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ABBTRACT

By applying hypersonic approximations to Ferri's linearized
characteristics method simple results were obtained for the shock shape
and surface pressure distribution for an unyawed conical body of
arbitrary crosse-section. Calculations were carried out for an elliptic
cone having 2 ratio of major to minor axis of 2:1, and a gemi-vertex
angle of about 12° in the meridian plane containing the major axis, | An
experimental investigation of the flow over this body cm}e‘iucted ata
Mech number of 5. 8 in the GALCIT hypersonie wind tunnel showed that
the surface pressure disiribution at zero angle of attack agreed quite
closely with the theoretical prediction. On the other hand the simple
Newtonian approximation predicts pressures that are too low.

Surface pressure distributions and schlieven photographs of the
shock shape were also obtained at angles of attack up to 14° at zero
yaw, and at angles of yaw up to za“’, at zero pitch. At the higher angles
of attack the Newtonian approximation for the surface pressures is

gquite accurate.
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LIST OF BYMBOLS

a speed of sound, referred to limiting velocity

ESP pressure cocfficient

M, free stream Mach number

353.’ gas constant

g - entropy

u, v, w velocity components in spherical coordinates,
referred to limiting velocity (See Figure 1.}

v local resultant velocity, referred to limiting velocity

Vl undisturbed velocity, referred to limiting velocity '

r, O, spherical coordinates {Se::e Figure 1.}

1 angle of attack -

ratio of specific heats

' angle of yaw

Subscripts

n, m " index of swmmation

o properties of the basic axially symmetric conical flow
c properties at the body surface

8 properties at the shock wave



. INTRODUCTION

Studies of the flow past elliptic cones are of interest for two
reasons: {1} As Van Dyke bag pointed outl, the elliptic cone will
probably become a standard of comparison for supersonic flow past
bodies without axial symmetry, just as the circular cone is used as a
standard of comparison for supersonic flow past bodies of revolution;

{2} Elliptic cones may have important aerodynamic advantages over
circular cones. For example, both theoretical and experimental
inwest;igatianag"g have shown that an elliptic cone may have significantly
higher lift-drag ratios than a circular cone of the same cross sectional
area per unit length.

Most of the theoretical investigations of the flow about elliptic
cones are based upon linearizing assumptions which are not valid at
very high Mach numbers. Even Van Dyke's second-order thaoryl, which
proceeds from glender body theory and includes the effect of the leading
non=linear terms in the equations of motion, cannot be expected to give
good resgults in the hypersonic speed range.

At hypersonic speeds the wellsknown Newtonian approximation {or
a suitable modificatioa)s has been quite successful in predicting surface
pressure distzibgtians, provided that the component of Mach number
normal to the surface is of order unity, or larger. But for 'flat”
bodies, such as a delta wing or aa elliptic cone of sigaificant eccentricity,
this restriction means that the free stream Mach number must be
extrerely high, or the angle of pitch {or yaw) must be large. For

example, the Newtonian approximation states that the shock wave



coincides with the bgdy surface, at least to first order. However, on
physical gréun&s the crosse-section of the shock surface for an unyawed
elliptic cone is expected to have a smaller accezﬁtr.&city than the body
cross-section, except possibly in the limiting case { Y = 1) Mma T
This fact must have a éigniﬁcam effect on the surface pressure distribution.
In view of these criticisms, it seems desirable to work out &
solution for the unyawed elliptic cone at hypersonic speeds directly from
the gasdynamic equations of motion. One attractive appmacia to this
problem is the "linearized characteristics method' developed by Ferri

and co=worker sz’ 6

, which congiders the flow about a body to be a
perturbation of 2 known basic none-linear flow field. Thus the flow
about an elliptic cone is considered as being a perturbation of the known
flow field about a circular cone. QOunly linear terms in the perturbation
quantities are retained in the differential equations and boundary conditions.
It sbould be noted that the linearization is with respect to ﬁeviationé from
a known basic flow field which ig '"close" to the actual flow figld, and
not with respect to deviations {rom the uniform flow upsiream of the
shock wave. This method should be a,pplicaéle for hypersonic as well
as supersonic flows, provided that the "exact” basic flow field is known.
Ness and Kaplita7 utilized Ferri's scheme and the resulis of
Kopal's computations for the unyawed circilar cone to calculate the
perturbation velocities for any body which employs the circular cone
flow field as a basic flow. Their calculation entails a stepaby-step
auwmerical integration of the governing differential equations for each

