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ABSTRACT

The use of hydrogen as a fuel for power generation applications has been suggested
as an additive to, or replacement of, hydrocarbon fuels. The safety of hydrogen
combustion has also received recent attention due to nuclear power plant disas-
ters and the rise of hydrogen refuelling stations. In these uses and scenarios, lean
hydrogen–air flames are prone to thermo-diffusive instabilities which can be danger-
ous to equipment and personnel. These instabilities are heavily influenced by two
mechanisms: transport properties (e.g., diffusion) and chemical species production
rates. This thesis investigates lean premixed hydrogen combustion using direct nu-
merical simulations. A wide range of flame configurations are considered, spanning
one-dimensional steady configurations to three-dimensional unsteady laminar and
turbulent flames with high curvature. In particular, the two controlling mechanisms
of thermo-diffusive instabilities are carefully investigated.

The effects of transport properties, in particular the importance of thermal diffusion
in these mixtures, are quantified through global and local evaluations. Thermal
diffusion is found to change flame speeds in one-dimensional flat flames, and also
modify species profiles due to the increased diffusivity of light reactants. The im-
pact of thermal diffusion is greatly enhanced in the presence of flame curvature,
resulting in higher flame speeds (20% to 30% for two- and three-dimensional lam-
inar and turbulent flames), fuel consumption, and flame surface area relative to
simulations neglecting thermal diffusion. The mixture-averaged thermal diffusion
model proposed by Chapman and Cowling (1970) is found to accurately reproduce
global and local flame statistics (including enhanced burning and local extinction)
computed using multicomponent transport at significantly reduced costs. Further
cost reductions of the mixture-averaged thermal diffusion method are undertaken,
and a new model is developed with constant computational requirements for large
(~100 species) chemical models. The resulting reduced thermal diffusion model
additionally improves upon the accuracy of the mixture-averaged thermal diffusion
technique.

The effects of fluctuating chemical source terms on flame instabilities are then inves-
tigated using tabulated chemistry. One-dimensional unstretched flames including
non-equal diffusion and thermal diffusion are incorporated into a chemistry table.
This table successfully captures the interaction of differential diffusion and flame
curvature. The chemistry tabulation approach is applied to a similar set of flame
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configurations, and accurate predictions of global and local statistics are found. The
tabulated chemistry method reproduces flame curvature, local enhanced burning,
and local extinction of unstable flames using one-dimensional, flat, burning flames
in its construction. The proposed reduced-order thermal diffusion and chemistry
tabulation models significantly reduce computational costs while simultaneously in-
cluding physical properties necessary to predict lean premixed hydrogen–air flame
instabilities.
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C h a p t e r 1

INTRODUCTION

1.1 Background and motivation
Energy production and consumption in the United States are both projected to grow
over the next several decades; natural gas is expected to have the largest absolute
growth (in consumption and production) as an energy source [1]. This projection
suggests that the amount of carbon dioxide produced by burning natural gas will
increase at a rate of nearly 1% per year for the next 30 years. The energy outlook pre-
dictions also include a substantial growth in renewable energy production. However,
every growing energy source has challenges which must be overcome. Among other
difficulties, natural gas consumption releases pollutants such as carbon monoxide,
carbon dioxide, unburnt hydrocarbons, and soot. Alternatively, renewable energy
technologies (e.g., wind and solar) suffer from production intermittency. Solving
these problems would significantly increase the impact of each energy technology.

Hydrogen combustion provides viable solutions to the natural gas and renewable
energy challenges mentioned above. One proposed improvement for natural gas
combustion is adding hydrogen to the natural gas mixture during the combustion
process [85]. This addition (in hydrogen quantities up to 20% by volume) was found
to be possible without changes to end-user devices [119]. Further, introduction
of 15% hydrogen by volume to a natural gas mixture shows potential to reduce
nitrogen oxide (NOx) emissions to 3 parts per million (ppm), comparable to other
NOx reduction strategies, with small changes to the combustor [118]. Additionally,
a mixture of H2 with CH4 and air was shown to reduce NOx emissions to levels
below that of a CH4–air mixture [78]. Alternatively, several studies have considered
replacing hydrocarbon fuels entirely with premixed hydrogen mixtures [25, 26, 32,
78]. Burning hydrogen exclusively would eliminate CO, CO2, unburnt hydrocarbon,
and soot emissions.

In renewable energy applications, hydrogen can be used as a storage medium during
periods of excess energy generation [47]. The excess energy could then be recovered
by combusting the hydrogen in gas turbines. Burning hydrogen in this manner would
use similar power plant technologies which already exist and have been shown
capable of utilizing hydrogen-enriched natural gas and syngas (a mixture of H2, CO,
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and often CO2). The reuse of existing facilities and technology would drastically
reduce implementation costs; modifications would only be necessary to the burner
geometry and gas turbine [35].

The importance of understanding hydrogen combustion is not limited to the power
sector, but extends also to uncontrolled (or undesired) combustion. There has been
a significant increase in both construction and usage of hydrogen refueling stations
for hydrogen fuel cell vehicles in California [71]. The further adoption of hydrogen
powered vehicles will require informing the public of their safety [70]. Additionally,
the FukushimaDaiichi nuclear reactor accident involved a hydrogen explosion at one
of the reactor buildings. This failure led tomultiple reports detailing the catastrophic
events which resulted in a build-up of hydrogen gas and its ultimate detonation [56,
127].

This thesis investigates premixed hydrogen–air combustion, primarily for power
plant applications. Being able to accurately and effectively characterize the safety of
hydrogen as a fuel source requires a more complete understanding of its combustion.
Further, the design process of novel burner geometries for power plant applications
must include the effects of the combustion process. Of particular interest are
the capabilities of numerical simulations to predict fundamental flow phenomena
present in the hydrogen combustion process.

1.2 Premixed hydrogen combustion
This thesis focuses on premixed combustion, where the reactants (fuel, oxidizer,
and often a diluent) are fully mixed prior to combustion. At stoichiometric con-
ditions (where complete combustion of fuel and oxidizer occurs), with an unburnt
temperature of Tu = 298 K and pressure of po = 1 atm, the combustion of hydrogen
has a flame temperature of approximately Tad = 2360 K, where Tad is the adiabatic
flame temperature in the burnt mixture. This high flame temperature would generate
large amounts of NOx [97], on which government agencies have placed stringent
emission standards [2]. One method to decrease NOx emissions is to lower the
flame temperature by reducing the mixture fuel-air equivalence ratio (i.e., having a
fuel-lean mixture). The equivalence ratio, φ, is defined as the mass ratio of fuel to
oxidizer, normalized by the stoichiometric mass ratio of fuel to oxidizer. Reducing
the equivalence ratio to a fuel-lean mixture implies having an excess of oxidizer
while fully consuming the fuel.

One of the primary challenges facing adoption of lean hydrogen combustion is the
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Figure 1.1: Schematic of a thermo-diffusive instability, showing relative diffusion
rates toward the flame. Figure from Sánchez and Williams [107].1

presence of flame instabilities. These thermo-diffusive instabilities (which result
from preferential diffusion between heat and molecular diffusion) [83, 115] cause
an increase in the flame propagation speed and may lead to flame flashback, blowoff,
and acoustic noise [26]. Understanding these instabilities would lead to improved
combustor designs for gas turbines (e.g., the low-swirl burner [25, 26]) and the
development of accident prevention measures for refueling stations and nuclear
power plants (e.g., flame arresters). As part of understanding the flame instabilities,
it is necessary to characterize and accurately predict the formation, structure, and
effects of the flame instabilities.

1.3 Thermo-diffusive instabilities
The causes and effects of thermo-diffusive instabilities have been investigated the-
oretically [10, 27, 96], experimentally [18, 76, 86], and numerically [5, 9, 46, 51,
94, 129]. These instabilities result from unequal mass and temperature diffusivi-

1Reprinted from Progress in Energy and Combustion Science, 41, Antonio L. Sánchez and
Forman A. Williams, Recent advances in understanding of flammability characteristics of hydrogen,
1–55, Copyright (2014), with permission from Elsevier.
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ties, i.e., non-unity Lewis numbers where thermal diffusivity, α, and species mass
diffusivities, Di,m, are different, and are shown schematically in Fig. 1.1. This
illustration represents a flame front and the paths of various reactants. For a lean
hydrogen–air flame, strongly diffusing reactants include H and H2, while weakly
diffusing reactants include species such as O2 and H2O2. The strongly diffusing
reactants propagate toward the convex region behind the reaction sheet, resulting
in an increase in heat release and temperature. This section of the reaction sheet
propagates faster than the concave region, due to the increased heat release, causing
the instability to grow.

The Lewis number, which helps delineate strongly diffusing species from weakly
diffusing species, is defined as Lei = α/Di, where α is the thermal diffusivity and
Di is the mass diffusivity of species i. An example of the Lewis numbers for a
lean hydrogen–air mixture (with an equivalence ratio of φ = 0.4) is shown in Fig.
1.2. For light species, such as H and H2 with sub-unity Lewis numbers, the species
diffuse more rapidly than temperature, causing the focusing effect of the fuel and
radicals in regions of the reaction sheet convex to the unburnt mixture found in Fig.
1.1; this process has been studied extensively [5, 51, 94, 115].

In addition to differential diffusion, thermal diffusion, i.e., species flux due to tem-
perature gradients (Soret effect) and energy flux due to species gradients (Dufour
effect), may also enhance thermo-diffusive instabilities. The thermal diffusion coef-
ficients, DT

i , of H and H2 are negative (mass diffusion in the direction of increasing
temperature), leading to increased fuel diffusion toward the reaction zone [51]. This
diffusion results in a strengthening of the previous fuel-focusing effect which, in
turn, increases the flame speed of lean hydrogen flames in multidimensional con-
figurations. As an example, Fig. 1.3 shows a thermo-diffusive instability along
an isosurface (representing the reaction sheet) of a simulation result which will be
investigated further in Chapter 3.

Diffusion and reaction rates are both critical to the formation of thermo-diffusive
instabilities. Thus, extensive investigations of the models used in simulations of
lean hydrogen–air combustion must be undertaken. These two effects are discussed
in the following sections.

1.4 Mass and thermal diffusion models
As supercomputing clusters become more powerful, the natural trend in many fields
is to implement more complex physics in numerical simulations. For combustion
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Figure 1.2: Lewis number for each species in the nine-species hydrogen model of
Hong et al. [59, 60, 72] as a function of temperature.

Figure 1.3: Thermo-diffusive instability in a premixed lean hydrogen–air simulation.

applications, this advancement takes many forms. First, increasingly complex do-
mains are being considered, including three-dimensional turbulent flames [5–8, 11,
20, 33, 34]. Additional uses of the increased computing resources include detailed
kinetic modeling with large chemical models (e.g., CaltechMech with 190 chemical
species and 1938 reactions), refined grids which resolve turbulent features (moving
toward larger direct numerical simulations), and incorporating detailed descrip-
tions of transport properties that are frequently neglected (such as multicomponent
diffusion).

A wide variety of models and computational methods have been used in the study
of mass diffusion (i.e., diffusion of species due to species concentration gradients).
These techniques include multicomponent, mixture-averaged, and constant Lewis
number models. For the study of lean hydrogen–air flames, constant Lewis numbers
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[20, 62], mixture-averaged models (with or without thermal diffusion) [3, 6–9, 11,
20, 33, 34, 46, 51], and full multicomponent diffusion with thermal diffusion [51,
53, 128] have all been used. In particular, Grcar et al. [51] showed that, for a two-
dimensional flame, full multicomponent transport with thermal diffusion resulted in
average flame speeds 22% higher than mixture-averaged mass diffusion neglecting
thermal diffusion. Hall and Pitz [53] also showed that multicomponent and mixture-
averaged mass diffusion both predicted nearly-identical flame structures. In many
of these investigations, thermal diffusion is neglected.

The tendency to use mixture-averaged diffusion and neglect thermal diffusion ex-
tends from one-dimensional flames to turbulent three-dimensional flames. Further,
to the author’s knowledge, no thermal diffusion model has been included (multicom-
ponent or otherwise) in a turbulent lean hydrogen flame simulation, with only limited
exploration in other turbulent fuel mixtures (e.g., CH4/H2/air [23], syngas [19], and
high hydrogen content syngas [101]). There is a need to evaluate the importance
of thermal diffusion in lean hydrogen flames, especially in three-dimensional and
turbulent flame configurations.

1.5 Importance and inclusion of thermal diffusion
Traditional mixture-averaged diffusion models [12] and the constant Lewis number
assumption both neglect thermal diffusion. A brief review of literature concerning
effects of thermal diffusion on lean hydrogen–air premixed flames shows the impor-
tance of thermal diffusion in simplified configurations. In their early contributions
of premixed flame theoretical analyses, García-Ybarra et al. [48] demonstrated
that the Soret and Dufour effects have a non-negligible impact on hydrogen–air
mixtures, especially in wrinkled configurations. Numerical results of hydrogen–air
flames have demonstrated similar findings, using various levels of approximation
for chemistry and diffusion, as well as different flame configurations [15, 39, 41, 51,
123, 128]. Collectively, these works indicate that thermal diffusion has a critical
effect on lean hydrogen–air flames, and its influence is greater in the presence of
flame curvature and stretch.

The computational cost is often the limiting factor when using the multicom-
ponent diffusion model (where Soret and Dufour effects are typically included)
in three-dimensional turbulent flame configurations. What is needed, then, are
computationally-efficient models to calculate the thermal diffusion coefficients. In
order to reduce the cost of applying thermal diffusion to complex three-dimensional
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flames with curvature, a few reduced-order models for thermal diffusion have been
proposed, in addition to iterative techniques for the multicomponent model [40].
One of the first mixture-averaged thermal diffusion models is attributed to Chapman
and Cowling [24] (in particular, §18.43). This model, based on the first approxima-
tion of the thermal diffusion ratio, [kTi]1, is derived from kinetic theory and reduces
the cost of finding thermal diffusion coefficients by evaluating a simple set of alge-
braic equations. This is in contrast to inverting a large linear system as is done in
classical multicomponent diffusion modeling [37, 66]. Recently, a semi-empirical
model [66] and polynomial fits [53] for the thermal diffusion coefficients have been
proposed. While a fourth-order polynomial fit seemed to predict the species profiles
in a specific configuration, the polynomial was acquired a posteriori [53] and, as
such, extensive work would be necessary to show that the model is valid for a range
of fuel mixtures and operating conditions. Thus, there is also a need to develop and
evaluate a reduced-order thermal diffusion model applicable to a wide range of fuel
mixtures and flame configurations.

1.6 Chemistry models
Similar to mass and thermal diffusion, multiple models exist to describe all the
chemical reactions occurring in hydrogen mixtures. Two common approaches,
finite-rate and tabulated chemistry, are introduced in this section. Full details of the
governing equations for finite-rate chemistry are provided in Section 2.3.1, while
derivations involving tabulated chemistry are the focus of Chapter 5.

1.6.1 Brief overview of finite-rate chemistry
Finite-rate chemistry (or, equivalently, detailed chemistry) describes the complete
combustion process from a fuel and oxidizer mix to the products. Whereas a global
reaction might be given as 2H2 + O2 −−−→ 2H2O, finite-rate chemistry instead
solves elementary reactions. Several critical reactions included in these mechanisms
include the decomposition of the fuel (H2 + O −−−→ OH + H) and oxidizer (H +
O2 −−−→ OH +O), as well as product formation (H2 + OH −−−→ H +H2O and OH +
H −−−→ H2O). These elementary reactions not only demonstrate physical collisions
between molecules, but they also help in identifying reactions which may accelerate
the chemistry (chain-branching reactions) or terminate the reactions (chain-breaking
reactions).

The previously mentioned elementary reactions are only a small selection of those
implemented in finite-rate chemistry. For example, one common hydrogen–air
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chemicalmodel contains nine species participating in 54 chemical reactions (forward
and backward reactions counted separately) [59]. Chemical models describing
hydrocarbon combustion can contain hundreds of species and thousands of reactions
[14]. These reactions are described usingArrhenius reaction rates fit to experimental
data. In simulations using finite-rate chemistry, one transport equation is required
for each species, and the computation of chemical source terms requires considering
each reaction that a species participates in. A description of the finite-rate chemistry
equations is given in Section 2.3.1.

1.6.2 Tabulated chemistry
Tabulated chemistry reduces the number of partial differential equations from one
equation per chemical species in the mixture (potentially in the hundreds) to only a
few (often one or two). This chemistry reduction technique has been used widely in
various forms, e.g., intrinsic low-dimensional manifolds (ILDM) [80], the flamelet
prolongation of ILDM (FPI) [49], flamelet generated manifolds (FGM) [90], and
the flamelet/progress variable method (FPV) [68, 69, 99], among others. Chemistry
tabulation finds significant use in turbulent flame configurations using both direct
numerical simulations and large eddy simulations [44, 89, 122].

Tabulation on a single reaction progress variable, C, has been considered in the past
(see, among others, [89–91]), leading to a transport equation of the form

∂t (ρC) + ∇ · (ρuC) = ∇ · (ρDC∇C) + ρ ÛωC . (1.1)

In this equation, u is the velocity, ρ is the gas density, DC represents the diffusion
coefficient of the progress variable, and ÛωC is the progress variable source term.
Note that a progress variable represents the completeness of the governing global
reaction and often takes the form of fuel or product mass fractions.

Tabulating the chemistry on only a progress variable from one-dimensional un-
stretched flames does not capture stretch or curvature effects [89, 91]. These effects
play a significant role in thermo-diffusive instabilities and turbulent flames (e.g.,
altering the flame structure, chemical source terms, and flame speed [4, 34, 109]);
thus, inclusion of curvature or stretch in tabulated chemistry models is critical.
Previous works have explored methods to include stretch and curvature by either
changing the underlying one-dimensional flames (e.g., stretched flames) or changing
the tabulation variables. Several of these methods include using constant stretch or
curvature in one-dimensional flames [89], varying the unburnt mixture properties of
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the one-dimensional flames [9], and using a mixture fraction-like tabulation variable
(Z) to capture local equivalence ratio fluctuations [102].

Regele et al. re-derived a mixture fraction transport equation allowing for differen-
tial diffusion (i.e., non-unity Lewis numbers) [102]. The mixture fraction, Z , is a
measure of local equivalence ratio, most commonly found in diffusion flame litera-
ture. In those flames, Z typically ranges from 0 (pure fuel) to 1 (pure oxidizer). By
adding a differential diffusion term to the Z transport equation, Regele et al. were
able to create a mixture-fraction like variable for premixed flames; their equation
for Z was [102]

∂t (ρZ) + ∇ · (ρuZ) = ∇ · (ρDZ∇Z) − ∇ ·
(
ρD∗Z∇C

)
. (1.2)

The mixture fraction diffusivity, DZ , and cross-diffusivity, D∗Z , were given by

DZ = D
[
1 +

(
1

Le
− 1

)
(1 − Z)

]
(1.3)

and
D∗Z = D

(
1

ν + 1

) (
1

Le
− 1

)
(1 − Z) , (1.4)

where ν is the mass stoichiometric ratio (defined in Section 5.1.1) and Le is the fuel
Lewis number. Equation 1.2 was then solved in conjunction with Eq. 1.1 in their
tabulated chemistry approach.

The fluctuations in mixture fraction (due to D∗Z ) can be thought of as fluctuations in
the local equivalence ratio by considering a one-step irreversible chemistry approx-
imation. This phenomenon arises via the increased transport of light species and
focusing/de-focusing effects (due to differential diffusion) of the fuel behind curved
regions of the flame as discussed in Section 1.3. These fluctuations are critical in
predicting the behavior of lean H2–air flames as they promote the growth of thermo-
diffusive instabilities [125]. The Z–C model of Regele et al. [102] was shown to
capture some curvature effects in lean H2–air and rich propane-air flames [102].
However, several limiting assumptions were made in the development of the model,
i.e., using unity Lewis numbers (with a constant, non-unity fuel Lewis number) and
neglecting thermal diffusion, both of which play critical roles in local and global
flame properties [114]. Additionally, the model verification and evaluation only
considered comparisons in one- and two-dimensional flames, and few quantifiable
comparisons were given.
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1.7 Objectives and outline
The overall goal of this thesis is to quantify the effects of various modeling strategies
on the global and local flame structure of lean premixed hydrogen–air flames. A
particular focus is the evaluation of computationally efficient methods of calculating
transport and chemistry properties. These goals will be met by completing the
following objectives:

1. Determine which physical phenomena are necessary to include for accurate
predictions of lean premixed hydrogen–air flame structures;

2. Evaluate Chapman and Cowling’s mixture-averaged thermal diffusion model
[24];

3. Reduce computational costs of thermal diffusion by deriving a reduced-order
transport model;

4. Include differential diffusion and thermal diffusion in the development of a
new tabulated chemistry model;

5. Quantify the performance of the newly developed models through compar-
isons with multicomponent diffusion and finite-rate chemistry.

In performing these evaluations, there are several baseline test scenarios upon which
all comparisons are drawn: for the one- and two-dimensional simulations evaluating
the mixture-averaged thermal diffusion model, the benchmark test case is a detailed
chemistry direct numerical simulation (DNS) with mixture-averaged mass diffusion
and multicomponent thermal diffusion. For the three-dimensional cases investi-
gating thermal diffusion, comparisons are made between mixture-averaged mass
diffusion with and without mixture-averaged thermal diffusion (multicomponent
thermal diffusion is not considered in the three-dimensional configurations due to
the large computational expense). The baseline case for all tabulated chemistry work
is a detailed chemistry DNS with mixture-averaged mass and thermal diffusion.

The thesis is structured as follows. The governing equations and numerical solver
are detailed in Chapter 2. Chapter 3 presents the evaluation of Chapman and
Cowling’s thermal diffusion model [24], fulfilling Objectives 1 and 2. Objective 3
and portions of Objective 5 are satisfied by providing a derivation for a reduced-order
thermal diffusion model and comparisons with multicomponent thermal diffusion
in Chapter 4. Development of a tabulated chemistry model, including differential
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and thermal diffusion, is presented in Chapter 5; this chemistry model is then
investigated in Chapter 6, completing Objectives 4 and 5. Conclusions and possible
future directions for this work are given in Chapter 7.



12

C h a p t e r 2

GOVERNING EQUATIONS AND SIMULATION
METHODOLOGY

In this chapter, the governing equations for variable density, low Mach number,
reacting flows are first presented. After the governing equations are given, de-
scriptions of the transport property models and chemistry techniques considered in
this thesis are provided. Then, details of the numerical methods used to solve the
reacting flows are given. A special case of the transport equations for a tubular
flame configuration is given. Finally, all flame configurations used in this work are
detailed.

2.1 Governing equations
The variable density, low Mach number, reacting flow equations are solved using
the finite difference code NGA [36]; the numerical methods used to solve these
equations are described in Section 2.4.

The low Mach number approximation arises from the desire to decouple the energy
and momentum equations such that acoustic waves need not be resolved. This
formulation of the governing equations has been reviewed inmanyworks, e.g.,Majda
and Sethian [81] and Day and Bell [31]; a brief description of the approximation is
given here. By expressing all desired flow quantities using a regular perturbation of
the small parameterM2, whereM is theMach number, it can be approximated that the
leading order term for pressure must be spatially uniform, and thus does not appear
in the momentum equation. This leading order term, denoted po, is referred to as the
thermodynamic pressure. The next contribution to pressure, denoted p, is small (of
order M2) and is thus neglected in the equation of state. However, this pressure does
appear in the momentum equation and is referred to as the hydrodynamic pressure.
Under this approximation, the conservation equations are given as

∂ρ

∂t
+ ∇ · ρu = 0 (2.1)

∂ρu
∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ · τ (2.2)

∂ρT
∂t
+ ∇ · (ρuT) = ∇ · (ρα∇T) + ÛωT −

1
cp

∑
i

cp,iji · ∇T +
ρα

cp
∇cp · ∇T (2.3)
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∂ρYi

∂t
+ ∇ · (ρuYi) = −∇ · ji + ρ Ûωi , (2.4)

where ρ is the mixture density, u is the velocity, p is the hydrodynamic pressure, τ
is the viscous stress tenor, T is the temperature, α is the mixture thermal diffusivity,
ÛωT is the temperature source term, cp is the mixture specific heat capacity, cp,i is the
species specific heat capacity, ji is the species diffusion flux, Yi is the mass fraction
of species i, and Ûωi is the production rate of species i. The viscous stress tensor is
given by

τ = µ
(
∇u + (∇u)T

)
−

2
3
µ (∇ · u) I , (2.5)

where µ is the dynamic viscosity of the mixture and I is the identity tensor. Bulk
viscosity is not considered as its influence is often small in low Mach number
flows [50]. The temperature source term is given by ÛωT = −

(
cp

)−1 ∑
i hi(T) Ûωi with

species specific enthalpies as a function of temperature, hi(T). The equation of state
is given by the perfect gas law

ρ =
poW
RT

, (2.6)

where po is the thermodynamic pressure (a constant value is used for this thesis),
R is the universal gas constant, and W = [

∑
i Yi/Wi]

−1 is the mixture molecular
weight. The above (7 + N) equations (conservation of mass, momentum, energy,
and chemical species, the equation of state, and W), where N is the number of
chemical species considered, form a closed set of equations. These equations may
be solved for the (7+N) unknown variables (p, u,T ,Yi, ρ,W), respectively, assuming
the thermodynamic pressure is defined at every time instant. It should be noted that
the hydrodynamic pressure field is found through a Poisson equation to satisfy mass
conservation, while the thermodynamic pressure is specified as an input parameter.

The species diffusion flux, for a mixture-averaged diffusion model (considered for
nearly all of this work), is defined as

ji = −ρYiDi,m
∇Xi

Xi
− DT

i
∇T
T
+ ρYiuc , (2.7)

where Di,m is the mixture-averaged mass diffusion coefficient of species i, Xi are the
species mole fractions, DT

i are the species thermal diffusion coefficients, and uc is
a correction velocity used to ensure zero net diffusion mass flux [28, 65]. The mass
and thermal diffusion coefficients are defined in Section 2.2.

It is convenient to define the correction velocity such that it contains separate
corrections for mass diffusion and thermal diffusion by using

uc = uD
c + uT

c . (2.8)
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These correction velocities are evaluated by requiring zero net diffusion flux, i.e.,∑
i ji = 0, and matching each correction velocity with its corresponding diffusion

terms, yielding

uD
c =
∇W
W

∑
i

Di,mYi +
∑

i

Di,m∇Yi (2.9)

and
uT

c =
1
ρ

∇T
T

∑
i

DT
i . (2.10)

2.2 Transport property definitions
The transport property and diffusion models considered for this work are detailed
in the following section. As a variety of diffusion models are implemented, Table
2.1 lists all of the diffusion models, and their abbreviated names, used.

2.2.1 Conductivity and viscosity models
The mixture thermal conductivity is defined as [84]

λ =
1
2

©«
∑
i=1

Xiλi +

[∑
i=1

Xi

λi

]−1ª®¬ (2.11)

and the mixture viscosity is modeled using an identical form [74]

µ =
1
2

©«
∑
i=1

Xiµi +

[∑
i=1

Xi

µi

]−1ª®¬ . (2.12)

The species thermal conductivity, λi, is given by amodifiedEucken formulation [42],
and the species viscosity, µi, is given using its traditional kinetic theory definition
[58]. The mixture thermal diffusivity is then computed using the mixture thermal
conductivity and specific heat capacity

α =
λ

ρcp
. (2.13)

These chosen viscosity and conductivity models have been widely implemented in
previous works for a range of configurations [23, 67, 74, 103, 124, 130], and can
be found in standalone transport property packages (e.g., CHEMKIN [66]). While
more precise transport properties based on Chapman-Enskog theory are available,
the chosen viscosity and conductivity definitions are not particularly important for
the analyses in this thesis. This work focuses on diffusion and chemistry model
development and validation; the use of any reasonable conductivity and viscosity
model is sufficient, provided the same transport models are used for all comparisons
[53].
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Table 2.1: Definitions of the diffusion model abbreviations. MC: multicomponent,
MA: mixture-averaged, RM: reduced thermal diffusion model [113], FM: Fristrom
and Monchick “back-of-the-envelope” [45], xx: none.

