
Optimizing Resource Management in Cloud Analytics
Services

Thesis by
Xiaoqi Ren

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2018
Defended May 15th, 2018

ii

© 2018

Xiaoqi Ren
ORCID: 0000-0002-1121-9046

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

First, I would like to express my deepest gratitude to my advisor, Professor Adam
Wierman. He has been a great advisor to me throughout my Ph.D. It is really an
invaluable experience working with him and learning from him. He has always
been enthusiastic about research. He encouraged us to explore projects based on
our interests instead of being driven by funding. He engaged deeply into our
projects and provided excellent guidance. His insightful vision, rigorous thinking,
and effective presentations have profoundly influenced me to be a better scholar.
Professor Wierman always supported me to overcome the obstacles and encouraged
me to be brave and step out of my safe zone. He also gave enormous help with
planning my career path. I sincerely appreciate the amazing impact he has had on
me, which makes me stronger and more confident as a researcher.

Next, I would like to thank my thesis committee members, Professor Steven Low,
Professor Mani Chandy and Professor Yisong Yue, for all of their guidance through
this process. Their ideas and feedbacks have been absolutely invaluable. Also, I
am grateful to my mentors during my internships at Microsoft Research: Yuxiong
He, Sameh Elnikety, Kathryn S McKinley and Christian Konig. And I would
like to thank my collaborators: Palma London, Juba Ziani, Mohammad A. Islam,
Shaolei Ren, XiaoruiWang, GaneshAnanthanarayanan,MinlanYu, Niangjun Chen,
Michael Chien-Chun Hung, and Ion Stoica. It has been a great pleasure to work
with them. They have always provided insightful discussions and constructive
suggestions.

I have greatly enjoyed the opportunity to study in the Department of Computing
and Mathematical Sciences at Caltech, which provides a supportive environment
in which students can fully focus on research. It is wonderful to interact with so
many intelligent professors and outstanding students. I would also like to thank
the helpful administrative staff in our department, especially Sheila Shull, Sydney
Garstang, and Maria Lopez.

Finally, I would like to thank my family for providing a loving and supportive
environment for me. I want to thank my parents for their understanding and belief
in me during the past few years. Their support and encouragement was what made
this thesis possible.

iv

ABSTRACT

The fundamental challenge in the cloud today is how to build and optimize machine
learning and data analytical services. Machine learning and data analytical platforms
are changing computing infrastructure from expensive private data centers to easily
accessible online services. These services pack user requests as jobs and run them
on thousands of machines in parallel in geo-distributed clusters. The scale and the
complexity of emerging jobs lead to increasing challenges for the clusters at all
levels, from power infrastructure to system architecture and corresponding software
framework design.

These challenges come in many forms. Today’s clusters are built on commodity
hardware and hardware failures are unavoidable. Resource competition, network
congestion, and mixed generations of hardware make the hardware environment
complex and hard to model and predict. Such heterogeneity becomes a crucial
roadblock for efficient parallelization on both the task level and job level. Another
challenge comes from the increasing complexity of the applications. For example,
machine learning services run jobs made up of multiple tasks with complex de-
pendency structures. This complexity leads to difficulties in framework designs.
The scale, especially when services span geo-distributed clusters, leads to another
important hurdle for cluster design. Challenges also come from the power infras-
tructure. Power infrastructure is very expensive and accounts for more than 20% of
the total costs to build a cluster. Power sharing optimization to maximize the facility
utilization and smooth peak hour usages is another roadblock for cluster design.

In this thesis, we focus on solutions for these challenges at the task level, on
the job level, with respect to the geo-distributed data cloud design and for power
management in colocation data centers.

At the task level, a crucial hurdle to achieving predictable performance is stragglers,
i.e., tasks that take significantly longer than expected to run. At this point, speculative
execution has been widely adopted to mitigate the impact of stragglers in simple
workloads. We apply straggler mitigation for approximation jobs for the first time.
We present GRASS, which carefully uses speculation to mitigate the impact of
stragglers in approximation jobs. GRASS’s design is based on the analysis of a
model we develop to capture the optimal speculation levels for approximation jobs.
Evaluations with production workloads from Facebook and Microsoft Bing in an

v

EC2 cluster of 200 nodes show that GRASS increases accuracy of deadline-bound
jobs by 47% and speeds up error-bound jobs by 38%.

Moving from task level to job level, task level speculation mechanisms are designed
and operated independently of job scheduling when, in fact, scheduling a specu-
lative copy of a task has a direct impact on the resources available for other jobs.
Thus, we present Hopper, a job-level speculation-aware scheduler that integrates
the tradeoffs associated with speculation into job scheduling decisions based on a
model generalized from the task-level speculation model. We implement both cen-
tralized and decentralized prototypes of the Hopper scheduler and show that 50%
(66%) improvements over state-of-the-art centralized (decentralized) schedulers and
speculation strategies can be achieved through the coordination of scheduling and
speculation.

As computing resources move from local clusters to geo-distributed cloud services,
we are expecting the same transformation for data storage. We study two crucial
pieces of a geo-distributed data cloud system: data acquisition and data placement.
Starting from developing the optimal algorithm for the case of a data cloud made up
of a single data center, we propose a near-optimal, polynomial-time algorithm for a
geo-distributed data cloud in general. We show, via a case study, that the resulting
design, Datum, is near-optimal (within 1.6%) in practical settings.

Efficient power management is a fundamental challenge for data centers when pro-
viding reliable services. Power oversubscription in data centers is very common and
may occasionally trigger an emergency when the aggregate power demand exceeds
the capacity. We study power capping solutions for handling such emergencies in
a colocation data center, where the operator supplies power to multiple tenants.
We propose a novel market mechanism based on supply function bidding, called
COOP, to financially incentivize and coordinate tenants’ power reduction for mini-
mizing total performance loss while satisfying multiple power capping constraints.
We demonstrate that COOP is “win-win”, increasing the operator’s profit (through
oversubscription) and reducing tenants’ costs (through financial compensation for
their power reduction during emergencies).

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] G. Ananthanarayanan, M. C. Hung, X. Ren, I. Stoica, A. Wierman, and
M. Yu. “GRASS: Trimming Stragglers in Approximation Analytics”. In:
Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation. NSDI’14. Seattle, WA: USENIX Association, 2014,
pp. 289–302. isbn: 978-1-931971-09-6.
Adapted into Chapter 2 of this thesis. X. Ren contributed to the conception
of the project, proposing the model and analyzing the performance, and
writing the manuscript.

[2] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu. “Hopper: Decen-
tralized Speculation-aware Cluster Scheduling at Scale”. In: Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Communica-
tion. SIGCOMM ’15. London, United Kingdom: ACM, 2015, pp. 379–392.
isbn: 978-1-4503-3542-3. doi: 10.1145/2785956.2787481.
Adapted into Chapter 3 of this thesis. X. Ren contributed to the conception
of the project, proposing the model and analyzing the performance, and
writing the manuscript.

[3] X. Ren, P. London, J. Ziani, and A. Wierman. “Datum: Managing Data
Purchasing and Data Placement in a Geo-Distributed Data Market”. In:
IEEE/ACM Transactions on Networking 26.2 (2018), pp. 893–905. doi:
10.1109/TNET.2018.2811374.
Adapted into Chapter 4 of this thesis. X. Ren contributed to the conception
of the project, proposing the model and analyzing the performance, and
writing the manuscript.

[4] N. Chen, X. Ren, S. Ren, and A. Wierman. “Greening Multi-Tenant Data
Center Demand Response”. In: SIGMETRICS Perform. Eval. Rev. 43.2
(Sept. 2015), pp. 36–38. issn: 0163-5999. doi: 10.1145/2825236.2825252.
Adapted into Chapter 5 of this thesis. X. Ren contributed to the conception
of the project, proposing the model and analyzing the performance, and
writing the manuscript.

[5] M. A. Islam, X. Ren, S. Ren, A.Wierman, andX.Wang. “Amarket approach
for handling power emergencies in multi-tenant data center”. In: High Per-
formance Computer Architecture (HPCA), 2016 IEEE International Sym-
posium on. IEEE. 2016, pp. 432–443. doi: 10.1109/HPCA.2016.7446084.
url: https://ieeexplore.ieee.org/document/7446084/.
Adapted into Chapter 5 of this thesis. X. Ren contributed to the conception
of the project, proposing the model and analyzing the performance, and
writing the manuscript.

https://doi.org/10.1145/2785956.2787481
https://doi.org/10.1109/TNET.2018.2811374
https://doi.org/10.1145/2825236.2825252
https://doi.org/10.1109/HPCA.2016.7446084
https://ieeexplore.ieee.org/document/7446084/

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . vi
Table of Contents . vii
List of Illustrations . ix
List of Tables . xiii
Chapter I: Introduction . 1

1.1 The Evolution of Large Scale Data Analytics Frameworks 1
1.2 Challenges to the Design of Analytics Frameworks 4
1.3 Overview of This Thesis . 6

Chapter II: Speculation-aware Cluster Scheduling
at the Task Level . 9
2.1 Challenges and Opportunities . 11
2.2 Speculation Algorithm Design . 13
2.3 Modeling and Analyzing Speculation 18
2.4 Grass Speculation Algorithm . 24
2.5 Implementation . 27
2.6 Evaluation . 28
2.7 Related Work . 37
2.8 Concluding Remarks . 38

Chapter III: Speculation-aware Cluster Scheduling on the Job Level 39
3.1 Background & Related Work . 41
3.2 Motivation . 43
3.3 Modeling and Analyzing Speculation 46
3.4 Hopper in real systems . 61
3.5 Decentralized Hopper . 68
3.6 Implementation Overview . 73
3.7 Evaluation . 74
3.8 Concluding Remarks . 82

Chapter IV: Network-aware Geo-distributed Cluster Scheduling 84
4.1 Opportunities and Challenges . 87
4.2 A Geo-Distributed Data Cloud . 92
4.3 Optimal Data Purchasing and Data Placement 98
4.4 Case Study . 111
4.5 Concluding Remarks . 116
4.A Appendix: Bulk Data Contracting 117

Chapter V: Power Capping in Colocation Data Centers 120
5.1 Opportunities and Challenges . 122
5.2 COOP with a Single Data Center Level Power Constraint 127

viii

5.3 Efficiency Analysis of COOP . 130
5.4 COOP with Multi-level Power Constraints 150
5.5 Evaluation Methodology . 159
5.6 Evaluation Results . 163
5.7 Related Work . 170
5.8 Concluding Remarks . 170

Bibliography . 172

ix

LIST OF ILLUSTRATIONS

Number Page
2.1 GS and RAS for a deadline-bound job with 9 tasks. The trem and tnew

values are when T2 finishes. The example illustrates deadline values
of 3 and 6 time units. 15

2.2 GS and RAS for error-bound job with 6 tasks. The trem and tnew
values are when T2 finishes. The example illustrates error limit of
40% (3 tasks) and 20% (4 tasks). 18

2.3 Hill plot of Facebook task durations. 19
2.4 Near-optimality of GS & RAS under Pareto task durations (β = 1.259). 23
2.5 Accuracy Improvement in deadline-bound jobs with LATE [18] and

Mantri [17] as baselines. 30
2.6 GRASS’s overall gains (compared to LATE) binned by the deadline

and error bound. Deadlines are binned by the factor over ideal job
duration (see Section 2.6.1) . 31

2.7 Speedup in error-bound jobs with LATE [18] and Mantri [17] as
baselines. 32

2.8 GRASS’s gains matches the optimal scheduler. 33
2.9 GRASS’s gains hold across job DAG sizes. 33

2.10 GRASS’s switching is 25% better than using GS or RAS all through
for deadline-bound jobs. We use the Facebook workload and LATE
as baseline. 34

2.11 GRASS’s switching is 20% better than using GS or RAS all through
for error-bound jobs. We use the Facebook workload and LATE as
baseline. 34

2.12 Comparing GRASS’s learning based switching approach to a straw-
man that approximates two waves of tasks. GRASS is 30% − 40%
better than the strawman. 35

2.13 Using all three factors for deadline-bound jobs compared to only one
or two is 18% − 30% better. 36

2.14 Using all three factors for error-bound jobs compared to one or two
factors is 15% − 25% better. 37

x

2.15 Sensitivity of GRASS’s performance to the perturbation factor ξ.
Using ξ = 15% is empirically best. 37

3.1 Combining SRPT scheduling and speculation for two jobs A (4 tasks)
and B (5 tasks) on a 7-slot cluster. The + suffix indicates speculation.
Copies of tasks that are killed are colored red. 43

3.2 Hopper: Completion time for jobs A and B are 12 and 22. The +
suffix indicates speculation. 44

3.3 The impact of number of slots on single job performance. The
number of slots is normalized by job size (number of tasks within the
job). β is the Pareto shape parameter for the task size distribution.
(In our traces 1 < β < 2.) The red vertical line shows the threshold
point. 49

3.4 Decentralized scheduling architecture. 68
3.5 The impact of number of probes and number of refusals on Hopper’s

performance. 69
3.6 Hopper’s gains with cluster utilization. 76
3.7 Hopper’s gains by job bins over Sparrow-SRPT. 77
3.8 (a) CDF of Hopper’s gains, and (b) gains as the length of the job’s

DAG varies; both at 60% utilization. 78
3.9 Hopper’s results are independent of the straggler mitigation strategy. . 79

3.10 ε Fairness. Figure (a) shows sensitivity of gains to ε . Figure (b) shows
the fraction of jobs that slowed down compared to a fair allocation,
and (c) shows the magnitude of their slowdowns (average and worst). 80

3.11 Power of d choices: Impact of the number of probes on job completion. 80
3.12 Centralized Hopper’s gains over SRPT, overall and broken by DAG

length (Facebook workloads). 81
3.13 Centralized Hopper: Impact of Locality Allowance (k) (see Sec-

tion 3.6.2) with Facebook workload. 82

xi

4.1 An overview of the interaction between data providers, the data cloud,
and clients. The dotted line encircling the data centers (DC) repre-
sents the geo-distributed data cloud. Data providers and clients inter-
act only with the cloud. Data provider p sends data of quality q(l, p)

to data center d, and the corresponding operation cost is βp,d(l)yp,d(l).
Similarly, data center d sends data of quality q(l, p) to client c,
and the corresponding execution cost is αd,c(l, p)xd,c(l, p). In bulk
data contracting, the corresponding purchasing cost is f (l, p)z(l, p).
In per-query data contracting, the corresponding purchasing cost is
f (l, p)xd,c(l, p). 95

4.2 Illustration of the near-optimality of Datum as a function of the com-
plexity of client requests (i.e., the average number of providers data
must be procured from in order to complete a client request). 112

4.3 Illustration of Datum’s sensitivity to query parameters. (a) varies the
heaviness of the tail in the distribution of purchasing fees. (b) varies
the number of quality levels available. Note that Figure 4.2 sets the
shape parameter of the Pareto governing purchasing fees to 2 and
includes 8 quality levels. 114

4.4 Illustration of the impact of bandwidth and purchasing fees onDatum’s
performance. NearestDC is excluded because its costs are off-scale.
(a) varies the ratio of bandwidth costs (summarized by α + β) to
purchasing costs (summarized by f). (b) varies the ratio of costs
internal to the data cloud (α) to costs external to the data cloud
(β + f). Note that in Figure 4.2 the ratios are set to log(α+βf) = −0.5
and log(α

β+ f) = −1. 115
5.1 Data center infrastructure. 123
5.2 CDF of measured power usage. 124
5.3 Illustration of tenant’s bidding. 153
5.4 API diagram for COOP. 156
5.5 Power and performance models. 161
5.6 Cost models. 161
5.7 Comparison of different algorithms. 165
5.8 Power traces under different oversubscription configurations. 165
5.9 Delay performance traces of the tenants under different oversubscrip-

tion levels. 165
5.10 Economic benefit. 168

xii

5.11 Impact of tenants’ cost. 168
5.12 Impact of tenant cost overestimation. 169

xiii

LIST OF TABLES

Number Page
2.1 Details of Facebook and Bing traces. 29
3.1 Task sets. torig and tnew are durations of the original and speculative

copies of each task. 44
5.1 Analysis of Capacity Oversubscription. 126
5.2 Performance guarantee of COOP compared to the social optimal

allocation. 150
5.3 Testbed configuration. 159

1

Chapter 1

INTRODUCTION

In the last two decades, the emerging of big data has driven enormous push in
the technology developments of both distributed systems and machine learning. In
the era of big data, the requirement to provide predictable and scalable services
has led to a remarkable evolution of large scale data analytics frameworks. From
MapReduce [1] to Spark [2] then to Flink [3], from support for simple batch jobs
to support for steam processing to integrated machine learning and graph libraries,
there is a trend towards broader and more general system design. Meanwhile,
the fast evolution of system frameworks inevitably leads to significant challenges
from scalability to compatibility with existing systems and new applications. In the
following, we first investigate the evolution of the data analytics frameworks , and
then highlight the challenges to the design of large scale data analytics frameworks.
Finally we give an overview of the contributions this thesis make toward these
challenges.

1.1 The Evolution of Large Scale Data Analytics Frameworks

About twenty years ago, to handle the challenge of processing massive amount of
data in special-purpose computations such as web index computing, engineers in
Google designed a new data processing framework called MapReduce [1]. MapRe-
duce can be viewed as an abstraction that allows users to perform logically simple
computations without taking care of the messy details of distributed computing. In
general, data processing in MapReduce has three phases, map phase, shuffle phase,
and reduce phase. In map phase, input data is divided into small data chunks, and
each data chunk is sent to a machine slot (i.e., mapper) for execution. The output
data of the mappers are in the form of key-value pairs, and are sorted and grouped
by keys in the shuffle phase. The shuffled data are fed to reduce machine slots (i.e.,
reducers) in the reduce phase for further processing. After having been published
in 2004 by Google Labs, this simple but powerful programming paradigm attracted
enormous attention.

2

MapReduce quickly expanded beyond Google. In 2006, Hadoop [4], an open source
version of MapReduce, was developed by Doug Cutting and Mike Cafarella. The
core ofHadoop consists of two parts, (1) the storage architecture, HadoopDistributed
File System (HDFS) [5], which is inspired by the Google File System (GFS) [6], and
(2) the processing model, MapReduce. Hadoop MapReduce quickly became the
most popular open source implementation of MapReduce. Yahoo!, Facebook and
many others soon adopted Hadoop to build their large cloud computing clusters [7].
In 2010, Facebook announced that they had the largest Hadoop cluster in the world
with 21 PB of storage. The data volume had grown to 100 PB in mid 2012 and was
reported to continuously grow by roughly half a PB per day later that year. Hadoop
adoption had become widespread as of 2013: more than half of the Fortune 50 used
Hadoop [8].

As Hadoop became widely used, the early adopters started to notice the limita-
tions of the classical MapReduce framework, including lack of scalability, resource
underutilization and the lack of support for complex applications.

These issues are mainly due to two design choices. (1) MapReduce uses a single
centralized JobTracker process to constantly track all the resource management
and allocation and perform coordination of all jobs and their tasks running on the
cluster. Besides the JobTracker, a number of TaskTracker processes are used to
assign tasks and periodically report the progresses to the JobTracker. The highly
centralized structure of the JobTracker results in scalability issue, especially for real
time data analytics. (2) To ease the workload of the JobTracker and TaskTracker, in
MapReduce the computational resources on each node are divided into fixed number
of map slots and reduce slots, which lead to significant resource underutilization,
especially when a job requires an unequal number of mappers and reducers.

To address these issues, YARN [9] was integrated into Hadoop in 2014. In the
YARN architecture, JobTracker is replaced by a global ResourceManager which is
in charge of inter-application level resource management and a number of Applica-
tionMasters which are responsible for intra-application level resource management
for each application respectively. NodeManagers replace the previous TaskTrack-
ers for resource container control. Such a decoupling reduces the overhead of the
resouce management and also supports applications besides traditional MapReduce
jobs given that ResouceManager and NodeManagers are designed to be independent
of the running tasks. From then on, Hadoop MapReduce, Hadoop YARN, Hadoop
Distributed File System and Hadoop Common (the common utilities that support the

3

other Hadoopmodules) become the core modules of the Apache Hadoop project [4].

While MapReduce is well suited for batch processing, its deficiency for real time
data analytics on complicated applications, especially for applications that reuse
the same working set of data across multiple MapReduce jobs, is also widely
noticed by researchers and developers. For example, iterative machine learning jobs
experience significant delay in MapReduce because each iteration is considered as
an individual MapReduce job and, in the MapReduce framework, each job must
load data from the disk independently. To handle this challenge, M. Zaharia et al.
developed Apache Spark in 2010 [2]. Spark shares a similar programming model
to MapReduce, but adopts an abstraction called resilient distributed dataset (RDD)
which allows users to explicitly cache data sets inmemory acrossmachines and reuse
them across multiple MapReduce jobs (MapReduce-like parallel operations). Spark
can run either in stand-alone mode or combined with Hadoop as a replacement for
MapReduce. Unlike MapReduce which is best suited for batch processing, Spark
is designed to handle both batch processing and stream processing. Its in-memory
data processing ensures fast speed and thus makes Spark one of the most popular
real time data analytic frameworks.

The broad success of Hadoop as well as the emerging of many other challenges
have led an enormous number of developers to engage in Hadoop related projects.
All these projects comprise a so-called “Hadoop ecosystem." Systems in the the
Hadoop ecosystem cover a variety of aspects and target a lot of different applications.
For example, Pig [10] and Hive [11] offer SQL-style high-level data manipulation
constructed on top of Hadoop. Storm [12] provides stream processing for real time
data analytics. Flink [3] aims at both batch and stream processing with a unified
architecture based on data flow abstraction. Tez [13] is built atop YARN and adds
support to jobs with DAGs. Kafka [14] is a distributed publish-subscribe system
for processing large amounts of streaming data with coordination support from
Zookeeper. Also various NoSQL or SQL databases are designed and developed
to provided data storage support. The boom of Hadoop and its corresponding
ecosystem provides rich tools to handle big data challenges. However, there is an
emerging trend towards the design of more general data analytics systems. The inter-
and intra- systems optimization as well as the exponentially increasing data volume
and the emerging of new data with different characteristics pose new challenges
every day. We focus on these challenges in the next section.

4

1.2 Challenges to the Design of Analytics Frameworks

Even with the success of existing various industrial systems, as the volume of data
continues to grow, the scale of the clusters expands and complicated applications
impose new requirements on the systems, which lead to new challenges to the design
of analytics frameworks.

One significant goal for data analytics frameworks is to provide predictable perfor-
mance. As the scale and complexity of clusters increase, hard-to-model systemic
interactions that degrade the performance of tasks become common. Consequently,
many tasks become “stragglers”, i.e., running slower than expected, leading to
significant unpredictability (and delay) in job completion times. Dealing with strag-
glers is a crucial design component that has received widespread attention across
prior studies [15, 16]. The dominant technique to mitigate stragglers is specula-
tion, which works by launching speculative copies for the slower tasks, where a
speculative copy is simply a duplicate of the original task. It then becomes a race
between the original and the speculative copies. Such techniques are state of the
art and deployed in production clusters at Facebook and Microsoft Bing, thereby
significantly speeding up jobs [1, 15, 17, 18]. However, current straggler mitigation
algorithms are mainly focused on the task level without considering how specula-
tion will affect job level scheduling. Speculation policies deployed today are all
designed and operated independently of job scheduling; schedulers simply allocate
slots to speculative copies in a best-effort" fashion, e.g., [1, 17, 19, 20]. Also the
existing speculation algorithms are lack of support for complicated job structures,
such as DAG, and only focus on performing speculation mitigation on current wave
of tasks [1, 17, 19].

Another hurdle to system optimization is the increasing complexity of the applica-
tions. Fifteen years ago,MapReducewas a huge success in regenerating theGoogle’s
index of the World Wide Web. But its lack of support for complicated applications
such as machine learning iterative jobs and graph processing jobs with DAGs moti-
vated the development of other systems/modules such as Spark [2], YARN [9] and
Tez [13]. These systems/modules are combined to provide generic frameworks to
run complicated jobs, but fine-granularity optimization targeting different job types
is still a challenge. Take an emerging new type of job, approximation jobs, as an
example [21–23]. With the deluge of data, analytics applications no longer require
the processing of entire datasets. Instead, they choose to trade off accuracy for
response time and obtain approximate results early from just part of the dataset.

5

Such approximation jobs require schedulers to prioritize the appropriate subset of
their tasks depending on the approximation criteria, while distributed systems are
generally designed to evenly prioritize each tasks. Balancing between these two
provides new challenges for system design.

Achieving lower latency is an increasing challenge as large scale data analytics
frameworks are shifting towards shorter task duration and higher degrees of paral-
lelization. In 2004, the scale of task duration was more than 10 min, while in 2010,
for Spark in memory query, the scale of task duration was already shortened to hun-
dreds of milliseconds [20]. We expect the trend to continue in the future generations
of frameworks with task duration being even smaller. In this situation, controlling
system overheads becomes of importance for real time data analytics design. To-
day’s state-of-the-art frameworks use distributed schedulers to achieve lightweight
scheduling while maintaining low latency [16, 20, 24]. In such frameworks, each
scheduler only knows partial information about jobs and working machines. Opti-
mizing such systems, especially with regards to efficient straggler mitigation, is still
challenging.

The most widely used scheduling approach in clusters today is based on fairness,
which can be thought of as equal sharing (or weighted sharing) of the available
resources among jobs (or cluster users) [25]. The equal sharing strategy guarantees
isolation in resource management, in the sense that users are guaranteed to receive
their fair shares and no starvation can exist. However, fairness, of course, comes
with the cost of performance inefficiencies. How to balance fairness and efficiency
to avoid starvation for jobs while achieving high efficiency is another system design
challenge.

As cloud servers are widely located in geo-distributed systems, analysis and op-
timization of data stored in geographically distributed data centers has received
increasing attention [26–28]. Bandwidth constraints as well as latency are the two
main challenges for system designs in this context, and a number of system designs
have been proposed [26–28]. Data acquisition and data pricing have been studied
extensively [29–32]. However how to cost-effectively combine the data acquisition
with data placement imposes new challenges to geo-distributed system designs.

Power management is another challenge that has been studied widely [33–36]. Data
centers are power hogs. In 2014, data centers in the U.S. consumed an estimated
70 billion kWh, which accounts for 1.8% of total U.S. electricity consumption [37].
On the other hand, data centers usually have the flexibility of decreasing electricity

6

consumption for a short period of time with power techniques such as load migra-
tion/scheduling [38]. Such flexibility makes data centers promising resources for
demand response, particularly for emergency demand response, which saves the
power grid from incurring blackouts during emergency situations. Existing studies
mostly focus on owner operated data centers (e.g., Google) whose operators have
full control over both servers and facilities. But multi-tenant colocation data centers
have been investigated much less frequently. In a colocation data center (simply
called “colocation” or “colo”), multiple tenants deploy and keep full control of
their own physical servers in a shared space, while the colo operator only provides
facility support (e.g., high-availability power and cooling). Colos are less studied
than owner-operated data centers, but they are actually more common in practice.
Colos offer data center solutions to many industry sectors, and serve as physical
home to many private clouds, medium-scale public clouds (e.g., VMware) [39],
and content delivery providers (e.g., Akamai). Further, a recent study shows that
colos consume nearly 40% of data center energy in the U.S., while Google-type data
centers collectively account for less than 8%, with the remaining going to enterprise
in-house data centers [40]. With such huge potential, efficient power management
for colos becomes an important challenge in data center design.

1.3 Overview of This Thesis

This thesis is divided into four components. In Chapter 2, we focus on the task-level
data analytics framework optimization for approximation jobs. In Chapter 3, we
study the job-level optimizationwith a joint design of job scheduling and speculation
mitigation. In Chapter 4, we investigate the design of the geo-distributed data cloud
with joint optimization of data acquisition and data placement. Finally in Chapter 5,
we study power management in collocation data centers.

Chapter 2: speculation-aware cluster scheduling at the task level

In this chapter, we focus on the task-level data analytics framework optimization for
approximation jobs. In big data analytics, timely results, even if based on only part
of the data, are often good enough. For this reason, approximation jobs, which have
deadline or error bounds and require only a subset of their tasks to complete, are
projected to dominate big data workloads. Straggler tasks are an important hurdle
when designing approximate data analytic frameworks, and the widely adopted
approach to deal with them is speculative execution.

7

In this chapter, we present GRASS, which carefully uses speculation to mitigate the
impact of stragglers in approximation jobs. We develop an analytic model to analyze
the optimal speculation level for approximation jobs. GRASS’s design is based on
the guidelines derived from the analysis. GRASS delicately balances immediacy of
improving the approximation goal with the long term implications of using extra
resources for speculation. Evaluations with production workloads from Facebook
and Microsoft Bing in an EC2 cluster of 200 nodes shows that GRASS increases
accuracy of deadline-bound jobs by 47% and speeds up error-bound jobs by 38%.
GRASS’s design also speeds up exact computations (zero error-bound), making it a
unified solution for straggler mitigation. This work summarizes the result in [19].

Chapter 3: speculation-aware cluster scheduling on the job level

In this chapter, we study the job-level data analytics framework optimization with
a joint design of job scheduling and speculation mitigation. As clusters continue
to grow in size and complexity, providing scalable and predictable performance
is an increasingly important challenge. At this point, speculative execution has
been widely adopted to mitigate the impact of stragglers. However, speculation
mechanisms are designed and operated independently of job scheduling when, in
fact, scheduling a speculative copy of a task has a direct impact on the resources
available for other jobs. In this work, we present Hopper, a job scheduler that is
speculation-aware, i.e., that integrates the tradeoffs associated with speculation into
job scheduling decisions. We generalize the model in Chapter 2 from task level to
job level and design Hopper based on that. A knob to balance fairness and efficiency
and solutions to jobs with DAGs and heterogeneous jobs are also provided in the
design. We implement both centralized and decentralized prototypes of the Hopper

scheduler and show that 50% (66%) improvements over state-of-the-art centralized
(decentralized) schedulers and speculation strategies can be achieved through the
coordination of scheduling and speculation. Thiswork summarizes the result in [41].

Chapter 4: network-aware geo-distributed cluster scheduling

This chapter studies two design tasks faced by a geo-distributed cloud data market:
which data to purchase (data purchasing) and where to place/replicate the data for
delivery (data placement). We show that the joint problem of data purchasing and
data placement within a data cloud can be viewed as a facility location problem, and
is thus NP-hard. However, we give a provably optimal algorithm for the case of a

8

data cloud made up of a single data center, and then generalize the structure from
the single data center setting in order to develop a near-optimal, polynomial-time
algorithm for a geo-distributed data cloud. The resulting design, Datum, decomposes
the joint purchasing and placement problem into two subproblems, one for data
purchasing and one for data placement, using a transformation of the underlying
bandwidth costs. We show, via a case study, that Datum is near-optimal (within
1.6%) in practical settings. This work summarizes the result in [42].

Chapter 5: Power Capping in Colocation Data Centers

This chapter focuses on power management in data centers. Power oversubscription
in data centers may occasionally trigger an emergency when the aggregate power
demand exceeds the capacity. Handling such an emergency requires a graceful
power capping solution that minimizes the performance loss. In this chapter, we
study power capping in a colocation data center where the operator supplies power
to multiple tenants who manage their own servers. Unlike owner-operated data
centers, the operator lacks control over tenants’ servers. To address this challenge,
we propose a novel market mechanism based on supply function bidding, called
COOP, to financially incentivize and coordinate tenants’ power reduction for min-
imizing total performance loss (quantified in performance cost) while satisfying
multiple power capping constraints. We first provide the theoretical analysis of our
mechanism under a simple case with data center level power capping constraint only
and then generalize our mechanism to the multi-level power capping problem. We
build a prototype to show that COOP is efficient in terms of minimizing the total
performance cost, even compared to the ideal but infeasible case that assumes the
operator has full control over tenants’ servers. We also demonstrate that COOP is
“win-win”, increasing the operator’s profit (through oversubscription) and reduc-
ing tenants’ costs (through financial compensation for their power reduction during
emergencies). This work summarizes the result in [43, 44].

9

Chapter 2

SPECULATION-AWARE CLUSTER SCHEDULING
AT THE TASK LEVEL

Large scale data analytics frameworks automatically compose jobs operating on
large data sets into many small tasks and execute them in parallel on compute slots
on different machines. A key feature catalyzing the widespread adoption of these
frameworks is their ability to guard against failures of tasks, both when tasks fail
outright as well as when they run slower than the other tasks of the job. Dealing with
the latter, referred to as stragglers, is a crucial design component that has received
widespread attention across prior studies [15, 17, 18].

The dominant technique tomitigate stragglers is speculation—launching speculative
copies for the slower tasks, where a speculative copy is simply a duplicate of the
original task. It then becomes a race between the original and the speculative copies.
Such techniques are state of the art and deployed in production clusters at Facebook
and Microsoft Bing, thereby significantly speeding up jobs.

Approximation jobs are starting to see considerable interest in data analytics clusters
[21–23]. These jobs are based on the premise that providing a timely result, even
if only on part of the dataset, is more important than processing the entire data.
These jobs tend to have approximation bounds on two dimensions—deadline and
error [45]. Deadline-bound jobs strive to maximize the accuracy of their results
within a specified time deadline. Error-bound jobs, on the other hand, strive to
minimize the time taken to reach a specified error limit in the result. Typically,
approximation jobs are launched on a large dataset and require only a subset of their
tasks to finish based on the bound [46–48].

Our focus in this chapter is on the problem of task-level speculation for approx-
imation jobs.1 Traditional speculation techniques for straggler mitigation face a

1Note that an error-bound job with error of zero is the same as an exact job that requires all
its tasks to complete. Hence, by focusing on approximation jobs, we automatically subsume exact
computations.

10

fundamental limitation when dealing with approximation jobs, since they do not
take into account approximation bounds. Ideally, when the job has many more tasks
than compute slots, we want to prioritize those tasks that are likely to complete
within the deadline or those that contribute the earliest to meeting the error bound.
By not considering the approximation bounds, state-of-the-art straggler mitigation
techniques in production clusters at Facebook and Bing fall significantly short of
optimal mitigation. They are 48% lower in average accuracy for deadline-bound
jobs and 40% higher in average duration of error-bound jobs.

Optimally prioritizing tasks of a job to slots is a classic scheduling problem with
known heuristics [49–51]. These heuristics, unfortunately, do not directly carry
over to our scenario for the following reasons. First, they calculate the optimal
ordering statically. Straggling of tasks, on the other hand, is unpredictable and
necessitates dynamic modification of the priority ordering of tasks according to
the approximation bounds. Second, and most importantly, traditional prioritization
techniques assign tasks to slots assuming every task occupies only one slot. Spawn-
ing a speculative copy, however, leads to the same task using two (or multiple) slots
simultaneously. Hence, this distills our challenge to achieving the approximation
bounds by dynamically weighing the gains due to speculation against the cost of
using extra resources for speculation.

Scheduling a speculative copy helps make immediate progress by finishing a task
faster. However, while not scheduling a speculative copy results in the task running
slower, many more tasks may be completed using the saved slot. To understand this
opportunity cost, consider a cluster with one unoccupied slot and a straggler task.
Letting the straggler complete takes five more time units while a new copy of it
would take four time units. While scheduling a speculative copy for this straggler
speeds it up by one time unit, if we were not to, that slot could finish another task
(taking five time units too).

This simple intuition of opportunity cost forms the basis for our two design proposals.
First, Greedy Speculative (GS) scheduling is an algorithm that greedily picks the
task to schedule next (original or speculative) that most improves the approximation
goal at that point. Second, Resource Aware Speculative (RAS) scheduling considers
the opportunity cost and schedules a speculative copy only if doing so saves both
time and resources.

These two designs are motivated by first principles analysis within the context of a
theoretical model for studying speculative scheduling. An important guideline from

11

our model is that the value of being greedy (GS) increases for smaller jobs while
considering opportunity cost of speculation (RAS) helps for larger jobs. As our
model is generic, a nice aspect is that the guideline holds not only for approximation
jobs but also for exact jobs that require all their tasks to complete.

We use the above guideline to dynamically combine GS and RAS, which we call
GRASS. At the beginning of a job’s execution, GRASS uses RAS for scheduling tasks.
Then, as the job gets close to its approximation bound, it switches to GS, since our
theoretical model suggests that the opportunity cost of speculation diminishes with
fewer unscheduled tasks in the job. GRASS learns the point to switch from RAS to
GS using job and cluster characteristics.

We demonstrate the generality of GRASS by implementing it in both Hadoop [4]
(for batch jobs) and Spark [52] (for interactive jobs). We evaluate GRASS using
productionworkloads fromFacebook andBing on anEC2 clusterwith 200machines.
GRASS increases accuracy of deadline-bound jobs by 47% and speeds up error-
bound jobs by 38% compared to state-of-the-art straggler mitigation techniques
deployed in these clusters (LATE [18] and Mantri [17]). In fact, GRASS results
in near-optimal performance. In addition, GRASS also speeds up exact jobs, that
require all their tasks to complete, by 34%. Thus, it is a unified speculation solution
for both approximation as well as exact computations.

2.1 Challenges and Opportunities

Before presenting our system design, it is important to understand the challenges
and opportunities for speculating straggler tasks in the context of approximation
jobs.

2.1.1 Approximation Jobs

Increasingly, with the deluge of data, analytics applications no longer require pro-
cessing the entire datasets. Instead, they choose to trade off accuracy for response
time. Approximate results obtained early from just part of the dataset are often
good enough [21–23]. Approximation is explored across two dimensions—time for
obtaining the result (deadline) and error in the result [45].

• Deadline-bound jobs strive to maximize the accuracy of their result within
a specified time limit. Such jobs are common in real-time advertisement

12

systems and web search engines. Generally, the job is spawned on a large
dataset and accuracy is proportional to the fraction of data processed [46–48]
(or tasks completed, for ease of exposition).

• Error-bound jobs strive to minimize the time taken to reach a specified error
limit in the result. Again, accuracy ismeasured in the amount of data processed
(or tasks completed). Error-bound jobs are used in scenarios where the value
in reducing the error below a limit is marginal, e.g., counting the number of
cars crossing a section of a road to the nearest thousand is sufficient for many
purposes.

Approximation jobs require schedulers to prioritize the appropriate subset of their
tasks depending on the deadline or error bound. Prioritization is important for
two reasons. First, due to cluster heterogeneities [15, 18, 53], tasks take different
durations even if assigned the same amount of work. Second, jobs are often multi-
waved, i.e., their number of tasks is much greater than the available compute slots,
thereby they run only a fraction of their tasks at a time [54]. For example, when a job
with 1000 tasks is given only 100 slots simultaneously (due to, say, fair scheduling),
it runs only one-tenth of its tasks at a time. These tasks, though, are independent
and can be scheduled in any order. The trend of multi-waved jobs is expected to
grow with smaller tasks [55].

2.1.2 Challenges

The main challenge in prioritizing tasks of approximation jobs arises due to some
of them straggling. Even after applying many proactive techniques, in production
clusters in Facebook and Microsoft Bing, the average job’s slowest task is eight
times slower than the median.2 It is difficult to model all the complex interactions
in clusters to prevent stragglers [15, 57]. Ananthanarayanan et al. (Section 2.1.2
in [15]) also show that blacklisting machines based on their likeliness to cause
stragglers (in both the short- as well as long-term) has little benefits; machines are
neither consistently problematic nor exhibit simple correlations with task durations.

The widely adopted technique to deal with straggler tasks is speculation. This is a
reactive technique that spawns speculative copies for tasks deemed to be straggling.
The earliest among the original and speculative copies is picked while the rest are

2Task durations are normalized by their input sizes to be resistant to data skews [17, 56].

13

killed. While scheduling a speculative copy makes the task finish faster and thereby
increases accuracy, they also compete for compute slots with the unscheduled tasks.

Therefore, our problem is todynamically prioritize tasks based on the deadline/error-
bound while choosing between speculative copies for stragglers and unscheduled
tasks. This problem is, unfortunately, NP-Hard and devising good heuristics (i.e.,
with good approximation factors) is an open theoretical problem.

2.1.3 Potential Gains

Given the challenges posed by stragglers discussed above, it is not surprising that
the potential gains from mitigating their impact are significant. To highlight this
we use a simulator with an optimal bin-packing scheduler. Our baselines are the
the state-of-the-art mitigation strategies (LATE [18] and Mantri [17]) in the pro-
duction clusters. Optimally prioritizing the tasks while correctly balancing between
speculative copies and unscheduled tasks presents the following potential gains.
Deadline-bound jobs improve their accuracy by 48% and 44%, in the Facebook and
Bing traces, respectively. Error-bound jobs speed up by 32% and 40%. We next
develop two online heuristics to achieve these gains.

2.2 Speculation Algorithm Design

The key choice made by a cluster scheduling algorithm is to pick the next task to
schedule given a vacant slot. Traditionally, this choice is made among the set of
tasks that are queued; however when speculation is allowed, the choice also includes
speculative copies of tasks that are already running. This extra flexibility means
that a design must determine a prioritization that carefully weighs the gains from
speculation against the cost of extra resources while still meeting the approximation
goals. Thus, we first focus on tradeoffs in the design of the speculation policy.
Specifically, using both small examples and analytic modeling we motivate the use
of two simple heuristics, Greedy Speculative (GS) scheduling and Resource Aware
Speculative (RAS) scheduling that together make up the core of GRASS.

2.2.1 Speculation Alternatives

For simplicity, we first introduce GS and RAS in the context of deadline-bound jobs
and then briefly describe how they can be adapted to error-bound jobs.

14

2.2.1.1 Deadline-bound Jobs

If speculation was not allowed, there is a natural, well-understood policy for the
case of deadline-bound jobs: Shortest Job First (SJF), which schedules the task with
the smallest processing time. In many settings, SJF can be proven to minimize the
number of incomplete tasks in the system, and thus maximize the number of tasks
completed, at all points of time among the class of non-preemptive policies [49, 50].
Thus, without speculation, SJF finishes the most tasks before the deadline.

If one extends this idea to the case where speculation is allowed, then a natural
approach is to allow the currently running tasks to also be placed in the queue, and
to choose the task with the smallest size, i.e., tnew (requiring, of course, that the task
finishes before the deadline). If the chosen task has a copy currently running, we
check that the speculative copy being considered provides a benefit, i.e., tnew < trem.
So, the next task to run is still chosen according to SJF, only now speculative copies
are also considered. We term this policy Greedy Speculative (GS) scheduling,
because it picks the next task to schedule greedily, i.e., the one that will finish the
quickest, and thus improve the accuracy the earliest at present.

Figure 2.1 (left) presents an illustration of GS for a simple job with nine tasks and
two concurrent slots. Tasks T1 and T2 are scheduled first, and when T2 finishes,
the trem and tnew values are as indicated. At this point, GS schedules T3 next as it is
the one with the lowest tnew, and so forth. Assuming the deadline was set to 6 time
units, the obtained accuracy is 7

9 (or 7 completed tasks).

Picking the earliest task to schedule next is often optimal when a job has no un-
scheduled tasks (i.e., either single-waved jobs or the last wave of a multi-waved
job). However, when there are unscheduled tasks it is less clear. For example, in
Figure 2.1 (right) if we schedule a speculative copy of T1 when T2 finished, instead
of T3, 8 tasks finish by the deadline of 6 time units.

The previous example highlights that running a speculative copy has resource im-
plications which are important to consider. If the speculative copy finishes early,
both slots (of the speculative copy and the original) become available sooner to start
the other tasks. This opportunity cost of speculation is an important tradeoff to
consider, and leads to the second policy we consider: Resource Aware Speculative
(RAS) scheduling.

To account for the opportunity cost of scheduling a speculative copy, RAS speculates
only if it saves both time and resources. Thus, not only must tnew be less than trem

15

Figure 2.1: GS and RAS for a deadline-bound job with 9 tasks. The trem and tnew
values are when T2 finishes. The example illustrates deadline values of 3 and 6 time
units.

to spawn a speculative copy but the sum of the resources used by the speculative
and original copies, when running simultaneously, must be less than letting just the
original copy finish. In other words, for a task with c running copies, its resource
savings, defined as c × trem − (c + 1) × tnew, must be positive.

By accounting for the opportunity cost of resources, RAS can out-perform GS in
many cases. As mentioned earlier, an example is given in Figure 2.1 where RAS
achieves an accuracy of 8

9 versus GS’s 7
9 in the deadline of 6 time units. This

improvement comes because, when T2 finishes, speculating on T1 saves 1 unit of
resource.

However, RAS is not uniformly better than GS. In particular, RAS’s cautious ap-
proach can backfire if it overestimates the opportunity cost. In the same example in
Figure 2.1, if the deadline of the job were reduced from 6 time units to 3 time units
instead, GS performs better than RAS. At the end of 3 time units, GS has led to three
completed tasks while RAS has little to show for its resource gains by speculating
T1.

As the example alludes to, the value of the deadline and the number of waves are
two important factors that impact whether GS or RAS is a better choice. A third
important factor, which we discuss later in Section 2.4.1, is the estimation accuracy
of trem and tnew.

Pseudocode 1 describes the details of GS and RAS. The set T consists of all the
running and unscheduled tasks of the jobs. There are two stages in the scheduling
process: (i) Pruning Stage: In this stage (lines 5 − 12), tasks that are not slated
to complete by the deadline are removed from consideration. Further, GS removes

16

1: procedure Deadline(〈Task〉 T , float δ, bool OC)
. OC = 1→ use RAS; 0→ use GS

2: if OC then
3: for each Task t in T do
4: if t.running then

t.saving = t.c ×t .trem − (t.c+1) × tnew
. PRUNING STAGE

δ’← Remaining Time to δ
〈Task〉Γ← φ

5: for each Task t in T do
6: if t.tnew > δ’ then continue . Exceeds deadline
7: if OC then
8: if t.saving > 0 then Γ.add(t)
9: else
10: if t.running then
11: if t.tnew < t.trem then Γ.add(t)
12: else Γ.add(t)

. SELECTION STAGE
13: if Γ , null then
14: if OC then SortDescending(Γ, “saving”)
15: else SortAscending(Γ, tnew)

return Γ.first()

Pseudocode 1: GS and RAS algorithms for deadline-bound jobs (deadline of δ).
T is the set of unfinished tasks with the following fields per task: trem, tnew, and a
boolean “running” to denote if a copy of it is currently executing. RAS is used when
OC is set. At default, both algorithms schedule the task with the lowest tnew within
the deadline.

those tasks whose speculative copy is not expected to finish earlier than the running
copy. RAS removes those tasks which do not save on resources by speculation. (ii)
Selection Stage: From the pruned set, GS picks the task with the lowest tnew while
RAS picks the task with the highest resource savings (lines 13 − 15).

2.2.1.2 Error-bound Jobs

Though error-bound jobs require a different form of prioritization than deadline-
bound jobs, the speculative core of the GS and RAS algorithms are again quite
natural. Specifically, the goal of error-bound jobs is to minimize the makespan
of the tasks needed to achieve the error limit. Thus, instead of SJF, Longest Job
First (LJF) is the natural prioritization of tasks. In particular, LJF minimizes the
makespan among the class of non-preemptive policies in many settings [49, 50].

17

1: procedure Error(〈Task〉 T , float ε , bool OC)
. OC = 1→ use RAS; 0→ use GS

. Error ε is in #tasks
2: for each Task t in T do

t.duration = min(t.trem, t.tnew)
3: if OC then
4: if t.running then

t.saving = t .c ×t .trem − (t .c+1) × tnew
. PRUNING STAGE

SortAscending(T , “duration”)
〈Task〉Γ← φ

5: for each Task t in T[0 : T .count() (1 − ε)] do
. Earliest tasks

6: if OC then
7: if t.saving > 0 then Γ.add(t)
8: else
9: if t.running then
10: if t.tnew < t.trem then Γ.add(t)
11: else Γ.add(t)

. SELECTION STAGE
12: if Γ , null then
13: if OC then SortDescending(Γ, “saving”)
14: else SortDescending(Γ, trem)

return Γ.first()

Pseudocode 2: GS and RAS speculation algorithms for error-bound jobs (error-
bound of ε). T is the set of unfinished tasks with the following fields per task: trem,
tnew, and a boolean “running” to denote if a copy of it is currently executing. The
trem of the task is the minimum of all its running copies. RAS is used when OC is
set. At default, both algorithms schedule the task with the highest trem.

This again represents a “greedy” prioritization for this setting.

Despite the above change to the prioritization of which task to schedule, the form of
GS and RAS remain the same as in the case of deadline-bound jobs. In particular,
speculative copies are evaluated in the same manner, e.g., RAS’s criterion is still to
pick the task whose speculation leads to the highest resource savings. Pseudocode 2
presents the details. The pruning stage (lines 5−11) will remove from consideration
those tasks that are not the earliest to contribute to the desired error bound. The list
of earliest tasks is based on the effective duration of every task, i.e., the minimum
of trem and tnew. During selection (lines 12− 14), GS picks the task with the highest
trem while RAS picks the task with the highest saving.

Figure 2.2 presents an illustration of GS and RAS for an error-bound job with 6

18

Figure 2.2: GS and RAS for error-bound job with 6 tasks. The trem and tnew values
are when T2 finishes. The example illustrates error limit of 40% (3 tasks) and 20%
(4 tasks).

tasks and 3 compute slots. The trem and tnew values are at 5 time units. GS decides
to launch a copy of T3 as it has the highest trem. RAS conservatively avoids doing
so. Consequently, when the error limit is high (say, 40%) GS is quicker, but RAS is
better when the limit decreases (to, say, 20%).