particular case. Now for aypwsonic flow this difficulty can be



circumnvented by employing the hypersonic approximation for the flow
over a circular cone obtained by Laesg. By expanding the velocity com-
ponents in 3 Taylor's series in the conical ray angle, Lees cbtained
simple approximate expressions for the velocity components, shock wave
angle, and ?fassﬁre coefficient. These approximate expressions give
results which agree very well with the actual values computed by Kopal,
provided that the hypersonic feim'iiarity parameter K = Ml ﬁoc is greater
than about one. By substituting these approximate expressious for the
circular-cone velocity components into the differential equation governing
the perturbation velocities for a body of naan:ireﬂai' crogs=gection, this
equation is greatly simplified. In fact simple algebraic expressions are
obtained {or these perturbation velocities {Part II}. Once these quantities
are known the surface pressure distribution and the Fourier coefficients
for the shock shapé are readily calculated.

The ultimate test of the theoretical analysis must be made by
comparing it with an "exact' solution or with experimental results.
Beveral experimental investigations have been made of the flow over
elliptic cones at low and moderate supersonic Mach nmﬁbers {up to about

Mach 3)> 90 19,

However, no experimental results were available at
hypersonic speeds. Therefore, an experimental investigation of the
flow over an elliptic cone was carried out in the i}.&LCIT M= 5, 8” wind
tunnel, in order to obtain surface pressure distributions and shock wave
shapes at zero angle of attack and also at varicus angles of attack and of

yaw. The description and resulis of the experimental investigation are

presented in Part I



II. THEORETICAL INVESTIGATION

A. Resume of Linearized Characteristics Method

By combining the continuity, momentum, and energy equations
for a non~viscous perfect gas, the following equations are obtained for

the case of conical flow:

vz + wa av vz
a a
2
1 Sw W wv i 8v sw
& i- - . + = 0
stn g T3 { &Z ) 22 { =m0 T4 T )
2

+wusin@+ wvecos ¥

2 |

where the directions of u, v, w, 9, and ¢ are shown in Figure 1.
Immediately downstream of the shock front, i.e., at 0 = 95,

the following relations existi:

(u)g = V, cos Qs
]

2 2 2 ., 2 -
" _ Lzl ( l«Vlycas es"vl sin” @_ sin” 3 )
e y +1 vy sings
2
-V, sind, sin” B

(w)‘;’8 = -V, sin@_ sinfcosp

Y -1 2 a 2 é - tan @
+ o (1= V" cos @, -~ V," sin” @_ gin” §) Wh;

(1)

{2)

(3)

(4)

(5)

(6)



‘where 8 is the shock wave angle, and ) is defined by

de
8

1
map = om v, dd (7

“The ghock wave angle L is expanded in a Fourier series:
o, = O, + Zem cosnd + Zemﬁ sinm e , (8}

where @ is the shock angle for the basic circular cone. In Ferri's
analysis only first order terms in 9 ns and 6#1 g Bre retained in the
differential equations and boundary conditions. To this approximation,
peries xapre‘senmtionsl of the velociity components which are consistent

with the conditions just behind the shock {ront are as {ollows:

w = u 4 ZOM u cosng + > @, u.  sinmd {9)
voE v o+ Zgna v, cosng + z O s Vo, Sinmo {10}
w & z n O w, sinng +Z mo__w, cosm¢ (11)

where U um, etc. are functions of 6.

