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Abstract

Shear rupture nucleation and dynamic propagation is a challenging, non-

linear, highly interactive process with important practical implications. Here

we focus on two aspects of this problem: propagation speeds and shock front

radiation from the dynamic crack tip as well as nucleation of dynamic rupture

due to fluid injection.

Spontaneously propagating cracks in solids emit pressure and shear waves

and are, in part, driven by energy transfer due to them. When a shear crack

propagates faster than the shear wave speed of the material, the coalescence of

the shear wavelets emitted by the near-crack-tip region forms a shock front that

significantly concentrates particle motion. The equivalent scenario involving

a pressure shock front should not be possible, since cracks should not be able

to exceed the pressure wave speed, at least in an isotropic linear-elastic solid.

Here we present full-field experimental evidence of dynamic shear cracks in

viscoelastic polymers that result in the formation of a pressure shock front, in

addition to the shear one. In that sense, the crack appears to be supersonic. The
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apparent violation of classic theories is explained by the strain-rate-dependent

material behavior of polymers: the increased wave speeds within the highly-

strained region around the crack tip allow for supersonic crack propagation with

respect to the (lower) wave speeds at short distances away from the interface,

resulting in the formation of the pressure shock front. The crack speed remains

below the pressure wave speed prevailing locally, about its tip, in agreement with

basic physics and energy considerations of linear-elastic theories.

We find that the shock fronts emitted by the shear cracks in the viscoelastic

materials are curved and propose a novel method to quantify the viscoelastic

wave speeds of the solids in the dynamic range of strain rates based on the

curvature. Only kinematic relationships are used in the method, without the

need for the constitutive relationship of the material. Measuring or inferring

the material properties at elevated strain rates in viscoelastic solids is a difficult

task, because of practical limitations of obtaining accurate measurements in that

regime. Under the quasi-elastic solid approximation, in which the strain-rate

history is neglected, we use the pressure-wave speed measurements to infer the

associated value of the Young’s modulus, estimated by assuming a constant value

of the Poisson’s ratio. We complement these results with the characterization of

the Young’s modulus at lower strain rates via canonical compressive tests. Our

results not only confirm previous findings that the Young’s modulus dependence

on the strain rate in PMMA is significant but also demonstrate that its variation is

more pronounced in the dynamic strain-rate range, with important consequences

for the design of structures employing viscoelastic materials that are required to

withstand elevated strain rates.

The second part of the study concentrates on the nucleation of shear dynamic

rupture due to fluid injection or, more broadly, on the interaction of frictional

faulting with fluids. Fluid overpressure is recognized to play a fundamental role
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in promoting fault motion. A large number of observations has shed light on the

interplay between fluids and faulting, both in natural events and in earth-quakes

induced by human activities, such as wastewater disposal associated with oil and

gas extraction. Fluids can induce a variety of earthquake source behaviors ranging

from unstable, dynamic motions to stable, quasi-static ones, which a number of

field studies suggests that can coexist on the same fault areas at different times,

depending on the local conditions. In fact, a higher pore pres-sure plays the dual

role of reducing the frictional strength of the fault and of increasing the nucleation

size, e.g., the critical length for a shear crack to transition from quasi-static to

dynamic motions. However, due to the complexity of the frictional problem at the

fault interface, the understanding of which of these two effects prevails remains

elusive. The assumption of a critical nucleation length represents a powerful, yet

simplified concept, which currently does not include the dependence on the rate

of the pore pressure increase.

Here, we explore the effect of the rate of the pore pressure increase on the

rupture nucleation. We find that elevated injection rates induce triggering of the

rupture at lower pressure values and minimal volumes of the injected fluid, if

compared to slow injection rates. For the slow injection rates, we experimentally

observe a much larger portion of interface wetted by the fluid and a phase of

accelerated slip prior to the dynamic event (quasi-dynamic nucleation process).

In some cases, we record much smaller foreshock-like events at the injection

site. These findings suggest the presence of a prominent quasi-static nucleation

process over the interface. In cases of rapid pore pressure increase, the nucleation

process is much shorter in time and much more compact in space, being highly

concentrated around the injection location. The dynamic events, once initiated,

are qualitatively similar across different injection rates, but quantitatively different,

with the slow-injection ones experiencing higher stress drops and higher slips,

perhaps due to the effect of fluids on the friction properties.
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These findings suggest the need to develop nucleation size estimates that include

the rate of the pore pressure increase and motivate further investigation of how

friction properties depend on the presence of fluids. The details of the obtained

experimental findings, once analyzed through numerical modeling, will place

important constrains on the forms of the acceptable friction laws, including the

effects of pore fluid pressure and its rate of change.
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specimen’s surface, ultra-high-speed photography, and DIC algo-

rithms. The inset exhibits the distribution of interface-parallel

particle velocity, Ûu1, 58 µs after nucleation. The white lines high-

light the peaks associated to the pressure and shear shock fronts,

and the white circles are representative of how the shear shock

front is generated by the coalescence of the shear wavelets. An

analogous construction – not shown here – applies to the pressure

cone. (b) The profile of the particle velocity, Ûu1, along the violet

line (at a distance x2 = −27.5 mm from the interface), plotted at

time intervals of 5 µs, exhibits two recognizable peaks associated

to the pressure and shear Mach fronts. (c) The rupture speed

versus position along the interface, x1, is computed by tracking

the rupture tip in the temporal sequence of velocity maps. The

comparison with the pressure wave speed in the bulk material,

where low strain rates are attained (Figs. 2.3 and 2.6), confirms
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p (see text). At the
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p . . 32



xix
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The values of the pressure wave speeds have been computed

by converting the elastic moduli versus strain-rate data acquired

from the literature (Fig. 2.6). Linear-elastic wave relations have

been adopted, assuming a density ρ = 1180 kg/m3 (measured)

and a constant Poisson’s ratio ν = 0.35 (Mulliken and Boyce,

2006; Richeton, Ahzi, Vecchio, Jiang, and Makradi, 2007). The

blue triangles indicate compressive tests with the exception of

the diamonds, which indicate tensile tests. The cyan hexagon

represents the value of cp measured from the inclination angle, as

shown in the inset. The horizontal black dashed line represents

the rupture speed Vr = 2.57 km/s, computed by tracking the

rupture tip in the temporal sequence of full-field images (Fig. 2.1,

see section 2.4). The upper inset exhibits a snapshot of the

equivalent strain-rate field, | Ûε |, at 58 µs after triggering. The

strain-rate measurements obtained from the full-field images

(insets) are reported on the cp vs. | Ûε | plot for two locations: at the
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The green and purple vertical dashed lines refer to the equivalent
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techniques. Two nominally identical tests are conducted using

either the DIC technique or the strain gages. (a) Back-side view of

the PMMA sample, where an array of three strain gages has been

applied along the interface. These strain stations are positioned

approximately 40 mm away from each other, with the first one

40 mm away from the wire’s location. The field-of-view window

of the speckled pattern is applied on the front side of the specimen

and is indicated by a dashed rectangle (19 × 12 mm2). (b) Time

history of the direct strain in the direction parallel to the interface

−ε11, measured at the three locations shown in Fig. 2.4a. The color

of each strain signal matches that of the corresponding locations

in Fig. 2.4a. The transit of the rupture is associated with the

initial peaks, where positive sign of −ε11 indicates compression,

in accordance with the right-lateral motion of the rupture. The

rupture arrival time has been computed considering a threshold

of |ε11, th | = 10−3 (horizontal dashed line). (c) Rupture speed

computed using the full-field velocity maps obtained with DIC

over the small field of view indicated in Fig. 2.4a. The pressure (red

lines) and shear (blue lines) wave speeds are reported, where the

LSR and HSR conditions correspond to the solid and dashed lines,

respectively. This plot confirms that the rupture is propagating

supersonically with respect to the low-strain-rate pressure-wave

speed of PMMA. The black horizontal dashed line represents

the rupture speed averaged between the three strain-measurement

stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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2.5 Snapshots of full-field images showing the progression of the

supersonic rupture. Left column: strain component in the direction

parallel to the interface, ε11. Right column: strain rate magnitude

| Ûε |. The collection of images is from the large field of view

(128 × 80 mm2) and, as the rupture propagates from left to right

in the positive x1-direction, each image corresponds to a snapshot

from 18 to 68 µs, every 10 µs. In analogy with Fig. 2.2, a double

pair of shock fronts is clearly discernible, as they become well

developed in the later frames. . . . . . . . . . . . . . . . . . . . 44
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2.6 Strain-rate dependence of the pressure wave speed in PMMA.

The values of the pressure wave speeds have been computed

by converting the elastic moduli versus strain-rate data acquired

from the literature reported in the legend. Linear-elastic wave

relations have been adopted, assuming a density ρ = 1180 kg/m3

(measured) and a constant Poisson’s ratio ν = 0.35 (Mulliken

and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and Makradi,

2007). All symbols indicate compressive tests with the exception

of the diamonds, which indicate tensile tests. The cyan hexagon

represents the value of cp measured from the inclination angle

(Fig. 2.3, inset). The horizontal black dashed line represents the

rupture speed Vr = 2.57 km/s, computed from the arrival times

(Fig. 2.1, see section 2.4). The upper inset exhibits a snapshot

of the equivalent strain-rate field, | Ûε |, 58 µs after triggering.

The strain-rate measurements obtained from the full-field images

(insets) are reported on the cp vs. | Ûε | plot for two locations: at

the crack tip (green star in upper inset), and after the shock fronts

have transitioned (x1 = 42 mm, x2 = −29 mm) (purple star in the

upper inset). The green and purple vertical dashed lines refer to

the equivalent strain-rate levels for these near-field and far-field

measurements, and the corresponding values of the pressure wave

speeds are indicated by the horizontal green and purple dashed

lines. The strain-rate level at the crack tip is obtained from a

similar test performed on a sample at an angle α = 29◦ (rather

than 30◦) under the same nominal conditions, yet by focusing on a

smaller field of view, which enables a higher strain-rate resolution

(lower inset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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2.7 Strain-rate dependence of shear wave speed in PMMA. The shear

wave speed values have been computed by converting the elastic

moduli versus strain-rate experimental data from the literature

reported in the legend, using the plane-strain linear-elastic wave

relations and assuming a density ρ = 1180 kg/m3 (measured) and

a constant Poisson’s ratio ν = 0.35 (Mulliken and Boyce, 2006;

Richeton, Ahzi, Vecchio, Jiang, and Makradi, 2007). All symbols

indicate compressive tests with the exception of the diamonds,

which indicate tensile tests. The cyan hexagon represents the

value of cp measured from the inclination angle (Fig. 2.3, inset).

The green and purple vertical dashed-lines refer to the equivalent

strain-rate levels from the corresponding the green and purple

stars presented in Figs. 2.3 and 2.6. The resulting values of the

shear wave speeds are indicated by the horizontal green and purple

dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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2.8 Strain dependence of elastic modulus in PMMA. (a) In a quasi-

static test on PMMA, | Ûε | ∼ 10−4 s−1, the stress shows a linear

dependence with strain, up to stresses of 25 MPa and strains of

7 × 10−3. (b) The elastic modulus, computed as the local tangent

of the stress-strain curve, does not show the presence of stiffening.

(c) The full-field equivalent strain |ε | shows that our propagating

dynamic cracks does not produce elevated levels of strain (smaller

than 3.2× 10−3) while inducing elevated levels of strain rate at the

crack tip (well above 103 s−1, Fig. 2.3 inset below), which would

fail to activate hyperelastic effects, in favor of viscoelastic ones.

(d) Setup employed to produce the results presented in a and b.

Three strain gages equally spaced around the circumference (blue

line) of a PMMA cylinder (from the same manufacturer of our

samples) measure the vertical component of strain as the load is

applied vertically (yellow arrows). . . . . . . . . . . . . . . . . . 49
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3.1 Laboratory setup and the captured supersonic shear ruptures. (a)

The dynamic rupture is produced on a sample interface (red-

shaded area) loaded in compression and shear by a compressive

vertical load (green arrows). The rupture is triggered by the sudden

disintegration of a Ni-Cr wire filament and subsequently propa-

gates spontaneously over the interface. Its dynamics is captured

using a speckle pattern applied over a portion of the specimen’s

surface, ultrahigh speed photography, and DIC algorithms. The

inset exhibits the full-field strain-rate magnitude, | Ûε |, 58 µs after

nucleation. The white lines highlight the peaks associated to

the pressure and shear Mach cones, and the white circles are

representative of how the shear shock front is generated by the

coalescence of the shear wavelets. An analogous construction –

not shown here – applies to the pressure cone. (b) The profile of

the strain-rate magnitude, | Ûε |, along the violet line (at a distance

x2 = −16.5 mm from the interface), plotted at time intervals of

6 µs, exhibits two recognizable peaks associated to the pressure

and shear shock fronts. (c) The rupture speed versus position

along the interface, x1, is computed by tracking the rupture tip in

the temporal sequence of velocity maps. The comparison with the

pressure wave speed in the bulk material, where low strain rates are

attained (see chapter 2), confirms the supersonic nature of the rup-

ture, Vr > cLSR
p . At the crack tip, where considerably higher strain

rates develop, the rupture is locally intersonic, cHSR
s < Vr < cHSR

p . 53
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3.2 Snapshot of the shear strain-rate field (top and center left), Ûε12,

and volumetric strain-rate one (to and center right), tr( Ûε), 51 µs

after the rupture initiation. The curved shear Mach cone (a) and

bow pressure shock front (b) are traced as the locus of maxima

(blue line) of the shear strain-rate field (a and c) and volumetric

strain-rate field (b and d), respectively. (d) The volumetric strain-

rate field enhances the presence of the pressure shock front, while

’hiding’ that of the shear Mach cone. (c) The shear strain-rate

field does the opposite, by showing a healthy shear shock front

and a less developed pressure one. In (a) and (b), the red line

superimposed to the blue one is the result of a moving average

smoothing procedure, which is employed in order to eliminate

spurious effects. (e and f) 3D snapshots of strain-rate magnitude

allow the correlation of each location of the shock fronts (red

lines) with a corresponding value of strain rate (Fig. 3.3 and 3.5a). 55

3.3 Mach cone angle and strain-rate magnitude variation along the

shear (a) and pressure (d) Mach cones obtained from Fig.3.2a and

b, 51 µs after the rupture initiation. The black portion corresponds

to locations along the Mach cone in proximity to the rupture tip,

which gradually turns green while moving away from it. (b) The

shear Mach cone angle, computed by differentiating the shear

Mach cone with respect to x2, is higher in proximity to the crack

tip (≈ 34◦), and gradually reduces moving away from it (≈ 30◦).

Similarly, (e) the pressure shock front angle approaches 90◦ close

to the rupture tip and decreases to about 65◦ away from it. (c) The

strain-rate magnitude along the shear Mach cone varies between

2× 102 and 4× 102 s−1, while (f) the one along the pressure shock

front varies between 1.5 × 102 and 1 × 103 s−1. . . . . . . . . . . 56
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3.4 Shock fronts profiles and local inclination angles. A shock front

(thick darker blue and purple lines) is formed as the coalescence

of multiple wavelets (thin lighter blue and purple lines) emanated

by the rupture tip at several time instances, as it propagates along

the interface. As a shear wavelet (thin lighter blue lines) travels

through the viscoelastic solid, it encounters regions at different

levels of strain-rates, loses circularity and, consequently, the locus

of points of tangency with the Mach cone assumes a curvature

(black dashed lines). Two consecutive wavelets are emanated at a

distance dx1 = Vr(t) dt. Due to their proximity with each other,

they follow the same strain-rate history during their propagation.

The additional distance traveled by the first of the two is cs(t) dt

(inset), while Vr(t) dt is the distance traveled by the rupture tip

before emitting the second wavelet into existence. The shear

Mach cone local inclination angle βs is computed by using the

general formula βs = sin−1(cs/Vr), provided that the local values

of cs and Vr are considered. In addition, the pressure shock front

forms ahead of the shear one, as a testimony that the rupture tip

exceeds the pressure wave speed of the undisturbed, bulk material

(Vr > cLSR
p ) (see chapter 2). The small field of view (Fig. 3.5,

insets) highlights the presence of an offset – or “process zone”

– between the two shock fronts at the interface (x2 = 0), which

is related to the presence of a high strain-rate region ahead of

the rupture tip. The normality (βp → 90◦) of pressure shock

front at the interface (x2 = 0) is an indication of the high levels

of strain rates and the generation of a subsonic region (Mp < 1)

between the front and the rupture tips. Moving away from the

interface (x2 , 0), the shock front curves and loses strength

until, at some point, the strain-rate level behind it is not high

enough for the pressure wavelets to outrun the rupture tip, which

is thus supersonic (Mp > 1) with respect of that region. The

x1-t-diagram – at x2 = 0 – qualitatively shows the coalescence of

pressure characteristics (which represent the local position and

time of the wavelets) into the shock front ahead of the rupture tip,

traveling at the same speed as the rupture tip (bottom right). . . . 61
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3.5 Strain-rate dependence of the shock fronts inclination angles (a)

and the local pressure and shear wave speeds (b). (a) The shock

inclination angles are calculated by differentiating the shock fronts

(Fig. 3.2, red lines) with respect to the x2-direction (Fig. 3.3b and

e) and at each coordinate along the shock front the corresponding

strain-rate values are obtained (Fig. 3.3c and f). From the values

of the angles, (b) the shear and pressure wave speeds are computed

using equations 3.11 and 3.12. Both profiles increase with strain

rate and the pressure one appears to saturate for higher strain rate,

corresponding to the shock front approaching the normal condition

(βp → 90◦). The black dots, corresponding to points along the

Mach cone in proximity to the rupture tip, gradually turn to green

moving away from it, analogously to Figure 3.3. The two insets

show the shear (top) and pressure (bottom) fields acquired via the

DIC technique applied to a small field-of-view (19 × 12 mm2). A

thick white line is superimposed to the respective shock fronts

to help with their visualization. The three traces represent the

volumetric (black) and the shear strain rate (violet) along the

interface. The location of their maxima has been included in order

to highlight the gap between them, corresponding to the process

zone (Fig. 3.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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3.6 Young’s modulus strain-rate dependence in PMMA. The Young’s

modulus in the dynamic region of strain rates has been obtained

from the knowledge of the pressure wave speed (Fig. 3.5b) by using

the linear-elastic wave relations in plane-strain conditions (see

equation 3.14), assuming a density ρ = 1180 kg/m3 (measured)

and a constant Poisson’s ratio of 0.35 (Davies and Hunter, 1963;

Mulliken and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and

Makradi, 2007). The values in the low strain-rate range (yellow

triangles), between 10−5 and 10−2 s−1, have been obtained by

performing a compression test on a PMMA cylinder and simul-

taneously measuring the vertical and hoop strains (see chapter 2,

Fig. 2.8). These results are compared to those derived from the

literature on PMMA, where the diamonds indicate tensile tests,

the hexagons indicate shear tests, and all other symbols indicate

compressive tests. The vertical solid black line separates the re-

gion of dynamic strain rates, where measurements are performed

via SHPB experiments, from the one where servo-hydraulic com-

pressive tests are capable of reaching the required strain-rate levels

of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Schematics of the shear and pressure shock fronts in different

materials and rupture regimes. . . . . . . . . . . . . . . . . . . . 79
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4.1 Laboratory setup featuring a fluid-injection circuit capable of

delivering pressurized fluid to the specimen’s fault and trigger

laboratory-scale earthquakes. The sample has been cut into two

identical halves joined together to form an interface that mimics

a crustal fault pre-stressed in compression and shear. This setup

possesses the capability to control the rate of injection, the fluid

pres-sure and its temporal rate of increase. The diagnostics

consists of a high-speed camera, laser velocimeters (only one is

used in this study), strain gages (not shown in the Figure), and

two cameras, one for measurements of creep (not shown in the

Figure), and one for tracking the fluid front as it propagates over

the interface prior the dynamic rupture nucleation (not shown in

the Figure). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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4.2 Specimen setup front and back side views. A 250×200×12.5-mm3

PMMA sample is separated into two halves by an oblique interface

(green-shaded area) at an angle α = 29◦, and is preloaded by a

vertical component P = 15 MPa (yellow arrows). A thin duct of

1-mm diameter enables the injection of pressurized fluid directly

onto the interface. (a) On the front side, a pattern of random

black dots is painted over a flat white background in a region of

50×40 mm2 in order to allow displacement measurements through

the DIC technique. The temporal derivative of the displacement

fields produces velocity fields, of which the horizontal component

Ûu1 is shown in the inset during a foreshock event (Fig. 4.14). (b)

On the back side, two strain rosettes are glued just below the

interface and 20 mm from each other, which are each capable of

measuring three strain tensorial components, separated by 45◦

angles. These components can be converted into the strains along

the fault ε11, normal to it ε22, and the shear one ε12. . . . . . . . 86

4.3 Drawing of the bottom half of the specimen, divided by a cut at an

angle α = 0◦. Over the interface a constellation of holes 0.5-mm

in both diameter and depth allows the measurement of the pore

pressure as the water fills them and the local pressure is increased. 88
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4.4 Fluid-injection setup. (a) Close-up view of the interface of the

specimen about the injection location, on the back side where the

strain gages are placed (Fig. 4.2b). The laser vibrometer signal is

used to detect dynamic motion in the x1-direction associated with

the laboratory-scale seismic event and trigger the acquisition of the

strain gage signals at high-bandwidth (1MHz). (b) Thewater, after

being pressurized by the pump, crosses a series of components:

a high-pressure regulator for manual pressure modulation in the

range of few MPa over several minutes to few MPa per second; a

pressure transducer for pressure readings upstream of the solenoid

valve; a solenoid valve activated by a switch, allowing sharp

pressure ramp-up profiles in the order of few MPa per hundred

milliseconds; and another pressure transducer downstream with

bandwidth capability of 3 kHz. This second transducers measures

the fluid pressure just upstream of the duct prior to its delivery to

the interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Pressure ramp-up profiles. Two protocols are employed to deliver

pressurized fluid onto the interface of the specimen: (left) a slow

pressure ramp-up over 27 minutes; and (right) a rapid one over

few hundred of milliseconds, achieved via the quick opening of

the solenoid valve. For the sake of clarity, the color code of the

pressure data mimics that of the labels of the pressure transducers

in Figure 4.4b: purple for upstream of the valve and blue for

downstream. The red star indicates the triggering of the dynamic

rupture recorded by the laser velocimeter (Fig. 4.4a), which is

set at the origin of our temporal scale. The green dashed line

represents the resolved normal stress σn = P cos2(α) the fluid

pressure is competing with. . . . . . . . . . . . . . . . . . . . . 94
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4.6 Pressuremeasurement from the Fujifilm tactile pressure-indicating

sensor film. The sensor changes color as it experiences pressures

in the range between 2.4 and 9.7 MPa. The specimen has been

loaded to P = 15 cos2(29◦) = 11.5 MPa, which chromatically

saturates the pressure film, except in correspondence to the holes

(darker dots). The pore-pressure time history at the injection

duct mimics that of the gradual ramp up (Fig. 4.5a), while the

final distribution over the interface, corresponding to the same

conditions the dynamic rupture occurred (at 8.7 MPa), is measured

by the holes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Pressure measurement corresponding to the 0.5-mm wide holes

using the Fujifilm tactile pressure-indicating sensor film, derived

from Figure 4.6. The pore pressure rapidly decays away from the

injection duct due to the ambient pressure along the boundaries

of the sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.8 Fluid-pressure distribution over the interface at rupture initiation.

The pressure distribution is estimated by numerically solving

equation 4.3, where the pressure ramp-up profiles from Figure 4.5

are imposed at the node corresponding to the injection location,

for the slow case (left) and the rapid one (right), respectively. The

rapid decay of pressure away from the injection channel is due to

the ambient-pressure boundary condition along the lateral sides

of the interface. The bottom panels represent a slice through

the plane x3 = 0 and highlight the substantial different pressure

distribution scenario under which the dynamic rupture nucleates. 99
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4.9 Slip rate temporal history of a loaded specimen. The blue curve

represents the data obtained from quasi-static DIC measurements

averaged and filtered, while the red curve is an exponential fit-

ting, in compliance to the rate-and-state friction law. After the

application of an external load of P = 15 MPa, the specimen is

left untouched for the entire duration of the test. The slip rate

spontaneously evolves from 3 × 10−10 m/s to 10−11 m/s. These

values, despite being very small, prove that the interface is never

fully locked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.10 Fluid diffusion on the interface driven by pressure gradient. (left)

Snapshot of the back side of the specimen (Fig. 4.2b) during a

slow pressure ramp-up (Fig. 4.5a). For sake of clarity, we present

a snapshot from another test, where no pattern for DIC was applied

over the interface and the strain gages have been placed on the

front side of the specimen. Instead, two 1 × 1-mm2 squares of

retro-reflective tape are positioned corresponding to the strain

gages on the back side. The wet portion of the interface has been

enhanced and enclosed into blue lines for better visibility. (right)

Top view of the interface for the case corresponding to the test

exhibited in Figure 4.5a. The wet portion (enclosed by the blue

lines) is shown at several temporal instances, indicated by the

green label on the right-hand side. Its average length is indicated

in millimeters just above the corresponding case, and, at rupture

initiation (t = 0), amounts to 74 mm. . . . . . . . . . . . . . . . 106
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4.11 Stress time history during a rapid pressure ramp-up protocol.

The shear (top row), fault-normal (center row) and fault-parallel

(bottom row) stresses are shown over three time scales: minutes

(left column), milliseconds (center column), and microseconds

(right column), where the temporal origin coincides with the

rupture initiation. Prior to the valve opening (left column) no fluid

has been delivered to the interface yet, and strains and stresses

accumulate as a consequence of the viscoelastic relaxation of the

bulk polymer under load control mode. After the valve opening,

in the few hundreds of milliseconds prior to the rupture initiation,

the stress redistribution is related to the different slip behavior of

patches with respect to the surrounding ones. After the rupture

is triggered (right column), a laboratory-scale seismic event is

recorded where left-lateral propagation arises. . . . . . . . . . . . 108
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4.12 Stress time history during a slow pressure ramp-up protocol. The

shear (top row), fault-normal (center row), and fault-parallel (bot-

tom row) stresses are shown over three time scales: minutes (left

column), milliseconds (center column), and microseconds (right

column), where the temporal origin coincides with the rupture

initiation. The delivery of pressurized fluid begins approximately

27 minutes prior to the rupture initiation (left column), promoting

slow slip. One must remember that strains and stresses partially

accumulate as a consequence of the viscoelastic relaxation of the

bulk polymer under load control mode. In the few hundreds of

milliseconds prior to the rupture initiation, the stress redistribution

is related to the different slip behavior of patches with respect to the

surrounding ones. After the rupture is triggered (right column),

a laboratory-scale seismic event is recorded where left-lateral

propagation arises. . . . . . . . . . . . . . . . . . . . . . . . . . 112
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4.13 Stress time history during a slow pressure ramp-up protocol. The

shear (top row), fault-normal (center row), and fault-parallel (bot-

tom row) stresses are shown over three time scales: minutes (left

column), milliseconds (center column), and microseconds (right

column), where the temporal origin coincides with the rupture

initiation. The delivery of pressurized fluid begins approximately

28 minutes prior to the rupture initiation (left column), promoting

slow slip and few mini-foreshocks, one of which propagates slip

all the way to the surface where the SG-0 station is located (inset

in the top left panel). One must remember that strains and stresses

partially accumulate as a consequence of the viscoelastic relax-

ation of the bulk polymer under load control mode. In the few

hundreds of milliseconds prior to the rupture initiation, the stress

redistribution is related to the different slip behavior of patches

with respect to the surrounding ones. After the rupture is triggered

(right column), a laboratory-scale seismic event is recorded where

left-lateral propagation arises. . . . . . . . . . . . . . . . . . . . 116
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4.14 DIC full-field measurements after the foreshock event observed

in Figure 4.13 (top left). The camera acquires pictures at a rate

of one frame every 30 seconds. (left) Cumulative fault-parallel

displacement u1. The upper half creeps leftwards (blue), while

the bottom one creeps rightwards (red). At the center portion

of the interface 5 − 6 µm of slip are cumulatively accumulated,

decaying to less than 1 µm towards the side of the field of view.