2.2.2 Contrasting GS and RAS

To this point, we have seen that GS and RAS are two natural approaches for inte-
grating speculation into a cluster scheduler for approximation jobs. However, the
examples we have considered highlight that neither GS nor RAS is uniformly better.
Natural questions to study include are these two natural approaches optimal and
if they are optimal, when to apply which. In order to answer those questions and
develop a better understanding of these two algorithms as well as other possible
alternatives, we have developed an analytic model for speculation in approximation
jobs. The model assumes wave-based scheduling and constant wave-width for a job.
We present the analytic model along with formal results in the following section.
The same model also inspires our design for the job-level speculation-aware cluster
scheduler in Chapter 3.

2.3 Modeling and Analyzing Speculation

In this section we introduce the model and analysis which leads to the design of our
scheduler GRASS. We develop the model in Section 2.3.1 and Section 2.3.2, and
summarize the design guidelines from our analysis in Section 2.3.3.

19

1 2 3 4
x 10

6

0

1

2

3

4

β = 1.259

order statistics

H
ill

 e
st

im
at

e
o

f
β

Figure 2.3: Hill plot of Facebook task durations.

The model focuses on a system with S slots and one job that has T tasks3. Each slot
can have one task scheduled to it at any time. And due to the short task duration
and fast processing rate, preemption is not allowed in our system. Each of the tasks
has an an i.i.d. random task completion time τ.We denote the remaining number of
tasks for the job at time t by T(t).

The key piece of our model is the characterization of the completion rate of the
job, µ(t), as a function of the average number of speculative copies per task at time
t, k(t). Note that µ(t) should be interpreted as the completion rate of the ith job.
By focusing on the service rate we are ignoring ordering of the tasks and focusing
primarily on the impact of speculation.

The statistic characteristics of the task completion time distribution have significanlt
impact on the scheduler design. Our analysis of the task durations in the Facebook
and Bing traces suggests that task durations have a Pareto tail (i.e., P(τ > x) =

Θ(x−β)) with shape parameter β = 1.259 as shown in the Hill plot in Figure 2.3. A
Hill plot provides a more robust estimation of Pareto distributions than the, more
commonly used, regression on a log-log plot [58]. To interpret the plot, a flat region
corresponds to an estimate of β. The fact that the curve in Figure 2.3 is flat over a
large range of order statistics (on the x-axis), but not all order statistics, indicates
that the distribution of task sizes is not exactly Pareto distribution in its body, but is
well-approximated by a Pareto (power-law) tail. Thus, we assume the task duration
τ follows a Pareto distribution with shape parameter β and scale parameter xm in
the following discussion, where we assume the distribution is strongly heavy-tailed,
i.e., 1 < β ≤ 2.

In our analysis we begin with proactive speculation, and then move to reactive
speculation. In proactive speculation, any task is speculated immediately to k(t)

3For approximation jobs, T should be interpreted as the number of tasks that are completed
before the deadline or error limit is reached.

20

copies upon scheduling, where k(t) is decided by the remaining number of tasksT(t)

and task completion time distribution τ. While in the reactive approach, any task
is launched for a single copy at the beginning, then is speculated to k(t) copies if
necessary. Besides T(t) and τ, k(t) is also decided by the expected completion time
calculated approximately by the test run of the first copy. This progression is natural
since the analysis of proactive speculation serves as a stepping stone to the design of
reactive speculation policies. Further, in the case of proactive speculation, we can
precisely specify the optimal policy, whereas in the case of reactive speculation, we
must resort to numerical optimization.

2.3.1 Proactive speculation

We start by considering a general class of proactive policies that launch k(t) specula-
tive copies of tasks when the job has remaining size T(t). We propose the following
approximate model for µ(t) in this case.

µ(t) = min (S,T(t)k(t)) ×

(
E[τ]

k(t)E
[
min(τ1, . . . , τk(t))

]) , (2.1)

where τ is a random task completion time.

To understand this approximate model, note that the first term approximates the
number of slots the job occupied and the second term approximates the “blow up
factor,” i.e., the ratio of the expected work completed without duplications to the
amount of work done with duplications. To approximate the number of slots the job
occupied, note that there are T(t)k(t) tasks available to schedule at time t, including
speculative copies. Given that the maximum capacity that can be allocated is S, we
obtain the first term in (2.1). The second term is the the expected amount of work
done per task without speculation (E[τ]) divided by the expected amount of work
done per task with speculation (k(t)E[min(τ1, τ2, . . . , τk(t))]), since k(t) copies are
created and then they are stopped when the first copy completes. Perhaps the most
important aspect of this approximation is the fact that task durations are i.i.d., and
this is what leads both to stragglers and to the benefits of replication.

While our focus in this chapter is on scheduling to minimize completion times,
the model described above is not well suited toward analytic results about that
metric. Instead, our analysis focuses on scheduling to maximize completion rate, in
other words, throughput. Of course, improving throughput usually corresponds to

21

improvements in response time, especially in settings where systems are moderately
or heavily loaded since improving throughput enlarges the capacity region for the
system.

It is natural to follow this approach when studying stragglers because replication
pushes the system toward high loads and is fundamentally about trading off increased
resource demands for improved performance. Importantly, our experimental results
show that the design motivated by the analysis that follows does indeed result in
considerable response time improvements.

Given the model in (2.1), the question is: What proactive speculation policy max-
imizes the job completion rate? As discussed above, the distribution of task sizes
shows considerable evidence of a Pareto-tail, and so we focus our analysis on this
setting. The following theorem states how the optimal speculation level k(t) behaves.

Theorem 1. When task duration follows Pareto(xm,β) distribution with 1 < β ≤ 2,
the proactive speculation policy that maximizes the completion rate µ(t) of the job
is

k(t) =

2
β, S ≤ 2

βT(t)

S/T(t), S > 2
βT(t).

(2.2)

Proof. Under the assumption of Pareto distribution, we have,

E[τ] =
βxm

β − 1

E[min(τ1, . . . , τk(t)] =
kβxm

kβ − 1
.

(2.3)

Substitute (2.3) to (2.1),

µ(t) =

k(t)β−1

k(t)2(β−1)S, S ≤ T(t)k(t)

k(t)β−1
k(t)(β−1)T, S > T(t)k(t)

=

−(1k −

β
2)

2 S
β−1 +

β2S
4(β−1), S ≤ T(t)k(t)

(β − 1
k)

T
β−1, S > T(t)k(t).

Thus, when k(t) follows (2.2), µ(t) achieves its maximum. �

22

This theorem indicates that the optimal speculation strategy should change from
conservative to aggressive as the job processes. Specifically the first line corresponds
to the “early waves” and the second line corresponds to the “last wave”. During
the “early waves” the optimal policy speculates conservatively corresponding to the
task duration shape parameter β. In contrast, during the “last wave”, regardless of
the task duration distribution, the optimal policy speculates to ensure all slots are
used.

2.3.2 Reactive speculation

We now turn to reactive speculation policies, which launch copies of a task only
after it has completed ω work. Both GS and RAS are examples of such policies and
can be translated into choices for ω. Proactive speculation is also a special case of
the reactive speculation with ω = 0.

Our analysis of proactive policies provides important insights into the design of
reactive policies. In particular, during early waves, the the optimal proactive policy
runs at most two copies of each task, and so we limit our reactive policies to this
level of speculation. Additionally, the previous analysis highlights that during the
last wave it is best to speculate aggressively in order to use up the full capacity,
and thus it is best to speculate immediately without waiting ω time. This yields the
following approximation for µ(t):

µ(t) =

E[τ1]
E[τ1 |0≤τ1<ω]Pr(0≤τ1<ω)+(2E[Z−ω|τ1≥ω]+ω)Pr(τ1>ω)

S,

when S ≤ T(t)(Pr(0 ≤ τ1 < ω) + 2 Pr(τ1 ≥ ω)),

optimal proactive speculation (from (2.1)),

when S > T(t)(Pr(0 ≤ τ1 < ω) + 2 Pr(τ1 ≥ ω)),

(2.4)

where τ1, τ2 are random task durations and Z = min(τ1, τ2 + ω).

Again, the first line in (2.4) approximates the completion rate during the early
waves of the job, while the second line approximates the completion rate during
the final wave of the job. To understand the first line, note that during early
waves there are enough tasks to spawn over all the available slots S as long as
T(t)(Pr(0 ≤ τ1 < ω) + 2 Pr(τ1 ≥ ω)) ≥ S. Thus, all that remains is the “blow up
factor.” As before, the numerator is the expected amount of work per task without

23

1 2 3 4 5
1

1.02

1.04

1.06

1.08

1.1

1.12 GS RAS

ω

P
ro

ce
ss

in
g

 T
im

e/
O

p
ti

m
al

5 waves
4 waves
3 waves
2 waves
1 waves

Figure 2.4: Near-optimality of GS & RAS under Pareto task durations (β = 1.259).

speculation (E[τ]) and the denominator is the expected amount of work per task
with reactive speculation. This is E[τ |τ < ω] if the initial copy finishes before ω,
and 2E[Z − ω |τ1 > ω] + ω if the initial copy takes longer than ω.

Within this model, our design problem can now be reduced to finding ω that
minimizes the response time of the job. GS and RAS both correspond to particular
rules for how to choose ω. To see this, we can define tnew = E[τ] and trem =

E[τ − ω|τ > ω], where τ is a random task duration. Then, under GS, ω is
the time when E[τ] = E[τ − ω |τ > ω], and, under RAS, ω is the time when
2E[τ] = E[τ − ω |τ > ω]. The complicated form of (2.4) makes it difficult to
understand the optimal ω analytically, and thus we use numerical calculations.

Figure 2.4 contrasts the performance of all the replication policies in this more
general class. Specifically, it shows the ratio of the completion rates of the replication
policies with parameter ω normalized with respect to the optimal completion rate.
It illustrates this ratio for jobs of differing numbers of waves, and for ω in a wide
normalized range. To highlight GS and RAS, they are shown via vertical lines. The
completion rates shown in the figure are computed using the model and analysis
described above. The main conclusion from this figure is neither GS or RAS is
universally optimal, but each is near-optimal for jobs with a certain number of
waves: RAS for jobs with large numbers of waves and GS for jobs with small
numbers of waves.

2.3.3 Optimal speculation design guidelines

To this point, we have presented a simple analytic model for speculation in approx-
imation jobs. The model assumes wave-based scheduling and constant wave-width
for a job. Here we summarize the threemajor guidelines from our analysis. Most im-
portantly, these guidelines highlight that different speculation policies are required

24

during the early waves of a job than during the final wave.

Guideline 1. During the early waves of a job, speculation is only valuable if task
durations are extremely heavy tailed, e.g., Pareto with infinite variance (i.e., with
shape parameter β < 2). In this case, it is optimal to speculate conservatively, using
≤ 2 copies of a task.

This guideline is relevant because task durations are indeed heavy-tailed for the
Facebook and Bing traces (see the Hill plot in Figure 2.3), which suggests that
task durations have a Pareto tail (i.e., P(τ > x) = θ(x−β)) with shape parameter
β = 1.259. While both GS and RAS speculate during early waves, RAS is more
conservative than GS and thus outperforms it during early waves.

Guideline 2. During the final wave of a job, speculate aggressively to fully utilize
the allotted capacity.

This guideline says that, even if all tasks are currently scheduled, if a slot becomes
available it should be filled with a speculative copy. While both GS and RAS do this
to some extent, GS speculates more aggressively than RAS and thus, outperforms
RAS during the final wave.

The previous two guidelines highlight a tradeoff between RAS and GS, which we
formalize next.

Guideline 3. For jobs that require more than two waves RAS is near-optimal, while
for jobs that require fewer than two waves GS is near-optimal.

This guideline is direct conclusion from our analysis in Section 2.3.2 based on
numerical optimization shown in Figure 2.4 .

2.4 Grass Speculation Algorithm

In this section, we build our speculation algorithm, GRASS.4Our theoretical analysis
summarized in Section 2.3 motivates a design that uses RAS during the early waves
of jobs and GS during the final two waves. A simple strawman solution to achieve
this would be as follows. For deadline-bound jobs, switch from RAS to GS when
the time to the deadline is sufficient for at most two waves of tasks. Similarly, for

4GRASS is a concatenation of GS and RAS.

25

error-bound jobs, switch when the number of (unique) scheduled tasks needed to
satisfy the error-bound makes up two waves.

Identifying the final two waves of tasks is difficult in practice. Tasks are not
scheduled at explicit wave boundaries but rather as and when slots open up. In
addition, the wave-width of jobs does not stay constant but varies considerably
depending on cluster utilization. Finally, task durations are varied and hard to
estimate.

In light of these difficulties, we interpret the guideline as follows: RAS is better
when the deadline is loose or the error limit is low, while otherwise GS performs
better. This mimics the intuition from the examples in Section 2.2.1. Therefore,
GRASS seeks to switch from RAS to GS as it gets close to the job’s approximation
bound.

The complexities in these systems mean that precise estimates of the optimal switch-
ing point cannot be obtained from our model. Instead, we adopt an indirect learning
based approach where inferences are made based on executions of previous jobs
(with similar number of tasks) and cluster characteristics (utilization and estimation
accuracy). We compare our learning approach to the strawman described above in
Section 2.6.3.

2.4.1 Learning the Switching Point

An ideal approach would accumulate enough samples of job performance (accuracy
or completion time) based on switching to GS at different points. For deadline-
bound jobs, this is decided by the remaining time to the deadline. For error-bound
jobs, this is decided by the number of tasks to complete towards meeting the error.
To speed up our sample collection, instead of accumulating samples of switching to
GS, we simply generate samples of job performance using GS or RAS throughout
the job (described shortly in Section 2.4.2).

An incoming job starts with RAS and periodically compares samples of jobs smaller
than its size during its execution to check if it is better to switch to GS. It checks
by using its remaining work at any point (measured in time remaining or tasks to
complete). It steps through all possible points in its remaining work at which it could
switch and estimates the optimal point using job samples of appropriate sizes. It
continues with RAS until the optimal switching point turns out to be at present. The

26

above calculation for the optimal switching point is performed periodically during
the job’s execution.

For example, when a deadline-bound job has 6s of its deadline remaining, GRASS

compares the potential accuracy obtained if it were to switch at each point in its
future (at 1s granularity). The accuracy if it were to switch after, say, 2s is the sum
of accuracies of jobs with deadlines of 2s that used only RAS and those with 4s
that used only GS. Switching happens if among all such points, the best accuracy is
obtained by switching now.

The size of the job alone is insufficient to calculate the optimal switching point. Even
jobs of comparable size might have different numbers of waves depending on the
number of available slots. Therefore, we augment our samples of job performance
with the number of waves, simply approximated using current cluster utilization.

Finally, estimation accuracy of trem and tnew also decides the optimal switching
point. RAS’s cautious approach of considering the opportunity cost of speculating
a task is valuable when task estimates are erroneous. In fact, at low estimation
accuracies (along with certain values of utilization and deadline/error-bound), it is
better to not switch to GS at all and to employ RAS all along. Section 2.6.3.2
analyzes the impact of these three factors.

Therefore, GRASS obtains samples of job performance with both GS and RAS
across values of deadline/error-bound, estimation accuracy of trem and tnew, and
cluster utilization. It uses these three factors collectively to decide when (and if) to
switch from RAS to GS. We next describe how the samples are collected.

2.4.2 Generating Samples

As described above, GRASS compares samples of job performance that use only GS
or RAS throughout, to decide when to switch. These samples have to be updated
continuously to stay abreast with dynamic changes in clusters. To continuously
generate such samples, we introduce a perturbation in GRASS’s switching decision.
With a small probability ξ, GRASS decides to not switch and instead picks one of GS
or RAS for the entire duration of the job (both GS and RAS are equally probable).
Such perturbation helps us obtain comparable samples.

The crucial trade-off in setting ξ is in balancing the benefit of obtaining such com-
parable samples with the performance loss incurred by the job due to not making the
right switching decision. Theoretical analyses of such multi-armed bandit problems

27

in prior work defines an optimal value of ξ by making stochastic assumptions about
the distribution of the costs and the associated rewards [59]. Our setup, however,
does not yield itself to such assumptions as the underlying distribution can be ar-
bitrary. Another class of techniques that we considered modified ξ with time [60].
Over time, the value of ξ is gradually reduced using a damping function, thus in-
dicating higher confidence in the learned value. We decided against such damping
of ξ because clusters constantly evolve with new software and hardware modules,
leading to newer interactions between them.

Therefore, we pick a constant value of ξ using empirical analysis. A job is marked
for generating performance samples with a probability of ξ, and we pick GS or RAS
with equal probability. In practice, we bucket jobs by their number of tasks and
compare only within jobs of the same bucket.

2.5 Implementation

We implement GRASS on top of two data-analytics frameworks, Hadoop (version
0.20.2) [4] and Spark (version 0.7.3) [52], representing batch jobs and interactive
jobs, respectively. Hadoop jobs read data from HDFS while Spark jobs read from
in-memory RDDs. Consequently, Spark tasks finished quicker than Hadoop tasks,
even with the same input size. Note that while Hadoop and Spark use LATE[18]
currently, we also implement Mantri[17] to use as a second baseline.

Implementing GRASS required two changes: task executors and job scheduler.
Task executors were augmented to periodically report progress. We piggyback
on existing update mechanisms of tasks that conveyed only their start and finish.
Progress reports were configured to be sent every 5% of data read/written. The job
scheduler collects these reports, maintains samples of completed tasks and jobs, and
decides the switching point.

2.5.1 Task Estimators

GRASS uses two estimates for tasks: remaining duration of a running task (trem) and
duration of a new copy (tnew).

Estimating trem: Tasks periodically update the scheduler with progress reports
containing the fraction of input read and output written. Since tasks of analytics
jobs are IO-intensive, we extrapolate the remaining duration of the task based on
the time elapsed thus far.

28

Estimating tnew: We estimate the duration of a new task by sampling from durations
of completed tasks (normalized to input and output sizes). The tnew values of all
tasks are updated whenever a task completes.

Accuracy of estimation: While the above techniques are simple, the downside is
the error in estimation. Our estimates of trem and tnew achieve moderate accuracies
of 72% and 76%, respectively, on average. When a task completes, we update the
accuracy using the estimated and actual durations. GRASS uses the accuracy of
estimation to appropriately switch from RAS to GS.

2.5.2 DAG of Tasks

Jobs are typically composed as a DAG of tasks with input tasks (e.g.,map or extract)
reading data from the underlying storage and intermediate tasks (e.g., reduce or
join) aggregating their outputs. Even in DAGs of tasks, the accuracy of the result is
decided by the fraction of completed input tasks. This makes GRASS’s functioning
straightforward in error-bound jobs—complete as many input tasks as required to
meet the error-bound and all intermediate tasks further in the DAG.

For deadline-bound jobs, we use a widely occurring property that intermediate tasks
perform similar functions across jobs. Further, they have relatively fewer stragglers.
Thus, we estimate the time taken for intermediate tasks by comparing jobs of similar
sizes and then subtract it to obtain the deadline for the input tasks.

Input tasks of a job, typically, read equal amounts of data. Thus, the fraction of
tasks completed represents fraction of data processed too, thus making it a good
indicator of the result’s accuracy.

2.6 Evaluation

We evaluate GRASS on a 200 node EC2 cluster. Our focus is on quantifying
the performance improvements compared to current designs, i.e., LATE [18] and
Mantri [17], and on understanding how close to the optimal performance GRASS

comes. Our main results can be summarized as follows.

1. GRASS increases accuracy of deadline-bound jobs by 47% and speeds up error-
bound jobs by 38%. Even non-approximation jobs (i.e., error-bound of zero)
speed up by 34%. Further, GRASS nearly matches the optimal performance
(Section 2.6.2).

29

Facebook Microsoft Bing
Dates Oct 2012 May-Dec 2011
Framework Hadoop Dryad
Script Hive [11] Scope [24]
Jobs 575K 500K
Cluster Size 3,500 Thousands
Straggler– LATE [18] Mantri [17]
mitigation

Table 2.1: Details of Facebook and Bing traces.

2. GRASS’s learning based approach for determining when to switch from RAS
to GS is over 30% better than simple strawman techniques. Further, the use of
all three factors discussed in Section 2.4.1 is crucial for inferring the optimal
switching point. (Section 2.6.3)

2.6.1 Methodology

Workload: Our evaluation is based on traces fromFacebook’s productionHadoop [4]
cluster and Microsoft Bing’s production Dryad [61] cluster. The traces capture over
half a million jobs running across many months (Table 2.1). The clusters run a
mix of interactive and production jobs whose performance have significant impact
on productivity and revenue. The jobs had diverse resource requirements of CPU,
memory and IO. To create our experimental workload, we retain the inter-arrival
times, input files and number of tasks of jobs. The jobs were, however, not approxi-
mation queries and required all their tasks to complete. Hence, we convert the jobs
to mimic deadline- and error-bound jobs as follows.

For experiments on error-bound jobs, we pick the error tolerance of the job ran-
domly between 5% and 30%. This is consistent with the experimental setup in
recently reported research [21, 62]. Prior work also recommends setting deadlines
by calibrating task durations [21, 47]. For the purpose of calibration, we obtain
the ideal duration of a job in the trace by substituting the duration of each of its
task by the median task duration in the job, again, as per recent work on straggler
mitigation [15]. We set the deadline to be an additional factor (randomly between
2% to 20%) on top of this ideal duration.

Job Bins: We bin jobs by their number of tasks. We use three distinctions “small”
(< 50 tasks), “medium” (51 − 500 tasks), and “large” (> 500 tasks).

EC2Deployment: Wedeploy our Hadoop and Spark prototypes on a 200-node EC2
cluster and evaluate them using the workloads described above. Each experiment

30

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

(a) FB Workload–Hadoop

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(b) Bing Workload–Hadoop

0

10

20

30

40

50

60

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

(c) FB Workload–Spark

Job Bin (#Tasks)
Im

p
ro

v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(d) Bing Workload–Spark

Figure 2.5: Accuracy Improvement in deadline-bound jobs with LATE [18] and
Mantri [17] as baselines.

is repeated five times and we pick the median. We measure improvement in the
average accuracy for deadline-bound jobs and average duration for error-bound jobs.

We also use a trace-driven simulator to evaluate at larger scales and over longer
durations. The simulator replays all the task properties including their straggling.

Baseline: We contrast GRASS with two state-of-the-art speculation algorithms—
LATE [18] and Mantri [17].

2.6.2 Improvements from GRASS

We contrast GRASS’s performance with that of LATE [18], Mantri [17], and the
optimal scheduler.

2.6.2.1 Deadline-bound jobs

GRASS improves the accuracy of deadline-bound jobs by 34% to 40% in the Hadoop
prototype. Gains in both the Facebook and Bing workloads are similar. Figure 2.5a
and 2.5b split the gains by job size. The gains compared to LATE as baseline
are consistently higher than Mantri. Also, the gains in large jobs are pronounced

31

0

10

20

30

40

50

2-5 6-10 11-15 16-20

Facebook Bing

Deadline (%) Bin

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

(a) Deadline Bins

0

10

20

30

40

5-10 11-15 16-20 21-25 26-30

Facebook Bing

Error (%) Bin

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

(b) Error Bins

Figure 2.6: GRASS’s overall gains (compared to LATE) binned by the deadline
and error bound. Deadlines are binned by the factor over ideal job duration (see
Section 2.6.1)

compared to small andmedium sized jobs because their manywaves of tasks provide
plenty of potential for GRASS.

The Spark prototype improves accuracy by 43% to 47%. The gains are higher
because Spark’s task sizes are much smaller than Hadoop’s due to in-memory
inputs. This makes the effect of stragglers more distinct. Again, large jobs gain
the most, improving by over 50% (Figure 2.5c and 2.5d). Large multi-waved jobs
improving more is encouraging because smaller task sizes in future [55] will ensure
that multi-waved executions will be the norm. Unlike the Hadoop case, gains
compared to both LATE and Mantri are similar because both have only limited
effect when the impact of stragglers is high.

Figure 2.6a dices the improvements by the deadline (specifically, the additional
factor over the ideal job duration (see Section 2.6.1)). Note that gains are nearly
uniform across deadline values. This indicates that GRASS can not only cope with
stringent deadlines but be valuable even when the deadline is lenient.

Gains with simulations are consistent with deployment, indicating not only that
GRASS’s gains hold over longer durations but also the simulator’s robustness.

2.6.2.2 Error-bound jobs

Similar to deadline-bound jobs, improvements with the Spark prototype (33% to
37%) are higher compared to the Hadoop prototype (24% to 30%). This shows
that GRASS works well not only with established frameworks like Hadoop but also
upcoming ones like Spark.

32

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n
0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(a) FB Workload–Hadoop

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

0

10

20

30

40

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(b) Bing Workload–Hadoop

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(c) FB Workload–Spark

Job Bin (#Tasks)
Im

p
ro

v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

0

10

20

30

40

50

< 50 51-500 > 501

Baseline:LATE Baseline:Mantri

(d) Bing Workload–Spark

Figure 2.7: Speedup in error-bound jobs with LATE [18] and Mantri [17] as base-
lines.

Note that the gains are indistinguishable among different job bins (Figures 2.7a
and 2.7b) in the Spark prototype; large jobs gain a touch more in the Hadoop
prototype (Figures 2.7c and 2.7d). Again, our simulation results are consistent with
deployment, and so are omitted.

As Figure 2.6b shows, GRASS’s gains persist at both tight as well as moderate error
bounds. At high error bounds, there is smaller scope for GRASS beyond LATE. The
gains at tight error bounds are noteworthy because these jobs are closer to exact
jobs that require all (or most of) their tasks to complete. In fact, exact jobs speed
up by 34%, thus making GRASS valuable even in clusters that are yet to deploy
approximation analytics.

2.6.2.3 Optimality of GRASS

While the results above show the speed up GRASS provides, the question remains as
to whether further improvements are possible. To understand the room available for
improvement beyondGRASS, we compare its performancewith an optimal scheduler
that knows task durations and slot availabilities in advance.

Figure 2.8 shows the results for the Facebook workload with Spark. It highlights that

33

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

0

10

20

30

40

50

60

< 50 51-500 > 501

GRASS Optimal

(a) Deadline-bound Jobs

0

10

20

30

40

50

< 50 51-500 > 501

GRASS Optimal

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

(b) Error-bound Jobs

Figure 2.8: GRASS’s gains matches the optimal scheduler.

Length of DAG

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

0

10

20

30

40

50

2 3 4 5 6

Bing Facebook

(a) Deadline-bound Jobs.

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Length of DAG

0

10

20

30

40

2 3 4 5 6

Bing Facebook

(b) Error-bound Jobs.

Figure 2.9: GRASS’s gains hold across job DAG sizes.

GRASS’s performance matches the optimal for both deadline as well as error-bound
jobs. Thus, GRASS is an efficient near-optimal solution for the NP-hard problem of
scheduling tasks for approximation jobs with speculative copies.

2.6.2.4 DAG of tasks

To complete the evaluation of GRASS we investigate how performance gains depend
on the length of the job’s DAG. Intuitively, as long as our estimation of intermediate
phases is accurate, GRASS’s handling of the input phase should remain unchanged,
and Figure 2.9 confirms this for both deadline and error-bound jobs. Gains from
GRASS remain stable with the length of the DAG.

2.6.3 Evaluating GRASS’s Design Decisions

To understand the impact of the design decisions made in GRASS, we focus on
three questions. First, how important is it that GRASS switches from RAS to GS?
Second, how important is it that this switching is learned adaptively rather than
fixed statically? Third, how sensitive is GRASS to the perturbation factor ξ? In the

34

0

10

20

30

40

50

< 50 51-500 > 501

GS-only RAS-only GRASS

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

(a) Hadoop

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

0

10

20

30

40

50

60

< 50 51-500 > 501

GS-only RAS-only GRASS

(b) Spark

Figure 2.10: GRASS’s switching is 25% better than using GS or RAS all through
for deadline-bound jobs. We use the Facebook workload and LATE as baseline.

0

10

20

30

40

< 50 51-500 > 501

GS-only RAS-only GRASS

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

(a) Facebook Workload–
Hadoop

0

10

20

30

40

50

< 50 51-500 > 501

GS-only RAS-only GRASS

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

(b) Facebook Workload–Spark

Figure 2.11: GRASS’s switching is 20% better than using GS or RAS all through
for error-bound jobs. We use the Facebook workload and LATE as baseline.

interest of space, we present results on these topics for only the Facebook workload
using LATE as a baseline; results for the Bing workload with Mantri are similar.

2.6.3.1 The value of switching

To understand the importance of switching between RAS and GS we compare
GRASS’s performance with using only GS and RAS all through the job. Figure 2.10
performs the comparison for deadline-bound jobs. GRASS’s improvements, both
on average as well as in individual job bins, are strictly better than GS and RAS.
This shows that if using only one of them is the best choice, GRASS automatically
avoids switching. Further, GRASS’s overall improvement in accuracy is over 20%
better than the best of GS or RAS, demonstrating the value of switching as the job
nears its deadline. The above trends are consistent with error-bound jobs as well
(Figure 2.11), though GRASS’s benefit is slightly lower.

35

0

10

20

30

40

50

60

< 50 51-500 > 501

Strawman GRASS

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

(a) Deadline-bound Jobs

0

10

20

30

40

50

< 50 51-500 > 501

Strawman GRASS

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Job Bin (#Tasks)

(b) Error-bound Jobs

Figure 2.12: Comparing GRASS’s learning based switching approach to a strawman
that approximates twowaves of tasks. GRASS is 30%−40% better than the strawman.

The contrast of GS and RAS is also interesting. GS outperforms RAS for small jobs
but loses out as job sizes increase. The significant degradation in performance in
the unfavorable job bin (medium and large jobs for GS, versus small jobs for RAS)
illustrates the pitfalls of statically picking the speculation algorithm.

2.6.3.2 The value of learning

Given the benefit of switching, the question becomes when this switching should
occur. GRASS does this adaptively based on three factors: deadline/error-bound,
cluster utilization and estimation accuracy of trem and tnew. Now, we illustrate the
benefit of this approach compared to simpler options, i.e., choosing the switching
point statically or based on a subset of these three factors. Note that we have already
seen that these three factors are enough to be near optimal (Figure 2.8).

Static switching: First, when considering a static design, a natural “strawman” based
on our theoretical analysis is to estimate the point when there are two remaining
waves as follows. For deadline-bound jobs, it is the point when the time to the
deadline is sufficient for at most two waves of tasks. For error-bound jobs, it is when
the number of (unique) scheduled tasks sufficient to satisfy the error-bound makes
up two waves. The strawman uses the current wave-width of the job and assumes
task durations to be the median of completed tasks.

Figure 2.12 compares GRASS with the above strawman. Gains with the strawman
are 66% and 73% of the gains with GRASS for deadline-bound and error-bound
jobs, respectively. Small and medium jobs lag the most as wrong estimation of
switching point affects a large fraction of their tasks. Thus, the benefit of adaptively
determining the switching point is significant.

36

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

0

10

20

30

40

50

< 50 51-500 > 501

Best-1 Best-2 GRASS

(a) Hadoop

0

10

20

30

40

50

60

< 50 51-500 > 501

Best-1 Best-2 GRASS

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

(b) Spark

Figure 2.13: Using all three factors for deadline-bound jobs compared to only one
or two is 18% − 30% better.

Adaptive switching: Next, we study the impact of the three factors used to adaptively
learn the switching threshold. To do this, Figures 2.13 and 2.14 compare the designs
using the best one or two factors with GRASS.

When only one factor can be used to switch, picking the deadline/error-bound
provides the best results. This is intuitive given the importance of the approximation
bound to the ordering of tasks. When two factors are used, in addition to the
deadline/error-bound, cluster utilization matters more for the Hadoop prototype
while estimation accuracy is important for the Spark prototype. Tasks of Hadoop
jobs are longer and more sensitive to slot allocations, which is dictated by the
utilization. While the smaller Spark tasks are more fungible, this also makes them
sensitive to estimation errors.

Using only one factor is significantly worse than using all three factors. The
performance picks up with deadline-bound jobs when two factors are used, but
error-bound jobs’ gains continue to lag until all three are used. Thus, in the absence
of a detailed model for job executions, the three factors act as good predictors.

2.6.3.3 Sensitivity to Perturbation

The final aspect of GRASS that we evaluate is the perturbation factor, ξ, which
decides how often the scheduler does not switch during a job’s execution (described
in Section 2.4.2). This perturbation is crucial for GRASS’s learning of the optimal
switching point. All results shown previously set ξ to 15%, which was picked
empirically.

Figure 2.15 highlights the sensitivity of GRASS to this choice. Low values of ξ
hamper learning because of the lack of sufficient samples, while high values incur

37

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n
0

10

20

30

40

< 50 51-500 > 501

Best-1 Best-2 GRASS

(a) Hadoop

0

10

20

30

40

50

< 50 51-500 > 501

Best-1 Best-2 GRASS

Job Bin (#Tasks)

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

(b) Spark

Figure 2.14: Using all three factors for error-bound jobs compared to one or two
factors is 15% − 25% better.

0

10

20

30

40

50

0 5 10 15 20

Facebook

Bing

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

Perturbation (ξ)

(a) Deadline-bound Jobs

0

10

20

30

40

0 5 10 15 20

Facebook

Bing

Im
p

ro
v
e

m
e

n
t

(%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Perturbation (ξ)

(b) Error-bound Jobs

Figure 2.15: Sensitivity of GRASS’s performance to the perturbation factor ξ. Using
ξ = 15% is empirically best.

performance loss resulting from not switching from RAS to GS often enough. Our
results show, that this exploration–exploitation tradeoff is optimized at ξ = 15%,
and that performance drops off sharply around this point. Deadline-bound jobs
are more sensitive to poor choice of ξ than error-bound jobs. Using ξ of 15% is
consistent with studies on multi-armed bandit problems [63], which is related to our
learning problem.

2.7 Related Work

The problem of stragglers was identified in the original MapReduce paper [1]. Since
then solutions have been proposed tomitigate them using speculative executions [17,
18, 61]. These solutions, however, are not for approximation jobs. These jobs require
proritizing the right subset of tasks by carefully considering the opportunity cost
of speculation. Further, our evaluations show that GRASS speeds up even for exact
jobs that require all their tasks to complete. Thus, it is a unified solution that

38

cluster schedulers can deploy for both approximation as well as non-approximation
computations.

Prioritizing tasks of a job is a classic scheduling problem with known heuristics [49,
50]. These heuristics assume accurate knowledge of task durations and hence do not
require speculative copies to be scheduled dynamically. Estimating task durations
accurately, however, is still an open challenge as acknowledged by many studies [15,
57]. This makes speculative copies crucial and we develop a theoretically backed
solution to optimally prioritize tasks with speculative copies.

Modeling real world clusters has been a challenge faced by other schedulers too.
Recently reported research has acknowledged the problem of estimating task du-
rations [53], predicting stragglers [15, 57], and modeling multi-waved job exe-
cutions [54]. Their solutions primarily involve sidestepping the problem by not
predicting stragglers and replicating the tasks up front [15], or by approximating
number of waves to file sizes [54]. Such sidestepping, however, is not an option for
GRASS and hence we build tailored approximations.

Finally, replicating tasks in distributed systems have a long history [64–66] with
extensive studies in prior work [67–69]. These studies assume replication up front
as opposed to dynamic replication in reaction to stragglers. The latter problem is
both harder and unsolved. In this work, we take a stab at this problem that yields
near-optimal results in our production workloads.

2.8 Concluding Remarks

This chapter explores speculative task scheduling in the context of approximation
jobs. From the analysis of a generic analytic model, we develop a speculation
algorithm, GRASS, that uses opportunity cost to determine when to speculate early
in the job and then switches to more aggressive speculation as the job nears its
approximation bound. Prototypes on Hadoop and Spark, deployed on a 200 node
EC2 cluster, shows that GRASS improves accuracy for deadline-bound jobs by 47%
and speeds up error-bound jobs by 38%, in production workloads from Facebook
and Bing. Further, the evaluation highlights that GRASS is a unified speculation
solution for both approximation and exact computations, since it also provides a
34% speed up for exact jobs.

39

Chapter 3

SPECULATION-AWARE CLUSTER SCHEDULING
ON THE JOB LEVEL

Data analytics frameworks have successfully realized the promise of “scaling out”
by automatically composing user-submitted scripts into jobs of many parallel tasks
and executing them on large clusters. However, as clusters increase in size and
complexity, providing scalable and predictable performance is an important ongoing
challenge for interactive analytics frameworks [70, 71]. Indeed, production clusters
at Google and Microsoft [16, 72] acknowledge this as a prominent goal.

As the scale and complexity of clusters increase, hard-to-model systemic interac-
tions that degrade the performance of tasks become common [15, 16]. Consequently,
many tasks become “stragglers”, i.e., running slower than expected, leading to sig-
nificant unpredictability (and delay) in job completion times – tasks in Facebook’s
Hadoop cluster can run up to 8× slower than expected [15]. The most successful
and widely deployed straggler mitigation solution is speculation, i.e., speculatively
running extra copies of tasks that have become stragglers (or likely to), and then
picking the earliest copy that finishes, e.g., [1, 15, 17–19]. Speculation is com-
monplace in production clusters, e.g., in our analysis of Facebook’s Hadoop cluster,
speculative tasks account for 25% of all tasks and 21% of resource usage.

We studied task-level speculation scheduling design in Chapter 2. In this chapter,
we extend from task level to job level. Speculation is intrinsically intertwined with
job scheduling because spawning a speculative copy of a task has a direct impact
on the resources available for other jobs. Aggressive speculation can improve the
performance of the job at hand but hurt the performance of other jobs. Despite this,
speculation policies deployed today are all designed and operated independently of
job scheduling; schedulers simply allocate slots to speculative copies in a “best-
effort” fashion, e.g., [1, 17, 19, 20].

Coordinating speculation and scheduling decisions is an opportunity for significant
performance improvement. However, achieving such coordination is challenging,

40

particularly as schedulers themselves scale out. Schedulers are increasingly be-
coming decentralized in order to scale to hundreds of thousands of machines with
each machine equipped with tens of compute slots for tasks. This helps them make
millions of scheduling decisions per second, a requirement about two orders of
magnitude beyond the (already highly-optimized) centralized schedulers, e.g., [9,
52, 73]. In decentralized designs multiple schedulers operate autonomously, with
each of them scheduling only a subset of the jobs, e.g., [16, 20, 24]. Thus, the coor-
dination between speculation and scheduling must be achieved without maintaining
central information about all the jobs.

In this chapter we present the design of the first speculation-aware job scheduler,
Hopper, which dynamically allocates slots to jobs keeping in mind the specula-
tion requirements necessary for predictable performance. Hopper incorporates a
variety of factors such as data locality, estimates of task execution times, fairness,
dependencies (DAGs) between tasks, etc. Further, Hopper is compatible with all cur-
rent speculation algorithms and can operate as either a centralized or decentralized
scheduler; achieving scalability by not requiring any central state.

The key insight behind Hopper is that a scheduler must anticipate the speculation
requirements of jobs and dynamically allocate capacity depending on the marginal
value (in terms of performance) of extra slotswhich are likely used for speculation. A
novel observation that leads to the design ofHopper is that there is a sharp “threshold”
in the marginal value of extra slots – an extra slot is always more beneficial for a
job below its threshold than it is for any job above its threshold. The identification
of such a threshold then allows Hopper to use different resource allocation strategies
depending on whether the system capacity is such that all jobs can be allocated more
slots than their threshold or not. This leads to a dynamic, adaptive, online scheduler
that reacts to the current system load in a manner that appropriately weighs the value
of speculation.

Importantly, the core components ofHopper can be decentralized effectively. The key
challenge to avoiding the need to maintain a central state is the fact that stragglers
create heavy-tailed task durations, e.g., see [15, 19, 74]. Hopper handles this by
adopting a “power of many choices” viewpoint to approximate the global state,
which is fundamentally more suited than the traditional “power of two choices”
viewpoint due to the durations and frequency of stragglers.

To demonstrate the potential of Hopper, we have built three demonstration prototypes
by augmenting the centralized scheduling frameworks Hadoop [4] (for batch jobs)

41

and Spark [52] (for interactive jobs), and the decentralized framework Sparrow [20].
Hopper incorporates many practical features of jobs into its scheduling. Among
others, it estimates the amount of intermediate data produced by the job and accounts
for their pipelining between phases, integrates data locality requirements of tasks,
and provides fairness guarantees.

We have evaluated our three prototypes on a 200 node private cluster usingworkloads
derived from Facebook’s andMicrosoft Bing’s production traces. The decentralized
and centralized implementations ofHopper reduce the average job completion time by
up to 66% and 50% compared to state-of-the-art scheduling and straggler mitigation
techniques. The gains are consistent across common speculation algorithms (LATE
[18], GRASS [19], and Mantri [17]), DAGs of tasks, and locality constraints, while
providing fine-grained control on fairness. Importantly, the gains do not result
from improving the speculation mechanisms but from improved coordination of
scheduling and speculation decisions.

3.1 Background & Related Work

We begin by presenting a brief overview of existing cluster schedulers: how they
allocate resources across jobs, both centralized and decentralized (Section 3.1.1),
and how they handle straggling tasks (Section 3.1.2). This overview highlights the
lack of coordination that currently exists between scheduling and stragglermitigation
strategies such as speculation.

3.1.1 Cluster Schedulers

Job scheduling – allotting compute slots to jobs for their tasks – is a classic topic
with a large body of work.

The most widely-used scheduling approach in clusters today is based on fairness
which, without loss of generality, can be defined as equal sharing (or weighted
sharing) of the available resources among jobs (or their users) [25, 75–78]. Fairness,
of course, comes with performance inefficiencies, e.g., [79, 80].

In contrast, the performance-optimal approach for job scheduling is Shortest Re-
maining Processing Time (SRPT), which assigns slots to jobs in ascending order of
their remaining duration (or, for simplicity, the remaining number of tasks). SRPT’s
optimality in both single [81] and multi-server [82] settings motivates a focus on
prioritizing small jobs and has led to many schedulers such as [83–85].

42

The schedulers mentioned above are all centralized; however, motivated by scal-
ability, many clusters are beginning to adopt decentralized schedulers, e.g., at
Google [16], Apollo [72] at Microsoft, and the recently proposed Sparrow [20]
scheduler. The scalability of decentralized designs allows schedulers to cope with
growing cluster sizes and increasing parallelism of jobs (due to smaller tasks [55]),
allowing them to scale to millions of scheduling decisions (for tasks) per second.

Importantly, the literature on cluster scheduling (both centralized and decentralized)
ignores an important aspect of clusters: straggler mitigation via speculation. No
current schedulers coordinate decisions with speculation mechanisms, while our
analysis shows that speculative copies account for a sizeable fraction of all tasks in
production clusters, e.g., in Facebook’s Hadoop cluster, speculative tasks account
for 25% of all tasks and 21% of resource usage.

3.1.2 Straggler Mitigation via Speculation

Dealing with straggler tasks, i.e., tasks that take significantly longer than expected
to complete, is an important challenge for cluster schedulers, one that was called
out in the original MapReduce paper [1], and a topic of significant subsequent
research [15, 17–19].

Clusters already blacklist problematicmachines (e.g., faulty disks ormemory errors)
and avoid scheduling tasks on them. However, despite blacklisting, stragglers
occur frequently, often due to intrinsically complex causes such as IO contention,
interference by periodic maintenance operations, and hardware behaviors which
are hard to model and circumvent [15, 57, 86]. Straggler prevention based on
comprehensive root-cause analyses is an open research challenge.

The most effective, and indeed the most widely deployed, technique has been spec-
ulative execution. Speculation techniques monitor the progress of running tasks,
compare them to the progress of completed tasks of the job, and spawn speculative
copies for those progressing much slower, i.e., straggling. It is then a race between
the original and speculative copies of the task and on completion of one, the other
copies are killed.1

1Schedulers avoid checkpointing a straggling task’s current output and spawning a new
copy for just the remaining work due to the overheads and complexity of doing so. In
general, even though the speculative copy is spawned on the expectation that it would be
faster than the original, it is extremely hard to guarantee that in practice. Thus, both are
allowed to run until the first completes.

43

B3

A3

A2

A1

time

0 30 20

A4+

B1

10

A4

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5
Slot 6
Slot 7

B2

B5

B4+

B4

(a) Best-effort Speculation.

A3

A2

A1

time

B1+

0 32

A4+

B1

12

A4

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5
Slot 6
Slot 7

B2

B4

B3

B2+

B3+

B4+

B5

22 2

(b) Budgeted Speculation

Figure 3.1: Combining SRPT scheduling and speculation for two jobs A (4 tasks)
and B (5 tasks) on a 7-slot cluster. The + suffix indicates speculation. Copies of
tasks that are killed are colored red.

There is considerable (statistical and systemic) sophistication in speculation tech-
niques, e.g., ensuring early detection of stragglers [17], predicting duration of new
(and running) tasks [87], and picking lightly loaded machines to spawn speculative
copies [18]. The techniques also take care to avoid speculation when a new copy is
unlikely to benefit, e.g., when the single input source’s machine is the cause behind
the straggling [88].

Speculation has been highly effective in mitigating stragglers, bringing the ratio of
the progress rates of the median task of a job to its slowest down from 8× (and 7×)
to 1.08× (and 1.1×) in Facebook’s production Hadoop cluster (and Bing’s Dryad
cluster).

Speculation has, to this point, been done independently of job scheduling. This is
despite the fact that when a speculative task is scheduled it takes resources away
from other jobs; thus there is an intrinsic tradeoff between scheduling speculative
copies and scheduling new jobs. In this chapter, we show that integrating these
two via speculation-aware job scheduling can speed up jobs considerably, even on
average. Note that these gains are not due to improving the speculative execution
techniques, but instead come purely from the integration of speculation and job
scheduling decisions.

3.2 Motivation

The previous section highlights that speculation and scheduling are currently de-
signed and operated independently. Here, we illustrate the value of coordinated
speculation and scheduling using simple examples.

44

B2

A3

A2

A1

0 22

A4+

B1

12

A4

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5
Slot 6
Slot 7

B4

B3

B3+

B4+

B5

time

Figure 3.2: Hopper: Completion time for jobs A and B are 12 and 22. The + suffix
indicates speculation.

!" !#" !$" !%" !&" !'"

()*+," $-" $-" $-" &-" #-"
(./0" #-" #-" #-" #-" #-"

1" 1#"1$"1%"1&"

()*+," #-" #-" #-" %-"
(./0" #-" #-" #-" #-"

Table 3.1: Task sets. torig and tnew are durations of the original and speculative
copies of each task.

3.2.1 Strawman Approaches

We first explore two baselines that characterize how scheduling and speculation
interact today. In our examples we assume that stragglers can be detected after a
task has run for 2 time units and that, at this point, a speculation is performed if the
remaining running time (trem) is longer than the time to run a new copy (tnew). When
the fastest copy of a task finishes, other running copies of the same task are killed.
Note that while these examples have all jobs arrive at time 0, Hopper is designed to
work in an online setting.

Best-Effort Speculation: A simple approach, which is also the most common in
practice, is to treat speculative tasks the same as regular tasks. The job scheduler
allocates resources for speculative tasks in a “best effort” manner, i.e., whenever
there is an open slot.

Consider the example in Figure 3.1a with two jobs A (4 tasks) and B (5 tasks) that
are scheduled using the SRPT policy. The scheduler has to wait until time 10 to
find an open slot for the speculative copy of A4, despite detecting it was straggling
at time 2.2 Clearly, the scheduler can do better. If it had allocated a slot to A’s
speculative task at time 2 (instead of letting B use it), then job A’s completion time

2At time 10, when A1 finishes, the job scheduler allocates the slot to job A because
its remaining processing is smaller than job B’s. Job A speculates task A4 because A4’s
trem = torig − currentTime = 30 − 10 = 20 > tnew = 10 (see Table 3.1).

45

would have reduced, without slowing job B (see Table 3.1 for task durations).

Note that similar inefficiencies occur under Fair scheduling in this example.

Budgeted Speculation: The main problem for best-effort speculation is a lack of
available slots for speculation when needed. Thus, an alternative approach is to have
the job scheduler reserve a fixed “budget” of slots for speculative tasks. Budgeting
the right size of the resource pool for speculation, however, is challenging because
of time-varying straggler characteristics and fluctuating cluster utilizations. If the
resource pool is too small, it may not be enough to immediately support all the tasks
that need speculation. If the pool is too large, resource are left idle.

Figure 3.1b illustrates budgeted speculationwith three slots (slot 5−7) being reserved
for speculation. This, unfortunately, leads to slots 6 and 7 lying fallow from time
0 to 12. If the wasted slot had been used to run a new task, say B1, then job B’s
completion time would have been reduced. It is easy to see that similar wastage of
slots occurs with the Fair scheduler. Note that reserving one or two instead of three
slots will not solve the problem, since three speculative copies are required to run
simultaneously at a later time.

3.2.2 Challenges in Coordination

In contrast to the two baselines discussed above, Figure 3.2 shows the benefit of
coordinated decision making.

