i.e., the two

fermionic representations in d − 2 dimensions. We therefore have a 2 × 2 matrom

P j =

*......
,

P
( j,12 ,...,+

1
2 ),( 1

2 ,...,+
1
2 )

( 1
2 ,...,

1
2 ),( 1

2 ,...,
1
2 )

(θ) P
( j,12 ,...,+

1
2 ),( 1

2 ,...,−
1
2 )

( 1
2 ,...,

1
2 ),( 1

2 ,...,
1
2 )

(θ)

P
( j,12 ,...,−

1
2 ),( 1

2 ,...,+
1
2 )

( 1
2 ,...,

1
2 ),( 1

2 ,...,
1
2 )

(θ) P
( j,12 ,...,−

1
2 ),( 1

2 ,...,−
1
2 )

( 1
2 ,...,

1
2 ),( 1

2 ,...,
1
2 )

(θ)

+//////
-

. (5.192)

27It is an interesting problem to complete the results described in [210] to find a general algorithm
for constructing analytic expressions for generic matroms.

28The matrices A are, importantly, diagonal, which makes it easy to invert A+j .
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For example, one can easily check that for any d

P
1
2 =

*.
,

e−iθ/2 e+iθ/2

e+iθ/2 e−iθ/2
+/
-
. (5.193)

By using the explicit formulas for the isoscalar factors from appendix D.2.2, one
can show that the recursion relation (5.191) reduces in this case to

j + 2n − 3
2

j + n − 1
2

P j+1 +
j − 1

2

j + n − 3
2

P j−1 +
n − 1

( j + n − 1
2 )( j + n − 3

2 )
*.
,

0 1
1 0

+/
-

P j = 2 cos θ P j,

(5.194)

where n = d/2. For instance, applying this relation twice, we find

P2+1
2 =

n − 1
2n − 1

*.
,

1
2

n+1
n−1 e−

5
2 iθ + e−

1
2 iθ + 1

2 e+
3
2 iθ 1

2
n+1
n−1 e+

5
2 iθ + e+

1
2 iθ + 1

2 e−
3
2 iθ

1
2

n+1
n−1 e+

5
2 iθ + e+

1
2 iθ + 1

2 e−
3
2 iθ 1

2
n+1
n−1 e−

5
2 iθ + e−

1
2 iθ + 1

2 e+
3
2 iθ

+/
-
,

(5.195)

valid for any d = 2n. The general solution can be expressed in terms of Jacobi
polynomials as29

P j =
( j − 1

2 )!
(n − 1

2 )
j−1

2


cos θ

2 P
(n− 3

2 ,n−
1
2 )

j−1
2

(cos θ) *.
,

1 1
1 1

+/
-
+ sin θ

2 P
(n− 1

2 ,n−
3
2 )

j−1
2

(cos θ) *.
,

−i i

i −i
+/
-


.

(5.196)

5.3.7.4 Contribution of R × Spin(d) multiplets in terms of matroms

Having introduced the matroms P in the previous subsection, it makes sense to
reanalyse (5.132) in terms of them. For fixed a and b as in (5.122) and (5.123)
denote by

Tba (5.197)

the column vector built out of four-point tensor structures



M3
d

M4
d

����b
����md−2

����a
����
M1

d

M2
d


(5.198)

29To find this solution, we first diagonalized the recursion relation and then matched it to the
recursion relation for Jacobi polynomials. The Jacobi polynomials entering this expression can in
principle be expressed in terms of linear combinations of Gegenbauer polynomials.
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with md−2 running through all allowed values. Also, denote P j
ba ≡ P j

md−1,m′d−1
.

Finally, let

Λba
j (5.199)

be the row vector built out of

λ
b
∆,md

λa
∆,md

(5.200)

corresponding to all md = ( j, m̃d−2) which can contribute to the given pair a, b

according to (5.131), summed over degenerate multiplets. If we are considering the
contribution of a singleR×Spin(d) multiplet, then this vector contains a single non-
zero element, but at this point it is convenient to also allow several contributions.
We then have∑

md,md,1= j

∑
a,b

∑
md−2

λ
b
∆,md

λa
∆,md

r∆Pmd,md−2
md−1,m′d−1

(θ) ×


M3
d

M4
d

����b
����md−2

����a
����
M1

d

M2
d


=

= r∆
∑
a,b

Λba
j · P

j
ba (θ) · Tba . (5.201)

As we discuss in section 5.3.6, in this equation Λba
j correspond, roughly speaking,

to the space of conformal blocks, while Tba correspond to the space of four-point
tensor structures. The matroms link these two spaces together, giving a realization
of the folklore theorem [55, 75] (see section 5.3.6).

In the rest of this section we consider somemore explicit examples. First, we recover
the Gegenbauer polynomials relevant to the scalar correlation functions and then we
consider the low-dimensional cases d = 3 and d = 4.

5.3.7.5 Scalar matrom

Let us consider the simplest P-function Pj,•
•,•(θ), which is the only component of the

simplest scalar matrom P j
•,•(θ). Analogously to the example considered above, we

could write down the recursion relation (5.191) for this matrom and recognize that,
together with the initial condition P•,••,• (θ) ≡ 1, it is solved by

Pj,•
•,•(θ) =

C (ν)
j (cos θ)

C (ν)
j (1)

, (5.202)

where ν = (d − 2)/2. However, it is instructive to take another approach to arrive at
this result. Consider the tensor given by

eµ1
1 · · · e

µ j
1 − traces. (5.203)
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Obviously, this tensor is an element of j of Spin(d). On the other hand, it transforms
under the trivial representation of Spin(d − 1). Therefore, we have

eµ1
1 · · · e

µ j
1 − traces ∝ |j, •, . . .〉. (5.204)

Acting with eθM12 , we find that

eθM12 |j, •, . . .〉 ∝ eµ1
1 (θ) · · · eµ j1 (θ) − traces, (5.205)

where e1(θ) = cos θe1 + sin θe2. This implies

Pj,•
•,•(θ)

= 〈j, •, . . . |eθM12 |j, •, . . .〉 ∝ (e1,µ1 · · · e1,µ j − traces)(eµ1
1 (θ) · · · eµ j1 (θ) − traces).

(5.206)

The right hand side of this equation is known to be proportional to the Gegenbauer
polynomial C (ν)

j (e1 · e1(θ)) = C (ν)
j (cos θ). Combining this with the normalization

condition Pj,•
•,•(0) = 1, we recover (5.202).

This strategy generalizes to other tensor representations and also allows one to relate
P-functions to the irreducible projectors studied recently in [82]. We discuss this
further in appendix D.4.

5.3.7.6 3 dimensions

We now consider the case d = 3. As discussed in section 5.3.1, the 3-dimensional
GT matrix elements P j

m,m′ (θ) are given by (5.129),30

P j
m,m′ (θ) = 〈 j,m |eθM12 | j,m′〉 = 〈 j,m |e−iθJ2̂ | j,m′〉 = d j

m,m′ (−θ). (5.207)

Note that in 3d all matroms are 1×1 and coincide with the above functions. There is
not much to add here, except for the explicit formula for the small Wigner d-matrix
d j

m,m′ (θ),

d j
m,m′ (θ)

= (−1)m−m′

√
( j + m′)!( j − m′)!
( j + m)!( j − m)!

(
sin

β

2

)m′−m (
cos

β

2

)m′+m

P(m′−m,m′+m)
j−m′ (cos θ),

(5.208)

where in this expression P(a,b)
n are the Jacobi polynomials.

30We use the convention consistent with Mathematica’s WignerD[{ j,m,m′},θ].
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5.3.7.7 4 dimensions

In 4d we have the following definition of GT matrix elements PlL,lR;m
j, j ′ (θ),

PlL,lR;m
j, j ′ (θ) = 〈lL, lR; j,m |eθM12 |lL, lR; j′,m〉. (5.209)

We can compute them by going to the SU (2) × SU (2) basis,

PlL,lR;m
j, j ′ (θ) = 〈lL, lR; j,m |eθM12 |lL, lR; j′,m〉

=
∑

mL+mR=m

∑
m′L+m′R=m

〈lL,mL; lR,mR |eθM12 |lL,m′L; lR,m′R〉×

× 〈 j,m |lL,mL; lR,mR〉〈lL,m′L; lR,m′R | j
′,m〉. (5.210)

Using (5.86), we find

〈lL,mL; lR,mR |eθM12 |lL,m′L; lR,m′R〉 = 〈lL,mL; lR,mR |e
−iθJL

3̂
+iθJR

3̂ |lL,m′L; lR,m′R〉

= e−i(mL−mR)δmLm′LδmRm′R, (5.211)

and thus

PlL,lR;m
j, j ′ (θ) =

lL+lR∑
k=−lL−lR

〈
j,m

����lL,
m + k

2
; lR,

m − k
2

〉〈
lL,

m + k
2

; lR,
m − k

2
���� j
′,m

〉
e−ikθ .

(5.212)

Note that in this formula the summation is over (half-)integral values of k for (half-
)integral values of `1 = lL + lR, and whenever the Clebsch-Gordan coefficient is
undefined, we assume that it is equal to zero. Thus the range of summation is
effectively restricted to

{−2lL − m, . . . , 2lL − m} ∩ {−2lR + m, . . . , 2lR + m}. (5.213)

For example, if m = lL + lR, then only k = lL − lR enters the sum. (Also necessarily
j = j′ = lL + lR.)

5.4 Casimir equation
In this section we derive Casimir recursion relation for the series expansion of
spinning conformal blocks. We first rederive the results of [59] for scalar conformal
blocks in a more streamlined way and then extend these results to arbitrary spinning
conformal blocks. As an example, we explicitly work out the recursion relations for
general 3d conformal blocks and for general seed blocks in arbitrary d.
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In this section we will work in coordinates different from those in section 5.3. In
particular, we set

w1 = 0, w2 = z, w3 = 1, w4 = +∞. (5.214)

We use the following definition of O4(+∞),

O4(+∞) ≡ lim
L→+∞

L2∆4O4(Le1). (5.215)

Note that we do not act in any way on the spin indices of O4 when taking this limit.31
The results of section 5.3 translate to this case without essential modification (except
for changing the insertion point of the operators in all formulas).

We use (5.214) because the Casimir recursion relations take the simplest form in
these coordinates, analogously to the case of scalar blocks [59]. The recursion
relations in ρ-coordinates, unfortunately, take a much more complicated form [60,
80].

5.4.1 Review of scalar conformal blocks
Consider the scalar conformal block for exchange of a primary operator O

GO (s, φ) ≡ 〈0|φ4(∞)φ3(1) |O|sDeθM12φ2(1)φ1(0) |0〉, (5.216)

where z = seiθ , we have used the convention (5.108) for writing the four-point
functions,32 and |O| is the projection operator on the conformal family of O,

|O| =
∑

p≥0,md,Md,q

|∆p,Md, q〉〈∆p,Md, q |, (5.217)

where the sum is over an orthonormal basis of descendants of O. Here ∆p = ∆O + p

is the scaling dimension of a level-p descendant, md is the Spin(d) representation
of the descendant, and q labels the possible degeneracies which arise when there
are several descendants in representation md at level p.

31When O4 is tensor, one often acts on its indices with reflection along e1 when taking this limit.
This is done because O4(∞) defined our way effectively transforms in the representation reflected to
m4

d
. When m4

d
is tensor, its reflection is equivalent to m4

d
and thus one may find it convenient to act

on O4 with the map which furnishes this equivalence. More generally, the reflected representation
can be different from m4

d
and thus there is no benefit in acting on spin indices of O4 within our

general treatment.
32In the scalar case (5.108) differs from (5.107) only by the factor s∆1+∆2 .
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The results of section 5.3 and in particular 5.3.2 tell us what is the most general
contribution of a single term of (5.217) to (5.216). We therefore have

GO (s, φ) =
∞∑

p=0

∞∑
j=0

∑
q

λ•,•
•,p, j,qλ

•,•

•,p, j,qs∆p Pj,•
•,•(θ) =

∞∑
p=0

∞∑
j=0

Λp, j s∆O+p
C (ν)

j (cos θ)

C (ν)
j (1)

.

(5.218)

We have defined

Λp, j ≡
∑

q

λ•,•
•,p, j,qλ

•,•

•,p, j,q. (5.219)

The range of j is in fact restricted by the spectrum of descendants at each level p so
that | j − jO | ≤ p, but we will ignore this by assuming that Λp, j = 0 for p, j outside
this range. While this expansion respects R × Spin(d) symmetry, it doesn’t tell us
what the coefficients Λp, j are.

These coefficients are constrained by consistency of expansion 5.217 with the full
conformal symmetry. It was noticed in [57] that it suffices to ensure consistencywith
the action of the quadratic conformal Casimir operator. Usually this is condition
is formulated in a form of differential equation [57, 64]. When applied to (5.218),
this equation immediately yields a one-step recursion relation for the coefficients
Λp, j [59],

(Cp, j − C0, jO )Λp, j = Γ
+
p−1, j−1Λp−1, j−1 + Γ

−
p−1, j+1Λp−1, j+1, (5.220)

where coefficients Γ±p, j are given by33

Γ
+
p, j =

(∆p + j − ∆12)(∆p + j + ∆34)( j + d − 2)
2 j + d − 2

,

Γ
−
p, j =

(∆p − j − d + 2 − ∆12)(∆p − j − d + 2 + ∆34) j
2 j + d − 2

, (5.221)

with ∆i j = ∆i − ∆ j , while the Casimir eigenvalues are given by

Cp, j = ∆p(∆p − d) + j ( j + d − 2). (5.222)

This result is remarkably simple, much simpler than the intermediate steps in the
derivation of [59] would suggest. In fact, it is not a priori obvious from that
derivation that the recursion relation should take such a simple form. For example,

33In [59] these coefficients are given with ∆12 = ∆34 = 0, but it is trivial to generalize their
argument.
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when repeated in ρ-coordinates, essentially the same derivation leads to a much
more complicated recursion relation. We are therefore motivated to look for a more
conceptual derivation of (5.220), which manifests this simple structure.

Let us start from the definition of the conformal Casimir operator,

C = D(D − d) + CSpin(d) − P · K, (5.223)

where CSpin(d) is the Spin(d) quadratic Casimir defined as

CSpin(d) = −
1
2

MµνM µν . (5.224)

The key property of C is that it commutes with all conformal generators and thus
acts on all the descendants of O by the same eigenvalue as on O. That eigenvalue
can be computed by

C|O〉 =
(
D(D − d) + CSpin(d) − P · K

)
|O〉 = C(O) |O〉, (5.225)

C(O) = ∆O (∆O − d) + CSpin(d) (mOd ), (5.226)

where we used Kµ |O〉 = 0, and CSpin(d) (md) is the Spin(d) quadratic Casimir
eigenvalue corresponding to the Spin(d) representation md . It is given by

CSpin(d) (md) =
bd/2c∑
k=1

md,k (md,k + d − 2k). (5.227)

For future convenience, let us define for any (not necessarily primary) R × Spin(d)
multiplet the number

C(∆,md) ≡ ∆(∆ − d) + CSpin(d) (md). (5.228)

It is the eigenvalue of the operator

C̃ ≡ C + P · K = D(D − d) + CSpin(d) . (5.229)

Note that P · K = K† · K � 0 for ∆ above unitarity bound and thus we always have
in such cases

C̃ � C. (5.230)

Since C takes the same eigenvalue on all states in a conformal multiplet, we have

|O|C = |O|C(O). (5.231)
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This implies the following operator version of the Casimir equation,

〈0|φ4φ3 |O|CsDeθM12φ2φ1 |0〉 = C(O)〈0|φ4φ3 |O|sDeθM12φ2φ1 |0〉. (5.232)

For notational simplicity, we have omitted the positions of the operators, which are
the same as in (5.216). The standard Casimir differential equation can be obtained
by acting with C on the right in the left hand side of this equation and expressing this
action in terms of derivatives in θ and s. We will take another approach, rewriting
the left hand side instead as

〈0|φ4φ3 |O|CsDeθM12φ2φ1 |0〉

= 〈0|φ4φ3 |O|(C̃ − PµKµ)sDeθM12φ2φ1 |0〉

= 〈0|φ4φ3 |O|C̃sDeθM12φ2φ1 |0〉 − 〈0|φ4φ3 |O|PµKµsDeθM12φ2φ1 |0〉

= 〈0|φ4φ3 |O|C̃sDeθM12φ2φ1 |0〉 − 〈0|φ4φ3Pµ |O|KµsDeθM12φ2φ1 |0〉, (5.233)

where in the last line we have used the conformal invariance of the projector |O|,
i.e., that it commutes with all conformal generators. Rearranging, we find

〈0|φ4φ3 |O|(C̃ − C)sDeθM12φ2φ1 |0〉 = 〈0|φ4φ3Pµ |O|KµsDeθM12φ2φ1 |0〉. (5.234)

We will now derive the recursion relation (5.220) by evaluating both sides of this
equation with the help of (5.217).

5.4.1.1 Left hand side

To warm up, let us consider the left hand side of this equation first. Using (5.217),
we find

〈0|φ4φ3 |O|(C̃ − C)sDeθM12φ2φ1 |0〉

=
∑

p,md,Md,q

〈0|φ4φ3 |∆p,Md, q〉〈∆p,Md, q |(C̃ − C)sDeθM12φ2φ1 |0〉

=
∑

p,md,Md,q

(
C(∆p,md) − C(∆O, jO)

)
〈0|φ4φ3 |∆p,Md, q〉〈∆p,Md, q |sDeθM12φ2φ1 |0〉

=

∞∑
p=0

∞∑
j=0

(Cp, j − C0, jO )Λp, j s∆O+p
C (ν)

j (cos φ)

C (ν)
j (1)

, (5.235)

where the last line follows similarly to (5.218), and we also made use of the fact that
we arranged the descendants into R × Spin(d) multiplets. We can already see that
we are on the right track – the coefficients in this expansion exactly reproduce the
left hand side of the recursion relation (5.220).
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5.4.1.2 Right hand side

Let us now analyze the less trivial right hand side of (5.234). We first look at the
contribution of a single term of (5.217). For simplicity of notation, we will omit the
degeneracy index q for now and restore it later. We thus consider∑

Md

〈0|φ4φ3Pµ |∆p,Md〉〈∆p,Md |KµsDeθM12φ2φ1 |0〉. (5.236)

Left three-point structure We will first evaluate the left three-point function
by commuting P on the left. We have (see appendix D.1 for our conventions on
conformal algebra)

〈0|φ4(∞)φ3(1)Pµ |∆p,Md〉 = −〈0|φ4(∞)∂µφ3(1) |∆p,Md〉. (5.237)

The crucial point is that the knowledge of 〈0|φ4(∞)φ3(1) |∆p,Md〉 and R× Spin(d)
invariance allow us to evaluate

〈0|φ4(∞)φ3(x) |∆p,Md〉 (5.238)

for any x ∈ Rd . In particular, we can compute the right hand side of (5.237). For
example, note that

〈0|φ4(∞)∂1φ3(1) |∆p,Md〉 = − 〈0|φ4(∞)φ3(1)(D + ∆3 − ∆4) |∆p,Md〉

= − (∆p + ∆3 − ∆4)〈0|φ4(∞)φ3(1) |∆p,Md〉. (5.239)

Here the first equality follows from action of D on the left while the second equality
follows from action on the right. The minus sign in front of ∆4 is due to the fact that
we placed O4 at infinity. Analogously, for µ , 1,

〈0|φ4(∞)∂µφ3(1) |∆p,Md〉 = −〈0|φ4(∞)φ3(1)M1µ |∆p,Md〉. (5.240)

Here we can act with M1µ on the right by using the representation md for M1µ. As
we discussed in section 5.2.3, such actions can be described by means of a reduced
matrix element,

〈M′d |M
1Ud−1 |Md〉 = *

,

md

m′d−1

������
M

������

md

md−1
+
-
〈M′d−1 |Md−1Ud−1〉. (5.241)

We conclude

〈0|φ4(∞)φ3(1)PUd |∆p,Md〉 =
∑
M′

d

*
,

md

m′d−1

������
M

������

md

md−1
+
-
〈M′d−1 |Md−1Ud−1〉×

× 〈0|φ4(∞)φ3(1) |∆p,M
′
d〉, (5.242)
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where ud = ud−1 = .

Note that the states PUd |∆p,Md〉 are just some other descendants of O. It is conve-
nient to decompose them into the irreducible representations of Spin(d) by defining
the states

|P,∆p,md; M̃d〉 ≡
∑
Md,Ud

〈MdUd |M̃d〉 PUd |∆p,Md〉, (5.243)

where m̃d ∈ ⊗ md and 〈MdUd |M̃d〉 are the vector Clebsch-Gordan coefficients.
We can decompose this sum according to Spin(d − 1) symmetry of the three-point
functions as

|P,∆p,md; M̃d〉 =
∑
Md

P ,•,... |∆p,Md〉〈Md; , •, . . . |M̃d〉

+
∑
Md,Ud

ud−1=

PUd |∆p,Md〉〈MdUd |M̃d〉,

=P ,•,... |∆p,md M̃d−1〉*
,

md

m̃d−1 •

������

m̃d

m̃d−1
+
-

+
∑
Md,Ud

ud−1=

PUd |∆p,Md〉*
,

md

md−1

������

m̃d

m̃d−1
+
-
〈Md−1Ud−1 |M̃d−1〉.

(5.244)

Here we made use of (5.93) and of the triviality of CG coefficients involving the
trivial representation. Using equations (5.54), (5.239) and (5.242) we then find

〈0|φ4(∞)φ3(1) |P,∆p,md; M̃d〉 =

[
m̃d md

m̃d−1

]34

p
〈0|φ4(∞)φ3(1) |∆p,md M̃d−1〉,

(5.245)

where
[
m̃d md

m̃d−1

]34

p
=(−1)d (∆p + ∆3 − ∆4)*

,

md

m̃d−1 •

������

m̃d

m̃d−1
+
-

+
∑
md−1

*
,

md

m̃d−1

������
M

������

md

md−1
+
-

*
,

md

md−1

������

m̃d

m̃d−1
+
-
. (5.246)

As we discuss in appendix D.2.4, the two terms in the last expression are in fact
proportional to each other,∑
md−1

*
,

md

m̃d−1

������
M

������

md

md−1
+
-

*
,

md

md−1

������

m̃d

m̃d−1
+
-
= (−1)d−1(md |m̃d)*

,

md

m̃d−1 •

������

m̃d

m̃d−1
+
-
,

(5.247)
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where (md |m̃d) is given by (D.36)-(D.38). This leads to
[
m̃d md

m̃d−1

]34

p
=(−1)d

(
∆p + ∆34 − (md |m̃d)

)*
,

md

m̃d−1 •

������

m̃d

m̃d−1
+
-
. (5.248)

Note that we have not yet actually specialized to the case of scalar operators, except
in deriving (5.242).34 Let us do this now.

We start by observing that we necessarily have m̃d−1 = • in order for both sides
of (5.245) to be non-trivial – both sides are proportional to Spin(d−1) CGcoefficient
〈•, . . . ; •, . . . |M̃d−1〉 which defines the three-point structures, see equation (5.120).
The selection rule m̃d ∈ md ⊗ , combined with the requirement that in the
scalar case md = j and m̃d are both traceless-symmetric, leaves only two options,
m̃d = j(±1), in notation of appendix D.2. We therefore only need to compute

[
j(±1) j
•

]34

p
. (5.249)

According to (5.248) we have
[
j(±1) j
•

]34

p
= (−1)d

(
∆p + ∆34 − (j |j(±1)

)*
,

j
• •

������

j(±1)
•

+
-
. (5.250)

By using the explicit expressions from appendix D.2 we find
[
j(−1) j
•

]34

p
= (−1)d (∆p + ∆34 − j − d + 2)

√
j

2 j + d − 2
, (5.251)

[
j(+1) j
•

]34

p
= (−1)d (∆p + ∆34 + j)

√
j + d − 2

2 j + d − 2
. (5.252)

One can already recognize here parts of the recursion coefficients Γ±p in (5.221). In
order to obtain the complete expressions, we need to consider the right three-point
structure.

Right three-point structure We now consider the right part of (5.236),

〈∆p,Md |KµsDeθM12φ2φ1 |0〉 = s∆p+1〈∆p,Md |KµeθM12φ2φ1 |0〉. (5.253)

Let us denote

〈∆p,Md; K,Ud | ≡ 〈∆p,Md |KUd
, (5.254)

34For more general operators there will be extra contributions (which we discuss in section 5.4.2)
to (5.242) and thus also to (5.245). The formula (5.248) for the universal contribution (5.245) will
remain the same.
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and write

〈∆p,Md |KUd
eθM12φ2φ1 |0〉 =

∑
M′

d
,U′

d

〈MdUd |eθM12 |M′dU
′
d〉×

× 〈∆p,M
′
d |KU′

d
φ2φ1 |0〉. (5.255)

We first compute 〈∆p,M
′
d |KU′

d
φ2φ1 |0〉 in the same way as we computed the left

three-point function. We can make a shortcut by noting

〈∆p,M
′
d |KU′

d
φ2φ1 |0〉 =

(
〈0|φ2φ1PU

′
d |∆,M′d〉

)∗
(5.256)

and reusing the results for the left three-point function. This gives us

〈K,∆p,md; M̃′d |φ2φ1 |0〉 = *.
,



m̃′d md

m̃′d−1



21

p

+/
-

∗

〈∆p,md M̃
′
d−1 |φ2φ1 |0〉, (5.257)

where


m̃′d md

m̃′d−1
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p

(5.258)

is given by an analogue (5.248) with ∆3,∆4 replaced by ∆2,∆1, and we defined

〈K,∆p,md; M̃′d | =
∑
M′

d
U′
d

〈M̃′d |M
′
dU
′
d〉〈∆p,M

′
d |KU′

d
. (5.259)

Finally, note that we can rewrite the Spin(d) matrix element in (5.255) as

〈MdUd |eθM12 |M′dU
′
d〉 =

∑
m̃d=m̃′

d

∑
M̃d,M̃

′
d

〈MdUd |M̃d〉〈M̃d |eθM12 |M̃′d〉〈M̃
′
d |M

′
dU
′
d〉,

(5.260)

where the summation is over m̃d ∈ md ⊗ . Note that the CG coefficients here are
the same as in (5.243) and (5.259), explaining the usefulness of these definitions.

Combining the results Bycombining equations (5.243), (5.245), (5.255), (5.257),
(5.259) and (5.260) we can rewrite (5.236) as∑

Md

〈0|φ4φ3Pµ |∆p,Md〉〈∆p,Md |K µsDeθM12φ2φ1 |0〉 =

= s∆p+1
∑

m̃d∈ ⊗md

∑
M̃d,M̃

′
d

[
m̃d md

m̃d−1

]34

p

*.
,



m̃d md

m̃′d−1



21

p

+/
-

∗

×

× 〈0|φ4(∞)φ3(1) |∆p,md M̃d−1〉×

× 〈M̃d |eθM12 |M̃′d〉×

× 〈∆p,md M̃
′
d |φ2(1)φ1(0) |0〉. (5.261)
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Here m̃′d = m̃d . The right hand side of (5.261) now has the same form as the generic
contribution (5.111), except that the state (∆p,md) now contributes as a state with
dimension ∆p+1 and spin m̃d ∈ ⊗ md with a relative coefficient determined
by the representation-theoretic data through (5.248). In the scalar correlator case
these contributions have the form determined by (5.139). It is trivial to account for
possible degeneracies and arrive at the following result∑

p,md,Md,q

〈0|φ4φ3Pµ |∆p,Md, q〉〈∆p,Md, q |K µsDeθM12φ2φ1 |0〉 =

=

∞∑
p=0

∞∑
j=0

(Γ+p−1, j−1Λp−1, j−1 + Γ
−
p−1, j+1Λp−1, j+1)s∆O+p

C (ν)
j (cos θ)

C (ν)
j (1)

,

(5.262)

where

Γ
±
p, j =

[
j(±1) j
•

]34

p

*
,

[
j(±1) j
•

]21

p

+
-

∗

. (5.263)

Given the definition of (5.258) together with the formulas (5.251) and (5.252) we
immediately recover the result (5.221) of [59]. By comparing (5.262) with (5.235)
we also recover the required recursion relation (5.220).

This derivation may seem much more elaborate than that of [59]. However, it has
several advantages. The first is that the recursion relation is determined not by some
particular identities satisfied by Gegenbauer polynomials,35 but instead by a simple
set of representation-theoretic data – by the reduced matrix elements and isoscalar
factors. The second is that it is completely general and only a few modifications are
required to find the recursion relations for the most general conformal blocks, as we
now discuss.

5.4.2 Spinning conformal blocks
5.4.2.1 Difference from the scalar case

Let us now consider the general case of spinning conformal blocks. Looking at the
derivation of scalar recursion relation, one can see that the first essential deviation
in the spinning case happens in (5.240), which needs to be replaced by (recall that

35Of course, given the representation-theoretic interpretation of Gegenbauer polynomials
from (5.202), the identities satisfied by Gegenbauer polynomials can also be understood from
representation-theoretic point of view.
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µ , 1 in this context)

〈0|OM
4
d

4 (∞)∂µO
M3

d

3 (1) |∆p,Md〉 = − 〈0|O
M4

d

4 (∞)O
M3

d

3 (1)M1µ |∆p,Md〉

−
∑
M′3

d

〈M′3d |M1µ |M
3
d〉〈0|O

M4
d

4 (∞)O
M′3

d

3 (1) |∆p,Md〉

+
∑
M′4

d

〈M′4d |M1µ |M
4
d〉〈0|O

M′4
d

4 (∞)O
M3

d

3 (1) |∆p,Md〉.

(5.264)

Analogously to (5.239), the relative sign for action on O4 is required because we
have placed that operator at infinity. This forces this operator to transform in the
reflected representation, which is essentially defined by replacing the generators
for M1µ with −M1µ, hence the relative sign.36 Note that this does not affect the
Spin(d − 1) representations, and so the results of section 5.3 regarding three-point
functions still hold.

To proceed, we need to put these new contributions into a form similar to (5.245).
Let us focus on the contribution from O3 which is proportional to∑

M′3
d

〈M′3d |M
1Ud−1 |M3

d〉〈0|O
M4

d

4 (∞)O
M′3

d

3 (1) |∆p,Md〉. (5.265)

As is already familiar, we start by writing out the matrix element as

〈M′3d |M
1Ud−1 |M3

d〉 =
*
,

m3
d

m′3d−1

������
M

������

m3
d

m3
d−1

+
-
〈M′3d−1 |M

3
d−1Ud−1〉. (5.266)

We then recall from (5.244) that in the end we would like to contract (5.265) with
〈Md−1Ud−1 |M̃d−1〉. We are therefore led to consider the combination (we have
temporarily omitted the summation over m′3d−1 and md−1)∑
Ud−1M

′3
d−1Md−1

〈M′3d−1 |M
3
d−1Ud−1〉〈Md−1Ud−1 |M̃d−1〉〈0|O

M4
d

4 (∞)O
M′3

d

3 (1) |∆p,Md〉 =

(5.267)

At this point, we should recall the structure of the three-point functions (5.120),
leading to

=
∑

Ud−1M
′3
d−1Md−1,t

〈M′3d−1 |M
3
d−1Ud−1〉〈Md−1Ud−1 |M̃d−1〉〈0|M4

d−1M
′3
d−1Md−1, t〉λ

m′3
d−1,m

4
d−1

md−1,t .

(5.268)
36This is most easily understood by considering the radial quantization as the limit of NS quanti-

zation [18] with poles at the positions of O1 and O4 as O4 is taken to +∞.
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By separating the sum over t, we find the objects∑
Ud−1M

′3
d−1Md−1

〈M′3d−1 |M
3
d−1Ud−1〉〈Md−1Ud−1 |M̃d−1〉〈0|M4

d−1M
′3
d−1Md−1, t〉 =

(5.269)

These objects have the same invariance properties as 3 j symbols, and thus should
be expressible in terms of them,

=
∑

t ′




m4
d−1 m3

d−1 m̃d−1

md−1 m′3d−1




(3)

tt ′

〈0|M4
d−1M

3
d−1M̃d−1, t′〉. (5.270)

The constants




m4
d−1 m3

d−1 m̃d−1

md−1 m′3d−1




(3)

tt ′

(5.271)

are known as 6 j-symbols or Racah coefficients of Spin(d − 1).37,38 We added a
label (3) to the notation for the 6 j symbol to distinguish its definition from the
definitions (5.282)-(5.285) for the operators 1, 2, 4 which will appear later.39 Note
that we can represent this equality schematically as

m4
d−1

m3
d−1

md−1

m′3d−1 m̃d−1

=

{
. . .

} m4
d−1

m3
d−1

m̃d−1

. (5.272)

Restoring the OPE coefficients and the summations over t,md−1 and m′3d−1, and
37Up to inessential normalization conventions. We will not make a distinction between the two

terms.
38Interestingly, a different kind of 6 j symbols recently played an important role in another

approach to conformal blocks [3].
39Of course, there is only one type of 6 j symbols for a given group, and this label is superficial.

The 6 j symbols with different labels can be obtained from the 6 j symbols of the form (5.271)
by certain permutations of columns and introduction of normalization factors. Such relations are,
however, convention-dependent, and we therefore avoid using them and instead use the labels such
as (3).



219

adding the isoscalar factor from (5.244) we find∑
M′3

d
,Md,Ud−1

〈M′3d |M
1Ud−1 |M3

d〉〈0|O
M4

d

4 (∞)O
M′3

d

3 (1) |∆p,Md〉〈Md−1Ud−1 |M̃d−1〉×

× *
,

md

md−1

������

m̃d

m̃d−1
+
-
=

= 〈0|OM
4
d

4 (∞)O
M3

d

3 (1) |∆p,md M̃d−1〉
′, (5.273)

where prime on the three-point function indicates that the OPE coefficients λ have
been replaced with λ′ defined as

(λ
′
)

m3
d−1,m

4
d−1

m̃d−1,t ′
=∑

md−1,m′3d−1,t

*
,

m3
d

m′3d−1

������
M

������

m3
d

m3
d−1

+
-

*
,

md

md−1

������

m̃d

m̃d−1
+
-




m4
d−1 m3

d−1 m̃d−1

md−1 m′3d−1


tt ′

λ
m′3

d−1,m
4
d−1

md−1,t .

(5.274)

We can easily perform a similar analysis for the contribution of O4 as well as for the
operators O1 and O2 in the right three-point function. Note that the right hand side
in (5.273) has essentially the same form as the universal contribution (5.245), and
thus we can continue to derive the recursion relation in an exact analogy with the
scalar case.

5.4.2.2 The general form of the recursion relation

It is now straightforward to finish the derivation of the Casimir recursion relation.
The operator version of the Casimir equation is given by the spinning analogue
of (5.234),

〈0|OM
4
d

4 O
M3

d

3 |O|(C̃ − C)sDeθM12O
M2

d

2 O
M1

d

1 |0〉 = 〈0|O
M4

d

4 O
M3

d

3 Pµ |O|KµsDeθM12O
M2

d

2 O
M1

d

1 |0〉.
(5.275)

Completely analogously to the scalar case, the contribution of a single termof (5.217)
to the left hand side of this equation is given by (5.130) multiplied by the difference
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of C̃ and C eigenvalues,∑
Md

〈0|OM
4
d

4 O
M3

d
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1 |0〉 =

=
∑
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md−1,t s∆p Pmd,md−2
md−1,m′d−1

(θ)×
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. (5.276)

Introducing the shorthand notation (5.122) and (5.123), restoring the dependence of
λ on p,md and q, and summing over the possible degeneracies q we find∑
Md,q

〈0|OM
4
d

4 O
M3

d

3 |∆p,Md, q〉〈∆p,Md, q |(C̃ − C)sDeθM12O
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d
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1 |0〉 =
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,

(5.277)

where the OPE matrix Λ is defined as

Λ
ba
p,md
≡

∑
q

λa
p,md,qλ

b
p,md,q. (5.278)

Following the discussion of scalar recursion relations in section 5.4.1 and the mod-
ifications mentioned in the beginning of this section, we can find∑
Md,Ud
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(5.279)

Here the matrix γ is defined as
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(5.280)
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while the matrix γ is defined as
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The 6 j symbols are defined as solutions to the following equations:∑
M′1

d−1,U
′
d−1,M

′
d−1

〈M′d−1, t
′|M2

d−1M
′1
d−1〉〈M

′1
d−1U

′
d−1 |M

1
d−1〉〈M̃

′
d−1 |M

′
d−1U

′
d−1〉 =

=
∑
t ′′




m̃′d−1 m2
d−1 m1

d−1
m′1d−1 m′d−1




(1)

t ′t ′′

〈M̃′d−1, t
′′|M2

d−1M
1
d−1〉, (5.282)∑

M′2
d−1,U

′
d−1,M

′
d−1

〈M′d−1, t
′|M′2d−1M

1
d−1〉〈M

′2
d−1U

′
d−1 |M

2
d−1〉〈M̃

′
d−1 |M

′
d−1U

′
d−1〉 =

=
∑
t ′′




m̃′d−1 m2
d−1 m1

d−1
m′2d−1 m′d−1




(2)

t ′t ′′

〈M̃′d−1, t
′′|M2

d−1M
1
d−1〉, (5.283)∑

M′3
d−1,Ud−1,Md−1

〈0|M4
d−1M

′3
d−1(Md−1, t)〉〈M′3d−1 |M

3
d−1Ud−1〉〈Md−1Ud−1 |M̃d−1〉 =

=
∑

t ′




m4
d−1 m3

d−1 m̃d−1

md−1 m′3d−1




(3)

tt ′

〈0|M4
d−1M

3
d−1(M̃d−1, t′)〉, (5.284)∑

M′4
d−1,Ud−1,Md−1

〈0|M′4d−1M
3
d−1(Md−1, t)〉〈M′4d−1 |M

4
d−1Ud−1〉〈Md−1Ud−1 |M̃d−1〉 =

=
∑

t ′




m4
d−1 m3

d−1 m̃d−1

md−1 m′4d−1




(4)

tt ′

〈0|M4
d−1M

3
d−1(M̃d−1, t′)〉. (5.285)

Reintroducing the degeneracy index q in (5.279) we find∑
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Comparing (5.277) and (5.286) we arrive at the following recursion relation

(C(∆p+1, m̃d) − C(O))Λba
p+1,m̃d

=
∑

md∈ ⊗m̃d

(γp,md,m̃d
Λp,md

γp,md,m̃d
)ba . (5.287)

Equation (5.287) represents themain result of this paper. It gives a recursion relation
for the power series coefficients Λ of a completely general conformal block. This
relation has the same structure as the scalar recursion relation (5.220) and can be
solved starting from p = 0 in a straightforward way. The main difficulty lies in
evaluation of the coefficient matrices γ and γ, so let us discuss this in some more
detail.

Suppose that we have chosen a concrete four-point function for which we wish
to evaluate the conformal blocks, i.e., we made a choice of mi

d . If we look at,
say, (5.281), we see that all the sums are finite and the number of terms is independent
of md,1 or m̃d,1, which are the only weights that can be arbitrarily large for the given
four-point function. Moreover, each term contributes to a single element of the
matrix γ. Furthermore, we see that md and m̃d only enter into the simple quantities
(isoscalar factors for vector representation and reduced matrix elements) for which
closed-form expressions are known (see appendix D.2). Similar remarks apply
to (5.280). This means that if we compute for the given four-point function a
finite number of 6 j symbols (5.282)-(5.285), we can then express the matrices γ
and γ as closed-form analytic expressions in md and m̃d , thus obtaining a closed-
form analytic expression for the recursion relation (5.287). If we know all the
CG coefficients in (5.282)-(5.285), then the calculation of a finite number of 6 j

symbols is a simple linear algebra problem, so we can assume their knowledge to
be equivalent to the knowledge of CG coefficients.

As discussed in section 5.2.3, in several important cases the CG coefficients are
known analytically (and so are 6 j symbols). In these cases we can write closed-
form expressions for γ and γ. In the rest of this section we consider two such
situations: general blocks in d = 3 and seed blocks for general d.

5.4.3 Example: General conformal blocks in 3 dimensions
As discussed above, the only non-trivial ingredients in the recursion relation (5.287)
are the 6 j symbols entering the expressions (5.280) and (5.281). In d = 3 these sym-
bols simplify dramatically. However, before computing them, we need to understand
a small subtlety which arises in d = 3.
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In the derivation of the recursion relation, we have encountered isoscalar factors
such as

*
,

md

md−1

������

m′d
m′d−1

+
-
. (5.288)

In d = 3 this presents a problem since we should instead use the isoscalar factors

*
,

m3
m2 ±1

������

m′3
m′2

+
-
, (5.289)

because the vector representation is reducible in 2d. One can still use the formulas
of appendix D.2 to compute the value of (5.288), but we need to interpret it in terms
of (5.289). Such an interpretation, together with a analogous discussion for reduced
matrix elements is given in D.2.3. Using these, one can check that (5.246) still holds
in d = 3 and we can still simplify it using the sum rule from appendix D.2.4. The
formulas of section 5.4.2 can also be seen to remain valid if we interpret the sum
over U2 in (5.282)-(5.285) as a sum over u2 = (+1) and u2 = (−1).

Consider, for example, the equation (5.282) for the 6 j symbol related to O1,∑
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d−1〉. (5.290)

(5.291)

In d = 3, taking into account the subtlety discussed above, this equation simplifies
to

∑
u′=±1

δm′,m2+m′1
δm′1+u′,m1δm̃′,m′+u′ =




m̃′ m2 m1

m′1 m′




(1)

δm̃′,m2+m1 . (5.292)

It is solved by




m̃′ m2 m1

m′1 m′




(1)

=




1, m1 − m′1 = m̃′ − m′ = ±1

0, otherwise
. (5.293)
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Similarly, we find




m̃′ m2 m1

m′2 m′




(2)

=




1, m2 − m′2 = m̃′ − m′ = ±1

0, otherwise
, (5.294)




m4 m3 m̃

m m′3
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1, m′3 − m3 = m̃ − m = ±1
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, (5.295)




m4 m3 m̃

m m′4




(4)

=




1, m′4 − m4 = m̃ − m = ±1

0, otherwise
. (5.296)

Recall that the right OPE coefficients in 3d are parametrized as λm1m2 . We then
have, according to (5.280) for j̃ = j ± 1,

(λγp, j, j±1)m1m2 =

− (∆p − ∆12 ± j − δ±,−)

√
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λ (m1−u)m2,

(5.297)

and for j̃ = j

(λγp, j, j )m1m2 =
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(5.298)
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Similarly, from (5.281) we find

(γp, j, j±1λ)m3m4 =
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(5.299)

(γp, j, jλ)m3m4 =
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(5.300)

5.4.3.1 Scalar-fermion block in 3 dimensions

As a concrete example, consider the scalar-fermion blocks in 3d [3, 81]. In this case
we have j1 = j4 = 1

2 and j2 = j3 = 0. Matrices Λ then have the indices

Λ
m4,m1
p, j , m1,m4 = ±

1
2 . (5.301)

In terms of these coefficients the conformal block takes the form, according to (5.144),

〈0|ψm4
4 φ3 |O|sDeθM12φ2ψ

m1
1 |0〉 =

∑
m̃1,m̃4

∞∑
p=0

∞∑
j=0

Λ
m̃4,m̃1
p, j d j

−m̃4,m̃1
(−θ)δm4,m̃4δm1,m̃1 .

(5.302)

The intermediate representations are m3 = ( j) with half-integral j ≥ 1
2 . The

Casimir eigenvalue is given by

Cp, j = ∆p(∆p − 3) + j ( j + 1). (5.303)
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Using equations (5.297)-(5.300) we find

(λγp, j, j+1)±
1
2 = −(∆p − ∆12 + j)
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1
2 = −(∆p + ∆34 + j)

√
j + 3

2
2( j + 1)

λ
±

1
2 + 1

2

√
j + 3

2
2( j + 1)

λ
∓

1
2 , (5.307)
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Using this in (5.287) we immediately obtain the recursion relation for coeffi-
cients (5.301). For example, we have

(Cp, j − C0, jO )Λ
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1
2 ,+

1
2
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1
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2

2 j
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1
2 ,−

1
2
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+
1
4

j + 1
2

2 j
Λ
−

1
2 ,−

1
2

p−1, j−1 + . . . , (5.310)

where “. . .” represent contributions from Λp−1, j and Λp−1, j+1. We compare the
conformal block generated by this recursion relation with the known results [3, 81]
in appendix D.3, finding a perfect agreement.

5.4.4 Example: Seed conformal blocks in general dimensions
We have already considered the seed blocks in section 5.3.5. Here, as in previous
subsections, we start by computing the 6 j symbols (5.282)-(5.285). Since in the
seed block case the operators O1 and O3 are scalars, we do not need the 6 j symbols
for them.
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For O2 the equation for the 6 j symbol specializes to∑
M′2

d−1,U
′
d−1,M

′
d−1

〈M′d−1 |M
′2
d−1〉〈M

′2
d−1U

′
d−1 |M

2
d−1〉〈M̃

′
d−1 |M

′
d−1U

′
d−1〉 =

=




m2
d−1 m2

d−1 •

m′2d−1 m′2d−1




(2)

〈M̃′d−1 |M
2
d−1〉, (5.311)

and we can simplify the left-hand side to

〈M̃′d−1 |M
2
d−1〉 (5.312)

which implies that simply




m2
d−1 m2

d−1 •

m′2d−1 m′2d−1




(2)

= 1, (5.313)

whenever the selection rules are satisfied. Similarly, equation (5.285) specializes to∑
M′4

d−1,Ud−1,Md−1

〈0|M′4d−1Md−1〉〈M
′4
d−1 |M

4
d−1Ud−1〉〈Md−1Ud−1 |M̃d−1〉 =

=




m4
d−1 • m4

d−1
m′4d−1 m′4d−1




(4)

〈0|M4
d−1M̃d−1〉, (5.314)

and the left hand side can be reduced to

±〈0|M4
d−1M̃d−1〉, (5.315)

where the sign is equal to40 (−1)m4
d−1−m′4

d−1 unless m4
d−1 = m′4d−1 and d = 4k in which

case it is equal to −1. To see this, one can use the identity∑
M′4

d−1

〈0|M′4d−1Md−1〉〈M
′4
d−1 |M

4
d−1Ud−1〉 = ±

∑
M′

d−1

〈0|M4
d−1M

′
d−1〉〈M

′
d−1 |Md−1Ud−1〉,

(5.316)

where the sign is as above. Up to normalization, it has to be true because both sides
have the same Spin(d − 1) invariance properties. Up to a phase, the normalization
can be determined by fully contracting each side with its Hermitian conjugate. The
sign can then be found by setting Ud−1 = ( , •, . . .) and examining the phase on
both sides using (5.47) and the formulas in section D.2.2.

40Here, as before, (−1)md is defined as 1 unless d = 4k + 2 in which case it is equal to
(−1)m4k+2,2k+1 .
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This implies that




m4
d−1 • m4

d−1
m′4d−1 m′4d−1




(4)

=




−1 m4
d−1 = m′4d−1 and d = 4k

(−1)m4
d−1−m′4

d−1 otherwise
. (5.317)

It is now straightforward to substitute these 6 j symbols into the expressions (5.280)
and (5.281) for the matrices γ and γ to obtain closed-form analytic expressions
for them. The final general expression is not particularly illuminating, so we do
not write it out explicitly. Instead, let us again consider a specific example, the
scalar-fermion seed blocks in d = 2n dimensions.

5.4.4.1 Scalar-fermion blocks in d = 2n dimensions

We have considered the structure of these blocks in section 5.3.5. The OPE ma-
trices Λ are 1 × 1 and there are two types of exchanged representations, j± ≡
( j, 1

2, . . . ,
1
2,±

1
2 ). Thus, we can label the OPE matrices as

Λp, j,±. (5.318)

We can arrange them into a vector as in section 5.3.7.4,

Λp, j =
*.
,

Λp, j,+

Λp, j,−

+/
-
. (5.319)

We furthermore have

⊗ j± = (j + 1)± ⊕ (j − 1)± ⊕ j∓. (5.320)
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Equation (5.280) reduces to

λγp,j±,(j+1)± = (∆p − ∆12 + j)

√√
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2
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2
λ

−

(
i
2
√
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) *..

,
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√
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√√
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2
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2

j + n − 1
2

+//
-
λ

= (∆p − ∆12 + j ± 1
2 )

√√
1
2

j + 2n − 3
2

j + n − 1
2
λ, (5.321)

λγp,j±,(j−1)± = (∆p − ∆12 − j − d + 2)
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2
λ, (5.322)

λγp,j±,j∓ = (∆p − ∆12 − n + 1
2 )
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(5.323)
Similarly, we find from (5.281)

γp,j±,(j+1)±λ = (∆p + ∆34 + j ± (−1)n−1 1
2 )

√√
1
2

j + 2n − 3
2

j + n − 1
2
λ, (5.324)

γp,j±,(j−1)±λ =(∆p + ∆34 − j − d + 2 ∓ (−1)n−1 1
2 )

√√
1
2

j − 1
2

j + n − 3
2
λ, (5.325)

γp,j±,j∓λ =(∆p + ∆34 − n + 1
2 ∓ (−1)n−1( j + n − 1))

√
1
2

n − 1
( j + n − 3

2 )( j + n − 1
2 )
λ.

(5.326)
Finally, the Casimir eigenvalue is given, according to (5.227) and (5.228),

Cp, j = ∆p(∆p − 2n) + j ( j + 2n − 2) +
(2n − 2)(2n − 3)

8
. (5.327)
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The recursion relation (5.287) can then be put into the form

(Cp, j − C0, jO )Λp, j = Γ
+
p−1, j−1Λp−1, j−1 + Γ

−
p−1, j−1Λp−1, j+1 + Γ

0
p−1, j−1Λp−1, j, (5.328)

where

Γ
+
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2 )(∆p + ∆34 + j + (−1)n−1 1
2 )
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1 0
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0 0
0 1
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(5.329)

Γ
−
p, j = (∆p + ∆12 − j − 2n + 2 − 1

2 )(∆p + ∆34 − j − 2n + 2 − (−1)n−1 1
2 )
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2
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1 0
0 0
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(5.330)

Γ
0
p, j = (∆p − ∆12 − j − 2n + 3

2 )(∆p + ∆34 − n + 1
2 − (−1)n−1( j + n − 1))×

×
2n − 2

(2 j + 2n − 3)(2 j + 2n − 1)
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1 0
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0 1
0 0

+/
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(5.331)

The full conformal block can then be expanded by using a generalization of (5.201),

〈0|ψ4ψ3 |O|s∆eθM12ψ2φ1 |0〉 =
∞∑

p=0

∞∑
j=0

s∆+pΛp, j · P j (θ) · T, (5.332)

where T = (t+, t−) and the matrom P j is given by (5.196). In appendix D.3 we
compare the conformal blocks obtained from this recursion relation with the known
expressions in 2d (n = 1) and 4d (n = 2), finding a perfect agreement.

5.4.5 An efficient implementation?
We have derived the Casimir recursion relation for general conformal blocks. Our
derivation relies on the knowledge of a number of 6 j-symbols of Spin(d−1). As we
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have discussed, there are important cases, such as general blocks in 3d and 4d or seed
blocks in general dimensions, where these symbols are readily available. In other
cases, they can be computed as soon as the relevant Clebsch-Gordan coefficients are
known. These Clebsch-Gordan coefficients are needed anyway for the three-point
functions (and can be derived from them), so it is reasonable to assume that the 6 j

symbols are computable in all cases of interest.

If the relevant 6 j symbols are known, then our results provide a closed-form ex-
pression for the recursion relation (5.287). This is a quite general result, so it is
interesting to discuss the possibility of employing it for an efficient computation of
spinning conformal blocks. Assume that we have fixed numerical values for scaling
dimensions and spins of the external operators and the spin of the intermediate
primary and would like to compute the conformal block and its derivatives as a
function of the intermediate dimension ∆O . The simplest approach is to naively
iterate the recursion relation and find the coefficients of the power series expansion
in z-coordinates.

This approach has several obvious disadvantages. Firstly, the z-coordinate expan-
sion converges much slower than the ρ-coordinate expansion [59]. Secondly, the
coefficients of the expansion are going to be some complicated rational functions
of ∆O , manipulations with which are costly. Moreover, the difference of Casimir
eigenvalues in (5.287),

C(∆O + n, m̃d) − C(O) = 2n∆O + n2 − nd + C(m̃d) − C(mOd ), (5.333)

produces a lot of apparent poles at various rational values of ∆O . We however know
that the conformal blocks can only have poles at (half-)integral values of ∆O [49].
This implies that there must be a lot of cancellations, which make the direct analytic
even less optimal. Let us discuss some possible solutions to these problems.

The first problem can be in principle avoided by converting the z-coordinate ex-
pansion into a ρ-coordinate expansion. It is possible because we have the relation
z = 4ρ +O(ρ2), so if we know the expansion of f (z) to order zN , we can compute
expansion of f (z(ρ)) to the same order ρN . If the coefficients in expansion of
f (z) are numbers, and we aim to evaluate f ( 1

2 ), then this conversion can be done
efficiently by defining zk

N to be equal to the ρ-series of zk , truncated at order ρN

and with ρ set to ρ = 3− 2
√

2 (the value corresponding to z = 1
2 ). Then the number

f (1/2) can be computed by simply replacing zk in its z-expansion by the numbers
zk

N . These numbers can be precomputed once for any given N .
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However, as we noted above, in our case the coefficients of z-expansion are com-
plicated rational functions and thus this conversion would have to be performed
using symbolic algebra. To solve this problem, it is convenient to recall that for any
conformal block G(∆O) (for simplicity of notation we keep the dependence only on
∆O explicit) the function H (∆O) = |ρ|−∆OG(∆O) is a meromorphic function of ∆O
with either single or double41 poles and a finite limit at infinity42 [37, 48, 49]. In
odd dimensions this function only has single poles, so let us consider this case for
simplicity.43 We then can write

H (∆O) = H (∞) +
∑

i

Ri

∆O − ∆i
, (5.334)

where ∆i are the locations of the poles and Ri are some coefficients.44 The function
H (∞) can be computed in closed form for a general conformal block by a suitable
choice of the basis of four-point structures. Expansion (5.334) is often used to
derive rational approximations to conformal blocks, required for numerical analysis
using SDPB [35, 37]. For this, note that different terms in this expansion are
suppressed by powers ρni for some positive ni. Thus, one can keep only the finite
number of terms with ni ≤ M for some sufficiently large M . Since the derivatives
of G are determined by derivatives of H , it is sufficient to compute the derivatives
of Ri and H (∞) numerically in order to obtain the rational approximations required
for numerical bootstrap applications.

Our recursion relation can be used to determine Ri and their derivatives numerically.
Indeed, on each step of the recursion relation we explicitly divide by a linear function
of ∆O (5.333). Thus, we know exactly when we produce poles and we can compute
their residues and how they change on each step of the recursion. If we select a
subset of ∆i, we only need to track the derivatives of the residues at these poles,
which are simply numbers. We can avoid dealing with the apparent poles at rational
∆O by tracking only the ∆i allowed by representation theory [49]. This is similar
in spirit to multiplication of polynomials in Fourier space (as in FFT polynomial
multiplication), except we areworkingwith rational functions. This approach should

41We are not aware of a direct proof that at most second-order poles appear in even d (see
e.g. [49, 196] for a discussion). However, since the scalar blocks have at most second-order poles,
the results of [3] imply that there are at most finitely many higher-order poles in any given conformal
block. Also, standard arguments from complex analysis show that at most double poles can appear
from collision of two single poles, which can possibly be used to show that at least the blocks which
can be analytically continued in dimension d have at most second-order poles.

42At least for ∆O-independent choice of three-point functions.
43The same approach should work in even dimensions, with minor modifications.
44Ri are known to be proportional to other conformal blocks. We do not use this fact here.
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allow us to efficiently compute the numerical z-series of derivatives of Ri. We can
then use the aforementioned procedure to resum it into ρ-series at z = 1

2 .

Note that in this scheme it is most convenient to take the derivatives in z-coordinate.
These derivatives do not necessarily have the fastest rate of convergence among
other simple choices.45 A related problem is that it is not obvious what is the best
basis of four-point tensor structures in terms of convergence.46 The approach based
on (5.334) somewhat solves this ambiguity – it is a well-defined procedure to keep a
finite number of poles in (5.334), and we can then compute Ri to an order N higher
than M , eliminating the possible discrepancies between various choices. Indeed, if
we keep the number of poles that we track fixed, then the complexity of computing
each new order grows only because the range of allowed values for md,1 expands.

In order for the above program to succeed, we need to be able to efficiently compute
derivatives of these P-functions. It appears that this problem is largely solved by
the recursion relation (5.191) which can be easily implemented numerically for any
choice of representations given the availability of closed-form formulas for vector
isoscalar factors. We still need an initial condition for the recursion relation. As we
discussed previously, it can be obtained by direct exponentiation of M12. However,
in numerical applications we do not even need this. We only need a first few
derivatives of P-functions at θ = 0, which are given by matrix elements of powers
of M12, making the computation even easier.

5.5 Conclusions
The two major results of this paper are

1. The general form (5.130) of a R× Spin(d)-multiplet contribution to a general
four-point function of operators with spins.

2. The Casimir recursion relation (5.287) (and the formulas (5.280) and (5.281)
for the relevant coefficients) for the amplitudes Λp,md

of these contributions
to a general spinning conformal block.

The first result is expressed in terms of certain special functions P (5.128), which
we have studied in detail in section 5.3.7. We have described the basic properties of

45Choice of the coordinate matters: the derivative df (z)/df (z) converges much faster than the
derivative of df (z)/dz.

46The choice of basis matters as well, because the bases can differ by z-dependent factors: even
if f (z) converges quickly, f (z)/(1 − z)100 may converge much slower.
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these functions (including orthogonality relations) as well as a practical approach
to their calculation. In appendix D.4 we have furthermore related these functions
to the irreducible projectors of [82].47 We have studied how (5.130) simplifies in
some special cases, namely for d = 3, 4 and for seed blocks in general d. We have
also proven the folklore theorem which states that the number of four-point tensor
structures is the same as the number of classes of conformal blocks.

Our second result paves a way to an algorithmic computation of general conformal
blocks. The expressions (5.287), (5.280) and (5.281) give a closed-form recursion
relation for the coefficients of the z-coordinate expansion of a general conformal
block, if the relevant 6 j symbols of Spin(d−1) are known. There is a finite number
of such 6 j symbols for any given conformal block, and they can be straightfor-
wardly computed if the corresponding Clebsch-Gordan coefficients are known. The
required CG coefficients are indeed known in many important cases. In particular,
we have explicitly worked out the case of general conformal blocks in 3 dimensions
and the seed blocks in general dimensions. To illustrate the recursion relation in
explicit examples, we have studied the scalar-fermion seed blocks in d = 3 and
d = 2n, comparing to the known results when possible. Finally, in section 5.4.5 we
have briefly discussed a strategy for an efficient numerical implementation of the
recursion relation (5.287).

Many extensions of these results are possible. For example, the scalar-fermion seed
blocks can also be straightforwardly obtained for d = 2n + 1, we have omitted
this case only to keep the size of the paper reasonable. For the same reason
we have not written down the explicit formulas for the case of general blocks
in d = 4, even though these can be obtained (in terms of SU (2) 6 j-symbols)
mechanically from the general expressions. Extension to d = 5 is also possible,
due to Spin(5 − 1) ' SU (2) × SU (2). An interesting problem is to develop a
numerical algorithm for computation of general Spin(d − 1) CG coefficients and
6 j symbols. Combined with the recursion relation (5.287) this would constitute the
first completely general algorithm for computation of conformal blocks.48 It is also
interesting to implement this recursion relation efficiently, perhaps along the lines
of section 5.4.5. Finally, there is always the question whether these results can be

47We believe that this is not the most optimal way for computation of explicit examples of
functions P, and one instead should use the methods described in 5.3.7. Nevertheless, this relation
does provide expressions which may be useful in analytical applications.

48Here by an “algorithm” we mean an actual complete algorithm which can be straightforwardly
translated into a computer program. Techniques (not algorithms) for computing completely general
spinning conformal blocks are already known [3, 49, 54, 60].
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extended to superconformal case. We hope to address some of these questions in
future work.
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C h a p t e r 6

LIGHT-RAY OPERATORS IN CONFORMAL FIELD THEORY

This chapter is essentially identical to:

[5] P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field
theory, 1805.00098.

6.1 Introduction
Singularities of Euclidean correlators in conformal field theory (CFT) are described
by the operator product expansion (OPE). However, in Lorentzian signature there
exist singularities that cannot be described in a simple way using the OPE. One
of the most important is the Regge limit of a time-ordered four-point function
(figure 6.1) [166, 188, 219–222].1 The Regge limit is the CFT version of a high-
energy scattering process: operators O1(x1) and O3(x3) create excitations that move
along nearly lightlike trajectories, interact, and then are measured by operators
O2(x2) and O4(x4). In holographic theories, the Regge limit is dual to high-energy
forward scattering in the bulk [224].

1

24

3

Figure 6.1: The Regge limit of a four-point function: the points x1, . . . , x4 approach
null infinity, with the pairs x1, x2 and x3, x4 becoming nearly lightlike separated.

In Lorentzian signature, the OPE Oi × O j converges if the product OiO j acts on the
1In perturbation theory, Lorentzian singularities correspond to Landau diagrams [223]. It is

possible that this is also true nonperturbatively.

https://arxiv.org/abs/1805.00098
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vacuum (either past or future) [78]. That is, we have an equality of states

OiO j |Ω〉 =
∑

k

fi j kOk |Ω〉, (6.1)

where k runs over local operators of the theory (we suppress position dependence,
for brevity). Thus, in figure 6.1 the OPEsO1×O3 andO1×O4 converge because they
act on the past vacuum, and the OPEs O2 × O3 and O2 × O4 converge because they
act on the future vacuum. (Here we use the fact that spacelike-separated operators
commute to rearrange the operators in the time-ordered correlator to apply (6.1).)
However, each of these OPEs is converging very slowly in the Regge limit. They
can be used to prove results like analyticity and boundedness in the Regge limit
[160, 225], but they are less useful for computations (unless one has good control
over the theory). Meanwhile, the OPEs O1 × O2 and O3 × O4 are invalid in the
Regge regime.

The problem of describing four-point functions in the Regge regime was partially
solved in [166, 167, 224]. The behavior of the correlator is controlled by the analytic
continuation of data in the O1 × O2 and O3 × O4 OPEs to non-integer spin. For
example, in a planar theory, the Regge correlator behaves (very) schematically as

〈O1O2O3O4〉

〈O1O2〉〈O3O4〉
∼ 1 − f12O (J0) f34O (J0)et(J0−1) + . . . . (6.2)

Here, f12O (J) and f34O (J) are OPE coefficients that have been analytically contin-
ued in the spin J of O. The parameter t measures the boost of O1,O2 relative to
O3,O4. J0 ∈ R is the Regge/Pomeron intercept, and is determined by the analytic
continuation of the dimension ∆O to non-integer J.2 The “. . . ” in (6.2) represent
higher-order corrections in 1/N2 and also terms that grow slower than et(J0−1) in the
Regge limit t → ∞.

A missing link in this story was provided recently by Caron-Huot, who proved
that OPE coefficients and dimensions have a natural analytic continuation in spin
in any CFT [66]. The analytic continuation of OPE data in a scalar four-point
function 〈φ1φ2φ3φ4〉 can be computed by a “Lorentzian inversion formula,” given
by the integral of a double-commutator 〈[φ4, φ1][φ2, φ3]〉 times a conformal block
GJ+d−1,∆−d+1 with unusual quantum numbers. Specifically, ∆ and J are replaced
with

(∆, J) → (J + d − 1,∆ − d + 1) (6.3)
2In d = 2, the Regge regime is the same as the chaos regime. In d ≥ 3, it is related to chaos

in hyperbolic space. See [174, 226] for discussions. Note that J0 − 1 plays the role of a Lyapunov
exponent, and it is constrained by the chaos bound to be less than 1 [225, 227].
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relative to a conventional conformal block. Caron-Huot’s Lorentzian inversion
formula has many other useful applications, for example to large-spin perturbation
theory and the lightcone bootstrap [31, 68, 69, 102–104, 106, 162, 228, 229], and
to the SYK model [172, 173, 230, 231].3

However, Caron-Huot’s result raises some obvious questions:

• Can operators themselves (not just their OPE data) be analytically continued
in spin?

• What is the space of continuous spin operators in a given CFT?

• Do continuous-spin operators have a Hilbert space interpretation (similar to
how integer-spin operators correspond to CFT states on Sd−1)?

• What is the meaning of the funny block in the Lorentzian inversion formula,
and how do we generalize it?

Answering these questions is important for making sense of the Regge limit, and
more generally for understanding how to write a convergent OPE in non-vacuum
states.

It is easy to describe continuous-spin operators mathematically. Consider first a
primary operator Oµ1···µJ (x) with integer spin J. Let us introduce a null polarization
vector zµ and contract it with the indices of O to form a function of (x, z):

O(x, z) ≡ Oµ1···µJ (x)zµ1 · · · zµJ, (z2 = 0). (6.4)

The tensor Oµ1···µJ (x) can be recovered from the function O(x, z) by stripping
off the z’s and subtracting traces. Thus, O(x, z) is a valid alternative description
of a traceless symmetric tensor. Note that O(x, z) is a homogeneous polynomial
of degree J in z. The generalization to a continuous spin operator O is now
straightforward: we simply drop the requirement that O(x, z) be polynomial in z

and allow it to have non-integer homogeneity,

O(x, λz) = λ JO(x, z), λ > 0, J ∈ C. (6.5)

Continuous-spin operators are necessarily nonlocal. This follows from Mack’s
classification of positive-energy representations of the Lorentzian conformal group

3In the 1-dimensional SYK model, the analog of analytic continuation in spin is analytic contin-
uation in the weight of discrete states in the conformal partial wave expansion [67, 172].
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S̃O(d, 2) [232], which only includes nonnegative integer spin representations.4 CFT
states have positive energy, so by the state-operator correspondence, local operators
must have nonnegative integer spin, and conversely continuous-spin operators must
be nonlocal. Mack’s classification also shows that continuous-spin operators must
annihilate the vacuum:

O(x, z) |Ω〉 = 0 (J < Z≥0), (6.6)

otherwise O(x, z) |Ω〉 would transform in a nontrivial continuous-spin representa-
tion, which would include a state with negative energy.

If continuous-spin operators annihilate the vacuum, how can we analytically con-
tinue the local operators of a CFT, which certainly do not annihilate the vacuum?
The answer is that we must first turn local operators into something nonlocal that
annihilates the vacuum, and then analytically continue that. The correct object turns
out to be the integral of a local operator along a null line,∫ ∞

−∞

dα O(αz, z) =
∫ ∞

−∞

dα Oµ1···µJ (αz)zµ1 · · · zµJ . (6.7)

This can be written more covariantly by performing a conformal transformation to
bring the beginning of the null line to a generic point x:5

L[O](x, z) ≡
∫ ∞

−∞

dα(−α)−∆−JO

(
x −

z
α
, z

)
. (6.8)

This defines an integral transformL thatwe call the “light transform." The expression
(6.7) corresponds to L[O](−∞z, z), where x = −∞z is a point at past null infinity.

After reviewing some representation theory in sections 6.2.1 and 6.2.2, we show in
section 6.2.3 that if O∆,J has dimension ∆ and spin J, then L[O∆,J](x, z) transforms
like a primary operator with dimension 1 − J and spin 1 − ∆:

L : (∆, J) → (1 − J, 1 − ∆). (6.9)

In particular, L[O∆,J] can have non-integer spin. The average null energy operator
E = L[T] (the light transform of the stress tensor) is a special case, having dimension

4For non traceless-symmetric tensor operators, we define spin as the length of the first row of the
Young diagram for their SO(d) representation. For fermionic representations spin is a half-integer
and for simplicity of language we include this case into the notion of “integer spin” operators.

5As α → 0−, the point x− z/α diverges to future null infinity, and the integration contour should
be understood as extending into the next Poincare patch on the Lorentzian cylinder. We give more
detail in section 6.2.3.2.
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−1 and spin 1− d. We will see that L is part of a dihedral group (D8) of intrinsically
Lorentzian integral transforms that generalize the Euclidean shadow transform [54,
233]. These Lorentzian transforms implement affine Weyl reflections that preserve
the Casimirs of the conformal group. For example, the quadratic Casimir eigenvalue
is given by

C2(∆, J) = ∆(∆ − d) + J (J + d − 2), (6.10)

and this is indeed invariant under (6.9). The transformation (6.3) appearing inCaron-
Huot’s formula is another affine Weyl reflection. The Lorentzian transforms do not
give precisely a representation of D8, but instead satisfy an interesting “anomalous"
algebra that we derive in section 6.2.7. Mack’s classification implies that L[O∆,J]
must annihilate the vacuum whenever O∆,J is a local operator. This is also easy
to see directly by deforming the α contour into the complex plane, as we show in
section 6.2.4.

We claim that the operators L[O∆,J] can be analytically continued in J, and their
continuations are light-ray operators.6 As an example, consider Mean Field Theory
(a.k.a. Generalized Free Fields) in d = 2 with a scalar primary φ. This theory
contains “double-trace” operators

[φφ]J (u, v) ≡:φ(u, v)∂ J
v φ(u, v) : + ∂v (. . .) (6.11)

with dimension 2∆φ + J and even spin J. Here, : : denotes normal ordering and we
have written out the definition up to total derivatives (which are required to ensure
that this is a primary operator). We are using lightcone coordinatesu = x−t, v = x+t,
and for simplicity focusing on operators with ∂v derivatives only. The corresponding
analytically-continued light-ray operators are

OJ (0,−∞)

=
iΓ(J + 1)

2J

∫ ∞

−∞

dv
∫ ∞

−∞

ds
2π

(
1

(s + iε )J+1 +
1

(−s + iε )J+1

)
:φ(0, v + s)φ(0, v − s) : .

(6.12)

When J is an even integer, we have

iΓ(J + 1)
2π

(
1

(s + iε )J+1 −
1

(s − iε )J+1

)
=
∂ Jδ(s)
∂sJ (J ∈ 2Z≥0). (6.13)

6Note that L[O∆,J ](x, z) has dimension 1− J and spin 1−∆. Thus, analytic continuation in J is
really analytic continuation in the dimension of L[O∆,J ] away from negative integer values. We will
continue to refer to it as analytic continuation in spin, since J labels the spin of local operators.
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Thus, when J is an even integer, OJ becomes

OJ (0,−∞) = 2−J
∫ ∞

−∞

dv
∫ ∞

−∞

ds
∂ Jδ(s)
∂sJ

:φ(0, v + s)φ(0, v − s) :

=

∫ ∞

−∞

dv :φ∂ J
v φ : (0, v) = L[[φφ]J](0,−∞) (J ∈ 2Z≥0). (6.14)

By contrast, when J is not an even integer, OJ is a legitimately nonlocal light-ray
operator whose correlators are analytic continuations of the correlators of L[[φφ]J].
In particular, three-point functions 〈O1O2OJ〉 give an analytic continuation of the
three-point coefficients of 〈O1O2[φφ]J〉.

Similar light-ray operators have a long history in the gauge-theory literature [234,
235] (see [236–239] for recent discussions). There, one often considers a bilocal
integral of operators inserted along a nullWilson line. Such operatorswere discussed
in [76], where they were argued to control OPEs of the average null energy operator
E. In perturbation theory, it is reasonable to imagine constructing more operators
like (6.12). However, it is less clear how to define them in a nonperturbative
context where normal ordering is not well-defined, and there can be complicated
singularities when two operators become lightlike-separated. It is also not clear
what a null Wilson line means in an abstract CFT.

Our tool for constructing analogs of OJ in general CFTs will be harmonic analysis
[65]. Given primary operators O1,O2, we find in section 6.3 an integration kernel
K∆,J (x1, x2, x, z) such that

O∆,J (x, z) =
∫

dd x1dd x2K∆,J (x1, x2, x, z)O1(x1)O2(x2) (6.15)

transforms like a primary with dimension 1 − J and spin 1 − ∆ (when inserted in a
time-ordered correlator). The object O∆,J is meromorphic in ∆ and J and has poles
of the form

O∆,J (x, z) ∼
1

∆ − ∆i (J)
Oi,J (x, z). (6.16)

We conjecture based on examples that poles must come from the region where
x1, x2 are close to the light ray x + R≥0z (we have not established this rigorously
in a general CFT). The residues of the poles can thus be interpreted as light-ray
operators Oi,J (x, z) that make sense in arbitrary correlators. Furthermore, when J

is an integer, the residues are light-transforms of local operators L[O]. Thus the
Oi,J give a analytic continuations of L[O] for all O ∈ O1 × O2.
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In section 6.4, we show that 〈O3O4O∆,J〉 can be computed via the integral of a
double-commutator 〈[O4,O1][O2,O3]〉 over a Lorentzian region of spacetime. This
leads to a simple proof of Caron-Huot’s Lorentzian inversion formula. The contour
manipulation from [67] is crucial for this computation. However, the light-ray
perspective makes our proof simpler than the one in [67]. In particular, it makes it
clearer why the unusual conformal block GJ+d−1,∆−d+1 appears. The reason is that
the quantum numbers (J + d − 1,∆ − d + 1) are dual to those of the light-transform
(1 − J, 1 − ∆) in the sense that the product

dd x dd z δ(z2) O1−J,1−∆(x, z)OJ+d−1,∆−d+1(x, z) (6.17)

has dimension zero and spin zero. Our perspective also leads to a natural generaliza-
tion of Caron-Huot’s formula to the case of arbitrary operator representations, which
we describe in section 6.4.2. Subsequently in section 6.5, we generalize conformal
Regge theory to arbitrary operator representations as well, along the way showing
that light-ray operators describe part of the Regge limit of four-point functions as
conjectured in [222].

As mentioned above, the average null energy operator E = L[T] is an example of
a light-ray operator. The average null energy condition (ANEC) states that E is
positive-semidefinite, i.e., its expectation value in any state is nonnegative. Some
implications of the ANEC in CFTs are discussed in [76, 240, 241]. The ANEC was
recently proven in [72] using techniques from information theory and in [73] using
causality. By expressing E as the residue of an integral of a pair of real operators
φ(x1)φ(x2), we find a new proof of the ANEC in section 6.6.7 Furthermore, E
is part of a family of light-ray operators EJ labeled by continuous spin J, and our
construction of light-ray operators applies to this entire family. This lets us derive a
novel generalization of the ANEC to continuous spin. More precisely, we show that

〈Ψ|EJ |Ψ〉 ≥ 0, (J ∈ R≥Jmin ), (6.18)

where EJ is the family of light-ray operators whose values at even integer J are
given by

EJ = L[O∆min(J),J] (J ∈ 2Z, J ≥ 2), (6.19)

where O∆min(J),J is the operator with spin J of minimal dimension. Here, Jmin ≤ 1
is the smallest value of J for which the Lorentzian inversion formula holds [66].

7Our proof requires the dimension ∆φ to be sufficiently low, though we expect it should be
possible to relax this restriction.
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We conclude in section 6.7 with discussion and numerous questions for the future.
The appendices contain useful mathematical background, further technical details,
and some computations needed in the main text. In particular, appendix E.1 in-
cludes a general discussion of continuous-spin tensor structures and their analyticity
properties, appendix E.3 contains a lightning review of harmonic analysis for the
Euclidean conformal group, and appendix E.8 gives details on conformal blocks
with continuous spin.

Notation
In this work, we use the convention that correlators in the state |Ω〉 represent physical
correlators in a CFT. For example,

〈Ω|O1 · · · On |Ω〉 (6.20)

is a physical Wightman function, and

〈O1 · · · On〉Ω ≡ 〈Ω|T {O1 · · · On}|Ω〉 (6.21)

is a physical time-ordered correlator.

