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ABSTRACT

This thesis concerns the continued development of the resolvent framework (McK-
eon and Sharma, 2010) tomodelwall-bounded turbulent flows. Herein, we introduce
novel modifications and extensions of the framework to improve the compact rep-
resentation of flows in a channel. In particular, inspired by ideas rooted in classical
linear stability theory, we introduce a decomposition of the velocity field into Orr-
Sommerfeld (OS) and Squire (SQ) modes in a nonlinear context via the resolvent
operator. We demonstrate through the analysis of a number of exact coherent states
(ECS) of the Navier-Stokes equations (NSE) in Couette and Poiseuille flow that this
decomposition offers a significant improvement in the low-dimensional representa-
tion of these flows. With this efficient basis, we are able to develop through the notion
of interaction coefficients a method to compute accurate, self-consistent solutions
of the NSE with knowledge of only the mean velocity profile. We also highlight the
role of the solenoidal component of the nonlinear forcing in the solution process. In
addition, the resolvent framework is extended to the analysis of 2D/3C flows. This
approach, again applied to ECS, sheds light on the underlying scale interactions
which sustain these solutions. Notably, it reveals that lower branch ECS can be
effectively described in their entirety with a single resolvent response mode. This
discovery is leveraged to construct a method to compute accurate approximations of
ECS starting from a laminar profile using a single parameter model. This thesis also
utilizes a constant time-step DNS of a turbulent channel to perform a direct charac-
terization of the nonlinear forcing terms. We compute power spectra and confirm
that the nonlinear forcing has a non-trivial signature in the wavenumber-frequency
domain. We also compute and analyze spectra for the OS/SQ vorticity and discuss
the potential benefit of this decomposition technique to the study of fully turbulent
flows as well.
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along with (g) the first 20 singular values σj (open circles) and the
product |σj χj | (squares). . . . . . . . . . . . . . . . . . . . . . . . . 36



x

3.9 The mean forcing components for EQ1 (top row) and EQ2 (bottom
row). The color denotes the true value (i.e. the convolution over all
wavenumbers) and the contour lines represent the interaction of only
the fundamental streamwise wavenumber with its complex conjugate
for the (a,d) u-component, (b,e) v-component, (c,f) w-component. . . 38

3.10 The amplitude of the Fourier mode û(kx = 2.28, ω = 0; y, z) for EQ1
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with the top row corresponding to the true value and the middle row
corresponding to the projection onto the leading response mode for
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
The phenomenon of turbulence is ubiquitous; from the passage of air over the wings
of a plane, to the transport of oil in pipelines, and even within the stars above,
its presence is felt throughout nature. Unfortunately, from a practical standpoint,
associated with turbulent flows over engineering surfaces of interest is a significant
increase in drag and hence an equally significant economic cost in overcoming it.
Even modest reductions in the turbulent drag would yield savings on the order of
billions of dollars annually in the shipping and airline industries (Kim, 2011), and
thus a complete understanding of turbulence remains an important scientific and
engineering challenge.

The dynamics of turbulence (and fluid flows in general) are governed by a set
of nonlinear partial differential equations known as the Navier-Stokes equations
(NSE). The broad range of spatio-temporal scales present in most turbulent flows
of practical interest and their intrinsic coupling dictated by the nonlinear NSE
gives rise to immensely complicated flow fields. Despite decades of experimental
measurements and recent advancements in direct numerical simulations (DNS)
of the NSE, a comprehensive description of many aspects of turbulence eludes
us. However, buried within this sea of complex motion, is evidence of coherent
structures which underlie the fundamental processes of turbulent flows and thus
provide an avenue for understanding the apparent complexity in terms of simpler
pieces. This has motivated the development of low-order models to identify these
dynamically and energetically significant features, as well as attempts to understand
how they interact to sustain turbulence and its salient characteristics. It is hoped
these models will be part of a systematic framework used to make useful predictions
for engineering flows of interest and as a tool for the development of efficient control
strategies.

In this chapter, we give an overview of various methods and analysis techniques
developed to provide low-order descriptions of turbulent flows. This will include re-
cent advancements of the resolvent framework ofMcKeon and Sharma, 2010, which
will be utilized throughout this thesis. We conclude with an overview of the present
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approach and the numerical datasets utilized, along with the key contributions of
this thesis.

1.2 Low-order descriptions of turbulence
We will begin with a brief overview of modal decomposition techniques commonly
used in the analysis of fluid flows as recently outlined by Taira et al., 2017. Next,
we will provide a survey of the work performed with respect to the analysis of the
linearized NSE, which will provide a natural motivation for the resolvent model. We
will then describe the so-called quasilinear approaches, which attempt to incorporate
limited nonlinear effects, and their connections to the self-sustenance of turbulence.
Wewill conclude with the recent advancements in the computation of exact coherent
states, fully nonlinear invariant solutions to the NSE.

Modal decompositions

The seminal experimental measurements of Kline et al., 1967, which clearly pro-
vided evidence of organized near-wall streaks in a boundary layer, were one of the
earliest instances identifying the existence and importance of coherent structures
in turbulent flows. In this context, coherent structures refer to features that are
persistent in both space and time that serve prominent roles in the transport of mass,
momentum, and energy in a flow (Marusic et al., 2010). A recent overview of coher-
ent structures in turbulent flows is found in Jiménez, 2018. Most flows of scientific
interest, turbulent or not, exhibit the presence of coherent structures, and thus there
has been a large body of work developed to mathematically extract these structures
and use them to build low-order representations of these flows. There are many
existing approaches and they can be broadly split into two categories (Taira et al.,
2017): data-driven and operator-driven. In both instances, the aim is to construct an
optimal basis (in some defined sense) to represent the flow field; the former relies
on snapshots of data from experiments or simulations while the latter exploits the
mathematical structure of the governing equations. An extensive overview of exist-
ing techniques and their use in literature is found in Rowley and Dawson, 2017 and
Taira et al., 2017. In what follows, we provide a condensed description of some of
the more prominent data-driven techniques used in the field. Of the operator-driven
techniques, our focus will be on resolvent analysis, which we shall discuss in further
detail later in the section.

One of the older and most used methods in the fluid dynamics community is the
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proper orthogonal decomposition (POD), first introduced by Lumley, 1967. This
method generates (from data) an ordered set of basis functions that are optimal
with respect to capturing the total kinetic energy of the flow. In this sense, the
notion of extracting coherent structures is linked to the dominance of their energetic
signature. In some instances, a projection onto a small subset of these basis func-
tions will capture a large percentage of the total energy, and thus the representation
of the flow using this basis can be significantly truncated. An attractive property
of POD is that the basis functions are orthogonal; this property can be leveraged
to construct reduced-order models of the high-dimensional NSE via Galerkin pro-
jection as explored by Aubry et al., 1988. It should be noted that most modern
applications of POD employ a separation of variables and compute coherent spatial
basis functions which are accompanied by time-varying amplitudes to describe their
temporal evolution. Recently, Towne et al., 2017a have introduced a variant termed
the spectral proper orthogonal decomposition (SPOD) (whose origins can be traced
back to the work of Lumley, 1967), which instead considers (for stationary flows)
an expansion in time-harmonic modes and computes orthogonal basis functions at
discrete frequencies; this technique has been successfully applied to the analysis of
turbulent jets (Schmidt et al., 2017).

Generally speaking, one limitation of POD is that sometimes the most energetic
structures are not always the most dynamically significant, a limitation that is ad-
dressed by balanced-POD. This approach, rooted in controls theory, attempts to
retain modes that are both highly controllable and highly observable through the
introduction of a coordinate transformation. Requiring the solution of an adjoint
system, this approach is mostly limited to computational studies. Particularly for
systems where the underlying dynamics are nonnormal (an idea we will discuss in
more detail shortly), the balanced POD can provide an improved representation in
comparison to POD (Ilak and Rowley, 2008).

Another data-driven technique that has seen a rapid development in the past couple
of years is the dynamic mode decomposition (DMD) (Schmid, 2010), which shares
connections to Koopman analysis (Rowley et al., 2009). This method extracts
spatial modes, each with an associated frequency and growth rate, by fitting a linear
operator between pairs of time snapshots. In this sense, it often has connections
to the discrete Fourier transform and to the previously mentioned SPOD (Towne
et al., 2017a). DMD can be applied to a wide range of data and has spawned many
variations to promote desirable properties such as sparsity. Unlike POD, however,
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there is no natural ranking of DMD modes and sometimes the selection of the most
physically relevant modes is not a straightforward process. In addition, as DMD
involves a linear fit between time snapshots, it can sometimes poorly represent
flows where nonlinear effects are prominent. Despite some of the aforementioned
weaknesses, DMD has seen extensive use in fluid mechanics (and other fields) due
to its versatility. It has also been applied recently in the development of near-wall
models of turbulent flows (Schmid and Sayadi, 2017).

While such data-driven methods continue to make important contributions to our
understanding of turbulence, we now shift our attention to methods rooted deeply
in the governing NSE.

Linearized NSE

Though turbulence is undoubtedly a nonlinear phenomenon, it has come to light
that linear mechanisms play a prominent role in the dynamics of turbulent flows
(Farrell, 1988; Kim and Lim, 2000; Jiménez, 2013). Early studies in the linear
stability analysis of laminar base flows, pioneered by the formulations of Orr and
Sommerfeld for parallel shear flows (Orr, 1907; Sommerfeld, 1908), were used
to understand and make predictions about the transition to turbulence. However,
in some instances, this led to the prediction that certain shear flows were linearly
stable (via an eigen-analysis) for all Reynolds numbers, a fact clearly refuted by
experimental observations (Drazin and Reid, 1981). A significant breakthrough
came in the early 1990s when it was appreciated that the linearized Navier-Stokes
operator is in general nonnormal (i.e. the operator has a set of nonorthogonal
eigenvectors) (Trefethen et al., 1993; Reddy et al., 1993; Butler and Farrell, 1992).
This property leads to the phenomenon of transient growth where stable modes can
grow significantly over short time-horizons; it was then argued this growth could be
large enough to trigger nonlinear effects and subsequent transition to turbulence.

Upon appreciation of this behavior, studies sought to compute the optimal pertur-
bations which led to the largest transient growth (i.e. the most dangerous initial
conditions) (Schmid and Henningson, 2000). This was explored in (laminar) Cou-
ette and Poiseuille flow by Butler and Farrell, 1992 and Reddy and Henningson,
1993, which revealed structures in the form of (spanwise-varying) streamwise vor-
tices to be the optimal perturbation. These structures were reminiscent of the
quasi-streamwise vortices (and associated streaks) observed in near-wall turbulence
and thus offered an enticing explanation for the emergence of these features from
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linear origins. This formulation was extended to the analysis of a turbulent mean
flow via the introduction of an eddy-viscosity term (Del Álamo and Jiménez, 2006)
(which accounts for the fact that the turbulent mean is not a solution to the NSE)
and similarly yielded streamise-constant vortices as the optimal perturbations.

In addition to the investigation of initial conditions on finite time-horizons, the
nonnormality of the linearized NSE was further probed via its response to external
stochastic and harmonic forcing. Farrell and Ioannou, 1993 showed via stochastic
excitation of the linearized NSE for Couette and Poiseuille flow that perturbations
could extract energy from the mean flow via linear nonnormal mechanisms and sus-
tain large variance levels. Jovanović and Bamieh, 2005 considered the input/output
response of the linearized NSE to external harmonic forcing for Poiseuille flow. This
analysis investigated the properties of the transfer function which mapped input to
output, henceforth referred to as the resolvent operator (Schmid and Henningson,
2000). The resolvent operator, and its use in a turbulent context (McKeon and
Sharma, 2010), will be discussed in further detail shortly. The work of Jovanović
and Bamieh, 2005 further confirmed the large amplification of streamwise-constant
modes via nonnormal mechanisms; in addition, via a componentwise analysis, it
identified that the large streamwise response stemmed from forcing in the cross-
stream directions. These analyses were again extended to the study of the turbulent
mean (with an eddy viscosity model as before) by Hwang and Cossu, 2010, who
also found similar results.

Such studies have motivated the development of models which consider the lin-
earized NSE (about the turbulent mean) subject to stochastic forcing as a means to
explain the observed statistical and structural features of turbulent flows. Of partic-
ular interest has been the required characteristics of the stochastic forcing needed to
accurately reproduce the statistics of the flow. While in many cases an assumption of
white-in-time forcing is invoked, a recent study by Zare et al., 2017 argued that the
forcing must be colored-in-time (i.e. its spectral content must vary with frequency)
in order to recover second order statistics in a turbulent channel flow.

Resolvent analysis of turbulent flows

In contrast, the resolvent formulation of McKeon and Sharma, 2010 takes a slightly
different approach. Instead of the addition of an external forcing term, they treat the
nonlinear term of the NSE as an endogenous forcing. With this interpretation, an
input/output analysis of the NSEwith respect to the turbulent mean (assumed known
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a priori) can be performed without any explicit linearization (or assumption of small
perturbations) to form a self-consistent description of the governing equations. In
this context, self-consistency arises from the fact that the input is inextricably linked
to the output through the nonlinear interactions. This approach was significant
as previous studies had recognized linearizing about the mean flow, while not
strictly justified, could provide useful information about the dominant structures
and frequencies in the flow (Barkley, 2006); consequently, this provided a formal
framework for analyzing the (linear) resolvent operator associated with the turbulent
mean even though the mean itself does not constitute a solution to the NSE.

In McKeon and Sharma, 2010, following a decomposition of the velocity field
into Fourier modes in the wall-parallel directions and in time, a singular value
decomposition (SVD) of the resolvent operator was used to identify highly amplified
input/output pairs (in an energetic sense) to generate a low-dimensional basis in
the wall-normal direction. The basis is naturally ranked by the amplitude of the
associated singular values. The mathematical details behind this framework will be
derived in §2.1. It was found for most of the energetically relevant wavenumbers
and frequencies that the resolvent operator was low rank (i.e. the first singular value
was dominant). This enabled a simplifying rank one approximation, which has been
used extensively to model and examine many aspects of turbulence including the
scaling of the streamwise energy intensity for large Reynolds numbers (Moarref et
al., 2013), the generation of coherent structures such as hairpin packets (Sharma and
McKeon, 2013b), a gain-based analysis of opposition control (Luhar et al., 2014),
and the development of a framework for the systematic design of compliant surfaces
for potential drag reduction applications (Luhar et al., 2015). A comprehensive
summary of the progress of the resolvent model for the analysis of wall turbulence
is found in McKeon, 2017. Resolvent-based approaches have also been applied to
the study of turbulent flow over a backward facing step (Beneddine et al., 2016) and
to the analysis of turbulent jets (Towne et al., 2015; Towne, 2016; Schmidt et al.,
2017).

The resolvent model of McKeon and Sharma, 2010 will be at the core of this thesis.
Whilemost of the workwith this model has focused on the properties of the resolvent
operator itself, there has been less attention paid to the nonlinear forcing. A notable
exception is the work of Moarref et al., 2014, which used optimization to indirectly
determine the forcing needed to match energy spectra from the DNS of a turbulent
channel. Nonetheless, part of this thesis will serve to fill this void; however, we defer
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a discussion of the intended course of action until the next section and continue to
describe other modeling efforts which will be relevant to the content of this thesis.

