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ABSTRACT

This study develops a preliminary structural design for three
one-kilometer-long antenna sticks and an antenna support structure for
a geosynchronous earth-imaging satellite. On each of the antenna
sticks is mounted a linear array of over 16,000 antenna elements. The
antenna sticks are parallel to each other, and are spaced 1 km apart so
that they form the corners of an imaginary triangular tube. This tube
is spinning about its long axis. Antenna performance requires that the
position of each antenna element be known to an accuracy of 0.5 cm, and
that the spacecraft's spin axis be parallel to the earth's spin axis
within one degree. Assuming that the position of each joint on each
antenna stick is known, the antenna sticks are designéd as beams under
a uniformly distributed acceleration (due to spacecraft spin) to meet
the displacement accuracy requirements for the antenna elements. Both
a thin-walled round tube and a three-longeron double-laced truss are
considered for the antenna stick structure. A spacecraft spinrate is
chosen by considering the effects of environmental torques on the pre-
cession of a simplified spacecraft. A preliminary truss-like support
structure configuration is chosen, and analyzed in quasi-static equili-
brium with control thrusters firing to estimate the axial loads in the
structural members. The compressive loads found by this analysis are
used to design the support structure members to be buckling-critical
three-longeron double-laced truss columns. Some tension-only members
consisting of Kevlar cord are included in the design to eliminate the
need for bulkier members. The lateral vibration modes of the indivi-
dual structural members are found by conventional analysis--the funda-
mental frequencies are as low as 0.0066 Hz. Finite element dynamic
analyses of the structure in free vibration confirm that simplified
models of the structure and members can be used to determine the struc-

tural modes and natural frequencies for design purposes.
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NOMENCLATURE*
a = column imperfection (m)
aR = translational acceleration induced By a control thruster
acting on the rigid body model (m/s“)
a = transverse acceleratiop due to satellite spinrate, acting
T : 3
at antenna sticks (m/s®)
Ad = cross-sectional area of truss column diagonal (mz)
A1 = cross-sectional area of truss column longeron (m2)
Ar = amplitude of mode shape Yr(x) (m)
As = cross-sectional area of antenna stick (mz)
b = number of bays in a truss column (dimensionless)
- . 8 2
C = speed of light (3 x 10” m/s)
Cd = coefficient of diffuse reflection {(dimensioniess)
CD = opacity (dimensionless)
Cs = coefficient of specular reflection {(dimensionless}
‘—\
Ofs = differential solar radiation force (N)
dA = elemental surface area of spacecraft (m2)
dFG = gravitational force acting on spacecraft (N}
Dl = outer diameter of a tubular longeron in a truss column (m)
Dd = outer diameter of a tubular diagonal in a truss column (m)
E(x) = Young's Modulus (N/mz)
Eo = Young's Modulus, uniform over entire beam length (N/mg)
f = frequency of antenna radiation (Hz)
F = momentum flux from the sun (4.4 x 10—6 kg/m/sz)
* SI uﬁzts (length = meters, mass = kilograms, time = seconds, force = New-

tons) are used throughout, and are indicated in parantheses.
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F = jnertial reaction force acting on a point mass to maintain
equilibrium in the presence of applied translational
acceleration ap (N)

F = component of force F in the u-direction (N)

F . = applied load in the u-direction at point mass i in the
rigid body model (N)

FB = inertial reaction force acting on a point mass to maintain
u e ; , .
equilibrium in the presence of applied angular acceleration
Q, (N)
- : ; -11 2 2

G = gravitational constant (6.672 x 10 N-m®/kg")
H = a measure of width or outer diameter of an antenna stick (m)
Hs = distance between longerons in antenna stick truss column (m)
Hcm = distance between longerons in cross member (m)
Hdm = distance between longerons in diagonal member {m)
I(x) = area moment of inertia of a cross-section (m4)
Id = area moment of inertia of a truss column diagonal (m4)
I1 = area moment of inertia of a truss column longeron (m )
I = area moment of inertiz of a cross section, uniform over
o) !

entire beam length (m7)
Iu = mass moment of inertia of a_ point mass about

principal body axis u (kg-m®)
I = mass moment of ingrtia of a rigid body about principal
uB .

body axis u (kg-m“)
L = antenna stick segment half-lienth (m)
2L = antenna stick segment length (m)
m(x) = mass per unit length (kg/m)
mcm = mass of structural cross member (kg)
mim = mass of structural diagonal member (kg)

24

me = mass of earth (5.979 x 10 kg)

m, = mass of interest in gravity equation (Kkg)



To
Q(x)

Xxii1i
ratio of antenna element mass per unit length over antenna
stick mass per unit length (dimensionless)
mass of antenna stick (kg)
maximum moment in a beam (N-m)

moment acting on rigid body model to create rotation about
u-axis (N-m)

unit outward normal vector of area dA
axial load acting on a column (N)

Euler buckling load of a column (N)

axial load in a truss column diagonal (N)

axial tensile load in massless connecting member i of rigid
body model (N}

axial load in a truss column longeron (N)
load carried by tension-only structural member {(N)

transverse load per unit length acting on a beam {N/m)

uniformly distributed transverse load per unit length
acting on a beam {(N/m)

distance of mass L from center of earth (m)

radius of solid-rod longeron in a truss column (m)
radius of solid-rod diagonal in a truss column (m)
vector from spacecraft's center of mass to area dA (m)

static distance of antenna sticks from spacecraft spin axis
(577.35 m)

unit vector from spacecraft to the sun

wall thickness of a thin-walled tube (m)

= minimum practical wall thickness of a graphite-epoxy

thin-walled tube (0.381 mm)
load applied by a control thruster (N)

component in u-direction of load applied by a control
thruster (N)
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maximum shear load in a beam (N)

transverse displacement of a beam (m)

transverse displacement of a beam having E, I, and Q
constant (m)

mode shapes in free vibration

- width of an imperfection in beam bending stiffness EI
(dimensionless)

— .
- angle between vectors S and N (degrees)

amplitude of an imperfection in beam bending stiffness EI
(dimensionless)

displacement error (m)
wavelength of antenna radiation {(m)

mass density of antenna stick material (kg/m3)

angle between diagonal of a truss column and a line drawn
perpendicular to the two adjoining longerons (degrees)

Poisson's ratio

solar radiation torque acting on spacecraft (N-m)
natural frequencies in free vibration (rad/sec or Hz}
spacecraft spinrate (rad/sec or rev/min)

angular acceleration about axis u induced in rigid body
model by moment Mu (rad/sec)



Chapter 1
INTRODUCTION

Geosynchronous orbits (at an altitude of approximately 37,000 km)
are commonly used for a variety of satellite applications. A space-
craft in geosynchronous orbit has a constant view of the same spot of
the earth, which is ideal for an earth imaging spacecraft that "takes
pictures"” of the earth's surface. Such a spacecraft might be composed
in part of a large antenna structure that supports a linear array of

antenna elements.

A developmental design for a geosynchronous earth-observation
satellite uses 15 GHz phased array antennas for earth imaging. Each
antenna is a one-kilometer-long "stick" (as opposed to a dish), along
which more than 16,000 6-cm-long antenna elements are distributed. The
antenna elements lie in a straight line, each element not quite touch-

ing its neighboring element(s).

The three antenna sticks form the three corners of an imaginary
triangular tube, such that each stick is parallel to and spaced 1 Kkm
from the other two at all points along its length (Figure 1-1). To
perform the earth imaging task, the "tube" is spinning about its axis

with a minimum spinrate Q of 1 rev/hr.

1.1. Satellite Performance Requirements.

The location of each antenna element must be known to an accuracy
of one-quarter wavelength (0.5 cm) to obtain the desired image resolu-
tion. Because the antenna elements are mounted on the surface of the
antenna sticks, displacement of any part of an antenna stick results in
displacement of antenna elements. Image resolution requirements there-

fore necessitate that the displacement of each antenna stick must be
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known to an accuracy of one-quarter wavelength (0.5 ¢m). Note that no
iimit has been placed on the absolute displacement of +the antenna

sticks or elements.

Pointing accuracy of the spacecraft must be maintained so that the
satellite views the desired area on the earth's surface. The tightest
pointing requirements occur in the plane formed by the earth's spin
axis and the spacecraft center of mass. In this plane, the
spacecraft's spin axis must remain perpendicular to the earth's equa-
torial plane within one degree. Precession of the spacecraft's spin

axis1 must therefore not be allowed to exceed one degree.

Although additional performance requirements certainly exist to
guide the design of a compiex satelliite antenna system, the displace-
ment and pointing accuracy requirements were considered to be the most

critical during the early development of this particular design.

1.2. Design Approach.

This research develops a structural design for an antenna system
that consists of the three antenna sticks and a truss-like support

structure.

The environment at geosynchronous aititude is relatively benign
compared to low-earth-orbit altitudes. The predominant loads acting on
a large structure in geosynchronous orbit are solar radiation pressure,
the earth's gravity, and any loads used for spacecraft stability and

attitude control.

1. This assumes that nutation is negligible compared to precession. In this
application, precession is the angie between the angular momentum vector
of the spacecraft and the line that (1) passes through the spacecraft
center of mass and (2) is perpendicular to the earth's equatorial plane.
Nutation is the angle between the spacecraft angular momentum vector and

spacecraft spin axis.



The antenna sticks are sized in Chapter 2 as beams under a uni-
formly distributed load to meet displacement accuracy requirements.
The displacement of each antenna stick is affected by the spinrate of
the spacecraft as well as transients such as control thrusters. The
antenna elements can be represented as a mass per unit length of
0.82 kg/m distributed uniformly along each stick. The spinning motion
of the spacecraft creates a transverse acceleration QZR that acts on
the uniformly distributed mass of the stick and antenna elements to
create a uniformly distributed transverse load. Given the position of
the antenna stick joints, beam theory provides a means of determining
the transverse displacement of a beam. The antenna sticks are there-
fore modelled as simply-supported beams under a uniform transverse
load. If an imperfection is assumed to exist in the beam bending
stiffness EI, the beam equation can be used to find a relationship
between beam properties and displacement error. When this displacement
error is set equal to the required antenna stick displacement accuracy,
the dimensions of the beam are partially determined. The resulting
design calculations show that a 250-meter-long antenna stick segment
must have a diameter of approximately 0.71 m to meet the 0.5 cm dis-
placement accuracy requirement when the spacecraft spinrate is

1 rev/hr.

The spinrate Q of the spacecraft is selected in Chapter 3 by con-
sidering the effects of solar pressure and gravity gradient torgues on
spacecraft precession. At this point, the "spacecraft" consists of the
three antenna sticks. Once a spinrate has been selected, the remaining

beam dimensions can be determined.

A preliminary design for a truss-like support structure is pro-
posed in Chapter 4. Axial loads induced in truss members by control
thruster firing are estimated with rigid body dynamics and a finite
element quasi-static analysis. Both the diagonal members and the
majority of cross members in the support structure are designed as

truss columns using concepts of structural efficiency to minimize



spacecraft mass. The remaining cross members are tension-only members,

essentially thin Kevlar cords.

in Chapter 5, conventional analysis is used to determine the
vibrational modes and natural frequencies of the proposed antenna
sticks and support structure members. A finite element dynamic
analysis of a simplified model then determines the freguencies and mode
shapes of the antenna structure as a whole. A more complicated finite
element model is used to demonstrate that the results of the simplified
finite element model and conventional analysis are adequate for design

purposes.

Chapter 6 briefly discusses design issues not considered in this
preliminary analysis, and proposes possible "next steps" in the design

process.



Chapter 2
SIZING THE ANTENNA STICKS

Antenna performance requires that the location of each antenna
element be known to an accuracy of one-quarter wavelength. Because the
antenna elements are mounted on the antenna sticks, the location of the
antenna elements 1is known if the location of each point along each
antenna stick is known. As shown below, beam theory can be used to
determine the location of each point along the length of an antenna
stick provided the positions of the ends of the antenna stick are
known. This approach assumes that the largest load on the antenna
sticks is produced by centrifugal outward acceleration {from the space-
craft spinning about its axis), acting on the mass of the antenna

sticks and antenna elements.

Assume that joints in the overall antenna structure are hinged.
If these joints were fixed in space, then the antenna sticks could be
modelled as simply-supported beams, with each joint acting as a simple
support. The spinning motion of the spacecraft creates a transverse
acceleration that acts on the uniformly distributed mass of the stick
and antenna elementsl to create a uniformly distributed transverse
load. Given the dimensions, material properties, and transverse load-
ing of the sticks and the location of the joints, the transverse dis-
placement of each point along a stick's length can be found from the

soiution of the beam equation. The beam equation is

2r d2 1
—E(x)I(x)—w(x)| = Q(x)
dx2| ax? (2.1)
where
w(x) = transverse displacement of beam (m)

1. The antenna elements can be represented as a mass per unit length of 0.82
kg/m distributed uniformly along each stick.




E(x)I(x) = bending stiffness of bean (N—mg)

Q(x)

distributed load per unit length (N/m).

H

The solution for a simply-supported beam of length 2L with a uni-
formly distributed load per unit length Qo and both E and I constant
I = E 1 .
(EI olg) is

4
L KN
o 24EoIoLL4 3 L

1

!

L J (2.2)
The effect of the displacement of a joint on the transverse dis-
placement of a stick can be found from superposition. Thus if Qo’
EOIO, 2L and the joint locations are known, the location of any part of

an antenna stick can be found.

