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ABSTRACT

A flow reconstruction methodology is presented for incompressible, statistically
stationary flows using resolvent analysis and data-assimilation. The only inputs
necessary for the procedure are a rough approximation of the mean profile and a
single time-resolved measurement. The objective is to estimate both the mean and
fluctuating states of experimental flows with limited measurements which do not
include pressure. The input data may be incomplete, in the sense that measure-
ments near a body are difficult to obtain with techniques such as particle image
velocimetry (PIV), or contaminated by noise. The tools developed in this thesis are
capable of filling in missing data and reducing the amount of measurement noise by
leveraging the governing equations. The reconstructed flow is capable of estimat-
ing fluctuations where time-resolved data are not available and solving the flow on
larger domains where the mean profile is not known.

The first part of the thesis focuses on how resolvent analysis of the mean flow se-
lects amplification mechanisms. Eigenspectra and pseudospectra of the mean linear
Navier-Stokes (LNS) operator are used to characterize amplification mechanisms in
flows where linear mechanisms are important. The real parts of the eigenvalues are
responsible for resonant amplification and the resolvent operator is low-rank when
the eigenvalues are sufficiently separated in the spectrum. Two test cases are stud-
ied: low Reynolds number cylinder flow and turbulent channel flow. The latter is
studied by considering well-known turbulent structures while the former contains a
marginally stable eigenvalue which drowns out the effect of other eigenvalues over
a large range of temporal frequencies. There is a geometric manifestation of this
dominant mode in the mean profile, suggesting that it leaves a significant footprint
on the time-averaged flow that the resolvent can identify. The resolvent does not
provide an efficient basis at temporal frequencies where there is no separation of
singular values. It can still be leveraged, nevertheless, to identify coherent struc-
tures in the flow by approximating the nonlinear forcing from the interaction of
highly amplified coherent structures.

The second part of the thesis extends the framework of Foures et al. (2014), who
data-assimilated the mean cylinder wake at very low Reynolds numbers. The con-
tributions presented here are to assess the minimum domain for successfully re-
constructing Reynolds stress gradients, modifying the algorithm to assimilate mean
pressure, determining whether weighting input measurements contributes to im-
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proved performance, and adapting the method to experimental data at higher Reynolds
numbers. The results from data-assimilating the mean cylinder wake at low Reynolds
numbers suggest that the measurement domain needs to coincide with the spatial
support of the Reynolds stress gradients while point weighting has a minimal im-
pact on the performance. Finally, a smoothing procedure adapted from Foures et
al. (2014) is proposed to cope with data-assimilating an experimental mean profile
obtained from PIV data. The data-assimilated mean profiles for an idealized airfoil
and NACA 0018 airfoil are solved on a large domain making the mean profile suit-
able for global resolvent analysis. Data-assimilation is also able to fill in missing or
unreliable vectors near the airfoil surface.

The final piece of the thesis is to synthesize the knowledge and techniques devel-
oped in the first two parts to reconstruct the experimental flow around a NACA
0018 airfoil. Preliminary results are presented for the case where α = 0◦ and
Re = 10250. The mean profile is data-assimilated and used as an input to resolvent
analysis to educe coherent structures in the flow. The resolvent operator for non-
amplified temporal frequencies is forced by an approximated nonlinear forcing. The
amplitude and phase of the modes are obtained from the discrete Fourier-transform
of a time-resolved probe point measurement. The final reconstruction contains less
measurement noise compared to the PIV snapshots and obeys the incompressible
Navier-Stokes equations (NSE). The thesis concludes with a discussion of how ele-
ments of this methodology can be incorporated into the development of estimators
for turbulent flows at high Reynolds numbers.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Practical implementation of closed-loop control of complex fluid systems has so far
remained elusive due to a number of challenges. These include a lack of under-
standing of the dominant physics, the nonlinearity of the governing equations, and
the wide range of scales inherent to the problem. Despite these obstacles, several
studies such as Bewley et al. (2001) have successfully relaminarized wall-bounded
turbulent flows using adjoint-based optimal control theory. The control algorithm
in Bewley et al. (2001) had access to full state information or knowledge of all flow
quantities at every grid point. This is not feasible experimentally so an estimator
is necessary to deduce states which are not directly measured. Figure 1.1(a) is a
schematic of a typical closed-loop flow control configuration where the estimator
measures the flow and the controller actuates on it. The design of an effective es-
timator, however, is not straightforward as the questions of where to measure in
the flow and which flow states should be measured have no clear answers. They
are frequently flow dependent and may be sensitive to small changes in the flow
configuration.

This thesis focuses on obtaining the maximum amount of information from the
flow from the fewest measurements possible. To meet this challenge, fundamen-
tal questions about reduced-order modeling and data-assimilation are addressed.
Reduced-order models capture the essential features of a flow and the advantage of
such an approach is to gain insight of the flow physics in order to identify mecha-
nisms for controlling the flow (Rowley and Dawson, 2017). If a suitable basis for
the flow can be determined, then it can be reconstructed with reasonable fidelity
using a small subset of basis functions. Another approach to flow reconstruction
is data-assimilation whereby experimental measurements are merged with compu-
tational fluid dynamics (CFD) to improve prediction of real-world flows (Hayase,
2015) as seen in Figure 1.1(b). The underlying principle is to complement CFD,
which lack full fidelity, with limited experimental measurements so that the simu-
lation reflects the dynamics observed in the laboratory. Reduced-order modeling,
data-assimilation, and the combination of both are addressed in this thesis.
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(a) (b)

Figure 1.1: Comparison of the elements in a closed loop control arrangement (a)
with data-assimilation (b).

1.2 A Musical Analogy
Before introducing background literature on the technical aspects of this thesis, the
author would like to offer a musical analogy for reduced-order modeling and flow
reconstruction. No musical knowledge is necessary to understand this analogy. In
addition to being able to visualize music by looking at the notes written on a page
or watching a pianist’s hands move, for example, music can be heard. In fact, it
is easier to judge whether the notes written on a page sound ‘right’ by hearing
them being played. Thus, music has an edge over fluid mechanics when deciding
whether or not a reduced-order model captures the essential components of a piece
or song. One might ask when reduced-order modeling is necessary in the first
place since there are no pieces written by composers which cannot be performed as
long as there are enough musicians to cover the parts and they have the technical
skills necessary to play it well. It turns out that reduced-order modeling is used all
the time and the particular example that will be discussed below is arranging the
orchestra accompaniment to a concerto for piano.

1.2.1 Concertos and Arranging
A concerto is a musical composition written for a solo instrument with the orches-
tra accompanying. The solo part tends to be virtuosic and technically demanding
in order to showcase the soloist’s mastery of the instrument. It also contains the
principal themes and melodies of the piece. The orchestra, which is made up of
many instruments, plays a supporting role by providing harmonies and background
atmosphere. Concertos can be written for any instrument although the piano is the
most common followed by the violin. Since the orchestra consists of as many as
eighty people, it is not practical for a soloist auditioning on a piece to have full
orchestra accompaniment. This would involve coordinating the schedule of many
people, including a conductor, all of whom would probably expect payment for
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practicing their parts and turning up to rehearsal! Instead, it is far more practical
for the orchestra part to be arranged for piano and for the soloist to audition with a
piano accompanist. As one might guess, the pianist cannot play the orchestra part
to full fidelity so a reduced-order model is necessary to arrange the music such that
it is playable by a single pianist.

Accomplishing such a task is not straightforward and requires pretty advanced
knowledge of not only music theory but also the piano. To begin with, the pi-
anist has only two hands which have a limited amount of reach. While it is possible
to play many notes at once, the hand can maybe reach between an interval of nine
keys on the piano. There are physical limitations, therefore, that the arranger needs
to consider. The musical constraints are less obvious and are harder to satisfy by
a brute force approach. For instance, if the arranger were to simply take all the
orchestra parts and write them on the same page at once, it would immediately be-
come obvious that some instruments are playing the same notes at the same time.
Thus a part is being doubled and so the arranger has already accounted for two in-
struments. Occasionally the same notes at different frequencies are being played
simultaneously — think of men and women singing Happy Birthday at an office
party. They are singing the ‘same’ notes but at different pitches since men tend to
have deeper voices than women. In physics, one would think of a fundamental fre-
quency f1 and higher harmonics 2 f1, etc. In music, these are called octaves since
2 f1 would be the eighth note after f1 in a musical scale.

1.2.2 Structure and Statistics
Instead of turning to physics and governing equations such as Navier-Stokes, the
arranger makes use of music theory. Figure 1.2 is the beginning of Schubert’s
Impromptu No. 3 Opus 90 in G-flat major. This piece is for solo piano and one
reads the music from left to right like a book. The pianist reads two lines together:
the right-hand plays the upper staff, which is a collection of five horizontal lines,
while the left-hand plays the bottom staff. The two staffs are connected by vertical
lines denoting measures, or musical subunits, and the notes appear on individual
lines or spaces with respect to the staff. A high placement of a note on the staff

denotes a high pitch and vice versa for low notes.

Three different colored boxes appear in Figure 1.2 to denote the three ‘structures’
which appear in the music. The part or voice in the solid red box is the melody
which is played by the ring finger and pinky of the pianist’s right hand. The melody
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Figure 1.2: The first two lines of Schubert’s Impromptu No. 3 in G-flat Major Opus
90. The melody is contained in the red solid box, the bass line in the dashed blue
box, and the ornamentation in the brown dotted box. The thickness of the boxes
indicates the relative volume at which each of these lines should be played.

is the most important voice and should be played the loudest which is why the red
box has the thickest lines. The bass is the voice contained in the dashed blue box
and is played by the left hand. It is the second most important voice by supporting
the melody and enriching the overall sound of the music. Last, and certainly least
in terms of importance, is the ornamentation in the dotted brown box which has the
thinnest lines. The purpose of the third voice is to add atmosphere and movement
creating a shimmering effect. Incidentally, this voice is what makes the piece chal-
lenging since the ornamentation is played by the strong fingers (thumb, pointer, and
middle) of the right hand while the melody is in the weaker fingers (ring and pinky).

The structure in complex flows is also quite important, as they typically account
for a large amount of the fluctuating energy. While the structures in Figure 1.2 are
relatively easy to identify given their spatial separation on the staff, identifying them
in flows tends to be more challenging, warranting the use of modal decomposition
techniques which are introduced in Section 1.3. Some of these make use of the
statistics of the flow such as the time-averaged velocity field. The ‘statistics’ in
music are the key and time signatures which are located at the very beginning of
the piece. The key signature is made up of ] and [ symbols, of which there are six
of the latter in Figure 1.2, and denotes the key or scale the piece is based on. There
are chords (combinations of notes) which are particular to each key and these often
play an accompanying role in music. The time signature in Figure 1.2 is indicated
by the two bold C’s which are ‘cut’ by vertical lines and sets how many beats are
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in a measure. Implicitly, this suggests what types of rhythms are likely to appear as
well as which beats should be emphasized more than others.

In short, the voices in music can be likened to coherent structures in flows which
have varying degrees of importance. The time and key signatures are similar to
statistics which, using music theory or the governing equations, may yield useful
information about the actual piece or flow.

1.2.3 Beethoven Violin Concerto
The arranger considers both the structure and statistics of the piece when attempt-
ing to build a reduced-order model of the orchestration. Two fragments of the
Beethoven Violin Concerto are reproduced below to observe how the arranger took
music which was originally written for full orchestra and simplified it for piano. In
Figure 1.3, the parts for each instrument appear all together and the piano arrange-
ment appears as the last two lines. The arranger has, in fact, written the original
instruments next to the parts the piano is playing. In Figure 1.3, the piano is able
to play almost all the notes played by the orchestra. Even though the reduced-order
model (piano arrangement) very faithfully reconstructs the original orchestration,
it loses the distinct sound, or timbre, of each instrument such as the oboe vs. the
clarinet. It is impossible, therefore, for the piano to capture everything.

Another fragment of the piece is reproduced in Figure 1.4 where the piano arrange-
ment is the final two lines and the orchestration is the top seven lines. Here, the
arranger needs to make some choices since the pianist cannot play all the notes
from the original orchestration. The first notes of lines 1 and 2, for example, are the
same notes at different frequencies or octaves. The arranger has decided, therefore,
to choose just line 1 which is played by the right-hand. The arranger has also sim-
plified Lines 4-7 since the pianist’s left-hand cannot play all four notes together at
the speed written. To make the music playable, Line 4 is omitted since it is covered
by the right-hand and the left-hand alternates between Lines 6/7 and Line 5. All
the notes from the orchestration are being played, just at a slightly lower temporal
frequency. This type of trick makes it much easier for the pianist since the playing
of repeated sixteenth notes can be avoided.

There are many videos online which visualize arrangements of music for solo piano
while they are being played. Thus one can hear and see a reduced-order model
although a true assessment of its fidelity is to study the music. The rest of the thesis
focuses on the tools and methods applied in fluid mechanics which rely on the same
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Figure 1.3: The opening measures of Beethoven’s violin concerto. The instruments
which play each line are labeled on the left-hand side. The piano arrangement of
the orchestration is placed at the bottom and consists of two lines. The left-hand
plays the bottom of these two lines and the right-hand plays the top line.
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Figure 1.4: A second excerpt of Beethoven’s violin concerto where the top seven
lines are the orchestration and the bottom two are the piano arrangement.

principles. Perhaps one advantage fluid mechanics has over music is that success or
optimality can be measured mathematically. It will be seen, however, that the way
optimal is defined might not yield the best answer so it might be necessary to make
use of other tricks akin to the one used by the arranger to avoid repeated sixteenth
notes.

1.3 Reduced-Order Modeling
There are numerous modal decomposition techniques which have been applied to
analyze flows. In the overview of Taira et al. (2017), techniques which use flow data
as an input are classified as data-based while techniques which rely on a more the-
oretical framework or discrete operators from the Navier-Stokes Equations (NSE)
are classified as operator-based. One of the major advantages of the latter category
is that large amounts of data are not necessary. This makes them an attractive choice
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for flow reconstruction if only a small number of time-resolved measurements are
available. It becomes important, consequently, to understand the conditions under
which an operator-based technique identifies meaningful structures which actually
appear in the flow. This section reviews recent progress and challenges with re-
spect to coherent structure eduction with an emphasis on resolvent analysis using
the time-averaged mean as an input.

1.3.1 Stability of the Mean Flow
A time-averaged flow, or mean, that is statistically stationary can often be defined
and leveraged using the eigenvalue spectrum of the governing NSE to educe the
frequencies, i.e. the imaginary part of the eigenvalues, and shapes of coherent
structures which appear in the flow. Recent studies have demonstrated the suc-
cess of mean flow stability analysis for a variety of flows including thermosolutal
convection (Turton et al., 2015), turbulent jets (Gudmundsson and Colonius, 2011;
Oberleithner et al., 2014; Schmidt et al., 2017a), and flow over a backward facing
step (Beneddine et al., 2016). There is also a significant body of work discussing
stability analysis of the mean cylinder wake which was shown by Barkley (2006)
to correctly identify the frequency of the globally unstable flow above the criti-
cal Reynolds number of Re = 47 (Provansal et al., 1987; Sreenivasan et al., 1987;
Noack and Eckelmann, 1994). Notably, classical linear stability analysis of the base
flow, which is an equilibrium solution of the NSE, at supercritical Reynolds num-
bers does not predict the correct observed frequency. The base (laminar) and mean
(time-average of the fluctuating velocity field) profiles are differentiated because of
the importance of nonlinearity in sustaining the latter.

The two-dimensional von-Kármán vortex street becomes unstable to three-dimensional
perturbations at a Reynolds number of Re = 189 (Barkley and Henderson, 1996;
Williamson, 1996). A global stability analysis of the span-averaged mean wake
continues to identify the shedding frequency as demonstrated by Leontini et al.
(2010). Recent work has endeavored to explain why and when mean stability anal-
ysis is valid. Barkley (2006) suggested that success corresponds to cases where the
Reynolds stresses are unperturbed at order ε when considering infinitesimal per-
turbations ε ũ(x, y)exp(λt) to the mean flow solution. This was confirmed by Sipp
and Lebedev (2007) who determined that the nonlinear interaction of the leading
global mode with its conjugate, i.e. the contribution to the mean Reynolds stresses,
significantly outweighed the interaction of the mode with itself leading to higher
frequency harmonics. As shown by Mantič-Lugo et al. (2014) the Reynolds stresses
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can be approximated with the leading global mode and its conjugate.

1.3.2 Resolvent Analysis
Sipp and Lebedev (2007) used open cavity flow as a counter example to the validity
of mean stability analysis where the predicted frequencies do not match direct nu-
merical simulation (DNS) of the flow. This discrepancy can be attributed to the non-
normality of the flow which leads to non-orthogonality of the global modes and sen-
sitivity of the spectrum to perturbation of the operator (Trefethen et al., 1993). The
behavior of these systems can be more accurately characterized by the pseudospec-
trum of the LNS operator using resolvent analysis, e.g., Trefethen et al. (1993)
and Schmid and Henningson (2001), rather than the spectrum alone. Jovanović
and Bamieh (2005) formulated the linearized problem for laminar channel flow in
input-output terms, where the resolvent operator constitutes the transfer function
between them, considering the component-wise transfer from harmonic exogenous
disturbance or forcing (input) to velocity response (output). There is also a broad
literature considering stochastic forcing, e.g., Farrell and Ioannou, 1993, and the
initial condition, transient growth problem, e.g., Butler and Farrell, 1992.

McKeon and Sharma (2010) and Hwang and Cossu (2010) considered the resolvent
reformulated with respect to the turbulent mean flow for canonical turbulent wall
flows. The latter authors employed an eddy viscosity to account for the action of
the Reynolds stresses, while the former analysis extends the approach to include
the nonlinear terms as the input forcing to the linear operator, i.e. closing the feed-
back loop. McKeon and Sharma (2010) performed a singular value decomposition
of the resolvent to identify the inputs giving rise to the most amplified responses
which are ranked by their gain (singular value). The approach has been extended
to non-parallel flows, e.g., Lu and Papadakis (2014), Beneddine et al. (2016), Jeun
et al. (2016), and Schmidt et al. (2017b). Beneddine et al. (2016) concluded that
mean stability analysis was valid when the dominant singular value of the resolvent
operator was significantly greater than the others at a given frequency and that this
condition holds for flows where there is a dominant convective instability mecha-
nism and an eigenvalue which is nearly marginally stable. In such circumstances, it
was shown that the eigenmodes are proportional to the resolvent response modes.
Stability and resolvent analyses are formally related in Chapter 3 by a dyad expan-
sion of the resolvent operator.
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1.3.3 Non-normality
Subsequent to the work of Jovanović and Bamieh (2005), Marquet et al. (2009) and
Brandt et al. (2011) investigated the distribution of energy and phase between the
velocity components of the most amplified input/output in analyses about laminar,
base flows in recirculation bubbles and the flat plate boundary layer, respectively.
These studies distinguished between component-type non-normalities, which dis-
tribute energy in different velocity components, and convective non-normalities,
which separate the spatial support of forcing upstream of the response. The roots
of these non-normalities are the mean shear and mean flow advection terms, re-
spectively, in the linearized NSE. These terms also result in the Orr mechanism
(Orr, 1907), which reorients upstream-leaning forcing modes with the mean shear
such that the response modes are leaning downstream (Farrell, 1987). Chomaz
(2005) quantified non-normality via the inner product between the most amplified
input and output. A response dominated by non-normality results in a smaller inner
product and this has an impact on the amplification mechanisms identified by the
resolvent.

1.3.4 Instabilities and Pseudoresonance
The response of a system to harmonic input (forcing) can be classified as resonant
or pseudoresonant. The latter occurs due to nonmodal effects associated with the
sensitivity of the spectrum to perturbation (Trefethen et al., 1993). The former is
generally an instability mechanism and corresponds to excitation in the vicinity of
an eigenvalue. Instability mechanisms can be further classified as convective or ab-
solute depending on the nature of the base or mean flow. A convective instability is
one where perturbations grow downstream as they are swept away by the flow while
an absolute instability is one where perturbations grow upstream and downstream
of where they originated (Huerre and Monkewitz, 1985; Schmid and Henningson,
2001). The presence of reverse flow tends to result in a region of absolute instabil-
ity (Rowley et al., 2002; Suponitsky et al., 2005; Juniper, 2012). The nature of the
instability, thus, has a bearing on the strength of the component-type non-normality
mentioned earlier and this is explored in Chapter 3.

1.3.5 Data-Driven Methods
Resolvent analysis also has relationships with data-driven methods such as Dy-
namic Mode Decomposition (DMD). Introduced by Schmid (2010), DMD extracts
modes which are distinguished by their frequency content. Gómez et al. (2014)
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demonstrated the similarity between resolvent modes and DMD modes correspond-
ing to the same temporal frequency in turbulent pipe flow. DMD is also related to
the Koopman operator (Rowley et al., 2009), or an infinite-dimensional linear op-
erator associated with the full nonlinear system. This is significant since Sharma
et al. (2016a) later noted that both DMD and resolvent modes may approximate the
‘true’ Koopman modes of the system.

Other connections between resolvent analysis and data-driven methods, in particu-
lar spectral proper orthogonal decomposition (SPOD), have been expounded upon
by Towne et al. (2018). Originally introduced by Lumley (1970), SPOD results in
modes which are orthogonal in space and time. They can be interpreted, therefore,
as optimally averaged DMD modes which are obtained from an ensemble DMD
problem. Connections were also drawn between SPOD and resolvent analysis.
When the input forcing to the resolvent operator can be approximated as white-
noise, resolvent modes are identical to SPOD modes. It has been noted by, e.g.,
Zare et al. (2017) that white-in-time stochastic forcing is insufficient to explain tur-
bulent flow statistics and, in instances where the forcing is correlated, differences
arise between the SPOD and resolvent modes. Schmidt et al. (2017b) demonstrated
this phenomenon for low temporal frequency modes in a turbulent jet.

While SPOD is not considered here, its connection to DMD and resolvent analysis
is useful as it suggests there are cases when the modes predicted by resolvent anal-
ysis will not match DMD modes computed directly from the data. The conditions
under which these circumstances are likely to arise will be addressed. Since this has
an impact on flow reconstruction as noted by Towne et al. (2018), the nature of the
nonlinear forcing needs examination to correctly identify the structures in the flow
when the forcing cannot be treated as white-noise (McKeon et al., 2013; McKeon,
2017).

1.4 Data-Assimilation
It has been noted in several studies (Nisugi et al., 2004; Suzuki et al., 2009a; Suzuki
et al., 2009b; Suzuki, 2012; Foures et al., 2014) that despite recent advances in
computational fluid dynamics (CFD) and experiments, both techniques have several
disadvantages. Despite capturing the "true" physics of the flow, for example, exper-
iments are corrupted by noise, limited by field of view, and have insufficient reso-
lution to capture small scales. CFD, on the other hand, requires modeling assump-
tions about boundary conditions and sub-grid scale models unless there is sufficient
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computational power to resolve all scales in turbulence. Data-assimilation (Lewis
et al., 2006) is a technique whereby experimental measurements can be merged
with computational fluid dynamics (CFD) to improve prediction of real-world flows
(Hayase, 2015). The underlying principle is to complement CFD, which lack full
fidelity, with experimental measurements, which typically lack full-field informa-
tion, so that the simulation reflects the dynamics observed in the laboratory. The
assimilated or hybrid flow is able to recover quantities in the experiment which
would otherwise be inaccessible or difficult to measure such as pressure, vorticity,
and Reynolds stresses, by reducing noise and improving resolution. It is also possi-
ble to extrapolate the flow beyond the experimental view by solving the equations
on a larger domain.

Data-assimilation can be traced back to meteorology (Le Dimet and Talagrand,
1986) and is of particular interest to the experimental fluid mechanics community
since it may be used to complete experimental observations by enforcing dynam-
ical constraints (Heitz et al., 2010). One of the first hybrid simulations conducted
by Nisugi et al. (2004) used offline, sequential assimilation for flow behind a square
cylinder. By measuring the discrepancy between experimental and numerical pres-
sure measurements at finite time intervals to drive the momentum equations, the
simulation was altered to match the experiment. Sequential assimilation was greatly
expanded by Suzuki et al. (2009a) and Suzuki et al. (2009b) when particle-tracking
velocimetry (PTV) data of an airfoil at high angle of attack was fed into a two-
dimensional direct numerical simulation (DNS). The resulting hybrid flows con-
tained less noise and recovered the unsteady pressure fields. They also offered
insight into the statistics of the mean flow and the three-dimensional instabilities
which attenuate vorticity strength.

1.4.1 Variational Methods
Data-assimilation has also been extended to the NSE using a variational approach
(Papadakis and Mémin, 2008; Gronskis et al., 2013; Foures et al., 2014) where,
similar to optimal control, the objective is to minimize a cost function. This gener-
ally involves penalizing the distance between experimental and numerical velocity
fields subject to governing equations. Ensemble Kalman filter or ensemble-based
variational approaches (Colburn et al., 2011; Suzuki, 2012; Kato et al., 2015; Silva
and Colonius, 2017) rely on the Kalman filter and its ensemble variant (Kalman,
1960; Evensen, 1994), which are appropriate when the data-assimilation problem
is viewed from a stochastic perspective. The roots of variational data-assimilation
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can be traced back to optimal control theory, which has been applied to various
flow control problems (see Kim and Bewley, 2007, for an overview). Bewley et
al. (2001) studied the control side of the problem by investigating various con-
trol strategies applied to turbulent channel flow simulated using a DNS. Data-
assimilation, on the other hand, functions more closely to an estimator which reads
in inputs from various sensors and fits them to an underlying model. The idea is to
read in a sparse number of measurements and use the model to produce an estimated
state which is more highly resolved in space and time.

Foures et al. (2014) used a variational method to minimize the discrepancy between
the mean velocity fields of a DNS and an incompressible RANS simulation for flow
around a circular cylinder at a Reynolds number of Re = 150. An improved estima-
tion technique for mean flows has potential applications in mean flow modification
studies. A large body of work has attempted to investigate this problem which has
its roots in the experiments of Strykowski and Sreenivasan (1990), who showed ex-
perimentally that for low Reynolds numbers, a small control cylinder inserted in the
wake behind a larger cylinder can completely suppress vortex shedding. Numerical
studies including Giannetti and Luchini (2007) and Marquet et al. (2008) looked
at the sensitivity of the cylinder instability to base flow modification and steady
forcing near critical Reynolds number Recrit . Meliga et al. (2012) and Mettot et al.
(2014) expanded this framework to higher Reynolds numbers and determined how
a small control cylinder could impact the frequency of vortex shedding as predicted
by the most unstable global mode of the mean flow. Data-assimilation could ex-
pand control techniques to wall actuators such as an oscillating ribbon or synthetic
jet which are difficult to model computationally due to ambiguous boundary con-
ditions at the wall. It is possible, for example, to determine the mean flow from an
experiment and recover a more highly resolved mean flow by tuning the boundary
condition at the wall so that the simulated mean flow matches the experimental one.

A study conducted by Gronskis et al. (2013) illustrates this point quite well. They
employed adjoint data-assimilation to generate initial and inflow conditions for a
DNS of flow around a cylinder at a Reynolds number of Re = 172. The result-
ing simulation reflected the flow physics from large scale PIV measurements but
contained far lower noise levels. Data-assimilation has also been demonstrated
by Mons et al. (2016) to be applicable for perturbed fluid problems. They com-
pared variational, ensemble Kalman filter-based, and ensemble-based variational
data-assimilation techniques to reconstruct the flow around a cylinder subject to co-
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herent gusts. They found that the variational data-assimilation approach produced
the best results since the adjoint method can effectively capture the first-order sensi-
tivity of the cost functional which penalizes the distance between experimental and
numerical velocity fields.

1.4.2 Incorporating Pressure and Extension to Experiments
In this thesis, the algorithm of Foures et al. (2014) is modified to include mean pres-
sure measurements since, without pressure data, only the solenoidal component of
the forcing to the mean momentum equations can be recovered. The irrotational
component is lumped into the mean pressure gradient term, which prevents recov-
ery of the mean pressure field. It is possible to solve a Poisson equation for mean
pressure using the RANS equations, e.g., Oudheusden (2013), but this relies on
computing two gradients of the Reynolds stresses which suffer from noise contam-
ination. One can ask whether limited mean pressure measurements can account
for this problem and where in the flow do they have the greatest impact. Recent
studies, e.g., Kang and Xu (2012), Mons et al. (2017), and Manohar et al. (2017),
have investigated optimal placement of sensors for flow reconstruction and this is
addressed in the thesis. The framework of Foures et al. (2014) is also adapted
to mean flows obtained from experimental data at significantly higher Reynolds
numbers. The mean profiles are obtained from time-averaged particle image ve-
locimetry (PIV) data from a free-surface water tunnel. The necessary experimental
parameters such as field of view or vector resolution for successful mean flow re-
construction are addressed.