Quasilinear approximation

Quasilinear approaches attempt to reduce the full complexity of the NSE by restrict-
ing the number of permissible nonlinear interactions. Due to dominant presence
of streamwise-constant structures as described earlier, the flow field is decomposed
into a 2D/3C (2-dimensional, 3-component) streamwise-averaged mean, and corre-
sponding streamwise-varying perturbations. The equation that governs the mean
flow retains all the nonlinear interactions, i.e. the interaction of the perturbations
with their complex conjugates. However, the equation that governs the perturbations
allows for interactions with the mean, but not perturbation-perturbation interactions;
this term is either neglected entirely or parameterizedwith stochastic forcing (Gayme
et al., 2010; Farrell and Ioannou, 2012). Thus, each perturbation is allowed to inter-
act with itself to feedback to the mean, but the dynamics of the perturbation itself are
governed by a linear equation. Interestingly, with these limited interactions, these
quasilinear models are able to generate flow features reminiscent of true turbulence,
reproduce first-order statistics, and self-sustain (Thomas et al., 2014; Farrell et al.,
2016). Furthermore, only a small number of streamwise-varying modes are needed
to self-sustain the flow giving further credence to the vision of the self-sustaining
process proposed by Waleffe, 1997.

In a natural progression from the discussion of the linearized NSE and subsequently
the quasilinear approximation, we now discuss fully nonlinear attempts to describe
turbulence.

Exact coherent states

The interpretation of the NSE as a dynamical system has led to the discovery of exact
coherent states (ECS), nonlinear invariant solutions that take the form of equilibria,
traveling waves, and periodic orbits. Two-dimensional solutions were found by
Herbert, 1977 for Poiseuille flow by extending the analysis of the neutral stability
curve to the determination of neutral finite-amplitude states using bifurcation theory.
The first computation of a three-dimensional solution for Couette flow is due to
Nagata, 1990, who continued solutions from Taylor-Couette flow to the case with
zero average rotation rate. Additionally, three-dimensional solutions were found in
Poiseuille flow by Ehrenstein and Koch, 1991, notably at Reynolds numbers close
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Figure 1.1: Contours of the streamwise velocity for the traveling wave solutions
(Poiseuille) (a) P4L, (b) P4U, and (c) a comparison of their 1D mean profiles (P4L:
blue, P4U: red) with respect to the laminar profile (dashed line). Data courtesy of
Park and Graham, 2015.

to the experimentally observed value where transition to turbulence occurs. ECS
have been hypothesized to constitute the state-space skeleton of turbulent dynamics
(Kawahara et al., 2012). Families of solutions have been found for all the canonical
geometries, including pipes and channels. Solutions primarily arise in pairs due to
a bifurcation (often a saddle-node bifurcation) at a finite Reynolds number, where
the lower branch (L) solutions (closer in appearance to the laminar state) have lower
drag in comparison to the upper branch (U) solutions (closer in appearance to the
turbulent state). In Figures 1.1 and 1.2, we plot the velocity field of two such pairs of
solutions for Poiseuille flow and Couette flow respectively. The Poiseuille lower and
upper branch (traveling-wave) solutions, termed P4L and P4U, were computed by
Park and Graham, 2015, who demonstrated interesting connections between these
solutions and viscoelastic andNewtonian turbulence. TheCouette equilibria, termed
EQ1 and EQ2 (where EQ1 corresponds to the original solution of Nagata, 1990, here
recomputed by Gibson et al., 2009) have been well studied in the literature, notably
their Reynolds number scaling (Wang et al., 2007) and state-space representation
(Gibson et al., 2008). In addition to the statistical properties of the upper branch ECS
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Figure 1.2: Contours of the streamwise velocity for the equilibria solutions (Couette)
(a) EQ1, (b) EQ2, and (c) a comparison of their 1D mean profiles (EQ1: blue, EQ2:
red) with respect to the laminar profile (dashed line). Data courtesy of J. Gibson
(channelflow.org).

closely matching that of full turbulence, their vortex/streak structure also resembles
many of the near-wall coherent features of turbulence. Furthermore, the periodic-
orbit ECS, such as theCouette solution studied byViswanath, 2007, have been shown
to capture dynamically significant processes like the break-up and reorganization
of near-wall streaks. Connections between how these solutions sustain and their
asymptotic behavior at high Reynolds number via vortex-wave interactions have
also been explored by Hall and Sherwin, 2010.

The computation of these solutions is typically done in minimal flow units. As a
result, the solutions often represent a single structure, and thus may be viewed as
‘building blocks.’ It still remains to be seen how these blocks can be combined
and integrated to represent the multi-scale nature of turbulence. While most of
the solutions are unstable, it has been argued that turbulent trajectories may spend
significant amounts of time in the neighborhood of these solutions. Notably, most of
the computation of ECS has been for low to moderate Reynolds numbers, and thus
its ability to represent the prominent features of high Reynolds number turbulence
(Smits et al., 2011) is a subject of ongoing work.
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The numerical computation of ECS often employs Newton-methods due to their
quadratic convergence, though these methods require good initial guesses of the
solution. Kawahara et al., 2012 outlines some common methods used to generate
initial guesses, the most prominent approach being the use of (filtered) snapshots
fromDNSwhich display quasi-periodic behavior. Robust numerical tools have been
developed which couple DNS solvers with Newton-based algorithms to compute
ECS, one being the open-source program Channelflow developed by J. Gibson
(channelflow.org) which will be utilized in this thesis.

1.3 Present approach
The statistical, structural, and dynamical relevance of ECS to fully turbulent flows
has made this growing field a promising direction towards the understanding of
turbulence. Without the complexity of a fully turbulent flow, while certainly retain-
ing nonlinear behavior, ECS present a tractable path forward to make meaningful
progress in the modeling of turbulent-like, yet deterministic, flows. A recent study
by Sharma et al., 2016 showed the potential of the resolvent model to generate
low-dimensional representations of ECS. In this thesis, we hope to expand upon this
approach. In particular we wish to address some of the limitations of the current
state of the art in resolvent modeling. Our aim is to develop new methods and ex-
tensions that not only improve the modeling capabilities of the resolvent framework,
but also inform the creation of practical tools to compute and analyze ECS.

In addition, to augment the previous studies that have largely focused on the charac-
teristics of the resolvent operator, we will seek to improve the current understanding
of the nature of the nonlinear forcing in wall-bounded turbulent flows. While some
of the previously mentioned studies (Moarref et al., 2014; Zare et al., 2017) have
inferred certain properties of the forcing via optimization, to our knowledge a direct
characterization of the nonlinear forcing in turbulent channel flow has not been per-
formed. In this thesis, we will utilize a constant time-step DNS of a low-Reynolds
number channel to compute, amongst other quantities of interest, spectra of the forc-
ing terms. The use of a constant time-step, which will allow for a frequency-domain
analysis, while not unprecedented (c.f. Choi and Moin, 1990, Wu et al., 2017) is
not used extensively in literature and presents a unique opportunity to explore the
full spectral behavior of turbulent fields.

We now outline the content and contributions of this thesis.
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1.4 Thesis outline
In Chapter 2, we will provide a formal derivation of the resolvent framework in
its original form (termed the ‘traditional’ 1D approach) before introducing a novel
modification which extends the use of ideas rooted in classical linear stability anal-
ysis (namely Orr-Sommerfeld/Squire modes) into a nonlinear context. We will also
augment the resolvent framework to allow for the analysis of 2D/3C flows to facili-
tate comparisons to the recent developments in quasilinear approaches. In Chapter
3, we will apply these new developments to the analysis of ECS solutions (equilibria,
traveling waves, and periodic orbits) in a channel for both Poiseuille and Couette
flows. We will demonstrate the improved characteristics obtained with the modified
resolvent approach and explore the insights provided by the 2D/3C framework into
how these solutions self-sustain. We will then detail how all these results can be
utilized to develop resolvent-based tools to compute ECS in new ways with very
limited information. In Chapter 4, we will present the spectral characterization of
the nonlinear forcing from the constant time-step DNS. In addition, we will show
that the ideas developed for the analysis of ECS may also be of use in fully turbu-
lent flows. In Chapter 5, we will summarize the findings of this thesis and make
suggestions for future studies.
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C h a p t e r 2

RESOLVENT FRAMEWORK

We begin with a derivation of the traditional 1D resolvent approach based on the
governing NSE. Next, we introduce a novel modification to the decomposition of
the resolvent operator with connections to Orr-Sommerfeld/Squire modes1. We also
highlight the role of the nonlinear forcing term via a Helmholtz decomposition. We
then detail an extension of the resolvent framework to 2D/3C flows. The section
concludes with a discussion of the computation of the nonlinear term in the context
of resolvent analysis, which will be used in subsequent chapters.

2.1 Resolvent formulation for a channel
We first introduce the governing equations and modeling framework, largely fol-
lowing the works of Schmid and Henningson, 2000; Jovanović and Bamieh, 2005;
McKeon and Sharma, 2010; and Moarref et al., 2013.

2.1.1 Governing equations
We consider the non-dimensional, incompressible NSE for a Newtonian fluid in a
channel

∂u
∂t
+ u · ∇u = −∇p +

1
Reτ
∆u

∇ · u = 0.
(2.1)

Here, u is a three-component velocity field u = [u(x, t), v(x, t),w(x, t)]T and p(x, t)
is the pressure, each a function of three spatial dimensions x = (x, y, z) and time
t. The streamwise (x) and spanwise (z) directions are infinite in extent, and the
wall-normal (y) domain extends from y/h = −1 to y/h = 1 (where h is the channel
half-height), as illustrated in Figure 2.1, with no-slip and no-penetration conditions
imposed at the wall. The gradient operator is given by ∇ = [∂x, ∂y, ∂z]

T and
∆ = ∇ · ∇ is the Laplacian operator. The friction Reynolds number is Reτ =

huτ
ν ,

where uτ =
√
〈τw〉
ρ is the friction velocity, 〈τw〉 is the mean wall shear stress (with

〈 〉 denoting an average over x, z, and t), ρ is the density, and ν is the kinematic
1Portions of the first two sections have been published as a part of Rosenberg and McKeon,

2018, notably the introduction of the OS/SQ decomposition of the velocity field and the Helmholtz
decomposition of the forcing term.
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Figure 2.1: A schematic of the flow domain and the associated coordinate system.

viscosity. The velocity is non-dimensionalized by uτ, time by h
uτ
, spatial variables

by h, and pressure by ρuτ2. Instances where the viscous length-scale uτ
ν is used for

non-dimensionalization (the so-called inner units) will be denoted by the superscript
+. For computational purposes, the streamwise and spanwise directions will be of
finite length Lx and Lz respectively with periodic boundary conditions imposed to
mimic the infinite domain. We will consider both pressure-driven flow in a channel
(Poiseuille) and flow driven by the motion of the walls (Couette).

Due to the spatial invariance in the streamwise and spanwise directions, and statis-
tical stationarity (or explicit time-periodicity), the velocity and pressure fields are
expressed as Fourier modes in these directions,[

u(x, y, z, t)
p(x, y, z, t)

]
=

∭ ∞

−∞

[
û(k; y)
p̂(k; y)

]
ei(kx x+kz z−ωt)dkxdkzdω (2.2)

where kx is the streamwise wavenumber, kz is the spanwise wavenumber, ω is the
radial frequency, and thewavenumber/frequency triplet is denoted byk = (kx, kz, ω).
The mean velocity is given by û(k = 0; y) = U(y) = [U(y), 0, 0]T . Substituting this
decomposition into the NSE yields the following equations for the fluctuations (i.e.,
k , 0), 

[−iω + ikxU] û + v̂Uy + ikx p̂ − 1
Reτ
∆û = f̂u

[−iω + ikxU] v̂ + p̂y −
1

Reτ
∆v̂ = f̂v

[−iω + ikxU] ŵ + ikz p̂ − 1
Reτ
∆ŵ = f̂w

ikxû + v̂y + ikzŵ = 0,

(2.3)

where the subscript y denotes differentiation with respect to the wall-normal direc-

tion. Here, f̂ =
(

f̂u, f̂v, f̂w
)T
= − (u′ · ∇u′)k is the Fourier-transformed nonlinear

forcing term where u′ = u − U. The mean velocity U(y) is governed by the corre-
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sponding mean-momentum equation

−
∂〈p〉
∂x
+

1
Reτ

d2U
dy2 = 〈 fu〉 (2.4)

where the mean u-forcing is given by the wall-normal derivative of the Reynolds
stress term

〈 fu〉 = −
d〈uv〉

dy
. (2.5)

For incompressible flows, the pressure term can be eliminated, and the governing
equations can be written in terms of the fluctuating vertical velocity v̂ and normal
vorticity η̂ = ikzû − ikxŵ,

−iω

(
k2 − D2 0

0 1

) (
v̂

η̂

)
+

(
LOS 0

ikzUy LSQ

) (
v̂

η̂

)
= Bf̂ (2.6)

where the Orr-Sommerfeld (OS) and Squire (SQ) operators are given by

LOS = ikxU(k2 − D2) + ikxUyy +
1

Reτ
(k2 − D2)2

LSQ = ikxU +
1

Reτ
(k2 − D2),

(2.7)

and the forcing operator is

B =

(
−ikxD −k2 −ikzD

ikz 0 −ikx

)
, (2.8)

where D = ∂
∂y and k2 = k2

x + k2
z . For numerical implementation, the wall-

normal operators are discretized with Chebyshev points using the suite developed
by Weideman and Reddy, 2000.

2.1.2 Resolvent operator
Equation 2.6 can be recast into the following input/output form(

v̂

η̂

)
= H(k)

(
ĝv

ĝη

)
(2.9)

where the transfer function H , henceforth referred to as the resolvent operator, is
given by

H(k) = (−iω + L1)
−1, (2.10)

where
L1 = M−1L, (2.11)
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M =

(
k2 − D2 0

0 1

)
, (2.12)

L =

(
LOS 0

ikzUy LSQ

)
, (2.13)(

ĝv

ĝη

)
= M−1Bf̂ = ĝ (2.14)

The operators are made invertible via enforcement of the boundary conditions
described earlier; in the velocity/vorticity formulation, this corresponds to v̂ = ∂v̂

∂y =

η̂ = 0 at the walls. The dimensions ofH are 2Ny × 2Ny, where Ny is the number of
wall-normal discretization points.

From Equation 2.9, we wish to identify high gain input/output modes from the
resolvent operator with respect to a kinetic energy norm. To facilitate enforcement
of an energy norm, we define the weighted inner product

〈v1, v2〉E = 〈v1,Mv2〉 (2.15)

whereM = 1
k2 M such that for the velocity/vorticity state ϕ =

(
v̂

η̂

)
,

〈ϕ, ϕ〉E =

∫ 1

−1
ϕ∗Mϕdy (2.16)

is proportional to the kinetic energy of the Fourier mode (Butler and Farrell, 1992).
Here, ∗ denotes the complex conjugate. We can approximate this integral numeri-
cally and express equation 2.16 and the associated inner product as

〈ϕ, ϕ〉W = ϕ∗Wϕ (2.17)

where the weight matrix W is an augmented version ofM that incorporates numer-
ical quadrature points. W can subsequently be factored as W = Q∗Q and it can be
shown that for an operator A, the energy norm of A is equivalent to the 2-norm of
QAQ−1 (Reddy et al., 1993). Returning to the resolvent operator, we introduce a
scaled version of Equation 2.9

Q

(
v̂

η̂

)
= {QH(k)Q−1}Q

(
ĝv

ĝη

)
(2.18)

or

Q

(
v̂

η̂

)
= Hs(k)Q

(
ĝv

ĝη

)
, (2.19)
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where | |Hs(k)| |2 has the desired energy norm. A low order basis in the inho-
mogeneous wall-normal direction for the velocity/vorticity fields is obtained by
considering a SVD of the scaled resolvent operator,

Hs(k) = ΨΣΦH (2.20)

whereΦ contains an ordered set of orthogonal inputmodes
{
φ̂
′

1(y) φ̂
′

2(y) · · · φ̂
′

n(y)
}
,

Ψ contains an ordered set of orthogonal responsemodes
{
ψ̂
′

1(y) ψ̂
′

2(y) · · · ψ̂
′

n(y)
}
,

and Σ contains the corresponding singular values
{
σ1 σ2 · · · σn

}
, i.e. the gains

between input/response pairs, where σ1 ≥ σ2 ≥ · · ·σn and σ2 is proportional to
the energy of the Fourier mode. The input and response modes are orthogonal with
respect to the inner product defined in Equation 2.17 such that

〈φ̂i(k), φ̂ j(k)〉W = 〈ψ̂i(k), ψ̂ j(k)〉W = δi j, (2.21)

where ψ̂ = Q−1ψ̂
′ and φ̂ = Q−1φ̂

′. With this decomposition, we can approximate
the velocity/vorticity field as a finite sum of weighted response modes,(

v̂(k; y)
η̂(k; y)

)
≈

N∑
j=1

σj(k)χj(k)ψ̂ j(k; y) (2.22)

where the weight χj represents the projection of the nonlinear forcing onto the j th

input mode
χj(k) = 〈ĝ(k), φ̂ j(k)〉W . (2.23)

The wall-parallel velocity components are recovered from the relationship

©«
û

v̂

ŵ

ª®®®¬ = C

(
v̂

η̂

)
, (2.24)

where

C =
1
k2

©«
ikx

∂
∂y −ikz

k2 0
ikz

∂
∂y ikx

ª®®®¬ (2.25)

We will demonstrate in §3.1 the ability and shortcomings of the basis in Equation
2.22 to represent ECS solutions. We now introduce a modified approach which
exploits the structure of the resolvent operator to further elucidate the underlying
input/output relationships.
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2.2 A new approach with connections to Orr-Sommerfeld/Squire modes
Expanding Equation 2.10 symbolically using the inverse of a 2× 2 block matrix, we
have (

v̂

η̂

)
=

(
Hvv 0
Hηv Hηη

) (
ĝv

ĝη

)
, (2.26)

where

Hvv =
(
−iω + (k2 − D2)−1LOS

)−1

Hηη =
(
−iω + LSQ

)−1

Hηv = −ikzHηηU′Hvv .