Often, we discuss two- and three-point structures that are fixed by conformal invari-
ance up to a constant. These structures do not represent physical correlators — they
are simply known functions of spacetime points. We write them as correlators in
the ficticious state |0〉. For example, if φi are scalar primaries with dimensions ∆i,
then

〈0|φ1(x1)φ2(x2)φ3(x3) |0〉

=
1

(x2
12 + iεt12)

∆1+∆2−∆3
2 (x2

23 + iεt23)
∆2+∆3−∆1

2 (x2
13 + iεt13)

∆1+∆3−∆2
2

(6.22)

denotes the unique conformally-invariant three-point structure for scalars with di-
mensions ∆i, with the iε-prescription appropriate for the given Wightman ordering.
Similarly,

〈φ1(x1)φ2(x2)φ3(x3)〉 =
1

(x2
12 + iε )

∆1+∆2−∆3
2 (x2

23 + iε )
∆2+∆3−∆1

2 (x2
13 + iε )

∆1+∆3−∆2
2

(6.23)

denotes the unique conformally-invariant structure with the iε-prescription for a
time-ordered correlator. In particular, (6.22) and (6.23) do not include OPE coeffi-
cients.
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6.2 The light transform
This section is devoted to mathematical background and results that will be needed
for constructing and studying light-ray operators. We first review some basic facts
about the Lorentzian conformal group and its representation theory, with an empha-
sis on continuous spin operators. We then introduce a set of intrinsically Lorentzian
integral transforms, which generalize the well-known Euclidean shadow transform,
and study their properties. One of these transforms is the “light transform” men-
tioned in the introduction. It will play a key role in the sections that follow.

6.2.1 Review: Lorentzian cylinder
Similarly to Euclidean space Rd , Minkowski space Md = R

d−1,1 is not invariant
under finite conformal transformations. In Euclidean space, this problem is easily
solved by studying CFTs on Sd , the conformal compactification ofRd . In Lorentzian
signature, the problem is more subtle.

The simplest extension of Minkowski space Md = R
d−1,1 that is invariant under

the Lorentzian conformal group SO(d, 2) is its conformal compactification Mc
d .

The space Mc
d can be easily described by the embedding space construction [27,

52, 92, 125, 186–188]: it is the projectivization of the null cone in Rd,2 on which
SO(d, 2) acts by its vector representation. If we choose coordinates on Rd,2 to be
X−1, X0, . . . X d with the metric

X2 = −(X−1)2 − (X0)2 + (X1)2 + . . . + (X d)2, (6.24)

then the null cone is defined by

(X−1)2 + (X0)2 = (X1)2 + . . . + (X d)2. (6.25)

If we mod out by positive rescalings (i.e., by R+), we can set both sides of this
equation to 1, identifying the space of solutions with S1 × Sd−1, where the S1 is
timelike. To getMc

d , we mod out by R rescalings,8 obtainingMc
d = S1 × Sd−1/Z2,

where Z2 identifies antipodal points in both S1 and Sd−1. Minkowski spaceMd ⊂

Mc
d can be obtained by introducing lightcone coordinates in Rd,2,

X± = X−1 ± X d, (6.26)

8In the Euclidean embedding space construction based on Rd+1,1 we usually just take the future
null cone instead of considering negative rescalings, but in Rd,2 the null cone is connected and this
is not possible.



245

and considering points with X+ , 0. Using R rescalings we can set X+ = 1 for such
points, and the null cone equation becomes

X− = −(X0)2 + (X1)2 + . . . + (X d−1)2. (6.27)

If we set xµ = X µ for µ = 0, . . . d − 1, this gives the standard embedding of Rd−1,1,

(X+, X−, X µ) = (1, x2, xµ). (6.28)

One can check that the action of SO(d, 2) on X induces the usual conformal group
action on xµ. The points that lie inMc

d\Md have X+ = 0 and thus X µXµ = 0 with
arbitrary X−. They correspond to space-time infinity9 (X µ = 0) and null infinity
(X µ , 0).

By construction,Mc
d has an action of SO(d, 2) and is thus a natural candidate for the

space on which a conformally-invariant QFT can live. However, it is unsuitable for
this purpose due to the existence of closed timelike curves that are evident from its
description as S1 × Sd−1/Z2 with timelike S1. This problem can be fixed by instead
considering the universal cover M̃d = R × Sd−1,10 which is simply the Lorentzian
cylinder. It was shown in [22] that Wightman functions of a CFT on Rd−1,1 can be
analytically continued to M̃d . Indeed, one can first Wick-rotate the CFT to Rd , map
it conformally to the Euclidean cylinder R × Sd−1, and then Wick-rotate to M̃d (of
course the actual proof in [22] is more involved).

To describe coordinates on M̃d , it is convenient to first consider the null cone in
Rd,2 mod R+. It is equivalent to S1 × Sd−1 defined by

(X−1)2 + (X0)2 = (X1)2 + . . . + (X d)2 = 1, (6.29)

and we can use the parametrization

X−1 = cos τ,

X0 = sin τ,

X i = ei, i = 1 . . . d, (6.30)

where ~e is a unit vector in Rd . Here τ is the coordinate on S1 with identification τ ∼
τ + 2π, and taking the universal cover is equivalent to removing this identification.

9In Mc
d
the infinite future, the infinite past and the spatial infinity of Minkowski space are

identified. The past neighborhood of the future infinity, the future neighborhood of the past infinity
and the spacelike neighborhood of the spatial infinity together form a complete neighbourhood of
the space-time infinity inMc

d
.

10For d = 2 this is not the universal cover.
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∞ ∞Md

M̃d

Figure 6.2: Poincare patchMd (blue, shaded) inside the Lorentzian cylinder M̃d in
the case of 2 dimensions. The spacelike infinity ofMd is marked by∞. The dashed
lines should be identified.

The coordinates (τ, ~e) with τ ∈ R then cover M̃d completely. Minkowski space
Md can be conformally identified with a particular region in M̃d by using the
embedding (6.28). This gives

x0 =
sin τ

cos τ + ed ,

xi =
ei

cos τ + ed , i = 1, . . . d − 1, (6.31)

in the region where cos τ + ed > 0 and −π < τ < π. This region consists of points
spacelike separated from τ = 0, ~e = (0, . . . , 0,−1), which is the spatial infinity of
Md (see figure 6.2). We will refer to this particular region as the (first) Poincare
patch. Note that the null cone in Rd,2 modulo R+ contains two Poincare patches –
one with X+ > 0 and one with X+ < 0. The relation between Wightman functions
onMd and M̃d (in their natural metrics) for operators reads as11

〈Ω|O1(x1) · · · On(xn) |Ω〉Md
=

n∏
i=1

(cos τi + ed
i )∆i〈Ω|O1(τ1, ~e1) · · · On(τn, ~en) |Ω〉

M̃d
.

(6.32)

Let us discuss the action of the conformal group on M̃d . First of all, because we
have taken the universal cover ofMc

d , it is no longer true that SO(d, 2) acts on M̃d .
11When applied to operators with spin, this identity does not produce a nice function on M̃d ,

because in typical bases of spin indices on Minkowski space translations in τ act by matrices which
have singularities. Therefore, in order to have nice functions on M̃d one has to perform a redefinition
of spin indices [22].
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Instead, the universal covering group S̃O(d, 2) acts on M̃d . Indeed, the rotation
generator M−1,0 generates shifts in τ and in SO(d, 2) we have e2πM−1,0 = 1, whereas
this is definitely not true on M̃d because τ / τ+2π. In the universal cover S̃O(d, 2),
this direction gets decompactified so that the action becomes consistent.

6.2.1.1 Symmetry between different Poincare patches

There exists an important symmetry T of M̃d that commutes with the action of
S̃O(d, 2). Namely, if we take a point with coordinates p = (τ, ~e) and send light rays
in all future directions, they will all converge at the point T p ≡ (τ + π,−~e). The
points p and T p in M̃d correspond to the same point inMc

d and thus T commutes
with infinitesimal conformal generators and therefore also with the full S̃O(d, 2).

When d is even, T lies in the center of S̃O(d, 2) and we can take

T = eπM−1,0 eπM1,2+πM3,4+...+πMd−1,d . (6.33)

For odd d only T 2 lies in S̃O(d, 2). But if the theory preserves parity, i.e., we have
an operator P that maps x1 → −x1 in the first Poincare patch, then we can take

T = eπM0,−1+πM23+...+πMd−1,d P. (6.34)

If the theory doesn’t preserve parity, T can still be defined as an operation on
correlation functions in the sense specified below.

If T exists as a unitary operator on the Hilbert space (d even or parity-preserving
theory in odd d), then we can consider its action on local operators. For scalars we
clearly have

T φ(x)T −1 = φ(T x), (6.35)

up to intrinsic parity in odd d. To understand the action of T on operators with spin,
it is convenient to work in the embedding space, where we have for tensor operators

T O(X, Z1, Z2, . . . Zn)T −1 = O(−X,−Z1,−Z2, . . . ,−Zn). (6.36)

Here the point −X is interpreted as the point in the Poincare patch which is in imme-
diate future of the first Poincare patch, and Zi are null polarizations corresponding
to the various rows of the Young diagram of O. Again, in odd dimensions we might
need to add a factor of intrinsic parity.
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Note that the above action on tensor operators can be defined regardless of the
dimension d or whether or not the theory preserves parity. We will thus define T
as an operator which can act on functions on M̃d according to

(T · O)(X, Z1, Z2, . . . Zn) ≡ O(−X,−Z1,−Z2, . . . ,−Zn), (6.37)

where again −X is interpreted as corresponding to T x. As discussed above, in
even dimensions this always comes from a unitary symmetry of the theory defined
by (6.33), but in odd dimensions it may not be a symmetry (even if the theory
preserves parity). In such cases we can still useT thus defined to study conformally-
invariant objects, similarly to how we can separate tensor structures into parity-odd
and parity-even regardless of whether the theory preserves parity. To have a uniform
discussion, we will use this definition of T action in what follows.

Finally, let us note that in even dimensions for tensor operators

T O(x) |Ω〉 = eiπ(∆+N )O(x) |Ω〉,

〈Ω|O(x)T = eiπ(∆+N )〈Ω|O(x), (6.38)

where N is the total number of boxes in the SO(d − 1, 1) Young diagram of O. This
follows from the fact that the representation generated by O acting on the vacuum
is irreducible. One can check the eigenvalue by considering this identity inside a
Wightman two-point function. The same relation holds in parity-even structures
in odd dimensions (in particular, in two-point functions) and with a minus sign in
parity-odd structures.

6.2.1.2 Causal structure

The action of S̃O(d, 2) on M̃d preserves the causal structure of the Lorentzian
cylinder [22]. This property will allow us to define conformally-invariant integration
regions. We usually label points in M̃d by natural numbers and we write 1 < 2
when point 1 is inside the past lightcone of 2 and 1 ≈ 2 when 1 is spacelike from
2. Furthermore, we write 1± for T ±11 (more generally, 1±k for T ±k1). That is,
1+ is the point in the “next” Poincare patch with the same Minkowski coordinates
as 1. Similarly, 1− is the point in the “previous” Poincare patch with the same
Minkowski coordinates as 1. Some causal relationships between points can be
written in different ways, e.g., 1 ≈ 2 if and only if 2− < 1 < 2+ (figure 6.3).
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1
2

2+

2−

Figure 6.3: 1 is spacelike from 2 (1 ≈ 2) if and only if 1 is in the future of 2− and the
past of 2+ (2− < 1 < 2+). The figure shows the Lorentzian cylinder in 2-dimensions.
The dashed lines should be identified.

6.2.2 Review: Representation theory of the conformal group
We will also need some facts from unitary representation theory of the conformal
groups SO(d + 1, 1) and SO(d, 2). These groups are non-compact and their unitary
representations are infinite-dimensional. We will mostly be interested in a particular
class of unitary representations known as principal series representations, and also
their non-unitary analytic continuations.

Unitary principal series representations of SO(d + 1, 1) are the easiest to describe.
In this case, a principal series representation E∆,ρ is labeled by a pair (∆, ρ), where
∆ is a scaling dimension of the form ∆ = d

2 + is with s ∈ R and an ρ is an irreducible
SO(d) representation. The elements of E∆,ρ are functions on Rd (more precisely,
on the conformal sphere Sd) that transform under SO(d + 1, 1) as primary operators
with scaling dimension ∆ and SO(d) representation ρ. The inner product between
two functions f a (x) and ga (x) (where a is an index for ρ) is defined by

( f , g) ≡
∫

dd x( f a (x))∗ga (x). (6.39)

This is positive-definite by construction. It is conformally-invariant because while
g transforms with scaling dimension ∆ = d

2 + is in ρ of SO(d), f ∗ transforms
with scaling dimension ∆∗ = d

2 − is in ρ∗ of SO(d), and thus the integrand is a
scalar of scaling dimension ∆ + ∆∗ = d, as required for conformal invariance. The
representations E∆,ρ are important because the representations of primary operators
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that appear in CFTs are their analytic continuations to real ∆.12 Also, E∆,ρ appear
in partial wave analysis of Euclidean correlators [65].

The pair (∆, ρ) can be thought of as a weight of the algebra soC(d + 2) if we define
−∆ to be the length of the first row of a Young diagram, and use the Young diagram
of ρ for the remaining rows. Through this identification, the unitary representations
of SO(d + 2) have non-positive (half-)integer ∆. For SO(d + 1, 1), we instead
have continuous ∆ because the corresponding Cartan generator D ∝ M−1,d+1 of
SO(d + 1, 1) is noncompact (i.e., it must be multiplied by i in order to relate the Lie
algebra so(d + 1, 1) to the compact form so(d + 2)).

In SO(d, 2) there are two noncompact Cartan generators (D and M01), and both of
their weights become continuous. Thus, the unitary principal series representations
P∆,J,λ for SO(d, 2) are parametrized by a triplet (∆, J, λ), where ∆ ∈ d

2 + iR,
J ∈ − d−2

2 + iR and λ is an irrep of SO(d −2). Here the pair (J, λ) can be thought of
as a weight of SO(d), where J is the component corresponding to the length of the
first row of a Young diagram. In this sense we have a continuous-spin generalization
of SO(d) irreps.

To make sense of functions with continuous spin, we follow the logic described
in the introduction. Let us first review the case of integer spin, and take λ to be
trivial for simplicity. The elements of integer spin representations are tensors that
are traceless and symmetric in their indices

f µ1···µJ (x). (6.40)

We can always contract f with a null polarization vector zµ to obtain a homogeneous
polynomial of degree J in z,

f (x, z) ≡ f µ1···µJ (x)zµ1 · · · zµJ . (6.41)

The tensor f µ1···µJ (x) can be recovered from f (x, z) via

f µ1···µJ (x) =
1

J!( d−2
2 )J

Dµ1 · · · DµJ f (x, z), (6.42)

where

Dµ =

(
d − 2

2
+ z ·

∂

∂z

)
∂

∂zµ
−

1
2

zµ
∂2

∂z2 (6.43)

12It will not be important to give a precise meaning to this “analytic continuation”; in most of the
discussion we only use E∆,ρ as a guide for writing conformally-invariant formulas. The same remark
concerns representations of S̃O(d, 2) below.
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is the Thomas/Todorov operator [181, 182, 201]. Thus, the two ways (6.40) and
(6.41) of representing f are equivalent.

The generalization to continuous spin is now as stated in the introduction: we can
consider functions f (x, z) that are homogeneous of degree J in z, where J is no
longer an integer and f (x, z) is no longer a polynomial in z. More precisely, the
elements of P∆,J are functions f (x, z) with x ∈ Mc

d and z ∈ Rd−1,1
+ a future-pointing

null vector that are constrained to satisfy

f (x, αz) = αJ f (x, z), α > 0. (6.44)

The object f (x, z) transforms under conformal transformations in the same way as
functions of the form (6.41) would. The operation of recovering the underlying
tensor (6.42) only makes sense when J is a nonnegative integer.13

To describe representations P∆,J,λ with non-trivial λ, we can make use of an analogy
between the space of polarization vectors z and the embedding space. The embed-
ding space lets us lift functions on Rd with indices for an SO(d) representation to
functions on the null cone in d + 2 dimensions with indices for an SO(d + 1, 1)
representation. In the present case, λ is a representation of SO(d −2), so we can lift
it to a representation of SO(d−1, 1) defined on the null cone z2 = 0 in a similar way.
For example, if λ is a rank-k tensor representation of SO(d − 2), then we consider
functions

f a1...ak (x, z), (6.45)

with ai being SO(d − 1, 1)-indices, where f obeys gauge redundancies and trans-
verseness constraints [53]

f a1...ak (x, z) ∼ f a1...ak (x, z) + zai ha1...ai−1ai+1...ak (x, z), (6.46)

zai f a1...ak (x, z) = 0. (6.47)

Additionally, f should be homogeneous (6.44) and satisfy the same tracelessness and
symmetry conditions in ai as λ-tensors ofSO(d−2).14 Other types of representations

13Also, f (x, z) should satisfy a differential equation in z. This differential equation is conformally
invariant and is essentially a generalization of the (d − 2)-dimensional conformal Killing equation,
similarly to the equations discussed in [3]. Such equations only exist for nonnegative integer J and
express the fact that f (x, z) is actually polynomial in z.

14To make more direct contact with integer spin, instead of (6.46) one can use

Dai f a1...ak (x, z) = 0, (6.48)

where D is the Todorov operator acting on z. In this case, for integer spin tensors the function
f a1...ak (x, z) is given simply by contracting zµ with the first-row indices of the tensor.
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can be described by adapting other embedding space formalisms. In most of this
chapter we focus on trivial λ for simplicity.

We can define an inner product for Lorentzian principal series representations by

( f , g) ≡
∫

dd xDd−2z f ∗(x, z)g(x, z), (6.49)

Dd−2z ≡
dd zθ(z0)δ(z2)

volR+
. (6.50)

Here the integral over z replaces the index contraction that we would use for integer
J. The measure for z is manifestly Lorentz-invariant and supported on the null
cone. Together with the measure, the integrand is invariant under rescaling of z.
Thus, we obtain a finite result by dividing by the volume of the group of positive
rescalings, volR+. The z-integral is exactly the kind of integral considered in [54] in
the context of the embedding space formalism. Here, we have adapted it to describe
SO(d − 1, 1)-invariant integration on the null cone z2 = 0.

In section 6.2.3 we will use analytic continuations of P∆,J,λ to find interesting re-
lations for primary operators in Lorentzian CFTs. But before we can do this, we
should note that these representations are constructed onMc

d , which is unsatisfac-
tory from the physical point of view. We can construct similar representations of
S̃O(d, 2) consisting of functions on M̃d , which we call P̃∆,J,λ . These representa-
tions behave very similarly to P∆,J,λ but there is an important distinction. While
the representations P∆,J,λ are generically irreducible, their analogues P̃∆,J,λ are not.
Indeed, the action of T on M̃d commutes with the action of S̃O(d, 2) and thus
P̃∆,J,λ decompose into a direct integral of irreducible subrepresentations in which
T acts by a constant phase.

6.2.3 Weyl reflections and integral transforms
Given the principal series representations described in section 6.2.2, we can ask
whether there exist equivalences between them. Equivalent representations must
have the same eigenvalues of the Casimir operators,15 and these eigenvalues are
polynomials in the weights (∆, ρ) (for SO(d + 1, 1)) and (∆, J, λ) (for SO(d, 2)).
For example, the quadratic and quartic Casimir eigenvalues for P∆,J (with trivial λ)
are

C2(P∆,J ) = ∆(∆ − d) + J (J + d − 2),

C4(P∆,J ) = (∆ − 1)(d − ∆ − 1)J (2 − d − J). (6.51)

15Here we mean all Casimir operators, not just the quadratic Casimir.
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The “restricted Weyl group” W ′ is a finite group that acts on these weights, doesn’t
mix discrete and continuous labels, and leaves the Casimir eigenvalues invariant.
Conversely, if two principal series weights have the same Casimirs, they can be
related by an element of W ′.

For example, in the case of SO(d + 1, 1), the restricted Weyl group is W ′ = Z2. Its
non-trivial element SE ∈ W ′ acts by

SE (∆, ρ) = (d − ∆, ρR), (6.52)

where ρR is the reflection of ρ. Other transformations exist that leave all Casimir
eigenvalues invariant, but SE is the only one that does not mix the integral weights
of ρ with the continuous weight ∆.

In the case of SO(d, 2), there are two continuous parameters that can mix, and
thus the restricted Weyl group W ′ is larger. It is isomorphic to a dihedral group of
order 8, W ′ = D8.16 This group has a faithful representation on R2 where it acts
as symmetries of the square. Its action on ∆ = d

2 + is and J = − d−2
2 + iq can be

described by taking s and q to be Cartesian coordinates in this R2. It is easy to see
that this action preserves the eigenvalues (6.51). Altogether, the elements of W ′ are
given in table 6.1.17

As mentioned above, the representations defined by weights in an orbit of W ′ have
equal Casimir eigenvalues, which means that potentially they can be equivalent.
This indeed turns out to be true [70, 71]. Equivalence of representations means that
there exist intertwining maps between E(∆,ρ) and Ew(∆,ρ), as well as between P(∆,J,λ)

and Pw(∆,J,λ) for all w ∈ W ′.

The intertwining map between SO(d + 1, 1) representations E∆,ρ and Ed−∆,ρR is
well-known [54, 65, 233]: it is given by the so-called shadow transform

Õa (x) = SE[O]a (x′) ≡
∫

dd x′〈Õa (x)Õ†b (x′)〉Ob(x′). (6.53)

Here Õ ∈ Ed−∆,ρR , O ∈ E∆,ρ, we use dagger to denote taking the dual reflected
representation of SO(d), and 〈Õa (x)Õ†b (x′)〉 is a standard choice of two-point

16This also turns out to be the Weyl group of BC2 root system, which was recently studied in the
context of conformal blocks in [191, 242]. It would be interesting to better understand the connection
of the present discussion with that work.

17To check that the action on λ is as in the table, one can consider the 4d case. The eigenvalues of
all 3 Casimirs of S̃O(2, 4) are written out, for example, in appendix F of [2] with ` = J + λ, ` = J − λ
and λR = −λ. More generally, by solving the system of polynomial equations expressing invariance
of these explicit Casimir eigenvalues, one can check that W ′ is indeed isomorphic to D8.
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w order ∆′ J′ λ′

1 1 ∆ J λ
S∆ = LSJL 2 d − ∆ J λR

SJ 2 ∆ 2 − d − J λR

S = (SJL)2 2 d − ∆ 2 − d − J λ
L 2 1 − J 1 − ∆ λ
F = SJLSJ 2 J + d − 1 ∆ − d + 1 λ
R = SJL 4 1 − J ∆ − d + 1 λR

R = LSJ 4 J + d − 1 1 − ∆ λR

Table 6.1: The elements of the restricted Weyl group W ′ = D8 of SO(d, 2). Each
element w takes the weights (∆, J, λ) to (∆′, J′, λ′). The order 2 elements other than
S are the four reflection symmetries of the rectangle, while S is the rotation by π.
The center of the group is ZD8 = {1, S}. Finally, the element R is a π/2 rotation.
The group is generated by L and SJ , with the relations L2 = S2

J = (LSJ )4 = 1.

function for the operators in their respective representations. The integration region
is the full Rd (more precisely, the conformal sphere Sd).

According to our discussion above, in Lorentzian signature there should exist 6
new integral transforms, corresponding to the other non-trivial elements of W ′.
There in fact exists a general formula for these transforms, valid for any element of
W ′ [70, 71].18 However, it is most naturally written using a different construction of
P∆,J,λ , and the conversion to the form appropriate for our purposes is cumbersome.19
Thus instead of deriving these transforms from the general result we will simply
give the final expressions and check that they are indeed conformally-invariant.
Furthermore, we will lift these transforms to representations P̃∆,J,λ of S̃O(d, 2).

Although the Lorentzian transforms we define are only necessarily isomorphisms
when acting on principal series representations P∆,J,λ , it is still interesting to con-
sider the analytic continuation of their action on other representations, like those
associated to physical CFT operators. For example the action of L will be well-
defined on physical local operators. The result of this action will generically be a
primary operator with non-integer spin. One can then ask how such operators make
sense in a CFT and what properties do they have. In this and the following sections
we will be able to answer these question by studying the examples provided by
integral transforms. In appendix E.1 we study the same questions on more general

18In the mathematical literature, these transforms are known as Knapp-Stein intertwining opera-
tors.

19See [65] for an example of this conversion in the case of the shadow transform (6.53).
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grounds (by using unitarity, positivity of energy, and conformal symmetry) and
reach similar conclusions.

6.2.3.1 Transforms for S∆, SJ, S

Let us start with the Lorentzian analogue of (6.53). The idea is to essentially keep
the form (6.53) while generalizing to continuous spin,

S∆[O](x, z) ≡ i
∫

x′≈x
dd x′

1
(x − x′)2(d−∆)O(x′, I (x − x′)z), (6.54)

I µν (x) = δµν − 2
xµxν

x2 . (6.55)

The integrand is conformally-invariant because I (x − x′) performs a conformally-
invariant translation of a vector at x to a vector at x′. The factor of i is to match
a Wick-rotated version of the Euclidean shadow transform, although we still have
SE = (−2)JS∆ after Wick rotation because of our convention for two-point func-
tions (E.24).

We must specify a conformally-invariant integration region for x′. The essentially
unique choice is to integrate over the region spacelike separated from x. If x is
at spatial infinity of Md , then this region is the full Poincare patch Md ⊂ M̃d ,
and for integer J the integral is simply the Wick rotation of the Euclidean shadow
integral (6.53). If, however, x is inside the first Poincare patch, then the integral
extends beyond the first Poincare patch on the Lorentzian cylinder M̃d . All other
conformally-invariant regions defined by x are translations of the spacelike region
by powers of T or unions thereof. The two-point function in these regions differs
from the two-point function in the spacelike region only by a constant phase, and
thus the most general choice of S∆ differs from the above by multiplication by a
function of T .20 The possibility of multiplying by a function of T is present for all
the transforms we consider and we just make the simplest choice. The choice (6.54)
is natural because of its relation to (6.53).

For SJ , the integral transform is

SJ[O](x, z) ≡
∫

Dd−2z′(−2 z · z′)2−d−JO(x, z′), (6.56)

where the measure Dd−2z is defined in (6.50). We call this the “spin shadow
transform.” Note that this is essentially the same as the shadow transform in the
embedding space [54], with X replaced by z and d replaced by d − 2.

20In particular, there is no ambiguity in representations P∆,J,λ of SO(d, 2).
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The transform for S, which we call the “full shadow transform,” is simply the
composition of the commuting transforms for S∆ and SJ ,

S[O](x, z) ≡ (SJS∆)[O](x, z) = i
∫

x′≈x
dd x′Dd−2z′

(−2 z · z′)2−d−J

(x − x′)2(d−∆) O(x′, I (x − x′)z′)

= (S∆SJ )[O](x, z) = i
∫

x′≈x
dd x′Dd−2z′

(−2 z · I (x − x′)z′)2−d−J

(x − x′)2(d−∆) O(x′, z′).

(6.57)

These two forms of S are equivalent because I (x − x′)2 = 1, for spacelike x − x′

I (x − x′) is an element of the orthochronous Lorentz group O+(d − 1, 1), and the
measure of the z-integration is invariant under O+(d − 1, 1).

The second line of (6.57) can also be written as

S[O](x, z) = i
∫

x′≈x
dd x′Dd−2z′〈OS(x, z)OS(x′, z′)〉O(x′, z′), (6.58)

where OS denotes the representation with dimension d−∆ and spin 2− d− J. Here,
we are using the following convention for a two-point structure

〈O(x1, z1)O(x2, z2)〉 =
(−2z1 · I (x12) · z2)J

x2∆
12

, (6.59)

which differs by a factor of (−2)J from some more traditional conventions. Our
conventions for two- and three-point structures are summarized in appendix E.1.3

6.2.3.2 Transform for L

The integral transform corresponding to L is

L[O](x, z) =
∫ +∞

−∞

dα (−α)−∆−JO

(
x −

z
α
, z

)
. (6.60)

Because it involves integration along a null direction, we callL the “light transform.”
Although most of the transforms in this section are only well-defined on nonphysical
representations like Lorentzian principal series representations, the light transform
is significant because it can be applied to physical operators as well. Note that it
converges near α = ±∞ only for ∆ + J > 1.21 In unitary theories it can therefore
be applied to all non-scalar operators and to scalars with dimension ∆ > 1 (which
includes all non-trivial scalars in d ≥ 4).

21For Lorentzian principal series Re(∆ + J) = 1 but for non-zero Im(∆ + J) the integral still
makes sense.
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Before discussing conformal invariance, let us describe the contour of integration
in more detail. The integral starts at α = −∞, in which case the argument of O is
simply x. It then increases to α = −0, and in the process O moves along z to future
null infinity inMd . As α crosses 0, the integration contour leaves the first Poincare
patchMd and enters the second Poincare patch TMd ⊂ M̃d . Finally, at α = +∞
it ends at T x ∈ TMd . In other words, the integration contour is a null geodesic
in M̃d from x to T x with direction defined by z (figure 6.4). This is obviously a
conformally-invariant contour.

x

T x

Figure 6.4: The contour prescription for the light-transform. The contour starts at
x ∈ Md and moves along the z direction to the point x+ = T x in the next Poincare
patch TMd .

It turns out that no phase prescription is necessary to define (−α)−∆−J for α > 0,
because the naive singularity at α = 0 is cancelled in correlators of O. To see this,
note that (6.60) is equivalent to the following integral in the embedding formalism
of [53],

L[O](X, Z ) =
∫ +∞

−∞

dα (−α)−∆−JO

(
X −

Z
α
, Z

)
=

∫ +∞

−∞

dα O(Z − αX, X ), (6.61)

where in the second equality we used the homogeneity properties of O(X, Z ) in the
region α < 0, together with gauge invariance O(X, Z + βX ) = O(X, Z ). In (6.61)
it is clear that the point α = 0 is not special (see also appendix E.2.1 for yet another
explanation).
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The embedding space integral (6.61) makes conformal invariance of the light-
transform manifest: it is SO(d, 2) invariant, and gauge invariance

L[O](X, Z + βX ) = L[O](X, Z ) (6.62)

can be proved by shifting α by β in the integral. It is also clear from homogeneity in
X and Z that the dimension and spin of L[O](X, Z ) are 1− J and 1−∆, respectively.
(Note that the parameter α carries homogeneity 1 in Z and −1 in X .) Finally,
(6.61) confirms the prescription that the integral goes between x and T x. Indeed,
according to the discussion in section 6.2.1 the embedding space covers two Poincare
patches and T X is simply −X . The integral in (6.61) starts at the argument Z +∞X

which is the same as X modulo R+ and ends at Z −∞X which is −X = T X modulo
R+ .

Let us describe another way of writing L that will be useful. Equation (6.60)
expresses L in a conformal frame where x is in the interior of a Poincare patch. In
this case, the integration contour extends from one patch into the next. However, if
we place x at past null infinity, the integration contour fits entirely within a single
Poincare patch. Specifically, in the integral (6.61), let us set22

Z = (1, y2, y),

X = (0,−2y · z,−z) (6.63)

to obtain

L[O](x, z) =
∫ ∞

−∞

dα O(y + αz, z). (6.64)

Here, x = y −∞z. Equation (6.64) is simply the integral of O along a null ray from
past null infinity to future null infinity, contracted with a tangent vector to the ray.
As an example, the “average null energy” operator is given by

E =

∫ ∞

−∞

dαTµν (αz)zµzν = L[T](−∞z, z), (6.65)

where Tµν is the stress tensor. It follows from our discussion that E transforms like
a primary with dimension −1 and spin 1 − d, centered at −∞z.

22This choice reverses the role of X, Z relative to the usual Poincare section gauge fixing. However,
it still satisfies the required conditions X2 = Z2 = X · Z = 0. To obtain these expressions, consider
the usual Poicare coordinates for a point shifted by −Lz for large L,

X = (1, (x − Lz)2, x − Lz) ' L × (0,−2x · z,−z),

Z = (0, 2z · x, z) = L−1 ×
(
(1, x2, x) − X

)
,

from where the new gauge-fixing follows.
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6.2.3.3 Transforms for F,R,R

The transforms for the remaining elements F,R,R ∈ D8 are compositions

F ≡ SJLSJ,

R ≡ SJL,

R ≡ LSJ . (6.66)

For example,

F[O](x, z) ≡
∫

ddζDd−2z′δ(ζ2)θ(ζ0)(−2 ζ · z′)−J−d+2(−2 ζ · z)∆−d+1O(x + ζ, z′)

+

∫
ddζDd−2z′δ(ζ2)θ(ζ0)(−2 ζ · z′)−J−d+2(−2 ζ · z)∆−d+1(T O)(x − ζ, z′).

(6.67)

Note that here the second term involves an integral over the second Poincare patch
TMd . Similarly to the light transform, here we integrate over all future-directed
null geodesics from x to T x. Because we integrate over all null directions, we call
F the “floodlight transform.”

Similarly, we have

R[O](x, z) =
∫

ddζδ(ζ2)θ(ζ0)(−2z · ζ )1−d+∆O(x + ζ, ζ )

+

∫
ddζδ(ζ2)θ(ζ0)(−2z · ζ )1−d+∆(T O)(x − ζ, ζ ), (6.68)

R[O](x, z) =
∫

dαDd−2z′(−α)−∆−2+d+J (−2 z · z′)2−d−JO

(
x −

z
α
, z′

)
. (6.69)

As an example, R[T] = SJ[L[T]] is given by integrating the average null energy
operator E = L[T] over null directions. This is equivalent to integrating the stress
tensor over a complete null surface, which produces a conformal charge. We can
understand this more formally as follows. Note that the dimension and spin of R[T]
are given by

R(d, 2) = (−1, 1). (6.70)

These are exactly the weights of the adjoint representation of the conformal group.
Conservation of T µν ensures that R[T] transforms irreducibly, so that it transforms
precisely in the adjoint representation. In other words, conservation equation for T
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becomes the conformal Killing equation for R[T]. It can thus be written as a linear
combination of conformal Killing vectors (CKVs):23

R[T](x, z) = QAw
µ
A(x)zµ

= K · z − 2(x · z)D + (x ρzν − xνzρ)Mνρ + 2(x · z)(x · P) − x2(z · P).
(6.71)

Here, A is an index for the adjoint representation of the conformal group, wµ
A(x)

are CKVs, and the QA are the associated charges. On the second line, we’ve given
the charges their usual names. We can see from (6.71) that inserting R[T] at spatial
infinity x = ∞ gives the momentum charge. This is a familiar fact from “conformal
collider physics” [76]. Similarly, when J is a conserved spin-1 current, R[J] has
dimension-0 and spin-0, which are the correct quantum numbers for a conserved
charge.

6.2.4 Some properties of the light transform
As noted above, the light transform of the stress-energy tensor is the average null
energy operator L[T] = E. The average null energy condition (ANEC) states that
E is non-negative,

〈Ψ|E |Ψ〉 ≥ 0. (6.72)

Non-negative operators with vanishing vacuum expectation value 〈Ω|E |Ω〉 = 0must
necessarily annihilate the vacuum |Ω〉 [243].24,25 Indeed, using the Cauchy-Schwarz
inequality for the inner product defined by E, we find

|〈Ψ|E |Ω〉|2 ≤ 〈Ψ|E |Ψ〉〈Ω|E |Ω〉 = 0 (6.73)

for any state |Ψ〉. Thus E|Ω〉 = 0.

In fact, we know that L[O]|Ω〉 = 0 for any local primary operator O — not just the
stress tensor. Indeed, if O has scaling dimension ∆, then L[O] has spin 1−∆, which
in a unitary theory is a non-negative integer only if ∆ = 0 or ∆ = 1. However, in
these cases J = 0 and the light transform diverges. For all other scaling dimensions
L[O] is a continuous-spin operator and thus must annihilate the vacuum. This

23See [3] for more discussion of writing finite-dimensional representations of the conformal group
in terms of fields on spacetime.

24We thank Clay Córdova for discussion on this point.
25Intuitively, the vacuum must contain the same amount of positive-E states and negative-E

states in order for 〈Ω|E |Ω〉 to vanish. Since there are no negative-E states, the vacuum only contains
vanishing-E states and is thus annihilated by E.
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makes it possible for other null positivity conditions (like those proved in [73] and
section 6.6) to hold as well. In the rest of this subsection we check explicitly that
L[O]|Ω〉 = 0 for all ∆ + J > 1 and make some general comments about properties
of L.

Lemma 1. The light transform of a local primary operator, when exists (i.e ∆+ J >

1), annihilates the vacuum,26

L[O]|Ω〉 = 0. (6.74)

Proof. We will show that for any local operators Vi,

〈Ω|Vn(xn) · · ·V1(x1)L[O](y, z) |Ω〉 = 0, (6.75)

which implies the result. Let us work in a Poincare patch where y is at past null
infinity and for simplicity assume that the xi fit in this patch; other configura-
tions can be obtained by analytic continuation. Using a Lorentz transformation
we can set z = (1, 1, 0, . . . , 0) and parameterize the light transform contour as
x0 =

(
v−u

2 , v+u
2 , 0, 0, . . .

)
for v ∈ (−∞,∞). We are then computing∫ ∞

−∞

dv〈Ω|Vn(xn) · · ·V1(x1)O(x0, z) |Ω〉 =

= lim
ε→+0

∫ ∞

−∞

dv〈Ω|Vn(xn − inε ê0) · · ·V1(x1 − iε ê0)O(x0, z) |Ω〉, (6.76)

where ê0 is the future-pointing unit vector in the time direction. The above iε

prescription arranges the operators so that they are time-ordered in Euclidean time,
and this is precisely how the Wightman function should be defined as a distribution.
Let us now write

xk − ikε ê0 = yk + iζk, k = 0, 1, . . . n, (6.77)

where both yk and ζk are real vectors. Positivity of energy implies that Wightman
functions are analytic if ζk is in the absolute future of ζk+1 for all k [16]:27

ζ0 > ζ1 > · · · > ζn. (6.78)

This condition clearly holds when the xk are real. If we then give an arbitrary
positive imaginary part to v while keeping u and other components of x0 fixed,

26For general spin representations J must be replaced by the sum of all Dynkin labels with spinor
labels taken with weight 1

2 .
27For example, it is easy to check that under this condition (yik + iζik )2 , 0 for all yik , and thus

there are no obvious null cone singularities. More generally, see appendix E.1.
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ζ0

ζ1

ζ2

ε

Im v > 0

Figure 6.5: Relationships between the imaginary parts ζk . A deformation of v in
the positive imaginary direction is shown in blue.

ζ0 = Im(v)z will remain in the future of ζ1 = −ε ê0 (see figure 6.5). Therefore, the
integrand is an analytic function of v in the upper half plane. If we can close the v
contour in the upper half plane, that would imply the required result.

According to the discussion around (6.60), conformal invariance implies that the
integral (6.60) is regular as α → −0, which in turn implies that the integrand
of (6.76) decays as |v |−∆−J for real v. We will now show that this is also true for
complex v in the upper half-plane, so we can close the contour as long as ∆+ J > 1.

To compute the rate of decay in v, we can use the OPE for the operators Vi, which
converges acting on the left vacuum.28 The leading contribution at large v will be
from O in this OPE, leading to a two-point function of O. Because v is moving in
the direction of its polarization z, the decay of this two-point function is governed
not by ∆ but by ∆ + J. Indeed, we need to consider the two-point function

〈O(0, z′)O(u, v; z)〉. (6.79)

The problem is then essentially two-dimensional: the statement that v is along
z means that O has definite left and right-moving weights of the 2d conformal
subgroup. Invariance under the 2d conformal subgroup then selects the component
of z′ with the same weights, so the two-point function is proportional to

〈O(0, z′)O(u, v; z)〉 ∝
(z′1 − z′0)J

u∆−Jv∆+J . (6.80)

28For this argument it is important that iε-prescriptions and positive imaginary part of v smear
the operators so that we are working with normalizable states. An argument from the Euclidean
OPE is that the iε shifts separate the operators on the Euclidean cylinder, and Lorentzian times do
not affect convergence of the OPE. The operators in the right hand side of the OPE can be placed
anywhere in Euclidean future of O. Alternatively to (but not logically independently from) the OPE
argument, we could have just started with 〈Ω|OL[O]|Ω〉 in the first place, since states of the form∫

ddx f (x)〈Ω|O(x) are dense in the space of states which can have a non-zero overlap with L[O]|Ω〉.
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Let us see this explicitly in the case of traceless-symmetric tensor O,

〈O(0, z′)O(u, v; z)〉 ∝
(z′µI µν (x0)zν)J

(uv)∆
, (6.81)

where we have x0 =
1
2vz + 1

2uz⊥. Here z⊥ = (−1, 1, 0, . . .) is the basis vector for the
u coordinate and we have (z · z⊥) = 2. The numerator is then

z′µI µν (x0)zν = (z′ · z) −
2u
uv

(
1
2 (z′ · z)v + 1

2 (z′ · z⊥)u
)
= (z′1 − z′0)

u
v
. (6.82)

This indeed leads to the expected form (6.80).

In summary, we can close the v contour in the upper half plane to give zero whenever
∆ + J > 1. �

Recall that the condition ∆ + J > 1 is true for all non-scalar operators in unitary
CFTs, and for all non-identity scalar operators in d ≥ 4 dimensions.

As as simple corollary of lemma 1, light transforms of local operators not acting on
the vacuum can be expressed in terms of commutators. For example,

〈Ω|O1L[O3]O2 |Ω〉 = 〈Ω|[O1,L[O3]]O2 |Ω〉 = 〈Ω|O1[L[O3],O2]|Ω〉. (6.83)

Note that these commutators vanish at spacelike separations, so the integral in
the light transforms only receives contributions from timelike separations. More
explicitly, we can understand the commutators (6.83) as follows. In the integral∫ ∞

−∞

dα(−α)−∆−J〈Ω|O1O3(x − z/α, z)O2 |Ω〉, (6.84)

there is one singularity in the lower half-plane where 3 becomes lightlike from 1
and another in the upper half-plane where 3 becomes lightlike from 2 (figure 6.6).
If we deform the contour to wrap around the first singularity (3 ∼ 1), we obtain
the commutator [O1,O3]; if we deform the contour around the second singularity
(3 ∼ 2), we obtain [O3,O2].

Lemma 1 has the following simple consequence for time-ordered correlators:

Lemma 2. Let O be a local primary operator with ∆ + J > 1. In a time-ordered
correlator

〈V1 . . .VnL[O]〉Ω, (6.85)

if the integration contour of L[O] crosses only past or only future null cones, the
transform is zero. Note that on the Lorentzian cylinder, generically, the contour
crosses the null cone of each Vi exactly once.
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α

3 ∼ 1

3 ∼ 2

Figure 6.6: Contour prescriptions for the α integral in the light transform of a three-
point function (6.83). The black contour corresponds to 〈Ω|O1L[O3]O2 |Ω〉, the
blue contour corresponds to 〈Ω|[O1,L[O3]]O2 |Ω〉, and the red contour corresponds
to 〈Ω|O1[L[O3],O2]|Ω〉.

Note that here the notation (6.85) means that L is applied to a physical time-
ordered correlation function, as opposed to time-ordering acting on the continuous
spin operator L[O]. (Since continuous spin operators are necessarily non-local, it
is unclear how to define the latter time-ordering in a Lorentz-invariant way, see
appendix E.1.) We also use the subscript Ω to stress that we mean a physical
correlation function, as opposed to a conformally-invariant tensor structure.

Finally, let us note that if we use the usual Wightman iε-prescription,29 the light
transform of aWightman function is an analytic function of its arguments, including
the polarizations. This follows simply from the fact that it is an integral of an analytic
function. This is consistent with our statements concerning analyticity ofWightman
functions of continuous-spin operators in appendix E.1.

6.2.5 Light transform of a Wightman function
As a concrete example, and because it will play an important role later, let us
compute the light-transform of the Wightman function

〈0|φ1(x1)O(x3, z)φ2(x2) |0〉 =

(
2z · x23 x2

13 − 2z · x13 x2
23

) J

x∆1+∆2−∆+J
12 x∆1+∆−∆2+J

13 x∆2+∆−∆1+J
23

, (6.86)

where φi are scalar operators with dimensions ∆i, and O has dimension ∆ and spin
J. (Our three-point structure normalization differs by a factor of 2J from some more
conventional normalizations. Our conventions are summarized in appendix E.1.3.)
In the above expression, the Wightman iε prescription is implicit. As discussed
at the end of the introduction, we use the convention that expectation values in the
state |Ω〉 denote physical correlation functions, whereas the expectation values in the
state |0〉 denote two- or three-point tensor structures fixed by conformal invariance.

29In other words, add small Euclidean times to the operators to make the expectation value
time-ordered in Euclidean time.
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1 2

3

Figure 6.7: Causal relationships between points in the light transform (6.87). The
original integration contour is the union of the solid blue line and the dashed line.
The solid blue line shows the region where the commutator [φ1,O] is non-zero.

The same comment applies to time-ordered correlation functions 〈· · ·〉Ω and 〈· · ·〉
respectively.

Because the light-transform of a local operator annihilates the vacuum (lemma 1),
it is equivalent to the commutators

〈0|φ1L[O]φ2 |0〉 = 〈0|φ1[L[O], φ2]|0〉 = 〈0|[φ1,L[O]]φ2 |0〉. (6.87)

Specifically, let us compute the third expression above,

〈0|
[
φ1(x1),L[O](x3, z)

]
φ2(x2) |0〉

=

∫ +∞

−∞

dα(−α)−∆−J〈0|
[
φ1(x1),O

(
x3 −

z
α
, z

)]
φ2(x2) |0〉. (6.88)

Since the light transform of a Wightman function is analytic (see section 6.2.4 and
appendix E.1), we can compute it for any choice of causal relationships, and obtain
the answer for other configurations by analytic continuation. We will work with the
configuration in figure 6.7. All points lie in a single Poincare patch. The points 1
and 2 are spacelike separated, and the integration contour starts at 3 < 1 and ends
at 3+ > 2. The commutator [φ1,O] vanishes at spacelike separation, so the upper
limit of the integral (6.88) gets restricted to the value of α when 3 crosses the past
null cone of 1.

In our configuration, we have

(z · x13) < 0, (6.89)

−2
(z · x13)

x2
13

< −2
(z · x23)

x2
23

. (6.90)
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The first inequality follows because z and x13 are future-pointing and x13 is not null.
The second inequality expresses the fact that the null cone of 1 is crossed before the
null cone of 2.

Taking into account that x2
13 = eiπ |x2

13 | for the ordering φ1O and x2
13 = e−iπ |x2

13 | for
the ordering Oφ1, and restricting the range of integration to the past lightcone of 1,
we find

〈0|[φ1(x1),L[O]](x3, z)φ2(x2) |0〉 =

= −2i sin π∆1+∆−∆2+J
2

∫ −
2(z ·x13)

x2
13

−∞

dα(−α)−∆−J

(
2z · x23 x2

13 − 2z · x13 x2
23

) J

x∆1+∆2−∆+J
12 |x13′ |∆1+∆−∆2+J x∆2+∆−∆1+J

23′
,

(6.91)

where x′3 = x3 − z/α. Note that the factor (. . .)J in the numerator is independent of
α because z is null. We thus need to compute∫ −

2(z ·x13)

x2
13

−∞

dα(−α)−∆−J 1
|x13′ |∆1+∆−∆2+J x∆2+∆−∆1+J

23′

=

∫ +∞

2(z ·x13)

x2
13

dα
1

|αx2
13 − 2(z · x13) |

∆1+∆−∆2+J
2 (αx2

23 − 2(z · x23))
∆2+∆−∆1+J

2

=
Γ(∆ + J − 1)Γ

(
1 − ∆+∆1−∆2+J

2

)
Γ

(
∆−∆1+∆2+J

2

) 1
|x13 |∆1+∆−∆2+J x∆2+∆−∆1+J

23

*
,

2(z · x13)
x2

13
−

2(z · x23)
x2

23

+
-

1−∆−J

.

(6.92)

By (6.89), α has constant sign, which allows us to go to the second line. Because
of (6.90), the function of z which enters (. . .)1−∆−J is positive, so the result is
well-defined.

Putting everything together, we find

〈0|φ1(x1) L[O](x3, z) φ2(x2) |0〉

= L(φ1φ2[O])

(
2z · x23 x2

13 − 2z · x13 x2
23

)1−∆

(x2
12)

∆1+∆2−(1−J )+(1−∆)
2 (−x2

13)
∆1+(1−J )−∆2+(1−∆)

2 (x2
23)

∆2+(1−J )−∆1+(1−∆)
2

,

(6.93)

where

L(φ1φ2[O]) ≡ −2πi
Γ(∆ + J − 1)

Γ(∆+∆1−∆2+J
2 )Γ(∆−∆1+∆2+J

2 )
. (6.94)



267

The result (6.93) indeed takes the form of a conformally-invariant correlation func-
tion of φ1 and φ2 with an operator of dimension 1 − J and spin 1 − ∆. Note how
continuous spin structures arise in a natural way from the light transform. Note also
that (6.93) is pure negative-imaginary in the configuration of figure 6.7, where all
quantities in the denominator are real. This is related to Rindler positivity as we
discuss in section 6.6.1.

Although we did the computation in a specific configuration, we have expressed
the result in terms of an analytic function of the positions. Because the result
should be analytic, the resulting expression (6.93) is valid for any configuration.
The iε-prescription in (6.93) is the same as for the original Wightman function. In
particular, if we move x3 back into a configuration where all the points are spacelike
separated, we obtain a phase

eiπ ∆1+(1−J )−∆2+(1−∆)
2 (6.95)

coming from −x2
13 becoming negative. This phase will play a role in section 6.2.7.

6.2.6 Light transform of a time-ordered correlator
Finally, let us discuss the light-transform of a time-ordered correlator 〈O1O2L[O3]〉.
By lemma (2), this is nonzero only if 2− < 3 < 1 (as in figure 6.7) or 1− < 3 < 2. In
the first nonzero configuration 2− < 3 < 1, the time-ordered correlator is equivalent
to the Wightman function 〈0|O1O3O2 |0〉 along the entire integration contour of the
light transform. The other nonzero configuration differs by 1↔ 2. Thus, we have

〈O1O2L[O3]〉 = 〈0|O1L[O3]O2 |0〉θ(2− < 3 < 1) + 〈0|O2L[O3]O1 |0〉θ(1− < 3 < 2).
(6.96)

Note that here the standard Wightman functions 〈0|O1O3O2 |0〉 and 〈0|O2O3O1 |0〉
(on which the light transforms act) are related to each other by analytic continuation
and not by merely by relabeling the operators in the standard tensor structures
〈0| . . . |0〉.

For example, consider the three-point structure (6.86), now assumed to have iε

prescriptions appropriate for a time-ordered correlator. From (6.96) and our com-
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putation for the Wightman function (6.93), the light-transform is

〈φ1φ2L[O](x3, z)〉 = L(φ1φ2[O])

×



(
2z · x23 x2

13 − 2z · x13 x2
23

)1−∆

(x2
12)

∆1+∆2−(1−J )+(1−∆)
2 (−x2

13)
∆1+(1−J )−∆2+(1−∆)

2 (x2
23)

∆2+(1−J )−∆1+(1−∆)
2

θ(2− < 3 < 1)

+
(−1)J

(
2z · x13 x2

23 − 2z · x23 x2
13

)1−∆

(x2
12)

∆1+∆2−(1−J )+(1−∆)
2 (x2

13)
∆1+(1−J )−∆2+(1−∆)

2 (−x2
23)

∆2+(1−J )−∆1+(1−∆)
2

θ(1− < 3 < 2).


(6.97)

The factor of (−1)J in the second term comes from the fact that the original structure
〈φ1φ2O〉 picks up (−1)J when we swap 1↔ 2.30

6.2.7 Algebra of integral transforms
The L-transformation in (6.93) has the curious property that L2 is a nontrivial
function of∆1,∆2,∆ and J, even though it originates from aWeyl reflection (∆, J) ↔
(1 − J, 1 − ∆) that squares to 1. Specifically, its square acting on a three-point
Wightman function is given by

〈0|φ1(x1) L2[O](x3, z) φ2(x2) |0〉 = α∆1,∆2,∆,J〈0|φ1(x1)O(x3, z)φ2(x2) |0〉, (6.98)

where

α∆1,∆2,∆,J = eiπ ∆1+∆−∆2+J
2 L(φ1φ2[OL]) × eiπ ∆1+(1−J )−∆2+(1−∆)

2 L(φ1φ2[O])

=
π

(∆ + J − 1) sin π(∆ + J)
(eiπ(∆1−∆2) − eiπ(∆+J))(eiπ(∆1−∆2) − e−iπ(∆+J)).

(6.99)

The phases in the first line of (6.99) are from (6.95).

Note that the square of the light transform does give back a three-point function of
the same functional form as the original. However, the coefficient α∆1,∆2,∆,J depends
on ∆1,∆2 in a non-trivial way that cannot be removed by redefining L by some
function of ∆, J alone. This is in contrast to the Euclidean shadow transform, which
squares to a coefficient N (∆, J) that is independent of the correlation function it
acts on (appendix E.3.2).

30As we explain in appendix E.1, time-ordered correlators with continuous spin do not make
sense, so we must assume J is an integer in this computation. This means that the factor (−1)J

is unambiguous. The light transform 〈φ1φ2L[O]〉 still gives a sensible continuous-spin structure
because the result (6.97) is no longer a time-ordered correlator, e.g. it has θ-functions.
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This “anomaly” in the group relation L2 = 1 occurs for the following reason.
The group-theoretic origin of L only guarantees that it squares to a multiple of
the identity when acting on principal series representations P∆,J defined on the
conformal compactification ofMinkowski spaceMc

d . However, herewe are applying
it to the space P̃∆,J defined on the universal cover M̃d . The squared transformation
L2 still commutes with S̃O(d, 2), so it becomes a non-trivial automorphism of the
representation P̃∆,J .

By Schur’s lemma, nontrivial automorphisms can only occur in reducible represen-
tations. Indeed, as discussed in section 6.2.2, P̃∆,J is reducible and its irreducible
components are the eigenspaces of T . Within these irreducible components L2

must act by a constant, and thus we should have

L2 = fL(∆, J,T ). (6.100)

Furthermore, note that L2[O](x, z) only depends on the values of O between x

and T 2x. This means that fL(∆, J,T ) must be at most a quadratic polynomial in
T . Finally, because L2[O] vanishes when acting on the past or future vacuum,
fL(∆, J,T ) should have roots at the eigenvalues of T in O|Ω〉 and 〈Ω|O inside
a correlation function,31 which are e±iπ(∆+J). In fact, as we show explicitly in
appendix E.2.1,

L2 = fL(∆, J,T ) =
π

(∆ + J − 1) sin π(∆ + J)
(T − eiπ(∆+J))(T − e−iπ(∆+J)).

(6.101)

This immediately implies (6.99) because eiπ(∆1−∆2) is the eigenvalue of t acting on O
in the Wightman function 〈0|φ1(x1)O(x3, z)φ2(x2) |0〉. To see this, write the action
of T on O as

〈0|φ1(x1)T O(x3, z)T −1φ2(x2) |0〉 (6.102)

and use (6.38).

In fact, we can also turn this reasoning around and use the relatively simple com-
putation (6.99) to fix the polynomial fL(∆, J,T ) in general. This will be helpful in
appendix E.7 where we will need the statement that for general Lorentz irreps ρ the
ratio

fL (∆, ρ,T )
(T − γ)(T − γ−1)

, (6.103)

31Here we need the adjoint action as O → T OT −1, c.f. equation (6.38).
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where γ is the eigenvalue in (6.38) corresponding to (∆, ρ), is independent of T .

More generally, this reasoning implies that relations between restricted Weyl re-
flections w ∈ D8 also hold for the corresponding integral transforms, but only up
to multiplication by polynomials in T with coefficients depending on ∆ and J. In
the remainder of this section we derive these modified relations between integral
transforms.

First of all, some relations hold by construction given the definitions in section 6.2.3,

S = SJS∆ = S∆SJ,

F = SJLSJ,

R = SJL,

R = LSJ . (6.104)

Furthermore, we already know that (for simplicity, we consider only P̃∆,J,λ with
trivial λ)

L2 = fL(∆, J,T ), (6.105)

S2
J = f J (J), (6.106)

where we have suppressed the dependence on t. Here fL is a quadratic polynomial
in t defined in (6.101), while f J (J) depends only on J and is equal to the square of
Euclidean shadow transform in d − 2 dimensions:

f J (J) =
πd−1

(J + d−2
2 ) sin π(J + d

2 )

1
Γ(−J)Γ(J + d − 2)

. (6.107)

That is, f J (J) = N (−J, 0) in d − 2 dimensions, where N (∆, J) in d dimensions is
given in (E.53). These equations allow us to compute

RR = fL(∆, 2 − d − J,T ) f J (J), (6.108)

RR = fL(∆, J,T ) f J (1 − ∆). (6.109)

As we show in appendix E.2.2, there is another relation,

S∆ = iT −1 LSJL. (6.110)

Together with S = SJS∆ = S∆SJ this implies

S = iT −1 R2 = iT −1 R2
, (6.111)
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and thus we find

S2 = −T −2R2R2

= −T −2 fL(∆, 2 − d − J,T ) f J (J) fL(J + d − 1, 1 − d + ∆,T ) f J (1 − ∆).
(6.112)

Due to S2 = −T −2(SJL)4 = −T −2(LSJ )4, we also have

(LSJ )4 = (SJL)4 = fL(∆, 2 − d − J,T ) f J (J) fL(J + d − 1, 1 − d + ∆,T ) f J (1 − ∆).
(6.113)

At this point it is obvious that f J and fL completely determine the relations between
all integral transforms, since D8 is generated by L and SJ modulo L2 = S2

J =

(SJL)4 = 1 and we have already found the generalization of these relations to the
integral transforms L and SJ in (6.105), (6.106), and (6.113).

A convenient way to summarize these results is by using normalized versions of L
and SJ . Specifically, we define

L̂ ≡ L
1

Γ(∆ + J − 1)(T − eiπ(∆+J))
, (6.114)

ŜJ ≡ SJ
Γ(−J)

π
d−2

2 Γ(J + d−2
2 )

, (6.115)

where ∆ and J in there right hand side should be understood as operators reading
off the dimension and spin of the functions they act upon. One can then check the
following relations

L̂2 = 1, Ŝ2
J = 1, (L̂ŜJ )4 = (ŜJL̂)4 = 1. (6.116)

These normalized transforms therefore generate the dihedral group D8 without any
extra coefficients. Note that L̂ is very non-local because it has T in the denominator.
In particular, by doing a Taylor expansion in T we see that it involves a sum over
an infinite number of different Poincare patches. Thus, even though L̂ satisfies a
simpler algebra, we mostly prefer to work with L.

6.3 Light-ray operators
In this section, we explain how to fuse a pair of local operators O1,O2 into a light-ray
operatorOi,J which gives an analytic continuation in spin J of the light-transform of
local operators in the O1 × O2 OPE. This amounts to defining correlation functions

〈Ω|V1 . . .VkOi,JVk+1 . . .Vn |Ω〉 (6.117)
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in terms of those of O1 and O2,

〈Ω|V1 . . .VkO1O2Vk+1 . . .Vn |Ω〉. (6.118)

When J is an integer, Oi,J is related to a local operator in the O1O2 OPE, and
these correlation functions are linked by Euclidean harmonic analysis [65]. Our
strategy will be to start with this relation, rephrase it in Lorentzian signature, and
then analytically continue in J. By the operator-state correspondence, it suffices
to consider just two insertions Vi, and for simplicity we will also restrict to scalars
O1 = φ1 and O2 = φ2. (The generalization to arbitrary spin of O1,O2 will be
straightforward.)

6.3.1 Euclidean partial waves
Consider a Euclidean correlation function 〈φ1φ2V3V4〉Ω, where the V3 and V4 are
local operators of any spin (not necessarily primary) and φ1, φ2 are local primary
scalars. By the Plancherel theorem for SO(d + 1, 1) (due to Harish-Chandra [244]),
such a correlation function can be expanded in partial waves P∆,J that diagonalize
the action of the conformal Casimirs acting simultaneously on points 1 and 2 [65],32

〈V3V4φ1φ2〉Ω =

∞∑
J=0

∫ d
2+i∞

d
2

d∆
2πi

µ(∆, J)
∫

dd xPµ1···µJ
∆,J (x3, x4, x)〈Õ†µ1···µJ (x)φ1φ2〉.

(6.119)

Here, O has spin J and dimension ∆ ∈ d
2 + iR+ on the principal series. The

factor µ(∆, J) is the Plancherel measure (E.53), which we have inserted in order to
simplify later expressions. For traceless-symmetricO there is no difference between
representations Õ† and Õ, but we will keep the daggers in what follows with the
view towards the more general case.

Let us make two technical comments about the applicability of this formula. It
follows directly from L2(G) harmonic analysis on SO(d + 1, 1) if ∆1 − ∆2 is pure
imaginary (possibly 0) and 〈V3V4φ1φ2〉Ω is square-integrable in the sense that∫

dd x1dd x2 x−2d+4 Re∆1
12 〈V3V4φ1φ2〉Ω(〈V3V4φ1φ2〉Ω)∗ < ∞. (6.120)

32For general spin operators we should also include contributions from a discrete series of partial
waves.
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This is precisely the situation when the conformal Casimir operators acting on points
1 and 2 are self-adjoint and we can perform their spectral analysis.33 Neither of these
conditions is satisfied by a typical correlator in a physically-relevant CFT. Lifting
the restriction of square integrability is conceptually easy and is similar to the usual
Fourier transform: non-square integrable correlation functions can be interpreted
as distributions (of some kind) and their partial waves also become distributions.34

Relaxing the restriction ∆1−∆2 ∈ iR, on the other hand, seems to be hard to do from
first principles, since the Casimir operators are not self-adjoint anymore. We will
thus not attempt to do this here and instead adopt the following pedestrian approach:
we will imagine multiplying correlation functions by products of scalar two-point
functions xκδi ji j with κ = 1 so that the scaling dimensions of external operators
will formally become principal series (this will of course modify the conformal
block decomposition of these functions).35 We perform harmonic analysis for these
modified functions and then remove the auxiliary two-point functions by sending
κ → 0. For this to make sense we have to assume that the final expressions can be
analytically continued to κ = 0.

With these comments in mind, we may proceed with (6.119). Using the bubble
integral (E.52), we find that P∆,J is given by

Pµ1···µJ
∆,J (x3, x4, x)

=

(
〈φ1φ2Õ

†〉, 〈φ̃†1φ̃
†

2O〉
)−1

E

∫
dd x1dd x2〈V3V4φ1φ2〉Ω〈φ̃

†

1φ̃
†

2O
µ1···µJ (x)〉, (6.121)

where (
〈φ1φ2Õ

†〉, 〈φ̃†1φ̃
†

2O〉
)

E
=

22JĈJ (1)
2dvol(SO(d − 1))

. (6.122)

is the three-point pairing defined in appendix E.3.1. In anticipation of performing
the light-transform, let us contract spin indices of O with a null polarization vector

33The reason why it is important to have ∆1−∆2 ∈ iR is that the adjoint of a Casimir operator acts
on functions with conjugate shadow scaling dimensions ∆̃∗i . This is a different space of functions
than the one 〈V3V4φ1φ2〉Ω lives in unless ∆̃∗i = ∆i , which is the case when ∆i ∈

d
2 + iR are principal

series representations. It furthermore turns out that only ∆1 −∆2 is important for the argument, since
∆1 + ∆2 can be changed by multiplying 〈V3V4φ1φ2〉Ω by a two-point function xδ12 for some δ, and
such two-point functions cancel out in equations.

34The distributional contribution to the partial wave can be analyzed by subtracting a finite number
of contributions of low dimensional operators to make the function better behaved. This analysis was
essentially performed in [66] and in generic cases amounts to a deformation of ∆-contour in (6.119).

35Note that such two-point functions have the right Wightman analyticity properties, and thus do
not spoil the analyticity of physical correlators which we use in the arguments below.
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zµ to give

P∆,J (x3, x4, x, z) =
(
〈φ1φ2Õ

†〉, 〈φ̃†1φ̃
†

2O〉
)−1

E

∫
dd x1dd x2〈V3V4φ1φ2〉Ω〈φ̃

†

1φ̃
†

2O(x, z)〉,

(6.123)

where O(x, z) = Oµ1···µJ (x)zµ1 · · · zµJ .

Physical correlation functions 〈V3V4O∗〉Ω of operators O∗ in the φ1 × φ2 OPE are
residues of the partial waves,

f12∗〈V3V4O∗(x, z)〉Ω = − Res
∆=∆∗

µ(∆, J)SE (φ1φ2[Õ†])P∆,J (x3, x4, x, z)
����J=J∗

.

(6.124)

Here, SE (φ1φ2[Õ†]) is the shadow transform coefficient (E.55), and f12∗ is the OPE
coefficient of O∗ ∈ φ1 × φ2. Equation (6.124) is a simple generalization of the
standard result for primary four-point functions. We derive it in appendix E.3.3.

6.3.2 Wick-rotation to Lorentzian signature
To obtain the promised analytic continuation of L[O], we need to first go to
Lorentzian signature, and then apply the light transform.

We thus Wick-rotate all the operators φ1, φ2,V3,V4,O to Lorentzian signature by
setting

τ = (i + ε )t, (6.125)

where τ and t are Euclidean and Lorentzian time, respectively. In more detail, we
simultaneously rotate the time coordinates of each of the operators φ1, φ2,V3,V4,O.
For the operators V3,V4,O, this means we analytically continue in the coordinates
x3, x4, x. The operators φ1, φ2 are being integrated over in (6.123), and we rotate
their respective integration contours simultaneouslywith the analytic continuation of
x3, x4, x. Simultaneous Wick-rotation turns Euclidean correlators into time-ordered
Lorentzian correlators. The result is a double-integral of time-ordered correlators
over Minkowski space

P∆,J (x3, x4, x, z)

= −

(
〈φ1φ2Õ

†〉, 〈φ̃†1φ̃
†

2O〉
)−1

E

∫
∞≈1,2

dd x1dd x2〈V3V4φ1φ2〉Ω〈φ̃
†

1φ̃
†

2O(x, z)〉.

(6.126)
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x

x+

1
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(a) Integration region in (6.128)

∞∞ 4 3

x

x+

1
2

(b) Region S in (6.128) which con-
tributes to the residue.

Figure 6.8: The configuration of points within the Poincare patch of∞. Point 4 is in
the future of x and 3 is in the past of x+, while x is null separated and in the past of
∞. The shaded yellow (red) region is the region of integration for 1 (2) after taking
the light transform, in the first term in equations (6.127) and (6.128). The dashed
null line is spanned by z. Note that in (b), for d > 2 the region S extends in and out
of the picture, while the dashed null line doesn’t.

Here, we have chosen a generic point x∞ on the Lorentzian cylinder M̃d and written
Minkowski space as the Poincare patch that is spacelike from this point.36,37 All the
points 1, 2, 3, 4, x are constrained to lie within this patch. The minus sign in (6.126)
comes from two Wick rotations in the measure dτ1dτ2 = −dt1dt2.

6.3.3 The light transform and analytic continuation in spin
Let us now move O(x, z) to past null infinity and perform the light transform. We
choose 3, 4 such that 3− < x < 4, so that the left-hand side is nonzero, see figure 6.8a.
Since O is on the Euclidean principal series, the condition Re(∆+ J) > 1 is satisfied
and we can plug in (6.96) to find

L[P∆,J](x3, x4, x, z)

= −

(
〈φ1φ2Õ

†〉, 〈φ̃†1φ̃
†

2O〉
)−1

E

∫
2−<x<1
∞≈1,2

dd x1dd x2〈V3V4φ1φ2〉Ω〈0|φ̃†1L[O](x, z)φ̃†2 |0〉

+ (1↔ 2). (6.127)

36In particular the result must be independent of which point we choose for x∞. The spurious
dependence of formulas on x∞ will go away soon.

37Note that we do not place O(x, z) at infinity before performing the Wick rotation, in contrast to
[67]. The reason is that in our case the region of integration for 1, 2 is independent of the position of
O so it is easier to analytically continue in the position of O.
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See the discussion below (6.96) for the precise meaning of the (1↔ 2) term.

Let us now define

O∆,J (x, z)

≡
µ(∆, J)SE (φ1φ2[Õ†])(
〈φ1φ2Õ†〉, 〈φ̃

†

1φ̃
†

2O〉
)

E

∫
2−<x<1
∞≈1,2

dd x1dd x2〈0|φ̃†1L[O](x, z)φ̃†2 |0〉φ1φ2 + (1↔ 2).

(6.128)

It is implicit here that x is null separated from ∞. This expression makes sense (at
least formally) for continuous J. The euclidean three-point structure 〈φ̃†1φ̃

†

2O〉 that
we started with is single-valued only for integer J. However, due to the particular
Wightman ordering the structures in (6.128) are well-defined for any J, as discussed
in appendix E.1. In order to continue to non-integer J, we must also choose an
analytic continuation of the prefactors in (6.128), which we discuss in more detail
below. One consequence is that we have two different analytic continuations: one
from even values of J that we denote O+

∆,J , and one from odd values of J that we
denote O−

∆,J .

For integer J, (6.127) and (6.124) imply that the residues O±i,J , defined by

O±
∆,J (x, z) ∼

1
∆ − ∆±i (J)

O±i,J (x, z), (6.129)

have the same three-point functions as light-transforms of local operators in the
φ1 × φ2 OPE. (We include a ± subscript on ∆±i (J) because the positions of poles in
the (∆, J) plane are in general different for the even/odd cases.) To be precise, when
J is an integer, the residue of a time-ordered correlator, where time-ordering acts
on φ1 and φ2 inside the definition of O±∆,J ,

〈V3V4O
±
∆,J (x, z)〉Ω, (6.130)

agrees with

f12O〈V3V4L[Oi,J]〉Ω. (6.131)

for a local operator Oi,J , where ± is determined by (−1)J = ±1.

We now claim that, for any J, the residue in (6.130) comes from a region S where
φ1 and φ2 are simultaneously almost null-separated from x and from each other;
see figure 6.8b. Indeed, we always expect singularities in correlators when points
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are null-separated. In integrated correlators, such singularities can be removed by
iε-prescriptions. However, lightlike singularities in the region S are not removed
because they coincidewith boundaries in the integration regions for x1, x2. In a time-
ordered correlator, we can also have singularities at coincident points. However, we
expect singularities related to the φ1 × φ2 OPE to come from 1 being lightlike to 2
and not from other coincident limits.

Let us focus on the first term of (6.128). For this term, it is guaranteed that 1 ≥ 3,
2 ≤ 4, and 1 ≥ 2. In the region S we furthermore have 1 ≤ 4 and 2 ≥ 3, i.e., we
have the ordering 4 ≥ 1 ≥ 2 ≥ 3, and the contribution of the first term of (6.128)
to the time-ordered correlator (6.130) agrees with its contribution to the Wightman
function

〈Ω|V4O
±
∆,JV3 |Ω〉. (6.132)

The same obviously holds for the second term, and, moreover, (6.131) agrees with
the Wightman function

f12O〈Ω|V4L[Oi,J]V3 |Ω〉. (6.133)

Since any state in CFT can be approximated by local operators Vi acting on the
vacuum in an arbitrarily small region, this implies that we can interpret (6.128)
and (6.129) as operator equations. Furthermore, by construction, for non-negative
integer J we must have, as an operator equation,

O±i,J = f12OL[Oi,J] (J ∈ Z≥0, (−1)J = ±1) (6.134)

for some local operator Oi,J .

For non-integer J the definition (6.128) with (6.129) provides an analytic contin-
uation in J of L[Oi,J]. As we will show in section 6.4, it is precisely the matrix
elements ofO±

∆,J andO
±
i,J which are computed by Caron-Huot’s Lorentzian inversion

formula. As discussed above, the residues O±i,J should only depend on the region
of the integral where φ1 and φ2 are almost null-separated. In fact, it is natural to
expect that the residue is further localized onto the null line defined by z. Thus we
refer to them as light-ray operators. In the next subsection we show this explicitly
in the case of mean field theory (MFT).

In our argument for the existence of light-ray operators, it is not necessary that O±
∆,J

be a meromorphic function with simple poles. We expect that any non-analyticity in
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O±
∆,J in the (∆, J) plane should come from the region where φ1 and φ2 are lightlike-

separated. Thus, for example, it should be possible to define light-ray operators
by taking discontinuities across branch cuts of O±

∆,J (if they exist). Determining
the analyticity structure of O±

∆,J in the (∆, J) plane is an important problem for the
future.

As mentioned above, to analytically continue O±
∆,J in spin, we must choose an

analytic continuation in J of the prefactors

µ(∆, J)SE (φ1φ2[Õ†])(
〈φ1φ2Õ†〉, 〈φ̃

†

1φ̃
†

2O〉
)

E

= (−1)J Γ(J + d
2 )Γ(d + J − ∆)Γ(∆ − 1)

2πdΓ(J + 1)Γ(∆ − d
2 )Γ(∆ + J − 1)

Γ(∆+J+∆1−∆2
2 )Γ(∆+J−∆1+∆2

2 )

Γ( d−∆+J+∆1−∆2
2 )Γ( d−∆+J−∆1+∆2

2 )
.

(6.135)

Additionally, the term in (6.128) with (1 ↔ 2) has a prefactor differing by (−1)J .
Because of the (−1)J’s, we must make two separate analytic continuations from
even and odd J, leading to O±

∆,J . In general, we expect the spectrum of light-ray
operators to be different in the odd and even cases. For example, in MFT with a real
scalar φ, the analytic continuation of even-J two-φ operators is nontrivial, but there
are no odd-J two-φ operators.

The analytic continuation of the remaining Γ-function factors in (6.135) is deter-
mined by requiring that they be meromorphic and polynomially bounded at infinity
in the right half-plane. This is important for the Sommerfeld-Watson resummation
discussed in section 6.5.2. The expression (6.135) satisfies these conditions, so
provides a good analytic continuation. When φ1, φ2 are not scalars, then we can
relate the prefactor to a rational function of J times (6.135) using weight-shifting
operators [3, 195], and this provides a good analytic continuation in that case as
well.

Although we have assumed scalar φ1, φ2 in this section for simplicity, the gener-
alization to arbitrary representations O1,O2 is straightforward. We discuss some
aspects of the general case in section 6.4.2.

6.3.4 Light-ray operators in Mean Field Theory
In this section we explicitly show that O±i,J are light-ray operators in Mean Field
Theory (MFT). For simplicity, we assume that the scalar operators in (6.128) are
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distinct fundamental MFT scalars. More generally, we can imagine that they belong
to two decoupled CFTs.

The kernel in (6.128) is obtained from (6.93) by sending x3 to past null infinity
according to the rule

O(−z∞, z) = lim
L→+∞

L∆+JO(−Lz, z), (6.136)

i.e.

〈0|φ̃†1L[O]φ̃†2 |0〉 =

= L(φ̃†1φ̃
†

2 |O)
2J−1

(
z · x2 x2

1 − z · x1 x2
2

)1−∆

(x2
12)

∆̃1+∆̃2+J−∆
2 (−z · x1)

∆̃1−∆̃2+2−∆−J
2 (z · x2)

∆̃2−∆̃1+2−∆−J
2

. (6.137)

The expression (6.93) was written for 1 > 3, 3 ≈ 2, 1 ≈ 2. With these conditions,
the ratio above is positive. In the integral we need to relax 1 ≈ 2, which is done by
adding iε to x0

2 and −iε to x0
1, according to the Wightman ordering above. We now

introduce lightcone coordinates by writing

xi =
1
2 zvi +

1
2 z′ui + xi (6.138)

with z′2 = 0, z′ · z = 2 and xi · z = xi · z′ = 0. Since this requires z′ to be past-directed,
the iε-prescription is equivalent to adding a positive imaginary part to u1 and v2 and
negative to u2 and v1. We then find for the integral in the first term of (6.128)

1
4

∫
du1du2dv1dv2dd−2x1dd−2x2

2J−1
(
u1u2v12 + u2x2

1 − u1x2
2

)1−∆
φ1(x1)φ2(x2)

(u12v12 + x2
12)

∆̃1+∆̃2+J−∆
2 (−u1)

∆̃1−∆̃2+2−∆−J
2 u

∆̃2−∆̃1+2−∆−J
2

2

.

