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ABSTRACT 

Energy storage is a critical problem in the 21st century and improvements in battery 

technology are required for the next generation of electric cars and electronic devices. Solid 

polymer electrolytes show promise as a material for use in long-lifetime, high energy density 

lithium-ion batteries. Improvements in ionic conductivity, however, for the development of 

commercially viable materials, and, to this end, a series of computational studies of ionic 

diffusion were performed. First, pulsed charging is examined as a technique for inhibiting 

the growth of potentially dangerous lithium dendrites. The effective timescale for pulse 

lengths is determined as a function of cell geometry. Next, the atomistic diffusion mechanism 

in the leading polymer electrolyte, PEO-LiTFSI, is characterized as a function of 

temperature, molecular weight, and ionic concentration using molecular dynamics 

simulations. A novel model for describing coordination of lithium to the polymer structure 

is developed which describes two types of interchain motion “hops” and “shifts,” the former 

of which is shown to contribute significantly to ionic diffusion. The methodology developed 

in this study is then applied to a new problem – the adsorption of CO2 at the surface of semi-

permeable polymer membranes. Finally, a new method, PQEq, is developed, which provides 

an improved description of electrostatic interactions with the inclusion of explicit 

polarization, Gaussian shielding, and charge equilibration. The dipole interaction energies 

obtained from PQEq are shown to be in excellent agreement with QM and a preliminary 

application of PQEq to a polymer electrolyte suggest that it can provide an improved 

description of ionic diffusion. Taken as a whole, these techniques show promise as tools to 

explore and characterize novel materials for lithium-ion batteries.  
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NOMENCLATURE 

PEO. Polyethylene oxide. A flexible polymer chain that has a C-C-O backbone. 

TFSI. Bis(trifluoromethane)sulfominide. An anion with the structure N(SO2CH3)2
-. 

PDMS. Polydimethylsiloxane. A polymer chain with a SiO(CH3)2-O backbone. 

QM. Quantum mechanics or a quantum-mechanics based method. 

DFT. Density functional theory. 

FF. Classical force field. 

OPLS. Optimized Potential for Liquid Simulations, a non-reactive force field. 

PQEq. Polarizable Charge Equilibration method featuring explicit polarization. 

MPA. Mulliken population analysis charges 

ESP. Electrostatic potential charges 
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 I n t r o d u c t i o n  

LITHIUM-ION BATTERIES FOR ENERGY STORAGE 

Energy storage is a critical problem in the 21 st century. As the world population 

grows, so too does the demand for energy and energy storage materials. The 

development of the next generation of cars, personal electronics, and renewable 

energy sources hinges on improvements in battery technology.  

A battery, simply defined, consists of one or more electrochemical cells which 

provide power to external devices.3 More generally, batteries allow for chemical 

energy to be converted into electrical energy and vice versa.  

All battery cells contain the same basic components. Each battery has an 

electropositive cathode and an electronegative cathode. Charge-carrying ions 

travel from one electrode to the other through an ion-conducting and electrically 

insulating electrolyte material. The battery is charged by applying a positi ve 

voltage to the cathode, driving the positive charge carriers to the anode. The 

potential energy stored in the battery can be released by connecting it to a closed 

circuit. The electromotive force (Ɛ), measured in volts, depends on the difference 

in electronegativity between the anode and the cathode.  

Battery performance depends on two metrics.  First, the cell must have a high 

specific energy, in units of Watt-hour/kg. This is particularly important for 

portable devices – the range of electric cars and size of electronic devices are 
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fundamentally limited by the size of the battery cell. Second, the cell must be 

safe, reliable, and long-lasting. In the ideal battery, each charge-discharge cycle 

would be a completely reversible practice. In practical batteries, however, the 

cycle is never completely reversible and there is a capacity loss over time 4, 5.  

Research aimed at developing better batteries typically focuses on selecting 

better battery components: cations, anions, cathode materials, anode materials, 

and electrolytes. 

A number of materials, including lead5 and sodium6, can serve as a cation in the 

battery cell. Lithium, however, remains the most widely used cation in high-

performance batteries, particularly for portable devices. As lithium is the lightest 

metal, lithium-based batteries tend to achieve high specific energies 7.  

Depending on the chemistry of the battery, a  number of anions maybe viable. 

Smaller anions, such as fluoride8 have a tendency to clump with lithium and form 

a precipitate. To a lesser extent, this is also true for mid-sized ions such as 

tetrafluoroborate (BF4
-) and hexafluorophosphate (PF6

-)9. Larger ions, such as 

bis(trifluoromethanesulfonyl)imide (TFSI -)1, 2 distribute their charge over a 

larger molecule and are less likely to coordinate strongly to lithium.  

The selection of electrode material depends on the use case of the battery. 

Lithium-metal10 anodes boast a high specific energy, but degrade after a single 

charging cycle. For rechargeable lithium batteries, graphite11 most commonly 

used as the anode material. Intercalated materials are widely used as cathode 
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materials as well, such as lithium cobalt oxide (LiCoO2)12 and lithium nickel 

manganese cobalt oxide (LiNiMnCoO2)13. Nanostructured electrode materials are 

also a topic of active research14. 

A number of electrolytes are in use in batteries today. Generally, there is a 

tradeoff between conductivity and chemical stability in electrolyte materials: the 

greater the conductivity, the shorter the lifetime. Liquid electrolytes, such as 

propylene carbonate, have high ionic conductivities15, but irreversible chemical 

processes16-18 can limit the cycling lifespan of such cells. Additionally, liquid 

electrolytes are prone to the formation of lithium dendrites 19, 20, which can short 

circuit and overheat the battery. Many current cells today use a separator 21 to 

mitigate this problem. 

Polymer electrolytes are a promising electrolyte material. A polymer matrix, 

most commonly poly(ethylene-oxide)22-24, is placed between the anode and 

cathode, providing sites for lithium to diffuse while blocking dendrite growth. 

The primary limitation to polymer electrolytes is the relatively low di ffusion 

coefficient25. Discovering ways of increasing ionic diffusion within a polymer is 

currently a question of great interest. A number of novel mechanisms have been 

proposed for increasing diffusion in polymer electrolytes, including 

crosslinkers26 and plasticizers27. Recent experiments have focused on 

characterizing diffusion in polymer electrolytes as a function of molecular 

weight and salt concentration23, 28.  
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For a fixed battery chemistry, improvements in battery performance can be 

realized by optimizing other operating conditions, such as temperature1 or 

voltage29. For example, studies have suggested that charging a battery with a 

square wave voltage pulse at the appropriate frequency inhibits lithium dendrite 

growth19, 29, 30.  

Since the chemistry of the battery electrolyte can be complex, some assumptions 

must be made in order to describe ionic migration. The primary assumption is 

that changes in ion motion is driven by diffusion, i.e. , 

 ∇2𝑐𝑖𝑜𝑛 = −
𝜕𝑐𝑖𝑜𝑛

𝜕𝑡
. (1) 

For a particular ion, the expected displacement is given by the Einstein-

Smoluchowski equation31, 

 〈|𝑟𝑖𝑜𝑛(𝑡)|〉 = √2𝑑𝐷𝑡 (2) 

where 𝑟𝑖𝑜𝑛(𝑡) is the displacement of the ion, D is the diffusion coefficient, 𝑡 is time of 

diffusion and 𝑑 is the dimension of the space. For d=3, this reduces to: 

 〈|𝑟𝑖𝑜𝑛(𝑡)|〉 = √6𝐷𝑡 (3) 

The square of equation (3) relates the mean-squared-displacement (MSD) of a 

trajectory with the diffusion coefficient.  
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 MSD(𝑡) = 〈|𝑟𝑖𝑜𝑛(𝑡)|2〉 = 6𝐷𝑡 (4) 

Note that the diffusion assumption in equation (1) holds for ionic motion in 

sufficiently long trajectories, as over short periods of time, an ion might oscillate 

back and forth in a local site. These oscillations correspond to a sublinear 

dependence of MSD(t) on t in loglog space. When equation (4) is used to 

estimate ionic diffusion coefficients from simulation, care has to be taken to 

consider simulations long enough to reach the Fickian regime.  

The method of modeling diffusion is simply the integration of equation (2). The 

accuracy of this expression can be improved by including the effect of the 

electromigration due to the electric field. Note that, due to ionic shielding, this 

field is largest near the electrode32, 33. A complete description of ionic diffusion 

requires a force-field description of bonds, angles, torsions, and non-bonds. 

Although useful, traditional force fields make a rather large assumption: that 

charges are fixed and non-polarizable34. Limited work has been done on the 

development of polarizable force fields for polymer electrolytes 34, 35.  

This thesis contains a number of studies aimed at understanding the ionic 

diffusion in lithium-ion battery materials. In Chapter I, lithium dendrite growth 

is analyzed using a simple Monte Carlo model with electromigration term. The 

study shows that pulsed charging over intervals of ~1ms inhibits dendrite growth 

due to the relaxation of concentration gradients. In Chapter II, a force field 

simulation of ionic diffusion in PEO-LiTFSI is performed as a function of ion 
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concentration, molecular weight and temperature. The relative diffusion 

coefficients are shown to be in good agreement with experiment. The most and 

least diffusive lithium atoms are analyzed and a novel model for characterizing 

chain hopping suggests that both the motion of the polymer backbone and 

interchain hopping contribute to ionic diffusion. The methodology developed in 

chapter II was also applied to a description of the CO2 adsorption process in 

semi-permeable polymer membranes, as described in Appendix B.  In Chapter 

III, a polarizable charge equilibration scheme (PQEq) is developed. The model, 

which describes atomic charges as polarizable Gaussian shells, is shown to 

produce charges in good agreement with QM methods. Furthermore, PQEq 

interaction energies are shown to be significantly closer to QM than fixed charge 

methods over a cyclohexane-based training set. Initial PQEq simulations of ionic 

diffusion in PEO-LiTFSI look promise, but additional study in needed. These 

results serve as a platform for future studies of ionic diffusion in lithium-ion 

batteries, as shown in Appendix E. 
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C h a p t e r  I  

DYNAMICS OF LITHIUM DENDRITE GROWTH AND INHIBITION: 

PULSED CHARGING EXPERIMENTS AND MONTE CARLO 

CALCULATIONS 

With contributions from Asghar Aryanfar, Boris V. Merinov, William A. Goddard III, 

Agustin J. Colussi, and Michael R. Hoffman 

Acknowledgement: The main part of this chapter is published in the Journal of Physical 

Chemistry Letters, 2014, 5(10), pp1721-1726. 

 

Abstract 

Short-circuiting via dendrites compromises the reliability of Li-metal batteries. Dendrites 

ensue from instabilities inherent to electrodeposition that should be amenable to dynamic 

control. Here, we report that by charging a scaled coin-cell prototype with 1ms pulses 

followed by 3ms rest periods, the average dendrite length is shortened ~2.5 times relative to 

those grown under continuous charging. Monte Carlo simulations dealing with Li+ diffusion 

and electromigration reveal that experiments involving 20ms pulses were ineffective because 

Li+ migration in the strong electric fields converging to dendrite tips generates extended 

depleted layers that cannot be replenished by diffusion during rest periods. Because the 

application of pulse much shorter than the characteristic time τc~O(~1ms) for polarizing 

electric double layers in our system would approach DC charging, we suggest that dendrite 

propagation can be inhibited, albeit not suppressed, by pulse charging within appropriate 

frequency ranges. 
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Introduction 

The specific high energy and power capacities of lithium metal (Li0) batteries are ideally 

suited to portable devices and are valuable as storage units for intermittent renewable energy 

sources36-42. Li0, the lightest and most electropositive metal, would be the optimal anode 

material for rechargeable batteries if it were not for the fact that such devices fail 

unexpectedly by short-circuiting via the dendrites that grow across electrodes upon 

recharging19, 43. This phenomenon poses a major safety issue because it triggers a series of 

adverse events that start with overheating, which is potentially followed by the thermal 

decomposition and ultimately the ignition of the organic solvents used in such devices44-46.  

Li0 dendrites have been imaged, probed, and monitored with a wide array of techniques39, 

40, 47.  Moreover, their formation has been analyzed33, 48 and simulated at various levels of 

realism19, 49, 50. Numerous empirical and semiempirical strategies have been employed for 

mitigating the formation of Li0 dendrites that were mostly based on modifications of 

electrode materials and morphologies and variations of operational conditions37. Thus, 

reports can be found on the effects of current density51-53, electrode surface 

morphology44, solvent and electrolyte composition54-57, electrolyte 

concentration51, evolution time58, the use of powder electrodes20, and adhesive lamellar 

block copolymer barriers59 on dendrite growth. We suggest that further progress in this 

field should accrue from the deeper insights into the mechanism of dendrite propagation 

that could be gained by increasingly realistic and properly designed experiments and 

modeling calculations56, 60. We considered that Li0 dendrite nucleation and propagation are 

intrinsic to electrodeposition as a dynamic process under nonequilibrium conditions40, 
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48. Furthermore, in contrast with purely diffusive crystal growth, that Li-ion (Li+) 

electromigration is an essential feature of electrolytic dendrite growth61. More specifically, 

we envisioned that runaway dendrite propagation could be arrested by the relaxation of the 

steep Li+ concentration gradients that develop around dendrite tips during charging. This 

is not a new strategy62, but to our knowledge the quantitative statistical impact of pulses of 

variable duration on dendrite length has not been reported before. Herein, we report 

experiments focusing on dendrite growth in a scaled coin cell prototype fitted with 

Li0 electrodes charged with rectangular cathodic pulses of variable frequencies in the 

kilohertz range. We preserve the geometry and aspect ratio of commercial coin cells in our 

prototype, the dimensions of which facilitate the visual observation of dendrites. The 

effects of pulsing on stochastic phenomena such as dendrite nucleation and growth are 

quantified for the first time on the basis of statistical averages of observed dendrite length 

distributions. We also present novel coarse-grained Monte Carlo model calculations that, 

by dealing explicitly with Li+ migration in time-dependent nonuniform electric fields, 

provide valuable insights into the underlying phenomena. We believe our findings could 

motivate the design of safer charging protocols for commercial batteries. Current efforts in 

our laboratory aim at such a goal. 

Methods 

We performed our experiments in a manually fabricated electrolytic cell that provides for 

in situ observation of the dendrites grown on the perimeter of the electrodes at any stage 

(Figure 1). The cell consists of two Li0 foil disc electrodes (1.59cm diameter) separated 

0.32cm by a transparent acrylic ring. The cell was filled with 0.4cm3 of 1M LiClO4 in 
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propylene carbonate (PC) as electrolyte. We conducted all operations in an argon-filled 

(H2O, O2<0.5 ppm) glovebox. Arrays of multiple such cells were simultaneously 

electrolyzed with trains of 2mAcm–2 pulses of variable tON durations and γ = tOFF/tON idle 

ratios generated by a programmable multichannel charger. After the passage of 48mAh 

(173 Coulombs) through the cells, we measured the lengths of 45 equidistant dendrites 

grown on the cells perimeters by means of Leica M205FA optical microscope through the 

acrylic separator. Because dendrites propagate unimpeded in our device—that is, in the 

absence of a porous separator—our experiments are conducted under conditions for 

controlling dendrite propagation that are more adverse than those in actual commercial 

cells. Further details can be found in Experimental Details in Appendix A. 

Results 

The lengths and multiplicities [λi, pi] of the 45 dendrites measured in series of experiments 

performed at tON = 1 and 20ms, γ = 0 (DC), 1, 2, and 3, are shown as histograms in 

Appendix A. Dendrite lengths typically spanned the 200 μm–3000 μm range. Their average 

length α defined by equation 1 

  =
∫ 𝑝𝑖𝜆𝑖

∫ 𝑝𝑖

 (2) 

represents a figure of merit more appropriate than the length of a single dendrite chosen 

arbitrarily for appraising the effect of pulsing on the outcome of stochastic processes. The 

resulting α values, normalized to the largest α in each set of experiments, are shown as blue 

bars as functions of γ for tON=1 and 20ms pulses in Figure 2. It is immediately apparent that 
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the application of [tON=1ms; tOFF=3ms] pulse trains reduces average dendrite lengths by 

∼2.4 times relative to DC charging, whereas tON=20ms pulses are rather ineffective at any γ. 
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Figure 1: Top down: cross-sectional view, expanded view, and outer 

photograph of the cell 

 

Figure 2: Pulsed charging effects on the average dendrite length, α, sampled 

over a population of 45 dendrites. The idle ratio is denoted by  = tOFF/tON. 
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Basic arguments help clarify the physical meaning of the tON ∼ 1 ms time scale. The mean 

diffusive (MSD) displacement of Li+ ions, MSD = (2 D+ t)1/2 (where D+ is the experimental 

diffusion coefficient of Li+ in PC), defines the average thickness of the depletion layers 

created (via Faradaic reduction of Li+ at the cathode) that could be replenished by diffusion 

during t rest periods33. Notice that MSD is a function of time1/2 and depends on a property of 

the system (D+), that is, it is independent of operating conditions such as current density. 

From the Einstein relationship, D+ = μ+ (RT/F)63 (μ+ is the mobility of Li+ in PC), the electric 

fields |E|c at which Li+ electromigration displacements, EMD = μ+ |E|c t, that would match 

MSD are given by equation 3: 

 

|𝐸|𝑐 = √
2𝑅𝑇

𝐹
∗

1

√µ+𝑡
 

 

(3) 

Thus, with (2 RT/F) = 50mV at 300K, μ+ = 1 × 10–4 cm2V–1s–1, and t = 1ms, we obtain 

|E|c = 707 V cm–1, which is considerably stronger than the initial field between the flat 

parallel electrodes: |E|0 ∼ V0/L = 9.4Vcm–1. Cathode flatness and field homogeneity, 

however, are destroyed upon the inception of dendrites, whose sharp (i.e., large radii of 

curvature) tips induce strong local fields33, 64. Under such conditions, Li+ will preferentially 

migrate to the tips of advancing dendrites rather than to flat or concave sectors of the 

cathode surface33, 48, 65-67. Because the stochastic nature of dendrite propagation necessarily 

generates a distribution of tip curvatures, the mean field condition EMD ≤ MSD at 

specified tON values is realized by a subset of the population of dendrites. On sharper 
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dendrites the inequality EMD > MSD will apply at the end of tON pulses. Thus, larger 

|E|c values would extend the EMD ≤ MSD conditions to dendrites possessing sharper tips, 

that is, to a larger set of dendrites that could be controlled by pulsing. Note the weak |E|c ∝ 

μ+
–1/2 ∝ η–1/2 dependence on solvent viscosity η. 