At time 0− 10, we allocate 1 extra slot to job A (for a total of 5 slots), thus allowing
it to speculate task A4 promptly. After time 10, we can dynamically reallocate
the slots to job B. This reduces the average completion time compared to both the
budgeted and best-effort strategies. The joint design budgeted slot 5 until time 2 but
after task A4 finished, it used all the slots.

Doing such dynamic allocation is already challenging in a centralized environment,
and it becomes more so in a decentralized setting. In particular, decentralized
speculation-aware scheduling has additional constraints. Since the schedulers are
autonomous, there is no central state and thus, no scheduler has complete information
about all the jobs in the cluster. Further, every scheduler has information about only
a subset of the cluster (the machines it probed). Since decentralization is mainly
critical for interactive jobs (sub-second or a few seconds), time-consuming gossiping
between schedulers is infeasible. Finally, running all the schedulers on one multi-

46

core machine cramps that machine and caps scalability, the original drawback they
aim to alleviate.

In the above example, this means making the allocation as in Figure 3.2 when jobs A

and B autonomously schedule their tasks without complete knowledge of utilizations
of the slots or even each other’s existence.

Thus, the challenges for speculation-aware job scheduling are: (i) dynamically
allocating/budgeting slots for speculation based on the distribution of stragglers
and cluster utilization while being (approximately) fair and, in decentralized set-
tings, (ii) using incomplete information about the machines and jobs in the cluster.
In order to handle those challenges, we have developed an analytical model for
speculation-aware job scheduling. The model is based on the model of speculation
for approximation jobs as described in Section 2.3. We present the model and its
analysis in Section 3.3.

3.3 Modeling and Analyzing Speculation

In this section we introduce the model and analysis which lead to the design of our
scheduler Hopper.

Our model is based on the completion rate model described in Chapter 2. Unlike the
previous model which only focuses on a single job, this model focuses on a system
with multiple jobs arriving over time. We assume the system has S slots, each of
which can have one task scheduled to it. Jobs arrive over time and the ith arrival as
denoted by Ji has Ti tasks, each of which has an i.i.d. random task size τ. We denote
the remaining number of tasks for the ith job at time t by Ti(t). We characterize the
completion rate (i.e., throughput) of the ith job, µi(t), as a function of how many
slots, Si, it is allocated and the average number of speculative copies per task ki(t).

The key piece of our model is the characterization of the completion rate of the ith
job, µi(t), as a function how many slots, Si, it is allocated and the average number
of speculative copies per task at time t, ki(t). Though most task-level speculation
algorithms are reactive (i.e., spawn speculative copies for a task only after observing
its performance for a short duration) rather than proactive (i.e., spawn speculative
copies immediately after the first copy is launched in the system), for ease of the
analysis and given the observing time is relatively small compared to the task
duration, we adopt the proactive model for the completion rate µi(t) (described
in Chapter 2) in the following analysis. Under such simplification, ki(t) can be

47

viewed as the average replication level of the job Ji. Equation (3.1) formulates µi(t)

as the following:

µi(t) = min(Si,Ti(t)ki(t)) ×

(
E[τ]

ki(t)E
[
min(τ1, . . . , τki(t)

]) . (3.1)

As in (2.1), the first term of (3.1) approximates the number of slots occupied by
the job and the second term approximates the “blow up factor,” i.e., the ratio of the
expected work completed without speculative copies to the amount of work done
with speculative copies. To understand the first term, note that there are Ti(t)k(t)

tasks available to schedule at time t, including speculative copies. Given that the
maximum capacity that can be allocated is Si, we obtain the first term in (3.1). The
second term computes the “blow up factor,” which is the the expected amount of
work done per task without speculation (E[τ]) divided by the expected amount of
work done per task with speculation (k(t)E[min(τ1, τ2, . . . , τki(Ti(t)))], since ki(Ti(t))

copies are created and then they are terminated when the first copy completes.

In this chapter, our goal is to minimize the averaging completion time of all jobs.
Similar to Chapter 2, we use maximizing the total completion rate/throughput across
all jobs to approximate minimizing average completion time. Mathematically, the
problem can be formulated as the following:

maximize
∑

i

µi(t)

s.t.,
∑

i

Si ≤ S,
(3.2)

where µi(t) follows the form of Equation (3.1).

Importantly, the model of this completion rate is general enough to provide insights
on job-level speculation regardless of the underlying task-level speculation policy.

3.3.1 Model Features

Our model incorporates both straggler mitigation policies per job as well as inter-job
resource allocation to study the optimal job scheduler. Important features of jobs,
like heterogeneous straggler behavior and DAGs of tasks, are included.

However, given the complexity of cluster scheduling, the model is necessarily sim-
plistic in order to allow for analytic tractability. In particular, many important

48

issues are ignored. For example, data locality is not considered. Additionally, it
is assumed that the scheduler has perfect knowledge of the remaining work in jobs
and that the allocation of slots to jobs can be adjusted dynamically at every point
in time. Because of these simplifications, one should interpret the analytic results
as providing guidelines for system design, which then need to be adjusted given
practical factors that are excluded from the model. We discuss how these practical
factors are handled in Hopper’s system design in Section 3.6.

The optimal job scheduler is viewed as a dynamic resource allocation scheme, where
each job is allocated (at each time) some fraction of the slots based on a combination
of the remaining number of tasks in the job and some job-specific properties (e.g.,
the job’s task duration distribution and the job’s DAGs of tasks). The examples in
Section 3.2 illustrate the value of dynamic allocation of slots for speculation. Our
analysis indicates that this dynamic allocation can be separated into two regimes:
whether the cluster is in “high” or “low” load.

The distinction between these two regimes follows from the behavior of the marginal
return (in terms of performance) that jobs receive from being allocated slots. It is
perhaps natural to expect that the performance of a job will always improve when it
is given additional slots (because these can be used for additional speculative copies)
and that the value of additional slots has a decreasing marginal return (because an
extra slot is more valuable when the job is given few slots than when the job already
has many slots). However, surprisingly, a novel observation that leads to the design
of Hopper is that the marginal return of an extra slot has a sharp threshold (a.k.a.,
knee) where, below the threshold, the marginal return is large and (nearly) constant
and, above the threshold, the marginal return is small and decreasing.

Figure 3.3 illustrates this threshold using a simulation of a sample job with 200 tasks
(with Pareto sizes, common in production traces) and LATE [18] speculation when
assigned various numbers of slots. Crucially, there is a marked change in slope
beyond the vertical dashed line, indicating the change in the marginal value of a
slot. Note that such a threshold exists for different job sizes, speculation algorithms,
etc. Further, in the context of a simple model, we can prove the existence of a
sharp threshold as shown in Section 3.3.2. We refer to this threshold as the “desired
(minimum) allocation” for a job or simply the “virtual job size”.

Besides the notation of “virtual job size", our analytic results also highlight the
impact of cluster utilization on the capacity allocation. It turns out that very different
scheduling rules should be used depending on the number of available slots in the

49

0.6 1 1.5 2 2.5
1

1.2

1.4

1.6

1.8

2

(Normalized) number of slots

(N
o

rm
a

liz
e

d
)

c
o

m
p

le
ti
o

n
 t

im
e

(a) β = 1.4

0.6 1 1.5 2 2.5
1

1.2

1.4

1.6

1.8

2

(Normalized) number of slots

(N
o

rm
a

liz
e

d
)

c
o

m
p

le
ti
o

n
 t

im
e

(b) β = 1.6

Figure 3.3: The impact of number of slots on single job performance. The number
of slots is normalized by job size (number of tasks within the job). β is the Pareto
shape parameter for the task size distribution. (In our traces 1 < β < 2.) The red
vertical line shows the threshold point.

cluster and the virtual job sizes, which lead to the prototype of the design of our
job-level speculation scheduler Hopper (Section 3.3.3). Then we generalize the
prototype to provide a knob for balancing performance to fairness in Section 3.3.4.

We focus on homogeneous single-phased jobs in this section and generalize our
scheduler design to handle multi-phase jobs (jobs with DAGs) and heterogeneous
jobs (jobs with different task duration distributions), as well as data locality in
Section 3.4.

3.3.2 Virtual Job Sizes

A crucial aspect of speculation-aware job scheduling is an understanding of how
much speculation is necessary for a given job. The idea of a “virtual job size”
captures the fact that the “true” size of a job is really the job itself plus the speculative
copies that will be spawned. It is this combined “virtual job size” that is crucial for
determining how to divide capacity across jobs.3

A key observation is that the “optimal number of speculative copies”, i.e., ki(t), for
the tasks in a job is a function of the magnitude of the stragglers (i.e., the distribution
of task durations) and the available compute slots (or cluster utilization). Thus, the
expected “optimal level of speculation” can be derived analytically in terms of these
factors.

3Of course, straggler mitigation strategies typically spawn speculative copies for a task only after
observing its performance for a short duration. We ignore this observation duration as it is relatively
negligible to the task’s duration.

50

To derive this optimal level of speculation, we assume that task durations follow
a Pareto distribution, which is based on the production traces in Facebook and
Microsoft Bing. See Section 2.3 for more details. The Pareto tail parameter β
represents the likelihood of stragglers. Roughly, when β is smaller, it means that if a
task has already run for some time, there is higher likelihood of the task continuing
to run longer. Typically, production traces suggest that β < 2, and so we make that
assumption in our analysis.

Given that task durations have Pareto (β) tails with 1 < β ≤ 2, our analytic model
shows that the optimal (average) speculation per task of a job Ji (ki(t)) is given
by the following, where Si is the number of slots allocated to job i and Ti(t) is the
remaining number of tasks of the job:

ki(t) =

2
β, Si ≤

2
βTi(t)

Si/Ti(t), Si >
2
βTi(t).

(3.3)

Equation 3.3 can be interpreted as saying that the optimal (average) level of specu-
lation for a job is 2/β, which ensures that if stragglers are likely to be long (i.e., β is
small), then more speculation is used. Also, 2/β corresponds exactly to the vertical
line in Figure 3.3.

The first case in Equation 3.3, which corresponds to the early waves of tasks, shows
that the optimal level of speculation should not be sacrificed even when the system
is capacity constrained (i.e., when not all tasks can be scheduled). However, the
equation also highlights that during the last set of tasks of a job (second case in
Equation 3.3), it should not leave slots unused. So, it should speculate aggressively
to make use of the capacity available.

Given Equation 3.3, it is natural to think of 2/β as the optimal level of speculation
that a job would like to maintain. And thus, we define the virtual remaining size of
a job as its number of remaining tasks multiplied by the “optimal speculation level”:

Vi(t) =
2
β

Ti(t). (3.4)

In practice, since βmayvary over time, it is learned online byHopper (see Section 3.7)
making it adaptive to different threshold points as in Figure 3.3.

A nice consequence of defining the virtual size of a job is the decoupling of the
speculation decisions from the allocation of slots to jobs. Note that the virtual size
of a job dynamically changes as its tasks finish.

51

3.3.3 Hopper: speculation-aware job scheduler

Given the virtual job sizes (i.e., how much capacity a job needs to perform optimal
speculation), the next question is how to allocate resources across jobs. There are
two distinct cases one must consider: (i) How should slots be allocated if there
are not enough slots to assign every job its virtual size? (ii) How should slots be
allocated if there aremore than enough slots to assign every job its virtual size? In the
following, we first present the analytic results for those two cases in Section 3.3.3.1
and Section 3.3.3.2, then provide the overall design of Hopper in Section 3.3.3.3.

3.3.3.1 Allocation when the cluster is highly utilized

When there are not enough slots to give every job enough space to perform optimal
speculation, then the key design challenge is to decide how much capacity to trim
from the desired allocations of each job. There are many options for how to do
this. For example, one could give the limited resources to a few jobs and allow
them to maintain the optimal level of speculation, or one could give all jobs some
sub-optimal amount of resources to avoid starving any of the jobs. Of course, there
are also lots of strategies in between these extremes.

Our analytic results highlight that the job scheduler should give as many jobs as
possible their optimal speculation level, i.e., their full virtual job sizes. Thus, the
scheduler should process jobs in ascending order of their virtual sizes Vi(t), giving
each job its desired (minimum) allocation until all the slots are exhausted.

Guideline 4. At all points in time, if there are not enough slots for every job to get
its desired (minimum) allocation, i.e., a number of slots equal to its virtual size, then
slots should be dedicated to the smallest jobs and each should be given a number of
slots equal to its virtual size.

Intuitively, this guideline is similar to the spirit of SRPT, however (unlike SRPT)
it crucially pays attention to the optimal speculation level of jobs when allocating
capacity. As the examples in Section 3.2 highlight, this leads to improved perfor-
mance. Note that prioritization of small jobs may lead to unfairness for larger jobs,
an issue we address shortly in Section 3.3.4.

52

3.3.3.2 Allocation when the cluster is lightly utilized

If there aremore than enough slots to give every job enough space to perform optimal
speculation, then the key design challenge becomes how to divide the extra capacity
among the jobs present. There are many options for how to do this. For example,
the scheduler could give all the extra slots to a few jobs in order to complete them
very quickly, or the scheduler could split the slots evenly across jobs. Of course,
there are many other options between these extremes.

In contrast to the high utilization setting, in this situation our analytic results highlight
that the job scheduler should do a form of proportional sharing to determine the
allocation of slots to jobs. Specifically, jobs should be allocated slots proportionally
to their virtual job sizes, i.e., job i receives(

Vi(t)∑
j Vj(t)

)
S =

(
Ti(t)∑
j Tj(t)

)
S slots, (3.5)

where S is the number of slots available in the system.

Guideline 5. At all points in time, if there are enough slots to give every job its
desired (minimum) allocation, then the slots should be shared “proportionally” to
the virtual sizes of the jobs.

Note that this guideline is different in spirit from SRPT – large jobs get allocated
more slots than small jobs. The intuition for this design is as follows. Given that all
jobs are already receiving their (minimum) desired level of speculation, scheduling
is less important than speculation. Thus, prioritization of small jobs is not crucial,
and the goal should be to extract the maximum value from speculation. Since
stragglers are more likely to occur in larger jobs (stragglers occur in proportion to
the number of tasks in a job, on average4), the marginal improvement in performance
due to an additional slot is proportionally higher for large jobs. Thus, they should
get prioritization in proportion to their size when allocating the extra slots.

Since the guidelines specify allocations at the granularity of every job, it is easy to
cope with any fluctuations in cluster load (say, from lightly to highly utilized) in an
online system.

53

procedure Hopper(〈Job〉 J, int S, float β)
totalVirtualTasks← 0

for each Job j in J do
j .Vrem = (2/β) j .Trem

. j .Trem: remaining number of tasks
. j .Vrem: virtual remaining number of tasks

totalVirtualTasks += j .Vrem

SortAscending(J, Vrem)
if S < totalVirtualTasks then

for each Job j in J do
j .slots← bmin(S, j .Vrem)c

S ← max(S − j .slots, 0)
else

for each Job j in J do
j .slots← b(j .Vrem/totalVirtualTasks) Sc

Pseudocode 3: Hopper (simple version) for jobs in set J with S slots in the cluster
and shape parameter β.

3.3.3.3 The design of Hopper

Algorithm 1 (also see Pseudocode 3) combines the above two guidelines for homo-
geneous single phase jobs. And, we have the following theorem.

Algorithm 1 (Hopper, single phased job).
Let J(t) = {J1, J2, . . . , Jn} denote the jobs in the system at time t sorted in ascending
order of remaining tasks, so T1(t) ≤ . . . ≤ Tn(t).

1. If 2
β

∑
Ti(t) ≥ S, then assign Si =

2
βTi(t) to jobs in order from i = 1 to n until

no slots remain and assign Si = 0 for all remaining jobs.

2. If 2
β

∑
Ti(t) < S, then assign Si =

(
Ti(t)∑
Tj (t)

)
S for all jobs Ji ∈ J(t).

Theorem 2. Algorithm 1 is throughput optimal for single-phased jobs, i.e., it max-
imizes

∑
µi(t).

Proof. Recall that

µi(t) = min(Si,Ti(t)ki(t)) ×

(
E[τ]

ki(t)E
[
min(τ1, . . . , τki(t)

]) . (3.6)

4Machines in the cluster are equally likely to cause a straggler [15]; known problematic
machines are already blacklisted (see Section 3.1).

54

And the optimal speculation level ki(t) satisfies,

ki(t) =

2
β, Si ≤

2
βTi(t)

Si/Ti(t), Si >
2
βTi(t).

(3.7)

Plugging the optimal speculation policy given in (3.7) into the model for µi(t) in
(3.6) yields the following model for the completion rate:

µ(t) =

β2

4(β−1)Si, Si ≤
2
βTi(t)

β
β−1Ti(t) − 1

β−1
Ti(t)2

Si
, Si >

2
βTi(t).

(3.8)

We divide the problem into two cases based on the relationship of the total number
of slots, S, and the sum of virtual sizes for all jobs, 2

β

∑
Ti(t).

Case 1: S ≤ 2
β

∑
Ti(t)

If we assign slots more than its optimal speculation level to job Ji, the throughput
for job Ji is,

β

β − 1
Ti(t) −

1
β − 1

Ti(t)2

Si

=
1

β − 1
1
Si

(
−Ti(t)2 + βTi(t)Si − (

βSi

2
)2
)
+

1
β − 1

1
Si
(
βSi

2
)2

= −
1

(β − 1)Si
(Ti(t) −

βSi

2
)2 +

β2

4(β − 1)
Si

≤
β2

4(β − 1)
Si .

(3.9)

The above inequality implies that if any job that is assigned fewer than optimal
speculation level slots, then, no job should get more than its optimal speculation
level slots. In other words, when 2

β

∑
Ti(t) ≥ S, optimal speculation scheduling

should assign no more than 2
βTi(t) to every job Ji ∈ J(t). To minimize the total

completion time, since T1(t) ≤ T2(t) ≤ . . . ≤ Tn(t), from SRPT, we should always
satisfy the need for small jobs, i.e., assign 2

βTi(t) to jobs in order from i = 1 to n,
until no slots remains.

Case 2: S > 2
β

∑
Ti(t)

55

When 2
β

∑
Ti(t) ≤ S, denote the set of jobs which get Si ≤

2
βTi(t) by J1(t) and the

set of jobs which get Si ≥
2
βTi(t) by J2(t). Then, the total throughput is,∑

J1(t)

µi(t) +
∑
J2(t)

µi(t) =
∑
J1(t)

β2

4(β − 1)
Si +

∑
J2(t)

(
β

β − 1
Ti(t) −

1
β − 1

Ti(t)2

Si

)
=

β2

4(β − 1)
S −

1
(β − 1)

∑
J2(t)

Si

©«
∑
J2(t)

Si
ª®¬ ©«

∑
J2(t)

1
Si
(
βSi

2
− Ti(t))2

ª®¬
≤

β2

4(β − 1)
S −

1
(β − 1)

∑
J2(t)

Si

©«
∑
J2(t)

(
β

2
Si − Ti(t))

ª®¬
2

,

where the final line follows from the Cauchy-Schwartz inequality.

Next, since β
2

∑
J2(t)

Si =
β
2 S − β

2
∑

J1(t)
Si ≥

β
2 S − β

2

(
2
β

∑
J1(t)

Ti(t)

)
=

β
2 S −

∑
J1(t)

Ti(t), we

have

∑
J1(t)

µi(t) +
∑
J2(t)

µi(t) ≤
β2

4(β − 1)
S −

1
(β − 1)

∑
J2(t)

Si

©«
∑
J2(t)

(
β

2
Si − Ti(t))

ª®¬
2

=
β2

4(β − 1)
S −

1
(β − 1)

∑
J2(t)

Si

©«
∑
J2(t)

β

2
Si −

∑
J2(t)

Ti(t)
ª®¬

2

≤
β2

4(β − 1)
S −

1
(β − 1)

∑
J2(t)

Si

©« β2 S −
∑
J1(t)

Ti(t) −
∑
J2(t)

Ti(t)
ª®¬

2

≤
β2

4(β − 1)
S −

1
(β − 1)S

©« β2 S −
∑
J1(t)

Ti(t) −
∑
J2(t)

Ti(t)
ª®¬

2

≤
β2

4(β − 1)
S −

1
(β − 1)S

©« β2 S −
∑
J(t)

Ti(t)
ª®¬

2

.

Equality is obtained when,

1.
∑

J2(t)
Si = S.

2.
∑

J1(t)
Ti(t) +

∑
J2(t)

Ti(t) =
∑
J(t)

Ti(t).

3. For all Ji ∈ J1(t), Si =
2
βTi(t).

56

4. For all Ji ∈ J2(t), Ti(t)
Si
= const., i.e., for all Ji ∈ J2(t), Si =

Ti(t)∑
J2(t)

Tj (t)
∑

J2(t)
Si.

That is, optimal scheduling satisfies J2(t) = J(t), and assigns Ti(t)∑
Tj

S slots for any
job Ji ∈ J(t). It follows that if 2

β

∑
Ti(t) < S, the optimal scheduling should assign

Si =
(

Ti(t)∑
Tj (t)

)
S for all jobs Ji ∈ J(t).

In summary, the optimal scheduling should satisfy,

1. If 2
β

∑
Ti(t) ≥ S, then assign Si =

2
βTi(t) to jobs in order from i = 1 to n until

no slots remain and assign Si = 0 for all remaining jobs.

2. If 2
β

∑
Ti(t) < S, the assign Si =

(
Ti(t)∑
Tj (t)

)
S for all jobs Ji ∈ J(t).

�

3.3.4 Incorporating Fairness

While fairness is an important constraint in clusters, conversations with data center
operators reveal that it is not an absolute requirement. Thus, we relax the notion of
fairness currently employed by cluster schedulers, e.g., [25], which enforce that if
there are N(t) active jobs and S available slots at time t, then each job is assigned
S/N(t) slots.

Specifically, to allow some flexibility while still tightly controlling unfairness, we
define a notion of approximate fairness as follows. We say that a scheduler is ε-
fair if it guarantees that every job receives at least (1 − ε)S/N(t) slots at all times
t. The fairness knob ε → 0 indicates absolute fairness while ε → 1 focuses on
performance.

Hopper can be adjusted to guarantee ε-fairness in a very straightforward manner.
In particular, if a job receives slots fewer than its fair share, i.e., fewer than (1 −
ε)S/N(t) slots, the job’s capacity assignment is increased to (1 − ε)S/N(t). Next,
the remaining slots are allocated to the remaining jobs according to Guidelines 4 or
5, as appropriate. Note that this is a form of projection from the original (unfair)
allocation into the feasible set of allocations defined by the fairness constraints.
Algorithm 2 describes it in detail.

Algorithm 2 (Fairness).
Let J(t) = {J1, J2, . . . , Jn} denote the jobs in the system at time t sorted in increasing

57

order of remaining tasks, so T1(t) ≤ . . . ≤ Tn(t). Define N =
∑n

i=1 Ti(t). And define
m1 such that i ≤ m1 implies 2

βTi(t) ≤ S
N − ε .

1. If S ≤ 2
β

n∑
i=m1+1

Ti(t) + m1
(S

N − ε
)
, begin by assigning all jobs S

N − ε slots.

Then assign an additional 2
βTi(t) − (S

N − ε) slots to jobs Ji from i = m1 + 1 to
n until no slots remain.

2. If S > 2
β

n∑
i=m1+1

Ti(t) + m1
(S

N − ε
)
, then define m2 as the minimum value such

that
Tm2+1(t)

N∑
i=m2+1

Ti(t)
(S − m2(

S
N
− ε)) ≥ max{

S
N
− ε,

2
β

Tm2+1(t)}.

Then, assign S
N − ε slots to jobs Ji with 1 ≤ i ≤ m2, and assign Ti(t)

N∑
i=m2+1

Ti(t)
(S −

m2(
S
N − ε)) slots to jobs Ji with m2 + 1 ≤ i ≤ N .

Theorem 3. Algorithm 2 is throughput maximal among ε-fair allocations.

Proof. Let Jm(t) = {J1, J2, . . . , Jm1}. Similarly, we divide the problem into two
cases.

Case 1: S ≤ 2
β

N∑
i=m1+1

Ti(t) + (S
N − ε)m1.

Without the fairness constraint, when S ≤ 2
βTi(t), to maximize the throughput, the

scheduler should assign exactly 2
βTi(t) to jobs Ji for i from 1 to n until no slots remain.

With fairness constraint, for any job Ji ∈ Jm(t), it will surely get S
N − ε ≥

2
βTi(t)

slots. So when there are insufficient slots to share across jobs in J(t) − Jm(t) to
guarantee optimal speculation level for every job, jobs in Jm(t) should not get more
slots than S

N − ε .

Thus, when S ≤ 2
β

N∑
i=m1+1

Ti(t) + (S
N − ε)m1, optimal scheduling should assign every

job S
N − ε slots at first step. Then, assign

2
βTi(t) − (S

N − ε) slots to job Ji ∈ J(t) from
i = m + 1 to N until no slots remain.

Case 2: S > 2
β

N∑
i=m1+1

Ti(t) + (S
N − ε)m1.

When S ≥ 2
β

N∑
i=m+1

Ti(t) + (S
N − ε)m, all jobs should get at least max{ S

N − ε,
2
βTi(t)}

slots. The first constraint is from fairness and the second constraint is from the

58

optimality of 2
βTi(t). Then, the throughput maximization problem is equivalent to

the following optimization problem,

maximize
N∑

i=1

(
β

β − 1
Ti(t) −

1
β − 1

Ti(t)2

Si

)
subject to

N∑
i=1

Si = S

Si ≥
2
β

Ti(t)

Si ≥
S
N
− ε .

Note that from the definition of m1, S
N − ε ≥

2
βTi(t) for all 1 ≤ i ≤ m1, and

S
N − ε ≤

2
βTi(t) for all m1 + 1 ≤ i ≤ N . Thus, the optimization problem can be

simplified as,

minimize
N∑

i=1

Ti(t)2

Si
(3.10)

subject to
N∑

i=1
Si = S

Si ≥
2
β

Ti(t), i = m + 1, . . . , N

Si ≥
S
N
− ε, i = 1, . . . ,m.

The above is a convex optimization problem. TheLagrange dual function L(S1, . . . , SN, λ, v)

is,
N∑

i=1

Ti(t)2

Si
+ v(

N∑
i=1

Si − S) +
m∑

i=1
λi(

S
N
− ε − Si) +

N∑
i=m+1

λi(
2
β

Ti(t) − Si). (3.11)

From KKT condition, in optimal solution,

−
Ti(t)2

S2
i

+ v − λi = 0, (3.12)

which implies Si =
Ti(t)√
v−λi

, and

λi , 0⇔ Si = max{
2
β

Ti(t),
S
N
− ε}. (3.13)

Substituting (3.13) into (3.12), we get if Si , max{ 2
βTi(t), S

N − ε}, then Si =
Ti(t)√

v
,

which indicates that for jobs Ji with Si , max{ 2
βTi(t), S

N − ε}, the slots assigned to
Ji are on proportional to Ti(t). Precisely, the slot assignment for each job falls into
the following three cases,

59

1. Si =
S
N − ε .

2. Si =
2
βTi(t).

3. Si ,
S
N − ε and Si ,

2
βTi(t).

Let Ji(t) denote the jobs falling in case i, for i = 1, 2, 3. Then, specifically, for job Ji

in J3(t), Si =
Ti(t)∑

J3(t)
Ti(t)

Sr , where Sr is the remaining number of slots after assignment

of J1(t) and J2(t).

The only remaining question is, given a job Ji, in optimal scheduling, which set,
J1(t), J2(t) or J3(t), it belongs to. From the following three claims, we prove
J1(t) ⊂ Jm1(t), J2(t) = ∅, and J3(t) = J(t) − J1(t).

1. Claim: In optimal solution, S1 ≤ S2 ≤ . . . ≤ Sn.

Proof. For any i < j, if Si ≥ Sj , we can always let S′i = Sj and S′j = Si and
obtain an smaller result in (3.10). �

2. Claim: there exists a numberm2, 1 ≤ m2 ≤ m1 such that in optimal scheduling,
J1(t) = {J1, J2, . . . , Jm2}.

Proof. From objective function
N∑

i=1

Ti(t)2

Si
, and claim in (a), if Si =

S
N −

ε, then∀ j ≤ i, Sj =
S
N − ε , and if Si ,

S
N − ε , which implies Si >

S
N − ε ,

then ∀ j ≥ i, Sj >
S
N − ε .

Suppose the last job in J(t) with S
N − ε slots is Jm2 . Obviously, 1 ≤ m2 ≤ m1.

Then, J1(t) = {J1, J2, . . . , Jm2}. �

3. Claim : J2(t) = ∅.

Proof. Since S > 2
β

N∑
i=m+1

Ti(t) + (S
N − ε)m1, J3(t) , ∅.

Denote the total slots assigned to J2(t) and J3(t) by S2 and S3, respectively. It
is easy to verify that Ti(t)∑

J2(t)+J3(t)
Ti(t)
(S2 + S3) ≥

2
βTi(t), and Ti(t)∑

J2(t)+J3(t)
Ti(t)
(S2 + S3) ≥

S
N −ε (second equality holds since

β
2Ti(t) ≥ S

N −ε, ∀Ji ∈ J2(t)+ J3(t)). Thus, if
J2(t) , ∅, we can always combine J2(t) and J3(t), and do load balancing in the
new set. From Theorem 2, the latter method obtains a better throughput. �

60

From the above three claims, in optimal scheduling, J1(t) = {J1, . . . , Jm2}, and
J3(t) = J(t) − J1(t). The only question is, what m2 is in optimal scheduling? We
find m2 by studying the optimal total throughput.

The total throughput is,

N∑
i=1

(
β

β − 1
Ti(t) −

1
β − 1

Ti(t)2

Si

)
=

N∑
i=1

β

β − 1
Ti(t) −

1
β − 1

m2∑
i=1

Ti(t)2
S
N − ε

−
1

β − 1

N∑
i=m2+1

Ti(t)2

Si

=

N∑
i=1

β

β − 1
Ti(t) −

1
β − 1

m2∑
i=1

Ti(t)2
S
N − ε

−
1

β − 1

(
N∑

i=m2+1
Ti(t)

)2
1

S − m2(
S
N − ε)

.

It is easy to verify, as m2 increases, the total throughput decreases. Thus, the optimal
scheduling should find the minimal m2 while satisfies the following conditions,

1. 1 ≤ m2 ≤ m1,

2. Ti(t)
N∑

i=n1+1
Ti(t)
(S − n1(

S
N − ε)) ≥ max{ S

N − ε,
2
βTi(t)}, for all i ≥ n1 + 1.

Note, since T1(t) ≤ T2(t) ≤ . . . ≤ TN (t), condition 2 can be simplified as,

Tm2+1
N∑

i=m2+1
Ti(t)
(S − m2(

S
N
− ε)) ≥ max{

S
N
− ε,

2
β

Tm2+1}.

And m2 always exists, since m1 itself satisfies the above two conditions.

In summary, the optimal scheduling should:

1. If S ≤ 2
β

n∑
i=m1+1

Ti(t) + m1
(S

N − ε
)
, begin by assigning all jobs S

N − ε slots.

Then assign an additional 2
βTi(t) − (S

N − ε) slots to jobs Ji from i = m1 + 1 to
n until no slots remain.

2. If S > 2
β

n∑
i=m1+1

Ti(t) + m1
(S

N − ε
)
, then define m2 as the minimum value such

that
Tm2+1(t)

N∑
i=m2+1

Ti(t)
(S − m2(

S
N
− ε)) ≥ max{

S
N
− ε,

2
β

Tm2+1(t)}.

61

Then, assign S
N − ε slots to jobs Ji with 1 ≤ i ≤ m2, and assign Ti(t)

N∑
i=m2+1

Ti(t)
(S −

m2(
S
N − ε)) slots to jobs Ji with m2 + 1 ≤ i ≤ N .

�

Our experimental results (Section 3.7.3) highlight that even at moderate values of
ε , nearly all jobs finish faster than they would have under fair scheduling. This fact,
though initially surprising, is similar to the conclusions about SRPT-like policies.
Despite being intuitively unfair to large job sizes, it in fact improves the average
response time of every job size (when job sizes are heavy-tailed) compared to fair
schedulers [89–91].

3.4 Hopper in real systems

The design guidelines we have discussed so far are based on homogeneous single-
phased jobs. In this section, we extend Hopper to handle more complex real-world
DAGs of jobs (Section 3.4.1) with heterogeneous distributions (β) of task durations
(Section 3.4.2). Further, we discuss how to incorporate data locality in Hopper

in Section 3.4.3. Our generic model ensures that the guidelines require only minor
adjustments.

3.4.1 Incorporating DAGs of Tasks

In practice, many jobs are defined by multiple-phased DAGs, where the phases are
typically pipelined. That is, downstream tasks do not wait for all the upstream tasks
to finish but read the upstream outputs as the tasks finish, e.g., [92]. Pipelining
is beneficial because the upstream tasks are typically bottlenecked on other non-
overlapping resources (CPU,memory), while the reading downstream takes network
resources. The additional complexity DAGs create for our guidelines is the need to
balance the gains due to overlapping network utilization with the improvements that
come from favoring upstream phases with fewer remaining tasks.

We integrate this tradeoff into Hopper using a weighting factor, α per job, set to
be the ratio of remaining work in the downstream phase’s network transfer to the
remaining work in the upstream phase. Specifically, α favors jobs with higher
remaining communication and lower remaining tasks in the current phase. The
exact details of estimating α are deferred to Section 3.6.3.

62

Given the weighting factor α, there are two key adjustments that we make to the
guidelines discussed so far. First, in Guideline 4, the prioritization of jobs based on
the virtual sizeVi(t) is replaced by a prioritization based on max{Vi(t),V ′i (t)}, where
Vi(t) is the virtual remaining number of tasks in the current phase and V ′i (t) is the
virtual remaining work in communication in the downstream phase.5 Second, we
redefine the virtual size itself as Vi(t) = 2

βTi(t)
√
αi.

Mathematically, following a similar proof to Theorem 1, it can be shown that
to maximize the α-weighted throughput, i.e.

∑
i αiµi(t), the virtual size/optimal

speculation level changes from 2/βTi(T) to 2/βTi(t)
√
αi/αmin, where αmin is the

smallest α j among the jobs that are currently running. This leads to the following
algorithm for the case of DAGs of tasks.

Algorithm 3 (DAGs of tasks).
Let J(t) = {J1, J2, . . . , Jn} denote the jobs in the system at time t sorted in ascending
order of max{Ti(t),T ′i (t)}. If Ji and Jj have the same max{Ti(t),T ′i (t)} then the job
with larger weight is listed first. Let α(k)min denote the minimum weight of weights for
the first k jobs in J(t), so α(k)min = min{α1, α2, . . . , αk}. And let Jkmin denote the job
has the minimum weight in first k jobs, so the weight of Jkmin is α

(k)
min. LetVi(t) denote

the virtual size for job Ji ∈ J(t), so Vi(t) = 2
βTi(t)

√
αi.

1. If S ≤ V1(t)√
α
(2)
min

,assign S1 = S and Si = 0 for i > 1.

2. If ∃ k < n such that
k∑

i=1

Vi(t)√
α
(k+1)
min

< S ≤
k+1∑
i=1

Vi(t)√
α
(k+1)
min

,assign Si =
Vi(t)√
α
(k+1)
min

for i in

order of {1, 2, . . . , kmin − 1, kmin + 1, . . . , k, k + 1, kmin} until no slots remain,
and Si = 0 for i > k + 1.

3. If ∃ k < n − 1 such that
k+1∑
i=1

Vi(t)√
α
(k+1)
min

< S ≤
k+1∑
i=1

Vi(t)√
α
(k+2)
min

, then assign Si =
Vi(t)

k+1∑
i=1

Vi(t)
S

for i = 1, . . . , k + 1, and Si = 0 for i > k + 1.

4. If
n∑

i=1

Vi(t)√
α
(n)
min

< S, then assign Si =
Vi(t)
n∑
i=1

Vi(t)
S for i = 1, 2, . . . , n.

Algorithm 3 presents the details of the allocation and we evaluate the gains from this
generalization in Section 3.7.3. Interestingly, the optimality of a square-root weight-
ing factor has been observed in other heterogeneous cluster scheduling problems as
well, e.g., load balancing across servers with heterogeneous speeds [93].

5Results in [83] show that picking themax{Ti(t),T ′i (t)} is 2-speed optimal for completion
times when stragglers are not considered.

63

Estimating α: Note that the key to calculating α is estimating the size of the
intermediate output produced by tasks. Unlike the job’s input size, intermediate
data sizes are not known up front. We predict intermediate data sizes based on
similar jobs in the past. Clusters typically have many recurring jobs that execute
periodically as newer data streams in, and produce intermediate data of similar sizes.

For multi-waved jobs [54, 55], Hopper can do better. It uses the ratio of intermediate
to input data of the completed tasks as a predictor for the future (incomplete) tasks.
Data from Facebook’s and Microsoft Bing’s clusters (described in Section 3.7.1)
shows that while the ratio of input to output data size of tasks varies from 0.05
all the way to 18, the ratios within tasks of a phase have coefficient-of-variation of
only 0.07 and 0.24 at the median and 90th percentile, thus lending themselves to
effective learning. Hopper calculates α as the ratio of the data remaining to be read
(by downstream tasks) over the data remaining to be produced (by upstream tasks).

Our simple approach to estimating α works sufficiently well for our evaluations
(accuracy of 92%, on average). However, we realize that workloads without many
multi-waved or recurring jobs and without tasks whose duration is dictated by their
input sizes need more sophisticated models of task executions.

3.4.2 Incorporating heterogeneous jobs

In Section 3.3, we assume all jobs have the same task duration distributions, i.e.,
have the same likelihood of stragglers. In real system, different types of jobs may
have different task duration distributions. Data locallity and cluster characteristics
such as resource contentions due to utilization and hotspots [94] can also lead to
different task duration distributions.

Heterogeneous task duration distributions can have a significant impact on schedul-
ing. Speculation is more beneficial for jobs that have stragglers more often, but at
the expense of the launching of other jobs.

For ease of presentation, here we only discuss the the case when there are two classes
of jobs in the system. The general scenario with multiple classes of jobs can be
easily extended from the two classes case.

Given the two classes of jobs with the task duration distributions βi, i ∈ {I, I I}

respectively, the key adjustment that we make to the guidelines discussed so far is
to redefine the virtual sizes based on the relative stragglers’ likelihood across two
job classes.

64

Algorithm 4 (Heterogenous stragglers).
Let I(t) and I I(t) denote the sets of type 1 and type 2 jobs present at time t,
respectively.

1. If S < 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t), then assign all S slots to type 1 jobs.

2. If 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) < S ≤ 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t)+ 2
β2

∑
I I(t)

Ti(t), then assign 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t)

slots to type 1 jobs and the rest to type 2 jobs.

3. If S ≥ 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) + 2
β2

∑
I I(t)

Ti(t), then assign

∑
I (t)

Ti(t)

√
β1−1∑

I (t)
Ti(t)

√
β1−1
+

∑
I I (t)

Ti(t)

√
β2−1

S slots to

type 1 jobs and the rest to type 2 jobs.

Given this allocation of capacity to type 1 and 2 jobs, use Algorithm 3 to assign
capacity within each type.

Theorem 4. Algorithm 4 is throughput maximal.

Proof. Note, if we know the optimal scheduling algorithm assigns S1 slots to type
1 jobs and S2 slots to type 2 jobs, then we know how to allocate slots across jobs
within the same type as indicated in Algorithm 1. The remaining question is how
to allocate slots across different types.

Similar to the proof for Theorem 2, we divide the problem into three cases.

Case 1: S ≤ 2
β1

∑
I(t)

Ti(t).

Note that β1 < β2 gives
β2

1
4(β1−1) >

β2
2

4(β2−1) , as f (x) = x2

x−1 is a decreasing function for
x ∈ (1, 2). When S ≤ 2

β1

∑
I(t)

Ti(t), from (3.9), we know we should assign all slots to

type 1 jobs.

Case 2: 2
β1

∑
I(t)

Ti(t) ≤ S ≤ 2
β1

∑
I(t)

Ti(t) + 2
β2

∑
I I(t)

Ti(t).

When 2
β1

∑
I(t)

Ti(t) ≤ S ≤ 2
β1

∑
I(t)

Ti(t) + 2
β2

∑
I I(t)

Ti(t), denote the number of slots we

assign to type 1 jobs by S1 and the number of slots we assign to type 2 jobs by S2.
From (3.9), unless type 1 jobs get optimal speculation level slots, no slot should be

65

assigned to type 2 jobs. Thus, the slots assigned to type 1 and type 2 jobs should
satisfy S1 ≥

2
β1

∑
I(t)

Ti(t) and S2 ≤
2
β2

∑
I I(t)

Ti(t). The total throughput is,

β1
β1 − 1

∑
I(t)

Ti(t) −
1

(β1 − 1)S1
(
∑
I(t)

Ti(t))2 +
β2

2
4(β2 − 1)

S2

=
β1

β1 − 1

∑
I(t)

Ti(t) +
β2

2
4(β2 − 1)

S −
1

(β1 − 1)
(
∑
I(t)

Ti(t))2
1
S1
−

β2
2

4(β2 − 1)
S1 (3.14)

≤
β1

β1 − 1

∑
I(t)

Ti(t) +
β2

2
4(β2 − 1)

S −
β2√

(β1 − 1)(β2 − 1)

∑
I(t)

Ti(t),

where the last line follows from a2 + b2 ≥ 2ab.

Equality is achievedwhen β2
2

4(β2−1)S1 =
1

(β1−1)S1
(
∑
I(t)

Ti(t))2, i.e., S1 =
2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t).

And (3.14) increases for S1 ≤
2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) and decreases afterwards. Also note

that, if S1 =
2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t), then S1 ≥
2
β1

∑
I(t)

Ti(t). Thus, when 2
β1

∑
I(t)

Ti(t) ≤ S ≤

2
β1

∑
I(t)

Ti(t) + 2
β2

∑
I I(t)

Ti(t), the optimal scheduling should:

1. when S < 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t), assign all S slots to type 1 jobs.

2. when 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) < S ≤ 2
β1

∑
I(t)

Ti(t)+ 2
β2

∑
I I(t)

Ti(t), assign 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t)

slots to type 1 jobs and the rest to type 2 jobs.

Case 3: S ≥ 2
β1

∑
I(t)

Ti(t) + 2
β2

∑
I I(t)

Ti(t).

When S ≥ 2
β1

∑
I(t)

Ti(t)+ 2
β2

∑
I I(t)

Ti(t), similarly, from (3.9), in optimal scheduling, the

number of slots assigned to type 1 jobs should be no less than the optimal speculation
scheduling level, so S1 ≥

2
β1

∑
I(t)

Ti(t). Depending on how many slots we have, S2 can

be either less than or more than the optimal speculation level. We discuss the two
cases separately in the following.

1. If S2 ≤
2
β2

∑
I I(t)

Ti(t), which implies S− S1 ≤
2
β2

∑
I I(t)

Ti(t), as we already proved,

S1 = max{ 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t), S − 2
β2

∑
I I(t)

Ti(t)}, and S2 = S − S1. Specifically,

66

a) when 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) ≥ S − 2
β2

∑
I I(t)

Ti(t), if S1 ≥
2
β1

∑
I(t)

Ti(t) and S2 ≤

2
β2

∑
I I(t)

Ti(t) in optimal scheduling, then S1 =
2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) and S2 =

S − S1.

b) when 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) < S − 2
β2

∑
I I(t)

Ti(t), if S1 ≥
2
β1

∑
I(t)

Ti(t) and S2 ≤

2
β2

∑
I I(t)

Ti(t) in optimal scheduling , then S1 = S − 2
β2

∑
I I(t)

Ti(t) and S2 =

S − S1.

2. If S2 ≥
2
β2

∑
I I(t)

Ti(t), which implies S − S1 ≥
2
β2

∑
I I(t)

Ti(t), total throughput is,

β1
β1 − 1

∑
I(t)

Ti(t) −
1

(β1 − 1)S1
(
∑
I(t)

Ti(t))2 +
β2

β2 − 1

∑
I I(t)

Ti(t) −
1

(β2 − 1)S2
(
∑
I I(t)

Ti(t))2

=
β1

β1 − 1

∑
I(t)

Ti(t) +
β2

β2 − 1

∑
I I(t)

Ti(t) −
1

(β1 − 1)S1
(
∑
I(t)

Ti(t))2 −
1

(β2 − 1)S2
(
∑
I I(t)

Ti(t))2

≤
β1

β1 − 1

∑
I(t)

Ti(t) +
β2

β2 − 1

∑
I I(t)

Ti(t) −
1

S1 + S2

©«
√

1
β1 − 1

∑
I(t)

Ti(t) +

√
1

β2 − 1

∑
I I(t)

Ti(t)
ª®¬

2

=
β1

β1 − 1

∑
I(t)

Ti(t) +
β2

β2 − 1

∑
I I(t)

Ti(t) −
1
S

©«
√

1
β1 − 1

∑
I(t)

Ti(t) +

√
1

β2 − 1

∑
I I(t)

Ti(t)
ª®¬

2

,

(3.15)

where the inequality follows from the Cauchy-Schwartz inequality.

Equality is achieved when S1 =

∑
I (t)

Ti(t)

√
β1−1∑

I (t)
Ti(t)

√
β1−1
+

∑
I I (t)

Ti(t)

√
β2−1

S.

Combining above two results, when 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) < S − 2
β2

∑
I I(t)

Ti(t), the

optimal assignment from the first case is a boundary point for the second
case. Obviously, the optimal assignment from case 2 is the global optimal
assignment. But, when 2

β2

√
β2−1
β1−1

∑
I(t)

Ti(t) ≥ S − 2
β2

∑
I I(t)

Ti(t), it still remains

unclear which assignment is optimal. Thus, in next step, we compare the
maximum total throughput in two cases under that setting.

a) In case 1, from (3.14), throughput µs =
β1
β1−1

∑
I(t)

Ti(t) +
β2

2
4(β2−1)S −

β2√
(β1−1)(β2−1)

∑
I(t)

Ti(t).

67

b) In case 2, from (3.15), throughput µl =
β1
β1−1

∑
I(t)

Ti(t) +
β2
β2−1

∑
I I(t)

Ti(t) −

1
S

(√
1

β1−1
∑
I(t)

Ti(t) +
√

1
β2−1

∑
I I(t)

Ti(t)

)2

.

Then we have,

µs − µl =
β1

β1 − 1

∑
I (t)

Ti(t) +
β2

2
4(β2 − 1)

S −
β2√

(β1 − 1)(β2 − 1)

∑
I (t)

Ti(t)

−
©«

β1
β1 − 1

∑
I (t)

Ti(t) +
β2

β2 − 1

∑
I I (t)

Ti(t) −
1
S

©«
√

1
β1 − 1

∑
I (t)

Ti(t) +

√
1

β2 − 1

∑
I I (t)

Ti(t)
ª®¬

2ª®®¬
=

β2
2

4(β2 − 1)
S +

1
S

©«
√

1
β1 − 1

∑
I (t)

Ti(t) +

√
1

β2 − 1

∑
I I (t)

Ti(t)
ª®¬

2

−
β2√

(β1 − 1)(β2 − 1)

∑
I (t)

Ti(t) −
β2

β2 − 1

∑
I I (t)

Ti(t)

≥
β2√
β2 − 1

©«
√

1
β1 − 1

∑
I (t)

Ti(t) +

√
1

β2 − 1

∑
I I (t)

Ti(t)
ª®¬

−
β2√

(β1 − 1)(β2 − 1)

∑
I (t)

Ti(t) −
β2

β2 − 1

∑
I I (t)

Ti(t)

=0.

The above result implies that when 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) ≥ S − 2
β2

∑
I I(t)

Ti(t), the

optimal assignment from case 1 is the global optimal assignment.

In summary, the optimal scheduling should:

1. If S < 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t), then assign all S slots to type 1 jobs.

2. If 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) < S ≤ 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t)+ 2
β2

∑
I I(t)

Ti(t), then assign 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t)

slots to type 1 jobs and the rest to type 2 jobs.

3. If S ≥ 2
β2

√
β2−1
β1−1

∑
I(t)

Ti(t) + 2
β2

∑
I I(t)

Ti(t), then assign

∑
I (t)

Ti(t)

√
β1−1∑

I (t)
Ti(t)

√
β1−1
+

∑
I I (t)

Ti(t)

√
β2−1

S slots to

type 1 jobs and the rest to type 2 jobs.

�

68

Scheduler2

Job Req

Req

Req …

…… …

Reqqqqq

Response

d probes

Worker

Worker

Worker

Worker

Scheduler1

Figure 3.4: Decentralized scheduling architecture.

3.4.3 Incorporating Data Locality

As such, the guidelines presented do not consider data locality [80, 94] in the
scheduling of tasks. Tasks reading their data from remotemachines over the network
run slower. In addition, such remote reads also increase contention with other
intermediate tasks (like reduce tasks) that are bound to read over the network.

We devise a simple relaxation approach for balancing adherence to our guidelines
and locality. Specifically, we adjust the ordering of jobs in Guideline 4 to include
information about locality. Instead of allotting slots to the jobs with the smallest
virtual sizes, we allow for picking any of the smallest k% of jobs whose tasks can
run with data locality on the available slots. In practice, a small value of k (≤ 5%)
suffices due to high churn in task completions and slot availabilities (Section 3.7.4).