(right) Fault-parallel velocity Ûu1, at the net of rigid body motion,

obtained by applying a first-order forward finite difference scheme

on the frames just before and after the foreshock event. The

velocity has been rescaled by a factor of 30/0.042, based on

the knowledge of the temporal duration of the event from the

strain gage measurement (Figure 4.13, top left, inset). During the

foreshock event, the motion is concentrated at the center of the

interface and rapidly decays away from it. The color-saturated

shapes concentrated just below the center portion of the interface

are water droplets escaping from the interface and causing the

DIC algorithm to decorrelate (Sutton, Orteu, and Schreier, 2009). 120
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4.15 Slip (left) and slip-rate (right) temporal histories measured via

DIC applied to the experiment presented in Figure 4.13. (left)

The red and green lines indicate the slip close to the boundary

of the field of view, respectively, along the interface, while the

blue one corresponds to the center portion, for which the values

underneath the interface have been taken below the water droplets

(Fig. 4.14). In order to counteract the random noise and be able

to measure such small signals, the values at each of the three

locations have been averaged over 11 points (5 per side) along

the x1-direction, both above and below the interface. Overall the

interface accumulates less than a micron of slip during the fluid

injection phase, with the exception of the center portion of it,

which, at about −8.2 minutes, experiences the foreshock event

accumulating 4.8 µm of slip over 42 ms. (right) The slip rate is

computed from the slip using a first order forward finite difference

scheme and averages to 10−9 m/s. Since the temporal resolution of

the camera is of one frame every 30 s, it cannot resolve dynamic

events such as the foreshock. The computed slip-rate peak value

of 1.6×10−7 m/s therefore represents a lower bound. By rescaling

this value by the factor of 30/0.042, where 42 ms is the duration

of the foreshock event measured by the SG-0 station (Fig. 4.13,

top left, inset), the value of 1.1 × 10−4 m/s is obtained. . . . . . . 121
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Introduction

This thesis is divided in two sub-categories. The first one involves a

material investigation of shear rupture behavior within homogeneous viscoelastic

solids; the second one focuses on the earthquake source physics in relation to

fluid-injection practices.

The limiting speed of spontaneous crack propagation is a fundamental

problem that has captivated the interest of the scientific community for several

decades due to its implications across multiple scientific and engineering dis-

ciplines (Abraham and Gao, 2000; Abraham, Walkup, et al., 2002; Buehler,

Abraham, and Gao, 2003; Fineberg and Bouchbinder, 2015; Freund, 1998;

Marder, 2006; Needleman, 1999; Rice, 2001; Rosakis, Xia, et al., 2007; Rosakis,

2002; Xia, Rosakis, and Kanamori, 2004). In particular, the study of shear cracks

propagating along frictional interfaces is relevant to earthquake physics (Bouchon

and Vallée, 2003; Dunham, Favreau, and Carlson, 2003; Ellsworth et al., 2004).

Fracture mechanics theories have obtained important insights into the problem

by considering energy balance in linear-elastic media with either singular or
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cohesive-zone crack tips that consume energy. Under those assumptions, the lim-

iting speed for in-plane shear cracks is indeed the pressure wave speed cp, while

the limiting speeds for other crack modes are even lower – the Rayleigh-wave

speed cR for opening cracks and the shear-wave speed cs for anti-plane shear

cracks (Freund, 1998; Needleman, 1999; Rice, 2001; Rosakis, Xia, et al., 2007;

Rosakis, 2002). In an interesting side story, these energy arguments identified

a forbidden speed zone between cR and cs for in-plane shear cracks (Fineberg

and Bouchbinder, 2015; Freund, 1998; Needleman, 1999; Rice, 2001; Rosakis,

Xia, et al., 2007; Rosakis, 2002), prompting intensive research on whether such

cracks can propagate intersonically; such spontaneous intersonic propagation

has been confirmed both experimentally (Fineberg and Bouchbinder, 2015;

Rosakis, Xia, et al., 2007; Rosakis, 2002; Xia, Rosakis, and Kanamori, 2004)

and by interpretation of seismic and other observations from shallow crustal

earthquakes (Bouchon and Vallée, 2003; Dunham, Favreau, and Carlson, 2003;

Ellsworth et al., 2004).

More recent numerical studies have shown the possibility to “break” these

barriers and attain super-Rayleigh opening-crack propagation or supersonic

shear-crack propagation (Abraham and Gao, 2000; Abraham, Walkup, et al.,

2002; Buehler, Abraham, and Gao, 2003), using hyperelastic constitutive models

in atomistic simulations, where the energy flow into the crack tip is enhanced

by the hyperelastic stiffening. Other theoretical and numerical predictions

achieved supershear antiplane-crack propagation (Guo, Yang, and Huang, 2003;

Guozden, Jagla, and Marder, 2010). In all these cases, the crack propagation

speeds are compared to the “nominal” values of the wave speeds based on the

linear-elastic properties of the materials for infinitesimal and slow deformation.

Similarly, dislocations have also been predicted to exceed speed barriers previously

though as energetically unsurpassable (Gumbsch and Gao, 1999; Rosakis, 2001;

Weertman, 1967). To the best of our knowledge, the only experimental evidence
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of spontaneously surpassing these barriers involve intersonic opening-cracks

propagation in rubber (Petersan et al., 2004), a hyperelastic material, and

intersonic edge dislocations in plasma crystals (Nosenko, Zhdanov, and Morfill,

2007).

In Chapter 2, our experiments on Poly(Methyl Meth-Acrylate) (PMMA)

demonstrate the possibility for the crack tip to spontaneously exceed the pressure

wave speed with consequent formation of a pressure shock front, in addition to

the shear one. When a source (i.e. body) travels through a medium at a speed in

excess of that of the wavelets transferring energy among the particles composing

the medium, these wavelets coalesce into a sharp front, called shock. Shear

cracks have been documented to spontaneously exceed the shear wave speed of

the bulk material with consequent formation of a shear shock front (Mello, Bhat,

and Rosakis, 2016; Mello et al., 2010; Rosakis, Xia, et al., 2007). These ruptures

are commonly referred to as “supershear” or “intersonic”. In these problems, the

shear shock fronts arise wherever the rupture speed exceeds that of the wavelets

in the medium.

The discovery of shear ruptures exceeding the nominal pressure wave speed

and the related formation of the pressure shock front (in front of the shear one)

has been enabled by the viscoelastic nature of polymers (like a multitude of other

materials), which is characterized by the dependence of the material properties

– and thus wave speeds – on the local level of strain-rate. Since the crack tip

is a source of high strain-rate (HSR) excitation, it induces and at the same

time experiences higher material properties about itself, which determines its

acceleration to higher speeds. The crack tip propagation regime is still bounded

by the energy considerations, in agreement with the cohesive-zone theories on

linear-elastic materials (Rosakis, 2002; Samudrala, Huang, and Rosakis, 2002a,b),

and therefore never exceeds the local pressure wave speed, yet it approaches it.
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Since the pressure wave speed about the crack tip is significantly higher than

that away from it, pressure shock fronts form whenever the pressure wave speed

is lower than the rupture speed, i.e., a few millimeters away from the crack tip.

These discoveries have important implications for the physics and dynamics of

shear cracks such as earthquakes.

In Chapter 3, we develop on this idea by noticing not only the presence of

two pairs of shock fronts, the shear and the pressure one, but also the variation of

their inclination angle. The persistent, gradual reduction of strain rates away from

the rupture tip, determines a reduction in wave speeds, which leads to both shear

and pressure shock fronts become shallower. The variation of the inclination

angle of the shock fronts is kinematically related to the local wave speed, which,

in steady-state rupture propagation conditions, assumes a simple analytical form.

The measurement of the inclination angle together with the steady-state rupture

propagation speed provides enough information for the direct computation of the

wave speeds of PMMA at high strain rates.

The quasi-elastic solid approximation is a useful tool since it allows the

derivation of any material property from the knowledge of other two known

ones by employing the linear-elastic functional framework, where the two known

material properties are a function of the strain-rate and its history (Knauss and

Zhu, 2002; Schapery, 1965). Whenever the strain-rate history is uneventful, such

as prior to the transition of sharp events like the pressure shock front, it can be

neglected and the material properties become a function of the local level of

strain-rate only. On the other hand, for the shear shock front, the presence of the

pressure one ahead of it represents a strain-rate event, whose history may not be

negligible. This adds a complexity in the computation of properties from the

shear shock front, which not only depend on the local level of the strain-rate, but

also on the past one, in relation to the relaxation time of the polymer, which will
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not be explored in this thesis, but certainly represent an interesting development

for future work.

In the quasi-elastic solid approximation, the Young’s modulus is a non-

linear function of the local value of pressure wave speed and Poisson’s ratio,

which, in general, are dependent on strain rate (Limbach, Rodrigues, and

Wondraczek, 2014; Lu, Zhang, and Knauss, 1997; Sane and Knauss, 2001;

Tschoegl, Knauss, and Emri, 2002; Yee and Takemori, 1982). However, if a

constant Poisson’s ratio is assumed (Davies and Hunter, 1963; Mulliken and

Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and Makradi, 2007), the Young’s

modulus can be estimated in the dynamic range of strain rates, which would be

impossible via the Split-Hopkinson pressure bar (SHPB) experimental technique,

which proved to be a very effective tool for the exploration of the behavior of

materials under dynamic loading conditions (impacts), such as the peak stress or

the ultimate one (Bauwens-Crowet, 1973; Chou, Robertson, and Rainey, 1973;

Gama, Lopatnikov, and Gillespie, 2004; Jordan et al., 2014; Mulliken and Boyce,

2006; Richeton, Ahzi, Vecchio, Jiang, and Adharapurapu, 2006; Rittel and Brill,

2008; Siviour, Walley, et al., 2005; Siviour and Jordan, 2016; Walley and Field,

1994). Its relatively simple operating principle, which contributed to its vast

diffusion in the experimental mechanics community, is based on compressional

(or tensional) waves impacting a sample, which, through a small number of wave

reverberations (typically between 3 and 4), achieve internal stress and strain-rate

equilibrium (Gama, Lopatnikov, and Gillespie, 2004). However, the inability

to achieve stress and strain-rate equilibrium during the initial ramping-up phase

prevents this technique from being applied to estimate any material property

from the stress-strain relationship. For this reason, our approach to measure the

wave speeds from the shock fronts inclination angles represents an interesting

alternative to overcome this limitation and expand the set of measurable quantities

in the dynamic range of strain rates.
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The second part of this thesis concentrates the earthquake initiation via fluid

injection into the fault. A laboratory setup has been developed in order to allow

the delivery of pressurized fluid on a specimen’s fault. Chapter 1 contains a

detailed description of all the components this setup is comprised, dividing it in

two sections: one upstream of a pressure booster (or pump), the other downstream

of it. A pressure booster is a device that is powered by the work of a pressurized

input fluid (air) and delivers that pressure, multiplied by a characteristic factor, to

an output fluid (water). Upstream of the pump, pressure variations are enabled

by a regulator, which is used for coarse adjustments, since pressure changes

upstream the pump will be multiplied by the characteristic factor. Downstream

of the pump, water can be pressurized up to 16 MPa. A series of components

allow the fine adjustment and measurements of pressure, rise time and flow rate.

In particular, a manually activated high-pressure regulator allows the reduction

of the pressure level from the initial value (16 MPa) to any desired one, where

rise times of few MPa per hour to few MPa per second can be achieved. In order

to obtain sharper rates of injection, a solenoid valve is placed downstream the

pressure regulator. Its characteristic opening time is in the order of few tens of

millisecond and enables rates of the order of few tens of MPa per second. Two

pressure sensors are placed on either side of the solenoid valve, in order to allow

water pressure readings, regardless of the open or closed state of the valve. A

needle-valve controls the volumetric flow rate of the fluid.

In Chapter 4, two different fluid-injection nucleation protocols are inves-

tigated, one involving slow pressure rate, and the other one involving elevated

ones. This study is motivated by the observation of the increased seismic hazard

associated to fluid-injection into the ground practices (Ake et al., 2005; Cappa,

Guglielmi, et al., 2005; Cappa and Rutqvist, 2012; Dahm, Hainzl, and Fischer,

2010; Ellsworth, 2013; Frohlich, 2012; Gan and Frohlich, 2013; Guglielmi et al.,

2015; Keranen et al., 2014; McGarr et al., 2015; Segall, Rubin, et al., 2010; Wei
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et al., 2015) or dehydration reactions within or below natural faults (particularly

subduction zones) (De Paola et al., 2007; Di Toro et al., 2011; Dobson, Meredith,

and Boon, 2002; Jung, Green Ii, and Dobrzhinetskaya, 2004; Miller et al., 2004;

Okazaki and Hirth, 2016). Fluids are known to trigger a range of seismic events

spanning from earthquakes to slow, creeping motion (Segall, Rubin, et al., 2010;

Wei et al., 2015), which had been long thought to be spatially well separated.

However, field evidence suggests that seismogenic and creeping fault zones can

exhibit both slow-slip and dynamic behavior (Beroza and Ide, 2011; Chen and

Lapusta, 2009; Dragert, Wang, and James, 2001; Noda and Lapusta, 2013; Peng

and Gomberg, 2010). Yet, the mechanics underling these processes and the

conditions that lead to different rupture behavior are not completely understood.

The complexity of this problem is related to the interaction of fluid-associated

effects and the rate-and-state frictional properties. In the Amontons-Coulomb

frictional framework, the shear resistance is linearly related to the effective

normal stress via a friction coefficient. By neglecting, for the moment, the

effect of the presence of pressurized fluid on the friction coefficient, the pore

pressure competes with the normal stress frictionally weakening the fault and

ultimately promoting slip. The critical nucleation length for a crack to energeti-

cally self-sustain its propagating motion in steady-state slipping conditions (Rice

and Ruina, 1983; Rice, Lapusta, and Ranjith, 2001) or quasi-static ones (Liu and

Lapusta, 2008; Rubin and Ampuero, 2005; Uenishi and Rice, 2003) is inversely

proportional to the effective normal stress. Thus, an increase in pore pressure

acts in the direction of increasing the nucleation length, promoting stable slip, as

opposed to dynamic one. According to this description, higher levels of pore

pressure have a stabilizing effect. However, the dependence of fault response

on the rate of pore pressure can play a major role and still remains unexplored.

In Chapter 4, we show that in conditions of high rates of pore pressure both the

validity of the steady-state and quasi-static assumptions fails, and unstable slip is
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promoted for rupture lengths considerably smaller than the critical ones predicted

by the theoretical estimates (Chen and Lapusta, 2009; Liu and Lapusta, 2008;

Rice and Ruina, 1983; Rice, Lapusta, and Ranjith, 2001; Rubin and Ampuero,

2005; Uenishi and Rice, 2003) and experiments at low rates. A minimal volume

of fluid is delivered to the interface prior to the initiation of the rupture, if

compared to the slow-rate counterpart. An intermediate phase of accelerated slip

prior to the nucleation of the dynamic rupture is also observed, which quickly

redistributes the stress among different adjacent patches over interface, drastically

accumulating shear stress at those frictionally stronger locations where slip is

initially resisted. In cases of high pore pressure rates, this stress redistribution is a

lot less dramatic, jeopardizing the ability of anticipating the subsequent dynamic

event, which, once initiated, produces effects comparable to the ones arising by

the adoption of the low pore pressure rate counterpart.



CHAPTER 1

Fluid-Injection Experimental Setup

In order to investigate the role of fluid in earthquake source processes, a

setup capable of injecting pressurized water on the fault plane of the specimen was

developed. We called this setup “DOLPHINS” (Dynamic Optimized Laboratory

Pressurized Hydro-Injection Nucleation System). A highly-controllable design

(shown in Figure 1.1) allows the selection of a wide range of pressure-time

histories to be delivered to the frictional interface. Controllable quantities span

from peak pressure, pressure rise time, and pressure plateau to fluid flow-rate.

This flexibility enables the exploration of a number of nucleation conditions,

leading to disparate rupture regimes ranging from slow-slip to earthquakes. To

understand how this setup works, the main components will be described in the

next sections. For the sake of clarity, these components are presented in the

same order as the fluid encounters them flowing from upstream the circuit to

downstream.
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Figure 1.1: Newly-developed laboratory earthquake setup featuring a fluid-injection
circuit capable of delivering pressurized fluid to the specimen’s fault and trigger
laboratory-scale earthquakes. The sample contains an interface that mimics a crustal
fault pre-stressed in compression and shear. This setup can host both thin (2D) and thick
(3D) specimen configuration and possesses an enhanced capability to control rate of
injection and fluid pressure. The diagnostics consists of an ultra high-speed camera,
laser velocimeters, and strain gages (not shown in the picture).

Haskel Pump

The principle of increasing pressure in a fluid must respect the first law of

thermodynamics (i.e. energy conservation), which was stated in 1850 by Rudolf

Clausius.

In a thermodynamic process involving a closed system, the increment in

the internal energy is equal to the difference between the heat accumulated

by the system and the work done by it.

More generally, an increase of the sum of internal energy U, kinetic energy

K , and potential energy P is balanced by the heat and work added to the system
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Figure 1.2: Schematic of the fluid-injection setup. The components have been arranged
following their natural position on the optical table in Figure 1.1. The light blue arrows
indicate the air flow, the darker blue arrows indicate the water flow, and the purple arrow
indicates the electrical signal produced by the pressure transducers. The key components
in this Figure will be presented in the following sections where the setup is introduced.

(in this case, fluid), ∆(U + K + P) = Q − W , where Q and W are the heat

and work exchanged with the system, respectively. Furthermore, the work can

be decomposed into two components: the external work acting on the fluid,

and the work changing the state of the fluid, i.e. W = d(p/ρ) +Wext. In an

adiabatic process, the heat exchange is null, i.e. Q = 0; for an incompressible

fluid the internal energy is a function of the temperature only, and for small

temperature changes (nearly isothermic) we can neglect its change. Following

these assumptions, the increase in the sum of kinetic and potential energy is

due to the work externally provided plus the amount of work spent modifying

the state of the fluid, i.e. Wext/m = ∆(p/ρ + u2/2 + g z), where p is the fluid
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pressure, ρ its density, u its velocity, g the acceleration of gravity, and z the

height from a reference plane. In the simple case in which the velocity is null

and so is the difference in heights from the input to the output of the system,

the balance becomes ÛWext/ Ûm = 1/ρ∆p, where an incompressible fluid was

considered, i.e. ∆ρ = 0, and the time derivative was taken on both the nominator

and the denominator on the left-hand-side in order to express the equilibrium in

terms of power, rather than work.

Following this principle, the external work (or external power) is provided

by an MS-36 Haskel M-Pump (fig. 1.1 on the left and fig. 1.3), which intakes

water at slightly higher-than-ambient pressure flowing-in from a higher-located

reservoir (pamb+ ρ g ∆z) and outputs it highly pressurized at the outlet. Figure 1.3

illustrates the pressurizing mechanism where a ‘driving fluid’ (in this case, air),

in brown, actuates the diaphragm/piston which pressurizes the ‘driven fluid’ (in

this case, water), in blue. This pump characterized by a maximum nominal

water-to-air pressure ratio of 41 at the null flow rate by delivering a power of

1/3 hp and for this reason often times this typology of pumps is referred to as

pressure multiplier. For instance, if the driving fluid (air) – sometimes called

‘working fluid’ – is at 0.39 MPa (55 psi), the driven fluid (water) at the outlet will

be at 16 MPa. The pump performances are reported in fig. 1.4, where different

air pressures correspond to the different colored lines, each of them representing

the locus of points coupling a pressure and a volumetric flow rate the pump

can output. For instance, given an input air pressure of 0.69 MPa (100 psi), a

20.7 MPa (3000 psi) pressure to the output will correspond to a volumetric flow

rate of 1.17 × 10−5 m−3/s (43 cubic inches per minute).
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(a) Diaphragm fully de-
flected to the left

(b) Diaphragm fully de-
flected to the right

(c) MS-36 Haskel M-Pump

Figure 1.3: Representation of an intermittent hydraulic pump with air-driven elastic
diaphragm (https://en.wikipedia.org/wiki/Diaphragm_pump). (a) The air, in
brown, actuates the diaphragm, in black, and pressurizes the water on the left hand side,
in blue. The water inlet at the bottom is separated from the the outlet at the top by
four ball-valves, dark-gray spheres, which are synchronized with diaphragm’s lateral
motion in order to guarantee the correct sealing. (b) As the cycle continues, the air
deflects the diaphragm toward the right where the water is pressurized and release,
while simultaneously the left hand side is replenished with ambient pressure water.
(c) A similar principle is adopted by the MS-36 Haskel M-Pump, which rather than a
deformable diaphragm contains a rigid piston capable of significantly higher pressures
(http://www.haskel.com).

https://en.wikipedia.org/wiki/Diaphragm_pump
http://www.haskel.com
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Figure 1.4: Diagram of the MS-36 Haskel M-Pump performance. The colored lines
are loci of the combination of pressure and volumetric flow rate the pump will be able
to deliver given a specific pressure by the working fluid, i.e., the green corresponds to
0.52 MPa (75 psi), the pink to 0.69 MPa (100 psi) and the red to 0.86 MPa (125 psi).
The blue dash lines are level curves of the required air volumetric flow rate. This Figure
was converted to IS units from the original vendor chart.

Driving Fluid (Air)

In GALCIT, the basement and sub-basement laboratories of the Firestone

and Guggenheim buildings are equipped with externally pressurized air at about

0.41 MPa (60 psi), which can be used for hydraulic applications and, in particular,

as a working fluid to drive a pneumatic pump. As shown in Figures 1.1 and 1.2,

the air is filtered through an air filter removing all particles of size larger than

5 µm and allowing a airflow of 2.97 × 10−2 m3/s at 0.69 MPa (100 psi). Its

pressure is then modulated by a precision compressed-air pressure regulator,

which allows continuous pressure regulation from the input value, all the way

to zero. The nominal accuracy is of ±3.45 × 10−3 MPa (±0.5 psi), yet practical

experience reset that value to about ±0.014 MPa (±2 psi). At 0.69 MPa the

maximum airflow is 5.52 × 10−2 m3/s. Due to internal losses, the maximum
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pressure downstream the pressure regulator is 0.39 MPa (56 psi).

An analog pressure gauge with an error of ±6.89×10−3 MPa (±2% midscale

error) is connected to the regulator for precise pressure readings. The regulated

air is then delivered to the Haskel pump where it can exchange work to compress

the water (the energy/pressure balance has been described in section 1). Due to

the low pressure of the air, clear and flexible PVC tubes can be adopted in this

portion of the circuit.

It is important to notice that any variation in the air pressure deriving from

the compressed-air pressure regulator will be delivered to the water multiplied by

the pump water-to-air pressure ratio. Hence, given an accuracy of ±0.014 MPa

(±2 psi) for the air pressure, the accuracy on the water pressure will be up to

41 times worse: ±0.57 MPa (±83 psi). For this reason, fine adjustments of the

water pressure are better off performed on the driven fluid downstream the pump

after it is pressurized, rather than upstream the pump on the driving fluid.

Driven Fluid (Water)

The supply of ambient-pressure water to the pump is guaranteed by the

higher-than-the-pump placement of the water reservoir so that the liquid’s flow is

facilitated by the gravity. The fluid is then pressurized according to the input air

pressure and flow rate setting, and on the required water flow rate at the output of

the pump, according to the performance chart 1.4. Due to the high pressure of the

fluid downstream the pump, 316 stainless steel tubes with an inner diameter of

3.18 mm (1/8”) and an outer diameter of 6.35 mm (1/4”) have been adopted. A

ball valve allows rapid release of the high pressure by discharging water outside

the circuit. An analog pressure gauge with an accuracy of ±0.21 MPa (30 psi)

guarantees high-pressure readings in correspondence to the valve as a safety

measure. It is worth noticing that, if the pump is powered by pressurized air,
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upon the opening of the ball valve, the pump will activate itself in the frenetic

attempt to pressurize the open circuit. An intermittent regime for high flow rates

will arise as predicted by the yellow-shaded area in the performance chart 1.4.

Figure 1.5 illustrates the next component in line, the high-pressure regulator,

which permits precise pressure adjustments over a wide range of output pressures:

0−17.2 MPa (0−2500 psi). This precisely calibrated component allows not only

the selection of the final level of the pressure to be delivered to the specimen’s

interface, but also the manual modulation of the pressure ramp-up profile. This

feature is key in the investigation of several nucleation regimes as slow rump-ups

will produce intrinsically different behaviors than fast ones. These details will be

largely investigated in later chapters.

(a) Simplified schematics (b) Technical drawing

Figure 1.5: The pressure is regulated via a hand-screw adjuster by compressing a spring,
which is connected to a valve (or poppet), inserts (a) and (b). As this gets gradually
opened, a certain amount of pressurized fluid flows through from upstream, starting to
increase the pressure downstream the valve. While the pressure builds up, a diaphragm is
compressed against the spring in the opposite direction of the screw adjuster, eventually
closing back the valve. At this time, an equilibrium is reached between the screw adjuster
exerting a force downwards on the spring and the fluid pressure downstream the valve,
exerting an opposite force onto the diaphragm connected to the spring. If a higher
pressure is desired downstream, the spring needs to be further compressed via the screw
adjuster in order to create a higher force downwards to be eventually balanced by the
fluid pressure acting upwards on the diaphragm. Evidently, the downstream pressure
cannot physically exceed the one upstream.
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An easy-set precision flow-adjustment valve allows flow manual-control. It

is characterized by a flow coefficientCv of 0.53, relating the pressure drop across it

with the flow rate at 15 ◦C (59 ◦F) according to the relationship q = Cv
√
∆p/SG,

where q is the volumetric flow rate (in US gallons per minute), p the pressure,

and SG = ρsubstance/ρH2O the specific gravity, which for water is equal to the

unity.

