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Abstract

Quantum chaos entails an entropic and computational obstruction to describing a system

and thus is intrinsically difficult to characterize. An understanding of quantum chaos is

fundamentally related to the mechanism of thermalization in many-body systems and the

quantum nature of black holes. In this thesis we adopt the view that quantum information

theory provides a powerful framework in which to elucidate chaos in strongly-interacting

quantum systems.

We first push towards a more precise understanding of chaotic dynamics by relating

different diagnostics of chaos, studying the time-evolution of random matrix Hamiltonians,

and quantifying random matrix behavior in physical systems. We derive relations between

out-of-time ordered correlation functions, spectral quantities, and frame potentials to relate

the scrambling of quantum information, decay of correlators, and Haar-randomness. We give

analytic expressions for these quantities in random matrix theory to explore universal aspects

of late-time dynamics. Motivated by our random matrix results, we define k-invariance in

order to capture the onset of random matrix behavior in physical systems.

We then refine our diagnostics in order to study chaotic systems with symmetry by

considering Haar-randomness with respect to quotients of the unitary group, and in doing

so we generalize our quantum information machinery. We further consider extended random

matrix ensembles in the context of strongly-interacting quantum systems dual to black holes.

Lastly, we study operator growth in classes of random quantum circuits.
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Chapter 1

Introduction

Strongly-interacting quantum systems are inherently difficult to describe. The lack of a deep

understanding of chaotic dynamics is at the heart of many open questions in theoretical

physics. Any progress towards defining quantum chaos should shed light on both thermal-

ization and transport in quantum many-body systems and black hole information loss. As

such, the resurgence of interest in quantum chaos over the past few years has emerged as

a confluence of ideas from quantum field theory, condensed matter physics, and quantum

gravity, incorporating many old ideas from each subfield and inspiring many new seemingly

disparate avenues of inquiry. Broadly speaking, the ambitious goal of this line of research

is to answer the following question: How can we characterize quantum chaos in physical

systems?

In this thesis we will use tools and ideas from quantum information theory to study and

understand chaos in quantum many-body systems. Quantum chaos is a generic feature of

strongly-interacting systems, but much of our understanding is phenomenological and precise

definitions are not immediately clear. Having the spectral statistics of a random matrix and

chaotically decaying correlation functions are seen as a strong indication of quantum chaos,

but what exactly is being diagnosed by these diagnostics demands clarification.

The approach taken in this thesis stems from the observation that one can learn a lot

about the universal aspects of a system by asking how it processes quantum information.

For instance, Hayden and Preskill [1] considered a simple random unitary model of a black

hole to demonstrate how rapidly information is scrambled and emitted. The suggestion that
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black holes are the fastest scramblers [2, 3] has lead to new measures of chaos in quantum

systems [4, 5, 6] and soluble models of black holes and holography [6, 7]. Connections have

been explored with more traditional notions of chaos [8, 9], and quantum information ideas

have begun to shed light on the connections between chaos, scrambling, and random matrices

[10, 11, 12].

Over the last decade, it has become evident that quantum information provides a formid-

able conceptual framework for thinking about quantum field theory and holography. Exam-

ples include entropic derivations of c-theorems, constraints from holographic entanglement

entropy, quantum error correction in bulk reconstruction of local operators, the averaged

null-energy condition from relative entropy, as well as constructing tensor networks to real-

ize salient features of the bulk geometry. More broadly, quantum information is a cornerstone

of modern condensed matter and many-body physics, where entanglement and complexity

have played an essential role in the classification of topological phases, the development of

tensor network methods, and an understanding of thermalization.

With our motivation in mind, we will first overview a few symptoms of chaotic dynamics.

This will set the stage for the ideas we explore in the bulk of this work. We then provide a

brief summary of the work done in each chapter of this thesis.

1.1 Symptoms of chaotic dynamics

Interest in quantum chaos has existed for some number of years, where the working definition

of quantum chaos seems to vary between decades and subfields. Very broadly speaking, the

picture evolved from quantizing a classically chaotic system to studying universal correlations

in the spectrum to, more recently, studying correlation functions in thermal states.

Before embarking on a historical tour, there are a few admissions we must make. First,

although connections do exist in specific few-body systems, quantum chaos is different from

classical chaos. As was emphasized in [13], there is a dishonesty even in referring to the object

of study as ‘quantum chaos’ because it suggests quantum phenomena related to classically

chaotic behavior.

Classical chaos refers to an exponential sensitivity of phase space trajectories to small
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perturbations in initial conditions, but (at least naively) the classical notion of chaos does

not apply to quantum systems: Schrödinger’s equation is linear, unlike the nonlinear equa-

tions in classical mechanics and fluid dynamics that given rise to unpredictable behavior

in deterministic systems. Moreover, the overlap of quantum states evolved with the same

Hamiltonian is constant in time and uncertainty relations obfuscate the notion of sensitivity

to small changes in phase space coordinates. This is all to say that quantum chaos is different

from classical chaos.

There is also another dishonesty in calling certain quantities ‘probes’ or ‘diagnostics’ of

chaos, because it makes it sound like there is a definition of the thing you are trying to diag-

nose. As we mentioned above, a precise definition of quantum chaos in many-body systems

remains elusive. In this thesis, we will continue to refer to these measures as ‘symptoms’ of

chaos, with the implication that they are symptoms of (possibly many) underlying physical

phenomena in quantum systems which we still do not quite understand.

We will first overview some symptoms of quantum chaos, i.e. quantities we can compute

that make manifest the underlying chaotic dynamics. This includes operator growth, random

matrix statistics, chaotic correlation functions, scrambling of quantum information, and

Haar-randomness. This list is far from exhaustive, nor are the notions distinct. Here we

simply focus on a few of the ideas that will come up repeatedly in this thesis. Furthermore,

we will try and be precise, but our goal will be to present an intuitive picture. As such, many

details and subtleties will be elided, but will be addressed more thoroughly in the body of

the thesis.

Operator growth

Although the subject of quantum chaos really started with the study of universality from

random matrices, the first diagnostic of chaos we will discuss is operator growth, as it is in

some sense the most intuitive. The growth of operators in local quantum spin systems has

a long history, where nested commutation with the Hamiltonian can be used to bound the

propagation of information [14, 15], but our discussion here is motivated a little differently

and applies more generally to non-local Hamiltonians, largely following [16, 10].

Consider a few-body operator O acting only on one (or some non-extensive) number of
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sites, where O is not necessarily geometrically local. Working in the Heisenberg picture, the

time-evolved operator,

O(t) = eiHtOe−iHt , (1.1)

can be expanded and written as a sum of nested commutators

O(t) = eiHtOe−iHt = O − it[H,O]− t2

2
[H, [H,O]] +

it3

3!
[H, [H, [H,O]]] . . . (1.2)

If the Hamiltonian is built out of few-body interactions, then the nested commutators will

generate larger and larger operators. To be more precise, we want to consider the growing

operator written in a basis of operators. For a system of n qubits, where H = (C2)⊗n and

d = dimH = 2n, we can always write an operator as a sum of Pauli strings

O(t) =
∑
p

γp(t)Op , (1.3)

where {Op} is the set of Pauli strings formed by tensoring together Pauli operators for each

qubit. Pauli strings are a complete orthonormal basis for the algebra of operators on H,

with their own inner product 1
d
TrOpOq = δp,q. More generally, we could consider systems

built out of qudits or fermions, where each also gives a basis of operators for H, but we

assume you are given a natural tensor decomposition of your Hilbert space in terms of the

local degrees of freedom at hand. For simplicity, we will continue to refer to the elements in

the basis of operators as Pauli strings.

It is important to note that the operator norm is conserved under unitary time evolution

1

d
Tr (O(t)†O(t)) =

1

d
Tr (O†O) = 1 , (1.4)

for an appropriately normalized operator. This fact, and the orthonormality of Pauli strings,

gives that the sum of the squares of the coefficients γp is conserved

∑
p

|γp(t)|2 = 1 , (1.5)
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a constraint on operator growth simply arising from unitary dynamics.

It is in this sense |γp(t)|2 is the probability of finding an operator Op in the growing

operator at a time t. We can also talk about the weight of an operator on strings of a

given length, simply by summing all coefficients for Pauli strings of length `, wt`(O(t)) =∑
|p|=` |γ(t)|2. From Eq. (1.5), we have that the sum of the weights from length 1 to length

n Pauli strings must be one. For a growing operator O(t) in generic chaotic systems, the

weight of the operator will shift to longer and longer Pauli strings, eventually saturating so

that almost all of the weight of the operator is on strings of length n, the size of the system.

If our H is the Hamiltonian of a spin system and O is a local Pauli operator, say Zj the

Pauli Z operator on site j, then repeated commutation will generate longer and longer Pauli

strings. For instance, consider the canonical example of a 2-local spin chain Hamiltonian

on n spins with Ising-type nearest neighbor interactions and parallel and transverse fields

H = −∑i ZiZi+1−h
∑

iXi−g
∑

i Zi. We now look at the growth of the operator Zj from the

nested commutators in Eq. (1.2). The first commutator of H with the operator Zj generates

Yj. The second commutator gives terms Xj, Zj, XjZj+1, and Zj−1Xj, where we now get

contributions from length 2 Pauli strings. As we time evolve, and the dominant behavior of

the operator Zj(t) shifts to higher nested commutators, the weight of the operator shifts to

longer Pauli strings.

This is the simplest manifestation of the butterfly effect: small perturbations growing

to affect the system. A simple local operator time evolved with a chaotic Hamiltonian will

quickly grow to an operator the size of the system.

Chaos and random matrices

The diagnostic most firmly established in the history of quantum chaos is rooted in random

matrix theory. Random matrix theory arose from nuclear physics as a statistical approach

to understanding the energy levels of complex atomic nuclei [17, 18]. Having the spectral

statistics of a random matrix has even been proposed as the defining feature of a quantum

chaotic system [8]. Very roughly speaking, the intuition is that the structure of high energy

states of a chaotic Hamiltonian is so complicated that certain properties simply behave as if

the Hamiltonian were itself a random matrix. More precisely speaking, there are universal
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aspects of the eigenvalue correlations in a chaotic Hamiltonian.

The simplest universal features of chaotic spectra are nearest-neighbor correlations. If

you compute the differences between neighboring eigenvalues and make a histogram plot,

then for a chaotic system the resulting distribution is Wigner-Dyson, which goes to zero for

small energy differences, i.e. the energy levels ‘repel’ and eigenvalues of a chaotic system are

not degenerate. Again, the rough intuition is that we need many symmetries in order to tune

eigenvalues to sit on top of one another, and an integrability’s worth to have an extensive

number of degeneracies. This phenomenon of level repulsion was famously observed in heavy

atomic nuclei and has since been understood in a broad array of quantum chaotic systems;

see [19, 20, 21] and references therein.

However, universal correlations in chaotic spectra extend far beyond neighboring eigen-

values. Eigenvalues in the spectra of chaotic systems experience long-range repulsion, which

causes the eigenvalues to be anticorrelated and gives rise to spectral rigidity. An incredi-

bly useful quantity that allows us to see universal behavior in the spectral statistics is the

spectral form factor R2(β, t), which can be defined in terms of the analytically continued

partition function Z(β, t) = Tr(e−βH−itH) as

R2(β, t) ≡
〈
Z(β, t)Z∗(β, t)

〉
. (1.6)

Here 〈·〉 denotes the average over an ensemble over Hamiltonians—for instance, a disordered

quantum system or an ensemble of random matrices. We will address this further when

the quantity is discussed later in the thesis. This quantity is equivalently defined as the

Fourier transform of the 2-point spectral correlation function 〈ρ(λ)ρ(λ′)〉, where ρ(λ) is

the spectral density. The spectral form factor has been studied extensively in the random

matrix literature [18, 22, 23] and especially [24, 25, 26], but has appeared more recently in

the context of the Sachdev-Ye-Kiteav model [9].

We plot the spectral form factor as defined above for a generic chaotic system in Fig. 1.1.

As we time-evolve the quantity from its initial value, it will exponentially decay and then

might experience a power-law decay, although the details of this depend on the system

(specifically on the spectral density). At an intermediate time-scale called the dip time, we
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Figure 1.1: The 2-point spectral form factor R2, where we have denoted some of the impor-
tant behaviors in a chaotic quantum system.

transition into a linearly increasing ramp, then level-off into a plateau. The late-time plateau

is the result of eigenvalue repulsion: late times corresponds to small energy differences, so in

the absence of degeneracies the form factor becomes constant once we start probing scales

smaller than the mean spacing. The linear ramp is the consequence of long-range spectral

correlations, a universal signature of random matrix statistics.

There are a few ways of deriving this linear ramp in random matrix theory; one is from

the logarithmic repulsion of eigenvalues. In a saddle-point approximation, this gives rise to

a linear growth at early times. The linear growth more generally arises from the sine-kernel

[22] from which we compute the spectral 2-point functions. We introduce and discuss this

further in Ch. 2, but the point is that a linear growth in the connected piece of the spectral

2-point function is an important signature of random matrix statistics in the spectrum and

a universal feature of quantum chaotic systems.

Out-of-time order correlation functions

A recent surge of interest in quantum chaos has revolved around the out-of-time-ordered

correlation function (OTOC), a 4-point function of a pair of operators evaluated in thermal

states

〈AB(t)AB(t)〉β , (1.7)
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where A and B are few-body operators and B(t) = e−iHtBe−iHt. Black holes are chaotic and

fast scrambling systems [1, 2]. It was further understood by Shenker and Stanford [4, 5] as

well as Kitaev [6] that black holes are maximally chaotic in the sense that a bound on the

early-time behavior of the OTOC is saturated [27]. The OTOC is actually a somewhat old

idea, dating back to work by Larkin and Ovchinnikov [28], who considered electron/impurity

scattering in superconductors and wrote down a Green’s function that captured something

chaotic about the nature of the scattering, relating it to diverging semiclassical trajectories

for the electrons. We now understand this Green’s function in terms of the augmented

contour prescription behind the OTOC.

The OTOC has been used to probe quantum chaos in many different systems. It can be

computed in holographic systems as a bulk scattering process in a shockwave background

[4, 5], with a universal exponential early-time growth governed by the exponent λL = 2π/β.

The OTOC can also be computed in holographic CFTs where a contour prescription for

out-of-time ordering allows one to extract the same universal exponent from the vacuum

Virasoro block [29]. As we mentioned, a bound on this chaotic exponent λL ≤ 2π/β [27]

means that black holes (and holographic systems) are maximally chaotic.

Separately, Kitaev proposed a solvable model of strongly-interacting Majorana fermions

that reproduces many features of gravitational systems and black holes [6], namely an emer-

gent reparamentrization invariance and a zero-temperature entropy. Futhermore, an explicit

calculation of the OTOC shows that the theory also saturates the chaos bound [6, 7, 30].

In general, the out-of-time-ordered correlation function will decay in a chaotic system. In

a large N system, this is characterized by an early-time exponential growth of corrections to

the initial value, suppressed by a small parameter, say 1/N or GN , and growing exponentially

in time with an exponent λL. At a time of order t ∼ β logN , these suppressed terms become

large and the OTOC decays. At very late times, the OTOC decays to something small. We

plot these features in Fig. 1.2.

The decay of the OTOC can be understood as operator growth [16]. We described

before that an operator evolved by a chaotic Hamiltonian grows to longer and longer Pauli

strings. For a local operator B, consider the commutator of the time-evolved operator B(t)

with another operator A which has support on some distant site: [A,B(t)]. For QFTs the
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Figure 1.2: The out-of-time-ordered correlation function (OTOC), where we denote the
expected behaviors in a chaotic quantum system.

commutator is zero at time t = 0 as space-like separated operators commute. For spin

systems, Paulis at distant sites with non-overlapping support commute. As we start time-

evolving, the operator B(t) grows to extend over the system as its weight shifts to longer

and longer Pauli strings. The failure of A to commute with B at some time is captured by

the decay of the OTOC. Consider the squared commutator

〈[A,B(t)]2〉β , (1.8)

where we take the Hermitian conjugate. Expanding the quantity out into four 4-point

functions, we find that two of them are in the out-of-time ordering and two are trivial

〈[A,B(t)]2〉β = 〈AB(t)B(t)A〉β+〈B(t)AAB(t)〉β−〈AB(t)AB(t)〉β−〈B(t)AB(t)A〉β , (1.9)

where we are assuming that the operators A and B are Hermitian. If A and B are Pauli

operators, then the first two terms are simply 1. More generally, in a generic strongly-

coupled many-body system or QFT, the first two correlators will quickly decay to their

disconnected components 〈AA〉〈BB〉. For the sake of intuition, it is helpful to think of these

terms as the norm of a perturbed thermal state, i.e. ‖B(t)A |β〉‖, which becomes constant

as the perturbation allays. Whereas the OTO terms are more like the inner product of two
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Figure 1.3: On the left: evolution by a unitary operator, or more generally a channel,
denoting the input and output subsystems. On the right: the state representation of the
unitary on the doubled Hilbert space.

different states AB(t) |β〉 and B(t)A |β〉, where we act with A in different ways to affect

the growth of the time-evolved operator B(t). The statement that these terms decay is a

manifestation of the butterfly effect, acting with A has drastically changed the state and the

inner product is small. Thus, operator growth is one of the many things captured by the

OTOC.

Scrambling of quantum information

Scrambling is the statement that local quantum information becomes delocalized under uni-

tary evolution and spreads over the entire system [1, 2], and information about local degrees

of freedom can no longer be accessed by local measurements. The unitary evolution Ut might

be time-evolution by a Hamiltonian, application of a quantum circuit, and more generally

might be a quantum channel. Scrambling is usually discussed with respect to a specific

initial state. The most common notion of scrambling is that, starting with a simple state

|ψ〉, the evolved state Ut |ψ〉 looks nearly maximally mixed on arbitrary subsystems (which

constitute less than half of the total system).

Consider a unitary that acts on many qubits (or qudits), with total Hilbert space dimen-

sion d. As shown in Fig. 1.3, we divide the input degrees of freedom into subsystems A and

B = Ac, and the output into subsystems D and C = Dc, where B and D are somewhat larger

than their complements. Scrambling is the statement that we cannot reconstruct the local

information in A with any arbitrary subsystem D in the output, i.e. the state is scrambled

as we cannot learn about it by performing local measurements.

Let’s be a little more precise. We want to talk about the scrambling properties of the
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chaotic unitary itself. Following [10], we employ the state representation of the operator |U〉
[31, 32], considering the operator U as a state on the doubled Hilbert space

|Ut〉 = I⊗ Ut |EPR〉 , where |EPR〉 =
1√
d

∑
j

|j〉 |j〉 . (1.10)

The state representation of our operator Ut with the subsystems labeled is shown in Fig. 1.3.

We can now talk about the entropies of subsystems in the 4-partitite state |Ut〉. We say that

the information is delocalized by the unitary if the mutual information I(A,D) is small,

and thus we cannot learn about local information in A by acting locally on the output.

Moreover, we say that the chaotic unitary has scrambled the quantum information in the

input if the mutual information I(A, CD) is large, i.e. the information about A has spread

nonlocally over the entire output. Equivalently, the mutual information I(A,BD) becoming

large implies we can reconstruct the state once it has scrambled over the system by accessing

the other input degrees of freedom in B.

We would like to highlight one relation between the decay of 2-point functions and delocal-

ization of quantum information, as well as the decay of 4-point functions and the scrambling

of quantum information. This is primarily due to the ideas and techniques developed in

[10], but appeared as discussed here in [12] and reproduced in this thesis in Sec. 2.B. We

will simply summarize here and refer the reader to these papers for details. Moreover, the

physics here was essentially understood and explained in [1].

Again, consider a unitary operator which takes input subsystems A and B to output

subsystems C and D, where the subsystems A and D have dimensions dA and dD. Employing

the state representation of the operator U and averaging over a basis of operators on the

subsystems A and D, we can relate the 2-point functions to the mutual information as

∫
dOAdOD

∣∣〈OAOD(t)〉
∣∣2 =

1

d2Ad
2
D
eI

(2)(A,D) , (1.11)

where I(2)(A,D) is the Rényi-2 mutual information, I(2)(A,D) ≡ S
(2)
A +S

(2)
D −S

(2)
AD, in terms

of reduced density matrices in the Choi state |U〉. For local operators on subsystems A
and D the decay of 2-point functions occur after the thermalization time t ∼ β. Here the
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decay of 2-point functions means that the mutual information between A and D systems

becomes small and the information has delocalized. In the language of [1], this is Bob failing

to reconstruct Alice’s state on A with only the Hawking radiation D.

Now we consider the 4-point function averaged over the operators on subsystems A and

D. Again using the state representation of the operator, we can relate the OTO 4-point

functions to the mutual information as

∫
dOAdOD 〈OAOD(t)OAOD(t)〉 = e−I

(2)(A,BD) , (1.12)

where now we find the Rényi mutual information between the subsystems A and BD. For

local operators on subsystems A and D, we expect that for chaotic systems, the OTOCs

will decay after a scrambling time t ∼ β logN , the mutual information between A and BD
becomes large. This means that the local information in A has scrambled over the entire

system. This also has the interpretation that Bob can reconstruct Alice’s state on A by

accessing both the early-time radiation B and the emitted quanta D. The chaotic decay of

2-point functions and OTO 4-point functions imply that a chaotic unitary can be viewed

as a quantum error-correcting code, where the quantum information on the A subsystem is

delocalized and encoded nonlocally in the C and D subsystems. When the unitary is viewed

as a four-partite state, that the mutual information between A and any two of the other

subsystems is the same, implies we can tolerate the erasure of any one subregion and still

reconstruct the state on A.

It is in this sense a chaotic unitary, and black holes, may be seen as a quantum error-

correcting code, and is one way to relate the chaotic decay of correlation functions to the

delocalization and scrambling of quantum information.

Haar-randomness

The last measure of chaotic dynamics we will discuss, and one that plays a primary role

in this thesis, is the randomness of the unitary evolution itself. Consider the unitary time

evolution by a chaotic Hamiltonian e−iHt ∈ U(d). To extract universal aspects of late-time

dynamics, we often average over the unitary group [1, 11]. Roughly speaking, the intuition
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should be that chaotic time-evolution spreads randomly over the unitary group and, at late-

times, we can extract universal behavior by averaging over U(d). More precisely, we are

interested an ensemble of unitaries generated by (an ensemble of) Hamiltonians at a time t

Et = {e−iHt , H ∈ EH} , (1.13)

where the EH might be a disordered spin-system, the Sachdev-Ye-Kitaev model, or a random

matrix ensemble. We want to understand how random the ensemble Et with respect to

the Haar measure, the invariant measure on the unitary group. As Haar-random unitaries

require exponential circuit complexity, we do not expect that physical time-evolution becomes

exactly Haar-random. But we can quantify how random the ensemble is with the notion of

a k-design.

A unitary k-design is a subset of the unitary which reproduces averages over the unitary

group, capturing the first k moments of the Haar ensemble. As measure of randomness we

will discuss many times in this thesis is the frame potential F (k)
E , a quantity we can compute

for any ensemble of unitaries. F (k)
E is lower-bounded by the Haar value, with equality if

and only if we form a k-design, and in this sense defines a distance to randomness. We are

interested in the time-scales at which the ensemble Et becomes Haar-random and forms a

k-design.

Being Haar-random relates to other measures of chaos we have discussed so far. A 2-

design looks maximally mixed on subsystems, as for Haar-random unitaries in [33], and

scrambles by achieving decoupling in the sense of [1]. Moreover, by Haar-averaging over

random operators and random Hamiltonians, we will be able to relate OTOCs, the spectral

form factor, and the frame potential, as we will explore in more detail in Ch. 2.

Outlook

As we stressed before, the above list of symptoms of chaos is certainly not exhaustive; we

have not mentioned entanglement production and the growth of entanglement entropy or

complexity, although both will be discussed in this thesis. Nor are the symptoms distinct;

many of the diagnostics can be understood as related to one another, as we have already
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discussed. Understanding the relations between these symptoms of chaos is part of the goal

of this thesis. Moreover, we have not mentioned other aspects of real-time dynamics in

strongly-interacting many-body systems, namely, thermalization and transport. There is

still much to be done in order to understand the connection between chaos, transport, and

thermalization. Nevertheless, it seems likely that quantum information will continue to play

a central role in our understanding of quantum matter and quantum gravity by shedding

light on chaotic dynamics. Being of the opinion that some of the deepest insights in physics

come from a chaotic union of subfields, we view the liminal nature of the field as exciting.

1.2 Outline of the thesis

Motivated by many of the ideas discussed in this introduction, we will use tools and ideas

from quantum information theory to study the universal aspects of chaos and randomness

in strongly-interacting quantum systems.

In Chapter 2, we relate different diagnostics of chaos, study the time-evolution of ran-

dom matrix Hamiltonians, and define a measure of random matrix behavior in physical sys-

tems. We will connect the notions of chaotic correlation functions, randomness, information

scrambling, complexity, and random matrix behavior by deriving relations between probes

of chaos, namely: OTOCs, spectral correlators, and the frame potential—a measure of Haar-

randomness. We also consider the time-evolution by Gaussian random matrix Hamiltonians

and analytically compute the spectral form factors, OTOCs, and frame potentials to quantify

chaos and scrambling. We give a precise sense in which early-time random matrix evolution

is unphysical, showing that random matrix evolution fails to capture operator growth and

Lyapunov behavior, both expected features of chaotic Hamiltonians. Of more interest, we

find that at an intermediate time-scale random matrix evolution forms a unitary k-design,

but at late times deviates from this and becomes less Haar-random. This motivated us to

introduce k-invariance, defined as the difference between the frame potential of an ensemble

of unitary time-evolutions and its Haar-invariant counterpart. This is a computable measure

of late-time chaos for physical systems, where the difference becoming small indicates the

onset of a random matrix description.

14



In Chapter 3, we extend many of the tools developed in the previous chapter to consider

chaotic systems with symmetry. Specifically, we consider Haar-average over different quo-

tients of the unitary group making use of Weingarten calculus for more general Lie groups

and compact symmetric spaces. The averages over the different spaces correspond to the

universal aspects of different symmetry classes of Hamiltonians. We compute the OTOCs

and frame potentials of the different symmetry classes to describe the universal aspects of

late-time chaos in systems with symmetry. We also generalize the notion of a k-design to

different Lie groups and compact symmetric spaces, making precise what it means to be

random with respect to a subgroup or quotient of the unitary group. We further general-

ize k-invariance to ensembles with symmetry. As a check, we study the time evolution of

time-reversal invariant random matrix Hamiltonians and identify the timescales at which

they form symmetric k-designs. We also consider subsystems of random states with sym-

metry. Lastly, we numerically investigate k-invariance in spin-systems and in SYK, a first

step towards making precise the connection between the time scales at which we achieve

k-invariance and scrambling.

In Chapter 4, we extend our study of quantum chaos to systems with symmetry in a dif-

ferent way, considering extended random matrix ensembles. The motivation is to investigate

chaos in supersymmetric SYK, where we compute the form factors and frame potentials for

Wishart random matrices and find agreement with the model. This highlights a distinction

between early-time chaos in the chaotic decay of OTO correlators, and late-time chaos in

terms of Haar-randomness and scrambling.

In Chapter 5, we explore a simple application of the tools developed earlier in this thesis

by considering quantum circuits built out of random unitaries drawn from quotients of the

full unitary group. Random quantum circuits are simple minimal models to understand

operator growth and the emergence of dissipative hydrodynamics. We derive the transition

probabilities of the Markov process governing operator growth in five classes of symmetric

random circuits and then compute the butterfly velocities and diffusion constants for a

spreading operator by solving a simple random walk in each class of circuits.
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Chapter 2

Chaos, complexity, and random

matrices

This chapter is essentially the same as

• J. Cotler, N. Hunter-Jones, J. Liu, B. Yoshida, “Chaos, Complexity, and Random

Matrices,” JHEP 11 (2017) 048, arXiv:1706.05400 [hep-th].

Abstract

In this chapter, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamil-

tonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and

frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While

our random matrix analysis gives a qualitatively correct prediction of the late-time behavior

of chaotic systems, we find unphysical behavior at early times including an O(1) scram-

bling time and the apparent breakdown of spatial and temporal locality. The salient feature

of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the

ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Moti-

vated by this property of the GUE, we introduce k-invariance as a precise definition of what

it means for the dynamics of a quantum system to be described by random matrix theory.

We envision that the dynamical onset of approximate k-invariance will be a useful tool for

capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as

seen by random matrix theory.
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2.1 Introduction

Quantum chaos is a general feature of strongly-interacting systems and has recently provided

new insight into both strongly-coupled many-body systems and the quantum nature of black

holes. Even though a precise definition of quantum chaos is not at hand, understanding how

chaotic dynamics process quantum information has proven valuable. For instance, Hayden

and Preskill [1] considered a simple model of random unitary evolution to show that black

holes rapidly process and scramble information. The suggestion that black holes are the

fastest scramblers in nature [2, 3] has led to a new probe of chaos in quantum systems,

namely the 4-point out-of-time-order correlation function (OTOC). Starting with the work

of Shenker and Stanford [4, 5], it was shown [27] that black holes are maximally chaotic in

the sense that a bound on the early time behavior of the OTOC is saturated. Seperately,

Kitaev proposed a soluble model of strongly-interacting Majorana fermions [34, 35], which

reproduces many features of gravity and black holes, including the saturation of the chaos

bound [6, 7]. The Sachdev-Ye-Kitaev model (SYK) has since been used as a testing ground

for questions about black hole information loss and scrambling.

In recent work, [9] found evidence that the late time behavior of the SYK model can be

described by random matrix theory, emphasizing a dynamical perspective on more standard

notions of quantum chaos. Random matrix theory (RMT) has its roots in nuclear physics

[17, 18] as a statistical approach to understand the spectra of heavy atomic nuclei, famously

reproducing the distribution of nearest neighbor eigenvalue spacings of nuclear resonances.

Random matrix theory’s early success was later followed by its adoption in a number of

subfields, including large N quantum field theory, string theory, transport in disordered

quantum systems, and quantum chaos. Indeed, random matrix eigenvalue statistics have

been proposed as a defining characteristic of quantum chaos, and it is thought that a generic

classically chaotic system, when quantized, has the spectral statistics of a random matrix

ensemble consistent with its symmetries [8].

Current thinking holds that both spectral statistics and the behavior of the OTOC serve

as central diagnostics of chaos, although the precise relation between the two is unclear.

OTOCs have recently been studied using techniques from quantum information theory, and
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it was found that their decay as a function of time quantifies scrambling [10] and randomness

[11]. The goal of this chapter is to connect various concepts as a step towards a quantum

information-theoretic definition of quantum chaos that incorporates scrambling, chaotic cor-

relation functions, complexity, approximate randomness, and random matrix universality.

As alluded to above, an important first step to bridge early-time chaos and late-time

dynamics is to understand the relation between the OTOC and the spectral statistics. We

derive an explicit analytical formula relating certain averages of OTOCs and spectral form

factors which holds for arbitrary quantum mechanical systems. A simple corollary is that

spectral form factors can be approximated by OTOCs defined with respect to random (typ-

ically non-local) operators, highlighting the fact that spectral statistics are good probes of

macroscopic thermodynamic properties, but may miss important microscopic physics such

as early-time chaos. We also compute correlation functions for an ensemble of Hamiltonians

given by the Gaussian Unitary Ensemble (GUE), and find that 4-point OTOCs decay faster

than 2-point correlators contrary to findings for local quantum Hamiltonians [27]. Due to

the basis independence of the GUE, averaged correlation functions do not depend on sizes of

operators, and thus can be expressed solely in terms of spectral form factors. Furthermore,

we find that correlators for GUE Hamiltonians do not even depend on the time-ordering

of operators. These results imply that the GUE ignores not only spatial but also temporal

locality.

Another important question is to understand the approach to entropic (as well as quan-

tum complexity) equilibrium via pseudorandomization at late times in strongly coupled sys-

tems. We consider the ensemble of unitaries generated by fixed GUE Hamiltonians, namely

EGUE
t =

{
e−iHt, for H ∈ GUE

}
, (2.1)

and study its approach to Haar-randomness by computing frame potentials which quantify

the ensemble’s ability to reproduce Haar moments. We find that the ensemble forms an

approximate k-design at an intermediate time scale, but then deviates from a k-design at

late times. These results highlight that the k-design property fails to capture late time

behavior of correlation functions. An interesting application of unitary k-designs is that
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Haar-randomness is a probe of quantum complexity. We apply techniques from [11] to lower

bound the quantum circuit complexity of time evolution by GUE Hamiltonians and find a

quadratic growth in time.

In order to make precise claims about the behavior of OTOCs and frame potentials for

GUE Hamiltonians, we need explicit expressions for certain spectral quantities. Accordingly,

we compute the 2-point and 4-point spectral form factors for the GUE at infinite temperature,

as well as the 2-point form factor at finite temperature. We then use these expressions to

discuss time scales for the frame potentials. We also analytically compute the late-time value

of the k-th frame potential for arbitrary k.

Under time evolution by strongly-coupled systems, correlations are spread throughout

the system and the locality of operators as well as time-ordering appear to be lost from the

viewpoint of correlation functions, as implied by the late-time universality of random matrix

theory. Also motivated by the k-design property’s failure to capture late-time chaos (i.e.,

EGUE
t fails to be Haar-random at late times), we propose a new property called k-invariance,

which may provide a better probe of chaos at both early and late times. The property of k-

invariance characterizes the degree to which an ensemble is Haar-invariant, meaning that the

ensemble is invariant under a change of basis. When the dynamics becomes approximately

Haar-invariant, correlation functions can be captured solely in terms of spectral functions,

which signifies the onset of an effective random matrix theory description. We thus provide

an information theoretically precise definition of what it means for a system’s dynamics to

be described by random matrix theory. Specifically, we say that an ensemble of Hamiltonian

time evolutions Et is described by random matrix theory at times greater than or equal to

t with respect to 2k-point OTOCs when Et is approximately k-invariant with respect to

its symmetry class, for example the symmetry class of either the unitary, orthogonal, or

symplectic groups.

The chapter is organized as follows: In Section 2.2, we provide a brief overview of random

matrix theory and explicitly compute the spectral form factors for the GUE at infinite and

finite temperature. In Section 2.3, we compute correlation functions for the GUE, including

the OTOC, and demonstrate that they can be expressed in terms of spectral correlators as

well. In Section 2.4, we compute frame potentials for the GUE, and extract the timescales
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when it becomes an approximate k-design both at finite and infinite temperatures. We show

that the frame potentials can be also expressed as products of sums of spectral correlators.

In Section 2.5, we discuss complexity bounds and complexity growth for the GUE. In Section

2.6, we discuss Haar-invariance as a diagnostic of delocalization of spatial degrees of freedom

and random matrix universality at late times. We conclude with a discussion in Section 2.7.

The appendices contain a review of various information-theoretic definitions of scrambling

in the literature, a discussion of information scrambling in black holes, more details of our

random matrix calculations, and numerics.

2.2 Form factors and random matrices

For a long time, the spectral statistics of a random matrix were seen as a defining feature of

quantum chaos. More recently, it has been proposed that the late time behavior of certain

strongly coupled theories with large numbers of degrees of freedom also exhibit a dynamical

form of random matrix universality at late times [9]. The central object of study in this

recent work is the 2-point spectral form factor,1 which is defined in terms of the analytically

continued partition function

R2(β, t) ≡
〈
|Z(β, t)|2

〉
, where Z(β, t) ≡ Tr

(
e−βH−iHt

)
(2.2)

and where 〈 · 〉 denotes the average over an ensemble of Hamiltonians. In SYK as well as

standard RMT ensembles, the 2-point spectral form factor decays from its initial value and

then climbs linearly back up to a floor value at late times. The early time decay of the form

factor is called the slope, the small value at intermediate times is called the dip, the steady

linear rise is called the ramp, and the late time floor is called the plateau. In Fig. 2.1 we

observe these features in SYK with N = 26 Majoranas, which has GUE statistics at late

1One motivation for studying this object is a simple version of the information loss problem in
AdS/CFT [36], where the apparent exponential decay of 2-point correlation functions in bulk effective field
theory contradicts the finite late-time value of e−O(S) implied by the discreteness of the spectrum. As we
shall see in the next section, the 2-point form factor is equivalent to the average of 2-point correlation func-
tions. More recently, chaos and information loss in correlation functions and form factors have also been
studied in holographic CFTs [29, 37, 38, 39, 40].
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Figure 2.1: The 2-point spectral form factor for SYK with N = 26 Majoranas at inverse
temperature β = 5, computed for 1000 random samples. The slope, dip, ramp, and plateau
are labeled.

times.2 Furthermore, it was found that in SYK, time scales and many features of the slope,

dip, ramp and plateau agree with predictions from RMT.

In this section, we briefly review random matrix theory. Further, we study the 2-point

spectral form factor for the GUE at both infinite and finite temperature, compute its analytic

form, and extract its dip and plateau times and values.3 In addition, we compute the 4-point

form factor and extract relevant time scales and values. We find that the late-time rise in the

4-point form factor is quadratic in t, in contrast to the linear rise in the 2-point form factor.

The expressions derived in this section will give us analytic control over the correlation

functions and frame potentials discussed in later sections. For a detailed treatment of the

random matrix ensembles, we refer the reader to [23, 43, 19].

2.2.1 Random matrix theory

The Gaussian Unitary Ensemble GUE(d, µ, σ) is an ensemble of d × d random Hermitian

matrices, where the off-diagonal components are independent complex Gaussian random

2For SYK with N Majoranas, particle-hole symmetry dictates the symmetry class of the spectrum, where
N (mod 8) ≡ 2 or 6 corresponds to GUE statistics [41]. Furthermore, the spectral density of SYK and its
relation to random matrices has also been discussed in [42].

3We consider the GUE since it corresponds to the least restrictive symmetry class of Hamiltonians. The
generalization of our analysis to the GOE or GSE is left for future work.
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variables N(µ, σ)C with mean µ and variance σ2, and the diagonal components are inde-

pendent real Gaussian random variables N(µ, σ)R. It is common in the math literature to

work with GUE(d, 0, 1) which has zero mean and unit variance, but we will instead use the

normalization GUE(d, 0, 1/
√
d) so that the eigenvalues do not scale with the system size.4

The probability density function of the ensemble has a Gaussian form

P (H) ∝ e−
d
2
TrH2

, (2.3)

up to a normalizing factor. As the GUE is invariant under unitary conjugation H → UHU †,

the integration measure dH = d(UHU †) is likewise invariant. The probability measure

P (H) dH on the ensemble integrates to unity.

Instead of integrating over dH directly, it is convenient to change variables to eigenval-

ues and diagonalizing unitaries. Up to a normalizing constant C defined in Eq. (2.166) in

App. 2.C, the measure becomes

dH = C |∆(λ)|2
∏
i

dλidU , (2.4)

where dU is the Haar measure on the unitary group U(d) and ∆(λ) is the Vandermonde

determinant

∆(λ) =
∏
i>j

(λi − λj) . (2.5)

The joint probability distribution of eigenvalues is

P (λ1, . . . , λd) = Ce−
d
2

∑
i λ

2
i |∆(λ)|2 , (2.6)

and is symmetric under permutations of its variables. For simplicity, we define a measure

Dλ which absorbs the Gaussian weights, eigenvalue determinant, and constant factors. We

4The reason for using the normalization GUE(d, 0, 1/
√
d) instead of GUE(d, 0, 1) is as follows: With

the standard normalization GUE(d, 0, 1), the energy spectrum ranges from −2
√
d to 2

√
d. This implies

that by applying a local operator, one may change the energy of the system by O(
√
d). With the physical

normalization GUE(d, 0, 1/
√
d), the energies lie within the range −2 to 2, and local operators act with O(1)

energy. See [44] for discussions on normalizing q-local Hamiltonians.
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integrate over the GUE in the eigenvalue basis as

〈O(λ)〉GUE ≡
∫
DλO(λ) where

∫
Dλ = C

∫ ∏
i

dλi|∆(λ)|2e− d2
∑
i λ

2
i = 1 . (2.7)

The probability density of eigenvalues ρ(λ), where

∫
dλ ρ(λ) = 1 , (2.8)

can be written in terms of the joint eigenvalue probability density by integrating over all but

one argument

ρ(λ) =

∫
dλ1 . . . dλd−1P (λ1, . . . , λd−1, λ) . (2.9)

The spectral n-point correlation function, i.e. the joint probability distribution of n eigen-

values, ρ(n) is defined as

ρ(n)(λ1, . . . , λn) ≡
∫
dλn+1 . . . dλdP (λ1, . . . , λd) . (2.10)

With these definitions at hand, we quote a few central results. In the large d limit, the

density of states for the Gaussian ensembles gives Wigner’s famous semicircle law,

ρ(λ) =
1

2π

√
4− λ2 as d→∞ , (2.11)

where the semicircle diameter is fixed by our chosen eigenvalue normalization. Also in the

large d limit, the spectral 2-point function

ρ(n)(λ1, λ2) =

∫
dλ3 . . . dλdP (λ1, . . . , λd) , (2.12)

can be expressed in terms of a disconnected piece and a squared sine kernel as [23]

ρ(2)(λ1, λ2) =
d2

d(d− 1)
ρ(λ1)ρ(λ2)−

d2

d(d− 1)

sin2
(
d(λ1 − λ2)

)(
dπ(λ1 − λ2)

)2 . (2.13)
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2.2.2 Spectral form factors

The 2-point spectral form factor for a single Hamiltonian H is given in terms of the analyt-

ically continued partition function Z(β, t) = Tr (e−βH−iHt) as

RH
2 (β, t) ≡ Z(β, t)Z∗(β, t) = Tr (e−βH−iHt)Tr (e−βH+iHt) . (2.14)

Similarly, the spectral form factor averaged over the GUE is denoted by

R2(β, t) ≡
〈
Z(β, t)Z∗(β, t)

〉
GUE

=

∫
Dλ
∑
i,j

ei(λi−λj)te−β(λi+λj) , (2.15)

which is the Fourier transform of the spectral 2-point function. At infinite temperature

β = 0, the Fourier transform of the density of states is just Z(t) = Tr (e−iHt), the trace of

unitary time evolution. Using the semicircle law, we take the average of Z(t) at large d

〈Z(t)〉GUE =

∫
Dλ
∑
i

e−iλit = d

∫ 2

−2
dλ ρ(λ)e−iλt =

dJ1(2t)

t
, (2.16)

where J1(t) is a Bessel function of the first kind. The function J1(2t)/t is one at t = 0

and oscillates around zero with decreasing amplitude that goes as ∼ 1/t3/2, decaying at late

times. At infinite temperature, the 2-point spectral form factor for the GUE is

R2(t) =
〈
Z(t)Z∗(t)

〉
GUE

=

∫
dH Tr

(
e−iHt

)
Tr
(
eiHt

)
=

∫
Dλ
∑
i,j

ei(λi−λj)t . (2.17)

More generally, we will also be interested in computing 2k-point spectral form factors

R2k(t) =
〈(
Z(t)Z∗(t)

)k〉
GUE

=

∫
Dλ

∑
i′s,j′s

ei(λi1+...+λik−λj1−...−λjk )t , (2.18)

the Fourier transform of the spectral 2k-point function ρ(2k).5 Although the form factors can

be written exactly at finite d, our analysis will focus on analytic expressions that capture

5In the random matrix literature, the 2-point form factor is often defined as the Fourier transform of
the connected piece of the spectral 2-point correlation function, where the connected piece of the spectral
2k-point function is often referred to as the 2k-level cluster function. Our definition for the 2k-point spectral
form factor R2k includes both connected and disconnected pieces.

24



the large d behavior.6

Note that in [9], 2-point form factors were normalized via dividing by Z(β)2. At infinite

temperature, this simply amounts to dividing by d2, but at finite temperature the situation

is more subtle. As we will comment on later, the correct object to study is the quenched form

factor 〈Z(β, t)Z∗(β, t)/Z(β)2〉, but since we only have analytic control over the numerator

and denominator averaged separately, we instead work with the unnormalized form factor

R2 as defined above.

2-point spectral form factor at infinite temperature

Here we calculate the 2-point form factor at β = 0. Working at large d, we can evaluate R2

by first pulling out the contribution from coincident eigenvalues

R2(t) =

∫
Dλ

∑
i,j

ei(λi−λj)t = d+ d(d− 1)

∫
dλ1dλ2 ρ

(2)(λ1, λ2)e
i(λ1−λ2)t . (2.19)

In the large d limit, we can make use of the sine kernel form of the 2-point function Eq. (2.13).