3.5 Decentralized Hopper

In this section, we adapt the guidelines described in Section 3.3 to design a decen-
tralized (online) scheduler. Decentralized schedulers are increasingly prominent as
cluster sizes grow. As we explain in this section, a key benefit of our guidelines in
Section 3.3 is that they can be decentralized with little performance loss.

Decentralized schedulers, like the recently proposed Sparrow [20], broadly adopt the
following design (see Figure 3.4). There are multiple independent schedulers each
of which is responsible for scheduling one or a subset of jobs; for simplicity, a single
job never spans across schedulers. Every scheduler assigns the tasks of its jobs to
machines in the cluster (referred to as workers) that execute the tasks. The archi-
tecture allows for an incoming job to be assigned to any of the available schedulers,
while also seamlessly allowing new schedulers to be dynamically spawned.

A scheduler first pushes reservation requests for its tasks to workers; each request

69

Probe count

R
a
ti

o
 i
n

 j
o

b
 d

u
ra

ti
o

n
o

v
e
r

C
e
n

tr
a
li
z
e
d

 S
c
h

e
d

u
le

r

Hopper

Sparrow

2 4 6 8 10
1

1.2

1.4

1.6

1.8

2

2.2

Util.=90%

Util.=80%

Util.=70%

Util.=60%

(a) Number of probes, d

Refuse count

R
a
ti

o
 i
n

 j
o

b
 d

u
ra

ti
o

n
o

v
e
r

C
e
n

tr
a
li
z
e
d

 S
c
h

e
d

u
le

r

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Util.=90%

Util.=80%

Util.=70%

Util.=60%

(b) Number of refusals

Figure 3.5: The impact of number of probes and number of refusals on Hopper’s
performance.

contains the identifier of the scheduler placing the request along with the remaining
number of unscheduled tasks in the job. When a worker is vacant, it pulls a task
from the corresponding scheduler based on the reservation requests in its waiting
queue. In this framework, workers decide which job’s task to run and the scheduler
for the corresponding job decides which task to run within the chosen job. This
decoupling naturally facilitates the design of Hopper.

Though we adopt an overall design structure similar to Sparrow for the decentraliza-
tion of Hopper, it is important to note that Hopper’s design is fundamentally different
because it integrates straggler mitigation based on the guidelines behind Hopper

introduced in Section 3.3.

Decentralizing Hopper involves the following steps: approximating worker-wide
information at each scheduler (Section 3.5.1), deciding if the number of slots is
constrained (Section 3.5.2), and calculating virtual sizes (Section 3.5.3).

3.5.1 Power of Many Choices

Decentralized schedulers have to approximate the global state of the cluster – the
states of all the workers – since they are unaware of other jobs in the system. A

70

common way to accomplish this is via the “power of two choices” [95]. This
celebrated and widely used result highlights that, in many cases, one nearly matches
the performance of a centralized implementation by querying two workers for their
queue lengths, and choosing the shorter of the queues. In fact, this intuition underlies
the design of Sparrow aswell, which combines the ideawith a form of “late binding”;
schedulers send reservation requests for every task to two workers and then let
workers pull a task from the corresponding scheduler when they have a free slot.
We adopt “late binding”, as used in Sparrow, but replace the “power of two choices”
with the “power of many choices”.

The reason for this change is that the effectiveness of the “power of two choices”
relies on having light-tailed task size distributions. The existence of stragglers
means that, in practice, task durations are heavy-tailed, e.g., [15, 19, 74]. Recent
theoretical results have proven that, when task sizes are heavy-tailed, probing d > 2
choices can provide orders-of-magnitude improvements [96]. The value in using
d > 2 comes from the fact that large tasks, which are more likely under heavy-tailed
distributions, can cause considerable backing up of worker queues. Two choices
may not be enough to avoid such backed-up queues, given the high frequency of
straggling tasks. More specifically, d > 2 allows the schedulers to have a view of
the jobs that is closer to the global view.

We use simulations in Figure 3.5a to highlight the benefit of using d > 2 probing
choices in Hopper and to contrast this benefit with Sparrow, which relies on the power
of two choices. Our simulation considers a cluster of 50 schedulers and 10,000
workers and jobs with Pareto distributed (β = 1.5) task sizes. Job performance with
decentralized Hopper is within just 15% of the centralized scheduler; the difference
plateaus beyond d = 4. Note that Sparrow (which does not coordinate scheduling
and speculation) is > 100% off for medium utilizations and even further off for high
utilizations (not shown on the figure in order to keep the scale visible). Further,
workers in Sparrow pick tasks in their waiting queues in a FCFS fashion. The
lack of coordination between scheduling and speculation results in a long waiting
time for speculative copies in the queues which diminishes the benefits of multiple
probes. Thus Sparrow cannot extract the same benefit Hopper has from using more
than two probes. Of course, these are rough estimates since the simulations do not
capture overheads due to increased message processing, which are included in the
evaluations in Section 3.7.

71

procedure ResponseProcessing(Response response)
Job j ← response.job
if response.type = non-refusable then

Accept()
else

if (j.current_occupied < j.virtual_size) Accept ()
else Refuse()

Pseudocode 4: Scheduler Methods.

3.5.2 Is the system capacity constrained?

In the decentralized setting workers implement our scheduling guidelines. Recall
that Guideline 4 or Guideline 5 is applied depending on whether the system is con-
strained for slots or not. Thus, determining which to follow necessitates comparing
the sum of virtual sizes of all the jobs and the number of slots in the cluster, which
is trivial in a centralized scheduler but requires communication in an decentralized
setting.

To keep overheads low, we avoid costly gossiping protocols among schedulers
regarding their states. Instead, we use the following adaptive approach. Workers start
with the conservative assumption that the system is capacity constrained (this avoids
overloading the system with speculative copies), and thus each worker implements
Guideline 4, i.e., enforces an SRPT priority on its queue. Specifically, when aworker
is idle, it sends a refusable response to the scheduler corresponding to the reservation
request of the job it chooses from its queue. However, since the scheduler queues
many more reservation requests than tasks, it is possible that its tasks may have
all been scheduled (with respect to virtual sizes). A refusable response allows the
scheduler to refuse sending any new task for the job if the job’s tasks are all already
scheduled to the desired speculation level (ResponseProcessing in Pseudocode 4). In
its refusal, it sends information about the job with the smallest virtual size in its list
which still has unscheduled tasks (if such an “unsatisfied” job exists).

Subsequently, the worker sends a refusable response to the scheduler corresponding
to second smallest job in its queue, and so forth till it gets a threshold number
of refusals. Note that the worker avoids probing the same scheduler more than
once. Several consecutive refusals from schedulers without information about any
unsatisfied jobs suggests that the system is not capacity constrained. At that point,
it switches to implementing Guideline 5. Once it is following Guideline 5, the
worker randomly picks a job from the waiting queue based on the distribution of job

72

procedure Response(〈Job〉 J, int refused_count)
. J: list of jobs in queue of the worker excluding already refused jobs

if refused_count ≥ refusal_threshold then
j ← J.PickAtRandom()
SendResponse(j, non-refusable)

else
j ← J .min(virtual_size)
SendResponse(j, refusable)

Pseudocode 5: Worker: choosing the next task to schedule.

virtual sizes. If there are still unsatisfied jobs at the end of the refusals, the worker
sends a non-refusable response (which cannot be refused) to the scheduler whose
unsatisfied job is the smallest. Pseudocode 5 explains the Response method.

The higher the threshold for refusals, the better the view of the schedulers for the
worker. Our simulations (with 50 schedulers and 10,000 workers) in Figure 3.5b
show that performance with two or three refusals is within 10% − 15% of the
centralized scheduler.

3.5.3 Updating Virtual Job Sizes

Computing the remaining virtual job size at a scheduler is straightforward. However,
since the remaining virtual size of a job changes as tasks complete, virtual sizes
need to be updated dynamically. Updating virtual sizes accurately at the workers
that have queued reservations for tasks of this job would require frequent message
exchanges between workers and schedulers, which would create significant overhead
in communication and processing of messages. So, our approach is to piggyback
updates for virtual sizes on other communicationmessages that are anyway necessary
between a scheduler and a worker (e.g., schedulers sending reservation requests for
new jobs, workers sending responses to probe system state and ask for new tasks).
While this introduces a slight error in the virtual remaining sizes, our evaluation
shows that the approximation provided by this approach is enough for the gains
associated with Hopper.

Crucially, the calculation of virtual sizes is heavily impacted by the job specifics.
Job specific properties of the job DAG and the likelihood of stragglers are captured
throughα and β, respectively, which are learned online. Note that jobs from different
applications may have heterogeneous α and β.

73

3.6 Implementation Overview

We now give an overview of the implementation of Hopper in decentralized and
centralized settings.

3.6.1 Decentralized Implementation

Our decentralized implementation uses the Sparrow [20] framework, which consists
of many schedulers and workers (one each on every machine) [97]. Arbitrarily
many schedulers can operate concurrently; though we use 10 in our experiments.
Schedulers allow submissions of jobs using Thrift RPCs [98].

A job is broken into a set of tasks with their dependencies (DAG), binaries and
locality preferences. The scheduler places requests at the workers for its tasks; if a
task has locality constraints, its requests are only placed on the workers meeting its
constraints [52, 54, 99]. Theworkers talk to the client executor processes (e.g., Spark
executor). The executor processes are responsible for executing task binaries and
are long-lived to avoid startup overheads (see [20] for a more detailed explanation).

Our implementation modifies the scheduler as well as the worker. The workers
implement the core of the guidelines in Section 3.3 – determining if the system is
slot-constrained and accordingly prioritizing jobs as per their virtual sizes. This
required modifying the FIFO queue at the worker in Sparrow to allow for custom
ordering of the queued requests. The worker, nonetheless, augments its local view
by coordinating with the scheduler. This involved modifying the “late binding”
mechanism both at the worker and scheduler. The worker, when it has a free
slot, works with the scheduler in picking the next task (using Pseudocode 5). The
scheduler deals with a response from the worker as per Pseudocode 4.

Even after all the job’s tasks have been scheduled (including its virtual size), the job
scheduler does not “cancel” its pending requests; there will be additional pending
requests with any probe ratio over one. Thus, if the system is not slot-constrained,
it would be able to use more slots (as per Guideline 5).

In our decentralized implementation, for tasks in the input phase (e.g., map phase),
when the number of probes exceeds the number of data replicas, we queue up the
additional requests at randomly chosen machines. Consequently, these tasks may
run without data locality, and our results in Section 3.7 include such loss in locality.

74

3.6.2 Centralized Implementation

We implement Hopper inside two centralized frameworks: Hadoop YARN (version
2.3) and Spark (version 0.7.3). Hadoop jobs read data from HDFS [5] while Spark
jobs read from in-memory RDDs.

Briefly, these frameworks implement two-level scheduling where a central resource
manager assigns slots to the different job managers. When a job is submitted to
the resource manager, a job manager is started on one of the machines, which then
executes the job’s DAG of tasks. The job manager negotiates with the resource
manager for resources for its tasks.

We built Hopper as a scheduling plug-in module to the resource manager. This
makes the frameworks use our design to allocate slots to the job managers. We
also piggybacked on the communication protocol between the job manager and
resource manager to communicate the intermediate data produced and read by the
phases of the job to vary α accordingly; locality and other preferences are already
communicated between them.

3.6.3 Estimating Intermediate Data Sizes

Recall from Section 3.4.1 that our scheduling guidelines recommend scaling every
job’s allocation by

√
α in the case of DAGs. The purpose of the scaling is to capture

pipelining of the reading of upstream tasks’ outputs.

The key to calculating α is estimating the size of the intermediate output produced
by tasks. Unlike the job’s input size, intermediate data sizes are not known up
front. We predict intermediate data sizes based on similar jobs in the past. Clusters
typically have many recurring jobs that execute periodically as newer data streams
in, and produce intermediate data of similar sizes.

Our simple approach to estimating α works sufficiently well for our evaluations
(accuracy of 92%, on average). However, we realize that workloads without many
multi-waved or recurring jobs and without tasks whose duration is dictated by their
input sizes need more sophisticated models of task executions.

3.7 Evaluation

We evaluate our prototypes of Hopper – with both decentralized and centralized
scheduling – on a 200 machine cluster. We focus on the overall gains of the

75

decentralized prototype of Hopper in Section 3.7.2 and evaluate the design choices
that led to Hopper in Section 3.7.3. Then, in Section 3.7.4, we evaluate the gains
with Hopper in a centralized scheduler in order to highlight the value of coordinating
scheduling and speculation. The key highlights are:

1. Hopper’s decentralized prototype improves the average job duration by up to
66% compared to an aggressive decentralized baseline that combines Sparrow
with SRPT (Section 3.7.2).

2. Hopper ensures that only 4% of jobs slow down compared to Fair scheduling,
and jobs which do slow down do so by ≤ 5% (Section 3.7.3).

3. Centralized Hopper improves job completion times by 50% compared to cen-
tralized SRPT (Section 3.7.4).

3.7.1 Setup

Cluster Deployment: We deploy our prototypes on a 200-node private cluster.
Each machine has 16 cores, 34GB of memory, 1Gbps network and 4 disks. The
machines are connected using a network with no over-subscription.6

Workload: Our evaluation runs jobs in traces fromFacebook’s productionHadoop [4]
cluster (3, 500 machines) and Microsoft Bing’s Dryad cluster (O(1000) machines)
from Oct-Dec 2012. The traces consist of a mix of experimental and production
jobs. Their tasks have diverse resource demands of CPU, memory and IO, varying
by a factor of 24× (refer to [100] for detailed quantification). We retain the inter-
arrival times of jobs, their input sizes and number of tasks, resource demands, and
job DAGs of tasks. Job sizes follow a heavy-tailed distribution (quantified in detail
in [15]). Each experiment is a replay of a representative 6 hour slice from the trace.
It is repeated five times and we report the median.

To evaluate our prototype of decentralized Hopper, we use in-memory Spark [52]
jobs. These jobs are typical of interactive analytics whose tasks vary from sub-
second durations to a few seconds. Since the performance of any decentralized
scheduler depends on the cluster utilization, we speed up the trace appropriately,
and evaluate on (average) utilizations between 60% and 90%, consistent with Spar-
row [20].

6Results with a 10Gbps network are qualitatively similar.

76

�
��
��
��
��
��
��
��

�� �� �� �� 	� 	�
�

���������	
�����

���������	
������
����
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

������������

(a) Facebook

�

��

��

��

��

��

��

��

�� �� �� �� 	� 	�
�

���������	
�����

���������	
������
����
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

������������

(b) Bing

Figure 3.6: Hopper’s gains with cluster utilization.

Stragglers: The stragglers in our experiments are those that occur naturally, i.e., not
injected via any model of a probability distribution or via statistics gathered from the
Facebook and Bing clusters. Importantly, the frequency and lengths of stragglers
observed in our evaluations are consistent with prior studies, e.g., [17–19]. While
Hopper’s focus is not on improving straggler mitigation algorithms, our experiments
certainly serve to emphasize the importance of such mitigation.

Baseline: We compare decentralized Hopper to Sparrot-SRPT, an augmented ver-
sion of Sparrow [20]. Like Sparrow, it performs decentralized scheduling using
“batched” power-of-two choices. In addition, it also includes an SRPT heuristic.
In short, when a worker has a slot free, it picks the task of the job that has the
least unfinished tasks (instead of the standard FIFO ordering in Sparrow). Finally,
we combine Sparrow with LATE [18] using “best effort” speculation (Section 3.2);
we do not consider “budgeted” speculation due to the difficulty of picking a fixed
budget.

The combination of Sparrow-SRPT and LATE performs strictly better than Sparrow,
and serves as an aggressive baseline. Our improvements over this aggressive
benchmark highlight the importance of coordinating scheduling and speculation.

We compare centralizedHopper to a centralized SRPT scheduler with LATE specula-
tion. Again, this is an aggressive baseline since it sacrifices fairness for performance.
Thus, improvements can be interpreted as coming solely from better coordination
of scheduling and speculation.

3.7.2 Decentralized Hopper’s Improvements

In our experiments, unless otherwise stated, we set the fairness allowance ε as 10%,
probe ratio as 4 and speculation algorithm in every job to be LATE [18]. Our

77

�

��

��

��

��

��

��
�	
������ �	
������

����
������������ ! "

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

#�� $�� ��%

���

���%

���
&���

(a) Facebook

�

��

��

��

��

��

��
�	
������ �	
������

����
����������	�� �!

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

"�� #�� ��$

���

���$

���
%���

(b) Bing

Figure 3.7: Hopper’s gains by job bins over Sparrow-SRPT.

estimation of α (Section 3.6.3) has an accuracy of 92% on average. As the workload
executes, we also continually fit the parameter β of task durations based on the
completed tasks (including stragglers); the error in β’s estimate falls to ≤ 5% after
just 6% of the jobs have executed.

Overall Gains: Figure 3.6 plots Hopper’s gains for varying utilizations, compared
to stock Sparrow and Sparrow-SRPT Jobs, overall, speed up by 50% − 60% at
the utilization of 60%. The gains compared to Sparrow are marginally better than
Sparrow-SRPT. When the utilization goes over 80%, Hopper’s gains compared to
both are similar. An interesting point is thatHopper’s gains with the Bingworkload in
Figure 3.6b are a touch higher (difference of 7%), perhaps due to the larger difference
in job sizes between small and large jobs, allowing more opportunity for Hopper.
Gains fall to < 20% when utilization is high (≥ 80%), naturally because there is
not much room for any optimization at that occupancy. While not plotted, gains
at utilizations ≤ 30% are no more than 14%. Expectedly, at such low utilizations,
there is little requirement for smarter speculation or probing.

Note that the above utilizations are averages and there is considerable variation.
At 80% average utilization, Hopper allocates 53% of jobs using Guideline 4 (high
utilization) and the remaining 47% of jobs using Guideline 5 (low utilization). This
indicates that 53% of jobs in the experimental run arrived such that the cluster did
not have enough slots to allocate every job its virtual size.

The results so far highlight that Sparrow-SRPT is a more aggressive baseline than
Sparrow, and so we compare only to it for the rest of our evaluation.

Job Bins: Figure 3.7 dices the gains by job size (number of tasks). Gains for small
jobs are less compared to large jobs. This is expected given that our baseline of
Sparrow-SRPT already favors the small jobs. Nonetheless, Hopper’s smart allocation

78

�

��

��

��

��

���

� �� �� �� ��

��	
���

����

�
��	������������

��
���
�������������

�
�
�

(a) Distribution

�

��

��

��

��

��

� � � � � � 	

������ ����

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

������������������

(b) DAG

Figure 3.8: (a) CDF of Hopper’s gains, and (b) gains as the length of the job’s DAG
varies; both at 60% utilization.

of speculative slots offers 18%−32% improvement. Gains for large jobs, in contrast,
are over 50%. This not only shows that there is sufficient room for the large jobs
despite favoring small jobs (due to the heavy-tailed distribution of job sizes [15, 54])
but also that the value of deciding between speculative tasks and unscheduled tasks
of other jobs increases with the number of tasks in the job. With trends of smaller
tasks and hence, larger number of tasks per job [55], Hopper’s allocation becomes
important.

Distribution of Gains: Figure 3.8a plots the distribution of gains across jobs. While
the median gains are just higher than the average, there are > 70% gains at higher
percentiles. Encouragingly, gains even at the 10th percentile are 15% and 10%,
which shows Hopper’s ability to improve even worse case performance.

DAGof Tasks: The scripts in our Facebook (Hive scripts [11]) andBing (Scope [24])
workloads produce DAGs of tasks which often pipeline data transfers of downstream
phaseswith upstream tasks [92]. The communication patterns in theDAGs are varied
(e.g., all-to-all, many-to-one etc.) and thus the results also serve to underscore
Hopper’s generality. As Figure 3.8b shows, Hopper’s gains hold across DAG lengths.

SpeculationAlgorithm: We now experimentally evaluateHopper’s performancewith
different speculation mechanisms. LATE [18] is deployed in Facebook’s clusters,
Mantri [17] is in operation in Microsoft Bing, and GRASS citegrass is a recently
reported straggler mitigation system that was demonstrated to perform near optimal
speculation. Our experiments still use Sparrow-SRPT as the baseline but pair with
the different straggler mitigation algorithms. Figure 3.9 plots the results.

While the earlier results were achieved in conjunction with LATE, a remarkable
point about Figure 3.9 is the similarity in gains even with Mantri and GRASS.

79

0

20

40

60

80

100

Overall < 50 51-150 151-500 > 500

LATE +Hopper vs. LATE + Sparrow-SRPT

Mantri + Hopper vs. Mantri + Sparrow-SRPT

GRASS + Hopper vs. GRASS + Sparrow-SRPT

Job Bin (Number of tasks)

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Figure 3.9: Hopper’s results are independent of the straggler mitigation strategy.

This indicates that as long as the straggler mitigation algorithms are aggressive in
asking for speculative copies, Hopper will appropriately balance speculation and
scheduling. Overall, it emphasizes the aspect that resource allocation across jobs
(with speculation) has a higher performance value than straggler mitigation within
jobs.

3.7.3 Evaluating Hopper’s Design Decisions

We now evaluate the sensitivity of decentralized Hopper to our key design decisions:
fairness and probe ratio.

Fairness: As we had described in Section 3.3.4, the fairness knob ε decides the
leeway for Hopper to trade-off fairness for performance. Thus far, we had set ε to be
10% of the perfectly fair share of a job (ratio of total slots to jobs), now we analyze
its sensitivity to Hopper’s gains.

Figure 3.10a plots the increase in gains as we increase ε from 0 to 30%. The gains
quickly rise for small values of ε , and beyond ε = 15% the increase in gains are
flatter with both the Facebook as well as Bing workloads. Conservatively, we set ε
to 10%.

An important concern, nonetheless, is the amount of slowdown of jobs compared
to a perfectly fair allocation (ε = 0), i.e., when all the jobs are guaranteed their
fair share at all times. Any slowdown of jobs is because of receiving fewer slots.
Figure 3.10b measures the number of jobs that slowed down, and for the slowed
jobs, Figure 3.10c plots their average and worst slowdowns. Note that fewer than
4% of jobs slow down with Hopper compared to a fair allocation at ε = 10%. The
corresponding number for the Bing workload is 3.8%. In fact, both the average and
worst slowdowns are limited at ε = 10%, thus demonstrating that Hopper’s focus on
performance does not unduly slow down jobs.

80

�

��

��

��

� � �� �� �� �� ��

�	
���

����

�	������������

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

(a) Sensitivity

�

�

��

��

� � �� �� �� �� ��
���	
�������

��
��
�
��
�
	

��
�
�

(b) (%) of Jobs Slowed

0

5

10

15

20

25

0 5 10 15 20 25 30

Average Worst

Fairness ɛ (%)

In
c
re

a
s
e

 (
%

)
in

J
o

b
 d

u
ra

ti
o

n
 o

f

S
lo

w
e

d
 J

o
b

s

(c)Magnitude (%) of Slowdown

Figure 3.10: ε Fairness. Figure (a) shows sensitivity of gains to ε . Figure (b) shows
the fraction of jobs that slowed down compared to a fair allocation, and (c) shows
the magnitude of their slowdowns (average and worst).

0

10

20

30

40

50

60

2 2.5 3 3.5 4 4.5 5

Util=60% Util=70%

Util=80% Util=90%

Probe Ratio

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Figure 3.11: Power of d choices: Impact of the number of probes on job completion.

Probe Ratio: An important component of decentralized scheduling is the probe
ratio – the number of requests queued at workers to number of tasks in the job.
A higher probe ratio reduces the chance of a task being stuck in the queue of a
busy machine, but also increases messaging overheads. While the power-of-two
choices [95] and Sparrow [20] recommend a probe ratio of 2, we adopt a probe ratio
of 4 based on our analysis in Section 3.5.

Figure 3.11 confirms that higher probe ratios are indeed beneficial. As the probe
ratio increase from 2 onwards, the payoff due to Hopper’s scheduling and straggler
mitigation results in gains increasing until 4; at utilizations of 70% and 80%, using

81

0

20

40

60

80

100
Hadoop

Spark

Job Bin

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n
������� ��	 �
�

�	

�
�

�		

��		

(a) Gains

0

10

20

30

40

50

60

2 3 4 5 6 7 8

Hadoop

Spark

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Length of Job’s DAG

(b) DAG

Figure 3.12: Centralized Hopper’s gains over SRPT, overall and broken by DAG
length (Facebook workloads).

3.5 works well too. At 90% utilization, however, gains start slipping even at a probe
ratio of 2.5. However, the benefits at such high utilizations are smaller to begin
with.

3.7.4 Centralized Hopper’s Improvements

Tohighlight the fact thatHopper is a unified design, appropriate for both decentralized
and centralized systems, we also evaluate Hopper in a centralized setting using
Hadoop and Spark prototypes. Figure 3.12 plots the gains for the two prototypes
with Facebook and Bing workloads. We achieve gains of ∼ 50% with the two
workloads, with individual job bins improving by up to 80%.

As with the decentralized setting, gains for small jobs are lower due to the baseline
of SRPT already favoring small jobs. Between the two prototypes, gains for Spark
are consistently higher (albeit, modestly). Spark’s small task durations makes it
more sensitive to stragglers and thus it spawns many more speculative copies. This
makes Hopper’s scheduling more crucial.

DAG of Tasks: Like in the decentralized implementation, Hopper’s gains hold
consistently over varying DAG lengths, see Figure 3.12. Note that there is a contrast
between Spark jobs and Hadoop jobs. Spark jobs have fast in-memory map phases,
thus making intermediate data communication the bottleneck. Hadoop jobs are less
bottlenecked on intermediate data transfer, and spend more of their time in the map
phase [54]. This difference is captured via α, which is learned as described in
Section 3.6.3.

Data Locality: Recall from Section 3.4.3 that we achieve data locality using a
relaxation heuristic to allow any k subsequent jobs (as a percentage of total jobs).

82

�

��

��

��

��

���

�

��

��

��

� � � � � ��

��	
� ����	��

����	��������
����� ���

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

�
�
�
�
����

	
�
�

(a) Spark

�
��
��
��
��
���

�

��

��

��

� � � � � ��

��	
� ����	��

����	��������
���������

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

�
�
�
�
����

	
�
�

(b) Hadoop

Figure 3.13: Centralized Hopper: Impact of Locality Allowance (k) (see Sec-
tion 3.6.2) with Facebook workload.

As Figure 3.13a shows, a small relaxation of k = 3%, which is what we have used so
far, achieves appreciable increase in locality in Spark. Gains are steady for a bit but
then start dropping beyond a k value of 7%. This is because the deviation from the
theoretical guidelines overshadows any increase in gains from locality. The fraction
of data local tasks, naturally, increases with k (Figures 3.13a). Hadoop results are
similar (3.13b).

Note that even when we enhance a centralized SRPT scheduler to include the above
locality heuristic, it gains no more than 20% compared to centralized SRPT (without
the locality heuristic). This indicates that Hopper’s gains are predominantly due to
coordinated speculation and scheduling.

3.8 Concluding Remarks

With launching speculative copies of tasks being a common approach for mitigating
the impact of stragglers, schedulers face a decision between scheduling speculative
copies of some jobs versus original copies of other jobs. While this question is
seemingly simple, we find that the problem is not only unsolved thus far, but also
has significant performance implications.

This chapter proposes Hopper, the first speculation-aware job scheduler, and im-

83

plements both decentralized and centralized prototypes. We deploy our prototypes
(built in Sparrow [20], Spark [52] and Hadoop [4]) on a 200 machine cluster, and see
job speedups of 66% in decentralized settings and 50% in centralized settings com-
pared to current state-of-the-art schedulers. In addition to providing performance
improvements in both centralized and decentralized settings, Hopper is compatible
with all current speculation algorithms and incorporates data locality, fairness, DAGs
of tasks, etc.; thus, it represents a unified speculation-aware scheduling framework.

84

Chapter 4

NETWORK-AWARE GEO-DISTRIBUTED CLUSTER
SCHEDULING

In the previous two chapters, we provide solutions to straggler speculation-aware
scheduling design at both the task level and the job level. In this chapter, we switch
our focus from a single data center to geo-distributed data centers and focus on
optimizing data acquisition and data placement.

Ten years ago computing infrastructure was a commodity – the key bottleneck for
new tech startups was the cost of acquiring and scaling computational power as
they grew. Now, computing power and memory are services that can be cheaply
subscribed to and scaled as needed via cloud providers like Amazon EC2, Microsoft
Azure, etc.

We are beginning the same transition with respect to data. Data is broadly being
gathered, bought, processed and sold in various marketplaces. However, it is still
a commodity, often obtained through offline negotiations between providers and
companies [101]. Thus, acquiring data is one of the key bottlenecks for new tech
startups nowadays.

This is beginning to change with the emergence of cloud data markets (data cloud),
which offer a single, logically centralized point for selling, buying and processing
data. Multiple data markets have recently emerged in the cloud, e.g., Qlik Data-
market [102], Factual [103], InfoChimps [104], Xignite [105], IUPHAR [106], etc.
These marketplaces enable data providers to sell and upload data and clients to
request data from multiple providers (often for a fee) through a unified query inter-
face. Also, major cloud service providers such as Google [107], Microsoft [108]
and Amazon [109] all host various public datasets covering geospacial, environ-
mental, scientific and online services as an extra benefit for their cloud clients.
Current data clouds provide a variety of basic services: (i) aggregation of data from
multiple sources, (ii) cleaning of data to ensure quality across sources, (iii) ease of

85

use, through a unified API, and (iv) low-latency delivery through a geographically
distributed content distribution network. As these market places mature they are
increasingly adding other services as well. Besides providing raw data to clients, it
is an inevitable trend for data clouds to carry out value-added services built upon
the data, such as analytics and machine learning APIs.

Given the recent emergence of data clouds, there are widely differing designs in
the marketplace today, especially with respect to pricing. For example, the Qlik
Datamarket [102] sets prices with a subscription model that allows a maximum
number of queries (API calls) per month and limits the size of records that can be
returned for a single query. Other data clouds, e.g., Google BigQuery [107] and
Infochimps [104], allow payments per query or per data set. In nearly all cases, the
data provider and the data cloud operator each then get a share of the fees paid by
the clients, though how this share is arrived at can differ dramatically across data
clouds. The task of pricing is made even more challenging when one considers
that clients may be interested in data with differing levels of precision/quality and
privacy may be a concern.

Not surprisingly, the design of pricing (both on the client side and the data provider
side) has received significant attention in recent years, including pricing of per-query
access [29, 30] and pricing of private data [31, 32].

In contrast, the focus of this chapter is not on the design of pricing strategies for
data clouds. Instead, we focus on the engineering side of the design of a data cloud,
which has been ignored to this point. Supposing that prices are given, there are
important challenges that remain for the operation of a data cloud. Specifically, two
crucial challenges relate to data purchasing and data placement.1

Data purchasing: Given prices and contracts offered by data providers, which
providers should a data cloud purchase from to satisfy a set of client queries with
minimal cost?

Data placement: How should purchased data be stored and replicated throughout a
geo-distributed data cloud in order to minimize bandwidth and latency costs? And
which clients should be served from which replicas given the locations and data
requirements of the clients?

1Here we assume either the "raw" data is delivered or the computational overhead to process the
data is negligible compared to the purchasing cost and placement cost. This is the case for the most
existing data clouds [102, 107–109], and also is consistent with literature [27, 28]. We leave joint
optimization of computation, data purchasing, and data placement as future work.

86

Clearly, these two challenges are highly related: data placement decisions depend
on which data is purchased from where, so the bandwidth and latency costs incurred
because of data placement must be balanced against the purchasing costs. Con-
cretely, less expensive data that results in larger bandwidth and latency costs is not
desirable.

The goal of this chapter is to present a design for a geo-distributed data cloud that
jointly minimizes data purchasing and data placement costs.

The combination of data purchasing and data placement decisions makes the task
of operating a geo-distributed data cloud more complex than the task of operating
a geo-distributed data analytics system [26–28, 110, 111]. Geo-analytics systems
minimize the cost (in terms of latency and bandwidth) of moving the data needed
to answer client queries, replacing the traditional operation mode where data from
multiple data centers was moved to a central data center for processing queries.
However, crucially, such systems do not consider the cost of obtaining the data
(including purchasing and transferring) from data providers.

Thus, the design of a geo-distributed data cloud necessitates integrating data pur-
chasing decisions into a geo-distributed data analytics system. To that end, our
design builds on the model used in [28] by adding data providers that offer a menu
of data quality levels for differing fees. The data placement/replication problem
in [28] is already an integer linear program (ILP), and so it is no surprise that the
addition of data providers makes the task of jointly optimizing data purchasing and
data placement NP-hard (see Theorem 5).

Consequently, we focus on identifying structure in the problem that can allow for a
practical and near-optimal systemdesign. To that end, we show that the task of jointly
optimizing data purchasing and data placement is equivalent to the uncapacitated
facility location problem (UFLP) [112]. However, while constant-factor polynomial
running time approximation algorithms are known for the metric uncapacitated
facility location problem (see [113–115]), our problem is a non-metric facility
location problem, and the best known polynomial running time algorithms achieve
a O(log C) approximation via the greedy algorithm in [116] or the randomized
rounding algorithm in [117], where C is the number of clients. Note that without
any additional information on the costs, this approximation ratio is the smallest
achievable for the non-metric uncapacitated facility location unless NP has slightly
superpolynomial time algorithms [118]. While this is the best theoretical guarantee
possible in the worst-case, some promising heuristics have been proposed for the

87

non-metric case, e.g., [119–124].

Though the task of jointly optimizing data purchasing and data placement is com-
putationally hard in the worst case, in practical settings there is structure that can
be exploited. In particular, we provide an algorithm with polynomial running time
that gives an exact solution in the case of a data cloud with a single data center
(Section 4.3.1). Then, using this structure, we generalize to the case of a geo-
distributed data cloud and provide an algorithm, named Datum (Section 4.3.2) that
is near optimal in practical settings.

Datum first optimizes data purchasing as if the data cloud was made up of a single
data center (given carefully designed “transformed” costs) and then, given the data
purchasing decisions, optimizes data placement/replication. The “transformed”
costs are designed to allow an architectural decomposition of the joint problem into
subproblems that manage data purchasing (external operations of the data cloud)
and data placement (internal operations of the data cloud). This decomposition
is of crucial operational importance because it means that internal placement and
routing decisions can proceed without factoring in data purchasing costs, mimicking
operational structures of geo-distributed analytics systems today.

We provide a case study in Section 4.4 which highlights that Datum is near-optimal
(within 1.6%) in practical settings. Further, the performance of Datum improves
upon approaches that neglect data purchasing decisions by > 45%.

We initiate the study of jointly optimizing data purchasing and data placement
decisions in geo-distributed data clouds. And we prove that the task of jointly
optimizing data purchasing and data placement decisions is NP-hard and can be
equivalently viewed as a facility location problem. For the case of a data cloudwith a
single data center, we provide an exact algorithm with polynomial running time. We
extend our design to data clouds withmultiple data centers and provide an algorithm,
Datum, for jointly optimizing data purchasing and data placement in a geo-distributed
data cloud that is within 1.6% of optimal in practical settings and improves by > 45%
over designs that neglect data purchasing costs. Importantly, Datum decomposes into
subproblems that manage data purchasing and data placement decisions separately.

4.1 Opportunities and Challenges

Data is now a traded commodity. It is being bought and sold every day, but most of
these transactions still happen offline through direct negotiations for bulk purchases.

88

This is beginning to change with the emergence of cloud data markets such as Qlik
Datamarket [102], Factual [103], InfoChimps [104], Xignite [105]. As cloud data
markets become more prominent, data will become a service that can be acquired
and scaled seamlessly, on demand, similarly to computing resources available today
in the cloud.

4.1.1 The potential of data markets

The emergence of cloud data markets has the potential to be a significant disrup-
tor for the tech industry, and beyond. Today, since computing resources can be
easily obtained and scaled through cloud services, data acquisition has become the
bottleneck for new tech startups.

For example, consider an emerging potential competitor for Yelp. The biggest
development challenge is not algorithmic or computational. Instead, it is obtaining
andmanaging high quality data at scale. The existence of a data market with detailed
local information about restaurants, attractions, etc., would eliminate this bottleneck
entirely. In fact, data markets such as Factual [103] are emerging to target exactly
this need.

Another example highlighted in [30, 125] is language translation. Emerging data
markets such as Infochimps sell access to data on word translation, word frequency,
etc. across languages. This access is a crucial tool for easing the transition tech
startups face when moving into different cultural markets.

A final example considers computer vision. When tech startups need to develop
computer vision tools in house, a significant bottleneck (in terms of time and
cost) is obtaining labeled images with which to train new algorithms. Emerging
data markets have the potential to eliminate this bottleneck too. For example, the
emerging Visipedia project [126] (while free for now) provides an example of the
potential of such a data market.

Thus, like in the case of cloud computing, ease of access and scaling, combined
with the cost efficiency that comes with size, implies that cloud data markets have
the potential to eliminate one of the major bottlenecks for tech startups today – data
acquisition.

89

4.1.2 Operational challenges for data markets

While data pricing within cloud data markets has received increasing attention, the
engineering of the system itself has been ignored. The engineering of such a geo-
distributed “data cloud” is complex. In particular, the systemmust jointly make both
data purchasing decisions and data placement, replication and delivery decisions,
as described in the introduction.

Even considered independently, the task of optimizing data placement/replication
within a geo-distributed data analytics system is challenging. Such systems aim
to allow queries on databases that are stored across data centers, as opposed to
traditional databases that are stored within a single data center. Examples include
Google Spanner [127], Mesa [128], JetStream [129], Geode [28], and Iridium [26].
The aim in designing a geo-distributed data analytics system is to distribute the
computation needed to answer queries across data centers; thus avoiding the need
to transfer all the data to a single data center to respond to queries. This distribution
of computation is crucial for minimizing bandwidth and latency costs, but leads to
considerable engineering challenges, e.g., handling replication constraints due for
fault tolerance and regulatory constraints on data placement due to data privacy.
See [26, 28] for a longer discussion of these challenges and for examples illustrat-
ing the benefit of distributed query computation in geo-distributed data analytics
systems.

Importantly, all previous work on geo-distributed analytics systems assumes that the
system already owns the data. Thus, on top of the complexity in geo-distributed
analytics systems, a geo-distributed cloud data market must balance the cost of
data purchasing with the impact on data placement/replication costs as well as the
decisions for data delivery. For example, if clients who are interested in some data
are located close to data center A, while the data provider is located close to data
center B (far from data center A), it may be worth it to place that data in data center
A rather than data center B. In practice, the problem is more complex since clients
are usually geographically distributed rather than centralized and one client may
require data from several different data providers.

Additional complexity is created by versioning the data, i.e., the fact that clients
have differing quality requirements for the data requested. For example, if some
clients are interested in high quality data and others are interested in low quality
data, then it may be worth it to provide high quality level data to some clients that
only need low quality data (thus incurring a higher price) because of the savings in

90

bandwidth and replication costs that result from being able to serve multiple clients
with the same data.

4.1.3 Related work

Our work focuses on the joint design of data purchasing and data placement in a
geo-distributed cloud data market. As such, it is related to recent work on data
pricing, content distribution networks, and geo-distributed data analytics systems.
Further, the algorithmic problem at the core of our design is the facility location
problem, and so our work builds on that literature. We discuss related work in these
areas.

Data pricing: The design of data markets has attracted increasing interest in recent
years, especially in the database community, see [130] for an overview. The current
literature mainly focuses on query-based pricing mechanism designs [29, 30, 32]
and seldom considers the operating cost of the market service providers (i.e., the
data cloud). There is also a growing body of work related to data pricing with
differentiated qualities [31, 32, 131], often motivated by privacy.

Similarly, in [132, 133] a data pricing scheme is proposed for XML trees in which
data prices vary with data quality. Quality is measured in different ways, in the
form of accuracy [132], or completeness [133]. In these works, data providers
offer prices, but clients may propose a price less than that of the data provider,
after which the quality of the data will be decreased. Their framework is based on
uniform sampling of rooted subtrees in weighted XML documents. Additionally,
[134–136] consider issues related to pricing strategies and data quality, and allow
customers to suggest prices rather than imposing fixed prices. They consider the
Name Your Own Price mechanism [135], which is also used in earlier work [133].
We however allow data providers to set the price, and also allow for clients to view
available quality levels and prices before making a query. This work relates to data
pricing on the data provider side and is orthogonal to our discussion in this chapter.
We assume that prices are known, and are instead concerned with data purchasing
and placement choices.

Geo-distributed data analytics systems: As cloud servers are increasingly located
in geo-distributed systems, analysis and optimization of data stored in geographi-
cally distributed data centers has received increasing attention [26–28, 137, 138].
Bandwidth constraints [27, 28] as well as latency [26] are the two main challenges
for system design, and a number of system designs have been proposed, e.g., see Sec-

91

tion 4.1.2 for more discussion. Our work builds on the model of geo-distributed
data analytics systems in [26, 28], but is distinct from this literature because none
of the work on geo-distributed data analytics systems considers the costs associated
with purchasing data.

Content Distribution Networks: Content Distribution Networks (CDNs) [139–
142] were originally introduced to improve quality of Internet services to meet
the challenge of rapid growth in the intensity of the content. CDNs replicate
content and data from source servers to many other servers that are located closer
to the end customers; therefore making it possible to process requests for content
locally, saving bandwidth and reducing latency [143–152]. As such, the algorithms
governing CDNs are similar in spirit to those underlying data markets. However,
the novelty of data cloud design stems from the fact that it is not enough to replicate
content on a network of data centers so as to minimize the cost of delivering the
data from sources to customers, data clouds must also consider the fact that there
is no free access to the data – it must be purchased from providers. This cost
significantly changes the algorithmic challenge and leads us to study a framework
to simultaneously decide (i) what data to purchase from which providers and (ii)
where to place the data on the network and how to route the data to the clients in
order to minimize its operating costs.

Algorithms for facility location: Our data cloud cost minimization problem can
be viewed as a variant of the uncapacitated facility location problem. Though
such problems have been widely studied, most of the results, especially algorithms
with constant approximation ratios, require the assumption of metric cost parame-
ters [113–115], which is not the case in our problem. In contrast, for the non-metric
facility location problem the best known algorithm is the greedy algorithm proposed
in [112]. Beyond this algorithm, a variety of heuristics for solving UPFL have been
proposed. However, (i) the usual UPFL heuristics do not take into account the added
structure of our problem, and (ii) the new heuristic that we propose, Datum, shows
that you can in fact simplify the intermediary’s problem by separating purchasing
and placement decisions and still provide near-optimal solutions in practical set-
tings. The usual UPFL heuristics do not exhibit such a decomposition. Datum may
also be valuable more broadly for facility location problems.

92

4.2 A Geo-Distributed Data Cloud

This chapter presents a design for a geo-distributed cloud data market, which we
refer to as a “data cloud." This data cloud serves as an intermediary between data
providers, which gather data and offer it for sale, and clients, which interact with the
data cloud through queries for particular subsets/qualities of data. More concretely,
the data cloud purchases data from multiple data providers, aggregates it, cleans
it, stores it (across multiple geographically distributed data centers), and delivers it
(with low-latency) to clients in response to queries, while aiming at minimizing the
operational cost which constitutes of both bandwidth and data purchasing costs.

Our design builds on and extends the contributions of recent papers – specifically [26,
28] – that have focused on building geo-distributed data analytic systems but assume
the data is already owned by the system and focus solely on the interaction between
a data cloud and its clients. Unfortunately, as we highlight in Section 4.3, the
inclusion of data providers means that the data cloud’s goal of cost minimization
can be viewed as a non-metric uncapacitated facility location problem, which is
NP-hard. For ease of exposition, we keep our model simple. We note that, however,
it can be easily adapted to include various pricing mechanisms on the data provider
side, different query structures and execution plans in the data cloud, as well as
different types of contracts and payment methods between data cloud and clients.

For reference, Figure 4.1 provides an overview of the interaction between these three
parties as well as some basic notations.

4.2.1 Modeling Data Providers

The interaction between the data cloud and data providers is a key distinction
between the setting we consider and previous work on geo-distributed data analytics
systems such as [26, 28]. We assume that each data provider offers distinct data to
the data cloud, and that the data cloud is a price-taker, i.e., cannot impact the prices
offered by data providers. Thus, we can summarize the interaction of a data provider
with the data cloud through an exogenous menu of data qualities and corresponding
prices.

We interpret the quality of data as a general concept that can be instantiated in
multiple ways. For categorical data, quality may represent the resolution of the
information provided, e.g., for geographical attributes the resolution may be {street
address, zip code, city, county, state}. For numerical data, quality could take many

93

forms, e.g., the numerical precision, the statistical precision (e.g., the confidence of
an estimator), or the level of noise added to the data.2

Concretely, we consider a setting where there are P data providers selling different
data, provider p ∈ P = {1, 2, . . . ,P}.3 Each data provider offers a set of quality
levels, indexed by level l ∈ L = {1, 2, . . . , Lp}, where Lp is the number of levels
that data provider p offers. We use q(l, p) to denote the data quality level l, offered
by data provider p. Similarly, we use f (l, p) to denote the fee charged by data
provider p for data of quality level l. Importantly, the prices vary across providers p

since different providers have different procurement costs for different qualities and
different data.

The data purchasing contract between data providers and the data cloud may have a
variety of different types. For example, a data cloud may pay a data provider based
on usage, i.e., per query, or a data cloud may buy the data in bulk in advance. In
this chapter, we discuss both per-query data contracting and bulk data contracting.
See Section 4.2.3.1 for details.

4.2.2 Modeling Clients

Clients interact with the data cloud through queries, which may require data (with
varying quality levels) from multiple data providers.

Concretely, we consider a setting where there are C clients, client c ∈ C =

{1, 2, . . . ,C}. A client c sends a query to the data center, requesting particular
data from multiple data providers.4 Denote the set of data providers required by
the request from client query c by G(c). The client query also specifies a minimum
desired quality level, wc(p), for each data provider p it requests, i.e., ∀p ∈ G(c). We
assume that the client is satisfied with data at a quality level higher than or equal to
the level requested.

More general models of queries are possible, e.g., by including a DAGmodeling the
structure of the query and query execution planning (see [28] for details). For ease
of exposition, we do not include such detailed structure here, but it can be added at
the expense of more complicated notation.

2A common suggestion for guaranteeing privacy is to add Laplace noise to data provided to data
markets, see e.g., [32, 153].

3We distinguish data providers based on data, i.e., one data provider that sells multiple data is
treated as multiple data providers.

4We distinguish clients based on queries, i.e., one client that sends multiple queries is treated as
multiple clients.

94

Depending on the situation, the client may or may not be expected to pay the data
cloud for access. If the clients are internal to the company running the data cloud,
client payments are unnecessary. However, in many situations the client is expected
to pay the data cloud for access to the data. There are many different types of
payment structures that could be considered. Broadly, these fall into two categories:
(i) subscription-based (e.g., Azure DataMarket [154]) or (ii) per-query-based (e.g.
Infochimps [104]).

In this chapter, we do not focus on (or model) the design of payment structure
between the clients and the data cloud. Instead, we focus on the operational task of
minimizing the cost of the data cloud operation (i.e., bandwidth and data purchasing
costs). This focus is motivated by the fact that minimizing the operation costs
improves the profit of the data cloud regardless of how clients are charged. Interested
readers can find analyses of the design of client pricing strategies in [29, 30, 32].

4.2.3 Modeling a Geo-Distributed Data Cloud

The role of the data cloud in this marketplace is as an aggregator and intermediary.
We model the data cloud as a geographically distributed cloud consisting of D data
centers, data center d ∈ D = {1, 2, . . . ,D}. Each data center aggregates data from
geographically separate local data providers, and data from data providers may be
(and often is) replicated across multiple data centers within the data cloud.

Note that, even for the same data with the same quality, data transfer from the data
providers to the data cloud is not a one time event due to the need of the data
providers to update the data over time. Here we consider a model where clients are
enterprises and clients and the data cloud sign on contracts in advance to decide on
which data and what data quality is to be transferred to the clients. Thus we target
the modeling and optimization of the data cloud within a fixed time horizon, given
the assumption that queries from clients are known beforehand or can be predicted
accurately. This assumption is consistent with previous work [26, 28] and reports
from other organizations [155, 156]. Online versions of the problem are also of
interest, but are not the focus of this chapter.

4.2.3.1 Modeling costs

Our goal is to provide a design that minimizes the operational costs of a data cloud.
These costs include both data purchasing and bandwidth costs. In order to describe

95

Data Providers! Clients!Data Cloud!

OperCost: !

ExecCost: !αd,c(l, p)xd,c(l, p)

βp,d(l)yp,d(l)

PurchCost (bulk): !
! f(l, p)z(l, p)

PurchCost (per-query): !
! f(l, p)xd,c(l, p)

Figure 4.1: An overview of the interaction between data providers, the data cloud,
and clients. The dotted line encircling the data centers (DC) represents the geo-
distributed data cloud. Data providers and clients interact only with the cloud. Data
provider p sends data of quality q(l, p) to data center d, and the corresponding
operation cost is βp,d(l)yp,d(l). Similarly, data center d sends data of quality q(l, p)
to client c, and the corresponding execution cost is αd,c(l, p)xd,c(l, p). In bulk data
contracting, the corresponding purchasing cost is f (l, p)z(l, p). In per-query data
contracting, the corresponding purchasing cost is f (l, p)xd,c(l, p).

these costs, we use the following notation, which is summarized in Figure 4.1.5

xd,c(l, p) ∈ {0, 1}: xd,c(l, p) = 1 if and only if data of quality q(l, p), originating
from data provider p, is transferred from data center d to client c.