An ESI digital pressure transducer is USB-connected to a computer for

precise pressure reading downstream both the pressure regulator and flow-

adjustment valve. The accuracy is of ±0.2 MPa (±29 psi), in similarity to the

analog pressure gauge upstream the pressure regulator, and the sampling rate can

reach up to 5 S/s, perfectly suitable for controlling the pressure rate during slow

manual ramp-ups.

Faster ramp-up regimes can be captured by a Honeywell TJE pressure

transducer with a bandwidth (BW) of 3 kHz, able to resolve rising times of

0.116 ms (using trise = 0.35/BW). The connection to an analog-to-digital (A/D)

converter (a Tektronix Digital Oscilloscope, model # DPO3034) in combination

with the output signals from other devices allows a precise synchronization

among them.

A compact, electrically-actuated solenoid valve is placed between the two

pressure transducers (after the slower-acquistion transducer, before the faster-

acquistion transducer). The valve is characterized by a flow coefficient (Cv) of

0.021 – indicating increasingly larger pressure-drops as the volumetric flow rate

increases (as previously shown) – and can operate between 0 and 20.7 MPa

(0 − 3000 psi). When unpowered, it’s in shut position (normally closed); upon

powering (10 W), it fully opens in few tens of milliseconds (circa 5 − 20 ms,

see fig. 1.6. After a detailed conversation with the manufacturer, an alternating

current (AC) model has been selected over a direct current (DC) one for the
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Figure 1.6: When unpowered, the solenoid valve is in close position (left). The sealing
is guaranteed by a spring and the fluid pressure upstream both acting in closing the
plunger. Upon the delivery of electricity to the coil, a magnetic field is generated which
interacts with that of the plunger (a magnetic element) driving it upwards and opening
the seal. The fluid can now flow downstream (right) as long as the power to the coil is
maintained. The characteristic time of opening for this valve is in the order of few tens
of milliseconds.

sake of minimizing the opening time (although precise data is unavailable),

requiring a signal of 120 V/60 Hz for successful opening. The presence of a

solenoid valve in this location enables the hydraulic exclusion of the specimen

downstream the valve from the pressurized section of the circuit upstream it

(see figs 1.1 and 1.2). If the valve is open, the pressure information from the

high-pressure regulator will be directly transmitted to the specimen (through the

reverberation of multiple shocks, expansion waves, and contact discontinuities

in the fluid). However, if the valve is closed, the circuit can be pressurized to a

desired value without the specimen feeling it; under these conditions, upon the

valve opening, a rapid pressure ramp-up can be sent to the specimen. These two

cases illustrate the enhanced flexibility the introduction of the solenoid valve

adds to the fluid-injection circuit: the most-rapid-possible manual opening of

the screw adjuster in the high-pressure regulator would take several seconds; the

use of the valve reduces this time to few tens of milliseconds. The importance

of having a second pressure transducer capable of data fast-acquisition stands

in its ability of capturing rapidly-changing signals generated from the opening
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of the solenoid valve. It is also worth noticing that regardless of the pressure

ramp-up protocol adopted in the specific experiment, a pressure transducer placed

downstream the solenoid valve always measures the pressure conditions as they

are felt by the specimen (with some small delay due to waves propagation in

water); while a pressure transducer placed upstream the solenoid valve enables

the selection of a desire pressure level when the valve is closed, prior to its

opening and delivery of such pressure to the specimen.

In order to safely operate at these level of voltage, specific measures must

be accounted for. A general knowledge on the pathophysiology associated with

the exposure of the human body to the electricity is needed. Details about this

can be found in Appendix 1.A, while Appendix 1.B illustrates the design of a

simple electrical circuit to run the valve.
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1.A An informative curiosity onpatophysiology of alternating

current

Figure 1.7: Out of a wall out-

let in the US. The I-shaped slot

(left) can carry up to 15Aand is

usually employed for domestic

appliances, while the T-shaped

slot (right) can carry up to 20A,

usually for commercial or in-

dustrial use.

A number of studies have been carried out

in the last century. Ferris et al., 1936 were the

first ones to point out that current, rather than

voltage, is the correct criterion for shock-intensity.

They investigated the effect of electric shocks on

the heart of mammals of size somewhat similar

to humans and finding that “electric shock may

derange heart action causing ventricular fibrillation

without damage to heart tissue, but resulting in

death within a few minutes” and related the fatal

levels of current to the body and heart weight in

animals.

Ventricular fibrillation is the uneven

pumping of the heart due to the uncoor-

dinated, asynchronous contraction of the

ventricular muscle fibers of the heart that

leads quickly to death from lack of oxygen to the brain. Ventricular

fibrillation is terminated by the use of a defibrillator, which provides a

pulse shock to the chest to restore the heart rhythm. Cardiopulmonary

resuscitation (CPR) is used as a temporary care measure to provide the

circulation of some oxygenated blood to the brain until a defibrillator can

be used (Electrocution, 1998).

Dalziel (Dalziel, 1946) adopted the previous methodology and tried to

extrapolate data from lower unharmful currents applied on 164 test individuals
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and higher harmful ones applied on animals in order to predict more broadly

the threshold for human heart ventricular fibrillation. He introduced the re-

lationship I = K/t1/2 mA, where K is the current of heart fibrillation in mA

during a 3 s exposure to that current found to be K = 155 mA (extrapolated

from testing animals of similar weight to humans: sheep, dogs, et cetera).

Kouwenhoven (Kouwenhoven, 1949) analyses the resistance of the human body,

dividing it in two categories: the skin (distinguishing between dry and wet) and

the internal portion and sets a safety voltage threshold for humans to 24 V at

60 Hz (the lowest voltage fatality occurred at 48 V at 60 Hz); he then describes the

post-shock effects and introduces a resuscitation practice – called defibrillation

– during ventricular fibrillation by passing a 1 to 2 A current at 60 Hz through

the heart in order to bring the muscles of the heart to rest and hold the organ in

diastole. Then when the circuit is broken the heart usually will resume its normal

operating rhythm. Geddes and Baker (Geddes and Baker, 1971) introduce the

relation of ventricular fibrillation and frequency. In particular they show that the

dog heart starts fibrillating for currents 22 to 28 times higher at 3 kHz rather

than 60 Hz, which directly translates into the concept that the direct current is

more dangerous. Dalziel (Dalziel, 1972) reports more accurate data on humans

with attention to muscular contraction during current passage finding 18 mA

as the limit value to discontinue breathing due to chest muscular contraction.

However, normal breathing (and muscular function) was restored upon current

removal. A safety threshold for unlikeliness of heart fibrillation at 60 Hz of

I = 116/t1/2 mA was determined (although, this does not guarantee safety from

other types of injuries like workers falling from ladders, et cetera). Currents

sensibly in excess of those causing ventricular fibrillation may cause cardiac

arrest, respiratory inhibition, irreversible damage to the nervous system, serious

burns, and unconsciousness. Hammam and Baishiki (Hammam and Baishiki,

1983) review many published findings regarding the human body’s impedance
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depending on the electric magnitude, frequency, path and duration. The more

recent analysis on electric-shock accidents that befell workers by the National

Institute for Occupational Safety and Health (Electrocution, 1998) reports that

between 1980 and 1992 electrocutions were the 5th leading cause of death

among workers, with 411 deaths per year accounting to 7% of the total. The

pathophysiology is summarized in table 1.1.

Table 1.1: Estimated effects of alternating currents at 60 Hz (Electrocution, 1998).

AC level Pathophysiological effects

1 mA Barely percettible
16 mA Maximum current an average man can grasp and “let go”
20 mA Paralysis of respiratory muscles

100 mA Ventricular fibrillation threshold
2 A Cardiac standstill and internal organ damage

15 − 20 A Common fuse or breaker opens circuit (see fig. 1.7)

Fish and Geddes (Fish and Geddes, 2009) review more recent papers with

higher detail on the physiology, the dangers from electrical exposure and best

practices to prevent it. For instance they summarize the reasons why immersion

in water can be fatal even at low voltages:

• Immersion wets the skin very effectively and greatly lowers skin resistance

per unit area.

• Contact area is a large percentage of the entire body surface area.

• Electric current may also enter the body through mucous membranes, such

as the mouth and throat.

• The human body is very sensitive to electricity. Very small amounts of

current can cause loss of ability to swim, respiratory arrest, and cardiac

arrest.
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Table 1.2 concentrate on the fatal level of current and voltages associated

with the human body.

Table 1.2: Estimated effects of alternating currents at 60 Hz (Fish and Geddes, 2009).

Current Voltage Mechanism
[mA] [V]

10 3 Loss of muscle control of the extremities: as little as 10 mA for
the most sensitive female

16 4.8 Loss of muscle control of the extremities: 16 mA for an average
man

20 6 Tetanic contraction (effectively paralysis) of the muscles of
respiration

100 30 Electrical stimulation of the heart causing ventricular fibrillation

Wang and coworkers (Wang, Wang, and Peng, 2013) summarize the patho-

physiological behavior in an indicative plot (fig. 1.8), with the AC current levels

explained in the following table 1.3.

Figure 1.8: Log-log graph of the effect of alternating current (AC) I flowing from left
hand to feet – through the heart – as a function of time-duration T (Wang, Wang, and
Peng, 2013).
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Table 1.3: Pathophysiology of alternating current flowing from left hand to feet as
illustrated in Figure 1.8 (Wang, Wang, and Peng, 2013).

Current level Pathophysiological effects

AC-1 Impercettible
AC-2 Perceptible, but no muscle reaction
AC-3 Muscle contraction with reversible effects
AC-4 Possible irreversible effects
AC-4.1 Up to 5% probability of ventricular fibrillation
AC-4.2 5 − 50% probability of fibrillation
AC-4.3 Over 50% probability of fibrillation
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1.B Relay-based electric circuit to operate the solenoid valve

(a) Schematic of an electromechanical relay. When
the coil is unpowered, the armature is away from
the yoke and the movable contact keeps the switch
open (see gap from the top fixed contact). When
energized, the coil produces an electromagnetic
field that attracts the armature and closes the air
gap. The armature then pushes themovable contact
upwards and closes the connection with the top
fixed contact. The so-closed switch allows high-
voltage electricity to flow.

(b) Modern solid-state relays internally use
the transistors. The conceptual principle
is to use a Light Emission Diode (LED)
that, when powered, sends emitted photons
of a certain wavelength to the receiver, a
Metal-Oxide-Semiconductor Field-Effect
Transistor (MOSFET). This last one will
act as a switch and close the high-voltage
circuit when “illuminated” by the photons
from the LED.

Figure 1.9: The transistor technology has several advantages that made it successful
in the relay industry (as much as in many other ones): it consumes less current in the
“on” state than the electromechanical counterpart, it doesn’t have wearable-by-usage
parts such as the contacts or the moving parts, and it is much faster – electromechanical
relays typically require 50 ms to switch, while transistors can be as fast as picoseconds
(1 ps = 10−12 s).

When unpowered, the solenoid valve is in close position, often referred to as

normally close. The hydraulic sealing is guaranteed by the presence of a spring

and the pressure of the fluid upstream pushing the plunger shut (as shown in

fig. 1.6). When a 120 VAC / 60 Hz current is delivered to the valve, the plunger

(a magnetic element) opens, driven by the magnetic force the coil induces on

it. As long as the voltage is maintained, the valve remains open. In order to

avoid direct exposure to 120 VAC / 60 Hz current, a relay-based circuit has been

designed. A relay is an electrically operated switch connected to both the valve

high-voltage circuit (upper portion in fig. 1.10) and a low-voltage circuit (lower

portion in fig. 1.10) manually controlled by the operator. When the low voltage
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circuit is closed (bottom right square in Figure 1.10), the relay closes the high

voltage one as well and the valve opens (upper right square in Figure 1.10). The

advantage of such a configuration is that the operator is never in contact with

the high voltage circuit as she/he rather operates a switch on the lower voltage

side. Figure 1.9 (a) shows the operating principle of an electromagnetic relays.

However, modern solid-state relays (fig. 1.9 (b) use a different principle with

the advantage of a much faster response (in the picoseconds time scale), lower

electrical consumption and higher robustness. A modern solid-state relay has

been adopted as the center of this circuit (fig. 1.10 center). For safety reasons,

the relay has been enclosed in a metal chassis (visible in Figure 1.1 just before

the solenoid valve) and connected to ground.
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Figure 1.10: Schematic of the electric circuit to power the solenoid valve (upper-right
portion). At the center of the Figure is represented the relay: the green portion represents
the safe-for-humans 5 V direct current (DC) powered by a DC generator (lower-left
portion); the red side represents the dangerous-for-humans 120 V alternating current
(AC) powered by the wall outlet (upper-left portion). When the toggle switch (lower-right
portion) is closed, the 5 VDC current is driven to the relay, which will close the 120 VAC
circuit and power the valve to switch open.
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Pressure and shear shock fronts
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CHAPTER 2

Pressure shock fronts formed by ultra-fast shear

cracks in viscoelastic materials

“If the result of an experiment is in agreement with the expec-

tations, a measurement has been performed. If, on the other hand,

the result is not in agreement with the expectations, a discovery has

been made.”

–E. Fermi

2.1 Introduction

Shock fronts are sharp discontinuities that arise whenever a perturbing

feature, such as a crack traveling through a medium, exceeds the characteristic

speed of the waves by which the energy is transferred in the medium. In such a

situation, the waves coalesce into a sharp shock front, as ob-served in atmospheric
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supersonic flight, hypersonic re-entry from space, meteoroid transit through the

atmosphere, and motion of planets with respect to the solar wind (Anderson Jr,

2010; Decker et al., 2005; Dougherty et al., 2005; Fisk, 2005; Gurnett and Kurth,

2005; Lallement et al., 2005; Liepmann and Roshko, 1957).

In fracture mechanics and geophysics, shear shock fronts have been observed

to arise by the coalescence of shear waves emitted by tips of spontaneously

propagating shear ruptures exceeding the shear wave speed of the surrounding

material (Mello, Bhat, and Rosakis, 2016; Mello et al., 2010; Rosakis, Xia, et al.,

2007; Xia, Rosakis, and Kanamori, 2004). These ruptures are commonly referred

to as “supershear” or “intersonic”. The speed of the spontaneously propagating

cracks is a fundamental problem that has captivated the interest of the scientific

community for several decades due to its implications across multiple scientific

and engineering disciplines (Abraham and Gao, 2000; Abraham, Walkup, et al.,

2002; Buehler, Abraham, and Gao, 2003; Fineberg and Bouchbinder, 2015;

Freund, 1998; Marder, 2006; Needleman, 1999; Rice, 2001; Rosakis, Xia, et al.,

2007; Rosakis, 2002; Xia, Rosakis, and Kanamori, 2004). In particular, the

study of shear cracks propagating along frictional interfaces and the associated

shock fronts is relevant to earthquake dynamics (Bouchon and Vallée, 2003;

Dunham, Favreau, and Carlson, 2003; Ellsworth et al., 2004; Mello et al.,

2014). The formation of the shock fronts is an important problem in its own

right, due to implications of this phenomenon for strong ground motion much

farther from earthquake-producing faults that currently accounted for in seismic

hazard (Bouchon and Vallée, 2003; Dunham, Favreau, and Carlson, 2003;

Ellsworth et al., 2004; Mello, Bhat, and Rosakis, 2016; Mello et al., 2010;

Rosakis, Xia, et al., 2007; Xia, Rosakis, and Kanamori, 2004).

Spontaneously propagating cracks are driven by elastodynamic waves, where

the energy released by the crack motion is transferred through the medium to
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the crack tip region with the (higher) pressure wave speed and (lower) shear

wave speed. It is intuitively evident that a crack cannot exceed the fastest way to

transfer energy: the pressure wave speed (Freund, 1998; Needleman, 1999; Rice,

2001; Rosakis, Xia, et al., 2007; Rosakis, 2002). Hence the formation of a shock

front may appear impossible for the pressure waves.

2.2 Experimental Setup

In this study, we provide the first experimental evidence of spontaneously

propagating shear ruptures forming a pressure shock front and explain the

formation by the strain-rate-dependent – and hence spatially variable – stiffening

of the material in the vicinity of the rupture tip. The presence of the pressure

shock fronts enables us to refer to our cracks as supersonic. The presented

dynamic shear ruptures are produced in an experimental set-up developed to

mimic earthquakes in the laboratory (Mello, Bhat, and Rosakis, 2016; Rosakis,

Xia, et al., 2007; Xia, Rosakis, and Kanamori, 2004). (Fig. 2.1a; see section 2.4).

The set-up features a quadrilateral specimen made of a polymeric material -

either Poly(Methyl Meth-Acrylate) (PMMA) or Homalite-100 – with an interface

inclined at an angle α (Fig. 2.1a). The uniform external load P vertically applied

to the specimen results in a normal and a shear static pre-stress acting along

the interface. The tests exhibited in Figs. 2.1 and 2.2 have been conducted

under the following experimental conditions: P = 21 MPa and α = 30◦ for

PMMA and P = 25 MPa and α = 29◦ for Homalite-100. The ruptures are

triggered by the local brief pressure release due to the sudden disintegration of

a Ni-Cr wire filament placed across the specimen’s interface. This laboratory

earthquake set-up has been successfully employed in the past to study several

key rupture phenomena including supershear transition to intersonic speeds (Xia,

Rosakis, and Kanamori, 2004), rupture directionality and limiting speeds due to
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Figure 2.1: Laboratory setup and the captured supersonic shear ruptures. (a) The
dynamic rupture is produced on a sample interface (green-shaded area) loaded in
compression and shear by a compressive vertical load (yellow arrows). The rupture
is triggered by the sudden disintegration of a Ni-Cr wire filament and subsequently
propagates spontaneously over the interface. Its dynamics is captured using a speckle
pattern applied over a portion of the specimen’s surface, ultra-high-speed photography,
and DIC algorithms. The inset exhibits the distribution of interface-parallel particle
velocity, Ûu1, 58 µs after nucleation. The white lines highlight the peaks associated to
the pressure and shear shock fronts, and the white circles are representative of how the
shear shock front is generated by the coalescence of the shear wavelets. An analogous
construction – not shown here – applies to the pressure cone. (b) The profile of the
particle velocity, Ûu1, along the violet line (at a distance x2 = −27.5 mm from the
interface), plotted at time intervals of 5 µs, exhibits two recognizable peaks associated
to the pressure and shear Mach fronts. (c) The rupture speed versus position along the
interface, x1, is computed by tracking the rupture tip in the temporal sequence of velocity
maps. The comparison with the pressure wave speed in the bulk material, where low
strain rates are attained (Figs. 2.3 and 2.6), confirms the supersonic nature of the rupture,
Vr > cLSR

p (see text). At the crack tip, where considerably higher strain rates develop
(Fig. 2.3, lower inset), the rupture is locally intersonic, cHSR

s < Vr < cHSR
p .



33

bimaterial effects (Xia, Rosakis, Kanamori, and Rice, 2005), off-fault damage

generation (Rosakis, 2002), pulse-like to crack like transitions (Lu, Lapusta, and

Rosakis, 2007), opening of thrust faults (Gabuchian et al., 2017), and friction

evolution (Rubino, Rosakis, and Lapusta, 2017).

2.3 Results and Discussion

It is quite challenging to capture the highly dynamic evolution of these shear

ruptures in the laboratory, since they take mere tens of microseconds to span the

experimental samples. The full-field visualization of supersonic cracks employed

here is enabled by our recently developed dynamic imaging technique (ibid.)

based on a combination of high-speed photography and digital image correlation

(see section 2.4). A sequence of 128 high-speed digital images – with temporal

sampling of up to 2-million frames per second – is converted into a temporal

series of displacement fields by the digital image correlation (DIC) method, with

algorithms tailored to treat displacement discontinuities along an interface (ibid.).

The particle-velocity and strain fields are computed by temporal and spatial

differentiation of the displacement fields, respectively. The strain-rate maps

are obtained by time differentiation of the strain fields. In a set of repeated

experiments, an array of four strain-gage stations have been placed along the

interface to capture the rupture’s arrival time as it swipes through them and

confirm its supersonic nature (Fig. 2.4).

The full-field images of the particle-velocity, strain, and strain-rate fields

during dynamic ruptures in our experiments exhibit two pairs of sharp fronts

diverging from the rupture tip, associated with the formation of the pressure

and shear shock fronts (Fig. 2.1a, inset; Figs. 2.2 and 2.5). The shear shock

fronts, occurring when the rupture exceeds the shear wave speed, have been

observed using photoelasticity (Gabuchian et al., 2017; Mello, Bhat, and Rosakis,
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Figure 2.2: Full-field particle velocities and strain measures for supersonic ruptures.
Both PMMA (left) andHomalite-100 (right) exhibit two pairs of shock fronts, the pressure
and the shear one (colored dashed lines). The PMMA snapshots correspond to 58 µs
after the triggering and the Homalite-100 ones to 66 µs. (a) and (b), Interface-parallel
particle velocity, Ûu1. (c) and (d), Volumetric strain rate, tr( Ûε). (e) and (f), Shear strain
rate, ε12. The volumetric strain-rate field (c and d) enhances the presence of the pressure
shock front, while “hides” that of the shear Mach cone. The shear strain-rate field (e
and f) does the opposite, by showing a healthy shear shock front and a less developed
pressure one. Therefore, the pressure and shear shock fronts, highlighted in colored
dashed lines, are traced as the loci of maxima of the volumetric strain rate (c, d) and
shear strain rate (e, f), respectively. The fronts thus determined are then reported in the
velocity fields above (a, b).



35

2016; Mello et al., 2014; Rosakis, Xia, et al., 2007; Rosakis, 2002; Xia, Rosakis,

and Kanamori, 2004), a technique sensitive to shear deformations. Our newly

developed high-speedDIC technique reveals the additional formation of a pressure

shock front. The pressure shock fronts are most visible in the distribution of the

volumetric strain rate, tr( Ûε) (Fig. 2.2c and d), while the shear shock front are

most noticeable in the distribution of the shear strain rate, Ûε12 (Fig. 2.2e and f),

consistent with the properties of the corresponding waves.

How can we confirm that these features are indeed pressure shock fronts,

and not some other expression of a pressure wave field that would be present

around any crack tip (Mello, Bhat, and Rosakis, 2016) Since the shock front is

the envelope of coalescing waves, the defining feature of a shock front is the

kinematic relationship that holds among the inclination angle β of the shock

front, the wave speed (either cs or cp depending on the front), and rupture speed

Vr (Anderson Jr, 2010; Liepmann and Roshko, 1957; Mello, Bhat, and Rosakis,

2016; Mello et al., 2010; Xia, Rosakis, and Kanamori, 2004):

βs,p = arcsin(cs,p /Vr) (2.1)

The inclination angle of the shock front is the angle that the front forms with the

path of the propagating feature, in our case the rupture interface.

To verify this relation for the pressure shock fronts, we need to find the

rupture speed, inclination angle, and wave speed of the material. We compute the

rupture speedVr from the temporal series of velocity maps by tracking the rupture

tip location along the interface at each frame (Fig. 2.1a and section 2.4). This leads

to the steady rupture speed ofVr = 2.57 km/s within the window of observation for

the experiment with PMMA shown in Figs. 2.1, 2.2 (left column), 2.3 (top inset),

and 2.4. The inclination angle varies along the pressure shock front (Fig. 2.2);

for the steady rupture speed, the kinematic relation 2.1 would imply that the wave
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Figure 2.3: Strain-rate dependence of the pressure wave speed in PMMA. The values of
the pressure wave speeds have been computed by converting the elastic moduli versus
strain-rate data acquired from the literature (Fig. 2.6). Linear-elastic wave relations have
been adopted, assuming a density ρ = 1180 kg/m3 (measured) and a constant Poisson’s
ratio ν = 0.35 (Mulliken and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and Makradi,
2007). The blue triangles indicate compressive tests with the exception of the diamonds,
which indicate tensile tests. The cyan hexagon represents the value of cp measured from
the inclination angle, as shown in the inset. The horizontal black dashed line represents
the rupture speed Vr = 2.57 km/s, computed by tracking the rupture tip in the temporal
sequence of full-field images (Fig. 2.1, see section 2.4). The upper inset exhibits a
snapshot of the equivalent strain-rate field, | Ûε |, at 58 µs after triggering. The strain-rate
measurements obtained from the full-field images (insets) are reported on the cp vs. | Ûε |
plot for two locations: at the crack tip (green star in upper inset), and behind the shock
fronts (x1 = 42 mm, x2 = −29 mm) (purple star in the upper inset). The green and
purple vertical dashed lines refer to the equivalent strain-rate levels for these near-field
and far-field measurements, and the corresponding values of the pressure wave speeds
are indicated by the horizontal green and purple dashed lines. The strain-rate level at
the crack tip is obtained from a similar test performed on a sample at an angle α = 29◦
(rather than 30◦) under the same loading conditions, by focusing on a smaller field of
view, which enables a higher strain-rate resolution (lower inset).
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speeds are decreasing in the interface-normal direction. Such an observation is

consistent with the viscoelastic response at spatially variable strain rates, with the

higher strain rates closer to the crack tip leading to more viscoelastic stiffening

and hence higher wave speeds. Indeed, several experimental studies in polymers,

including Homalite (Mello, Bhat, and Rosakis, 2016; Mello et al., 2010; Rosakis,

Samudrala, et al., 1998) and PMMA (Bayart, Svetlizky, and Fineberg, 2016; Ben-

David, Cohen, and Fineberg, 2010; Fineberg and Bouchbinder, 2015; Rosakis,

Samudrala, et al., 1998; Svetlizky, Bayart, et al., 2017; Svetlizky and Fineberg,

2014), have accounted for their viscoelastic nature by considering the specimens

as still uniformly linear elastic but with uniformly altered (stiffer) values of elastic

constants during their dynamic response. Some of those studies (Ben-David,

Cohen, and Fineberg, 2010; Fineberg and Bouchbinder, 2015; Mello, Bhat, and

Rosakis, 2016; Mello et al., 2010; Rosakis, Xia, et al., 2007; Rosakis, Samudrala,

et al., 1998; Svetlizky, Bayart, et al., 2017) observed crack tip speeds similar to

the ones reported in this work but did not recognize their significance since, in

the “uniformly stiffer” interpretation, it only makes sense to compare the crack

tip speeds to the uniformly higher wave speeds, and that comparison would

suggest that the cracks are intersonic, a well-known phenomenon (Ben-David,

Cohen, and Fineberg, 2010; Fineberg and Bouchbinder, 2015; Mello, Bhat, and

Rosakis, 2016; Mello et al., 2010; Svetlizky, Bayart, et al., 2017). Our findings

emphasize the qualitative importance of the viscoelastic effects in creating the

spatially heterogeneous stiffening due to spatially inhomogeneous strain rates

that has not yet been taken into account.

