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ABSTRACT 

Solid oxide fuel cells are electrochemical devices which convert chemical energy directly to 

electricity. The extreme environments in which these devices operate require the use of 

expensive components to withstand degradation. To lower operating temperatures and 

therefore cost, materials discovery efforts have targeted new electrodes with high ionic and 

electronic conductivity, but these studies often convolute electrode morphology and 

performance, masking the inherent activity of electrode materials. In this work, a high-

throughput experimental technique utilizing a robotic scanning impedance probe is applied 

to materials libraries to rigorously compare the performance of electrode materials and 

characterize fundamental electrode properties. 

Two cathode materials libraries are studied in-depth: the perovskite material La1-xSrxCo1-

yFeyO3-δ (LSCF) and the double perovskite material PrBa0.5Sr0.5Co2-xFexO5+δ (PBSCF). Each 

materials library is investigated through the entire regime of cobalt and iron doping and 

results are obtained on both oxide-ion- and proton-conducting electrolyte materials. For 

LSCF, a four-fold increase in electrochemical resistance is observed from the cobalt-

dominant endmember LSC64 to the iron-dominant endmember LSF64 on an oxygen-ion 

conducting substrate, concurrent with a decrease in chemical capacitance indicating lower 

oxygen vacancy concentration. For PBSCF, proton conductivity is observed through the bulk 

of the film, leading to its use in a real proton-conducting ceramic fuel cell that demonstrates 

exceptional performance at low temperatures (>500mW/cm2 at 500°C) while remaining 

stable over hundreds of hours of testing. These results demonstrate the power and robustness 

of this high-throughput approach in characterizing both well-known and novel materials, and 

show great promise for future targeted searches of high-performance materials. 
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 C h a p t e r  1  

INTRODUCTION 

Technologies that generate electricity while producing minimal greenhouse gas emissions 

are essential to sustain humanity without inflicting further environmental damage. Over the 

last century, emissions from fossil fuels have increased the global concentration of carbon 

dioxide in the atmosphere to levels exceeding 400 ppm and caused a corresponding 

temperature increase of approximately 1°C (Figure 1-1). Continued use of carbon-emitting 

sources of fuel will only exacerbate this trend, resulting in devastating global climate change. 

Among the candidates for such clean technologies are fuel cells, which are devices that 

convert the energy stored in chemical fuels directly into electricity. 

  

Figure 1-1. Monthly mean global atmospheric CO2 (left) and global mean 

temperature anomaly (right). Sources: NOAA (left), NASA (right). 

Fuel cells combine the best aspects of batteries and combustion engines: like engines, fuel 

cells will continue to produce power as long as fuel is supplied; like batteries, fuel cells 

efficiently convert chemical energy directly to electricity without combustion. Among the 

many types of fuel cells that exist, solid oxide fuel cells (SOFCs) are attractive due to their 
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exceptionally high efficiency and fuel flexibility1. These simple devices require, in 

principle, only five components: a solid oxide electrolyte, electrodes (the cathode for oxygen 

reduction and the anode for fuel oxidation), and interconnect wires to collect current at the 

electrodes. In addition to hydrogen, which when used as fuel produces only water as a by-

product, many hydrocarbon fuels can be used as fuel, making SOFCs attractive as a bridge 

technology from the current energy ecosystem to a clean and sustainable energy future. 

Despite these benefits, SOFCs have yet to achieve substantial commercial penetration. This 

failure largely stems from the high cost of these devices due to the components required to 

withstand the high temperatures at which these devices operate2. As such, efforts to improve 

these devices have focused on lowering operating temperatures to both permit the use of 

inexpensive stainless steel as the interconnect material and improve durability. At low 

temperatures, research has shown that SOFC performance is primarily limited by cathode 

overpotential losses3. This finding had motivated electrochemical characterization by many 

different groups of hundreds electrode material compositions in hopes of discovering a stable 

performance with high catalytic activity at low temperatures2,4-6. In each of these studies, a 

parameter of the synthesis procedure or measurement of the material is changed, 

systematically or unknowingly, leading to a resulting value for the electrochemical 

performance of that particular material. The myriad ways in which synthesis and 

characterization procedures can affect these values lead to questions regarding the rigor of 

comparisons between different studies or even results within the same study. The lack of 

such rigorous comparisons hinders understanding of the factors governing electrochemical 

performance of various materials and hence the development of high-performance devices. 
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The work presented in this thesis addresses this deficiency through further development of 

a high-throughput characterization technique for solid oxide fuel cell electrode materials. In 

so doing, a systematic understanding is sought of the properties of SOFC cathode materials 

that lead to improved fuel cell performance and develop techniques that aid in the discovery 

of new, high-performance cathode materials. Before describing the experimental technique 

and its application, a general introduction to fuel cell operation and cathode materials is 

presented. 

1. Fuel Cells 

  

Figure 1-2. SOFC schematics. Left, schematic of an oxygen-ion-conducting SOFC; 

right, schematic of a proton-conducting SOFC. 

Figure 1-2 shows schematics of hydrogen fuel conversion to electricity via SOFCs based on 

the two main types of oxide electrolytes: oxygen-ion conducting oxides (left) and proton-

conducting oxides (right). For both types of electrolytes, the overall reaction is the same: fuel 

is oxidized at the anode and oxygen is reduced at the cathode, then water and, if hydrocarbon 

fuels are used, carbon dioxide are released as by-products: 
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2H2 + O2 → 2H2O(𝑔) (1.1) 

CH4 + 2O2 → 2H2O(g) + CO2 (1.2) 

However, the half-reactions differ by electrolyte type as shown below in Table 1-1. 

Table 1-1. Fuel cell reactions 

 Oxygen-ion conducting electrolyte Proton-conducting electrolyte 

Anode 2H2 + 2O
2− → 2H2O + 4e

− (1.3) 2H2 → 4H
+ + 4e− (1.4) 

Cathode O2 + 4e
− → 2O2− (1.5) 4H+ + 4e− + O2 → 2H2O (1.6) 

Overall 𝟐𝐇𝟐 + 𝐎𝟐 → 𝟐𝐇𝟐𝐎 𝟐𝐇𝟐 + 𝐎𝟐 → 𝟐𝐇𝟐𝐎 

 

In the case of oxygen-ion conducting electrolytes, water is produced on the anode side after 

the oxidation of the fuel (Equation 1.3). For proton-conducting electrolytes, water is 

produced on the cathode side, preventing fuel dilution (Equation 1.6). The canonical oxygen-

ion conducting electrolyte used in solid oxide fuel cells is yttria-stabilized zirconia, 

commonly abbreviated YSZ7. Doping with yttria stabilizes the high-temperature cubic 

fluorite phase of zirconia at lower temperatures and introduces oxygen vacancies which lead 

to high ionic conductivity. Other common oxygen-ion conducting electrolytes are based on 

doped ceria8 or doped lanthanum gallate9.  

As contrasted with oxygen-ion conducting electrolytes, proton-conducting oxides such as 

yttrium-doped barium zirconate (abbreviated BZY) uptake hydroxyl molecules onto oxygen 

vacancy sites and conduct protons via a Grotthuss mechanism, hopping from oxygen atom 
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to oxygen atom within the lattice10. Proton-conducting electrolytes offer two distinct 

beneifts: first, the lower activation energy posed by proton migration and therefore improved 

conductivity at lower temperatures; second, water is produced at the cathode rather than the 

anode, and thus fuel dilution is avoided. A comparison of the conductivity of yttria-stabilized 

zirconia (𝐸𝑎
𝑌𝑆𝑍 = 1.1 eV 11) and yttrium-doped barium zirconate (𝐸𝑎

𝐵𝑍𝑌 = 0.45 eV12) is 

shown in Figure 1-3. 

 

Figure 1-3. Conductivity comparison of different electrolytes7,13.  

For oxide materials, the most common proton-conducting electrolytes are based on doped 

BaZrO3 and BaCeO3, where the dopant is a trivalent metal cation (often yttrium)14,15. The 

former material offers excellent chemical stability and high bulk proton conductivity, but is 

highly refractory and thus difficult both to sinter densely for use as an electrolyte and to 

achieve large grain sizes that minimize the contribution to the conductivity of highly resistive 

grain boundaries. The latter material is susceptible to decomposition into BaCO3 and CeO2 
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in carbon-containing atmospheres, and thus degrades when unprocessed air is used at the 

cathode or when carbon monoxide is used as the fuel.  

Table 1-2. Property-value criteria for SOFC cathode selection. 

 

2. Cathodes 

The purpose of the cathode is to catalyze the oxygen reduction reaction (Equations 1.5 and 

1.6). While precious metals such as platinum serve as excellent catalysts, their high cost 

prohibits use in real devices. In fact, many considerations must be accounted for when 

choosing an appropriate SOFC cathode material, considered in Table 1-2 above. Each of the 

listed properties in the table have some desired value that corresponds to improved fuel cell 

performance, specifically high power density or minimal degradation. The magnitude of the 

Property Desired qualitative value 

Catalytic activity Highly active toward oxygen reduction 

Thermal expansion 

coefficient 

Good matching to electrolyte to prevent cracking or degradation 

when cycled 

Electrical conductivity As high as possible to avoid ohmic electronic losses 

Ionic conductivity Sufficiently high to permit surface reaction and bulk transport 

Stability Cannot degrade/oxidize under fuel cell-relevant conditions such as 

high temperature or highly oxidizing atmosphere 

Abundance/cost Cheap, earth-abundant elements preferred 

Manufacturability Materials amenable to mass-manufacturing techniques such as 

screen printing, e.g., easily sinterable 

Reactivity with 

electrolyte 

Electrode materials which react with common electrolyte materials 

are not suitable 
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contribution of each of these parameters to the long-term performance of a device varies 

widely.  

Finding a material that meets all of these criteria is difficult, and efforts over the last half 

century have shown many different approaches leading to the use of many different 

materials5. Two of the major families of materials that have emerged as successful candidates 

for use in SOFCs are perovskites and double perovskites, referred to by the structure in which 

these materials form. 

Perovskites 

 

Figure 1-4. The cubic perovskite crystal structure. The A-site is represented by 

the green atoms, the B-site by blue atoms, and oxygen by the red atoms. 

The types of oxides most frequently used as SOFC cathodes form the perovskite structure, 

ABO3, where canonically A is a 12-fold coordinated 2+ cation and B a 6-fold coordinated 

4+ cation. The structure is named after the mineral perovskite, CaTiO3, which forms in the 

cubic structure. An image of the perovskite crystal structure is shown in Figure 1-4. Many 
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combinations of elements have been found to form this structure, though different 

combinations of elements have often formed distorted perovskite structures that are 

pseudocubic, such as rhombohedral or orthorhombic4. A predictor of whether a material will 

stably form the perovskite structure is the Goldschmidt tolerance factor t, calculated as shown 

in Equation 1.7: 

𝑡 =
𝑟𝐴 + 𝑟𝑂

√2(𝑟𝐵 + 𝑟𝑂)
   1.7 

where 𝑟𝐴 is the ionic radius of the metal cation on the A-site, 𝑟𝐵 the radius of the metal cation 

on the B-site, and 𝑟𝑂 the radius of the oxygen anion. When t is close to 1, the material should 

stably form in the perovskite structure, though it may be distorted. The tolerance of this 

structure to defects also allows it to incorporate oxygen vacancies and hence conduct oxygen 

ions. 

 La0.6Sr0.4Co1-yFeyO3-δ (LSCF64) is chosen as the canonical perovskite material for this 

thesis, and for the point of reference for case studies on each of oxygen-ion conducting and 

proton-conducting electrolytes. LSCF64 is a well-studied pseudo-cubic perovskite and 

mixed ionic and electronic conductor16-20. The ratio of strontium and lanthanum largely 

controls the resulting oxygen non-stoichiometry δ, while the ratio of cobalt and iron relates 

to thermal expansivity and electronic conductivity. The cobalt-dominant range of this family 

typically exhibits higher electronic and ionic conductivity, while the substitution of iron 

lowers the thermal expansion coefficient to a range more comparable to that of zirconia-

based electrolytes4. Surface strontium segregation is thought to limit the performance of these 

materials through the formation of ion- and electron-blocking phases at the surface, a 

problem somewhat worse in the iron-dominant range21-24.  
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Double Perovskites 

When a large difference exists between the radii of doped cations within either the A site or 

the B-site, these cations preferentially order into layers giving rise to the double perovskite 

structure, denoted AA’BB’O5. This structure consists of a doubled perovskite unit cell with 

alternating ordered layers consisting of A or A’ cations (or alternately, B and B’ cations if 

the mismatch exists on the B-site). In the lanthanide layer, when the A/A’ site is occupied by 

a lanthanide and an alkali rare earth, the oxygen bond strength is weakened, leading to 

channels of high oxygen vacancy concentration and hence high oxygen diffusivity25. An 

image of the double perovskite structure is shown in Figure 1-5, where the A and A’ atoms 

are represented by large green and purple spheres respectively, oxygen is represented by 

small red spheres, and the B site atom is represented by blue spheres. 

 

Figure 1-5. The double perovskite crystal structure. Note the layering of large 

green atoms, representing the A site, and smaller purple atoms, representing the 

A’ site. 
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PrBa0.5Sr0.5Co2-xFexO5+δ (PBSCF) is chosen as the novel cathode material for this thesis. 

PBSCF is a relatively novel cathode material, first demonstrated to have exceptional 

performance in a fuel cell 201326. Though some studies exist on PBSCF and related 

compounds27-29, the data are sparse, especially with regard to composition variation. It 

therefore presents a good counterpoint to LSCF for investigation, as the systematic trends of 

performance of PBSCF with cobalt-iron substitution has yet to be determined. 

Mixed conductors 

Materials that form each of these structures have been found to be mixed ion- and electron-

conducting (MIEC) materials30. Mixed conducting cathodes are attractive because they make 

the entire electrode surface a viable reaction site, as oxygen ions reduced at the surface can 

be transported through the bulk electrode by ionic conduction (See Figure 1-6Error! 

Reference source not found.). This contrasts with purely electronic conductors, for which 

the available reaction sites are restricted to the triple phase boundary, where the gas, 

electrode, and electrolyte all meet and oxygen can be reduced and incorporated into the 

electrolyte. Many modern fuel cell electrodes are designed to maximize the density of the 

triple phase boundary by using composites or making highly porous structures. 

Figure 1-6. Schematic of cathode reaction pathways (adapted from Chueh and 

Haile). 
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These mixed conducting materials pose additional opportunities for cell engineering, as 

devices no longer require optimization of triple-phase boundaries through the use of complex 

composite materials. Rather, optimization efforts can focus on the appropriate structuring of 

the mixed conducting materials. Some knowledge of the underlying properties of these 

mixed conducting materials is required to perform this morphology optimization. In 

particular, the precise electronic and ionic conductivity must be known to determine the 

appropriate structure to use to maximize useful reaction site density. Many studies show 

varying results when measuring these properties31. For example, measuring the surface 

reaction constant and diffusivity for LSCF has yielded quantities differing by orders of 

magnitude depending on the experimental technique used to perform the measurement and 

the group performing the study2.  

3. Motivation 

This presents a problem which this thesis seeks to address. Given the wide variation in 

measured kinetic parameters among the many different types of materials studied, how is it 

possible to precisely measure meaningful trends between observed parameters between 

different materials? How then is it possible to select and engineer the most optimal materials 

for a given fuel cell device? 

This work addresses this problem through the use of a standardized thin-film electrode 

geometry. To address the convolution of morphology and performance, impedance 

spectroscopy on patterned thin-film model electrodes has emerged as a useful tool to 

rigorously investigate the electrochemical properties of mixed ion- and electron-conducting 

(MIEC) electrode materials32-41. By controlling the geometry in which these materials are 
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measured, valuable information about the dominant electrochemical pathway as well as 

fundamental material properties can be extracted. While important advances have made with 

this technique, the majority of the studies have been restricted to the measurement of 

relatively few microelectrodes due to the tedious nature of manual operation of the probing 

equipment. In a work done by a previous student41, the use of an automated robotic probe 

was demonstrated to vastly increase the number of microelectrodes that can be measured 

using this technique. In this work, we further extend this methodology by utilizing, in 

addition to traditional geometry gradients, a composition gradient thin film42 deposited by 

pulsed laser deposition. This methodology, in which the deposited material compositions are 

synthesized and characterized simultaneously under identical environmental conditions, 

removes much of the variation resulting from morphology variation and thus enables 

rigorous materials performance comparisons. 

In addition to a technique for rigorously comparing materials performance, this approach is 

also useful as a method for characterizing novel materials or even exploring new regions of 

composition phase space. As long as the two deposition targets which formulate the end 

members of the composition spread are stable, a thin film gradient can be deposited even if 

it the resulting film does not form in a single phase solid solution across the entire 

composition range in question. Though it is not carried out here, the groundwork is laid for 

the exploration of new materials using this technique.  

4. Outline 

The work in this thesis is summarized in Table 1-2 below. This chapter provides an 

introduction to fuel cells and motivation for pursuing their study. Chapter 2 details the 
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experimental methods used in this thesis to investigate fuel cell materials, specifically the 

further development of a high-throughput synthesis and characterization technique for rapid 

serial characterization of multiple material compositions and geometries. The remaining 

chapters focus on the results of experiments on the two selected cathode material 

compositions which exemplify both well-known and novel materials compositions, LSCF 

and PBSCF. 

Chapter 3 presents the investigation of the composition phase space of an LSCF composition 

library on a YSZ electrolyte substrate. Chapter 4 contains the results of a similar study on 

PBSCF. Chapter 5 presents an investigation of the performance of LSCF on a proton-

conducting electrolyte, BZCYYb. Chapter 6 presents a similar study of PBSCF electrolytes 

and describes how the results of this study impact real-world fuel cell performance. Finally, 

Chapter 7 presents a summary of the conclusions drawn from this thesis and describes future 

work. 

 Oxygen-ion conducting electrolyte 

(YSZ) 

Proton-conducting electrolyte 

(BZCYYb) 

LSCF Chapter 3: State-of-the-art cathode 

material on traditional electrolyte 

Chapter 5: State-of-the-art cathode 

material on novel electrolyte 

PBSCF Chapter 4: Novel cathode material 

on traditional electrolyte 

Chapter 6: Novel cathode material 

on novel electrolyte 

 



 

 

14 

5. References 

1 Kendall, K. & Kendall, M. High Temperature Solid Oxide Fuel Cells for the 21st 

Century. 2 edn,  (Elsevier, 2015). 

2 Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G. & Barnett, S. A. A perspective 

on low-temperature solid oxide fuel cells. Energ Environ Sci 9, 1602-1644, 

doi:10.1039/c5ee03858h (2016). 

3 Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. 

Chem Rev 104, 4791-4843, doi:Doi 10.1021/Cr020724o (2004). 

4 Jun, A., Kim, J., Shin, J. & Kim, G. Perovskite as a Cathode Material: A Review of 

its Role in Solid-Oxide Fuel Cell Technology. Chemelectrochem 3, 511-530, 

doi:10.1002/celc.201500382 (2016). 

5 Aguadero, A. et al. Materials development for intermediate-temperature solid oxide 

electrochemical devices. J Mater Sci 47, 3925-3948, doi:DOI 10.1007/s10853-011-

6213-1 (2012). 

6 Sun, C. W., Hui, R. & Roller, J. Cathode materials for solid oxide fuel cells: a review. 

Journal of Solid State Electrochemistry 14, 1125-1144, doi:DOI 10.1007/s10008-

009-0932-0 (2010). 

7 Wachsman, E. D. & Lee, K. T. Lowering the Temperature of Solid Oxide Fuel Cells. 

Science 334, 935-939, doi:DOI 10.1126/science.1204090 (2011). 

8 Inaba, H. & Tagawa, H. Ceria-based solid electrolytes - Review. Solid State Ionics 

83, 1-16, doi:Doi 10.1016/0167-2738(95)00229-4 (1996). 

9 Huang, K. Q., Tichy, R. & Goodenough, J. B. Superior perovskite oxide-ion 

conductor; strontium- and magnesium-doped LaGaO3: III, Performance tests of 

single ceramic fuel cells. J Am Ceram Soc 81, 2581-2585 (1998). 

10 Yamazaki, Y. et al. Proton trapping in yttrium-doped barium zirconate. Nat Mater 

12, 647-651, doi:Doi 10.1038/Nmat3638 (2013). 

11 Badwal, S. P. S. Zirconia-based solid electrolytes: microstructure, stability and ionic 

conductivity. Solid State Ionics 52, 23-32, doi:https://doi.org/10.1016/0167-

2738(92)90088-7 (1992). 

12 Babilo, P. & Haile, S. M. Enhanced sintering of yttrium-doped barium zirconate by 

addition of ZnO. J Am Ceram Soc 88, 2362-2368, doi:DOI 10.1111/j.1551-

2916.2005.00449.x (2005). 

