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ABSTRACT

The field of tensor networks, kicked off in 1992 by Steve White’s invention of the
spectacularly successful density matrix renormalization group (DMRG) algorithm,
has exploded in popularity in recent years. Tensor networks are poised to play a role
in helping us solve some of the greatest open physics problems of our time, such as
understanding the nature of high-temperature superconductivity and illuminating a
theory of quantum gravity. DMRG and extensions based on a class of variational
states known as tensor network states have been indispensable tools in helping
us understand both numerically and theoretically the properties of complicated
classical and quantum many-body systems. However, practical challenges to these
techniques still remain, and algorithmic developments are needed before tensor
network algorithms can be applied to more physics problems. In this thesis we
present a variety of recent advancements to tensor network algorithms.

First we describe a DMRG-like algorithm for noninteracting fermions. Noninter-
acting fermions, naturally being gapless and therefore having high levels of entan-
glement, are actually a challenging setting for standard DMRG algorithms, and we
believe this new algorithm can help with tensor network calculations in that setting.

Next we explain a new algorithm called the variational uniform matrix product
state (VUMPS) algorithm that is a DMRG-like algorithm that works directly in the
thermodynamic limit, improving upon currently available MPS-based methods for
studying infinite 1D and quasi-1D quantum many-body systems.

Finally, we describe a variety of improvements to algorithms for contracting 2D
tensor networks, a common problem in tensor network algorithms, for example for
studying 2D classical statistical mechanics problems and 2D quantum many-body
problems with projected entangled pair states (PEPS). One is a new variant of the
corner transfer matrix renormalization group (CTMRG) algorithm of Nishino and
Okunishi that improves the numerical stability for contracting asymmetric two-
dimensional tensor networks compared to the most commonly used method. An-
other is the application of the VUMPS algorithm to contracting 2D tensor networks.
The last is a new alternative to CTMRG, where the tensors are solved for with eigen-
value equations instead of a power method, which we call the fixed point corner
method (FPCM). We present results showing the transfer matrix VUMPS algorithm
and FPCM significantly improve upon the convergence time of CTMRG. We expect
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these algorithms will play an important role in expanding the set of 2D classical and
2D quantum many-body problems that can be addressed with tensor networks.
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C h a p t e r 1

INTRODUCTION

The field of tensor networks, kicked off in 1992 by Steve White’s invention of the
spectacularly successful density matrix renormalization group (DMRG) algorithm,
has exploded in popularity in recent years. Tensor networks are poised to play a role
in helping us solve some of the greatest open physics problems of our time, such as
understanding the nature of high-temperature superconductivity and illuminating a
theory of quantum gravity. White’s DMRG algorithm is best suited for calculating
ground states of gapped, one-dimensional (1D) quantum many-body systems, a
setting in which it is by far the most effective tool.

Unfortunately our most interesting open physics problems are in the real world,
where there is oftentimes more than one dimension and a finite temperature. Al-
though it has exponential scaling when applied to dimensions higher than one,
DMRG is such a reliable algorithm that it is still the tool to beat for many 2D
problems. DMRG, based on a variational state known as the matrix product state
(MPS), can also be generalized for direct use in higher dimensions. It has become
clear since the invention of DMRG that MPSs are simply the simplest variational
state of a more general class of states known as tensor network states. The most
popular of these higher-dimensional formulations for practical calculations makes
use of a variational class of states known as tensor product states (TPS) or projected
entangled pair states (PEPS), and in terms of those states polynomial-scaling algo-
rithms can be formulated for problems in two and higher dimensions. Unfortunately
these generalizations of the DMRG algorithm are more challenging to work with in
practice, though a lot of progress has been made over the years to turn them into
competitive numerical tools.

Many of the reasons why DMRG and related variational tensor network methods
aren’t used to solve more physics problems are ultimately algorithmic in nature.
Much progress in improving variational tensor network algorithms, both those based
on MPSs and higher-dimensional analogues, have been made and continue to be
made to this day. In this thesis, we present on a variety of new developments
to tensor network algorithms, which we hope will extend the use of DMRG and
higher-dimensional analogues to new open problems in physics.
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In Chapter 2, we present on a DMRG-like algorithm for noninteracting fermions.
Tensor network states can be thought of as efficient data compressions: the amount of
classical information in a quantummany-body state naively scales exponentiallywith
the number of degrees of freedom in the system. In practice, however, most physical
states we would encounter appear to not contain this much information, and tensor
network states can be thought of as efficient compressions of the general quantum
state into a much more efficient form. We show that, even though they already
have an efficient representation, noninteracting quantum many-body states can be
compressed into even more efficient forms, and we present simple and intuitive
algorithm for performing that compression by performing local diagonalizations
of the correlation matrix. Noninteracting fermions, naturally being gapless and
therefore having high levels of entanglement, are actually a challenging setting for
standard DMRG algorithms, and we believe these new algorithms can help with
DMRG calculations in that setting.

In Chapter 3, we present on a new algorithm called the variational uniform matrix
product state (VUMPS) algorithm that is a DMRG-like algorithm that works directly
in the thermodynamic limit. The algorithm uses the ansatz of a uniform matrix
product state (uMPS), and explicitly optimizes that variational state. This is in
contrast to the infinite DMRG (iDMRG) algorithm, which is a DMRG algorithm
that reaches the thermodynamic limit by growing the system size at each step, and
the infinite time evolving block decimation (iTEBD) algorithm, which works with
a uMPS in the thermodynamic limit but optimizing the state with a power method
instead of variationally. Benchmark results presented in Ref. [2] show that this
algorithm performs better than the state-of-the-art algorithms for a variety of 1D
and quasi-1D systems in the thermodynamic limit, which is the exact limit of interest
for many tensor network algorithms.

In Chapter 4, we present a short review of the corner transfer matrix renormalization
group (CTMRG) algorithm of Nishino and Okunishi. CTMRG is one way to extend
DMRG for studying 2D classical statistical mechanics problems. It also in practice
plays a fundamental role in the most challenging part of infinite PEPS (iPEPS)
calculations. In this chapter, we also present a new CTMRG approach that improves
the numerical stability for contracting asymmetric two-dimensional tensor networks
compared to the most commonly used method.

InChapter 5, we apply theVUMPSalgorithm fromRef. [2] andChapter 3 to the study
of transfer matrices, such that it can be used both for studying 2D classical statistical
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mechanics problems as well as be used in iPEPS calculations. We also present a new
approach to CTMRG where the tensors are solved for with eigenvalue equations,
which we call the fixed point corner method (FPCM). With benchmarks on a variety
of systems, we show that these two new algorithms perform better than CTMRG, and
the improvements are particularly pronounced near critical points where standard
DMRG algorithms tend to have trouble. These two new algorithms will be crucial
to improving the performance of variational infinite projected entangled pair state
(iPEPS) methods, a leading algorithm that generalizes DMRG to 2D.
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C h a p t e r 2

FREE FERMION DENSITY MATRIX RENORMALIZATION
GROUP

1M. T. Fishman and S. R. White, “Compression of correlation matrices and an
efficient method for forming matrix product states of fermionic gaussian states”,
Phys. Rev. B 92, 075132 (2015).

Here we present an efficient and numerically stable procedure for compressing a
correlation matrix into a set of local unitary single-particle gates, which leads to a
very efficient way of forming thematrix product state (MPS) approximation of a pure
fermionic Gaussian state, such as the ground state of a quadratic Hamiltonian. The
procedure involves successively diagonalizing subblocks of the correlation matrix
to isolate local states which are purely occupied or unoccupied. A small number
of nearest neighbor unitary gates isolates each local state. The MPS of this state is
formed by applying the many-body version of these gates to a product state.

We treat the simple case of compressing the correlation matrix of spinless free
fermions with definite particle number in detail, though the procedure is easily
extended to fermions with spin and more general BCS states. We also present a
DMRG-like algorithm to obtain the compressed correlation matrix directly from a
hopping Hamiltonian. In addition, we discuss a slight variation of the procedure
which leads to a simple construction of the multiscale entanglement renormalization
ansatz (MERA) of a fermionic Gaussian state, and present a simple picture of
orthogonal wavelet transforms in terms of the gate structure we present in this
paper. As a simple demonstration we analyze the Su-Schrieffer-Heeger model (free
fermions on a 1D lattice with staggered hopping amplitudes).

2.1 Introduction
One of the strengths of the densitymatrix renormalization group (DMRG) [5, 6], and
tensor network states in general, is that their power to simulate strongly correlated
systems does not require the interactions to be weak. In fact, in fermion systems such
as the Hubbard model, DMRG is more accurate for larger interactions. The matrix
product state (MPS) representation of the wavefunction, which DMRG implicitly

http://dx.doi.org/10.1103/PhysRevB.92.075132
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uses, more efficiently compresses the wavefunction when interactions are strong,
due to lower entanglement in a real-space basis.

In this paper, we introduce a new algorithm for efficiently producing an MPS
representation for ground states of noninteracting fermion systems. Why is this
useful, when DMRG is most useful in the opposite regime? This would be a
valuable tool in a number of situations. For example, a powerful and widely used
class of variational wavefunctions for strongly interacting systems begin with a
mean-field fermionic wavefunction, and then one applies a Gutzwiller projection
to reduce or eliminate double occupancy[7]. It could be very useful to find the
overlaps of a DMRG ground state with a variety of such Gutzwiller states to help
understand and classify the ground state. Once one has the MPS representation of
the mean field state, the Gutzwiller projection is very easy, fast, and exact, whereas
in other approaches it usually must be implemented with Monte Carlo. One might
also begin a DMRG simulation with such a variational state, or in some cases with a
mean field state without the Gutzwiller projection. Being able to represent fermion
determinantal states as MPSs in a very efficient way also opens the door to using
DMRG ground states as minus-sign constraints in determinantal quantum Monte
Carlo, in particular in Zhang’s constrained path Monte Carlo (CPMC) method[8, 9].
In this case one would hope that, for systems too big for accurate DMRG, at least
the qualitative structure of the ground state could be captured by DMRG, and then
the results could be made quantitative with the Monte Carlo method.

The basis of our approach shares ideas with DMRG.Matrix product state representa-
tions exploit a property of the state (low entanglement) to compress the information
in the state. Fermionic Gaussian states (the general class of states which includes
both fermion determinants, BCS states, and free fermion thermal states) are also
compressible, as we will show. The properties of a Gaussian state are completely
defined by its correlation matrix. For the case of a fermion determinant, the corre-
lation matrix has eigenvalues which are either 0 or 1, i.e. they carry only a limited
amount of information, indicating that the state can be compressed. In particular,
one can perform an arbitrary single-particle change of basis within the occupied
states, or within the unoccupied states, without changing the determinantal state.
Tensor network methods in the context of fermionic Gaussian states have been
studied previously in the context of the multiscale entanglement renormalization
ansatz (MERA)[10] and projected entangled pair states (PEPS)[11], however here
we present a simple and easily generalizable formalism and construction starting
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with an efficient method for forming the MPS of a fermionic Gaussian state. We
also present a new and simpler method for obtaining a fermionic Gaussian MERA
(GMERA), the MERA of a fermionic Gaussian state, as a simple extension.

Our approach to producing the MPS of a fermionic Gaussian state also produces
a compressed form of the correlation matrix itself, which we call a fermionic
Gaussian MPS (GMPS), which might be useful in very different contexts where
the single-particle matrices are very large. This compressed form expresses the
N × N correlation matrix in terms of O(BN) real angles which parametrize nearest
neighbor rotation gates, where B � N for states with low entanglement. The
compressed form can be utilized directly. For example, ordinarily multiplying
an arbitrary vector by the correlation matrix, which is not sparse, requires O(N2)

operations, but by using the compressed form only O(BN) operations are needed.
For simplicity, the algorithm we introduce first utilizes the correlation matrix as the
initial input. However, in Appendix 2.B we present a DMRG algorithm in the single
particle context, which we call fermionic Gaussian DMRG (GDMRG), that starts
with a single particle Hamiltonian matrix and outputs the ground state correlation
matrix in compressed form as a GMPS at a greatly reduced cost compared to
directly diagonalizing the Hamiltonian matrix, O(B3N) as opposed to O(N3). This
algorithm exploits the close relationship between the correlation matrix and the
density matrix of a many particle state, and many tensor network algorithms can
similarly be translated into a single particle framework.

The paper is organized as follows. Section 2.2 gives a brief overview of fermionic
Gaussian states and correlation matrices, including an introduction to the entan-
glement of these states. In Section 2.3, we give detailed descriptions of the new
algorithms. Section 2.3.1 covers our new procedure for compressing a correlation
matrix as a GMPS. Section 2.3.2 presents a variation of this method to obtain a
GMERA. In Section 2.3.3 we give a brief introduction to how the GMERA gate
structure relates to wavelet transforms. Section 2.3.4 covers the procedure for turn-
ing the gates obtained from compressing the correlation matrix into a many-body
MPS approximation of the Gaussian state. Finally, Section 2.4 shows numerical
results for the algorithms covered in the paper.
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2.2 Background on Fermionic Gaussian States and Correlation Matrices
Consider the Hamiltonian for a 1D system of noninteracting fermions

Ĥ =
N∑

i, j=1
â†i Hi j â j, (2.1)

where ai and a†i are fermion operators andH = [Hi j] is aHermitianmatrix (H = H†).
We assume that the Hamiltonian terms are local (so the matrix H is band-diagonal).

Diagonalizing the matrix H, we have H = UDU† where U is unitary and D is
diagonal such that Dkk ′ = εkδkk ′. The Hamiltonian can then be put into diagonal
form,

Ĥ =
N∑

k=1
εk â†k âk, (2.2)

where the operators which create the single particle energy eigenstates are

â†k =
N∑

i=1
Uik â†i . (2.3)

Assuming εk ≤ εk ′ if k < k′, the ground state is

|ψ0〉 =

NF∏
k=1

â†k |Ω〉 , (2.4)

where NF is the number of particles in the system.

The correlation matrix is

Λi j =
〈
â†i â j

〉
=

NF∑
k=1

U∗ikU j k . (2.5)

The correlationmatrix fully characterizes |ψ0〉 because all correlation functions, and
therefore all observables, can be factorized into two-point correlators using Wick’s
theorem. Note that the eigenstates of H are also the eigenstates of Λ (the same U

that diagonalizes H also diagonalizes Λ). However, the eigenvalues of Λ are either
1 (occupied) or 0 (unoccupied). The massive degeneracy of Λ means that we can
make arbitrary changes of basis among the eigenstates of Λ as long as we do not
mix occupied and unoccupied states.

In our procedure, we will be interested in finding localized eigenvectors of the
correlation matrix which are (approximately) fully occupied or unoccupied. By
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Figure 21: Fig. 21(a) shows the occupations nb and corresponding entanglement
S1(nb) from diagonalizing a block of B = 16 sites in the middle of a system of free
gapless fermions on N = 1000 sites at half filling. The minimum and maximum
eigenvalues, n1 and n16, differ from 0 and 1 by ≈ 1.74 × 10−11. The eigenvalues
closest to 1/2, 1/2 − n8 = n9 − 1/2 ≈ 0.21, have entropies S1(n8) = S1(n9) ≈ 0.60,
which are close to the maximum of S1(1/2) = log(2) ≈ 0.69. Fig. 24(b) shows
examples of eigenvectors from the same diagonalization. The eigenvectors with
eigenvalues near 0 and 1, which contribute very little to the entanglement, are
localized in the middle of the block, while the eigenvectors with eigenvalues closer
to 1/2 which contribute most to the entanglement have large support on the edges of
the block.

rotating into the basis of these eigenvectors, we can locally diagonalize the correla-
tion matrix, which will lead to a compression of the state. These eigenvectors have
eigenvalues near 1 or 0, which makes them (approximate) eigenvectors of the entire
correlation matrix and therefore uncorrelated with the rest of the system. What
makes it possible to find a localized eigenvector?

The answer is the limited entanglement structure of the states we are interested
in (ground states of local Hamiltonians). Consider the entanglement entropy of
our fermionic Gaussian state, which can be calculated directly from the correlation
matrix. Divide the system into an arbitrary subblock B of B sites (with the corre-
sponding submatrix of Λ, which we call ΛB) and the rest of the system. We would
like to know how large of a block size B we need to find a localized eigenvector. If
the matrix ΛB has eigenvalues {nb} for b ∈ B, with 0 ≤ nb ≤ 1, the entanglement
entropy of the subblock B, SB ≡ −Tr[ρ̂B log(ρ̂B)] (where ρ̂B is the reduced density
matrix of the state in subblock B), is

SB({nb}) =
∑
b∈B

S1(nb), (2.6)
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where S1(nb) = −[nb log(nb) + (1 − nb) log(1 − nb)]. This expression has been
shown elsewhere[12–15]. We show a simple, self-contained derivation of it in
Appendix 2.A. Note that S1(nb) vanishes for both nb → 0 and nb → 1.

The maximum amount of entanglement a block of size B can contain is when
nb = 1/2 for all b ∈ B, so SB ≤ B log(2). This reflects a volume law entangle-
ment in the “volume" B. However, ground states of 1D local Hamiltonians have
entanglement that is much smaller, either of order unity (if the system is gapped),
or the entanglement grows as log(B) if the system is gapless. To avoid the volume
entanglement, most of the block eigenvalues nb must be exponentially close to 0 or
1. In other words, as soon as we make B big enough so that the entanglement begins
to saturate, except for a possible slow logarithmic growth, we should find at least one
eigenvalue very close to 0 or 1. For gapless free fermions in 1D on N = 1000 sites,
we show example eigenvalues, eigenvectors, and corresponding entanglements of
a block of B = 16 in the middle of the correlation matrix in Fig. 21. Even for
gapless free Fermions, with a block size of only B = 16 we find many eigenvalues
near 0 or 1 (many localized eigenvectors). We use this observation next to develop
algorithms to locally diagonalize correlation matrices and in the process find a very
compressed form.

2.3 Algorithms
2.3.1 Compressing a Correlation Matrix as a GMPS
We begin the procedure by diagonalizing the upper left B × B subblock of a cor-
relation matrix Λ of a pure fermionic Gaussian state. Assume that the state has
some local entanglement structure, for example it is the ground state of a local
Hamiltonian in 1D. For now, we imagine our system has open boundary conditions.
For simplifying the discussion, from here on we assume our Hamiltonian is real
(and therefore symmetric and diagonalized by an orthogonal matrix). We discuss
the more general complex case at the end of the section. Let B be the group of sites
1, . . . B on the left end of the system, and ΛB be the associated subblock of Λ. Also,
let {nb} be the eigenvalues of ΛB for b ∈ B where 0 ≤ nb ≤ 1. (This constraint
on the eigenvalues of the subblock follows from the fact that both Λ and 1 − Λ are
positive semi-definite.)

We increase B until we find some nb that is nearly 1 or 0 within a specified tolerance,
e.g. 10−6. The closer the eigenvalue is to 1 or 0, the more accurate the compression,
but a larger block size translates to more gates and a bigger bond dimension of
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Figure 22: Examples of approximate occupied and unoccupied eigenvectors of Λ
obtained from diagonalizing ΛB where subblock B are sites 1, . . . , B. Λ is formed
from the ground state of Ĥ = −t

∑N−1
i=1 (â

†

i âi+1 + h.c.) for N = 1024 at half filling
(NF = N/2). A block size of B = 12 is used. Eigenvectors with highest (nocc)
and lowest (nunocc) eigenvalues found from diagonalizing subblock B are shown.
We find 1 − nocc = 2.4 × 10−15 and nunocc = 7.3 × 10−16, so the occupations are
accurate to nearly machine double precision. 1 − nocc and nunocc should be equal at
half filling (because of particle-hole symmetry), but are different in this case as a
result of roundoff errors.

the MPS we will form. In Fig. 22 we show the most occupied and unoccupied
eigenvectors of ΛB for B = 12 for a system of gapless free fermions in 1D with
N = 1024 sites. We see that B = 12 is sufficient to give deviations from occupancies
of 0 or 1 to nearly machine double precision. The eigenvalues found in the bulk
likely will not be as accurate, because states in the bulk will generally be more
entangled than the ones on the edge. The smooth fall-off to zero at the right edge
of the block is characteristic of these modes and is a result of diagonalizing the
block on the left-most boundary of the system. The localized states we find here
are least entangled with the rest of the system. This is in contrast to the dominant
Schmidt states that are utilized within DMRG which have degrees of freedom that
are localized at the edge of the block.

The eigenvector ®v which is least entangled is also an approximate eigenvector of the
total correlation matrixΛ, i.e. Λ®v ≈ n1®v. Any N ×N unitary matrix that has ®v as its
first column represents a change of basis that puts ®v on the first site. The associated
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transformation of Λ will make Λ11 = n1, and zero out the rest of row 1 and column
1. The matrix of eigenvectors of ΛB would produce such a matrix (expanding it to
N × N by putting ones on the diagonal), but this B × B matrix does not translate
well to many-particle gates to use in constructing an MPS.

We now introduce gate/circuit diagrams which apply equally well to simple matrix
manipulations of Λ and to many-particle tensor networks. The basic ingredient of
the diagrams are two site nearest neighbor unitary gates. In Figure 23 we show
the relation between a gate and a matrix. In a later section we show how a gate is
interpreted in the many-particle context of a tensor network. We consider nearest
neighbor gates because these translate to fast MPS algorithms—typically, a non-
nearest neighbor gate is implemented as a set of swap gates to bring the sites together,
a nearest neighbor gate, followed by swaps to return to the original ordering of the
sites, which is much slower than a single nearest neighbor gate. In the special case
that the intermediate sites are in product states, i.e. bond dimension 1, nonlocal
gates are also inexpensive, and we use these in our MERA algorithm.

Returning to the task of moving the least entangled state ®v to the first site, a set of
B − 1 two-site gates suffices. The first gate acts on sites (B − 1, B), and we label it
VB−1. In general, we take

Vi = V(θi) =

(
cos θi − sin θi

sin θi cos θi

)
. (2.7)

We choose θB−1 = tan−1(vB/vB−1), where vi is the ith component of the (un)occupied
eigenvector of interest ®v. With this choice,VB−1 acting on ®vT =

(
v1 . . . vB−1 vB

)
sets the last component, vB, to zero, and produces a new value of vB−1 → v′B−1.
In other words, we solve for θB−1 so that ®vTVB−1 =

(
v1 . . . vB−1 vB

)
VB−1 =(

v1 . . . v′B−1 0
)
. Nextwe rotate sites (B−2, B−1), with θB−2 = tan−1(v′B−1/vB−2),

and continue in this fashion. The action of all these gates on ®vT gives δi,1, so they
act to change the basis into the one containing ®v.

We take VB = V(θB−1)V(θB−2) . . .V(θ1). This procedure is shown schematically
for a simple case in Fig. 24(a). We then apply the gates to Λ. The transformed
correlation matrix V†

B
ΛVB will have n1 ≈ 1 or 0 as the top left entry (and nearly

0 in the rest of the entries in the first row and first column). A schematic of this
transformation is shown in Fig. 24(b). We will call the first block B1 ≡ B. We
repeat this procedure for B2, sites 2, . . . , B + 1, now simply ignoring the first site.
For half-filled systems, the modes found are likely to alternate between occupied
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V (θ3)

V (θ3) =

(
cos θ3 − sin θ3
sin θ3 cos θ3

)

V (θ3)

Figure 23: Definition of a gate used throughout the paper. Example for N = 8
sites for a gate at site i = 3. Unless specified otherwise, circuits are in a direct sum
space. We take the convention that multiplying a matrix from the top by a vector
corresponds to multiplying the matrix on the right by a column vector.

and unoccupied because occupied and unoccupied modes will generally be found
in pairs when diagonalizing a block of the correlation matrix. Of course, B does
not have to stay the same from one block to the next, and in general it is better
to set it dynamically to make nk sufficiently close to 1 or 0. For the last blocks,
B is decreased to the remaining number of sites. After N blocks, we will have
approximately diagonalized Λ.