(2.27)

Notably there is a lack of coupling between v̂ and ĝη; this is a direct consequence of
the lack of coupling in the OS/SQ operator L in Equation 2.13. As a result, we can
leverage this decoupling and express Equation 2.26 as(

v̂

η̂

)
=

(
v̂

η̂os

)
+

(
0
η̂sq

)
, (2.28)

where (
v̂

η̂os

)
=

(
Hvv 0
Hηv 0

) (
ĝv

0

)
(

0
η̂sq

)
=

(
0 0
0 Hηη

) (
0
ĝη

) (2.29)

Thus, in an analogous manner to the classical OS/SQ equations from linear stability
analysis, we can decompose the normal velocity/vorticity field into a component
exclusively driven by ĝv (termed the OS mode) and a component (vorticity only)
driven exclusively by ĝη (termed the SQ mode). Furthermore, η̂os can be interpreted
as generated by v̂ since

η̂os = Hvηĝv

= −ikzHηηUy {Hvv ĝv}

= −ikzHηηUy v̂.

(2.30)

If we define the corresponding (scaled) operators and their SVDs,

Hos = Q

(
Hvv 0
Hηv 0

)
Q−1 = ΨosΣosΦ

H
os

Hsq = Q

(
0 0
0 Hηη

)
Q−1 = ΨsqΣsqΦ

H
sq,

(2.31)
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we can again approximate the fields as(
v̂(k; y)
η̂os(k; y)

)
≈

N∑
j=1

σosj (k)χosj (k)ψ̂osj (k; y)(
0

η̂sq(k; y)

)
≈

N∑
j=1

σsqj (k)χsqj (k)ψ̂sqj (k; y),

(2.32)

where the respective weights are

χosj (k) = 〈ĝ(k), φ̂osj (k)〉W
χsqj (k) = 〈ĝ(k), φ̂sqj (k)〉W

(2.33)

It is not immediately obvious that such a decomposition of the velocity/vorticity
fields into their OS and SQ components would have any benefit in terms of low-
dimensional representation of solutions; however, we will demonstrate in §3.1 the
power of such an approach. We do note, in light of this decomposition, that by
expanding the energy norm definition in Equation 2.16 for just the vorticity terms
we have
1
k2

∫ 1

−1
η̂∗η̂dy =

1
k2

{∫ 1

−1
η̂∗osη̂osdy +

∫ 1

−1
η̂∗sqη̂sqdy +

∫ 1

−1
η̂∗osη̂sqdy +

∫ 1

−1
η̂∗sqη̂osdy

}
.

(2.34)
Thus one interpretation of what this decomposition provides is an extra degree of
freedom to control the relative phase between the OS and SQ modes (and hence
manipulate the contribution of the last two terms), an option not available and
potentially unfavorably constrained when only using a single SVD of the resolvent
operator.

We now explore in more detail the nonlinear forcing components ĝ that arise in
the velocity/vorticity formulation of the governing equations and if they have a
meaningful physical interpretation.

2.2.1 Forcing decomposition
We consider a Helmholtz decomposition of the nonlinear forcing term into the sum
of an irrotational component and a solenoidal component,

f = −u · ∇u = ∇ξ + ∇ × ζ = fi + fs =
©«

fui
fvi
fwi

ª®®®¬ +
©«

fus
fvs
fws

ª®®®¬ (2.35)

This decomposition requires a constraint to make it unique; here we choose ∇ · ζ =
0. Orthogonality between the irrotational and solenoidal fields manifests itself as
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−u · ∇u

Helmholtz
decomposition

linear dynamics

C

u f

fs

(
v

η

)

Figure 2.2: A block diagram representation of the NSE, adapted from McKeon
et al., 2013. The Helmholtz decomposition of the nonlinear forcing term illustrates
how only the solenoidal component drives the velocity/vorticity fluctuations.

enforcing homogeneous Dirichlet boundary conditions on fvs (Wu et al., 2007).
This type of decomposition of the nonlinear term has previously been explored (Wu
et al., 1996; Perot and Moin, 1996). Substituting Equation 2.35 back into the NSE
yields

∂u
∂t
− fs = −∇p̃ +

1
Reτ
∇2u (2.36)

where we have absorbed the irrotational part of the nonlinear forcing into a modified
pressure term p̃ = p − ξ. As before, we can eliminate p̃ (and hence the irrotational
forcing) and write this (Fourier-transformed) equation in terms of v̂ and η̂ as

−iω

(
v̂

η̂

)
+

( (
k2 − D2)−1 0

0 1

) (
LOS 0

ikzUy LSQ

) (
v̂

η̂

)
=

(
f̂vs
f̂ηs

)
, (2.37)

where f̂ηs = ikz f̂us−ikx f̂ws . Comparing Equation 2.37with Equation 2.6 (multiplied
by M−1), it is immediately evident that the expression for the nonlinear forcing
components in the velocity/vorticity formulation greatly simplify to(

ĝv

ĝη

)
= M−1Bf̂ =

(
f̂vs
f̂ηs

)
. (2.38)

Therefore, a consequence of removing the pressure is that only the solenoidal
components of the nonlinear forcing are ‘active’ in driving the velocity/vorticity
fluctuations. From the relation in Equation 2.38 and Equation 2.29, f̂vs drives the
OS components, and f̂ηs drives the SQ components. We illustrate these ideas with
the block diagram shown in Figure 2.2.

2.3 2D/3C resolvent formulation
Motivated by previouswork analyzing the emergence of streamwise-constant streaks,
the scale interactions which give rise to them, and their connections to the self-
sustaining process of turbulent shear flows (Waleffe, 1997; Hall and Sherwin, 2010;
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Farrell and Ioannou, 2012; Thomas et al., 2014), we augment our current framework
to study these ideas through a resolvent lens. We express the velocity and pressure
fields as Fourier modes in the streamwise direction and in time[

u(x, y, z, t)
p(x, y, z, t)

]
=

∬ ∞

−∞

[
û(kx, ω; y, z)
p̂(kx, ω; y, z)

]
ei(kx x−ωt)dkxdω (2.39)

where the corresponding two-dimensional, three component (2D/3C) mean velocity
field is given by û(kx = ω = 0; y, z) = [U(y, z),V(y, z),W(y, z)]T . Substituting
Equation 2.39 into the NSE yields the following set of equations for the fluctuations:

[
−iω + ikxU + k2

x

Reτ

]
û +Uy v̂ +Uzŵ + ikx p̂ + Vûy +Wûz −

1
Reτ

[
ûyy + ûzz

]
= f̂u[

−iω + ikxU + k2
x

Reτ
+ Vy

]
v̂ + Vzŵ + p̂y + V v̂y +W v̂z −

1
Reτ

[
v̂yy + v̂zz

]
= f̂v[

−iω + ikxU + k2
x

Reτ
+Wz

]
ŵ +Wy v̂ + p̂z + V ŵy +W ŵz −

1
Reτ

[
ŵyy + ŵzz

]
= f̂w

ikxû + v̂y + ŵz = 0.
(2.40)

The corresponding mean momentum equations are

VUy +WUz +
∂〈p〉
∂x −

1
Reτ

(
Uyy +Uzz

)
= 〈 fu〉

VVy +WVz +
∂〈p〉
∂y −

1
Reτ

(
Vyy + Vzz

)
= 〈 fv〉

VWy +WWz +
∂〈p〉
∂z −

1
Reτ

(
Wyy +Wzz

)
= 〈 fw〉

Vy +Wz = 0,

(2.41)

with 〈 〉 denoting an average over x and t. The mean forcing components expressed
in terms of the Reynolds stresses are

〈 fu〉 = −
∂〈uv〉
∂y −

∂〈uw〉
∂z

〈 fv〉 = −
∂〈vv〉
∂y −

∂〈vw〉
∂z

〈 fw〉 = −
∂〈vw〉
∂y −

∂〈ww〉
∂z .

(2.42)

Notably, fromEquation 2.41, themeanV andW momentum equations are decoupled
from the mean U momentum equation. From the mean continuity equation, we can
define the streamfunction Ψ such that

V = −Ψz, W = Ψy . (2.43)

Consequently, we can recast the mean momentum equations as

Ψz
[
Ψyyy + Ψyzz

]
− Ψy

[
Ψzzz + Ψyyz

]
+

1
Reτ

[
Ψyyyy + Ψzzzz + 2Ψyyzz

]
= 〈 fv〉z − 〈 fw〉y,

(2.44)
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−ΨzUy + ΨyUz +
∂〈p〉
∂x
−

1
Reτ

(
Uyy +Uzz

)
= 〈 fu〉. (2.45)

Thus, the solution to the mean momentum equations amounts to first solving a
nonlinear equation for Ψ and using this result to solve a linear equation for U.
Returning to the equations for the fluctuations, we can, as before, eliminate the
pressure and express the equations in terms of the fluctuating vertical velocity v̂ and
normal vorticity η̂ = ûz−ikxŵ. Following the notation of Farrell and Ioannou, 2012,
we define ∆ = ∂2

yy + ∂
2
zz − k2

x , ∆2 = ∂
2
zz − k2

x and express the governing equations as

−iω

(
−∆ 0
0 1

) (
v̂

η̂

)
+

(
L2D

OS LC1

LC2 L
2D
SQ

) (
v̂

η̂

)
= Bf̂ (2.46)

where

L2D
OS = ikxU∆ + ikxUzz + 2ikxUz∂z − ikxUyy + 2ikxUz∂

3
yyz∆

−1
2 + 2ikxUyz∂

2
yz∆
−1
2

−
1

Reτ
∆

2 −
(
Ψyyz + Ψzzz

)
∂y + 2

(
Ψyyz + Ψzzz

)
∂3
yzz∆

−1
2 −

(
Ψyyy + Ψyzz

)
∂z

− 2Ψzz∂
3
yyz∆

−1
2 + 2Ψyz∂

3
yzz∆

−1
2 − Ψz∆∂y − 2Ψzz∂

2
yz − Ψyyyz − Ψyzzz − Ψyz∆

+ Ψyyy∂z∆ + 2Ψyz∂
2
zz + Ψyyzz∂

2
yz∆
−1
2 + Ψzzzz∂

2
yz∆
−1
2 + Ψzz∂

2
yz∆∆

−1
2

(2.47)

LC1 = −2k2
xUz∂y∆

−1
2 − 2k2

xUyz∆
−1
2 + 2ikx

(
Ψyyz + Ψzzz

)
∂z∆
−1
2 − 2ikxΨzz∂

2
yy∆
−1
2

+ 2ikxΨyz∂
2
yz∆
−1
2 + ikxΨyyzz∆

−1
2 + ikxΨzzzz∆

−1
2 + ikxΨzz∆∆

−1
2

(2.48)

LC2 = −Uz∂y +Uyz +Uy∂z −Uzz∂
2
yz∆
−1
2 + ikxΨyyzz∂

2
yy∆
−1
2 (2.49)

L2D
SQ = ikxU − ikxUzz∆

−1
2 + Ψyz − Ψz∂y + Ψy∂z − Ψzz∂

2
yz∆
−1
2 −

1
Reτ
∆ (2.50)

B2D =

(
−ikx∂y ∆2 −∂

2
yz

∂z 0 −ikx

)
. (2.51)

The corresponding OS and SQ operators are significantly more complicated for the
2D/3C case; it should be noted that when V(y, z) = W(y, z) = 0 and U(y, z) = U(y),
the operators reduce down to the standard form found in Equation 2.7. It should
also be emphasized that terms involving Ψ are often neglected (Farrell and Ioannou,
2012; Schmid and Henningson, 2000) based on the assumption that U(y, z) �

V(y, z),W(y, z); here, no such assumption is invoked. Equation 2.46 is recast into
the input/output form (

v̂

η̂

)
= H 2D(kx, ω)

(
ĝv

ĝη

)
(2.52)
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where the resolvent operator is given by

H 2D(kx, ω) = (−iω + L1
2D)−1, (2.53)

where
L2D

1 =
[
M2D

]−1 L2D, (2.54)

M2D =

(
−∆ 0
0 1

)
, (2.55)

L2D =

(
L2D

OS LC1

LC2 L
2D
SQ

)
, (2.56)(

ĝv

ĝη

)
=

[
M2D

]−1 Bf̂ = ĝ (2.57)

The wall-normal operators are discretized with Chebyshev points as before; addi-
tionally, Fourier differentiation matrices (Weideman and Reddy, 2000) are used for
the differential operators in the spanwise direction. The dimensions of H 2D are
2NyNz × 2NyNz where Ny is the number of wall-normal discretization points and
Nz is the number of discretization points in the spanwise direction. We perform a
SVD of the (scaled) operator

H 2D
S = Q2DH 2D

[
Q2D

]−1
= ΨΣΦH, (2.58)

where Q2D is a weight matrix based on the analogous inner product defined in
Equation 2.15 where nowM2D = ∆−1

2 M2D. Low-dimensional representations of the
velocity field are obtained as(

v̂(kx, ω; y, z)
η̂(kx, ω; y, z)

)
≈

N∑
j=1

σj(kx, ω)χj(kx, ω)ψ̂ j(kx, ω; y, z) (2.59)

where the weight χj represents the projection of the nonlinear forcing onto the j th

input mode
χj(kx, ω) = 〈ĝ(kx, ω), φ̂ j(kx, ω)〉W . (2.60)

We demonstrate in §3.2 the utility of this formulation, particularly for lower branch
ECS solutions, in representing such flows and elucidating the scale interactions that
sustain them.