By expanding u, v, and w in a Taylor's series around @ = Oos,
and recognizing that 8_ = Gg st (Ga - Gos)' the shock conditions
\ [Equations {4) - (6)] can be made to yield the following relations for

un,' u etc., at @ = 908, imﬁep@néenﬂy of n and m:

{u_} = {u_) = = V, gin @ ~ (v ) {ig)
n OQE 4%} 908 1 08 © qas
Y w1 1w VIZ cas‘?3 Gos
{v.} = (v ) = = e COS 0 {2V, - )
285s MmO yri oo es 1 vy sin’ 0
ov {
o
+ { =y g



6

' 1
(Wl = twpde = V) 4 e (v) (14)
. 0% m ch i sin @ o Ggs
Here u o and v o are the radial and normal velocity components corrvesponding

to the flow about a circular cone of semi-vertex angle 8 oc The shock

wave angle for the flow about the circular cone is @ ogr AtO=O_

(ue)gas = Vyco8d , ‘ {15)

2 2
Y ol ;l--»V:i cos Gas

(V ’ s = { } éi&}
0905 Y +i V, sin aos v
6vo . u, ¥ v cot 906 '
(3o e = - [% + - } (17
FA ‘
o6 1= (vn/ao) 0,

When the series for u, v, and w are substituted into Equation {1)
and only firste-order terms in Qnga.nﬁ ﬂmsa.rﬁ retained, three independent
equations result. As expected the guantities u, and vy satisly the differential

eguation goveraing axially symmetric conical flow:

v ov v
g I:Z - { 32)2] +v0c0t9+~5€~ l:ln( 53' )‘?' :’ = 0 {18)
o B+

The second equation is
év, | n® W
-5 * v, cot @ + 2&3} +

v ou v 2 {19)
= Yo 52 vy, ( aan aa) ‘ao) ° 24 Yo 2
) i o 2 )
“~{z)

5]

v, o u, Vo 2
(z=¥ w2 t{z=) cot@
¢ o

Vo zi‘ o 7‘1 :i?- ig
+{{§;) [ 1 - (vo/ao)z ]€ )€30 " ao)}un




The third equation is exactly the same as Equation (19) but with the sube
script n replaced by m.
In order to solve for W Voo and Wi two more relations between

U Vs and w, are needed in addition to Equation {19}, Ferri obtains

n
these relations from Equations (2) and (3} and the momentum equation in

the radial direction. To the first approximation in §_and §__ :

n
Yo T BG ¢ Vo '@@ (20)

i

o " . Sw . o
i -4 B vasmﬁ m—-+ugan~irvavn&ugwﬁmug*&vuw“«coae {21}

g
&
o
*
©
m“
0

(-rgw-g: ')Goa - is the rate of change of entropy with respect to

shock augle. By utilizing Equation (20}, Equation (21) can be written as

a

“o 1 o . . 9 : i
b LU (o, + w,_ sin @)+ Vo 7w (9, + W, sin 9) {22)

or,

9 (2 +3)/ -1

‘ e .18 1/ywi 3 o
w + w_ sin @ = t)’g‘) a, {~ v, sin @) v =, o ngde (23)

9,.09

The relations between 'um, Vin? and w _, are the same as Equations {20) and
{23), with the subscript n replaced by m. Equations (19), (20), and (23)
plus & knowledge of the wlues of Uos Ve and @ o8 enable u 0t Y St€

to be computed numerically.



The bauﬁdary conditions at the surface of the body enable one fo

determine the shock coefficients, @,  and 8, once v, and v _ are

g In

determined. The boundary condition at the surface of the body is that
the velocity component normal to the surface of the boedy be zero, or

for conical bodies:

de
v 1 <
‘*‘%)aa = wwu, T% (24)

The shape of the body as defined by 9 = 0 { ¢} is now also expws&ed in

a Fourier series as follows:
9, = 0 + Zﬂmcuand: + o . sinme {25)
One abgervas that (4:-} )goc is of order Gm , and w is of order 'Qm . BO

- that v is of order Gns Gm i e, (v)o = 0 to first order. Now v and
c

w are expanded in a Taylor's sevies about 6= @ . If only first order

terms in @ 9

‘ 3 e
ne? Imer 90 804 8 are retained then:

&vo _
Wg_ = (volg_ + Ugg= g (8 Soc
{27)
+ Z L evﬂ}ﬂg}@ cosnd + o (vm)gm sin m ¢
and
(w)ee & Zans {Wn)guc: nsinnd + Z ams (Wm}ecm m cos m ¢ {28)
and since (v)g .= 0, then:
, ¢
( { o o (Y ¢ >
v + ) @ _coBn + ) sin mdo }
, o)éw e 9oc ne : me ¢ (29)

s - Z o, {Vn)emc cos n Z s (vm%m: sinm ¢



&v
But (v =0 , and { Wa ) = 2{u} therefore,
0
o
e s 20 { =)
ns ne Vo Qm
“ (34)
9 20 { o}
me me ¥ Bw
The pressure distribution is obtained {rom the expression
2 Yfal |
P - i-V Y =08/ R
A vl Lwrrk e -1 (35)
i i '
The square of the magnitude of the velocity on the purface of the body is
5 , .2
v m[(u} + o _{u} cos n¢d + Z@ Lo fu ) sinmda]
,~ aew Z ng nﬁmc ms ' m gcc
(36)

[y

+ I:Zn 9., {Wn’ﬁm sinng + 2 me (Wm)g@c cos mcﬁ]

gince to the approximation accepted, (v)g z 0. Ferri shows that g%
L

is of order (0n 5)2 ; therefore, the entropy behind the shock front is
taken as constant in any meridian plane. Thus A sis equal to its value

across the ghock wave.
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B. Hypersonic Approximation

In this section, approximations valid for hypersonic flow are
applied to Equations (19} and (23} which will enable simple algebraic
expressions to be obtained for U Vo, and w .

First of all Equation (19) will be written in & more convenient form,

Solving for 8v Q/ao froxm Equation (18), it is easily seen that

ve “0 Vo 2 :
v av (Mg )+ (g2) oot d
az e E o .2
o Lo o=}
)

Therefore Equation {19) can be wriitten in the form

2/
v ntw,

n
W‘l’ VnCQta + Zun + m

v av v av ~ v
“33’2 W ¢ ;‘?"z"“a“ 7 ) [““"”‘a‘g’a] Vn 37
[¢]
o]

vo 2 Yo 8"0 o Yo
+ [(3‘:) ‘i':"g’(“o_*‘ W)(V'l)(a:)(a;'):} u
o

ov

The coefficients of u_, v " andw’l on the right-hand side of Equation (37)

involve only the axisymmetrical conical flow. This equation can be
greatly simplified for the case of hypersonic flow by making use of the
series representations for u o and vy, which were derived by Leeg in
Reference 38 . The series are the following:
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2. 1 3 4
u, = (u°)°oc [ln {¢ -Goc) + =y cot Goc (0-»90‘:) -a, (6 eoc) -a.-...:l

2 3 (38)
Vo = Mgy _ [-2 (0-0, )+ cot@  (0-0 )" ~4a,(8-0) ]

where 2
a, = Lcot®0 4+ apper | T )
4 - Z oc’ J{y-1y L ea 2 O,
) [+

In this analysis it is assumed that (0 - @ ) cot 9, i much less than one,
which implies thai the shock wave is '"cloge' to the body surface. I thig
assumption is made throughout the analysis, and if Equations (38) are

substituted into Equation {37), the following equation is obtained:

Bva noow,
7wtV cot @ + du_+ -
2 '
= ?1 { “a AZ )g { (6 - @ C’E Wavn + (6~0 c) Ya {39}
4 l - u, oC d ©
v‘oa A
PRy (808 “n}
o
Y4
u cot §
0 a1 Y.l L]
However, ( —memwr )} = - ¥ {40)
’ 1 U, aoc 2 v+ Hos Gm:
Thus Equation (39) reduces to the following:
Z :
an bW o~ 4 - ggc
$ v_cot® + 2u + — = { - yv_cot@ {41)
1 n n sin @ . y+1 ¢ . -9 ' 'n Tos

% This relation is derived in Appendix 1.
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In & similar manner, Equation (23) relating G, and wo is simplified
by utilizing the series for u_ and v_ valid for hypersonic flow. If in

addition, one makes the slender<body hypersonic approximation, then

~ 1 ~ 1 - .
cot 8§ = Ty T g e and Equation {23) reduces to the following form:

Z
. 1 ~u 9’51 ¢« 8 1
Y -1 o s 8 of \ 5 e \ &
u +w_sin@ = - { ) (*ﬁ*i(r)b“( ~)2 { g )}
a  n < ", O 7 oc v Y0s"%c
(42)