(6.139)

We have temporarily suppressed the light transform coefficient L(φ̃†1φ̃
†

2[O]).

The integration region has u1 < 0 and u2 > 0. Let us assume for now that v2 > v1

and make the change of variables

u1 = −rα,

u2 = r (1 − α),

xi = (rv21)
1
2 wi . (6.140)
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The integral becomes

1
4

∫ 1

0
dα

∫
dv1dv2dd−2w1dd−2w2

2J−1v
−1−∆−∆1−∆2+J

2
21

(
α(1 − α) + (1 − α)w2

1 + αw2
2

)1−∆

(1 + w2
12)

∆̃1+∆̃2+J−∆
2 α

∆̃1−∆̃2+2−∆−J
2 (1 − α)

∆̃2−∆̃1+2−∆−J
2

×

×

∫ ∞

0

dr
r

r−
∆−∆1−∆2−J

2 φ1(−rα, v1, (rv21)
1
2 w1)φ2(r (1 − α), v2, (rv21)

1
2 w2). (6.141)

In the second line, we have isolated the integral∫ ∞

0

dr
r

r−
∆−∆1−∆2−J

2 φ1(−rα, v1, (rv21)
1
2 w1)φ2(r (1 − α), v2, (rv21)

1
2 w2). (6.142)

The region r ∼ 0 corresponds to φ1 and φ2 being localized near the light ray defined
by z.

Now imagine expanding the product of field operators in a power series in r . This
is possible since we have assumed that φ1 and φ2 do not interact and thus there is
no lightcone singularity between them.38 We find terms of the form

rn+m+1
2 (a+b) (−α)n(1 − α)mv

1
2 (a+b)
21 wa

1wb
2. (6.143)

Only terms with even values of a + b contribute, since the wi integral is invariant
under wi → −wi. Therefore, N = n+m+ 1

2 (a+ b) ≥ 0 is an integer and the integral
over r takes the form∫ ∞

0

dr
r

r−
∆−∆1−∆2−J−2N

2 ∼ −
2

∆ − ∆1 − ∆2 − J − 2N
. (6.144)

The pole comes from the region of small r . We can see this by imposing an upper
cutoff on r: the residue will be independent of it. (In particular, we can make the
cutoff depend on α and wi thereby cutting out arbitrary regions around the null ray
and the residue won’t change.) The pole is at

∆ = ∆1 + ∆2 + J + 2N, (6.145)

which for integer J are precisely the locations of double-trace operators [φ1φ2]N,J .
For every N , the residue of (6.142) only depends on a finite number of derivatives
of φi on the null ray, and thus is localized on it, as promised in the introduction.

38If we consider φ1 = φ2 = φ, then in MFT we have φ(x1)φ(x2) =: φ(x1)φ(x2) :
+〈Ω|φ(x1)φ(x2) |Ω〉. The singular term is positive-energy in x2 and negative-energy in x1. But
in (6.128) we are integrating against 〈0|φ̃1L[O]φ̃2 |0〉, which has the same energy conditions on x1
and x2. Since the integrals pick out the term with vanishing total energy in both x1 and x2, the
singular piece does not contribute to (6.128).
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For simplicity, let us focus on the leading twist trajectory with N = 0. The residue
of (6.142) is then

−2φ1(0, v1, 0)φ2(0, v2, 0) (6.146)

and the residue of the integral (6.141) becomes

−1
2

∫ 1

0
dα

∫
dd−2w1dd−2w2

2J−1
(
α(1 − α) + (1 − α)w2

1 + αw2
2

)1−∆1−∆2−J

(1 + w2
12)d−∆1−∆2α−∆1+1−J (1 − α)−∆2+1−J

×

×

∫
dv1dv2(v21 + iε )−1−Jφ1(0, v1, 0)φ2(0, v2, 0). (6.147)

The first line is an overall coefficient which we compute in appendix E.4 and
here simply denote by R (∆1,∆2, J). In the second line, we have restored the iε

prescription for vi, which allows us to relax the assumption v2 > v1. (The factor
(v21 + iε )−1−J is understood to be positive for positive v21 and real J.)

Combining everything together, we conclude that the leading twist operators O0,J

are given by

O0,J (−z∞, z)

= i
(−1)J

4π

∫
dsdt

(
(t + iε )−1−J + (−1)J (−t + iε )−1−J

)
φ1(0, s − t, 0)φ2(0, s + t, 0),

(6.148)

where we have included the contribution of the second term in (6.128), performed
the change of variables v1 = s − t, v2 = s + t, and used the identity

L(φ̃†1φ̃
†

2[O])R (∆1,∆2, J)
µ(∆, J)SE (φ1φ2[Õ†])(
〈φ1φ2Õ†〉, 〈φ̃

†

1φ̃
†

2O〉
)

E

= i
(−1)J2J−2

π
. (6.149)

The analytic continuations from even and odd J are

O+0,J (−z∞, z) = +
i

4π

∫
dsdt

(
(t + iε )−1−J + (−t + iε )−1−J

)
φ1(0, s − t, 0)φ2(0, s + t, 0),

O−0,J (−z∞, z) = −
i

4π

∫
dsdt

(
(t + iε )−1−J − (−t + iε )−1−J

)
φ1(0, s − t, 0)φ2(0, s + t, 0).

(6.150)

These are exactly the null-ray operators advertised in the introduction. We can
check that they are indeed primary by lifting their definitions to the embedding
space, where they are variants of

∼

∫ +∞

−∞

dαdβ φ1(Z − αX )φ2(Z − βX )(α − β)−J−1. (6.151)
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We discuss conformal invariance of this embedding-space integral in the next sub-
section.

For integer J both kernels for the t-integral are equal to

(t + iε )−1−J + (−1)J (−t + iε )−1−J =

=
(−1)J

Γ(J + 1)
∂ J

∂t J

(
(t + iε )−1 − (t − iε )−1

)
= −2πi

(−1)J

Γ(J + 1)
∂ J

∂t J δ(t). (6.152)

Thus, for integer J we find

O0,J (−z∞, z) =
(−1)J

Γ(J + 1)

∫
ds
2
φ1(0, s, 0)(

↔

∂s)Jφ2(0, s, 0) = L[[φ1φ2]0,J](−z∞, z).

(6.153)

Since total derivatives vanish in the integral over s, it follows that for integer spin
O0,J is given by the light transform of a primary double-twist operator of the form

[φ1φ2]0,J (x, z) ≡
(−1)J

Γ(J + 1)
φ1(x)(z · ∂)Jφ2(x) + (z · ∂)(. . .). (6.154)

Let us check that these operators are correctly normalized. It was found in [245]
that the full expression for the primary [φ1φ2]0,J is

[φ1φ2]0,J (x, z)

= cJ

J∑
k=0

(−1)k

k!(J − k)!Γ(∆1 + k)Γ(∆2 + J − k)
(z · ∂)kφ1(x)(z · ∂)J−kφ2(x)

(6.155)

and in our case cJ is given by

cJ =
(−1)J

Γ(J + 1)
*.
,

J∑
k=0

1
k!(J − k)!Γ(∆1 + k)Γ(∆2 + J − k)

+/
-

−1

. (6.156)

If we write now

〈φ1φ2[φ1φ2]0,J〉Ω = f12J〈φ1φ2OJ〉, (6.157)

and

〈[φ1φ2]0,J[φ1φ2]0,J〉Ω = CJ〈OJOJ〉, (6.158)
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where in the right hand side we use the standard structures defined in appendix E.1.3,
then our normalization conventions are such that CJ/ f12J = 1.39 It is a straightfor-
ward exercise to show using (6.155) that

CJ

f12J
= (−1)J

Γ(J + 1)cJ

J∑
k=0

1
k!(J − k)!Γ(∆1 + k)Γ(∆2 + J − k)

= 1. (6.159)

In doing the calculation it is convenient to use the same null polarization vector for
both operators in (6.158).

6.3.4.1 Subleading families and multi-twist operators

Although we will not compute the residue of O∆,J for N > 0, let us comment on the
form of the light-ray operators that we expect to obtain, as well as on some further
interesting generalizations. For simplicity, in this section we ignore iε-prescriptions,
the difference between even and odd J, and normalization factors. As mentioned
above, the leading double-twist operators are essentially the primaries

O0,J (X, Z ) ≡
∫

dα dβ φ1(Z − αX )φ2(Z − βX )(α − β)−J−1. (6.160)

The fact thatO is a primary follows from conformal invariance of the integral on the
right-hand side. According to the usual rules of the embedding space formalism [53],
conformal invariance is equivalent to

1. homogeneity in X and Z with degrees −∆O and JO, and

2. invariance under Z → Z + λX .

The former requirement is fulfilled due to homogeneity of the measure dα dβ, the
“wavefunction” (α − β)−J−1, and the original primaries φi, which leads to

∆O = 1 − J,

JO = 1 − ∆1 − ∆2 − J . (6.161)

The latter requirement is due to translational invariance of the measure dα dβ and
the wavefunction (α − β)−J−1.

39To bemore precise, if O is an operator in φ1×φ2 OPE, we are computing [φ1φ2]J = f12OO/CO ,
which is independent of the normalization of O. Using [φ1φ2]J instead of O then yields the claimed
normalization condition.
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This leads to two simple observations. The first is that since the only requirement on
φi is that of being a primary, we can dress them with weight-shifting operators [3].
For example, let Dm be the Thomas/Todorov differential operator which increases
the scaling dimension of a primary by 1 and carries a vector embedding space index
m. Then we can define

ON,J (X, Z )

=

∫
dαdβ(Dm1 · · · DmN φ1)(Z − αX )(Dm1 · · · DmN φ2)(Z − βX )(α − β)−J−1.

(6.162)

By construction, we now have

∆O = 1 − J,

JO = 1 − ∆1 − ∆2 − J − 2N . (6.163)

With appropriate iε-prescriptions forα- and β-contours, for integer J these operators
reduce to light transforms of the local family [φ1φ2]N,J . It is clear how (at least in
principle) this construction generalizes to non-scalar φi.

The second observation is that this construction straightforwardly generalizes to
multi-twist operators. In particular, define

Oψ (X, Z ) =
∫

dα1 · · · dαnφ1(Z − α1X ) · · · φn(Z − αnX )ψ(α1, . . . , αn),

(6.164)

where ψ is a wavefunction which is translationally-invariant and homogeneous,

ψ(α1 + β, . . . , αn + β) = ψ(α1, . . . , αn),

ψ(λα1, . . . , λαn) = λ−J−1ψ(α1, . . . , αn). (6.165)

We can easily check that Oψ is a primary with scaling dimension and spin given by

∆O = 1 − J,

JO = 1 − J +
n∑

i=1
∆n. (6.166)

Subleading families can be obtained as above, by dressing with weight-shifting
operators. The generalization to non-scalar φi is also clear.
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(a) After taking the light transform
but before reducing to a double com-
mutator.
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(b) After reducing to a double com-
mutator.

Figure 6.9: The configuration of points within the Poincare patch of x∞ at various
stages of the derivation. The blue dashed line shows the support of light transform
of O(x, z). The yellow (red) shaded region shows the allowed region for 1 (2). In the
right-hand figure, we indicate that x is constrained to satisfy 2− < x < 1. Note that
after reducing to a double-commutator, the yellow and red regions are independent
of x∞ (as long as x is lightlike from x∞).

6.4 Lorentzian inversion formulae
In this section we show that matrix elements of O∆,J are computed by a Lorentzian
inversion formula of the type discussed by Caron-Huot [66]. Our derivation will
borrow some key steps from [67]. However the light transform will simplify the
derivation to the point where its generalization to external spinning operators is
obvious. In particular, after using the light transform in the appropriate way, it will
be immediately clear why the conformal block GJ+d−1,∆−d+1 and its generalizations
appear. For simplicity, we will present most of the derivation with scalar operators
and generalize to spinning operators at the end.

6.4.1 Inversion for the scalar-scalar OPE
6.4.1.1 The double commutator

Our starting point is the light-transformed expression (6.127). Let us concentrate
on the first term in (6.127). Because of the restrictions 3− < x < 4 and 2− < x < 1,
the lightcone of x splits Minkowski space into two regions, with 2, 3 in the lower
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region and 1, 4 in the upper, see figure 6.9a. Thus, we can write the integrand as

〈Ω|T {V4φ1}T {φ2V3}|Ω〉〈0|φ̃†1L[O](x, z)φ̃†2 |0〉. (6.167)

Recall that in our notation, expectation values in the state |Ω〉 denote physical
correlation functions, whereas expectation values in the state |0〉 denote two- or
three-point structures that are fixed by conformal invariance. (For instance, three-
point structures 〈0| · · · |0〉 don’t include OPE coefficients.)

We can nowuse the reasoning in lemma 1 to obtain a double commutator.40 Consider
a modified integrand where φ1 acts on the future vacuum,

〈Ω|φ1V4T {φ2V3}|Ω〉〈0|φ̃†1L[O](x, z)φ̃†2 |0〉. (6.168)

Imagine integrating φ1 over a lightlike line in the direction of z, with coordinate v1

along the line. Because φ1 acts on the future vacuum, the correlator is analytic in
the lower half v1-plane. Furthermore, at large v1, the product of correlators goes
like

1
v∆1

1

×
1

v
∆̃1+∆̃2+∆+J−2

2
1

. (6.169)

Here, the first factor comes from the estimate (6.80) of 〈Ω|φ1 · · · |Ω〉 using the OPE
and the second factor comes from direct computation using the three-point function
(6.93). Thus, we can deform the v1 contour in the lower half-plane to give zero
whenever

Re(2(d − 2) + ∆1 − ∆2 + ∆ + J) > 0. (6.170)

This condition is certainly true for ∆ ∈ d
2 + i∞ and J ≥ 0, assuming (for now) that

Re(∆2 − ∆1) = 0 (see section 6.3.1).

Consequently, the x1 integral vanishes if we replace (6.167) with (6.168), so we can
freely replace

T {V4φ1} → T {V4φ1} − φ1V4 = [V4, φ1]θ(1 < 4). (6.171)

By similar reasoning, we can replace

T {φ2V3} → [φ2,V3]θ(3 < 2). (6.172)

40This argument is the same as the contour manipulation in [67].
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Overall, we find a double commutator in the integrand, together with some extra
restrictions on the region of integration∫

x<1<4
3<2<x+

dd x1dd x2〈Ω|[V4, φ1][φ2,V3]|Ω〉〈0|φ̃†1L[O](x, z)φ̃†2 |0〉 + (1↔ 2).

(6.173)

Note that the spurious dependence on the point at infinity x∞ has disappeared
because the commutators are only nonzero if x < 1 < 4 and 3 < 2 < x+, and these
restrictions imply that 1, 2 lie in the same Poincare patch as 3, 4, x.

In terms of O∆,J we have

〈V4O∆,J (x, z)V3〉Ω =

=
µ(∆, J)SE (φ1φ2[Õ†])(
〈φ1φ2Õ†〉, 〈φ̃

†

1φ̃
†

2O〉
)

E

∫
x<1<4

3<2<x+
dd x1dd x2〈Ω|[V4, φ1][φ2,V3]|Ω〉〈0|φ̃†1L[O](x, z)φ̃†2 |0〉

+ (1↔ 2). (6.174)

This gives a Lorentzian inversion formula analogous to the Euclidean inversion
formula (6.121). It is different from Caron-Huot’s formula [66] in that it is not
formulated in terms of cross-ratio integrals and it is valid for non-primary or non-
scalarVi. The form of the inversion formula above will be useful in section 6.6 where
we discuss the average null energy condition and its generalizations. Note also that
the generalization to operators O1 and O2 with nonzero spin is straightforward. In
the rest of this subsection we show how to reduce (6.174) to a cross-ratio integral in
the form of [66].

6.4.1.2 Inversion for a four-point function of primaries

To obtain an integral over cross-ratios, let us specialize to the case where V3 = φ3

and V4 = φ4 are primary scalars. The partial wave P∆,J in this case is fixed by
conformal invariance up to a coefficient:

µ(∆, J)SE (φ1φ2[Õ†])P∆,J (x3, x4, x, z) = C(∆, J)〈φ3φ4O(x, z)〉. (6.175)

OPE data is encoded in the resiudes of C(∆, J) by (6.124),

f12O∗ f34O∗ = − Res
∆=∆∗

C(∆, J∗). (6.176)
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The matrix element 〈φ4O∆,J (x, z)φ3〉Ω is the light-transform of (6.175), so (6.174)
becomes

C(∆, J)〈0|φ4L[O](x, z)φ3 |0〉

= −
µ(∆, J)SE (φ1φ2[Õ†])(
〈φ1φ2Õ†〉, 〈φ̃

†

1φ̃
†

2O〉
) ∫

x<1<4
3<2<x+

dd x1dd x2〈Ω|[φ4, φ1][φ2, φ3]|Ω〉〈0|φ̃†1L[O](x, z)φ̃†2 |0〉

+ (1↔ 2). (6.177)

For reasons that will become clear in amoment, let us replace x4 → x+4 (equivalently
act with T4 on both sides). This converts the condition 3− < x < 4 into 3− < x < 4+.
At the same time, let us make the change of variables x2 → x+2 in the integral. We
obtain

C(∆, J)〈0|φ4+L[O](x, z)φ3 |0〉

= −
µ(∆, J)SE (φ1φ2[Õ])(
〈φ1φ2Õ†〉, 〈φ̃

†

1φ̃
†

2O〉
)

E

×

×

∫
3−<2<x<1<4+

dd x1dd x2 〈Ω|[φ4+, φ1][φ2+, φ3]|Ω〉〈0|φ̃†1L[O](x, z)φ̃†2+ |0〉

+ (1↔ 2). (6.178)

Explicitly, the structure on the left-hand side is (under the additional constraint
3 > 4)

〈0|φ4+L[O](x0, z)φ3 |0〉

= L(φ3φ4[O])
(−1)J

(
2z · x40 x2

30 − 2z · x30 x2
40

)1−∆

(−x2
43)

∆4+∆3+J−∆
2 (x2

40)
∆4−∆3+2−∆−J

2 (x2
30)

∆3−∆4+2−∆−J
2

, (6.179)

where L(φ3φ4[O]) is given by (6.94). This expression comes from making the
replacements 1, 2, 3 → 3, 4+, 0 in the second line of (6.97) and using x2

i4+ = −x2
i4

and z · x4+0 = −z · x40.41 Similarly, the structure in the right hand side is

〈0|φ̃†1 L[O](x0, z) φ̃†2+ |0〉

= L(φ̃†1φ̃
†

2[O])

(
2z · x10 x2

20 − 2z · x20 x2
10

)1−∆

(−x2
12)

∆̃1+∆̃2+J−∆
2 (−x2

10)
∆̃1−∆̃2+2−∆−J

2 (−x2
20)

∆̃2−∆̃1+2−∆−J
2

> 0, (6.180)

41These relations follow from the embedding space representation of these quantities as in-
ner products with X4. An alternative way to obtain this result is to use 〈0|φ4+L[O]φ3 |0〉 =
〈0|T φ4T

−1L[O]φ3 |0〉 = e−iπ∆4〈0|φ4L[O]φ3 |0〉 and then (6.93) with replacements 1 → 4, 2 →
3, 3 → 0, analytically continued. The factor (−1)J comes from the fact that the standard struc-
ture (E.25) depends on formal ordering of operators and we need 〈φ3φ4O〉 by convention.
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which follows from (6.93) by using the same rules.

We would now like to express the coefficient C(∆, J) as an integral of the double-
commutator 〈Ω|[φ4+, φ1][φ2+, φ3]|Ω〉 against a conformal block. Both sides of the
above equation transform like conformal three-point functions. We can pick out the
coefficient C(∆, J) by taking a conformally-invariant pairing of both sides with a
three-point structure that is “dual” to the one on the left-hand side.

In other words, in order to isolate C(∆, J), we should find a structure T such that(
T, 〈0|φ4+L[O](x, z)φ3 |0〉

)
L
= 1, (6.181)

with the pairing (·, ·)L defined in equation (E.79) as(
〈O3O4O〉, 〈Õ

†

3 Õ
†

4O
S†〉

)
L

≡

∫
4<3

x≈3,4

dd x3dd x4dd xDd−2z

vol(S̃O(d, 2))
〈O3(x3)O4(x2)O(x, z)〉〈Õ†3 (x3)Õ†4 (x4)OS†(x, z)〉.

(6.182)

(Note the causal restrictions in the integral.) It will be convenient to write (6.181)
using the shorthand notation

T = 〈0|φ4+L[O](x, z)φ3 |0〉−1. (6.183)

For the pairing (6.181) to be well-defined, 〈0|φ4+L[O]φ3 |0〉−1 must transform like a
three-point function with representations 〈φ̃†4O

F†φ̃†3〉, where O
F has dimension and

spin

∆OF = J + d − 1,

JOF = ∆ − d + 1. (6.184)

The quantum numbers of OF are precisely those appearing in Caron-Huot’s block.
We will see shortly that this is not a coincidence. Explicitly, the dual structure
〈0|φ4+L[O]φ3 |0〉−1 is given by (again for 3 > 4)

〈0|φ4+L[O](x0, z)φ3 |0〉−1

=
22d−2vol(SO(d − 2))

L(φ3φ4[O])
(−1)J

(
2z · x40 x2

30 − 2z · x30 x2
40

)∆−d+1

(−x2
43)

∆̃4+∆̃3−J+∆−2d+2
2 (x2

40)
∆̃4−J−∆̃3−∆+2

2 (x2
30)

∆̃3−J−∆̃4−∆+2
2

.

(6.185)
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This follows easily from the alternative characterization of the paring (6.182) given
in appendix E.5.

Finally, pairing both sides of (6.178) with 〈0|φ4+L[O]φ3 |0〉−1, we obtain

C(∆, J) =
∫

1>2
3>4

dd x1 · · · dd x4

vol(S̃O(d, 2))
〈Ω|[φ4+, φ1][φ2+, φ3]|Ω〉H∆,J (xi) + (1↔ 2),

(6.186)

where

H∆,J (xi)

= −
µ(∆, J)SE (φ1φ2[Õ])(
〈φ1φ2Õ†〉, 〈φ̃

†

1φ̃
†

2O〉
)

E

∫
2<x<1

dd xDd−2z〈0|φ̃†1L[O](x, z)φ̃†2+ |0〉〈0|φ4+L[O](x, z)φ3 |0〉−1.

(6.187)

In the integral for C(∆, J), all the pairs of points xi are spacelike separated except
for 1 > 2 and 3 > 4. The causal relations in (6.186) and (6.187) come from the
causal relations in (6.178) and (6.182) which are, together,

4− < 3− < 2 < x < 1 < 4+ < 3+. (6.188)

Recalling that a ≈ b is equivalent to a− < b < a+ (figure 6.3), we easily find that
the above relations are the same as

1 > x > 2, 3 > 4,

1 ≈ 3, 1 ≈ 4, 2 ≈ 3, 2 ≈ 4. (6.189)

Now the benefit of performing the light-transformbecomes clear. The integral (6.187)
over the diamond 2 < x < 1 precisely takes the form of a well-known Lorentzian in-
tegral for a conformal block. Note that the integral (6.187) is conformally-invariant
and is an eigenfunction of the conformal Casimir operators acting on points 1, 2
(equivalently 3, 4) by construction. Importantly, the integral over x stays away from
the region near 3, 4, see figure 6.10. Thus, we can determine its behavior in the OPE
limit 3→ 4 by simply taking the limit inside the integrand. (This limit corresponds
to the Regge limit of the physical operators at 1, 2+, 3, 4+.) Any eigenfunction of
the conformal Casimirs is fixed by its OPE limit, so this determines the full func-
tion. Thus, it’s clear that H∆,J is proportional to a conformal block, with external
operators φ̃†1, . . . , φ̃

†

4, and an exchanged operator with the quantum numbers of OF†.
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4+

4

3

x

1

2

2+

Figure 6.10: After (temporarily) relabeling the points 2− → 2 and 4− → 4, we have
a configuration where 1 > x > 2 and 3 > 4, with all other pairs of points spacelike
separated. This is the same configuration as in figure E.2 of appendix E.8.2, where
we compute the Lorentzian integral for a conformal block. The integration region
for x is shaded yellow. Importantly, it stays away from 3 and 4, so the 3 → 4 limit
can be computed inside the integrand.

We perform this analysis in detail in appendix E.8.2. Using the result (E.179), we
find

H∆,J (xi) =
q∆,J

(−x2
12)

∆̃1+∆̃2
2 (−x2

34)
∆̃3+∆̃4

2

*
,

x2
14

x2
24

+
-

∆̃2−∆̃1
2

*
,

x2
14

x2
13

+
-

∆̃3−∆̃4
2

G∆̃i

J+d−1,∆−d+1( χ, χ),

(6.190)

where

q∆,J = −(−1)J 22d−2vol(SO(d − 2))(
〈φ1φ2Õ†〉, 〈φ̃

†

1φ̃
†

2O〉
)

E

µ(∆, J)SE (φ1φ2[Õ])L(φ̃1φ̃2[O])
L(φ3φ4[O])

b∆̃1,∆̃2
J+d−1,∆−d+1

= −22dvol(SO(d − 2))
Γ(∆+J+∆1−∆2

2 )Γ(∆+J−∆1+∆2
2 )Γ(∆+J+∆3−∆4

2 )Γ(∆+J−∆3+∆4
2 )

16π2Γ(∆ + J)Γ(∆ + J − 1)
.

(6.191)

(The quantity b∆1,∆2
∆,J is defined in (E.178) and the conformal block G is defined in ap-

pendix E.8.1.) Factors other than b∆1,∆2
∆,J come from (6.187) and the structures (6.180)

and (6.185). In the proof of the Lorentzian inversion formula in [67], performed
without using the light transform, one obtains an expression for H∆,J as an integral
over a region totally spacelike from 1, 2+, 3, 4+, which is harder to understand.
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6.4.1.3 Writing in terms of cross-ratios

Finally, let us replace 2+ → 2 and 4+ → 4 so that the physical operators are again
at the points 1, 2, 3, 4. The inversion formula reads

C(∆, J) =
∫

4>1
2>3

dd x1 · · · dd x4

vol(S̃O(d, 2))
〈Ω|[φ4, φ1][φ2, φ3]|Ω〉(T −1

2 T −1
4 H∆,J (xi)) + (1↔ 2).

(6.192)

Here, T −1
i denotes a shift xi → x−i or, more generally, application of the T −1 to the

operator at i-th position. In the integrand, we can isolate quantities that depend only
on cross-ratios, times a universal dimensionful factor |x12 |

−2d |x34 |
−2d ,

〈Ω|[φ4, φ1][φ2, φ3]|Ω〉(T −1
2 T −1

4 H∆,J (xi))

=
1

|x12 |2d |x34 |2d

〈Ω|[φ4, φ1][φ2, φ3]|Ω〉
T∆i (xi)

G∆̃i

J+d−1,∆−d+1( χ, χ), (6.193)

where

T∆i (xi) ≡
1

|x12 |∆1+∆2 |x34 |∆3+∆4

(
|x14 |

|x24 |

)∆2−∆1 (
|x14 |

|x13 |

)∆3−∆4

. (6.194)

Since we now have a fixed causal ordering of the points, we do not have to worry
about an iε prescription in these expressions and we can simply take absolute values
of spacetime intervals.

We can gauge-fix (6.192) to obtain an integral over cross-ratios alone. As explained
in [67],42 the measure becomes∫

dd x1 · · · dd x4

vol(S̃O(d, 2))

1
|x12 |2d |x34 |2d →

1
22dvol(SO(d − 2))

∫ 1

0

∫ 1

0

dχd χ

χ2 χ2

�����
χ − χ

χ χ

�����

d−2
.

(6.195)

Putting everything together, we find

C(∆, J)

=
q∆,J

22dvol(SO(d − 2))



∫ 1

0

∫ 1

0

dχd χ

χ2 χ2

�����
χ − χ

χ χ

�����

d−2
〈Ω|[φ4, φ1][φ2, φ3]|Ω〉

T∆i (xi)
G∆̃i

J+d−1,∆−d+1( χ, χ)

+(−1)J
∫ 0

−∞

∫ 0

−∞

dχd χ

χ2 χ2

�����
χ − χ

χ χ

�����

d−2
〈Ω|[φ4, φ2][φ1, φ3]|Ω〉

T∆i (xi)
Ĝ∆̃i

J+d−1,∆−d+1( χ, χ)

.

(6.196)
42We use a definition of the measure on S̃O(d, 2) which differs from the one [67] by a factor of

2d .
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Here, Ĝ∆,J ( χ, χ) denotes the solution to the Casimir equation that behaves as
(−χ)

∆−J
2 (−χ)

∆+J
2 for negative cross-ratios satisfying | χ | � | χ | � 1. This precisely

coincides with Caron-Huot’s Lorentzian inversion formula.

6.4.1.4 A natural formula for the Lorentzian block

To make it easy to generalize the above result to arbitrary representations, let us
write it in a more transparent way. First we need to introduce more flexible notation
for a conformal block. Let

〈O1O2O〉〈O3O4O〉

〈OO〉
(6.197)

denote the conformal block formed by gluing the three-point structures in the nu-
merator using the two-point structure in the denominator. We describe the gluing
procedure in more detail in appendix E.8.1. In particular, the gluing procedure is
well-defined (for a restricted causal configuration) even if O is a continuous-spin
operator. Using this notation, the coefficient function C(∆, J) is defined by

〈φ1φ2φ3φ4〉Ω =

∞∑
J=0

∫ d
2+i∞

d
2−i∞

d∆
2πi

C(∆, J)
〈φ1φ2O〉〈φ3φ4O〉

〈OO〉
, (6.198)

where O has dimension ∆ and spin J.

Using the same notation, we claim that the function H∆,J (xi) in (6.192) is given by

H∆,J (xi) = −
1

2πi
(T2〈φ1φ2L[O]〉)−1(T4〈φ3φ4L[O]〉)−1

〈L[O]L[O]〉−1 , (1 > 2, 3 > 4).

(6.199)

In the numerator, (T2〈φ1φ2L[O]〉)−1 is the dual structure to T2〈φ1φ2L[O]〉 via the
three-point pairing (E.79). It is given by (6.185), with the replacement 3, 4 → 1, 2.
Note that while we have written the structures in the numerators in terms of light
transforms of time ordered products, they can alternatively be written in terms of
Wightman functions for the kinematics we are considering, since

T2〈φ1φ2L[O]〉 = T2〈0|φ2L[O]φ1 |0〉 (when 1 > 2, 1, 2 ≈ 0),

T4〈φ3φ4L[O]〉 = T4〈0|φ4L[O]φ3 |0〉 (when 3 > 4, 3, 4 ≈ 0). (6.200)

The structure 〈L[O]L[O]〉−1 in the denominator is dual to the double light-transform
of the time-ordered two-point function 〈OO〉 via the conformally-invariant two-point
pairing, (

〈L[O]L[O]〉−1, 〈L[O]L[O]〉
)

L
= 1. (6.201)
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Here the pairing (·, ·)L for two-point functions is defined in (E.72). In order for the
pairing in (6.201) to be conformally-invariant, 〈L[O]L[O]〉−1 must transform like a
two-point function of OF.

We have already computed the three-point structures in the numerator, so to verify
(6.199), we need to compute 〈L[O]L[O]〉. Here, it is important to treat two-point
structures as distributions. By lemma 2, 〈O(x1, z1)L[O](x2, z2)〉 vanishes if x2 > x1

or x2 < x1 — i.e., it vanishes almost everywhere. However, it is nonzero if x1 is
precisely lightlike from x2. Specifically, 〈O(x1, z1)L[O](x2, z2)〉 is a distribution
localized where x2 is on the past lightcone of x1.43 In fact, it is proportional to the
integral kernel for the “floodlight transform” F.

Let us now actually compute 〈L[O]L[O]〉. It is useful to think of this structure as
an integral kernel K , defined by

(K f )(x, z) ≡
∫

dd x′Dd−2z′ 〈L[O](x, z)L[O](x′, z′)〉 f (x′, z′). (6.202)

In (6.202), we can integrate one of the L-transforms by parts, giving

(K f )(x, z) =
∫

dd x′Dd−2z′ 〈L[O](x, z)O(x′, z′)〉(T −1L[ f ])(x′, z′). (6.203)

To simplify (6.203) further, we can express the time-ordered two-point function
〈OO〉 in terms of integral transforms and use the algebra derived in section 6.2.7.
When x, x′ are spacelike, 〈O(x, z)O(x′, z′)〉 is precisely the kernel for S. However, S
is supported only in the region x ≈ x′, whereas the time-ordered two-point function
has support everywhere. More precisely, keeping track of the phases as we move
x, x′ into different Poincare patches, we have

〈O(x, z)O(x′, z′)〉 =
(−2z · z′(x − x′)2 + 4z · (x − x′)z′ · (x − x′))J

((x − x′)2 + iε )∆+J

= S *.
,
1 +

∞∑
n=1

e−inπ(∆+J)T n +

∞∑
n=1

e−inπ(∆+J)T −n+/
-

= S
−2iT sin π(∆ + J)

(T − eiπ(∆+J))(T − e−iπ(∆+J))
. (6.204)

43Note that this is different from treating two-point functions as physical Wightman functions, so
there is no contradiction with previous discussion.
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Plugging this into (6.203), we find

K = LS
−2iT sin π(∆ + J)

(T − eiπ(∆+J))(T − e−iπ(∆+J))
T −1L

= S
−2i sin π(∆ + J)

(T − eiπ(∆+J))(T − e−iπ(∆+J))
L2

=
−2πi

∆ + J − 1
S, (6.205)

where in the second line we used thatL, S,T commutewith each other, together with
the formula L2 = fL (J + d −1,∆− d +1,T ), where fL is given in equation (6.101).
The arguments of fL come from the fact that K acts on a representation with
dimension J + d − 1 and spin ∆ − d + 1.

The kernel of S in the last line is the two-point function of an operator with spin
1 − ∆ and dimension 1 − J. Thus, using our two-point pairing (E.72), we find

〈L[O]L[O]〉−1 = −
∆ + J − 1

2πi
22d−2vol(SO(d − 2))〈OFOF〉, (6.206)

where 〈OFOF〉 is the standard two-point structure (E.24) for an operator with di-
mension J + d−1 and spin ∆− d+1. Combining this with the three-point structures
in the numerator, and comparing with the result (6.190) for H∆,J (xi), we verify
(6.199).

Note that (6.199) is independent of a choice of normalization of the integral transform
L. In fact, it depends only on the three-point structures 〈φ1φ2O〉, 〈φ3φ4O〉, the two-
point structure 〈OO〉, and the existence of a conformally-invariant map between
representations P∆,J,λ and P1−J,1−∆,λ (which L implements). The formula would
still be true if we chose different normalization conventions for two and three-point
functions, because this would change the definition of C(∆, J) in a compatible way,
via (6.198). Because it is essentially independent of conventions, we call (6.199) a
“natural” formula.

6.4.2 Generalization to arbitrary representations
6.4.2.1 The light transform of a partial wave

The derivation in the previous section is straightforward to generalize to the case
of arbitrary conformal representations φi → Oi. In this case, three-point functions
admit multiple conformally-invariant structures 〈O1O2O〉

(a), so partial waves PO,(a)
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carry an additional structure label.44 They are defined by

〈V3V4O1O2〉Ω =
∑
ρ,a

∫ d
2+i∞

d
2

d∆
2πi

µ(∆, J)
∫

dd xPO,(a) (x3, x4, x)〈Õ†(x)O1O2〉
(a) .

(6.207)

(Here, we implicitly contract the SO(d) indices of PO,(a) and the operator Õ†.)

The logic leading to the double-commutator integral (6.173) is essentially un-
changed. We find

L[PO,(a)](x3, x4, x, z)

= −(〈O1O2Õ
†〉(a), 〈Õ†1 Õ

†

2O〉
(b))−1

E ×

×

∫
x<1<4

3<2<x+
dd x1dd x2〈Ω|[V4,O1][O2,V3]|Ω〉〈0|Õ†1L[O](x, z)Õ†2 |0〉

(b)

+ (1↔ 2), (6.208)

where (〈O1O2Õ
†〉(a), 〈Õ†1 Õ

†

2O〉
(b))−1

E is the inverse of the three-point pairing (E.50)
defined by

(〈O1O2Õ
†〉(a), 〈Õ†1 Õ

†

2O〉
(b))−1

E (〈O1O2Õ
†〉(c), 〈Õ†1 Õ

†

2O〉
(b))E = δ

c
a . (6.209)

6.4.2.2 The generalized Lorentzian inversion formula

To generalize the remaining steps leading to the Lorentzian inversion formula, we
seemingly need to understand of all the factors entering the expression for H∆,J (xi)
(6.190). However, this is unnecessary because the generalization is obvious from
the natural formula (6.199).

The coefficient function Cab(∆, ρ) we would like to compute is defined by

〈O1 · · · O4〉Ω =
∑
ρ,a,b

∫ d
2+i∞

d
2−i∞

d∆
2πi

Cab(∆, ρ)
〈O1O2O

†〉(a)〈O3O4O〉
(b)

〈OO†〉
, (6.210)

where O has dimension ∆ and SO(d)-representation ρ. Here, we sum over principal
series representations E∆,ρ, as well as three-point structures a, b. The obvious

44The possible structures in a three-point function of spinning operators are classified in [1].
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generalization of (6.186) and (6.199) is

Cab(∆, ρ)

= −
1

2πi

∫
4>1
2>3

dd x1 · · · dd x4

vol(S̃O(d, 2))
〈Ω|[O4,O1][O2,O3]|Ω〉

× T −1
2 T −1

4

(
T2〈O1O2L[O†]〉(a)

)−1 (
T4〈O4O3L[O]〉(b)

)−1

〈L[O]L[O†]〉−1

+ (1↔ 2). (6.211)

The dual structures in the numerator are defined by((
T2〈O1O2L[O†]〉(a)

)−1
,T2〈O1O2L[O†]〉(c)

)
L
= δc

a,((
T4〈O4O3L[O]〉(b)

)−1
,T4〈O4O3L[O]〉(d)

)
L
= δd

b, (6.212)

where (·, ·)L is the three-point pairing defined in (E.79). The two-point structure in
the denominator is the dual of 〈L[O]L[O†]〉 via the two-point pairing (E.72).

Note that the structure
(
T2〈O1O2L[O†]〉(a)

)−1
transforms like a three-point function

of representations 〈Õ†1 Õ
†

2O
†F〉 and similarly for the operators 3 and 4. In (6.211),

we are implicitly contracting Lorentz indices of Oi with their dual indices in these
structures.

6.4.2.3 Proof using weight-shifting operators

Equation (6.211) follows if we prove the generalization of the expression (6.199) for
H , with H defined using the appropriate generalization of (6.187). Specifically, the
definition of H becomes

H∆,ρ,(ab) (xi)

= −µ(∆, ρ†)SE (O1O2[Õ†])c
a (〈O1O2Õ

†〉(c), 〈Õ†1 Õ
†

2O〉
(d))−1×

×

∫
2<x<1

dd xDd−2z〈0|Õ†1L[O](x, z)Õ†2+ |0〉
(d) (〈0|O4+L[O](x, z)O3 |0〉(b))−1.

(6.213)

We want to prove that

H∆,ρ,(ab) (xi) = −
1

2πi

(
T2〈O1O2L[O†]〉(a)

)−1 (
T4〈O4O3L[O]〉(b)

)−1

〈L[O]L[O†]〉−1 . (6.214)

Our proof will proceed in two steps. Here we are going to show that if for a given
ρ (6.214) is valid for some “seed” choice of SO(d) irreps of external operators, it
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is then valid for all choices of external irreps. In appendix E.7 using methods of [3]
we show that validity of (6.214) for traceless-symmetric ρ implies its validity for
seed blocks for all ρ. Together these statements imply (6.214) in full generality.

Generalizing the external representations It is convenient to consider the struc-
ture defined by

Ta ≡ µ(∆, ρ†)SE (O1O2[Õ†])c
a (〈O1O2Õ

†〉(c), 〈Õ†1 Õ
†

2O〉
(d))−1

E 〈Õ
†

1 Õ
†

2+O〉
(d) .

(6.215)

We can check that

Ta = (〈O†O〉, 〈Õ†Õ〉)E (〈O1O2SE[O†]〉(a))−1
E , (6.216)

where all pairings and inverses are Euclidean. Indeed, we can compute the Euclidean
paring

(Td, 〈O1O2SE[O†]〉(a))E =SE (O1O2[O†])a
b(Ta, 〈O1O2Õ

†〉(b))E

=µ(∆, ρ†)SE (O1O2[O†])a
bSE (O1O2[Õ†])b

d

=µ(∆, ρ†)N (∆, ρ†)δa
d = (〈O†O〉, 〈Õ†Õ〉)Eδ

a
d . (6.217)

Here we used the relation (E.56) between the Plancherel measure and the square of
the Euclidean shadow transform. Importance of the structures Ta comes from the
fact that it is the light transform of their Wick rotation which enters (6.213).

We now choose some other SO(d) irreps ρ′1 and ρ′2 for operators O′1 and O′2 such
that there is a unique tensor structure45

〈O′1O
′
2Õ
†〉. (6.218)

We then can write

Ta = (〈O†O〉, 〈Õ†Õ〉)ET
−1

2 D12,aT2(〈O′1O
′
2SE[O†]〉)−1

E , (6.219)

where D12,a are contractions of weight-shifting operators acting on points 1 and
2 [3, 61].46 We can use this to write

H∆,ρ,(ab) (xi) = D12,aH′
∆,ρ,(b) (xi), (6.220)

45In odd dimensions and for fermionic ρ the number of tensor structures is always even, and so
it is not possible to make this choice. However, there we can make a choice such that there is only
one parity-even structure, which will be good enough.

46Note thatT −1
2 D12,dT2 are differential operators which can be interpreted in Euclidean signature.

In particular, if D12,d = D1,ADA
2 for A transforming in an irreducible representation W of the

conformal group then T −1
2 D12,dT2 is proportional to D12,d with coefficient equal to the eigenvalue

of T in W .
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where H′ is given by (6.213) with O′1 and O′2 instead of O1 and O2, and using the
unique tensor structure on the left of H′.

On the other hand, we can write

δa
d =

1
(〈O†O〉, 〈Õ†Õ〉)E

(Td, 〈O1O2SE[O†]〉(a))E

= (T −1
2 D12,dT2(〈O′1O

′
2SE[O†]〉)−1, 〈O1O2SE[O†]〉(a))E

= ((〈O′1O
′
2SE[O†]〉)−1, (T −1

2 D12,dT2)∗〈O1O2SE[O†]〉(a))E, (6.221)

where we integrated the differential operators T −1
2 D12,dT2 by parts inside the Eu-

clidean pairing. This produces new operators D∗12,d , which are again contractions
of weight-shifting operators.47 We thus conclude that

(T −1
2 D12,dT2)∗〈O1O2SE[O†]〉(a) = δa

d〈O
′
1O
′
2SE[O†]〉. (6.222)

Canceling SE on both sides (it is invertible on generic tensor structures) we find

(T −1
2 D12,dT2)∗〈O1O2O

†〉(a) = δa
d〈O

′
1O
′
2O
†〉. (6.223)

We now want to show that

D12,a (T2〈O′1O
′
2L[O†]〉)−1

L = (T2〈O1O2L[O†]〉(a))−1
L , (6.224)

where the inverse structure is understood with respect to Lorentzian pairing. This
follows by doing the above calculation in reverse and in Lorentzian signature. First,
we apply L to both sides of (6.223) and use T ∗ = T −1,

T −1
2 D∗12,dT2〈O1O2L[O†]〉(a) = δa

d〈O
′
1O
′
2L[O†]〉, (6.225)

Then, we applyT2 to both sides and takeLorentzian contractionwith (T2〈O′1O
′
2L[O†]〉)−1

L

((T2〈O′1O
′
2L[O†]〉)−1

L ,D∗12,dT2〈O1O2L[O†]〉(a))L = δ
a
d, (6.226)

and finally integrate by parts,

(D12,d (T2〈O′1O
′
2L[O†]〉)−1

L ,T2〈O1O2L[O†]〉(a))L = δ
a
d . (6.227)

This is equivalent to (6.224) The crucial point here is that integration by parts
leads to the same operation on the weight-shifting operators both in Euclidean

47For details see appendix E.6 and [3, 195].
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and Lorentzian signature (on integer-spin operators). A way to summarize this
calculation is by saying that

(T2〈O1O2L[O†]〉)−1
L and T2(〈O1O2SE[O†]〉)−1

E (6.228)

have the same transformation properties under weight-shifting operators acting on
1 and 2.

This implies that if (6.214) is true for O′1 and O
′
2, it is also true for O1 and O2, since

we can simply applyD12,a in both (6.213) and (6.214). Since exactly the same tensor
structure appears for the operators O3,O4 in (6.213) and (6.214), an analogous (even
simpler) argument works for this tensor structure as well. In conclusion, if (6.214)
holds for a seed conformal block, it holds for all conformal blocks with the same ρ.

6.5 Conformal Regge theory
6.5.1 Review: Regge kinematics
Consider a time-ordered four-point function of scalar operators 〈φ1 · · · φ4〉. Its
conformal block expansion in the 12→ 34 channel takes the form

〈φ1(x1) · · · φ4(x4)〉 =
∑
∆,J

p∆,JG∆i

∆,J (xi)

=
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

*
,

x2
14

x2
24

+
-

∆2−∆1
2

*
,

x2
14

x2
13

+
-

∆3−∆4
2 ∑

∆,J

p∆,JG∆i

∆,J ( χ, χ),

(6.229)

where p∆,J are products of OPE coefficients. This expansion is convergent whenever
χ, χ ∈ C\[1,∞) [25]. However, it fails to converge in the Regge limit.48

To reach the Regge regime, which was originally described for CFT correlators in
[166], let us place the operators in a 2d Lorentzian plane with lightcone coordinates

x1 = (−ρ,−ρ),

x2 = (ρ, ρ),

x3 = (1, 1),

x4 = (−1,−1). (6.230)

The usual cross-ratios are given by

χ =
4ρ

(1 + ρ)2 , χ =
4ρ

(1 + ρ)2 . (6.231)

48The other OPE channels 14→ 23 and 13→ 24 are still convergent, though they are approaching
the boundaries of their regimes of validity, as discussed in the introduction.
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1

2

4 3
ρ

ρ

Figure 6.11: The Regge limit in the configuration (6.230). We boost points 1 and 2
while keeping points 3 and 4 fixed. This configuration is related by an overall boost
to the one in figure 6.1.

It is also useful to introduce polar coordinates

ρ = reiθ = rw, ρ = re−iθ = rw−1. (6.232)

In Euclidean signature, r and θ are real. By contrast in Lorentzian signature, r

is real, θ becomes pure-imaginary (it is conjugate to a boost), and ρ, ρ become
independent real variables. To reach the Regge regime, we apply a large boost to
operators 1 and 2, while keeping 3 and 4 fixed (figure 6.11). More precisely, we
take

θ = it + ε, (t → ∞), (6.233)

so that

ρ = re−t+iε, ρ = ret−iε, (t → ∞). (6.234)

Here, we use the correct iε prescription to compute a time-ordered Lorentzian
correlator when t > 0. With this prescription, the cross-ratios behave as follows.
As t-increases, χ moves toward zero. Meanwhile, χ initially increases, then goes
counterclockwise around 1, and finally decreases back to zero (figure 6.12).

The only difference between the Regge and 1→ 2 OPE limits from the perspective
of the cross-ratios χ, χ is the continuation of χ around 1. In both cases, we take
χ, χ → 0. This is because the Regge limit resembles an OPE limit between points
in different Poincare patches. This observation was made in [236]. Specifically,
the configuration in figure 6.11 is related by a boost to the one in figure 6.13. The
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χ, χ

0 1χ

χ

Figure 6.12: The paths of the cross ratios χ, χ when moving from the Euclidean
regime to the Regge regime. In the Euclidean regime, χ, χ are complex conjugates
(gray points). As we boost x1, x2, the cross ratio χ decreases towards zero, while χ
moves counterclockwise around 1 before decreasing towards zero. For sufficiently
large t, χ follows the same path as χ, but we have separated the paths to clarify the
figure.

Regge limit can thus be described as 1→ 2− and 3→ 4−. The cross-ratios χ, χ are
unchanged when we apply T to any of the points, which is why they still go to zero
in this limit.

1

24

3

2− 4−

Figure 6.13: Another description of the Regge limit is x1 → x−2 and x3 → x−4 . The
points x−2 , x−4 are shown in gray. The cross-ratios χ, χ associated with the points
1, 2, 3 and 4 are the same as those associated with 1, 2−, 3 and 4−.

To understand what happens to the conformal block expansion (6.229) in the Regge
regime, we must compute the monodromy of G∆i

∆,J ( χ, χ) from taking χ counter-
clockwise around 1. This was described in [66]. Firstly, we have the decomposition

G∆i

∆,J ( χ, χ) = g
pure
∆,J ( χ, χ) +

Γ(J + d − 2)Γ(−J − d−2
2 )

Γ(J + d−2
2 )Γ(−J)

g
pure
∆,2−d−J ( χ, χ), (6.235)

where gpure
∆,J is the solution to the conformal Casimir equation defined by

g
pure
∆,J ( χ, χ) = χ

∆−J
2 χ

∆+J
2 × (1 + integer powers of χ/χ, χ) ( χ � χ � 1).

(6.236)
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For small χ, gpure
∆,J has a simple form in terms of a hypergeometric function [64],

g
pure
∆,J ( χ, χ) = χ

∆−J
2 k∆+J ( χ) × (1 +O( χ)) ( χ � 1), (6.237)

k2h( χ) = χh
2F1

(
h −

∆12
2
, h +

∆34
2
, 2h, χ

)
, (6.238)

where ∆i j ≡ ∆i − ∆ j . The monodromy of g
pure
∆,J as χ goes around 1 can then

be determined from (6.237) using elementary hypergeometric function identities,
keeping χ small so that the approximation (6.237) remains valid.

Let us defer discussing the precise form of the monodromy until section 6.5.3, and
focus on one important feature. Note that k2h( χ) is a conformal block for SL(2,R).
In particular, it is a solution to the conformal Casimir equation (a second-order
differential equation) with eigenvalue h(h− 1). Under monodromy, it will mix with
the other solution, which differs by h → 1 − h. In terms of ∆, J, this becomes

(∆, J) → (1 − J, 1 − ∆), (6.239)

i.e., it is the affine Weyl reflection associated to the light transform. After mon-
odromy, in the limit χ, χ → 0 each block contains a term

χ
∆−J

2 χ
1−∆+1−J

2 ∼ e(J−1)t (t � 1). (6.240)

In other words, the monodromy of each block grows as e(J−1)t in the Regge limit.
Because the sum (6.229) includes arbitrarily large J, the OPE expansion formally
diverges as t → ∞.

In what follows, it will be important to understand the large-J limit of conformal
blocks in slightly more detail. We compute this in appendix E.8.3. The result is
(|J | � 1)

g
pure
∆,J ( χ, χ) ∼

4∆ f1−∆( 1
2 (r + 1

r ))w−J

(1 − w2)
d−2

2 (r2 + 1
r2 − w2 − 1

w2 )
1
2

*
,

(1 − r
w )(1 − rw)

(1 + r
w )(1 + rw)

+
-

∆12−∆34
2

,

(6.241)

where w = eiθ and f1−∆(x) is given in (E.185). For us, the most important feature
of (6.241) is that its J-dependence is w−J . Note that the small-w limit of (6.241) is
consistent with the claim that gpure

∆,J grows as w1−J = e(J−1)t in the limit t → ∞.

6.5.2 Review: Sommerfeld-Watson resummation
Taking the monodromy of χ around 1 requires leaving the region |ρ| < 1 where
the sum over ∆ in the conformal block expansion converges. The conformal partial
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wave expansion gives a way to avoid this problem: we replace a sum of the form∑
∆ |ρρ|

∆/2 with an integral over ∆ ∈ d
2 + iR. This integral is better-behaved when

|ρ| > 1.

In the Regge limit we still have the problem that each individual block grows like
e(J−1)t . This can be dealt with in a similar way: by replacing the sum over J with
an integral in the imaginary direction. This trick is called the Sommerfeld-Watson
transform.

Let us begin with the conformal partial wave expansion

〈φ1(x1) · · · φ4(x4)〉 =
∞∑

J=0

∫ d
2+i∞

d
2−i∞

d∆
2πi

C(∆, J)F∆i

∆,J (xi),

F∆i

∆,J (xi) ≡
1
2

*
,
G∆i

∆,J (xi) +
SE (φ1φ2[O])
SE (φ3φ4[Õ])

G∆i

d−∆,J (xi)+
-
. (6.242)

For integer J, the coefficient function C(∆, J) can be written

C(∆, J) = Ct (∆, J) + (−1)JCu(∆, J), (J ∈ Z), (6.243)

where Ct comes from the first term in the Lorentzian inversion formula (6.196),
and Cu comes from the second term with 1 ↔ 2. (The superscripts t and u stand
for “t-channel" and “u-channel.") Each of the functions Ct,u(∆, J) has a natural
analytic continuation in J that is bounded in the right half-plane. This follows from
(6.196), since the conformal block G∆̃i

J+d−1,∆−d+1( χ, χ) is well-behaved in the square
χ, χ ∈ [0, 1] when J is in the right half-plane.

Let us split the partial wave F∆i

∆,J into two pieces

F∆i

∆,J (xi) = F∆,J (xi) +H∆,J (xi), (6.244)

where F∆,J behaves like w−J at large J,

F∆,J (xi) ≡

1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

*
,

x2
14

x2
24

+
-

∆2−∆1
2

*
,

x2
14

x2
13

+
-

∆3−∆4
2 1

2
*
,
g

pure
∆,J ( χ, χ) +

SE (φ1φ2[O])
SE (φ3φ4[Õ])

g
pure
d−∆,J ( χ, χ)+

-
,

(6.245)

and H∆,J (xi) represents the remaining terms, which behave like wJ+d−2 at large
J. We must treat the two terms in (6.244) differently in the Sommerfeld-Watson
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transform. Let us focus on the first term. The sum over integer spins can be written
as a contour integral

∞∑
J=0

C(∆, J)F∆,J (xi) = −
∮
Γ

dJ
Ct (∆, J) + e−iπJCu(∆, J)

1 − e−2πi J F∆,J (xi)

(Re(θ) ∈ (0, π), Im(θ) = 0), (6.246)

where the contour Γ encircles all the nonnegative integers clockwise. Here, we
have carefully chosen the analytic continuation of C(∆, J) so that the integrand is
bounded at large J in the right half-plane whenever θ satisfies the given conditions.
For this, we use the fact that F∆,J (xi) behaves as w−J at large J. Because the other
term in (6.244) behaves as wJ+d−2 at large J, we must replace e−iπJ → eiπJ to get
an integral for that term that is valid in the same range of θ.

The contour integral (6.246) is more suitable than a naïve sum over spins for
continuing to the Regge regime. Recall that the issue with a sum over J was that
a conformal block with spin J grows as e(J−1)t in the Regge limit. Because the
integrand in (6.246) is well-behaved at large J, we can deform the contour Γ to a
region where Re(J) < 1, so that its contributions die as t → ∞.49 In doing so, we
may pick up new poles in Cu,t (∆, J) with real part Re(J) > 1. The rightmost such
pole will dominate the correlator in the Regge limit. Denote the deformed contour,
including these new poles, by Γ′ (figure 6.14).

After deforming the contour, we now have a representation of the correlator that is
valid in the strip

Re(θ) ∈ (0, π), Im(θ) > 0, (6.247)

which includes the angle θ = it+ε required for a time-ordered Lorentzian correlator.
Thus, we can continue to the Regge regime. The continuation ofH∆,J (xi) does not
give a growing contribution in the Regge limit, so let us ignore it for the moment.
We find that the four-point function behaves as

〈φ1(x1) · · · φ4(x4)〉 ∼ −
∮
Γ′

dJ
∫ d

2+i∞

d
2−i∞

d∆
2πi

Ct (∆, J) + e−iπJCu(∆, J)
1 − e−2πi J F∆,J (xi)	,

(6.248)

49A natural choice is the Lorentzian principal series Re(J) = − d−2
2 .
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J

Γ

Γ′

j (ν)

Figure 6.14: Integration contours in the J plane. The contour Γ (blue) encircles all
the integers clockwise. The deformed contour Γ′ runs parallel to the imaginary axis,
asymptotically approaching Re(J) = − d−2

2 at large imaginary J. In deforming the
contour, we must ensure that Γ′ avoids non-analyticities, like a pole at non-integer
J, branch cuts, or other singularities. Here, we show a single non-integer pole at
J = j (ν) and possible non-analyticities in the shaded region. However, this is only
an example—we don not know the structure of the J-plane in general.

where F∆,J (xi)	 denotes the continuation to Regge kinematics, including the mon-
odromy of χ around 1 and phases arising from the prefactor in (6.245).50

In planar large-N theories, the rightmost feature of Γ′ is conjectured to be an isolated
pole J = j (ν) where ∆ = d

2 + iν. Assuming this is the case, we obtain

〈φ1(x1) · · · φ4(x4)〉

∼ −2πi
∫ ∞

−∞

dν
2π

Res
J= j (ν)

Ct ( d
2 + iν, J) + e−iπJCu( d

2 + iν, J)

1 − e−2πi J Fd
2+iν,J

(xi)	. (6.249)

6.5.3 Relation to light-ray operators
The appearance of the affine Weyl transform (6.239) is suggestive that Regge kine-
matics should be related to the light transform and light-ray operators. To see how,
let us finally compute F∆,J (xi)	 using (6.237). We find

F∆,J (xi)	 = −
2iπ3Γ(∆ + J)Γ(∆ + J − 1)

Γ(∆+J+∆12
2 )Γ(∆+J−∆12

2 )Γ(∆+J+∆34
2 )Γ(∆+J−∆34

2 )
T∆i (xi)G1−J,1−∆( χ, χ)

+ . . . , (6.250)

50Representing the correlator as an integral over both ∆ and J is natural from the point of view
of Lorentzian harmonic analysis, where principal series representations are labeled by continuous
∆ = d

2 + is and J = − d−2
2 + it. However, it is not immediately obvious how the representation (6.248)

is related to the Plancherel theorem for S̃O(d, 2). We leave this question for future work.
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where T∆i (xi) is the product of |xi j |’s given in (6.194). Here, we have explicitly
written the term that is growing in the Regge limit. The “. . . ” represent other
solutions of the Casimir equations that do not grow in the Regge limit, coming from
both F∆,J andH∆,J . The above expression is valid in the configuration 4 > 1, 2 > 3,
with other points spacelike-separated.

Comparing with (6.190) and (6.199), we immediately recognize

F∆,J (xi)	 = π2T −1
2 T −1

4
(T2〈φ1φ2L[O†]〉)(T4〈φ3φ4L[O]〉)

〈L[O]L[O†]〉
+ . . . , (6.251)

where we use the notation for a conformal block introduced in section 6.4.1.4.
Equation (6.251) is the main observation of this section. In the case where Regge
kinematics is dominated by an isolated pole (6.249), the residue ResJ= j (ν) means
that coefficients in the integrand can be interpreted as products of OPE coefficients
for light-ray operators. This is because a nontrivial residue comes from the neigh-
borhood of the light ray.51 Plugging (6.251) into (6.249), we find a sum/integral of
conformal blocks for these light-ray operators.

In the gauge-theory literature, the object that controls the Regge limit of a planar
amplitude is called the “Pomeron” [246, 247]. Here, we see that for planar CFT
correlation functions, the Pomeron is a light-ray operator: it is proportional to the
rightmost residue in J of O∆,J , for ∆ ∈ d

2 + iR.

The observation (6.251) also lets us immediately generalize conformal Regge theory
to arbitrary operator representations. In the Regge limit, we have

〈O1(x1) · · · O4(x4)〉

∼ −π2
∑
λ,a,b

∮
Γ′

dJ
∫ d

2+i∞

d
2−i∞

d∆
2πi

Cab(∆, J, λ)
1 − e−2πi J

× T −1
2 T −1

4
(T2〈O1O2L[O†]〉(a))(T4〈O3O4L[O]〉(b))

〈L[O]L[O†]〉
. (6.252)

Here,Cab(∆, J, λ) is the unique analytic continuation ofCab(∆, ρ) such that Cab (∆,J,λ)
1−e−2πiJ e−iθJ

is bounded for large J in the right-half plane and θ ∈ (0, π). The weight J is the
length of the first row of the Young diagram of ρ, and λ represents the remaining
weights of ρ, as discussed in section 6.2.2. The indices a, b run over three-point
structures.

51The same is true if the Regge limit is dominated by a cut instead of a pole, though now we have
a doubly-continuous family of light-ray operators, parameterized by ν and J along the cut.
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As before, it is straightforward to argue that (6.252) is the only possibility consistent
with the scalar case and with weight-shifting operators. It would be interesting to
verify it more directly, and in general to characterize all monodromies of blocks
in terms of the integral transforms in section 6.2.3. Note that (6.252) displays a
beautiful duality with the generalized Lorentzian inversion formula (6.211).

We can try to interpret (6.251) as a contribution to the non-vacuum OPE of φ1φ2 in
the following way. We construct light-ray operators as an integral of the form (6.15),
which together with conformal symmetry implies that we should be able to write,
schematically,

φ1φ2 =

∫
dν Bν, j (ν)[O0, j (ν)] + other contributions. (6.253)

Here B is a kind of OPE kernel which is fixed by conformal symmetry, and the
equation should be interpreted in an operator sense. The representation (6.251)
suggests that (6.253) is a good version of the OPE in non-vacuum states, with the
first term giving the only possibly-growing contribution in the Regge limit.

The “other contributions" can perhaps be understood by studying the terms that we
ignored above, coming formH∆,J and part of F 	

∆,J . We expect that they can be un-
derstood more systematically using harmonic analysis on the Lorentzian conformal
group S̃O(d, 2). (We hope to address this in future work.) In a finite-N CFT, the
correlator saturates in the Regge limit — i.e., it eventually stops growing. Thus,
the details of these terms will presumably be important for determining the actual
behavior of the correlator in the Regge limit.52

6.6 Positivity and the ANEC
The average null energy condition (ANEC) states that E = L[T] is a positive-
semidefinite operator. The ANEC was proven in [72] using information theory and
in [73] using causality. The causality-based proof [73] proceeds by isolating the
contribution of E in a correlation function and using Rindler positivity to show that
the contribution is positive. Isolating E requires using the OPE outside its naïve
regime of validity. However, the authors of [73] give an argument that one can still
trust the leading term in the OPE in an asymptotic expansion in the lightcone limit.

From our work in section 6.3, we now have an alternative construction of E as a
special case of a light-ray operator. Using this construction, we can avoid asymptotic
expansions and any technical issues associatedwith using the OPE outside its regime

52We thank Sasha Zhiboedov for discussions on this point.
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of validity. Beyond technical convenience, our approach gives extra flexibility. The
authors of [73] also prove a higher-spin version of the ANEC:

EJ ≡ L[XJ] ≥ 0, (J = 2, 4, . . . ), (6.254)

where XJ is the lowest-dimension operator with spin J.53,54 Our construction lets
us generalize this statement to

EJ ≥ 0, (J ∈ R≥Jmin ), (6.255)

where Jmin ≤ 1 is the smallest value of J for which the Lorentzian inversion formula
holds [66]. Here, EJ (x, z) denotes the light-ray operator with dimension and spin
(1 − J, 1 − ∆), where ∆, J are real and ∆ is minimal. This result follows by writing
a sum rule for all light-ray operators, and simply observing that it is positive by
Rindler positivity when (∆, J) satisfy the above conditions. When J is an integer,
(6.255) reduces to (6.254). However, when J is not an integer, (6.255) is a new
condition.

A possible connection between Lorentzian inversion formulae and the ANEC was
first suggested by Caron-Huot using a toy dispersion relation [66]. In this section,
we are simply making the connection more precise.

6.6.1 Rindler positivity
Rindler positivity is a key ingredient in the causality-based proof of the ANEC [73],
so let us review it. Given x = (t, y, ~x) ∈ Rd+1,1, define the Rindler reflection

x = (t, y, ~x) = (−t∗,−y∗, ~x). (6.256)

Rindler conjugation maps an operator in the right Rindler wedge to an operator in
the left Rindler wedge. For traceless-symmetric tensors, it is defined by

O(x, z) = O†(x, z). (6.257)

More generally, Rindler conjugation is given byO = JOJ, where J = U (R(y, π))CPT,
with R(y, π) a rotation by π in the yτ plane, where τ = it. Note that Rindler conju-
gation does not change the order of operators

O1O2 = O1O2. (6.258)

53More precisely, XJ can be the lowest-dimension operator with spin J in any OPE of the form
O† × O.

54The proof of the higher-spin ANEC in [73] relies on some assumptions about subleading terms
when the OPE is used as an asymptotic expansion outside of its regime of convergence. We thank
Tom Hartman for discussion on this point.
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The statement of Rindler positivity is that

〈Ω|O1 · · · OnO1 · · · On |Ω〉 ≥ 0, (6.259)

where Oi are restricted to the right Rindler wedge

WR = {(u, v, ~x) : uv > 0, arg v ∈ (− π2,
π
2 ), ~x ∈ Rd−2}. (6.260)

(Here, we use lightcone coordinates u = y − t, v = y + t.)

To establish (6.259) for general causal configurations of the Oi, [248] appeals to
Tomita-Takesaki theory. However, this is not necessary as argued in [73]. We can
summarize their argument as follows. Because the operators O1 · · · On act on the
vacuum, we can perform the OPE to replace

O1 · · · On |Ω〉 =
∑
O

C(xi, x, ∂x)O(x) |Ω〉, (6.261)

where C(xi, x, ∂x) is a differential operator. We are free to choose x to be any point
inWR (we cannot choose x to be timelike from the xi). Truncating the sum, we
approximate the right hand side by a local operator. The expectation value (6.259)
then becomes a Rindler-reflection symmetric two-point function. Positivity of this
two-point function is a consequence of reflection-positivity, since the two points are
spacelike-separated.

6.6.2 The continuous-spin ANEC
Following [73], we will prove

i〈Ω|VE′JV |Ω〉 ≥ 0, (6.262)

where V is any local operator located at a point xV = (0, δ, 0) ∈ WR in the right
Rindler wedge. Here, E′J is a continuous-spin light-ray operator of spin-J with
lowest twist, oriented along the null direction z = (1, 1,~0). As argued in [73], it
follows that E′J satisfies the positivity condition

ei π2 J〈Ω|(R · V )†(t = −iδ) E′J (R · V )(t = iδ) |Ω〉 ≥ 0, (6.263)

where R rotates by π
2 in the Euclidean yτ-plane, with τ = it, and R · V represents

the action of R on V at the origin. States of the form (R · V )(t = iδ) |Ω〉 ∈ H are
dense inH , by the state-operator correspondence. Thus,

EJ ≡ ei π2 JE′J (6.264)
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is a positive operator.

Let φ be a real scalar primary. We will produce E′J by smearing two φ insertions.
For simplicity, we will not attempt to divide by OPE coefficients in the φ × φ OPE.
Thus, when J is an integer, we will actually have EJ = fφφXJL[XJ], where XJ is the
lowest-twist operator of spin-J in the φ × φ OPE and fφφXJ is an OPE coefficient.
In particular E2 in this section differs from the usual ANEC operator by a factor of
fφφT .

From (6.174), we have

i〈VO+
∆,J (−∞z, z)V 〉 =

∫
−∞z<x1<xV
xV<x2<∞z

dd x1dd x2〈Ω|[V, φ(x1)][φ(x2),V ]|Ω〉K∆,J (x1, x2),

K∆,J (x1, x2) =
2iµ(∆, J)SE (φφ[Õ])

(〈φφÕ〉, 〈φ̃φ̃O〉)E
〈0|φ̃(x1)L[O](−∞z, z)φ̃(x2) |0〉.

(6.265)

We have included a factor of 2 from the term 1 ↔ 2 in (6.174), and we should
interpret the prefactors in K∆,J as being analytically continued from even J. The
matrix elements of EJ are defined by

i〈Ω|VE′JV |Ω〉 = Res
∆=∆∗

i〈VO+
∆,J (−∞z, z)V 〉, (6.266)

where ∆∗ is the location of the pole in O+
∆,J with minimal real ∆. The expression

(6.265) is guaranteed to be convergent for ∆ ∈ d
2 + iR on the principal series. In

particular it converges at ∆ = d
2 . Our strategy will be to show that i〈VO+

∆,J (x, z)V 〉
is strictly negative as we move rightward along the real axis starting from ∆ = d

2
(figure 6.15). It follows that the first pole we encounter must have positive residue.55

The kernel K∆,J is given by

K∆,J (x1, x2) =
2Jiµ(∆, J)SE (φφ[Õ])L(φ̃φ̃[O])

(〈φφÕ〉, 〈φ̃φ̃O〉)E

(z · x2x2
1 − z · x1x2

2)1−∆

x2∆̃φ−∆+J
12 (−z · x1)

2−J−∆
2 (z · x2)

2−J−∆
2

.

(6.267)

We would like to show that K∆,J (x1, x2) is a positive-definite kernel when integrated
against Rindler-symmetric configurations of x1, x2. Note that this is a stronger
condition than K∆,J (x, x) ≥ 0 point-wise.

55Requiring negativity for all ∆ between d
2 and the first pole is stronger than necessary. It should

be possible to improve our proof by establishing negativity only for ∆ sufficiently close to the first
pole.
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∆

i〈VO+
∆,JV 〉

∆ = d
2

negative

positive residue

Figure 6.15: We show that i〈VO+
∆,JV 〉 is negative for ∆ between d

2 (the principal
series) and the first pole. It follows that the first pole has positive residue.

Consider first an inversion x 7→ x′ = x
x2 that places EJ at null infinity. In this

conformal frame, the three-point structure 〈0|φ̃L[O]φ̃|0〉 becomes translationally
invariant. Thus our kernel should be a translationally-invariant function of x′1, x′2,
times some scale-factors that depend independently on x1, x2. Indeed, it is easy to
check (

z · x2 x2
1 − z · x1 x2

2

)1−∆

x2∆̃φ−∆+J
12 (−z · x1)

2−J−∆
2 (z · x2)

2−J−∆
2

= x′2∆̃φ1 x′2∆̃φ2

(
−z · x′1

) J+∆−2
2

(
z · x′2

) J+∆−2
2

(
z · (x′2 − x′1)

)1−∆

(x′2 − x′1)2∆̃φ−∆+J
. (6.268)

Because our kernel originates from the light-transform of a three-point structure,
it inherits Rindler positivity properties. These are made clear by going to a kind
of complexified Fourier-space in the inverted coordinates x′i. Define lightcone
coordinates x− = u = y− t and x+ = v = y+ t. One can prove the following identity
which is valid in the right Rindler wedge u, v > 0:

u1−∆

(uv + ~x2)
2∆̃φ−∆+J

2

=
22−2∆̃φ−J

π
d−2

2 Γ( 2∆̃φ−∆+J
2 )Γ( 2∆̃φ+J+∆−d

2 )

×

∫
k>0

dd k (−k2)
2∆̃φ+∆+J−d−2

2 (−k−)1−∆ f k (x)

f k (x) ≡ e−
1
2 k+u+ 1

2 k−v+i~k ·~x . (6.269)

Here, the notation k > 0 indicates that k is restricted to the interior of the forward
null cone. This ensures that k+u is positive and k−v is negative, so that the integral
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is convergent. The complexified plane wave f k (x) is designed to satisfy

f k (x)∗ = f k (−x). (6.270)

Putting everything together, we find

K∆,J (x1, x2) = K∆,J

∫
k>0

dd k (−k2)
2∆̃φ+∆+J−d−2

2 (−k−)1−∆ψk (x2)(ψk (x1))∗,

(6.271)

where

ψk (x) ≡
1

x2∆̃φ

(
u
x2

) J+∆−2
2

exp *.
,

−1
2 k+u + 1

2 k−v + i~k · ~x

x2
+/
-
, (6.272)

K∆,J =
21−d−∆+J+2∆φΓ(J + d

2 )Γ( J+d+1−∆
2 )Γ(∆ − 1)

π
3(d−1)

2 Γ(J + 1)Γ( d+J−∆
2 )Γ(∆ − d

2 )Γ( J+∆+d−2∆φ
2 )Γ( J−∆+2d−2∆φ

2 )
. (6.273)

Consequently, we can write

i〈VO+
∆,J (−∞z, z)V 〉 = −K∆,J

∫
k>0

dd k (−k2)
2∆̃φ+∆+J−d−2

2 (−k−)1−∆〈ΘkΘk〉,

Θk =

∫
xV<x<∞z

dd x ψk (x)[φ(x),V ]. (6.274)

The coefficient K∆,J is positive whenever

d > ∆ − J > 2(d − ∆φ). (6.275)

This is also the condition for K∆,J (x1, x2) to be integrable without an iε prescription.
When these conditions hold, theminus sign in (6.274) ensures that the first nontrivial
residue in∆ is positive. This proves theANEC and its continuous spin generalization
in this case.

Let us understand the condition ∆ − J > 2(d − ∆φ) in more detail. When this
inequality fails, two things happen. Firstly, the factor

Γ

(
J − ∆ + 2d − 2∆φ

2

)
(6.276)

in K∆,J may no longer be positive. Secondly, the kernel K∆,J (x1, x2) develops
a naively non-integrable singularity along the lightcone. To make sense of this
singularity, onemust take into account the appropriate iε prescription for x1, x2. This
turns K∆,J (x1, x2) into a non-sign-definite distribution, and then we cannot conclude
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anything about the sign of (6.274). To get the strongest result, we should pick φ to
be the lowest-dimension scalar in the theory. The spin-2 ANEC then follows if ∆φ ≤
d+2

2 . Large-spin perturbation theory [31, 68, 69, 77, 102–104, 106, 162, 228, 229]
and Nachtmann’s theorem [68, 160, 249, 250] imply that the minimum twist ∆ − J

at each spin J is always less than 2∆φ. Thus, we can ensure ∆ − J > 2(d − ∆φ)
if ∆φ ≤ d

2 . This condition is also sufficient to ensure d > ∆ − J. Thus, the
continuous-spin ANEC follows if ∆φ ≤ d

2 .

6.6.3 Example: Mean Field Theory
The continuous spin version of ANEC is easy to check in MFT. (This is essentially
the same calculation as in [73, 251].) We have already computed the leading twist
operators E′J = O

+
0,J in section 6.3.4. In this section we need the straightforward

generalization of (6.150) to the case of identical operators,

E′J = O
+
0,J =

i
2π

∫
dsdt(t + iε )−1−J :φ

(
s + t

2
z
)
φ

(
s − t

2
z
)

:, (6.277)

with a future-directed null z. We can explicitly compute these operators in terms of
creation-annihilation operators using

φ(x) = N
− 1

2
∆φ

∫
p>0

dd p
(2π)d |p|

∆φ−
d
2
(
a†(p)e−ipx + a(p)eipx

)
, (6.278)

where ∆φ is the scaling dimension of φ and

N∆ =
22∆−1π

d−2
2

(2π)d Γ(∆)Γ(∆ − d−2
2 ) > 0. (6.279)

The creation-annihilation operators satisfy the commutation relation

[a(p), a†(q)] = (2π)dδd (p − q). (6.280)

Plugging (6.278) into (6.277), we find

E′J =
iN
−

1
2

∆φ

2π

∫
p,q>0

dd p
(2π)d

ddq
(2π)d

∫
dsdt(t + iε )−1−J

[
a†(p)a†(q)e−

i
2 (p+q)·zs− i

2 (p−q)·zt

+ a(p)a(q)e
i
2 (p+q)·zs+ i

2 (p−q)·zt

+ a†(p)a(q)e−
i
2 (p−q)·zs− i

2 (p+q)·zt

+a†(q)a(p)e
i
2 (p−q)·zs+ i

2 (p+q)·zt
]
.