2.4 Nonlinear term and interaction coefficients
We briefly outline the details concerning the computation of the nonlinear forcing
term. We then make connections to the nonlinear weights χ formulated in Sections
§2.1 and §2.2 and express its computation in terms of the so-called interaction
coefficient (Sharma and McKeon, 2013a; McKeon et al., 2013).
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2.4.1 Computation of nonlinearity
Recall, for an incompressible flow field, the nonlinear term can be expressed as

u · ∇u = ∇ ·
(
uuT

)
. (2.61)

Notably, the nonlinear term is quadratic. When we transform to the Fourier domain,
this implies that we will be considering the interaction of modes that are triadically
consistent, satisfying the relationship

ka + kb = kc. (2.62)

We therefore can express the computation of the nonlinearity in Equation 2.61 as a
convolution over triadically consistent Fourier modes

f̂(kc; y) =
∑

ka+kb=kc
ka,kb,0

−∇c ·
(
û(ka)ûT (kb)

)
, (2.63)

where the gradient operator is given by ∇c =
[
ikxc,

∂
∂y, ikzc

]T
. We exclude the

interactions that involve the mean mode (k = 0) as those are accounted for in the
resolvent operator. As discussed in Canuto et al., 1988, the convolution sum in
Equation 2.63 is not the most efficient way to calculate the nonlinear term. A
less computationally expensive approach is to compute it pseudospectrally by first
forming the nonlinearity in the physical domain and appropriately de-aliasing (3/2
rule) when transforming to the Fourier domain. Indeed, this approach is used to
compute the nonlinear forcing for the numerical solutions studied in this thesis;
however, the convolution in Equation 2.63 remains helpful in identifying particular
interactions between triads. Additionally, we find it useful in the development of
the interaction coefficient which we describe in the next section.

2.4.2 Interaction coefficient
We wish to connect the computation of the nonlinear forcing to the singular basis
obtained from the resolvent operator. We will begin with the traditional resolvent
formulation described in Section §2.1 and then extend the results to the OS/SQ
framework described in §2.2.

Recall, from Equation 2.22, we can approximate the velocity of two Fourier modes
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ka and kb as 
û(ka) ≈

N∑
p=1

σp(ka)χp(ka)ψ̃p(ka)

û(kb) ≈

N∑
q=1

σq(kb)χq(kb)ψ̃q(kb)

(2.64)

in which ψ̃ = Cψ̂, where we have used the operator C (defined in Equation 2.25,
evaluated at the appropriate k) to transform from normal velocity/vorticity ψ̂ =[
ψv, ψη

]T to the primitive velocity components ψ̃ = [ψu, ψv, ψw]
T . Substituting

Equation 2.64 into Equation 2.63 yields

f̂(kc; y) ≈
∑

ka+kb=kc
ka,kb,0


N∑

p=1

N∑
q=1
−σp(ka)σq(kb)∇c ·

(
ψ̃p(ka)ψ̃

T
q (kb)

)
χp(ka)χq(kb)

 .
(2.65)

Thus, we express the forcing at wavenumber kc as a convolution over all triadically
consistent modes ka and kb, while simultaneously summing over N singular modes
used to represent the respective velocity fields. Now, we can relate the expression
in 2.65 to the weight χ using Equation 2.23

χj(kc) = 〈ĝ(kc), φ̂ j(kc)〉W

= 〈−M−1
c Bc f̂(kc), φ̂ j(kc)〉W

=
∑

ka+kb=kc
ka,kb,0

N∑
p=1

N∑
q=1
Njpq(ka, kb)χp(ka)χq(kb)

(2.66)

where we have used Equation 2.14 to express ĝ in term of f̂ and the interaction
coefficient N is given by

Njpq(ka, kb) = σapσbq 〈−M−1
c Bc

{
∇c ·

(
ψ̃p(ka)ψ̃

T
q (kb)

)}
, φ̂ j(kc)〉W . (2.67)

Notably, Equation 2.67 is only a function of the singular basis vectors, singular
values, and differential operators. Thus,N can be computed once the basis is defined
(i.e. once a mean profile U(y) is specified). Consequently, from Equation 2.66, the
unknown weights (across all wavenumbers and singular orders) are expressed as a
large system of coupled, quadratic (algebraic) equations.

2.4.3 OS/SQ interaction coefficient
We now wish to extend the preceding formulation to the OS/SQ decomposition
presented in Section §2.2. We begin by expressing the velocity field as a sum of OS
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and SQ fields,
u = uos + usq, (2.68)

where uos = [uos, vos,wos]
T , usq = [usq, 0,wsq]

T . Consequently, we can express the
nonlinear forcing in Equation 2.61 as the sum of four terms

∇ ·
(
uuT

)
= ∇ ·

(
uosuT

os
)
+ ∇ ·

(
usquT

sq
)
+ ∇ ·

(
uosuT

sq
)
+ ∇ ·

(
usquT

os
)
, (2.69)

where each term can be expressed in the Fourier domain as their corresponding
convolution sums:

f̂ os/os(kc) =
∑

ka+kb=kc
ka,kb,0

−∇c ·
(
ûos(ka)ûT

os(kb)
)

f̂ sq/sq(kc) =
∑

ka+kb=kc
ka,kb,0

−∇c ·
(
ûsq(ka)ûT

sq(kb)
)

f̂ os/sq(kc) =
∑

ka+kb=kc
ka,kb,0

−∇c ·
(
ûos(ka)ûT

sq(kb)
)

f̂ sq/os(kc) =
∑

ka+kb=kc
ka,kb,0

−∇c ·
(
ûsq(ka)ûT

os(kb)
)
.

(2.70)

As before, we can approximate the OS and SQ velocity fields in terms of singular
basis vectors using Equation 2.32,

ûos(ka) ≈

N∑
p=1

σosp (ka)χosp (ka)ψ̃osp (ka)

ûos(kb) ≈

N∑
q=1

σosq (kb)χosq (kb)ψ̃osq (kb),

(2.71)


ûsq(ka) ≈

N∑
p=1

σsqp (ka)χsqp (ka)ψ̃sqp (ka)

ûsq(kb) ≈

N∑
q=1

σsqq (kb)χsqq (kb)ψ̃sqq (kb).

(2.72)
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Substituting Equations 2.71-2.72 into Equation 2.70 and using the definition of the
weights in Equation 2.33, we obtain the following expressions:

χosj (kc) =
∑

ka+kb=kc
ka,kb,0

N∑
p=1

N∑
q=1

{
Aos/os

jpq (ka, kb)χosp (ka)χosq (kb)

+Asq/sq
jpq (ka, kb)χsqp (ka)χsqq (kb)

+Aos/sq
jpq (ka, kb)χosp (ka)χsqq (kb)

+Asq/os
jpq (ka, kb)χsqp (ka)χosq (kb)

}
,

(2.73)

χsqj (kc) =
∑

ka+kb=kc
ka,kb,0

N∑
p=1

N∑
q=1

{
Bos/os

jpq (ka, kb)χosp (ka)χosq (kb)

+Bsq/sq
jpq (ka, kb)χsqp (ka)χsqq (kb)

+Bos/sq
jpq (ka, kb)χosp (ka)χsqq (kb)

+Bsq/os
jpq (ka, kb)χsqp (ka)χosq (kb)

}
.

(2.74)

The corresponding interaction coefficients are defined in the compact form

Axx/yy
jpq (ka, kb) = σxxp (ka)σyyq (kb)〈−M−1

c Bc

{
∇c ·

(
ψ̃xxp (ka)ψ̃

T
yyq (kb)

)}
, φ̂osj (kc)〉W

Bxx/yy
jpq (ka, kb) = σxxp (ka)σyyq (kb)〈−M−1

c Bc

{
∇c ·

(
ψ̃xxp (ka)ψ̃

T
yyq (kb)

)}
, φ̂sqj (kc)〉W,

(2.75)

where X X/YY takes on all four permutations of {OS, SQ}/{OS, SQ}. Comparing
Equations 2.73-2.74 to 2.66, we see the introduction of a second basis (one for
OS and one for SQ) results in eight interaction coefficients as opposed to just one.
However, it should be emphasized that once a mean profiled is defined, each of
the interaction coefficients can be computed (and in theory need only be computed
once). Furthermore, we again stress that Equations 2.73-2.74 represent a system
of coupled, quadratic equations in the unknown weights. In §3.3, we will leverage
this simplicity (in the sense that we are dealing with quadratic algebraic equations)
to develop efficient strategies for computing the weights of ECS solutions knowing
only the mean velocity profile of the solution.
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C h a p t e r 3

ANALYSIS OF EXACT COHERENT STATES

We apply the tools developed in the previous chapter to the analysis of exact co-
herent states. In particular, we analyze traveling wave solutions in Poiseuille flow
(characterized by wavespeed c+), as well as equilibria and periodic orbits in Couette
flow1. We first show the ability of the 1D resolvent to provide low-dimensional
representations of these solutions, with emphasis on the improvement attained us-
ing the modified OS/SQ approach. We next augment these results with the insights
provided by the 2D/3C resolvent framework. We then highlight the underlying scale
interactions which sustain these solutions. Finally, we consolidate all these results
to develop novel and efficient approaches to computing ECS solutions2.

3.1 Low dimensional representation via 1D resolvent analysis
We begin with the traveling wave solutions of Park and Graham, 2015 before turning
our attention to the equilibria/periodic orbits of Gibson et al., 2008. We summarize
the relevant parameters of these solutions in Table 3.1.

Solution Flow Lx/h Lz/h Nx Nz Ny c+ Re Reτ
P4L Poiseuille π π/2 24 24 81 25 2750 85
P4U Poiseuille π π/2 24 24 81 14.2 1650 85
EQ1 Couette 1.75π 0.8π 32 32 35 0 400 24
EQ2 Couette 1.75π 0.8π 32 32 35 0 400 35
P19.02 Couette 1.75π 1.2π 32 32 49 N/A 400 35
P87.89 Couette 1.75π 1.2π 32 32 49 N/A 400 35

Table 3.1: Geometrical parameters and relevant flow properties for the various ECS
solutions analyzed. Here, Re is based on the laminar centerline / wall velocity.

3.1.1 Traveling waves in Poiseuille flow
We demonstrate the efficacy of the singular modes obtained from the SVD of the
resolvent operator as an efficient basis for capturing certain quantities of interest

1Data for the traveling wave solutions was provided by M.D. Graham and J.S. Park (Park and
Graham, 2015). Couette solutions were obtained from the online database of J. Gibson (chan-
nelflow.org). Portions of the analysis of the traveling waves have been published as a part of
Rosenberg and McKeon, 2018

2Some of the results presented in §3.3 arose via collaboration with M.A. Ahmed and A.S.
Sharma, University of Southampton.
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Figure 3.1: Reynolds stress profiles for P4L (open circles) and their approximations
using Np = 1 (dotted), Np = 3 (dashed), and Np = 10 (solid) singular modes for
(a),(d) 〈u2〉, (b),(e) 〈v2〉, (c),(f) 〈w2〉, (g),(h) 〈uv〉. The top row and bottom left
panel correspond to the traditional approach, and the middle row and bottom right
panel correspond to the modified OS/SQ approach. All quantities are in inner units.

by projecting the P4 solutions onto these modes across all wavenumber-frequency
space. We present results in terms of Np singular pairs for the P4 solutions due
to the imposed wall-normal symmetry and the fact that the SVD yields symmet-
ric/antisymmetric pairs.

We plot the Reynolds stresses captured for increasing Np using the expressions
in Equation 2.22 for the traditional resolvent approach (Sharma et al., 2016) and
Equation 2.32 inwhichwe split theOS and SQ contributions to the velocity/vorticity.
We note the latter uses twice the number of singular modes (at the same rank) as
the former, except for v which only has OS contributions. Figure 3.1 shows the
〈u2〉, 〈v2〉, 〈w2〉, and 〈uv〉 Reynolds stresses captured for P4L. While the traditional
approach captures 〈u2〉 quite well (and indeed 〈u2〉 dominates the total kinetic
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Figure 3.2: Reynolds stress profiles for P4U (open circles) and their approximations
using Np = 1 (dotted), Np = 3 (dashed), and Np = 10 (solid) singular modes for
(a),(d) 〈u2〉, (b),(e) 〈v2〉, (c),(f) 〈w2〉, (g),(h) 〈uv〉. The top row and bottom left
panel correspond to the traditional approach, and the middle row and bottom right
panel correspond to the modified OS/SQ approach. All quantities are in inner units.

energy), the remaining components are not as well approximated with a small
number of singular modes. In fact, even using twice the number of singular modes
(Np = 20) still does not yield complete convergence (see Appendix). However, with
the modified OS/SQ approach, we see with as little as Np = 3 singular mode pairs,
〈u2〉 and 〈v2〉 are almost completely captured, and with Np = 10 all components
are fully captured. The significance of the accurate low-dimensional representation
of 〈v2〉, which was visibly lacking using the traditional approach, will be expanded
upon shortly. Similarly, Figure 3.2 shows the Reynolds stresses for P4U. We again
observe with the traditional approach a low-dimensional representation of 〈u2〉

while the remaining components converge much less rapidly. Notably, 〈uv〉 is
poorly represented; this component is especially important as it acts to sustain the
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mean velocity (see Equation 2.4) which is at the core of the resolvent operator.
In contrast, the modified OS/SQ approach yields a rapid convergence to the true
values, with a complete capturing of all components with Np = 10. The large
initial overshoot of the 〈u2〉 Reynolds stress (with simultaneous close matching of
〈v2〉) also suggests a potential competing effect between OS and SQ contributions
to the vorticity; we will return to this notion shortly. It is interesting that despite
the increased spatial complexity of the P4U solution (Park and Graham, 2015), it
is still well approximated by roughly the same number of singular pairs as the P4L
solution.

The new decomposition technique appears to provide not only a low-dimensional
representation of the output, but also of the input forcing as well; for these coherent
solutions, this is perhaps unsurprising. Figure 3.3 shows the variance of the forcing
components 〈 fvs2〉 and 〈 fηs2〉 captured for the P4L and P4U solutions. The forcing
requires slightly more singular modes to be fully captured, particularly for the
P4U solution; however, in comparison to the solenoidal forcing captured using the
previous technique (see Appendix), this approach yields a much more compact
representation. We also include in the appendix a comparison of the full forcing
−u · ∇u and the solenoidal components.

3.1.2 OS/SQ contributions
It is noteworthy to further examine the OS/SQ contributions to the Reynolds stresses,
in particular 〈u2〉 as it dominates the energy, and 〈uv〉 as it sustains themean velocity.
Following the decomposition in Equation 2.68, we can express the total variance of
u as

〈u2〉 = 〈uos
2〉 + 〈usq

2〉 + 2〈uosusq〉. (3.1)

In a similar manner, we can decompose 〈uv〉 as

〈uv〉 = 〈uosv〉 + 〈usqv〉. (3.2)

In Figure 3.4, we plot these contributions with respect to the full 〈u2〉 and 〈uv〉 for
P4L and P4U. We see the P4L solution is driven almost exclusively by OS modes,
which is to say that the dynamics are largely driven by v̂. Consequently, when
we return to Figure 3.1, the fact that the traditional approach captures 〈u2〉 so well
but 〈v2〉 so poorly reflects its inability to do justice to the underlying dynamics.
This further bolsters the superiority of the bases obtained from the OS/SQ approach
to not only provide a low-order representation of the velocity field but also to
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Figure 3.3: Forcing variance profiles for P4L (open circles, top row) and P4U (open
circles, bottom row) and their approximations via the modified OS/SQ approach
using Np = 1 (dotted), Np = 5 (dashed), and Np = 15 (solid) singular modes for
(a),(c) 〈 fv2〉, and (b),(d) 〈 fη2〉. All quantities are in inner units.

more accurately reflect the driving mechanisms present in the flow. While 〈u2〉

has very small contributions from SQ modes, it was found that the contributions
to 〈w2〉 were more significant and may explain the slightly slower convergence in
comparison to 〈u2〉 and 〈v2〉 seen in Figure 3.1. Interestingly, for the P4U solution,
the contributions from OS and SQ modes are almost equal in magnitude and very
strongly anti-correlated. This behavior is consistent with the observed results in
Figure 3.2; an initially strong response from OS modes is eventually balanced by
SQ modes as Np increases (see Appendix for comparison of OS and SQ singular
values). This competing effect between OS and SQmodes also seems to lend further
support to the benefit of using separate bases for these two families of modes. We
will now demonstrate how the utility of this approach extends to solutions in Couette
flow as well.
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Figure 3.4: Top row: the contributions to the total 〈u2〉 Reynolds stress (open
circles) from OS modes (solid line), SQ modes (dashed line), and their covariance
(dotted line) for (a) P4L and (b) P4U. Bottom row: the contributions to the total
〈uv〉 Reynolds stress (open circles) from OS modes (solid line), SQ modes (dashed
line) for (c) P4L and (d) P4U.