Now Equations (20) and (42) are used to write Equation {41) in terms of

w, only:
8%u 8u 2 | 0-9 ou
n + 1 no, (2 ‘_ n ) u . . 4 ( oC ) 1 n
80 v PLANE YD PR Vg B
: (43)
.”‘2[7”*“'“" o 37 lo—) 'z-c.—g_k"s (e Y‘%}
:’Z “ Us gcc 7R oc ' 0s ~ oc

Now it turns out that the second term on the right-hand side involving

ds/ a0 makes only a small contribution to the solution for u_, and the
contribution of the first term invalﬁng 3&1“/ 80 iz even smaller. Therefore,
a first approximation for u, is obtained by neglecting the first term on

the right hand side of Equation (43). Also, it is assumed that 1:1‘2/'9"’a is
much larger than 2, which is certainly true for & slender body. If these
asswmnptions are made, then the solution of the homogeneous equation for

u, is as follows:
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n
‘un)hcmagenegus = A0+ B9

mxn

. n N LoD |
‘Vn)hnmugeneoua = g = g (Ae BGV ) '

X {44}
i = 9 7
where A = 3005 (unjg 4 .,..,.., (v )9 |

o8 |

9
B = 1o “,[(u) . 28 (v ] |
| os n'e . n n'e o

Thus
08 , 0 0 ® .n
(“n’homogeneous = "t I (Vn)a os [( - ) - ('ﬁ';;) }

{45)

"
‘ os, o+l 8 .n=-l
(anh«amaganeou@ = 3 hf!i’ﬁ@ﬂ [‘-“6‘"‘ ) t {g—) }

L
no,. - g .o+l
3 oo, ([ -]

“The particular solution for u can be obtained by the method of

variation of parameters, as follows:



: ! : 8.t t
‘un)particular = 7 (—% > Y )‘%’ "'Zg"“ [(?’n - ‘F’H]

A correction to the {irst approximation {or u, is derived by
substituting the expreséiun for &un/ 5% from Equation (44) into the first
term on the right hand side of Equation (43). The method of variation
of parameters s then used to obtain a particular solution which is }a
correction to the first approximation for u . This procedure is carried
out in Appendix 2.

According to Equations (12), (13), {15}, and (16) the values of

(un)a and (vn)g depend only on the‘axisymmetrieal conical flow, as
o8 o8
follows:

= -(u), tan® = (v), (47)
o@w o8 090

(w )y
G &

B

v

Y =l . ‘
(Vn’ﬁﬂﬁ = -2 P31 (ua)ﬁos “(vglg sotd - (%752 ’0% (48)

o8

By utilizing Equations (17) and {39), one finds that

2
ov,, 2 B
(= do__ = - [%* FI T,C W“]

603

' Y -l
= «2{ul) - {v.) cot @
099@ Y +1 o'e 08

Therefore, (vn)c can be written in the following form:;
o8 '
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2 .
{‘fn}égs = m [3{"1«3)90@ - (va)ﬁos §et Qas] ' (49)

By substituting the series for u, anv v into Equations {47) and (49),
approximate expressions for w‘n’ﬁ and (Vn}ii are now obtained:
o o

B 3

8
ot 2
w('ﬁ"’")

@ ,
oB (50)

{u) = o« (u)
n@as Qg@c

~J

4
= . {a )
Y 1 Oeac

Q
1
Q
O
| e
(E—
f

Malo z tagle__ [ r (1+

When these relations are employed in Equations (45), the expressions for

(@), and{v) take the following form:
2 gmc n goc

u '] . ) 8
n oc & os o+l 0C el
¢ 08

~ 8 8
o3 [og e e ]

(2744 O8
{51)
v 9 0
A os kil L 0¢ =l
(2) = [e ™ 4 (g2 ]
u& gOﬂ Y+1 QOC 08
-1 it 1
+%[( as}n {08 ’IH':}
[51o4 3]
and from Equation {42):
(om ) e e qmmy L 2si Il o (=) (52)
u Qm sinﬁm g Qm ) uaf" 9 YR
U where
2 2 2
LY e} { 1 4, ) ( a! ) . 2 [ ’{‘%‘{“3 - 1) J
2 ucz 9, ' TR M, K, zy%z.(y‘_”
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and K. = M, ch . This expresgsion for

o (S )
&z QOC YR

is derived in Appendix 1.