We find that the non-uniform stiffening due to viscoelastic effects, and hence

spatially variable wave speeds, can indeed explain our experimental observations,

including the inclination angles of the pressure shock front observed in our

experiments. Here, by “wave speeds” we understand the group velocities, e.g.,

the speed with which the energy is conveyed along a wave (Lighthill, 2001).
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We use the published data on how strain rates affect the Young’s and shear

moduli (Lee and Swallowe, 2006; Mulliken and Boyce, 2006; Richeton, Ahzi,

Vecchio, Jiang, and Adharapurapu, 2006; Richeton, Ahzi, Vecchio, Jiang, and

Makradi, 2007; Singh and Parameswaran, 2003; Wu, Ma, and Xia, 2004)

(Figs. 2.6 and 2.7), focusing on the PMMA due to more available data, and

employ the approximation of quasi-elastic solid (Knauss and Zhu, 2002; Schapery,

1965) (see section 2.4), in which the functional form for the material properties

is that of a linear elastic solid, but where each effective material constant is

assumed to be dependent on the local, instantaneous level of the strain rate.

As a consequence of this approximation, the effective wave speeds (or group

velocities) of the polymers investigated here are functions of the strain rate (Lee

and Swallowe, 2006; Mulliken and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang,

and Adharapurapu, 2006; Richeton, Ahzi, Vecchio, Jiang, and Makradi, 2007;

Singh and Parameswaran, 2003; Wu, Ma, and Xia, 2004) (Figs. 2.3, 2.6 and 2.7).

In the low-strain-rate (LSR) regime of | Ûε | = 10−4 s−1, the corresponding nominal

pressure and shear wave speeds are cLSR
p = 1.79 km/s and cLSR

s = 0.86 km/s,

respectively (Fig. 2.3; Fig. 2.1c, red and blue solid lines). Since Vr > cLSR
p

(Fig. 2.1c), the rupture propagates supersonically with respect to the effective

pressure wave speed of the far field, which experiences the LSR conditions. At

the crack tip, much higher strain rates of the order of | Ûε |= 4 × 103 s−1 develop

(Fig. 2.3, bottom inset), constituting the high-strain-rate (HSR) regime; the

corresponding effective pressure and shear wave speeds are cHSR
p = 2.85 km/s

and cHSR
s = 1.37 km/s, respectively (Fig. 2.3; Fig. 2.1c, red and blue dashed

lines). Therefore, the rupture propagates intersonically with respect to the HSR

wave speeds (cHSR
s < Vr = 2.57 km/s < cHSR

p ), in local agreement with basic

physics and energy-release-rate analytical models (Freund, 1998; Needleman,

1999; Rice, 2001; Rosakis, Xia, et al., 2007; Rosakis, 2002) of rupture growth

in linear-elastic solids. At a representative position along the pressure shock



39

front, the inclination angle is βp = 67.5◦ (Fig. 2.3, upper inset). Based on the

relation 2.1, this angle corresponds to an intermediate pressure wave speed of

cISR
p = Vr sin(βp) = 2.37 km/s, consistent with the viscoelastic response at the

corresponding strain rate of | Ûε |cp = 177 s−1 (Fig. 2.3, cyan hexagon, and Fig. 2.6,

cyan hexagon). This intermediate pressure wave speed is also well below the

rupture speed of Vr = 2.57 km/s, confirming that the rupture tip travels faster

than not only the nominal wave speed but also the pressure wave speed at the

examined location of the pressure shock front.

Note that the effectively supersonic rupture propagation observed in our

experiments, in the sense of forming the pressure shock front, cannot be explained

by a hyperelastic behavior at the crack tip. Hyperelasticity, in which the stiffening

occurs with larger strains (in contrast to the strain-rate effects of viscoelasticity)

has been suggested by several numerical studies as a potential mechanism for

supersonic crack propagation (Abraham and Gao, 2000; Abraham, Walkup, et al.,

2002; Buehler, Abraham, and Gao, 2003). However, the constitutive response of

PMMA does not manifest hyperelastic stiffening in tension (Mulliken and Boyce,

2006; Wu, Ma, and Xia, 2004), compression (Lee and Swallowe, 2006; Mulliken

and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and Makradi, 2007; Richeton,

Schlatter, et al., 2005) (Fig. 2.8a and 2.8b), or shear (Fleck, Stronge, and Liu,

1990) experiments for the levels of strains produced by the dynamic cracks in

our experiments, which are smaller than 3.2 × 10−3 (Fig. 2.8c).

To summarize, our experimental results capture spontaneously propagating

ultra-fast in-plane shear ruptures forming pressure shock fronts in viscoelastic

polymers and demonstrate the importance of taking into account the non-

uniform viscoelastic stiffening in the vicinity of the rupture front. The presented

experimentally obtained ruptures are a striking example of how spatially non-

uniform local material stiffening and the associated change in energy transfer can
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completely modify the larger-scale processes, leading to the formation of pressure

shock fronts and hence apparent spontaneous supersonic crack propagation.

Effectively, the dynamics of the process induces a transient heterogeneity in

the elastic properties. The non-uniform strain-rate fields associated with the

rupture tip and the resulting non-uniform viscoelastic stiffening are essential

for the formation of a pressure shock front, in addition to the shear one. These

findings are important for a number of engineering and geological applications,

as they demonstrate how high and non-uniform strain rates at the crack tip

can induce a non-uniform viscoelastic response in the materials that may be

treated as uniformly linear elastic under many other conditions. Note that most

materials, including rocks (Qiao et al., 2016; Zhang and Zhao, 2014), exhibit

viscoelasticity at the high strain-rate regimes characteristic of rapidly propagating

dynamic cracks. In studies of dynamic earthquake ruptures, the main emphasis

so far has been on how high stresses at the rupture tip can induce damage and

hence decrease the effective elastic properties and wave speeds (Ben-Zion, 2008;

Cochran et al., 2009; Heap et al., 2010). Our study illustrates the potential of

a significant counter-acting phenomenon in which the local elastic properties

are transiently increased due to viscoelastic effects, promoting faster rupture

propagation, potentially all the way to apparently supersonic ruptures with respect

to the wave speeds in most of the bulk.
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2.4 Methods

Laboratory setup

The laboratory set-up employed in this study is the described in details in

previous works (Gabuchian et al., 2017; Lu, Lapusta, and Rosakis, 2007; Mello,

Bhat, and Rosakis, 2016; Mello et al., 2010; Mello et al., 2014; Rosakis, Xia,

et al., 2007; Rubino, Rosakis, and Lapusta, 2017; Xia, Rosakis, and Kanamori,

2004). Our specimen configuration features either a 200 × 250 × 12.5 mm3

Poly(Methyl Meth-Acrylate) (PMMA) or a 200 × 200 × 10 mm3 Homalite-100

plate. The sample is separated into two identical halves by an oblique cut at

an angle α (Figs. 2.1a and 2.4). The juxtaposition of these two halves creates

an interface (green-shaded area). In order to obtain repeatable and desired

tribological conditions, these surfaces are polished to near optical-grade finish,

and bead-blasted by employing glass particles in the range of 104 − 211 mm

diameter (Mello et al., 2010; Rubino, Rosakis, and Lapusta, 2017). A uniform

load P is vertically applied to the specimen, resulting in a resolved normal

σ0 = P cos2(α) and shear (τ0 = P sin(α) cos(α) stress on the interface. Rupture

nucleation is obtained by means of the rapid discharge of an electric potential

through a 0.08 mm Ni-Cr wire filament, placed across the interface (Figs. 2.1a

and 2.4a). Prior to initiation, electrical charges are accumulated in a capacitor

bank in order to achieve a potential of 1.5 (for tests with Homalite-100) to

2 kV (for tests with PMMA). The wire’s rapid sublimation produces a short

pressure pulse, inducing the rupture initiation by locally frictionally weakening

the interface. In this study, we present three tests conducted on PMMA and

one test on Homalite-100. All experiments performed with PMMA have an

applied far-field load of P = 21 MPa; one configuration features an inclination

angle of α = 30◦ (Figs. 2.1 and 2.2; Fig. 2.3, top inset; Fig. 2.5; Fig. 2.6, top

inset; Fig. 2.8c; and Supplementary Video 1) and the other two are at α = 29◦
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Figure 2.4: Rupture speed computation via DIC and strain gage measurement techniques.
Two nominally identical tests are conducted using either the DIC technique or the strain
gages. (a) Back-side view of the PMMA sample, where an array of three strain gages
has been applied along the interface. These strain stations are positioned approximately
40 mm away from each other, with the first one 40 mm away from the wire’s location.
The field-of-view window of the speckled pattern is applied on the front side of the
specimen and is indicated by a dashed rectangle (19 × 12 mm2). (b) Time history of the
direct strain in the direction parallel to the interface −ε11, measured at the three locations
shown in Fig. 2.4a. The color of each strain signal matches that of the corresponding
locations in Fig. 2.4a. The transit of the rupture is associated with the initial peaks, where
positive sign of −ε11 indicates compression, in accordance with the right-lateral motion
of the rupture. The rupture arrival time has been computed considering a threshold of
|ε11, th | = 10−3 (horizontal dashed line). (c) Rupture speed computed using the full-field
velocity maps obtained with DIC over the small field of view indicated in Fig. 2.4a. The
pressure (red lines) and shear (blue lines) wave speeds are reported, where the LSR
and HSR conditions correspond to the solid and dashed lines, respectively. This plot
confirms that the rupture is propagating supersonically with respect to the low-strain-rate
pressure-wave speed of PMMA. The black horizontal dashed line represents the rupture
speed averaged between the three strain-measurement stations.
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(Fig. 2.3, bottom inset; Fig. 2.4; and Fig. 2.6, bottom inset). The two tests with

α = 29◦ are used to verify the rupture propagation speed (Fig. 2.4), of which

one configuration employs a smaller imaging window in order to achieve higher

accuracy with the full-field technique (Fig. 2.3, bottom inset; Fig. 2.4a and c;

and Fig. 2.6, bottom inset), and the other one features an array of three strain

gauges (Fig. 2.4). The experiment with Homalite-100 is characterized by a

far-field load of P = 25 MPa and an inclination angle of α = 29◦ (Fig. 2.2, right

column). The full-field images of velocity, strain, and strain rates are obtained by

the employment of our dynamic imaging technique based on the combination

of ultra-high speed photography, digital image correlation algorithms (Sutton,

Orteu, and Schreier, 2009) and post-processing analysis (Rubino, Rosakis, and

Lapusta, 2017). The strain-rate magnitude field is computed from the strain-rate

components as the Frobenius norm of the tensor: | Ûε | = ‖ Ûε‖F =
√
Ûε : Ûε =

√
Ûεi j Ûεi j ,

assuming plane-stress conditions.

Wave speed computation

Effective wave speeds are assumed to be a function of the strain rate,

by locally adopting linear-elastic relations with the values of elastic moduli

dependent on the level of strain rate. In particular, the elastic modulus of PMMA

is tracked as a function of the strain rate using measurements derived from the

literature (Blumenthal et al., 2002; Chen, Lu, and Cheng, 2002; Foster et al., 2015;

Lee and Swallowe, 2006; Li and Lambros, 2001; Moy et al., 2003; Mulliken

and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and Adharapurapu, 2006;

Richeton, Ahzi, Vecchio, Jiang, and Makradi, 2007; Richeton, Schlatter, et al.,

2005; Song and Chen, 2004; Wu, Ma, and Xia, 2004) (Figs. 2.6 and 2.7), ranging

from quasi-static compression tests (10−5 s−1) to highly dynamic conditions

(104 s−1). Since these measurements are from uniaxial tests and they need to

be related to the three-dimensional strain-rate fields of our tests, we compute
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Figure 2.5: Snapshots of full-field images showing the progression of the supersonic
rupture. Left column: strain component in the direction parallel to the interface, ε11.
Right column: strain rate magnitude | Ûε |. The collection of images is from the large field
of view (128 × 80 mm2) and, as the rupture propagates from left to right in the positive
x1-direction, each image corresponds to a snapshot from 18 to 68 µs, every 10 µs. In
analogy with Fig. 2.2, a double pair of shock fronts is clearly discernible, as they become
well developed in the later frames.
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the strain-rate magnitude from the corresponding tensor as | Ûε | =
√
Ûεi j Ûεi j . The

pressure and shear wave speeds are then calculated as a function of the strain-rate

magnitude using the linear-elastic relations for plane strain with the elastic

moduli depending on the specific level of strain rate (Figs. 2.3, 2.6, and 2.7):

cp =
√

E(1 − ν)/[ρ(1 + ν)(1 − 2ν)] and cs =
√

E/[2ρ(1 + ν)], assuming density

ρ = 1180 kg/m3 (measured) and a constant Poisson’s ratio of ν = 0.35 (Mulliken

and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and Makradi, 2007). Least

square fits of wave speeds versus strain-rate magnitude are then used to determine

the LSR and HSR wave-speed values discussed in the main text and presented in

Figures 2.1c and 2.4c. The functional form of the fitted curve is a + b log(| Ûε |),

where a = 2.24 and b = 5.9 × 10−2 for the pressure wave speed, and a = 1.07

and b = 2.8 × 10−2 for the shear one.

Rupture speed computation

The rupture speed is computed by tracking the rupture tip along the interface

using the temporal sequence of the full-field images. In analogy with numerical

simulations of shear ruptures (Liu and Lapusta, 2008; Needleman, 1999), we

identify the rupture tip as the location where the slip velocity exceeds a preset

threshold. The slip velocity Ûδ is obtained from the difference of the Ûu1 particle-

velocity component parallel to the interface, immediately above and below it.

In our calculations, we use Ûδth = 2.5 m/s as a threshold for the slip velocity,

as it is sufficiently above the noise level to avoid spurious oscillations and still

well below the peaks of the slip velocity, which are in the range of 10 to 20 m/s.

Setting the threshold within ±1 m/s does not produce substantial difference in the

measurement of the arrival times. Adopting this procedure, the rupture arrival

time is identified at each location along the interface and the rupture speed is

computed with a second-order accurate central-difference scheme, using the

sequence of locations and rupture arrival times (Figs. 2.1c and 2.4c). To validate
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Figure 2.6: Strain-rate dependence of the pressure wave speed in PMMA. The values of
the pressure wave speeds have been computed by converting the elastic moduli versus
strain-rate data acquired from the literature reported in the legend. Linear-elastic wave
relations have been adopted, assuming a density ρ = 1180 kg/m3 (measured) and a
constant Poisson’s ratio ν = 0.35 (Mulliken and Boyce, 2006; Richeton, Ahzi, Vecchio,
Jiang, and Makradi, 2007). All symbols indicate compressive tests with the exception of
the diamonds, which indicate tensile tests. The cyan hexagon represents the value of cp
measured from the inclination angle (Fig. 2.3, inset). The horizontal black dashed line
represents the rupture speed Vr = 2.57 km/s, computed from the arrival times (Fig. 2.1,
see section 2.4). The upper inset exhibits a snapshot of the equivalent strain-rate field,
| Ûε |, 58 µs after triggering. The strain-rate measurements obtained from the full-field
images (insets) are reported on the cp vs. | Ûε | plot for two locations: at the crack tip
(green star in upper inset), and after the shock fronts have transitioned (x1 = 42 mm,
x2 = −29 mm) (purple star in the upper inset). The green and purple vertical dashed lines
refer to the equivalent strain-rate levels for these near-field and far-field measurements,
and the corresponding values of the pressure wave speeds are indicated by the horizontal
green and purple dashed lines. The strain-rate level at the crack tip is obtained from a
similar test performed on a sample at an angle α = 29◦ (rather than 30◦) under the same
nominal conditions, yet by focusing on a smaller field of view, which enables a higher
strain-rate resolution (lower inset).
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the rupture speeds obtained from this procedure, we also compute it from the

arrival times at a set of three strain-gage measurement locations, each measuring

the direct strain in the direction parallel to the interface, ε11 (Fig. 2.4). In this

calculation, we select the threshold of the strain signal to be |ε11, th | = 10−3

(Fig. 2.4b, horizontal dashed line).
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Figure 2.7: Strain-rate dependence of shear wave speed in PMMA. The shear wave
speed values have been computed by converting the elastic moduli versus strain-rate
experimental data from the literature reported in the legend, using the plane-strain
linear-elastic wave relations and assuming a density ρ = 1180 kg/m3 (measured) and a
constant Poisson’s ratio ν = 0.35 (Mulliken and Boyce, 2006; Richeton, Ahzi, Vecchio,
Jiang, and Makradi, 2007). All symbols indicate compressive tests with the exception of
the diamonds, which indicate tensile tests. The cyan hexagon represents the value of
cp measured from the inclination angle (Fig. 2.3, inset). The green and purple vertical
dashed-lines refer to the equivalent strain-rate levels from the corresponding the green
and purple stars presented in Figs. 2.3 and 2.6. The resulting values of the shear wave
speeds are indicated by the horizontal green and purple dashed lines.

Two nominally identical experiments have been conducted on PMMA, under

a far-field load of P = 21 MPa and an inclination angle of α = 29◦. The rupture
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speed has been measured using either the DIC technique (employing a small field

of view) or the strain gages (Fig. 2.6). Strain measurements by DIC and strain

gages cannot be performed simultaneously in our experiments, since the high-

power flash illumination, required for the high-speed image acquisition (Rubino,

Rosakis, and Lapusta, 2017; Xing et al., 2017), releases a strong electro-magnetic

pulse that interferes with the strain gages, compromising their ability to measure

physical strains. The electric discharge, delivered to the Ni-Cr wire for triggering,

also induces an electro-magnetic pulse which last several tens of microseconds.

This disturbance produces spurious oscillations that overlap with the strain signals,

in particular in the proximity of the wire’s notch (Fig. 2.4a and b). However, the

main features associated with the transit of the rupture are still clearly identifiable

and allow precise rupture arrival time calculations, whose results are in excellent

agreement with the DIC ones (Fig. 2.4c).
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Figure 2.8: Strain dependence of elastic modulus in PMMA. (a) In a quasi-static test
on PMMA, | Ûε | ∼ 10−4 s−1, the stress shows a linear dependence with strain, up to
stresses of 25 MPa and strains of 7 × 10−3. (b) The elastic modulus, computed as the
local tangent of the stress-strain curve, does not show the presence of stiffening. (c)
The full-field equivalent strain |ε | shows that our propagating dynamic cracks does not
produce elevated levels of strain (smaller than 3.2 × 10−3) while inducing elevated levels
of strain rate at the crack tip (well above 103 s−1, Fig. 2.3 inset below), which would
fail to activate hyperelastic effects, in favor of viscoelastic ones. (d) Setup employed
to produce the results presented in a and b. Three strain gages equally spaced around
the circumference (blue line) of a PMMA cylinder (from the same manufacturer of
our samples) measure the vertical component of strain as the load is applied vertically
(yellow arrows).



CHAPTER 3

Inferring dynamic material properties from curved

shock fronts of supersonic shear cracks in

viscoelastic solids

3.1 Introduction

Due to the relatively recent diffusion of polymers in structural and impact-

absorption applications, both in composite materials and on their own, the

investigation of their mechanical properties has earned great interest. A large

volume of publications exists investigating these properties at different temper-

atures, strains, strain rates, and loading conditions; however, this abundance

of literature drastically decreases in the high strain-rate regime, due to the

additional difficulties this problem poses (Siviour, Walley, et al., 2005; Siviour

and Jordan, 2016). The Split-Hopkinson pressure bar (SHPB) is an experimental
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apparatus widely diffused due to its intrinsic ability to induce elevated levels of

strain rate. Its relatively simple operating principle is based on compressional

(or tensional) waves impacting a sample, in which, through a small number

of wave reverberations (typically between 3 and 4) internal stress equilibrium

is achieved (Gama, Lopatnikov, and Gillespie, 2004). During this transient

time, not only the stress, but also the strain and strain-rate levels ramp up. The

inability of attaining strain-rate equilibrium during the initial loading phase

jeopardizes the ability of quantifying the material properties from the stress-strain

curve, as is commonly done in linear elasticity (ibid.). For this reason, usual

outputs of SHPB experiments on polymers include: true stress versus true

strain (during ramping-up strain rates) or strain-rate; yield stress versus strain

rate or temperature; and peak stress versus strain rate or temperature (Chou,

Robertson, and Rainey, 1973; Gama, Lopatnikov, and Gillespie, 2004; Mulliken

and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and Adharapurapu, 2006;

Siviour, Walley, et al., 2005; Siviour and Jordan, 2016; Walley and Field, 1994).

However, wave speeds or elastic material constants cannot be estimated using

this technique. In polymers, the time-temperature superposition principle is

a well-known procedure to expand the time or frequency domain at a given

temperature at which the material behavior is studied (Bauwens-Crowet, 1973;

Capodagli and Lakes, 2008; Lakes, 2004; Li, 2000; Lu, Zhang, and Knauss, 1997;

Plazek, 1996; Siviour and Jordan, 2016; Van Gurp and Palmen, 1998). Polymers

following this behavior are called “thermo-rheologically simple” (Schwarzl and

Staverman, 1952). However, due to their molecular dynamics, polymers are

characterized by complex behaviors at varying temperatures (some of which

excitable at high strain rates). Although the time-temperature superposition

principle is widely-accepted and demonstrated in the rubbery domain for a broad

class of materials, its accuracy (or even applicability) needs to be investigated

on a case-by-case basis, which often represents the exception, rather than the
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rule (Capodagli and Lakes, 2008; Lakes, 2004; Li, 2000; Plazek, 1996; Sane and

Knauss, 2001; Van Gurp and Palmen, 1998).

In this study, we present an alternative method to quantify the wave speeds

of viscoelastic solids in the dynamic range of strain rates and, by invoking the

quasi-elastic solid approximation, the elastic modulus can be derived under the

assumption of constant Poisson’s ratio (Davies and Hunter, 1963; Mulliken

and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and Makradi, 2007). Our

tests are performed at room temperature, yet we do not foresee any physical

reason limiting this method from being applied at higher ones. It has been

demonstrated that viscoelasticity can enable the rupture tip to outrun the speed

of the pressure wavelets of the undisturbed, bulk material (see chapter 2), with

the consequent formation of two sets of shock fronts, the pressure and the shear

one. In the quasi-elastic solid assumption, the local inclination angle of these

fronts in relationship to the corresponding level of strain rate is connected to

the spatially-varying material properties of PMMA, which have been derived by

the employment of our dynamic imaging acquisition system (chapter 2; Rubino,

Rosakis, and Lapusta, 2017), ad hoc optimized for this problem.

3.2 Experimental Design

In order to investigate the shock fronts inclination angle as a result of the

spatially inhomogeneous viscoelastic response of the material, a 200 × 250 ×

12.5 mm3 PMMA sample was prepared by cutting it into two identical halves

along a plane inclined by an angle α with respect to the horizontal direction

(Fig. 3.1). These oblique surfaces are polished and bead blasted in order to

obtain desired and repeatable tribological conditions and then juxtaposed to give

rise to a frictional interface. An external compressive load P (yellow arrows) is

vertically applied by a hydraulic press and held constant. Since the measurement
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Figure 3.1: Laboratory setup and the captured supersonic shear ruptures. (a) The
dynamic rupture is produced on a sample interface (red-shaded area) loaded in compres-
sion and shear by a compressive vertical load (green arrows). The rupture is triggered
by the sudden disintegration of a Ni-Cr wire filament and subsequently propagates
spontaneously over the interface. Its dynamics is captured using a speckle pattern
applied over a portion of the specimen’s surface, ultrahigh speed photography, and
DIC algorithms. The inset exhibits the full-field strain-rate magnitude, | Ûε |, 58 µs after
nucleation. The white lines highlight the peaks associated to the pressure and shear
Mach cones, and the white circles are representative of how the shear shock front is
generated by the coalescence of the shear wavelets. An analogous construction – not
shown here – applies to the pressure cone. (b) The profile of the strain-rate magnitude,
| Ûε |, along the violet line (at a distance x2 = −16.5 mm from the interface), plotted at
time intervals of 6 µs, exhibits two recognizable peaks associated to the pressure and
shear shock fronts. (c) The rupture speed versus position along the interface, x1, is
computed by tracking the rupture tip in the temporal sequence of velocity maps. The
comparison with the pressure wave speed in the bulk material, where low strain rates
are attained (see chapter 2), confirms the supersonic nature of the rupture, Vr > cLSR

p .
At the crack tip, where considerably higher strain rates develop, the rupture is locally
intersonic, cHSR

s < Vr < cHSR
p .
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window of the dynamic rupture is confined to instances before the reflection

of the waves and crack tip from the boundaries of the specimen, constant-load

conditions are preserved throughout the entire duration of the experiment. The

oblique interface experiences a resolved shear and normal stress – P cos(α) and

P sin(α) cos(α) respectively – and consequently develops a frictional resistance

proportional to the resolved normal stress, τres = f (σn − p), in competition with

the resolved shear one. A 0.1-mm notch, excavated across the interface, hosts a

0.08-mm NiCr wire filament. Upon the discharge of a 2-kV potential through it,

the wire’s rapid sublimation locally increases the pressure, which competes with

the resolved normal stress and ultimately nucleates the rupture by frictionally

weakening the interface. On one side of the specimen, a thin coat of white

paint is deposited on the lateral face to create a background where a random

black pattern of optimally-sized dots is added 3.1. A ultra-high-speed camera,

capable of acquiring 128 images at up to 5-million frames per second (5 Mfps),

records the deformation of the pattern across different frames as the dynamic

rupture transits through the field of view (FOV). This pattern-deformation is

converted into in-plane displacement fields via digital image correlation (DIC)

algorithms (Sutton, Orteu, and Schreier, 2009). Images are then filtered by

means of non-local (NL) de-noising algorithms (Buades, Coll, and Morel, 2008;

Rubino, Rosakis, and Lapusta, 2017) and numerically differentiated with respect

to time, space, or both time and space, in order to obtain velocity, strain, and

strain-rate fields, respectively (see Chapter 2). All the full-field results are

presented in the reference frame relative to the oblique interface, where the

x1-direction is along the fault plane and the x2-direction is normal to it (Fig. 3.1).

The rupture propagates along the x2 = 0-plane and crosses the FOV from left

to right in the positive x1-direction (Figs. 3.1, 3.2 and 3.3). In this manuscript,

two configurations are presented: (a) P = 21 MPa, α = 30◦, “large” FOV

(128 × 80 mm2) at 1-million frames-per-second; and (b) P = 21 MPa, α = 29◦,



55

“small’ FOV (19 × 12 mm2) at 2-million frames-per-second. The relatively low

shear modulus of PMMA (≈ 1.2GPa) guarantees well-developed ruptures (Fialko,

2007; Lu, Lapusta, and Rosakis, 2009; Rice, 2001), which reach steady-state

conditions early after being nucleated, before entering the portion of the sample

covered by the ultra-high-speed photography (Fig. 3.1c).