From this perspective, because |E|c ∝ t–1/2, the application of longer charging pulses will 

increase the width of the depletion layers over a larger subset of dendrites to such an extent 

that such layers could not be replenished during rest periods. The preceding analysis clearly 

suggests that shorter tON periods could be increasingly beneficial. Could tON be shortened 

indefinitely? No, because charging at sufficiently high frequencies will approach DC 

conditions. The transition from pulsed to DC charging will take place 

whenever tON becomes shorter than the characteristic times τc of the transients associated 

with the capacitive polarization of electrochemical double layers. This is so because 

under tON pulses shorter than τc most of the initial current will be capacitive, that is, 

polarization will significantly precede the onset of Faradaic interfacial electron transfer. A 

rule-of-thumb for estimating τc on “blocking” electrodes via eq 332, 68-71 

 𝜏𝐶 =
𝜆𝐷𝐿

𝐷+
 (4) 

leads to τc∼3.3ms. In eq 3, λD=(ε(kBT/2)z2e2C0)
1/2 is the Debye screening length, L the 

interelectrode gap, and D+ the Li+ diffusion coefficient. In our system, with C0 = 1M 

Li+ solutions in PC (ε=65), D+=2.58×10–6cm2s–1, at 298 K, λD=0.27. Because the double 

layer capacitance must be discharged via Faradaic currents in the ensuing rest periods29, it 
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is apparent that the decreasing amplitude of polarization oscillations under trains 

of tON pulses much shorter than ∼ τc will gradually converge to DC charging. 

In summary, shorter tON pulses are beneficial for inhibiting dendrite propagation but are 

bound by the condition tON ≥ τc. The underlying reason is that shorter tON pulses inhibit 

dendrite at earlier propagation stages where the curvatures of most dendrite tips have not 

reached the magnitude at which local electric fields would lead to the EMD > MSD 

runaway condition. Notice that the stage at which dendrite propagation can be controlled 

by pulsing relates to the curvature of tip dendrites, which is a morphological condition 

independent of current density. Higher current densities, however, will shorten the 

induction periods preceding dendrite nucleation66.  

These ideas were cast and tested in a coarse-grain Monte Carlo model that, in accord with 

the preceding arguments, deals explicitly with ion diffusion, electromigration, and 

deposition. It should be emphasized that our model is more realistic than those previously 

reported19 because it takes into account the important fact that dendritic growth is critically 

dependent on the strong electric fields that develop about the dendrites tips upon 

charging72. The key role of electromigration in dendrite propagation has been dramatically 

demonstrated by the smooth Li0 cathode surfaces produced in the presence of low 

concentrations of nonreducible cations, such as Cs+ that, by preferentially accumulating on 

dendrite tips, neutralize local electric fields and deflect Li+ toward the flat cathode 

regions38. Given the typically small overpotentials for metal ion reduction on metallic 

electrodes63, we consider that the effect of the applied external voltage on dendrite growth 

operates via the enhancement of Li+ migration rather than accelerating Li+ reduction. In 
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other words, the population of electroactive Li+ species within the partially depleted 

double layers surrounding the cathode should be established by the competition of ion 

diffusion versus electromigration rather than Li+ deposition. Note furthermore that in our 

model dendrite nucleation is a purely statistical phenomenon, that is, nucleation occurs 

spontaneously because there is a finite probability that two or more Li+ ions are 

successively reduced at a given spot on the cathode surface. Once a dendrite appears, a 

powerful positive feedback mechanism sets in. The enhanced electric field at the tip of the 

sharp dendrites draws in Li+ ions faster, thereby accelerating dendrite growth/propagation 

and depleting the solution of Li+ in its vicinity. The concentration gradients observed 

nearby growing dendrites are therefore deemed a consequence of the onset of dendrites. In 

our view, simultaneity does not imply causality73, 74, that is, we consider that Li+ depletion 

around dendrites is more of an effect rather than the cause of dendrite nucleation. Note, 

however, that experimentally indistinguishable mechanisms of dendrite nucleation are 

compatible with our interpretation that the effects of pulsing on dendrite propagation arise 

from the competition between ion diffusion and electromigration. Because of the 

computational cost of atomistic modeling, we simulate processes in a 2D domain that is 

smaller than the section of the actual cell. We chose its dimensions (L* × L* = 16.7 nm × 

16.7 nm, Table 1) to exceed the depth of actual depletion boundary layers at the cathode. 

Because our calculations aim at reproducing the frequency response of our experiments, 

simulation time was set to real time. Therefore, to constrain within our domain the 

diffusional displacements occurring in real time, we used an appropriately scaled diffusion 

coefficient D+
*. The adopted D+

* = 1.4 × 10–10 cm2/s = 5.6 × 10–5 D+ value leads to MSD* 
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∼ 0.3 L* after 1ms. The Einstein’s relationship above ensures that this choice sets the 

scaled mobility at μ+
* = D+

* (F/RT) = 5.6 × 10–9 cm2/(V s). Then, in order to have EMD* 

= μ+* |E|* t ∼ MSD*, the scaled electric field must be |E|* = (Vanode – Vcathode)*/MSD* = 

|E|0/5.6 × 10–5 = 1.7 × 105Vcm–1, from which we obtain (Vanode – Vcathode)* = MSD*·1.7 × 

105 V cm–1 = 85mV. The two-dimensional Monte Carlo algorithm implemented on this 

basis calculates the trajectories of individual Li+ ions via random diffusion and 

electromigration under time and position-dependent electric fields. 

Table 1: Parameters Used in the Monte Carlo Calculations 

Domain size L 16.7nm  16.7nm 

t (integration step) 1𝜇𝑠 

Vcathode 0V 

Vanode 85mV 

D+ (Li+ diffusion coefficient) 1.4 x 10-10 cm2/s 

+ (Li+ mobility) 5.6 x 10-9 cm2/(V*s) 

Li+ radius 1.2Å 

Free Li+ ions 50 

Maximum Li0 atoms 600 

By assuming that Li+ ions reach stationary velocities instantaneously, their mean 

displacements are given by 

 𝑟𝑖⃗⃗⃗ (𝑡 + ∆𝑡) − 𝑟𝑖⃗⃗⃗ (𝑡) = √2𝐷+∆𝑡𝑔̂ + µ+𝐸⃗⃗∆𝑡 (5) 

The first and second terms on the right hand size of eq 3 are the mean displacements due to 

ionic diffusion and electromigration, respectively. 𝑔̂ is a normalized 2D vector representing 

random motion via diffusion, Δt is the computational time interval, and 𝐸⃗⃗ is the electric field 
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vector. By normalizing displacements relative to the interelectrode separation, L, 

eq 4 transforms into eq 5 

 ξ⃗(𝑡 + ∆𝑡) = ξ⃗(𝑡) + 𝜃𝑔̂ + 𝜂. (6) 

Dendrite lengths λi were evaluated as their height αi(t) above the surface of the electrode: 

 𝜆𝑖(𝑡) = 𝑚𝑎𝑥
𝑘=1:𝑛

𝜉𝑘(𝑡) ∗ 𝒋. (7) 

where j is the unit vector normal to the surface of the electrode and n is the total number of 

lithium atoms incorporated into the dendrite. 

By using the Einstein relationship above, the equation of motion becomes 

 𝑟(𝑡 + ∆𝑡) − 𝑟(𝑡) = √2𝐷+∆𝑡𝑔̂ +
𝐹

𝑅𝑇
𝐷+∆𝑡𝐸⃗⃗, (8) 

a function of D+Δt. 

By neglecting electrostatic ion–ion interactions, given that they are effectively screened 

because λD = 0.27 nm is smaller than the average interionic separation Ri,j = 1.2 nm, is 

computed using Laplace’s equation: 

 𝛻2𝜙 =
𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
= 0. (9) 
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It is obvious that this approximation prevents our model to account for charge 

polarization, that is, the partial segregation of anions from cations under applied fields. 

Thus, in our calculations the electric field is instantaneously determined by the evolving 

geometry of the equipotential dendritic cathode. Note that the concentration gradients that 

develop in actual depleted boundary layers would lead to even greater electric field 

enhancements than reported herein. We were forced to adopt the approximation implicit in 

eq 8 because the inclusion of ion–ion interactions and charge imbalances would be 

forbiddingly onerous in calculations based on Monte Carlo algorithms. We consider, 

however, that the inclusion of a variable electric field represents a significant advance over 

previous models19. 

Calculated dendrite heights were quantified by dividing the x axis (parallel to the surface 

of the cathode) in four sectors. Here, “dendrite height” in each sector is the height of the 

Li0 atoms furthest from the electrode. To ensure good statistics, each simulation was run 

100 times, for a total of 400 measurements per data point. The key experimental result, that 

is, that longer tOFF rest periods are significantly more effective in reducing α after tON=1ms 

than tON=20ms charging pulses, is clearly confirmed by calculations 

(Figure 2 and Appendix A). Figure 3 displays the results of sample simulations. Metallic 

dendrites grow with random morphologies into equipotential structures held at V = 0V, 

thereby perturbing the uniform electric field prevailing at the beginning of the experiments. 

The high-curvature dendrite tips act as powerful attractors for the electric vector field, 

which by accelerating Li+ toward their surfaces depletes the electrolyte and self-enhances 

its intensity. This positive feedback mechanism has its counterpart in the electrolyte regions 
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engulfed by dendrites because, by being surrounded with equipotential surfaces, Gauss’s 

theorem ensures that the electric fields will nearly vanish therein63. It should be emphasized 

that the key feature is that ion displacements from electromigration are proportional to τON, 

whereas diffusive ones increase as τON
1/2. Above some critical τON value, the depth of the 

deplete layers will increase to the point at which they could not be replenished during the 

ensuing rest periods of any duration. 

These phenomena are visualized from the computational results shown in Figures 3–6. 

Figure 4 displays the dendrite morphologies created by pulsing at various γ’s. Calculations 

for longer tOFF values show marginal improvements because ∂[Li+]/∂y gradients remain 

largely unaffected in simulations for γ > 3. Figure 5 shows typical morphologies of 

dendrites consisting of a given number of deposited Li0. 

 

Figure 3: Left to right: dendrite morphologies for DC charging, charging 

with  tON=1ms pulses at γ=tOFF/tON = 1, 2 and 3. Green dots: Li0. Red dots: 

Li+. 
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Figure 4: Simulations for charging with tON = 1 ms (left) and tON = 20 ms 

(right) at   = tOFF/tON = 3. Green dots: Li0. Red dots: Li+. Gray lines: 

equipotential contours. Blue vectors: the electric field. 

 

Figure 5: Simulations for charging with tON = 1 ms,  = 1 pulses. Left: after 

a charging pulse. Right: at the end of the successive rest period (right). 

Green dots: Li0. Red dots: Li+. Gray lines: equipotential contours. Blue 

vectors: the electric field. 
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Figure 6: Zooming in the tip of the leading dendrite produced by charging 

with tON=20ms, =tOFF/tON=3 pulses at 243ms, i.e., at the end of simulation 

time. Green dots: Li0. Red dots: Li+. Gray lines: equipotential contours. 

Blue vectors: the electric field. 

 

Conclusions 

In conclusion, we have demonstrated (1) that by charging our lithium metal cell with tON = 1 

ms, γ = tOFF/tON = 3 pulse trains, the average dendrite length α is significantly reduced (by 

∼70%) relative to DC charging and (2) that such pulses are nearly optimal for dendrite 

inhibition because they are commensurate with the relaxation time τc∼3 ms for the diffusive 

charging of the electrochemical double layers in our system. Monte Carlo simulations 

dealing explicitly with lithium ion diffusion, electromigration in time-dependent electric 

fields, and deposition at the cathode are able to reproduce the experimental trends of tON on 

average dendrite lengths. Further work along these lines is underway. 
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Abstract 

Understanding the ionic diffusion mechanism in polymer electrolytes is critical to the 

development of better lithium-ion batteries. A molecular dynamics-based characterization 

of diffusion in PEO/LiTFSI is presented across a range of temperatures, molecular weights 

and ion concentrations, with relative diffusion coefficients shown to be in good agreement 

with experimental measurements. To determine the atomistic diffusion mechanism, the 

chain coordination of lithium atoms is then analyzed across a range of temperatures. The 

most diffusive lithium atoms are shown to exhibit frequent interchain hopping, whereas the 

least diffusive lithium atoms frequently oscillate or “shift” coordination between two or 

more chains. Interestingly, these interchain shifts are shown to contribute little to overall 

diffusion mechanism and may actually reduce the segmental motion of the polymer, which 

is shown to contribute significantly to lithium diffusion. These results suggest that novel 

polymer materials with both a flexible backbone and a low barrier for interchain diffusion 

are promising for use in the next generation of solid polymer electrolytes. 
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Introduction 

Solid polymer electrolytes are promising materials in the development of high lifetime and 

energy density lithium-ion batteries24. Originally designed for use in portable electronic 

devices75, lithium-ion batteries now show promise as energy storage devices for renewable 

energy sources such as solar and wind power, which produce intermittent power, as well 

as electric vehicles. Recently, the availability of lithium-ion batteries for residential use has 

increased with the release of home batteries like the Tesla Powerwall. 

The typical, commercially available, lithium-ion battery consists of an organic liquid 

electrolyte paired with a graphite anode and intercalated transition-metal-oxide cathode76. 

Although high ionic conductivities can be obtained from liquid electrolytes, a high rate of 

reactions77 limits both the lifespan and safety of these systems. Specifically, the formation 

of dead lithium crystals78 can lead to capacity loss over repeated cycling, and the 

propagation of lithium dendrites30, 44, 54 can lead to short circuits and, potentially, 

combustion of the battery cell.  

Solid polymer electrolytes mitigate the effects of these problematic reactions by guiding 

lithium diffusion along a series of coordination sites along the polymer chains, slowing 

side-reactions and greatly increasing the potential lifespan and range of safe operating 

conditions of the battery cell79. Although a range of polymer backbones have been studied, 

poly(ethylene oxide) (PEO)-based structures are currently the leading candidates for use in 

lithium-ion batteries due to the flexibility of the polymer chains and presence of strong 

ether coordination sites22. Improvements in ionic conductivity, however, are needed for the 
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widespread application of solid polymer electrolytes. Thus, a large research effort is 

underway to improve the ionic conductivity of PEO-based polymers while maintaining the 

mechanical strength1, 2, 24 of the PEO backbone. 

The properties PEO-based structures depend strongly on the molecular weight of each 

chain. Lower molecular weight structures tend to be more flexible and enable larger ionic 

diffusion coefficients, albeit with reduced mechanical stability. To address this, a number 

of modifications to the PEO structure have attempted to improve the stability of the 

backbone, including the creation of block copolymers80, 81, comb-like82, 83 and 

crosslinked84, 85 polymer structures. For sufficiently large molecular weights, the diffusion 

coefficient and diffusion mechanism is independent of chain length, as well as the nature 

of polymer end groups22.  

The crystallization of lithium salts in polymer electrolytes can limit the effective number 

of charge carriers, and thus the conductivity, within polymer electrolytes. Although a 

number of anions, such as LiPF6
86, LiClO4

87, 88, and LiBF4
89, 90 have been studied, 

bis(trifluoromethy-sulfonyl-imide) (TFSI) remains the leading anion candidate, in part, due 

to its diffuse charge distribution and resistance to clumping24. 

An early description of the diffusion dynamics in polymer electrolytes was provided by the 

Dynamic Bond Percolation (DBP) model developed by Ratner91, 92, which can be used to 

describe diffusion of  through a disordered medium that contains a series of coordination 

sites. The key assumption of the model is the presence of a renewal time, 𝜏𝑅, over which 

the neighboring coordination sites are updated due to motion of the polymer backbone. The 
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model demonstrates that ionic motion is always diffusive for timescales longer than the 

renewal time (t >> 𝜏𝑅). 

A Rouse-based model for ionic diffusion was developed by Maitra93 and later extended by 

Borodin and Diddens94, 95. This model builds upon the description of renewal events in 

DBP by introducing a timescale τ1 associated with intrachain motion along a chain, τ2 

which describes the relaxation time of the polymer chain for segmental motion, and τ3 as 

the waiting time between interchain hops. The overall ionic diffusion rate can be expressed 

as a combination of these three events93.  

A growing body of experiments are being run on PEO-LiTFSI-based polymer systems. 

Recently, Balsara23 measured Li+ and TFSI- conductivities across a range of molecular 

weights (Mw=0.6-100 kg/mol) and ionic concentrations (r=0.02-0.08) using pulsed field 

gradient nuclear magnetic resonance (NMR). Pożyczka28 recently studied the bulk ionic 

conductivity as the well as the transference number, t+, of PEO-LiTFSI across a range of 

ionic concentrations using impedance spectroscopy. Although, this range of molecular 

weights and ionic concentrations is of great practical interest, limited molecular dynamics 

simulations have been carried out across this regime. 

In this work, a comprehensive study of ionic diffusion is performed across the range of 

molecular weights, ion concentrations, and temperatures is performed and the relative 

diffusion coefficients are shown to be in good agreement with experiment23. An analysis 

of chain coordination reveals that polymer backbone, intrachain, and interchain motion 

contribute to lithium diffusion, consistent with the Rouse model. An analysis of polymer 
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backbone motion suggests that the presence of lithium reduces segmental chain motion, 

particularly when the lithium is coordinated to multiple chains. The implication of this 

finding on the development of new polymer materials is discussed.   

Methods 

Force field parameters were assigned using the Desmond96 system builder with the 

OPLS2005FF97. A timestep of 1fs was used for short range interactions and a timestep of 

3fs was used for long range interactions, with the Desmond u-series method used to account 

long range Coulomb interactions after a cutoff of 9Å. In agreement with charges from the 

QM-based electrostatic potential (ESP) method, ionic charges of ±0.7 were used. A 

Berendsen thermostat with a time constant of τ=1ps was used for NVT diffusion 

simulations.  

A series of polymer structures were created in an amorphous builder and each structure 

was equilibrated with a series of minimization, NVT, NPT, and scaled-effective solvent 

(SES)98 equilibration steps in order to fully relax the polymer chains. Full details of the 

equilibration procedure are available in Appendix C. Structures were generated over a 

range of ionic concentrations (r=0.02, 0.04, 0.06, 0.08 Li:EO). For the r=0.02 case, 

structures were also constructed across a range of chain lengths (N=23, 45, 100, 450). To 

maintain a near-constant (N=1000) number of monomers in the simulations, the cells were 

constructed with m=43, 22, 10 and 2 chains, respectively. Simulations for these structures 

were performed over a range of temperatures (360K, 400K, 440K, and 480K). Although 

there is some difference in diffusion for the methyl-terminated chains in our simulations 

and the hydroxyl-terminated chains studied by Balsara, the difference is negligible at 
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higher molecular weights N>5022. The simulations at 400K, 440K, and 480K were run 

for 115ns, while the simulations at 360K were run for 400ns to reach a regime characterized 

by Fickian diffusion. The polymer structure for r=0.02, N=100 at the end of the 400ns 

diffusion simulation is shown in figure 1. 

 

Figure 1: A typical PEO structure consisting of 10 chains of PEO length 

N=100 monomers and 20 LiTFSI after 400ns of dynamics at 360K. At this 

concentration, the lithium atoms are shown to coordinate primarily to 

oxygen along the PEO chains. Lithium atoms are shown in green, TFSI 

nitrogen is displayed in blue, sulfur in yellow, oxygen in red, and CF3 in 
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teal. The PEO chain is identified with bonds shown in grey, oxygen in red, 

carbon in teal, and hydrogen are shown in white.  