13 Yamazaki, Y., Hernandez-Sanchez, R. & Haile, S. M. High Total Proton 

Conductivity in Large-Grained Yttrium-Doped Barium Zirconate. Chem Mater 21, 

2755-2762, doi:Doi 10.1021/Cm900208w (2009). 

14 Kreuer, K. D. Proton-Conducting Oxides. Annu Rev Mater Res 33, 333-359, 

doi:10.1146/annurev.matsci.33.022802.091825 (2003). 

15 Medvedev, D. et al. BaCeO3: Materials development, properties and application. 

Progress in Materials Science 60, 72-129, doi:DOI 10.1016/j.pmatsci.2013.08.001 

(2014). 

16 Hashimoto, S. et al. Oxygen nonstoichiometry and thermo-chemical stability of 

La0.6Sr0.4Co1-yFeyO3-delta (y=0.2, 0.4, 0.6, 0.8). Solid State Ionics 181, 1713-

1719, doi:10.1016/j.ssi.2010.09.024 (2010). 

https://doi.org/10.1016/0167-2738(92)90088-7
https://doi.org/10.1016/0167-2738(92)90088-7


 

 

15 

17 Teraoka, Y., Zhang, H. M., Okamoto, K. & Yamazoe, N. Mixed Ionic-Electronic 

Conductivity of La1-Xsrxco1-Yfeyo3-Delta Perovskite-Type Oxides. Mater Res 

Bull 23, 51-58, doi:Doi 10.1016/0025-5408(88)90224-3 (1988). 

18 Petric, A., Huang, P. & Tietz, F. Evaluation of La-Sr-Co-Fe-O perovskites for solid 

oxide fuel cells and gas separation membranes. Solid State Ionics 135, 719-725, 

doi:Doi 10.1016/S0167-2738(00)00394-5 (2000). 

19 Kuhn, M., Hashimoto, S., Sato, K., Yashiro, K. & Mizusaki, J. Thermo-chemical 

lattice expansion in La0.6Sr0.4Co1-yFeyO3-delta. Solid State Ionics 241, 12-16, 

doi:DOI 10.1016/j.ssi.2013.03.023 (2013). 

20 Plonczak, P., Sogaard, M., Bieberle-Hutter, A., Hendriksen, P. V. & Gauckler, L. J. 

Electrochemical Characterization of La0.58Sr0.4Co0.2Fe0.8O3-delta Thin Film 

Electrodes Prepared by Pulsed Laser Deposition. J Electrochem Soc 159, B471-

B482, doi:10.1149/2.043204jes (2012). 

21 Jung, W. & Tuller, H. L. Investigation of surface Sr segregation in model thin film 

solid oxide fuel cell perovskite electrodes. Energ Environ Sci 5, 5370-5378, doi:Doi 

10.1039/C1ee02762j (2012). 

22 Ding, H. P., Virkar, A. V., Liu, M. L. & Liu, F. Suppression of Sr surface segregation 

in La1-xSrxCo1-yFeyO3-delta: a first principles study. Phys Chem Chem Phys 15, 

489-496, doi:10.1039/c2cp43148c (2013). 

23 Finsterbusch, M., Lussier, A., Schaefer, J. A. & Idzerda, Y. U. Electrochemically 

driven cation segregation in the mixed conductor La0.6Sr0.4Co0.2Fe0.8O3-delta. 

Solid State Ionics 212, 77-80, doi:10.1016/j.ssi.2012.02.006 (2012). 

24 Wang, H. Q. et al. Mechanisms of Performance Degradation of (La,Sr)(Co,Fe)O3-

delta Solid Oxide Fuel Cell Cathodes. J Electrochem Soc 163, F581-F585, 

doi:10.1149/2.0031607jes (2016). 

25 Taskin, A. A., Lavrov, A. N. & Ando, Y. Achieving fast oxygen diffusion in 

perovskites by cation ordering. Appl Phys Lett 86, 091910, doi:10.1063/1.1864244 

(2005). 

26 Choi, S. et al. Highly efficient and robust cathode materials for low-temperature solid 

oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+delta). Scientific reports 3, 2426, 

doi:10.1038/srep02426 (2013). 

27 Jeong, D. et al. Structural, Electrical, and Electrochemical Characteristics of 

LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln=Pr, Sm, Gd) as Cathode Materials in 

Intermediate-Temperature Solid Oxide Fuel Cells. Energy Technology 5, 1337-1343, 

doi:10.1002/ente.201600618 (2017). 

28 Park, S., Choi, S., Shin, J. & Kim, G. A collaborative study of sintering and 

composite effects for a PrBa0.5Sr0.5Co1.5Fe0.5O5+delta IT-SOFC cathode. Rsc 

Adv 4, 1775-1781, doi:10.1039/c3ra45296d (2014). 

29 Jiang, L., Wei, T., Zeng, R., Zhang, W. X. & Huang, Y. H. Thermal and 

electrochemical properties of PrBa0.5Sr0.5Co2-xFexO5+delta (x=0.5, 1.0, 1.5) 

cathode materials for solid-oxide fuel cells. J Power Sources 232, 279-285, 

doi:10.1016/j.jpowsour.2013.01.064 (2013). 

30 Chueh, W. C. & Haile, S. M. Electrochemistry of Mixed Oxygen Ion and Electron 

Conducting Electrodes in Solid Electrolyte Cells. Annu Rev Chem Biomol 3, 313-

341, doi:DOI 10.1146/annurev-chembioeng-073009-101000 (2012). 



 

 

16 

31 Jiang, S. P. Development of lanthanum strontium manganite perovskite cathode 

materials of solid oxide fuel cells: a review. J Mater Sci 43, 6799-6833, 

doi:10.1007/s10853-008-2966-6 (2008). 

32 Fleig, J. Microelectrodes in solid state ionics. Solid State Ionics 161, 279-289, 

doi:Doi 10.1016/S0167-2738(03)00217-0 (2003). 

33 Brichzin, V., Fleig, J., Habermeier, H. U. & Maier, J. Geometry dependence of 

cathode polarization in solid oxide fuel cells investigated by defined Sr-doped 

LaMnO3 microelectrodes. Electrochem Solid St 3, 403-406, doi:Doi 

10.1149/1.1391160 (2000). 

34 Baumann, F. S. et al. Quantitative comparison of mixed conducting SOFC cathode 

materials by means of thin film model electrodes. J Electrochem Soc 154, B931-

B941, doi:Doi 10.1149/1.2752974 (2007). 

35 la O', G. J. & Shao-Horn, Y. Thickness Dependence of Oxygen Reduction Reaction 

Kinetics on Strontium-Substituted Lanthanum Manganese Perovskite Thin-Film 

Microelectrodes. Electrochem Solid St 12, B82-B85, doi:Doi 10.1149/1.3095681 

(2009). 

36 Sasaki, K. A., Hao, Y. & Haile, S. M. Geometrically asymmetric electrodes for 

probing electrochemical reaction kinetics: a case study of hydrogen at the Pt-

CsH2PO4 interface. Phys Chem Chem Phys 11, 8349-8357, doi:Doi 

10.1039/B909498a (2009). 

37 Crumlin, E. J. et al. Oxygen Reduction Kinetics Enhancement on a Heterostructured 

Oxide Surface for Solid Oxide Fuel Cells. The Journal of Physical Chemistry Letters 

1, 3149-3155, doi:10.1021/jz101217d (2010). 

38 Wedig, A., Merkle, R. & Maier, J. Oxygen Exchange Kinetics of (Bi,Sr)(Co,Fe)O3-

delta Thin-Film Microelectrodes. J Electrochem Soc 161, F23-F32, 

doi:10.1149/2.017401jes (2014). 

39 Kogler, S., Nenning, A., Rupp, G. M., Opitz, A. K. & Fleig, J. Comparison of 

Electrochemical Properties of La0.6Sr0.4FeO3-delta Thin Film Electrodes: 

Oxidizing vs. Reducing Conditions. J Electrochem Soc 162, F317-F326, 

doi:10.1149/2.0731503jes (2015). 

40 Poetzsch, D., Merkle, R. & Maier, J. Oxygen Reduction at Dense Thin-Film 

Microelectrodes on a Proton-Conducting Electrolyte I. Considerations on Reaction 

Mechanism and Electronic Leakage Effects. J Electrochem Soc 162, F939-F950, 

doi:10.1149/2.0951508jes (2015). 

41 Usiskin, R. E., Maruyama, S., Kucharczyk, C. J., Takeuchi, I. & Haile, S. M. Probing 

the reaction pathway in (La0.8Sr0.2)(0.95)MnO3+delta using libraries of thin film 

microelectrodes. J Mater Chem A 3, 19330-19345, doi:10.1039/c5ta02428e (2015). 

42 Koinuma, H. & Takeuchi, I. Combinatorial solid-state chemistry of inorganic 

materials. Nat Mater 3, 429-438 (2004). 

 



 

 

17 

 C h a p t e r  2  

EXPERIMENTAL TECHNIQUE 

This chapter details the experimental methods used to synthesize libraries of cathode material 

micro-electrodes and to acquire and analyze impedance data. The construction of the probe 

and its commissioning was principally the work of a previous student. The main contribution 

of this thesis work was to the systems used to analyze and visualize the large volumes of data 

resulting from high-throughput measurements and to the application of this technique to 

composition gradient materials libraries. An overview of the entire process will first be 

provided, followed by an in-depth description of the data analysis techniques used. The 

MATLAB code generated as a critical part of this thesis work is included in Appendix B. 

1. Overview 

An overview of the process by which cathode material composition libraries are synthesized 

and characterized is shown in Error! Not a valid bookmark self-reference.. Pulsed laser 

deposition is used with an occluding shutter to deposit a film that varies in composition 

Figure 2-7. Schematic overview of synthesis and measurement of 

gradient film samples. 
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between two target materials (left image). Photolithography and ion milling are used to 

etch the film into isolated micro-electrodes of a given geometry (center image). Finally, 

electrochemical impedance spectroscopy is performed in a scanning electrochemical 

impedance probe at high temperatures under oxidizing conditions to determine material 

parameters. After impedance spectra are measured, they are analyzed by fitting the data to a 

model circuit that represents electrochemical processes. The extracted fit parameters are used 

to quantify materials parameters such as electrochemical resistance (an inverse measure of 

catalytic activity) or chemical capacitance. 

2. Library Synthesis 

This section covers each step of the sample synthesis process in depth to allow for more 

concise coverage in later chapters. 

Pulsed Laser Deposition 

Pulsed laser deposition (PLD) is a physical vapor deposition technique for thin film 

deposition of a target material onto a substrate. First, a ceramic pellet (often called a target) 

of a material with a desired composition is ablated by a high-power laser and the resulting 

plasma plume is directed towards a heated substrate. When a composition gradient is desired, 

a shutter is drawn across the sample during this deposition, occluding the plume from a 

specific region. This results in a film with a thickness gradient across the substrate, with the 

thickest region calibrated to be approximately one monolayer of material. In a second step, 

the targets and the direction of the shutter are switched, resulting in a second gradient film 

atop the first. When repeated, this process yields a film of uniform thickness, for this study 

typically on the order of 200 nm, and a linear composition gradient in the middle region of 
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the substrate. The same general procedure applies to synthesizing films of a single 

composition, as the gradient shutter is omitted and only one composition is used. In addition, 

many films characterized employed an interfacial film layer of some kind, in particular for 

films containing lanthanum to avoid the formation of resistive lanthanum zirconate1. 

Growth of either a gradient or single-composition film to a desired thickness requires 

calibration of the film growth rate which depends on laser power, gas environment, laser 

repetition rate, target material, interlayer material, substrate material, and substrate 

temperature. For this thesis, the substrate material is either single-crystal YSZ with an SDC20 

interlayer, BaZr0.8Y0.2O3 (BZY20), or BaZr0.4Ce0.4Y0.1Yb0.1O3 (BZCYYb4411). For each 

target/substrate pair, calibration was performed by depositing a fixed number of pulses onto 

the substrate and measuring the thickness of the resulting film using x-ray reflectance, 

yielding a thickness per pulse used to determine the number of pulses required for a given 

thickness of a given material. 

Target Synthesis 

To perform pulsed laser deposition, dense single-phase targets approximately 1 inch in 

diameter and 4-10 mm in height are required. The targets are created by traditional ceramic 

processing techniques including powder synthesis, pellet formation, and sintering. Powders 

were prepared by either a solid-state reaction process or a modified Pechini process, each of 

which is described below.  

Solid State Reaction 

Appropriate stoichiometric amounts of source powders, typically carbonates or raw oxides, 

were ball milled for 8h with ethanol and yttria-stabilized zirconia balls as the milling medium 
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in a 2:2:1 weight ratio of powder:YSZ balls:ethanol. The resulting powder was dried, 

sieved, and lightly pressed into a pellet. The resulting green pellet was calcined, typically at 

600-800°C. The calcined pellet was crushed, and the milling and pressing steps were 

repeated until the desired phase was formed. 

Modified Pechini/Sol-gel process 

The Pechini process2 is an aqueous synthesis method useful for creating powders with very 

small particle sizes and good chemical homogeneity. In this work, the original Pechini 

method was modified to what is often termed a modified sol-gel synthesis. Ethylene diamine 

tetra acetic acid (EDTA) is used as a chelating agent to bind dissolved metal cations. 

Ammonium hydroxide is used to fully dissolve the EDTA and to act as a buffer against citric 

acid, which is used to separate the EDTA molecules to ensure fine particle dispersion.  

To utilize this sol-gel routine, water-soluble precursors for the necessary metal cations must 

be found. Often, these metal cations are present in hydrated nitrate precursors, which under 

storage deviate from their nominal water content. Therefore, to ensure precise stoichiometry, 

the water content of these precursors must be measured. This is carried out by 

thermogravimetric analysis. A weighed amount of precursor powder is placed in a TGA 

precursor and the weight loss is observed upon heating to high temperatures (often 800°C). 

The evaporated amount of water is then calculated and used to determine the appropriate 

amount of powder to weigh. 

After water stoichiometry is determined, the precursors are dissolved in stoichiometric 

amounts in a stirred and heated water solution. The molar ratio of metal cations to EDTA 

and citric acid was 1:1:2. The solution was heated at 65°C until a thick gel formed. The gel 



 

 

21 

was then calcined at 200-300°C in an alumina crucible until a crunchy black char was 

formed. This char was again calcined at 600°C, resulting in a fine powder. If the desired 

phase was not achieved, the powder was again calcined at higher temperatures. 

Target pressing 

Green body pellets were formed by pressing 20-25 grams of powder in a uniaxial press using 

a steel pressing die with a 1.25” hole and plungers. The powder was placed into the die with 

a bottom plunger held up by spacers so that the top of the powder could be levelled off with 

a razor blade. This ensured uniform pressure was applied to the entire face of the pellet by 

the plunger, reducing the chance of cracking. Tamping the powder to create a level surface 

was avoided because the act of tamping serves to separate powders with different particle 

sizes, i.e., small particles fall to the bottom and large particles rise to the surface, creating a 

gradient which can result in cracks. The uniaxial press was slowly applied to the pellet until 

a pressure of 20 MPa was reached. The pellet was allowed to rest for 10 minutes and the 

pressure was then very slowly removed. 

After a green body pellet was formed, isostatic pressing was conducted. The pellet was 

vacuum sealed in a latex barrier (typically an unlubricated condom) under water aspiration 

to avoid excess vacuum pressure. The sealed pellet was then placed in a cold isostatic press 

(American Isostatic Presses CP-360) and pressurized to 250 MPa for 20 minutes.  

The green pellet was then fired in a tube furnace to an appropriate sintering temperature, 

typically 1200°C, for 8-24 hours to form a densely sintered pellet. The temperature was 

ramped at 1-5°C/min to avoid cracking. 
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Photolithography & Ion Milling 

Once a film is synthesized on a substrate, the film is prepared for electrochemical 

characterization by creating electronically isolated microelectrodes. Photolithography and 

ion milling were carried out according to previously described techniques3. First, a 

photolithographic mask is created that defines the shape of the microelectrodes (Figure 2-8. 

Schematic of photolithographic microdot pattern.Figure 2-8). In this work, the pattern 

consists of circles varying in diameter from 500 µm to 30 µm with logarithmically even 

spacing (see Table 2-3). The largest dots (500 µm and 300 µm) are alternated every other 

column to avoid micro-electrode overlap, while the smaller dots are more finely spaced to 

improve composition resolution. In this geometry, the dependence of electrochemical 

parameters such as resistance on electrode surface area can be determined to elucidate 

reaction pathways. A layer of positive photoresist (Shipley 1813) is applied and exposed to 

UV light through this mask to harden the areas containing the circular electrodes. The 

photoresist is then developed using MF-319 developer, after which only the dark areas of the 

mask remain. Ion milling was then carried out at the University of Maryland in a modified 

Figure 2-8. Schematic of photolithographic microdot pattern. 
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TEM mill which uses directed argon ions to etch the oxide in the uncovered regions to 

form the film pattern. 

Table 2-3. Positions and diameters of each of the 337 micro-dots in the 

photolithographic pattern. Positions (mm) in bold in first row and column, 

diameters (µm) are all other values. 

 1 1.85 2.2 2.55 2.9 3.25 3.6 3.95 4.3 4.65 5 5.35 5.7 6.05 6.4 6.75 7.1 7.45 7.8 8.15 9 

4.2 500  500  500  500  500  500  500  500  500  500  500 

3.7 300  300  300  300  300  300  300  300  300  300  300 

3.3 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 

3 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 

2.7 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 

2.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

2.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

2.1 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

1.9 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

1.75 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 

1.6 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 

1.45 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 

1.3 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 

1.15 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 

1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 

0.85 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

0.7 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

 

3. Impedance Measurements 

Scanning Impedance Probe 

As in all of science, no one researcher’s work stands alone in a vacuum; as is said often, we 

all stand on the shoulders of giants. This work was made possible through the efforts of 

previous students, and in particular Robert Usiskin, who describes the design, construction, 

and operation of the scanning impedance probe in his thesis4. What follows is a brief 

explanation of this instrument; for a complete description, please see Dr. Usiskin’s thesis. 
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Figure 2-9. Images of the scanning impedance probe system. (left) Exterior view 

showing manual and robotic manipulators. (right) Top view of stage showing 

clipped sample. 

The scanning environmental impedance probe used in this work consists principally of an 

environmental chamber with gas inlet and outlet and a stage heated by a MoSi2 heating 

element. Viewing from above, one observes four large-diameter ports attached to the central 

cylindrical chamber along the main cardinal directions and four small-diameter ports 

between each pair of large ports. Two mutually orthogonal arms of the chamber are attached 

with flexible flanges which permit attached probe arms to move while maintaining a vacuum-

tight seal (Figure 2-9). One of these probes uses manual adjustment for motion, while the 

other uses robotic stepper motors to control its position. The former is attached to a surface 

thermocouple probe, described in detail later. The latter houses the impedance probe 

electrode tip which is used to make contact, in serial fashion, with each of the micro-

electrodes.  
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The scanning head contains an assembly designed to hold a tip that makes contact with 

each of the micro-electrodes. The tip can be seen in the right side of Figure 2-9. The tip is an 

80:20 Pt:Ir mixture (Moser) which was found previously to have sufficient hardness to 

withstand repeated probing while not scratching the surface of the micro-electrodes. The 

sample is clipped to the heated stage using electronically isolated Inconel clips. A sheet of 

gold foil is placed between the sample and the stage to improve thermal contact and transport. 

The counter-electrode wire is clipped onto the sample using one of the Inconel clips. 

Impedance Spectroscopy 

Obtaining precise knowledge and complete understanding of the reaction pathways and 

mechanisms for these devices is an immense task. Completely describing the interactions of 

Figure 2-10. Schematic of electrochemical impedance spectroscopy. A sinusoidal 

voltage perturbation (bottom) is applied to the electrode and the resulting current 

signal (left) is measured. This schematic represents a measurement at zero bias. 
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multiple chemical and electronic species through multiple gas-solid and solid-solid 

interfaces is exceedingly difficult. While many tools have emerged to make parts of this 

characterization tractable (including oxygen tracer diffusion5, secondary ion mass 

spectroscopy6, FIB-SEM 3D reconstruction7), impedance spectroscopy is the technique 

chosen for the bulk of this work as it presents the correct mixture of versatility, precision, 

and throughput needed to characterize a wide range of materials8-16. 

The operating principle of electrochemical ac impedance spectroscopy is that the application 

of a small sinusoidal perturbation allows measurement of a sufficiently linear region of the 

electrode response to extract an impedance. Furthermore, reactions proceeding at different 

rates can be separated by perturbing the driving force for that process on or near its 

characteristic time scale. Thus, processes with different time scales can be separated by 

observing their impact on the impedance at different frequencies. A schematic of the 

operation of ac impedance spectroscopy is shown in Error! Reference source not found.. T

he sinusoidal voltage perturbation is applied to the electrode, and the resulting current 

response is measured. The pictured condition is at “zero bias” – note that the resistance 

changes if a dc bias is applied, as is the case in operando. 