(6.281)



315

The first two terms under the integral vanish because s-integration restricts (p+ q) ·
z = 0, which is impossible since both p and q are in the forward null cone. This
is consistent with the requirement that O+0,J should annihilate both past and future
vacua. Since (p + q) · z < 0 we can close the t-contour in the upper half-plane for
the third term (for J > 0) and thus it also vanishes. We are left with the last term,
where we can close the t-contour in the lower half-plane. Specifically, we get for s

and t integrals∫
dsdt(t + iε )−1−Je

i
2 (p−q)·zs+ i

2 (p+q)·zt
=

2π2δ((p − q) · z)e−
iπ
2 (J+1)

Γ(J + 1)

(
−(p + q) · z

2

) J

.

(6.282)

Combining with the rest of the expression we find, using the lightcone coordinates
p = zpv/2 − z′pu/2 + p with z · z′ = 2,

E′J =
πe−

iπ
2 J N

−
1
2

∆φ

Γ(J + 1)

∫ ∞

0
dpupJ

u A†(pu) A(pu), (6.283)

where

A(pu) ≡
∫
|p|<pupv

dpvdd−2p
(2π)d a(pu, pv, p). (6.284)

For EJ = e
iπ
2 JE′J we then obtain

EJ =
πN
−

1
2

∆φ

Γ(J + 1)

∫ ∞

0
dpupJ

u A†(pu)A(pu) ≥ 0, (6.285)

which is manifestly non-negative.

6.6.4 Relaxing the conditions on ∆φ
The conditions (6.275) are stronger than necessary because we have not assumed
anything about the quantity that K∆,J (x1, x2) is integrated against. We can somewhat
relax them as follows. Note that poles in i〈VO∆,J (−∞z, z)V 〉 come from the region
where x1, x2 are near the lightray Rz. In this region, we expect the correlator
〈Ω|[V, φ(x1)][φ(x2),V ]|Ω〉 to depend most strongly on the positions v1, v2 of the
operators along the light-ray and simple invariants built out of the relative position
x1 − x2, since V,V are far from the light ray.
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To be more precise, consider the integral over x1, x2 in the coordinates of sec-
tion 6.3.4,

2Jiµ(∆, J)SE (φφ[Õ])L(φ̃φ̃[O])
(〈φφÕ〉, 〈φ̃φ̃O〉)E

×
1
4

∫
dr
r

dv1dv2dαdd−2w1dd−2w2
2J−1v

−1−∆−∆1−∆2+J
2

21

(
α(1 − α) + (1 − α)w2

1 + αw2
2

)1−∆

(1 + w2
12)

∆̃1+∆̃2+J−∆
2 α

∆̃1−∆̃2+2−∆−J
2 (1 − α)

∆̃2−∆̃1+2−∆−J
2

× r−
∆−∆1−∆2−J

2 φ(−rα, v1, (rv21)
1
2 w1)φ(r (1 − α), v2, (rv21)

1
2 w2). (6.286)

The most important quantities built from x12 are

v21, x2
12 = rv21(1 + w2

−). (6.287)

Let usmake the approximation that, to leading order in r , the correlator 〈[V, φ][φ,V ]〉
depends only on v1, v2 and x2

12. That is, let us replace

φ(−rα, v1, (rv21)
1
2 w1)φ(r (1 − α), v2, (rv21)

1
2 w2)

∼ φ
(
−

r
2

(1 + w2
−), v1, 0

)
φ

( r
2

(1 + w2
−), v2, 0

)
. (6.288)

This approximation would be valid, for example, if we could perform the OPE
φ(x1) × φ(x2), since the leading terms in the OPE depend only on v21 and x2

12.
However, our assumption is weaker than assuming that we can perform the OPE.

After rescaling r → r/(1 + w2
−), we can now perform the integrals over α and w±,

following the methods in appendix E.4. The result is

i〈VO+
∆,J (−∞z, z)V 〉

∼
2d+J−4

π

∫
dr
r

dv1dv2 r
2∆φ−∆+J

2 v
2∆φ−∆−J−2

2
21 〈Ω|[V, φ(− r

2, v1, 0)][φ( r
2, v2, 0),V ]|Ω〉

= −
2d+J−4

πΓ
(
∆+J+2−2∆φ

2

) ∫
dr
r

r
2∆φ−∆+J

2

∫ ∞

0
dk k

∆+J−2∆φ
2 〈Ω|Θk (r)Θk (r) |Ω〉,

(6.289)

where

Θk (r) ≡
∫ ∞

0
dv e−kv[φ( r

2, v, 0),V ]. (6.290)

The integrand in (6.289) should be correct to leading order at small r , which
means the leading residue of i〈VO∆,J (−∞z, z)V 〉 should be correct. This residue is
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manifestly positive whenever

∆φ <
∆ + J + 2

2
. (6.291)

For example, this proves the continuous spin ANEC for all J ≥ 2 if the lowest-
dimension scalar in the theory has dimension ∆φ ≤ d+4

2 .

6.7 Discussion
We have argued that every CFT contains light-ray operators that provide an analytic
continuation in spin of the light-transforms of local operators. This gives a physical
interpretation of Caron-Huot’s Lorentzian inversion formula [66]. Our construction
involves smearing two primary operators O1,O2 against a kernel to produce an
object O∆,J , and then taking residues in ∆ to localize the operators along a null ray.
We have not shown rigorously that the integral localizes to a null ray (as opposed
to a lightcone). However, we expect this is true based on the example of MFT and
the fact that it’s true for integer J. More generally, we expect that any singularity
in the (∆, J)-plane should lead to a light-ray operator. (For instance, one could
take the discontinuity across a branch cut instead of a residue.) It would be nice to
understand better the structure of the (∆, J)-plane in general CFTs. We know that for
nonnegative integer J, the object O∆,J has simple poles in ∆ at the locations of local
operator dimensions. However, we do not know how it behaves for general complex
J.56 We also have not addressed the question of whether different operators O1,O2

produce different light-ray operators. We expect that in a nonperturbative theory,
the same set of light-ray operators should appear in every product OiO j , if allowed
by symmetry. It would be nice to show this rigorously.

Light-ray operators have the advantage over local operators that they fit into a more
rigid structure, due to analyticity in spin. However, unlike local operators, they are
not included in the Hilbert space of the CFT on Sd−1 because they annihilate the
vacuum. One way to realize them as states is to double the Hilbert space (with time
running forwards in one copy and backwards in the other). The Oi,J then become
states in the doubled Hilbert space.57 A general message is that the doubled Hilbert
space contains interesting structure that is not visible in a single copy, and it would
be interesting to explore this idea further.

56In planar N = 4 SYM, beautiful pictures of the (∆, J)-plane have been constructed using
integrability [252–255].

57Oi,J itself is a somewhat violent state. However, we can regularize it by acting on the thermofield
double state with some temperature β. We thank Alexei Kitaev for this suggestion.
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We have seen that light-ray operators enter the Regge limit of CFT four-point
functions. It would be nice to understand the actual spectrum and OPE coefficients
of continuous-spin light-ray operators in important physical theories (e.g. the 3d
Ising model, N = 4 SYM, and more), in order to determine what the Regge
limit actually looks like in those theories.58 Such operators have been explored in
weakly-coupled gauge theories (see e.g. [234–239]), and it would be interesting to
study other perturbative examples. For example, can one write a continuous-spin
generalization of the Hamiltonian of the Wilson-Fisher theory [256]?

Another important question is the extent towhich light-ray operators form a complete
basis for describing the Regge regime. Indeed, in our discussion in section 6.5, we
ignored certain non-growing contributions in the Regge limit. It would be interesting
to include them and give them operator interpretations. Perhaps lightcone operators
or other types of nonlocal operators play a role. This question is also interesting in
1 dimension, where the analog of the Regge regime is the so-called “chaos regime”
of a four-point function.

In any spacetime dimension, we can ask: is there a complete basis of nonlocal opera-
tors transforming as primaries in Lorentzian signature? Identifying a complete basis
could help in developing a generalization of the OPE that is valid in non-vacuum
states. (The usual OPE still works as an asymptotic expansion in non-vacuum states,
but we would like to find a convergent expansion.) Such a generalization would be
a powerful tool for studying Lorentzian physics.

Relatedly, it would be interesting to study OPEs of light-ray operators with each
other, especially the ANEC operator E = L[T].59 In “conformal collider physics"
[76] one considers ANEC operators starting at the same point E (x, z1)E (x, z2)
(usually taken to be spatial infinity x = ∞, so that the light-rays lie along future null
infinity), and it is natural to study the limit where their polarization vectors coincide
z1 → z2. This question was explored in [76], where it was argued that the leading
term in the E × E OPE in N = 4 SYM is a particular spin-3 light-ray operator that
can be described in bulk string theory using the Pomeron vertex operator of [224].
It would be nice to determine a systematic expansion for this limit in a general CFT.
Such an expansion could be useful for computing energy correlators and studying
jet substructure in CFTs. Light-ray operators could also be useful for understanding

58Besides planar N = 4 SYM, another CFT where the Regge limit of a four-point function has
been computed is the 2d (supersymmetric) SYK model [174].

59We thank Sasha Zhiboedov for discussion on this point.



319

aspects of deep inelastic scattering and PDFs.60

In this work, inspired by Caron-Huot’s beautiful result [66], we have been led to
an unusual hybrid of Euclidean and Lorentzian harmonic analysis, i.e., harmonic
analysis with respect to the groups SO(d + 1, 1) and S̃O(d, 2). However, many
of the resulting formulae suggest that it might be fruitful to start with S̃O(d, 2)
from the beginning. For example, after applying the Sommerfeld-Watson trick,
Regge correlators are written as an integral over ∆ and J, which is suggestive of an
expansion in Lorentzian principal series representations (this observation was also
made recently in [257]). It will be important to develop this area further and explore
its implications for many of the above questions.61

The intrinsically Lorentzian integral transforms introduced in section 6.2.3 have
been a key computational tool in this work. These transforms have a natural group-
theoretic origin asKnapp-Stein intertwining operators for SO(d, 2), but they can also
be applied to representations of S̃O(d, 2). In this work, we have focused primarily
on the light-transform, but the remaining transforms may also have interesting
applications. For example, it would be interesting to compute the full monodromy
matrix for spinning conformal blocks in terms of intertwining operators, generalizing
(6.251). Steps in this direction have already been taken in [242].

One concrete result of this work is a generalization of Caron-Huot’s Lorentzian
inversion formula to four-point correlators of operators in arbitrary Lorentz repre-
sentations. Caron-Huot’s original formula has already proven useful in a variety of
contexts [258–264],62 and we hope that our generalization will be similarly useful.
For example, one might try to determine all four-point functions in theories with
weakly-broken higher spin symmetry, generalizing the results of [262]. It would also
be interesting to study inversion formulae in the context of stress-tensor four-point
functions, perhaps making contact with the sum rules in [240, 267].

An important application of Lorentzian inversion formulae is to the lightcone boot-
strap and large-spin perturbation theory [31, 68, 69, 77, 102–104, 106, 162, 228,
229]. Lorentzian inversion formulaemake it particularly simple to studyOPE coeffi-
cients and anomalous dimensions of “double-twist operators” [68, 69] and averaged
OPE data for “multi-twist" operators (see e.g. [263, 264]). An important problem

60We thank Juan Maldacena for this suggestion.
61We thank Abhijit Gadde for emphasizing this idea.
62See also [265, 266] for applications of Lorentzian inversion formulae to quantities other than

vacuum four-point functions. It would be interesting to understand whether light-ray operators offer
a useful perspective on these works.
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for the future is to disentangle individual multi-twist trajectories. It is likely that
this will require studying crossing symmetry for higher-point functions. We hope
that light-ray operators will offer a useful perspective on this problem.

Another result of this work is a new proof of the average null energy condition
(ANEC), obtained by combining the causality-based proof of [73] with the idea of an
inversion formula. Our proof has some technical advantages over [73]. For example,
it does not use the OPE outside its regime of validity, and it also allows one to move
away from the asymptotic lightcone limit. However, it also has disadvantages.
In particular, our proof requires the CFT to contain a sufficiently low-dimension
operator, and this condition is absent in [73]. It would be interesting to understand
whether this condition can be relaxed further while still using an inversion formula.
Another technical point that is worth clarifying is the role/necessity of Rindler
positivity, as opposed to the more easily-established “wedge reflection positivity”
[248] or the traditional positivity of norms.

The ANEC has a growing list of interesting applications in conformal field theory
[76, 240, 241, 268–270]. However its higher-spin generalizations [73] have been less
well-explored. We have additionally proven that theANECholds for continuous spin
— i.e., on the entire leading Regge trajectory. It would be interesting to understand
the implications of this result, for example in a holographic context. (See [271] for
recent work on shockwave operators, which are holographically dual to light-ray
operators.) It would also be interesting to understand the information-theoretic role
of continuous-spin operators. How do they behave under modular flow? Can they
appear in OPEs of entangling twist defects? The ANEC can be improved to the
quantum null energy condition (QNEC) [272, 273], which was recently proven in
[274] together with a higher integer spin generalization. Is there a continuous-spin
version of the QNEC?
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C h a p t e r 7

REFLECTIONS ON CONFORMAL SPECTRA

This chapter is essentially identical to:

H. Kim, P. Kravchuk and H. Ooguri, Reflections on Conformal Spectra, JHEP 04
(2016) 184, [1510.08772].

7.1 Introduction
Modular invariance and crossing symmetry relate ultraviolet and infrared properties
of conformal field theory and impose strong constraints on its energy spectrum and
operator product expansion (OPE). In two dimensions, the partition function,

Z (τ) = tr qL0−
c
24 qL0−

c
24 , (7.1)

is invariant under the modular transformation, τ → −1/τ, where q = e2πiτ and τ
is the torus modulus. In any number of dimensions, a four-point function on the
sphere,

G(x) = 〈0|φ(∞)φ(1)φ(x)φ(0) |0〉, (7.2)

is invariant under the crossing transformation, x → 1 − x, where x is the Dolan-
Osborn coordinate [118]. The use of modular invariance was initiated in [275].
The conformal bootstrap program to exploit crossing symmetry was pioneered in
[26, 27], was developed further in two dimensions starting with [29], and is currently
undergoing a renaissance in higher dimensions starting with [30].

The quintessential application of modular invariance is the Cardy formula [275],
which describes the spectral density for a large scaling dimension ∆ with a fixed
value of the central charge c. In [25], crossing symmetry was used to estimate the
spectral density weighted by the OPE coefficients, for large ∆ with a fixed value of
the scaling dimension ∆0 of the external operator φ in (7.2).

In this paper, we will study the different limits:

∆, c → ∞, with ∆/c : fixed, (7.3)

for the partition function,

∆,∆0 → ∞, with ∆/∆0 : fixed, (7.4)

http://dx.doi.org/10.1007/JHEP04(2016)184
http://dx.doi.org/10.1007/JHEP04(2016)184
https://arxiv.org/abs/1510.08772
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and
∆,∆0, d → ∞, with ∆/d, ∆0/d : fixed, (7.5)

for the four-point function. Here d is the spacetime dimension.

The limit (7.3) for the partition function was considered in [74], where it was
shown that the Cardy formula holds for ∆ > c/6 under a certain condition on light
spectrum, strengthening the result of [275], which held only in the limit ∆ � c. In
this paper, we will describe an approximate symmetry of spectral decomposition
of the partition function, which can be used to motivate this result. Moreover,
this symmetry suggests some bounds for the spectral density, which we derive by
independent techniques. We employ a similar approach to study the limit (7.4) of
the four-point function to derive properties of the spectral density weighted by the
OPE coefficients as a function of ∆. This approach proves to be universal and we
apply it also to the case of large spacetime dimension.

7.2 Results
7.2.1 Partition function
To study the partition function in two dimensions, we will use the following simpli-
fied expression:

Z (τ) =
∫ ∞

0
q∆−

c
12 n(∆)d∆, (7.6)

where n(∆) is the density of conformal primary states with scaling dimension ∆.
This formula ignores contributions from Virasoro descendants, which will turn out
to be subleading in 1/c in what follows. Another interpretation is that n(∆) is the
density of all states, not just the primaries, in which case the above formula is valid
literally. The spins of primary states are not visible when q is real and τ is pure
imaginary, which we will assume throughout the paper.

Our basic observation is that modular invariance Z (τ) = Z (−1/τ) implies the
following approximate reflection symmetry in the space of scaling dimension ∆:

ωτ (∆) ' ω−1/τ

(
(1 + |τ |2)

c
12
− |τ |2∆

)
× |τ |2, (7.7)

where ωτ (∆) is defined by

ωτ (∆) =
1

Z (τ)
q∆−

c
12 n(∆), (7.8)

ωτ (∆) = Kc(∆) ∗ ωτ (∆), (7.9)
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and ∗ denotes convolution, ( f ∗ g)(x) =
∫

f (x − y)g(y)dy. Here the kernel Kc

smears the integrand of (7.6) over the interval of size ε,
√

c � ε � c. Note however
that Kc decays rather slowly outside of this interval – see section III.A.1. With this
definition, ωτ measures the significance of ∆ in the partition function averaged over
the small interval of the size ε to smooth out the sum of delta-functions in n(∆).
Since ∆ is bounded below by 0 in any unitary theory, ωτ (∆) approximately vanishes
for ∆ . −ε. The reflection symmetry (7.7) maps this to

ωτ (∆ & ∆τ) ' 0, (7.10)

where the edge ∆τ is given by

∆τ =

(
1 +

1
|τ |2

)
c

12
. (7.11)

We can estimate how fast the integrand of (7.6) decays above this threshold ∆ > ∆τ,
|τ | < 1, as ∫ ∞

∆

ωτ (∆′)d∆′ ≤
2

1 + T2k0+1
(
∆−∆τ/2
∆τ/2

) , (7.12)

where T2k0+1(x) is the degree (2k0 + 1) Chebyshev polynomial of the first kind and
k0 is chosen so that k0 �

√
c. In the limit of c → ∞, the half decay width of the

right hand side is ∼ c/k0 �
√

c.

Of course, from Cardy formula one expects exponential rather than polynomial
decay, but this formula shows the specific threshold value ∆τ, beyond which there
can be no dominant contribution to Z (τ). From the discussion in [74] it follows that
there exist theories which essentially saturate this bound, i.e., for which the integral
(7.6) is dominated by states at ∆τ.

This happens in theories satisfying the sparse light spectrum condition, defined in
[74] as

n(∆′) . e2π∆,

for 0 ≤ ∆ < c/12, (7.13)

where the inequality should be understood in an averaged sense. The essence of
this condition is that the partition function for the low temperature phase |τ | > 1 is
dominated by the vacuum state (in particular, the maximum of ωτ (∆) is at ∆ = 0).
In this case, the reflection symmetry shows that the maximum ofωτ (∆) jumps to the
edge ∆τ in the high temperature phase |τ | < 1, and gives a prediction on the value
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of this maximum. With τ changing in the high-temperature phase the maximum at
∆τ scans through the region ∆ > c/6, allowing one to obtain information on n(∆)
in this region. Rigorous microscopic estimates were made in [74], and the resulting
Cardy-like formula is

n(∆) ' exp *
,
2π

√
c
3

(
∆ −

c
12

)
+O(cα)+

-
, (7.14)

for ∆ > c/6 and the average density of states,

n(∆) =
1
ε′

∫ ∆+ε′

∆

n(∆′)d∆′, (7.15)

with ε′ ∼ cα, 1/2 < α < 1.

7.2.2 Four-point function
In this section we consider the four-point function of identical scalar operators of
scaling dimension ∆0. We insert the four operators on one two-dimensional plane,
which we identify with the complex plane of variable x. We insert three scalars
at 0, 1,∞ and the fourth scalar at the Dolan-Osborn coordinate x. This four-point
function (7.2) can be expressed as a sum of the spectral density weighted by the OPE
coefficients and the conformal block F∆,` (x) for the scaling dimension ∆ and the
spin `, see e.g., [25]. Here and throughout the paper, we assume that the coordinate
x is real and 0 < x < 1.

As a by-product of our work, we find an expression for F∆,` (x) for general ` in the
scaling limit (7.4), when external operators are identical scalars. In Appendix A,
we will solve the fourth order differential equation derived in [80] for the conformal
block to show, for x < 1,

F∆,` (x) ' ρ∆ *
,
1 −

ρ2

16
+
-

− d
2+κ(∆,`,ρ)

×
(
1 +O(1/∆)

)
, (7.16)

where ρ is the radial coordinate,

ρ =
4x

(1 +
√

1 − x)2
, (7.17)

introduced in [25] and discussed further in [59]. Note that this approximation breaks
down when x → 1. This should be kept in mind when interpreting the formulas
below. In general the results of this section apply to the limit ∆0 → ∞ with x kept
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fixed. In this limit, spin dependence of the conformal block is only through the
exponent κ(∆, `, ρ), which behaves as

κ(∆, `, ρ) → 0, (∆ − ` ∼ ∆), (7.18)

→
1
2
, (∆ = ` + d − 2 : unitarity bound).

Here in the first case ` can be on the order of ∆, but has to stay away from the
unitarity bound. Between the two cases κ can acquire ρ dependence. However,
the results in the two regimes suggest that the factor (1 − ρ2/16)−d/2+κ(∆,`,ρ) in the
conformal block (7.16) is altogether negligible in the large ∆ analysis in this paper,
just as Virasoro descendants are negligible in the partition function as in (7.6). Thus,
we can express the four-point function in the scaling limit (7.4) as

G(x) =
∫ ∞

0
ρ∆x−2∆0g(∆)d∆, (7.19)

where g(∆) is the spectral density weighted by the square of the OPE coefficients,
which is non-negativewhen φ’s are identical. One can of course keep this subleading
factor in what follows without affecting the conclusions. Note that though we made
no assumptions on the spins of the intermediate states, the spectral decomposition
of G(x) is blind to them for real x and large scaling dimensions.

One can also view (7.19) as an exact expansion, in which we have discarded the
structure of conformal multiplets and treat primary and descendant operators on
equal footing. This is the radial coordinates expansion of [25, 59]. Below we also
consider another kind of “descendant” expansion, which corresponds to a different
choice of coordinates.

Since the spectral decomposition of the four-point function (7.19) is similar to that
of the partition function (7.6) in these limits, crossing symmetry G(x) = G(1 − x)
implies a similar reflection symmetry in ∆. Let us introduce the “branching ratio”
of φ(x) × φ(0) turning into operators of dimension ∆,

γx (∆) =
1

G(x)
ρ∆x−2∆0g(∆), (7.20)

γx (∆) = K∆0 (∆) ∗ γx (∆), (7.21)

with K∆0 averaging over intervals of the size
√
∆0 � ε � ∆0. In terms of this

quantity, the approximate reflection symmetry is expressed as

γx (∆) ' γ1−x
*
,

1
√

x

(
2∆0 −

√
1 − x∆

)
+
-

√
1 − x

x
. (7.22)
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The reflection of γx (∆ . −ε) = 0 is then

γx (∆ & ∆x) ' 0, (7.23)

where the edge ∆x is given by

∆x =
2

√
1 − x

∆0. (7.24)

As in the case of the partition function (7.12), we can estimate how fast γx (∆) decays
above the threshold ∆ > ∆x , x > 1/2 as∫ ∞

∆

γx (∆′)d∆′ ≤
2

1 + T2k0+1
(
∆−∆x/2
∆x/2

) , (7.25)

with k0 �
√
∆0. Note that the half-decay width is ∼ ∆0/k0 �

√
∆0. This can

be compared to the conformal block expansion of the correlation function of the
generalized free field,

G(x) =
1

x2∆0
+

1
(1 − x)2∆0

+ 1, (7.26)

which can be shown, as long as x is away from 1, to have a saddle point at ∆ = ∆x of
width ∼

√
∆0. In this order-of-magnitude sense the bound (7.25) is almost saturated.

We can also perform the “descendant” expansion in the standard coordinates de-
scribed in the beginning of this section (see e.g., [25]), again treating primary and
descendant operators on equal footing,

G(x) =
∫ ∞

0
x∆−2∆0g(s) (∆)d∆, (7.27)

where we added the superscript (s) to g(∆) to note the fact that we are expanding
G(x) in what we will henceforth call “scaling blocks”. We use a similar notation
for branching ratios γ (s)

x , γ (s)
x . All of the above results also hold in this case, with

the modification that now
∆x =

2
1 − x

, (7.28)

the reflection relation is

γ (s)
x (∆) ' γ (s)

1−x

(
2
x
∆0 −

1 − x
x

∆

)
1 − x

x
. (7.29)
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7.2.2.1 Finite-∆0 bounds

So far, our statements have been in the limit (7.4) of large ∆ and ∆0. In the case of
the scaling block decomposition of four-point function, we can derive inequalities
which are valid at finite ∆ and ∆0. For example, for 2 < 4∆0 < ∆,∫ ∞

∆

γ (s)
1/2(∆′)d∆′ ≤

1
1 + Γ(∆−2∆0+1)Γ(2∆0)

Γ
(
∆+3

2

)
Γ
(
∆−1

2

) , (7.30)

where
γ (s)

x (∆) =
1

G(x)
x∆−2∆0g(s) (∆). (7.31)

Note that this bound also implies a bound on individual delta-function contributions
to g(s), since they are all positive. If we keep ∆0 finite and take ∆ → ∞, this
inequality becomes ∫ ∞

∆

γ (s)
1/2(∆′)d∆′ ≤

√
2π

∆2∆0−
1
2

2∆Γ(2∆0)
. (7.32)

In this limit, this inequality is stronger than the asymptotic bound of [25],∫ ∞

∆

γ (s)
1/2(∆′)d∆′ .

2−2∆0

G(1/2)
∆2∆0

2∆Γ(2∆0 + 1)
. (7.33)

However, the Cardy-like asymptotic of [25],∫ ∆

0
g(s) (∆′)d∆′ ∼

∆2∆0

Γ(2∆0 + 1)
, (7.34)

suggests by differentiation that one can expect the stronger convergence rate of∫ ∞

∆

γ (s)
x (∆′)d∆′ ∝ ∆2∆0−12−∆. (7.35)

While (7.30) is weaker than this expectation, it has the advantage that it is rigorous
and holds for finite ∆ and ∆0.

In fact, the method we use for proving this bound is quite general and can be used for
construction of finite ∆ and ∆0 analytic bounds for (7.19) as well. We have checked
that these bounds are asymptotically at least as strong as those of [25], still having
the advantage of being valid for finite values of ∆. Given the improvement of (7.30)
over (7.33), one might expect that an improvement is possible for (7.19) as well. We
hope to return to this question in future.

So far, we did not assume that the four-point function is dominated by a saddle point.
If we make this assumption, our results have simple explanation. Let the location of



329

the saddle point in the expansion of G(x) be ∆(x), which has to obey the reflection
relation imposed by crossing symmetry,

∆(x) − 2∆0
x

= −
∆(1 − x) − 2∆0

1 − x
. (7.36)

This is most easy to see if we note that ∆(x)−2∆0 =
∂ log G(x)
∂ log x and apply the crossing

relation G(x) = G(1 − x). In unitary theory ∆(x) ≥ 0, which implies, by the above
relation,

∆(x) ≤ ∆x =
2∆0

1 − x
. (7.37)

7.2.2.2 Cardy formula

An analogue of the sparse light spectrum condition (7.13) for the four point function
can be introduced, namely,

g(s) (∆′) . 2∆,

for 0 < ∆ < 2∆. (7.38)

Again, this should be understood in some averaged sense, such that this condition
would imply that the four-point function for |x | < 1/2 is dominated by the vacuum
state. Then, by the reflection symmetry, the maximum of γx (∆) jumps to the edge
∆τ for |x | > 1/2. This, exactly as in the case of the partition function, can be
translated into a statement on g(s) (∆), which reads, for ∆ > ∆1/2 = 4∆0,

gs (∆) = exp

−∆ log

(
1 −

2∆0
∆

)
+

+2∆0 log
(
∆

2∆0
− 1

)
+O(∆α0 )


, (7.39)

where 1/2 < α < 1, and g(s) is g(s) integrated on the scale δ ∼ ∆α0 .

7.2.3 Four-point function in large spacetime dimension
So far we have only discussed the limits where the operators considered were heavy
compared to any other scales we had, and in particular far away from the unitarity
bounds. Some interesting phenomena happen near unitarity bounds, such as that a
scalar field has to become free as its scaling dimension is pushed toward the bound.
In this section we consider a limit in which we take not only the scaling dimension
of the external scalars, but also the number of spacetime dimensions d to be large.
In fact, when the number of spacetime dimensions is taken to be large, the unitarity
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bounds force all the operators to become heavy. We are then able to apply the same
methods as before, but now to all operators in the theory.

Recall that the unitarity bounds are

∆ ≥
d − 2

2
∼

d
2

for non-identity scalars, (7.40)

∆ ≥ ` + d − 2 ∼ ` + d for operators with spin, (7.41)

and thus the natural limit is the double scaling ∆0 ∼ d → ∞. In this limit we can
see the gap between the identity and the lightest allowed scalars and the difference
between the lightest scalars and the lightest spin operator. Appearance of these
features means that now we have to distinguish several classes of operators.

It turns out that for us there is no difference between spin and scalar operators, since
on the real line x = x the conformal blocks in a large number of spacetime dimension
do not depend on spin (for details on conformal blocks see Appendix F.2). However,
the gap above the identity is important and the identity operator has to be treated
separately.

As mentioned before, we can apply almost the same methods as we used in other
limits. A new feature is that the duality relation is now non-linear and is not
as pleasant to manipulate as in the above discussions. However, it carries more
information, since we are now able to take our external scalars close to the unitarity
bound.

Let us introduce the duality relation. We state it in the following form,

Λx (∆) = −Λ(∆′)1−x . (7.42)

This has to be understood as an implicit relation between the symmetry-related
scaling dimensions ∆ in the conformal block expansion at x and ∆′ at 1 − x. Here
Λx is given by

Λx (∆) =
1
∆0

∂ log x−2∆0 F∆(x)
∂x

, (7.43)

and F∆ is the spin-independent conformal block. The explicit form of Λx is cum-
bersome, but is straightforwardly obtained from (F.36) for ∆ > 0. For the identity
operator F0(x) = 1, and so we get Λx = −2/x. One can easily obtain the range of
Λx corresponding to the unitary range ∆ ∈ {0} ∪ [d/2,+∞). It is given by

Λx ∈

{
−

2
x

}
∪

[
1

2δ0x(1 − x)
−

2
x
,+∞

)
, (7.44)
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(a) δ0 = 1 (b) δ0 = 1/2

Figure 7.1: Allowed range for Λx as a function of x for δ0 = 1 and δ0 = 1/2.

where δ0 = ∆0/d. Now, let us apply the duality relation to this range – in this
way we will obtain the allowed range for the saddle point in the conformal block
decomposition. The result is, in terms of Λ,

Λx ∈

{
−

2
x

}
∪

{
2

1 − x

}
∪

[
1

2δ0x(1 − x)
−

2
x
,−

1
2δ0x(1 − x)

+
2

1 − x

]
. (7.45)

This range is plotted in Fig. 7.1. The case of δ0 = 1 is generic and is shown in
Fig. 7.1a. As the external scalar gets heavier, δ0 gets larger and the range fills the
region between the curves corresponding to the identity operator and its dual image.

An interesting thing happens as δ0 approaches the unitarity bound 1/2, Fig 7.1b.
The allowed range for Λx shrinks into three points. This is the manifestation of the
fact that a scalar at the unitarity bound has to be free. Let us remind the reader of the
reasoning. The unitarity bound ∆ ≥ (d − 2)/2 expresses non-negativity of the norm
of a descendant of φ, which thus becomes null at the unitarity bound. This implies
that φ satisfies the free field equation of motion ∆φ = 0 as an operator equation,
and all the correlation functions of φ are harmonic away from singularities. Then
one can take for example the four point function of φ and subtract the free field four
point function. The result G′4 is still harmonic and the OPE limits imply that it has
singularities weaker than those of free field, 1/|x |d−2. But 1/|x |d−2 is the weakest
singularity a harmonic function can have. Thus, G′4 is harmonic everywhere, tends
to zero at infinity, and is therefore 0. So the four point function of φ is that of the
free field, which in turn implies that the φφ OPE is also free.

Note that the above argument explicitly imposes the equation of motion of φ on the
four point function. It is not a priori obvious that the crossing equation for this four
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point function alone should also imply that φ must be free at the unitarity bound.
However, it seems to be the case as the numerical results suggest (e.g., [30] in four
spacetime dimensions). From our perspective, it is true as long as one excludes
the middle curve in Fig. 7.1b. If this is done, then duality at x = 1/2 tells us that
there are to equally important saddle points, and for other values of x one of them
dominates, just as in the previous discussion. The resulting behavior is characteristic
of the free field, to the accuracy of our approximation.

Section III is devoted to derivations. Some of technical details are discussed in
appendices, including the derivation of (7.16).

7.3 Derivations
7.3.1 Modular Invariance
7.3.1.1 Reflection Symmetry

Here we discuss the derivation of the reflection symmetry (7.7). We do not try to
make the derivation very detailed or completely rigorous, since we only use (7.7) as
a heuristic device, and our other derivations are independent of it.

Parametrizing τ in the partition function as,

τ = iex− 1
2 , (7.46)

the modular transformation τ → −1/τ becomes the reflection x → 1− x. Therefore,

∂2k+1

∂x2k+1 Z (τ(x))���x=1/2
= 0, k = 0, 1, 2, · · · , (7.47)

and this can be expressed the integral constraints on ωτ (∆) as,∫ ∞

0

[
∆ −

c
12

] (2k+1)
ωτ=i (∆)d∆ = 0, (7.48)

where ωτ (∆) is defined by (7.9) and the bracket symbol [∆ − c/12](2k+1) is defined
by,

[y](N ) ≡ e2πyex
(
−

1
2π

∂

∂x

)N

e−2πyex ���x=0
,

= yN
(
1 +

N (N − 1)
2y

+ · · ·

)
. (7.49)

When N �
√
|y |, we can approximate [y](N ) by the monomial yN . Note that if we

use the full Virasoro character instead of q∆−c/12, this approximation is still valid. It
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is in this sense in which we said previously that Virasoro descendants are subleading.
Therefore, ∫ ∞

0

(
∆ −

c
12

)2k+1
ωi (∆)d∆ ' 0, (7.50)

for k �
√
∆,
√
∆0, assuming that the region near ∆ = c/12 does not make a major

contribution to the integral, which is consistent with results we will find. This
suggests that ωi (∆) is approximately symmetric under reflection at ∆ = c/12:

ωi (∆) ' ωi

( c
6
− ∆

)
. (7.51)

If the dominant contribution came from c/12, approximate symmetry like this would
be self-evident.

Of course, one cannot expect a literal equality like this – in the end, we only have
a finite number of equations (7.50). To formulate a more precise statement, let us
look at the case of general τ. For τ , i, we have for any k ≥ 0,

∂k

∂xk Z (τ(x)) = (−1)k ∂
k

∂xk Z (τ(1 − x)), (7.52)

which, with similar approximations, translates into∫ ∞

0

[
2π |τ |

(
∆ −

c
12

)] k

ωτ (∆)d∆ =

=

∫ ∞

0

[
2π
|τ |

( c
12
− ∆

)] k

ω−1/τ (∆)d∆, (7.53)

for k �
√

c. This is now an equality between some polynomial moments of ωτ

and ω−1/τ, which after some linear changes of arguments and densities ω can be
translated into ∫ ∞

−π |τ |c/6
λkω′τ (λ)dλ =

∫ πc/6|τ |

−∞

λkω′
−1/τ (−λ)dλ, (7.54)

where λ is a rescaled version of ∆, and ω′ is the rescaled and renormalized version
of ω. We will see below that with k bounded above by

√
c, the integrals can

be restricted to finite intervals of size ∼ c, up to 1/c errors. Then one has an
equality of polynomial moments of two functions on finite interval. In other words,
their convolutions with any polynomial kernel coincide, provided the degree of the
polynomial is bounded by

√
c. One can then try to pick a delta-like kernel K′c(λ),

for example,

K′c(λ) = *
,

l2 − λ2

l2
+
-

k/2

, (7.55)
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where l is twice the size of the interval to which we restrict the integrals in (7.53).
Then, restoring the original variables, we have the required claim (7.7). Note that
this particular delta-like kernel would average over regions of size� c3/4. One can
do better, for details see [276].

7.3.1.2 Bound on Tail

As discussed in Section 7.2.1, the reflection symmetry (7.7) suggests that ωτ (∆)
approximately vanishes for ∆ > ∆τ. To understand how good the statement is, we
should estimate an upper bound on ωτ (∆) when ∆ goes above the threshold ∆τ. At
τ = i, the conditions on ωi (∆) are,∫ ∞

0
ωi (∆)d∆ = 1,∫ ∞

0

[
∆ −

c
12

] (2k−1)
ωi (∆)d∆ = 0, (7.56)

and,
ωi (∆) ≥ 0. (7.57)

What we want to do is to estimate an upper bound on ωi (∆) at a particular value ∆̂
by maximizing the value of ωi (∆) under these conditions. This is a typical linear
optimization problem.

Generally speaking, the maximum value (optimal value for the primal problem) of
~c · ~x subject to

A~x = ~b, and ~x ≥ 0, (7.58)

is equal to the minimum value (optimal value for the dual problem) of ~b · ~y subject
to

AT~y ≥ ~c. (7.59)

This is a statement of the strong duality theorem of linear programming [277], which
is valid for finite-dimensional vector spaces. In our case, ~x is an infinite dimensional
vector whose entries are values ofωi (∆) at different values of ∆, A is a set of integral
transforms mapping ωi (∆) to the left-hand side of (7.56), and ~b = (1, 0, 0, · · · ) as in
its right-hand side. Although we still expect the strong duality to hold in our case,
we really need only the weak duality, which says that the optimal value for the dual
problem (in fact, any feasible value) puts an upper bound on the optimal value of
the primal problem. This weaker duality is straightforward to see. Indeed, let x be
a solution to (7.58), then for any y a solution to (7.59) we have

~b · ~y = ~x · AT~y ≥ ~x · ~c. (7.60)
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Before discussing what the dual problem is in our case, we first note that maximizing
ωi (∆̂) does not make much sense, since ωi appears only inside the integrals in the
constraint equations, and thus its value at a point is irrelevant unless ωi has a delta-
function singularity at ∆̂. Therefore, it only makes sense to maximize the coefficient
of delta-singularity in ωi at ∆̂.

It is an easy exercise to check that in our case the dual minimization problem then
is to minimize y0, subject to

P0(∆) ≥ 0, ∀∆ ≥ 0, (7.61)

P0(∆̂) ≥ 1, (7.62)

where

P0(∆) = y0 +

∞∑
k=1

[
∆ −

c
12

] (2k−1)
yk . (7.63)

Setting ∆ = c/12 we get y0 ≥ 0, and thus if P0(∆̂) > 1, we can always decrease y0

by dividing ~y by P0(∆̂). Thus we may assume P0(∆̂) = 1.

For convenience, we consider ~λ = ~y/y0, and then the minimum value of y0 is equal
to the minimal value of 1/P(∆̂), where

P(∆) = 1 +
∞∑

k=1

[
∆ −

c
12

] (2k−1)
λk, (7.64)

with λk’s being variables, subject to P(∆) ≥ 0 for all ∆. This is the form of the dual
problem most suitable for our purposes. For a different perspective on this problem
see [278].

We can find a weaker bound on ωτ (∆) by utilizing the conditions (7.56) for a
restricted set of k’s, such as k = 0, 1, 2, . . . , k0 for some k0 � c. Let us first consider
the case of τ = i again. For k � c, we can approximate [∆ − c/12](k) by the
monomial (∆ − c/12)k . Our task is then to minimize 1/Pk0 (∆̂), where

Pk0 (∆) = 1 +
k0∑

k=1

(
∆ −

c
12

)2k−1
λk, (7.65)

under the condition Pk0 (∆) ≥ 0 for ∆ ≥ 0. This is the same problem as maximizing
the degree (2k0 − 1) odd polynomial,

Qk0 (∆) =
k0∑

k=1

(
∆ −

c
12

)2k−1
λk, (7.66)
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under the condition, Qk0 (∆) ≥ −1 for ∆ ≥ 0. Since Qk0 (∆) is odd under the
reflection ∆ → c/6 − ∆, within the reflection symmetric interval 0 ≤ ∆ ≤ c/6,
Qk0 (∆) ≥ −1 also implies Qk0 (∆) ≤ 1. Namely,

|Qk0 (∆) | ≤ 1, for 0 ≤ ∆ ≤ c/6. (7.67)

Under the condition ∆̂ > c/6, the maximum of Qk0 (∆̂) is achieved by the degree
(2k0 − 1) Chebyshev polynomial of the first kind T2k0−1(x) with x = ∆−c/12

c/12 [279].
Notably, the polynomial is independent of ∆̂.

We were so far optimizing the coefficient of delta function in ωi (∆̂). However, it
turns out that the bound we found is also a bound for the integral

∫ ∞
∆̂
ωi (∆)d∆.

Indeed, optimizing this integral would replace (7.62) with P0(∆) ≥ 1 for all ∆ ≥ ∆̂.
It is easy to check that P0 corresponding to the Chebyshev polynomial solution
satisfies this stronger constraint as well. This in fact can be generalized to many
cases of the form

∫ ∞
∆̂

f (∆)ωi (∆)d∆. Therefore,∫ ∞

∆

ωi (∆′)d∆′ ≤
1

1 + T2k0+1
(
∆−c/12

c/12

) , (7.68)

for ∆ > c/6. Similarly, for a general value of |τ | < 1, the tail at the threshold ∆τ
can be bounded as, ∫ ∞

∆

ωτ (∆′)d∆′ ≤
2

1 + T2k0−1
(
∆−∆τ/2
∆τ/2

) , (7.69)

for ∆ > ∆τ. To see this, recall the condition (7.54), which for odd powers of λ can
rewritten as ∫ ∞

−a
λ2k−1ω′′τ (λ)dλ = 0, (7.70)

and a = max{π |τ |c/6, πc/6|τ |} and ω′′τ (λ) = 1
2 [w′τ (λ) + w′

−1/τ (λ)]. Here it is
understood that ωτ (∆) = 0 for ∆ < 0. It is also easy to see the normalization∫ ∞

−a
ω′′τ (λ)dλ = 1, (7.71)

and thus the problem is reduced to τ = i case. It then follows∫ ∞

λ̂
ω′′τ (λ)dλ ≤

1
1 + T2k0−1(λ̂/a)

, (7.72)

for λ̂ > a which then easily implies the claim.
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Note that in the inequality (7.69) in the denominator is the polynomial which has
the largest value for ∆ > ∆τ, subject to the requirement of taking values in [0, 2] for
0 ≤ ∆ ≤ ∆τ. In this way, it wins over any polynomial such as (7.55), especially if
one takes l to be asymptotically larger than ∆τ and the degree of Kc smaller than
that of the Chebyshev polynomial. More precisely, Kc can be used as f in the
aforementioned generalized bound on

∫
f (∆)ωτ (∆)d∆. This justifies truncating

the integrals in (7.54).

7.3.2 Crossing Symmetry
Unlike the case of the partition function in two dimensions, where contributions
from Virasoro descendants are subleading in 1/c, conformal descendants play an
important role in the large∆ asymptotics in the four-point function (unless onemakes
a careful choice of the configuration of the four points [59]). For example, the large
∆ conformal block behaves as ρ∆ as we saw in (7.16) whereas the contribution of
each local operator is x∆, and their difference is not negligible in the large ∆ limit.
On the other hand, it is easier to derive various bounds on the spectral decomposition
of the four-point function if we use x∆. Thus, wewill start with the warm-up exercise
with the expansion,

G(x) =
∫ ∞

0
x∆−2∆0g(s) (∆)d∆, (7.73)

where we treat all the local operators (including conformal descendants) indepen-
dently.

7.3.2.1 Reflection and Bounds

Crossing symmetry G(x) = G(1 − x) means G(x) is symmetric under reflection at
x = 1/2, and therefore„

∂2k+1

∂x2k+1 G(x)���x=1/2
= 0, k = 0, 1, 2, · · · , (7.74)

which is equivalent to,∫ ∞

0

[
∆ − 2∆0

] (2k+1) γ (s)
1/2(∆)d∆ = 0. (7.75)

The bracket symbol [∆ − 2∆0](k) in this subsection is different from the previous
one and is the falling Pochhammer symbol,

[y](N ) ≡ xN−y ∂
N

∂xN xy���x=1/2
,

= y(y − 1)(y − 2) · · · (y − N + 1). (7.76)
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When N �
√
|y |, we can approximate [y](N ) ∼ yN . We can then repeat the analysis

for the partition function and find that γ (s)
1/2(∆) is approximately reflection symmetric,

γ (s)
1/2(∆) ' γ (s)

1/2(4∆0 − ∆). (7.77)

In general,

γ (s)
x (∆) ' γ (s)

1−x

(
2
x
∆0 −

1 − x
x

∆

)
1 − x

x
. (7.78)

In particular, γ (s)
x (∆ < 0) = 0 means,

γ (s)
x (∆ > ∆x) ' 0, (7.79)

where
∆x =

2
1 − x

∆0. (7.80)

In this limit, we can also solve the linear optimization problem to find,∫ ∞

∆

γ (s)
1/2(∆′)d∆′ ≤

1
1 + T2k0+1

(
∆−2∆0

2∆0

) , (7.81)

for ∆ > 4∆0. For general x, we can bound γx (∆) for ∆ > ∆x by,∫ ∞

∆

γ (s)
x (∆′)d∆′ ≤

2
1 + T2k0+1

(
∆−∆x/2
∆x/2

) . (7.82)

The bound is stronger for x = 1/2 since γ (s)
1/2(∆) is invariant under the reflection as

in (7.77), while the reflection symmetry for x , 1/2 relates γ (s)
x to γ (s)

1−x as in (7.78).
The latter bound can be improved in a neighborhood of x = 1/2.

For γ (s)
x (∆), we can also derive bounds at finite values of ∆ and ∆0, without approx-

imating [y](N ) by yN because of the simple structure (7.76) of the bracket symbol.
As we explained in the case of partition function, the problem is to maximize P(∆)
given by

P(∆) = 1 +
∞∑

k=0

[
∆ − 2∆0

] (2k+1) λk, (7.83)

at a particular value of ∆ while maintaining P(∆) ≥ 0 for all values of ∆.

However, as we noted before, any P(∆) satisfying the constraints will lead to an
upper bound on the optimal value of the primal problem. We can use

P(∆) = 1 −
[∆ − 2∆0](2k+1)

[−2∆0](2k+1) , (7.84)



339

as an ansatz for such a P(∆). To check that P(∆) ≥ 0, we note that [−2∆0](2k+1) < 0
and [∆ − 2∆0](2k+1) > 0 for ∆ − 2∆0 > 2k, and it is easy to show that

������

[∆ − 2∆0](2k+1)

[−2∆0](2k+1)

������
≤ 1, (7.85)

for∆−2∆0 ≤ 2k, provided∆0 ≥ 1/2 (this condition can be weakened). Maximizing
this ansatz P(∆) at a particular value of ∆ by using k as a variable gives the bound
(after a natural interpolation of the right hand side, which happens not to invalidate
the bound), ∫ ∞

∆

γ (s)
1/2(∆′)d∆′ ≤

1
1 + Γ(∆−2∆0+1)Γ(2∆0)

Γ
(
∆+3

2

)
Γ
(
∆−1

2

) . (7.86)

The above analysis of the limit∆0 → ∞ is easily carried over to the case of conformal
blocks. One just has to note that

∂n

∂xn ρ
∆x−2∆0 ' *

,

∂ log ρ∆x−2∆0

∂x
+
-

n

ρ∆x−2∆0

= *
,

∆

x
√

1 − x
−

2∆0
x

+
-

n

ρ∆x−2∆0, (7.87)

to see that a polynomial approximation can be made again. It is then straightforward
to derive the corresponding formulas for the conformal block case.

7.3.2.2 Cardy formula

Derivation of the Cardy-like formula (7.39) for the OPE coefficients is essentially
equivalent to the partition function case in [74]. We outline the main steps here.

First, the analogue of light sparse spectrum condition is interpreted using crossing
symmetry as, for x > 1/2,

log G(x) = −2∆0 log(1 − x) +O(1). (7.88)

Then, one divides the spectrum into light and heavy parts, L = [0, 2∆0 + ε ) and
H = [2∆0 + ε,+∞). Here ε is some fixed positive number, which can be taken
exponentially small in

√
∆0. A scaling dimension ∆̂ is then picked inside the heavy

spectrum and the latter is further split into three parts,

H1 = [2∆0 + ε,∆̂ − δ), H3 = (∆̂ + δ,+∞), (7.89)

H2 = [∆̂ − δ, ∆̂ + δ]. (7.90)
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Here δ is some averaging scale which will turn out to be restricted by δ ∼ ∆α0 ,
α ∈ (1/2, 1).

The idea is now to show that if ∆̂ = 2∆0/(1 − x), then G(x) is essentially due to
contributions from H2, G ' G[H2]. To that end, one first bounds G[H2] ≤ G, as
well as

G[H2] =
∫

H2

x∆−2∆0g(s) (∆)d∆ ≥ x∆̂−2∆0+δg(s)
δ (∆̂), (7.91)

where
g(s)
δ (∆̂) =

∫
H2

g(s) (∆)d∆. (7.92)

This leads to an inequality for g(s) (∆̂), which, upon picking an optimal value of x,
reads for ∆̂ > 4∆0 as

log g(s)
δ (∆̂) ≤ −∆̂ log

(
1 −

2∆0

∆̂

)
+

+ 2∆0 log *
,

∆̂

2∆0
− 1+

-
− δ log

(
1 −

2∆0

∆̂

)
. (7.93)

One also gets a different inequality for 2∆0 ≤ ∆̂ ≤ 4∆0. Then one replaces δ in
these inequalities with a new δ′ and takes the latter to be sufficiently small while
keeping the δ in Hi fixed. This allows one to bound the contribution from H1 and
H3 up to log∆0 error terms. The contribution from L is also bounded [74]. It then
follows that given δ ∼ ∆α0 , α ∈ (1/2, 1) H2 dominates the 4-point function, and the
inequality (7.93) turns into the equality (7.39).

7.4 Discussion
In the present paper we studied implications of modular invariance and crossing
symmetry in certain scaling limits. We have found that all these cases share certain
general features, in particular

1. A truncated set of crossing equations limits to a problem about polynomial
moments of the branching ratios. This leads to an approximate duality relation
for the branching ratios at crossing symmetric points.

2. The duality relation motivates tail bounds for the integrals of the branching
ratios. These bounds are threshold bounds in the sense that they constrain the
set of dominant scaling dimensions.
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3. “Sparseness” of the light spectrum implies universality of the couplings of
heavy spectrum. Such theories almost saturate the tail bounds. We discussed
this only in two cases, but it is clear that this is a general feature.

These facts have a natural explanation if one assumes that a single saddle point
dominates the expansions. Indeed, in this case the location of saddle point can be
determined easily by taking appropriate log-derivative of the four-point or partition
function. The crossing relation then imposes an equation on this location in a
straightforward way. Note, however, that at no point we made such an assumption.
In fact, one can assume that several competing saddle points may exist at some
points, and in this case our duality relation maps their positions to the crossing
symmetric expansion. This happens for example for generalized free field, which at
x = 1/2 exhibits two saddle points – one at ∆ = 0 and one at ∆ = 4∆0 (in scaling
blocks). These two saddles are correctly related by the duality relation.

Besides this general features, we have also found features specific for some of the
cases, in particular

1. For scaling block expansion of four point function we were able to use an
ansatz incorporating infinitely many derivatives to produce an exponentially
decaying tail bound. This bound is a strict inequality valid without taking any
limit whatsoever.

2. For the large spacetime dimension limit of the conformal block expansion, we
were able to see a manifestation of unitarity bound for external scalars without
the use of the free scalar equation of motion.

Most of our results used some kind of a limit, and thus are not applicable to the
bootstrap of light operators. However, one may hope that some qualitative features
also carry over to the case of light operators, and thus may provide useful intuition.
Let us discuss possible implications for numerical analysis.

In some cases, the four-point amplitude G(x) is dominated by operators near the
saddle point ∆(x). This observation may have applications to numerical bootstrap
methods. which often employ derivatives of the crossing relation at x = 1/2. This
mostly probes operators near the saddle point ∆(1/2). To learn about the other parts
of the spectrum, apart from taking more and more derivatives at x = 1/2, one may
consider the crossing relation at different values of x. In the case of scaling blocks,
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it is natural to expect that O(1) changes in 1/(1− x) result in O(∆0) changes in ∆(x)
and that the width of saddle point is on the order of

√
∆0. Therefore, in order to have

the spectrum up to ∆ = Λ evenly covered, one may use the bootstrap equation at
O(Λ
√
∆0) points x so that 1/(1 − x) is distributed evenly with spacing of the order

of O(1/
√
∆0).

Another observation is that gaps in OPE spectrum can render the parts of spectrum
symmetric to them difficult to study. An example is the generalized free field four
point function, which is

G(x) =
1

x2∆0
+

1
(1 − x)2∆0

+ 1. (7.94)

It can be easily seen to be dominated by the vacuum term x−2∆0 for x < 1/2. As
discussed above, this forces a discontinuity in ∆(x) at x = 1/2, with ∆(1/2 + 0) =
4∆0. In this theory there are no operators in the interval (0, 2∆0), but there are
operators in [2∆0, 4∆0), which by the approximate symmetry never dominate the
four-point function.
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C h a p t e r 8

THE 3D STRESS-TENSOR BOOTSTRAP

This chapter is essentially identical to:

A. Dymarsky, F. Kos, P. Kravchuk, D. Poland and D. Simmons-Duffin, The 3d
Stress-Tensor Bootstrap, JHEP 02 (2018) 164, [1708.05718].

8.1 Introduction
The conformal bootstrap [26–28, 30] (see [18, 19, 280] for reviews) uses basic
consistency conditions to bound the space of conformal field theories. By making
fewer assumptions about the theories being studied, one can derive more universal
bounds.1 The original bounds [30, 43, 44, 46, 47, 95, 96, 126] apply to theories
with scalar operators of various dimensions. Bounds from fermionic correlators
[39, 40, 81] apply to theories with fermions, and the recent bounds in [41] apply to
any 3d CFT with a continuous global symmetry.

Perhaps the minimal possible assumption about a CFT is the existence of a stress
tensor. Indeed, a stress tensor (i.e. a conserved spin-2 operator whose integrals are
the conformal charges) is necessarily present in any local CFT.2 In this work, we
study the constraints of conformal symmetry and unitarity on a four-point function
of stress tensors in 3d CFTs. For simplicity, we also assume a parity symmetry, so
our bounds apply universally to any unitary parity-preserving local 3d CFT. This
birds-eye view of local CFTs with spacetime symmetry O(3, 2) is similar in spirit
to the views of superconformal theories achieved in [133, 140, 151, 281].

An advantage of a numerical approach is that we can make contact with analytic
results, but we also have the flexibility to perform more sophisticated studies that
are currently not analytically tractable. For instance, we numerically recover the
conformal collider bounds [73, 76, 77, 287], but we can additionally study how these
bounds are modified under various assumptions about the spectrum of the CFT. As

1By contrast, one can study a specific theory by inputting characteristic features that distinguish
the theory in question. In this sense, the conformal bootstrap was successfully applied to extract
precise properties of the 3d Ising model [8, 31, 32, 34, 36, 111]. Families of critical O(N ) models
[8, 37, 38, 45, 137], Gross-Neveu-Yukawa models [39, 40], and various supersymmetric theories
[133, 136, 138–144, 150–152, 281, 282] have also been studied in this way.

2Examples of theories without a stress tensor include boundary/defect theories [127, 129, 283]
and nonlocal theories like the Long-Range Ising model [284–286].

http://dx.doi.org/10.1007/JHEP02(2018)164
https://arxiv.org/abs/1708.05718
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we discuss below, we also find a host of new universal bounds constraining, e.g., the
spectrum of low-dimension scalar operators.

The bootstrap equations are consistency conditions on the conformal block decom-
position of 4-point functions. Written in terms of CFT data, they are quadratic
constraints on OPE coefficients. Self-consistency or “feasibility” of these con-
straints can be efficiently analyzed using semidefinite programming [19, 35, 36, 47].
Formulating the bootstrap constraints for stress tensors in a way suitable for semidef-
inite programming involves several steps, which we briefly describe below. First
is the task of writing 3- and 4-point functions of stress tensors in an explicitly
conformally-invariant way. We do this using a combination of the embedding for-
malism of [53] and the conformal frame formalism of [1]. The second step is to
get rid of the degeneracies associated with permutation symmetry and conservation.
This is done by identifying a minimal set of linearly-independent crossing equations,
slightly refining the approach of [75]. These steps are explained in detail in section
8.2. Finally, the third step is the calculation of conformal blocks which is done in
section 8.3 by translating the approach of [61] to the conformal frame formalism.
In this way we obtain a set of bootstrap equations suitable for numerical analysis.

In the rest of the paper we analyze the bootstrap constraints supplemented by various
additional assumptions about the spectrum. In section 8.4.2 we numerically repro-
duce, in full generality, the conformal collider bounds on the “central charges” of
unitary theories [76, 287], previously discussed in the context of the analytic boot-
strap in [77, 162]. Our main result here is a lower bound on the central charge CT

as a function of the independent parameter in the stress-tensor three-point function,
characterized by the angle θ defined in (8.80). In section 8.4.3 we study constraints
on the spectrum of the lightest parity-even and parity-odd scalars in general unitary
3d CFTs. Some of the results are shown in figure 8.8. In particular, we find that
any unitary CFT must necessarily have both light parity-even and light parity-odd
singlet scalars in its spectrum. This is similar to a recent finding that unitary 3d
CFTs with global symmetries must have low-dimension scalars in the OPE of two
conserved currents [41].

Quite generally, we find that when the gaps in the spectrum of scalar operators are
sufficiently large to exclude large N theories (by excluding some double-trace oper-
ators), the allowed region for OPE coefficients CT and θ is compact—in particular,
there exists an upper bound on the central charge. This suggests that theories with
large CT must necessarily have double-trace operators in T × T OPE. Furthermore,
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this may potentially point to the existence of new strongly-coupled theories residing
inside these compact regions. We observe the same phenomenon when imposing a
gap on the dimension of the second lightest spin-2 operator in section 8.4.4.

In section 8.4.5 we discuss theories with a gap ∆4 in the spectrum of spin-4 parity-
even operators. In full consistency with the Nachtmann theorem, we observe that
when ∆4 approaches 6, the lower bound on CT grows indefinitely for all θ, in accord
with the expectation that the corresponding theory is dual to weakly coupled gravity
in AdS4. Finally, section 8.4.6 is devoted to studies of the 3d Ising model. Under the
assumption of no relevant parity-odd scalars, and by imposing the known values of
the central charge and the dimensions of certain light operators, we obtain a window
0.01 < θ < 0.05. Under stronger but still plausible assumptions we obtain a tighter
bound 0.010 < θ < 0.019. We also find an upper bound on the parity-odd scalar
gap ∆odd < 11.2. We conclude with a discussion in section 8.5.

8.2 Conformal structures
8.2.1 3-point structures
To set up the bootstrap equations for the 4-point function 〈TTTT〉 in 3d CFTs
preserving parity, we first need to understand the possible 3-point functions 〈TTO〉

between the stress tensor T µν and various operators O in the CFT. The purpose of
this section is to classify such 3-point functions, and thus the operators which can
be exchanged in the OPE decomposition of 〈TTTT〉.

First of all, only bosonic operators O can appear in T × T OPE, and so without loss
of generality we can assume that O is a traceless symmetric tensor primary of spin
`. Furthermore, since T is a singlet under all global symmetries, O must be a singlet
as well. However, O may be even or odd under space parity.

The 3-point functions 〈TTO〉 should be conformally-invariant, symmetric with re-
spect to permutation of the two T insertions, and satisfy the conservation equation
for the stress tensor,

∂µT µν = 0 + contact terms. (8.1)

Such 3-point functions have the form

〈TTO〉 =
NTTO∑
a=1

λ (a)
TTO〈TTO〉(a), (8.2)
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where 〈TTO〉(a) are 3-point tensor structures which form a basis of solutions to the
above constraints, and λ (a)

TTO are OPE coefficients. We can always choose a basis
such that λ (a)

TTO are real.

The 3-point tensor structures 〈TTO〉(a) can be classified using e.g. the conformal
frame formalism of [1]. We will also need to perform manipulations with explicit
expressions, which we can obtain by constructing the tensor structures using the 5d
embedding space formalism of [53, 61].

In this latter formalism, the parity-even 3-point tensor structures are constructed
from basic invariants denoted by Hi j and Vi, where i and j index the operators in the
3-point function. The structure Hi j increases the spin by one unit for operators i and
j, while Vi does so only for the operator i. For example, a general 3-point structure
for 〈TTφ〉 with a scalar φ of dimension ∆ is given by3

〈TTφ〉 =
αH2

12 + βH12V1V2 + γV 2
1 V 2

2

(−2X1 · X2)
10−∆

2 (−2X2 · X3)
∆
2 (−2X3 · X1)

∆
2
, (8.3)

where the constants α, β, γ are subject to linear constraints coming from conserva-
tion of T and permutation symmetry, while Xi are the embedding space coordinates
of the operators [53]. For sufficiently large ` there are 14 different combinations of
Hi j and Vi which give the correct spins for the three operators in 〈TTO〉. Not all of
them are independent, since there exist non-linear relations between the invariants
H and V , which were classified in [53]. In our case there is a single redundant
structure

H12H23H31V `−2
3 , (8.4)

which can be expressed in terms of other structures.

Using the results of [53], it is straightforward to impose permutation and conser-
vation constraints on these tensor structures. An analogous construction works for
parity-odd tensor structures [53]. We will not need the explicit expressions for the
tensor structures in this “algebraic” basis, but rather in the so called differential
basis, which we describe in section 8.3.4 The explicit expressions in the differential
basis are provided in appendix G.1.

Here, let us summarize the counting of 3-point tensor structures. Let O` denote a
primary operator of spin ` and a scaling dimension ∆ strictly above the unitarity

3We assume that the stress tensors are at positions 1 and 2, while the intermediate operator is at
position 3.

4We will still use input from the algebraic basis to perform calculations in the differential basis.
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bound. This restriction is important since the number of solutions to conservation
equations can increase at special values of ∆.5 In fact, this is what happens for ∆ = 3
and ` = 2, i.e. when O`=2 = T is the stress tensor itself. With these conventions, the
counting of 3-point tensor structures is given by the table:

O NTTO

O0 1+ + 1−

O2 1+ + 1−

T 2++1−

O2n, n ≥ 2 2+ + 1−

O2n+1, n ≥ 2 1−

where we have separated parity-even and parity-odd tensor structures (indicated by
the± superscripts). ForO = T , the tensor structures are invariant under permutations
of all three operators. Note that the parity-odd tensor structure for 〈TTT〉 does not
appear in a parity-preserving theory, since T is necessarily parity-even, as can be
seen from the Ward identity discussed below.

8.2.1.1 Ward identities

As mentioned above, the 3-point function 〈TTT〉 has two allowed parity-even tensor
structures, which can be realized in the theories of a free real scalar and a free
Majorana fermion,

〈TTT〉 = nB〈TTT〉B + nF〈TTT〉F . (8.5)

There exists a non-trivial Ward identity for this correlator. Indeed, one can construct
the dilatation current J µD = xνT µν from one of the three stress-tensor operators, and
integrate it over a surface surrounding another stress-tensor operator put at x = 0 to
obtain, schematically, ∫

x〈TTT〉dS = ∆T 〈TT〉. (8.6)

This Ward identity implies a linear relation between the coefficients nB, nF and the
2-point function 〈TT〉. The latter can be parametrized as

〈TT〉 = CT 〈TT〉B, (8.7)

5Note that the conservations constraints are linear with coefficients dependent on ∆. The rank
of a parameter-dependent linear system is always constant at generic values of the parameters and
can only decrease at special values.
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where 〈TT〉B is the 2-point function 〈TT〉 in the theory of a free real scalar and CT

is the “central charge." The Ward identity then must be of the form

CBnB + CFnF = CT . (8.8)

The constants CB,CF are simply the central charges of the free real scalar and free
Majorana fermion respectively, where our normalization for CT implies CB = CF =

1. However, in the sections below we will often write results in terms of the ratio
CT/CB so that they also hold for other normalizations of CT .

8.2.2 4-point structures
The 4-point function 〈TTTT〉 should satisfy the following properties, which interact
with each other in nontrivial ways:

• conformal invariance,

• permutation symmetry,

• conservation,

• regularity (analyticity).

We will address each property in turn, culminating in a minimal set of crossing
symmetry equations suitable for applying numerical bootstrap techniques.

It is useful to use index-free notation to encode different tensor structures. Let us
write

T (w, x) = wµwνT µν (x), (8.9)

where wµ is an auxiliary polarization vector. Because T µν is traceless, we can take
wµ to be null, w2 = 0. We can recover T µν as

T µν (x) = Dµ
wDν

wT (w, x), (8.10)

where Dµ
w is the Todorov operator [201]

Dµ
w =

(
d − 2

2
+ w ·

∂

∂w

)
∂

∂wµ
−

1
2
wµ ∂2

∂w · ∂w
, (8.11)

with d = 3 the spacetime dimension. Note that the Todorov operator preserves the
ideal generated by w2,

Dµ
w (w2 f (w)) = w2(. . . ), (8.12)

so it is well-defined even though w is constrained to be null.
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8.2.2.1 Conformal invariance

To study the above properties, it is useful to fix a conformal frame and use represen-
tation theory of stabilizer groups to classify tensor structures, following [1]. This
approach makes it easy to deal with degeneracies between tensor structures in low
spacetime dimensions, and will also help us understand regularity conditions on the
z = z line. We work in Euclidean signature throughout.

Using conformal transformations we can place the four operators in the 1-2 plane in
the following configuration:

g(z, z,wi) = 〈T (w1, 0)T (w2, z)T (w3, 1)T (w4,∞)〉. (8.13)

We have z = x1 + ix2 and z = x1 − ix2, with the direction perpendicular to the plane
being x3. For brevity, we have written only the holomorphic coordinate of each
operator.

We define the operator at infinity in a non-standard way, where we do not act with
an inversion on the polarization vector,

T (w,∞) ≡ lim
L→∞

L2∆TT (w, L), ∆T = 3 . (8.14)

The virtue of this convention is that the polarization vectors are treated more sym-
metrically, so it will be easier to understand the action of permutations.

We will consider parity-preserving theories, so the group of spacetime symmetries
is O(4, 1). The points 0, z, 1,∞ are stabilized by an O(1) = Z2 subgroup of O(4, 1)
consisting of reflections in the x3 direction (perpendicular to the plane). The 4-point
function g(z, z,wi) must be invariant under this stabilizer subgroup or “little-group."
Little-group invariance then guarantees that g(z, z,wi) can be extended to anO(4, 1)-
invariant function for arbitrary configurations of the T (wi, xi).

Let `± denote the parity-even/odd spin-` representation of O(3), and let •± denote
the even and odd representations of O(1). Each operator T (w, x) transforms in the
representation 2+ of O(3). Little-group invariants are O(1) singlets in(

ResO(3)
O(1)2

+
)⊗4
=

(
3 •+ ⊕ 2 •−

)⊗4
= 313 •+ ⊕ 312 •−, (8.15)

whereRes G
H ρ denotes the restriction of a representation ρ ofG to a representation of

H ⊆ G. In particular, there are 313 parity-even tensor structures (and 312 parity-odd
tensor structures).
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These structures are easy to enumerate. Define components of the polarization
vectors

ω = wz = w1 + iw2

ω = wz = w1 − iw2

ω0 = w3. (8.16)

For each “helicity” h ∈ {−2,−1, 0, 1, 2}, we can construct a unique monomial [h]
with degree 2 and charge h under rotation in the z-plane,

[−2] = ω2, [−1] = ωω0, [0] = ωω, [1] = ωω0, [2] = ω2. (8.17)

(Using the fact that wµw
µ = (ω0)2 + ωω = 0, we can ensure that the degree in ω0

is at most one.) Let [h1h2h3h4] denote a product of the corresponding monomials
for each polarization vector wµ

i .6 It is easy to verify that there are 313 structures
[h1h2h3h4] which are even under parity ω0 → −ω0, i.e. such that

∑
i hi ≡ 0 mod 2.

The 4-point function is a linear combination of these structures, with coefficients
that are functions of z and z,

g(z, z,wi) =
∑

∑
i hi even

[h1h2h3h4]g[h1h2h3h4](z, z). (8.18)

Using rotations around the x1 axis, we can relate the point (z, z) to its reflection in the
imaginary direction (z, z). Invariance of the full correlator under this transformation
implies

g[h1h2h3h4](z, z) = g[−h1,−h2,−h3,−h4](z, z). (8.19)

Meanwhile, reality7 of g implies

g[h1h2h3h4](z, z) = g[−h1,−h2,−h3,−h4](z, z), (8.20)

where we used the notation f (z, z) ≡ ( f (z, z))∗, from which it follows that

g[h1h2h3h4](z, z) = g[h1h2h3h4](z, z). (8.21)

In other words, the functions g[h1h2h3h4](z, z) must have real coefficients in a Taylor
series expansion in powers of z and z.

6This definition differs from the one based on spinor polarizations in [1] by a numerical factor.
7Reality of 〈TTTT〉 follows from a combination of space parity and Euclidean Hermitian conju-

gation.



351

8.2.2.2 Permutation invariance

The 4-point function 〈T (w1, x1) · · ·T (w4, x4)〉must be invariant under permutations
of the four operators. Permutations that change the cross-ratios z, z lead to non-
trivial crossing equations that we explore later. However, permutations that leave
z, z invariant, which we call “kinematic permutations,” give constraints on tensor
structures alone [1, 75]. In our case, the group of kinematic permutations is (in
cycle notation)

Π
kin = {id, (12)(34), (13)(24), (14)(23)} = Z2 × Z2. (8.22)

As shown in [1], Πkin-invariant tensor structures are in one-to-one correspondence
with

*.
,

4⊗
i=1

ResO(3)
O(1)2

++/
-

Πkin

, (8.23)

whereΠkin acts on tensor factors in the natural way, and (ρ)G denotes theG-invariant
subspace of ρ. These can be counted using

(ρ⊗4)Z2×Z2 = ρ4 	 3(∧2ρ ⊗ S2ρ), (8.24)

where 	 represents the formal difference in the character ring. Plugging in ρ =

3 •+ ⊕ 2 •− to (8.24), we find

((3 •+ ⊕ 2 •−)⊗4)Z2×Z2 = 97 •+ ⊕ 78 •−, (8.25)

so there are 97 permutation-invariant parity-even structures.

r1 r2 r3 r4

id 1 1 1 1
(12)(34) −(1 − z) −(1 − z) −(1 − z) −(1 − z)
(13)(24) z(1 − z) z(1 − z) z(1 − z) z(1 − z)
(14)(23) −z −z −z −z

Table 8.1: Permutation phases for a 4-point function of identical operators, computed
in [1].

To write the structures explicitly, we must be more specific about the action of
permutations on polarization vectors. A permutation π ∈ Πkin acts on a monomial
[hi] as

π : [hi] 7→ n(ri (π))hi [hπ(i)], (8.26)
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where n(x) =
√

x/x is a phase and the ri (π) are given in the table 8.1. Permutation-
invariant structures are given by symmetrizing with respect to this action:

〈h1h2h3h4〉z ≡
1

mh1h2h3h4

(
[h1h2h3h4]

+ n(1 − z)−h1+h2+h3−h4[h2h1h4h3]

+ n(z)h1+h2−h3−h4[h4h3h2h1]

+ n(z)h1+h2−h3−h4 n(1 − z)−h1+h2+h3−h4[h3h4h1h2]
)
, (8.27)

where mh1h2h3h4 is the number of elements Πkin which stabilize [h1h2h3h4]. We
have also added an index z to the symmetric tensor structures to indicate that they
depend on z and z. Here, it’s clear that independent Πkin-invariant structures are
in one-to-one correspondence with orbits of Z2 × Z2 when acting on quadruples
[h1h2h3h4]. Making a choice of representative for each of the 97 parity-even orbits,
we can write

g(z, z,wi) =
∑
hi/Z2

2∑
i hi even

〈h1h2h3h4〉z g[h1h2h3h4](z, z). (8.28)

Note that the functions g[h1h2h3h4](z, z) are the same as those appearing in (8.18).

8.2.2.3 Conservation

Imposing conservation of T µν (x) gives nontrivial differential equations relating the
functions g[h1h2h3h4](z, z). These equations can be solved up to some undetermined
functions of z, z that we call “functional degrees of freedom.” Conversely, after
imposing conservation, the functional degrees of freedom fix the entire correla-
tor (modulo boundary terms that we discuss below). Thus, an independent set
of crossing-symmetry equations should make reference to functional degrees of
freedom alone.

In [75], it was shown that there are 5 functional degrees of freedom in a 4-point
function of stress tensors in 3d. We can obtain the number 5 with a simple group-
theoretic rule from [1]. To account for conservation, we simply replace

Res O(3)
O(1)2

+ → Res O(2)
O(1)2 = •

+ ⊕ •− (8.29)

in (8.23). Here, O(2) can be interpreted as the little group of a massless particle
in 4 dimensions, and 2 on the right-hand side of the arrow represents the spin-2
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representation of O(2). Plugging ρ = •+ ⊕ •− into (8.24), we find 5 •+ ⊕ 2 •−, so
there are indeed 5 parity-even functional degrees of freedom.

Let us see more explicitly how these 5 degrees of freedom come about. Because
the permutation group Πkin acts freely on the four points, it suffices to impose
conservation at one of the points, say x2. The conservation equation is

Dw2 ·
∂

∂x2
〈T (w2, x2) · · ·〉 = 0, (8.30)

where Dw is the Todorov operator (8.11). Restricting to the conformal frame
configuration (8.13), this gives8

*
,

(
3
2
− ω∂ω

)
∂ω∂z +

(
3
2
− ω∂ω

)
∂ω∂z +

iD3
wL23

z − z
+
-
g(z, z,wi) = 0, (8.31)

where

L23 = i
∑

k

(
ω0

k

(
∂ωk
− ∂ωk

)
+

1
2

(ωk − ωk )∂ω0
k

)
(8.32)

is the generator of rotations in the 2-3 plane acting on polarization vectors. In (8.31),
ω,ω, ω0 refer to ω2, ω2, ω

0
2, respectively. The last term in the conservation equation

is naively singular at z = z. However, the singularity will be cancelled by zeros in
the action of L23. These complications stem from the fact that z = z is a locus of
enhanced symmetry, where the little group becomes O(2) instead of O(1). We will
study these issues in more detail below.

Following [75], we can solve (8.31) by thinking of one of the directions in the z-z
plane as “time" t and the other as “space” ξ and integrating away from a constant
time slice. The conservation equation then has the structure

(A∂t + B∂ξ + C)g = 0, (8.33)

where A, B,C are linear operators on the space of tensor structures. The number of
functional degrees of freedom is the dimension of the kernel of A.

In our case, it is convenient to choose z as the time direction, with z as the space
direction. The operator A is then Az =

(
3
2 − ω2∂ω2

)
∂ω2 , which vanishes on any

structure that is independent of ω2. This restricts the helicity h2 to be either 1 or
8The Todorov operator in the first two terms simplifies because of our choice of tensor struc-

tures (8.17), which is at most linear in ω0.
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2. Because permutations Πkin act freely, all helicities must be either 1 or 2, so the
kernel of Az is spanned by the five structures

〈2222〉z, 〈1111〉z, 〈1212〉z, 〈1122〉z, 〈2112〉z . (8.34)

When integrating the conservation equation, we can set the coefficients of these
structures to anything we like. In practice, it will be useful to use a slightly different
basis of functional degrees of freedom. Let

〈h1h2h3h4〉
±
z =

1
2

(
〈h1h2h3h4〉z ± 〈−h1,−h2,−h3,−h4〉z

)
, (8.35)

and define the corresponding coefficient functions

g±[h1h2h3h4](z, z) = g[h1h2h3h4](z, z) ± g±[−h1,−h2,−h3,−h4](z, z). (8.36)

Equation (8.19) implies

g±[h1h2h3h4](z, z) = ±g±[h1h2h3h4](z, z). (8.37)

We will take the functions g+[h1h2h3h4](z, z) as our functional degrees of freedom.
Fixing these functions is sufficient to remove ambiguities when integrating the
conservation equation in the z-direction. By working in a Taylor expansion in z, z,
it is easy to argue that fixing g+[h1h2h3h4](z, z) removes ambiguities when integrating
in any direction. In particular, later we will integrate the conservation equation in
the x2 = Im z direction.