Using Eq. (2.16), we integrate the first term, a product of 1-point functions, and find

∫
dλ1dλ2 ρ(λ1) ρ(λ2) e

i(λ1−λ2)t =
J2
1 (2t)

t2
. (2.20)

In order to integrate the sine kernel, we make the change of variables:

u1 = λ1 − λ2 and u2 = λ2 , (2.21)

which allows us to rewrite the integral

d2
∫
dλ1dλ2

sin2
(
d(λ1 − λ2)

)(
dπ(λ1 − λ2)

)2 ei(λ1−λ2)t = d2
∫
du2

∫
du1

sin2(du1)

dπu21
eiu1t . (2.22)

Having decoupled the variables, in order to integrate over u1 and u2, we must employ a short

distance cutoff. We develop a certain approximation method which we refer to as the ‘box

6In addition to relating the form factor to the fidelty of certain states, [45] also studies the 2-point spectral
form factor for the GUE, computing an analytic form at finite d and discussing the dip and plateau.
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approximation,’ and explain its justification in App. 2.C. Specifically, we integrate u1 from

0 to u2, and integrate u2 from −π/2 to π/2,

d2
∫
du1du2

sin2(du1)

dπu21
eiu1t = d

1− t
2d
, for t < 2d

0 , for t > 2d

. (2.23)

Note that in the random matrix theory literature, a common treatment [24] is to approximate

the short-distance behavior of ρ(2)(λ1, λ2) by adding a delta function for coincident points

λ1 = λ2 and inserting a 1-point function into the sine kernel. For R2 this gives the same

result as the approximation above, but this short-distance approximation does not generalize

to higher k-point form factors, as discussed in App. 2.C. The 2-point form factor we compute

is7

R2(t) = d2r21(t)− dr2(t) + d , (2.24)

where we define the functions

r1(t) ≡
J1(2t)

t
, and r2(t) ≡

1− t
2d
, for t < 2d

0 , for t > 2d

. (2.25)

As was discussed in [9], we can extract the dip and plateau times and values from R2.

From the ramp function r2, we observe that the plateau time is given by

tp = 2d , (2.26)

where after the plateau time, the height of the function R2 is the constant d. This value can

also be derived by taking the infinite time average of R2.

The other important time scale is the dip time td, which we can estimate using the

7We emphasize that this function relied on an approximation and while it captures certain desired behav-
ior, it should not be viewed as exact. In App. 2.D we provide numerical checks and discuss an improvement
of the ramp function r2(t).
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asymptotic form of the Bessel function at large t, which gives

r1(t) ≈
1

t

cos(2t− 3π/4)√
πt

, (2.27)

oscillating at times ∼ O(1) with decaying envelope ∼ t−3/2. While the first dip time is

O(1), we will be interested in the dip time as seen by the envelope, especially because the

oscillatory behavior disappears at finite temperature (see Fig. 2.3). Solving for the minimum

of the envelope of R2, we find

td ≈
√
d , (2.28)

up to order one factors. The true minimum of the envelope and ramp is (6/π)1/4
√
d ≈

1.18
√
d, but in light of the approximations we made, and the fact that the precise ramp

behavior is somewhat ambiguous, we simply quote the dip time as td ≈
√
d. At td, we find

the dip value R2(td) ≈
√
d. We plot the 2-point form factor for different dimensions d in

Fig. 2.2.
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R2/d
2

GUE R2 at β = 0

Figure 2.2: The 2-point spectral form factor at infinite temperature, as given in Eq. (2.24),
plotted for various values of d and normalized by the initial value d2. We observe the linear
ramp and scaling of the dip and plateau with d.

The oscillations in the early time slope behavior of the form factor simply arise from the

oscillatory behavior of the Bessel function, i.e. the zeros of r1(t)
2.
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2-point spectral form factor at finite temperature

Recall that spectral 2-point function at finite temperature is defined as

R2(t, β) ≡
〈
Z(t, β)Z∗(t, β)

〉
GUE

=

∫
Dλ
∑
i,j

ei(λi−λj)te−β(λi+λj) .

As described in App. 2.C, we insert the spectral 2-point function ρ(2) and, using the short-

distance kernel, find R2(t, β) in terms of the above functions:

R2(t, β) = d2r1(t+ iβ)r1(−t+ iβ) + dr1(2iβ)− dr1(2iβ)r2(t) . (2.29)

First we comment on the validity of the approximations used in the finite temperature

case. The first and third terms of Eq. (2.29), dominating at early and late times respectively,

are computed from the 1-point function. Therefore, the expression captures the early time,

slope, and plateau behaviors. The dip and ramp behavior, encoded in the r2 term, are more

subtle. The expression correctly captures the slope of the ramp, but deviates from the true

ramp at large β. We will discuss this more in App. 2.C, but here only discuss quantities

around the dip for small β, where Eq. (2.29) is a good approximation.

The ramp function r2, which is the same as at infinite temperature, gives the plateau

time

tp = 2d . (2.30)

For convenience we define the function h1(β) ≡ J1(2iβ)/iβ, which is real-valued in β.8 The

initial value and plateau value are thus given by

R2(0) = (h1(β))2d2 , R2(tp) = h1(2β)d . (2.31)

To find the dip time, we make use of the asymptotic expansion of the Bessel function as

d2r1(t+ iβ)r1(−t+ iβ) ∼ d2

2πt3
(

cosh(4β)− sin(4t)
)
≈ d2

πt3
cosh2(2β) . (2.32)

8For instance, to emphasize its real-valuedness, we could equivalently write h1(β) as a regularized hyper-

geometric function h1(β) ≡ 0F̃1(2;β2).
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Finding the minimum of the expression gives the dip time

td = h2(β)
√
d where h2(β) ≈

(
1 +

β2

2
+O(β4)

)
, (2.33)

and evaluating R2 at the dip gives

R2(td) ≈ h3(β)
√
d where h3(β) ≈

(
1 +

5β2

2
+O(β4)

)
, (2.34)

up to order one factors. While we could write down full expressions for the dip time h2 and

dip value h3 in terms of the Bessel function, we only trust Eq. (2.29) in this regime for small

β, and thus report the functions perturbatively.

The 2-point form factor is plotted in Fig. 2.3 for various values of d and β. While

increasing the dimension d lowers the dip and plateau values and delays the dip and plateau

times, decreasing temperature raises the dip and plateau values and delays the dip times. We

also note that lowering the temperature smooths out oscillations from the Bessel function.9

After normalizing R2(β, t) by its initial value, the late-time value is ' 2−S
(2)

where S(2) is

the thermal Rényi-2 entropy.
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Figure 2.3: The 2-point spectral form factor at finite temperature as per Eq. (2.29), on
the left plotted at different values of d, and on the right plotted at different temperatures,
normalized by the initial value. We see that the dip and plateau both scale with β and d
and that lowering the temperature smooths out the oscillations in R2.

9While the oscillatory behavior still persists at finite temperature, the width of the dips become very
sharp as we increase β and thus the oscillations are not observed when plotted. Furthermore, if we average
over a small time window, the oscillations are also smoothed out.
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2.2.3 4-point spectral form factor at infinite temperature

We can also compute the 4-point form factor at infinite temperature, defined as

R4(t) ≡
〈
Z(t)Z(t)Z∗(t)Z∗(t)

〉
GUE

=

∫
Dλ

∑
i,j,k,`

ei(λi+λj−λk−λ`)t . (2.35)

As we explain in App. 2.C, we compute R4 by replacing ρ(4) by a determinant of sine kernels

and carefully integrating each term using the box approximation. The result is

R4(t) = d4r41(t) + 2d2r22(t)− 4d2r2(t)− 7dr2(2t) + 4dr2(3t) + 4dr2(t) + 2d2 − d , (2.36)

given in terms of the functions r1(t) and r2(t) defined above. The initial value of R4 is d4.

Given the dependence on the ramp function, the plateau time is still tp = 2d. The plateau

value 2d2 − d matches the infinite time average of Eq. (2.35). The dip time is found again

by considering the leading behavior of R4 and expanding the Bessel functions

R4 ≈ d4
J4
1 (2t)

t4
+
t

2
(t− 2) ∼ d4

t6π2
+
t

2
(t− 2) . (2.37)

Solving for the minimum, we find the dip time

td ≈
√
d , (2.38)

where at the dip time R4(td) ≈ d. We plot the R4(t) for various values of d in Fig. 2.4.

Let us summarize the time scales and values for the form factors considered above:

30



d=8

d=40

d=200

d=1000

0.01 0.10 1 10 100 1000 104
t

10-10

10-8

10-6

10-4

0.01

1

R4/d
4

GUE R4 at β = 0

Figure 2.4: The GUE 4-point spectral form factor at infinite temperature, plotted for different
values of d and normalized by their initial values. We observe the scaling of the dip and
plateau, and the quadratic rise ∼ t2.

form factor time scale time value

R2(t) initial 0 d2

dip
√
d

√
d

plateau 2d d

R2(t, β) initial 0 h21(β)d2

dip h2(β)
√
d h3(β)

√
d

plateau 2d h1(2β)d

R4(t) initial 0 d4

dip
√
d d

plateau 2d 2d2

The β–dependent functions were defined above.

With an understanding of the first few form factors, we briefly describe the expected

behavior for 2k-point form factors R2k(t) (with k � d). Initially, R2k decays from d2k as

∼ J2k
1 (2t)/t2k, reaching the dip at time td ≈

√
d where R2k(td) ≈ dk/2. The ∼ tk growth

after the dip levels off at the plateau time 2d, with plateau value ∼ kdk.

Given that we employed some approximation to compute the form factors, we perform

numerical checks for the expressions above in App. 2.D. At both infinite and finite tempera-

ture, we correctly capture the time scales, early time decay, dip behavior, and the late-time

plateau, but find slight deviations from the analytic prediction for the ramp. We discuss this
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and possible improvements to the ramp function in App. 2.D.

Later we will study frame potentials which diagnose whether an ensemble forms a k-

design. We will find that the frame potentials for the ensemble of unitaries generated by the

GUE can be written in terms of the spectral form factors discussed here, thereby allowing

us to extract important time scales pertaining to k-designs.

2.3 Out-of-time-order correlation functions

2.3.1 Spectral form factor from OTOCs

Although quantum chaos has traditionally focused on spectral statistics, recent developments

from black hole physics and quantum information theory suggest an alternative way of

characterizing quantum chaos via OTOCs [1, 4, 27, 10]. In this subsection, we bridge the

two notions by relating the average of 2k-point OTOCs to spectral form factors. We work

at infinite temperature (β = 0), but note that by distributing operator insertions around

the thermal circle, the generalization to finite temperature is straightforward. The results

in this subsection are not specific to GUE and are applicable to any quantum mechanical

system.

Consider some Hamiltonian H acting on an d = 2n-dimensional Hilbert space, i.e. con-

sisting of n qubits. We start by considering the 2-point autocorrelation function 〈A(0)A†(t)〉,
time evolved by H. We are interested in the averaged 2-point function:

∫
dA〈A(0)A†(t)〉 ≡ 1

d

∫
dA Tr(Ae−iHtA†eiHt) , (2.39)

where
∫
dA represents an integral with respect to a unitary operator A over the Haar measure

on U(2n). We note that since the 2-point Haar integral concerns only the first moment of

the Haar ensemble, we can instead average over the ensemble of Pauli operators10

∫
dA〈A(0)A†(t)〉 =

1

d3

d2∑
j=1

Tr(Aje
−iHtA†je

iHt) , (2.40)

10This is because the Pauli operators form a 1-design.
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where Aj are Pauli operators and d2 = 4n is the number of total Pauli operators for a system

of n qubits. To derive the spectral form factor, we will need the first moment of the Haar

ensemble

∫
dAAjkA

†`
m =

1

d
δjmδ

`
k , or equivalently

∫
dA AOA† =

1

d
Tr(O)I . (2.41)

Applying Eq. (2.41) to Eq. (2.39), we obtain

∫
dA〈A(0)A†(t)〉 =

|Tr(e−iHt)|2
d2

=
RH

2 (t)

d2
. (2.42)

where RH
2k(t) ≡ |Tr(e−iHt)|2k is the same as R2k(t) from before, but written for a single

Hamiltonian H instead of averaged over the GUE. Thus, the 2-point form factor is propor-

tional to the averaged 2-point function.

This formula naturally generalizes to 2k-point OTOCs and 2k-point form factors. Con-

sider 2k-point OTOCs with some particular ordering of operators

〈A1(0)B1(t) · · ·Ak(0)Bk(t)〉 where A1B1 · · ·AkBk = I . (2.43)

Operators which do not multiply to the identity have zero expectation value at t = 0, and

the value stays small as we time-evolve. We are interested in the average of such 2k-point

OTOCs. By using Eq. (2.41) 2k − 1 times, we obtain

∫
dA1 · · · dBk−1dAk〈A1(0)B1(t) · · ·Ak(0)Bk(t)〉 =

|Tr(e−iHt)|2k
d2k

=
RH

2k(t)

d2k
, (2.44)

where Bk = A†k · · ·B†1A†1. Thus, higher-point spectral form factors can be also computed

from OTOCs. In fact, by changing the way we take an average, we can access various

types of form factors. For instance, let us consider OTOCs 〈A1(0)B1(t) · · ·Ak(0)Bk(t)〉 with

Bj = A†j. We then have

∫
dA1dA2 · · · dAk〈A1(0)A†1(t) · · ·Ak(0)A†k(t)〉 =

Tr(e−iHt)kTr(eiHkt)

dk+1
. (2.45)
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The fact that the expression on the right-hand side is asymmetric is because the operator

A1(0)A†1(t) · · ·Ak(0)A†k(t) is not Hermitian.11

These expressions not only provide a direct link between spectral statistics and physical

observables, but also give a practical way of computing the spectral form factor. If one wishes

to compute or experimentally measure the 2-point form factor R2(t), one just needs to pick

a random unitary operator A and study the behavior of the 2-point correlator 〈A(0)A†(t)〉.
In order to obtain the exact value of R2(t), we should measure 〈A(0)A(t)〉 for all possible

Pauli operators and take their average. Yet, it is possible to obtain a pretty good estimate

of R2(t) from 〈A(0)A(t)〉 with only a few instances of unitary operator A. Consider the

variance of 〈A(0)A(t)〉,

∆〈A(0)A†(t)〉2avg ≡
∫
dA|〈A(0)A†(t)〉|2 −

∣∣∣ ∫ dA〈A(0)A†(t)〉
∣∣∣2 . (2.46)

If the variance is small, then the estimation by a single A would suffice to obtain a good

estimate of R2(t). Computing this, we obtain

∆〈A(0)A†(t)〉2avg ∼ O
( 1

d2

)
. (2.47)

This implies that the estimation error is suppressed by 1/d. By choosing a Haar unitary

operator A (or 2-design operator, such as a random Clifford operator), one can obtain a good

estimate of R2(t).

A check in a non-local spin system

To verify Eq. (2.42) and the claim that the variance of the 2-point functions is small, consider

a random non-local (RNL) spin system with the Hamiltonian given as the sum over all 2-body

operators with random Gaussian couplings Jijαβ [46]:

HRNL = −
∑
i,j,α,β

JijαβS
α
i S

β
j , (2.48)

11BY learned Eq. (2.45) from Daniel Roberts.
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where i, j sum over the number of sites and α, β sum over the Pauli operators at a given site.

Such Hamiltonians have a particularly useful property where locally rotating the spins of

HRNL with couplings Jijαβ creates another Hamiltonian H ′RNL with different couplings J ′ijαβ.

More precisely, if we consider an ensemble of such 2-local Hamiltonians;

ERNL = {HRNL, for Jijαβ ∈ Gaussian} (2.49)

the ensemble is invariant under conjugation by any 1-local Clifford operator

ERNL = V ERNLV
† , V ∈ 1-body Clifford . (2.50)

Here a Clifford operator refers to unitary operators which transform a Pauli operator to a

Pauli operator. For this reason, the 2-point correlation function 〈A(0)A†(t)〉ERNL
depends

only of the weight of Pauli operator A:

〈A(0)A†(t)〉ERNL
= cm , where A is an m-body Pauli operator (2.51)

and where 〈 · 〉ERNL
denotes the ensemble (disorder) average. Thus, this system is desirable

for studying the weight dependence of 2-point correlation functions.

As mentioned above, we can write the average over 2-point correlation functions as the

average over all Paulis as

∫
dA〈A(0)A†(t)〉 =

1

4n

∑
A∈Pauli

〈A(0)A†(t)〉 =
RHRNL

2 (t)

d2
, (2.52)

time evolving with HRNL. Numerically, for a single instance of HRNL, we find that the average

over all 2-point functions of Pauli operators gives R2 as expected. In Fig. 2.5, for n = 5 sites

and averaged over 500 random instances of HRNL to suppress fluctuations, we plot R2 along

side all 2-point functions of Pauli operators. We observe that correlation functions depend

only on the weight of A, with the higher weight Pauli operators clustered around R2. The

arrangement of the 2-point functions for Paulis of different weight depends on the number

of sites n. But for n = 5, the even and odd weight Paulis are respectively below and above
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Figure 2.5: The 2-point form factor and the 2-point functions 〈AjAj(t)〉 of Pauli operators
for HRNL for n = 5 sites and averaged over 500 samples. The thick blue line is R2/d

2 and
surrounding bands of lines are all 1024 Pauli 2-point functions of different weight.

R2 at later times and weight 2 and 3 Paulis are the closest to R2. We will comment on the

size dependence of correlators in Sec. 2.6.

The conclusion is that we can choose a few random Paulis, and by computing 2-point

functions, quickly approximate R2. We also checked that by increasing the number of spins,

the variance becomes small and 2-point functions become closer to R2.

Operator averages and locality

Let us pause for a moment and discuss the meaning of considering the operator average

from the perspective of spatial locality in quantum mechanical systems. In deriving the

above exact formulae relating the spectrum and correlators, we considered the average of

OTOCs over all the possible Pauli operators. For a system of n qubits, a typical Pauli

operator has support on ' 3n/4 qubits because there are four one-body Pauli operators,

I, X, Y, Z. It is essential to recognize that the average of correlation functions is dominated

by correlations of non-local operators with big supports covering the whole system. Thus,

the spectral statistics have a tendency to ignore the spatial locality of operators in correlation
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functions.12

In fact, the spectral statistics ignore not only spatial locality but also temporal locality

of operators. Namely, similar formulas can be derived for correlation functions with various

ordering of time. For instance, consider the following 4-point correlation function:

〈A(0)B(t)C(2t)D(t)〉 (2.53)

where the C operator acts at time 2t instead of 0 such that the correlator is not out-of-time-

ordered. Computing the average of the correlator with ABCD = I, we obtain

∫
dAdBdC〈A(0)B(t)C(2t)D(t)〉 =

R4(t)

d4
, (2.54)

which is exactly the same result as the average of 4-point OTOCs in Eq. (2.44). Indeed,

time-ordering is washed away since GUE Hamiltonians cause a system to rapidly delocalize,

thus destroying all local temporal correlations.

In strongly coupled systems with local Hamiltonians, correlation functions behave rather

differently depending on the time ordering of operators, as long as the time gaps involved

are small or comparable to the scrambling time [28, 4, 5, 6]. This observation hints that

the spectral statistics are good probes of correlations at long time scales, but may miss

some important physical signatures at shorter time scales, such as the exponential growth

of OTOCs with some Lyapunov exponent.

2.3.2 OTOCs in random matrix theory

Next, we turn our attention to correlators averaged over random matrices, analytically com-

puting the 2-point correlation functions and 4-point OTOCs for the GUE. We begin with

the 2-point correlation functions for the GUE

〈A(0)B(t)〉GUE ≡
∫
dH〈A(0)B(t)〉 where B(t) = e−iHtB(0)eiHt , (2.55)

12Signatures of the locality of an individual Hamiltonian may be seen in properties of its spectrum, as
argued in [47].
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where
∫
dH represents an integral over Hamiltonians H drawn from the GUE. Since the

GUE measure dH is invariant under unitary conjugation dH = d(UHU †) for all U , we can

express the GUE average as

〈A(0)B(t)〉GUE =

∫∫
dHdU

〈
AUe−iHtU †BUeiHtU †

〉
(2.56)

by inserting U,U † where dU is the Haar measure. Haar integrating, we obtain

〈A(0)B(t)〉GUE = 〈A〉〈B〉+
R2(t)− 1

d2 − 1
〈〈AB〉〉 , 〈〈AB〉〉 ≡ 〈AB〉 − 〈A〉〈B〉 (2.57)

where 〈〈AB〉〉 denotes the connected correlator. If A,B are non-identity Pauli operators, we

have

〈A(0)B(t)〉GUE =
R2(t)− 1

d2 − 1
(A = B)

= 0 (A 6= B) .

(2.58)

If R2(t)� 1, we have

〈A(0)A†(t)〉GUE '
R2(t)

d2
(2.59)

for any non-identity Pauli operator A. It is worth emphasizing the similarity between

Eq. (2.59) and Eq. (2.42). Recall that Eq. (2.42) was derived by taking an average over

all Pauli operators A and is valid for any quantum mechanical system while Eq. (2.59) was

derived without any additional assumption on the locality of Pauli operator A. Namely, the

key ingredient in deriving Eq. (2.59) was the Haar-invariance of the GUE measure dH. The

resemblance of Eq. (2.59) and Eq. (2.42) implies that the GUE is suited for studying physical

properties of chaotic Hamiltonians at macroscopic scales such as thermodynamic quantities.

Next, we compute the 4-point OTOCs for the GUE

〈A(0)B(t)C(0)D(t)〉GUE . (2.60)
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Inserting U,U †, we must compute the fourth Haar moment

〈A(0)B(t)C(0)D(t)〉GUE =

∫∫
dHdU

〈
AUe−iHtU †BUeiHtU †CUe−iHtU †DUeiHtU †

〉
.

(2.61)

We can avoid dealing directly with the (4!)2 terms generated by integrating here and focus on

the leading behavior. Assuming that A,B,C,D are non-identity Pauli operators, we obtain

〈A(0)B(t)C(0)D(t)〉GUE ' 〈ABCD〉
R4(t)

d4
. (2.62)

Thus, OTOCs are almost zero unless ABCD = I.13,14 A similar analysis allows us to obtain

the following result for 2k-point OTOCs:

〈A1(0)B1(t) . . . Ak(0)Bk(t)〉GUE ' 〈A1B1 . . . AkBk〉
R2k(t)

d2k
. (2.63)

The above equation is nonzero when A1B1 . . . AkBk = I. Again, note the similarity between

Eq. (2.63) and Eq. (2.44). Recall that in order to derive Eq. (2.44), we took an average over

OTOCs with A1B1 . . . AkBk = I. This analysis also supports our observation that the GUE

tends to capture global-scale physics very well.

Similar calculations can be carried out for correlation functions with arbitrary time-

ordering. For m-point correlators, at the leading order, we have

〈A1(t1)A2(t2) . . . Am(tm)〉GUE ' 〈A1 . . . Am〉
1

dm
Tr(e−it12H)Tr(e−it23H) . . .Tr(e−itm1H) ,

(2.64)

where tij = tj − ti. Namely, we have:

〈A(0)B(t)C(2t)D(t)〉GUE ' 〈ABCD〉
R4(t)

d4
. (2.65)

So, for the GUE, 〈A(0)B(t)C(2t)D(t)〉GUE ' 〈A(0)B(t)C(0)D(t)〉GUE. This implies that

13In fact, one can prove that the GUE averaged OTOCs are exactly zero if ABCD is non-identity Pauli
operator for all times.

14For analysis related to Eq. (2.62) in the context of SYK, see [48].
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the GUE does not care if operators in the correlator are out-of-time-ordered or not, ignoring

both spatial and temporal locality.

Careful readers may have noticed that the only property we used in the above derivations

is the unitary invariance of the GUE ensemble. If one is interested in computing correlation

functions for an ensemble of Hamiltonians which are invariant under conjugation by unitary

operators, then correlation functions can be expressed in terms of spectral form factors. Such

techniques have been recently used to study thermalization in many-body systems, see [49]

for instance. We discuss this point further in Sec. 2.6.

2.3.3 Scrambling in random matrices

Finally, we discuss thermalization and scrambling phenomena in random matrices by study-

ing the time scales for correlation functions to decay.

We begin with 2-point correlators and thermalization. In a black hole (or any thermal

system), quantum information appears to be lost from the viewpoint of local observers. This

apparent loss of quantum information is called thermalization, and is often associated with

the decay of 2-point correlation functions 〈A(0)B(t)〉 where A and B are some local opera-

tors acting on subsystems HA and HB which local observers have access to. In the context of

black hole physics, HA and HB correspond to infalling and outgoing Hawking radiation and

such 2-point correlation functions can be computed from the standard analysis of Hawking

and Unruh [50, 51]. 2-point correlation functions of the form 〈A(0)B(t)〉 have an interpreta-

tion as how much information about initial perturbations on HA can be detected from local

measurements on HB at time t. A precise and quantitative relation between quantum infor-

mation (mutual information) and 2-point correlation functions is derived in Appendix 2.B.

The upshot is that the smallness of 〈A(0)B(t)〉 implies the information theoretic impossibil-

ity of reconstructing from Hawking radiation (defined on HB) an unknown quantum state

(supported on HA) that has fallen into a black hole.

Is the GUE a good model for describing thermalization? For the GUE, we found

〈A(0)B(t)〉 ' R2(t)/d
2 for non-identity Pauli operators with AB = I. Since the early
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time behavior of R2(t) factorizes and is given by

〈A(0)A†(t)〉GUE '
J1(2t)

2

t2
, (2.66)

the time scale for the decay of 2-point correlation functions, denoted by t2, is O(1). This is

consistent with our intuition from thermalization in strongly coupled systems where t2 ' β.

As such, quantum information appears to be lost in O(1) time for local observers in systems

governed by GUE Hamiltonians.

Next, let us consider 4-point OTOCs and scrambling. To recap the relation between

OTOCs and scrambling in the context of black hole physics, consider a scenario where Alice

has thrown an unknown quantum state into a black hole and Bob attempts to reconstruct

Alice’s quantum state by collecting the Hawking radiation. Hayden and Preskill added an

interesting twist to this classic setting of black hole information problem by assuming that

the black hole has already emitted half of its contents and Bob has collected and stored

early radiation in some quantum memory he possesses. The surprising result by Hayden

and Preskill is that, if time evolution U = e−iHt is approximated by a Haar random unitary

operator, then Bob is able to reconstruct Alice’s quantum state by collecting only a few

Hawking quanta [1]. This mysterious phenomenon, where a black hole reflects a quantum

information like a mirror, relies on scrambling of quantum information where Alice’s input

quantum information is delocalized over the whole system [10]. The definition of scrambling

can be made precise and quantitative by using quantum information theoretic quantities as

briefly reviewed in App. 2.A and App. 2.B.

The scrambling of quantum information can be probed by the decay of 4-point OTOCs of

the form 〈A(0)B(t)A†(0)B†(t)〉 where A,B are some local unitary operators. An intuition is

that an initially local operator B(0) grows into some non-local operator under time evolution

via conjugation by e−iHt, and OTOCs measure how non-locally B(t) has spread. For this

reason, the time scale t4 when OTOCs start decaying is called the scrambling time.

Having reviewed the concepts of scrambling and OTOCs, let us study scrambling in

random matrices. For the GUE, we found 〈A(0)B(t)C(0)D(t)〉 ' R4(t)/d
4 for non-identity

Pauli operators with ABCD = I. Since one can approximate R4 as R4(t) ' R2(t)
2 at early
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times, we obtain

〈A(0)B(t)C(0)D(t)〉GUE '
J1(2t)

4

t4
. (2.67)

This implies that the decay time scale of 4-point OTOCs is t4 ' 1
2
t2, which is O(1) and is

faster than the decay time of 2-point correlation functions. This behavior is in strong contrast

with behaviors in chaotic systems studied in the context of black hole physics. Namely, in

holographic large-N CFTs with classical gravity duals, the decay times are

t2 ' β , t4 ' β logN2 (2.68)

with t4 � t2. Also, the scrambling time t4 ∼ O(1) violates a bound on quantum signalling

which would hold for quantum systems with local interactions [1, 3]. The pathology can be

also seen from the viewpoint of black hole information problems. If black hole dynamics is

modeled by the time evolution of some Hamiltonian sampled from GUE random matrices,

then the scrambling time for OTOC decay is O(1). So Bob might be able to reconstruct

Alice’s quantum state in O(1) time. If Bob jumps into the black hole after decoding Alice’s

quantum state, Alice can send a quantum message with O(1) energy to Bob and verify the

quantum cloning.

Another difference between GUEs and actual chaotic systems can be seen from the behav-

iors of correlators of the form 〈A(0)B(t)C(2t)D(t)〉. In the previous subsection, we showed

that 〈A(0)B(t)C(2t)D(t)〉 ' 〈A(0)B(t)C(0)D(t)〉. In strongly chaotic large-N systems, we

expect the following behaviors [6, 27]:

〈A(0)B(t)A(0)B(t)〉 = 1− 1

N
eλt , β � t� β logN. (2.69)

〈A(0)B(t)C(2t)B(t)〉 = 〈A〉〈B〉〈C〉〈B〉 , t ' β. (2.70)

Thus these two types of correlators should behave in a rather different manner.

These discrepancies clearly highlight the failure of GUE to capture early-time quantum

chaos behavior which is present in realistic strongly-coupled systems. What was wrong about

random matrices? Recent developments from black hole physics teach us that the butterfly
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effect in chaotic systems stems from delocalization of quantum information where initially

local operators grow into non-local operators. However, for the GUE, the system does not

distinguish local and non-local operators. To be concrete, let Alocal be some one-qubit Pauli

operator, and Anon-local = UAlocalU
† be some non-local operator created by conjugating Alocal

via some non-local unitary U . Due to the Haar invariance of the GUE measure, we have

〈Alocal(0)Alocal(t)〉GUE = 〈Anon-local(0)Anon-local(t)〉GUE . (2.71)

As this argument suggests, the GUE is a good description of quantum systems which have

no notion of locality. After the scrambling time, we expect that an initially local operator

Alocal(0) will time evolve to Alocal(t) which has support on the whole system, and the notion

of locality is lost (or at least obfuscated) after the scrambling time. We thus expect that

〈Alocal(0)Alocal(t)〉GUE will be a good description of two-point correlation functions after

the scrambling time. Similarly, the GUE does not distinguish time-ordering as seen from

〈A(0)B(t)C(2t)D(t)〉 ' 〈A(0)B(t)C(0)D(t)〉. This implies that, at late time scales when

the GUE becomes a good description, the system forgets the locality of time. In this sense,

the GUE captures physics of quantum chaos after the locality of spacetime is forgotten. We

will elaborate on this issue in Sec. 2.6.

2.4 Frame potentials and random matrices

In discussions of black hole information loss, we often approximate the chaotic internal

dynamics of a black hole as evolution by a Haar random unitary [1, 4], and talk about

typical black hole states as random pure states generated by Haar unitaries [33]. While it is

impractical to generate a Haar random unitary operator – due to its exponential quantum

circuit complexity, as noted by [1] – it often suffices to sample from an ensemble that only

reproduces the first few moments of the Haar ensemble. [11] made significant progress in

quantifying chaos in OTOCs by relating the late-time decay of 2k-point OTOCs to the k-th

frame potential, measuring the distance to Haar-randomness.15

15Also of interest, [52] recently discussed scrambling and randomness and showed that the Rényi k-entropies
averaged k-designs are typically near maximal.
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One efficient way of generating a unitary k-design is to employ random local quantum

circuits where one applies random two-qubit unitary gates at each unit time [53, 1, 54] and

the ensemble monotonically becomes a k-design as time evolves. Motivated by tensor network

descriptions of the AdS/CFT correspondence [55, 56], random local quantum circuits have

been used as a toy model of the Einstein-Rosen bridge and the dynamics of the two-sided AdS

black hole [10]. While such toy models are successful in capturing key qualitative features

such as fast scrambling and complexity growth, their dynamics is not invariant under time

translations. A natural question is to ask if systems of time-independent Hamiltonians are

able to form k-designs or not.

In this section we study time-evolution by the ensemble of GUE Hamiltonians and quan-

tify its approach to Haar-randomness by asking when it forms a unitary k-design. We

consider the ensemble of unitary time evolutions at a fixed time t, with Hamiltonians drawn

from the GUE

EGUE
t =

{
e−iHt, for H ∈ GUE

}
. (2.72)

As the frame potential quantifies the ensemble’s ability to reproduce Haar moments, i.e.

form a k-design, we will be interested in the time scales at which we approach “Haar values.”

Making use of the spectral form factors computed for the GUE, we derive explicit expressions

for the frame potentials and extract the key time scales. We find that the GUE ensemble

forms an approximate k-design after some time scales, but then deviates from being a k-

design.

2.4.1 Overview of QI machinery

We begin by introducing the formalism of unitary k-designs and defining the frame potential.

Consider a finite dimensional Hilbert space H of dimension d. We are primarily interested

in ensembles of unitary operators E = {pi, Ui}, where the unitary Ui appears with some

probability pi. A familiar ensemble might be the Haar ensemble. The Haar ensemble is the

unique left and right invariant measure on the unitary group U(d), where

∫
Haar

dU = 1 ,

∫
Haar

dU f(U) =

∫
Haar

dU f(V U) =

∫
Haar

dU f(UV ) , (2.73)
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for some function f and for all V ∈ U(d). Taking k copies of H, we can consider an operator

O acting on H⊗k, i.e. O ∈ A(H⊗k) the algebra of operators on the Hilbert space. The k-fold

channel of O with respect to Haar is16

Φ
(k)
Haar(O) ≡

∫
Haar

dU (U⊗k)†OU⊗k . (2.74)

Given an ensemble of unitary operators E = {pi, Ui}, we might ask how Haar-random

it is. More specifically, we should ask to what extent our ensemble reproduces the first

k moments of the Haar ensemble, a notion quantified by unitary k-designs.17 The k-fold

channel with respect to the ensemble E is

Φ
(k)
E (O) ≡

∫
U∈E

dU(U⊗k)†OU⊗k , (2.75)

written here for a continuous ensemble. We say that an ensemble E is a unitary k-design if

and only if

Φ
(k)
E (O) = Φ

(k)
Haar(O) , (2.76)

meaning we reproduce the first k moments of the Haar ensemble. But it does not make

sense to compute the k-fold channels and check this equality for all operators in the algebra.

Thus, we want a quantity which measures how close our ensemble is to being Haar-random.

The frame potential, defined with respect to an ensemble as [57]

F (k)
E =

∫
U,V ∈E

dUdV
∣∣Tr(U †V )

∣∣2k , (2.77)

measures Haar-randomness in the sense that it tells us how close the ensemble is to forming

a unitary k-design. More precisely, it measures the 2-norm distance between the k-fold

channel Φ
(k)
E with respect to the ensemble E , and the k-fold twirl Φ

(k)
Haar with respect to the

Haar ensemble. The frame potential will be a central object of study in this section.

16The k-fold channel of O is also referred to in the literature as the k-fold twirl of O.
17Note that in the quantum information literature, these are often referred to as unitary t-designs. But

here t will always denote time.
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The k-th frame potential for the Haar ensemble is given by

F (k)
Haar = k! for k ≤ d . (2.78)

Furthermore, for any ensemble E of unitaries, the frame potential is lower bounded by the

Haar value

F (k)
E ≥ F

(k)
Haar , (2.79)

with equality if and only if E is a k-design. In particular, the deviation from the Haar value

F (k)
E −F

(k)
Haar corresponds to the 2-norm distance of 2-fold quantum channels. The notion of

an approximate k-design is reviewed in App. 2.A.

We will also need to compute moments of the Haar ensemble, i.e. the ability to inte-

grate monomials of Haar random unitaries. The exact formula [58, 59] for evaluating these

moments is given by

∫
dU U j1

k1
. . . U jn

kn
U †`1m1

. . . U †`nmn =
∑
σ,τ∈Sn

δj1mσ(1) . . . δ
jn
mσ(n)

δ`1kτ(1) . . . δ
`n
kτ(n)
Wg(τσ−1) , (2.80)

where, for the n-th moment, we sum over cycles of the permutation group Sn. The Wein-

garten function Wg, a function of cycles σ ∈ Sn, is defined in App. 2.C.3. Performing

Haar integrals then simply amounts to contracting indices and computing the Weingarten

functions.

2.4.2 Frame potentials for the GUE

k = 1 frame potential

The first frame potential for the GUE is written as

F (1)
GUE =

∫
dH1dH2 e

− d
2
TrH2

1e−
d
2
TrH2

2

∣∣∣Tr
(
eiH1te−iH2t

)∣∣∣2 . (2.81)

Noting that the GUE measure is invariant under unitary conjugation, we find

F (1)
GUE =

∫
Haar

dUdV

∫
dH1dH2 e

− d
2
TrH2

1e−
d
2
TrH2

2

∣∣∣Tr
(
U †Λ†1UV

†Λ2V
)∣∣∣2 , (2.82)
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where we define Λ ≡ Ue−iHtU †, i.e. the matrix exponential of the GUE matrix in the diagonal

basis. Going into the eigenvalue basis, we can express the GUE integral as

F (1)
GUE =

∫
Dλ1Dλ2

∫
dU Tr

(
U †Λ†1UΛ2

)
Tr
(
Λ†2U

†Λ1U
)
, (2.83)

where we have used the left and right invariance of the Haar measure to write the expression

as a single Haar integral. Written out explicitly with indices,

F (1)
GUE =

∫
Dλ1Dλ2

∫
dU
(
U j1
k1
U j2
k2
U †`1m1

U †`2m2
Λ†1

m1
j1

Λ2
k1
`1

Λ†2
k2
`2

Λ1
m2
j2

)
, (2.84)

and we can do the Haar integral using the second moment

∫
dU U j1

k1
U j2
k2
U †`1m1

U †`2m2
=

1

d2 − 1

(
δj1m1

δj2m2
δ`1k1δ

`2
k2

+ δj1m2
δj2m1

δ`1k2δ
`2
k1

− 1

d
δj1m1

δj2m2
δ`1k2δ

`2
k1
− 1

d
δj1m2

δj2m1
δ`1k1δ

`2
k2

)
. (2.85)

We find

F (1)
GUE =

∫
Dλ1Dλ2

1

d2 − 1

(
TrΛ†1TrΛ1TrΛ†2TrΛ2 + d2 − 1

d

(
dTrΛ†1TrΛ1 + dTrΛ†2TrΛ2

))

or equivalently

F (1)
GUE =

1

d2 − 1

(
R2

2 + d2 − 2R2

)
, (2.86)

written in terms of the 2-point form factor

R2 =

∫
Dλ
∑
i,j

ei(λi−λj)t . (2.87)

We know from the expression found in Sec. 2.2, that at early times R2 ∼ d2, so the early

time behavior of the frame potential is dominated by the R2
2 term until near the dip time.

At the dip time, R2 ≈
√
d and F (1)

GUE ≈ 1, achieving the Haar value and forming a 1-design.

At late times t→∞, we take the late time limit of R2 where only the δij terms contribute,

and find R2 ≈ d, meaning that the first frame potential F (1)
GUE ≈ 2 or double the Haar value.
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The first frame potential is plotted in Fig. 2.6.
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Figure 2.6: The first and second frame potentials for the GUE, using the infinite temperature
2-point and 4-point form factors computed in Sec. 2.2, plotted for d = 200 and d = 1000,
respectively. We observe the decay to the Haar value at the dip time and a subsequent rise
at late times.

A common intuition is that physical systems will become more and more uniformly

random as time passes. Then one might expect that the frame potential, a measure of

Haar randomness, would be a monotonically decreasing function with time. While it is

monotonic for random local quantum circuits, we found that it is not generically monotonic

for ensembles of unitaries generated by fixed Hamiltonians.18 In Sec. 2.6, we propose an

alternative quantity which may be monotonic at late times.

k = 2 frame potential

We can similarly compute the second frame potential using the unitary invariance of the

GUE measure:

F (2)
GUE =

∫
dH1dH2 e

− d
2
TrH2

1e−
d
2
TrH2

2

∣∣Tr
(
eiH1te−iH2t

)∣∣4 (2.88)

=

∫
Dλ1Dλ2

∫
dU Tr

(
U †Λ†1UΛ2

)
Tr
(

Λ†2U
†Λ1U

)
Tr
(
U †Λ†1UΛ2

)
Tr
(

Λ†2U
†Λ1U

)
,

where again, Λ is the exponentiated diagonal matrix. The fourth moment of the Haar

18Frame potentials monotonically decrease in local random circuits and Brownian circuits [53, 3] where
the time evolution is Markovian in the sense that the system samples different Hamiltonians, or infinitesimal
time evolution operators, at random at each time step. In Markovian ensembles, spectral form factors are
monotonically decreasing, and there is no ramp behavior. If the ensemble E is generated by a Markovian
process and is invariant under complex transposition E = E†, then we have F (k)(t) = R2k(2t).
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ensemble that appears here generates 4!2 = 576 terms. Recalling Eq. (2.80), we can compute

the fourth moment by computing the necessary Weingarten functions and summing over

δ-function contractions.

We relegate the presentation of the full expression for the k = 2 frame potential, and

the definitions of the spectral quantities on which it depends, to Appendix 2.C.2. While

F (2)
GUE depends on a number of spectral form factors, the dominant and interesting behavior

is entirely captured by the 2-point and 4-point spectral form factors. At early times, the

dominant contribution is

Early : F (2)
GUE ≈

R2
4

d4
. (2.89)

As we approach the dip time, the spectral quantities in the second frame potential,

F (2)
GUE ≈ 2 +

R2
4

d4
− 8R2

4

d6
+

6R2
4

d8
− 36R2

2

d4
+

4R2
2

d2
+

64R2R4

d6
− 8R2R4

d4
+ . . . , (2.90)

are suppressed. From the calculation in Sec. 2.2, we have R2 ≈
√
d and R4 ≈ d at the dip,

meaning all terms are suppressed, with the exception of the leading constant. Thus, at the

dip time, the EGUE
t achieves the Haar value F (2)

Haar ≈ 2 and forms an approximate unitary

2-design.

At late times, in the infinite time average, we know that R2 → d, and R4 → 2d2−d from

the two eigenvalue pairings in the sum where the exponent vanishes, i.e. δikδj` and δi`δjk,

and accounting for the i = j = k = ` terms. This tells us that the only terms that survive

at late times, and are not suppressed in d, are

Late : F (2)
GUE ≈ 2 +

R2
4

d4
+

4R2
2

d2
, (2.91)

which gives us F (2)
GUE ≈ 10, to leading order in 1/d.

2.4.3 Higher k frame potentials

Let us review what we have discussed so far.

k = 1 Frame Potential
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We computed the first frame potential for the GUE to be

F (1)
GUE =

1

d2 − 1

(
R2

2 + d2 − 2R2

)
≈ 1 +

R2
2

d2
− 2R2

d2
(2.92)

for large d. In the late time limit, where t → ∞, we have that R2 → d, and the late time

behavior goes like F (1)
GUE ∼ 1 +R2

2/d
2, and F (1)

GUE → 2 or double the Haar value.

Early : F (1)
GUE ≈

R2
2

d2
, Dip : F (1)

GUE ≈ 1 , Late : F (1)
GUE ≈ 2 . (2.93)

k = 2 Frame Potential

We discussed the early and dip behaviors above. The terms unsuppressed at late times are

F (2)
GUE, late ≈ 2 +

R2
4

d4
+

4R2
2

d2
. (2.94)

Since R2 → d and R4 → 2d2 − d in the late time limit, F (2)
GUE approaches 10.

Early : F (2)
GUE ≈

R2
4

d4
, Dip : F (2)

GUE ≈ 2 , Late : F (2)
GUE ≈ 10 . (2.95)

k = 3 Frame Potential

The full expression for the third frame potential is given in App. 2.C.2. The leading order

behavior at early times is R2
6/d

6, and at the dip time, the third frame potential approaches

its Haar value. Again, the late time behavior above is better understood by looking at the

dominant form factors. At late times, the terms that contribute at zeroth order in d are

F (3)
GUE, late ≈ 6 +

R2
6

d6
+

9R2
4

d4
+

18R2
2

d2
→ 96 , (2.96)

as R2 → d, R4 → 2d2, and R6 → 6d3 to leading order in d. In summary,

Early : F (3)
GUE ≈

R2
6

d6
, Dip : F (3)

GUE ≈ 6 , Late : F (3)
GUE ≈ 96 . (2.97)

k = 4 Frame Potential

It is not tractable to compute the k = 4 frame potential, as the Haar integrals involved (the
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eighth moment of the Haar ensemble), generate (8!)2 ∼ 1.6 billion terms. But the interesting

behavior can be understood from the dominant terms at leading order in d at different time

scales. Recall that the 2k-th moment of the Haar ensemble can be written as the sum of

δ-functions and the Weingarten function Wg (defined in App. 2.C.3) over elements of the

permutation group S2k. At large d, the Weingarten functions go as [60, 59]

Wg(σ) ∼ 1

d4k−#cycles
, (2.98)

where ‘#cycles’ denotes the number of cycles in the permutation σ. The Weingarten function

contributing at leading order in 1/d is the one labeled by the partitioning of 2k into ones,

i.e. the trivial permutation of S2k, which contributes as

W({1, 1, . . .}) ∼ 1

d2k
. (2.99)

All other Weingarten functions, labeled by the integer partitions of 2k, contribute at sublead-

ing order at early and late times. Thus, instead of computing the full fourth frame potential,

we can compute the terms of combinations of spectral functions with this Weingarten func-

tion as their coefficient. In the sum over elements of the permutation group σ, τ ∈ S2k, we

simply need the terms where τσ−1 is the trivial permutation, i.e. τ = σ. Computing this

we find the dominant contribution to the k = 4 frame potential, at leading order in 1/d.