An example of a measured impedance spectrum is shown in Figure 2-11 on a Nyquist plot 

(left) and a Bode plot (right). In the Nyquist plot, which plots the real versus the imaginary 

parts of the impedance spectrum at different frequencies, two distinct arcs appear 

corresponding to two distinct processes. To make this example more concrete, we might 

imagine that this corresponds to the measurement of the conductivity of a symmetric fuel 

cell. The offset of the arcs from the origin would be attributed to the electrolyte conductivity. 
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The small, high-frequency arc would be attributed to a slower process, such as charge 

transport at grain boundaries. Finally, the largest arc at lowest frequencies would correspond 

to the slow kinetics at the electrodes where redox reactions occur. The observed impedance 

behavior of an electrochemical cell can vary widely based on its properties. For example, in 

Lai et al14, the authors discuss how the mixed-conducting properties of ceria in different 

temperature and oxygen environments leads to different observed behavior. We will see later 

that for another cathode material, La1-xSrxMnO3 (LSM), the impedance spectra adhere to a 

rather complex physical model. 

 

 

Figure 2-11. (left) Nyquist plot of a measured impedance spectrum. (right) Bode 

magnitude and phase plots of the same spectrum. 

Mathematically, ac impedance spectroscopy is represented in Equation 2.1: 

𝑍(𝜔) =
𝑉(𝜔)

𝐼(𝜔)
=

𝑉0𝑒
𝑖𝜔𝑡

𝐼𝑒𝑖(𝜔𝑡+𝜙)
=
𝑉0
𝐼
𝑒−𝑖𝜙 2.1 

where 𝑍 is the measured impedance, 𝑉0 is the voltage perturbation, 𝐼 is the measured current, 

𝜔 is the frequency, and 𝜙 is the phase shift of the current response. The magnitude and phase 

shift of the response can be plotted on a Bode plot, shown on the right side of Figure 2-11. 
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The top diagram, which shows the magnitude as a function of frequency, directly shows 

the frequency dependence of the impedance magnitude and helps correctly interpret that the 

larger arc in the Nyquist plot is associated with low frequencies. The phase plot helps 

separate the two processes in frequency space by showing where large imaginary impedance 

values (corresponding to capacitance) peak. 

There are multiple geometries suitable for performing AC impedance spectroscopy. The 

geometry selected for use in this thesis is an asymmetric geometry, as distinct from the more 

typical symmetric geometry. 

 

Figure 2-12. Schematic of ac impedance spectroscopy on a gradient film in an 

asymmetric geometry. 

The asymmetric geometry has been used previously to isolate the properties of individual 

materials13,17-31. This technique relies on the fact that since the measured properties of these 

materials scale with geometry (i.e., the resistance of an electrode decreases as its area 

increases), engineering a sample in an intentionally asymmetric way can skew the measured 

properties towards the largest ones. By making a top electrode significantly smaller than its 

counter-electrode, the measured properties can be attributed almost entirely to the small 
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electrode. This sense of “smaller” and “entirely” has been formalized by Sasaki et al17 to 

depend on the properties of the electrode, electrolyte, and counter-electrode in question.  

Positioning the Probe Tip 

In the course of obtaining measurements of many microelectrodes, correct positioning of the 

probe tip became problematic. The initial procedure developed to locate microelectrodes was 

to measure the positions of three microelectrodes and then predict the positions of the 

remaining microelectrodes based on the known photolithographic pattern3 (Figure 2-8). 

However, small errors in measuring any of these positions would propagate to the entire 

pattern. To mitigate this problem, a more advanced methodology for locating all 

microelectrode positions was developed. Specifically, the positions of an arbitrary number 

of microelectrodes (at least three) are recorded by the user along with the corresponding row 

and index label. Next, a least-squares fit is performed to the measured positions using the 

known positions of the pattern as a reference and seven fit parameters including all possible 

translations (in x, y, and z directions), rotations (about each major axis) and thermal 

expansion of the lattice. Code for conducting this fitting is included in Appendix B. Use of 

this particular fitting routine resulted in significantly more accurate dot positioning and fewer 

impedance scans lost due to poor contact. The order of the microdot measurements was 

randomized to prevent convolution of time-dependent parameters with position. 
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4. Data Analysis 

Equivalent Circuit Models 

The impedance spectra resulting from impedance spectroscopy are interpreted by modelling 

the physiochemical processes as resistance and capacitance in a model electronic circuit. 

Many equivalent circuits have been proposed and evaluated for extracting meaningful 

information from electrochemical systems. However, the fit of a particular model to a 

measured impedance spectrum is not sufficient to judge whether the model accurately 

represents physical processes. A more accurate process begins with a physical model of a 

system and makes simplifying assumptions based on the characteristics of the material being 

measured.  

A mixed conducting model for ions and electrons is constructed as follows, and as shown in 

Error! Reference source not found.. Ionic and electronic conduction are modelled as p

arallel paths in a circuit, with corresponding differential resistances 𝑅𝑖𝑜𝑛 and 𝑅𝑒𝑜𝑛. These 

parallel conducting paths are coupled by a capacitance 𝐶𝑐ℎ𝑒𝑚 termed the chemical 

capacitance16. This chemical capacitance is analogous to , e.g., electrical capacitance 𝐶 =

 𝑑𝑄/𝑑𝑉, where simple charge is replaced by any ionic chemical species. This circuit model 

can then be solved by making simplifying assumptions to reduce the complexity, or by 

solving mathematical equations as needed14.  

Figure 2-13. Mixed-conducting impedance model. 
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Table 2-4. Examples of model circuits and their impedance formulas. 

Model Equation 

Resistor 𝑍(𝜔) = 𝑅 2.2 

Series RC Circuit 
𝑍(𝜔) = 𝑅 +

1

𝑖𝜔𝐶
2.3 

Parallel RC Circuit 
𝑍(𝜔) =

𝑅

1 + 𝑖𝜔𝑅𝐶
2.4 

Offset RC Circuit 
𝑍(𝜔) = 𝑅1 +

𝑅2
1 + 𝑖𝜔𝑅2𝐶

2.5 

Offset RC circuit with 

constant phase element 
𝑍(𝜔) = 𝑅0 +

𝑅1
1 + 𝑌𝑅(𝑖𝜔)𝑛

2.6 

Two processes with 

R/CPE circuits and an 

offset 

𝑍(𝜔) = 𝑅0 +
𝑅1

1 + 𝑖𝜔𝑅1𝐶1
+

𝑅2
1 + 𝑖𝜔𝑅2𝐶2

2.7 

Baumann Model24 
𝑍(𝜔) =

𝑅𝑠 + 𝑅𝑖 + 𝑖𝜔𝑅𝑖𝑅𝑠𝐶𝑠
1 − 𝜔2𝑅𝑠𝐶𝑠𝑅𝑖𝐶𝑖 + 𝑖𝜔(𝑅𝑖𝐶𝑖 + 𝑅𝑠𝐶𝑖 + 𝑅𝑠𝐶𝑠)

2.8 

Boukamp Model32 
𝑍(𝜔) =

𝑅𝑙 + 𝑖𝜔𝑅𝑙𝑅𝑝(𝐶𝑙 + 𝐶𝑝)

1 − 𝜔2𝑅𝑙𝐶𝑙𝑅𝑝𝐶𝑝 + 𝑖𝜔(𝑅𝑝𝐶𝑝 + (𝑅𝑙 + 𝑅𝑝)𝐶𝑙)
2.9 

LSM Model3 
𝑍(𝜔) =

𝑅𝑖𝑜𝑛𝑍𝐷 + 𝑍𝐷𝑍𝐴𝑎 coth(𝑎)

𝑅𝑖𝑜𝑛 +
𝑍𝐴𝑍𝐷𝑎2

𝑅𝑖𝑜𝑛
+ (𝑍𝐴 + 𝑍𝐷)𝑎 coth(𝑎)

2.10
 

where  

𝑍𝐷(𝜔) =
1

𝑖𝜔𝐶𝑒𝑜𝑛
𝑖𝑛𝑡

2.10𝑏 

𝑍𝐴(𝜔) =
𝑅𝑖𝑜𝑛
𝑠𝑢𝑟𝑓

1 + 𝑅𝑖𝑜𝑛
𝑠𝑢𝑟𝑓

𝑌𝑖𝑜𝑛
𝑠𝑢𝑟𝑓(𝑖𝜔)𝑛

2.10𝑐 

𝑎(𝜔) = √𝑖𝜔𝑅𝑖𝑜𝑛𝐶𝑐ℎ𝑒𝑚 2.10𝑑 
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Matlab Fitting Code 

To determine fits to impedance spectra for models, several commercial software programs 

are available, including ZView and Solartron ECS software. However, this software is 

limited to circuits that can take a constrained physical form or specific pre-defined circuits, 

and are unable to fit to an arbitrary impedance model. This limitation prevented fitting of 

impedance spectra collected for LSM microelectrodes3. Thus, it was necessary to develop 

new fitting software capable of fitting to an arbitrary model circuit. A significant contribution 

to the work on this thesis was the development of such software in MATLAB designed to fit 

arbitrary impedance models and plot the resulting fitting circuits as a function of arbitrary 

sample characteristics.  

The software uses the non-linear least squares minimization function lsqnonlin to obtain 

the set of parameters that minimize the result of a given function. Multiple circuit models 

were implemented along with this minimization function in a framework that allowed a user 

to switch between the model circuit used for fitting. This minimization function also results 

in a Jacobian matrix of all fitted parameters which can be fed into the nlparci function 

(for non-linear parameter confidence interval) to calculate the error associated with the value 

of a given fit parameter. 

The fitting procedure proceeds as follows. The raw impedance data (frequency, real,  and 

imaginary component) is fed into a generalized function that performs the fitting. This 

function, customImpedanceFit, defines the absolute bounds of the parameters used by 

each model circuit. For example, resistances and capacitances are bounded such that they are 

always positive, and the n parameter of constant phase elements is bounded from 0 to 1. The 
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function then accepts a set of starting parameters that are used to guess the initial values 

of the parameters used to calculate the model circuit. These parameters are normalized before 

they are fed into lsqnonlin so that they are all on the order of 1, since it was observed 

that feeding in the raw values of resistance and capacitance often yielded poor fitting, likely 

due to the underlying implementation of the optimization algorithm and the vastly different 

scale of the values for these quantities (which often vary by more than 10 orders of 

magnitude).  Then, for a given model circuit and these starting parameters, an impedance 

spectrum is generated and compared to the measured impedance spectra. The residual errors 

are calculated based on the normalization of each spectrum by the norm of the impedance 

such that for each frequency point, 𝑍𝑛𝑜𝑟𝑚(𝜔) =
𝑍(𝜔)

𝑍𝑟𝑒
2 (𝜔)+𝑍𝑖𝑚

2 (𝜔)
. This weighting by the 

modulus of the impedance prevents large impedance values at low frequency, which are 

sometimes orders of magnitude larger than high-frequency data points, from dominating the 

fit.  

5. Experimental challenges 

Flowing gas at somewhat reducing conditions (< 0.01 atm O2) and high temperatures (> 

700°C) is problematic for the MoSi2 heater element, as the silicon oxide layer that forms to 

protect degradation wears away and exposes molybdenum which is subsequently volatilized. 

Molybdenum is then deposited, in the form of a white crystalline powder, across various 

surfaces in the system, including the surface of the substrate. While this tends not to impact 

the measured electrochemical properties (see Rob’s paper), it’s not a good look. 
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Previous work had used thermovoltage to estimate the surface temperature. However, it 

was observed that the temperature drop between the stage and the alumina was larger than 

the temperature drop between the sample surface and the platinum counter-electrode to 

which the thermovoltage was referenced. Therefore, despite precise knowledge of sample 

geometry and the Seebeck coefficient of YSZ, precise measurement of the thermovoltage 

did not yield accurate measurement of the temperature difference between the stage and the 

sample. 

Accurate temperature measurement also proved difficult. Surface temperature is a difficult 

quantity to measure accurately. The act of measurement via physical contact with a 

thermocouple changes the temperature of the surface because the thermocouple acts as a 

heat-sink. Non-contact measurement, such as with a pyrometer, requires accurate 

measurement of the emissivity of the sample in the temperature range of interest and detailed 

knowledge of the optical transmission properties of any viewing windows. For this study, 

two different techniques were used to address these issues. First, multiple temperature-

indicating lacquers (Omega LAQ-0225G – LAQ-1300G) were painted on the surface of the 

sample after measurement, and the sample was re-heated to experimental temperatures. The 

transition of the lacquers from opaque to translucent occurs at specific, well-defined 

temperatures, and this transition was noted and correlated to the surface temperature to 

develop a calibration curve, albeit sparse and rudimentary. The second technique was to 

purchase a surface thermocouple (Omega 88106K-RE), a device which consists of thin, flat 

chromel and almumel sheets welded in a diagonal seam and attached with thin lead wires to 

the mobile arm of the microprobe. As the thermocouple itself mimicked the surface of the 

sample, and the lead wires used to connect the thermocouple were as thin as was practical, 
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this solution provided a reasonably accurate method for measuring surface temperature in-

situ. Accurate surface temperature measurement remains an outstanding issue for precise 

determination of activation energy and benchmarking performance to other microelectrode 

film studies. 
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C h a p t e r  3  

TRADITIONAL CATHODE MATERIALS ON OXIDE-ION CONDUCTING 

ELECTROLYTES 

In this chapter, the properties of a state-of-the-art cathode material, La0.6Sr0.4Co1-xFexO3-δ 

(LSCF64), on an oxygen-ion conducting electrolyte (YSZ) are investigated using the 

techniques outlined in Chapter 2.  

1. Motivation 

Despite, or perhaps due to, the breadth and depth of literature concerning this material family, 

measurements of materials properties for LSCF64 show substantial variation dependent upon 

both the measurement technique utilized and the group performing the measurement. For 

example, due to morphology variation, area-specific resistance measurements of LSC64 with 

varying microstructure collected by Kilner and Burriel1 show variation of more than two 

orders of magnitude. Discrepancies still exist even when morphology is accounted for: in 

Gao et al.2, reviewed measurements of k* and D*, the reported surface kinetic parameter and 

the diffusion constant respectively, are shown to vary by orders of magnitude for nominally 

identical LSCF64 compositions.  

Previous attempts to remove morphology variation in thin film studies have been attempted, 

as have microelectrode studies on LSCF3-7 though in these and other thin-film studies 

different equivalent circuits are fit to the measured impedance data which artificially varies 

the calculated value for physical parameters. For example, for LSCF64 thin-film 

microelectrodes with a gadolinia-doped ceria interlayer, Crumlin et al.8 use an R(RQ)(RQ) 
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circuit model consisting of two sets of parallel resistors and constant phase elements in 

series with an offset resistor, whereas for thin-film LSCF6428 with a gadolinia-doped ceria 

interlayer, Boukamp et al.9,10 fit to a derived generic diffusion model circuit. In a study of 

LSCF64 microelectrodes, Baumann et al.4 use a model circuit derived from a parallel 

transmission model11 with further simplifications assuming fast ionic and electronic 

transport.  The authors also comment on the instability of measured parameters and estimate 

that experimental error is approximately a factor of 3 between upper and lower limits because 

of the large scatter observed between measurements of nominally identical microelectrodes. 

Thus, an experiment that can demonstrate stable, repeatable, accurate, and precise 

measurements of different electrode compositions under fuel cell-relevant conditions, so far 

lacking in the literature, is vital to understanding how material parameters vary with 

composition. 

2. Library preparation and preliminary characterization 

Targets for pulsed laser deposition were prepared by a solid state reaction method. 

Appropriate stoichiometric amounts of LaCO3 (99.9%, Alfa Aesar), SrCo3 (99.99%, Alfa 

Aesar), Co3O4 (99.7%, Alfa Aesar), and Fe2O3 (99.9%, Alfa Aesar) powders were ball milled 

for 8h using ethanol and yttria-stabilized zirconia balls as the milling medium. The resulting 

powder was sieved, then uniaxially pressed into a ~25 mm diameter pellet at 20 MPa. The 

resulting green pellet was calcined at 800°C for 8 hours. The calcined pellet was crushed, the 

milling and pressing steps were repeated, and sintering was carried out at 1200°C for 8 hr. 

To create a 20% samarium-doped ceria (SDC20) target, as-received commercial powder was 

compacted in the same manner as described above and directly sintered at 1600°C for 24 hr. 
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Phase purity of the pellets was confirmed by X-ray diffraction (Figure 3-14, left) and 

composition was measured by energy-dispersive X-ray spectroscopy (EDS, Oxford INCAx-

act) in a scanning electron microscope (SEM, Hitachi S-3400N-II). 

 

 

Figure 3-14. (left) X-ray diffraction patterns of PLD targets of LSC and LSF. 

(right) Thin-film X-ray diffraction patterns of deposited film gradients for both 

libraries. 

Pulsed laser deposition was used to create two compositionally graded sample libraries 

(hereafter designated Library i and Library ii), employing a methodology described 

previously, in which a traveling shutter results in sequential, graded deposition from targets 

with chemistries corresponding to the end-member compositions.12,13 Films were grown on 

10 mm W x 5 mm D x 500 µm H (100)-oriented 8 mol%-Y2O3-ZrO2 (8YSZ) substrates 

(MTI). Prior to LSCF deposition, a SDC20 interlayer, 20 nm in thickness, was deposited to 
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serve as an ion-conducting reaction barrier. All films were deposited with a KrF-excimer 

laser at a power of 22 mJ and a 5 Hz pulse rate under 30 mTorr oxygen partial pressure, with 

a post-anneal at 600°C. Library i was designed with a linear composition gradient, whereas 

the composition gradient of Library ii was skewed for finer spacings in the cobalt-dominant 

composition range by depositing a thicker layer of LSC than LSF on each shutter pass.  

Thin-film X-ray diffraction (Figure 3-14, right) shows the films to be crystalline, with a slight 

lattice parameter increase from LSC to LSF as expected due to the replacement of cobalt 

with larger iron atoms14. Atomic force microscopy (AFM, TKTK from UMD) reveals the 

films are smooth and crack-free, with rectangular grains approximately 40 nm x 80 nm in 

the LSF film that transition into grains with an even aspect ratio (approximately 40 nm x 

40 nm) in the LSC film (Figure 3-16). It has been postulated previously13 that grain 

boundaries may serve as active sites for oxygen reduction, and this difference in surface grain 

structure corresponding to a ~33% increase in surface grain boundary density should be 

Figure 3-15. Schematic (top) and image (bottom) of LSCF composition library. 
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incorporated into any observed difference in the electrochemical activity of the films. 

However, as shown later, the observed variation in surface electrochemical resistance 

exceeds this value, and grain boundary density is therefore determined to be insufficient to 

explain the observed difference despite the contribution it may provide. 

 

 

Figure 3-16. Atomic-force microscopy images of the post-deposition surface of the 

LSF64 film (top left) through the LSF64 film (bottom right) of Library i (top) and 

Library ii (bottom) in ~10% composition steps. The rms roughness of each surface 

is given indicating flat, crack-free surfaces. 
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Following these physical characterization procedures, the film was patterned using 

photolithography and ion milling to create a library of circular microelectrodes spanning 21 

unique compositions and ranging in diameter from 500 µm to 30 µm, though only 

microelectrodes with a 100 µm or larger diameter were electrochemically probed. A sample 

schematic and image of Library i is shown in Figure 3-15. For electrochemical studies, the 

YSZ supported libraries were adhered to an alumina substrate using porous platinum paste 

(Heraeus, CL11-5349) and fired for 1 h at 800°C ramped up and down at 1°C/min. The 

samples were then clamped onto the high-temperature stage in the scanning electrochemical 

impedance probe chamber, and the circuit was closed by clamping a counter-electrode wire 

to the platinum paste.  

 

 



 

 

44 

Figure 3-17. FIB-SEM cross-sectional images of top) Library i and bottom) 

Library ii showing variation in thickness between the LSC64 (left) and LSF64 

(right) films.  

 

After completion of the electrochemical measurements (described below), further physical 

characterization was carried out by cross-sectional FIB-SEM (FEI Helios Nanolab) and 

chemical analysis was performed by EDS-SEM (Oxford INCAx-act, Hitachi S3400N-II). 

The Library i film was found to have an average film thickness of 190 nm with a 10% 

variation across the film (Figure 3-17) with an approximately linear composition profile 

(Figure 3-18). A film grown in a manner identical to Library ii was found to have a thickness 

gradient, being 220 nm thick at the LSC end and 110 nm thick at the LSF end (Figure 3-19). 