As explained in [75], in order to consistently integrate (8.33) away from a spatial
slice, the initial data might need to satisfy additional constraints. Suppose N is a
matrix such that N A = 0. Acting with N on (8.33), we obtain

(N B∂ξ + NC)g = 0. (8.38)

This constraint turns out to be first class, meaning that we only need to impose it on
the initial data. Our initial slice will be the line z = z. Because this is a locus of
enhanced symmetry, we must take care while analyzing the conservation equation
around it.

8.2.2.4 Regularity and boundary conditions

For numerical bootstrap applications, wewould like towrite the crossing equations in
a Taylor series expansion around the point z = z = 1

2 . The line z = z corresponds to
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the four points xi becoming collinear, which means the stabilizer group is enhanced
from O(1) → O(2). Since the tensor structures have to be invariant under the
stabilizer group, we can see that there are boundary conditions at z = z which the
functions g[h1h2h3h4] have to satisfy in a well-defined correlator. As we will now
show, smoothness of the correlator places further constraints on the Taylor expansion
of g[h1h2h3h4] around this locus.

Consider the 4-point function after fixing x1, x3, x4, but before rotating x2 into the
1-2 plane,

g(x2,wi) = 〈T (w1, 0)T (w2, x2)T (w3, e)T (w4,∞)〉. (8.39)

Here, e = (1, 0, 0) is a unit vector in the 1-direction. We want the correlator to
be smooth in x2. In particular, it should have a Taylor expansion in the directions
orthogonal to e,

g(x2,wi) =
∞∑

n=0,`=0
g
µ1···µ`
n (wi, x)yµ1 · · · yµ` y

2n, (8.40)

where yµ = (x2)µ − eµ(x2 · e) is the projection of x2 onto the directions orthogonal
to e, and x = e · x2. The coefficient functions gµ1···µ`

n (wi, x) are symmetric tensors of
the stabilizer groupO(2), built out of polarization vectors. Let us count them. Let 0±

denote the parity-even/odd scalar of O(2), and let ` denote the spin-` representation
of O(2). Each operator transforms in the representation

ρ = Res O(3)
O(2)2

+ = 2 ⊕ 1 ⊕ 0+. (8.41)

Although Z2 × Z2 permutations act in a way that depends on x and yµ, the leading-
order in y action is simply the obvious permutation of polarization vectors, because
the phases n(ri (π)) are trivial on the line z = z.9 Thus, for the sake of counting
new permutation-invariant tensor structures at each order in yµ, we can use (8.24),
which gives

(ρ⊗4)Z2×Z2 = 22 0+ ⊕ 3 0− ⊕ . . . . (8.42)

Equation (8.40) implies that a polarization structure transforming in ` of O(2) can
appear starting at order ` in the y-expansion. From (8.42) we see that at zeroth order
in y, there are 22 parity-even permutation-invariant structures that can appear (out

9In fact, as shown in [1], we can define polarization vectors w̃i = wi + O(y), which permute
with trivial phases to all orders in y. We can then use these polarization vectors in (8.40).
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of 97 total).10 In order for the 4-point function to be well-defined at z = z, only the
coefficients of these 22 structures can be nonzero.

It turns out that thanks to the conservation equation, this is the only condition that
we have to worry about. In general, since (8.42) gives O(2) spins up to 8, in the
absence of the conservation equation we would have to write similar conditions for
the first 8 orders in Im z. However, as the derivation above shows, these constraints
follow from O(2) invariance. In particular, the conservation equation is compatible
with (8.40) in the sense that it produces a recursion relation for the coefficients gn.
Therefore, as long as the zeroth order constraints are satisfied, higher orders follow
automatically.11 We have explicitly verified this by working order-by order in a
Taylor expansion in Im z.

Thus, our initial conditions include 22 undetermined functions of a single variable
Re z. We can take 5 of these to be the restrictions of our two-variable degrees of
freedom to the z = z line, g+[h1h2h3h4](Re z,Re z) where the hi are given in (8.34).
Even though the structures 〈h1h2h3h4〉

+
z do not lie in the 22-dimensional subspace

ofO(2) singlets, we can choose the coefficients of other structures to cancel the non-
O(2)-invariant parts. The projection of the 5 bulk structures onto theO(2)-invariant
subspace at Im z = 0 is five-dimensional. Thus, there are exactly 22 − 5 = 17
remaining one-variable degrees of freedom.

Finally, the constraints (8.38) give 8 independent first-order equations that these
univariate functions must satisfy. Thus, in addition to 5 two-variable degrees of
freedom, we have 9 one-variable degrees of freedom and 8 integration constants.
We are free to choose these however we like, as long as the projection of the
corresponding structures to the O(2)-invariant subspace is 22-dimensional.

8.2.2.5 Summary and crossing equations

Altogether, we choose the following functions as our undetermined degrees of
freedom.

10Incidentally, 22 is also the number of functional degrees of freedom in a 4-point function of
stress tensors in 4d. This is because the stabilizer group of a generic configuration of 4-points in 4d
is O(2), while the little group for massless particles in 5d is O(3). Thus, the representation theory
computation is the same as the one here (see [1, 75]).

11One should make sure that the choice of independent two-variable degrees of freedom does
not contradict the regularity constraints. Or, equivalently, that these degrees of freedom are indeed
independent from the point of view of the recursion relation for (8.40). We have checked that it is
true for our choice of two-variable degrees of freedom.
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• Two-variable degrees of freedom:

g+[2222](z, z), g+[1111](z, z), g+[1212](z, z),

g+[1122](z, z), g+[2112](z, z). (8.43)

• One-variable degrees of freedom:

g+[0000](z), g+[0101](z), g+[0202](z),

g+[0112](z), g+[1012](z),

g+[0011](z), g+[1001](z),

g+[0,0,−1,1](z), g+[−1,0,0,1](z). (8.44)

• Integration constants:

g+[0022](1/2), g+[2002](1/2),

g+[0,1,−1,2](1/2), g+[−1,1,0,2](1/2),

g+[0,−1,1,2](1/2), g+[1,−1,0,2](1/2),

g+[1,−1,−1,1](1/2), g+[−1,−1,1,1](1/2). (8.45)

The statement of crossing symmetry is simply

g+[h1h2h3h4](z, z) = g+[h3h2h1h4](1 − z, 1 − z). (8.46)

We have chosen the set of helicities in our independent degrees of freedom (8.43),
(8.44), and (8.45) to be invariant under h1 ↔ h3. Thus, crossing symmetry becomes
a constraint on these degrees of freedom alone.

As usual, we Taylor-expand the crossing equations around z = z to obtain the
following system, parametrized by n ≤ n, n + n ≤ Λ.

• Two-variable equations:

∂n
z ∂

n
z g
+
[2222](1/2, 1/2) = 0, (n + n odd),

∂n
z ∂

n
z g
+
[1111](1/2, 1/2) = 0, (n + n odd),

∂n
z ∂

n
z g
+
[1212](1/2, 1/2) = 0, (n + n odd),

∂n
z ∂

n
z g
+
[1122](1/2, 1/2) = (−)n+n∂n

z ∂
n
z g
+
[2112](1/2, 1/2). (8.47)
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• One-variable equations

∂n
z g
+
[0000](1/2) = 0, (n odd),

∂n
z g
+
[0101](1/2) = 0, (n odd),

∂n
z g
+
[0202](1/2) = 0, (n odd),

∂n
z g
+
[0112](1/2) = (−)n∂n

z g
+
[1102](1/2),

∂n
z g
+
[0011](1/2) = (−)n∂n

z g
+
[1001](1/2),

∂n
z g
+
[0,0,−1,1](1/2) = (−)n∂n

z g
+
[−1,0,0,1](1/2). (8.48)

• Integration constants

g+[0022](1/2) = g+[2002](1/2),

g+[0,1,−1,2](1/2) = g+[−1,1,0,2](1/2),

g+[0,−1,1,2](1/2) = g+[1,−1,0,2](1/2),

g+[1,−1,−1,1](1/2) = g+[−1,−1,1,1](1/2). (8.49)

Note that the analysis of the conservation constraints was necessary to make sure
that the crossing equations we write are independent. We have explicitly verified
that this indeed is the case by Taylor expanding to some finite order Λ and checking
that, modulo the conservation equation, the full set of crossing equations is indeed
equivalent to (8.47)-(8.49) and that there are no linear dependencies among the
equations (8.47)-(8.49).

8.3 Conformal blocks
We compute the conformal blocks for 〈TTTT〉 using the approach of [61]. In this
approach, the conformal blocks for external operators with large spins are obtained
by acting with differential operators on simpler conformal blocks, known as seed
blocks, exchanging the same intermediate representation. Since in our case we only
need the conformal blocks for the exchange of traceless symmetric operators, we
can take the scalar blocks as our seeds. This is exactly the case studied in [61].

Consider the contribution of a single primary state |Oα〉 and its descendants P{A} |Oα〉

to the 4-point function,∑
{A},{B}

〈T (w4, x4)T (w3, x3)P{B} |O β〉Q β{B},α{A}〈O
α |K {A}T (w2, x2)T (w1, x1)〉.

(8.50)
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Here α and β are indices in the SO(3) irrep of O, {A} and {B} are multi-indices
such that

P{A} = PA1 · · · PAn, (8.51)

and Qα{A}, β{B} is the matrix inverse to 〈O β |K {B}P{A} |Oα〉. The inner products
in (8.50) are derivatives of the 3-point functions

〈O β |T (w2, x2)T (w1, x1)〉 = λ (a)
TTO〈O

β |T (w2, x2)T (w1, x1)〉(a), (8.52)

〈T (w4, x4)T (w3, x3) |Oα〉 =
(
λ (a)

TTO

)∗
(a)〈T (w4, x4)T (w3, x3) |Oα〉, (8.53)

where λ are the OPE coefficients and the objects multiplying them are the tensor
structures. We choose our tensor structures so that the OPE coefficients λTTO are
real. The sum over contributions (8.50) can be then written as

〈T (w4, x4)T (w3, x3)T (w2, x2)T (w1, x1)〉 =
∑
O

λ (a)
TTOλ

(b)
TTOGO,ab(wi, xi), (8.54)

where we defined the conformal block

GO,ab(wi, xi) ≡∑
{A},{B}

(b)〈T (w4, x4)T (w3, x3)P{B} |O β〉Q β{B},α{A}〈O
α |K {A}T (w2, x2)T (w1, x1)〉(a) .

(8.55)

Note that if O is parity-even then both a and b should correspond to parity-even
structures, and if O is parity-odd then both a and b should correspond to parity-odd
structures. The corresponding conformal blocks will have different properties in
what follows, and we hence refer to these cases as even-even and odd-odd respec-
tively.

Themain observation in [61] was that one can find conformally-invariant differential
operators D (a)

i j (wi,w j ) acting on a pair of points such that12

〈Oα |T (w2, x2)T (w1, x1)〉(a) = D
(a)
12 (w1,w2)〈Oα |φ2(x2)φ1(x1)〉,

(b)〈T (w4, x4)T (w3, x3) |O β〉 = D
(b)
34 (w3,w4)〈φ4(x4)φ3(x3) |O β〉. (8.56)

Here in the right-hand side the operators act on some standard scalar 3-point func-
tions,13 which we choose to be, in the formalism of [53],

〈φ1φ2O3〉 ≡
V `3

3

X
∆1+∆2−∆3−`3

2
12 X

∆2+∆3−∆1+`3
2

23 X
∆3+∆1−∆2+`3

2
31

, Xi j = −2Xi · X j . (8.57)

12The existence of the D (a)
i j can be understood in terms of “weight-shifting operators" [3].

13Of course, this relation is purely kinematical (i.e., between tensor structures), and the operators
φi do not actually exist in the physical theory.
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Conformal invariance of these differential operators means that the same rela-
tions (8.56) hold even if we insert P{B} or K {A} in these 3-point functions. We
thus find

Ga,b(wi, xi) = D
(a)
12 (w1,w2)D (b)

34 (w3,w4)Gscalar(xi), (8.58)

where the scalar block is given by

Gscalar(wi, xi) =
∑
{A},{B}

〈φ4(x4)φ3(x3)P{B} |O β〉Q β{B},α{A}〈O
α |K {A}φ2(x2)φ1(x1)〉.

(8.59)

This relation can also be seen directly from the OPE as discussed in [61]. The
problem of calculating conformal blocks then reduces to three subproblems:

1. Construction of the conformally-invariant differential operators D (a)
i j which

satisfy (8.56).

2. Computation of the scalar conformal blocks Gscalar.

3. Performing the differentiation in the right-hand side of (8.58).

8.3.1 Differential basis
Construction of the differential operators D (a)

i j has been discussed in [61]. Let us
first consider the operators D (a)

12 and restrict ourselves to parity-even structures.
They are constructed as products of the basic operators

D11, D12, D21, D22, H12, (8.60)

where the first order operators Di j increase spin at position i by 1 while decreasing
the scaling dimension at position j by 1. The operator H12 is just multiplication by
the structure H12 and it increases the spin and the scaling dimension by 1 at both
positions. These operators do not commute, but their algebra closes, so that one can
consider the following general ansatz,

D
(a)
12 =

∑
ni j,mk

c(a)
n12,n23,n13,m1,m2 Hn12

12 Dn13
12 Dn23

21 Dm1
11 Dm2

22 Σ
n12+n23+m1
1 Σ

n12+n13+m2
2 , (8.61)

where the parameters in the sum are constrained so that the resulting operator
increases spin by 2 at both points. Here Σi is a formal operator which increases the
scaling dimension at position i by 1. This is needed because various terms in the
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sum change the scaling dimensions by different amounts. Accordingly, (8.58) should
actually contain several types of scalar blocks differing by the scaling dimensions of
the external operators. We will return to this issue when we discuss the calculation
of these scalar blocks.

One can check that the differential basis ansatz (8.61) contains 14 different operators.
This is the same as the number of algebraic (not yet conserved or symmetric) tensor
structures for 〈TTO`〉 one can build out of Hi j and Vi for ` ≥ 4. We can therefore
find a change of basis between the algebraic and differential bases.

We can then easily formulate the conservation and the permutation symmetry con-
straints for 〈TTO`〉 in the algebraic basis and then translate these constraints to the
differential basis. This results in a system of linear equations for the coefficients c,∑

ni j,mk

Mα
ni j,mk

(∆)c(a)
ni j,mk

= 0. (8.62)

The coefficients in this equation are rational functions of the dimension ∆ of the
exchanged primary O, and thus the solutions are rational functions of ∆ as well.
Consistently with the discussion in section 8.2.1, we find that there exist 2 solutions
for even ` ≥ 4. To simplify the numerical evaluation of (8.58), we choose a basis of
the solutions c(a)

ni j,mk
which is polynomial in ∆ of the lowest possible degree. These

degrees are 6 and 4 for the two solutions.

In the above discussion we have glossed over a slight subtlety that in the algebraic
basis in 3d, there is one tensor structure (8.4)which is redundant and can be expressed
in terms of other structures, so the number of independent structures is actually 13.
There is also a corresponding relation in the differential basis. If we were to ignore
this relation, we would find more solutions to the conservation constraints. Taking
it into account, we can use it to simplify the form of the solutions c(a)

ni j,mk
.

A similar procedure works for ` ≤ 4, the only difference being that there appear new
relations in the differential basis (while the algebraic basis simply becomes smaller).
These relations are easily controlled by the transformation matrix which expresses
the differential basis structures in terms of the algebraic ones. We then use these
relations to find the simplest form of the non-redundant solutions of (8.62).

The parity-odd structures can be treated in a similar way, except that we generally
findmore redundancies than in the parity-even case. We describe the construction of
parity-odd differential basis in appendix G.1, together with the explicit expressions
for the coefficients c(a)

ni j,mk
. In both the parity-even and the parity-odd cases the
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operators D (a)
34 can be obtained by applying a simple permutation to the operators

D
(a)
12 .

8.3.2 Computing the scalar blocks
Since (8.61) involves the formal dimension-shifting operators Σ1,2, there are several
scalar conformal blocks entering (8.58), which differ by the dimensions ∆i of the
external scalars.

Let us analyze the dimensions of the scalar at positions 1 and 2. The exponents
in (8.61) are constrained by the spins of the stress tensors

n12 + n13 + m1 = n12 + n23 + m2 = 2. (8.63)

On the other hand, the dimensions of the scalar operators in each term are given by

∆1 = ∆T + n12 + n23 + m1, (8.64)

∆2 = ∆T + n12 + n13 + m2. (8.65)

It follows that the sum

∆1 + ∆2 = 2∆T + 4 = 10 (8.66)

is the same for all the terms. On the other hand, the difference is

∆12 = ∆1 − ∆2 = n23 − n13 + m1 − m2 = 2(m1 − m2), (8.67)

and one can see that it takes all even values −4 ≤ ∆12 ≤ 4. The same is true for ∆34.

The analysis for parity-odd operators is similar, with the result that ∆1 + ∆2 = 9,
while ∆12 assumes all odd values −3 ≤ ∆12 ≤ 3. The same is true for ∆34.

Note that the scalar blocks essentially depend only on the differences ∆12 and ∆34.
Furthermore, there is aZ2×Z2 group of permutations of the external operators which
preserves the OPE s-channel and the cross-ratios,14 and thus acts in a simple way
on the conformal blocks. The elements of this group change the scaling dimensions
of the scalar blocks according to

(12)(34) : ∆12 → −∆12, ∆34 → −∆34, (8.68)

(13)(24) : ∆12 ↔ ∆34, (8.69)

(14)(23) : ∆12 ↔ −∆34. (8.70)

14Of course, we can also use the permutations which change the cross-ratios, but in practice it is
easier to have all scalar blocks with the same arguments.
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We thus only need to compute the scalar blocks with ∆12 and ∆34 in a fundamental
domain for these transformations, and then all the other blocks can be easily inferred.
It is easy to check that a fundamental domain is given by

∆12 ≥ |∆34 |. (8.71)

The resulting fundamental set of the parameters ∆12, ∆34 for the scalar blocks is

●

● ● ●

● ● ● ● ●

■ ■

■ ■ ■ ■

-4 -2 2 4
Δ34

1

2

3

4

Δ12

Figure 8.1: Parameters of scalar conformal blocks for the even-even (blue dots) and
odd-odd (red squares) cases.

shown in figure 8.1. There are 9 scalar blocks required for the computation of even-
even 〈TTTT〉 blocks, and 6 scalar blocks required for the computation of odd-odd
〈TTTT〉 blocks.15 In practice we compute them efficiently using the pole expansion
of [36, 49] evaluated on the diagonal z = z combined with the recursion relation
implied by the Casimir equation to evaluate scalar block derivatives away from the
diagonal.

8.3.3 Applying the differential operators
To finish the calculation of the stress-tensor conformal blocks, it is necessary to
apply the differential operators D (a)

i j to the scalar blocks. The embedding-space
definition of these operators, given in [61], seems inadequate for this purpose because
the embedding-space 4-point tensor structures in 3d contain many degeneracies.
Therefore, it is convenient to reformulate these operators directly in the conformal
frame basis constructed in section 8.2.2.1.

15Note that by using the dimension-shifting differential operators [3, 120] we can reduce this set
to just one scalar conformal block for each parity.
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The first step is to convert the embedding-space expression for the differential
operators to explicit expressions in 3 dimensions. For this purpose, we consider an
explicit uplift of 3 dimensional primary operators to embedding space operators,

O(Z, X ) =
1

(X+)∆
O

(
Z µ − Z+

X µ

X+
,

X µ

X+

)
, (8.72)

where on the right-hand sidewe have the 3d operatorO(w, x). Applying embedding-
space differential operators to this expression, we reproduce on the right-hand side
the corresponding differential operators in 3 dimensions. Choosing a different
uplift will yield the same result due to the consistency conditions imposed on the
embedding space differential operators.

With the 3-dimensional expressions at hand, we can understand the action of the
differential operators in the conformal frame. In the conformal frame, some of
the operators are placed at fixed positions. In order to apply derivatives in these
constrained directions, we simply solve the equations

4∑
k=1

Lk AB〈TTTT〉 = 0 (8.73)

for these derivatives. Here Lk are the conformal generators acting on point k. For
example, consider the equation corresponding to LAB = D the dilatation operator,

4∑
k=1

(xk ·
∂

∂xk
+ ∆T )〈TTTT〉 = 0. (8.74)

Here ∆T = 3 is the scaling dimension of T . We give expressions for the other
generators in appendixG.2. Evaluating this equation in the conformal frame16 (8.13)
we find

(z∂z + z∂z +
∂

∂x1
3
+ 6)g(z, z,wi) = 0. (8.75)

Here ∂
∂x1

3
g(z, z,wi) should be understood as ∂

∂x1
3
〈TTTT〉 evaluated in conformal

frame. This allows us to conclude
∂

∂x1
3
g(z, z,wi) = −(z∂z + z∂z + 6)g(z, z,wi). (8.76)

By using (8.73) with LAB equal to translations, special conformal transformations,
and rotations we find 3 + 3 + 3 = 9 more equations which allow us to solve for the

16And taking into account that we should replace x4 ·
∂
∂x4

by −2∆T since we put operator 4 at
infinity. This has to do with the fact that the correlator decays as x−2∆T

4 .
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remaining 9 derivatives – all derivatives in x1 and x4, 2 unknown derivatives in x3

and 1 unknown derivative in x2.17 Note that the equations for special conformal
and rotation generators will involve derivatives in wi in addition to z and z (see
appendix G.2). In practice we solve these equations in Mathematica. We do not
write out the solution explicitly since it is rather complicated. Note that if we need
higher-order derivatives, we can differentiate (8.73) and proceed analogously.

As a result, taking into account also (8.18), we can write for any 3d differential
operator D

D
(
[h1h2h3h4]g[h1h2h3h4](z, z)

)
=

∑
h′i

[h′1h′2h′3h′4]D
[h′1h′2h′3h′4]
[h1h2h3h4]g[h1h2h3h4](z, z),

(8.77)

where D
[h′i]
[hi] are differential operators in z and z. In this equation, we can keep the

spins `i and the parameters hi as variables, in which case h′i differ from hi by finite
shifts. Using in place of D the basic differential operators (8.60) and their parity-odd
analogs, we obtain their counterparts in the conformal frame.

This allows us to efficiently compute the more complicated compositions (8.61)
directly in conformal frame without encountering any redundancies in tensor struc-
tures in intermediate steps. In the end, we find expressions for the 〈TTTT〉 blocks
of the form

(
G∆,`,ab

)
[h1h2h3h4]

(z, z) =
Nscalar∑
i=1

∑
m,n

ai,mn,ab
[h1h2h3h4](∆, `, z, z)∂m

z ∂
n
z G

∆
(i)
12 ,∆

(i)
34

∆,`
(z, z), (8.78)

where a are some rational functions of z, z, `, and polynomial in ∆,18 while ∆(i)
12

and ∆(i)
34 are the parameters of the scalar conformal blocks from the fundamental

region (8.71). The derivative order is m+n ≤ 8 for even-even blocks and m+n ≤ 10
for odd-odd blocks; Nscalar is 9 and 6 respectively.

The functions a contain powers of (z − z) in their denominators, but these get
canceled when one takes into account that the scalar blocks are symmetric under
z ↔ z. For example, if we rewrite the above expression in coordinates z + z and
(z−z)2, then the functions a manifestly have only the OPE singularities. This is to be
expected, since the functions entering the decomposition (8.18) must have the same

17We have just found 1 derivative in x3 from LAB = D and the two derivatives in x2 are simply
the z and z derivatives.

18Because of our polynomial choice of the solutions c(a)
ni j,mk

to (8.62).
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singularities as the physical correlator. Therefore, we can take further derivatives
directly in this expression, and then evaluate it at z = z = 1/2 to find the derivatives
of 〈TTTT〉 blocks in terms of linear combinations of the derivatives of scalar blocks
with coefficients polynomial in ∆. Substituting rational approximations for the
derivatives of the scalar blocks then immediately yields rational approximations for
〈TTTT〉 blocks suitable for use in SDPB [35].

8.4 Numerical bounds
In this section we discuss how to use the crossing equations and conformal blocks
derived in the previous sections to compute numerical bounds on the OPE coeffi-
cients and scaling dimensions appearing in the T × T OPE. Further details of our
numerical implementation are given in appendix G.3.

8.4.1 Initial comments: CT and θ
To begin, let us return to the conformal block decomposition of the stress-tensor
4-point function in a general 3d CFT,

〈TTTT〉 = λ2
TT1G1 +

1
CT

λ (a)
TTTλ

(b)
TTT GT,ab +

∑
O

λ (a)
TTOλ

(b)
TTOGO,ab, (8.79)

where we have explicitly separated the contribution of the identity operator and the
stress tensor itself. We have also assumed that the CFT in question possesses a
unique stress tensor. The factor 1

CT
comes from the fact that CT enters the 2-point

function of the canonically-normalized stress tensor T .

The OPE coefficient λTT1 of the identity operator is just the coefficient in the 2-
point function 〈TT〉, and thus is essentially the central charge CT . At the same
time, the OPE coefficients for the stress tensor itself are given by λ (1)

TTT = nB and
λ (2)

TTT = nF . Due to theWard identity constraint (8.8), these three coefficients are not
independent. It is therefore convenient to introduce the following parametrization,19

nB = CT
cos θ

sin θ + cos θ
, (8.80)

nF = CT
sin θ

sin θ + cos θ
. (8.81)

Note that θ = tan−1(nF/nB) is π-periodic, so we can assume that θ ∈ (−π/4, 3π/4),
where the denominators are positive. We also renormalize the 4-point function

19Another, perhaps more natural, parametrization would be nB = CT cos2 θ ′, nF = CT sin2 θ ′.
However this parametrization doesn’t allow us to numerically test negative values of nB and nF so
we adopt the one in the text in order to probe the conformal collider bounds.
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〈TTTT〉 so that CT appears only in one of the terms,

C−2
T 〈TTTT〉 = G1 +

1
CT
Θ

abGT,ab +
∑
O

λ̂ (a)
TTO λ̂

(b)
TTOGO,ab

= G1 +
1

CT
Θ

abGT,ab +
∑
∆,ρ

Mab
∆,ρG∆,ρ,ab, (8.82)

where λ̂ (a)
TTO = C−1

T λ (a)
TTO and the positive-semidefinite matrix Θab is given by

Θ =
1

(sin θ + cos θ)2
*.
,

cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

+/
-
. (8.83)

We have also defined the positive-semidefinite OPE matrix Mab
∆,ρ

to be the sum
of λ̂ (a)

TTO λ̂
(b)
TTO over the operators O with scaling dimension ∆ and in the O(3)

representation ρ. Of course, the operators appearing in the T × T OPE are singlets
of global symmetries and we generically do not expect there to be any degeneracies.
Therefore, we expect that all matrices M∆,ρ have rank 1. However, without additional
assumptions the operators are allowed to have arbitrarily close scaling dimensions,
which is numerically indistinguishable from a degeneracy in the spectrum. In other
words, even if we had a way of constraining all M∆,ρ to have rank 1, numerically
this would make no difference unless we also input assumptions about gaps between
operators. The stress-tensor four-point function written in the form (8.82) is suitable
for numerical analysis using the standard methods which we review in appendix G.3.
Here, let us make some initial comments about our assumptions and on the kind of
bounds we can expect to find.

Note that C−1
T Θ is essentially a special case of the OPE matrices M∆,ρ. We only

consider the theories with a unique spin-2+ conserved operator, and this is reflected
in the fact that we explicitly assumeΘ to have rank 1 by writing (8.83). Unlike in the
case of generic M∆,ρ, this constraint matters. Indeed, parity-even spin-2 operators
strictly above the unitarity bound only have a single OPE coefficient and thus are
clearly distinguishable from T even if their scaling dimension is arbitrarily close to
3. It is therefore more appropriate to think about T as an isolated operator.20

It is important to note that although this assumption on the form of Θ is non-trivial,
it does not necessarily imply that this CFT has a unique conserved spin-2+ operator.
Indeed, consider a decoupled system of any number N ≥ 2 of CFTs, all of which

20Although not completely appropriate — there is still a direction in the 3-dimensional space of
symmetric matrices Θ which can be “altered” by spin-2+ operators with ∆ = 3 + ε . This direction,
however, coincides with (8.83) only if θ → −π/4 + πk.
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satisfy (8.83) with the same value of θ. If the stress tensors in these theories are Ti,
then the stress tensor of the full system is

T =
N∑

i=1
Ti . (8.84)

We also have CT =
∑

i CTi . It is easy to check that 〈TTTT〉 in this system satis-
fies (8.82) and (8.83), even though each Ti is a distinct conserved spin-2+ operator.

This also shows that for any value of θ which is allowed by the crossing symmetry
of (8.82) the central charge CT is unbounded from above – we can simply take
N copies of the same CFT for arbitrarily large N . In the limit N → ∞, the
corresponding four-point function approaches that of the mean field theory (MFT).
The stress-tensor 4-point function in MFT is dual to the 4-point scattering of free
spin-2 massless particles in AdS4 and is given by Wick’s theorem,

〈TTTT〉 = 〈TT〉〈TT〉 + 〈TT〉〈TT〉 + 〈TT〉〈TT〉. (8.85)

In this theory CT is formally infinite. In other words, it gives a unitary solution to
crossing symmetry for which the second term in (8.82) vanishes. In particular, its
existence shows that any value of θ is formally allowed unless one excludes CT = ∞.

From the above discussion it follows that we cannot put upper bounds on CT or
constrain θ without extra assumptions which go beyond unitarity, parity invariance,
crossing symmetry and existence of a unique stress tensor. Importantly, this is not
a technical obstruction of the associated semidefinite problem. As we noted, T

is effectively an isolated operator and thus there is no a-priori problem with such
bounds. The problem is more physical in nature and ultimately due to existence
of the MFT. We will repeatedly see that as soon as MFT is excluded by additional
assumptions, these bounds become possible.

8.4.2 General theories
Given that MFT has infinite central charge, we can hope to exclude some values of
θ by assuming that CT is finite. One way this can be possible is if there exists a
θ-dependent lower bound on CT which diverges for some values of θ. Of course,
numerically we might not reproduce the divergence but instead see a finite bound
which grows as we improve our numerical approximation (i.e. increase the derivative
order Λ).

This is indeed what happens. In figure 8.2 we show a series of lower bounds on CT

as a function of θ for derivative orders Λ = 3, . . . , 19, with no assumptions beyond
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unitarity, crossing symmetry, parity conservation, and the existence of a unique
stress tensor. The behavior of the bound differs dramatically depending on whether
θ ∈ [0, π/2] or not. For θ ∈ [0, π/2], the bound appears to converge to a finite value.
Strikingly, for θ < 0 or θ > π/2 the bound diverges with growing Λ.
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CT lower bounds, Λ=3,...,19

Figure 8.2: A series of lower bounds on CT as a function of θ, valid in any unitary
parity-preserving 3d CFT. The shaded region is allowed.

These numerical results strongly suggest that for unitary parity-preserving theories
with finite CT , θ necessarily lies in the interval [0, π/2]. Note that θ ∈ [0, π/2]
corresponds to nB, nF ≥ 0, which is equivalent to the conformal collider bounds [76,
287]. We have thus essentially recovered the stress-tensor conformal collider bounds
using the numerical bootstrap.21 Note that the recent analytical proof [77] of the
conformal collider bounds uses the lightcone limit of the crossing equation. The
analysis of [31] suggests that numerical bootstrap techniques at high derivative
order can probe the lightcone limit of the crossing equation (despite the fact that
the numerical bootstrap usually involves expanding the crossing equation around
a Euclidean point). Thus, it is perhaps unsurprising that we make contact with
analytical results at large Λ.

When the conformal collider bounds are saturated (nF = 0 or nB = 0), the theory
is expected to be free [288]. Our lower bounds at θ = 0, π/2 are consistent with the

21Similar conformal collider bounds for OPE coefficients of conserved currents were recovered
numerically in [41].
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existence of the free boson theory (θ = 0) and the free fermion theory (θ = π/2),
though they are not yet saturated by those theories. However, the bounds continue
to change as we increase the derivative order Λ. It is possible that at sufficiently
large Λ, our lower bound will become CB at each endpoint. We do not currently
have enough data to perform a reliable extrapolation to Λ = ∞ (as in, e.g. [140]).

8.4.3 Scalar gaps
8.4.3.1 Parity-even scalar gaps

Let us now explore how the bounds on CT and θ change when we impose further
restrictions on the CFT data. It is natural to ask: what is the allowed space of (θ,CT )
in theories with no relevant parity-even scalars in the T × T OPE — i.e. CFTs in
which no tuning would be required if all global symmetries (including parity) were
preserved microscopically. Denoting the dimension of the lowest-dimension parity-
even scalar by ∆even, we show a bound on theories with ∆even ≥ 3 in figure 8.3. The
free fermion at θ = π is allowed (the lowest-dimension parity-even singlet in the
free-fermion theory is ψ2∂µψ

α∂µψα, which has ∆ = 6), whereas the free boson is
of course excluded. The lower bound on CT falls quickly as θ varies between 0 and
π, dipping below CB only for a small range θ ∈ [1.3, π].
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CT lower bound, Δeven ≥ 3.0

Figure 8.3: A lower bound on CT as a function of θ in 3d CFTs with no relevant
parity-even scalars.

As we increase the imposed gap in the parity-even scalar sector, ∆even ≥ ∆
min
even, the
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lower bounds on CT get stronger, while still remaining consistent with the existence
of the free fermion up to ∆min

even = 6. We illustrate these bounds in figure 8.4. Note
that it is not possible to place upper bounds on CT when ∆min

even < 6, because of the
existence of MFT, which has ∆even = 6 (associated with Oeven = TµνT µν) and infinite
CT . However, when ∆min

even > 6, upper bounds become possible, and indeed CT and
θ become confined to a small island in the vicinity of the free fermion point. For
example, when ∆min

even = 6.8, we find θ ∈ [1.54, 1.57] and CT/CB ∈ [1.2, 2.6]. It is
interesting to ask whether any CFT realizes these values. For even larger values of
∆min
even, the allowed region disappears.
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Figure 8.4: Bounds on (θ,CT ) with varying gaps in the parity-even scalar sector.
When ∆min

even = 4.0, . . . , 6.0, we have a series of lower bounds on CT as a function of
θ. When ∆min

even > 6.0, we have closed islands which eventually shrink to zero size.

8.4.3.2 Parity-odd scalar gaps

Next we study the effect of a gap in the parity-odd scalar operators. In figure 8.5,
we show a series of bounds on CT as a function of θ, for various gaps in the parity-
odd scalar sector, ∆odd ≥ ∆

min
odd . The bounds are roughly a mirror image of those

in the previous subsection. For ∆min
odd = 2, . . . , 7, we find a series of increasingly

strong bounds pushing the allowed region towards smaller θ. When ∆min
odd > 7, our

assumption excludes MFT (which has Oodd = ε µνρT µσ∂νT ρ
σ, of dimension 7), and

it becomes possible to find both upper and lower bounds on CT . Indeed, we find
a series of islands (figure 8.6), which finally exclude the free-boson theory when
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Figure 8.5: Bounds on (θ,CT ) with varying gaps in the parity-odd scalar sector.
When the value of the gap ∆min

odd > 7, it becomes possible to find both upper and
lower bounds on CT as.

∆odd & 11.22 A common corner point of these islands is very close to the CT value
of the 3d Ising CFT. We return to this point in section 8.4.6, where we will see
that further imposing known gaps in the 3d Ising CFT slightly reduces this apparent
upper bound on θIsing.

Finally, note that these bounds imply that any CFT with a large parity-odd gap must
have a stress-tensor 3-point function close to the bosonic one, with θ < .023.

8.4.3.3 Scalar gaps in both sectors

In figure 8.7, we show a bound constraining the space of “dead-end" CFTs, i.e.
theories with no parity-preserving or parity-breaking relevant deformations. Strictly
speaking, our bound only assumes the absence of relevant scalar deformations that
are singlet under other global symmetries (so they are allowed to appear in the T ×T

OPE). We see from this plot that such theories must have CT & 2. In addition, for a
given CT , θ is constrained to lie towards the middle of the range [0, π/2].

For each of the parity-even and parity-odd sectors, we have seen that there exists a
maximal gap beyond which no CFT can exist (figures 8.4 and 8.6). In figure 8.8,

22The lightest parity-odd Z2-even scalar in the theory of a single free boson is the dimension-11
scalar εµνρφ(∂α∂β1∂β2∂µφ)(∂α∂νφ)(∂β1∂β2∂ρφ) + desc.
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Figure 8.6: Closed regions for (θ,CT ), given various large gaps in the parity-odd
scalar sector. The lower horizontal line shows the value of CT in the 3d Ising CFT.
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Figure 8.7: Lower bound on CT as a function of θ assuming no relevant scalar
operators.

we show the full space of allowed gaps in the both sectors. Along the axes, this plot
reproduces the gaps at which the islands disappear in figures 8.4 and 8.6. The full
bound shows several interesting features that approximately coincide with known
theories. Notable points include MFT at (∆even,∆odd) = (6, 7), the free Majorana



374

fermion at (6, 2), the free real scalar at (1, 11),23 and the N = ∞ limit of the
O(N ) models at (2, 7). We also see the maximal possible gaps ∆even ≤ 7.0 and
∆odd ≤ 11.78.

The known scaling dimension ∆ε = 1.412625(10) [8] of the energy operator ε in
the 3d Ising CFT is shown in figure 8.8 by a vertical line. We see that while most
features seem to be related to free theories, there appears to be a sharp transition in
the upper part of the allowed region, very close to the Ising line. We return to this
point in section 8.4.6.

There is also a feature near (∆even,∆odd) = (7, 1), which does not seem to correspond
to a known theory. Such a theory, if exists, is constrained by the bound in figure 8.4
to have CT/CB ∼ 2 and a value of θ very close to but lower than the free fermion
value, 1.55 < θ < 1.563. Since this putative theory requires a very light parity-odd
operator Oodd, such a large parity-even gap should be excluded by the bootstrap
constraints for 4-point functions of Oodd unless the Oodd × Oodd OPE contains an
additional parity-even scalar not present in the T × T OPE. We leave it as an open
question whether this can occur and if this region has any physical significance.

Note that every point which is allowed in this plot must be allowed together with
a rectangular region to its lower left. Because of this, a large part of the allowed
region is due to existence of MFT. It is therefore interesting to study analogous
bounds under assumptions which would exclude the MFT. We leave this question
for future work.

8.4.4 Spin-2 gaps
Next we turn to imposing gaps in the spin-2 spectrum. First we ask how the gap until
the second parity-even spin-2 operator T ′ of dimension ∆2 affects the lower bounds
on CT . This is shown for gaps ∆2 ≥ 3, . . . , 6 in figure 8.9. We can see that such
gaps have a minimal effect on the lower bound. The gap ∆2 = 6 is special because
this dimension occurs for the operator T ′µν = TµσTσ

ν in a number of different CFTs,
including free theories, O(N ) models at large N , and MFT. Thus it is not surprising
that the full range of θ is still allowed at this gap and that the bound is not very
strong.

However, we expect that if the ∆min
2 is raised above 6, then we may be able to

start excluding MFT and large N theories by obtaining an upper bound on CT .
23Note that the fundamental field in a free scalar theory is charged under a Z2 symmetry and thus

does not appear in the T × T OPE.
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Figure 8.8: Bound on the allowed gaps in parity-even and parity-odd scalar sec-
tors (imposed simultaneously). The blue shaded region is allowed by the 〈TTTT〉
bootstrap. The vertical grey line indicates the scaling dimension of ε in the Ising
model. The red region is excluded from the scalar bootstrap for 4-point functions
〈OoddOoddOoddOodd〉 assuming Oeven appears in both the Oodd × Oodd and T × T
OPEs.

This is because the “double-trace" operator TµσTσ
ν in large CT theories will have

a dimension ∆2 = 6 + O(1/CT ), so imposing a gap above 6 will exclude some set
of these theories. This is realized in figures 8.10 and 8.11, where for gaps slightly
above 6 the upper bound is fairly weak, but as it is raised further it becomes very
strong and for gaps near 8.5 the closed region shrinks to a small island around
CT/CB ∼ 1 and .4 . θ . .9. It is interesting to ask if there is a unitary CFT with
such a large spin-2 gap and θ ≈ π/4 which lives inside of this allowed region.

8.4.5 Spin-4 gaps
In this section we move on to considering the constraints resulting from imposing a
bound on the dimension of lightest spin-four operator ∆4. Consistency of crossing
with the OPE in Minkowski space when two operators are light-like separated
imposes a number of non-trivial constraints on the spectrum of “intermediate”
operators. In particular the “Nachtmann theorem” stipulates that the leading twist,
defined as the twist of the lightest primary of spin ` appearing in the OPE O × O,

τ̀ = ∆` − ` , (8.86)
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Figure 8.9: Lower bounds on CT as a function of θ in 3d CFTs for different gaps
between the stress tensor and the second parity-even spin-2 operator.
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Figure 8.10: Upper bounds on CT as a function of θ in 3d CFTs for different gaps
between the stress tensor and the second parity-even spin-2 operator.

is a monotonically non-decreasing convex function of ` which asymptotes to 2τO
[68, 69, 162, 249, 250]. So far this has been rigorously established for scalar O and
even `, although the result is expected to hold more generally, for primary O of any
spin. Applying this to the stress tensor one finds that the dimension of the lightest
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Figure 8.11: Upper and lower bounds on CT as a function of θ in 3d CFTs for
different gaps between the stress tensor and the second parity-even spin-2 operator.

operator of spin ` should not exceed ` + 2. For the leading spin-4 operator this
implies inconsistency of unitary theories with ∆4 > 6. Moreover, when ∆4 = 6, the
lightest operators of spin ` > 4 must have dimensions exactly equal to ` + 2. The
corresponding theory is a MFT dual to pure gravity in AdS4 with Newton’s constant
taken to zero. The operators in question are double-trace operators, schematically
T∂`−4T , where we omit indices for simplicity.

When ∆4 approaches 6 from below, by convexity all higher spin operators must
approach ` + 2. This is exactly the behavior expected for a theory dual to weakly
coupled gravity in AdS4. The double-trace anomalous dimensions ∆` − ` − 2 are
due to graviton exchange in the bulk, which is proportional to Newton’s constant
GN ∼ 1/CT . This picture suggests that imposing a gap ∆4 > 6 − ε should result
in a numerical bound on the central charge CT ≥ C∗T , with C∗T going to infinity as
C∗T ∼ 1/ε .

Such behavior was observed previously in the context of the N = 8 numerical
supersymmetric bootstrap in 3d [133]. There the lower bound on CT was studied
as a function of the dimensions of spin-0 and spin-2 long multiplets, ∆∗0 and ∆∗2
respectively. When the dimensions approached the values associated with N → ∞

ABJM theory, the exclusion region for CT grew accordingly, with the lower bound
on CT scaling as 1/(2−∆∗2). Another related result is in the context of the numerical



378

bootstrap of four conserved currents [41]. In this case imposing ∆4 = 6 resulted in
the lower bound onCT growing indefinitely as the numerical precision (the derivative
order Λ) increased.

The numerical results of imposing a gap on ∆4 are shown in figure 8.12, with some
projections at smaller values of ∆4 shown in figure 8.13. For each value of ∆4 and
0 ≤ θ ≤ π/2 we find a minimal allowed value of CT . This value is quite sensitive to
θ, generally reaching maximal values for θ → 0, π/2 and remaining relatively small
around θ ≈ π/4. At the same timewhen∆4 approaches 6 the bound rapidly grows for
all value of θ, and seems to diverge (numerically we see bounds of O(600−700)) as
∆4 → 6, consistent with the Nachtmann theorem. Our bounds do not seem to show
sufficient convergence to read off the expected 1/ε scaling, but it will be interesting
to study this divergent behavior more closely in future work.

Figure 8.12: Lower bounds on CT as a function of θ and the spin-4 gap ∆4.

8.4.6 Ising-like spectrum
Next we focus our attention onwhat can be learned about the 3d Isingmodel from the
〈TTTT〉 bootstrap. In earlier numerical bootstrap work [34], a precise determination
of the central charge CIsing

T /CB = 0.946534(11) was found. As far as we are aware,
no determinations of the 〈TTT〉 3-point function in the 3d Ising model have been
made previously.

The Ising model has a Z2 global symmetry, but only Z2-even operators appear in the
T × T OPE. Such operators can be either even or odd under spacetime parity. The
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Figure 8.13: Lower bounds on CT as a function of θ for spin-4 gaps ∆4 ≥
5.01, 5.1, 5.2, 5.4.

scaling dimensions of the leading parity-even operators in the 3d Ising spectrum
have been computed to high precision using numerical bootstrap methods (see table
2 of [31] for a summary). However, as far as we are aware very little is known about
the parity-odd spectrum.

In figure 8.14 we show the result of inputting the approximate known scaling di-
mensions for the leading parity-even scalars {ε, ε′}, the second spin-2 operator T ′,
and the leading spin-4 operator. The horizontal lines show the 3d Ising value of
CT as well as the free scalar value. Regions very close to θ = 0 and θ = π/2 are
excluded (primarily due to the spin-4 gap) but otherwise this data does not place a
very strong constraint.

On the other hand, we find that imposing a parity-odd gap places a very strong
constraint on the allowed region. In figure 8.15 we show the effect of inputting
the expectation (e.g., from the ε-expansion) that the leading parity-odd scalar is
irrelevant,24 in addition to inputting the leading parity-even scalar dimensions.
Only a tiny window at small θ is compatible with the 3d Ising value of CT . We show
a zoom of this region in figure 8.16, where it can be seen that these assumptions
imply .01 < θ < .05.

24It would be nice to directly confirm this by identifying a system in the Ising universality class
with parity (or time-reversal) symmetry breaking at the microscopic level. We thank Slava Rychkov
for discussions on this issue.
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Figure 8.14: Lower bound on CT as a function of θ assuming known low-lying gaps
in the parity-even spectrum in the 3d Ising CFT.

In fact, it is likely that the parity-odd scalar gap in the 3d Ising model is significantly
larger than 3. E.g., it may be close to the free scalar value ∆odd = 11. This large gap
is also plausible given figure 8.8, where it can be seen that a sharp transition in the
allowed region occurs near the Ising value of ∆even. In light of this plot, if the gap
is maximal we see that it may be as large as ∆odd . 11.2.

Previously in figure 8.6 we saw that a parity-odd gap close to this value on its own
imposes a robust restriction θ < .023, with an allowed region compatible withCIsing

T .
In figure 8.17 we show the result on the allowed region of additionally imposing the
known values of ∆ε and ∆ε ′, combined with the sequence of assumptions ∆odd ≥

9, 10, 11, 11.1, 11.2. These assumptions lead to closed islands and if the gap is close
to being saturated allow us to make the tighter determination .01 < θ < .018− .019,
with the precise upper bound depending on the gap.

8.5 Discussion
In this work we used the numerical conformal bootstrap to study the space of unitary
parity-preserving CFTs in three dimensions. Assuming the existence of a unique
stress tensor (conserved spin-2 current) and imposing crossing symmetry of its four-
point correlation function, we found a number of universal bounds on CFT data.
One striking discovery is the necessity of both light parity-even (∆even ≤ 7) and
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Figure 8.15: Lower bound on CT as a function of θ assuming known low-lying
gaps in the parity-even scalar spectrum in the 3d Ising CFT, combined with the
assumption that the leading parity-odd scalar is irrelevant.
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Figure 8.16: Lower bound on CT as a function of θ assuming known low-lying
gaps in the parity-even scalar spectrum in the 3d Ising CFT, combined with the
assumption that the leading parity-odd scalar is irrelevant.
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T (shown
as the lower horizontal line) but a gap ∆odd = 11.2 is not.

parity-odd (∆odd ≤ 11.78) scalars in the spectrum of any consistent local unitary
CFT, see figure 8.8. Among other universal results are those limiting the value of
the central charge CT modulo additional assumptions. For example, in hypothetical
“dead-end” CFTs without any relevant scalars CT is constrained to be larger than
roughly twice the central charge of a free 3d scalar or Majorana fermion. These,
and other similar findings presented in this paper are of a new kind, in the sense that
they cannot be derived (as far as we know) using any theoretical tools other than the
numerical bootstrap.

There is another class of discoveries presented in this paperwhich further support and
extend previously established theoretical results. Our numerical results reproduce
the “conformal collider" bounds, see figure 8.2. Imposing scalar or spin-2 gaps
above the values they take in holographic theories further allows us to place upper
bounds on CT . Similarly, imposing a gap on the dimension of the lightest spin-
4 operator discussed in section 8.4.5, ∆4 ≥ 6 − ε , ε → 0, forces the CFT in
question to have an apparently diverging central charge and a spectrum likely dual
to weakly coupled gravity in AdS4, in full consistency with the Nachtmann theorem
[68, 69, 162, 249, 250]. Reproducing these results is a strong consistency check on
our numerical setup.
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Many exclusion plots in this work exhibit characteristic features potentially signaling
the existence of an underlying theory saturating the corresponding bounds. The
scalar exclusion plot in figure 8.8 has a kink that tentatively corresponds to the 3d
Ising model, in addition to reassuring corners that coincide with other known free
or mean-field solutions. This gives hope to extend our results to further elucidate
precise properties of particular theories. The first few steps in this direction for the
3d Ising model were already undertaken in section 8.4.6, where known dimensions
of light scalar operators25 were used to obtain a strong bound 0.01 < θ < 0.05 on the
OPE coefficient controlling the 3pt function of stress tensors (8.80). By assuming
larger gaps in the parity-odd scalar sector this window can be reduced down to
0.010 < θ < 0.019. We also find closed islands in Figs. 8.4 and 8.11 which may
indicate new nontrivial solutions to the bootstrap equations and could be interesting
to study further.

Our work paves the way for many future investigations. Below we briefly describe
only some of the possible directions, which we find particularly interesting and
important. A substantial extension of this work would be to combine stress tensors
with other operators, such as scalars, fermions, or global symmetry currents, using a
larger mixed correlator bootstrap. In this way one should be able to isolate e.g. the-
ories with global O(N ) symmetry and obtain a host of new constraints pertaining
to such theories. One can also extend our work to CFTs with varying amounts
of supersymmetry, requiring additional computation of the necessary superconfor-
mal blocks. From the technical point of view these generalizations are relatively
straightforward and only require combining previously developed ingredients.

Yet another natural generalization is to extend the analysis of this paper to parity-
breaking theories. This direction is interesting in part because it would help us gain
a better understanding of the large family of Chern-Simons-matter theories in three
dimensions, recently understood to be interconnected by a large web of RG flows
and dualities (e.g. [289–291]). From the technical point of view such an extension
would require the straightforward task of generalizing the analysis of sections 8.2
and 8.3 to additional parity-breaking structures.

Finally, the numerical analysis performed in this paper, and the theoretical develop-
ments which it required, constitute significant progress in the development of the
conformal bootstrap in d = 3 dimensions. It would be very interesting to generalize
the current analysis to higher dimensions, first to d = 4. The needed conformal

25Assuming that the lightest parity-odd scalar is irrelevant.
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blocks in four dimensions were recently calculated implicitly in a number of works
[2, 3, 55, 58, 62, 82]. Accordingly, the bootstrap for the stress tensor and other
operators with spin in four dimensions is now accessible in principle, although it
still represents a substantial technical challenge. We hope to address this problem
in the future. This research program can also be potentially extended to arbitrary d

yielding universal constraints on CFTs in d = 5, 6 and beyond. We hope this study
will eventually yield new non-trivial results contributing to our understanding of
interacting CFTs, or their absence, in d > 6.
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A p p e n d i x A

APPENDICES TO CHAPTER 2

A.1 Smoothness conditions on correlators
The analysis of section 2.2 did not take into account smoothness of g. In order for g
to be continuous, it is sufficient for g0 to be continuous and to satisfy the stabilizer
invariance condition (2.13). Note that with the choice of conformal frame discussed
in section 2.2.3 the stabilizer subgroup is the same SO(d − m + 2) for generic y,
but it enhances an the boundaries of conformal frame, essentially giving a boundary
condition for the otherwise SO(d + m − 2)-invariant g0. We will now see that this
boundary condition needs to be refined further if we want g to be smooth.

For simplicity, let us consider only the most important case of 4-point functions.
It is easy to convince oneself that g as given by (2.14) will be smooth for y in the
interior of conformal frame as soon as g0 is smooth there. What is non-trivial is the
smoothness on the boundary of conformal frame. Let us start with a smooth g and
see what kind of g0 it leads to.

We split the reduction to conformal frame into two steps. First, we fix the coordinates
x1, x3, x4 as in section 2.2.2. This leads to a function g1(x2) which is to be invariant
under SO(d − 1). Note that its smoothness is equivalent to smoothness of g. We
can expand g1 in Taylor series along the directions orthogonal to e,

g1(si, x2) =
N∑

n=0
g
µ1...µn
1 (si, e · x2)zµ1 . . . zµn + o(zN ), (A.1)

where z is the (d − 1)-dimensional projection of x2 onto the subspace orthogonal
to e. From the invariance equation (2.10) we read off the condition that for every
e · x2 the value gµ1...µn

1 ( · , e · x2) is a singlet in

n̂ ⊗ ResO(d)
O(d−1)

4⊗
i=1

ρi, (A.2)

where n̂ is the reducible symmetric tensor representation of O(d − 1).1 The sym-
metric tensor decomposes into symmetric traceless tensors as

n̂ = n + (n − 2) + . . . + (n mod 2). (A.3)
1We also easily take into account the kinematic permutation symmetries by using in (A.1) the

trivialized polarizations s̃i constructed in appendix A.2.2.2.
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Nowwhen we finally restrict to the conformal frame by taking z inside the half-plane
α, which we will assume to be along 1st and 2nd coordinate axes, with e being along
the 1st axis, we find

g0(si, x1
2, x2

2) =
N∑

n=0
g2...2

1 (si, x1
2)(x2

2)n + o
(
(x2

2)N
)
. (A.4)

Note that theorem 1 tells us to look for O(d − 1) symmetric traceless tensors2 in

ResO(d)
O(d−1)

4⊗
i=1

ρi . (A.5)

Equation (A.2) therefore tells us atwhich orders inTaylor series (A.4)which traceless
symmetric tensors of (A.5) can contribute. For example, the spin-3 symmetric
traceless tensor representation 3, if appears in (A.5), defines a tensor structure
whose coefficient function can contribute to (A.4) at orders (x2

2)3, (x2
2)5, (x2

2)7, . . .

but not (x2
2)1 or (x2

2)2n.

In other words, (A.2) restricts the expansion of the coefficient functions of our
structures by specifying their parity under x2

2 → −x2
2 and the rate at which they go

to zero on the boundary of conformal frame. Note that the x2
2 parity of the coefficient

function can also be extracted from how the corresponding structure behaves under
a π rotation in the plane, say, 2-3, which is more convenient in practice than (A.2).

As the most basic example, consider the scalar four-point function. In this case, the
Taylor coefficients gµ1...µn

1 are singlets in

n̂ ⊗ • = n̂, (A.6)

and thus only exist for even n, according to (A.3). This tells us that scalar correlation
functions restrict to g0 with even expansion in x2

2 and this is why we can parametrize
them by u and v (which are also even).

A.1.1 Example: 4 Majorana fermions
Consider now the example of section 2.4.4. There are two aspects of the smoothness
analysis which are important for actual numerical analysis. For convenience, we use
the t and x coordinates of section 2.4.3 below.

The first is that some of the coefficient functions are restricted to be even or odd in
t ∼ z − z. This is easy to handle by hand, since as noted above, this is determined

2This is equivalent to taking singlets in further restriction to O(d − 2).
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by the behavior of the structure under π rotation in the plane 0-2. Via analytic
continuation this rotation is equivalent to exchange of ↑ and ↓. Therefore, we can
consider structures 〈

↑↑↑↑
〉±
=

〈
↑↑↑↑

〉
±

〈
↓↓↓↓

〉
,〈

↑↑↓↓
〉+
=

〈
↑↑↓↓

〉
+

〈
↓↓↑↑

〉
,〈

↑↓↑↓
〉+
=

〈
↑↓↑↓

〉
+

〈
↓↑↓↑

〉
,〈

↓↑↑↓
〉+
=

〈
↑↓↓↑

〉
+

〈
↓↑↑↓

〉
, (A.7)

each of which have definite parity under t → −t. Note that we didn’t form the
difference in the last three structures since the terms on the right side in each line
lie in the same orbit of Z2

2.

The second is that some of the coefficient functions should vanish faster than is
required by their t-parity. We compute3, using (2.39)

ResO(3)
O(2)

(
1
2
⊗4

)Z2
2
= 2 ⊕ 1 ⊕ 3 •+ . (A.8)

According to (A.2), this means that from 5 coefficient functions of parity-even
structures, 4 are even in t, of which 3 start with t0 and 1 starts with t2, and one
is odd in t and starts with t1. We see that there is one t-even coefficient function
which should vanish as t2, which is faster than required by its t-parity. This means
that there is a linear relation between t0 coefficients of the coefficient functions
g〈↑↑↑↑〉+, g〈↑↑↓↓〉+, g〈↑↓↑↓〉+, g〈↓↑↑↓〉+ , i.e.

α1g〈↑↑↑↑〉+ (0, x) + α2g〈↑↑↓↓〉+ (0, x) + α3g〈↑↓↑↓〉+ (0, x) + α4g〈↓↑↑↓〉+ (0, x) = 0, (A.9)

where the first argument is t = 0. One can check that α1 , 0, and we can then use
this equation to find g〈↑↑↑↑〉+ (0, x).

More generally, to find such relations, it is convenient to consider the quadratic
Casimir operator for the SO(d − 1) subgroup. Since SO(d − 2) ⊂ SO(d − 1),
it commutes with SO(d − 2) generators and thus maps SO(d − 2)-invariants to
SO(d − 2)-invariants. This means that it is a linear operator on the space of
four-point tensor structures, and it detects the SO(d − 1) representations to which
these structures belong. Since only traceless-symmetric representations can appear,
the quadratic Casimir eigenvalues completely characterize them. The recipe is

3In general one may need to be a little more careful with the permutation phases than we have
been in this simple example.
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then to organize the four-point tensor structures according to eigenvalues of this
Casimir, demand the coefficients of the structures with SO(d−1) Casimir eigenvalue
k (k + d − 3) vanish as tk (and are even or odd in t, depending on the parity of k).

Summarizing the discussion in section 2.4.4 and in this appendix, one can use the
following independent system of crossing equations,

∂2n
t ∂2m+1

x g〈↑↑↑↑〉+ = 0, n ≥ 1,m ≥ 0,

∂2n
t ∂2m+1

x g〈↑↓↑↓〉+ = 0, n ≥ 0,m ≥ 0,

∂2n
t ∂2m+1

x

(
g〈↑↑↓↓〉+ + g〈↓↑↑↓〉+

)
= 0, n ≥ 0,m ≥ 0,

∂2n
t ∂2m

x

(
g〈↑↑↓↓〉+ − g〈↓↑↑↓〉+

)
= 0, n ≥ 0,m ≥ 0,

∂2n+1
t ∂2m

x g〈↑↑↑↑〉− = 0, n ≥ 0,m ≥ 0, (A.10)

where everything is evaluated at t = 0, x = 1/2.

A.2 More on permutations
A.2.1 Kinematic permutations
In this section we prove that {Skin

n }
∞
n=1 = {0, S2, S3,Z

2
2, 0, 0, . . .}, where 0 stands for

the trivial group. The first three cases are, as noted in the main text, trivial, since
the conformal moduli spaceMn of n = 1, 2, 3 points consists of one point, and thus
Skin

n = Sn.

Now suppose n ≥ 4. Consider the set U of all conformal cross-ratios of the form

ui j,kl =
x2

i j x
2
kl

x2
ik x2

jl

, x2
i j = (xi − x j )2, (A.11)

with i, j, k, l all different. Permutations of points xi act on this set by permutations,
and permutations from Skin

n should leave these cross-ratios invariant. Since for a
generic configuration there are no two exactly equal cross-ratios (even though there
are relations between them), this means that the permutations induced on U should
be trivial.

Suppose a permutation maps i → j, i , j. Then by looking at ui j,kl (with i, j, k, l

all different) we see that necessarily j → i, otherwise this cross-ratio will change.
But then also k ↔ l. Since we were free to choose k, l, this leads to a contradiction
unless n = 4 and only one choice of k, l is possible. This establishes that Skin

n = 0
for n > 4. For n = 4 it means that the allowed permutations are products of 2-cycles
and an explicit check shows that all possible products are allowed, giving

Skin
4 = {e, (12)(34), (13)(24), (14)(23)} = Z2

2. (A.12)
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A.2.2 Conformal transformations for permutations
We now analyze explicitly the conformal transformations rπ induced by permuta-
tions. We only do so for three and four-point functions, since these are the only
cases when there are interesting kinematic permutations.

For both three- and four-point functions we choose the rπ to preserve the plane α
in which all the operators lie (for three points we choose some such plane). Such
conformal transformations restrict on α to the fractional linear transformations, and
we can describe them by a mapping

x 7→ x′ =
ax + b
cx + d

, (A.13)

where we identified α with C. Note that we can choose these transformation to give
trivial rotations in the planes orthogonal to α. We therefore only need to compute
Spin(2) elements induced by rπ inside the plane, and the problem is entirely two-
dimensional.

The group of fractional linear transformations is double covered by SL(2,C). Thus
rπ ∈ SL(2,C). The correspondence is

rπ =
*.
,

a b

c d
+/
-
∈ SL(2,C) ⇒ rπx =

ax + b
cx + d

, ad − bc = 1. (A.14)

This is 2 to 1 because rπ and −rπ give the same transformation. Recall that the basic
condition for rπ is that

rπx′i = xπ(i), (A.15)

for x′i in the conformal frame. In the case of kinematic permutations we have x′i = xi.
Thus we have the following equation for rπ,

axi + b
cxi + d

= xπ(i) . (A.16)

This has two solutions differing by a sign. Since the correlator is bosonic in total,
we are free to choose either of them.

The SO(2) element Rrπ (xi) is given by (upon identification of SO(2) with the unit
circle in complex plane)

Rrπ (xi) = n
(

dx′

dx

) ������x=x
π−1 (i)

, (A.17)
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where n(x) = x/|x |. The implementation of the lifting from SO(2) to Spin(2)
discussed in section 2.2.1 is straightforward in two dimensions. Note that for
ad − bc = 1,

d
dz

(
ax + b
cx + d

)
=

1
(cz + d)2 . (A.18)

This is invariant under rπ → −rπ and the phase gives an element of SO(2) as above.
Lifting to an element of Spin(2) is essentially equivalent to choosing a square root
of this expression, with the most natural choice being√

d
dx

(
ax + b
cx + d

)
=

1
cx + d

. (A.19)

This is not invariant over rπ → −rπ, which means that this is only a map from
the double cover SL(2,C) of the conformal group to Spin(2), but not from the
conformal group PSL(2,C) = SO(3, 1) itself. This is in accord with the discussion
in section 2.2.1. Therefore, we find that

Rrπ (xi) = n(cx + d)−1 |x=x
π−1 (i)

. (A.20)

In the following table we summarize the locations of the operators in the conformal
frame we choose, by specifying the complex coordinates

x1 x2 x3 x4

3-point 0 1 ∞ -
4-point 0 z 1 ∞

As discussed before, the operator at infinity is inserted by putting it at L and then
taking the limit L → ∞ along the real axis. This is done in order to avoid using
inversion when defining the operator at infinity. A safe way of determining the
phases is working with finite L and then taking the limit.

In the following we compute the transformations rπ and

Rrπ (xi)−1 = n(hi (π)). (A.21)

Note that the SO(2) rotation angle is given by the phase of n(hi (π))2. We write
the permutations in cycle notation. For example, π = (134)(25) is the permutation
π(1) = 3, π(3) = 4, π(4) = 1, π(2) = 5, π(5) = 2.
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A.2.2.1 3-point functions

For three-point functions we have the following parameters a, b, c, d for the trans-
formations and the induced hi:

h1 h2 h3 a b c d

id 1 1 1 1 0 0 1
(12) i i −i −1 1 0 1
(13) i i i 0 1 1 0
(23) −i i i 1 0 1 −1

(123) −1 1 1 0 1 −1 1
(132) 1 1 −1 1 -1 1 0

A.2.2.2 4-point functions

For four-point functions we have

h1 h2 h3 h4

id 1 1 1 1
(12)(34) i

√
1 − z i

√
1 − z −i

√
1 − z −i

√
1 − z

(13)(24) −
√

z(1 − z) −
√

z(1 − z)
√

z(1 − z)
√

z(1 − z)

(14)(23) i
√

z i
√

z i
√

z i
√

z

Note that these transformations have to be accompanied by a − sign for an odd
permutation of fermions. If we assume that we use the permutations to exchange
identical operators then we can instead use the following table, but without the extra
minus sign for the odd fermion permutation,

h̃1 h̃2 h̃3 h̃4

id 1 1 1 1
(12)(34) i

√
1 − z −i

√
1 − z i

√
1 − z −i

√
1 − z

(13)(24)
√

z(1 − z)
√

z(1 − z)
√

z(1 − z)
√

z(1 − z)

(14)(23) i
√

z −i
√

z i
√

z −i
√

z

The trick now is that these h̃i (π) satisfy the group property

n(h̃i (πσ)) = n(h̃i (π))n(h̃π−1(i) (σ)), (A.22)

which is an identity in Spin(2), while it is only trivial that it holds in SO(2).
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This fact together with the fact that the action of Z2
2 is free actually implies that these

phases can be trivialized in the following way. Suppose for concreteness that the
full symmetry is the Z2

2, the argument for subgroups is similar. Thus, assume that
all polarizations si transform in the same representation ρ and denote by ρ(h) the
action of n(h) ∈ Spin(2). First, define the new polarizations

s̃1 = s1,

s̃2 = ρ(−i
√

1 − z)s2,

s̃3 = ρ(
√

z(1 − z))s3,

s̃4 = ρ(−i
√

z)s4. (A.23)

Then recall that the action of the permutation, say, (14)(23) is

s1 → ρ(−i
√

z)s4, s4 → ρ(i
√

z)s1,

s2 → ρ(i
√

z)s3, s3 → ρ(−i
√

z)s2. (A.24)

This induces the following action on the redefined polarizations,

s̃1 → ρ(−i
√

z)s4 = s̃4,

s̃2 → ρ(−i
√

1 − z)ρ(i
√

z)s3 = s̃3,

s̃3 → ρ(
√

z(1 − z))ρ(−i
√

z)s2 = s̃2,

s̃4 → ρ(−i
√

z)ρ(i
√

z)s1 = s̃1. (A.25)

It is easy to check that the same holds for all other permutations. Since the re-
definition commutes with the action of the stabilizing O(d − 2), we conclude that
for the purposes of counting the structures we simply look at the tensor product⊗4

i=1 ρi symmetrized by the kinematic symmetry group of the correlator without
the fermionic − sign, and then extract the O(d − 2) singlets.

For completeness we also consider the non-kinematic permutations. It is sufficient
to consider (12) and (13) since these together with the kinematic permutations
generate the full S4. For these permutations x′i , xi, but rather

x′1 x′2 x′3 x′4
(12) 0 z/(z − 1) 1 ∞

(13) 0 1 − z 1 ∞

We find the following permutation phases



412

h1 h2 h3 h4

(12)
√

1 − z
√

1 − z
√

1 − z
√

1 − z

(13) i i i −i

Again, we can define h̃ to automatically account for fermionic “−” sign,

h̃1 h̃2 h̃3 h̃4

(12)
√

1 − z −
√

1 − z
√

1 − z
√

1 − z

(13) i i −i −i

A.3 Character formula for symmetrized tensor products
Consider a tensor product

W = V⊗n, (A.26)

and the subspace of it invariant under a subgroup Π ⊆ Sn of permutations of tensor
factors,

Z =
[
V⊗n

]Π
. (A.27)

More generally, we can allow Π to act by multiplication by permutations followed
by a multiplication by a one-dimensional character χΠ ofΠ. As an example, we can
have Π = Sn and χΠ (π) ≡ 1, in which case Z is the n-th symmetric tensor power,
or χΠ (π) = sign π, in which case Z is the n-th antisymmetric power of V . For
simplicity, we will consider only these two choices of χΠ, but leave Π completely
general.

Assume that V is a representation of some group G, given by ρ : G → GL(V ).
ThenW and Z are also representations of G, and out goal is to compute the character
of G on Z , χZ .

Define the operator
P =

1
|Π |

∑
π∈Π

π ∈ GL(W ), (A.28)

where π acts as described above. Let ρn = ρ
⊗n. Note that

P2 =
1
|Π |2

∑
π,σ∈Π

πσ =
1
|Π |2

∑
π,σ′∈Π

ππ−1σ′ = P, (A.29)

where σ′ = πσ. Since P2 = P, P is a projection and W decomposes into a
sum of eigenspaces of P, W = W0 ⊕ W1, with the explicit decomposition being
w = (1− P)w + Pw. It is easy to see that Pw is Π-invariant and if w is Π-invariant,
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then Pw = w. This shows W1 = Z . Since ρn commutes with P, this decomposition
is also a decomposition of W into representations of G. It then follows that

χZ (g) = tr Pρn(g), (A.30)

as can be shown by choosing a basis diagonal for P. It is a simple exercise to show
in some choice of basis that

χZ (g) =
1
|Π |

∑
c∈C


|c | χΠ (c)

∏
i

χρ(gci )

, (A.31)

where C is the set of cycle types of permutations in Π, |c | is the number of elements
of cycle type c in Π, and ci are the cycle lengths in the cycle type c. For example,
the cycle type of the trivial permutation is c = 1n, i.e. it is a product of n cycles of
length 1, and |c| = 1. Therefore the contribution of the identity to the sum is always
χn
ρ(g). Since we restricted χΠ to come from a one-dimensional character of Sn,

it takes the same value on all elements with the same cycle type, so that notation
χΠ (c) is well-defined.

The examples relevant in this paper are Π = Z2 ⊂ S2, Π = S3 and Π = Z2
2 ⊂ S4. In

the first case we have two cycle types, 12 and 21, each occuring once, and therefore
we obtain for the trivial χΠ

χZ2 (g) = S2 χ(g) =
1
2

[
χ2(g) + χ(g2)

]
, (A.32)

the well-known formula for the symmetric square. For the exterior square one has,
using χΠ = sign,

∧2 χ(g) =
1
2

[
χ2(g) − χ(g2)

]
. (A.33)

In the second casewehave the symmetric and exterior cube relevant for proposition 2.
In this case we have Π = S3 and cycle types 13, 2211, 31 with multiplicities 1, 3, 2.
We find from (A.31),

S3 χ(g) =
1
6

[
χ(g)3 + 3χ(g2) χ(g) + 2χ(g3)

]
, (A.34)

∧3 χ(g) =
1
6

[
χ(g)3 − 3χ(g2) χ(g) + 2χ(g3)

]
. (A.35)

In the third case we have cycle types 14 and 22 with the latter occuring thrice, so
that we find

χZ2
2
(g) =

1
4

[
χ4(g) + 3χ2(g2)

]
. (A.36)
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In practice this can be computed as

ρ4 	 3
(
∧2ρ ⊗ S2ρ

)
, (A.37)

which easily can be checked using the above formulas. The case χΠ = sign is
equivalent to χΠ ≡ 1.
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A p p e n d i x B

APPENDICES TO CHAPTER 3

B.1 Details of the 4D formalism
We work in the signature − + ++ and denote the diagonal 4D Minkowski metric by
hµν. We mostly follow the conventions of Wess and Bagger [292].

The representations of the connected Lorentz group in 4D are labeled by a pair
of non-negative integers (`, `). These representations can be constructed as the
highest-weight irreducible components in a tensor product of the two basic spinor
representations (1, 0) and (0, 1).

We denote the objects in the left-handed spinor representation (1, 0) as ψα, α =
1, 2, and the objects in its dual representation as ψα. The original and the dual
representations are equivalent via the identification

ψα = εαβψ
β, ψα = εαβψβ, (B.1)

where
ε12 = −ε21 = ε21 = −ε12 = +1. (B.2)

Because of the equivalence between (1, 0) and its dual representation, we will not
be careful to distinguish them in the text, the distinction in formulas will be clear
from the location of indices.

The right-handed spinor representation (0, 1) is the complex conjugate of the left-
handed spinor representation, and the objects transforming in (0, 1) representation
will be denoted as χα̇. Here the dot should not be considered as part of the index,
but rather as an indication that this index transforms in (0, 1) and not in (1, 0)
representation. For example, the definition of (0, 1) representation is essentially

ψ†α̇ = (ψα)†. (B.3)

The dual of (0, 1) is equivalent to (0, 1) via the conjugation of (B.1)

χα̇ = ε α̇ β̇ χ
β̇, χα̇ = ε α̇ β̇ χ β̇, (B.4)

where ε α̇ β̇ ≡ εαβ, ε α̇ β̇ ≡ εαβ. We use the contraction conventions

ψ1ψ2 = ψ
α
1ψ2α, χ1 χ2 = χ1α̇ χ

α̇
2 . (B.5)
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The tensor product (1, 0) ⊗ (0, 1) = (1, 1) is equivalent to the vector representation,
and the equivalence is established by the 4D sigma matrices σµ

α β̇
and σµα̇ β, which

we define as

σ0 =
*.
,

−1 0
0 −1

+/
-
, σ1 =

*.
,

0 1
1 0

+/
-
, σ2 =

*.
,

0 −i

i 0
+/
-
, σ3 =

*.
,

1 0
0 −1

+/
-
, (B.6)

and σ0 = σ0, σ1 = −σ1, σ2 = −σ2, σ3 = −σ3. For a convenient summary of
relations involving sigma-matrices see for example [293].1

For primary operators we adopt the convention to write them out with dotted indices
upstairs and the undotted indices downstairs

O
α̇1...α̇`
β1... β`

. (B.7)

In this notation the index-full version of (3.6) is

O
β̇1... β̇`
α1...α`

≡ (−1)`−` εα1α
′
1
. . . εα`α

′

`
ε β̇1 β̇

′
1 · · · ε β̇` β̇

′
`O†

α′1...α
′

`

β̇′1... β̇
′
`

. (B.8)

Action of conformal generators Wedenote the conformal generators by P, K, D, M .
We choose to work with anti-Hermitian generators (related to the Hermitian ones
by a factor of i)

D† = −D, P† = −P, K† = −K, M† = −M, (B.9)

which allow us to avoidmany factors of i in the formulas below (note that even though
D is anti-Hermitian, its adjoint action has real eigenvalues). These generators satisfy
the following algebra

[D, D] = 0, [D, Pµ] = Pµ, [D, Kµ] = −Kµ, (B.10)

[Pµ, Pν] = 0, [Kµ, Kν] = 0, [Kµ, Pν] = 2hµνD − 2Mµν, (B.11)

[Mµν, D] = 0, [Mµν, Pρ] = hνρPµ − hµρPν, [Mµν, Kρ] = hνρKµ − hµρKν,

(B.12)

[Mµν, Mρσ] = hνρMµσ − hµρMνσ − hνσMµρ + hµσMνρ. (B.13)

1One should download and compile the version with mostly plus metric. Notice also a factor of
i difference between their σµν and σµν and ours Sµν and S

µν
.
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The action of the conformal generators on primary fields is given by

[D,O(x, s, s)] = (xµ∂µ + ∆) O(x, s, s), (B.14)

[Pµ,O(x, s, s)] = ∂µ O(x, s, s), (B.15)

[Kµ,O(x, s, s)] = (2xµxσ − x2δσµ )∂σO(x, s, s) + 2(∆ xµ − xσMµσ)O(x, s, s),
(B.16)

[Mµν,O(x, s, s)] = (xν∂µ − xµ∂ν)O(x, s, s) +MµνO(x, s, s), (B.17)

where the spin generators are

MµνO(x, s, s) = *
,
−sα (Sµν)α β

∂

∂s β
− sα̇ (Sµν)α̇ β̇

∂

∂s β̇
+
-
O(x, s, s). (B.18)

We have defined here the generators of the left- and right-handed spinor representa-
tions

(Sµν)α β = −
1
4

(σµσν − σνσµ)α β, (B.19)

(Sµν)α̇ β̇ = −
1
4

(σµσν − σνσµ)α̇ β̇, (B.20)

which satisfy the same commutation relations as Mµν. Notice that as usual the
differential operators in the right hand side of (B.14)-(B.17) have the commutation
relations opposite to those of the Hilbert space operators in the left hand side. This is
because if the Hilbert space operators A and B act on fields by differential operators
A and B, then their product AB acts by BA.