‘The expressions for Qo Voo and w, are the same as those for

Bos Voo and W, but with the subscript n replaced by m. .

By using Equation (35) for CP and Equations (51}, (52), and {34) the
surface pressure distribution is calculated. Shock shape is calculated
using Equatipns (8) and (34).

Although the preéent calculation is carried out for a particular
elliptic cone, evidently the p'rocéeiure is applicable to a conical body of

arbitrary cross-section at hypersonic gpeeds,
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il. EXPERIMENTAL INVESTIGATION
OF HYPLRSONIC FLOW OVER AN ELLIPTIC CONE

A. Description of the Experiment

i, Model and Equipment

The experiment was conducied in the GALCIT 5 x 5 inch hypersonic
wind tunnel, which is a closed=-return, continuously operating tunnel. All
of the tests were made at a fixed reservoir temperature of 250°F and a
fixed stagnation pressure of 74 psi gage, giving a nominal tast section

Mach number of 5.8 and a Reynolds number per inch of 2. 2x 105. An

extensive description of the experimental facilities ie given in Reﬂferenc'e '
11,

The elliptic cone model was canstructa;& of brass, and the length
of the model f?cm tip to base was 4+3/16". The major to minor axis
ratio of the elliptic cross section was two; the major axis 'being 1-3/4"
long at the base, and the minor axis 7/8" long.

Twelve . 016" diameier pressure orifices were located around the
periphery of the cone in & section 1-15/16" from the tip. The angular
locations of the orifices are shown in Figure 2. Note that there are four
orifices which are spaced 90° apart, two along the ends of 2 major axis,
and two along the ends of a minor axis. These four orifices enabled the
model to be aligned with the flow direction.

The surface pressures were measured by means of a multi-tube
vacumxiwefemnced silicone oil manometer.

As shown in Figure 3, the model was mounted in the wind tunnel

on a 1/2" diameter sting which was supported by two vertical struts



18

emen@iug through the top of the test section. The vertical struts were
individually raised or iawefed by external controls to adjust the piich
angle of the model. It can be seen in Figure 3 that the rear vertical
strut is not connected directly to the sting but that there is an intermediate
short piece of steel. | This short piece of steel could be moved from side
to side by means of an attached wire passing through a hole in the side éf
the wind a&nnel. _Small corrections for yawmisaligmnem could be made
by pushing or pulling the wiré from outside of the wind tunnel.

In order to obtain angles of attack above ten degrees, it was
necesgary to use a sting with a ten degree bend where the sting attached

to the model.

Z. Test Procedure

The model was positioned on the tunnel axis and the tunnel operated
for at least one hour to allow the tunnel air temperature to stabilize.
The model was then adjusﬁed by means of the external controls so that
the preaéures at the orifices at the ends of the minor axis read the same,
~8nd this position was taken as zero angle of attack. Also the model was
adjusted so that the pressures at the orifices at the ends of the major axis
read the same, so that the yaw angle was zero also. Using this position
as a reference, the model was pitched to the desired angles of attack {or
yaw) and the surface pressures read on the manometer s. |
Pressure measurements were obtained for aagles'm‘. attack of GQ,
+ 20, 1}»4”, + 60, + 80. + 190, and + 140; and for yaw angles of + ?.o,
+ %0, + 69, + 8°, and ¢ m",, Schlieren photographs were also taken at

‘these angles of atiack and yaw. The pressure measurements are
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estimated to be accurate witiﬁnﬁ 1 per cent, and the angles of attack and

yaw accuraie within Yo degrees.

B, Resulis mxd Discusgsion

Schlieren photographs are shown in Figures 4 through 15.
By comparing Figures 4 and 10 for the model at zero angle of attack
and zero yaw angle, one sees that the distance between the shocl,: w{we
?md the bbd'y is greater in the meridian plane containing the minor axis
than in the meridian plane containing the major axis. Thus, the shock
wave is not an ellipse similar to the body, but is ‘pushed in" toward
the major axis and ‘pulled out" from the minoy axis. This shape ié
to be expected from phyesical reasoning, since there is a cross flow from
the high pressure sides at the ends of the major axis to the low pressure
sides at the ends of the minor axis. ‘This crosseflow tends to relieve the
pressure somewhat at the high pressure sides and raise the pressure at
the low pressure sides, thus causing a corresponding change in shock
- wave angle.