Equation (2.2) gives the transverse displacements of the antenna
sticks. If the maximum displacement found by Equation (2.2) is set
equal to 0.5 cm, the dimensions of the antenna stick can be determined
such that a displacement accuracy of 0.5 cm is assured. However, the
dimensions found by this method are unreasonably large: a 250-m-long
thin-walled cylinder antenna stick segment would require a diameter of
80 m. Therefore, another method must be used to determine antenna

stick dimensions.

Performance depends on the accuracy of the displacement computa-
tion, not the actual displacement. If an imperfection is assumed to
exist in the beam bending stiffness EI, the beam equation can be used
to find a relationship between beam properties and the accuracy, or
displacement error, of the displacement computation. When the maximum
displacement error given by this relationship is set equal to the
required antenna stick displacement accuracy, the dimensions of the

beam are partially determined.



2.1. Stick Displacement Error is Sensitive to Beam Bending Stiffness.
Suppose that Q, and 2L are known exactly, but that EI actually
has a step increase of magnitude 8 and width 2« in the center of the
beam (Figure 2-1). This is a simple model of the effect a manufactur-
ing tolerance (or error) or a variation in material properties might
have on beam properties. The bending stiffness has a symmetry around
the beam center at x = L, so we can simplify the problem by solving the
beam equation {(2.1) over the interval x = 0 to x = L instead of over
the entire length of the beam. Consider this beam to be composed of
two different beams, Beam 1 and Beam 2. Beam 1 has a bending stiffness
of EI = EOIO , displacement wl(x), and exists over the interval x = 0
to x = L(1-a). Beam 2 has a bending stiffness of EI = Eozo(1+5), dis~
placement wz(x}, and exists over the interval of x = L{i-a) to x = L.
By continuity, both beams must have the same displacement and first
three derivatives at x = L(1-a). These conditions, combined with the
simple support at end x = 0 and the symmetry condition at x = L, result

in eight boundary conditions

W (L - Lo) = wy(L ~ La) (2.3a)
Wi (L = Lo) = wy(L - La) (2.3b)
W, (L - La) = wy (L - La) (2.3¢)
w, (L - La) =w, (L- La) (2.3d)
W, (0) =0 (2.3e)

w. (0) =0 (2.3f)

wé(L) =0 (2.3g)



FIGURE Z-1. FPOSTULATED STeEP IMPERFECTION IN EEAM
BENDING STIFFNESS EI. Width of step is Zx, amplitude
ot step is &£.
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w (L) =0 (2.3h)

which can be used to solve the beam equation (2.1) for both wl(x) and

Wz(x). The compieted sensitivity study is detailed in Appendix A.

A comparison of the magnitudes of w,{(x) and w2(x) with wo(x)

(Equation 2.2) for varying ranges of o and X show that the maximum dis-

placement error € occurs at x = L when « = 1.0, and is given by

4
.- SQOL 5 i 5 W (L)
24EOIO (1+8) (1+8}) "o (2.4}
where
€ = displacement error at x = L (m)
2L = beam length (m)
6 —

(amplitude of imperfection in EI)/EOIO

(dimensionless)

When displacement error € is set equal to the required antenna
element displacement accuracy, then Equation (2.4) can be used to

determine some parameters of the antenna stick design.

2.2. Stick Dimensions and Mass Are Determined by Cross-.
Sectional Area and Area Moment of Inertia.

Antenna performance specifications for this application require
that the position of each of the antenna elements be known to a quarter
wavelength (A/4). Since wavelength is A = ¢/f, where ¢ is the speed of
light in m/s and f is the wave frequency in Hz, then the displacement
error € must be less than or equal to c/4f. Assume that the distri-
buted 1load Q, results from the centrifugal acceleration a; of the
rotating satellite acting on the mass per unit length of the antenna
elements and stick. The transverse antenna stick acceleration aT = Q2R
is assumed to be uniform along the length of the stick, where R is the

distance (577.35 m) from the rotational axis to the antenna stick
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center of mass, and Q is the spinrate in rad/sec. Assume also that the
mass per unit length of the uniformiy-distributed antenna elements is
some fraction m. of the mass per unit length m of the antenna stick.

Then Equation (2.4) gives

Ao
v
m
i

o

[1>9

-
=
+
=

'-’\./
O
j=e}
-

{1+8) (2.5)

where

1]

wave frequency (Hz)
speed of light (3 x 108 m/s)
= density of antenna stick material (kg/ms)

il

. . 2
cross-sectional area of antenna stick (m")

S5 > D O b
w
1

1

{(antenna element mass)/{(antenna stick mass).

]

Equation (2.5) shows that the maximum error € in the transverse
displacement measurement increases with the fourth power of bean
length. Thus the sensitivity of displacement error to the variations
in EI can be reduced by dividing the one-kilometer-long antenna stick
into several shorter segments. Equation (2.5) also shows that maximiz-
ing the ratios Ey/pg and I /A, will help to reduce sensitivity.

o
Graphite-reinforced-epoxy composite has a high specific stiffness

(E /p, = 7.724x10" m?/s® for E_ = 110.2 GPa and p_ = 1522 kg/m") and
can be constructed to have a coefficient of thermal expansion near
Zzero; all subsequent calculations will assume that graphite epoxy is
the antenna stick material. The ratio of IO/AS varies with the struc-
tural design used for the antenna stick. If we assume Eo/pS is given,

then the value of IO/AS must increase to maintain the same displacement

accuracy when the percent imperfection 8 in EI increases.

The values of IO/AS that will insure the displacement accuracy
requirement will be met can be found, allowing a load margin of 1.5, by

rearranging (2.5) to get
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B>
»w {o

The effect of changes in L and & on IO/AS is shown in Figure 2-2.

2.83. Choosing a Structural Shape.

2.3.1. Thin-Walled Tube. 1If the antenna stick shape is assumed to

be a thin-walled tube, IO/AS can be expressed simply in terms of the

outer dimensions of the antenna stick. For example,
IO/AS = H2/6 for a square tube {(2.7a)
IO/As = H2/8 for a round tube (2.7b)

where H for a square tube is the width of the tube side, and H for a
round tube is the tube outer diameter. A square or rectangular tube
possesses a useful flat surface for mounting antenna elements. How-
ever, the flat sides of such a tube are more susceptible to local buck-
ling from bending and shear stresses in the tube than is the curved
surface of a round tube. Local buckling is unacceptable. Therefore, a
round thin-walled tube is used in the initial sizing of the antenna
sticks. For a round tube, H can be found by combining Equations (2.6)

and (2.7b) and rearranging to obtain

mib
(4]

2.4
(1+m JQ"RL™ 77757 (2.8)

=]

The mass of an antenna stick composed of a single thin-walled tube

(without antenna elements) is given by

m = pSASZS = pantZS (2.9)

where H is the tube outer diameter given by Equation (2.8), and 2s is
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the length of the antenna stick (2s = 1000 m).

2.3.2. Three-Longeron Double-Laced Truss. if the antenna stick

shape is assumed to be a three-longeron double-laced truss column (Fig-
ure 2-3), antenna stick mass is reduced considerably. However, the
calculations of the antenna stick dimensions from equation (2.6) are
not so straightforward as when the antenna stick is assumed to be a

thin-walled tube.
If we assume that the cross-sectional area Ad of the truss diago-

nals is approximately the same as the cross-sectional area Al of the

longerons, then the antenna stick cross-sectional area AS is

A conservative estimate for the area moment of inertia Io of the
antenna stick can be found from Al and the distance H between

iongerons as

I = i - (2.11)

A value for H is found by combining (2.10) and (2.11) with {(2.6) to get

p
f s 2,:4

H 2 .5 = ==
22.5 o Eo (1 + mr)Q RL

3
(1+8) (2.12)

The value of H alone does not completely determine the geometry, how-

ever. From geometry and Figure (2-3), we see that

2L

ﬂg‘x’l‘g (2.13)

where
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H = distance between longerons (m)

b = number of truss column bays {(dimensionless)

2L = truss column length (m) = 1 in Figure (2-3)

) = angle of truss diagonals, measured from a line

perpendicular to the two longerons (degrees).

To insure that b is an integer, set

- (_2L )
b = INT \Htans (2.14)
where H is the value calculated in (2.12). Then the actual distance HS

between longerons based on an integer value of b and an assumed value

of ¢ can be calcuated using (2.12) and (2.14) to produce

f
_ _2L_ |tan
s  tan¢ INT i 2L

P

2,,4 3
(1 + mr)Q RL TT:ES'

m}b
0

Q
[T

22.5 g
(2.35)

We now have values for H, b and ¢. To complete the truss design,

we need values for Dl and D the diameters of the truss longerons and

d)
truss diagonals, respectively.

Using the assumption that the antenna stick is a simply supported
beam under a uniformly distributed transverse load per unit length Qo’

we find that the maximum moment in the antenna stick is

2 2
Q. (2L)° QL
Maax = 8 C2 (2.16)
The maximum load in a longeron segment is
M_ A H o %A H
> _ _max 1 s ) 1’s
Py = =
Lo 2c0s30°  2.]31 (2.17)

The Euler buckling load in a longeron segment of length 2L/b (the
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length of one bay) is

2., .
b Eoll

(2L/b)? (2.18)

If we set PE in (2.18) equal to 1,5*P1 in (2.17), which provides a
safety factor of 1.5, and substitute ps(gAl)(1+mr)02R for the value of

Q

o’ the resulting equation is

2 2.2
n"E . 1.5[ps(9A1)(1+mr)Q R]L HSA

011 _ 1
(2L/b)? 2 [3(ar2/2) (2.19)

This value can be combined with equation (2.13) to find the ratio

2,.3
ps(1+mr)Q RL™ tan¢

1
= =9-]3
A E, 2p (2.20)

Assuming a wall thickness t for each longeron, the cross-sectional

area A1 of a longeron is Al = nDlt, and the area moment of inertia Il

of a longeron is I. = nD?t/S. Thus the ratio Il/Al reduces to

1
2
Y
Al 8 (2.21)

Substituting this into (2.20), we find that the diameter of the

longerons is given by

Py (1+mr)QZRL3tan¢
D, = (72-J3 g;

2

y
°b (2.22)

A similar procedure can be used to determine the diameter of the
truss diagonals. The maximum shear in a simply-supported beam under a

under a uniform transverse load is



18

The resulting maximum load in the truss diagonals is

P - Vmax _ QOL
= = o
4COS¢C08300 2 J—gcosg) (2-24!

Set the Euler buckling load of one diagonal equal to l.S*Pd to get

20 - _ 2.
n Eold 1.a[ps(9Ad)(1+mr)Q RIL

(2L/bsing)? 2 [3coso (2.25)

This can be rewritten in the form Id/Ad as before. Assuming a wall
thickness t for each diagonal, the ratio Id/Ad reduces to D§/8’ and the

diameter of each diagonal is given by

(1+mr)QzRL3

Py
D. = 72’@;

0 n2b2s1n2¢cos¢ (2.26)

The mass on an antenna stick composed of a three-longeron double-laced

tubular truss (without antenna elements) is given by

= ¥ [
m p537rt(D1 + ZDd/31n¢)25 (2.27)
where D. and Dd are given by (2.22) and {(2.26), and 2s is the length of

the antenna stick.

0.1. An Increase in Spinrate Increases Stick Dimensions and Mass.
Assume that each antenna stick is divided by hinged joints into
segments of length 2L. Before the antenna stick mass and dimensions
can be determined, values are needed for 2L, Q, t, mr, and & (recalil
that the values EO = 110.2 GPa and pg = 1522 kg/m3 were chosen in Sec-
tion 2.2). Values for segment length 2L and spinrate will be chosen in

subsequent chapters; at this point in the calculations, we will
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consider a range of values for these two parameters.

If we assume that local buckling does not occur in the thin-walled

tube, we can use a minimum wall thickness (limited by manufacturing

considerations) of tm = 0.381 mm (.015") for all tubes. This
corresponds to 2 or 3 plys of graphite-epoxy prepreg. However, a
manufacturing tolerance of .025 mm (.001") in wall thickness would

result in a 6.6% error in the area moment of inertia I of a tube (since
I = ﬂDst for a thin-walled tube). A value of 6 = 10% is therefore used
as a conservative estimate of the imperfection in antenna stick EI. A
preliminary value of m can be found for any combination of Q, 2L, and
6 by first calculating stick dimensions and mass with mr set equal to
zero. This gives a first estimate of antenna stick mass per unit
length, from which a more realistic value of m_ can be calculated.
Some values for antenna stick width H and mass m, are given in Tables

(2-1) and (2-2) for different stick segment lengths and spacecraft

spinrates.