αd,c(l, p): cost (including bandwidth and/or latency) to transfer data of quality
q(l, p), originating from data provider p, from data center d to client c

yp,d(l) ∈ {0, 1}: yp,d(l) = 1 if and only if data of quality q(l, p) is transferred from
data provider p to data center d.

βp,d(l): cost (including bandwidth and/or latency) to transfer data of quality q(l, p)

from data provider p to data center d.

z(l, p) ∈ {0, 1}: z(l, p) = 1 if and only if data of quality q(l, p), originating from
data provider p, is transferred to the data cloud.

f (l, p): purchasing cost of data with quality q(l, p), originating from data provider
p.

5Throughout, subscript indices refer to data transfer “from, to” a location, and parenthesized
indices refer to data characteristics (e.g., quality, from which data provider).

96

Given the above notations, the costs of the data cloud can be broken into three
categories:

(i) The operation cost due to transferring data of all quality levels from data
providers to data centers is

OperCost =
P∑

p=1

Lp∑
l=1

D∑
d=1

βp,d(l)yp,d(l). (4.1)

(ii) The execution cost due to transferring data of all quality levels from data
centers to clients is

ExecCost =
C∑

c=1

∑
p∈G(c)

Lp∑
l=1

D∑
d=1

αd,c(l, p)xd,c(l, p). (4.2)

(iii) The purchasing cost (PurchCost) due to buying data from the data provider
could result from a variety of differing contract styles. In this chapter we
consider two extreme options: per-query and bulk data contracting. These
are the most commonly adopted strategies for data purchasing today.

In per-query data contracting, the data provider charges the data cloud a fixed
rate for each query that uses the data provided by the data provider. So, if
the same data is used for two different queries, then the data cloud pays the
data provider twice. Given a per-query fee f (l, p) for data q(l, p), the total
purchasing cost is

PurchCost(query) =
C∑

c=1

∑
p∈G(c)

Lp∑
l=1

D∑
d=1

f (l, p)xd,c(l, p). (4.3)

In bulk data contracting, the data cloud purchases the data in bulk and then
can distribute it without owing future payments to the data provider. Given a
one-time fee f (l, p) for data q(l, p), the total purchasing cost is

PurchCost(bulk) =
P∑

p=1

Lp∑
l=1

f (l, p)z(l, p). (4.4)

To keep the presentation of this chapter simple, we focus on the per-query data
contracting model throughout the body of the chapter and discuss the bulk data
contracting model (which is simpler) in Appendix 4.A.

97

4.2.3.2 Cost Optimization

Given the cost models described above, we can now represent the goal of the data
cloud via the following integer linear program (ILP), where OperCost, ExecCost,
and PurchCost are as described in equations (4.1), (4.2) and (4.3), respectively.

min
x,y

OperCost + ExecCost + PurchCost (4.5)

subject to xd,c(l, p) ≤ yp,d(l) ∀c, p, l, d (4.5a)
Lp∑
l=1

D∑
d=1

xd,c(l, p) = 1, ∀c, p ∈ G(c) (4.5b)

Lp∑
l=1

D∑
d=1

xd,c(l, p)q(l, p) ≥ wc(p), ∀c, p ∈ G(c) (4.5c)

xd,c(l, p) ≥ 0, ∀c, p, l, d (4.5d)

yp,d(l) ≥ 0, ∀p, l, d (4.5e)

xd,c(l, p), yp,d(l) ∈ {0, 1}, ∀c, p, l, d (4.5f)

The constraints in this formulation warrant some discussion. Constraint (4.5a) states
that any data transferred to some client must already have been transferred from its
data provider to the data cloud.6 Constraint (4.5b) ensures that each client must
get the data it requested, and constraint (4.5c) ensures that the minimum quality
requirement of each client must be satisfied. The remaining constraints state that
the decision variables are binary and nonnegative.

An important observation about the formulation above is that data purchasing/placement
decisions are decoupled across data providers, i.e., the data purchasing/placement
decision for data fromone data provider does not impact the data purchasing/placement
decision for any other data providers. Thus, we frequently drop the index p.

Note that there is a variety of practical issues that we have not incorporated into the
formulation in (4.5) in order to minimize notational complexity, but which can be
included without affecting the results described in the following. A first example is
that a minimal level of data replication is often desired for fault tolerance and disaster
recovery reasons. This can be added to (4.5) by additionally considering constraints
of the form

∑D
d=1 yp,d(l) ≥ kz(l, p), where k denotes the minimum required number

of copies. Similarly, privacy concerns often lead to regulatory constraints on data
6For bulk data contracting model, one more constraint yp,d(l) ≤ z(l, p), ∀c, l, p, d is required.

This constraint states that any data placed in the data cloud must be purchased by the data cloud.

98

movement. As a result, regulatory restrictions may prohibit some data from being
copied to certain data centers, thus constraining data placement and replication.
This can be included by adding constraints of the form yp,d(l) = 0 to (4.5) where p

and d denote the corresponding data provider and data center, respectively. Finally,
in some cases it is desirable to enforce SLA constraints on the latency of delivery
to clients. Such constraints can be added by including constraints of the form∑

p∈G(c)
∑Lp

l=1
∑D

d=1 αd,c(l, p)xd,c(l, p) ≤ rc, where rc denotes the SLA requirement
of client c.

We refer the reader to [26–28] for more discussions of these additional practical
constraints. Each paper includes a subset of these factors in the design of geo-
distributed data analytics systems, but does not model data purchasing decisions.

4.3 Optimal Data Purchasing and Data Placement

Given the model of a geo-distributed data cloud described in the previous section,
the design task is now to provide an algorithm for computing the optimal data
purchasing and data placement/replication decisions, i.e., to solve data cloud cost
minimization problem in (4.5). Unfortunately, this cost minimization problem is an
ILP, which are computationally difficult in general.7

A classic NP-hard ILP is the uncapacitated facility location problem (UFLP) [112].
In the uncapacitated facility location problem, there is a set of I clients and J

potential facilities. Facility j ∈ J costs f j to open and can serve clients i ∈ I with
cost ci, j . The task is to determine the set of facilities that serves the clients with
minimal cost.

Our first result, stated below, highlights that cost minimization for a geo-distributed
data cloud can be reduced to the uncapacitated facility location problem, and vice-
versa. Thus, the task of operating a data cloud can then be viewed as a facility
location problem, where opening a facility parallels purchasing a specific quality
level from a data provider and placing it in a particular data center in the data cloud.

Theorem 5. The cost minimization problem for a geo-distributed data cloud given
in (4.5) is NP-hard.

7Note that previous work on geo-distributed data analytics where data providers and data pur-
chasing were not considered already leads to an ILP with limited structure. For example, [28] suggest
only heuristic algorithms with no analytic guarantees.

99

Proof. To prove Theorem 5, we show a connection between the data cloud cost
minimization problem in (4.5) and the uncapacitated facility location problem. In
particular, we show both that the facility location problem can be reduced to a data
cloud optimization problem and vice versa.

First, we show that every instance of the uncapacitated facility location problem can
be viewed as an instance of (4.5).

Take any instance of the uncapacitated facility location problem (UFLP). Let I be
the set of customers, J the set of locations, αi j the cost of assigning customer i to
location j, and β j the cost of opening facility j. Binary variables y j = 1 if and
only if facility is open at site j, and x j,i = 1 if and only if customer i is assigned to
location j. Then the UFLP can be formulated as following.

min
x,y

∑
j∈F

β j y j +
∑

i∈I, j∈F

αi j x j,i (4.6)

subject to

x j,i ≤ y j, ∀i, j∑
j∈F

x j,i = 1, ∀c

x j,i, y j ∈ {0, 1}, ∀i, j

Mapping j to d and i to c yields an instance of (4.5) with |P | = |L | = 1, f (l) = 0
and wc(l) = 0, in which case constraint (4.5c) becomes trivial.

Next, we show that every instance of (4.5) can be written as an instance of UFLP.

We start by remarking that (4.5) (with p dropped,)8

min
x,y

D,L∑
d,l=1

βd(l)yd(l) +
D,L,C∑
d,l,c=1

(f (l) + αd,c(l))xd,c(l) (4.7)

subject to

xd,c(l) ≤ yd(l), ∀c, l, d
D∑

d=1

L∑
l=1

xd,c(l) = 1, ∀c

8Recall from the discussion in Section 4.2.3.2 that the program is separable per provider, hence
we can without loss of generality consider the problem for a single provider, and drop the p index in
the notation.

100

xd,c(l), yd(l) ∈ {0, 1}, ∀c, l, d

with αd,c(l) = M , for M big enough, whenever l < wc. Indeed, in any feasible
solution of (4.5), we necessarily have xd,c(l) = 0 whenever l < wc, as each client
purchases exactly one quality level and this quality level has to be higher than the
minimum required levelwc; by setting αd,c(l) big enough, we ensure that any optimal
solution must have xd,c(l) = 0 thus must be feasible for (4.5), and has the same cost
as in (4.5). Now, take J = [D] × [L] and I = [C], and the problem can be rewritten
as

min
x,y

∑
(d,l)∈J

βd(l)yd(l) +
∑

(d,l)∈J,c∈I

(f (l) + αd,c(l))xd,c(l) (4.8)

subject to xd,c(l) ≤ yd(l), ∀(d, l) ∈ J, c ∈ I∑
(d,l)∈J

xd,c(l) = 1, ∀c ∈ I

xd,c(l), yd(l) ∈ {0, 1}, ∀c ∈ I, (d, l) ∈ J

which is an UFLP. �

The proof of Theorem 5 provides a reduction both to and from the uncapacitated
facility location problem. Importantly, the proof of Theorem5 serves a dual purpose:
it both characterizes the hardness of the data cloud cost minimization problem and
highlights that algorithms for the facility location problem can be applied in this
context. Given the extensive literature on facility location, this is important.

More specifically, the reduction leading to Theorem 5 highlights that the data cloud
optimization problem is equivalent to the non-metric uncapacitated facility location
problem – every instance of any of the two problems can be written as an instance of
the other. While constant-factor polynomial running time approximation algorithms
are given for the metric uncapacitated facility location problem in [113–115], in the
more general non-metric case the best known polynomial running time algorithm
achieves a log(C)-approximation via a greedy algorithm with polynomial running
time, where C is the number of clients [116]. This is the best worst-case guar-
antee possible (unless NP has slightly superpolynomial time algorithms, as proven
in [118]); however some promising heuristics have been proposed for the non-metric
case, e.g., [119–124].

Nevertheless, even though our problem can, in general, be viewed as the non-metric
uncapacitated facility location, it does have a structure in real-world situations that
we can exploit to develop practical algorithms.

101

In particular, in this sectionwe beginwith the case of a data cloudmade up of a single
data center. We show that, in this case, there is a structure that allows us to design an
algorithm with polynomial running time that gives an exact solution (Section 4.3.1).
Then, we move to the case of a data cloud made up of geo-distributed data centers
and highlight how to build on the algorithm for the single data center case to provide
an algorithm, Datum, for the general case (Section 4.3.2). Importantly, Datum allows
decomposition of the management of data purchasing (operations outside of the data
cloud) and data placement (operations inside the data cloud). This feature ofDatum is
crucial in practice because it means that the algorithm allows a data cloud to manage
internal operations without factoring in data purchasing costs, mimicking operations
today. While we do not provide analytic guarantees for Datum (as expected given
the reduction to/from the non-metric facility location problem), we show that the
heuristic performs well in practical settings using a case study in Section 4.4.

4.3.1 An exact solution for a single data center

We begin our analysis by focusing on the case of a single data center, which interacts
with multiple data providers and multiple clients. The key observation is that, if
the execution costs associated with transferring different quality levels of the same
data are the same, i.e., ∀l, αc(l) = αc, then the execution cost becomes a constant
which is independent of the data purchasing and data placement decisions as shown
in (4.9).

ExecCost =
C∑

c=1

L∑
l=1

αc xc(l) =
C∑

c=1
αc

(
L∑

l=1
xc(l)

)
=

C∑
c=1

αc (4.9)

The assumption that the execution costs are the same across quality levels is natural
in many cases. For example, if quality levels correspond to the level of noise added
to numerical data, then the size of the data sets will be the same. We adopt this
assumption in Section 4.3.1 and extend to the general case in Section 4.3.2.

This assumption allows the elimination of the execution cost term from the objective.
Additionally, we can simplify notation by removing the index d for the data center.
Thus, in per-query data contracting, the data cloud optimization problem can be
simplified to (4.10). (We discuss the case of bulk data contracting in Appendix 4.A.)

minimize
L∑

l=1
β(l)y(l) +

C∑
c=1

L∑
l=1

f (l)xc(l) (4.10)

102

subject to xc(l) ≤ y(l), ∀c, l
L∑

l=wc

xc(l) = 1, ∀c (4.10a)

xc(l) ≥ 0, ∀c, l

y(l) ≥ 0, ∀l

xc(l), y(l) ∈ {0, 1}, ∀c, l

Note that constraint (4.10a) is a contraction of (4.5b) and (4.5c), and simply means
that any client c must be given exactly one quality level above wc, the minimum
required quality level.9 The remaining constraints follow directly from (4.5) by
dropping d since we only consider one data center case in (4.10). While this
problem is still an ILP, in this case there is a structure that can be exploited to
provide a polynomial time algorithm that can find an exact solution.

Theorem 6. There exists a binary optimal solution to the linear relaxation program
in (4.11) which is an optimal solution of the integer program in (4.10) and can be
found in polynomial time.

Proof. Assume without loss of generality that all clients can be satisfied by the
highest quality level, i.e.,wc ≤ q(L), ∀c. DefineCi = {c : q(i−1) < wc ≤ q(i)} (q(0)
= 0 by default). Given these assumptions, clients can be grouped into L categories
{C1,C2, . . . ,CL} based on their minimum quality level. Note that Ci ∩ Cj = ∅, ∀i, j

and ∪L
i=1Ci = C. Without loss of generality, assume Ci , ∅, ∀i.

As the clients in the same group Ci all face exactly the same choice of quality levels
and minimum quality requirements, there must always be an optimal solution in
which the data purchasing decisions of any clients within one category are the same.

Let us denote the number of clients in category Ci by Si. Denote the purchasing
decision of category Ci by χi, e.g., χi(l) = xc(l), ∀l, c ∈ Ci, similar to the argument
in the proof of Theorem 5, and we can reformulate (4.10) as follows. Note the
slight abuse of notation, as clients and their associated required quality level are
represented by the same letter, i, due to clients in category Ci having minimum

9While the two constraints are equivalent for an ILP, they lead to different feasible sets when
considering its LP-relaxation; in particular, facility location algorithms based on LP-relaxations such
as randomized rounding algorithms need to use the contracted version of the constraints to preserve
theO(log C)-approximation ratio for non-metric facility location. It is equivalent to the reformulation
given in (4.8) and does not introduce infinite costs that may lead to numerical errors.

103

quality level i by definition.

minimize
L∑

l=1
β(l)y(l) +

L∑
i=1

L∑
l=i

Si f (l)χi(l) (4.11)

subject to χi(l) ≤ y(l), ∀i, l (4.11a)
L∑

l=i

χi(l) = 1, ∀i (4.11b)

χi(l) ≥ 0, ∀i, l (4.11c)

y(l) ≥ 0, ∀l (4.11d)

χi(l), y(l) ∈ {0, 1}, ∀i, l (4.11e)

Consider the linear relaxation of (4.11), which drops the0−1 integer constraint (4.11e).
For any optimal solution {χr

i (l), y
r(l)} of the linear relaxation we have the following

observations.

1. χr
L(L) = 1.

Proof. From (4.11b), let i = L, then χr
L(L) = 1. The intuition behind this is that,

since CL , ∅, highest quality data always has to be purchased to provide service
for clients in C(L). �

2. yr(l) = maxi{χ
r
i (l)} ∈ [0, 1] and yr(L) = 1.

Proof. From (4.11a), the non-negativity of {β(l)}, and the optimality of {yr(l)},
yr(l) = maxi{χ

r
i (l)}. From the non-negativity of {χr

i (l)}, y
r(l) = maxi{χ

r
i (l)} ≤∑L

l=i χ
r
i (l) = 1, and yr(L) = χr

L(L) = 1 �

3. ∀l ≥ i, if
∑L

l=i y
r(l) ≤ 1, χr

i (l) = yr(l); otherwise, χi(l) = max{1−
∑l−1

k=i y
r(k), 0}.

Proof. For some fixed i, {Si f (l)} is a positive, strictly increasing sequence as l

increases. From constraint (4.11a) and (4.11b), χr
i (l) ≤ yr(l), and

∑L
l=i χ

r
i (l) =

1. Since {χr
i (l), y

r(l)} is optimal, ∀l ≥ i, if
∑l

k=i y
r(k) ≤ 1, χr

i (l) = yr(l);
otherwise, χr

i (l) = max{1 −
∑l−1

k=i y
r(k), 0}. �

104

Next, define mi ∈ {i, . . . , n} such that
∑mi−1

l=i yr(l) < 1, and
∑mi

l=i y
r(l) ≥ 1. Such an

mi must exist since yr(l) ≥ 0 for all l and yr(L) = 1. Recall χr
L(L) = yr(L) = 1.

For for any i = 1, 2, . . . , L − 1, if the values of {yr(l)} are given, the optimal {χr
i (l)}

satisfy the following closed form expression:

χr
i (l) =

yr(l), i ≤ l < mi

1 −
∑mi−1

k=i yr(k), l = mi

0, mi < l ≤ n.

(4.12)

Note that, if yr are binary, then χr are binary. Suppose there exists an optimal
solution {χr, yr} with yr < {0, 1}L , in the following we show that there exists a
feasible binary solution {χ∗, y∗} of (4.11) such that the objective value generated
by {χ∗, y∗} is better than or equal to that of {χr, yr}.

Suppose fractional solution yr is an optimal solution of the linear relaxation and
calculate mi as in (4.12). Write χ as a function of y, ∀i, l.

χi(l) =

y(l), i ≤ l < mi

1 −
∑mi−1

k=i y(k), l = mi

0, mi < l ≤ n

(4.13)

Substituting (4.13) in the objective function (4.11), the objective function becomes
a linear combination of {y(l)} that we denote L(y).

Consider the optimization problem in which {χi(l)} is expressed as a function of
{y(l)} in the linear relaxation:

minimize L(y) (4.14)

subject to
m′i−1∑
l=i

y(l) ≤ 1, ∀i = 1, . . . , L − 1

m′i∑
l=i

y(l) ≥ 1, ∀i = 1, . . . , L − 1

y(l) ≥ 0, ∀l = 1, . . . , L

y(L) = 1

The following claims hold:

1. (4.14) is feasible and bounded, and always has an optimal solution at an extreme
point.

105

Proof. Clearly, ∀l, y(l) ∈ [0, 1]. And starting from y(L), it is easy to construct a
feasible solution of (4.14). Thus, (4.14) is feasible and bounded, and always has
an optimal solution at an extreme point. �

2. {yr(l)} is a feasible solution of (4.14).

Proof. Since {yr(l)} is feasible for (4.11), yr(l) ≥ 0, ∀l, and yr(L) = 1. By
definition of mi,

∑mi−1
l=i yr(l) ≤ 1,

∑mi

l=i y
r(l) ≥ 1. �

3. Any extreme point {y(l)} of (4.14) is binary.

Proof. Since y(L) = 1, we can drop y(L), and write (4.14) in the following
standard linear programming form:

min
y

L(y) (4.15)

s.t. Ay ≤ b

y ≥ 0

Note that all entries of A are 0,±1, and all rows of A have either consecutive 1s
or consecutive −1s. Thus, from [157], A is a totally unimodular matrix thus the
extreme points of (4.15) are all integral. In particular, since all y(l) ∈ [0, 1], the
extreme points of (4.15) are all binary. �

4. The {χ∗i (l)} obtained through (4.13) corresponding to an optimal binary solution
{y∗} is also binary.

Proof. Follows immediately from (4.13) and integrality of {y∗(l)}. �

5. {χ∗i (l), y
∗(l)} is a feasible solution of the linear relaxation of (4.11).

Proof. Follows from (4.13) and
∑L

l=i χ
∗
i (l) = 1. �

{χr
i (l), y

r(l)} and any optimal extreme point {χ∗i (l), y
∗(l)} see their correspond-

ing objective values unchanged between (4.14) and the relaxation of (4.11) by
construction of the χi(l)’s. And any such extremal and optimal {χ∗i (l), y

∗(l)}

has a better or equal objective value compared to {χr
i (l), y

r(l)} in relaxed (4.11).
Since {χr

i (l), y
r(l)} is optimal for (4.14), it implies any optimal extreme point of

106

relaxed (4.11) yields a binary and optimal solution for (4.14). This provides a
polynomial time algorithm to find such a binary optimal solution, which can be
summarized as in Section 4.3.2.

�

In summary, the following gives a polynomial time algorithm which yields the
optimal solution of (4.10).

Step 1: Rewrite (4.10) in the form given by (4.11).

Step 2: Solve the linear relaxation of (4.11). If it gives an integral solution, this
solution is an optimal solution of (4.10), and the algorithm finishes. Otherwise,
denote the fractional solution of the previous step by {χr(l), yr(l)} and continue to
the next step.

Step 3: Find mi ∈ {i, . . . , n} such that
∑mi−1

l=i yr(l) < 1, and
∑mi

l=i y
r(l) ≥ 1. And

express {χi(l)} as a function of {y(l)} based on (4.13). Substitute the expressions of
{χi(l)} with {y(l)} in the linear relaxation of (4.11) to obtain an instance of (4.14).
Solve the linear programming problem (4.14) and find an optimal solution that is
also an extreme point of (4.14).10 This yields a binary optimal solution of (4.14).
Use transformation (4.13) to get a binary optimal solution of the linear relaxation
of (4.11), which can be reformulated as an optimal solution of (4.10) from the
definition of {χi(l)}.

4.3.2 The Design of Datum

Unlike the data cloud cost minimization problem for a single data center, the general
data cloud cost minimization is NP-hard. In this section, we build on the exact
algorithm for cost minimization in a data cloud made up of a single data center
(Section 4.3.1) to provide an algorithm, Datum, for cost minimization in a geo-
distributed data cloud.

The idea underlying Datum is to, first, optimize data purchasing decisions as if the
data market was made up of a single data center (given carefully designed “trans-
formed” costs), which can be done tractably as a result of Theorem 6. Then, second,
Datum optimizes data placement/replication decisions given the data purchasing
decisions.

10This step can be finished in polynomial time [158].

107

Before presenting Datum, we need to reformulate the general cost minimization
ILP in (4.5). Recall that (4.5) is separable across providers, thus we can con-
sider independent optimizations for each provider, and drop the index p through-
out. Second, we denote the set of all possible subsets of data centers, e.g.,
{{d1}, {d2}, . . . , {d1, d2}, {d1, d3}, . . .} by V .11 Further, define βv(l) =

∑
d∈v βd(l),

and αv,c(l) = mind∈v{αd,c(l)}, where v ∈ V . Given this change, we define yv(l) = 1
if and only if data with quality level l is placed in (and only in) data centers d ∈ v

and xv,c(l) = 1 if and only if data with quality level l is transferred to client c from
some data center d ∈ v. These reformulations allow us to convert (4.5) to (4.16) as
following.

minimize
L∑

l=1

V∑
v=1

βv(l)yv(l) +
C∑

c=1

L∑
l=1

V∑
v=1

αv,c(l)xv,c(l)

+

C∑
c=1

L∑
l=1

V∑
v=1

f (l)xv,c(l) (4.16)

subject to xv,c(l) ≤ yv(l), ∀c, l (4.16a)
L∑

l=wc

V∑
v=1

xv,c(l) = 1, ∀c (4.16b)

V∑
v=1

yv(l) ≤ 1, ∀l (4.16c)

V∑
v=1

xv,c(l) ≤ 1, ∀c, l (4.16d)

xv,c(l) ≥ 0, ∀v, c, l (4.16e)

yv(l) ≥ 0, ∀v, l (4.16f)

xv,c(l), yv(l) ∈ {0, 1}, ∀v, c, l (4.16g)

Compared to (4.5), themain difference is that (4.16) has two extra constraints (4.16c)
and (4.16d). Constraint (4.16c) ensures that data can only be placed in at most
one subset of data centers across V . And constraint (4.16d) follows from con-
straint (4.16b). Using this reformulation Datum can now be explained in two steps.

11Note that, in practice, the number of data centers is usually small, e.g., 10 − 20 world-wide.
Further, to avoid exponential explosion of V , the subsets included in V can be limited to only have a
constant number of data centers, where the constant is determined by the maximal number of replicas
to be stored.

108

Step 1: Solve (4.17) while treating the geo-distributed data cloud as a single data
center. Specifically, define Y (l) =

∑V
v=1 yv(l) and Xc(l) =

∑V
v=1 xv,c(l). Note that,

Y (l) and Xc(l) are 0 − 1 variables from Constraint (4.16c) and (4.16d). Further,
ignore the middle term in the objective, i.e., the ExecCost. Finally, for each quality
level l, consider a “transformed” cost β∗(l). We discuss how to define β∗(l) below.
This leaves the “single data center” problem (4.17). Crucially, this formulation can
be solved optimally in polynomial time using the results for the case of a data cloud
made up of a single data center (Section 4.3.1).

minimize
L∑

l=1
β∗(l)Y (l) +

C∑
c=1

L∑
l=1

f (l)Xc(l) (4.17)

subject to Xc(l) ≤ Y (l), ∀c, l
L∑

l=wc

Xc(l) = 1, ∀c

Xc(l) ≥ 0, ∀c, l

Y (l) ≥ 0, ∀l

Xc(l),Y (l) ∈ {0, 1}, ∀c, l

The remaining issue is to define β∗(l). Note that the reason for using transformed
costs β∗(l) instead of βv(l) is that the optimal βv(l) cannot be knownpreciselywithout
also optimizing the data placement. Thus, in defining β∗(l)we need to anticipate the
execution costs that result from data placement and replication given the purchase
of data with quality level l. This anticipation then allows a decomposition of data
purchasing and data placement decisions. Note that the only inaccuracy in the
heuristic comes from the mismatch between β∗(l) and min{βv(l) +

∑
c∈C∗(l) αv,c(l)}

where C∗(l) is the set of customers who buy at quality level l in an optimal solution
– if these match for the minimizer of (4.5) then the heuristic is exact. Indeed, in
order to minimize the cost of locating quality levels to data centers, and allocating
clients to data centers and quality levels, the set of data centers v where an optimal
solution chooses to put quality level l has to minimize the cost of data transfer in
the set v and allocating all clients who get data at quality level l, i.e. C∗(l), to this
set of data centers v.

Many choices are possible for the transformed costs β∗(l). A conservative choice
is β∗(l) = min

v
βv(l), which results in a solution (with Step 2) whose OperCost +

PurchCost is a lower bound to the corresponding costs in the optimal solution

109

of (4.5).12 However, it is natural to think that more aggressive estimates may be
valuable. To evaluate this, we have performed experiments in the setting of the
case study (see Section 4.4) using the following parametric form β∗(l) = min

v
{βv(l) +

µ1
∑
l′≤l

∑
wc=l′

αv,c(l ′)e−µ2(l−l
′)}, where µ1 and µ2 are parameters. This form generalizes

the conservative choice by providing a weighting of αv,c(l′) based on the “distance”
of the quality deviation between l′ and the target quality level l. The idea behind
this is that a client is more likely to be served data with quality level close to
the requested minimum quality level of the client. Here we use the exponential
decay term e−µ2(l−l ′) to capture the possibility of serving the data with quality level
l to a client with minimum quality level l′ ≤ l. Interestingly, in the setting of
our case study, the best design is µ1 = µ2 = 0, i.e., the conservative estimate
β∗(l) = min

v
βv(l), and so we adopt this β∗(l) in Datum.

Step 2: At the completion of Step 1 the solution (X,Y) to (4.17) determines which
quality levels should be purchased and which quality level should be delivered to
each client. What remains is to determine data placement and data replication levels.
To accomplish this, we substitute (X,Y) into (4.16), which yields (4.18).

minimize
L∑

l=1

V∑
v=1

βv(l)yv(l) +
C∑

c=1

L∑
l=1

V∑
v=1

αv,c(l)xv,c(l)

+

C∑
c=1

L∑
l=1

V∑
v=1

f (l)xv,c(l) (4.18)

subject to xv,c(l) ≤ yv(l), ∀c, l (4.18a)
L∑

l=wc

V∑
v=1

xv,c(l) = 1, ∀c (4.18b)

V∑
v=1

yv(l) = Y (l) (4.18c)

V∑
v=1

xv,c(l) = Xv(l) (4.18d)

xv,c(l) ≥ 0, ∀v, c, l (4.18e)

yv(l) ≥ 0, ∀v, l (4.18f)

xv,c(l), yv(l) ∈ {0, 1}, ∀v, c, l (4.18g)

12However the ExecCost cannot be bounded, thus we cannot obtain a bound for the total cost.
The proof of this is simple and is not included in the chapter.

110

The key observation is that this is no longer a computationally hard ILP. In fact,
the inclusion of (X,Y) means that it can be solved in closed form. Specifically, let
C(l) denote the set of clients that purchase data with quality level l, i.e., C(l) = {c :
Xc(l) = 1}. Then (4.19) gives the optimal solution of (4.18).

yv(l) =

1, if Y (l) = 1 and v = argmin{βv(l) +
∑

c∈C(l) αv,c(l)},

0, otherwise.
(4.19a)

xv,c(l) =

yv(l), if c ∈ C(l),

0, otherwise.
(4.19b)

Proof. We start by discussing the form of xv,c(l). Consider the following two cases
based on the value of Y (l).

1. For any quality level l′, if Y (l′) = 0, then ∀v, V∑
v=1

yv(l′) = Y (l′) = 0. From the

non-negativity of yv(l′), ∀v, yv(l′) = 0. Further, ∀v, c, xv,c(l′) = 0 from (4.18a).

2. For any quality level l′, if Y (l′) = 1, then from the definition of yv(l) and Y (l),
∃!v′ ∈ V, such that yv′(l′) = Y (l′) = 1. Recall that C(l′) = {c : Xc(l′) = 1}
represents the set of clients that are assigned data with quality level l′ by Step 1
in Section 4.3.2.

a) For client c′ ∈ C(l′), Xc′(l′) = 1. Since v′ is the unique data center set
across V such that yv′(l′) = 1, from (4.18a) and (4.18b), xv′,c′(l′) = 1 and
xv,c′(l) = 0, ∀v , v′ or l , l′. In other words, xv,c′(l′) = yv(l′), ∀v ∈ V, c ∈

C(l′).

b) For client c < C(l′), Xc(l′) = 0. From the definition of Xc(l′), xv,c(l′) =

0, ∀v.

In all above cases, the optimal solution {xv,c(l), yv(l)} of (4.18) satisfies the follow-
ing:

xv,c(l) =

yv(l), if c ∈ C(l),

0, otherwise.
(4.20)

Next, we use this form for xv,c(l) to derive yv(l). After substituting (4.20) into (4.18),
most constraints become trivial due to the form of (4.20) and the optimality of Xc(l)

111

and Y (l). And we only need to optimize the objective function with the constraints
stating that yv(l) is binary, and

∑
v yv(l) = Y (l). Thus, we only need to optimize the

following problem.

minimize
∑

l:Y (l)=1

V∑
v=1

βv(l)yv(l)

+
∑

l:Y (l)=1

∑
c∈C(l)

V∑
v=1
(αv,c(l) + f (l))yv(l)

subject to
V∑
v=1

yv(l) = Y (l), ∀v, c, l

yv(l) ∈ {0, 1}, ∀v, c, l

The above optimization can be decoupled by l and optimized across v, yielding the
closed form solution in (4.19).

�

4.4 Case Study

We now illustrate the performance of Datum using a case study of a geo-distributed
data cloud running in North America. While the setting we use is synthetic, we
attempt to faithfully model realistic geography for data centers in the data cloud,
data providers, and clients. Our focus is on quantifying the overall cost (including
data purchasing and bandwidth/latency costs) of Datum compared to two existing
designs for geo-distributed data analytics systems and the optimal. To summarize,
the highlights of our analysis are

1. Datum provides consistently lower cost (> 45% lower) than existing designs for
geo-distributed data analytics systems.

2. Datum achieves near optimal total cost (within 1.6%) of optimal.

3. Datum achieves reduction in total cost by significantly lowering purchasing costs
without sacrificing bandwidth/latency costs, which stay typically within 20-25%
of the minimal bandwidth/latency costs necessary for delivery of the data to
clients.

112

4 8 12 16 20

1.1

1.3

1.5

1.7

Number of Providers per Client Request

T
o

t.
 C

o
s
t

/
T

o
t.

 O
p

tC
o

s
t

NearestDC

OptBand

Datum

(a) Total Cost

4 8 12 16 20
1

2

3

4

5

6

Number of Providers per Client Request

B
a

n
d

.
C

o
s
t

/
O

p
t.

 B
a

n
d

.
C

o
s
t

NearestDC

Datum

OptCost

(b) Bandwidth Cost

Figure 4.2: Illustration of the near-optimality of Datum as a function of the complex-
ity of client requests (i.e., the average number of providers data must be procured
from in order to complete a client request).

4.4.1 Experimental setup

The following outlines the setting in which we demonstrate the empirical perfor-
mance of Datum.

Geo-distributed data cloud. We consider a geographically distributed data cloud
with 10 data centers located in California, Washington, Oregon, Illinois, Georgia,
Virginia, Texas, Florida, North Carolina, and South Carolina. The locations of the
data centers in our experiments mimic those in [159] and include the locations of
Google’s data centers in the United States.

Clients. Client locations are picked randomly among US cities, weighted propor-
tionally to city populations. We consider 100 clients. Each client requests data from
a subset of data providers, chosen i.i.d. from a Uniform distribution. Unless other-
wise specified, the average number of providers per client request is P/2. There are
8 quality levels. The quality level requested from each chosen provider follows a
Zipf distribution with mean Lp/2 and shape parameter 30. P and Lp are defined as
in Section 4.2.1 and Section 4.2.2. We choose a Zipf distribution motivated by the
fact that popularity typically follows a heavy-tailed distribution [160]. Results are
averaged over 20 random instances. We observe that the results of the 20 instances
for the same plot are very close (within 5%), and thus do not show the confidence
intervals on the plots.

Data providers. We consider 20 data providers. We place data providers in the
second and third largest cities within a state containing a data center. This ensures
that the data providers are nearby, but not right on top of, data center and client
locations.

113

Operation and execution costs. To set operation and execution costs, we compute the
geographical distances between data centers, clients and providers. The operation
and execution costs are proportional to the geographical distances, such that the costs
are effectively one dollar per gigameter. This captures both the form of bandwidth
costs adopted in [27] and the form of latency costs adopted in [26].

Data purchasing costs. The per-query purchasing costs are drawn i.i.d. from a Pareto
distribution with mean 10 and shape parameter 2 unless otherwise specified. We
choose a Pareto distribution motivated by the fact that incomes and prices often
follow heavy-tailed distributions [160]. Results were averaged over 20 random
instances. To study the sensitivity of Datum to the relative size of purchasing and
bandwidth costs, we vary the ratio of them between (0.01, 100).

Baselines. We compare the performance of Datum to the following baselines.

• OptCost computes the optimal solution to the data cloud cost minimization prob-
lem by solving the integer linear programming (4.5). Note that this requires
solving an NP-hard problem, and so is not feasible in practice. We include it in
order to benchmark the performance of Datum.

• OptBand computes the optimal solution to the bandwidth cost minimization prob-
lem. It is obtained by minimizing only the operation cost and execution cost in
the objective of (4.5). Bandwidth cost minimization is commonly considered as a
primary goal for cost minimization in geo-distributed data analytics systems [28].
Due to computational complexity, heuristics are usually applied to minimize the
bandwidth cost. Here, instead of implementing a heuristic algorithms, we op-
timistically use OptBand in order to lower bound the achievable performance.
Note that this also requires solving an NP-hard problem and thus is not feasible in
practice.

• NearestDC is a greedy heuristic for the total cost minimization problem that
is often applied in practice. It serves the clients exactly what they ask for by
purchasing the data and storing it at the data center closest to the data provider.

4.4.2 Experimental results

Quantifying cost reductions fromDatum. Figure 4.2(a) illustrates the costs savings
Datum provides. Across levels of query complexity (number of providers involved),

114

1.5 2 2.5 3

1.1

1.3

1.5

1.7

Shape Para. Pareto per Query Fee Function

T
o

t.
 C

o
s
t

/
T

o
t.

 O
p

tC
o

s
t

NearestDC

OptBand

Datum

(a)

1 2 3 4 5 6 7 8

1.1

1.3

1.5

1.7

Number of Quality Levels

T
o
t.
 C

o
s
t
/
T

o
t.
 O

p
tC

o
s
t

NearestDC

OptBand

Datum

(b)

Figure 4.3: Illustration of Datum’s sensitivity to query parameters. (a) varies the
heaviness of the tail in the distribution of purchasing fees. (b) varies the number of
quality levels available. Note that Figure 4.2 sets the shape parameter of the Pareto
governing purchasing fees to 2 and includes 8 quality levels.

Datum consistently provides > 45% savings over OptBand and > 51% savings
compared to NearestDC. Further, Datum is within 1.6% of the optimal cost in
all these cases. The improvement of Datum compared to OptBand comes as a
result of optimizing purchasing decisions at the expense of increased bandwidth.
Importantly, Figure 4.2(b) shows that the extra bandwidth cost incurred is small,
20−25%. Thus, joint optimization of data purchasing and data placement decisions
leads to significant reductions in total cost without adversely impacting bandwidth
costs.

The form of client queries. To understand the sensitivity of the cost reductions
provided by Datum, we next consider the impact of parameters related to client
queries. Figure 4.2 shows that the complexity of queries has little impact on the cost
reductions of Datum. Figure 4.3 studies two other parameters: the heaviness of the
tail of the per-query purchasing fee and the number of quality levels offered.

Across all settings, Datum is within 1.6% of optimal; however both of these pa-
rameters have a considerable impact on the cost savings Datum provides over our
baselines. In particular, the lighter the tail of the prices of different quality levels
is, the less improvement can be achieved. This is a result of greater concentration
of prices across quality levels leaving less room for optimization. Similarly, fewer
quality levels provides less opportunity to optimize data purchasing decisions. At
the extreme, with only one quality level available, the opportunity to optimize data
purchasing goes away and OptBand and OptCost are equivalent.

Data purchasing vs. bandwidth costs. The most important determinant of the
magnitude of Datum’s cost savings is the relative importance of data purchasing

115

−2 −1 0 1 2

1.1

1.3

1.5

1.7

log((α + β)/f)

T
o
t.
 C

o
s
t
/
T

o
t.
 O

p
tC

o
s
t

OptBand
Datum

(a)

−2 −1 0 1 2

1.1

1.3

1.5

1.7

log(α/(β + f))

T
o
t.
 C

o
s
t
/
T

o
t.
 O

p
tC

o
s
t

OptBand
Datum

(b)

Figure 4.4: Illustration of the impact of bandwidth and purchasing fees on Datum’s
performance. NearestDC is excluded because its costs are off-scale. (a) varies the
ratio of bandwidth costs (summarized by α + β) to purchasing costs (summarized
by f). (b) varies the ratio of costs internal to the data cloud (α) to costs external to
the data cloud (β + f). Note that in Figure 4.2 the ratios are set to log(α+βf) = −0.5
and log(α

β+ f) = −1.

costs. In one extreme, if data is free, then the data purchasing decisions disappear and
the problem is simply to do data placement in a manner that minimizes bandwidth
costs. In the other extreme, if data purchasing costs dominate, then data placement is
unimportant. In Figure 4.4 we only compare total costs among OptCost, OptBand,
and Datum. NearestDC is far worse (more than 5 times worse than OptCost in some
cases) and thus is dropped from the plots. Figure 4.4(a) studies the impact of the
relative size of data purchasing and bandwidth costs. When the x-axis is 0, the data
purchasing and bandwidth costs of the data center are balanced. Positive values
mean that bandwidth costs dominate and negative values mean that data purchasing
costs dominate. As expected, Datum’s cost savings are most dramatic in regimes
where data purchasing costs dominate. Cost savings can be 54% in extreme settings.
Data purchasing costs are expected to dominate in the future – for some systems this
is already true today. However, it is worth noting that, in settings where bandwidth
costs dominates, Datum can deviate from the optimal cost by 10 − 20% in extreme
circumstances, and can be outperformed by the MinBand benchmark. Of course,
Datum is not designed for such settings given its prioritization of the minimization
of data purchasing costs.

Internal vs. external costs. An important aspect of the design of Datum is the
decomposition of data purchasing decisions from data placement decisions. This
provides a separation between the internal and external operations (and costs) of
Datum. Given this separation, it is important to evaluate the sensitivity of Datum’s
design to the relative size of internal and external costs.

116

Since Datum prioritizes the optimization of external costs (optimizing them in Step
1, see Section 4.3.2), it is natural to expect that Datum performs best when these costs
dominate. This is indeed the case, as illustrated in Figure 4.4(b). Like in Figure
4.4(a), when the x-axis is 0, the internal and external costs are balanced. Positive
values indicate the internal costs dominate and negative values indicate the external
costs dominate. In settings where external costs dominate, Datum can provide 50%
cost savings and be within a few percent of the optimal. However, in cases when
internal costs dominate, Datum can deviate from the optimal cost by 10 − 30% in
extreme circumstances, and can be outperformed by the MinBand benchmark. Note
that, as data purchasing costs grow in importance, external costs will dominate,
and so we can expect that Datum will provide near optimal performance in practical
settings.

Scalability Computing the optimal solution to the ILP as our benchmark is a NP-
hard problem and can quickly become computationally intractable as the problem
size grows. Thus, we limit the number of clients to 100 in our evaluation. In
contrast, Datum scales well as the problem size grows, since it only requires solving
a linear program with a size that scales linearly with the problem size.

4.5 Concluding Remarks

This work sits at the intersection of two recent trends: the emergence of online data
marketplaces and the emergence of geo-distributed data analytics systems. Both have
received significant attention in recent years across academia and industry, changing
the way data is bought and sold and changing how companies like Facebook run
queries across geo-distributed databases [27, 28]. In this chapter we study the
engineering challenges that come when online data marketplaces are run on top of
a geo-distributed data analytics infrastructure. Such cloud data markets have the
potential to be a significant disruptor (as we highlight in Section 4.1). However,
there are many unanswered economic and engineering questions about their design.
While there has been significant prior work on economic questions [29, 30, 32, 125,
130, 161], the engineering questions have received much less attention.

In this chapter, we have presented the design of a geo-distributed cloud data mar-
ket: Datum. Datum jointly optimizes data purchasing decisions with data placement
decisions in order to minimize the overall cost. While the overall cost minimiza-
tion problem is NP-hard (via a reduction to/from the facility location problem),

117

Datum provides near-optimal performance (within 1.6% of optimal) in realistic set-
tings via a polynomial-time algorithm that is provably optimal in the case of a data
cloud running on a single data center. Additionally, Datum provides > 45% im-
provement over current design proposals for geo-distributed data analytics systems.
Datum works by decomposing the total cost minimization problem into subproblems
that allow optimization of data purchasing and data placement separately, which pro-
vides a practical route for implementation in real systems. Further, Datum provides
a unified solution across systems using per-query pricing or bulk pricing, systems
with data replication constraints and/or regulatory constraints on data placement,
and systems with SLA constraints on delivery.

This chapter is meant to initiate the study of data purchasing and data placement for
datamarkets; thus, theremany directions are left for future exploration. For example,
Datum assumes clients are single entities with fixed locations and which data they
need is known a priori as a result of pre-signed contracts with data market providers.
In practice, clients can also be geo-distributed large companies with different data
requirements in different locations. Exploring the optimal data purchasing and data
placement with a mixed types of clients is interesting and challenging. Further,
in Datum, computing resources used to process/clean raw data are assumed to be
negligible. As data markets provide services on top of the raw data, e.g., analytics
or learning services, the amount of computational power needed will grow and
joint optimization of computational power and data purchasing and placement will
become a crucial challenge.

4.A Appendix: Bulk Data Contracting

In bulk data contracting, the data cloud only has to pay a one-time fee f (l, p) for
data q(l, p), no matter how many times the data is replicated on the cloud and
transferred to clients. Compared to per-query contracting, the main difference lies
in the purchasing fees modeling. Defining z(l, p) ∈ {0, 1} to be equal to 1 if and
only if data of quality q(l, p) from data provider p is transferred to the data cloud,
the whole optimization problem can still be formulated in a form similar to (4.5),
with the purchasing costs now given by (4.4) and with the addition of the following
constraint:

yp,d(l) ≤ z(l, p), ∀c, l, p, d (4.22)

118

This constraint states that any data placed in the data cloud must have been pur-
chased by the data cloud. As in the per-query contracting case, the data purchas-
ing/placement decision for data from one data provider does not impact the data
purchasing/placement decision for any other data providers. Thus, we drop the
index p in the following.

In general, the cost minimization problem for bulk contracting is NP-hard. To be
specific, the 1-level UFLP can reduce to the cost minimization problem for a geo-
distributed data cloud, and the cost minimization problem can reduce to the 2-level
UFLP in the bulk case. In the 2-level UFLP, facilities are organizing on 2 levels,
J1 × J2; each customer i ∈ I has to be assigned to a valid path p ∈ J1 × J2. A pass
is valid if and only if both facilities are open along the path. More details on the
2-level UFLP can be found in [162].

The first reduction follows directly from the first part of the proof for Theorem 5. It
can be easily proved by defining facilities in J1 to be the quality levels, and using the
same reformulation as the second part of the proof for Theorem 5 for the facilities
in J2, i.e. define facilities in J2 to be pairs of quality levels and data centers. In the
reduction, a facility j1 ∈ J1 is open if and only if the corresponding quality level l

is purchased, and a facility j2 ∈ J2 is opened if and only if data of quality level l is
placed in data center d.

While the cost minimization in bulk contracting is generally hard, it can be solved
optimally in both the single data center and the geo-distributed data cloud settings
under certain assumptions.

For the single data center case, we always have z(l) = y(l) for all quality level l - this
follows immediately from dropping the dependence of yd(l) in d, implying that z(l)

is only lower-bounded by y(l) in the constraints. Furthermore, if the execution costs
are the same across quality levels, the cost minimization problem can be formulated
as follows:

minimize
L∑

l=1
(β(l) + f (l)) y(l) (4.23)

subject to xc(l) ≤ y(l), ∀c, l
L∑

l=wc

xc(l) = 1, ∀c

xc(l) ≥ 0, y(l) ≥ 0, xc(l), y(l) ∈ {0, 1}, ∀c, l (4.23a)

119

Since the decisions for variables {xc(l)} do not affect the objective value, (4.23) can
be written as follows:

minimize
L∑

l=1
(β(l) + f (l)) y(l) (4.24)

subject to
L∑

l=wc

y(l) ≥ 1, ∀l, c

y(l) ∈ {0, 1}, ∀l

Since there are customers buying the highest quality level, the highest level quality
L is always purchased by the data cloud and y(L) = 1 in any feasible solution.
Since all customers are satisfied and all costs are non-negative, an optimal solution
for (4.24) is y(L) = z(L) = 1, xc(L) = 1 with all other variables are set to 0. The
result implies the data cloud will only purchase the highest quality level of data and
serve that data to every customers.

For a geo-distributed data cloud, the cost minimization problem is generally hard.
However, if we assume the operation cost and execution cost are independent of l,
i.e., βd(l) = βd and αd,c(l) = αd,c, it is easy to show that the optimal solution will
only purchase the highest quality data as in the single data center case. We can
then use Step 2 in Section 4.3.2 to give an optimal solution to the data placement
problem.

120

Chapter 5

POWER CAPPING IN COLOCATION DATA CENTERS

The emergence of Internet and cloud services has significantly fueled demand for
data centers worldwide, resulting in an aggregate power demand of 38GW as of
2012 (a growth of 63% compared to 2011) [163]. Accommodating the accelerated
demand, however, is costly. It can be a multi-million or even multi-billion dollar
project to construct a new data center or expand an existing data center’s capacity
(typically measured in IT critical power). For example, power infrastructure, in-
cluding back-up generation and uninterrupted power supplies (UPS), is sized based
on the critical power budget and estimated at U.S.$10-25 per watt [164]. The capital
expense (CapEx) in power and cooling infrastructure even exceeds 1.5 times the total
energy cost of operating a data center over a 15-year lifespan [164–166]. Moreover,
other limitations, such as space and grid capacity, may also prohibit the expansion
of data center capacity.

In view of the high CapEx and practical constraints for building new capacity, data
center operators aggressively oversubscribe the existing infrastructure throughout
the power hierarchy (e.g., UPS level and PDU level) by deploying more servers
than the power budget/capacity allows. This is equivalent to under-provisioning
the capacity to reduce CapEx for new data center construction: to deploy the
same number of servers, the data center capacity can be downsized to save CapEx.
The rationale underlying oversubscription is that, in most cases, not all servers
simultaneously run at their peak powers and thus, the servers’ aggregate power usage
remains well below the power budget with a very high probability, as illustrated by
measurements in [34, 165].