The full expression is still too large to reproduce here, but we can comment on the relevant

features. The early time behavior is

F (4)
GUE, early ≈

R2
8

d8
. (2.100)

At the dip, where Rn ∼ dn/2, all terms are suppressed, leaving only the constant Haar value

24. Lastly, the late time behavior is

F (4)
GUE, late ≈ 24 +

R2
8

d8
+

16R2
6

d8
+

72R2
4

d4
+

96R2
2

d2
→ 1560 , (2.101)
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In summary,

Early : F (4)
GUE ≈

R2
8

d8
, Dip : F (4)

GUE ≈ 24 , Late : F (4)
GUE ≈ 1560 . (2.102)

k-th Frame Potential

We are now poised to discuss the general form of the k-th frame potential

Early : F (k)
GUE ≈

(R2k)
2

d2k
, Dip : F (k)

GUE ≈ k! . (2.103)

We can also determine what the general late time value should look like. Above, we under-

stood that the plateau value of the k-th frame potential is the sum of the Haar value and

the contributions of the spectral functions. It was only the squares of the spectral functions

that gave contributions which were not suppressed by 1/d at late times. Extrapolating from

above, we expect the k-th frame potential to have

F (k)
GUE, late ≈ Haar + spectral functions ≈ k! +

R2
2k

d2k
+ c1
R2

2k−2

d2k−2
+ . . .+ ck−1

R2
2

d2
, (2.104)

with coefficients c`. Given the way the spectral form factors are generated from Haar inte-

gration, we can understand these coefficients as the number of partial bijections of a given

length. For example, for k = 3 there are 24 partial bijections on a 3 element set of length

2, i.e. 24 nonclosed cycles of length two, which gives us 24 ways of constructing the 2-point

functions for k = 3. More generally, the coefficients above can be written as

c`(k) =

(
k

`

)2

`! , (2.105)

where for k = 4, we have the coefficients 1, 16, 72, 96, 24. The k-th coefficient is the

Haar value ck(k) = k!, i.e. the number of ways to construct 0-point functions in the Haar

integration. We can then write down the general late time behavior for the k-th frame

potential

F (k)
GUE, late ≈

k∑
`=0

c`(k)
R2

2(k−`)

d2(k−`)
. (2.106)
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Since the late time value of the 2k-point spectral form factor is, to leading order in d,

R2k = k!dk, the late time floor value for the k-th frame potential of the GUE is

F (k)
GUE, late ≈

k∑
`=0

(
k

`

)2

`!
(
(k − `)!

)2
=

k∑
`=0

k!2

`!
. (2.107)

where the first few terms of this sequence are 2, 10, 96, 1560.

We emphasize that while the purpose of this section is to understand GUE Hamiltonians,

the derivations in this subsection where we relate the frame potential to spectral 2k-point

functions only used the unitary invariance of the measure to proceed in doing the calculations

by Haar integration. Thus, if we are handed an ensemble whose measure is unitarily invariant,

the same relations hold.

2.4.4 Frame potentials at finite temperature

We now generalize the discussion of the frame potential to ensembles at finite temperature

and compute the thermal frame potential for the GUE. Again we consider the ensemble

of unitary time evolutions at a fixed time t, with H drawn from an ensemble E . One

might consider generalizing the frame potential to finite temperature by defining the frame

potential with respect to a thermal density matrix ρβ = e−βH/Tr(e−βH), and taking thermal

expectation values. With this in mind, we define the frame potential at finite temperature

by taking the average over all thermal 2k-point functions, with the operator insertions A

and B spaced equidistant on the thermal circle

〈AB(t) . . . AB(t)〉 = Tr
(
(e−βH/2kAe−βH/2kB(t) . . . e−βH/2kAe−βH/2kB(t)

)
/Tre−βH . (2.108)

Averaging the norm-squared 2k-point correlation function over all operators and then aver-

aging over the ensemble, we find

F (k)
Eβ =

∫
dH1dH2

∣∣Tr
(
e−(β/2k−it)H1e−(β/2k+it)H2

)∣∣2k
Tr(e−βH1)Tr(e−βH2)/d2

. (2.109)
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Note that this definition differs from the one in the Appendix of [11] by a factor of d2. With

this slight change in normalization, we reduce to the usual frame potential F (k)
E at infinite

temperature.

k = 1 Frame Potential

Let us compute the first thermal frame potential for GUE Hamiltonians:

F (1)
GUE(t, β) =

∫
Dλ1Dλ2

∫
dU

∣∣Tr
(
U †e−(β/2−it)D1Ue−(β/2+it)D2

)∣∣2
Tr(e−βH1)Tr(e−βH2)/d2

. (2.110)

where we use the invariance of the GUE measure under unitary conjugation, diagonalize H

where D is the diagonalized Hamiltonian, and use the left and right invariance of the Haar

measure to write a single Haar integral. Doing the Haar integral, we find

F (1)
GUE(t, β) =

1

d2 − 1

(
R̃2

2(t, β/2) + d2 − 2R̃2(t, β/2)
)
, (2.111)

where we define

R̃2(t, β) ≡
〈
Z(t, β)Z∗(t, β)

Z(2β)/d

〉
GUE

=

∫
Dλ

∑
ij e

it(λi−λj)e−β(λi+λj)∑
i e
−2βλi/d

, (2.112)

which is normalized such that we recover the infinite temperature form factor R2(t) when

β → 0. This normalization differs from 〈|Z(t, β)|2/Z(β)2〉, which gives an initial value of one.

Here the thermal form factor which naturally arises from the thermal frame potential has a

late time value which is β-independent. The initial value of R2(t, β), and thus F (1)
GUE(t, β),

depends on the β.

In stating the time scales for the thermal frame potential, we will work with the ‘quenched’

version of Eq. (2.112) where the numerator and denominator are averaged separately. As we

mentioned in Sec. 2.2.2, the ‘annealed’ 2-point form factor is the correct object to consider,

but we opt to work with the more analytically tractable quenched form factor. Numerically,

the two functions are in close agreement with each other.
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2.4.5 Time scales from GUE form factors

With an understanding of the behavior of the GUE spectral form factors from Sec. 2.2.2, we

can now look at the time scales for the dip and plateau of the first frame potential

F (1)
GUE =

1

(d2 − 1)

(
R2

2 + d2 − 2R2

)
. (2.113)

At td ≈
√
d, when R2 ≈

√
d, we reach the minimal Haar value of 1, and at the plateau time

tp = 2d, when R2 = d, we reach the late time value of 2.

There is another time scale at play here which is an artifact of working at infinite tem-

perature. We might also ask what is the first time the form factor or frame potential reaches

its minimal value. This time scale can be attributed to the first zero of the Bessel function,

J1(2t) = 0 at t ≈ 1.92, and is universal for all values of d. This is the first time at which the

ensemble becomes a 1-design. Something like the scrambling time, where the frame potential

begins to deviate rapidly from its initial value, occurs at O(1) time.

Using the explicit expression for the GUE 4-point form factor, we can also verify the

expected time scales in the second frame potential F (2)
GUE. At the dip time, td ≈

√
d, we have

that all the form factors appearing in the F (2)
GUE are suppressed by powers of d, and thus the

leading term is the Haar value, F (2)
GUE(td) ≈ 2. Further, the plateau values of the spectral

form factors R2 and R4 give us the late time value of F (2)
GUE ≈ 10.

Lastly, we can extract the time scales and values of the finite temperature frame potential

from our discussion of R2(t, β). The initial value of the first frame potential is

F (1)
GUE(t = 0, β) = d2

h1(β/2)4

h1(β)2
, (2.114)

where h1(β) = J1(2iβ)/iβ. At the dip time, td ≈ h2(β/2)
√
d, the thermal form factor defined

above R̃2(td, β/2) ≈
√
dh3(β/2)/h1(β), with the functions defined in Sec. 2.2.2. For β � d,

we have

F (1)
GUE(td, β) ≈ 1 . (2.115)
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Finally, as we can see from time averaging Eq. (2.112), at the plateau time

F (1)
GUE(tp, β) = 2 , (2.116)

for any β, as the late time value of the thermal frame potential does not depend on the

temperature.

Let us briefly comment on the dip value of the k-th frame potential at infinite temper-

ature. As we discussed, at the dip time td ≈
√
d, the frame potentials reached the Haar

value and form an approximate k-design for some k. Determining the size of k requires an

understanding of the corrections to the dip value. The leading order correction to the Haar

value at the dip comes from R2
2/d

2 ∼ 1/d, the coefficient of which is ck−1(k) = k! k. So at

the dip time

F (k)
GUE(td) ≈ k!

(
1 +

k

d

)
, (2.117)

meaning we form an approximate k-design for k � d.

The claim that the GUE forms a k-design at intermediate times but then deviates from

this behavior at late times might at first seem surprising, but the late time behavior makes

sense if we consider the dephasing of GUE eigenvalues in the t → ∞ limit. Under the

exponential map λ → eiλt, the GUE eigenvalues are distributed around the circle and at

early times will still be correlated and logarithmically repel. However, at late times the

eigenvalues will spread uniformly around the circle. Moreover, explicitly computing the level

density for the GUE under the exponential map and taking the long time limit, one finds

that the density becomes constant and the eigenvalues are independently and uniformly

distributed. Eigenvalue statistics of Haar random unitary operators can be characterized by

the following well-known relation [61]19

∫
Haar

dU tr(U t)tr(U †
t
) = t k ≤ d . (2.118)

If we suppose that the eigenvalue distribution of U is random, then
∫
dU tr(U t)tr(U †

t
) would

not depend on t. Therefore, the late-time eigenvalue statistics of unitaries generated by fixed

19If one views t as a discrete time and U as a time evolution in a unit time with a Hamiltonian H = i logU ,
then the above equation mimics the late-time ramp and plateau behavior.
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GUE matrices is quite different from those of Haar unitaries, which have eigenvalue repulsion.

2.5 Complexity and random matrices

In recent years, the notion of quantum complexity has attracted significant attention in the

study of quantum many-body systems [62, 63, 64]. By quantum complexity of a quantum

state |ψ〉, we mean the minimal number of elementary local quantum gates necessary to

(approximately) create |ψ〉 from a trivial product state with no entanglement. A similar

characterization applies to the quantum complexity of unitary operators constructed from

the identity operator. Quantum complexity provides deep insight into what kinds of physical

operations are allowed (or prohibited) in a given physical system as states or operators of

very large complexity cannot be prepared or implemented in a short period of time by

the evolution of local Hamiltonians with finite energy density. Quantum complexity has also

proven useful in condensed matter physics where topological phases of matter can be classified

in terms of the quantum complexity of ground state wavefunctions [65]. More recently, it was

asked whether the AMPS thought experiment can be carried out in a physically reasonable

amount of time and resources by considering the computational complexity of decoding the

Hawking radiation [66]. In the past few years, quantum complexity has been considered in

holography as a possible CFT observable20 to study the late-time dynamics of the AdS black

holes [63, 64].

Despite all the promises of the usefulness of quantum complexity, a precise understand-

ing of the growth of quantum complexity in quantum many-body systems, especially in

AdS/CFT, continues to elude us. While it is possible to see a hint of complexity growth

from entanglement dynamics at early times before the scrambling time,21 the late-time com-

plexity growth remains difficult to observe as the extremal surfaces do not go through the

interior of the black hole and entanglement entropies get saturated at late times. From a

mathematical perspective, it is extremely challenging to compute the quantum gate com-

plexity of a given quantum state |ψ〉 as one essentially needs to consider all the possible

20At least with respect to some subspace of states of the boundary CFT.
21For example, from the level-statistics of the entanglement spectrum [67].
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quantum circuits creating |ψ〉 and find the one with the minimal number of gates. Thus it

would be valuable to have an analytical toy example of Hamiltonians whose dynamics indeed

makes the quantum complexity of wavefunctions increase even after the scrambling time by

providing a rigorous lower bound on quantum complexity.

Here, we present analysis of complexity growth of typical Hamiltonian time evolution by

GUEs and show that quantum complexity indeed grows in time. A lower bound on a typical

unitary operator in an ensemble E can be computed from a simple counting argument.

Observe that short depth quantum circuits can prepare only a small number of unitary

operators which occupy a tiny fraction of the whole space of unitary operators. The idea

is that, if there are so many unitary operators in E which are sufficiently far apart and

distinguishable, then most of operators in E cannot be created by a short depth circuit.

Furthermore, it has been found that lower bounds on the number of distinguishable unitary

operators in E can be obtained by frame potentials, a measure of randomness in E . Although

such a counting argument often gives a rather loose lower bound, it is still possible to obtain a

rigorous complexity lower bound for a system of quantum many-body Hamiltonians. See [11]

for a rigorous treatment and details.

To be concrete, let us consider a system of qubits where we pick a pair of qubits and

apply an arbitrary two-qubit gate at each step. While the circuit complexity for generating

an ensemble and the circuit complexity for generating a particular unitary in the ensemble

are different, the former provides an approximate lower bound for the circuit complexity

of typical unitary operators in the ensemble [11]. We define the number of quantum gates

necessary to create an ensemble E by a quantum gate complexity Cgate. The lower bound on

the quantum gate complexity is then given by

Cgate ≥
2kn− log2F (k)

2 log(n)
, (2.119)

up to some constant multiplicative factor. Let us consider the bound for small k. In Sec. 2.4,

we found that F (k) drops to its minimal value ∼ k! at t ∼ O(1) (the first zero of the Bessel
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function). We thus have

Cgate(t) ≥
2kn− log2

R2
2k(t)

d2k

2 log(n)
' 4kn− log2R2

2k(t)

2 log(n)
' 4k(n− log2R1(t))

2 log(n)
(2.120)

up to the first dip time tdip ∼ O(1) where we have used an approximation R2k ' (R1)
2k.

Thus, at t ∼ O(1), the following lower bound on the complexity is obtained:

Cgate(tdip) ≥ O
(

kn

log(n)

)
. (2.121)

Converting it into a quantum circuit complexity, we obtain

Ccircuit(tdip) ≥ O
(

k

log(n)

)
. (2.122)

This lower bound should be valid as long as k ∼ O(1). As we have discussed in Sec. 2.2 and

Sec. 2.4, the early-time oscillations of spectral form factors and frame potentials disappear

at finite temperature. It would be then useful to consider the complexity lower bound based

on envelope functions of form factors and frame potentials. Since the asymptotic behavior

is given by R1(t) ∼ 1/t3/2, we would have

Cgate(β, t) ≥ O
(
k log t

log(n)

)
, (2.123)

where β implies that we consider the asymptotic behaviors of the envelope. Thus, the

quantum circuit complexity grows at least logarithmically in t up to the thermal dip time.

While the above studies are able to provide rigorous lower bounds on quantum circuit

complexity, the bounds are not meaningful when k is small. To obtain a meaningful lower

bound on quantum complexity, we need to evaluate the frame potential and form factor for

large k. Analytically computing R2k and F (k) for large k seems rather challenging. Instead,

we employ a certain heuristic argument to derive the decay of R2k and F (k). Let us begin

by recalling the early-time behavior of 1-point form factor. The 1-point form factor R1(t)
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can be analytically written via a contour integral as follows [68]

R1(t) = de−t
2/2d

∮
du

2πi

(
1

−it

)(
1− it

du

)d
e−itu . (2.124)

For d→∞, the integral gives the Bessel function:

∮
du

2πi

(
1

−it

)(
1− it

du

)d
e−itu ' J1(2t)

t
. (2.125)

But J1(2t) ' t for t� 1, so we have

R1(t) ' de−t
2/2dJ1(2t)

t
, (2.126)

where the Gaussian decay is dominant for t� 1 while, for 1� t�
√
d, the Bessel function

dominates the decay. In a similar manner, the 2k-point form factor can be analytically

written as

R2k(t) = d2ke−kt
2/d

∮ 2k∏
j=1

duj
2πi

(
1 + (−1)j

it

duj

)d
e(−1)

jituj det

(
1

uj − uk + (−1)jit/d

)
,

(2.127)

where the sign of ±it depends on the index of ui and the integral part is equal to unity at

t = 0. In previous sections, we have neglected the Gaussian decay because our discussions

were mostly centered on small k spectral form factors. But, for large k, the Gaussian decay

part is no longer negligible. Let us bound the form factor by using the Gaussian decay part

only by neglecting the decay contribution from Bessel functions in the integral part:

R2k(t) ≤ d2ke−kt
2/d . (2.128)

While the validity of this inequality for large k remains unclear, we assume its validity up

to the dip time ∼
√
d when ramp behavior kicks in. The notion of unitary k-design and its

application to complexity would be meaningful only up to k ∼ O(d) (see [11] for instance).
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By using this approximate bound for k = cd with c ∼ O(1), we will have

F (cd) . d2ke−2ct
2

(2.129)

up to the dip time ∼
√
d. This leads to the following estimate of quantum complexity growth

for the GUE:

Cgate &
ct2

log(n)
, (2.130)

which predicts a quadratic growth of quantum complexity.

Let us compare our estimate with predictions from the AdS/CFT correspondence. Ac-

cording to the conjecture that quantum complexity is proportional to the volume in the bulk,

the early-time complexity (volume) growth is quadratic in time, and then becomes linear

in time. Our analysis above suggests that the complexity growth for the GUE is (at least)

quadratic in t for a long time until very close to the saturation of quantum complexity ∼ d.

One may find that t2 complexity growth is unphysical as the system has evolved only for

time t. The point is that the GUE Hamiltonian is generically non-local and is comprised

of O(n)-body terms whereas we measure quantum complexity by using two-local quantum

gates as building blocks.

2.6 Characterization of Haar-invariance

From the perspective of operator delocalization, it is clear why the GUE fails to characterize

information scrambling and dynamics in local quantum systems at early times. Recall that

the GUE is Haar-invariant, meaning

∫
U∈Haar

dU

∫
H∈GUE

dH f(UHU †) =

∫
H∈GUE

dH f(H) , (2.131)

where U is integrated over the unitary group U(d) and where f(H) is an arbitrary func-

tion. As a consequence, a typical GUE Hamiltonian is non-local (or O(n)-local), so local

operators are delocalized essentially immediately. Indeed, the Haar-invariance of the GUE
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ensemble and non-locality of its Hamiltonians resulted in unusual behaviors of OTOCs whose

decay time was shorter than that of 2-point correlation functions. It thus appears that local

chaotic Hamiltonians and a typical Hamiltonian from a Haar-invariant ensemble behave in

a dramatically different way.

However, previous studies on chaotic Hamiltonians suggest that at late times, Haar-

invariant Hamiltonian ensembles, such as the GUE, GOE and GSE, capture behaviors of

correlation functions remarkably well. This apparent tension between early time and late

time behaviors may be resolved in the following manner. Initially, any ensemble of local

Hamiltonians is not Haar-invariant because Hamiltonians are made of local terms. This can

be clearly seen from the fact that the OTOC, 〈A(0)B(t)A(0)B(t)〉, behaves rather differently

depending on the sizes of operators A,B. Yet, after the scrambling time when local operators

become delocalized by Hamiltonian evolution, it becomes harder to tell whether the original

operators A(0), B(0) were local or not, and we expect that the unitary ensemble becomes

‘approximately’ Haar-invariant.

With this observation in mind, we are naturally led to consider a fine-grained character-

ization of Haar-invariance which we shall call k-invariance. Intuitively, k-invariance refers

to an ensemble of unitary operators which appear to be Haar-invariant up to k-th moments.

More precisely, let E be an ensemble of unitary operators. We define a Haar-invariant ex-

tension Ẽ of this ensemble by:

∫
U∈Ẽ

dU =

∫
W∈Haar

dW

∫
U∈E

d(WUW †) . (2.132)

From the construction, we can easily see W ẼW † = Ẽ for any unitary operator W , and so the

Haar’ed ensemble is independent of any basis. Let us consider the k-fold twirl superoperator:

Φ
(k)
E (·) =

∫
U∈E

dU U⊗k(·)U †⊗k . (2.133)

Then, E is said to be k-invariant if and only if

Φ
(k)
E (·) = Φ

(k)

Ẽ
(·) . (2.134)
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An ensemble of unitaries is Haar-invariant if and only if it is k-invariant for all k ≥ 1. Similar

definitions apply to Haar-invariance with respect to orthogonal and symplectic groups.

The utility of k-invariance can be seen from an explicit relation between correlation

functions and spectral statistics. Recall that we have derived the following relation in the

GUE by using the Haar-invariance of the GUE measure:

〈A1(0)B1(t) . . . Ak(0)Bk(t)〉GUE ' 〈A1B1 . . . AkBk〉
R2k(t)

d2k
. (2.135)

It is clear that the same derivation applies to any ensemble which is k-invariant. The

implication is that, after the k-invariance time, the behavior of 2k-point OTOCs can be

completely determined by the spectral statistics alone. The physical significance of the k-

invariance time is that it is the time scale when OTOCs behave in a similar way regardless of

the locality or non-locality of the operators Aj, Bj (as well as their time-ordering). A similar

conclusion holds for k-th frame potentials which can be written only in terms of spectral

form factors for k-invariant ensembles. Thus, k-invariance and its associated time scale will

be a useful notion to characterize the loss of locality from the perspective of 2k-point OTOCs

and the onset of random matrix behavior.

How can one verify that some ensemble E is k-invariant? One formal approach is to use

frame potentials. Let us define the following operator

S =

∫
E
dUU⊗k ⊗ U †⊗k −

∫
Ẽ
dUU⊗k ⊗ U †⊗k , (2.136)

which corresponds to the difference between tensor expanders from E and its Haar-invariant
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extension Ẽ . Then we have

0 ≤ tr(S†S) =

∫
U,V ∈E

dUdV |tr(U †V )|2k

−
∫
U,V ∈E

dUdV

∫
W∈Haar

dW |tr(U †WVW †)|2k

−
∫
U,V ∈E

dUdV

∫
W∈Haar

dW |tr(WU †W †V )|2k

+

∫
U,V ∈E

dUdV

∫
W,Y ∈Haar

dWdY |tr(WU †W †Y V Y †)|2k

=F (k)
E −F

(k)

Ẽ
,

(2.137)

where F (k)
E is the k-th frame potential for an ensemble E . Here we used the fact that the Haar

unitary ensemble is left and right invariant. Therefore, we arrive at the following inequality

F (k)
E ≥ F

(k)

Ẽ
(2.138)

with equality if and only if E being k-invariant. The difference F (k)
E − F

(k)

Ẽ
measures the

2-norm distance to being k-invariant.22 The above derivation is a straightforward general-

ization of a method used in [57].

Haar-invariance in a spin system

Let us examine k-invariance for the random non-local (RNL) spin system discussed in

Sec. 2.3.1 where we defined the Hamiltonian in Eq. (2.48) as the sum over all 2-body opera-

tors with random Gaussian couplings Jijαβ. The time evolution of the first frame potential

for this ensemble as well as its Haar-conjugated generalization are shown in Fig. 2.7 along

side the difference F (1)
E − F

(1)

Ẽ
, measuring the distance to 1-invariance. We only report nu-

merics for a modest spin system of n = 6 spins. The difficulty of performing frame potential

numerics is mentioned in App. 2.D.

We find that in this chaotic spin system, at early times we quickly deviate from 1-

invariance, but after evolution by the system’s chaotic dynamics, we observe an approach

22For a more rigorous analysis, the diamond distance should be considered. While the diamond norm is
difficult to compute in general, there are some examples of ensembles of realistic Hamiltonians where the
diamond norm can be analytically computed. We hope to address this in a future publication.
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to approximate 1-invariance at late times. For this system, we see that the frame potential

approaches, but does not equal, its Haar-invariant counterpart at later times. But we found

numerically that increasing the number of sites makes this late time difference smaller. Thus

we expect that at large N for chaotic systems, we reach k-invariance at late times.

F(1) for HRNL

F(1)Haar`ed for HRNL

0.01 0.10 1 10 100 1000
t

1
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100

1000

F(1)
Frame potentials for HRNL

F(1) - F(1)Haar`ed
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t
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8

Δ F(1)
Distance to k-invariance

Figure 2.7: On the left we plot the first frame potential F (1)
ERNL

for HRNL along side the first

frame potential for its Haar-invariant extension F (1)

ẼRNL
, computed numerically using the 2-

point form factor as in Eq. (2.86). On the right we plot the difference, measuring the 2-norm
distance to 1-invariance and observe approximate 1-invariance at late times.

Comments on k-invariance

While frame potentials provide a quantitative way of judging if an ensemble E is k-invariant

or not, it would be beneficial to relate it to some physical observables such as correlation

functions. It is perhaps not a big surprise that k-invariance can be verified by 2k-point

OTOCs. The following statement holds:

〈A1(0)B1(t) . . . Ak(0)Bk(t)〉E
= 〈Ã1(0)B̃1(t) . . . Ãk(0)B̃k(t)〉E ∀Ãj, B̃j ⇐⇒ E is k-invariant (2.139)

where Aj, Bj are Pauli operators, and Ãj, B̃j are some transformations from Aj, Bj such that

Ãj = WAjW
† B̃j = WBjW

† (2.140)
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where W is an arbitrary element of unitary 2k-design. The proof is straightforward and thus

is skipped.

Motivated by late-time random matrix universality of chaotic quantum systems, we have

introduced a novel quantum information theoretic concept, k-invariance, as a possible way

of bridging early-time and late-time physics. We would like to comment on a few caveats.

First, consider an ensemble of unitary operators E generated by some Hamiltonians. Since

Et=0 = {I}, the ensemble is Haar-invariant at time t = 0. Thus, an ensemble is initially

k-invariant and is expected to immediately deviate at t > 0 and then eventually become

approximately k-invariant. Therefore F (k)
E − F

(k)

Ẽ
, which quantifies k-invariance, is not a

monotonic quantity under time evolution. However, we expect that it is monotonically

decreasing at late times. We observe these features in the non-local spin system described

above. Depending on the symmetries of the system of interest, we would need to consider

the Haar measure with respect to an appropriate Lie group G ⊂ U(d).

Second, for realistic physical systems with local Hamiltonians, it is not likely that an

ensemble Et becomes k-invariant in an exact sense even at very late times. This can be seen

from a recent work which shows that the late-time value of infinite temperature OTOCs

〈A(0)B(t)A(0)B(t)〉 of q-local Hamiltonians is O(1/N) if operators A,B are local and have

overlaps with the Hamiltonian [69], based on an Eigenstate Thermalization Hypothesis

(ETH) argument. A similar argument applies to late-time values of two-point correlators.

On the other hand, the Haar average of OTOCs is O(1/d2) (or O(1/d) for an average of

absolute values). Thus, OTOCs for local operators and OTOCs for non-local operators may

have significantly different late-time values. However, it should be noted that a prediction

from the AdS/CFT seems to suggest that correlation functions may become exponentially

small e−O(S) even if A,B are local operators. This may suggest a subtle but important

distinction between ordinary strongly interacting systems and gravitational systems which

leads to a far-reaching question concerning the universality of gravity and the universality

of random matrix theory, seen from the lens of k-invariance.

Let us conclude the section with a brief remark on the Eigenstate Thermalization Hy-

pothesis (ETH). The notion of k-invariance may be viewed as a dynamical analog of Berry’s

conjecture about random eigenvectors, which was the motivation behind ETH [70, 71, 21].
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A basic assumption of ETH is that matrix elements of a local operator O, with respect

to energy eigenstates, look “random” inside some sufficiently small energy window ∆E. A

system achieving k-invariance roughly tells us that energy eigenstates may be treated as

random vectors after sufficiently long times for studying dynamics via OTOCs.23 Given the

prevalence of eigenstate thermalization in strongly correlated many-body systems,24 a pre-

cise relation between k-invariance, ETH and OTOCs would provide clarity on defining what

it means for a quantum system to be chaotic.

2.7 Discussion

Random matrix theory provides a powerful paradigm for studying late-time chaos. We have

leveraged the technology of random matrix theory and Haar-invariance to study correlation

functions like OTOCs which diagnose early-time chaos, and frame potentials which diagnose

randomness and complexity. The salient feature of the GUE which gave us computational

traction is its Haar-invariance, namely that the ensemble looks the same in any basis. As a

result, the dynamics induced by GUE Hamiltonians is non-local (O(N)-local) with respect to

any tensor factor decomposition of the Hilbert space, and so the dynamics immediately de-

localizes quantum information and other more subtle forms of correlations. Accordingly, the

GUE captures features of the long-time physics of a local system that has been delocalized.

In a chaotic quantum system described by a local Hamiltonian, there are two temporal

regimes of interest: times before the system scrambles and thus has mostly local correla-

tions, and times after the system scrambles when correlations have effectively delocalized.

We suggested that the transition between these two regimes may be due to the onset of

approximate Haar-invariance, and we defined k-invariance as a precise characterization. A

careful understanding of Haar-invariance for ensembles of local quantum systems could yield

precise insights into the apparent breakdown of locality, and tell us in what time regimes

we can use Haar-invariance to calculate late-time physics (i.e., correlation functions, frame

potentials, complexity, etc.) A concrete way of studying delocalization of operators and

23The related notion of quantum ergodicity and randomness of eigenstates was recently discussed in [72].
24See [21] and references therein. Interestingly, evidence for ETH has also been discussed recently both in

the SYK model [73] as well as in its free fermion counterpart [74].
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the emergence of k-invariance would be to compare connected pieces of OTOCs with local

and non-local operators and observe their eventual convergence. Of particular interest is

to find the 2-invariance time when all the 4-point OTOCs, regardless of sizes of operators,

start to behave in a similar manner. This time scale must be at least the scrambling time

since OTOCs with local operators start to decay only around the scrambling time while

OTOCs with non-local operators decay immediately. Relatedly, a recent work [75] strives to

understand the onset of random matrix behavior at early times.

In this chapter, we computed correlation functions averaged over an ensemble of Hamil-

tonians. Chaotic systems described by disordered ensembles tend to have small variance in

their correlators, and their averaged correlation functions are close to those computed for

a simple instance of the ensemble. Even in regimes where replica symmetries are broken,

performing time bin averaging reproduces the averaged behaviors very well. We find in App.

2.D.3 that the time bin-averaged frame potential in the large d limit for two samples agrees

with averaging over the whole ensemble.

We conclude by mentioning a far reaching goal, but one that provides the conceptual

pillars for these ideas, namely understanding black holes as quantum systems. While black

holes are thermodynamic systems whose microscopic details remain elusive, questions about

information loss can be precisely framed by late-time values of correlation functions within

AdS/CFT [36], where unitary evolution can be discussed in terms of the boundary CFT.

Ultimately, we would like to use random matrix theory to characterize chaos and complexity

in local quantum systems and identify late-time behaviors which are universal for gravita-

tional systems. An interesting future question is to see if gravitational systems are described

by random matrices in the sense of k-invariance and pinpoint some late-time behavior which

results from gravitational universality.

2.A Scrambling and 2-designs

Recently there has been growing interest in scrambling and unitary designs from the high

energy and quantum information communities. Here we provide a short summary of different

ways of quantifying them for infinite temperature cases.
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2.A.1 Scrambling

We begin with scrambling. Consider a system of qubits and non-overlapping local (O(1)-

body) Pauli operators V,W and compute OTOC = 〈VW (t)VW (t)〉 where W (t) = UWU †.

The initial value of OTOC at t = 0 is 1. Scrambling is a phenomenon where the OTOC

becomes O(ε) with ε� 1 being a small but finite constant:

〈VW (t)VW (t)〉 = O(ε) for all pairs of local operators V,W (2.141)

It is often the case that OTOCs with local operators are the slowest to decay. This can be

seen from our analysis on 4-point spectral form factors. So, by the scrambling time, OTOCs

with non-local operators are already O(ε) or smaller. The scrambling time is lower bounded

by O(log(n)) in the case of 0-dimensional O(1)-local systems due to a Lieb-Robinson–like

argument [3].

Scrambling has caught significant attention from the quantum gravity community since

it is closely related to the Hayden-Preskill thought experiment on black hole information

problems [1]. Assume that V,W act on qubits on some local regions A,D respectively, and

define their complements by B = Ac, C = Dc. Imagine that A is an unknown quantum state

|ψ〉 thrown into a “black hole” B, and the whole system evolves by some time-evolution

operator U = e−iHt. At time t, we collect the “Hawking radiation” D and attempt to

reconstruct (an unknown) |ψ〉 from measurement on D. Such a thought experiment was

considered by Page who argued that, if a black hole’s dynamics U is approximated by a

random unitary operator, then reconstructing |ψ〉 is not possible unless we collect more than

n/2 qubits of the Hawking radiation [76]. As we shall show in Appendix 2.B, the impossibility

of reconstruction of A from D is reflected in the smallness of the 2-point correlation functions:

|〈VW (t)〉| = O(ε) for local V,W −→ no reconstruction of A from D. (2.142)

The famous calculations by Hawking and Unruh imply that these two-point correlators are

thermal, and quickly become small.

Hayden and Preskill considered a situation where a black hole B has already emitted
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half of its contents, and we have collected its early radiation and stored it in some secure

quantum memory M . The quantum memory M is maximally entangled with B, and the

question is whether we can reconstruct |ψ〉 by having access to M . It has been shown that

scrambling, as defined above, implies that we can reconstruct |ψ〉 with some good average

fidelity by collecting the Hawking radiation on D at time t:

〈VW (t)VW (t)〉 = O(ε) −→ reconstruction of A from D and M . (2.143)

Therefore, scrambling implies the possibility of recovering local quantum information via

local measurements on the Hawking radiation. A random unitary operator U typically

gives very small OTOCs which enables reconstruction of A in the Hayden-Preskill thought

experiment.

Reconstruction problems in the Hayden-Preskill setting are closely related to the problem

of decoupling. A crucial difference between scrambling and decoupling is that decoupling

typically considers A,D to be some finite fraction of the whole system and concerns the

reconstruction of unknown many-body quantum states supported on a big region A. Since

we quantify the reconstruction via fidelity for many-body quantum states, the requirement

tends to be more stringent. The relation between scrambling and decoupling is discussed

in [77] in the context of local random circuits.

2.A.2 Unitary designs

Next let us discuss unitary 2-designs. Consider an ensemble of time evolution operators Uj

with probability distributions pj; E = {Uj, pj} with
∑

j pj = 1. The 2-fold channels of E and

the Haar ensemble are

ΦE(ρ) =
∑
j

pjUj ⊗ Uj(ρ)U †j ⊗ U †j ΦHaar(ρ) =

∫
Haar

dU U ⊗ U(ρ)U † ⊗ U † . (2.144)

If ΦE(ρ) = ΦHaar(ρ) for all ρ, then we say E is 2-design. One can check if E is 2-design or not

by looking at OTOCs. Consider the OTOC 〈VW (t)VW (t)〉 for arbitrary Pauli operators

V,W which are not necessarily local operators. We will be interested in the ensemble averages
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of OTOCs:

〈VW (t)VW (t)〉E ≡
∑
j

pj〈V UjWU †j V UjWU †j 〉 . (2.145)

If 〈VW (t)VW (t)〉E = 〈VW (t)VW (t)〉Haar for all pairs of Pauli operators V,W , then the

ensemble forms a unitary 2-design [11].

A typical unitary operator from a 2-design achieves scrambling because

|〈VW (t)VW (t)〉|Haar '
1

d
〈VW (t)VW (t)〉Haar '

1

d2
(2.146)

for any (possibly non-local) Pauli operators V,W . The first equation implies that the OTOC

value for a single instance from the ensemble is typically 1/d in absolute value while the

second equation implies that the OTOC, after ensemble averaging, is 1/d2. Since OTOCs

are small, a typical 2-design unitary operator U implies scrambling, but the converse is

not always true. Recall that scrambling only requires OTOC = O(ε). There is thus a big

separation in the smallness of the OTOC, and the scrambling time may be much shorter

than the 2-design time. Also, scrambling requires OTOC = O(ε) only for local operators

while a 2-design unitary makes the OTOC small for all pairs of Pauli operators. The lower

bound for the exact 2-design time is O(log(n)), but no known protocol achieves this time

scale.

One important distinction between scrambling and the 2-design time is how small the

OTOCs becomes. The phenomena of scrambling concerns the deviation of OTOC values

from the maximal value 1. The concept of a 2-design concerns the deviation of OTOC

values from the minimal value O(1/d). The former is related to early-time chaos and the

latter is related to late-time chaos.

2.A.3 Approximate 2-designs

Finally, let us briefly discuss the notion of approximate 2-design. When two quantum op-

erations ΦE and ΦHaar are close to each other, we say that E is an approximate 2-design.

In order to be quantitative, however, we need to pick appropriate norms with which two
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quantum operations can be compared. The 2-norm distance can be defined in a simple way

via

2-norm =
√

Tr(SS†)

S =

∫ ∑
j

pjUj ⊗ Uj ⊗ U †j ⊗ U †j −
∫
Haar

dU U ⊗ U ⊗ U † ⊗ U † .
(2.147)

If S = 0, then ΦE and ΦHaar would be the same. We say that E is a δ-approximate 2-design

in the 2-norm if
√

Tr(SS†) ≤ δ.

Frame potentials are closely related to the 2-norm distance because Tr(SS†) = FE −
FHaar ≥ 0. In [11], a relation between the frame potential and OTOCs has been derived

∫
dAdBdCdD|〈AB(t)CD(t)〉E |2 =

F (2)
E
d6

. (2.148)

In practice, the main contribution to the left-hand side comes from OTOCs of the form

〈AB(t)AB(t)〉E . For simplicity of discussion, let us assume that 〈AB(t)CD(t)〉E = 0 when

C 6= A or D 6= B (where A,B,C,D are non-identity Pauli operators). Then, a simple

analysis leads to

|〈AB(t)AB(t)〉E |2 ' δ2 (2.149)

for typical non-identity Pauli operators A,B. Thus, being a δ-approximate 2-design in the

2-norm implies that OTOCs are typically small. However, this does not necessarily imply

scrambling because OTOCs with local operators are often the slowest to decay. In order

to guarantee scrambling, we would need a δ
d
-approximate design in the 2-norm (under an

assumption on 〈AB(t)CD(t)〉E = 0 for C 6= A or D 6= B). For this reason, an alternative

distance measure called the diamond norm is often used in quantum information literature.

See [78] for relations between different norms.
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2.B Information scrambling in black holes

In this Appendix, we discuss behaviors of 2-point correlators and 4-point OTOCs from the

viewpoint of information scrambling in black holes. We begin by deriving a formula which

relates two-point autocorrelation functions and mutual information. We will be interested

in the following quantity

∣∣〈OAOD(t)〉avg
∣∣2 ≡ 1

d2Ad
2
D

∑
OA∈PA

∑
OD∈PD

|〈OAOD(t)〉|2 , (2.150)

where 〈OAOD(t)〉 = 1
d
Tr(OAUODU

†) and U is the time-evolution operator of the system,

and PA and PD are sets of Pauli operators on A and D. There are d2A and d2D Pauli operators.

The relation between apparent information loss and two-point correlators can be un-

derstood by using the state representation |U〉 of a unitary operator U . Given a unitary

operator U acting on an n-qubit Hilbert space H, one can view U as a pure quantum state

|U〉 defined on a 2n-qubit Hilbert space H⊗H:

|U〉 ≡ U ⊗ I|EPR〉 , |EPR〉 =
1√
2n

2n∑
j=1

|j〉 ⊗ |j〉 . (2.151)

Or equivalently, |U〉 ≡ 1√
2n

∑
i,j Ui,j|i〉⊗|j〉 where U =

∑
i,j Ui,j|i〉〈j|. One easily sees that the

quantum state |U〉 is uniquely determined by a unitary operator U . The state representation

allows us to view |U〉ABCD as a four-partite quantum state:

|U〉 =
1√
2n

, (2.152)

where B = Ac and D = Cc in the original system of qubits. Given the state representation

|U〉 of a unitary operator, we can derive the following formula

∣∣〈OAOD(t)〉avg
∣∣2 =

1

d2Ad
2
D

2I
(2)(A,D) , (2.153)

73



where I(2)(A,D) is the Rényi-2 mutual information between A and D for |Ψ〉, defined by

I(2)(A,D) ≡ S
(2)
A + S

(2)
D − S

(2)
AD.

To derive the formula, let ρAD be the reduced density matrix of |U〉 on AD. Its graphical

representation is

ρAD =
1

d
(2.154)

The averaged 2-point correlator is given by

∣∣〈OAOD(t)〉avg
∣∣2 =

1

d2
(2.155)

where dotted lines represent averaging over Pauli operators. By using 1
d

∑
O∈P O ⊗ O† =

SWAP, we obtain

|〈OAOD(t)〉avg|2 =
Tr(ρ2AD)

dAdD
=

1

d2Ad
2
D

2I
(2)(A,D) . (2.156)

Let us think a little more about the formula we have derived. For strongly interacting
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systems, it is typically the case that

〈OAOD(t)〉 ' 0 if Tr(OAOD) = 0 . (2.157)

So, the following relation for the autocorrelation functions holds approximately:

∑
OA∈PA

|〈OAOA(t)〉|2 ' 2I
(2)(A,D) , (2.158)

where we took A and D to be the same subset of qubits.

The above formula has an interpretation as information retrieval from the early Hawking

radiation. Consider scenarios where Alice throws a quantum state |ψ〉 into a black hole

and Bob attempts to reconstruct it from the Hawking radiation. In accordance with such

thought experiments, let A be qubits for Alice’s quantum state, B be the black hole, C

be the remaining black hole and D be the Hawking radiation. Then, the averaged 2-point

correlation functions have an operational interpretation as Bob’s strategy to retrieve Alice’s

quantum state. Let us assume that the initial state of the black hole is unknown to Bob and

model it by a maximally mixed state ρB = IB
dB

. Alice prepares an EPR pair |EPR〉AR on her

qubits and her register qubits. Notice the difference from the Hayden-Preskill setup where

Bob had access to some reference system B′ which is maximally entangled with the black

hole B. In this decoding problem, we do not grant such access to Bob. He just collects the

Hawking radiation D and tries to reconstruct Alice’s quantum state.

The most obvious strategy is to apply the inverse U †. However, Bob does not have access

to qubits on C. So, he applies U †CD ⊗ IR to ρC ⊗ ρDR where ρC = IC
dC

. Graphically, this

corresponds to

|Ψ〉 =
d√

dAdBdC
(2.159)
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The success of decoding is equivalent to distillation of an EPR pair between A and R. So,

we compute the EPR fidelity. Namely, letting Π be a projector onto an EPR pair between

A and R, we have

F = 〈Ψ|Π|Ψ〉 =
1

d2
(2.160)

which leads to

F = Tr(ρ2BC) = Tr(ρ2AD) = dAdD|〈OAOD(t)〉avg|2 . (2.161)

Therefore, the decay of 2-point correlation functions indeed implies that Bob cannot recon-

struct Alice’s quantum state.

Finally, let us summarize the known relations between correlation functions and mutual

information:

〈OAOD(t)OAOD(t)〉avg = 2−I
(2)(A,BD) (2.162)

d2Ad
2
D|〈OAOD(t)〉avg|2 = 2I

(2)(A,D) . (2.163)

Note that the first formula proves that the decay of OTOCs leads to large I(2)(A,BD) which

implies the possibility of Bob decoding Alice’s quantum state by accessing both the early

radiation B and the new Hawking radiation D. These two formulae allow us to formally
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show that a black hole can be viewed as a quantum error-correcting code. Let A,D be

degrees of freedom corresponding to incoming and outgoing Hawking radiation, and B,C be

degrees of freedom corresponding to other exotic high energy modes at the stretched horizon.