Plots of antenna stick mass as a function of spinrate for varying
antenna stick segment lengths are shown in Figures (2-4) and {(2-5) for
a tubular antenna stick and a truss column antenna stick, respectively.
The mass of the thin-walled tubular antenna stick increases with spin-
rate in a nearly linear fashion. The mass of the three-longeron truss
antenna stick increases more rapidly with spinrate than does the tubu-
lar stick; however, the overall mass of the truss stick at a given

spinrate is considerably less than the mass of the tubular stick.
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TABLE 2-1. VALUES OF ANTENNA STICK MASS m_ AND
DIAMETER H VS. SPINRATE Q FOR VARYING STICK SEGMENT
LENGTH 2L (ANTENNA STICK = THIN-WALLED ROUND TUBE)

f2L = | 200m | 250 m | 500 m ! 200 m | 250 m ! 500 m |
771 T 929 T 1202 | 1173 1 0.510 | 0.709 | 2.291
| 2 | 1568 | 2265 7966 , 0.861 | 1.243 | 4.373
[ 8 ; 2188 | 3222 | 11753 | 1.201 | 1.768 | 6.452
| 4 i 2802 | 4173 | 15538 | 1.538 | 2.291 | 8.529 |
i 5 { 3412 | 5123 | 19323 | 1.873 | 2.812 | 10.607

' 6 | 4021 ! 6071 ! 23107 | 2.207 ! 3.333 | 12.684 !
| 7 | 4629 | 7019 | 26891 , 2.541 , 3.853 | 14.761
{ 8 | 5237 | 7966 | 30675 | 2.875 | 4.373 | 16.838
| 9 | 5844 | 8913 | 34458 | 3.208 | 4.893 | 18.915 |
i 10 | 6450 | 9860 | 38242 | 3.541 | 5.412 | 20.992 |
b 11 1 7057 ! 10807 ! 42026 ' 3.874 | 5.932 | 23.069'
! 12 7663 | 11753 | 45809 | 4.207 , 6.452 | 25.146
{18 | 8269 ; 12700 | 49593 ; 4.539 | 6.971 ; 27.223
14 8875 | 13646 | 53376 | 4.872 | 7.491 | 29.300 |
|1 9481 | 14592 | 57160 | 5.205 | 8.010 | 31.376 |

Note: Q is rev/hr, 2L is in meters, mS is in kilograms, H is in meters.



TABLE 2-2.

VALULES OF ANTENNA STICK MASS m

21

AND

TRUSS WIDTH H_ vS. SPINRATE O FOR VARYING STICK SEGMENT
THREE-LONGERON TRUSS)

LENGTH 2L

SCANTENNA STICK =

H

(2L = | 200 m | 250 m| 500 m | 200 m; 250 m ; 500 m
é @ If mS ; mS : mS f HS ; HS : HS E
o1 7 899 T aa0 ! 563 | 7,227 9.02 16.98°
2 | 502 ' 541 | 711 | 8.25 . 10.07 | 19.25:
, 3 | 571 | 616 | 866 ; 8.88, 10.83 | 21.65
| 4 | 626 | 676 | 1013 | 9.36 | 11.40 | 23.41]
| 5 | 666 | 741 | 1216 | 9.62 | 12.03 | 26.24|
I 6 I 706 | 790 ! 1396 ! 9.90! 12.37 ' 27.94!
U7 T 749 7 863 | 1648 | 10.19 | 13.12 . 30.93;
{ 8 | 790 ; 920 ; 1897 ; 10.50 ; 13.53 , 33.31,
| 9 1 836 | 979 | 2188 i 10.83 | 13.97 ' 36.08]
| 10 | 883 | 1044 { 2533 | 11.17 | 14.43 | 39.36|
11 7 935 © 1114 | 2831 | 11.55 ! 14.93 ! 41.24!
P12 7 985 | 1191 | 3152 : 11.95 ' 15.46 , 43.30|
| 13 | 1045 ; 1269 ;| 3669 , 12.37 ; 16.04 ; 48.11
| 14 | 1106 | 1357 | 4082 | 12.83 | 16.65 | 50.941
| 15 | 1138 | 1457 | 4560 | 12.83 | 17.32 | 54.13
Note: Q is in rev/hr, 2L is in meters, mS is in kilograms,

meters.

S

is

in
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Chapter 3
SELECTING A STABLE SPINRATE

Large flexible space structures have low natural frequencies that
are easily excited by any applied loads. Once excited, a structure may
take hours or even days to damp out its vibrations. it 1is therefore
desirable to apply as few locads to the structure as possible. In such
cases, passive attitude control methods are preferabie to the frequent
use of attitude control thrusters or the cyclic excitations produced by

inertia wheeis.

Since the spacecraft must spin to perform its radiometry task,
spin stabilization can be used as a passive method of attitude control.
However, care must be taken in selecting a spinrate: as seen in
Chapter 2, an increase in spinrate requires an corresponding increase
in antenna stick mass (an undesirable effect). To be acceptable, a
spinrate must meet stability requirements and yet keep spacecraft mass

to a minimum.

3.1. Disturbance Torques, Precession, and Pointing.

One indication of spacecraft stability is precession, which is the
angle between the spacecraft angular momentum vector and the desired
angular momentum vector (normal to the earth's equatorial plane). Pre-
cession arises from disturbance torques; the most influential of these
torques for a large satellite in geosynchronous orbit are solar radia-

tion and the earth's gravitational fieid.

P
The differential solar radiation force dfs acting on an elemental

area dA of the spacecraft is given by

3
—i

{ )
N : - 4 _é.‘} :
af = — ;! — . + = CWN! 3
S COP_{‘(‘L“ C4J8 * 2(C_cosf + 3 CQ,\JcosB; dA (3.

Pt
e
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where
P = momentum flux from the sun (4.4 X 1076 kg/m/sZ}
Co = opacity
CS = coefficient of specular reflection
Ed = goefficient of diffuse reflection
S = unit vector from the spacecraft to the sun
dA = elemental spacecraft area (m2)
N = unit outward normal vector of dA

angle between S and N

w
i

The soiar radiation torque T, acting on a spacecraft is given by

T = X 3.2
s I R s (3.2}
where'ﬁhis the vector from the spacecraft's center of mass to the ele-

—
mental area dA, and dfs is given by Equation (3.1}).

The gravitational force is directed radially inward towards the

earth, and is given by

Gm_dm
dF, = ——Z2—m

G 2 (3.3)

where
= gravitational constant (6.672 x 10_11 N—mz/kgz)
o = mass of earth (5.979 x 1024 kg)
dm = incremental mass of interest (kg)
r = distance of dm from center of the earth (m).

For a satellite in geosynchronous orbit, the earth's oblateness can be

negiected in gravity gradient computations.

Because some amount of precession is aiways present, all spin sta-
bilized spacecraft require periodic attitude adjustments, which are
impiemented from earth by ground crews. The minimum time between atti-
tude adjustments is usually three to four days, limited by the schedul-

ing and expense of ground crew efforts.
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Antenna performance requires that precession of the spacecraft be
iess than one degree at all times. This pointing requirement can be
used as a measure of spacecraft stability for spinrate determination.
If attitude adjustments occur once per week, and a 20% allowance is
made for precession that might arise from sources other than solar
pressure and gravity gradient effects, then precession must be less

than 0.83 degrees in any one-week period.

3.2. 12 Rev/Hr Spinrate Meets Pointing Requirements.

The spacecraft can be modelled simplistically as a rigid body com-
posed of three oriented cylinders (representing the three antenna
sticks). Because the diameter and mass of a thin-walled cylindricail
antenna stick vary with spinrate (Section 2.4.), the mass, cross-
sectional area, and mass moments of inertia of the spacecraft model
aiso vary with spinrate. The effects of gravity gradient and solar
pressure acting on this spacecraft model over a given period of time

can then be determined numerically for different spinrates.1

The precession after a 24-hour period at summer solstice of the
rigid body spacecraft model is plotted in Figure (3-1) for different
spacecraft spinrates. The spacecraft is assumed to be in geosynchro-
nous orbit (completing one revolution around the earth in one standard
solar day) with an initial declination of 90 degrees (spin axis ini-
tially perpendicular to the earth's equatorial piane). The 24-hour
period covers 00:00 hours on 21-June-1980 to 00:00 hours on 22-Jjune-
1980; this 1s one possible time when the angie between the spacecraft
and the solar radiation is most extreme, and therefore the solar pres-
sure is greatest. For computation purposes, it is assumed that CO =
1.00, CS = 0.01, C4 = 0.09, and solar radiation at the spacecraft is
equivalient to the radiation present at 1 A.U. Allowance is made for

each cylinder shading the other two due to spacecraft rotation and

1. The ;americal analysis uses a FORTRAN program written by Dr. James

McEn-

nan of the Dynamics and Control Department in the Systems Laboratories,

Hughes Aircraft Space and Communications Group.
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orbital path (shading reduces solar ftorque and shifts the center of
pressure of the spacecraft). The integration step size for the compu-~

tations is found by dividing the spin period in seconds by 40.

For each spinrate case, the precession angle increases in a nearly
linear fashion with time. This is shown in Figure (3-2) for a spinrate
of 12 rev/hr. The solar pressure effects are sufficient to move the
center of mass of the spacecraft out of the earth’s equatorial plane.
Gravity gradient effects then act on the unsymmetrical mass distribu-

tion to increase precession.

By extrapolation from Figure (3-2), the precession after a one-
week period is 0.819 degrees for spinrate O = 12 rev/hr. This spinrate
meets the pointing accuracy requirement with a 22% margin, and will be

assumed in all following calculations.

The calculations in this section of the analysis were done early
in the design study, and determine antenna stick dimensions assuming
that the antenna stick segments are clamped on both ends (see data in
Appendix B). Note that this differs from the simply-supported beam
assumption used in Chapter 2. The spinrate selected from these calcu-
lations 1is satisfactory for a preiiminary design. However, the com-

pleted preliminary structure should be used as the modei in future

design iterations to determine spacecraft precession.
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Chapter 4
SIZING THE SUPPORT STRUCTURE

4.1. Preliminary Configuration.

The preliminary configuration chosen for the support structure ‘s
a basic triangular truss design {Figure 4-1). Cross members maintain
the required 1 km spacing between the antenna sticks. Diagonal
rxm<—:'m'13tar‘s"i carry column shear loads to prevent collapse of the hinged
structure. An antenna stick segment length of 250 m (2L = 250 m, or 4

segments) is used in the preliminary configuration.

Cross members connect each of the hinge points on each antenna
stick to the other hinge points on its 1level (a level is located
entirely in one x-y plane). The cross members at the z = -500, z = 0,
and z = 300 levels can carry both tension and compression, while the
cross members at the z = -250 and z = 250 levels are tension-only
members to reduce overall spacecraft mass. Diagonal members connect
antenna stick hinge points on the z = 0 level to hinge points on the
zZ = -500 and z = 500 levels. Each diagonal member is capable of carry-

ing both tension and compression.

The preliminary dimensions of an antenna stick composed of four
segments (with a spacecraft spinrate Q of 12 rev/hr) is calculated in
Section 4.2 for both the thin-walled round tube and the three-iongeron
truss column designs. The axial loads carried by the diagonal members
and tension-compression cross members of the support structure are
estimated in Section 4.3; preliminary designs for these members are

then calculated in Section 4.4.

1. Some confusion may arise over the use of the term "diagonal"” in both the

design of the antenna support structure and the design of the

truss

columns that are the members of the support structure. For ciarity, the
term "diagonal member" will refer solely to the column that is a component

of the antenna support structure.
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E
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TENSION-COMPRESSION
CROS5 MEMBER (9)—*\\q

D1IAGONAL
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STICK
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TENSION-OMLY
CROSS MEMBER (&5

FIGURE 4-1. PRELIMINARY CONFIGURATION OF ANTENNA SUPPORT
STRUCTURE. The cross members and diagonal members on the
back side are omitted for clarity.
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4.2. Antenna Stick Design for a 12 Rev/Hr Spinrate.

Table (2-1) in Chapter 2 gives values for diameter and mass
(without antenna elements) of a thin-walled round tube antenna stick
for various spacecraft spinrates and antenna stick segment lengths.
With the stick segment length of 2L = 250 m chosen above and a spinrate
of QO = 12 rev/hr (chosen in Chapter 3), the table shows that the
antenna stick must have a diameter of at least 6.452 m to keep dis-
piacement error less than the required 0.5 cm. if we choose the
minimum allowable diameter, the antenna stick design parameters for a

thin-walied round tube are

material = graphite-epoxy laminate
number of segments =qn = 4

segment length = 2L = 250 m

diameter =H = 6.452 m

wall thickness = tm = 0.381 mm

mass = ms = 11,753 kg

Table (2-2) shows antenna stick width and mass for a three—
longeron double-laced truss antenna stick. If we choose the minimum
allowable stick width for 2L = 250 m and Q = 12 rev/hr, the antenna

stick design parameters for a truss are

material = graphite-epoxy laminate
number of segments =n = 4

segment length = 2L = 250 m

truss width = HS: 15.46 m

number of bays =pb = 28

longeron diameter = Dl = 6.943 cm

diagonal diameter = Dd = 3.711 cm

angle of diagonals = ¢ = 30°

tube wall thickness = tm = 0.381 mm

mass = ms = 1191 kg

Note that both masses quoted above do not incliude the mass of joints or

antenna elements.
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4.3. Estimating Loads with Rigid-Body Lumped Mass Model.

The spacecraft requires control thrusters for periodic attitude
ad justments and orbital maneuvers. The folliowing analysis assumes that
the most significant loads in the members of the antenna structure are
induced by control thruster(s) applying loads at the antenna stick

hinge points.

If the spacecraft is spun up by control thrusters after deployment
(as opposed to spun up during deployment, or depioyed after spin-up),
some members of the support structure must carry compressive loads.
Because the members are slender, the primary failure mode of the
members is column buckling. The largest estimated compressive Iload
induced in each type of member by control thruster firing can thus be
used as a design load for that member. The worst-case compressive lioad
in each type of member can be found from a quasi-static anaiysis of a

rigid body model of the antenna support structure.