The ionic diffusion coefficient, Dion, was derived from the ionic mean-squared 

displacement (MSD) curve using the 3D diffusion relation: 

𝑀𝑆𝐷𝑖𝑜𝑛(𝑡) ≡ 𝑟(𝑡)⃗⃗⃗⃗⃗⃗⃗⃗⃗
𝑖𝑜𝑛
2 = 6𝐷𝑖𝑜𝑛𝑡.   (1) 

Since this relation only holds for Fickian diffusion, care was taken to identify the Fickian 

regime of the MSD curve. The largest domain, t, where the loglog slope is nearly unity 

(within a tolerance of ±0.1) is selected as the fitting region, with a minimum width of one 

tenth of the total simulation time to ensure good statistics. An example fit is shown in 

Figure 2. The remainder of the MSD curves are shown in Figure S3 of Appendix C. 
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Figure 2: Mean-squared-displacement (MSD) plot of lithium ions diffusing 

through a PEO polymer matrix with a chain length of N=100 monomers 

over a 115ns simulation. To ensure a description of true, Fickian, diffusion, 

the diffusion coefficient is obtained by fitting the MSD curve (red) to a line, 

6Dt (green), over the region where the loglog MSD slope is closest to 1. A 

complete listing of MSD plots can be found in figure S4 of Appendix C. 

In order to obtain insight into the atomistic nature of diffusion, a model for lithium 

coordination is developed. An individual lithium atom is described as coordinated to an 

oxygen if it is within 2.5Å, roughly the outer width of the first Li-O coordination shell2. A 

lithium atom’s position along a chain is tracked by assigning an index to polymer oxygen 

1-100, as shown in Figure 3, and defining a lithium position along a chain as the mean 

index of the coordinated oxygens. The chain a lithium is most coordinated to is tracked as 
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the chain with the greatest number of coordinated oxygen. In the event of a tie, the chain 

with the smallest lithium-oxygen distance is considered to be the most coordinated chain.  

 
Figure 3: A schematic summarizing the three outcomes of lithium motion: 

interchain “hops”, interchain “shifts”, and intrachain motion, represented 

by sites a, b, and c, respectively. A “hop” occurs when a lithium atom 

changes chain coordination and fully coordinates to a single new chain. A 

“shift” occurs when a lithium atom changes chain coordination, but remains 

“stuck” and coordinated to multiple chains. Intrachain motion occurs when 

lithium’s most coordinated chain remains constant and is characterized by 

a shift, ∆n, of the mean lithium-oxygen coordination site. Note that the 

typical lithium atom is coordinated to 4-5 oxygens, so the shift in 

coordination can be fractional. 

Changes in coordination are tracked over 0.25ns intervals and characterized as intrachain 

motion, interchain hopping or interchain shifting. For intrachain diffusion, when a lithium 

atom remained coordinated to the same chain, we measured whether a lithium atom 

remained fixed ∆n=0, shifted up to one oxygen site ∆n≤1, shifted up to two oxygen sites 

∆n≤2, or shifted more than two oxygen sites ∆n>2. For interchain diffusion, when a lithium 

atom’s most coordinated chain changed, the possible outcomes were an interchain hop, 
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where lithium was only coordinated to a single chain at the end, or a interchain shift, 

where lithium remained coordinated to at least two chains.  

Results 

To understand the nature of local sites in the polymer structure, the coordination of lithium 

is analyzed. A plot of the lithium-oxygen radial distribution function is shown in figure 4. 

The peak in coordination is observed at 2.12Å, in good agreement the 2.1Å peak observed 

in a neutron scattering study1. The integrated radial distribution function shows that lithium 

coordinates to an average 4-5 oxygen within a distance of 2.5Å.An example of a lithium 

coordination site is shown in figure 5. 

 
Figure 4: Shows the Li-O radial distribution function for the system 

containing 10 PEO chains of length 100 monomers and at r=0.02 Li:EO at 

360K averaged every 100ps over a 400ns trajectory. The inner Li-O 

coordination peak is located at 2.12Å, in good agreement with 
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measurements made with neutron scattering2. Additionally, the density of 

the structure, 1.125
𝑔

𝑐𝑚3
 is shown to be in the experimental range1, 22, 23. 

 

The local site of a lithium atom in the r=0.02/N=100 structure at 360K is shown in Figure 

5. The lithium atom coordinates strongly (r<2.5Å) to 3 polymer oxygen, less than the 

average of 3-4. Interestingly, these oxygen atoms belong to two separate polymer chains, 

making this a relatively rare “shift” coordination in the context of the coordination model. 

A full discussion of lithium coordination is provided later in the text. 

 
Figure 5: Shows the local coordination of lithium (green) to PEO oxygen 

atoms (red) at the end of the 400ns 360K/20LiTFSI/N=100 simulation. In 

this case, the lithium is coordinated to oxygen along two different PEO 

chains, corresponding to a shift event in the hopping model.  



 

 

34 

Next, the diffusion coefficients for lithium and TFSI are analyzed as a function of 

temperature, molecular weight, and chain length. First, the computed diffusion coefficients 

for lithium and TFSI as a function of chain length for N=23, 48, 100, 450 monomers are 

shown in Figure 6. In both experiment and theory, the ionic diffusion coefficient is shown to 

drop with increasing chain length, with a sharp drop between 23 and 100 monomers and a 

plateau between 100 and 450 monomers, likely due to increased polymer motion of flexible 

chain length. An analysis of polymer oxygen motion in table 1 confirms this description. 

Although there is excellent agreement between the relative diffusion coefficients obtained 

from theory and experiment, the theoretical values are systematically smaller than NMR data 

by a factor of 3. This systematic shift is observed in a number of diffusion studies and could 

be due to ionic charges99 or nature of the NMR measurement. Ionic diffusion coefficients 

obtained from more recent experiments by Pożyczka are a factor of 5 lower than NMR, 

which put the computed diffusion coefficients in the experimental range. A full discussion 

of experimental diffusion measurements is provided in Appendix C. 
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Figure 6: Li and TFSI diffusion coefficients as a function of chain length 

N. Diffusion coefficients obtained from 400ns simulations at 360K are 

shown in red, and diffusion coefficients from 400K, 440K, and 480K 

simulations are shown in blue, green, and black respectively. Diffusion 

coefficients obtained from NMR measurements at 363K are shown in 

orange. Shorter chain lengths are shown to lead to larger ionic diffusion 

coefficients, with a particularly large increase occurring between chain 

lengths of N=23 and N=100 monomers.  

The ionic diffusion coefficients for lithium and TFSI as a function of ionic concentration 

are shown in Figure 7. The ionic diffusion coefficients drop slightly from r=0.02 to 0.08. 

In the literature, this drop decrease has been attributed partially as an increase in the number 

of salt clusters28. An analysis of oxygen and polymer displacements, in Figure 14 and Table 

1, suggest that the presence of lithium ions may slow the segmental motion of the polymer 

chains and thus the process of lithium diffusion.  

In both experiment and theory, the diffusion coefficient slightly drops with increasing r, 

but interestingly, a peak is observed at r=0.04. Although the reported experiments by 

Balsara23 do not have a peak at this concentration, a recent set of IS measurements28 

indicate such a peak, recent measurements by Pożyczka28 suggest a peak in ionic 

conductivity between r=0.02 and r=0.06. 
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Figure 7: Li and TFSI diffusion coefficients over a range of concentrations, 

r=0.02, 0.04, 0.06, and 0.08 (Li:EO). Diffusion coefficients obtained from 

molecular dynamics simulations at 360K, 400K, 440K, and 480K are shown 

in red, blue, green, and black, respectively. Diffusion coefficients obtained 

from NMR experiments at 363K are shown in orange and IS experiments at 

373K are shown in purple. The overall diffusion coefficient is shown to 

decrease slightly with ionic concentration. The computed diffusion 

coefficients lie within the experimental range.  

The activation energies for lithium and TFSI diffusion are shown in figure 8 as a function of 

chain length and ionic concentration. These values are in the range reported by Gorecki1, and 

suggest that the computed diffusion coefficients are transferable across a range of 

temperatures. 
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Figure 8: Li and TFSI activation energies over a range of chain lengths, 

N=23, 45, 100, 450, and concentrations r=0.02, 0.04, 0.06 and 0.08 Li:EO. 

The computed activation energy depends weakly on chain length and 

concentration within this regime, in agreement with experimental 

measurements1.  

To understand the atomistic nature of diffusion, the coordination model is then used to 

analyze the atoms with the largest and smallest mean-squared-displacements (MSD) over 

the simulation time. These atoms are denoted as the most and least diffusive lithium. The 

chain coordination of the most diffusive lithium atom in the r=0.02 Li:EO, N=100 

simulation at 360K is plotted as a function of time in Figure 9. The structure on the right 

shows the real space position of this single lithium atom evolving over time, over 0.25ns 

intervals. The lithium resides on the 8th chain for around 30ns before hopping to the 9th 

chain, then the 5th. Overall, the most diffusive lithium moves 59.3Å in 400ns and 

coordinates to a total of seven chains.  

 
Figure 9: Examines the coordination and displacement behavior of the 

single most diffusive lithium atom in the 360K/20LiTFSI/N=100 

simulation as a function of time. The plot on the left shows the most 

coordinated chain as a function of time throughout the 400ns simulation. 

Most Diffusive Lithium, 360K/20LiTFSI 
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The structure on the right displays the real positions of the lithium at points 

spaced every 1ns in the trajectory. Over the duration of the simulation, this 

lithium atom diffuses a total of 59.3Å and coordinates to a total of 7 chains. 

For comparison, the coordination behavior of the least diffusive lithium atom in this 

simulation is shown in figure 10. This lithium atom only diffuses a total of 12.2Å and 

coordinates to the 8th chain for most of the simulation, occasionally shifting between 

chains. 

These results suggest that there is considerable variability in the diffusional behavior of 

individual ions. The more diffusive lithium in this case more frequently hopped between 

chains, whereas the less diffusive lithium atom only temporarily shifted between chains. A 

complete analysis of diffusion as a function of coordination change is shown in figure 13. 

 
Figure 10: Examines the coordination and displacement behavior of the 

single least diffusive lithium atom in the r=0.02Li:EO, N=100 simulation at 

360K as a function of time. The plot on the left shows the most coordinated 

chain as a function of time throughout the 400ns simulation. The structure 

on the right displays the real positions of the lithium at points spaced every 

1ns in the trajectory. Over the duration of the simulation, this lithium atom 

Least Diffusive Lithium, 360K/20LiTFSI 
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diffuses a total of 12.2Å and remains primarily coordinated to chain #8 for 

the majority of the simulation. 

This analysis was repeated for the most and least diffusive lithium atoms for the r=0.02 

Li:EO, N=100 simulation at 480K and the results are shown in figures 11 and 12. At this 

temperature, numerous interchain hops are observed over the 115ns trajectory and the total 

displacements of the lithium are 115.4Å and 45.5Å, respectively. These results suggest a 

change in the mechanism for diffusion at higher temperatures, as lithium are more able to 

overcome the barriers for interchain diffusion. This mechanism is analyzed in terms of the 

hopping model, shown in figure 3, in the discussion section. 

 
Figure 11: Examines the coordination and displacement behavior of the 

single most diffusive lithium atom in the 480K/20LiTFSI/N=100 

simulation as a function of time. The plot on the left shows the most 

coordinated chain as a function of time throughout the 115ns simulation. 

The structure on the right displays the real positions of the lithium at points 

spaced every 1ns in the trajectory. Over the duration of the simulation, this 

lithium atom diffuses a total of diffuses a total of 115.4Å with frequent hops 

between all 10 PEO chains. 

Most Diffusive Lithium, 480K/20LiTFSI 
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Figure 12: Examines the coordination and displacement behavior of the 

single least diffusive lithium atom in the r=0.02, N=100 simulation at 480K 

as a function of time. The plot on the left shows the most coordinated chain 

as a function of time throughout the 115ns simulation. The structure on the 

right displays the real positions of the lithium at points spaced every 0.25ns 

in the trajectory. Over the duration of the simulation, this lithium atom 

diffuses a total of diffuses a total of 45.5Å with frequent hopping between 

all 10 PEO chains. 

Discussion 

The changes in chain coordination of the most and least diffusive lithium atoms suggest a 

connection between chain coordination and total lithium displacement. In order to examine 

this, changes in lithium coordination are tracked every ∆t=0.25ns in the trajectory. The 

hopping model, shown in figure 3, describes lithium motion as intrachain diffusion, 

interchain “hops” between chains, and interchain “shifts” when lithum remains coordinated 

to multiple chains. 

An analysis of the lithium coordination frequency is shown as a function of temperature in 

figure 13. A small number of lithium atoms undergo no change in coordination, ∆n=0. 

Least Diffusive Lithium, 480K/20LiTFSI 
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Small intrachain hops, ∆n≤1, correspond to slight changes in the lithium-oxygen 

coordination shell and are the frequent transition at lower temperatures T=360K, 400K, 

440K. Increases in temperature are correlated with an increased frequency of large 

intrachain hops, ∆n>2 and interchain hops, which suggests that an activation barrier is 

associated with these processes. Interestingly, the frequency of shifts is seen to be 

independent of temperature, suggesting that this coordination pattern is geometric in nature 

rather than energy-mediated. The lithium displacements corresponding to these processes 

are shown in figure 14. 

 

Figure 13: Frequency of lithium coordination changes as a function of 

temperature. Small intrachain hops, ∆n≤1, are most frequent at lower 

temperatures T=360K, 400K, 440K. Increases in temperature are correlated 

with an increased frequency of large intrachain hops, ∆n>2 and interchain 

hops. Interestingly, the frequency of shifts is seen to be independent of 

temperature, suggesting that this coordination pattern is geometric in nature 
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rather than energy-mediated. The lithium displacements corresponding to 

these processes are shown in figure 14.  

The displacements associated with each of these diffusion processes are shown in figure 

14. For no change in coordination, the lithium displacements, ∆n=0 caused by the 

segmental motion of the polymer chains. This segmental motion is shown to be the 

dominant contributor to ionic diffusion over short timescales. Intrachain changes in 

coordination along a chain (∆n>0) contribute to the overall lithium diffusion, but intrachain 

hops alone are not enough to reach the Fickian diffusion limit. Interchain hops, on the other 

hand are correlated with the largest increases in lithium motion and contribute significantly 

to the diffusion process. Taken together, these results suggest that the atomistic nature of 

lithium diffusion is consistent with the Rouse93 model formulation – the segmental motion 

of polymer chains drives is associated significant vehicular diffusion. Frequent lithium 
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intrachain hops and infrequent interchain hops contribute to the overall diffusion 

process.  

Figure 14: Average lithium displacements associated with coordination 

change. The ∆n=0 displacement is associated with the vehicular motion of 

the polymer backbone. The increase in average displacements for ∆n>0 is 

associated with intrachain diffusion along a chain. Interchain hopping is 

associated with significantly increased diffusion.  

In order to examine the nature of segmental motion of the polymer chain, the displacement 

of individual oxygen atoms are analyzed. As polymer displacements can differ as a function 

of chain position, the two extreme cases are considered – oxygen atoms located at the center 

of the chain (n=50, 51) and oxygen atoms located at the edge of the chain (n=1, 100). The 

results of this analysis are shown in table 1. Across all temperatures, it is shown that the 

oxygen atoms near the edge of the polymer chain diffuse ~30% more than the oxygen atoms 
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at the center of the chain. This suggests increased polymer flexibility and motion for 

shorter chains, consistent with the results of the diffusion simulations.  

 

Table 1: Shows real space oxygen of polymer backbone oxygen over 

timescales of ∆t=0.25ns. Average displacements are taken for the two 

oxygen sites closest to center (n=50, 51) and edge (n=1, 100) of a length 

N=100 polymer chain. These results suggest an increase in segmental 

motion at the edges of the polymer chain. These results also suggest that the 

presence of lithium ions may slow the segmental motion of the polymer as 

the displacements of the polymer chain is significantly less than the ∆n=0 

motion of lithium at a fixed site along the chain. 

Interestingly, it is observed that the oxygen along a polymer chain diffuse significantly more, 

on average, than the lithium atoms at a fixed position along a chain (∆n=0), as seen in figure 

14. This suggests that the presence of lithium ions may constrain the motion of the polymer 

and reduce the segmental motion of the polymer associated with the thermal reptation of the 

polymer. This effect could explain the reduction in ionic diffusion coefficients observed at 

higher ionic concentrations.   

The reduction in chain motion in the presence of lithium ions also suggests that lithium 

coordinated to multiple chains (i.e. shifting), may slow the overall rate of segmental diffusion 

in the polymer. This is consistent with the increased number of shift transitions associated 

Oxygen Displacements (∆t=0.25ns) 

Displacement Center  Edge  

360K 3.0Å 3.8Å 

400K 4.8Å 6.3Å 

440K 6.5Å 8.8Å 

480K 7.6Å 10.4Å 
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with the least diffusive lithium ions in figures 10 and 12. This suggests that the nature of 

lithium coordination between chains may play an important role in ionic diffusion. 

Conclusions 

Taken as a whole, these results show that both the motion of polymer backbone and 

interchain hopping make the largest instantaneous contributions to polymer diffusion. 

Intrachain motion makes a smaller instantaneous contribution to diffusion, but is the most 

probable mode near the battery operating temperature around 360K. An analysis of oxygen 

displacements suggests that the presence of lithium may slow polymer reptation, 

particularly when the lithium is coordinated to multiple chains. The results also suggest 

that lithium atoms can reside between chains and that interchain hops must involve both 

coordination to a new chain and detachment from its previous chain in order to facilitate 

greater ionic diffusion. Additionally, reasonably accurate relative ionic diffusion 

coefficients, consistent with experimental data, were obtained across a range of ion 

concentrations, temperatures, and molecular weights. The obtained results validate that this 

methodology shows promise for predicting the structure and ionic conductivity of new and 

novel polymer materials.  
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Abstract 

Electrostatic interactions play a critical role in determining the properties, structures, and 

dynamics of chemical, biochemical, and material systems. These interactions are described 

well at the level of quantum mechanics (QM) but not so well for the various models used in 

force field simulations of these systems. We propose and validate a new general 

methodology, denoted PQEq, to predict rapidly and dynamically the atomic charges and 

polarization underlying the electrostatic interactions. Here the polarization is described using 

an atomic sized Gaussian shaped electron density that can polarize away from the core in 

response to internal and external electric fields, while at the same time adjusting the charge 

on each core (described as a Gaussian function) so as to achieve a constant chemical potential 

across all atoms of the system. The parameters for PQEq are derived from experimental 

atomic properties of all elements up to Nobelium (atomic no. =102). We validate PQEq by 

comparing to QM interaction energy as probe dipoles are brought along various directions 

up to 30 molecules containing H, C, N, O, F, Si, P, S, and Cl atoms. We find that PQEq 

predicts interaction energies in excellent agreement with QM, much better than other 

common charge models such as obtained from QM using Mulliken or ESP charges and those 

from standard force fields (OPLS and AMBER). Since PQEq increases the accuracy of 
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electrostatic interactions and the response to external electric fields we expect that PQEq will 

be useful for a large range of applications including ligand docking to proteins, catalytic 

reactions, electrocatalysis, ferroelectrics, and the growth of ceramics and films, where it 

could be incorporated into standard force fields such as OPLS, AMBER, CHARMM, 

Dreiding, ReaxFF, and UFF.  