Since a black hole is thermal, we know that |〈OAOD(t)〉avg| decays at t ∼ O(β). Also, due to

the shockwave calculation by Shenker and Stanford [4], we know that 〈OAOD(t)OAOD(t)〉avg
decays at t ∼ O(β logN). These results imply that after the scrambling time:

I(2)(A,D) ' 0 I(2)(A,C) ' 0 . (2.164)

The implication is that quantum information injected from A gets delocalized and non-locally

is hidden between C and D. The error-correction property can be seen by

I(2)(A,BD) ' 2a I(2)(A,BC) ' 2a I(2)(A,CD) ' 2a , (2.165)

where a is the number of qubits on A. Namely, if we see the black hole as a quantum code

which encodes A into BCD, then the code can tolerate erasure of any single region B,C,D.

In other words, accessing any two of B,C,D is enough to reconstruct Alice’s quantum state.

Thus, black hole dynamics, represented as a four-partite state |U〉ABCD, can be interpreted

as a three-party secret sharing quantum code.

2.C Spectral correlators and higher frame potentials

In this Appendix we will present formulas for form factors from random matrix theory. For

GUE(d, 0, 1/
√
d), d× d matrices with off-diagonal complex entries and real diagonal entries

chosen with variance σ2 = 1/d, the joint probability of eigenvalues for GUE, with normalizing

factors, is

P (λ1, . . . , λd) =
dd

2/2

(2π)d/2
∏d

p=1 p!
e−

d
2

∑
i λ

2
i

∏
i<j

(λi − λj)2 (2.166)
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and the joint probability distribution of n eigenvalues (i.e., the n-point spectral correlation

function), defined as

ρ(n)(λ1, . . . , λn) =

∫
dλn+1 . . . dλdP (λ1, . . . , λd) . (2.167)

We can compactly express ρ(n)(λ1, . . . , λn) in terms of a kernel K [43, 23] as

ρ(n)(λ1, . . . , λn) =
(d− n)!

d!
det
(
K(λi, λj)

)n
i,j=1

. (2.168)

In the large d limit, the kernel K is approximately

K(λi, λj) ≡



d

π

sin(d(λi − λj))
d(λi − λj)

for i 6= j

d

2π

√
4− λ2i for i = j ,

(2.169)

where the i 6= j case is called the sine kernel, and the i = j case is simply the Wigner

semicircle. In the large d limit, the basic approach for computing spectral form factors will

be expanding the determinant in Eq. (2.168) using the kernel in Eq. (2.169), and computing

the Fourier transform of the resulting sums of product of kernels. Thus we will have sums

of integrals of the form [23]

∫ m∏
i=1

dλiK(λ1, λ2)K(λ2, λ3) . . . K(λm−1, λm)K(λm, λ1) e
i
∑m
i=1 kiλi

=
d

π

∫
dλ ei

∑m
i=1 kiλi

∫
dk g(k)g

(
k +

k1
2d

)
g
(
k +

k2
2d

)
. . . g

(
k +

km−1
2d

)
, (2.170)

where we define the Fourier transform of the sine kernel

g(k) ≡
∫
dr e2πikr

sin(πr)

πr
=

1 for |k| < 1
2

0 for |k| > 1
2

. (2.171)

The delta function singularity from the
∫
dλ ei

∑m
i=1 kiλ integral in Eq. (2.170) is an artifact

of our expansion around infinite d, namely that d
π

sin(d(λi−λj))
d(λi−λj) is not regulated in the (λi +λj)
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direction. The most direct method to soften this divergence is to impose a cutoff

d

π

∫
dλ ei

∑m
i=1 kiλi −→ d

π

∫ π/2

−π/2
dλ ei

∑m
i=1 kiλi , (2.172)

which is fixed by the normalization condition

d

π

∫ π/2

−π/2
dλ ei

∑m
i=1 kiλi

∫
dk g(k)g

(
k+

k1
2d

)
g
(
k+

k2
2d

)
. . . g

(
k+

km−1
2d

)∣∣∣∣
k1,...,km=0

= d . (2.173)

While the ‘box approximation’ of applying the cutoff allows us to compute higher-point

spectral correlators in the large d limit, it does lead to errors relative to an exact answer

whose closed form is not tractable.25 Thus we must be careful to keep track of these errors

and compare with numerics. However, we find that at infinite temperature, the box approx-

imation of the spectral form factors is analytically controlled at early times like O(1) and

late times greater than O(
√
d).

To understand the errors of the box approximation, we first consider various cases heuris-

tically: when we have
∑

i ki = 0, the λ integral in Eq. (2.170) is directly fixed by normaliza-

tion. When
∑

i ki 6= 0, the λ integral in Eq. (2.170) dephases and so decays when |∑i ki| is

large, and thus the induced error is unimportant at long times. At small, O(1) values of the

|ki|’s (assuming that m is O(1)), the error induced by the box approximation is also small

and the value is still close to the
∑

i ki = 0 value.

For instance, carefully keeping track of factors of d tells us that in R4, for early times like

O(1) the error is suppressed by O(1/d) relative to largest order terms, while for late times

after O(
√
d) the error is suppressed by O(1/

√
d) relative to the largest order terms.

In this discussion, particularly for
∑

i ki = 0, we assumed simple sine kernel correlations

and found r2 to be a pure linear function. However, a more delicate treatment shows some

other transition time scale at early times, which likely complicates the functional form of r2

and gives a different slope for the ramp. We briefly address this issue for our numerics in

App. 2.D.

Since the dephasing of the λ integral at large |∑i ki| is suppressed at finite temperature,

25For instance, the Fourier transform of the semicircle distribution decays as t−3/2, whereas the Fourier
transform of a box decays as t−1.
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to better capture long-time finite temperature eigenvalue correlations we use a modified

kernel K̃ which is valid in the short distance limit |λa − λb| ∼ O(1/d) [25, 68],

K̃(λi, λj) =
sin
(
dπ(λi − λj)ρ(1)((λi + λj)/2)

)
π(λi − λj)

, (2.174)

which naturally provides a cutoff in the (λi + λj) direction. However, this approximation

assumes the continued domination of the regulated integral in the short distance limit, which

may not be true for large β. However, for small β the modified kernel is reliable. In the

generic case, one should consider the full expression of Hermite polynomials as the sine

kernel, and correctly take the limit. A complicated formula has been derived in [25, 68] from

a saddle point approximation.

2.C.1 Expressions for spectral correlators

Using the analysis above, it is straightforward to compute form spectral correlation functions

for the GUE. It is convenient to define

r1(t) ≡
J1(2t)

t
, r2(t) ≡

1− t
2d

for t < 2d

0 for t > 2d

, r3(t) ≡
sin(πt/2)

πt/2
. (2.175)

as mentioned earlier. The infinite temperature form factors which appear in the calculation

of the first and second frame potentials are

R2(t) =

∫
Dλ

d∑
i,j=1

ei(λi−λj)t , R4,1(t) =

∫
Dλ

d∑
i,j,k=1

ei(λi+λj−2λk)t ,

R4(t) =

∫
Dλ

d∑
i,j,k,`=1

ei(λi+λj−λk−λ`)t , R4,2(t) =

∫
Dλ

d∑
i,j=1

e2i(λi−λj)t . (2.176)

As R4,2 is simply R2(2t), we only need to compute the first three spectral correlation func-

tions. We will also investigate the finite temperature version of R2, which we defined as

R2(t, β) ≡
∫
Dλ

d∑
i,j=1

ei(λi−λj)te−β(λi+λj) . (2.177)
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R2 at infinite temperature

We start by computing R2 at infinite temperature:

R2(t) = d+

∫
dλ1 dλ2

(
K(λ1, λ1)K(λ2, λ2)−K2(λ1, λ2)

)
ei(λ1−λ2)t . (2.178)

Evaluating the first term in the integral, we find

∫
dλ1K(λ1, λ1)e

iλ1t

∫
dλ2K(λ2, λ2)e

−iλ2t = d2r21(t) . (2.179)

The second term can be evaluated using Eq. (2.170), and we find

∫
dλ1dλ2K

2(λ1, λ2)e
i(λ1−λ2)t = dr2(t) . (2.180)

The final result is

R2(t) = d+ d2r21(t)− dr2(t) . (2.181)

R2 at finite temperature

As explained above, to better capture long-time correlations at finite temperature we will

use the short-distance-limit kernel K̃. Firstly, for i = j, we have

d

∫
Dλe−2βλ1 = dr1(2iβ) . (2.182)

For i 6= j we have

d(d− 1)

∫
Dλei(λ1−λ2)t−β(λ1+λ2)

=

∫
dλ1dλ2

(
K̃(λ1, λ1)K̃(λ2, λ2)− K̃2(λ1, λ2)

)
ei(λ1−λ2)t−β(λ1+λ2)

= d2r1(t+ iβ)r1(−t+ iβ)− dr1(2iβ)r2(t) . (2.183)

Putting everything together, we obtain

R2 = dr1(2iβ) + d2r1(t+ iβ)r1(−t+ iβ)− dr1(2iβ)r2(t) . (2.184)
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R4 at infinite temperature

We now compute R4(t), again by separately considering coincident eigenvalues, using the

determinant of kernels, and Fourier transforming to find

R4(t) = d4r41(t)− 2d3r21(t)r2(t)r3(2t)− 4d3r21(t)r2(t) + 2d3r1(2t)r
2
1(t) + 4d3r21(t)

+ 2d2r22(t) + d2r22(t)r
2
3(2t) + 8d2r1(t)r2(t)r3(t)− 2d2r1(2t)r2(t)r3(2t)

− 4d2r1(t)r2(2t)r3(t) + d2r21(2t)− 4d2r21(t)− 4d2r2(t) + 2d2

− 7dr2(2t) + 4dr2(3t) + 4dr2(t)− d . (2.185)

We can simplify this formula at early times of O(1) and late times greater than O(
√
d) by

dropping subdominant terms and find

R4 ≈ d4r41(t) + 2d2r22(t)− 4d2r2(t) + 2d2 − 7dr2(2t) + 4dr2(3t) + 4dr2(t)− d , (2.186)

where the 2d2r22(t) term gives a quadratic rise at late times, akin to the ramp in R2.

R4,1 at infinite temperature

We find that

R4,1(t) = d3r1(2t)r
2
1(t)− d2r1(2t)r2(t)r3(2t)− 2d2r1(t)r2(2t)r3(t)

+ d2r21(2t) + 2d2r21(t) + 2dr2(3t)− dr2(2t)− 2dr2(t) + d . (2.187)

Just as above, we can approximate R4,1 at early and late times by

R4,1 ≈ d3r1(2t)r
2
1(t) + 2dr2(3t)− dr2(2t)− 2dr2(t) + d . (2.188)
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2.C.2 Expressions for higher frame potentials

k = 2 frame potential

We computed the second frame potential for the GUE to be

F (2)
GUE =

((
d4 − 8d2 + 6

)
R2

4 + 4d2
(
d2 − 9

)
R4 + 4

(
d6 − 9d4 + 4d2 + 24

)
R2

2

− 8d2
(
d4 − 11d2 + 18

)
R2 + 2

(
d4 − 7d2 + 12

)
R2

4,1 − 4d2
(
d2 − 9

)
R4,2

+
(
d4 − 8d2 + 6

)
R2

4,2 − 8
(
d4 − 8d2 + 6

)
R2R4 − 4d

(
d2 − 4

)
R4R4,1

+ 16d
(
d2 − 4

)
R2R4,1 − 8

(
d2 + 6

)
R2R4,2 + 2

(
d2 + 6

)
R4R4,2

− 4d
(
d2 − 4

)
R4,1R4,2 + 2d4

(
d4 − 12d2 + 27

))
/(

(d− 3)(d− 2)(d− 1)d2(d+ 1)(d+ 2)(d+ 3)
)
.

with form factors as defined in Eq. (2.176). Let us try and extract the interesting behavior

encoded in the expression. We know the maximal value of the spectral n-point functions

defined above at early times, R2 ∼ d2, R4 ∼ d4, R4,1 ∼ d3, and R4,2 ∼ d2. From the

expression for the frame potential above, we keep the terms that are not suppressed in 1/d,

i.e. can contribute at least at zeroth order:

F (2)
GUE ∼ 2− 8R2

d2
− 36R2

2

d4
+

4R2
2

d2
+

4R4

d4
+

6R2
4

d8
− 8R2

4

d6
+
R2

4

d4
+
R2

4,2

d4
− 14R2

4,1

d6

+
2R2

4,1

d4
+

16R2R4,1

d5
+

16R4R4,1

d7
− 4R4R4,1

d5
+

2R4R4,2

d6
− 4R4,1R4,2

d5

+
64R2R4

d6
− 8R2R4

d4
,

with the Haar value appearing at the beginning. At early times, the leading order behavior

is F (2)
GUE ∼ R2

4/d
4. From our calculation of the n-point form factors, we know that at the

dip time all form factor terms above are suppressed in d, meaning the frame potential goes

like the Haar value. Knowing the late time value of the 2-point and 4-point form factors,

the terms above that will contribute at late times are

Late : F (2)
GUE ≈ 2 +

R2
4

d4
+

4R2
2

d2
, (2.189)
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which gives ≈ 10 in the large d limit. In the strict t→∞ limit, whereR2 → d, R4 → 2d2−d,

and R4,1,R4,2 → d, we have

F (2)
GUE =

10d2 + 22d− 20

d2 + 5d+ 6
and F (2)

GUE ≈ 10 for d� 1 . (2.190)

As the left-hand side expression is valid for any d at late times, in doing the numerics and

taking the sample size to be large, this is the value for d we should converge to.

k = 3 frame potential

The full expression for the third frame potential of the GUE is

F (3)
GUE =

(
6d14 + 18R2

2
d12 − 36R2d

12 − 318d12 − 846R2
2
d10 + 9R2

4
d10 + 18R2

4,1
d10 + 9R2

4,2
d10 + 1836R2d

10 − 72R2R4d
10 + 36R4d

10 − 36R4,2d
10 + 5550d10

+144R2R4,1d
9 − 36R4R4,1d

9 − 36R4,1R4,2d
9 + 11574R2

2
d8 − 369R2

4
d8 +R2

6
d8 − 828R2

4,1
d8 + 9R2

2
R2

4,2
d8 − 18R2R2

4,2
d8 − 441R2

4,2
d8 + 6R2

6,1
d8

+4R2
6,2

d8 + 12R2
6,3

d8 + 4R2
6,4

d8 − 29772R2d
8 + 3276R2R4d

8 − 1728R4d
8 + 36R2R6d

8 − 18R4R6d
8 − 12R6d

8 − 36R2
2
R4,2d

8 + 18R4R4,2d
8

+1800R4,2d
8 − 36R4,1R6,1d

8 − 24R6,4d
8 − 37158d8 − 6192R2R4,1d

7 + 1332R4R4,1d
7 + 36R6R4,1d

7 + 108R2R4,1R4,2d
7 + 1548R4,1R4,2d

7

−144R2R6,1d
7 + 108R4R6,1d

7 − 12R6R6,1d
7 − 36R2R4,2R6,1d

7 + 36R4,2R6,1d
7 + 72R4,1R6,2d

7 − 24R6,1R6,2d
7 + 144R2R6,3d

7 − 72R2R4,2R6,3d
7

+72R4,2R6,3d
7 − 24R6,2R6,3d

7 − 48R6,3R6,4d
7 − 39978R2

2
d6 + 3726R2

4
d6 − 41R2

6
d6 + 11610R2

4,1
d6 − 297R2

2
R2

4,2
d6 + 594R2R2

4,2
d6 + 6750R2

4,2
d6

−204R2
6,1

d6 − 156R2
6,2

d6 − 348R2
6,3

d6 − 148R2
6,4

d6 + 169812R2d
6 − 42768R2R4d

6 + 24732R4d
6 − 1512R2R6d

6 + 738R4R6d
6 + 528R6d

6

+1512R2
2
R4,2d

6 − 432R2R4,2d
6 − 162R2R4R4,2d

6 − 486R4R4,2d
6 + 18R2R6R4,2d

6 − 18R6R4,2d
6 − 27972R4,2d

6 + 1224R4,1R6,1d
6 + 144R2R6,2d

6

−144R4R6,2d
6 + 16R6R6,2d

6 + 72R2R4,2R6,2d
6 − 72R4,2R6,2d

6 − 48R6,2d
6 − 360R4,1R6,3d

6 + 120R6,1R6,3d
6 − 144R2R6,4d

6 + 72R2R4,2R6,4d
6

−72R4,2R6,4d
6 + 32R6,2R6,4d

6 + 1032R6,4d
6 + 89040d6 + 72576R2R4,1d

5 − 11232R4R4,1d
5 − 1188R6R4,1d

5 − 3132R2R4,1R4,2d
5 − 18792R4,1R4,2d

5

+5040R2R6,1d
5 − 3564R4R6,1d

5 + 396R6R6,1d
5 + 1044R2R4,2R6,1d

5 − 1044R4,2R6,1d
5 − 2232R4,1R6,2d

5 + 744R6,1R6,2d
5 − 5040R2R6,3d

5

+432R4R6,3d
5 − 48R6R6,3d

5 + 2088R2R4,2R6,3d
5 − 2088R4,2R6,3d

5 + 648R6,2R6,3d
5 + 288R4,1R6,4d

5 − 96R6,1R6,4d
5 + 1488R6,3R6,4d

5 − 522R2
4
d4

−52128R2
2
d4 + 458R2

6
d4 − 55692R2

4,1
d4 + 2430R2

2
R2

4,2
d4 − 4860R2R2

4,2
d4 − 35190R2

4,2
d4 + 1794R2

6,1
d4 + 1660R2

6,2
d4 + 2388R2

6,3
d4 + 1440R2

6,4
d4

−274320R2d
4 + 146412R2R4d

4 + 17172R2R6d
4 − 8244R4R6d

4 − 6276R6d
4 − 15876R2

2
R4,2d

4 + 18144R2R4,2d
4 + 3078R2R4R4,2d

4 + 324R4R4,2d
4

−342R2R6R4,2d
4 + 342R6R4,2d

4 + 141408R4,2d
4 − 10764R4,1R6,1d

4 − 4608R2R6,2d
4 + 3672R4R6,2d

4 − 408R6R6,2d
4 − 1368R2R4,2R6,2d

4

+1368R4,2R6,2d
4 + 1968R6,2d

4 + 7200R4,1R6,3d
4 − 2400R6,1R6,3d

4 + 3312R2R6,4d
4 − 288R4R6,4d

4 + 32R6R6,4d
4 − 1368R2R4,2R6,4d

4

+1368R4,2R6,4d
4 − 752R6,2R6,4d

4 − 11568R6,4d
4 − 96000d4 − 199728R2R4,1d

3 − 4392R4R4,1d
3 + 9144R6R4,1d

3 + 26352R2R4,1R4,2d
3

+51552R4,1R4,2d
3 − 37296R2R6,1d

3 + 27432R4R6,1d
3 − 3048R6R6,1d

3 − 8784R2R4,2R6,1d
3 + 8784R4,2R6,1d

3 + 17928R4,1R6,2d
3 − 5976R6,1R6,2d

3

+37296R2R6,3d
3 − 1080R4R6,3d

3 + 120R6R6,3d
3 − 17568R2R4,2R6,3d

3 + 17568R4,2R6,3d
3 − 190512R2R4,2d

2 − 100800R4d
4 − 5736R6,2R6,3d

3

−720R4,1R6,4d
3 + 240R6,1R6,4d

3 − 11952R6,3R6,4d
3 + 141840R2

2
d2 − 49284R2

4
d2 − 1258R2

6
d2 + 111852R2

4,1
d2 + 1098R2

2
R2

4,2
d2 − 2196R2R2

4,2
d2

+53712R2
4,2

d2 − 3756R2
6,1

d2 − 3188R2
6,2

d2 + 108R2
6,3

d2 − 2736R2
6,4

d2 + 288000R2d
2 + 5472R2R4d

2 − 47376R2R6d
2 + 22644R4R6d

2 + 14400R6d
2

+14400R2
2
R4,2d

2 − 9396R2R4R4,2d
2 + 49824R4R4,2d

2 + 1044R2R6R4,2d
2 − 1044R6R4,2d

2 − 115200R4,2d
2 + 22536R4,1R6,1d

2 + 24624R2R6,2d
2

−16488R4R6,2d
2 + 1832R6R6,2d

2 + 4176R2R4,2R6,2d
2 − 4176R4,2R6,2d

2 − 19200R6,2d
2 − 45720R4,1R6,3d

2 + 15240R6,1R6,3d
2 + 8352R2R6,4d

2

−8352R4R6,4d
2 + 928R6R6,4d

2 + 4176R2R4,2R6,4d
2 − 4176R4,2R6,4d

2 + 5520R6,2R6,4d
2 + 19200R6,4d

2 + 133200R2R4,1d + 53208R4R4,1d

−12312R6R4,1d − 62208R2R4,1R4,2d + 4608R4,1R4,2d + 32400R2R6,1d − 36936R4R6,1d + 4104R6R6,1d + 20736R2R4,2R6,1d − 20736R4,2R6,1d

−33048R4,1R6,2d + 11016R6,1R6,2d − 32400R2R6,3d − 25272R4R6,3d + 2808R6R6,3d + 41472R2R4,2R6,3d − 41472R4,2R6,3d + 16632R6,2R6,3d

−16848R4,1R6,4d + 5616R6,1R6,4d + 22032R6,3R6,4d − 216000R2
2
− 2160R2

4
+ 240R2

6
− 105840R2

4,1
− 12960R2

2
R2

4,2
+ 25920R2R2

4,2
− 34560R2

4,2

−2160R2
6,1
− 2160R2

6,2
− 19440R2

6,3
− 960R2

6,4
+ 43200R2R4 + 14400R2R6 − 4320R4R6 + 172800R2R4,2 + 25920R2R4R4,2 − 69120R4R4,2

−2880R2R6R4,2 + 2880R6R4,2 + 12960R4,1R6,1 + 14400R2R6,2 + 4320R4R6,2 − 480R6R6,2 − 11520R2R4,2R6,2 + 11520R4,2R6,2 + 90720R4,1R6,3

−30240R6,1R6,3 − 28800R2R6,4 − 2880R6R6,4 + 25920R4R6,4 − 11520R2R4,2R6,4 + 11520R4,2R6,4 − 6720R6,2R6,4

)
/(

(d − 5)(d − 4)(d − 3)(d − 2)(d − 1)d2(d + 1)(d + 2)(d + 3)(d + 4)(d + 5)
)
.

The expression is best appreciated from a distance.

2.C.3 Expressions for Weingarten

Lastly, we give the definition of the unitary Weingarten function, which appeared in the

integration of Haar random unitaries in Eq. (2.80). The 2k-th moment of the Haar ensemble

appeared in the k-th frame potential. For the n-th moment, the Weingarten function is a
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function of an element σ of the permutation group Sn and presented as defined in [59],

Wg(σ) =
1

(n!)2

∑
λ

χλ(e)
2χλ(σ)

sλ(1)
, (2.191)

where we sum over integer partitions of n (recall that the conjugacy classes of Sn are labeled

by integer partitions of n). χλ is an irreducible character of Sn labeled by λ (as each irrep of Sn

can be associated to an integer partition) and e is the identity element. sλ(1) = sλ(1, . . . , 1)

is the Schur polynomial evaluated on d arguments and indexed by the partition λ. For

instance, the Weingarten functions needed to compute the first frame potential were

Wg({1, 1}) =
1

d2 − 1
and Wg({2}) = − 1

d(d2 − 1)
. (2.192)

2.D Additional numerics

We conclude with a few numerical checks on the formulae we derived for the form factors

and frame potentials.

2.D.1 Form factors and numerics

As we mentioned in Sec. 2.2.2 and discussed in App. 2.C.1, in order to derive expressions for

the form factors for the GUE we had to make approximations which should be compared to

numerics for the GUE.

We briefly remind the reader that at infinite temperature, we derived the expression

R2(t) = d2r21(t)− dr2(t) + d . (2.193)

Numerical checks of this expression are shown in Fig. 2.8. We see that the approximations

employed work well at β = 0, reproducing the early time oscillations, dip, plateau, and

ramp features. But there is some discrepancy in the ramp behavior which merits discussion.

As we take d → ∞, the difference between the predicted ramp and numerical ramp is not

suppressed. In Fig. 2.8, we see that the relative error between the numerics and analytic
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Figure 2.8: Numerical checks of the GUE 2-point spectral form factor at infinite temperature
for various values of d and normalized by d2. The analytic expressions derived in Sec. 2.2
are in the lighter shades and the numerics for GUE are in darker shades. Numerics were
done 10000 samples from the GUE. On the right we plot the relative error between the
numerics and analytic predictions. We observe good agreement at early and late times, and
see deviations around the ramp.

prediction does not decrease as we increase d, indicating that this difference in the ramp

prediction is not an artifact of finite d numerics. On a log-log plot, this shift from the

numerics suggests that we capture the correct linear behavior, but with a slightly different

slope for the ramp.

The r2(t) = 1− t/2d function which controls the slope behavior comes from the Fourier

transform of the square of the sine kernel. Recall that in our approximation, we integrated

over the entire semicircle. A phenomenological observation is that the modified ramp function

defined by r̃2(t) ≡ 1 − 2t/πd, where we change the slope to 2/π, does a much better job of

capturing the ramp behavior. Working in the short-distance limit of the 2-point correlator

ρ(2)(λ1, λ2) (as in [24]) and integrating the sine kernel over the entire semicircle, we obtain

r̃2 whose behavior we only trust near the dip.

Numerically, we find that this modified slope of 2π/d better captures the r2 function near

the dip, with error that is suppressed as we take d → ∞. The same numerics are reported

in Fig. 2.9, but with the modified ramp behavior. There is still some discrepancy near the

plateau time when we transition to the constant plateau value, but the ramp behaviors near

the dip are in much better agreement.

We understand the Bessel function contribution to R2(t), which arises from 1-point func-
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Figure 2.9: The same numerics as reported in Fig. 2.8, but now compared to the analytic
expression with the modified ramp behavior r̃2(t).

tions. The subtlety above is really in the connected piece of the 2-point function

R2(t)con ≡ R2(t)− d2r21(t) . (2.194)

Numerically, we see that the connected 2-point form factor for the GUE exhibits three

different behaviors: an early time quadratic growth, an intermediate linear growth, and

then a late-time constant plateau. The closed form expression we derived in Sec. 2.2 should

be viewed as a coarse approximation before the plateau, approximately capturing the linear

regime. The modified ramp function r̃2(t) = 1−2t/πd appears to capture the linear behavior

near the dip with the correct slope. In [68], a more detailed treatment of the connected

correlator is given at early times. From the integral representation of the connected 2-point

form factor, they find that

Early : R2(t)con ≈ t2 − 1

2
t4 +

1

3
t6 + . . . (2.195)

to leading order in d (Eq.(2.28) in [68]). The three behaviors are compared with numerics

in Fig. 2.10.
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Figure 2.10: Numerics for the connected 2-point spectral form factor for GUE at infinite tem-
perature plotted for d = 500 with 10000 random samples. The dashed line is the expression
Eq. (2.196) approximating the three regimes of the connected form factor.

In summary, the three regimes of the connected 2-point form factor are roughly captured by

R2(t)con =


∼ t2 for t . 1 ,

∼ 2
π
t for 1 . t . 2d ,

d for t & 2d .

(2.196)

The early time quadratic behavior does not play an important role in our analysis of GUE

correlation functions and frame potentials, but is of independent physical interest. This

intruiging early-time behavior of the connected 2-point form factor is explored in [75].

At finite temperature we find good agreement between the expression R2(t, β) and nu-

merics at early and late times, but again see a deviation of the dip and ramp behaviors from

the analytic prediction, as shown in Fig. 2.11. Using the modified ramp r̃2 we find closer

agreement at small β, but as we increase β the predicted ramp behavior again starts to

deviate from the numerics, indicating that there is a β-dependence to the slope that we do

not fully understand. But as we discussed in App. 2.C.1, we only trust the short-distance

approximation at finite temperature, and thus R2(t, β), for small β. We also report numerics

for the R4 expression in Fig. 2.12.
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Figure 2.11: Numerical checks of the finite temperature 2-point spectral form factor for GUE
at β = 0.5, plotted for various values of d and normalized by their initial values. Numerics
were done with a GUE sample size of 10000. The left figure uses the expression for R2(t, β)
derived in Sec. 2.2.2 and 2.C.1, whereas the right figure uses the modified ramp r̃2 discussed
above.
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Figure 2.12: Numerical checks the infinite temperature 4-point spectral form factor for GUE
with 10000 samples, plotted for various values of d and normalized by their initial values.
The left figure uses the R4 expression derived in App. 2.C.1, and the right figure uses r̃2.

2.D.2 Frame potentials and numerics

As the frame potential depends on the eigenvectors of the elements in the ensemble (and not

just the eigenvalues as per the form factors) and requires a double sum over the ensemble,

numerical simulation of the frame potential is harder than for the form factors. For an

ensemble of d × d matrices, we need to consider sample sizes greater than d2k for the k-th

frame potential, which amounts to summing over many samples for fairly modest Hilbert

space dimension. Instead, for a given d, we can sequentially increase the sample size and

extrapolate to large |EGUE|. In Fig. 2.13 we consider the first frame potential for the GUE at

d = 32 and, in the limit of large sample size, find good agreement with the analytic expression
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computed from R2. Alternatively, we can numerically compute the frame potentials by

ignoring the coincident contributions to the double sum in F (k), i.e. when U = V . For a

finite number of samples, these terms contribute d2/|E| to the sum, meaning we must look at

large ensembles before their contribution does not dominate entirely. Ignoring these terms,

we can time average over a sliding window to compute the frame potential with only a few

samples, as shown in Fig. 2.13.
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Figure 2.13: Numerical computation of first frame potential for the GUE at d = 32. On
the left, we sequentially increase the number of samples and extrapolate to large sample size
(red line), which agrees with the both the frame potential computed from R2 numerics as

in Eq. (2.86) (blue line) and the analytic expression we derived for F (1)
GUE. On the right, we

time bin average F (1)
GUE as described above and, for d = 32 and 100 samples, we find good

agreement with the quantities on the left.

2.D.3 Minimal realizations and time averaging

Given an ensemble of disordered systems, one can ask whether a quantity averaged over the

ensemble is the same as for a single random instance of the ensemble. It is known that up

until the dip time, the spectral form factor is self-averaging, meaning that single instance

captures the average for large d [79]. However, the spectral form factor is not self-averaging

at late times. We can try to extract the averaged behavior from a single instance in regimes

dominated by large fluctuations by averaging over a moving time window. In Fig. 2.14, we

see that for a single instance of the GUE, the time average of the spectral form factor at

finite β gives the same result as the ensemble average for sufficiently large d. For the frame
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potential, we can consider two instances, the smallest ensemble for which the frame potential

makes sense. Ignoring the coincident terms in the sum, we see that the frame potential is

also self-averaging at early times and that the time average at late times agrees with the

ensemble average and analytic expression.

Figure 2.14: On the left: the time average of the thermal 2-point form factor at β = 5 and
d = 500. On the right: the time average of the first frame potential for d = 500 computed for
two instances. In both figures, the time average of the minimal number of instances agrees
with the ensemble average.
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Chapter 3

Late-time chaos and symmetry

This chapter is partially based on work in progress with Beni Yoshida, which will appear

elsewhere in a future publication.

Abstract

We study the universal features at late-times in chaotic systems with symmetry and compute

the late-time asymptotic form of the out-of-time ordered correlation function for different

symmetry classes. As realizing different antiunitary symmetries picks out a quotient of the

full unitary group, we use Weingarten calculus for the associated compact symmetric space

and find different asymptotic forms of the OTOC in each symmetry class, where the leading

terms are universal and the symmetry appears in the 1/d corrections. We also generalize

the notion of a k-design and k-invariance to different symmetry classes and apply them to

both random matrix ensembles and physical systems with symmetry.

3.1 Introduction

Computing averages over the unitary group has become an indispensable tool in quantum

information. Understanding the properties of Haar random unitaries and states allows one to

extract universal or generic features of quantum systems. Random unitaries have also proved

useful in approximating chaotic dynamics, where we typically average over the full unitary

group U(d) to study universal features of chaotic systems, for instance the entanglement
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in random subsystems and late-time values of correlation functions, and ask at what time-

scales an ensemble of unitaries representing the time-evolution of a physical system looks

Haar-random. Roughly speaking, as e−iHt ∈ U(d) is always valued in the unitary group,

we average over U(d) to extract universal features and ask when some ensemble Et of time

evolutions looks Haar-random with respect to U(d). If the physical system of interest realizes

some symmetry, we need to refine our measures of chaos and randomness as the unitary time-

evolution might really be valued in a subset of the unitary group. Of course, given a fixed

Hamiltonian, the subset of the unitary group that time-evolution will explore is determined

by H, but we are interested in symmetry classes of Hamiltonians where the existence of a

symmetry determines a specific subset, and in this sense is universal.

The famous insight due to Dyson [80], was that systems which realize (or break) anti-

unitary symmetries fall into three different symmetry classes, labeled: A, AI, and AII. These

refer to the Cartan labels for compact symmetric spaces, where here it is the unitary gen-

erated by the Hamiltonian e−iHt that is valued in the subset of the unitary group. Dyson’s

three classes are:

A: U(d) no symmetry

AI: U(d)/O(d) time-rev inv w/ T 2 = 1

AII: U(2d)/Sp(2d) time-rev inv w/ T 2 = −1

where T is the time-reversal anti-unitary operator. Note that when equipped with an invari-

ant measure, the ensembles on these spaces are often referred to as the circular ensembles

CUE, COE, and CSE.

One of our goals in this chapter will be to consider averaging over these other spaces in

order to understand the universal behavior of chaotic systems with symmetry. There is a

further refinement of this classification scheme by Altland and Zirnbauer [81] for free fermion

Hamiltonians. One way of interpreting this classification scheme is that the first-quantized

Hamiltonian lives in the tangent space of 10 different compact symmetric spaces, depending

on how that Hamiltonian realizes time-reversal and charge-conjugation symmetry (and their

combination). We are interested in interacting systems acting on the physical Hilbert space.

We are able to compute averages over the 10 symmetric spaces in Altland and Zirnbauer’s

classification, but the implications for physical systems of interacting fermions are less clear.
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We will mention averages of OTOCs over all 10 classes, but we will primarily be interested

in the 3-fold classification applicable to general interacting quantum systems: A, AI, and

AII.

3.2 Haar-averages and symmetry classes

We start by briefly overviewing the basic machinery of taking Haar-averages over the uni-

tary group, a formalism which has become known as Weingarten calculus. We then discuss

extensions of these averages to other Lie groups and to different quotients of the full uni-

tary group. The formalism for performing these averages is known as Weingarten calculus.

Weingarten calculus allows us to integrate moments of orthogonal and symplectic groups as

well as quotients of the unitary group called compact symmetric spaces. We should think of

this as averaging over a symmetry class.

Although integrating over the unitary group has appeared in the literature of a number of

different subfields, including lattice gauge theory, 2d QCD and matrix models, and transport

in disordered systems, the methods of taking Haar integrals have become indispensable tools

in quantum information theory. Diagrammatic methods for computing Haar-moments were

developed in the lattice gauge theory and condensed matter literature in the 80’s and 90’s.1

But exact expressions for moments of the unitary group were given by Collins [58] and Collins

and Śniady [59]. These ideas are deeply rooted in Schur-Weyl duality for the unitary group.

The formalism for taking Haar-averages is known as Weingarten calculus, acknowledging

Weingarten’s early work on the subject [60].

Collins and Śniady [59] detailed how to compute moments of U(d) and the other com-

pact Lie groups O(d) and Sp(2d). Weingarten calculus for the orthogonal group was further

clarified and expanded in work by Collins and Matsumoto [88], as well as in [89, 90]. Build-

ing on this work, Matsumoto generalized these methods to compute moments of compact

symmetric spaces [91, 92].

Before diving in, let’s just sketch what these moments look like. For the compact Lie

groups, integrating gives a double sum over elements of the symmetric group or a subset

1For example, in [82, 83, 84, 85, 86, 87].
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thereof, and for the compact symmetric spaces, quotients of the Lie groups by a Lie subgroup,

the moments take the form of a single sum

Lie groups :

∫
dU U⊗k ⊗ (U⊗)† =

∑
σ,τ

δσδτWgG(σ−1τ, d) , (3.1)

symmetric spaces :

∫
dU U⊗k ⊗ (U⊗)† =

∑
σ

δσWgG/K(σ, d) , (3.2)

where the index structure of the product of delta functions will depend on the permutation(s)

we sum over. As we will see late, if the group or subgroup is orthogonal or symplectic, the

moments themselves involve transposes, symplectic conjugation, or chiral conjugation. The

point of the above expressions is heuristic.

Comment on terminology:

In a slight abuse of terminology, we will refer to averages over the unitary group as ‘Haar-

averages,’ even though the Haar-measure may be put on any compact Lie group and by

involution on to quotients thereof. So when we say ‘integrate over Haar,’ we mean over the

unitary group with respect to the Haar measure. In all other cases, we will explicitly say

which space we integrate over.

3.2.1 QI review and Haar-randomness

Here we give a brief overview of some quantum information theoretic definitions and notation.

The discussion here follows the discussion in [11, 12] as well as [93]. We consider a finite-

dimensional Hilbert space H of dimension d. We are interested in an ensemble of unitaries

E = {pi, Ui} that acts on this Hilbert space, where Ui ∈ U(d) and pi’s are probabilities. Said

equivalently, we have a subset of the unitary group and some probability measure on it. The

ensemble could be finite or infinite, either discrete or continuous. The Haar measure is the

unique left and right invariant measure on U(d),

∫
Haar

dUf(U) =

∫
Haar

dUf(UV ) =

∫
Haar

dUf(V U) , (3.3)
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for a function f and for all V ∈ U(d). As we are often interested in moments of an ensemble,

consider an operator O acting on the k-fold Hilbert space H⊗k. The k-fold channel with

respect to an ensemble of unitaries is

Φ
(k)
E (O) ≡

∫
E
dU(U⊗k)†OU⊗k . (3.4)

A unitary k-design is an ensemble E for which the k-fold channels of the ensemble and Haar

are equal, meaning that for any operator O ∈ A(H⊗k)

Φ
(k)
E (O) = Φ

(k)
Haar(O) . (3.5)

This means the ensemble of unitaries E exactly reproduces the first k moments of the Haar

ensemble. This idea captures how randomly distributed the unitaries in E are. The more

randomly distributed around the unitary group, the more moments of the Haar ensemble

we can reproduce. When we reproduce the moments exactly, E is a unitary k-design. Given

some ensemble, one might ask how close to forming a k-design we are. One quantity which

measures this distance is the k-th frame potential [57], defined as a double integral over the

ensemble E as

F (k)
E =

∫
U,V ∈E

dUdV
∣∣Tr(U †V )|2k . (3.6)

For some ensemble of unitaries E = {pi, Ui}, the frame potential tells us how Haar-random

the ensemble is. More precisely, for a given k, it tells us how close the ensemble is to forming

a unitary k-design. For any ensemble of unitaries E , the frame potential is lower bounded

by the Haar value

F (k)
E ≥ F

(k)
Haar , where F (k)

Haar = k! , (3.7)

as we discussed above. It will be useful to review the proof of this here as we will use

similar techniques to lower bound frame potentials for different symmetry classes. Consider

the operator S, defined as the difference between the k-fold channels of E and the Haar

ensemble:

S =

∫
E
dU (U⊗k)† ⊗ U⊗k −

∫
Haar

dU (U⊗k)† ⊗ U⊗k . (3.8)
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Noting that the norm of the operator is positive semi-definite TrS†S ≥ 0, this implies

∫
U,V ∈E

dUdV
∣∣Tr(U †V )

∣∣2k − 2

∫
U∈E
dU

∫
V ∈Haar

dV
∣∣Tr(U †V )

∣∣2k +

∫
U,V ∈Haar

dUdV
∣∣Tr(U †V )

∣∣2k ≥ 0 .

The first and last terms are respectively the frame potentials for E and the Haar ensemble.

Using the left-invariance of the Haar measure, the middle term is also just the frame potential

for the Haar ensemble. Therefore, we find that

F (k)
E ≥ F

(k)
Haar , (3.9)

as desired. In this sense the frame potential quantifies a distance to randomness.

Haar-random unitaries

We will quickly review integration over Haar-random unitaries. The approach that leans

heavily on the representation theory of symmetric groups in described in App. 3.A, while

the exposition here is much more information theoretic in spirit.

To compute averages over the unitary group explicitly, we need to integrate monomials

of Haar-random unitaries. Here the convenient notation and discussion of the Weingarten

function follow [94]. As we mentioned, the formalism is called Weingarten calculus and

follows from Schur-Weyl duality for the unitary group. The exact expression [58, 59] for

integrating over U(d) is

∫
dU Ui1j1 . . . UikjkU

†
`1m1

. . . U †`kmk =
∑
σ,τ∈Sk

δσ(~ı |~m)δτ (~ |~̀)WgU(σ−1τ, d) , (3.10)

where for the k-th moment we sum over elements the permutation group Sk. Here we have

defined the δ-function contraction of indices indexed by a permutation σ ∈ Sk as

δσ(~ı |~ ) = δi1jσ(1) . . . δikjσ(k) . (3.11)

The unitary Weingarten function acts on elements of Sk and has a simple interpretation in

terms of an inverse of a matrix which counts the cycles of a permutation, which we review
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in our discussion of Schur-Weyl duality below. The expression of the unitary Weingarten

function as a Fourier expansion in terms of characters of the symmetric group is given in

App. 3.A

Schur-Weyl duality for the unitary group is the statement that if an operator O in the

algebra of operators acting on the k-fold Hilbert space H⊗k, commutes with all operators

V ⊗k where V acts on H, then that operator must be a linear combination of permutation

operators Pσ

Schur-Weyl → O =
∑
σ∈Sk

cσPσ , (3.12)

where the permutation operator Pσ permutes the k copies of H. More explicitly, for a state

|ψ1, . . . , ψk〉 on H⊗k, the permutation operator acts as Pσ |ψ1, . . . , ψk〉 = |ψσ(1), . . . , ψσ(k)〉,
and equivalently by conjugation for an operator on the k-fold Hilbert space. As the k-fold

channel of Haar Φ
(k)
Haar(O) is invariant under k-fold unitary conjugation, by the invariance

of the Haar measure, this means that the channel can be written as a linear combination

of permutation operators. Moreover, again by the invariance of the Haar measure, the

argument of the k-fold channel Φ
(k)
Haar(O) is also invariant under unitary k-fold conjugation,

we can write the channel as

Φ
(k)
Haar(O) =

∑
σ,τ∈Sk

WgUσ,τPσTr(PτO) . (3.13)

This also simply an application of Eq. (3.10) to the k-fold channel. Here WgUσ,τ is the

Weingarten matrix, the entries of which are the unitary Weingarten functionsWgU(σ−1τ, d).

Taking the k-fold channel of a permutation operator must give Φ
(k)
Haar(Pσ) = Pσ, and thus

the Weingarten matrix is simply the inverse of the matrix of inner products of permutation

operators

WgUσ,τ =
(
Tr(PσPτ )

)−1
, (3.14)

where elements of the matrix Tr(PσPτ ) = d#cycles(στ) and simply count the number of cycles

in the product of permutations.

It is straightforward to derive the value of the Haar frame potential and will be useful

when we generalize our discussion to other groups and quotients. From the invariance of the
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Haar measure, the frame potential Eq. (3.6) for the Haar ensemble is

F (k)
Haar =

∫
dU Tr(U⊗k)Tr((U⊗k)†) =

∑
σ,τ∈Sk

WgUσ,τTr(PσPτ ) = k! , (3.15)

for k < d. When viewed as a matrix equation we just have the trace of the identity matrix

on Sk, and thus the above sum just counts the number of elements in Sk.

Random orthogonal matrices

The exact formula for integrating over Haar random orthogonal matrices is [59, 88]

∫
dOOi1j1 . . . Oi2kj2k =

∑
σ,τ∈M2k

∆σ(~ı )∆τ (~ )WgO(σ−1τ, d) , (3.16)

where we sum over elements of M2k, the set of pair partitions on the set 2k element set

{1, 2, . . . , 2k} and we have defined a combination of δ-functions labeled by σ ∈ S2k

∆σ(~ı ) = δiσ(1)iσ(2) . . . δiσ(2k−1)iσ(2k) . (3.17)

We discuss more details of this formula and the representation theoretic expression for the

orthogonal Weingarten function in App. 3.A.