3.1.3 Equilibria and periodic orbits in Couette flow
In a similar manner to the previous section, we will project the EQ1 and EQ2
equilibrium solutions and the periodic orbits P19.02 and P87.89 onto the singular
basis obtained from the 1D resolvent operator. For conciseness, we will restrict our
attention to the modified OS/SQ approach and briefly highlight its ability to provide
low-dimensional representations of these flows. Figure 3.5 shows the Reynolds
stresses for EQ1 and EQ2 using an increasing number of singular modes. As with
the P4 solutions, we observe a very rapid convergence to the true stress values.
Needing roughly 10 singular modes per Fourier mode, this represents a reduction
in the wall-normal degrees of freedom of approximately 70% (with respect to the
Ny = 35 used in the simulation). Figure 3.6 shows the projections for P19.02
and P87.89. These periodic orbits have statistics that are very similar to EQ2;
unsurprisingly, they are also well approximated by about 10 singular modes. We
should note that only a small number of frequencies contributed significantly to
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Figure 3.5: Reynolds stress profiles for EQ1 and EQ2 (open circles) and their
approximations using N = 1 (dotted), N = 3 (dashed), and N = 10 (solid) singular
modes for (a),(d) 〈u2〉, (b),(e) 〈v2〉, (c),(f) 〈w2〉, (g),(h) 〈uv〉. The top row and bottom
left panel correspond to EQ1, and the middle row and bottom right panel correspond
to EQ2; here, all projections are made using the modified OS/SQ approach. All
quantities are in inner units.

the kinetic energy, namely the zero frequency component and the fundamental
frequency corresponding to the period of the solution. While we do not report the
results here, we also observed the same qualitative behavior for the Couette solutions
in terms of the OS/SQ contributions to the Reynolds stresses.

Now that we’ve demonstrated the success of the modified OS/SQ approach for a
variety of ECS solutions, we will now to turn our attention to the 2D resolvent
analysis to showcase what further insights can be gained.
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Figure 3.6: Reynolds stress profiles for the periodic orbits P19.02 and P87.89 (open
circles) and their approximations using N = 1 (dotted), N = 3 (dashed), and N = 10
(solid) singular modes for (a),(d) 〈u2〉, (b),(e) 〈v2〉, (c),(f) 〈w2〉, (g),(h) 〈uv〉. The
top row and bottom left panel correspond to P19.02, and the middle row and bottom
right panel correspond to P87.89; here, all projections are made using the modified
OS/SQ approach. All quantities are in inner units.

3.2 Low dimensional representation via 2D/3C resolvent analysis
In this section, we will focus on the equilibrium solutions in Couette flow, though
we have verified the arguments presented herein apply more generally to solutions in
Poiseuille flow as well (see Appendix). We will make use of the 2D/3C framework
presented in §2.3, and in particular, the approximation of the velocity field in terms
of singular modes defined in Equation 2.59. Instead of plotting integrated results in
the form of statistics, we will focus on how well we can capture individual Fourier
modes. As we will show shortly, the key to modeling most of these flows boils
down to capturing the Fourier mode corresponding to the fundamental streamwise
wavenumber (i.e. the wavenumber associated with the length of the simulation box).
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Figure 3.7: The amplitude of the fundamental streamwise Fourier mode û(kx =

1.14, ω = 0; y, z) for EQ1, with the top row corresponding to the true value and
the middle row corresponding to the projection onto the leading response mode for
(a),(d) û(y, z),(b),(e) v̂(y, z), (c),(f) ŵ(y, z), along with (g) the first 20 singular values
σj (open circles) and the product |σj χj | (squares).

3.2.1 2D/3C analysis of equilibria
In Figure 3.7, we show the amplitude of the û, v̂, and ŵ components of the funda-
mental Fourier streamwise wavenumber for EQ1 as well as the projection onto the
leading singular mode,

û(kx = 1.14, ω = 0) ≈ σ1χ1ψ̃1. (3.3)

To a very good approximation, this Fourier mode is captured with a single response
mode. Also shown in Figure 3.7 is a plot of the first 20 singular values and the
magnitude of the product |σχ |. Notably, σ1 is almost 2 orders of magnitude larger
than σ2. This is suggestive of why this Fourier mode is so well approximated with
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Figure 3.8: The amplitude of the fundamental streamwise Fourier mode û(kx =

1.14, ω = 0; y, z) for EQ2, with the top row corresponding to the true value and
the middle row corresponding to the projection onto the leading response mode for
(a),(d) û(y, z),(b),(e) v̂(y, z), (c),(f) ŵ(y, z), along with (g) the first 20 singular values
σj (open circles) and the product |σj χj | (squares).

the leading response mode, further supported by the fact that |σ1χ1 | � |σ2χ2 |.
The lower branch traveling wave solution P4L also exhibited a similar behavior (see
Appendix).

In Figure 3.8, we again show the amplitude of the û, v̂, and ŵ components of the
fundamental Fourier streamwise wavenumber but now for the upper branch solution
EQ2. We also show the projection onto the leading response mode, as well a plot
of the first 20 singular values and the magnitude of the product |σχ |. In contrast
to EQ1, the leading response mode does not give an accurate approximation of the
Fourier mode. This may be in part attributed to the fact that there is not a dominant
singular value; in Figure 3.8 we see σ1 is only about a factor of 2 larger than σ2. In
a related manner, other upper branch solutions (including P4U) demonstrated this
type of behavior. Moreover, the periodic solutions P19.02 and P87.89, which shared
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statistical similarities of EQ2, were also not amenable to approximation using the
just the leading response mode. We will seek to further explain these results in
terms of the relevant scale interactions.

3.2.2 Identifying scale interactions
We alluded earlier to the fact that the fundamental streamwise Fourier mode plays a
prominent role in the ECS solutions. We will now quantify this claim as it relates to
the 2D/3Cmean velocity and how these solutions self-sustain. Recall from Equation
2.63, we can express the forcing for a particular Fourier mode as a convolution over
all triadically-consistent scales. When we consider the mean forcing, which acts to
sustain the mean velocity, we are concerned with interactions of the form

f̂(k = 0) =
∑

ka=−kb

−∇ ·
(
û(ka)ûT (kb)

)
, (3.4)

which can be approximated in terms of just the fundamental streamwise Fourier
mode û(kx = 1.14, ω = 0) ≡ û f (where the subscript f denotes fundamental) as

f̂(k = 0) ≈ −∇ ·
(
û f û∗Tf

)
. (3.5)

To evaluate the validity of this approximation, we plot the mean forcing components
using the expressions in Equations 3.4 and 3.5 for EQ1 and EQ2, as shown in Figure
3.9. We see that considering just the interaction of the fundamental streamwise
Fourier mode is an exceedingly good approximation for EQ1. We emphasize this
notion is not original to this analysis as other authors have appreciated this fact in
the context of vortex-wave interaction (Waleffe, 1997; Hall and Sherwin, 2010),
and we will expand further upon these ideas shortly; however, that the fundamental
mode can be so well approximated from the leading response mode of the resolvent
operator for lower branch solutions we believe to be a novel contribution. Although
not quite as good as the results obtained for EQ1, we see most of the mean forcing
for EQ2 is driven by the fundamental streamwise Fourier mode; however, clearly
higher harmonics need to be considered. Though we only plot results for EQ1 and
EQ2, we again remark that this appears to be a representative result for lower and
upper branch solutions (see Appendix).

Given the prominent role that the fundamental streamwise Fourier mode plays in
sustaining the mean, we may then ask which scale interactions are important in
sustaining the fundamental mode. For the following discussion, we will restrict our
attention to EQ1. Clearly, from Figure 3.7, the SVD of the resolvent operator is
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Figure 3.9: The mean forcing components for EQ1 (top row) and EQ2 (bottom row).
The color denotes the true value (i.e. the convolution over all wavenumbers) and the
contour lines represent the interaction of only the fundamental streamwisewavenum-
ber with its complex conjugate for the (a,d) u-component, (b,e) v-component, (c,f)
w-component.

able to pick out a highly amplified response mode with the correct spatial support.
Therefore, the only role of the nonlinearity in this context is to set the correct
amplitude of this response mode (via the weight χ1 in Equation 3.3, which is the
only effective unknown). We can, as was done for the mean, postulate that the
nonlinear forcing for the fundamental streamwise mode is dominated by a single
triadic interaction. Adopting the compact notation û(kx = 1.14, ω = 0) ≡ û f

and û(kx = 2.28, ω = 0) ≡ ûh (where the subscript h denotes harmonic), we can
approximate the forcing as

f̂(kx = 1.14, ω = 0) ≡ f̂ f ≈ −∇ ·

(
û∗f û

T

h

)
. (3.6)

Given that we can accurately predict the spatial structure of û f from the resolvent
as û f ≈ σ1χ1ψ̃1 (and consequently û∗f from Hermitian symmetry), if we could
somehow model the first harmonic ûh, we might be able to close the system (i.e.
compute χ1). One obvious choice would be to approximate the harmonic with the
leading response mode of the resolvent, which is shown in figure 3.10 along with
the true amplitude of the Fourier mode. We see the leading projection very poorly
represents the velocity field. We again argue that the lack of a dominant singular
value (also plotted in Figure 3.10) may have suggested this to be the case. However,
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another option to approximate the harmonic would be to again consider the dominant
scale interactions at play. Leveraging our knowledge of the role of the fundamental
streamwise mode, we could the approximate the forcing for the harmonic as

f̂(kx = 2.28, ω = 0) ≡ f̂h ≈ −∇ ·

(
û f ûT

f

)
. (3.7)

With this representation of the forcing, we can directly pass it through the resolvent
operatorH 2D(kx = 2.28, ω = 0) to compute ûh as

ûh ≈ CH 2D
{

M−1Bf̂h
}
, (3.8)

where, if we use the approximation for û f in Equation 3.3 to compute the forcing
f̂h, yields

ûh ≈ −σ
2
1 χ

2
1CH 2D

{
M−1B

[
∇ ·

(
ψ̃1ψ̃

T

1
) ]}

. (3.9)

To validate these assumptions about the relevant scale interactions, we plot the
amplitude of the û, v̂, and ŵ components for the harmonic û(kx = 2.28, ω = 0) in
Figure 3.11 using the expression in Equation 3.9. Referencing the true amplitude
shown in Figure 3.10 (top row), we see the approximation based on Equation 3.9
accurately captures the amplitude of this Fourier mode. Thus, while the SVD of
the resolvent may fail to provide an accurate low-dimensional basis for a particular
Fourier mode, it may still be possible to leverage the knowledge of the dominant
scale interactions to accurately model the mode. Interestingly, this type of result
has also been demonstrated in low-Reynolds number cylinder flow (Symon, 2018).
Returning to the notion of computing χ1, we recall it is formally defined as

χ1 = 〈M−1Bf̂ f , φ̂1〉W . (3.10)

If we approximate f̂ f as is done in Equation 3.6 and additionally approximate û∗f
(which is proportional to χ∗1) and ûh (which is proportional to χ2

1 ) using Equations
3.3 and 3.9 respectively, we can express the forcing in the form

f̂ f = |χ1 |
2χ1f̂′f , (3.11)

where f̂′f = f̂′f (ψ̃1, σ1, M, B,C,H 2D). Consequently, we can compute the amplitude
of χ1 as

|χ1 | =

[
1

〈M−1Bf̂′f , φ̂1〉W

]1/2

. (3.12)

Notably, this quantity can be computed with knowledge of only the mean velocity.
If we compare the value generated by Equation 3.12 to the true value computed by
explicitly calculating the full nonlinear forcing, the discrepancy for EQ1 is ≈ 10%
which is quite good given the limited information utilized.
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Figure 3.10: The amplitude of the Fourier mode û(kx = 2.28, ω = 0; y, z) for EQ1
with the top row corresponding to the true value and the middle row corresponding
to the projection onto the leading response mode for (a),(d) û(y, z),(b),(e) v̂(y, z),
(c),(f) ŵ(y, z), along with (g) the first 20 singular values σj (open circles) and the
product |σj χj | (squares).

(a) (b) (c)

Figure 3.11: The amplitude of the Fourier mode û(kx = 2.28, ω = 0; y, z) for EQ1
computed by passing the forcing generated by the interaction of the leading response
mode for (kx = 1.14, ω = 0) through the resolvent operator (see Equation 3.9): (a)
û(y, z),(b) v̂(y, z) and (c) ŵ(y, z).
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Figure 3.12: An adaptation of the self-sustaining process (Waleffe, 1997) through
the lens of resolvent analysis.

3.2.3 Connections to the self-sustaining process
To briefly summarize, we demonstrated for EQ1 that the 2D/3C mean velocity is
sustained via the self-interaction of the fundamental streamwise Fourier mode. In
turn, the spatial structure of the fundamental mode can be predicted from the leading
response mode of the resolvent operator (where the mean velocity is an input). The
only effective unknown is the amplitude of the leading response mode, which is set
by the nonlinear forcing. We showed that the relevant interactions giving rise to
the forcing were dominated by the fundamental mode and the first harmonic, where
the harmonic is in turn (to a good approximation) generated via the self-interaction
of the fundamental mode. Thus, unequivocally the description of this solution is
rooted deeply in the behavior of the fundamental mode. We illustrate this idea
in Figure 3.12, where we have adapted the vision of the self-sustaining process
proposed by Waleffe, 1997 through the lens of resolvent analysis. Though we do
not report further results here, we again remark that the aforementioned description
appears to hold for lower branch solutions in general (see Appendix). We will show
in §3.3 how we can use these ideas and the 2D/3C resolvent framework to compute
lower branch solutions in Couette flow. Unfortunately, it appears these types of
ideas of cannot be applied to upper branch solutions because they are not amenable
to approximation with a single response mode and the underlying scale interactions
are more complicated. However, we will also show in §3.3 how we can start from a
lower branch solution and utilize the tools from §2.2 and §2.4 to compute very good
approximations of the corresponding upper branch solution.
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3.3 Implications for computation of ECS
Wewill describe two newapproaches to computingECSutilizing the tools developed
in the previous sections. The first method will use the 2D/3C resolvent framework
and the process described in Figure 3.12. The second method, in light of the
improvement attained from themodifiedOS/SQdecomposition, will attempt to solve
directly for the unknown weights in terms of the interaction coefficients described in
§2.4. We will utilize Channelflow to verify the validity of the solutions we generate.
We will present results for equilibria in Couette flow and comment on possible
extensions of these methods to other flows of interest.

3.3.1 Computing solutions starting from laminar
Recall that the underlying assumption in resolvent analysis is a priori knowledge
of the mean velocity. Arguably, this is sometimes a strong assumption, particularly
in the 2D/3C case. As a result, we were interested to see if we could unshackle
ourselves from this assumption and start from the laminar profile to arrive at a
meaningful result.

Our approach is to use the 2D/3C resolvent framework in conjunction with the
self-sustaining loop illustrated in Figure 3.12 to find an equilibrium solution; this is
a particularly attractive approach as it has only one unknown amplitude parameter.
For the sake of comparison, we will consider the same box size and Reynolds
number as the previously analyzed equilibria (see Table 3.1). We begin at the top of
the loop by specifying an initial laminar profile: U(y, z) = y, V(y, z),W(y, z) = 0.
We feed this into the 2D resolvent operator to compute the leading response mode
ψ̃1. Next we specify the amplitude of the response mode: here we found it more
suitable to specify the total amplitude A = |χ1σ1 | instead of |χ1 |. Once this is
specified, we compute the self-interaction of this mode to generate the mean forcing
and then solve the mean momentum Equations 2.44-2.45 to compute a new mean
U(y, z). We then repeat this process (holding A constant) and see if we converge to
an (approximate) solution given by

u(x, y, z) = U(y, z) +
(
|A|ψ̃eikx x + c.c.