1.5 Flow Reconstruction
A growing number of studies have investigated flow reconstruction using resolvent
modes as a basis. Analysis of the linear operator via the singular value decompo-
sition only does not yield the complex weights, or expansion coefficients, of the
modes. This has to be calculated by projecting the resolvent forcing modes onto the
nonlinear forcing. One approach adopted by Moarref et al. (2014) was to formulate
a convex optimization problem which optimally reproduced the energy spectra of
a turbulent channel flow. The study led to close agreement with the DNS spectra
using only 12 modes per wall-parallel wavenumber pair and temporal frequency
although the method tended to overpredict the streamwise energy and underpredict
the wall-normal energy. Jeun et al. (2016) studied the input-output behavior of high-
speed isothermal turbulent jets to improve the understanding of aeroacoustics. They
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solved for the expansion coefficients by projecting the Fourier-transformed nonlin-
ear term onto the resolvent forcing modes. With 24 modes, a substantial amount of
the acoustic energy predicted by a large-eddy simulation (LES) could be recovered.

Resolvent modes have also been used to find a low-dimensional representation of
exact coherent states of the NSE by Sharma et al. (2016b) and Rosenberg and McK-
eon (2018). In the latter study, the wall-normal velocity and vorticity fields could be
decomposed into their Orr-Sommerfeld (OS) and Squire (SQ) contributions. This
reduced the number of singular modes per wavenumber pair needed to represent
the velocity fields. A Helmholtz decomposition of the nonlinear term, furthermore,
highlighted the role of the solenoidal forcing which could be isolated to determine
its contribution to the OS and SQ modes. It was then possible to obtain an efficient
representation of the wall-normal velocity which was not possible using previous
techniques.

A different approach outlined in Towne et al. (2015) and Towne (2016) is to educe
the nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet us-
ing empirical resolvent-mode decomposition. The objective was to identify and
characterize the missing dynamics which were responsible for the failure of linear
wavepacket models to predict acoustic radiation.

Other methods have bypassed consideration of the nonlinear term by taking ad-
vantage of a flow’s low-rank behavior. In such circumstances, the resolvent modes
provide an efficient basis for the fluctuations in the flow. Gómez et al. (2016a) and
Beneddine et al. (2016), for example, used resolvent analysis of a lid-driven cav-
ity and backward facing step, respectively, to determine the shapes of the velocity
fluctuations at various temporal frequencies. Since the dominant singular value of
the resolvent operator was sufficiently greater than all the others, the first resolvent
mode could account for most of the fluctuation energy. It should be emphasized
that this method works if the basis is good and the resolvent operator is low-rank.
There are several examples in this thesis where this is not the case.

A single pointwise unsteady measurement was necessary to calibrate the complex
amplitudes of the resolvent modes. This concept has also been applied by Gómez et
al. (2016b) to estimate forces on a square cylinder, Beneddine et al., 2017 to exper-
imental data of a jet, and Thomareis (2017) to DNS data of airfoils. Each of these
studies noted that the robustness of the reconstruction depended on the location of
the unsteady measurement. They concluded that the unsteady measurement should
be within energetic regions of the flow. The quality of the reconstruction could be
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improved by using multiple measurements.

1.6 Approach and Outline of Thesis
Figure 1.5 is a schematic which outlines the thesis and the procedure for recon-
structing statistically stationary flows with as few measurements as possible. The
first step is to collect experimental data consisting of a rudimentary, in terms of
spatial resolution and field of view, mean profile and a single probe point which
contains time-resolved information. Chapter 2 describes the experimental methods
used to obtain the data and provides the mathematical background for the various
modal decomposition techniques used as well as the data-assimilation framework.
Chapter 3 is an original perspective on stability and resolvent analyses for base
and mean flows with an emphasis on the latter. The analyses are formally related
through a dyad expansion and the real part of an eigenvalue, which is difficult to
interpret when the NSE are linearized around the mean flow, is shown to be im-
portant as it influences the degree to which a disturbance is amplified. It also has
a bearing on whether or not the resolvent operator is low-rank since an eigenvalue
must be sufficiently separated from the rest of the spectrum in order to dominate
over the contribution of other eigenvalues in the dyad expansion. Non-normality
plays a role in amplification and is investigated through the lens of the pseudospec-
trum (e.g. Trefethen et al., 1993; Reddy et al., 1993; Trefethen et al., 1999; Schmid
and Henningson, 2001; Schmid, 2007; Schmid and Brandt, 2014) of the LNS oper-
ator.

When an eigenvalue is marginally stable, or very close to the imaginary axis, it
drowns out the effect of other eigenvalues over a large range of temporal frequen-
cies. It is shown in Chapter 4 that the most amplified structure for a cylinder at
a Reynolds number of Re = 100 over this range of frequencies is a stretched or
compressed version of the shedding mode. The dominance of this mode leaves
a significant footprint on the mean profile whose geometry scales with the shed-
ding frequency for Reynolds numbers 60 < Re < 320. Similar to Dergham et al.
(2013) for a backward facing step, various branches of singular values are identified
for the cylinder including one for the shedding mode and another for free-stream
modes which are less amplified near the shedding frequency. At temporal harmon-
ics, however, the resolvent predicts a structure which is completely different from
its DMD counterpart, suggesting that the structure of the nonlinear forcing has a
significant influence on the structure amplified by the resolvent.
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Resolvent analysis requires explicit knowledge of the mean profile yet it can be
tricky to obtain from experiments, particularly for flows around bodies where it
is difficult to obtain measurements near the surface. In Chapter 5, flow around a
circular cylinder at a Reynolds number of Re = 100 is chosen to investigate mea-
surements for data-assimilation. The results of Mantič-Lugo et al. (2014) are the
motivation for choosing a Reynolds number lower than Foures et al., 2014, where
Re = 150, since it is possible to obtain a self-consistent model that predicts the am-
plitude of the most unstable eigenmode in the flow. There are connections between
this approach and the effect of data-assimilation which are drawn out in Chapter
5, in which the main objective is to identify the domain where measurements are
needed for successful data-assimilation of the mean flow. The quality of the recon-
struction is assessed by comparing the mean forcings identified by the optimiza-
tion to their counterparts from DNS. Resolvent analysis assists by identifying the
energetic structures which interact to produce the necessary Reynolds stresses to
sustain the mean profile. Additionally, it identifies information about the scaling
of the mean profile and how the dominant amplification mechanisms are sustained
by nonlinear interactions, both of which guide how to choose and weight measure-
ments.

In Chapter 6, the data-assimilation algorithm is adapted for experimental data at
higher Reynolds numbers. The complexity of flows is gradually increased from
symmetric flows, i.e., airfoils at zero angle of attack, to airfoils at angles of attack
where the flow is stalled. The minimum resolution of data is assessed for an ide-
alized airfoil. Once this information is known, the objective is to reconstruct the
flows around a NACA 0018 airfoil in Chapter 7. The parameters related to the PIV
data such as resolution, domain, etc. are selected based on the results from Chap-
ters 5 and 6. Chapters 3 and 4, where the fundamentals of resolvent analysis are
discussed, guide the choice of temporal frequencies where the resolvent operator
identifies the correct coherent structures in the flow. Nonlinear interactions of am-
plified modes may need to be considered at other temporal frequencies. Finally, the
probe is used to calibrate the resolvent modes and reconstruct all fluctuating quan-
tities as well as the mean pressure in Chapter 7. The thesis concludes in Chapter 8
and some avenues for future work are proposed.
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Figure 1.5: Schematic of flow reconstruction approach. The left-hand side indicates
the chapters where the steps are discussed.
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C h a p t e r 2

METHODS

This chapter describes the numerical and experimental methods used to study the
flows of interest. The two- and three-dimensional flows around a circular cylinder
are solved using direct numerical simulation (DNS). The flows around an idealized
airfoil and a NACA 0018 airfoil are acquired experimentally using particle image
velocimetry (PIV). The mean profiles for turbulent channel flow are obtained from
an eddy viscosity model. The modal decomposition techniques which are applied
to these flows include dynamic mode decomposition (DMD), stability analysis, and
resolvent analysis. Finally, the data-assimilation technique, which recovers a more
highly resolved mean profile from incomplete measurements, is described.

2.1 Governing Equations
The flows are governed by the incompressible Navier-Stokes Equations (NSE) which
are non-dimensionalized by the characteristic length and velocity scales, L and U:

∂tu + u · ∇u = −∇p + Re−1∇2u (2.1a)

∇ · u = 0. (2.1b)

The states u(x, t) and p(x, t) are the spatially- and temporally-varying velocity and
pressure fields, respectively (explicit statement of the spatial and temporal depen-
dences will be dropped hereon for conciseness), while Re is the Reynolds number
based on L and U . Steady-state solutions to the NSE are referred to as base flows

and satisfy

U0 · ∇U0 = −∇P0 + Re−1∇2U0 (2.2a)

∇ · U0 = 0, (2.2b)

where the states U0 and P0 are the base flow velocity and pressure, respectively.

2.2 Numerical Methods for Cylinder Flow
2.2.1 2D Cylinder
The NSE (Equation 2.1) are non-dimensionalized by the cylinder diameter D and
inlet velocity U∞. For the base flow calculation, a uniform inlet velocity condi-
tion is prescribed while no-slip Dirichlet boundary conditions are applied to the
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cylinder surface, symmetric conditions to the upper and lower boundaries, and ad-
vective conditions to the outlet. The nonlinear equations for U0 are solved us-
ing a Newton method on a finite-element mesh generated by FreeFem++ (see
Hecht, 2012). Taylor-Hood finite elements (P1b, P1b, P1 for U0, V0, and P0 re-
spectively) are used for spatial discretizations. The computational domain Ω spans
−30 ≤ x/D ≤ 60,−25 ≤ y/D ≤ 25 with the cylinder centered at the origin and the
mesh is made up of 104,214 triangles resulting in 365,358 degrees of freedom for
velocity and pressure.

The unsteady flow is obtained with a DNS for 47 < Re < 190 using the same
boundary conditions and mesh. A second-order semi-implicit time discretization is
employed with a non-dimensional time step ∆t = 0.02. Beyond Recrit , the simu-
lated flow settles into regular vortex shedding at a fixed amplitude As and temporal
frequencyωs where the subscript s denotes shedding. The mean flow u is computed
by time-averaging the DNS state vector over 25 complete shedding cycles.

2.2.2 3D Cylinder
Three-dimensional simulations are performed using the spectral element-Fourier
solver of Blackburn and Sherwin (2004) for 190 ≤ Re ≤ 320. The code uses
a spectral-element method for the spatial differencing in the cylinder plane and a
Fourier decomposition for the spatial differencing in the spanwise direction. The
domain has a blockage ratio of 4% with the upstream and side boundaries located
12D from the center of the cylinder and the outflow positioned 25D downstream
of the cylinder. The spanwise extent is 12D and 48 Fourier planes are used. The
mesh consists of 196 spectral elements and seventh-order Lagrangian interpolating
polynomials. The flow is averaged in the spanwise direction once the flow has
reached an asymptotic state. It is then averaged in time over about 60 shedding
cycles since the flow is quasi-periodic.

2.2.3 Results and Validation
The DNS results are validated with respect to the literature. The shedding frequency
ωs, which is determined from the peak of the power spectrum, has been plotted in
Figure 2.1 alongside experimental results from Williamson (1992). The agreement
in the two-dimensional regime (Re < 190) is excellent although there are minor
discrepancies in the three-dimensional regime. The simulations successfully distin-
guish between the two modes which characterize the three-dimensional transition
of the flow (Williamson, 1988). Mode A results in a discontinuous drop of the shed-
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Figure 2.1: Shedding frequency ωs as a function of Reynolds number Re: red
crosses denote the frequency obtained from a Fourier-transform of the 2D/3D DNS
at a point in the wake and black circles are from Williamson (1992).

ding frequency for 190 ≤ Re < 230 before it reverts back to larger values when
Mode B takes over for Re ≥ 240.

The mean profile and second-order statistics for Re = 150 are presented in Fig-
ure 2.2 to be compared against the results from Foures et al., 2014. Figure 2.2(a)
shows contours of the mean streamwise velocity u including the u = 0 contour in
green. The length of the recirculation zone agrees with Leontini et al. (2010). The
mean pressure p is plotted in Figure 2.2(b) and agrees with the mean pressure in
Foures et al. (2014). The x- and y- components of the mean forcing f are plotted in
Figures 2.2(c) and (d), respectively, where f corresponds to the divergence of the
Reynolds stress tensor R, defined as

f = −∇ · R, with Ri j = u′iu
′
j . (2.3)

u′ and v′ denote the streamwise and transverse fluctuating velocity components,
respectively. Both f x and f y match with their counterparts in Foures et al. (2014).

2.2.4 Mesh Size and Resolution
The effects of mesh size and resolution are assessed to guarantee that they do not
influence the simulation results. The two-dimensional simulations are carried out
on a smaller mesh of size −10 < x < 25 ∪ −7 < y < 7. The shedding frequency
and length of the recirculation bubble agree to within 3% of the values obtained
from the larger mesh. The resolution of the larger mesh is augmented by a factor
of 1.5 by increasing the vertex density along each boundary in the domain. The
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(a) (b)

(c) (d)

Figure 2.2: The time-averaged 2D DNS results for Re = 150: mean streamwise
velocity component u in (a) and mean pressure p in (b). The two components of the
mean forcing are plotted in the second row: f x in (c) and f y in (d).

impact on the shedding frequency and length of the recirculation bubble is negli-
gible. The resolution effects of the three-dimensional simulations are examined by
doubling the number of Fourier planes used in the spanwise direction, elongating
the domain in the spanwise direction, and increasing the order of Lagrangian inter-
polating polynomials. The impact on the measured statistics for all three changes
is found to be minor as long as the spanwise domain length is at least 8D and the
number of Fourier planes is at least 32.

2.3 Experimental Methods
2.3.1 Idealized Airfoil
Experiments are performed on an idealized airfoil (see Figure 2.3) with a chord-
length of 15.86 cm, a width of 3.43 cm, and a spanwise extent of 50.8 cm. The
airfoil is symmetric about the chord and consists of a cylindrical leading edge fol-
lowed by two plane surfaces connected at the trailing edge, which has a thickness of
0.15 cm. The diameter of the cylinder is equal to the width of the airfoil so that the
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Figure 2.3: Schematic of the idealized airfoil adapted from Gonzalez et al. (2010).

junction between the cylinder and planar surfaces is half a diameter aft of the lead-
ing edge. At a zero angle of attack and a chord-based Reynolds number greater than
approximately Rechord = 10,000, the flow separates at the transition point between
the cylinder and the plane surfaces and the time-averaged flow reveals recirculation
bubbles that form on both sides of the airfoil (Wallace and McKeon, 2012). The
critical Reynolds number, which coincides with the onset of von-Karman vortex
shedding, is measured experimentally to be approximately Recrit = 2000. Further-
more, the shear layers which form around the separation bubbles are convectively
unstable, giving rise to the formation of Kelvin-Helmholtz vortices. These two in-
stabilities ensure dynamics which are reminiscent of the behavior of separated flows
at far higher Reynolds numbers (Prasad and Williamson, 1997). Consequently, this
configuration is an attractive choice for studying the capability of data-assimilation
to capture the flow dynamics around aerodynamic geometries.

Experiments are conducted in a free-surface water facility (see Wallace and McK-
eon, 2012). The test section measures 1.6m in length, 0.46 m in width, and 0.5
m in height. The airfoil is mounted vertically so that its span is parallel to the
test section height. The flow is conditioned by a perforated plate, a honey-comb
mesh, three turbulence-reducing screens, and a 4-to-1 fifth-order-polynomial con-
traction (Gharib, 1983). The free-stream velocity is 8.1 cm/s and the free-stream
turbulence intensity is less than 0.1% at the centerline. The water temperature is
23◦C, which results in a chord-based Reynolds number of Rechord = 13,500.

A LaVision time-resolved 2D-PIV setup is used consisting of two Photron Fast-
cam APX-RS high-speed cameras with 50 mm focal length Nikon lenses and 1:1.2
aperture. The cameras are synchronized with a high-speed controller and sample
the flow at a frame rate of 83 Hz. The camera resolution is 1024 × 1024 pixels and
the cameras are calibrated at 5.25 px/mm. The snapshot frequency is selected to
guarantee a particle displacement between 5 and 7 pixels between any two consec-
utive snapshots. The seeding particles are hollow glass spheres (reference 110P8
with an average diameter of 11.7 µm and a specific gravity of 1.1) and the seeding
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density is about 0.1 particles per square pixel. The particles are illuminated by a
2 mm-thick laser sheet provided by a Photonics DM20-527 solid-state laser. In an
effort to avoid large uncertainty near the illuminated profile due to surface reflec-
tion, the image intensity is calibrated using white-image subtraction (normalization
of the image intensity using the average light distribution) and background-image
subtraction. The white and background images are taken before each run and av-
eraged over 100 snapshots. The camera view, shown in Figure 2.4, encompasses
the flow from 6.5 cm upstream of the leading edge to 10.5 cm downstream of the
trailing edge with a 15% overlap in order to include a large area of mean flow and
fluctuation measurements. Finally, 10240 instantaneous flow fields are captured
over 5 runs (2048 snapshots per run), which represents approximately 35 complete
vortex shedding cycles.

Figure 2.4: Experimental setup of the flow around an idealized airfoil showing the
spatial coverage of the flow by the cameras. The dimensions are normalized by the
diameter of the cylinder. Reprinted by permission from Springer Nature: Springer,
Experiments in Fluids, Symon et al. (2017), Copyright 2017.

2.3.2 NACA 0018 Airfoil
PIV data are also collected for a NACA 0018 airfoil with a chord length of 10 cm
and a spanwise extent of 48 cm resulting in an aspect ratio AR = 4.8. Gerakopulos
et al. (2010) studied this flow at Reynolds numbers between 8×104 ≤ Re ≤ 2×105

and determined that the stall angle αs is between 10◦ and 14◦, increasing with
Reynolds number. On the suction side, there is a laminar separation bubble which
decreases in size with Reynolds number. Flow separation may result in 3D stall
cells and significant out-of-plane velocity. Weihs and Katz (1983) found that the
number of stall cells is ns = AR/2.28, which would indicate approximately two
stall cells appearing for this experimental setup. The airfoil is mounted vertically
in the tunnel at nine different angles of attack ranging from α = −10◦ to α = 10◦

in 2.5◦ increments. The results for α = 0,±10◦ only are reported in this thesis.
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In addition, the airfoil is connected to an ATI Mini 40 IP68 force transducer at
its quarter-chord point to measure the forces and torques on the airfoil over time.
The force data were collected over 100 seconds at a sampling frequency of 5000
Hz. These data are not reported in this thesis but will be used in the future to
assess whether the pressure fields from the reconstruction procedure yield accurate
predictions of the forces on the airfoil.

The PIV setup is slightly different from the idealized airfoil case as it consists of
two Phantom Miro 320 cameras with 50 mm focal length Nikon lenses and 1:1.8
aperture. They have an overlap of 18% in the streamwise direction only. The cam-
eras sample the flow at a frequency of 125 Hz for Rechord = 10,250 and 250 Hz
for Rechord = 20,700. Each run consists of 3,500 snapshots; two runs (7,000 snap-
shots) are collected for the lower Reynolds number case while three runs (10,500
snapshots) are collected for the higher Reynolds number case. The camera resolu-
tion is 1920 × 1200 pixels and they are calibrated at 8.2 px/mm. The laser sheet is
provided by a YLF dual cavity solid-state laser and is centered at a height of 220
mm which is in between the two stall cells. The out-of-plane velocity component is
less than 4% of the free-stream velocity as documented by Dunne (2016).

2.3.3 Vector Post-Processing
The computation of velocity vectors is performed using the software package DaVis
provided by LaVision. A standard cross-correlation technique via Fast Fourier
Transformation (see Adrian, 1991) is applied to each sequential image with a window-
size reduced from 32× 32 px2 to 16× 16 px2 over three passes, a 50% overlap, and
a 2:1 elliptic weight (see Kompenhans et al., 2007). Finally, the data are post-
processed and single missing vectors are interpolated using an average of all the
non-zero neighborhood vectors. A median filter, as described by Westerweel and
Scarano (2005), is used for outlier detection. The snapshots are then averaged to
obtain the mean velocity field and Reynolds stresses.

2.4 Modal Analysis Methods
Three modal decomposition techniques are applied (see Taira et al., 2017, for more
details) to the numerical and experimental datasets. The first is stability analysis,
which assumes small perturbations to the linearized NSE. An eigenanalysis of the
linear Navier-Stokes (LNS) operator yields the spatial modes which are most prone
to instability. The second is resolvent analysis which analyzes the LNS operator
from an input-output perspective. The third is DMD (Schmid, 2010; Schmid, 2011;
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Rowley et al., 2009), a method proposed by Schmid (2010) to extract spatial modes,
each of which has a complex eigenvalue, that are orthogonal in time. The real part
of the eigenvalue describes the rate at which the mode grows or decays while the
imaginary part is the frequency at which it oscillates.

The development considers global and spatially periodic modes in the context of
flows around bodies and turbulent channel flow, respectively. The mean profile is
used as an input to resolvent analysis and it can be obtained experimentally from
PIV. To compute global modes, however, requires a large domain to adapt to the
upstream and downstream boundary conditions. The resolution of PIV near the
surface of the body, furthermore, may not be sufficient to accurately capture the
resolvent modes. For now, it is assumed that the temporally-averaged (mean) ve-
locity profiles are known throughout the domain from numerical simulation or ex-
periment. In the turbulent channel flow case, the mean profiles are obtained via an
eddy viscosity model (e.g. Reynolds and Tiederman, 1967). The following deriva-
tions concern the general case in which there exists invariance only in time. In other
words, the analysis is performed in the frequency domain, such that mode shapes
may be functions of all three spatial dimensions.

2.4.1 Stability Analysis
In temporal stability analysis, the velocity field is decomposed into a base flow plus
a perturbation

u = U0 + εu′, (2.4)

where ε � 1. At O(ε0), this simply reduces to Equation 2.2, which governs the
base flow. At O(ε1), the equations governing the perturbation are obtained:

∂tu
′ + U0 · ∇u

′ + u′ · ∇U0 + ∇p′ − Re−1∇2u′ = 0 (2.5a)

∇ · u′ = 0. (2.5b)

Nonlinear terms are neglected since they are O(ε2). Assuming perturbations of the
form u′ = ũeλt yields

λ ũ = −U0 · ∇ũ − ũ · ∇U0 − ∇p̃ + Re−1∇2 ũ (2.6a)

∇ · ũ = 0, (2.6b)

where a tilde will be used to denote stability analysis. The real part of the eigen-
value λ is the growth/decay rate while the imaginary part is the temporal frequency.
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Equation 2.6 is recast into operator form to obtain

λB *
,

ũ

p̃
+
-

= A *
,

ũ

p̃
+
-
, (2.7)

where A is the LNS operator with respect to the base flow,

A = *
,

−U0 · ∇() − () · ∇U0 + Re−1∇2() −∇()
∇ · () 0

+
-
, (2.8)

and

B = *
,

1 0
0 0

+
-
. (2.9)

Equation 2.6 is the base flow stability analysis case in Table 2.1. The flow is linearly
stable when the real part of all eigenvalues of operator A are negative and unstable
if the real part of at least one eigenvalue is positive. If the real part of the least stable
eigenvalue is zero, the flow is said to be marginally stable.

The adjoint NSE have been derived by, e.g., Luchini and Bottaro (2014), and the
linearized operator A∗ for the adjoint variables ũ† and p̃† is

A∗ = *
,

U0 · ∇() − () · (∇U0)∗ + Re−1∇2() ∇()
∇ · () 0

+
-
. (2.10)

The operator A∗ satisfies 〈
ũ,Aũ†

〉
=

〈
A∗ ũ, ũ†

〉
, (2.11)

where 〈,〉 is the scalar product associated with the energy in the whole domain.
Throughout the thesis, the continuous adjoint formulation is used, signifying that
the adjoint operator A∗ is obtained before discretizing the equations, e.g., Chandler
et al. (2012). An alternative approach is to use the discrete adjoint formulation,
where the adjoint is determined after discretizing the equations. The benefit of the
latter approach is the guarantee that the eigenvalues of both the forward and adjoint
operator are equal. This is not the case for the continuous adjoint formulation al-
though the eigenvalues gradually converge as the mesh density is increased. The
downside, as discussed by Chandler et al. (2012), is that the global modes may
contain numerical artifacts. It is also more difficult to derive the discrete adjoint
equations. The discrepancy between the forward and adjoint eigenvalues is small
(on the order of 0.01%) for the flows studied in this thesis.

For a general operator, T , that is normal, i.e. T T ∗ = T ∗T , the eigenvectors of T
corresponding to distinct eigenvalues are orthogonal although the eigenvalues may
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be complex. Self-adjoint operators (T = T ∗), on the other hand, have orthogonal
eigenvectors and real eigenvalues. In general, the LNS operator A is neither self-
adjoint nor normal which accounts for the differences between Equations 2.8 and
Equations 2.10 and their influence is discussed in Chapter 3.

The NSE can also be linearized about the mean flow by Reynolds-decomposing the
velocity field into a temporal mean (denoted by an overline) and a fluctuating com-
ponent (denoted by a prime). The mean flow obeys the following set of equations:

u · ∇u + ∇p − Re−1∇2u = −u′ · ∇u′ (2.12a)

∇ · u = 0. (2.12b)

Subtracting the mean momentum equations (Equation 2.12) from the NSE (Equa-
tion 2.1) results in the equations governing the fluctuations:

∂tu
′ + u · ∇u′ + u′ · ∇u + ∇p′ − Re−1∇2u′ = −u′ · ∇u′ + u′ · ∇u′ = f ′ (2.13a)

∇ · u′ = 0. (2.13b)

Equation 2.13a has been written such that all linear terms appear on the left-hand
side. They can be recast as the linear operator

L = *
,

−u · ∇() − () · ∇u + Re−1∇2() −∇()
∇ · () 0

+
-
, (2.14)

which is the LNS operator about the mean flow. Mean stability analysis corresponds
to an eigenanalysis of the LNS operator linearized about the mean, i.e.,

λB *
,

ũ

p̃
+
-

= L *
,

ũ

p̃
+
-
. (2.15)

The interpretation of this analysis, which is summarized in Table 2.1, is not straight-
forward since the mean is not a solution of the NSE; its significance will be dis-
cussed in Chapter 3. Similar to the base flow case, it is possible to derive the adjoint
LNS operator

L∗ = *
,

u · ∇() − () · (∇u)∗ + Re−1∇2() ∇()
∇ · () 0

+
-
, (2.16)

which satisfies the inner product〈
ũ,Lũ†

〉
=

〈
L∗ ũ, ũ†

〉
. (2.17)
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Like its base flow counterpart, L is generally non-normal, the implications of which
are discussed in Chapter 3.

The linear operators for stability analysis are formed in FreeFem++. Homogeneous
boundary conditions are enforced at the inlet so that the perturbations vanish at in-
finity. The other boundary conditions for the domain are identical to those applied
in the base flow calculation. The eigenvalues are computed using a shift-and-invert
strategy, the details of which are discussed in Nayar and Ortega (1993). The gen-
eralized eigenvalue problem is then solved with the Implicitly Restarted Arnoldi
method using the ARPACK library developed by Lehoucq and Sorensen (1996).

Base Flow Mean Flow

Stability Analysis λB

(
ũ
p̃

)
= A

(
ũ
p̃

)
λB

(
ũ
p̃

)
= L

(
ũ
p̃

)

Resolvent Analysis iωB
(
û
p̂

)
= A

(
û
p̂

)
+ C f̂ iωB

(
û
p̂

)
= L

(
û
p̂

)
+ C f̂

Table 2.1: Operator form of the equations for stability and resolvent analyses. Vari-
ables with a tilde correspond to stability analysis while a caret indicates resolvent
analysis.

2.4.2 Resolvent Analysis
Unlike stability analysis, the role of nonlinearity is retained in resolvent analysis by
treating it as a forcing to the linear dynamics of the NSE. The nonlinear terms on
the right-hand side of Equation 2.13a are lumped together as a forcing f ′ without
loss of generality. Endogenous nonlinear terms or exogenous forcing can be treated
equally well via f ′, although the interpretation of the resulting system is different.
For a harmonic forcing and response at temporal frequency ω, i.e.,

f ′ = f̂ eiωt , u′ = ûeiωt , (2.18)

Equation 2.13a can be rewritten as

û = H (ω) f̂ , (2.19)

where the caret denotes that the fluctuation is associated with a resolvent analysis.
The resolvent operatorH (ω) is given by

H (ω) = CT (iωB − L)−1C, (2.20)
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where

C = *
,

1
0

+
-
, (2.21)

restricts the forcing to velocity space since it arises from u ·∇u. The mean profile u

must be known a priori to formH (ω) and Equation 2.20 is presented in Table 2.1
as mean flow resolvent analysis. It should be noted that the sense of the imaginary
and real parts of ω is reversed in the resolvent analysis relative to the definition
customary to the stability literature. The real part of ω is the frequency associated
with a mode while the imaginary part is set to zero as only neutral disturbances are
considered.