This gradient fully accounts for the experimentally measured non-linear compositional 

profile. 
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Figure 3-19. Schematic and measured composition for Library ii. Composition 

measured by EDS as a function of horizontal position (red X’s) and expected 

values for a perfect linear gradient (open circles). The dashed line shows a 

prediction for the composition profile given the uneven thicknesses of each film.   

Figure 3-18. Schematic and measured composition for Library i. 

Composition measured by EDS as a function of horizontal position (red X’s) 

and expected values for a perfect linear gradient (open circles).  
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3. Electrochemical characterization 

Impedance measurements in scanning impedance probe 

Impedance measurements were carried out in a custom-designed scanning impedance probe 

station described previously.13 Impedance data were collected over a frequency range of 

10 kHz to 10 mHz (Bio-Logic SP-200), with the lowest frequency for any particular scan 

adjusted in real time according to the characteristic frequency of the low-frequency 

electrochemical response. This technique was applied in the following manner: once a 

maximum along the imaginary axis was detected below a sufficiently low frequency 

(typically 1 Hz), the impedance analyzer was programmed to measure an additional half-

decade in frequency before terminating the measurement. The number of time-consuming 

low-frequency measurements was therefore reduced.  

Measurements were performed at film temperatures ranging from 600-675°C and oxygen 

atmospheres ranging from 0.04 – 1 atm O2, balance argon. Gas mixtures were obtained by 

mixing pure O2, pure Ar, and 0.1% O2 balance Ar using mass flow controllers (Aera), with 

flow rates between 100 sccm (at 1 atm O2) and 400 sccm (at 0.04 atm). Each library was first 

equilibrated at 650°C and 1 atm O2 for 24 hours before measurement. Subsequent to this 

initial period, at each temperature and 𝑝𝑂2condition each of the 97 microelectrodes with a 

diameter of 100 µm or greater was measured. At the end of the experiment, measurements at 

the original condition of 650°C and 1 atm O2 were repeated to evaluate the possibility of film 

evolution contributing to observed trends. The libraries were equilibrated for two hours after 

each change in condition, and the order in which micro-dots were measured was randomized 

at each condition to prevent any convolution of measured parameters with time. For technical 
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reasons, Library ii was studied over a wider range of environmental conditions than 

Library i. 

After the measurements were completed, the temperature of the microdots, which are heated 

through the YSZ substrate, was calibrated using Library ii in conjunction with temperature-

indicating lacquer (Omega LAQ-1300G). The lacquer was painted onto the surface of the 

sample, and its transition from opaque to translucent, which occurs upon reaching a 

temperature of 704 °C, was tracked. This procedure indicated a 100 °C difference between 

the stage temperature and the surface temperature of the sample at this transition, and a fixed 

correction factor of 100 °C is applied to the reported temperatures. Upon removing the 

lacquer from the sample, the film was damaged, precluding post-measurement analysis; for 

this reason post-measurement characterization of Library ii features is performed on an 

identical sample prepared at the same time but not electrochemically measured.  
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Impedance spectra fitting 

 

The resulting impedance data were analyzed by equivalent circuit fitting using nonlinear 

least-squares fitting MATLAB code developed in house. The suitability of three different 

equivalent circuits, shown in Figure 3-20,was examined: (1) an R(RQ)(RQ) circuit, where Q 

is a constant phase element characterized by parameters Q0 and n with impedance ZQ(ω) =

(Q0(iω)
n)−1, and (RQ) indicates a resistor and constant phase element in parallel; (2) the 

circuit described by Baumann et al.4; and (3) the circuit described by Boukamp et al.9 A 

quantitative goodness-of-fit, g, defined as the sum of squares of normalized residuals, Eq. #, 

was used to evaluate the suitability of the circuit models:  

𝑔 =∑(
Zre(ωi) − Zre

fit(ωi)

Zre(ωi)
)

2

+ (
Zim(ωi) − Zim

fit (ωi)

Zim(ωi)
)

2

i

(3.1) 

where Zre and Zim are the real and imaginary components of the impedance, superscript ‘fit’ 

indicates the computed values, and 𝜔𝑖 is the frequency of the ith element. This formalism 

Figure 3-20. (a) 

R(RQ)(RQ) circuit (after 

Crumlin et al.). (b) Circuit 

derived from transmission 

line model after Baumann 

et al. (c) Model from 

Boukamp et al. 
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implies that error at high frequency and low frequency are equally weighted, with lower g 

indicating a better fit. The error of the fit parameters is calculated from the Jacobian resulting 

from the least-squares fit. All error bars shown in this work are the estimated 1σ confidence 

interval, with errors added in quadrature when values are averaged together. 

 

Figure 3-21. Impedance spectra for a 200µm LSCF64 microdot electrode a) in 

Library i with magnification in b) and c) Library ii with magnification in d) 

measured at 600°C and 1 atm pO2 fitted to various model circuits.  

In all cases, fits were performed with the substitution of constant phase elements for 

capacitors, thus allowing capacitive processes to deviate from ideality. As mentioned above, 

doing so renders each of the three circuits mathematically distinct. Examples of model fits to 
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data from both libraries are shown in Figure 3-21. The R(RQ)(RQ) circuit and the 

Boukamp circuit resulted in nearly identical fitting parameters and equally good fits, whereas 

the Baumann circuit yielded different values and higher variance. The distinction between 

the Baumann and the other two circuits was higher for Library i, for which a distinct high 

frequency feature is evident in addition to the main low frequency response, than Library ii, 

for which the high frequency response is barely visible.  The suppression of this high-

frequency feature in Library ii limited the impact of the interfacial processes on the fit, and 

the Baumann circuit yielded fits with lower g for this library. For Library i, the value of g for 

the Baumann circuit is generally about an order of magnitude higher than that for the 

R(RQ)(RQ) circuit or the Boukamp circuit and the fits for the latter two circuits are somewhat 

more visually satisfactory., 

It therefore appears that, though the Baumann circuit was physically derived, the assumptions 

that led to its form are either not valid or otherwise violated for a system with a doped ceria 

interlayer, and that, as Boukamp observed, the electronic double-layer capacitance is 

negligible. Mathematically, the poor fitting results from the coupling of the n parameter of 

the constant phase element representing electronic double-layer capacitance to the 

parameters controlling the low-frequency arc. In contrast, as discussed above the Boukamp 

circuit appears practically identical in fit and the resulting fitting parameters to the 

R(RQ)(RQ) circuit. In fact, as is shown in Appendix A, if one resistance is significantly 

larger than the other, as is the case here, the values for the Boukamp circuit approach those 

of the R(RQ)(RQ) circuit. Given the similarity of the Boukamp circuit to the R(RQ)(RQ) 

circuit in the range of parameters investigated, it is not clear whether the Boukamp circuit 

represents a physically meaningful set of assumptions or whether it is well-fitting by 
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coincidence. The remainder of this work utilizes the fit parameters obtained for an 

R(RQ)(RQ) model circuit with the low-frequency arc attributed to electrochemical resistance 

and chemical capacitance and the high-frequency arc attributed to interfacial processes.  

4. Results and Discussion 

General impedance features 

Impedance spectra collected from 200 µm diameter microelectrodes in Library i across the 

entire composition regime at 600°C and a 𝑝𝑂2 of 1 atm are shown in Figure 3-22 in the form 

of Nyquist and Bode plots. In the Nyquist representation, the spectra display a high-

frequency offset, a very small high-frequency arc, and a large low-frequency arc. The high-

frequency offset is primarily due to the resistance of the YSZ electrolyte. The magnitude of 

the high-frequency arc is particularly small in comparison to what has been reported by 

Baumann et al.4, suggesting this feature has been suppressed by the addition of the SDC 

interlayer. The large low-frequency arc is attributed to the electrochemical reaction 

resistance, and a monotonic decrease in this resistance with increasing Co content is 

immediately evident. The least-squares fits derived from the R(RQ)(RQ) circuit model are 

shown as solid lines through the points and show excellent agreement to the measured data 

points.  
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The fit parameters derived from least-squares fitting to the RRQRQ circuit model are shown 

for Library i in Figure 3-23. The data markers schematically represent the microelectrode 

associated with the data point, i.e., the size and color of the data marker correspond 

respectively to the diameter and composition of the microelectrode it represents. These 

figures confirm quantitatively what was shown qualitatively in Figure 3-22, namely the 

Figure 3-22. (a) Nyquist plot of impedance spectra from 200 µm diameter LSCF 

microelectrodes in Library i, taken at 600°C under 1 atm O2. Solid lines indicate 

fit to R(RQ)(RQ) model circuit. Color corresponds to composition as shown in 

color bar. 
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increase in electrochemical resistance with increasing iron content. In addition, an increase 

in capacitance is shown with increasing cobalt content.  

 

 

The offset resistance values show large scatter, a result of the automated process of making 

contact with a microelectrode. To prevent dot damage, the probe tip is lowered in small 

Figure 3-23. Parameters resulting from fitting 

impedance data obtained at a film temperature 

of 600°C and 1 atm O2 to an R(RQ)(RQ) 

circuit as a function of composition: (a) high 

frequency offset resistance; (b) electrochemical 

resistance; and (c) chemical capacitance. Data 

marker diameters correspond to the diameter of 

the measured microelectrode (from 500 to 100 

um), while colors correspond to microelectrode 

composition. 
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increments until contact is detected by measuring a sufficiently low impedance spectrum. 

Due to slight variations in dot height and motor position, contact of the probe tip to the micro-

dot varies with microdot location and this has a significant effect on the measured offset 

resistance. Despite this noise, there is a noticeable trend of increasing offset resistance with 

iron content for the 500µm micro-dot electrodes. This is likely the result of sheet resistance, 

as LSCF64 has been shown to exhibit metallic conductivity in the cobalt-dominant regime 

and semi-conducting behavior in the iron-dominant regime15. While this may have an effect 

on the measured electrochemical resistance for the largest micro-electrodes, the smaller 

micro-dots do not exhibit this behavior and are likely unaffected. Hence, we will ignore the 

effects of sheet resistance when considering these results, and for comparisons between 

compositions will use an appropriately normalized average of values from all micro-dot 

electrodes of a given composition. Before discussing in depth the compositional trends, we 

provide an assessment of the stability and evaluate the geometric trends.  
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Stability 

To evaluate the stability of these measured parameters, Library ii was subjected to 

measurement at 650°C and 1 atm O2 after 24 hours of equilibration and again after 120 hours 

of continuous testing under other environmental conditions. Figure 3-24 shows the results of 

this repeated measurement, with the original values shown with open circles and repeat 

measurements show in filled circles. There is a small increase in the measured 

electrochemical reaction resistance of, on average, 13%, and nearly no detectable change in 

the total capacitance, indicating good stability over the entire course of the measurement. 

Given the sometimes severe degradation observed in some studies7, it is likely that the ceria 

performs adequately as a reaction barrier between LSCF64 and 8YSZ, and that if surface 

degradation via strontium segregation does occur, it is sufficiently slow in the window of the 

measurement to relate values measured at different times to one another. Sufficient, in this 

Figure 3-24. Library stability. 

Initial (open circles) and final 

(filled circles) values, after 24 

hours and 120 hours under 

environmental conditions 

respectively, of electrochemical 

properties of LSCF (Library ii) 

as a function of composition at a 

film temperature of 650°C and 1 

atm O2 obtained from fitting 

impedance data to an R(RQ) 

circuit: (a) electrochemical 

resistance; and (b) chemical 

capacitance. Data marker 

diameters correspond to 
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case, means that the observed degradation is significantly less than the observed difference 

between composition end-members and that the degradation appears uniform.  

Geometric variation 

As in other studies, microelectrode geometry variation is used to determine the dominant 

electrochemical pathway through the scaling of electrochemical resistance with diameter. In 

particular, plotting various fit parameters as a function of diameter on a log-log scale yields 

the power law dependence of that fit parameter on geometry. Figure 3-25 shows such plots 

for offset resistance, electrochemical resistance, and chemical capacitance for Library i at 

675°C and 1 atm O2. For offset resistance, a slope of negative one is expected from the 

Newman equation16,17, and the measured slopes broadly agree with this relationship. For 

electrochemical resistance, we expect a slope of -2 if the dominant electrochemical process 

occurs through the surface and a slope of -1 if it occurs at the triple-phase boundary. We 
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indeed observe a slope uniformly near -2, though slightly more negative due to a cooling 

effect induced by the tip on the microelectrode affecting smaller micro-dots more so than 

larger micro-dots and thus artificially increasing the measured resistance of smaller-diameter 

micro-dots13. The finding that LSCF in a thin-film configuration is two-phase boundary 

dominant agrees well with other literature results3,18. 

Figure 3-25. Diameter dependence. 

Electrochemical properties of LSCF 

(Library i) as a function of film diameter 

shown as double-logarithmic plots, at a film 

temperature of 600 °C and atmosphere of 1 

atm pO2, obtained from fitting impedance 

data to an R(RQ)(RQ) circuit: (a) high 

frequency off-set resistance; (b) 

electrochemical resistance; and (c) chemical 

capacitance. Insets in each panel show 

absolute value of the slope of the linear best 

fit line to the data on a double logarithmic 

scale as a function of composition.   
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In previous thin-film studies,19,20 the total capacitance has been shown to be comprised 

largely of the chemical capacitance for these mixed conducting materials. This chemical 

capacitance results from the coupling of the ion- and electron- conducting rails in the model 

circuit11, and is given for each conducting species as21  

𝐶𝑐ℎ𝑒𝑚,𝑖 =
(𝑧𝑖𝑒)

2

𝑘𝐵𝑇
𝑐𝑖𝑉 ; 𝐶𝑐ℎ𝑒𝑚 = (∑𝐶𝑐ℎ𝑒𝑚,𝑖

−1

𝑖

)

−1

(3.2) 

where 𝑐𝑖 is the concentration for the 𝑖𝑡ℎ conducting species and the other variables have their 

usual meanings. The chemical capacitance is a volumetric quantity and is expected in this 

case to scale with the area of the microdot electrodes. The observed slope of precisely two 

for all compositions confirms this relationship and provides further evidence that the total 

capacitance for the low-frequency arc is almost entirely attributable to chemical capacitance. 

In the following results, fit parameters are averaged together by their appropriate normalized 

value (normalized by area for resistance and by volume for capacitance) across multiple 

microelectrodes with nominally identical compositions. This averaging serves to ameliorate 

the difference in the tip cooling effect observed by the deviation of the slope from -2 and 

therefore include the resulting variation as a systematic uncertainty. As the error from fitting 

for individual spectra is typically quite small, the error calculated by averaging together the 

error from multiple microelectrodes in quadrature should result in a more accurate estimate 

of the total error. 
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Surface reaction resistance 

Figure 3-26 shows the dependence on composition for both libraries measured under 1 atm 

O2. For both libraries, the surface reaction resistance monotonically increases from LSC64 

to LSF64, with LSF64 about four times more resistive (and hence less active) than LSC64. 

This factor of four exceeds the difference expected due to increase in grain boundary density 

alone, if indeed the grain boundaries are the primary active sites for LSCF64, and thus a 

difference in the inherent activity of these compounds is implied. Furthermore, in the 

measured temperature range LSC64 is more than then times as electronically conductive as 

LSF64,22 a difference more than twice as large as that observed for activity. This result is 

consistent with what would be observed for strontium segregation which limits the electronic 

(and ionic) conductivity on the surface, and could also explain the large variation observed 

in other thin film studies. If films are not given adequate time to stabilize before 

measurement, the degree of segregation may vary and, along with it, the measured activity.  

 

Figure 3-26. Comparison of the area-specific electrochemical resistance of LSCF 

at 600°C  (●), 625°C (■), 650°C (▲), and 675°C (◆) and 1 atm O2 obtained for 

both libraries. Plotted points are averaged over all microelectrodes with the same 

composition. (left) Library i; (right) Library ii. 
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The effectiveness of film synthesis and characterization under identical conditions in 

minimizing sample-to-sample variation of measured parameters is clearly evident from the 

comparison of results from both libraries, which show broad agreement in both magnitude 

and trend across the entire composition range. These results present, to the best of our 

knowledge, the highest-resolution data on the activity of LSCF64 as a function of cobalt 

content. In principle, these results can be used to make precise trade-offs in device design. 

Figure 3-27. Oxygen dependence. Area-normalized electrochemical resistance for 

Library ii as a function of oxygen partial pressure shown as double-logarithmic plots, 

at a film temperature of 650 °C. Inset shows slope as a function of composition, with 

a guideline at ¾. Color corresponds to microelectrode composition. Plotted values are 

averaged over multiple microelectrodes with the same composition. 
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For example, the effect of a 5% change in cobalt content on the performance of a fuel cell 

can be modelled and calculated when trading off activity for thermal expansion coefficient 

matching.  

Included in the systematic variation of environmental conditions were changes in 𝑝𝑂2 and 

temperature which can be used to differentiate rate-limiting reaction mechanisms. In 

particular, trends in area-specific resistance with 𝑝𝑂2can be used to determine mechanistic 

information23. Figure 3-27 shows the dependence of the area-specific as a function of 𝑝𝑂2. A 

measured slope around -0.75 agrees with previous results and suggests that diatomic oxygen 

species are involved in the rate-determining step and is consistent with values measured for 

other LSCF compounds.23 In addition, since the trend of resistance with 𝑝𝑂2 remains 

Figure 3-28. Arrhenius behavior. Temperature dependence of 

electrode resistance in LSCF at 1 atm pO2. 
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consistent across all compositions, it does not appear as though the rate-limiting step for 

the dominant pathway is changing, or at the very least show that if a change does occur, the 

rate-limiting step still involves diatomic oxygen. 

 

The Arrhenius dependence of the area-specific activity (the inverse of the resistance) is 

plotted in Figure 3-28, along with the calculated activation energies and pre-exponential 

factors. While the cobalt-dominant compositions demonstrate slightly higher activation 

energies than the iron-dominant compositions, the activation energies are generally found to 

be between 1.4 and 2.1 eV in good agreement with those found in the literature (Table 3-1). 

However, we find the opposite trend of Baumann et al., who found that LSF64 exhibits a 

higher activation energy than LSC64. Indeed, a priori a low activation energy is desired so 

that resistance increase at lower temperatures is limited, though in this case is shown to be 

insufficient as the low activation energy for LSF64 is paired with a small pre-exponential 

factor that dominates in the investigated temperature range. 

Further parsing of these results yields an intriguing correlation between the activation energy 

and pre-exponential factor, shown in Figure 3-29. This relationship, observed as a linear 

correlation of Ea, the activation energy, and ln(A), the log of the Arrhenius pre-factor, is 

consistent with the Cremer-Constable compensation relation24 observed for multiple catalyst 

compositions across many different reactions. This relation is thought to arise, at least in part, 

from surface coverage of adsorbed species – the “compensation” between observed 

activation energy and prefactor comes directly from the tradeoff between the concentration 

of adsorbed species on the surface and the availability of reaction sites. Thus, according to 
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Bond et al.24, the measured activation energies are likely only apparent activation energies 

that must be converted into true activation energies by taking into account the concentration 

of occupied surface reactant sites. Given the empirical nature of the relation and the many 

possible suggested interpretations, we do not attempt to draw any physio-chemical 

conclusions from this observation. This relation, however, does imply a so-called 

“isokinetic” temperature at which the values of resistance for all materials will be equal. This 

temperature is obtained by linearly fitting the Cremer-Constable plot of ln 𝐴 versus Ea and 

equating the slope to 
1

𝑘𝐵𝑇
. The isokinetic temperature for LSCF64 is calculated to be 

approximately 510°C, at which temperature the electrochemical resistance for these 

materials is equal and below which, barring a change in mechanism, LSF64 should exhibit a 

lower resistance than LSC64. However, Bond et al. warn that the isokinetic temperature can 

only be established with statistical rigor for datasets with many temperature points over a 

wide temperature range, which the present study lacks.  

Figure 3-29. (left) activation energy and (middle) pre-

exponential factor as functions of composition determined from 

Arrhenius scaling. Plotted values are averaged over multiple 

microelectrodes with the same composition. (right) Log of the pre-

exponential factor versus activation energy.  
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Chemical capacitance 

Figure 3-30 shows the variation in chemical capacitance with cobalt content. The chemical 

capacitance of LSC64 is between two and three times larger than that of LSF64, consistent 

with previous results showing higher oxygen non-stoichiometry for the cobalt end-member.15 

Notably, this increase is not linear – capacitance begins to change significantly once cobalt 

atoms outnumber iron atoms. Furthermore, the trend of capacitance with cobalt 

stoichiometry agrees with results from Hashimoto et  al. which show, between 600 and 

700°C at 1 atm O2, that oxygen non-stoichiometry only changes appreciably once cobalt 

occupies the majority of the B-site.25 This contrasts with the results for surface resistance 

(Figure 3-26) which show significant change between LSCF6455 and LSF64. In this 

composition regime, it seems that the ionic conductivity does not significantly impact the 

observed activity. This result motivates further study of the lanthanum-strontium ratio on the 

A-site which largely controls low-temperature vacancy concentration through the defect 

reaction, written in Kroger-Vink notation,  

2𝑆𝑟𝑂2
𝐿𝑎𝐶𝑜1−𝑥𝐹𝑒𝑥𝑂3
→          2𝑆𝑟𝐿𝑎

′ + 3𝑂𝑂
𝑋 + 𝑉𝑂

∙∙ (3.3) 
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where a dash superscript indicates effective negative charge, a dot superscript represents 

positive charge, an X represents neutral charge, and VM represents a vacancy for species M. 