The overall unitary transformation is V = VB1VB2 . . .VBN−1 . The matrix V decom-
posed into the 2×2 rotation gates {V(θi)} for N = 8 and B = 4 is shown in Fig. 25(a).
The N × N unitary approximately rotates our single particle basis from real space
to what we refer to as the occupation basis, which is one of the highly degenerate
eigenbases of the correlation matrix. Conjugating Λ by V gives us a matrix V†ΛV

that is nearly diagonal, with NF values on the diagonal close to 1 corresponding
to occupied modes and N − NF values on the diagonal close to 0 corresponding
to unoccupied modes. In total, the procedure as described would require O(BN)

nearest neighbor rotations, where B is the largest block size needed for the desired
accuracy of the representation of the correlation matrix.

Writing the 2 × 2 rotations as gates is very convenient for understanding the matrix
transformations, but more importantly it makes it easy to connect to many-body
gates and to quantum circuits in general. As a quantum circuit, these gates have
a slightly peculiar structure. Because of how the diagonalizations overlapped, the
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~vT =
(
v1 v2 v3 v4

)

(
v1 v2 v′3 0

)

(
v1 v′′2 0 0

)

(
1 0 0 0

)

V (θ3) θ3 = tan−1
(

v4
v3

)

V (θ2) θ2 = tan−1
(

v′
3

v2

)

V (θ1) θ1 = tan−1
(

v′′
2

v1

)

Λ~v ≈ n1~v, n1 ≈ 1

(a)

V (θ1)†

V (θ2)†

V (θ3)†

V (θ3)

V (θ2)

V (θ1)

Λ

≈ n1 Λ′

(b)

Figure 24: In Fig. 24(a) we show schematically the procedure to obtain, given an
approximate eigenvector ®v of the correlation matrix Λ, the set of local rotation gates
that make up our compressed correlation matrix. The example shown is for a block
size B = 4 and system size N = 8. Fig. 24(b) shows that, by conjugating the
correlation matrix by the gates obtained, the correlation matrix is approximately
partially diagonalized.

circuit has a depth of O(N). However, a vertical cut through the circuit only passes
throughO(B) gates. This construction and gate structure is in a certain sense optimal
if we limit ourselves strictly to circuits with local gates. If we want to represent a
correlation matrix in a compact way with nearest neighbor gates, we would like to
be able to represent arbitrary correlations in the system (correlations at all lengths),
and in particular, correlations between the first and last site. In Fig. 25(b), we show
a circuit which cannot connect the first and last sites because its depth is less than
N/2. Although our gate structure, shown in Fig. 25(a), has a depth ∼ N , in fact
we can adjust our diagonalization procedure slightly to obtain a depth of ∼ N/2 so
our circuit can capture correlations of all lengths. This is done by beginning the
diagonalization procedure from both the left and right side of the system until the
blocks meet in the middle. This freedom in where to start the diagonalization is
similar to the choice of gauge of an MPS. Choosing one gauge over another can be
useful if we have already performed this procedure for a correlation matrix and want
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O(N)

O(B)

(a)

Λ1,N =
〈
â†1âN

〉
= 0

1 0 0 0 0 0 0 0

≡ 1

≡ 0

Depth = 3 < N/2

(b)

Figure 25: Fig. 25(a) shows the overall gate structure obtained by the diagonalization
procedure. These gates form the total N × N unitary V which approximately
diagonalizes our correlation matrix Λ. By conjugating a diagonal matrix with the
appropriate occupations of 0 or 1 found in the diagonalization procedure by this set
of gates, we get an approximation for the correlation matrix. Fig. 25(b) shows an
example of the correlations allowed by representing the correlation matrix Λ with a
diagonal matrix conjugated by a finite depth circuit of depth < N/2. The grey area
(the “light cone") represents sites where there can be nonzero correlations with the
first site. The circles in the middle represent a diagonal matrix with 1’s and 0’s on
the diagonal, which is conjugated by a unitary change of basis approximated here by
a finite depth circuit. For the circuit depth shown, there can’t be correlations with
the last two sites. A circuit of depth ≥ N/2 is required to allow for the possibility
of nontrivial correlations across the entire system.

to perform it again for another correlation matrix which is only locally different
from the first one. If we choose the gauge center where the correlation matrix has
changed, we only need to change a local set of gates.

A generic local circuit of depth O(N) contains O(N2) gates, and can represent an
arbitrary N × N single-particle unitary change of basis. The low entanglement of
physical ground states allows us to represent an N × N matrix with O(BN) one-
parameter gates, with B � N . For a gapless system, we know from conformal field
theory that the entanglement of a subblock B of B sites varies as SB ∼ log(B). This
means that we should be able to capture the entanglement of a critical system of N

sites with a block size B ∼ log(N). If we find that B ∼ log(N), this means that our
construction is roughly optimal. Fig. 214 in Section 2.4.1 shows numerical evidence
that this is indeed the case.
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2.3.2 Compressing a Correlation Matrix as a GMERA
A MERA tensor network[16] can represent a 1D critical system using a constant
bond dimension, unlike an MPS. In our MPS construction, this is reflected in that
B ∼ log(N). However, we can adjust the diagonalization procedure slightly to obtain
a MERA-like gate structure with a B which does not grow with N . The MERA
for fermionic Gaussian states was first studied in [10], but was only used to study
infinite translationally invariant systems and required a subtle optimization scheme.
Here we will show a simpler construction only requiring the tools we have explained
so far.

We begin the procedure in the same way as we did for the GMPS, by diagonalizing
the block corresponding to sites 1, . . . , B of the correlation matrix. Just as before, for
a large enough block size we find an occupied or unoccupiedmode and rotate into the
basis containing that modewith B−1 local 2×2 gates. Next, instead of diagonalizing
the block starting at site 2, we instead diagonalize the block corresponding to sites
3, . . . , B + 2, again finding an occupied or unoccupied mode and rotating into that
basis. The state at site 2 is “left behind"—it is not a low entangled state, so we
cannot ignore it, but we leave it for a later stage of the algorithm. We continue in
this manner, diagonalizing blocks starting at odd sites of size B to obtain ∼ BN/2
nearest neighbor gates. Approximately half of the modes are fully occupied or
unoccupied and are projected out (meaning the associated rows and columns in the
correlation matrix are ignored in later stages). The other half were left behind, and
continue as the sites of the next layer of the gate structure. By only trying to get
N/2 unentangled modes in the first layer, the size of B does not need to grow with
N , as we show below.

The left-behind sites pass through to the next layer and are interpreted as a course-
grained version of our original state on only N/2 sites. We repeat the same procedure
for this new course-grained system of N/2 sites, starting by diagonalizing the
subblock of the first 1, . . . , B sites of the new course-grained lattice, finding an
occupied or unoccupied mode of the course-grained system, and projecting it out.
Here, however, the gate we use to rotate into the basis of the (un)occupied mode
are 2 × 2 nearest neighbor gates in the course-grained lattice, but are actually next-
nearest neighbor gates acting on the original lattice (if we project out every other
site). Ordinarily, using next-nearest neighbor gates (or longer range gates at higher
levels of the MERA) would be costly in the many-body case, requiring swap gates
to make them effectively nearest neighbor. However, the projected-out sites are now



16

. . .

...

Figure 26: An example of an alternative diagonalization scheme resulting in a
MERA-like gate structure. Here we show a section of the first two renormalization
steps, with 12 sites shown in the first layer and 6 renormalized sites shown in the
second. A block size of B = 4 is used. For this block size there are two layers
of disentanglers and one layer of isometries per level of the MERA. Open legs at
the top of each layer correspond to diagonal modes of the correlation matrix (with
eigenvalues 0 or 1) and are ignored at the next layer.

in product states, meaning that swapping does not require significant time.

We repeat the above procedure of projecting out every other effective site and course
graining to a lattice of half the size. All of the sites will be projected out after this
course-graining is repeated O(log2(N)) times. Fig. 26 shows the first two layers of
the resulting gate structure, which looks like a MERA with B − 2 layers of nearest
neighbor 2-site disentanglers and a layer of nearest neighbor 2-site isometries. The
total number of gates in the construction is ∼ B(N/2 + N/4 + . . . + 1) = BN , the
same gate count for a fixed block size B as for the GMPS.We call this gate structure,
which like our GMPS construction is a compression of an N × N correlation matrix
into ∼ BN gates, a fermionic Gaussian MERA or GMERA. In this figure, open
legs at the top of each layer are modes that are uncorrelated with the rest of the
sites and can be ignored in the next layer. Some extra gates will be required to
project out the leftover sites at the right end of the system (not shown in Fig. 26),
and there is some flexibility in how to do this which will change the accuracy of
the compression slightly. For example, one could use a gate structure similar to the
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GMPS construction to project out all of the leftover sites at the end.

How does the block size B of the GMERA compare to that in our GMPS construc-
tion? We show numerically in Section 2.4.2 that for a simple gapless Hamiltonian
the GMERA does indeed produce accurate results with a block size B = O(1),
independent of the system size, making it much more efficient in the large N limit.

2.3.3 Discrete Wavelet Transforms and Fermionic Gaussian MERA
We would like to point out the similarity between the MERA gate structure and
orthogonal wavelet transforms (WT), such as the WTs that produce the well-known
Daubechies wavelets [17, 18]. Of course, the development of wavelets has not
been in a many particle context, and, for now, we restrict ourselves to the matrix
interpretation of the diagrams. For compact wavelets, an orthogonal wavelet trans-
form is a local unitary transformation. It is not usually represented in terms of
two-site gates, but this representation turns out be be particularly convenient. To
be specific, we start with the simplest nontrivial WT, the D4 Daubechies WT. This
WT is defined by four coefficients {a j} for j = 1, . . . , 4 which characterize how
the D4 scaling function is related to itself at different scales through the equation
s(x) =

∑
j a j
√

2s(2x − j). The matrix form of the WT is given by

©«

a1 a2 a3 a4 0 0 0
a4 −a3 a2 −a1 0 0 0
0 0 a1 a2 a3 a4 0
0 0 a4 −a3 a2 −a1 0

. . .

ª®®®®®®®®¬
. (2.8)

The {a j} are carefully chosen to ensure orthogonality between scaling functions
centered at different sites, and to make the scaling functions have desirable com-
pleteness properties. For example, linear combinations of the D4 scaling functions
centered at different sites, {s(x − k)} for integer k, fit any linear function, so the
resulting coefficients are ®aT = (1 +

√
3, 3 +

√
3, 3 −

√
3, 1 −

√
3)/(4

√
2). The or-

thogonality requirement results in nonlinear equations to solve for the {a j} which
becomes complicated for higher order. The second row of the matrix gives the
coefficients that produces wavelets, designed to represent high momentum degrees
of freedom. In terms of our MERA procedure, the wavelets are left behind, while
the scaling functions propagate to the next level.

The D4 WT has a very simple gate structure, identical to our MERA structure
with B = 3, shown for two layers in Fig. 27. In each horizontal layer of gates, all
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s1 w1

θ1 θ1 θ1 θ1 θ1

θ2 θ2 θ2 θ2 θ2 θ2

s2 w2

θ1 θ1

θ2 θ2 θ2

. . . . . .

...

Figure 27: Here we show an example of a discrete wavelet transform written
in the gate notation introduced in this paper. We show the D4 wavelet, which
corresponds to a fermionic Gaussian MERA with one layer of disentanglers and
one layer of isometries per layer. w1 and s1 (w2 and s2) label wavelet and scaling
functions for the first (second) layer. Taking θ1 = π/6 and θ2 = 5π/12, we
reproduce the conventional scaling coefficients for theD4WT, ®aT = (a1, a2, a3, a4) =
(1 +
√

3, 3 +
√

3, 3 −
√

3, 1 −
√

3)/(4
√

2).

gates have the same angle. The D4 WT is specified by only two angles, θ1 for the
bottom layer and θ2 for the next. Higher order WTs of this type (e.g. D6, D8, etc.)
correspond to larger B. (For example, the D6 WT looks like Fig. 6). Given the
angles, one gets the {a j} by setting all the top values of the circuit to zero except a
1 on one site and applying the 2 × 2 rotations in the layers below. The support of
the scaling functions is made obvious using the gate structure, as there will be 2L

nonzero values at the bottom of the circuit for L layers of gates. For the D4WT, one
finds that θ1 = π/6 and θ2 = 5π/12 reproduces the D4 {a j}, up to a trivial reversal
of the coefficients. (A single layer with θ1 = π/4 gives the trivial Haar wavelets,
which have been used previously as a basis for transforming fermionic Gaussian
states by Qi [19].) The scaling functions at the larger scales are found by performing
the same transformation of L layers of gates on the scaling functions found at the
previous scale.

In Fig. 28 we show how scaling coefficients {a j} come from the gate structure,
applying a vector to the top of the circuit with 1 at the site of a scaling function and
0’s elsewhere. In simple wavelet treatments, the wavelet coefficients are obtained
from the scaling coefficients {a j} as {(−1) j−1a2L− j+1} for j = 1, . . . , 2L. Here, they
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θ2 a4 a3 a2 a1=

(a) Scaling coefficients from gate structure.
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where
(
a4 a3 a2 a1

)
=
(
−s1c2 c1c2 c1s2 s1s2

)

and ci = cos(θi), si = sin(θi)

(b) Gate structure in (a) written in terms of matrices and vectors.

0 0 1 0

θ1 θ1

θ2 a1 −a2 a3 −a4=

(c) Wavelet coefficients from gate structure.

Figure 28: Herewe show explicitly how to obtain the scaling andwavelet coefficients
of the D4 WT from the circuit construction. Taking θ1 = π/6 and θ2 = 5π/12,
in (a) and (b) we reproduce the conventional scaling coefficients for the D4 WT,
®aT = (a1, a2, a3, a4) = (1+

√
3, 3+

√
3, 3−

√
3, 1−

√
3)/(4

√
2), up to a trivial reversal

in the order. In (c) with the same choice of angles we reproduce the conventional
wavelet coefficients (a4,−a3, a2,−a1), again up to a trivial reversal and sign.
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are obtained by shifting the location of the 1 at the top of the circuit, but we can show
in general that this gives the same result. This is done by noting that the shift of the
1 to get the wavelet coefficients looks like a swap at the top of the circuit. We can
“pull through" this swap by conjugating each layer of the WT with a transformation
that reverses the order of the sites. This conjugation also negates the angles in the
circuit. It leaves a site reversal at the bottom of the circuit, reversing the order of
the coefficients. The angle negation negates the sine terms, leading to the same
coefficients except with every other one negated, since every other site will have an
even or odd number of sin(θi) multiplied together.

Given an arbitrary set of {a j}, we can use the same procedure that brought ®v to
the first site in our GMPS procedure to find all the angles defining the WT, i.e
®v = ®a. Thus, any compact orthogonal WT of this general type can be represented
by a simple gate structure. Because wavelets are much easier to understand than
generic many particle wavefunctions, the connection between MERA and wavelets
may help provide intuition that helps one understand MERA.

2.3.4 Forming the Many-Body MPS from the GMPS (or GMERA)
For a number conserving real Hamiltonian H, the many particle unitary gate V̂i

corresponding to the single particle rotation Vi, in the basis

{|Ω〉 , â†i |Ω〉 , â
†

i+1 |Ω〉 , â
†

i â†i+1 |Ω〉}, (2.9)

is

[V̂i] = [V̂(θi)] =

©«
1 0 0 0
0 cos θi sin θi 0
0 − sin θi cos θi 0
0 0 0 1

ª®®®®®¬
. (2.10)

This reinterpretation of the gates is the only change needed to make our matrix gate
structures act on the many particle Hilbert space.

Say we have compressed the correlation matrix of a pure fermionic Gaussian state
as a GMPS. To create the MPS representation of this state, we begin with a product
state, with each site being occupied or unoccupied, with the occupations given by
nk obtained in our diagonalization procedure (set to 1 or 0 for nk ≈ 1 or 0). We
then apply, one by one, all of the nearest neighbor gates {V̂i} (the many-body gates
corresponding to the gates {Vi} obtainedwith Eq. 2.10) in the opposite order inwhich
they were obtained with our diagonalization procedure. The repeated application
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V̂B1

V̂B2

V̂B3

V̂B4

V̂B5

V̂B6

V̂B7

=

=

Figure 29: Tensor diagram showing the structure of gates {V̂Bi } for i = 1, . . . , N − 1
obtained in our procedure and how they contract to form an MPS. The white (black)
triangles represent projectors onto the occupied (unoccupied) state. The ordering of
the occupied and unoccupied states is determined by the ordering of the occupations
found in the diagonalization procedure, one particular example at half filling is
shown here. Here we show a system with N = 8 sites and a block size B = 4. The
diagram on the right shows that once the sites are rotated into a basis where one
of the modes is occupied or unoccupied (generally with some alternating pattern),
the fully occupied or unoccupied modes can be projected out. The transformations
{V̂Bi }, including the projections, can be directly interpreted as the tensors composing
the MPS representation of our many-body state if we do an exact contraction, or we
can apply them as a set of gates as explained in the text.

of gates is similar to the time-evolving block decimation (TEBD) algorithm[20] or
the time dependent DMRG algorithm[21], but the pattern of gates and ordering is
different. We apply the two body gates by moving the center of the MPS to the
location of the gate, contract the gate with the two relevant tensors in the MPS, and
then form the new MPS by performing a singular value decomposition (SVD), with
possible truncation of states by throwing out states with small singular values.

We can also form the MPS from our GMERA construction in a similar manner.
However, instead of starting with a full product state, we start with the gates at the
top of the MERA and work our way down, including only the sites that have been
touched by a gate at that level or above. When a site is added, it starts as a completely
occupied or unoccupied state, and is immediately mixed with another site by a gate.
The number of sites involved roughly doubles with each layer, and after O(log2(N))

layers of the MERA we have our MPS approximation for the entire system. Again,
we can truncate as needed by throwing out low weight states after the SVD as we
work our way down.
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Returning to theMPS construction, the tensors of theMPS could also be constructed
directly by contractions of the gates as shown in Fig. 29. In this diagram the small
black and white triangles signify projectors onto the appropriate occupations found,
while the thick lines signify combined internal indices which form the internal
bonds of the MPS. From this perspective it is easy to see that picking a block size B

for diagonalizing the correlation matrix would correspond to an MPS with a bond
dimension of χ = 2B−1. We find it simpler and more efficient to apply the gates
layer by layer instead of this method. Layer by layer, it is natural to truncate the
MPS with SVDs during the construction, and this can lead to an MPS with a smaller
bond dimension than 2B−1 for the required accuracy. The SVD truncation takes one
out of the manifold of Gaussian states, where the greater freedom for a fixed bond
dimension allows one to find a state which is closer to the desired Gaussian state
than one could within the Gaussian manifold. However, one should pick a block
size so that 2B−1 is as close to the target bond dimension as possible.

We can adapt our circuits to complex quadratic Hamiltonians, where the gates are
of the same form but the 2 × 2 submatrix rotating the singly occupied subspace is
a general matrix in SU(2) parameterized by two angles. Even more generally, we
can extend this procedure to quadratic Hamiltonians with pairing terms to compress
BCS states, where the gates required are not just number conserving but general
parity conserving gates (so they involve mixing of unoccupied and doubly occupied
subspaces of the 2 sites of interest). This matrix would in general be parameterized
by 5 angles (one matrix in SU(2) rotating the singly occupied subspace, one matrix
in SU(2) rotating the empty and doubly occupied subspaces, and a relative phase).
This form of gates has been studied previously in the context of classically simulating
quantum circuits using the matchgate formalism; see for example[22, 23].

2.4 Numerical Results
Here we show numerical results for the algorithms we presented. In order to
study systems that are both gapless and gapped, we study a simple model, the Su-
Schrieffer-Heeger model [24]. This is a model of 1D spinless fermions hopping on
a lattice with staggered hopping amplitudes, t1 and t2. The Hamiltonian is

ĤSSH =

N−1
2∑

i=1
(t1â†2i−1â2i + t2â†2i â2i+1 + h.c.). (2.11)

We will take t1 = −t
(
1 + δ

2
)
and t2 = −t

(
1 − δ

2
)
. The model has an energy gap

in the bulk between the ground state and first excited state of ∆ = 2|δ |t in the
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Figure 210: Block size required to obtain a relative error in the total energy of less
than 10−6 as a function of the calculated energy gap (in units of t) for N = 128 sites.

thermodynamic limit (N → ∞). With open boundary conditions, it can contain
exponentially decaying zero energy modes localized on the ends of the chain.

2.4.1 Results for Compressing a Correlation Matrix as a GMPS
We start with a simple test of obtaining the GMPS compression of the ground
state correlation matrix of the SSH model for N = 128 lattice sites for various
energy gaps at half filling (NF = N/2). We analyze the range of δ from 0 to 2.
The ground state for δ = 0 is (approximately) gapless while for δ = 2 it is fully
gapped (the chain uncouples). Fig. 210 shows the block size required to obtain a
GMPS with a relative error in the total energy of less than 10−6 as a function of the
calculated energy gap. The exact ground state energy and energy gap are calculated
by diagonalizing the hopping Hamiltonian HSSH . This corresponds to the accuracy
of the MPS representation of the ground state if the GMPS written with many-body
gates is contracted with no further truncation of the MPS, so a GMPS block size B

corresponds to an MPS of bond dimension χ = 2B−1 (which is why the block size
remains constant for intermediate energy gaps). The plot shows, as expected, that
the block size required decreases as the energy gap is increased. Fig. 211 shows,
for the case δ = 0 (where the energy gap, due to the finite size, is 0.146088t), the
relative error in the energy as a function of the block size.
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Figure 211: Relative error in the total energy as a function of the block size B for
N = 128 sites and δ = 0.
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Figure 212: Examples of occupied and unoccupied modes found in the diagonal-
ization process. Fig. 212(a) shows occupied/unoccupied modes for δ = 0.4 (energy
gap ≈ 0.806135t). Fig. 212(b) shows occupied/unoccupied modes for δ = 0 (energy
gap ≈ 0.146088).
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Figure 213: Examples of deviations in occupations at the end of the diagonalization
procedure for N = 128 sites. Fig. 213(a) shows errors in the occupations for δ = 0.4
(energy gap ≈ 0.806135t). Fig. 213(b) shows errors in the occupations for δ = 0.0
(energy gap ≈ 0.146088t).

Fig. 212 shows examples of the modes obtained with the procedure, both filled and
unfilled, for a small gap and a larger gap. The modes are seen to be localized for the
case of the larger gap, and extend throughout the system for the smaller gap. The
unfilled modes follow the same decay as the filled modes but oscillate more, since
they are above the Fermi sea and are therefore higher in energy. Fig. 213 shows for
the same two gaps the deviation in the eigenvalues nk from 0 or 1 obtained during
the diagonalization procedure. For the case of the larger gap, this error saturates to
its maximum quickly for modes near the middle of the system, while for the smaller
gap, the error increases more slowly due to the longer range correlations.

In Fig. 214 we analyze the block size scaling with system size N for the gapless
case (δ = 0). As we expect from arguments about entanglement made at the end
of Section 2.3.1, the scaling is found to be B ∼ log(N). This is the expected
scaling for a critical 1D system. We can see that with this procedure we can
analyze very large systems, up to N = 216 = 65536 sites, even for gapless free
fermions. To avoid storing correlation matrices this large, we begin with a very
accurate compressed correlation matrix as a GMPS using the GDMRG algorithm
presented in Appendix 2.B. With GDMRG, we begin with a state with a relative
error in the energy of < 10−10. For N = 65536 this requires a block size of
B = 22. We then obtain the local correlation matrix for the block we are interested
in using the gates from this accurate compression, and use it to obtain a less accurate
compression with a smaller block size. This procedure should lead to, for a given
block size, a more accurate overall state than one that would be obtained directly
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Figure 214: Block size B needed for a relative error in the energy of < 10−6 as a
function of number of sites N for spinless, gapless fermions with open boundary
conditions at half filling. As expected from arguments about the entanglement of
a critical system, we find B ∼ log(N), tested up to N = 216 = 65536 sites (note
the log scale on the x axis). To study systems of this size and avoid the O(N3)
diagonalization of the hopping Hamiltonian, we obtain the correlation matrix using
the GDMRG algorithm as explained in Appendix 2.B.

from GDMRG, because GDMRG optimizes the energy which only depends on very
local correlations.