Action of space parity If a theory preserves parity, there exists a unitary operator
P with the following commutation rule with Lorentz generators

PM0iP
−1 = −M0i, PMi jP

−1 = Mi j, (B.21)

where i, j = 1, 2, 3. Applying this to (B.17) at x = 0, we see that

[Mµν,POα (0)P−1] = (Sµν)α̇ β̇POβ (0)P−1. (B.22)

This implies that we can define an operator Õ as

Õα̇ (x) ≡ −iPOα (Px)P−1 (B.23)

which transform as a primary operator in the representation (0, 1). We also have
Px0 = x0, Pxk = −xk, k = 1, 2, 3. More generally, it is easy to check that we can
consistently define

Õ
α̇1...α̇`
β1... β`

(x) ≡ (−i)`+`PO
β̇1... β̇`
α1...α` (Px)P−1. (B.24)
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The factor of i was introduced to reproduce the standard parity action on traceless
symmetric operators in the Õ = O case.

The above definition provides the most generic action of parity on the operators O
which can be slightly rewritten as

PO
β̇1... β̇`
α1...α` (x)P−1 = i`+`Õα̇1...α̇`

β1... β`
(Px), (B.25)

or equivalently in index-free notation

PO(x, s, s)P−1 = Õ(Px,Ps,Ps), (Ps)α̇ = isα, (Ps)α = isα̇ . (B.26)

Notice that ifO transforms in the (`, `) representation then the operator Õ transforms
in (`, `) and may or may not be related to the operator O defined in (3.6) or to O
itself if ` = `. This depends on a specific theory. What is important for us is that in
a theory which preserves P there is a relation between correlators involving Oi and
Õi

〈0|O1(x1, s1, s1) · · · On(xn, sn, sn) |0〉 =

=〈0|PO1(x1, s1, s1)P−1 · · · POn(xn, s1, s1)P−1 |0〉

=〈0|Õ1(Px1,Ps1,Ps1) · · · Õn(Pxn,Psn,Psn) |0〉. (B.27)

Written in terms of tensor structures this equality reads as∑
I

TI
ng

I
n =

∑
I

(PT̃I
n)g̃I

n, (B.28)

where PT̃I
n is given by T̃I

n with x → Px, s → Ps, s → Ps and T̃I
n are the tensor

structures appropriate to the correlators with the operators Õi.2 We provide the
rules for the action of P on various tensor structures in equations (B.114), (B.115),
and (3.120) [applyPParity].

Action of time reversal If a theory has time reversal symmetry, there exists an anti-
unitary operator T with the following commutation rule with Lorentz generators

T M0iT
−1 = −M0i, T Mi jT

−1 = Mi j, (B.29)

where i, j = 1, 2, 3. Applying it to (B.17) at x = 0, we see that

[Mµν,T Oα (0)T −1] =
[
(Sµν)α̇ β̇

]∗
T Oβ (0)T −1. (B.30)

2If there are any parity-odd cross-ratios (i.e. n ≥ 6) then g̃ should have these with reversed signs.
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This implies that T Oβ (0)T −1 transforms as ψ β and we can define the operator Ô
as

Ôα (x) ≡ −iεαβT Oβ (T x)T −1, (B.31)

where T x0 = −x0, T xk = xk, k = 1, 2, 3. One can similarly define

Ôα̇ (x) ≡ iε α̇ β̇T O β̇ (T x)T −1 (B.32)

and extend the above definitions to arbitrary representations in an obvious way. For
traceless symmetric operators in the Ô = O case, this reproduces the standard time
reversal action. In index-free notation we can write3

T O(x, s, s)T −1 = Ô(T x,T s,T s), (T s)α = is∗α̇, (T s)α̇ = −i(s∗)α . (B.33)

Again, Ô may or may not be related to O depending on a theory. The only important
point is that there is a relation between correlators with Oi and Ôi in a theory
preserving the time reversal symmetry

〈0|O1(x1, s1, s1) · · · On(xn, sn, sn) |0〉 =

=
[
〈0|T O1(x1, s1, s1)T −1 · · · T On(xn, s1, s1)T −1 |0〉

]∗

=

[
〈0|Ô1(T x1,T s1,T s1) · · · Ôn(T xn,T sn,T sn) |0〉

]∗
,

(B.34)

where the conjugation happens because of the anti-unitarity of T .4 Written in terms
of tensor structures this equality reads as∑

I

TI
ng

I
n =

∑
I

(T T̂I
n)(ĝI

n)∗, (B.35)

where T T̂I
n is given by (T̂I

n)∗ with the replacements x → T x, s → T s, s → T s

made before the conjugation and T̂I
n are the structures appropriate for the operators

Ôi.

Computing T T̂I
n is easy, since we can construct T conjugation from P and the

rotation eiπM03+πM12 . The latter rotation sends s → s, s → −s, which takes T s and
T s to Ps and Ps. The end result is

T T̂I
n =

(
PT̂I

n

)∗
. (B.36)

We list the rules for the action ofT on tensor structures in equations (B.116), (B.117),
and (3.122) [applyTParity].

3Note that T s and T s are not complex conjugates of each other even if s and s are, so to avoid
confusion here we do not assume that s and s are complex-conjugate. There is always a second
complex conjugation (see below), so this is only intermediate.

4As an extreme exampleT iT −1 = −i, so we have i = 〈0|i |0〉 = [〈0|T iT −1 |0〉]∗ , 〈0|T iT −1 |0〉.
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B.2 Details of the 6D formalism
In this appendix we describe our conventions for the 6D embedding space. We
mostly follow [54, 55].

We work in the signature {− + + + +−}, and we denote the 6D metric by hM N . We
often use the lightcone coordinates

X± ≡ X4 ± X5, (B.37)

and write the components of 6D vectors as

X M = {X µ, X+, X−}. (B.38)

The metric in lightcone coordinates has the components

h+− = h−+ =
1
2
, h+− = h−+ = 2. (B.39)

The 6D Lorentz group Spin(2, 4) is isomorphic to the SU (2, 2) group. The latter
can be defined as the group of 4 by 4 matricesU which act on 4-component complex
vectors Va and preserve the sesquilinear form

〈V,W 〉 = gab(Va)∗Wb, 〈UV,UW 〉 = 〈V,W 〉. (B.40)

Here the metric tensor gab is a Hermitian matrix with eigenvalues {+1,+1,−1,−1},
which we choose to be

gab ≡ gba ≡

*.......
,

0 0 i 0
0 0 0 i

−i 0 0 0
0 −i 0 0

+///////
-ab

. (B.41)

The bar over the index a indicates that this index transforms in a complex conjugate
representation. In other words, we say that Va transforms in the fundamental
representation while

V ∗a ≡ (Va)∗ (B.42)

transforms in the complex conjugate of the fundamental representation (that is, by
matrices U∗). The metric gab establishes an isomorphism between the complex
conjugate representation and the dual representation

V
a
≡ gabV b. (B.43)
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We say that V
a transforms in the anti-fundamental representation (that is, the anti-

fundamental representation is the dual of the fundamental representation). The
inverse isomorphism is established by the tensor

gab ≡ gba ≡ −g
ab. (B.44)

We have the relations

gabg
bc = gcbgba = δ

c
a, (gab)∗ = gab. (B.45)

The isomorphism between Spin(2, 4) and SU (2, 2) can be established by identifying
the vector representation of Spin(2, 4) with the exterior square of the fundamental
or anti-fundamental representations of SU (2, 2).5 This equivalence is provided by
the invariant tensors ΣM

ab and Σ
M ab defined by

Σ
µ
ab =

*.
,

0 −(σµε ) β̇
α

(σµε )α̇β 0
+/
-
, Σ

+
ab =

*.
,

0 0
0 2 ε α̇ β̇

+/
-
, Σ

−
ab =

*.
,

−2 ε α̇ β̇ 0
0 0

+/
-
,

(B.46)
and

Σ
µ ab
=

*.
,

0 −(εσµ)α
β̇

(εσµ) β
α̇ 0

+/
-
, Σ

+ ab
=

*.
,

−2 εαβ 0
0 0

+/
-
, Σ

− ab
=

*.
,

0 0
0 2 ε α̇ β̇

+/
-
.

(B.47)
These tensors have the following simple conjugation properties,(

Σ
M
ab

)∗
= gaa′gbb′Σ

M a′b′ (
Σ

M ab)∗
= gaa′gbb′

Σ
M
a′b′ . (B.48)

The above sigma-matrices satisfy many useful relations, for an incomplete list of
them see appendix A in [55]. Using the sigma matrices we define the coordinate
matrices

Xab ≡ XMΣ
M
ab = −Xba, Xab

≡ XMΣ
M ab
= −Xba

, (B.49)

which satisfy the algebra

a (XiX j )b + a (X jXi)b = 2 (Xi · X j )δb
a . (B.50)

We can now identify the SU (2, 2) generators corresponding to the standard 6D
Lorentz generators

Σ
M N ≡

1
4

(ΣM
Σ

N
− ΣN

Σ
M

), Σ
M N
≡

1
4

(Σ
M
Σ

N − Σ
N
Σ

M ), (B.51)
5The fundamental and anti-fundamental representations themselves are the two spinor represen-

tations of Spin(2, 4).
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satisfying the commutation relations

[ΣM N, ΣPQ] = hN P
Σ

MQ − hMP
Σ

NQ − hNQ
Σ

MP + hMQ
Σ

N P, (B.52)

[ΣM N
, Σ

PQ] = hN P
Σ

MQ
− hMP

Σ
NQ
− hNQ

Σ
MP
+ hMQ

Σ
N P
, (B.53)

thus establishing the isomorphism Spin(2, 4) ' SU (2, 2) at Lie algebra level.

By comparing the expressions for Σµν and Σ
µν with Sµν and S

µν
, we find that under

the Lorentz Spin(1, 3) subgroup of Spin(2, 4) the fundamental and anti-fundamental
representations of SU (2, 2) decompose as

Va =
*.
,

Vα
V α̇

+/
-
, W

a
=

*.
,

W
α

W α̇

+/
-
. (B.54)

In other words, we write Vα or V α̇ to refer to first two or second two components of
Va, and analogously for W

a.

Conformal algebra in 6D notation We can identify explicitly the conformal
generators with the 6D Lorentz algebra

Mµν = Lµν, D = L45, Pµ = L5µ − L4µ, Kµ = −L4µ − L5µ. (B.55)

With these conventions, the generators LM N satisfy the algebra

[LM N, LPQ] = hN PLMQ − hMPLNQ − hNQLMP + hMQLN P. (B.56)

These generators act on the 6D primary operators as

[LM N,O(X, S, S)] = LM NO(X, S, S), (B.57)

where the differential 6D generator is defined as

LM N ≡ −(XM∂N − XN∂M ) − SΣM N∂S − SΣM N∂S . (B.58)

It is sometimes convenient to work with the conformal generators in SU (2, 2)
notation

La
b ≡

[
Σ

M N
]

a
b LM N, Li M N = −

1
2

La
b

[
ΣM N

]
b

a . (B.59)

In this notation the conformal generators obey the commutation relations
[
La

b, Lc
d

]
= 2δb

c La
d − 2δd

a Lc
b. (B.60)
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We also have the following action on the primary operators

[La
b,O(X, S, S)] = La

b O(X, S, S), (B.61)

where La
c is the differential operator associated to the 6D generator La

c in Hilbert
space

La
b ≡ −

1
2

[(
XΣM ) b

a
∂M −

(
Σ

MX
) b

a
∂M

]
+

1
2
δb

a

(
S · ∂S − S · ∂S

)
−2

(
Sa∂

b
S − S

b
∂S a

)
.

(B.62)

Embedding formalism In the embedding formalism the flat 4D space is identified
with a particular section of the 6D light cone X2 = 0. Namely, we take the Poincare
section X+ = 1, which then implies

X− = −X µXµ. (B.63)

The 4D coordinates xµ are identified on this section as

xµ = X µ. (B.64)

In particular, on the Poincare section we have

X M ����Poincare
= {xµ, 1, −x2}. (B.65)

Consider an operator Oa1...al
b1...bl

(X ), defined on the light cone X2 = 0, symmetric in
its two sets of indices. Following [54], it can be projected down to a 4D operator
O
β̇1... β̇`
α1...α` (x) as

O
β̇1... β̇`
α1...α` (x) = Xα1a1 . . .Xα`a`X

β̇1b1
. . .X β̇`b`Oa1...a`

b1...b`
(X )

�����Poincare
. (B.66)

If the 6D operator satisfies the homogeneity property

Oa1...al
b1...bl

(λ X ) = λ−κOOa1...al
b1...bl

(X ), (B.67)

where κO is defined in (3.13), then the resulting 4D operator will transform as a
primary operator of dimension ∆O under conformal transformations. We call O a
6D uplift of O.

Notice that the 6D uplift O is not uniquely defined. Indeed as a consequence of the
light cone condition in terms of the matrices in (B.50),

X2 = 0 =⇒ a (XX)b = 0 and a (XX)b = 0, (B.68)
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the 6D operator is defined up to terms which vanish in (B.66), leading to the
following equivalence relation

Oa1...a`
b1...b`

∼ Oa1...a`
b1...b`

+ Xa1 c
Aa2...a`

c b1...b`
+ Xb1c Bc a1...a`

b2...b`
+ δa1

b1
Ca2...a`

b2...b`
. (B.69)

Furthermore, in order to simplify the treatment of derivatives in the embedding
space, it is convenient to arbitrarily extend O(X ) away from the light cone X2 = 0
and treat all the extensions as equivalent. This means that we can also add to
O(X ) terms proportional to X2. Following the terminology of [61], we refer to this
possibility as a gauge freedom and the terms proportional to Xab ,X

ab
, δa

b or X2

will be called pure gauge terms.

It is convenient to use the index-free notation (3.58). Contracting the 4D auxiliary
spinors with (B.66), we find that

O(x, s, s) = O(X, S, S)
�����proj

, (B.70)

where we introduced the formal operation |proj defined as

X M ����proj
≡ X M ����Poincare

, Sa
����proj

≡ sαXαa

�����Poincare
, S

a����proj
≡ s β̇X β̇b�����Poincare

.

(B.71)

As a consequence of the gauge freedom, the index-free 6D uplift O(X, S, S) is
defined up to pure gauge terms proportional to SX, SX, SS or X2. Note that they
all vanish under the operation of projection (B.70) due to (B.68)

Xab
Sb

����proj
= 0, S

bXba
����proj
= 0, S

a
Sa

����proj
= 0, X2����proj

= 0, (B.72)

We will always work modulo the gauge terms (B.72). In practice this is taken into
account by treating (B.72) as explicit relations in the embedding formalism even
before the projection. Note then that as a consequence of the relations (B.68),
(B.72), the anti-symmetric properties (B.49) and the relations (A.7) in appendix A
of [55], the following identities hold6 which we call the 6D Jacobi identities

S[aXbc] = 0, S
[aXbc]

= 0, X[abXc]d = 0, X[abXc]d
= 0. (B.73)

Differential operators In section 3.2 we commented upon the importance of
some differential operators, such as the conservation operator (B.142), spinning

6We thank Emtinan Elkhidir for showing this simple derivation.
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differential operators (3.91), (3.92) and the Casimir operators entering (3.45). To
consistently define these operators in embedding space, we require their action to
be insensitive to different extensions of fields outside the light cone and the other
gauge terms in (B.72). This results in the requirement7

D
(

∂

∂X M ,
∂

∂Sa
,
∂

∂S
a , X, S, S

)
· O(X2, SX, SX, SS) = O(X2, SX, SX, SS). (B.74)

To go from 6D differential operators to 4D differential operators, we need to find an
explicit uplift of the 4D operatorsO(x, s, s) to the 6D operatorsO(X, S, S). As noted
above, there are infinitely many such uplifts differing by gauge terms, but all lead to
the same result for 4D differential operators if the 6D operator satisfies (B.74). For
example, we can choose the uplift

O(X, S, S) = (X+)−κOO(X µ/X+, Sα, Sα̇). (B.75)

In particular, X−, S β̇, S
β derivatives of this uplift of O vanish. By applying 6D

derivatives to this expression we automatically obtain the required 4D derivatives
on the right hand side. For instance, we find for the first order derivatives after the
4D projection

∂/∂X M ����proj
=

{
∂/∂xµ,−κO − xν∂/∂xν, 0

}
, (B.76)

∂/∂Sa
����proj
=

{
∂/∂sα, 0

}
, ∂/∂S

a����proj
=

{
0, ∂/∂sα̇

}
. (B.77)

Reality properties of the basic invariants Using the reality properties (B.48)
of the sigma matrices, the projection rules (B.71) for S and S, and the reality
convention for 4D auxiliary polarizations sα =

(
sα̇

)∗, we can find the following
reality properties for the basic objects hold

(Xab)∗ = Xab,
(
Xab

)∗
= Xab, (Sa)∗ = iSa, (S

a
)∗ = iSa . (B.78)

Due to the relations such asY aWa = YaW a, we have an extremely simple conjugation
rule for the expressions such as

(
SiX jXk Sl

)
: replace X ↔ X, S ↔ S and add a

factor of i for each S and S.

Action of space parity To analyze space parity, let us denote by PM
N the 6x6

matrix which relfects the spacial components of X µ. We also denote by â indices
transforming in the representation reflected relative to the one of a.8 Note that the

7In this equation O stands for the usual big-O notation and not the 6D operator.
8The reflected representation is the representation with the Lorentz generatorsMrefl

MN given by
Mrefl

MN = PM′

M PN ′

N MM′N ′ , whereM are the original generators.
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reflection of the fundamental representation is equivalent to anti-fundamental and
vice versa and this equivalence should be implemented by some matrices pâb and
pâb. In terms of these matrices we then have

PM
N Σ

N
ab = Σ

N
âb̂ = pâa′pb̂b′Σ

M a′b′
, (B.79)

PM
N Σ

N ab
= ΣN âb̂ = pâa′pb̂b′

Σ
M
a′b′ . (B.80)

It is easy to check that these identities (as well as the equivalence between the
representations) are achieved by choosing

pâb = pbâ = −pâb = −pbâ =

*.......
,

0 0 0 −i

0 0 i 0
0 i 0 0
−i 0 0 0

+///////
-ab

. (B.81)

From the above we deduce the action of parity on on X and X

Xab 7→ Xâb̂, Xab
7→ Xâb̂. (B.82)

We can also check, based on 4D projections of S and S, that

Sa 7→ −Sâ, S
a
7→ Sâ . (B.83)

Due to the identities such asY aWa = YâW â, we have the following parity conjugation
rule for the products like

(
SiX jXk Sl

)
: replace X ↔ X, S ↔ S and a factor of −1

for each S in the original expression.

Action of time reversal As discussed in appendix B.1, see equation (B.36), the
time reversal transformation can be implemented by combining the space parity
with complex conjugation. Using the above rule, T acts simply as a multiplication
by i

∑
i `i−`i on each structure.

B.3 Normalization of two-point functions and seed CPWs
In this appendix our goal is to fix the normalization constants of 2-point func-
tions (3.16) and the seed CPWs (3.44).

The phase of 2-point functions is constrained by unitarity. A simple manifestation
of the unitarity is the requirement that all the states in a theory have non-negative
norms

〈Ψ|Ψ〉 ≥ 0. (B.84)
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Our strategy is to define a state whose norm is related to 2-point functions (3.15)
and use this relation to fix the phase (3.16). In particular, we set

|O(s, s)〉 ≡ O(x0, s, s) |0〉, xµ0 ≡ {iε, 0, 0, 0}, (B.85)

where ε > 0. Here we are working in the standard Lorentzian quantization where
the states are defined on spacelike hyperplanes. The state |O(s, s)〉 can then be
interpreted as a NS-quantization state in a Euclidean CFT [18]. Note that we have

|O(s, s)〉 = e−εHO(0, s, s) |0〉. (B.86)

Here H = −iP0 is the Hamiltonian9 of the theory, and thus its spectrum is bounded
from below. Therefore, we need ε > 0 in order for |O(s, s)〉 to have a finite norm.
To compute this norm, we first consider the conjugate state

〈O(s, s) | = 〈0|(O(x0, s, s))† = 〈0|O(−x0, s, s), (B.87)

where we used x∗0 = −x0. Then the norm is given by

〈O(s, s) |O(s, s)〉 = 〈0|O(−x0, s, s)O(x0, s, s) |0〉. (B.88)

By using (3.15) to further rewrite (B.88), with the invariants x2
12, I

21 and I12 taking
the form

x2
12 = 4ε2, I21 = 2iε s†s, I12 = −2iε s†s, (B.89)

we find

〈0|O(−x0, s, s)O(x0, s, s) |0〉 = c
〈OO〉

(2ε )−2∆(s†s)`+`i`−` ≥ 0, (B.90)

where s†s = |s1 |
2 + |s2 |

2 ≥ 0. This equation fixes the phase of c
〈OO〉

, and we can
consistently set

c
〈OO〉
= i`−` . (B.91)

Normalization of seed CPWs One can find the leading OPE behavior of the seed
and the dual seed conformal blocks by taking the limit z, z → 0, z ∼ z, of the
solutions obtained in [58]. In particular, for the seed blocks we find

lim
z,z→0

H (p)
e = cp

0,−p
(−2)e−p p! (p − e + 1)e

e! (` + 1)p
(zz)

∆+e−p/2
2 C (p+1)

`−p+e

(
z + z

2 (zz)1/2

)
, (B.92)

9Recall that in our conventions P is anti-Hermitian.



428

and for the dual seed blocks

lim
z,z→0

H
(p)
e = (−2)p cp

0,−p
(−2)e−p p! (p − e + 1)e

e! (` + 1)p
(zz)

∆+e−p/2
2 C (p+1)

`−e

(
z + z

2 (zz)1/2

)
,

(B.93)
where C (ν)

j (x) are the Gegenbauer polynomials, which in the limit 0 < z � z � 1
read as

C (p+1)
s

(
z + z

2 (zz)1/2

)
≈

(p + 1)s

s!
z−

s
2 z

s
2 . (B.94)

In the equations above cp
0,−p and cp

0,−p are some overall normalization coefficients
defined in [58]. The purpose of this paragraph is to find the values of these
coefficients appropriate for our conventions for 2- and 3-point functions.

In order to fix these coefficients, it suffices to consider the leading term in the s-
channel OPE in the seed 4-point functions. We have checked that the OPE exactly
reproduces the form of (B.92) and (B.93) if one sets

cp
0,−p = 2p cp

0,−p = (−1)` ip. (B.95)

Let us stress that this normalization factor is fixed by the convention (3.15) and (3.16)
for the 2-point functions, and the definitions of the seed 3-point functions. The seed
3-point tensor structures are defined as

〈F
(0,0)

1 (p1) F (p,0)
2 (p2) O (`, `+p)

∆
(p3)〉 = [Î32]p [Ĵ312]`K3, (B.96)

〈O
(`+p, `)
∆ (p2) F (0,0)

3 (p3) F (0,p)
4 (p4) 〉 = [Î42]p [Ĵ234]`K3, (B.97)

and the dual seed 3-point functions are defined as

〈F
(0,0)

1 (p1) F (p,0)
2 (p2) O

(`+p, `)
∆ (p3)〉 = [K̂23

1 ]p [Ĵ312]`K3, (B.98)

〈O
(`, `+p)
∆

(p2) F (0,0)
3 (p3) F (0,p)

4 (p4) 〉 = [K̂
24
3 ]p [Ĵ234]`K3, (B.99)

where in each equationK3 has to be replaced with the appropriate 3-point kinematic
factor as defined in (3.18).

Equation (B.95) can be derived from these three-point functions and the correspond-
ing leading OPE terms

F
(0,0)

1 (0)F (p,0)
2 (x2, s2)

=
(−i)p

`!(` + p)!
|x2 |

∆−∆1−∆2−` (s2∂s)p(xµ2∂sσµ∂s)`O
(`+p,`)
∆ (0, s, s) + . . . , (B.100)

F
(0,0)

1 (0)F (p,0)
2 (x2, s2)

=
ip

`!(` + p)!
|x2 |

∆−∆1−∆2−`−p(xµ2 s2σµ∂s)p(xµ2∂sσµ∂s)`O (`,`+p)
∆

(0, s, s) + . . . ,

(B.101)
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where we have defined

(∂s)α ≡
∂

∂sα
, (∂s)α̇ ≡

∂

∂sα̇
. (B.102)

The normalization coefficients in these OPEs can be computed by substituting
the OPEs into (B.96) and (B.98) and using the two-point function (3.16). The
normalization coefficients for the CPWs are then obtained by using these OPEs in
the seed four-point function

〈F
(0,0)

1 F
(p,0)

2 F
(0,0)

3 F
(0,p)

4 〉 (B.103)

and utilizing the 3-point function definitions (B.97) and (B.99). In practice, when
comparing the normalization coefficients, we found it convenient to use the confor-
mal frame (3.95) - (3.98) in the limit 0 < z � z � 1 and further set η2 = 0 and
e = p for the seed CPWs or ξ2 = 0 and e = 0 for the dual seed CPWs.

B.4 4D form of basic tensor invariants
Here we provide the form of basic tensor invariants in 4D for n ≤ 4 point functions.
They are obtained by applying the projection operation (B.71) to the basic 6D tensor
invariants constructed in section 3.3.1

(Îi j, Î
i j
kl, Ĵ

k
i j, K̂

i j
k , K̂

i j

k , L̂
i
j kl, L̂

i

j kl ) ≡ ( Îi j, Îi j
kl, Jk

i j, K i j
k , K

i j
k , Li

j kl, L
i
j kl )

����proj
,

(B.104)
where

Îi j = xµi j (siσµs j ), (B.105)

Î
i j
kl =

1
2 x2

kl

×

(
(x2

ik xµjl − x2
il x

µ
j k ) + (x2

j k xµil − x2
jl x

µ
ik ) − x2

i j x
µ
kl − x2

kl x
µ
i j

− 2iε µνρσxik νxl j ρxlk σ

)
× (siσµs j ), (B.106)

Ĵki j =
x2

ik x2
j k

x2
i j

×

( xµik
x2

ik

−
xµj k

x2
j k

)
× (skσµsk ), (B.107)

K̂
i j
k =

1
2
|xi j |

|xik | |x j k |
×

(
(x2

ik + x2
j k − x2

i j )(sis j ) − 4xµik xνj k (siσµνs j )
)
, (B.108)

K̂
i j

k =
1
2
|xi j |

|xik | |x j k |
×

(
(x2

ik + x2
j k − x2

i j )(sis j ) − 4xµik xνj k (siσµνs j )
)
, (B.109)

L̂i
j kl =

2
|x j k | |xkl | |xl j |

×

(
x2

i j x
µ
kl x

ν
il + x2

ik xµl j x
ν
i j + x2

il x
µ
j k xνik

)
×

(
siσµνsi

)
, (B.110)

L̂
i

j kl =
2

|x j k | |xkl | |xl j |
×

(
x2

i j x
µ
kl x

ν
il + x2

ik xµl j x
ν
i j + x2

il x
µ
j k xνik

)
×

(
siσµνsi

)
. (B.111)
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We recall that xµi j ≡ xµi − xµj and ε0123 = −1 in our conventions. From these
expressions it is possible to derive the conjugation properties of the invariants. They
read as follows: (

Îi j
)∗
= −Î ji ,

(
Î
i j
kl

)∗
= −Î

ji
lk ,

(
Ĵki j

)∗
= Ĵki j , (B.112)(

K̂
i j
k

)∗
= −K̂

i j

k ,
(
L̂i

j kl

)∗
= −L̂

i

j kl . (B.113)

Their parity transformation can be deduced from (B.26)

P Îi j = −Î ji , P Î
i j
kl = −Î

ji
lk , P Ĵki j = Ĵ

k
i j , (B.114)

P K̂
i j
k = K̂

i j

k , P L̂i
j kl = L̂

i

j kl . (B.115)

Finally, according to (B.36) one gets transformations under time reversal

T Îi j = Îi j , T Î
i j
kl = Î

i j
kl , T Ĵki j = Ĵ

k
i j , (B.116)

T K̂
i j
k = −K̂

i j
k , T L̂i

j kl = −L̂
i
j kl . (B.117)

The same properties follow from the discussion of P-, T -symmetries, and conju-
gation in appendix B.2.

B.5 Covariant bases of three-point tensor structures
Let us review the construction [n3ListStructures] of 3-point function tensor
structures [55]. According to the discussion below (3.88) one has

T̂a
3 =

{∏
i, j

[
Îi j

] mi j
×

∏
i, j<k

[
Ĵij k

] ni [
K̂

j k
i

] ki [
K̂

j k

i

] ki
}
, (B.118)

where the exponents satisfy the following system

`i =
∑
l,i

mli +
∑
l,i

kl + ni, (B.119)

`i =
∑
l,i

mil +
∑
l,i

k l + ni . (B.120)

Let us also define the quantity

∆` ≡
∑

i

(`i − `i). (B.121)

Due to relations among products of invariants, not all the structures obtained this way
are independent and constraints on possible values of the exponents in (B.118) must
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be imposed. Theses relations come from the Jacobi identities (B.73) by contracting
them with 6D polarizations and 6D coordinate matrices in all possible ways.

The first set of relations reads

K̂ik
j K̂

j k

i = − Î
ki Î j k − Î ji Ĵki j , (B.122)

K̂
i j
k K̂

i j

k = Î
i j Î ji − Ĵ

j k
i Ĵ

ik
j . (B.123)

If ∆` , 0 we use these relations to set ki = 0 or ki = 0 for ∀ i in the expres-
sion (B.118); if ∆` = 0 we set instead ki = ki = 0 ∀ i.

The second set of relations reads

Ĵ
j
ikK̂

ik
j = Î

jiK̂
j k
i − Î

j kK̂
i j
k , (B.124)

Ĵ
j
ikK̂

ik

j = Î
i jK̂

k j

i + Î
k jK̂

i j

k . (B.125)

This allows to set either ni = 0 or ki = 0 if ∆` > 0 and either ni = 0 or ki = 0 if
∆` < 0 in (B.118).

If ∆` = 0 it might seem that the relations (B.124) and (B.125) do not play any role,
since all K and K are removed by mean of (B.122) and (B.123). However it is not
the case, by combining (B.124) and (B.125) with (B.122) and (B.123) one gets a
third order relation

Ĵ123Ĵ
2
13Ĵ

3
12 =

(
Î23Î32Ĵ123 − Î

13Î31Ĵ213 + Î
12Î21Ĵ312

)
−

(
Î21Î13Î32 − Î12Î31Î23

)
. (B.126)

This allows to set in (B.118) either n1 = 0 or n2 = 0 or n3 = 0 when ∆` = 010. It
can be verified that no other independent relations exist.

In the case when all operators are trace-less symmetric, i.e. `i = `i for each field,
it is convenient to work in terms of structures manifestly even or odd under parity.
Following [62], the most general parity definite tensor structure reads as

T̂a
3 =

{(
Î21Î13Î32 + Î12Î31Î23

) p
×

∏
i, j

(
Îi j Î ji

)mi j
×

∏
i, j<k

[
Ĵij k

] ni
}
, (B.127)

where the structure is even if p = 0 and the structure is odd if p = 1. The form of
this basis is structurally identical to the one found in [53]. This basis has extremely
simple properties under complex conjugation, parity and time reversal(

T̂a
3

)∗
= (−1)p T̂a

3, P T̂a
3 = (−1)p T̂a

3, T T̂a
3 = T̂

a
3 . (B.128)

This basis can be constructed using [n3ListStructuresAlternativeTS].
10Notice that for∆` , 0 at least one ni is always 0 and hence (B.126) does not give new constraints.



432

B.6 Casimir differential operators
The Lie algebra of the 4D conformal group is a real form of the simple rank-3
algebra so(6). Therefore, it has three independent Casimir operators, which can be
defined using the 6D Lorentz generators (B.57) as follows:

C2 ≡
1
2

LM N LN M, (B.129)

C3 ≡
1

24i
εM N PQRS LM N LPQ LRS, (B.130)

C4 ≡
1
2

LM N LN P LPQ LQM, (B.131)

where ε012345 = ε012345 = +1.

To write out the Casimir eigenvalues for primary operators, it is convenient to
introduce also the SO(1, 3) Casimir operators using the 4DLorentz generator (B.17).
There are two such Casimirs

c+2 ≡ −
1
2

LµνLµν, c−2 ≡
1
4i
ε µνρσLµνLρσ, (B.132)

with the eigenvalues

e+2 =
1
2
`(` + 2) +

1
2
`(` + 2), e−2 =

1
2
`(` + 2) −

1
2
`(` + 2). (B.133)

The conformal Casimir eigenvalues are then given by

E2 ≡ ∆(∆ − 4) + e+2 , (B.134)

E3 ≡
(
∆ − 2

)
e−2 , (B.135)

E4 ≡ ∆
2(∆ − 4)2 + 6∆(∆ − 4) +

(
e+2

)2
−

1
2

(
e−2

)2
. (B.136)

Note that c−2 is parity-odd and therefore e−2 changes the sign under ` ↔ `. The same
comment applies to C3 and E3.

It is convenient to write the Casimir Operators in the SU (2, 2) language by plug-
ging (B.59) into the expression (B.129), (B.130), and (B.131)

C2 =
1
4

tr L2, (B.137)

C3 =
1

12
(
tr L3 − 16 C2

)
, (B.138)

C4 = −
1
8

(
tr L4 − 8 tr L3 − 12 C2

2 + 16 C2
)
. (B.139)
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Let us emphasize that the Casimir operators Cn are the Hilbert space operators.
Their differential form Cn can be obtained by replacing the Hilbert space operators
LM N and La

c with their differential representations LM N and La
c given in (B.58)

and (B.62) together with reverting11 the order of operators LM N and La
c in equa-

tions (B.129) - (B.131) and (B.137) - (B.139).

B.7 Conserved operators
By conserved operators we mean primary operators in short representations of
the conformal group, i.e. those possessing null descendants and thus satisfying
differential equations. In a unitary 4D CFT all local primary operators satisfy the
unitarity bounds [24, 42]12

∆ ≥ 1 +
` + `

2
, ` = 0 or ` = 0, (B.140)

∆ ≥ 2 +
` + `

2
, ` , 0 and ` , 0, (B.141)

and unitary null states can only appear when these bounds are saturated.

The operators of the type ` = 0 or ` = 0 with ∆ = 1 + (` + `)/2 satisfy the free
wave equation13 ∂2O (`,`)

∆
= 0 [294], which immediately implies that such operators

can only come from a free subsector of the CFT. The operators of the second type,
`` , 0, ∆ = 2 + (` + `)/2, are the conserved currents which satisfy the following
operator equation14

∂ · O (`,`)
∆

(x, s, s) = 0, ∂ ≡ (εσµ)α
β̇
∂µ

∂2

∂sα ∂s β̇
. (B.142)

Of particular importance are the spin-1 currents J µ in representation (1, 1), the stress
tensorT µν in representation (2, 2) and the supercurrents J µα and J µα̇ in representations
(2, 1) and (1, 2). Note that an appearance of traceless symmetric higher-spin currents
is known to imply an existence of a free subsector [295, 296].

The conservation condition results in the following Ward identity for n-point func-
tions

∂ · 〈. . .O (`,`)
∆

(x, s, s) . . .〉 = 0 + contact terms, (B.143)
11See the discussion below (B.20).
12An operator with ` = ` = 0 has an extra option ∆ = 0. This is the identity operator.
13This is not the conformally-invariant differential equation satisfied by these operators, but rather

its consequence.
14The operator ∂ can be applied in the conformal frame [opConservation4D] or in the embed-

ding formalism [opConservationEF].
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where the contact terms encode charges of operators under the symmetry generated
by the conserved currentO (`,`)

∆
. Note that since ∂ ·O (`,`)

∆
is itself a primary operator in

representation (`−1, `−1), ∆ = 3+ (`+`)/2, the left hand side of the above equation
has the transformation properties of a correlation function of primary operators and
thus can be expanded in a basis of appropriate tensor structures.

For 3-point functions, the Ward identities imply two kind of constraints. First,
the validity of (B.143) at generic configurations of points xi implies homogeneous
linear relations between the OPE coefficients entering 3-point functions. Second,
the validity of (B.143) at coincident points relates some of the OPE coefficients to
the charges of the other two operators in a given 3-point function (this happens only
if special relations between scaling dimensions of these operators are satisfied). The
solution of these constraints is of the form (3.22), where some of λ̂ can be related
to the charges.

For 4-point functions the situation is more complicated, since (B.143) at non-
coincident points leads to a system of first order differential equations for the func-
tions gI

4(u, v) of the form

BAJ (u, v, ∂u, ∂v) gJ
4 (u, v) = 0, (B.144)

where A runs through the number of tensor structures for the correlator in the left
hand side of (B.143). The constraints implied by these equations were analysed
in [75]. It turns out that one can solve these equations by aribtrarily specifying a
smaller number N′4 of the functions gI

4(u, v) and a number of boundary conditions
for the remaining gI

4(u, v).15 It is generally important to take this into account when
formulating an independent set of crossing symmetry equations. We refer the reader
to [75] for details. In [75] the value N ′4 was found for 4 identical conserved spin 1
and spin 2 operators. The same values N ′4 were found later by other means in [62]
and a general counting rule was proposed in [1].

Conservation operator in the embedding formalism The conservation condi-
tion (B.142) can be consistently reformulated in the embedding space[opConservationEF]
as follows:

D O(`,`)
∆O

(
X, S, S

)
= 0, ∆O = 2 +

` + `

2
(B.145)

15DK thanks Anatoly Dymarsky, João Penedones, and Alessandro Vichi for discussions on this
issue.
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and the differential operator originally found in [55] is given by16

D ≡
2

` `
(
2 + ` + `

) (
XMΣ

M N∂N
)b

a
∂ a

b , (B.146)

where we have defined

∂ a
b ≡

1
1 + ` + `

∂ a∂b =(
4 + S ·

∂

∂S
+ S ·

∂

∂S

)
∂

∂Sa

∂

∂S
b − Sb

∂

∂Sa

∂ 2

∂S · ∂S
− S

a ∂

∂S
b

∂ 2

∂S · ∂S
. (B.147)

In this identity we dropped the terms which project to zero upon contraction with(
XMΣ

M N∂N
)b

a
.

B.8 Permutations symmetries
When the points in (3.8) are space-like separated, the ordering of operators is not
important up to signs coming from permutations of fermions. In particular, if some
operator enters the expectation value more than once, say at points pi and p j , the
function fn enjoys the permutation symmetry

fn(. . . , pi, . . . , p j, . . .) = [(i j) fn](. . . , pi, . . . , p j, . . .) ≡ ± fn(. . . , p j, . . . , pi, . . .).
(B.148)

Here we used the cycle notation for permutations, for instance (123) denotes 1→ 2,
2 → 3, 3 → 1. In general, there may be more identical operators in the right hand
side of (3.8) in which case fn is invariant under some subgroup of permutations
Π ⊆ Sn.

The degrees of freedom in fn are described by the functions gI
n defined via (3.11)

fn(xi, si, si) =
Nn∑
I=1

gI
n(u) TI

n(xi, si, si). (B.149)

One can then find the implications of the permutation symmetries directly for gI
n.

Note that since the exchanged operators are identical, a permutation π ∈ Π acting on
a tensor structure gives a tensor structure of the same kind, and thus we can expand
it in the same basis

πTI
n =

∑
J

πJ
I (u)TJ

n . (B.150)

16We note that there is a mistake in the original paper [55] due to a wrong choice of the analogue
of (3.62).
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This means that in general the consequence of a permutation symmetry is

gI
n(u) =

∑
J

πI
J (u)gJ

n (πu). (B.151)

At this point we should divide all the permutations into two classes. We call the
permutations which preserve the cross-rations (πu = u) the kinematic permutations
and all the other permutations will be referred to as non-kinematic. The group of
kinematic permutationsΠkin

n is Sn for n ≤ 3 since there are no non-trivial cross-ratios
in these cases. We also have Πkin

4 = Z2 × Z2 = {id, (12)(34), (13)(24), (14)(23)}
and Πkin

n is trivial for n ≥ 5.

This distinction is important because for kinematic permutations the constraint (B.151)
becomes a simple local linear constraint,

gI
n(u) =

∑
J

πI
J (u)gJ

n (u), (B.152)

which we can be solved as

gI
n(u) =

∑
A

PI
A(u)ĝA

n (u). (B.153)

In the case of 3-point functions the solution (B.153) has a particularly simple
form (3.22).

Applying permutation [permutePoints] and computing πI
J (u) is straightforward

in the EF – we simply need to permute the coordinates Xi and the polarizations Si, Si.
It is somewhat trickier to figure out the permutations in the CF [1], and we describe
the case n = 4 in the remainder of this section. We also comment on how to permute
non-identical operators, which is required, for example, in order to exchange s- and
t-channels.

Semi-covariant CF Structues First, we describe a slight generalization of the
conformal frame, which is convenient for computing the action of permutations
on the CF structures. Note that the 4-point tensor structures constructed in sec-
tion 3.4.1.2 are covariant under the conformal transformations acting in z plane.
Indeed, it is easy to see that the structures (3.116) transform with 2d spin qi + qi at
each point. Taking into account the scaling dimensions of the operators, we see that
we can assign the left- and right-moving weights

hi =
∆i + qi + qi

2
, hi =

∆i − qi − qi

2
(B.154)
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to each tensor structure. We can then easily write the value of the 4-point function
represented on the conformal frame by

f4(0, z, 1,∞, si, si) =


q1 q2 q3 q4

q1 q2 q3 q4


g{qi,qi } (z, z) (B.155)

in a generic configuration of the four points zi in z-plane as [cfEvaluateInPlane]

f4(z1, z2, z3, z4, si, si) =



q1 q2 q3 q4

q1 q2 q3 q4

z1 z2 z3 z4



g{qi,qi } (z, z), (B.156)

where
z =

(z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4)

, z =
(z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4)

, (B.157)

and, defining zi j = zi − z j ,



q1 q2 q3 q4

q1 q2 q3 q4

z1 z2 z3 z4



=



q1 q2 q3 q4

q1 q2 q3 q4


×(z−h1−h2−h3+h4

31 z−h1+h2+h3−h4
41 z−2h2

42 zh1+h2−h3−h4
43 )

×(z−h1−h2−h3+h4
31 z−h1+h2+h3−h4

41 z−2h2
42 zh1+h2−h3−h4

43 ).
(B.158)

Note that the definition is chosen in such a way that the semi-covariant structure
transforms with the required left and right weights and17



q1 q2 q3 q4

q1 q2 q3 q4

0 z 1 ∞



=



q1 q2 q3 q4

q1 q2 q3 q4


. (B.159)

In general we might need to specify the branches of the fractional powers in (B.158).
The kinematic factor in this equation can be split into products of

(zi j zi j ) f (∆k ) and *
,

zi j

zi j
+
-

f̃ (qk+qk )

. (B.160)

In the region of the configuration space where all pairs of points are spacelike
separated18, we have zi j zi j > 0, so there is no branching for the factors of the first

17Recall that the limit z4 = ∞ is defined with an extra factor |x4 |
2∆4 in order to obtain a non-zero

result.
18In particular, in the whole Euclidean region.
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kind. The exponent of the factors of the second kind is always half-integral, thus we
only need to specify the branch of

√
zi j
zi j

which can be chosen

√
zi j

zi j
=

√
z2

i j

zi j zi j
=

zi j√
zi j zi j

. (B.161)

This is valid because it gives a smooth choice for the whole spacelike region and
reduces the kinematic factor to 1 in the standard configuration {z1, z2, z3, z4} =

{0, 1, z,∞}.

The above discussion gives a version of the CF 4-point tensors structures which
is defined for any configuration of the four points in the z-plane. This is suf-
ficient for computing the action of arbitrary permutations on the tensor struc-
tures (3.116). Explicit formulas for permutations between identical operators can
be found in [1]. General permutations are implemented in CFTs4D package in the
function [permutePoints].
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A p p e n d i x C

APPENDICES TO CHAPTER 4

C.1 Conformal algebra
We use the following conventions for the conformal algebra,

[D, Kµ] = −Kµ, [D, Pµ] = Pµ, (C.1)

[Kµ, Pν] = 2δµνD − 2Mµν, (C.2)

[Mµν, Pρ] = δνρPµ − δµρPν, (C.3)

[Mµν, Kρ] = δνρKµ − δµρKν, (C.4)

[Mµν, Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν, (C.5)

and all other commutators vanish. In Lorentzian signature, all generators are anti-
Hermitian. In Euclidean signature D = D†, K = P† and M is anti-Hermitian. Notice
how (C.2) expresses the conformal Killing equation for the adjoint representation
by saying that the rank-2 symmetric traceless tensor does not appear among level-1
descendants of the primary Kµ.

C.2 Verma modules and differential operators
In the main text we have seen that for every irreducible component V∆′,ρ in the
tensor product W ⊗ V∆,ρ there is a conformally-covariant differential operator DA :
[∆, ρ] → [∆′, λ] with a W ∗-index A. Here we would like to state this relation more
carefully and show that there is in fact a one-to-one correspondence.

Theorem 3. For generic ∆ the decomposition (4.13) holds. The irreducible compo-
nents in the tensor product decomposition (4.13) are in one-to-one correspondence
with the conformally-covariant differential operators DA : [∆, ρ]→ [∆′, λ] with an
index A transforming in a finite-dimensional representation W of SO(d + 1, 1).

Proof. First we show that the tensor product decomposition (4.13) holds. The
discussion in section 4.2.2 essentially shows that the characters on the both sides
agree. This statement holds for all∆. This however does not necessarily imply (4.13)
as an isomorphism between the representations. So our first step is to construct the
isomorphism (4.13).
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We can define on W ⊗ V∆,ρ a conformally-invariant inner product, induced from the
inner products on W and V∆,ρ. Suppose that there is a submodule Y ⊆ W ⊗ V∆,ρ. If
the conformally-invariant inner product is non-degenerate1 on Y , it follows that Y is
in fact a direct summand,

M ≡ W ⊗ V∆,ρ = Y ⊕ Y⊥. (C.6)

Starting from this observation, it is a standard argument to show that (4.13) holds.
We reproduce it here for completeness. The states (4.10) are always primary because
they have the smallest possible scaling dimension ∆ − j. We can decompose them
into mutually orthogonal irreducibles of SO(d). Considering all the descendants of
these states we form the submodule

Y− j =
⊕

λ∈W−j⊗ρ

V∆− j,λ . (C.7)

For generic ∆ the generalized Verma modules in this sum are irreducible, and thus
the inner product is non-degenerate (otherwise the null states form a submodule).
By (C.6) we then have

M = Y− j ⊕ M1, M1 ≡ Y⊥− j . (C.8)

We can now look at the states of the smallest scaling dimension inside of M0. These
all are again primary, and we can consider the submoduleY− j+1 which they generate.
Since we already know (4.13) as a character identity, we know that

Y− j+1 =
⊕

λ∈W−j+1⊗ρ

V∆− j+1,λ . (C.9)

Again, from (C.6) we find

M1 = Y− j+1 ⊕ M2. (C.10)

We then continue recursively until we exhaust all states as controlled by (4.13) as
a character identity. Collecting everything together, we arrive at (4.13) as a direct
sum decomposition.

From the discussion in the main text it follows that the primaries which we iden-
tify in the tensor product W ⊗ V∆,ρ give rise to conformally-covariant differential
operators. At the same time, as observed in section 4.2.4, they give rise to ho-
momorphisms (4.29). In fact, there is a one-to-one correspondence between these
objects.

1Note that if the inner-product is non-degenerate but not positive-definite, there still can exist
subspaces on which it is degenerate. Finite-dimensional representations of non-compact groups such
as SO(d + 1, 1) or SO(d, 2) necessarily have indefinite inner products.
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Lemma 3. For any fixed ∆,∆′, ρ, λ the conformally-covariant differential operators
DA : [∆, ρ]→ [∆′, λ] are in a one-to-one correspondence with the homomorphisms
of the form (4.29).

The map implied by this lemma is essentially constructed in section 4.2.3. Looking
at it one can easily convince oneself that the lemma is almost a tautology. We give
a formal proof later in this appendix.

Given lemma 3, to finish the proof of the theorem it only remains to show that
generically the only homomorphisms of the form (4.29) are those which come from
the embeddings of the direct summands in (4.13). This follows immediately from
Schur’s lemma and the fact that Verma modules are irreducible for generic scaling
dimensions. �

Proof of lemma 3. For W = •, lemma 3 is standard material in representation
theory of generalized Verma modules [297], and we need to only slightly modify
it by introducing the non-trivial W . Let us give an elementary review of the proof
with the appropriate modifications.

First, we need to give the precise meaning to [∆, ρ], which is in fact a vector bundle.
The sections of [∆, ρ] are the functions f a (x) on the conformal sphere Sd with index
a in ρ which transform as2

(g f )a (x) = Ω(x)−∆ρa
b(R(x)) f b(g−1x), g ∈ SO(d + 1, 1). (C.11)

We also associate a vector bundleW to W . The sections ofW are the functions
f A which transform as

(g f )A(x) = DA
B (g) f B (g−1x). (C.12)

The conformally-covariant differential operator DA is then a differential operator
between the vector bundles

D : [ρ, λ]→W ⊗ [∆′, λ], (C.13)

which commutes with the action of the conformal group. We will refer to this
property as equivariance. The idea now is to note that if we know that D is
equivariant, then it is completely specified by its action at zero, i.e. by the expression

(D f )a
A(0) = derivatives of f at 0. (C.14)

2The difference with (4.8) comes from the fact that here we are defining the action on functions
rather than operators, and the appearance of g−1 in the argument of f on the right hand side is
dictated by compatibility with the group multiplication (gh) f = g(h( f )).
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Indeed, let tx be the translation which takes 0 to x. Then we can compute D f at
any x by writing

(D f )a
A(x) = (txDt−x f )a

A(x) = DA
B (tx)(Dt−x f )a

B (0), (C.15)

and using (C.14) for t−x f . As usual, the only condition the expression (C.14)
has to satisfy in order for this construction to be self-consistent is that it has to be
equivariant with respect to the transformations which fix the origin – in our case with
respect to dilatations, rotations and special conformal transformations, the algebra
of which we will denote by p.3

Instead of studying this condition in detail, we can just map it to the similar problem
for Verma modules. If D is of order k, the equation (C.14) can be understood as
the map

D : Jk
0 [∆, ρ]→ W ⊗ J0

0 [∆′, λ], (C.16)

where Jk
0 [∆, ρ] is the space of k-jets of sections of [∆, ρ] at 0, i.e. the space of formal

power series of sections of [∆, ρ] around the origin, truncated to k-th order. One can
extend the action of conformal algebra to these jets, and the problem of finding a
p-equivariant map (C.14) is equivalent to finding p-equivariant maps (C.16). Using
(C.15) we can extend such maps to so(d + 1, 1)-equivariant maps

D : J∞0 [∆, ρ]→ W ⊗ J∞0 [∆′, λ], (C.17)

between the formal power series. These are the same as Verma module homomor-
phisms because V∆,ρ consists of the states like ∂µ1 · · · ∂µnO

a (0), which are naturally
linear functionals on the formal power series J∞0 [∆, ρ]. In fact, one can show that
as so(d + 1, 1)-representations,

V∆,ρ '
(
J∞0 [∆, ρ]

)∗
. (C.18)

Thus by taking the dual of (C.17) we obtain a homomorhism

D∗ : W ∗ ⊗ V∆′,λ → V∆,ρ. (C.19)

As usual, we can replace W ∗ on the left with a W on the right: we can define
D′(v) = eA ⊗ D∗(e∗A ⊗ v), so that

D′ : V∆′,λ → W ⊗ V∆,ρ (C.20)

is a homomorphism of the form (4.29). All the steps that we took to get from the
differential operator DA to D′ were invertible, so we get a one-to-one correspon-
dence. �

3This is not to be confused with the subalgebra generated by translations. We use this notation
to be consistent with the mathematics literature, where p stands for “parabolic”.
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C.3 Weight-shifting operators for the vector representation
Let us give more detail about the computation of the weight-shifting operators for
the vector representation (4.45). Recall that traceless symmetric tensor operators
are homogeneous elements of R/(R ∩ I), where R is the ring of functions of
X, Z ∈ Rd+1,1 that are invariant under Z → Z + λX (equivalently they are killed by
X · ∂

∂Z ), and I is the ideal generated by {X2, X · Z, Z2}. For a differential operator
D to be well-defined on R/(R ∩ I), it must satisfy

DR ⊆ R, (C.21)

D (R ∩ I) ⊆ R ∩ I . (C.22)

Because we are searching for homogeneous differential operators, it suffices to con-
sider their action on homogeneous elements of R. It is not hard to convince oneself
that a general homogeneous element of R can be written as a linear combination of
functions of the form

f∆,` (X, Z ) ≡ (X · Y )−∆−` ((Z · P)(X · Q) − (Z · Q)(X · P))`, (C.23)

for various Y, P,Q.

To find the weight-shifting operators D (a)
m , we start by enumerating conformally-

covariant terms with the correct homogeneity in X and Z , modulo X · ∂
∂X , Z · ∂

∂Z ,
and X · ∂

∂Z (which act as −∆, `, and 0, respectively). There are a finite number of
such terms, and this leads to the ansatz (4.45) with undetermined coefficients that
are functions of ∆, `.

To fix the coefficients, it suffices to check (C.21) and (C.22) for a sufficient number
of functions. In particular, we impose (C.21) in the form(

X ·
∂

∂Z

)
D

(a)
m f∆,` (X, Z ) = 0, (C.24)

and (C.22) in the form

D
(a)
m ((S · Z )2(X · X ) − 2(S · X )(S · Z )(X · Z ) + (S · X )2(Z · Z )) f∆+2,`−2(X, Z ) ∈ R ∩ I,

D
(a)
m ((X · X )(Z · Z ) − (X · Z )2) f∆+2,`−2(X, Z ) ∈ R ∩ I,

D
(a)
m ((X · X )(Z · S) − (X · S)(X · Z )) f∆+2,`−1(X, Z ) ∈ R ∩ I,

D
(a)
m (X · X ) f∆+2,` (X, Z ) ∈ R ∩ I,

(C.25)
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where S,Y, P,Q ∈ Rd+1,1 are arbitrary vectors. (Because of (C.21), to checkwhether
the left hand sides of (C.25) are in R ∩ I, it suffices to check whether they are in I.
That is, we set X2, X · Z, Z2 to zero and check whether the result is zero.) These
conditions are sufficient to fix the unknown coefficients. In particular, for the most
complicated weight-shiting operator D+0

m , we find

c1 =

(
d
2
− ∆ − 1

)
(∆ + ` − 1)(d − ∆ + ` − 2)

c2 = −
1
2

(∆ + ` − 1)(d − ∆ + ` − 2)

c3 = −

(
d
2
− ∆ − 1

)
(∆ + ` − 2)

c4 = −

(
d
2
− ∆ − 1

)
(d − ∆ + ` − 2)

c5 =
d
2
+ ` − 2

c6 =
d
2
− ∆ − 1

c7 = −
1
2
. (C.26)

C.4 6 j symbols and the algebra of operators
In this appendix we consider the crossing equation which is obtained by replacing
O1 in (4.102) by a finite-dimensional representation,4

a b

U

O2 O3

V

O′3
=

∑
W,m,n




U O2 W

O3 V O′3




ab

mn m

n

U

O2 O3

V

W .

(C.27)

Here, the sum is over W ∈ U ⊗ V . Since restricting O1 to a finite-dimensional
representation changes the counting of structures on both sides, we should check
that the numbers still agree. Let us assume that∆3 = ∆2−l. According to theorem 2,
the number of structures on the left is∑

i+k=l

dim(ρ∗2 ⊗ Ui ⊗ Vk ⊗ ρ3)SO(d), (C.28)

4We then find a third finite-dimensional representation arising from the tensor product of the
first two.
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while the number of structures on the right is∑
W∈U⊗V

dim(ρ∗2 ⊗Wl ⊗ ρ3)SO(d) × dim(U ⊗ V ⊗W ∗)SO(d+1,1) . (C.29)

These numbers are the same due to⊕
W∈U⊗V

dim(U ⊗ V ⊗W ∗)SO(d+1,1) ×Wl '
⊕
i+k=l

Ui ⊗ Vk . (C.30)

The crossing transformation (C.27) defines the algebra of weight-shifting operators
for general ρ2 and generic ∆2. In section 4.2.4 we described the same algebra in the
situation when both ρ2 and ∆2 are generic. As in section 4.2.4, (C.27) essentially
expresses the associativity of the tensor product.

As a simple application, suppose that U = V ∗ and let us contract U and V indices
in (C.27) to form the bubble diagram,

a b

U

O2 O3

O′3
=

∑
W,m,n




U O2 W

O3 U∗ O′3




ab

mn m

n

U

O2 O3

W .

(C.31)

The tadpole on the right can be non-zero only if W = • is the representation of the
identity operator 1. But then m exists only if ∆2 = ∆3 and ρ2 = ρ3. In this case
there exists a unique structure for both n and m. We can erase the line for the trivial
W , and the U-loop gives a factor of dim U. We thus find

a b

U

O2 O3

O′3
= (dim U)




U O2 1
O3 U∗ O′3




ab

··
O2 O3 .

(C.32)

We thus conclude

*.
,

O3

O′3 U
+/
-

ba

= (dim U)



U O3 1
O3 U∗ O′3




ab

··
. (C.33)
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The algebra (C.27) also shows tells us how to compose the two-point operators
of [61]. Indeed, suppose we have a composition of two two-point operators, ignoring
the operator labels,

O1 O′1

O2 O′2

U V . (C.34)

We can apply (C.27) at the top and at the bottom to find, schematically,

O1 O′1

O2 O′2

U V =
∑

W,W ′,...

{· · · }2

O1 O′1

O2 O′2

U V

W

W ′

, (C.35)

where {· · · }2 is a product of two 6 j symbols. By Schur’s lemma, the bubble diagram
in the middle can be non-zero only if W = W ′, in which case it is a scalar. This
scalar can be determined from finite-dimensional 6 j symbols. We thus arrive at

O1 O′1

O2 O′2

U V =
∑
W,...

{· · · }3

O1 O′1

O2 O′2

W , (C.36)

where {· · · }3 are some coefficients involving three 6 j symbols, and the sum is over
W ∈ U ⊗ V .

C.5 Seed blocks in 3d
Basis of four-point tensor structures. For the four-point tensor structures we use
the conformal frame structures

[q1q2q3q4] (C.37)

that we introduced in section 4.3.4.2. It is analogous to the basis used in [1], but we
make a different choice of the conformal frame,

x1 = (0, 0, 0),

x2 = (
z − z

2
, 0,

z + z
2

),

x3 = (0, 0, 1),

x4 = (0, 0,+∞). (C.38)
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The configuration used in section 4.3.4.2 corresponds then to z = z.

In terms of these structures, for parity-even four-point functions (G++seed and G−−seed)
we use the basis

G = g1(z, z)
[−1

2, 0, 0,−
1
2 ] + [1

2, 0, 0,
1
2 ]

2
+ g2(z, z)

[1
2, 0, 0,−

1
2 ] + [−1

2, 0, 0,
1
2 ]

2
,

(C.39)

and for parity-odd four-point functions (G+−seed and G−+seed) we use the basis

G = g1(z, z)
[−1

2, 0, 0,−
1
2 ] − [1

2, 0, 0,
1
2 ]

2
+ g2(z, z)

[1
2, 0, 0,−

1
2 ] − [−1

2, 0, 0,
1
2 ]

2
.

(C.40)

We will now provide explicit expressions for g±±i (z, z).

Explicit expressions for g±±i (z, z). First we strip off some normalization factors,

g++k (z, z) =
i(−1)`−

1
2

`(∆ − ` − 1)(∆ − 1)
(zz)−

∆1+∆2+
1
2

2 D
++
i G

α−
1
4 , β−

1
4

∆+
1
2 ,`−

1
2

(z, z),

g−−k (z, z) =
i(−1)`−

1
2

(` + 1
2 )(∆ + `)(∆ − 1)

(zz)−
∆1+∆2+

1
2

2 D
−−
i G

α−
1
4 , β−

1
4

∆+
1
2 ,`+

1
2

(z, z),

g+−k (z, z) =
i(−1)`−

1
2

`(∆ − ` − 1)(∆ − 1)
(zz)−

∆1+∆2+
1
2

2 D
+−
i G

α−
1
4 , β+

1
4

∆+
1
2 ,`−

1
2

(z, z),

g−+k (z, z) =
i(−1)`−

1
2

(` + 1
2 )(∆ + `)(∆ − 1)

(zz)−
∆1+∆2+

1
2

2 D
−+
i G

α−
1
4 , β+

1
4

∆+
1
2 ,`+

1
2

(z, z). (C.41)

Here, α = −(∆1 − ∆2)/2 and β = (∆3 − ∆4)/2, where ∆i are the dimensions of the
external operators in (4.172). To write down the expressions for D±±i , we introduce
the following operators,

Dz = z2(1 − z)∂2
z − (α′ + β′ + 1)z2∂z − α

′β′z,

dz = z∂z,

∇z =
1

z − z
dz (z − z) = z∂z +

z
z − z

,

d̃z = (1 − z)dz − α
′z,

∇̃z = (1 − z)∇z − (α′ − 1)z, (C.42)

as well as their conjugates which are obtained by exchanging z and z. The variables
α′ and β′ in the above formulas are equal to the parameters of the scalar conformal
blocks Gα′, β′

∆′,`′
(z, z) on which the differential operators act in (C.41).
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The differential operators D±±i are given by5

D
±±
1 =dz Dz − dz Dz − (dz − dz)

zz
2(z − z)

(
(1 − z)∂z − (1 − z)∂z

)
+ a±±(dz − dz) + b±±(Dz − Dz),

D
±±
2 =∇z Dz + ∇z Dz + (∇z + ∇z)

zz
2(z − z)

(
(1 − z)∂z − (1 − z)∂z

)
− a±±(∇z + ∇z) + c±±, (C.43)

where coefficients a±±, b±± and c±± are given below and, additionally, in D+− and
D−+ the operators d and ∇ need to be replaced by d̃ and ∇̃ respectively. We have

a++ = a+− =
(∆ − `)(∆ − ` − 3)

4
,

b++ = b+− =
∆ − ` − 3

2
,

c++ = c+− =
(2` + 1)(∆ − ` − 3)(∆ − 3

2 )
4

, (C.44)

and the coefficients for parity-odd left structure are obtained by replacing ` → −`−1,

a−− = a−+ =
(∆ + ` + 1)(∆ + ` − 2)

4
,

b−− = b−+ =
∆ + ` − 2

2
,

c−− = c−+ = −
(2` + 1)(∆ + ` − 2)(∆ − 3

2 )
4

. (C.45)

Normalization conventions Our normalization conventions are fixed by our choice
of two-point functions (4.178), the scalar-fermion three-point functions (4.173) and
the scalar three-point functions (4.175). These conventions agree with [81]. In
particular, if the scalar blocks are normalized as

Gα,β
∆,`

(z, z) ∼
(−1)` (1)`

(1/2)`
(zz)∆/2P` *

,

z + z

2
√

zz
+
-
, z, z � 1, (C.46)

where P` are Legendre polynomials, then the resulting seed blocks G±±seed are nor-
malized as in [81] with their cO = 1. To obtain the blocks at other values of cO , one
should divide our formulas by cO .

5Note again that in order to simplify these expressions we made use of the quadratic Casimir
equation satisfied by the scalar conformal blocks.
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The coefficients vi For G++ we have

v1 = −
i(−1)`−

1
2
(
−2∆ − 2∆3 − 2∆4 + 2` + 9

) (
2∆ + 2∆3 − 2∆4 + 2` − 1

)
64(∆ − 1)

(
2∆3 − 3

) (
2∆4 − 3

)
`(−∆ + ` + 1)

×
(
−2∆ − 2∆3 + 2∆4 + 2` + 1

)
,

v2 = −
i(−1)`−

1
2
(
−2∆ − 2∆3 − 2∆4 + 2` + 9

) (
−2∆ + 2∆3 − 2∆4 + 2` + 3

)
128(∆ − 1)

(
∆3 − 1

) (
2∆3 − 3

)
`(−∆ + ` + 1)

×
(
−2∆ − 2∆3 + 2∆4 + 2` + 3

)
,

v3 = −
i(−1)`−

1
2
(
−2∆ + 2∆3 − 2∆4 + 2` + 3

)
64(∆ − 1)

(
∆3 − 2

) 2 (
2∆3 − 3

) (
2∆4 − 3

)
`(−∆ + ` + 1)

,

v4 =
i(−1)`−

1
2
(
−2∆ − 2∆3 − 2∆4 + 2` + 9

) (
−2∆ + 2∆3 − 2∆4 + 2` + 3

)
128(∆ − 1)

(
∆3 − 2

) (
2∆3 − 3

)
`(−∆ + ` + 1)

×
(
−2∆ + 2∆3 + 2∆4 + 2` − 3

)
. (C.47)

For G−− we have

v1 = −
i(−1)`−

1
2
(
2∆ + 2∆3 − 2∆4 + 2` + 1

) (
−2∆ − 2∆3 + 2∆4 + 2` + 3

)
32(∆ − 1)

(
2∆3 − 3

) (
2∆4 − 3

)
(2` + 1)(∆ + `)

×
(
2∆ + 2∆3 + 2∆4 + 2` − 7

)
,

v2 = −
i(−1)`−

1
2
(
2∆ + 2∆3 − 2∆4 + 2` − 1

) (
2∆ − 2∆3 + 2∆4 + 2` − 1

)
64(∆ − 1)

(
∆3 − 1

) (
2∆3 − 3

)
(2` + 1)(∆ + `)

×
(
2∆ + 2∆3 + 2∆4 + 2` − 7

)
,

v3 = −
i(−1)`−

1
2
(
2∆ − 2∆3 + 2∆4 + 2` − 1

)
32(∆ − 1)

(
∆3 − 2

) 2 (
2∆3 − 3

) (
2∆4 − 3

)
(2` + 1)(∆ + `)

,

v4 =
i(−1)`−

1
2
(
2∆ − 2∆3 − 2∆4 + 2` + 5

) (
2∆ − 2∆3 + 2∆4 + 2` − 1

)
64(∆ − 1)

(
∆3 − 2

) (
2∆3 − 3

)
(2` + 1)(∆ + `)

×
(
2∆ + 2∆3 + 2∆4 + 2` − 7

)
. (C.48)

For G+− we have

v1 =
i(−1)`−

1
2
(
−2∆ − 2∆3 − 2∆4 + 2` + 9

) (
−2∆ − 2∆3 + 2∆4 + 2` + 3

)
64(∆ − 1)

(
∆3 − 1

) (
2∆3 − 3

) (
2∆4 − 3

)
`(−∆ + ` + 1)

,

v2 = −
i(−1)`−

1
2
(
−2∆ − 2∆3 − 2∆4 + 2` + 7

) (
2∆ − 2∆3 − 2∆4 + 2` + 3

)
128(∆ − 1)

(
2∆3 − 3

)
`(−∆ + ` + 1)

×

×
(
−2∆ − 2∆3 + 2∆4 + 2` + 3

) (
2∆ + 2∆3 + 2∆4 + 2` − 7

)
,

v3 = −
i(−1)`−

1
2
(
−2∆ + 2∆3 − 2∆4 + 2` + 3

) (
−2∆ − 2∆3 + 2∆4 + 2` + 3

)
64(∆ − 1)

(
∆3 − 2

) (
2∆3 − 3

) (
2∆4 − 3

)
`(−∆ + ` + 1)

,

v4 = −
i(−1)`−

1
2
(
−2∆ + 2∆3 − 2∆4 + 2` + 1

) (
2∆ − 2∆3 + 2∆4 + 2` − 1

)
128(∆ − 1)

(
∆3 − 2

) 2 (
2∆3 − 3

)
`(−∆ + ` + 1)

. (C.49)
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For G−+ we have

v1 = −
i(−1)`−

1
2
(
2∆ + 2∆3 − 2∆4 + 2` − 1

) (
2∆ + 2∆3 + 2∆4 + 2` − 7

)
32(∆ − 1)

(
∆3 − 1

) (
2∆3 − 3

) (
2∆4 − 3

)
(2` + 1)(∆ + `)

,

v2 =
i(−1)`−

1
2
(
−2∆ − 2∆3 − 2∆4 + 2` + 9

) (
2∆ + 2∆3 − 2∆4 + 2` − 1

)
64(∆ − 1)

(
2∆3 − 3

)
(2` + 1)(∆ + `)

×

×
(
−2∆ + 2∆3 + 2∆4 + 2` − 1

) (
2∆ + 2∆3 + 2∆4 + 2` − 5

)
,

v3 =
i(−1)`−

1
2
(
2∆ + 2∆3 − 2∆4 + 2` − 1

) (
2∆ − 2∆3 + 2∆4 + 2` − 1

)
32(∆ − 1)

(
∆3 − 2

) (
2∆3 − 3

) (
2∆4 − 3

)
(2` + 1)(∆ + `)

,

v4 =
i(−1)`−

1
2
(
−2∆ + 2∆3 − 2∆4 + 2` + 3

) (
2∆ − 2∆3 + 2∆4 + 2` + 1

)
64(∆ − 1)

(
∆3 − 2

) 2 (
2∆3 − 3

)
(2` + 1)(∆ + `)

. (C.50)

C.6 Dual seed blocks in 4d
In this appendix we provide the final expression for the dual seed conformal blocks
recursion relation omitting all the derivations. All the quantities below carry a bar
to distinguish them from their analogous in the seed case.

By performing the calculation completely analogous to the one in section 4.4.4.2,
we find that the dual seed conformal blocks obey the following recursion relation

W
(p)
∆, `; ∆1,∆2,∆3,∆4 =

A
−1*

,
v1 (D

−−0
1 · D4,−0+) (D

−+0
1 · D2,++0) W

(p−1)

∆−
1
2 , `; ∆1+1,∆2−

1
2 ,∆3,∆4+

1
2

+v2 (D
−−0
1 · D4,−0+) (D1,++0 · D

−+0
2 ) W

(p−1)

∆−
1
2 , `; ∆1,∆2+

1
2 ,∆3,∆4+

1
2

+v3 (D
+0−
1 · D4,−0+) (D

+0+
1 · D2,++0) W

(p−1)

∆−
1
2 , `; ∆1−1,∆2−

1
2 ,∆3,∆4+

1
2

+v4 (D
+0−
1 · D4,−0+) (D1,−0+ · D

−+0
2 ) W

(p−1)

∆−
1
2 , `; ∆1,∆2+

1
2 ,∆3,∆4+

1
2

+
-
,

(C.51)

where the coefficients are6

A = −
i (` + p)(∆ + ∆3 − ∆4 + ` + p − 2)

2∆ + 2` + p − 2
(C.52)

6Here A is not the 6 j symbol analogous to A, but simply an overall coefficient.
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and

v1 =
(∆ − ∆1 − ∆2 + ` + p + 2)(−∆ − ∆1 + ∆2 + ` + p + 2)

2(∆1 − 2)(2∆ + p − 4)(2∆2 + p − 4)
,

v2 = −
(∆ − ∆1 − ∆2 + ` + p + 2)(∆ − ∆1 + ∆2 + ` + 2p − 2)

4(∆1 − 2)(∆1 − 1)(2∆ + p − 4)
,

v3 = −
1

2(∆1 − 3)(∆1 − 2)2(2∆ + p − 4)(2∆2 + p − 4)
,

v4 = −
(∆ − ∆1 − ∆2 + ` + p + 2)(∆ + ∆1 + ∆2 + ` + 2p − 6)

4(∆1 − 3)(∆1 − 2)(2∆ + p − 4)
. (C.53)

Analogously to the primal seed case, we replace one of the conformal blocks on the
right hand side of (C.51) by using the dimension-shifting operator

W
(p−1)

∆−
1
2 , `; ∆1+1,∆2−

1
2 ,∆3,∆4+

1
2
= E

−1
(D1,+−0·D

−−0
2 )(D1,++0·D

−+0
2 ) W

(p−1)

∆−
1
2 , `; ∆1,∆2+

1
2 ,∆3,∆4+

1
2
,

(C.54)
where

E ≡ (p+1)(∆1−2)(∆1−1)(∆+∆1−∆2+ l+p−2)(−∆−∆1+∆2+ l+p+2). (C.55)

Decomposition into components Plugging the relation (C.54) in (C.51), strip-
ping off the kinematic factor and decomposing this relation into four-point tensor
structures according to (4.213) one obtains a recursion relation for the components
of seed blocks of the form analogous to (4.230)

H
(p)
e (z, z) = −

A
′−1

z − z

(
D0 H

(p−1)
e (z, z) − 2D1 H

(p−1)
e−1 (z, z) + 4cp−1

e−2 zzD2 H
(p−1)
e−2 (z, z)

)
,

(C.56)
where the blocks in the l.h.s depend on [∆, `; ∆1, ∆2, ∆3, ∆4] and the blocks in the
r.h.s. depend on [∆ − 1

2, `; ∆1, ∆2 +
1
2, ∆3, ∆4 +

1
2 ].

The overall coefficient is

A
′
≡ −(∆ +

p
2
− 2)(∆ + ∆1 − ∆2 + l + p − 2)A. (C.57)

The differential operators Di are given by the expression (4.231)-(4.233) with the
parameter k replaced by k

k ≡
∆ + `

2
+

3p
4
. (C.58)
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C.7 OperatorsHk

First, let us define normalized versions of operators (4.249),

D̂13 =
D−0

1 · D
+0
3

(∆3 − 1)(d − ∆3 − 2)
,

D̂24 =
D+0

2 · D
−0
4

(∆2 − 1)(d − ∆2 − 2)
,

D̂23 =
D+0

2 · D
+0
3

(∆3 − 1)(d − ∆3 − 2)(∆2 − 1)(d − ∆2 − 2)
. (C.59)

In terms of these, the operatorsHk have the following expressions,7

H1 =
D̂13 − D̂24
∆+12 − ∆

+
34
+

1
4

(∆+12 + ∆
+
34 − 2ε)(xx)−

1
2 ,

H2 =
D̂13 + D̂24

2
+
∆+12 + ∆

+
34

2
H1 −

∆+12(∆+12 − 2ε) + ∆+34(∆+34 − 2ε)
8

(xx)−
1
2 ,

H3 =
2D̂23

∆+12 + ∆
+
34 − 4ε − 2

− (∆+12 + ∆
+
34 − 2(ε − 1))H2 + (2c2 + ∆

+
12∆
+
34)H1 + κ0(xx)−

1
2 ,

(C.60)

where we defined8

∆
+
i j = ∆i + ∆ j, ε =

d − 2
2

, (C.61)

and the Casimir eigenvalues and the coefficient κ0 are given by

c2 = λ1(λ1 − 1) + λ2(λ2 − 2ε − 1),

c4 = (λ1 − λ2)(λ1 − λ2 + 2ε)(λ1 + λ2 − 1)(λ1 + λ2 − 1 − 2ε),

κ0 =
(∆+12 − 2ε)(∆+34 − 2ε)(∆+12∆

+
34 + 4c2) − 4(c4 − c2(c2 + 2ε))

4(∆+12 + ∆
+
34 − 4ε − 2)

. (C.62)

Note that the identity for the operatorH3 is valid up to quadratic and quartic Casimir
equations (i.e. only when acting on scalar conformal blocks Fλ1λ2 (a, b)).