If the ionic conductivity resulting from high vacancy concentration is not limiting the two-

phase boundary reaction, then perhaps the amount of strontium can be reduced to limit the 

effect of strontium segregation. Further study is warranted in this area. 

As before, environmental variation can validate the interpretation of these capacitance 

results. Figure 3-31 shows the dependence of capacitance on oxygen partial pressure. The 

capacitance of cobalt-dominant compositions is more sensitive to changes in oxygen partial 

pressure than LSF64, indicating higher reducibility consistent with their respective 

capacitance values. In addition, though it is not carried out here, Kawada et al.26 have used 

chemical capacitance measurements to calculate the thin-film oxygen vacancy concentration 

Figure 3-30. Repeatability. Comparison of the volume-normalized chemical 

capacitance of LSCF at 600°C  (●), 625°C (■), 650°C (▲), and 675°C (◆) 

and 1 atm O2 obtained for both libraries. Plotted points are averaged over all 

microelectrodes with the same composition. (left) Library I; (right) Library ii. 



 

 

66 

of LSC64, as shown in Crumlin et al8. That the values in this work are consistent with 

those results suggests the same conclusion, namely that the oxygen vacancy concentration in 

thin-film LSC64 is smaller than that in the bulk material.  

 

Figure 3-31. Oxygen dependence. Volume-normalized chemical capacitance for 

Library ii as a function of oxygen partial pressure shown as double-logarithmic 

plots, at a film temperature of 650 °C. Inset shows slope as a function of 

composition, with a guideline at ¾. Color corresponds to microelectrode 

composition. Plotted values are averaged over multiple microelectrodes with the 

same composition. 



 

 

67 

The Arrhenius dependence of the chemical capacitance is shown in Figure 3-32 and shows 

an activation energy ranging from 0.3 eV for LSF64 to 0.5 eV for LSC64. These values are 

consistent with those measured by Baumann et al.5 However, it should be noted that the 

observed trend contradicts that found by Baumann, who observed the opposite trend of 

activation energy with cobalt content. The difference in these results may be attributable to 

Figure 3-32. Arrhenius behavior. Temperature dependence of chemical capacitance 

in LSCF (Library ii) at 1 atm pO2. Plotted values are averaged over multiple 

microelectrodes with the same composition. (a) Arrhenius plot of volume-normalized 

chemical capacitance with electrode composition shown by color; (b) activation 

energy and (c) pre-exponential factor as functions of composition determined from 

Arrhenius scaling. (d) Log of the pre-exponential factor versus activation energy. 



 

 

68 

the ceria interlayer and inadequate equilibration, as it is commented by the authors that 

`micro-electrode measurements are carried out swiftly to avoid degradation. This is 

corroborated by the relatively low values for area-specific resistance they observe. 

That the chemical capacitance also appears to obey the Cremer-Constable relation seems 

intriguing as it is not an inherently kinetic parameter. However, the observed relationship can 

be interpreted as relating to the kinetics of oxygen vacancy creation. As discussed above, the 

relationship between chemical capacitance and reducibility can be thought of as a direct 

relationship between chemical capacitance and non-stoichiometry, and thus the Arrhenius 

behavior of the non-stoichiometry maps directly to that of 𝛿, the oxygen non-stoichiometry. 

Therefore, the observed activation energy directly relates to the activation energy of oxygen 

vacancy creation in the oxide. Viewed in this way, the observed trend in activation energy 

conveys that while the activation energy of oxygen vacancy creation is higher for cobalt-

dominant LSCF64, the pre-factor more than compensates for this increase and a higher 

capacitance and non-stoichiometry is observed.  

Comparison to literature values 

Table 3-1 shows a comparison to literature values measured for individual compositions in 

the La0.6Sr0.4Co1-xFexO3 family across a variety of conditions. The literature values show 

varying agreement with those measured in this work. Though the results from this work are 

between a factor of two and an order of magnitude different from those from Fleig et al.3,20, 

the works from the author’s group note that the measurements were taken shortly after 

achieving the environmental conditions and thus degradation was minimized. In 

Januschewsky et al.7, values for 200nm thick LSC64 films deposited at 600°C reached 10 
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Ωcm2 after 17 hours of measurement and may have continued to rise afterwards. All the 

measurements in this work occur after an initial 24-hour equilibration period at 650°C and 1 

atm O2, and given the stability seen in Figure 3-24, are taken after any initial degradation has 

occurred. The work of other groups falls well within the range of our measurements, 

indicating that this methodology does indeed correspond to literature values and therefore 

rigorous comparisons can be made between the different compositions measured here and 

by others. 

Table 3-5. Comparison of LSCF literature results. 

Reference Composition 

ASR 

(Ω cm2) 

Activation 

energy (eV) 

Cchem  

(F cm-3) Condition 

(Plonczak, Sogaard 

et al. 2012) 

La0.58Sr0.4Co0.2Fe0.8O3 200 1.6 – 2.4 500 650°C, 1 atm O2 

(Baumann, Fleig et 

al. 2006) 

La0.6Sr0.4FeO3 4-11 1.8 1300  

 La0.6Sr0.4Co0.2Fe0.8O3 2-9 1.6 1100 750°C, 0.2 atm 

O2 

 La0.6Sr0.4Co0.8Fe0.2O3 5 1.3 1600 750°C, 0.2 atm 

O2 

 La0.6Sr0.4CoO3 3-10 1.3 2700 750°C, 0.2 atm 

O2 

(Kawada, Suzuki et 

al. 2002) 

La0.6Sr0.4CoO3   200 700°C, 1 atm O2 

(Januschewsky, 

Ahrens et al. 2009) 

La0.6Sr0.4CoO3 0.1-100 1.4 2000 600°C, 0.2 atm 

O2 

(Crumlin et al. 

2012) 

La0.6Sr0.4CoO3 1-2  300 550°C, 1 atm O2 

(Kogler, Nenning et 

al. 2015) 

La0.6Sr0.4FeO3 13.6*  1293 610°C, 1 atm O2 

This work La0.6Sr0.4Co1-xFexO3 100 – 600 1.4 – 2.1 100 – 600 650°C, 1 atm O2 
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5. Summary 

The entire binary composition phase space of LSCF64, a mixed ionic and electronic 

conducting solid oxide fuel cell electrode material, was synthesized and measured on a single 

electrolyte substrate under the same synthesis and experimental conditions. Measurements 

of material properties as determined by microelectrode impedance spectroscopy were 

demonstrated to be stable and repeatable. The electrochemical pathway for oxygen reduction 

in the thin-film morphology was confirmed to be dominated by a surface reaction followed 

by bulk condition of ions. LSF64 was shown to be four times less active than LSC64, while 

the latter was shown to be more than twice as easily reducible as the former by measurements 

of chemical capacitance. Little variation is observed between samples prepared with different 

composition gradings but synthesized and measured under the same conditions, indicating 

that this methodology provides robust and repeatable measurements of material properties. 

The truly like quantitative comparisons between materials systems shown by this study 

inform materials selection tradeoffs in real fuel cell systems and pave the way to high-

throughput exploration of new material compositions. 
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C h a p t e r  4  

NOVEL CATHODE MATERIALS ON OXIDE-ION CONDUCTING ELECTROLYTES 

As a widely-studied state-of-the-art material, LSCF is useful to use as a benchmark to 

compare against the performance of other materials. The full benefit of the high-throughput 

approach investigated in this thesis is realized through the application to novel materials as 

well as well characterized materials. An excellent candidate for this type of exploration is 

PrBa0.5Sr0.5Co2-xFexO5+δ (PBSCF55).  

As described in the introduction, PBSCF is a double-perovskite material recently shown to 

exhibit high performance as an SOFC cathode1,2. In this work, we use the same methodology 

employed in Chapter 3 to study PBSCF: we will use PBSC and PBSF PLD targets to deposit 

a gradient thin film of PBSCF on a YSZ substrate, and subsequently measure patterned 

microelectrodes using microelectrode impedance spectroscopy. 

1. Sample Synthesis and Characterization 

Samples were synthesized and characterized according to details found in the experimental 

section. The results of the characterization are shown below. Figure 4-33 shows a schematic 

of the prepared sample before ion milling. A layer of SDC20 approximately 20 nm in 

thickness is deposited as a reaction barrier between the (100)-oriented single-crystal 5x10mm 

YSZ substrate (MTI). A continuous composition gradient is then deposited from PBSF to 

PBSC by pulsed laser deposition.  
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Figure 4-33. Sample schematic of PBSCF gradient sample. 

 

Figure 4-34. XRD patterns of PBSC and PBSF PLD targets. (Courtesy Sihyuk 

Choi) 

XRD patterns confirming the phase purity of the prepared PLD targets is shown Figure 4-34 

for both PBSF and PBSC. The first four main reflections of the P4/mmm tetragonal structure 

are labelled. There is a slight shift to higher angle and larger lattice parameter with 

substitution of iron for cobalt. The approximate density as a percentage of the theoretical 

density, 𝜌PBSC = 6.66 𝑔/𝑐𝑚
3  and 𝜌PBSF = 6.48 𝑔/𝑐𝑚

3, is shown below a photograph of 

each target. Despite some surface cracks, the targets were suitable for use in deposition. In 
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addition, a small shoulder is observed on several of the peaks in the PBSF target spectrum. 

These shoulders are attributed to sample alignment within the diffractometer.  

Thin-film X-ray diffraction patterns for the deposited composition spread are shown in 

Figure 4-35. As expected, we observe a continuous increase in lattice parameter from the 

PBSC side of the film (top pattern, blue) to the PBSF side of the film (bottom pattern, red) 

as observed by the (102) reflection at 32-33° 2θ and the (204) reflection at 68-69° 2θ. The 

peaks at 35° 2θ and 74° 2θ are attributed to the YSZ substrate.  
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Figure 4-35. Thin-film XRD pattern of PBSC-PBSF composition spread. 

(Courtesy Yangang Liang, Xiaohang Zhang) 
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Figure 4-36. Atomic force microscopy (AFM) images of the PBSC-PBSF 

composition spread. (Courtesy Yangang Liang, Xiaohang Zhang). 

Atomic force microscopy images (Figure 4-36) show a smooth film surface, with root-mean-

squared roughness less than 6nm across the entire spread. This implies the film is smooth 

and dense. The images also show the film lacks any cracks that would lead to additional 

triple-phase boundaries. Similar to the case for LSCF, PBSCF grains are rectangular on the 

iron-dominant end, but nearly square or with equal aspect ratio on the cobalt-dominant end. 

As discussed for LSCF, this change in surface grain boundary density will be evaluated 

against the observed change in surface activity to determine whether it is sufficient to explain 

the measured variation. 
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Figure 4-37. Nyquist spectra of (left) 500um and (right) 150um microelectrodes 

across PBSCF gradient. Solid lines represent fits to RRQ model circuit. 

2. Impedance Results 

Raw spectra 

Figure 4-37 shows the results of impedance spectroscopy on PBSCF micro-electrodes taken 

at a stage temperature of 750°C (650°C film temperature) and 1 atmosphere pO2 for both 

large diameter (500µm) and small diameter (150 um) micro-dots. Environmental conditions 

and frequency range of impedance measurement are shown in each figure. Composition is 

shown by color as blue (PBSC) to yellow (PBSF), though in this case 𝑥 ranges from 0 to 2 

due to double perovskite stoichiometry, rather than from 0 to 1. Qualitatively, again matching 

the LSCF results, an increase in total resistance is observed from cobalt to iron. Unlike the 

case for LSCF, however, no interfacial arc is observed, suggesting that interfacial processes 

at these conditions for these materials contribute little to the measured impedance. Therefore, 

the dots are fit with an RRQ circuit using non-linear least squares, rather than an RRQRQ 

circuit. 
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This sample, originally intended to be a preliminary measurement to a more complete 

study, was not characterized as fully as the LSCF sample. The results thus lack a few 

important details that would yield deeper insight, such as temperature and atmospheric 

dependence. Furthermore, physical characterization was likewise incomplete, lacking 

precise measurements by EDS of the composition range or FIB-SEM measurements of film 

thickness. However, much insight can still be obtained from this limited data set.  

Geometry dependence 

The geometry dependence of the offset resistance, electrochemical resistance, and chemical 

capacitance can be found in the right column of Figure 4-38. Observing these values yields 

many similar trends to what was found for LSCF. For the offset resistance, the slopes of 

resistance with diameter on a log-log plot are all close to -1, consistent with the Newman 

equation3. As was seen for LSCF, the trend deviates on the iron-dominant side, where the 

slope becomes more positive due to the increased sheet resistance of the iron-dominant end-

member.  

For electrode resistance, the slopes are all near -2, though there is significant deviation for 

some individual compositions (particularly for the end-members). Despite the noise, the bulk 

of the data suggests that, as expected, PBSCF is area-limited. The deviation in the slope may 

be due to difference in film growth or structure in the end-member films; perhaps the mixing 

of the B-site atoms in the gradient regime plays a role in altering the structure of the surface 

of the film.  



 

 

79 

Finally, for chemical capacitance, the slopes are all very close to 2, indicating as expected 

that the chemical capacitance scales with the volume (in this case, strictly area) of the micro-

electrodes.  

Composition depdence 

A quick glance at the results of parameter fitting with respect to composition (Figure 4-38, 

left column) show a great degree of similarity to the results of the analysis of LSCF. Akin to 

those results, we observe an increase in electrochemical resistance and a decrease in the 

chemical capacitance with increasing iron content. This again emphasizes the important role 

that the more easily reducible cobalt plays in increasing both electronic conductivity and 

reducibility.  

For offset resistance, we see more clearly the impact of sheet resistance evidenced by the 

creep values for the largest-diameter micro-electrodes upward at a rate faster than the smaller 

diameter dots. One explanation for this behavior is that the sheet resistance of the more 

insulating iron-dominant compositions renders the area effectively reached by the probe tip 

smaller than the dot itself. Thus, the value of the offset resistance behaves as though the dot 

were smaller than it is.  

The composition trends for electrode resistance are more puzzling since the largest and 

smallest dots do not obey a monotonic increase. This provides further evidence that perhaps 

an important parameter changes in the linear crossover regime of the film. Further study is 

needed to capture whether this trend is noise or a reflection of a real property of the material. 
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Finally, the chemical capacitance shows very similar trends to LSCF: with increasing 

cobalt content, the chemical capacitance increases. In addition, there seems to be a value of 

iron content around 75% where the value of the capacitance stays constant. Further study is 

warranted to determine the effect of the different nature of oxygen vacancies between the 

two materials. 
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Figure 4-38. Results of fitting RRQ circuit to PBSCF microelectrode impedance 

spectra. From top to bottom, offset resistance, electrochemical resistance, and total 

capacitance. Left column shows composition dependence for all measured 

diameters; right column shows diameter dependence for all measured 
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compositions as well as values for fitted slopes. Composition values are nominal 

rather than as-measured. 

3. Comparison to LSCF 

  

Figure 4-39. Comparison of area-specific resistance of PBSCF (left) and LSCF 

(right). The PBSCF is measured at 650°C, while the circles on the right figure 

represent LSCF measured at 650°C. 

The area-specific resistance of PBSCF micro-electrodes appears comparable to that of LSCF 

micro-electrodes, as seen in Figure 4-39. The trend of increasing resistance with increasing 

iron content is also observed. The overall difference in area-specific resistance between the 

cobalt end-member and the iron end-member for both materials libraries appears to be a 

factor of four. This is consistent with the limited literature that exists comparing the 

performance of these materials in button cells4. For LSCF, it appeared as though the electrical 

conductivity was the determining factor in performance. For PBSCF, this also seems to be 

the case, though careful measurement of the electrical properties of PBSCF is still needed. 

That PBSCF performs almost identical to LSCF in terms of electrochemical resistance is 

somewhat surprising, given the impressive fuel cell results using PBSCF as an electrode1. 
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The performance difference can perhaps be explained by the structure difference between 

the two materials and the resulting impact on measurement geometry. As LSCF is a 

pseudocubic perovskite, its bulk grain orientation should have little effect on the observed 

diffusion rate of oxygen. However, as a double perovskite, PBSCF is non-isotropic, and 

preferential grain orientation arising from PLD could block the “pore channels” that are 

especially favorable to ionic conductivity. To confirm whether this is the case, a future study 

should compare the same two materials on different types of substrates, such as (110)-

oriented YSZ or polycrystalline YSZ or even other electrolyte materials like ceria. These 

studies will show whether  the difference is truly the result of bulk crystal orientation. 

  

Figure 4-40. Comparison of chemical capacitance. 

For chemical capacitance, PBSCF appears to have higher chemical capacitance than LSCF, 

as shown in Figure 4-40. The general trend with composition is again the same for both 

materials: as the iron content increases, the chemical capacitance decreases. This is again 

likely due to the decrease in electronic and ionic conductivity with increased iron content5,6. 

However, the factor of two difference in chemical capacitance between PBSCF and LSCF is 



 

 

84 

interesting. The difference may arise the from the difference in electronic conductivity 

between PBSCF and LSCF2,7 or from the difference in ionic conductivity8. 

4. Summary 

There is a great deal of similarity between the results for PBSCF and the results for LSCF. 

Increasing resistance and decreasing capacitance with increasing iron content was consistent 

between both libraries, down to the factor of four between the resistance of LSC and the 

resistance of LSF. This result is interesting in and of itself given the superior performance 

displayed by PBSCF in a recent fuel cell test. However, the measurement geometry and 

sample synthesis may have impacted the crystal structure in which PBSCF was measured, 

failing to take advantage of the high-conductivity channels. Future studies should be 

performed with PBSCF on polycrystalline or other oriented substrates to determine whether 

changing the growth orientation has an impact on the measured performance in this 

geometry. 
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C h a p t e r  5  

TRADITIONAL CATHODE MATERIALS ON PROTON-CONDUCTING 

ELECTROLYTES 

Though study of proton-conducting electrolytes has been ongoing for many years, attempts 

to design and optimize cathode materials for use with proton conductors have emerged only 

recently. Efforts to demonstrate p-SOFC performance have often utilized cathode materials 

developed for use on oxygen-ion conducting SOFC electrolytes, such as LSCF or LSM, 

though nearly always composited with a proton-conducting phase such as BZY1-6. In the last 

several years, so-called “triple-conducting” oxides – materials which conduct electrons, 

protons, and oxygen ions – have begun to be identified and tested for use in p-SOFC devices7-

10. However, these novel materials are still investigated in a manner similar to SOFC cathode 

materials, in which individual compositions are manufactured and tested separately to 

produce a single result. Given the complicated nature of such triple-conducting systems, it is 

even more critical that care be taken when interpreting the results of experimental methods 

designed to measure the kinetic properties of these systems. 

For the purposes of studying traditional oxide-ion conducting materials on proton-

conducting electrolytes, LSCF was again chosen as the candidate material. Modelling efforts 

have been made to predict proton uptake in compositions of LSF11 which show that the 

enthalpy of hydration of LSF is much smaller than the enthalpy of hydration for typical 

proton-conducting materials such as BZY. This explains why LSCF is rarely used as the sole 

cathode material in a proton conducting fuel cell, and is nearly always composited with a 

proton-conducting phase such as BZY or BZPY: it lacks sufficient proton conductivity to 
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serve as a mixed proton- and electron-conductor. Such composite morphologies again 

serve to maximize the density of triple phase boundaries to improve reaction kinetics.  

To confirm whether LSCF does indeed have sufficient proton conductivity to serve as a 

mixed conductor in a thin film geometry, experiments were carried out using the scanning 

impedance probe as described in the previous chapters. However, modifications to the 

technique were necessary to ensure that the measurements conducted were accurate 

reflections of the physical parameters of the material. After discussing the challenges that 

arose in carrying out this measurement, results for LSCF on a proton-conducting substrate 

are presented. 

1. Challenges 

There are several difficulties in measuring proton-conducting electrode activity12. First of all, 

proton-conducting electrolytes are notoriously refractory. This makes synthesis of substrates 

for deposition of proton conducting materials difficult. For oxygen-ion conducting 

electrolytes, commercial single-crystal substrates are readily available; however, no 

commercial sources exist for proton-conducting materials and serial synthesis in-house can 

lead to similar issues of variation in morphology that this technique was developed to avoid. 