)
, (3.13)

where c.c. denotes the complex conjugate. Figure 3.13 shows the mean velocity
U(y, z) for 3 iterations ((a)-(c)) of this procedure using an amplitude of A = 0.06;
we will discuss shortly criterion for selecting A. The L2 norm percentage difference
between the mean fields in (b) and (c) is roughly 3%. The corresponding amplitudes
of the u, v, and w components of the fundamental streamwise mode are shown in
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(a) (b)

(c) (d)

Figure 3.13: The mean velocity computed using an iterative procedure based on the
2D resolvent operator and an initial laminar profile. Here the color contours are the
streamwise velocity (deviation from laminar) and the vector arrows represent the
spanwise/wall-normal velocity for (a) iteration 1, (b) iteration 2, (c) iteration 3, and
(d) the converged mean computed using Channelflow. This solution corresponds to
the previously computed EQ7 (Gibson et al., 2009).

Figure 3.14 in the first 3 rows. If we then take the velocity field from iteration
3, place it in the form given in Equation 3.13, and feed this as an initial guess to
Channelflow, we arrive at the solution shown in Figures 3.13(d) and 3.14(j)-(l). It is
worth noting this particular solution has already been computed, and corresponds
to EQ7 (Gibson et al., 2009). Clearly, the iterative procedure provides an extremely
good approximation to the true solution. We again emphasize we arrived at this
approximate solution needing only to specify a single parameter, |A|. Additionally,
we have several criteria to guide the search for |A|. A value of |A| that is too small
will not yield a field that significantly differs from laminar; similarly, a value too large
will not lead to convergence within the loop illustrated in Figure 3.12. Furthermore,
from our analysis in §3.2, we know the mean velocity (which is computed based on
|A|) and the associated resolvent operator should yield a dominant leading singular
value for this type of solution. Finally, for a given |A|, we can compare the associated
value of |χ1 | =

|A|
σ1

with the value given in Equation 3.12 as another self-consistency
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.14: The amplitude of the u-component (left column), v-component (middle
column), and w-component (right column) of the fundamental streamwise Fourier
mode computed using an iterative procedure based on the 2D resolvent operator and
an initial laminar profile. The first row (a-c) corresponds to the first iteration, (d-f)
to the second iteration, (g-i) the third iteration, and (j-l) represents the converged
field computed using Channelflow with iteration 3 (and the associated mean U(y, z))
as an input.
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check. It would also be noteworthy to perform a weakly nonlinear analysis (Herbert,
1977) as another means of determining the amplitude behavior of these types of
solutions. This framework can easily be applied to a variety of flows, such as
Poiseuille flow or pipe-flow, with the small caveat that a non-zero wavespeed needs
be considered. As there are methods to find new solutions based on an existing
solution (Ahmed and Sharma, 2017), this approach may serve as a useful initial tool
to find solutions for flows where the laminar solution is known.

3.3.2 Solving in coefficient space
Now we return to the 1D resolvent framework to discuss a second solution method
based on the concept of interaction coefficients introduced in §2.4. We will restrict
our attention to the modified OS/SQ approach given its success in representing ECS
solutions. If we assume we know the mean velocity of a particular solution, the
only unknowns in our formulation are the (complex) weights χos and χsq (across
all wavenumber/frequency space and singular modes). From Hermitian symmetry,
we need only consider the positive streamwise wavenumbers (including kx = 0).
Suppose now that we stack all of these unknowns into a single column vector γ,

γ =

[
χos

χsq

]
. (3.14)

Recall from Equations 2.73 and 2.74 that the each weight is expressed as a sum of
quadratic terms that involves the interaction coefficients and other weights that are
triadically linked. We can recast these equations symbolically as a zero equation by
defining the residual r ,

r(γ) = γ − S(γ), (3.15)

where S represents the sums on the right-hand side of Equations 2.73-2.74. Thus,
Equation 3.15 represents a large system of coupled quadratic equations. How-
ever, the weights that drive this residual to zero must also generate the assumed
mean (which was used to compute the interaction coefficients) in order to be self-
consistent. We can incorporate this mean constraint by appending the residual vector
as

r(γ) =


γ − S(γ)

〈 fu〉 − fu0(γ)

fw0(γ)

 . (3.16)

Here, 〈 fu〉 is known and related to the mean streamwise velocity via Equation 2.4,
and fu0(γ) is the corresponding mean u-forcing generated from the weights γ. We
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also enforce that the mean w-forcing fw0(γ) is zero so that there is no mean spanwise
velocity. The mean v-forcing is connected to the mean pressure (which we assume
we don’t know a priori) and therefore do not place any constraints on it.

With the residual vector r(γ), one method to solve for γ is to pose the following
optimization problem in which we minimize the sum of the squares of the residuals:

min
γ

f (γ) =
1
2

r(γ)Tr(γ) =
1
2
| |r(γ)| |22 . (3.17)

Here we include quadrature points with the mean constraint so that the residual has
a well-defined norm. Suppose now we approximate f (γ) in some neighborhood of
γ∗ using a second-order Taylor-expansion as

f (γ∗ + ∆γ) ≈ f (γ∗) + ∇ f (γ∗)T∆γ +
1
2
∆γT∇2 f (γ∗)∆γ. (3.18)

Here, the gradient ∇ f (γ) is

∇ f (γ) = J(γ)Tr(γ) (3.19)

where the Jacobian J is
Ji j =

∂ri

∂γ j
(3.20)

and ∇2 f (γ), henceforth referred to as the Hessian H(γ), can be approximated
(ignoring 2nd order derivatives of r(γ)) as

∇2 f (γ) ≡ H(γ) ≈ J(γ)T J(γ). (3.21)

Consequently, we can rewrite the optimization problem in Equation 3.17 as

min
∆γ

{
f (γ∗) + ∇ f (γ∗)T∆γ +

1
2
∆γT H(γ∗)∆γ

}
, (3.22)

which yields the updated guess (after setting the partial derivative of the objective
function with respect to ∆γ to 0)

γ = γ∗ + ∆γ

∆γ = −H(γ∗)−1∇ f (γ∗).
(3.23)

This approach is known as the Gauss-Newton method (Bjorck, 1996). A slightly
modified approach, known as a trust-region method, instead considers the con-
strained optimization problem

min
∆γ

{
f (γ∗) + ∇ f (γ∗)T∆γ +

1
2
∆γT H(γ∗)∆γ

}
subject to | |∆γ | | ≤ δt

(3.24)
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where δt quantifies the region of trust (i.e. how well the local quadratic model
approximates f(γ)). An iterative sub-problem is solved to adjust δt to determine
the optimal step ∆γ. There exist well-established algorithms (Moré and Sorensen,
1983) to solve this optimization problem. The trust-region method is known to be
more robust in comparison to Gauss-Newton, especially for initial guesses that are
far from the solution, and thus we focus on this approach. We utilize the built-
in MATLAB function fminunc to solve the formal optimization problem defined
in Equation 3.17 and use its trust-region algorithm to solve the corresponding
optimization problem defined in Equation 3.24. The function needs as an input an
initial guess of the weights γ∗; here, we select from a random uniform distribution.
Additionally, we pass along to the algorithm within fminunc the residual f (γ∗),
the gradient ∇ f (γ∗), and the Hessian H(γ∗). The latter two need not be explicitly
passed through as they can be evaluated numerically via finite differences within
the function. However, we are in the fortunate position that we can compute these
quantities based on analytical expressions (Equations 2.73-2.74). This provides a
significant savings in computational cost. Lastly, we specify the stopping criterion
| f i+1(γ) − f i(γ)| < 1e−12 where i denotes the iteration number.

Application to EQ1

We now demonstrate this optimization-based coefficient solver for EQ1. The only
data we assume known a priori is the 1D mean velocity U(y). With this, we can
pre-compute the interaction coefficients in Equation 2.75. For proof of principle,
we will utilize our prior analysis to restrict ourselves to a subset of wavenumbers to
reduce the overall number of unknowns: here we use Nkx = 4 (positive, including
0) streamwise Fourier modes, Nkz = 12 spanwise Fourier modes, and use N = 10
singular modes per wavenumber pair. This results in a total number of unknowns
on the order of ≈ 2000. We visualize the results of the optimization algorithm by
plotting the streamwise-averaged mean velocity U(y, z) for multiple iterations, as
shown in Figure 3.15. We see the mean field morphs from the random initial
guess to a well-converged field in 16 iterations. In Figure 3.16, we show the sum
of the squares of the residual vector as a function of iteration count, approaching
a value of O(1e−12) before reaching the stopping criterion. To validate this guess
of the solution, we input the velocity field at the last iteration into Channelflow.
Figure 3.16 also shows the mean velocity U(y, z) computed from Channelflow; it
is nearly indistinguishable from the mean field of the final iteration in 3.15 with
the L2-norm difference between the fields being O(1e−5). Finally, in Figure 3.17
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Figure 3.15: The mean velocity field of EQ1 computed using the coefficient solver
described in section. Here the color contours are the streamwise velocity (deviation
from laminar) and the vector arrows represent the spanwise/wall-normal velocity:
(a) the initial field based on a random guess of the weights, (b)-(i) iterations 1, 2, 3,
4, 5, 10, 13, and 16 respectively.

we compare the variance profiles for the optimization solution and the true values
from the Channelflow solution and again observe, for all intents and purposes, near-
perfect matching between the two. We emphasize that while we enforced matching
of 〈uv〉 via the mean constraint, the other profiles are purely predictions based on
the optimization solution. From the results presented, we can confidently claim we
have found an extremely good approximate solution to the NSE whose computation
required only knowledge of the 1D mean velocity.
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Figure 3.16: The (a) sum of the squares of the residual vector as a function of
iteration count and (b) the converged mean velocity profile for EQ1 computed using
the field from the final iteration of the coefficient solver as an input into Channelflow.
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Figure 3.17: Reynolds stress profiles for EQ1 (open circles) and the values based
on the solution generated from the coefficient-solver (line) for (a) 〈u2〉, (b) 〈v2〉, (c)
〈w2〉, (d) 〈uv〉. All quantities are in inner units.



50

(a) (b)

(c)
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(d)

Figure 3.18: The mean streamwise velocity (deviation from laminar) for (a) EQ1,
(b) a guess for the upper-branch (EQ2) mean based on overly-amplified EQ1 mean-
forcing, (c) the true mean of EQ2, and (d) the corresponding 1-D mean profile (open
circles- true profile, line- guess).

Jumping from lower branch to upper branch

We now wish to demonstrate a second use of the coefficient solver in the context of
establishing a connection between lower and upper branch solutions. As discussed
in the Introduction, these solutions arise in pairs due to a bifurcation at a critical
Reynolds number. If a solution on one of the branches is known, it can be continued
back in Reynolds number to the bifurcation point as a means to compute solutions
on the other branch. This can sometimes be an expensive process. We are interested
more fundamentally in the question of how, for a fixedReynolds number, the structure
of the lower branch solution is related to its upper branch counterpart. Put another
way, we ask if we can predict some of the properties (statistical or structural) of the
upper branch solution based on the lower branch solution.

We focus on the mean velocity, as this is the pertinent piece of information used
in resolvent analysis. We observed in §3.2 that the 2D/3C resolvent framework
correctly identified the structure of the highly-amplified fundamental streamwise
mode for lower branch solutions; the role of the nonlinearity was to effectively
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saturate this amplifiedmode to the right amplitude such that it could self-interact and
sustain themean velocity. Wewere curious to explore the effect on themean velocity
in the case that this saturated amplitude was somehow offset; we hypothesized (and
will confirm empirically shortly) that the upper branch might be linked to an overly-
excited lower branch. We propose investigating this via a slightly modified version
of the mean momentum equations

Ψz
[
Ψyyy + Ψyzz

]
− Ψy

[
Ψzzz + Ψyyz

]
+

1
Reτ

[
Ψyyyy + Ψzzzz + 2Ψyyzz

]
= α

(
〈 fv〉z − 〈 fw〉y

)
,

(3.25)

−ΨzUy + ΨyUz −
1

Reτ

(
Uyy +Uzz

)
= 〈 fu〉, (3.26)

where we have introduced the scalar α > 1 to model an over-amplified mean forcing
(here, we leave the mean-u forcing unchanged). We demonstrate this model for
the pair EQ1 and EQ2. We solve Equations 3.25-3.26 using the mean forcing for
EQ1 and compare the mean velocity field generated to that of EQ2. Figure 3.18
shows this comparison of U(y, z) using a value of α = 7, along with a comparison
of the 1D profile for the true EQ2 solution and the guess generated from the over-
amplified EQ1 solution. We observe strong quantitative agreement between the two,
particularly for the 1D profile. Of course, in this process we leveraged the fact that
we knew the mean velocity for EQ2 to select the appropriate value of α; nonetheless,
we consider this a very interesting result given the simplicity of the model proposed
in Equation 3.25. In general, for the discussion above and for what we describe
subsequently, one would need to perform a line search to find the appropriate value
of α. Though not reported here, we observed similar success of this model for other
lower/upper branch pairs (see Appendix).

The implication of this approach is that we may be able to find good approximations
to the upper branch 1D mean profile based on the lower branch solution. Once
we have a guess for the 1D mean, we can utilize the coefficient solver to attempt
to solve for the fluctuating field. We demonstrate this, and to some degree the
robustness of the coefficient solver, by using the approximate EQ2 mean profile
from Figure 3.18(d). As before, in Figure 3.19 we plot the mean field U(y, z) for
multiple iterations. We see the initial field, based on a random guess of the weights,
eventually converges to a field resembling EQ2. In Figure 3.20, we show the sum
of the squares of the residuals as a function of iteration count. As with the plot for
EQ1 in Figure 3.16, we observe an initial rapid decrease in the residual norm; we
confirmed this is mostly driven by the mean constraint. We again used the velocity
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Figure 3.19: The mean velocity field of EQ2 computed using the coefficient solver
described in section based on the guess for 1D mean profile show in figure 3.18(d).
Here the color contours are the streamwise velocity (deviation from laminar) and
the vector arrows represent the spanwise/wall-normal velocity: (a) the initial field
based on a random guess of the weights, (b)-(i) iterations 1, 2, 3, 7, 10, 15, 25, and
42 respectively.

field at the final iteration as an input into Channelflow to confirm it converged
to the true solution. Also shown in Figure 3.20 is the mean flow obtained from
Channelflow; we note its strong quantitative resemblance to Figure 3.19(i). Finally,
we compare the statistics from the optimization solution at the final iteration to those
of the true solution in Figure 3.21. Broadly speaking, the coefficient solver is able to
closely match the true values. We confirmed, by using the true EQ2 mean profile for
the coefficient solver, that the small discrepancies observed in the statistics could be
partly attributed to the use of the approximate mean (see Appendix). One possible
remedy would be to slightly relax the mean constraint; this is a topic of on-going
work to improve the robustness of the solver. In addition, one could increase the
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Figure 3.20: The (a) sum of the squares of the residual vector as a function of
iteration count and (b) the converged mean velocity profile for EQ2 (a) computed
using the field from the final iteration of the coefficient solver as an input into
Channelflow. Note the mean profile is shifted in the spanwise direction relative to
the profile in Figure 3.18.

number of singular modes and wavenumbers used to improve the convergence of
the residual norm.