The tension-only cross members cannot carry compressive loads.
For the purpose of estimating the worst-case compressive loads in the
diagonal members and tension-compression cross members, the tension-

only members are omitted from the rigid body modeil.

4.3.1. Nine-Mass Rigid Body Model.

The rigid-body model shown in Figure (4-2) is used to determine
the member loads induced by control thruster firing. The model con-
sists of nine identical point masses, each of which represents one-
third of one antenna stick mass (ms/g), interconnected by massless
members which represent the antenna sticks, diagonal members, and
tension-compression cross members of the antenna structure. Note that
no members are included to represent the tension-only cross members. A

corresponding finite element model consisting of nine nodes and 21
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linear beam elements 1is used for verification of the analysis and for

numerical evaluation of some load cases.

The point masses are placed at locations corresponding to the
hinge points at the center and ends of each antenna stick. When the
control thrusters are fired, they apply loads to the rigid structure.
Inertial reaction loads then act on each mass to maintain quasi-static
equilibrium of the rigid structure. These inertial reaction loads and
the 27 equations of local equilibrium for the structure (equations for
X, vy, and z equilibrium at each of the nine point masses) determine the
axial loads in the 21 massless interconnecting members of the model.

The details of this procedure are given in Appendix C.

Three load cases are analyzed. in the first, control thrusters
are assumed to be acting at hinge point 6 (on the center level) paral-
lel to the x-, y-, and z-axes with loads of magnitude Tx’ Ty’ and Tz'
respectively. A complete analysis gives the 1loads induced in each
member in terms of the control thruster loads Tx’ Ty' and Tz’ sg that
the effect of each thruster can be isolated from the other two. The
results agree with a finite element analysis run on SDRC's "SUPERB"

sof tware.

in the second case, the control thruster loads are assumed to be
acting at hinge point 3 (on the top level) parallel to the x-, y-, and

z~-axes with loads of magnitude TX and T

N
’ *y! ‘ZY
tial reactions loads are determined analytically; the verified finite

respectively. The iner-

element modei is then used to determine the member loads numerically.

The third case is a combination of the first two, and is evaluated
numerically. It is included to indicate whether loads induced by con-
trol thrusters acting at different hinge points simultaneously are
greater or less than loads induced by control thrusters acting on a

single hinge point.
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4.3.2. Worst-Case Loads in Members. Analysis indicates that only
the c¢ross members (and not the diagonal members) carry the loads
created by the centrifugal acceleration 92R acting on the antenna
sticks. The load induced in each cross member by this process is axial
tension of magnitude JgthZR/Q. If the spacecraft is not spinning at
the time that the thrusters are firing (as is the case during after-
deployment spin-up), this load is not present. Numeric values for the
worst-case compressive loads in the members therefore assume that the

spacecraft is not spinning (@ = 0).

The maximum compressive axial load for each type of member is
given below. These values assume that each thruster exerts a force of
one pound (TX = Ty = T, = 4.45 N}, and that the spacecraft is not spin-

ning (Q = 0).

Compressive Load (N)

Antenna Stick 4.50
Cross Member 4.44
Diagonal Member 5.75

The worst-case compressive load for the antenna stick is induced
by thrusters firing at point 6 only. However, the worst-case compres-
sive loads for the cross member and the diagonal member are induced by
thrusters firing at point 6 and point 3. This indicates that control
thrusters acting on several hinge points at once may generate loads
greater than those given above in cross members and diagonal members.
To allow for the possibility that more severe loadings may occur, an
additional multiplicative factor should be used with these results in
the design of the members. A factor of 3 will be used for this pur-

pose.
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4.4. Minimum Mass Support Structure.

Now that estimates of worst-case compressive iocads are avaiiable
for the structural members, the members can be designed to prevent the
primary failure mode of column buckling. The Fuler buckling locad of a

simply-supported column is given by

25
P - ZL..‘.E_:L
E 2 {4.1)

jo—

where E is the Young's moduius of the material (N/mz), I is the area
moment of inertia of the coiumn cross-section (m4), and 1 is the length
of the coiumn {m). To find a column design that will prevent buckling,
the Euler buckling load is set equal to the largest expected axial
compressive load (times some safety factor) that the column will
experience. Note that larger values of EI allow a column of a given
length to carry a greater load before buckling occurs. Since we also
want to minimize the mass of the columns (to minimize overall space-
craft mass), a material with a large specific stiffness is desirabie.
Graphite-epoxy composite is therefore used in the design of the members

of the support structure.

4.4.1. Structural Efficiency of a Truss in Buckiing. Mikulas

(reference 1) has outlined a method for designing a minimum mass
three-longeron double-laced truss column (Figure 2-3). Assume a column
has a straightness imperfection of magnitude a. A compressive axial
load applied to the imperfect column induces a bending moment in the
column; this moment induces axial loads in the longerons and diagonals
of the column. The largest compressive load in a longeron is the sum
of any applied axially compressive lcad P and the largest compressive

load due to the bending moment that arises from the imperfection a.

The truss is composed of a number of bays b; each longeron 1is
therefore divided into segments, and each segment is simply supported

at each end by the joints that separate the bays. The design
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parameters of the longeron for a given value of b can be determined by
setting the largest compressive load in a longeron (times a safety fac-
tor} equal to the Euler buckling load of an individual longeron seg-
ment. A similar process involving the loads induced in the truss diag-
onals by the column shear can be used to size the diagonals. The

number of truss bays is chosen by iteration to produce the minimum

overall truss mass for a given diagonal angie ¢.

Assume that the same material is used for both the longerons and
the diagonals (note that the Mikulas truss has no batens). The

designer chooses values for the following:

= column axial compressive load (N)

= column length (m)

= column imperfection (m)

Young's modulus of material (N/mz)

= material density (kg/ms)

= number of truss bays (dimensionless)

S O v M o~ Y
i

= angle of diagonals (degrees)

The resulting parameters are then derivable:

1/b = bay length (m)
1/btan ¢ = spacing between longerons (m) = Hs
1/bsin ¢ = length of diagonalis (m) = 1

d

The radius Fl and mass m; of each solid-rod longeron are given by

1
2 2 2
6 _ 2b°Ptan®e 4 41iP 11 y 2 . 2(Pltane! _
ry - Sfe——— - e T, +t S 0
1 3 rl 3 (b 2ba Jﬁ%an¢}ri 31 5. | (4.2)
nE 3n~Eb { TE
ml = pnr?l (4.3}

The resulting Euler buckling Iload PF of the column, load Pd in the

diagonals, mass m; of each diagonal, and radius rj of each diagonal are

given by



20+ 2. 3.2
R bt uiC B it A_.Al ) T E‘}L
¥ - = - = (A
E 12 2b%tan®s  2b%tane (4.4)
Pd - Prna/1

2 \i’§cos¢>(1~P/‘PE; (4.5)

(p 212

m. = 2;)1-2‘“‘9i
a a \NEJ {(4.6)

Ly = imd/npld (4.7}

The mass m of the complete column is the mass of three longerons plus
the mass of 6b diagonals (the truss has b bays, with 6 diagonals per
bay). The column mass is then

m = 1.15(3m1 + 6bm {(4.8)

q)
which assumes an additional 15% of column mass for the mass of the
joints. The procedure is repeated with different values of b and ¢
until the minimum mass column is found. Note that (4.2) can be solved
as a cubic equation in r%; the solution is taken to be the positive
root with the highest value. This procedure is used to design truss
coiumns for the tension-compression cross members and diagonal members

of the antenna structure.

4.4.2. Design of Cross Member Truss Coiumn. The dependence on

number of bays b and angle ¢ of the mass of a truss column cross member
is shown in Figure (4-3). The longerons and diagonals of the truss are
assumed to be solid rods made of graphite-epoxy composite
(E = 110.2 GPa, p = 1522 kg/m3). The axial load P is taken from the
lumped mass rigid body model results given above, so that
P = 3%(4.44 N) = 18.32 N. The column length 1 is 1000 m. The valiue of
a/l is assumed to be 0.0025, which is a recommended value in civil
engineering. For a coilumn 1000 m long, this indicates a deviation in

straightness of 2.5 m from centerliine. As indicated in Figure (4-3},
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the minimum mass of the truss column increases as the angie o of the
diagonals increases. An angie of ¢ = 30° was chosen for the diagonals
because it produced a lighter truss column than did the angles of

o = 45° and ¢ = 60°.

Given these assumptions, the truss mass is minimum when the number

of bays is approximately 1060. The resulting truss parameters for the

cross member column are

b = 1060

Hcm = 1.634 m
Fl = 2.622 mnm
Fd = 0.709 mm
mcm = 146.6 kg

This truss will be used for all the tension-compression cross members

in the preliminary antenna support structure shown in Figure (4-1).

4.4.3. Design of Diagonal Member Truss Column. The dependence on

number of bays b and angle ¢ of the mass of a truss column diagonal
member is shown in Figure (4-4). The longerons and diagonals are again
assumed to be solid rods of graphite-epoxy composite. The axial load P
is 38*%(5.75 N) = 17.26 N. Column length 1 is 1118.0 m, and a/l is
assumed to be 0.0025. For a diagonal angle of 30°, the truss mass is a
minimum when the number of bays is approximately 1050. The resulting

truss parameters for the diagonal member column are

1 = 1118.0m
b = 1050

Hdm = 1.844 m
Yi = 2.951 mm
Fd = 0.799 mm
mdm = 207.8 kg

This truss will be used for aill the diagonal members in the preliminary

antenna support structure shown Figure {4-1).
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4.4.4. Design of Tension-Only Cross Member. Recall that the cross

members carry the load induced by the centrifugal accelieration QZR act-
ing on the mass of the antenna sticks. This component of the ioad car-

ried by each cross member in the 21-member rigid-body model is given by
= 25/ 3
Q3mSQ R/9 {(4.9)

where ms is the mass of one antenna stick. When the two lievels of
tension-only cross members are added to the three ievels of tension-
compression cross members, this load estimate can be reduced by two-
fifths. Given a spinrate of 12 rev/hr and the thin-walled round tube
antenna stick mass (with antenna elements) of m = 12,373 kg for
L = 125 m, and allowing a safety factor of 1.5, the load that the

tension-only members must carry is

_ =3 3 2 = 5 1
PTO = 1_3(5)( qsmsg) R/9) 551.5 N (4.10)
This can be carried easily by a Kevlar cord with a diameter of 1 mm
(the tensile strength of Kevlar fiber is approximately 1000 MPa) and a
mass of about 1 kg. The tension-only cross members are virtually mass-

less compared to the other members of the structure.
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Chapter 5
FREE VIBRATION OF THE PRELIMINARY STRUCTURE

The periodic firing of control thrusters (required for spacecraft
attitude control) excites structural vibration. Large space structures
tend to have long vibrational periods (minutes are not uncommon) that
make the spacecraft difficult to control. To accurately determine the
position of each antenna element by analysis, it is necessary to under-
stand the dynamics of the structure. The first step in characterizing
the dynamics is to determine the natural frequencies and mode shapes.
However, large space structures present a complex modeling problem.
Although finite element dynamic analyvsis can be used to determine the
structure's vibrational modes and frequencies, the number of elements
needed to get reasonable results is so large that computer costs can
become prohibitive. A simplified means of estimating modes and fre-

quencies of the structure is therefore desirable.

The frequencies and mode shapes of the individual members of the
structure are found in Section 5.1 by conventional analysis, which uses
equations derived for a continuous beam {(or a string, in the case of
the tension-only cross members). Finite element analysis in Section
5.2 finds the frequencies and mode shapes of the overall structure of a
simplified 27-degree-of-freedom (27-DOF) model, in which each member of
the structure is represented by a single element. A more complicated
162-degree-of -freedom (162-DOF) model is also analyzed; it uses 12 ele-
ments on each tension-compression cross member and diagonal member.
The results of the 162-DOF finite element analysis compare favorabiy to
the results of conventional analysis and the 27-DOF finite element
model, which indicates that simplified models can be used for design

purposes to determine the vibrational dynamics of the structure.



5.1. Lateral Vibration of Members.
Per Meirovitch (reference 5), the natural frequencies @, in
rad/sec of a simply-supported uniform beam (EI = constant, m(x) = mass

per unit length = constant) in free bending vibration, are given by

El

e r=1,2,... -
m(x)l4 (5.1)

where 1 is the length of the beam. This value must be divided by 2n to
find the natural frequencies in Hertz. The normal mode shapes Yr(x) of

bending vibration for the beam are given by

Y (x) =\ X r-1

2 .
¢ \[mCaTT SIT r -2)

o]

The modes in Equation (5.2) have been normalized according to

L
fm(x)Yi(x)dx =1 (r =1,2,...).
0

The above results neglect rotational inertia, and assume that
shear deformation is small compared to the bending deformation. Thus
rotary inertia and shear deformation effects are neglected. These
assumptions are valid if the ratio between the beam characteristic
length (in this case, one-half the vibrational wavelength) and beam
width is large (greater than 10). Also, it is assumed that no axial

load is acting on the beam.

The tension-only members are not beams, so Equations (5.1) and
(5.2) do not apply to them. However, the natural frequencies and modes
of a tension-only member can be found using the equations for vibration

of a string. The natural frequencies wr in rad/sec are given by




46

where T is the tension in the string (N). The mode shapes Yr(x) are

given by

. I'TX B
Yr(x) = Apsin=7= r=1,2,... (5.4)

where Ar is the amplitude of the mode shape.