Mass diffusion Thermal diffusion

MA MC
MA
RM
FM
xx

2.2.2 Mixture-averaged mass diffusion model
The mixture-averaged (MA) mass diffusion model is used throughout the entirety
of this work. This diffusion model defines mass diffusion coefficients as [12]

Di,m =
1 − Yi∑

j,i
X j/Di j

, (2.14)

where Di j is the binary diffusion coefficient between species i and j, defined as

Di j =
3

16

√
2πk3

BT3/mi j

pπσ2
i jΩ
(1,1)∗
i j

. (2.15)

In this expression, mi j = mim j/
(
mi + m j

)
is the reduced molecular mass of the i- j

species pair for species with molecular mass mi. Similarly, σi j =
(
σi + σj

)
/2 is the

collision diameter of the i- j species pair for species with collision diameter σi. The
values of σi are found from Davis et al. [30]. Further, Ω(1,1)

∗
i j is a collision integral

which is fit to experimental data [87]. A fit of Ω(1,1)∗ is provided in Appendix A.1.

The mixture-averaged mass diffusion model is an approximation of multicomponent
mass diffusion. The MA model computes diffusion coefficients from only the first
term of a convergent series expansion of the diffusion matrix (see, for example,
Giovangigli [50]). The importance of multicomponent mass diffusion has been
considered in other works for a variety of flame configurations and mixtures [19,
39, 50]. In these studies, planar hydrogen–air and turbulent syngas configurations
were investigated; these are also just a few examples of investigations comparing
multicomponent and mixture-averaged diffusion. It was found that the necessity
of multicomponent mass diffusion over mixture-averaged mass diffusion was not
important compared to the neglect of thermal diffusion effects (discussed in Section
2.2.3). For example, at their lowest equivalence ratio for a hydrogen–air mixture,
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Ern and Giovangigli [39, 50] found the flame speeds computed using multicompo-
nent mass diffusion and mixture-averaged mass diffusion (both neglecting thermal
diffusion) were identical, while a 10% difference was found by including thermal
diffusion. Thus, multicomponent mass diffusion is not considered in this work.
However, ongoing analysis of the impact and accuracy of mixture-averaged mass
diffusion compared to the multicomponent model in turbulent flames is under inves-
tigation through a collaboration with another university [43].1 A detailed analysis of
the necessity, accuracy, and efficient implementations of the multicomponent mass
diffusion model is ongoing, but beyond the scope of this thesis.

2.2.3 Thermal diffusion models
Several thermal diffusion models are considered throughout this work. The primary
model is the mixture-averaged thermal diffusion (MA)model proposed by Chapman
and Cowling [24]. In Chapter 3, this technique is compared to the multicomponent
thermal diffusion (MC) model, a simplified “back-of-the-envelope” model proposed
by Fristrom and Monchick (FM) [45], and a newly developed reduced model (RM)
which will be described in full in Chapter 4. Computational costs of the MC and
MA models will be discussed in Section 3.7.3.

Multicomponent thermal diffusion model (MC)

The most complete thermal diffusion model is the multicomponent (MC) thermal
diffusion formulation. The MC thermal diffusion model will be used in many of
the configurations as a validation tool for the simpler thermal diffusion techniques.
Multicomponent thermal diffusion is based on Chapman-Enskog theory; this tradi-
tional kinetic theory has been explored and described in classic texts for decades
[12, 24, 37, 58]. Thermal diffusion coefficients for the multicomponent model are
computed using CHEMKIN II routines [66]. Computing thermal diffusion coeffi-
cients involves simply calling the MCMCDT subroutine of CHEMKIN II and passing
the local pressure, temperature, and species mole fractions. This subroutine then
inverts the linear system given by

L︷                          ︸︸                          ︷
L00, 00 L00, 10 0
L10, 00 L10, 10 L10, 01

0 L01, 10 L01, 01



a︷︸︸︷
a1

00
a1

10
a1

01

 =
X︷︸︸︷
0
X
X

 . (2.16)

1The author of this thesis is a co-author on the paper and presentation of Fillo, Schlup, Blanquart,
and Niemeyer, 10th Meeting of the WSSCI, Laramie, WY, 2017.
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Each element in the Lmatrix is an N × N block sub-matrix (where N is the number
of species in the chemical model). The vector X = [X1, X2, ..., XN ] (contained in X)
consists of the mole fractions of each species [66]. Each component of the seven
L block sub-matrices can be found in Dixon-Lewis [37]. This linear system must
be solved at each grid point and at each computational time step. Then, the thermal
diffusion coefficients are found via

DT
i =

8mi Xi

5R
a1

i00 . (2.17)

Mixture-averaged thermal diffusion model (MA)

The mixture-averaged thermal diffusion model of Chapman and Cowling is thor-
oughly investigated and validated in Chapter 3, as it is computationally efficient due
to its formulation. Following Paul and Warnatz [95], the thermal diffusion ratio,
kTi, can be used to relate thermal diffusion coefficients to mixture-averaged mass
diffusion; this can be seen by rewriting ji as

ji = −ρ
Wi

W
Di,m

(
∇Xi + kTi

∇T
T

)
+ ρYiuc , (2.18)

or, for the thermal diffusion coefficients themselves,

DT
i = ρ

Wi

W
Di,mkTi . (2.19)

Here, Wi is the species molecular weight. Chapman and Cowling proposed a first
order approximation of the thermal diffusion ratio [24]

[kTi]1 =
W2

Rρ

∑
j

1.2C∗i j − 1

Di j

Yia j − Yjai

Wi +W j
, (2.20)

where C∗i j is a ratio of collision integrals given by [37]

C∗i j =
1
3

Ω
(1,2)
i j

Ω
(1,1)
i j

(2.21)

and ai is given by [93]

ai = λi,mon

[
1 +

1.065
2
√

2Xi

∑
j,i

X jΦi j

]−1

. (2.22)

In Eq. 2.22, the species conductivities, λi,mon, are approximated using their
monatomic values [24]

λi,mon =
15
4

Rµi

Wi
(2.23)
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and Φi j is given by [93]

Φi j =

[
1 +

(
µi
µj

)1/2 (
Wj

Wi

)1/4
]2

[
1 +

(
Wi

Wj

)]1/2 . (2.24)

All collision integrals and C∗i j are computed using rational polynomial fits of tab-
ulated data from Monchick and Mason [87]. These fits, shown in Appendix A.1,
are a function of the Lennard-Jones reduced temperature, T∗i j = T kB/εi j , where

εi j =
(
εiε j

)1/2 is the interaction well depth between species i and j, and kB is the
Boltzmann constant. Once the thermal diffusion coefficients have been calculated,
the diffusion flux given in Eq. 2.7 is used in the species and energy conservation
equations.

Fristrom and Monchick’s thermal diffusion model (FM)

The so-called “back-of-the-envelope” thermal diffusion model, given by Fristrom
and Monchick (FM) [45], computes the thermal diffusion coefficients using Eq.
2.19, where now kTi is defined to be

kTi = Xi

∑
j,i

X jαi j . (2.25)

Here, αi j is defined as

αi j ≈ 0.39σ2
i jm

3/2
i j

(
εi j/kB

)0.17

×
©« 1

σ2
j

(
ε j/kB

)0.17 m3/2
j B j

−
1

σ2
i (εi/kB)

0.17 m3/2
i Bi

ª®¬ ,
(2.26)

and B j is defined as

B j = X j +
∑
i, j

(
1 +

σi

σj

(
ε j/kB

εi/kB

)0.085
)2 [

8
(
1 +

m j

mi

)]−1/2
. (2.27)

Reduced thermal diffusion model (RM)

Finally, the reduced model (RM) for H and H2 thermal diffusion [113] is derived
from the thermal diffusion model of Chapman and Cowling [24]. The primary
advantage of this model is that the computation of DT

i for species i no longer requires
information about all other species; instead, each thermal diffusion coefficient for H
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and H2 may be computed independent of the remaining species, drastically reducing
computational costs (see Section 4.3.3). While a full description of the model
development is one focus of Chapter 4, a brief description is given here.

The reduced model considers mixture-averaged mass diffusion for all chemical
species and thermal diffusion acting on H and H2 only, while maintaining

∑
ji = 0

for the remaining terms. The model development in Chapter 4 indicates that the
thermal diffusion coefficients for H and H2 can be expressed as

DT
i,RM ≡ −αi

15
4

Xiµi

Φi,m

(
1.2C∗i,m − 1

)
(1 − Yi) − YiS, (2.28)

where αi are scaling parameters which correct for systematic errors made in the
model development, and S is a scalar which enforces mass conservation via the
thermal diffusion fluxes, i.e.,

∑
i DT

i,RM = 0. It is found that αH = 0.895 and
αH2 = 0.910. Φi,m and Ci,m are fully expressed in Chapter 4, and depend only on
properties of H and H2.

2.3 Chemistry models
Two chemistry models are investigated; the first is the finite-rate chemistry descrip-
tion which makes no assumptions, and considers the detailed chemical reactions of
a hydrogen–air mixture. The second chemistry model simplifies the description of
the chemical processes by constructing a low-dimensional manifold, through which
thermo-chemical properties can be extracted.

2.3.1 Finite-rate chemistry
The hydrogen chemistry model used throughout this work is the hydrogen model
from Hong et al. [59]. A few of the rate constants for this chemical model have
been updated recently using experimental data from the same group [60, 72]. The
chemical model contains nine species with N2 serving as a non-reacting species
(i.e., diluent). The model also contains 54 chemical reactions, considering both
forward and backward reactions. When other chemistry models are used (primarily
in Chapter 4), they will be detailed specifically.

For a chemical model containing N species and K reactions (forward and back-
ward reactions counted separately), the chemical source terms for species i can be
decomposed into

Ûωi = Ûω
+
i − Ûω

−
i , (2.29)

where Ûω+i and Ûω−i are the production and consumption rates of species i, respec-
tively. The production rate term considers all chemical reactions where species i is
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produced, yielding the expression

Ûω+i =
Wi

ρ

r∑
j=1
νji>0

ν ji k j

N∏
s=1
νjs<0

(
ρYs

Ws

)−νjs . (2.30)

Similarly, the consumption rate term considers all chemical reactions where species
i appears as a reactant, with the form

Ûω−i = −
Wi

ρ

r∑
j=1
νji<0

ν ji k j

N∏
s=1
νjs<0

(
ρYs

Ws

)−νjs . (2.31)

In these expressions, r is the number of chemical reactions containing species i and
ν ji is the stoichiometric coefficient of species i in reaction j. The stoichiometric
coefficients are positive when species i is a product, and negative when species i

is a reactant, in the given chemical reaction. Finally, the reaction rate constant for
reaction j, k j , is given in an Arrhenius form,

k j (T) = A jT bjexp−Ea, j/RT , (2.32)

where Ea, j is the activation energy for this reaction and b j is an empirical parameter
found in the chemistry models.

2.3.2 Tabulated chemistry
In general, tabulated chemistry operates under the principle of using a low-dimensional
manifold (i.e., chemistry table) to describe the chemical processes in a reacting mix-
ture. This class of chemistry reduction techniques has been used widely in various
forms, e.g., intrinsic low-dimensional manifolds (ILDM) [80], flamelet prolongation
of ILDM(FPI) [49], flamelet generatedmanifolds (FGM) [90], andflamelet/progress
variable method (FPV) [68, 69, 99] (among others), and finds significant use in tur-
bulent flame configurations using both direct numerical simulations and large eddy
simulations (e.g., [44, 89, 122]).

In their review of state-of-the-art tabulation methods, van Oijen et al. [92] detail
many uses of flamelet-generated manifolds; the reader is referred to this work for
a complete review of existing literature. In particular, these manifold methods
were shown to perform well in premixed, partially premixed, and non-premixed
laminar flames. Further, flame-turbulence interactions of a unity Lewis number fuel
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mixture (from van Oijen et al. [91]) and the effects of differential diffusion in a
methane/hydrogen fuel mixture using a two-parameter manifold (constructed with
stretched flamelets) were reviewed. However, no discussion on pure hydrogen–air
mixtures was given, and direct comparisons with finite-rate chemistry solutions
were sparse.

While many methodologies of tabulated chemistry exist, the method used here
closely resembles the flamelet/progress variable (FPV) approach [68, 69, 99]. The
chemistry table approach considered in this work transports two controlling param-
eters: a progress variable, C, and a mixture fraction-like variable, Z . Each of these
variables is transported using a scalar transport equation, and thus is quite simple
to implement in the pre-existing NGA framework. After C and Z have been trans-
ported, all necessary fluid and thermo-chemical properties can then be retrieved,
e.g., ρ = ρ(C, Z), DC = DC(C, Z), or ÛωC = ÛωC(C, Z), where DC is the diffusion
coefficient of the progress variable. The reduction in the number of transported
scalars is one contributing factor to the cost reduction using tabulated chemistry.
Additionally, the removal of stiff chemistry source terms (i.e., elementary reactions
which have very small time scales and often involve short-lived intermediate species)
permits reduced computational costs through increased time step size and a larger
grid spacing. The proposed tabulated chemistry model will be detailed in Chapter
5 and investigated in Chapter 6.

2.4 Numerics of the NGA flow solver
NGA solves the low Mach number reacting flow equations (Eqs. 2.1 – 2.6) and
discretely conserves mass, momentum, and kinetic energy [36]. This software
can simulate three-dimensional reacting flows in complex geometries with either
uniform or non-uniform structured grids. For this thesis work, one-, two-, and three-
dimensional configurations are considered using uniform grids. In the following
sections, a high-level overview of the time integration, discretization procedure,
pressure solvers, velocity scheme, and scalar transport scheme are given. Novel
contributions of this thesis to the NGA framework will be explicitly stated.

2.4.1 Semi-implicit time integration2
NGA uses a second-order in time semi-implicit Crank-Nicolson scheme [98] to
advance the simulation variables. In the description of one time step given below, a

2The semi-implicit time integration discussion in this section follows closely that of Savard et
al., J. Comput. Phys. 295 (2015) 740 – 769.



22

Figure 2.1: One-dimensional representation of the temporal discretization, showing
the half-time stepping and location of mass conservation.

uniform time step of ∆t is assumed. The time stepping is performed in a staggered
manner, where scalar fields are advanced from time tn+1/2 = tn + ∆t/2 to tn+3/2,
while the velocity fields are advanced from tn to tn+1, where the superscript on t

indicates the time step. A staggered time stepping method is implemented to reduce
the stencil size while maintaining the method accuracy and satisfying continuity at
the current solution step (see Fig. 2.1).

The total number of iterations,Q, of this semi-implicit time integration is set a priori;
Q = 4 is used for all results for this thesis work; Savard et al. [112] indicated that
4 subiterations was sufficient, provided the time step was not close to the stability
limit of the fuel-air mixture. From the previous converged time step, values of the
density, ρn+1/2, pressure, pn+1/2, velocity, un, and scalar fields, Yn+1/2 are known.
Here, Y represents any scalar, including species mass fractions and temperature.
The converged values from the previous time step are used as initial guesses for the
iterative procedure at the current time step,

pn+3/2
0 = pn+1/2, Yn+3/2

0 = Yn+1/2, and (ρu)n+1
0 = (ρu)n . (2.33)

The subscripts in this section will indicate the subiteration index. The initial density
field is found using an Adams-Bashforth prediction,

ρ
n+3/2
0 = 2ρn+1/2 − ρn−1/2 , (2.34)
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in order to discretely conserve mass prior to beginning the iterative procedure [98].
Finally, the vector of chemical source terms, Ω = [ Ûω1, ..., ÛωN ], has a corresponding
(non-preconditioned) initial guess computed using thermo-chemical properties from
the converged previous time step, Ωn+3/2

0 . The treatment of the chemical source
terms is addressed in Section 2.4.2 [112].

For each subiteration k = [0, ...,Q], the following five steps are performed in order:
advance the scalar field, calculate the density field, predict the velocity field (without
satisfying continuity), solve a pressure Poisson equation and apply to the velocity
field (thus satisfying mass conservation), and update the solution. The details of this
methodology are presented in Savard et al. [112], and a brief overview is included
here.

1. The scalar fields are advanced in time using the semi-implicit Crank-Nicolson
method. First, one defines Y∗k ,

Y∗k =
Yn+1/2 + Yn+3/2

k

2
, (2.35)

such that the scalar transport equation can be discretized, and one iteration of
the semi-implicit scheme thus requires solving

ρ
n+3/2
k Yn+3/2

k+1 = ρn+1/2Yn+1/2 + ∆t
[
(C + D)n+1

k · Y∗k +Ω
∗
k

]
+
∆t
2

(
∂C
∂Y +

∂D
∂Y

)n+1

k
·

(
Yn+3/2

k+1 − Yn+3/2
k

)
.

(2.36)

Here, C andD are abbreviated notations for the convective and diffusive terms
in the scalar transport equation, respectively. Similarly, ∂C/∂Y and ∂D/∂Y
are the Jacobian matrices of the convective and diffusive terms, respectively.
Ω∗k is a vector of chemical source terms and is not treated using the semi-
implicit Crank-Nicolson method due to computational cost considerations of
using its full Jacobian, (∂Ω/∂Y)n+1

k [112].

2. Next, the ideal gas law is used to predict the updated density field,

ρ
n+3/2
k+1 =

p0

(∑N
i=1 Y n+3/2

i,k+1 /Wi

)−1

RTn+3/2
k+1

. (2.37)

Upon convergence of the iterative method (steps 1 to 5), ρYi will satisfy the
conservation of species densities [112].
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3. The momentum equation is now advanced using a semi-implicit Crank-
Nicolson formulation. First, one can define

u∗k =
un + un+1

k

2
, (2.38)

which allows the Crank-Nicolson method to be applied as

ρn+1/2 + ρ
n+3/2
k+1

2
ûn+1

k+1 =
ρn−1/2 + ρn+1/2

2
un

+ ∆t
[
(Cu + Du)

n+1/2
k · u∗k + ∇pn+3/2

k

]
+
∆t
2

(
∂Cu

∂u +
∂Du

∂u

)n+1/2

k
·

(
ûn+1

k+1 − un+1
k

)
.

(2.39)

Similar to the scalar transport equation, Cu and Du are the convective and
viscous terms of the momentum equation. Further, û is a predicted velocity
field that does not necessarily satisfy mass conservation; thus, the pressure
field is next found such that mass conservation will be satisfied.

4. As mentioned above, solving a pressure Poisson equation for the temporally-
and spatially-varying hydrodynamic pressure allows one to ensure mass con-
servation. The time discretization of the Poisson equation takes the form
of

∇2 (δp)n+3/2
k+1 =

1
∆t

[
∇ ·

(
ρn+1/2 + ρ

n+3/2
k+1

2
ûn+1

k+1

)
+
ρ

n+3/2
k+1 − ρ

n+1/2

∆t

]
. (2.40)

The Poisson equation is solved using either the BiCGSTAB [121] method
or the AMG [106] method implemented in the HYPRE package [61]. Once
the hydrodynamic pressure field is determined, the predicted velocity field is
updated using

un+1
k+1 = ûn+1

k+1 −
2∆t

ρn+1/2 + ρ
n+3/2
k+1

(
∇ (δp)n+3/2

k

)
, (2.41)

while the pressure field is updated using

pn+3/2
k+1 = pn+3/2

k+1 + δpn+3/2
k+1 . (2.42)

5. The above process is repeated until the sub-iterations converge, whereupon
the solution fields are updated for the next time step,

ρn+3/2 = ρ
n+3/2
Q , pn+3/2 = pn+3/2

Q ,

un+1 = un+1
Q , and Yn+3/2 = Yn+3/2

Q .
(2.43)
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2.4.2 Preconditioner for the chemical source terms
The above description does not consider semi-implicit treatment of the chemical
source terms,Ω. To improve the performance of the semi-implicit time integration,
Savard et al. [112] proposed a simple preconditioner which is applied to the scalar
transport equation, Eq. 2.36, leaving the remainder of the semi-implicit method
identical to the above description. The chosen preconditioner takes the form

J = ρn+3/2
k I − ∆t

2

(
∂C
∂Y +

∂D
∂Y − Λ

)n+1

k
, (2.44)

where Λ is a diagonal matrix defined as

Λi,i =
Ûω−i
Yi
, (2.45)

which is a close approximation of the diagonal of the chemical Jacobian matrix
[112]. When applied to Eq. 2.36, the semi-implicit time integration, including
treatment of the chemical source terms, reads (in residual form)

Yn+3/2
k+1 = Yn+3/2

k − ∆tJ−1 ·Θk , (2.46)

where Θk is the error in the species transport equation from previous sub-iterations

Θk =
ρ

n+3/2
k Yn+3/2

k − ρn+1/2Yn+1/2

∆t
−

[(
Cn+1

k + Dn+1
k

)
· Y∗k +Ω

∗
k

]
. (2.47)

2.4.3 Finite difference scheme for velocity discretization 3

Figure 2.2 shows a two-dimensional example of the computational domain dis-
cretization. Cell-centered locations are indicated with a subscript i and j, and faces
of the computational cells are denoted using i+1/2 and j +1/2. For clarity, the def-
initions below will be explicitly provided in two-dimensions and assume a uniform
grid spacing with ∆x = ∆y. Descriptions of the discretization using higher-order
schemes and three-dimensions can be found elsewhere [36].

Second-order finite difference schemes are used throughout thiswork. Two operators
are needed for the discretization of the governing equations: interpolation and
differentiation. Interpolation of a quantity ψ in the x-direction is given as

ψ
x
���
(i+1/2, j)

=
ψ(i+1, j) + ψ(i, j)

2
, (2.48)

3The description of the finite differencing scheme found in this section follows closely that of
Desjardins et al., J. Comput. Phys. 227 (2008) 7125–7159.
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Figure 2.2: Two-dimensional representation of the computational domain discretiza-
tion.

while differentiation of ψ in the x direction is given as

δψ

δx

����
(i+1/2, j)

=
ψ(i+1, j) − ψ(i, j)

∆x
. (2.49)

Similar definitions can bewritten for operators in the y-direction, and these operators
may be used on face-centered or cell-centered values.

Two examples of the spatial discretization are provided; first, the continuity equation
is fully discretized, followed by a single term from themomentum equations. Prior to
discretizing the continuity equation, the densities and velocities must be collocated.
This is done by interpolating the density from cell centers to cell faces at the
same location of the velocity. Thus, values of ρx and ρy are expressed at each
corresponding cell face. The momentum vector component in the x-direction is
defined as gx = ρxu, with a similar definition for gy; g is thus collocated with the
velocity vector. The continuity equation can then be spatially discretized as

∂ρ

∂t

����
(i, j)
+
δgx

δx

����
(i, j)
+
δgy

δy

����
(i, j)
= 0 , (2.50)

or, in full,
∂ρ

∂t

����
(i, j)
+

1
2∆x

[ (
ρ(i+1, j) + ρ(i, j)

)
u(i+1/2, j) −

(
ρ(i, j) + ρ(i−1, j)

)
u(i−1/2, j)

]
+

1
2∆y

[ (
ρ(i, j+1) + ρ(i, j)

)
v(i, j+1/2) −

(
ρ(i, j) + ρ(i, j−1)

)
v(i, j−1/2)

]
= 0 .

(2.51)
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(a) Interpolation of v (b) Interpolation of gx (c) Differentiation of gxyvx

Figure 2.3: (a) Interpolation of v to vx , (b) interpolation of gx to gx
y, and (c)

differentiation of gx
yvx .

As a second example, the convective term ∂
∂y (ρuv) in the x-momentum equation is

discretized. Figure 2.3 provides a schematic of this procedure. First, gx is computed
as described previously. Then, the v velocity is interpolated in the x-direction such
that vx exists at the corners of a cell (Fig. 2.3a), i.e.,

vx ��
(i+1/2, j+1/2) =

vi+1, j+1/2 + vi, j+1/2

2
. (2.52)

Next, gx is interpolated in the y-direction (Fig. 2.3b),

gx
y
��
(i+1/2, j+1/2) = ρxu

y
���
(i+1/2, j+1/2)

=
gx(i+1/2, j) + gx(i+1/2, j+1)

2
.

(2.53)

gx
y and vx are now collocated, such that the derivative of gx

yvx may be taken as
(Fig. 2.3c)

∂ (ρuv)
∂y

����
(i+1/2, j)

=
δ
(
gx

yvx )
δy

����
(i+1/2, j)

=
1
∆y

(
gx

yvx
(i+1/2, j+1/2) − gx

yvx
(i+1/2, j−1/2)

)
.

(2.54)

After spatial discretization of the governing equations in this manner, conservation
properties (including mass, momentum, and kinetic energy) are all ensured [36].

2.4.4 Finite volume scheme for scalar transport 4
For all cases considered in this work, the bounded quadratic upwind biased inter-
polative convective scheme (BQUICK) [57] is used. This method is an extension of

4The scalar transport scheme discussion in this section follows closely that of Herrmann et al.,
AIAA J. 44.12 (2006).
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the QUICK scheme [77], where a flux correction ensures that scalar physical bounds
are observed. In NGA, the finite volume approach to solving the scalar transport
equations is implemented at a cell-centered location, (i, j, k). While fully imple-
mented in three-dimensions, the discussion here will consider only the uniformly
spaced one-dimensional case for brevity. Cell i thus has neighboring cell centers
i + 1 (to the right) and i − 1 (to the left). The faces of cell i are located at i + 1/2
and i − 1/2. Figure 2.2 shows a two-dimensional representation of the grid with the
location of each variable. Velocity vectors and momentum vectors, ρu, are located
at cell faces, while all scalar quantities are at cell centers. Then, the finite-volume
transport equation for the scalar φ (e.g., Eq. 2.4) is discretized as

∂ (ρφ)i, j,k

∂t
+
(ρuφ)i+1/2, j,k − (ρuφ)i−1/2, j,k

∆x
=(

ρD ∂φ
∂x

)
i+1/2, j,k

−

(
ρD ∂φ

∂x

)
i−1/2, j,k

∆x
+

(
Ûωφ

)
i, j,k ,

(2.55)

where D is some diffusive term (e.g., only mass diffusion). While the values of ρu

at i + 1/2 and i − 1/2 are known, the scalar field φ is only defined at cell centers.
The flux of φ is computed at the cell faces, as the scalar field is multiplied by the
momentum vector, resulting in

(ρuφ)i−1/2, j,k = (ρu)i−1/2, j,k φi−1/2, j,k , (2.56)

and thus φ itself must be interpolated to the cell faces, denoted as φi−1/2, j,k . The

value φi−1/2, j,k represents a polynomial fitting of φ to the i − 1/2 cell face. For the
QUICK scheme, this polynomial interpolation takes the form

φi−1/2, j,k = −
1
6
φi−2, j,k +

5
6
φi−1, j,k +

1
3
φi, j,k . (2.57)

BQUICK operates as a predictor-corrector scheme by splitting the time step. First,
the solution is advanced from the previous time step tn to an intermediate time-
step t∗ using the QUICK scheme [77]. Then, in cells where a scalar exceeds its
a priori defined physical bounds (e.g., 0 ≤ Yi ≤ 1 for species mass fractions), the
interpolative scheme is switched to a first-order upwind scheme such that the scalar
values remain bounded,

φi−1/2, j,k = φi−1, j,k , (2.58)

while the remainder of the computational domain retains the QUICK scheme. Based
on the new interpolation stencils, the corrector step advances the solution to the
next time step, tn+1. Further analysis of this scalar scheme, including its stability
properties, can be found in Herrmann et al. [57].
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2.5 Special case: Governing equations for tubular flames5
A specialized flame configuration, the tubular flame, will be introduced in Sec-
tion 2.6.3. This configuration (shown schematically in Fig. 2.7) still uses the
low Mach number Navier-Stokes equations; however, modifications to the general
Navier-Stokes equations are necessary in the form of simplifying assumptions. The
assumptions used here are the same as in Hall and Pitz [53]:

1. Each variable (except for the axial velocity, uz, and hydrodynamic pressure,
p) is assumed to be independent of the axial direction, i.e., ψ = ψ(r, θ).

2. uz is defined using a linear velocity gradient, i.e., uz(r, θ, z) = zW(r, θ).

3. The hydrodynamic pressure is expressed as p = z2

2 H+ I(r, θ), where H = 1
z
∂p
∂z

is the pressure eigenvalue and I is the radial and azimuthal dependence of the
hydrodynamic pressure [53].