H (ω) can be decomposed via a singular value decomposition (SVD), e.g., McKeon
and Sharma (2010):

H (ω) = Ψ(ω)Σ(ω)Φ∗(ω), (2.22)

where Ψ andΦ are the left and right singular vectors corresponding to the response
and forcing modes, often called resolvent modes (see McKeon and Sharma, 2010),
respectively. Both sets of singular vectors are guaranteed to be orthonormal bases
and are ranked according to their gain, or singular value, contained in the diagonal
matrix Σ. The resolvent operator can thus be written as the sum of outer products
of the left and right singular vectors

H (ω) =

∞∑
j=1

ψ̂ j (ω)σ j (ω)φ̂
∗

j (ω). (2.23)

H (ω) is (approximately) low rank if
p∑

j=1

σ2
j ≈

∞∑
j=1

σ2
j , (2.24)

where σp � σp+1 and p is small (Moarref et al., 2013; McKeon, 2017). If the
leading singular value is significantly greater than all others (σ1 � σ2) then the
rank-1 approximation can be invoked and the resolvent is approximated by the outer
product of the leading optimal response and forcing modes:

H (ω) ≈ σ1ψ̂1φ̂
∗

1. (2.25)

The physical interpretation of the resolvent response modes is the response to forc-
ing that results in a neutrally stable response, i.e., with the real component of fre-
quency equal to zero. The singular value gives the input-output gain, here associ-
ated with the energy norm.
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The resolvent may also be formed for the base flow (see Table 2.1)

H (ω) = CT (iωB − A)−1C, (2.26)

where the forcing is now treated as an extrinsic disturbance (see Jovanović and
Bamieh, 2005). This is different from the mean flow case where the forcing is
intrinsic and stems from the nonlinear term.

The singular values of the resolvent operator are computed in a manner outlined
by Sipp and Marquet (2013); a brief summary of the procedure is presented here.
The singular value problem is reformulated as the following eigenvalue problem:

H (ω)∗H (ω)φ̂i = σ2
i φ̂i, (2.27)

where φ̂i is the ith right singular vector corresponding to the singular value σi

of H (ω). The largest eigenvalues of the Hermitian operator H (ω)∗H (ω) are
computed using the ARPACK library and the parallel MUMPS solver developed
by Amestoy et al. (2001). The response modes are then computed from Equa-
tion 2.19.

2.4.3 Link to Pseudo-Spectrum
Analyzing the resolvent corresponds to considering the spectrum of the perturbed
LNS operator:

Λε (A) = {z ∈ C : z ∈ Λ(A + E) where ‖E‖ ≤ ε }, (2.28)

where Λε is the pseudospectrum of A under a perturbation magnitude ε > 0 and
‖ · ‖ is the (operator) 2-norm (Trefethen et al., 1993; Reddy et al., 1993; Taira et al.,
2017). An equivalent definition is given by

Λε (A) =
{
z ∈ C : ‖(zI − A)−1‖ ≥ ε−1

}
∪ Λ(A), (2.29)

where Λ = Λ0 is the spectrum of A. Throughout the thesis, Λ denotes the set of
eigenvalues and Λ is the diagonal matrix of eigenvalues. If A is normal, Λε can
be interpreted as the set of points away from Λ by only less than or equal to ε on
the complex plane (see Taira et al., 2017). If A is non-normal, this distance may be
greater than ε , signifying that an eigenvalue is sensitive to perturbation of the LNS
operator..

For a given z, the resolvent norm ‖(zI − A)−1‖ is equal to the largest value of ε−1

such that z is contained within Λε . The resolvent norm is (by definition) the maxi-
mum singular value of the resolvent operator, and quantifies the system’s sensitivity
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to temporal forcing. The neutrally stable response of the system to harmonic forc-
ing is characterized by the value of the resolvent norm along the imaginary axis.
For a stable, normal operator, the largest response occurs at the frequency corre-
sponding to the imaginary part of the least stable eigenvalue λls and the resolvent
norm is 1/Real(λls) since Real(λls) is the minimum distance between the eigen-
value and the imaginary axis (Chomaz, 2005). If the operator is marginally stable
(Real(λls) ≈ 0), then ε ≈ 0 and the response is dominated by the corresponding
eigenmode. The resolvent is not defined when the flow is unstable or Real (λls) =

0. For a stable, non-normal operator, the frequency and gain of the largest response
is less predictable since it is necessary to find the smallest value of ε for which the
pseudospectrum crosses the imaginary axis.

2.4.4 Flows with Homogeneous Directions
In the case of turbulent channel flow, it is possible to Fourier-transform in the
streamwise and spanwise directions resulting in the spatial wavenumbers kx and
kz, respectively, since these directions are homogeneous. The incompressible NSE
are non-dimensionalized by the channel half-height h and the friction velocity uτ =√
τw/ρ (where τw is the wall shear stress, ρ is the density) resulting in

∂tu + u · ∇u = −∇p + Reτ−1∇2u (2.30a)

∇ · u = 0, (2.30b)

where Reτ = huτ/ν and ν is the kinematic viscosity. The wall-normal domain
extends from y/h = −1 to y/h = 1 with no-slip and no-penetration conditions
imposed at the wall. The fluctuations are expressed as Fourier modes in the stream-
wise/spanwise directions and in time,

û(kx , kz,ω; y) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

u′(x, y, z, t)e−i(kx x+kz z−ωt)dxdzdt. (2.31)

Upon elimination of the pressure term, the governing equations can be expressed in
terms of the fluctuating vertical velocity v̂ and normal vorticity η̂ = ikzû − ikxŵ,

−iω *
,

v̂

η̂
+
-

+ *
,

k2 − D2 0
0 1

+
-

−1

*
,

LOS 0
ikzu′ LSQ

+
-

*
,

v̂

η̂
+
-

= J f̂ , (2.32)

where the Orr-Sommerfeld (OS) and Squire (SQ) operators are given by

LOS = ikxu(k2 − D2) + ikxu′′ +
1

Reτ
(k2 − D2)2, (2.33)

LSQ = ikxu +
1

Reτ
(k2 − D2), (2.34)
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and

J = *
,

k2 − D2 0
0 1

+
-

−1

*
,

−ikxD −k2 −ikzD

ikz 0 −ikx

+
-
, (2.35)

f̂ =
*...
,

f̂u

f̂v
f̂w

+///
-

= −〈u′ · ∇u′〉k . (2.36)

Here D = ∂
∂y , k2 = k2

x + k2
z , and 〈 〉k denotes the Fourier component associated

with the wavenumber vector k = (kx , kz,ω).

The wall-normal operators are discretized numerically with Chebyshev collocation
points using the suite developed by Weideman and Reddy (2000). Equation 2.32 is
recast into the following input/output form

*...
,

û

v̂

ŵ

+///
-

= H (kx , kz,ω)
*...
,

f̂u

f̂v
f̂w

+///
-

, (2.37)

where the resolvent operatorH is given by

H (kx , kz,ω) = K (−iω + L)−1J , (2.38)

and
L = G−1L, (2.39)

G = *
,

k2 − D2 0
0 1

+
-
, (2.40)

L = *
,

LOS 0
ikzu′ LSQ

+
-
, (2.41)

K =
1
k2

*...
,

ikxD −ikz

k2 0
ikzD ikx

+///
-

. (2.42)

As before, the resolvent operator can be decomposed via the SVD as

H (kx , kz,ω) = Ψ(kx , kz,ω)Σ(kx , kz,ω)Φ∗(kx , kz,ω). (2.43)

The Orr-Sommerfeld/Squire formulation is used in Chapter 3 with respect to the
discussion of amplification mechanisms in turbulent channel flow. The selection
of the wavenumber vector k is based on knowledge of highly amplified or known
turbulent structures to highlight the role of non-normality in the resolvent operator.
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2.4.5 Dynamic Mode Decomposition
In DMD, snapshots of data, which are collected at a fixed time interval ∆t and
contain m states, are arranged into the columns of matrices X and X#, such that

X = [x(t1) x(t2) · · · x(tn−1)] and X# = [x(t2) x(t3) · · · x(tn)] , (2.44)

where n is the number of snapshots. The objective is to approximate the linear
operator T which maps the snapshot matrix in time, e.g.

X# = TX . (2.45)

The DMD eigenvalues and modes are the eigenvalues and eigenvectors of T (Tu
et al., 2014). Equation 2.45 is an undetermined system of equations which is recast
into an optimization problem to find T . The solution can be expressed as

T = X#(X )+, (2.46)

where (·)+ denotes the pseudo-inverse. The calculation of the pseudo-inverse is
achieved by using the singular value decomposition (SVD) of X resulting in X =

UΣW ∗ where (·)∗ denotes the conjugate transpose. Σ is a matrix of size m × n

containing the singular values of X while U and W are unitary matrices (UU∗ = I )
of size m × m and n × n, respectively.

Equation 2.46 can be rewritten as

T = X#WΣ−1U∗. (2.47)

Left and right-multiplication of Equation 2.47 by U∗ and U , respectively, results in

U∗TU = U∗X#WΣ−1, (2.48)

signifying that the columns ofT have been projected onto the singular vectors of X .
The left-hand side of Equation 2.48 is the companion matrix S which is similar toT .
The eigenvalues of S, consequently, approximate those of T and the corresponding
eigenvector (DMD mode) υi is given by υi = Uγi, where γi is an eigenvector of
S. The DMD eigenvalues are computed from λi = log(µi)/∆t, where µi is an
eigenvalue of S.

2.5 Data-Assimilation of the Mean Flow
The difficulties associated with obtaining the mean velocity profile from experi-
mental data (e.g. limited field of view, noise, etc.) can be overcome by data-
assimilation. The primary elements of the data-assimilation framework are similar
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to those outlined in Foures et al. (2014), and so only an abridged version is presented
here. Modifications to the procedure for experimental data at higher Reynolds num-
bers developed in this work are discussed in Section 2.6.

2.5.1 Computational Model
The measured mean flow is obtained from 2D PIV data or numerical simulation and
is assumed to satisfy the 2D incompressible RANS equations given by

u · ∇u + ∇p − Re−1∇2u = f (2.49a)

∇ · u = 0. (2.49b)

The forcing term f on the right-hand side of Equation 2.49a is treated as an un-
known momentum forcing which is data-driven whereas for ordinary RANS sim-
ulations it is solved for using a turbulence model. Out-of-plane velocities are not
captured by the experiment, which means enforcing Equation 2.49b may not strictly
be true at every point in the domain. Non-zero three-dimensional mean flow effects
are compensated for by the momentum forcing term.

When the algorithm is formulated on velocity-only measurements, only a partial
recovery of the pressure is possible by data-assimilation of the mean velocity field.
Upon further inspection of Equation 2.49a, it is noted that the forcing term f can
be decomposed into the following

f = ∇ξ + f s, (2.50)

where ∇ξ and f s represent the irrotational part and solenoidal part of f , respec-
tively (Foures et al., 2014). As will be shown below, the recovered forcing is
divergence-free without pressure measurements; therefore, only the solenoidal part
can be captured. Boundary conditions need to be specified for this decomposition
to be unique. This involves enforcing ∇ξ · n = 0 and f s · n = 0 on the airfoil walls
where n is the outward normal (Foures et al., 2014). The model given by Equation
2.49 can now be recast as follows

u · ∇u + ∇p′ − Re−1∇2u = f s (2.51a)

∇ · u = 0, (2.51b)

where p′ = p − ξ. Despite the limitation that the pressure field cannot be recon-
structed in its entirety, it is still possible to reconstruct the mean velocity field using
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experimental data to correctly model f s. The portion of f which is not captured is
lumped in with the pressure term. The full f can be captured by incorporating pres-
sure measurements into the data-assimilation algorithm which will be demonstrated
in due course.

2.5.2 Fitting Criterion
The goal of the data-assimilation algorithm is to determine the solenoidal forcing
f s such that the estimate u matches the available mean velocity field measurements.
In order to determine this forcing, it is first necessary to calculate the discrepancy
between the measured flow uexp and the estimate u. The discrepancy velocity field
is computed using

∆u = uexp − u, (2.52)

where ∆u is a two-dimensional vector containing both streamwise and transverse
discrepancy velocity measurements for each point in the domain. This computation
is not trivial since the experimental and numerical data are frequently defined on
different meshes. A detailed explanation for how to compute this field is given in
the next section. For now, it is assumed that the discrepancy field has the same
spatial resolution as the numerical field and that it is possible to perform the above
operation using techniques which do not involve interpolation.

The L2-norm of the discrepancy field yields a scalar function called the fitting cri-
terion, which quantifies the distance between the current estimate and the measured
mean velocity. It is calculated using the following operation:

EA(u) =
1
2

N∑
j=1

‖∆u j ‖
2, (2.53)

where N denotes the number of points on the mesh and the index j denotes the jth
point on the mesh. The subscript A signifies that only mean velocity measurements
are available (i.e. no mean pressure measurements are available).

2.5.3 Cost Functional and Adjoint Equations
Similar to 3D-Var (see Lewis et al. (2006)), an objective functional using a varia-
tional formulation yields an iterative optimization scheme that minimizes the fitting
criterion. The final result is an optimal match between the data-assimilated mean u

and the measured data uexp. An augmented Lagrangian is formed consisting of the
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objective functional (the fitting criterion) and the constraints (the model equations)
which are enforced in a weak form by Lagrange multipliers or adjoint variables.
For readers familiar with optimal control, the augmented Lagrangian can also be
thought of as a least-squares cost functional which penalizes the difference between
the computed state, which in this case is u, and the observed state, uexp. The cost
functional is written as follows:

L( f s,u,u
†,p′,p†) = E (u) −

〈
u†,u · ∇u + ∇p′ −

1
Re
∇2u − f s

〉
−

〈
p†,∇ · u

〉
.

(2.54)
The scalar product denoted by 〈., .〉 is associated with the Euclidian norm for vector
and scalar fields on the domain Ω.

In order to minimize the functional, first-order variational derivatives are taken with
respect to each independent variable and set equal to zero. Differentiation with re-
spect to the adjoint variables u† and p† yields the direct equations given by Equation
2.51 while differentiation with respect to the direct variables produces the adjoint
equations given below:

−u · ∇u† + u† · ∇uT
− ∇p† −

1
Re
∇2u† =

δE

δu
(2.55a)

∇ · u† = 0. (2.55b)

The derivations of these equations and the boundary conditions are detailed in Ap-
pendix A. The right-hand term of Equation 2.55a is discussed in Section 2.6 as
it pertains to the smoothing procedure needed to recover adjoint solutions on the
higher-dimensional subspace of the simulation.

Finally, the variational derivative with respect to the forcing f s yields

∇ f sE = u†, (2.56)

which is the steepest descent direction towards the optimality condition. It can
also be interpreted as the sensitivity of the fitting criterion to the forcing vector.
An initial guess is necessary to begin the optimization procedure and compute the
first descent direction. Since the forcing must be divergence-free and the Reynolds
stresses must vanish on the airfoil surface, a natural initial guess is f s = 0. The
solution to Equation 2.55 then provides u†, which is the direction in which the
guess to the forcing is updated. This can be stated mathematically by the following
equation

f n+1 = f n + βnu
†
n, (2.57)
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where f n=0 denotes the initial guess. This method is known as the simple gradient
descent method which, while effective, has shown to be prone to zigzagging since
the new search direction is always orthogonal to the previous search direction (see
Bewley et al., 2001). To avoid this problem, a conjugate-gradient approach using
the Polak-Ribière formula (Polak and Ribiere, 1969) is adopted as well as a line-
search algorithm to determine βn for each new descent direction.

As seen from Equation 2.57, the forcing is a linear combination of adjoint velocity
fields which, from Equation 2.55b, must be divergence-free. This reinforces the
validity of the initial guess and justifies the earlier statement that only the solenoidal
component of the forcing can be captured by the data-assimilation algorithm.

2.5.4 Mean Pressure Reconstruction
Up until this point, Section 2.5 has recapped the algorithm first developed in Foures
et al. (2014). The extension proposed here is a novel contribution to the framework
although it was originally suggested as a topic of future work in the original paper.
To capture the full forcing and reconstruct the mean pressure, E is modified in
Equations 2.53 and 2.54 to include mean pressure measurements such that E =

EB (u,p), where the subscript B represents the consideration of mean velocity and
pressure measurements. This modifies the variational derivative of Equation 2.54
with respect to p and so Equation 2.55b becomes

∇ · u† =
δE

δp
, (2.58)

implying that the adjoint velocity is no longer constrained to be divergence-free as
it was in Foures et al. (2014). The modified cost function is

EB (u,p) =
1
2

N∑
j=1

‖∆u j + ∆p j ‖
2, (2.59)

and
∆p = pexp − p. (2.60)

Even if no mean pressure measurements are available, the resolvent response modes
can be utilized to correct the mean pressure. The forcing to the mean momentum
equation can be rewritten as a sum of resolvent modes:

u · ∇u + ∇p + Re−1∇2u =
∑
ω

N∑
j=1

2Real ( χ2
j ψ̂ω j

· ∇ψ̂−ω j
), (2.61)
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where χ j is the amplitude of the jth resolvent response mode (see Section 2.5.5).
The left-hand side of (2.61) is a sum of triadic interactions where a mode with
frequency ω interacts with its conjugate at frequency −ω to produce the Reynolds
stresses required to sustain the mean profile. The right-hand side of (2.61) con-
sists of both a rotational and irrotational component unlike the velocity-only data-
assimilated forcing, which is divergence-free.

Subtracting Equation 2.51a from Equation 2.61 yields an equation for ξ:

∇ξ =

N∑
j=1

2A2Real (ψ̂ω j
· ∇ψ̂−ω j

) − f s . (2.62)

Taking the divergence of Equation 2.62, one eliminates f s and obtains a Poisson
equation for ξ:

∇2ξ = ∇ ·



N∑
j=1

2A2Real (ψ̂ω j
· ∇ψ̂−ω j

)

, (2.63)

where, as mentioned earlier, it is necessary to set ∂ξ/∂n = 0 at the surface of the
body to define a unique solution.

2.5.5 Amplitude Calibration
The weight of a response mode is determined by computing the projection of the
nonlinear forcing onto the resolvent forcing mode:

û =
∑

j

ψ̂ j (x,ω)σ j (ω)
〈
f̂ (x,ω), φ̂ j (x,ω)

〉
=

∑
j

ψ̂ j (x,ω)σ j (ω) χ j (ω), (2.64)

where χ j is the complex weight associated with the jth response mode (McKeon et
al., 2013). If σ1 � σ2, the weights of the first resolvent response modes ( j = 1) can
be approximated using the method proposed by Gómez et al. (2016a) and Bened-
dine et al. (2016). To begin, it is necessary to have time-resolved knowledge of the
fluctuations at a single point, x0. The location and flow quantity (e.g. streamwise
velocity, pressure, etc.) is likely to be flow specific and should include regions in
which the resolvent response modes are energetic (Gómez et al., 2016a; Beneddine
et al., 2016). For now, it is assumed the streamwise velocity is measured and the
signal is Fourier-transformed in time yielding ǔω (x0). This complex-valued func-
tion of ω predicts the amplitude of the corresponding resolvent mode through the
following expression

χ1 = û(ω, x0)/ǔω (x0), (2.65)
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(a) (b)

Figure 2.5: Subdivision of the domain into cells delineated by grey lines. The
center of each cell is indicated by a red point which corresponds to the spatial
location of a PIV measurement shown by a blue vector. Only a limited section
of the total field of view is shown. In (a) one out of every five PIV vectors in
both the streamwise and transverse directions appear for clarity while (b) displays
the density of vectors in the CFD mesh. Reprinted by permission from Springer
Nature: Springer, Experiments in Fluids, Symon et al. (2017), Copyright 2017.

where χ1(ω) = σ1(ω) χ1(ω) and û(ω, x0) is the value of the unscaled resolvent
response mode at x0. The reader is referred to e.g. Towne et al. (2018) for other
ways to obtain the amplitudes from data.

2.6 Smoothing Procedure
It was assumed in the previous section that the resolutions of the experimental and
numerical velocity fields are identical when computing the discrepancy velocity
field. This is generally not the case since the experimental velocity field is defined
on a coarse, uniform Cartesian grid while the numerical velocity field is continuous
and approximated with quadratic basis functions. To obtain a discrete representa-
tion of the numerical velocity field, the values of the velocity defined on the vertices
and midpoints of the finite element triangles can be outputted from the finite ele-
ment code. A smoothing procedure described in Symon et al. (2017) is used to
cope with the difference in resolution when forcing the adjoint RANS equations.
For convenience, the points where experimental measurements exist are referred to
as grid points while their numerical counterparts are referred to as mesh points.

The smoothing procedure begins by dividing the domain into cells as seen in Figure
2.5 where the red dot denotes the center of each cell and the blue vector the associ-
ated PIV measurement. Mesh points are sorted into the cells whose boundaries are
delineated by the grey lines in Figure 2.5. This means that for a given cell, there
is a unique experimental measurement and multiple numerical measurements. The
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fitting criterion in Equation 2.53 can now be recast in terms of a new scalar product
defined in the experimental measurement space:

E (u) =
1
2

〈
∆u,∆u

〉
M , (2.66)

where the subscript M represents the number of measures in the inner product de-
fined by 〈

∆u1,∆u2
〉

M =

M∑
j=1

∆u1,j∆u2,j . (2.67)

The numerical measurements are projected down to the measurement space using a
smoothing function or operator P:

∆u = uexp − Pu. (2.68)

For this configuration, P is chosen to be an area average of the numerical measure-
ments in a given cell. For the jth cell, therefore, P can be written as

Pju =

∫
Ω

u(x)ϕ j (x)dΩ, (2.69)

where

ϕ j (x) =




1∫
Ω j

dΩ
in Ω j

0 outside of Ω j ,

(2.70)

and
∫
Ω j

dΩ is the area of a cell.

The forcing term of Equation 2.55a can be derived by substituting Equation 2.68
into Equation 2.66 and taking the variational derivative with respect to u. After
simplifying the expansion, one obtains〈

δE

δu
, δu

〉
=

〈
uexp − Pu,−Pδu

〉
M

=
〈
P†(Pu − uexp), δu

〉
, (2.71)

and so δE
δu , therefore, reads

δE

δu
= P†(Pu − uexp). (2.72)

The adjoint operator of P satisfies〈
P†∆u, δu

〉
=

〈
∆u,Pδu

〉
M for all ∆u and δu. (2.73)

For the P chosen in this study, the adjoint operator acting on ∆u can be shown to
be

P†∆u =

M∑
j=1

∆u jϕ j (x), (2.74)
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and so the final expression for the forcing term of Equation 2.55a reduces to the
following expression:

δE

δu
=

M∑
j=1

(Pju − u j,exp)ϕ j (x). (2.75)

This calculation need not include every PIV vector in the experimental data set. It
is possible to artificially lower the resolution by omitting one out of two vectors in
both the x− and y−directions, for example, which would increase the area of each
cell by a factor of four. It is also possible to change the weight of a cell to increase its
relative importance or turn it off completely to artificially decrease the PIV window.
A second projection operator S is introduced into Equation 2.68 to account for
weighting or artificially reducing the number of experimental measurements:

∆u = S(uexp − Pu). (2.76)

If S is the identity, then all experimental data are used to compute the fitting crite-
rion and drive the data-assimilation process. This is referred to as the full-field case
in Chapter 6. The modifications to the previous derivations for δE

δu are minor even
though it will change the measurement space in Equation 2.67 as the effect of S can
be incorporated into ϕ j (x) of the original smoothing function P.

The smoothing procedure can be interpreted as a way to compute the pseudo-inverse
of the projection operator P. For this setup, the numerical data must be projected
down onto the experimental data subspace by P to compute the discrepancy field
but the adjoint solution needs to be forced by a quantity defined on the same sub-
space as the original numerical data. The method outlined in the previous para-
graph is one way to perform this pseudo-inverse operation. Alternatives, which are
not implemented in this thesis, include enforcing global smoothness constraints or
including regularization terms in Equation 2.54. Failure to include the smoothing
procedure results in forcing the adjoint equations by Dirac delta functions located
at the center of each cell and the resulting forcing fields are no longer smooth.
The algorithm, furthermore, will only attempt to match the velocities at discrete
points where the PIV vectors are located, and this can lead to spurious recirculation
bubbles or other unphysical flow structures appearing in the assimilated flow field
between measurement points.

2.7 Adjoint Looping: Implementation of Data-Assimilation Algorithm
This section describes the details for implementing data-assimilation for numerical
and experimental data. The block diagram in Figure 2.6 illustrates the adjoint loop-
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ing procedure used to iteratively update the forcing f s. The process is terminated
once the new steepest descent direction no longer results in a reduction of the fitting
criterion. The data-assimilation begins with an initial guess f 0 = 0, which is used
to solve the RANS equations given by Equation 2.51. Next, the discrepancy field
is computed using Equation 2.76 once the relevant projection operators have been
applied to u and uexp, and these values are smoothed over all mesh points in a grid
cell as explained earlier. Finally, the adjoint equations are solved to find the steepest
descent direction that updates the forcing.

Figure 2.6: A block diagram representation of the adjoint looping procedure used
to determine the optimal forcing f s which will minimize the fitting criterion. The
steps and quantities in black are in the subspace of the numerical data, while blue in-
dicates the subspace of the experiment and brown represents the subspace of fewer
measurements after applying the projection operator S.

If f 0 = 0 is the initial guess, then a problem that arises in this procedure is finding
a base flow solution at the experimental Reynolds number. This is due to the fact
that the critical Reynolds number, or the Reynolds number at which the base flow
undergoes a supercritical Hopf bifurcation and becomes unstable, tends to be rather
low. The base flows at higher Reynolds numbers, as a result, tend to be unphysical
and require exceedingly high numerical precision to compute (Sipp et al., 2010). A
base flow is computed at a lower Reynolds number and the algorithm is run for this
lower number until the fitting criterion is minimized. The Reynolds number is then
increased incrementally until it reaches the experimental Reynolds number. It is
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not a requirement to use a base flow solution as the starting point to the algorithm.
One could use the results of a RANS simulation at the same Reynolds number, for
example.

2.8 Numerical Details of Experimental Data-Assimilation
The idealized airfoil is mounted at an angle of attack of zero degrees. Since its
profile is symmetric, the time-averaged flow on either side of the airfoil is identical
so data are collected for one side only and reflected over the centerline. Both the
numerical and experimental data are non-dimensionalized to yield a unit input ve-
locity and a unit cylindrical diameter of the idealized airfoil. The direct and adjoint
equations are solved using FreeFem++ on a computational domain Ω which spans
−20 ≤ x ≤ 35, −12.5 ≤ y ≤ 12.5 with the cylinder at the leading edge of the airfoil
being centered at the origin as it is in the PIV domain shown in Figure 2.4. The mesh
density, which is controlled by specifying the number of divisions along a boundary,
increases from the outer boundaries towards the airfoil surface. The equations are
spatially discretized using quadratic basis functions for the velocity and linear basis
functions for the pressure, resulting in approximately 580,000 degrees of freedom
for both velocity and pressure. FreeFem++ solves the RANS and adjoint RANS
equations in weak form which can be obtained by dotting the equations with a test
function and integrating by parts to remove second-derivative terms. As mentioned
earlier, the direct equations are solved using a Newton-Raphson method while the
adjoint equations are linear in u† and can be solved efficiently without an iterative
method.

For the NACA 0018 airfoil at an angle of attack, the laser sheet is obstructed by
the airfoil’s shadow and so data are not available for the pressure side of the airfoil.
Since it is necessary to obtain the mean profile on both sides of the airfoil, data are
also collected for the airfoil mounted at −10◦. The time-averaged profiles for both
the positive and negative angle of attack are later stitched together and are used as
an input for the data-assimilation algorithm. The numerical and experimental data
are non-dimensionalized to yield a unit input velocity and a unit chord length. The
computational domain is Ω ∈ −6.5 ≤ x ≤ 15.5∪−5 ≤ y ≤ 5 with the leading edge
of the airfoil being centered at the origin. The equations are spatially discretized
using quadratic basis functions for the velocity and linear basis functions for the
pressure resulting in approximately 115,000 degrees of freedom for the 0◦ case and
331,000 degrees of freedom for the 10◦ case.
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2.9 Evaluation of Agreement Between Experiment and Data-Assimilation
To quantify how well the data-assimilation recovers the mean flow, the L2-difference
is computed between the PIV velocity field uexp and the assimilated flow u inter-
polated onto the PIV grid, which will be referred to as uint . This difference is
then normalized by the L2-norm of the PIV velocity field and is referred to as the
experimental mismatch. It can be written as

Q =
‖uexp − uint ‖

‖uexp‖
. (2.77)

Q is computed on the domain x ∈ [−1.5, 6]∪ y ∈ [0, 2]. This definition is constant
across all cases studied even if the experimental data are artificially limited.