Figure 3.2: Snapshot of the shear strain-rate field (top and center left), Ûε12, and volumetric
strain-rate one (to and center right), tr( Ûε), 51 µs after the rupture initiation. The curved
shear Mach cone (a) and bow pressure shock front (b) are traced as the locus of maxima
(blue line) of the shear strain-rate field (a and c) and volumetric strain-rate field (b and d),
respectively. (d) The volumetric strain-rate field enhances the presence of the pressure
shock front, while ’hiding’ that of the shear Mach cone. (c) The shear strain-rate field
does the opposite, by showing a healthy shear shock front and a less developed pressure
one. In (a) and (b), the red line superimposed to the blue one is the result of a moving
average smoothing procedure, which is employed in order to eliminate spurious effects.
(e and f) 3D snapshots of strain-rate magnitude allow the correlation of each location of
the shock fronts (red lines) with a corresponding value of strain rate (Fig. 3.3 and 3.5a).
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Figure 3.3: Mach cone angle and strain-rate magnitude variation along the shear (a) and
pressure (d) Mach cones obtained from Fig.3.2a and b, 51 µs after the rupture initiation.
The black portion corresponds to locations along the Mach cone in proximity to the
rupture tip, which gradually turns green while moving away from it. (b) The shear Mach
cone angle, computed by differentiating the shear Mach cone with respect to x2, is higher
in proximity to the crack tip (≈ 34◦), and gradually reduces moving away from it (≈ 30◦).
Similarly, (e) the pressure shock front angle approaches 90◦ close to the rupture tip and
decreases to about 65◦ away from it. (c) The strain-rate magnitude along the shear Mach
cone varies between 2 × 102 and 4 × 102 s−1, while (f) the one along the pressure shock
front varies between 1.5 × 102 and 1 × 103 s−1.
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3.3 Results and Discussion

The Strain-Rate Dependence of the Wave-Speeds

Polymeric materials are known to undergo viscoelastic stiffening at higher

strain rates (Capodagli and Lakes, 2008; Lakes, 2004; Lu, Zhang, and Knauss,

1997; Mulliken and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and Adharapu-

rapu, 2006; Sane and Knauss, 2001; Siviour and Jordan, 2016; Tschoegl, Knauss,

and Emri, 2002), which is reflected by the development of higher wave speeds.

Indeed, a number of studies on polymers show that many of them – including

PMMA – exhibit an increase of the yield stress or peak stress dependence with

strain rate (at room temperature) above 102 s−1 (Bauwens-Crowet, 1973; Chou,

Robertson, and Rainey, 1973; Jordan et al., 2014; Mulliken and Boyce, 2006;

Richeton, Ahzi, Vecchio, Jiang, and Adharapurapu, 2006; Rittel and Brill, 2008;

Siviour, Walley, et al., 2005; Siviour and Jordan, 2016; Walley and Field, 1994).

In a quasi-elastic solid approximation (Knauss and Zhu, 2002; Schapery, 1965),

the relationship between the material properties preserves the same functional

form as in the linear elastic counterpart; however, each property depends on the

strain-rate history the material undergoes during deformation. In particular, the

pressure wave speed is a function of the local material properties, which, in turn,

depend on the strain-rate history:

cp(| Ûε(x(t), t)|, t) =

√
E(| Ûε(x(t), t)|, t)[1 − ν(| Ûε(x(t), t)|, t]

ρ[1 + ν(| Ûε(x(t), t)|, t][1 − 2ν(| Ûε(x(t), t)|, t)] (3.1)

where x is the spatial coordinate, t is the time, E is the Young’s modulus, ν is the

Poisson’s ratio, ρ is the density, which is assumed to be constant ρ = 1180 kg/m3

(measured), and | Ûε | is the strain-ratemagnitude field computed from the strain-rate

components as the Frobenius norm of the tensor: | Ûε | = ‖ Ûε‖F =
√
Ûε : Ûε =

√
Ûεi j Ûεi j .
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In steady-state rupture propagation conditions, the explicit dependence on

time drops. In addition, if the strain-rate temporal history is uneventful prior

to the arrival of the main signal, such as in sharp events like the transition of a

shock front, it can be neglected. Under this assumption, the time dependence of

the strain rate disappears and the material properties – as well as the pressure

wave speed – only depend on the local, current value of strain rate. Finally, by

neglecting the dependence of the Poisson’s ratio on the strain rate (Davies and

Hunter, 1963; Mulliken and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and

Makradi, 2007), one obtains:

cp(| Ûε(x(t))|) =

√
E(| Ûε(x(t))|)(1 − ν)
ρ(1 + ν)(1 − 2ν) (3.2)

Although this assumption can be directly applied to the pressure shock front due to

the absence of strain-rate signals ahead of it (Figs. 3.1a, inset, 3.1b, 3.2, and 3.4),

for the shear Mach cone this hypothesis carries some degree of approximation

because of the strain-rate history associated to the pressure shock front ahead

of it (Figs. 3.1a, inset, 3.1b, 3.2, and 3.4). Due to the added complexity of this

scenario, we leave the viscoelastic investigation of the shear Mach cone to a future

study and we concentrate here only on the pressure shock front. This will limit

the number of material parameters that can be derived, including the viscoelastic

dependence of the Poisson’s ratio with strain rate (Limbach, Rodrigues, and

Wondraczek, 2014; Lu, Zhang, and Knauss, 1997; Yee and Takemori, 1982);

however, there are a number of fundamental conclusions that can be drawn

without the inclusion of the shear Mach cone viscoelastic response.

Finally, in order to reduce the number of parameters under investigation and due to

the difficulty of accurately measuring the Poisson’s ratio (Lu, Zhang, and Knauss,

1997; Sane and Knauss, 2001; Tschoegl, Knauss, and Emri, 2002; Yee and

Takemori, 1982), its dependence on the strain rate has been neglected (Davies and
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Hunter, 1963; Mulliken and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and

Makradi, 2007), although other studies have shown that this assumption comes

with some degree of approximation (Limbach, Rodrigues, and Wondraczek,

2014; Lu, Zhang, and Knauss, 1997; Yee and Takemori, 1982).

The rupture tip, in its propagation along the frictional interface, induces

a dynamically-varying, spatially-inhomogeneous state of strain rates (Figs. 3.1,

3.2 and 3.3) (chapter 2). In particular, high strain rates (HSR) – of the order

of 103 s−1 – arise about the crack tip, while low strain rates (LSR) – of the

order of 10−4 s−1 – are present in the undisturbed, bulk material away from

it. The rupture tip is locally intersonic with respect to the HSR conditions

(cHSR
s < Vr < cHSR

p ), in agreement with basic physics and energy considerations

of linear-elastic theories (Broberg, 1999; Freund, 1998; Needleman, 1999; Rice,

2001; Rosakis, Xia, et al., 2007; Rosakis, 2002; Slepyan, 2002), and therefore

a shear Mach cone is formed behind it (Fig.3.1a, inset, and 3.2) (Mello, Bhat,

and Rosakis, 2016; Mello et al., 2010; Rosakis, Xia, et al., 2007; Xia, Rosakis,

and Kanamori, 2004). In addition, the strain rates rapidly decrease away from

the rupture tip, with consequent decrease of the wave speeds; see equation 3.2.

When the local speed of the pressure wavelets is exceeded by the rupture speed,

an additional shock front, the pressure one, forms in front of the shear one

(Figs. 3.1a, inset, 3.1b, 3.2, 3.3, and 3.4) (see Chapter 2). Under these conditions,

we refer to the rupture tip as “supersonic” with respect of the low wave speeds

(Vr > cLSR
p ), where we define “low strain rates” (LSR) the strain rates developing

in the undisturbed, bulk material ahead of the pressure shock front, where both

the pressure and shear wave speeds are locally lower than the rupture speed. The

spatially inhomogeneous strain-rate field, due to the viscoelastic nature of our

sample material, induces another interesting feature: the variable inclination of

the shock fronts (Figs. 3.2 and 3.3) (see Chapter 2).
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The Curvature of the Shock Fronts due to Viscoelastic Effects

In linear elastic materials, the ratio between the shear wave speed and the

rupture speed is equal to the sine of the inclination angle of the shear Mach cone:

sin(βs) =
cs

Vr
(3.3)

We will prove that this kinematic relation still holds for viscoelastic solids,

provided that two conditions are satisfied: (a) the value of the shear quantities, cs

and βs, must be selected on a local basis, since they are functions of the local

state of strain rate; and (b) the rupture propagates in steady-state conditions,

so that Vr = const. The second condition is easily witnessed in our ruptures,

since, by tracking the rupture tip location in the temporal sequence of full-field

images (Fig. 3.1c), its small variation inside our observation window suggests

that steady-state conditions are in fact attained. For this reason, we simply

consider the rupture speed average value along the x1-coordinate, Vr = 2.56 km/s

(Fig. 3.1c, black dashed line) 2.

In order to relate the shock front inclination angle to the local value of the

corresponding wave speed, let us consider two consecutive locations along the

interface (x2 = 0), x(1)1 and x(2)1 , which are separated by a time interval δt =

t(2) − t(1) required by the rupture tip to cover the distance δx1 = x(2)1 − x(1)1 = Vr δt

(Fig. 3.4), where the superscript indicates either one of the two locations. At

each one of them, the rupture tip emits a shear and a pressure wavelet (see

chapter 2) (Mello, Bhat, and Rosakis, 2016; Mello et al., 2010). For the sake of

simplicity, we shall concentrate on the shear case for the moment. The distance

l(i) covered by the i-th wavelet connecting the location of its emission x(i)1 to the

shear Mach cone (Fig. 3.4, curved dashed lines) is equal to:
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Figure 3.4: Shock fronts profiles and local inclination angles. A shock front (thick
darker blue and purple lines) is formed as the coalescence of multiple wavelets (thin
lighter blue and purple lines) emanated by the rupture tip at several time instances, as
it propagates along the interface. As a shear wavelet (thin lighter blue lines) travels
through the viscoelastic solid, it encounters regions at different levels of strain-rates,
loses circularity and, consequently, the locus of points of tangency with the Mach cone
assumes a curvature (black dashed lines). Two consecutive wavelets are emanated at a
distance dx1 = Vr(t) dt. Due to their proximity with each other, they follow the same
strain-rate history during their propagation. The additional distance traveled by the first
of the two is cs(t) dt (inset), while Vr(t) dt is the distance traveled by the rupture tip
before emitting the second wavelet into existence. The shear Mach cone local inclination
angle βs is computed by using the general formula βs = sin−1(cs/Vr), provided that the
local values of cs and Vr are considered. In addition, the pressure shock front forms
ahead of the shear one, as a testimony that the rupture tip exceeds the pressure wave
speed of the undisturbed, bulk material (Vr > cLSR

p ) (see chapter 2). The small field of
view (Fig. 3.5, insets) highlights the presence of an offset – or “process zone” – between
the two shock fronts at the interface (x2 = 0), which is related to the presence of a high
strain-rate region ahead of the rupture tip. The normality (βp → 90◦) of pressure shock
front at the interface (x2 = 0) is an indication of the high levels of strain rates and the
generation of a subsonic region (Mp < 1) between the front and the rupture tips. Moving
away from the interface (x2 , 0), the shock front curves and loses strength until, at some
point, the strain-rate level behind it is not high enough for the pressure wavelets to outrun
the rupture tip, which is thus supersonic (Mp > 1) with respect of that region. The
x1-t-diagram – at x2 = 0 – qualitatively shows the coalescence of pressure characteristics
(which represent the local position and time of the wavelets) into the shock front ahead
of the rupture tip, traveling at the same speed as the rupture tip (bottom right).
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l(i) =
ˆ T

t(i)
cs

(
x(i)(τ), τ

)
dτ (3.4)

where T is the (present) time when each wavelet reaches the Mach cone, t(i) is

the (past) time of emission of the i-th wavelet into existence, x(i)(t) is the path

followed by the i-th wavelet, and cs is the shear wave speed, which, in general,

depends on both the spatial location and the time. In steady-state conditions, the

explicit dependence on time can be neglected:

l(i) =
ˆ T

t(i)
cs

(
x(i)(τ)

)
dτ (3.5)

and the difference between the distances covered by the two consecutive shear

wavelets is equal to:

∆l = l(1) − l(2) =
ˆ T

t(i)
cs

(
x(1)(τ)

)
dτ −

ˆ T

t(i)+δt
cs

(
x(2)(τ)

)
dτ (3.6)

At this point, time can be shifted for each wavelet t̂i = t − t(i) so that t̂i = 0 corre-

sponds to the instant the wavelet has been emitted into existence. Equation 3.6

then becomes:

∆l =
ˆ T̂ (1)

0
cs

(
x(1)(τ̂1)

)
dτ̂1︸                      ︷︷                      ︸

´ T̂ (2)
0 cs(x(1)(τ̂1))dτ̂1+

´ T̂ (2)+δ t̂
T̂ (2) cs(x(1)(τ̂1))dτ̂1

−
ˆ T̂ (2)

0
cs

(
x(2)(τ̂2)

)
dτ̂2 (3.7)

We notice that δt̂ = T̂ (1) − T̂ (2) = (T − t(1)) − (T − t(2)) = t(2) − t(1) = δt. In the

limit of δt → 0, δt ≡ dt and x(2)(t̂2) approaches x(1)(t̂1) over the time interval

t̂i ∈ [0, T̂ (2)] (Fig. 3.4). This limit corresponds to the very-close emission of

two consecutive wavelets, reflecting the physical principle that wavelets are
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continuously emitted by the rupture tip during its motion. By simplifying the

equal-and-opposite terms in equation 3.7, one obtains:

∆l =
ˆ T̂ (2)+dt

T̂ (2)
cs

(
x(1)(t̂)

)
dt̂ (3.8)

The Taylor expansion of cs

(
x(1)(t̂1)

)
about t̂1 = T̂ (2) is:

cs

(
x(1)(T̂ (2) + δt)

)
= cs

(
x(1)(T̂ (2))

)
+

dcs

dx(1)
dx(1)(T̂ (2) + δt)

dt
(dt)+O(dt2) (3.9)

By substituting this expression into equation 3.8 and neglecting all higher-order

terms, one obtains:

∆l =
ˆ T̂ (2)+dt

T̂ (2)
cs

(
x(1)(T̂ (2))

)
dτ̂ = cs

(
x(1)(T̂ (2))

) ˆ T̂ (2)+dt

T̂ (2)
dτ̂ = cs

(
x(1)(T̂ (2))

)
dt

(3.10)

where cs(x(1)T̂ (2)) represents the local shear wave speed at the shear Mach cone.

In a compact notation, here it is indicated as cL
s , where the superscript L stands

for “local”. By applying the same trigonometric considerations adopted in

linear-elastic solids to derive the equation 3.3 (Fig. 3.4, inset), we can now derive

the corresponding expression for the viscoelastic case:

sin (βL
s ) =

cL
s dt

Vr dt
=

cL
s

Vr
(3.11)

which closely mimics the linear elastic counterpart, with the caveat that the shear

quantities must be considered locally. Following analogous considerations, an

equivalent expression holds for the pressure shock front:

sin (βL
p ) =

cL
p dt

Vr dt
=

cL
p

Vr
(3.12)
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Shock Fronts: a Comparison Between Viscoelastic Solids and Fluids

Pressure shock fronts are commonly observed in fluids and plasma, where a

large number of studies have been carried out to understand their nature (Anderson

Jr, 2010; Decker et al., 2005; Gurnett and Kurth, 2005; Liepmann and Roshko,

1957; Roe, 1981), however, prior to the work presented in chapter 2, they

had never been observed in homogeneous solids in relation to crack evolution

problems. Significantly, the pressure shock front at the interface not only is

detached from the rupture tip, but also assumes a characteristic curvature moving

away from the interface, which confers it the name of “bow (or detached) shock

front” (Fig. 3.1, inset, Fig. 3.2; Fig. 3.3d and e; and Fig. 3.4). This phenomenon

is well known in the gasdynamics community (Anderson Jr, 2010; Liepmann

and Roshko, 1957) and arises when a body supersonically travels in a flow, or, in

a reference frame anchored to the body, ξ1 = x1 − Vr∆t and ξ2 = x2 (Fig. 3.4),

when a body is invested by a supersonic flow, and two conditions are satisfied:

(a) the body has a finite thickness in the ξ2-direction normal to the flow; and

(b) the flow does exceed the pressure wave speed (known in fluids as “speed of

sound”), yet not by a “large” amount. In fact, the larger the ratio of the speed of

the flow versus the pressure wave speed – called Mach number, Mp –, the closer

the shock front approaches the body. For blunt bodies, this gap will never be

completely closed; on the other hand, for slender profiles, there exists a high

enough value of the Mach number for which the shock front “reaches” the tip

of the body and forms a Mach cone (Fig. 3.4) (Anderson Jr, 2010; Liepmann

and Roshko, 1957). Normal (and close-to-normal) shock fronts are stronger

discontinuities and compress the flow to subsonic conditions (Mp < 1); the

flow then experiences further compression in the subsonic regime in its journey

towards the body (ξ1 → 0+). Moving away from the interface (ξ2 , 0), the

shock front curves, becomes oblique and progressively loses strength. Eventually,
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as x2 = 0 increases, the (oblique) shock reaches the critical point where it is

not anymore able to compress the flow to subsonic conditions, and the flow

downstream is faster than the local pressure wave speed (Mp > 1) (Fig. 3.4). In

the limit of ξ2 → ±∞, the shock loses all its strength and the flow downstream

it has the same, undisturbed conditions of that in front of it. In order to fully

understand this construction, one must understand the theory of characteristics

from solving the hyperbolic differential equations arising in supersonic flows

from the Navier-Stokes equations of conservation (Anderson Jr, 2010; Liepmann

and Roshko, 1957), whose description falls outside of the scope of the present

manuscript. However, there are interesting similarities that can be drawn between

gasdynamics and solid-mechanics. In a general medium, the speed of sound or

pressure wave speed is equal to:

cp =

√
Kp

ρ
(3.13)

where Kp is the coefficient of stiffness and ρ the density, which, in the assumption

of incompressibility, is assumed to be constant. For an ideal gas undergoing

isentropic transformations, Kp = γp, where γ is the adiabatic index and p the

pressure (Anderson Jr, 2010; Liepmann and Roshko, 1957); for a homogeneous

solid in isentropic conditions, Kp corresponds to the P-wave (or longitudinal)

modulus (Broberg, 1999; Freund, 1998; Needleman, 1999; Slepyan, 2002), as

shown in equation 3.1. Therefore, while in fluids the governing variable is

the pressure, in viscoelastic solids it is the strain rate, upon which the elastic

constants depend (see equation 3.1). From a general perspective, the two media

qualitatively behave in a similar way. In fact, by considering a portion close to

the ξ2 = 0 plane, in the fluid case the pressure sharply increases through the

shock front, and then gradually increases in the subsonic portion of the flow

(Mp < 1) towards the body as ξ1 approaches 0+ (Anderson Jr, 2010; Liepmann
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and Roshko, 1957); along the same path, the strain-rate magnitude sharply

increase through the shock front and then it further, yet more gently, increases

in the subsonic portion of the material (Mp < 1) towards the rupture tip, for

ξ1 → 0+ (Figs. 3.2, 3.3, 3.4 and 3.5). In the former case, the pressure variations

are generated by the supersonic propagation of the body through the fluid; in the

latter case, the strain-rate variations are induced by the rupture tip motion along

the interface, which is also supersonic with respect of the LSR conditions of the

undisturbed, bulk material ahead of it. Finally, as the pressure shock front curves

(for ξ2 , 0), its ability to compress the fluid flow rapidly decays to the point

that the flow remains supersonic downstream it (Mp > 1) and the pressure level

there is sensibly lower than that in the subsonic portion for ξ2 ≈ 0; analogously,

in viscoelastic solids the strain rates rapidly diminish away from the rupture

tip, to the point that the rupture tip is supersonic with respect to the pressure

wave speeds arising downstream the curved portion of the shock front (Fig. 3.4).

We speculate that the gap between the rupture tip and the pressure shock front

is closely related to the cohesive zone. In fact, the cohesive zone is the area

of influence of the rupture tip in its vicinity, in the process of weakening the

molecular bonds by increasing the distance between atoms, which is intrinsically

related to the generation of strains about the rupture tip over the microseconds

time scale, ultimately leading to high strain rates. Simultaneously, the higher

strain-rate region is what causes the shock front to detach from the tip of the

rupture. In Figure 3.2, the magenta and black lines respectively represent the

shear Ûε12 and volumetric tr( Ûε) strain-rates profiles along the interface, normalized

with respect to their peak value, while the green line represents the particle

velocity in the x1-direction, Ûu1. By focusing on a small field of view (Fig. 3.5,

insets) a higher spatial resolution about the central portion of the shock fronts

is enabled, which allows a more precise observation of this distance, referred

to as “process zone”, between them (Figs. 3.4 and 3.5, insets). The detachment
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of the pressure shock front is related to the interaction of the pressure wavelets,

propagating at the corresponding wave speed, with the variable strain-rate field in

front of the rupture tip. In particular, in the HSR region, these wavelets outrun the

rupture tip; however, the HSR region is characterized by decreasing strain rates

in the positive ξ1-direction and therefore lower wave speeds. As a consequence,

the pressure wavelets emitted by the rupture tip and propagating ahead of it

decelerate due to the increasingly lower wave speeds that they encounter. The

stable equilibrium condition is reached when their pressure wave speed matches

that of the rupture: a perturbation further accelerating a wavelet would push

it inside a lower strain-rate region and, due to that, the wavelets would slow

down to speeds below that of the rupture, which would quickly reclose the gap.

Conversely, a perturbation causing a wavelet to decelerate would result in the

wavelet to be closer to the rupture tip and thus to encounter higher strain rates

and accelerate away from it, back to the stable equilibrium condition where

cp |Mach Cone = Vr. We must clarify that in the fracture dynamic community the

term “intersonic” – or “supershear” – refers to cracks or ruptures propagating at

speeds between that of the shear and pressure wavelets (Broberg, 1999; Freund,

1998; Needleman, 1999; Slepyan, 2002); in the fluid dynamic community, where

no shear waves exist, the term “intersonic” refers to flows in the vicinity of

the “sonic” conditions in the transition between the subsonic and supersonic

regimes (Anderson Jr, 2010; Liepmann and Roshko, 1957). In this manuscript,

we adopt the former nomenclature, in accordance to the fracture dynamic nature

of its content. However, a subtler, yet fundamental distinction is that, while in

the fracture dynamic community, speed regimes are related to the local value

of the wave speeds at the crack tip, due to the interplay between the rupture tip

energy release rate considerations and the admissible speed regimes (Broberg,

1999; Fineberg and Bouchbinder, 2015; Freund, 1998; Mello, Bhat, and Rosakis,

2016; Mello et al., 2010; Needleman, 1999; Rosakis, Xia, et al., 2007; Rubino,
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Rosakis, and Lapusta, 2017; Slepyan, 2002), in the fluid mechanics community

speed regimes are related to the global speed of the undisturbed, far-field flow.

In order to understand the intersonic speed regimes locally arising at the rupture

tip, it is natural to consider the former definition; however, in order to understand

the formation of both sets of shock fronts, and in particular the pressure one, one

needs to bear in mind the latter.

Shock Fronts Tracking Method

The angular variation along the shock fronts is evaluated through an

algorithm that tracks the shock fronts in each frame of our measurement window.

For this purpose, we define the shear and pressure shock fronts as the collection

of peaks in the corresponding strain-rate fields: the maximum of the shear

strain-rate field Ûε12 (Fig. 3.2a and c; and Fig. 3.3a-c) is associated to the shear

Mach cone, and the maximum of the volumetric strain-rate field tr( Ûε) (Fig. 3.2b

and d; and Fig. 3.3d-f) is associated to the pressure shock front.

• The first step is to find the tip of the shock front along the interface, which

is achieved by the following: (a) locating the coordinate corresponding to

the maximum strain-rate value in the layer of pixels just above the interface;

(b) repeating the same process to the layer just below the interface; and (c)

averaging these two values.

• The second step involves the definition of the area of search around the tip

of the shock front, which is represented by a circular sector centered at the

shock-front tip and limited by two user-specified angles ϑ ∈ [ϑ1, ϑ2].

• Within this area of search, for each radius r ∈ [r1, r2], the coordinate of

the maximum value of the strain-rate is located. The combination of these
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maxima recovers the shock front profiles, which are shown in Fig. 3.2 (blue

line) and Fig. 3.3, t = 51 µs after the rupture nucleation.

Once the shear (Fig. 3.2a) and the pressure (Fig. 3.2b) shock fronts have been

tracked over multiple time frames, they are smoothened by using the moving

average method (Fig. 3.2a and b, red lines; and Fig. 3.3 a and d). Due to the

interaction of the pressure and shear signal nearby the rupture tip, it is more

difficult to track the shock fronts, and in particular the pressure one, close to the

interface (x2 = 0). In addition, since the maximum inclination angle a shock

front can assume is 90◦ (no shock front can exist otherwise), and the pressure

shock front approaches this value at the interface (x2 = 0), by applying the

moving average smoothing method to a set of data bounded from above, tends

to produce mildly lower outputs. For these reasons, the results for the pressure

shock front shown in the following section are characterized by an inherently

larger variability and bias when approaching the interface (Fig. 3.5a).

Deriving the Viscoelastic Material Properties from the Shock Fronts

In order to derive the inclination angles (Fig. 3.3b and e), each of the two

shock front profiles in Figure 3.2a and b is differentiated with respect to the

x2-direction. Simultaneously, the values of the strain-rate magnitude are obtained

from the corresponding | Ûε | fields (Fig. 3.2e and f; and Fig. 3.3c and f), so that

each location along the shock fronts is associated with an angular value and a

strain-rate one (Fig. 3.5a). For the sake of clarity, the color scheme has been

selected to assign a black color to points proximal to front tip, gradually turning

into green for points away from it. Both the pressure and the shear inclination

angles increase with strain rates towards the tip of the respective front. The

bow pressure shock front exhibits an angular evolution from 90◦ at the interface

(x2 = 0) to about 65◦ away from it (Fig. 3.3e and Fig. 3.5a), where the normal



70

10
-4

10
-2

10
0

10
2

10
4

10

20

30

40

50

60

70

80

90
Shock Front Inclination Angle

10
-4

10
-2

10
0

10
2

10
4

0.5

1

1.5

2

2.5

3
Wave Speed

0 5 10 15

-5

-2.5

0

2.5

5

-1000

-500

500

1000

19.5 us

0 5 10 15

-5

-2.5

0

2.5

5

-2000

-1000

1000

2000

19.5 us

Large FOV

Small FOV

Large FOV

Small FOV

Shear

Mach Cone

Pressure

Shock Front

Shear

Mach Cone

Pressure

Shock Front

a

b

Figure 3.5: Strain-rate dependence of the shock fronts inclination angles (a) and the
local pressure and shear wave speeds (b). (a) The shock inclination angles are calculated
by differentiating the shock fronts (Fig. 3.2, red lines) with respect to the x2-direction
(Fig. 3.3b and e) and at each coordinate along the shock front the corresponding strain-
rate values are obtained (Fig. 3.3c and f). From the values of the angles, (b) the shear
and pressure wave speeds are computed using equations 3.11 and 3.12. Both profiles
increase with strain rate and the pressure one appears to saturate for higher strain rate,
corresponding to the shock front approaching the normal condition (βp → 90◦). The
black dots, corresponding to points along the Mach cone in proximity to the rupture
tip, gradually turn to green moving away from it, analogously to Figure 3.3. The two
insets show the shear (top) and pressure (bottom) fields acquired via the DIC technique
applied to a small field-of-view (19 × 12 mm2). A thick white line is superimposed to
the respective shock fronts to help with their visualization. The three traces represent the
volumetric (black) and the shear strain rate (violet) along the interface. The location of
their maxima has been included in order to highlight the gap between them, corresponding
to the process zone (Fig. 3.4).
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portion of the pressure shock front is associated with higher strain-rates, while the

oblique portion is associated with milder ones (Fig. 3.3f and Fig. 3.5a). The shear

Mach cone features smaller angles and smaller angular variations (Figs. 3.3b and

3.5a), in combination with lower strain rates (Figs. 3.3c and 3.5a). Small FOV

measurements (Fig. 3.5a and b, insets) enable a higher spatial resolution about the

tip of the shock fronts, which allow more precise estimates of the strain-rate levels

and the associated angles in the HSR region (Fig. 3.5a). The combination of the

rupture-speed measurement with equations 3.11 and 3.12 allows the conversion of

the shock fronts inclination angles into the corresponding values of wave speeds

under steady-state rupture propagation conditions (Fig. 3.5b). Interestingly, these

results have been obtained with no assumption on the constitutive behavior

of the material. In fact, only trigonometric considerations derived from the

kinematic aspects of wavelets propagation (see section 3.3) under the assumption

of isentropic solid (with the exception of the shock fronts) have been considered

up to this point.