The continuity equation in cylindrical coordinates, assuming no dependence in the
axial (z) direction and no azimuthal symmetry, is given by

∂ρ

∂t
+

1
r
∂

∂r
(rρur) +

1
r
∂

∂θ
(ρuθ) +

∂

∂z
(ρuz) = 0 (2.59)

where ρ, ur , and uθ are functions of r and θ only. The axial velocity is then expressed
using a linear velocity gradient W (r, θ) [63, 117] so the continuity equation can be
re-expressed as

∂ρ

∂t
+

1
r
∂

∂r
(ρrur) +

1
r
∂

∂θ
(ρuθ) = −ρW . (2.60)

In this sense, the left hand side of Eq. 2.60 can be thought of as the time rate of
change of density and the two-dimensional divergence of ρu, henceforth notated
∇2D · (ρu). The right hand side of Eq. 2.60 is a source term for the continuity
equation; when the axial velocity gradient, W , is positive, mass is leaving the
domain in the axial direction. Using the notation of ∇2D (denoting no derivatives in
the z-direction), the continuity equation can be written as

∂ρ

∂t
+ ∇2D · (ρu) = −ρW . (2.61)

The conservation of momentum equations in the r and θ directions can be expressed
similarly as

∂ (ρu)
∂t
·êr+(∇2D · (ρu ⊗ u))·êr = − (∇2Dp)·êr+(∇2D · τ)·êr−ρurW+µ

∂W
∂r

(2.62)

5The governing equations, as presented in this section, are adapted from Hall et al. [53].
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and
∂ (ρu)
∂t
· êθ + (∇2D · (ρu ⊗ u)) · êθ = − (∇2Dp) · êθ + (∇2D · τ) · êθ − ρuθW +

µ

r
∂W
∂θ

.

(2.63)
The hydrodynamic pressure component is again given by

p =
z2

2
H + I (r, θ) , (2.64)

where H = 1
z
∂p
∂z is the constant and uniform pressure eigenvalue and I is the radial

and azimuthal dependence of the hydrodynamic pressure [53]. Then, the axial
momentum equation can be written as a scalar transport equation for the axial
velocity gradient,

∂ (ρW)
∂t

+ ∇2D · (ρuW) = ∇2D · (µ∇2DW) − H − 2ρW2 . (2.65)

Finally, the energy equation is expressed as

∂ (ρT)
∂t

+ ∇2D · (ρuT) = ∇2D · (ρα∇2DT) + ÛωT −
1
cp

∑
i

cp,iji · ∇2DT

+
ρα

cp
∇2Dcp · ∇2DT − ρWT

(2.66)

and the species conservation equations are

∂ (ρYi)

∂t
+ ∇2D · (ρuYi) = −∇2D · ji + Ûωi − ρWYi . (2.67)

Implementation of the tubular equations in NGA6

The above numerical description (Eqs. 2.61 - 2.63 and Eqs. 2.65 - 2.67), along with
the equation of state (Eq. 2.6), represents a nearly closed set of N + 6 equations
governing this configuration and has been previously investigated [53, 63]. However,
the implementation in NGA requires treatment of several aspects which have not
been considered elsewhere and are presented here.

First, the pressure eigenvalue H must be determined. Hall and Pitz solved an
additional equation, 0 = (∂H/∂r) with boundary condition 0 = (∂H/∂θ) in order
to enforce a uniform H in the domain. In this work, the value for H is found by
considering the scalar transport equation for W (Eq. 2.65). At steady-state (which
the tubular flame reaches), this equation simplifies to

∇2D · (ρuW) = ∇2D · (µ∇2DW) − H − 2ρW2. (2.68)
6The implementation of the tubular equations into NGA, as detailed in this section, is novel to

this thesis.
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Integration of Eq. 2.68 over the entire domain yields, for H,

H =
1
V

(
ρu |uin |Win ABC −

∫
V
ρW2dV

)
, (2.69)

where ABC is the area of the computational domain inlet at r = R. Equation 2.69 is
evaluated at each time step; once the flame reaches a steady-state configuration, the
value of H has converged to a constant value.

Next, it is clear that additional “source” terms appear which would not be included
in a traditional axisymmetric two-dimensional configuration. These terms are:

−ρW (Eq. 2.60)

−ρurW + µ
∂W
∂r

(Eq. 2.62)

−ρuθW +
µ

r
∂W
∂θ

(Eq. 2.63)

−H − 2ρW2 (Eq. 2.65)

−ρWT (Eq. 2.66)

−ρWYi (Eq. 2.67) .

These source terms can be split into two categories. The first category of terms
appears from derivatives of the axial velocity in the axial direction (e.g., in the
r-momentum equation, Eq. 2.62),

∂

∂r

(
∂uz

∂z

)
=

∂

∂r

(
∂ (zW)
∂z

)
=
∂W
∂r

, (2.70)

which would otherwise be set to zero in axisymmetric configurations. This category
of source terms includes µ (∂W/∂r) in Eq. 2.62, (µ/r) (∂W/∂θ) in Eq. 2.63, and
−H − ρW2 in Eq. 2.65.

The second category of terms derives from the use of conservative (rather than
non-conservative) forms of the governing equations. If the non-conservative forms
were used, then the left-hand side of Eq. 2.4, for example, would become

∂ (ρYi)

∂t
+ ∇ · (ρuYi) = Yi

[
∂ρ

∂t
+ (∇ · ρu)

]
+ ρ

(
∂Yi

∂t
+ u · ∇Yi

)
= ρ

(
∂Yi

∂t
+ u · ∇Yi

)
= ρ

(
∂Yi

∂t
+ ur

∂Yi

∂r
+

uθ
r
∂Yi

∂θ

)
,

(2.71)
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Table 2.2: Parameters of the simulations. The domain is the physical dimensions
of the configuration, while the grid specifies the number of computational points in
the domain.

Configuration lF/∆x Grid φ uin [m/s]

1D Cartesian 20 Varies 0.35 < φ < 1.0 So
L

1D Cylindrical 20 2000 × 1 × 1 0.40 0
2D Tubular 43 800 × 256 × 1 0.25 0.7647
2D Freely prop. 16 1888 × 472 × 1 0.40 S2D

eff
3D Laminar 16 1520 × 190 × 190 0.40 S3D

eff
3D Turbulent 16 1520 × 190 × 190 0.40 ST

by removing the continuity equation. This procedure leads to the forms of the
tubular transport equations given in Hall and Pitz [53]. However, as NGA solves the
equations in conservative form, the left-hand side of Eq. 2.4 is instead rearranged
as

∂ (ρYi)

∂t
+ ∇ · (ρuYi) =

∂ (ρYi)

∂t
+

1
r
∂

∂r
(rρurYi) +

1
r
∂

∂θ
(ρuθYi) +

∂

∂z
(ρYiuz)

=
∂ (ρYi)

∂t
+

1
r
∂

∂r
(rρurYi) +

1
r
∂

∂θ
(ρuθYi) +

∂

∂z
(ρYizW)

=
∂ (ρYi)

∂t
+ ∇2D · (ρuYi) + ρYiW .

(2.72)

As a result of NGA using the conservative forms of the governing equations, a
source term is first added to the continuity equation (−ρW on the right-hand side of
Eq. 2.60). This term directly impacts global mass conservation, and is thus treated
as a source term in the pressure Poisson equation. The remaining source terms
(ρWur , ρWuθ , ρW2, ρWT , and ρWYi) thus also arise due to the source term in the
continuity equation.

2.6 Computational configurations
In this section, six flame configurations are detailed in Sections 2.6.1 – 2.6.6.
These six configurations are utilized throughout this thesis work to validate the
proposed diffusion and chemistry models. Each configuration was chosen to sys-
tematically increase the flame complexity such that curvature, dimensionality, and
turbulence effects could be isolated. Only premixed mixtures are considered; pri-
marily, hydrogen–air mixtures are used (when this is not the case, the mixture will
be explicitly stated). The equivalence ratio is altered for specific configurations as
detailed in their respective sections. Additionally, the maximum allowable time step
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Figure 2.4: Schematic of the one-dimensional cartesian flame configuration.

is constrained to ∆tmax = 2× 10−6 s, which was found to result in negligible numer-
ical errors as discussed in Section 6.7.2. This time step is similar to those identified
in Savard et al. [112]. An additional constraint of a maximum convective CFL
of 0.8 is also imposed. Table 2.2 lists the grid spacing, number of computational
points, mixture equivalence ratio, and inlet velocities for each flame configuration
described in the following sections.

2.6.1 One-dimensional flat unstretched flames
The most basic flame configuration considered is that of a one-dimensional, flat,
unstretched flame propagating freely into the premixed reactants. The inlet mixture
has an unburnt temperature of Tu = 298 K and pressure of po = 1 atm. In Chapter 3,
premixed hydrogen–air mixtures with a range of equivalence ratios from φ = 0.35 to
φ = 1.0 are considered. In Chapter 4, an extensive set of fuels, diluents, equivalence
ratios, unburnt temperatures, and pressures are considered; these mixtures will be
detailed later. The inlet velocity boundary condition, uin, is set to closely match
the corresponding laminar flame speed. Figure 2.4 shows a schematic of this
configuration. Flame speeds throughout this work will be defined as

SL =

∫
V ρ ÛωH2OdV

ρuYH2O,bA
, (2.73)

where the subscripts u and b represent an unburnt or burnt mixture property, re-
spectively, the subscript L represents a laminar burning velocity, and A is the
cross-sectional area of the domain (A = Ly · Lz, where Ly and Lz are the physical
lengths of the domain in the y- and z-directions, respectively). Additional super-
scripts/subscripts will be used to differentiate various flame speeds. A superscript
o is used (So

L) when unstretched laminar flame speeds are computed, a subscript eff
(e.g., S2D

eff ) indicates effective burning velocities of unstable laminar flames, and a
subscript T denotes turbulent flame speeds.

Each simulation, for the range equivalence ratios, uses a uniformly-spaced grid with
at least 15 points through the corresponding laminar flame thickness defined using
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Table 2.3: Parameters of the one-dimensional unstretched laminar flames using the
MA–MA diffusion model. Both lF and So

L are computed using FlameMaster [100].

lF SL ∆x Ûω1D
H2O Tpeak Ypeak

H2O
[µm] [cm/s] [µm] [1/s] [K]

φ

0.35 992 11.2 49.6 66 1138 0.0769
0.40 650 21.8 32.5 192 1180 0.0836
0.50 437 50.7 21.9 746 1244 0.0964
0.60 375 85.7 18.8 1768 1287 0.1076
0.70 356 121.1 17.8 3179 1317 0.1177
0.80 352 153.9 17.6 4827 1338 0.1267
0.90 355 183.0 17.8 6561 1351 0.1344
1.00 356 207.8 17.8 8233 1380 0.1460

the maximum temperature gradient

lF =
(Tmax − Tmin)

|∇T |max
. (2.74)

A similar criterion on the grid resolution has been utilized elsewhere [4, 20, 55].
Resolution error for the φ = 0.4 flame is discussed in Section 6.7.2. An identical grid
is used at a given equivalence ratio, regardless of the chosen diffusion or chemistry
model; the laminar flame thickness is found to be similar between the variousmodels
(e.g., lM A−M A

F = 650 µm and lM A−xx
F = 647 µm). Table 2.3 provides details on the

values of lF , So
L , and ∆x for each equivalence ratio. Values of the peak H2O source

term, Ûω1D
H2O, temperature at peak H2O source term, Tpeak , and mass fraction of H2O

at peak H2O source term, YH2O,peak for the one-dimensional flames are also g iven
in Table 2.3. These values, computed here using the MA–MA model, are used
extensively in the analyses presented in Chapters 3 - 6.

Theflat one-dimensional flames are initialized using fully-converged one-dimensional
solutions obtained from FlameMaster [100]. The FlameMaster solution is then in-
terpolated onto the NGA computational domain so that the NGA solution reaches
steady-state rapidly. The flame position can be used to help identify when a steady-
state solution has been reached; the flame position is defined using an equal-area
concept, i.e.,

xF = Lx −

∫
V ρYH2OdV

ρbYH2O,bA
. (2.75)

This concept is shown schematically in Fig. 2.5. Tracking the flame position during
run-time is also useful to ensure the flames remain in the computational domain
(especially for the unstable and turbulent flame configurations).
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Figure 2.5: Methodology of finding the flame position based on an equal-area
approach, using a one-dimensional flat flame at φ = 0.4 (red line).

Figure 2.6: Schematic of the one-dimensional cylindrical flame configuration.

2.6.2 One-dimensional cylindrical flames
As the next logical step in flame complexity, curvature is introduced to the flame
configuration by considering an outwardly-propagating, one-dimensional, cylindri-
cal stretched flame. Figure 2.6 shows a schematic of the one-dimensional cylindrical
flame. This flame is always convex to the unburnt mixture, indicating positive cur-
vature, where the curvature is defined as the reciprocal of the flame radius, i.e.,
κ = 1/rF . The location of the cylindrical flame must be calculated using a modified
form of Eq. 2.75. An equal-area method is still applied to ρYH2O, and the flame
position takes the form

rF =

√
R2 −

2
∫

V ρYH2OdV

ρbYH2O,bLx Lθ
. (2.76)

Only one premixed hydrogen–air mixture is considered, with an equivalence ratio of
φ = 0.4, Tu = 298 K, and po = 1 atm. The computational domain has a maximum
radius R = 0.2 m with the boundary at r = R set as a convective outflow boundary
condition; there is no inlet boundary in this configuration. Due to the changing
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Figure 2.7: Schematic of the two-dimensional tubular flame configuration.

flame curvature (and thus a potentially varying flame thickness), a more refined
computational grid is implemented. Here, a uniform grid spacing of ∆r = lF/40 is
utilized.

The flame is initialized using a one-dimensional steady-state tubular flame solution
(the tubular flame configuration is described below). The flame is positioned such
that the initial flame radius is as close to the origin as possible while still allowing
the flame to propagate outwardly in the one-dimensional cylindrical configuration.
As an example, the initial flame radius (denoted by a subscript 0) for the detailed
chemistry simulation with mixture-averaged mass and thermal diffusion is rF,0 =

0.0013 m, corresponding approximately to an initial normalized flame curvature of
(κlF)0 = 0.5. Once initialized, the flame propagates outwardly into the (initially)
quiescent mixture until it exits the computational domain.

For the one-dimensional cylindrical flame, rF provides a radius by which one can
compute a cross-sectional area (Acyl = rF Lz Lθ) to determine the flame speed,

Scyl
L =

∫
V ρ ÛωH2OdV

ρuYH2O,bAcyl . (2.77)

2.6.3 Two-dimensional tubular flames
The next configuration removes the axisymmetric constraint of the one-dimensional
cylindrical flame by investigating a tubular flame configuration exhibiting thermo-
diffusive instabilities. This configuration presents the first opportunity to investigate
the effects of extinction and local fuel enrichment on the flame structure. Despite the
instabilities, these cellular tubular flames are stable, allowing for experimental mea-
surements to be made and subsequently used for model validation. The governing
equations for this configuration were provided previously in Section 2.5.
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This configuration is an outwardly burning cylindrical flame similar to that de-
scribed in Section 2.6.2. However, as axisymmetry is no longer enforced on this
configuration, differential diffusion effects cause cellular flame instabilities to form.
The flame is kept at a fixed radius by injecting the unburnt mixture radially inward,
and the flame stabilizes at the radius whose unburnt mixture velocity matches the
flame speed. A schematic of the tubular flame configuration is given in Fig. 2.7.

The physical dimensions of the computational domain are selected tomatch previous
experiments [52, 54] and simulations [53]. The radial coordinate spans the range
0 ≤ r ≤ R = 0.012 m, and the azimuthal range is −π/4 ≤ θ ≤ π/4 (to enforce
four-fold symmetry of the flame front [53]). The unburnt premixed hydrogen–air
mixture corresponds to the low-stretch case of Hall and Pitz [52, 54], with premixed
mixture properties of φ = 0.25, Tu = 295 K, po = 1 atm, and a radial velocity
boundary condition of ur,in = 0.7647 m/s at r = R. The axial velocity gradient
at the inlet (denoted as Win) is unknown from experiments and is chosen to match
the computed flame radius with the experimental flame radius. By increasing W ,
more mass will leave the domain in the axial direction, altering the velocity field
and flame position. This procedure was used by Hall and Pitz [53], where they
found Win = 50 s−1. A different chemical model and numerical implementation of
the governing equations than those used by Hall and Pitz are implemented in this
study, and thus Win = 35 s−1 was found to match the flame radius based on the
experimental OH profiles.

The computational domain for this case consists of 800 points in the radial direction
and 128 points in the azimuthal direction. This grid results in ∆r ≈ lF/40 and
closely matches the highest resolution level of the adaptive mesh refinement used
in Hall and Pitz [53]. The inflow boundary is located at r = R and the origin at
r = 0 is a centerline boundary condition. It should be noted that in the experiments,
the flames may arbitrarily rotate and an experimental stabilization method was used
to prevent this rotation [52, 54]. In the computational investigation, symmetry
boundary conditions are applied at the azimuthal boundaries to prevent the flame
from rotating.

The flame is initialized using a one-dimensional flat unstretched flame, interpolated
on the cylindrical grid. While this initial flame solution assumes no stretch or
curvature of the flame front, these effects rapidly develop once the simulation
is started. To prevent the flame from remaining perfectly cylindrical, a slight
perturbation in the flame front is used to initialize the cellular flame instabilities.
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Figure 2.8: Initial perturbation for the two-dimensional freely propagating
hydrogen–air flame with φ = 0.4.

This perturbation of the initial flame front, rF (θ), takes the form

rF (θ) = rexp
F + A cos

(
πθ

Lθ

)
, (2.78)

where rexp
F is the approximate flame radius from the experimental results and A =

1×10−5 m. Once the simulation is initialized, an iterative procedure of changingWin

and arriving at a steady-state solution is repeated until the numerical flame radius
matched the experimental flame radius.

2.6.4 Two-dimensional freely-propagating flames
The two-dimensional flame configuration allows the cellular flame instabilities to
propagate freely into the unburnt premixed hydrogen–air mixture. These cellular
instabilities will then split and merge, creating various length scales over which
extinction and local fuel enrichment effects are seen. Simulations using a similar
configuration have been used in previous numerical works [9, 20, 51, 102]. Figure
2.8 shows a schematic of the configuration, with the initial flame perturbation
(described below).

One inlet premixed mixture is considered with inlet properties set to φ = 0.4,
Tu = 298 K, and po = 1 atm. The initial velocity boundary condition is set as
uin = So

L as the instabilities develop in the domain. Once the instabilities have
formed, uin is set to match the mean effective burning velocity, S2D

eff , computed using
Eq. 2.73. This matched velocity condition allows the simulation to run for an
arbitrary length of time such that the cellular instabilities are allowed to propagate
freely and flame statistics can be time-averaged. The physical dimensions of the
computational domain are approximately Lx = 120 lF in the streamwise direction
and Ly = 30 lF in the spanwise direction.

The grid consists of 1888 points in the streamwise direction and 472 points in the
spanwise direction. This corresponds to a grid size of ∆x = ∆y = lF/16. The
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Figure 2.9: Two-dimensional schematic of the three-dimensional laminar flame
configuration.

top and bottom boundaries are periodic boundary conditions, with the inflow at
the left boundary and outflow at the right boundary. The scalar and velocity fields
are initialized with a one-dimensional flat flame solution at φ = 0.4. The initial
location of the one-dimensional flame is perturbed in the streamwise direction using
a combination of two sinusoidal modes defined as

xF,0 = E + A
∑
i=1,2

cos
(
2πkiy

Ly

)
, (2.79)

where E is the nominal flame position, A = 1 × 10−4 is the amplitude of the
perturbations, and ki = (13 , 20) control the spatial frequencies of the perturbation.
The initial flame profile and simulation configuration are shown in Fig. 2.8. Note
that the asymmetric perturbation promotes rapid growth of the cellular instabilities.
An identical set of disturbance parameters were used in Burali et al. [20]

2.6.5 Three-dimensional laminar flames
Similar to the two-dimensional freely-propagating configuration, a single premixed
hydrogen–air mixture is considered. The incoming mixture has inlet properties of
φ = 0.4, Tu = 298 K, and po = 1 atm. A uniform velocity, uin, which matches
the effective flame speed of the three-dimensional flame, S3D

eff (calculated using Eq.
2.73) is used. Again, thismatched velocity boundary condition allows the simulation
to run for an arbitrary duration, permitting the collection of flame statistics. The
physical dimensions of the domain are approximately Lx = 100 lF the streamwise
direction and Ly = Lz = 12 lF in the spanwise directions; thus, the spanwise
dimensions of this case are approximately 40% of the two-dimensional freely-
propagating configuration. Figure 2.9 provides a to-scale schematic of the three-
dimensional configuration. The domain height Ly = Lz was selected to emphasize
the cellular instabilities during the subsequent analyses. Briefly, it was found that
the small thermo-diffusive instabilities are independent of the domain height if the
domain is sufficiently large; a discussion of the domain size influence is presented
in Section 3.7.1.
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Figure 2.10: Two-dimensional schematic of the three-dimensional flame configura-
tion. Adapted from [108].

The computational grid has 1520 points in the streamwise direction and 190 points
in both spanwise directions, with a uniform grid size of ∆x = lF/16. The inflow
and outflow boundary conditions are in the x-direction while the two spanwise di-
rections have periodic boundaries. The flame is kept near the center of the domain
to prevent effects from the inlet and outlet. The three-dimensional laminar flame
is initialized by performing a similar sinusoidal perturbation of a two-dimensional
freely-propagating flame in the z-direction. The properties of the initial pertur-
bation match those given in the two-dimensional freely propagating configuration
description. The perturbations in the z-direction is handled in an identical manner.
This initial condition has instabilities present which rapidly propagate in an unsteady
manner, creating fully three-dimensional flame instabilities after the initial transient.

2.6.6 Three-dimensional turbulent flames
The final configuration is implemented to consider turbulent flames. The compu-
tational configuration is identical to that of the three-dimensional laminar flame
configuration detailed above. Additionally, the unburnt premixed mixture has the
same inlet properties. A single unburnt Karlovitz number, Kau = τF/τη = 149, is
selected for analysis in this thesis work. Here, τF = lF/So

L is the flame time scale and
τη = (ν/ε)

1/2 is the Kolmogorov time scale of the incoming turbulence with unburnt
kinematic viscosity, ν, and turbulent energy dissipation, ε . The Karlovitz number
is a measure of how turbulence and the flame chemistry interact. For a value of
Kau = 149, the turbulence time and length scales are sufficient to disrupt the flame
structure [7]. The unburnt turbulent Reynolds number is Ret = u′l/ν = 289, where
u′ is the velocity fluctuation around the mean velocity and l is the integral length
scale. A single set of turbulence parameters is investigated in this thesis; this allows
one to determine the applicability of the proposed diffusion and chemistry models
under moderate turbulence conditions. The chosen Karlovitz number was selected
such that the turbulence interacts with and changes the flame structure (e.g., source
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term profiles). However, the turbulence is not strong enough to disrupt the cellular
instabilities of interest [7, 20]. Investigations of the importance of thermal diffusion
(at various Kau and Ret) should be the focus of future work. Given the prescribed
turbulence intensity, this mesh has a grid spacing equivalent to ∆x ≈ 2η, where η
is the Kolmogorov length scale. Periodic boundary conditions are used in the two
spanwise directions, with the inflow at the left boundary and outflow at the right
boundary.

The inlet boundary condition has a mean inflow velocity approximately matching
the turbulent flame speed, ST (calculated from Eq. 2.73), allowing arbitrarily long
simulations to be performed. The turbulent inflow velocity profiles are obtained
from a separate triply-periodic DNS of homogeneous isotropic turbulence (HIT)
with zero mean velocity. This HIT simulation was performed using a cubic domain
with 1903 grid points, exactly matching the grid spacing of the turbulent flame
configuration. During the HIT simulation, velocity values at the yz-midplane are
extracted and stored in a separate data file, along with the corresponding time step.
Data is extracted at an interval of 1 × 10−6 s for a total of 1 × 10−3 s. Each extracted
plane is then used as an inlet velocity for the turbulent flame configuration by
applying a mean streamwise velocity set approximately equal to ST .

In order to initialize the turbulent flame profile, a non-reacting flow simulation was
first performed on the 1520× 1902 domain, in order to advect the turbulent velocity
profile throughout the computational space. A forcing technique is employed to
maintain the production of turbulent kinetic energy throughout the domain, as no
mean shear exists to sustain the turbulence. The linear forcing method of Carroll
and Blanquart [22] (which is a modification of the linear forcing technique proposed
by Lundgren [79] and investigated by Rosales and Meneveau [104]) is used. This
forcing technique has been used extensively in DNS of turbulent reacting flows.
The turbulence forcing is applied gradually near the inlet to prevent large negative
velocities at the inlet plane. Similarly, after the flame, the turbulence forcing is
reduced and the production of turbulent kinetic energy decreases toward the outlet
to prevent negative velocities at the outlet. A schematic of the computational domain,
with a cartoon of the flame position and the turbulence forcing locations, is shown
in Fig. 2.10.

After the turbulent velocity field is fully developed, a flat one-dimensional flame is
superimposed near the center of the computational domain. The turbulent velocity
field rapidly disrupts the flat flame structure. This initialization procedure is allowed
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to continue for 5 eddy turnover times, τ = k/ε ≈ 500 µs, to ensure the flame has
adjusted fully to the turbulent velocity field. After this setup procedure, the flames
are allowed to propagate until the desired statistics are collected.
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C h a p t e r 3

VALIDATION OF A MIXTURE-AVERAGED THERMAL
DIFFUSION MODEL

[1] J. Schlup and G. Blanquart. “Validation of a mixture-averaged thermal diffu-
sion model for premixed lean hydrogen flames”. In:Combust. Theor. Model.
22.2 (2018), pp. 264–290. doi: 10.1080/13647830.2017.1398350.

Using the numerical framework outlined in Chapter 2, an evaluation of the mixture-
averaged (MA) thermal diffusion model is now presented. This evaluation under-
scores the importance of Soret and Dufour effects in lean premixed hydrogen–air
flames. The six flame configurations described in Chapter 2 are considered to eval-
uation the mixture-averaged thermal diffusion model; these cases are listed in Table
3.1, along with the diffusion models considered for each case. The results using
MA thermal diffusion are then compared to the exact multicomponent (MC) model
for the one- and two-dimensional cases. MC thermal diffusion is not considered in
the three-dimensional configurations (due to high computational costs) and thus the
primary comparison in these configurations is the importance of thermal diffusion,
not the performance of the MA model.

3.1 One-dimensional unstretched (flat) laminar flames
Using the one-dimensional flame configuration detailed in Section 2.6.1, a range
of equivalence ratios are considered, φ ∈ [0.35, 1.0], to determine the effect of
thermal diffusion on laminar unstretched flame speeds. Figure 3.1 shows the percent
deviation (from the MA–MC laminar flame speed) of the flame speeds calculated

Table 3.1: Cases considered to evaluate and apply the mixture-averaged thermal
diffusion model. See Section 2.6 for a detailed description of the models.

1D Flat 1D Stretched 2D Steady 2D Unsteady 3D Lam. 3D Turb.
Sec. 3.1 Sec. 3.2 Sec. 3.3 Sec. 3.4 Sec. 3.5 Sec. 3.6

MA–MC X X X X — —
MA–MA X X X X X X
MA–FM X X — — — —
MA–RM X X — — — —
MA–xx X X X X X X

https://doi.org/10.1080/13647830.2017.1398350
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Figure 3.1: Laminar flame speed comparison of the MA–MA (red circles), MA–FM
[45] (orange squares), MA–RM [113] (green diamonds), and MA–xx (blue crosses)
models with the MA–MCmodel. TheMA–MA andMA–RM cases overlap at many
equivalence ratios.

using the various thermal diffusion models. This percent deviation is defined as

εd
SL =

�����So,MA-MC
L − So,d

L

So,MA-MC
L

����� (3.1)

with the superscript d specifying the diffusion model. The flame speeds are com-
puted using Eq. 2.73.

