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ABSTRACT

The fundamental challenge in the cloud today is how to build and optimize machine
learning and data analytical services. Machine learning and data analytical platforms
are changing computing infrastructure from expensive private data centers to easily
accessible online services. These services pack user requests as jobs and run them
on thousands of machines in parallel in geo-distributed clusters. The scale and the
complexity of emerging jobs lead to increasing challenges for the clusters at all
levels, from power infrastructure to system architecture and corresponding software

framework design.

These challenges come in many forms. Today’s clusters are built on commodity
hardware and hardware failures are unavoidable. Resource competition, network
congestion, and mixed generations of hardware make the hardware environment
complex and hard to model and predict. Such heterogeneity becomes a crucial
roadblock for efficient parallelization on both the task level and job level. Another
challenge comes from the increasing complexity of the applications. For example,
machine learning services run jobs made up of multiple tasks with complex de-
pendency structures. This complexity leads to difficulties in framework designs.
The scale, especially when services span geo-distributed clusters, leads to another
important hurdle for cluster design. Challenges also come from the power infras-
tructure. Power infrastructure is very expensive and accounts for more than 20% of
the total costs to build a cluster. Power sharing optimization to maximize the facility

utilization and smooth peak hour usages is another roadblock for cluster design.

In this thesis, we focus on solutions for these challenges at the task level, on
the job level, with respect to the geo-distributed data cloud design and for power

management in colocation data centers.

At the task level, a crucial hurdle to achieving predictable performance is stragglers,
i.e., tasks that take significantly longer than expected to run. At this point, speculative
execution has been widely adopted to mitigate the impact of stragglers in simple
workloads. We apply straggler mitigation for approximation jobs for the first time.
We present GRASS, which carefully uses speculation to mitigate the impact of
stragglers in approximation jobs. GRASS’s design is based on the analysis of a
model we develop to capture the optimal speculation levels for approximation jobs.

Evaluations with production workloads from Facebook and Microsoft Bing in an



EC2 cluster of 200 nodes show that GRASS increases accuracy of deadline-bound
jobs by 47% and speeds up error-bound jobs by 38%.

Moving from task level to job level, task level speculation mechanisms are designed
and operated independently of job scheduling when, in fact, scheduling a specu-
lative copy of a task has a direct impact on the resources available for other jobs.
Thus, we present Hopper, a job-level speculation-aware scheduler that integrates
the tradeoffs associated with speculation into job scheduling decisions based on a
model generalized from the task-level speculation model. We implement both cen-
tralized and decentralized prototypes of the Hopper scheduler and show that 50%
(66%) improvements over state-of-the-art centralized (decentralized) schedulers and
speculation strategies can be achieved through the coordination of scheduling and

speculation.

As computing resources move from local clusters to geo-distributed cloud services,
we are expecting the same transformation for data storage. We study two crucial
pieces of a geo-distributed data cloud system: data acquisition and data placement.
Starting from developing the optimal algorithm for the case of a data cloud made up
of a single data center, we propose a near-optimal, polynomial-time algorithm for a
geo-distributed data cloud in general. We show, via a case study, that the resulting

design, Datum, is near-optimal (within 1.6%) in practical settings.

Efficient power management is a fundamental challenge for data centers when pro-
viding reliable services. Power oversubscription in data centers is very common and
may occasionally trigger an emergency when the aggregate power demand exceeds
the capacity. We study power capping solutions for handling such emergencies in
a colocation data center, where the operator supplies power to multiple tenants.
We propose a novel market mechanism based on supply function bidding, called
COOQP, to financially incentivize and coordinate tenants’ power reduction for mini-
mizing total performance loss while satisfying multiple power capping constraints.
We demonstrate that COOP is “win-win”, increasing the operator’s profit (through
oversubscription) and reducing tenants’ costs (through financial compensation for

their power reduction during emergencies).
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CHAPTER 1

INTRODUCTION

In the last two decades, the emerging of big data has driven enormous push in
the technology developments of both distributed systems and machine learning. In
the era of big data, the requirement to provide predictable and scalable services
has led to a remarkable evolution of large scale data analytics frameworks. From
MapReduce [1] to Spark [2] then to Flink [3], from support for simple batch jobs
to support for steam processing to integrated machine learning and graph libraries,
there is a trend towards broader and more general system design. Meanwhile,
the fast evolution of system frameworks inevitably leads to significant challenges
from scalability to compatibility with existing systems and new applications. In the
following, we first investigate the evolution of the data analytics frameworks , and
then highlight the challenges to the design of large scale data analytics frameworks.
Finally we give an overview of the contributions this thesis make toward these

challenges.