In the quasi-elastic solid approximation (Knauss and Zhu, 2002; Schapery,

1965) and steady-state rupture propagation conditions, the wave speeds are a

function of the local material properties, which depend on the strain rates (see

section on the Strain-Rate Dependence of the Wave Speeds), provided that the

previous strain-rate history is uneventful. These assumptions carry some degree

of approximation for the shear Mach cone due to the strain-rate history associated

to the pressure shock front ahead of it (Fig. 3.2). Conversely, they can directly be

applied to the pressure shock front due to the absence of strain-rate signals ahead

of it (Fig. 3.2), and, from the knowledge of the wave speeds and the Poisson’s

ratio (assumed to be constant (Davies and Hunter, 1963; Mulliken and Boyce,

2006; Richeton, Ahzi, Vecchio, Jiang, and Makradi, 2007), the Young’s modulus

can be computed as a function of the strain-rate magnitude, which in the plane

strain approximation takes the form:
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Figure 3.6: Young’s modulus strain-rate dependence in PMMA. The Young’s modulus
in the dynamic region of strain rates has been obtained from the knowledge of the
pressure wave speed (Fig. 3.5b) by using the linear-elastic wave relations in plane-strain
conditions (see equation 3.14), assuming a density ρ = 1180 kg/m3 (measured) and a
constant Poisson’s ratio of 0.35 (Davies and Hunter, 1963; Mulliken and Boyce, 2006;
Richeton, Ahzi, Vecchio, Jiang, and Makradi, 2007). The values in the low strain-rate
range (yellow triangles), between 10−5 and 10−2 s−1, have been obtained by performing
a compression test on a PMMA cylinder and simultaneously measuring the vertical and
hoop strains (see chapter 2, Fig. 2.8). These results are compared to those derived from
the literature on PMMA, where the diamonds indicate tensile tests, the hexagons indicate
shear tests, and all other symbols indicate compressive tests. The vertical solid black
line separates the region of dynamic strain rates, where measurements are performed via
SHPB experiments, from the one where servo-hydraulic compressive tests are capable
of reaching the required strain-rate levels of interest.

E(| Ûε(x(t))|) = c2
p(| Ûε(x(t))|)ρ

(1 + ν)(1 − 2ν)
(1 − ν) (3.14)

Figure 3.6 shows that these results are in the range predicted by those obtained

from the literature. The vertical black line at | Ûε(x(t))| = 102 s−1 separates the low

and intermediate strain-rate region from the dynamic regime where conventional

testing frames are incapable to induce high-enough levels of strain rates and SHPB

experiments become necessary (Chen, Lu, and Cheng, 2002; Chou, Robertson,

and Rainey, 1973; Fleck, Stronge, and Liu, 1990; Foster et al., 2015; Li and
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Lambros, 2001; Moy et al., 2003; Mulliken and Boyce, 2006; Richeton, Ahzi,

Vecchio, Jiang, and Adharapurapu, 2006; Richeton, Ahzi, Vecchio, Jiang, and

Makradi, 2007; Richeton, Schlatter, et al., 2005; Song and Chen, 2004) (Fig. 3.6).

Another approach is to formulate models incorporating viscoelastic features and

calibrating them by using quantities measurable via SHPB tests, such as the

peak stress and then derive the material elastic constants (Chen, Lu, and Cheng,

2002; Chou, Robertson, and Rainey, 1973; Fleck, Stronge, and Liu, 1990; Foster

et al., 2015; Li and Lambros, 2001; Moy et al., 2003; Mulliken and Boyce,

2006; Richeton, Ahzi, Vecchio, Jiang, and Adharapurapu, 2006; Richeton, Ahzi,

Vecchio, Jiang, and Makradi, 2007; Richeton, Schlatter, et al., 2005; Song and

Chen, 2004) (Fig. 3.6). Due to the intrinsic uncertainties of both these methods,

the values for the Young’s modulus in the dynamic region is characterized by

a much larger jitter, if compared to the lower strain-rate counterpart (Fig. 3.6).

For this reason, estimates of the Young’s modulus in this region are indicated by

empty symbols. Our measurements fall in the range drawn by those from the

literature, exhibiting good agreement. Despite the value of the Young’s modulus

seem to saturate for strain rates beyond 7 × 102 s−1, this apparent behavior is

likely related to the approximation of constant Poisson’s ratio (Davies and Hunter,

1963; Mulliken and Boyce, 2006; Richeton, Ahzi, Vecchio, Jiang, and Makradi,

2007). In fact, if the Poisson’s ratio is characterized by a decaying behavior

with strain-rate magnitude (Lu, Zhang, and Knauss, 1997; Sane and Knauss,

2001; Tschoegl, Knauss, and Emri, 2002), the Young’s modulus would exhibit

an increasing tendency over the entire range of measurement of strain rates (see

equation 3.14). For the sake of completeness, the quasi-static measurements we

acquired using a servo-hydraulic testing frames between 10−5 and 10−2 s−1 are

also included, which highlight the difference of the PMMA mesh we used in this

study when compared to those from the literature.

The Young’s modulus deviation from the linear behavior (in the logarithmic
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scale of strain rates), concentrated at elevated strain rates (and room temperature),

suggests the insurgence of an additional stiffening of PMMA in that range. A

number of studies on polymers, including PMMA, have highlighted a substantial

increase of other quantities (measurable via SHPB tests) in the dynamic range

of strain rates, such as the yield stress or peak stress (Bauwens-Crowet, 1973;

Chou, Robertson, and Rainey, 1973; Jordan et al., 2014; Mulliken and Boyce,

2006; Richeton, Ahzi, Vecchio, Jiang, and Adharapurapu, 2006; Rittel and Brill,

2008; Siviour, Walley, et al., 2005; Siviour and Jordan, 2016; Walley and Field,

1994). However, the methodology described in this manuscript enriches the

SHPB results by allowing the quantification of other material properties, such

as the pressure and shear wave speeds (under only kinematic assumption), and

the Young’s modulus (assuming a quasi-elastic material behavior and constant

Poisson’s ratio). The knowledge of these material constants in the dynamic range

of strain rates can foster progress in the design of lightweight structures required

to withstand dynamic loads. Although we performed our tests on PMMA, we

do not foresee any limitations in applying this technique to other materials. In

addition, although our results have taken advantage of spontaneously propagating

ruptures, externally driven ones can be equally effective, provided that the driving

signal propagate at speeds beyond the pressure wave speed of the undisturbed,

bulk material so that both sets of shock fronts are present. Finally, we do not

anticipate any limitation, aside of those related to an increased complexity of the

experimental setup, in applying this technique to higher-temperature tests.

3.4 Conclusions

Dynamic shear rupture experiments have been performed on PMMAsamples

and the ultra-high-speed digital image correlation was employed to produce

velocity and strain-rate fields. The shock fronts have been tracked and the direct
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dependence of their inclination angle on the strain-rate magnitude explored.

In order to convert the inclination angles into wave speeds, the validity of the

trigonometric relationship between the inclination angle and wave speed has been

proven for curved shock fronts scenarios in non-homogeneous media, provided

that (a) both the values of angle and wave speed refer to the same local coordinate

along the shock front, and (b) the rupture tip is propagating in steady-state

conditions. It is worth of notice that, in the presence of shock fronts, only

kinematic assumptions are needed to calculate the wave speeds of the material in

the dynamic range of strain rates. In the assumption of quasi-elastic solid, the

Young’s modulus has been computed as a function of strain-rate magnitude from

the knowledge of the pressure wave speed, where a constant Poisson’s ratio of

0.35 has been considered (Davies and Hunter, 1963; Mulliken and Boyce, 2006;

Richeton, Ahzi, Vecchio, Jiang, and Makradi, 2007). Due to the difficulty of

measuring the material properties at high strain rates (Siviour and Jordan, 2016),

the time-temperature superposition principle is commonly invoked for polymers

to indirectly extrapolate the properties to strain-rate values beyond the measured

ones, with the limitation that the accuracy (or even validity) of this method has

not been confirmed in the presence of β-transition in the glassy domain and even

in the rubbery domain, its applicability needs to be assessed on a case-by-case

investigation (Capodagli and Lakes, 2008; Lakes, 2004; Li, 2000; Plazek, 1996;

Sane and Knauss, 2001; Tschoegl, Knauss, and Emri, 2002; Van Gurp and

Palmen, 1998). Split-Hopkinson Pressure Bar tests can be employed to explore

strain rates comparable to our regime, yet they cannot accurately quantify the

material properties (Gama, Lopatnikov, and Gillespie, 2004), due to the inability

to attain strain-rate equilibrium conditions during the transient loading. For these

reasons, the experimental technique we present here, represents an alternative

method to quantify the wave speeds as well as the Young’s modulus in viscoelastic

solids in the dynamic regime of strain rates, provided that the rupture tip exceeds
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the LSR pressure wave speed of the undisturbed, bulk material (Vr > cLSR
p ),

so that both the shear and the pressure shock fronts are present. En passant,

we notice that, although our ruptures are spontaneous, in general, this is not a

requirement and they can be driven by an external dynamic load. Future work

shall be concentrated on the exploration of the applicability of the quasi-elastic

solid approximation to the shear Mach cone, despite the non-zero strain-rate

history associated to the presence of the pressure shock front ahead of it. Should

the applicability be confirmed, under reasonable assumptions, then, from the

knowledge of both the shear and pressure wave speeds, all the material properties

of the polymer under investigation can be derived, starting from the Poisson’s

ratio, which is a function of the pressure-to-shear wave-speed ratio only. We

conclude by noting that it may be helpful to perform this investigation to shear

Mach cones arising from intersonic ruptures, where cLSR
s < Vr < cLSR

p , in order

to avoid the presence of pressure shock fronts and have smoother and smaller

dilatational and compressional signals and consequent strain-rate histories instead,

which could potentially reduce the inaccuracy associated with its neglection in

the quasi-elastic solid approximation.
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3.A Rupture propagation regimes through materials charac-

terized by different wave speeds

Figure 3.7 shows four configurations of material properties for the rupture to

propagate into. (a) represents a supersonic rupture propagation in a viscoelastic

solid, highlighted by the presence of both shock fronts. In particular, at x2 = 0

the pressure wavelets outrun the rupture tip in the HSR region ahead of it. In this

region, the strain rates are monotonically decreasing and the pressure wavelets

decelerate, as shown in the x1-t-diagram, until they coalesce when their speed

equals that of the rupture tip behind. (b) is an equivalent case in which the ratio

between the rupture speed and that of the shear wavelets is kept the same, yet

the pressure wave speed of the material is higher so that the rupture tip is now

subsonic with respect to the LSR pressure wave speed. As a result, at x2 = 0

the pressure wavelets outrun the rupture tip in the HSR region and slow-down in

the LSR region further ahead, reducing the spatial distance among each other.

However, since the rupture speed is slower than the LSR pressure wavelets, they

never reach the conditions of coalescence and keep “escaping” the rupture tip. (c)

is an equivalent case in an isotropic linear elastic solid, characterized by material

properties equal to the HSR ones of the previous case (b). In this case, only one

shear and one pressure wave speed exist and the wavelets propagate at a constant

speed, preserving the circular symmetry. As a consequence, the shear Mach cone

is characterized by a constant inclination angle. A pressure shock front cannot

exist, since spontaneously propagating ruptures cannot exceed the pressure wave

speed in linear-elastic solids. Analogously, (d) is an equivalent case to (c), yet

where the material properties correspond to the LSR ones. The rupture tip cannot

reach or exceed the pressure wave speed of the material; however, it propagates

at speeds closer to it and therefore the pressure wavelets ahead of the tip are more

clustered, yet never forming a pressure shock front. As a consequence of the
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higher ratio between the rupture speed and that of the shear wavelets, the shear

Mach cone exhibits a steeper inclination angle than the previous case (c).
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Figure 3.7: Schematics of the shear and pressure shock fronts in different materials and
rupture regimes.
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CHAPTER 4

Triggering fault slip by fluid injection: effect on slip

stability and dynamic rupture properties

4.1 Introduction

Fluid overpressure is recognized to play a fundamental role in promoting

fault motion. The close connection between fluids and faulting has been revealed

by a large number of observations, both in natural events and in earthquakes

induced by human activities, such as wastewater disposal associated with oil

and gas extraction (Ake et al., 2005; Cappa, Guglielmi, et al., 2005; Cappa and

Rutqvist, 2012; Dahm, Hainzl, and Fischer, 2010; Ellsworth, 2013; Frohlich,

2012; Gan and Frohlich, 2013; Guglielmi et al., 2015; Keranen et al., 2014;

McGarr et al., 2015; Segall, Rubin, et al., 2010; Wei et al., 2015). Fluid-induced

slip behavior can range from earthquakes to slow, creeping motion. It has

been long thought that creeping and seismogenic fault zones have little to no
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Figure 4.1: Laboratory setup featuring a fluid-injection circuit capable of delivering
pressurized fluid to the specimen’s fault and trigger laboratory-scale earthquakes. The
sample has been cut into two identical halves joined together to form an interface that
mimics a crustal fault pre-stressed in compression and shear. This setup possesses the
capability to control the rate of injection, the fluid pres-sure and its temporal rate of
increase. The diagnostics consists of a high-speed camera, laser velocimeters (only one
is used in this study), strain gages (not shown in the Figure), and two cameras, one for
measurements of creep (not shown in the Figure), and one for tracking the fluid front as
it propagates over the interface prior the dynamic rupture nucleation (not shown in the
Figure).

spatial overlap. Nonetheless, growing evidence suggests that the same fault

areas can exhibit both slow and dynamic slip (Beroza and Ide, 2011; Chen

and Lapusta, 2009; Dragert, Wang, and James, 2001; Noda and Lapusta, 2013;

Peng and Gomberg, 2010). In seismogenic zones, the existence of large-scale

slow slip has been proposed by a number of studies investigating the physics of

foreshocks (Bouchon, Durand, et al., 2013; Brodsky and Lay, 2014; Kato, 2012)

and the presence of transient slow slip occurrences in subduction zones (Beroza

and Ide, 2011; Dragert, Wang, and James, 2001). Incorporating in physics-based

models the simultaneous ability of fault zones to slip both slowly and seismically
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has fostered a deeper understanding of key features of large-scale events, such

as the propagation of large earthquakes in creeping segments, the observation

of high-frequency content in slow slip sections, and the cumulative stress drop

released by the synergy of slow and dynamic events (Chen and Lapusta, 2009;

Cubas et al., 2015; Noda and Lapusta, 2013). The interaction of fluid-related

effects with the rate-and-state frictional properties is responsible for such complex

fault behavior. Dehydration reactions within or below natural faults (particularly

subduction zones) (De Paola et al., 2007; Di Toro et al., 2011; Dobson, Meredith,

and Boon, 2002; Jung, Green Ii, and Dobrzhinetskaya, 2004; Miller et al., 2004;

Okazaki and Hirth, 2016) and fluid injection into the subsurface (Ake et al.,

2005; Cappa, Guglielmi, et al., 2005; Cappa and Rutqvist, 2012; Dahm, Hainzl,

and Fischer, 2010; Ellsworth, 2013; Frohlich, 2012; Gan and Frohlich, 2013;

Guglielmi et al., 2015; Keranen et al., 2014; McGarr et al., 2015; Segall, Rubin,

et al., 2010; Wei et al., 2015) are two mechanisms responsible for increasing the

pore pressure p.

The shear resistance τres is typically described by the Amontons-Coulomb

friction model which linearly relates it via a friction coefficient f with the effective

normal stress σ̂n acting on a fault:

τres = f σ̂n (4.1)

where σ̂n = σn − p. The pore pressure p competes with the fault normal stress

σn and reduces the fault frictional resistance, promoting the insurgence of slip.

However, such slip may be stable (slow) or unstable (seismic). Simultaneously,

the critical length scale h∗ for a crack to energetically (dynamically) self-sustain its

growth in stready-state slipping conditions (Rice and Ruina, 1983; Rice, Lapusta,

and Ranjith, 2001) or quasi-static ones (Liu and Lapusta, 2008; Rubin and

Ampuero, 2005; Uenishi and Rice, 2003) is inversely proportional to the effective
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normal stress. The general form for the 2D theoretical estimate of the critical

crack size, h∗, on a rate-and-state fault with steady-state velocity-weakening

friction is given by h∗ = (µ∗L)/[F(a, b)(σn−p)], where µ∗ = µ/(1−ν) for modes

I and II, and µ∗ = µ for mode III (Uenishi and Rice, 2003), L is the characteristic

slip distance, and F(a, b) is a function of the rate-and-state friction parameters

a and b, which assumes the form of FRR(a, b) = 4(b − a)/π (Rice and Ruina,

1983, eqn. (40)), or FRA(a, b) =
[
π(b− a)2

]
/2b, with a/b > 1/2 and quasi-static

crack propagation (Rubin and Ampuero, 2005, eqn. (42)). This function, for

a fault in a 3D elastic medium in quasi-static slip conditions, needs to include

an extra factor: FCL(a, b) = (π2/4)FRA(a, b) (Chen and Lapusta, 2009). As a

consequence, an increase in pore pressure induces a reduction in the effective

normal stress, which, in turn, increases the critical length scale h∗, promoting

a stable slow (aseismic) slip. Indeed, recent field observations have proposed

that fluid injection can actually trigger slow slip (Cappa and Rutqvist, 2012;

Guglielmi et al., 2015; Wei et al., 2015).

However, the understanding of the dependence of the fault response on

the rate of pore pressure increase still remains elusive. Efficient shear-heating-

induced thermal pressurization (TP) of pore fluids has been shown to become

important late in the nucleation phase, well before detectable seismic waves are

radiated away from the fault, and to ultimately reduce the nucleation size (Segall

and Rice, 2006). However, despite the smaller nucleation size in patches with

more efficient TP, earthquakes tend to be nucleated in patches with less efficient

TP due to their higher interseismic shear stress (Noda and Lapusta, 2010). More

efficient TP patches experience larger stress drop and coseismic slip, yet they do

not rupture at every event due to the lower interseismic stress. The slip deficit on

the less efficient TP patch is compensated by more frequent smaller events.

To summarize, the complex interplay between fluids and the initiation of
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seismic or aseismic slip is an open research topic with paramount implications

for hazard mitigation, given the abundance of faults permeated with fluid due to

natural or human-induced activities in proximity of populated areas.

In this study, two nucleation techniques are investigated: (a) a gentle

fluid-pressure ramp-up; and (b) a sharp one. We show that, in cases of rapid

increase in pore pressure, both the steady-state and quasi-static assumptions fail,

and unstable slip is promoted for rupture lengths considerably smaller than the

critical ones predicted by the theoretical estimates (Chen and Lapusta, 2009; Liu

and Lapusta, 2008; Rice and Ruina, 1983; Rice, Lapusta, and Ranjith, 2001;

Rubin and Ampuero, 2005; Uenishi and Rice, 2003). Considerably less fluid is

delivered into the fault prior to the nucleation of seismic events, if compared to

the gradual pore pressure increase scenarios, and dynamic slip is triggered at

much lower levels of pressure. We also experimentally observe an intermediate

phase of accelerated slip prior to the initiation of the dynamic rupture, which

redistributes the stress over the interface. In cases of rapid pore pressure increase,

the stress redistribution is much more dramatic close to the injection location, yet

does not propagate all the way to the surface where the measurement stations are

located, jeopardizing the ability of anticipating the subsequent dynamic event,

which, once initiated, produces effects comparable to the ones arising by the

adoption of the slow nucleation protocol.

4.2 Fluid-Injection Experimental Setup

Specimen Configuration and Fluid-Injection Setup

In order to investigate the effects of fluids on the frictional faulting, a

hydraulic setup was designed to inject pressurized water onto the interface of

a Poly(Methyl Meth-Acrylate) (PMMA) specimen (Figs. 4.1 and 4.2). The

specimen is a 200 × 250 × 12.5 mm3 PMMA prism divided into two identical
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Figure 4.2: Specimen setup front and back side views. A 250× 200× 12.5-mm3 PMMA
sample is separated into two halves by an oblique interface (green-shaded area) at an
angle α = 29◦, and is preloaded by a vertical component P = 15 MPa (yellow arrows).
A thin duct of 1-mm diameter enables the injection of pressurized fluid directly onto the
interface. (a) On the front side, a pattern of random black dots is painted over a flat white
background in a region of 50 × 40 mm2 in order to allow displacement measurements
through the DIC technique. The temporal derivative of the displacement fields produces
velocity fields, of which the horizontal component Ûu1 is shown in the inset during a
foreshock event (Fig. 4.14). (b) On the back side, two strain rosettes are glued just
below the interface and 20 mm from each other, which are each capable of measuring
three strain tensorial components, separated by 45◦ angles. These components can be
converted into the strains along the fault ε11, normal to it ε22, and the shear one ε12.
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halves by an oblique cut at an angle α with respect to the 200-mm dimension

(Fig. 4.2). The juxtaposition of these two halves creates an interface (green-

shaded area), whose surfaces have been polished and bead-blasted to obtain

desired and repeatable tribological conditions (Mello et al., 2010). The setup

allows us to achieve a wide range of water peak pressure, flow rate, pressure

rise-time, and duration of pressure plateau. After the pressurization by the pump,

the water pressure is modulated by a manual regulator and its flow rate by a needle

valve (Figs. 4.2 and 4.4). The pressure regulator allows a wide range of rising

times, spanning from fewMPa per hour to fewMPa per second. A solenoid valve,

characterized by a rapid opening time, is employed to produce sharper rising

times of the order of fewMPa per tens of milliseconds, which would otherwise be

impossible to replicate with the manual pressure regulator. In a zero-time-to-open

approximation, the valve mimics a theoretical diaphragm separating a fluid at

different pressure levels on either side. The sudden disappearance (opening) of

such diaphragm gives rise to a Riemann problem (Liepmann and Roshko, 1957;

Roe, 1981) in which a shock wave travels downstream of the pipe followed by

a (slower) contact discontinuity, while an expansion fan travels upstream. The

solenoid valve, which is actuated via a small electrical circuit, allows the creation

of much sharper pressure ramp-up signals to be delivered to the specimen’s

interface (Figs. 4.2 and 4.4). Two pressure transducers are located on either side

of the solenoid valve in order to simultaneously measure the pressure upstream

and downstream of it, regardless of the open or close configuration of the valve.

These transducers are characterized by a cut-off frequency of 5 Hz and 3 kHz,

respectively. For the sake of clarity, the same color scheme associated with each

of the two pressure transducers in Figure 4.4b will be consistently adopted in

the plots throughout this manuscript: purple refers to the pressure measured

upstream of the solenoid valve and blue to the pressure downstream of it. The

pressure value measured downstream of the valve is delivered to the specimen’s
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interface (Fig. 4.4b). At the ambient pressure and temperature, the speed of sound

in water is approximately 1.5 km/s. In order to achieve pressure equilibrium

over a 2-meter-long pipe, 5 ms are needed for 3 − 4 wave reverberations to occur.

Considering that the shortest time scale in the injection circuit is that of the

opening of the solenoid valve, which is in the order of tens of milliseconds,

assuming pressure equilibrium between the pressure transducer downstream of

the valve and the injection location on the specimen’s interface is not a bad

approximation.

Figure 4.3: Drawing of the bottom half of the specimen, divided by a cut at an angle
α = 0◦. Over the interface a constellation of holes 0.5-mm in both diameter and depth
allows the measurement of the pore pressure as the water fills them and the local pressure
is increased.

Diagnostics

Local and Global Pressure Measurements

The pressure transducers provide a well-resolved temporal history in cor-

respondence to the duct, however, they cannot quantify the pressure at other

locations on the interface as the fluid diffuses over it. In order to measure the
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pressure distribution over the interface, a specimenwith a cut at an angle of α = 0◦

is employed in order to avoid sliding and is loaded up to the resolved normal

stress of the corresponding α = 29◦ case, i.e., P = 15 cos2(29◦) = 11.5 MPa.

A population of holes 0.5 mm in both diameter and depth are drilled on the

bottom half interface (Fig. 4.3), so that, upon the juxtaposition of the two halves

of the specimen, there is no surface contact in correspondence to each hole,

and a small volume of air at ambient pressure (pamb ≈ 0.1 MPa) is trapped

there. On the interface between the two halves of the specimen a 0.5-mm

thick Fujifilm Prescale® tactile pressure-indicating sensor film is placed, which

locally and irreversibly changes color in proportion to the amount of pressure it

experiences. Its range of measurement spans between 2.4 and 9.7 MPa, with a

spatial resolution of 5 ÷ 15 µm, and an accuracy of ±2% (data provided by the

manufacturer). For this reason, measured pressure values smaller than or equal

to 2.4 MPa have been manually set to be equal to the ambient pressure. After the

specimen is loaded to the desired level, the pressure film experiences the resolved

normal stress (P = 11.5 MPa) in correspondence to the areas of contact. This

stress level exceeds the upper bound of the pressure measurement range of the

film (9.7 MPa), which thus chromatically saturates (Fig. 4.6). However, in the

locations of the 0.5-mm holes, there is no contact and the pressure is equal to the

ambient one (pamb ≈ 0.1 MPa). As a consequence, the film does not assume any

coloration in correspondence to the holes.