The tension-compression cross members can be modelled as strings
when under axial tension if the magnitude of the tension is suffi-
ciently high. This occurs when the spacecraft is spinning, and each
cross member is therefore carrying an axial tensile load of

(ngQZR/ls. Given a spacecraft spinrate of Q = 12 rev/hr and an
antenna stick mass ms of 12,573 kg, the tension carried by each cross
member is 367.7 N. Using the data from Chapter 4, the lowest frequency
of vibration for a "string" tension-compression cross member is 0.025

Hz.

A list of the five lowest frequencies of each member type are
shown in Table (5-1). The data for the properties of each member are

taken from the analyses in Chapter 4.

5.2. Finite Element Analysis of the Structure.

The equations that describe the natural frequencies and modes of a
structure as compiex as the preliminary design shown in Figure (4-1)
are too involved to solve by conventional analysis. However, if the
structure is represented by a simplified model, the natural frequencies
and modes of the model can be determined numerically from the discrete
forms of the equations. Finite element dynamic analysis does just
that. The SDRC "SUPERB" finite element dynamic analysis software 1is
capablie of finding the frequencies and modes of a structure in free
vibration. Beam elements are used to represent the members of the
structure. In this code, a beam element has two nodes, one at each
end, and includes the effects of shear deformation. The x-axis of the

element lies on the line between the two nodes, so that the y- and
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Table 5-1 FUNDAMENTAL FREQUENCIES AND HARMONICS FOR LATERAL VIBRATION
OF THE STRUCTURAL MEMBERS. Found by conventional analysis.
i . ) g
: Lateral Vibration Frequency (Hz) ;
§ Freg ; Antenna | T-C Cross | Diagonal | T-0 Cross
: X i ! i .
! ! | i i |
f Stick |, Member | Member ; Member
i i % ? E ;
4 i | ; l J
i ; é i i
w0 0.47176 { 0.00731 | 0.00660 1 0.30319
! : N :
! é ‘ ? ‘ 1
i @, | 1.8870 [ 0.02926 | 0.02640 | 0.60638 |
¢ , ; } E 1'
i i s [ i
| :
i wgq | 4.2459 . 0.06582 ! 0.05940 i 0.90957 |
l : { i H !
{ ¥4 4 7.5482 1 0.11702 | 0.10561 ! 1.21277 i
@ t f f 3‘
| @g | 11.7940 i 0.18285 : 0.16501 ; 1.51596 |
|4 1
i

Note: The antenna stick segments are 250 m long.
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z-axes form the plane of the element's cross-section. Given a Young's
modulus E and Poisson's ratio v, the code will calculate a value for

the shear modulus G from the relation G = E/2(1 + v).

A model of a simply-supported thin-wallied cylindrical antenna
stick segment composed of 25 beam elements serves as a test case of the
modelling approach. Each element in the model is given the following

properties:

1522 kg/m°

i

mass density

Young's modulus = 110.2 GPa
Poisson's ratio = 0.360
length = 250 m
cross-sectional area = 0.,0077 m2
area moment of inertia IX = Iy = 0.040 m4
shear area ratio Ax = Ay = 2.0

These properties are representative of a thin-walied tube

(tm = 0.381 mm) of diameter 6.452 m, composed of a graphite-epoxy

prepreg with one or two plies of fabric. Conventional analysis
predicts a fundamental frequency of 0.487 Hz for this beam; finite ele-

ment analysis yields an identical value.

5.2.1. 27-Degree-of-Freedom Model. In this model, each member of

the structure is represented as a single beam element. The properties
of the elements are given in Table (5-2). Note +that they differ
slightly from the properties calculated in Chapter 4. Because this
model has no nodes other than the end nodes on the members, it cannot
analyze the modes of the individual members; it can only analyze modes
of the overall structure. The advantage of this simple model, however,
is that it requires little CPU time to complete the dynamic analysis.
This model therefore provides a good first estimate of the shape and

frequencies of the structural modes.
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ANALYSIS.

ELEMENTS 1IN THE

27-DEGREE-OT~

so that the

shear

All elements are

area

ratio and the area moment of inertia are the same about
both the y- and z-axes.

! i ' |

! Property ; Antenna i Cross 2 Diagonal
f i ! :
| g Stick | Member i Member i
i : s |
! Young's Modulus (N/m®) | 1.102 E+11 | 1.102 E+11 | 1.102 E+11 |
! | ! ; !
: 3 | | %
i Mass Density (kg/m”) i 1522 ; 1522 i 1522 |
i Poisson's Ratio | 0.360 0.360 ! 0.360 !
i i i !
; X ; . ;
E Cross-sectional Area (m2) . 7.72 E-03 j 6.649 E-05 3 8.710 E-05
| — g g |
5 Area Moment of Inertia (m*) I 4.019 E-02 | 2.959 E-05 | 5.120 E-05
% Shear Area Ratio ] 2.0 § 2.0 5 2.0 :
{ i { f :
Calcuiated w, (Hz) . 0.48795 0.00892 | 0.00820 é
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The 27 natural frequencies found by this model are shown in Table
(5-3). Note that the first six frequencies have been omitted, as they
represent the six rigid body modes of the structure. Due to symmetry

of the structure, some mode shapes have identical frequencies.

The orientation of the undeformed dynamic model appears in Figure
{5-1). The cross members and antenna sticks are emphasized for clar-
ity. The shapes of the first three structural modes are shown in Fig-
ures (5-2) , (5-3) , and (5-4), with the diagonal members omitted for
clarity. Note that the natural frequencies of these three modes are in
the range of the frequencies of the fourth and fifth modes of the diag-
onal members and tension-compression cross members. We would therefore
expect to see these members, as well as the structure, vibrating at the
first three structural frequencies. The lowest frequency of the
antenna sticks is sufficiently high, however, that the antenna sticks

will probably not be vibrating at the first three structural frequen-

cies.

5.2.2. 162 Degree-of-Freedom Model. Additional beam elements are

used in the 162-DOF model: each of the tension-compression cross
members and the diagonal members is now composed of 12 beam elements.
This allows the finite element program to determine numerically the
natural frequencies of these members. Also, any coupling between the
modes of these members and modes of the structure as a whole should be
detected. Each 500 m antenna stick segment is still represented by a
single beam element. The physical and material properties of the ele-

ments used in the 162-DOF analysis are shown in Table (5-4).

The analysis of this model produces 162 natural frequencies, many
of which are similar or identical; some of them are listed in Table
(5-5). The modal frequencies 7 and 19 represent the lowest natural
frequency of the diagonal members and tension-compression cross
members, respectively. Note that the first three structural frequen-

cies (modes 97, 98, and 99) are higher than those found in the 27-DOF
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STRUCTURE FOUND BY TFINITE

ELEMENT DYNAMIC ANALYSIS OF THE 27-DEGREE-OF-FREEDGM MODEL.

The first six modes are

modes,

and are omitted.

rigid body

transiation/rotation

i Mode | Frequency (Hz) |
| | |
o7 0.12299 §
N 0.17035 !
e 0.18752
i 10 0.18752 i
[o11 | 0.20019 |
P12 | 0.20019 |
P13 0.33117
14 0.33117 }
|15 0.42228 |
{16 | 0.42228 |
P17 0.45033 i
.18 0.49598 :
.19 0.49598 f
BE 0.55196 i
P21 | 0.56884 g
P22 | 4.5182 :
L 4.5605 !
Lo24 ) 4.5605 :
.25 8.8955 |
P26 | 8.8955

| 27 | 8.9031
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FIGURE S-1., CRIENTATION OF UNGEFORMED DYNAMIC MODEL.
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FIGURE 5-2. FIRST STRUCTURAL MODE SHAPE OF 27~-DEGREE-OF -
FREEDOM MCDEL.
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FIGURE S5-32. SECOND STRUCTURAL MODE SHAPE OF Z27-DEGREE-
OF-FREEDOM MODEL.
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FIGURE S5-4, THIRD STRUCTURAL MODE SHAPE OF 27-DEGREE-OF-
FREEDOM MODEL .
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TABLE 5-4. PROPERTILES GIVEN TO BEAM ELEMENTS IN THE 162-DEGREE-OF-
FREEDOM FINITE ELEMENT DYNAMIC ANALYSIS. All elements are
symmetrical about their x-axes, so that the shear area
ratio and the area moment of inertia are the same about

both the y- and z-axes.

§ Property ; Antenna i Cross 1 Diagonal f
! ! | ! i
| ! Stick | Member | Member |
! L i i
i i v 1 i
| Young's Modulus (N/m%) ! 1.102 E+11 ! 1.102 E+11 ! 1.102 E+11 |
| ! ! | a
i . 3 ? | i !
| Mass Density (kg/m“} ’ 1522 i 1522 | 1522 5
| t § f %
{ Poisson's Ratio ! 0.360 i 0.360 i 0.360
{ { : i i
i i i i
i Cross-sectional Area (m2) g 7.723 E-03 ; 7.732 E-05 ; 1.013 E-04 |

! s

, Area Moment of Inertia (m*) | 4.019 E-02 | 2.958 E-05 | 5.120 E-05 |

Shear Area Ratio

1
i
!
!

Calculated w, (Hz)

1 0.48785 0.00827 ; 0.00760 i

SUUNPUUII SRR SO
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SELECTED MODAL FREQUENCIES OF THE  ANTENNA
STRUCTURE, FOUND BY FINITE ELEMENT DYNAMIC
ANALYSIS OF THE 162-DEGREE~OF-FREEDOM MODEL.

. Mode | FEA % Significance i Near ; Predicted

' -‘ : ‘ &

i { H i i

! { Freq. (Hz) | ! Harmonics | Freq. (Hz)

i | | § | :

E | | i

f f ! ; '

i 7 ! 0.0076093 | First mode of diagonai members | 1 * ws ' 0.C0760

— .. f z

;19 ' 0.0082734 : First mode of cross members Py ox W, ' 0.00827

5 : ! g i

': ] ! |

i 39 i 0.030699 ; Second mode of diagonal members ; 4 * @4 i 0.0304:1

1 % !

I 49 { 0.033379 | Second mode of cross members Lgox @, I 0.03307

i i ] ! :

E 67 E 0.072656 i Third mode of diagonal members 5 g * wd é 0.6842

H i : H

i i 1 ‘ ;

| 97 | 0.13436 i First structural mode P16 * w i 0.12299

; 1 ; f : -

| 98 | o0.18798 E Second structural mode j 25 * w, | 0.17085

1 | ! ; j .
s | | 5

i 99 i 0.20478 . Third structural mode i 25 * . 0.18752
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analysis. This is due in part to the different physical properties of
the elements used in the two models. The first three structural mode
shapes are shown in Figures (5-5} , {5-8) , and (5-7). As expected,
the cross members and diagonal members, as well as the structure, are

vibrating.

The frequencies found by this analysis compare favorably to the
frequencies found by the 27-DOF analysis of the structure and by con-
ventional analysis of the members. These results indicate that a com-
plex finite element model is not needed for preliminary design pur-
poses. Instead, a simplified finite element model that represents each
member with a single element can be used to find the natural frequen-
cies and mode shapes of the structure as a whole, and conventional
analysis can be used to find the natural frequencies and mode shapes of

the individual members.
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FIGURE S-5. FIRST STRUCTURAL MODE SHAFE OF 16Z-DEGREE-
OF-FREEDOM MODEL.
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FIGURE S-&4. SECOND STRUCTURAL MODE SHRPE OF | 42-DEGREE-
OF—-FREEDOM MODEL.
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FIGURE S-7. THIRD STRUCTURAL MODE SHAPE OF 1&42-DEGREE-
OF-FREEDOM MODEL.
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Chapter 6
CONCLUSIONS AND RECOMMENDATIONS

This study develops a preiiminary structural design for the
antenna sticks and support structure using performance regquirements,
static analysis, and consideration of environmental spacecraft torques.
It represents the first step in the design cycle, with the correspond-
ing data inconsistencies that arise when the design is in flux. The
overview of the structure's free vibration modes in Chapter 5 is the

beginning of the first design iteration.

The preliminary design phase must of necessity make assumptions.
These assumptions should be checked by further analysis as the design
cycle progresses. For instance, the antenna stick are designed based
on the assumption that an accurate assessment of the joint positions
can be made. Considerable development will be required, however, to
design a system capable of performing this assessment within the 1imi-

tations imposed by spacecraft configuration, environment, and power.

The quasi-static analysis that develops estimates of member axial
loads implicitly assumes that the spacecraft spin axis is aligned with
the spacecraft angular momentum vector. If significant nutation is
present (as it may be with relatively low spinrates), this will not be
the case. Additional analysis is thus desirabie to verify the design
loads used for the cross members and diagonal members. The axial loads
induced in the antenna sticks should also be checked; the preliminary

design assumes that axial loads are such that buckling does not occur.

The numerical analysis that helps determine a spinrate for the
spacecraft (Chapter 3) is based on a "spacecraft” that consists only of
the three antenna sticks. In future iterations, the anaiysis should
use the complete preiiminary structure as the model, as changes in the

spacecraft's mass moments of inertia alter its response to
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environmental torques.