1.1 Tuae EvoLuTtioN oF LARGE ScALE DATA ANALYTICS FRAMEWORKS

About twenty years ago, to handle the challenge of processing massive amount of
data in special-purpose computations such as web index computing, engineers in
Google designed a new data processing framework called MapReduce [1]. MapRe-
duce can be viewed as an abstraction that allows users to perform logically simple
computations without taking care of the messy details of distributed computing. In
general, data processing in MapReduce has three phases, map phase, shuffle phase,
and reduce phase. In map phase, input data is divided into small data chunks, and
each data chunk is sent to a machine slot (i.e., mapper) for execution. The output
data of the mappers are in the form of key-value pairs, and are sorted and grouped
by keys in the shuffle phase. The shuffled data are fed to reduce machine slots (i.e.,
reducers) in the reduce phase for further processing. After having been published
in 2004 by Google Labs, this simple but powerful programming paradigm attracted

enormous attention.



MapReduce quickly expanded beyond Google. In 2006, Hadoop [4], an open source
version of MapReduce, was developed by Doug Cutting and Mike Cafarella. The
core of Hadoop consists of two parts, (1) the storage architecture, Hadoop Distributed
File System (HDFS) [5], which is inspired by the Google File System (GFS) [6], and
(2) the processing model, MapReduce. Hadoop MapReduce quickly became the
most popular open source implementation of MapReduce. Yahoo!, Facebook and
many others soon adopted Hadoop to build their large cloud computing clusters [7].
In 2010, Facebook announced that they had the largest Hadoop cluster in the world
with 21 PB of storage. The data volume had grown to 100 PB in mid 2012 and was
reported to continuously grow by roughly half a PB per day later that year. Hadoop
adoption had become widespread as of 2013: more than half of the Fortune 50 used
Hadoop [8].

As Hadoop became widely used, the early adopters started to notice the limita-
tions of the classical MapReduce framework, including lack of scalability, resource

underutilization and the lack of support for complex applications.

These issues are mainly due to two design choices. (1) MapReduce uses a single
centralized JobTracker process to constantly track all the resource management
and allocation and perform coordination of all jobs and their tasks running on the
cluster. Besides the JobTracker, a number of TaskTracker processes are used to
assign tasks and periodically report the progresses to the JobTracker. The highly
centralized structure of the JobTracker results in scalability issue, especially for real
time data analytics. (2) To ease the workload of the JobTracker and TaskTracker, in
MapReduce the computational resources on each node are divided into fixed number
of map slots and reduce slots, which lead to significant resource underutilization,

especially when a job requires an unequal number of mappers and reducers.

To address these issues, YARN [9] was integrated into Hadoop in 2014. In the
YARN architecture, JobTracker is replaced by a global ResourceManager which is
in charge of inter-application level resource management and a number of Applica-
tionMasters which are responsible for intra-application level resource management
for each application respectively. NodeManagers replace the previous TaskTrack-
ers for resource container control. Such a decoupling reduces the overhead of the
resouce management and also supports applications besides traditional MapReduce
jobs given that ResouceManager and NodeManagers are designed to be independent
of the running tasks. From then on, Hadoop MapReduce, Hadoop YARN, Hadoop

Distributed File System and Hadoop Common (the common utilities that support the



other Hadoop modules) become the core modules of the Apache Hadoop project [4].

While MapReduce is well suited for batch processing, its deficiency for real time
data analytics on complicated applications, especially for applications that reuse
the same working set of data across multiple MapReduce jobs, is also widely
noticed by researchers and developers. For example, iterative machine learning jobs
experience significant delay in MapReduce because each iteration is considered as
an individual MapReduce job and, in the MapReduce framework, each job must
load data from the disk independently. To handle this challenge, M. Zaharia et al.
developed Apache Spark in 2010 [2]. Spark shares a similar programming model
to MapReduce, but adopts an abstraction called resilient distributed dataset (RDD)
which allows users to explicitly cache data sets in memory across machines and reuse
them across multiple MapReduce jobs (MapReduce-like parallel operations). Spark
can run either in stand-alone mode or combined with Hadoop as a replacement for
MapReduce. Unlike MapReduce which is best suited for batch processing, Spark
is designed to handle both batch processing and stream processing. Its in-memory
data processing ensures fast speed and thus makes Spark one of the most popular

real time data analytic frameworks.