2.4.2 GMERA Results
Here we present results for compressing a correlation matrix as a GMERA using
the procedure presented in Section 2.3.2. We show the relative error in the energy
for increasing number of sites for B = 10 in Fig. 215. We see that for this block
size, the error stays below 10−6 for systems up to N = 214 = 16384 and in fact
appears to saturate at high number of sites (the change in the relative error in the
energy approaches 0 for larger system sizes). This is in stark contrast to the GMPS,
where a block size B ∼ log(N) was required to obtain a fixed accuracy, as shown in
Fig. 214. Instead, the GMERA obtains the same accuracy with constant block size
B as shown in Fig. 215. The GMPS obtains the given accuracy with the same or
smaller block size up to N = 512, after which it requires a larger block size than
the GMERA to obtain the same level of accuracy. As we mentioned earlier, this is
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Figure 215: Relative error in the energy for the proposed GMERA construction for
increasing number of sites for a block size B = 10. The system analyzed is the
ground state of free fermions hopping on a lattice with open boundary conditions.
All errors are below 10−6. As expected for a MERA, the error is seen to saturate for
large N , indicating a fixed block size is sufficient to obtain an accuracy < 10−6 up
to very large system sizes.

made possible partially because the GMERA structure involves nonlocal gates.

2.4.3 GMPS to Many-Body MPS Results
Plots of the time it takes to form theMPS of the ground state of a gapless free fermion
system for up to N = 1024 sites using the method presented in Section 2.3.4 are
shown in Fig. 216. As expected, the time it takes for a gapless system is polynomial
in the system size N , while it is approximately linear in N for a gapped system. The
SSH model is used with δ = 0.1 or an energy gap ∆ ≈ 0.2t. The time to form the
gapless ground state is only a modest polynomial in N , ∼ N2.03, while as we expect
from arguments about entanglement the time to form the gapped ground state is very
nearly linear in N , ∼ N1.02, because the block size and bond dimension required
to obtain the specified accuracy are constant for all N shown (B = 8 and χ = 55).
With this method, a gapless ground state of N = 1025 sites with a relative error in
the energy of < 10−6 can be formed on a laptop in only ∼ 90 seconds.

An interesting point to emphasize is the quality of the compression. The GMPS
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Figure 216: A plot of the time to form theMPS approximation of gapped and gapless
free fermion ground states at half filling as a function of sites N using gates from a
GMPS. The bond dimensions are chosen large enough such that the relative errors
in the energy of the MPS are below 10−6. The block size of the GMPS used to form
the MPS are the minimum required to obtain a GMPS with a relative error in the
energy of 10−6. A cutoff in the singular values of the SVD of 10−11 was used when
applying the gates to form theMPS using the method described in Section 2.3.4. For
the gapped case, the SSH model with δ = 0.1 is used, corresponding to an energy
gap of ∆ ≈ 0.2t (exact as N →∞).

for the gapless ground state on N = 1025 sites requires a block size of B = 11 to
obtain a relative error in the energy of < 10−6. Naively, turning these gates into
many-body gates and contracting the network (forming the MPS directly from the
GMPS with no truncation) as explained earlier leads to a bond dimension of the
MPS of χ = 2B−1 = 210 = 1024. However, applying the gates as described and
using a cutoff of the singular values of 10−11 leads to the formation of an MPS
approximation of the fermionic Gaussian ground state, still with a relative error in
the energy of < 10−6, with a bond dimension of only χ = 364. This is a result
of the fact that our GMPS only explores the manifold of fermionic Gaussian states
limited to the specified block size. On the other hand, the MPS approximation of
the Gaussian state we form from this GMPS is able to explore the entire manifold of
MPSs up to the allowed bond dimension (and particle number if symmetric tensors
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are used, as we do here), so through the SVD we are able to compress the state quite
efficiently beyond what we initially might expect.

2.5 Conclusion
We have presented an efficient, numerically stable, and controllably accurate way
to compress a correlation matrix into a set of 2 × 2 unitary gates. From these
gates, we have also presented a method for easily and efficiently forming the MPS
approximation of a fermionic Gaussian state. We explained the procedure in detail
for the ground state of a generic number conserving Hamiltonian. We then presented
results for the SSH model, a 1D chain of fermions with staggered hopping. We
showed examples of the accuracy and block sizes needed for different gaps of the
model. We hope this method can be used as a simple, efficient and reliable procedure
for directly preparing many states of interest, either by creating starting states to aid
DMRG calculations or preparing a particular ansatz as an MPS. We also presented
one example of how the procedure can bemodified to obtain different gate structures,
in this case one that is related to the MERA. However, there are other possibilities to
be explored, such as gate structures more directly suited for systems with 2 spatial
dimensions, periodic boundary conditions, as well as how the method might be
applied to study thermal fermionic Gaussian states. In addition, we presented how
discrete wavelet transforms can be described very simply with the gate structure
notation we introduced in this paper.

The method is easily generalized to cases beyond the one presented here. As we
touched upon earlier, it can be generalized to the case of BCS states, the ground
states of hopping Hamiltonians that include pairing terms. In this case, the corre-
lation matrix in the Majorana basis can be written in terms of an anti-symmetric
matrix which can be approximately block diagonalized by∼ 5BN local 2×2 rotation
gates, which are turned into nearest neighbor parity-conserving many-body gates.
The case of spinless fermions was presented, but spinful fermions are a simple
generalization. In addition, we expect similar methods as those presented can be
used to study and compress bosonic Gaussian states. In this case, one could form
the covariance matrix of the bosonic Gaussian state and locally diagonalize it to
find the uncorrelated bosonic modes (see [25] for a previous study of bosonic Gaus-
sian MERA). Additionally, more complicated many-body gates would be required
because the local Hilbert space dimension is larger for bosons.
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APPENDIX

2.A Calculation of the Entanglement Entropy of a Fermionic Gaussian State
In this section we give a simple, self-contained derivation for Eq. 2.6, the entangle-
ment entropy for a block of a free fermion system. This expression has been shown
elsewhere[12–15], though we show a simple, self-contained derivation here.

Assume the block of interest B is the first B sites. Gaussian states have expectation
values that obey Wick’s theorem. This means that the expectation value of any
operator contained within the block is specified if we know subblock B of the
correlation matrix, ΛB . This implies that the many-body density matrix of the
block ρ̂B is also uniquely specified by ΛB . The entanglement entropy on block
B, defined as SB[ρ̂B] = −Tr[ρ̂B log(ρ̂B)], does not change under general unitary
transformations within the block. Thus, we can perform the single particle unitary
transformation of basis that makes ΛB diagonal, with diagonal entries nb =

〈
â†bâb

〉
for b ∈ 1, . . . , B. The nb uniquely specify the reduced density matrix of the block,
so the entanglement is a universal function of {nb}:

SB = SB(n1, . . . , nB). (2.12)

In fact, the details of the system outside the block are irrelevant. For example,
different systems with different numbers of sites outside the block can have the same
SB as long as their {nb} are identical and the system is a Gaussian state. Thus to
evaluate the function SB, we can choose a simple system in which to evaluate it
rather than using the actual system of interest.

Let’s first consider a block with only one site (B = 1). We would like to know the
universal function S1(n1). We choose a two site system containing a single particle,
with normalized wavefunction

|ψ〉 = (
√

n1â†1 +
√

1 − n1â†2) |Ω〉 . (2.13)

The correlation matrix is(
n1

√
n1(1 − n1)√

n1(1 − n1) 1 − n1

)
, (2.14)

which has the required block correlation matrix Λ1 = (n1). The Schmidt decompo-
sition of |ψ〉 is

|ψ〉 =
√

1 − n1(|0〉)(â†2 |0〉) +
√

n1(â
†

1 |0〉)(|0〉)

=
√

1 − n1 |0〉 |1〉 +
√

n1 |1〉 |0〉 ,
(2.15)
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where |1〉 is the occupied state of the corresponding site. From this we see that the
reduced density matrix for site 1, ρ̂1 = Tr2[|ψ〉 〈ψ |], is

ρ̂1 = (1 − n1) |0〉 〈0| + n1 |1〉 〈1|

= (1 − n1)(Î1 − n̂1) + n1n̂1,
(2.16)

and

S1(n1) = −Tr[ρ̂1 log(ρ̂1)]

= −(1 − n1) log(1 − n1) − n1 log(n1).
(2.17)

For the system B with block size B > 1, we can choose the system to be of size
2B and for each site in the block associate one site outside the block. The Gaussian
state is the product state of the single particle states living on a pair, each identical
in form to the B = 1 state, with B total particles. This system has no correlations or
entanglement between these pairs. This means that the entanglement is the sum of
the entanglement of each pair. Thus

SB({nb}) =
∑
b∈B

S1(nb), (2.18)

which is identical to Eq. 2.6. Note also that the overall reduced density matrix of
the block is the product of the single site density matrices given in Eq. 2.16.

An alternative argument can be made to derive the same equation which avoids
the introduction of a contrived environment. We could have taken as an ansatz
that the reduced density matrix on B, ρ̂B , is the product of the single site reduced
density matrix we derived in Eq. 2.16, in other words ρ̂B = ⊗b∈B ρ̂b. We can
show that this is in fact the unique reduced density of the state we are interested
in if we can show that it reproduces the correct correlation matrix of our state and
is a fermionic Gaussian state (that it obeys Wick’s theorem). Both of these are
easy to show explicitly. Once we verify that this is indeed the correct reduced
density matrix of our state, we can calculate the entanglement entropy directly with
SB = −Tr[ρ̂B log(ρ̂B)] = −

∑
b∈B Tr[ρ̂b log(ρ̂b)], which matches Eq. 2.6.

2.B GDMRG, an Algorithm to Obtain a Compressed Ground State Correla-
tion Matrix as a GMPS

Here we describe fermionic Gaussian DMRG (GDMRG), a DMRG-like algorithm
in the single particle context. The algorithm is an efficient method to directly obtain
all the angles specifying the compressed correlation matrix as a GMPS without ever
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H H5
CH5

L H5
R

(a)
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CHi−1

CHi−1
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R Hi
CHi

L Hi
R

(b)

Figure 2.B1: Fig. 2.B1(a) shows an example of an effective Hamiltonian centered
at site 5 for the GDMRG algorithm. The effective Hamiltonian is the submatrix of
the indicated sites. The example is for N = 10 sites and a block size of B = 3. Here
the center is only one site, but could be more to improve convergence just like in
the standard DMRG algorithm. Fig. 2.B1(b) shows, for a sweep to the right, how to
obtain the new left block from the previous effective Hamiltonian by rotating with
the appropriate gates found and taking the submatrix of the indicated sites.

needing to express the matrix in uncompressed form. The ground state GMPS of a
hopping Hamiltonian on N sites is calculated with a cost of only O(B3N), where B

is the block size of the GMPS (which determines the accuracy of the compression
and depends on the entanglement of the ground state).

Imagine that we start with a hopping Hamiltonian H on a lattice of N sites, and we
would like to obtain the GMPS with a block size B that minimizes the energy of
H. We begin with a random starting GMPS. Just like in the DMRG algorithm, we
form an effective Hamiltonian centered at a site with a left and right block, which
we show in Fig. 2.B1(a). Say that we start on the left side of the lattice and begin
sweeping right. Our GMPS will start gauged to the left. For a single-site GDMRG,
our center block is only one site, but we could use a larger center to decrease the
number of sweeps required for convergence. In practice for free gapless fermions
we find that a single center site works quite well. The first step is to diagonalize
the 2B − 1 site effective Hamiltonian, and obtain the effective correlation matrix
Λeff. Using this Λeff, we diagonalize the first B × B block and, for a large enough
B, find a fully occupied or unoccupied mode. Just as described in Fig. 24, we find
the B − 1 nearest neighbor 2 × 2 gates that rotate Λeff into the basis containing this
mode, partially diagonalizing it. These gates form the first block of the GMPS.

Next we would like to move the center to the right so that we can obtain the next
block of the GMPS. Because the compression is a unitary transformation, we can
start moving the center to the right by undoing the gates in the block of the GMPS
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to the right of the center. This is step is in contrast to ordinary DMRG where a
sequence of right blocks are stored and are called from memory when needed. We
then obtain the effective Hamiltonian for the next site using the block of the GMPS
we obtained from the previous effective Hamiltonian of the sweep, as shown in
Fig. 2.B1(b). We repeat this process until we reach the end of the lattice, completing
our first sweep. We continue sweeping back and forth until the energy is sufficiently
converged. We use this algorithm to obtain a very accurate correlation matrix for
systems up to N = 216 = 65536, from which we obtain the GMPS in Fig. 214. For
N = 65536 sites to obtain a correlation matrix with a relative error in the energy of
less than 10−10, we require a block size of B = 22 and 14 sweeps (where a single
sweep is from left to right or right to left).
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C h a p t e r 3

VARIATIONAL ALGORITHMS FOR MATRIX PRODUCT
STATES DIRECTLY IN THE THERMODYNAMIC LIMIT

1V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, F. Verstraete, and J. Haege-
man, “Variational optimization algorithms for uniform matrix product states”,
Phys. Rev. B 97, 045145 (2018).

Here we present a new algorithm called the variational uniform matrix product state
(VUMPS) algorithm, which is a DMRG-like algorithm that works directly in the
thermodynamic limit. The algorithm uses the ansatz of a uniform matrix product
state (uMPS), and explicitly optimizes that variational state. This is in contrast to
the infinite DMRG (iDMRG) algorithm, which is a DMRG algorithm that reaches
the thermodynamic limit by growing the system size at each step, and the infinite
time evolving block decimation (iTEBD) algorithm, which works with a uMPS in
the thermodynamic limit but optimizes the state with a power method instead of
variationally. Careful benchmarks in Ref. [2] show that the VUMPS algorithm
performs significantly better for finding ground states compared to both iDMRG
and iTEBD, the state-of-the-art algorithms in the field, for a wide range of 1D and
quasi-1D systems. Here we present the most basic form of the algorithm applied to
one-dimensional (1D) quantum states with nearest neighbor interactions.

3.1 Introduction
The strategy of renormalization group (RG) techniques to successively reduce a large
number of microscopic degrees of freedom to a smaller set of effective degrees
of freedom has led to powerful numerical and analytical methods to probe and
understand the effective macroscopic behavior of both classical and quantum many-
body systems [26–29]. However, it was not until the advent of White’s celebrated
density matrix renormalization group (DMRG) [5, 6] that variational RG methods
reached unprecedented accuracy in numerically studying strongly correlated one-
dimensional quantum lattice systems at low temperature. The underlying variational
ansatz of matrix product states (MPS) [30–36] belongs to a class of ansatzes known
as tensor network states[34, 37, 38]. These variational classes encode the many-
body wavefunction in terms of virtual entanglement degrees of freedom living

http://dx.doi.org/10.1103/PhysRevB.97.045145
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on the boundary, and thus satisfy an area law scaling of entanglement entropy by
construction. As such, they provide a natural parameterization for the physical corner
of Hilbert space, where low energy states of quantum many-body systems ought to
live in [39, 40]. MPS in particular are especially fit for studying ground states of
strongly correlated one-dimensional quantum systems with local interactions [41–
43].

The variational parameters in MPS are contained within local tensors associated
with the individual sites of the lattice system. For homogeneous systems, the global
wave function can then be captured using just a single (or a small number of)
such tensors, independent of the system size. They consequently offer very natural
access to the thermodynamic limit, providing a clear advantage over other numerical
approaches such as Exact Diagonalization or Quantum Monte Carlo.

On finite lattices, (one-site) DMRG implements the variational principle (energy
minimization) by exploiting that the quantum state is a multilinear function of
the local tensors. By fixing all but one tensor, the global eigenvalue problem is
transformed into an effective eigenvalue problem for the local tensor [5, 6, 35,
44–46]. Using a translation invariant parameterization gives rise to an energy
expectation value with a highly nonlinear dependence on the tensor(s). Two different
algorithms are widely used to obtain such an MPS in the thermodynamic limit.
Infinite system DMRG (iDMRG) [5, 6, 47] proceeds by performing regular DMRG
on a successively growing lattice, inserting and optimizing over new tensors in the
center of the lattice in each step only, effectively mimicking an infinite lattice by
using a finite, albeit very large lattice. After convergence, the most recently inserted
tensors in the center are taken as a unit cell for an infinite MPS approximation of the
ground state. An alternative approach is known as the infinite time evolving block
decimation (iTEBD) [48, 49] algorithm. It works directly in the thermodynamic
limit and is based on evolving an initial state in imaginary time by using a Trotter-
Suzuki decomposition of the evolution operator.

We present a new variational algorithm, inspired by tangent space ideas [36, 50,
51] that combines the advantages of iDMRG and iTEBD and addresses some of
their shortcomings. As such, it is directly formulated in the thermodynamic limit,
but at the same time optimizes the state by solving effective eigenvalue problems,
rather than employing imaginary time evolution. Benchmark results shown in
Ref. [2] show a significant increase in efficiency for a wide range of test cases.
The following section introduces MPS notations and definitions and presents our
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variational algorithm, heuristically motivated from the perspective of finite size
DMRG.

3.2 AVariationalAlgorithm forMatrixProduct States in theThermodynamic
Limit

In this section, we introduce a variational algorithm for optimizing a MPS directly
in the thermodynamic limit. Because the algorithm strongly resembles conventional
DMRG, we explain it by describing a single iteration step from the viewpoint of
DMRG and show that only a few additional ingredients are needed to arrive at our
variational algorithm. Here we limit the presentation to the simplest case of a 1D
quantum system with nearest neighbor interactions, and refer readers to Ref. [2]
for extensions to more general Hamiltonians as well as more rigorous theoretical
motivations.

We start by considering a setting familiar from conventional DMRG: a finite ho-
mogeneous one-dimensional quantum lattice system, where every site corresponds
to a d level system. We label the sites by an integer n, and thus have a basis
{|s〉n , s = 1, . . . , d} for the local Hilbert space on site n. The total Hilbert space
is spanned by the product basis |s〉 =

⊗
n |s〉n. We assume the dynamics of the

system to be governed by a translation invariant Hamiltonian H.

We further consider a variational parameterization of a ground state approximation
of the system, for now in terms of a finite size (site dependent) MPS, but we will
ultimately be interested in the thermodynamic limit. In DMRG, one finds the best
variational ground state approximation by employing an alternating least squares
minimization. Starting from some initial state, one successively optimizes each of
the individualMPS tensors site by site by solving effective (Hamiltonian) eigenvalue
problems, in a sweeping process through the lattice until convergence, where each
iteration depends on already optimized tensors from previous iterations (see e.g.
Refs [5, 6, 35, 44, 46]).

We are now, however, interested in the thermodynamic limit n ∈ Z. In that case, the
MPS ground state approximation will be given in terms of a translation invariant
uniformMPS, described by a singleMPS tensor (or a unit cell of N tensors), repeated
on all sites. Two immediate difficulties arise. First, conventional DMRG updates
the variational state site by site, thus breaking translation invariance. Second, the
effective Hamiltonian for a single-site optimization has to be constructed from an
infinite environment. Our goal here is to present an algorithm that overcomes these
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two challenges.

After briefly introducing the variational class of uniform MPS and introducing
necessary notation and conventions, we describe how the new algorithm modifies
DMRG accordingly to exactly account for these two issues in order to arrive at a
variational ground state algorithm directly formulated in the thermodynamic limit.

3.3 Uniform MPS
A uniform MPS (uMPS) of bond dimension D defined on an infinite translation
invariant lattice is parameterized by a single collection of d matrices As ∈ CD×D for
s = 1, . . . , d. The overall translation invariant variational state is then given by

|Ψ(A)〉 =
∑
s

(
. . . Asn−1 Asn Asn+1 . . .

)
|s〉 , (3.1)

and can be represented diagrammatically as

|Ψ(A)〉 = · · · A A A A A · · · .

Exploiting the invariance of (3.1) under local gauge transformations As → X As X−1,
with X ∈ CD×D invertible, the state can be cast into certain favorable representations,
among them the left and right canonical representation∑

s

As
L
†As

L = 1
∑

s

As
L R As

L
†
= R (3.2a)∑

s

As
R As

R
†
= 1

∑
s

As
R
† L As

R = L, (3.2b)

or diagrammatically

AL

ĀL

=

AL

ĀL

R = R

AR

ĀR

= L

AR

ĀR

= L .

Here, L and R correspond to the left and right reduced density matrices of a
bipartition of the state respectively. We henceforth refer to AL (AR) as a left (right)
isometric tensor, or just a left (right) isometry.
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Defining the left and right transfer matrices

TL/R =
∑

s

Ās
L/R ⊗ As

L/R (3.3)

and using the notation (x | and |x) for vectorizations of a D × D matrix x in the D2-
dimensional “double layer” virtual space the transfer matrices act upon, the gauge
conditions (3.2) are equivalent to

(1|TL = (1| TL |R) = |R) (3.4a)

TR |1) = |1) (L |TR = (L |, (3.4b)

i.e. 1 and R are the left and right dominant eigenvectors of TL , while L and 1 are
the left and right dominant eigenvectors of TR.

As is standard practice in DMRG, we mix both of these representations and cast the
state into the mixed canonical representation

|Ψ(A)〉 =
∑
s

(. . . Asn−1
L Asn

C Asn+1
R . . .) |s〉 (3.5a)

=
∑
s

(. . . Asn−1
L Asn

L CAsn+1
R Asn+2

R . . .) |s〉 , (3.5b)

or diagrammatically,

|Ψ(A)〉 = · · · AL AL AC AR AR · · ·

= · · · AL AL AL C AR AR · · · .

Here we have defined the center site tensor As
C (known as the single-site wave

function Ψs in DMRG)

As
C = As

LC = CAs
R

AC = AL C = C AR
(3.6)

in terms of the bondmatrixC, which constitutes the (invertible) gauge transformation
relating AL and AR via As

L = CAs
RC−1. The singular values of C then encode the

entanglement spectrum of the state. Indeed, using As
LC = CAs

R we can verify that
the left and right reduced density matrices in (3.2) are given by L = C†C and
R = CC†. Furthermore, As

LC = CAs
R ensures that (3.5a) and (3.5b) are translation

invariant and that AC and C can be shifted around arbitrarily. Normalization of the
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state, as well as of the reduced density matrices L and R, corresponds to the single
condition ‖C‖22 = Tr

(
CC†

)
= 1.

For ease of notation, we further introduce the following partial states

|ΨαL〉 =
∑
s

(. . . Asn−1
L Asn

L )α |. . . sn−1sn〉 (3.7a)

= . . . AL AL AL α

|ΨαR〉 =
∑
s

(Asn
R Asn+1

R . . .)α |snsn+1 . . .〉 (3.7b)

= α AR AR AR . . .

with n arbitrary, and use them to define the reduced basis states

|Ψ
(α,s,β)
AC
〉 = |ΨαL〉 |s〉 |Ψ

β
R〉 (3.8a)

|Ψ
(α,β)
C 〉 = |ΨαL〉 |Ψ

β
R〉 . (3.8b)

3.4 Effective Hamiltonian
The use of the mixed canonical representation (3.5a) in DMRG is of significant
importance for the stability of the algorithm. With this gauge choice, the minimiza-
tion of the (global) energy expectation value 〈Ψ|H |Ψ〉 /〈Ψ|Ψ〉 with respect to AC

is reduced to a standard (Hermitian) eigenvalue problem, instead of a generalized
eigenvalue problem. The effective Hamiltonian for this eigenvalue problem is the
system Hamiltonian H projected onto the degrees of freedom of AC , and is known
as the “reduced” or “superblock” Hamiltonian in DMRG.