Some problem areas have come to light during the preliminary
design phase. Cne is the dependence of spacecraft spin stability on
the structural mass moment of inertia ratios. Any spacecraft will tend
to favor spinning about the principal body axis that has the highest
mass moment of inertia. To insure that the spacecraft will spin about
the z-axis, the ratios of mass moments of inertia Izz/lxx and Izz/jyy
must have values greater than 1. In some "rigid" spacecraft, values of
1.05 for these ratios are sufficient. In a large flexible spacecraft
such as this design, however, values of 2 or greater are desirable. In
the preliminary design, these ratios have values of about 1.3, which is
not sufficient to insure that the spacecraft will stay spinning about
its z-axis. The preliminary configuration may have to be altered to
remedy this. As the mass of the antenna sticks decreases {(as it would
if truss columns instead of thin-waliled round tubes were used as

antenna stick segments), Izz decreases faster than I,  or Iy which
further reduces the value of the ratios. Any attempt to minimize the
mass of structural members must therefore be tempered by consideration

for spacecraft spin stability.

Another problem area 1is vibration: the preiliminary spacecraft
design may not be controliable. If this proves to be true, it may be
necessary to redesign or relocate the members in order to raise their
harmonic frequencies and decoupie the vibrational modes. Some form of
structural damping will be required. The response of the structure to
forced vibration (such as that caused by thruster firing) needs to be
studied in depth, as it may induce significant member loads (which have
only been estimated in this work) and severely impact antenna stick

displacement error.

A change in the basic support structure configuration may allevi-
ate some of the problems. Surprisingily, limiting the mass of the

spacecraft may not necessarily be important in this design. The
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antenna stick segments can be made shorter so the number of cross
members can be increased. Different diagonal configurations are possi-
ble as well. Lumped masses can be added at joints if necessary to
increase moment of inertia ratios. Additional members may be inserted

where helpful.

To keep this study to a manageable size, many issues vital to the
design of a large spacecraft are not considered. Some of these issues
are assembly in space, deployment, thermal distortion, controllabiiity,
and the placement and mass of necessary spacecraft components such as

solar panels and thrusters.
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APPENDIX A: DISPLACEMENT ERROR SENSITIVITY STUDY

The beam equation, which relates transverse displacement w(x) of a
beam to its bending stiffness EI and transverse locad per unit iength Q,

is

27 2 1
Aje 1w | = e

dx2L dx 1 (4.1)

For a beam of length 2L with a uniform bending stiffness EI = EoIo’

subjected to a uniform transverse load per unit length Qo’ integration

of the beam equation yields

4
Qox 3 2
- - 4 Ax_, Bx_ +
Wolx) = 24 1, v Ty v tx D (A.2)

The four constants A, B, C, and D are found using the boundary
conditions of the problem. For a simply-supported beam, the hinged
ends dictate that both (a) beam displacement and (b} moment be zero at
Xx = 0 (a hinged joint cannot support a moment). The other two boundary
conditions arise from symmetry, and require that both {(c¢) shear stress
and {d) beam slope relative to the unioaded position be zero at x = L
(the beam center). Slope, moment, and shear stress are proportional to
the first, second, and third derivatives of the beam displacement,

respectively. When substituted into {(A.2), these boundary conditions

determine the constants:

w(0}) =0 +» D =20 (A.3a)}

w''(0) =0 » B=20 {A.3b)
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Q.-
W'UT(L) =0+ A= - oo (A ae)
“O‘O A.3C )
3
- QOL‘
wil) =0 ~ C= 77 (A.3d)
c 0

Thus the solution for the displacement wo(x) of a simpiy-supported

beam that has both uniform bending stiffness and transverse load is

4
.
W (x) Q" ; x* _ ax® . 8% 3
o 24EoIoL L4 L3 L | (A.4)
The maximum displacement occurs at the beam center (x = L}, and is
given by
SQOL4
WolX) = o4E 1 (A.5)
0“0

The dispiacement w(x) for any beam with four distinct boundary
conditions and uniform properties (both EI and Q constant) can be
determined by the procedure outlined above. This fact can be used to
determine the discrepancy between beam displacement calculations that
assume a constant bending stiffness EoIo and calculations that ack-
nowledge the presence of an imperfection in EI. The discrepancy will
be referred to as "dispiacement error." Displacement error is derived

below for three cases:

Simply-supported beam with step imperfection in EI
Clamped beam with step imperfection in EI

Clamped beam with sinuscidal imperfection in EI
When the amplitude of the imperfection is equal for all three
cases, the size of the displacement error is greater for the clamped
beam with a step imperfection than for the clamped beam with the

sinusoidal imperfection; displacement error is greatest for the
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simply-supported beam with the step imperfection.

Simply-Supported Beam with Step Imperfection i I

Assume that a simply-supported beam of length 2L has a step
increase of amplitude 6 and width 2«0 in its bending stiffness EI, as
shown in Figure (2-1). We can use the symmetry of the beam properties
to justify solving the beam equation over the interval x = 0 to x = L

instead over the entire length of the beam.

Consider the beam section x = 0 to X = L to be composed of two

different beams: Beam 1 has a bending stiffness of EI = E 1 dis-

<o

placement Wl(x), and exists over the interval x = to X = L{1-«}); Beanm
2 has a bpending stiffness of EI = Eozo(1+5), displacement wz(x), and
exists over the interval x = L(1-a} to x = L. By continuity, both
beams must have the same displacement and derivatives at x = L{i-«a}.
These conditions, combined with the simple support at end x = 0 and the
symmetry condition at x = L, result in eight boundary conditions which

i ] for
determine the constants Al’ B C D, for wl(x) and A2, 82, Cg, D2 for

17 Y1 "1
wz(x):
Wi (0) =0 » Dy =0 (A6
let(o) =0 = Bl =0 {A.6b)}
QpL
W lll(L) = 0 > A = — .
{
2 2 Eolo\l' ) (A.6c)
3
Q,L

wo'(L) =0 » Cy = 3E I_(1+8) e (A.6d)

QOL . ) .
wl“?(b‘ba) = W2 (L“LQ) -+ Al = - 5010(14— )Ll“-‘(.i—u)éf (A.Ge}
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2 2E 7 {(1+8) (A.6f)

Q_ L

' T — t T '—”__“O‘m"" + “2*'%
W,'(L-Lo) = wy'(L-Le) » C; = 651 (1- 6)‘(2'a)(1 a)“6+21] (A.Bg)

g it (1-0?

W (L-Lo) = wy(L-La) =+ D, = - EZEOIO(EZEE (A.6h)

The complete solutions for the two dispiacements are

Q,L ‘o o
p e X 48y - 2R (1o00)8]
wl(x) - 24E I (1+0) i 74(* 6) 73&_ ( (X)é‘
e85 T ey (1-)? < 2]}
. i Jj (A.7a}
4
%t [t ax® ex® 2
WalX) = 24E 1 (140) \ .2 3 5 (1778
o} 0( ) L L L L
ax! 2 ’
« )
+ == 81 - (1 8
Tl 2 + 3(1-a)"8] (1-a)" 8¢ (A.Tb)

These solutions can be verified by realizing that the substitution of
8 = 0 reduces both equations to the equation for w o (x) in (A.4).
Verification can similarly be found by substituting o = 0 into W, (x}

and W,(L), or « = 1 into w,(x) and w,{(0).

The displacement error for the two beam sections is the difference
between the displacements given by (A.7) and the displacement wolx)

from (A.4):
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4,
I, ou ! 3
€.(x) = w ({xX) - w,(x} “"—Q—“‘““"‘ oL 2542
1 o' 1 24E 1 _(1+8) .3 L (A.8a}
L ¢ 4 3 2
€,(X) = W _(X) - wo{x) = -“99 ****** R SN 83 (1-)?
2 0 2y 24EO:O<¢5)‘ -4 -3 2
+ é_}f -1 — 2\ -+ b - 4‘?
- T (-1+6a-3a”) (1-o) | (A.8b)

A plot of the normalized displacement error! over the beam half-
length is shown in Figure {(A-1) for four values of «. In this plot,

the normaiized value of el(x) is plotted in the range x = 0 to

It

X L(1-a), and the normalized value of ez(x) is plotted in the range

X L(1-a) to x = L. The location on each curve where x/L = (1-a) is

the location where the two beams meet. Note that for a given o, the
maximum value of €,(x) is always greater that the maximum value of
Gl(x). This indicates that we can find the maximum displacement error
for the simply-supported beam with a step imperfection in EI from ez(x)
alone. A check of the first and second derivatives of €,(x} (with
respect to x and, separately, with respect to «} confirms that the max-
imum value of €,(x) occurs for « = 1 and x = L. Therefore, the maximum
displacement error for a simply-supported beam with a step imperfection

in EI of amplitude 8 and width of 2« is given by

1. The displacecement error is normalized by multiplying by
I 144/
24E0‘0(1 OL

_4
QOL 8
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The sensitivy of displacement error € to the amplitude of the
imperfection in EI is of the form 6/{(1+8), which reduces to a linear
form for very small values of & (1>>8).

EI

Clamped Beam with Step Imperfection i

The solution for the displacement wo(x) of a clamped-clamped beam

with length 2L, uniform bending stiffness, and uniform transverse load

is

L4

PR - I S b
o 24EOIOi L4 L3 L2 j (A.10}

The maximum displacement occurs at the beam center, and is given by

o

-0

Woll} = 34F (A.11)
00

Consider a clamped-ciamped beam of length 2L, with a step imper-
fection in EI identical that in the simply-supported case. Again, con-
sider the beam section x = 0 to Xx = L to be composed of two different
beams: Beam 1 has a bending stiffness of EI = Eozo’ dispiacement
Wl(x). and exists over the interval X = 0 to x = L{il-a}; Beam 2 has a
bending stiffness of EI = E I (1+8), displacement w,{(x), and exists
over the interval of x = L{l1-a) to x = L. The boundary conditions at
the center of the beam and at x = L{(l-«} are the same as in Case
The clamped ends require that both (a) beam displacement and (b} siope

be zero at x = 0. The resulting constants are
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Qy
w, "(L-La) = wz"'(L—La) Ay = - E—ngfigf{l + (1-ca)é]
wl"(L—La) = wz‘ (L-La) =~ B1 = 82
QL2
wl'(L—La) = w,'(L-La) ~+» B ——~'[(1 o} 5 + 1]

17 SE I (1+8)

5Q0L45(1—a)4

W, (L-La) = wy(L-La) =+ D, = 24E 1 _(1+8)

(A.

.12¢)

.12d)

.12e)

.12g)

i2h)

The complete solutions for the two displacements, which can be verified

in the same way as the displacements in the simply-supported case,

,W“EQP4 [ _ax° ax®
wl(x) = 24EOI (1+6)1L—(1 +8)- L3 [1+(1- u)6]+L [1+(1-a) 5]}
oL :

{4 3 2 )
- A X1 (1003 -85 (1-00 %845 (1-00 )

WolX) = SAE T (1281
2 24E T (1+8) 14 (3 | i

The corresponding displacement errors are

-4

Q L @8 1 1
—0 éx éx. 2
€.(x) = — | ¥ 3% (3-34+a”) |
! 24EoIo< B AEEE J
Q ts a4 3 2 n
Gz(x) = ﬁ;%ﬁ—ixz—éﬁ“%-éxz {3a- 30(2"'0( )*— {1-a) “5(1 o) i
0 o( ' )LL L L i

(A.

are

13a)

.13b)

.149)
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A plot of the normalized displacement error over the beam half-
length is shown in Figures (A-2) to {(A-5} for different values of «.
Again, the maximum displacement error occurs in ez(x; at x = L. The
error is maximum for « = 0.4; this differs from the simply-supported
case, in which the error is maximum for o = 1. The maximum displace-

ment error for a clamped beam with a step imperfection in EI of ampli-

tude delta and width of 2¢ is given by

- 152 6 _ 152 _ .
max € = 3125 24F 1 (126) 125 (1+3) "o(L) (A.15)

Again, the sensitivy of displacement error € to the amplitude of the

imperfection in EI is of the form 8/(1+8).