As the water escapes from the injection location, driven by the high pressure

gradient, it fills the holes and increases the pressure level inside them. This

increase is picked up by the film, which assumes a coloration in proportion to

the local-hole pressure level. In summary, the pressure measured by the film

in correspondence to the population of holes is representative of the spatial

distribution over the interface.
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Full-field Imaging and Digital Image Correlation

In order to quantify both the slow slip δ and its rate Ûδ in the absence of

pressurized fluid, on the front side of the specimen (Fig. 4.2a), a thin layer of white

paint is deposited and a 50 × 40 mm2 random pattern of optimally-sized black

dots is added on top of it, symmetrically with respect to the injection location

and the fault. Images are acquired via a 2448 × 2050 pixel EO-5023M camera

at 2 frames per minute, allowing displacement measurements via digital image

correlation (DIC) (Sutton, Orteu, and Schreier, 2009) over a 45× 38 mm2 field of

view (FOV). The images are then filtered by means of non-local (NL) de-noising

algorithms (Buades, Coll, and Morel, 2008; Rubino, Rosakis, and Lapusta, 2017)

and numerically differentiated with respect to time in order to obtain velocity

fields (see chapters 2 and 3). At the laboratory scale, displacements during

creeping motion are well below the micron scale. Having 2448 pixels over a

45-mm long field of view corresponds to about 20 µm/px. The accuracy of

DIC algorithms with optimally chosen interpolating functions can reach 1/200

of a pixel (Sutton, Orteu, and Schreier, 2009) and therefore 0.1 µm, which,

theoretically, fall in this range. However, a number of sources of noise can

generate random vibrations well above the micron scale. In order to counteract

these influences, for each frame, five images are collected at a rate of 3 per second

and averaged among themselves, and a relatively large subset of 101× 101 pixel2

is adopted to smoothen out the solution from the DIC technique (ibid.). The slip

δ is computed as the difference of the fault-parallel displacement u1 on either side

of the interface, δ = |u+1 − u−1 |. Assuming the slip to be homogeneous during the

slow-slip phase in the absence of pressurized fluid, all the displacement values

below the interface can be averaged among themselves ū−1 and then subtracted

from the averaged ones above it ū+1 , in order to obtain, for each frame, a single

value of averaged slip δ̄ and slip rate Û̄δ.
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All the results presented in this manuscript are with respect to the reference

frame aligned with the inclined interface, where the x1-direction is along the fault

plane, the x2-direction is normal to it (Figs. 4.2a and 4.4a) and the x3-direction is

out-of-plane.

Strain Measurement System

On the back side of the specimen (Figs. 4.2b and 4.4a), two strain gages

are placed just below the interface: one in proximity to the injection location

(SG-0) and the other one 20 mm away from it (SG-20). They are connected to a

high-speed acquisition system capable of collecting data (at a reduced sampling

rate) over several minutes and also resolving the microsecond time scale once a

triggering signal is received. Using this technique, strain signals are acquired

at temporal scales spanning over nine orders of magnitude. Linear-elastic

constitutive relationships are adopted to convert strains into stresses, where,

given the viscoelastic nature of PMMA, low-strain-rate (LSR) material properties

are used for the measurements acquired prior to the dynamic rupture, while

high-strain-rate (HSR) material properties are employed otherwise (Chapter 2

and 3). Adjacent to the SG-0, just above the interface, a retro-reflective tape is

used to mirror the laser beam from a vibrometer and provide a triggering signal

as soon as the nucleation of the dynamic event occurs.

Upon the application of an external load P (Fig. 4.2, yellow arrows) of

15 MPa, the interface experiences a resolved normal and shear stress of P cos2(α)

and P sin(α) cos(α), respectively. Note that the load P is kept constant by setting

the loading frame in the load-control mode.

Under these conditions, the pressurized fluid is introduced onto the interface

through a 1-mm-diameter duct (Figs. 4.2 and 4.4a, blue channel). A Buna-N

rubber o-ring, placed at the bottom of the specimen, guarantees the seal from
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Figure 4.4: Fluid-injection setup. (a) Close-up view of the interface of the specimen
about the injection location, on the back side where the strain gages are placed (Fig. 4.2b).
The laser vibrometer signal is used to detect dynamicmotion in the x1-direction associated
with the laboratory-scale seismic event and trigger the acquisition of the strain gage
signals at high-bandwidth (1 MHz). (b) The water, after being pressurized by the
pump, crosses a series of components: a high-pressure regulator for manual pressure
modulation in the range of few MPa over several minutes to few MPa per second; a
pressure transducer for pressure readings upstream of the solenoid valve; a solenoid
valve activated by a switch, allowing sharp pressure ramp-up profiles in the order of
few MPa per hundred milliseconds; and another pressure transducer downstream with
bandwidth capability of 3 kHz. This second transducers measures the fluid pressure just
upstream of the duct prior to its delivery to the interface.

water spills, however, it adds a small thickness that is reduced as the specimen is

compressed by the loading frame. This reduction in volume tends to squeeze

a small quantity of fluid onto the interface. For this reason, a 1-cm-long layer

of (compressible) air, approximately corresponding to 3.1 × 10−8 m3, is left on

top of the fluid meniscus prior to starting the loading phase. After the desired

far-field load is reached and the absence of liquid on the interface is confirmed,

the fluid pressurization phase can begin.

PMMA vs. Natural Rock

One important advantage of using PMMA as the analog material is its

reduced shear modulus (µPMMA ≈ 1.2 GPa) compared to that of rocks (µrock ≈

30 GPa). Since characteristic rupture length scales, such as the critical sizes

previously mentioned, are proportional to the shear modulus of the host material,
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ruptures propagating within the bulk of the specimen have characteristic rupture

length scales smaller than rocks by a factor of µrock/µPMMA ≈ 25, under the

assumption of similar frictional properties. Indeed, the critical crack size falls

in the range of few centimeters for the set of experimental conditions that we

explore, allowing the flexibility to nucleate dynamic ruptures and letting them

spontaneously develop within the 200-mm sample size (Lu, Lapusta, and Rosakis,

2009). For this reason, our laboratory experiments with PMMA offer a unique

opportunity to study, in real time, rupture features that would otherwise be

impossible to reproduce and observe on manageable samples made of natural

rock material (Beeler et al., 2012; Dieterich, 1981; McLaskey and Kilgore, 2013;

McLaskey, Kilgore, et al., 2014; Okubo and Dieterich, 1984).

4.3 Results and Discussion

Pressure Measurements: Slow vs. Fast Injection

Two fluid-induced seismic-initiation protocols are investigated: (a) a gentle

pressure build-up until a dynamic rupture spontaneously occurs (Fig. 4.5a); and

(b) an abrupt pressure build-up, where a sharp pressure profile is induced by the

sudden opening of the solenoid valve (Fig. 4.5b). For consistency, in the latter

case, the pressure upstream of the solenoid valve – prior to its opening – is set

to the same level as that at which the rupture spontaneously nucleated in the

slow opening counterpart. In addition, the same specimen is used to perform the

experiments in both cases.

Throughout this chapter, the time of initiation of the dynamic event is set

to be equal to zero. Thus, negative values of time indicate events prior to the

triggering of the dynamic rupture. All tests have been performed on specimens at

an angle of 29◦ and vertically loaded at 15 MPa (Fig. 4.2), resulting in a resolved

normal and shear stresses of 11.5 and 6.4 MPa, respectively.
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Figure 4.5: Pressure ramp-up profiles. Two protocols are employed to deliver pressurized
fluid onto the interface of the specimen: (left) a slow pressure ramp-up over 27 minutes;
and (right) a rapid one over few hundred of milliseconds, achieved via the quick opening
of the solenoid valve. For the sake of clarity, the color code of the pressure data
mimics that of the labels of the pressure transducers in Figure 4.4b: purple for upstream
of the valve and blue for downstream. The red star indicates the triggering of the
dynamic rupture recorded by the laser velocimeter (Fig. 4.4a), which is set at the origin
of our temporal scale. The green dashed line represents the resolved normal stress
σn = P cos2(α) the fluid pressure is competing with.

In the first scenario (Fig. 4.5a), the pressure is gradually increased from the

ambient level (about 0.1 MPa) until the insurgence of the dynamic rupture (red

star) at 8.7 MPa (76% of the resolved normal stress). With an average rate of

5.3 × 10−3 MPa/s, it takes approximately 27 minutes to reach the conditions for

rupture initiation. The pressure transducer downstream of the solenoid valve

(Figs. 4.1 and 4.4b) allows a higher temporal resolution (Fig. 4.5a, inset). Its

measurement exhibits a marked pressure reduction over few tens of millisecond

after the rupture initiation and is characterized by an initial brief oscillatory

period. The pressure behavior after the nucleation of the dynamic rupture is

influenced by four phenomena: (a) the increase of porosity due to slip-induced

dilation (Marone, Raleigh, and Scholz, 1990; Segall and Rice, 1995); (b) the

pressure waves’ reverberations through the circuit pipes between the pump and

the specimen’s surface in the attempt to achieve pressure equilibrium; (c) the

inability of the loading frame to keep the load constant after the rupture, due to
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its reaction time several orders of magnitude slower than the characteristic times

of the dynamic slip event; and (d) the fluid pump attempting to re-pressurize

the circuit after a pressure loss is detected. While the pressure reduction due to

dilation is related to the initial phases of the insurgence of the slip and is thus

intrinsically characterized by time scales in the order of 100 ÷ 101 µs, which are

well below the pressure transducer temporal resolution, all other phenomena live

in the milliseconds time scale. In particular, the initial oscillations (Fig. 4.5a,

inset) are due to the waves’ reverberations traveling through the pipes; the

following pressure decrease phase is due to the dilatancy of the interface as a

consequence of normal stress loss due to slip not compensated by the slower

response time of the loading frame; and, finally, the subsequent pressure increase

is due to the attempt of the pump to re-pressurize the circuit in reaction to the loss

of pressure due to the fluid escaping through the lateral surfaces of the specimen

(x3 = ±thickness/2). This behavior is not observed in the rapid pressure ramp-up

scenario (Fig. 4.5b). We speculate that there are two possible reasons: first, the

process is happening during a pressure increase with continuous provision of

fluid from upstream; and second, the total accumulated slip is much lower, due

to earlier rupture arrest, as opposed to the slow pressure ramp-up scenario.

The abrupt pressure ramp-up experiments are performed on the same

specimen and in the same loading conditions as the previous case. The water

pressure upstream of the valve and prior to its opening is set to the same level

of 8.7 MPa at which the rupture spontaneously nucleated when a slow pressure

ramp-up protocol was adopted (Fig. 4.5a). Upon the sudden opening of the valve,

the pressure measured by the second transducer (Fig. 4.4b) shows an average

rate of about 3.1 × 101 MPa/s over few hundreds of milliseconds (Fig. 4.5b). In

these conditions, the rupture nucleation occurs at 4.9 MPa (42% of the resolved

normal stress), which is about 56% of the 8.7 MPa reached by adopting the slow

pressure ramp-up protocol, suggesting that, under the same conditions, the rate
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of injection plays a major role in promoting the nucleation of dynamic ruptures

by considerably reducing both the pressure and the volume of fluid required for

the rupture initiation.

Pressure Diffusion over the Interface

Pressure Tactile Sensor Film

In order to measure the pressure distribution over the interface, a gradual

pressure ramp-up profile equivalent to that in Figure 4.5a is imposed to a specimen

whose inclination angle is α = 0◦ and where holes 0.5 mm in both diameter

and depth are excavated on the bottom half of the interface (see Fig. 4.3 and

section 4.2). A Fujifilm Prescale® tactile pressure-indicating sensor film is

inserted within the interface and the specimen is loaded to the resolved normal

stress of the corresponding α = 29◦ case, i.e., P = 15 cos2(29◦) = 11.5 MPa. The

portion of the film where the two surfaces are in contact chromatically saturates

(a reminiscence of the population of asperities is visible by the small-scale

color variation over the contact portion of the interface), while the locations

corresponding to the holes do not experience any pressure variation and therefore

no color change is induced. Upon then the injection of the pressurized fluid, the

hole corresponding to the injection duct assumes coloration as soon as 2.4 MPa

are exceeded. As the pore pressure at the injection duct gradually increases all

the way up to 8.7 MPa (Fig. 4.5a), the coloration becomes more and more intense

(Fig. 4.6).

After the experiment is completed and the pressure film has assumed its

coloration, the color reading at each pixel is converted into pressure. At each

hole, the pressure level is the resulting from the average of the five smallest values

among themselves (Figs. 4.6 and 4.7). This is justified by the idea that the less

colored portions of each hole (closer to its center) are minimally affected by small
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Figure 4.6: Pressure measurement from the Fujifilm tactile pressure-indicating sensor
film. The sensor changes color as it experiences pressures in the range between 2.4
and 9.7 MPa. The specimen has been loaded to P = 15 cos2(29◦) = 11.5 MPa, which
chromatically saturates the pressure film, except in correspondence to the holes (darker
dots). The pore-pressure time history at the injection duct mimics that of the gradual
ramp up (Fig. 4.5a), while the final distribution over the interface, corresponding to the
same conditions the dynamic rupture occurred (at 8.7 MPa), is measured by the holes.

irregularities due to the interaction of the pressure film with the circular border of

each hole, and therefore carry the actual pressure information. With time, as the

fluid diffuses over the interface and the pressure level raises, the holes adjacent

to the injection duct start experiencing this pressure increase, although so mildly

that the color of the pressure film does not significantly change (Fig. 4.6). This

suggests that the pore-pressure rapidly decays away from the injection location

and, few millimeters away from it, its value falls below 2.4 MPa, which is the

lower measurable bound for the tactile pressure film. Whenever the pore pressure

drops below this limit, a value equal to the ambient pressure (pamb ≈ 0.1 MPa)

has manually been imposed (Fig. 4.7).

Since the pressure film can only provide post-mortem scenarios, the rapid ramp-up

protocol could not be reliably tested using this experimental configuration.

Pressure-Diffusion Model

Adiffusivemodel is adopted to numerically estimate the pressure distribution

over the interface given the knowledge of its time history at the injection site,

measured by the pressure transducer downstream of the solenoid valve. The

experimental results from the Fujifilm Prescale® tactile pressure-indicating sensor

film are used as a benchmark.
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Figure 4.7: Pressure measurement corresponding to the 0.5-mm wide holes using the
Fujifilm tactile pressure-indicating sensor film, derived from Figure 4.6. The pore
pressure rapidly decays away from the injection duct due to the ambient pressure along
the boundaries of the sample.

The combination of the fluid continuity equation and the Darcy’s law, which

relates the fluid flux with the pressure gradient in a saturated medium under

steady state conditions and laminar flow (low Reynolds number), leads to a 2D

transport equation for the fluid flow in thin layers (Detournay, 2004; Garagash

and Detournay, 2000; Segall and Rice, 1995; Walder and Nur, 1984; Wong, Ko,

and Olgaard, 1997; Zhang, Jeffrey, and Thiercelin, 2009):

∂p
∂t
− c∇ ·

(
κ∇p

)
= 0 (4.2)

For the sake of simplicity, we linearize the problem by neglecting the dependence

of permeability κ on the spatial location (and thus also on the pressure). In

addition, the variation of both c and κ due to slow-slip-induced dilation has not

been considered here (Segall and Rice, 1995).

∂p
∂t
− αhy∇2p = 0 (4.3)

where αhy = cκ is the hydraulic diffusivity. An implicit Crank-Nicholson finite-

difference scheme is adopted to numerically solve equation 4.3. The results are



99

summarized in Fig. 4.8, where a hydraulic diffusivity αhy = 10−6 m2/s has been

used.
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Figure 4.8: Fluid-pressure distribution over the interface at rupture initiation. The
pressure distribution is estimated by numerically solving equation 4.3, where the pressure
ramp-up profiles from Figure 4.5 are imposed at the node corresponding to the injection
location, for the slow case (left) and the rapid one (right), respectively. The rapid decay
of pressure away from the injection channel is due to the ambient-pressure boundary
condition along the lateral sides of the interface. The bottom panels represent a slice
through the plane x3 = 0 and highlight the substantial different pressure distribution
scenario under which the dynamic rupture nucleates.

In order to simulate the pressure diffusion over the interface, both the slow and

rapid pressure ramp-up history profiles in Figure 4.5 are numerically imposed

as a point source at the injection location. Figure 4.8 shows the computed 2D

pressure distribution over the interface at the time when the rupture nucleates.

Both cases are characterized by sharp gradients of pressure about the injection

location, rapidly decaying away from it, although the fast ramp-up case (Figs.4.5b

and 4.8b) exhibits steeper gradients.

Equation 4.1 can be re-arranged to find the corresponding critical value

of pore pressure p∗ for which, slip is initiated, assuming a peak (static) friction

coefficient fp:
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p∗ = σn −
τ

fp
= P cos2(α)

(
1 − tan(α)

fp

)
(4.4)

If P = 15 MPa, α = 29◦, and fp = 0.65 (Rubino, Rosakis, and Lapusta,

2017), the slip is activated wherever the pore pressure exceeds the critical value

p∗ = 1.7 MPa over the interface. We emphasize that slip motion can be either

stable (aseismic) or unstable (seismic), depending on whether the length of the

slipping patch exceeds the nucleation size (see section 4.1). However, once

the slip is initiated, the patches on the interface undergoing slip release shear

stress, which is accumulated on the surrounding areas that are either locked or

slipping at a slower rate. The slip-related stress redistribution gives rise to a

highly heterogeneous problem, which cannot be solved analytically. We employ

strain-gage measurements (see section 4.3) to experimentally explore this regime,

and plan to explore the slip initiation in a future numerical study.

Figure 4.9: Slip rate temporal history of a loaded specimen. The blue curve represents
the data obtained from quasi-static DIC measurements averaged and filtered, while the
red curve is an exponential fitting, in compliance to the rate-and-state friction law. After
the application of an external load of P = 15 MPa, the specimen is left untouched for the
entire duration of the test. The slip rate spontaneously evolves from 3 × 10−10 m/s to
10−11 m/s. These values, despite being very small, prove that the interface is never fully
locked.
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The rate-and-state frictional formulation predicts that an interface is always

slipping with rates that can range from quasi-static to dynamic (Di Toro et

al., 2011; Marone, 1998; Scholz, 1998). As a consequence, the shear stress

acting on a frictional surface always equals the shear strength. This formulation

is supported by the experimental evidence. In order to explore the slip rate

experienced by a sample over a 24-hour period, a specimen has been loaded

up to P = 15 MPa and then left untouched for the entire duration of the test.

Simultaneously, every 10 minutes, 5 frames are collected by an EO-5023M

camera and then numerically averaged among each other to counteract the noise

level. The fault-parallel displacement field, u1, has been derived via digital image

correlation and, by time differentiation, also the velocity field, Ûu1. Assuming

a homogeneous slip behavior along the interface, all the pixels just above and

below the interface have been averaged in order to produce a single value of slip

δ̄ and slip rate Û̄δ per image. This expedient is essential in order to counteract the

noise level and obtain meaningful measurements at such low levels of slip (in

the order of 1 ÷ 10 µm/day) and slip rate (in the order of 10−11 ÷ 10−10 m/s).

The temporal history of these values is reported in Figure 4.9, highlighting that

the interface, despite experiencing a very small amount of slip and slip rate, is

never fully locked. Moreover, the average slip rate Û̄δ continuously decreases from

3×10−10 m/s to 10−11 m/s, suggesting that a steady-state behavior is not achieved

as a consequence of the evolving contact area of the micro-scale population

of asperities, which is captured by the evolution of the state variable θ. This

behavior is well described by the rate-and-state frictional formulation.

The measurement of slip-rate during slow slip tests presented in Figure 4.9

can be used to estimate the reference friction coefficient f∗ within the rate-and-

state framework as follows:
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τ
���
10−9 m/s

=

[
f∗ + a log

( Ûδ
Ûδ∗

)
+ b log

( Ûδ∗θ
L

)]
(σn − 0) (4.5)

If Ûδ∗ = 10−6 m/s, a = 0.011, b = 0.016, L = 1 µm, θ = 300 s, σn = P cos2(α) =

11.5 MPa and τ = P sin(α) cos(α) = 6.4 MPa, this relationship can be solved for

the reference value of the frictional coefficient f∗ = 0.54 MPa that is required to

sustain a slip rate of Ûδ = 10−9 m/s.

In this framework, the shear stress / strength required to achieve an instantaneous

accelerated slip rate Ûδ of 10−4 m/s is:

τ
���
10−4 m/s

=

[
f∗ + a log

( Ûδ
Ûδ∗

)
+ b log

( Ûδ∗θ
L

)]
(σn − p∗) (4.6)

By adopting the same parameters, this relationship can be solved for the (upper

bound) critical value of pressure p∗ = 2.1 MPa that is required to induce an

accelerated slip rate of Ûδ = 10−4 m/s. This pore pressure level is in good

agreement with the one predicted by equation 4.4, suggesting that, under these

conditions, activating accelerated slip motion requires less than 20% reduction

of the effective normal stress.

Rapid Fluid-Injection and Locally-Elevated Slip Rate

An insight into the effects of rapid pressurization of the interface on slip

can be obtained by considering the approximation of the rapid ramp-up profile

by an instantaneous pressure change and how the associated strength, and hence

stress drop, results in high, dynamic levels of slip rate that jump-start the rupture.

The 2D elasto-dynamic relations allow the expression of the stress on the fault

plane in terms of the slip history as:

τ(x1, t) = τ0(x1, t) + g(x1, t) −
µ

2cs
Ûδ(x1, t) (4.7)
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where µ = 1.2 MPa is the shear modulus, cs = 1 km/s is the shear wave speed,
Ûδ is the slip rate, τ0 = P sin(α) cos(α) = 6.4 MPa is the initial shear stress, and

g(x1, t) is a linear functional of the history of slip (Lapusta and Liu, 2009). If

the interface is governed by the rate-and-state friction formulation, then the

shear stress in equation 4.7 is assumed to be always equal to the frictional

strength in equation 4.1 and, right before the fluid injection, the interface is not

precisely locked, but rather creeping with negligible slip rates of the order of
Ûδbef = 10−9 m/s (Fig. 4.9). Under such conditions, the second and third term in

equation 4.7 are nearly equal to zero and:

τbef = τ0 = fbef(σn − 0) (4.8)

where fbef is the rate-and-state friction coefficient, and the pore fluid pressure pbef

is equal to zero. Let us assume that the pore pressure instantaneously increases

from zero to its peak value of paft = 4.9 MPa from the rapid pressurization

procedure. The resulting instantaneous balance of the shear strength and hence

shear stress can be written as:

τaft =

{
fbef + a log

( Ûδaft
Ûδbef

)}
(σn − paft) = τ0 −

µ

2cs
Ûδaft (4.9)

where a = 0.011 quantifies the direct effect of the rate-and-state friction and

the functional g is assumed to be instantaneously zero, as would be the case for

uniform slip. Solving numerically for Ûδaft with the direct effect included gives

a value of 1.2 m/s. Ignoring the direct effect in the rate-and-state formulation,

the predicted slip rate associated with an instantaneous pore-pressure increase is

higher, since the energy needed for the direct effect is now available, according

to this simplified model, for slipping:
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Ûδ = 2cs

µ
[τ0 − fp(σn − paft)] = 3.5 m/s (4.10)

These slip-rate estimates correspond to the 1-mm length scale of the duct. We

notice that the actual slip rates should be somewhat lower than the predicted ones

due to the non-instantaneous pore pressure increase. As a result, a non-uniform

stress and slip would activate the stress-distributing functional g, ultimately

penalizing the slip rate term of equation 4.9. Still, these estimates explain the

dramatic initiation of the rupture in the scenario of fast pore-pressure increase,

with essentially no wetting of the interface beyond the injection site. Such a high

slip rate likely induces a dramatic dynamic weakening of the friction coefficient

due to flash heating within several microns of slip (Rubino, Rosakis, and Lapusta,

2017), which, although local, is enough to initiate the dynamic rupture. This

argument explains the considerably reduced nucleation length associated with

the rapid pressure ramp-up scenario compared to the slow one.

Imaging the Fluid Diffusion

In order to track the fluid profile as it diffuses over the interface, a series of

snapshots of the interface have been taken through the transparent back side of

the specimen (Figs. 4.2b and 4.10). In the slow pressure ramp-up scenario, the

rupture nucleates when the wetted portion of the interface reaches an average

length of 74 mm, from the 1-mm initial one. Compared to our diffusion model

(Fig. 4.8), the fluid seems to spread more rapidly in the actual test, likely because

the dependence of permeability on the slip process is ignored in the modeling.

Note that, prior to initiating the external loading phase, about a centimeter of

air is left on top of the water meniscus, leaving about 3.1 × 10−8 m3 of volume

of (compressible) air, at ambient pressure (pamb ≈ 0.1 MPa). This procedure is

adopted in order to avoid, during the far-field loading phase, squeezing a small
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quantity of water from the thin channel onto the interface prior to the application

of any pressure to it, due to the compression of the o-ring at the bottom of the

specimen (see section 4.2). After the desired far-field load is reached and the

absence of liquid on the interface is confirmed, the gradual pressurization of

the water can begin, which drives the water diffusion over the interface. This

lubrication problem (Detournay, 2004; Garagash and Detournay, 2000; Miller

et al., 2004; Segall and Rice, 1995; Walder and Nur, 1984; Zhang, Jeffrey, and

Thiercelin, 2009) is characterized by a highly non-uniform pressure decay from

the peak value at the injection location outwards towards the ambient pressure

lateral boundaries (Fig. 4.8).

Due to the non-uniformity of the pressure profile within the wet portion of

the interface, it is not appropriate to directly compare the length of this region

with the nucleation length estimates obtained under the assumption of a uniform

effective stress. However, the wet portion of the interface represents an upper

bound of the nucleation size and, most importantly, allows a direct comparison

between the two nucleation modes under investigation: the slow and the rapid

one. From the Rice and Ruina, 1983 formulation, h∗ lies in the range between

25 and 120 mm, if a uniform fluid pore pressure p is considered in the range of

1 to 9 MPa (the higher value associated with the lower length), a normal stress

σn of 11.5 MPa, a shear modulus µ of 1.2 GPa, a Poisson’s ratio ν of 0.39, and

rate-and-state parameters a, b, and L of 0.011, 0.016, and 1 µm respectively (Lu,

2009). By assuming the Rubin and Ampuero, 2005 formulation, h∗ falls in the

range between 70 and 320 mm, for the same choice of parameters. Hence, the

74-mm length of the wetted portion of the interface for the slow pore pressure

increase case is broadly consistent with the theoretical estimates of the nucleation

size. More detailed analysis of the nucleation procedure and nucleation sizes for

non-uniform effective stress distributions will be explored in future numerical

studies.
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Figure 4.10: Fluid diffusion on the interface driven by pressure gradient. (left) Snapshot
of the back side of the specimen (Fig. 4.2b) during a slow pressure ramp-up (Fig. 4.5a).
For sake of clarity, we present a snapshot from another test, where no pattern for DIC
was applied over the interface and the strain gages have been placed on the front side
of the specimen. Instead, two 1 × 1-mm2 squares of retro-reflective tape are positioned
corresponding to the strain gages on the back side. The wet portion of the interface
has been enhanced and enclosed into blue lines for better visibility. (right) Top view
of the interface for the case corresponding to the test exhibited in Figure 4.5a. The wet
portion (enclosed by the blue lines) is shown at several temporal instances, indicated by
the green label on the right-hand side. Its average length is indicated in millimeters just
above the corresponding case, and, at rupture initiation (t = 0), amounts to 74 mm.