Future applications

Looking forward, there are several promising directions for this approach. As has
been mentioned previously, the mean profile for EQ2 (and the periodic orbits P19.02
and P87.89) is very similar to the corresponding turbulent profile. Conveniently,
in many cases, there exist good models of the turbulent mean velocity for a variety
of flows, such as through eddy-viscosity models (Reynolds and Tiederman, 1967).
Thus wemay use the turbulent profile as a starting point to discover solutions. While
we only showed results for equilibria, the coefficient solver approach can also easily
be extended to find traveling waves and periodic orbits (though these would require
a guess or a priori knowledge of the wavespeed or period respectively). Overall, we
find it an exciting prospect to generate accurate representations of solutions to the
NSE leveraging knowledge only of the mean velocity.
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Figure 3.21: Reynolds stress profiles for EQ2 (open circles) and the values based
on the solution generated from the coefficient-solver (line) for (a) 〈u2〉, (b) 〈v2〉, (c)
〈w2〉, (d) 〈uv〉. All quantities are in inner units.



55

C h a p t e r 4

ANALYSIS OF TURBULENT CHANNEL FLOW

We utilize a constant-time step DNS1 of a low-Reynolds number turbulent channel
flow and characterize the spectral (wavenumber and frequency) content of the ve-
locity/vorticity and forcing fields. In addition, we utilize ideas from §2.2 to plot
spectra and statistics for OS/SQ modes. We also explore the behavior of the spectra
as a function of wavespeed. We conclude with a brief discussion of future directions
for the analysis of this dataset.

4.1 Computation of power spectra
The incompressible NSEwere solved numerically in the form of evolution equations
for the Laplacian of the wall-normal velocity ∆v and the wall-normal vorticity η
(Kim et al., 1987; Del Alamo and Jiménez, 2003) in a periodic box of dimensions
Lx/h = 12π and Lz/h = 4π for a friction Reynolds number of Reτ ≈ 180. A
comparison of the mean profile and velocity statistics of the present DNS with the
database of Del Alamo and Jiménez, 2003 is found in the appendix for validation
purposes. The simulation was run for a total time of Tuτ/h ≈ 85; at a sampling time
interval of ∆tsuτ/h = 0.01482 (∆t+ ≈ 2.75), the solution ∆v̂(kx, kz, y), η̂(kx, kz, y)

was saved resulting in a total of ≈ 5800 time snapshots. A summary of the relevant
geometrical and discretization parameters is found in Table 4.1. The choice of these

Lx/h Lz/h Nx Nz Ny
∆tsuτ

h
Tuτ

h Reτ
12π 4π 512 339 97 0.01482 85 186

Table 4.1: Geometrical parameters and relevant flow properties for the turbulent
channel.

time parameters was largely driven in an attempt to resolve the energetic frequency
content of the velocity field as outlined in McKeon et al., 2013. Due to the wide
range of spatial and temporal scales, it is difficult to fully resolve all fields without
generating enormous amounts of data; for the results we will present herein, these

1The DNS was performed by A.L. Duràn as part of the 2016 Center for Turbulence Research
summer program at Stanford University. A preliminary analysis of the data is found in Rosenberg
et al., 2016. We acknowledge discussions with A.L Duràn and A. Towne which helped shaped
the content of this chapter. K. Rosenberg performed the analysis and wrote the discussion for this
chapter.
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sampling parameters offered an appropriate trade-off between sufficient temporal
resolution and tractable dataset size.

We wish to analyze the spectral behavior of the velocity/vorticity fields as well as the
nonlinear forcing. With ∆v̂(kx, kz, y; t) and η̂(kx, kz, y; t), we can recover the primi-
tive velocity components û(kx, kz, y; t) using the relation in Equation 2.24. Once we
have û(kx, kz, y; t), we can compute (at each time step) the nonlinearity f̂(kx, kz, y; t).
As mentioned in §2.4.1, we evaluate the nonlinear term pseudospectrally (Canuto
et al., 1988) for computational efficiency. In addition, to maintain consistency with
the approach utilized in the DNS, we use the rotational form of the nonlinearity

f = u × ω − 1
2
∇u2, (4.1)

where ω is the vorticity (not to be confused with the frequency ω). The second
term is absorbed into the pressure (which is subsequently eliminated) and need not
be computed. In this chapter, we will focus our attention on the solenoidal forcing
components fvs and fη which arise in the normal velocity/vorticity formulation of
the equations; we compute these components by substituting the forcing f̂ computed
in Equation 4.1 (Fourier transformed in x and z) into the expression in Equation
2.38.

Once we have all the velocity/vorticity/forcing time-series data of interest (each
as a function of (kx, kz, y)), we can now compute power spectra for each field.
Given the statistical homogeneity in x and z, we are in the fortunate position that
we can compute the spectra for each wavenumber pair (kx, kz) independently. Let
us consider, for a given (kx, kz) and wall-normal height, a particular time-series
of interest Θ(t) where Θ is for instance a velocity or forcing component. As is
commonly done in the analysis of (non-periodic) time-series data in turbulent flows,
we estimate the power spectrum using Welch’s method (Welch, 1967). This method
divides the time-series into m overlapping windowed segments

Θi(t) = Θ(t)W(t), (4.2)

where W(t) is a window function and i = 1, ...,m denotes the segment index. Here
we use a Hanning window with 50% overlap and m = 10 overlapping segments.
The power spectrum is then computed as

PΘΘ(ω) =
1
m

m∑
i=1
Θ̂i(ω)Θ̂

∗
i (ω) (4.3)
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where Θ̂i(ω) is the discrete Fourier transform of Θi(t). The choice of m = 10 was
found to yield a good convergence in Equation 4.3 without excessively sacrificing
frequency resolution; here, the frequencies take on discrete values between ωmin =

0 and ωmax ≈ 211h/uτ in intervals of ∆ω ≈ 0.74h/uτ. It was confirmed that
doubling m did not yield significant quantitative differences (see Appendix). The
MATLAB function pwelch is used to compute (across all wavenumbers and wall-
normal heights) PΘΘ(kx, kz, ω; y). In what follows, we will present several 2D
views of the power spectrum by integrating over one of the wavenumber/frequency
directions. For instance, the 2D (kx − ω) spectrum (for a fixed wall-normal height)
is computed as

PΘΘ(kx, ω; y) =
∫ ∞

−∞

PΘΘ(kx, kz, ω; y)dkz . (4.4)

The corresponding 2D pre-multiplied spectrum is kxωPΘΘ(kx, ω; y) with the mul-
tiplying factors analogously being kzω and kx kz in the (kz −ω) and (kx − kz) planes
respectively. Furthermore, we note the variance is recovered by integrating across
all wavenumbers and frequencies,

〈Θ2〉 =

∭ ∞

−∞

PΘΘ(kx, kz, ω; y)dkxdkzdω. (4.5)

We will also make use of the cross power spectrum, which is defined as

CΘΘ(yr, ys;ω) =
1
m

m∑
i=1
Θ̂i(yr ;ω)Θ̂∗i (ys;ω), (4.6)

where yr and ys denote the wall-normal location for a given index. This is similarly
calculated in MATLAB using the function cpsd.

4.1.1 Forcing Spectra
We begin by presenting results for the forcing components fvs and fη. We reiterate
that, to the author’s knowledge, a direct characterization of the nonlinear forcing
from DNS of a turbulent channel has not been previously performed. To get a sense
of where the forcing is concentrated across the height of the channel, we first plot the
variance of these components 〈 fvs2〉, 〈 fη2〉 as shown in Figure 4.1. Both components
appear to be active near the wall, with 〈 fη2〉 sharply peaking at y+ ≈ 15, the well
known wall-normal location associated with the near-wall-cycle (Smits et al., 2011).
〈 fvs

2〉 peaks slightly further away at y+ ≈ 40 and has a broader signature across
the height of the channel. We next examine the wavenumber/frequency dependence
of the power spectra for these forcing components. Of particular interest is the
behavior of the forcing in the frequency domain; as discussed in the Introduction,
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Figure 4.1: Variance profiles for (a) fvs and (b) fη as a function of wall-normal
height. All quantities are in inner units.

attempts to the model the forcing term via stochastic methods have evoked varying
assumptions on its spectral structure. We will restrict our attention to a fixed wall-
normal height of y+ ≈ 15. Figure 4.2 shows 2D power spectra in the kx − ω,
kz − ω, and kx − kz planes for fvs and fη. Clearly the forcing components have
a well-defined structure with a non-trivial variation in the frequency plane. This
is consistent with the recent findings of Zare et al., 2017, who found the forcing
must be colored in time to accurately reproduce second order statistics. Though
they do not report forcing spectra, it would be noteworthy to compare if similar
trends are observed. The concentration of the forcing activity along a diagonal
in the kx − ω plane, particularly prominent for fvs , indicates the presence of a
dominant wavespeed. For point of reference, a dashed line denoting the local mean
velocity is also shown in Figure 4.2; it appears the forcing activity occurs at slightly
higher wavespeeds relative to this value. The localizing role of the wavespeed will
be discussed in further detail later in this chapter for the streamwise velocity. In
the wavenumber plane, both forcing components show energetic activity centered
around the spanwise length scale of kzh ≈ 20 (λ+z ≈ 60) which is slightly more
narrow than the classically reported width of λ+z ≈ 100 for the near-wall streaks.
While it appears we have mostly resolved the structure of these forcing components,
a slightly higher sampling frequency is required to fully capture all the content. In
the kx − ω plane, based on the Nyquist sampling frequency fs and using the mean
centerline velocity Ucl as a bounding wavespeed, we might expect aliasing effects
beyond a wavenumber of kx =

π fs
Ucl
≈ 12. While small spurious effects are observed

with the forcing spectra for high kx (see Figure 4.2(a)), they are less pronounced in
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Figure 4.2: 2D spectra at a fixed wall normal height of y+ ≈ 15 for fvs (left column)
and fη (right column) plotted in the (a),(b) kx-ω plane, (c),(d) kz-ω plane, and the
(e),(f) kx-kz plane. The dashed line in the kx-ω plane denotes the wavespeed of the
local mean U(y+ ≈ 15).

the velocity and vorticity spectra presented in the next section, and so we believe the
influences to be minimal. Future studies will utilize a higher sampling frequency to
confirm these notions; we emphasize that the DNS time-step was sufficiently small
such that the actual simulation was not corrupted by aliasing effects.
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4.2 OS/SQ spectra
Given the utility of the decomposition of the velocity field into OS/SQ modes for
the ECS solutions, we were curious to explore if any of the observed trends were
also seen in a fully turbulent flow. We recall that we express the total wall-normal
vorticity as the sum of the OS and SQ components

η = ηos + ηsq, (4.7)

which are defined (in the Fourier domain) as

η̂os(kx, kz, ω; y) = −ikzHηη(kx, kz, ω)Uy v̂(kx, kz, ω; y)

η̂sq(kx, kz, ω; y) = Hηη(kx, kz, ω) f̂η(kx, kz, ω; y),
(4.8)

where Hηη is defined in Equation 2.27. We can then express the corresponding
power spectra as

Pηosηos(kx, kz, ω; y) = diag
{
G(kx, kz, ω)Cvv(kx, kz, ω; y)G(kx, kz, ω)

H}
Pηsqηsq(kx, kz, ω; y) = diag

{
Hηη(kx, kz, ω)C fη fη (kx, kz, ω; y)Hηη(kx, kz, ω)

H}
,

(4.9)

where Cvv and C fη fη are the cross spectra of v and fη respectively, G is given by

G(kx, kz, ω) = −ikzHηη(kx, kz, ω)Uy, (4.10)

and diag {} denotes keeping only the diagonal elements. Thus, independently for all
(kx, kz) pairs, we first compute the cross spectra terms and then form the matrices
Hηη and G at each discrete frequency; computation of these matrices requires the
turbulent mean U(y) which we obtain directly from the simulation.

In Figure 4.3, we plot the 2D (pre-multiplied) power spectra in the kx − ω, kz − ω,
and kx − kz planes for the total wall-normal vorticity η and the ηos, ηsq components
at a fixed-wall normal height of y+ ≈ 15. We observe that both the OS and SQ
components are larger in magnitude than the total vorticity, with ηos being the
dominant component. Despite the slightly different amplitudes, the OS and SQ
components appear to have very similarly shaped spectra. Interestingly, we see
the peak in the OS/SQ spectra with regards to streamwise wavenumber is shifted
towards smaller values (longer wavelengths) relative to full vorticity. We note that
ηos is generated by the interaction of v with the mean shear via the lift-up effect (see
Equation 4.8), an effect known (in a linear context) to give rise to highly-amplified
streamwise-elongated structures; this may possibly explain the observed shift to
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Figure 4.3: 2D pre-multiplied spectra at a fixed wall normal height of y+ ≈ 15 for
η (top row), ηos (middle row), and ηsq (bottom row) plotted in the (a),(d),(g) kx-ω
plane, (b),(e),(h) kz-ω plane, and the (c),(f),(i) kx-kz plane. The dashed line in the
kx-ω plane denotes the wavespeed of the local mean U(y+ ≈ 15).

longer wavelengths. Consequently, we posit the OS vorticity, amplified via a linear
mechanism, must be suppressed to a certain extent by the SQ vorticity (i.e. the
phase between them is important). We support this claim further by plotting the
contributions to the variance of the vorticity from OS/SQ modes across the height
of the channel,

〈η2〉 = 〈ηos
2〉 + 〈ηsq

2〉 + 2〈ηosηsq〉, (4.11)

as seen in Figure 4.4. Similar to the results observed in Figure 3.4 for P4U, we see
a necessarily strong anti-correlation between the OS/SQ modes to balance the large
generation of vorticity from OS modes. Recasting Equations 4.7-4.8 in a slightly
different form, we have

η̂ = Hηη

(
f̂η − ikzUy v̂

)
. (4.12)

Given the similarity in the shape of the OS/SQ spectra, it stands to reason from
the expression above that the two terms in the parentheses (the first one generating
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Figure 4.4: Contributions to the total 〈η2〉 (dash-dot line) from OS modes (solid
line), SQmodes (dashed line), and twice their covariance (dotted line). All quantities
are in inner units.

ηsq and the second one ηos) might also share a similar spectral signature. This is
an intriguing prospect from a modeling perspective as it may suggest the forcing
spectra can be directly related to the velocity spectra. In Figure 4.5, we plot the
2D spectra of this second term in parentheses (i.e. k2

z U2
yPvv) at y+ ≈ 15 in the

wavenumber-frequency planes. While the magnitudes are slightly different, we note
the striking similarity between k2

z U2
yPvv and P fη fη from figure 4.2 (right column).

Interestingly, a similar connection between the forcing spectra and the kinetic energy
spectra has been observed for a turbulent jet (Towne et al., 2017b).

4.3 Identifying energetic wavespeeds
The role ofwavespeed in turbulent flows has been of interest both in experimental and
theoretical contexts. In experimental measurements, Taylor’s hypothesis (Taylor,
1938) is often invoked to convert from the temporal domain to the spatial domain
under the assumption of a constant convection velocity associated with the turbulent
mean. In classical linear stability analysis, traveling wave disturbances are known to
localize around the critical layer, the locationwhere thewavespeed of the disturbance
matches that of the base flow. Recent works by McKeon and Sharma, 2010 and Hall
and Sherwin, 2010 have demonstrated the relevance of critical layers in turbulent
flows.

Here, we are interested in identifying the energetically relevant wavespeeds from
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Figure 4.5: 2D spectra at y+ ≈ 15 of k2
z Uy

2Pvv plotted in the (a) kx-ω plane, (b)
kz-ω plane, and the (c) kx-kz plane. The dashed line in the kx-ω plane denotes the
wavespeed of the local mean U(y+ ≈ 15). We note its similarity in structure to the
spectra of fη shown in Figure 4.2.

velocity spectra, and their variation across the height of the channel. We will
focus on the streamwise velocity, as this has been the most studied experimentally
and numerically. In Figure 4.6, we plot the 2D (pre-multiplied) spectra Puu(kx, ω)

for various wall-normal heights. We also superimpose on each plot a dashed line
corresponding to the local mean velocity. We note that the energetic activity very
close to the wall is concentrated at wavespeeds that are larger than the local mean.
This is consistent with the observations of Del Álamo and Jiménez, 2009 and the
associated breakdown in the validity of Taylor’s hypothesis. As we move further
away from the wall, the energy becomes increasingly confined to a smaller range of
wavespeeds and is centered about the local mean. Similar trends were also observed
in the experimental measurements of Puu(kx, ω) in a turbulent boundary layer by
LeHew et al., 2011.