As can be seen, So,MA−MA
L and So,MA−RM

L most closely agrees with So,MA−MC
L for

all equivalence ratios. Additionally, the errors incurred by the thermal diffusion
models are an order of magnitude lower than the error incurred by neglecting
thermal diffusion. Further, at φ = 0.4 (the equivalence ratio chosen for most of
the subsequent cases), all models indicate that So

L decreases by approximately 5%
if thermal diffusion is included. This reduction in flame speed is consistent with
previous studies of thermal diffusion in one-dimensional flat flames [15]. Finally,
while there is a clear difference between flame speeds with and without thermal
diffusion, the chosen thermal diffusion model (at φ = 0.4) has little impact on the
results. Due to the similar trends in laminar flame speeds seen across the wide
range of equivalence ratios, and the increased effect of thermo-diffusive instabilities
at lean conditions, a single lean value of φ is considered for each of the following
flame configurations. A value of φ = 0.25 is used for the steady, two-dimensional
tubular configuration (to match experiments), and a value of φ = 0.4 is used for all
other configurations.
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(a) H (b) H2 (c) H2O

Figure 3.2: Comparison of species mass fractions as functions of temperature for
the different diffusion models. MA–MC (black), MA–MA (dashed red), MA–FM
[45] (dot-dashed orange), MA–RM [113] (dot-dashed green), and MA–xx (dotted
blue) results are shown. The cases including any thermal diffusion model overlap
in these figures.

While the laminar flame speeds provide insight into the global effect of thermal
diffusion, local comparisons between the multicomponent and mixture-averaged
models can be made by examining species mass fraction profiles. Figure 3.2 shows
a comparison of the mass fractions of two major chemical species (H2 and H2O)
and the H radical for all cases. For the light species (H and H2), including thermal
diffusion causes a deviation of the mass fraction profiles from those found by
neglecting thermal diffusion. However, the inclusion of thermal diffusion has little
impact on the profiles of heavier chemical species. These local and global results
show that, for a one-dimensional flame, using the MA–MA model (among other
models) accurately predicts the laminar flame speeds and species profiles of the
MA–MC case.

3.2 One-dimensional stretched laminar flames
As the next logical step in flame complexity, this section examines a one-dimensional
stretched flame. The flame considered is a one-dimensional, outwardly propagat-
ing, cylindrical flame such that the flame is always convex to the unburnt mixture
(positive curvature). The unburnt mixture properties, computational configuration,
and simulation initialization procedure were described in Section 2.6.2.

An initial transient exists due to the initial flame profile being an approximate
stretched solution; thus, Fig. 3.3 shows only the portion after the transient has been
removed. This figure shows the flame speed computed using Eq. 2.77, normalized
by the laminar flame speed. It is found that, regardless of the inclusion of thermal



46

Figure 3.3: Normalized flame speed as a function of normalized flame curvature
with φ = 0.4.

diffusion, the flame speed approaches the unstretched laminar flame speed as the
curvature decreases. This behavior is expected, and in the limit of an infinitely large
flame radius, SL/So

L → 1. Additionally, Fig. 3.3 shows that the inclusion of thermal
diffusion, using any of the thermal diffusion models, increases the flame speed at
a given positive curvature. For the entire range of flame curvature presented, the
increase of SL over So

L , i.e., SL/So
L − 1, is consistently 33% larger for the thermal

diffusion cases than theMA–xx case. This result is also expected as thermal diffusion
acts to increase the local equivalence ratio in regions of positive curvature [51],
leading to a strengthening of the flame speed. Central to the MA thermal diffusion
investigation, the MA–MA model reproduces accurately (to within 1.5% of SL/So

L)
the effects of curvature on the flame speed computed using multicomponent thermal
diffusion.

In summary, all thermal diffusion models accurately predict the multicomponent
diffusion results. The FM model produces results which are, at best, as good as
the MA model. However, since the FM model is neither more accurate nor more
computationally efficient than the MAmodel, is not considered further in this work.

3.3 Two-dimensional tubular flame
This section removes the axisymmetric constraint used in the previous section by
investigating the tubular flame configuration exhibiting thermo-diffusive instabili-
ties. Despite the instabilities, these cellular tubular flames are stable, allowing for
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(a) H number density (b) OH number density

Figure 3.4: (a) H and (b) OH number density contours for the (clockwise from top
left) MA–xx, MA–MC, MA–MA, and experimental [53] results.

experimental measurements to be made and subsequently used for model validation.

The computational domain dimensions are selected to match previous experiments
[52, 54] and simulations [53]. In their experiments, a variety of measurement
techniques were used, including Raman scattering, chemiluminescence, and laser-
induced fluorescence, each with their own experimental uncertainties. Due to
differential diffusion effects, cellular structures are visible in the flame. The flame is
kept at a fixed radius by injecting the unburnt mixture radially inward, and the flame
stabilizes at the radius whose unburnt mixture velocitymatches the flame speed. The
inlet mixture properties and computational configuration were described in Section
2.6.3.

Figure 3.4 shows a qualitative comparison of the H and OH number densities
between the numerical results and experimental measurements. In general, the
agreement between the results using mixture-averaged thermal diffusion and the
experimental measurements are reasonable. Primarily, the MA–MAmodel predicts
the same number of cells along the flame front for the given experimental conditions.
Further, the MA–MC results agree very closely with the MA–MA results.

A more quantitative evaluation of the MA–MA results using the MA–MC and
experimental results is done by plotting species number densities as functions of
the azimuthal angle. Figure 3.5a shows the peak OH number density at each
azimuthal location plotted against the azimuthal angle. This figure shows that the
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(a) Maximum nOH (b) Radius of maximum nOH

Figure 3.5: Profiles of the (a) maximum nOH and (b) radial location of maximum
nOH as functions of the azimuthal coordinate. MA–MC (black), MA–MA (dashed
red), MA–xx (dotted blue), and experimental data [53] (black symbols) results are
shown. Experimental uncertainty for nOH is ±2 × 1015 cm−3.

inclusion of thermal diffusion leads to stronger thermo-diffusive instabilities, i.e.,
regions of negative curvature have reduced radical concentrations and regions of
positive curvature have higher radical concentrations than the MA–xx case. There
exists a slight disagreement in the number density profile of OH for both the MA–
MA and MA–MC models compared to the experimental results, especially near
extinction regions. This discrepancy, however, is within the range of experimental
uncertainties, ±2×1015 cm−3 [54]; the agreement between the two diffusion models
remains excellent.

Figure 3.5b shows an analysis of the flame front geometry by plotting the radial
location of peak OH number density as a function of azimuthal angle. The flame
radius is accurately predicted for both the MA–MC and MA–MA cases (both in the
instability and in the region between cells), while it is underpredicted for the MA–
xx case throughout the flame. The predicted radius for the MA–MC and MA–MA
results also very closely match experimental measurements.

3.4 Two-dimensional freely propagating flame
The previous configurations have considered only steady flames. The remaining
three configurations examine flames that are freely propagating, and thus have
highly oscillatory flame structures. First, an investigation of a two-dimensional



49

Figure 3.6: Temperature (top) and normalized H2O source term (bottom) contours
for the MA–MA model.

freely propagating flame is considered. The inlet mixture properties, computational
configuration, and initialization procedure were again described in Section 2.6.4.

TheMA–MC,MA–MA, andMA–xx diffusionmodels are used in this configuration,
and the simulations are run for approximately t = 200 τF after the initial transient
has been removed. The flame time scale, τF , is defined as τF = lF/So

L .

Figure 3.6 shows contours of the temperature and H2O source term, ÛωH2O. The
contours show locally increased temperatures and source terms (compared to one-
dimensional unstretched flames at the same equivalence ratio) as well as extinction
regions.

The effects of thermal diffusion can be analyzed quantitatively by comparing global
and local properties of the three diffusion models. First, the effects of thermal
diffusion on the effective flame speed, S2D

e f f (as computed using Eq. 2.73), are
investigated, and a time history is shown in Fig. 3.7a. Each flame speed in Fig.
3.7a is normalized with the So

L obtained using the same thermal diffusion model
as for the two-dimensional simulations. Several observations can be made. First,
regardless of the diffusion model, the flame speed increases over the laminar value
due to the unstable flame front (i.e., S2D

e f f /S
o
L > 1). Second, the flame speeds are

highly oscillatory (as expected for unstable flames), thus statistical quantities are
considered so that direct comparisons between the diffusion models can be made.
The PDFs of the normalized effective flame speeds are given in Fig. 3.7b along with
the mean values shown as the dashed vertical lines. Both thermal diffusion models
predict similar mean normalized flame speeds (around S2D

e f f /S
o
L = 2.6), while the
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(a) Flame speed history (b) PDF of flame speed

Figure 3.7: (a) Flame speed history and (b) PDF of normalized flame speed for
the MA–MC (black), MA–MA (red), and MA–xx (blue) models. The dashed lines
represent the temporal mean of the flame speeds.

case neglecting thermal diffusion predicts a 16% decrease in the mean normalized
flame speed to S2D

e f f /S
o
L = 2.2. Further, Fig. 3.7b indicates that the MA–MC

and MA–MA cases predict larger values of the flame speed, as well as a wider
distribution of values. This supports the earlier observations that thermal diffusion
promotes more intense instabilities. It should be noted that the statistical noise in the
PDFs of global quantities (e.g., flame speed and surface area) throughout this work
is primarily due to the relatively limited sample size as only one value is obtained
at each time step.

Next, the effect of thermal diffusion on the flame geometry is analyzed. Figure
3.8a shows the PDF of the flame surface area, where the flame surface is defined
as the isosurface of Tpeak. It should be noted that, for the remainder of this thesis,
the subscript or superscript “peak” dictates the variable (e.g., T) takes its value at
the peak source term of H2O in a one-dimensional unstretched flame, Ûω1D

H2O, at the
corresponding unburnt equivalence ratio. For example, the temperature at Ûω1D

H2O for
the φ = 0.4 flame isTpeak = 1180 K. For this two-dimensional case, the flame “area”
is the arc length defined by the temperature isosurface. The mean surface areas are
included for each case as vertical dashed lines. As can be seen, the MA–MA and
MA–MC mean surface areas exceed that of the MA–xx case, providing further
support that thermal diffusion acts to increase the flame speed, and the effects of
thermal diffusion are accurately captured by the MA–MA model. The PDF also
reveals that the inclusion of thermal diffusion acts to make the flame more unstable,
i.e., the range of possible flame surface areas has greatly increased.
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(a) PDF of flame surface area (b) Conditional mean of the source term on
the flame surface

Figure 3.8: (a) PDF of flame surface area normalized by domain cross-sectional area
and (b) normalized chemical source term as a function of normalized local flame
curvature for the MA–MC (black), MA–MA (red), and MA–xx (blue) models. The
dashed lines on the left figure represent the temporal mean of the flame area. The
MA–MC and MA–MA means overlap.

Finally, one can identify the local effects of thermal diffusion on the flame by
investigating the production rate of H2O. Figure 3.8b shows the mean of ÛωH2O

conditioned on the flame curvature along the Tpeak isosurface. The conditional
mean is normalized by the peak one-dimensional source term, and is plotted against
the flame curvature normalized by the laminar flame thickness. Here, the flame
curvature is defined as

κ = −∇ · n (3.2)

and n = ∇T/|∇T | is the surface normal. From this figure, it is clear that the
inclusion of thermal diffusion increases the local production rate in regions of high
positive curvature. This can be attributed to the enhanced focusing effect of thermal
diffusion and differential diffusion on the fuel and light radicals in regions of positive
curvature. Concurrently, in regions of negative curvature, there is a decrease of H2O
production from the one-dimensional flat flame, indicating a localized lean mixture
and possible extinction. The extinction effects are more prevalent in the MA–MC
and MA–MA cases, with the source term being nearly half that of the MA–xx case
at equivalent κlF . This is consistent with the fuel enrichment hypothesis above.

Given the qualitative and quantitative agreement found between the MA–MC and
MA–MA models in the above one- and two-dimensional configurations, the MA–
MA model is now applied to flame configurations where experimental data and
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Figure 3.9: Isosurface of the three-dimensional laminar flame with the MA–MA
model. The isosurface corresponds to Tpeak. The colors correspond to the normal-
ized source term ÛωH2O/ Ûω

1D
H2O ∈ [0, 5].

MA–MC simulations are not readily available. More specifically, the MA–MA
model is applied to both laminar and turbulent three-dimensional freely propagating
flames.

3.5 Three-dimensional, laminar, freely propagating flame
A three-dimensional case without turbulence is now considered to isolate the effects
of turbulence and multi-dimensionality on the transport processes. Additionally,
while not the primary focus of this work, a future study regarding the importance
of thermal diffusion for varying turbulence intensities would require a baseline case
for comparison. This three-dimensional, laminar flame provides such a baseline.
A temperature isosurface, colored by normalized ÛωH2O, is provided in Figure 3.9
to show an example of the freely propagating flame front. These simulations are
run for approximately t = 80 τF , and statistics are collected after removing the
initial transient from each case. Details of the computational configuration, mixture
parameters, and initialization procedure were presented in Section 2.6.5.

The effective flame propagation speeds for the two cases are shown in Fig. 3.10a.
In a similar manner to the two-dimensional freely propagating flames, these flame
speeds are calculated using Eq. 2.73. The flame speeds in Fig. 3.10a are normalized
by their respective one-dimensional laminar flame speeds, and plotted against a
normalized flame time, t/τF . The inclusion of thermal diffusion acts to increase the
flame propagation speed, providing a 25% increase (from 2.50 to 3.14) as shown in
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(a) Flame speed history (b) PDF of flame speed

Figure 3.10: Flame speed history (left) and PDF of normalized flame speed (right)
for the MA–MA (red) and MA–xx (blue) models. The dashed lines represent the
temporal mean of the flame area.

the PDFs and mean flame speeds in Fig. 3.10b. This increase in flame speed is more
than that found in the two-dimensional case for two reasons. First, the flame has
an additional degree of freedom to increase its surface area (global effect). Second,
larger flame curvatures are possible due to the flame being curved in an additional
direction, allowing for more fuel enrichment (local effect). Both of these effects
contribute to increasing the flame speed.

The PDFs and means of the flame surface area for the MA–MA and MA–xx cases
are shown in Fig. 3.11a. As mentioned previously, the flame surface area increases
with the inclusion of thermal diffusion, as the mean normalized surface area for the
MA–MA model is A3D

FP/A = 2.6, compared to A3D
FP/A = 2.1 for the MA–xx model.

Additionally, the standard deviation of the flame area increases (σMA−MA = 0.32
for the MA–MA case, σMA−xx = 0.20 for the MA–xx case), indicating thermal
diffusion affects global flame properties and promotes a more unstable flame front
with greater variability in the flame surface area. Note that, due to the size reduction
of the domain, the flame may be more constrained in the three-dimensional case
than it was in the two-dimensional case. The effects of domain height are discussed
in Section 3.7.1.

Finally, the local effects of thermal diffusion can be investigated by looking at the
conditional mean of ÛωH2O on an isosurface of Tpeak as a function of flame curvature
(Fig. 3.11b). Again, as in the two-dimensional freely propagating case, regions
with large negative curvature have source terms significantly below the peak one-
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(a) PDF of flame surface area (b) Conditional mean of the source term on
the flame surface

Figure 3.11: PDF of laminar three-dimensional flame surface area normalized by
domain cross-sectional area (left) and normalized chemical source term as a function
of normalized local flame curvature (right) for theMA–MA (red) andMA–xx (blue)
models. The dashed lines represent the temporal mean of the flame area (left) and
the two-dimensional conditional means (right).

dimensional source term. Also, the MA–xx case experiences less pronounced
extinction, as demonstrated by the slightly higher source term where κ < 0. In
regions of κ > 0, the conditional mean is greater than the one-dimensional source
term. Similar to the two-dimensional case, the MA–MA model predicts greater
source terms than the MA–xx model. Overall, the three-dimensional case predicts
a greater increase in the source term over the two-dimensional flames and a wider
range of positive curvatures.

3.6 Three-dimensional, turbulent, freely propagating flame
As a final demonstration of the thermal diffusion model, a three-dimensional, tur-
bulent, freely propagating flame is simulated. The simulations are each run for 25
eddy turnover times, τ, after allowing for initial transients to dissipate. Again, the
incoming mixture and turbulence properties, flame configuration, and initialization
procedure were detailed in Section 2.6.6.

Figure 3.12 shows a three-dimensional view of the isosurface of Tpeak defining
the flame front. The flame surface shows the complex behavior of the flame in
the turbulent field, with large-scale cellular structures not as clearly defined as
they appeared in the laminar two- and three-dimensional freely propagating cases.
Figure 3.13 shows two-dimensional slices of the simulation, with contours of both
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Figure 3.12: Isosurface of the three-dimensional turbulent flame with the MA–
MA model. The isosurface corresponds to Tpeak. The colors correspond to the
normalized source term ÛωH2O/ Ûω

1D
H2O ∈ [0, 15].

Figure 3.13: Temperature (top) and normalized H2O source term (bottom) contours
for a section of the three-dimensional turbulent MA–MA case.

temperature and normalized source term. In regions of very high positive curvature,
the normalized source term is over 10 times that of the one-dimensional flame. In
areas with large negative curvature, the source term is nearly zero.

Figure 3.14a shows a time-history of the turbulent flame speed, calculated using Eq.
2.73, normalized by the respective laminar flame speeds and plotted as a function of
time normalized by τ. The mean normalized turbulent flame speed for the thermal
diffusion case is SMA−MA

T /So
L = 37.6, compared to SMA−xx

T /So
L = 29.3 for the case

without thermal diffusion, an increase of 28%. The turbulent flame speed PDFs are
shown in Fig. 3.14b, along with the mean turbulent flame speeds as vertical dashed
lines. Once again, the inclusion of thermal diffusion increases the maximum flame
speed observed and shifts the entire PDF towards higher flame speed values.
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(a) Flame speed history (b) PDF of flame speed

Figure 3.14: Flame speed history (left) and PDF of normalized flame speed (right)
for the MA–MA (red) and MA–xx (blue) models. The dashed lines represent the
temporal mean of the flame speeds.

To further quantify what effects (global and local) thermal diffusion has on turbulent
flames, Fig. 3.15a shows the normalized flame surface area. The inclusion of
thermal diffusion, once again, increases the mean surface area. For this flame
configuration, the mean normalized surface area for the MA–MA case is AT/A =

17.2, while the MA–xx model has a mean normalized flame surface area of AT/A =

13.8. In addition to the increased mean surface area, there is an increase in the
variance of the flame surface area; the standard deviation of the MA–MA case is
σMA−MA = 3.07 compared to the standard deviation of the MA–xx case, σMA−xx =

2.72. The percent increase in σMA−MA for the turbulence cases (12%), however,
is smaller than that of the three-dimensional laminar cases (63%), indicating that
turbulence acts to reduce the overall variability in the surface area due to thermal
diffusion.

Finally, Fig. 3.15b shows the normalized product source term as a function of
normalized flame surface curvature for the two diffusion cases. The conditional
mean is plotted for values of κ which span 95% of the collected data. First,
the maximum positive and negative curvatures observed in the turbulent cases are
significantly larger than the laminar cases. The increased maximum curvature is due
to the turbulent flow and the flame is curved at the scales of the smallest turbulent
structures (at this Karlovitz number, η < lF). Further, the source term values for the
turbulent cases are always higher than the values for the laminar cases. This result
is similar to that of Aspden et al. [7], who found through their simulations (albeit
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(a) PDF of flame surface area (b) Conditional mean of the source term on
the flame surface

Figure 3.15: PDF of turbulent three-dimensional flame surface area normalized by
domain cross-sectional area (left) and normalized chemical source term as a function
of normalized local flame curvature (right) for theMA–MA (red) andMA–xx (blue)
models. The dashed lines represent the temporal mean of the flame area (left) and
the laminar three-dimensional conditional means (right).

neglecting Soret and Dufour effects) that increasing the Karlovitz number increased
the burning intensity. The increased source term results from turbulent mixing
enhancing species transport over pure molecular diffusion. Finally, the source term
with thermal diffusion is once again higher than that of the case neglecting thermal
diffusion, as was seen in the two-dimensional and three-dimensional laminar cases.

3.7 Discussion
3.7.1 Size of the Cartesian computational domains
The current objectives of this thesis are to investigate the impact of various transport
and chemistry models, which are particularly sensitive to flame curvature found
in small cellular instability structures. It is important to note that the size of the
computational domain containing these instabilities may also impact the simulation
results. It is thus important to quantify the characteristic lengths of the cellular
instabilities and extinction zones. A methodology to systematically identify the
cellular instabilities, extinction zones, and length scales associated with each is
carefully detailed in Appendix B. A short description of the method, as well as
results for the two-dimensional freely propagating configuration, are given in this
section.

The flame surface is first defined using an isosurface of Y iso
H2O = Ypeak

H2O . The product
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(a) PDF of cell length for Ly = 30 lF (b) PDF of extinction length for Ly = 30 lF

Figure 3.16: Statistics for the (a) cell length and (b) extinction zone length for the
Ly = 30 lF computational domain. The MA–MC (solid black), MA–MA (dashed
red), and MA–xx (dotted blue) cases are all presented.

mass fraction is used so that this analysis could also be performed on data acquired
from the tabulated chemistry detailed in Chapter 6. Then, the flame surface is
segmented into “cellular structures” and “extinction zones” based on a threshold
value of the H2O source term, Ûωth

H2O = 0.2 Ûω1D
H2O. These values of Y iso

H2O and Ûωth
H2O

were selected after performing a sensitivity analysis; details of the sensitivity anal-
ysis, and the conclusions leading to these selections, are presented in Appendix B.
Once cellular structures and extinction zones are identified, their length scales are
calculated: for cellular structures, the arc length along the flame isosurface is used
to define the cell length, lc. The extinction length, le, is defined by connecting two
neighboring cellular structures with a straight line.

Twodomain heights (Ly = 30 lF and Ly = 60 lF) are used to investigate the instability
length scales. A minimum of 120 data files, spanning over 200 τF , for each diffusion
model are analyzed. Figure 3.16 shows the PDFs of the cell length and extinction
zone length computed using all available numerical data. The two length scales are
normalized by the one-dimensional laminar flame thickness using the corresponding
diffusion models.

A number of results are first evident in the length scale PDFs. First, the MA and
MC thermal diffusion models both predict similar statistics of the flame front length
scales. This result again confirms that the MA–MA model is sufficient to capture
thermal diffusion effects present in the MA–MC model. Further, the cell length
PDFs show a shift toward less extreme cell sizes by neglecting thermal diffusion.
The cellular structures also have two distinct peak length scales; one peak, around
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Figure 3.17: YH2O contour plots showing the time history of a larger lobe breaking
down into smaller cellular instabilities.

lc/lF = 10, corresponds to the small cellular structures which form along the large
single-cusp instabilities (lobes). The larger length scale, lc/lF = 40, corresponds
to these larger single-cusp structures. An example of the transition between these
two cellular instability sizes is given in Fig. 3.17. The extinction zone length PDFs
indicate that neglecting thermal diffusion predicts a smaller extinction zone (by
approximately 35%).

The reported length scales indicate that extinction zones are of the same order as the
laminar flame thickness, with a large proportion of extinction zones smaller than lF ,
while cellular structures are typically an order of magnitude larger than lF . These
extinction zones act to enhance the cellular instabilities through differential diffusion
effects, and must be resolved or adequately modeled in numerical simulations. For
simple two-dimensional cases such as those presented in this work, resolving the
extinction zones is satisfied by having ∆x = lF/16. However, for large-scale, three-
dimensional, turbulent flows which are not amenable to DNS (and must therefore
be treated using a large-eddy simulation (LES) framework), the extinction regions
might be sub-grid. An accurate simulation of lean hydrogen flames using LES may
therefore need to consider extinction zone effects in the sub-grid scale models.

An identical analysis of the instability length scales is performed on the computa-
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(a) PDF of cell length for Ly = 60 lF (b) PDF of extinction length for Ly = 60 lF

Figure 3.18: Statistics for the (a) cell length and (b) extinction zone length for the
Ly = 60 lF computational domain using the MA–MA model.

tional domain with Ly = 60 lF . The results of lc and le are shown in Fig. 3.18. The
extended domain results show two key features. First, the length scales associated
with the smaller cellular instabilities (lc ≈ 10 lF) are similar to the Ly = 30 lF config-
uration. This indicates the smaller structures are not greatly influenced by reducing
the domain height. Second, there are fewer instances of large, single-cusp flame
structures, relative to the small instabilities. This is expected as the single-cusp
structures will have a longer characteristic length, allowing more small structures to
form along the flame surface.

In summary, the effect of reducing the computational domain height in half (from
60 lF to 30 lF) appears to be an increased presence of the large single-cusp struc-
tures. By further reducing the computational domain height from Ly = 30 lF for
the two-dimensional case to Ly = 12 lF for the three-dimensional configurations,
the single-cusp structures are significantly suppressed, and only small cellular in-
stabilities will be present. This conclusion is in agreement with previous studies
on instability growth in similar computational configurations [4, 46, 129] and the
three-dimensional laminar flame isosurface in Fig. 3.9 qualitatively supports this
finding. Additionally, the chosen domain size for the three-dimensional configura-
tions is similar to that of Aspden [4] who used a comparable Karlovitz number as
the current turbulent configuration. By selecting a domain size which permits only
small instability structures and extinction zones, the influence of these high curva-
ture regions on the transport and chemistry processes can be efficiently investigated
in three-dimensional configurations.
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3.7.2 Thermal diffusion effects
Much of the previous work discussing thermal diffusion in the literature utilized
simplified flame configurations (e.g., one-dimensional, flat flames) as the basis for
determining the relative importance of thermal diffusion effects. If only the one-
dimensional flat flame were considered, thermal diffusion would appear to have
little significance on the laminar burning velocity, decreasing the flame speed by
only 5% at φ = 0.4. When laminar flame speeds can vary by 40% using different
chemical models [51], such a small change in flame speed seems insignificant for
the potential increased computational costs.

With more complex, yet steady, configurations including flame curvature (i.e., cel-
lular tubular flames), the effects of thermal diffusion are quickly apparent. Not only
does the inclusion of thermal diffusion change the flame radius, flame shape, and
species profiles, but it also causes the flame instabilities to become more severe,
with regions of increased burning and extinction in the MA–MA case relative to the
MA–xx case.

Thermal diffusion remains important in all unsteady cases, whether laminar (two-
and three-dimensional) or turbulent. In each of the multi-dimensional cases pre-
sented in this work, thermal diffusion altered both global and local flame quantities.
The increase in effective flame speed can be attributed to thermal diffusion increas-
ing both the flame surface area (global effect) and ÛωH2O (local effect). Further, the
unsteadiness of these configurations, measured by the variance of the flame speed
and surface area, is increased by including thermal diffusion effects.

The mixture-averaged thermal diffusion model proposed by Chapman and Cowling
[24] accurately predicted the effects of thermal diffusion in each case considered
here. The agreement was found by comparing the MA–MA model with both MA–
MC calculations and experimental measurements.

3.7.3 Computational cost
The implemented mixture-averaged thermal diffusion model is an accurate method
for capturing the Soret and Dufour effects. While this work is not meant to present
a detailed analysis of the computational cost or scaling of the MA–MA and non-
iterativeMA–MC algorithms (using CHEMKIN), a brief discussion of the increased
cost to include thermal diffusion is necessary.

A comparison of the time to compute the diffusion coefficients to the total computa-
tional time is thus given. Timings were acquired for the various flame configurations
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Figure 3.19: Computational time per grid point for each part of the code for four
flame configurations. All timings reported use the MA–MA model, except for the
MA–MC diffusion coefficient timings.

covering the cases presented in this work, including an additional timing test for
the three-dimensional MA–MC case run for only 20 time steps. The computational
time for each part of the code is presented in Fig. 3.19. In Fig. 3.19, the time to
compute both Di,m and DT

i are combined into the “MA–MA Diff.” and “MA–MC
Diff.” categories. These timings were acquired on TACC’s Stampede cluster using
the Extreme Science and Engineering Discovery Environment (XSEDE) [120].

The cost of the MA–MAmodel is clearly less than that of the MA–MCmethod. The
cost of CHEMKIN’sMA–MCdiffusivity represents over 25% of the total simulation
time. We note, however, that even this expensive, non-iterative multicomponent
diffusion model is only twice as costly as the mixture-averaged diffusion model
described in this work. An iterative multicomponent thermal diffusion model, such
as that proposed by Ern and Giovangigli [40], would yield nearly the same thermal
diffusion coefficients as the MA–MC model at a reduced cost.