In order to record the rupture initiation in the rapid pressure ramp-up

scenario, in analogy to the result shown in Figure 4.10, a Shimadzu HPV-X

high-speed camera, capable of resolving the millisecond time scale, has been

employed. Interestingly, at rupture initiation, no fluid is visible on the interface,

indicating that the thin volume of air above the water meniscus in the fluid

channel acts itself as a (compressible) fluid by transmitting the overpressure to

the interface above it. The presence of water on the interface becomes visible

about 1 ms after the initiation. It is difficult to estimate a characteristic length for

the fluid (air) extension over the interface. However, it is clear that, in comparison
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to the slow nucleation procedure, the quantity of fluid delivered to the interface

is much smaller, which, in addition to the lower pressure required to initiate the

rupture (Fig. 4.5), suggests that the concept of rupture-nucleation length must

include a previously-unexplored rate dependency. Clearly, if the rate of injection

is sufficiently fast, dynamic events can be triggered at much lower fluid pressures

and smaller volumes of injected fluid.

Strain measurements unveil non-uniform slip leading to rupture nucleation

The adoption of strain rosettes enables the local reconstruction of the strain

tensor over more than nine orders of magnitude in time. Under the linear-elastic

plane-stress approximation, stresses can be derived from strains, where the low

strain-rate material properties are used for the slow and accelerated slip scenarios

and the high strain-rate properties for the dynamic one. Figures 4.11 and 4.12

show the shear τ12 (yellow), fault-normal σ22 (green) and fault-parallel σ11

(cyan) stresses over three time scales, from minutes on the left, to milliseconds

in the center and microseconds on the right. The solid, brighter lines correspond

to SG-0 and the dashed, darker lines to SG-20 (Fig. 4.4). As before, t = 0

corresponds to the initiation of the dynamic rupture.

The vertical far-field load (Fig. 4.2, yellow arrows) is applied at a constant

rate of strain of 6.7 × 10−5 s−1. Upon reaching of the final level of 15 MPa,

the system switches to the load-control mode, keeps the load constant, and the

strain rates drastically diminish. At this point, the strain acquisition system is

zeroed and the strain values are recorded. Thus, all strain (and stress) readings

represent incremental values with respect to this initial condition. Under strain,

the polymeric material undergoes slow viscoelastic relaxation. As a consequence,

to keep the applied load constant, the loading frame continues to compress the

specimen, giving rise to compressive vertical strains and, due to the Poisson’s



108

Figure 4.11: Stress time history during a rapid pressure ramp-up protocol. The shear (top
row), fault-normal (center row) and fault-parallel (bottom row) stresses are shown over
three time scales: minutes (left column), milliseconds (center column), and microseconds
(right column), where the temporal origin coincides with the rupture initiation. Prior
to the valve opening (left column) no fluid has been delivered to the interface yet, and
strains and stresses accumulate as a consequence of the viscoelastic relaxation of the
bulk polymer under load control mode. After the valve opening, in the few hundreds
of milliseconds prior to the rupture initiation, the stress redistribution is related to the
different slip behavior of patches with respect to the surrounding ones. After the rupture
is triggered (right column), a laboratory-scale seismic event is recorded where left-lateral
propagation arises.
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effect, tensile strains in the horizontal direction. The strain gages measure

these strains in a reference system aligned with the fault (α = 29◦). Hence, the

accumulation of the strain and the stress signals over several minutes prior to

the initiation of the dynamic rupture embeds the contribution of the viscoelastic

relaxation effects of our polymeric sample (Figs. 4.11 and 4.12, left columns).

However, the difference the strain and stress signals between the twomeasurement

stations is an indication of the different slip those locations experience. In fact,

in order to understand the stress behavior at these locations, one needs to keep in

mind the 2D nature of the interface (Fig. 4.4a). In particular, as the pressure is

delivered to the interface, heterogeneous pressure and slip profiles arise, where

patches at higher pressure tend to accumulatemore slip. The shear stresses that are

released are delivered to the surrounding patches, which, in turn, will experience

more or less slip, depending on their local frictional strength. Locked patches,

close to the slipping ones, experience shear and normal stress accumulation,

while weaker patches slip more easily and accumulate less (or release) shear

stress.

Stress variation at the lateral surface during a rapid pressure ramp-up nucleation

protocol

We start by discussing the the stress changes (Fig. 4.11) from the strain

measurements with the rapid pressure ramp-up nucleation protocol (Fig. 4.5b),

as these results are simpler to interpret. In the few minutes required for the

preparation to launch the test, a slight increase of all stress components is

observable. The strain-gage stations – SG-0 and SG-20 – closely agree with each

other and, since no fluid is injected on the interface yet (the valve is closed), the

displayed values are only due to viscoelastic relaxation. Upon the opening of the

solenoid valve, a sharp water pressure profile, developing over several tens to
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few hundreds of milliseconds (Fig. 4.5b), is delivered to the interface through

the 1-mm diameter injection duct. As a consequence, slip quickly accelerates

at the injection location, with slip-rate values of the order of several meters

per second, as estimated by the analysis under the assumption of instantaneous

pore-pressure increase (see section 4.3). Such high levels of slip rate should

induce the slip motion to rapidly propagate to locations further away from the

injection location and, in particular, towards the lateral surface, where the SG-0

measurement station is placed. However, the pore pressure there is considerably

lower than at the injection location (see sections 4.3 and 4.3), therefore SG-0

is frictionally stronger and undergoes smaller accelerated slip motion. As a

result, the shear stress τ12 is accumulated there, however, the fault-normal one

σ22 is released as a testimony that the patch about the SG-0 measurement station

is itself undergoing slip (Fig. 4.11, central column, solid brighter line). The

fault-parallel stress σ11 being positive suggests that the accelerating slip is

inducing a tensile lobe at SG-0 (Mello, Bhat, and Rosakis, 2016; Mello et al.,

2010), indicating that the accelerated slip has been nucleated in the positive

x1-direction. These effects are, however, very small and are responsible for stress

variations of the order of 5 × 10−2 MPa at most. The accelerated slip quickly

decays away from the injection location and is barely experienced by the SG-20

station (Fig. 4.11, central column, dashed darker line). After the dynamic rupture

initiates (Fig. 4.11, right column), at SG-0 the compressional and extensional

lobes arising on either side of the rupture tip (Mello, Bhat, and Rosakis, 2016;

Mello et al., 2010) cancel out due to anti-symmetry, resulting in the absence

of significant variations of σ11 and σ22 (Fig. 4.11, right column, middle and

bottom panels, brighter lines). The small tensile σ11 signal suggests that the

rupture nucleates closely to SG-0, yet in the positive x1-direction, in agreement to

what was already observed in the accelerated-slip phase. Conversely, the SG-20

station (dashed darker lines) does experience the compressional lobe, which
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induces compressive fault-parallel strain ε11 and, due to Poisson’s effects, tensile

fault-normal strain ε22, reflected in the corresponding stresses (right column,

middle and bottom panels). Interestingly, the fault-parallel stress σ11 (bottom

panel) exhibits a pulse-like behavior and the fault-normal stress σ22 (middle

panel) becomes initially compressive. The shear components (top panel) for

both stations – SG-0 and SG-20 – are characterized by an initial small increase

(particularly visible at the SG-20 station), likely corresponding to the direct effect

of the rate-and-state friction and peak value of the friction coefficient, followed by

a substantial decrease, corresponding to the frictional weakening adjacent to the

rupture tip (Rubino, Rosakis, and Lapusta, 2017), which can also be interpreted

as an analog to a cohesive zone (Freund, 1998; Rosakis, 2002; Samudrala, Huang,

and Rosakis, 2002a). By tracking the peaks of these quantities, separated by

approximately ∆t = 8.8 µs, and using the knowledge of the distance between

the measurement stations of about ∆x = 20 mm, the projection of the rupture

speed onto the lateral surface in its initial phase of propagation can be computed

as Vr = ∆x/∆t = 2.27 km/s. By now considering the time interval ∆t(s) of the

shear stress to decay from the peak value to the residual one, the corresponding

cohesive zone (CZ) size can be approximately computed as ∆x(CZ) = Vr∆t(s),

yielding 8.2 and 8.6 mm for the SG-0 and SG-20 stations, respectively. After the

rapid initial shear stress decrease, the dynamic level of the shear stress change

continues to gradually decrease overall, indicating crack-like rupture propagation

within the observation window; for a pulse-like rupture, the shear stress would

increase at the end of the slip pulse.
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Figure 4.12: Stress time history during a slow pressure ramp-up protocol. The shear (top
row), fault-normal (center row), and fault-parallel (bottom row) stresses are shown over
three time scales: minutes (left column), milliseconds (center column), and microseconds
(right column), where the temporal origin coincides with the rupture initiation. The
delivery of pressurized fluid begins approximately 27 minutes prior to the rupture
initiation (left column), promoting slow slip. One must remember that strains and
stresses partially accumulate as a consequence of the viscoelastic relaxation of the
bulk polymer under load control mode. In the few hundreds of milliseconds prior to
the rupture initiation, the stress redistribution is related to the different slip behavior
of patches with respect to the surrounding ones. After the rupture is triggered (right
column), a laboratory-scale seismic event is recorded where left-lateral propagation
arises.
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Stress variation at the lateral surface during a slow pressure ramp-up nucleation

protocol

The stress values – converted from the strain measurements – for the gradual

pressure ramp-up nucleation protocol (Fig. 4.5a) are presented in Figure 4.12.

The fluid injection protocol is started about three minutes after the beginning

of recording (t ≈ −27 min), due to the initial preparation required prior to

launching the test. During this pre-time, in similarity to the rapid ramp-up

scenario (section 4.3 and Fig. 4.11, left column), the strain gages only record the

viscoelastic relaxation of the material manifesting in strain due to the load control

mode, and the measurements from the two stations are in mutual agreement.

After the fluid injection phase begins, their measurements start deviating from

each other, indicating pronounced injection-induced effects at the location of

SG-0 compared to that of SG-20. As the fluid diffuses over the interface, the

pore pressure increases and frictionally weakens the corresponding portion of the

interface, endorsing slow slip. The propagation and amount of slip is governed

by a complex interplay of three factors: (a) the weakening due to both fluid

pressure and friction evolution; (b) the accumulation of shear stress τ12 on the

portions of the interface that are adjacent to actively slipping patches; and (c) the

redistribution of the normal load σ22 on the interface. Slipping patches weaken

and transfer stress to the nearby areas, which first resist the slip but, as the shear

stress accumulates and weakening progresses, also experience increased slip

motion. Depending on the amount of slip in relation to that of the surrounding

fault areas, portions of the interface either release shear stress or accumulate it.

Hence, in order to interpret the experimental results, one needs to bear in mind

both the pore pressure profile that is inhomogeneously building up with time

on the interface and the resulting slip / shear stress interplay along the interface

characterized by spatially and temporally varying frictional and pore-pressure
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conditions. It is likely that, due to the significantly higher pore pressure, the

portion of the interface around the injection location slips more than the adjacent

areas. As a consequence, less shear stress (Fig. 4.12, left column, top panel) is

accumulated at SG-0 which is closer to the injection location than SG-20. At

the same time, the compressive fault-normal stress increases at both locations

and more so at SG-0, likely because the fluid-induced and perhaps slip-induced

dilation of the interface at the injection location transfers the normal stress to the

surrounding areas, again more so to the closer location at SG-0.

In the few tens of milliseconds prior to the initiation of the dynamic rupture

(Fig. 4.12, center column), ourmeasurements indicate that the interface around the

injection location experiences an acceleration of slip motion. The measurements

closer to the injection location (SG-0) show more significant increase in shear

stress, pointing to increasing slip nearby, while there it not much change at the

farther location (SG-20), indicating that the acceleration is relatively local, less

than 3 to 5 mm in diameter around the injection site. Note that the shear stress

increase is more than an order of magnitude larger than that of the rapid pressure

ramp-up scenario (Fig. 4.11, center column). There are similar increasing effects

in the normal stress components.

After the dynamic rupture initiates (Fig. 4.12, right column), both mea-

surement locations exhibit an initial increase in shear stress up to a peak value

followed by a sudden release about twice as large as the one observed in the rapid

pressure ramp-up protocol. By performing the same calculations as before, the

initial rupture speed is computed as Vr = 3.13 km/s and the cohesive zone lengths

∆x(CZ) are 9.8 and 8.8 mm for SG-0 and SG-20, respectively, similar to the case

of the rapid pressure ramp-up. As in the previous case, the SG-0 station (solid

brighter line) does not exhibit much variations of fault-parallel or normal stress,

due to the bilateral anti-symmetric nature of the compressional and tensional
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lobes at the rupture tip (Mello, Bhat, and Rosakis, 2016; Mello et al., 2010). On

the other hand, SG-20 (dashed darker line) shows a variable profile, similar to

the one of the previous case. One potential difference is that the fault-parallel

stress component σ11 (bottom panel, dashed line) is non-zero throughout, in

contrast to becoming zero briefly in the rapid ramp-up case. Once nucleated, the

rupture produces approximately twice as much shear stress release (Fig. 4.12,

right column) than the rapid ramp-up counterpart (Fig. 4.11, right column). As in

the rapid pressure ramp-up scenario, after the initial rapid shear-stress decrease,

the dynamic level of the shear-stress change continues to gradually decrease

overall, indicating crack-like rupture propagation within the observation window,

but with larger slip corresponding to the larger shear-stress variation.

Detection of a foreshock during a slow pressure ramp-up nucleation protocol

The third representative case presented in this manuscript is another slow

pressure ramp-up nucleation scenario (Fig. 4.13), which exhibits a foreshock-

like much smaller event before the dynamic rupture of the entire interface.

The experiment has been performed on a different specimen. While most

experiments under the same conditions are quite repeatable even for different

specimens as a result of the same polishing and bead-blasting protocols the

employed to produce repeatable surface conditions (Lu, 2009; Mello et al., 2010),

sometimes we observe variations in the experimental outcomes under nominally

the same conditions, likely due to small variations in the spatial distribution of

the surface waviness and roughness. Due to the highly nonlinear nature of the

friction instability that enters our problem (Lapusta and Liu, 2009), these small

tribological differences can lead to substantial variations in the macroscopic

behavior during the pressure-diffusion phase prior to the rupture initiation. In

the experiment of Figure 4.13, differently from the previous case (section 4.3
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Figure 4.13: Stress time history during a slow pressure ramp-up protocol. The shear (top
row), fault-normal (center row), and fault-parallel (bottom row) stresses are shown over
three time scales: minutes (left column), milliseconds (center column), and microseconds
(right column), where the temporal origin coincides with the rupture initiation. The
delivery of pressurized fluid begins approximately 28 minutes prior to the rupture
initiation (left column), promoting slow slip and few mini-foreshocks, one of which
propagates slip all the way to the surface where the SG-0 station is located (inset in the
top left panel). One must remember that strains and stresses partially accumulate as a
consequence of the viscoelastic relaxation of the bulk polymer under load control mode.
In the few hundreds of milliseconds prior to the rupture initiation, the stress redistribution
is related to the different slip behavior of patches with respect to the surrounding ones.
After the rupture is triggered (right column), a laboratory-scale seismic event is recorded
where left-lateral propagation arises.
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and Fig. 4.12), the strain gage SG-0 (solid brighter line) does not accumulate

shear stress (Fig. 4.13, top left panel). This points to more slip developing near

the sensor, and hence more slip overall around the injection site in this case,

compared to the one in Figure 4.12. Approximately 8.2 minutes prior to the

rupture initiation, the SG-0 experiences a relatively fast increase in shear stress

of about 0.12 MPa followed by a release of about 0.26 MPa over about 42 ms

(Fig. 4.13, inset in the top left panel). Such a rapid (milliseconds), but not

dynamic (microseconds) shear-stress variation corresponds to a localized highly

accelerated slip. The variation is not rapid enough to be dynamic at the location

of the sensor, but the slip may have been dynamic over the injection site. Such

a much smaller precursor event, occurring in spatial and temporal proximity

to a later much larger rupture, is commonly referred to as a foreshock. The

interaction between slow slip motion with the micro-scale asperities can trigger

the foreshock activity (Bouchon, Durand, et al., 2013; Brodsky and Lay, 2014;

Dodge, Beroza, and Ellsworth, 1995; Jones and Molnar, 1979; Kanamori and

Stewart, 1976; Kato, 2012; McGuire, Boettcher, and Jordan, 2005). In addition,

both the size of the nucleation region and the number of foreshocks is related

to the fault-zone heterogeneity (Dodge, Beroza, and Ellsworth, 1995), which

can also explain why small seismic events – such as the one under investigation

– can develop without cascading into a main, larger event in the seismogenic

zone (Higgins and Lapusta, 2016). The foreshock observed in our experiment

clearly was unable to cascade into a larger event. The patch at SG-20 experiences

a sharp corresponding shear-stress increase of about 0.07 MPa, indicating that

the foreshock arrested before reaching that location. From the amount of stress

drop and the size of the event, an approximate estimate of the total average slip

can be computed by using the well-known analytical relation for planar cracks in

an elastic medium (Eshelby, 1957; Kanamori and Anderson, 1975):
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∆τ = Cµ
δ̄

a
(4.11)

where ∆τ is the shear-stress drop, µ is the shear modulus, δ̄ is the average slip, a is

the rupture radius, and C is the shape factor equal to 7π/16 for circular cracks and

similar for other similar shapes (Noda and Lapusta, 2013); we assume C = 1 for

simplicity. In this case, ∆τ = 0.14 MPa based on the measurement, µ ≈ 1 GPa, a

is bounded between 1 and 40 mm, the first case for a mini-rupture right at SG-0,

the latter for a larger rupture just short of SG-20. From equation 4.11, the average

slip δ̄ ranges between 0.14 and 5.6 µm. We are able to quantify such small

amounts through the effect on the shear stress thanks to our strain acquisition

setup, specifically optimized for these measurements. To achieve better estimates

of the stress changes as the strain rates change during slip accumulation, we need

a viscoelastic model to separate the stress changes from viscoelastic and slip

effects, a subject of our future work.

In the few tens of milliseconds prior to the larger dynamic rupture initiation

(Fig. 4.13, center column), the shear-stress variation points to an accelerated slip

at the location of SG-0, as it can be inferred from the decreasing shear stress;

while no (or minor) accelerated slip occurs at the location of SG-20, which

exhibits a shear-stress increase.

The extra shear stress that SG-20 accumulated over SG-0 prior to the

occurrence of the dynamic rupture is released as soon as the seismic motion is

triggered and a larger initial shear-stress drop equilibrates the disparity (Fig. 4.13,

right column, top panel). The extra drop of shear stress amounts to about 1.1 MPa.

At SG-0, the fault-parallel (bottom panel) and fault-normal (middle panel) traces

exhibit a non-negligible signal, indicating that the compressional and tensional

lobe anti-symmetry has been lost there. This implies that the accelerated slip did

not initiate exactly at the injection location (x1 = 0). In fact, the compressive
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fault-parallel lobe, in conjunction with the tensile fault-normal one, suggests that

the rupture initiation location has shifted towards x1 < 0. The rupture speed,

calculated from the time of arrival of the peaks of the fault-parallel signals,

amounts to Vr = 2.44 km/s. Since SG-0 has been a part of the nucleation region,

the rupture did not necessarily propagated through this location in a traditional

sense, and hence the estimated value is more uncertain than in other cases. Due

to the peculiar shape of the shear traces in this scenario, the cohesive zone

computation carries a certain degree of uncertainty. Their values amount to

20 mm for SG-20 and 40 mm for SG-0.

Note that the dynamic ruptures in all three cases show healthy crack-like

behavior, indicating that, regardless of how the rupture is nucleated, its evolution

under these conditions is similarly dynamic, althoughwith different stress changes.

The differences can hold clues to variations in friction resistance on interfaces

with different pore pressure values, which we can explore through modeling.

DIC to capture surface motion during precursory activity

The full-field fault-parallel displacement map u1(x) (Fig. 4.14a) shows the

local nature of the mini event in the center of the field of view, where the red

color indicates movement towards the positive x1-direction, while the blue color

towards the negative one. The color-saturated circular shapes of few-millimeters

in size, clustered at the center of the interface and in particular right below it, are

water droplets exiting the interface due to the elevated pressure gradient. Due

to the frame acquisition rate of the camera (2 frames per minute), the output

corresponds to an average value over a 30-s window; however, the foreshock

occurs over just 42 ms (Fig. 4.13a, inset). For this reason, the fault-parallel

velocity map Ûu1(x) (Fig. 4.14b) has been rescaled by a factor 30/0.042, assuming

that most of the slip occurred during the event. The slip velocity represents an
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Figure 4.14: DIC full-field measurements after the foreshock event observed in Fig-
ure 4.13 (top left). The camera acquires pictures at a rate of one frame every 30 seconds.
(left) Cumulative fault-parallel displacement u1. The upper half creeps leftwards (blue),
while the bottom one creeps rightwards (red). At the center portion of the interface
5 − 6 µm of slip are cumulatively accumulated, decaying to less than 1 µm towards
the side of the field of view. (right) Fault-parallel velocity Ûu1, at the net of rigid body
motion, obtained by applying a first-order forward finite difference scheme on the
frames just before and after the foreshock event. The velocity has been rescaled by
a factor of 30/0.042, based on the knowledge of the temporal duration of the event
from the strain gage measurement (Figure 4.13, top left, inset). During the foreshock
event, the motion is concentrated at the center of the interface and rapidly decays away
from it. The color-saturated shapes concentrated just below the center portion of the
interface are water droplets escaping from the interface and causing the DIC algorithm
to decorrelate (Sutton, Orteu, and Schreier, 2009).

estimate of an average value over the entire mini-event; however, it may have been

much higher for a sub-portion of the slip period. This full-field map highlights

the concentration of motion towards the center of the field of view, demonstrating

that the slip propagated all the way to the lateral surface. DIC measurements

of single foreshock events are most useful if the slip propagates all the way to

the surface of the specimen. In the cases where the shear stress is accumulated

rather than released at the surface, the DIC is unable to detect any significant

displacement and the strain gages have proven to be the only technique able to

capture, indirectly, such small events.

The full-field DIC measurements have been collected on the front side of
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Figure 4.15: Slip (left) and slip-rate (right) temporal histories measured via DIC applied
to the experiment presented in Figure 4.13. (left) The red and green lines indicate the
slip close to the boundary of the field of view, respectively, along the interface, while the
blue one corresponds to the center portion, for which the values underneath the interface
have been taken below the water droplets (Fig. 4.14). In order to counteract the random
noise and be able to measure such small signals, the values at each of the three locations
have been averaged over 11 points (5 per side) along the x1-direction, both above and
below the interface. Overall the interface accumulates less than a micron of slip during
the fluid injection phase, with the exception of the center portion of it, which, at about
−8.2 minutes, experiences the foreshock event accumulating 4.8 µm of slip over 42 ms.
(right) The slip rate is computed from the slip using a first order forward finite difference
scheme and averages to 10−9 m/s. Since the temporal resolution of the camera is of one
frame every 30 s, it cannot resolve dynamic events such as the foreshock. The computed
slip-rate peak value of 1.6 × 10−7 m/s therefore represents a lower bound. By rescaling
this value by the factor of 30/0.042, where 42 ms is the duration of the foreshock event
measured by the SG-0 station (Fig. 4.13, top left, inset), the value of 1.1 × 10−4 m/s is
obtained.

the specimen over a 45 × 38 mm2 field of view (Fig. 4.2a). These results refer

to the foreshock observed in the third test presented in the previous section

(Fig. 4.13). By analyzing the full-field fault-parallel displacement u1(x), the slip

δ (Fig. 4.15a) can be computed as the difference between the values just above

and below the interface (see section 4.2). In Figure 4.15, LHS and RHS refer to

locations 0.56-mm away from the left and right borders of the field of view. The

Center and the RHS locations coincide with the SG-0 and SG-20 measurement

stations, but on the opposite face of the specimen (Fig. 4.2). Both LHS and RHS

experience a gradual accumulation of average slip δ̄ of approximately 1 µm over
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the entire duration of the pressurizing phase (Fig. 4.14a, red and green lines).

The center location (blue line) follows a similar behavior until the occurrence

of the foreshock event at about 8.2 minutes prior to the rupture nucleation. The

sudden slip accumulation of 4.8 µm is in the range of the previous estimate

between 0.14 and 5.6 µm using equation 4.11 and suggests that, for a shear-stress

drop of 0.14 MPa (Fig. 4.13, inset in the top left panel), the slipping patch has a

size of 34.3 mm. This size is consistent with the DIC measurements presented in

Figure 4.14.

The average rate of slip Û̄δ at all three locations (Fig. 4.15b) amounts to 10−9 m/s,

with the exception of the foreshock event (blue line). If the slip rate is rescaled

according to the temporal ratio of 30/0.042, its value – during the foreshock –

amounts to 1.1 × 10−4 m/s.

4.4 Conclusions

As expected, our experiments show that fluid pore pressure promotes fault

slip. The conditions under which dynamic ruptures are triggered have been

investigated by exploring two fluid-injection scenarios: (a) a slow pressure

ramp-up over approximately 30 minutes; and (b) a rapid pressure ramp-up over

few hundreds of milliseconds. In the cases of rapid increase in pore pressure,

the dynamic rupture initiates at about half the pressure level than that of the

slow counterpart. Both a tactile pressure-indicating sensor film and simplistic

diffusion model have been adopted to determine the pressure profile over the

interface. They show that, in the slow pressure ramp-up scenario, the pressure

gradually diffuses over the interface of the specimen away from the injection

location, while in the rapid pressure ramp-up scenario, the pressure is elevated

mostly in the immediate vicinity of the injection site.

The fluid diffusion and the associated pore pressure increase on the interface
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have the dual effect of reducing the shear strength of the fault and of increasing

the nucleation length. In the slow pressure ramp-up scenario, slow (stable) slip

motion is induced as the result first, resulting in a slow, quasi-static nucleation

slip process often observed in numerical models. The nucleation process is

followed by the spontaneous initiation of the dynamic rupture. Prior to the

dynamic event, the cumulative slip motion amounts to about 1 µm (measured on

the lateral surface). We observe accelerated interface slip around the injection

site in the several tens of milliseconds before the initiation of the dynamic

rupture, expressed as the rapid redistribution of strains and stresses onto our

strain measurement stations. A foreshock event, where the slip propagated all

the way to the lateral surface, has been observed in one of the experiments and

investigated. The presence of such foreshock events in some experiments, but not

others highlights the sensitivity of the development of highly nonlinear frictional

slip instability due to minute differences in the interface preparation of different

specimen.

In contrast, the rapid-pressure-increase experiments always show similar

nucleation behavior, with dynamic rupture initiating with small enough amounts

of slow slip in a small enough area around the injection site that their effects

cannot be observed at the lateral surface. These observations suggest much

smaller nucleation lengths associated with the high injection rates, in addition to

almost twice lower levels of pore pressures at the rupture initiation.

Once initiated, via either one of the nucleation protocols, the dynamic

ruptures have similar behavior. One important difference is that, in the slow

pressure ramp-up scenario, the dynamic rupture weakens the interface more,

with larger shear stress changes. We speculate that this behavior may be related

to either reduced friction coefficients associated to the lubricating effect due to

the presence of water on the interface or, perhaps, to shear-heating effects such
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as thermal pressurization.
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