A dangerous consequence of oversubscription is the emergence of power emergen-
cies that bring significant challenges for data center uptime. Although uncommon,
when loads on many servers peak simultaneously, the aggregate power demand will
exceed the capacity (e.g., overloading UPS), thus compromising the desired power
availability and even leading to unplanned downtime incidents [33, 166]. Such

121

power emergencies have become a major cause of unplanned data center outages,
which may take several hours or even days to fully recover and incur significant
economic losses (estimated average of $901,560 per incident) [167, 168].

Naive techniques to handle emergencies, e.g., arbitrarily putting involved servers
into low power states or switching them off, are not appealing [33, 165, 169], because
theymay result in significant performance degradation and even business disruption.
Instead, a graceful power capping solution is required to coordinate servers’ power
usage at a minimum performance loss. Towards this end, prior research has studied
various techniques, e.g., judiciously scaling down CPU frequency [33], admission
control, and workload migration (to public clouds and/or other servers not subject to
power emergency) [34–36]. These studies, although promising, are only applicable
for owner-operated data centers (e.g., Google), where data center operators have
control over the physical servers and hence can easily coordinate the servers to
minimize performance impact.

In sharp contrast, we study power capping in multi-tenant data centers, an under-
explored but even more common type of data center. In a multi-tenant data center,
multiple individual tenants house and manage their own physical servers, while the
data center operator is responsible for power and cooling infrastructure support. Like
owner-operated data centers, multi-tenant data center operators also aggressively
oversubscribe capacity to gain more revenue and/or save CapEx by selling the
capacity to more tenants than it allows.

To handle a power emergency due to oversubscription, however, multi-tenant data
center operators cannot directly apply existing power capping techniques (e.g.,
through server and workload management [33, 34]), because of lack of control
over tenants’ servers. Thus, a common practice today for a multi-tenant data center
operator is to simply take the risk of capacity overloading when many tenants’ power
demands peak simultaneously. In other words, whether or not an outage will occur
depends largely on the robustness of infrastructure. Consequently, according to
a 2014 Uptime Institute survey, 25% of the tenants have experienced at least one
power outage (for which capacity overloading is a major cause) over the past year
[167, 168, 170].

To address the lack of coordination among tenants to shed power during a power
emergency, we propose a novel COOrdinated Power management solution, called
COOP, that leverages a market mechanism called supply function bidding [171]
commonly used in electricity markets in order to incentivize and coordinate in-

122

dividual tenants’ power demand reduction. The challenge in designing such a
mechanism is that the mechanism must not bring much overhead and the overall
impact of power reduction on tenants’ application performance needs to be as little
as possible (similar to the design objective of power capping techniques, e.g., [33,
34], for owner-operated data centers). COOP achieves both. It only solicits one
bidding parameter from each participating tenant which, when plugged into the
supply function, specifies the amount of power reduction and corresponding reward
the tenant is willing to accept. More importantly, the overall performance impact
across all the participating tenants is small: the total performance cost incurred by
the tenants is very close to the ideal case where the data center operator is assumed
to have full control over tenants’ servers.

The novelty of this study is that COOP is the first market-based solution for handling
an emergency caused by capacity oversubscription in a multi-tenant data center, an
important yet rarely-studied type of data center.

Concretely, this chapter makes the following contributions. First, we introduce and
formulate the problem of multi-level power capping in a multi-tenant data center.
Second, we propose a supply function bidding based mechanism, motivated by the
literature on electricity markets [171, 172], to incentivize and coordinate tenants’
power reduction during a power emergency, capping the aggregate power demand
while minimizing the total performance cost. Third, we validate COOP using
realistic settings on a testbed. Our results show that COOP is efficient in terms
of minimizing total performance cost and that COOP is “win-win”, increasing the
operator’s profit and reducing tenants’ cost (through financial compensation).

5.1 Opportunities and Challenges

Multi-tenant data centers are common in practice. There are over 1,400 multi-tenant
data centers in the U.S. alone [173]. As a quickly growing data center segment,
it consumes as much as five times the energy of Google-type owner-operated data
centers combined together (37.3% v.s. 7.8%, in percentage relative to all data center
energy usage, excluding tiny server closets) [174]. It provides a cost-effective and
scalable data center solution to many industry sectors, including major websites
(e.g., Twitter), banking, content delivery provider (e.g., Akamai) [175], and even IT
giants (e.g., Microsoft) that leverage third-party data centers to complement their
own facilities [176].

123

Figure 5.1: Data center infrastructure.

Despite their importance, multi-tenant data centers have been less investigated than
the more visible owner-operated data centers (like Google). They present new
challenges due to the operator’s lack of central control over servers. This means that
standard approaches for handling power emergencies do not apply to multi-tenant
data centers [33, 34, 36].

5.1.1 Power in Multi-Tenant Data Centers

While different designs (e.g., using fuel cell as the main power source [177]) are
emerging, most data centers, including new constructions, still heavily rely on diesel
generators, uninterrupted power supplies (UPS), and power distribution units (PDU)
for achieving high power availability. Fig. 5.1 illustrates the infrastructure commonly
found in today’s multi-tenant data centers: electricity first enters data center through
a utility substation; next, through AC/DC and DC/AC double conversions, power
goes to PDUs, which then distribute power to individual tenants’ server racks. By
default, the automatic transfer switch (ATS) takes power from the utility and, in the
event of a grid failure, switches to the back-up generator. As the generator cannot
be instantly turned on, a UPS will be discharged to supply continuous power until
the diesel generator is fully activated.

The power hierarchy. In a multi-tenant data center, the power hierarchy often has a
tree-type structure. At the top level sits the centralizedUPS, which supports multiple
cluster-level PDUs at a lower level. Each cluster-level PDU typically has a capacity
of 200-300kW, supporting around 50 racks which then distributes power to servers
at the lowest level. Individual tenants may have highly diverse power demands,
ranging from a few kW (often in a retail multi-tenant data center) to hundreds of
kW or even larger, depending on their needs. Each PDU or even rack may also

124

0
0.5

1

0.6 0.7 0.8 0.9 1
CDF

Normalized Power

1 Tenant5 Tenants10 Tenants

Figure 5.2: CDF of measured power usage.

have its own dedicated UPS (e.g., lead-acid battery, not shown in Fig. 5.1), which
complements or even fully substitutes the centralized UPS while enhancing power
availability at a lower cost [166].

The data center operator also provides reliable cooling. Among various designs,
a multi-tenant data center usually uses mechanical chiller or direct-expansion air
conditioning as the cooling mechanism, depending on the data center size.

Tenants’ power usage. A crucial motivation for power oversubscription is the
heterogeneity of tenant power usage. We present in Fig. 5.2 the temporal analysis of
power measurement in a commercial multi-tenant data center collected from May
to July, 2015. The data includes the server power usage of 10 tenants, subscribing
approximately 500kW in total and ranging from sectors of utility, education, media,
content distribution and public clouds. Fig. 5.2 shows the cumulative density
function (CDF) of the power consumption by different groups of tenants, from 1
tenant to 10 tenants. The x-axis is normalized with respect to the sum of the
maximum power usage of all the servers within that group of tenants.

We see that with more tenants (i.e., power hierarchy moves up from rack to clusters),
statistical multiplexing effects of power demands become more significant, and it
is even rarer for all tenants’ servers to peak simultaneously. For example, for
one tenant, the probability that the normalized power exceeds 80% of its peak is
roughly 13%, whereas this number reduces to less than 3% for 10 tenants. Such
observations have also been reported for owner-operated data centers like Google
[169], whose server clusters are equivalent to tenants’. While the specific CDF of
power usage varies with different data centers, the qualitative insights hold widely:
power oversubscription is safe in most cases.

125

5.1.2 Opportunities for Oversubscription

Leasing data center capacity with power and cooling (typically $150/kW/month in
the U.S. [178]) is the most significant revenue source for a multi-tenant data center
operator. Naturally, through oversubscription, the operator can earn extra revenue by
serving more tenants without upgrading the power/cooling infrastructure.1 Except
for increased risk of downtime (due to capacity overloading), there is almost no
additional operating expense resulting from the operator’s oversubscription, because
in many large (especially wholesale) multi-tenant data centers, the energy cost will
be split across tenants depending on their actual usage.

In Table 5.1, we show the potential economic benefit of oversubscription for multi-
tenant operators, based on a leasing cost of $150/kW/month [178]. For each kW
capacity, with x% oversubscription, the operator earns an extra revenue of $150 ×
12 × x% per year. Overloading probability is obtained based on measured power
usage of the 10-tenant cluster shown in Figure 5.2: with x% oversubscription,
overloading occurs if the aggregate power demand exceeds 100/(100 + x) of its
maximum.

We see from Table 5.1 that there is a great economic opportunity for oversubscrip-
tion. The last row in Table 5.1 shows the maximum reward rate for power reduction
that can be offered to tenants without decreasing the operator’s profit (assuming
that during each power emergency, the tenants’ server power demand reaches the
peak, i.e., rated capacity plus the oversubscribed amount). If the operator is not too
aggressive and oversubscribes its capacity by less than 20%, it can offer a reward
rate at more than 200 times of the market electricity price without losing profit.

5.1.3 Challenges for Oversubscription

The economic benefit of oversubscription is significant, but the danger of creating
power emergencies cannot be ignored. While a power emergency may not neces-
sarily lead to a downtime given infrastructure redundancy (e.g., “2N” duplicating
all power/cooling units), ignoring it without proper attention is not a good practice,
as IT critical loads exceeding the design capacity will lose the desired redundancy
protection and increase outage risk [34, 166]. In fact, according to a recent survey
[170], despite redundancy, 25% of tenants have experienced at least one unplanned

1A tenant may also oversubscribe its reserved capacity to reduce leasing cost, but it must handle
resulting emergencies by itself. Thus, this is addressed by prior research [33, 34].

126

Oversubscription 10% 15% 20% 25%
Extra Revenue
($/kW/year) 180 270 360 450

Probability of
Overloading (%) 1% 1% 2% 3%

Est. Overloading
Time (hours/year) 88 88 175 262

Max. Reward for
Power Reduction
($/kW/hour)

22.60 23.63 12.32 8.56

Table 5.1: Analysis of Capacity Oversubscription.

power-related downtime over the past year (for which IT loads exceeding the de-
sign capacity is a major cause [167, 168]). Therefore, regardless of redundancy
protection, it is very critical to handle power emergencies by gracefully capping the
servers’ power demand below the design capacity.

One approach for handling power emergencies is to temporarily “boost” power
supply by discharging an energy storage device (diesel generation, e.g., battery in
UPS) [166, 179]. However, a potential risk when leveraging diesel generation is
that the cooling capacity (typically sized based on the IT critical load due to high
CapEx) may still be exceeded [180, 181], because the servers’ actual aggregate
power consumption (i.e., cooling load) is not reduced to the designed level. As a
result, discharging diesel generation can safely handle power capacity overloading,
but not necessarily cooling capacity overloading, which can quickly lead to server
overheating and is another major cause for unplanned outages [168]. Moreover,
inappropriate/frequent discharging may drain the diesel generation sooner and com-
promise data center reliability (e.g., recent Google power failure incident, for which
Google cited “extended or repeated battery drain” as a root cause [182]).

In this chapter we propose to handle power emergencies via IT power reduction from
the tenants. In practice, however, the operator lacks control over tenants’ servers
and hence cannot enforce tenants’ power reduction during an emergency, which is
due to the operator’s fault of oversubscription. Even assuming that the operator can
somehow force tenants to cut power, which tenants should reduce power and by how
much still needs to be decided so as to minimize tenants’ performance degradation.
This requires the knowledge of tenants’ workloads and business values, which is
private information and unknown to the operator. Thus, despite the huge economic

127

benefit of power oversubscription, gracefully capping tenants’ power to handle the
resulting emergencies with a minimum performance impact on tenants presents
significant challenges for multi-tenant data center operators.

A data center typically oversubscribes capacity at multiple interdependent power
hierarchies (e.g., data centerUPS-level, cluster PDU-level, and even rack-level), each
having its own capacity below which the involved tenants’ aggregate power demand
should be capped at all times [34, 183]. In the following sections, we first start from
a simple case when there is only data center UPS-level capacity constraint. We
provide an analysis of the efficiency of our mechanism, the supply function bidding,
proposed in COOP. Our analysis precisely characterizes the equilibrium outcome,
both when tenants are price-taking and when they are price-anticipating. In both
cases, our results highlight that COOP suffers little performance loss compared to
the socially optimal outcome, both from the operator’s and the tenants’ perspectives.
Then we generalize our design to solve power capping at multiple power hierarchies
and build a prototype to show that COOP is efficient in terms of minimizing the
total performance cost.

5.2 COOP with a Single Data Center Level Power Constraint

A data center typically oversubscribes capacity at multiple interdependent power
hierarchies (e.g., data center UPS-level, cluster PDU-level, and even rack-level),
each with its own capacity below which the involved tenants’ aggregate power
demand should be capped at all times [34, 183]. COOP is not restricted to any
particular levels. In this section, our focus is the design of a mechanism for a colo
operator in response to data center level capacity constraint only. We begin by
describing a model, then propose an overview of the mechanism in this section,
and finally, we provide efficiency analysis for our mechanism in Section 5.3 and
Section 5.3.2. We generalize our design to a multiple level power oversubscription
scenario in Section 5.4.

Recall that the colo operator is responsible for non-IT facility support (e.g., high-
availability power, cooling). We capture the non-IT energy consumption using
Power Usage Effectiveness (PUE) γ, which is the ratio of the total data center
energy consumption to the IT energy consumption. Typically, γ ranges from 1.1 to
2.0, depending on factors such as outside temperature.

When the operator receives an power capping signal on data center level, it has two

128

options for satisfying the load reduction. First, without involving the tenants, the
colo operator can use its on-site backup diesel generator.2 We denote the amount of
energy reduction by diesel generation by y and the cost per kWh of diesel generation
(e.g., for fuels) by α.

Alternatively, the colo operator could try to extract IT energy reductions from the
tenants. We consider a setting where there are N tenants, i ∈ N = {1, 2, · · · , N}.
When shedding energy consumption, a tenant i will incur some costs and we denote
the cost from shedding si by a function ci(si). These costs could be due to wear-
and-tear, performance degradation, workload shifting, etc. For the purposes of our
model, we do not specify which technique reduces the IT energy, only its cost. For
details on how one might model such costs, see [169, 185–187]. A standard, natural
assumption on the costs is the following.

Assumption 1. For each n, the cost function cn(sn) is continuous, with cn(sn) = 0
if sn ≤ 0. Over the domain sn ≥ 0, the cost function cn is convex and strictly
increasing.

Intuitively, convexity follows from the conventional assumption that the unit cost
increases as tenants reduce more energy (e.g., utilization becomes higher when
servers are off, leading to a faster increase in response time of tenants’ workloads).

5.2.1 An overview of COOP

The operation of COOP with data center level constraint only is summarized below,
and then discussed in detail in the text that follows.

1. The colo operator receives an reduction target δ and broadcasts the supply
function S(·, p) specified by(5.1) to tenants;

2. Participating tenants respond by placing their bids bn;

3. The colo operator decides the amount of on-site generation y and market
clearing price p to minimize its cost, using equations (5.2) to set the market
clearing price p and (5.3) to set y in order to minimize the cost of power
capping;

2Other alternatives, e.g., battery [35], usually only last for < 5 minutes. So, diesel generation is
the typical method [184].

129

4. Power capping is exercised. ∀n ∈ N , tenant n sheds S(bn, p), and receives
pS(bn, p) reward.

Given the overview above, we now discuss each step in more detail.

Step 1. Upon receiving an power capping notification of an energy reduction target
δ, the colo operator broadcasts a parameterized supply function S(b, p) to tenants
(by, e.g., signalling to the tenants’ server control interfaces, which are widely in use
today [188]). The form of S(b, p) is the following parameterized family3:

S(bn, p) = δ −
bn

p
, (5.1)

where p is an offered reward for each kWh of energy reduction and bn is the bidding
values that can be chosen by tenant n. This form is inspired by [171], where it
is shown that by restricting the supply function to this parameterized family, the
mechanism can guide the firms in the market to reach an equilibrium with desirable
properties.4 Note that, to be consistent with the supply function literature, we
exchangeably use “price” and “reward rate” wherever applicable.

Step 2. Next, according to the supply function, each participating tenant submits
its bid bn to the colo operator. This bid specifies that, at each price p, it is willing
to reduce S(bn, p) units of energy. The bid is chosen by tenants individually to
maximize their own utility and can be interpreted as, e.g., the amount of IT service
revenue that tenant n is willing to forgo. Note that bn can be chosen to ensure that
tenant n will not be required to reduce more energy than its capacity. To see this,
note that since the operator is cost-minimizing, p(b, y) ≤ α always holds, i.e., the
market clearing price is lower than the unit cost of diesel generation. Hence, if δn is
the capacity of reduction for tenant n, as long as bn ≥ α(δ − δn), then

S(bn, p) = δ −
bn

p
≤ δ −

bn

α
≤ δn.

An important note about the tenant bids is that the supply function is likely of a
different form than the true cost function cn, and so it is unlikely for the tenants to
reveal their cost functions truthfully. This is necessary in order to provide a simple

3The supply function allows tenants to have negative supply, i.e., tenants consume more energy
intentionally, which is neither profit maximizing nor practical. We show in Section 5.3 that energy
reduction of each tenant is always nonnegative in both equilibrium and social optimal outcomes.

4[171] studies the case where firms bid to supply an inelastic demand, which is equivalent to
fixing the diesel generation y = 0 in our case. Allowing the operator to choose y in a cost-minimizing
manner leads to significantly different results, as will be shown in Section 5.3.1 and Section 5.3.2.

130

form for tenant bids. Bidding their true cost functions is too complex and intrusive.
However, a consequence of this is that one must carefully analyze the emergent
equilibrium to understand the efficiency of the pricing mechanism. We study both
the cases of price-taking and price-anticipating equilibrium in Section 5.3.

Step 3. After tenants have submitted their bids, the colo operator decides the amount
of energy y to produce via on-site generation and the clearing price p. Given y, the
market clearing price has to satisfy ΣnS(p(b), bn) + y = δ, thus

p(b, y) =
∑

n bn

(N − 1)δ + y
. (5.2)

To determine the amount of local generation y, the operator minimizes the cost of
the two load-reduction options, i.e.,

y = arg min
0≤y≤δ

(δ − y) · p(b, y) + αy. (5.3)

Step 4. Finally, power capping is exercised and tenants receive financial compen-
sation from the colo operator via the realized price in (5.2), shed load S(p, bn), and
on-site generation produces the energy in (5.3).

5.3 Efficiency Analysis of COOP

Given the COOPmechanism described above, our task now is to characterize its
efficiency. There are two potential causes of inefficiency in the mechanism: the
cost minimizing behavior of the operator and the strategic behavior (bidding) of the
tenants. In particular, since the forms of the tenant’s cost functions are likely more
complex than the supply function bids, tenants cannot bid their true cost function
even if they wanted to. This means that evaluating the equilibrium outcome is
crucial to understanding the efficiency of the mechanism.

Further, the equilibrium outcome that emerges depends highly on the behavior of
the tenants – whether they are price-taking, i.e., they passively accept the offered
market price p as given when deciding their own bids; or price-anticipating, i.e.,
they anticipate how the price p will be impacted by their own bids. We investigate
both models, in Section 5.3.1 and Section 5.3.2, respectively.

In both cases, the goal of our analysis is to assess the efficiency of COOP. To this
end, we adopt a notion of a (socially) optimal outcome, and focus on the following

131

social cost minimization (SCM) problem.

SCM : min αy +
∑
i∈N

ci(si) (5.4a)

s.t. y + γ ·
∑
i∈N

si = δ (5.4b)

si ≥ 0, ∀i ∈ N (5.4c)

y ≥ 0, (5.4d)

where si and ci are tenant i’s energy reduction and corresponding cost, respectively.

The objective in SCM can be interpreted as the tenants’ cost plus the colo operator’s
cost. Note that the internal payment transfer between the colo operator and tenants
cancels, and does not impact the social cost. Also, note that payment from the LSE
to the colo operator is not included in the social cost objective, since it is independent
of how the operator obtains the amount δ of load reduction. Additionally, we do not
include the option of ignoring the power capping signal and taking the penalty, since
the non-compliance penalties are typically extreme [189]. Finally, the Lagrange
multiplier of (5.4b) can be interpreted as the social optimal price p∗, i.e., given
this price as reward for energy reduction, each tenant will individually reduce their
energy by an sn that corresponds to the social cost minimization solution in (5.4).

Before moving to the analysis, in order to simplify notation, we suppress the PUE
γ by, without loss of generality, setting γ = 1. To obtain results for γ , 1, simply
take the results assuming γ = 1 and modify them in the following way: let y′, δ′ and
α′ be the diesel generation, EDR target and diesel price that appear in the results
for γ = 1, replace them by y′ = y/γ, δ′ = δ/γ, and α′ = αγ where y, δ, α are the
respective quantities when γ , 1.

5.3.1 Price-Taking Tenants

When tenants are price-taking, theymaximize their net utility, which is the difference
between the payment they receive and the cost of energy reduction, given the
assumption that they consider their action does not impact the price. A price-taking
tenant n will try to maximize the following payoff Pn(bn, p):

Pn(bn, p) = pSn(bn, p) − cn(Sn(bn, p)) (5.5a)

= pδ − bn − cn

(
δ − bn

p

)
. (5.5b)

Here, the price-taking assumption implies that the variable p is considered to be as
is. The price-taking assumption normally holds when the market consists of many

132

players of similar sizes who have little power to impact the market clearing price.
The other market model, when tenants are price-anticipating, is analyzed in Section
5.3.2.The market equilibrium for price-taking tenants is thus defined as follows:

Definition 1. A triple (b, p, y) is a (price-taking) market equilibrium if each tenant
maximizes its payoff defined in (5.5), market is cleared by setting price p according
to (5.2), and the amount of on-site generation is decided by (5.3), i.e.,

Pn(bn; p) ≥ Pn(b̄n; p) ∀b̄n ≥ 0, n = 1, . . . , N . (5.6)

p =
∑

i∈N bi

(N − 1)δ + y
. (5.7)

y = arg min
0≤y≤δ

(δ − y) · p(b, y) + αy. (5.8)

5.3.1.1 Market Equilibrium Characterization

The key to our analysis is the observation that the equilibrium can be characterized
by an optimization problem. Once we have this optimization, we can use it to
characterize the efficiency of the equilibrium outcome. This approach parallels that
used in [171]; however, the optimization obtained has a different structure due to
local diesel generation. Note that, though we use an optimization to characterize
the equilibrium, the game is not a potential game since the objective (5.9a) below is
not a potential function.

Our first result highlights that, given any choice for on-site generation, a unique
market equilibrium exists for the tenants, and can be characterized via a simple
optimization.

Proposition 7. Under Assumption 1, when tenants are price-taking, for any on-
site generation level 0 ≤ y < δ, there exists a market equilibrium, i.e., a vector
bt = (bt

1, . . . , b
t
N) ≥ 0 and a scalar p > 0 that satisfies (5.2), and the resulting

allocation sn = S(bn, p) is the optimal solution of the following:

min
s

∑
i∈N

ci(si) (5.9a)

s.t.
∑
i∈N

si = (δ − y), (5.9b)

si ≥ 0, ∀i ∈ N . (5.9c)

133

Proof. When tenants are price takers, theymaximize the payoutPn(bn, p) = pSn(bn, p)−
cn(sn) over the bid bn. Note that bn ∈ [0, pδ] as no tenant will bid beyond pδ other-
wise the payout Pn < 0. Hence b = (b1, . . . , bn) is an equilibrium if and only if the
following condition is satisfied

∂−cn(sn)
∂sn

≤ p, 0 ≤ bn < pδ, (5.10a)

∂+cn(sn)
∂sn

≥ p, 0 < bn ≤ pδ. (5.10b)

At least one feasible solution to (5.9) exists because it is minimizing a continuous
function over a compact set. Furthermore, (5.9b) - (5.9c) satisfy the standard
constraint qualification, hence for the Lagrangian

L(s, µ) =
∑
n

cn(sn) + µ((δ − y) −
∑
n

sn),

there exists optimal primal dual pair (s, µ), such that (5.9b) and (5.9c) are satisfied,
and

∂−cn(sn)
∂sn

≤ µ, sn > 0, (5.11a)

∂+cn(sn)
∂sn

≥ µ, sn ≥ 0. (5.11b)

Given the optimal (s, µ), let p = µ, and bn = p(δ− sn), then (5.9b) implies p satisfies
(5.2), and (5.11a)-(5.11b) implies (5.10a) - (5.10b), hence an equilibrium exists.

Conversely, if (b, p) is an equilibrium and p satisfies (5.2), the resulting allocation s is
optimal to (5.9). To see this, if 0 ≤ sn < δ− y for all n, (5.10a)-(5.10b) is equivalent
to (5.11a)-(5.11b) if we set µ = p, hence (s, µ) is primal dual optimal pair for (5.9).
If sn = (δ − y), then sm = 0, ∀m , n. In this case, we set µ̄ = min{p, ∂+cn(sn)/∂sn},
and we can check that (s, µ̄) is the primal dual optimal solution for (5.9). �

This result is a key tool for understanding the overall market outcome. Intuitively,
the operator running COOP is more likely (than the social optimal) to use on-site
generation, since this reduces the price paid to tenants. The following proposition
quantifies this statement.

Proposition 8. Under Assumption 1, it is optimal for price-taking tenants to use
on-site generation if and only if

α <
(Σnbn)

(N − 1)δ
.5 (5.12)

5We adopt the convention that 0
0 = 0 and x

0 = +∞ when x > 0. Therefore, when N = 1, unless
the bid is 0, the condition is always satisfied.

134

However, when the operator is profit maximizing, it will turn on on-site generation
if and only if

α <
N

N − 1
(Σnbn)

(N − 1)δ
. (5.13)

This proposition is an important building block because the most interesting case
to consider is when it is optimal to use some on-site generation and some tenant
load shedding, i.e., δ > y∗ > 0. Otherwise the power capping requirement should
be entirely fulfilled by tenants, and the analysis reduces to the case of an inelastic
demand, as studied in [171]. Thus, subsequently, wemake the following assumption,
which ensures that on-site generation is valuable.

Assumption 2. The unit cost of on-site generation is cheap enough that the optimal
on-site generation is non-zero, i.e., α satisfies (5.12).

Note that, when Assumption 2 holds, by first-order optimality condition of (5.3) we
have

y =

√
(Σi∈Nbi)Nδ

α
− (N − 1)δ, (5.14)

and so the market clearing price for the tenants given on-site generation is

p =
∑

i∈N bi

(N − 1)δ + y
=

√
(Σi∈Nbi)α

Nδ
. (5.15)

Using these allows us to prove a complete characterization of the market equilibrium
under price-taking tenants. This theorem is the key to our analysis of market
efficiency.

Theorem 9. When Assumptions 1 and 2 hold there is a unique market equilibrium,
i.e., a vector bt = (bt

1, . . . , b
t
N) ≥ 0, yt > 0 and a scalar pt > 0 that satisfies

(5.6)-(5.8), and the resulting allocation (st, yt) where st
n = S(bt

n, pt) is the optimal
solution of the following problem:

min
s,y

∑
n

cn(sn) +
α

2Nδ
(y + (N − 1)δ)2 (5.16a)

s.t.
∑

n

sn = δ − y, (5.16b)

sn ≥ 0, ∀n, y ≥ 0. (5.16c)

135

Proof. By Proposition 7, when tenants are price-taking, for any y, the there is always
an equilibrium, and the resulting s is always the optimal allocation to provide (δ− y)
energy reduction.

Hence we only need to verify that the on-site generation level y is the solution to
(5.16a)-(5.16c). Similar to the proof of Proposition 7, by Assumption 2, the first
order optimality condition for the y in (5.16a)-(5.16c) is α

Nδ (y + (N − 1)δ) = p.

By Proposition 7, p satisfies the relation (5.2), substitute the left-hand-side into
(5.2) and solve for y, we have y =

√
ΣnbnNδ

α − (N − 1)δ. This is exactly the on-site
generation y that minimizes costo(b, y) given in (5.14). Hence the data center will
always pick y that is optimal for (5.16a)-(5.16c). Together with Proposition 7, an
equilibrium exists, and the resulting allocation (s, y) is optimal for (5.16a)-(5.16c).

�

5.3.1.2 Bounding Efficiency Loss

We now use Theorem 9 to bound the efficiency loss due to strategic behavior in the
market. Denote the socially optimal on-site generation by y∗, the optimal price that
leads to the optimal allocation si, ∀i ∈ N by p∗, and let yt and pt be the allocation
under the price-taking assumption.

Our first result highlights that, due to the cost-minimizing behavior of the operator,
the equilibrium outcome uses more on-site generation and pays a lower price to the
tenants than the social optimal.

Proposition 10. Suppose that Assumptions 1 and 2 hold. When tenants are price-
taking, the operator running COOP uses more on-site generation and pays a lower
price for power reduction to its tenants than the social optimal. Specifically, yt ≥ y∗

and N−1
N p∗ ≤ pt ≤ p∗.

Proof. Since y ≥ 0, it suffices to prove that whenever the optimal on-site generation
is non-zero, y∗ > 0, yt ≥ y∗. From (5.4), the Lagrangian of SCM is

L(s, y, µ∗, λ∗) =
∑

n

cn(sn) + αy + µ
∗((δ − y) −

∑
n

sn) − λ
∗y.

By constraint qualification and the KKT conditions, assuming y∗ > 0, then λ = 0,
µ∗ = α, hence the market clearing price in the optimal allocation should be p∗ = α.

136

Next, consider the market price for price taking tenants. From (5.15),

pt =

∑
i∈N bt

i

(N − 1)δ + yt =

√
(Σi∈Nbt

i)α

Nδ
. (5.17)

The second equality yields
∑

i∈N bt
i =

((N−1)δ+yt)2
Nδ α. Substitute this back to (5.17),

pt =

∑
i∈N bt

i

(N − 1)δ + yt =
(N − 1)δ + yt

Nδ
α. (5.18)

And note that yt ∈ [0, δ] and p∗ = α, thus (5.18) yields N−1
N p∗ ≤ pt ≤ p∗.

Finally, from (5.16), theLagrangian of the price-taking characterization optimization
is,

L(s, y, µt, λt) =
∑

n

cn(sn) +
α

2Nδ
(y + (N − 1)δ)2 + µt((δ − y) −

∑
n

sn) − λ
t y.

By examining the KKT condition and using a similar argument to the proof of
Proposition 7, we have pt = µt , also, ∂

−cn(stn)
∂stn

≤ pt ≤ p∗ ≤ ∂+cn(s∗n)
∂s∗n

.Thus, ∀n, st
n ≤ s∗n.

Since y = δ −
∑

sn, yt ≥ y∗. �

Now, wemove to more detailed comparisons. There are three components of market
efficiency that we consider: social welfare, operator cost, and tenant cost.

First, let us consider the social cost.

Theorem 11. Suppose that Assumptions 1 and 2 hold. Let (st, yt) be the allocation
when tenants are price-taking, and (s∗, y∗) be the optimal allocation. Then the
welfare loss is bounded by:

∑
n cn(st

n) + αy
t ≤

∑
n cn(s∗n) + αy

∗ + αδ/2N .

Proof. Note that (s∗, y∗) is a feasible solution to (5.16). By Theorem 9, we have∑
n cn(st

n) +
α

2Nδ (y
t + (N − 1)δ)2 ≤

∑
n cn(s∗n) +

α
2Nδ (y

∗ + (N − 1)δ)2. Rearranging,
we have∑

n

cn(st
n) + αy

t −

(∑
n

cn(s∗) + αy∗
)
≤

α

2Nδ
(yt − y∗)

(
2δ − (yt + y∗)

)
=

α

2Nδ
[−(yt − y∗)2 + 2(δ − y∗)(yt − y∗)] ≤

α

2Nδ
[−(yt − y∗ − (δ − y∗))2 + (δ − y∗)2]

=
α

2Nδ
(δ − y∗)2 ≤

αδ

2N
.

�

137

Importantly, this theorem highlights that the market equilibrium is quite efficient,
especially if the number of tenants is large (the efficiency loss decays to zero as
O(1/N)). However, the market could maintain good overall social welfare at the
expense of either the operator or the tenants. The following results show this is not
true.

Let costo(p, y) be the operator’s cost, i.e.,

costo(p, y) = p(δ − y) + αy. (5.19)

Then, we have the following results.

Theorem 12. Suppose that Assumptions 1 and 2 are satisfied. The cost of colo
operator with price-taking tenants is smaller than the cost in the socially optimal
case. Further, we have costo(p∗, y∗) − αδ/N ≤ costo(pt, yt) ≤ costo(p∗, y∗).

Proof. From Proposition 10, we have N−1
N α ≤ pt ≤ p∗ = α, and 0 ≤ yt ≤ δ, which

yields:

cost∗o(p∗, y∗) − costo(pt, yt) = p∗(δ − y∗) + αy∗ −
(
pt(δ − yt) + αyt) = (α − pt)(δ − yt).

Substituting the above bounds for pt and yt gives 0 ≤ cost∗o(p∗, y∗) − costo(pt, yt) ≤

αδ
N . �

5.3.2 Price-Anticipating Tenants

In contrast to the price-taking model, price-anticipating tenants realize that they can
change the market price by their bids, i.e., that p is set according to (5.15), and
adjust their bids accordingly. The price-anticipating model is suitable when the
market consists of a few dominant players, who have significant power to impact the
market price through their bids, i.e., the oligopoly setting. Clearly, this additional
strategic behavior can lead to larger efficiency loss. However, in this section, we
show that the extra loss is surprisingly small, especially when a large number of
tenants participate in COOP.

Given bids from the other tenants, each price-anticipating tenant n optimizes the
following cost over bidding value bn:

Qn(bn, b−n) = p(b)Sn(bn, p) − cn(Sn(bn, p)),

138

where we use b−n to denote the vector of bids of tenants other than n; i.e., b−n =

(b1, . . . , bn−1, bn+1, . . . , bN). Thus, substituting (5.1) and (5.15), we have

Qn(bn; b−n) =

√
(Σnbn)αδ

N
− bn − cn

(
δ −

bn
√
Σmbm

√
Nδ
α

)
. (5.20)

Note that the payoff function Qn is similar to the payoff function Pn in the price-
taking case, except that the tenants anticipate that the colo operator will set the price
p according to p = p(b, y) from (5.15).

Definition 2. A triple (b, p, y) is a (price-anticipating) market equilibrium if each
tenant maximizes its payoff defined in (5.20), the market is cleared by setting the
price p according to (5.2) and the amount of on-site generation is decided by (5.3),
i.e.,

Qn(bn; bn) ≥ Qn(b̄n; bn) ∀b̄n ≥ 0, n = 1, . . . , N (5.21)

p =
∑

n bn

(N − 1)δ + y
(5.22)

y = arg min
0≤y≤δ

(δ − y) · p(b, y) + αy. (5.23)

Note that our analysis in this section requires one additional technical assumption
about the tenant cost functions.

Assumption 3. For all tenants, the marginal cost of energy reduction at 0 is greater
than α

2N , i.e.,
∂+cn(0)
∂sn

≥ α
2N , ∀n.

This assumption is quite mild, especially if the number of tenants N is large.
Intuitively, it says that the unit cost of on-site generation is competitive with the cost
of tenants reducing their server energy.

5.3.2.1 Market Equilibrium Characterization

Our analysis of market equilibria proceeds along parallel lines to the price-taking
case. We again show that there exists a unique equilibrium and, furthermore,
that the tenants and operator behave in equilibrium as if they were solving an
optimization problem of the same form as the aggregate cost minimization (5.4),
but with “modified” cost functions.

139

Theorem 13. Suppose that Assumption 1-3 are satisfied, then there exists a unique
equilibrium of the game defined by
(Q1, . . . ,Qn) satisfying (5.21)-(5.23). For such an equilibrium, the vector sa defined
by sa

n = S(p(ba), ba
n) is the unique optimal solution to the following optimization:

min
∑

n

ĉn(sn) +
α

2Nδ
(y + (N − 1)δ)2 (5.24a)

s.t.
∑

n

sn = δ − y (5.24b)

y ≥ 0, sn ≥ 0, n = 1, . . . , N, (5.24c)

where, for sn ≥ 0,

ĉn(sn) =
1
2

(
cn(sn) + sn

α

2N

)
+

1
2

∫ sn

0

√(
∂+cn(z)
∂z

−
α

2N

)2
+ 2

∂+cn(z)
∂z

zα
Nδ

dz,

(5.25)

and for sn < 0, ĉn(sn) = 0.

Proof. The proof proceeds in a number of steps. We first show that the payoff
function Qn is a concave and continuous function for each firm n. We then establish
necessary and sufficient conditions for b to be an equilibrium; these conditions look
similar to the optimality conditions (5.10a)-(5.10b) in the proof of Proposition 7, but
for a “modified” cost function defined according to (5.25). We then show the corre-
spondence between these conditions and the optimality conditions for the problem
(5.24a)-(5.24c). This correspondence establishes existence of an equilibrium, and
uniqueness of the resulting allocation.

Step 1: If b is an equilibrium, and Assumption 2 is satisfied, at least one coordinate
of b is positive.

By Assumption 2, 0 < α < Σnbn
(N−1)δ , hence at least one coordinate of b must be

positive.

Step 2: The function Qn(b̄n; b−n) is concave and continuous in b̄n, for b̄n ≥ 0. From
(5.20) and by plugging p(b) into sn in (5.1), we have

Qn(b̄n; b−n) =

√
(Σm,nbm + b̄n)αδ

N
− b̄n − cn

(
δ −

b̄n√
Σm,nbm + b̄n

√
Nδ
α

)
.

140

When Σm,nbm+ b̄n > 0, the function b̄n/
√
Σm,nbm + b̄n is a strictly concave function

of b̄n (for b̄n ≥ 0). Since cn is assumed to be convex and nondecreasing (and hence
continuous), it follows that Qn(b̄n, b−n) is concave and continuous in b̄n, for b̄n ≥ 0.

It is easy to show that for sn to be positive, we need bn ≤ bn where bn =

1
2

(
αδ
N +

√
αδ
N (

αδ
N + 4Σm,nbm)

)
.

Step 3: In an equilibrium, 0 ≤ bn ≤ bn, ∀n.

Tenant n would never bid more than b̄n given b−n. If bn > bn, then S(p(b), bn) =

δ − bn√
bn+Σm,nbm

Nδ
α < 0, so the payoff Qn(bn; b−n) becomes negative; on the other

hand, Qn(bn; b−n) = 0.

We specify the following condition when marginal cost of production is not less
than the price:

∀n,
∂−cn(sn)

∂sn
≤ p(b), sn > 0. (5.26)

This condition is satisfied when tenants are price-taking; in the next step, we show
that (5.26) also holds in an equilibrium outcomewhen tenants are price-anticipating.

Step 4: The vector b is an equilibrium if and only if (5.26) is satisfied, at least one
component of b is positive, and for each n, bn ∈ [0, bn], and the following conditions
hold:

if 0 < bn ≤ bn,

1
2

(
∂+cn(sn)

∂sn
+

α

2N

)
+

1
2

√(
∂+cn(sn)

∂sn
−

α

2N

)2
+
∂+cn(sn)

∂sn

2snα

Nδ
≥ p(b),

(5.27a)

if 0 ≤ bn < bn,

1
2

(
∂−cn(sn)

∂sn
+

α

2N

)
+

1
2

√(
∂−cn(sn)

∂sn
−

α

2N

)2
+
∂−cn(sn)

∂sn

2snα

Nδ
≤ p(b).

(5.27b)

ByStep 2,Qn(bn; b−n) is concave and continuous for bn ≥ 0. By Step 3, bn ∈ [0, bn].
bn must maximizeQn(bn; b−n) over 0 ≤ bn ≤ bn, and satisfy the following first order
optimality conditions:

∂+Qn(bn; b−n)

∂bn
≤ 0, if 0 < bn ≤ bn,

∂−Qn(bn; b−n)

∂bn
≥ 0, if 0 ≤ bn < bn.

141

Recalling the expression for p(b) given in (5.15), and noting that by (5.15) and
(5.1), we have : 1√

Σmbm
= 1

p(b)
√

α
Nδ, and

bn√
Σmbm

= (δ − sn)
√

α
Nδ . Expanding the first

order optimality conditions with (5.15) and simplifying with the two equations into
the above, we have

1
2p(b)

α

N
− 1 +

∂−cn(sn)

∂sn

1
p(b)

(
1 −

1
2p(b)

α

N
δ − sn

δ

)
≤ 0. (5.28a)

1
2p(b)

α

N
− 1 +

∂+cn(sn)

∂sn

1
p(b)

(
1 −

1
2p(b)

α

N
δ − sn

δ

)
≥ 0. (5.28b)

To show (5.26) holds, we divide into two cases, when N ≥ 2, by rearranging (5.28a),
we have

∂−cn(sn)

∂sn

1
p(b)

≤
2Np(b) − α

2Np(b) − α δ−sn
δ

≤ 1.

This is because by Assumption 2, 2Np(b) − α > 0 when N ≥ 2. Also, we have
2Np(b) − α δ−sn

δ ≥ 2Np(b) − α. Hence (5.26) holds for N ≥ 2.

When N = 1, we can simplify (5.28a) further to

1
2p(b)

α − 1 +
∂−cn(sn)

∂sn

1
2p(b)

≤ 0, ⇒ p(b) ≥
1
2

(
α +

∂−cn(sn)

∂sn

)
≥
∂−cn(sn)

∂sn
.

The last inequality is because α ≥ ∂−cn(sn)
∂sn

, otherwise p(b) > α, but the profit
maximizing operator will not pay for price more than α, contradiction. Hence
(5.26) must hold for all N . After multiplying through (5.28a)-(5.28b) by p(b)
and rearranging, we have two quadratic inequalities in terms of p(b). Solving
the inequalities leads to two sets of conditions of p(b) that satisfy the first order
optimality conditions, they are:

if 0 ≤ bn < bn,
1
2

(
∂−cn(sn)

∂sn
+

α

2N

)
±

1
2

√(
∂−cn(sn)

∂sn
−

α

2N

)2
+ 4

∂−cn(sn)

∂sn

snα

2Nδ
≤ p(b),

(5.29a)

if 0 < bn ≤ bn,
1
2

(
∂+cn(sn)

∂sn
+

α

2N

)
±

1
2

√(
∂+cn(sn)

∂sn
−

α

2N

)2
+ 4

∂+cn(sn)

∂sn

snα

2Nδ
≥ p(b).

(5.29b)

However, only the conditions with plus signs satisfy (5.26); the conditions with
minus signs violate (5.26) because since

∀sn > 0, p(b) ≤
α

2N
≤
∂+cn(0)
∂sn

<
∂−cn(sn)

∂sn
.

142

Hence we discard the conditions with minus signs and note that (5.29b)-(5.29a)
corresponds to (5.27a)-(5.27b).

Conversely, suppose that b has at least one strictly positive component, that 0 ≤
bn ≤ bn, and that b satisfies (5.26) and (5.27a)-(5.27b). Then wemay simply reverse
the argument: by Step 2, Qn(bn; b−n) is concave and continuous in bn ≥ 0, and in
this case the conditions (5.27a)-(5.27b) imply that bn maximizes Qn(bn; b−n) over
0 ≤ bn ≤ bn. Since we have already shown that choosing bn > bn is never optimal
for firm n, we conclude that b is an equilibrium, and it is easy to check that in this
case condition (5.26) is satisfied.

Step 5: If Assumption 2 holds, then the function ĉn(sn) defined in (5.25) is continuous,
and strictly convex and strictly increasing over sn ≥ 0, with ĉ(sn) = 0 for sn ≤ 0.

ĉn(sn) is continuous on sn > 0 by continuity of cn and on sn < 0 by definition. We
only need to show that ĉn(0) = 0, this is because when sn = 0, cn(sn) = 0, sn

α
2N = 0,

and integrating from 0 to sn is 0. Hence ĉn(sn) = 0 for sn ≤ 0.

For sn ≥ 0, we simply compute the directional derivatives of ĉn:

∂+ĉn(sn)

∂sn
=

1
2

(
α

2N
+
∂+cn(sn)

∂sn

)
+

1
2

√(
α

2N
−
∂+cn(sn)

∂sn

)2
+ 2

∂+cn(sn)

∂sn

snα

Nδ
,

∂−ĉn(sn)

∂sn
=

1
2

(
α

2N
+
∂−cn(sn)

∂sn

)
+

1
2

√(
α

2N
−
∂+cn(sn)

∂sn

)2
+ 2

∂+cn(sn)

∂sn

snα

Nδ
.

Since cn is strictly increasing and convex, for 0 ≤ sn < s̄n, we will have

0 ≤
∂+ĉ(sn)

∂sn
<
∂−ĉ(s̄n)

∂sn
≤
∂+ĉ(s̄n)

∂sn
.

This guarantees that ĉn is strictly increasing and strictly convex over sn ≥ 0.

Step 6: There exists a unique vector s ≥ 0, y ≥ 0 and at least one scalar ρ > 0 such
that:

1
2

(
∂+cn(sn)

∂sn
+

α

2N

)
+

1
2

√(
∂+cn(sn)

∂sn
−

α

2N

)2
+
∂+cn(sn)

∂sn

2snα

Nδ
≥ ρ, if sn ≥ 0;

(5.30a)

1
2

(
∂−cn(sn)

∂sn
+

α

2N

)
+

1
2

√(
∂+cn(sn)

∂sn
−

α

2N

)2
+
∂+cn(sn)

∂sn

2snα

Nδ
≤ ρ, if sn > 0;

(5.30b)
α

Nδ
(y + (N − 1)δ) = ρ; (5.30c)

143∑
n

sn = (δ − y). (5.30d)

The vector s and y is then the unique optimal solution to (5.24a)-(5.24c).

By Step 5, since ĉn is continuous and strictly increasing over the convex, compact
feasible region for each n, we know that (5.24a)-(5.24c) have a unique optimal
solution s, y. As in the proof of Proposition 7, form the Lagrangian

L(s, y; ρ) =
∑

n

ĉn(sn) +
α

2Nδ
(y + (N − 1)δ)2 + ρ((δ − y) −

∑
n

sn).

By assumption 2, y > 0, and by the fact that ĉn(sn) = 0 for sn ≤ 0, sn ≥ 0, there exists
a Lagrange multiplier ρ such that (s, y, ρ) satisfy the stationarity conditions which
corresponds to (5.30a)-(5.30c) when we expand the definition of ĉn(sn), together
with the constraint (5.30d). ρ > 0 follows by (5.30c) as y > 0.

Step 7: If s ≥ 0, y ≥ 0 and ρ > 0 satisfy (5.30a)-(5.30d), then the triple (b, ρ, y)
defined by bn = (δ − sn)ρ is an equilibrium as defined in (5.21) and (5.22).

First observe that with this definition, together with (5.30d) and the fact that sn ≥ 0,
we have bn ≥ 0 for all n. Furthermore, we can show bn ≤ bn, since sn ≥ 0, bn ≤ ρδ,
but by (5.30c)-(5.30d), we have

ρ =
α

Nδ
(y + (N − 1)δ) =

α

Nδ
(Nδ −

∑
n

sn). (5.31)

Substitute the definition sn = δ −
bn
ρ into (5.31), we have

ρ =
α

Nδ
Σnbn

ρ
⇒ ρ =

√
Σnbnα

Nδ
. (5.32)

Substituting (5.32) into bn ≤ ρδ, we have bn ≤

√
(Σm,nbm+bn)αδ

N . Solving this in-
equality we have bn ≤ bn.

Finally, at least one component of b is strictly positive, since otherwise we have
sn1 = sn2 = δ for some n1 , n2, in which case Σnsn > δ, which contradicts (5.30d).
(Or sn = δ, y = 0, contradicting our assumption that y > 0.)

By Step 4, to check that b is an equilibrium, we must only check the stationarity
conditions (5.27a)-(5.27b). We simply note that under the identification bn =

ρ(δ − sn), using (5.32) and (5.30c), we have

y =

√
ΣnbnNδ

α
− (N − 1)δ; ρ =

Σnbn

(N − 1)δ + y
= p(b).

Substituting p(b) into (5.30a) will correspond to (5.27a), and (5.30b) implies (5.27b)
and (5.26) because ∂−cn(sn)

∂sn
≤

∂+cn(sn)
∂sn

. Thus (b, ρ, y) is an equilibrium.

144

Step 8: If (b, p(b), y) is an equilibrium, then there exists a scalar ρ ≥ 0 such that the
vector b defined by sn = S(p(b), bn) satisfies (5.30a)-(5.30d).

We simply reverse the argument of Step 7. Since b is the bids in the equilibrium,
by (5.22) and sn = S(p(b), bn), we have

∑
n sn = (δ − y), i.e., (5.30d) is satisfied. By

Step 4, b satisfies (5.27a)-(5.27b). Since y > 0 by Assumption 2, 0 ≤ sn < δ for all
n, let

ρ = max

{
p(b),

1
2

(
∂−cn(sn)

∂sn
+

α

2N

)
+

1
2

√
(
∂+cn(sn)

∂sn
−

α

2N
)2 +

∂+cn(sn)

∂sn

2snα

Nδ

}
.