We define the thermodynamic limit version of this reduced single-site Hamiltonian
acting on AC as

HAC

(α′,s′,β′)
(α,s,β) = 〈Ψ

(α′,s′,β′)
AC

|H |Ψ(α,s,β)AC
〉 (3.9)

= · · ·

AL AL AR AR

ĀL ĀL ĀR ĀR

H · · · .

Additionally, we also define an effective Hamiltonian acting on the bond matrix C
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as

HC
(α′,β′)
(α,β)

= 〈Ψ
(α′,β′)
C |H |Ψ(α,β)C 〉 (3.10)

= · · ·

AL AL AR AR

ĀL ĀL ĀR ĀR

H · · · ,

which does not appear directly in the context of DMRG, but will be needed later
for a consistent update of the state without breaking translation invariance. It can
be interpreted as a “zero site” effective Hamiltonian, which would feature in an
optimization of the global energy expectation value with respect to the Schmidt
values.

In an efficient implementation, these effective eigenvalue problems are typically
solved using an iterative eigensolver, so that we only need to implement the action
of HAC and HC onto AC and C.

While the energy expectation value is extensive and thus divergent in the thermo-
dynamic limit, the effective Hamiltonians HAC and HC are well-defined and finite
in the thermodynamic limit if one properly subtracts the current energy expectation
value from the Hamiltonian H. We demonstrate this procedure for the case of
nearest neighbor interactions H =

∑
n hn,n+1, where the two-site Hamiltonian hn,n+1

acts on neighboring sites n, n + 1 only. We refer to Ref. [2] for the case of long
range interactions and for general Hamiltonians given in terms of Matrix Product
Operators (MPOs).

In the case of nearest neighbor interactions, the action of HAC onto AC splits up
into four individual contributions, which follow from the decomposition |Ψ〉 =∑
α,β,s As

C,(α,β) |Ψ
α
L〉 |s〉 |Ψ

β
R〉 (left block containing sites n < 0, center site n = 0, and

right block containing sites n > 0). The action of HAC onto AC is given by

A′sC =
∑
tk`

hts
k`At

L
†Ak

L A`C + hst
k`Ak

C A`R At
R
†
+ HL As

C + As
CHR

A′C =

AL AC

ĀL

h +

AC AR

ĀR

h + HL

AC

+

AC

HR ,

(3.11)
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where the first two terms correspond to theHamiltonian terms h−1,0 and h0,1 coupling
the center site to the left and right block, respectively, and HL and HR sum up the
contributions of all the Hamiltonian terms hn,n+1 acting strictly to the left and to the
right of the center site.

The environments HL and HR are usually constructed iteratively while sweeping
through the (finite) lattice in conventional DMRG, or grown successively in every
iteration in iDMRG. In the thermodynamic limit, these terms consist of a diverging
number of individual local interaction contributions hn,n+1, and care needs to be
taken in their construction.

Indeed, the k th contribution to (HL | comes from the Hamiltonian term h−k−1,−k

and is given by (hL |[TL]
k−1. Likewise, [TR]

k−1 |hR) is the k th contribution to |HR)

stemming from hk,k+1. Here, we have used the definitions

hL =
∑
stk`

hst
k`At

L
†As

L
†Ak

L A`L

hR =
∑
stk`

hst
k`Ak

R A`R At
R
†As

R
†,

(3.12)

or diagrammatically

hL = h

AL AL

ĀL ĀL

hR = h

AR AR

ĀR ĀR

.

Summing up all such local contributions gives rise to infinite geometric sums of the
transfer matrices TL/R

(HL | = (hL |

∞∑
k=0
[TL]

k |HR) =

∞∑
k=0
[TR]

k |hR), (3.13)

where (HL | can be presented diagrammatically as

HL = hL


1 +

AL

ĀL

+

AL

ĀL

AL

ĀL

+ . . .
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and likewise for |HR).

The transfer matrix TL has a dominant eigenvalue of magnitude one, with corre-
sponding left and right eigenvectors (1| and |R). The projection (hL |[TL]

k |R) =

(hL |R) is the energy density expectation value e = 〈Ψ|h−k−1,−k |Ψ〉 and is indepen-
dent of k. Subtracting the energy e from the Hamiltonian as h̃ = h−e1, we can write
(hL | = (h̃L | + e(1|. The second term is exactly proportional to the left eigenvector
of eigenvalue 1, and therefore gives rise to a diverging contribution in the geometric
sum, corresponding to the total energy of the left half infinite block. Since this con-
tribution acts as the identity in the effective Hamiltonian HAC [Eq. (3.11)], we can
however safely discard this diverging contribution without changing the eigenvec-
tors of HAC . This corresponds to an overall energy shift of the left half infinite block
such that (HL |R) = 0. For the remaining part (h̃L | the geometric sum converges.
With | h̃R) = |hR) − e|1) the same comments apply to the construction of |HR).

We can evaluate HL and HR recursively as

(H[n+1]
L | = (H[n]L |TL + (h̃L |

|H[n+1]
R ) = TR |H

[n]
R ) + | h̃R)

(3.14)

with initialization (H[0]L | = (h̃L | and |H[0]R ) = | h̃R). We can repeat these recursions
until e.g. ‖H[n+1]

L/R − H[n]L/R‖ drops below some desired accuracy εS. This strategy
is conceptually simple and closely resembles the successive construction of the
environments in the context of (i)DMRG, but is not very efficient, as its performance
is comparable to that of a power method.

A more efficient approach is to formally perform the geometric sums in (3.13)
explicitly, and to iteratively solve the resulting two systems of equations

(HL |[1 − TL + |R)(1|] = (hL | − (hL |R) (1|

[1 − TR + |1)(L |]|HR) = |hR) − |1) (L |hR)
(3.15)

for (HL | and |HR) to precision εS, as explained in Ref. [2].

So far, we have discussed the action of HAC . The action of HC ontoC follows simply
from (3.11) by projecting onto AL or AR. Using the defining property of HL or HR,
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the result simplifies to

C′ =
∑
stk`

hst
k`As

L
†Ak

LCA`R At
R
†
+ HLC + CHR.

C′ =

AL C AR

ĀL ĀR

h + HL

C

+

C

HR

(3.16)

The first two terms of (3.11) can be applied in O(d4D3) operations1, and the last
two terms in O(dD3) operations. For (3.16) the first term can be applied in O(d4D3)

operations, and the last two terms in O(D3) operations. To generate the necessary
terms for (3.11) and (3.16), we have to iteratively evaluate two infinite geometric
sums, involving O(D3) operations (when iteratively solving (3.15) the solutions
from the previous iteration can be used as starting vectors to speed up convergence).

3.5 Updating the state
In DMRG, we would update the state by replacing AC with the lowest eigenvector
ÃC of HAC and then shift the center site to the right by computing an orthogonal
factorization Ãs

C = Ãs
LC̃R, or to the left by computing Ãs

C = C̃L Ãs
R. As such, the state

gets updated by only replacing the current site with Ãs
L or Ãs

R, while leaving all other
sites untouched. However, applying this scheme in our setting would immediately
destroy translation invariance after a single step.

We want to construct an alternative scheme that applies global updates in order
to preserve translation invariance at any time. Global updates can most easily be
applied with an explicit uniform parameterization in terms of a single tensor A. On
the other hand, DMRG experience teaches us that the stability is greatly enhanced
when applying updates at the level of AC and C, which are isometrically related to
the full state.

We therefore calculate the lowest eigenvector ÃC of HAC like in DMRG, but ad-
ditionally also the lowest eigenvector C̃ of HC . We then globally update the state
by finding new ÃL and ÃR as the left and right isometric tensors that minimize∑

s‖ Ãs
LC̃ − Ãs

C ‖
2 and

∑
s‖C̃ Ãs

R − Ãs
C ‖

2 respectively. These minimization problems
can be solved directly (not iteratively) and without inverting C̃ (see below). As

1In many cases, hj, j+1 is sparse and the number dh of nonzero elements is usually of the order
O(d2). The first two terms can then be applied in O(dhD3) operations.
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shown in Ref. [2], at the variational optimum the values of these objective func-
tions go to zero, and current AC and C are the lowest eigenvectors of HAC and HC

respectively.

For the remainder of this section, we omit tildes and use the following matricizations
of the 3-index tensors

AL,(sα,β) = As
L,(α,β)

AR,(α,sβ) = As
R,(α,β)

A
[`]
C,(sα,β) = A

[r]
C,(α,sβ) = As

C,(α,β).

(3.17)

We thus want to extract updated AL and AR from updated AC and C by solving

εL = min
A
†

LAL=1

‖A
[`]
C − ALC‖2 (3.18a)

εR = min
ARA

†

R=1

‖A
[r]
C − CAR‖2. (3.18b)

In exact arithmetic, the solution of these minimization problems is known, namely
AL will be the isometry in the polar decomposition of A[l]C C† (and similar for AR,
see Thm. IX.7.2 in Ref. [52]). Computing the singular value decompositions (SVD)

A
[`]
C C† = U[`]Σ[`]V [`]

†
C†A[r]C = U[r]Σ[r]V [r]

†
, (3.19)

we thus obtain

AL = U[`]V [`]
†

AR = U[r]V [r]
†
. (3.20)

Notice that close to (or at) an exact solution As
C = As

LC = CAs
R, the singular

values contained in Σ[`/r] are the square of the singular values of C, and might
well fall below machine precision. Consequently, in finite precision arithmetic,
corresponding singular vectors will not be accurately computed.

An alternative that has proven to be robust and still close to optimal is given by
directly using the following left and right polar decompositions

A
[`]
C = U[`]AC

P[`]AC
C = U[`]C P[`]C (3.21a)

A
[r]
C = P[r]AC

U[r]AC
C = P[r]C U[r]C (3.21b)

to obtain

AL = U[`]AC
U[`]C

†
AR = U[r]C

†
U[r]AC

, (3.22)

where matrices P are hermitian and positive. Alternative isometric decompositions
might be considered in Eq. (3.21), though it is important that they are unique (e.g.
QRwith positive diagonal in R) in order to have P[`/r]AC

≈ P[`/r]C close to convergence.
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3.6 The Algorithm: VUMPS
We are now ready to formulate our variational uniform MPS (VUMPS) algorithm.
As shown in Ref. [2], a variational minimum (vanishing energy gradient) in the
manifold of uMPS is characterized by tensors AL ,C and AR satisfying the conditions

HAC AC = EAC AC (3.23a)

HC C = EC C (3.23b)

As
C = As

LC = CAs
R. (3.23c)

Here, bold symbols denote vectorizations of the MPS tensors and matricizations
of the effective Hamiltonians, and EAC and EC are the lowest eigenvalues of the
effective Hamiltonians.2

When iterating the steps outlined in the previous sections, convergence is obtained
when these conditions are satisfied. In particular, starting with a properly orthog-
onalized initial trial state |Ψ(A)〉 of some bond dimension D, we begin by solving
the two eigenvalue problems for the effective Hamiltonians HAC and HC . Since we
are still far from the fixed point, the resulting lowest energy states ÃC and C̃ will in
general not satisfy the gauge condition (3.23c) together with current AL/R.

Following the procedure of the previous section, we can, however, find optimal
approximations Ãs

L and Ãs
R for (3.23c) to arrive at an updated uMPS. Conversely,

ÃC and C̃ will not be the correct lowest energy eigenstates of the new effective
Hamiltonians HÃC

and HC̃ generated from ÃL/R. We then use the updated state and
reiterate this process of alternately solving the effective eigenvalue problems, and
finding optimal approximations for AL and AR to update the state.

We now elaborate on the various steps in the VUMPS algorithm. Firstly, extracting
new ÃL/R from updated ÃC and C̃ can be done using the theoretically optimal (but
numerically often inaccurate) Eq. (3.20) or the more robust Eq. (3.22), depending on
the magnitude of the smallest singular value in C̃. As a good uMPS approximation
will always involve small singular values, Eq. (3.22) is preferable most of the time,
except maybe during the first few iterations.

2These values can be different and depend on the subtraction scheme for the divergent energy
expectation value. If h → h̃ is performed everywhere, we have EAC = EC = 0. If, in the case of
nearest neighbor interactions, we only substitute h→ h̃ in the construction of HL and HR, but not in
the local terms, we will have EAC = 2EC = 2e.
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The maximum of the error quantities (3.18)

εprec = max(εL, εR) (3.24)

provides an error measure for the fixed point condition in Eq. (3.23c), and is used
as a global convergence criterion. It measures the precision of the current uMPS
ground state approximation. Within every iteration, we use iterative methods (e.g.
some variation of Lanczos) to find the eigenvectors ÃC and C̃ of the Hermitian
operators HAC and HC . As the goal is to drive the state towards the fixed point
relations in Eqs. (3.23a) and (3.23b), it is not necessary to solve these eigenvalue
problems to full machine precision. Rather, it is sufficient to use a tolerance εH

chosen relative to εprec. 3 A value of εH of the order of εprec/100 has proven to work
well in practice. It is also worthwhile to use tensors from the previous iteration as
initial guess for the iterative solvers to speed up convergence.

As themain part of the algorithmworks at fixed bond dimension (i.e. it is a single-site
scheme in DMRG terminology), one might choose to increase the bond dimension
D before starting a new iteration. A subspace expansion technique for increasing
the bond dimension that works directly in the thermodynamic limit is explained in
Ref. [2].

We refer readers to Ref. [2] for numerical results comparing this algorithm to
iDMRG [5, 47] and iTEBD [49], which show impressive speedups of the new
algorithm compared to those leading methods. However, we can already compare
the theoretical properties of these algorithms. Neither iDMRG or iTEBD is truly
solving the variational problem in the sense of directly trying to satisfy the fixed point
conditions Eqs. (3.23). iDMRG closely resembles regular DMRG on a successively
growing lattice, as it inserts and optimizes over new tensors in the center of the lattice
in each step. Tensors from previous steps are not updated, as this would render the
cost prohibitive. When this approach converges, the resulting fixed point tensors in
the center can be assumed to specify the unit cell of an infinite MPS. VUMPS has
the immediate advantage that i) it directly works in the thermodynamic limit at all
iterations, and ii) it completely replaces the entire state after every iteration, thus
moving faster through the variational manifold. In contrast, iDMRG keeps memory
of earlier iterations, and cannot guarantee a monotonically decreasing energy that

3Further approximations to comparable accuracy can be made within the construction of the
effective Hamiltonians, e.g. when determining HL and HR to precision εS. There, the approximations
R̃ = CC† and L̃ = C†C for the true L and R needed for some of these operations are good enough,
if εS is roughly of the same order of magnitude as εprec.
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converges to an optimum associated with a translation invariant MPS in which the
effects of the boundary have completely disappeared. The advantages of VUMPS
come with a greater computational cost per iteration, as two eigenvalue problems
(for AC and for C) and – in the case of nearest neighbor interactions – two linear
systems (for HL and HR) have to be solved. iDMRG only solves a single eigenvalue
problem, and builds HL and HR step by step in every iteration. The latter approach
is analogous to a power method for eigenvalue problems and, while very cheap, is
expected to require many iteration steps to converge, especially for systems with
large correlation lengths (e.g. close to criticality).

iTEBD [49] is based on evolving an initial state in imaginary time by using a Trotter-
Suzuki decomposition of the evolution operator. Like VUMPS, iTEBD works in
the thermodynamic limit at any intermediate step, typically with a unit cell that
depends on how the Hamiltonian was split into local terms in order to apply the
Trotter decomposition. Furthermore, as every application of the evolution operator
increases the virtual dimension of the MPS, truncation steps are required to restore
the original (or any suitable) value of the bond dimension. While VUMPS can
take big steps through the variational space, time steps in iTEBD have to be chosen
sufficiently small (especially in the final steps of the algorithm) to eliminate the
Trotter error, which negatively affects the rate of convergence (Ref. [53], however,
proposes a scheme to effectively obtain a larger time step). Furthermore, the Trotter
splitting essentially limits the applicability of iTEBD to short-range interactions and
dictates the size of the unit cell of the resulting MPS, e.g., in the most common case
of nearest neighbor interactions a two-site unit cell is obtained. (The approach of
Ref. [54] to obtain a translation invariant MPS is restricted to certain Hamiltonians,
but see Ref. [55] for an alternative proposal that can in fact also deal with long range
interactions).

We also note that for systems with time reversal symmetry, everything can be
implemented in real arithmetic, and for systems with reflection symmetry, C and
As

C can be chosen to be symmetric matrices and As
R = As

L
T (which implies that

HL and HR are also related). In these cases, the computational cost is reduced. In
the case of spontaneous symmetry breaking, MPS algorithms tend to converge to
maximally symmetry broken states for which the entanglement is minimal. This
is also the case for VUMPS. One can control which state the algorithm converges
to by suitably biasing the initial state or by adding small perturbation terms to the
Hamiltonian that explicitly break the symmetry, and which are switched off after a
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few iterations.

Explicit conservation of translation symmetry was the very first requirement in
the construction of VUMPS. In the case of spontaneous breaking of translation
symmetry down to N-site translation symmetry (as e.g. in the case of a state with
antiferromagnetic order), enforcing one-site translation symmetry would result in a
(non-injective) equal weight superposition of all symmetry broken uMPS ground
state approximations. In order to reach an optimal accuracy with a given bond
dimension, such a superposition of N states is however undesirable, as the effective
bond dimension is reduced to D/N . In the case where this situation cannot be
amended by a simple unitary transformation that restores one-site translation sym-
metry (such as e.g. flipping every second spin in the case of an antiferromagnet), it
is preferable to choose an MPS ansatz with a N-site unit cell, such that the state can
spontaneously break translation symmetry. The generalization of the algorithm to
multi-site unit cells is described in the next section.

3.7 Multi Site Unit Cell Implementations
We now generalize the VUMPS algorithm of the previous section for one-site
translation invariant uMPS to the setting of translation invariance over N sites. Such
a uMPS ansatz is then parameterized by N independent tensors A(k)s ∈ CD×d×D,
k = 1, . . . , N , which define the unit cell tensor

Asn = A(1)snN+1 . . . A(N)snN+N , (3.25)

where s = (s1, . . . , sN ) is a combined index. We can then write the variational state
as

|Ψ(A)〉 =
∑
s

(. . .Asn−1AsnAsn+1 . . .) |s〉

and the left and right orthonormal forms are given by the relations∑
s

A(k)sL
†A(k)sL = 1∑

s

A(k)sL R(k) A(k)sL
†
= R(k − 1)

(3.26a)

and ∑
s

A(k)sR A(k)sR
†
= 1∑

s

A(k)sR
† L(k − 1) A(k)sR = L(k),

(3.26b)
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where it is understood that N + 1 ≡ 1 and 0 ≡ N .

Defining the bondmatricesC(k) as the gauge transformation that relates left and right
canonical form via C(k − 1)A(k)sR = A(k)sLC(k), we have R(k) = C(k)C(k)† and
L(k) = C(k)†C(k). We can then also cast |Ψ(A)〉 in a mixed canonical form similar
to (3.5a) with the center site tensor given by A(k)sC = A(k)sLC(k) = C(k − 1)A(k)sR.

The variational minimum within this set of states is characterized by the following
3N fixed point relations

HA(k)C A(k)C = EA(k)C A(k)C (3.27a)

HC(k) C(k) = EC(k) C(k) (3.27b)

A(k)sC = A(k)sLC(k) = C(k − 1)A(k)sR. (3.27c)

Notice that due to (3.27c), the relations for different k are connected. There are
several possible strategies for constructing algorithms which obtain states satisfying
these conditions.

In the following, we present two approaches that have shown good performance and
stable convergence, which we shall term the “sequential” and “parallel” methods.
But let us first elaborate on computing effective Hamiltonians for multi-site unit
cells, which works similarly in both methods. We again restrict to the case of
nearest neighbor interactions, such that the effective Hamiltonians are constructed
similar as in Sec. 3.4. To construct e.g. the left block Hamiltonian HL , we first
collect all local contributions from a single unit cell in hL , before performing the
geometric series of the transfer matrix, which now mediates a translation over an
entire unit cell.

3.8 Sequential Algorithm
The sequential algorithm is inspired by finite size DMRG, in that we sweep through
the unit cell, successively optimizing one tensor at a time while keeping tensors on
other sites fixed. Notice that at site k, however, we need two updated bond matrices
C̃(k)L = C̃(k − 1) and C̃(k)R = C̃(k), in order to calculate updated Ã(k)sL/R from
Ã(k)sC ≈ Ã(k)sL C̃(k)R ≈ C̃(k)L Ã(k)sR. We thus have to amend steps of the single-
site algorithm by constructing and solving for two effective Hamiltonians HC(k−1)

and HC(k) instead of a single one. The newly optimized tensors then get replaced in
all unit cells of the infinite lattice, and contributions to the effective Hamiltonians
have to be recalculated accordingly, before moving on to the next site.
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One could now try to argue, that e.g. in a left to right sweep it is enough at site
k to calculate updated Ã(k)C and C̃(k)R = C̃(k) only, and to use C̃(k − 1)R from
the previous step at site k − 1 as C̃(k)L for calculating Ã(k)R. This approach fails,
however, as the effective Hamiltonian used for calculating Ã(k)C already contains
updated Ã(k −1)L/R, while the effective Hamiltonian used for calculating C̃(k −1)R
does not, and we cannot determine Ã(k)R from Ã(k)C and C̃(k − 1)R. Rather, C̃(k)L
has to be recalculated using an updated effective Hamiltonian, which exactly leads
to the sequential algorithm.

There is an additional subtlety that needs to be considered in order for all tensors
to fulfill the gauge constraints (3.27c) to current precision. Bond matrices C̃(k) are
calculated as lowest energy eigenvectors of effective Hamiltonians HC(k) and are
therefore only determined up to a phase. Consider C(k) defined between sites k

and k + 1. At step k, it is updated as C̃(k)R and used to calculate Ã(k)sL . In the
next step k + 1, however, it is recalculated as C̃(k + 1)L (with an updated effective
Hamiltonian) and used to determine Ã(k+1)sR. At the fixed point we should then have
C̃(k)R = C̃(k+1)L = C(k), but this is only true if there is no phase ambiguity, which
would also consequently lead to a phase mismatch between Ã(k)L and C̃(k) after
step k + 1. This issue does not pose a problem for algorithm convergence (during
calculations, matrices C(k) always appear as products of the form C(k)†C(k) or
C(k)C(k)† and mismatching phases thus cancel out), but can be easily circumvented
by employing a phase convention when calculating updated C̃(k).

3.9 Parallel Algorithm
In the parallel approach, we choose to update an entire unit cell at once, using
effective Hamiltonians generated from the same current state. To that end, we first
generate all terms necessary for all HA(k)C and HC(k). For the case of nearest neighbor
interactions, the contributions HL and HR to the left and right environment outside
the unit cell can be shared, so that the corresponding geometric sum only needs
to be computed once, and contributions inside the unit cell are obtained through
successive applications of transfer matrices.

Next, we simultaneously and independently solve for the ground states Ã(k)C and
C̃(k) of all 2N effective Hamiltonians at once. Once these are obtained, we again si-
multaneously and independently determine all updated Ã(k)L and Ã(k)R, concluding
one iteration for updating the entire unit cell.
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3.10 Comparison of the two approaches
Several comments on the two presented algorithms are in order. First, the parallel
algorithm requires substantially less computational effort, since the construction of
the different effective Hamiltonians HA(k)C can recycle the calculation of the infinite
geometric sum. Therefore, updating an entire unit cell only requires to evaluate two
infinite geometric sums and 2N effective eigenvalue problems. In the sequential
algorithm, updating the environment after every tensor update requires to reevaluate
the geometric sum, thus leading to 2N infinite geometric sums and 3N effective
eigenvalue problems for updating the complete unit cell. Additionally, the parallel
approach offers the possibility of parallelizing the solution of all 2N eigenvalue
problems in one iteration, while in the sequential approach only 3 eigenvalue prob-
lems can be solved in parallel for each site. However, while sweeping through the
unit cell in the sequential approach, initial guesses for solving the infinite geometric
sums can be generated easily from the previous iterations, and are usually much
better than the initial guesses in the parallel algorithm. Equivalently, updated C̃(k)

obtained at site k is a very good initial guess for its recalculation with updated
environment on site k + 1. Overall, the computational cost for the parallel update is
still much cheaper, albeit less than expected.