Another quantity of interest is the decrease of the cost function for each case in-
vestigated. A bad cost function is one which leads to a large decrease in the fitting
criterion without reducing the experimental mismatch. To determine the success of
a given cost function, its final value Eend is normalized by the initial value computed
using the base flow E0. This ratio can be compared to the corresponding decrease
of the experimental mismatch

Qr =
Qend

Q0
, Er =

√
Eend

E0
, (2.78)

where Q0 is computed using the base flow. The square root of the cost function
ratio is necessary since Er is based on ‖ · ‖2 while Qr is based on ‖ · ‖. If Er � Qr ,
the cost function is not effectively reducing the mean velocity field discrepancy.

2.10 Summary
The flow configurations are summarized in Table 2.2, which includes the Reynolds
number ranges, the method used to obtain the data, and the chapters where they are
analyzed.
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Parameters Methods Chapters

2D Cylinder 47 < Re < 190 DNS 3, 4, 5

3D Cylinder 190 ≤ Re ≤ 320 DNS 3, 5

Channel Flow Reτ = 2000 Eddy Viscosity 3

Idealized Airfoil Rechord = 13,500 PIV 6

Rechord = 10,250
NACA 0018 Airfoil Rechord = 20,700 PIV 6, 7

−10◦ ≤ α ≤ 10◦

Table 2.2: The various flows considered including the parameters, method used to
obtain the data, and the chapters where they are discussed.
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C h a p t e r 3

AMPLIFICATION MECHANISMS IN STABILITY AND
RESOLVENT ANALYSIS

Symon, S., Rosenberg, K., Dawson, S. T. M., and McKeon, B. J. (2018). “Non-
normality and classification of amplification mechanisms in stability and resol-
vent analysis”. In: Phys. Rev. Fluids 3.053902.

The focus of this chapter is to understand the types of amplification mechanisms
identified by the resolvent and predict when the operator exhibits low-rank behavior.
A lot of attention is devoted to the interplay of terms in the LNS operator which
introduce non-normality and whose competing influence affects the mode shapes
and size of amplification. They also influence the pseudo-spectrum of the LNS
operator which characterizes the sensitivity of eigenvalues to perturbations of the
operator. The beginning of this chapter considers 2-by-2 matrix models to illustrate
the roles of various terms on the mode shapes and the pseudo-spectrum. Their roles
are then examined in the context of oscillator flows for cylinder flow at Re = 100
and noise-amplifier flows for turbulent channel flow at Reτ = 2000. Features of the
modes can be predicted by properties of these mean profiles.

3.1 Resonance and Pseudoresonance
The origin of the amplification mechanisms characterized by the resolvent norm
can be identified by expanding the resolvent through an eigenvalue decomposition
of the LNS operator,

H (ω) = CT (iωB − VΛBV−1)−1C . (3.1)

Here V represents the matrix of eigenvectors of the LNS operator for either the base
or mean flow profile andΛ the diagonal matrix of eigenvalues. These can be used to
find an upper and lower bound for the resolvent norm (see Schmid and Henningson,
2001):

‖iωI − Λ‖−1 ≤ ‖H (ω)‖ ≤ ‖V ‖‖V−1‖︸       ︷︷       ︸
pseudoresonance

‖iωI − Λ‖−1︸          ︷︷          ︸
resonance

. (3.2)

Considering first the far-righthand term in Equation 3.2, it is clear that forcing in
the vicinity of an eigenvalue, i.e. ω = λ, is likely to lead to amplification due to
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resonance and this is predictable from an eigenanalysis. Large amplification also
arises in the event of pseudoresonance when the condition number κ = ‖V ‖‖V−1‖

is large due to non-orthogonality of the eigenvectors, a consequence of the non-
normal nature of L and hence H (ω). In the formulation of Equation 3.2, the re-
solvent therefore contains both the amplification mechanisms associated with the
eigenvalue spectrum accessed via eigenanalysis (normal mode linear stability anal-
ysis) and the pseudoresonant amplification that is possible when the eigenvectors
are not orthogonal to each other.

3.2 Amplification Mechanisms Highlighted by a Model Operator
A model operator M inspired by Gebhardt and Grossmann (1994) is proposed
to represent the LNS for a two-dimensional velocity field associated with a one-
dimensional base or mean flow

M = *
,

m1 d

0 m2

+
-
. (3.3)

By selecting a one-dimensional operator, the spatial (streamwise and spanwise) de-
pendence of the base/mean flow and therefore the modes is negelected. Neverthe-
less, the impact of the various types of term in the LNS operator on the resolvent
modes can be modeled. Here Real (m j ) < 0 is analogous to the stabilizing role of
viscosity through the Re−1∇2() term and Imag(m j ) represents mean flow advection
through the −u · ∇() term. d is real and is analogous to mean shear () · ∇u, which
here is equal to the gradient in the 2-direction of mean flow in the 1-direction. Thus
in this simple 2-by-2 example, d models the lift-up mechanism (Landahl, 1980)
by coupling forcing in the n2-direction (second component of the vector) with a
response in the n1-direction (first component of the vector).

3.2.1 Eigenvectors, singular functions, and non-normality of the operator
The resolvent of M is

H (ω) = *
,

−1/(m1 − iω) d/[(m1 − iω)(m2 − iω)]
0 −1/(m2 − iω)

+
-
. (3.4)

In order to isolate the effect of non-normality introduced via the off-diagonal term
in Equation 3.5, the eigenvalues are assumed to be real and the immediate devel-
opment is limited to stationary disturbances (ω = 0) to eliminate the remaining
imaginary terms, such that

H (ω = 0) = *
,

−1/(m1) d/[(m1m2)]
0 −1/(m2)

+
-
. (3.5)
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For the limiting case of d = 0, i.e. zero mean shear, M and its resolvent are self-
adjoint and therefore normal. If the least stable eigenvalue has real part close to
zero which would occur, say, if m1 → 0, the singular value decomposition can be
simplified to

lim
m1→0

SVD(H (ω = 0)) = *
,

1 0
0 1

+
-

*
,

σ1 0
0 σ2

+
-

*
,

1 0
0 1

+
-
, (3.6)

where σ1/σ2 → ∞, i.e. the resolvent is low-rank. Thus the response can be well
predicted from the leading singular vectors ψ̂1 and φ̂1. For a normal operator, these
are identical to each other, ψ̂1 = φ̂1 = [1 0]T , and identical to the corresponding
eigenvectors. The inner product |φ̂

∗

1ψ̂1 | quantifies the componentwise correspon-
dence between the forcing and response modes which, in this limit, is equal to
unity. A schematic of the variation in the n1 and n2 directions of the forcing and
response mode, i.e. the singular vectors, in this case is shown in Figure 3.1(a-b).

In the limit d → ∞

lim
d→∞

SVD(H (ω = 0)) = *
,

1 − ε2 −ε1

ε1 1 − ε2

+
-

*
,

σ1 0
0 σ2

+
-

*
,

ε1 ε2 − 1
1 − ε2 ε1

+
-
,

(3.7)
where σ1/σ2 → ∞ and ε1, ε2 → 0. The constants ε1 and ε2 are real and positive.
The resolvent operator is still low-rank in this limit, but ψ̂1 and φ̂1 are now orthog-
onal to each other and thus the inner product |φ̂

∗

1ψ̂1 | → 0. The perturbation energy
in the optimal forcing mode is concentrated in the second component of the vector
while the perturbation energy in the optimal response mode is concentrated in the
first component, as sketched in Figure 3.1(c-d).

The analogous eigenvalue decomposition of (non-normal) M is

lim
d→∞

EIG(M ) = *
,

1 1
0 ε3

+
-

*
,

m1 0
0 m2

+
-

*
,

1 −1/ε3

0 1/ε3

+
-
, (3.8)

where ε3 → 0 is a positive, real constant. Unlike the resolvent response modes
which are orthogonal to one another, the eigenvectors are non-orthogonal, such
that κ → ∞. Thus, in this case the stability and resolvent modes are different.
Since the eigenvectors are nearly parallel, they both project equally well onto the
optimal resolvent response mode. The same can be said for the projection of the
adjoint modes, which are also nearly parallel, onto the optimal resolvent forcing
mode. The optimal response and forcing modes, therefore, are linear combinations
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of multiple stability and adjoint modes, respectively. Furthermore, it is not clear
from this decomposition that the resolvent operator is low-rank.

As outlined in Figure 3.1(a-d), the model operator given in Equation 3.3 can be
used to elucidate that the presence of mean shear, which introduces non-normality
into the LNS operator, is to concentrate energy in different velocity components of
the resolvent forcing and response modes. The model LNS operator does not need
a base or mean flow with any special characteristics or spatial dependence other
than an off-diagonal term to reveal this. Nevertheless, the same mechanism will be
present in the case of more complex variation of shear, as is common in real flows.
In the normal limit where there is no mean shear, the forcing and response are in
the same velocity component. In the pseudoresonant limit, the forcing acts in the
n2 direction while the response is in the n1 direction.

3.2.2 Eigenvectors, singular functions, and self-adjointness of the operator
The objective is to isolate the effect (or lack thereof) of self-adjointness on the
characteristics of the resolvent modes. To this end, the mean shear term is set to
zero, i.e. d = 0 in Equation 3.3, guaranteeing that the LNS and resolvent operators
are normal:

M = *
,

m1 0
0 m2

+
-
, (3.9)

H (ω) = *
,

1/(m1 − iω) 0
0 1/(m2 − iω)

+
-
. (3.10)

The discussion is limited to stationary disturbances (ω = 0) once again as the
presence of iω in the resolvent operator will always guarantee that it is not self-
adjoint.

If the eigenvalues are real, M and H (ω = 0) are self-adjoint and the SVD of the
resolvent is

lim
Imag(m j )→0

SVD(H (ω = 0)) = *
,

1 0
0 1

+
-

*
,

m1 0
0 m2

+
-

*
,

1 0
0 1

+
-
. (3.11)

Equation 3.12 is similar to the normal limit case of Equation 3.6 and illustrates that
the resolvent forcing and response modes are identical.

The simplest way to demonstrate what happens when the resolvent is not self-
adjoint is to assume that the eigenvalues are purely imaginary. In this case, the
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SVD of the resolvent is

lim
Real(m j )→0

SVD(H (ω = 0)) = *
,

i 0
0 i

+
-

*
,

‖m1‖ 0
0 ‖m2‖

+
-

*
,

1 0
0 1

+
-
. (3.12)

Since the singular values of the resolvent are required to be real yet the eigenvalues
are imaginary, the resolvent response modes must be 90◦ out of phase from the
resolvent forcing modes as portrayed in Figure 3.1(e-f).

3.2.3 Mean flow advection and the Orr mechanism
In the case of an operator that is not self-adjoint and has non-zero mean shear,
i.e. d , 0, the spatio-temporal manifestation of the Orr mechanism is observed.
This mechanism results in disturbance amplification by the reorientation of an in-
put tilted against the mean shear into a response which is aligned with the mean
shear, with the maximum amplification in the transient case occurring when the
disturbance is vertical.

In the continuously forced formulation of the present problem, the Orr mechanism
is attributable to the space dependence of u in the mean flow advection term. As-
suming a parallel flow (u = u(y)) with non-zero mean shear (∂u/∂y , 0) and
traveling at the local mean velocity for a given yc, the flow above yc moves towards
the downstream direction while the flow below moves upstream in a relative sense.
There is, therefore, a phase difference of π across yc which manifests itself in the
response modes (e.g. McKeon, 2017). The decrease in phase results in the response
modes leaning downstream, aligned with the mean shear. When considering the
adjoint LNS operator L∗, the mean flow advection acts in the upstream direction
due to the sign change of u · ∇(). The corresponding phase jump across yc is now
in the opposite sense and this results in the forcing modes leaning upstream. Arti-
ficially removing mean flow advection from the resolvent operator suppresses the
Orr mechanism. Figure 3.1(g-h) is a cartoon illustrating how the Orr mechanism
results in the tilting of the resolvent forcing and response modes.

3.2.4 Resolvent (approximate) wavemaker
For a spatially-varying base or mean flow, further statements can be made con-
cerning the effect of the non-self-adjoint nature of the resolvent operator on the
resolvent mode shapes, namely a difference in the spatial support of forcing and
response modes, with the latter being downstream of the former. For a spatially-
developing base or mean flow, normal mechanisms can be categorized in terms of
either convective or absolute instability depending on the characteristics of the pro-
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file. The non-self-adjoint nature of L changes the influence of the convective terms
in the adjoint operator, per Equations 2.10 and 2.16, or, for the model operator of
Equation 3.3,

M∗ = *
,

m∗1 0
d m∗2

+
-
. (3.13)

The direction of mean flow advection is reversed since the adjoint of the derivative
operator introduces a negative sign implying that adjoint perturbations are trans-
ported upstream. Direct or forward perturbations, on the other hand, are transported
downstream. For absolutely unstable flows, for which perturbations grow both up-
stream and downstream of the source, the advection term may no longer separate
the spatial support of the forcing/adjoint and response/forward modes leading to re-
gions of overlap at resonant frequencies. This region, known as the wavemaker, is
traditionally computed from the eigenmodes, and is associated with non-zero values
ofW , where

W (x0) = ‖ ũ(x0)‖‖ ũ†(x0)‖, (3.14)

and x0 denotes a position in space (see derivation of Giannetti and Luchini, 2007).

In cases where amplification is due to normal mechanisms, the resolvent modes
can be used to find the wavemaker as long as they are normalized appropriately.
The wavemaker approximates regions of the flow which are absolutely unstable
or self-sustaining since perturbations are prevented from convecting due to reverse
flow (Juniper, 2012). Huerre and Monkewitz (1985) have shown that when a mean
profile of hyperbolic tangent form exhibits greater than 13.6% reverse flow with
respect to the free stream, the flow is absolutely unstable. The streamwise extent of
absolute instability and the wavemaker is finite since flow reversal is confined to a
certain portion of the flow. This information is encoded within the advection term
u · ∇() through the sign of u. The overlap of the resolvent forcing and response
modes was identified as a qualitative proxy for sensitivity for base flows by Brandt
et al. (2011). Henceforth, the wavemaker of Equation 3.14 is dentoed as the “true”
wavemaker and the approximation using resolvent modes as the “resolvent” wave-
maker. If the flow is convectively unstable, there is no region of reverse flow and
so u is always positive. In this case, the optimal response or stability mode will
be downstream of the optimal forcing or adjoint mode. The inner product |φ̂

∗

1ψ̂1 |

decreases when the modes are separated in space. Chomaz (2005) noted that this
is due to the convective-type non-normality introduced from advection of the base
flow.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 3.1: Cartoon of forcing (left column) and response (right column) modes for
various amplification mechanisms. Panels (a) and (b) are the forcing and response
for a completely normal operator. Panels (c) and (d) are the forcing and response
in Equation 3.3, for a component-type non-normality. Panels (e) and (f) depict a
π/2 phase difference between the forcing and response mode. Panels (g) and (h)
illustrate the action of the Orr mechanism where the forcing mode leans upstream
against the mean shear and the repsonse mode leans downstream and is aligned
with the mean shear. Panels (i) and (j) denote a convective-type non-normality
where the forcing is upstream of the response. This is a convective instability while
panels (k) and (l) include a region of overlap between the modes where the flow is
absolutely unstable. Positive/negative isocontours are denoted by solid/dotted lines
and blue/red colors indicate streamwise/transverse components, in the n1 or x and
n2 or y directions, respectively.
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3.3 Lower Rank Approximations of the Resolvent Operator
The conditions under which analysis of the resolvent is likely to identify eigen-
modes as the most amplified disturbance are formalized in this section. In these
scenarios, it is also feasible to differentiate the contributions from resonance and
non-normality to the resolvent norm.

3.3.1 Dyad expansion of the Resolvent Operator
As is more customary for the eigenvalue problem (Luchini and Bottaro, 2014;
Schmid and Brandt, 2014) a dyad expansion of the resolvent R for a generic, non-
singular linear operator Q can be performed,

R = (zI − Q)−1 =

n∑
j=1

1
z − λ j

g̃ j h̃
∗

j , (3.15)

where g̃ j and h̃ j are the jth left and right eigenvectors of Q, respectively. Since
the objective of resolvent analysis is often the identification of the most amplified
neutral disturbance, iω is substituted for z and the eigenvectors of the LNS operator
for g̃ j and h̃ j into Equation 3.15 to give

H (ω) =

n∑
j=1

1
iω − λ j

ũ j ṽ
∗
j . (3.16)

Thus if the real part of an eigenvalue λp is sufficiently close to zero and the forcing
frequency ω is identical to the imaginary part, then its contribution to the series
dominates over the contributions from all other eigenvalues. The resolvent, further-
more, can be approximated by the forward and adjoint eigenvectors corresponding
to that frequency weighted by the inverse distance between the eigenvalue and the
imaginary axis:

H (ω) ≈
1

iω − λp
ũp ṽ

∗
p. (3.17)

Equation 3.17 represents a rank-1 approximation of the resolvent operator using
eigenvectors. In the context of base flows, the resolvent is singular at the critical
Reynolds number since the real part of the least stable eigenvalue is identically zero
when it crosses the imaginary axis. In the case of mean flows, which tend to be
marginally stable (e.g. Reynolds and Tiederman, 1967; Barkley, 2006; Turton et
al., 2015), Equation 3.17 is applicable for eigenvalues near the imaginary axis. It
is important to note that an eigenvalue does not have to be marginally stable, but it
must be the dominant contribution to the series in Equation 3.16. It is possible to
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obtain a rank-1 approximation of the resolvent even when an eigenvalue is highly
damped.

This rank-1 approximation fails when there is not sufficient separation of eigen-
values at the frequency of interest as will be seen for cylinder flow. If there are
several eigenvalues in the vicinity of the imaginary axis at a frequency ω, then the
resolvent operator can no longer be approximated by just one outer product in Equa-
tion 3.17. Equating the two low-rank approximations of the resolvent operator in
terms of eigenvectors (Equation 3.17) and resolvent modes (Equation 2.25) implies
the following:

σ1ψ̂1φ̂
∗

1 ≈
1

iω − λr
ũr ṽ

∗
r =⇒ ψ̂1 ∝ ũr , φ̂1 ∝ ṽr , (3.18)

since
ψ̂1 ≈

1
σ1(iω − λr )

ũr ṽ
∗
r φ̂1 = C ũr , (3.19)

where C is a complex constant. The leading resolvent response and forcing modes
are proportional to the forward and adjoint eigenmodes, respectively, and this holds
for any base or mean flow as long as only one eigenvalue leads to amplification.
The similarity between the resolvent forcing and adjoint stability modes draws out
how the resolvent operator contains sensitivity information, as described by, e.g.,
Qadri and Schmid, 2017. The development is less amenable to pseudoresonant
mechanisms where the proximity of an eigenvalue to the imaginary axis does not
necessarily govern the behavior of the resolvent.

3.3.2 The Relationship Between Spectral Radius and Spectral Norm for Ap-
proximately Low-Rank Operators

For a nonsingular linear operator Q, an explicit relationship between the spectrum
of Q and the spectral norm of its resolvent R (z) = (zI − Q)−1 is desired. Of
particular interest are cases where R (z) is approximately low-rank (i.e., a small
number of leading singular values are much larger than the others).

The spectral radius Θ of an operator Q can be defined through the eigendecompo-
sition VΛV−1

Θ(Q) = max
λ j∈Λ

(|λ j |). (3.20)

The spectral radius of the corresponding resolvent operator is

Θ(R (z)) = max
λ j∈Λ

( |z − λ j |
−1) =

[
min
λ j∈Λ

(|z − λ j |)
]−1

. (3.21)
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Note that, with this definition, Equation 3.2 may be expressed as

Θ(R) ≤ σ1 ≤ κΘ(R).

For non-normal operators with large condition numbers, the upper and lower bounds
span a large range, and thus do not give much insight into the size of the resolvent
norm, σ1. To estimate the resolvent norm in terms of the spectral radius, the fol-
lowing relationship from Gelfand (1941) can be used:

Θ(R) = lim
n→∞
‖Rn‖1/n. (3.22)

Suppose now that the largest singular value of resolvent operator (for a given z) is
much larger than the rest, such that

R (z) = ΨΣΦ∗ ≈ ΨΣ1Φ
∗, (3.23)

where Σ1 is Σ with all but the first singular value set to zero. Suppose in addition
that this truncation is also accurate for powers of R, i.e.,

Rn ≈ (ΨΣ1Φ
∗)n. (3.24)

Defining the quantity

ri j =
φ̂
∗

i ψ̂ j

φ̂
∗

j ψ̂ j

, (3.25)

implies that

(
Φ∗ΨΣ1

)n
= σn

1 (φ̂
∗

1ψ̂1)n
*...
,

r11 0 · · · 0
r21 0 · · · 0
...

...
. . .

...

+///
-

. (3.26)

The norm of powers of the resolvent may be estimated as

‖Rn‖ = ‖Φ∗RnΦ‖ ≈ ‖
(
Φ∗ΨΣ1

)n
‖ = σn

1 |φ̂
∗

1ψ̂1 |
n−1‖r ‖, (3.27)

where r = [r11 r21 · · · ]T . Consequently, assuming that Equation 3.24 holds, Equa-
tion 3.22 results in the estimate

Θ(R) ≈ σ1 |φ̂
∗

1ψ̂1 |. (3.28)

In other words, the resolvent norm is estimated to be larger than the lower bound in
Equation 3.2 by a factor of |φ̂

∗

1ψ̂1 |
−1. This analysis relied on the rather restrictive

assumption that only the leading singular value was large. If there is a pair of large
singular values, as is often the case in channel flows (owing to spatial symmetry
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across the mid-plane of the channel) then the argument may be generalized as fol-
lows. Suppose that σ1 and σ2 are of comparable size, and that all other singular
values are negligibly small. If it is assumed that |φ̂

∗

1ψ̂2 |, |φ̂
∗

2ψ̂1 | ≈ 0, then

(
Φ∗ΨΣ

)n
≈

*...
,

σ1φ̂
∗

1ψ̂1 σ2φ̂
∗

1ψ̂2 0 · · · 0
σ1φ̂

∗

2ψ̂1 σ2φ̂
∗

2ψ̂2 0 · · · 0
...

...
...

. . .
...

+///
-

n

≈ σn
1 |φ̂
∗

1ψ̂1 |
n−1

*...
,

r11 0 · · · 0
r21 0 · · · 0
...

...
. . .

...

+///
-

+ σn
2 |φ̂
∗

2ψ̂2 |
n−1

*...
,

0 r12 0 · · · 0
0 r22 0 · · · 0
...

...
...

. . .
...

+///
-

,

which, following the same approach as before, gives

Θ(R) ≈ max{σ1 |φ̂
∗

1ψ̂1 |,σ2 |φ̂
∗

2ψ̂2 |}. (3.29)

Thus the inverse of |φ̂
∗

1ψ̂1 | can be interpreted as the contribution of non-normality
to the resolvent norm. The product σ1 |iω − λ | can also be identified as a quan-
tification of non-normality since |iω − λ |−1 represents the resonance contribution
to the resolvent norm. However, since highly amplified modes may occur at non-
resonant frequencies, the contribution from |iω − λ | is typically overestimated as
it is likely for a pseudoeigenvalue to reside much closer to the imaginary axis than
the nearest eigenvalue of the unperturbed spectrum. These two predictions tend to
agree in cases where amplification can be attributed to a single eigenvalue and mean
stability analysis is valid.

3.4 Resonance curve and resolvent norm
To demonstrate the amplification characteristics of the resolvent for normal and
non-normal operators, the pseudo-spectra are sketched in Figure 3.2 for simple ex-
ample operators,

M1 = *
,

−1.5 + 1.1i 0
0 −1.9 − 2.2i

+
-
, (3.30)

M2 = *
,

−1.5 + 1.1i 5
0 −1.9 − 2.2i

+
-
, (3.31)

where M1 is a normal operator containing only the eigenvalues of the non-normal
operator M2. Level curves of ε for operators M1 and M2 satisfy

Λε (M1) = {z ∈ C : ‖(zI − M1)−1‖ ≥ ε−1}, (3.32)
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(a) (b) (c) (d)

Figure 3.2: Comparison of the pseudospectra and resolvent norm for the opera-
tors given in Equations 3.30 and 3.31, which have the same eigenvalues. (a, b)
normal operator M1, (c, d) non-normal operator M2. The eigenvalues, i.e., the
eigenspectrum, are marked by red crosses and color contours outline the bounds of
the perturbed spectrum for constant perturbation magnitudes in (a, c). The dashed
contours in (a) reflect that the pseudospectra are circles centered on the eigenval-
ues, which is not true for the non-normal operator in (c). The resolvent norm in
each case (b, d) reflects the value of these contours along the imaginary axis. Red,
dashed horizontal lines indicate the resonant frequencies of the operator, i.e., the
frequencies corresponding to the eigenvalues, while the blue, solid horizontal line
represents the most highly amplified frequency in the non-normal case.

and
Λε (M2) = {z ∈ C : ‖(zI − M2)−1‖ ≥ ε−1}, (3.33)

respectively.

For a normal operator such as M1, κ = 1 and the level curves of ε are propor-
tional to the distance from the closest eigenvalue. The resolvent norm for a partic-
ular ω is inversely proportional to the distance from iω to the nearest eigenvalue.
This shall be referred to as the resonance curve. The spectrum and pseudospec-
tra of M1 are shown in Figure 3.2(a); there are two stable eigenvalues denoted by
red crosses, and the pseudospectra consist of circular contours centered on the two
eigenvalues. Since both eigenvalues are significantly damped, amplification due to
resonance is not possible and the magnitude of the resolvent norm is less than one
(Figure 3.2(b)). Moreover, the eigenvalue and singular value decompositions of M1

yield parallel basis functions, and the singular values are simply the magnitude of
the eigenvalues.

Operator M2, however, is non-normal due to the non-zero off-diagonal term and,
with reference to Equation 3.2, κ > 1. The shifts of the eigenvalues of the per-
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turbed operator are not proportional to ε , as indicated by the pseudospectrum iso-
contours in Figure 3.2(c), and the resolvent norm of Figure 3.2(d) is appreciably
larger than that of the normal case in Figure 3.2(a), with values exceeding one.
Furthermore, the maximum value of the resolvent norm occurs at a non-resonant
frequency, ω = 0.66. Amplification is possible for a linearly stable operator due
to pseudoresonance under forcing at any frequency for which ‖H (ω)‖ > 1. It
is important to add that even when the primary contribution to amplification is a
normal mechanism, non-normality can still contribute to exacerbate the response.
For example, the amplification at the frequencies of the eigenvalues in Figure 3.2 is
higher for operator M2 than it is for the purely normal operator S. That being the
case, the right-hand side of Equation 3.2 may be large due to one or both terms in
the product.

The projections of the first resolvent mode ψ̂1 onto the eigenvectors of operators M1

and M2 are plotted in Figure 3.3 for various ω. For M1, the values are either one
or zero meaning that ψ̂1 is one of the operator’s eigenvectors, even at non-resonant
frequencies. The eigenvector it chooses is simply whichever eigenvalue is closest
to z = iω for a given ω. The projections for operator M2 are far more interesting.
There is a nontrivial projection of ψ̂1 onto both eigenvectors for every ω, hence
why the resolvent norm in Figure 3.2 is higher for operator M2 at every frequency.
The maximum |ψ̂

∗

1 ũ1 | and |ψ̂
∗

1 ũ2 | occur at λ1 and λ2, respectively, which is to be
expected since the forcing is at the frequency of these eigenvalues. The projections
at the most amplified frequency (ω = 0.66) are both high, which can be seen by
their product. The frequency where the product peaks, however, does not match
the most amplified frequency since Real (λ1) < Real (λ2), hence the resolvent’s
preference for choosing a frequency closer to λ1.

Since both eigenvectors are needed to capture the behavior of operator M2 but only
one resolvent mode is needed, it can be concluded that resolvent modes are a more
efficient basis for capturing the dominant input-output behavior of the operator. It
can also be inferred that the projection of ψ̂2 onto the eigenvectors is relatively small
since it is orthogonal to ψ̂1. It is no surprise, therefore, that the resolvent operator
tends to be low-rank at pseudo-resonant frequencies since the optimal resolvent
response mode projects onto many eigenvectors. This forces suboptimal resolvent
modes to be nearly orthogonal to many eigenvectors of the LNS operator and so
their contribution to the input-output behavior is negligible.

Having examined the implications of the structure of the operator on amplification
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Figure 3.3: Projection of the first resolvent mode ψ̂1 onto the eigenvectors ũ1
(brown dashed-dotted line) and ũ2 (green dotted line). The product of these pro-
jections is the black, long dashed line. Red, dashed horizontal lines indicate the
resonant frequencies of the operators and the blue, solid horizontal line represents
the most highly amplified frequency in the non-normal case.

and forcing and response modes, the remainder of this chapter is devoted to analysis
of two real example flows. Low Reynolds number cylinder flow is used to investi-
gate the choice of base or mean flow as the linear stability threshold is crossed. A
canonical wall turbulence configuration is employed to identify the influence of the
various terms in the resolvent on the resulting singular value decomposition.