The broad success of Hadoop as well as the emerging of many other challenges
have led an enormous number of developers to engage in Hadoop related projects.
All these projects comprise a so-called “Hadoop ecosystem." Systems in the the
Hadoop ecosystem cover a variety of aspects and target a lot of different applications.
For example, Pig [10] and Hive [11] offer SQL-style high-level data manipulation
constructed on top of Hadoop. Storm [12] provides stream processing for real time
data analytics. Flink [3] aims at both batch and stream processing with a unified
architecture based on data flow abstraction. Tez [13] is built atop YARN and adds
support to jobs with DAGs. Kafka [14] is a distributed publish-subscribe system
for processing large amounts of streaming data with coordination support from
Zookeeper. Also various NoSQL or SQL databases are designed and developed
to provided data storage support. The boom of Hadoop and its corresponding
ecosystem provides rich tools to handle big data challenges. However, there is an
emerging trend towards the design of more general data analytics systems. The inter-
and intra- systems optimization as well as the exponentially increasing data volume
and the emerging of new data with different characteristics pose new challenges

every day. We focus on these challenges in the next section.



1.2 CHALLENGES TO THE DESIGN OF ANALYTICS FRAMEWORKS

Even with the success of existing various industrial systems, as the volume of data
continues to grow, the scale of the clusters expands and complicated applications
impose new requirements on the systems, which lead to new challenges to the design

of analytics frameworks.

One significant goal for data analytics frameworks is to provide predictable perfor-
mance. As the scale and complexity of clusters increase, hard-to-model systemic
interactions that degrade the performance of tasks become common. Consequently,
many tasks become “stragglers”, i.e., running slower than expected, leading to
significant unpredictability (and delay) in job completion times. Dealing with strag-
glers is a crucial design component that has received widespread attention across
prior studies [15, 16]. The dominant technique to mitigate stragglers is specula-
tion, which works by launching speculative copies for the slower tasks, where a
speculative copy is simply a duplicate of the original task. It then becomes a race
between the original and the speculative copies. Such techniques are state of the
art and deployed in production clusters at Facebook and Microsoft Bing, thereby
significantly speeding up jobs [1, 15, 17, 18]. However, current straggler mitigation
algorithms are mainly focused on the task level without considering how specula-
tion will affect job level scheduling. Speculation policies deployed today are all
designed and operated independently of job scheduling; schedulers simply allocate
slots to speculative copies in a best-effort" fashion, e.g., [1, 17, 19, 20]. Also the
existing speculation algorithms are lack of support for complicated job structures,
such as DAG, and only focus on performing speculation mitigation on current wave
of tasks [1, 17, 19].

Another hurdle to system optimization is the increasing complexity of the applica-
tions. Fifteen years ago, MapReduce was a huge success in regenerating the Google’s
index of the World Wide Web. But its lack of support for complicated applications
such as machine learning iterative jobs and graph processing jobs with DAGs moti-
vated the development of other systems/modules such as Spark [2], YARN [9] and
Tez [13]. These systems/modules are combined to provide generic frameworks to
run complicated jobs, but fine-granularity optimization targeting different job types
is still a challenge. Take an emerging new type of job, approximation jobs, as an
example [21-23]. With the deluge of data, analytics applications no longer require
the processing of entire datasets. Instead, they choose to trade off accuracy for

response time and obtain approximate results early from just part of the dataset.



Such approximation jobs require schedulers to prioritize the appropriate subset of
their tasks depending on the approximation criteria, while distributed systems are
generally designed to evenly prioritize each tasks. Balancing between these two

provides new challenges for system design.

Achieving lower latency is an increasing challenge as large scale data analytics
frameworks are shifting towards shorter task duration and higher degrees of paral-
lelization. In 2004, the scale of task duration was more than 10 min, while in 2010,
for Spark in memory query, the scale of task duration was already shortened to hun-
dreds of milliseconds [20]. We expect the trend to continue in the future generations
of frameworks with task duration being even smaller. In this situation, controlling
system overheads becomes of importance for real time data analytics design. To-
day’s state-of-the-art frameworks use distributed schedulers to achieve lightweight
scheduling while maintaining low latency [16, 20, 24]. In such frameworks, each
scheduler only knows partial information about jobs and working machines. Opti-
mizing such systems, especially with regards to efficient straggler mitigation, is still

challenging.