In this case ρ > 0 and 0 ≤ bn ≤ bn for all n, so (5.27b) implies (5.30b) by
definition of ρ, and (5.30a) holds by (5.27a) and the fact that ∂−cn(sn) ≤ ∂

+cn(sn)

(by convexity).

Step 9: There exists an equilibrium b, and for any equilibrium that price is greater
than marginal cost, the vector s defined by sn = S(p(b), bn) is the unique optimal
solution of (5.30a)-(5.30d).

The conclusion is now straightforward. Existence follows from Steps 6 and 7.
Uniqueness of the resulting production vector s, and the fact that s is an optimal
solution to (5.24a)-(5.24c), follows by Steps 6 and 8.

�

Although the formof ĉn(sn) looks complicated, there is a simple linear approximation
that gives useful intuition.

Lemma 14. Suppose that Assumptions 1-3 are satisfied. For all modified cost
ĉn, n ∈ 1, . . . , N , for any 0 ≤ sn ≤ δ,

cn(sn) ≤ ĉn(sn) ≤ cn(sn) + sn
α

2N
.

Furthermore, when the left or right derivatives of ĉ(·) are defined, it can be bounded
by

∂−cn(sn)

∂sn
≤
∂−ĉ(sn)

∂sn
≤
∂+ĉ(sn)

∂sn
≤
∂+cn(sn)

∂sn
+

α

2N
.

145

Proof. We exploit the structure of the modified cost ĉn to prove the result. Note that,
for all n, sn ≥ 0, if we define Gn(sn) =

∫ sn
0

√
(
∂+cn(z)
∂z − α

2N)
2 + ∂+cn(z)

∂z
2zα
Nδ dz, then

Gn(sn) ≥

∫ sn

0

√(
∂+cn(z)
∂z

−
α

2N

)2
dz = cn(sn) − sn

α

2N
.

The first inequality is because z ≥ 0, and the last equality is because by convexity
and Assumption 3. We have ∂+cn(z)

∂z ≥
∂+cn(0)
∂sn

≥ α
2N .

Hence we have ĉn(sn) =
1
2
(
cn(sn) + sn

α
2N

)
+ 1

2Gn(sn) ≥ cn(sn). On the other hand,
notice that sn ≤ δ, we have:

Gn(sn) ≤

∫ sn

0

√(
∂+cn(z)
∂z

−
α

2N

)2
+
∂+cn(z)
∂z

2δα
Nδ

dz

=

∫ sn

0

√(
∂+cn(z)
∂z

+
α

2N

)2
dz = cn(sn) + sn

α

2N
.

Hencewe have ĉn(sn) =
1
2
(
cn(sn) + sn

α
2N

)
+ 1

2Gn(sn) ≤ cn(sn)+sn
α

2N . The bounds for
the left and right derivatives can be obtained by taking the left (or right) derivatives
at the bounds of Gn(sn). �

The form of Lemma 14 shows that the difference between the modified cost function
in (5.25) and the true cost diminishes as N increases, and this is the key observation
that underlies our subsequent results upper bounding the efficiency loss of COOP.

5.3.2.2 Bounding Efficiency Loss

We now use Theorem 13 to bound the efficiency loss due to strategic behavior. Note
that, by comparing to both the socially optimal and the price-taking outcomes, we
can understand the impact of both strategic behavior by the operator and by the
tenants.

Our first result focuses on comparing the price-anticipating and price-taking equi-
librium outcomes. It highlights that price-anticipating behavior leads to tenants
receiving higher price while shedding less load.

Theorem15. Suppose Assumption 1-3 hold. Let (pt, yt) be the equilibrium price and
on-site generation when tenants are price-taking, and (pa, ya) be those when tenants
are price-anticipating, then we have, yt ≤ ya ≤ yt + δ/2 and pt ≤ pa ≤ pt +α/2N .

146

Proof. Firstly we will prove one side of the inequality pt ≤ pa, yt ≤ ya. Recall that
by examining the Lagrangians of the optimizations in Proposition 10 and Theorem
13, we have pt ≥ ∂−cn(st

n)/∂sn, pt ≤ ∂+cn(st
n)/∂sn, pa ≥ ∂−ĉn(sa

n)/∂sn, pa ≤

∂+ĉn(sa
n)/∂sn, at the domain where the left or right derivative is defined, and pt =

α
Nδ (y

t + (N − 1)δ), pa = α
Nδ (y

a + (N − 1)δ). If yt > ya, then pt > pa. Also, because
the total energy reduction δ is constant, we have

∑
n st

n <
∑

n sa
n .

Hence there exist sr > 0 such that sa
r > st

r for some r ∈ {1, . . . , N}. Therefore, by
strict convexity of cn (Assumption 1):

pt ≤
∂+cr(st

r)

∂sr
<
∂−cr(sa

r)

∂sr
. (5.33)

However, by Lemma 14 we have ∂− ĉr (sr)
∂sr

≥
∂−cr (sr)
∂sr

. Hence, we have

pa ≥
∂−ĉr(sa

r)

∂sr
≥
∂−cr(sa

r)

∂sr
. (5.34)

Combining (5.33) and (5.34), we have pt < pa, contradiction. Hence we have
yt ≤ ya, and pt ≤ pa.

Next we show the other side of the inequality pa ≤ pt + α
2N , y

a ≤ yt + δ
2 ; by the

previous part, we have
∑

n sa
n ≤

∑
n st

n.

Let n = arg maxm(s
t
m− sa

m), clearly st
n ≥ sa

n , otherwise
∑

n st
n <

∑
n sa

n , contradiction.

If st
n = sa

n, then ∀m, st
m = sa

m, and yt = ya, then pt = pa.

If st
n > sa

n , then by strict convexity of cn (assumption 1), and the fact that sa
n ≥

0, st
n > 0, we have ∂+ ĉn(san)

sn
<

∂−cn(stn)
sn

≤ pt . Also, by Lemma 14, we have ∂+ ĉn(sn)
∂sn

≤

∂+cn(sn)
∂sn

+ α
2N , this gives us pa ≤

∂+ ĉn(san)
∂sn

≤
∂+cn(san)
∂sn

+ α
2N . Combining the two previous

inequalities about pt and pa, we have pa < pt + α
2N . Hence we have

α

Nδ
(ya + (N − 1)δ) <

α

Nδ
(yt + (N − 1)δ) +

α

2N
⇒ ya < yt +

δ

2
.

�

Next, combining Theorem 15 and Proposition 10 yields the following comparison
between the price-anticipating and socially optimal outcomes.

Corollary 16. Suppose Assumptions 1-3 hold. When tenants are price-anticipating,
an operator running COOP uses more on-site generation and pays lower market
price than in the socially optimal case, i.e., ya ≥ y∗ and N−1

N p∗ ≤ pa ≤ p∗.

147

Now, wemove to more detailed comparisons. There are three components of market
efficiency that we consider: social cost, operator cost, and tenant cost.

First, let us consider the social cost.

Theorem 17. Suppose that Assumptions 1-3 hold. Let (sa, ya) be the allocation
when tenants are price-anticipating, and (s∗, y∗) be the optimal allocation. The
welfare loss is bounded by:

∑
n cn(sa

n) + αy
a ≤

∑
n cn(s∗n) + αy

∗ + αδ/N .

Proof. As (s∗, y∗) is a feasible solution to (5.24), by Theorem 13, we have∑
n

ĉn(sa
n) +

α

2Nδ
(ya + (N − 1)δ)2 ≤

∑
n

ĉn(s∗n) +
α

2Nδ
(y∗ + (N − 1)δ)2. (5.35)

Rearranging, we have
∑

n ĉn(sa
n)+αy

a−
(∑

n ĉn(s∗n) + αy
∗
)
≤ α

N

(
(ya − y∗)(1 − ya+y∗

2δ)
)
.

By Corollary 16 and the fact that y∗ ≤ δ, ya ≤ δ, both terms in the brackets are
positive, hence the right-hand-side expression is maximized when y∗ → 0+ and
ya = δ, hence (∑

n

ĉn(sa
n) + αy

a

)
−

(∑
n

ĉn(s∗n) + αy
∗

)
≤
αδ

2N
. (5.36)

However, by Lemma 14, we have
∑

n ĉn(s∗n) ≤
∑

n cn(s∗n) +
α

2N (
∑

n sn) ≤
∑

n cn(s∗n) +
αδ
2N ; and

∑
n ĉn(sa

n) ≥
∑

n cn(sa
n). Substituting the above relations into (5.36) and

rearranging, we have the desired result. �

Similarly to the price-taking case, the efficiency loss in the price-anticipating case
decays to zero as O(1/N), only with a larger constant. Also, as in the case of
price-taking tenants, we again see that neither the tenants nor the operator suffers
significant efficiency loss.

Theorem 18. Suppose that Assumptions 1-3 hold. The cost of colo operator for
price-anticipating tenants is smaller than the cost in the socially optimal case.
Further, we have

costo(p∗, y∗) −
αδ

N
≤ costo(pa, ya) ≤ costo(p∗, y∗),

costo(pa, ya) −
αδ

N
≤ costo(pt, yt) ≤ costo(pa, ya).

Proof. First, we compare the cost by operator between the price-taking and price
anticipating cases, by definition (5.19) and rearranging, we have costo(pa, ya) −

148

costo(pt, yt) = (pa − pt)
(
δ − yt) + (α − pa) (ya − yt). By the fact that pa = α

Nδ (y
a +

(N − 1)δ) (shown in Theorem 15) and the fact that 0 ≤ ya ≤ δ, we have

α

(
N − 1

N

)
≤ pa ≤ α. (5.37)

By the upper bound of pa in (5.37) and the upper bounds of pt, yt in Theorem 15,
we have

costo(pa, ya) − costo(pt, yt) ≥ 0. (5.38)

Similarly, using the lower bound of pa in (5.37) and the upper bounds of pa, ya in
Theorem 15, we have

costo(pa, ya) − costo(pt, yt) ≤

(α
2N

)
· (δ) +

(
α ·

1
N

) (
δ

2

)
=
αδ

N
.

Second, we compare the cost by the operator to the social optimal. Since the
energy reduction goal δ is the same, by Proposition 10 and Corollary 16, we have
pt ≤ p∗ and pa ≤ p∗. Hence we have costo(pt, yt) ≤ costo(pa, ya) ≤ costo(p∗, y∗).
Furthermore,

costo(p∗, y∗) − costo(pt, yt) = αδ − (pt(δ − yt) + αyt)

=(α − pt)(δ − yt) = α

(
δ − yt

Nδ

)
(δ − yt) ≤

αδ

N
. (5.39)

Lastly by (5.38) and (5.39), we have cost(p∗, y∗) − cost(pa, ya) ≤ cost(p∗, y∗) −
cost(pt, yt) ≤ αδ

N . �

Finally, let us end by considering the amount of on-site generation used in equi-
librium. Here, in the worst-case, the on-site generation at equilibrium for price-
anticipating tenants can be arbitrarily worse than the socially optimal, i.e., the
socially optimal can use no on-site generation while the equilibrium outcome uses
only on-site generation.

Theorem 19. Suppose that Assumptions 1-3 hold. For any ε > 0, N ≥ 1, there exist
cost functions c1, . . . , cN , such that the on-site generation in the market equilibrium
compared to the optimal is given by ya − y∗ ≥ δ − ε.

Proof. Given any ε > 0, let ε′ = 1
2ε. Consider the following set of cost functions:

c1(s1) =

α

2N s1, if s1 < ε′;

α(1 − 3ε′
2Nδ)s1 + C1, ε′ ≤ s1 ≤ δ − ε

′;

2αs1 + C2, s1 > δ − ε′,

149

where C1,C2 are constants that make c1 continuous6, then c1 is piece-wise linear
and convex. Also, ∀m , 1, cm(sm) = 2αsm. It is easy to see that s∗1 = δ − ε

′ and
y∗ = ε′ is the optimal allocation.

Let sa
1 = ε

′, ya = δ − ε′, and ∀m , 1, sa
m = 0, we claim that (sa, ya) is the unique

optimal solution to (5.24a)-(5.24c). To see this, let ρ = α(1 − ε/(Nδ)), then,

α

Nδ
(ya + (N − 1)δ) = ρ;

∑
n

sa
n = δ − ya; (5.40a)

∂−ĉ1(sa
1)

∂s1
≤ ρ;

∂+ĉ1(sa
1)

∂s1
≥ ρ;

∂+ĉm(0)
∂sm

≥ ρ, ∀m , 1, (5.40b)

where the second inequality is because if we let Hn be the term under square root
for ∂+ ĉn(sn)

∂sn
, then

Hn =

√(
∂+cn(sn)

∂sn
− (

α

2N
−
α

N
sn

δ
)

)2
+ (

α2

N2
(δ + sn)(δ − sn)

δ2)

≥
∂+cn(sn)

∂sn
− (

α

2N
−
α

N
sn

δ
).

Note that ∂
+ ĉn(sn)
∂sn

= 1
2 (

∂+cn(sn)
∂sn

+ α
2N)+

1
2 Hn. Hence we have

∂+ ĉ1(sa1)
∂s1

≥
∂+c1(sa1)
∂s1

+
αs1
2Nδ =

ρ. These conditions correspond to (5.30a)-(5.30d), so we conclude that (sa, ya) is
the unique optimal solution to (5.24a)-(5.24c). Hence ya− y∗ = δ−2ε′ = δ−ε. �

This is a particularly disappointing result since a key goal of the mechanism is to
obtain load shedding from the tenants. However, the proof emphasizes that this
is unlikely to occur in practice. In particular, the worst-case scenario is that there
exists a dominant (monopoly) tenant, which is unlikely in a multi-tenant colo, that
has a cost function asymptotically linear with unit cost roughly matching the on-site
generation price α.

5.3.3 Discussion

The main results for the price-taking and price-anticipating analyses are summa-
rized in Table 5.2. Note that simplified bounds are presented in the table, to ease
interpretation, and the interested reader should refer to the theorems in Section 5.3.1
and Section 5.3.2 for the actual bounds. Also, note that the benchmark for social
cost we consider is an ideal, but not achievable, mechanism.

6C1 = −αε
′(
(2N−1)δ−3ε′

2Nδ), and C2 = −
α
Nδ (Nδ

2 + δε′ − 3ε′)

150

Tenants Price Ratio Colo Saving Welfare Loss
Price-taking [N−1

N , 1] [0, αδ/N] [0, αδ/2N]
Price-anticipating [N−1

N , 1] [0, αδ/N] [0, αδ/N]

Table 5.2: Performance guarantee of COOP compared to the social optimal alloca-
tion.

To summarize the results in Table 5.2 briefly, note first that COOP always benefits
the operator, since the price paid to tenants to reduce energy is always less than the
socially optimal price, and the total cost incurred by operator for energy reduction
is also less than that of the social optimal. Secondly, COOP also gives the tenants
approximately the social optimal payment, since the operator’s additional benefit is
bounded above by αδ/N , and the welfare loss is bounded above by αδ/N . This
naturally means that the loss in payment for tenants compared to the social optimal is
at most 2αδ/N , which approaches 0 as N grows. Third, regardless of tenants being
price-taking or price-anticipating, COOP is approximately socially cost minimizing
as the number of tenants grows.

However, while COOP is good in terms of operator, tenant, and social cost, it may
not use the most environmentally friendly form of load reduction: in the worst case,
the upper bound on the extra on-site generation that COOP uses is not decreasing
with N . However, the analysis highlights that this worst-case occurs when there
exists a dominant tenant with unit cost of energy reduction that is consistently just
below the cost of diesel over a large range of energy reduction, which is unlikely to
occur in practice. So, COOP can be expected to use an environmentally friendly
mix in most realistic situations.

5.4 COOP with Multi-level Power Constraints

We describe the design of COOP and provide the efficiency bounds with respect to
social optimal allocation for both price taking tenants and price anticipating tenants
in Section 5.3 and Section 5.3.2. In this section, we extend our design to multi-level
power capping in the data center. Adding multi-level power capping constraints
increases the complexity of the analysis of the efficiency bound dramatically. Thus
we do not provide a theoretical analysis. We use a case study in Section 5.6 to show
the efficiency of our algorithm.

151

5.4.1 Problem Formulation

A data center typically oversubscribes capacity at multiple interdependent power
hierarchies (e.g., data center UPS-level, cluster PDU-level, and even rack-level),
each having its own capacity below which the involved tenants’ aggregate power
demand should be capped at all times [34, 183]. COOP is not restricted to any
particular levels. Like prior research [34], we consider the most typical two-level
power oversubscription, i.e., cluster PDU-level and data center UPS-level, referred
to as low and high levels, respectively. For ease of presentation, we treat the presence
of a diesel generator as a special tenant with linear cost function in the following
discussion.

Model. Consider a power emergency that involves a centralized UPS supporting M

cluster PDUs and a total of N tenants denoted by a setN0 = {1, 2, · · · , N}. The i-th
PDU supplies power to a subset of tenants Ni ⊆ N0, and the tenants served by two
different PDUs are non-overlapping (i.e., ∪M

i=1Ni = N0 and Ni ∩ Nj = � if i , j).
The high-level UPS capacity is exceeded by D0 ≥ 0, while the i-th low-level PDU
capacity is exceeded by Di ≥ 0. Suppose that tenant i cuts power by si and incurs
a cost of ci(si) that is increasing in si. Cutting power may result in service quality
or performance degradation, and the cost ci(si) can therefore be interpreted as the
performance cost, which converts the performance degradation into a monetary
value. The function ci(si) is decided at the tenant’s sole discretion as its private
information that is unknown to the operator.

Objective. Like power capping for owner-operated data centers [33, 34], we consider
an equivalent objective: minimizing tenants’ overall performance loss, formalized
below,

min
si≥0,i=1,2,··· ,N

N∑
i=1

ci(si) (5.41)

s.t.,
∑
i∈Nj

si ≥ D j, for j = 0, 1, 2, · · · , M,

where the objective of (5.41) is a scalar measure of overall performance loss and
impact on tenants, and the constraint specifies power capping requirements at the
high (D0) and low (D j for j = 1, · · · , M) levels, respectively.

Tenants typically test power-performance profiles before production deployment,
since power is a major cost for tenants’ leasing [34, 178]. Thus, given its own traffic
load, a tenant knows how much power can be shed and at what cost. If they are

152

uncertain at runtime (due to, e.g., changes in power profiles), tenants can evaluate
costs conservatively (see Section 5.6.6); hence, repeated profiling of ci(si) at runtime
is not necessary, and the overhead for the participating tenant is small.

The ideal case is when the operator can directly minimize the cost in (5.41), with
full control over tenants’ servers as in an owner-operated data center. We refer to the
outcome of this idealized, but not feasible in practice, case as OPT. The choice of
objective in (5.41) may seem counterintuitive, so let us discuss it briefly. One might
expect to have the objective be operator profit. However, the operator has a priority of
minimizing the impact of power capping on tenants’ operation during an emergency
since it is the operator’s fault (due to oversubscription) the emergency occurred.
This objective is consistent with prior power capping research on owner-operated
data centers [33, 34] and, further, in our context, if the operator still attempts to make
profits during an emergency, power outage risk may increase, which is unacceptable
since downtime incidents will significantly damage the operator’s business image
as well as its long-term profit. Additionally, note that the operator will not lose
profit during emergency events since it can always set an upper bound (according
to Table 5.1) to ensure that it will not lose profit due to oversubscription while
minimizing tenant impact.

5.4.2 A Market-Based Solution

We extend our design of COOP in Section 5.2.1 to multi-level power capping with
some simple changes. Instead of setting a uniform supply function across tenants,
we differentiate tenants based on their maximum possible power reductions and
consider a parameterized supply function si(bi, p) =

[
δi −

bi
p

]+
, where δi with a unit

of kW indicates tenant i’s maximum possible power reduction, bi is its bid (with a
unit of $) and p is the reward/price ($ per kW) offered by operator to all tenants. The
sign “+” in the supply function indicates that tenant cannot supply negative power
(i.e., increase power).

The supply function si(bi, r) =
[
δi −

bi
p

]+
indicates tenant i’s willingness to reduce

its power by si(bi, p) if the operator offers p for each kW reduction. The actual
power reduction is jointly determined by the following sequence.

Step 1: Operator decides δi. The data center operator decides δi and announces the

form of supply function si(bi, p) =
[
δi −

bi
p

]+
to tenants by signalling to tenants’

server control interfaces. Tenant i’s current power usage can be set as its maximum

153

0
0.4
0.8
1.2

0 0.5 1
Nor

ma
lize

d s i
aliNorm zed p

Reference SFB - Large BidSFB - Small Bid

Figure 5.3: Illustration of tenant’s bidding.

possible power reduction δi (i.e., power reduction if tenant i shuts down all its
servers).

Step 2: Tenant decides bi. With the price p as an unknown variable, tenant i

individually chooses and submits a bid bi to the operator. Essentially, tenant i

reports to the operator its power reduction flexibility: if offered a price of p, then it
will cut power by si(bi, p). In other words, given bi, the actual power reduction is
still a function of the variable p. (We will discuss how to choose bi later.)

Step 3: Operator decides r . Once the operator receives tenants’ bids, it needs to

decide p (called market clearing price), which is plugged into si(bi, p) =
[
δi −

bi
p

]+
to determine tenant i’s power reduction.

How to choose bid bi? Tenants have the full discretion to decide their own bids.
We first illustrate the impact of the bid on tenant’s power reduction in Figure 5.3.
As a reference, we also plot the tenant’s maximum power reduction without losing
profit: the maximum power reduction si such that tenant i’s net profit, i.e., operator’s
payment minus tenant’s private performance cost, is non-negative. Given a price o,
reducing more power than this reference value will incur a profit loss for tenants.
We see from both si(bi, p) =

[
δi −

bi
p

]+
and Figure 5.3 that a larger bi means that

tenant i is less willing to cut power given the same price p. We also notice that a
too-small bid may result in a profit loss when tenants are offered higher prices (i.e.,
shaded area in Figure 5.3).

Similar to the data center level constraint only case, an expected outcome is the
equilibrium point, at which each tenant i maximizes its net profit “p · si−ci(si),” thus
having no incentives to choose arbitrarily high bids and representing a stabilized
outcome.

Setting too large a bid deviates from an equilibrium point, since tenant will be
priced out or only asked to reduce a small amount of power when other participating

154

tenants can reduce power at lower prices. For example, if bi → ∞, tenant i will
be excluded from the mechanism without being asked to reduce any power, i.e.,
si(bi, p) =

[
δi −

bi
p

]+
= 0.

Tenants have the discretion to decide their bids, but the final price is set by the
operator (which determines the actual power reduction for each tenant) and rational
tenants will bid reasonably based on their private costs ci(si). One bidding strategy
is that bi is just large enough to avoid net profit loss over a price range (i.e., as
illustrated in dashed line in Figure 5.3).

To guide tenants’ bidding towards the equilibrium, the operator can tell the tenants
its expected price range (e.g., market price p will only be within [pmin, pmax]), such
that tenants can bid to avoid profit loss by considering this restricted price range
rather than the entire range.

How to decide price p? Given tenants’ bids, the operator’s goal is to set price
p as low as possible, while satisfying all the power capping constraints. It is
clear that, to ensure

∑
i∈Nj

si ≥ D j , the price p needs to satisfy
∑

i∈Nj
si(bi, p) =∑

i∈Nj

[
δi −

bi
p

]+
≥ D j . Thus, the market price p can be decided as

p = min
p′
{p′ ∈ [pmin, pmax] |

∑
i∈Nj

si(bi, p′) =
∑
i∈Nj

[δi−
bi

p′
]+ ≥ D j, for j = 0, 1, · · · , M},

i.e., the minimum price that satisfies all the power capping constraints and is within
the range [pmin, pmax]. If no such price exists, the operator needs to activate the
failover mode (see Section 5.4.4).

Scalability. COOP is highly scalable, as determination of the bid is performed by
individual tenants in parallel and the market price is decided based on a simple
rule p = minp′{p′ ∈ [pmin, pmax] |

∑
i∈Nj

si(bi, p′) =
∑

i∈Nj
[δi −

bi
p′]
+ ≥ D j, for j =

0, 1, · · · , M}. In practice, there are at most a few tens of tenants in wholesale
data centers, and typically no more than a few hundreds of tenants in retail data
centers. In either case, the complexity of COOP is reasonably low (further shown
in Section 5.6).

5.4.3 Implementation

To implement COOP, we introduce a set of new APIs, for both the operator and
tenants, as illustrated in Figure 5.4, where new APIs are inside shaded boxes. The
system flow is also described in Algorithm 6, where we consider a general two-level

155

1: Input: UPS and PDU capacities Pcap
i for i = 0, 1, · · · , M

2: Monitor UPS and PDU power Pi(t) continuously.
3: if Pi(t) > Pcap

i for any i = 0, 1, · · · , M then
4: Start waiting timer Tw

5: while Tw has not expired do
6: if Pi(t) ≤ Pcap

i for all i = 0, 1, · · · , M then
7: Go back to Line 2
8: . Entering “power capping” mode
9: if Pi(t) > Pcap

i for any i = 0, 1, · · · , M then
10: Set Di ←

[
Pi(t) − Pcap

i

]+
11: Announce si(bi, r) = [δi −

bi
r]
+ to tenant i

12: Tenant i decides its bid bi
13: Set price r = minr ′{r′ ∈ [rmin, rmax] |

∑
i∈Nj

si(bi, r′)
≥ D j, for j = 0, 1, · · · , M}

14: Each tenant i reduces si(bi, r) power
15: . Leaving “power capping” mode
16: wait until Pi(t) ≤ Pcap

i − Di for all i = 0, 1, · · · , M
17: Start capping timer Tc and wait until Tc expires or Pi(t) > Pcap

i − Di for any
i = 0, 1, · · · , M

18: if Pi(t) > Pcap
i − Di for any i = 0, 1, · · · , M then

19: Go back to Line 16
20: if Tc expires then
21: Notify tenants to resume normal operation
22: Calculate the power capping duration To
23: Provide tenant i with a reward of zi = To · r · si
24: Go back to Line 2

Pseudocode 6: COOP: Coordinated Power Management

capping. Note that, if only a few low-level PDUs are overloaded without exceeding
the high-level UPS capacity shared with other non-overloaded PDUs, then the
operator will only notify tenants served by these overloaded PDUs to participate in
COOP.

• Detecting power emergency. The operator monitors power by accessing power
meter API Power() at runtime, which is already in place in multi-tenant data
centers. While short-duration load spikes (e.g., a few seconds) can be tolerated
by the infrastructure itself [33, 168], a sustained power emergency of capacity
overloading should invoke the power capping mode and execute COOP. The time
threshold, i.e., Tw in Algorithm 6, for deciding power emergency depends on how
much the aggregate demand exceeds the capacity: if not too much, a larger Tw (e.g.,
a few tens of seconds) is used; and vice versa.

156

Server Management

Bid for Power Reduction

P
D
U

COOP

DVFS(…)
Sleep(…)
Migrate(…)
AdmnCtrl(…)

Bid(b,…)

Overload(…){
SuppFunc(𝛿,p,…)
SetReward(p,…)
Resume(…)

}

Power(…)

Tenant’s APIs Operator’s APIs

Tenant 𝒊

Figure 5.4: API diagram for COOP.

• Executing market mechanism. Upon a power emergency, the market mecha-
nism is executed following the steps described in Section 5.4.2 using new APIs.
Specifically, the operator communicates the supply function to tenants through
SuppFunc(δ, p, · · ·) where the price p is a parameter to be decided, and the tenant
decides its bid and submits it to the operator through Bid(b, · · ·). Then, the operator
sets the price p using SetReward(p, · · ·) and announces it to tenants. Note that, to
guide the outcome towards equilibrium, the operator can tell tenants its anticipated
price range [pmin, pmax], such that tenants can set bids to avoid a profit loss by only
considering this restricted price range instead of all possible prices.

• Reducing power demand. After the execution of the market mechanism, each
participating tenant i cuts its power by si(bi, p). It is at each tenant’s discretion
to decide the actual power reduction techniques, using a combination of resource
management APIs illustrated in Figure 5.4 and/or its existing built-in power capping
solutions [33, 34, 36]. Note that each knob has a different settling time for power
reduction (e.g., DVFS is faster than loadmigration) and, depending on howmuch the
power demand exceeds the capacity, the operator can also specify a timing constraint
to guide tenants’ selection of power reduction techniques.

•Resumingnormal operation. When the tenants’ aggregate power demandwithout
power capping becomes lower than the capacity for a duration exceeding threshold
Tc, the operator signals tenants to resume their normal operation using Resume(· · ·).
Tenants are compensated based on the power capping duration and price p.

5.4.4 Applicability of COOP

COOP applies to tenants who are interested in exchanging a temporary performance
loss (due to power reduction) for financial compensation. It does not target tenants
that have no tolerance on temporary performance loss (e.g., those running highly

157

mission-critical workloads). These tenants will be served as premium clients on
separated infrastructure without oversubscription.

In practice, a large portion of the operator’s revenue (over 50%) comes from ten-
ants running non-mission-critical workloads (e.g., R&D, lab computing, internal
services, and recently, Bitcoin) that exhibit a great scheduling flexibility for tem-
porarily reducing power [190]. Tenants also typically provision their servers based
on the peak need, thus often having a slackness for reducing server power [191,
192]. Further, increasingly mature power capping techniques [33] and emerging
techniques (e.g., approximate computing [193] that trades service quality for re-
source/power saving), have been constantly lowering the barrier for using COOP.

As shown in Table 5.1, the operator can offer more than $20/hour for each kW
reduction, which is nearly 200 times the market electricity price. If all tenants
choose to neglect the operator’s rewards and an unplanned downtime occurred,
tenants would experience a costly business interruption but receivemuch less reward
(around $3 per kW for each hour of downtime [178, 194]). Thus, it is also in the
tenants’ own interest to reduce power for handling emergencies.

In practice, tenants have no knowledge of whom they are sharing the PDU with.
Further, if some tenants’ power exceeds their own capacities, they will be penalized
andmay face an involuntary power cut. Thus, in practice, it is very difficult and risky
for (some) tenants to collude and create an artificial power emergency for rewards.

Finally, whenever tenants’ aggregate power demand is not capped below the capacity
by usingCOOP for any reasons (e.g., communication failure, or insufficient financial
compensation for incentiving enough power reduction), the operator may resort to
other complementary power capping techniques, e.g., discharging diesel generation
[166] that avoids power capacity overloading (albeit not applicable for handling
cooling capacity overloading) [180]. In any event, using COOP will not increase
the risk of outages compared to the case in which COOP is not used.

Combining all these factors, we have a good reason to believe thatCOOP is appealing
for reducing risks of outages when power emergencies arise in a multi-tenant data
center.

5.4.5 Comparison with Other Market Designs

Conceptually, our formulation in (5.41) can be viewed as a multi-resource allocation
problemwhere the resources are “power reduction Di for i = 0, 1, · · · , M” [195, 196].

158

It is challenging because: first, “resources” in our context are interdependent (e.g.,
high-level power capacity overlaps with low-level capacity), whereas the resources
to allocate aremostly orthogonal in prior research (e.g., CPU andmemory in clusters
[195]); and second, tenants have private cost information ci(si) and manage their
own servers without being controlled by the operator.

While there are market-based studies (e.g., Nash bargaining) for multi-resource
allocation [195, 196], their focus is on encouraging resource sharing (for improving
utilization) and balancing efficiency versus fairness, whereas we aim at minimizing
tenants’ performance cost using a different mechanism — supply function bidding.

Market-based powermanagement in (multi-tenant) data centers has recently received
attention but differs from our work in problem formulation (due to our multiple
interdependent power capping constraints) [43, 196–202]. Further, most of the
prior studies have considered pricing-based or Vickrey-Clarke-Groves (VCG)-based
mechanisms, which are not suitable for our problem due to the following limitations.

Pricing-based mechanisms. Under a pricing-based mechanism, the operator offers a
reward (also called“price”) to incentivize tenants’ power reduction [198, 199, 201].
The challenge of such designs is the determination of the price. In order to properly
set prices such that tenants reduce a desired amount of power, the operator needs
to know a priori how much power tenants would reduce in response to the offered
price, and prior literature [198] has shown that inaccurate prediction can lead to
undesired outcomes (e.g., power capping violation in our context). Further, power
emergencies often occur unexpectedly and thus, estimating tenants’ responses is
inherently highly noisy during such periods.

VCG-based mechanisms. Another commonly-studied approach to solving (5.41)
is the VCG auction mechanism [203, 204], i.e., the data center operator treats the
power reduction quota as a resource and auctions it to tenants. Such designs require
that tenants submit complex bids disclosing their full cost functions ci(·), which
are private information. Further, under such designs the payments made to tenants
may be unbounded and reward rates for different tenants’ power reductions are
significantly different (creating unfairness issues). Thus, VCG auction mechanisms
are rarely used in real large-scale systems (see [171] for a longer discussion).

Supply function mechanisms. In contrast, COOP adapts a variant of supply function
bidding widely used in power markets that, besides its cost efficiency [171], has
compelling advantages. First, through a supply function, the operator proactively

159

Tenant Type No. of Tenant’s Location Cluster’s
Servers Max. Power Max. Power

#1 Web search 2 200 W
Cluster#A 740 W#2 KVS 2 310 W

#3 Hadoop 2 230 W
#4 Web search 3 300 W Cluster#B 530 W#5 Hadoop 2 230 W

Table 5.3: Testbed configuration.

solicits information from tenants as to how much power they would like to reduce
if offered a certain price, while such information needs to be predicted by pricing-
based mechanisms [198, 199]. Second, it uses the parameterized supply function
as a proxy, thus avoiding tenants’ disclosure of their private cost functions. Fi-
nally, it allows easy communication of the supply function through a single bidding
parameter bi from each tenant.

5.5 Evaluation Methodology

We now describe our methodology for evaluating the efficiency of COOP in realistic
scenarios. We first describe our prototype for a multi-tenant data center, and then
formalize tenants’ cost and performance models.

Following prior power capping research [33, 34], we build a scale-down testbed with
two clusters (labelled as #A and #B, with six and five Dell PowerEdge R720 servers,
respectively) in view of the practical difficulty in accessing commercial systems.
The servers each have one 6-core Intel Xeon E-2620 Processor and 32GB memory.
They are virtualized to create multiple nodes. All servers are powered through
CloudPOWER meters to measure power at runtime. Our testbed configuration is
presented in Table 5.3, which has five tenants on the two clusters: two tenants (#1
and #4) process web search workloads, another two (#3 and #5) process Hadoop
jobs and the remaining tenant (#2) processes key-value store (KVS) workloads.

According to tenants’ maximum power, the total subscribed power at Cluster#A is
740W and at Cluster#B is 530W, which we use as a baseline to determine the cluster-
level power oversubscription. For example, if the capacity of Cluster#A is 672W,
then 740W power subscription represents a 10% oversubscription. As illustrated in
Fig. 5.4, we implement the APIs for the operator on a separate desktop server, and
APIs for tenants as a separate process on their own servers.

160

5.5.1 Workloads

In the following, we describe our implementation of the web search, key-value store
(KVS) and Hadoop workloads. While COOP is not restricted to these workloads,
we choose our setting for two reasons: (1) it resembles the common setting in
commercial data centers serving a diverse set of tenants, including CDN, web
services and data analytics; and (2) our choice of workload is consistent with prior
studies (e.g., [34]) that investigate power capping for owner-operated clusters (which
can be viewed as “tenants” in our context).

Web search: We use web search benchmark from CloudSuite [205]. It benchmarks
the indexing process using the Nutch search engine. We implement it for tenants
#1 and #4. Tenant #1 has one Nutch front end and five index serving nodes, while
tenant #4 has one Nutch front end and eight index serving nodes.

Key-value store (KVS): KVS resembles multi-tiered applications such as social
networking. Tenant#2 has one load balancer VM, three Memcached VMs, three
database VMs and nine application VMs.

Hadoop: Our Hadoop implementations for tenants #3 and #5 each consists of one
master node and eleven worker nodes, using VMs hosted on two physical servers.
We perform the sort benchmark on randomly generated files.

5.5.2 Performance and Cost Models

To participate inCOOP, tenants need to employ power management (widely existing
in today’s systems [34, 191]) and evaluate their costs due to power reduction to decide
bids.

Power and performance. Power reduction is normally accompanied by a perfor-
mance degradation [33]. For the web search and KVS tenants, we use 95% response
time as the performance metric (which is a key performance indicator for web ser-
vices), while job completion time is used as the performance metric for the Hadoop
tenants (due to the delay-tolerant nature). In our study, we consider that the tenants
reduce their power using dynamic voltage frequency scaling (DVFS) supported by
most modern CPUs [206]. As a commonly-used knob for power capping [33, 34],
DVFS enables almost instantaneous power reduction. The Intel Xeon CPUs in our
testbed servers have 10 discrete DVFS levels with processing speeds ranging from
1.2GHz to 2.0Ghz.

161

100
200
300
400

150 175 200

95%
 De

lay
(ms

)

Power (W)

MeasuredFitting

(a) T#1- Web search

200

600

1000

265 290 315

95%
 De

lay
(ms

)

Power (W)

FittingMeasured

(b) T#2- KVS

150

300

450

170 200 230Job
 Fin

ish
 Tim

e (s
)

Power (W)

FittingMeasured

(c) T#3- Hadoop

Figure 5.5: Power and performance models.

0
1
2
3
4

0 25 50

Cos
t ($

/ho
ur)

Power Reduction (W)

MeasuredFitting

(a) T#1- Web search

0
1
2
3
4

0 25 50

Cos
t ($

/ho
ur)

Power Reduction (W)

FittingMeasured

(b) T#2- KVS

0
1
2
3
4

0 25 50

Cos
t ($

/ho
ur)

Power Reduction (W)

FittingMeasured

(c) T#3- Hadoop

Figure 5.6: Cost models.

Wemodel the tenants’ performance and power at different DVFS levels, and show the
results for the three different types of workloads in Fig. 5.5. For the convenience of
clarity, we set the same speed for all servers of a tenant, and only show results under
a certain traffic load: tenant #1’s delay performance is measured for 80 simultaneous
search sessions, tenant #2’s performance is measured for 30 requests/second. These
are their maximum processing capacities under their subscribed power. For tenant
#3 serving Hadoop, the file size is 3GB. Fig. 5.5 shows the non-linear relation
between delay performance and power consumption, indicating a natural result that
tenants suffer from a greater performance loss when they run their servers in lower
power modes. We do not show tenants #4 and #5, which have similar configurations
to tenants #1 and #3, respectively.

Cost model. In principle, tenants have full discretion to decide their own cost
models, considering one or more factors such as performance loss and risk attitude,
among others. COOP applies to a large family of cost models in practice, although
the theoretical efficiency guarantee only holds under a simplified setting with convex
costs [171].

For evaluation purpose, we consider a cost model in terms of delay performance

162

and model the performance cost for web search and KVS tenants using a piece-wise
cost function adopted by [207] as follows:

ctenant =

a · d, if d ≤ dth,

a · d + b · (d − dth)
2, if d > dth,

(5.42)

where ctenant is cost per job, a and b are tenants’ own modeling parameters, d is
95% delay of interest, and dth is the delay threshold below which the performance
cost only increases linearly (since end users can barely perceive the delay increase
if it is already small). When the delay exceeds the threshold, however, performance
cost will increase quadratically to account for degradation in user experiences.

For theHadoop tenants, we use a linear costmodel that increaseswith job completion
time ctenant = ρ·Tjob, where ρ is amodeling parameter andTjob is the job completion
time of the Hadoop system.

Using the above cost models, we determine tenants’ costs corresponding to different
levels of power reduction (by setting dth = 100ms for web search and dth = 300ms

for KVS). Fig. 5.6 shows the cost of power reduction to the tenants, under the same
traffic setting as in Fig. 5.5. We subtract the tenants’ original costs (without power
reduction) from their cost models to ensure “zero cost” for zero power reduction.
Setting cost model parameters is the task of individual tenants.

For evaluation purpose, we set the cost parameter such that the tenants’ cost for
power reduction is comparable to the extra revenue the data center operator gets
from oversubscribing the capacity. Cost function is tenant’s private information,
and COOP uses supply function as a proxy to avoid the disclosure of tenant’s cost
information.

While the cost values can be arbitrarily set by tenants, our choice in this evaluation
is logical: if there are mission-critical tenants which have a very high cost of
power reduction, the operator will offer these tenants a premium service and not
oversubscribe the capacity serving them.

Importantly, our results are not particularly sensitive to the details of the cost model
described above, provided that costs are not arbitrarily high (otherwise, those tenants
are considered as “premium” and served without oversubscription). We highlight
this in Section 5.6 by varying the cost models.

163

5.5.3 Capacity Overloading

We apply COOP to handle a two-level power emergency involving five tenants
in two low-level clusters sharing one high-level UPS, for the following levels of
oversubscriptions.

• Aggressive. Cluster#A capacity is 643W and Cluster#B capacity is 460W (15%
oversubscription), while the high-level capacity is 1050W (5% oversubscription,
i.e., 1050 ∗ 1.05 = 643 + 460).

• Moderate. Cluster#A capacity is 672W and Cluster#B capacity is 481W (10%
oversubscription), while the high-level capacity is 1098W (5% oversubscription,
i.e., 1098 ∗ 1.05 = 672 + 481).

• Conservative. Cluster#A capacity is 704W and Cluster#B capacity is 504W (5%
oversubscription), while the high-level capacity is 1150W (5% oversubscription,
i.e., 1150 ∗ 1.05 = 672 + 481).

Note that the three oversubscription cases described above are equivalent to a com-
bined oversubscription at the high level of approximately 20%, 15% and 10%,
respectively. We consider this combined 20% oversubscription as an “aggressive”
strategy for two reasons. First, real-world data center power measurement demon-
strates that the average power demand is roughly 70-80% of the peak [169, 208]:
if the operator oversubscribes the capacity by more than 20% (equivalently, provi-
sioning a capacity less than 83% of the peak demand), then the provisioned capacity
may be quite close to or even below the servers’ average power demand. Second, as
shown in Table 5.1, if oversubscription is too large and exceeds 20%, the probability
of overloading also increases and hence the reward rate that can be offered to tenants
without decreasing the operator’s profit actually decreases.

Power emergency. We create a power emergency by increasing tenants’ traffic load
simultaneously. The top envelope in Figure 5.8a illustrates the capacity overloading
event: at around the 130th second, there is a spike in aggregate power demand,
which begins to decrease by itself at around the 300th second when we decrease
tenants’ traffic (due to the completion of Hadoop jobs).

5.6 Evaluation Results

In this section, we evaluate COOP on the testbed described above. By assessing the
efficiency of COOP in terms of total performance cost, we show that COOP is very

164

close to OPT. Moreover, we demonstrate that COOP provides economic benefits to
both the data center operator (through extra profit) and tenants (by reducing leasing
costs).

5.6.1 Baseline and Metric

Baseline. We use OPT as the baseline, an ideal case where the operator minimizes
the performance cost formulated in (5.41) and then dictates tenants’ power reduction
accordingly as if in an owner-operated data center.

Except for COOP, we are not aware of any alternative market mechanisms applied
to handle a multi-level power capping in a multi-tenant data center. Furthermore, as
shown later, COOP is very close to OPT in terms of the total performance cost (our
key efficiency metric detailed below). Thus, we do not compare COOP with other
market mechanisms which have yet to be introduced to multi-tenant data centers.

Metric. The key metric to assess COOP is the total performance cost of the
tenants, which, as formulated in (5.41) and quantified in monetary value, is a scalar
measure of overall performance impact on tenants. We also evaluate the tenants’
performance: 95-percentile delay for web search (tenant #1 and #4) and KVS (tenant
#2), and throughput (job processing rate) for Hadoop tenants (#3 and #5).

Normalized performance. Tenants’ power reduction results in performance degra-
dation during an emergency [33, 34]. Thus, we normalize tenants’ performance
under COOP with respect to that under OPT (our idealized baseline) to show how
gracefully COOP can handle an emergency compared to OPT. Thus, the normalized
performances are defined as: the ratio of OPT’s 95% delay to COOP’s 95% delay,
and the ratio of COOP’s throughput to OPT’s throughput.

Tenants can be price-taking or price-anticipating. Price-taking means that tenants
simply bid in a myopic way without predicting the impact of their bidding decisions
on the market price. Price-anticipating means that tenants can predict how the
operator sets price and more intelligently decide their bids to maximize their profits
“r · si − ci(si)”. See [171] for a detailed discussion of their different impacts on
the equilibrium. For completeness, we show results for both cases under their
respective equilibrium points, at which tenants maximize their own profits and have
no incentives to deviate.

165

0

1

2

Consr. Mod. Aggr.
Cos

t ($
)

Oversubscription

OPTCOOP (Price Taking)COOP (Price Anticipating)

(a) Performance cost

0
5

10
15
20

Consr. Mod. Aggr.

Rew
ard

 ($/
KW

/h)

Oversubscription

COOP (Price Taking)
COOP (Price Anticipating)

(b) Reward rate

0

50

100

T#1 T#2 T#3 T#4 T#5Pow
er R

edu
ctio

n (W
) OPTCOOP (Price Taking)COOP (Price Anticipating)

(c) Power

0

1

2

T#1 T#2 T#3 T#4 T#5

Nor
m.

Per
form

anc
e COOP (Price Taking)

COOP (Price Anticipating)

(d) Performance

Figure 5.7: Comparison of different algorithms.

0.9
1.1
1.3
1.5

0 200 400 600

Pow
er (

KW
)

Time (s)

S#1 S#2 S#3Cluster#B w/o COOP COOPCap

(a) Agressive oversubscription

0.9
1.1
1.3
1.5

0 200 400 600

Pow
er (

KW
)

Time (s)

S#1 S#2 S#3Cluster#B w/o COOP COOPCap

(b) Moderate oversubscription

0.9
1.1
1.3
1.5

0 200 400 600
Pow

er (
KW

)
Time (s)

S#1 S#2 S#3Cluster#B w/o COOP COOPCap

(c) Conservative oversubscrip-
tion

Figure 5.8: Power traces under different oversubscription configurations.

0

200

400

600

60 240 420 600

9
5

%
 D

e
la

y
 (

m
s)

Time (s)

w/o COOP Aggressive

Moderate Conservative

(a) Tenant #1 (Web search)

0

400

800

1200

60 240 420 600

9
5

%
 D

e
la

y
 (

m
s)

Time (s)

w/o COOP Aggressive
Moderate Conservative

(b) Tenant #2 (Key-value store)

0

10

20

30

60 240 420 600

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Time (s)

w/o COOP Aggressive
Moderate Conservative

(c) Tenant #3 (Hadoop)

Figure 5.9: Delay performance traces of the tenants under different oversubscription
levels.

5.6.2 Efficiency

We first assess the efficiency of COOP in terms of the total performance cost. The
results are shown in Figure 5.7a, where the absolute values are small due to the scale
of our testbed. Under all the considered oversubscription levels, COOP is close to
OPT, bothwhen tenants are price-taking andwhen they are price-anticipating, which
demonstrates that COOP is efficient in minimizing performance cost in practical
settings that extend the theoretical study [171].

166

Figure 5.7b shows the price/reward ($/kW/Hour) paid to tenants. There is no price
in OPT, because it assumes the operator’s full control over tenants’ servers as in
an owner-operated data center. As expected, when tenants are more “clever”, i.e.,
price-anticipating, they explicitly predict the way to set market price and then bid
accordingly, thereby driving up the price.

Next, with a moderate oversubscription, we show in Figure 5.7c the breakdown of
tenants’ power reduction. Under both COOP and OPT, tenants’ power reductions
are almost identical, further confirming that COOP is close to OPT. Figure 5.7d
shows COOP’s performance normalized with respect to OPT’s performance: COOP
is almost identical to OPT in terms of the performance impact on tenants.

Settling time. There is a time lag, i.e., settling time, between the detection of power
emergency and tenants’ actual power reduction. First, the supply function bidding
mechanism inCOOP needs to be executed as described in Section 5.4.2. Each tenant
needs to calculate its bidding parameter bi based on its current traffic, which takes
less than 50ms per computation and is performed in parallel; the operator clears the
market price according to r = minr ′{r′ ∈ [rmin, rmax] |

∑
i∈Nj

si(bi, r′) ≥ D j, for j =

0, 1, · · · , M}, taking very little time. The messaging delay between the operator
and tenants is in the order of tens of milliseconds, as only the supply function and
bid/price parameters need to be communicated and the number of involved tenants
is typically small (a few tens). Thus, the total time for executing COOP is less than
0.5 second.

The next step is for tenants to reduce power as decided by COOP. Here, we use
DVFS as it is a widely-adopted technique and can switch between different speeds
very quickly to cut enough power (even for 20% oversubscription).

The overall settling time for COOP in our study is less than one second, which
is quickly enough to handle a power emergency and consistent with recent power
capping studies for owner-operated data centers [34].

5.6.3 Execution

Figure 5.7 shows that the total performance cost and tenants’ power reduction are
very similar, under both COOP and OPT. Thus, we only show the results of COOP
(with price-anticipating tenants) below.