The surface pressure distributions are plotted in Figures 16
through 22, and the experimental pressure distributions are compared with
the pressure distributions predicted by simple Newtonian theory in
Figures 19, 20, and 21. Fora= GQ, the Newtonian theaﬁry predicts
surface pressures which are about fifty per cent too low on the low pressure
gides of ithe cone {Figure 19), but are very close to the experimental
values at the high pressure side. This result is expected from the physical
argument given above, i.e., from the eross flow fram high pressure to

low pressure sides. As o increases, the Newtonian theory becomes
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meore and more accurate (Figure 10). This result is also expected, since
at higher angles of attack the component of Mach number normal to the
surface is larger, and the shock wave on the high pressure sgide is

closer to the surface of the body.

In Figure 22 the experimental surface pressure distribution for
o= 07is compared with the predictions of Newtonian theory, Van Dyke's
second order slender body theory, and the praéem theory {(Part II).

The theory developed in Part Il gives results which are el&seat to the
experimental values, while ﬁi;‘he Newtonian theory predicis pressures
which are too low over most of the surface, and the gslender body theory;

also gives pressures which are too low.
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IV. CONCLUSIONS AND SUMMARY

i. By applying approximations valid for hypersonic flow to
Ferri's linearized characteristics method, simple algebraic expressions
for the perturbation velocities are obtained for an unyawed conical body
of arbitrary cross-section. Once these perturbation velocities are
determined, the surface pressure distribution and the Fourier coefficients
for the shock shape are readily calculated. The method is applied to
an elliptic cone baving a ratio of major to minor axis of 2:1, and a
semi-vertex angle of about 12° in the meridian plane containing the
major axis.

2. At zero yaw and pitch the experimentally-measured surface
preseure distribution over the elliptic cone at M = 5.8 is predicted very
closely by the present theory. On the other hand Van ﬁyke“é seconds
order slender body theory and the simple Newtonian approximation both
predict pressures that are too low, \

3. Schlieren photographs of the shock surface taken at zero
pitch and yaw in the planes containing the major and minor axes of the
elliptic crossesection show that the shock surface lies considerably
farf;her away {rom the body near the ex"xds of the minor axis than it does
near the ends of the major axis. This behavior is consgistent ‘with the
“relieving effect" predicted on physical grounde, and helps to explain
the caléulated and measured suriace pressure distribution.

4. As the angle of attack is increased the measured surface
pr&sau#a distributions agree more and more closely with the Newtonian
approximation. At the highest angle of attack {o = 1%’9} the Newtonian

approximation is quite accurate,
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5. Because of the encouraging results obtained for the unyawed
elliptic cone, it scems worthwhile to investigate Ferri's suggestion
that the flow over a yawed elliptic cone can be obtained by adding a
" contribution derived-from the flow over a yawed circular cone, provided

the angle of attack {or yaw) is not ''too large'’.
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APPENDIX 1

HYPERSONIC APPROXIMATIONS FOR

2 2
LS W () ANI (-—-—-————-g»% )

. . x}.}

& uf Qem la u@' Qac

The change in eniropy across a shock wave of angle 0 g 18 given

by the following expression:

Y |
2 . 2 7T ' y-T
a-(Aa)/R m[ (7+;} Ml" sin 96 :‘ [ Y41 }
{r=1) Mlz' sinz' Gﬁ + 2 EYMXB sinz @ = {r-l)
)
Thereiore, fcr constant 7 and R
2 2 2
' (M. sin” @ = 1)
YER zzl:'d (""'ﬁ‘)é& ):l =4cat90& ’ o ‘E: . 08 e
e, ‘ ‘. [2784, sia” o, - {=1)][0=1)M sl aaés»z]
w & he

Yos  [27k, - (7-n)][(7-1) 8,° + 2]

where K, = M, an . From Eqguation {5) of Reference 8 , it is easily seen

that

2 2
yo l-u o (enx ez
“ ( ﬁ‘z }aac = ZMZ
: "o 1
Therefore,
L , & 2
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& a® Yoc TH 1% L2V g (7.1