The most widely used scheduling approach in clusters today is based on fairness,
which can be thought of as equal sharing (or weighted sharing) of the available
resources among jobs (or cluster users) [25]. The equal sharing strategy guarantees
isolation in resource management, in the sense that users are guaranteed to receive
their fair shares and no starvation can exist. However, fairness, of course, comes
with the cost of performance inefficiencies. How to balance fairness and efficiency
to avoid starvation for jobs while achieving high efficiency is another system design
challenge.

As cloud servers are widely located in geo-distributed systems, analysis and op-
timization of data stored in geographically distributed data centers has received
increasing attention [26—28]. Bandwidth constraints as well as latency are the two
main challenges for system designs in this context, and a number of system designs
have been proposed [26-28]. Data acquisition and data pricing have been studied
extensively [29-32]. However how to cost-effectively combine the data acquisition

with data placement imposes new challenges to geo-distributed system designs.

Power management is another challenge that has been studied widely [33-36]. Data
centers are power hogs. In 2014, data centers in the U.S. consumed an estimated
70 billion kWh, which accounts for 1.8% of total U.S. electricity consumption [37].

On the other hand, data centers usually have the flexibility of decreasing electricity



consumption for a short period of time with power techniques such as load migra-
tion/scheduling [38]. Such flexibility makes data centers promising resources for
demand response, particularly for emergency demand response, which saves the
power grid from incurring blackouts during emergency situations. Existing studies
mostly focus on owner operated data centers (e.g., Google) whose operators have
full control over both servers and facilities. But multi-tenant colocation data centers
have been investigated much less frequently. In a colocation data center (simply
called “colocation” or “colo”), multiple tenants deploy and keep full control of
their own physical servers in a shared space, while the colo operator only provides
facility support (e.g., high-availability power and cooling). Colos are less studied
than owner-operated data centers, but they are actually more common in practice.
Colos offer data center solutions to many industry sectors, and serve as physical
home to many private clouds, medium-scale public clouds (e.g., VMware) [39],
and content delivery providers (e.g., Akamai). Further, a recent study shows that
colos consume nearly 40% of data center energy in the U.S., while Google-type data
centers collectively account for less than 8%, with the remaining going to enterprise
in-house data centers [40]. With such huge potential, efficient power management

for colos becomes an important challenge in data center design.

1.3 OvEervVIEW OF THis THESIS

This thesis is divided into four components. In Chapter 2, we focus on the task-level
data analytics framework optimization for approximation jobs. In Chapter 3, we
study the job-level optimization with a joint design of job scheduling and speculation
mitigation. In Chapter 4, we investigate the design of the geo-distributed data cloud
with joint optimization of data acquisition and data placement. Finally in Chapter 5,

we study power management in collocation data centers.

CHAPTER 2: SPECULATION-AWARE CLUSTER SCHEDULING AT THE TASK LEVEL

In this chapter, we focus on the task-level data analytics framework optimization for
approximation jobs. In big data analytics, timely results, even if based on only part
of the data, are often good enough. For this reason, approximation jobs, which have
deadline or error bounds and require only a subset of their tasks to complete, are
projected to dominate big data workloads. Straggler tasks are an important hurdle
when designing approximate data analytic frameworks, and the widely adopted

approach to deal with them is speculative execution.



In this chapter, we present GRASS, which carefully uses speculation to mitigate the
impact of stragglers in approximation jobs. We develop an analytic model to analyze
the optimal speculation level for approximation jobs. GRASS’s design is based on
the guidelines derived from the analysis. GRASS delicately balances immediacy of
improving the approximation goal with the long term implications of using extra
resources for speculation. Evaluations with production workloads from Facebook
and Microsoft Bing in an EC2 cluster of 200 nodes shows that GRASS increases
accuracy of deadline-bound jobs by 47% and speeds up error-bound jobs by 38%.
GRASS’s design also speeds up exact computations (zero error-bound), making it a

unified solution for straggler mitigation. This work summarizes the result in [19].

CHAPTER 3: SPECULATION-AWARE CLUSTER SCHEDULING ON THE JOB LEVEL

In this chapter, we study the job-level data analytics framework optimization with
a joint design of job scheduling and speculation mitigation. As clusters continue
to grow in size and complexity, providing scalable and predictable performance
is an increasingly important challenge. At this point, speculative execution has
been widely adopted to mitigate the impact of stragglers. However, speculation
mechanisms are designed and operated independently of job scheduling when, in
fact, scheduling a speculative copy of a task has a direct impact on the resources
available for other jobs. In this work, we present Hopper, a job scheduler that is
speculation-aware, i.e., that integrates the tradeoffs associated with speculation into
job scheduling decisions. We generalize the model in Chapter 2 from task level to
job level and design Hopper based on that. A knob to balance fairness and efficiency
and solutions to jobs with DAGs and heterogeneous jobs are also provided in the
design. We implement both centralized and decentralized prototypes of the Hopper
scheduler and show that 50% (66%) improvements over state-of-the-art centralized
(decentralized) schedulers and speculation strategies can be achieved through the

coordination of scheduling and speculation. This work summarizes the resultin [41].