1. Introduction 

For practical simulations of dynamical processes, such as ligands binding to 

proteins, nucleic acids, and polymers responding to externals fields and stresses, 

catalysts reacting with substrates, and external fields driving electrochemical 

reactions, it is necessary to go far beyond the time and length scales of QM through 

the use of a force field (FF) to describe the structures and forces as they evolve. A 

critical issue in all such multiscale models is how to accurately describe 

electrostatic interactions. One common approach is to break the system into 

fragments, perform QM calculations on each one, and then obtain partial charges 

from Electrostatic Potential fitting (ESP)100, Mulliken Population Analysis 

(MPA)101 or other QM charge assignment models102. Additional discussion on 

these models can be found in the Supplementary Materials. One disadvantage with 

these approaches is that the charges are fixed and not allowed to adjust to changes 

in the electrostatic environment that occur during dynamics. It can also be 

burdensome to perform the QM calculations to obtain charges, for example, for 

the millions of ligands used in Virtual Screening (VS) applications.  

The charge equilibration (QEq)103 method introduced by Rappé and Goddard in 

1991 provides an alternative fast way to predict charges for systems too large for 
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QM. Indeed, carrying out the QEq calculation along an MD trajectory takes into 

account some changes in polarization during dynamics. Advantages of QEq are 

that the 3 parameters per atom are derived from atomic ionization energies 

(valence averaged) and from covalent radii so that they are available for the whole 

periodic table (through Lr, atomic no. =103). Also, because the charge on each 

atom is distributed over a Slater orbital having the size of the atom, QEq can be 

used to predict charges between bonded atoms to describe the changes during 

reactions. This made QEq useful for defining a general FF (UFF) 104 for inorganic-

organic systems and for reactive FFs (ReaxFF)105, 106. However, it has not been 

demonstrated whether QEq is as accurate as ESP or MPA in reproducing QM 

energies nor that the predicted changes in polarization during dynamics agree with 

QM. 

Describing the changes in polarization within a molecule or solid during dynamics 

or in response to an external electric field is crucial in many applications 107-109. 

Consequently, many strategies have been proposed for including polarization into 

FFs particularly for liquid water and its interactions with ions 110-113, for modeling 

of proteins114-118, DNA119, enzymatic reactions120, protein–ligand docking121, 122, 

peptides123, and in small-molecule systems124-132. Polarization is also important in 

ion channels and aqueous solution111, 133-135, superionic systems136, piezoelectric 

and ferroelectrics materials137-139, lithium batteries140, crystal defects and surface 

energies141-143, lattice vibrational frequencies calculations143, 144, dynamic 

dielectric response or Raman light scattering144, 145, hydration energy 

calculations146, carbon nanotubes147, and predicting organic crystal structure 148-
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151.  This need has led to a number of approaches that have been discussed 

thoroughly in several reviews107, 108, 110, 152-154. Our perspectives about these 

methods is summarized in the Appendix D.  

In this paper, we propose a new polarizable charge equilibration scheme that build s 

upon the success of QEq and includes polarization in a generic way that can be 

easily extended for the entire periodic table. This polarizable charge equilibration 

model (PQEq) allows charges and polarization to readjust dynamically to attain a 

constant chemical potential during the simulation. Here the polarization is 

described by an atomic sized Gaussian shaped electron density cloud that can 

polarize away from the atomic core in response to internal and external electric 

fields. The charges on the cores are also described by Gauss ian functions and 

charge can flow from one atom to another based on the QEq charge equilibration 

scheme. The total electrostatic energy is expressed as a sum of internal atomic 

energy plus pairwise shielded Coulombic interactions. PQEq uses the same 

covalent bond radii and atomic ionization energies previously used in QEq. An 

additional atomic polarization parameter is based on the literature value for atomic 

polarizability. Thus, the parameters for PQEq are well defined for all elements up 

to Nobelium (atomic no. =102). 

For validation, we perform a series of high quality QM calculations for 30 

structures using cyclohexane and benzene scaffolds containing H, C, N, O, F, Si, 

P, S, and Cl atoms. The interaction energy was computed by bringing a pair of ±1 

point charges (probe dipole) towards each structure along several axes. We show 

that PQEq produces interaction energies in excellent agreement with QM. In 
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addition, we optimize a parameter set (PQEq1) that increases the accuracy in the 

interaction energies for these particular compounds. Here, and for the rest of the 

paper, the total interaction energy between the dipole and target structure is 

referred to as the interaction energy. For fixed charge models, this interaction is 

just the electrostatic energy between the dipole and fixed charges (i.e. no 

polarization). For PQEq, with charge updates and shell polarization turned on, this 

interaction energy now also reflects the change in energy from polarization.  

We then compare the PQEq interaction energies with other common charge models 

such as Mulliken or ESP charges obtained from QM and those from standard force 

fields (OPLS155-158 and AMBER159-161). We find that the fixed charge methods do 

not describe the induced polarization in the system.  

Based on these results, we believe that PQEq can be used to improve the 

description of electrostatic interactions for systems in which polarization is 

important. It can be incorporated into existing force fields such as OPLS, AMBER, 

CHARMM162-164, Dreiding, ReaxFF, and UFF, but it may be necessary to modify 

some parameters to account for the change in the charge model. This could be 

useful for a large range of applications including ligand docking to proteins, 

catalytic reactions, electrocatalysis, ferroelectrics, and growth of ceramics and 

films. 

2. Methods 

2.1 Polarizable Charge Equilibration (PQEq) model  

The PQEq model combines the QEq103 charge equilibration model with the shell 

(Drude oscillator) model114, 129, 138, 165, 166. The key difference from previous shell 
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models is that PQEq does not use point charges. Rather the shell electron is 

described as a Gaussian function having the same size as the core charge. This 

leads to shielding as the shell electron interacts with its core and with other atoms 

so that the singularities in point charge descriptions are avoided. The polarization 

of the shell away from its core in response to the electrostatic field of all other 

charges and any external field accounts for polarization dynamically. Here we take 

the mass of the shell to be zero so that it responds adiabatically as the atoms move 

about in the MD.  

For a system of N atoms, each atom, i, is partitioned into two charged sites (core 

and shell). The core (ρic) consists of two parts; ρi with a variable total charge (qi) 

and ρiZ with a fixed total charge (Zi). The shell (ρis) has a fixed total charge of -Zi. 

The shell and core of an atom are connected by an isotropic harmonic spring with 

force constant Ks (see Figure 1), 
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where R is the distance between the core and shell. Equation 1 leads to an atomic 

or shell polarizability of  
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where Z is the shell charge and Cunit = 332.0637 is a unit conversion factor that 

expresses energy in kcal/mol, distance in angstroms (Å), and η as Å3. This 

conversion constant is Cunit =14.3994 for energies expressed in eV. The η values 
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derived from the atomic polarizability can be computed using high quality ab-

initio calculations or measured for single atom polarization in response to an 

external electric field. We use the values tabulated by Miller167. 

Defining the total charge (core plus shell) on atom i as qi, the individual charges 

on the core and shell are  
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The net atomic charge at the core ( iicis qqq  ) is variable and adjusts to keep the 

chemical potential constant. There is positive fixed charge (Zi) at the core at 

position icr


(i.e. ir


) and a negative fixed charge (-Zi) is at the shell position isr


. The 

displacement of shell i with respect to its core, icisr ,


, is defined as icis rr


 . The charge 

density of both the core and the shell is described by a 1s Gaussian charge 

distribution,  
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where ik , the width of the distribution, is given by 
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Here, Rik is the covalent atomic radius in Å units and λ is a parameter that converts 

the overlap of two Gaussian charges to the effective shielding. We determined the 

value of λ by comparing PQEq and QM electrostatic interaction energies (see 

below). The PQEq model uses equal atomic and shell radii (i.e. Ri=Ric=Ris) for 

each atom i so that the above equations simplify to 
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This charge distribution has the shape of a spherical 1s Gaussian shape with a 

width determined by the atomic radius of the atom. The core and shell of each 

atom has a Columbic interaction with the cores and shells of every other atom in 

the system. We allow the atomic charges (qi)  to respond to the electrostatic 

environment based on the QEq scheme103, 139. The position of the shell is then 

calculated by balancing the sum of all electrostatic forces on the shell with the 

spring force (see below). A shell charge of Zi=1 is used for all atoms. 
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Figure 1: Partition of a two-atom system into core and shell for the 

PQEq model. Both cores and shells are described by spherical 1s 

Gaussian charge distributions. The core (ρic) consists of two parts; ρi 

with a variable total charge (qi) and ρiZ with a fixed total charge (Zi). 

The shell (ρis) has a fixed total charge of -Zi. The shell and core of 

an atom interact with each other through a harmonic spring force. 

Cores and shells of different atoms interact with each other through 

Coulombic interactions as well. The atomic charge on each core (qi) 

is allowed flow within the system until the atomic chemical 

potentials are equalized. 

2.2 Electrostatic Energy 

The electrostatic energy between two Gaussian charges is given by   jlikjlik qqrC

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Here i and j are the atomic indices, and k and l represent the core (c) and shell (s), 

respectively. In the case of jlik rr


 , jlikC ,  is equal to 
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A well-known problem in other shell and induced dipole120, 168 models is that they 

suffer from a polarization catastrophe when the shells or dipoles are placed too 

close together. The Gaussian shielding present in PQEq addresses this issue as the 

Coulombic interaction energy remains finite, even in the limit of zero interatomic 

distance.  

We describe the PQEq electrostatic energy,   iisic qrrE ,,


, as a sum of an intra-

atomic electrostatic energy   iisici qrrE ,,


 and interatomic pairwise Coulomb 

interactions,  
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The internal energy (Ei) is a function of the electronic polarization and total charge 

on the atom. 
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The first term on the right hand side of Equation 21,  ii qE ,0  is the energy required 

to create a charge, qi, assuming zero polarization and neutral atomic state as the 

reference point. We use a Taylor expansion to express this energy term as  
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and truncate it after second-order terms. The original QEq method103 included a 

radius dependent scaling parameter for hydrogen atom in order to better fit the 
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dipole moment for both alkali hydrides (e.g., LiH) and halogen hydrides (e.g., HF). 

This leads to a nonharmonic dependence of energy, which in our experience can 

lead to unstable systems, so PQEq eschews this complication. 

We use three conditions to determine the rest of the parameters as follows: 
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Here,  10,iE  is the ionization potential (IP), which is the energy required to 

remove one electron from the atom, and  10,iE  is the electron affinity (EA), 

which is the energy gained when an atom receives one additional electron. Both 

IP and EA are well known experimentally for nearly all elements. We use the same 

values as determined by Rappé and Goddard103 in which the experimental IP and 

EA are averaged over the ground state atomic configuration in order to reflect the 

averaging introduced by bonding to other atoms. Thus, for nitrogen atom the IP 

and EA are derived using the averages over the 4S, 2D, and 2P states associated 

with the (2s)2(2p)3 configuration and the 3P, 1D, and 1S states associated with the 

(2s)2(2p)2 and (2s)2(2p)4 configurations of the ions. Solving Equations 23-25 for 

the unknowns yields 
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where 
0

i  is the Mulliken electronegativity169 of atom i and 
0

iiJ
 is the idempotential 

(hardness) or electron capacity of atom i, which resists electron flow to or from an 

atom. We replace the second term on the right hand side of Equation 21 with the 

Coulombic interaction between core and shell of atom i plus a spring interaction 

between the core and shell of atom i.  Therefore, Equation 20 can be written as, 
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Ignoring the  3

iqO  term in Equation 23, the electrostatic energy of the system is 

given by  
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where the second sum is the pairwise shielded Coulomb interaction energy 

between all cores and shells, which can be expanded to give the total electrostatic 

energy as  
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2.3 The Charge Equilibration Condition 

A serious problem in most classical MD/MM applications is that fixed charges are 

assigned to each atom. Such fixed charges (even the most reliable ones from ab-

initio calculations) do not respond to the changes in the electrostatic environment, 
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which decreases the accuracy. This problem becomes paramount for reactive force 

fields (e.g. ReaxFF106) where the bond connectivities of atoms change during 

reactive MD simulations, requiring updates of the atomic charges (ideally at each 

time step). As in QEq, the PQEq model allows the charge distribution on the 

various atoms to change as the electrostatic environment changes during the 

dynamics. The optimum charge distribution is computed from the conditions that 

the chemical potentials ( iqE  / ) are equal for all of the atoms (which provides N-

1 conditions where N is the number of atoms) and that the total charge is conserved  

   ,Qqqq
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(29) 

where Q is the total charge of the system.  We use Lagrange multipliers to 

guarantee this constraint as the charges are optimized. The energy expressions with  

the Lagrange multiplier, µ, is  
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Setting the derivative of Equation 30 equal to zero yields  
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where Hij is an N by N matrix and δij is the Kronecker delta function. The diagonal 

elements of Hij matrix (δij =1) denote the idempotential of the atoms while the off-

diagonal elements represent the Coulombic interactions between the variable 

charge part of the cores (i.e. qi). Ai in Equation 33 is a vector of length N. The first 
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term of Ai is the electronegativity of the atom. The second term is the Coulombic 

interaction coefficient between the core and shell of the atom i. The third term is 

the sum of Coulombic interaction coefficient between variable charge part of core 

i (i.e., qi) and the fixed charge component of all other cores and shells (i.e., Zj and 

–Zj). Note that in Equation 33, Ai is a fixed quantity for each atom during the 

charge minimization, which reduces to 
0

iiA   if polarization is not included, as 

in the QEq model103, 170. In Equations 31-33, the Lagrange multiplier μ is the 

chemical potential that constrains the sum of the atomic charges to be equal to the 

total charge of Q. Solving Equations 31-33 leads to 
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Applying Equation 29 we get  
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which is solved to obtain μ 
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where iq~  and iq̂  are fictitious charges. In practice, we solve Equation 36 by 

partitioning it into two sub equations. Setting the derivative of Equation 36 to zero 

results in  
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Finally, the instantaneous total charges on each atom (qi=qic+qis) can be written 

as  

 .ˆ~
iii qqq 

 
(39) 

The above formulation for PQEq omits the presence of external electric fields, 

which is included in the Supplementary Materials. A frequency-dependent 

response can be obtained from time-dependent fields.    

 

2.4 Preconditioned Conjugate Gradient (PCG) Solution of the Charge 

Equilibration Equations 

Exactly solving for the charges that satisfy the QEq condition involves inverting 

an N by N matrix, which scales as O(N3). Since this is required every time step103, 

this process is computationally too expensive to be practical for large systems. A 

practical solution to this problem is the PCG method implemented in the 

PuReMD171, 172 and LAMMPS173 software packages.  

We use PCG to solve Equations 37 and 38. The efficiency and convergence of this 

iterative conjugate-gradient (CG) method depends on the spectrum of the 

coefficient matrix. The PCG method uses a second matrix (preconditioner) to 

transform the coefficient matrix to obtain improved spectral properties. This 

preconditioner involves an incomplete factorization of the coefficient matrix. In 

particular, incomplete LU factorization (ILU) (where L and U are lower and upper 

triangular) can be used for solving this sparse linear systems 174. For QEq, Aktulga 

et al. studied the performance, stability, and accuracy of the ILU-based 

preconditioners for various model systems172. They showed that ILU-based 



 

 

61 

preconditioners dramatically reduces the number of iterations while allowing the 

same L and U factors to be used effectively as preconditioners over several steps, 

due to the slow changes in the simulation environment. We extended this ILU -

based preconditioner method to PQEq and coupled it with shell relaxation (see 

next section) to calculate the PQEq charges while updating the shell position.  

 

2.5 Shell Relaxation 

In our formulation of the PQEq dynamics, we choose to displace the core of each 

atom together with its shells as a rigid body during every timestep of the dynamics.  

After moving core plus shell, the first step of the next iteration is to calculate the 

electrostatic field on every particle and to solve the PQEq equations (using the 

PCG method) for the new charges.  Next, we fix the core positions and update the 

positions of all shells simultaneously using a one-step relaxation as follows. If 

necessary, this process of updating atomic charges and shell relaxation with fixed 

cores can be repeated for several iterations to attain self-consistency for 

troublesome geometries. However, we find that one cycle is normally sufficient to 

reach equilibrium for each timestep after the first.   

The shell position for each atom is obtained by balancing the effect of the 

electrostatic field due to all external atoms with intra-atomic interactions 

involving only the core and its shell. These forces are calculated by taking the 

derivative of the electrostatic energy (Equation 28) with respect to the shell 

position,   



 

 

62 

 ,
2

1 2

, 











 isics

is

intra rK
r

F

 

(40) 

  .)()()()( ,,,, jijsisijcjcis

j

jicjsicjcicjcic

is

external ZZrCZqrCZqrCqqrC
r

F






 

 
(41) 

We solve Equations 40 and 41 to find the optimal position of shells (ris) using a 

single iteration of the Newton-Raphson method. Since the shell is typically very 

close to its core (usually < 0.1 Å), we neglect the effect of the external core and 

shell charges on this second derivative to avoid inverting the Hessian. We assume 

here that the shell is massless, so that it relaxes instantaneously to its zero-force 

position, with no inertial delay. Therefore, we estimate the new position of the 

shell by assuming that Fintra and Fexternal are collinear. Thus, the new position of 

the shell is computed by,  
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Although, this problem is not strictly one-dimensional, we use the above second 

derivative allowing the shell to rotate into the direction in which the external field 

acts. 

 

3. QM Interaction Energy for Validation 

In order to validate the accuracy of PQEq and to perform optimization of the model 

(if needed), we must decide the criteria to use for comparison and optimization. 

The normal practice in most FFs is to use QM charges. We discuss in 
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Supplementary Materials that QM charges are not reliable for this purpose. 

Instead, we use the QM interaction energy. We probe each of the 30 molecules in 

our validation set with a pair of ±1 point charges separated by 1 Å to describe the 

interaction with dipole and higher order multipoles. For convenience, we refer to 

this pair of point charges as an electric dipole. The interaction energy from QM is 

shown as a function of distance and used as the reference energy.  

We selected scan axes along a variety of symmetry directions to provide insight 

about how the polarization depends on the elements. Care was taken to avoid close 

contacts with the nearby atoms. Figure 2 shows an example for cyclohexane 

molecule of electric dipole scans along several different directions. These scans 

are performed towards a backbone atom (d1 and d2), along a bond (d3 and d4), 

perpendicular to a bond (d5), and toward the center of mass of the structure (d6). 

For all calculations, we use the standard B3LYP hybrid flavor of DFT, including 

both the generalized gradient approximation and a component of the exact 

Hartree–Fock (HF) exchange175-179. These calculations were performed with the 6-

311G(d,p) (or 6-311G**++) basis set180.  
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Figure 2: Interaction energies from bringing an electric dipole toward 

the cyclohexane molecule along various directions including: toward 

C and H atoms (d1 and d2), along a C-H bond (d3 and d4), 

perpendicular to a C-C bond (d5), and toward the center of mass (d6). 

The positive (red) and negative (blue) heads of the dipole form an 

angle of 180° (dotted line) with the reference point. The 

corresponding directions are labeled on the molecular configuration 

shown in the inset of the figure. Note that for most directions, the 

QM energies increase below 1.5 Å due to non-electrostatic effects. 