Schur-Weyl duality for the orthogonal group is given by the action of the Brauer algebra

[59], which has a basis of pair partitions on a set of 2k elements. The set of pair partitions

M2k has dimension (2k)!/(2kk!) and can be realized as a subset of the permutation group

S2k. We describe pair partitions in more detail in the appendix, but for now, the important

thing for writing the Haar-integrals over O(d) is that these are just a subset of S2k. With

this in mind, Schur-Weyl duality for O(d) implies that if an operator O commutes with all

operators V ⊗k with V ∈ O(d) on the k-fold Hilbert space H⊗k, then it can be written as

Schur-Weyl → O =
∑
σ∈M2k

cσSσ , (3.18)

where Sσ are no longer simply permutation operators on the k copies, but instead involve

permutations and projections. For example, the basis elements for k = 2 are the identity
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and swap operator (as in the unitary case), and also a projection onto EPR pairs

SI = I ⊗ I , SSWAP |i, j〉 = |j, i〉 , SEPR =
d∑
j=1

|j〉〈j| . (3.19)

Just like in the unitary case, Schur-Weyl duality for the orthogonal group means we can

write the k-fold channel over O(d) as

Φ
(k)
O (O) =

∑
σ,τ∈M2k

WgOσ,τSσTr(SτO) , (3.20)

where hereWgOσ,τ is the Weingarten matrix for the orthogonal Weingarten functions. Taking

the channel of the operator Sσ must give Sσ, and thus the Weingarten matrix is the inverse

of the inner product of the basis elements Sσ, written as a matrix equation as

WgOσ,τ =
(
Tr(SσSτ )

)−1
. (3.21)

It is now simple to compute the frame potential Eq. (3.6) for the orthogonal ensemble.

From the invariance of the Haar measure on O(d), we find

F (k)
O =

∫
dOTr(O⊗k)Tr((O⊗k)†) =

∑
σ,τ∈M2k

WgOσ,τTr(SσSτ ) =
(2k)!

2kk!
, (3.22)

for k < d. Viewed as a matrix equation, the inner product on Sσ’s is just the inverse of

the Weingarten function, and the frame potential is just equal to the number of elements in

M2k.

Random symplectic matrices

The compact sympectic group is a subgroup of the unitary group defined as the intersection

of symplectic matrices Sp(2d,C) and the unitary group U(2d), defined with even dimension.

It is a real Lie group and consists of the unitary matrices for which UDU = I. The symplectic
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transpose is defined as

OD = JOTJT , where J =

 0 Id
−Id 0

 , (3.23)

and Id is a d×d identity matrix. Another way of expressing the symplectic unitary condition

is as unitaries for which UJUT = J , where we can also write J = iY ⊗ Id. Some useful

identities to keep in mind are JTJ = I and J2 = −I.
The expressions for integrating over symplectic matrices were discussed in [59, 88, 95],

where the moments are given explicitly as

∫
dS Si1j1 . . . Si2kj2k =

∑
σ,τ∈M2k

∆′σ(~ı )∆′τ (~ )WgSp(σ−1τ, d) , (3.24)

for symplectic unitaries S as defined above. In the k-th moment we sum over pair partitions

M2k and contract indices according to a J-graded combination δ-functions following the

notation in [92]

∆′σ(~ı ) = δ′iσ(1)iσ(2) . . . δ
′
iσ(2k−1)iσ(2k)

, (3.25)

where δ′ is j-graded as δ′ij = (J)i,j. For a more details and a discussion of the symplectic

Weingarten functions, refer to the discussion in App. 3.A. We note the similarity with the

orthogonal Haar integrals.

Schur-Weyl duality for the symplectic group is much the same as the orthogonal case,

instead given by the action of the J-graded Brauer algebra and means that if an operator O
commutes with all symplectic matrices S⊗k on H⊗k, then it can be written as

Schur-Weyl → O =
∑
σ∈M2k

cσS
′
σ , (3.26)

where S ′σ are the basis elements of the graded Brauer algebra. The elements can be written

as simple permutation and projection operators on the k-copies of the Hilbert space realized

just as the orthogonal elements but adding J when we contract the i indices and JT when
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we contract j indices. The k-fold channel over Sp(2d) is

Φ
(k)
Sp (O) =

∑
σ,τ∈M2k

WgSpσ,τS ′σTr(S ′τO) , (3.27)

where hereWgSpσ,τ is the symplectic Weingarten matrix, again the inverse of the inner product

of the basis elements S ′σ, written as a matrix equation as WgSpσ,τ =
(
Tr(S ′σS

′
τ )
)−1

. Just as in

the orthogonal case, the frame potential for the unitary symplectic group counts the number

of pair partitions, F (k)
Sp = (2k)!/2kk!, for k < d.

3.3 Late-time OTOCs for symmetry classes

We are interested in the asymptotic form of the OTOCs in a chaotic system. Consider the

OTO 4-point function

〈AB(t)CD(t)〉 , (3.28)

where B(t) = UtBU
†
t with the unitary time-evolution operator Ut = e−iHt generated by some

physical Hamiltonian. For very chaotic systems, we expect that long after the system has

scrambled, the OTOC will reach a small late-time value. Although in a physical system,

the OTOC will fluctuate in time around this late-time floor, we should be able to study the

universal aspects of this floor value. By taking the unitary operator U to be Haar-random

and averaging the OTOC over the entire unitary group, we find a universal form of the

late-time asymptotic value [11, 96].

For any quantum system, we always consider unitary dynamics Ut ∈ U(d), i.e. we time

evolve with elements of the unitary group. The Haar averaged correlators are universal in

this sense; for generic chaotic systems our time-evolution moves unfettered over U(d). But if

our chaotic system is endowed with some symmetry, say time-reversal invariance, the unitary

time-evolution operator will instead live in some subset of the unitary group. Thus, we must

take a more fine-grained look at the universal properties. Within a given symmetry class we

should instead average correlators over the subset to explore universal properties.
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Haar random unitaries

For a chaotic system with no symmetries, we expect that the late-time value of the OTOC

approaches its Haar-random value. We first review the Haar-averaged 2-point function and

OTO 4-point function. The expressions for U(d) averaged correlators have been previously

derived and discussed in [11, 96]. The Haar-averaged 2-point function is

〈AB(t)〉Haar =
1

d

∫
Haar

dU Tr(AUBU †) =
1

d2
Tr(A)Tr(B) = 〈A〉〈B〉 , (3.29)

given simply by the disconnected piece. We will see that the 2-point functions differentiate

between some, but not all, of the different symmetry classes.

We can also compute the Haar-averaged OTO 4-point function using the second moment

of U(d), and find that

〈AB(t)CD(t)〉Haar =
1

d

∫
Haar

dU Tr(AUBU †CUDU †)

=
d2

d2 − 1

(
〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉 − 1

d2
〈AC〉〈BD〉 − 〈A〉〈B〉〈C〉〈D〉

)
,

(3.30)

or equivalently, written more compactly as

〈AB(t)CD(t)〉Haar

= 〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉 − 〈A〉〈B〉〈C〉〈D〉 − 1

d2 − 1
〈AC〉c〈BD〉c , (3.31)

where 〈·〉c denotes the connected piece of the 2-point function, 〈AB〉c = 〈AB〉 − 〈A〉〈B〉.
Although it is clear from the above expression, for later comparison against forms of the

OTOC for different symmetry classes we note that for traceless operators, the leading order

contribution to the Haar-averaged 4-point function is

〈AB(t)CD(t)〉Haar ≈ −
1

d2
〈AC〉〈BD〉 . (3.32)

We can also compute the 6-point OTOC for Haar random unitaries. The leading order piece
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is universal, meaning it contributes asymptotically for all symmetric classes. The explicit

form is given in the appendix. It will be interesting to note some aspects of higher point

functions. For traceless operators, the Haar-averaged 6-point OTOC is

〈AB(t)CD(t)EF (t)〉Haar =
(d2 − 2)〈AEC〉〈BFD〉

(d− 1)(d− 1)(d+ 1)(d+ 2)
+

2〈ACE〉〈BFD〉
(d− 1)(d− 1)(d+ 1)(d+ 2)

+
2〈AEC〉〈BDF 〉

(d− 1)(d− 1)(d+ 1)(d+ 2)
+

2〈ACE〉〈BDF 〉
(d− 1)(d− 1)(d+ 1)(d+ 2)

.

To leading order this gives

〈AB(t)CD(t)EF (t)〉Haar ≈
〈AEC〉〈BFD〉

d2
. (3.33)

We can also compute the Haar-averaged 8-point OTOCs, but refrain from reproducing them

here. Again, we find that the leading order contribution is universal and holds asymptotically

for all classes.

AI: U(d)/O(d) Time-reversal symmetric

If our system has time-reversal symmetry, with T 2 = 1, then the unitary time-evolution

operator is valued in U ∈ U(d)/O(d). The universal form of the late-time correlators is

found by averaging over the quotient space U(d)/O(d). The AI averaged 2-point function is

〈AB(t)〉 =
1

d

∫
AI

dU Tr(AUBU †) =
1

d+ 1

(
〈ABT 〉+ d〈A〉〈B〉

)
= 〈A〉〈B〉+

1

d+ 1
〈ABT 〉c , (3.34)

which is already distinct from the Haar-averaged case. The OTO 4-point function is

〈AB(t)CD(t)〉 =
1

d

∫
AI

dU Tr(AUBU †CUDU †) , (3.35)

which we can integrate using the second moment of AI random unitaries

∫
dU UijUmnU

†
k`U

†
pq =

∑
σ∈S4

δσ(ijmn|`kqp)WgAI(σ; d) . (3.36)
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Integrating and computing the AI Weingarten functions, we find

〈AB(t)CD(t)〉AI =

d(d+ 2)

(d+ 1)(d+ 3)

(
〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉+

1

d
〈ACBT 〉〈D〉+

1

d
〈ADTC〉〈B〉

+
1

d
〈ABTDT 〉〈C〉+

1

d
〈A〉〈BTCDT 〉+

1

d2
〈ABTCDT 〉+

1

d2
〈ADTCBT 〉

)
− d

(d+ 1)(d+ 3)

(
d〈A〉〈B〉〈C〉〈D〉+

1

d
〈ABTC〉〈D〉+

1

d
〈ACDT 〉〈B〉+

1

d
〈AC〉〈BD〉

+
1

d2
〈ACDTBT 〉+

1

d2
〈ACBTDT 〉+

1

d
〈ABT 〉〈CDT 〉+

1

d2
〈ABTDTC〉

+ 〈ABT 〉〈C〉〈D〉+ 〈A〉〈BTC〉〈D〉+
1

d
〈A〉〈BTDTC〉+

1

d
〈ADT 〉〈BTC〉

+ 〈A〉〈B〉〈CDT 〉+ 〈ADT 〉〈B〉〈C〉+
1

d2
〈ADTBTC〉+

1

d
〈ADTBT 〉〈C〉

)
. (3.37)

The important thing to note is that to leading order at large d, we find

〈AB(t)CD(t)〉AI = 〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉+ 〈A〉〈B〉〈C〉〈D〉+
1

d
(. . .) (3.38)

The same as the Haar-integrated OTOC, but with different terms suppressed in powers of

d. We have yet to find an elegant form of the suppressed terms as connected components.

The leading order contribution for traceless operators is

〈AB(t)CD(t)〉AI = − 1

d2
(
〈AC〉〈BD〉+ 〈ADT 〉〈BCT 〉+ 〈ABT 〉〈CDT 〉

− 〈ABTCDT 〉+ 〈ADTCBT 〉
)
. . . (3.39)

We see that the leading order term from the Haar-averaged OTOC appears but with four

additional terms. We can also compute the 6-point OTOC, and interestingly, we find that

the leading order contribution for traceless operators is

〈AB(t)CD(t)EF (t)〉AI =
〈ADT 〉〈BET 〉〈CF T 〉

d
+ . . . , (3.40)

which contributes at a higher order than the Haar-averaged 6-point functions.
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AII: U(2d)/Sp(2d) Time-reversal symmetric

If our system has time-reversal symmetry, but instead where T 2 = −1, then the unitary

time-evolution operator is valued in V ∈ U(2d)/Sp(2d). The AII averaged 2-point function

is

〈AB(t)〉AII =
1

d

∫
dV Tr(AV BV †) = 〈A〉〈B〉 − 1

2d− 1
〈ABD〉c . (3.41)

We can further compute the Haar-averaged OTO 4-pt function 〈AB(t)CD(t)〉 for AII by

integrating Ṽ = JV as

∫
dU Ṽi1j2Ṽi3j4Ṽ

†
j2j1

Ṽ †j4j3 =
∑
σ∈S4

δσ(i1i2i3i4|j1j2j3j4)WgAII(σ; d) . (3.42)

Integrating and computing the AII Weingarten functions, we find

〈AB(t)CD(t)〉AII =

(2d)2(d− 1)

d(2d− 1)(2d− 3)

(
〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉+

1

2d
〈ACBD〉〈D〉+

1

2d
〈ADDC〉〈B〉

+
1

2d
〈ABDDD〉〈C〉+

1

2d
〈A〉〈BDCDD〉+

1

4d2
〈ABDCDD〉+

1

4d2
〈ADDCBD〉

)
− 2d

(2d− 1)(2d− 3)

(
2d〈A〉〈B〉〈C〉〈D〉+

1

2d
〈ABDC〉〈D〉+

1

2d
〈ACDD〉〈B〉+

1

2d
〈AC〉〈BD〉

− 1

4d2
〈ACDDBD〉 − 1

4d2
〈ACBDDD〉+

1

2d
〈ABD〉〈CDD〉 − 1

4d2
〈ABDDDC〉

− 〈ABD〉〈C〉〈D〉 − 〈A〉〈BDC〉〈D〉+
1

2d
〈A〉〈BDDDC〉+

1

2d
〈ADD〉〈BDC〉

− 〈A〉〈B〉〈CDD〉 − 〈ADD〉〈B〉〈C〉 − 1

4d2
〈ADDBDC〉+

1

2d
〈ADDBD〉〈C〉

)
.

(3.43)

Note that some of the subleading terms come with different signs than in the previous

case and also instead of transpose (natural for orthogonal groups) we have the symplectic

transpose OD = JOTJT . Again, we find that at large d

〈AB(t)CD(t)〉AII = 〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉+ 〈A〉〈B〉〈C〉〈D〉+
1

d
(. . .) (3.44)
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The same as the Haar-integrated OTOC, but with different terms suppressed in powers of

d. The leading order contribution to the AII OTOC for traceless operators is

〈AB(t)CD(t)〉AII = − 1

4d2
(
〈AC〉〈BD〉+ 〈ADD〉〈BCD〉+ 〈ABD〉〈CDD〉

− 〈ABDCDD〉+ 〈ADDCBD〉
)
. . . (3.45)

Computing the 6-point AII averaged OTOC, we find that to leading order for traceless

operators

〈AB(t)CD(t)EF (t)〉AII = −〈AD
D〉〈BED〉〈CFD〉

2d
+ . . . , (3.46)

which just as in the AII case, contributes at order 1/d instead of at order 1/d2 as was the

case for Haar-random unitaries.

BD: O(d) random orthogonal

Averaging over the orthogonal group, we have

〈AB(t)〉O =
1

d

∫
dOTr(AOBOT ) = 〈A〉〈B〉 . (3.47)

So interestingly, this is the first case where we cannot see the difference at the level of the

2-point function, but to probe this symmetry class, we must look at the OTOCs. The OTO

4-point function

〈AB(t)CD(t)〉O =
1

d

∫
dOTr(AOBOTCODOT )

=
d(d+ 1)

(d+ 2)(d− 1)

(
〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉+

1

d
〈ACT 〉〈BDT 〉

)
− d

(d+ 2)(d− 1)

(
d〈A〉〈B〉〈C〉〈D〉+ 〈ACT 〉〈B〉〈D〉+ 〈BDT 〉〈A〉〈C〉

+
1

d
〈AC〉〈BDT 〉+

1

d
〈ACT 〉〈BD〉+

1

d
〈AC〉〈BD〉

)
,

(3.48)
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again with the same leading order terms. We can express this more compactly as

〈AB(t)CD(t)〉O =

〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉 − 〈A〉〈B〉〈C〉〈D〉+
d+ 1

(d+ 2)(d− 1)
〈ACT 〉c〈BDT 〉c

− 1

(d+ 2)(d− 1)

(
〈AC〉c〈BDT 〉c + 〈ACT 〉c〈BD〉c + 〈AC〉c〈BD〉c

)
. (3.49)

For traceless operators and to order 1/d2, the orthogonal OTOC is

〈AB(t)CD(t)〉O =
1

d
〈ACT 〉〈BDT 〉− 1

d2
(
〈AC〉〈BD〉+〈ACT 〉〈BD〉+〈AC〉〈BDT 〉

)
. . . (3.50)

Note that the Haar, AI, and AII averaged OTOC all had the leading order contribution

appear at order 1/d2, whereas here the contribution appears at order 1/d.

We can also compute the 6-point OTOC for orthogonal evolution. To leading order for

traceless operators we find

〈AB(t)CD(t)E(t)F (t)〉O =
1

d2
(
〈AEC〉〈BFD〉+ 〈ACTET 〉〈BFDT 〉

+ 〈AETC〉〈BDTF T 〉+ 〈AECT 〉〈BF TD〉
)

+ . . . (3.51)

C: Sp(2d) random symplectic

Averaging over the symplectic group, we find the averaged 2-point functions

〈AB(t)〉Sp =
1

2d

∫
dS Tr(ASBS†) = 〈A〉〈B〉 . (3.52)
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Again, to probe this symmetry class, we must look at the OTOCs. The OTO 4-point function

〈AB(t)CD(t)〉Sp =
1

2d

∫
dS Tr(ASBS†CSDS†)

=
2d(2d− 1)

2(d− 1)(2d+ 1)

(
〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉 − 1

2d
〈ACD〉〈BDD〉

)
− 2d

2(d− 1)(2d+ 1)

(
2d〈A〉〈B〉〈C〉〈D〉 − 〈ACD〉〈B〉〈D〉 − 〈BDD〉〈A〉〈C〉

+
1

2d
〈AC〉〈BDD〉+

1

2d
〈ACD〉〈BD〉+

1

2d
〈AC〉〈BD〉

)
, (3.53)

again with the same leading order terms. We can express the OTOC more compactly as

〈AB(t)CD(t)〉Sp =

〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉 − 〈A〉〈B〉〈C〉〈D〉 − 2d− 1

2(d− 1)(2d+ 1)
〈ACD〉c〈BDD〉c

− 1

2(d− 1)(2d+ 1)

(
〈AC〉c〈BDD〉c + 〈ACD〉c〈BD〉c + 〈AC〉c〈BD〉c

)
. (3.54)

For traceless operators and to order 1/d2, the symplectic OTOC is

〈AB(t)CD(t)〉Sp = − 1

2d
〈ACD〉〈BDD〉 − 1

4d2
(
〈AC〉〈BD〉+ 〈ACD〉〈BD〉+ 〈AC〉〈BDD〉

)
. . .

(3.55)

where again we find that the leading order contribution appears at order 1/d. We can also

compute the 6-point OTOC for symplectic matrices. To leading order for traceless operators

we find

〈AB(t)CD(t)E(t)F (t)〉Sp =
1

4d2
(
〈AEC〉〈BFD〉+ 〈ACDED〉〈BFDD〉

+ 〈AEDC〉〈BDDFD〉+ 〈AECD〉〈BFDD〉
)

+ . . . (3.56)

AIII: U(d)/(U(a)× U(b))

This is the first of the so-called chiral ensembles, where d = a+b. Most generally, elements of

AIII are defined as IabU
†IabU , with Haar-random U and Iab = diag(Ia,−Ib). For convenience,
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we define ω = a− b, the difference in dimensions. The 2-point function

〈AB(t)〉AIII =
1

d

∫
AIII

dW Tr(AWBW †)

=
(ω + 1)(ω − 1)

(d+ 1)(d− 1)
〈AB̃〉+

4ab

d(d− 1)(d+ 1)
〈A〉〈B〉

= 〈A〉〈B〉+
ω2 − 1

(d+ 1)(d− 1)
〈AB̃〉c , (3.57)

where we have defined B̃ = IabBIab As a sanity check we can plug in the identity for the two

operators and we get one. Similar to the previous cases where we sum over elements of the

cyclic group Sk, the OTO 4-point function can be integrated using the AIII integral

∫
dW WijWk`WmnWpq =

∑
σ∈S4

δσ(ikmp|j`nq)WgAIII(σ; a, b) . (3.58)

We can compute the full expression for the AIII averaged OTOC, but the expression contains

24 terms and itself is not terribly enlightening. The important aspects to note are that to

leading order in 1/d, we find

〈AB(t)CD(t)〉AIII = 〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉+ 〈A〉〈B〉〈C〉〈D〉+
1

d
(. . .) , (3.59)

the same leading order contribution as in the other classes. For traceless operators, to leading

order in 1/d, the AIII OTOC is

〈AB(t)CD(t)〉AIII =
1

d2
(
〈AD̃CB̃〉 − 〈AC〉〈BD〉+ (ω2 − 1)〈AB̃〉〈CD̃〉

+ (ω2 − 1)〈AD̃〉〈CB̃〉
)

+ . . . (3.60)

We can also compute the 6-point OTOC and find that for traceless operators, the leading

order contribution appears at 1/d2.
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BDI: O(d)/(O(a)×O(b))

The second of the chiral ensembles, where d = a+ b. Generally, elements of BDI are defined

as IabO
T IabO, with Haar-random orthogonal O. The 2-point function averaged over the

space is

〈AB(t)〉BDI =
1

d

∫
dW Tr(AWBW †)

=
ω2(d+ 1)− 2d

d(d+ 2)(d− 1)
〈AB̃〉+

4ab

d(d+ 2)(d− 1)

(
d〈A〉〈B〉+ 〈AB̃T 〉

)
= 〈A〉〈B〉+

ω2(d+ 1)− 2d

d(d+ 2)(d− 1)
〈AB̃〉c +

4ab

d(d+ 2)(d− 1)
〈AB̃T 〉c , (3.61)

where B̃ = IabBIab and ω = a − b. Again we can check that insert identity operators gives

one. Using the second moment of BDI random unitaries

∫
dW Wi1i2Wi3i4Wi5i6Wi7i8 =

∑
σ∈M8

∆σ(~ı )WgBDI(σ; a, b) , (3.62)

we can compute the averaged OTO 4-point function and find to leading order

〈AB(t)CD(t)〉BDI = 〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉+ 〈A〉〈B〉〈C〉〈D〉+
1

d
(. . .) . (3.63)

For traceless operators and to order 1/d2, the BDI averaged OTOC is

〈AB(t)CD(t)〉BDI =
1

d
〈ACT 〉〈BDT 〉 − 1

d2

(
〈AC〉〈BD〉+ 〈ACT 〉〈BD〉+ 〈AC〉〈BDT 〉

+ 〈AB̃T 〉〈CD̃T 〉+ 〈AD̃T 〉〈CB̃T 〉+ 2〈ACT 〉〈BDT 〉+ 2〈AD̃〉〈BC̃〉

+ 2〈AB̃〉〈CD̃〉 − ω2〈AD̃〉〈CB̃〉 − ω2〈AB̃〉〈CD̃〉 − 〈AD̃CB̃〉

− 〈AB̃TCD̃T 〉 − 〈AD̃TCB̃T 〉 − 〈ACT D̃T B̃〉 − 〈AD̃B̃TCT 〉
)
. (3.64)

CII: Sp(2d)/(Sp(2a)× Sp(2b))

The last of the chiral ensembles, again where d = a + b. Elements of this space can be

written as V = ĨabS
DĨabS, where S is a Haar-random symplectic matrix Ĩab = diag(Iab, Iab).
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The averaged 2-point function is

〈AB(t)〉CII =
1

2d

∫
dW Tr(AWBW †) (3.65)

=
ω2(2d− 1)− d
d(d− 1)(2d+ 1)

〈AB̃〉+
4ab

d(d− 1)(2d+ 1)

(
2d〈A〉〈B〉 − 〈AB̃D〉

)
(3.66)

= 〈A〉〈B〉+
ω2(2d− 1)− d
d(d− 1)(2d+ 1)

〈AB̃〉c +
4ab

d(d− 1)(2d+ 1)
〈AB̃D〉c , (3.67)

where here B̃ = ĨabBĨab. At leading order in the CII averaged OTOC, we again find the

same universal contribution. For traceless operators and to order 1/d2, the CII averaged

OTOC is

〈AB(t)CD(t)〉CII =− 1

2d
〈ACD〉〈BDT 〉 − 1

4d2

(
〈AC〉〈BD〉+ 〈ACD〉〈BD〉+ 〈AC〉〈BDT 〉

+ 〈AB̃D〉〈CD̃D〉+ 〈AD̃D〉〈CB̃D〉+ 2〈ACD〉〈BDD〉+ 2〈AD̃〉〈BC̃〉

+ 2〈AB̃〉〈CD̃〉 − ω2〈AD̃〉〈CB̃〉 − ω2〈AB̃〉〈CD̃〉 − 〈AD̃CB̃〉

− 〈AB̃DCD̃T 〉 − 〈AD̃DCB̃D〉 − 〈ACDD̃DB̃〉 − 〈AD̃B̃DCD〉
)
. (3.68)

DIII: O(2d)/U(d)

One of the BdG ensembles, where elements of the space can be written as V = ODO with

Haar-random orthogonal matrix O. The 2-pt function is

〈AB(t)〉DIII =
1

2d

∫
dV Tr(AV BV †) = 〈A〉〈B〉 − 1

2d− 1
〈ABD〉c . (3.69)

The DIII averaged OTOC gives the same asymptotic contribution as in the other symmetry

classes. To second order in 1/d, we find that for traceless operators, the DIII OTOC is

〈AB(t)CD(t)〉DIII =
1

2d
〈ACT 〉〈BDT 〉 − 1

4d2

(
〈AC〉〈BD〉+ 〈ABD〉〈CDD〉+ 〈ADD〉〈CBD〉

− 2〈ACT 〉〈BDT 〉+ 3〈ACT 〉〈BD〉+ 3〈AC〉〈BDT 〉 − 〈ADDBDC〉

− 〈ACDDBD〉 − 〈ABDCDD〉 − 〈ADDCBD〉 − 〈ADCB〉
)
. (3.70)
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CI: Sp(2d)/U(d)

Another of the BdG ensembles, where elements of the space can be written as V = ISDIS

with Haar-random symplectic matrix S. The 2-pt function is

〈AB(t)〉CI =
1

2d

∫
dV Tr(AV BV D) = 〈A〉〈B〉+

1

2d+ 1
〈AIBDI〉c . (3.71)

The CI averaged OTOC gives the same asymptotic contribution as in the other symmetry

classes. To second order in 1/d, we find that for traceless operators, the CI OTOC is

〈AB(t)CD(t)〉CI =− 1

2d
〈ACD〉〈BDD〉 − 1

4d2

(
〈AC〉〈BD〉+ 〈AD̃D〉〈CB̃D〉+ 〈AB̃D〉〈CD̃D〉

− 2〈ACD〉〈BDD〉+ 3〈ACD〉〈BD〉+ 3〈AC〉〈BDD〉 − 〈AD̃CB̃〉

+ 〈AD̃B̃DCD〉+ 〈ACDD̃DB̃〉 − 〈AB̃DCD̃D〉 − 〈AD̃DCB̃D〉
)
. (3.72)

3.4 Symmetric k-designs and k-invariance

In Chapter 2, we introduced the notion of k-invariance to capture the onset of a random

matrix description in (an ensemble of) physical systems. Given the above discussion, one

might expect that for a chaotic system with symmetry (such as time-reversal invariance), we

should refine the definition to account for the symmetry.

Recall that the frame potential provides a quantitative measure of randomness of an

ensemble of unitaries. Considering the ensemble of unitaries generated by an ensemble of

Hamiltonians

Et =
{
e−iHt , with H ∈ EH

}
, (3.73)

where the ensemble of Hamiltonians might be a system with quenched disorder, like SYK or

a disordered spin chain, or a random matrix ensemble. By computing the frame potential for

this ensemble F (k)
E (t), a function of time, we quantified how chaotic or random the system

is at certain timescales. If the k-th frame potential is equal to the frame potential for

the invariant measure on the unitary group, the Haar ensemble, then we form a k-design,

meaning we reproduce the first k moments of the unitary group. The frame potential is
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lower-bounded by the Haar value and thus is a well-defined distance to randomness

distance to k-design: F (k)
Et (t)−F (k)

Haar ≥ 0 , (3.74)

where F (k)
Haar = k!. In [12], we introduced a more interesting lower bound given by the notion

of k-invariance. If the k-th frame potential is instead equal to the frame potential for the

Haar-conjugated ensemble Ẽ = UEU †, which also lower bounds it, then we say the ensemble

is k-invariant

distance to k-invariance: F (k)
Et (t)−F (k)

Ẽt
(t) ≥ 0 . (3.75)

This captures something more interesting about the time-evolution of systems. The intuition

should be that we are measuring how random the dynamics look by how invariant they are

under a unitary change of basis. For example, if we consider the random matrix ensemble

GUE, then as the ensemble is by definition unitarily invariant, then we are always exactly

k-invariant for all k. If we consider a physical system, we expect that k-invariance is a good

measure of how scrambled the system is under chaotic time-evolution.

In summary, the ensemble forms a k-design or is k-invariant iff

k-design : F (k)
Et (t) = F (k)

Haar , and k-invariant : F (k)
Et (t) = F (k)

Ẽt
(t) . (3.76)

If a system is chaotic, then we expect the late-time floor value of the difference F (k)
Et (t)−

F (k)

Ẽt
(t) to be small. But just as we have seen in previous sections, the late-time behavior

depends on the symmetries of the system. Now we ask how to refine the definition of a

k-design and k-invariance for systems with symmetry.

Given some ensemble of Hamiltonians with symmetry

Et =
{
e−iHt , H ∈ EH

}
, where e−iHt ∈ U(d)/K (3.77)

and where K is some subgroup of U(d) determined by the symmetry class. For example,

K = O(d) for some systems with time-reversal symmetry (the AI case). For a given quotient

of the unitary group, a symmetric k-design is an ensemble that reproduces the first k-
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moments of the compact symmetric space

symmetric k-design: F (k)
Et (t)−F (k)

U(d)/K ≥ 0 . (3.78)

For example, if we wanted to understand the time-scales at which the random matrix ensem-

ble GOE becomes randomly distributed over (a quotient of) the unitary group, we should

compute F (k)
Et (t)−F (k)

U(d)/O(d). We can also generalize the notion of k-invariance. Recall that

before we defined the Haar-invariant ensemble Ẽt = UEtU †, conjugating by Haar-random uni-

taries. For an ensemble of Hamiltonians with some symmetry, we should define the invariant

ensemble with respect to the symmetry sym(Et) = V EV † where V ∈ K. The distance to

symmetric k-invariance is thus

symmetric k-invariance: F (k)
Et (t)−F (k)

sym(Et)(t) ≥ 0 . (3.79)

For example, if we have the GOE, then the invariant ensemble sym(EGOE) = OEGOEO
† =

EGOE, as the GOE is orthogonally invariant. This means that the GOE is always k-invariant

with respect to its symmetry class, just as for the GUE. More generally, for an ensemble of

physical Hamiltonians with symmetry we should look at the late-time value of its symmetric

k-invariance to observe the onset of random matrix behavior in its symmetry class.

3.4.1 Frame potentials for symmetric k-designs

The frame potential for any ensemble of unitaries E is lower bounded by its Haar value k!,

and in this sense defines a distance to randomness. More precisely, it is the 2-norm distance

of the k-fold channels with respect to the ensemble E and the Haar ensemble. Simply stated,

we can compute the k-th frame potential for some ensemble and the number we get tells us

how close we are to reproducing the first k moments of the unitary group. As we discussed

above, if our ensemble of unitaries has some symmetry, we should expect that the distance

to randomness should be refined to account for the symmetry. For instance, if our system

has time-reversal symmetry, the ensemble of unitary time-evolutions should reach a minimal

value corresponding to the compact symmetric space.
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We will first review the computation of the frame potential for the full unitary group

U(d) and then compute the frame potentials for the Lie groups O(d) and Sp(2d). Then we

compute the frame potentials for some of the compact symmetric spaces U(d)/K. We then

review the derivation of the lower bound by the Haar frame potential using tensor expanders,

and then generalize to different symmetry classes.

Haar random unitaries

As we reviewed in Sec. 3.2, Schur-Weyl duality allows one to write the k-fold channel over

the Haar ensemble as a sum over permutations with Weingarten coefficients. When writing

out the frame potential we find Weingarten coefficents and their inverses, which count the

cycles in an element of Sk, cancel such that the expression is simply a sum over elements of

Sk, which gives

F (k)
Haar = k! . (3.80)

Symmetric k-designs

We now generalize the notion of a k-design to different symmetry classes. Consider some

ensemble of unitaries valued in a quotient of the unitary group

E = {pi, Ui} where Ui ∈ U(d)/K , (3.81)

and where K is a closed subgroup of the full unitary group. As we discussed previously,

the involution for which K is a fixed point set defines a map which allows us to realize the

quotient space as a subset of the unitary group, this is essentially the Cartan embedding.

An invariant probability measure on the compact symmetric space is induced from this map.

Analogous to the proof before that the frame potential for any ensemble of unitaries

is lower-bounded by the Haar-value, we now show that any ensemble of unitaries valued

in U(d)/K is lowered bounded by the frame potential for the compact symmetric space.

Consider the operator S, the difference between the k-fold channels of E and the invariant

116



ensemble for the compact symmetric space U(d)/K:

S =

∫
E
dU (U⊗k)† ⊗ U⊗k −

∫
U(d)/K

dU (U⊗k)† ⊗ U⊗k . (3.82)

As the operator S†S is positive semi-definite TrS†S ≥ 0, this implies that

F (k)
E + F (k)

U(d)/K − 2

∫
U∈E
dU

∫
V ∈U(d)/K

dV
∣∣Tr(U †V )

∣∣2k ≥ 0 . (3.83)

Now we note that as the elements of the ensemble E are in the compact symmetric space

U(d)/K, then we can use the left/right invariance of the probability measure on the quotient

to absorb the U ’s into the V ’s, and the last term simply becomes the frame potential for

U(d)/K

F (k)
E ≥ F

(k)
U(d)/K for E = {pi, Ui ∈ U(d)/K} . (3.84)

Note that if the ensemble E were simply some ensemble of unitaries, not necessarily restricted

to live within a quotient of the unitary group, then the above derivation would not hold.

This is not surprising; all we have shown here is that the frame potential for the invariant

measure on the quotient space lower bounds the frame potential for any ensemble consisting

of unitaries from that quotient.

Frame potentials for AI

Recall that the frame potential is lower bounded by its Haar random unitary value F (k)
Haar = k!.

This was how we measured randomness, as a distance to reproducing the first k moments of

the Haar ensemble. But if we are given some ensemble of unitary time evolutions respecting

an additional symmetry, like time-reversal invariance, we should instead look at the ensem-

bles ability to reproduce moments of a subset of the full unitary group, with respect to that

symmetry. Namely, if the measure is orthogonally invariant, as with certain ZT
2 invariant

systems, then we should quantify randomness with respect to the frame potential of quotient

space U(d)/O(d).
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Consider the frame potential for the compact symmetric space AI

F (k)
AI =

∫
U(d)/O(d)

dUdV
∣∣Tr(U †V )

∣∣2k =

∫
U(d)/O(d)

dU
∣∣Tr(U)

∣∣2k . (3.85)

To compute first frame potential we sum over elements of S2, for which we need the Wein-

garten function WgAI(σ ∈ S2, d) = 1/(d+ 1), and thus find

F (1)
AI =

2d

d+ 1
, and F (1)

AI ≈ 2 for d� 1 . (3.86)

The first thing to note is that unlike for the compact Lie groups, the frame potentials for the

compact symmetric spaces depend on the dimension d. Schur-Weyl duality for the compact

Lie groups allowed us to write the k-fold channels as linear combinations of a set of basis

elements (which depended on the group). This meant that the Weingarten function arose as

the inverse of the inner products of these basis elements. For the compact symmetric space,

this is no longer the case. For instance, the AI Weingarten function is a product of the

unitary Weingarten matrix and the inner product of orthogonal basis elements [91, 92]. Said

in the language of these papers convolution on S2k of the unitary Weingarten function and

the class function for the orthogonal group (of which the orthogonal Weingarten function is

the inverse). So the AI frame potentials will not have an exact closed form in terms of k,

but what we are really interested in is the asymptotic value.

To compute the second frame potential for AI, we sum over elements of S4 for which we

need the Weingarten functions

WgAI({1, 1}, d) =
d+ 2

d(d+ 1)(d+ 3)
, WgAI({2}, d) =

−1

d(d+ 1)(d+ 3)
, (3.87)

where the argument of the Weingarten function is the coset type of the permutation, as

reviewed in App. 3.A. Computing the second frame potential we find

F (2)
AI =

8(d2 + 2d− 2)

(d+ 1)(d+ 3)
, and F (2)

AI ≈ 8 for d� 1 . (3.88)

We can now discuss the general form of the k-th frame potential. As we explain in App. 3.A,
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just like for the orthogonal Weingarten functions, the AI Weingarten functions are constant

on the double coset of S2k, which means they are labeled by the coset-type of the permutation.

The coset-type of a permutation σ ∈ S2k is an integer partition of k. The leading term in

the large d limit will be given by the Weingarten function of coset-type {1, 1, . . .}. Given the

simple relation between orthogonal and AI functions, this arises from the asymptotic form

of WgO [59]

WgO(σ, d) ∼ 1

d2k−`(µ)
, (3.89)

where σ ∈ S2k, µ is the coset-type of σ, and `(µ) is the length of the integer partition µ. As

we sum over elements of S2k in the AI Haar-integral (not pair partitions as in the orthogonal

case), the asymptotic form of the frame potential is given by counting the number of elements

of S2k of coset-type {1, 1, . . .}, which gives

F (k)
AI ≈ 2kk! for d� 1 . (3.90)

Thus, given that the frame potential of a compact symmetric space is lower bounded by

its Haar-value Eq. (3.84), any ensemble of unitaries in U(d)/O(d) forms an AI symmetric

k-design if and only if its frame potential equals 2kk!.

Frame potentials for AII

The discussion here is essentially the same as the previous subsection. We now want to

consider the frame potential for the compact symmetric space AII

F (k)
AII =

∫
U(2d)/Sp(2d)

dUdV
∣∣Tr(U †V )

∣∣2k =

∫
U(2d)/Sp(2d)

dU
∣∣Tr(U)

∣∣2k . (3.91)

We will just compute the first frame potential before turning to the more general discussion.

For the first frame potential we need the Weingarten functionWgAII(σ ∈ S2, d) = ε(σ)/(2d−
1), which depends on the sign of the permutation. Proceeding we find

F (1)
AII =

4d

2d− 1
, and F (1)

AII ≈ 2 for d� 1 , (3.92)
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again depending on the dimension d.

More generally, although the exact values of the AII frame potentials are different from

AI, the asymptotic form is the same. Just like for the symplectic Weingarten functions, the

AII Weingarten functions are also constant on the double coset of S2k and are labeled by

the coset-type of σ. The asymptotic form ofWgSp is the same as the orthogonal Weingarten

functions [59], meaning the leading order contribution will arise from permutations of coset-

type {1, 1, . . .}. Summing over elements of S2k in computing the AII frame potential we

simply count the number of permutations of this coset-type, which gives

F (k)
AII ≈ 2kk! for d� 1 . (3.93)

As Eq. (3.84) shows that frame potential of a compact symmetric space is lower bounded by

its Haar-value, any ensemble of unitaries in U(2d)/Sp(2d) forms a AII symmetric k-design

if and only if its frame potential equals 2kk!.

3.4.2 Random matrices and symmetry

In Sec. 3.4, we generalized the notion of a k-design to ensembles with symmetry. Let’s now

turn to random matrix ensembles with symmetry and determine the time scales at which

the evolution forms a k-design. In [12], we computed the frame potentials for the Gaussian

unitary ensemble and found that at an intermediate time scale, the dip time td ∼
√
d, the

GUE forms a k-design and reproduces k � d moments of the Haar ensemble, but at late-

times the frame potential increases and the GUE is no longer Haar-random. We refer the

reader to [12] for details. For comparison to other random matrix ensembles, we quickly

review the result for the k = 1 frame potential of the GUE. The k-th frame potential for the

GUE can be computed by going to the unitarily rotating to the eigenvalue basis and then

Haar-integrating, resulting in an expression in terms of the 2k-spectral form factors. For

k = 1 we found

F (1)
GUE =

1

d2 − 1

(
R2

2 + d2 − 2R2

)
, where R2 =

∫
Dλ
∑
i,j

ei(λi−λj)t (3.94)
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is the 2-point form factor for the GUE. At very early times, R2 ∼ d2 so the behavior of

the frame potential is approximately ∼ R2
2/d

2 until near the dip time. At the dip time td,

R2 ≈
√
d and the frame potential achieves its Haar-random value F (1)

GUE ≈ 1. But at late

times R2 ≈ d and the frame potential becomes F (1)
GUE ≈ 2, which means the GUE no longer

forms a 1-design. More generally, for the k-th frame potential [12] found that

Early : F (k)
GUE ≈

R2
2k

d2k
, Dip : F (k)

GUE ≈ k! , Late : F (k)
GUE ≈

k∑
`=0

k!2

`!
. (3.95)

Frame potentials for the GOE

Now we consider the Gaussian orthogonal ensemble and the ensemble of time-evolutions

generated by GOE Hamiltonians

Et =
{
e−iHt , where H ∈ GOE

}
. (3.96)

The GOE is the random matrix ensemble for time-reversal invariant Hamiltonians with

T 2 = 1. For electronic systems, these are Hamiltonians with time-reversal invariance and

preserving SU(2) spin. In the language of this chapter, these are systems in the symmetry

class AI; H is a real Hermitian matrix and e−iHt ∈ U(d)/O(d). The symmetric k-design

condition for this symmetry class is

AI k-design : F (k)
Et (t) ≥ F (k)

U(d)/O(d) . (3.97)

Recall that we also showed that for the compact symmetric space U(d)/O(d), the frame

potential is

F (k)
U(d)/O(d) ≈ 2kk! for d� 1 and d > k , (3.98)

where the first few terms of this sequence are 2, 8, 48, and 384.

We now want to compute the frame potentials for the GOE and show that at the dip

time the GOE forms an AI k-design. We give an explicit derivation of the first GOE frame

potential and then quote our results for higher k.
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k = 1 frame potential

The first frame potential for the GOE

F (1)
GOE =

∫
dH1dH2 e

− d
2
TrH2

1e−
d
2
TrH2

2

∣∣∣Tr
(
eiH1te−iH2t

)∣∣∣2 , (3.99)

can be computed by noting that the GOE measure is invariant under conjugation by or-

thogonal matrices, meaning we can diagonalize the Hermitian matrices integrating over the

invariant measure on the orthogonal group. For convenience, we define Λ ≡ Ue−iHtU †, i.e.

the diagonal matrix exponential of the GOE Hamiltonian. Thus in the eigenvalue basis, we

can express the frame potential as

F (1)
GOE =

∫
Dλ1Dλ2

∫
dOTr

(
OTΛ†1OΛ2

)
Tr
(
Λ†2O

TΛ1O
)
, (3.100)

where we have used the left/right invariance of the Haar measure. To integrate this we need

the second moment of the orthogonal group O(d), as we reviewed in Sec. 3.2

∫
dOOj1k1Oj2k2Oj3k3Oj4k4 =

∑
σ,τ∈M4

δjσ(1)jσ(2)δjσ(3)jσ(4)δkτ(1)kτ(2)δkτ(3)kτ(4)WgO(σ−1τ) , (3.101)

where we sum over the pair partitions M4. The three elements of M4 are {{1, 2}, {3, 4}},
{{1, 4}, {2, 3}}, and {{1, 3}, {2, 4}}. The two Weingarten functions for the orthogonal group

we will need are

WgO({1, 1}) =
d+ 1

d(d+ 2)(d− 1)
, and WgO({2}) =

−1

d(d+ 2)(d− 1)
, (3.102)

labeled by the coset type of the permutation. Recall that WgO(σ) is a function on σ ∈ S2k

and is constant on the double coset of S2k, meaning that the Weingarten function only

depends on the coset type of σ. In the above sum, the two cases correspond to whether

the pair partitions in the sum are equal or not, i.e. we use WgO({1, 1}) when σ = τ in the

sum, andWgO({2}) when σ 6= τ . Summing over the pair partitions and doing the δ-function
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contractions, we find

F (1)
GOE =

1

d(d+ 2)(d− 1)

(
(d+ 1)R2

2 + 2d3 − 4dR2

)
, (3.103)

where again R2 is the 2-point form factor. As a sanity check, we can evaluate at t = 0, where

R2 = d2, and find F (1)
GOE = d2. Just like in the GUE, we see that the early time behavior of

the first frame potential is dominated by the 2-point spectral form factor for the GOE

Early : F (1)
GOE ≈

R2
2

d2
. (3.104)

At the dip time, when R2 ≈
√
d, we find that

Dip : F (1)
GOE ≈ 2 . (3.105)

At late times, in the limit t→∞ where R2 = d, we find

Late : F (1)
GOE =

3d2

d(d+ 2)
≈ 3 for d� 1 . (3.106)

k = 2 frame potential

We can compute the second frame potential for the GOE using the fourth moment of the

orthogonal group, integrating and computing the Weingarten functions we find an expres-

sion in terms of the spectral form factors for the GOE. We give the first few terms of the

expression:

F (1)
GOE = 8 +

R2
4

d4
+

12R2
4

d6
+

16R4

d4
+

8R2
2

d2
− 8R2

2

d3
− 32R2

d2
− 16R4R2

d4
+ . . . (3.107)

Again we note that at early times, the second frame potential is dominated by the 4-point

form factor, but at the dip time we find that the frame potential reaches a value of 8 and

forms an AI symmetric 2-design, but not a unitary 2-design. At late times, we deviate away

from this and get the asymptotic value 20 in the t → ∞ limit and for d � 1. In summary,
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for the second frame potential for the GOE, we find

Early : F (2)
GOE ≈

R2
4

d4
, Dip : F (2)

GOE ≈ 8 , Late : F (2)
GOE ≈ 20 . (3.108)

k-th frame potential

We can now comment on the general features for the k-th frame potential for the GOE.