3.5 Application to Cylinder Flow
Global resolvent analysis is applied to the base and mean velocity profiles for cylin-
der flows under the critical Reynolds number Rec ≤ 47 (Provansal et al., 1987;
Sreenivasan et al., 1987; Noack and Eckelmann, 1994), as well as mean flows of
the 2D laminar vortex shedding regime where Re ≤ 189 (Barkley and Henderson,
1996). Cylinder flow is a particularly suitable choice to investigate trends associated
with the wavemaker since it exhibits a region of absolute instability.

3.5.1 Base flow velocity profile
A resolvent analysis is performed on the cylinder base flow for various Reynolds
numbers over a range of ω. Contours of the pseudospectrum for Re = 47 are over-
laid onto the spectrum, which is in agreement with Sipp and Lebedev (2007) to
within the sensitivity to the mesh geometry, in Figure 3.4(a). The variation of the
resolvent norm along the imaginary axis, i.e. σ1, is plotted alongside the second
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(a) (b)

Figure 3.4: (a) Spectrum (red dots) and pseudospectrum (filled contours, ε increas-
ing as colors change from dark to light) of the LNS operator for the cylinder base
flow at Re = 47. (b) The resolvent norm, σ1 (solid line), i.e. the value of ε−1 along
the imaginary axis, second largest singular value σ2 (dash-dotted line) and inverse
distance from the imaginary axis to the nearest eigenvalue (dotted red line).

singular value of the resolvent, σ2, and the resonance curve in Figure 3.4(b). There
is only one frequency ωmax where the first singular value is several orders of mag-
nitude larger than all the others (only two are shown for clarity). The least stable
eigenvalue, whose imaginary part is ωmax , dominates the behavior of the resolvent
norm and its influence spans from 0 < ω < 1.1. For the cylinder base flow at
Re = 47, ωmax = 0.742 corresponds to the true ωs at the onset of vortex shed-
ding. The amplification is significantly lower for all other frequencies, including
harmonics, and the resolvent is not low-rank since the eigenvalues are not separated
for ω > 1.1.

If the resolvent norm had been computed for Rec exactly, it would be infinite at
ωmax since the resolvent is undefined when there is an eigenvalue on the imaginary
axis. The finite value quoted in Figure 3.4(b), therefore, is very sensitive to small
changes of the Reynolds number or the mesh resolution as this may affect the real
part of the least stable eigenvalue. It is misguided to ascribe significant importance
to the precise value quoted in Figure 3.4(b). What is important is the separation
of singular values, which implies a strong linear (in this case stability) mechanism,
and a single peak. This reinforces why stability analysis about the base flow can
predict Rec in contrast to stability analysis of wall-bounded shear flows, which fails
to predict the transition to instability by not taking into account non-normality and
transient growth. In the case of the cylinder, only one structure at the globally most
amplified frequency is prone to significant amplification at subcritical Reynolds



62

numbers and it is the first to become unstable.This is characteristic of an absolute
instability mechanism in which frequency selection is not influenced by background
noise.

The stability modes and resolvent modes are nearly identical as seen in Figure 3.5.
The effect of lift-up is weak since the energy is fairly evenly distributed in the u−

and v−components of both the forcing and response modes in Figure 3.5. Mean
flow advection, on the other hand, plays a significant role in the spatial support of
the forcing and response modes which are located upstream and downstream of the
cylinder. Chomaz (2005) made an analogous observation for the forward and adjoint
eigenmodes and attributed this to convective non-normality. Since the resolvent
operator is low-rank, computing |φ̂

∗

1ψ̂1 |
−1 is a good estimate of the non-normal

amplification experienced by the flow. A value of |φ̂
∗

1ψ̂1 |
−1 = 79.4 is obtained,

which is in good agreement with σ1(ωmax) |iωmax−λls | = 79.3 (see Table 3.1). This
accounts for the large gap between the peaks of the resolvent norm and resonance
curve in Figure 3.4(b). Despite the fact that the resolvent norm and real part of the
least stable eigenvalue are sensitive to the mesh, the agreement between the two
measures of non-normality is robust.

The least stable global mode and its adjoint counterpart are computed for various
Reynolds numbers near and below Rec to illustrate the cylinder transition from con-
vective to absolute instability. Figure 3.6 juxtaposes the v-component of the adjoint
mode, forward mode, and wavemaker. The forward mode has unit magnitude while
the adjoint has been normalized with respect to the forward mode such that their in-
ner product is unity. A wavemaker first appears for Re = 25, the Reynolds number
at which Monkewitz (1988) determined the cylinder wake is absolutely unstable.
There is no wavemaker for lower Reynolds numbers due to the downstream loca-
tion of the forward eigenmode which is a consequence of mean flow advection; the
strength of the reverse flow is not sufficient to produce an overlap region. For the
lowest two Reynolds numbers considered in Figure 3.6, the contour levels of the
forward eigenmode immediately behind the cylinder are three orders of magnitude
smaller than their higher Reynolds number counterparts. The downstream location
where the contour levels are significant does not appear within the plotted domain.
As the Reynolds number increases, the velocity deficit grows and the reverse flow
directly behind the cylinder strengthens. The forward eigenmode gradually appears
closer to the cylinder until there is a nontrivial overlap between it and its adjoint
counterpart.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: Comparison of stability modes (left) with resolvent modes (right) at the
critical Reynolds number Rec = 47 and a temporal frequency of ω = 0.742. Panels
(a, b) are the streamwise component of the forward or response mode, (c, d) are the
transverse component of the forward or response mode, (e, f) are the streamwise
component of the adjoint or forcing mode, and (g, h) are the transverse component
of the adjoint or forcing mode. The eigenmodes and resolvent mode shapes are
essentially indistinguishable for this flow.
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.6: Contours of the transverse velocity for the leading adjoint modes ṽ†

(left) and forward modes ṽ (middle) of the base flow. The Reynolds numbers
(Re =15; 25; 35; 45; and 50) increase from top to bottom. The wavemaker W
(right) is computed using the forward and adjoint modes. Contour levels are not
identical for the adjoint modes which are normalized based on the forward modes.
Note that the streamwise velocity component has not been plotted even though the
wavemaker depends on this quantity.
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(a) (b)

Figure 3.7: (a) Spectrum (red dots) and pseudospectrum (filled contours, ε increas-
ing as colors change from dark to light) of the LNS operator for the cylinder mean
flow at Re = 100. (b) The resolvent norm, σ1 (solid line), i.e., the value of ε−1

along the imaginary axis, second largest singular value σ2 (dash-dotted line) and
inverse distance from the imaginary axis to the nearest eigenvalue (dotted red line).

Beyond the Recrit , the region of the flow which is absolutely unstable is sufficiently
long for the flow to become globally unstable. Perturbations grow exponentially in
time until they are saturated by nonlinearities. The resulting velocity fluctuations
are dominated by the vortex shedding. Once the flow has reached a limit cycle,
the shedding frequency is different from that predicted by resolvent analysis of the
base flow since the frequency of the least stable perturbations is altered during the
saturation process. Additionally, the mean recirculation region behind the cylinder
is shorter than its base flow counterpart in the streamwise direction.

3.5.2 Mean velocity profile
The focus of resolvent analysis typically shifts when using the mean velocity pro-
file rather than the base flow. The goal becomes identification of the energetically
important structures and their frequencies in the unsteady flow rather than predic-
tion of the external forcing and structure which appears when the flow becomes
unsteady.

Contours of the pseudospectrum corresponding to the mean flow in the 2D laminar
shedding regime are overlaid with the spectrum of the mean flow at Re = 100 in
Figure 3.7. The resolvent norm along the imaginary axis is also plotted alongside
the second largest singular value and resonance curve. Similar to the base flow
resolvent, there is only one frequency at which there is a resonant peak. Unlike
the base flow case, the most amplified frequency at supercritical Reynolds numbers
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(a) (b)

Figure 3.8: (a) The resolvent norm for the critical (solid red line), subcritical (solid
black lines), and supercritical (dotted black lines) base flows. (b) The resolvent
norm for supercritical mean flows.

correctly predicts the shedding frequency as seen in Figure 3.8. While the resolvent
norm always peaks at a distinct frequency for all cases, the growth rate of the least
stable eigenvalue of the base flow continues to grow while the frequency remains
roughly constant. Figure 3.8 shows that the largest peak occurs at the stability
limit, Recrit . The maximum amplification, which here is proportional to the inverse
distance between the eigenvalue and the imaginary axis, indicates the progression
of the least stable pole across the complex plane and over the imaginary axis. The
resolvent norm has not been plotted for supercritical base flows since the resolvent
attempts to quantify the size of perturbation necessary for the spectrum to cross the
neutral axis. For the base flow at the critical Reynolds number Recrit and mean
flows where Re > Recrit , the size of this perturbation is very small, leading to very
highly amplified disturbances.

The peak resolvent norm for the mean flows has no discernible pattern in Figure 3.8
since the real part of the eigenvalue is approximately zero. It is very sensitive,
therefore, to the spatial resolution and temporal convergence of the mean flow in
addition to the discretization of ω. Similar to the base flow case, the precise value
of σ1 is not of fundamental importance. Nevertheless, proportionality between the
resolvent and stability mode shapes can be expected. Substituting iωs for λ into
Equation 3.16, since the real part of the marginally stable mode is nearly zero,
yields

H (ωs) ≈ ũs ṽ
∗
s ≈ ψ̂ sφ̂

∗

s . (3.34)
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The sum in Equation 3.16 is dominated by the contribution from the marginally
stable mode so the resolvent operator can be approximated by the outer product
of the marginally stable mode and its adjoint counterpart or the optimal resolvent
response and forcing modes at ωs. Similar to the base flow case, the prediction
from |φ̂

∗

1ψ̂1 |
−1 = 26.9 agrees fairly well with the ratio of σ1(ωs) |iωs − λs | = 28.9

(see Table 3.1).

Rather than comparing the stability and resolvent mode shapes as shown in Fig-
ure 3.5, the contribution of the fluctuating feedback force to the wavemaker (see
Meliga et al., 2016) for Re = 100 is computed using stability and resolvent modes,
respectively, in Figure 3.9(a,b). Figure 3.9(a) is in good agreement with Meliga
et al. (2016) and the agreement between Figures 3.9(a,b) is excellent, implying that
the underlying modes are indeed proportional to each other. Streamlines from the
mean flow are superimposed to observe how the wavemaker is related to the mean
recirculation bubble, the size of which depends on Reynolds number. The length of
the recirculation bubble scales with the streamwise extent of the wavemaker region
for any Reynolds number for either the mean flow as seen in Figure 3.9(a,b) or base
flow as seen in Figure 3.9(c,d). The wavemaker regions associated with the base
profile are shown in Figures 3.9(c) and (d) for Re = 47 and Re = 100, respec-
tively. Figures 3.9(a) and (d) compare the mean and base wavemakers at Re = 100,
the main difference being that as the Reynolds number increases, both the mean
recirculation bubble (Zielinska et al., 1997) and wavemaker region shrink. For the
unstable base flows, increasing the Reynolds number will also increase the stream-
wise length of the recirculation bubble and wavemaker region as seen in Figures
3.9(c,d).

3.5.3 Resolvent modeling of (low Reynolds number) cylinder flow
In the case of flow around a circular cylinder, the resolvent identifies only stabil-
ity mechanisms for both the base and mean flow cases. There are no frequencies
at which amplification occurs due to pseudoresonance. This is consistent with the
work of Abdessemed et al. (2009) who investigated direct transient growth analysis
to study its role in the primary and secondary bifurcations of cylinder flow. Since
only one mode becomes unstable, the effect of the nonlinearities is to saturate the
growth mechanism and this alters the frequency of the structure (Barkley, 2006).
While the base flow is unable to predict the nonlinear frequency in the saturated
state, it can be correctly predicted from the mean flow. Thus in the case of stability
mechanisms leading to unsteadiness (e.g. cylinder flow, Rayleigh-Bénard convec-
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(a) (b)

(c) (d)

Figure 3.9: Wavemakers for mean flow at Re = 100 computed from stability modes
(a) and resolvent modes (b). Wavemakers for the base flow at Re = 47 (c) and
Re = 100 (d). Blue lines superimpose the mean flow streamlines which delineate
the mean recirculation bubble.

tion (Turton et al., 2015)), mean stability analysis is successful at predicting the
frequency of the unsteady flow.

3.6 Application to Wall-Bounded Turbulence
Unlike the cylinder flow, which is an oscillator with intrinsic dynamics that are in-
sensitive to background noise, wall-bounded shear flows are an example of a noise-
amplifier; as such, pseudoresonance plays a big role and leads to significant ampli-
fication at non-resonant frequencies. Due to its geometric simplicity, channel flow
is chosen at Reτ = 2000 which has a parallel mean velocity profile u = u(y).

The off-diagonal term in L is proportional to the mean shear u′ which is maximum
at the wall. It remains large in the inner region before it begins to decline in the log
region. Mean shear is the primary source of non-normality leading to significant
amplification. Its spatial variation is important since it has been shown by McKeon
and Sharma (2010) that a critical-layer mechanism tends to localize activity at the
wall-normal location where the phase speed of the disturbance is equal to the local
mean velocity. This is explored further by considering three particular wavenum-
ber triplets that are representative of the near-wall cycle, a very large-scale motion
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(a) (b)

Figure 3.10: (a) Turbulent mean velocity profile for channel flow at Reτ = 2000
plotted in inner units alongside (b) the mean shear.

(VLSM), and a stationary disturbance. The roles of normal and non-normal mech-
anisms are studied by analyzing the mode shapes of the leading resolvent response
modes, the pseudospectrum of the LNS operator, and the resolvent norm compared
with the resonance curve.

3.6.1 Near-wall cycle
The first wavenumber combination considered is (kx , kz,c+) = (4π,40π,14) which
is representative of the near-wall cycle (McKeon and Sharma, 2010). Here the
wavespeed is given by c+ = ω/kx . Figure 3.10 shows that the mean shear is very
large at the wall-normal height where the wavespeed matches the local mean, result-
ing in the off-diagonal terms of the resolvent operator being large. This is similar
to the model LNS operator in Equation 3.7 where the influence of non-normality
concentrates energy in different velocity components for ψ̂1 and φ̂1. The optimal
resolvent forcing and response modes are plotted in Figure 3.11 to illustrate that the
forcing is primarily concentrated in v and w while the response is mostly in u.

The strength of mean shear suggests that pseudoresonance is the primary driver of
the near-wall cycle mode. The spectrum as well as contours of the pseudospectrum
are plotted in Figure 3.12 for various ε . Figure 3.12 also includes the resolvent norm
and the resonance curve. The ratio of the resolvent norm to the contribution from
resonance is 19.6, which is of the same order of magnitude as the value predicted
by |φ̂

∗

1ψ̂1 |
−1 = 4.81 (see Table 3.1). Nevertheless, it is clear from this discrepancy

that amplification cannot be attributed to one particular eigenvalue and that there is
no eigenvector which is proportional to the resolvent mode. Using the expression
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(a) (b)

Figure 3.11: Velocity amplitudes for the optimal forcing mode φ̂1 in (a) and optimal
response mode ψ̂1 in (b) corresponding to the wavenumber triplet of (kx , kz,c+) =

(4π,40π,14).

σ1 |iω − λ | to quantify non-normality is problematic since there is no unique λ

which is responsible for amplification.

The ω corresponding to c+ = 14 is indicated by the horizontal, dashed blue line.
At this frequency, the resolvent norm is significantly larger than the resonance term
suggesting that amplification is due to non-normal mechanisms. This observation is
confirmed by the spectrum where the least damped eigenvalues are clustered around
higher frequencies and contribute to the resolvent norm forω > 300. It is also worth
noting that the eigenvalues are significantly damped, which results in the leading
singular values being on the order of unity. While these are not large, the rank-1
approximation is still valid since the first pair of singular values is approximately
one order of magnitude larger than the others as seen in Figure 3.13.

3.6.2 VLSM
Further from the wall, the mean shear drops several orders of magnitude (see Fig-
ure 3.10) and the effect of viscosity decreases. As a result, amplification becomes
a mix of both normal and non-normal effects. To reinforce this point, a wavenum-
ber triplet which is representative of a VLSM is considered. The mode shapes for
(kx , kz,c+) = (π/9,2π/3,22) are plotted in Figure 3.14. The forcing is dominated
by the w-component while the response is dominated by the u-component. The v-
component of the forcing, notably, is less significant than the near-wall cycle mode,
implying that the role of lift-up is not as pronounced for this mode. The spectrum
associated with the streamwise and spanwise wavenumbers of the VLSM is plotted
along with the pseudospectrum of the LNS operator in Figure 3.15.
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Figure 3.12: The eigenvalues of the operator L(kx = 4π, kz = 40π) in red circles
overlaid with contours of the pseudospectrum (left). The resolvent norm is plotted
in the solid black line along with the inverse distance from the imaginary axis to
the nearest eigenvalue which is the red dotted line (right). The spatial wavenumbers
correspond to the near-wall cycle, and the horizontal, dashed blue line represents the
ω with the largest resolvent norm, which corresponds to a phase speed of c+ ≈ 14.

Figure 3.13: First 20 singular values of the resolvent operator for (kx , kz,c+) =

(4π,40π,14).
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(a) (b)

Figure 3.14: Velocity amplitudes for the optimal forcing mode φ̂1 in (a) and optimal
response mode ψ̂1 in (b) corresponding to the wavenumber triplet of (kx , kz,c+) =

(π/9,2π/3,22).

Figure 3.15: The eigenvalues of the operator L(kx = π/9, kz = 2π/3) in red circles
overlaid with contours of the pseudospectrum (left). The resolvent norm is plotted
in the solid black line along with the inverse distance from the imaginary axis to the
nearest eigenvalue which is the red dotted line (right). The spatial wavenumbers
correspond to the VLSM mode, and the horizontal, dashed blue line represents the
ω with the largest resolvent norm, which corresponds to a phase speed of c+ ≈ 22.
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Figure 3.16: First 20 singular values of the resolvent operator for (kx , kz,c+) =

(π/9,2π/3,22).

The results are drastically different from the near-wall cycle case as the resonant
forcing of eigenvalues is greater than one so amplification is due to both terms on
the right-hand side of Equation 3.2. Notably, the spectrum in Figure 3.15 resem-
bles that of the base flow at Re = 10,000 for kx = 1, kz = 0 as there are three
distinct branches. As observed by Reddy et al. (1993) and Schmid and Henningson
(2001), the eigenvalues at the intersection of the branches are the most sensitive
to perturbations and result in very large non-normal amplification. The product
σ1 |iω − λ | = 146 while ‖φ̂

∗

1ψ̂1‖
−1 = 34.9 (see Table 3.1), suggesting that the

nonorthogonality of many eigenfunctions leads to high pseudoresonance. Similar
to the near-wall cycle case, there are no eigenvalues which exactly match the wave
speed associated with the VLSM. The eigenvalue close to the dotted blue line in
Figure 3.15, however, does seem to impact the resolvent norm which has an extra
bump near its maximum value. This is also reflected in the red dotted line since
the eigenvalue protrudes from the distinct Y-shape of the spectrum. The maximum
singular values are on the order of 103 and the resolvent operator is low-rank as
seen in Figure 3.16.

3.6.3 Stationary disturbances
Finally, stationary disturbances are considered as they tend to be the most ampli-
fied by the resolvent operator with singular values exceeding 104. The specific
wavenumber triplet selected for this study is (kx , kz,ω) = (0,2π/3,0). The roots
behind such large amplification can be traced back to the model operator in Equa-
tion 3.7. In this example, the ∂u/∂y → ∞ resulting in a low-rank system which
concentrated all the forcing energy in the second velocity component and the re-
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(a) (b)

Figure 3.17: Velocity amplitudes for the optimal forcing mode φ̂1 in (a) and optimal
response mode ψ̂1 in (b) corresponding to the wavenumber triplet of (kx , kz,ω) =

(0,2π/3,0).

sponse energy in the first velocity component. When kx = ω = 0, all of the diagonal
terms of the resolvent become order ε small since imaginary terms are eliminated
andD scales with Re−1. Thus, when the LNS operator is inverted, the determinant,
which is the product of the diagonal terms, is very small. The energy for the forcing
is almost totally in the wall-normal and spanwise components as seen in Figure 3.17
while the response is almost totally in the streamwise component.

Similar to the near-wall cycle and VLSM modes, the spectrum and contours of the
pseudospectrum are presented in Figure 3.18 alongside the resolvent norm and reso-
nance curve. All of the eigenvalues are real since the imaginary terms are eliminated
from the resolvent operator when kx = 0. Another implication of eliminating mean
flow advection, as mentioned by Hack and Moin (2017), is that the Orr mechanism
is absent from this mode.

Stationary disturbances are highly amplified and the singular values are plotted in
Figure 3.19. The rank-1 approximation is quite applicable for this particular mode
as the leading pair of singular values is on the order of 105. Moreover, the contribu-
tion from non-normality is |φ̂

∗

1ψ̂1 |
−1 = 250 which agrees quite well with σ1 |iω− λ |

= 278. Such agreement can be attributed to the eigenvalue closest to the imag-
inary axis which has an imaginary component that agrees with the most ampli-
fied frequency. Unlike the cylinder case where there exists a convective-type non-
normality, the kx = 0 modes are an example of the component-type non-normality
and so |φ̂

∗

1ψ̂1 | is small since the velocity for the forcing mode is almost completely
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Figure 3.18: Spectrum and pseudospectrum of the stationary disturbance mode

Figure 3.19: First 20 singular values of the resolvent operator for (kx , kz,ω) =

(0,2π/3,0).

concentrated in the wall-normal plane while the velocity for the response mode is
nearly all in the streamwise direction.

3.6.4 Influence of spatial wavenumber and wave speed
Based on the findings of this study and observations from Bourguignon (2012), it is
possible to categorize amplification mechanisms in wall-bounded turbulence as ei-
ther normal or non-normal depending on the wavenumber vector k selected. When
kx is small, the influence of both mean flow advection and viscosity is diminished
resulting in a non-normal system where there is high amplification. Low-order
modes (those corresponding to the largest singular values), experience high ampli-
fication due to both normality and non-normality. Higher-order modes also experi-
ence amplification due to non-normality. At higher kx , only low-order modes are



76

k or ω σ1 |iω − λ |−1 σ1 |iω − λ | |φ̂
∗

1ψ̂1 |
−1

Cyl. Base ω = 0.743 5.78e04 729 79.3 79.4

Cyl. Mean ω = 1.02 1.65e04 570 28.9 26.9

NWC k = (4π,40π,14) 0.502 2.56e-02 19.6 4.81

VLSM k = (π/9,2π/3,22) 479 3.28 146 34.9

Stationary k = (0,2π/3,0) 8.14e04 293 278 250

Table 3.1: Quantification of non-normality for the most amplified modes in cylinder
and turbulent channel flows.

amplified as long as they are localized near the critical layer. Higher-order modes
experience low amplification which is proportional to viscosity. The wall-normal
height, furthermore, has implications on the type of amplification as it influences
the choice of wave speed c, or ω, as well as the influence of mean shear ∂u/∂y.
Closer to the wall, the mean shear is highest, while in the log region mean shear
still plays an important role, resulting in preferential amplification of long stream-
wise structures.

3.7 Comparison of Flows
Cylinder flow is a case where resonance is the root of amplification leading to sim-
ilarity of stability and resolvent modes. In both the base flow and mean flow cases,
amplification occurs at a single frequency corresponding to the imaginary part of
the least stable eigenvalue. The resolvent modes can be used to identify the wave-
maker, which does not exist at very low Reynolds numbers when the flow is only
convectively unstable. The cylinder exemplifies a convective-type non-normality
where mean flow advection separates the spatial support of the forcing mode to be
upstream of the response mode as long as u > 0. Non-normality quantified by
|φ̂
∗

1ψ̂1 |
−1 agrees well with σ1 |iω − λ | for both the base and mean flows.

Only resonant mechanisms are active in cylinder flow whereas in wall-bounded
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turbulence, both resonant and pseudo-resonant mechanisms are relevant. Three
wavenumber triplets, representative of the near-wall cycle, VLSM’s, and station-
ary disturbances, highlight the competing influences of viscous dissipation, mean
flow advection, and mean shear on not only the most amplified modes but also the
spectrum and pseudospectrum. The importance of each term depends significantly
on the wall-normal height where the perturbations are localized. In the inner region
where there is very high mean shear and viscosity is most important, amplification is
primarily due to pseudoresonant mechanisms. Forcing in the spanwise/wall-normal
plane leads to a large response in the streamwise direction as seen for the near-wall
cycle mode. The eigenvalues are highly damped yet the resolvent norm is on the
order of unity due to the high sensitivity of the spectrum to perturbations. In the
log region, mean shear and consequently lift-up are weaker yet the declining impor-
tance of viscosity results in eigenvalues which are closer to the imaginary axis. The
most amplified disturbance for wavenumbers corresponding to the VLSM, never-
theless, is primarily due to pseudoresonance. Consequently, there is poor agreement
between non-normality quantified by |φ̂

∗

1ψ̂1 |
−1 and σ1 |iω− λ | as it is clear that am-

plification can no longer be attributed to a single eigenvalue. Mean flow advection
results in the Orr mechanism (see McKeon, 2017) and hence less overlap between
the forcing and response modes.

Stationary disturbances are the globally most amplified disturbances by effectively
leveraging mean shear. The perturbation energy is almost exclusively concentrated
in the v− and w-components of the forcing mode and in the u-component of the
response mode. Assuming streamwise constant disturbances eliminates the mean
flow advection term from the resolvent operator and hence suppresses the Orr mech-
anism. All of the non-normality, consequently, can be classified as a component-
type non-normality, in contrast to the cylinder flow, and the eigenvalues of the LNS
operator are real. Non-normality quantified by |φ̂

∗

1ψ̂1 |
−1 agrees well with σ1 |iω−λ |

since amplification can be attributed to the eigenvalue closest to the imaginary axis.
For a generic wavenumber triplet, the applicability of the rank-1 approximation can
be approximated by the ratio of the largest term in the resolvent operator to the other
entries. Finally, the distribution of energy among various velocity components may
be useful when considering how the nonlinear term, which can be computed from
resolvent response modes (McKeon et al., 2013), projects onto the optimal resol-
vent forcing modes.
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3.8 Summary and Contribution
Stability and resolvent analysis have been juxtaposed to highlight the types of am-
plification mechanisms they are likely to identify. The two can be formally related
through a dyad expansion of the resolvent operator. When the resolvent identifies
eigenmodes as the most amplified disturbance, the forward eigenmodes are propor-
tional to the resolvent response modes and the adjoint eigenmodes are proportional
to the resolvent forcing modes which, consequently, contain sensitivity informa-
tion. This formulation also elucidates how to interpret the real part of eigenvalues
belonging to the mean LNS operator. It plays a role in the degree to which a dis-
turbance is amplified by the resolvent and it separates eigenvalues in the spectrum
leading to low-rank behavior. This is particularly evident in cylinder flow where the
eigenvalue corresponding to the shedding mode is isolated from the other eigenval-
ues and is so close to the imaginary axis that it dominates the resolvent norm for a
broad range of frequencies.

The contributions to the resolvent norm have been split into a resonance part and a
non-normal part. The distance between the eigenvalue and a particular point on the
imaginary axis quantifies the resonant contribution and its product with the resol-
vent norm is one scalar measure of non-normality. Non-normal amplification can
also be computed by the inverse of the inner product between the most amplified
resolvent forcing and response modes, i.e. |φ̂

∗

1ψ̂1 |
−1. If the two scalar measures

of non-normality agree, it implies that amplification is due to a discrete eigenvalue
and mean stability analysis is valid; otherwise, the amplification is due to pseudo-
resonance and |φ̂

∗

1ψ̂1 |
−1 is the best measure of non-normality. This also suggests

that to maximize the resolvent norm, it is desirable to minimize the overlap of the
forcing and response modes, which biases the resolvent in favor of selecting ampli-
fication mechanisms which are as non-normal as possible.

Contours of the pseudo-spectrum have been overlaid with the spectrum for the mean
LNS operator associated with cylinder and turbulent channel flow. It can be seen
that the spectrum is very sensitive to perturbations in the latter flow due to high shear
which suggests that the least stable eigenvalues of the mean operator viewed in
isolation are less informative than they are for the two-dimensional case. Moreover,
the mode shapes and characteristics of the pseudo-spectrum can be predicted from
the mean profile or wavenumber triad selected as they have implications on which
terms in the LNS operator are most important.
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C h a p t e r 4

SCALING CHARACTERISTICS AND NONLINEAR FORCING
OF CYLINDER FLOW

In this chapter, the resolvent analysis of the mean cylinder wake is examined in
greater detail. It was observed in the previous chapter that the resolvent opera-
tor is very low-rank at temporal frequencies near the the shedding frequency. It
is revealed here that the resolvent always one dominant structure even when the
flow is three-dimensional. As such, resolvent analysis can be considered as a use-
ful tool in the context of data-assimilation since it is able to identify the energetic
structures that interact nonlinearly to produce the necessary Reynolds stresses that
sustain the mean profile. Additionally it contains information about the scaling of
the mean profile and how the dominant amplifications are sustained by nonlinear
interactions. In the context of reduced-order modeling, resolvent analysis assists
with the placement of flow sensors which are most helpful when placed in regions
of the flow where the fluctuations are energetic.