 

4. PQEq Database 

We used a set of 30 molecular structures in our validation of the PQEq model. We 

designed this data set to cover H, C, N, O, F, Si, P, S, and Cl elements in a balanced 

manner. These structures are depicted in Figure S3 of the Supplementary 

Materials. We use cyclohexane and benzene rings as the framework for these 

molecular structures, replacing C and H with the above atoms. This framework 

provides a reasonable number of atoms and bond types for studying charge transfer 
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and polarization effects. The molecular structures are at their equilibrium 

geometries optimized using QM with same DFT method and basis set described 

above. Then, the electric dipole is scanned along various directions with respect 

to these molecular structures. The scan directions were selected after extensive 

preliminary calculations to probe properly the amount of polarization and 

electrostatic potential change during the scan. We excluded cases that resulted in 

less than 2 kcal/mol change in the energy throughout the scan. We also avoided 

scanning directions that could lead to very close interaction of the dipole with 

nearby atoms. In addition, to avoid non-electrostatic interactions arising from 

Pauli principle repulsion at close distances we scan only up to the inflection point 

(attractive forces) of the electrostatic potential curve. We find this distance to be 

near 2.5 Å for most of the cases so that the electric dipole is scanned from 10.0 Å 

up to 2.5 Å with respect to the reference point for all cases.  

The above considerations resulted in a total of 68 scans for the above molecular 

structures. The change of QM electric dipole energy with the distance for each 

case is shown in Figure S4 of Appendix D. 

 

5. Results 

5.1 Parametrization of PQEq Model 

In this paper, we present two sets of PQEq parameters. The first set (denoted as 

PQEq) uses the same χ, J, and Rcs  parameters as in the QEq method103 which were 

obtained from standard bond radii and experimental ionization energies. These are 

available for all elements of the periodic table up to Lawrencium (Lr) (atomic no. 
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=103). Using Equation 3, we derived the Ks values based on experimental or high 

quality ab-initio calculations of atomic polarizabilities in the presence of an 

external electric field. These values are available up to Nobelium (No) (atomic no. 

=102)167. The exception is for H atom where we use IP=11.02 eV and EA=1.96 eV 

to define χ and J as did Rappé  and Goddard103 and we take the Ks value for H from 

the Karasawa and Goddard calculation for the polarizability of Polyvinylidene-

fluoride crystal that they fitted to a shell-model138. Our results in the next section 

show that this default PQEq parameter set, with no addit ional optimization predicts 

interaction energies from QM very well.  

For the second series of parameters (PQEq1), we performed a constrained 

optimization of the atomic χ and J parameters with respect to the QM derived 

energy for all 68 cases. We used CG optimization to minimize the difference 

between the energies computed by PQEq1 and QM. The total error is defined as 

the weighted mean square error (MSE), 

  
2

1 ,i QM PQEq

i

Error E E   (44) 

where ωi is the weight and EPQEq and EQM are the energies computed by PQEq1 

and QM, respectively. Constraints were applied to ensure that the parameters obey 

the general trends of the periodic table. That is, we require that within a row of 

the periodic table the atoms should become more electronegative as we move to 

the right. Similarly, we require atoms become more electronegative as we move 

down a column in the periodic table. This was enforced at each step of th e 

optimization. These constraints defend against overfitting and ensure better 

transferability of the final parameter set. We find the total error in Equation 44 to 
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decrease from 1219.29 to 471.55 during the PQEq1 optimization. Thus for this 

class of systems the PQEq1 parameters should provide a more accurate description 

of the electrostatics. The changes in parameter values are generally small. The 

maximum change in the PQEq1 parameters is for Fluorine (F) atom, which led to 

a 19.96 percent change in the χ parameter. The comparison between the parameters 

before and after optimization is shown in Table S3 in the Supplementary Materials. 

The PQEq and PQEq1 parameters are tabulated in Table S1 and Table S2 in the 

Supplementary Materials, respectively. We also provide the electronic versions of 

these files.  

 

5.2 Electric Dipole Energy 

Figure 3 shows the comparison (one for each atom type) between the interaction 

energies computed by QM, PQEq, and PQEq1 for the scan of the electric dipole at 

different distances. Here, the interaction energy includes the polarization effect 

during the scan. The dipole scan directions are shown with the dotted lines on the 

molecular structure schematics for each case. Comparisons for additional cases are 

shown in Figure S4 of Appendix D.  

Based on these results, we choose the effective shielding parameter in the Equation 

10 to be λ=0.4628. This value is close to the corresponding number in QEq model 

(0.4913) using Slater-type orbitals103. The results show good agreement of PQEq 

with QM. This suggests that the PQEq general parameter set can accurately 

describe the electrostatic potential for a variety of molecular structures and 

environments. Thus, we expect good transferability of the PQEq model to new 
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materials. This often has been a challenge for previous FFs and charge calculation 

models. As expected, the results from PQEq1 parameter set show better agreement 

with QM and may be useful for other systems contain similar structures as in our 

database. In particular, PQEq1 provides a dramatic improvement for molecules 

containing Fluorine element, as seen in Figure 3e

 

 

Figure 3: Interaction energies of an electric dipole near database 
molecular structures computed by QM (blue), PQEq (red), and PQEq1 
(green). One case is presented for each atom type; (a) H, (b) C, (c) N, 
(d) O, (e) N and O, (e) F, (f) Si, (g) P, (h) S, and (i) Cl.  The inset of 
each subfigure shows the molecular structure configuration with the 
scan direction (dotted line) of the electric dipole. The ±1 electric dipole 
is shown with small solid spheres. The positive (red) and negative 
(blue) heads of the dipole form an angle of 180° (dotted line) with the 
reference point.  

5.3 Partial Charge Calculation 
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The energy comparison is the crucial criterion to test the accuracy of the PQEq 

model, but we are also concerned to determine if the computed charges are 

consistent with chemical intuition. This is particularly important for using PQEq 

partial atomic charges in the electrostatic potential term of FFs that have been 

developed with different charge model. We compute the partial atomic charges for 

all of the molecular structures using PQEq and PQEq1 parameter sets and compare 

them with ESP and MPA charges.  

For the MPA and ESP charge calculations, we use several flavors of DFT including 

B3LYP176, M06181, and PBE182 with several Gaussian basis sets including 6-311G, 

polarizable 6-311G**, polarizable and diffusive 6-311G**++ 180, 183-186. The 

results for two selected cases are shown in Figure 4 and for additional cases in 

Figure S5 in the Appendix D. We find for all cases that the PQEq and PQEq1 

charges are in the range of ESP and MPA charges. It is well known that ESP and 

MPA charges sometime lead to unintuitive charge assignments (see section 2 of 

the Appendix D), but we have not found such cases with PQEq and PQEq1.  
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Figure 4: Partial charge comparison between QM (ESP and MPA), 

PQEq, and PQEq1 in (a) C6H12, (b) C5H10O molecules. The ESP 

(left) and MPA (right) charges were computed using several basis 

sets and DFT functionals. The PQEq and PQEq1 charges are plotted 

in each figure for a better comparison. The position of each atom for 

the corresponding ID is shown on the molecular structure schematic 

on the right. 

5.4 Charge Fluctuations and Shell Stability during High Temperature 

Dynamics 

To test the stability of the PQEq model for MD/MM simulations, we examined the 

reactive MD simulations of the hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX)187 

crystal at high temperatures using ReaxFF-lg188 reactive force field. These 

calculations use the LAMMPS173 MD simulation package with our implementation 

of the PQEq methodology. First, we minimized the total energy of the crystal (168 

atoms) using the CG method. Then, we equilibrated this structure using the (NVT) 

ensemble at 50 K for 2ps. Then, we carried out MD-NVT simulations using a 
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heating rate of 0.7 K/fs, during which the temperature increased from 50 to 3500 

K. Finally, the structure was maintained at 3500 K for ~50 ps using MD-NVT 

simulations. See section 9 of the Appendix D for more details of the simulations. 

Under these conditions, bonds are broken with the fragments interacting  to form 

new bonds. We consider this a good test case for PQEq. Indeed, we find that PQEq 

provides a stable description of the complex evolution of the dynamics as bonds 

break and rearrange. There are smooth changes of the temperature (T), potential 

energy (Ep), and electrostatic energy (EPQEq) of the RDX crystal during the 

simulation (Figure S8 in Appendix D). We note that at 3500 K both Ep and EPQEq 

decrease for several ps due to fast chemical reactions at this high temperature and 

then reach an equilibrium. We find that the atomic charges and shell positions 

fluctuate in response to the changes in the electrostatic environment as they were 

updated every time step. The changes with time of the charges and shell positions 

are shown in figure 5. The shell positions remain stable with respect to the core 

with up to 0.05 Å displacement from the core. This shows that the Ks values 

derived from the literature atomic polarizabilities are useful for simulation of these 

elements at high temperatures. The value of Ks should be tested for other elements 

prior to dynamics, particularly at high temperatures.  

In addition, we performed a series of MD simulations to demonstrate the stability 

of PQEq during dynamics. For this purpose, we utilized MD-NVT simulations as 

above to heat the system from 50 to 3500 K and maintained the temperature at 

3500 K for 5 ps. After this step, we performed a MD-NVE simulation for 20 ps. 

We observed reasonable dynamics throughout the simulation. One point that 
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requires attention is the small drift in energy during the MD-NVE simulation, a 

known problem with the ReaxFF force field used here.  

 

 

Figure 5: The variations of charge, core-shell distance, and 

temperature with time for selected atoms in the RDX crystal during 

the ReaxFF-lg MD simulations up to 3500 K. This core-shell 

distance is the distance of the atom’s shell from its own core. The 



 

 

73 

position of each atom in the figures is shown on the molecular 

structure of RDX. 

6. Discussion 

In this section, we compare the dipole interaction energies from QM, PQEq, and 

PQEq1 with the results from ESP, MPA, OPLS, AMBER, PQEq0, QEq, and QEq0.  

In this section: 

PQEq0 refers to PQEq with the charges fixed prior to the introduction of the 

dipole. Here, some part of the polarization energy is included via the shell 

polarization.    

QEq keeps the shell fixed to the core and equilibrates the charge as the dipole is 

scanned. Here, the charge updates capture part of the polarization energy.   

QEq0 keeps the shell fixed to the core and the charges fixed prior to the 

introduction of the dipole. In this case no polarization is included.   

For ESP, MPA, OPLS, and AMBER, PQEq0, and QEq0, we first compute the 

charges for each molecular structure in the absence of the electric dipole and then 

fix the charges to calculate the interaction energy at different distances of the 

electric dipole from the molecule.    

The OPLS and AMBER FFs are often used for simulations of large organic and 

protein systems. These charges are fixed and assigned based on the type of the 

atoms and its bonding type. AMBER and CHARMM have standard charges for 

standard amino acids and nucleic acid bases, but for other molecules the charges 

are assigned from QM using MPA or ESP. Thus we also include the ESP and MPA 
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charges computed using the B3LYP flavor of DFT and 6-311G** basis set. The 

results for six selected cases are shown in figure 6.  

The importance of polarization is clearly shown in figures 6a-c where the scans are 

performed towards backbone C atom in cyclohexane (figure 6a), toward H atom and 

perpendicular to the benzene ring (figure 6b), and toward the C-Si bond middle point in a 

cyclohexane-based molecule (figure 6c). Here only PQEq, PQEq1, and QEq predict 

interaction energies in good agreement with QM. Fixed charge methods sometimes fail to 

predict the correct sign of the interaction energy as shown in 6a and 6c. For the remaining 

cases in Figure 6, the scans are performed towards N (figure 6d) and O (figure 6e) atoms in 

cyclohexane-based molecules and towards O (figure 6f) atom in the plane of nitrobenzene 

molecule. For these polar systems involving N and O atoms, the fixed charge models account 

for some of the polarization occurs along the bonds of polar to nonpolar atoms. We see here 

that PQEq1 does an excellent job of fitting QM, whereas PQEq is accurate for N but 

overestimates the polarization for O. This suggests that the reference polarizability for O may 

be too large. 

We note here that QEq0 leads to an accuracy similar to the ESP or MPA obtained 

from QM. Thus for assigning fixed charges for use in MD, there is no longer a 

need to do QM, which can save considerable expense for applications such as 

virtual screening over millions of molecules or simulations on very large 

molecules.  

In existing software codes, such as NAMD189, CHARMM190, and DESMOND191, major 

changes would be needed to recalculate the charges along the MD trajectory . However, 

including just the shell polarization would be fairly simple to add to current software 
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packages. This would allow the accuracy of PQEq0, which captures 21.8%, 55.6%, and 

62.6% of the total polarization energies in figure 6a, 6b, and 6c, respectively. Therefore, 

PQEq0 could provide dramatically improved descriptions of the polarization in 

very large systems (the shell polarization requires only a one step update in shell 

position each iteration). However, some re-optimization of the force field 

parameters might be needed when PQEq methodology is used to replace the charge 

model in other force fields.  

PQEq and PQEq0 should be particularly interesting for MD simulations of highly 

polarizable systems such as ferroelectrics and electrochemical systems with 

solvents and applied fields. 

 

Figure 6: Interaction energies as an electric dipole is brought up to 

selected molecular structures computed by QM, PQEq, PQEq1, 

PQEq0, and QEq0, compared with the interactions from fixed charge 

models: ESP, MPA, OPLS, and AMBER. Here, PQEq0 refers to 

PQEq with the charges fixed prior to the introduction of the dipole. 

QEq keeps the shell fixed to the core and equilibrates the charge as 

the dipole is scanned. QEq0 keeps the shell fixed to the core and the 

charges fixed prior to the introduction of the dipole. The inset of 

each subfigure shows the molecular structure configuration with the 

scan direction (dotted line). 
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7. Conclusions 

We show that the PQEq polarizable charge equilibration method provides accurate 

descriptions of the electrostatic interactions for MD simulations. This PQEq model 

uses atomic sized Gaussian shaped core and shell densities connected with an 

isotropic harmonic spring. The atomic parameters of PQEq are obtained from 

standard atomic ionization energies, standard covalent radii, and literature atomic 

polarizabilities, which we provide here up to Nobelium (atomic no. = 102). Thus, 

no parameters have been optimized.  

We validated the accuracy of PQEq by comparing the electrostatic polarization 

energies as an electric dipole is brought up to the molecule for 30 molecules (68 

cases) involving H, C, N, O, F, Si, P, S, and Cl atoms. We find that PQEq is in 

good agreement with QM. We also considered the PQEq1 model in which the 

atomic parameters (χ and J) are optimized against QM polarization energy. This 

led to improvements especially for Fluorine element.  

We also presented the results for various fixed charge models: ESP, MPA, 

AMBER, OPLS, QEq0, and PQEq0. These methods are generally similar and much 

less accurate than the polarized models. However, we see that PQEq0 is capable 

of capturing significant parts of the polarization with just adjustments of the shell 

polarization while keeping the charges fixed. Thus, PQEq0 can offer significantly 

improved accuracy compared to other fixed charge models. We expect that PQEq 

and PQEq0 will be useful for many applications including ligand docking to 

proteins, catalytic reactions, electrocatalysis, ferroelectrics, fuel cells, lithium ion 

batteries, and the growth of ceramics and films.   
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C h a p t e r  I I I ,  P a r t  2  

DEVELOPMENT OF PQEQ FOR PEO-LITFSI 

 With contributions from Saber Naserifar and Ali Kachmar  

 

Introduction 

Polarization effects can play an important role in highly charges ionic systems. Tradition 

force fields, however, used a fixed charge model which neglects the effect of polarization. 

There is a great interest, then, in the application of PQEq to PEO-LiTFSI improve the 

description of ionic diffusion in polymer electrolytes.  

Although PQEq has been applied to provide a robust description of charges in organic 

materials192, little study has been performed on salt and ion clusters. In this section, therefore, 

a set of PQEq-LiTFSI parameters are presented for use in polymer electrolytes.  

PQEq-LiTFSI Parameter Set 

An initial set of parameters for PQEq simulations of LiTFSI is shown in table S1. 

Element χ J Rcs K2 

N 7.787 10.803 0.715 301.876 

O 8.308 14.661 0.669 414.045 

F 6.703 17.277 0.706 596.165 

S 2.751 8.286 1.047 114.505 

Li 1.900 14.530 0.759 11994.000 

C 5.508 9.812 0.759 198.8405 

H 4.725 15.573 0.371 2037.201 
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Table S1. PQEq parameters for the PQEq-LiTFSI parameter set. 

Energies are expressed in (
kcal

mol
) and lengths are expressed in Å. 

 

Validation of Mulliken Charges 

In order to understand the nature of PQEq- charges in a polymer structure, a representative 

PEO10-LiTFSI cell was constructed an equilibrated using the OPLS2005 force field with 

lattice parameters of 10.53Åx10.53Åx10.53Å. A long timescale simulation was performed 

(600ps) using the CP2K program with the PBE functional and the DZVP-MOLOPT-ST-

GTH basis set. The initial structure is shown in figure S1.  

 

Figure S1. A representative PEO10LiTFSI structure, with lithium 

shown in pink. A 600ps QM simulation was performed using this cell 

in order to understand the nature of charges in the polymer structure.  

 

A comparison of Mulliken charges obtained from the QM simulation and PQEq-LiTFSI 

are shown in figure S2. The charges are shown to be in good agreement. 
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Figure S2. Mulliken charges (left) and PQEq-PEOLiTFSI charges 

(right) for lithium, PEO, and TFSI, respectively. The PQEq charges 

are shown to be in good agreement with QM.  
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Diffusion Simulations: 

PQEq simulations of ionic diffusion were performed over a range of molecular weights, 

r=0.02, r=0.04, r=0.08. Bond, angle, torsion, and Lennard-Jones were taken from the 

OPLS2005 force field, with the addition of optimized Li-O Lennard-Jones parameters of σLi-

O=2.3Å and ƐLi-O=0.06kcal/mol. The PQEq-LiTFSI model was used to replace the fixed 

charge description of electrostatics with an outer cutoff of 10Å. OPLS exclusions of (0.0, 

0.0, 0.5) were used. Integration was performed at 480K with a Berendsen thermostat with 

time constant 0.1ps. 

Additionally, it was found that a damping factor was necessary to control high frequency 

charge fluctuations on the lithium atoms. Charges at a timestep t are computed as a fraction, 

λ=0.001, of the computed charge qc and a fraction (1- λ) of the previous charge qt-1: 

 𝑞𝑡 = 𝜆𝑞𝑐 + (1 − 𝜆)𝑞𝑡−1 (1) 

   

Shell positions are updated using the same scheme: 

 𝑟𝑡 = 𝜆𝑟𝑐 + (1 − 𝜆)𝑟𝑡−1 (2) 

 

This corresponds to a damping time of  𝑡𝑑𝑎𝑚𝑝 =  
1

𝜆
 timesteps = 1ps. Using the diffusion 

relation, an effective damping length can be computed as 𝑟𝑑𝑎𝑚𝑝 = √6𝐷𝑡𝑑 ~ 0.3Å for 

lithium at 480K. Thus, the lithium charge damped over short timescales, while 

allowing charge updates over the longer timescales associated with updates in 

lithium sites. A full analysis of damped lithium motion for the PQEq and QEq 

models is provided in Appendix E. 