Just as for the unitary Weingarten functions, the orthogonal Weingarten functions have an

asymptotic form at large d

WgO(σ) ∼ 1

d4k−#cycles
, (3.109)

in terms of the number of cycles in the permutation σ. Note that the k-th frame potential

involves the 2k-th moment of the orthogonal group, hence the 4k factor in the denominator.

This tells us that the leading order terms will be for Weingarten function evaluated on the

identity permutation, i.e. when σ = τ in the Haar-integration. Recall that we sum over the

subset of S4k consisting of pair partitions. For the k-th frame potential, which requires the

2k-th moment, the number of pair partitions is (4k)!/(4k(2k)!). It turns out that the subset

of these elements on the double coset labeled by the integer partition 2k, which generate the

index contractions and give the leading order contribution, contains 2kk! elements, which

are the terms that survive at the dip of k-th frame potential for the GOE. The early time

decay and the dip value for the GOE frame potentials are

Early : F (k)
GOE ≈

R2
2k

d2k
, Dip : F (k)

GOE ≈ 2kk! , (3.110)

for d� 1. This means that at the dip time, the GOE forms an AI symmetric k-design, just

as the GUE forms a unitary k-design at the dip. Moreover, as was also the case for the GUE,

at late times the random matrix eigenvalues dephase and we are no longer Haar-random with

respect to the symmetry class.

Frame potentials for the GSE

The discussion here is essentially the same as for the GOE, so we will keep the discussion

somewhat brief. Consider the ensemble of unitaries generated by the time evolution of GSE
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Hamiltonians, i.e. where H is drawn from GSE

E =
{
e−iHt, where H ∈ GSE

}
. (3.111)

Recall that we define the GSE to consist of 2d×2d Hamiltonians, and thus 2d is the dimension

of the Hilbert space in the following discussion.

We can compute the first frame potential noting that the GSE measure is invariant under

conjugation by symplectic matrices, meaning we can diagonalize the Hermitian matrices

integrating over the invariant measure on the symplectic group. In the eigenvalue basis, we

can express the frame potential as

F (1)
GSE =

∫
Dλ1Dλ2

∫
dS Tr

(
UDΛ†1UΛ2

)
Tr
(
Λ†2U

DΛ1U
)
, (3.112)

where UD is the symplectic adjoint of U , and we’ve used the left/right invariance of the Haar

measure. To integrate, we use the moments of the Haar measure on the symplectic group.

The formulae are essentially the same as in the last subsection. To integrate we need the

second moment of Sp(2d)

∫
dU UD

j1k1
Uj2k2U

D
j3k3

Uj4k4 =
∑
σ,τ∈P4

δjσ(1)jσ(2)δjσ(3)jσ(4)δkτ(1)kτ(2)δkτ(3)kτ(4)WgSp(σ−1τ) . (3.113)

The two symplectic Weingarten functions we will need are

WgSp({1, 1}) = ε(σ)
2d− 1

2d(2d− 2)(2d+ 1)
, WgSp({2}) = ε(σ)

1

2d(2d− 2)(2d+ 1)
.

(3.114)

Summing over the pair partitions and doing the δ-function contractions, we find

F (1)
GSE =

1

2d(2d− 2)(2d+ 1)

(
(2d− 1)R2

2 + 2(2d)3 − 8dR2

)
, (3.115)

where here R2 is the spectral form factor for the GSE. Again at the dip F (1)
GSE ≈ 2 and

we form a symmetric AII 1-design, but not a unitary 1-design. At late times t → ∞, we

find F (1)
GSE ≈ 3, and deviate away from Haar-randomness. While the exact expressions and
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subleading corrections are different from the GOE, and the actual expressions for the GOE

and GSE spectral form factors are different, the essential aspects of the discussion are the

same. At the dip time, which is the same time-scale for GSE form factors, we find the

asymptotic value of 2kk!, which is also the symmetric k-design value for the symmetry class

AII. In summary, just as for the GOE, the early time decay and the dip value for the GSE

frame potentials are

Early : F (k)
GSE ≈

R2
2k

(2d)2k
, Dip : F (k)

GSE ≈ 2kk! , (3.116)

meaning we form a AII symmetric k-design and then at late-times become less Haar-random

with respect to the AII compact symmetric space.

3.5 Random subsystems and symmetry

In this section we study the reduced density matrix of a random state with respect to

different symmetry classes. We are interested in the trace distance of ρA(U), the reduced

density matrix of a subsystem in a random state, to the maximally mixed state. Simply

stated, we want to understand Page’s theorem for different symmetry classes. This section

differs slightly from the goals of the previous sections, where we studied the time-evolution

and late-time features of chaotic systems with symmetry. Studying random subsystems for

different symmetry classes is a nice application of the tools developed in this chapter, but

will also be physically interesting.

Haar-random unitary states

Consider a bipartite system H = HA ⊗ HB, a Haar-random state U |ψ0〉, and its reduced

density matrix on A:

ρA(U) = TrBUρ0U
† , where ρ0 = |ψ0〉〈ψ0| . (3.117)

Denote the dimensions d = dimH, dA = dimHA and dB = dimHB, and define the difference

with the maximally mixed state as ∆ρA ≡ ρA(U)− ρ∞A , where ρ∞A = IA/dA is the maximally
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mixed state on the A subsystem. Recall that we can upper bound the 1-norm distance∫
dU ‖∆ρA‖1 by computing the Haar-average of the squared 2-norm distance

∫
dU ‖∆ρA‖22 =

∫
dU Tr

(
ρ2A(U)− 2

dA
ρA(U) +

IA
d2A

)
. (3.118)

The last two terms are always trivially Haar-averaged, even if we are averaging over some

symmetry class and not the full unitary group; the non-trivial piece is always the Trρ2A(U)

term. Note, this is the same computation done to show decoupling ρRE = ρR ⊗ ρE in [1].

Recalling that for any operator O acting on a Hilbert space HA, the 2-norm bounds the

1-norm as ‖O‖21 ≤ dA‖M‖22, we can bound the trace distance as

∫
dU
∥∥∆ρA

∥∥2
1
≤ dA

∫
dU Trρ2A(U)− 1 . (3.119)

For Haar-random unitaries, it is simple to compute

∫
Haar

dU Trρ2A(U) =
dA + dB
d+ 1

, (3.120)

and thus we find that ∫
dU
∥∥∆ρA

∥∥2
1
≤ d2A − 1

d+ 1
≈ dA
dB

, (3.121)

meaning that if the A subsystem is smaller than half the total system then typical states on

that subsystem look very close to maximally mixed.

Random orthogonal states

It is straight-forward to extend this calculation to other symmetry classes and ask if the same

is true for random states with respect to some quotient of the full unitary group. Obviously,

we expect it to be true and that typical states should look maximally mixed on subsystems,

but we want to know what the corrections are.

We now consider a Haar-random state O |ψ0〉, with respect to the orthogonal group O(d).
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All we need to compute is the average of Trρ2A(O)

∫
O(d)

dOTrρ2A(O) =
dA + dB + 1

d+ 2
, (3.122)

which is almost identical to the Haar-random case. We find

∫
dO
∥∥∆ρA

∥∥2
1
≤ d2A + dA − 2

d+ 2
≈ dA
dB

, (3.123)

with leading corrections that appear distinct in the orthogonal case and go like 1/dB and

−2/d .

Random AI states

We now consider a Haar-random state U |ψ0〉, where U is drawn randomly from the quotient

U(d)/O(d). Again, we compute the average of Trρ2A(U)

∫
AI

dU Trρ2A(U) =
(d2 + 3d− 2)(dA + dB)

d(d+ 1)(d+ 3)
+

2(d+ 2)Tr(ρ2A)− 2Tr(ρ2B)

d(d+ 1)(d+ 3)
, (3.124)

which is a little more non-trivial than the Haar case. Note that the purity of the reduced

density matrix on the A and B subsystems in the initial state |ψ0〉 appears in the 1/d2B cor-

rections. Again the leading order term gives
∫
dU ‖∆ρA‖1 . dA/dB, and leading corrections

which go like 1/d.

Note that in this case, we have assumed that the initial state is pure and so it transposes

to itself, but if we assume otherwise, the expression of the averaged density matrix on the

subsystem involves transposed density matrices.

Random symplectic states

We now consider a Haar-random state S |ψ0〉, where S is drawn Haar-randomly from the

symplectic group Sp(2d). Again, we compute the average of Trρ2A(S)

∫
Sp(2d)

dS Trρ2A(S) =
dA + dB − 1)(2d− 1) + 2

2(d− 1)(2d+ 1)
. (3.125)
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Again the leading order term gives
∫
dU ‖∆ρA‖1 . dA/dB, with leading corrections that go

like 1/b and a/2d, differing from the above cases at order 1/d2B. We have assumed that the

initial state is pure, but if we start with a mixed state, the expression of the averaged density

matrix on the subsystem involves ρD.

Random AII states

We now consider a Haar-random state U |ψ0〉, where U is drawn randomly from the quotient

U(2d)/Sp(2d). Again, we compute the average of Trρ2A(U)

∫
AII

dU Trρ2A(U) =
(d− 1)(dA + dB)

d(2d− 1)
+

2(d− 1)Tr(ρ2A)− Tr(ρ2B)

d(2d− 1)(2d− 3)
. (3.126)

The leading order term gives
∫
dU ‖∆ρA‖1 . dA/dB, with 1/d corrections and the purity of

the subsystems in the initial state appearing at order 1/d2B. Again, we have assumed that

the initial state is pure, but if we start with a mixed state, the expression of the averaged

density matrix on the subsystem involves ρD.

3.A An overview of Weingarten calculus

In this appendix, we review Weingarten calculus and the formalism for averaging over the

unitary group, as well as orthogonal and symplectic groups. Then discuss averaging over

compact symmetric spaces, quotients of Lie groups.

3.A.1 Integrating over compact Lie groups

Integration over the unitary group

As was given in Sec. 3.2, the expression for integrating over Haar-random unitaries is [58, 59]

∫
dU Ui1j1 . . . UikjkU

†
`1m1

. . . U †`kmk =
∑
σ,τ∈Sk

δσ(~ı |~m)δτ (~ |~̀)WgU(σ−1τ, d) , (3.127)
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where we sum over elements of Sk and denote a δ-function contraction of indices indexed by

a permutation σ ∈ Sk as

δσ(~ı |~ ) ≡
k∏

n=1

δin,jσ(n) = δi1,jσ(1) . . . δik,jσ(k) . (3.128)

As we discussed in Ch. 3.2, the unitary Weingarten functions can be computed noting that

Φ
(k)
Haar(Pσ) = Pσ, for the k-fold channel of Haar given in Eq. (3.13), and where Pσ are

permutation operators on the k copies of H⊗k. The unitary Weinarten matrix is the inverse

of the matrix of inner products WgUσ,τ = (Tr(PσPτ ))
−1, the entries of which are simply given

by counting the closed loops in the contracted permutations, e.g. Tr(PσPτ ) = dcycles(στ). The

elements of the Weingarten matrix are the Weingarten function WgU(σ−1τ, d).

The unitary Weingarten function acts on elements of Sk and has a Fourier expansion in

terms of characters of the symmetric group [59] as

WgU(σ, d) =
1

k!

∑
λ`k

χλ(I)χλ(σ)

cλ(d)
, (3.129)

where we sum over integer partitions λ of k, as conjugacy classes of Sk are labeled by

integer partitions. χλ(σ) is an irreducible character of Sk labeled by λ and here I is the

identity element of the symmetric group, and χλ(I) is simply the dimension of the irreducible

representation λ. The factor in the denominator, from which the d dependency of the

Weingarten function arises, is a polynomial

cλ(d) =
∏

(i,j)∈λ

(d+ j − 1) , (3.130)

where we take the product over (i, j) the coordinates of the blocks in the Young diagram of

λ. Said equivalently, λ is some integer partition of k, with elements λi. The product is taken

over i from 1 to the length of the partition, and j from 1 to λi. While this expression of

the unitary Weingarten function relies heavily on machinery from the representation theory

of symmetric groups, and is less intuitive than the more quantum information theoretic

derivation above, this form is far more tractable if we are interested in explicitly computing
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large moments of U(d) as we do not need to invert a k!× k! matrix.

Moreover, the in expansion in terms of characters makes it clear that the Weingarten

functions only depend on the cycle-type of the permutation σ. Recall that the cycle-type

of σ ∈ Sk is an integer partition λ of k denoting the disjoint cycles in σ, with lengths λi

written as an ordered list (λ1, λ2, . . .), where λ1 ≥ λ2 ≥ . . . and
∑

i λi = k. For instance,

the permutation {2, 1, 3, 4} has cycle-type (2, 1, 1). We will always denote the cycle type

of a permutation with parentheses (curly brackets being used to denote coset-type). The

Weingarten functions used to compute second moments, labeled by their cycle-type, are

WgU((1, 1), d) =
1

(d− 1)(d+ 1)
, WgU((2), d) =

−1

d(d− 1)(d+ 1)
. (3.131)

The expression in Eq. (3.129) allows us to implement the calculation ofWgU in Mathematica

and compute, for instance, Weingarten functions for the sixteenth moments with ease.

Integration over the orthogonal group

The formula for integrating over monomials of orthogonal matrices is [59, 88]

∫
dOOi1j1 . . . Oi2kj2k =

∑
σ,τ∈M2k

∆σ(~ı )∆τ (~ )WgO(σ−1τ, d) , (3.132)

where we sum over elements of M2k, the set of all pair partitions of the set {1, 2, . . . , 2k}
and we have defined a combination of δ-functions indexed by a pair partition σ

∆σ(~ı ) ≡
k∏

n=1

δiσ(2n−1)iσ(2n) = δiσ(1)δiσ(2) . . . δiσ(2k−1)
δiσ(2k) . (3.133)

A pair partition σ ∈ M2k is a partition of a set of 2k elements into pairs, written as

{{σ(1), σ(2)}, . . . , {σ(2k − 1), σ(2k)}, where σ(2n − 1) < σ(2n) and σ(1) < σ(3) < . . . <

σ(2k − 1). Let’s consider a simple example: the set of pair partitions of 4 elements, M4,

contains three elements

{
{1, 2}, {3, 4}

}
,
{
{1, 4}, {2, 3}

}
,
{
{1, 3}, {2, 4}

}
. (3.134)
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Realized as a subset of S2k, these are simply the three permutations {1, 2, 3, 4}, {1, 4, 2, 3},
and {1, 3, 2, 4}. Generally, M2k contains (2k)!/(2kk!) elements.

Recall that Schur-Weyl duality for the unitary group is the statement that irreducible

representations of the unitary group can be decomposed into tensors irreps of the symmetric

group and the unitary group summed over partitions, which allows us to write down a general

formula for integrating monomials of unitaries over the Haar measure. For the orthogonal

group the action of the Brauer algebra gives the analog of Schur-Weyl duality; the Brauer

algebra has a natural action on the space of polynomials commuting with the action of O(d).

The Brauer algebra has a basis formed by pair partitions, which can be realized as a subset

of the symmetric group.

As we mentioned in Ch. 3.2, the k-fold channel of the orthogonal group is

Φ
(k)
O (O) =

∑
σ,τ∈M2k

WgOσ,τSσTr(SτO) , (3.135)

where Sσ are the basis elements of the Brauer algebra. As Φ
(k)
O (Sσ) = Sσ, we simply compute

the matrix of inner products Tr(SσSτ ), the entries given by counting the number of loops

in the graph they define dcycles(στ). The orthogonal Weingarten matrix must be the inverse

WgOσ,τ = (Tr(SσSτ ))
−1, which is unique.

As the above construction of WgO requires inverting a factorially large matrix, if we are

interested in computing higher moments of O(d) we should instead use a convenient Fourier

expansion. The orthogonal Weingarten function has been discussed in [88, 90, 89]. Just as

the unitary Weingarten function admits an expansion in characters of the symmetric group,

the orthogonal Weingarten function has an expansion in zonal spherical functions

WgO(σ) =
2kk!

(2k)!

∑
λ`k

ωλ(σ)χλ(I)
zλ(d)

, where zλ(d) =
∏

(i,j)∈λ

(d+ 2j − i− 1) (3.136)

and we sum over integer partitions of k. Here ωλ(σ) is the zonal spherical function, which

can be defined in terms of symmetric characters

ωλ(σ) =
1

2kk!

∑
ξ∈Hk

χ2λ(σξ) , (3.137)
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where Hk is the hyperoctahedral group, a subgroup of S2k of order 2kk!, and is the centralizer

of the permutation build out of k disjoint transpositions. Pair partitions are representatives

of the left-cosets of the hyperoctahedral group in S2k. For more on zonal spherical functions

and Hk, see [97]. A quick aside: the denominator in the unitary Weingarten functions cλ(d)

in Eq. (3.129), arises from the Schur polynomial, a symmetric function naturally associated

with the symmetric group. The denominator for the orthogonal Weingarten function in

Eq. (3.136) arises from the zonal polynomial, the symmetric polynomial naturally associated

with the pair (S2k, Hk).

The orthogonal Weingarten functions depend only on the coset-type of the permutation,

with the coset-type defined in [97] as follows: Compose the pair partition corresponding

to the identity permutation {{1, 2}, {3, 4}, . . .}, with the pair partition of σ ∈ S2k and

count the length of the cycles, which are always even {2λ1, 2λ2, . . .}. This gives an integer

partition of k as λ = {λ1, λ2, . . .}. The partition λ ` k is said to be the coset-type of the

permutation σ ∈ S2k and is constant on the the double cosets of S2k. Note that we denote

the cycle-type of a permutation with parentheses and the coset-type with curly brackets.

For example, the permutation {1, 3, 2, 4} has cycle-type (2, 1, 1) and coset-type {2}. The

orthogonal Weingarten functions used to compute second moments, labeled by their coset-

type, are

WgO({1, 1}, d) =
d+ 1

d(d− 1)(d+ 2)
, WgO({2}, d) =

−1

d(d− 1)(d+ 2)
. (3.138)

3.A.2 Integrating over compact symmetric spaces

We now review Weingarten calculus for compact symmetric spaces—quotients of Lie groups

by Lie subgroups.

AI: U(d)/O(d)

The first of the circular ensembles, AI denotes the compact symmetric space U(d)/O(d).

The group O(d) is not normal in U(d), but the elements of the coset can be realized by the

Cartan embedding into U(d). Said equivalently, the involution Ω(U) = U∗ on U(d); O(d)

is the closed subgroup fixed by the involution (as O∗ = O). The quotient U(d)/O(d) can
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then be identified with a subset of U(d) defined by U 7→ (U∗)−1U = UTU . Simply stated,

this is the subset of U(d) of symmetric unitaries. This is the symmetry class generated by

time-reversal symmetric Hamiltonians (where the time-reversal operator squares to unity).

If V is a Haar random unitary then a random element of U(d)/O(d) is simply V TV . The

map above induces an invariant probability measure on the space from the Haar measure.

The set and the induced measure are often referred to as the circular orthogonal ensemble

(COE). Exact expressions for averages over random elements of this space were worked out

in [91, 92]. From the expressions derived there, we can take averages over AI as

∫
AI

dU Ui1i2 . . . Ui2k−1i2kU
†
j1j2

. . . U †j2k−1j2k
=
∑
σ∈S2k

δσ(~ı |~ )WgAI(σ, d) , (3.139)

where the AI Weingarten functions are simply related to the Weingarten functions for the

orthogonal group as

WgAI(σ, d) =WgO(σ, d+ 1) . (3.140)

This implies that the Weingarten functions for AI only depend on the coset type of σ. We

give the first few Weingarten functions labeled by the coset type of σ ∈ S2k

Wg({1}, d) =
1

d+ 1
, Wg({1, 1}, d) =

d+ 2

d(d+ 1)(d+ 3)
, Wg({2}, d) = − 1

d(d+ 1)(d+ 3)
.

More generally, the higher Weingarten functions can be computed using the Fourier expan-

sion of the Orthogonal Weingarten function.

AII: U(2d)/Sp(2d)

The next of the circular ensembles, AII denotes the compact symmetric space U(2d)/Sp(2d).

Again, the elements of the coset can be realized as a subset of U(2d) by the Cartan embed-

ding. Consider the involution Ω(U) = (UD)−1 on U(2d), where now Sp(2d) is the subgroup

fixed Ω. The quotient space U(2d)/Sp(2d) is identified with a subset of U(2d) defined by

U 7→ UDU , which this is the subset of symplectically symmetric unitaries. This is the

symmetry class generated by time-reversal symmetric Hamiltonians where the time-reversal

operator squares to -1.
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If V is a Haar random unitary then a random element of U(2d)/Sp(2d) is simply V DV ,

and again the map induces an invariant probability measure on the space. In this case

the set and the induced measure are often referred to as the circular symplectic ensemble

(CSE). Averaging over random instances of U(2d)/Sp(2d) was worked out in [92]. From the

expressions derived there, we can take averages over AII as

∫
AII

dU JTUi1i2 . . . J
TUi2k−1i2kJU

†
j1j2

. . . JU †j2k−1j2k
=
∑
σ∈S2k

δσ(~ı |~ )WgAI(σ, d) , (3.141)

where the AII Weingarten functions are related to the Weingarten functions for the sym-

plectic group as

WgAII(σ, d) =WgSp(σ, d− 1/2) . (3.142)

This implies that the Weingarten functions for AII also only depend on the coset type and

signature of σ. For example, a few of the Weingarten functions labeled by the coset type of

σ ∈ S2k are

Wg({1, 1}, d) =
ε(σ)(d− 1)

d(2d− 1)(2d− 3)
, Wg({2}, d) = − ε(σ)

2d(2d− 1)(2d− 3)
.

Weingarten calculus can also be extended to other symmetric spaces, including the chiral

and BdG ensembles. We refer the reader to [92] for further details.

3.B Higher-point correlation functions

As we mentioned in the text, the leading terms in the asymptotic form of the correlation

functions is the same irrespective of the symmetry class. For the 2-point, OTO 4-point, and

OTO 6-point function, we list the leading order terms in the d→∞ limit, which appear to

be universal.

〈AB(t)〉 ≈ 〈A〉〈B〉 (3.143)

〈AB(t)CD(t)〉 ≈ 〈AC〉〈B〉〈D〉+ 〈A〉〈C〉〈BD〉+ 〈A〉〈B〉〈C〉〈D〉 (3.144)
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〈AB(t)CD(t)EF (t)〉 ≈ 〈A〉〈C〉〈E〉〈BDF 〉+ 〈B〉〈D〉〈F 〉〈ACE〉+ 〈A〉〈D〉〈BF 〉〈CE〉

+〈B〉〈E〉〈AC〉〈DF 〉+ 〈C〉〈F 〉〈AE〉〈BD〉 − 〈A〉〈B〉〈C〉〈E〉〈DF 〉

−〈A〉〈B〉〈D〉〈F 〉〈CE〉 − 〈A〉〈C〉〈D〉〈E〉〈BF 〉 − 〈A〉〈C〉〈E〉〈F 〉〈BD〉

−〈B〉〈C〉〈D〉〈F 〉〈AE〉 − 〈B〉〈D〉〈E〉〈F 〉〈AC〉+ 2〈A〉〈B〉〈C〉〈D〉〈E〉〈F 〉
(3.145)

We also compute the asymptotic form of the OTO 8-point function and checked that it

was universal, i.e. the leading contribution for all symmetry classes, but as the leading term

contains 55 terms, we refrain from reproducing it here.

3.C k-invariance in spin-systems

In this appendix we present a numerical investigation of k-invariance in spin systems and

SYK models. The quantity we investigate here is the 1-invariance, given as

1-inv : F (1)
E (t)−F (1)

Ẽ (t) , (3.146)

and where Ẽ = UEU † for Haar-random U .

Random Nonlocal 2-body

Consider systems of N spins all-to-all interacting with random couplings and summed over

all possible 2-body interactions

RNL : H =
∑
ijαβ

JαβijS
α
i S

β
j , (3.147)

where each J is Gaussian random with variance 1/N , and we sum over all possible 2-body

interactions between all pairs of sites i, j, and α, β run over the local Paulis at the site. We

plot the 1-invariance for 5, 6, 7, and 8 spins
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and observe an increase in the distance to 1-inv at intermediate times, but a constant value

at late times, which does not change as we increase N . On the right we plot the difference

between the frame potential and the Haar’ed frame potential for N = 7 spins. Note that

the system is time-reversal invariant, where even and odd N alternate between T 2 = ±1.

Computing the symmetric 1-invariance to account for the symmetry of the system, we find

that the late-time floor value drops to zero

Random Nonlocal 3-body

Consider systems of N spins all-to-all interacting with random couplings and summed over

all possible 3-body interactions

HR3L : H =
∑
ijkαβγ

JαβγijkS
α
i S

β
j S

γ
k , (3.148)

where each J is Gaussian random with variance 1/N2, we sum over all possible 3-body

interactions between all triplets of sites i, j, k, and α, β, γ run over the local Paulis at the

site. We plot the 1-invariance for the 3-local Hamiltonian
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and observe an N -dependent distance to 1-inv at intermediate times, but independence at

late times. The floor value here fluctuates around zero and thus the 3-local system appears

to achieve 1-variance at late times. On the right we plot the difference between the frame

potential and the Haar’ed FP for N = 7 spins.

Random Nonlocal 4-body

Consider systems of N spins all-to-all interacting with random couplings and summed over

all possible 4-body interactions

HR4L : H =
∑

ijkαβγδ

Jαβγδijk` S
α
i S

β
j S

γ
kS

δ
` , (3.149)

where each J is Gaussian random with variance 1/N2, and we sum over all possible 3-body

interactions between all triplets of sites i, j, k, and α, β, γ run over the local Paulis at the

site. We plot the 1-invariance for the 4-local model

and, just as in the 2-local model, observe an N -dependence at intermediate times and a

late time floor value that seems to be robust in the large N limit. On the right we plot

the difference between the frame potential and the Haar’ed FP for N = 7 spins. Just like
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the 2-local model, the 4-local model is time-reversal invariant. Computing the symmetric

1-invariance we find that late-time floor value drops to zero

Sachdev-Ye-Kitaev Model

Consider a system of N all-to-all interacting Majoranas with random couplings

SYK : H =
∑
ijk`

Jijk`χiχjχkχ` , (3.150)

where each J is Gaussian random with variance 6/N3, and we sum over all 4-local interac-

tions. We plot the 1-invariance for 10, 12, and 14 Majoranas

and observe the N -dependence of the distance to 1-inv at intermediate times, but also a

dependence at late times. This shouldn’t be surprising as 10 and 14 correspond to GUE,

but 12 corresponds to GSE, so we expect a difference measure of k-invariance. To correctly

account for the late-time behavior we should extract the contribution from a single charge

sector.
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Supersymmetric SYK Model

Consider a system of N all-to-all interacting Majoranas with random couplings

SUSY : H = Q2 where Q = i
∑
ijk`

Cjk`χjχkχ` , (3.151)

and where each C is Gaussian random with variance 2/N , and we sum over all 3-local

interactions in the supercharge. We plot the 1-invariance for SUSY SYK and find

Chaotic Disordered 1D Spin Chain

Consider a system of N spins interacting with nearest-neighbor couplings and disordered

transverse and parallel fields

ChNN : H = −
∑
i

ZiZi+1 −
∑
i

giZi −
∑
i

hiXi , (3.152)

where both h and g are Gaussian random with variance 1/N . We compute the 1-invariance

for the chaotic spin-chain
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and observe an N -dependence of the distance at intermediate times, but also a dependence

at late times. Both the intermediate values and late time values are huge compared to the

random systems above. On the right we plot the difference between the frame potential and

its Haar’ed equivalent for N = 7 spins.

Integrable Disordered 1D Spin Chain

Consider a system of N spins interacting with nearest-neighbor couplings and disordered

transverse field

IntNN : H = −
∑
i

ZiZi+1 −
∑
i

hiXi , (3.153)

where both h are Gaussian random with mean 1 and variance 1/N . Note, we also tried

mean zero couplings and the result is essentially the same. We plot the 1-invariance for the

integrable spin-chain

and observe an N -dependence of the distance to 1-inv both at intermediate times and late

times. Again, both the intermediate values and late time values are huge compared to the

random systems above and even larger than the chaotic local spin chain. On the right we

plot the difference between the frame potential and the Haar’ed version for N = 7 spins.

This is evidence that the late-times floor captures the chaotic and nonlocal nature of the

system.
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Chapter 4

Chaos and random matrices in

supersymmetric SYK

This chapter is essentially the same as

• N. Hunter-Jones, J. Liu, “Chaos and random matrices in supersymmetric SYK,”

JHEP 05 (2018) 202, arXiv:1710.08184 [hep-th].

Abstract

We use random matrix theory to explore late-time chaos in supersymmetric quantum

mechanical systems. Motivated by the recent study of supersymmetric SYK models and

their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and

compute the spectral form factors and frame potentials to quantify chaos and randomness.

Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form

factor and a slower approach to Haar-random dynamics. We find agreement between our

random matrix analysis and predictions from the supersymmetric SYK model, and discuss

the implications for supersymmetric chaotic systems.

4.1 Introduction

A recent surge of interest in quantum chaos has revolved around a strongly-interacting

quantum system called the Sachdev-Ye-Kitaev (SYK) model [6, 35]. This model of N all-
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to-all randomly interacting Majorana fermions is solvable at strong-coupling and appears to

be in the same universality class as black holes, exhibiting an emergent reparametrization

invariance and an extensive ground-state entropy. More compellingly, the out-of-time order

correlation function (OTOC) of the theory [6, 7] saturates a universal bound on chaotic

growth [27], a seemingly unique feature of gravity [4, 5] and conformal field theories with

a holographic dual [29]. The low-energy description of the theory in terms of a Schwarzian

effective action also encapsulates dilaton gravity in AdS2 [98, 99]. This model should be seen

as a valuable resource for understanding both black holes and quantum chaos.

There have already been a myriad of generalizations of the SYK model, including an

extension by Fu, Gaiotto, Maldacena, and Sachdev, to a supersymmetric model of strongly

interacting Majoranas [100], which has been further explored in [101, 102, 103, 104, 105]. The

supersymmetric version of the model also displays many of the same holographic properties.

Notably, at strong-coupling the theory has an emergent superconformal symmetry which

renders it solvable and allows one to compute correlation functions. At low-energies the

symmetry is broken, giving a Schwarzian-like effective action which mimics supergravity

in AdS2 [106]. Like its non-supersymmetric counterpart, the model has random matrix

universality in its spectral statistics [41, 107] and appears to exhibit thermalization in its

eigenstates [73, 108], both hinting at underlying chaotic dynamics.

Although we lack a precise definition of quantum chaos, there are still universal features

one expects of quantum chaotic systems: most notably, having the spectral statistics of a

random matrix [8]. Information scrambling [1, 2] and chaotic correlation functions [4] have

also been extolled as symptoms of chaos. Ideas from quantum information have helped make

these notions more precise, quantifying how scrambling [10] and randomness [11] are encoded

in OTOCs. Similarly, [12] explored the connection to random matrix dynamics, quantifying

randomness and scrambling in the time evolution by random matrix Hamiltonians and com-

puting a quantity called the frame potential. The onset of random matrix behavior can also

be seen in the spectral form factor, which has been studied in the SYK model [9].

Motivated by this, we may ask the question: what are the universal features of super-

symmetric SYK models, or more generally, of all supersymmetric quantum chaotic systems?

And how do we quantify them from an information-theoretic standpoint?
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To address this, we consider the Wishart-Laguerre ensembles, also termed random covari-

ance matrices [43], which appeared in the random matrix classification of the supersymmetric

SYK models [107]. Recall that the Hamiltonian in supersymmetric quantum mechanics is

constructed as the square of a supercharge. Loosely speaking, the intution is that this random

matrix ensemble arises from squaring the Gaussian random matrices, just as we might think

of a chaotic supersymmetric system defined by a disordered supercharge. In this chapter

we consider the simplest Wishart-Laguerre ensemble,1 the Wishart-Laguerre unitary ensem-

ble (LUE), corresponding to supersymmetric quantum systems without additional discrete

symmetries. In the following, we will quantitatively derive predictions for the spectral form

factors, frame potential, and the out-of-time-ordered correlators, where a central distinction

from the non-supersymmetric models arises in the spectral 1-point functions, which modifies

the early time decay of the spectral form factor. A slower decay in the LUE frame potential

indicates less efficient information scrambling and the failure of the ensemble to become

Haar-random. Our predictions for the LUE match those from the 1-loop partition function

of the supersymmetric SYK model.

The chapter is organized as follows: In Section 4.2, we review the supersymmetric model

and spectral form factor, discussing its universal features and behavior in SYK models. In

Section 4.3, we review the basic tools in random matrix theory and then compute spectral

form factors for the Wishart-Laguerre ensemble. In Section 4.4, we explore chaos in this

random matrix ensemble by computing the frame potentials and correlation functions, and

comment on its complexity growth. In Section 4.5, we discuss chaos in supersymmetric SYK

and compare with the random matrix predictions, concluding in Section 4.6. In Appendix

4.A we present some numerical checks of our expressions.

1Interestingly, Wishart ensembles have appeared in studying the reduced density matrix in systems
evolved with random matrix Hamiltonians [109]. Wishart ensembles have also appeared in random ma-
trix contructions of supergravity to explore the space of AdS vacua [110].
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4.2 Setup and overview

4.2.1 Supersymmetric SYK model

We first briefly review the supersymmetric extension of the SYK model. For an in-depth

discussion of the original model, see [7]. Consider N all-to-all interacting Majorana fermions

ψi with random couplings, which anticommute as {ψi, ψj} = δij. The (2q − 2)-point N = 1

supersymmetric model is constructed from the supercharge Q, a q-body Majorana interaction

with odd q. The Hamiltonian is then given by the square of the supercharge as

H = Q2 , where Q = i(q−1)/2
∑

i1<...<iq

Ci1...iqψi1 . . . ψiq , (4.1)

with Gaussian random couplings Ci1...iq of mean and variance

〈
Ci1...iq

〉
= 0 ,

〈
C2
i1...iq

〉
=
J2(q − 1)!

N q−1 , (4.2)

and where J is a positive constant. We also define J as J2 = 2q−1J 2/q, with a slightly more

convenient scaling in q.

In the large N limit, this model shares many of the same appealing holographic features

as the SYK model, such as chaotic correlation functions, a zero-temperature entropy, and an

emergent superconformal symmetry which is broken at low-energies, admitting a Schwarzian-

like desciption [100]. We can compute the free energy at large N by evaluating at the saddle

point, and at low temperatures find

logZ = −βE0 +Ns0 +
cN

2β
+ . . . , (4.3)

where s0 is the zero-temperature entropy density and c is the specific heat. In the super-

symmetric theory we have c = απ2/J with a constant α, which becomes c = π2/4q2J in

the large q limit. The ground-state entropy density is computed to be s0 = 1
2

log(2 cos π
2q

)

and the ground state energy E0 can be subtracted off.

The SYK model with N Majoranas enjoys a random matrix classification, where the

symmetry class of the theory is dictated by a particle-hole symmetry [41, 9]. Depending onN ,
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the spectrum will display level statistics of one of the three Gaussian ensembles: GUE, GOE,

or GSE. For the supersymmetric extension of SYK, we can similarly classify the random

matrix behavior for a given number of Majoranas N , going beyond Dyson’s classification to

the extended 10-fold symmetry classification of Altland-Zirnbauer [81]. Understanding how

anti-unitary symmetries act on the supercharge Q, we can identify the appropriate symmetry

class [107]. The Hamiltonian, given as the square of the supercharge, then has random matrix

description in terms of the Wishart-Laguerre ensembles. The level statistics are still those of

the Gaussian ensembles, but the spectral correlations are different. Roughly, we can think of

the supersymmetric SYK behaving like the square of Gaussian random matrices, which are

the Wishart ensembles. For more details, see [107] as well as an extension of the classification

to the N = 2 supersymmetric models [105].

Speaking generally, there a number of reasons one might wish to consider supersymmetric

generalizations of SYK. For instance, much is understood about the low-energy physics in

nearly AdS2 spacetimes purportedly dual to the low-energy dynamics in SYK, but the exact

holographic dual of the theory is not known. As many of the best understood examples

of AdS/CFT are supersymmetric, one might hope that this particular construction might

provide guidance on the correct UV completion of the SYK model. Less ambitiously, consid-

ering the supersymmetric models might be useful in contructing higher dimension analogs

[102].

4.2.2 Spectral form factor

Quantum chaotic systems are often defined to have the spectral statistics of a random matrix.

An object familiar in random matrix theory which exhibits these universal properties is the

spectral form factor. We will introduce this object more precisely in our review of random

matrix theory in Sec. 4.3.1, but the 2-point spectral form factor R2(t, β) can be given simply

in terms of the analytically continued partition function

R2(t, β) ≡
〈
Z(β, t)Z∗(β, t)

〉
, where Z(β, t) ≡ Tr

(
e−βH−itH

)
, (4.4)
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and where the average 〈 · 〉 is taken over an ensemble of Hamiltonians (e.g. SYK, or some

disordered spin system, or a random matrix ensemble). This object was discussed more

recently in [9], where they studied the form factor in SYK and found that the theory revealed

random matrix behavior at late times. From the bulk point of view, one motivation for

studying this object was a simple version of black hole information loss [36]: 2-point functions

appear to decay exponentially in terms of local bulk variables, whereas a discrete spectrum

implies a finite late-time value. The same inconsistency is apparent in the spectral form

factor.

Some characteristic features of the time-evolved form factor R2(t), exhibited in both the

SYK model and in random matrix theories, are: an early time decay from an initial value

called the slope, a crossover at intermediate times called the dip, a steady linear rise called

the ramp, and a late-time floor called the plateau. In Fig. 4.1 we observe these features

in SYK. While the early time decay depends on the specific system, the ramp and plateau

should be universal features of quantum chaotic systems. The ramp is characteristic of

spectral rigidity: the long-range logarithmic repulsion of eigenvalues. The anticorrleation of

eigenvalues causes the linear increase in the form factor. At late times, or at energy scales

smaller than the mean spacing, the form factor reaches a plateau as degeneracies are rare

and neighboring eigenvalues repel in chaotic systems.
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Figure 4.1: The 2-point spectral form factor and its connected component for SYK with
N = 24 Majoranas at inverse temperature β = 1, computed for 800 realizations of disorder.
We observe the slope, dip, ramp, and plateau behaviors.
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SYK form factor and GUE

Recently, [9] studied the form factor in SYK and found agreement with random matrix theory,

showing analytically and numerically the aspects of the dip, ramp, and plateau of SYK agree

with those of the Gaussian unitary ensemble (GUE), an ensemble of d×d random Hermitian

matrices. We will avoid explicitly introducing and defining the original Majorana, instead

simply mentioning a few details to better frame the discussion of the model’s supersymmetric

extension.

The emergent reparamentrization invariance of SYK at strongly-coupled is broken spon-

taneously and explicitly at low-energies, yielding an effective description in terms of the

Schwarzian derivative [6, 7]. The 1-loop partition function of the Schwarzian theory ZSch
1-loop ∼

ecN/2β/β3/2, can be analytically continued to β+ it to study the form factor of SYK. At early

times, R2(t, β) is dominated by the disconnected piece which gives a 1/t3 power law decay,

normalized by its initial value we have

〈Z(β, t)Z∗(β, t)〉
〈Z(β)〉2 ' β3e−cN/β

t3
, (4.5)

for times greater than t &
√
N when the time dependence in the exponent disappears and

where c is the specific heat of the theory. To isolate this contribution, [9] considered a special

limit (a ‘triple scaled’ limit) where only the Schwarzian contributes. Moreover, [111] showed

that the Schwarzian theory is 1-loop exact and recieves no higher-order corrections, indicating

that the power-law decay predicted by the Schwarzian should dominate the disconnected

form factor for long times.2 This power law decay is simply the Laplace transform of the

statement that the spectrum has a square-root edge3

ρ(E) ∼ sinh
√

2cEN . (4.6)

Knowing the free energy in the large N limit, we can also show that the form factor of SYK

transitions to a ramp at a dip time td ∼ eNs0/2, growing linearly until a plateau time of

tp ∼ eNs0+cN/2β, where s0 is the zero-temperature entropy density.

2For more on solving the Schwarzian theory, see [112, 113].
3As discussed in [7]. The spectral density of SYK has been further studied in [9, 42, 114].
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Many of these features of the SYK form factor agree with the universal predictions from

GUE. The form factor for GUE has been studied extensively in the random matrix literature

[23, 24, 68] and references therein, and revisited more recently in the context of SYK and

black holes in [9, 45, 12]. Simply stating the results, the early-time decay of the GUE form

factor transitions to a linear ramp at a dip time of td ∼
√
d, growing linearly until the

plateau time tp ∼ d. We note that around the plateau time the ramp is not quite linear as

nonperturbative effects become important as we transition to the plateau [115]. The non-

universal early time decay also has the same power law 1/t3, due to the fact the Wigner

semicircle law for Gaussian random matrices ρ(λ) = 1
2π

√
4− λ2, also exhibits a square-root

edge.

Supersymmetric SYK form factor

From the large N partition function of the supersymmetric theory, we can also make pre-

dictions as to the behavior of the spectral form factor. We will present a more explicit

treatment of this in Sec. 4.5. At low-energies, the fluctuations around the large N saddle

point of the supersymmetric theory break superconformal symmetry; the action for these

reparametrizations is a super-Schwarzian [100], where the action integrates over τ and a

superspace coordinate θ and the super-Schwazian acts just like the standard Schwarzian

derivative except as a super-derivative, respecting a similar chain rule. The action gives a

1-loop partition function

ZsSch
1-loop(β) ∼ 1√

βJ e
Ns0+cN/2β , (4.7)

which differs in the 1-loop determinant from the SYK model. The super-Schwarzian theory

is also 1-loop exact [111], ensuring its validity away from very early times. Analytically

continuing the partition function β → β + it, disconnected piece of the form factor which

dominates at early times, is

〈Z(β, t)Z∗(β, t)〉
〈Z(β)〉2 ' βe−cN/β

t
, (4.8)
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exhibiting a 1/t decay in the slope, slower than the decay in SYK. This can also be understood

as the contribution from the edge of the spectrum, where the Laplace transform of the 1-loop

partition function gives

ρ(E) ∼ 1√
JE cosh

(√
2cNE

)
, (4.9)

observing a square-root growth at the edges of the spectrum.

As we discuss later, computing the ramp function for supersymmetric SYK, we find the

ramp and slope intersect at a dip time td ∼ eNs0 , which is the same time scale as the

ramp’s transition to the plateau tp ∼ eNs0 . The slow decay at early times means that the

slope transitions to ramp behavior at the same time-scale as the plateau time, i.e. the ramp

is hidden beneath the slope. We plot the 2-point form factor for the model in Fig. 4.2.

Subtracting the disconnected contribution reveals the ramp in the connected form factor,

also plotted. The lack of a dip in the supersymmetric model will have implications for our

discussion of the frame potential and randomness.
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Figure 4.2: The 2-point spectral form factor and its connected piece for the supersymmetric
SYK model with N = 24 Majoranas at inverse temperature β = 1, computed for 800
realizations of disorder. We observe the slope and plateau behaviors, while the ramp is
obscured by the slow early-time decay of the 1-point function.