7Here and below in this section we sometimes abuse the notation by using the same symbols for
the embedding-space differential operators and their action on Fλ1λ2 .

8Notice that in [64] ε is defined as here, whereas in the earlier work [57] the definition ε = d − 2
was used.
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A p p e n d i x D

APPENDICES TO CHAPTER 5

D.1 Conformal algebra and its representation on local operators
Here we describe our conventions for the conformal algebra. The commutation
relations are as follows,

[D, Pµ] = Pµ, [D, Kµ] = −Kµ, (D.1)

[Kµ, Pν] = 2δµνD + 2Mµν, (D.2)

[Mµν, Pρ] = δµρPν − δνρPµ, [Mµν, Kρ] = δµρKν − δνρKµ, (D.3)

[Mµν, Mρσ] = δµρMνσ − δνρMµσ + δµσMρν − δνσMρµ. (D.4)

The generators obey the following conjugation properties,

D† = D, P† = K, M†µν = −Mµν . (D.5)

The generators act on primary operators as follows,

[D,O(x)] = x · ∂O(x) + ∆O(x), (D.6)

[Pµ,O(x)] = ∂µO(x), (D.7)

[Mµν,O(x)] = (xµ∂ν − xν∂µ)O(x) + SµνO(x), (D.8)

[Kµ,O(x)] = (2xµxσ − x2δσµ )∂σO(x) + 2xσ (∆δµσ + Sµσ)O(x). (D.9)

Here Sµν are the generators which act on the spin indices of O(x) and satisfy the
commutation relations opposite to Mµν. Our convention for Mµν differs by a minus
sign from that of [19]. Mµν in our case has the interpretation of rotating eµ towards
eν.

D.2 Reduced matrix elements and vector isoscalar factors
In order towrite down the formulas for isoscalar factors and reducedmatrix elements,
we need to take some preliminary steps. First, let us consider the decomposition of
the tensor product md ⊗ . Generically, we have in even dimensions, according to
Brauer’s formula,

md ⊗ '

n⊕
i=1

md (+i) ⊕ md (−i), d = 2n, (D.10)
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where md (±i) is the same as md but with the component md,i shifted by ±1.
Similarly, in odd dimensions we have, generically,

md ⊗ ' md ⊕

n⊕
i=1

md (+i) ⊕ md (−i), d = 2n + 1. (D.11)

These formulas are valid for generic md , i.e. those with all components non-zero
and sufficiently large. For concrete representations, some of the direct summands
may disappear if there are non-dominant weights in the right hand side. By applying
Brauer’s formula, we see that to find the final tensor product rule we just need to
remove all non-dominant weights and, if d = 2n+1 and md,n = 0, also remove md .1

We now define the following new parameters,

x2n+1, j = m2n+1, j + n − j, (D.12)

x2n, j = m2n, j + n − j . (D.13)

Note that regardless of the dimension, md, j is a non-increasing function of j. Since
we add to it a strictly decreasing function of j, we find that xd, j is a strictly decreasing
function of j. In particular xd, j , xd,i for i , j. Furthermore, xd, j > 0 except
possibly for j = n when it can be zero (for d = 2n+ 1) or negative (for d = 2n). We
can also easily check that |xd, j | is strictly decreasing and thus in fact xd, j , ±xd,i for
i , j.

In terms of these parameters the dimensions of the representations md have the
following expressions

dim m2n =
∏

1≤i< j≤n

(x2n,i + x2n, j )(x2n,i − x2n, j )
(y2n,i + y2n, j )(y2n,i − y2n, j )

, (D.14)

dim m2n+1 =

n∏
i=1

x2n+1,i +
1
2

y2n+1,i +
1
2

∏
1≤i< j≤n

(x2n+1,i + x2n+1, j + 1)(x2n+1,i − x2n+1, j )
(y2n+1,i + y2n+1, j + 1)(y2n+1,i − y2n+1, j )

,

(D.15)

where yd,k = n − k is xd,k for the trivial representation (so that dim • = 1).
1This can be seen by analyzing the situations in which md (±i) may fail to be dominant. It turns

out that in most cases there is an affine Weyl reflection which stabilizes the non-dominant md (±i)
and thus such weights simply have to be removed. The exception is the case m2n+1,n = 0: m2n+1(−n)
can be turned into m2n+1 with one affine Weyl reflection, and thus cancels it.
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D.2.1 Reduced matrix elements
We are now ready to write the formulas for the reduced matrix elements (5.98). We
will give formulas for

*
,

md

md−1

������
M12

������

md

m′d−1

+
-
≡ (−1)d−1*

,

md

md−1

������
M

������

md

m′d−1

+
-
, (D.16)

which is more natural from the point of view of (5.99). We have in odd dimensions

*
,

m2n+1
m2n

������
M12

������

m2n+1
m2n(± j)

+
-
= ±

√√√∏n
k=1(x2n+1,k ∓ x2n, j )(x2n+1,k ± x2n, j + 1)
2
∏n

k=1
k,j

(x2n,k − x2n, j )(x2n,k + x2n, j )
. (D.17)

According to (D.10) this gives all possible reduced matrix elements in even dimen-
sions. Note that according to the discussion above, the factors in the denominator
are never zero (assuming that all weights are dominant).

In even dimensions we have

*
,

m2n

m2n−1

������
M12

������

m2n

m2n−1
+
-
=

−i
∏n

k=1 x2n,k√∏n−1
k=1 x2n−1,k (x2n−1,k + 1)

, (D.18)

*
,

m2n

m2n−1

������
M12

������

m2n

m2n−1(±i)
+
-
=

= ±

√√√
−

∏n
k=1(x2n,k − x2n−1,i − δ±,+)(x2n,k + x2n−1,i + δ±,+)

(x2n−1,i + δ±,+)(2x2n−1,i + 1)
∏n−1

k=1
k,i

(x2n−1,k − x2n−1,i)(x2n−1,k + x2n−1,i + 1)
,

(D.19)

where δ±,+ is equal to 1 for + sign and to 0 for − sign. According to (D.11), this
account for all reduced matrix elements in even dimensions. The only potential zero
in the denominator of (D.18) is from x2n−1,n−1. However, if x2n−1,n−1 = m2n−1,n−1 =

0, then m2n−1 does not appear in m2n−1 ⊗ , and this reduced matrix element has to
be set to 0. Similarly, the only potential zero in the denominator of (D.19) appears
for (−) sign and i = n − 1, when we have a factor of x2n−1,n−1. Again, it is only a
problem if x2n−1,n−1 = m2n−1,n−1 = 0, in which case m2n−1(−n + 1) does not appear
in m2n−1 ⊗ so we need to set this matrix element to 0.
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D.2.2 Isoscalar factors
The isoscalar factors are given by formulas of a very similar form. In odd dimensions
we have

*
,

m2n+1
m2n •

������

m2n+1
m2n

+
-
=

∏n
k=1 x2n,k√∏n

k=1 x2n+1,k (x2n+1,k + 1)
, (D.20)

*
,

m2n+1
m2n •

������

m2n+1(±i)
m2n

+
-
=

=

√√ ∏n
k=1(x2n+1,i − x2n,k + δ±,+)(x2n+1,i + x2n,k + δ±,+)

(x2n+1,i + δ±,+)(2x2n+1,i + 1)
∏n

k=1
k,i

(x2n+1,i − x2n+1,k )(x2n+1,i + x2n+1,k + 1)
,

(D.21)

and the same comments as for the reduced matrix elements apply about the possible
zeros in denominators. In even dimensions the isoscalar factors are given by

*
,

m2n

m2n−1 •

������

m2n(±i)
m2n−1

+
-
=

√√√∏n−1
k=1(x2n,i ∓ x2n−1,k )(x2n,i ± x2n−1,k ± 1)
2
∏n

k=1
k,i

(x2n,i − x2n,k )(x2n,i + x2n,k )
. (D.22)

To derive the isoscalar factor for ( , ) pattern in vector representation, we con-
sider the following expression,

〈Md; , •, . . . |M12 |M
′
d〉. (D.23)

Acting with M12 on the left, we find

〈Md; , , •, . . . |M′d〉 +
∑
M̃d

〈Md |M12 |M̃d〉〈M̃d; , •, . . . |M′d〉 =

= *
,

md

md−1

������

m′d
m′d−1

+
-

*
,

md−1
md−2 •

������

m′d−1
m′d−2

+
-
δMd−2,M

′
d−2
−

−
∑
M̃d

*
,

md

m̃d−1

������
M12

������

md

md−1
+
-

∗

*
,

md−1
md−2 •

������

m̃d−1
m̃d−2

+
-

*
,

md

m̃d−1 •

������

m′d
m′d−1

+
-
δ
Md−2,M̃d−2

δ
M′

d−1,M̃d−1

= *
,

md

md−1

������

m′d
m′d−1

+
-

*
,

md−1
md−2 •

������

m′d−1
m′d−2

+
-
δMd−2,M

′
d−2
−

− *
,

md

m′d−1

������
M12

������

md

md−1
+
-

∗

*
,

md−1
md−2 •

������

m′d−1
m′d−2

+
-

*
,

md

m′d−1 •

������

m′d
m′d−1

+
-
δMd−2,M

′
d−2
.

(D.24)
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Action on the right gives, on the other hand,∑
M̃d

〈Md; , •, . . . |M̃d〉〈M̃d |M12 |M
′
d〉 =

= −
∑
M̃d

*
,

md

md−1 •

������

m̃d

m̃d−1
+
-

*
,

m′d
m′d−1

������
M12

������

m′d
m̃d−1

+
-

∗

*
,

m̃d−1
m̃d−2 •

������

m′d−1
m′d−2

+
-
δ
Md−1,M̃d−1

δ
M′

d−2,M̃d−2

= −*
,

md

md−1 •

������

m′d
md−1

+
-

*
,

m′d
m′d−1

������
M12

������

m′d
md−1

+
-

∗

*
,

md−1
m′d−2 •

������

m′d−1
m′d−2

+
-
δMd−2,M

′
d−2
. (D.25)

By comparing these expressions and choosing m′d−2 such that

*
,

md−1
m′d−2 •

������

m′d−1
m′d−2

+
-

(D.26)

is non-vanishing, we conclude

*
,

md

md−1

������

m′d
m′d−1

+
-
= − *

,

md

md−1 •

������

m′d
md−1

+
-

*
,

m′d
m′d−1

������
M12

������

m′d
md−1

+
-

∗

+ *
,

md

m′d−1 •

������

m′d
m′d−1

+
-

*
,

md

m′d−1

������
M12

������

md

md−1
+
-

∗

. (D.27)

D.2.3 Comments on d = 3
A few modifications to the above formulas are required in the case d = 3. This is
because the d − 1 = 2 and vector representation in d = 2 is not irreducible.

The formulas for the reduced matrix elements of remain valid if they are used
together with (D.22). Indeed, we can compute

〈 j,m ± 1|M12 | j,m〉 = *
,

j
m ± 1

������
M12

������

j
m

+
-

*
,

m ± 1
•

������ •
m
•

+
-
= ∓

1
2
√

( j ∓ m)( j ± m + 1),

(D.28)

which coincides with the standard expression for M12 which follows from

M12 = −i J2̂ = −
J+
2
+

J−
2
, (D.29)

as discussed in section 5.2.2.3. Alternatively, the formula for the reduced matrix
can be interpreted as

*
,

j
m ± 1

������
M12

������

j
m

+
-
= *

,

j
m ± 1

������
M1,+1

������

j
m

+
-
− *

,

j
m ± 1

������
M1,−1

������

j
m

+
-
, (D.30)
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where M1,± = − J±√
2
are defined according to (5.58) and (5.59) (treating the second

index of M as a vector index). The matrix elements in the right hand side should be
used with the CG coefficients of Spin(2), 〈m ± 1| ± 1,m〉 = 1.

The isoscalar factors can interpreted as

*
,

j
m

������

j′

m′
+
-
= *

,

j
m +1

������

j′

m′
+
-
− *

,

j
m −1

������

j′

m′
+
-
. (D.31)

The isoscalar factors in the right hand side are to be combined with the CG coef-
ficients of Spin(2), 〈m ± 1| ± 1,m〉 = 1. This can be checked against the known
formulas for Spin(3) CG coefficients.2

D.2.4 A sum rule for reduced matrix elements and isoscalar factors
As discussed in the main text, the following identity holds,

∑
md−1

*
,

md

m̃d−1

������
M

������

md

md−1
+
-

*
,

md

md−1

������

m̃d

m̃d−1
+
-
= (−1)d−1(md |m̃d)*

,

md

m̃d−1 •

������

m̃d

m̃d−1
+
-
.

(D.32)

We are not aware of a simple derivation of this fact or of the coefficients (md |m̃d).
Wenote, however, that this identity is required for existence of certainweight-shifting
operators in vector representation. The coefficients (md |m̃d) are given by the
following formulas

(m2n |m2n(±i)) = n ∓ x2n,i − 1, (D.33)

(m2n+1 |m2n+1(±i)) = n ∓ x2n,i − δ±+, (D.34)

(m2n+1 |m2n+1) = n. (D.35)

We found these formulas by considering a few low-dimensional cases and guessing
the general result, which was then verified on a large set of representations in various
dimensions. In terms of md,k these coefficients can be rewritten as

(md |md (+i)) = −md,i + i − 1, (D.36)

(md |md (−i)) = md,i + d − i − 1, (D.37)

(m2n+1 |m2n+1) = n. (D.38)
2Recall that the m-independent phase of CG coefficients is convention-dependent. The formulas

given here agree with the conventions of [214] (the conventions used in Mathematica as of version
11.0) for j ′ = j, j + 1 and differ by a sign for j ′ = j − 1.
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D.3 Scalar-fermion blocks in various dimensions
D.3.1 Comparison in 2 dimensions
Interestingly, the formulas for scalar-fermion seed blocks in section 5.4.4 also work
in the case n = 1, i.e. d = 2. We have the following identity,

sDeθM12 = (seiθ )
D−iM12

2 (se−iθ )
D+iM12

2 , (D.39)

and so if we define

L0 =
D − iM12

2
, L−1 =

P1 − iP2
2

, L+1 =
K1 + iK2

2
, (D.40)

L0 =
D + iM12

2
, L−1 =

P1 + iP2
2

, L+1 =
K1 − iK2

2
, (D.41)

we find that the conformal block in the form (5.108) is given by

〈0|Om4
4 O

m3
3 |O|z

L0 zL0O
m2
2 O

m1
1 |0〉. (D.42)

The algebras (D.40) and (D.41) satisfy the usual commutation relations

[Lm, Ln] = (m − n)Lm+n, (D.43)

[Lm, Ln] = (m − n)Lm+n. (D.44)

The configuration considered in section 5.4.4 is m2 = −m4 =
1
2 and m1 = m3 = 0.

This corresponds to holomorphic and anti-holomorphic dimensions

h1 =
1
2∆1, h2 =

1
2∆2 −

1
4, h3 =

1
2∆3, h4 =

1
2∆4 +

1
4, (D.45)

h1 =
1
2∆1, h2 =

1
2∆2 +

1
4, h3 =

1
2∆3, h4 =

1
2∆4 −

1
4, (D.46)

while the intermediate representation j± corresponds to hO = 1
2∆O ∓

1
2 j and hO =

1
2∆O ±

1
2 j. The conformal block for exchange of j± is equal to the usual expression

zhO 2F1(hO − h12, hO + h34; 2hO; z) × zhO 2F1(hO − h12, hO + h34; 2hO; z).
(D.47)

It is straightforward to expand this expression in power series in s and check that it
is consistent with the recursion relation (5.328).

D.3.2 Comparison in 3 dimensions
To perform the comparison with the known 3d results, we first need to relate the GT
basis to the standard basis for 3d fermions. There is a unique fermionic representation
in 3d, m3 = ( 1

2 ), with the allowed GT patterns

M3,± = ( 1
2 ), (±1

2 ), (D.48)
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consistently with the representation being two-dimensional. For 3d spinors we use
the conventions as in [1, 3, 81], and we will be comparing with the scalar-fermion
blocks in the form of [3]. These papers use Lorentz signature and thus we need to
perform Wick rotation by defining

M µν = −iδµ,0+δν,0 M µν
L , (D.49)

where M µν
L are the Lorentz generators from [3]. We also added a (−) due to the

difference in conventions for conformal algebra. Furthermore, we need to relabel
the indices by defining

1here = 2there, 2here = 0there, 3here = 1there. (D.50)

This is required because of the way the conformal frame is defined in [3]. Using
the explicit expression for the Lorentz generators and the correspondence above, we
can identify

O1 = OM3,−, O2 = iOM3,+ . (D.51)

Contracting the structures (5.142) with polarization vectors sα as in [3], we find



0, 0
1
2,m4

����
0
+1

2

+1
2

0
����

1
2,m1

0, 0


→− ξ4ξ1 = −[−1

2, 0, 0,−
1
2 ], (D.52)



0, 0
1
2,m4

����
0
+1

2

−1
2

0
����

1
2,m1

0, 0


→iξ4ξ1 = i[1

2, 0, 0,−
1
2 ], (D.53)



0, 0
1
2,m4

����
0
−1

2

+1
2

0
����

1
2,m1

0, 0


→iξ1ξ4 = i[−1

2, 0, 0,
1
2 ], (D.54)



0, 0
1
2,m4

����
0
−1

2

−1
2

0
����

1
2,m1

0, 0


→ξ4ξ1 = [1

2, 0, 0,
1
2 ], (D.55)

where the right hand side is in the notation of [3]. The results (for parity-even
components) of [3] are given in the form

〈0|ψ4(∞, s4)φ3(1) |O|φ2(z, z)ψ1(0, s1) |0〉

= 1
2g1(z, z)[−1

2, 0, 0,−
1
2 ] + 1

2g2(z, z)[1
2, 0, 0,−

1
2 ]+

+ 1
2g2(z, z)[−1

2, 0, 0,
1
2 ] + 1

2g1(z, z)[1
2, 0, 0,

1
2 ]. (D.56)
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This implies that

s−∆1−∆2〈0|ψ4φ3 |O|sDeθM12φ2ψ1 |0〉

= 1
2

(
cos θ

2 g1(z, z) + i sin θ
2 g2(z, z)

)
[−1

2, 0, 0,−
1
2 ]+

+ 1
2

(
cos θ

2 g2(z, z) + i sin θ
2 g1(z, z)

)
[1

2, 0, 0,−
1
2 ]+

+ 1
2

(
cos θ

2 g2(z, z) + i sin θ
2 g1(z, z)

)
[−1

2, 0, 0,
1
2 ]+

+ 1
2

(
cos θ

2 g1(z, z) + i sin θ
2 g2(z, z)

)
[1

2, 0, 0,
1
2 ]. (D.57)

Using this result, we can compute the expansion (5.302) in terms of functions g1

and g2. These functions are conveniently computed by acting with the differential
operators of [3] on the scalar conformal block obtained from the recursion rela-
tion (5.220).3 We have checked that the resulting expansion is consistent with
the recursion relation which follows from (5.304)-(5.309) at the first few levels for
various choices of jO .

D.3.3 Comparison in 4 dimensions
To perform the comparison with the known 4d results, we first need to relate the GT
basis to the standard basis for Weyl fermions. We are considering the two fermionic
representations m±4 = ( 1

2,±
1
2 ). The allowed GT patterns are

M
±
4,+ = ( 1

2,±
1
2 ), ( 1

2 ), (+1
2 ), (D.58)

M
±
4,− = ( 1

2,±
1
2 ), ( 1

2 ), (−1
2 ), (D.59)

consistently with the representations being two-dimensional. For 4d Weyl spinors,
we will use the conventions of [2]. We need to make a few adaptations from
conventions there to the present conventions. First, we need to perform Wick
rotation by defining

M µν = −iδµ,0+δν,0 M µν
L , (D.60)

where ML are the Lorentz generators of [2]. We also added a (−) due to the
difference in conventions for conformal algebra. Furthermore, we need to relabel
the indices by defining

1here = 3there, 2here = 0there, 3here = 1there, 4here = 2there. (D.61)

This is required because of the way the conformal frame is defined in [2].
3Alternatively, one can use Zamolodchikov-type recursion relations of [81].
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Comparing the transformation properties of |M±4,±〉 and the operators Oα̇ and Oα,
we find that we can set

O1 = O
M+4,−, O2 = −iOM

+
4,+, (D.62)

O1̇ = OM
−
4,−, O2̇ = +iOM

−
4,+ . (D.63)

According to (5.153) we find the following non-zero components of tensor struc-
tures (5.161)



•

M−4,−

����
•

( 1
2 )

( 1
2 )

����(+
1
2 )

����(
1
2 )
•

( 1
2 )

����
•

M+4,+


=
−i
√

2
, (D.64)



•

M−4,+

����
•

( 1
2 )

( 1
2 )

����(−
1
2 )

����(
1
2 )
•

( 1
2 )

����
•

M+4,−


=

i
√

2
. (D.65)

Contracting with polarization vectors as in [2], we find

t+ = +
ξ2ξ4
√

2
= +

1
√

2



0 −1
2 0 0

0 0 0 −1
2


, (D.66)

t− = −
η2η2
√

2
= −

1
√

2



0 +1
2 0 0

0 0 0 +1
2


. (D.67)

Using this correspondence, we can find that the primal conformal block has the form

〈0|ψ4φ3 |O|sDeθM12ψ2φ1 |0〉 = −
√

2 *
,
2
√

zH0
1 (z, z) +

1
√

z
H1

1 (z, z)+
-

t+

−
√

2 *
,
2
√

zH0
1 (z, z) +

1
√

z
H1

1 (z, z)+
-

t−. (D.68)

In our terminology it corresponds to exchange of a primary in representation (`+ 1
2,

1
2 )

with ` as in [2]. Using explicit expressions for functions H [58] in normaliza-
tion of [2], we can check that the leading term in s = |z | coincides with (5.332)
and (5.196) with

Λ0, jO =
*.
,

−i (`+2)(−1)`
√

2
0

+/
-
. (D.69)

We can then use the recursion relation (5.328) to compute higher order coefficients
and plug them into the expansion (5.332). We can compute the same expansion by
plugging the explicit expressions for functions H into (D.68) using CFTs4D package
from [2]. We checked that both expansions coincide at the first few levels.
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e1 e1

e1

e1

Figure D.1: The relationship between Young diagrams of md and md−1. The boxes
which belong to md−1 are shaded.

D.4 Gelfand-Tsetlin bases for tensor representations
To gain some familiarity with GT bases in general dimensions, let us consider how
it is related to the usual Cartesian bases for tensor representations. For simplicity
of discussion, we avoid dealing with self-duality constraints. This restricts us to
the representations md with md,k = 0 for k ≥ d/2, i.e. to Young diagrams with
less than d/2 rows. In particular, we will only consider the GT patters in which all
representations are of this kind.4

Our goal is for a given GT pattern Md to find the explicit tensor T
µ1...µ |md |

Md
which

gives the corresponding basis element |Md〉, up to a multiplicative factor. We do
this recursively, by explicitly constructing the dimensional induction map

Imd
md−1

: Vmd−1 → Vmd
, md−1 ∈ md, (D.70)

which is defined, up to normalization, by the requirement that it is Spin(d − 1)-
equivariant and non-trivial. By irreducibility of md−1 it follows that I establishes an
isomorphism between Vmd−1 and the subspace in Vmd

which transforms according
to md−1 under Spin(d − 1). Since dimensional reduction is multiplicity-free, this
subspace is uniquely determined.

It then immediately follows from the definition of GT basis that the following
relationship between GT basis vectors holds,

|md,md−1,md−2, . . .〉 ∝ Imd
md−1 |md−1,md−2, . . .〉. (D.71)

In particular, if md−k = • is the trivial representation, we find

|md,md−1,md−2, . . .〉 ∝ Imd
md−1 Imd−1

md−2 Imd−2
md−3 . . . Imd−k+1

md−k
1. (D.72)

To construct Imd
md−1 explicitly, start with a general U µ1...µ |md−1 | ∈ Vmd−1 . For con-

venience we assume that the indices of U run from 2 to d.5 We first extend the
4The same general approach works even without these assumptions, and the details are not hard

to recover.
5Recall that by our choice of Spin(d − 1) ⊂ Spin(d), Spin(d − 1) stabilizes e1.
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definition of U to allow its indices to assume the value 1 by setting U µ1...µ |md−1 | = 0
whenever at least one of µi = 1. We then define

T ′µ1...µ |md | = U µ1...µ |md−1 |e
µ |md−1 |+1
1 · · · e

µ |md |

1 − traces. (D.73)

A generic relationship between the Young diagrams md and md−1 is shown in
figure D.1. We can associate the indices of e1 in (D.73) to the unshaded boxes in
figure D.1 and apply toT ′ the Young symmetrizerYmd

corresponding to md to define

Imd
md−1U ≡ Ymd

T ′. (D.74)

Note that it is guaranteed by the dimensional reduction rules from section 5.2.1 that
no two indices of e1 land in the same column of md .

As explained above, this map allows us to reconstruct Gelfand-Tsetlin basis vectors
up to a phase. Let us look at some examples. First, consider the GT basis vector

| · · · , •, . . .〉. (D.75)

From (D.72) we find

| · · · , •, . . .〉 ∝ I ···
• 1 = eµ1

1 · · · e
µ j
1 − traces. (D.76)

This reproduces the result of section 5.3.7.5.

As a more complicated example, consider

| · · · , , •, . . .〉. (D.77)

From (D.72) we find

| · · · , , •, . . .〉 ∝ I ···
| , •, . . .〉

∝ I ··· eµ1
2 = e(µ1

2 eµ2
1 · · · e

µ j )
1 − traces. (D.78)

Similarly, we can find that

| · · · , , , •, . . .〉 ∝ e(µ1
3 eµ2

1 · · · e
µ j )
1 − traces, (D.79)

and so on. In the case j = 1 this reproduces the results of section 5.2.2.2 for vector
representation.

Consider now the simplest non-STT example,

| · · · , , •, . . .〉. (D.80)
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Note that is the simplest representation to which · · · can reduce. This
differs from (D.78) only in the Young symmetrizer,

| · · · , , •, . . .〉 ∝ Y · · · (eν2eµ1
1 · · · e

µ j
1 − traces) =

= 1
2 eν2e(µ1

1 eµ2
1 · · · e

µ j )
1 − 1

2 eν1e(µ1
2 eµ2

1 · · · e
µ j )
1 − traces. (D.81)

Similarly,

| · · · , , , •, . . .〉 ∝ 1
2 eν3e(µ1

1 eµ2
1 · · · e

µ j )
1 − 1

2 eν1e(µ1
3 eµ2

1 · · · e
µ j )
1 − traces,

(D.82)

and so on.

It is important that we perform trace subtraction and Young symmetrization in all
steps of dimensional induction. Consider for example the state

| , , •, . . .〉. (D.83)

We have first in d − 1 dimensions

| , •, . . .〉 ∝ eµ1
2 eµ2

2 −
1

d − 1
δµ1µ2, (D.84)

and when we lift it to d dimensions, we have agreed to set the new entries of this
tensor to 0, which in this case amounts to replacing

δµ1µ2 → δ̃µ1ν1 ≡ δµ1µ2 − eµ1
1 eµ2

1 , (D.85)

so that indeed δ̃1µ2 = 0. We thus have6

| , , •, . . .〉 ∝ Y
(
eµ1

2 eµ2
2 −

1
d − 1

(
δµ1µ2 − eµ1

1 eµ2
1

))
eµ3

1 . (D.86)

Clearly, if we didn’t take care with δ̃, or had postponed trace subtraction to d

dimensions, we would have never obtained a term eµ1
1 eµ2

1 eµ3
1 . These choices would

be wrong since for µ1 = µ2 = µ3 = 1 they would reduce to a non-zero constant and
thus their dimensional reduction has a component along the trivial representation of
Spin(d − 1). On the other hand, (D.86) is non-zero iff only one of µi is set to 1, in
which case it reduces to , as required.

6This object is automatically traceless in d dimensions sowe don’t have to subtract d-dimensional
traces.
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Similarly, care should be taken with compositions of Young symmetrizers between
dimensions. Consider the state

| , , , •, . . .〉. (D.87)

We have successively

| , •, . . .〉 ∝ eµ1
3 , (D.88)

| , , •, . . .〉 ∝ e(µ1
2 eµ2)

3 , (D.89)

| , , , •, . . .〉 ∝ 1
2 eν1e(µ1

2 eµ2)
3 −

1
4

(
eµ1

1 e(ν
2 eµ2)

3 + eµ2
1 e(ν

2 eµ1)
3

)
. (D.90)

Here we have applied Young symmetrizer both in (D.89) and (D.90). Had we only
applied the d-dimensional symmetrizer, we would find

| , , , •, . . .〉 ∝ 1
2 eν1e(µ1

2 eµ2)
3 −

1
4

(
eµ1

1 eν2eµ2
3 + eµ2

1 eν2eµ1
3

)
. (D.91)

It is easy to see that (D.91) is wrong: setting µ2 = 1 we obtain −1
2 eν2eµ1

3 , which is
a tensor with no definite symmetry. On contrary, setting µ2 = 1 in (D.90), we find
−1

2 e(ν
2 eµ1)

3 which belongs to as required. We thus see that the symmetrizers from
different dimensions interact non-trivially to ensure that the dimensional reductions
are irreducible.

We have so far avoided the question of normalization of the tensors TMd
. Up to a

phase it is determined by the requirement that GT vectors have unit length. This
is straightforward to implement on the tensor side. Sometimes we would like to
know the normalization factor as a function of the length of the first row j – this
is perhaps most easily implemented using the irreducible projectors as we explain
below. The phases can be chosen based on convenience,7 unless one wants to make
contact with the GT formulas in appendix D.2. We have not attempted to find the
general prescription which would match the phase conventions of these formulas.

D.4.1 P-functions
In this section we relate Pmd,md−2

md−1,m′d−1
(θ) in tensor representations to the irreducible

projectors studied in [82].
7Of course, for every GT pattern this choice should be made once and for all in order to have

consistent expressions.
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We start by utilizing the tensor representation of GT basis vectors in the definition
of P,

Pmd,md−2
md−1,m′d−1

(θ) ≡ 〈md,md−1,md−2, . . . |eθM12 |md,m′d−1,md−2, . . .〉

= T
µ1...µ |md |

Md
(eθM12 )µ1...µ |md |

,ν1...ν |md |
T
ν1...ν |md |

M′
d

= T
µ1...µ |md |

Md
T
µ1...µ |md |

M′
d

(θ), (D.92)

where TM′
d
(θ) is equal to TM′

d
in which all occurrences of e1 and e2 have been

replaced with

e1(θ) = eθM12 e1 = cos θe1 + sin θe2, (D.93)

e2(θ) = eθM12 e2 = − sin θe1 + cos θe2. (D.94)

Note that in the first line of (D.92) . . . represent the same sequence in both vectors,
which can be chosen arbitrarily. For example, if md−2 is STT, we can choose all
representations in . . . to be trivial. We have also assumed that we had chosen the
tensors TMd

to be real for all relevantMd .8

We can further trivially rewrite the last line of (D.92) as

T
µ1...µ |md |

Md
T
µ1...µ |md |

M′
d

(θ) = T
µ1...µ |md |

Md
µ1...µ |md |

πν1...ν |md |
T
ν1...ν |md |

M′
d

(θ) = TMd
· π · TM′

d
,

(D.95)

where µ1...µ |md |
πν1...ν |md |

is the projector onto the irreducible representationmd . From
our construction of tensors TMd

we know that we can write TMd
in terms of the basis

vectors ei and Kronecker deltas δµi µ j . We can thus write

TMd
= T (e)

Md
+ terms containing δµi µ j, (D.96)

TM′
d
= T (e)

M′
d

+ terms containing δµi µ j . (D.97)

We then conclude

Pmd,md−2
md−1,m′d−1

(θ) = T (e)
Md
· π · T (e)

M′
d

(θ). (D.98)

Note that it is easy to compute T (e)
Md

for generic md,1, because we do not need to
explicitly remove traces in the last step of dimensional induction, while the number
of indices in the preceding steps is independent from md,1.

8This might not be possible it the GT patterns do not satisfy the assumptions discussed in the
beginning of this appendix. In that case one needs to add some complex conjugations in the formulas.
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Furthermore, the right hand side of (D.98) contains the irreducible projector π
contracted with a bunch of vectors (basis vectors ei or e1(θ), e2(θ)) on both sides.
These are precisely the contractions studied recently in [82]. Given their results, we
then obtain a simple algorithm for computation of P-functions. It is best illustrated
in examples.

Matrix element Pmd,•
•,• (θ)

We start with the simplest example,

Pmd,•
•,• (θ). (D.99)

Since in this case md−1 = •, we necessarily have md = j is a traceless-symmetric
tensor representation. Recall from (D.76) that

T µ1...µ j
j,•,... = N j

(
eµ1

1 . . . eµ j1 − traces
)
, (D.100)

where we also introduced the normalization factor N j . We thus conclude

T (e),µ1...µ j
j,•,... = N je

µ1
1 . . . eµ j1 , (D.101)

T (e),µ1...µ j
j,•,... (θ) = N je

µ1
1 (θ) . . . eµ j1 (θ). (D.102)

The results of [82] are formulated in the following way. They define the function

π j (z1, z1) = zµ1
1 . . . zµ j1 µ1...µ jπν1...νj z

µ1
1 . . . zµ j1 , (D.103)

where π is the projector on traceless-symmetric spin- j representation. This function
completely encodes the projector since the components can be recovered by taking
repeated derivatives in z1 and z1.9 It is then can be shown that

π j (z1, z1) =
j!

2 j (ν) j
|z1 |

j |z1 |
jC (ν)

j

(
z1 · z1
|z1 | |z1 |

)
, (D.104)

where ν = d−2
2 . We then immediately find that

Pj,•
•,•(θ) = T (e)

j,•,... · π · T
(e)
j,•,...(θ)

= N2
j π(z1, z1)

����z1=e1, z1=e1(θ)

= N2
j

j!
2 j (ν) j

|e1 |
j |e1(θ) | jC (ν)

j

(
e1 · e1(θ)
|e1 | |e1(θ) |

)
=

N2
j j!

2 j (ν) j
C (ν)

j (cos θ). (D.105)

9Note that we do not require z1 · z1 = 0.
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Note that the normalization condition for |j, •, . . .〉 is equivalent to Pj,•
•,•(0) = 1, and

thus using

C (ν)
j (1) =

(2ν) j

j!
. (D.106)

we find

1 =
N2

j j!
2 j (ν) j

C (ν)
j (1) = N2

j
(2ν) j

2 j (ν) j
, (D.107)

from where we conclude that10

N j =

√
2 j (ν) j

(2ν) j
, (D.108)

while

Pj,•
•,•(θ) =

j!
(2ν) j

C (ν)
j (cos θ). (D.109)

Matrix element Pj,•
,

(θ)
We now consider the matrix elements

Pmd,•

,
(θ). (D.110)

Note that now both md−1 and m′d−1 are equal to and thus md can be either a
traceless-symmetric tensor j or a hook diagram (j, ).

We start from the traceless-symmetric case and will return to the hook exchange
later. From (D.78) we find

T (e),µ1,...,µ j
j, ,•,...

= N j, e(µ1
2 eµ2

1 · · · e
µ j )
1 , (D.111)

T (e),µ1,...,µ j
j, ,•,...

(θ) = N j, e(µ1
2 (θ)eµ2

1 (θ) · · · eµ j )1 (θ). (D.112)

We then find

Pj,•
,

(θ) = T (e)
j, ,•,...

· π · T (e)
j, ,•,...

(θ)

=
1
j2 N2

j, (e2 · ∂z1 )(e2(θ) · ∂z1 )π(z1, z1)
����z1=e1, z1=e1(θ)

=
N2

j, j!

j22 j (ν) j

(
cos θ∂C (ν)

j (cos θ) − sin2 θ∂2C (ν)
j (cos θ)

)
= −

N2
j, j!

j22 j (ν) j
∂2
θC (ν)

j (cos θ). (D.113)

10Here we essentially make a choice of phase for |j, •, . . .〉.



470

Again, we have the normalization condition Pj,•
,

(1) = 1. To solve for N j, , we

need to know ∂C (ν)
j (1), which can be computed using the identity

∂xC (ν)
j (x) = 2νC (ν+1)

j−1 (x). (D.114)

We thus find

N2
j, j!

j22 j (ν) j

2ν(2ν + 2) j−1

( j − 1)!
= 1, (D.115)

and therefore (adding a phase for future convenience)

N j, = −

√
2 j j (ν) j

2ν(2ν + 2) j−1
, (D.116)

Pj,•
,

(θ) = −
( j − 1)!

2ν(2ν + 2) j−1
∂2
θC (ν)

j (cos θ). (D.117)

Matrix elements Pmd,•

,•
(θ) and Pmd,•

•,
(θ)

Having determined the normalization factors N j and N j, , we can now address the
matrix elements

Pmd,•

,•
(θ), Pmd,•

•,
(θ), (D.118)

which are not subject to a simple normalization condition at θ = 0. In particular,
their phases are convention-dependent. We have

Pmd,•

,•
(θ) = T (e)

j, ,•,...
· π · T (e)

j,•,...(θ)

= N j N j, j−1(e2 · ∂z1 )π j (z1, z1)
����z1=e1,z1=e1(θ)

= −
2ν j!
(2ν) j

√
2ν + 1

j (2ν + j)
sin θ C (ν+1)

j−1 (cos θ). (D.119)

An analogous calculation shows that

Pmd,•

•,
(θ) =

2ν j!
(2ν) j

√
2ν + 1

j (2ν + j)
sin θ C (ν+1)

j−1 (cos θ) =
(
Pmd,•

,•
(−θ)

)∗
, (D.120)

consistently with (5.173). One can check in explicit examples that these results
coincide with the direct exponentiation of M12, providing a non-trivial check of the
formalism and normalization factors.
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Matrix element P(j, ),•
,

(θ)
Consider now the case of the hook exchange md = (j, ) in (D.110). We are now
dealing with a new type of representations. Correspondingly, in [82] the following
function is defined

π( j,1) (z1, z2, z1, z2) = zν2 zµ1
1 · · · z

µ j
1 ν,µ1...µ jπν,µ1...µj z

ν
2zµ1

1 · · · z
µj
1 . (D.121)

The expression for the full projector is somewhat complicated, so we do not re-
produce it here. In practice, we used the Mathematica code supplied with [82] to
perform the calculations with these projectors.

From equation (D.81) we find

T (e),ν,µ1,...,µ j
(j, ), ,•,...

= N(j, ),

[
eν1e(µ1

2 eµ2
1 · · · e

µ j )
1 − eν2e(µ1

1 eµ2
1 · · · e

µ j )
1

]
, (D.122)

T (e),ν,µ1,...,µ j
(j, ), ,•,...

(θ)

= N(j, ),

[
eν1 (θ)e(µ1

2 (θ)eµ2
1 (θ) · · · eµ j )1 (θ) − eν2 (θ)e(µ1

1 (θ)eµ2
1 (θ) · · · eµ j )1 (θ)

]
.

(D.123)

This implies

N−2
(j, ), T (e)

(j, ), ,•,...
· π · T (e)

(j, ), ,•,...
(θ)

= j−2(e2 · ∂z1 )(e2(θ) · ∂z1 )π( j,1) (e1, e1, e1(θ), e1(θ))

− j−1(e2 · ∂z1 )π( j,1) (e1, e1, e1(θ), e2(θ))

− j−1(e2(θ) · ∂z1 )π( j,1) (e1, e2, e1(θ), e1(θ))

+ π( j,1) (e1, e2, e1(θ), e2(θ)), (D.124)

where the values of the arguments of π( j,1) (z1, z2, z1, z2) should be substituted after
taking the derivatives. Using the explicit form of the projector [82], and using the
normalization condition P(j, ),•

,
(0) = 1, we find

N(j, ), =

√
2 j j (d + j − 3)(ν) j

2ν2( j + 1)2(2ν + 2) j−1
, (D.125)

P(j, ),•
,

(θ) =
( j − 1)!

(2ν + 2) j−1
C (ν+1)

j−1 (cos θ). (D.126)
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A p p e n d i x E

APPENDICES TO CHAPTER 6

E.1 Correlators and tensor structures with continuous spin
In this appendix we assume that there exists a continuous-spin operator O(x, z)
and study its Wightman functions. Note that here we are concerned with physical
correlators. In other parts of chapter 6 we discuss the existence of continuous-
spin conformal invariants for fixed causal relations between the operator insertions,
which is a very different problem – Wightman functions must be well defined for
arbitrary causal relationships between points.

E.1.1 Analyticity properties of Wightman functions
Recall that Wightman functions of local operators are analytic in their arguments
when the appropriate iε prescription is introduced. More precisely, consider a
Wightman function of local operators (suppressing polarization vectors for simplic-
ity)

〈Ω|On(xn) · · · O1(x1) |Ω〉, (E.1)

and let us split each xk into its real and imaginary parts,

xk = yk + iζk, yk, ζk ∈ R
d−1,1. (E.2)

TheWightman function (E.1) is analytic in the following region [16, 298] (see [160]
for a nice review):1

ζ1 > ζ2 > · · · > ζn. (E.3)

Here, the notation p > q means that p − q is timelike and future-pointing. We will
refer to this analyticity property as positive-energy analyticity.

Positive-energy analyticity can be derived in the following way. We first represent
the Wightman function (E.1) as a Fourier transform

〈Ω|On(xn) · · · O1(x1) |Ω〉 =
∫

dd p1

(2π)d · · ·
dd pn

(2π)d e−ip1 x1...−ipnxn〈Ω|On(pn) · · · O1(p1) |Ω〉.

(E.4)
1In fact, these functions are analytic in an even larger region [16, 298], but we do not study

consequences of this extended analyticity in this work.
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The existence of the Fourier transform follows from the Wightman temperedness
axiom. The Heisenberg equation implies

[H,Oi (xi)] = −i
∂

∂x0
i

Oi (xi) =⇒ [H,Oi (pi)] = p0
i Oi (pi), (E.5)

and thus

HOi (pi) · · · O1(p1) |Ω〉 = (p0
1 + . . . + p0

i )Oi (pi) · · · O1(p1) |Ω〉. (E.6)

In physical theories, all states have positive energies. Furthermore, positivity should
hold in anyLorentz frame. Thus, we conclude thatwhenever 〈Ω|On(pn) · · · O1(p1) |Ω〉
is nonvanishing,

p1 + . . . + pi ≥ 0 (i = 1, . . . , n). (E.7)

Here, the notation p ≥ 0 means that p is timelike or null and future-pointing. Note
that the real part of the exponential factor in (E.4) is given by

exp
(
ζ1 · p1 + . . . ζn · pn

)
= exp[(pn + . . . + p1) · ζn

+ (pn−1 + . . . + p1) · (ζn−1 − ζn)

+ (pn−2 + . . . + p1) · (ζn−2 − ζn−1)

+ . . .

+ p1 · (ζ1 − ζ2)], (E.8)

where ζk = Im(xk ). By translation-invariance, the first term in the exponential
(pn + . . .+ p1) · ζn can be replaced with zero. Suppose that the ζk satisfy (E.3). Due
to (E.7), all other terms in the exponential are non-positive and serve to damp the
integral (E.4). Thus, we can make sense of the Wightman function as an analytic
function in this region.

The above discussion in no way depends on locality properties of Oi. The only
information about Oi that we needed was the Heisenberg equation (E.5). This is
of course also satisfied by continuous-spin primary operators O(x, z), because it
is simply part of the definition of being primary. This means that positive-energy
analyticity also holds for Wightman functions involving continuous-spin operators.
In the main text we construct examples of continuous-spin operators for which
positive-energy analyticity can be checked explicitly.

This clarifies the properties of O(x, z) with respect to x. However, O(x, z) is also
a non-trivial function of z, and it is interesting to study analyticity in z. For this,
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assume that we have already adopted the appropriate iε-prescription. By using
Lorentz and translation symmetries we can assume that we have inserted O(x, z) at
x = iε ê0 = (iε, 0, . . . , 0) with ε > 0. Then we have for i, j = 1 . . . d − 1

[Mi j,O(iε ê0, z)] = (z j∂zi − zi∂z j )O(iε ê0, z), (E.9)

and so we have an Spin(d − 1) ⊂ S̃O(d, 2) subgroup which stabilizes position
of O and allows us to change z. In particular, together with the homogeneity
property (6.44) it allows us to relate all future-directed null z to z = ê0 + ê1 =

(1, 1, 0, . . . , 0). Let Uz ∈ Spin(d − 1) that takes αz (ê0 + ê1) with αz > 0 to z. Then
for a Wightman function with a single continuous-spin operator we can write

〈Ω|On(xn) · · · Ok (xk )O(iε ê0, z)Ok−1(xk−1) · · · O1(x1) |Ω〉 =

= αJ
z 〈Ω|On(xn) · · · Ok (xk )UzO(iε ê0, ê0 + ê1)U†z Ok−1(xk−1) · · · O1(x1) |Ω〉,

(E.10)

and compute the right hand side by acting with Uz and U†z on the left and on the
right. This action will act on the spin indices of local operators and also shift
their positions. Change in the positions will, however, preserve the ordering of
imaginary parts ζk (E.2), and thus the Wightman function will remain in the region
of analyticity.2 Since we can take Uz to depend on z analytically in a neighborhood
of any given z, this implies that in the absence of other continuous-spin operators
the left hand side of (E.10) should be analytic in z.

It would be interesting to understand the analyticity conditions in z in presence of
other continuous spin operators. This might depend on some extra assumptions
about the nature of such operators, but it is natural to expect them to still be analytic.
At least this is the case for the integral transforms defined in section 6.2.3, since at
fixed iε-prescription these involve integrals of analytic functions.

E.1.2 Two- and three-point functions
Let us now study examples of Wightman functions of continuous-spin operators
from the point of view of positive-energy analyticity. This is especially interesting
in CFTs because the analytic structure of two- and three-point functions is fixed by
conformal symmetry, and this turns out to be in strong tension with positive-energy
analyticity. For simplicity, we focus on correlation functions involving the minimal

2Note that in principle the stabilizer of iε ê0 includes a full Spin(d) ∈ S̃O(d, 2). However, some
of the transformations in Spin(d)\Spin(d − 1) will change ordering of ζk and thus move Wightman
function out of the region of analyticity.
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number of continuous-spin operators. We also restrict to traceless-symmetric tensor
operators. However, the same statements hold for general representations because
the part of the tensor structure responsible for the discrete spin labels λ is always
positive-energy analytic.

A conformally-invariant two-point function of traceless-symmetric operators has
the form

〈O(x1, z1)O(x2, z2)〉 ∝

(
2(x12 · z1)(x12 · z2) − x2

12(z1 · z2)
) J

x2(∆+J)
12

. (E.11)

It is easy to check that the denominator is positive-energy analytic for any choice of
Wightman ordering, and we only need to study the numerator. For generic z1 and
z2 we can write

x12 = αz1 + βz2 + x⊥, (E.12)

where x⊥ · zi = 0. Note that x⊥ is spacelike, because it is orthogonal to the timelike
vector z1 + z2. (Recall that all polarization vectors are null and future-directed.)
The numerator then takes the form(

2(x12 · z1)(x12 · z2) − x2
12(z1 · z2)

) J
= (−z1 · z2)J x2J

⊥ > 0. (E.13)

On the one hand, we see that this is positive and well-defined for all real xi and zi.
On the other hand, we can show that it is only positive-energy analytic for integer
J ≥ 0. Indeed, selecting a Wightman ordering and adding appropriate imaginary
parts as in (E.2), in any case we find that ζ⊥ is a spacelike vector (we can make
it non-zero), because it is orthogonal to z1 + z2. This means that by choosing an
appropriate y12 we can achieve

x2
⊥ = y2

⊥ − ζ
2
⊥ + 2i(y⊥ · ζ⊥) = 0, (E.14)

and in particular wind x2
⊥ around zero without leaving the region of positive-energy

analyticity.3,4 Thus (E.13) can not be analytic there unless J is a non-negative
integer.

3To be specific, we can wind x2
⊥ around 0 once with y12 returning to the original position, and

thus for (E.13) to be single-valued, we need J ∈ Z.
4This argument doesn’t work in d = 3 because then y⊥ and ζ⊥ are forced to lie in the same 1-

dimensional subspace. In that case we are still free to change both y⊥ and ζ⊥, and thus x⊥ = y⊥+iζ⊥,
in a neighborhood of 0. This leads to a weaker requirement that J ∈ 1

2Z≥0. This has to do with the
fact that for d = 3 the null-cone is not simply-connected and it makes sense to consider multi-valued
functions of z. In fact, fermionic operators can be described by double-valued functions of z. (If we
write zµ = χα χβσ

αβ
µ for a real spinor χ, then we get polynomial functions of χ.) Our argument

thus shows that only single- and double-valued functions of z are consistent with positive-energy
analyticity. In higher dimensions we cannot describe fermionic representations by using a single null
polarization and thus we do not get this subtlety.
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This implies that the only way the Wightman two-point function of a generic con-
tinuous spin operator O can be positive-energy analytic is by being zero,5

〈Ω|O(x1, z1)O(x2, z2) |Ω〉 = 0. (E.15)

In unitary theories vanishing of this two-point function implies

O(x, z) |Ω〉 = 0. (E.16)

This gives another derivation of the fact stated in the introduction: continuous-spin
operators must annihilate the vacuum.

Let us now consider a three-point function with a single continuous-spin operator
O,

〈O1(x1, z1)O2(x2, z2)O(x3, z3)〉 ∝ f (xi, zi) *
,

x13 · z3

x2
13
−

x23 · z3

x2
23

+
-

J3−n3

, (E.17)

where f (xi, zi) is the part of the tensor structure which is manifestly positive-energy
analytic, and is a homogeneous polynomial in z3 with degree n3 ≥ 0. The non-trivial
part of the correlator can be written as

*
,

x13 · z3

x2
13
−

x23 · z3

x2
23

+
-

J3−n3

= (v12,3 · z3)J3−n3, (E.18)

where

v2
12,3 =

*
,

x13

x2
13
−

x23

x2
23

+
-

2

=
x2

12

x2
13x2

23
. (E.19)

We see that v12,3 can be both spacelike and timelike, depending on the causal rela-
tionship between the three points xi. This immediately implies that, for example,
when all xi j are spacelike, the inner product v12,3 · z3 is not sign-definite and we
need to invoke iε-prescriptions to define (v12,3 · z3)J3−n3 , even for purely Euclidean
configurations. For the iε-prescriptions to make sense, the tensor structure must be
positive-energy analytic. This means that in this situation, positive-energy analyt-
icity is not only required for correlators to make physical sense, but also simply for
the tensor structures to be single-valued.6 To proceed, note that in the region of
positive-energy analyticity x2

i j , 0 and furthermore the map

x 7→
x
x2 (E.20)

5We derived this for generic z1 and z2, but as discussed in the previous section, we expect the
Wightman functions to be continuous in polarizations.

6This is in contrast to the two-point Wightman function case considered above, where (E.13) is
single-valued without the iε-prescription.
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preserves the set of x = y+iζ with future-directed (past-directed) timelike ζ .7 Since
it is also its own inverse, this implies that by varying x13 and x23 within the region
of positive-energy analyticity, we can reproduce any pair of values for q1 =

x13
x2

13
and

q2 =
x23
x2

23
with imaginary parts satisfying the same constraints as those of x13 and

x23 respectively. This means that in the region of positive-energy analyticity for the
orderings

〈0|O2OO1 |0〉 and 〈0|O1OO2 |0〉, (E.21)

the vector v12,3 = q1−q2 has a timelike imaginary part restricted to be future-directed
or past-directed respectively, while for the orderings

〈0|OiO jO|0〉 and 〈0|OOiO j |0〉 (E.22)

this imaginary part is not restricted at all. In the former case v12,3 · z3 has either
negative or positive imaginary part, and thus the inner product cannot vanish or wind
around zero, while in the latter case this inner product can vanish or wind around
zero. We thus conclude that the Wightman functions (E.21) are positive-energy
analytic for any value of J3, while the Wightman functions (E.22) are positive-
energy analytic only for integer J3 ≥ n3.8

Again, recalling that the physical Wightman functions of continuous-spin opera-
tors must be positive-energy analytic, we are forced to conclude that Wightman
functions (E.22) vanish,

〈Ω|O1O2O|Ω〉 = 〈Ω|OO1O2 |Ω〉 = 0, (E.23)

which of course consistent with the fact that O annihilates the vacuum. An inter-
esting observation is that the distinction we made above between the Wightman
orderings (E.21) and (E.22) conflicts with microcausality, because for spacelike-
separated points all these Wightman functions would be equal.9 This means that

7If x2 = (y + iζ )2 = y2 − ζ2 + 2iy · ζ = 0 with timelike ζ , then y · ζ = 0, which implies that y
is spacelike and thus y2 − ζ2 > 0, leading to contradiction. Imaginary part of x

x2 is, up to a positive
factor, ζ (y2 − ζ2) − 2y(y · ζ ). For y = 0 this is timelike and has the same direction as ζ . For any y,
this squares to ζ2((y2 − ζ2)2 + 4(y · z)2) < 0, and thus by continuity Im x

x2 remains timelike in the
direction of ζ .

8Recall that n3 ≤ J3 is the standard condition that we encounter when dealing with integer-spin
tensor structures, it just means that f (xi, zi) must be a polynomial in z3 of degree at most J3. The 3d
subtlety we discussed in footnote 4 would be visible here as well, if we allowed f to be double-valued
in z (and polynomial in χ), which would correspond to making the product O1O2 fermionic, thus
forcing J to be half-integer.

9Recall that as noted above, the region of spacelike separation is the problematic one, because
there v12,3 is spacelike and v12,3 · z3 is not sign-definite.
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non-trivial continuous-spin operatorsmust be non-local, as stated in the introduction,
in the sense that they cannot satisfy microcausality.

A consequence of non-locality is that a physical correlator involving a continuous-
spin operator is not well-defined without specifying an operator ordering even if all
the distances are spacelike. This in particular means that time-ordered correlators
are not quite well-defined in the presence of continuous-spin operators (i.e. how do
we order O when it is spacelike from something?). This also makes it unclear how
one would define Euclidean correlators for continuous spin (the usual Wick-rotation
to Euclidean signature requires micro-causality). Another problem with attempting
to describe continuous-spin operators in Euclidean signature is that under Euclidean
rotation group SO(d) the orbit of a single null direction in Rd−1,1 consists of all null
directions in Cd . Thus we would need to define O(x, z) for all complex null z, but
above it was very important to have future-directed real z to establish positive-energy
analyticity of at least some Wightman functions.

E.1.3 Conventions for two- and three-point tensor structures
When working with integer spin the simplest way to specify standard tensor struc-
tures is to give their expressions in Euclidean signature or, equivalently, in Lorentzian
signature with all points are spacelike separated. With continuous spin, Euclidean
signature is not an option, and as we saw above even for spacelike separations in
Lorentzian signature care must be taken to define phases of three-point functions.
In this section we briefly record our conventions for symmetric tensor operators.

We will choose the following convention for a two-point function in Lorentzian
signature:

〈O(x1, z1)O(x2, z2)〉 =
(−2z1 · I (x12)z2)J

x2∆
12

I µν (x) = δµν − 2
xµxν

x2 . (E.24)

The nonstandard numerator is so that the two-point function is positive when 1 and 2
are spacelike separated and z1,2 are future-pointing null vectors. For local operators
this completely defines standardWightman two-point functions via iε prescriptions.
For continuous-spin operators physical Wightman functions vanish, but we still
need two-point conformal invariants in some calculations (like the definition of the
S-transform), and for these purposes it suffices to specify the two-point invariant for
spacelike x12.
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Now consider a three-point function 〈φ1(x1)φ2(x2)O(x3, z)〉, where φ1 and φ2 are
scalars and O has dimension ∆ and spin J. We demand that the correlator (either
Wightman or time-ordered) should be positive when 1, 2, 3 are mutually spacelike
and z · x23 x2

13 − z · x13 x2
23 > 0. Our precise convention is

〈φ1(x1)φ2(x2)O(x3, z)〉 =

(
2z · x23 x2

13 − 2z · x13 x2
23

) J

x∆1+∆2−∆+J
12 x∆1+∆−∆2+J

13 x∆2+∆−∆1+J
23

. (E.25)

This is unambiguous for local operators since at spacelike separations there is
no difference between various Wightman orderings and time-ordering.10 If J is
continuous, we are necessarily talking about a Wightman function and we need to
specify the ordering. Our choice is

〈0|φ1(x1)O(x3, z)φ2(x2) |0〉 =

(
2z · x23 x2

13 − 2z · x13 x2
23

) J

x∆1+∆2−∆+J
12 x∆1+∆−∆2+J

13 x∆2+∆−∆1+J
23

, (E.26)

defined to be positive under the same conditions as (E.25).

The nontraditional factors of 2 in (E.24) and (E.25) are so that the associated
conformal blocks have simple behavior in the limit of small cross-ratios

〈φ1φ2O〉〈Oφ3φ4〉

〈OO〉
∼

(∏
x#

i j

)
χ
∆−J

2 χ
∆+J

2 χ � χ � 1. (E.27)

They also simplify several formulae in the main text.

E.2 Relations between integral transforms
E.2.1 Square of light transform
In this appendix we explicitly compute the square of the light transform. In order
to do this, we need to assume that the operator that the light transform acts upon
belongs to the Lorentzian principal series

∆ =
d
2
+ is, J = −

d − 2
2
+ iq, (E.28)

so that ∆+ J = 1+ i(s+ q) = 1+ iω and ∆L + JL = 2−∆− J = 1− i(s+ q) = 1− iω

and thus both the first and the second light transforms make sense if w , 0.

It will also be convenient to use the expression for the light transform in the coordi-
nates (τ, ~e) on M̃d . In these coordinates the polarization vector z can be described

10Note however that this notation for the standard structure is somewhat abusive. For physical
correlators we of course have 〈φ1φ2O〉Ω = 〈φ2φ1O〉Ω, but the standard structure (E.25) gains a
(−1)J under this permutation. This leads to several appearances of (−1)J in our formulas which are
awkward to explain.
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as (z0, ~z) where ~z is tangent to Sd−1 at ~e, i.e. ~z · ~e = 0, and we have (z0)2 = |~z |2. We
then have

L[O](τ, ~e; z0, ~z)

=

∫ π

0
dκ (sin κ)∆+J−2(z0)1−∆O(τ + κ, cos κ ~e + sin κ ~z

z0 ; 1, cos κ ~z
z0 − sin κ ~e).

(E.29)

Note that this form also makes it manifest that there is no singularity associated to
α = 0 in (6.60).

The square of light transform becomes

L2[O](τ, ~e; z0, ~z) =
∫ π

0

∫ π

0
dκdκ′(z0)J (sin κ′)−∆−J (sin κ)∆+J−2

× O(τ + κ + κ′, cos(κ + κ′)~e + sin(κ + κ′) ~z
z0 ; 1, cos(κ + κ′) ~z

z0 − sin(κ + κ′)~e)

=

∫ 2π

0
dκK (κ)(z0)JO(τ + κ, cos κ ~e + sin κ ~z

z0 ; 1, cos κ ~z
z0 − sin κ ~e), (E.30)

where

K (κ) =
∫ min(κ/2,π−κ/2)

max(−κ/2,κ/2−π)
dη(sin

κ

2
− η)−1−iω (sin

κ

2
+ η)−1+iω . (E.31)

To compute K (κ), for κ , 0, π, 2π we can use the substitution

eβ =
sin

(
κ
2 + η

)
sin

(
κ
2 − η

) , (E.32)

which turns the integral into

K (κ) =
1

sin κ

∫ +∞

−∞

dβeiw β = 0, (ω , 0). (E.33)

This means that K (κ) is supported at κ = 0, π, 2π. Let us thus consider first the
contribution near κ = 0. Near κ = 0 we can expand both sines and find, introducing
a regulator ε ,

K (κ) =
∫ κ/2

−κ/2
dη

(
κ

2
− η

)−1−iω+ε (
κ

2
+ η

)−1+iω+ε

=κ−1+2ε
∫ 1/2

−1/2
dη

(
1
2
− η

)−1−iω+ε (
1
2
+ η

)−1+iω+ε

=(2ε )κ−1+2ε Γ(iω + ε )Γ(−iω + ε )
(2ε )Γ(2ε )

. (κ � 1) (E.34)
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For ε → 0, using

(2ε )κ−1+2ε → δ(κ), (κ > 0) (E.35)

we find

K (κ) = Γ(−iω)Γ(iω)δ(κ) =
π

(∆ + J − 1) sin π(∆ + J)
δ(κ), (κ � 1). (E.36)

The calculation near κ = 2π is the same and thus we have

K (κ) =
π

(∆ + J − 1) sin π(∆ + J)
(δ(κ) + δ(κ − 2π)) + 〈contribution from π〉

(E.37)

To find the contribution from κ = π, write κ = π − r for small 0 < r � 1.11 We
have now

K (κ) =
∫ π

2 −
r
2

− π2 +
r
2

dη
(
sin

π

2
−

r
2
− η

)−1−iω (
sin

π

2
−

r
2
+ η

)−1+iω

=

∫ π−r

0
dη

(
sin r + η

)−1−iω (
sin η

)−1+iω

≈

∫ Nr

0
dη

(
r + η

)−1−iω+ε η−1+iω+ε +

∫ Nr

0
dη

(
r + η

)−1+iω+ε η−1−iω+ε

=r−1+2ε
[∫ ∞

0
dη

(
1 + η

)−1+iω+ε η−1−iω+ε +

∫ ∞

0
dη

(
1 + η

)−1−iω+ε η−1+iω+ε
]

=r−1+2ε πΓ(1 − 2ε )
Γ(2 − J − ∆ − ε )Γ(J + ∆ − ε )

(
csc(π(J + ∆ − ε )) − csc(π(J + ∆ + ε ))

)
.

(E.38)

Here 0 � r � Nr � 1 and the two terms come from the two sides of the integral.
We can now compute for small Λ > 0

lim
ε→0

∫ π

π−Λ
K (κ)dκ = −

π cos π(∆ + J)
(∆ + J − 1) sin π(∆ + J)

. (E.39)

Recalling also that there is also a contribution from the negative values of r , we find
the final result

K (κ) =
π

(∆ + J − 1) sin π(∆ + J)
(
δ(κ) − 2 cos π(∆ + J)δ(κ − π) + δ(κ − 2π)

)
.

(E.40)

In terms of action on O this immediately implies

L2 =
π

(∆ + J − 1) sin π(∆ + J)

(
1 − 2 cos π(∆ + J)T + T 2

)
=

π

(∆ + J − 1) sin π(∆ + J)

(
T − eiπ(∆+J)

) (
T − e−iπ(∆+J)

)
. (E.41)

11There is going a similar contribution from r < 0.
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E.2.2 Relation between shadow transform and light transform
In this appendix we prove the relation (6.110). As in the preceding part of this
appendix, wemust assume that (6.110) acts on an operator in theLorentzian principal
series so that this action is well-defined. We have

LSJL[O](x, z)

=

∫
Dd−2z′dα1dα2(−α1)−∆−J (−α2)d−2+J−∆(−2z · z′)1−d+∆O(x − z′/α1 − z/α2, z′)

(E.42)

Let us write x′ = x − z′/α1 − z/α2. Then we have

I (x − x′)z = z − 2
(z′/α1 + z/α2)(z′/α1 + z/α2) · z

(z′/α1 + z/α2)2 = −
α2
α1

z′. (E.43)

Considering the integral in the region of large negative α1 and α2 we find∫
Dd−2z′dα1dα2(−α1)−∆−J (−α2)d−2+J−∆

(
−α1α2(x − x′)2

)1−d+∆
(
α1
α2

) J

O(x′,−I (x − x′)z)

=

∫
Dd−2z′dα1dα2(−α1)1−d (−α2)−1

(
−(x − x′)2

)1−d+∆
O(x′,−I (x − x′)z)

(E.44)

We would now like to replace the integral
∫

Dd−2z′dα1dα2 by
∫

dd x′. For this we
write

1 =
∫

dd x′δd (x − x′ − z′/α1 − z/α2) (E.45)

and then compute∫
Dd−2z′dα1dα2(−α1)1−d (−α2)−1δd (x − x′ − z′/α1 − z/α2)

=

∫
dd z′dα1dα2

volR
θ(z′0)δ(z′2)(−α1)(−α2)−1δd (−α1(x − x′) + z′ + α1z/α2)

=

∫
dα1dα2

volR
δ(((x − x′) − z/α2)2)(−α1)−1(−α2)−1

= −(x − x′)−2. (E.46)

We thus conclude that (E.44) is equal to∫
dd x′(−(x − x′)2)∆−dO(x′,−I (x − x′)z). (E.47)

More precisely, it is the contribution to (E.42) from the region of large negative
αi. We recognize that it has precisely the form of T -shifted Lorentzian shadow
integral (6.54), i.e.

S∆ = iT −1LSJL. (E.48)
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E.3 Harmonic analysis for the Euclidean conformal group
E.3.1 Pairings between three-point structures
The conformal representation of an operator O is labeled by a scaling dimension
∆ and an SO(d) representation ρ. The representation Õ† has dimension d − ∆

and SO(d) representation ρ∗ (the dual of ρ). Thus, there is a natural conformally-
invariant pairing between n-point functions of Oi’s and n-point functions of Õ†i ’s,
given by multiplying and integrating over all points modulo the conformal group,(

〈O1 · · · On〉, 〈Õ
†

1 · · · Õ
†
n〉

)
E
=

∫
dd x1 · · · dd xn

vol(SO(d + 1, 1))
〈O1 · · · On〉〈Õ

†

1 · · · Õ
†
n〉.

(E.49)

Here, we are implicitly contracting Lorentz indices between each pair Oi and Õ†i .
The “E” subscript stands for “Euclidean.”

This pairing is particularly simple for three-point structures. In that case, we can
use conformal transformations to set x1 = 0, x2 = e, x3 = ∞ (with e a unit vector),
and no integrations are necessary. The pairing becomes simply(

〈O1O2O3〉, 〈Õ
†

1 Õ
†

2 Õ
†

3〉
)

E

=
1

2dvol(SO(d − 1))
〈O1(0)O2(e)O3(∞)〉〈Õ†1 (0)Õ†2 (e)Õ†3 (∞)〉. (E.50)

The factor 2−d comes from the Fadeev-Popov determinant for the above gauge-
fixing.12 The factor vol(SO(d − 1)) is the volume of the stabilizer group of three
points.

As an example, a scalar-scalar-spin-J correlator has a single tensor structure 〈φ1φ2O3,J〉

given in (E.25). The pairing in that case is(
〈φ1φ2O3,J〉, 〈φ̃1φ̃2Õ3,J〉

)
E

=
22J

2dvol(SO(d − 1))
(eµ1 · · · eµJ − traces)(eµ1 · · · eµJ − traces)

=
22JĈJ (1)

2dvol(SO(d − 1))
, (E.51)

where ĈJ (x) is defined in (E.152).
12Note that [67] used a convention where vol(SO(d + 1, 1)) was defined to include an extra factor

of 2−d to cancel the Fadeev-Popov determinant. Here, we prefer not to cancel this factor because it
simplifies other formulae in this work.
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E.3.2 Euclidean conformal integrals
Suppose O,O′ are principal series representations, with dimensions ∆ = d

2 + is,∆′ =
d
2 + is′ with s, s′ > 0 and SO(d) representations ρ, ρ′. A “bubble” integral of two
three-point functions is proportional to their three-point pairing,∫

dd x1dd x2〈O1O2O
a (x)〉〈Õ†1Õ†2Õ

′†

b (x′)〉 =

(
〈O1O2O〉, 〈Õ

†

1Õ†2Õ†〉
)

E

µ(∆, ρ)
δa

bδ(x − x′)δOO ′,

δOO ′ ≡ 2πδ(s − s′)δρρ′ . (E.52)

The right-hand side contains a term δOO ′ restricting the representations O,O′ to
be the same, since this is the only possibility allowed by conformal invariance.13
Here, a, b are indices for the representations ρ, ρ∗ of SO(d), respectively. We have
suppressed the SO(d) indices of the other operators, for brevity.

The factor µ(∆, ρ) in the denominator is called the Plancherel measure. It is known
in great generality [65] (see [195] for an elementary derivation). In this work, we
will only need µ(∆, J) for symmetric traceless tensors:

µ(∆, J) =
dim ρJ

2dvol(SO(d))
Γ(∆ − 1)Γ(d − ∆ − 1)(∆ + J − 1)(d − ∆ + J − 1)

πdΓ(∆ − d
2 )Γ( d

2 − ∆)
,

dim ρJ =
Γ(J + d − 2)(2J + d − 2)

Γ(J + 1)Γ(d − 1)
. (E.53)

Here dim ρJ is the dimension of the spin-J representation of SO(d).

Another conformal integral we will need is the Euclidean shadow transform of a
three-point function of two scalars and a symmetric traceless tensor

〈φ1φ2SE[O](y)〉 =
∫

dd x〈Õ(y)Õ†(x)〉〈φ1φ2O(x)〉

= SE (φ1φ2[O])〈φ1φ2Õ(y)〉, (E.54)

where

SE (φ1φ2[O]) = (−2)J π
d/2Γ(∆ − d

2 )Γ(∆ + J − 1)
Γ(∆ − 1)Γ(d − ∆ + J)

Γ( d−∆+∆1−∆2+J
2 )Γ( d−∆+∆2−∆1+J

2 )

Γ(∆+∆1−∆2+J
2 )Γ(∆+∆2−∆1+J

2 )
.

(E.55)

The factor of (−2)J relative to [67] is because we are using a different normalization
convention for the two-point function (E.24).

13Eq. (E.52) is sometimes written including two terms — one with δ(s − s′) and another with
δ(s + s′). Here we have only one term because we have restricted s, s′ > 0. The other term can be
obtained by performing the shadow transform on either O or Õ′†.
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The square of the shadow transform is related to the Plancherel measure by [65] (see
[195] for an elementary derivation)

S2
E =

1
µ(∆, ρ)

〈O(0)O†(∞)〉〈Õ(∞)Õ†(0)〉
2dvol(SO(d))

≡ N (∆, ρ), (E.56)

where the indices in two-point functions are implicitly contracted. In the case of a
spin-J representation, we have

N (∆, J) =
22J dim ρJ

2dµ(∆, J)vol(SO(d))
, (E.57)

Indeed, we can easily verify

SE (φ1φ2[O])SE (φ1φ2[Õ]) = N (∆, J). (E.58)

E.3.3 Residues of Euclidean partial waves
In this section, we prove 6.124. The proof for primary four-point functions is
standard (see e.g. [65, 67]). We now give a slightly more complicated argument
that works for n-point functions. However, the key ingredients are identical to the
standard argument.

Consider the integral in the completeness relation (6.119),

I =
∫

dd xP∆,J (x)〈Õ(x)φ1φ2〉. (E.59)

The partial wave P∆,J also depends on the coordinates x3, . . . , xk , but they don’t
play a role in the current discussion so we have suppressed them. We have also
suppressed Lorentz indices. When we have a product of an operator and its shadow
at coincident points, we will assume their Lorentz indices are contracted.

Note that I is an eigenvector of the Casimirs of the conformal group acting simul-
taneously on points 1 and 2. Thus, it is completely determined by its behavior in
the OPE limit x1 → x2. There are two contributions in this limit. The first comes
from the regime where x is sufficiently far from x1, x2 that we can use the 1×2 OPE
inside the integrand:

〈φ1φ2Õ(x)〉 = C12Õ (x1, x2, x′, ∂x′)〈Õ(x′)Õ(x)〉. (E.60)

Here, C12Õ is a differential operator that encodes the sum over descendants in the
φ1 × φ2 OPE. The point x′ can be chosen arbitrarily inside a sphere separating
x1, x2 from all other points. We will abbreviate the right-hand side of (E.60) as



486

C12Õ (x′)〈Õ(x′)Õ(x)〉. Inserting (E.60) and applying the shadow transform to the
definition of P∆,J (6.121), we find

I ⊃ C12Õ (x′)
∫

dd x〈Õ(x′)Õ(x)〉P∆,J (x) = SE (φ1φ2[O])C12Õ (x)P
∆̃,J (x).

(E.61)

The second contribution to I comes from the regime where x is near both x1, x2 but
far away from all other points. In this case, we can insert a shadow transform and
then perform the OPE:

I = SE (φ1φ2[O])−1
∫

dd xdd x′P∆,J (x)〈Õ(x)Õ(x′)〉〈O(x′)φ1φ2〉

⊃ SE (φ1φ2[O])−1
∫

dd xdd x′P∆,J (x)〈Õ(x)Õ(x′)〉C12O (x′′)〈O(x′′)O(x′)〉

= SE (φ1φ2[O])−1N (∆, J)C12O (x)P∆,J (x)

= SE (φ1φ2[Õ])C12O (x)P∆,J (x). (E.62)

Where we have used (E.58).

The two contributions (E.61) and (E.62) are already eigenvectors of the conformal
Casimirs, so together they give the full answer for I. The two terms differ simply
by the replacement ∆ ↔ d − ∆. Thus, we can plug them into the completeness
relation (6.119) and use ∆ ↔ d − ∆ symmetry to extend the ∆ integral along the
entire imaginary axis,

〈V3 · · ·VkO1O2〉Ω =

∞∑
J=0

∫ d
2+i∞

d
2−i∞

d∆
2πi

µ(∆, J)SE (φ1φ2[Õ])C12OP∆,J (x). (E.63)

Because C12O dies exponentially at large positive ∆, we can now close the ∆ contour
to the right and pick up poles along the positive real axis. Comparing to the physical
operator product expansion gives (6.124).

E.4 Computation of R (∆1,∆2, J)

In this appendix we compute the coefficient R appearing in the first line of (6.147)

R (∆1,∆2, J)

≡ −2J−2
∫

dαdd−2w1dd−2w2
2J−1

(
α(1 − α) + (1 − α)w2

1 + αw2
2

)1−∆1−∆2−J

(1 + w2
12)d−∆1−∆2α−∆1+1−J (1 − α)−∆2+1−J

.

(E.64)
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As the first step, we do the wi integrals. We define w− = w12 and w+ = w1 + w2.
The integral over dwi becomes (without the −2J−2 and w-independent factors)

22(∆1+∆2+J)−d
∫

dd−2w+dd−2w−

(
4α(1 − α) + w2

+ + w2
− + 2(1 − 2α)w+ · w−

)1−∆1−∆2−J

(1 + w2
−)d−∆1−∆2

.

(E.65)

Now we shift w+ → w+ − (1 − 2α)w− to find

22(∆1+∆2+J)−d
∫

dd−2w+dd−2w−

(
4α(1 − α)(1 + w2

−) + w2
+

)1−∆1−∆2−J

(1 + w2
−)d−∆1−∆2

. (E.66)

Rescaling w+ we find

∫
dd−2w+dd−2w−

(
α(1 − α)

)1−∆1−∆2−J+ d−2
2

(
1 + w2

+

)1−∆1−∆2−J

(1 + w2
−)J+ d

2
=

= (α(1 − α))1−∆1−∆2−J+ d−2
2 × πd−2Γ(J + 1)Γ(− d

2 + J + ∆1 + ∆2)

Γ(J + d
2 )Γ(J + ∆1 + ∆2 − 1)

. (E.67)

The remaining α-integral becomes∫
dαα−∆2+

d−2
2 (1 − α)−∆1+

d−2
2 =

Γ( d
2 − ∆1)Γ( d

2 − ∆2)
Γ(d − ∆1 − ∆2)

. (E.68)

Combining everything together we find

R (∆1,∆2, J) = −2J−2πd−2Γ(J + 1)Γ(− d
2 + J + ∆1 + ∆2)

Γ(J + d
2 )Γ(J + ∆1 + ∆2 − 1)

Γ( d
2 − ∆1)Γ( d

2 − ∆2)
Γ(d − ∆1 − ∆2)

.