The results from these diffusion simulations are shown in Figure S3:  
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PQEq Diffusion, r=0.02, N=100, T=480K 

 

 

PQEq Diffusion, r=0.04, N=100, T=480K 

 

  



 

 

82 

PQEq Diffusion, r=0.08, N=100, T=480K 

 

PQEq Diffusion, r=0.02, N=23, T=480K, t=29ns 

 

PQEq Diffusion as a function of molecular weight 
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Figure S3. Diffusion coefficients obtained from fixed charge and PQEq 

simulations of diffusion at 480K. The PQEq method is shown describe the 

monotonic decrease in conductivity with concentration with the fixed charge 

model. A comparison with NMR and IS experiments is made assuming an 

activation energy of 0.38eV. A PQEq simulation run at low molecular weight, 

(N=29), yields a higher diffusion coefficient than N=100, in agreement with 

NMR data. Although initial results look promising, additional PQEq 

simulations are required at lower temperatures for a direct validation against 

experiment.   

  

 

Conclusions and Future Prospects: 

PQEq shows promise as a method for improving the description of electrostatics in 

simulations of ionic diffusion. Initial PQEq simulations show an improvement over the fixed 

charge model by predicting an monotonic decrease in the ionic diffusive coefficients with 

increasing molecular weight.  

There is much future work to be completed with regards to PQEq. First, role of high-

frequency charge fluctuations and the dependence of the damping factor on temperature must 

be explored. Second, as the cost of PQEq calculations limits them to higher temperatures, a 

robust method for comparing to experiment must developed. Third, the applicability of the 

PQEq description of electrostatics must be applied to a range of polymer systems and 

operating conditions.  

Here, we have derived a set of PQEq parameters that produce Mulliken charges in reasonable 

agreement with QM and diffusion coefficient that better capture the trend in diffusivity with 

molecular weight. Much work remains, however, and we hope that this work will serve as a 
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platform for future PQEq simulations of ionic diffusion in the search for better battery 

materials. 
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A p p e n d i x  A  

PULSED CHARGING SUPPORTING INFORMATION 

Acknowledgement: The main part of this chapter is published in the Journal of Physical 

Chemistry Letters, 2014, 5(10), pp1721-1726. 

 

Experimental Details 

The cell separator was crafted from an acrylic plate by means of universal ILS9 laser cutter 

and interelectrode distance was precision-machined to 1/8”. Current collectors were 

machined from copper rod alloy 110 (1” dia.) with protrusion of compatible with separator 

depression for an effective sealing. The cathode current collector was threaded (1/32” dia.) 

for electrolyte injection. Ring gaskets (9/16” ID, 5/8” OD) were chopped out from silicone 

rubber sheet (McMaster-Carr, Plain Back, 0.02" thick). All cell components were washed 

with deionized water and isopropyl alcohol and dried under vacuum at 60°C for 48 hours and 

were transferred to argon-filled glovebox (H2O, O2 < 0.5 ppm).   

Lithium foil (Aldrich, 99.9% on trace metal basis) 0.38 mm thick was punched (5/8” dia.) to 

be used as electrode. The counter lithium electrode was punched (1/32” dia.) in the middle 

for later electrolyte injection. Lithium oxide layers were scraped out via a sharp blade and 

dimethyl carbonate (DMC). The clean electrodes were flattened by being rolled via a glass 

tube. Both electrodes were intercalated in the separator. Wave disc springs (McMaster-Carr, 

high-carbon steel, 0.413" ID, 0.622" OD, 0.006" thick) were planted after electrodes to fill 

the possible gap in fabrication. Silicone rubber rings were laid between current collectors and 
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separator to provide airtight sealing. The components were sandwiched with insulated 

screws. The electrolyte was injected into the cell afterwards and the hole was plugged through 

a small screw lined with Teflon tape.  

Lithium perchlorate (Aldrich, battery grade, 99.99% trace metal basis) was dried for 24 hours 

in a vacuum oven at 100°C and dissolved in propylene carbonate (Aldrich, 99.7% 

Anhydrous) and 1 molar lithium perchlorate in propylene carbonate was synthesized through 

stoichiometric mixing to be used as electrolyte.  

 The demo cell was fabricated with representative electrodes and electrolyte and was cycled 

with the rate of 1mA/cm2 and C/5, for 400 cycles inside the glovebox and for the most of the 

period, stable voltage regime was recorded without drying out the liquid electrolyte. The 

small voltage and current variations are attributed to lithium electrode surface reorganization 

to different morphologies.  

Multiples cells were fabricated and subsequently charged with Bio-logic instruments (SP-50, 

VSP) and Neware battery tester (BTS-5V10mA, Shenzhen, China). The cells were flushed 

in perimeter via isopropyl alcohol after each experiment for dendrite measurements and 

various morphologies of dendrites were observed (Figure 1’).  
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Figure 1’: Observed dendrites which reach the counter electrode and short 

the cell.  

 Modeling Details: 

In order to describe the experimental conditions as faithfully as possible, the following 

assumptions were made: 

I. We have assumed periodic boundary conditions (PBC) in x direction. Therefore, 

every Li+ exiting the domain boundaries automatically enters the domain from the 

opposite side, i.e., 
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 𝑖𝑓 𝑥 > 𝑎 → 𝑥 = 𝑥 − 𝑎 (1) 

 𝑖𝑓 𝑥 < 0 → 𝑥 = 𝑥 + 𝑎 (2) 

 where a is the length of the cell.  

II. For mimicking the electrolyte concentration in the experiment, we set the number of 

free ions in the model such that the average interionic distances would be close. In the 

1 M LiClO4 in PC, the average interionic distance is 11.8 Å. Setting the same initial 

interionic distance for the model, we obtain the maximum number of free ions as 

(166.7/11.8 + 1)^2=229. As dendrites advance into the electrolyte, the free domain 

becomes smaller and, therefore, in order to preserve the average interionic distance 

the number of free ions should decrease as well. Accordingly, we chose such number 

at 50. As the ions diffuse independently, the results generated by the model are not 

sensitive to changes in the number of ions.    

III. The absolute diffusion coefficient was scaled in order to maintain close transition 

times between experiments and our model. We define maximum transition time as the 

mean time it takes for ions to diffuse through the largest distance in the cell. The 1-

dimensional diffusion distance is defined as:   

 ∆𝑥 = √2𝐷∆𝑡 (E1’) 

From Table 1, the modeling domain length is 167Å. Following the work of Mayers19, 

taking DLi as 1.4 ∗ 10−14 𝑚2

𝑠
 gives a maximum transition time as 9.9 ms. For the 



 

 

89 

experiments, we first obtain the distance in the vicinity of the electrode the 

considerable variations in the concentrations occur33: 

𝑥1 = (((9 ∗ 64 ∗ 8.85 ∗ 10−12 ∗ 3.175 ∗ 10−3

∗
16

(32 ∗ 1.38 ∗ 10−23 ∗ 300 ∗ 1000 ∗ 6.022 ∗ 1023)
 )

1
3

≅ 1.5µ𝑚 

 From this, we obtain an experimental maximum transition time  across the electrical 

double layer of 4.36ms which is in the same order as the corresponding modeling 

parameter. In both experiment and theory, 1ms << maximum transition time << 20ms.  

IV. About 2% of simulations shorted the counter electrode during simulations. In those 

cases, we stopped the run and analyzed the dendrite measurements from the obtained 

dendrite until then. The average number of attached atoms in those simulations was 

540 (versus 600 in normal condition).   

The dendritic growth during charge is the result of gradients in electrochemical potential 

parameters such as electrostatic field around the equipotential electrode surface, diffusion 

coefficient and mobility of solvent63 as well as electrode surface morphology11. 

Let the position of each Li+ at time t and t+∆t be 𝑟𝑖⃗⃗⃗ (𝑡) and 𝑟𝑖⃗⃗⃗ (t + ∆t), respectively. During 

the interval , Li+ ions will perform random walks due to collisions with the solvent and/or 

migration under the applied electric field.  
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The value for the diffusion coefficient employed in the simulations corresponds to the 

measured current flow of lithium cations in propylene-carbonate based solutions193 and its 

mobility is calculated from Einstein-Stokes equation (Table 1).   

When a Li+ ion comes within a distance datt of a Li0 on the surface or dendrite, it attaches to 

the structure. In this case, it is pushed a distance datt from nearby Li0 atoms becomes a Li0 

atom on the dendrite. We define the dendrite equipotential surface as points within a distance 

rsurface of lithium atoms attached to the electrode. To ensure a smooth surface, rsurface is taken 

to be slightly larger than the radius of a Lithium atom (1.3r0) and is held at the same electric 

potential as dendrite. In the rare case where the Li+ is still too close to an atom after n=50 

pushes, it is returned to its position one time-step before it approached the Li0. Every time a 

Li+ is annihilated as Li0 at the dendritic sites and lithium electrode surface, another lithium 

ion is added randomly in a thin layer at the top of the domain.  

Although the experiments were done in galvanostatic condition, we observed a stable voltage 

regime mostly in the range of 3.5V and 4.5V. Therefore, we did the simulations based on an 

equivalent potentiostatic condition. Ee assign the boundary conditions as follows: 

 𝛷𝑎𝑛𝑜𝑑𝑒 = 𝑉− (E2’) 

 𝛷𝑐𝑎𝑡ℎ𝑜𝑑𝑒 = 𝑉+ (E3’) 

When the electrode is off, we have:  

 𝛷𝑐𝑎𝑡ℎ𝑜𝑑𝑒 = 𝛷𝑎𝑛𝑜𝑑𝑒 . (E4’) 
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Thus, there is no electrostatic field in the cell domain.   

 We assume the Solid Electrolyte Interphase (SEI) is composed of sufficient lithium metal 

atoms and that the dendrite can be considered an equipotential; therefore we have  

 𝛷𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑒 = 𝑉−. (E5’) 

The Poisson equation describing the potential distribution Li+ transport as follows63:    

 
𝜕2𝛷

𝜕𝑥2
+

𝜕2𝛷

𝜕𝑦2
=

−𝑒(𝑧𝑐𝑐𝑐 − 𝑧𝑎𝑐𝑎)

Ɛ𝑟Ɛ0
. (E6’) 

 𝛷 is the potential, Ɛ0 and Ɛ𝑟 are the vacuum and relative electrolyte permittivity,  zc, za are 

cationic and anionic valence numbers, and Cc and Ca are cationic and anionic concentrations.  

The following finite difference method was used:   

1. Impose an arbitrary potential in any point in the inter-electrode space. The simplest case 

is uniform distribution from 𝑉− to 𝑉+.  

2. Apply neighbor-based discrete Poisson relation to each point until the values in all space 

converge to a constant value or the errors between two subsequent iterations becomes 

smaller than the acceptable assigned voltage error.  

 The electrostatic field is numerically computed using the finite difference scheme:  

 𝐸⃗⃗𝑖,𝑗 = − 
𝛷𝑖+1,𝑗−𝛷𝑖−1,𝑗

2∆𝑥
𝑥̂ −  

𝛷𝑖,𝑗+1−𝛷𝑖,𝑗−1

2∆𝑦
𝑦̂. (E7’) 
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In addition to the observed ionic concentration gradients, the large electrostatic field that 

occurs near the dendrite tips contributes to increases lithium deposition rates and thus the 

propagation of dendrite growth38.
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A p p e n d i x  B  

PREDICTIVE SIMULATION OF NON-STEADY-STATE 

TRANSPORT OF GASES THROUGH A POLYMER 

MEMBRANE 

With contributions from Marielle Soniat, Meron Tesfaye, Boris V. 

Merinov, William A. Goddard, III, Adam Z. Weber, and Frances Houle. 

Acknowledgement: This chapter describes the molecular dynamics 

contribution to work published in Polymer, (2018), 134, pp125-142. 

 

Abstract 

 A multiscale, physically-based, reaction-diffusion kinetics model is developed for non-

steady-state transport of simple gases through a rubbery polymer. Experimental data from 

the literature, new measurements of non-steady-state permeation and a molecular dynamics 

simulation of a gas-polymer sticking probability for a typical system are used to construct 

and validate the model framework. Using no adjustable parameters, the model successfully 

reproduces time-dependent experimental data for two distinct systems: (1) O2 quenching of 

a phosphorescent dye embedded in poly(n-butyl(amino) thionylphosphazene), and (2) O2, 

N2, CH4, and CO2 transport through poly(dimethyl siloxane). The calculations show that in 

the pre-steady-state regime, permeation is only correctly described if the sorbed gas 

concentration in the polymer is dynamically determined by the rise in pressure. The 

framework is used to predict selectivity targets for two applications involving rubbery 

membranes: CO2 capture from air and blocking of methane cross-over in an aged solar fuels 
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device. This appendix describes molecular dynamics simulations which describe the 

adsorption process at the polymer-gas interface.  

 

Methods – Molecular Dynamics 

In most continuum models, gas uptake and desorption at the surface of a polymer 

membrane are considered to be instantaneous, with bulk transport being the controlling factor 

in permeation rate. However, to build a predictive model, it is necessary to use physically-

derived rate constants for all processes. The dynamics of gas-rubbery polymer collisions are 

not well studied, so we have selected CO2 among the gases used in this work, N2, O2, CH4, 

and CO2, for a thorough investigation of the uptake process using molecular dynamics (MD) 

simulations. All of the gases are weakly interacting with the polymers they permeate, so we 

assume that the sticking coefficient obtained from the study of CO2 can be applied to all the 

gases studied in this work.  

Simulations are performed using the Desmond MD simulation package194-196 and the 

OPLS-2005 force field.197 A time-step of 1 fs is used for short-range interactions and a 3 

fs time-step is used for long-ranged interactions. Long-ranged electrostatics are computed 

using the Ewald summation. A short-ranged Coulomb cutoff of 9 Å is used. Center of mass 

motion is removed at each time step in the adsorption simulations. 

The initial PDMS structure is generated using an extension of the protocol established in 

chapter II for PEO-LiTFSI. An initial low-density (ρ = 0.0245 kg/m3) structure is created 

using an amorphous builder. This polymer structure has 25 chains of PDMS of 100-monomer 

length, for a total of 25,053 atoms. To ensure that there are no overlapping atoms in the 

structure, 100 steps of energy minimization and 10 ps of dynamics in the NVT ensemble198 
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at 10 K are performed (using a time constant of 0.1 ps for the thermostat). The density of 

the structure is increased by running 500 ps of dynamics in the NPT ensemble using the 

algorithm of Martyna, Tobias, and Klein (MTK) with a 1 ps time constant for the barostat.199 

To ensure entanglement of the polymer chains, a Scaled Effective Solvent (SES)200 

equilibration step is performed in which long-ranged van der Waals and Coulomb 

interactions scaled to 20% of their original values, and dynamics are run for 2000 ps in the 

NVT ensemble with a Nosé-Hoover thermostat. Finally, with van der Waals and electrostatic 

interactions at their full strength, energy minimization is performed for 300 ps and the lattice 

parameters of the structure are again relaxed with 200 ps of NPT dynamics. 

The above procedure results in a roughly 70-Å thick slab of PDMS created with 

dimensions of 6.79 × 6.79 × 6.79 nm3. This procedure results in a bulk density of ≈0.985 

kg/m3, which is above the experimental reference value of 0.970 kg/m3,201 but below the 

experimental sample densities of 1.06 to 1.08 kg/m3 obtained in this study (see Section II.C.).  

To create a PDMS surface, the length of the cell is increased by 200 Å in the x-direction to 

generate a region of empty space. All polymer chains are kept intact. The surface is then 

equilibrated for 3000 ps in the NVT ensemble using the Berendsen thermostat at 300 K. The 

density near the surface is reduced to ≈0.94 kg/m3 due to surface roughness.  

The surface is described using the method of Willard and Chandler202. Each polymer atom, 

at  location 𝑟𝑖(𝑡), is assigned a Gaussian shell with width of d = 3.0Å. This creates a 

“coarse-grained polymer density,” f(𝑟), with units of Å-3,  
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 𝑓(𝑟) = ∑
1

𝑑3(2𝜋)3/2

𝑟𝑖

𝑒
−(𝑟−𝑟𝑖)2

2 , (45) 

where this coarse-grained density reaches half its bulk value, f = 0.035, a surface is 

constructed on a 1-Å grid. The parameters for Gaussian width and grid fineness control the 

smoothness of the surface. Several combinations are tested to determine the sensitivity of 

sticking coefficient results to these parameters. The Willard and Chandler surface definition 

is selected over other commonly used methods, such as the “10-90” definition or the Gibbs 

dividing surface, because it provides information about the instantaneous, local interface. A 

change of ±0.01 in the f at which the surface is constructed results in a ≈1.2 Å shift in the 

surface. This magnitude of shift in the surface location has a minimal effect on the sticking 

coefficient. Since most desorbed molecules are far from the surface, the choice of surface 

region primarily affects the distinction between absorbed and adsorbed molecules. Thus, 

upper bound for the sticking coefficient, the fraction of absorbed and adsorbed molecules, is 

insensitive to the choice of surface.   

The final, equilibrated structure and its instantaneous surface are shown in Figure 1.  
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Figure 1: The structure of poly(dimethyl siloxane) (PDMS) in the 

molecular dynamics simulations. Hydrogen atoms are shown in 

white, carbon in light blue, oxygen in red and silicon in yellow. The 

instantaneous interface is shown in dark blue. The CO2 molecule 

(upper left hand corner of the image) is sent towards the surface of 

the PDMS polymer structure for an adsorption simulation. 

 

CO2 absorption, adsorption, and desorption events are tracked using a procedure based on 

the molecular adsorption studies of Julin et al.203, 204 A CO2 molecule is introduced at a 

distance of approximately 15 Å from the surface and is assigned a velocity from the 

Maxwell-Boltzmann distribution at 300 K, with the constraint that the x-component of the 

velocity vector lies within a 45-degree cone normal to the surface. After 100 ps of NVE 

simulation, the outcome (adsorption, absorption, desorption) is recorded based on the 

position of the CO2 molecule relative to the surface region, which is defined as points 

within 4 Å, i.e. twice the van der Waals radius, of the instantaneous surface. Justification 

of the 4-Å cutoff is given in the results section. 
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Results – Molecular Dynamics 

Few data are available on sticking coefficients to of weakly interacting gases to PDMS 

or other rubbery polymers; therefore, we use molecular dynamics simulations to estimate 

reasonable values. We found that the sticking process is not kinetically limiting during 

construction of the permeation model for PDMS, similar to the finding for O2 in C4PTP, so 

we have performed calculations for a single gas, CO2, and assume that its sticking coefficient 

on PDMS is applicable to the other gases investigated. A series of 250 simulations of CO2 

impacts onto a PDMS surface was performed, and the results are shown in Figure 2 and 

summarized in Table 1. Some care must be taken in how the classification of type of event 

is interpreted: the distinction between an adsorbed and absorbed molecule is arbitrary, 

especially for atoms just below the interface, and the fate of molecules adsorbed on the 

surface is not clear from the finite simulation time. Thus, sticking in these simulations has a 

lower bound of 30%, equal to the fraction of absorbed molecules, and an upper bound of 

50%, equal to the fraction of absorbed plus adsorbed molecules. The minimum sticking 

coefficient of 30% is used in the reaction-diffusion simulations for all gas molecules.  
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(a)  

(b)  
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Figure 2: Results of molecular dynamics simulations for CO2 

sticking to PDMS. The surface is defined as position 0 with positive 

position indicating the region occupied by polymer and negative 

position indicating the empty region. Absorbed molecules are plotted 

in red, adsorbed molecules in green, and scattered and desorbed 

molecules in blue. (a) Histogram showing the distribution of 

outcomes from all 250 simulations. Note that the far left blue bar 

represents desorption in 115 simulations. (b) Distance from the final 

Willard surface as a function of time for 100 randomly selected 

trajectories. 