25

2
u
To obtain an expression for ( .- S 33 in ferms of

- A
lu@ o

{® - Qc}c" use is made of the fact thatat @ = 9

Y el l - ¥

{ ), .
Y+l uo Vo @05 To¥:

-

From Equation (39) it is seen that

2
u v cot @
Vel o - ~ 1 Y -l S + 1)
{ e ) = {( = ) cot® = - —
1 - %g LI Y+l YV e o8 2R N JUNEE

But 5 ,
u “ 3 ¢

' (o)
. - o ———————s
(7, B = Yo

Therefore,

2
u 1 y.p Cot Qos

o
{ =) =
T 0, c Z YT % v

% This relation is easily derived from Equations {15) and {16).
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APPENDIX 2
CORRECTION FOR FIRST APPROXIMATION FOR u, AND Vo
If the expression for Eun/ 89 from Equation {44) is substituted

into the first term on the right hand side of Equation (43}, this term

takes the following form:

0«98 Bu a du
4 ocC 1 n 8 o .
at ( ﬁs@’gac )aas - = 7o 1. Z)eec =% m
o
8 uez a'gac Ca -nn
y-I( ) 2)9 o ———pg ) (A8« BE )
.u oc
)

The method of variation of parameters is now used to obtain a
particular solution which is a correction to the first appreximtioa for

u and Ve The correcied expressions for w and v, are given by the

expressgions
8
u, = € + D" +f [(g)“ ..(.g)n .ﬁ‘%} s(t) dt
| GQC
and
g
v n{eaa Dﬂ"n%f [G)n tn]ﬁ tdt}
s * 3 - (¢ t{g) |7z slt) ’
Qm
where
" é
t - 4 o . .
rry s{t) ST { 3“&:})00(: {t egc) {At Bt )
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and A and B are given in Equation {44).
The values of € and D obtained by utilizing the boundary conditions

‘ >3 :
enu., v, and w at GM are as follows

2 u 2 Qas @ | ) 2
' t n
C nA{lu S { e ) f [(1+~3§}~g1.£ﬁ;( ) }(z‘e )dt}
Yyl 1"%2 9 n n ’5;; oc
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u 2 én go‘@ ¢ @ @
2 K] . 06 \ 4 08 05,20
sy ez Bl f [“ g el N =) ](‘"‘ Soc)
(<] Ooc
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Z 08
D= Bi{lestey %o ) (1+f..‘.’;§,)..u..i?;?l)(f£§. én (t-6_ )dt
yal l.ufﬁm: ) o 3 oc
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uz \ Qoa e 8
& \ ;. JAn
‘Yflt . rll Aaaanf [(1-..%.?.).{14-,%&)(?2.) ]“'gae) dt
l-um oC o o8
oc ,
EXPRESEIONE

By evaluating the integrals in these preasaves the following relations

are finally obtained for C and D:

a % 0 ) 1 os
1 o 2 { os oc.2n " 7n :)}
¢ ‘A{ y=1 ( 1. uog )gaci o8 oc) n egos) n+ 1 j{nd
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FIG. | COORDINATE SYSTEM AND VELOCITY COMPONENTS
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FIG. 3
TUNNEL SETUP
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FIG. 4

SCHLIEREN PHOTOGRAPH AT a = 0°

FIG. 5

SCHLIEREN PHOTOGRAPH AT a = 2°
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FIG. 6

SCHLIEREN PHOTOGRAPH AT a = 4°

FIG. 7

SCHLIEREN PHOTOGRAPH AT a = 8°
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| FIG. 8
SCHLIEREN PHOTOGRAPH AT a = 10°

FIG. 9
SCHLIEREN PHOTOGRAPH AT a = 14°



FIG. 10

SCHLIEREN PHOTOGRAPH AT %= 0°

SCHLIEREN PHOTOGRAPH AT ¥= 2°



FIG. 12
SCHLIEREN PHOTOGRAPH AT %= 4°

FIG. 13

SCHLIEREN PHOTOGRAPH AT ¥= 6°
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FIG. 14
SCHLIEREN PHOTOGRAPH AT ¥-= 8°

FIG. 15

SCHLIEREN PHOTOGRAPH AT ¥= 10°
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FI1G.22 SURFACE PRESSURE DISTRIBUTION, a=0°