The implications of this case study go beyond its utility in flow reconstruction and
estimation. The optimal resolvent response modes are shown to agree closely with
DMD modes which are computed from snapshots of the flow. For frequencies
where the resolvent operator is not low-rank, the most amplified modes predicted
from resolvent analysis do not match the DMD modes. These observations are
similar to those made by Towne et al. (2018) for SPOD modes. Consequently, it
is not efficient to consider triadic interactions of resolvent modes outside the range
where the rank-1 approximation is valid. Instead, it is possible to predict higher
frequency harmonics by computing directly the nonlinear forcing u · ∇u and using
it as an input to the resolvent operator. This can be achieved by computing the
triadic interactions of resolvent modes where the rank-1 approximation is valid.
To demonstrate these ideas, the chapter focuses primarily on the Re = 100 case
although other Reynolds numbers are considered at the beginning when analyzing
the scaling behavior of the resolvent modes and mean profile.

4.1 Scaling of the Mean Profile and Resolvent Norm
The peak of the resolvent norm for the mean wake around a circular cylinder occurs
at the shedding frequency ωs as seen in Figure 4.1, where the leading singular



80

ω
0 0.5 1 1.5 2 2.5

σ
j

10
1

10
2

10
3

10
4

10
5

(a)

ω/ωs

0 0.5 1 1.5 2

σ
j

10
1

10
2

10
3

10
4

10
5

(b)

Figure 4.1: The first singular value σ1 (black) and second singular value σ2 (grey)
for Re = 60 (–), Re = 100 (– –), Re = 140 (– ·), and Re = 180 (· · · ). Singular
values are plotted versus ω in (a) and ω normalized by ωs in (b).

Figure 4.2: Schematic of the cylinder where the recirculation length lm is defined
as the distance between the edge of the cylinder and the end of the recirculation
bubble.

values for several Reynolds numbers are plotted. The location of the peak in the
resolvent norm collapses in Figure 4.1 when the frequency axis is scaled by ωs. A
scaling for the peak resolvent norm as a function of the Reynolds number cannot
be determined since the real part of the eigenvalue is nearly zero; consequently, the
resolvent norm is very sensitive to the spatial resolution and temporal convergence
of the mean flow.

The mean profile u(x, y) scales with St = ωsD/U∞ at the recirculation point xr , or
the streamwise location where the mean flow along the centerline switches direction
from negative to positive, implying u(x = xr , y = 0) = 0. lm is the recirculation
length and is defined as the distance from the edge of the cylinder to the recir-
culation point (see schematic in Figure 4.2). The mean profiles for the Reynolds
numbers considered earlier are plotted in Figure 4.3(a-d) with and without the y-
coordinate scaled by St. The profiles for u in panels (a-b) collapse almost perfectly
as does the shape of v in panels (c-d) even though the peak velocity for v depends
on Reynolds number.
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Figure 4.3: Mean profiles u (a) and v (b) at the recirculation point for Re = 60 (–),
Re = 100 (– –), Re = 140 (– ·), and Re = 180 (· · · ). The y-axis is rescaled by St
in (c) and (d) for u and v, respectively.

The mean profiles for a square cylinder and the three-dimensional cylinder wake
are also computed to see whether or not the same scaling applied. The results
for u only are plotted in Figure 4.4(a-b) and follow the same trends as the two-
dimensional cylinder wake. Similar scaling of the location of the peak resolvent
norm is observed for these flows as for the two-dimensional wake in Figure 4.1,
underscoring the importance of the similarity characteristics of the mean flow for
the response modes. These have not been plotted in the interest of brevity.

It is interesting to consider how the profile for the base flow U0 for the circular
cylinder scales at the recirculation point. It is well known that the base flow can-
not predict the frequency of the vortex shedding (Barkley, 2006). The profiles for
U0(x = xr , y) scaled by St, where the frequency is equal to that of the least stable
eigenvalue, are plotted in Figure 4.5. Their shapes are not quite identical since the
growth rate of the least stable eigenvalue increases with Reynolds number although
the width of the profile remains roughly constant. Barkley (2006) showed that the
frequency predicted by the base flow is almost constant above the critical Reynolds
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Figure 4.4: Rescaled mean profiles u at the recirculation point for the square
cylinder (a) and three-dimensional cylinder wake (b). The Reynolds numbers are
Re = 60 (–), Re = 90 (– –), Re = 120 (– ·), and Re = 150 (· · · ) (black) for the
square cylinder and Re = 200 (–), Re = 230 (– –), Re = 260 (– ·), and Re = 290
(· · · ) (grey) for the three-dimensional cylinder wake.
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Figure 4.5: Base flow profiles U0 at recirculation point for circular cylinder Re = 60
(–), Re = 100 (– –), Re = 140(– ·), and Re = 180(· · · ).

number, so the profiles in Figure 4.5 have been rescaled by nearly the same St. It
can be concluded that the frequency predicted from stability analysis of the unsta-
ble base flow is determined by the width of the profile at the recirculation point,
which remains roughly constant for Re > Rec. The main change that occurs when
increasing the Reynolds number is an elongation of the mean recirculation bubble
which scales linearly with Reynolds number (Zielinska et al., 1997).

4.2 Scaling and Convection Velocity of Resolvent Modes
The signature of ωs can also be observed in the optimal resolvent forcing and re-
sponse modes. The scaling of the former is simpler and is addressed first. The
amplitude of the forcing modes along the centerline of the domain for Re = 60 and
Re = 180 is plotted in Figure 4.6(a). The spatial support is limited to upstream
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Figure 4.6: Profiles of the optimal response mode ψ̂1 and forcing mode φ̂1 in (a)
and (c), respectively, along the centerline y = 0. The modes are rescaled by St in
(b) and (d). The grey, dashed line is Re = 60 while the black, dashed-dotted line is
Re = 180. The cylinder location is delineated by the shaded rectangle.

of the cylinder as well as the region immediately behind it. A convection velocity,
defined as

Uc =
ωs

k (x)
=

q(x)
2π

ωs, (4.1)

where q(x) is the spatial wavelength, is computed for the forcing mode in Fig-
ure 4.6(a) sufficiently upstream of the cylinder where it is constant, i.e. q , q(x).
For Re = 60, q = 7.44 and ωs = 0.844 yielding a convection velocity of Uc = 1.
In fact, the convection velocity for all Reynolds numbers is equal to unity for the
forcing mode sufficiently upstream of the cylinder and this is compatible with the
fact that u(x, y = 0) = 1 in this region. Consequently, an adjoint perturbation is
transported upstream at a convection velocity equal to the local mean velocity. The
forcing modes along the centerline for the circular cylinder, where the mean veloc-
ity is unity upstream of the cylinder, collapse when scaled by St in the streamwise
direction as seen in Figure 4.6(b).

The scaling of the resolvent response modes is less straightforward due to the com-
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plexity of the mean profile behind the cylinder. The analogous response modes for
Re = 60 and Re = 180 are plotted in Figure 4.6(c). Even though they scale with
St in Figure 4.6(d) for a couple of periods, the profiles diverge further downstream.
This can be attributed to the fact that Uc is not constant behind the cylinder and
this is apparent in Figure 4.7(a) where Uc has been plotted for several Reynolds
numbers. As observed by Thompson et al. (2014), the vortex street transitions from
spaced-out vortices to a bunched-up street with more diffused vortices at a stream-
wise location of approximately x = 10. This is less pronounced for the lower
Reynolds number cases as Uc does not decrease once it reaches a maximum while
it does for the higher Reynolds numbers. Nevertheless, the maximum value of Uc

is constant for all Reynolds numbers.

Uc is also calculated by tracking the local minima and maxima of the fluctuating v

field in the DNS snapshots. The minima correspond to the edges of the vortices and
these results match the values obtained using the mode shape. It can be concluded
that the most amplified global resolvent mode contains almost all of the dynamics
of the flow. It can be expected that the decrease in Uc somehow manifests itself in
the mean profile. Extracting the mean velocity along the centerline as seen in Figure
4.7(b) illustrates that even though the maximum velocity is approximately constant
with Reynolds number, there is a noticeable decline for higher Reynolds numbers
downstream of the cylinder. Similar to Uc, the mean velocity along the centerline
remains constant for the Re = 60 and Re = 100 cases but declines for higher
Reynolds numbers, particularly for Re = 180. It should be noted that the mean
centerline velocity is not equivalent to the convection velocity of the vortices. Lin
and Hsieh (2003) determined that the path of the vortex cores more closely follows
y = b/2 where b is the half-velocity-defect. The centerline mean velocity still
represents the trends in Uc and is consistent with the results from Cimbala et al.
(1988), Williamson and Prasad (1993) and Thompson et al. (2014).

The low-rank nature of the cylinder flow results in a close relationship between
the mean profile and the most amplified resolvent mode. Furthermore, it has been
shown that ωs plays a significant role in their scaling. Less attention has been given
to the scaling of the resolvent modes in the region immediately behind the cylinder
as well as the role of the recirculation length lm. These topics are discussed in the
next section.
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Figure 4.7: Mean profile along centerline (a) and convection velocities of the vor-
tices (b) for Re = 60 (–), Re = 100 (– –), Re = 140 (– ·), and Re = 180 (· · · ).

4.3 The Wavemaker and Recirculation Length
Figure 4.7(a) shows that Uc increases behind the cylinder before it either reaches
a constant value in the low Reynolds number cases or attains a maximum before
decreasing in the high Reynolds number cases. This implies that the vortices are
accelerating after forming behind the cylinder. It also means that the wavelength
of the resolvent response mode is constantly increasing as a function of streamwise
distance. The initial wavelength is proportional to the recirculation length as seen
in Figure 11 of Balachandar et al. (1997), or the size of the vortex immediately
before it is shed from the cylinder. Since there are two vortices of opposite sign per
wavelength of the response mode, the initial wavelength is thus 2lm. The convection
velocity at the recirculation point, consequently, is Reynolds number dependent and
is proportional to lmωs.

To achieve the convection velocity at xr , the vortex needs to accelerate over a dis-
tance lm from an initial speed of zero. Assuming the acceleration a is constant,
which is a reasonable assumption since the slope of Uc in Figure 4.7(a) is also
approximately constant at the beginning of the vortices’ trajectory, signifies that
simple kinematics can be used to determine acceleration:

U2
c = U2

i + 2alm, (4.2)

where Ui is the initial velocity of the vortex and is set to zero. The final value of Uc

is proportional to lmωs so acceleration scales in the following manner:

a ∼ ω2lm. (4.3)
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Figure 4.8: Comparison of the recirculation bubble length lm (blue circles), shed-
ding frequency ωs (red right-facing triangles) and ω2

s lm (black left-facing triangles)
in (a). Position of the vortex cores as a function of time in (b) for Re = 60 (–),
Re = 100 (– –), Re = 140 (– ·), and Re = 180 (· · · ).

The value of the acceleration in (4.3) is the acceleration rescaled such that it is
independent of Reynolds number. For larger Reynolds numbers where the vortices
are smaller, they need to accelerate more quickly since the recirculation length is
much shorter.

The time scale associated with the vortices is ωs while the length scale is q. Ignor-
ing the fact that smaller vortices eventually slow down due to the decay of the von
Kármán vortex street, the convection velocity is constant across Reynolds numbers
sufficiently downstream of the cylinder. The time scale associated with the accel-
eration, on the other hand, is lm, or q immediately behind the cylinder while the
time scale is still ωs as there are no other time scales in the flow. The maximum
convection velocity given by qωs is constant across all Reynolds numbers while the
acceleration lmω

2
s is also constant. Consequently, there is a relationship between a

mean quantity (lm) and a frequency of fluctuation (ωs). The respective values for lm,
ωs, and lmω

2
s are plotted in Figure 4.8(a) to show lmω

2 is constant across Reynolds
number as well as the trajectories of the vortices in Figure 4.8(b) to show that the
initial acceleration and final convection velocity are equal across Reynolds num-
bers. The trajectories are not identical since the larger vortices at lower Reynolds
numbers take longer to reach their maximum speed.

The fact that lm is directly related to the frequency of the unsteady fluctuations
supports the notion that the wavemakerW , which can be approximated by
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Figure 4.9: The first two singular values plotted as a function of ω for the mean
cylinder flow at a Reynolds number of Re = 100.

W (x0) ≈ ‖ψ̂1(x0,ωs)‖‖φ̂1(x0,ωs)‖, (4.4)

where ‖(·)‖ denotes the magnitude (Symon et al., 2018), represents the region of
instability in the flow, e.g. Giannetti and Luchini (2007). A physical analogy can
be noted between the bluff body flows and the simple pendulum. When visualizing
contours of the streamwise velocity, there is a region of fluid, the length of which is
approximately lm, with low streamwise velocity directly behind the cylinder swing-
ing up and down at a frequency of ωs. This is similar to a simple pendulum whose
radial frequency Ω depends solely on its length L (i.e. Ω =

√
g/L). Since g is

a constant representing acceleration due to gravity, it can be shown that Ω2L is
constant which is analogous to ω2

s lm for the cylinder flow.

4.4 Singular Values and Mode Branches
For the remainder of the chapter, the discussion will focus on the Re = 100 case.
Figure 3.7(b) is reproduced below in Figure 4.9 with the axes switched such that
the trends for the first two singular values are easier to identify. As seen in Chapter
3, the behavior of σ1 near the shedding frequency ωs = 1.02 is primarily associated
with the marginally stable eigenvalue. The behavior of σ2, on the other hand, has
little to no variation in ω, suggesting it corresponds to a different amplification
mechanism which is not captured by the eigenvalues. For frequencies where ω >

1.49ωs, this physical mechanism becomes the most amplified and there is no longer
any separation between the singular values.

The mode shapes ψ̂1 and ψ̂2 are plotted in Figure 4.10 for ω ∈ [0.5ωs, 2.0ωs]. Two
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classes of modes can be identified: a wake mode which resembles the vortex shed-
ding and a critical-layer mode whose spatial support is in the free-stream region
above and below the wake. These are referred to as mode W and mode C, respec-
tively, to avoid confusion with the three-dimensional modes mode A and mode B.
In Figure 4.9, it can be noted that mode W is dominant when σ1 � σ2, or when the
resolvent is low-rank and there is a separation of singular values. At a frequency
of ω = 1.49ωs, Mode C becomes dominant and the resolvent operator is no longer
low-rank. One can interpret σ2 for 0.55ωs < ω < 1.49ωs and σ1 for ω > 1.49ωs

as a mode ‘branch’ which is continuous. The most amplified mode shape switches
at ω = 1.49ωs. Mode branch W is demarcated by σ1 until ω = 1.49ωs, at which
point it no longer appears in Figure 4.9. Branch W still exists, but it falls off so
dramatically that for ω = 1.5ωs, it is the fifth most amplified structure and hence
would appear as σ5 had more singular values been plotted. Dergham et al. (2013)
observed similar behavior for the flow over a two-dimensional backward facing step
at Re = 600. They found several different branches and categorized them as shear
layer dynamics, which dominate at lower frequencies, and free-stream dynamics,
which dominate at higher frequencies.

Figure 4.9 suggests that the resolvent will struggle to identify coherent structures
at harmonics of the shedding frequency since there is virtually no separation of
singular values. The nonlinear forcing to the resolvent is likely to be biased in
a manner such that it excites one particular structure at 2ωs which is not one of
the most amplified resolvent modes. It also appears that the physical signature of
the shedding mode is significant in the mean profile. To explore this further, it
can be seen from Figure 4.11 that ψ̂1 for suboptimal frequencies is a stretched or
shrunken version of the shedding mode when ω < 1.49ωs. Thus, one can surmise
that the convection velocity of the vortices Uc = ω/q(x), where q(x) is the spatial
wavelength of the mode as a function of x, is constant for each ω. In Figure 4.11,
the profile of the modes along the centerline is plotted as a function of x. When x is
rescaled by the factorω/ωs, the mode shapse collapse, implying that the convection
velocity is the same as a function of x.

The convection velocity can also be measured for the C branch modes. Unlike
the W branch modes, they have a roughly constant convection velocity equal to
unity or the free-stream velocity. Based on this finding, it is possible to predict
the structure of the mode at 3ωs; it would resemble the 2ωs mode but the spatial
wavelength would be a factor of 50% lower, resulting in a denser wavepacket in the
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Figure 4.10: First two resolvent response modes ψ̂1 (left) and ψ̂2 (right) for ω =

0.5ωs (a,b), ω = 0.75ωs (c,d), ω = 1.0ωs (e,f), ω = 1.25ωs (g,h), ω = 1.5ωs (i,j),
and ω = 2ωs (k,l).
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Figure 4.11: Unscaled (a) and scaled (b) profiles along the centerline of the resol-
vent response modes for the Re = 100 mean cylinder wake. The frequencies plotted
are ω = 0.5ωs (· · · ), ω = 0.75ωs (−−), ω = 1.00ωs (−), and ω = 1.25ωs (−·).

free-stream.

4.5 Comparing Resolvent and DMD Modes
Figure 4.12 compares the resolvent response modes to the DMD modes at ωs, the
globally most amplified frequency, and its first harmonic 2ωs, where the resolvent
operator is not low-rank. There is very good agreement for ωs although they are
not exactly the same as seen in Figure 4.13, where the difference between the two is
plotted. The amplitude of the DMD mode decays in the streamwise direction more
quickly than it does for the resolvent mode. Another difference is that the spa-
tial support of the u-component is slightly further from the centerline in the DMD
modes. The v-component, on the other hand, does not suffer from this problem
since it is symmetric across the centerline.

There is no agreement between the two sets of modes when ω = 2ωs as seen in Fig-
ures 4.12 and 4.13. The resolvent mode predicts a structure in the free-stream with
a convection velocity which is significantly higher than that of the DMD mode. It is
incorrect to say that resolvent analysis does not work for this frequency. Instead, it
suggests that there is no linear mechanism leading to significant amplification. As-
suming a white-in-time stochastic forcing will not reproduce the modes observed
in the flow, which is hardly surprising since the operator is anything but low-rank.
Similar observations have been made by Zare et al. (2017) in the context of turbu-
lent, wall-bounded shear flows and Towne et al. (2018) and Schmidt et al. (2017a)
in the context of turbulent jets.
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Figure 4.12: Comparison of resolvent response (left) and DMD (right) modes for
ω = ωs in (a-d) and ω = 2ωs in (e-h). The streamwise velocity component is
plotted in (a-b,e-f) while the vertical velocity component is in (c-d,g-h).
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Figure 4.13: Discrepancy between the modulus of the resolvent and DMD modes
for ωs (top) and 2ωs (bottom). The u-component is on the left while the v-
component is on the right.

4.6 Parasitic Modes and Triadic Interactions
It is proposed that the DMD mode for ω = 2ωs can be recovered by attempting to
compute directly the nonlinear forcing at this temporal frequency. The quadratic
nonlinearity of the NSE leads to the well-known triadic compatibility constraint for
scale interactions (McKeon, 2017):

fk =
*...
,

fku

fkv

fkw

+///
-

=

∫ ∫ ∫
k=k ′+k ′′, k ′,−k ′′

−(uk ′ · ∇)uk ′′dk, (4.5)

where k is the wavenumber vector (kx , kz,ω). For global modes, only the tempo-
ral frequencies need to be considered and they must satisfy ω1 + ω2 = ω3. One
possibility, therefore, is simply to have

f̂ (2ωs) ≈ û(ωs) · ∇û(ωs) ≈ ψ̂1(ωs) · ∇ψ̂1(ωs), (4.6)

since ωs + ωs = 2ωs. Equivalently, the nonlinear forcing for ω = −2ωs is the
self-interaction of ψ̂1(−ωs), or −ωs +−ωs = −2ωs. A similar idea was explored by
Rosenberg, 2018 for exact coherent solutions in Couette flow.
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Figure 4.14: Nonlinear forcing f̂ (2ωs) computed directly from the DNS (left) and
approximated by the self-interaction of ψ̂1(ωs) (right). The x-component is plotted
in (a,b) while the y-component is in (c,d).

To test this idea, the nonlinear forcing u · ∇u is computed from the DNS snapshots
and is Fourier-transformed in time. The nonlinear forcing at 2ωs is compared to
the nonlinear forcing generated by the self-interaction of ψ̂1(ωs) and very good
agreement can be observed in Figure 4.14 in the region behind the cylinder or 0.5 <
x < 3. The agreement is not as good further downstream. Multiplying the resolvent
operator for ω = 2ωs by this nonlinear forcing, or

û(2ωs) = H (2ωs)(ψ̂1(ωs) · ∇ψ̂1(ωs)), (4.7)

results in a velocity response mode which resembles the structure of the DMD mode
from Figure 4.12 quite closely as seen in Figure 4.15. The discrepancy between the
forced resolvent modes and the DMD modes is plotted in Figure 4.16. The u-
component is underestimated around x = 2 and overestimated when x > 5. The
spreading of the mode in the y-direction, furthermore, is not perfectly captured as
the spatial support of the resolvent mode is concentrated closer to the centerline than
the DMD mode. The v-component suffers from the same problems although the
amplitudes of the discrepancy are slightly lower than those of the u-component. In
spite of these differences, the forced resolvent mode is a significantly better match
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Figure 4.15: The velocity response û(2ωs) in (a) and v̂(2ωs) in (b) computed by
forcing theH (2ωs) resolvent operator with ψ̂1(ωs) · ∇ψ̂1(ωs) for comparison with
Figure 4.12(f) and (h), respectively.

(a) (b)

Figure 4.16: Discrepancy between the modulus of the forced resolvent and DMD
modes for 2ωs. The u-component is on the left while the v-component is on the
right.

than the optimal response mode ψ̂1(2ωs).

Even though Equation 4.6 is an approximation of the nonlinear forcing at 2ωs, it
is able to produce a good approximation of the structure associated with ω = 2ωs.
The rest of the nonlinear forcing f̂ (2ωs) comes from two other sources includ-
ing additional triadic interactions of velocity modes which sum to 2ωs such as
3ωs −ωs and the interactions of suboptimal resolvent modes with nontrivial ampli-
tudes. This method of approximating the nonlinear forcing to obtain a mode shape
which closely resembles the data is much more efficient than attempting to consider
suboptimal modes of the resolvent operator atH (2ωs). The computation of the first
ten singular modes requires over 100 cpu hours and none of the modes resembles
the DMD mode. The above method, on the other hand, takes 0.1 cpu hours.

For this two-dimensional case, the resolvent identifies an instability mechanism
as opposed to non-normal growth which is seen more commonly in wall-bounded
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shear flows. The results of Schmidt et al. (2017a) reinforce this idea as the leading
resolvent mode is representative of a Kelvin-Helmholtz instability in turbulent jets.
Temporal frequencies which do not correspond to a linear amplification mechanism
are parasitic in the sense that they are driven by the nonlinear interactions of highly
amplified resolvent modes at resonant frequencies. The resolvent operator is still
capable of predicting the velocity response but the forcing cannot be assumed to
be arbitrary. In fact, knowledge of the nonlinear forcing, which can nevertheless
be predicted from nonlinear interactions of highly amplified modes, is necessary at
parasitic frequencies.

The approximation f̂ (2ωs) ≈ ψ̂1(ωs) · ∇ψ̂1(ωs) is not without precedent. Sipp
and Lebedev (2007), for example, performed a weakly nonlinear expansion of the
cylinder wake near the bifurcation threshold and obtained a linear equation, forced
by the self-interaction of the ωs mode, for the 2ωs mode. This analysis utilized the
base flow at Rec and approximated changes to the base flow and Reynolds stresses
as the Reynolds number increased from terms in the expansion. As such, its range
of validity does not extend far beyond Rec unlike the current method, which needs
the mean profile as an input yet is valid for any Reynolds number.

Turton et al. (2015) also alluded to the forcing terms for higher-order harmonics
although their emphasis was on the global frequency only. Following their method-
ology, one can rewrite the linearized NSE as

inωun = Lun +Nn, (4.8)

whereN = () · ∇(), Nn =
∑

m,0,nN (um,un−m), and the subscripts denote the order
of the harmonic. Assuming the form ‖un‖ ∼ ε |n|, they were able to show that the
equation for n = 1 reduces to

iωsu1 = Lu1, (4.9)

signifying that u1 is an eigenvector of the neutrally stable mean operator L. This is
known as RZIF, or an operator containing a real part zero, imaginary part frequency
eigenvalue.

Here, their analysis can be extended to now consider n = 2, which, when assuming
‖un‖ ∼ ε

|n|, results in

2iωsu2︸ ︷︷ ︸
ε2

= Lu2︸︷︷︸
ε2

+N (u1,u1)︸     ︷︷     ︸
ε2

+N (u3,u−1)︸       ︷︷       ︸
ε4

+N (u−1,u3)︸       ︷︷       ︸
ε4

+ · · · . (4.10)

Retaining terms on the order of ε2 results in

u2 ≈ (2iωsI − L)−1N (u1,u1), (4.11)
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which can be simplified to

û(2ωs) ≈ H (2ωs)(ψ̂1(ωs) · ∇ψ̂1(ωs)). (4.12)

A significant number of the terms on the right-hand side of the equals sign in Equa-
tion 4.8 can be ignored to simplify the problem.

Higher-order harmonics can also be computed by considering only the largest terms
on the right-hand side. To obtain the mode shape at 3ωs, the nonlinear forcing must
arise from both highly amplified frequencies as well as parasitic frequencies. Since
ωs and 2ωs are the most energetic frequencies in the wake, the nonlinear forcing at
3ωs is approximated as

f̂ (3ωs) ≈ û(2ωs) · ∇ψ̂1(ωs) + ψ̂1(ωs) · ∇û(2ωs). (4.13)

The velocity response û(3ωs) is computed by running f̂ (3ωs) through the resol-
vent operatorH (3ωs) and the results are plotted in Figure 4.17. Despite truncating
many other triads which could contribute to f̂ (3ωs), there is modest agreement
between the u-velocity component of the resolvent and DMD modes. The agree-
ment for the v-component, which has a less complicated structure, is slightly better.
The locations where the perturbation energy is most concentrated (i.e. the spatial
locations where the modes attains their highest amplitudes) is not accurately cap-
tured by the ‘forced’ resolvent mode which predicts much higher activity further
downstream in the wake.

4.7 Nonlinear Forcing
The nonlinear forcing at the shedding frequency, i.e. f̂ (ωs), can also be computed
from the nonlinear interactions of resolvent modes and even DMD modes, e.g.,

f̂ (ωs) = ψ̂1(−ωs) · ∇û(2ωs) + û(2ωs) · ∇ψ̂1(−ωs), (4.14)

since 2ωs − ωs = ωs is triadically consistent. Equation 4.14 distinguishes between
ψ̂1 and û since the former is obtained from the singular value decomposition of
H (ωs) while the latter arises fromH (2ωs) forced by a specific, structured forcing
which was computed earlier in Equation 4.7. In Figure 4.18, the true nonlinear
forcing at ωs, which is computed from the DNS snapshots, is plotted in panels (a-b)
and compared to the predictions from resolvent analysis in (c-d) and DMD in (e-f).
The resolvent mode prediction agrees fairly well for the y-component of the forcing
although the amplitudes along the centerline are noticeably higher. The spatial
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Figure 4.17: The velocity response û(3ωs) in (a) and v̂(3ωs) in (c) computed by
forcing the H (3ωs) resolvent operator with an approximated f̂ (3ωs). The modes
are normalized so that the maximum contours are unity and are compared to the
DMD modes in (b) and (d).

support of the resolvent prediction, furthermore, is much closer to the centerline, an
observation which was already made for the resolvent modes when compared to the
DMD modes in Figure 4.12. The x-component of the resolvent prediction, which
does not agree with the DNS as well, deteriorates as one moves further downstream
from the cylinder. The prediction immediately behind the cylinder, however, is
acceptable. As will be seen in the next development, this region turns out to be the
most important. f̂ (ωs) predicted from nonlinear interactions of the DMD modes is
in excellent agreement with the true nonlinear forcing.

In order for the vortex shedding to be sustained, the nonlinear forcing at the shed-
ding frequency must have a nontrivial projection onto the optimal resolvent forcing
mode:

û(ωs) =
∑

j

ψ̂ j (ωs)σ j (ωs)
〈
f̂ (ωs), φ̂ j (ωs)

〉
=

∑
j

ψ̂ j (ωs)σ j (ωs) χ j (ωs), (4.15)

where χ j is the weight associated with the jth response mode (McKeon et al.,
2013). Since the separation of singular values for this flow is significant (σ1 � σ2),
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18: Nonlinear forcing at the shedding frequency f̂ (ωs) computed from the
DNS in (a,b), triadically consistent resolvent response modes in (c,d) and triadically
consistent DMD modes in (e,f). The x-component is plotted in panels (a,c,e) and
the y-component in panels (b,d,f).
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(a) (b) (c)

Figure 4.19: The optimal resolvent forcing mode (a), actual nonlinear forcing (b)
and the magnitude of their overlap (c) for Re = 100. Only the v-component has
been plotted in (a) and (b) while (c) is the projection computed using both velocity
components. Thick black lines indicate the boundary of the recirculation bubble
and the contours have been normalized such that the maximum amplitude is unity.

the projection of the nonlinear forcing onto the first forcing mode only is considered
and, due to the simplicity of this flow, it is possible to visualize this projection. The
resolvent forcing mode φ̂1(ωs), nonlinear forcing f̂ (ωs), and the local magnitude
of their projection |φ̂1(ωs) · f̂ (ωs) | are plotted in Figure 4.19. The projection is
zero everywhere except at the edge of the recirculation bubble.