On the other hand, state convergence in terms of iterations is generally substantially
faster in the sequential approach. This seems reasonable, as the optimization on a
current site takes into account all previous optimization steps, whereas in the parallel
approach, the optimizations on different sites within one iteration are independent
of each other. This effect gets amplified with increasing unit cell size N , and
the performance of the parallel approach decreases, while the performance of the
sequential approach seems more stable against increasing N .

In conclusion, while updating the entire unit cell is computationally cheaper in the
parallel approach, the sequential algorithm usually requires a substantially smaller
number of iterations due to faster convergence. While there are instances where one
approach clearly outperforms the other by far, such cases are rare and strongly depend
on initial conditions, and generally both approaches show comparable performance.
For comparison benchmark results, see Ref. [2].

3.11 Conclusion and Outlook
We have introduced a novel algorithm for calculating MPS ground state approxima-
tions of strongly correlated one-dimensional quantum lattices models with nearest
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neighbor or long range interactions, in the thermodynamic limit. Unlike con-
ventional (i)DMRG, it variationally optimizes a uniform MPS, though just like
conventional (i)DMRG, the optimization involves successive solutions of effective
eigenvalue problems. The algorithm can easily be implemented by extending an ex-
isting single-site (i)DMRG implementation with routines for i) calculating effective
Hamiltonian contributions from infinite environments and ii) solving an effective
“zero site” eigenvalue problem in addition to the usual single-site problem. The
new algorithm is free of any ill-conditioned inverses. Additionally, as it does not
rely on imaginary time evolution, it is especially fit for studying systems with long
range interactions.

In Ref. [2], the VUMPS algorithm is shown to perform remarkably better than
leading algorithms, iDMRG and iTEBD, for finding ground states of 1D and quasi-
1D quantum ground states. In Chapter 5, we also show that the VUMPS algorithm
can be applied to finding fixed points of infinite-sized transfermatrices, and therefore
can be applied to the problem of contracting infinite 2D tensor networks that show
up naturally in tensor network calculations of 2D classical statistical mechanics
problems as well as in iPEPS calculations of 2D quantum many-body problems.
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C h a p t e r 4

REVISITING THE CORNER TRANSFER MATRIX
RENORMALIZATION GROUP ALGORITHM FOR

ASYMMETRIC LATTICES

1M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman, and F.
Verstraete, “Faster Methods for Contracting Infinite 2D Tensor Networks”,
arXiv:1711.05881.

Here we present a short review of the corner transfer matrix renormalization group
(CTMRG) algorithm introduced by Nishino and Okunishi. We also propose a new
variant of CTMRG for contracting asymmetric two-dimensional tensor networks
that improves the numerical stability compared to the most commonly used method.

4.1 Introduction
Corner transfer matrices (CTMs) have an extensive history in many-body physics.
The CTMmethod was originally proposed by Baxter [56–58] as an extension of the
Kramers-Wannier approximation [59] to study two-dimensional (2D) classical sta-
tistical mechanics models. Baxter formulated a variational method using CTMs, and
Baxter’s CTM method was subsequently used to both analytically and numerically
study a variety of 2D statistical mechanics models [57, 58, 60–64].

Later on in a separate development, White proposed the famous density matrix
renormalization group algorithm (DMRG) [5, 6] as a way to fix the numerical
renormalization group (NRG) of Wilson [26]. It later became clear that the DMRG
algorithm could be viewed as a variational method for optimizing a general class of
states known as matrix product states (MPSs) [30, 32, 65]. With the correspondence
between d-dimensional quantum lattice models and (d + 1)-dimensional classical
lattice models [66–69] in mind, Nishino formulated a version of DMRG for studying
2D classical statistical mechanics models by applying DMRG to find the fixed
point of the transfer matrix [70]. Around the same time, Nishino and Okunishi
made the explicit connection between White’s DMRG algorithm and Baxter’s CTM
method and proposed the corner transfer matrix renormalization group (CTMRG)
algorithm [71, 72] as an improved numerical CTM method.

https://arxiv.org/abs/1711.05881
http://arxiv.org/abs/1711.05881
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Since its inception, Nishino andOkunishi’s CTMRGmethod has been used in a wide
variety of applications in the study of 2D classical systems, including extensions
to studying 1D quantum systems, stochastic models and hyperbolic lattices [73–
84]. In addition, CTMs and CTMRG turn out to be very useful for the study of
3D classical and 2D quantum many-body systems as well. Direct extensions of
the CTM formalism to 3D have been proposed using corner tensors [56, 58, 82,
84, 85]. In addition, the 2D version of CTMRG is used extensively as a key part
of other types of 3D classical and 2D quantum tensor network state algorithms.
For example, CTMRG was used as part of the first tensor product state (TPS)
and interaction-round-a-face (IRF)-type TPS calculations of 3D classical and 2D
quantum many-body systems [86–92]. In those calculations, CTMRG is used as
the method to approximate 2D tensor networks that naturally arise as part of the
optimization of the TPS and IRF-type TPS.

Perhaps the most notable use of the CTMRG algorithm is in a modern iteration of
TPS known as the infinite projected entangled pair state (iPEPS) [93–95] ansatz,
which is used extensively in the study of 2D quantummany-body systems. In iPEPS
calculations, a critical step of the algorithm is again the approximation of 2D tensor
networks, and CTMRG has been and continues to be the most commonly used
method for contracting those networks [82, 95–119]. In addition, the CTM ansatz
plays an important role in more recent proposals for improved iPEPS optimization
techniques [114, 120, 121]. We refer readers to Ref. [82, 84] for more general
discussions of the role of CTMs in the study of classical and quantum many-body
systems.

Baxter’s CTMmethod and Nishino and Okunishi’s CTMRG were originally formu-
lated primarily for studying 2D classical many-body systems with local interactions
known as interaction-round-a-face (IRF) models. Many of these models obey some
set of lattice symmetries (for example for models on the square lattice, many are
symmetric with respect to reflections about the horizontal and vertical directions).
In this context, the CTMandCTMRGmethods greatly simplify and the renormaliza-
tion can generally be implemented with a Hermitian eigendecomposition of some
product of CTMs. Baxter generalized his variational method to the asymmetric
case, for example in Chapter 13 of Ref. [58]. In addition, Nishino and Okunishi
discussed a generalization of their CTMRGmethod to the asymmetric case [71, 72].
Both of these methods relied in one way or another on full eigendecompositions of
large asymmetric matrices, and we are not aware of them being used in their fully
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asymmetric forms in practice.

Relying on the full diagonalization of large asymmetric matrices is not ideal. They
are computationally expensive and of limited accuracy for large matrices and are
difficult to constrain to being real for contracting real tensor networks. Finding
numerically robust and accurate generalizations of CTMRG to the asymmetric
case has proven to be less than straightforward. Most of the advancements in
developing asymmetric CTMRG methods have been proposed in the context of
iPEPS calculations [82, 95, 97–99, 108, 122]. There, it is important to have a
CTMRG formulation that can contract general asymmetric tensor networks, which
arise naturally when large unit cells are involved.

Many early proposals for use in iPEPS calculations involved to some extent a
symmetric approximation of the network [95, 97–99], which may not be appropriate
for “very asymmetric" networks. Themost recent proposal described byCorboz et al.
in Ref. [108]makes use of a procedure introduced byHuang [123–125] in the context
of asymmetric transfer matrix DMRG (TM-DMRG or TMRG). This asymmetric
CTMRGmethod has been applied very successfully in iPEPS calculations of infinite
2D quantum many-body systems [104, 107, 108, 114–118, 126], including the most
modern iPEPS calculations of the 2D Hubbard model [119]. Additionally, it does
not rely on any asymmetric eigendecompositions or symmetric approximations of
the network.

In this work, we assess the asymmetric CTMRG method of Ref. [108] in detail and
propose an improvement. We find that the method as proposed in Ref. [108] relies
on a (potentially) ill-conditioned inverse which in practice, if care is not taken, can
lead to numerical instabilities. Here, we propose a slight variation of that method
which improves the conditioning of the inverse required in that method. Like the
method of Ref. [108], the new method avoids symmetrizing the environment. The
only matrix decomposition it relies on is the singular value decomposition (SVD),
which is very reliable.

As a demonstration of our new approach, we use the example of the Ising model
near criticality. To artificially break the natural reflection symmetries of the model,
we apply a random non-unitary change of basis to the local spin degrees of freedom.
We show examples of where the method of Corboz et al. from Ref. [108] may
become numerically unstable (in practice limiting the precision), and show our new
method is able to contract the partition function to the same precision as can be
obtained by the fully symmetric version of CTMRG applied to the Ising model in
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the original basis.

The chapter is organized as follows. In Section 4.2, we review the CTM formalism
and describe general properties of the CTM ansatz. In Section 4.3.1, we give a
general review of the asymmetric CTMRG algorithm and discuss different choices
that can be made for the renormalization. In Section 4.3.2, we give a review of
different methods for finding the CTMRG projector for the full asymmetric case,
as well as give a detailed discussion of the method we will compare against from
Ref. [108]. In Section 4.3.3, we describe our variation on the asymmetric CTMRGof
Ref. [108]. In Section 4.3.4, we discuss possible alternatives to our new asymmetric
CTMRG method. Finally, in Section 4.4, we present our results comparing our new
method to the old method.

4.2 Corner transfer matrix (CTM) formalism
The corner transfer matrix (CTM) was introduced by Baxter as a variational ansatz
for both solving for and approximating properties of 2D classical statistical mechan-
ics models[56–58]. Transfer matrices have a long history in statistical mechanics,
andwere used as the basis for Onsager’s famous exact solution of the Isingmodel[58,
127]. Baxter generalized the ansatz of Kramers and Wannier [59] and recognized
that the maximal eigenvectors of transfer matrices could be approximated by an
ansatz comprised of products of (hopefully) small matrices [56–58], which we
would recognize now as the matrix product state (MPS) [30, 32, 65], the basis for
the remarkable DMRG algorithm of White [5, 6].

The row-to-row transfer matrix represents a row of lattice degrees of freedom,
while the column-to-column transfer matrix represents a column of lattice degrees
of freedom. Baxter recognized the usefulness of the so-called corner transfer
matrices (CTMs), which represent entire quadrants of lattice degrees of freedom.
Of particular interest in this work is the fact that CTMs turn out to be very well-suited
for framing numerical renormalization algorithms [56–58, 71, 72].

A convenient language for describing the partition function of a statistical mechanics
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model with local interactions is in terms of a tensor network 1, for example:

ZMN = Tr

...
...

...
...

. . .

. . .

. . .

. . .

T T T T

T T T T

T T T T

T T T T

. . .

. . .

. . .

. . .

...
...

...
...

. (4.1)

In Eq. (4.1), the fourth-order tensorsT are either the Boltzmann weights or related to
the Boltzmann weights by a local tensor renormalization. Tr[...] denotes two traces,
one over the open horizontal indices and another over the open vertical indices
(for periodic boundary conditions). M, N denote the number of rows and columns,
which we will take to infinity since we will work directly in the thermodynamic
limit. See Ref. [128] for a simple construction of T for models with nearest neigh-
bor interactions. Generalizations to models with other types of interactions, like
interaction-round-a-face (IRF) models, are straightforward. Following Baxter [58],
we define the “partition function per site" as

Ω ≡ lim
M,N→∞

Z1/(MN)
MN . (4.2)

Tensor networks like the one shown in Eq. (4.1) also arise naturally in the context
of TPS or iPEPS representations of 2D quantum body systems, where they are used
to calculate properties of the state such as the norm [94].

The CTM ansatz of Baxter is a way to approximate Eq. (4.1) as well as other
observables of the system with a local set of (hopefully) small tensors. The general
ansatz used for the environment in the corner transfer matrix renormalization group
(CTMRG) algorithm is as follows:

CLU AU

AL T

CURAU

ART

CRDAD

ART

CDL AD

AL T

. (4.3)
1For readers unfamiliar with tensor networks, we refer them to Ref. [105] for an introduction.
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The matrices {Cab} (where ab ∈ {LU,UR, RD,DL}) in Eq. (4.3) are known as the
“corner transfer matrices" (CTMs)[56–58, 71, 72], representing approximations of
the infinite quadrants of the tensor network in Eq. (4.1). In our notation, the CTM
CLU represents an approximation for the upper-left quadrant of the tensor network,
etc. The third-order tensors {Aa} (where a ∈ {L,U, R,D}) in Eq. (4.3) represent
approximations of the half infinite rows or columns of the tensor network. AL and
AR are the so-called left and right “half row transfer matrices" (HRTMs), while
AU and AD are the up and down “half column transfer matrices" (HCTMs). In the
tensor network language, the CTMs, HRTMs, andHCTMsmake up the environment
tensors.

With this ansatz, the partition function per site can be approximated as follows:

Ω ≈

CLU AU

AL T

CUR

CRDCDL

AR

AD

CLU CUR

CRDCDL

CLU CUR

AL AR

CDL CRD

CLU

CDL

AU

AD

CUR

CRD

. (4.4)

Baxter showed that finding the tensors {Cab} and {Aa} that maximize Ω can be
framed as a variational problem (see, for example, Chapter 13 of Ref. [58] for an
in-depth discussion).

Additionally, local observables can be calculated in terms of the CTM ansatz as
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follows:

〈X〉 ≈

CLU AU

AL TX

CUR

CRDCDL

AR

AD

CLU AU

AL T

CUR

CRDCDL

AR

AD . (4.5)

Correlation functions are also straightforward to calculate using the CTMansatz [71,
82]. See Ref. [115, 120, 121] for modern approaches to calculating arbitrary
correlation functions in terms of the CTM ansatz.

If the tensor T is Hermitian about the horizontal and vertical direction (Tlurd =

T̄ruld = T̄ldru), the CTM ansatz can be simplified to the following:

C A

B T

C̄A

BT

CA

BT

C̄ A

B T

(4.6)

where we have defined A ≡ AU = AD, B ≡ AL = AR, C ≡ CLU = C†UR = CRD =

C†DL (where we use the convention that the indices of the tensors in the diagram are
ordered counterclockwise, and a complex conjugate that flips the index ordering).
Additionally, As = (As)† and Bs = (Bs)†2. Wewill be focused on the full asymmetric
ansatz (4.3), but the symmetric limit is good to have in mind for gaining intuition
about the new method that we will discuss.

We will define the matrices {ρL, ρU, ρR, ρD} from cyclic permutations of products
of the four CTMs, i.e. ρL ≡ CLUCURCRDCDL , ρU ≡ CURCRDCDLCLU , etc. or

2Throughout this work, we use the notation that As is the matrix associated with fixing the index
of A (an HRTM/HCTM) connected to the network tensor T to be s.
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diagrammatically:

ρL ≡

CLU CUR

CRDCDL (4.7)

ρU

≡

CLU CUR

CRDCDL (4.8)

etc. We will discuss the significance of these matrices, which were discussed by
Baxter [58], later on in the context of the CTMRG algorithm. Following Nishino
and Okunishi (and possibly in slight abuse of terminology), we will refer to them
as the “density matrices"[71, 72]. These are only the smallest density matrices, and
we will discuss other density matrices later.

Some interesting properties of CTMs are worth pointing out. As Baxter discussed in
Chapter 13 of Ref. [58], there exists a local basis change of the CTMs, HRTMs, and
HCTMs (which following the tensor network literature we will call a “gauge" degree
of freedom) in which the CTMs are simultaneously diagonal. This diagonal gauge
can be constructed by diagonalizing the densitymatrices (which all have equal sets of
eigenvalues) and transforming the CTMs (and HRTMs and HCTMs) appropriately
by the eigenbases of the density matrices. In the case where the density matrices are
Hermitian, for example when the network is Hermitian about reflections about the
horizontal and vertical directions and the ansatz in Eq. (4.6) is used, then aHermitian
eigendecomposition can be used and the gauge transformations are unitary.

For example, if the ansatz in Eq. (4.6) is used, ρL = ρR = (CC†)2 and ρU =

ρD = (C†C)2. The density matrices can therefore be diagonalized with Hermitian
eigendecompositions:

ρL/R = UΛU† (4.9)

ρU/D = VΛV†. (4.10)

With the proper phases chosen for the eigenvectors, the CTMs can therefore be
diagonalized with the unitary matrices U and V as follows:

C̃ = U†CV = Λ1/4. (4.11)

Alternatively, U, V , and Λ1/4 can been obtained directly from the SVD of C. The
HCTMs must also be transformed as Ãs = V†AsV and the HRTMs are transformed
as B̃s = U†BsU.
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Note that if the density matrices are not Hermitian, a non-Hermitian eigendecom-
position must be used. In that case, there is a freedom in the normalization of the
eigenvectors, which changes the entries of the diagonal CTMs [58].

In the next section, we review the CTMRG algorithm of Nishino and Okunishi [71,
72], which was introduced as an improvement to Baxter’s CTMmethod [56–58] and
is the method most commonly used for numerically solving for the CTMs, HRTMs
and HCTMs. Additionally, we discuss our new variant of the algorithm, and discuss
possible further alternatives.

4.3 The corner transfer matrix renormalization group (CTMRG) algorithm
In this section, we review current approaches to the asymmetric CTMRG algorithm
and discuss our new contribution. In Section 4.3.1, we introduce notation that is
useful for discussing the CTMRG algorithm, and discuss in general terms how the
algorithm works. In Section 4.3.2, we review current methods for a key step of the
CTMRG algorithm, which is obtaining the projector, and discuss limitations of the
current approaches. In Section 4.3.3, we discuss our new proposal for obtaining the
projector, and in Section 4.3.4, give some context for the new proposal and discuss
possible alternatives.

4.3.1 General overview of the CTMRG algorithm
Baxter introduced a variational method for solving numerically for the CTMs [56–
58] which was used to study a variety of statistical mechanics models. Using insight
from the DMRG algorithm of White [5, 6], Nishino and Okunishi improved the
method to create their CTMRG algorithm.

The CTMRG algorithm fundamentally involves iteratively contracting row-to-row
transfer matrices and column-to-column transfer matrices into the environment
CTMs, HRTMs and HCTMs. This enlarges the size of the CTMs, HRTMs and
HCTMs, and without some form of truncation, they would grow exponentially in
size with the number of transfer matrices absorbed.

To make the algorithm easier to discuss, we will introduce some notation. We start
by defining the following set of enlarged CTMs:

C(1,0)LU C(0,1)UR

C(1,0)RDC(0,1)DL

≡

CLU AU AU CUR

AD CRDCDL AD . (4.12)
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These types of CTMs appear when column-to-column transfermatrices are absorbed
into the environment. Alternatively, if row-to-row transfer matrices are absorbed
into the current environment, we would obtain the following enlarged CTMs:

C(0,1)LU C(1,0)UR

C(0,1)RDC(1,0)DL

≡

CLU

AL

CUR

AR

CRD

AR

CDL

AL

. (4.13)

The notation C(i, j)LU can be understood as being a CTM for the upper left corner, with
i columns of spins added and j rows of spins added. Note that in this notation,
{C(0,0)ab ≡ Cab}. For example, another set of enlarged CTMs {C(1,1)ab } are:

C(1,1)LU C(1,1)UR

C(1,1)RDC(1,1)DL

≡

CLU AU

AL T

CURAU

ART

CDL AD

AL T

CRDAD

ART

. (4.14)

In addition, we define the enlarged HRTMs and HCTMs A(1)a :

A(1)L A(1)R

A(1)U

A(1)D

≡ AL T ART

AU

T

AD

T

(4.15)

where again we define A(0)a ≡ Aa. We also define the enlarged half system transfer
matrices C(1,1)U = C(1,1)LU C(1,1)UR , C(1,1)R = C(1,1)UR C(1,1)RD , C(1,1)D = C(1,1)RD C(1,1)DL , and C(1,1)L =
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C(1,1)DL C(1,1)DL , for example:

C(1,1)U

C(1,1)D

≡

C(1,1)LU C(1,1)UR

C(1,1)RDC(1,1)DL
. (4.16)

Finally, we define the enlarged density matrices {ρ(1)a } where ρ
(1)
L ≡ C(1,1)U C(1,1)D ,

ρ
(1)
U ≡ C(1,1)R C(1,1)L , etc., or diagrammatically:

ρ
(1)
L

≡

C(1,1)U

C(1,1)D
(4.17)

In our notation, ρ(0)a ≡ ρa defined in the previous section.

These are the CTMs, HCTMs and HRTMs most commonly used in CTMRG
algorithms. Larger CTMs, HCTMs, HRTMs, and density matrices may give
more accurate results, but the computational cost grows exponentially as sites
are added to them. Also note that the enlarged half system transfer matrices
C(1,1)a and enlarged density matrices ρ(1)a could be formed from larger or smaller
CTMs, for example an alternative way to form C(1,1)U could be from C(1,0)LU C(0,1)UR ,
C(1,2)LU C(2,1)UR , etc. In addition, there are even more ways of obtaining ρ(1,1)a , for ex-
ample ρ(1,1)L = C(1,i)LU C(i, j)UR C( j,k)RD C(k,1)DL . In fact, the fixed point C̃(1,1)U obtained from
C(1,i)LU C(i,1)UR for i → ∞ is very related to the two site wavefunction used in DMRG,
if the network is Hermitian. For the purpose of CTMRG, however, larger CTMs,
HCTMs and HRTMs are not used in practice because of the larger computational
costs. Also note that after the network is optimized, all ways of forming C(1,1)a and
ρ
(1)
a should be approximately equal.

Note that the enlarged density matrices {ρ(1)a } we define here are analogous to the
density matrix used by White in the two site version of the DMRG algorithm [5,
6], which relies on truncating the density matrix according to its eigenvalues. This
correspondence is most clear when the density matrix is Hermitian, and was one of
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the key insights that led Nishino and Okunishi [70–72] to develop the corner transfer
matrix renormalization group (CTMRG) algorithm.

The goal of CTMRG is to expand the CTMs, HCTMs and HRTMs and, using
these enlarged tensors, obtain a projector to renormalize them back down to CTMs,
HCTMs and HRTMs of the original size. There are four sets of projectors for the
asymmetric CTMRG algorithm, one for each direction. We will call the projectors
PLP−L , PU P−U , PRP−R , and PDP−D, for the projectors that renormalize the left, up, right
and down boundaries, respectively. In the diagrammatic notation, the left projector
is:

P−L

PL
(4.18)

where P−L is the approximate left inverse of PL , in other words they satisfy [P−L ]
sPs

L ≈

I or diagrammatically:

PL

P−L

≈

(4.19)

Roughly speaking, we want to find the projector PLP−L such that Tr
[
PLP−L ρ

(1)
L

]
≈

Tr
[
ρ
(1)
L

]
. The topic of how to obtain these projectors will be addressed in the next

sections.

In general, there are different procedures for the ordering of obtaining the projectors
and using them to renormalize the boundaries. We summarize the most commonly
used methods here:

1. Unidirectional method. A commonly used method in iPEPS is the unidi-
rectional approach, where only a single direction is renormalized at a time.
A single step of CTMRG consists for four seperate directional moves, known
as the left, up, right and down moves. For example, the left move involves
obtaining the left projector PLP−L from the enlarged environment tensors, and
then renormalizing the enlarged CTMs using the tensor PL and P−L as follows:

C′LU = P−LC(1,0)LU

A′L = P−L ALPL

C′DL = C(0,1)DL PL
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Then, the environment tensors are updated with these new tensors C′LU , A′L ,
and C′DL . Next, the up move is performed by obtaining the up projector PU P−U
and the using it to renormalize C(0,1)LU

′
, A(1)U , and C(1,0)

(UR), followed by the right
move and down move. This process is repeated until convergence, which
constitutes the unidirectional CTMRG algorithm. This was the first CTMRG
method used in iPEPS calculation [95], and is the most commonly used in
recent iPEPS studies.