While much of the code exhibits the same cost per grid point regardless of the
dimensionality of the problem, the chemistry—and to a lesser extent the scalar
transport—ismore expensive for one- and two-dimensional cases. This cost increase
is due to the code structure. The code has been written and optimized for three-
dimensional configurations, thus the one- and two-dimensional cases are artificially
more expensive, especially in the chemistry calculations.
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These results indicate that, for hydrogen–air combustion, the MA–MA model is
less expensive than the non-iterative MA–MC model; however, the total cost of
computing thermal diffusion coefficients remains tractable, even for MA–MC cases.
Coupledwith the discussion of flame shape, structure, and global and local quantities
in each of the computational configurations, theMA–MAmodel presents an accurate
method to capture thermal diffusion effects that is computationally comparable to
iterative multicomponent techniques.
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C h a p t e r 4

A REDUCED THERMAL DIFFUSION MODEL

[1] J. Schlup and G. Blanquart. “A reduced thermal diffusion model for H
and H2”. In: Combust. Flame 191 (2018), pp. 1–8. doi: 10.1016/j.
combustflame.2017.12.022.

Chapter 3 provided an evaluation of Chapman and Cowling’s mixture-averaged
thermal diffusion model [24] across a range of flame configurations. It was found
that thermal diffusion has an effect on global and local flame characteristics, and
should be included in future investigations of lean premixed hydrogen–air mixtures.
While the mixture-averaged thermal diffusion model was shown to be computation-
ally efficient, especially compared to a non-iterative multicomponent method, this
chapter aims to develop a reduced-order model with near-constant cost, regardless
of chemical model size.

4.1 Review of mixture-averaged thermal diffusion
The reduced thermal diffusion model proposed in this chapter is based on work
by Chapman and Cowling [24]. While their thermal diffusion model was given in
Chapter 2, the most pertinent equations are repeated in this section for reference.
The thermal diffusion coefficients, DT

i,M A, are given by Paul and Warnatz [95] as

DT
i,M A = ρ

Wi

W
Di,mkTi, (4.1)

where the mixture-averaged diffusion coefficient of species i given by

Di,m =
1 − Yi

n∑
j,i

X j/Di j

, (4.2)

and kTi is the thermal diffusion ratio of species i, given byChapman andCowling [24]
as

kTi =
W2

Rρ

n∑
j=1

1.2C∗i j − 1

Di j

Yia j − Yjai

Wi +W j
. (4.3)

In their work, it was assumed that the internal degrees of freedom associated with
thermal conductivity, λ, do not significantly affect values of kTi [24]. In Eqs. 4.2

https://doi.org/10.1016/j.combustflame.2017.12.022
https://doi.org/10.1016/j.combustflame.2017.12.022
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and 4.3, Di j is the binary diffusion coefficient of species i diffusing into species j,
given by

Di j =
3

16

√
2πk3

BT3/mi j

pπσ2
i jΩ
(1,1)∗
i j

. (4.4)

In Eq. 4.3, C∗i j is a ratio of collision integrals [37],

C∗i j =
1
3

Ω
(1,2)
i j

Ω
(1,1)
i j

, (4.5)

and ai is based on the forms from Mason and Saxena [82] and Oran and Boris [93],
given as

ai =
λi,monXi

∆i
. (4.6)

∆i is given by

∆i = Xi +

n∑
j,i

X jΦi j, (4.7)

whereΦi j is a term appearing in mixture-averaged viscosity formulations (examined
later) and λi,mon is the monatomic species conductivity (i.e., neglecting internal
degrees of freedom)

λi,mon =
15
4

Rµi

Wi
. (4.8)

Finally, C∗i j is computed using a rational function fit detailed in Appendix A.1.

Φi j in Eq. 4.7 is a function of species molecular weights and species viscosities, µi,
and takes the form [82, 93]

Φi j =
1.065
2
√

2

[
1 +

(
µi
µj

)1/2 (
Wj

Wi

)1/4
]2

[
1 +

(
Wi

Wj

)]1/2 , (4.9)

where µi is defined using kinetic theory [58]

µi =
5

16
(πmi kBT)1/2

πσ2
i Ω
(2,2)∗
i

. (4.10)

In Eq. 4.10, mi is the mass of species i, kB is the Boltzmann constant, T is the
temperature, Ω(2,2)

∗

i is a collision integral normalized by its rigid sphere value (see
Appendix A.1), and σi is the collision diameter of species i.
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4.2 Model development
The reduced model development considers three approximations for various terms
comprising the mixture-averaged thermal diffusion model. Briefly, the model, as
developed, is aimed toward describing combustion systems where the transport of
light species (Wi � W) due to thermal diffusion is important. The model may also
be applicable to other mixtures, yet the validity of the model assumptions should be
verified.

In order to reduce the computational cost of Eq. 4.1, it is desirable to remove the
summations over species. The first approximation is to writeΦi j in terms of species
i only. First, ∆i (Eq. 4.7) is approximated to have the form

∆i ≈ ∆
′
i =

n∑
j=1

X jΦi j , (4.11)

or, equivalently, Φii = 1.065 instead of Φii = 1 in Eq. 4.7.

Φi j is then simplified: upon substitution of Eq. 4.10 into Eq. 4.9, Φi j becomes

Φi j =
1.065
2
√

2

[
1 +

(
σj

σi

) (
Ω
(2,2)∗
j

Ω
(2,2)∗
i

)1/2]2

[
1 +

(
Wi

Wj

)]1/2 . (4.12)

A simple fit of σi as a function of Wi is used, taking the form

σi = 1.234W0.33
i . (4.13)

A plot of σi (Wi) is provided in Appendix A.1. Additionally, Rosner [105] demon-
strated that Ω(2,2)

∗

i can be approximated by a power law fit as a function of Lennard-
Jones reduced temperature, T∗i = T kB/εi, of the form

Ω
(2,2)∗
i ≈ 1.22(T∗i )

−0.16 (4.14)

over a range of T∗i ∈ [3, 300], where εi is the potential well depth of species i. A plot
of this fit is given in Fig. 4.1. The fit Ω(2,2)∗i in Eq. 4.14 and the rational polynomial
fit implemented in FlameMaster [100] overlap. An additional fit of kB/εi, given by
the expression

εi
kB
= 37.15W0.58

i , (4.15)

can be substituted into Eq. 4.14 as part of T∗, yielding

Ω
(2,2)∗
i ≈ T−0.16W0.0928

i . (4.16)
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Figure 4.1: Rational function fit ofΩ(2,2)
∗

i using coefficients from FlameMaster [100]
(black line), tabulated data from Monchick and Mason [87] (red circles), and the fit
from Rosner [105] (blue line).

With these fits for σi (Wi) and Ω(2,2)
∗

i (Wi), Φi j can be approximately written as a
function of molecular weights only,

Φi j ≈ Φ
′
i j =

1.065
2
√

2

[
1 +

(
Wj

Wi

)0.376
]2

[
1 +

(
Wi

Wj

)]1/2 . (4.17)

Figure 4.2 shows Φ′i j evaluated for Wi/W j ∈ [0.01, 100] and a power law fit as a
function of Wi/W j , resulting in a relationship of the form

Φ
′
i j ≈ 1.022

(
W j

Wi

)0.602
. (4.18)

Since the power law dependence on W j is of order one, it is possible to write the
mixture-averaged Φ′i j (i.e., ∆

′
i) by replacing

∑
j X jW j with W , namely

∆
′
i ≈

n∑
j=1

X jΦ
′
i j ≈ 1.022

(
W
Wi

)0.602
. (4.19)

Alternatively, one can utilize the final observation on the exponent of W j in Eq.
4.18 and approximate species j properties as having properties close to the mixture.
Thus, Φi j could also be approximated using mixture properties, leading to

∆
′
i ≈ Φi,m =

1.065
2
√

2

[
1 +

(
µi
µ

)1/2 (
W
Wi

)1/4
]2

[
1 +

(
Wi

W

)]1/2 , (4.20)
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Figure 4.2: Φ′i j , computed using Eq. 4.17, as a function of Wi/W j ∈ [0.01, 100],
approximating the range of Wi/W j in CaltechMech [14].

which is now only a function of species i and mixture properties.

The factor ai (Eq. 4.6) can then be approximated using ∆i ≈ Φi,m. This form of ai

is then substituted into Eq. 4.1. The first approximation (of ∆i being written as only
a function of species i) thus yields approximate mixture-averaged thermal diffusion
coefficients, DT

i,M A, defined as

DT
i,M A ≈

15
4

W2
i XiDi,m

n∑
j,i

1.2C∗i j − 1

Di j
X j

W j

Wi +W j

×

(
µ j

W2
jΦ j,m

−
µi

W2
i Φi,m

)
.

(4.21)

The coefficients have now been reduced from a double summation over all species
in Eq. 4.1

(
O

(
n2) ) to a single summation over all species (O (n)).

The second approximation is that Wi � W j , with i = H or H2. This approximation
yields two results: µ j/W2

jΦ j,m � µi/W2
i Φi,m and Wi +W j ≈ W j . The first relation

is a direct consequence of the molecular weight scalings for µi (Eq. 4.10) at a given
temperature, i.e.,

µi =
5

16
(πmi kBT)1/2

πσ2
i Ω
(2,2)∗
i

∝
W1/2

i(
W0.33

i

)2
(Wi)

0.0928
= W−0.253

i .

(4.22)

Using Φ′i j from Eq. 4.18, it is found that µi/W2
i Φi,m ∝ W−1.65

i W−0.602 and thus
µ j/W2

jΦ j,m � µi/W2
i Φi,m. Using the two relations of this second approximation,
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Eq. 4.21 becomes

DT
i,M A ≈ −

15
4
µi Xi

Φi,m
Di,m

n∑
j,i

(
1.2C∗i j − 1

Di j
X j

)
. (4.23)

The third approximation is to replace C∗i j using properties of species i and the
mixture. Appendix A.1 shows that C∗i j is largely independent of T∗i j for a range of
T∗i j ∈ [1, 100], representative of a reacting flow. A figure of the rational polynomial
fit for C∗i j is given in Appendix A.1 (Fig. A.1c). Here, T∗i j = T kB/εi j is computed
using the interaction well depth εi j =

√
εiε j . A deviation of only 5% is found

around a nominal value C∗i j ≈ 0.93 for T∗i j > 2. Because C∗i j is insensitive to T∗i j ,
it is possible to find a mixture-averaged C∗i,m, which would be a function of kB/εi

and some mixture kB/εm. This is accomplished by utilizing the power law fit for
kB/εi and a similar fit for the mixture, kB/εm ≈

[
37.15W0.58]−1. Then, one can

approximate T∗i j as

T∗i,m =
1

37.15
T (WiW)−0.29 . (4.24)

Now, C∗i,m = f (T∗i,m) is independent of species j.

Combining the three assumptionsmade above, Eq. 4.21 then reduces to an expression
with no summations,

DT
i,M A ≈ −

15
4

Xiµi

Φi,m

(
1.2C∗i,m − 1

)
(1 − Yi) , (4.25)

where Eq. 4.2 is used to remove Di,m and Φi,m simplifies from Eq. 4.20 to

Φi,m =
1.065
2
√

2

[
1 +

(
µi

µ

)1/2 (
W
Wi

)1/4
]2

(4.26)

under the assumption that Wi � W , where i is H or H2.

In the process of making the above approximations, it is likely systematic errors
have been introduced. To account for these systematic errors in arriving at Eq. 4.25,
a proposed scaling parameter αi is added and thus the final reduced model (RM)
thermal diffusion coefficients are given as

DT
i,RM ≡ −αi

15
4

Xiµi

Φi,m

(
1.2C∗i,m − 1

)
(1 − Yi) − YiS . (4.27)

S is a scalar which enforces mass conservation via the thermal diffusion fluxes, i.e.,∑
i DT

i,RM = 0. The values of µi used in Eq. 4.27 are computed using Eq. 4.10;
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Table 4.1: One-dimensional flame cases used for the reduced thermal diffusion
model evaluation.

Case Fuel Chem. Diluent φ Tu p L2
H L2

H2
εRM

SL
[K] [atm] [%] [%] [%]

1 H2 [59] N2 0.4 298 1 2.89 2.69 0.26
2 H2 [59] N2 0.4 298 5 2.06 2.79 0.38
3 H2 [59] N2 1.0 298 1 6.43 12.00 0.70
4 H2 [59] N2 0.4 500 1 1.16 3.65 0.27
5 H2 [59] — 0.4 298 1 12.31 21.82 1.40
6 H2 [116] Ar 0.4 298 1 2.29 3.91 0.90
7 CH4 [116] N2 1.0 298 1 0.89 1.19 0.15
8 NC7 [13] N2 1.0 298 1 0.94 1.46 0.18
9 C7H8 [14] N2 1.0 298 1 0.79 2.13 0.38

further, the values of σi and εi/kB needed to compute µi come from transport prop-
erty databases. It should be noted that the empirical fits as functions of Wi found
throughout this section and in Appendix A.2 are used only for scaling arguments
and model reduction. Once this model is implemented in NGA, values of these pa-
rameters (e.g., µi andΩ(2,2)∗i ) are computed using their full definitions. Determining
the values of αi is the described in Section 4.3.1.

4.3 Model evaluation
The reduced model presented above is evaluated using multicomponent thermal
diffusion for a range of one-dimensional unstretched flame conditions and a three-
dimensional turbulent flame configuration. The multicomponent model is imple-
mented using CHEMKIN II [66], which is based on the methods of Dixon-Lewis
[37]. In the evaluation of one-dimensional laminar flames, the scaling parameter
inherent to the reduced model is first found, such that the reduced model accurately
reproduces thermal diffusion fluxes calculated from the multicomponent model.
The scaling parameters are then utilized in the three-dimensional turbulent flame
configuration.

4.3.1 One-dimensional unstretched laminar flame evaluation
Table 4.1 summarizes the one-dimensional unstretched laminar flame conditions
tested. For this evaluation, a variety of fuels, oxidizers, diluents, equivalence
ratios (φ), unburnt temperatures (Tu), and pressures (p) are used. Each case uses
multicomponent thermal diffusion and mixture-averaged mass diffusion for species
transport. The cases are run to steady state using NGA [36]. At steady state, the
coefficients from Eq. 4.25 are computed. Four chemical models are used in this
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(a) Full-range (b) Zoom at maximum values of DT
i,MC

Figure 4.3: Thermal diffusion coefficients for H (filled symbols) and H2 (open sym-
bols) for all cases using the multicomponent model (DT

i,MC) and Eq. 4.25 (corrected
to satisfy mass conservation). A zoom of the data near maximum

��DT
i

�� is provided
on the right with linear axes.

evaluation: a hydrogen–air chemistry model by Hong et al. with updated reaction
rates from the same group [59, 60, 72] is used for the H2/air and H2/O2 cases.
GRI-Mech 3.0 [116] is used for the H2/O2/Ar and CH4 cases. A reduced n-heptane
(C7H16, abbreviated NC7) model (without aromatic species) from Bisetti et al. [13]
is used for the NC7/air case, and CaltechMech 2.4 [14] is used for the toluene
(C7H8)/air case.

First, the thermal diffusion coefficients using the multicomponent model (DT
i,MC)

and Eq. 4.25 (corrected to satisfy mass conservation) are shown in Fig. 4.3. The
excellent collapse of all data on a single line with unity slope indicates agreement
between the MC model and Eq. 4.25 is strong over a wide range of flame operating
conditions. Small deviations from the unity line are present, especially at low values
of DT

i ; however, the important parameter for the solution of the species transport
equations is the thermal diffusion flux, jT

i = DT
i ∇T/T .

A least squares regression (LSR) of the thermal diffusion fluxes is performed to
identify a possible scaling parameter αi such that the relative L2

i errors between
jT
i,MC and jT

i,RM , defined as

L2
i =


∑ (

jT
i,MC − jT

i,RM

)2

∑ (
jT
i,MC

)2


1/2

, (4.28)
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(a) H thermal diffusion flux (b) H2 thermal diffusion flux

Figure 4.4: Thermal diffusion fluxes for (a) H and (b) H2 as a function of T for
Case 1 using the MC (solid black), MA (dotted blue), unfitted reduced (dot-dashed
green), and RM (dashed red) models. Note the MC and RM cases nearly overlap,
and Eq. 4.25 has been corrected to satisfy mass conservation.

are minimized across all test cases. While a LSR using data across all cases is
preferable, including Cases 3 (stoichiometric H2/air) and 5 (lean hydrogen oxy-
combustion) was found to result in large L2

i across all cases; thus, the LSR is
performed without Cases 3 and 5. The optimal scaling factors are found to be
αH = 0.895 and αH2 = 0.910. These scaling parameters serve two purposes: they
correct systematic errors found in the original mixture-averaged model (visible in
Fig. 4.4), and account for new systematic errors introduced through the reduced
model development. The two values of αi are used during run-time to calculate
DT

i,RM from Eq. 4.27. The relative L2
i error norms are shown in Table 4.1. For a

majority of the cases, the relative errors are below 4%. The maximum L2
i errors

occur for Cases 3 and 5; this is unsurprising as αi was computed neglecting these
cases.

Next, a plot of the thermal diffusion fluxes through the flame for Case 1 is given in
Fig. 4.4. All four thermal diffusion models (i.e., DT

i,MC , DT
i,M A, Eq. 4.25 (corrected

for mass conservation), and DT
i,RM) are included for H and H2. There is a slight

discrepancy between the MC and MA models, where the MA model overpredicts
the H and H2 thermal diffusion coefficients. This overprediction is made larger
through the approximations leading to Eq. 4.25. After performing the LSR, the
RM coefficients agree extremely well with the MC model, as expected based on
the value of L2

i . The error norms indicate that the thermal diffusion fluxes can be
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captured accurately for many cases using the RM model.

Each of the cases in Table 4.1 is run as a one-dimensional unstretched flame using
the RM model until a steady-state solution is reached. The unstretched laminar
flame speeds, So

L , are then calculated for the RM and MC transport cases, using the
form given in Eq. 2.73. The relative error in So

L is calculated using

εRM
SL =

�����So,MC
L − So,RM

L

So,MC
L

����� . (4.29)

The relative errors of So
L for each case are listed in Table 4.1. The unstretched laminar

flame speeds agree extremely well across all cases. This even includes cases with
higher relative L2 norms for H and H2 thermal diffusion fluxes (i.e., Cases 3 and
5), indicating that the inclusion (or accuracy) of thermal diffusion fluxes have little
impact on these fuel mixtures. For the remainder this work, all simulation results
using the reduced model will include the factors αH and αH2 .

4.3.2 Three-dimensional turbulent flame evaluation
This section utilizes the three-dimensional turbulent configuration and flow proper-
ties detailed in Section 2.6.6. An a priori analysis is performed using data files from
the turbulent case presented in Section 3.6. No new simulations are performed. The
unburnt premixed mixture consists of H2/air at identical inlet properties of Case 1
from Table 4.1.

Both MC and RM thermal diffusion fluxes are computed using an instantaneous set
of scalar fields. Figure 4.5 shows the conditionalmean of jT

i,MC and jT
i,RM as a function

of T for H and H2 during one time step. The agreement of the conditional means
is excellent across the entire range of temperatures, including regions which exceed
the maximum temperature in a one-dimensional unstretched flame (temperatures on
the right of the vertical dotted black line in Fig. 4.5).

As an additional verification, probability density functions (PDFs) of the thermal
diffusion coefficients are computed at the temperatures of peak thermal diffusion
flux, namely Tpeak,H = 1090 K and Tpeak,H2 = 500 K. These PDFs are shown in
Fig. 4.6 and represent the scatter in thermal diffusion coefficients due to turbulent
transport of species and temperature. For H, the MC and RM models predict nearly
identical thermal diffusion coefficients. The agreement is still quite good for H2,
where the RM case tends to slightly underpredict the thermal diffusion coefficient
(as seen in Fig. 4.5). It performs, however, better than the original MA model.
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(a) H thermal diffusion flux (b) H2 thermal diffusion flux

Figure 4.5: Conditional mean of the thermal diffusion fluxes for (a) H and (a) H2 as
a function of T for the turbulent flame case using the MC (solid black), MA (dotted
blue), and RM (dashed red) models. The vertical dashed line indicates Tmax for
Case 1.

(a) H (b) H2

Figure 4.6: Probability density functions of DT
H and DT

H2, taken at temperatures of
the peak thermal diffusion fluxes using the MC (solid black), MA (dotted blue), and
RM (dashed red) models.

4.3.3 Computational cost
The computational cost to include thermal diffusion using the RM method can be
split into two contributions: the first cost is computing Eq. 4.25, while the second
cost is computing and applying S to all species. From Section 4.2, it is evident that
the cost of computing Eq. 4.25 for H and H2 should be a constant value, independent
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Figure 4.7: Computational cost for Eq. 4.25 (red crosses), applying the correction
factor S to all thermal diffusion coefficients (blue circles), total cost of DT

i,RM (black
triangles), and a non-iterative multicomponent method [66] (green diamonds).

of the number of species contained in the chemical model, provided the mixture
properties (e.g., µ and W) are known. The cost to compute and apply S, however,
scales linearly with the number of species.

In order to investigate the cost of these calculations more precisely, detailed timings
of Cases 1, 7, 8, and 9 were considered, spanning chemistry model sizes from nine to
171 species. Figure 4.7 shows the time to compute both Eq. 4.25 and S, multiplied
by the number of processors (one, in this case), and divided by the number of points
in the computational domain. The timings presented in Fig. 4.7 do not include
the time to compute µ or W , and are found to be independent of the computational
domain size.

As can be seen, the cost of Eq. 4.25 is independent of n, and the cost of S

increases linearly with n. Any deviations away from either a constant- or linear-
with-n scaling is likely due to memory allocation and access. For chemical models
up to 100 species, the total cost of the DT

i,RM coefficients (Eq. 4.27) is dominated by
computing Eq. 4.25 and is constant.
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Timings for the multicomponent thermal diffusion coefficients are included in Fig.
4.7 using the non-iterative technique of CHEMKIN II [66]. It is well known that a
non-iterative method (i.e., direct inversion of the governing transport linear systems)
will requiremore computations than an iterative procedure. While iterativemethods,
such as that proposed by Ern andGiovangigli [38], can reduce the computational cost
of finding DT

i,MC , those methods still require more operations during each iteration
than the simple, algebraic expressions listed in Section 4.2. Finally, the cost of
computing DT

i is only a portion of the diffusion flux cost. While a complete timing
analysis of each term contributing to transport (using a wide range of transport
models and implementations) would be a valuable contribution to the literature, it
is outside the scope of this work and should be considered for future research.

One final appealing aspect of the RM formulation is its potential for use in simula-
tions with any mass diffusion model. For example, it has been shown that (with an
appropriate choice of Lewis number) the structure of a turbulent lean hydrogen–air
flame can be found accurately using a constant, non-unity Lewis number approx-
imation which scales linearly with the number of species [20]. The RM thermal
diffusion model could be used in this example, as well as many others, for a neg-
ligible cost increase. The RM timings presented in Fig. 4.7 indicate this model is
an extremely computationally efficient technique to find accurate thermal diffusion
coefficients for H and H2 for a wide range of transport models.
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C h a p t e r 5

TABULATED CHEMISTRY MODEL DEVELOPMENT
INCLUDING CURVATURE EFFECTS

[1] J. Schlup and G. Blanquart. “Reproducing curvature effects due to differ-
ential diffusion in tabulated chemistry”. In: Proc. Combust. Inst. (Under
review).

The discussion of tabulated chemistry is split between Chapter 5 and Chapter 6. In
this chapter, the tabulated chemistry model is derived. Assumptions are justified
during themodel development, verification tests are performed using the finalmodel,
and several a priori analyses show the applicability of the chosen chemistry tabulation
variables.

5.1 Proposed chemistry tabulation method
As described in Chapter 2, performing detailed chemistry simulations requires
solving a transport equation for each species. These equations take the form (Eq.
2.4)

∂ (ρYi)

∂t
+ ∇ · (ρuYi) = −∇ · ji + ρ Ûωi , (5.1)

Recall also that the diffusion flux, ji, is expressed (using a mixture-averaged formu-
lation for mass diffusion) as

ji = −ρYiDi,m
∇Xi

Xi
− DT

i
∇T
T
+ ρYiuc . (5.2)

In this chapter, a chemistry tabulationmethodology, which includesmixture-averaged
diffusion coefficients and thermal diffusion, is developed. This tabulation will trans-
port two scalars; the first is a progress variable, which measures the extent of the
chemical reactions and the second is termed the mixture fraction Z (derived in Sec-
tion 5.1.1). The progress variable, C, is defined to be the combustion product mass
fraction of the hydrogen–air mixture, C = YH2O. The progress variable can thus be
transported in the NGA framework in an identical manner as Eq. 5.1, taking the
form

∂ (ρC)
∂t

+ ∇ · (ρuC) = ∇ · (ρDC∇C) + ∇ ·
(
DT

C
∇T
T

)
+ ρ ÛωC , (5.3)

where DC and DT
C are the mass and thermal diffusion coefficients of the progress

variable. Note that this equation has assumed that the effects of ∇W/W are small;
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this assumption follows from similar arguments made in this chapter (see, for ex-
ample, Fig. 5.4). This progress variable equation is in an identical form to that
proposed by Regele et al. [102] with the addition of non-constant Lewis numbers
and thermal diffusion. Deriving a transport equation for the mixture fraction (the
second tabulation variable) is the primary goal of the following sections.

5.1.1 Derivation of the mixture fraction transport equation
The overall procedure in this section follows closely the methodology outlined in
Regele et al. [102]. By deriving a transport equation for a second tabulation variable
which is free of chemical source terms, implementation of the proposed tabulated
chemistry model in Large Eddy Simulations will be easier as fewer terms will need
to be closed. In an effort to derive a second transported scalar without chemistry
effects, the one-step chemistry approximation is briefly considered. The global
reaction equation for a one-step irreversible chemical reaction (OSIR) is given as

νF F + νOO → νPP , (5.4)

where νF and νO represent the stoichiometric coefficients for the fuel (F) and oxidizer
(O), respectively, and P represents the products. Under the OSIR approximation,
there are two key relations:

• ν ÛωF − ÛωO = 0, where ν is the stoichiometric mass ratio given by [125]

ν =
νOWO

νFWF
, (5.5)

ÛωF is the fuel source term, and ÛωO is the oxidizer source term.

• The fuel and oxidizer mass fractions are related to the product mass fraction
through [75]

YF,u − YF

νFWF
=

YO,u − YO

νOWO
=

YP − YP,u

νPWP
, (5.6)

where the subscript u represents unburnt conditions.

The first relation suggests a simple way to remove chemical source terms from some
new scalar transport equation: if a given chemical process (e.g., the combustion
of lean hydrogen–air mixtures) is closely approximated by one-step chemistry, then
multiplying the fuel transport equation by ν and subtracting the oxidizer transport
equation should result in a near-zero chemical source term. The development of the
mixture fraction thus begins with the expression

∂ρ (νYF − YO)

∂t
+ ∇ · [ρu (νYF − YO)] = −∇ · (νjF − jO) + ρ (ν ÛωF − ÛωO) . (5.7)
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Figure 5.1: Magnitudes of the chemical source terms for the fuel (solid black),
oxidizer (dot-dashed red), and the one-step chemistry approximation (dashed blue)
as functions of C for a one-dimensional solution of H2–air at φ = 0.4.

Figure 5.1 shows the profiles of ν ÛωF , ÛωO, and their difference, as functions of C for
a one-dimensional unstretched lean hydrogen–air mixture at an equivalence ratio of
φ = 0.4 using the finite-rate chemistry mechanism of Hong et al. [59, 60, 72]. If
the governing chemistry for this mixture was accurately predicted using OSIR, one
would expect to find that (ν ÛωF − ÛωO) ≡ 0. It is clear that the difference in source
terms is small compared to the individual fuel and oxidizer source terms, with the
difference constituting only 3.7% of max (|ν ÛωF | , | ÛωO |). However, it is not sufficient
to show that ν ÛωF − ÛωO ≈ 0, as the magnitude of this difference may still be on the
order of the remaining terms in Eq. 5.7. Thus, Fig. 5.2 shows the magnitude of
each term in Eq. 5.7 for a one-dimensional unstretched flame at steady state. This
figure indicates that indeed ν ÛωF − ÛωO ≈ 0 and is small in magnitude compared to
the remaining terms. Therefore, the chemical source terms will be dropped from
Eq. 5.7.