 

Table 1: Results of molecular dynamics study of sticking of 

CO2 to a PDMS surface. 

 

Events Absorb Adsorb Desorb Total 

Number 75 50 125 250 

Percent 30 20 50 100 

 

The most similar system that has been studied experimentally is the scattering of the O2 

gas from the surface of the hydrocarbons squalane and dodecane.205 At incident energies of 

8 kJ/mol, twice the average kinetic energy for gas molecules in this study, the oxygen 

molecules fully transfer their excess energy to the hydrocarbon surface,205 indicating a 

sticking probability near 100%. A MD study of carbon dioxide206 colliding with hydrocarbon 

self-assembled monolayers (SAMs) also shows a large sticking probability of ≈70% when 

the SAMs are terminated with -CH3 or -OH functional groups. The sticking probability falls 

to ≈40% for SAMs terminated with -CF3. The reason for such a high sticking probability is 

explained in a MD study of argon colliding with hydrocarbon SAMs terminated with -CH3 

and -CF3. The SAMs terminated with -CH3 are able to redistribute the energy of the incoming 

molecule on the same timescale as the impact of the atom with the surface by recruiting a 

large number of low-frequency (inter-chain) vibrational modes; the SAM’s terminated 
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with -CF3 redistribute the energy more slowly along high-frequency (intra-chain) 

vibrational modes, resulting in a lower sticking probability.207 PDMS contains a large 

number of low-frequency interactions, and so an energy transfer mechanism similar to -CH3 

terminated SAMs may apply. Thus, we conclude that a sticking probability of 30 to 50% is 

reasonable for a light, inert gas molecule at ambient temperature colliding with a flexible 

polymer surface. Further study of this type of system, and systems in which there are stronger 

interactions between the gas and the polymer, would be useful. 

The absorption mechanism observed in the MD simulations involves CO2 interacting 

with a gap between the polymer chains during a gas-surface collision or while transiently 

physisorbed, and passing directly into the polymer bulk. The simulations did not show that 

CO2 has a strongly preferred adsorption site, i.e. atom type, on the PDMS surface. This is 

expected for gas-polymer combinations with weak interactions and supports our assumption 

that every surface atom is an available binding site in the reaction-diffusion simulations. If 

strong hydrogen bonding were possible, the surface area available for adsorption would be 

reduced.208, 209 On the other hand, if roughness were significant the surface sites available 

would be greater than assumed. The MD simulations show that the ratio of the instantaneous 

surface area to the nominal surface area is 1.1, indicating that the actual rough surface area 

is only 10% greater than the ideally smooth surface assumed in the reaction-diffusion 

simulations.  
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A p p e n d i x  C  

SUPPLMENTARY MATERIAL – FIXED CHARGE MOLECULAR 

DYNAMICS SIMULATIONS 

Determination Ionic Charges on LiTFSI 

Although, the optimized potential for liquid simulations (OPLS2005) force field provides a 

robust description of organic liquids and polymer materials156, care must be taken when 

considering ionic charges210. 

Simulations of ionic diffusion require charges less99 than the purely ionic charge of ±1 in 

order to account for shielding effects. A series of ESP calculations on a representative 

PEO4-LiTFSI structure at the B3LYP/6-31G** level of theory yielded ESP charges on 

lithium in the range of +0.60 to +0.70 due to charge transfer effects.  

Thus, ionic charges ±0.7 were selected for use in the simulation. The TFSI charges were 

taken from ESP charges on an isolated TFSI- molecule, scaled by a factor of 0.7 in order to 

maintain a neutral system. Charges on the polymer were taken directly from the 

OPLS2005FF97. 

A list of charges used in the molecular dynamics simulations in figure S1. 
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Figure S1: Molecular dynamics charges on PEO 

and LiTFSI. Polymer charges are from the 

OPLS2005 FF and LiTFSI charges are determined 

from ESP charges obtained from DFT 

calculations. 

These charges are also in reasonable agreement with Mulliken charges and a set of charges 

later developed using the PQEq192 method.  

Experimental Measurements of Ionic Diffusion using Nuclear Magnetic Resonance 

(NMR) and Impedance Spectroscopy (IS) 

Although the absolute diffusion coefficient obtained from polymer simulations are often 

systematically offset from experiment210, 211, the relative diffusion coefficients are widely 

used for predicting physical trends211. In these simulations, the obtained ionic diffusion 

coefficients are systematically smaller than NMR measurements obtained by Balsara in a 

recent study23 by roughly a factor of three. More recent impedance spectroscopy (IS), by 

Pożyzcka28, measurements yield ionic diffusivities, via the Nernst-Einstein equation and 

PEO  Li+  TFSI- 
Atom FF  Atom FF  Atom FF 

C +0.14  Li +0.70  O -0.34 
H -0.03     S +0.61 
O -0.40     N -0.45 
      C +0.22 
      F -0.09 
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transference number, roughly 5 times lower than those measured by Balsara. A 

comparison of these measurements is shown in figure S2. 

 

Figure S2: Diffusion coefficient obtained from 

NMR measurements (teal) and impedance 

spectroscopy measurements (purple) are shown to 

differ by a factor of 5.18 at T=360K,r=0.02. The 

data obtained from this force field (red) lies within 

the experimental range. 

A number of factors could account for the differences in the diffusion coefficient, most 

notably assumption about the number of charge carriers present in solution23. Overall, 

however, the relative diffusion coefficients obtained with all three methods are shown to 

be in good agreement. Interestingly, a peak in ionic conductivity is observed near r=0.06 
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Li:EO in both the work of Pożyzcka and at higher temperatures in the molecular 

dynamics simulations. The significance of this peak is discussed in the main text. 

Equilibration Procedure for Polymer Cells 

As polymer structures are fundamentally amorphous structures, care must be taken to 

ensure that the polymer chains have been provided sufficient time to relax into an 

equilibrium structure. Here, each structure is equilibrated using a standard procedure212 

based on the Scaled-Effective-Solvent method98, 212, which allows polymer allows for the 

rapid relaxation of polymer chains. The steps in the initial equilibration procedure are as 

follows: 

1. Construct a PEO-Li-TFSI structure at 60% of the experimental density in an 

amorphous builder 

2. Minimize for 300 steps to prevent interchain clashes 

3. Run NVT at 10K for 20ps 

4. Run NPT at 300K for 200ps to equilibrate the lattice parameters of the cell 

5. Minimize for 300 steps, again, to prevent interchain clashes 

6. 500ps of NVT at 300K with non-bond (Coulomb, van der Waals) interactions 

scaled down to 20% of their original value (f=.2) to allow the polymer chains 

to rapidly relax 

7. Minimize for 300 steps, again to prevent interchain clashes 
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8. Run NPT at 300K for 100ps to re-equilibrate the lattice parameters at 300K 

The equilibrated structure from step 8 is then used as the initial structure for simulations at 

360K, 400K, 440K, and 480K. To account for the higher temperature, two additional steps 

of equilibration are performed.  

9. Run 1ns of NPT at the target temperature to equilibrate lattice parameters 

10. Run 10ns of NVT at the target temperature to equilibrate polymer 

After the equilibration process is completed, a production simulation is run for 

115-400ns.  

The polymer cells created via this procedure were shown to be well equilibrated for 

molecular dynamics simulation, and are both in experimental density range23{Gorecki, 

1995 #106;Mao, 2000 #70} for r=0.02/N=100 at 360K of 1.125
𝑔

𝑐𝑚3 and provide a good 

description of the Li-O radial distribution function1. Further discussion is available in the 

main text. 

1. Mean-Squared-Displacement Plots for All Simulations 

The mean-squared displacement plots for all simulations are shown below. The mean-

squared-displacement (in units of Å2) is defined as the average squared displacement of the 

center of mass of the ion over all points in the trajectory separated by the corresponding 

time (in ns). The MSD curves for individual ions are shown as grey lines and the average 

of the collection of ions is shown as a red curve. The Fickian regime of the MSD is 
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identified as largest continuous group of times where the loglog slope is with 0.1 units 

of 1.0. To ensure a robust fit, if the Fickian regime (shown in blue) is less than 10% of the 

totally trajectory length, it is evenly extended to 10% of the trajectory in the ±t directions. 

This method yielded results in agreement with other fitting schemes, such as apparent 

diffusion coefficient211, while ensuring that diffusion coefficients are obtained from truly 

Fickian diffusion. 

Figure S3 (below): Diffusion coefficients for all 

molecular dynamics simulations as a function of 

temperature, molecular weight and ionic 

concentration. 
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A p p e n d i x  D  

PQEQ METHOD SUPPORTING INFORMATION 

With contributions from Saber Naserifar, William A. Goddard III, and Vaclav Cvcivek 

Acknowledgement: The main part of this chapter is published in the Journal of Chemical 
Physics, 2017, 146(12), pp124117. 

 

1. PQEq and Polarization Models  

The first step in any Force Field (FF) simulation, is to establish how to calculate electrostatic 

interactions. The standard method is to extract partial atomic charges from quantum 

mechanics (QM) electron densities. There are several different methods to convert QM 

electron densities to partial atomic charges100, 101, 104, 213-230. For organic and biological 

systems the charges are extracted from QM electron densities using either the Electrostatic 

Potential (ESP) outside the molecule or the Mulliken Population Approximation (MPA) 

involving analysis of the occupied molecular orbitals. For macromolecular systems such as 

polymers, proteins, and nucleic acids, it is too expensive to do QM on the full system, so the 

QM is done for finite fragments to extract partial atomic charges from QM electron densities. 

Examples include such FFs are AMBER159-161, CHARMM162-164, OPLS156-158, GROMOS231, 

232, and MMFF157, 161, which are widely used in biological Molecular Dynamics (MD) and 

Molecular Mechanics (MM) simulations. This approach becomes cumbersome, for example, 

for virtual screening of large, million molecule, data bases, where one needs a simpler way 

to define charges. For inorganics systems QM studies are less useful because the charges 
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depend on the environment and for metal alloys there is no generally accepted way to put 

charge into the FFs.  

Thus, we need a fast accurate method to predict partial atomic charges without carrying out 

full-scale QM calculations. This was the motivation for Rappé and Goddard to develop the 

QEq method103. QEq uses generic parameters defined for the whole periodic table (up to 

Lawrencium, Z=103) in terms of valence average ionization energies and standard bond 

radii. The concept is that the energy of an atom depends on the internal charge plus 

electrostatic interactions with other atoms, shielded by describing the charge in terms of a 

local (Slater) orbital having the size of a bond radius to allow electrostatic interactions 

between bonded atoms, which is very important for inorganic and metallic systems. The 

internal energy of the atom was assumed to be harmonic so that the parameters could be 

calculated directly from the atomic ionization potential (IP) and electron affinity (EA), after 

averaging to reflect the atomic state after forming bond. Then, the charge for any specific 

geometry was calculated using the condition that the chemical potential be equal on all atoms.  

The QEq methods has been used in numerous MD simulations105, 233-242 and is a part of the 

generic Universal Force Field (UFF) of Rappé and Goddard104  and the ReaxFF reactive 

force field of van Duin and Goddard106. However, it was not clear how QEq charges well 

matched QM. In this paper, we provide a criterion for assessing the accuracy, by calculating 

the QM energy as point dipole is brought up to a molecule along various axes. QEq when 

charges are relaxed provide an excellent agreement with QM (see section 8). Adjusting 

charges comes at a cost; however as described in the paper the precondition Conjugate 

Gradient method (PCG), minimizes these costs. Fixing the charges of the molecule and 
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keeping the charges fixed, we find that QEq does about the same as fixed charged based 

on ESP and MPA and is comparable to various fixed charge FFs such as Amber, CHARMM 

and OPLS. Of course for many systems it is important to allow charges to vary during the 

MD. In addition, describing the changes in polarization within a molecule or solid during 

dynamics or in response to an external electric field is crucial in many systems. For example, 

in ferroelectrics the charges can switch under mechanical stresses. Similarly, in chemical 

reactions the bond breaking processes change the charge, particularly if reduction-oxidation 

reactions (Redox) are involved. 

Many methods have been proposed for incorporating the electronic polarization effect 

explicitly in MD/MM simulations108, 152, 153. There are four general approaches:  

i) shell (Drude oscillator) model111, 113-115, 124-129, 135, 146, 153, 165, 166, 243-245,  

ii) fluctuating charge (FQ) model 104, 107, 112, 117, 154, 168, 239, 246-264,  

iii) induced dipole model118-120, 140, 147-151, 168, 186, 265-275, and  

iv) QM-based models121-123, 130, 152, 276-280.  

The details of these methods with their application are given elsewhere107, 108, 152-154, 281. 

Despite the large number of studies performed on polarizable charge equilibration, no 

general consensus has been reached on a universal applicable model109. 

PQEq combines two well-known models explicit polarization: an electron shell plus QEq 

variable charge and adds the concept that the core and shell charges are localized over the 

size of the atom (described with a Gaussian functions). This physical polarization model 

resolves many of the existing problems in other polarization and charge calculation models. 
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In this section, we briefly discuss the above explicit polarization models and compare 

them with PQEq. 

i. Shell Model 

The shell model165 is based on the classical Drude oscillator model166, also referred to as the 

charge-on-spring method129. In this method, an “auxiliary” mobile Drude particle, with or 

without mass153, with a fixed charge is attached to atomic center by means of a harmonic 

spring. The Drude particle accounts for polarization by moving off-center in response to an 

external electric field. The shell model has been applied in numerous studies, such as 

modeling of water molecule and other small-molecule systems124-129, polarization in ion 

channels111, 135, hydration of K+ ions244, and also for larger systems such as protein systems113-

115, 243, hydration energy calculation146, systems with monovalent and divalent ions245. 

Results using the shell model have been shown to agree reasonably well with available QM 

and experimental data, showing its potential for describing such complex systems153. 

However, the shell model suffers from a polarization catastrophe when the atomic centers 

and/or shells get too close together, leading to overpolarization153.  

PQEq solves the polarization catastrophe problem using a finite sized Gaussian charge 

distribution, rather than a point charge.  As atomic charges and/or shells get very close to 

each other, even for the extreme case of two atoms or shells at the same point, the shielding 

of the Gaussians leads to finite interaction energies, avoiding the polarization catastrophe. 

For the size of the Gaussian functions we use standard bond radii.   

ii. Fluctuating Charge (FQ) Model 
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The FQ models allow the charges to flow between atoms until the chemical potential and 

electronegativities of the atoms reach to an equilibrium. This, in principle, provides a way to 

include the polarizability by dynamic coupling of the charge distribution of molecules to the 

electrostatic environment. The FQ models have been used in several FFs including the 

universal force field (UFF)104, CHARMM-FQ107, 117, 257, ReaxFF, and several other FFs112, 

117, 154, 168, 239, 246-248, 251, 256, 258-260, 262. A variety of methods to describe the charge fluctuations 

have been developed. For example, the original charge equilibration model (QEq) with Slater 

type orbitals103, the electronegativity equalization method (EEM)252, 253, partial equalization 

of orbital electronegativity (PEOE) method249, 250, 255, 282, split charge equilibration (SQE) 

method254, and so on261, 263, 264, 283-285. These models were derived based on intuition 

motivated by rigorous QM calculations. The FQ approach provides a computationally 

attractive way to include polarization. Of course, such charge equilibration models are 

essential for reactive MD, where we must allow bond connectivities to change during the 

MD, requiring frequent updates of the atomic charges. Some FQ methods involve model 

parameters that must be determined prior to any charge calculation. Here, the parametrization 

is usually done by fitting the parameters to some reference charges using arbitrary 

optimization methods. This could result in a set of completely nonphysical parameters, which 

makes it hard to extend and apply for the new systems. The QEq method avoids this problem 

by basing the parameters (χ, J, and Rc) on valence averaged IP and EA plus standard atomic 

radii103. The PQEq model differs from the original QEq model by using a Gaussian type 

orbital to describe the atomic charge distribution rather than Slater type orbital for shielding 

between atoms. The fact that there was no need to change any of the QEq parameters (χ, J, 

and Rc) suggests that the exact shape is not so important.  
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In this paper, we show that some improvements in the accuracy can be made by 

optimizing the parameters (leading to PQEq1), which might be important for certain classes 

of materials (protein, nucleic acids, carbohydrates, ferroelectrics). However, we consider the 

default parameters as adequate for most purposes.  

iii. Induced Dipole Model 

The induced dipole model incorporates explicit induced dipoles at each of the atomic 

centers120, 168 and has been used in several FFs such as polarizable versions of AMBER186, 

274 and OPLS269, as well in PIPF-CHARMM275, NEMO266, SIBFA268, EFP267, AMOEBA270, 

and QMPFF3265 to study a wide range of systems such as solvation effect, Lithium battery140, 

modeling of DNA strand119, and carbon nanotubes147, etc. Similar to shell model, the induced 

dipole model also suffers from a polarization catastrophe. If the dipoles are positioned too 

close together, they lead to an infinite polarizability286, 287. Some works have tried to solve 

this problem288-291 but they do not completely grantee the problem of overpolarization292, 293. 

iv. QM-based Model 

Another strategy is to performing the QM calculation only on a small part of the system 

whose polarization is important with the remainder described with some charge model152. 

This QM/MM methodology is used for large molecular systems to combine QM (for small 

regions) and MM (for most of the atoms or degrees of freedom). This approach has been 

used in applications such to model enzymatic reactions inside the binding site of proteins, 

protein–ligand docking 121, 122, water130, and peptides123. There are several published reviews 

about application and implementation of this method122, 276, 277, 279, 280. QM/MM can become 

prohibitively expensive if the QM region is too large. To overcome on this problem, there 
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have been attempts to parameterize FF potentials with QM data to predict the forces and 

multipoles of large systems278 but this may lead to numerous parameters with little physical 

meaning introduced into the potentials108.  

2. The Limitations of Point Charges from QM Calculations 

The normal practice in most of the FFs is to use QM charges obtained for molecules or 

fragments of the whole system as reference data points. These QM charges are computed by 

converting the electron density to partial atomic charges based on electron population 

analysis (EPA). There are variety of methods for doing EPA since partial atomic charges are 

not observable characteristics of the molecules. The EPA methods can be classified into three 

groups. In group I methods, the charges are obtained by direct partitioning of the molecular 

wave function into atomic contributions based on an arbitrary, orbital-based scheme such as 

Mulliken population analysis (MPA)101, Löwdin population analysis (LPA)220, 224, 

renormalized LPA (RLPA)228, and Natural population analysis (NPA)226. In group II 

methods, charges are computed based on analysis of a physical observable (e.g., dipole 

moment and electrostatic potential), which is calculated from the electronic wave function. 