Second, proton-conducting materials must be measured in humidified atmospheres to allow 

uptake of protons, and humidified environments pose experimental challenges as all surfaces 

that contact gas must be heated to prevent condensation.   

Steps were taken to alleviate these issues. For instance, on initial proton-conducting 

substrates, a thick layer of yttrium-doped barium zirconate was deposited by PLD between 

the substrate and the electrode layer in an attempt to achieve a smooth surface onto which to 
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deposit the electrode. Eventually, a new proton-conducting electrolyte composition, 

BZCYYB4411, was developed through a parallel effort and, as it was easier to manufacture, 

used as the primary electrolyte. To mitigate condensation, the amount of humidity is 

restricted to equivalent water temperatures below room temperature as the scanning probe is 

too large to have all its surfaces heated.  

2. Single-composition library 

Synthesis and characterization 

 

Figure 5-41. Sample schematic.  

 

LSCF6428 was deposited onto a BZY20 substrate with a BZY20 interlayer to promote a 

smooth surface. The film was patterned into the micro-dot morphology in the manner 

described in Chapter 2. Impedance measurements were taken under humidified atmospheres 

(𝑝𝐻2𝑂 ≈ 0.016 at a bubbler temperature of 15°C) at high temperatures (450-550°C). 

Impedance measurements were taken from 1 MHz to 0.032 mHz in frequency.  



 

 

89 

 
 

  

  

 

Figure 5-42. LSCF6428 microelectrode on BZY20/BZY20PLD substrate. (left) 

Secondary electron images. (right) Backscattered electron images. 

SEM images of a LSCF6428 micro-electrodes on a BZY20 substrate with a BZY20 

interlayer are shown in Figure 5-42. The left column shows images taken with a secondary 

electron detector sensitive to surface morphology; the right column shows images taken with 
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a backscatter electron detector yielding composition contrast. As can easily be seen, the 

interlayer was insufficient, to remove large-scale cracks and pores in the surface of the 

electrolyte, as the layer was on the order of 1 micron thick and the structural defects were 

larger. This rendered the assumption of a smooth, crack-free surface false, and analysis of 

the data more difficult as a result since the geometry was not as rigorously defined. As a 

result, triple phase boundaries are introduced into the area of the microdot electrode, and the 

edge boundary is not as crisply defined. Indeed, perhaps due to issues with the 

photolithographic film on the surface, the edges in the back-scattered electron images appear 

significantly distorted. This makes trends with geometry much less precise and interpretable. 

Impedance results 

 

 

Figure 5-43. LSCF spectrum (top) and spectra over initial 24 hours (bottom). 
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Nyquist spectra and are shown in Figure 5-43. The spectra indicate processes with three 

distinguishable time constants at high-, mid-, and low-frequencies. This is similar to the 

spectra observed by other groups of cells containing LSCF13. Degradation was observed over 

the course of the first 24 hours of measurement as seen in the bottom figure, where the colors 

shift from blue to yellow to red as time progresses, but the spectra subsequently stabilized. 

The circuit model used to fit this data was an RRQRQRQ circuit, capturing all three of these 

distinct processes. Although the fits capture the behavior of the arc quite well, the use of so 

many fit parameters makes it very difficult to assign physically interpretable meanings to 

each of them. As a result, the analysis that follows will consider only the total resistance as 

measured by the entire width of the impedance spectrum.  

 

Figure 5-44. Diameter dependence of LSCF6428 
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The diameter dependence of the measured resistance of LSCF6428 is shown at three 

different temperatures in Figure 5-44. As shown on the figure, the slope near -2 suggests that 

LSCF may be area-limited and that, in fact, protons are being conducted through the bulk. 

However, as mentioned above, the cracks, pores, and poorly defined geometry give pause 

before definitively drawing conclusions about the proton conductivity of LSCF. 

3. Composition-gradient library 

Sample synthesis and characterization 

In addition to microelectrodes of a single composition, a second sample was prepared with a 

gradient in cobalt content, analysis to the previously described samples on oxygen ion 

conducting substrates. This sample was measured under a limited set of environmental 

conditions, restricted to only one temperature (~570°C) and one oxygen atmosphere (1e-3 

atm). A different electrolyte material was used (BZCYYb1711) in the hopes of yielding a 

smoother surface and a more well-defined film. Figure 5-45 shows a schematic of the 

gradient sample.  

 

Figure 5-45. Schematic of gradient composition library sample.  

Figure 5-46 shows a secondary electron image of a microelectrode from this sample library. 

Though some cracks remain, the cracking is much more well contained than the previous 

sample. Furthermore, though pores also remain, their size and dimension are less than the 
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previous sample as well. This sample also lacks the surface agglomerations present on the 

last sample that distorted the surface geometry of the micro-electrodes. 

 

Figure 5-46. Secondary electron image of 300 µm LSCF electrode showing 

reduced cracking but remaining pores. 

Impedance results 

Nyquist plots of impedance spectra for multiple LSCF compositions are shown in Figure 5-

47. The solid lines represent fits to an RRQRQ model circuit. The spectra differ slightly from 

those presented above for LSCF6428. Only two arcs are clearly visible – the mid-frequency 

arc has been either suppressed or the associated physical process is negligible under these 

hotter and less oxidizing conditions. In addition, the relative magnitude of the two features 

has changed, with the interfacial high-frequency feature now significantly smaller than the 

electrode arc.  
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Figure 5-47. Nyquist spectra of LSCF64 microelectrodes on BZCYYb1711 

substrate. 

  

  

Figure 5-48. Resistance (top) and capacitance (bottom) values extracted from fits 

to impedance spectra as a function of diameter (left) and composition (right). 
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Figure 5-48 shows collective results for resistance and capacitance as extracted from 

RRQRQ model fits to the data. The larger values were attributed to the electrode arcs. The 

slope of resistance with diameter on a log-log plot is between -1 and -2, leaving interpretation 

difficult. If the substrate is still slightly cracked, as it was for the sample above, but less so, 

such a slope may manifest. Interestingly, the trend of electrode resistance with composition 

is relatively flat, indicating that there is not much difference in performance between the two 

end members on proton-conducting substrates under these conditions. Perhaps this result can 

be exploited to obtain better matching of other parameters like thermal expansion and 

reactivity by tailoring the amount of cobalt in LSCF.   

The capacitance data further complicate the interpretation of this data, as the slope of 

capacitance with diameter falls between 2 and 3 on the loglog plot. This deviation has many 

possible interpretations. One interpretation is that the geometry we are measuring is not the 

patterned geometry, due either to mechanical issues with the substrate or contact between the 

electrode and the electrolyte. This variation, however, must occur uniformly for all 

microelectrodes as the slopes have very similar values.  

4. Summary 

Although measurement of cathode materials on proton-conducting substrates proved 

challenging, some meaningful insights were extracted from these experiments. In particular, 

little significant difference in the electrochemical resistance was observed across the 

composition spread for LSCF on a proton-conducting electrolyte. This conclusion is robust 

even without a perfect sample geometry, as all micro-electrodes were synthesized and 

measured under identical conditions. This implies that if LSCF is to be used as a cathode 
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material for p-SOFCs, other considerations such as thermal expansion matching should 

dominate the selection of a precise composition rather than activity. 
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C h a p t e r  6  

NOVEL CATHODE MATERIALS ON PROTON-CONDUCTING ELECTROLYTES 

As mentioned in the previous chapter, efforts to make use of materials with the ability to 

conduct electrons, protons, and oxygen ions have developed only recently. As part of this 

development, candidate materials which may conduct protons have been identified. Such 

candidates include some perovskite materials such as Ba0.5Sr0.5Fe1-xZnxO3-δ (BSFZ)1 and 

certain double perovskite materials such as, potentially, PrBa0.5Sr0.5Co2O5+δ (PBCO)2. The 

identification of the activity of these materials and whether they are proton conductors is vital 

to the continued progress of proton-conducting solid oxide fuel cell performance. The 

scanning impedance probe is an ideal technique for conducting such tests for its ability to 

rigorously compare materials performance and reliably characterize large portions of 

unexplored composition phase space. 

In this chapter we will investigate the novel double perovskite material PBSCF for its 

electrochemical activity on proton-conducting electrolytes and compare the results to those 

obtained from measurements of LSCF in the previous chapter. An additional candidate 

material will be measured, Ba(Zr1-xPrx)0.8Y0.2O3-δ
 (BZPY). BZPY takes the known proton 

conductor BZY and transforms it into a better electron conductor through the use of the more 

easily reducible Pr ion. It is difficult to definitively show by many methods whether proton 

uptake actually occurs if proton uptake is small. For materials which are good electronic 

conductors, analyzing the geometry dependence of the electrochemical activity to look for a 

bulk pathway is one way to provide evidence of bulk proton conduction. 
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1. Single-composition PBSCF Library 

As with the previous studies on oxygen-ion conducting electrolytes, in this study we compare 

the results obtained for LSCF on proton-conducting electrolytes to those obtained for 

PBSCF. As noted before, PBSCF forms in the double perovskite structure and may uptake 

more protons than LSCF due to the size of the oxygen sites near the oxygen pore channels2. 

This may lead to significant proton conductivity and thus to a two-phase boundary dominant 

reaction pathway. 

Sample preparation 

Samples of PBSCF5531 (75% cobalt, 25% iron on the B-site) were prepared by a similar 

method as described in previous chapters. A BZCYYb4411 pellet was used as the proton-

conducting electrolyte substrate, having been polished using a 0.5 µm grit polishing cloth. A 

600 nm layer of PBSCF5531 was deposited onto this substrate and the film was subsequently 

patterned into the same circular micro-dot electrode pattern used in previous studies, with 

micro-electrodes ranging in diameter from 500 µm to 30 µm. A schematic of the sample is 

shown in Figure 6-49.  

 

Figure 6-49. Sample schematic of PBSCF microelectrodes on BZCYYb electrolyte 
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Results of thin-film X-ray diffraction and atomic force microscopy are shown in Figure 

6-50. Due to deposition on a polycrystalline substrate, the film is also polycrystalline, but 

shows good crystallinity as evidenced by the sharp peaks in the pattern. The AFM results 

show that the film is again significantly rougher than films grown on smooth, polished (100) 

YSZ. However, the roughness and peak-to-peak variation is still smaller than the film 

thickness, suggesting that the films are a sufficient thickness to remain continuous without 

the cracking observed for LSCF films in the previous chapter. 

 

Figure 6-50. XRD pattern (left) and AFM image of surface (right) for L111915. 

Measurements were carried out at a film temperature of 500°C under oxygen atmospheres 

ranging from 0.001 to 0.2 atm. Gas was bubbled through water held at 15°C resulting in a 

water partial pressure of 0.016 atmospheres. The sample was equilibrated at 500°C and 0.2 

atm O2 for 12 hours before measuring multiple microelectrodes. Impedance data were 

acquired from 10 kHz to 1 mHz with a 30 mV voltage perturbation using a Solartron 1260 

impedance analyzer.  



 

 

101 

Impedance results 

Figure 6-51 shows the results of electrochemical impedance spectroscopy on PBSCF micro-

electrodes ranging in diameter from 125 µm to 300 µm on a Nyquist plot. Two distinct 

processes are observed, one at high frequency and another at low frequency. The spectra are 

fit with an RRQRQ circuit, shown as solid lines through the circular data points. At very low 

frequency, a potential third feature appears as a tail trailing toward higher real resistance. 

This tail is attributed to degradation over the course of the long low-frequency measurement 

and not a separate physical process. 

 

Figure 6-51. Nyquist spectra of PBSCF micro-electrodes on BZCYYb 

Degradation can be attributed to this low frequency measurement because it is observed over 

the initial equilibration period, as shown in Figure 6-52. Nyquist spectra corresponding to 

repeated measurements of a single 500 µm micro-electrode during the first 12 hour 

equilibration period are shown in Figure 6-52. The total resistance of the microelectrode 

response, i.e., the total width of the impedance data from high frequency to low frequency 

along the real axis, increases by more than a factor of 4 during this time period. Repeated 

measurements of multiple micro-electrodes with varying diameters show the same trend, as 
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seen in Figure 6-53. Micro-dot electrodes of varying diameters show the same trend in 

resistance increase, the likely result of some form of degradation over the initial equilibration 

period, though measurements taken after this time, shown after the 15 hour mark as small 

clusters, appear to have stabilized within a small range.  

The precise nature of this degradation was not determined, though could be caused by a 

limited number of factors. Reactivity between PBSCF and BZCYYb  was shown to be 

negligible3 and is unlikely as a major contributing factor. PBSCF was also shown to be stable 

under humidifying atmospheres. Coarsening of the film or delamination from the substrate 

could contribute to this degradation. The stability of the BZCYYb electrolyte may have 

contributed to this degradation if the ratios of the constituent elements were not accurate, 

since this material can decompose in carbon-containing atmospheres4. 

 

Figure 6-52. Nyquist spectra over time showing degradation in PBSCF 

microelectrodes. 
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Figure 6-53. Degradation in PBSCF microelectrode resistance over time. 

However, the degradation process stops after approximately 15 hours and dots measured 

subsequently show stable values. Measurements taken after this point in time are assumed to 

be at a stable state and thus enable comparisons to other compositions of electrodes measured 

in a similar geometry.  

The dependence of resistance on diameter is shown in Figure 6-54. Several microdots 

measured are averaged together to calculate the measured datapoint, and the error of these 

multiple measurements is represented by the error bars. The error bars also incorporate in 

quadrature the error of the fit itself. Measurements were carried out at multiple oxygen 

atmospheres but a fixed water partial pressure. At each of the oxygen atmospheres, a slope 

of -2 is observed, indicating that PBSCF is in fact conducing protons through the surface of 

the microelectrode and then incorporating these protons into the bulk of the electrolyte. This 
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provides strong evidence that PBSCF is indeed conducting protons through the bulk and 

is surface-active towards oxygen reduction on a proton-conducting electrolyte. 

 

Figure 6-54. Diameter dependence of PBSCF microelectrodes at different pO2 

conditions. 

2. BZPY Library 

Another potential triple-conducting cathode material is Ba(Zr1-xPrx)0.8Y0.2O3-δ. By doping 

praseodymium onto the zirconium site, electronic conductivity is improved5-8. However, it 

is not known whether there is sufficient electronic conductivity for BZPY to behave as a 
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mixed conductor in the thin film geometry, where substantial electronic conductivity is 

required in order to conduct electron in the thin film to all areas on the thin film surface.  

A schematic of the BZPY gradient is shown in Figure 6-55. A linear gradient between BZY 

and BPY was deposited on a polycrystalline BZCYYb substrate. This substrate was then 

adhered using silver paste to an alumina substrate. The porous silver paste was used as the 

counter-electrode. The sample was then heated to a stage temperature of 530°C and a water 

partial pressure of 0.016 atm corresponding to a bubbler temperature of 15°C. 

 

Figure 6-55. Sample schematic of BZPY microelectrodes. 

Figure 6-56 shows Nyquist spectra collected at a film temperature of 500°C and a pO2 of 0.2 

atm. The left figure shows Nyquist spectra collected for dots of different diameters for 

microelectrodes with a composition of 90% Pr. Two consistent features are observed, a low-

frequency arc and a high-frequency arc, with the low-frequency feature corresponding to 

oxygen reduction and the high-frequency feature likely to interfacial factors or sheet 

resistance. Furthermore, the magnitude of the resistance for all spectra are quite similar, 

indicating an interesting lack of geometric variation. The right figure shows the Nyquist 

spectra collected from micro-electrodes with varying Pr content, from x=0.5 to x=1. Both 
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the low-frequency and high-frequency portions of the spectra increase in width with 

decreasing Pr content, indicating that the electronic conductivity of the material plays a 

significant role in determining its activity toward reduction.  

 

Figure 6-56. Nyquist spectra for BZPY microelectrodes. (left) multiple diameter 

microelectrodes at one composition, (right) multiple compositions at 150 um 
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Figure 6-57. Resistance vs diameter for all microelectrode compositions. 

Figure 6-58 shows the geometry dependence of the electrochemical resistance for all 

compositions. For microelectrodes with a diameter larger than 150 µm, the magnitude of the 

resistance is roughly equivalent for all diameters. This interesting result suggests that there 

is insufficient electronic conductivity in the BZPY to conduct electron to the outer portions 

of the thin film, and all electrochemical activity is thus limited to a small region around the 

probe tip. This is also consistent with the trend with composition, where the BPY end-

member has the lowest electrochemical resistance and the highest electronic conductivity as 

compared with the BZY.  
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3. Comparison Summary 

A summary comparing the electrochemical performance of all measured materials on proton-

conducting substrates is shown in Figure 6-58 below. The performance of PBSCF, measured 

as electrochemical resistance, is significantly better than that of LSCF or BZPY. Though the 

LSCF line obeys a slope close to -2, recall that this was due to the cracked substrate creating 

multiple triple phase boundaries on the interior of the micro-electrode, and does not reflect 

that LSCF serves as a sufficient conductor of protons to enable the two-phase-boundary 

pathway. In any case, PBSCF outperforms LSCF and BZPY in an identical geometry, 

indicating it is better suited toward p-SOFCs than the latter two materials.  

 

Figure 6-58. Summary of electrode activity on proton-conducting substrates. 
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4. Application to devices 

With evidence suggesting that PBSCF exhibits both higher activity and, potentially, 

sufficient proton conductivity to be two-phase boundary limited, this material was tested in 

a real fuel cell device3. Anode-supported fuel cells were fabricated by Dr. Sihyuk Choi by 

lightly sintering a Ni-BZCYYb4411 substrates and drop-casting a thin film of BZCYYb4411 

electrolyte. The resulting half-cell was sintered at 1550°C to form a dense electrolyte layer 

approximately 10µm thick. A porous PBSCF5531 layer was then applied via paste and then 

sintered. The fuel cell was sealed to an alumina tube using Ceramabond, and humidified 

hydrogen and synthetic air were fed to the anode and cathode respectively. The results of 

these fuel cell tests are shown in Figure 6-59 below. The fuel cell shows an excellent power 

density exceeding 1 W/cm2 at 650°C. 

 

Figure 6-59. I-V curves of fuel cell without PBSCF PLD interlayer. 
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Encouraged by these results, it was observed that the ohmic offset of the cell was far 

beyond its theoretical value and postulated that this large ohmic resistance may be due to 

poor contact between the cathode and electrolyte. Poor contact would restrict the cross-

sectional area of charge flow and thus increase ohmic resistance. To improve the contact 

between the porous PBSCF cathode layer and the BZCYYb electrolyte, a thin layer of 

PBSCF was deposited by PLD. The resulting I-V curves are shown in Figure 6-60 below. 

 

Figure 6-60. I-V curves of fuel cell without PBSCF PLD interlayer. 

The observed peak power density improves by more than 20% at each temperature measured, 

and at 500°C exceeds 500mW/cm2. The primary source of the enhancement was a decrease 

in ohmic offset is shown in Figure 6-61, showing the impedance spectrum collected from the 

fuel cell on a Nyquist plot comparing the cell with a PLD interlayer to that without a PLD 

interlayer. The spectrum looks as though it has directly shifted to a smaller offset while 

maintaining nearly identical arc width corresponding to electrochemical resistance. This 
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confirms the microprobe evidence suggesting PBSCF exhibits sufficient proton 

conductivity to serve as a bulk proton interlayer in a thin-film geometry. 

 

Figure 6-61. Impedance spectra of fuel cells with and without a PLD interlayer of 

PBSCF on the cathode. 

5. Summary 

In this chapter, we observed the powerful impact that the experimental technique outlined in 

this thesis can have on real devices. Through a high-throughput investigation of thin-film 

PBSCF, it was determined that this material may have sufficient proton conductivity to serve 

as a bulk proton conductor. When the material was applied in just such a way, a 20% increase 

in power density was observed. This result shows the great promise that this high-throughput 

experimental technique displays for future investigation and discovery of fuel cell materials. 
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C h a p t e r  7  

CONCLUSION 

1. Summary 

In this thesis, the application of a high-throughput materials characterization technique to 

solid oxide fuel cell electrode materials has led to rigorous comparisons of materials 

performance, both within and between families of compositions. The experiments carried 

out have yielded important fundamental insights that demonstrated impact on real-world 

devices. The work in this thesis contains measurements with perhaps the highest resolution 

in composition ever recorded for SOFC electrode materials. 