CHAPTER 4: NETWORK-AWARE GEO-DISTRIBUTED CLUSTER SCHEDULING

This chapter studies two design tasks faced by a geo-distributed cloud data market:
which data to purchase (data purchasing) and where to place/replicate the data for
delivery (data placement). We show that the joint problem of data purchasing and
data placement within a data cloud can be viewed as a facility location problem, and

is thus NP-hard. However, we give a provably optimal algorithm for the case of a



data cloud made up of a single data center, and then generalize the structure from
the single data center setting in order to develop a near-optimal, polynomial-time
algorithm for a geo-distributed data cloud. The resulting design, Datum, decomposes
the joint purchasing and placement problem into two subproblems, one for data
purchasing and one for data placement, using a transformation of the underlying
bandwidth costs. We show, via a case study, that Datum is near-optimal (within

1.6%) in practical settings. This work summarizes the result in [42].

CHAPTER 5: POwWER CAPPING IN COLOCATION DATA CENTERS

This chapter focuses on power management in data centers. Power oversubscription
in data centers may occasionally trigger an emergency when the aggregate power
demand exceeds the capacity. Handling such an emergency requires a graceful
power capping solution that minimizes the performance loss. In this chapter, we
study power capping in a colocation data center where the operator supplies power
to multiple tenants who manage their own servers. Unlike owner-operated data
centers, the operator lacks control over tenants’ servers. To address this challenge,
we propose a novel market mechanism based on supply function bidding, called
COOP, to financially incentivize and coordinate tenants’ power reduction for min-
imizing total performance loss (quantified in performance cost) while satisfying
multiple power capping constraints. We first provide the theoretical analysis of our
mechanism under a simple case with data center level power capping constraint only
and then generalize our mechanism to the multi-level power capping problem. We
build a prototype to show that COOP is efficient in terms of minimizing the total
performance cost, even compared to the ideal but infeasible case that assumes the
operator has full control over tenants’ servers. We also demonstrate that COOP is
“win-win”, increasing the operator’s profit (through oversubscription) and reduc-
ing tenants’ costs (through financial compensation for their power reduction during

emergencies). This work summarizes the result in [43, 44].



CHAPTER 2

SPECULATION-AWARE CLUSTER SCHEDULING
AT THE TASK LEVEL

Large scale data analytics frameworks automatically compose jobs operating on
large data sets into many small tasks and execute them in parallel on compute slots
on different machines. A key feature catalyzing the widespread adoption of these
frameworks is their ability to guard against failures of tasks, both when tasks fail
outright as well as when they run slower than the other tasks of the job. Dealing with
the latter, referred to as stragglers, is a crucial design component that has received

widespread attention across prior studies [15, 17, 18].

The dominant technique to mitigate stragglers is speculation—Ilaunching speculative
copies for the slower tasks, where a speculative copy is simply a duplicate of the
original task. It then becomes a race between the original and the speculative copies.
Such techniques are state of the art and deployed in production clusters at Facebook
and Microsoft Bing, thereby significantly speeding up jobs.

Approximation jobs are starting to see considerable interest in data analytics clusters
[21-23]. These jobs are based on the premise that providing a timely result, even
if only on part of the dataset, is more important than processing the entire data.
These jobs tend to have approximation bounds on two dimensions—deadline and
error [45]. Deadline-bound jobs strive to maximize the accuracy of their results
within a specified time deadline. Error-bound jobs, on the other hand, strive to
minimize the time taken to reach a specified error limit in the result. Typically,
approximation jobs are launched on a large dataset and require only a subset of their
tasks to finish based on the bound [46—48].