Equation 5.7 introduces a term, (νYF −YO), similar to the traditional mixture fraction
in non-premixed flames under the assumption of OSIR [125],

Z =
νYF − YO + YO,2

νYF,1 + YO,2
, (5.8)

where YF,1 is the fuel mass fraction in the fuel stream and YO,2 is the oxidizer mass
fraction in the oxidizer stream. Both YF,1 and YO,2 are constant. In diffusion flames,
Z represents the relative amounts of fuel and oxidizer at a given point in the mixture.
In fuel-rich conditions, Z is large (Z = 1 in the fuel stream), while Z decreases
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Figure 5.2: Magnitudes of the contributions to Eq. 5.7, including the convective
(solid black), diffusive (dot-dashed red), and one-step chemistry approximation
(dashed blue) as functions of C for a one-dimensional solution of H2–air at φ = 0.4

as the mixture becomes lean (Z = 0 in the oxidizer stream) [125]. In the case of
premixed mixtures, it is considered that the “fuel stream” would consist of only
fuel, and thus YF,1 = 1 for the lean hydrogen–air premixed flames considered in this
work. Similarly, the “oxidizer stream” is air, and thus YO,2 is the mass fraction of O2

in air. However, the model development will be kept general, and both YO,2 and YF,1

will remain as arbitrary values until the model is implemented later in this chapter.

Equation 5.7 is now made to include a mixture fraction-like variable, Z , leading to
an equation of the form

∂ρ
(
νYF − YO + YO,2

)
∂t

+ ∇ ·
[
ρu

(
νYF − YO + YO,2

) ]
= −∇ · (νjF − jO) . (5.9)

Then, division of Eq. 5.9 by
(
νYF,1 + YO,2

)
yields

∂ (ρZ)
∂t

+ ∇ · (ρuZ) = −∇ · jZ , (5.10)

where jZ = (νjF − jO) /
(
νYF,1 + YO,2

)
is a diffusion flux for the mixture fraction

given by Eq. 5.8. Note that Z and Z are fundamentally different quantities. Z is
the solution to the transport equation Eq. 5.10 (and, as will be shown later, is a
non-conserved scalar) where no assumption of one-step chemistry have been made.
However, Z requires an assumption of one-step chemistry, and takes the form given
by Eq. 5.8. [125].
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The inclusion of jZ presents a challenge in solving the transport equations for Z

and C, as jZ contains mass fractions of various species. Substitution of the fuel and
oxidizer diffusion fluxes, given by Eq. 5.2, into Eq. 5.10 yields

jZ =

(
ρ

νYF,1 + YO,2

)
[
−ν

(
DF∇YF + DFYF

∇W
W
+

DT
F

ρ

∇T
T
− YFuD

c

)
+

(
DO∇YO + DOYO

∇W
W
+

DT
O

ρ

∇T
T
− YOuD

c

)]
.

(5.11)

Unfortunately, uc contains information on all of the species in the chemical model
(see Eq. 2.9; note that the thermal diffusion coefficients have been corrected using
uT

c , such that
∑

i DT
i = 0). The correction velocity can be expanded as

uc =
∑

i

Di∇Yi +
∇W
W

∑
i

DiYi

=DF∇YF + DO∇YO + DC∇C +
∑

i,(F,O,C)

Di∇Yi

+
∇W
W

DFYF + DOYO + DCC +
∑

i,(F,O,C)

DiYi


. (5.12)

As shown in Fig. 5.3, all species (except H and H2) have similar mass diffusion
coefficients close to α (i.e., Lei ≈ 1 for these species). As DC is necessarily included
in the chemistry table to solve Eq. 5.3, it is retained explicitly in Eq. 5.12. The
remaining diffusion coefficients in Eq. 5.12 will be approximated using DN2 . Thus,
the correction velocity can be simplified to

uD
c =DF∇YF + DO∇YO + DC∇C + DN2 [∇ (1 − YF − YO − C)]

+
∇W
W

[
DFYF + DOYO + DCC + DN2 (1 − YF − YO − C)

] . (5.13)



82

Figure 5.3: Diffusion coefficients of all species in the H2–air chemical mechanism,
normalized by the thermal diffusivity α, as functions of C for a one-dimensional
solution of H2–air at φ = 0.4.

Substitution of uD
c into Eq. 5.11 and collecting gradient terms yields(

1
ρ

)
jZ =∇YF

[
−νDF

νYF,1 + YO,2
+ ∆F Z∗

]
+∇YO

[
DO

νYF,1 + YO,2
+ ∆O Z∗

]
+∇C [∆C Z∗]

−
∇W
W

DW

νYF,1 + YO,2

−
∇T
T

1
ρ

[
νDT

F − DT
O

νYF,1 + YO,2

]
,

(5.14)

where
Z∗ =

νYF − YO

νYF,1 + YO,2
(5.15)

is used for convenience and ∆ψ = Dψ−DN2 is the difference in diffusion coefficients
between species ψ = (F,O,C) and N2. The diffusion term associated with ∇W/W

is
DW =νDFYF − DOYO − (νYF − YO)

×
[
DFYF + DOYO + DCC + DN2 (1 − YF − YO − C)

]
.

(5.16)

Figure 5.4 shows the magnitudes of each term in the expression of jZ for a lean
hydrogen–air flame at φ = 0.4. It is clear that terms contributed by ∇W/W and ∇C
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Figure 5.4: Magnitudes of the components of jZ , given by Eq. 5.14, normalized by
the thermal diffusivity, as functions of C for a one-dimensional solution of H2–air
at φ = 0.4.

are minor compared to the remaining terms. Because of this result, the contribution
of the molecular weight term will be neglected moving forward (including in the
progress variable equation, Eq. 5.3). While a similar argument can be made for the
progress variable term, its inclusion in the chemistry table is trivial as all required
thermo-chemical properties are necessary for the solution of the progress variable
transport equation. The contributions due to ∇C thus remain at this time.

The diffusion flux of Z , however, still containsmass fractions of the fuel and oxidizer.
These terms can be removed by again considering the approximation of OSIR. Using
Eq. 5.6, the mass fractions of the fuel and oxidizer can be related to themass fraction
of the products via

YF = YF,u − YP
νFWF

νPWP
, YO = YO,u − YP

νOWO

νPWP
. (5.17)

Then, under puremixing conditions (where the fuel and oxidizer streams are allowed
to mix prior to combustion), the unburnt fuel and oxidizer mass fractions are directly
related to the OSIR mixture fraction through [125]

YF,u = YF,1Z, YO,u = YO,2 (1 − Z) . (5.18)

Substitution of Eq. 5.18 and Eq. 5.5 into Eq. 5.17 — and recognizing that YP = C

— yields

YF = YF,1Z −
1

ν + 1
C, YO = YO,2 (1 − Z) −

ν

ν + 1
C , (5.19)
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(a) Fuel mass fraction (b) Oxidizer mass fraction

Figure 5.5: Comparison of the finite-rate chemistry mass fraction profiles and mass
fraction profiles under the OSIR assumption.

and thus

∇YF = YF,1∇Z −
1

ν + 1
∇C, ∇YO = −YO,2∇Z −

ν

ν + 1
∇C. (5.20)

While Eqs. 5.19 and 5.20 rely on an assumption of OSIR, the tabulated chemistry
model is desired to predict finite-rate chemistry results. Before these expressions
for the fuel and oxidizer mass fractions are implemented into jZ , their applicability
must be investigated. Figure 5.5 shows the fuel and oxidizer mass fractions from a
finite-rate chemistry simulation of a one-dimensional unstretched flame with a lean
hydrogen–air mixture at φ = 0.4. The expected values of YF , computed using Eq.
5.19 are also shown. Note that C and the species profiles for Z are from finite-
rate chemistry. From these two figures, the OSIR approximation for Z predicts
mass fractions of the two reactant species to within a maximum error of 6.2% and
2.5%, relative to the maximum mass fraction of YF and YO, respectively. As Z
reproduces closely the fuel and oxidizer profiles, it is assumed that Z and Z are in
good agreement (this assumption will be verified in Section 5.1.2, after the model
development is complete).

After substitution of Eq. 5.20 into Eq. 5.14 (under the approximation of OSIR), the
diffusion flux for Z can be written as(

1
ρ

)
jZ = − (DZ − Z1) ∇Z +

(
D∗Z − C1

)
∇C −

1
ρ

(
νDT

F − DT
O

νYF,1 + YO,2

)
∇T
T
, (5.21)
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Figure 5.6: Magnitudes of the four terms in Eq. 5.21 for a one-dimensional solution
of H2–air at φ = 0.4.

where the four terms of ∇Z and ∇C are

DZ =

(
νYF,1DF + YO,2DO

νYF,1 + YO,2

)
Z1 = Z∗

[
YF,1∆F − YO,2∆O

]
D∗Z =

ν

ν + 1

(
DF − DO

νYF,1 + YO,2

)
C1 =

Z∗

ν + 1
[∆F + ν∆O − (ν + 1)∆C] .

(5.22)

Figure 5.6 shows a comparison of the magnitudes of each term in Eq. 5.21. From
this figure, Z1 and C1 (i.e., the terms composed of Z∗ as given in Eq. 5.15), have
significantly reduced magnitudes compared to DZ and D∗Z . By neglecting Z1 and
C1, the transport equation of Z can be re-expressed as

∂ (ρZ)
∂t

+ ∇ · (ρuZ)

= ∇ · (ρDZ∇Z) − ∇ ·
(
ρD∗Z∇C

)
+ ∇ ·

(
ρDT

Z
∇T
T

)
,

(5.23)

where the temperature is a function of the two transported variables (i.e., T =

T(C, Z)), and DT
Z is

DT
Z =

1
ρ

(
νDT

F − DT
O

νYF,1 + YO,2

)
. (5.24)
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Figure 5.7: Comparison of the outlet boundary condition for Z as a function of C
for a one-dimensional unstretched premixed hydrogen–air flame at φ = 0.4.

Equation 5.23 is the proposedmixture fraction transport model which will be used to
solve for Z in the remainder of this work. C and Z will be transported using Eqs. 5.3
and 5.23, respectively, during the simulations described in Chapter 6. While only
these two variables are transported, the underlying chemistry of the one-dimensional
flames (e.g., Yi, Di, DT

i , Ûωi) is included in the chemistry table described in Section
5.2.1.

5.1.2 Analysis of the proposed mixture fraction equation
Two boundary conditions are required for the steady-state solution of Eq. 5.23. The
boundary value for the unburnt mixture, Zu, is determined by solving for Z using
the unburnt mixture properties, i.e.,

Zu = Zu =
νYH2,u − YO2,u + YO,2

ν + YO,2
, (5.25)

where the subscript u denotes unburnt conditions and YO,2 = 0.232. Two possible
boundary conditions exist for the mixture fraction in the burnt mixture, Zb. First,
substitution of the mixture properties from finite-rate chemistry into Eq. 5.8 results
in Zb = Zu. Alternatively, one could use a Neumann boundary condition in the fully
burnt mixture. Figure 5.7 shows the resulting Z profile for each of these boundary
conditions; no discernable difference is found and thus Zb = Zu is chosen.

Figure 5.8 shows a comparison of Z (the solution to Eq. 5.23) and Z for a one-
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Figure 5.8: Comparison of Z (solid black, computed using Eq. 5.23) andZ (dashed
red, computed using Eq. 5.8 with a nine-species finite-rate chemistry model) as a
function of C for a one-dimensional unstretched premixed hydrogen–air flame at
φ = 0.4.

dimensional unstretched flame at φ = 0.4. Note that Z is computed using YH2

and YO2 profiles from the finite-rate chemistry simulation with nine species and 54
reactions [59]. As expected from previous comparisons of the OSIR approximation
and finite-rate chemistry (e.g., Figs. 5.1 and 5.5), the comparison between Z and
Z is quite good with a maximum percent deviation between the two profiles of 6%.
This agreement is similar to the results of Regele et al. [102], which showed that
lean hydrogen–air mixtures were well characterized by the OSIR approximation.

Further insight into Z can be gained by decomposing the cross-diffusion term
(containing ∇C) in Eq. 5.23. Following Xuan et al. [126] and Savard and Blanquart
[110], the second term on the right-hand side of Eq. 5.23 can be expanded to

∇ ·
(
ρD∗Z∇C

)
= −ρD∗Z |∇C | κ + n · ∇

(
ρD∗Z |∇C |

)
, (5.26)

where the curvature, κ, is defined as

κ = −∇ · n = −∇ ·
(
∇C
|∇C |

)
. (5.27)

This expansion shows that curvature effects of the flame surface (defined as an
isosurface of C) are present in this model through the use of a cross-diffusivity,
D∗Z (i.e., diffusion of Z due to gradients of C), which is derived naturally from the
fuel and oxidizer transport equations. This observation makes clear a critical aspect
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of the chemistry tabulation: using one-dimensional flat flames and the proposed
Z equation allows flame surface curvature effects to be included in the governing
transport equations.

5.2 Implementation of the mixture fraction transport equation into NGA
5.2.1 Chemistry tabulation
The chemistry table can now be created. This process begins by importing a
single FlameMaster [100] solution for the one-dimensional, unstretched, premixed
hydrogen–air flame at a given equivalence ratio. This solution includes species
mass fractions, mass diffusion coefficients, and thermal diffusion coefficients. When
creating the chemistry table, the transport equation for Z (Eq. 5.23) is discretized
using a second-order finite difference scheme and solved by inverting the resulting
linear system. The Z profile is stored along with all necessary thermo-chemical
properties. The chemistry table includes ρ, T , DC , DT

C , DZ , D∗Z , DT
Z , and ÛωC .

Figure 5.9a shows the profile of Z as a function of C for the φ = 0.4 flame.

Next, the bounds of the chemistry table are prescribed. In this work, all six of the
flame configurations detailed in Section 2.6 are lean premixed hydrogen–air flames;
thus, the lower limit of the chemistry table is determined based on the convergence
capabilities of the one-dimensional flame solver, FlameMaster [100]. The upper
limit of the chemistry table is set arbitrarily, above the expected values of local
equivalence ratio enrichment (this limit should be confirmed a posteriori, and is
done in the Z–C scatter plots given in Chapter 6 for each flame configuration).
Figure 5.9b shows the bounds of the chemistry table (φ ∈ [0.25, 1.3]), along with
the original φ = 0.4 flame solution.

Then, the range of φ is spanned; these flame solutions are shown in Fig. 5.9c. For
the chemistry tables used in this chapter, the equivalence ratios are concentrated near
φ = 0.4 to reduce interpolation errors near the nominal equivalence ratio of many
of the flame configurations. The one-dimensional flame solutions are manually
inspected to verify every pair of Z–C values are unique. These flame solutions now
include the requisite information to solve the C and Z transport equations; a plot of
the flame profiles, colored by their progress variable source term, ÛωC , is shown in
Fig. 5.9d.

Finally, the chemistry table is created by interpolating the thermo-chemical data of
the flame solutions onto a structured manifold consisting of 500 points in the C and
Z directions. These points are equally spaced in 0 ≤ Z ≤ max (Z). The C direction
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contains values of 0 ≤ C ≤ 0.25 with the first 10 points spaced logarithmically (due
to the large dZ/dC at low values of C); the remaining points are equally spaced.

Once the one-dimensional flame solutions have been loaded, the required thermo-
chemical properties aremapped to themixture fraction/progress variable space of the
chemistry table. After this bilinear interpolation, the structured Z–C space contains
tabulated data of the one-dimensional flame solutions. Figure 5.9e shows three
one-dimensional flamelet solutions (in white) computed using Eqs. 5.3 and 5.23, as
well as a contour plot of ÛωC . The one-dimensional flames shown have equivalence
ratios of φ = 0.25 (lower), φ = 0.4 (middle), and 1.3 (upper), representing the lower
and upper bounds of the current chemistry table and the equivalence ratio used for
many of the upcoming cases.

5.2.2 Treatment of regions outside the chemistry table
In addition to the progress variable source term for the entire constructed chemistry
table, Fig. 5.9e shows the extent of the thermodynamic equilibrium conditions
(dashed white line) for each of the flame solutions which construct the chemistry
table. This “thermodynamic equilibrium line” simply connects the fully burnt value,
in Z–C space, of all of the one-dimensional flames.

There are three regions of the chemistry tablewhich lie outside of the one-dimensional
flame solutions used in the chemistry table construction. These regions are labeled
“1”, “2”, and “3” in Fig. 5.9e. Region 1 represents mixture conditions which are
near the extinction limit of the one-dimensional flame solutions and over which
FlameMaster has difficulties finding a flame solution. Note that this is a similar
lower limit as was found throughout literature for planar hydrogen–air mixtures at
Tu = 298 K and po = 1 atm [107]. A linear interpolation in the Z direction is used
between the lowest one-dimensional flame solution and the thermodynamic equilib-
rium line for table look-ups in this region. Region 2 consists of Z–C space which
extends beyond the thermodynamic equilibrium conditions of the one-dimensional
flames. This region is un-physical as no data should exist past the thermodynamic
equilibrium line. However, due to numerical errors, values in this region may be ac-
cessed. Tabulated data in this region is set equal to values found on the equilibrium
line at the same value of Z . Put simply, thermo-chemical data in region 2 are copied
from the thermodynamic equilibrium line to larger values of C. Finally, Region 3 is
the portion of Z–C space the user has determined is outside the scope of the current
simulation; this region is more fuel-rich than is expected in the flame configurations
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(a) φ = 0.4 flame solution (b) Limits of chemistry table

(c) All flame solutions (d) Source terms along flame solutions

(e) Source terms of the chemistry table

Figure 5.9: Progression of the chemistry table creation, showing (a) a single flame
solution at φ = 0.4, (b) the bounds of the chemistry table, (c) all flame solutions in
the chemistry table, (d) all flame solutions colored by their corresponding progress
variable source term, and (e) the complete chemistry table with specific regions
described in Section 5.2.2.
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of interest. Similar to region 2, thermo-chemical properties in this region are found
by matching the desired value of C for the most fuel-rich flame solution.

A scatter plot of data in Z–C space will be provided for each flame configuration
investigated in Chapter 6. These figures will indicate the range of Z and C found
for each configuration and give an indication of the number of data points that lie
outside the one-dimensional flame solutions.

5.3 Verification of the tabulated chemistry model
Prior to, and after, the tabulated chemistry model is implemented in NGA, a number
of verification cases are considered. First, two mathematical formulations indicate
that the newly-developed mixture-fraction equation is in agreement with previous
methodologies. Then, one-dimensional unstretched flames are computed using
tabulated chemistry, and the flame structure and global quantities are compared.

5.3.1 Analytical verification of the mixture fraction transport equation
In Chapter 6, a constant Lewis number tabulation is considered. The Lewis number
describes the relative diffusion of species and temperature, and constant values
have historically been implemented in computational studies to reduce the costs
of computing transport properties. Recall, the Lewis number of species i, Lei, is
defined as

Lei =
α

Di,m
. (5.28)

To determine Lei for the chemistry table creation, one-dimensional unstretched
flames are solved using mixture-averaged mass diffusion. The Lewis number is
computed throughout the flame structure using Eq. 5.28. For the constant Lewis
number cases considered, the value of Lei is found at the maximum temperature
of the one-dimensional unstretched flame; thus, DLe

i = α/Lei. Burali et al. found
that selecting Lewis numbers at either the location of maximum temperature or
maximummass fraction of each individual species resulted in nearly identical flame
structures [20].

The first verification assumes constant, unity Lewis numbers (i.e., α = Di) and
neglects thermal diffusion. Under these assumptions, the diffusion coefficients in jZ
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(Eq. 5.21) are greatly simplified:

DZ = α ,

Z1 = 0 ,

D∗Z = 0 ,

C1 = 0 ,

DT
Z = 0 .

(5.29)

These coefficients indicate that no fluctuations in mixture fraction, due to flame front
curvature, are possible (D∗Z = 0 in Eq. 5.26). This agrees with the observations
of Knudsen and Pitsch [69], and thus curvature effects would not be present in
simulations under these assumptions.

Next, one can consider that all Lewis numbers are unity, except for that of the fuel,
and that thermal diffusion is negligible. These assumptions are identical to those of
Regele et al. [102]. Now, Eq. 5.21 can be rewritten as(

1
ρ

)
jZ = − ∇Z

[
D

(
νYF,1

1
LeF
+ YO,2

νYF,1 + YO,2

)
− DZ∗YF,1

(
1

LeF
− 1

)]
+ ∇C

[( ν

ν + 1

)
D

( 1
LeF
− 1

νYF,1 + YO,2

)
− DZ∗

(
1

ν + 1

) (
1

LeF
− 1

)]
,

(5.30)

where LeF is the fuel Lewis number and D = α is the diffusion coefficient of all
species (except the fuel). In the constant Lewis number cases considered in Chapter
6, LeF = 0.3.

Equation 5.30 can be further simplified, assuming that YF,1 = 1 (as is the case for
all configurations in this work). Then(

1
ρ

)
jZ = − ∇Z

{
D

[
1 +

(
1

LeF
− 1

)
(1 − Z)

]}
+ ∇C

[
D

(
1

ν + 1

) (
1

LeF
− 1

)
(1 − Z)

]
,

(5.31)

where Z has been approximated using OSIR (i.e., Eq. 5.8). This expression is
identical to Eqs. 18 and 19 given in Regele et al. [102]. Thus, the present
formulation of the Z and C equations are consistent with, yet more general than,
previous formulations.

5.3.2 Comparison with optimal estimations from detailed chemistry
By transporting Z during a finite-rate chemistry simulation, it is possible to com-
pare the predicted values of ÛωC from tabulated chemistry (denoted ωTab.

C ) with ÛωC
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from detailed chemistry (denoted ÛωDet.
C ). The two-dimensional unsteady and three-

dimensional turbulent flames are used to transport Z during a finite-rate chemistry
solution. All diffusion coefficients and the source term for H2O for the Z equation
are determined using mixture-averaged mass and thermal diffusion and finite-rate
chemistry.

From these results, values of ÛωDet.
H2O may be compared to the tabulated source term.

One comparison technique is to consider a function (called the optimal estimator),
f (C, Z), which minimizes the error of the predicted tabulated source term [88] given
as

ε f =

√√√√∫
V

(
f (C, Z) − ÛωDet.

C

)2 dV∫
V

(
ÛωDet.

C

)2 dV
. (5.32)

Moreau et al. [88] showed that the optimal estimator f must be equivalent to the
conditional mean, i.e., the conditional mean 〈 ÛωDet.

C

��C, Z〉 is the function of C and
Z that would give the closest approximation to the true finite-rate chemistry source
term for H2O. Thus, comparisons of ÛωTab.

C to the conditional mean of ÛωDet.
C will

provide insight to the applicability of the chosen tabulated chemistry model.

Figure 5.10 shows the conditional mean of ÛωDet.
C , conditioned on C and Z , for

the two-dimensional unsteady and three-dimensional turbulent finite-rate chemistry
simulations. At first glance, the conditional means have similar profiles to the
chemistry table shown in Fig. 5.9e. A more quantitative comparison is given in
Fig. 5.11, showing the conditional mean of ÛωDet.

C at Cpeak for the two configurations
(represented by the vertical dashed lines in Fig. 5.10). The agreement is excellent
for the two-dimensional flame, and remains good for the three-dimensional flame
(within 25%) up to Z/Zpeak = 1.4. The table is able to capture increased source
terms over six times the peak source term from the one-dimensional flame. Further,
a single chemistry table is able to predict the source terms of the two limiting cases
considered: a laminar flame with moderate curvature and extinction and a turbulent
flame with large high flame curvature. Finally, if only a single tabulation variable
(i.e., C) was used, all data in Fig. 5.11 would reduce to a single data point at
Z/Zpeak = 1 and ÛωC/ Ûω

1D
C = 1, eliminating all fluctuations in the source term due

to differential diffusion.
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(a) Two-dimensional unsteady (b) Three-dimensional turbulent

Figure 5.10: Conditional mean of ÛωH2O, conditioned on C and Z for the (a) two-
dimensional unsteady and (b) three-dimensional turbulent flame configurations,
computed using finite-rate chemistry. The vertical dashed lines represent Cpeak .
Note that the range of the colorbar changes.

Figure 5.11: Conditional mean of ÛωC , conditioned on Cpeak and Z for the two-
dimensional unsteady (red diamonds) and three-dimensional turbulent flame con-
figurations (blue squares).
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C h a p t e r 6

VALIDATION OF THE TABULATED CHEMISTRY MODEL
INCLUDING CURVATURE EFFECTS

[1] J. Schlup and G. Blanquart. “Reproducing curvature effects due to differ-
ential diffusion in tabulated chemistry”. In: Proc. Combust. Inst. (Under
review).

In this chapter, the mixture fraction model developed in Chapter 5 is applied to
one-dimensional curved flames, two-dimensional tubular and unsteady flames, and
three-dimensional turbulent flames, to investigate the predictive capabilities of the
Z–C tabulation. All detailed chemistry simulations, abbreviated “Det.”, implement
theMA–MA transport model for comparison. Tabulated chemistry simulationswere
performed with both the newly-developed tabulation (including thermal diffusion)
and the constant Lewis number approach of Regele et al. [102]. The constant Lewis
number cases are considered to provide a measure of improvement using the pro-
posed tabulation approach; these results are compared in Section 6.6. Additionally,
except for the one-dimensional cases in Section 6.1 and the two-dimensional tubular
case in Section 6.3, all mixtures considered have unburnt conditions of φ = 0.4,
Tu = 298 K, and p0 = 1 atm. All computational grids match the configurations
detailed in Table 2.2 and explored in Chapter 3.

Before transporting Z using Eq. 5.23, or performing any tabulated chemistry
simulations, both initial and boundary conditions are required for the transient
flame configurations considered. The initial profile for any tabulated chemistry
simulation in this chapter begins with a finite-rate chemistry solution. From the
detailed chemistry scalar fields, values of C = YH2O are extracted. Then, the initial
Z field is constructed using YH2 and YO2 in Eq. 5.8. Because Z , Z , there exists an
initial transient in any of the tabulated chemistry simulations. The initial transients
are removed prior to analyzing flame structures or collecting flame statistics. The
inlet boundary condition for Z is set using Eq. 5.25 above.

6.1 One-dimensional unstretched flames
For simulations of the underlying one-dimensional flat flames which construct the
chemistry table, the proposed chemistry tabulation should recover exactly the finite-
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(a) Progress variable source term (b) Mixture fraction

Figure 6.1: Comparison of (a) progress variable source term and (b)mixture fraction
as functions of progress variable for the one-dimensional unstretched flame at φ =
0.4. Detailed chemistry (solid black line) and tabulated chemistry (dotted red line)
profiles agree very well.

rate chemistry results. This is performed using one-dimensional unstretched flames
at a variety of equivalence ratios, from φ = 0.35 to 1.0. For the tabulated chemistry
simulations, flame speeds relative to the unburnt mixture are computed using a form
identical to Eq. 2.73, i.e.,

SL =

∫
ρ ÛωCdV

ρuCbA
, (6.1)

where Cb is the progress variable in the burnt mixture. Figure 6.1a shows a com-
parison of progress variable source term as a function of progress variable using
finite-rate chemistry and tabulated chemistry for a φ = 0.4 flame. As expected, the
tabulated chemistry simulation recovers the underlying one-dimensional unstretched
flame contained in the chemistry table. Further evaluation is provided via a plot of
Z as a function of C in Fig. 6.1b. The two profiles overlap over the entire range of
C.

Quantitative comparisons of the flame structure can bemade using the laminar flame
speed; these results are shown in Fig. 6.2a across the entire range of equivalence
ratios. The corresponding So

L are in agreement to within 0.75% of results from
finite-rate chemistry, computed using

εd
SL =

�����So,Det.
L − STab.

L

So,Det.
L

����� . (6.2)

Differences are likely due to chemistry table interpolation.
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(a) So
L for varying φ (b) Error in So

L

Figure 6.2: (a) Comparison of the unstretched laminar flame speeds and (b) percent
error in the computed flame speeds, computed using finite-rate chemistry (black
crosses) and tabulated chemistry (red circles) for a range of equivalence ratios.

6.2 Cylindrical, outwardly-propagating flame
The one-dimensional, cylindrically expanding flame is now considered. In order to
generate initial data files for this configuration, a set of one-dimensional tubular flame
simulations were performed. The initial outwardly propagating flame profile, with
curvature κcyl = 1/rF , is set by using the tubular flame solution with κcyl lF ≈ 0.35.