2. Bidirectional method. The bidirectional approach is very similar to the
unidirectional approach, except essentially the left and right moves are per-
formed at once in a combined left-right move, and the up and down moves are
performed at once in a combined up-down move. The up-down moves and
left-right moves are alternated until convergence. The bidirectional approach
was introduced for use in iPEPS calculations in Ref. [98].

3. Quad-directional method. The quad-directional approach was the one in-
troduced in the original CTMRG proposal by Nishino and Okunishi [71, 72].
In this approach, with the current environment, all four directional projectors
PLP−L , PU P−U , PRP−R , and PDP−D are obtained at once. Then, all four enlarged
CTMs {C(1,1)ab } and HCTMs/HRTMs are renormalized at once:

A′L = P−L A(1)L PL

C′LU = P−LC(1,1)LU PU

A′U = P−U A(1)U PU

C′UR = P−UC(1,1)UR PR

. . .

The advantage of this approach is that it more explicitly preserves symmetries
of the CTMs, if they are present.

The unidirectional approach is currently the most commonly used in iPEPS calcu-
lations, since it seems to be best suited for extending to contracting tensor networks
with multi-site unit cells. See discussions in Ref. [99, 108] for generalizing the
CTMRG algorithm to arbitrary multi-site unit cells using the unidirectional ap-
proach. Also see Ref. [115] for a discussion of calculating infinite sums of local op-
erators using the unidirectional CTMRG method. We also refer readers to Ref. [82]
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for an overview of different renormalization approaches to applying CTMRG to
quantum systems 3.

We have not yet addressed how to obtain the projectors, which is the most important
part of the algorithm. In the next section, we review the currently available methods
for obtaining the projectors.

4.3.2 Obtaining the CTMRG projector: review of current methods
Here we will discuss currently available approaches to obtaining the projector in
asymmetric CTMRG. For simplicity, in this section we will focus on obtaining
the left projector for the left move of the unidirectional approach described in the
previous section, but all discussions extend to the other directional approaches.

A sensible choice for obtaining the projector, as pointed out by both Baxter [58]
and Nishino and Okunishi [71, 72], is to use the eigenvectors of ρ(1)L associated with
the largest eigenvalues. In other words, we perform the eigendecomposition ρ(1)L ≈

XΛX−1 where we truncate according to the eigenvalues λi (whereΛi j = λiδi j). This
works well for obtaining the projector for any direction in which the density matrix
is Hermitian, in which case a Hermitian eigendecomposition is used. Then, X is
an isometry composed of the orthonormal eigenvectors associated with the largest
eigenvalues, so X†X = I and the projector for the left boundary is X X†. This is the
approach used in the original CTMRG proposal of Nishino and Okunishi [71, 72]
and is extremely fast, robust and accurate.

If the density matrix is asymmetric, however, relying on a large asymmetric eigen-
decomposition is not ideal, and we are not aware of them being used in the literature
for any fully asymmetric CTMRG calculations. There are a few drawbacks to using
an eigendecomposition in the asymmetric case. As Baxter pointed out in Chapter 13
of Ref. [58], there is an arbitrary gauge degree of freedom associated with the nor-
malization of the eigenvectors that may need to be fixed properly 4. It is also difficult
to constrain the renormalization to be real when the network is real, which leads to a
higher computational cost. Full eigendecompositions of large asymmetric matrices

3Note that we use slightly different terminology from Ref. [82], since that reference is focused
on CTMRG when the network is Hermitian about a certain direction. In that reference, their one-
directional method is what we refer to as the bidirectional method, and their two-directional method
is what we refer to as the quad-directional method.

4In practice, it is a diagonal gauge degree of freedom that changes the eigenvalues of the corner
matrices, so a choice may be to choose the gauge/normalization of the eigenvectors such that the
eigenvalues of the corner matrices are all equal, which is related to a discussion on gauge fixing two
biorthogonal MPSs in Ref. [124].
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are not very accurate compared to other matrix decompositions more commonly
used in tensor network calculations, such as the SVD or the QR decomposition.

In our own tests of a naive implementation of calculating the projectors using the
eigenvectors of the asymmetric density matrix ρ

(1)
L , the method worked well for

small bond dimensions far from criticality, but became numerically unstable closer
to criticality and for large bond dimensions. Using non-Hermitian eigendecompo-
sitions may work fine for networks with more limited symmetry constraints than
being Hermitian about horizontal and vertical reflections (for example, for complex
symmetric networks, networks rotationally invariant by π [83], or networks that are
Hermitian in one direction but not the other, such as for 1D quantum systems [82]),
but in general in CTMRG it appears that asymmetric eigendecompositions have
been avoided.

So, what are the alternatives? In practice, many methods have been proposed in
the context of iPEPS [82, 95, 97–99, 108]. Early proposals generally involved sym-
metrizing the density matrix in one way or another, which may be appropriate for
nearly symmetric networks. For example, Ref. [95] proposed a Hermitian eigen-
decomposition of the sum of squares of grown corners, and was used successfully
as part of iPEPS calculations, for example Ref. [97, 106]. In Ref. [98, 99], it was
proposed to take the SVD of ρ(1)L , truncate according to the singular values, and
form an isometry from either the left or right singular vectors associated with the
largest singular values. This approach was used successfully in a variety of iPEPS
studies [98–101, 106, 109, 110]. Finally, we should note that some networks like
those for stochastic models, where the fixed point in one direction is exactly a prod-
uct state but in the other direction is nontrivial, appear to require specially designed
CTMRG approaches [74].

Many of these discussions about the proper procedure for calculating the projector in
CTMRGwhen the density matrix is non-Hermitian mirror the developments of non-
Hermitian transfer-matrix DMRG (TM-DMRG or TMRG). TMRG was originated
by Nishino [70], who was the first to apply the DMRG algorithm directly to the
transfer matrix of a statistical mechanics model. In the original proposal, Nishino
only addressed the Hermitian version of the algorithm. For the non-Hermitian case,
there have been many proposals for the proper choice of the density matrix, and like
in CTMRG the choice may depend on the model in question [129–134].

In fact, the latest proposal by Corboz et al. first used in iPEPS calculation in
Ref. [104] and described in Ref. [108] for obtaining the CTMRGprojector is adapted
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from a proposal that was introduced by Huang [123–125] as a new approach to non-
Hermitian TMRG. This has been used in a majority of the most modern iPEPS
calculations [104, 107, 108, 114–119, 126].

We will summarize the method described in Ref. [108] here, using the notation we
have introduced. In order to form the projector for the left move, PLP−L , Corboz et
al. proposed using C(1,1)D ,C(1,1)U and performing the following procedure, which we
will refer to as “biorthogonalization":

1. Take the following SVD of C(1,1)D C(1,1)U (≡ ρ
(1)
R ):

C(1,1)U

C(1,1)D

≈ Σ2
L

V̄L

UL
. (4.20)

In other words, we take the SVD C(1,1)D C(1,1)U = ULΣ
2
LV†L . Eq. (4.20) is ap-

proximate because we truncate according to the singular values down to the
desired bond dimension for the renormalized environment.

2. Now we obtain PL, P−L as follows:

PL = C(1,1)U VL Σ+L

(4.21)

P−L = C(1,1)D ŪL Σ+L
(4.22)

Note the use of a pseudoinverse, which is necessary for numerical stability
if the singular values are small and can limit the accuracy of the fixed point
environment found by the algorithm.

Note that this presentation of the algorithm is changed slightly from how it is
presented in Ref. [108]. First of all, the use of a pseudoinverse was not pointed out
in the original proposal, but we find it can become necessary for the stability of the
algorithm for sufficiently small singular values (if the singular values are not obtained
to high enough precision). Note that in the limit of large bond dimension of the
boundary tensors, the spectrum Σ2

L in Eq. (4.20) will generally contain small singular
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values. Additionally, we present the algorithmwithout theQRdecomposition, which
does not change the final projector obtained by the algorithm. Plugging PL, P−L as
defined in Eq. (4.21)–(4.22) into Eq. (4.19) and using Eq. (4.20), we see that PL, P−L
are approximate inverses of each other as desired (up to numerical errors and errors
introduced by the pseudoinverse).

Note that an alternative to this algorithm was also mentioned in Ref. [108], which is
to biorthogonalize just the CTMs C(1,1)DL and C(1,1)UL instead of the half system transfer
matrices. As mentioned in Ref. [108], this method is not as accurate, though the
singular values Σ2

L in Eq. (4.20) do fall off slower in that case, and therefore the
inverse is better conditioned. In spite of the better conditioned inverse, that method
is likely not as accurate because it does not use enough information about the
environment to form the projectors.

In the next section, we propose a very related scheme to these two approaches
discussed in Ref. [108] which improves the conditioning of the inverse compared to
using C(1,1)D ,C(1,1)U to form the projectors, but does not have the accuracy problems
faced by using C(1,1)DL and C(1,1)UL .

4.3.3 Obtaining the CTMRG projector: new proposal
Here we present our new proposal for obtaining the projector in the asymmetric
CTMRG algorithm:

1. In our new approach, just like in the previous approach, we start with the half
system transfer matrices C(1,1)U and C(1,1)D , but we first perform the following
matrix factorizations:

C(1,1)U

C(1,1)D

≈

SUUU V̄U

SDV̄D UD

≈

FLU FUR

FDL FRD (4.23)

where we define Fs
LU = Us

US1/2
U , Fs

UR = S1/2
U (V

s
U)
†, Fs

RD = Us
DS1/2

D , and
Fs

DL = S1/2
D (V

s
D)
†. Here, one can truncate these equations according to the
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singular values, which can improve the computational cost of the algorithm.

2. The next step is to obtain the projectors PL, P−L . For this, we use the same
biorthogonalization procedure as was used in Eq. (4.20)–(4.22). However,
this time we biorthogonalize the tensors FLU, FDL:

FLU

FDL

≈

Σ̃2
L Q̄L

WL (4.24)

where the second line is obtained by taking the SVD Fs
DLFs

LU = WL Σ̃
2
LQ†L and

truncating according to the singular values to the desired bond dimension.

3. Again, following the biorthogonalization procedure, we obtain PL, P−L as fol-
lows:

PL = FLU QL Σ̃+L
(4.25)

P−L = FDL W̄L Σ̃+L (4.26)

We reiterate that we use a pseudoinverse for Σ̃L , which is important if the
singular values are small.

We note that this newmethod is naturally suited for the bidirectional renormalization
approach discussed previously in Section 4.3.1, because the tensor FUR and FRD

can be biorthogonalized and directly used for the right move, whereas they would
be discarded in the unidirectional approach. An interesting question is how the
multi-site algorithms of Ref. [99, 108], which are formulated for the unidirectional
approach, would be generalized to the bidirectional approach.

We find in practice that, although this method still involves inverting a matrix that is
potentially ill-conditioned, the conditioning is better than the method of Ref. [108].
We show numerical results to this effect in Section 4.4. To help understand why we
chose the procedure the way we did, it helps to discuss some alternative approaches,
which we do in the next section.

4.3.4 Obtaining the CTMRG projector: alternatives to the new proposal
Our motivation for devising a new CTMRG method was to avoid inverting the
singular values of the full environment. We will present numerical results in Sec-
tion 4.4 showing that the method presented in Section 4.3.3 succeeds at improving
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the conditioning of the inverse required for calculating the projectors. However, the
approach presented in Section 4.3.2 is clearly not the only scheme that would have a
better conditioned inverse than the algorithm shown in Section 4.3.2. To understand
why we choose this scheme, it is useful to discuss some alternatives.

Looking back at the factorization we performed in Eq. (4.23), there are many
alternative ways to perform the factorization. Different choices of factorizations
can lead to different sets of bases to biorthogonalize in order to form the projectors.
As we mentioned in Section 4.3.2, an alternative approach suggested in Ref. [108]
was to biorthogonalize C(1,1)LU and C(1,1)DL , which amounts to a trivial choice of the
factorization. This also improves the conditioning of the inverse, but in practice, the
method is less stable and does not always find the optimal fixed point environment
for a given bond dimension. This is likely due to the fact that it does not make use
of a large enough part of the environment to calculate the projector. We can think
of our new method as a way to improve the accuracy and stability of that approach,
where factorizing with the SVD helps incorporate information from the rest of the
environment.

Another nontrivial factorization we tested is to use FLU = UU , FDL = V†D. This
gives a much flatter spectrum of the singular values when performing the biorthog-
onalization. In practice, however, we found problems with numerical stability with
this approach. What we found was that, at larger bond dimensions, small singu-
lar values appeared in the spectrum, but we could not safely discard them with a
pseudoinverse.

Using the factorization such that FLU = UU , FDL = V†D is in fact very related to the
method proposed by Huang in Ref. [123] in the context of TMRG. In that context,
he proposed forming a biorthogonal basis for non-Hermitian DMRG by taking the
SVD of the asymmetric density matrix, truncating according to the singular values,
and then biorthogonalizing the bases formed from the remaining left and right
singular vectors [123]. In Ref. [123], Huang also pointed out a similar problem
that we saw with a few small singular values that ruined the numerical stability of
the algorithm. In that paper, Huang proposed fixing this problem with a subspace
expansion technique. The closest translation of Huang’s method to our current
discussion is to take the SVD ρ

(1)
L = C(1,1)D C(1,1)U ≈ UΣV† and biorthogonalize V†

and U. We translated Huang’s proposal into the CTMRG context, but didn’t find
the subspace expansion technique alleviated the numerical instability that we were
observing. It would be an interesting area of further exploration to see if that
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approach can be implemented successfully in CTMRG.

A slight adaptation of the full SVD approach of Huang is to biorthogonalize UΣ1/2

and Σ1/2V† instead of biorthogonalizing V† and U. With this approach, a psuedoin-
verse can succussfully stabilize the algorithm. We find that this method performs
nearly the same as the method of Corboz et al.

In the next section, we show numerical results for our new asymmetric CTMRG
method, and compare its performance to the asymmetric CTMRG approach of
Ref. [108] as well as to the fully symmetric CTMRG approach of Nishino and
Okunishi.

4.4 Results
Here, we present benchmark results comparing our new asymmetric CTMRG
method described in Section 4.3.3 to the asymmetric CTMRG method proposed
by Corboz et al. in Ref. [108], which we summarized in Section 4.3.2.

In Section 4.4.1, the 2D classical ferromagnetic Ising model is used as a benchmark,
which is useful because it is exactly solvable and the model can be tuned towards
the critical point. It is also useful that it has a fully symmetric form of the tensor
T , for example by using the construction in Ref. [95], so that we can compare the
asymmetric CTMRG methods to the extremely reliable and accurate symmetric
version of Nishino and Okunishi [71, 72]. The network is on the square lattice and
has a single site unit cell, and all tensors used are real and dense. The environment
is chosen to be a product state and the product state is optimized. Then, the
environment is grown to the desired bond dimension, and the methods are iterated
until convergence.

4.4.1 2D Classical Ising Model
In Figure 4.41, we present benchmark results for the isotropic 2D ferromagnetic
classical Ising model. The tensor T comprising the partition function for this model
has a representation where each index is of size d = 2 and where the tensor is real
and symmetric about all rotations and reflections.

However, to test our new algorithm on an asymmetric network, we introduce the
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(a) (b)

(c)

Figure 4.41: Plots comparing our new method for obtaining the CTMRG projector
compared to the method proposed in Ref. [108]. We apply these methods to the
isotropic ferromagnetic 2D classical Ising model at inverse temperature β/βc − 1 =
10−3 with a non-unitary change of basis. Here we plot a comparison of: (a) the error
in the magnetization as a function of bond dimension, (b) the correlation length
as a function of bond dimension, and (c) the spectrum that needs to be inverted in
creating the CTMRGprojectors. See themain text for details about the computations
and analysis of the results.

following gauge transformation:

T̃ =

Y

X T X−1

Y−1

(4.27)

These gauge transformations, for random (complex) non-unitary matrices X and
Y , artificially break the rotation and reflection symmetries of the tensor network
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representation of the Ising model partition function. The results we present are for
a single choice of X and Y , but the results are robust for a sampling of randomly
generated X and Y .

In Fig. 4.41 we compare results for our new method with an implementation of the
CTMRG approach introduced by Corboz et al. in Ref. [108] and summarized in
Section 4.3.2. For this implementation of the method of Corboz et al., in Eq. (4.20)
we use the gesdd SVD routine as implemented in LAPACK, which is a variant that
is commonly used as a default in many numerical libraries.

For larger bond dimensions, we found that (when gesdd is used as the SVD routine)
we needed to set the pseudoinverse cutoff to 5×10−8 to get themethod ofCorboz et al.
to converge consistently. In practice this limits the accuracy in the magnetization to
be O(10−7), as seen in Fig. 4.41a. For our CTMRGmethod, we use a psuedoinverse
of 1×10−7, which we find only plays a role in stabilizing the algorithm early on in the
calculation, soon after the bond dimension growth. In Fig. 4.41a, we plot the error in
the magnetization for the Ising model at an inverse temperature of β = (1+10−3)βc,
where βc is the exact critical temperature of the Ising model, and we compare to the
exact result for the magnetization of the Ising model.

For reference, in Fig. 4.41a, we include results for the same network without any
gauge transformations added, and where the fully symmetric version of CTMRG
described in Ref. [71, 72] can be applied. This can be considered to be the most
accurate CTMRG method for contracting the network for a given bond dimension.
We see that our new approach for obtaining theCTMRGprojectors in the asymmetric
case obtains the same level of precision as the symmetric method (variations at
higher bond dimensions are within the limits of noise fluctuations from step to step
of CTMRG).

We also plot the correlation length calculated from the same networks that were used
to calculate the magnetization in Fig. 4.41b. The correlation length is estimated by
using the two dominant eigenvalues of the approximate column-to-column transfer
matrix formed from the HCTMs AU and AD. Details about how these eigenvalues
relate to the correlation length are explained in Ref. [105]. We see that the lower
precision obtained by the method of Corboz et al. is even more noticeable for
nonlocal observables like the correlation length. Calculating nonlocal observables
to high precision can be particularly important for newly proposed gradient-based
iPEPS optimization techniques, where it is found that the gradient must be obtained
to very high accuracy to obtain proper convergence [121].
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In Fig. 4.41c, we compare the spectra of the matrices that have to be inverted to
obtain the CTMRG projectors (for this case a bond dimension for the environment
of χ = 160 is used). For the CTMRG method of Corboz et al., the spectrum
plotted is the (ordered) diagonal entries of ΣL , labelled ΣL,i, the square root of the
singular values obtained from Eq. (4.20) (normalized so that ΣL,1 = 1). For our new
CTMRG method, we plot the (ordered) diagonal entries of Σ̃L , Σ̃L,i, obtained from
Eq. (4.24) (normalized so that Σ̃L,1 = 1). The horizontal dotted line indicates the
pseudoinverse of 5 × 10−8, which is necessary for this example for the method of
Corboz et al. to be numerically stable.

Fig. 4.41c gives us an indication for why the new method obtains a higher precision
than the old method. We see that, in this case, the gesdd SVD routine only calculates
singular values up to a precision of O(10−16), so the pseudoinverse must be used
to avoid large errors caused by inverting the small, inaccurate square roots of those
singular values. Because of the pseudoinverse cutoff, only around 80-100 of the
singular values are kept. This exactly corresponds with the limits of the accuracy
of the magnetization and correlation length shown in Fig. 4.41a–4.41b. For the
new method, after the truncation of the bond dimension back down to χ = 160,
the smallest value in the spectrum is O(10−5), and the inverse is well-conditioned
without the need of a pseudoinverse cutoff. Note that other SVD routines, such as the
more computationally demanding gesvd implemented in LAPACK, can calculate
singular values to higher precision than O(10−16) for this example and therefore can
allow the method of Corboz et al. to calculate more accurate environments. This is
discussedmore in Ref. [3]. We emphasize that because of the improved conditioning
of the inverse for our newly proposed CTMRG method, it is not sensitive to which
SVD routine is used.

4.5 Conclusion
Numerical methods based on corner transfer matrices (CTMs) have a long history,
going back to their introduction in 1968 by Baxter [56–58]. Nishino and Okun-
ishi [71, 72] proposed an improvement to the CTMmethod of Baxter using insights
from the density matrix renormalization group (DMRG) [5, 6] algorithm of White.
Since then, CTMRG has been used very successfully in a wide range of applica-
tions, from studying 2D classical statistical mechanics models to some of the most
advanced calculations of strongly interacting 2D quantum many-body systems.

The CTMRG method proposed by Nishino and Okunishi was originally formulated
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primarily for contracting tensor networks with many lattice symmetries, and in that
context it is remarkably stable and accurate. Many methods have been proposed
for extending the method to general asymmetric tensor networks, but each has their
own limitations, as we have reviewed in this chapter. As we discussed in this work,
either they are not appropriate for contracting very asymmetric tensor networks, or
they rely on potentially ill-conditioned inverses, such as the method most commonly
used in advanced iPEPS calculations proposed in Ref. [108]. In this manuscript, we
propose a new CTMRG method that improves the conditioning of these inverses,
providing a more numerically robust variant of CTMRG for contracting asymmetric
2D tensor networks.
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C h a p t e r 5

FASTER METHODS FOR CONTRACTING INFINITE
TWO-DIMENSIONAL TENSOR NETWORKS

1M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman, and F.
Verstraete, “Faster Methods for Contracting Infinite 2D Tensor Networks”,
arXiv:1711.05881.

We revisit the corner transfer matrix renormalization group (CTMRG) method of
Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and
demonstrate that its performance can be substantially improved by determining the
tensors using an eigenvalue solver as opposed to the power method used in CTMRG.
We also generalize the variational uniform matrix product state (VUMPS) ansatz
for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and
discuss similarities with the corner methods. These two new algorithms will be
crucial to improving the performance of variational infinite projected entangled pair
state (iPEPS) methods.

5.1 Introduction
Two-dimensional (2D) tensor networks are ubiquitous in many-body physics [4].
They occur naturally in the context 2D classical many-body systems as representa-
tions of partition functions [56–59, 70–72] and can represent ground states, finite
temperature states and the time evolution of 1D quantum systems, e.g. for systems
with local interactions in terms of Trotter-Suzuki decompositions [48, 49, 66–69,
129, 130, 135]. Additionally, they occur in the context of tensor product state
(TPS) [87, 88, 90, 92] or projected entangled pair state (PEPS) [93] representa-
tions of 2D quantum systems and boundaries of 3D classical systems. Most 2D
tensor networks of interest do not allow exact solutions and can only be studied
approximately, and a copious array of numerical tensor network methods have been
developed over many decades for their study [5, 6, 47–49, 56–59, 70–72, 93, 123,
124, 128–131, 136–142].

Methods for contracting 2D tensor networks fall roughly into two main categories,
which we refer to as “coarse graining methods" and “boundary methods." Exam-
ples of coarse graining methods are tensor renormalization group (TRG) [136] and

https://arxiv.org/abs/1711.05881
http://arxiv.org/abs/1711.05881
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extensions such as second renormalization group (SRG) [137], higher order ten-
sor renormalization group (HOTRG) [138], and tensor network renormalization
(TNR) [139, 141, 142]. A common feature of these methods is that the local de-
grees of freedom are combined and truncated, so the Hilbert space of the network
is explicitly changed at each step. For boundary methods, a matrix product state
(MPS) is used as an ansatz for the environment, and this matrix product state has
to be determined in a variational way. Boundary methods include the density ma-
trix renormalization group (DMRG) [5, 6, 70, 129–131], corner transfer matrix
renormalization group (CTMRG) [56–58, 71, 72], time evolving block decimation
(TEBD) [48, 49, 55, 128], TDVP [50, 51], etc. Boundary methods have certain
advantages: they can be optimized iteratively (instead of optimized layer by layer
like many coarse graining methods), the form of the environments can make it
much easier to calculate arbitrary correlation functions, and they appear to be very
well-suited for performing PEPS calculations [93, 115, 120, 121].