Examples of group II are electrostatic potential (ESP)100, 215, 219, 229, restricted ESP214, 218, ESP 

for periodic systems216, 225, generalized atomic polar tensor (GAPT)217, atoms-in-molecules 

(AIM)213, and Voronoi deformation density (VDD)221. In group III methods, charges are 

derived through a semi-empirical mapping of the initial charges (from groups I and II) in 

order to reproduce an experimentally determined observable, for example, charge models 1-

3 (CM1-3)222, 223, 227, 230. However, there are limitations to each class of methods. Group I 

methods can have problems with orbital-based population analysis, group II methods can 
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produce an ill-conditioned conformational dependence of the partial charges, and group 

III methods are reliant on the availability of experimental data 294. In particular, the 

limitations of the widely used MPA and ESP methods are discussed here.  

With MPA, a very arbitrary partition is made of the molecular orbital contributions to the net 

charge by putting half of the shared electron equally between the atoms that sharing basis 

functions reside. This rule can introduce errors in final charges for atoms that have very 

different electronegativities and ignores the role of lone pairs. For example, in a simple 

molecule like CCl4 one expects the electronegative Cl atom to take on a smaller charge 

compare to C atom. MPA, however, gives partial charges of +0.09 and -0.36 for Cl and C 

respectively, using the standard B3LYP functional and 6-31G** basis set. The original MPA 

methods also uses the non-orthogonal basis set which can lead to some undesirable results. 

In addition, the charges computed from MPA depend on the basis set that is used. Figure S1 

shows how MPA charges for different DFT functionals and basis sets for a cyclohexane 

molecule. Using a very complete basis set might seem to be a solution for this problem but 

it actually could result in unphysically large charges. Several other QM methods such as 

NPA, LPA, and RLPA have tried to resolve the problems with MPA method but they also 

reflect their own errors294.  

 



 

 

144 

 

Figure S1: MPA partial charge comparison using 

different basis sets and DFT functionals for 

cyclohexane molecule. The position of each atom 

for the corresponding ID is shown on the 

molecular structure schematic on the right. 

The ESP method fits partial charges to the electrostatic potential obtained from QM. This 

method performs well for simple geometries. For complex geometries, the fitting procedure 

can become ill-conditioned, with small changes in geometry leading to large changes in 

charges, particularly for atoms that are far from the van der Waals (VDW) molecular surface. 

This is clearly shown in Figure S2,Figure S2: The comparison between the potential energies 

computed using QM (black), Dreiding FF using ESP (red), and Dreiding FF using MPA 

(blue) charges. The HF molecule is scanned with respect to the oxygen atom in the isoxazole 

molecule. The ESP fails to compute the charges correctly when intermolecular interaction of 

molecules becomes important inside the VDW surface. where an HF molecule is scanned 

with respect to the oxygen atom in the isoxazole molecule. The charges at each distance are 

computed by using both MPA and ESP method and then used in conjunction with the 

Dreiding FF295 to plot the potential energies versus the QM energy. In this case, ESP fails to 
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compute the charges correctly when intermolecular interaction of molecules becomes 

important inside the VDW surface of isoxazole and HF molecules. More details regarding 

the limitations of MPA, ESP, and other charge calculation methods can be found 

elsewhere294, 296, 297.  

In order to validate the accuracy of PQEq and to provide a criterion for optimization of the 

parameters, we need to decide what criteria to use for comparison and optimization. In order 

to provide a meaningful comparison with QM, we propose using the polarization of QM 

electrostatic potential energy. 

 

Figure S2: The comparison between the potential 

energies computed using QM (black), Dreiding FF 

using ESP (red), and Dreiding FF using MPA 

(blue) charges. The HF molecule is scanned with 

respect to the oxygen atom in the isoxazole 

molecule. The ESP fails to compute the charges 

correctly when intermolecular interaction of 
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molecules becomes important inside the VDW 

surface. 
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Parameter Sets for PQEq and PQEq1   

Table S1. The electronegativity (χ), idempotential (J), shell charge (-Z), 

atomic covalent radius (Rc=Rs), and spring force constant (Ks) parameters 

of the PQEq. The units of the parameters are given in the parentheses.  

Atom χ (eV) J (eV) Z Rc=Rs (Å) Ks (kcal/mol/Å2) 

H 4.52800 12.98410 1.00000 0.37100 2037.20061 

He 9.66000 29.84000 1.00000 1.30000 1619.41057 

Li 3.00600 4.77200 1.00000 1.55700 13.64832 

Be 4.87700 8.88600 1.00000 1.24000 59.29709 

B 5.11000 9.50000 1.00000 0.82200 109.59198 

C 5.34300 10.12600 1.00000 0.75900 198.84054 

N 6.89900 11.76000 1.00000 0.71500 301.87609 

O 8.74100 13.36400 1.00000 0.66900 414.04451 

F 10.87400 14.94800 1.00000 0.70600 596.16463 

Ne 11.04000 21.10000 1.00000 1.76800 842.11732 

Na 2.84300 4.59200 1.00000 2.08500 13.77286 

Mg 3.95100 7.38600 1.00000 1.50000 31.32676 

Al 4.06000 7.18000 1.00000 1.20100 48.83290 

Si 4.16800 6.97400 1.00000 1.17600 60.04769 

P 5.46300 8.00000 1.00000 1.10200 91.47760 

S 6.92800 8.97200 1.00000 1.04700 114.50472 

Cl 8.56400 9.89200 1.00000 0.99400 152.32280 

Ar 9.46500 12.71000 1.00000 2.10800 202.34215 

K 2.42100 3.84000 1.00000 2.58600 7.71165 

Ca 3.23100 5.76000 1.00000 2.00000 14.56420 

Sc 3.39500 6.16000 1.00000 1.75000 18.65526 

Ti 3.47000 6.76000 1.00000 1.60700 22.74409 

V 3.65000 6.82000 1.00000 1.47000 26.77933 

Cr 3.41500 7.73000 1.00000 1.40200 28.62618 

Mn 3.32500 8.21000 1.00000 1.53300 35.32593 

Fe 3.76000 8.28000 1.00000 1.39300 39.53139 

Co 4.10500 8.35000 1.00000 1.40600 44.27516 

Ni 4.46500 8.41000 1.00000 1.39800 48.83290 

Cu 3.72900 5.00200 1.00000 1.43400 53.55866 

Zn 5.10600 8.57000 1.00000 1.40000 57.75021 

Ga 3.64100 6.32000 1.00000 1.21100 40.89454 

Ge 4.05100 6.87600 1.00000 1.18900 56.86022 

As 5.18800 7.61800 1.00000 1.20400 77.04494 

Se 6.42800 8.26200 1.00000 1.22400 88.08056 

Br 7.79000 8.85000 1.00000 1.14100 108.87334 
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Atom χ (eV) J (eV) Z Rc=Rs (Å) Ks (kcal/mol/Å2) 

Kr 8.50500 11.43000 1.00000 2.27000 133.65952 

Rb 2.33100 3.69200 1.00000 2.77000 7.02929 

Sr 3.02400 4.88000 1.00000 2.41500 12.03129 

Y 3.83000 5.62000 1.00000 1.99800 14.62836 

Zr 3.40000 7.10000 1.00000 1.75800 18.55104 

Nb 3.55000 6.76000 1.00000 1.60300 21.15055 

Mo 3.46500 7.51000 1.00000 1.53000 25.94248 

Tc 3.29000 7.98000 1.00000 1.50000 29.12839 

Ru 3.57500 8.03000 1.00000 1.50000 34.58997 

Rh 3.97500 8.01000 1.00000 1.50900 38.61206 

Pd 4.32000 8.00000 1.00000 1.54400 69.17994 

Ag 4.43600 6.26800 1.00000 1.62200 48.97695 

Cd 5.03400 7.91400 1.00000 1.60000 45.11735 

In 3.50600 5.79200 1.00000 1.40400 32.55526 

Sn 3.98700 6.24800 1.00000 1.35400 52.87639 

Sb 4.89900 6.68400 1.00000 1.40400 50.31268 

Te 5.81600 7.05200 1.00000 1.38000 60.37522 

I 6.82200 7.52400 1.00000 1.33300 62.06798 

Xe 7.59500 9.95000 1.00000 2.45900 82.11269 

Cs 2.18300 3.42200 1.00000 2.98400 5.58842 

Ba 2.81400 4.79200 1.00000 2.44200 8.36432 

La 2.83550 5.48300 1.00000 2.07100 10.67729 

Ce 2.77400 5.38400 1.00000 1.92500 11.21837 

Pr 2.85800 5.12800 1.00000 2.00700 11.77531 

Nd 2.86850 5.24100 1.00000 2.00700 10.57528 

Pm 2.88100 5.34600 1.00000 2.00000 11.03202 

Sm 2.91150 5.43900 1.00000 1.97800 11.52999 

Eu 2.87850 5.57500 1.00000 2.22700 11.98786 

Gd 3.16650 5.94900 1.00000 1.96800 14.13037 

Tb 3.01800 5.66800 1.00000 1.95400 13.02211 

Dy 3.05550 5.74300 1.00000 1.93400 13.55362 

Ho 3.12700 5.78200 1.00000 1.92500 14.07050 

Er 3.18650 5.82900 1.00000 1.91500 14.62836 

Tm 3.25140 5.86580 1.00000 2.00000 15.23228 

Yb 3.28890 5.93000 1.00000 2.15800 15.88822 

Lu 2.96290 4.92580 1.00000 1.89600 15.16273 

Hf 3.70000 6.80000 1.00000 1.75900 20.49776 

Ta 5.10000 5.70000 1.00000 1.60500 25.34837 

W 4.63000 6.62000 1.00000 1.53800 29.91565 

Re 3.96000 7.84000 1.00000 1.60000 34.23337 
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Atom χ (eV) J (eV) Z Rc=Rs (Å) Ks (kcal/mol/Å2) 

Os 5.14000 7.26000 1.00000 1.70000 39.06632 

Ir 5.00000 8.00000 1.00000 1.86600 43.69259 

Pt 4.79000 8.86000 1.00000 1.55700 51.08672 

Au 4.89400 5.17200 1.00000 1.61800 57.25236 

Hg 6.27000 8.32000 1.00000 1.60000 66.14815 

Tl 3.20000 5.80000 1.00000 1.53000 43.69259 

Pb 3.90000 7.06000 1.00000 1.44400 47.57360 

Bi 4.69000 7.48000 1.00000 1.51400 44.87347 

Po 4.21000 8.42000 1.00000 1.48000 48.83290 

At 4.75000 9.50000 1.00000 1.47000 55.34395 

Rn 5.37000 10.74000 1.00000 2.20000 62.65353 

Fr 2.00000 4.00000 1.00000 2.30000 6.83259 

Ra 2.84300 4.86800 1.00000 2.20000 8.67007 

Ac 2.83500 5.67000 1.00000 2.10800 10.34466 

Th 3.17500 5.81000 1.00000 2.01800 10.34466 

Pa 2.98500 5.81000 1.00000 1.80000 13.07337 

U 3.34100 5.70600 1.00000 1.71300 13.33589 

Np 3.54900 5.43400 1.00000 1.80000 13.38967 

Pu 3.24300 5.63800 1.00000 1.84000 13.55362 

Am 2.98950 6.00700 1.00000 1.94200 14.25166 

Cm 2.83150 6.37900 1.00000 1.90000 14.43755 

Bk 3.19350 6.07100 1.00000 1.90000 14.62836 

Cf 3.19700 6.20200 1.00000 1.90000 16.19823 

Es 3.33300 6.17800 1.00000 1.90000 16.85603 

Fm 3.40000 6.20000 1.00000 1.90000 13.95226 

Md 3.47000 6.22000 1.00000 1.90000 18.24526 

No 3.47500 6.35000 1.00000 1.90000 20.24779 

Lr 3.50000 6.40000 1.00000 1.90000 N/A 
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Table S2. The electronegativity (χ), idempotential (J), shell charge (–Z), 

atomic covalent radius (Rc=Rs), and spring force constant (Ks) parameters 

of the PQEq1. For PQEq1, only χ and J parameters are optimized for the 

atoms shown in the table. The units of the parameters are given in the 

parentheses.  

Atom χ (eV) J (eV) Z Rc=Rs (Å) Ks (kcal/mol/Å2) 

H 4.72484 15.57338 1.00000 0.371 2037.20061 

C 5.50813 9.81186 1.00000 0.759 198.84054 

N 7.78778 10.80315 1.00000 0.715 301.87609 

O 8.30811 14.66128 1.00000 0.669 414.04451 

F 8.70340 17.27715 1.00000 0.706 596.16463 

Si 4.80466 6.45956 1.00000 1.176 60.04769 

P 6.52204 7.13703 1.00000 1.102 91.47760 

S 8.19185 8.64528 1.00000 1.047 114.50472 

Cl 8.20651 9.73890 1.00000 0.994 152.32280 

 

Table S3. The absolute percent change of the optimized electronegativity 

(χ) and idempotential (J) in PQEq1 compare to PQEq.  

Atom χPQEq (eV) χPQEq1 (eV) %∆χ/χ JPQEq (eV) JPQEq1 (eV) %∆J/J 

H 4.52800 4.72484 4.35 12.98410 15.57338 19.94 

C 5.34300 5.50813 3.09 10.12600 9.81186 3.10 

N 6.89900 7.78778 12.88 11.76000 10.80315 8.14 

O 8.74100 8.30811 4.95 13.36400 14.66128 9.71 

F 10.87400 8.70340 19.96 14.94800 17.27715 15.58 

Si 4.16800 4.80466 15.27 6.97400 6.45956 7.38 

P 5.46300 6.52204 19.39 8.00000 7.13703 10.79 

S 6.92800 8.19185 18.24 8.97200 8.64528 3.64 

Cl 8.56400 8.20651 4.17 9.89200 9.73890 1.55 
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The Electric Dipole Scan Over the Molecular Test Set 

Figure S3 shows the comparison between the electrostatic energies computed by QM, PQEq, 

and PQEq1 for the scan of the electric dipole at different distances for the first 4 of all 68 

cases. The dipole scan directions are shown with the dotted lines on the molecular structure 

schematics for each case. We probe each molecule database structure with a pair of ±1 point 

charges separated by 1 Å to describe both dipole and higher order multipoles of the 

corresponding system. The QM energy is computed using the standard B3LYP hybrid flavor 

of DFT, including both the generalized gradient approximation and a component of the exact 

Hartree–Fock (HF) exchange175-179. These calculations were performed with the 6-311G(d,p) 

(or 6-311G**++) basis set180.  
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Figure S3. Electrostatic interaction energies of an electric dipole near the 

database molecular structures computed by QM (blue), PQEq (red), and 

PQE1 (green). Scan axes are selected along a variety of symmetry directions 

to provide insight about the polarization effect for the corresponding 

element including H, C, N, O, F, Si, P, S, and Cl. The molecular structure 

configuration with the scan direction (dotted line) of the electric dipole for 

each case is shown on the right side. The ±1 electric dipole is shown with 
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small solid spheres. The positive (red) and negative (blue) heads of the 

dipole form an angle of 180° (dotted line) with the reference point. 

 

PQEq and QEq versus Fixed Charge Calculation Models 

Figure S4 compares the dipole electrostatic interaction energies (for the first 4 of 68 cases) 

from QM, PQEq, and PQEq1 with the results from ESP, MPA, OPLS, AMBER, QEq with 

variable charges, and QEq with fixed charges (denoted as QEq0). Here QEq and QEq0 refer 

to the QEq part of PQEq in which the shell polarization is turned off. 
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Figure S4. Electrostatic interaction energies as an electric dipole is 

brought up to molecular structures (68 cases) computed by QM, PQEq, 

and PQEq1, QEq0, compared with the interactions from fixed charge 

models: ESP, MPA, OPLS, AMBER, and QEq0. Here QEq and QEq0 

is from the QEq part of the PQEq, with shell polarization turning off. 

The inset of each subfigure shows the molecular structure 

configuration with the scan direction (dotted line). 

  

Additional data on the 68 training set structures, charges, and interaction energies is available 

through the supplementary material available at: doi: 10.1063/1.4978891. 
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A p p e n d i x  E  

TESTING PQEQ DAMPING 

Undamped PQEq charges during high temperature (480K) simulations resulted in the 

runaway motion of lithium atoms.  In order to address this issue, a damping scheme was 

implemented. Charges for a new timestep t are computed as a fraction λ of the computed 

charge, and a fraction (1- λ) of the charge from the previous step: 

 𝑞𝑡 = 𝜆𝑞𝑐 + (1 − 𝜆)𝑞𝑡−1 (1) 

   

Shell positions are updated using the same scheme:  

 𝑟𝑡 = 𝜆𝑟𝑐 + (1 − 𝜆)𝑟𝑡−1 (2) 

 

In order to understand the effect of damping, a series of tests were run. The PQEq simulation 

at 480K/r=0.02/N=100 was extended for 500fs over a range of damping factors (λ=1, 0.1, 

0.01, 0.001) and the trajectories of each lithium were recorded. To differentiate between 

charge and shell position damping, the first test was run using the QEq model (𝑟𝑡 = 0):
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Figure S1. Lithium motion for each of the 20 lithium ions over a 500fs 

extension of the 480K/r=0.02/N=100 PQEq simulation using the QEq model 

(𝑟𝑡 = 0). Trajectories are shown for a range of damping factors λ=1, 0.1, 

0.01, 0.001. Lithium ions show qualitatively the same behavior in each case, 

suggesting that the damping of shell positions may be important.  
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For the QEq trajectories, qualitatively similar yet quantitatively different trajectories 

were observed for no damping (λ=1) and full damping (λ=0.001), suggesting that the 

damping of shell positions may also be important. An analysis of PQEq damping was then 

performed: 

 



 

 

160 



 

 

161 



 

 

162 

 
Figure S2. Lithium motion for each of the 20 lithium ions over a 500fs 

extension of the 480K/r=0.02/N=100 PQEq simulation using the PQEq 

model and one trajectory with fixed charges and shell positions. The 

undamped trajectories often diverge, suggesting that damping may be 

required. 

 

For the PQEq trajectories, the undamped trajectories (λ=1) diverged significantly from the 

λ=0.001 and fixed charge and shell position trajectory. Additionally, in several cases, 

undamped lithium charges and shell positions results in large displacements (i.e. case 16), 

consistent with results from MD.  

From these tests, λ=0.001 appears to be both stable and include effects beyond the fixed 

charge and shell model. This damping factor corresponds to a damping time of  𝑡𝑑𝑎𝑚𝑝 =

 
1

𝜆
 timesteps = 1ps. Using the diffusion relation, an effective damping length can be computed 
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as 𝑟𝑑𝑎𝑚𝑝 = √6𝐷𝑡𝑑 ~ 0.3Å. This allows for the damping of high frequency 

changes in lithium charges and shell positions, while allowing lithium charges to 

change after site updates. Empirically, this damping factor seems to solve the 

runaway lithium charge problem in both short and long molecular dynamics 

simulations. Thus, λ=0.001 was selected as the PQEq damping factor for the PEO-LiTFSI 

simulations. 
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