Figure 6.3 shows the flame speed of the outwardly propagating flame, normalized
by its unstretched flame speed. SL is computed using Eq. 6.1, with the area Are f

determined by the surface area of a cylinder with radius rF . Differential diffusion
effects increase the flame speed significantly above the unstretched flame speed, So

L .
As the flame propagates outwardly, the flame surface curvature decreases, and the
effects of both differential diffusion and thermal diffusion become less significant;
this agrees with the observations from previous work [102] and the results from
Chapter 3. Ultimately, the one-dimensional unstretched flame is recovered as the
curvature approaches zero.

A number of critical results are present in Fig. 6.3. First, the results from the
detailed chemistry simulations are predicted accurately using the Z–C tabulation
method, with a deviation at maximum curvature of 3%. Second, the inclusion of
thermal diffusion in the tabulated chemistry model also agrees well with detailed
chemistry, and enhances the effects of differential diffusion. The use of the constant
Lewis number approximation (as was done in Regele et al. [102]), underpredicts
the normalized flame speed in regions of high curvature by 10%, compared to the



98

Figure 6.3: Flame speed of outwardly propagating flames, normalized by their
corresponding one-dimensional unstretched laminar flame speed, as a function of
normalized curvature. Detailed chemistry results (solid black) are shown along
with tabulated chemistry results (dashed). The constant Lewis number tabulated
chemistry model [102] is in red.

detailed chemistry case. As a point of comparison, the tabulated chemistry result
overpredicts the finite-rate chemistry result by only 2.5%. The constant Lewis
number approximation recovers fairly well the finite-rate and tabulated chemistry
results at low flame curvature.

Figure 6.4 shows a scatter plot of Z and C for the flame at κlF = 0.06. As expected,
the values of Z and C lie above the corresponding one-dimensional flat flame due
to differential diffusion causing local fuel enrichment. The fully burnt conditions
near the axis of the cylindrically expanding flame have a larger value of C due to
the fuel enrichment and follow the thermodynamic equilibrium line. The values of
C and Z from tabulated chemistry closely match those of the finite-rate chemistry
solution, with a small offset in the Z direction arising from a slightly different flame
curvature between the two data files.

It is important to reiterate that the chemistry table is constructed solely of one-
dimensional flat flames. Yet it is evident from the results of this section that
curvature effects — introduced through the cross-diffusivity D∗Z of the mixture
fraction — are well predicted using this flat flame-based chemistry table.
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Figure 6.4: Scatter plot of the mixture fraction as a function of progress variable
using tabulated chemistry with thermal diffusion for the one-dimensional outwardly-
propagating cylindrical flame (red circles) at κlF = 0.06. An a priori case (finite-
rate chemistry transporting Z) is also shown (black crosses). The thermodynamic
equilibrium line is also shown (black dot-dashed line).

6.3 Two-dimensional cellular tubular flame
The tubular flame configuration described in Section 2.6.3 is now investigated.
Boundary conditions identical to the detailed chemistry simulation are used for the
tabulated chemistry case. The inlet mixture has an equivalence ratio of φ = 0.25,
resulting in an inlet unburnt mixture fraction of Zu = 0.00726.

Figure 6.5 shows contour plots of the progress variable source term for finite-rate
chemistry and tabulated chemistry. Results for cases with thermal diffusion and
the constant Lewis number approximation are shown. The contour plots indicate
qualitative agreement between the finite-rate and tabulated chemistry results; by
including thermal diffusion, the flame has a larger flame radius and awider azimuthal
span. Additionally, the flame experiencesmore pronounced localized extinction near
the boundaries of the cellular instability. As was done for the previous cases, Fig.
6.6 shows the location of all data in Z–C space for the steady-state solution. Despite
the unburnt equivalence ratio matching the lowest flame contained in the chemistry
table, all data lies within the given chemistry table due to the increase in local
equivalence ratio [53].

Similar to the quantitative comparisons for the tubular flame configuration inChapter
3, Fig. 6.7 shows azimuthal profiles of the maximum progress variable source term,
and the radial location of this maximum value. The tabulated chemistry method
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Figure 6.5: Contours of the progress variable source term for the (clockwise from top
right) detailed chemistry, tabulated chemistry with thermal diffusion, and tabulated
chemistry assuming constant Lewis numbers.

(a) All data (b) Zoom at small C

Figure 6.6: Scatter plot of the mixture fraction as a function of progress variable for
(a) all data and (b) data at small C using tabulated chemistry with thermal diffusion
for the two-dimensional tubular flame (red points). The one-dimensional flames
contained in the chemistry table, and the thermodynamic equilibrium line, are also
shown (black).
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(a) Maximum progress variable source term (b) Radius of maximum progress variable
source term

Figure 6.7: Profiles of the (a) maximum ÛωC and (b) radial location of maximum
ÛωC as functions of the azimuthal coordinate. Cases with mixture-averaged diffusion
and thermal diffusion (black) and constant Lewis number diffusion (red) are shown,
using finite-rate chemistry (solid lines) and tabulated chemistry (dashed lines).

with thermal diffusion predicts higher source term values at the edge of the cellular
instabilities than the finite-rate chemistry results, with similar source terms at the
center of the instability. The extinction regions between instabilities (θ = ±π/4)
exhibit more pronounced extinction when including thermal diffusion, matching
the results from finite-rate chemistry. Figure 6.7a also indicates that the maximum
source term for the tabulated chemistry case with thermal diffusion is overpredicted
through the entire flame region; this overprediction is most pronounced at the edges
of the instability (near θ = ±π/8), while the instability center experiences reduced
source terms compared to finite-rate chemistry. This reduction in source term is
caused by the flat instability profile seen in Fig. 6.5 reducing the fuel focusing effect
of differential diffusion.

Figure 6.7b shows that using tabulated chemistry with thermal diffusion predicts
the flame position within 6% at the center of the extinction zone, and within 5%
at the center of the cellular instability. The slight disagreement is indicative of a
different cellular instability shape, as shown in the contour plots of Fig. 6.5. The
results using constant Lewis numbers underpredict the flame position throughout
the instability, likely due to the neglect of thermal diffusion.

Despite the overprediction in source term and differences in flame position, the
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Figure 6.8: (Left) Contour plot of the progress variable source term with isosurface
of Cpeak (dashed line) and (right) normalized progress variable source term on
Cpeak isosurface for the detailed chemistry (black crosses) and Z–C tabulation (red
circles). The y-axis is identical for both figures.

agreement between finite-rate chemistry and tabulated chemistry appears quite
good, especially considering the chemistry table is constructed solely using flat,
unstretched one-dimensional flames. The resulting chemistry table appears to qual-
itatively and quantitatively reproduce flame statistics in this steady flame configura-
tion, even under the influence of localized extinction and enhanced burning.

6.4 Two-dimensional freely propagating flame
Next, the two-dimensional, freely propagating, unstable laminar flame is considered.
First, an a priori analysis of the effects of Z are presented (transported during a finite-
rate chemistry simulation), followed by investigations of flame statistics using an a
posteriori implementation of the tabulated chemistry.

6.4.1 A priori analysis
The progress variable chemical source term from detailed chemistry is compared to
that predicted by the Z–C tabulation. Z was transported using Eq. 5.23 during the
detailed chemistry solution. Then, the Z and C fields from the detailed chemistry
simulation are used to interpolate ÛωTab.

C from the chemistry table. This source term
is now compared to ÛωDet.

C .

Figure 6.8 shows a contour plot of the progress variable source term, along with an
isosurface (dashed white line) of the progress variable at its peak source term in a
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(a) One-cusp structure (b) Small cellular instabilities

Figure 6.9: Contour plots of the local equivalence ratio (top) and mixture fraction
(bottom), transported in a finite-rate chemistry simulation, for two time instances of
the two-dimensional freely propagating flame. Both parameters are normalized by
their respective inlet values.

one-dimensional flat flamelet at φ = 0.4 (Cpeak = 0.0835). Next to the contour plot
is a figure showing ÛωC along the flame isosurface. At multiple locations along the
flame surface (e.g., A and B), the flame appears to extinguish, and the source term is
close to zero. Other areas (e.g., C and D) indicate significant burning enhancement
with source terms up to three times the peak one-dimensional source term. The
agreement between detailed chemistry and the Z–C tabulation is quite good over the
entire flame surface; this includes regions of flame extinction being captured well
by a chemistry table constructed of only burning flames. It should be noted that
without differential diffusion effects in the chemistry tabulation, no local variations
in equivalence ratio are possible and the peak progress variable would be a constant
at Ûω1D

C . The proposed Z–C tabulation permits, and indeed accurately captures,
the fluctuations due to differential diffusion, albeit with slight overprediction of the
source term extremes.

6.4.2 A posteriori analysis
Now, a set of a posteriori analyses are performed using tabulated chemistry. The
tabulated chemistry simulations are initialized using a data file from the finite-rate
chemistry simulations, with Z computed using Eq. 5.8. The initial transient is
eliminated from the subsequent analysis by removing the first 10 τF , where τF is
the flame time scale, τF = lF/So

L; this corresponds to approximately 30 flame flow-
through times. Approximately 150 τF are collected for analysis. The analyses for the
tabulated chemistry model mirror those performed in Chapter 3 on the evaluation
of the thermal diffusion model.
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(a) One-cusp structure (b) Small cellular instabilities

Figure 6.10: Scatter plot of the mixture fraction as a function of progress variable
using tabulated chemistry with thermal diffusion for the two-dimensional freely
propagating flame (red points). The one-dimensional flames contained in the chem-
istry table, and the thermodynamic equilibrium line, are also shown (black).

First, as a demonstration of the local enrichment due to differential diffusion and
the physical meaning of Z , Fig. 6.9 shows an example pair of contour plots: the
top contour plots indicate indicate local equivalence ratio, normalized by the inlet
equivalence ratio, from a finite-rate chemistry simulation for two time steps. The
local equivalence ratio is computed as φ = 0.5XH/XO where Xi are the elemental
mole fractions of element i at the given location in the computational domain.
The bottom contour plots show Z , transported during the finite-rate chemistry
simulation and normalized by the inlet value of Z , at the same time instances
as the equivalence ratio contours. From these figures, the effects of differential
diffusion in the chemistry tabulation, i.e., fluctuations in Z corresponding to the
equivalence ratio fluctuations found in finite-rate chemistry, are readily visible. The
excellent agreement between the normalized values of φ and Z reinforces the choice
of mixture fraction as a transported variable to determine local fuel enrichment or
flame extinction.

A scatter plot of Z and C values from tabulated chemistry is shown in Fig. 6.10 for
two data files with similar flame structure as Fig. 6.9. Local enrichment and extinc-
tion is shown by the significant scatter of data. Points beyond the thermodynamic
equilibrium line are indicative of numerical errors.
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(a) Flame speed history (b) PDF of flame speed

Figure 6.11: Flame speed history (left) and PDF of normalized flame speed (right)
for detailed chemistry (solid black), tabulated chemistry with thermal diffusion
(dot-dashed red), and tabulated chemistry assuming constant Lewis numbers [102]
(dotted blue). The vertical dashed lines represent the temporal mean of the corre-
sponding flame speeds.

Global flame statistics

Flame speed time histories using detailed chemistry, the proposed tabulated chem-
istry model, and the constant Lewis number tabulated chemistry model of Regele
et al. [102] are shown in Fig. 6.11. The time histories indicate that tabulated
chemistry still reproduces the periodic flame speed found in finite-rate chemistry
simulations. The proposed tabulated chemistry method, however, predicts larger
flame speeds relative to the detailed chemistry results. The overprediction can be
quantified by investigating the PDF of the flame speed, shown in Fig. 6.11b. Here,
the mean flame speeds, indicated by the vertical dashed lines, show that the pro-
posed tabulated chemistry model overpredicts S2D

eff of the detailed chemistry model
by 14%.

A similar set of conclusions are shown in the PDF of the flame surface area in
Fig. 6.12a. The flame area statistics also reveal an increase in flame surface area
by implementing the proposed tabulated chemistry methodology, relative to the
detailed chemistry results. The percent increase is found to be approximately 24%.

Local flame statistics

Both S2D
eff and A2D

FP represent global quantities; local measurements show the applica-
bility of tabulated chemistry in regions of enhanced burning and localized extinction
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(a) PDF of flame surface area (b) Conditional mean of source term on
flame surface

Figure 6.12: PDF of flame surface area normalized by domain cross-sectional
area (left) and normalized product source term as a function of normalized local
flame curvature (right) for detailed chemistry (solid black), tabulated chemistry
with thermal diffusion (dot-dashed red), and tabulated chemistry assuming constant
Lewis numbers [102] (dotted blue). The vertical dashed lines on the left figure
represent the temporal mean of the flame area.

along the flame surface. An averaged measure of the localized effects of the flame
considers the mean of ÛωC along the flame surface defined by Cpeak , conditioned on
the flame curvature. The conditional mean is shown in Fig. 6.12b. The Z–C tabula-
tion model accurately predicts the progress variable source term, in both regions of
positive curvature (convex to the unburnt mixture) and negative curvature (concave
to the unburnt mixture), despite the slight disagreement in global quantities. In re-
gions of positive curvature, the progress variable source term increases dramatically
over the peak laminar value, Ûω1D

C , while local flame extinction is found in regions of
negative curvature. This indicates that the proposed Z–C tabulation developed in
Section 5.1 accurately predicts local fluctuations of ÛωC (at a given value of C) due
to curvature, made possible by the new mixture fraction diffusion flux (Eq. 5.23).

6.5 Three-dimensional turbulent flame
The analyses in Sections 6.2 - 6.4 considered only laminar flames. The addition of
turbulence, especially at high Karlovitz number, Ka, introduces turbulence-induced
curvature which may affect the flame structure, in addition to instability-induced
curvature.

The Karlovitz and turbulent Reynolds numbers, based on unburnt properties, match
those of the finite-rate chemistry simulation presented in Chapter 3: Kau = τF/τη =
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Figure 6.13: Two-dimensional slice of the vorticity magnitude (with isolines repre-
senting Cpeak/10 (yellow) and Cpeak (red)) and progress variable source term.

Figure 6.14: Scatter plot of the mixture fraction as a function of progress variable
using tabulated chemistry with thermal diffusion for the three-dimensional turbulent
flame (red points). The one-dimensional flames contained in the chemistry table,
and the thermodynamic equilibrium line, are also shown (black).
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149, and Ret = u′l/ν = 289. The initial data field is a fully-turbulent result from the
finite-rate chemistry simulation. Z is again initialized using Eq. 5.8. As mentioned
in the model development and the previous simulation sections, an initial transient
must be removed as Z is transported following Eq. 5.23. Statistics are collected
over 25 eddy turnover times after this initial transient has been removed. Figure
6.13 shows a two-dimensional slice of the turbulent flow. Isosurfaces of Cpeak/10
(yellow) and Cpeak (red) indicate an approximation of the flame brush. The vorticity
magnitude (shown in the top contour plot) significantly changes through the flame,
due to increased viscosity in the burnt mixture [4, 111]. The isosurfaces also reveal
pockets of unburnt mixture in the burnt region of the flame. An additional contour
plot, showing the progress variable source term, qualitatively presents the fluctuating
product source term along the flame surface.

The scatter plot in Fig. 6.14 indicate that a significant amount of fuel enrichment and
local extinction is present in the turbulent flame. Further, the amount of enrichment
is much larger than that found in the two-dimensional freely-propagating flame
(note the different axis scales in Fig. 6.10). Few points exist below the lowest flame
solution, and the thermodynamic equilibrium line continues to provide a limit on
the maximum value of C at a given Z (i.e., equivalence ratio).

Global flame statistics

Figure 6.15a shows a time history of turbulent flame speeds for the detailed chem-
istry, tabulated chemistry with thermal diffusion, and the constant Lewis number
tabulated chemistry model of Regele et al. [102]. Similar to the two-dimensional
freely propagating flame, the tabulated chemistry model overpredicts the turbulent
flame speed. This overprediction is quantified in Fig. 6.15b, which shows that
the use of tabulated chemistry with thermal diffusion results in an increase of ap-
proximately 14% over the detailed chemistry model. Compared to the finite-rate
chemistry results shown in Section 3.6, the overprediction is less than the discrep-
ancy incurred by neglecting thermal diffusion. Similar to the two-dimensional
unsteady flame, the flame surface area is increased due to differential diffusion as
well as turbulent mixing. However, the tabulated chemistry method continues to
overpredict the turbulent flame area by 16%, a similar increase as was found for the
turbulent flame speed.
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(a) Flame speed history (b) PDF of flame speed

Figure 6.15: Flame speed history (left) and PDF of normalized flame speed (right)
for detailed chemistry (solid black), tabulated chemistry with thermal diffusion
(dot-dashed red), and tabulated chemistry assuming constant Lewis numbers [102]
(dotted blue). The dashed lines represent the temporal mean of the flame speeds.

Figure 6.16: PDF of turbulent three-dimensional flame surface area normalized by
domain cross-sectional area for detailed chemistry (solid black), tabulated chemistry
with thermal diffusion (dot-dashed red), and tabulated chemistry assuming constant
Lewis numbers [102] (dotted blue). The vertical dashed lines on the left figure
represent the temporal mean of the flame area.
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Figure 6.17: Conditional mean of the normalized progress variable source term
for the detailed chemistry (black), proposed tabulated chemistry (red), and constant
Lewis number tabulated chemistry (blue) models. A one-dimensional flame profile
is shown for reference (dashed black line).

Local flame statistics

The curvature-induced acceleration of the flame propagation is once again investi-
gated through the mean of ÛωC , conditioned onC throughout the domain, as shown in
Fig. 6.17. Data spanning 95% of the range ofC is presented. The first observation is
that 〈 ÛωC |C〉 in this turbulent flame is much greater than that of a laminar unstretched
flame due to differential diffusion. This increase in source term corresponds to an
increase in turbulent flame speed. The tabulated and detailed chemistry conditional
means show excellent agreement up to the maximum progress variable found in a
one-dimensional unstretched flame, indicated by the vertical dot-dashed line in Fig.
6.17.

Fig. 6.17 also shows regions which exceed the adiabatic fully-burnt properties of
the inlet mixture. These regions are often referred to as “super-adiabatic” or hot
spots [7, 8, 33]. The general trend of the detailed chemistry model is captured
qualitatively in the hot-spot region by the proposed Z–C tabulation (albeit at a larger
magnitude), despite the chemistry table containing only adiabatic flames.

Figure 6.18 shows the conditional mean of ÛωC along the flame surface, conditioned
on the flame curvature. Data spanning 95% of the range of κ is provided. This figure
indicates good agreement between detailed and tabulated chemistry in regions of
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Figure 6.18: Conditional mean of the progress variable source term as a function of
normalized local flame curvature for detailed chemistry (black), tabulated chemistry
with thermal diffusion (red), and tabulated chemistry assuming constant Lewis
numbers [102] (blue).

high negative curvature and up to κlF ≈ 1. At high curvature (exceeding the laminar
flame thickness), Fig. 6.18 shows that the mean progress variable source term
overpredicts the finite-rate chemistry results.

6.6 Summary of results
The above results focused primarily on the comparison between finite-rate chemistry
and the proposed tabulated chemistry model. It is instructive to also consider the
improvement found by the proposed tabulated chemistrymodel through comparisons
with the constant Lewis number model.

Both the proposed tabulated chemistry model with thermal diffusion, and the con-
stant Lewis number chemistry table, struggle to predict unsteady global flame statis-
tics; however, there are important distinctions to be made between the results of the
two tabulation methods. It is common practice to relate the turbulent flame speed
and surface area. For example, Bray [17] and Candel and Poinsot [21] suggested
that the turbulent flame speed and flame area are correlated through

ST

SL
=

AT

A
I0 . (6.3)

Here, I0 is the burning efficiency, which is a measure of local flame structure.
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Recently, a closure for I0 has been proposed as [73, 109]

I0 ≈
〈 ÛωF/|∇T | | T turb

peak〉

Ûω1D
F,lam/

��∇T1D
lam

�� , (6.4)

which was found to be nearly constant across a range of fuels (hydrogen was not
considered), chemistry models, diffusion models, and turbulence intensities. In this
expression, T1D

peak represents the temperature of peak source term in a laminar flame,
while T turb

peak corresponds to the temperature of peak mean chemical source term in
the turbulent flame. A detailed analysis of the burning efficiency in lean premixed
hydrogen–air flames is beyond the scope of this work, but is suggested as an avenue
of future investigation. Instead, the relationship given in Eq. 6.3 will be used to
investigate the tabulation methods.

The constant Lewis number chemistry table predicts larger turbulent flame areas
compared to the detailed chemistry results (Fig. 6.16). However, the source term of
C is underpredicted, relative to the finite-rate chemistry results, through a majority
of the flame (Fig. 6.17). These two observations, in conjunction with Eq. 6.3,
suggest some manner of error cancellation; an increase in AT/A of 24%, coupled
with a decrease of the chemical source term of approximately 20% (disagreement of
I0 with detailed chemistry) results in a flame speed which closely matches finite-rate
chemistry (an increase of 3%) (Fig. 6.15b).

A similar analysis using the proposed tabulation methodology results in different
conclusions. The new tabulation method overpredicts the detailed chemistry AT/A

by 15%, while closely matching the chemistry source term over nearly the entire
flame structure. As a result, the tabulated chemistry turbulent flame speed overpre-
dicts the detailed chemistry results by 14%, indicating an accurate prediction of I0

by tabulated chemistry.

Put simply, comparisons of solely the turbulent flame speed are insufficient to de-
termine the applicability of the tabulation method. The constant Lewis number
approach appears to predict ST well, yet this may be an artifact of the coupled inter-
action of the flame area and local effects. However, while the proposed tabulation
model overpredicts ST/SL , the overprediction is consistent with AT/Awhile the local
source terms are very well approximated using the new chemistry tabulation. These
results suggest that, by improving the agreement on the turbulent flame area, the tur-
bulent flame speed agreement between detailed and tabulated chemistry would also
be improved. This improvement should be achieved through future developments
of the tabulated chemistry approach.
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Figure 6.19: Computational time per grid point for each part of NGA for the three-
dimensional turbulent configuration. The detailed chemistry (black) and proposed
tabulated chemistry model (red) are shown. “Chemistry” includes the cost of
computing diffusion coefficients (for detailed chemistry) and all chemistry table
interpolation (for tabulated).

6.7 Reduction in computational cost
The proposed Z–C tabulationmodel provides accurate descriptions of the local flame
structure for a wide range of flame configurations. One of the primary benefits of
this chemistry modeling technique is its reduced computational cost compared to
detailed finite-rate chemistry simulations. A comparison of the computational cost
of these two techniques is thus of significant interest.

6.7.1 Wall time reduction
Figure 6.19 shows the computational time for each part of the finite-rate chemistry
procedure (using mixture-averaged diffusion models) and tabulated chemistry. Only
the three-dimensional turbulent flame configuration is included in this comparison.
An identical computational grid and domain decomposition is used. A total of
20 iterations are run for each case, and averaged timings are reported. These two
turbulent simulations were performed on the National Energy Research Scientific
Computing (NERSC) Center’s Cori system [29], using 24 compute nodes, each with
32 Haswell cores.

As can be seen from Fig. 6.19, there is a significant cost reduction in using tabulated
chemistry compared to finite-rate chemistry. This cost reduction results from two
factors: a reduced number of transported scalars and simplified thermo-chemical
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property computations. The finite-rate chemistry model transports a total of N

species and temperature. Recall that the lean hydrogen–air chemistry model used
throughout this work consists of nine species and 54 reactions. The tabulated
chemistry procedure only requires transporting two scalar quantities (Z and C), as
these two scalars create the low-dimensional manifold on which all other required
properties may be found. This reduction in transported scalars results in a 75%
reduction in the cost of scalar transport which, in turn, reduces the overall cost of
scalar transport from 33% to 17% of the total simulation cost. It should be noted that
this is a “best case” scenario for finite-rate chemistry (or “worst case” for tabulated
chemistry); if more species were included in the full chemical model, the scalar
transport cost for detailed chemistry would increase linearly, while the tabulated
chemistry cost would remain fixed.

In addition, a significant reduction is found in the cost of chemistry. Here, chem-
istry cost refers to the determination of all thermo-chemical properties and required
chemical source terms. In the detailed chemistry model, this cost primarily consists
of computing mass and thermal diffusion coefficients, viscosity, and species chemi-
cal source terms. The “chemistry” cost for tabulated chemistry consists of the table
look-ups for various properties (e.g., DZ and ÛωC). By using tabulated chemistry,
the cost associated with chemistry calculations is reduced by nearly 90%. This
reduction results in the chemistry cost being reduced from 33% to only 8% of the
total simulation cost. Again, the number of chemical species considered in detailed
chemistry will significantly affect the finite-rate chemistry timings. The result of
both scalar and combustion cost reductions is a simulation 53% less expensive than
the detailed chemistry simulation.

6.7.2 Stiff chemistry removal
A reduction in the wall time of a simulation is not the only cost-benefit found by
utilizing tabulated chemistry. The tabulation of one-dimensional flame solutions
also reduces the effect of stiff chemistry source terms, i.e., chemical reactions
involving both short lived radicals and small length scales. The only remaining
chemistry source term in tabulated chemistry is the production of H2O, which
suggests that a larger ∆t and ∆x may be permissible while maintaining solution
accuracy.

These claims are investigated by considering the one-dimensional unstretched flame
at φ = 0.4. The flame is allowed to propagate upstream in the domain. This
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(a) Detailed chemistry (b) Tabulated chemistry

Figure 6.20: Errors of various parameters for (a) detailed chemistry and (b) tabulated
chemistry for a range of simulation time step, normalized by ψfine

V at ∆t = 0.1 µs,
with a fixed ∆x = lF/20.

procedure first investigates a variety of time steps at a fixed grid spacing. Then, a
fixed time step is used while altering the grid spacing. The chosen nominal values
are ∆t = 1×10−6 s and ∆x = lF/20. The error measurement considered in this work
is the volume integral of various parameters, ψV =

∫
V ψdV . Each value of ψV is

compared to the volume integral of the most refined case, and the error is computed
as

εV =

�����ψV − ψ
fine
V

ψfine
V

����� . (6.5)

Data are saved at intervals of approximately 3 τF , and a total of 30 τF are investigated.
The error is computed for each data file, and errors across the 30 τF for a given
(∆t,∆x) are averaged.

The considered time steps range from 0.1 µs < ∆t < 25 µs, and grid spacings range
from 80 < lF/∆x < 2. The maximum time step was limited by the CFL condition
at the given nominal grid spacing. It should be noted that detailed chemistry time
steps greater than 10 µs were found to be unstable and are not considered.

First, Fig. 6.20 shows the normalized errors of thermo-chemical parameters and
the flame speed as a function of ∆t at a fixed ∆x. The errors for detailed chemistry
converge nearly quadratically, while tabulated chemistry experiences linear conver-
gence. The potential cost saving of using tabulated chemistry is found by comparing
the normalized error of a given quantity (e.g., temperature) for both chemistry mod-
els. The normalized error of temperature is shown in Fig. 6.21. It is found that
tabulated chemistry is stable for time steps larger than finite-rate chemistry – up to
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Figure 6.21: Comparison of the error in the volume integral of the temperature for
detailed chemistry (black diamonds) and tabulated chemistry (red circles), normal-
ized by ψfine

V at ∆t = 0.1 µs, as a function of time step.

(a) Detailed chemistry (b) Tabulated chemistry

Figure 6.22: Errors of various parameters for (a) detailed chemistry and (b) tabulated
chemistry for a range of grid spacing, normalized by ψfine

V at lF/∆x = 80, with a
fixed ∆t = 1 µs.

2.5 times larger (limited by the CFL constraint) in the present example. These results
show that tabulated chemistry may be run using ∆t = 25 µs with a normalized error
of 2 × 10−4.

A similar set of analyses can be performed by varying ∆x. Figure 6.22 shows nor-
malized errors for detailed and tabulated chemistry at a fixed ∆t. These normalized
errors also decay quadratically. Investigating the normalized error in T (shown in
Fig. 6.23) shows that a tabulated chemistry grid spacing of lF/∆x = 15 can be used
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Figure 6.23: Comparison of the error in the volume integral of the temperature
for detailed chemistry (filled symbols) and tabulated chemistry (open symbols),
normalized by ψfine

V at lF/∆x = 80, as a function of grid spacing.

to retain a similar accuracy of detailed chemistry with lF/∆x = 20. This results
in a 25% reduction in the number of computational grid points. Additional com-
putational cost savings could be achieved by leveraging the CFL condition relation
between time step and grid size.