This overlap location is consistent across all Reynolds numbers and reinforces the
notion that the edge of the recirculation bubble coincides with the streamwise sta-
tion of marginal absolute instability (Pier, 2002). The wavemaker portion ahead of
the overlap is the heart of the instability and the rest of the flow convectively ampli-
fies the perturbation (see Chomaz et al., 1988; Monkewitz, 1988). The schematic
in Figure 4.20 delineates the region of absolute instability in the flow where the re-
solvent forcing and response modes overlap. When the mean flow advection along
the centerline is no longer positive, the flow transitions from absolute to convective
instability and there is no feedback between the forcing and response modes. Non-
linearity is responsible for saturating the growth of the instability at the downstream
edge of the wavemaker.

4.8 Summary and a Closed Loop
The resolvent analysis for the low Reynolds number bluff body flows considered
here identifies one dominant structure which is highly amplified at the shedding
frequency even when the unsteady flow is three-dimensional. A Strouhal number
based on the shedding frequency can be used to collapse the profile of σ1 as a func-



100

Figure 4.20: Instability regimes in cylinder flow where the flow is absolutely unsta-
ble (AU) immediately behind the cylinder in a region that coincides with the mean
recirculation region and convectively unstable (CU) further downstream.

tion of ω and the mean profiles at the recirculation point can be scaled by ωs. The
shedding frequency also manifests itself in the resolvent modes and the convection
velocities of the shed vortices. Sufficiently upstream of the cylinder, the convection
velocity of adjoint perturbations is equal to the local mean velocity which is unity.
The convection velocity of direct perturbations, or the vortices themselves, is also
equal to the local mean velocity. Immediately behind the cylinder, the wavelength
of the resolvent response modes is proportional to the recirculation length.

For frequencies where ω < 1.49ωs, there is a separation of singular values and
the resolvent operator is approximately low-rank. The most amplified mode be-
longs to the wake or W branch and the phase speed of the leading response mode
matches the convection velocity of the vortices. The response modes at suboptimal
frequencies, therefore, can be rescaled such that their profiles collapse along the
centerline. At higher frequencies, the resolvent identifies a free-stream mode which
exhibits critical-layer-like behavior. The phase speed matches the mean velocity
and the modes belong to the C branch. For the lower frequency cases, the second
resolvent mode ψ̂2 belong to this branch so they switch in order of precedence at
ω = 1.49ωs. The velocity response at ω = 2ωs cannot be predicted by the most
amplified resolvent mode from a singular value decomposition of the operator.

Nonlinear interactions of resolvent response modes need to be considered to close
the system and these are summarized in Figure 4.21. Forcing H (2ωs) by the self-
interaction of ψ̂1(ωs) yields the correct velocity response û(2ωs). This mode in-
teracts with the ψ̂1(−ωs) to produce the nonlinear forcing, which overlaps with the
optimal forcing at the recirculation point, that is necessary to sustain the vortex
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shedding. As the vortices form behind the cylinder, they accelerate before attaining
their maximum convection velocity further downstream. The convection velocities
scale with ωs and q while the acceleration scales with ω2

s and lm establishing a link
between ωs, the timescale of the fluctuations, and lm, a statistical length. The wave-
maker scales with lm and coincides with the maximum of the projection of f̂ (ωs)
onto φ̂1(ωs).

The edge of the wavemaker, consequently, is an important region of the flow. The
following chapter takes this into account in order to determine the minimum domain
of measurements which is necessary to successfully data-assimilate the mean flow.
The results of this chapter also suggest when it is or is not appropriate to use the
most amplified resolvent modes to reconstruct the flow. Linear instability mecha-
nisms, such as the vortex shedding for the cylinder, tend to dominate the fluctuations
and leave a significant footprint on the mean profile. The NSE linearized around the
mean, therefore, contain marginally stable eigenvalues which correspond to these
phenomena.

The structures at temporal frequencies beyond the bandwidth of instability mech-
anisms cannot be easily identified from a singular value decomposition of the re-
solvent operator. Instead, they can be determined by forcing the resolvent operator
by nonlinear interactions of highly amplified resolvent response modes. In the case
of cylinder where there is a single instability mechanism at a discrete temporal fre-
quency, the higher-order harmonics arise from the self-interaction of the globally
most amplified mode. In the context of flow reconstruction, which is discussed in
Chapter 7, it is important to respect when the rank-1 approximation is valid and
obtain the structure of parasitic modes by approximating the structured forcing to
the resolvent operator at those frequencies.



102

Figure 4.21: Block diagram inspired by Moarref et al., 2014 which portrays the
triadic interactions needed to sustain cylinder flow at low Reynolds numbers, e.g.
Re = 100. The mean profile is needed as an input to form the resolvent operators for
each temporal frequency. A singular value decomposition of H (ωs) and H (−ωs)
reveals the globally most amplified velocity response. Their nonlinear interaction
forms the Reynolds stresses needed to support the mean profile while their self-
interactions provide the nonlinear forcing for the first harmonics 2ωs and −2ωs.
The resulting velocity response from this forced system interacts nonlinearly with
the most amplified resolvent modes to form the nonlinear forcing which sustains
the vortex shedding instability.
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C h a p t e r 5

DATA-ASSIMILATION OF NUMERICAL DATA

In this chapter, the mean profiles for flow around a circular cylinder at Re = 100
and Re = 300 are obtained from data-assimilation of (subsampled) time-averaged
DNS data. The flow physics and scaling identified in the previous chapter guide
where measurements of the mean velocity are most effective for the algorithm to be
successful. The motivation behind choosing a Reynolds number of Re = 100 stems
from the fact that Mantič-Lugo et al. (2014) were able to obtain a self-consistent
model that predicts the amplitude of the most unstable eigenmode in the flow. Con-
nections are made between this approach and data-assimilation. Finally, a Reynolds
number of Re = 300 is chosen to demonstrate that it is possible to data-assimilate
the mean of a two-dimensional slice of the flow as long as the 2D continuity equa-
tion is satisfied. Since the flow is not 2D but periodic in the spanwise direction
(Williamson, 1996), the span-averaged wake fulfills this requirement.

Table 5.1 summarizes the various cases that are considered in this chapter. The first
two cases are full knowledge of the velocity field (velocity is known everywhere in
the domain) and full-state knowledge (velocity and pressure are known everywhere
in the domain). These are denoted as Cases 1A and 1B (see Table 5.1), respec-
tively. Cost function A corresponds to Case 1A while cost function B corresponds
to Case 1B. The final values of the cost function, denoted by the superscript t, are
normalized by their initial values, denoted by the superscript 0

EA(u) = Et
A/E

0
A, (5.1a)

EB (u,p) = Et
B/E

0
B . (5.1b)

Even though the domains are truncated for some cases, EA and EB will be used to
make fair comparisons among all the cases. In other words, when measurements are
available in a subset of the domain, the algorithm should still be able to reconstruct
the flow in the entire domain.

5.1 Full Domain
Excellent agreement is obtained between the data-assimilated mean velocity profile
for Case 1A and the DNS. The cost function declines to 2.14e-05% of its initial
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Figure 5.1: The cost functional E (u) plotted for Case 1A (thin solid line), Case 1B
(dashed line), Case 8 (dotted line), Case 9 (dashed-dotted line), and Case 10 (thick
solid line). Only the first 1000 iterations have been shown.

value which is similar to the optimization performed by Foures et al. (2014). Case
1B is able to reconstruct the mean pressure and its cost function, which includes
the mean pressure discrepancies, declines to 3.77e-05% of its original value. The
values of EA and EB are plotted in Figure 5.1 for the first 1000 iterations of the
procedure. Figure 5.2(a,d,g) compares the mean pressure for Case 1A, Case 1B,
and the DNS. As expected, Case 1B is almost an identical match with the DNS
since it is given the mean pressure information in the whole domain. Case 1A, on
the other hand, does well in most regions of the flow with the exception of the wake
behind the recirculation zone from 2 ≤ x ≤ 4. It is encouraging that it does this
well without any knowledge of the mean pressure field.

Figure 5.2 also presents the x− and y− components of the mean forcing f in panels
(b,e,h) and (c,f,i), respectively. Case 1B exactly reconstructs both components of
the mean forcing as it should since the adjoint velocity field is not constrained to
be divergence-free. Case 1A, on the other hand, is limited to capturing only the
solenoidal component of the mean forcing. The agreement between f x for Case 1A
in panel (b) and Case 1B in panel (e), nevertheless, is remarkable although there are
small differences between them such as the location along the centerline of the peak
mean forcing and the small lobe of negative mean forcing immediately behind the
cylinder which does not appear in Case 1A. Notably f y is virtually zero for Case
1A as seen in panel (c) when compared to Case 1B in panel (f).

In Case 2, pressure measurements on the cylinder surface are known in addition to
full field velocity. As seen in Table 5.1, there is little impact on the quality of the
velocity field reconstruction when measured by EA. Figure 5.3, which is a more
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.2: Contours of p (left column), f x (center column), and f y (right column)
for Cases 1A (top row), and 1B (middle row). These results are compared to DNS
(bottom row).
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Figure 5.3: Absolute pressure discrepancy for the initial guess (open black circles),
Case 1A (red crosses) and Case 2 (blue triangles). The angle θ represents where
on the surface the measurement is taken. θ = ±π corresponds to the leading edge
stagnation point and θ = 0 corresponds to the trailing edge stagnation point.

detailed version of Figure 5.2, confirms that the pressure along the cylinder surface
is forced to agree with the measurements. In Case 2, data-assimilation correctly
assimilates the mean pressure on the cylinder surface and the residual discrepancy
between p and pDN S is essentially zero. The residual discrepancy is also plotted
for Case 1A in Figure 5.3 and, surprisingly, it agrees quite closely with the DNS.
This is not true for the base flow, or initial guess, where there are significant de-
viations from the true mean pressure. It can be concluded that even without any
pressure measurements, the data-assimilation algorithm provides a reasonable re-
construction of the mean pressure near the cylinder surface and, consequently, the
mean forces.

5.1.1 Implications for experimental data
The full domain results suggest that the irrotational component of the forcing for
this 2D flow is primarily in the y-direction while the solenoidal component is pri-
marily in x. Such an observation can be explained by considering a simple case:
parallel viscous flow in a channel where u = u(y). Due to the symmetries in
the flow, the divergence of the Reynolds stress tensor is zero in the z-direction so
f = [ f x f y 0]T . Decomposing f = ∇ξ + f s and assuming ξ = ξ̂ (y)ei(kx x+kz z−ωt),
one obtains

f =
*...
,

ikx ξ̂

∂ξ̂/∂y

ikz ξ̂

+///
-

+ f s . (5.2)

Computing the divergence of (5.2) eliminates f s and results in
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∇ · f̂ =
*...
,

−ik2
x ξ̂

∂2 ξ̂/∂y2

−ik2
z ξ̂

+///
-

. (5.3)

The mean forcing corresponds to kx = kz = 0 and so the only non-zero component
left in (5.3) is in y. For a parallel viscous flow, one can conclude that ∇ξ = f y and
f s = f x .

The mean flow around the cylinder is not parallel although the transverse veloc-
ity component is outweighed by the streamwise component in most regions of the
flow. The only portions of the flow where this is not true are the front half of the
cylinder where the fluid is diverted around the body and the wake immediately be-
hind the cylinder where there is a mismatch in f x between Cases 1A and 1B. In
general, as long as the flow is weakly non-parallel, f x is accurately captured by
the data-assimilation algorithm using velocity-only measurements. In experimental
settings where the mean pressure is not measured, one could compare f x computed
from the experiment with its data-assimilation counterpart and expect a reasonable
match assuming the flow is weakly non-parallel (see next chapter). It would not
be necessary to compare the curl of the forcing (i.e. ∇ × f ), as done in Symon
et al. (2017), which requires computing two gradients of the Reynolds stress fields
in order to assess the degree of success of the assimilation.

5.1.2 Stabilizing feedback
Data-assimilation can be interpreted as a controller which determines the feedback,
in this case f , which stabilizes the mean profile. A linear stability analysis of
the base flow reveals a pair of unstable eigenvalues where λ = 0.118 ± 0.749i

for Re = 100. A stability analysis of the mean profile is performed over various
iterations of the optimization procedure for Case 1A. The real and imaginary com-
ponents of the least stable eigenvalue are plotted in Figure 5.4. As the number of
iterations increases, the growth rate declines until it reaches zero while the imagi-
nary part increases until it reaches the frequency of the saturated vortex shedding.
These results are reminiscent of Mantič-Lugo et al. (2014) who constructed a self-
consistent model of the mean cylinder wake by adjusting the amplitude of the vortex
shedding mode until the mean profile was marginally stable. They modeled f using
2Real (ũ1 · ∇ũ

∗
1), where ũ1 is the vortex shedding mode. In this approach, it is not

assumed that f arises due to a single frequency but the validity of approximating it
from a single mode can be useful, as will be discussed in the next section.
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Figure 5.4: Real (open black circles) and imaginary (red crosses) components of
the assimilated flow’s least stable eigenvalue λ at various iterations, the zeroth of
which appears as 10−1.

As an additional measure of whether the reconstructed mean velocity field is accu-
rate, the least stable eigenvalue λ is reported in Table 5.1. A poorly data-assimilated
field does not correctly identify λ. For the cases discussed in this section, λ is very
accurately predicted which is to be expected since the algorithm has knowledge of
the velocity everywhere in the domain.

5.2 Mean Pressure Correction
Since the global resolvent mode corresponding to ωs dominates the flow, the right-
hand side of (2.63) is treated as the correctly weighted triadic interaction of ψ̂1(ωs)
with its conjugate counterpart ψ̂1(−ωs):

∇2ξ ≈ ∇ ·
[
2χ2

1Real (ψ̂1(ωs) · ∇ψ̂1(−ωs)
]
. (5.4)

The amplitude χ1 of the resolvent response mode is calibrated using knowledge of
the fluctuating velocity field at a single point in the flow, e.g., Gómez et al., 2016a.
Solving for ξ results in a pressure field which ‘corrects’ the mean pressure com-
puted from velocity-only data-assimilation. Reconstructing the unsteady pressure
field can be accomplished from resolvent analysis by retaining the pressure term in
the operator (e.g. Luhar et al., 2014; Gómez et al., 2016b).

The approximated pressure discrepancy computed from solving (5.4) is compared
with the discrepancy between Cases 1A and 1B in Figure 5.5. The agreement is
surprisingly good although the resolvent mode prediction is slightly narrower in the
y-direction, similar to the resolvent modes when compared to the DMD modes in
Figure 4.12. The other difference is that the resolvent prediction does not correct
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(a) (b)

Figure 5.5: (a) The approximated mean pressure field discrepancy compared with
(b) the difference between Case 1A and the DNS.

the mean pressure near the surface of the cylinder so it would not improve the mean
pressure estimate of Case 1A in Figure 5.3. Despite the success of this approach, it
is unlikely to work as well for higher Reynolds numbers since Mantič-Lugo et al.
(2014) could not stabilize the cylinder wake using a single mode for Re > 110.
Given the success of rank-1 models at predicting the spectra at various locations
in the flow (e.g. Beneddine et al., 2016), it is possible to obtain an estimate of the
Reynolds stresses which can be compared with the rotational forcing from velocity-
only measurements. Regions of the flow where there is a difference between these
two indicates where the mean pressure from the data-assimilation deviates from the
true mean pressure.

5.3 Domain Truncation and Impact on Reconstructed Forcing
The physics and scaling from the previous section can now be capitalized on to
identify where to measure the flow. The dynamically most significant region is ar-
guably the downstream edge of the wavemaker, where the mean profile scales with
the shedding frequency and the resolvent forcing mode overlaps with the nonlinear
forcing. Some of the cases intentionally include or omit this region. Cases 3A and
3B are the minimum domain sizes (x ∈ [−2,6] ∪ y ∈ [−2,2]) where the artificial
truncation of the experimental domain has a minimal impact on the reconstructed
forcing. The cost function for Case 3A declines to 3.29% of the original value of
cost function A (recall this is the same cost function used for Case 1A) while Case
3B declines to 4.54% of the original value of cost function B. Figure 5.6(a-c) con-
tains f x for Case 3A, f x for Case 3B, and f y for Case 3B, respectively. It does
not include f y for Case 3A since it cannot be recovered from velocity-only mea-
surements. All of the forcings match well with their full domain counterparts in
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Figure 5.2. As such, they can be considered near the ‘truth’ against which the other
cases can be compared.

5.3.1 Capturing the Wavemaker
Cases 4A and 4B include the wavemaker region (x ∈ [−1,3]∪ y ∈ [−2,2]) but omit
a portion of the flow where the pressure discrepancy between the base and mean
flows is greatest. The data-assimilated velocity is close to the true mean for both
Cases 4A and 4B as cost function A reaches 5.05% of its initial value. The pressure
reconstruction is somewhat impacted as it declines to 6.56%. The truncation of
the domain has a clear impact on the reconstructed forcings which are plotted in
Figure 5.6(d-f). For Case 4A, f x agrees closely with the truth despite truncating the
domain behind x = 3. For Case 4B, the effect of measuring only up until x = 3 has
a greater effect since the maximum f x is concentrated at x > 3 instead of x = 2.75.
One can identify where measurements are available simply by looking at the spatial
support of f y although the overall shape is in slightly better agreement with its DNS
counterpart than f x .

Cases 5A and 5B, where the domain is limited to x ∈ [−1,2]∪ y ∈ [−2,2], are con-
siderably worse as they do not capture the downstream edge of the wavemaker. Cost
function A reaches 9.73% and B reaches 10.6%, values which are approximately a
factor of two higher than the other cases. Moreover, the least stable eigenvalue pre-
dicted from a stability analysis is further from the truth than all the other cases (the
real part is an order of magnitude higher) which do consider the entire wavemaker
region. The problems associated with truncating the domain manifest themselves
even more dramatically when plotting the forcing for these two cases as seen in
Figure 5.6(g-i). The spatial support of f x and f y is squeezed into a small region
immediately behind the cylinder. To compensate, the algorithm overestimates the
forcing amplitudes near the downstream edge of the measurement zone.

5.3.2 Nonlinear Forcing and Maximum Pressure Discrepancy
Limiting the domain to the region where the nonlinear forcing and optimal forcing
mode overlap in Cases 6A and 6B (x ∈ [1,3] ∪ y ∈ [−2,2]) is shown to be suf-
ficient for reconstruction of the mean flow. Assimilation of the mean velocity is
quite successful (the cost function declines to 5.31%) but the mean pressure is less
so (6.9%). Indeed, Figure 5.6(j-l) highlights how f x is better reconstructed than f y
for this domain. Cases 7A and 7B limit the domain to where the initial pressure
discrepancy p0 − p is greatest (x ∈ [2,4] ∪ y ∈ [−2,2]) and this yields improved



112

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5.6: The reconstructed f x (left column) using velocity-only measurements,
the reconstructed f x (centre column) using velocity and pressure measurements,
and the reconstructed f y (right column) using velocity and pressure measurements
for various measurement domains. The results for each case have been plotted in
order such that the top row corresponds to Cases 3A and 3B while the bottom row
corresponds to Cases 7A and 7B.
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pressure reconstruction (6.4%). The quality of the forcing, which is plotted in Fig-
ure 5.6(m-o), is better for f y than it is for f x but there is a qualitative improvement
for both when compared to Cases 6A and 6B. Measurement domains confined to
the region upstream of the cylinder or in the far wake, which perform considerably
worse than the cases considered here (see Foures et al., 2014), are not discussed
here.

It can be concluded that mean velocity measurements are most important at the edge
of the wavemaker where the nonlinear forcing and resolvent forcing mode overlap.
Additionally, as demonstrated by Leontini et al., 2010, a local stability analysis of
the mean wake at the edge of the recirculation bubble predicts the frequency of the
vortex shedding, signifying that it is essential for the data-assimilation algorithm to
reproduce the profile at this particular streamwise location. The mean pressure, on
the other hand, is most successfully recovered by obtaining pressure measurements
where the discrepancy between the initial guess and the true mean velocity is great-
est (x ∈ [2,4]). There is no pressure equivalent to PIV which makes it difficult to
obtain pressure measurements in the wake. As demonstrated earlier, it is possible
to utilize the correctly weighted resolvent response modes to ‘correct’ the mean
pressure.

5.4 Weighting Measurement Points
Measurements may also be weighted less if they are more susceptible to noise con-
tamination, for example. The weight for any point is given by

w = 1 + 2
ζ

max(ζ )
, (5.5)

where ζ is the absolute value of some quantity of interest such as the wavemaker.
Points far away from these regions, therefore, are still assigned a weight of at least
unity. The multiplicative factor of two in Equation 5.5 is an arbitrary choice yet it
does not play a significant role on the final outcome.

Up until this point, the algorithm has weighted all the points in the domain equally.
It is now investigated as to whether weighting the points based on the physical and
modeling insight of the previous sections can improve the efficiency of the proce-
dure. The effect of weighting the measurements in three ways is considered. In
Case 8 the points are weighted by the value of the wavemaker computed from the
DNS mean and in Case 9 they are weighted by the modulus of the most ampli-
fied resolvent response mode computed from the DNS mean. Since the domain on
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which experimental measurements is known may not be large enough to compute
global resolvent modes, Case 10 considers the wavemaker computed from the as-
similated flow at each iteration of the optimization. The wavemaker for the zeroth
iteration, for example, is computed from the leading resolvent modes of the base
flow. As the recirculation region shrinks during the data-assimilation procedure, the
wavemaker also shrinks.

The functional E (u) is plotted as a function of iteration for Cases 8-10 in Figure 5.1
alongside Cases 1A and 1B. While weighting the points is slightly beneficial in
terms of the speed at which the assimilated field converges to the mean, there is
no benefit in terms of the overall quality of the assimilation. Case 9 is arguably
the best in terms of speed which is reasonable since the Reynolds stresses can be
approximated from the resolvent response modes as discussed in the previous sub-
section. It can be concluded that the domain where experimental measurements are
obtained is far more important than how points are weighted, which is encouraging
since it is not necessary to redo the procedure once the weights are determined from
resolvent analysis of the data-assimilated mean.

5.5 Extension to 3D Wake
The final objective of this chapter is to data-assimilate the mean cylinder wake for
Re = 300, a Reynolds number at which Mode B is active and the wake is three-
dimensional (Williamson, 1996; Barkley and Henderson, 1996). In addition to
being time-averaged, the data are also averaged in the spanwise direction. The w

velocity component, therefore, is zero since the flow is periodic in the spanwise
direction and the resulting mean profile u satisfies ∂xu + ∂yv = 0. It is possible
to compute a two-dimensional base flow solution at this Reynolds number but this
is not feasible at higher Reynolds numbers (Sipp et al., 2010), particularly for the
experimental data in the next chapter. As such, the algorithm begins by computing
a base flow at Re = 200. Once the data-assimilated flow has converged to the
mean at Re = 200, the Reynolds number is increased to Re = 300 using the data-
assimilated at Re = 200 as an initial guess. The procedure continues at Re = 300
until convergence is achieved.

The final data-assimilated flow is compared to its DNS counterpart in Figure 5.7.
The profiles are virtually indistinguishable which reinforces how converging at a
lower Reynolds number before data-assimilating at a higher Reynolds number is a
valid approach. Since pressure measurements are not included in the assimilation,
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(a) (b)

Figure 5.7: Contours of u from the data-assimilation compared to (b) u from the
DNS.

(a) (b)

Figure 5.8: Contours of (a) f x from the data-assimilation compared to (b) f x from
the DNS.

the x-component of the forcing f x is compared between the data-assimilation and
DNS in Figure 5.8. There is less agreement between the two when compared to
the Re = 100 case in Figure 5.2. The magnitude of f x is noticeably smaller than
that of the DNS. It is likely that the effects of non-parallelism are stronger for the
Re = 300 case since the recirculation bubble is shorter.

Instead of comparing f x , it is possible to compare ∇× f as seen in Figure 5.9 since
this removes the irrotational component of f . Very good agreement can be observed
between the two and the degree to which the contour levels match is significantly
better than Figure 5.8.

5.6 Summary
Data-assimilation has been performed for the mean flows around a circular cylinder
at Re = 100 and Re = 300. The measurements, which are an input to the algo-
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(a) (b)

Figure 5.9: Contours of (a) ∇× f from the data-assimilation compared to (b) ∇× f
from the DNS.

rithm, were varied by including or omitting pressure, truncating the domain where
they were known, and weighting regions to emphasize important flow physics. It
can be concluded that the minimum measurements needed for successful recon-
struction of an unsteady flow are mean velocity measurements in the domain where
the Reynolds stress gradients are concentrated as well as knowledge of the fluc-
tuations at a single point to calibrate resolvent modes (more knowledge might be
known had the flow been Fourier-transformed in space, e.g. Gómez et al., 2016a).
Pressure measurements for incompressible flows are not needed as the pressure
fluctuations can be accurately captured by the resolvent response modes. The mean
pressure obtained from data-assimilation of velocity-only measurements can be cor-
rected by solving a Poisson equation which is forced by the divergence of correctly
weighted resolvent response modes interacting nonlinearly with their complex con-
jugate counterparts. The advantage of this method is that it avoids having to com-
pute gradients of Reynolds stresses which amplify underlying noise in the experi-
ment. Finally, a two-dimensional slice of a three-dimensional flow can be success-
fully assimilated as long as it satisfies the 2D continuity equation.

Data-assimilation would work for a flow field where there is a mean velocity com-
ponent in the third dimension, but the recovered Reynolds stresses would not be
correct in order to compensate for three-dimensionality. It should be verified that
the mean flow approximately satisfies the two-dimensional continuity equation be-
fore applying this framework. One limitation of the method is the resolution of
the input measurements which, up until this point, have been available at every
mesh point. The next chapter investigates the minimum resolution required for suc-
cessful flow reconstruction and makes use of the smoothing procedure since the
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measurements are significantly more sparse than the number of mesh points. In
terms of solving for the mean pressure, the methodology assumes that the first re-
solvent mode can sufficiently represent the fluctuating kinetic energy at a given ω.
The flows considered in this thesis generally satisfy this requirement, but there are
instances where multiple modes need to be considered to faithfully represent the
dynamics, e.g., Schmidt et al. (2017a).



118

C h a p t e r 6

DATA-ASSIMILATION OF EXPERIMENTAL DATA

Symon, S., Dovetta, N., McKeon, B. J., Sipp, D., and Schmid, P. J. (2017). “Data as-
similation of mean velocity from 2D PIV measurements of flow over an idealized
airfoil”. In: Exp. in Fluids 58.5, p. 61.

In this chapter, the data-assimilation algorithm is adapted for experimental data
where the mean velocity measurements come from time-averaged, two-dimensional,
two-component PIV. The beginning of the chapter focuses on the minimum quality
of PIV data needed to successfully data-assimilate the mean for the idealized air-
foil. In particular, the resolution and field of view are artificially altered from the
original dataset to assess their impact on the reconstruction. The second half of the
chapter considers the NACA 0018 airfoil at zero and nonzero angles of attack. The
experimental parameters such as field of view and vector resolution are guided by
the idealized airfoil results. These data-assimilated profiles are obtained to build
reduced-order models in Chapter 7.

6.1 Base Flow and PIV Results
Before introducing the results of the data-assimilation algorithm, it is useful to com-
pare the time-averaged PIV flow with the base flow solution at Re = 2500, which
is used as an initial guess to the optimization. Figure 6.1 includes contour plots of
the streamwise velocity for both the mean flow and the base flow as well as contour
plots of vorticity overlaid with streamlines of the flow. Note that experimental data
below the airfoil are not available since the laser sheet does not illuminate both sides
of the airfoil. The most significant difference between the two fields is the stream-
wise length of the recirculation bubble, which for the base flow extends multiple
chord lengths downstream of the airfoil. This is consistent with the observation that
recirculation bubble lengths for base flows around closed bodies tend to scale lin-
early with the Reynolds number even when the flows become unstable as reported
by Zielinska et al., 1997 for the cylinder wake.
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(a) (b)

(c) (d)

Figure 6.1: Base flow: A comparison between the mean flow (left) obtained from
PIV and the base flow for Re = 2500 (right) around the idealized airfoil. The flows
are visualized by contours of the streamwise velocity (top) and vorticity (bottom).
The black contour in (a) and (b) corresponds to u = 0 and streamlines are included
in (c) and (d). Reprinted by permission from Springer Nature: Springer, Experi-
ments in Fluids, Symon et al. (2017), Copyright 2017.