The history of modern boundary methods goes back to Nishino’s application of
DMRG to calculating fixed points of transfer matrices [70]. Soon after, Nishino and
Okunishi created their CTMRG algorithm [71, 72] by combining the corner transfer
matrix (CTM) of Baxter [56–58] and White’s DMRG algorithm [5, 6], CTMRG
was initially introduced as a powerful numerical tool for contracting 2D classical
partition functions. In addition, it is used extensively in TPS and PEPS calculations
of 3D classical and 2D quantum systems, where it is used to approximate the
contraction of 2D tensor networks that arise in those calculations. CTMRG was
used as the contraction method in the original TPS calculations [88, 90–92]. An
MPS-based boundary method was used for the original finite PEPS calculation [93]
while iTEBD, an MPS-based power method, was used to perform the original
infinite PEPS (iPEPS) [94, 143] calculations. Since then, iPEPS calculations have
mostly been performed using CTMRG as the contraction method, and a variety of
advancements have been made to the method over recent years in that context [82,
95, 97–99, 108, 113–115].

Here, we present two new approaches that improve upon the speed of CTMRG
for contracting 2D tensor networks in the thermodynamic limit. First, we present
a transfer matrix version of the recently introduced variational uniform matrix
product state (VUMPS) [2] algorithm for contracting 2D tensor networks. We also
present a new corner method analogous to CTMRG that better exploits translational
invariance by solving for the environment tensors using a set of fixed point equations.
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We present benchmark results for VUMPS and our new corner method, showing
remarkable speedups over CTMRG, particularly for systems near criticality. Our
benchmarks include a variety of both 2D statistical mechanics models and 2D
quantum systems represented as PEPS.

5.2 Problem Statement
We are interested in the approximate numerical contraction of infinite 2D tensor
networks. For simplicity, throughout the paper, we will focus on tensor networks
on an infinite square lattice with a single site unit cell, and discuss the extension
to multi site unit cells where appropriate. We are agnostic about where the tensor
network comes from: it could be a 2D classical partition function, the norm of an
iPEPS, etc.

For concreteness, we are interested in evaluating:

ΩMN = Tr

...
...

...
...

. . .

. . .

. . .

. . .

T T T T

T T T T

T T T T

T T T T

. . .

. . .

. . .

. . .

...
...

...
...

(5.1)

where we work directly in the thermodynamic limit, i.e. the number of lattice sites
in the horizontal and vertical directions, M, N , approaches ∞. In Eq. (5.1), Tr[...]

denotes two traces, one over the open horizontal indices and another over the open
vertical indices. If the network represents a 2D classical partition function, the
fourth-order tensor T is related to the local Boltzmann weight (possibly up to a local
tensor renormalization) and Ω is the “partition function per site," related to the free
energy per site. If the network is the evaluation of the norm of an iPEPS, each tensor
T is the bra and ket PEPS tensor at each site contracted over the physical index1,
and Ω is the norm per site.

We are also interested in calculating observables such as expectation values of
local operators or correlation functions. In terms of the tensor network, these are

1The PEPS tensors can of course be left uncontracted to allow for a more efficient ordering of
contraction later on, but for now we will think of it as a single larger tensor.
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represented as impurity sites, such as:

〈XY〉 = Tr

...
...

...
...

. . .

. . .

. . .

. . .

TX T T T

T T T T

T T T TY

T T T T

. . .

. . .

. . .

. . .

...
...

...
...

/ ΩMN

. (5.2)

We want a contraction method that makes it easy to calculate arbitrary correlation
functions, since they show up in e.g. calculating structure factors or summing
Hamiltonian terms in variational iPEPS ground state optimizations[115, 120, 121].
For this reason we focus on MPS boundary methods, which make it much easier
to calculate arbitrary correlation functions. It is more challenging in methods
like TRG/TNR where all of the tensors at each layer must properly be kept track
of, and calculating arbitrary correlation functions on the lattice is potentially very
complicated.

Here we will also define the row-to-row transfer matrix, which is simply a single
infinite row of the tensor network:

. . . T T T T . . .
. (5.3)

The row-to-row transfer matrix is an infinite, translationally invariant matrix prod-
uct operator (MPO). We also define the column-to-column transfer matrix as an
infininite column of the tensor network:

...

T

T

T

T

...

. (5.4)
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For MPS boundary methods, the evaluation of diagrams like Eq. (5.1)–(5.2) is
performed by finding the maximal up and down eigenvectors of the row-to-row
transfer matrix portrayed in (5.3) and the maximal left and right eigenvectors of
column-to-column transfer matrix portrayed in (5.4). Exact MPS representations of
these eigenvectors are infinitely large, but for many 2D tensor networks representing
physical many-body systems good MPS approximations exist (in some cases prov-
ably[39]). We refer to these uniform MPS (uMPS) fixed points as the up, down, left
and right boundary uMPSs, and call their MPS tensors respectively AU , AD, AL and
AR. The fixed point equation for the top uMPS is as follows:

. . . AU AU AU AU . . .

. . . T T T T . . .
≈

ΩM . . . AU AU AU AU . . .
(5.5)

where Ω is the partition function or norm per site defined in Eq. (5.1). At the fixed
point, analogous equations to Eq. (5.5) should be satisfied by the other boundary
uMPSs.

There are many different approaches to obtaining the four boundary MPS fixed
points of the row-to-row transfer matrix (5.3) and column-to-column transfer matrix
(5.4). In the next section, we review one very commonly used contraction method,
the corner transfer renormalization group (CTMRG) algorithm of Nishino and Oku-
nishi[56–58, 71, 72], and describe two new proposals, one based on the recently
proposed variational uniform matrix product state (VUMPS) algorithm[2], and one
that we refer to as the fixed point corner method (FPCM), which is like CTMRG but
solves for the boundary tensors using a series of fixed point equations.

5.3 Algorithm overview
One strategy for evaluating Eq. (5.1)–(5.2) involves finding a single boundary MPS
eigenvector at a time. The infinite time evolving block decimation (iTEBD) of Orús
and Vidal [48, 49, 128] is an example of this strategy. In iTEBD, a power method
is used to find the fixed point MPS eigenvector by repeatedly applying a row-to-row
or column-to-column transfer matrix to a starting MPS. In this work, one of the
strategies we propose also focuses on solving for a single MPS eigenvector for each
direction at a time. Instead of iTEBD, we propose using the recently introduced
variational uniform matrix product state (VUMPS) algorithm [2], which can be
viewed as an improvement on the infinite density matrix renormalization group
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(iDMRG) [5, 6, 47] where an MPS is optimized directly in the thermodynamic
limit instead of grown site-by-site to reach the thermodynamic limit. VUMPS
was originally applied to finding ground state approximations of 1D and quasi-1D
quantum states. In analogy to how Nishino showed that DMRG could be applied
to finding the fixed point MPS approximation of the transfer matrix of a partition
function [70], in Section 5.3.4, we show how VUMPS can be applied to find the
fixed point of infinite transfer matrices.

Another strategy for finding the boundary uMPSs is to attempt to find all four
uMPSs at once. An example of this approach is the corner transfer matrix (CTM)
method of Baxter [56–58], and its improvement by Nishino and Okunishi called the
corner transfer matrix renormalization group (CTMRG) [71, 72]. These methods
are variational methods for iteratively finding all four MPS fixed points at once. We
give a brief review of CTMRG in Sections 5.3.1, 5.3.2 and 5.3.3. One of the new
methods we propose in this work, which we refer to as the fixed point corner method
(FPCM) and is explained in Section 5.3.5–5.3.6, also solves for all four MPS fixed
points at once. Like CTMRG, FPCM uses CTMs, but solves for the CTMs andMPS
tensors using a series of fixed point equations.

5.3.1 Corner transfer matrix renormalization group (CTMRG) review
The general ansatz used for the environment in the corner transfer matrix renormal-
ization group (CTMRG) algorithm is as follows:

CLU AU

AL T

CURAU

ART

CRDAD

ART

CDL AD

AL T

. (5.6)

The matrices {Ci} in Eq. (5.6), known as the corner transfer matrices (CTMs),
were originally introduced by Baxter for studying 2D classical statistical mechanics
problems[56–58, 71]. The CTMs represent approximations of the infinite corners
of the tensor network. The boundary MPS tensors {Ai} in Eq. (5.6) represent
approximations of the half-row transfer matrices (HRTMs) and half-column transfer
matrices (HCTMs). In our notation, CLU denotes the CTM approximating the upper
left corner of the network, AL denotes the left HRTM of the network, AU denotes
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the upper HCTM of the network, etc. We refer to the set of tensors {Ci, A j} as the
environment of the 2D tensor network.

The CTMRG algorithm is thought of in terms of contracting row-to-row transfer
matrices and/or column-to-column transfer matrices composed of tensor T into the
environment, either simultaneously inmultiple directions or sequentially in specified
directions (depending on details of the renormalization scheme).

If the row-to-row and column-to-column transfer matrices of the network are ab-
sorbed into the environment indefinitely, then the environment tensors would grow
exponentially in size, so some sort of truncation scheme is required. The truncation
is referred to as renormalization. This renormalization of the enlarged environment
is performed by introducing projectors into the network. There are multiple methods
available for how to grow the lattice as well as how to choose the projectors. We
will start by describing how these projectors are chosen for tensor networks with
reflection symmetries, where the ansatz in Eq. (5.6) can be constrained.

5.3.2 Symmetric CTMRG review
To get some intuition for how CTMRG works, it is useful to discuss the case in
which the network tensor T is Hermitian about all reflections (about the horizontal,
vertical and diagonals, in other words Tlurd = T̄ruld = T̄ldru = T̄drul). This is the
case for many statistical mechanics models. In this case, we can constrain the
environment tensors in the ansatz in Eq. (5.6) to satisfy AU = AR = AD = AL ≡ A,
CLU = CUR = CRD = CDL ≡ C, and additionally impose C = C† and As = (As)†.
Eq. (5.6) becomes:

C A

A T

CA

AT

CA

AT

C A

A T

. (5.7)

This is the CTMRG case that was covered in the initial proposal of Nishino and
Okunishi [71, 72] (though extensions to the asymmetric case were discussed). The
CTMRG algorithm consists of obtaining the projector by “growing" the corner
transfer matrices C by absorbing surrounding network and environment tensors and
performing a Hermitian eigendecomposition, and we summarize the algorithm here:
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1. Obtain the projector from a Hermitian eigendecomposition of the grown
corner transfer matrix 2:

C A

A T ≈ U D

Ū

(5.8)

where we use the convention that the indices of the tensor in the diagram are
ordered clockwise, except when the complex conjugate is taken in which case
the ordering is reversed. In Eq. (5.8), the tensor network on the left side is con-
tracted, reshaped into a Hermitian matrix, a Hermitian eigendecomposition is
performed, and the bond dimension is truncated according to the eigenvalues.
D is a diagonal matrix storing the largest magnitude (real) eigenvalues. U is
the matrix of the orthonormal eigenvectors associated with the largest eigen-
values D reshaped into an isometric tensor. U satisfies (Us)†Us = I (using
Einstein summation convention) or diagramatically:

U

Ū

=

. (5.9)

2. Renormalize the grown environment. The new CTMRG environment is ob-
tained by absorbing a row and column of the tensor network in each direction
into the environment. The renormalization is performed with the projector
Us(Us′)†, which diagramatically is:

Ū

U
. (5.10)

The projector Eq. (5.10) is inserted into the grown boundary environment at
every link in the environment, and grown environment tensors are renormal-
ized to obtain the new environment tensors. The new environment tensors C′

2The original proposal actually involved a symmetric eigendecomposition of a product of four
of the grown corners in Eq. (5.8) which has the interpretation of a density matrix, but the eigenbasis
is the same as that of a single corner.
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and A′ are obtained as follows:

C′ =

C A

A T

Ū

U

(5.11)

A′ = A T

U

Ū
. (5.12)

Of course, from Eq. (5.8), we can trivially see that C′ = D, but the more
general form of Eq. (5.11) will be useful when we discuss generalizing to
situations where the tensor network is comprised of asymmetric tensors T ,
and when we discuss our new fixed point corner method.

The CTMRG algorithm essentially involves iterating steps 1 and 2 until convergence
(for example, measured by the difference in the eigenvalues of the corner transfer
matrices between steps), where onemust make sure to normalize the corner matrices
at each steps.

Extensions to networks with other types of symmetries are straightforward. If the
network is Hermitian about the horizontal and vertical directions but not the diagonal
directions, we can impose AU = AD ≡ A (where A = A†) and AL = AR ≡ B (where
B = B†), and CLU = C†UR = CRD = C†DL ≡ C (where C = C† if the gauge is chosen
properly). In that case, a generalization of Eq. (5.8) can be used to obtain projectors
for the left/right direction and up/down direction using the left and right singular
vectors respectively obtained from the SVD of one of the grown corners.

If the tensor network is not Hermitian about either a horizontal or vertical reflection,
a simple Hermitian eigendecomposition like that shown in Eq. (5.8) will not suffice,
and a more involved scheme must be invoked. In general, the projectors used
will not be isometric, and there will be different projectors for renormalizing each
direction (left, up, right, and down). We refer readers to Ref. [82] for a discussion
of exploiting different types of reflection symmetries and alternative approaches to
finding projectors.
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Next, we will discuss strategies for generalizing CTMRG to asymmetric tensor
networks.

5.3.3 Asymmetric CTMRG review
When the tensor network does not contain reflections symmetries as discussed in
the previous section, in general, there is not a unique way for choosing the projector
and a variety of methods have been proposed. In the previous section, we discussed
methods where the network was renormalized in all for directions at once. Here, we
will focus on what is called the “directional" approach, where a single direction of
the network is renormalized at a time, and a single CTMRG step constitutes cycling
through the different directions. This approach makes the discussion easier, and is
well-suited for iPEPS calculation [99, 108].

In the directional approach, the “left move" involves contracting just the column-to-
column transfer matrix into the left environment, and renormalizing with a projector
which we will call Ps

L[P
−
L ]

s′ or diagramatically:

P−L

PL
(5.13)

where P−L is the approximate left inverse of PL , in other words they satisfy [P−L ]
sPs

L ≈

I or diagramatically:

PL

P−L

≈

. (5.14)

Using the projector in Eq. (5.13), the left move is shown below:

C′LU =

CLU AU

P−L
(5.15)

A′L = AL T

PL

P−L
(5.16)
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C′DL =

CDL AD

PL

. (5.17)

The diagrammatic notation we use for the tensors in the projector is suggestive,
identifying them as MPS tensors. This notation will prove useful later on when
we present our new algorithms. The up, right and down moves are simply rotated
versions of the left move.

The projectors (i.e. Eq. (5.13)) are obtained from the current guess for the environ-
ment, and in general the choice is not unique. Many methods for obtaining these
projectors have been proposed over the years [71, 82, 95, 97–99, 108]. In this work,
for asymmetric CTMRG, we will use the method that is most commonly used in
iPEPS calculations, the one proposed in Ref. [108]. In addition, we will use a newly
proposed method for obtaining the projector, introduced in Chapter 4. For brevity,
we do not review those methods here, and we refer readers to those works for an
explanation of how the projectors are obtained.

5.3.4 VUMPS for contracting infinite 2D tensor networks
Here, we present the application of the recently proposed VUMPS algorithm [2]
to finding MPS fixed points of infinitely large, translationally invariant transfer
matrices. Essentially, we apply VUMPS to the problem of directly finding fixed
points of the form shown in Eq. (5.5).

We now present VUMPS for obtaining the top fixed point uMPS of the network.
We would like to find the uMPS satisfying Eq. (5.5). In VUMPS, we use the mixed
canonical form of the uMPS, so Eq. (5.5) becomes:

AL
U AL

U AC
U AR

U AR
U

. . .

T T T T T

. . . ∝

. . . AL
U AL

U AC
U AR

U AR
U

. . .

. (5.18)

In the mixed canonical gauge, the tensors satisfy the relations:

AL
U CU ≈ AC

U ≈ CU AR
U

(5.19)
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where the singular values of the matrix CU are the Schmidt values of the uMPS.
Note the inequalities in Eq. (5.19), since the relationships will not generally all
simultaneously be satisfied exactly during the optimization. How accurately they
are satisfied will relate to how translationally invariant the state is, and should
be satisfied to very high accuracy at the fixed point of the VUMPS algorithm.
Additionally, AL

U and AR
U are isometric tensors satisfying:

AL
U

ĀL
U

=

(5.20)

AR
U

ĀR
U

=

(5.21)

at all times. Any uMPS can be turned into this form, for example with the algorithm
introduced in Ref. [128] or with the algorithm discussed in Ref. [4] and expanded
on in Appendix 5.A.

The VUMPS algorithm proceeds by repeating the following steps until convergence:

1. Solve for the environments:

EL T

AL
U

ĀL
U

≈ ΩL EL

(5.22)

T

AR
U

ĀR
U

ER ≈ ΩR ER

(5.23)

where ΩL ≈ ΩR up to errors in Eq. (5.19).
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2. Solve for zero-site and single-site tensors:

CU

EL ER ≈ ΩCU CU

(5.24)

AC
U

EL T ER ≈ ΩAC
U

AC
U

(5.25)

where ΩAC
U
/ΩC ≈ ΩL/R near or at the fixed point.

3. Solve for the new uMPS tensors AL
U and AR

U from AC
U and CU using techniques

described in the original proposal[2].

The VUMPS algorithm proceeds by repeating steps 1– 3 until convergence (mea-
sured, for example, by the change in the singular values of C from step to step or
the gradient, as described in Ref. [2]). For finding the fixed point of a row-to-row or
column-to-column transfer matrix Hermitian about the horizontal, this schememaps
directly to the original VUMPS proposal[2], and the algorithm solves for both the
top and bottom fixed points, which are just Hermitian conjugates of each other. For
a Hermitian row-to-row transfer matrix, the fixed points environments EL, ER are
related to the fixed points of the boundary MPS tensors AL, AR used in the CTMRG
ansatz, the gauged uMPS tensors AL

U, AR
U are related to the fixed points of isometric

projectors used to renormalize the CTM environment (i.e. the eigenvectors of the
product of the four CTMs), and the center tensor CU are related to the product
of CTMs CLUCLR. This correspondence is discussed in more detail in Ref. [4].
A similar correspondence between the fixed point of CTMRG and the fixed point
of DMRG applied to Hermitian transfer matrices was pointed out by Nishino and
Okunishi [70–72].

For contracting 2D statistical mechanics partition functions and calculating the norm
of an iPEPS, transfer matrix VUMPS is in fact simpler than the original proposal,
because we do not have to be concerned about summing Hamiltonian terms which
can lead to divergences if the fixed point is not calculated properly [2, 144], and
methods such as Arnoldi can be directly employed to find the fixed points. One may
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have to be more careful contracting networks that involve sums of local operators,
such as when calculating structure factors or gradients of iPEPS. See Ref. [115,
120, 121] for approaches to contracting such networks, where the environments
calculated from the norm of an iPEPS are used to aid in the contraction.

In general for a non-Hermitian network, to get the environment for calculating local
observables, one must additionally solve for the bottom fixed point (and in order
to calculate arbitrary correlation functions, the left and right fixed point uMPSs as
well). For a network that isn’t “very asymmetric," the top fixed point can be used as
a good starting point for the bottom fixed point uMPS. It is also important to note
that in the case of symmetry breaking, one should take care that the fixed points in
different directions are all in the same phase (for example by using starting states
for the optimization which are in the same phase).

For non-Hermitian networks, the method we propose here is analagous to iTEBD,
where each of the four boundary uMPSs is solved for in seperate optimizations
(although in iTEBD the fixed points in each direction are obtained with power
methods, which was shown to be slower than VUMPS in Ref. [2]). An alternative
approach from the one proposed here is to solve for two opposing fixed points in
the same optimization (for example both the top and bottom fixed points of the row-
to-row transfer matrix). This is approach has been used in the context of applying
DMRG to non-Hermitian transfer matrices [123–125, 129–134, 145]. It would be
interesting to generalize the transfer matrix VUMPS algorithm to solving for both
fixed points at once, but we do not explore that here.

5.3.5 Symmetric FPCM
We start with the simplest version of our new fixed point corner method (FPCM),
when the network is comprised of a real tensor T that is symmetric about all
reflections. In this case, we use the same ansatz for the environment as we would
use for the fully symmetric CTMRG algorithm, which we mentioned previously in
Section 5.3.2 and repeat here:

C A

A T

CA

AT

CA

AT

C A

A T

. (5.26)
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As before, we also impose that C = C† and A = A†. For this network, the FPCM
proceeds as follows:

1. Isometrically gauge the uMPS composed of tensor A. Using A, find the
isometric tensor U and (positive) symmetric matrix C′ satisfying:

C′ A ∝ U C′
. (5.27)

This is performed with a new uMPS gauging method described in Ap-
pendix 5.A.

2. Obtain the new MPS boundary tensor A using U found in step 1. This is done
by numerically solving the following fixed point equations (in practice using
an iterative method such as Arnoldi):

A′ T

U

Ū

∝ A′

. (5.28)

Then, steps 1 and 2 are repeated until convergence. We should point out that the
boundary MPS tensor A solved for using the fixed point equation Eq. (5.28) may
only be symmetric up to errors in the accuracy that the fixed point is solved to, and
it may be useful to symmetrize the tensor explicitly during the optimization.

We would also like to point out that obtaining the isometry as proposed in Eq. (5.27)
can be viewed as a translationally invariant version of the so-called “simplified one-
directional 1D method" discussed in Ref. [82]. At the fixed point of the algorithm,
we can interpret the uMPS formed by U solved for in Eq. (5.27) as the translation-
ally invariant thermodynamic limit of of the analogous isometry U formed from
eigenvectors of the grown corner transfer matrix at the symmetric CTMRG fixed
point.
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After convergence, a higher accuracy for observables can be obtained by using the
corner transfer matrix C calculated with the following fixed point equation:

C′

A T

A

Ū

U ∝ C′

. (5.29)

A similar fixed point equation for the corner transfermatrix was discussed previously
in Ref. [120, 121].

We also note that in practice, we find performing a few steps of CTMRG per step
of the FPCM can help improve the convergence of the algorithm and obtain a more
accurate fixed point environment. One can therefore think of FPCM as a way to
speed up a CTMRG implementation, by performing a step of FPCM periodically
during the CTMRG algorithm to help speed up convergence.

In the next section, we will describe a generalization of this algorithm to asymmetric
tensor networks.

5.3.6 Asymmetric FPCM
The asymmetric version of FPCM is not as straightforward as the symmetric version,
analogous to the case forCTMRG.Our strategy is to determine translational invariant
analogues of the CTMRG projectors shown in Eq. (5.15)–(5.17), and then determine
the environment tensors {Ci, A j} from fixed point equations.

We use the same ansatz as that used for the asymmetric CTMRG algorithm (as
presented in Sec. 5.3.3):

CLU AU

AL T

CURAU

ART

CRDAD

ART

CDL AD

AL T

. (5.30)

Using this ansatz for the environment, the left move of FPCM consists of the
following steps:
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1. “Biorthogonalize" the top and bottom uMPSs comprised of MPS tensors AU

and AD. Using AU/D, we find PL, P−L along with a new set of C′LU,C
′
DL

satisfying:
C′LU AU ∝ PL C′LU

(5.31)

C′DL AD ∝ P−L C′DL (5.32)

where PL, P−L satisfy Eq. (5.14). There are multiple possible methods for find-
ing tensors PL, P−L andC′LU,C

′
DL that satisfy Eq. (5.31)–(5.32), and the choices

are not unique. The method we use is described in detail in Appendix 5.B.

2. Obtain the left and right environments using the gauged MPS tensors PL, P−L
found in step 1. This is done by numerically solving the following fixed point
equations (in practice using an iterative method such as Arnoldi):

A′L T

PL

P−L

∝ A′L

. (5.33)

Steps 1–2 constitute the left move of the asymmetric FPCM algorithm. For a single
step of FPCM, the lattice is rotated, and the other directional moves are performed.
For example, one could follow the ordering of the directional CTMRG and next
perform the up move, then the right move, and then the down move. In practice, we
don’t find that the ordering makes a noticeable difference in the performance of the
algorithm.