6.7.3 Summary of computational cost reductions
Three cost-reductions have been discussed for tabulated chemistry. By using an
identical computational grid and time step for both tabulated and detailed chemistry,
thewall-time savingswere found to reduce computational costs by 50%. Further cost
improvements could also be leveraged. By removing stiff chemical source terms,
the time step and grid spacing can also be relaxed. For example, the time step can
be increased 2.5 times the maximum stable time step for finite-rate chemistry. This
results in 60% fewer time steps for tabulated chemistry. Finally, similar accuracy
as the detailed chemistry cases can be found by reducing the number of grid points
by 25%. When considering a 25% increase in grid size could lead to an additional
increase in the allowable time step, the use of tabulated chemistry will result in
simulations nearly 10 times faster than the finite-rate chemistry methods.
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C h a p t e r 7

CONCLUSION

Lean premixed hydrogen–air flames were investigated using direct numerical sim-
ulations in order to evaluate and develop new transport property and chemistry
models. A thermal diffusion model given by Chapman and Cowling [24] was sys-
tematically evaluated across a range of flame configurations. This model was used
as a basis for a novel thermal diffusion model which substantially reduced computa-
tional costs. Finally, differential diffusion and thermal diffusion were incorporated
into a new tabulated chemistry framework, which was evaluated using similar flame
configurations.

7.1 Mixture-averaged thermal diffusion
The mixture-averaged thermal diffusion model (MA–MA) originally proposed by
Chapman and Cowling [24] was implemented and evaluated against the multicom-
ponent thermal diffusion model (MA–MC).

The MA–MA model was first evaluated using a set of multicomponent transport
simulations. It was found that the inclusion of thermal diffusion, using either MA
or MC thermal diffusion, altered the laminar flame speed of one-dimensional lean
premixed hydrogen flames by up to 5%. The mixture-averaged thermal diffusion
model was then shown to predict both experimental results and results using mul-
ticomponent thermal diffusion. Further, thermal diffusion was found to enhance
cellular instabilities, increase flame propagation speeds and surface areas (global
effects), and increase product source terms and flame surface curvature (local ef-
fects) in two-dimensional unsteady flames. These effects were also identified in
three-dimensional configurations for both laminar and turbulent flames. The com-
parison between the MA–MA and MA–MC models was excellent across all cases
considered. Further, Chapman and Cowling’s thermal diffusion model reduced the
computational cost of including the Soret and Dufour effects compared to the more
expensive multicomponent approach. The results found throughout this work indi-
cate that thermal diffusion must be included in simulations of lean hydrogen flames
to capture the flame properties, and that thermal diffusion can be implemented in a
cost-efficient manner for three-dimensional flames.
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7.2 Development of a reduced thermal diffusion model
To further reduce the computational cost of including thermal diffusion, a reduced
thermal diffusion model (RM), derived from Chapman and Cowling’s thermal dif-
fusion model [24], was developed and evaluated. This reduced model simplified the
mixture-averaged approach by using various relationships between transport prop-
erties and molecular weights. Assuming that the molecular weight of the species of
interest is significantly less than that of the mixture, the model performs very well
with a scaling parameter determined using several unburnt mixtures. Mixtures of
hydrogen/air/diluent and hydrocarbon/air/diluent at a variety of unburnt tempera-
tures and pressures were all investigated. More precisely, the unstretched laminar
flame speeds using the RM model agree with the multicomponent model, showing
a maximum relative error of 1.5% across all cases, with errors less than 0.5% for
nearly all considered mixtures. Additionally, this reduced model, which was shown
to predict accurate thermal diffusion coefficients in mixtures where the thermal
diffusion of H and H2 is critical, can be applied to many fuel/air mixtures. For
combustion mixtures where thermal diffusion is not as important (e.g., rich H2/air
or light to medium hydrocarbon fuels) the RM implementation will still predict
accurate flame speeds, even if the thermal diffusion fluxes have a moderate error
relative to the multicomponent method. This is simply due to the fact that thermal
diffusion has little influence on these mixtures.

An a priori comparison in a turbulent flame simulation also shows excellent agree-
ment between the RM and MC models. Not only were the mean trends of DT

i

captured, but the super-adiabatic regions and fluctuations due to turbulent transport
were also reproduced by the RMmethod. Finally, the RMmethod has a fixed cost for
chemical models up to 100 species, which significantly reduces the computational
time of including thermal diffusion effects in reacting flow simulations.

7.3 Incorporating differential and thermal diffusion in tabulated chemistry
By relaxing the unity Lewis number (apart from the fuel) and no thermal diffu-
sion approximations suggested by Regele et al. [102], a new chemistry tabulation
model was derived using a mixture fraction-like variable and a progress variable.
The tabulated chemistry model was applied to multiple flame configurations: one-
dimensional unstretched and stretched, two-dimensional steady and unsteady, and
three-dimensional turbulent flames.

It was found that the newly proposed tabulated chemistry model accurately captures
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both local properties (e.g., progress variable source terms) as well as global proper-
ties (e.g., flame speeds) of the considered flames. This result is entirely reliant on the
cross-diffusivity, D∗Z , of the mixture fraction, which permits information about the
flame curvature and differential diffusion effects to be included in the Z–C model.
By using one-dimensional, flat, burning flames in the chemistry table, this model
is able to capture both flame curvature and flame extinction effects. Additionally,
the adiabatic flames which construct the chemistry table were able to predict the
formation of “hot spots” in a turbulent flame. The proposed Z–C model allows for
a simple representation of a complex chemical process. Using this model, further
investigations into turbulent flames, hydrocarbon fuels, and the implementation of
Z and C in large eddy simulations should be considered, where computational cost
reductions will be larger.

7.4 Future Work
The models presented in this thesis have been thoroughly evaluated for a wide range
of lean premixed hydrogen–air flame configurations. The benefits found by using a
reduced thermal diffusion model and tabulated chemistry suggest that these models
be explored in other flame configurations and with hydrocarbon fuels.

Thermal diffusion has an influence on other fuel/oxidizer mixtures which were not
considered in this work. In particular, high-hydrogen content syngas has been inves-
tigated recently using multicomponent thermal diffusion [101]. As this fuel contains
carbon-based species, and potentially large hydrocarbon molecules, the governing
chemical model could have hundreds of species and thousands of reactions. Ad-
ditionally, other heavy hydrocarbon mixtures, e.g., rich iso-octane [16], exhibit
thermo-diffusive instabilities which may also require thermal diffusion to fully in-
vestigate. Other unstable flame configurations, such as lean high pressure hydrogen
and rich high pressure acetylene, propane, and iso-octane flames, have shown flame
surface cracking leading to cellular instability formation [16, 64]. These flame fronts
enhance the focusing effects of non-unity Lewis numbermixtures, and thermal diffu-
sion could increase these effects further. Using the reduced thermal diffusion model
developed in Chapter 4, especially for hydrocarbon combustion, would negligibly
increase computational costs.

For fuel/air mixtures not considered in Chapter 4, the reduced thermal diffusion
model should be reevaluated to verify the governing assumptions still hold, and that
the scaling parameters do not change appreciably. For example, a fuel whose molec-
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ular weight is similar to that of the mixture may not satisfy the assumptions given
in the model development. While this evaluation should ideally be performed for
each additional fuel/air mixture, the scaling parameter analysis outlined in Chapter
4 is straightforward, requiring only one-dimensional flames with multicomponent
thermal diffusion.

Tabulated chemistry presents a different set of future analyses. The next set of stud-
ies should focus on methods to increase the agreement between finite-rate chemistry
and tabulated chemistry. Currently, linear interpolation is performed in the chem-
istry table look-up procedure. Alternative interpolation methods (perhaps based on
the shape of the chemistry table, e.g., Fig. 5.11 at Cpeak), may present a more ac-
curate interpolation without increasing the number of underlying flame solutions or
increasing the resolution of the chemistry table. The treatment of extinction points
below the lowest flame solution in the chemistry table should also be investigated,
as this region may be interrogated more frequently in flames with high probability
of extinction. Finally, the addition of a new tabulation variable, or perhaps the
inclusion of additional scalars in the definition of Z (for example, H), may improve
the agreement between the chemistry table and the optimal estimator.

As described in Section 6.6, the disagreement ofmean global flame statistics presents
a challenge: how are themean local statistics captured along the flame surface, while
the flame speed and surface area are over-predicted? One possible tool to investigate
the interplay of global and local effects is the burning efficiency introduced in Eqs.
6.3 and 6.4. These two expressions relate global effects with localized effects along
the flame surface. In the case of tabulated chemistry, where the fuel source term
and temperature are not readily available, one may consider ÛωC and C, instead of
measurements on the fuel and temperature. Additionally, as the two-dimensional
and three-dimensional laminar freely propagating flames have increased flame speed
and surface area (similar to the turbulent case), this style of investigation may
also be applicable to more tractable flame configurations. The results of these
analyses should be compared to those of Lapointe and Blanquart [73], to provide
an additional measure of the burning efficiency in a thermo-diffusive mixture at a
range of Karlovitz numbers.

Finally, the mathematical development of the chemistry tabulation is fuel agnostic.
While the current model was evaluated using hydrogen–air mixtures only, it may
prove valuable for hydrocarbon combustion. This was briefly explored in Regele
et al. for their chemistry tabulation approach using rich propane mixtures [102].
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The benefits of tabulated chemistry, especially wall-time reduction due to orders-
of-magnitude fewer transported scalars, would be significantly more pronounced
than the values reported in this thesis. A similar set of analyses investigating
the interaction of flame surface curvature and differential diffusion effects in rich
mixtures of heavy hydrocarbon fuels which are thermo-diffusively unstable should
be investigated.
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A p p e n d i x A

SPECIES PROPERTY FITS

A.1 Collision integral fits
The collision integrals are expressed as rational functions of the form

χ =

∑
m

cm
(
T∗i

)m∑
m

dm
(
T∗i

)m , (A.1)

where χ = [Ω(1,1)
∗

i ,Ω
(2,2)∗
i ,C∗i j] with coefficients from Table A.1 [100]. Figure A.1

shows the rational function fit for tabulated data from Monchick and Mason [87].
The reduced temperature range covers all conditions for the reacting flow simulations
considered in this thesis.

A.2 Species property fits
Fits for the species collision diameters and Lennard-Jones parameters for species
i are presented here. These fits have been used in FlameMaster [100] and are
documented here, for completeness. The collision diameter may be replaced with a
fit based on molecular weights given as,

σi = 1.234W0.33
i . (A.2)

Additionally, εi, the potential well depth of species i, is well approximated as a
function of molecular weights,

εi
kB
= 37.15W0.58

i . (A.3)

Table A.1: Coefficients of the rational functions fitting Ω(2,2)
∗

i and C∗i j .

Variable Coefficient m = 0 m = 1 m = 2 m = 3 m = 4

Ω
(1,1)∗
i

cm 6.87283 9.41223 7.74424 0.23425 —
dm 1.45338 5.22698 9.71085 0.46540 0.00042

Ω
(2,2)∗
i

cm 3.35306 2.53272 2.90242 0.11186 —
dm 0.86623 1.39139 3.15849 0.18973 0.00018

C∗i j
cm 0.73680 -0.16258 0.70953 1.39801 0.06796
dm 0.81695 -0.06989 1.01867 1.45230 0.07200
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(a) Ω(1,1)∗i (b) Ω(2,2)∗i

(c) C∗i j

Figure A.1: Rational function fits of (a) Ω(1,1)
∗

i , (b) Ω(2,2)
∗

i and (c) C∗i j (black lines),
using coefficients from FlameMaster [100] and tabulated data (red circles) from
Monchick and Mason [87].

Figure A.2 shows these two fits for species present in CaltechMech [14]. The
transport property data in Fig. A.2 are aggregated from multiple references [14].
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(a) σi (b) εi/kB

Figure A.2: Power law fits (black lines) of (a) σi using Eq. 4.13 and (b) εi/kB using
Eq. 4.15 as functions of Wi. The fit coefficients are from FlameMaster [100] and
the transport property data (symbols) are from multiple references [14]. H is the
red triangle and H2 is the blue circle.
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A p p e n d i x B

SENSITIVITY ANALYSIS OF FLAME INSTABILITY LENGTH
SCALES

Introduction1
The cellular instability characteristic lengths have not been investigated to any great
detail, with the cellular structure surface area receiving the most attention [33]. This
appendix aims to provide a methodology for extracting the length scales in the two-
dimensional, freely propagating flame configuration. The instability length scales
from simulations using various diffusion models are investigated and statistics of
the flame length scales are extracted.

This appendix is organized as follows: first, the proposed methodology is presented
in Section B.1. Then, a sensitivity analysis is presented in Section B.2. This method
was applied to numerical data using different diffusion models, and the results were
discussed in Section 3.7.1.

B.1 Methodology
The data analyzed is that of the two-dimensional unsteady freely-propagating flame,
whose results were discussed in Section 3.4. Data from each of the three diffusion
models (MA–xx,MA–MA, andMA–MC) are analyzed using the samemethodology,
outlined below and detailed in the following paragraphs:

1. Identify and extract the flame surface.

2. Post-process the flame surface to remove closed contours (i.e., unburnt reac-
tants surrounded by burnt products).

3. Calculate the species source term and the flame curvature along flame surface.

4. Determine locations of cellular structures and extinction zones.

5. Calculate the cellular instability arc lengths, lc, and extinction zone lengths,
le.

1The original length scale detection methodology was first developed as part of a Caltech Senior
thesis byMorgan Hill (BS ’16). This methodology was greatly expanded, and the sensitivity analysis
conducted, in Schlup andBlanquart, Extracting length scales of a thermo-diffusively unstable laminar
flame, 10th U.S. National Combustion Meeting (2017).



127

(a) Contours of YH2O (b) Isosurface of Y iso,nom
H2O

(c) No closed isosurfaces (d) Isosurface colored by cells and extinctions

Figure B.1: Method of extracting cellular structures: (a) filled contour plot of
YH2O, (b) isosurface of Y iso,nom

H2O with detached pocket, (c) isosurface with pocket
removed, and (d) isosurface with two cells indicated (blue and red segments), and
the extinction regions between adjacent cells (green segments).

The first step of this procedure is identifying the flame surface. The flame surface
is defined using an isosurface of Y iso

H2O (or T iso when performing the sensitivity
analyses in Section B.2.2). Nominal values of the flame isosurface are chosen to
be Y iso,nom

H2O = Ypeak
H2O and T iso,nom = Tpeak, where the superscript peak indicates the

value of YH2O or T corresponding to the maximum source term of H2O in a one-
dimensional hydrogen-air flame with identical inlet properties. Contours of YH2O

(Fig. B.1a), with a detected isosurface of Y iso,nom
H2O (Fig. B.1b), are shown. In this

work, the Matlab function contourc is implemented to extract the isosurface.

Once the flame surface has been identified, some post-processing is performed. In
this analysis, only portions of the flame surface which are not closed are considered.
These pockets, one of which is depicted in Fig. B.1b, are not considered part of the
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cellular instabilities and are thus not of current interest. These closed contours are
removed from the detected isosurface such that a single, continuous isoline defines
the flame front (Fig. B.1c).

After the flame surface is extracted from the data, the curvature and chemical source
terms along the isosurface are computed. The flame curvature is defined using
Eq. 3.2, where the surface normal is computed using the isosurface variable (either
YH2O or T). This definition of the flame surface yields positive curvature when the
surface is convex to the unburnt mixture and negative curvature when concave to
the unburnt mixture.

The flame surface is then split into regions, termed “cells” (i.e., the cellular instabil-
ities) and “extinction zones”. This classification is made by determining a threshold
value for either the H2O source term along the flame surface or the curvature of the
flame surface. An example of identified cellular structures is given in Fig. B.1d,
where two identified cells are colored blue and red, and extinction regions along the
flame surface are colored green. Previous work has defined extinction as regions
along the flame surface where the product source term is reduced below a certain
percentage of the peak value in a one-dimensional flame, Ûω1D

H2O [33, 74]. Figure
6.12b gives two possible definitions of extinction based on the conditional mean,
〈 ÛωH2O

��Ypeak
H2O , κ〉: first, there appears to be a mean lower bound of ÛωH2O at 0.2 Ûω1D

H2O.
Second, when κ < 0, the mean value of ÛωH2O is nearly constant. As an initial
guess, extinction thresholds of Ûωth

H2O = 0.2 Ûω1D
H2O and κthlF = −0.65 are chosen,

where the superscript “th” represents extinction threshold values. Portions of the
flame isosurface which are not considered extinction zones are classified as cellular
instabilities.

After the cells and extinction zones have been identified, the flame surface length
scales are calculated. The characteristic length scales for this work are defined to
be the arc length of the cells and the straight-line lengths across extinction regions.
Figure B.2 depicts these length scales, showing the arc-length of cellular instabilities
as the arc length of the blue and red sections, and the straight-line lengths indicated
by the straight green lines. The cell arc and extinction zone lengths are then stored
for each data file. The straight line length is considered as the characteristic length
for extinction, as it is the smallest length scale concerning the extinction zone
(necessary for sub-grid scale considerations), and is significantly less sensitive to
the flame isosurface (see the inset of Fig. B.9 for an example of the effects on the
extinction region by varying Y iso

H2O).
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Figure B.2: Depiction of the cellular instability length scales, showing two cellular
instabilities (red and blue sections), and two extinction length scales (green lines).
Note that one extinction region exists across the periodic boundary.

Table B.1: Range of the sensitivity analysis variables. Note that the maximum con-
sideredY iso

H2O andT iso is dependent on isosurfaces remaining inside the computational
domain.

Variable Minimum Maximum

Y iso
H2O/Y

peak
H2O 0.75 1.00

T iso/Tpeak 0.75 1.03

Ûωth
H2O/ Ûω

1D
H2O 0.05 0.50

κthlF -2.60 0.00

B.2 Sensitivity analyses
A sensitivity analysis is performed on all available data to determine the influence of
the independent parameters,Y iso

H2O, T
iso, Ûωth

H2O, and κ
th. A “one-at-a-time” sensitivity

analysis methodology is chosen, where a nominal value of each independent variable
is kept constant as the remaining variable is varied. Table B.1 lists the four sensitivity
analysis variables, and the range in which they are investigated. The nominal values
are Y iso

H2O = Ypeak
H2O , T iso = Tpeak, Ûωth

H2O = 0.2 Ûω1D
H2O, and κ

th = −0.65 lF .

The isosurface range is determined by the desire to investigate regions with large
source terms near the flame front. Thus, a range is selected which encompasses the
value of YH2O and T at peak product source term. The maximum isosurface value
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(a) Vary isosurface, Y iso
H2O (b) Vary threshold, Ûωth

H2O

Figure B.3: Varying (a) Y iso
H2O and (b) Ûωth

H2O for a single data file. Arrows indicate
direction of increasing sensitivity variable.

is constrained by the length of the computational domain. In many of the data files,
increasing the isosurface further caused the isosurface to exit the domain. With
this condition, it is impossible to identify accurately both instabilities and extinction
zones. The range of extinction threshold values is based on the conditional means
of product source term (e.g., Fig. 6.12b). This figure indicates that the mean source
term in highly negative regions of the flame surface is near 0.2 Ûω1D

H2O. Thus, the
threshold source term spans from 5% to 50% of Ûω1D

H2O. A similar argument is made
for the flame curvature; the maximum flame curvature for extinction threshold is 0,
as the conditional mean of the product source term rapidly rises for larger curvatures.

B.2.1 Sensitivity analysis of Y iso
H2O and Ûωth

H2O

Figure B.3a depicts a range of isosurfaces for various Y iso
H2O. It is clear that the flame

surface in regions of positive curvature (associated with the cellular instabilities)
does not change significantly with a varying flame isosurface value, as the gradients
of YH2O are large. In regions of high negative curvature, the flame isosurface
elongates appreciably. For a fixed value ofY iso

H2O, increasing Ûω
th
H2O causes the location

of the extinction points to shift along the flame surface, naturally changing the
cellular instability lengths (see Fig. B.3b).

Figures B.4 and B.5 give an example of the sensitivity analysis procedure. Figure
B.4 shows the PDF of cell arc length over all collected data for theMA–MAdiffusion
model, usingY iso,nom

H2O and Ûωth,nom
H2O . Then, a range ofY iso

H2O (while maintaining Ûωth,nom
H2O )
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Figure B.4: PDF of the cell length for an isosurface of Y iso,nom
H2O and source term

threshold Ûωth,nom
H2O for the MA–MA diffusion model.

(a) Vary Y iso
H2O (b) Vary Ûωth

H2O

Figure B.5: Cellular instability length sensitivity maps, varying (a) Y iso
H2O and (b)

Ûωth
H2O. Colors indicate values of the PDF.

is analyzed.

PDFs of the length scales at all given pairs of independent variables are generated.
These PDFs are visualized in Fig. B.5a, where the probability densities are rep-
resented by the colorbar as functions of the chosen isosurface. An identical set of
analyses on the cellular instability arc length can then be performed by varying Ûωth

H2O
while maintaining Y iso,nom

H2O . The sensitivity of the cellular instability length due to
changes in Ûωth

H2O is shown in Fig. B.5b. Finally, this sensitivity analysis procedure
may be performed on the extinction zone length scales (shown in Fig. B.6).

From Fig. B.5, a number of trends are visible. First, there is a wide distribution of
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(a) Vary Y iso
H2O (b) Vary Ûωth

H2O

Figure B.6: Extinction zone length sensitivity maps, varying (a) Y iso
H2O and (b) Ûωth

H2O.
Colors indicate values of the PDF.

cellular instability lengths for all investigated values ofY iso
H2O and Ûωth

H2O. Additionally,
there exists a large concentration of cellular structures with sizes near 10 lc/lF , and a
second concentration of larger instabilities near 40 lc/lF . These two sizes correspond
to the smaller instabilities and large lobe-like structures. FigureB.7 shows the growth
of the smaller instabilities across the surface of the large lobe structures. Further,
there is a maximum cell size near 43 lc/lF , and a minimum size of approximately
3 lc/lF . While the minimum cellular instability size is largely independent of the
domain size, the domain height may control the maximum cellular size. The effect
of domain size is investigated in Section 3.7.1.

There is no clear trend in the cellular instability size asY iso
H2O is varied, indicating the

size of the cellular structures is insensitive to the chosen values of Y iso
H2O. This can

be seen by the nearly uniform regions of high probability as the analysis variables
are changed. A slight decrease in the cellular instability length is found as Ûωth

H2O
increases; this is expected as the extinction points simply translate along the fixed
isosurface as shown in Fig. B.3b. However, the decrease in cell arc length is small
(roughly 5%) over the investigated range of Ûωth

H2O.

The extinction zone length sensitivity analyses (Fig. B.6) show a different set of
trends. For analyses on both Y iso

H2O and Ûωth
H2O, there are two distinct peak values of

the PDF of the extinction zone length. These peaks correspond to two different
extinction regions along the flame surface; Figure B.8 indicates the smaller (le/lF <

1) and larger (le/lF > 1) extinction zones which manifest in the PDFs.

These two extinction zone types are quite sensitive to both Y iso
H2O and Ûωth

H2O. As the
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Figure B.7: YH2O contour plots showing the time history of a larger lobe breaking
down into smaller cellular instabilities.

Figure B.8: Flame isosurface (showing only burning regions) with two extinction
zones visible: one at le/lF < 1 and one at le/lF > 1.

isosurface value increases, the two extinction zone sizes become larger. This can be
seen most easily for the extinction zones larger than lF , shown in Fig. B.9. The large
extinction zone moves toward the burnt mixture asY iso

H2O increases and the extinction
locations on the isosurface diverge.
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Figure B.9: Fixed Ûωth,nom
H2O for a range of Y iso

H2O, showing the variation in extinction
length scales between two cellular structures.

As the extinction threshold changes, the extinction length scales also change ap-
preciably. For low values of Ûωth

H2O, the extinction length scales diverge from one
another. For the smaller extinction length scales, present in the cusps at the leading
edge of large lobe formations, the increase of Ûωth

H2O cause the two extinction locations
on the isosurface to diverge away from the negative curvature cusp (Fig. B.10). For
the larger extinction lengths, appearing in the regions between large lobe structures
(e.g., Fig. B.3b), an increasing extinction threshold results in the extinction points
on the isosurface to advance toward the unburnt mixture. Often, this results in the
extinction points converging, as shown in Fig. B.3b.

B.2.2 Sensitivity analysis of T iso and κth

Similar to the discussion of the length scale sensitivities due to Y iso
H2O and Ûωth

H2O,
a sensitivity analysis is also performed using temperature isosurfaces, T iso, and
curvature thresholds, κth, to define the cellular structures.

First, Fig. B.11 shows the sensitivity of the cellular length scale as T iso and κth are
varied. Figure B.11a shows the larger cellular instability lengths are very sensitive
to the chosen value ofT iso, increasing by 50% over the chosen range ofT iso. Further,
the probability densities of cell lengths become more spread as κth decreases. The
distribution of smaller cell lengths remain relatively uniform over T iso.

Next, Fig. B.12 shows sensitivity analyses of the extinction length scales as T iso and
κth change. Figure B.12a shows only one peak extinction length which increases
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Figure B.10: Fixed Y iso
H2O for a range of Ûωth

H2O, showing the movement of extinction
points (red crosses and green circles) near a highly-negative curvature cusp.

(a) Vary T iso (b) Vary κth

Figure B.11: Cellular instability length sensitivity maps, varying (a) T iso and (b)
κth. Colors indicate values of the PDF.
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(a) Vary T iso (b) Vary κth

Figure B.12: Extinction zone length sensitivity maps, varying (a) tiso and (b) κth.
Colors indicate values of the PDF.

in size as T iso increases (yet staying near le/lF = 1). This is contrary to the two
peak extinction lengths found using Y iso

H2O and Ûωth
H2O. Similarly, only one peak

extinction length scale is found while varying κth. However, the extinction length
scale decreases by nearly a factor of three while decreasing κth.

B.2.3 Sensitivity analysis conclusions
A number of conclusions can be drawn from the preceding sensitivity analyses.
First, there is little variation of the cellular instability length scale for a wide range
ofY iso

H2O and Ûωth
H2O. Indeed, the cell arc length scales atY

iso,nom
H2O and Ûωiso,nom

H2O are nearly
uniform with respect to small deviations of these values.

The extinction length scales show some dependence on the chosen isosurface and
extinction threshold values. The sensitivity analysis on Y iso

H2O and Ûωth
H2O shows two

distinct extinction length scales (le < lF and le > lF). The values of le generally
increase as Y iso

H2O increases (except for le < lF at low values of Y iso
H2O). As the

extinction threshold Ûωth
H2O increases, two separate trends are found; for small le

(extinction zones existing in the large lobes), the extinction length scale increases.
This phenomenon is seen in Fig. B.10 as the extinction points along the flame
surface diverge at the negatively-curved cusps of these cellular structures. For large
le (found deep in the domain, between large structures), an increasing value of
Ûωth

H2O is indicative of unburnt reactants becoming isolated pockets; the increasing
extinction threshold moves the extinction points toward the unburnt mixture, where
the pocket begins to close (shown in Fig. B.3b). The analyses using T iso and κth

indicate only one extinction length scale, le < lF , which grows as both sensitivity
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values increase.

It appears appropriate to consider the nominal values of Y iso
H2O and Ûωth

H2O, as the
cellular instability length scale is insensitive to changes around these values, and
the extinction length scales remain of the order of the flame thickness. The cellular
instability and extinction length scales are quite sensitive to the selection of T iso and
κth. For these reasons, T iso and κth detection mechanisms will not be considered
further.

While this analysis provides only a cursory investigation of the length scales in
an unsteady two-dimensional freely propagating flame, the methodology to extract
characteristic length scales has been demonstrated to yield quantitative data nec-
essary for future work. The methodology presented here indicates that sensitivity
analyses of the controlling variables identifies appropriate analysis parameters,Y iso

H2O
and Ûωth

H2O, which have direct relations to flame structure statistics. The identified
extinction zone length scales are often smaller than the laminar flame thickness, and
thus future simulations using LES should consider the effects of flame extinction in
the sub-grid scale model formulation.
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