To get an integrated sense of the energetic wavespeeds across the height of the
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Figure 4.6: 2D pre-multiplied power spectrum of the streamwise velocity in the kx-
ω plane for (a) y+ ≈ 6, (b) y+ ≈ 15, (c) y+ ≈ 31, and (d) y+ ≈ 64. The dashed lines
denote the wavespeed corresponding to the local mean velocity at each wall-normal
height.

channel, we compute the 1D spectrum Puu(c; y) as

Puu(c; y) =
∬ ∞

−∞

kxPuu(kx, kz, c; y)dkxdkz . (4.13)

The kx in the integrand arises from the change of variable fromω to c = ω
kx

such that
when Puu(c; y) is integrated across wavespeed it returns the variance 〈u2〉. We obtain
Puu(kx, kz, c; y) by interpolating the computed power spectrum Puu(kx, kz, ω; y) onto
a common wavespeed vector for each (kx, ω) pair; here we use 288 linearly-spaced
wavespeeds between 0 and the mean centerline velocity. In Figure 4.7, we plot
Puu(c; y) and superimpose on it the turbulent mean velocity. Consistent with results
presented in Figure 4.6, we observe a wide range of active wavespeeds close to the
wall with the well-known peak at y+ ≈ 15 and a subsequent narrowing of active
wavespeeds further from the wall. We note the 1D spectrum Puu(c; y) has also been
reported in Zare et al., 2017 for the same Reynolds number and in Moarref et al.,
2013 for Reτ = 2000. However, we emphasize both of these were model-based
computations; we believe the direct computation of Puu(c; y) from DNS data has not
been previously reported. Interestingly, there appear to be discrepancies between
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(a)

Figure 4.7: The 1D power spectrum of the streamwise velocity as a function of
wavespeed c+ and wall-normal height y+ with the mean profile (dashed line) super-
imposed.

the model-based computations and the spectrum presented in Figure 4.7 and thus
merits further investigation. Given the availability of data for the other velocity
components that is often difficult to obtain from experiments, we also report the 1D
spectra for v, w, and uv as a function of wavespeed in Figure 4.8. We observe that
the energetically dominant wavespeeds appear to be slightly faster in comparison
to u, particularly for v. We also note the energetic activity appears to be highly
localized around the mean velocity; from a modeling perspective, this seems to
bolster the argument that the wavespeed c, as opposed to the frequency ω, may be
more a relevant parameter in the analysis of turbulent flows as suggested in Moarref
et al., 2013.

4.4 Future directions
In this chapter, we focused on characterizing the spectra of the velocity/vorticity
and forcing fields in the full wavenumber/frequency domain as these had not been
thoroughly analyzed in the literature, especially for the forcing. As mentioned
previously, it would be noteworthy to further compare these results to the recent
model-based developments of Zare et al., 2017.

Looking forward, we are interested in computing reduced-order representations
of these flow fields using techniques such as resolvent analysis, proper orthogonal
decomposition, and the recently proposed spectral proper orthogonal decomposition
(Towne et al., 2017a). In addition, we think it would be worthwhile to perform
these decompositions in light of the proposed split into OS and SQ modes as
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Figure 4.8: The 1D power spectra of the (a) wall-normal velocity v, (b) spanwise
velocity w, and (c) Reynolds shear stress 〈uv〉 as a function of wavespeed c+ and
wall-normal height y+ with the mean profile (dashed line) superimposed.

a possible means to improve the convergence of these low-order representations.
Interestingly, this has been previously explored in a somewhat related context for
POD by transforming into a coordinate system locally aligned with the wavenumber
vector (Juttijudata et al., 2005). In this coordinate system, the decomposition
into the so-called ‘plus-modes’ (aligned with the wave vector) and ‘minus-modes’
(perpendicular to the wave vector) (Moser et al., 1983) appeared to provide improved
convergence properties with respect to the traditional POD approach. In general,
a thorough comparison of the various data-driven and operator-driven techniques
(Taira et al., 2017), particularly in light of the availability of frequency-resolved
data, would be a valuable contribution to the continuing development of low-order
models of turbulent channel flow.
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C h a p t e r 5

CONCLUSIONS AND FUTURE WORK

This thesis focused on the advancement of the resolvent framework to model wall-
bounded turbulent flows. Herein we summarize the key contributions and make
suggestions for possible future studies.

The first key contribution was the splitting of the decomposition of the resolvent
operator into a family of OS and SQ response modes, an approach whose motivation
stemmed from the analogous formulation in classical linear stability. Using various
ECS solutions (equilibria, traveling waves, and periodic orbits) in Poiseuille and
Couette flow, we clearly demonstrated the improved compact representation of the
velocity field gained with the modified OS/SQ approach in comparison with the tra-
ditional method. Notably, we were able to obtain a low-dimensional representation
of the wall-normal velocity v which had been visibly lacking with the previous ap-
proach. We also showed, using a Helmholtz decomposition of the nonlinear forcing,
the significance of the solenoidal component for incompressible flows. The notion
of only the solenoidal forcing component being ‘active’ in a sense, as illustrated
in Figure 2.2, may have interesting implications in terms of modeling Reynolds
stresses, as touched upon by Jimènez, 2016.

The next contribution was an extension of the resolvent framework to the analysis
of 2D/3C mean flows. Though the associated resolvent operator was significantly
more complicated, its decomposition led to some interesting results. Namely, it
revealed for lower branch ECS that the fundamental streamwise Fourier mode could
be accurately represented by the leading response mode of the resolvent operator;
furthermore, the interaction of this single mode with itself could sustain the mean
profile and thus close the system. It was observed that the dominance of the
associated leading singular value (often an order of magnitude larger than the second
singular value) enabled this representation with a single response mode. For upper
branch ECS, a strong separation in singular values was not observed and thus did not
allow for accurate representation with the leading mode; we attributed this behavior
as partly due to the slightly more complicated scale interactions which sustain these
solutions.

We then demonstrated with these contributions various novel methods to compute
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ECS. With the 2D/3C resolvent framework, we showed we could compute an ac-
curate representation of an ECS solution starting from a laminar profile using an
iterative procedure (rooted in the vision of the self-sustaining process) which re-
quired the specification of a single unknown parameter. From the 1D analysis and
the efficient basis obtained from the OS/SQ decomposition, we developed a method
based on interaction coefficients to solve for the unknown weights using only knowl-
edge of the mean profile. While we focused our results on equilibria in Couette
flow, these techniques can easily be extended to the computation of periodic orbits in
various geometries and is a topic of ongoing work. We also demonstrated interesting
connections between the mean profiles of the lower and upper branch solution and
suggested a simple model to jump from one to the other. This procedure, coupled
with the coefficient solver, could potentially provide significant computational sav-
ings as it would avoid the need to continue the solutions back to their bifurcation
point. Moreover, these resolvent-based solution methods, which do not require ex-
plicit time-integration of the NSE, may prove to be more efficient going forward in
the computation of ECS for higher Reynolds numbers.

Finally, the last key contributionwas a direct characterization of the nonlinear forcing
in a turbulent channel flow via a constant time-step DNS. By analyzing the power
spectra of the forcing, we observed a clear signature in the wavenumber/frequency
planes confirming notions about the underlying structure of the forcing as suggested
by Zare et al., 2017. We also computed spectra of the OS/SQ components of
the vorticity and observed similar competing effects between the two that were
also present in the ECS solutions. Also from this decomposition, we were able
to establish a possible connection between the spectra of the wall-normal vorticity
forcing and wall-normal velocity spectra which could serve useful for modeling
purposes. Looking forward, the OS/SQ decomposition in general may prove useful
in the analysis of fully turbulent flows and their low dimensional representation, and
thus remains a subject of ongoing work.
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A p p e n d i x A

SUPPLEMENTAL FIGURES

A.1 1D resolvent
In Figure A.1 we show the Reynolds stress profiles captured using the traditional
approach for up to Np = 20 singular modes. We observe that doubling the number
of singular modes used (in comparison to Figure 3.1) still does not yield complete
convergence. In Figure A.2, we show the forcing variance captured using the
traditional approach for an increasing number of singular modes for the P4L/P4U
solutions. In comparison to Figure 3.3 in which the split OS/SQ method is used,
we see the traditional approach yields a poor low-dimensional representation of the
forcing.
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Figure A.1: Reynolds stress profiles for P4L (open circles) and their approximations
based on the traditional approach using Np = 2 (dotted), Np = 6 (dashed), and
Np = 20 (solid) singular modes for (a),(d) 〈u2〉, (b),(e) 〈v2〉, (c),(f) 〈w2〉, (g),(h)
〈uv〉. All quantities are in inner units.

In Figure A.3, we show a comparison of the full forcing against the solenoidal



76

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4
10

-3

(a)

-1 -0.5 0 0.5 1

0

1

2

3

4

5
10

-3

(b)

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4
10

-3

(c)

-1 -0.5 0 0.5 1

0

0.02

0.04

0.06

0.08

0.1

(d)

Figure A.2: Forcing variance profiles for P4L (open circles, top row) and P4U (open
circles, bottom row) and their approximations via the traditional resolvent approach
using Np = 1 (dotted), Np = 5 (dashed), and Np = 15 (solid) singular modes for
(a),(c) 〈 fv2〉, and (b),(d) 〈 fη2〉. All quantities are in inner units.

components in the form of variance profiles for the u, v, and w components for
P4L and P4U. While the two look quite similar for the u component, the remaining
components are quite different.

In Figure A.4, we compare the OS and SQ singular values and weights of P4U
for the Fourier modes (kx = 0, kz = 4) and(kx = 2, kz = 4). We observe that for
(kx = 0, kz = 4), the response is initially dominated by OS modes and then later
by SQ modes. For (kx = 2, kz = 4), the response appears to have more uniform
contributions from OS and SQ modes.
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Figure A.3: Forcing variance profiles for P4L (left column) and P4U (right column)
comparing the full forcing (dashed line) and the solenoidal component (solid line)
for the (a),(b) u component, (c),(d) v component, and (e),(f) w component.
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Figure A.4: Comparison of the singular values σ (circles), the amplitude of the
weights |χ | (stars), and their product |σχ | (squares) of P4U for OSmodes (blue) and
SQ modes (red) for the Fourier modes (a) (kx = 0, kz = 4) and (b) (kx = 2, kz = 4).
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A.2 2D/3C Resolvent
In Figure A.5, we show the amplitude of the û, v̂, and ŵ components of the funda-
mental Fourier streamwise wavenumber for P4L as well as the projection onto the
leading singular mode. Also shown is a plot of the first 20 singular values and the
magnitude of the product |σχ |. As was the case for EQ1, this lower branch solution
is well approximated by its leading response mode.

(a) (b) (c)

(d) (e) (f)

0 5 10 15 20

10
-4

10
-2

10
0

10
2

10
4

(g)

Figure A.5: The amplitude of the fundamental streamwise Fourier mode û(kx =

2, ω = 2c; y, z) for P4L, with the top row corresponding to the true value and the
middle row corresponding to the projection onto the leading response mode for
(a),(d) û(y, z),(b),(e) v̂(y, z), (c),(f) ŵ(y, z), along with (g) the first 20 singular values
σj (open circles) and the product |σj χj | (squares).

In Figure A.6, we show the amplitude of the û, v̂, and ŵ components of the harmonic
for P4L as well as the projection onto the leading singular mode. Again, we also
shown is a plot of the first 20 singular values and the magnitude of the product |σχ |.
The lack of a dominant singular value suggests a rank-one approximation is not
sufficient. However, leveraging the dominant scale interaction of the fundamental
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Figure A.6: The amplitude of the Fourier mode û(kx = 4, ω = 4c; y, z) for P4L,
with the top row corresponding to the true value and the middle row corresponding
to the projection onto the leading response mode for (a),(d) û(y, z),(b),(e) v̂(y, z),
(c),(f) ŵ(y, z), along with (g) the first 20 singular values σj (open circles) and the
product |σj χj | (squares).

mode, the harmonic can be recovered using Equation 3.9 as seen in Figure A.7.

In Figure A.8, we show the amplitude of the û, v̂, and ŵ components of the funda-
mental Fourier streamwise wavenumber for the lower branch solution EQ10 Gibson
et al., 2009 as well as the projection onto the leading singular mode. Also shown is
a plot of the first 20 singular values and the magnitude of the product |σχ |. This
behavior is consistent with the previously discussed lower branch solutions.
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(a) (b) (c)

Figure A.7: The amplitude of the Fourier mode û(kx = 4, ω = 4c; y, z) for P4L
computed by passing the forcing generated by the interaction of the leading response
mode for (kx = 2, ω = 2c) through the resolvent operator (see equation 3.9): (a)
û(y, z),(b) v̂(y, z) and (c) ŵ(y, z).
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Figure A.8: The amplitude of the fundamental streamwise Fourier mode û(kx =

1.14, ω = 0; y, z) for the lower branch solution EQ10 (Gibson et al., 2009), with the
top row corresponding to the true value and the middle row corresponding to the
projection onto the leading response mode for (a),(d) û(y, z),(b),(e) v̂(y, z), (c),(f)
ŵ(y, z), along with (g) the first 20 singular values σj (open circles) and the product
|σj χj | (squares).
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A.3 Coefficient solver results
In Figure A.9, we demonstrate the model proposed in Equation 3.25 to predict the
mean profile of an upper branch solution from the lower branch for the pair EQ3
and EQ4 (Gibson et al., 2009). We again note this model requires the specification
of a single parameter α which for this pair took the value of 2.5.
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Figure A.9: The mean streamwise velocity (deviation from laminar) for (a) EQ3,
(b) a guess for the upper-branch (EQ4) mean based on overly-amplified EQ3 mean-
forcing (using a value of α = 2.5 in Equation 3.25), (c) the true mean of EQ4, and
(d) the corresponding 1-D mean profile (open circles- true profile, line- guess).

In Figure A.10, we demonstrate the results of the coefficient solver in which the
true mean for EQ2 is used. Comparing these with the results shown in Figure 3.21
for the approximate EQ2 mean, we see we can indeed capture the correct statistics
when the proper mean is used.
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Figure A.10: Reynolds stress profiles for EQ2 (open circles) and the values based
on the solution generated from the coefficient-solver (line) using the true EQ2 mean
for (a) 〈u2〉, (b) 〈v2〉, (c) 〈w2〉, (d) 〈uv〉. All quantities are in inner units.
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A.4 DNS of channel
In Figure A.11, for validation purposes we plot the mean profile and statistics for the
wall-normal velocity and vorticity, comparing the results of the present DNS with
the database results of Jiménez; the results are in good agreement.
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Figure A.11: A comparison of statistics for the present DNS (solid line) with the
database of Jiménez (open circles): (a) U, (b) 〈v2〉, and (c) 〈η2〉. All quantities are
in inner units.

In Figure A.12, we plot the spectra of the forcing component fvs in which 20
overlapping windowed segments are used. In comparison to the results in Figure
4.2 in which 10 overlapping segments were used, we do not observe any significant
quantitative difference between the two.
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Figure A.12: 2D spectra at a fixed wall normal height of y+ ≈ 15 for fvs using 20
overlapping segments (in comparison to 10 segments used in Figure 4.2) plotted
in the (a) kx-ω plane, (c) kz-ω plane, and the (e) kx-kz plane. No significant
quantitative differences are observed.