Our focus in this chapter is on the problem of task-level speculation for approx-

imation jobs.! Traditional speculation techniques for straggler mitigation face a

"Note that an error-bound job with error of zero is the same as an exact job that requires all
its tasks to complete. Hence, by focusing on approximation jobs, we automatically subsume exact
computations.
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fundamental limitation when dealing with approximation jobs, since they do not
take into account approximation bounds. Ideally, when the job has many more tasks
than compute slots, we want to prioritize those tasks that are likely to complete
within the deadline or those that contribute the earliest to meeting the error bound.
By not considering the approximation bounds, state-of-the-art straggler mitigation
techniques in production clusters at Facebook and Bing fall significantly short of
optimal mitigation. They are 48% lower in average accuracy for deadline-bound

jobs and 40% higher in average duration of error-bound jobs.

Optimally prioritizing tasks of a job to slots is a classic scheduling problem with
known heuristics [49-51]. These heuristics, unfortunately, do not directly carry
over to our scenario for the following reasons. First, they calculate the optimal
ordering statically. Straggling of tasks, on the other hand, is unpredictable and
necessitates dynamic modification of the priority ordering of tasks according to
the approximation bounds. Second, and most importantly, traditional prioritization
techniques assign tasks to slots assuming every task occupies only one slot. Spawn-
ing a speculative copy, however, leads to the same task using two (or multiple) slots
simultaneously. Hence, this distills our challenge to achieving the approximation
bounds by dynamically weighing the gains due to speculation against the cost of

using extra resources for speculation.

Scheduling a speculative copy helps make immediate progress by finishing a task
faster. However, while not scheduling a speculative copy results in the task running
slower, many more tasks may be completed using the saved slot. To understand this
opportunity cost, consider a cluster with one unoccupied slot and a straggler task.
Letting the straggler complete takes five more time units while a new copy of it
would take four time units. While scheduling a speculative copy for this straggler
speeds it up by one time unit, if we were not to, that slot could finish another task

(taking five time units too).

This simple intuition of opportunity cost forms the basis for our two design proposals.
First, Greedy Speculative (GS) scheduling is an algorithm that greedily picks the
task to schedule next (original or speculative) that most improves the approximation
goal at that point. Second, Resource Aware Speculative (RAS) scheduling considers
the opportunity cost and schedules a speculative copy only if doing so saves both

time and resources.

These two designs are motivated by first principles analysis within the context of a

theoretical model for studying speculative scheduling. An important guideline from
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our model is that the value of being greedy (GS) increases for smaller jobs while
considering opportunity cost of speculation (RAS) helps for larger jobs. As our
model is generic, a nice aspect is that the guideline holds not only for approximation

jobs but also for exact jobs that require all their tasks to complete.

We use the above guideline to dynamically combine GS and RAS, which we call
GRASS. At the beginning of a job’s execution, GRASS uses RAS for scheduling tasks.
Then, as the job gets close to its approximation bound, it switches to GS, since our
theoretical model suggests that the opportunity cost of speculation diminishes with
fewer unscheduled tasks in the job. GRASS learns the point to switch from RAS to

GS using job and cluster characteristics.

We demonstrate the generality of GRASS by implementing it in both Hadoop [4]
(for batch jobs) and Spark [52] (for interactive jobs). We evaluate GRASS using
production workloads from Facebook and Bing on an EC2 cluster with 200 machines.
GRASS increases accuracy of deadline-bound jobs by 47% and speeds up error-
bound jobs by 38% compared to state-of-the-art straggler mitigation techniques
deployed in these clusters (LATE [18] and Mantri [17]). In fact, GRASS results
in near-optimal performance. In addition, GRASS also speeds up exact jobs, that
require all their tasks to complete, by 34%. Thus, it is a unified speculation solution

for both approximation as well as exact computations.

2.1 CHALLENGES AND OPPORTUNITIES

Before presenting our system design, it is important to understand the challenges
and opportunities for speculating straggler tasks in the context of approximation

jobs.

2.1.1 APPROXIMATION JOBS

Increasingly, with the deluge of data, analytics applications no longer require pro-
cessing the entire datasets. Instead, they choose to trade off accuracy for response
time. Approximate results obtained early from just part of the dataset are often
good enough [21-23]. Approximation is explored across two dimensions—time for

obtaining the result (deadline) and error in the result [45].

* Deadline-bound jobs strive to maximize the accuracy of their result within

a specified time limit. Such jobs are common in real-time advertisement
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systems and web search engines. Generally, the job is spawned on a large
dataset and accuracy is proportional to the fraction of data processed [46—48]

(or tasks completed, for ease of exposition).

» Error-bound jobs strive to minimize the time taken to reach a specified error
limitin the result. Again, accuracy is measured in the amount of data processed
(or tasks completed). Error-bound jobs are used in scenarios where the value
in reducing the error below a limit is marginal, e.g., counting the number of
cars crossing a section of a road to the nearest thousand is sufficient for many

purposes.