167

5.6.3.1 Power demand

Aggressive oversubscription. Figure 5.8a shows the power trace for aggressive
oversubscription. The top envelope represents the tenants’ aggregate power de-
mand without any power reduction, while the bottom envelope is the reduced power
demand when applying COOP. The shaded areas represent the individual contri-
butions in power reduction. We combine the contribution from tenants #4 and #5
connected to Cluster#B as a whole for better clarity. We set the timer for initiating
power capping as Tw = 15s. After power capping is applied at around time 145s,
the aggregate power demand goes below (but close to) the provisioned capacity.
Then, at around time 490s, there is a change in the aggregate power demand (lower
envelope), because tenant #5 finishes its job and COOP is re-applied to decide power
reductions for participating tenants.

Moderate and conservative oversubscription. Figure 5.8b and Figure 5.8c show
the power traces undermoderate and conservative oversubscription, respectively. We
make similar observations as in Figure 5.8a, except that tenants can resume normal
operation sooner (since Hadoop tenants finish jobs sooner with a less aggressive
oversubscription).

5.6.3.2 Performance

We show Cluster#A tenants’ performance measured over a 60-second window in
Figure 5.9. Tenants in Cluster#B have similar results. Figure 5.9a and 5.9b show
the 95% delay performance of tenant #1 and tenant #2, respectively. Figure 5.9c
shows the Hadoop tenant’s performance (measured in the throughput, which is the
inverse of job completion time given a fixed file size). As expected, we see the
worst performance when the capacity is most aggressively oversubscribed (15% at
the low level and 5% at the high level in our study).

While performance degradation is often unavoidable to handle power emergencies
[33, 34], by using COOP, tenants’ performance loss is minimum, as compared to
OPT in terms of total performance cost and shown in Figure 5.7a.

5.6.4 Economic Benefit

Figure 5.10 shows economic benefits under different oversubscription levels: ten-
ants save leasing cost throughfinancial compensation for temporary power reduction,
while the operator earns extra profit through oversubscription. Tenants’ total reward

168

0%

20%

40%

Consr. Mod. Aggr.Sav
ing

/Ex
tra

Pro
fit

Oversubscription

T#1 T#2T#3 T#4T#5 Operator

(a) Price taking

0%

20%

40%

Consr. Mod. Aggr.Sav
ing

/Ex
tra

Pro
fit

Oversubscription

T#1 T#2T#3 T#4T#5 Operator

(b) Price anticipating

Figure 5.10: Economic benefit.

-10
10
30
50

0.1 1.5Eco
nom

ic B
ene

fit (
%)

0.8
Cost Scaling

Tenant - Price TakingTenant - Price AnticipatingOperator - Price TakingOperator - Price Anticipating

(a) Economic Benefit

0

20

40

0.1 1.5Rew
ard

 ($/
KW

/h)
0.8

Cost Scaling

Price TakingPrice Anticipating

(b) Reward rate

Figure 5.11: Impact of tenants’ cost.

is determined based on the reward rate and the probability of capacity overloading
over a year (based on Figure 5.2). Tenants’ cost saving is calculated as the ratio
of their total rewards to their total leasing costs based on the average market price
of 150$/kW/month. We exclude tenants’ performance cost, which is a quantitative
measure of tenants’ performance consideration, and this is also the standard practice
when assessing the cost saving benefit [34, 166]. The data center operator’s extra
profit is determined by subtracting the total payment to tenants from its additional
revenue due to oversubscription. Figure 5.10a and Figure 5.10b show the economic
benefits when tenants are price-taking and price-anticipating, respectively. In both
cases, we see that tenants’ cost saving goes up, as the level of oversubscription
is increased. However, the operator has the highest extra profit under moderate
oversubscription, because with aggressive oversubscription (20% combined over-
subscription), the operator needs to pay a high price due to tenants’ increasing
reluctance to cut more power (Figure 5.6).

5.6.5 Tenant Costs

Tenant cost functions play a vital role in bidding decisions and hence the outcome
of COOP. To illustrate the sensitivity of COOP to tenant cost functions we consider
settings with costs scaled by a factor ranging from 0.1 to 1.5, and show the result

169

20
40
60
80

T#1 T#2 T#3 T#4 T#5Pow
er R

edu
ctio

n (W
) 5% 10% 15%20% 25% 30%

(a) Power Reduction

0
5
10
15
20
25

0%
5%

10%
15%
20%
25%

0 5 10 15 20

Rew
ard

 ($/
KW

/h)

Overestimation (%)

Tenant SavingOperator Extra ProfitReward Rate

(b) Price Taking

Figure 5.12: Impact of tenant cost overestimation.

under moderate oversubscription in Figure 5.11. We see that regardless of price-
taking and price-anticipating behaviors, tenants’ saving, averaged over the three
tenants, increases with their scaling of performance cost, while the operator’s extra
profit goes down and even becomes negativewhen the scaling factor ismore than 1.3.
Figure 5.11b shows the corresponding reward rates, which are going up as tenants’
cost increases. This confirms that to earn extra profit through oversubscription, the
operator should target those tenants that do not run highlymission-critical workloads
and have a low cost for power reduction. We have also evaluated other cost models,
and similar results hold.

5.6.6 Bidder Uncertainty

Amain task for tenants inCOOP is determination of the bidding strategy. Onemight
expect that tenants have some uncertainty in this regard, and that this uncertainty,
combined with risk aversion, may lead tenants to overestimate their costs when
submitting bids. To illustrate the impact of this, we consider a setting where the
web search tenants (#1 and #4) overestimate their costs by up to 30%. We see
from Figure 5.12a that power reduction decreases for the two web-search tenants,
while the other tenants’ power reduction increases tomeet power capping constraints.
However, the impact is not significant. As shown in Figure 5.12b, cost overestimation
slightly drives up the reward rate and has a very little impact on savings (for both
operator and tenants). This is because the impact of tenants with overestimated
costs is mitigated by the other tenants. Similar results hold for price-anticipating
tenants. If tenants bid arbitrarily high for any reason, they will be excluded from
COOP (equivalent to premium tenants served without oversubscription) and lose
cost saving benefits provided by COOP. In fact, it is in tenants’ interests to bid
reasonably (as discussed in Section 5.4.2) to reach an equilibrium, at which all
participating tenants maximize their own net profits.

170

We also run a larger-scale simulation to evaluate COOP with more tenants. Our
simulation shows that COOP still applies and mutually benefits the data center
operator and participating tenants. These results are omitted for brevity.

5.7 Related Work

There is a large and rich literature on power capping in owner-operated data centers.
Various techniques have been proposed for minimizing performance loss, such as
reducing CPU power [33, 209], admission control [210], virtualizing power allo-
cation [34, 36], and load migration [34, 210]. These can be leveraged as power
capping techniques by individual tenants, but they are not applicable for handling
emergencies resulting from operator’s oversubscription due to lack of control over
tenants’ servers. Recent studies [35, 166, 211] have explored discharging diesel gen-
eration (e.g., battery) to temporarily boost power supply for handling a emergency.
These techniques can be viewed as “supply-side” solutions and are complemen-
tary to our “demand-side” power reduction. Further, discharging diesel generation
might still overload the cooling capacity, which, typically sized based on the IT
power, may increase overheating risk, which is a major reason for downtimes [168,
181]. Recent work [212] proposes to place phase changing materials inside servers
to avoid cooling capacity overloading, but tenants’ servers may not have such ad-
vanced materials. COOP still works if cooling capacity is over-provisioned and/or
phase changing materials are available, and in such cases, these techniques can be
combined with COOP to enable more power oversubscription.

Our research is relevant to multi-resource allocation [195, 196] and data center
demand response (broadly interpreted as reshaping the power demand towards a
desired goal) [43, 197–202, 213]. In addition to problem differences, our formula-
tion and proposed mechanism are also different to those prior studies. Specifically,
the prior studies on data center demand response [43, 198–202, 213] have all been
focused on cutting power on a best-effort basis at the data center level, whereas we
propose supply function bidding to address multi-level power capping. A detailed
comparison is provided in Section 5.4.5.

5.8 Concluding Remarks

This chapter proposesCOOP, a market-based approach for incentivizing and coordi-
nating tenants’ power reductions in the event of a power emergency in a multi-tenant

171

data center. COOP uses a supply function bidding mechanism motivated by litera-
ture in electricity markets. We demonstrate the effectiveness of COOP by building
a prototype and illustrating that COOP is efficient in minimizing the total perfor-
mance cost, even compared to the ideal case OPT. We also demonstrate that COOP
is “win-win”, increasing the data center operator’s profit and reducing tenants’ cost
by providing financial compensation for power reductions.

172

BIBLIOGRAPHY

[1] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. In: Communications of the ACM (2008).

[2] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica. “Spark:
Cluster Computing with Working Sets”. In: USENIX HotCloud. 2010.

[3] P. Carbone, A. Katsifodimos, S. Ewen, V.Markl, S. Haridi, and K. Tzoumas.
“Apache flink: Stream and batch processing in a single engine”. In: Bulletin
of the IEEE Computer Society Technical Committee on Data Engineering
36.4 (2015).

[4] Hadoop. http://hadoop.apache.org.

[5] Hadoop Distributed File System. http://hadoop.apache.org/hdfs.

[6] S. T. L. S. Ghemawat H. Gobioff. “TheGoogle File System”. In:ACMSOSP.
2003.

[7] Applications and Organizations using Hadoop. http : / /wiki . apache .org /
hadoop/PoweredBy.

[8] Apache Hadoop. https://en.wikipedia.org/wiki/Apache_Hadoop.

[9] The Next Generation of Apache Hadoop MapReduce. http : / / developer.
yahoo.com/blogs/hadoop/posts/2011/02/mapreduce-nextgen/.

[10] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. “Building a high-level
dataflow system on top ofMap-Reduce: the Pig experience”. In:Proceedings
of the VLDB Endowment 2.2 (2009), pp. 1414–1425.

[11] Hive. http://wiki.apache.org/hadoop/Hive.

[12] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade,M. Fu, J. Donham, et al. “Storm@ twitter”. In:Proceed-
ings of the 2014 ACM SIGMOD international conference on Management
of data. ACM. 2014, pp. 147–156.

[13] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino.
“Apache tez: A unifying framework for modeling and building data process-
ing applications”. In: Proceedings of the 2015 ACM SIGMOD international
conference on Management of Data. ACM. 2015, pp. 1357–1369.

[14] J. Kreps, N. Narkhede, J. Rao, et al. “Kafka: A distributed messaging system
for log processing”. In: Proceedings of the NetDB. 2011, pp. 1–7.

[15] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. “Effective Strag-
gler Mitigation: Attack of the Clones”. In: USENIX NSDI. 2013.

http://hadoop.apache.org
http://hadoop.apache.org/hdfs
http://wiki.apache.org/hadoop/PoweredBy
http://wiki.apache.org/hadoop/PoweredBy
https://en.wikipedia.org/wiki/Apache_Hadoop
http://developer.yahoo.com/blogs/hadoop/posts/2011/02/mapreduce-nextgen/
http://developer.yahoo.com/blogs/hadoop/posts/2011/02/mapreduce-nextgen/
http://wiki.apache.org/hadoop/Hive

173

[16] J. Dean and L. Barroso. “The Tail at Scale”. In: Communications of the
ACM 2 (2013).

[17] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, E. Harris, and
B. Saha. “Reining in the Outliers in Map-Reduce Clusters Using Mantri”.
In: USENIX OSDI. 2010.

[18] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. “Improving
MapReduce Performance in Heterogeneous Environments”. In: USENIX
OSDI. 2008.

[19] G. Ananthanarayanan, M. Hung, X. Ren, I. Stoica, A. Wierman, and M. Yu.
“GRASS: Trimming Stragglers in Approximation Analytics”. In: USENIX
NSDI. 2014.

[20] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. “Sparrow: Distributed,
Low Latency Scheduling”. In: ACM SOSP. 2013.

[21] S.Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
“BlinkDB: Queries with Bounded Errors and Bounded Response Times on
Very Large Data”. In: EuroSys. ACM. 2013.

[22] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and R. Sears.
“MapReduce Online”. In: USENIX NSDI. 2010.

[23] Interactive Big Data analysis using approximate answers. http : / / tinyurl .
com/k5favda. 2013.

[24] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and
J. Zhou. “SCOPE: Easy and Efficient Parallel Processing of Massive Data
Sets”. In: Proceedings of the VLDB Endowment 2 (2008).

[25] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. “Job Scheduling for Multi-User MapReduce Clusters”. In: UC
Berkeley Technical Report UCB/EECS-2009-55. 2009.

[26] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, and
I. Stoica. “Low Latency Geo-distributed Data Analytics”. In: SIGCOMM.
2015.

[27] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese. “WAN-
alytics: Analytics for a Geo-distributed Data-intensive World”. In: CIDR.
2015.

[28] A. Vulimiri, C. Curino, B. Godfrey, J. Padhye, and G. Varghese. “Global
Analytics in the Face of Bandwidth and Regulatory Constraints”. In: NSDI.
2015.

[29] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu. “Query-
based Data Pricing”. In: Proceedings of the 31st symposium on Principles
of Database Systems. 2012.

http://tinyurl.com/k5favda
http://tinyurl.com/k5favda

174

[30] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu. “Toward
Practical Query Pricing with QueryMarket”. In: SIGMOD. 2013.

[31] L. Fleischer and Y. Lyu. “Approximately Optimal Auctions for Selling Pri-
vacy when Costs are Correlated with Data”. In: Proceedings of the 13th
ACM Conference on Electronic Commerce. 2012.

[32] C. Li, D. Li, G. Miklau, and D. Suciu. “A Theory of Pricing Private Data”.
In: ACM Transactions on Database Systems (2014).

[33] X. Fu, X. Wang, and C. Lefurgy. “How Much Power Oversubscription is
Safe and Allowed in Data Centers”. In: ICAC. 2011.

[34] D. Wang, C. Ren, and A. Sivasubramaniam. “Virtualizing Power Distribu-
tion in Datacenters”. In: ISCA. 2013.

[35] D. Wang, S. Govindan, A. Sivasubramaniam, A. Kansal, J. Liu, and B.
Khessib. “Underprovisioning Backup Power Infrastructure for Datacenters”.
In: ASPLOS. 2014.

[36] H. Lim,A.Kansal, and J. Liu. “Power budgeting for virtualized data centers”.
In: USENIX ATC. 2011.

[37] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey, E.
Masanet, N. Horner, I. Azevedo, and W. Lintner. “United states data center
energy usage report”. In: (2016). url: https : / / eta . lbl .gov /publications /
united-states-data-center-energy.

[38] A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad. “Opportunities and
Challenges for Data Center Demand Response”. In: IGCC. 2014.

[39] VMware. Distributed Power Management Concepts and Use. url: http://
www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf.

[40] Harbor Ridge Capital. Colocation Data Centers: Overview, Trends &M&A.
url: http://www.harborridgecap.com.

[41] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu. “Hopper: Decen-
tralized speculation-aware cluster scheduling at scale”. In: ACM SIGCOMM
Computer Communication Review. Vol. 45. 4. ACM. 2015, pp. 379–392.

[42] X. Ren, P. London, J. Ziani, and A. Wierman. “Datum: Managing Data
Purchasing and Data Placement in a Geo-Distributed Data Market”. In:
IEEE/ACM Transactions on Networking (2018).

[43] N. Chen, X. Ren, S. Ren, and A. Wierman. “Greening Multi-Tenant Data
Center Demand Response”. In: IFIP Performance. 2015.

[44] M. A. Islam, X. Ren, S. Ren, A. Wierman, and X. Wang. “A market ap-
proach for handling power emergencies in multi-tenant data center”. In:
High Performance Computer Architecture (HPCA), 2016 IEEE Interna-
tional Symposium on. IEEE. 2016, pp. 432–443.

https://eta.lbl.gov/publications/united-states-data-center-energy
https://eta.lbl.gov/publications/united-states-data-center-energy
http://www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf
http://www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf
http://www.harborridgecap.com

175

[45] J. Liu, K. Shih, W. Lin, R. Bettati, and J. Chung. “Imprecise Computations”.
In: Proceedings of the IEEE (1994).

[46] S. Lohr. Sampling: design and analysis. Thomson, 2009.

[47] J. Hellerstin, P. Haas, and H. Wang. “Online Aggregation”. In: ACM SIG-
MOD. 1997.

[48] M. Garofalais and P. Gibbons. “Approximate Query Processing: Taming the
Terabytes”. In: VLDB. 2001.

[49] M. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.

[50] L. Kleinrock. Queueing systems, volume II: computer applications. John
Wiley & Sons New York, 1976.

[51] C. Liu and J. Layland. “Scheduling Algorithms for Multiprogramming in a
Hard-real-time Environment”. In: Journal of the ACM (JACM) (1973).

[52] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.
Franklin, S. Shenker, and I. Stoica. “Resilient Distributed Datasets: A Fault-
TolerantAbstraction for In-MemoryCluster Computing”. In:USENIXNSDI.
2012.

[53] E. Bortnikov, A. Frank, E. Hillel, S. Rao. “Predicting Execution Bottlenecks
in Map-Reduce Clusters”. In: USENIX HotCloud. 2012.

[54] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S.
Shenker, and I. Stoica. “PACMan: CoordinatedMemoryCaching for Parallel
Jobs”. In: USENIX NSDI. 2012.

[55] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Ratnasamy,
S. Shenker, and I. Stoica. “The Case for Tiny Tasks in Compute Clusters”.
In: USENIX HotOS. 2013.

[56] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. “A Study of Skew in
MapReduce Applications”. In: Open Cirrus Summit. 2011.

[57] J. Dean. “Achieving Rapid Response Times in Large Online Services”. In:
Berkeley AMPLab Cloud Seminar. 2012.

[58] S. Resnick. Heavy-tail phenomena: probabilistic and statistical modeling.
Springer, 2007.

[59] J. C. Gittins. “Bandit Processes and Dynamic Allocation Indices”. In: Jour-
nal of the Royal Statistical Society. Series B (Methodological) (1979).

[60] I. Sonin. “A Generalized Gittins Index for a Markov Chain and Its Recursive
Calculation”. In: Statistics & Probability Letters (2008).

[61] M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly. “Dryad: Distributed
Data-parallel Programs fromSequential BuildingBlocks”. In:ACMEurosys.
2007.

176

[62] W. Baek and T. Chilimbi. “Green: a Framework for Supporting Energy-
conscious Programming Using Controlled Approximation”. In: ACM Sig-
plan Notices. 2010.

[63] M. Tokic and G. Palm. “Value-difference Based Exploration: Adaptive Con-
trol between Epsilon-greedy and Softmax”. In: KI 2011: Advances in Arti-
ficial Intelligence. Springer, 2011.

[64] A. Baratloo, M. Karaul, Z. Kedem, and P. Wycko. “Charlotte: Metacomput-
ing on the Web”. In: 9th Conference on Parallel and Distributed Computing
Systems. 1996.

[65] E. K. D. Anderson J. Cobb. “SETI@home: An Experiment in Public-
Resource Computing”. In: Comm. ACM. 2002.

[66] M. Rinard and P. Diniz. “Commutativity Analysis: a New Analysis Frame-
work for Parallelizing Compilers”. In: ACM PLDI. 1996.

[67] D. Paranhos, W. Cirne, and F. Brasileiro. “Trading Cycles for Information:
Using Replication to Schedule Bag-of-Tasks Applications on Computational
Grids”. In: Euro-Par. 2003.

[68] G. Ghare and S. Leutenegger. “Improving Speedup and Response Times by
Replicating Parallel Programs on a SNOW”. In: JSSPP. 2004.

[69] W. Cirne, D. Paranhos, F. Brasileiro, L. Goes, and W. Voorsluys. “On the
Efficacy, Efficiency and Emergent Behavior of Task Replication in Large
Distributed Systems”. In: Parallel Computing. 2007.

[70] Cloudera Impala. http://www.cloudera.com/content/cloudera/en/products-
and-services/cdh/impala.html.

[71] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis. “Dremel: Interactive Analysis of Web-Scale Datasets”.
In: VLDB. 2010.

[72] E. Boutin, J. Ekanayake, W. Kin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou. “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale
Computing”. In: USENIX OSDI. 2014.

[73] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and I. Stoica. “Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center”. In: USENIX NSDI. 2011.

[74] F. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron. “Decentralized Task-
aware Scheduling for Data Center Networks”. In: ACM SIGCOMM. 2014.

[75] Hadoop Capacity Scheduler. http : / / hadoop . apache . org / docs / r1 . 2 . 1 /
capacity_scheduler.html.

[76] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I.
Stoica. “Dominant Resource Fairness: Fair Allocation of Multiple Resource
Types”. In: USENIX NSDI. 2011.

http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html

177

[77] M. Isard, V. Prabhakaran, J. Currey, U.Wieder, K. Talwar, and A. Goldberg.
“Quincy: Fair Scheduling for Distributed Computing Clusters”. In: ACM
SOSP. 2009.

[78] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh, K.
Wu, and A. Balmin. “FLEX: a Slot Allocation Scheduling Optimizer for
MapReduce Workloads”. In: Middleware 2010. Springer, 2010.

[79] J. Tan, X. Meng, and L. Zhang. “Delay Tails in MapReduce Scheduling”.
In: ACM SIGMETRICS Performance Evaluation Review (2012).

[80] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I.
Stoica. “Delay Scheduling: A Simple Technique for Achieving Locality and
Fairness in Cluster Scheduling”. In: ACM EuroSys. 2010.

[81] L. Schrage. “A Proof of theOptimality of the Shortest Remaining Processing
Time Discipline”. In: Operations Research 16.3 (1968), pp. 687–690.

[82] K. Pruhs, J. Sgall, and E. Torng. “Online scheduling”. In: Handbook of
scheduling: algorithms, models, and performance analysis (2004), pp. 15–
1.

[83] M. Lin, L. Zhang, A. Wierman, and J. Tan. “Joint Optimization of Overlap-
ping Phases in MapReduce”. In: Performance Evaluation (2013).

[84] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós. “On Scheduling in
Map-reduce and Flow-shops”. In: ACM SPAA. 2011.

[85] Y. Wang, J. Tan, W. Yu, L. Zhang, and X. Meng. “Preemptive ReduceTask
Scheduling for Fast and Fair Job Completion”. In: USENIX ICAC (2013).

[86] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B. Chun. “Making
Sense of Performance in Data Analytics Frameworks”. In: USENIX NSDI.
2015.

[87] E. Bortnikov, A. Frank, E. Hillel, and S. Rao. “ Predicting Execution Bot-
tlenecks in Map-Reduce Clusters”. In: USENIX HotCloud. 2012.

[88] N. Yadwadkar, G. Ananthanarayanan, and R. Katz. “ Wrangler: Predictable
and Faster Jobs using Fewer Resources”. In: ACM SoCC. 2014.

[89] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. “Size-based
scheduling to improve web performance”. In: ACM Transactions on Com-
puter Systems (TOCS) 21.2 (2003), pp. 207–233.

[90] A. Wierman. “Fairness and scheduling in single server queues”. In: Surveys
in Operations Research and Management Science 16.1 (2011), pp. 39–48.

[91] A. Wierman and M. Harchol-Balter. “Classifying scheduling policies with
respect to unfairness in an M/GI/1”. In: ACM SIGMETRICS Performance
Evaluation Review. Vol. 31. 1. ACM. 2003, pp. 238–249.

178

[92] Hadoop Slowstart. https://issues.apache.org/jira/browse/MAPREDUCE-
1184/.

[93] H. Chen, J. Marden, and A. Wierman. “On the Impact of Heterogeneity and
Back-end Scheduling in Load Balancing Designs”. In: INFOCOM. IEEE.
2009.

[94] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D.
Harlan, and E. Harris. “Scarlett: Coping with Skewed Popularity Content in
MapReduce Clusters”. In: EuroSys. 2011.

[95] A. Richa, M. Mitzenmacher, and R. Sitaraman. “The power of two random
choices: A survey of techniques and results”. In: Combinatorial Optimiza-
tion (2001).

[96] M. Bramson, Y. Lu, and B. Prabhakar. “Randomized load balancing with
general service time distributions”. In: Proceedings of Sigmetrics. 2010,
pp. 275–286.

[97] Sparrow. https://github.com/radlab/sparrow.

[98] Apache Thrift. https://thrift.apache.org/.

[99] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R. Das.
“Modeling and Synthesizing Task Placement Constraints in Google Com-
pute Clusters.” In: ACM SOCC. 2011.

[100] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, andA. Akella. “Multi-
Resource Packing for Cluster Schedulers”. In: ACM SIGCOMM. 2014.

[101] Study Identifies Common Pain Points in Big Data Projects. http: / /www.
bigdataexchange.com/tag/list-of-third-party-data-providers/. 2015.

[102] Qlik. http://www.qlik.com/us/products/qlik-data-market.

[103] Factual. https://www.factual.com/. 2015.

[104] Infochimps. http://www.infochimps.com/. 2015.

[105] Xignite. http://www.xignite.com/. 2015.

[106] The IUPHAR/BPSGuide toPharmacology. http://www.guidetopharmacology.
org/. 2015.

[107] Google BigQuery Public Datasets. https : / / cloud.google .com/bigquery/
public-data/.

[108] Azure Public Datasets. https : / / docs .microsoft . com / en - us / azure / sql -
database/sql-database-public-data-sets.

[109] AWS Public Datasets. https://aws.amazon.com/public-datasets/.

[110] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. Ganger, P. Gibbons,
andO.Mutlu. “Gaia: Geo-DistributedMachine LearningApproaching LAN
Speeds”. In: NSDI. 2017.

https://issues.apache.org/jira/browse/MAPREDUCE-1184/
https://issues.apache.org/jira/browse/MAPREDUCE-1184/
https://github.com/radlab/sparrow
https://thrift.apache.org/
http://www.bigdataexchange.com/tag/list-of-third-party-data-providers/
http://www.bigdataexchange.com/tag/list-of-third-party-data-providers/
http://www.qlik.com/us/products/qlik-data-market
https://www.factual.com/
http://www.infochimps.com/
http://www.xignite.com/
http://www.guidetopharmacology.org/
http://www.guidetopharmacology.org/
https://cloud.google.com/bigquery/public-data/
https://cloud.google.com/bigquery/public-data/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-public-data-sets
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-public-data-sets
https://aws.amazon.com/public-datasets/

179

[111] R.Viswanathan,G.Ananthanarayanan, andA.Akella. “Clarinet:Wan-aware
Optimization for Analytics Queries”. In: OSDI. 2016.

[112] J. Krarup and P. Pruzan. “The Simple Plant Location Problem: Survey and
Synthesis”. In: European Journal of Operational Research (1983).

[113] M. Charikar, S. Guha, É. Tardos, and D. Shmoys. “A Constant-factor Ap-
proximation Algorithm for the K-median Problem (Extended Abstract)”. In:
STOC. 1999.

[114] S. Guha and S. Khuller. “Greedy Strikes Back: Improved Facility Location
Algorithms”. In: Journal of Algorithms (1999).

[115] K. Jain and V. Vazirani. “Approximation Algorithms for Metric Facility
Location and k-Median Problems Using the Primal-dual Schema and La-
grangian Relaxation”. In: J. ACM (2001).

[116] D. Hochbaum. “Heuristics for the Fixed Cost Median Problem”. In: Math.
Program. (1982).

[117] V. Vazirani. Approximation Algorithms. Springer, 2001.

[118] F. Uriel. “A Threshold of ln n for Approximating Set Cover”. In: J. ACM
(1998).

[119] D. Erlenkotter. “A Dual-Based Procedure for Uncapacitated Facility Loca-
tion”. In: Operations Research (1978).

[120] J. Beasley. “Lagrangean Heuristics for Location Problems”. In: European
Journal of Operational Research (1993).

[121] K. Al-Sultan and M. Al-Fawzan. “A Tabu Search Approach to the Unca-
pacitated Facility Location Problem”. In: Annals of Operations Research
(1999).

[122] M. Korkel. “On the Exact Solution of Large-scale Simple Plant Location
Problems ”. In: European Journal of Operational Research (1989).

[123] D. Tuzun andL. Burke. “ATwo-phase Tabu SearchApproach to the Location
Routing Problem ”. In: European Journal of Operational Research (1999).

[124] D. Ghosh. “Neighborhood Search Heuristics for the Uncapacitated Facility
Location Problem ”. In: European Journal of Operational Research (2003).

[125] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu. “Query-
Market Demonstration: Pricing for Online Data Markets”. In: Proceedings
of the VLDB Endowment (2012).

[126] Visipedia Project. http://www.vision.caltech.edu/visipedia/. 2015.

[127] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, et al. “Spanner: Google’s Globally
Distributed Database”. In: ACM Transactions on Computer Systems (2013).

http://www.vision.caltech.edu/visipedia/

180

[128] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. Dhoot, A.
Kumar, A. Agiwal, et al. “Mesa: Geo-replicated, Near Real-time, Scalable
Data Warehousing”. In: Proceedings of the VLDB Endowment (2014).

[129] A. Rabkin, M. Arye, S. Sen, V. Pai, and M. Freedman. “Aggregation and
Degradation in JetStream: StreamingAnalytics in theWideArea”. In:NSDI.
2014.

[130] M. Balazinska, B. Howe, and D. Suciu. “Data Markets in the Cloud: An
Opportunity for the Database Community”. In: Proceedings of the VLDB
Endowment (2011).

[131] R. Cummings, K. Ligett, A. Roth, Z. Wu, and J. Ziani. “Accuracy for Sale:
Aggregating Data with a Variance Constraint”. In: ITCS. 2015.

[132] R. Tang, H. Wu, Z. Bao, S. Bressan, and P. Valduriez. “The Price Is Right:
Models and Algorithms for Pricing Data”. In:M. Castellanos, U. Dayal, E.
A. Rundensteiner (eds) Database and Expert Systems Applications. DEXA
2014. Lecture Notes in Business Information Processing 8056 (2013).

[133] R. Tang, A. Amarilli, P. Senellart, and S. Bressan. “Get a Sample for a
Discount”. In: H. Decker, L. Lhotská, S. Link, M. Spies, R. Wagner (eds)
Database and Expert Systems Applications. DEXA 2014. Lecture Notes in
Computer Science 8644 (2014).

[134] A. Muschalle, F. Stahl, A. Loser, and G. Vossen. “Pricing Approaches for
Data Markets”. In: M. Castellanos, U. Dayal, E.A. Rundensteiner (eds)
Enabling Real-Time Business Intelligence. BIRTE 2012. Lecture Notes in
Business Information Processing 154 (2013).

[135] R. Stahl and G. Vossen. “Data Quality Scores for Pricing on Data Market-
places”. In: Nguyen N.T., Trawi?ski B., Fujita H., Hong TP. (eds) Intelligent
Information and Database Systems. ACIIDS 2016. Lecture Notes in Com-
puter Science 9621 (2016).

[136] R. Stahl and G. Vossen. “Name Your Own Price on Data Marketplaces”. In:
28 (Jan. 2017), pp. 155–180.

[137] C. Hung, L. Golubchik, andM. Yu. “Scheduling Jobs across Geo-distributed
Datacenters”. In: Proceedings of the 6th ACM Symposium on Cloud Com-
puting. 2015.

[138] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J.
Freedman. “Live Video Analytics at Scale with Approximation and Delay-
Tolerance”. In: 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). Boston, MA: USENIX Association, 2017,
pp. 377–392. isbn: 978-1-931971-37-9. url: https : / /www.usenix . org /
conference/nsdi17/technical-sessions/presentation/zhang.

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang

181

[139] A. Vakali and G. Pallis. “Content delivery networks: status and trends”. In:
IEEE Internet Computing 7.6 (Nov. 2003), pp. 68–74. issn: 1089-7801. doi:
10.1109/MIC.2003.1250586.

[140] G. Peng. “CDN: Content Distribution Network”. In: CoRR cs.NI/0411069
(2004). url: http://arxiv.org/abs/cs.NI/0411069.

[141] G. Pallis and A. Vakali. “Insight and Perspectives for Content Delivery
Networks”. In: Commun. ACM 49.1 (Jan. 2006), pp. 101–106. issn: 0001-
0782. doi: 10.1145/1107458.1107462. url: http://doi.acm.org/10.1145/
1107458.1107462.

[142] A.-M. K. Pathan and R. Buyya. “A taxonomy and survey of content de-
livery networks”. In: Grid Computing and Distributed Systems Laboratory,
University of Melbourne, Technical Report 4 (2007).

[143] J. D. Guyton and M. F. Schwartz. “Locating Nearby Copies of Replicated
Internet Servers”. In: Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication. SIG-
COMM ’95. Cambridge, Massachusetts, USA: ACM, 1995, pp. 288–298.
isbn: 0-89791-711-1. doi: 10.1145/217382.217463. url: http://doi.acm.
org/10.1145/217382.217463.

[144] Z.-M. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar. “A novel
server selection technique for improving the response time of a replicated
service”. In: INFOCOM’98. Seventeenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE. Vol. 2.
IEEE. 1998, pp. 783–791.

[145] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. “On the placement
of Internet instrumentation”. In: Proceedings IEEE INFOCOM 2000. Con-
ference on Computer Communications. Nineteenth Annual Joint Conference
of the IEEEComputer andCommunications Societies (Cat. No.00CH37064).
Vol. 1. 2000, 295–304 vol.1. doi: 10.1109/INFCOM.2000.832199.

[146] P. Krishnan, D. Raz, and Y. Shavitt. “The Cache Location Problem”. In:
IEEE/ACM Trans. Netw. 8.5 (Oct. 2000), pp. 568–582. issn: 1063-6692.
doi: 10.1109/90.879344. url: http://dx.doi.org/10.1109/90.879344.

[147] M. Gritter and D. R. Cheriton. “An Architecture for Content Routing Sup-
port in the Internet”. In: Proceedings of the 3rd Conference on USENIX
Symposium on Internet Technologies and Systems - Volume 3. USITS’01.
San Francisco, California: USENIX Association, 2001, pp. 4–4. url: http:
//dl.acm.org/citation.cfm?id=1251440.1251444.

[148] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. “On the placement of web
server replicas”. In: INFOCOM 2001. Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE.
Vol. 3. IEEE. 2001, pp. 1587–1596.

https://doi.org/10.1109/MIC.2003.1250586
http://arxiv.org/abs/cs.NI/0411069
https://doi.org/10.1145/1107458.1107462
http://doi.acm.org/10.1145/1107458.1107462
http://doi.acm.org/10.1145/1107458.1107462
https://doi.org/10.1145/217382.217463
http://doi.acm.org/10.1145/217382.217463
http://doi.acm.org/10.1145/217382.217463
https://doi.org/10.1109/INFCOM.2000.832199
https://doi.org/10.1109/90.879344
http://dx.doi.org/10.1109/90.879344
http://dl.acm.org/citation.cfm?id=1251440.1251444
http://dl.acm.org/citation.cfm?id=1251440.1251444

182

[149] J. Kangasharju, J. Roberts, and K. W. Ross. “Object Replication Strategies
in Content Distribution Networks”. In:Comput. Commun. 25.4 (Mar. 2002),
pp. 376–383. issn: 0140-3664. doi: 10.1016/S0140-3664(01)00409-1. url:
http://dx.doi.org/10.1016/S0140-3664(01)00409-1.

[150] C. Gkantsidis and P. R. Rodriguez. “Network coding for large scale content
distribution”. In: Proceedings IEEE 24th Annual Joint Conference of the
IEEE Computer and Communications Societies. Vol. 4. Mar. 2005, 2235–
2245 vol. 4. doi: 10.1109/INFCOM.2005.1498511.

[151] A. Flavel, P. Mani, D. Maltz, N. Holt, J. Liu, Y. Chen, and O. Surma-
chev. “FastRoute: A Scalable Load-Aware Anycast Routing Architecture for
Modern CDNs”. In: 12th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 15). Oakland, CA: USENIX Association,
2015, pp. 381–394. isbn: 978-1-931971-218. url: https://www.usenix.org/
conference/nsdi15/technical-sessions/presentation/flavel.

[152] F. Chen, R. K. Sitaraman, and M. Torres. “End-User Mapping: Next Gen-
eration Request Routing for Content Delivery”. In: Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. SIG-
COMM ’15. London, United Kingdom: ACM, 2015, pp. 167–181. isbn:
978-1-4503-3542-3. doi: 10.1145/2785956.2787500. url: http://doi.acm.
org/10.1145/2785956.2787500.

[153] C. Dwork. “Differential Privacy”. In: Encyclopedia of Cryptography and
Security. 2011.

[154] Microsoft Azure. https://azure.microsoft.com/en-us/. 2015.

[155] J. Wiener and N. Boston. Facebook’s top open data problems. https : / /
research.facebook.com/blog/1522692927972019/facebook- s- top-open-
data-problems/. 2014.

[156] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy. “The Unified Logging
Infrastructure for Data Analytics at Twitter”. In: Proceedings of the VLDB
Endowment (2012).

[157] A. Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, 1998.

[158] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. 1997.

[159] Google Data Center FAQ. http://www.datacenterknowledge.com/archives/
2012/05/15/google-data-center-faq/. 2012.

[160] M. Newman. “Power Laws, Pareto Distributions and Zipf’s Law”. In: Con-
temporary physics (2005).

[161] M. Balazinska, B. Howe, P. Koutris, D. Suciu, and P. Upadhyaya. “A Dis-
cussion on Pricing Relational Data”. In: In Search of Elegance in the Theory
and Practice of Computation. 2013.

https://doi.org/10.1016/S0140-3664(01)00409-1
http://dx.doi.org/10.1016/S0140-3664(01)00409-1
https://doi.org/10.1109/INFCOM.2005.1498511
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/flavel
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/flavel
https://doi.org/10.1145/2785956.2787500
http://doi.acm.org/10.1145/2785956.2787500
http://doi.acm.org/10.1145/2785956.2787500
https://azure.microsoft.com/en-us/
https://research. facebook.com/blog/1522692927972019/ facebook-s-top-open-data-problems/
https://research. facebook.com/blog/1522692927972019/ facebook-s-top-open-data-problems/
https://research. facebook.com/blog/1522692927972019/ facebook-s-top-open-data-problems/
http://www.datacenterknowledge.com/archives/2012/05/15/google-data-center-faq/
http://www.datacenterknowledge.com/archives/2012/05/15/google-data-center-faq/

183

[162] J. Zhang. “Approximating the two-level facility location problemvia a quasi-
greedy approach”. In: Mathematical Programming (2006).

[163] A. Venkatraman. “Global census shows datacentre power demand grew 63%
in 2012”. In: ComputerWeekly.com. 2012.

[164] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. “The Cost of a Cloud:
Research Problems in Data Center Networks”. In: SIGCOMM Comput.
Commun. Rev. 39.1 (Dec. 2008).

[165] L. A. Barroso, J. Clidaras, and U. Hoelzle. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Morgan &
Claypool, 2013.

[166] D.Wang, C. Ren,A. Sivasubramaniam,B.Urgaonkar, andH. Fathy. “Energy
storage in datacenters: what, where, and how much?” In: SIGMETRICS.
2012.

[167] Ponemon Institute. 2013 Cost of Data Center Outages. 2013. url: http :
//goo.gl/6mBFTV.

[168] EmersonNetwork Power.Addressing the LeadingRootCauses ofDowntime.
2013. url: http://goo.gl/b14XaF.

[169] X. Fan,W.-D.Weber, andL.A.Barroso. “Power provisioning for awarehouse-
sized computer”. In: ISCA. 2007.

[170] Uptime Institute. Data Center Industry Survey. 2014.

[171] R. Johari and J. N. Tsitsiklis. “Parameterized Supply Function Bidding:
Equilibrium and Efficiency”. In: Oper. Res. 59.5 (Sept. 2011), pp. 1079–
1089.

[172] Y. Xu, N. Li, and S. H. Low. “Demand Response with Capacity Constrained
Supply Function Bidding”. In: IEEE Transactions on Power Systems (2015).
doi: 10.1109/TPWRS.2015.2421932.

[173] Datacenter Map. Colocation USA. url: http://www.datacentermap.com/
usa/.

[174] NRDC. “Scaling Up Energy Efficiency Across the Data Center Industry:
Evaluating Key Drivers and Barriers”. In: Issue Paper (Aug. 2014).

[175] Akamai. Environmental Sustainability Policy. url: http : / /www.akamai .
com/html/sustainability/our_commitment.html.

[176] Microsoft.Global Infrastructure.url: http://www.globalfoundationservices.
com/.

[177] A. C. Riekstin, S. James, A. Kansal, J. Liu, and E. Peterson. “No More
Electrical Infrastructure: Towards Fuel Cell Powered Data Centers”. In:
SIGOPS Oper. Syst. Rev. 48.1 (May 2014), pp. 39–43.

http://goo.gl/6mBFTV
http://goo.gl/6mBFTV
http://goo.gl/b14XaF
https://doi.org/10.1109/TPWRS.2015.2421932
http://www.datacentermap.com/usa/
http://www.datacentermap.com/usa/
http://www.akamai.com/html/sustainability/our_commitment.html
http://www.akamai.com/html/sustainability/our_commitment.html
http://www.globalfoundationservices.com/
http://www.globalfoundationservices.com/

184

[178] CBRE. Q4 2013: National Data Center Market Update. 2013.

[179] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E.
Pettis, D. M. Tullsen, and T. S. Rosing. “Managing distributed ups energy
for effective power capping in data centers”. In: ISCA. 2012.

[180] W. Zheng and X. Wang. “Data Center Sprinting: Enabling Computational
Sprinting at the Data Center Level”. In: ICDCS. 2015.

[181] I. Manousakis, Í. Goiri, S. Sankar, T. D. Nguyen, and R. Bianchini. “Cool-
Provision: Underprovisioning Datacenter Cooling”. In: SoCC. 2015.

[182] Google. Compute Engine Incident #15056. url: https://status.cloud.google.
com/incident/compute/15056.

[183] S.Govindan,D.Wang,A. Sivasubramaniam, andB.Urgaonkar. “Leveraging
stored energy for handling power emergencies in aggressively provisioned
datacenters”. In: ASPLOS. 2012.

[184] EnerNOC.EnsuringU.S.Grid Security andReliability:U.S. EPA’s Proposed
Emergency BackupGenerator Rule. 2013.url: http://www.whitehouse.gov/
sites/default/files/omb/assets/oira_2060/2060_12102012-2.pdf.

[185] S. Ong, P. Denholm, and E. Doris. Impacts of Commercial Electric Utility
Rate Structure Elements on the Economics of Photovoltaic Systems. Tech.
rep. National Renewable Energy Laboratory (NREL), Golden, CO., 2010.

[186] L. L.Andrew,M.Lin, andA.Wierman. “Optimality, fairness, and robustness
in speed scaling designs”. In: SIGMETRICS. 2010.

[187] A. Wierman, L. L. H. Andrew, and A. Tang. “Power-aware speed scaling in
processor sharing systems: Optimality and robustness”. In: Perform. Eval.
69.12 (Dec. 2012), pp. 601–622.

[188] Equinix, Customer portal. url: http://www.equinix.com/services/support/
customer-portal/.

[189] PJM. “Emergency Demand Response (LoadManagement) Performance Re-
port – 2012/2013”. In: (Dec. 2012).

[190] J. dePreaux. “Wholesale and Retail Data Centers - North America and
Europe - 2013”. In: IHS (July 2013). url: https://technology.ihs.com/api/
binary/492570.

[191] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis. “To-
wards Energy Proportionality for Large-scale Latency-critical Workloads”.
In: ISCA. 2014.

[192] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. “Dynamic right-
sizing for power-proportional data centers”. In: IEEE Infocom. 2011.

[193] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. “ApproxHadoop:
Bringing Approximations to MapReduce Frameworks”. In: ASPLOS. 2015.

https://status.cloud.google.com/incident/compute/15056
https://status.cloud.google.com/incident/compute/15056
http://www.whitehouse.gov/sites/default/files/omb/assets/oira_2060/2060_12102012-2.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/oira_2060/2060_12102012-2.pdf
http://www.equinix.com/services/support/customer-portal/
http://www.equinix.com/services/support/customer-portal/
https://technology.ihs.com/api/binary/492570
https://technology.ihs.com/api/binary/492570

185

[194] Internap. Colocation services and SLA. url: http: / /www.internap.com/
internap/wp-content/uploads/2014/06/Attachment-3-Colocation-Services-
SLA.pdf.

[195] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I.
Stoica. “Dominant Resource Fairness: Fair Allocation of Multiple Resource
Types”. In: NSDI. 2011.

[196] S.M. Zahedi andB. C. Lee. “REF: Resource Elasticity Fairnesswith Sharing
Incentives for Multiprocessors”. In: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Op-
erating Systems. ASPLOS. 2014.

[197] M.Guevara, B. Lubin, andB.C. Lee. “NavigatingHeterogeneous Processors
with Market Mechanisms”. In: HPCA. 2013.

[198] Z. Liu, I. Liu, S. Low, and A. Wierman. “Pricing Data Center Demand
Response”. In: SIGMETRICS. 2014.

[199] C. Wang, N. Nasiriani, G. Kesidis, B. Urgaonkar, Q. Wang, L. Y. Chen, A.
Gupta, and R. Birke. “Recouping Energy Costs From Cloud Tenants: Tenant
Demand Response Aware Pricing Design”. In: e-Energy. 2015.

[200] L. Zhang, S. Ren, C. Wu, and Z. Li. “A Truthful Incentive Mechanism for
Emergency Demand Response in Colocation Data Centers”. In: INFOCOM.
2015.

[201] C. Wang, B. Urgaonkar, G. Kesidis, U. V. Shanbhag, and Q. Wang. “A Case
for Virtualizing the Electric Utility in Cloud Data Centers”. In: HotCloud.
2014.

[202] M. A. Islam, H. Mahmud, S. Ren, and X. Wang. “Paying to Save: Reducing
Cost of Colocation Data Center via Rewards”. In: HPCA. 2015.

[203] T. Roughgarden. “AlgorithmicGameTheory”. In:Commun. ACM 53.7 (July
2010), pp. 78–86.

[204] L. Zhang, S. Ren, C. Wu, and Z. Li. “A Truthful Incentive Mechanism for
Emergency Demand Response in Colocation Data Centers”. In: INFOCOM.
2015.

[205] CloudSuite - The Search Benchmark. url: http://parsa.epfl.ch/cloudsuite/.

[206] J. R. Lorch and A. J. Smith. “PACE: A new approach to dynamic voltage
scaling”. In: IEEE Trans. Computers 53 (7 July 2004), pp. 856–869.

[207] P. X. Gao, A. R. Curtis, B.Wong, and S. Keshav. “It’s not easy being green”.
In: SIGCOMM Comput. Commun. Rev. (2012).

[208] D. Wang, C. Ren, S. Govindan, A. Sivasubramaniam, B. Urgaonkar, A.
Kansal, and K. Vaid. “ACE: Abstracting, Characterizing and Exploiting
Peaks and Valleys in Datacenter Power Consumption”. In: SIGMETRICS.
2013.

http://www.internap.com/internap/wp-content/uploads/2014/06/Attachment-3-Colocation-Services-SLA.pdf
http://www.internap.com/internap/wp-content/uploads/2014/06/Attachment-3-Colocation-Services-SLA.pdf
http://www.internap.com/internap/wp-content/uploads/2014/06/Attachment-3-Colocation-Services-SLA.pdf
http://parsa.epfl.ch/cloudsuite/

186

[209] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller. “SHIP: Scalable hierar-
chical power control for large-scale data centers”. In: PACT. 2009.

[210] A. A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, and S. Sankar. “The
Need for Speed and Stability in Data Center Power Capping”. In: IGCC.
2012.

[211] L. Liu, C. Li, H. Sun, Y. Hu, J. Gu, T. Li, J. Xin, and N. Zheng. “HEB:
Deploying and Managing Hybrid Energy Buffers for Improving Datacenter
Efficiency and Economy”. In: ISCA. 2015.

[212] M. Skach, M. Arora, C.-H. Hsu, Q. Li, D. Tullsen, L. Tang, and J. Mars.
“Thermal Time Shifting: Leveraging Phase Change Materials to Reduce
Cooling Costs in Warehouse-scale Computers”. In: ISCA. 2015.

[213] S. Ren and M. A. Islam. “Colocation Demand Response: Why Do I Turn
Off My Servers?” In: ICAC. 2014.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	The Evolution of Large Scale Data Analytics Frameworks
	Challenges to the Design of Analytics Frameworks
	Overview of This Thesis

	Speculation-aware Cluster Scheduling at the Task Level
	Challenges and Opportunities
	Speculation Algorithm Design
	Modeling and Analyzing Speculation
	Grass Speculation Algorithm
	Implementation
	Evaluation
	Related Work
	Concluding Remarks

	Speculation-aware Cluster Scheduling on the Job Level
	Background & Related Work
	Motivation
	Modeling and Analyzing Speculation
	Hopper in real systems
	Decentralized Hopper
	Implementation Overview
	Evaluation
	Concluding Remarks

	Network-aware Geo-distributed Cluster Scheduling
	Opportunities and Challenges
	A Geo-Distributed Data Cloud
	Optimal Data Purchasing and Data Placement
	Case Study
	Concluding Remarks
	Appendix: Bulk Data Contracting

	Power Capping in Colocation Data Centers
	Opportunities and Challenges
	COOP with a Single Data Center Level Power Constraint
	Efficiency Analysis of COOP
	COOP with Multi-level Power Constraints
	Evaluation Methodology
	Evaluation Results
	Related Work
	Concluding Remarks

	Bibliography