When investigating LSCF on an oxygen-ion conducting electrolyte substrate, a rigorous 

quantitative comparison between the area-specific resistance of the end-member 

compositions was determined. This difference, a factor of 4 at intermediate temperatures, 

demonstrated that the ionic conductivity of the material did not appear to have a significant 

effect on the measured activity in this morphology, and hence the amount of strontium might 

be reduced to mitigate cation segregation and improve activity. A similar study of PBSCF 

yielded a direct comparison between the activity of these two materials on oxygen-ion 

conducting electrolytes. Though a significant difference in electrochemical activity was not 

observed between these two materials, this was likely due to the effect of orientation on the 

bulk ion transport of PBSCF, as the ion-conducting channels may not have been properly 

oriented for maximal ion transport. In addition, the enhancement of chemical capacitance in 
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PBSCF relative to LSCF warrants further study into the mechanism of non-stoichiometry 

in these double perovskite materials. 

A meaningful difference was found between the performance of PBSCF and LSCF on 

proton-conducting substrates. Though the geometry dependence of LSCF electrodes on p-

SOFC electrolytes proved inconclusive, by observing the geometry dependence of the 

electrochemical resistance of PBSCF micro-electrodes evidence for a bulk proton conducting 

pathway was established. These insights led to significant performance improvement in a 

real device through the use of a dense contact layer that reduced ohmic losses.  

Thus, the application of this technique to two known electrode materials, one well studied 

and the other novel, led to key insights vital to the commercial development of these devices. 

In summary, this work confirmed the viability of exploring gradient material compositions 

in this way, gave further insight into a previously well-studied material by investigating it in 

a new way, and compared the performance of multiple materials compositions on multiple 

electrolytes, eventually giving rise to a high-performance fuel cell based on a new proton-

conducting electrode material. 

2. Future Work 

While this work represents an important step forward in the way cathode materials are 

studied, more work needs to be done. The next logical step would be the application of this 

technique to new materials systems, in particular complex co-doping and inter-doping of 

materials families. One material which particularly stands out for future study is SrCo1-

xNbxO3-δ. This material was shown to exhibit performance on par with the most active 
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compound yet discovered, BSCF1. Since it contains only strontium on the A-site, it is 

less subject to cation segregation that plagues materials such as LSCF. Furthermore, 

increased doping with niobium should eventually lead to a more insulating material, and a 

local maximum in performance is expected. With the high composition resolution this 

technique allows, it is the perfect way to optimize such materials. 

Furthermore, future studies should carry out the measurement of cathode materials under 

more realistic operating conditions, specifically under bias. Biased measurements of different 

materials have yielded vastly different performance2. Performing measurements under bias 

will help better correlate device performance to cathode measurement. 

Finally, the extension of this technique to other SOFC materials could help in the same 

manner as it has for cathodes. For instance, the high-throughput study of electrolyte materials 

could aid in optimizing electrolyte compositions or discovering new ion conductors entirely.  
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APPENDIX A: EQUIVALENT CIRCUIT MODEL EQUIVALENCE 

 

Both the circuit models derived by Boukamp et al.1 and Baumann et al.2 are mathematically 

equivalent to an R(RC)(RC) circuit when perfect capacitors are used rather than constant 

phase elements.  

An R(RC)(RC) circuit consists of an offset resistance R0 and two parallel R/C circuits R1/C1 

and R2/C2. This circuit is often fitted to impedance spectra which contain two processes with 

distinguishable time constants. The impedance of this circuit is calculated as 

𝑍(𝜔) = 𝑅0 + (
1

𝑅1
+ 𝑖𝜔𝐶1)

−1

+ (
1

𝑅2
+ 𝑖𝜔𝐶2)

−1

=

𝑅0 +
𝑅1 + 𝑅2 + 𝑖𝜔𝑅1𝑅2(𝐶1 + 𝐶2)

1 − 𝜔2𝑅1𝐶1𝑅2𝐶2 + 𝑖𝜔(𝑅1𝐶1 + 𝑅2𝐶2)
𝐴1.1

 

 

Figure A1-62. (a) 

R(RQ)(RQ) circuit 

(after Crumlin et al.). 

(b) Circuit derived 

from transmission line 

model after Baumann 

et al. (c) Model from 

Boukamp et al. 
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The Baumann circuit contains five parameters: Rb, equivalent to the offset resistance; Ri, 

attributed to ion transfer across the cathode/electrolyte interface; Rs, attributed to the 

electrode surface reaction; Ci, the interfacial capacitance; and Cchem, the chemical 

capacitance.  The impedance of the Baumann circuit is calculated as 

𝑍(𝜔) = (𝑖𝜔𝐶𝑖 + (𝑅𝑖 + (
1

𝑅𝑠
+ 𝑖𝜔𝐶𝑠)

−1

)

−1

)

−1

=

𝑅𝑠 + 𝑅𝑖 + 𝑖𝜔𝑅𝑖𝑅𝑠𝐶𝑠
1 − 𝜔2𝑅𝑠𝐶𝑠𝑅𝑖𝐶𝑖 + 𝑖𝜔(𝑅𝑖𝐶𝑖 + 𝑅𝑠𝐶𝑖 + 𝑅𝑠𝐶𝑠)

𝐴1.2

 

 

The Boukamp circuit also contains five parameters: Rlyte, the electrolyte resistance; Rlayer (Rl), 

the dc resistance; Rpar (Rp), a resistance attributed to secondary phase formation; Clayer (Cl), 

the chemical capacitance; and Cpar (Cp), the capacitance associated with secondary phase 

formation. The impedance for the Boukamp circuit is calculated as  

𝑍(𝜔) = (
1

𝑅𝑙
+ (

1

𝑖𝜔𝐶𝑙
+ (

1

𝑅𝑝
+ 𝑖𝜔𝐶𝑝)

−1

)

−1

)

−1

=

𝑅𝑙 + 𝑖𝜔𝑅𝑙𝑅𝑝(𝐶𝑙 + 𝐶𝑝)

1 − 𝜔2𝑅𝑙𝐶𝑙𝑅𝑝𝐶𝑝 + 𝑖𝜔(𝑅𝑝𝐶𝑝 + (𝑅𝑙 + 𝑅𝑝)𝐶𝑙)
𝐴1.3

 

 

A system of equations to solve for the parameters in the Baumann and Boukamp circuits can 

be established by matching terms. Specifically, five sets of equations for the five unknowns 

are created by matching (1) the offset resistances, (2) real terms in the numerator, (3) terms 
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with 𝑖𝜔 in the numerator, (4) terms with 𝜔2 in the denominator, and (5) terms with 𝑖𝜔 

in the denominator. Doing so yields: 

Matching A1.1 to A1.2 Matching A1.1 to A1.3 

𝑅𝑏 = 𝑅0 𝐴1.4 𝑅𝑒𝑙′𝑙𝑦𝑡𝑒 = 𝑅0 𝐴1.5 

𝑅𝑠 + 𝑅𝑖 = 𝑅1 + 𝑅2 𝐴1.6 𝑅𝑙 = 𝑅1 + 𝑅2 𝐴1.7 

𝑅𝑖𝑅𝑠𝐶𝑠 = 𝑅1𝑅2(𝐶1 + 𝐶2) 𝐴1.8 𝑅𝑙𝑅𝑝(𝐶𝑙 + 𝐶𝑝) = 𝑅1𝑅2(𝐶1 + 𝐶2) 𝐴1.9 

𝑅𝑠𝐶𝑠𝑅𝑖𝐶𝑖 = 𝑅1𝐶1𝑅2𝐶2 𝐴1.10 𝑅𝑙𝐶𝑙𝑅𝑝𝐶𝑝 = 𝑅1𝐶1𝑅2𝐶2 𝐴1.11 

𝑅𝑖𝐶𝑖 + 𝑅𝑠𝐶𝑖 + 𝑅𝑠𝐶𝑠 =
𝑅1𝐶1 + 𝑅2𝐶2 𝐴1.12

 𝑅𝑝𝐶𝑝 + (𝑅𝑙 + 𝑅𝑝)𝐶𝑙 =

𝑅1𝐶1 + 𝑅2𝐶2 𝐴1.13
 

 

This can be solved for each of the parameters in terms of the parameters for the RRCRC 

circuit, proving equivalence. 

𝑅𝑏 = 𝑅0 𝐴1.4 𝑅𝑒𝑙′𝑙𝑦𝑡𝑒 = 𝑅0 𝐴1.5 

𝑅𝑖 =
𝑅1𝑅2(𝐶1 + 𝐶2)

2

𝐶1
2𝑅1 + 𝐶2

2𝑅2
𝐴1.14 

𝑅𝑙𝑎𝑦𝑒𝑟 = 𝑅1 + 𝑅2 𝐴1.7 

𝐶𝑖 =
𝐶1𝐶2
𝐶1 + 𝐶2

𝐴1.15 𝐶𝑙𝑎𝑦𝑒𝑟 =
𝑅1
2𝐶1 + 𝑅2

2𝐶2
(𝑅1 + 𝑅2)

2
𝐴1.16 

𝑅𝑠 =
(𝑅1𝐶1 − 𝑅2𝐶2)

2

𝐶1
2𝑅1 + 𝐶2

2𝑅2
𝐴1.17 𝑅𝑝𝑎𝑟 =

𝑅1𝑅2(𝑅1 + 𝑅2)(𝑅1𝐶1 − 𝑅2𝐶2)
2

(𝑅1
2𝐶1 + 𝑅2

2𝐶2)
2

𝐴1.18 
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𝐶𝑐ℎ𝑒𝑚 =
(𝐶1
2𝑅1 + 𝐶2

2𝑅2)
2

(𝐶1 + 𝐶2)(𝑅1𝐶1 − 𝑅2𝐶2)
2
𝐴1.19 𝐶𝑝𝑎𝑟 =

𝐶1𝐶2(𝑅1
2𝐶1 + 𝑅2

2𝐶2)

(𝑅1𝐶1 − 𝑅2𝐶2)
2

𝐴1.20 

 

Indeed, as can be noted for the equations for the Boukamp circuit, if 𝑅2 ≫ 𝑅1 and then 

𝑅𝑙𝑎𝑦𝑒𝑟 ≈ 𝑅2, 𝐶𝑙𝑎𝑦𝑒𝑟 ≈
𝑅2
2𝐶2

𝑅2
2 = 𝐶2, 𝑅𝑝𝑎𝑟 ≈

𝑅1𝑅2
2(𝑅2𝐶2)

2

(𝑅2
2𝐶2)

2 = 𝑅1 , and 𝐶𝑝𝑎𝑟 ≈
𝐶1𝐶2(𝑅2

2𝐶2)

(𝑅2𝐶2)2
= 𝐶1, 

confirming the approximate equivalence observed between fits to the RRQRQ circuit model 

and fits to the Boukamp model. For the Maier circuit, however, if 𝑅2 ≫ 𝑅1 then 𝑅𝑠 ≈

(𝑅2𝐶2)
2

𝑅2𝐶2
2 = 𝑅2, 𝐶𝑐ℎ𝑒𝑚 ≈

(𝑅2𝐶2
2)
2

(𝐶1+𝐶2)(𝑅2𝐶2)2
=

𝐶2
2

𝐶1+𝐶2
, 𝑅𝑖 ≈ 𝑅1

(𝐶1+𝐶2)
2

𝐶2
2  , and 𝐶𝑖 =

𝐶1𝐶2

𝐶1+𝐶2
. Therefore, 

the measured surface reaction resistance will be approximately the same, but the value for 

the chemical capacitance is convoluted with the value of the interfacial capacitance and vice 

versa. This leads to different calculated values for these parameters between studies. 

When the capacitors are replaced with constant phase element such that 𝐶𝑒𝑓𝑓 = 𝑌
1

𝑛𝑅
1

𝑛
−1

, 

there are too many unknowns and the precise equivalence between the circuits breaks down. 

The behavior changes as well, since the n parameter in the Baumann circuit will be correlated 

with the n parameter of the surface resistance arc while the opposite will be true for the 

Boukamp circuit. 

1 Boukamp, B. A., Hildenbrand, N., Bouwmeester, H. J. M. & Blank, D. H. A. 

Impedance of thin film cathodes: Thickness and current collector dependence. Solid 

State Ionics 283, 81-90, doi:10.1016/j.ssi.2015.10.013 (2015). 

2 Baumann, F. S., Fleig, J., Habermeier, H. U. & Maier, J. Impedance spectroscopic 

study on well-defined (La,Sr)(Co,Fe)O3-delta model electrodes. Solid State Ionics 

177, 1071-1081, doi:DOI 10.1016/j.ssi.2006.02.045 (2006).  
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APPENDIX B: MATLAB CODE 

1. customImpedanceFit 

This function fits an impedance model to a given impedance spectrum. Helper functions 

Circuits and WeightedArcFitting are also included. 

function [medianFitParams] = ... 

    customImpedanceFit(runs, circuitVersion, startingParams, freqRange, 

... 

    sampleDir, fitFolderName) 

% CUSTOMIMPEDANCEFIT Fits impedance data to a user-defined circuit 

% INPUTS 

%   runs            vector of run structs 

%   circuitVersion  string of version of circuit to use 

%   startingParams  Starting points for fit parameters 

%   freqRange       Two-element array indicating min and max of freq range 

%                   Input 'all' for all frequencies 

%   folderName      Full path to where sim files are written 

%   name            Filename of summary to write fit summary file 

% OUTPUTS 

%   medianFitParams      - fitted parameters 

% EXAMPLES 

%   custom_impedance_fit(runs, 'RRQ', [100 1000 1e-6 0.9], [1e0 1e3], ... 

%                            'Sample1', 'fits_650_rrq'); 

%   This example fits runs contains in the struct 'runs' using the starting 

%   parameters [100, 1000, 1e-6, 0.9] and fitting points in the frequency 

%   range [1e0, 1e3]. It writes the fitted data to the fits_650_rrq 

%   folder in the Sample1 directory 

                             

  

%% Set up lsqnonlin parameters 

  

% Set the fitting function options 

opts = optimoptions('lsqnonlin', ... 

    'TolX', 1E-15, ... 

    'TolFun', 1E-15, ... 

    'MaxIter', 1000, ... 

    ...'PlotFcns', {@optimplotx, @optimplotstepsize}, ... 

    ...'Display', 'off', ... 

    'MaxFunEvals', 50000); 

  

weighting = 'modulus'; % 'unit', 'proportional', 'modulus' 

writeToFile = 1; 

makePlots = 0; 

verbose = 1; 

  

if(strcmp(freqRange, 'all')) 

    freqRange = [0, Inf]; 

end 

if(ismac) 

    slash = '/'; 
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    newline = '\n'; 

else 

    slash = '\'; 

    newline = '\r\n'; 

end 

%% Choose the circuit 

switch(circuitVersion) 

    case 'R' 

        pNames      = {'R'}; 

        lowerBounds = 1; 

        upperBounds = Inf; 

    case 'RL' 

        pNames      = {'R', 'L'}; 

        lowerBounds = [0 0]; 

        upperBounds = [Inf Inf]; 

    case 'RRQ' 

        pNames         = {'R0', 'R1',  'Y1', 'n1'}; 

        lowerBounds    = [   1,    1,     0,  0.0]; 

        upperBounds    = [ Inf,  Inf,   Inf,  1.0]; 

    case 'RRQRQ' 

        pNames         = {'R0', 'R1',  'Y1', 'n1',  'R2',  'Y2', 'n2'}; 

        lowerBounds    = [  1,    1,     0,  0.0,     1,     0,  0.0]; 

        upperBounds    = [ Inf,  Inf,   Inf,  1.0,   Inf,   Inf,  1.0]; 

    case 'RRQRQRQ' 

        pNames         = {'R0', 'R1',  'Y1', 'n1',  'R2',  'Y2', 'n2', 

'R3', 'Y3', 'n3'}; 

        lowerBounds    = [   1,    1,    0,  0.0,      1,     0,  0.0,    

1,    0,  0.0]; 

        upperBounds    = [ Inf,  Inf,  Inf,  1.0,    Inf,   Inf,  1.0,  

Inf,  Inf,  1.0]; 

    case '6a' 

        pNames         = {'Rion', 'Rion_s', 'Cion_s', 'Cchem', 'Ceon_p', 

'R0'}; 

        lowerBounds    = [     0,        0,        0,       0,        0,    

0]; 

        upperBounds    = [   Inf,      Inf,      Inf,     Inf,      Inf,  

Inf]; 

    case '7b' 

        pNames         = {'Rion', 'Rion_s', 'Cion_s', 'Cchem', 'Yeon_p', 

'neon_p', 'R0'}; 

        lowerBounds    = [     0,        0,        0,       0,        0,      

0.0,    0]; 

        upperBounds    = [   Inf,      Inf,      Inf,     Inf,      Inf,      

1.0,  Inf]; 

    case '7c' 

        pNames         = {'Rion', 'Rion_s', 'Yion_s', 'nion_s', 'Cchem', 

'Ceon_p', 'R0'}; 

        lowerBounds    = [     0,        0,        0,        0,       0,      

0.0,    0]; 

        upperBounds    = [   Inf,      Inf,      Inf,        1,     Inf,      

Inf,  Inf]; 

    case 'maier2006' 

        pNames         = {'R_{lyte}', 'R_{ion,int}', 'Q_{int}', 

'n_{ion,int}', 'R_{ion,surf}', 'Q_{chem}', 'n_{chem}'}; 

        lowerBounds    = [         1,             1,         0,           0.0,              

1,        0.0,        0.0]; 
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        upperBounds    = [       Inf,           Inf,       Inf,           

1.0,            Inf,        Inf,        1.0]; 

    case 'boukamp2015' 

        pNames         = {'R_{lyte}', 'R_{layer}', 'Q_{layer}', 'n_{layer}', 

'R_{par}', 'Q_{par}', 'n_{par}'}; 

        lowerBounds    = [         1,             1,         0,           0.0,              

1,        0.0,        0.0]; 

        upperBounds    = [       Inf,           Inf,       Inf,           1.0,            

Inf,        Inf,        1.0]; 

    otherwise 

        error('No circuit found'); 

end 

  

% Scale everything so it falls in the range 1:10 

parameters = startingParams; 

fitParamMatrix = zeros(length(runs), length(startingParams));        

scalingFactors = 10.^floor(log10(parameters)); 

  

%% Open summary filehandle for writing 

fitsSummaryFilename = [sampleDir slash fitFolderName slash fitFolderName 

'.txt'] 

if(writeToFile) 

    sumFH = fopen(fitsSummaryFilename, 'w'); 

     

    fprintf(sumFH, '"Filename"\t"Chi-Sqr"\t"Sum-Sqr"\t'); 

    for i = 1:length(pNames) 

        head = pNames{i}; 

        fprintf(sumFH, '%s(+)\t%s(Error)\t%s(Error%%)\t', head, head, 

head); 

    end 

    fprintf(sumFH, '\r\n'); 

end 

%% Do the fitting! 

bar = waitbar(0, 'Initializing...'); 

  

for i = 1:length(runs) 

    if runs(i).customFit == 1 

        % Get frequency and impedance data in appropraite range 

        simName = [sampleDir slash fitFolderName slash runs(i).filename 

'.sim']; 

        freqs = runs(i).Z.freq; 

        fRange = getRangeIndices(freqs, freqRange); 

        %closestValues = min(abs(runs(i).Z.im(fRange))); %%% 

        %indexOfClosest = find(closestValues == abs(runs(i).Z.im)); 

        %fRange = (max(1,indexOfClosest-

1)):1:min(indexOfClosest+1,length(freqs)); %%% 

  

         

        % Calculate measured and initial impedance profiles 

        % But only include where Zim > 0 

         

        posIndices = runs(i).Z.im(fRange) < 0; 

        newFRange = []; 

        for jj = 1:length(posIndices) 

            if(posIndices(jj)) 

                newFRange = [newFRange; fRange(jj)]; 
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            end 

        end 

        freqs = freqs(newFRange); 

        if(length(freqs) < 10) 

            continue; 

        end 

         

        Zmeas = [runs(i).Z.re(newFRange), runs(i).Z.im(newFRange)]; 

        Zinitial = Circuits(parameters, freqs, circuitVersion); 

         

        % Scale parameters and bounds by appropriate factors 

        scaledParameters = parameters ./ scalingFactors; 

        scaledLowerBounds = lowerBounds ./ scalingFactors; 

        scaledUpperBounds = upperBounds ./ scalingFactors; 

         

        waitbar(i/length(runs), bar, sprintf('Fitting spectrum %d of 

%d...', i, length(runs))); 

         

        % Weighted arc Fitting 'normalizes' the parameters by dividing by 

the scaling factor 

        [p_out, resnorm, residuals, eflag, output, lambda, jacob] = ... 

            lsqnonlin(@(ps) WeightedArcFitting(ps, scalingFactors, freqs, 

circuitVersion, Zmeas, weighting), ... 

            scaledParameters, scaledLowerBounds, scaledUpperBounds, 

opts); 

        fitParams = p_out .* scalingFactors; 

        covar = (jacob' * jacob)^(-1); 

        ci = nlparci(p_out, residuals, 'jacobian', jacob, 'alpha',  0.33); 

        cLow = ci(:, 1)' .* scalingFactors; 

        cHigh = ci(:, 2)' .* scalingFactors; 

        %fittedFreqs = logspace(0, 8)'; 

         

        fittedFreqs = freqs; 

        Zfitted = Circuits(fitParams, fittedFreqs, circuitVersion); 

        fitParamMatrix(i, :) = fitParams; 

         

        %% Plot the results 

        if(makePlots) 

            nyFH = figure(); 

            set(nyFH, 'color', 'white'); 

            axis square; 

            set(gca, 'DataAspectRatio', [1 1 1]); 

             

            hold on; 

            plot(Zmeas(:, 1),    -Zmeas(:, 2), 'co'); 

            plot(Zinitial(:, 1), -Zinitial(:, 2), 'r--'); 

            plot(Zfitted(:, 1),  -Zfitted(:, 2), 'b-'); 

            hold off; 

            legend('Measured', 'Guessed', 'Fitted', 'Location', 

'SouthEast') 

            title(num2str(runs(i).seqNum)); 

        end 

         

        %% Show the results 

        if(verbose) 

            disp(['Run #' num2str(runs(i).seqNum)]); 
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            for k = 1:length(pNames) 

                str = [pNames{k}, ': ', num2str(fitParams(k)), ', [', ... 

                    num2str(cLow(k)), ', ' num2str(cHigh(k)) ']']; 

                disp(str); 

            end 

            disp(' '); 

        end 

         

        %% Write to file 

        if(writeToFile) 

            fprintf(sumFH, '"%s"\t%E\t%E\t', ... 