Note that at each step, the CTMs can be obtained in an alternative way from the
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corner transfer fixed point equations:

C′LU AU

AL T

P−L

P−U ∝ C′LU
,

C′URAU

ARTPU

P−R

∝ C′UR

C′DL AD

AL T P−D

PL

∝ C′DL
,

C′RDAD

ARTPD

PR

∝ C′RD

(5.34)
which are generalizations of Eq. (5.29), the symmetric corner transfer fixed point
equation. We find that obtaining the corners with these equations leads to a more
accurate environment than those found in Eq. (5.31)–(5.31), which is particularly
important for calculating accurate observables, or if the step of FPCM is to be
followed by a step of CTMRG.

The algorithm looks very similar to the VUMPS algorithm when the network is
Hermitian about a certain direction (horizontal or vertical), in which case a pair
of tensors PL, P−L can be chosen to be isometric. However, like in CTMRG, the
corner matrices are used explicitly, not the center matrix of VUMPS/iDMRG, and
the corners can be seen roughly as “square roots" of the center matrix. This is
discussed in more detail in Ref. [4].

The leading cost of this algorithm, the calculation of the new boundaries, isO(χ3d2)

where χ is the bond dimension of the boundary, and d is the bond dimension of
the network (assuming the fixed point is calculated in a sparse way with an iterative
method such as Arnoldi and for simplicity assuming a large χ limit). This is the
same leading cost as single-site VUMPS or iDMRG. The cost of CTMRG, following
the most standard schemes, is generally a full eigendecomposition, singular value
decomposition, or QR decomposition of some part of the grown boundary. Since
the boundary is grown from a bond dimension χ to a bond dimension χd, these
decompositions lead to a scaling of the algorithm of O(χ3d3), so asymptotically
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both (single site) VUMPS and our new corner method scale better than traditional
CTMRG in the network bond dimension.

Even so, each step of traditional CTMRG can be much faster than the new schemes
presented, because of the fixed points that we must calculate. However, we will
see in the next section that exploiting fixed points leads to a large speedup in total
convergence time, because substantially fewer steps are needed for convergence.
The speedup is particularly pronounced for networks with small gaps. One way to
understand this is that the original CTMRG can be viewed as a power method, where
only a single row or column of tensors is absorbed into the environment at a time,
and the projectors are only determined in a local way. The new schemes properly
exploit the translational invariance of the system, and iterative methods such as
Arnoldi are known to be much faster than power methods for finding eigenvectors
of matrices with small gaps (and the gaps of the transfer matrices are expected to be
related to the gap of the system [146]). In addition, the projectors that are used for
renormalization in the new corner method are obtained from the current guess for
the entire (translationally invariant) boundary, not just a set of local tensors.

5.4 Results
Here, we present benchmark results for the methods described in the previous
section: CTMRG, VUMPS, and the new fixed point corner method (FPCM). We
benchmark the 2D classical ferromagnetic Ising model in Section 5.4.1, the 2D
classical XY model in Section 5.4.2, the 2D quantum spin-1/2 Heisenberg model in
Section 5.4.3, and the chiral ResonatingValenceBond (RVB) iPEPS in Section 5.4.4.

For all of the examples shown, the networks are on the square lattice and have a
single-site unit cell, and all tensors used are dense. Calculations were performed
with a single BLAS thread. For a fair comparison between different methods, the
starting boundary states are chosen to be small (usually with bond dimension 2),
the methods are run until convergence with the small bond dimension, and then the
bond dimension is increased to the final one (CTMRG is used to grow the bond
dimension for the FPCM, and the bond dimension growth scheme introduced in
Ref. [2] is used for VUMPS). Most of the calculations were performed using the
ExtremeScience andEngineeringDiscoveryEnvironment (XSEDE) [147]with Intel
Math Kernel Library (MKL), except calculations in Fig. 5.43, which were performed
on a laptop with OpenBLAS. Fixed points are calculated using the Arnoldi method
as implemented in ARPACK.
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5.4.1 2D classical Ising model
In Figures 5.41 and 5.42, we present benchmark results for the isotropic 2D
ferromagnetic classical Ising model. The MPO comprising the partition function
for this model has a link bond dimension of d = 2, and the tensor can be taken
to be real and symmetric about all rotations and reflections. The environment
tensors we use for all methods are restricted to being real. For CTMRG and the
FPCM, in the ansatz in Eq. (5.6), we impose AU = AR = AD = AL ≡ A and
CLU = CUR = CRD = CDL ≡ C, and additionally impose As = (As)T and C = CT .
ForVUMPS, in Eq. (5.18), we impose [AR

U]
s = ([AL

U]
s)T andCU = CT

U . Additionally,
when we calculate observables, we set the bottom fixed point uMPS equal to the top
fixed point uMPS. For CTMRG, we find the projector to renormalize the boundary
using a symmetric eigendecomposition, which is fast and numerically very stable.

From Figures 5.41 and 5.42, we see that as we approach the critical point of the 2D
classical Ising model, the performance improvement of VUMPS and our new fixed
point corner method over CTMRG increases. This can be understood by the fact
that the boundary tensors for the new methods are obtained from solving fixed point
equations (in practice with Arnoldi and Lanczos methods), which are known to be
faster than power methods for finding extremal eigenvectors of matrices with small
gaps. This indicates that these new methods are better suited for studying systems
close to or at criticality, e.g. in combination with the theory of “finite entanglement
scaling" [148–151].

In Figure 5.43, we present results for the 2D ferromagnetic classical Ising model
with a gauge transformation introduced on the links, as follows:

T →

Y

X T X−1

Y−1

. (5.35)

These gauge transformations, for random complex non-unitary matrices X and Y ,
artificially break the rotation and reflection symmetries of the Ising model partition
function. Gauge transformations like these can be introduced during an iPEPS
optimization if explicit symmetries are not enforced, even if the state being targeted
is expected to be rotationally symmetric. The environments we use for all methods
are complex.
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(a) (b)

Figure 5.41: Plots of the error in the magnetization for the isotropic 2D classical
Ising model at two temperatures near criticality, where (b) is closer to criticality
than (a). The network has a bond dimension of d = 2, and a boundary MPS bond
dimension of χ = 600 is used. A fully symmetric CTM ansatz is used for CTMRG
and the FPCM, and full symmetry is exploited in VUMPS. The speedup of VUMPS
and the corner method over CTMRG increases as one gets closer to criticality. Stars
indicate the environment tensors have reached a fixed point, and data points beyond
those points are numerical fluctuations and were not shown in order to simplify the
plot.

We compare four different methods. In Fig. 5.43a, we show results using the
asymmetric CTMRG method proposed by Corboz et al. in Ref. [108]. For this
example, the LAPACK routine gesdd, a common default inmany numerical libraries,
is used for the SVD. Because of a limit we find in the precision for this SVD routine,
a pseudoinverse cutoff of 5 × 10−8 must be used for the method to be numerically
stable, as discussed in more detail in Chapter 4. Note that a higher precision can
be obtained using the more computationally expensive LAPACK routine gesvd for
the SVD, as we show in Ref. [3]. In Fig. 5.43b, we show results for performing
a step of the FPCM introduced in Section 5.3.6 every five steps of the CTMRG
method of Corboz et al., which we see substantially speeds up the convergence time,
but has the same limit in precision when the gesdd LAPACK routine is used in the
biorthogonalization step of CTMRG.

In Fig. 5.43c, we show results for a newly proposed asymmetric CTMRG method
introduced in Chapter 4. This method is a variation of the method of Corboz et al. to
improve the conditioning of the inverse to allow for a higher precision. In Fig. 5.43c,
we show that performing FPCM every few steps of CTMRG (in practice we use five)
substantially speeds up the convergence time. We refer readers to Ref. [108] and
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Figure 5.42: Convergence time as a function of inverse temperature above criticality,
β/βc−1, for the 2D classical Ising model. For all data points, a boundaryMPS bond
dimension of χ = 600 is used. All data is converged to an error in the magnetization
of < 2 × 10−9. The inset shows the ratio of the convergence time of CTMRG and
VUMPS with respect to the FPCM convergence time.

Chapter 4 for more details on the asymmetric CTMRG methods that we use here.

Note that we found that the asymmetric FPCMmethod as presented in Section 5.3.6
alone has a tendency to “get stuck," i.e., not find the proper fixed point environment
for a given bond dimension. It is possible that a modification of the method itself
can fix this problem, but we find that as presented, the method is very simple and
numerically stable, and combining with CTMRG is very effective and robust.

5.4.2 2D classical XY model
In Figure 5.44a, we present results for contracting the partition function for the 2D
classical XY model. Because the lattice degree of freedom is continuous for this
model, the MPO tensor comprising the partition function can only be constructed
approximately, though to high accuracy. The XYmodel has been studied previously
with a transfer matrix DMRG (TMRG) [152], which is a method that is closely
related to CTMRG [70–72] and the transfer matrix version of VUMPS presented
in Section 5.3.4. Additionally, related models have been studied previously with
CTMRG [75, 76]. The construction we use for the partition function is described
in Ref. [153, 154], where HOTRG was used to contract the partition function, and
we refer readers to those references for details. We refer readers to those previous
references for details on constructing the MPO for this model. We use an inverse
critical temperature 10% below the critical point estimated in that reference, and use
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(a) (b)

(c) (d)

Figure 5.43: Plots of error in magnetization for the isotropic ferromagnetic 2D clas-
sical Isingmodel at β/βc−1 = 10−3 with random non-unitary gauge transformations
introduced on the horizontal and vertical links, as shown in Eq. (5.35). This arti-
ficially breaks the lattice symmetry in order to test each method on an asymmetric
network. (a) shows results for the asymmetric CTMRG algorithm by Corboz et al.
in Ref. [108], (b) shows results for the FPCM introduced in this work combined with
the CTMRG algorithm used in (a), (c) shows results for a newly introduced CTMRG
algorithm introduced in Chapter 4, and (d) shows results for the FPCM introduced
in this work combined with the CTMRG algorithm used in (c). For more details
about the methods used, we refer readers to the main text.

an approximation for the MPO with a link bond dimension of d = 25. We use zero
applied magnetic field, and at this temperature the model is known to be gapped.
Since the U(1) symmetry cannot be broken at any finite temperature, we expect the
magnetization to be zero.

The MPO tensor comprising the partition function is real and symmetric about
reflections about the diagonals of the network, but note about the x and y axes.
The environments we use for all methods is restricted to being real. For CTMRG



100

(a) (b)

(c)

Figure 5.44: (a) Plot of magnetization for the 2D classical XY model, for network
bond dimension d = 25 and boundary MPS bond dimension χ = 50. (b) Plot of
error in energy (compared to Monte Carlo results) for the 2D quantum Heisenberg
model. The network bond dimension is d = 25 (or PEPS bond dimension

√
d = 5),

and the MPS boundary bond dimension χ = 100. (c) Plot of error in the norm
(where the “exact" results is taken to be an extrapolation of the norm in the limit of
a large environment bond dimension) of the chiral RVB PEPS. The network bond
dimension is d = 9 (or PEPS bond dimension

√
d = 3), and the boundary MPS

bond dimension is χ = 800.

and the FPCM, in the ansatz in Eq. (5.6), we impose AU = AT
R = AD = AT

L ≡ A,
CLU = CUR ≡ C, and CDL = CRD ≡ D, and additionally impose C = CT and
D = DT . For VUMPS, in Eq. (5.18), we don’t impose any symmetries, but when
we calculate observables, we set the bottom fixed point uMPS equal to the transpose
of the top fixed point uMPS (such that the environment is invariant under a rotation
by π).

For CTMRG, we obtain the projectors using a symmetric diagonalization of the
grown corner. For FPCM, we obtain the fixed point projectors by isometrically
gauging the boundaryMPS. Additionally, like for the asymmetric FPCM calculation
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performed in Section 5.4.1, we find it is best to alternate between steps of FPCM and
CTMRG instead of performing FPCM alone, and the results shown are obtained by
performing a few steps of CTMRG per step of FPCM.We see that VUMPS performs
noticeably worse than the FPCM, likely because the ansatz used for VUMPS cannot
exploit the lattice symmetry as well as the CTM ansatz. Like with the Ising model,
we expect the improvement of the FPCM compared to CTMRG to become even
more pronounced closer to the critical point.

5.4.3 2D quantum Heisenberg model
In Figure 5.44b, we present results for contracting an iPEPS approximation to the
ground state of the 2D quantumHeisenbergmodel. The iPEPS tensor was optimized
using the conjugate gradient method described in Ref. [121]. We plot the error in
the energy relative to the energy obtained from Monte Carlo simulations [155].

The iPEPS tensor is complex and symmetric (not Hermitian) about all rotations
and reflections, which was a symmetry imposed in the optimization. Therefore, the
MPO tensor that comprises the tensor network for the norm of the iPEPS is also
complex and symmetric about all rotations and reflections. The environment we use
for all methods are necessarily complex. For CTMRG and the FPCM, in the ansatz
in Eq. (5.6), we impose AU = AR = AD = AL ≡ A, CLU = CUR = CRD = CDL ≡ C,
and additionally impose C = CT . For VUMPS, in Eq. (5.18), we don’t impose any
symmetries 3, but when we calculate observables, we set the bottom fixed point
uMPS equal to the top fixed point uMPS (not the conjugate of the top fixed point,
as we would do if the MPO was Hermitian as opposed to complex symmetric). The
CTMRG algorithm we use is a modification of the one from Ref. [108], where the
symmetry of the network is exploited wherever possible. The FPCM method we
use is a modification of the asymmetric version presented in Section 5.3.6, where
the symmetry of the network is exploited wherever possible. Additionally, we use a
modification of the uMPS biorthogonalization procedure inAppendix 5.B, wherewe
first gauge the uMPSs isometrically before we biorthogonalize them. As previously
mentioned in Sections 5.4.1–5.4.2, we find for the FPCM that it is best to perform a
few steps of CTMRG per step of the FPCM, which we find improves the convergence
time.

3One may expect that we could set [AR
U ]

s = ([AL
U ]

s)T and CU = CT
U . However, we were unable

to get VUMPS to converge with these constraints imposed, and it would likely require a nontrivial
modifications of the VUMPS algorithm.
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5.4.4 Chiral resonating valence bond iPEPS
In Figure 5.44c, we present results for contracting a chiral resonating valence bond
(RVB) iPEPS. The chiral RVB PEPS state was introduced as a chiral extension of
the traditional nearest neighbor RVB PEPS [156, 157]. As in the previous works
on this model, we choose λ1 = λ2 = λchiral = 1, where λ2 = λchiral = 0 would
correspond to the non-chiral nearest neighbor RVB state. We refer readers to those
previous works on this model for details on its derivation and physics.

The PEPS tensor (and therefore double layer MPO tensor) for this model is complex
and Hermitian about the horizontal, vertical and diagonal reflections of the lattice.
For CTMRG and the FPCM, in the ansatz in Eq. (5.6), we impose AU = AR = AD =

AL ≡ A and CLU = CUR = CRD = CDL ≡ C, and additionally impose As = (As)†

and C = C†. For VUMPS, in Eq. (5.18) we do not impose any symmetries 4.
When we calculate observables, we set the bottom fixed point uMPS obtained from
VUMPS equal to the complex conjugate of the top fixed point uMPS. For CTMRG,
the projectors are obtained with a Hermitian diagonalization of the grown corner,
and for FPCM, the fixed point projectors are obtained by isometrically gauging the
boundary uMPS.

Again, we see an improvement in performance of the FPCM and VUMPS over
CTMRG, but the new fixed point corner method performs better than VUMPS (we
believe for this case because the symmetry of the network is exploited better in the
CTM ansatz). Again, we perform a few steps of CTMRG per step of the FPCM,
which we find improves the convergence time.

5.5 Conclusion and Outlook
We presented two new approaches for contracting infinite 2D tensor networks, such
as 2D classical partition functions and 2D quantum states represented as iPEPS.
One approach uses the recently proposed VUMPS algorithm to obtain boundary
MPSs that approximate the infinite environment of the tensor network. The other
approach uses the CTM ansatz like CTMRG, but improves upon CTMRG by solving
for the boundary tensors with fixed point equations, which we refer to as the fixed
point corner method (FPCM). With careful benchmarking, we compared these new
approaches to CTMRG for a variety of systems, which is currently the most widely
used method for contracting 2D tensor networks in iPEPS calculations. We found

4One may expect that we could set [AR
U ]

s = ([AL
U ]

s)† and CU = C†U . However, we found in
practice these relations only held up to diagonal phases. This could possibly be fixed by some
modification of the VUMPS algorithm.
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that both methods improve upon the performance of CTMRG, though for certain
models, the improvement is more pronounced for FPCM as opposed to VUMPS.

We showed that the improvement upon CTMRG is particularly pronounced as mod-
els approach criticality, as exemplified by our benchmarking of the 2D classical
Ising model. This can be explained by the fact that, as the gap of the model closes,
so too does the gap of the transfer matrix. By solving for the boundary tensors with
fixed point equations, methods such as Arnoldi and Lanzos can be used, which are
known to perform better than power methods for finding extremal eigenvectors of
matrices with small gaps. Even though each step of the new approaches we present
can be slower than each step of CTMRG, substantially fewer steps are required to
reach fixed points leading to an overall improvement in the performance.

We are convinced that these new methods directly improve the performance of
current state of the art iPEPS optimization techniques, where the contraction of the
network is the most computationally expensive step. When combined with recently
introduced variational methods for optimizing iPEPS[115, 121], we expect that
significant improvements can still be made to existing iPEPS algorithms.
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APPENDIX

5.A New algorithm for isometrically gauging a uMPS
Starting with a uniform MPS comprised of the MPS tensor A, we would like to find
the gauge in which the left fixed point of the MPS transfer matrix is identity from
bra to ket (the “canonical" gauge). In other words, we would like to find U and C

which satisfy:
C A ∝ U C

(5.36)

U

Ū

=

. (5.37)

A method for finding the orthogonal gauge for a uMPS was first proposed in the
context of the iTEBD algorithm[128] and involves a pseudoinverse of the matrix C

to solve for U. Unfortunately, this means that U is generally only approximately
isometric, and the accuracy up to which this “pulling through" equation can be
satisfied may be limited for a uMPS with small singular values.

We now present a fast, robust and highly accurate alternative, whereU is constrained
to be isometric and no explicit matrix inversions are used. Similar to previous
methods, we start by finding the left fixed point which we suggestively call C2 of
the MPS transfer matrix:

C2 A

Ā
∝

C2

. (5.38)

From properties of the transfer matrix, we know that C2 is a positive Hermitian
matrix (up to numerical errors). We obtain C by taking the square root of C2 (for
example by performing a Hermitian eigendecomposition ofC2 and taking the square
roots of the positive eigenvalues). We now obtain our initial U by performing the
following polar decomposition:

C A = U P
(5.39)

where U is read off as the isometry obtained from the polar decomposition, and P

is the positive Hermitian matrix obtained from the polar decomposition. |C − P | is
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taken to be our initial error in the gauging. Because we took a square root of C2, our
initial error may be limited to the square root of machine precision, i.e. O(10−8). If
higher precision is required, we repeat the following steps until convergence:

1. Get a new corner matrix C from the mixed transfer matrix of A and Ū by
approximately solving for the maximal eigenvector of the fixed point equation:

C A

Ū
∝ C

. (5.40)

2. Get a new U′ using the new C from step 1. First, take the (left) polar
decomposition of C to get C = QC′, where C′ is positive and Hermitian.
Then, obtain the new U′ from a polar decomposition similar to before, i.e.,

C′ A = U′ P′
. (5.41)

We measure the error of the current iteration as |C′ − P′|, and repeat steps 1 and 2
until a desired tolerance is met.

5.B New algorithm for “biorthogonalizing" two uMPS
We now describe how to “biorthogonalize" two uMPSs (with single-site unit cells)
that are respectively comprised of MPS tensors AU and AD. By biorthogonalize,
we mean that we wish to gauge transform AU and AD to gauges in which in one
direction the fixed point of the mixed MPS transfer matrix formed from the two
uMPSs is the identity matrix from bra to ket. In other words, we would like to gauge
transform AU and AD so that they satisfy:

CLU AU ∝ PL CLU

(5.42)

CDL AD ∝ P−L CDL (5.43)

where PL and P−L are tensors satisfying

PL

P−L

≈

. (5.44)
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If As
D = (A

s
U)
† (possibly after fixing a gauge degree of freedom), one can use the

approach introduced in Appendix 5.A, or use the iTEBD algorithm from Ref. [128].
In that case, PL and P−L can be chosen to be isometries, such that [P−L ]

s = (Ps
L)
† and

(Ps
L)
†Ps

L = I.

If AD is not the conjugate of AU , then in general PL and P−L won’t be isometries,
and there are multiple possible approaches for satisfying Eq. (5.42)–(5.43). The
approach we use is the following:

1. We start by getting the left fixed point CL of the mixed transfer matrix of AU

and AD:
CL AU

AD

∝

CL

. (5.45)

2. We now take the SVD of CL = ULΣ
2
LV†L . We define CLU ≡ ΣLV†L and

CDL ≡ ULΣL and define PL, P−L as follows:

PL = CLU AU C+LU

(5.46)

P−L = CDL AD C+DL . (5.47)

Here, C+LU = VLΣ
+
L and C+DL = Σ

+
LU†L .

This procedure can be viewed as one possible fixed point formulation of biorthogo-
nalization procedure introduced byHuang [123–125] in the context of non-Hermitian
transfer matrix DMRG (TMRG) and originally applied to CTMRG by Corboz et
al. [108].

In practice, we find that PL, P−L from Eq. (5.42)–(5.43) may not satisfy Eq. (5.44)
well enough. If this is the case, we can perform a procedure that we refer to
as “reorthogonalization." For reorthogonalizing PL, P−L we perform the following
steps (which are essentially just the steps listed above applied to biorthogonalizing
PL, P−L ):

1. Calculate the dominant left fixed point of the mixed MPS transfer matrix of
PL, P−L calculated from Eq. (5.42)–(5.43) above:

YL PL

P−L

∝

YL

. (5.48)
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2. Take the SVD of YL = UΣ2V†, defining YLU = ΣV† and YDL = UΣ. Then,
update Ps

L → YLU Ps
LY+LU , [P

−
L ]

s → Y+DL[P
−
L ]

sYDL , CLU → YLUCLU , and
CDL → YDLCDL .

These steps can be repeated a number of times. Typically, a small number of
repetitions (5 to 10) is advantageous for improving the accuracy of the biorthogo-
nalization. It is interesting to point out that a similar concept of reorthogonalization
is used in standard Krylov subspace methods.

This is only one possible choice for biorthogonalizing two uMPS, and more details
about alternative methods are discussed in Ref. [124].

Note that we found that, once the tensors PL, P−L were obtained, an alternative way
to obtain CLU/DL is with the following fixed point equations:

C′LU AU

P−L

∝ C′LU

(5.49)

C′DL

PL

AD

∝ C′DL

(5.50)

which may give better matrices CLU/DL for the purpose of FPCM.

Notice that in the limit when As
D = (A

s
U)
†, this biorthogonalization procedure

reduces to an algorithm similar to the iTEBD algorithm from Ref. [128], if that
algorithm is used to just gauge a uMPS isometrically from the left.

Additionally, we will describe an alternative biorthogonalization method that we
have tested with the asymmetric FPCM. One could first gauge the uMPS AU and AD

isometrically from the left (for example using themethod described inAppendix 5.A)
to obtain the isometrieswhichwewill call AL

U and AL
D. Then, the biorthogonalization

procedure can be applied to the isometries AL
U, AL

D to obtain what would in general
be a different set of PL, P−L and CLU,CDL in Eq. (5.46)–(5.47). Although this seems
to improve the conditioning of the inverse, we found that using this method in the
FPCM led to numerical instabilities of the FPCM at larger bond dimensions that
were not fixed by setting a pseudoinverse. However, we found that this isometric
gauging can work when there are symmetry constraints between the top and bottom
uMPSs (for example in the Heisenberg model example in Section 5.4.3).
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