(E.69)

E.5 Parings of continuous-spin structures
In this section we describe the natural conformally-invariant pairing between con-
tinuous spin structures. Recall that the Euclidean pairings are constructed from the
basic invariant integral ∫

dd xO(x)Õ†(x), (E.70)

where contraction of SO(d) indices is implicit. This integral is conformally-
invariant because if O transforms in (∆, ρ) then Õ† transforms in (d − ∆, ρ∗),
where ρ∗ is the SO(d) irrep dual to ρ. We can therefore contract SO(d) indices and
the dimensions in the integrand add up to 0 (taking into account the measure dd x).
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To pair continuous-spin structures in Lorentzian, we need to make use of the integral∫
dd xDd−2zO(x, z)OS†(x, z) (E.71)

If O transforms in (∆, J, λ), then OS† transforms in (d − ∆, 2 − d − J, λ∗). The
integrand has 0 homogeneity in x and z, and λ-indices can be contracted.14

E.5.1 Two-point functions
Let us start with two-point functions. As discussed in section E.1, two-point func-
tions of continuous-spin operators do not make sense as Wightman functions, so
in order to discuss them, we have to think about them simply as some conformal
invariants defined at least for spacelike separated points.

That said, given a two-point structure for O in representation (∆, J, λ) and a two-
point function for OS in representation S[(∆, J, λ)] = (d − ∆, 2 − d − J, λ), we can
define the two-point pairing by

(〈OO†〉, 〈OSOS†〉)L

vol(SO(1, 1))2

≡

∫
x1≈x2

dd x1dd x2Dd−2z1Dd−2z2

vol(S̃O(d, 2))
〈Oa (x1, z1)Ob†(x2, z2)〉〈OS

b (x2, z2)OS†
a (x1, z1)〉,

(E.72)

where factor vol(SO(1, 1))2 is for future convenience15 and the subscript “L” stands
for “Lorentzian.” On the right hand side, we divide by the volume of the conformal
group since the integral is invariant under it. Formally, this means that we should
compute the integral by gauge-fixing the action of conformal group and introducing
an appropriate Faddeev-Popov determinant. To perform gauge-fixing, we can first
put x1 and x2 into some standard configuration. A natural choice is to set x1 = 0 and

14Given that OS transforms in (d − ∆, 2 − d − J, λ), it is a bit non-trivial to understand why OS†

has λ∗. In odd dimensions λ and λ∗ is the same irrep, so there is no question here. In even dimension
† changes the sign of the last row of Young diagram of (d − ∆, 2 − d − J, λ) in the same way as it
does for all so(d)-weights. In other words, it flips the sign if d = 4k and does nothing for d = 4k +2.
However, this last row is also the last row of λ and λ is an SO(d − 2)-irrep. It then turns out that
from the SO(d − 2) point of view, this action is equivalent to taking the dual. Another way to see
this is that † is complex conjugation for SO(d − 1, 1), and thus for SO(d − 2), which can be thought
of as a subgroup of SO(d − 1, 1). But since SO(d − 2) is compact, for it complex conjugation is the
same as taking the dual.

15Similarly to the Euclidean case [195], the right hand side can be alternatively computed in
terms of Plancherel measure divided by vol(SO(1, 1))2. In Euclidean we get only one power of
vol(SO(1, 1)), which corresponds to the fact that there we have only one continuous parameter ∆,
while in Lorentzian we have both ∆ and J.
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x2 = ∞ (spacelike infinity).16 This configuration is still invariant under dilatation
and Lorentz transformations. Thus we have
(〈OO†〉, 〈OSOS†〉)L

vol(SO(1, 1))2

=

∫
Dd−2z1Dd−2z2

2dvol(SO(1, 1) × SO(d − 1, 1))
〈Oa (0, z1)Ob†(∞, z2)〉〈OS

b (∞, z2)OS†
a (0, z1)〉,

(E.73)

where 2d comes from the Faddeev-Popov determinant.17 If we define zR
2 =

(z0
2,−z1

2, z2
2, . . . , zd−1

2 ), so that Lorentz group transforms z1 and zR
2 in the same

way, the integral ∫ Dd−2z1Dd−2zR
2

vol(SO(d − 1, 1))
(E.74)

essentially becomes the (d−2)-dimensional Euclidean conformal two-point integral.
It can also be computed by gauge-fixing, i.e. by setting zµ1 = zµ0 ≡ ( 1

2,
1
2, 0, . . . , 0),

which is the embedding-space representation of the origin of Rd−2, zR µ
2 = zµ∞ ≡

( 1
2,−

1
2, 0, . . . , 0), which is the embedding-space representation of the infinity of

Rd−2. The stabilizer group of this configuration is SO(1, 1) × SO(d − 2), which
consists of (d − 2)-dimensional dilatations and rotations. We thus conclude

(〈OO†〉, 〈OSOS†〉)L

=
1

2d2d−2vol(SO(d − 2))
〈Oa (0, z0)Ob†(∞, zR

∞)〉〈OS
b (∞, zR

∞)OS†
a (0, z0)〉, (E.75)

where we included another Faddeev-Popov determinant. Note that the right hand
side is proportional to dim λ.

We can summarize this result as follows. Note that the product

〈Oa (x1, z1)Ob†(x2, z2)〉〈OS
b (x2, z2)OS†

a (x1, z1)〉 (E.76)

transforms in representation (∆, J, λ) = (d, 2 − d, •) at both x1 and x2. Thus we
must have

〈Oa (x1, z1)Ob†(x2, z2)〉〈OS
b (x2, z2)OS†

a (x1, z1)〉 = A
(−2z1 · I (x12)z2)2−d

x2d
12

. (E.77)

For some constant A. Using (E.75), we find

(〈OO†〉, 〈OSOS†〉)L =
A

22d−2vol(SO(d − 2))
. (E.78)

16We define O(∞) = limL→∞ L2∆O(Le), where e is a conventional spacelike unit vector. We
choose e = (0, 1, 0, . . . , 0).

17A fixed power of 2 also goes into what we mean by vol(SO(1, 1)).
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E.5.2 Three-point pairings
We can analogously define a three-point pairing for continuous-spin structures,(
〈O1O2O〉, 〈Õ

†

1 Õ
†

2O
S†〉

)
L

≡

∫
2<1

x≈1,2

dd x1dd x2dd xDd−2z

vol(S̃O(d, 2))
〈O1(x1)O2(x2)O(x, z)〉〈Õ†1 (x1)Õ†2 (x2)OS†(x, z)〉.

(E.79)

Here, finite-dimensional Lorentz indices are implicitly contracted. Note that due to
the fixed causal relationships between the points the continuous-spin structures are
single-valued without iε prescriptions (see appendix E.1). As in the Euclidean case,
Lorentzian three-point pairings are simple to compute because they don’t involve
any actual integrals over positions. We can use the conformal group to fix all three
points to a standard configuration consistent with the given causal relationships, for
example

x4 = 0, x3 = e0, x = ∞, (E.80)

where e0 is a unit vector in the t direction. The Fadeev-Popov determinant associated
with this choice is 2−d . All that remains is an integral over the polarization vector z,

=
1

2dvol(SO(d − 1))

∫
Dd−2z 〈O1(e0)O2(0)O(∞, z)〉〈Õ†1 (e0)Õ†2 (0)OS†(∞, z)〉,

(E.81)

where vol(SO(d − 1)) is the volume of the stabilizer group of the three points.18 In
practice, we can avoid doing the integral over z as well. This is because the product
in the integrand must be proportional to a three-point function of two scalars with
dimension d and a spinning operator with dimension d and spin 2− d. The integral
of the z-dependent part of this product is always

1
2dvol(SO(d − 1))

∫
Dd−2(−2z · e0)2−d =

1
22d−2vol(SO(d − 2))

. (E.82)

Thus, we can write(
〈O1O2O〉, 〈Õ

†

1 Õ
†

2O
S†〉

)
L

=
1

22d−2vol(SO(d − 2))

〈O1(e0)O2(0)O(∞, z)〉〈Õ†1 (e0)Õ†2 (0)OS†(∞, z)〉

(−2z · e0)2−d .

(E.83)
18Note that the stabilizer group depends on the causal relationships of the points. For example,

three spacelike points have stabilizer group SO(d − 2, 1).
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E.6 Integral transforms, weight-shifting operators and integration by parts
In this appendix we elaborate on the interplay between integral transforms, weight-
shifting operators, and conformally-invariant pairings, following [195] and general-
izing the discussion to Lorentzian signature. For simplicity of discussion, we ignore
possible signs coming from odd permutations of fermions.

E.6.1 Euclidean signature
In Euclidean signature we have one integral transform, SE , and a conformally-
invariant pairing

(O, Õ†) ≡
∫

dd xO(x)Õ†(x), (E.84)

where the spin indices are implicitly contracted. With respect to this paring we can
define a conjugation on weight-shifting operators and on the integral transform,

(DO, Õ†) = (O,D∗Õ†),

(SEO, Õ
†) = (O, S∗E Õ

†). (E.85)

We have ∗2 = 1 and S∗E = SE .

Furthermore, we can define Weyl reflection on weight-shifting operators according
to

SED = (SE[D])SE . (E.86)

We then have

S2
ED = SE (SE[D])SE = (S2

E[D])S2
E, (E.87)

and since S2
E = N (∆, ρ), we have when acting on operators transforming in (∆, ρ)

S2
E[D] =

N (∆ + δ∆, ρ + δρ)
N (∆, ρ)

D, (E.88)

where (δ∆, δρ) is the weight by which D shifts. Conjugating (E.86) we find

SE (SE[D])∗ = D∗SE, (E.89)

and thus

SE[D]∗ = S−1
E [D∗]. (E.90)
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We also note that the crossing equation for weight-shifting operators acting on a
two-point function [3] can be written in terms of shadow transform and conjugation.
Namely, we can interpret SED

∗ as convolution with the kernel

〈Õ(DÕ†)〉, (E.91)

while, on the other hand, it is equal to SE[D∗]S which is convolution with (assume
that DÕ† transforms as Õ′†)

〈(SE[D∗]Õ′)Õ′†〉. (E.92)

We thus find the crossing equation

〈Õ(DÕ†)〉 = 〈(SE[D∗]Õ′)Õ′†〉. (E.93)

E.6.2 Lorentzian signature
The above discussion has an analogue in Lorentzian signature. Now we have more
integral transforms, so let us denote a generic one byW. We also have a new pairing,
given by

(O,OS†)L =

∫
dd xDd−2zO(x, z)OS†(x, z), (E.94)

where the SO(d − 2) indices are implicit and contracted. This pairing leads to a
new conjugation operation on weight-shifting operators and on integral transforms,

(DO, Õ†)L = (O,DÕ†)L,

(WO, Õ†)L = (O,WÕ†)L . (E.95)

Note that in general the Lorentzian and Euclidean conjugations do not commute
(see below). Analogously to the Euclidean case, we find

W[D] =W−1[D]. (E.96)

As in Euclidean signature, we can define the action of integral transforms on weight-
shifting operators by

WD = (W[D])W. (E.97)

In principle W[D] can be a differential operator with coefficients which depend
on T . However, when acting on a function, the left hand side of this expression
depends only on the values of this function in a set which fits in one Poincare patch.
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IfW[D] had non-trivial t dependence, the same would not hold for the right hand
side. ThereforeW[D] has to be a local weight-shifting differential operator.

It is easy to check that if two integral transforms commute, then their actions on
weight-shifting operators also commute. Similarly to Euclidean case, relations such
as L2 = fL (∆, J,T ) generalize to action on weight-shifting operators. Let us write
down the square of an order two transform (any transform except R and R)

W2[D] = fW (∆, ρ,T )D f −1
W (∆, ρ,T ), (E.98)

where ∆ and ρ are understood as operators which read off the scaling dimension
and representation of whatever they act on. Let us comment on this formula in the
case of S∆. Modulo Wick rotation, we have the relation SE = (−2)JS∆ for traceless-
symmetric operators. It follows that (E.88) and (E.98) should be compatible. That
is, we should have

N (∆ + δ∆, J + δJ )
N (∆, J)

=
4J+δJ f∆(∆ + δ∆, J + δJ, cT )

4J f∆(∆, J,T )
, (E.99)

where δ∆, δJ are the weights by which D shifts, and c is defined by

T DT −1 = cD, (E.100)

i.e., c is the eigenvalue of T in the finite-dimensional irrep of conformal group to
whichD is associated. For example, for vector representation c = −1. To check this
relation, we can use the results of section 6.2.7 and in particular the relation (6.110)
which implies (we consider traceless-symmetric case for simplicity)

f∆(∆, J,T ) = −T −2 fL (∆, ρ,T ) f J (1 − ∆) fL (1 − J, 1 − d + ∆,T ). (E.101)

It is then an easy exercise to verify that (E.99) holds for vector weight-shifting
operators [3].

Another useful result is obtained by substituting D →W−1[D] into (E.98) to find

W−1[D] = f −1
W (∆, ρ,T )W[D] fW (∆, ρ,T ). (E.102)

For example,

L−1[D] = L[D]
fL (∆, ρ,T )

fL (∆ + L[δ∆], ρ + L[δρ], cT )
, (E.103)

where we kept explicit dependence of fL on t, (L[δ∆],L[δρ]) is the weight by which
L[D] shifts. It is easy to check that T -dependence indeed cancels out for D in
vector representation.
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We can derive two-point crossing in terms of Lorentzian conjugation and S trans-
form,

〈OS(DOS†)〉 = 〈(S[D]O′S)O′S†〉. (E.104)

Comparing to the Euclidean form of two-point crossing leads to a useful relation

SE[D∗] = S[D]. (E.105)

We will need a version of this relation with order of integral transforms and conju-
gations interchanged. First, (E.105) implies

(S−1
E [D])∗ = S−1[D]. (E.106)

Then we use that SE and S are proportional to their inverses. In particular, we find
from (E.102)

( f −1
E (∆, ρ,T )SE[D] fE (∆, ρ,T ))∗ = ( f −1

S (∆, ρ,T )S[D] fS (∆, ρ,T )),

fE (∆, ρ,T )(SE[D])∗ f −1
E (∆, ρ,T ) = fS (∆, ρ,T )S[D] f −1

S (∆, ρ,T ), (E.107)

where we temporarily interpret SE as a Lorentzian transform defined by (−2)JS∆.
We can now use

fS (∆, ρ,T ) = S2 = S2
∆

S2
J = 4−JS2

ES2
J = 4−J fE (∆, ρ,T ) f J (ρ) (E.108)

to conclude

S[D] = 4J f −1
J (ρ)(S∆[D])∗4−J f J (ρ). (E.109)

E.7 Proof of (6.214) for seed blocks
In this appendix we prove (6.214) for seed blocks by starting from the scalar case.
For simplicity we consider only bosonic representations. We assume that Oi are in
SO(d) representations appropriate for the seed block for intermediate ρ which we
are interested in. As discussed in section 4.4 of [3], we can assume that O2 and O4

are scalars in all seed blocks, so we don’t have to change their representations. We
start with the identity

(〈O†O〉, 〈Õ†Õ〉)E (〈O1O2SE[O†]〉)−1
E = (〈O′†O′〉, 〈Õ′†Õ′〉)ED1,AD̃

A(〈O1O
′
2SE[O′†]〉)−1

E ,

(E.110)

whereD and D̃ are some weight-shifting operators,19 while O′1 and O
′ come from a

seed block for which we already know that (6.214) holds. A possible proportionality
19Here tilde isn’t related to shadow transform and D̃ acts on the third position. The representation

of index A can be assumed to be vector.
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coefficient can be absorbed into the definition of either the weight-shifting operators
or the tensor structures. Consider pairing both sides with 〈O1O2SE[O†]〉 to obtain

(〈O†O〉, 〈Õ†Õ〉)E

(〈O′†O′〉, 〈Õ′†Õ′〉)E
= (〈O1O2SE[O†]〉,D1,AD̃

A(〈O1O
′
2SE[O′†]〉)−1

E )E . (E.111)

Integrating by parts and using definitions of appendix E.6 we find

(〈O†O〉, 〈Õ†Õ〉)E

(〈O′†O′〉, 〈Õ′†Õ′〉)E
= (〈D∗1,AO1O2SE[S−1

E [D̃∗]AO†]〉, (〈O1O
′
2SE[O′†]〉)−1

E )E,

(E.112)

which allows us to conclude

〈D∗1,AO1O2SE[S−1
E [D̃∗]AO†]〉 =

(〈O†O〉, 〈Õ†Õ〉)E

(〈O′†O′〉, 〈Õ′†Õ′〉)E
〈O1O

′
2SE[O′†]〉, (E.113)

or, canceling SE on both sides,

〈D∗1,AO1O2(S−1
E [D̃∗]AO†)〉 =

(〈O†O〉, 〈Õ†Õ〉)E

(〈O′†O′〉, 〈Õ′†Õ′〉)E
〈O1O

′
2O
′†〉. (E.114)

We will use this characterization of D and D̃ later in the proof.

For now, let us apply (E.110) to (6.213) and find that H is given by

H∆,ρ(xi)

= −µ(∆, ρ′†)(O1O
′
2SE[Õ′†])(〈O1O

′
2Õ
′†〉, 〈Õ†1 Õ

′†

2 O
′〉)−1

E ×

×

∫
2<x<1

dd xDd−2z〈0|D1,AÕ
†

1L[D̃AO](x, z)Õ′†2+ |0〉(〈0|O4+L[O](x, z)O3 |0〉)−1
L .

(E.115)

We now use

L[D̃AO] = L[D̃]AL[O], (E.116)

and integrate L[D̃] by parts. This gives

H∆,ρ(xi)

= −µ(∆, ρ′†)(O1O
′
2S∆[Õ′†])(〈O1O

′
2Õ
′†〉, 〈Õ†1 Õ

′†

2 O
′〉)−1

E ×

×

∫
2<x<1

dd xDd−2z〈0|D1,AÕ
†

1L[O](x, z)Õ′†2+ |0〉L[D̃]
A

(〈0|O4+L[O](x, z)O3 |0〉)−1
L ,

(E.117)
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where L[D̃] acts on the middle position in the right three-point structure. We can
further apply a crossing transformation on the right three-point structure as in [3]
to make all differential operators act on the external operators only. We will not do
this in detail, because we will anyway reverse this step in a moment. Let us denote
the resulting differential operator acting on external operators by D.

The conclusion of the above calculation is schematically that

Hρ = DHρ′, (E.118)

where Hρ′ is some conformal for which we know (6.214) to hold. We can thus
apply D to (6.214) written for Hρ′. Since the right three-point structure in (6.214)
and (6.213) is the same, we can unwind the steps in the derivation ofD which were
performed solely on the right three-point structure to conclude

H∆,ρ(xi) = −
1

2πi

D1,A
(
T2〈O1O

′
2L[O′†]〉

)−1
L

L[D̃]
A (
T4〈O4O3L[O]〉

)−1
L

(〈L[O′]L[O′]〉)−1
L

. (E.119)

We can use (E.167) to write this as

H∆,ρ(xi)

= −
1

2πi
(〈L[O]L[O]〉)−1

L

(〈L[O′]L[O′]〉)−1
L

S[L[D̃]]AD1,A
(
T2〈O1O

′
2L[O′†]〉

)−1
L

(
T4〈O4O3L[O]〉

)−1
L

(〈L[O]L[O]〉)−1
L

.

(E.120)

We now want to express

S[L[D̃]]AD1,A(〈O1O
′
2L[O′†]〉)−1

L (E.121)

in terms of

(〈O1O2L[O†]〉)−1
L . (E.122)

To do this, let us consider the Lorentzian pairing(
〈O1O2L[O†]〉, S[L[D̃]]AD1,A(〈O1O

′
2L[O′†]〉)−1

L

)
L

=

(
S[L[D̃]]

A
D∗1,A〈O1O2L[O†]〉, (〈O1O

′
2L[O′†]〉)−1

L

)
L
. (E.123)

We can use the results of appendix E.6 and 6.2.7 to write

S[L[D̃]] = L[S[D̃]] = L−1[S[D̃]] =
fL (L[∆],L[ρ†],T )

fL (L[∆] + L[δ∆],L[ρ†] + L[δρ], cT )
L[S[D̃]],

(E.124)
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where (δ∆, δρ) is the weight by which S[D̃] shifts and c is defined by (E.100) for
D̃. Since we consider only bosonic representations, c = ±1 (c = −1 for vector
weight-shifting operators). We have (∆ + δ∆, ρ† + δρ) = (∆′, ρ′†). We furthermore
have

L[S[D̃]]L[O†] = L[S[D̃]O†] =
4−J f J (ρ†)
4−J ′ f J (ρ′†)

L[(S∆[D̃])∗O†] (E.125)

and thus

S[L[D̃]]
A
D∗1,A〈O1O2L[O†]〉

=
4−J f J (ρ†)
4−J ′ f J (ρ′†)

fL (L[∆],L[ρ†],T )
fL (L[∆′],L[ρ′†], cT )

〈O1D
∗
1,AO2L[(SE[D̃])∗O†]〉. (E.126)

Now use (SE[D̃])∗ = S−1
E [D̃∗], apply L to both sides of (E.114) and conclude

S[L[D̃]]
A
D∗1,A〈O1O2L[O†]〉

=
4−J f J (ρ†)
4−J ′ f J (ρ′†)

fL (L[∆],L[ρ†],T )
fL (L[∆′],L[ρ′†], cT )

(〈O†O〉, 〈Õ†Õ〉)E

(〈O′†O′〉, 〈Õ′†Õ′〉)E
〈O1O

′
2L[O′†]〉.

(E.127)

This implies that the pairing (E.123) is equal to

4−J f J (ρ†)
4−J ′ f J (ρ′†)

fL (L[∆],L[ρ†],T )
fL (L[∆′],L[ρ′†], cT )

(〈O†O〉, 〈Õ†Õ〉)E

(〈O′†O′〉, 〈Õ′†Õ′〉)E
(E.128)

and thus

S[L[D̃]]AD1,A〈O1O
′
2L[O′†]〉−1

=
4−J f J (ρ†)
4−J ′ f J (ρ′†)

fL (L[∆],L[ρ†],T )
fL (L[∆′],L[ρ′†], cT )

(〈O†O〉, 〈Õ†Õ〉)E

(〈O′†O′〉, 〈Õ′†Õ′〉)E
(〈O1O2L[O†]〉)−1

L .

(E.129)

Collecting all the pieces, we find that (E.120) implies (6.214) for the seed H if

C =
(〈L[O]L[O]〉)−1

L

(〈L[O′]L[O′]〉)−1
L

4−J f J (ρ†)
4−J ′ f J (ρ′†)

fL (L[∆],L[ρ†],T )
fL (L[∆′],L[ρ′†], cT )

(〈O†O〉, 〈Õ†Õ〉)E

(〈O′†O′〉, 〈Õ′†Õ′〉)E
= 1.

(E.130)

Proof that C = 1 First, we note that

(〈O†O〉, 〈Õ†Õ〉)E

(〈O′†O′〉, 〈Õ′†Õ′〉)E
=

4J dim ρ†

4J ′ dim ρ′†
. (E.131)
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Furthermore, f J is square of shadow transform in d − 2 dimensions. Thus if we
write ρ† = (J, λ) then (similarly to appendix E.3)

f J (ρ†) ∝
dim λ

µ(ρ†)
, (E.132)

where µ is the Plancherel measure for SO(d − 1, 1). Furthermore, the ratio

µ(ρ†)
dim ρ†

(E.133)

is independent of ρ [65, 195]. This implies that

4−J f J (ρ†)
4−J ′ f J (ρ′†)

(〈O†O〉, 〈Õ†Õ〉)E

(〈O′†O′〉, 〈Õ′†Õ′〉)E
=

dim λ

dim λ′
. (E.134)

Furthermore, we can write

dim λ

dim λ′
=

(〈O′O′†〉)−1
L

(〈OO†〉)−1
L

, (E.135)

which is due to

(〈OO†〉, 〈OSOS†〉)L ∝ dim λ, (E.136)

and similarly for primed quantities (see appendix E.5).

Now we need to recall the calculation of 〈L[O]L[O†]〉. We have for the kernel
which is represented by the time-ordered two-point function 〈OO†〉,

〈OO†〉 = S(1 +
∞∑

n=1
γ−n(T n + T −n)), (E.137)

where γ is the eigenvalue of T corresponding to O, see (6.38). The calculation in
section 6.4.1.4 then yields, in the same sense as above,

〈L[O]L[O†]〉 = S(1 +
∞∑

n=1
γ−n(T n + T −n))T −1 fL (F[∆],F[ρ],T ). (E.138)

Since L commutes with S, we find that we can replace fL (F[∆],F[ρ],T ) by
fL (L[∆],L[ρ],T ). This implies

(〈L[O]L[O]〉)−1
L

(〈L[O′]L[O′]〉)−1
L

=
(1 +

∑∞
n=1 γ

′−n(T n + T −n)) fL (L[∆′],L[ρ′],T )
(1 +

∑∞
n=1 γ

−n(T n + T −n)) fL (L[∆],L[ρ],T )
(〈OO†〉)−1

L

(〈O′O′†〉)−1
L

.

(E.139)



499

Recall that S[D̃] takes O to O′ and cD̃ = T D̃T −1, which implies γ′ = cγ = ±g.
(Recall we consider only bosonic representations.) Thus we have

(1 +
∑∞

n=1 γ
′−n(T n + T −n))

(1 +
∑∞

n=1 γ
−n(T n + T −n))

fL (L[∆′],L[ρ′],T )

=
(1 +

∑∞
n=1 γ

′−n(T n + T −n))
(1 +

∑∞
n=1 γ

′−n((cT )n + (cT )−n))
fL (L[∆′],L[ρ′],T )

=
(cT − γ)(cT − γ−1)
(T − γ)(T − γ−1)

fL (L[∆′],L[ρ′],T )

= fL (L[∆′],L[ρ′], cT ), (E.140)

where we used the fact that (6.103) is T -independent. We thus conclude that

(〈L[O]L[O†]〉)−1
L

(〈L[O′]L[O′†]〉)−1
L

=
fL (L[∆′],L[ρ′], cT )
fL (L[∆],L[ρ],T )

(〈OO†〉)−1
L

(〈O′O′†〉)−1
L

. (E.141)

By combining this equation with (E.134) and (E.135) we see that indeed20

C = 1. (E.142)

E.8 Conformal blocks with continuous spin
E.8.1 Gluing three-point structures
Consider two three-point structures 〈O1O2O〉 and 〈OO3O4〉. We can glue them into
a conformal block as follows. We find a linear operator B12O (x12) such that in the
OPE limit 1→ 2, the first three-point structure becomes

〈O1O2O
†(x)〉 ∼ B12O (x12)〈O(x2)O†(x)〉, ( |x12 | � |x1 − x |, |x2 − x |).

(E.143)

For example, when O1,O2,O are all scalars, we have

B12O (x12) = x∆O−∆1−∆2
12 . (E.144)

(B12O can be extended to a differential operator such that (E.143) becomes an equality
away from the 1 → 2 limit, but this is not necessary for the current discussion.)
Note that to define B12O we must choose a normalization of the two-point structure
〈OO〉.

20Since we for simplicity restricted to bosonic representations, we haven’t been very careful with
distinguishing ρ and ρ†. (There is no difference except possibly for self-dual tensors.) It would be
interesting to repeat our argument in a more careful manner, accounting for fermionic representations
as well.
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We define a conformal block GOi
O

(xi) as the conformally-invariant solution to the
conformal Casimir equation [57] whose OPE limit is

GOi
O

(xi) ∼ B12O (x12)〈O(x2)O3O4〉, (|x12 | � |xi j |). (E.145)

It is very useful to introduce the following notation for a conformal block, which
makes manifest the choices of two- and three-point structures needed to define it

GOi
O

(xi) =
〈O1O2O

†〉〈OO3O4〉

〈OO†〉
. (E.146)

In our convention O appears in the OPE O1 × O2 and O† in the OPE O3 × O4.

E.8.1.1 Example: integer spin in Euclidean signature

As an example, let us review the case of external scalars φ1, . . . , φ4 and an exchanged
operator O with integer spin J,

G∆i

∆,J (xi) =
〈φ1φ2O〉〈φ3φ4O〉

〈OO〉
, (E.147)

where 〈φ1φ2O〉 and 〈φ3φ4O〉 are the standard three-point structures (E.25) and
〈OO〉 is the standard two-point structure (E.24). We will assume that all points are
in Euclidean signature.

In the OPE limit 1→ 2, we have

〈φ1φ2O(x0, z)〉 ∼
1

x∆1+∆2−∆+J
12

(−2z · I (x20) · x12)J

x2∆
20

=
1

x∆1+∆2−∆+J
12

xµ1
12 · · · x

µJ
12 〈Oµ1···µJ (x2)O(x0, z)〉. (E.148)

To compute the leading behavior of the block, it suffices to take the limit 3 → 4 in
〈φ3φ4O〉,

〈φ3φ4Oµ1···µJ (x2)〉 =
1

x∆3+∆4−∆+J
34

(−2I (x42) · x34)µ1 · · · (−2I (x42) · x34)µJ − traces
x2∆

42
.

(E.149)

(This limit is identical to the first line of (E.148) after replacing 1, 2, 0→ 3, 4, 2 and
stripping off the polarization vector z.) Thus the OPE limit of the resulting block is

G∆i

∆,J (xi) ∼
xµ1

12 · · · x
µJ
12

x∆1+∆2−∆+J
12 x∆3+∆4−∆+J

34

(−2I (x42) · x34)µ1 · · · (−2I (x42) · x34)µJ − traces
x2∆

42

=
1

x∆1+∆2
12 x∆3+∆4

34

*
,

x2
12x2

34

x4
42

+
-

∆/2

2JĈJ

(
−x12 · I (x42) · x34
|x12 | |x34 |

)
. (E.150)
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Here, we’ve used the identity

(mµ1 · · ·mµJ )(nµ1 · · · nµJ − traces) = |m |
J |n|JĈJ

(
m · n
|m | |n|

)
, (E.151)

where

ĈJ (η) =
Γ( d−2

2 )Γ(J + d − 2)

2JΓ(J + d−2
2 )Γ(d − 2)

2F1

(
−J, J + d − 2,

d − 1
2

,
1 − η

2

)
(E.152)

is proportional to a Gegenbauer polynomial (note in particular that for η = 1 the
hypergeometric function reduces to 1). Factoring out some standard kinematical
factors, we find

G∆i

∆,J (xi) =
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

*
,

x2
14

x2
24

+
-

∆2−∆1
2

*
,

x2
14

x2
13

+
-

∆3−∆4
2

G∆i

∆,J ( χ, χ), (E.153)

where G∆i

∆,J ( χ, χ) is a solution to the conformal Casimir equations normalized so
that

G∆i

∆,J ( χ, χ) ∼ ( χ χ)∆/2
(
χ

χ

)−J/2
, ( χ � χ � 1). (E.154)

Here, χ, χ are conformal cross-ratios defined by u = χ χ, v = (1− χ)(1− χ). This
is the standard conformal block in the normalization convention of [66, 67].

E.8.1.2 Example: continuous spin in Lorentzian signature

Our definition of a conformal block also works when O has continuous spin. How-
ever, now we must allow B12O to be an integral operator in the polarization vector
of O. Let us again consider external scalars φ1, . . . , φ4. For later applications, we
work in a Lorentzian configuration where all four points 1, 2, 3, 4 are in the same
Minkowski patch, with the causal relationships 1 > 2, 3 > 4, and all other pairs
spacelike-separated, see figure E.1.

We also modify the three-point structures by taking x2
34 → −x2

34 and x2
12 → −x2

12 so
that they are positive when x0 is spacelike from 1, 2 and 3, 4, since precisely these
positive structures will appear later. Specifically, let

T∆1,∆2
∆,J (x1, x2, x0, z) =

(2z · x20x2
10 − 2z · x10x2

20)J

(−x2
12)

∆1+∆2−∆+J
2 (x2

10)
∆1+∆−∆2+J

2 (x2
20)

∆2+∆−∆1+J
2

. (E.155)
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1

2

3

4

Figure E.1: A configuration of points where 1 > 2 and 3 > 4, with all other pairs
of points spacelike-separated. The three-point structure (E.155) is positive in this
configuration.

We will study the block

T∆1,∆2
∆,J T∆3,∆4

∆,J

〈OO〉
, (E.156)

where 〈OO〉 is the two-point structure (E.24). To define a block, our structures only
need to be defined when x0 is spacelike from the other points, so we do not need to
give an iε prescription here.

In the OPE limit 1→ 2, we have

T∆1,∆2
∆,J (x1, x2, x0, z) ∼

1

(−x2
12)

∆1+∆2−∆+J
2

(−2z · I (x20) · x12)J

(x2
20)∆

(1→ 2). (E.157)

The quantity on the right differs from the two-point structure 〈O(x2, z′)O(x0, z)〉 by
the replacement z′ → x12. We can no longer strip off z′ and contract indices with
x12. However, the replacement can be achieved via an integral transform:

T∆1,∆2
∆,J (x1, x2, x0, z) ∼ B12O〈O(x2, z′)O(x0, z)〉

B12O f (x′, z′) =

=
1

(−x2
12)

∆1+∆2−∆−J−d+2
2

Γ(J + d − 2)

π
d−2

2 Γ(J + d−2
2 )

∫
Dd−2z′(−2x12 · z′)2−d−J f (x′, z′).

(E.158)

Now let us apply B12O to the three-point structure T∆3,∆4
∆,J (x3, x4, x2, z), working in

the limit 3→ 4 (since this is sufficient to determine the small cross-ratio dependence
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of the resulting block). In doing so, we need the identity∫
Dd−2z′ (−2x12 · z′)2−d−J (−2z′ · I (x42) · x34)J

= (−x2
12)

2−d−J
2 (−x2

34)
J
2

22−dvol(Sd−2)
ĈJ (1)

ĈJ *
,

−x12 · I (x42) · x34

(−x2
12)1/2(−x2

34)1/2
+
-
, (E.159)

where ĈJ (η) is given in (E.152). (Here, it is important that we use the correct
definition of ĈJ for non-integer J.) Using (E.159), we find that in the OPE limit

T∆1,∆2
∆,J T∆3,∆4

∆,J

〈OO〉
∼

1

(−x2
12)

∆1+∆2
2 (−x2

34)
∆3+∆4

2

*
,

x2
12x2

34

x4
42

+
-

∆/2

2JĈJ *
,

−x12 · I (x42) · x34

(−x2
12)1/2(−x2

34)1/2
+
-
,

(E.160)

so that

T∆1,∆2
∆,J T∆3,∆4

∆,J

〈OO〉
=

1

(−x2
12)

∆1+∆2
2 (−x2

34)
∆3+∆4

2

*
,

x2
14

x2
24

+
-

∆2−∆1
2

*
,

x2
14

x2
13

+
-

∆3−∆4
2

G∆i

∆,J ( χ, χ).

(E.161)

This is the same result we would have gotten by pretending J was an integer and
performing the computation in the previous subsection. However, here we see that
a conformal block with non-integer J is well-defined and completely specified by
continuous-spin two- and three-point structures.

E.8.1.3 Rules for weight-shifting operators

Let us consider how the gluing rule described in E.8.1 interacts with weight-shifting
operators changing the internal representation. Suppose we can write

〈O1O2O
†(x)〉 = 〈O1(DAO

′
2)(D̃AO′†)〉 (E.162)

for a pair of weight-shifting operators D and D̃. By acting with the same weight-
shifting operators on (E.143) for primed operators we find

〈O1O2O
†(x)〉 ∼ (D2,AB12O)(x12)〈O(x2)(D̃AO′†)(x)〉. (E.163)

Recall the crossing equation (E.104), which holds when the two-point structures are
related to the kernel of S-transform. Let us assume for now that this is the case.
Then we find

〈O1O2O
†(x)〉 ∼ (D2,AB12O)(x12)〈(S[D̃]AO)(x2)O′†(x)〉. (E.164)
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Substituting this into (E.145), we find

GOi
O

(xi) ∼ (D2,AB12O)(x12)〈(S[D̃]AO)(x2)O3O4〉. (E.165)

Using notation (E.146) we can summarize this as21

〈O1(DAO2)(D̃AO′†)〉〈OO3O4〉

〈OO〉
=
〈O1(DAO2)O′†〉〈(S[D̃]AO)O3O4〉

〈O′O′〉
. (E.166)

This holds if the two-point functions for O and O′ are standard in the sense of being
related to S-kernel. Generalization of this to arbitrary two-point functions is given
by

〈O1(DAO2)(D̃AO′†)〉〈OO3O4〉

〈OO〉
=
〈O′O′〉

〈OO〉

〈O1(DAO2)O′†〉〈(S[D̃]AO)O3O4〉

〈O′O′〉
,

(E.167)

where the ratio of two-point functions is a scalar defined as

〈O′O′〉

〈OO〉
≡
〈O′O′〉

〈O′O′〉0

〈OO〉0
〈OO〉

, (E.168)

where the structures with subscript 0 are standard and related to S-kernel. Note that
we can reverse (E.167) by replacing D̃ → S−1[D̃]. However, due to (E.96) we have
S−1[D̃] = S[D̃] and so we get the same rule for moving the operator from right to
left.

E.8.2 A Lorentzian integral for a conformal block
Conformal blocks in Euclidean signature can be computed via a “shadow repre-
sentation,” where one integrates a product of three-point functions over Euclidean
space [54, 118, 233]. However, this integral produces a linear combination of a
standard block G∆i

∆,J and the so-called “shadow block” G∆i

d−∆,J . The shadow block
comes from regions of the integral where the OPE is not valid inside the integrand.

By contrast, there is a simple integral representation for a block alone (without its
shadow) in Lorentzian signature [203]. The reason is that in Lorentzian signature,
we can integrate over a conformally-invariant region that stays away from two of the
points, say x3,4. Thus, the x3 → x4 OPE limit can be taken inside the integrand and
dictates the behavior of the result.

21The results of [3] concerning weight-shifting of the internal representation are recovered by
further using crossing for the weight-shifting operator acting on the right three-point structure.
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1

2

3

4
0

Figure E.2: In the Lorentzian integral for a conformal block, the point x0 is integrated
over the diamond 2 < 0 < 1 (yellow). Because the integration region is far away
from points 3, 4, the 3 × 4 OPE is valid inside the integral.

The Lorentzian integral for a conformal block plays an important role in sec-
tion 6.4.1.2, so let us compute it. Consider the same configuration as in the previous
subsection where 1, 2, 3, 4 are in the same Poincare patch, with 1 > 2 and 3 > 4,
and other pairs of points spacelike separated from each other (figure E.2). We can
produce a conformal block in the 1, 2 → 3, 4 channel by performing a shadow-like
integral over the causal diamond 2 < 0 < 1,

G∆,J ≡

∫
2<0<1

dd x0Dd−2z |T∆1,∆2
d−∆,2−d−J (x1, x2, x0, z) |T∆3,∆4

∆,J (x3, x4, x0, z). (E.169)

The notation |T∆1,∆2
d−∆,2−d−J | means that spacetime intervals xi j should appear with

absolute values |xi j |, so that the integrand is positive in the configuration we are
considering. (This notation is somewhat imprecise, since when ∆1,∆2,∆, J are
complex, we do not mean one should take the absolute value of the whole expres-
sion.) When J is an integer, there is a similar integral expression for a Lorentzian
block with

∫
Dd−2z replaced by index contractions. However (E.169) also works

for continuous spin.

The expression (E.169) is proportional to G∆,J because it is a conformally-invariant
solution to the Casimir equationwhoseOPE limit agrees with theOPE limit ofT∆3,∆4

∆,J

(because the integration point stays away from x3,4). The behavior of the integral
in the limit 1 → 2 is not immediately obvious. However, conformal invariance
requires that this limit must be the same as 3→ 4.
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More precisely, in the OPE limit 3→ 4, we have

T∆3,∆4
∆,J (x3, x4, x0, z) ∼ B34O〈O(x4, z′)O(x0, z)〉 (3→ 4, 0 ≈ 3, 4), (E.170)

where B34O is the linear operator defined in (E.158). Plugging this in, we find
(3→ 4)

G∆,J ∼ B34O

∫
2<0<1

dd x0Dd−2z |T∆1,∆2
d−∆,2−d−J (x1, x2, x0, z) |〈O(x4, z′)O(x0, z)〉.

(E.171)

The integral in the OPE limit now takes the form of an S-transform.

E.8.2.1 Shadow transform in the diamond

Let us evaluate the integral (E.171) by splitting it into two steps: first we apply S∆
and then subsequently SJ . For notational convenience, define

∆0 ≡ d − ∆

J0 ≡ 2 − d − J . (E.172)

The S∆ transform is fixed by conformal invariance up to a coefficient a∆1,∆2
∆0,J0

,

S∆0[|T∆1,∆2
d−∆,2−d−J (x1, x2, x0, z) |θ(2 < 0 < 1)]

=

∫
2<0<1

dd x0
1

x2(d−∆0)
04

|T∆1,∆2
d−∆,2−d−J (x1, x2, x0, I (x04)z) |

= a∆1,∆2
∆0,J0

|2z · x14x2
24 − 2z · x24x2

14 |
J0

|x12 |∆1+∆2−(d−∆0)+J0 |x14 |∆1+(d−∆0)−∆2+J0 |x24 |∆2+(d−∆0)−∆1+J0
. (E.173)

Here, we are writing expressions valid in the kinematical configuration we are
considering, namely 2 < 0 < 1 and 4 ≈ 1, 0, 2. To find the coefficient, we choose
the following configuration in lightcone coordinates

x0 = (u, v, x⊥),

x1 = (1, 0, 0),

x2 = (0, 1, 0),

x4 = (∞,∞, 0),

w = I (x04)z = (2, 0, 0), (E.174)
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where the metric is x2 = uv + x2
⊥. Note that since 4 is sent to infinity, w is actually

independent of x0. Our integral becomes

a∆1,∆2
∆0,J0

=
1

2J0+1

∫
du dv dx⊥

|2w · x10x2
20 − 2w · x20x2

10 |
J0

|x12 |∆1+∆2−∆0+J0 |x10 |∆1+∆0−∆2+J0 |x20 |∆2+∆0−∆1+J0

=
vol(Sd−3)

2

∫
du dv dr rd−3 (u(1 − u) − r2)J0

(u(1 − v) − r2)
∆1−∆2+∆0+J0

2 (v(1 − u) − r2)
∆2−∆1+∆0+J0

2

.

(E.175)

It is now straightforward to perform the v integral over v ∈ [ r2

1−u,
u−r2

u ], followed by
the r integral over r ∈ [0,

√
u(1 − u)], and finally the u integral over u ∈ [0, 1]. The

result is

a∆1,∆2
∆0,J0

=
π

d−2
2 Γ(2 − ∆0)Γ( 2−J0−∆0+∆1−∆2

2 )Γ( d+J0−∆0+∆1−∆2
2 )Γ( 2−J0−∆0−∆1+∆2

2 )Γ( d+J0−∆0−∆1+∆2
2 )

2Γ(1 + d
2 − ∆0)Γ(2 − J0 − ∆0)Γ(d + J0 − ∆0)

.

(E.176)

Note that a∆1,∆2
∆0,J0

= a∆1,∆2
∆0,2−d−J0

, which is consistent with the requirement that S∆
commute with SJ . We can additionally perform SJ using∫

Dd−2z′(−2z · z′)2−d−J0 (−2z′ · v)J0

=
π

d−2
2 Γ(−J0 −

d−2
2 )

Γ(−J0)
(−v2)

d−2
2 +J0 (−2z · v)2−d−J0 . (E.177)

Combining everything together, we find

S0[|T∆1,∆2
d−∆,2−d−J (x1, x2, x0, z) |θ(2 < 0 < 1)] = b∆1,∆2

∆,J T∆1,∆2
∆,J (x1, x2, x4, z)

b∆1,∆2
∆,J ≡

π
d−2

2 Γ(J + d−2
2 )

Γ(J + d − 2)
a∆1,∆2

d−∆,2−d−J . (E.178)

Plugging this into (E.171) and using (E.161), we conclude

G∆,J (xi) =
b∆1,∆2
∆,J

(−x2
12)

∆1+∆2
2 (−x2

34)
∆3+∆4

2

*
,

x2
14

x2
24

+
-

∆2−∆1
2

*
,

x2
14

x2
13

+
-

∆3−∆4
2

G∆i

∆,J ( χ, χ). (E.179)

E.8.3 Conformal blocks at large J

In this appendix, we compute the large-J behavior of a conformal block. Recall that
we have the decomposition

G∆i

∆,J ( χ, χ) = g
pure
∆,J ( χ, χ) +

Γ(J + d − 2)Γ(−J − d−2
2 )

Γ(J + d−2
2 )Γ(−J)

g
pure
∆,2−d−J ( χ, χ). (E.180)
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Thus it suffices to compute the large-J behavior of gpure
∆,J .

The Casimir equation was solved in the large-∆ limit in [36, 37]. We can use this
result together with an affine Weyl reflection to determine g

pure
∆,J at large J. The

solution from [36] is given by

r∆ f J (cos θ)

(1 − r2)
d−2

2 (1 + r2 + 2r cos θ)
1
2 (1+∆12−∆34) (1 + r2 − 2r cos θ)

1
2 (1+∆34−∆12)

(|∆| � 1),

(E.181)

where r and θ are defined by

ρ = reiθ, ρ = re−iθ, χ =
4ρ

(1 + ρ)2 , χ =
4ρ

(1 + ρ)2 . (E.182)

From studying the regime r � 1, we find that f J (cos θ) must obey the Gegenbauer
differential equation.

Note that the conformal Casimir equation has the following symmetries:

(∆, J) ↔ (1 − J, 1 − ∆),

r ↔ w = eiθ . (E.183)

The first is an affine Weyl reflection that preserves the Casimir eigenvalue. The
second transformation is equivalent to ρ ↔ 1/ρ, which leaves χ invariant, and
therefore also leaves the Casimir equation invariant. Applying these transformations
to (E.181), we find (|J | � 1)

w1−J f1−∆
(

1
2 (r + 1

r )
)

(1 − w2)
d−2

2 (1 + w2 + w(r + 1/r))
1
2 (1+∆12−∆34) (1 + w2 − w(r + 1/r))

1
2 (1+∆34−∆12)

.

(E.184)

Note in particular thatwe have replaced large-∆with large-J. Demanding pure power
behavior as r → 0 requires us to choose the following solution to the Gegenbauer
equation:

f J (x) = (2x)J
2F1

(
−J
2
,

1 − J
2

, 2 − J −
d
2
,

1
x2

)
. (E.185)

Finally, fixing the constant out front and rearranging terms, we find (6.241).
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A p p e n d i x F

APPENDICES TO CHAPTER 7

F.1 Asymptotic form of conformal blocks on the diagonal x = x

In [80] a fourth-order differential equation was derived for the conformal blocks in
d dimensions on the diagonal x = x. The derivation is based on combining the
quadratic and quartic Casimir equations.

The equation has the following form

D4 f (x) = 0, (F.1)

where the differential operator D4 is defined below and f (x) = F∆,` (x = x). This
equation is equipped with the boundary condition

f (x) ∼ x∆, x → 0, (F.2)

which also fixes our normalization.

Another way to phrase our normalization is to say that the conformal block for
complex x is given by

F∆,` (x, x) ∼ r∆
C (ε )
`

(cos θ)

C (ε )
`

(1)
, (F.3)

where r = |x | → 0, θ = arg x, ε = d/2 − 1 and C (ε )
`

is the Gegenbauer polynomial.

The operator D4 is given by

D4 =(x − 1)3x4 d4

dx4 +

3∑
r=2

(x − 1)r−1pr (x)xr dr

dxr +

+

1∑
r=0

pr (x)xr dr

dxr , (F.4)

where p3, p2, p1, p0 are known [80] polynomials in x of degrees 1, 2, 3, 3 re-
spectively, whose coefficients depend on the differences between external operator
scaling dimensions, which we set to 0 (then p0 is degree 2), as well as on the spin
and scaling dimension of the intermediate operator. The dependence of pr on ∆ and
` is through the quadratic and quartic Casimir invariants c2 and c4,

c2 =
1
2
[
`(` + 2ε ) + ∆(∆ − 2 − 2ε )

]
, (F.5)

c4 =`(` + 2ε )(∆ − 1)(∆ − 1 − 2ε ). (F.6)



510

(a) ∆ = 50, ` = 0 (b) ∆ = 50, ` = 25

Figure F.1: Plots of f (x)/ f̃ (x) for different orders of approximation and values of
angular momenta in four dimensions.

We will be considering the double-scaling limit with λ = `/∆ fixed and ∆ large. We
will do so in order to allow for large angular momenta. Our results will turn out to
be applicable to small angular momenta as well by setting the ratio λ to be 0.

With this scaling assumed, c2 ∝ ∆
2 and c4 ∝ ∆

4. The polynomials have the leading
behavior

p0 'c4(x − 1), (F.7)

p1 'c2(1 − 2ε )x2 + c2(1 + 6ε )x − 2c2(1 + 2ε ), (F.8)

p2 '2c2(x − 1), (F.9)

p3 =O(1). (F.10)

Wewould like to seewhether there is aWKB-like solution of the form f (x) ∼ e∆g(x),
where g(x) = O(1). It is easy to see that the leading power of ∆ produced by action
of (F.4) on such a solution will be ∆4 since each derivative produces a power of ∆,
and the polynomials pr have scaling ∆k with k ≤ 4 − r . We see that in the leading
∆4 order only p0 and p2 appear. This results in the equation for g (for x < 1)

[√
1 − xxg′(x)

]4
− 2

c2

∆2

[√
1 − xxg′(x)

]2
+

c4

∆4 = 0. (F.11)

Here we are only allowed to keep the leading terms in the Casimir invariants. We
then find the following solutions,

[√
1 − xxg′(x)

]2
= 1

[√
1 − xxg′(x)

]2
=
`2

∆2 . (F.12)

With our boundary condition we are interested in
√

1 − xxg′(x) = 1 which produces

g(x) = log ρ, (F.13)
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where
ρ =

4x

(1 +
√

1 − x)2
. (F.14)

We thus find that log f (x) = log ρ∆ + O(1) is a solution. We can perform the
analysis more systematically by substituting f (x) = eG(x) in (F.1) and looking for g
in the form

G(x) = ∆g−1(x) + g0(x) +
1
∆
g1(x) +

1
∆2g2(x) + . . . (F.15)

Then we will be able to solve the resulting equation order by order in ∆. We already
found g−1(x) = log ρ. The next order gives

f (x) = *
,
1 −

ρ2

16
+
-

−ε−1

ρ∆eO( 1
∆

), (F.16)

this not depending on whether we scale ` with ∆ or not.

Order by order we have

g−1 = log ρ, (F.17)

g0 = −(1 + ε ) log *
,
1 −

ρ2

16
+
-
, (F.18)

g1 =
ρ2

16
1

1 − ρ2

16

(1 + ε − ε2)∆2 + ε (ε − 1)`2

∆2 − `2 , (F.19)

. . . (F.20)

The higher order terms get more messy, but are not hard to compute in principle.
We can see that g2 contains a negative power of ∆2 − `2, which scales as ∆2 and is
supposed to be canceling ∆2 scaling in numerator. This means that applicability of
our expansion is limited to the region where ∆2 − `2 is not too small. Higher order
terms have higher powers of ∆2 − `2 in denominators. We also observe that that
the subleading terms become singular in the limit ρ → 4 corresponding to x → 1.
Therefore, the above approximation works as an asymptotic expansion when

1. |∆−` |
∆

is greater than some fixed positive number

2. x ≤ x0, where x0 < 1 and is fixed.

We compare the proposed expansion with the exact conformal block in four di-
mensions in Fig. F.1. There f̃ is the approximate conformal block given by our
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expansion. We include various numbers of terms in the expansion, up to ∆−2g2.
We see that the approximation works almost equally well for scalar (Fig. F.1a) and
large-spin (Fig. F.1b) operators. We also observe the promised singularity at x = 1.
See Fig. F.2 for comparison at the unitarity bound.

We can get an understanding of how the conformal block behaves when ` → ∆

independently of the above thanks to the decoupling of large numbers of descendants
for leading twist operators [59]. The unitarity limits the maximal spin of an operator
to be ` = ∆ − d + 2 = ∆ − 2ε . It is shown in [59] that for the maximal allowed spin
the conformal block on the diagonal x = x can be expressed as

f (x) =
∞∑

n=0

(` + ε )n(` + 2ε )n

n!(2` + 2ε )n
x∆+n =

= x∆2F1(∆ − ε,∆; 2∆ − 2ε ; x). (F.21)

We can then use the standard representation

B(b, c − d)2F1(a, b; c; x) =
∫ 1

0
xb−1(1 − x)c−b−1(1 − xx)−adx (F.22)

to compute the asymptotic expansion of the hypergeometric function by saddle-point
method. This leads to

f (x) = *
,
1 −

ρ2

16
+
-

−ε−1/2

ρ∆

1 +O

(
1
∆

)
, (F.23)

valid at the unitarity bound ` = ∆ − 2ε .

We see that for most values of `, the conformal block can be well approximated
by (F.16). This approximation breaks down as we approach the unitarity bound
` = ∆ − 2ε due to higher-order terms becoming large. However, at the exact
unitarity bound the formula (F.23) is valid. The two formulas are compared in
Fig. F.2.

The most important part of the conformal block for us is the factor ρ∆, which
encapsulates the leading behavior in the limit of large ∆. We see that in all regimes
this factor is present and is not modified.

F.2 Asymptotic form of conformal blocks on the diagonal x = x in the large-
dimension limit

The previous derivation holds for fixed number of spacetime dimensions and large
conformal dimensions of the intermediate state; it therefore captures the behavior
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Figure F.2: Plot of f (x)/ f̃ (x) for different orders of approximation and the value
of angular momenta at the unitarity bound in four dimensions.

of states very far from the unitarity bound. If we additionally adjust the number
of spacetime dimensions d, however, we can take analytic approximations that
capture the behavior of states close to the unitarity bound. Such a limit was already
described in [299], where the authors derive an expression for the conformal block
in the scaling limit

d → ∞, ∆→ ∞, (F.24)

α = 2 − d/∆ fixed. (F.25)

If one takes d → ∞, then the unitarity bound means that ∆ and ` must scale as well.

To express the conformal block in this limit, define

y+ =
xx

(1 + |1 − x |)2 =
x2

(2 − x)2 , (F.26)

y− =
xx

(1 − |1 − x |)2 = 1, (F.27)

where the second equality in each line holds on the real line x = x. The conformal



514

block then becomes, in normalization of [299]

F∆,` (x) ≈
2∆+`

√
y− − y+

A∆(y+) A1−` (y−) = (F.28)

=N`2∆
√

y−

y− − y+
A∆(y+)C

(
d−2

2

)
`

*
,
y
−

1
2
−

+
-
, (F.29)

where

Aβ (x) = x β/22F1

(
β − 1

2
,
β

2
, β −

d − 2
2

; x
)
, (F.30)

N` =
Γ(` + 1)Γ

(
d−2

2

)
Γ

(
` + d−2

2

) , (F.31)

and C (λ)
n (x) are the Gegenbauer polynomials.

Notice that the spin dependence factorizes. In particular, when y− = 1, spin-
dependent factors carry no dependence on y+. This immediately implies that in the
normalization of this paper the block has no `-dependence on real line x = x. In
fact, we have in our normalization

F∆,` (x) ≈
(4y+)∆/2√

1 − y+
2F1

(
∆ − 1

2
,
∆

2
,∆ −

d − 2
2

; y+
)
. (F.32)

The saddle-point approximation for the hypergeometric function gives

lim
c→∞

log 2F1(c, c; αc; y)
c

= log
αt0

1 − yt0

(
α(1 − t0)
α − 1

)α−1
, (F.33)

where

t0(α, y) =
α −

√
α2 + 4(1 − α)y
2(α − 1)y

. (F.34)

Therefore, up to O(1) factors we have

F∆,` (x) ∼ *
,

4αy+t0
1 − y+t0

(
α(1 − t0)
α − 1

)α−1
+
-

∆/2

. (F.35)

A simple computation then gives

∂ log F∆,`
∂x

=
d(2 − x)

4x(1 − x)
*.
,
1 +

√
1 +

16(1 − x)
(2 − x)2 δ(δ − 1)+/

-
, (F.36)

where δ = ∆/d. This is obviously a non-decreasing function of ∆, which for δ � 1
asymptotes to

d−1 ∂ log F∆,`
∂x

≈
δ − 1/2
x
√

1 − x
+

2 − x
4x(1 − x)

. (F.37)
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Note that for ∆0 � d we expect ∆ � d to be important and thus δ � 1, so we
regain from this expression the previously discussed case of large ∆0.

Note that the image of β ∈ [1
2,∞) under d−1∂ log F∆,`/∂x is

[1
2,∞) 7→ [(2x(1 − x))−1,∞), (F.38)

as used in the main text.
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A p p e n d i x G

APPENDICES TO CHAPTER 8

G.1 Tensor structures
In this section we give the explicit expressions for the three-point tensor structures
in the differential basis as required for the computation of conformal blocks in
section 8.3.

G.1.1 Parity-even structures in differential basis
For a given spin `, we define the basis of parity-even differential operators for
〈TTO`〉 as

Dn23,n13,n12 = Hn12
12 Dn13

12 Dn23
21 Dm1

11 Dm2
22 Σ

n12+n23+m1
1 Σ

n12+n13+m2
2 , (G.1)

where m1 = 2 − n12 − n13 and m2 = 2 − n12 − n23.

Structures for 〈TTO0〉 There exists a single parity-even tensor structure for
〈TTO0〉, given by the differential operator

D
(1)
0+ = −D0,0,0 + (∆ − 5)(∆ + 2)D0,0,1 −

1
8

(∆ − 5)(∆ − 3)∆(∆ + 2)D0,0,2. (G.2)

Structures for 〈TTO2〉 There exists a single parity-even tensor structure for
〈TTO2〉, with ∆ > 3, given by the differential operator

D
(1)
2+ = − 8

(
7∆2 − 13∆ + 30

)
D0,0,0 + 16(∆ + 2)(5∆ − 11)D1,0,0

− 16(∆ + 2)(∆ + 4)D2,0,0 + 16(∆ + 2)(5∆ − 11)D0,1,0

− 32∆(2∆ − 5)D1,1,0 − 16(∆ + 2)(∆ + 4)D0,2,0 + 8∆
(
∆

2 + 29∆ − 78
)
D0,0,1

− 8(∆ − 3)(∆ + 2)
(
∆

2 − 2∆ − 2
)
D1,0,1 − 8(∆ − 2)(∆ + 2)

(
∆

2 − 3∆ + 8
)
D0,1,1

+ 8(∆ − 2)2(∆ − 1)∆D1,1,1 + (∆ − 2)(∆ − 1)∆
(
∆

3 − 6∆2 − 25∆ + 78
)
D0,0,2.

(G.3)

〈TTT〉 structures There exist two parity-even tensor structures for 〈TTT〉, one
realized in the theory of a single free scalar field, and the other in the theory of
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single free Majorana fermion. They are given by the following differential operators

D
(B)
T = −

9
128π3D0,0,0 +

35
256π3D1,0,0 −

245
1024π3D2,0,0 +

35
256π3D0,1,0 −

33
512π3D1,1,0

−
245

1024π3D0,2,0 +
153

1024π3D0,0,1 −
35

256π3D1,0,1 −
159

1024π3D0,1,1 −
63

1024π3D1,1,1,

(G.4)

D
(F)
T = −

9
64π3D0,0,0 +

5
16π3D1,0,0 −

35
64π3D2,0,0 +

5
16π3D0,1,0 −

9
64π3D1,1,0 −

35
64π3D0,2,0

+
45

128π3D0,0,1 −
5

16π3D1,0,1 −
39

128π3D0,1,1 −
9

64π3D1,1,1. (G.5)
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Structures for 〈TTO`〉 There exists two parity-even tensor structure for 〈TTO`〉

for even ` ≥ 4, given by the differential operators

D
(1)
`+ =(∆4 − 6∆3 + 43∆2 − 102∆ + 3`4 + 6`3 − 4∆2`2

+ 12∆`2 − 35`2 − 4∆2` + 12∆` − 38` + 184)D0,0,0

− 2(−∆ + ` + 1)(∆ + `)
(
−∆2 + 3∆ + `2 + ` − 14

)
D1,0,0

+ (−∆ + ` − 1)(−∆ + ` + 1)(∆ + `)(∆ + ` + 2)D2,0,0

− 2(−∆ + ` + 1)(∆ + `)
(
−∆2 + 3∆ + `2 + ` − 14

)
D0,1,0

− 4
(
−∆4 + 6∆3 − 13∆2 + 12∆ + `4 + 2`3 − 7`2 − 8` + 44

)
D1,1,0

+ 2(−∆ + ` + 1)(∆ + `)
(
∆

2 − 3∆ + `2 + ` − 10
)
D2,1,0

+ (−∆ + ` − 1)(−∆ + ` + 1)(∆ + `)(∆ + ` + 2)D0,2,0

+ 2(−∆ + ` + 1)(∆ + `)
(
∆

2 − 3∆ + `2 + ` − 10
)
D1,2,0

+ (∆4 − 6∆3 − 5∆2 + 42∆ + `4 + 2`3 − `2 − 2` + 40)D2,2,0

− 2(` − 1)(` + 2)
(
12∆2 − 36∆ + `4 + 2`3 − ∆2`2 + 3∆`2 − 13`2

−∆2` + 3∆` − 14` + 72
)
D0,0,1

− 12
(
`2 + ` − 4

)
(−∆ + ` + 1)(∆ + `)D1,0,1

− 8`(` + 1)(−∆ + ` + 1)(∆ + `)D0,1,1 − 8(` − 1)`(` + 1)(` + 2)D1,1,1

+
1
4

(` − 1)`(` + 1)(` + 2)
(
−∆4 + 6∆3 + 5∆2 − 42∆ + `4 + 2`3 − 17`2

−18` + 104
)
D0,0,2, (G.6)

D
(2)
`+ =(−∆2 + 3∆ − `2 − ` + 36)D0,0,0 + 2(−∆ + ` + 1)(∆ + `)D1,0,0

+ 2(−∆ + ` + 1)(∆ + `)D0,1,0 + 4
(
∆

2 − 3∆ + `2 + ` − 6
)
D1,1,0

+ (∆4 − 6∆3 − 5∆2 + 42∆ + `4 + 2`3 − 17`2 − 18` + 72)D0,0,1

+ 2(−∆ + ` + 1)(∆ + `)D1,0,1

+
1
8

(
−∆6 + 9∆5 − 13∆4 − 57∆3 + 86∆2 + 120∆ − `6 − 3`5 − ∆2`4 + 3∆`4

+15`4 − 2∆2`3 + 6∆`3 + 35`3 − ∆4`2 + 6∆3`2 + 6∆2`2 − 45∆`2 − 54`2

−∆4` + 6∆3` + 7∆2` − 48∆` − 72`
)
D0,0,2. (G.7)
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G.1.2 Parity-odd structures in differential basis
To construct the differential operators for parity-odd tensor structures, we use the
differential operators derived in [61],

Q1 = ε

(
Z1, Z2, X1, X2,

∂

∂X1

)
, (G.8)

Q2 = ε

(
Z1, Z2, X1, X2,

∂

∂X2

)
, (G.9)

D̃1 = ε

(
Z1, X1,

∂

∂X1
, X2,

∂

∂X2

)
, (G.10)

D̃2 = ε

(
Z2, X2,

∂

∂X2
, X1,

∂

∂X1

)
. (G.11)

Note that the operators D̃i satisfy all consistency conditions of [61] only when
operators 1 and 2 have spin 0.1

Using these, we can define the operators

E13 = D̃1, (G.12)

E23 = D̃2, (G.13)

E12 =
1
2

(
Q1Σ

1
1 +Q2Σ

1
2

)
. (G.14)

We define the basis of parity-odd differential operators for 〈TTO`〉 as

D−n23,n13,n12,1 = Dn23,n13,n12 E23, (G.15)

D−n23,n13,n12,2 = Dn23,n13,n12 E13, (G.16)

D−n23,n13,n12,3 = Dn23,n13,n12 E12. (G.17)

Here Dn23,n13,n12 are the parity-even differential operators with m1,m2 defined de-
pending on which Ei j it multiplies so that the total spins at points 1 and 2 agree.

Structures for 〈TTO0〉 There exists a unique parity-odd tensor structure for
〈TTO0〉, given by the differential operator

D̃
(1)
0− = −4D−0,0,0,3 + (∆ − 4)(∆ + 1)D−0,0,1,3. (G.18)

There is a slight complication in this case, since the transition matrix between the
differential and algebraic bases vanishes at ∆ = 1. Thus any differential basis

1In [61] these operators are defined with extra terms containing derivatives in polarizations.
However, even with that definition D̃1 does not commute with X1 ·

∂
∂Z1

and one needs to add extra
terms to ensure full consistency for action on generic operators.
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structure with polynomial coefficients vanishes for ∆ = 1, which is undesirable
since we would like to have a non-zero conformal block for every ∆ ≥ 1/2. We
therefore in this case consider the non-polynomial solution given by

D
(1)
0− =

1
∆ − 1

D̃
(1)
0− . (G.19)

In practice, we work with D̃ (1)
0− and only in the end divide the numerator of the

resulting rational approximation to the parity-odd scalar block by (∆ − 1)2.2 The
construction guarantees that this division is possible.

Structures for 〈TTO2〉 There exists a unique parity-odd tensor structure for
〈TTO2〉, given by the differential operator

D
(1)
2− = − 4D−0,1,0,1 − 2(∆ − 2)(∆ + 3)D−0,1,0,3 + (∆4 − 6∆3 − 13∆2 + 66∆ + 144)D−0,0,1,3

+ 2(∆ − 6)(∆ + 2)D−0,1,1,1 − (4)D−1,0,0,2 − 2(∆ − 2)(∆ + 3)D−1,0,0,3 + 8(∆ + 6)D−1,1,0,3
+ 2(∆ − 6)(∆ + 2)D−1,0,1,2. (G.20)

Structures for 〈TTO`〉 for even ` There exists a unique parity-odd tensor structure
for 〈TTO`〉 for even ` ≥ 4, given by the differential operator

D
(1)
`−
=8

(
−3∆2 + 9∆ + `2 + ` + 24

)
D−0,0,0,1 − 16(∆ − 4)(∆ + 1)D−0,0,0,2

− 16
(
∆

4 − 6∆3 − ∆2 + 30∆ + ∆2`2 − 3∆`2 − 4`2 + ∆2` − 3∆` − 4`
)
D−0,0,0,3

+ 16
(
`2 + ` + 6

)
D−0,1,0,1 + 8(` − ∆)(∆ + ` + 1)D−0,1,0,2

+ 8
(
∆

4 − 6∆3 − 9∆2 + 54∆ + 44
)
D−0,1,0,3

+ 4
(
∆

4 − 6∆3 − 7∆2 + 48∆ + ∆2`2 − 3∆`2 + ∆2` − 3∆` + 72
)
D−0,2,0,1

+ 4
(
∆

6 − 9∆5 + 13∆4 + 57∆3 − 86∆2 − 120∆ + ∆2`4

−3∆`4 + 2∆2`3 − 6∆`3 + 2∆4`2 − 12∆3`2 − 11∆2`2

+87∆`2 + 40`2 + 2∆4` − 12∆3` − 12∆2` + 90∆` + 40`
)
D−0,0,1,1

− 4(∆ − 3)∆
(
∆

2 − 3∆ + `2 + ` − 16
)
D−0,0,1,2 + 8(` − ∆)(∆ + ` + 1)D−0,0,1,3

+ 16
(
∆

2 − 3∆ + `2 + ` − 10
)
D−0,1,1,1 + 8

(
∆

2 − 3∆ + `2 + ` − 16
)
D−1,0,0,1.

(G.21)
2We need the square since there are left and right three-point structures.
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Structures for 〈TTO`〉 for odd ` There exists a unique parity-odd tensor structure
for 〈TTO`〉 for odd ` ≥ 5, given by the differential operator

D
(1)
`−
= − 4(∆ − 2)(∆ − 1)

(
∆

2 − 3∆ − 3`2 − 3` + 32
)
D−0,0,0,1

+ 8(` − 3)(` − 1)(` + 2)(` + 4)D−0,0,0,2
+ 8`(` + 1)

(
−6∆2 + 18∆ + `4 + 2`3 + ∆2`2 − 3∆`2 − 11`2

+∆2` − 3∆` − 12` + 12
)
D−0,0,0,3

− 8
(
−∆4 + 6∆3 − 25∆2 + 48∆ + `4 + 2`3 + ∆2`2 − 3∆`2

−11`2 + ∆2` − 3∆` − 12` − 4
)
D−0,1,0,1

+ 4(∆ − 2)(∆ − 1)(` − ∆)(∆ + ` + 1)D−0,1,0,2
− 4(∆ − 2)(∆ − 1)

(
`4 + 2`3 − 21`2 − 22` + 84

)
D−0,1,0,3

− 2
(
`6 + 3`5 + ∆2`4 − 3∆`4 − 15`4 + 2∆2`3 − 6∆`3 − 35`3 − 17∆2`2

+51∆`2 + 54`2 − 18∆2` + 54∆` + 72` − 144
)
D−0,2,0,1

− 2`(` + 1)
(
−2∆4 + 12∆3 + 82∆2 − 300∆ + `6 + 3`5 + 2∆2`4 − 6∆`4

−13`4 + 4∆2`3 − 12∆`3 − 31`3 + ∆4`2 − 6∆3`2 − 23∆2`2 + 96∆`2

+20`2 + ∆4` − 6∆3` − 25∆2` + 102∆` + 36` + 64
)
D−0,0,1,1

+ 2(` − 3)(` − 2)(` + 3)(` + 4)
(
∆

2 − 3∆ + `2 + `
)
D−0,0,1,2

− 4(∆ − 2)(∆ − 1)(` − ∆)(∆ + ` + 1)D−0,0,1,3
− 8(∆ − 2)(∆ − 1)

(
∆

2 − 3∆ + `2 + ` − 10
)
D−0,1,1,1

+ 4(∆ − 2)(∆ − 1)
(
∆

2 − 3∆ + `2 + ` − 16
)
D−1,0,0,1. (G.22)

G.2 Conformal generators
The conformal generators act on a local operator O(w, z) (with spin degrees of
freedom encoded by the polarization vector w) of scaling dimension ∆ as

D · O(w, x) = (x · ∂ + ∆)O(w, x), (G.23)

Pµ · O(w, x) = ∂µO(w, x), (G.24)

Kµ · O(w, x) = (2xµxσ − x2δσµ )∂σO(w, x) + 2∆xµO(w, x)

− 2xσ (wσ
∂

∂wµ
− wµ

∂

∂wσ
)O(w, x) (G.25)

Mµν · O(w, x) =
(
xν∂µ − xµ∂ν + wν

∂

∂wµ
− wµ

∂

∂wν

)
O(w, x). (G.26)

Here D, P, K , and M are the dilatation, translation, special conformal, and rotation
generators respectively.
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G.3 Details on the numerics
In this appendix we give specific details on how the bounds in this paper are
obtained from the crossing equations (8.47)-(8.49) and the conformal block decom-
position (8.82).

First, we organize the crossing equations (8.47)-(8.49) in a single vector equation

~FTTTT = 0. (G.27)

The conformal block decomposition (8.82) then induces a decomposition of the
vector ~FTTTT ,

~FTTTT = ~F1 +
1

CT
Θ

ab ~FT,ab +
∑

(∆,ρ)∈S

Mab
∆,ρ

~F∆,ρ,ab = 0. (G.28)

Here we have explicitly specified that the summation is over some assumed set of
dimensions and spins S. This equation has to be satisfied in any theory whose
spectrum of operators is a subset of S. For example, when we say that we impose a
gap ∆min

even in the parity-even scalar sector, we choose

S ={(∆, `+) |∆ ≥ ` + 1, ` = 2k ≥ 2} ∪

{(∆, `−) |∆ ≥ ` + 1, ` ≥ 4} ∪

{(∆, 2−) |∆ ≥ 3} ∪

{(∆, 0+) |∆ ≥ ∆min
even} ∪

{(∆, 0−) |∆ ≥ 1
2 }. (G.29)

Given a choice of S, we then study two questions:

1. Feasibility: Does the system (G.28) have a solution for some θ?

2. Optimization: What is the minimal (maximal) value of CT for a given
θ?

Feasibility: To answer the feasibility question, we look for a vector ~α such that

~α · ~F1 = 1, (G.30)

~α · ~FT � 0, (G.31)

~α · ~F∆,ρ � 0, ∀(∆, ρ) ∈ S. (G.32)
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Clearly, if such ~α is found, then there cannot be a solution to (G.28), since positive-
semidefiniteness of M∆,ρ, Θ and CT > 0 imply

~α · ~FTTTT ≥ 1. (G.33)

We then conclude that CFTs with the spectral assumption S do not exist. As usual,
this conclusion is rigorous for any Λ, given that the equations (G.30)-(G.32) are
satisfied to a sufficient precision. If such an ~α cannot be found, we cannot conclude
anything and the spectral assumption S is formally “allowed” by our bounds.

Optimization: Let us start with the case that we want to find a lower bound on CT

for a given θ. Suppose that we have found a vector ~α such that

~α · ~F1 = −1, (G.34)

~α · ~F∆,ρ � 0, ∀(∆, ρ) ∈ S. (G.35)

It then follows from ~FTTTT = 0 that

−1 +
1

CT
~α · (Θab ~FT,ab) ≤ 0, (G.36)

and thus

CT ≥ ~α · (Θab ~FT,ab). (G.37)

We then search for an ~α which maximizes

~α · (Θab ~FT,ab) (G.38)

subject to (G.34) and (G.35) in order to find the optimal bound. Again, the bounds
are rigorous for every Λ.

If our goal is to find an upper bound on CT , we replace (G.34) with

~α · ~F1 = +1, (G.39)

which then analogously implies

CT ≤ −~α · (Θab ~FT,ab). (G.40)

We again look for such ~α which maximizes (G.38) in order to find the optimal
bound.
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Numerical implementation: To search for the vectors α we use the semidefinite
solver SDPB [35]. In section 8.3 we explained how to obtain rational approximations
of the 〈TTTT〉 conformal blocks required by SDPB starting from rational approxi-
mations of scalar conformal blocks arising from their pole expansions [36, 49].

These approximations are controlled by the integral parameter κ defined in [35].
The blocks become exact in the limit κ → ∞; the convergence is exponential. In
practice we use a finite value of κ and check that our results don’t change if κ is
increased. Another approximation that we have to make is the truncation to a finite
range of spins in constraints (G.32) and (G.35). Again, we choose a sufficiently
large cutoff and check that the results are independent of it.

Below we list κ, the spin cutoff, and the relevant SDPB parameters that we used
in calculations for various values of Λ (all figures except figure 8.2 correspond to
Λ = 19):

Λ ≤ 11 13 15 17 19
κ 20 24 24 24 24
spins ≤ 25 ≤ 30 ≤ 36 ≤ 42 ≤ 42
precision 832 832 832 832 1024
findPrimalFeasible False False False False False
findDualFeasible False False False False False
detectPrimalFeasibleJump False False False False False
detectDualFeasibleJump False False False False False
dualityGapThreshold 10−10 10−10 10−10 10−10 10−10

primalErrorThreshold 10−30 10−30 10−30 10−30 10−30

dualErrorThreshold 10−30 10−30 10−30 10−30 10−30

initialMatrixScalePrimal 1020 1020 1020 1020 1020

initialMatrixScaleDual 1020 1020 1020 1020 1020

feasibleCenteringParameter 0.1 0.1 0.1 0.1 0.1
infeasibleCenteringParameter 0.3 0.3 0.3 0.3 0.3
stepLengthReduction 0.7 0.7 0.7 0.7 0.7
choleskyStabilizeThreshold 10−120 10−120 10−120 10−120 10−180

maxComplementarity 10100 10100 10100 10100 10100

The exclusion plot in figure 8.8 requires testing only feasibility sowe setfindPrimalFeasible
and findDualFeasible to True. For the scalar bound in figure 8.8 we used the
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parameters of [35] with Λ = 35. The stress-tensor conformal blocks as well as the
code used for their generation and setting up SDPB are available upon request.
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