                [sampleDir slash fitFolderName slash runs(i).filename], 0, 

resnorm); 

            for k = 1:length(fitParams) 

                errorAbs = (cHigh(k) - cLow(k)) / 2; 

                errorPercent = errorAbs / fitParams(k); 

                fprintf(sumFH, '%E\t%E\t%E\t', fitParams(k), errorAbs, 

errorPercent); 

            end 

            fprintf(sumFH, newline); 

             

            simFH = fopen(simName, 'w'); 

            for k = 1:10 

                fprintf(simFH, ['Hey you! Keep on keepin'' on!' newline]); 

            end 

            fprintf(simFH, 

['Freq(Hz)\tAmpl\tBias\tTime(Sec)\tZ''(a)\tZ''''(b)\tGD\tErr\tRange' 

newline]); 

            for k = 1:length(fittedFreqs) 

                fprintf(simFH, ['%E, 0.0E+00, 0.0E+00, 0.0E+00, %E, %E, 

0.0E+00, 0, 0' newline], fittedFreqs(k), Zfitted(k, 1), Zfitted(k, 2)); 

            end 

            fclose(simFH); 

        end 

    end 

end 

if(writeToFile) 

    fclose(sumFH); 

end 

close(bar); 

  

nonzeroEntries = find(fitParamMatrix(:, 1)); 

medianFitParams = median(fitParamMatrix(nonzeroEntries, :)); 

  

end 

  

 

function [resVec] = ... 
    WeightedArcFitting(parameters, scalingFactors, freqs, ... 
                        circuitVersion, Zmeas, weight) 
%WEIGHTEDARCFITTING returns residuals of calculated impedance 
%   To improve the fitting ability of lsqnonlin, it is helpful to break up 
%   the data into real and imaginary residuals for each point. This 
%   function determines these residuals between measured data (Zmeas) and 
%   the calculated data (from Circuits). The user should create an 
%   anonymous function to capture the output of this function given the 
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%   options selected by the user. 

  
parameters = parameters .* scalingFactors; 

  
Zcalc = Circuits(parameters, freqs, circuitVersion); 
resVec = zeros(length(freqs), 2); 

  
switch weight 
    case 'modulus'  % modulus weighting 
        resVec = (Zmeas - Zcalc) ./ repmat(sqrt(sum(Zmeas'.^2)), 2, 1)'; 
    case 'unit'  % unit weighting 
        for k = 1:length(freqs) 
            resVec(2*k - 1) = (Zmeas(k,1) - Zcalc(k,1)); 
            resVec(2*k)     = (Zmeas(k,2) - Zcalc(k,2)); 
        end 
    case 'proportional' % proportional weighting 
        for k = 1:length(freqs) 
            resVec(2*k - 1) = (Zmeas(k,1) - Zcalc(k,1)) ./ Zcalc(k,1); 
            resVec(2*k)     = (Zmeas(k,2) - Zcalc(k,2)) ./ Zcalc(k,2); 
        end 
    otherwise 
        errstr = ['Unrecognized weight string "' weight '.']; 
        error(errstr); 
end 

  
end 

 

function Z = Circuits( parameters, freq, circuitVersion ) 
%CIRCUITS Master circuit function file 
%   This function contains all of the fitting functions 
%--- Inputs 
%   parameters  - the input parameters of order unity 
%   freq        - column vector of frequencies 
%   c_version   - a string with the version of the fit to be used 
%--- Outputs 
%   Z           - N x 2 array of real and imaginary impedance 

  
switch(circuitVersion) 
    case{'R', 'r'} 
        Z = Resistor(parameters, freq); 
    case {'RL'} 
        Z = RL(parameters, freq); 
    case{'RRQ', 'rrq'} 
        Z = RRQ(parameters, freq); 
    case{'RRQRQ', 'rrqrq'} 
        Z = RRQRQ(parameters, freq); 
    case{'RRCRC', 'rrcrc'} 
        Z = RRCRC(parameters, freq); 
    case {'RRQRQRQ', 'rrqrqrq'} 
        Z = RRQRQRQ(parameters, freq); 
    case{'5'} 
        Z = RobCircuit_5(parameters, freq); 
    case{'6a'} 
        Z = RobCircuit_6a(parameters, freq); 
    case{'6b'} 
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        Z = RobCircuit_6b(parameters, freq); 
    case{'7a'} 
        Z = RobCircuit_7a(parameters, freq); 
    case{'7b'} 
        Z = RobCircuit_7b(parameters, freq); 
    case{'7c'} 
        Z = RobCircuit_7c(parameters, freq); 
    case{'8'} 
        Z = RobCircuit_8(parameters, freq); 
    case{'maier2006'} 
        Z = maier2006(parameters, freq); 
    case('boukamp2015') 
        Z = boukamp2015(parameters, freq); 
    otherwise 
        errstr = ['Version ' circuitVersion ' not recognized.']; 
        error(errstr); 
end 

  
end 

  
function Z = Resistor(params, freqs) 
% Simple resistor 

  
R = params(1); 

  
Z = R .* ones(length(freqs), 1); 

  
Z = [real(Z) imag(Z)]; 

  
end 

  
function Z = RL(params, freqs) 
% RL parallel circuit 

  
R = params(1); 
L = params(2); 
w = 2 * pi * freqs; 
Z = 1./(1/R + 1./(1i * w * L)); 

  
Z = [real(Z) imag(Z)]; 
end 

  
function Z = RRQ(params, freqs) 
% RobCircuit_RRQ Equivalent circuit for a microelectrode. 
% p = [R Rs Y n]; 

  
R   = params(1); 
Rs  = params(2); 
Y   = params(3); 
n   = params(4); 
w   = 2*pi*freqs; 

  
Z   = R + Rs ./ (1 + Y.*Rs.*(1i*w).^n); 
Z   = [real(Z) imag(Z)]; 
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end 

  
function Z = RRQRQ(params, freqs) 
% RobCircuit_RRQRQ Equivalent circuit for a microelectrode. 
% Here Q = CPE 
% p = [R0 R1 Y1 n1 R2 Y2 n2]; 

  
R0   = params(1); 
R1   = params(2); 
Y1   = params(3); 
n1   = params(4); 
R2   = params(5); 
Y2   = params(6); 
n2   = params(7); 
w    = 2*pi*freqs; 

  
Z   = R0 + R1 ./ (1 + Y1.*R1.*(1i*w).^n1) + R2 ./ (1 + Y2.*R2.*(1i*w).^n2); 
Z   = [real(Z) imag(Z)]; 
end 

  
function Z = RRQRQRQ(params, freqs) 
% RobCircuit_RRQRQRQ Equivalent circuit for a microelectrode. 
% Here Q = CPE 
% p = [R0 R1 Y1 n1 R2 Y2 n2 R3 Y3 n3; 

  
R0   = params(1); 
R1   = params(2); 
Y1   = params(3); 
n1   = params(4); 
R2   = params(5); 
Y2   = params(6); 
n2   = params(7); 
R3   = params(8); 
Y3   = params(9); 
n3   = params(10); 
w    = 2*pi*freqs; 

  
Z   = R0 + R1 ./ (1 + Y1.*R1.*(1i*w).^n1) + R2 ./ (1 + Y2.*R2.*(1i*w).^n2) 

+ ... 
     R3 ./ (1 + Y3.*R3.*(1i*w).^n3); 

  
Z   = [real(Z) imag(Z)]; 
end 

  

  
function Z = RRCRC(params, freqs) 
% RobCircuit_RRCRC Equivalent circuit for a microelectrode. 
% p = [R0 R1 C1 R2 C2]; 

  
R0   = params(1); 
R1   = params(2); 
C1   = params(3); 
R2   = params(4); 
C2   = params(5); 
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i    = 1i; 
w    = 2*pi*freqs; 

  
Z   = R0 + R1 ./ (1 + R1.*C1.*i*w) + R2 ./ (1 + R2.*C2.*i*w); 
Z   = [real(Z) imag(Z)]; 
end 

  
function Z = RobCircuit_5(params, freqs) 
% RobCircuit_5 Equivalent circuit for a microelectrode. 
% p = [Rion Rion_s Cion_s Cchem  R0] 

  
Rion    = params(1); 
Rion_s  = params(2); 
Cion_s  = params(3); 
Cchem   = params(4); 
R0      = params(5); 
i       = 1i; 
w       = 2*pi*freqs; 

  
Zion_s  = Rion_s ./ (1 + i*w*Rion_s*Cion_s); 
a       = sqrt(i*w*Rion*Cchem); 

  
Z = (Rion + Zion_s.*a.*coth(a)) ./ (Zion_s.*a.^2./Rion + a.*coth(a)) + R0; 
Z = [real(Z) imag(Z)]; 
end 

  
function Z = RobCircuit_6a(params, freqs) 
% RobCircuit_6a Equivalent circuit for a microelectrode. 
% p = [Rion Rion_s Cion_s Cchem Ceon_p R0] 

  
Rion    = params(1); 
Rion_s  = params(2); 
Cion_s  = params(3); 
Cchem   = params(4); 
Ceon_p  = params(5); 
R0      = params(6); 
i       = 1i; 
w       = 2*pi*freqs; 

  
Zion_s  = Rion_s ./ (1+i*w*Rion_s*Cion_s); 
Zeon_p  = 1./(i*w*Ceon_p); 
a       = sqrt(i*w*Rion*Cchem); 

  
Z = (Rion.*Zeon_p + Zeon_p.*Zion_s.*a.*coth(a)) ./ ... 
    (Rion + Zion_s.*a.^2.*Zeon_p/Rion + (Zion_s + Zeon_p).*a.*coth(a)) + 

R0; 
Z = [real(Z) imag(Z)]; 
end 

  
function Z = RobCircuit_6b(params, freqs) 
% RobCircuit_6b Equivalent circuit for a microelectrode. 
% p = [Rion Rion_s Cion_s Cchem Rion_p R0] 

  
Rion    = params(1); 
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Rion_s  = params(2); 
Cion_s  = params(3); 
Cchem   = params(4); 
Rion_p  = params(5); 
R0      = params(6); 
i       = 1i; 
w       = 2*pi*freqs; 

  
Zion_s  = Rion_s ./ (1+i*w*Rion_s*Cion_s); 
Zion_p  = Rion_p; 
a       = sqrt(1i*w*Rion*Cchem); 

  
Z = (Rion^2 + Zion_s.*Zion_p.*a.^2 + Rion.*(Zion_s + Zion_p).*a.*coth(a)) 

./ ... 
    (Zion_s.*a.^2 + Rion.*a.*coth(a)) + R0; 
Z = [real(Z) imag(Z)]; 
end 

  
function Z = RobCircuit_7a(params, freqs) 
% RobCircuit_7a Equivalent circuit for a microelectrode. 
% p = [Rion Rion_s Cion_s Cchem Rion_p Cion_p R0]   

  
Rion    = params(1); 
Rion_s  = params(2); 
Cion_s  = params(3); 
Cchem   = params(4); 
Rion_p  = params(5); 
Cion_p  = params(6); 
R0      = params(7); 
i       = 1i; 
w       = 2*pi*freqs; 

  
Zion_s  = Rion_s ./ (1+i*w*Rion_s*Cion_s); 
Zion_p  = Rion_p ./ (1+iw*Rion_p*Cion_p); 
a       = sqrt(1i*w*Rion*Cchem); 

  
Z = (Rion^2 + Zion_s.*Zion_p.*a.^2 + Rion.*(Zion_s + Zion_p).*a.*coth(a)) 

./ ... 
    (Zion_s.*a.^2 + Rion.*a.*coth(a)) + R0; 
Z = [real(Z) imag(Z)]; 
end 

  
function Z = RobCircuit_7b(params, freqs) 
% RobCircuit_7b Equivalent circuit for a microelectrode. 
% p = [Rion Rion_s Cion_s Cchem Yeon_p neon_p R0] 

  
Rion    = params(1); 
Rion_s  = params(2); 
Cion_s  = params(3); 
Cchem   = params(4); 
Yeon_p  = params(5); 
neon_p  = params(6); 
R0      = params(7); 
i       = 1i; 
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w       = 2*pi*freqs; 

  
Zion_s  = Rion_s ./ (1+i*w*Rion_s*Cion_s); 
Zeon_p  = 1 ./ (Yeon_p.*(i*w).^neon_p); 
a       = sqrt(i*w*Rion*Cchem); 

  
Z = (Rion.*Zeon_p + Zeon_p.*Zion_s.*a.*coth(a)) ./ ... 
    (Rion + Zion_s.*a.^2.*Zeon_p./Rion + (Zion_s + Zeon_p).*a.*coth(a)) + 

R0; 
Z = [real(Z) imag(Z)]; 
end 

  
function Z = RobCircuit_7c(params, freqs) 
% RobCircuit_7b Equivalent circuit for a microelectrode. 
% p = [Rion Rion_s Yion_s nion_s Cchem Ceon_p R0] 

  
Rion    = params(1); 
Rion_s  = params(2); 
Yion_s  = params(3); 
nion_s  = params(4); 
Cchem   = params(5); 
Ceon_p  = params(6); 
R0      = params(7); 
i       = 1i; 
w       = 2*pi*freqs; 

  
Z_A = Rion_s ./ (1+Rion_s*Yion_s*(i*w).^nion_s); 
Z_D = 1 ./ (i*w*Ceon_p); 
a   = sqrt(i*w*Rion*Cchem); 

  
Z = (Rion .* Z_D + Z_D .* Z_A .* a .* coth(a)) ./ ... 
    (Rion + Z_A .* Z_D .* a.^2 / Rion + (Z_A + Z_D).*a.*coth(a)) + R0; 
Z = [real(Z) imag(Z)]; 
end 

  
function Z = RobCircuit_8(params, freqs) 
% RobCircuit_8 Equivalent circuit for a microelectrode. 
% p = [Rion Rion_s Cion_s Cchem Rion_p Cion_p Ceon_p R0] 

  
Rion    = params(1); 
Rion_s  = params(2); 
Cion_s  = params(3); 
Cchem   = params(4); 
Rion_p  = params(5); 
Cion_p  = params(6); 
Ceon_p  = params(7); 
R0      = params(8); 
i       = 1i; 
w       = 2*pi*freqs; 

  
Zion_s  = Rion_s ./ (1+i*w*Rion_s*Cion_s); 
Zion_p  = Rion_p ./ (1+i*w*Rion_p*Cion_p); 
Zeon_p  = 1./(i*w*Ceon_p); 
a       = sqrt(i*w*Rion*Cchem); 
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Z = (Rion^2.*Zeon_p + Zion_s.*Zion_p.*Zeon_p.*a.^2 + Rion.*Zeon_p.*(Zion_s 

+ Zion_p).*a.*coth(a)) ./ ... 
    (Rion^2 + Zion_s.*a.^2.*(Zion_p + Zeon_p) + (Zion_s + Zion_p + 

Zeon_p).*Rion.*a.*coth(a)) + R0; 
Z = [real(Z) imag(Z)]; 
end 

  
function Z = maier2006(params, freqs) 
% Maier2006 Physical circuit adapted from Baumann et. al. SSI 177 (2006) 
% p = ['R_{lyte}', 'R_{ion,int}', 'Q_{int}', 'n_{ion,int}', 

'R_{ion,surf}', 
% 'Q_{chem}', 'n_{ion, surf}'] 

  
R_lyte      = params(1); 
R_ion_int   = params(2); 
Q_ion_int   = params(3); 
n_ion_int   = params(4); 
R_ion_surf  = params(5); 
Q_chem      = params(6); 
n_chem      = params(7); 

  
i           = 1i; 
w           = 2*pi*freqs; 

  
Z_Q_ion_int = (Q_ion_int * (i*w).^(n_ion_int)).^(-1); 
Z_Q_chem    = (Q_chem * (i*w).^(n_chem)).^(-1); 

  
Ztop = R_ion_int + (R_ion_surf .* Z_Q_chem)./(R_ion_surf + Z_Q_chem); 

  
Z = R_lyte + 1./(Z_Q_ion_int.^(-1) + Ztop.^(-1)); 
Z = [real(Z) imag(Z)]; 
end 

  
function Z = boukamp2015(params, freqs) 
% Boukamp2015 Physical circuit adapted from Baumann et. al. SSI 177 (2006) 
% p = ['R_{lyte}', 'R_{ion,int}', 'Q_{int}', 'n_{ion,int}', 

'R_{ion,surf}', 
% 'Q_{chem}', 'n_{ion, surf}'] 

  
R_lyte  = params(1); 
R_layer = params(2); 
Q_layer = params(3); 
n_layer = params(4); 
R_par   = params(5); 
Q_par   = params(6); 
n_par   = params(7); 

  
i = 1i; 
w = 2*pi*freqs; 

  
Z_Q_layer = (Q_layer * (i*w).^(n_layer)).^(-1); 
Z_Q_par   = (Q_par* (i*w).^(n_par)).^(-1); 
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Zbottom = Z_Q_layer + (R_par .* Z_Q_par)./(R_par + Z_Q_par); 

  
Z = R_lyte + 1./(R_layer.^(-1) + Zbottom.^(-1)); 
Z = [real(Z) imag(Z)]; 
end 

 

 

2. calculateDotPositions 

This function is used to predict the position of all micro-electrodes from the measurement of 

some arbitrary number greater than 3. 

function [ positions ] = calculate_dot_positions( 

transformation_parameters ) 
%CALCULATE_DOT_POSITIONS Calculate the dot positions 
%   Inputs: 
%       alpha - coefficient of thermal expansion 
%       theta_zz - rotation about the z-axis 
%       theta_yy - rotation about the x-axis 
%       theta_xx - rotation about the y-axis 
%       s_x, _y, _z - substrate position 
%   Outputs: 
%       positions - matrix of dot positions 

  
alpha_cte = transformation_parameters(1); 
theta_zz = transformation_parameters(2); 
theta_yy = transformation_parameters(3); 
theta_xx = transformation_parameters(4); 
substrate_x = transformation_parameters(5); 
substrate_y = transformation_parameters(6); 
substrate_z = transformation_parameters(7); 
offset = [substrate_x; substrate_y; substrate_z]; 
% Initialize all dot positions 
x_pos = -[1 1.85:0.350:8.25 9]; 
y_pos = -[0.8 1.3 1.7 2 2.3 2.5:0.2:3.1 3.25:0.15:4.3]; 

  
nRows = length(y_pos); 
nColumns = length(x_pos); 
dot_positions = zeros(nRows, nColumns, 3); 

  
% Generate rotation matrices 
R_Z = [[cos(theta_zz), -sin(theta_zz), 0]; [sin(theta_zz), cos(theta_zz), 

0]; [0 0 1]]; 
R_Y = [[cos(theta_yy), 0, sin(theta_yy)]; [0, 1, 0]; [-sin(theta_yy), 0, 

cos(theta_yy)]]; 
R_X = [[1, 0, 0]; [0, cos(theta_xx), -sin(theta_xx)]; [0, sin(theta_xx), 

cos(theta_xx)]]; 

  
% Transform all of the points 
for row = 1:nRows 
    for col = 1:nColumns 
        position_vector = alpha_cte * [x_pos(col); y_pos(row); 0]; 
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        position_vector = R_Z * R_Y * R_X * position_vector + offset; 
        dot_positions(row, col, :) = position_vector; 
    end 
end 

  
positions = dot_positions; 

  
end 

 

 