Clamped Beam with Sinusoidal Imperfection i

EI

Jd
o}

Consider a beam of iength 2L that has a sinuscidai imperfection

EI of the form

E = FE 7 ¢ - 3 JoyiP.¢ 1
BT = E I (1 + 8siny ) (A.16)
where n is the number of half-waves in the sinusoid (Figure A-6). Note

that n must be odd to maintain symmetry of beam properties about x = L.
Assume that the beam equation (A.1) can be solved using a perturbation
solution of the form

2

wix) = w (x) + dwy(x) + 87Wy(x) + ... (A.17)

ol
where Wo(x) is the dispiacement for a clamped uniform beam given in
(A.10). Assuming that the first perturbation term is satisfactory for

an approximate soiution, the displacement in (A.17) reduces to
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FIGURE &-&. POSTULATED SINUSOIDAL IMPERFECTION IM
BEAM BENDING STIFFNESS EI. Imperfection has the form
sin{nEx 2L, with an amplitude of &. Note that n must
be an odd integer to maintain symmetry.
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w(0) = 0 (A.19a}
w'(0) =0 {(A.19b)
w' (L) =0 (A.19c)
w 't (L) =0 (A.19d)
The resulting solution for wl(x) is
e s S8 T x s e e ane
otot(nm)“i2L (nm)“i (nm) ’ ’
S B 90 O O
am) 2 L 13 (a2 (A.20)

Note that as n tends to infinity, Wl(x) tends to zero. The dis-
placement error is found by subtracting wo(x) from the displacement

w(x) in (A.18), which results in
€(x) = 5W1(x) {A.21)

Normalized plots of e{x) vs. x/L for the first four values of n (Fig-
ures A-7 through A-10) show that the maximum displacement error aiways
occurs at x = L. The maximum displacement error is greatest for n = 1.
Thus, the maximum displacement error for a clamped-clamped beam with a

sinusoidal imperfection of amplitude delta is
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QL
= 0.0 —=—— 4§ = (.51 & {1,
max € 0.021 E - 6 5 Wl ) (A.22)
o*o
Note that the dependence of €(x) on 6 for this case is linear. Recail,

however, that this solution assumes that the vaiue of § is small.
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APPENDIX B: INPUT DATA AND CALCULATED PRECESSION
FOR SPINRATE DETERMINATION

! i a o 3417 i H T g ! 7 . 9 -
T Q i AT ; radius ? mass ; *ex (107} ; I, (107} ’ precess
1 { 90 | 8.642 | 382.8 1.030 : 1.373 | 0.806
" l ; + ; .
' 2 .45, 14.33 . 507.3 | 1.365 . 1.820 ; 0.503
i T T T ? ! | :
; 3 ; 30 , 19.80 626.9 ; 1.687 | 2.249 ; 0.374 ;
I 41 220 25.20 | 744.8 ' 2.004 | 2672 | 0.811
i ! ! i , !
| 51 18! 30.55 | se1.8! 2319 | 3092 ! 0.251 |
F—t ‘z + i a + .
| 6 | 15 | 35.89 | 978.5 | 2.633 i 3.511 I 0.212 |
S — ; s i ; :
| 7} 12 | 41.20 | 1095.0 | 2.947 { 3.929 | 0.191 |
] | ] T :
[ 8 i 11 , 46.52 ; 1211.3 § 3.260 | 4.346 | 0.179
i ' } H
; 9 E 10 3 51.83 i 1327.3 { 3.572 5 4.762 E 0.155
i10! ol 57.15 | 1443.3 ! 3.884 | s5.179 | o0.161 !
s i | i i i j ;
i ¥ 4 T T + 1
111 i 8 | 62.44 | 1559.4 { 4.169 i 5.595 i 0.130 |
i i i H i )
r 1 ' 1 ! a ! '
, 12 i 7 67.74 : 1675.1 4.508 g 6.010 | 0.117 |
T ! H 1 ] T ,
f 18, 7, 73.08 | 1791.2 ' 4.820 | 6.427 | 0.112
H i : : i : f
f1a! 6 78.35 ' 1907.0 ; 5.132 ! §.842 | 0.105 |
: i i : i ;
151 6] 83.64 | 2022.7 | 5.443 % 7.257 | 0.102 |
Symbois:
Q spacecraft spinrate (rev/hr)
At integration time step {sec) % (spin period)}/40
radius radius of cylinder used to model antenna stick
cross-sectional area (inches)
mass total spacecraft mass {siugs) = 3(1.15)mS {aliows
15% for antenna stick joints)
zxx mass moment of inertia of spacecraft about its
‘ . 2 - 2
- ~F = 7 -
] x-axis (slug-ft~) Loy = Smss
iyy mass moment of inertia of spacecraft about Iits
spin axis (slug-ftz) = 4mss2
precess calculated spacecraft precession after 24 hours

due to solar pressure and gravity gradient torques ({(deg)
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APPENDIX C: QUASI-STATIC EQUILIBRIUM ANALYSIS OF
A NINE-MASS RIGID BODY MODEL

The maximum axial loads carried by the members of the proposed
tructure can be estimated by analyzing the reaction of the structure
to control thrusters in a quasi-static equilibrium state. The worst-
case loads found from this analysis can be used as design iocads for the

structural members.

Assume the structure is a rigid body consisting of nine point
masses and 21 massless connecting members (Figure 4-2) in equilibrium
under the external load imposed by control thrusters (note that the
tension-only cross members are excluded). The point masses are located
at positions corresponding to the two ends and the center of each
antenna stick. Each point mass has the mass of one-third of the
antenna stick, or m_/3. When a force is applied at some point in the
structure, each point mass has inertial reactions %o baliance the
applied translationai and rotational ioads. The massliess conrnecting
members of the structure must then carry internal liocads to maintain

equilibrium of the point masses.

If a control thruster is firing in a known direction at a known
position in the structure, the inertial reactions of each point mass to
the thruster load T can be determined. The translational acceleration
acting on each point mass can be found by dividing the applied force T

by the total mass of the structure mB {note that mg = Sms):

3m (C.1)

This translational acceleration acts on each point mass to produce an

inertial reaction FR of magnitude
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(0o

.

v
Wi

in the direction opposite of thruster joad T.

The applilied thruster load aiso creates a moment {(or moments) about
the center of gravity of the structure. Suppose that the thruster load
T has a component that creates a moment Mu about a principal axis u
that passes through the center of gravity. if the structure has a

mass moment of inertia IuB about u, then the moment M, acts on the

structure to produce an angular acceleration given by

=
o
;
(@]
[}
N

This angular acceleration acts uniformly on each point mass, so that a

mass of mS/S with a moment arm of length ry about axis u will experi-
ence an inertial reaction of magnitude
m_ T
ms . ls _—E
I

r Q. =

F = = —_
3 u u 3

gu (C.4)
The moment vector of each inertial rotational reaction must oppose the
appiied moment vector. For example, if an appliied load induces a posi-
tive moment, the inertial reaction at each point mass must be a nega-

tive moment.1

if the spacecraft is rotating with spinrate Q {(with Q in rad/sec),
an additional acceleration QZR acts in a radially outward direction on
each point mass. This acceleration produces no net inertial reactions.

because the force vectors it produces sum to zero.

direction of rotational vectors.
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The thruster loads, inertial reactions, and rotational loads at
each joint reduce to three equations (one each in the x-, y-, and z-
directions) that express the loads in terms of the thruster lioad T.
Local equilibrium requires that the internal forces in the massliess
members connected to a joint exactly balance the external forces acting
at that joint. Each of the nine joints has three local equilibrium
equations (corresponding to the three appiied load equations). This
results in 27 simultaneous equations that determine the loads in the 21
massliess members in terms of the thruster iocad T. The member loads are

determined in this fashion for three load cases:

Thrusters firing at point 6 (center lievel)
Thrusters firing at point 3 (top level)
Thrusters firing at both point 6 and point 3

Thrusters Firing at Point 6

Assume that control thrusters are firing parallel to each of the
three principal directions at point mass 6 on the center level of the
structure. The principal axes of the nine-mass model correspond to the
X-, y-, and z-axes of the model. One thruster is firing in the nega-
tive x-direction with thrust Tx’ the second is firing in the positive
y-direction with thrust Ty, and the third is firing in the negative z-
direction with thrust Tz‘ The structure is spinning about the z-axis

with spinrate Q. Figure (C-1) shows the applied thruster 1loads and

inertial reactions of the point masses for this load case.

Since the mass of each point mass 1is ms/g, the inertial reactions

to the translational force exerted by each thruster are the same at

each point mass, and are given by
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Yoz T/ ~ oz
y ty g (C.3b;
FZ = Tz/g {C.5¢)

where Fx and FZ act in the positive x- and z-directions, respectively,

and Fy acts in the negative y-direction.

All the thruster loads are acting at a point on the y-axis; there-

fore, no rotational moment about the y-axis is created by the thrusters

(My =0, so Fey

moments about the x- and z-axes,. Tx creates a positive moment Mz = RT

= ). However, the thrusters do create rotational

X
about the z-axis, while Tz creates a negative moment M = RT, about the

Xx-axis.

Since each point mass has a moment arm of length R about the z-
axis, each point mass has the same mass moment of inertia IZB about the
z-axis and the same inertial reaction to MZ_ The mass moment of iner-
tia IZB of the structure is IzB = 3R2ms; this, combined with the moment

Mz, creates an angular acceleration about the z-axis of

zB 3R mS {(C.6)

The resulting rotational reaction force at each point mass is given by

i O S
6z 3 z 3 ESRmSj 9

(C.7})
This force acts in a direction such that a negative torque is created

about the z-axis.

The reaction to the appiied moment about the x-axis is more diffi-
cult to find, because the point masses do not have the same moment arm

about the x-axis. A list of the moment arms and mass moments of
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inertia Ix for each point mass appears in Tabie (C-1j. The mass
moments of inertia of the individual point masses sum to a body moment

P

: : . 2 N e . s . .
of inertia IXB of 4s Mg {recall that s is one-half the length of an

-

antenna stick, so s = 500 m). The thruster TZ acts at distance

R = 28/\J3 from the x-axis to create a uniform negative anguiar

fomd

acceleration of

. M, (2s/ 3T, T,
Q‘( = T‘_“ = =
‘ “xB 432ms 2 I§sms (C.8)

The resulting rotational reaction to Mx at points 1, 2, 7, and 8 is

‘m ] \( T ! T
SR L TR B T
6x ;3)‘! ’{ |~ 9 9
¢ (\|3ji2 [SSmSj {C.9a)

31l J3sn| - 18 (C.9b)

The rotational reaction to Mx are points 4 and 5 is

Y TR T T
* = p—=—i =
\ S]
The rotational reaction to MX at point 6 is
Mg T : T
P yE e JBem L (C.9d)

2

The rotation of the spacecraft creates loads of magnitude 0 Rms/s which

acts in a radially outward direction at each point mass.
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TARLE C-1. MOMENT ARMS AND MASS MOMENTS OF INERTIA ABOUT
X=-AXIS IN NINE-MASS MODEL.

Foint Mase S Moment &rm about X-Axis | I

1,2,7,8 sd 1 + tanz3g® = 2s/03 4sZmg/F
3,7 =d 1 + t/coszzo® = J7esd3 752mg /9
4,5 s- tan30® =  s/43 sEmg s F
4 s/cos30° = zesd3 dz2mg /7

TARLE C~7. MOMENT ARMS AND MASS MOMENTS OF INERTIA AEBOUT
Y-AXIS IN NINE-MASS MODEL .

Foint Mass Moment Arm about Y-Axis j
1,2,7,8 dZs 2s2mg./ 3
3,4,5,7 =1 SEmg /3

) 0 0
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The above loads can be separateg into x, y, and z components for
each point mass. The total load acting at each point mass (inciuding
thruster loads) is given in Table (C-2) in vector form, where the ele-
ments FX, Fy, and F, represent loads acting n the positive x-, y-, and
z-directions, respectively. If we sum all the resulting loads and
moments (including applied thruster locads) in their respective direc-

tions, we find that the sum of loads in each direction is zero, so tha:

giobal equilibrium is satisfied.

Now that we have expressions for the external loads at each point
mass, we need to relate the external loads to the loads carried by the
massless members that connect to each point mass. Figure (C-2)} shows
the member numbering system used in the analysis. The 27 local equili-
brium equations are given in Table (C-3). In the table, the designa-
tion Fx# indicates the external load in the u-direction at point mass
number '#' (e.g., F 4 refers to the exterral load in the x-direction at
point mass 1). The designation Pi indicates the tensile axial ioad in

the i-th member.

The nine equations for points 1, 2, and 3 are soived as a set of

simultaneous equations to find expressions for PB’ 92’ 98, PS’ pj, 97,

P5, Pg, and P4. The nine equations for points 7, 8, and 9 are solved
S i i r P p

as a set to find expressions for 210 Pig Pig Pig. Pig. P14’ Pag:

P17, and P15‘ These expressions are combined with the equations for FX

and Fy at point 4 and F, at point 5 to find Py, Py, and Py, ALl 27
of the equilibrium equations can be used to confirm the expressions
found for the member axial loads. The 21 expressions for the member
loads appear in Table (C-4). Note that only cross members carry the
loads induced by spacecraft rotation. The maximum compressive load for
each type of member can be found by setting the rotation rate Q and
selected thrusters loads in each equation to zero:

antenna sticks:



91

&/FLZ + | BI/FLEl+6/ML - E/MzUSWe | &7 4
BIAFL + | BI/FLEN+&/ "L 81/ IEP-9/ 42U | ST/ 71+E[Z 4z0%ws | 8
BI/FL + | SI/ARLEN+4/ML —BI/7LEP+9/8zUW- | ST/ L+EfZ dz0%w- | 2
£/T1L - L/h18+ ErqzUus | 4712 9
8171 + &/0L ~BILTUEP-9 /MU= | 817 ]2 U | g
811 + /0L —BIALIEP+S /MUt | 8L I+E]Z MU | b
/1T 4 | BI/EIEP-&/™L - ErdzUSWs | 4717 £
81751 + | BI/RLEP-&/0L —BI/77UEP -9 /82U | BI/7L+E1Z 4200 | 2
BIAFL o+ | BI/FLEP-4/00 =81/ UEF+9/HzU W= | 81/ 7L+E1 2 HzU%- | ]
ik *4 4 1d

ONTH T4 3d%Y SH3LSNAHL MIHM S3SSY LNIOd NO 9NILOW

2 INIOd 1Y

Sav¥0T WWNEILX3 TZ2-0 318Vl




92

1T3A0ON AQO8 AdI91Y SSVW - 3NIN
JHL H04 WNIYEFITIND03 1vID01 NI SAVv01 ¥3gW3W 2-0 34N9id

m_n_ - @
g
©

4 )
£g - - @

0G9G5'92 =%
02016t =°g
-0¢f =9




TABLE C-3.
RIGID BODY
force components summed on that line of the table.