Notation

A brief comment on notation. In recent work studying the spectral form factor, the nor-

malized 2-point form factor is often denoted as g(t, β), and its connected component as
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gc(t, β):

g(t, β) ≡ 〈Z(β, t)Z∗(β, t)〉
〈Z(β)〉2 , and gc(t, β) ≡ g(t, β)− 〈Z(β, t)〉〈Z∗(β, t)〉

〈Z(β)〉2 . (4.10)

While in [12], we denoted the 2-point form factor as R2(t, β), and more generally the 2k-th

form factor as R2k(t, β). Just to be clear

g(t, β) =
R2(t, β)

〈Z(β)〉2 , or at β = 0 : g(t, 0) =
R2(t)

d2
. (4.11)

For us, working directly with the numerator turns out to be more convenient when discussing

the frame potential and correlation functions, and avoids subtleties regarding the appropriate

or tractable normalization, i.e. ‘quenched’ vs ‘annealed’.

4.3 Form factors for Wishart matrices

4.3.1 Basic setup in random matrix theory

In this chapter, we consider the Wishart-Laguerre Unitary Ensemble (LUE), an ensemble

of d× d random matrices which can be generated as H†H, where H is a complex Gaussian

random matrix with normally distributed complex entries drawn with mean 0 and variance

σ2 = 1/d. This is the ‘physics normalization’, where the spectrum does not scale with system

size.4 The joint probability distribution of LUE eigenvalues is given by

P (λ)dλ = C |∆(λ)|2
d∏

k=1

e−
d
2
λkdλk , (4.12)

where ∆(λ) is the Vandermonde determinant and the constant factor is defined such that

the distribution integrates to unity. One can think of LUE matrices as square of a Gaussian

random matrix. More generally, we could define d× d Wishart matrices generated by d′× d
Gaussian matrices, where d′ ≥ d, which gives a slightly more general eigenvalue distribu-

tion. But given the supersymmetric Hamiltonians we consider defined as the square of the

4Note that it is common in the random matrix literature to instead work with unit variance σ2 = 1.
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supercharge, we just consider Wishart matrices generated by square matrices with d = d′.

We average over the random matrix ensemble as

〈O〉 ≡
∫
DλO where

∫
Dλ = C

∫ ∏
k

dλk|∆(λ)|2e− d2
∑
k λk . (4.13)

The spectral density is given by integrating the joint probability P (λ) over d− 1 variables,

ρ(λ) =

∫
dλ1dλ2 . . . dλd−1 P (λ1, λ2, . . . λd−1, λ) . (4.14)

More generally, we can define the k-point spectral correlation function by integrating over

all but k arguments

ρ(k)(λ1, λ2, . . . , λk) =

∫
dλk+1dλk+2 . . . dλd P (λ1, λ2, . . . λk, λk+1, . . . , λd) . (4.15)

Recall that for the Gaussian ensembles, we may take the large d limit famously recover

Wigner’s semicircle law for the distribution of eigenvalues. Instead in the LUE, we take the

large d limit and find [116]

ρ(λ) =
1

2πλ

√
λ(4− λ) , (4.16)

which is referred to as the Marčenko-Pastur distribution.

Just as in the GUE, the LUE is a determinantal point process, which means the k-point

spectral correlators are given by a kernel K as

ρ(k)(λ1, . . . , λk) =
(d− k)!

d!
det
(
K(λi, λj)

)k
i,j=1

. (4.17)

Demonstrating the universality of Dyson’s sine kernel [22], the Wishart ensemble has sine
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kernel statistics in the large d limit [117, 43], meaning

K(λi, λj) =


sin
(
dρ(u)π(λi − λj)

)
π(λi − λj)

for i 6= j

d

2πλi

√
λi(4− λi) for i = j ,

(4.18)

where u is an arbitrary constant valued in [0, 4]. We will fix the value of u numerically.5

The spectral form factor, defined as the Fourier transform of the spectral correlation func-

tions, is a standard quantity to consider in random matrix theory; see [23] for an overview.

We define the 2-point spectral form factor in terms of the analytically continued partition

function Z(β, t) as6

R2(t, β) ≡ 〈Z(β, t)Z∗(β, t)〉 =

∫
Dλ
∑
i,j

ei(λi−λj)te−β(λi+λj) , (4.19)

where the continued partition function Z(β, t) is

Z(β, t) = Tr
(
e−βH−iHt

)
. (4.20)

More generally, we consider k-point spectral form factors which we define as

R2k(t, β) ≡
〈

(Z(β, t)Z∗(β, t))2k
〉

(4.21)

=

∫
Dλ
∑
i,j

ei(λi1+...+λik−λj1−...λjk )te−β(λi1+...+λik+λj1+...+λjk ) . (4.22)

In the following subsections, we will compute the LUE spectral form factors and compare

analytical results with numerical observations.

At large d, we compute the spectral form factors by Fourier transforming the determinant

5The analogous constant in considering the GUE would be fixed to u = 0, given the symmetry of the
spectrum. However, for the LUE u = 0 it is divergent. The value of u specifies the center of the two
eigenvalues λi and λj .

6This is slightly different than the standard presentation in the RMT literature, where the form factor is
usually given as the Fourier transform of a connected form factor, called the cluster function. Here we work
with both connected and disconnected pieces.
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of kernels in Eq. (4.17). We integrate the products of K as [23]

∫ ( n∏
j=1

dλj e
ikjλj

)
K(λ1, λ2)K(λ2, λ3) . . . K(λn−1, λn)K(λn, λ1)

= αd

∫
dλ ei

∑n
j=1 kjλ

∫
dk g(k)g

(
k +

k1
2παd

)
g
(
k +

k2
2παd

)
. . . g

(
k +

kn−1
2παd

)
, (4.23)

where the Fourier transform of the sine kernel is

g(k) ≡
∫
dr e2πikr

sin(πr)

πr
=

{
1 for |k| < 1/2

0 for |k| > 1/2 ,
(4.24)

and where αd ≡ dρ(u). The integral over the sine kernel is unbounded and can be treated

by imposing a cutoff. We use the box approximation [12]

αd

∫
dλ ei

∑n
j=1 kjλ → αd

∫ d/2αd

−d/2αd
dλ ei

∑n
j=1 kjλ = d

sin
(∑n

j=1 kj/2ρ(u)
)∑n

j=1 kj/2ρ(u)
, (4.25)

fixed such that Eq. (4.23) over the truncated range with ki = 0 integrates to d. This will be

helpful in computing the higher-point spectral form factors, for instance, R4.

It will also be convenient to define the following functions which will appear in computing

the LUE form factors

r1(t) ≡ e2it
(
J0(2t)− iJ1(2t)

)
r2(t) ≡


1− t

2πdρ(u)
for 0 < t < 2πdρ(u)

0 for t > 2πdρ(u)

r3(t) ≡
sin
(
t/2ρ(u)

)
t/2ρ(u)

. (4.26)
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4.3.2 Two-point form factor at infinite temperature

Let us start with the simplest case, the two point spectral form factor at infinite temperature

β = 0. Pulling out coincident eigenvalues, we have

R2(t) =

∫
Dλ
∑
i,j

ei(λi−λj)t = d+ d(d− 1)

∫
dλ1dλ2 ρ

(2)(λ1, λ2)e
i(λ1−λ2)t . (4.27)

The determinant of kernels in Eq. (4.17) gives a squared 1-point function and 2-point function

contribution. Using the integration formula in Eq. (4.23), we obtain

R2(t) = d+ d2|r1(t)|2 − dr2(t) (4.28)

in terms of the functions defined above, and where

|r1(t)|2 = J2
0 (2t) + J2

1 (2t) . (4.29)

In Fig. 4.3, we plot the infinite temperature LUE 2-point form factor as derived in

Eq. (4.28) along side the GUE form factor (see [12]). Note that unlike in the GUE case there

is no dip or ramp. The lack of an intermediate time scale at which the initial slope decay

transitions at the dip to a linear growth to a plateau, is due to the slow decay of the 1-point

functions which gives the slope.

Subtracting off the contribution from the 1-point functions defines the connected piece

of the 2-point form factor

Rc
2(t) ≡

〈
|Z(β, t)|2

〉
−
〈
Z(β, t)

〉2
= d− dr2(t) , (4.30)

which exposes the linear growth before the plateau. The connected components are also

plotted in Fig. 4.3.

The transition point in the function of r2 is defined as the plateau time tp = 2παd, where

αd = dρ(u). The value of 2παd is not straightforwardly fixed given the unbounded support

when integrating over kernels. The constant also determines the linear slope of the ramp

function r2 prior to the plateau. As we discuss in App. 4.A, the constant u is fixed by
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Figure 4.3: On the left: the 2-point spectral form factor and its connected component for
the LUE at infinite temperature, as given in Eq. (4.28), plotted for different values of d and
normalized by the initial value d2. We observe the slow 1/t decay down to the plateau value,
hiding the linear ramp in the connected piece. On the right: the 2-point spectral form factor
for the GUE at infinite temperature, with a faster early-time decay exposing the ramp.

numerically fitting to the ramp. We find a plateau time of tp ∼ πd/2 for the LUE 2-point

form factor.

Using the asymptotic form of the Bessel function,

Jk(z) ∼
√

2

πz
cos
(
z − kπ

2
− π

4

)
, (4.31)

we conclude that the disconnected piece decays at early times (for t much smaller than d

but larger than O(1)) as

r1(t)r
∗
1(t) = J2

0 (2t) + J2
1 (2t) ∼ 1

πt

(
cos2(2t− π/4) + sin2(2t− π/4)

)
=

1

πt
. (4.32)

ThisO(1/t) decay of the LUE form factor is to be contrasted with the slowerO(1/t3) decay in

both the GUE and the SYK model [12, 9]. However, the connected piece, dominated by the

universal sine kernel in the large d limit, still sees the steady linear rise O(t) at intermediate

time scales. This fact reaffirms the expectation that the decay in the disconnected piece,

the Fourier transformed one-point functions, is model dependent. However, the ramp in the

connected 2-point function is a universal feature of quantum chaotic systems.

In addition to a hidden dip, another difference with the GUE result is the lack of an
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oscillating decay in the LUE at infinite temperature. In the GUE, the Bessel function decay

at β = 0 gives a true dip time O(1). The envelope of this decay was what we considered as

the decay to a dip given that a finite β smoothed out the oscillations.

4.3.3 Two-point form factor at finite temperature

Now let us consider the two point form factor at finite temperature. For small β, one may

effectively insert the one point distribution in the integration formula. We walk through the

computation in some detail as it will mimic the calculation of the supersymmetric SYK form

factor in Sec. 4.5. To be concrete, we write

R2(t, β) =

∫
Dλ
∑
i,j

ei(λi−λj)te−β(λi+λj)

= d

∫
dλ ρ(λ)e−2βλ + d(d− 1)

∫
dλ1dλ2 ρ

(2)(λ1, λ2)e
i(λ1−λ2)te−β(λ1+λ2)

= d

∫
dλ ρ(λ)e−2βλ +

∫
dλ1dλ2

(
K(λ1, λ1)K(λ2, λ2)−K2(λ1, λ2)

)
ei(λ1−λ2)te−β(λ1+λ2)

= dr1(2iβ) + d2r1(t+ iβ)r1(−t+ iβ)−
∫
dλ1dλ2K

2(λ1, λ2)e
i(λ1−λ2)te−β(λ1+λ2) , (4.33)

simply integrating the kernels as specified above. For the final integral, we make the change

of variables

u1 =
1

2
(λ1 + λ2) , u2 = λ1 − λ2 . (4.34)

which allows us to compute

∫
dλ1dλ2K

2(λ1, λ2)e
i(λ1−λ2)te−β(λ1+λ2) =

∫
du1du2

(
sin(dπu2)

πu2

)2

eiu2t−2βu1

≈
∫
du1 e

−2βu1ρ(u1)

∫
du2

(
sin(dπu2)

πu2

)2

eiu2t = dr1(2iβ)r2(t) , (4.35)

where we regulate the unbounded integral with the insertion of ρ(u1). The 2-point spectral

form factor at finite temperature is

R2(t, β) = dr1(2iβ) + d2r1(t+ iβ)r1(−t+ iβ)− dr1(2iβ)r2(t) . (4.36)
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Figure 4.4: The 2-point spectral form factor for LUE at finite temperature, as given in
Eq. (4.36), plotted for different values of d and at different temperatures, normalized by the
initial value. The plateau value depends on both d and β, while the plateau time is just d
dependent.

We plot the analytic result in Fig. 4.4 and observe that at finite temperature there is still no

clear dip time in LUE, unlike for the GUE, and that the plateau time tp does not depend on

β. For the LUE, we define h1(β) ≡ r1(2iβ), a purely real function of the inverse temperature,

with the plateau value

R2(tp, β) = h1(2β)d . (4.37)

At small but finite β we have

h1(2β) = 1− 2β + 4β2 +O(β3) , (4.38)

compared to the GUE result 1 + 2β2 +O(β4) [12], one can see that the LUE plateau value

is smaller than GUE, which is also observed in numerics.

4.3.4 Four-point form factor at infinite temperature

As an example of a higher point form factor, we compute the 4-point R4 at infinite temper-

ature. By definition we have

R4(t) ≡
〈
Z(t)Z(t)Z(t)∗Z(t)∗

〉
LUE

=

∫
Dλ

∑
i,j,k,`

ei(λi+λj−λk−λ`)t . (4.39)
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To evaluate the expression we must consider all possible ways in which the eigenvalues can

collide in the sum, i.e. all equal, λi = λj, λk = λ`, etc, and treat them separately. Making

use of the 2-point form factors we derived above, and computing the 3 and 4-point function

contributions by expanding the determinant and integrating products of kernels as Eq. (4.23),

we obtain

R4(t) = d4|r1(t)|4 − 2d3Re(r21(t))r2(t)r3(2t)− 4d3|r1(t)|2r2(t) + 2d3Re(r1(2t)r
∗2
1 (t))

+ 4d3|r1(t)|2 + 2d2r22(t) + d2r22(t)r
2
3(2t) + 8d2Re(r1(t))r2(t)r3(t)

− 2d2Re(r1(2t))r3(2t)r2(t)− 4d2Re(r∗1(t))r3(t)r2(2t) + d2|r1(2t)|2

− 4d2|r1(t)|2 − 4d2r2(t) + 2d2 − 7dr2(2t) + 4dr2(3t) + 4dr2(t)− d . (4.40)

In the large d limit, some of the terms above are subdominant or suppressed in d at all times,

allowing us to simplify the expression as

R4(t) ≈ d4|r1(t)|4 + 2d2r22(t)− 4d2r2(t) + 2d2 − 7dr2(2t) + 4dr2(3t) + 4dr2(t)− d , (4.41)

similar to the result we derived for the GUE [12]. At times much earlier than the plateau

time, we have

R4 ≈ d4|r1(t)|4 +
t(t− 2πρ(u))

2π2ρ(u)2
∼ d4

π2t2
+
t(t− 2πρ(u))

2π2ρ(u)2
. (4.42)

Again, we find a slow decay of O(1/t2) and thus no visible dip at large d. The plateau time

is still 2παd, with a plateau value R4(tp) = 2d2 − d ∼ 2d2.

4.4 Chaos and Wishart matrices

We want to study the chaotic nature of time-evolution by LUE Hamiltonians. Consider the

ensemble of unitary time-evolutions generated by LUE random matrices

Et =
{
e−iHt , with H ∈ LUE

}
. (4.43)

159



We want to understand how random LUE time-evolution is by asking when the ensemble

forms a k-design. Computing the frame potential for the ensemble will quantify a distance to

Haar-randomness. We also compute correlation functions of operators evolved by the LUE

to look at early-time chaos in the chaotic decay of 2k-point functions.

4.4.1 QI overview

Before discussing the frame potential and measures of chaos for the random matrix ensemble,

we will briefly overview the quantum information theoretic concepts and tools we use, namely

the notion of a unitary k-design and the frame potential. For a more in-depth review of these

in the context of information scrambling in chaotic systems, see [11, 12].

For a finite dimensional quantum mechanical system, with Hilbert space H of dimension

d, the unitary group U(d) can be equipped with the Haar measure, the unique left/right

invariant measure on U(d). Given some ensemble of unitary operators E , we say that the

ensemble forms a unitary k-design if it reproduces the first k-moments of Haar

∫
Haar

dU (U⊗k)†(·)U⊗k =

∫
V ∈E

dV (V ⊗k)†(·)V ⊗k , (4.44)

for any operator. More intuitively, we should think of this as capturing how random the

ensemble is, in that the ensemble is sufficiently spread out over the unitary group to reproduce

its statistics. A precise measure of Haar-randomness is the frame potential [57], which

measures the 2-norm distance between the k-th moments of an ensemble E and Haar. The

k-th frame potential is defined with respect to an ensemble E as

F (k)
E ≡

∫
U,V ∈E

dUdV
∣∣Tr(U †V )

∣∣2k . (4.45)

The frame potential for any ensemble E is lower bounded by the Haar value

F (k)
E ≥ F

(k)
Haar , (4.46)

with equality iff E forms a k-design. The k-frame potential for the Haar ensemble is simply

F (k)
Haar = k! for k ≤ d.
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The frame potential appeared in the context of information scrambling and black holes

as the average of all out-of-time ordered correlators [11]

1

d4k

∑
A’s,B’s

∣∣∣〈A1B1(t) . . . AkBk(t)
〉
E

∣∣∣2k =
1

d2(k+1)
F (k)
E , (4.47)

where “B(t)” = UBU † and U ∈ E , averaged over any ensemble of unitaries E , with each Ai

and Bi summed over all Pauli operators. This makes precise an approach to randomness,

where the chaotic decay of correlators at late-times means the frame potential becomes small

and the ensemble forms a k-design.

4.4.2 Frame potentials

First frame potential at β = 0

We start by computing the first frame potential at infinite temperature F (k)
E for the ensemble

of LUE time-evolutions. Following [12], we have

F (k)
LUE =

∫
dH1dH2 e

− d
2
TrH2

1e−
d
2
TrH2

2

∣∣Tr
(
eiH1te−iH2t

)
|2 . (4.48)

Using the unitary invariance of the ensemble and integrating using the second moment of

the Haar ensemble, we find

F (k)
LUE =

1

d2 − 1

(
R2

2 + d2 − 2R2

)
, (4.49)

with the same dependence on the form factors as in the GUE case.

In Fig. 4.5 we plot our analytic form of the first frame potential of the LUE at infinite

temperature. We can see that there are significant differences between the supersymmetric

and non-supersymmetric cases. The slow decay of the LUE means there the ensemble does

not form a k-design at the dip. At late-times after the plateau, we find the frame potential

approaches a value of 2.
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First frame potential at finite β

We can also generalize the frame potential to finite temperature by averaging over all thermal

2k-point functions with operators spaced equidistant on the thermal circle (i.e. inserting ρ1/2k

between operators in the 2k-OTOC). Averaging over operators, we find [11]

F (k)
Eβ =

∫
E
dH1dH2

∣∣Tr
(
e−(β/2k−it)H1e−(β/2k+it)H2

)∣∣2k
Tr(e−βH1)Tr(e−βH2)/d2

, (4.50)

with the normalization that gives the standard frame potential as β → 0. For the LUE, we

compute the finite temperature frame potential just as above, Haar integrating to find

F (1)
LUE(t, β) =

1

d2 − 1

(
R̃2

2(β/2) + d2 − 2R̃2(β/2)
)
, (4.51)

where we define a slightly more conveniently normalized form factor

R̃2(t, β) =

∫
Dλ

∑
ij e

it(λi−λj)e−β(λi+λj)∑
i e
−2βλi/d

. (4.52)

As it is more analytically tractable, we opt to separately average the numerator and de-

nominator (the ‘quenched’ version), and checked numerically that the results are in good

agreement. We see that at early times, near t = 0, we have the β-dependent value

F (1)
LUE ≈ d2

h1(β/2)4

h1(β)2
, (4.53)

while at late times, after the plateau time, we have F (1)
LUE(tp, β) = 2.
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Figure 4.5: We show the first and second frame potentials for the LUE at infinite temperature
at d = 1000. The slow decay means we do not form a k-design at the dip time. For
comparison, the Haar value is plotted in grey.

Second frame potential at β = 0

The second frame potential for the LUE at infinite temperature is expressed in terms of the

spectral form factors as [12]

F (2)
LUE =

1

(d2 − 9)(d2 − 4)(d2 − 1)d2

((
d4 − 8d2 + 6

)
R2

4 + 4d2
(
d2 − 9

)
R4

+ 4
(
d6 − 9d4 + 4d2 + 24

)
R2

2 − 8d2
(
d4 − 11d2 + 18

)
R2 − 4d2

(
d2 − 9

)
R4,2

+
(
d4 − 8d2 + 6

)
R2

4,2 + 2
(
d4 − 7d2 + 12

)
R2

4,1 − 8
(
d4 − 8d2 + 6

)
R2R4

− 4d
(
d2 − 4

)
R4R4,1 + 16d

(
d2 − 4

)
R2R4,1 − 8

(
d2 + 6

)
R2R4,2

+ 2
(
d2 + 6

)
R4R4,2 − 4d

(
d2 − 4

)
R4,1R4,2 + 2d4

(
d4 − 12d2 + 27

))
, (4.54)

where we have defined

R4,1(t) ≡
∫
Dλ

d∑
i,j,k=1

ei(λi+λj−2λk)t , R4,2(t) ≡
∫
Dλ

d∑
i,j=1

e2i(λi−λj)t . (4.55)
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The 4-point form factor with two coincident eigenvalues, R4,2(t), is simply R2(2t). The

3-point form factor R4,1(t) for the LUE can be computed just as in Sec. 4.3, where we find

R4,1(t) = d3Re
(
r1(2t)r

∗2
1 (t)

)
− d2Re(r1(2t))r3(2t)r2(t)− 2d2Re(r∗1(t))r3(t)r2(2t)

+ d2|r1(2t)|2 + 2d2|r1(t)|2 + 2dr2(3t)− dr2(2t)− 2dr2(t) + d . (4.56)

We plot the second frame potential for LUE alongside the first frame potential in Fig. 4.5.

The second frame potential has an initial value of d4 and late-time value of 10, just as for

the GUE. But again the difference arises at intermediate time scales, where the LUE fails to

form a k-design.

4.4.3 Correlation functions

As we discussed before, the recent interest in quantum chaos has involved extensive discussion

of out-of-time order correlation functions (OTOCs). Namely, the following 4-point functions

of pairs of operators in thermal states

〈AB(t)AB(t)〉β where B(t) = e−iHtBeiHt . (4.57)

We consider OTOCs with operators evolved by LUE Hamiltonians and averaged over the

random matrix ensemble. In [12], we studied 2k-OTOCs and related them to spectral quan-

tities, both by averaging over the operators in the correlation function or over an ensemble

of Hamiltonians. In that work, we averaged 2k-OTOCs over the GUE and related the cor-

relators to spectral quantities using the unitary invariance of the measure. As the LUE is

similarly invariant, the relation between correlation functions averaged over the random ma-

trix ensemble and the form factors will be the same as thus parts of the discussion here will

closely follow [12]; the differentiating aspects of LUE time-evolution thus lie in the spectral

form factors themselves.

First we look at the 2-point function and integrate over Hamiltonians drawn from the

LUE, using the unitary invariance of the measure and Haar integrating in the eigenvalue
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basis

〈AB(t)〉LUE =

∫
dH〈AB(t)〉 =

R2(t)− 1

d2 − 1
〈AB〉c + 〈A〉〈B〉 , (4.58)

where 〈AB〉c denotes the connected correlator. For non-identity Paulis, the expression is

nonzero for B = A†, and thus

LUE average : 〈AA†(t)〉LUE ≈
R2(t)

d2
, (4.59)

for R2(t) � 1. We note that, just as is the case for GUE, if we instead average the same

2-point function over all operators A, we arrive at the same expression

Operator average :

∫
dA 〈AA†(t)〉 =

R2(t)

d2
, (4.60)

which is true regardless of the Hamiltonian. The fact that the LUE averaged 2-point function

equals the operator averaged correlator means that LUE does not care about the size or

locality of the operator A, given that we made no assumptions about about A in computing

Eq. (4.59), and thus is blind to phenomena relevant for early-time chaos such as operator

growth.

We next compute the 4-point OTOC averaged over the LUE, using the fourth moment

of Haar and looking at the leading order behavior

〈AB(t)AB(t)〉LUE =

∫
dH 〈AB(t)AB(t)〉 ≈ R4(t)

d4
, (4.61)

for non-identity Pauli operators A and B. Note that the OTOCs of the form 〈AB(t)CD(t)〉
are all almost zero unless ABCD = I.

We can now comment on the time scales that LUE describes as seen from the averaged

correlation functions. The time scale of 2-point function decay corresponds to the time scales

for which the system thermalizes. Using the early time piece of the 2-point form factor we

derived in Sec. 4.3, where the contribution from the 1-point function gives the decay

〈AA†(t)〉LUE ≈ J2
0 (2t) + J2

1 (2t) ∼ 1

πt
, (4.62)
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contrasted to the 1/t3 decay for GUE. Similarly, we can comment on scrambling in the LUE

by looking at the early time decay of the LUE averaged 4-point OTOCs. The early time

behavior of the 4-point form factor means the OTOC decays like

〈AB(t)AB(t)〉LUE ≈
(
J2
0 (2t) + J2

1 (2t)
)2 ∼ 1

π2t2
. (4.63)

The characteristic time-scale for decay of LUE 2-point functions is t2 ∼ O(1), or for

systems at finite temperature O(β). The time-scale for 4-point function decay is also order

1, but faster than the decay of 2-point functions t4 ∼ t2/2. Although the decay is slower

than for GUE, unsurprisingly, the conclusion about the LUE’s perception of early-time chaos

is the same: the LUE 4-point OTOCs decay faster than the LUE 2-point functions, which

means the random matrix ensemble fails to describe scrambling at early times.

4.4.4 Complexity

Lastly, we briefly comment on the complexity growth under time-evolution of LUE Hamilto-

nians. Here we simply discuss the results; details and definitions of ensemble complexity and

its relation to the frame potential are given in [11, 12]. The gate complexity of an ensemble

E , i.e. the number of gates needed to generate E , is lower bounded by the frame potential as

C(t) ≥ 2kn− logF (k)
E (t)

2 log n
. (4.64)

At early times before the dip time t � td, the dominant contribution to the k-th frame

potential is F (k)
E ' R2

2k(t)/d
2k [12]. For k � d, the 2k-th form factor goes as R2k ∼ r2k1 ,

the function defined in Eq. (4.26) in terms of Bessel functions. The decay r21 ∼ 1/t, gives a

lower bound on the growth of the circuit complexity

C(t) ≥ O
(
k log t

log n

)
, (4.65)

where the slower decay for LUE still gives the same logarithmic lower bound as GUE. In-

terestingly, in GUE the 1-point function contribution to the form factor at early times is an
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oscillating Bessel function decay J2
0 (2t)/t2, which formally gives a dip time O(1). As these

oscillations are not present in the LUE, we can bound the complexity up to the dip time

even at infinite temperature. But for large k, we recover the quadratic growth of complexity:

C ≥ t2/ log n, hinting again at the unphysical nature of LUE evolution at early times.

4.5 Chaos in supersymmetric SYK

The supersymmetric SYK model admits a classification by Wishart-Laguerre random matrix

ensembles and has a density of states which closely follows a Marčenko-Pastur distribution

[107]. Having discussed the properties of LUE random matrices, we turn to the supersym-

metric SYK model and check that the form factor acts similarly. From the frame potential,

we then discuss the Haar-randomness of the model’s time evolution.

Assuming that the spectral statistics of the theory are Gaussian, as both SYK and the

Wishart matrices are, allows us to use the sine kernel to compute the spectral n-point

functions. We note that if the statistics are GUE/GOE/GSE, the sine kernel is slightly

modified and the ramp function differs as we approach t ∼ d, but the universal growth of the

ramp is still present. Knowing that the supersymmetric SYK model has Gaussian spectral

statistics [107], we can compute the finite temperature form factor for the theory just as in

Eq. (4.33), and find

R2(t, β) =
〈
Z(β + it)Z(β − it)

〉
=

∫
Dλ

∑
i,j

ei(λi−λj)te−β(λi+λj)

≈ d

∫
dE ρ(E)e−2βE +

∣∣〈Z(β + it)〉
∣∣2 − d ∫ dE e−2βEρ(E)r2(t) , (4.66)

where r2(t) is the ramp function from the LUE and we define E = 1
2
(λ1 + λ2). Continuing,

we find the finite temperature form factor

R2(t, β) ≈ |〈Z(β + it)〉|2 + Z(2β)
(
1− r2(t)

)
. (4.67)

As a sanity check, the late-time value Z(2β) here matches the infinite-time average of the

spectral form factor. As we discussed in Sec. 4.2, the 1-loop partition function from the
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super-Schwarzian theory is

ZsSch
1-loop(β) ∼ 1√

βJ e
Ns0+cN/2β , (4.68)

where s0 is the ground-state entropy density and c is the specific heat. At early times, the

form factor is dominated by its disconnected component, decaying as 1/t

Early : R2(t, β) ∼ e2Ns0

J t (4.69)

for times greater than t ∼
√
N = log d/2, but shorter than t ∼

√
d. Computing the connected

form factor, we find

Rc
2(t, β) ≡

〈
Z(β + it)Z(β − it)

〉
− |〈Z(β + it)〉|2

= Z(2β)
(
1− r2(t)

)
=

1√
2βJ e

Ns0+cN/4β
(
1− r2(t)

)
. (4.70)

Equating the 1/t decay with the ramp gives a dip time td ∼ eNs0 , the same order as the

plateau time tp. Even in light of the exactness of the super-Schwarzian theory, we should

be cautious in extrapolating to very late times. It is possible that in the large N theory the

slope is not well-described by the effective theory at late times and, in turn, decays faster at

an intermediate time scale.

Lastly, to get a hint at the nature of scrambling and an approach to randomness in SYK

and its supersymmetric extension, we numerically plot the first frame potential for each in

Fig. 4.6 at infinite temperature and for N = 16 Majoranas. The faster decay and dip that

appears for SYK means the frame potential decays quickly, forming an approximate k-design

at the dip time. Although the dip value of the SYK frame potential for N = 16 is larger

than the Haar value, we checked that as we increase N the dip value decreases and expect

that SYK forms an approximate k-design in the large N limit. The frame potential for the

supersymmetric model exhibits a much more gradual approach to its minimal value which is

larger than in SYK, indicating less effective information scrambling and a greater distance

of the ensemble to forming a k-design. It would be interesting to see, either numerically or

analytically, if these behaviors persist at large N . Both theories, like their random matrix
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Figure 4.6: Numerics for the first frame potential of SYK and supersymmetric SYK at
β = 0 for N = 16 Majoranas and 200 samples. The decay and dip of SYK indicates
faster scrambling and an approximate k-design behavior not as readily apparent in the
supersymmetric model.

counterparts, become less random and increase after the dip, deviating further from an

approximate design, which suggests that k-invariance [12] might provide a better insight in

how information scrambles in SYK models.

There are a few comments worth making relating the discussion here with the behavior

of the form factor in similar models.7 In the complex SYK model, the spectral form factor

appears to have a 1/t4 power-law decay at early times [118, 73], in contrast to the Majorana

and SUSY SYK models. As we discussed, the respective power-law decays in these models

arise from the Schwarzian and super-Schwarzian modes governing the low-energy physics,

and persist for a long time as a result of the 1-loop exactness of the effective actions. In the

complex SYK model, where we have a conserved U(1), there is an additional contribution

to the effective action from the phase fluctuations of the reparametrization mode, as was

discussed in [118]. Combined with the contribution from the Schwarzian mode, the parti-

tion function has a Z(β) ∼ 1/(βJ )2 dependence. Continuing to real-time, the early-time

contribution to the 2-point form factor gives a power-law decay R2(t) ∼ |Z(β, t)|2 ∼ 1/t4.

As the low-energy description is likely also 1-loop exact, one expects this behavior to persist

for a long time. It is further interesting to note that while the power-law indicates a more

rapid onset of late-time chaos as seen by the frame potential, the additional U(1)-mode does

7We thank an anonymous JHEP referee for raising these points.
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not contribute to the Lyapunov exponent of the theory [119]. Thus, like Majorana SYK and

SUSY SYK models, the complex SYK model is maximally chaotic at early times, but in the

above sense scrambles quicker.

We should also comment on the behavior of spectral quantities more generally in chaotic

systems with gravitational duals. In 2d CFTs, an analysis of the contribution from different

saddles indicates a persisting 1/t3 decay in the form factor for holographic CFTs, and a

1/t decay for rational CFTs [39].8 A slow decay of spectral quantities also appears in the

D1-D5 theory at the orbifold point, in line with the fact that the theory does not have

chaotically decaying correlation functions [121] and appears to exhibit a logarithmic ramp

[40], in contrast to the universal linear ramp we expect in chaotic systems. Although [9]

argued for the rapid decay of spectral functions and the late-time appearance of a ramp in

super Yang-Mills at strong-coupling, better analytic control of spectral quantities is needed

to understand quantum chaos in holographic theories.

On a slightly less related note, a recent work [122] also considered the infinite temperature

2-point spectral form factor for Wishart matrices in a different context. Namely, they studied

the statistical properties of the reduced density matrix on spatial regions in quantum many-

body systems. They also comment on universal features of Wishart matrices in Floquet

systems. As there is a sense in which Floquet systems may be thought of as supersymmetric

quantum mechanics [123], where the Floquet unitary is built from two ‘supercharges’, it

would be interesting to explore further connections with our work.

4.6 Conclusion and outlook

In this chapter, we considered the Wishart-Laguerre unitary ensemble in order to understand

universal features of supersymmetric quantum mechanical systems. We computed the 2-point

spectral form factor for the LUE and found the one-point function contribution gives a 1/t

power law decay at early times, hiding the dip and transitioning directly into the plateau.

This is relatively slow compared to the ∼ 1/t3 decay seen in both SYK and the GUE. The

8Relatedly, [120] discussed a distinction between entanglement scrambling in rational and holographic
CFTs.
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universal ramp behavior from the sine kernel can be seen in the connected LUE 2-point

form factor. These results agree with the prediction from the 1-loop partition function in

supersymmetric SYK. This slow decay implies the onset of a random matrix description

occurs at much later times. This can best be seen from the frame potential, where we find a

more gradual decay to Haar-random dynamics. Moreover, the frame potential for the LUE,

unlike that of the GUE, does not reach the Haar value and does not form an approximate

k-design. This is also what we predict and observe numerically in the supersymmetric

SYK model, where the slower decay and larger dip value imply less effective information

scrambling.

The supersymmetric model, while maximally chaotic, sees a slower onset of random

matrix behavior—made evident by the lack of a dip in the form factor and by the slow

approach to Haar-randomness in the frame potential. The apparent distinction here between

early-time chaos, in terms of chaotic correlation functions, and late-time chaos, in terms of

scrambling and Haar-randomness, demands a deeper understanding.

4.A Numerics

In this appendix we discuss numerics to fix an analytic form of the form factors for LUE

and to further provide checks on the expressions we derived for the form factors and frame

potentials. As we mentioned in Sec. 4.3, there was a free parameter u in the expressions we

derived for the k-point form factors. This dependence appears in the ramp function r2(t),

defined in Eq. (4.26), and determines both the slope of the linear ramp in Rc
2(t) and the

plateau time. Numerically computing the connected 2-point form factor for d = 500, we fix

u by fitting the ramp between times ∼1 and
√
d/2. We know that the early time behavior

of the ramp is quadratic before t ∼ 1 and expect a loss of analytic control as we approach

the plateau time. We thus linearly fit points in this intermediate regime and find u = 1.156.

We hope to derive this result more rigorously in the future.

We also present some numerical checks of our expressions for the LUE 2-point form

factor in Fig. 4.7, where we find good agreement in the slope, ramp, and plateau. Our

results were derived for LUE at large d and thus should capture the perturbative behavior.
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Figure 4.7: Numerics for both the LUE 2-point form factor and its connected component,
compared to the analytic expressions derived in Sec. 4.3, for d = 500 and with 10000 sam-
ples. We find good agreement in the slope and plateau, with expected deviations around
the plateau time. The very early time behavior of the connected form factor can also be
understood analytically.

But in the transition to the plateau, nonperturbative effects [115] become important and

our results deviate from numerics in this regime. After the plateau time, we return to

contributions from the 1-point function. At very early times, before t ∼ O(1), the connected

component grows as Rc
2(t) ∼ t2. This quadratic growth can be derived from an impressive

integral representation of the connected 2-point form factor [68]. We have also checked our

expressions of the finite temperature and higher point LUE spectral functions and found

good agreement with numerics.
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Chapter 5

Operator growth in random quantum

circuits

This chapter is partially based on work in progress, which will appear elsewhere in a future

publication.

Abstract

We study random quantum circuits with symmetry, where the local 2-site unitaries are

drawn from a quotient of the full unitary group U(d). Random quantum circuits are minimal

models of unitary local chaotic dynamics and can be used to study operator growth and the

emergence of dissipative hydrodynamics. We derive the transition probabilities of the local

Markov process on Pauli strings in the operator growth for five classes of symmetric random

circuits. We then compute the butterfly velocities and diffusion constants for a spreading

operator by solving a simple random walk in each class of circuits.

5.1 Introduction

In this chapter we study operator growth in local random quantum circuits with symmetry,

where instead of Haar random 2-site unitaries, we construct the circuits using unitaries drawn

from a quotient of the unitary group. This is a simple application of the tools developed in

Ch. 3, making use of Weingarten calculus for compact Lie groups and compact symmetric
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spaces. Here we consider 5 different symmetry classes of random circuits: O(d), Sp(d),

AI: U(d)/O(d), and AII: U(d)/Sp(d). In each of the five cases we build a one-dimensional

random circuit with random gates from the group or symmetric space. Each of the symmetric

random circuits defines a different Markov process of local updates on the evolving Pauli

strings, which gives rise to operator growth under random circuit evolution.

Random quantum circuits have been studied extensively in the quantum information

community, largely focused on understanding the convergence properties, for instance [124,

125, 126, 54]. More specifically, [126] showed that random quantum circuits form approxi-

mate unitary 2-designs in polynomial depth. [54] expanded on these results using the spectral

gap of the moment operator. [77] studied decoupling in random quantum circuits and showed

that decoupling occurs in circuits of polylogarithmic depth. More recently, in a nice series

of papers random quantum circuits have been used to study entanglement growth [127] and

operator spreading under random unitary dynamics [128, 129] and with conservation laws

[130, 131]. The study of ballistic operator growth in random circuits contrasts interest-

ingly with analytic results for weakly interacting metals [132, 133] and numerical results for

spin-chains [134]. Moreover, random quantum circuits also give an emergent picture for the

evolution of entanglement under unitary dynamics [135, 136].

The random quantum circuit models considered in this chapter are just a simple gener-

alization of the constructions in [128, 129]. Moreover, while our construction of symmetric

circuits builds in symmetry to the local random unitary, the random circuit as a whole does

not obey any conservation law. Therefore, almost by construction, we do not see the beau-

tiful picture that emerges in [130, 131]. There the random quantum circuit models obey a

local conservation law, where the block diagonal random unitary preserves local z-spin, i.e.

is Haar-random within fixed charge sectors of the z-basis. In these models, they find an

emergent coupled diffusion process, where non-conserved operators propagate ballistically,

with fronts that spread diffusively, and where conserved charge dissipates diffusively as con-

served operators decay to non-conserved operators which again propagate ballistically. This

coupled process gives rise to long hydrodynamic power-law tails in the weight of the evolving

operator.

Instead, the models we consider here instead give rise just to the ballistic growth of an
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operator and the diffusive spreading of the ballistic front. Whereas operator growth in the

unitary random circuits can be understood as a simple biased random walk, in the symmetric

circuits we find that the endpoint dynamics are governed by different types of random walks.

The endpoint of evolving strings in the AI and AII random circuits are governed by a biased

random walk with correlation between steps. The edge of an evolving Pauli string in the

O(d) and Sp(d) random circuits is governed by a biased correlated random walk with an

internal state. In each case we derive the butterfly velocity and diffusion constant of the

evolving operator.

We will start by reviewing basic properties of unitary random quantum circuits, discussing

the local Markov process and operator growth. We then discuss the Markov process in the

symmetric random circuits, deriving the respective transition probabilities of the Markov

process updating evolving Pauli strings. Then we discuss operator growth in the symmetric

random circuits and derive the butterfly velocity and diffusion constant by solving a random

walk governing the endpoint dynamics of operator growth.

In this chapter we will not explicitly review the formalism for taking Haar-averages.

Weingarten calculus for Lie groups and compact symmetric spaces was reviewed and dis-

cussed extensively in Ch. 3. The methods for performing Haar averages over compact Lie

groups were worked out in [58, 59, 88], and extended to compact symmetric spaces in [91, 92].

In computing the averages over compact symmetric spaces, we have relied heavily on the

methods developed there.

Random quantum circuits

Consider a one-dimensional chain of n qudits, with local dimension q, evolved by a random

circuit built from layers of 2-site unitaries. Each layer or time-step of the random circuit

alternates between acting on all even links between qudits at even time-steps, and odd links

at odd time steps. Explicitly, the t-th layer of the circuit for even t, Ut, even, is given by the

tensor product of 2-site unitaries Ui,i+1 for even i, and the t-th layer for odd t by tensoring

Ui,i+1 for odd i. We denote the unitary implementing the t-th layer as Ut, and the evolution

to time t is simply the product of t layers of the circuit. The architecture of the random

quantum circuit is shown in Fig. 5.1. Each 2-site unitary Ui,i+1 is drawn at random from the
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Figure 5.1: Random quantum circuits built from staggered layers of 2-site unitaries and
where each unitary is drawn at random from the unitary group, or a subgroup or quotient
thereof.

unitary group U(q2) or from some subgroup or quotient.

We’ll go over the basic structure of operator growth in random circuits to set the stage

for the rest of the discussion in this chapter. The discussion here is general and applies to

all classes of random circuits in this chapter. Recall that we can expand any operator in a

basis of operators (like Pauli strings for qubit systems) as

O(t) =
∑
p

γp(t)Op . (5.1)

We will refer to the elements in the basis as Pauli strings regardless of local dimension; the

only difference is that generalized Paulis are no longer Hermitian, but this does not affect the

discussion. We should think about the coefficients γp(t) as probabilities of finding the opera-

tor Op in the growing operator, or equivalently the weight of the growing operator on a given

Pauli string. Unitary evolution UtOpU †t and the orthonormality of Paulis 1
q2n

Tr(OaOb) = δab

means the operator norm is conserved under time-evolution, and thus the probabilities are

conserved
∑

p |γp(t)|2 = 1.

Consider the evolution of a local operator O0 in the random circuit. The local 2-site

unitaries will act on the operator and the range of its support will grow ballistically, spreading

outwards by one site at each side every time step, as shown in Fig. 5.2. While the operator

will grow to a linear combination of all Pauli strings with support on the 2t+ 1 sites at time

t in the light-cone of the operator, we want to know the distribution on those Pauli strings,
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Figure 5.2: Operator growth in random quantum circuits. On the left: the ballistic growth
of the support of an initially local operator. On the right: an example of the right edge of a
Pauli string moving back after evolution by a layer of the circuit.

i.e. the shape of the support of that operator on Pauli strings. We can define the weight of

the evolving operator on its left/right edge as [128, 129]

ρL/R(i, t) =
∑

p∈OL/R(i)

|γp(t)|2 (5.2)

where we sum over all Pauli strings with the left or right-most non-identity Pauli operator at

site i. We will see that the edges of the growing operator grow ballistically but also spread

diffusively, such that ρL/R(i, t) obeys a simple biased diffusion equation.

As we will discuss, we can solve for this distribution of the support of the operator by

studying the random walking of the edges of the Pauli strings. The random circuits define a

Markov process governing the internal dynamics of the growing operator, where each Pauli

string in the growing operator is stochastically updated to another Pauli string. As we will

discuss in the next section, each local 2-site unitary gives a Markov process on two site pairs

of the Pauli string, taking identities to themselves and non-identity Paulis uniformly to all

other non-identity Paulis. For instance, two sites in a Pauli string might get updated like

(XY )→ (ZX). An update like this occurs for each two sites, i.e. at every link, alternating

between even and odd links in the circuit.

We can understand the distribution of the each of the evolving operator by thinking

about the edges of the evolving Pauli strings. In the random circuit evolution, each Pauli

string is random walking through the space of Pauli strings. Moreover, the end of each Pauli
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string has some probability of moving back. For instance, say the two Pauli operators at

the right-most gate, which doesn’t simply act on identities, is (X I). There is a probability

that this gets updated to (Z I) and the gate to the right in the following time-step has only

identities going in. Thus in the coordinate system on the links, the operator moves back, as

shown in Fig. 5.2. This is a simple biased random walk on the edge of a Pauli string.