Approximation jobs require schedulers to prioritize the appropriate subset of their
tasks depending on the deadline or error bound. Prioritization is important for
two reasons. First, due to cluster heterogeneities [15, 18, 53], tasks take different
durations even if assigned the same amount of work. Second, jobs are often multi-
waved, i.e., their number of tasks is much greater than the available compute slots,
thereby they run only a fraction of their tasks at a time [54]. For example, when a job
with 1000 tasks is given only 100 slots simultaneously (due to, say, fair scheduling),
it runs only one-tenth of its tasks at a time. These tasks, though, are independent
and can be scheduled in any order. The trend of multi-waved jobs is expected to

grow with smaller tasks [55].

2.1.2 CHALLENGES

The main challenge in prioritizing tasks of approximation jobs arises due to some
of them straggling. Even after applying many proactive techniques, in production
clusters in Facebook and Microsoft Bing, the average job’s slowest task is eight
times slower than the median.? It is difficult to model all the complex interactions
in clusters to prevent stragglers [15, 57]. Ananthanarayanan et al. (Section 2.1.2
in [15]) also show that blacklisting machines based on their likeliness to cause
stragglers (in both the short- as well as long-term) has little benefits; machines are

neither consistently problematic nor exhibit simple correlations with task durations.

The widely adopted technique to deal with straggler tasks is speculation. This is a
reactive technique that spawns speculative copies for tasks deemed to be straggling.

The earliest among the original and speculative copies is picked while the rest are

2Task durations are normalized by their input sizes to be resistant to data skews [17, 56].
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killed. While scheduling a speculative copy makes the task finish faster and thereby
increases accuracy, they also compete for compute slots with the unscheduled tasks.

Therefore, our problem is to dynamically prioritize tasks based on the deadline/error-
bound while choosing between speculative copies for stragglers and unscheduled
tasks. This problem is, unfortunately, NP-Hard and devising good heuristics (i.e.,

with good approximation factors) is an open theoretical problem.

2.1.3 PorteNTIAL GAINS

Given the challenges posed by stragglers discussed above, it is not surprising that
the potential gains from mitigating their impact are significant. To highlight this
we use a simulator with an optimal bin-packing scheduler. Our baselines are the
the state-of-the-art mitigation strategies (LATE [18] and Mantri [17]) in the pro-
duction clusters. Optimally prioritizing the tasks while correctly balancing between
speculative copies and unscheduled tasks presents the following potential gains.
Deadline-bound jobs improve their accuracy by 48% and 44%, in the Facebook and
Bing traces, respectively. Error-bound jobs speed up by 32% and 40%. We next

develop two online heuristics to achieve these gains.

2.2  SPECULATION ALGORITHM DESIGN

The key choice made by a cluster scheduling algorithm is to pick the next task to
schedule given a vacant slot. Traditionally, this choice is made among the set of
tasks that are queued; however when speculation is allowed, the choice also includes
speculative copies of tasks that are already running. This extra flexibility means
that a design must determine a prioritization that carefully weighs the gains from
speculation against the cost of extra resources while still meeting the approximation
goals. Thus, we first focus on tradeoffs in the design of the speculation policy.
Specifically, using both small examples and analytic modeling we motivate the use
of two simple heuristics, Greedy Speculative (GS) scheduling and Resource Aware
Speculative (RAS) scheduling that together make up the core of GRASS.

2.2.1 SPECULATION ALTERNATIVES

For simplicity, we first introduce GS and RAS in the context of deadline-bound jobs

and then briefly describe how they can be adapted to error-bound jobs.
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2.2.1.1 DEADLINE-BOUND JOBS

If speculation was not allowed, there is a natural, well-understood policy for the
case of deadline-bound jobs: Shortest Job First (SJF), which schedules the task with
the smallest processing time. In many settings, SJF can be proven to minimize the
number of incomplete tasks in the system, and thus maximize the number of tasks
completed, at all points of time among the class of non-preemptive policies [49, 50].

Thus, without speculation, SJF finishes the most tasks before the deadline.

If one extends this idea to the case where speculation is allowed, then a natural
approach is to allow the currently running tasks to also be placed in the queue, and
to choose the task with the smallest size, i.e., thew (requiring, of course, that the task
finishes before the deadline). If the chosen task has a copy currently running, we
check that the speculative copy being considered provides a benefit, i.e., thew < trem-
So, the next task to run is still chosen according to SJF, only now speculative copies
are also considered. We term this policy Greedy Speculative (GS) scheduling,
because it picks the next task to schedule greedily, i.e., the one that will finish the

quickest, and thus improve the accuracy the earliest ar present.