LOCAL EQUILIBRIUM EQUATIONS FOR

MODEL. "DIR"
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indicates the direction of

NINE-MASS

PT DIR AXIAL TENSION IN MEMBER
1 X +P2+(P1+2P7/43)(l/2) = -Fy,
1 Y +(P1+2P7/4?)(V§72) = -Fy,
1 Z —PS-P7/J? = -F,,
2 X -(P,+2P g /N5)-P,/2 = -Fy,
2 Y +J?P3/2 = -Fy,
2 Z -P6-P8/J? = -F,,
3 X +(P3+2P9/4?)<1/2>-P1/2 = ~Fyq
3 Y —4??1/2-(P3+2P9/J?)(4372) = -Fyq
3 Z ~P4—P9/V§ = -F,4
4 X +P11+(P8-P17)(2/4?)+P10/2 = -Fy,
4 Y +J?Plo/2 = -Fy,
4 Z +P5—P14+(P18—P17)(1/J?) = —FZA
> X1 -[P,+(Pg+P o) (2/N5) 1(1/2)-F = ~Fxs
5 i +[P,+(Pg+P 1) (2/V) T (W3/2) ~Fyo
5 Z +P -P o+ (Pg-P ) (17¥3) = -F -
6 X +[(PIZ—P10)~(P7—P16)<2/J?)](1/2> = -Fye
6 Y ~[ (P, tP )+ (Po+P ) (2/4) ](¥3/2) = -Fyq
6 Z +P4~P13+(P7—P16)(1/J?) = -F ¢
7 X +PZO+(P19+2P16/J?)(1/2) = -F,,
7 Y +(p19+2pl6/4€514372) = -Fy,
7 Z +P14+P16/f? = -F,
8 X -<P20+2P17/4?>-P21/2 = -Fyq
8 Y +{3T21/2 = —FYS
8 Z +P15+P17/J§ = -F,g
g X +(P, 2P g /ND)(172)-P /2 = -Fyq
9 Y —<P21+2p18/433(4372>-4§?19/2 = -Fyq
9 Z +P13+P18/J§ = —F29
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TARLE C-4. MEMBER LOADS INDUCED IN NINE-MASS MODEL WHEN
THRUSTERS ARE FIRING AT FOINT &. “Type" refers to member
type: 8§ = antenna stick, T = cross member in support
structure, O = diagonal member in support structure.,

Pt | TYPE axIalL TEMSION IN MEMBER
1 C + JBmgnzrss + 2Tery - f3Ts27 - Tasts
z C + Jam nzRoT - 3Twrs27 = Tarim
3 C + JEmnERT + Twsv o+ 23T 27 4 Tasw
4 5 + Twsé + JEATLA1E ¢ 11T2r38
5 5 + Tw/é = JETes18 - Tar3s
4 g + Tasts
7 D -~ J5Twre + J15Twrts + [STar12
2 D 0
7 D - I5Twrs - J15Tr18 - [5T2/12

10 C v dEmgnER/? = Twre + 2J3T.r27

11 C + fam nzrsw - JaT.sz7

12 C + amgnzrse ¢ TTwsw o+ afaTeszy

13 5 0 Turd 4 BT 18 - 11T2038

14 5 b Tusé - J3Tes1E8 + Tar3s

15 5 - Ta2r1E

14 D - J5Twrs + J15Tort1e8 - J5T2r27

17 L Iy

15 D - fE5Twrs - JisTor18 + J5T2012

17 C + JEmgnERsy + 2Twsy - JET.s27 ¢+ Tasis

|

20 C + JEmgnzrss - JaTeszz v T2s1m

21 C v BmgnER/P ¢ Taers + 2f3Tes27 - Tasw
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(C.10a}
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diagonal members:

e

P =-,4r5

0 /6 - ‘Ajls'ry/la - WA5T,/12 (C.10¢)

X

Verification of Loads by Finite Element Analysis

The loads found by the conventional analysis above are confirmed
by static finite element analysis. The SDRC "SUPERB" finite element
software is used for the analysis. The model consists of nine nodes,
located at the "point mass" positions, and 21 linear beam elements,
located at the "massless connecting member"” positions. The bottom
level nodes (corresponding to point masses 7, 8, and 9) are partiaily
restrained to prevent rigid body motion, such that nodes 7 and 8 are
allowed motion in the x-direction only, and node 9 is allowed motion in

the y-direction only.

If the spinrate Q is assumed to be zero, and all thruster lioads
are assumed to be 4.45 N (a one-pound thruster load), then numeric
values can be calculated for external loads acting at ail nine of the
point masses (Table C-5). These loads are applied to the nodes in the
appropriate directions to simulate the thruster and inertial reaction
loads acting on the structure; however, no loads can be applied in the
restrained directions on nodes 7, 8, and 9. The finite element
analysis calculates the inertial reaction forces at each node, and

gives an output listing of the resulting nodal force balance.
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TABLE C-5. NODAL LOADS APPLIED TOQ FINITE ELEMENT MODEL TO SIMULATE

THRUSTERS FIRING AT POINT 6 (T_ = T =T, = 4.45 N, 0 = 0).

! Los S | z
§ Node : F_ (N) ) ry (N} i FZ (N} ?
§ ! s ! |
| 1 | 0.24722 | -0.49444 | 0.24722 |
{ | ] i i
H 1 T ; !
5 2 : 0.24722 ; -1.3509 | 0.24722 |
{
| ! ! f E
{ 3 | 0.98889 | -0.92265 | 0.98889 |
p % f t i
{ 4 | o0.24722 | -0.06625 | 0.24722 !
! | | i j
: 5 ; 0.24722 i -0.92265 | 0.24722
{ ! | i B
, 6 | -3.4611 | 3.95556 | -3.4611 |
i i i i 4
: 7 ; :
b7 1 o.24722 1 0.36196*% | 0.24722% |
! f ! f i
: : ‘ !
8 ; 0.24722 | -0.49444*% | 0.24722%
s f { ! 2
| 9 | 0.98889%
i { i

~0.06625 i 0.98889% |

*¥ Because nodal motion is restrained in this direction, this load is
not applied to the finite element model. Instead, this load appears as

a reaction force in the finite element analysis output.
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The member loads calculated by the finite element analysis for the
structural members are compared to the loads found by conventional

2 The table

analysis {assuming 1 1lb thrusters, with 0=0) in Table (C-6).
shows that the finite eiement analysis confirms the load values conven-

tional analysis to three significant digits.

Thrusters Firing at Point Mass 3

To find the member loads that are induced by control thrusters
firing at point mass 3, conventional analysis is used (in a manner
similar to the above analysis) to find the external loads acting on
each point mass. Figure (C-3) shows the inertial reaction loads and
spin loads for this analysis. The translational inertial reactions and
spin loads are the same as if the thrusters are acting at point mass 6.
However, some of the rotationali reactions differ because the thrusters

are no longer acting at a point on the y-axis.

The thruster load T, acting at point 3 creates a moment M, = STy
about the y-axis. The moment arm and mass moment of inertia Iy about
the y-axis for each mass point are listed in Table (C-7). The mass

moment of inertia IyB of the structure is 432ms, the same as Iy The
angular acceleration created by My is éy = Tx/4sms. The resulting
negative rotational reaction at points 1, 2, 7, and 8 has a magnitude

of

Foy = To/6 J2 (C.1la)

The negative rotational reaction at points 3, 4, 5, and 9 has a magni-

tude of

2. The output 1iisting of the finite element analysis contains some

load

values of magnitude 10°% to 10720, These are considered to be numericai

errors, and the affected values are taken to be zero.
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MEMBER LOADS INDUCED BY THRUSTERS TIRING AT POINT
(TX = Ty =T, =4.45 N, 0 = 0)
| Member | Conventional Analysis | Finite Element Analysis !
H ] i B
! ! i |
f f i {
[ P +0.4562 | +0.456 !
! ] ] i
i P, | -0.5327 | -0.533 §
] | | i
’ P +1. +1.
| 3 | 1.5598 1 1.560 Q
| P, | +2.5206 | +2.53 |
{ i { i
{ T T —
I Py | +0.1901 | +0.190 |
§ t t {
| P6 | +0.2472 | +0.247 |
[ i i
é P, : +0.1283 g +0.128 ;
[ p v g ;
: 0 0.000 v
| 8 | % i
{ {
Lopg -3.4451 ‘ -3.445 !
¢ i | ]
? PlO 1 +0.0765 5 +0.076 f
H i ! ¥
PPy -0.2855 g -0.285 |
i i - f 1
g Pio +5.7449 5 +5.745 g
| é _ E R ;
| P13 ! 0.1899 : 0.190 é
S | +0.437 | +0.437 ?
14y °n % ° %
N . : _ . i
f P15 3 -0.2472 i 0.247 ;
[ i H }
P Pig | -1.5301 | -1.534 ;
! | i !
L Py 0 ] 0.000 j
! I | L 2
: P18 i -1.7867 i 1.784 |
! . ! §
f Plg | +0.9506 i +0.951 %
- { - i
f Pao ! 0.0382 : 0.038 !
; le { ~0.5709 | +0.571

6
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Note that point mass 6 lies on the y-axis, and has no reaction to the

moment M |
&Y

Both Tz and Ty contribute to the moment M, about the x-axis;: MX is

a negative moment of magnitude

NN 7, Y 3 (C.12)

The moment arms and mass moments of inertia about the x-axis are listed
in Table (C-1). The rotational reaction to MX at points 1, 2, 6, 7,

and 8 1is

[y " 1 3y
FBx = Ty/s AERE Tz/g (C.18a;}

The reaction to Mx at points 8 and 9 is
Foo = ﬁ('ry/w i3+ T,/18) (C.13b)
The reaction to Mx at points 4 and 5
— + 7 ~ 1
Fox = Ty/12 3+ T, /18 (C.13c)

The angular acceleration Q_created about the z-axis by T, is the
same as in the previous analysis, so the rotational reactions to MZ are
the same. A summary of the external forces acting on each point mass

is given in Table (C-8).

Finite element analysis (without conventional analysis) is used to
find the member 1loads for this case. The nodal loads applied to the

finite element model appear in Table (C-9}. The modei is the same as
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TABLE C-9. NODAL LOADS APPLIED TO FINITE ELEMENT MODEL TO SIMULATE
THRUSTERS FIRING AT POINT 8 (T =T =T, = 4.45 N, Q = 0).

y 4

! § - | !
; Node | FX {N) ? ry (N) : F, (N)

| 1 | -0.61806 | -1.72168 | -0.33771 |
§ % f : i
' 2 | -0.61806 | -0.86528 | +0.40395 |
i | ! % |
! | | ; :
. 3 | +3.09028 | +3.15652 ; -3.03291 |
é i ! ! !
| 4 | -0.24722 | -0.92265 | -0.33771 |
1 | | é |
3 5 i -0.24722 ; -0.06624 | +0.40395 |
| .! T i 1
| 6 | -0.98889 | -0.49444 | +1.41709 |
H } i i }
i { H H 1
I 7 1 -0.12861 ! -0.12361% | -0.33771%!
1 5 ? i B
| ! ; | i
| 8 | +0.12361 | +0.78279% | +0.40395% |
! s ! Z
| 9 | -0.61806* | +0.30459 | +1.41709% |

| z ;

|

* Because nodal motion is restrained in this direction, this load is
not applied to the finite element model. Instead, this load appears as

a reaction force in the finite element analysis output.
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that used above. Again, the output listing of nodal force balance con-
firms that the calculated point mass loads are correct. The resuliting
member beam loads {assuming 1 1b. thrusters and Q = 0) are given in

Table (C-10).

Thrusters firing at Both Point 6 and Point 3

At some point during spacecraft marneuvers, it may be desirable to
fire thrusters at more than one joint in the structure. The resulting
member loads may exceed those calculated for a case in which thruster
firing occurs at only one joint. To check this possibility, we can
find the worst-case member loads induced when thrusters fire at both

point mass 3 and point mass 6.

Finite element analysis can be used to calculate the member loads
that result when a single thruster is fired at a given point mass loca-
tion. When this analysis is run for the case of a single thruster fir-
ing at point mass 6 in each of 3 principal directions (i.e., positive
FX, Fy, and FZ), then the loads resuiting from the firing of any combi-
nation of thrusters at point mass 6 can be determined simply by summing
the appropriate member loads from the single thruster analyses. This

process can be repeated to obtain member loads resulting when indivi-

dual thrusters are firing at point mass 3.

Through the principle of superposition, the member loads calcu-
lated for the first case can be summed with the loads calculated for
the second case to determine member loads that result when thrusters
are firing at both points. The results of the superposition indicate
that worst-case compressive member loads occur when thrusters are fir-
ing at more than one mass point. Calculating the member loads induced
by all possible combinations of thruster firings is too time-consuming
for a preliminary structural analysis. Therefore, the worst-case loads
found by combining the two analyses are used as design lecads for the

structural members; a multiplicative "fudge factor" should be used with
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BY THRUSTERS FIRING
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INDUCED

M - ~ . i i
| Member | Finite Element Analysis | Type i
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MEMBER LOADS

TABLE C-10.
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these results, however, to allow for the possibility that Ilarger
compressive member loads might be found if all possible combinations of

thrusters were analyzed. The worst-case loads are given in

Table (C-11).
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