A note on notation and terminology:

To prevent any confusion, we make very clear the notation used to denote local dimensions.

We will consider one-dimensional chain of qubits, where the local dimension is 2, but more

generally, we denote the local dimension in qudit chains as q. In this chapter, we define the

dimension of a 2-site unitary as d ≡ q2, so that the local unitaries are drawn from U(d) (and

U(4) in the case of qubits). We will also refer to the basis of operators as Pauli strings, re-

gardless of the local dimension. Lastly, in previous chapters we defined the symplectic group

with even dimension 2d, i.e. defined the symplectic group as the intersection of symplectic

matrices Sp(2d,C) and the unitary group. Here, for consistency of the discussion and ease

in comparing formulae, we denote the symplectic group Sp(d) and the compact symmetric

space AII: U(d)/Sp(d), keeping in mind that d must be taken to be even in these two cases.

5.2 Operator growth in unitary random circuits

Let’s start by reviewing the story for unitary random circuits, where each local 2-site unitary

in Fig. 5.1 is drawn Haar-randomly from U(d). Consider the evolution of some local operator

O(t), at time zero acting on a single site, by the unitary random circuit. We can understand

the growth of this operator in the random circuit by solving for the coefficients |γp(t)|2.

|γp(t)|2 =
1

q2n
∣∣Tr
(
O(t)Op

)∣∣2 =
1

q2n
Tr
(
UtO(t− 1)U †tOp

)
Tr
(
UtO(t− 1)U †tOp

)
, (5.3)
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where we consider the layer implementing the t-th time step acting on the operator at t− 1.

Expanding in the operator basis

|γp(t)|2 =
1

q2n

∑
a,b

γa(t− 1)γb(t− 1)Tr
(
UtOaU †tOp

)
Tr
(
UtObU †tOp

)
, (5.4)

we now Haar average the expression, decomposing the expression into a product over 2-site

operators and 2-site random unitaries. For a single 2-site operator the expression we find

averaging using the 2nd moment is

∫
U(d)

dU Tr
(
UOaU †Op

)
Tr
(
UObU †Op

)
=

d2

d2 − 1
δa,b
(
d2δa,1δp,1 + 1− δa,1 − δp,1

)
. (5.5)

where we are just looking at the operators Oa and unitaries at a single 2-site gate. Taking

the product over all pairs of sites on which the 2-site random unitaries act, we can write

Eq. (5.4) as

|γp(t)|2 =
∑
a

Spa|γa(t−1)|2 , where Spa =
∏
s

(
δ
(s)
a,1δ

(s)
p,1+

1

d2 − 1
(1−δ(s)a,1)(1−δ(s)p,1)

)
, (5.6)

where the symmetric matrix determines the growth of the operator at each time step. The

matrix Spa is the transition matrix of a local Markov process on Pauli strings, where the

Pauli string is updated stocastically at pairs of sites with transition probabilities determined

by Spa. The matrix Spa essentially tells us that at each pair of sites we take I I → I I or a

non-identity 2-site Pauli operator to any of the non-identity Paulis Op → Oa each with prob

1/(d2 − 1), which makes sense as there are d2 − 1 non-identity 2-site Paulis (or rather the

qudit generalization thereof).
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Unitary Markov process:

The transition probabilities for the Markov process defined by a Haar-random 2-site unitary

acting on the evolving Pauli string are

I I→ I I with prob 1

Op → Oa with prob 1/(d2 − 1) .

These are local update rules 2-site pairs of operators in the Pauli string, which gives rise to a

biased diffusion process. Looking at the endpoints, the update rule says that the left/right-

most non-identity Pauli on the i-th site is mapped to a non-identity Pauli on the i and i+ 1

sites. As there are q4−1 non-identity 2-site Paulis and q2−1 of them have an identity at the

i+1 site, there is a probability of the edge of the operator moving back p = (q2−1)/(q4−1).

The biased random walk governing the edge of an evolving operator gives rise to a biased

diffusion process at long times. The weight of the operator on the left/right edges obeys a

biased diffusion equation [128, 129]

ρL/R(i, t) =
∑

p∈OL/R(i)

|γp(t)|2 → ∂tρ(x, t) = vB∂xρ(x, t) +D∂2xρ(x, t) , (5.7)

where we sum over all Pauli strings with the left or right-most non-identity Pauli operator

at site i. The edges of the growing operator grow ballistically but also spread diffusively,

with butterfly velocity and diffusion constant

vB =
q2 − 1

q2 + 1
and D =

2q2

(q2 + 1)2
, (5.8)

which all arises the the local update rule on the edges of the growing operator. We should

think about this as a random walk on the Pauli strings where the Pauli strings want to grow

larger, but there is some probability that they move back, i.e. biased diffusion.

It will be useful for later comparison with the unitary random circuits to give the 1/q
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expansion of the butterfly velocity and diffusion constant in Eq. (5.8)

vB ≈ 1− 2

q2
+

2

q4
− 2

q6
and D ≈ 2

q2
− 4

q4
+

6

q6
. (5.9)

Note that it is convenient to define our coordinate system on the links, i.e. with respect

to the 2-site gates, instead of the qudits. This way, the edge of an evolving Pauli either

moves forwards or backwards at each time step.

Quick review of biased random walks

We can understand the derivation of the butterfly velocity and diffusion constant in the

unitary random circuit as a simple biased random walk. Let’s consider the right endpoint

of the growing operator, so the bias refers to the preference of the operator to move right.

At each time step we have a random variable xi which takes values ±1: we get −1 with

probability p, meaning the random walker moves left, and +1 with probability 1−p, meaning

the operator moves right. The position of the operator at a time t is then given by

X(t) =
t∑
i=1

xi . (5.10)

As the endpoint dynamics are Markovian, meaning the steps at successive times are uncor-

related and the random variables xi are iid, we simply compute the mean

〈X(t)〉 =
t∑
i=1

〈xi〉 = t〈xi〉 = t(1− 2p) → vB = 1− 2p , (5.11)

which gives us the butterfly velocity vB, and the second moment

〈X(t)2〉 =
t∑

i,j=1

〈xixj〉 = t〈x2i 〉 = t , (5.12)

which gives the variance and the diffusion constant

〈X(t)2〉c = 4pt(1− p) , → D = 2p(1− p) . (5.13)
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Therefore, computing the probability of moving back p = 1/(q2 + 1) in the random circuits

gives the above velocity and diffusion constants.

We can arrive at the same conclusion noting by counting the left and right moves. Again,

consider the motion of the right end of the Pauli string, and let ` denote the number of left

steps and r the number of right moves. Clearly, t = ` + r and the position of the random

walker is x = r − `. The distribution on the number of left and right moves is

f(`, r) =

(
t

r

)
(1− p)rp` . (5.14)

From this we can compute the mean and variance of x = r−` after t timesteps get vB and D

as above. Said equivalently, the binomial distribution on the endpoint of the string is simply

the sum of Bernoulli distributed random variables making up the steps in the random walk.

5.3 Operator growth in symmetric random circuits

Now let’s generalize the story to random circuits constructed out of local gates randomly

drawn from quotients of the unitary group. We will consider 5 different symmetry classes, lo-

cal orthogonal and symplectic matrices, and the two quotients of the unitary group U(d)/O(d)

and U(d)/Sp(d). In each case the analysis is more complicated than the analysis for the ran-

dom unitary circuits, but we can in fact solve the operator growth analytically. For each

case we derive the Markov process that corresponds to the growth of a Pauli string in the

random circuit, where the transition probabilities encoding the local update rules on a Pauli

string are simply given by Haar-integrating over the quotient space. We then solve for the

dynamics of the ends of the evolving operator. In the unitary random circuits, the growth

of a Pauli string is a Markov process and the dynamics of the end of the operator is itself an

autonomous Markov process. In the symmetric circuits the evolution of a Pauli string is also

a Markov process, in each case with different Markov rules/transition probabilities. But the

dynamics of the endpoints are no longer Markovian. This is because the biased random walk

describing the successive time steps of the edge of the growing operator now has correlations

between different time steps. In the language of random walks and diffusion the edge of the
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growing operator in the symmetric circuits is a persistent biased random walk. The persis-

tence refers to the operator having some ‘inertia,’ i.e. wanting to move in the same direction

as the previous time step. In our symmetric random circuits, we find that the successive

time steps are anticorrelated, thus the random walks are biased and anti-persistent.

In each of the four symmetric random circuits we consider, we compute the probability

of an operator moving back, which gives the butterfly velocity. The analysis of the diffusion

constant is a little more subtle. The anticorrelation reduces the diffusion constant from its

uncorrelated value, i.e. the one that would be computed by p the probability of moving back.

Before discussing the four random circuit models, we summarize our findings in the tables

below

Random circuit model vB vB for q = 2 vB at large q

Unitary U(d) q2−1
q2+1

3
5

(= 0.6) 1− 2
q2

+ 2
q4
− 2

q6

Orthogonal O(d) (5.31) 23
39

(≈ 0.5897) 1− 2
q2

+ 6
q5
− 4

q6

Symplectic Sp(d) (5.37) 7
15

(≈ 0.467) 1− 2
q2
− 2

q5
+ 4

q7

AI U(d)/O(d) (5.43) 1
2

(= 0.5) 1− 2
q2
− 2

q4
+ 14

q6

AII U(d)/Sp(d) (5.59) 1
4

(= 0.25) 1− 2
q2
− 2

q4
− 2

q6

5.3.1 Operator growth in random orthogonal circuits

The random unitary circuit picture is nice, we see the emergence of a diffusive phenomena

from unitary dynamics. But as the random circuit breaks all symmetries and obeys no

conservation laws, we also want to know what happens when we start building in symmetry

in different ways. We could construct a unitary random circuit which obeys a conservation

law explicitly in terms of some local operator. Alternatively, we could ask what happens

when we consider a random circuit with 2-site gates restricted to obey some symmetry.

Consider a circuit of 2-site Haar random orthogonal operators. For a single 2-site operator,
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consider

∫
O(d)

dU Tr
(
UOaU †Op

)
Tr
(
UObU †Op

)
(5.15)

=
1

(d− 1)(d+ 2)

(
(d+ 1)d3Tr(Oa)Tr(Ob)Tr(Op)2 − d2Tr(Op)2Tr(OaOTb ) + . . . .

(5.16)

The second moment of the orthogonal group gives an expression with nine terms, and after

some reworking we find

= d2δa,b

(
δa,1δp,1 +

1

(d− 1)(d+ 2)

(
(δa,1 − 1)(δp,1 − 1) + (δa,1 − (−1)Ya)(δp,1 − (−1)Yp)

+
1

d
(1− (−1)Ya)(1− (−1)Yp)

))
, (5.17)

where Ya and Yp count the number of Y operators in the Op and Oa operators at the sites we

are acting on, i.e. simply accounting for whether the Pauli is even or odd under transposition.

This expression means that

|γp(t)|2 =
∑
a

Spa|γa(t− 1)|2 , (5.18)

with the Spa defined in the expression above as

Spa =
∏
s

(
δ
(s)
a,1δ

(s)
p,1 +

1

(d− 1)(d+ 2)

(
(δ

(s)
a,1 − 1)(δ

(s)
p,1 − 1) + (δ

(s)
a,1 − (−1)Ya)(δ

(s)
p,1 − (−1)Yp)

+
1

d
(1− (−1)Ya)(1− (−1)Yp)

))
, (5.19)

which defines the transition matrix of the orthogonal Markov process.

Orthogonal Markov process:

We should again interpret this as a Markov process with local update rules defined by Spa.

In the orthogonal case, the matrix Spa tells us that at each site we take identities to identites,
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even non-identity Paulis to even and odd non-identity Paulis to odd:

I I→ I I with prob 1

even Op → even Oa with prob pe = 2/((d− 1)(d+ 2))

odd Op → odd Oa with prob po = 2/(d(d− 1)) .

So far this is not too surprising given what we understand about O(d) and the action of

Paulis under the group. But we see an interesting conservation law encoded into the growing

wavefront, the wavefront is growing diffusively, but there are two coupled diffusion processes,

where even Paulis are mapped to even and odd Paulis are mapped to odd.

We can now solve for the operator growth in the random orthogonal circuits. First we

want to compute the probability of an operator moving back. Unfortunately, this is no

longer as simple as the unitary random circuit, where the endpoint undergoes autonomous

Markovian dynamics. The probability of an operator moving back depends on whether the

operator at the farthest most gate is even or odd, and further depends on whether the action

at the previous timestep was a move forward or backward. The structure of the alternating

gates at each time step means that even operators output from a gate can input odd operators

at the next gate. Consider Y Y , an even 2-site operator, if this operator appears at the edge

of the growing operator, then the input to the gate of the farthest gate at the next time

step is Y I, an odd operator. So we need to treat the dynamics of even and odd operators

carefully.

We start by discussing the case for qubits and then derive formulae for general local

dimension q. The probability of an even Pauli moving back is 2/9, i.e. if we get a XI or ZI.

For odd Paulis we have 1/6, i.e. if we generate a Y I. Denote the probabilities of even and

odd operators moving forwards or backwards as

p←e =
2

9
, pe→ =

7

9
, p←o =

1

6
, po→ =

5

6
. (5.20)

Now we need to find the probability that the operator at the end of the string, at the

rightmost gate, is even or odd by relating it to the probability it was even or odd at the

previous time step. We must take into account whether the operator has moved forward or
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backwards, as the probabilities of an even or odd operator depend on which action occurs.

An even operator moves forward to an even operator with probability 6/7, but moves back

to an even operator with probability 3/4. When an even operator moves forward to an even

operator, the rightmost operator will be either XI or ZI, which occurs 6/7 times, the 1/7

occurs when an even operator moves forward to an odd operator, which only happens when

Y Y is generated and the operator at the rightmost gate is Y I. An even operator moves back

to an even operator with probability 3/4, when XI or ZI is generated and the operator at

the rightmost gate is {I, X, Z} ⊗ {X,Z}.1 Meaning the i+ 1-th entry of the gate will be an

even operator, but the i-th entry has probability 3/4 of being even, and thus the operator

has probability 3/4 of being even. A similar analysis holds for the odd operators, all together

we find

pe→e =
6

9
, pe→o =

1

9
, po→e =

2

6
, po→o =

3

6
,

pe←e =
1

6
, pe←o =

1

18
, po←e =

1

8
, po←o =

1

24
. (5.21)

The probability of the rightmost operator being even or odd at time t is thus

pe(t) = (pe→e + pe←e)pe(t− 1) + (po→e + po←e)po(t− 1)

po(t) = (po→o + po←o)po(t− 1) + (pe→o + pe←o)pe(t− 1) , (5.22)

and for qubits we get the equations governing the evolving probabilities:

pe(t) =
5

6
pe(t− 1) +

3

8
po(t− 1) , po(t) =

5

8
po(t− 1) +

1

6
pe(t− 1) . (5.23)

This itself is a Markov process, where the probability of finding an even or an odd operator

at the end of the evolving string updates at each time step. We solve for the stationary

distribution (i.e. where the probabilities are the same at each time step) and find pe = 9/13

and po = 4/13. Thus we can compute the probability of an operator moving back in terms

1Here we have assumed that the 1-site operators coming from the random circuit behind the evolving end
of the string appear with uniform probability, which quickly becomes the case after a few time steps and the
interior of the evolving Pauli string rapidly mixes.
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of the probability the operator at the end of the evolving string is even or odd:

p = p←epe + p←opo , (5.24)

and find p = 8/39 for qubits. This gives a butterfly velocity of vB = 23/39 ≈ 0.5897. Very

close to the unitary butterfly velocity for qubits vB = 3/5. We should mention, in case

the reader is suspect of how close the result is to the unitary case, that we have confirmed

this value of the orthogonal butterfly velocity by computationally simulating the evolving

operators in the random orthogonal circuits.

We can now derive the butterfly velocity for general local dimension. First we define the

number of even or odd operators for a local dimension of d

ne(d) =
(d− 1)(d+ 2)

2
, no(d) =

d(d− 1)

2
. (5.25)

Thus the number of even/odd operators at a single site is ne(q) and no(q). The probabilities

of an even and odd operator moving backwards are a simple generalization of what we

discussed above in the case of qubits

p←e =
ne(q)

ne(d)
and p←o =

no(q)

no(d)
. (5.26)

The probabilities of even/odd operators moving forwards or backwards to even/odd operators

are

pe→e =
(ne(q) + 1)ne(q)

ne(d)
, pe→o =

no(q)
2

ne(d)
, po→e =

(ne(q) + 1)no(q)

no(d)
, po→o =

ne(q)no(q)

no(d)
,

pe←e =
(ne(q) + 1)ne(q)

ne(d)q2
, pe←o =

no(q)
2

no(d)q2
, po←e =

ne(q)no(q)

ne(d)q2
, po←o =

(ne(q) + 1)no(q)

no(d)q2
.

(5.27)
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The equations determining the probability of the rightmost operator at a time t:

pe(t) = (pe→e + pe←e)pe(t− 1) + (po→e + po←e)po(t− 1)

po(t) = (po→o + po←o)po(t− 1) + (pe→o + pe←o)pe(t− 1) , (5.28)

for general local dimension q become

pe(t) =
(q + 2)(q2 + 1)

2q(q2 + 2)
pe(t− 1) +

q2 − 1

2q2
po(t− 1)

po(t) =
q2 + 1

2q2
po(t− 1) +

(q − 1)(q2 − q + 2)

2q(q2 + 2)
pe(t− 1) . (5.29)

As a sanity check, the probabilities of pe(t − 1) and po(t − 1) add to unity. Solving for the

stationary distribution, we find pe and po and then compute the probability of an operator

moving back to be

p =
q2 + q + 2

(q + 1)(q3 + 2q + 1)
. (5.30)

This gives a butterfly velocity for orthogonal random circuits

vB =
q2(q2 + q) + q − 3

(q + 1)(q3 + 2q + 1)
, (5.31)

which has a series expansion in q2 as

vB = 1− 2

q2
+

6

q5
+ . . . , (5.32)

the same as the unitary case up to second order in 1/q in Eq. (5.9). Note the absence of

contribution at 1/q4. For qubits where q = 2, we find the butterfly velocity vB = 23/39.

The moral of the story seems to be that operator growth in orthogonal random circuits

proceeds very similarly to that in unitary random circuits; the main difference is that the

analysis is somewhat more tedious.
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5.3.2 Operator growth in random symplectic circuits

Consider now a circuit of 2-site Haar random symplectic gates. To understand the operator

growth, first consider the action of a single random gate

∫
Sp(d)

dU Tr
(
UOaU †Op

)
Tr
(
UObU †Op

)
. (5.33)

Computing the second moment we find the transition matrix for the symplectic circuits

Spa =
∏
s

(
δ
(s)
a,1δ

(s)
p,1 +

1

(d+ 1)(d− 2)

(
(δ

(s)
a,1 − 1)(δ

(s)
p,1 − 1) + (δ

(s)
a,1 − (−1)Sa)(δ

(s)
p,1 − (−1)Sp)

− 1

d
(1− (−1)Sa)(1− (−1)Sp)

))
, (5.34)

which is unsurprisingly similar to the orthogonal case. Noting that under symplectic conju-

gation Paulis are either even or odd: ODp ≡ JOTp JT = ±Op. Here we have defined (−1)Sa

to be +1 for symplectically even Paulis and −1 for odd Paulis. The above transition matrix

tells us that Paulis which are even under symplectic conjugation are taken to symplectically

even Paulis and odd to odd.

Symplectic Markov process:

In the symplectic case, we find that at each gate we take identities to identites, even non-

identity Paulis to even and odd non-identity Paulis to odd:

I I→ I I with prob 1

even Op → even Oa with prob pe = 1/((2d− 1)(2d+ 1))

odd Op → odd Oa with prob po = 1/(d(2d+ 1))

where again we mean the even or odd action under symplectic conjugation JOTp JT = ±Op.
Note that this is not as conceptually simple as the transpose above, where we just simple

count the number of Y operators in the Pauli string. The matrix J depends on the size of

the gate, so for 2-qubit operators J = iY ⊗ I. Even 2-qubit Paulis are XY, IX,ZY . . . and

odd are XZ,XI, IY, . . ., which we see are not symmetric.
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The analysis for operator growth in symplectic random circuits is essentially the same as

in the orthogonal case, we have that even and odd operators are mapped to themselves with

uniform probability. The only difference is that the set of Paulis invariant under symplectic

transpose is different that in the orthogonal case, thus giving slightly different probabilities.

The equations determining the probability of the rightmost operator at a time t:

pe(t) = (pe→e + pe←e)pe(t− 1) + (po→e + po←e)po(t− 1)

po(t) = (po→o + po←o)po(t− 1) + (pe→o + pe←o)pe(t− 1) . (5.35)

Repeating the same analysis but with the symplectic version of ne and no, we find the

probability of the end of an evolving Pauli string moving back to be

p =
q2 − q + 2

(q2 + 1)(q2 − q + 1)
, (5.36)

which gives a butterfly velocity vB = 1− 2p

vB =
q4 − q3 + q − 3

(q2 + 1)(q2 − q + 1)
for qubits: vB =

7

15
. (5.37)

5.3.3 Operator growth in random AI circuits

Consider now a circuit of 2-site Haar random AI gates. To understand the operator growth,

we again consider the action of a single random gate

∫
AI

dU Tr
(
UOaU †Op

)
Tr
(
UObU †Op

)
. (5.38)

We can compute the average using the second moment of the U(d)/O(d) and find the tran-

sition matrix

Spa =
∏
s

(
δ
(s)
a,1δ

(s)
p,1 +

1

d(d+ 1)(d+ 3)

(
(d+ 4)(δ

(s)
a,1 − 1)(δ

(s)
p,1 − 1)

+ 2(d+ 2)δ(s)a,p(1− δ(s)p,1) +
2

d
(1− (−1)(a,p)

))
, (5.39)
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where (−1)(a,p) is +1 if the Paulis commute [Op,Oa] = 0, and −1 if they anticommute

{Op,Oa} = 0. This is a little more interesting than the cases above. Here we see that the

identity is mapped to the identity, and non-id Paulis are mapped to a linear combination of

all other non-identity Paulis, but with a higher probability of being mapped to itself, and

different probabilities for Paulis they commute and anticommute with.

AI Markov process:

From the above transition matrix, we can list the transition probabilities for the AI Markov

process

I I→ I I with prob 1

Op → Oa=p with prob ps = (3d+ 8)/d(d+ 1)(d+ 3)

Op → Oa6=p and [Oa,Op] = 0 with prob pc = (d+ 4)/d(d+ 1)(d+ 3)

Op → Oa6=p and {Oa,Op} = 0 with prob pa = (d+ 2)2/d2(d+ 1)(d+ 3) .

We should now think about the butterfly velocity and the diffusion constant in the AI circuits

and determine how they are affected with the above updates. As a sanity check, recall that

exactly half of Pauli operators commute with a Pauli operator Op (including itself and the

identity) and half anti-commute. So we see that the probabilities for a non-identity Pauli

operator add to one: ps + pc(d
2/2− 2) + pad

2/2 = 1.

AI operator growth

Now we study operator growth in the AI random circuits. The fact that an operator is more

likely to update to itself already indicates the the butterfly velocity will be slower. The AI

Markov update rules make analyzing the operator growth a little more intricate than in the

unitary circuits as the movement of the endpoint of the string is no longer autonomous.

The probability that an operator moves back depends on what happened in the previous

time-step. Nevertheless, we can still exactly solve for the operator growth. For an operator

that has moved forward at the previous timestep, e.g. XI, the probability the string moves

back is p1 ≡ ps + (d/2− 2)pc + (d/2)pa (the probability it goes to itself plus the other d− 2
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commuting or anticommuting operators that also move back). If the operator has moved

back at a previous timestep, then the operator at the edge of the string has a non-identity

Pauli at the rightmost site, e.g. XZ, and will move forward with higher probability (as it

going to itself moves the operator forward). In this case the probability the operator moves

back is p2 ≡ (d/2− 1)pc + (d/2)pa.

Now we can describe the probability that an operator moves back at time t, p(t), in terms

of the probability of the operator having moved back at the previous timestep

p(t) = (p2 − p1)p(t− 1) + p1 . (5.40)

Either solving for the stationary probability or by summing the series we can solve for p(t)

and find

p(t) =
p1

1 + p1 − p2
. (5.41)

More explicitly, we have the probability of a Pauli string moving back in the AI circuit as

p =
d2 + 5d+ 2

d3 + 4d2 + 5d+ 4
and for qubits: p =

1

4
. (5.42)

This gives a butterfly velocity for AI random circuits vB = 1 − 2p in terms of the local

dimension q

vB =
q4 + 5q2 + 2

q6 + 4q4 + 5q2 + 4
and for qubits: vB =

1

2
. (5.43)

Note that this is quite a bit slower than the unitary random circuits where vB = 3/5. The

above expression is exact for any local dimension q, but we can expand in powers of q to find

vB = 1− 2

q2
− 2

q4
+

14

q6
+ . . . (5.44)

for the AI circuits.
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Diffusion in random AI circuits

Recall that for the growing operator in the random AI circuits, we derived the probability

of an operator moving back to be

p(t) = p1 + p(t− 1)(p2 − p1) , (5.45)

with the probabilities p1 and p2 defined above. The dependence on the probability of moving

back introduces correlation between the time steps. The evolution of the end of the operator

in the random circuit is a persistent biased random walk, where there is a direct correlation

with the motion at a previous timestep. As the prefactor p2 − p1 is negative, there is an

anticorrelation; the random walker is more inclined to move in the opposite direction from

its previous motion.

The correlation between timesteps does not affect the mean 〈X(t)〉, which is why deriving

the probability of moving back p directly gives us the butterfly velocity vB. Correlations

between timesteps affect the variance 〈X〉c and thus the diffusion constant. Generally, we

can compute the variance of X(t) =
∑t

i xi

〈X(t)2〉c =
∑
i,j

〈xixj〉c = 4tp(1− p) +
∑
i 6=j

〈xixj〉c , (5.46)

where the first term is simply the diffusion constant. Define c(|i − j|) ≡ 〈xixj〉 as the

correlator between time steps, where we have translational invariance in time. Clearly,

c(0) = 4tp(1 − p) = 2D0t. To compute the correlations for the AI random walker, we need

to look closer at the direct correlation between time steps.

The probability of moving back in an AI circuit, Eq. (5.45), means that the random

variable xi at a time step i, is a sum of two random variables

xi = αxi−1 + p1x
′
i , where α = (p2 − p1) (5.47)

and where xi−1 is the step taken at the previous timestep and x′i is an iid random vari-

able, with mean and variance to be determined. There is now a direct correlation between
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timesteps given by the coefficient of the xi−1 variable α = p2 − p1. We already know the

mean and variance of xi to be

〈xi〉 = (1− 2p) , and 〈x2i 〉c = 4p(1− p) . (5.48)

We can fix the mean and variance of the random variable x′i from Eq. (5.47). Taking the

mean we find

〈xi〉 = α〈xi−1〉+ p1〈x′i〉 → 〈x′i〉 =
1− 2p

p
, (5.49)

and taking the variance we find

〈x2i 〉c = α2〈x2i−1〉c + p21〈x′2i 〉c → 〈x′2i 〉c = 4(1− p)1− p1 + p2
p1

. (5.50)

First we note that if p2 = p1, the correlation between time-steps vanishes and the endpoint

dynamics are uncorrelated and Markovian. In this case the probability of moving back is

p = p1. We see that in terms of x′i the mean and variance of xi from Eqs. (5.49) and (5.50)

become 〈xi〉 = (1 − 2p1) and 〈x2i 〉c = 4p1(1 − p1), as expected. As a second sanity check, if

p1 = 0, the probability of moving is zero and the endpoint deterministically moves forward.

We can now compute the correlator between random steps at successive times and find

that for a difference

c(t) = 〈xixj〉c = 2D0α
t , where t = |i− j| . (5.51)

Therefore, rewriting the sum in Eq. (5.46) by making a change of variables and then summing

the resulting series, we find

〈X(t)2〉c = 2D0t+ 2
t∑

t′=1

(t− t′)c(t′) = 2D0t
1 + α

1− α −
α(1− αt)
(1− α)2

. (5.52)

For times t� 1, we have

〈X(t)2〉c ≈ 2DAIt , where DAI =
1 + α

1− αD0 , (5.53)
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and D0 = 2p(1− p) is the uncorrelated diffusion constant.

5.3.4 Operator growth in random AII circuits

Consider now a circuit of 2-site Haar random AII gates. To understand the operator growth,

we again consider the action of a single random gate

∫
AII

dU Tr
(
UOaU †Op

)
Tr
(
UObU †Op

)
(5.54)

= (2d)2δa,b

(
δa,1δp,1 +

1

d(2d− 3)(2d− 1)

(
(d− 2)(δa,1 − 1)(δp,1 − 1) + 2(d− 1)δa,p(1− δp,1)

))
.

(5.55)

Again, like in the AI circuit, we see that the identity is mapped to the identity, and non-id

Paulis are mapped to a linear combination of all other non-identity Paulis, but with a higher

probability of being mapped to itself.

AII Markov rules:

I I→ I I with prob 1

Op → Oa=p with prob ps = (3d− 8)/d(d− 3)(d− 1)

Op → Oa6=p [Oa,Op] = 0 with prob pc = (d− 4)/d(d− 3)(d− 1)

Op → Oa6=p {Oa,Op} = 0 with prob pa = (d− 2)2/d2(d− 3)(d− 1) (5.56)

Again the analysis is much the same as the AI random circuits, where there is a higher

probability of an operator going to itself, and separate probabilities of an operator updating

to operators which commute or anticommute with that operator. One interesting difference

here is that for the case of q = 2, local qubits, the updated probabilities become

For qubits: ps = 1/3 , pa = 1/12 , pc = 0 . (5.57)

So the probability an operator updates to itself is fairly high, and no 2-qubit gate updates

to a gate with which it commutes. This means that operator growth will happen fairly
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slowly as the operators at the end of the Pauli string, always of the form XI, have a much

higher chance of updating to themselves, and thus moving back, than in the other symmetric

circuits.

Just as in the AI random circuit, we can exactly solve for general local dimension q the

probability for an evolving operator to move back

p =
(q2 − 2)(q2 − 1)

q6 − 4q4 + 5q2 − 4
. (5.58)

For q = 2, this gives p = 3/8. The butterfly velocity for random AII circuits is then given as

vB =
q6 − 6q4 + 11q2 − 8

q6 − 4q4 + 5q2 − 4
. (5.59)

For q = 2, qubit chains this gives a butterfly velocity of vB = 1/4, substantially slower than

in the other random circuits. Expanding this at large q we find

1− 2

q2
− 2

q4
− 2

q6
, (5.60)

giving the same leading order term in 1/q, but different subleading corrections.

The diffusion constant is also given just as in the AI case, where the correlation between

steps is α = p2 − p1 in terms of the ps, pc, and pa defined for the AII random circuits.

Meaning the endpoint dynamics of the AII random walker are also a biased random walk

with anticorrelated steps. The diffusion constant is DAII = 1+α
1−αD0, where D0 = 2p(1− p) is

the uncorrelated diffusion constant in terms of the stationary probability of moving back in

the AII circuits p.

5.4 Discussion

In this chapter, we have studied operator growth in different classes of symmetric random

circuits where the local 2-site unitaries are drawn from quotients or subgroups of the unitary

group. Just as in the unitary case, we were able to understand the growth of operators in

the random circuit as a Markov process on the evolving Pauli strings. Studying the operator
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edge in the unitary circuits, one can solve for the growth as a biased random walk, where

evolving Pauli strings have some probability of moving back. This defines a butterfly velocity

and diffusion constant for the support of the operator on its edge, where the endpoints of

O(t) grow ballistically with vB but spread diffusively. The weight of the operator on its left

and right ends ρL/R satisfies a biased diffusion equation, a dissipative process emerging from

unitary dynamics. We expanded on this picture by considering random quantum circuits

built out of random gates drawn from the orthogonal O(d) and symplectic Sp(d) groups,

as well as the quotients of the unitary group U(d)/O(d) and U(d)/Sp(d). Each class of

random circuits gave rise to a different Markov process on evolving Pauli strings, and operator

growth in the random circuits could be solved by understanding the endpoint dynamics as

a random walk. In the AI and AII circuits, we found a persistent biased random walk with

anticorrelation between steps. In the orthogonal and symplectic circuits, we found a similar

random walk with bias and correlation, but where the random walker also carried an internal

state. In all four of the classes of random circuits, we solved for the butterfly velocities and

diffusion constants by solving the simple random walk.

We can also comment more generally on properties of the random circuit models consid-

ered here. It is known that unitary circuits of polynomial depth form approximate k-designs

[126, 54] and achieve optimal decoupling [77]. As we discussed in Ch. 3, Haar-random O(d)

and Sp(d) and random unitaries from U(d)/O(d) and U(d)/Sp(d) do not, in general, form

k-designs. The frame potential for O(d) and Sp(d) is (2k)!
2kk!

, and only coincides with the frame

potential of U(d) for k = 1, meaning Haar-random orthogonal and symplectic matrices form

unitary 1-designs, but do not reproduce any higher moments of the unitary group. The frame

potential for AI and AII is 2kk! for large d, and thus they do not form k-designs for any

k. For the random circuits considered in this paper, we expect orthogonal and symplectic

circuits of polynomial depth to form approximate 1-designs, but will not capture any higher

moments. More interestingly, in Ch. 3 we also defined the notion of a symmetric k-design,

with respect to subsets of U(d). We expect combining our results above and employing

similar methods to [126, 54], would show that symmetric RQCs of polynomial depth form

approximate symmetric k-designs.

Moreover, in Ch. 3 we looked at the reduced density matrix on subsystems of random
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symmetric states, finding essentially the same result as Page’s theorem: random symmetric

states locally look maximally mixed. A similar calculation also shows that random symmet-

ric unitaries also achieve decoupling with only subleading corrections to the Haar-random

calculation. The expectation would be that random symmetric circuits also achieve decou-

pling in polylogarithmic depth, but precisely computing the depth and understanding how

suboptimal random symmetric matrices are would be an interesting avenue for future work.

5.A Operator growth in random matrix theory

Here we compute analytically compute the coefficients γp(t) for the Gaussian unitary ensem-

ble (GUE) in order to study operator growth in random matrix theory. Recall that we can

expand any operator in a basis of operators as

O(t) =
∑
p

γp(t)Op , (5.61)

where the coefficients γp(t) are probabilities of finding the operator Op in the growing opera-

tor, or equivalently, the weight of the growing operator on a given Pauli string. The fact that

the operator norm is conserved means that the probabilities are conserved
∑

p |γp(t)|2 = 1.

We want to consider evolving by a random matrix Hamiltonian, where U = e−iHt where

H ∈ GUE. To study operator growth we need to compute the coefficients γp(t) averaged over

GUE, more precisely we need the first and second moments of the coefficients. We will not

review the necessary random matrix machinery here, but refer to [12] as well as definitions

given in Ch. 2. Consider the growth of an operator O0(t) = e−iHtO0e
iHt.

GUE averaged γp(t)

We can compute the first moment

γp(t) =
1

d
Tr
(
O0(t)Op

)
=

1

d
Tr
(
e−iHtO0e

iHtOp
)
, (5.62)
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using the unitary invariance of the GUE measure dH, then integrating using the 2nd Haar

moment, and find

|γp(t)| =
R2 − 1

d2 − 1
δ0,p → |γO0(t)| ≈

R2(t)

d2
, (5.63)

with all other coefficients vanishing.

GUE averaged |γp(t)|2

More interesting is the average of |γp(t)|2, which is the probability of finding a given operator

Op in the evolving operator. We can compute the second moment,

|γp(t)|2 =
1

d2
Tr
(
e−iHtO0e

iHtOp
)
Tr
(
e−iHtO0e

iHtOp
)
, (5.64)

using the unitary invariance of the GUE measure dH, and then integrating using the 4th

Haar moment. We find an expression involving (4!)2 terms, which we will not reproduce

here. First, we give the leading order behavior in d which captures the early time piece, i.e.

the decay of the support on the initial operator. For the late-time behavior we need the 1/d2

terms, as the coefficients all decay order 1/d2 terms.

At leading order we find

|γO0(t)|2 ≈
R4(t)

d4
and |γp 6=O0(t)|2 ≈

1

d2
. (5.65)

This isn’t surprising; the support on the initial operator decays in time as 1/t4 and all other

coefficients are around 1/d2 at early times.

Looking at the 1/d2 terms we can then discuss the late-time behavior of GUE operator

growth. The coefficient of the initial operator O0 is

|γO0(t)|2 ≈
R4

d4
+

1

d2

(
1− 4R2

d2
− 4R4

d4
− 2R4,1

d3
+
R4,2

d2

)
. (5.66)

Furthermore, we find that the probabilities of Op depend on whether they commute or

199



anticommute with the initial operator O0. The second moments of the coefficients are

|γp 6=O0(t)|2 ≈
1

d2
− 3R4

d6
+

2R4,1

d5
if [Op,O0] = 0 , (5.67)

|γp6=O0(t)|2 ≈
1

d2
+
R4

d6
− 2R4,1

d5
if {Op,O0} = 0 . (5.68)

This means that at early times the O0 coefficient decays from unity and all other coefficients

are ≈ 1/d2. We note as a sanity check the non O0 coefficients vanish at t = 0 as R4 = d4

and R4,1 = d3. Around the dip time, when all the form factors are ≈ 1, the coefficients are

uniformly equal to 1/d2. At late-times there are 1/d4 fluctuations around the values 1/d2.

The probabilities of the anticommuting operators increase with the ramp as the probabilities

of the commuting operators decreases. The most interesting thing is that the initial operator

becomes more likely again, with a probability twice that of the other operators. In summary,

Dip : |γp(t)|2 ≈
1

d2
, Late : |γO0(t)|2 ≈

2

d2
and |γp 6=O0(t)|2 ≈

1

d2
. (5.69)

At the dip time, after the support on the initial operator has decayed, all operators are

equally likely. But at late-times, in the plateau regime, the weight on the initial operator is

twice that of all other operators.
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Epilogue

I know that all beneath the moon decays,

And what by mortals in this world is brought,

In Time’s great periods shall return to nought;

That fairest states have fatal nights and days;

-William Drummond of Hawthornden1

1Likely referring to the universality of chaotic dynamics
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[26] E. Brézin and A. Zee, “Universality of the correlations between eigenvalues of large

random matrices,” Nucl. Phys. B 402 (1993) 613.

[27] J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” JHEP 08 (2016)

106, arXiv:1503.01409 [hep-th].

[28] A. I. Larkin and Y. N. Ovchinnikov, “Quasiclassical Method in the Theory of

Superconductivity,” JETP 28 (1969) 1200.

[29] D. A. Roberts and D. Stanford, “Two-dimensional conformal field theory and the

butterfly effect,” Phys. Rev. Lett. 115 (2015) 131603, arXiv:1412.5123 [hep-th].

[30] A. Kitaev and S. J. Suh, “The soft mode in the Sachdev-Ye-Kitaev model and its

gravity dual,” arXiv:1711.08467 [hep-th].

[31] M.-D. Choi, “Completely positive linear maps on complex matrices,” Linear Algebra

Appl. 10 (1975) 285.

[32] A. Jamio lkowski, “Linear transformations which preserve trace and positive

semidefiniteness of operators,” Rep. Math. Phys. 3 (1972) 275.

[33] D. N. Page, “Average entropy of a subsystem,” Phys. Rev. Lett. 71 (1993) 1291,

arXiv:gr-qc/9305007.

204

http://dx.doi.org/10.1063/1.1703775
http://dx.doi.org/10.1063/1.1703775
http://dx.doi.org/10.1103/PhysRevE.55.4067
http://dx.doi.org/10.1103/PhysRevE.55.4067
http://arxiv.org/abs/cond-mat/9608116
http://dx.doi.org/10.1103/PhysRevE.56.264
http://dx.doi.org/10.1103/PhysRevE.56.264
http://arxiv.org/abs/cond-mat/9702213
http://dx.doi.org/https://doi.org/10.1016/0550-3213(93)90121-5
http://dx.doi.org/10.1007/JHEP08(2016)106
http://dx.doi.org/10.1007/JHEP08(2016)106
http://arxiv.org/abs/1503.01409
http://dx.doi.org/10.1103/PhysRevLett.115.131603
http://arxiv.org/abs/1412.5123
http://arxiv.org/abs/1711.08467
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://arxiv.org/abs/gr-qc/9305007


[34] A. Kitaev, “Hidden correlations in the hawking radiation and thermal noise.” Talks

given at the Fundamental Physics Prize Symposium, Nov. 10, 2014, and at the KITP,

Feb. 12, 2015.

[35] S. Sachdev and J. Ye, “Gapless spin-fluid ground state in a random quantum

heisenberg magnet,” Phys. Rev. Lett. 70 (1993) 3339.

[36] J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 04 (2003) 021,

arXiv:hep-th/0106112.

[37] A. L. Fitzpatrick, J. Kaplan, D. Li, and J. Wang, “On information loss in

AdS3/CFT2,” JHEP 05 (2016) 109, arXiv:1603.08925 [hep-th].

[38] A. L. Fitzpatrick and J. Kaplan, “On the Late-Time Behavior of Virasoro Blocks and

a Classification of Semiclassical Saddles,” JHEP 04 (2017) 072, arXiv:1609.07153

[hep-th].

[39] E. Dyer and G. Gur-Ari, “2D CFT Partition Functions at Late Times,”

arXiv:1611.04592 [hep-th].

[40] V. Balasubramanian, B. Craps, B. Czech, and G. Sárosi, “Echoes of chaos from
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[116] V. A. Marčenko and L. A. Pastur, “Distribution of eigenvalues for some sets of

random matrices,” Math. USSR-Sb. 1 (1967) 457. Orig. in Mat. Sb. 72 (1967) 507.

[117] T. Nagao and M. Wadati, “Correlation functions of random matrix ensembles related

to classical orthogonal polynomials,” J. Phys. Soc. Jpn. 60 (1991) 3298.

212

http://dx.doi.org/10.1007/JHEP06(2017)111
http://arxiv.org/abs/1702.01738
http://dx.doi.org/10.1007/JHEP02(2018)142
http://arxiv.org/abs/1710.03012
http://dx.doi.org/10.1088/1751-8113/45/12/125204
http://arxiv.org/abs/1107.6035
http://arxiv.org/abs/1107.6035
http://dx.doi.org/10.1007/JHEP01(2013)136
http://arxiv.org/abs/1207.2763
http://dx.doi.org/10.1007/JHEP10(2017)008
http://arxiv.org/abs/1703.04612
http://dx.doi.org/10.1016/j.nuclphysb.2016.08.002
http://arxiv.org/abs/1607.00694
http://arxiv.org/abs/1607.00694
http://dx.doi.org/10.1007/JHEP08(2017)136
http://arxiv.org/abs/1705.08408
http://dx.doi.org/10.1103/PhysRevD.96.066012
http://arxiv.org/abs/1701.06593
http://dx.doi.org/10.1103/PhysRevLett.75.902
http://arxiv.org/abs/cond-mat/9503141
http://dx.doi.org/10.1070/SM1967v001n04ABEH001994
http://dx.doi.org/10.1143/JPSJ.60.3298


[118] R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev,

“Thermoelectric transport in disordered metals without quasiparticles: The

Sachdev-Ye-Kitaev models and holography,” Phys. Rev. B95 (2017) 155131,

arXiv:1612.00849 [cond-mat.str-el].

[119] K. Bulycheva, “A note on the SYK model with complex fermions,” JHEP 12 (2017)

069, arXiv:1706.07411 [hep-th].

[120] C. T. Asplund, A. Bernamonti, F. Galli, and T. Hartman, “Entanglement Scrambling

in 2d Conformal Field Theory,” JHEP 09 (2015) 110, arXiv:1506.03772 [hep-th].

[121] E. Perlmutter, “Bounding the Space of Holographic CFTs with Chaos,” JHEP 10

(2016) 069, arXiv:1602.08272 [hep-th].

[122] X. Chen and A. W. W. Ludwig, “Universal Spectral Correlations in the Chaotic

Wave Function, and the Development of Quantum Chaos,” arXiv:1710.02686

[cond-mat.str-el].

[123] T. Iadecola and T. H. Hsieh, “Floquet Supersymmetry,” arXiv:1710.05927

[cond-mat.str-el].

[124] J. Emerson, E. Livine, and S. Lloyd, “Convergence conditions for random quantum

circuits,” Phys. Rev. A 72 (2005) 060302, arXiv:quant-ph/0503210.
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