Figure 2.1 (left) presents an illustration of GS for a simple job with nine tasks and
two concurrent slots. Tasks T1 and T2 are scheduled first, and when T2 finishes,
the trem and tyew values are as indicated. At this point, GS schedules T3 next as it is
the one with the lowest tyey, and so forth. Assuming the deadline was set to 6 time

units, the obtained accuracy is % (or 7 completed tasks).

Picking the earliest task to schedule next is often optimal when a job has no un-
scheduled tasks (i.e., either single-waved jobs or the last wave of a multi-waved
job). However, when there are unscheduled tasks it is less clear. For example, in
Figure 2.1 (right) if we schedule a speculative copy of T1 when T2 finished, instead
of T3, 8 tasks finish by the deadline of 6 time units.

The previous example highlights that running a speculative copy has resource im-
plications which are important to consider. If the speculative copy finishes early,
both slots (of the speculative copy and the original) become available sooner to start
the other tasks. This opportunity cost of speculation is an important tradeoff to
consider, and leads to the second policy we consider: Resource Aware Speculative
(RAS) scheduling.

To account for the opportunity cost of scheduling a speculative copy, RAS speculates

only if it saves both time and resources. Thus, not only must tye, be less than tiep



15

GS RAS
Slot 1 ,
1
| Slot 1
Slot2 !
RE@Es s
:‘ . time
0 3 6

TaskID(T1|T2|T3|T4|T5(T6|T7|T8(|T9

trem

tew (2|12 ]2 (11|13

new

Figure 2.1: GS and RAS for a deadline-bound job with 9 tasks. The tiey and tpew
values are when T2 finishes. The example illustrates deadline values of 3 and 6 time
units.

to spawn a speculative copy but the sum of the resources used by the speculative
and original copies, when running simultaneously, must be less than letting just the
original copy finish. In other words, for a task with ¢ running copies, its resource

savings, defined as ¢ X trem, — (¢ + 1) X tpew, must be positive.

By accounting for the opportunity cost of resources, RAS can out-perform GS in
many cases. As mentioned earlier, an example is given in Figure 2.1 where RAS
achieves an accuracy of g versus GS’s % in the deadline of 6 time units. This
improvement comes because, when T2 finishes, speculating on T1 saves 1 unit of

resource.

However, RAS is not uniformly better than GS. In particular, RAS’s cautious ap-
proach can backfire if it overestimates the opportunity cost. In the same example in
Figure 2.1, if the deadline of the job were reduced from 6 time units to 3 time units
instead, GS performs better than RAS. At the end of 3 time units, GS has led to three
completed tasks while RAS has little to show for its resource gains by speculating
T1.

As the example alludes to, the value of the deadline and the number of waves are
two important factors that impact whether GS or RAS is a better choice. A third
important factor, which we discuss later in Section 2.4.1, is the estimation accuracy

of trem and tyeyw.

Pseudocode 1 describes the details of GS and RAS. The set T consists of all the
running and unscheduled tasks of the jobs. There are two stages in the scheduling
process: (i) Pruning Stage: In this stage (lines 5 — 12), tasks that are not slated

to complete by the deadline are removed from consideration. Further, GS removes



16

1: procedure DEapLINE({Task) 7', float &, bool OC)
>OC =1 — use RAS; 0 — use GS

2: if OC then
3: for each Task ¢ in T do
4 if 7.running then
t.saving = £.c Xt.trem — (£.c+1) X thew
> PRUNING STAGE
¢’ « Remaining Time to ¢
(Task)I" «— ¢
5 for each Task 7 in T do
6 if t.t,ew > O then continue > Exceeds deadline
7: if OC then
8: if #.saving > O then I'.add(¢)
9 else
10: if #.running then
11: if t.thew < t.trem then I'.add(?)
12: else I'.add(¢)
> SELECTION STAGE
13: if I # null then
14: if OC then SortDescending(I’, “saving”)
15: else SortAscending(I’, tpew)

return I .first()

Pseudocode 1: GS and RAS algorithms for deadline-bound jobs (deadline of ¢).
T is the set of unfinished tasks with the following fields per task: tiem, thew, and a
boolean “running” to denote if a copy of it is currently executing. RAS is used when
OC 