Case Description Number of meas. points Qend Qr Er

11 Full-field 3669 6.76% 25.9% 40.1%
12 Half resolution 934 8.17% 31.3% 36.1%
13 Third resolution 416 11.5% 44.1% 47.2%
14 Small-field 1765 7.73% 26.1% 48.6%
15 Half-small 465 8.79% 33.7% 39.9%

Table 6.1: Summary of the data-assimilation results for the idealized airfoil.

6.2 Full-Field Information
The data-assimilation procedure is first conducted using full-field knowledge (3669
PIV vectors) or setting S equal to the identity matrix in Equation 2.76. This is re-
ferred to as Case 11. Figure 6.2 compares the mean flow with the data-assimilated
flow in a fashion similar to the comparison between the mean and base flows.
Overall, very good agreement is observed between both mean velocity fields, partic-
ularly when comparing the contours of the streamwise velocity. The size, stream-
wise position, and shape of the recirculation bubble are also captured quite well
although there is a slight discrepancy with the center of the bubble. It is difficult to
determine this location from the PIV data due to the lack of spatial resolution in the
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(c) (d)

Figure 6.2: Case 11 results: A comparison between the mean flow (left) obtained
from PIV and the data-assimilated flow (right) around the idealized airfoil. The
flows are visualized by contours of the streamwise velocity (top) and vorticity (bot-
tom). The black contour in (a) and (b) corresponds to u = 0 and streamlines are
included in (c) and (d). Reprinted by permission from Springer Nature: Springer,
Experiments in Fluids, Symon et al. (2017), Copyright 2017.

transverse direction. The u = 0 contour does not, however, match near the front of
the bubble and this discrepancy is discussed in Section 6.4.

For the full-field case (Case 11), the cost functional decreases by Er = 40.1%
and the experimental mismatch is Qexp = 6.76%, down from an initial value of
26.1% when the experimental mismatch is calculated with respect to the base flow
(Qr = 25.9%). These results are summarized in Table 6.1. It is worth noting
that the initial mismatch is misleadingly low since the PIV data do not extend far
downstream (x ≤ 6) and the base flow is at a Reynolds number lower than that
of the experiment. The real base flow, which is very difficult to compute, would be
even more unphysical than the current one. The region of the flow behind the airfoil
is where the largest discrepancies are concentrated since the recirculation region is
overestimated by the base flow.

The last result for the full-field information case is to compare the forcing of the as-
similated flow with that of the experiment. In Figure 6.3, both components of f are
displayed. Similar to the cylinder case, f y is not captured by the data-assimilation
algorithm at all. The agreement for f x , furthermore, is underwhelming since the
contour levels for the experiment are higher than those for the assimilation although
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Figure 6.3: Case 11 results: A comparison between f x (top) and f y (bottom) for
the experimental velocity field (left) and assimilated velocity field (right).

the overall structure is similar.

Since the algorithm can only capture the solenoidal part of the forcing, the curl of
the forcing field ∇ × f is presented in Figure 6.4 instead of f x and f y individu-
ally. To compute this quantity from the experiment, however, requires two spatial
derivatives of the Reynolds stresses. A circular averaging or ‘disk’ filter in Matlab is
used to smooth out the Reynolds stresses before computing gradients. No smooth-
ing is necessary for the assimilated forcing. There is good agreement between the
structure of ∇ × f and the magnitudes of the peaks in the shear layer. It should
be noted that complete agreement is not expected since the PIV data are not ideal
and there is underlying noise in the measurements. The assimilation is also able to
reconstruct the forcing at the leading edge of the airfoil, information which is not
available from the experimental data since there are too few PIV measurements to
resolve the high Reynolds stress gradients in this region. It is striking to observe
how clean the assimilated forcing looks in comparison to the experimental one. The
results reinforce how one of the primary motivations of data-assimilation is to re-
move noise and produce more highly resolved flow quantities. Assimilated fields
are particularly useful at reproducing fields which need to be differentiated since
experimental derivatives tend to amplify the underlying noise in a measurement.
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Figure 6.4: Case 11 results: A comparison between curl of the forcing ∇× f for the
experimental velocity field (left) and assimilated velocity field (right). Reprinted
by permission from Springer Nature: Springer, Experiments in Fluids, Symon et al.
(2017), Copyright 2017.

6.3 Minimum Resolution and Domain
Using the projection operator S, it is possible to investigate the effect of decreasing
the full field resolution and its impact on the assimilated flow fields. Three different
resolutions are tested by removing points in both the streamwise and transverse
directions in a fixed pattern. To obtain an experimental field with half the resolution
of the original one, for example, every other point is removed in both the streamwise
and transverse directions. This process is repeated to obtain data sets with one third
of the original resolution as well as one fourth of the original resolution.

Results for the assimilated flows at the lower resolutions are presented in Figure 6.5
for the one-half and one-third case (Case 12 and Case 13, respectively). The one-
fourth resolution case failed to converge at higher Reynolds numbers, so the results
have been omitted. The experimental mismatch calculations are summarized in
Table 6.1. It is evident that there is a noticeable decrease in the assimilated flow field
quality for the one-third case in comparison to the one-half case. The recirculation
bubble is not smooth and the velocity contours have significantly deviated from
the mean. This is largely due to the fact that the cell size over which the smoothing
procedure is applied is nine times larger than it was in the full-field case. As a result,
the range of velocities in a given cell can be quite large, particularly when the cell
encompasses measurements above the shear layer where the velocity is close to the
free stream and below the shear layer where it is close to zero. Nevertheless, the
one-third case correctly reproduces the main features of the mean field, particularly
the length and height of the recirculation bubble. It is also manages to recover an
acceptable approximation of the forcing field as shown in Figure 6.6.
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(e) (f)

(g) (h)

Figure 6.5: Case 12 and 13 results: The projected (experimental) mean flows are
shown by (a) and (c) for the one-half resolution case (Case 12) and (e) and (g) for
the one-third resolution case (Case 13). The corresponding assimilated flows are (b)
and (d) for the one-half resolution case and (f) and (h) for the one-third resolution
case. The flows are visualized by contours of the streamwise velocity and vorticity.
Reprinted by permission from Springer Nature: Springer, Experiments in Fluids,
Symon et al. (2017), Copyright 2017.
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Figure 6.6: Case 12 and 13 results: Curl of the forcing ∇ × f for the one-half reso-
lution case (a) and the one-third resolution case (b). Reprinted by permission from
Springer Nature: Springer, Experiments in Fluids, Symon et al. (2017), Copyright
2017.

It is important to note that the discrepancy field calculated by Equation 2.76 is not
smooth since all the mesh points in a given cell have the same value. This field
becomes decreasingly smooth as the resolution of the PIV data decreases since
the cell size over which the averaging operator applies increases. Despite how
discontinuous this smoothing may be, the solution to the adjoint equations, and
consequently ∇ × f , is quite smooth as seen in Figure 6.6. It is worth noting,
however, that the one-third case does not accurately locate the maximum contours
of ∇× f . The maximum positive contour in the forcing field, for example, is located
further downstream when compared to the full-field and one-half cases.

Another way to reduce the number of experimental measurements is to truncate the
PIV field of view. In the interest of brevity, only the smallest field of view for which
there is no major sacrifice in data-assimilation quality is presented. The domain is
limited such that PIV points outside the range −1.5 < x < 6.0, 0 < y < 1.5 are
excluded. The results are quantified in Table 6.1 as Case 14. As observed in Chapter
5, the measurement domain for the algorithm needs to include the spatial support of
the Reynolds stresses. The domain for Case 14 is sufficiently large to capture this
region as seen in Figure 6.4.

The trends observed in Table 6.1 are consistent with intuition - the more experi-
mental measurements available, the closer the assimilated flow field is to the ex-
periment. A promising result, however, is that decreasing the resolution or field
of view of the reference data set does not significantly affect the assimilated flow
field quality up to a point. As mentioned earlier, there is a significant difference
between the one-half and one-third resolution cases. It is difficult to know a priori
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Figure 6.7: Case 15 results: A comparison between the projected (experimental)
mean flow (left) obtained from PIV and the data-assimilated flow (right) around the
idealized airfoil. The flows are visualized by contours of the streamwise velocity
(top) and vorticity (bottom). The black contour in (a) and (b) corresponds to u = 0
and streamlines are included in (c) and (d). Reprinted by permission from Springer
Nature: Springer, Experiments in Fluids, Symon et al. (2017), Copyright 2017.

how much resolution is needed as this depends largely on the flow structures in the
mean flow. The one-third resolution case struggles to resolve the shear layer while
the one-fourth resolution case (not shown due to convergence problems) used grid
cells which were too large to resolve the mean recirculation bubble.

To reduce the number of measurements further, it is possible to combine the two
approaches mentioned so far by truncating the field of view and reducing the reso-
lution of the reference data. Combining the small domain with the half resolution
case decreases the number of points by approximately a factor of ten and is referred
to as Case 15. A comparison of the assimilated flow using the approach with the
mean flow is presented in Figure 6.7. The forcing fields are also displayed in Figure
6.8 to demonstrate that reduction in points by a factor of approximately ten has only
a minimal impact on the results.

Data-assimilation works well within the current framework and reproduces smooth
velocity and forcing fields. There are, however, limitations to this analysis that
are worth mentioning. To begin with, the algorithm needs several hundred spatial
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Figure 6.8: Case 15 results: A comparison between the curl of the forcing ∇× f for
the experimental velocity field (left) and the assimilated velocity field (right). Note
that the projection operator has not been applied to the experimental forcing since
this would exacerbate the level of noise. Reprinted by permission from Springer
Nature: Springer, Experiments in Fluids, Symon et al. (2017), Copyright 2017.

measurements for successful mean flow reconstruction. It is certainly possible to
devise projection operators which divide the experimental data into variable cell
sizes so that regions of the flow with high velocity gradients are more highly re-
solved than other regions. Experimental data, especially from PIV, are typically
not collected on non-uniform grids so this study limits the approach to projection
operators which can be reproduced by simply altering the experimental parame-
ters. There are also temporal averaging requirements since a sufficient number of
measurements is needed to obtain converged statistics. For bluff bodies, this might
require some a priori knowledge of the shedding frequency, while for turbulent
flows it is necessary to determine uτ and the eddy turnover time.

6.4 Residual Discrepancy
An assessment of the remaining discrepancy between the experimental and assim-
ilated mean velocity fields is discussed in this section. The influence of three-
dimensionality of the flow is considered as well as elements of the data-assimilation
framework.

6.4.1 Three-dimensionality
To quantify three-dimensional effects, the divergence of the experimental velocity
is calculated. If the 2D continuity equation is not satisfied then this constraint may
not be appropriate. The same calculation is performed for the data-assimilated flow
field from Case 11, which is constrained to be divergence-free in 2D. This field is
interpolated onto the PIV grid to determine what the permissible range of values
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Figure 6.9: Contours of ∇ · u computed for the experiment (left) and the data-
assimilated field (right) which is constrained to satisfy the 2D continuity equation.
Reprinted by permission from Springer Nature: Springer, Experiments in Fluids,
Symon et al. (2017), Copyright 2017.

would be for a flow field obeying the 2D continuity equation. Figure 6.9 compares
∇ · u for the experiment and the assimilation.

The plots indicate that ∇ · u is nearly zero everywhere except near the leading
edge. Since ∇ · u is also high for the data-assimilated field at the leading edge it
is reasonable to suggest that the grid resolution is not sufficient to capture the large
velocity gradients in this region of the flow.

As mentioned earlier, 3D effects would be compensated for by the unknown mo-
mentum forcing term f s. It is clear from the results above that f s does not deviate
significantly from the experiment. This means it is not being corrupted by spanwise
velocity gradients which have been assumed to be zero. From these two observa-
tions, the role of 3D effects is negligible and does not play a significant role in the
residual discrepancy.

6.4.2 Model simplifications
There are two modeling simplifications in the data-assimilation framework: bound-
ary conditions and the coordinate system mapping between the experiment and the
simulation. The boundary conditions for the simulation are very general and do not
take into account the blockage ratio, which for this experimental configuration is
approximately 7%. The PIV domain, furthermore, does not extend sufficiently far
in the transverse direction to observe effects from the wall. Since there is excel-
lent agreement between the assimilation and experiment outside the recirculation
bubble of the airfoil, the effects of the boundary conditions and blockage ratio are
negligible.
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Figure 6.10: Residual discrepancy between the experimental and assimilated mean
velocity fields for Case 11. The left-hand side quantifies the magnitude of the ve-
locity discrepancy while the right-hand side shows the u = 0 contour for the exper-
iment (black, solid line) and assimilation (blue, dotted line) overlaid with contours
of ∇ · u. Reprinted by permission from Springer Nature: Springer, Experiments in
Fluids, Symon et al. (2017), Copyright 2017.

The most significant source of the residual discrepancy, as seen in Figure 6.10,
is the mapping between the experiment and the simulation. The largest contribu-
tion comes from several points along the leading edge of the airfoil while there are
smaller contributions in parts of the recirculation bubble as well as the airfoil bound-
ary near the trailing edge. There are three reasons to account for these results. First,
it is difficult to precisely determine the airfoil location from the PIV data. Second,
there are imperfections in the airfoil shape which is modeled as a cylinder followed
by a wedge of half angle 7.5◦. Finally, the flow separates in this region and PIV
has difficulty pinpointing the separation point when the flow is laminar. This is
discussed in greater detail at the end of the chapter

6.4.3 Choice of cost function
This study considers simple cost functions where the objective is to minimize the
discrepancy at all PIV points subject to the incompressible RANS equations. No
regularization parameters are introduced and all the PIV vectors are weighted equally.
While effective, the major drawback to such an approach is that low velocity regions
of the flow are treated as less important. The discrepancy between the velocity in
the recirculation bubble, for example, is low even for the base flow case. Conse-
quently, the procedure is biased towards high speed regions of the flow and it tries
to correct these regions first.

The right-hand plot of Figure 6.10 compares the u = 0 contour of Case 11 with its
counterpart from the PIV data. The plot also includes contours of ∇·u to emphasize
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Figure 6.11: A comparison between the mean flow (left) obtained from PIV and
the data-assimilated flow (right) around a NACA 0018 airfoil at α = 0◦ and Re =

10250. The flows are visualized by contours of the streamwise velocity (top) and
transverse velocity (bottom).

that three-dimensionality is not the leading cause of the discrepancy. There are
small deviations along the entire contour which could be addressed by modifying
the cost function to penalize these discrepancies to a higher degree.

6.5 Zero Angle of Attack Case
The PIV resolution and field of view for the NACA 0018 airfoil are selected based
on the results from the idealized airfoil. Instead of investigating the effect of S on
the quality of the reconstruction, S (Equation 2.76) is set to the identify matrix for
the remainder of the thesis. The objective is simply to data-assimilate the mean pro-
files from the experiment so that they can be used as an input to resolvent analysis
in Chapter 7. Unlike the idealized airfoil case, neither f nor ∇ × f from the PIV
data are spatially filtered for any of the cases below.

6.5.1 Re = 10250

Both components of the data-assimilated mean velocity for the α = 0◦, Re = 10250
case are plotted in Figure 6.11. Since the flow does not separate at this angle of at-
tack, neither the streamlines nor the mean vorticity have been plotted. There is
very good agreement between the PIV and data-assimilated fields for both veloc-
ity components. The quality of the PIV data is quite good although the contours
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Figure 6.12: A comparison between f x (top) and f y (bottom) for the experimental
velocity field (left) and assimilated velocity field (right) of flow around a NACA
0018 airfoil at α = 0◦ and Re = 10250. The shadow regions below the airfoil have
been masked out in panels (a) and (c).

of the data-assimilated means are slightly smoother than their experimental coun-
terparts. The most significant difference between the two is the resolution of the
mean velocity field near the airfoil surface. It is impossible to resolve the boundary
layer yet have a field of view large enough to capture the Reynolds stress gradients.
The benefit of data-assimilating the mean velocity field onto a higher resolution
mesh where the no-slip boundary condition is satisfied will be observed in Chapter
7 when computing resolvent forcing modes.

Both components of the mean forcing f are plotted in Figure 6.12. These results
mirror those in Figure 5.2 and 6.3 in that f x is reasonably captured although the
contour levels are slightly lower than those from PIV. f y, on the other hand, is not
captured at all. One last point that is worth remarking is that the shapes of f x and
f y observed from the PIV data are very similar to those for the circular cylinder at
Re = 100. f x is symmetric and has three lobes. The central lobe is positive while
the upper and lower lobes are negative. f y is anti-symmetric and has just two lobes
like the cylinder. The similarity suggests that the dynamics of the airfoil at α = 0◦

are very similar to low Reynolds number cylinder flow. It is likely that most of
the fluctuating kinetic energy is contained in a vortex shedding mode, which forms
the largest contribution to the Reynolds stresses needed to sustain the mean profile.
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Figure 6.13: A comparison between the curl of the forcing ∇× f of the experimental
velocity field (left) and assimilated velocity field (right) for the NACA 0018 airfoil
at α = 0◦ and Re = 10250.

Chapter 7 will exploit the similarity between the two flows.

The curl of the forcing ∇ × f is presented in Figure 6.13. There is good agreement
between the two and again it can be remarked that the shape is quite similar to the
cylinder case as seen in Figure 5.9. In comparison to the idealized airfoil case, there
is less noise in Figure 6.13(a) in the wake (x ∈ [1,2]) where comparisons between
the experiment and data-assimilation can be made. Over the airfoil surface, which
has not been plotted, the experimental data contain a lot of noise since it cannot
resolve the sharp gradients of the fluctuating velocity fields.

6.5.2 Re = 20700

The mean velocity field at Re = 20700 is also assimilated for the flow around a
NACA 0018 airfoil. The data-assimilated streamwise and transverse mean veloc-
ities are compared to the PIV results in Figure 6.14. While the overall agreement
is good, the algorithm struggles to reconstruct the flow near the airfoil surface.
This is particularly evident when viewing the blue contours in Figure 6.14(b) for
0.5 < x < 1.0. The resolution of the PIV is not sufficient to resolve low-speed re-
gions. There are discrepancies when viewing the transverse velocity component as
well which predicts stronger flow towards the body than the true mean. The impact
of this discrepancy on the resolvent modes is analyzed in Chapter 7.

Here, the impact on the curl of the reconstructed forcing ∇× f is considered in Fig-
ure 6.15. f x and f y have not been plotted in the interest of brevity. The magnitudes
and overall shapes agree between the PIV and the experiment, but the match is not
as good as it was for Re = 10250 in Figure 6.13. The data-assimilated result is less
smooth than its experimental counterpart with sharper contour lines and multiple lo-
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Figure 6.14: A comparison between the mean flow (left) obtained from PIV and
the data-assimilated flow (right) around a NACA 0018 airfoil at α = 0◦ and Re =

20700. The flows are visualized by contours of the streamwise velocity (top) and
transverse velocity (bottom).

(a) (b)

Figure 6.15: A comparison between the curl of the forcing ∇× f of the experimental
velocity field (left) and assimilated velocity field (right) for the NACA 0018 airfoil
at α = 0◦ and Re = 20700.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.16: A comparison between the experimental (left) and data-assimilated
(right) means for the NACA 0018 airfoil at α = 10◦ and Re = 10250. There
are contours of the streamwise velocity in (a,b), transverse velocity in (c,d), and
vorticity in (e,f). The u = 0 contours is in black for panels (a,b) while streamlines
are demarcated by black lines in panels (e,f).

cal minima and maxima rather than a global minimum and maximum at x = 1.15,
y = ±0.03. The results could be improved by collecting experimental data at a
higher resolution on a smaller domain behind the airfoil since this coincides with
the spatial support of the Reynolds stress gradients.

6.6 α = 10◦ Case
The data-assimilated mean flow for the α = 10◦ and Re = 10250 case is presented
in Figure 6.16. Similar to the idealized airfoil, Figure 6.16 includes contours of
the vorticity in panels (e,f) and streamlines to point out the size and location of
the recirculation bubble. The contours of the streamwise and transverse velocities
match very well particularly with respect to the reverse flow region as seen in Fig-
ure 6.16(b) and the structure of the transverse velocity contours in Figure 6.16(d).
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(a) (b)

Figure 6.17: A comparison between the curl of the forcing ∇× f of the experimental
velocity field (left) and assimilated velocity field (right) for the NACA 0018 airfoil
at α = 10◦ and Re = 10250.

Even the low-speed transverse velocity contours in the separated flow region imme-
diately above the airfoil are recovered by the algorithm.

Similar to the idealized airfoil case, the individual components of f are difficult to
compare since the flow is highly separated. Therefore, only the curl of the recon-
structed forcing ∇ × f is plotted in Figure 6.17. The experimental result in panel
(a) consists of the PIV data for α = 10◦ only so the pressure side data are not in-
cluded. Since the PIV data are so poorly resolved near the airfoil surface on the
pressure side, they add no meaningful information to Figure 6.17 and have not been
plotted. There are three alternating ‘bands’ of positive-negative-positive contours
which coincide with the shear layer. This structure is similar to that of the idealized
airfoil, and the agreement between the PIV and assimilation is good in this region.
Immediately behind the airfoil, there is strong positive forcing in both the PIV and
data-assimilated fields and patches of weaker, negative forcing above and below.

Finally, it is worth remarking that the data-assimilated field is more smooth than
its data-assimilation counterpart. The same could be said for the idealized airfoil
case earlier. The PIV results for the α = 0◦ cases, however, are slightly more
smooth than their data-assimilation counterparts even though it is difficult to access
Reynolds stress information in regions near the airfoil surface. It can be concluded
that the data-assimilation algorithm works slightly better for separated flows where
the gradients of the mean velocity field are less severe. When the flow is attached,
as it is for the α = 0◦ cases, the algorithm has a harder time data-assimilating the
flow at the airfoil surface and so the quality of the reconstructed Reynolds stress
gradients suffers as seen for the α = 0◦, Re = 20700 case.

As noted by Raffel et al. (2018), there are difficulties associated with PIV for lam-
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inar flow around airfoils. The effects of strong centrifugal forces around the airfoil
leading edge and strong shear result in the outward movement of tracer particles in
a direction perpendicular to the curved streamlines. This loss of seeding compro-
mises measurements in the region close to the wall. In Figure 6.16(a), for example,
the separation point from the PIV is predicted to occur at x ≈ 0.4 which is too far
downstream. The loss of seeding also noticeably impacts Figure 6.16(e) where the
contours of negative vorticity are separated in the region 0.1 < x < 0.25. The data-
assimilation results yield a significantly better prediction of the separation point and
can fill in data near the leading edge where the PIV data cannot be trusted.

6.7 Summary
The data-assimilation framework based on Foures et al. (2014) is adapted to re-
cover the mean flow and unknown momentum forcing around an idealized airfoil
at a Reynolds number of Re = 13500. It is also applied to flows around a NACA
0018 airfoil at two angles of attack and two Reynolds numbers. The experimental
data sets originate from time-resolved PIV data on a uniform Cartesian grid with
a spatial resolution far lower than that of the numerical simulation. It is possible,
nevertheless, to compute an assimilated flow field which is in very good agreement
with the experiment. The recovered forcing fields are also in good agreement with
their experimental counterparts and generally contain less noise since the experi-
mental forcing is computed by differentiating Reynolds stress fields.

Three modifications to the original framework are necessary for practical imple-
mentation of the algorithm. First, it is necessary to use a smoothing procedure to
ensure that the adjoint equations are being forced at all mesh points instead of just
those which lie closest to the experimental grid points. Second, discrepancy veloc-
ity measurements are computed above the centerline only, when the flow is sym-
metric, and are reflected to account for the shadow cast by the airfoil. For nonzero
angles of attack, the means for ±α are obtained and stitched together. Finally, it
is necessary to begin with a base flow computed at a lower Reynolds number than
that of the experiment due to the difficulty of computing a base flow at Reynolds
numbers much higher than the critical one. Once the data-assimilation process is
complete for a lower Reynolds number, it can be incrementally increased until it
matches the experimental conditions.

As expected, the full field case where all PIV vectors are used to guide the mean
flow reconstruction yields the best reconstructed fields. It is encouraging, never-
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theless, that truncating the PIV field of view or decreasing the resolution does not
significantly impact the quality of the results. Improved smoothing procedures or
weighting measurement points where important mean flow features such as the re-
circulation bubble are present in the flow could help reduce the number of necessary
points further. The quality of the results could also be improved by implementing
bounds on how close the numerical values match the experiment via the fitting cri-
terion to account for measurement uncertainty.
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C h a p t e r 7

FLOW RECONSTRUCTION

All of the tools from the previous chapters are combined here to reconstruct un-
steady flows realized in the laboratory using the smallest number of measurements
possible. The schematic in Figure 7.1, which is an expanded version of the gen-
eral approach shown in Figure 1.5, outlines the procedure which is followed in this
chapter. The original contributions to this framework, which was first introduced by
Gómez et al. (2016a) and Beneddine et al. (2016), include treatment of the nonlinear
term, data-assimilation, and obtaining mean pressure. To begin with, the procedure
introduced in Chapter 1 is described in greater detail, highlighting the contributions
from the previous chapters. Next, the flow is reconstructed for a NACA 0018 airfoil
at α = 0◦ and Re = 10250. As noted in Chapter 6, this flow is quite similar to the
low Reynolds number cylinder flow studied in Chapter 4 in as much as the airfoil
experiences vortex shedding resulting in very similar Reynolds stresses. Prelimi-
nary results for the resolvent analysis of the data-assimilated α = 10◦ case appear
in Appendix B as the flow reconstruction procedure has not yet been applied to this
flow. The benefits of data-assimilating the mean profile, however, are much more
significant for this angle of attack than the one presented in this chapter.

7.1 Reconstruction Procedure
The procedure, as illustrated in Figure 7.1, begins by collecting the experimental
data (top row in the figure). In the general case, a ‘crude’ mean profile is obtained
using non-time-resolved PIV, for example, as well as a single sensor which con-
tains time-resolved information such as a hot-wire or a pitot tube. The specific
reconstruction performed here uses the mean profile obtained from PIV (see Chap-
ter 2) and since the data are time-resolved, the fluctuations are known at each PIV
point. The location of the probe point, furthermore, is guided by Chapter 3 where
the spatial support of the most energetic resolvent modes can be predicted by fea-
tures of the mean profile. The resolution and field of view with respect to the PIV
have been guided from the results in Chapters 5 and 6. The data-assimilated veloc-
ity field is the input for resolvent analysis and a discrete Fourier-transform of the
probe velocity v̌(x0) is used to compute the local frequency spectrum (second row).
It should be noted that the v-component of velocity is being measured for this flow
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Figure 7.1: Schematic of the flow reconstruction procedure used in this chapter. Ex-
perimental quantities are contained in the dashed blue box while the reconstructed
variables are contained in the dashed red box.

instead of u since the spectral content is easier to discern. For the general case, the
signal can be obtained from any flow quantity.

The quantity ∇(p − ξ) is another output from the data-assimilation. In order to
isolate p, it is first necessary to obtain information about the fluctuations. Since the
unsteady velocity field can be represented in the frequency domain by its Fourier
modes, the next step is to evaluate the frequencies at which proportionality can be
expected between the dominant resolvent and Fourier modes. If σ1 � σ2, the
dominant resolvent mode ψ̂1 is used in the reconstruction with the caveat from
Chapter 4 that it is σi χi which determines the energetic contribution of a given
resolvent mode. Since there are temporal frequencies which contribute energy to
the flow where this assumption does not hold, e.g., higher frequency harmonics, the
nonlinear forcing is approximated by triadic interactions of resolvent modes which
sum to the desired frequency (see Chapter 4). Once the correct mode shapes are
obtained, their complex amplitude χ is computed using Equation 2.65 (third row).
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Once the resolvent modes have been weighted, a Poisson equation for ξ (Equation
2.63) can be solved to obtain p. The fluctuating quantities u′ and p′ can be recov-
ered by performing an inverse Fourier-transform of the weighted resolvent modes
which are an approximation of the Fourier modes (fourth row). The final result is
an improved approximation of both the mean and fluctuating states using a rudi-
mentary mean profile and a unsteady point measurement (fifth row). All quantities
are derived from the NSE and obey the continuity equation.

7.2 Resolvent Analysis Frequency Sweep
Since the first two rows of Figure 7.1 have been completed in Chapter 6, the next
step is to perform a resolvent analysis of the data-assimilated mean profile. These
results are compared with interpolating the mean profile obtained from PIV onto
the same FreeFem mesh. This is accomplished using linear interpolation in matlab

and manually enforcing the no-slip boundary condition on the airfoil surface since
PIV data do not exist on these points. In regions of the mesh where PIV data do not
exist such as at the inlet and outlet, the flow is set to u = [1, 0]. The number of PIV
vectors is approximately 25,000, which is comparable with the 50,000 FreeFem
mesh points. However, the FreeFem mesh is significantly more resolved near the
airfoil than the PIV grid while the converse is true away from the body.

In Figure 7.2(a-b), the first three singular values of the resolvent operator are plotted
for 0 < ω < 35. The shape for both the experimental and data-assimilated profiles
is quite similar to the cylinder, in that there is a distinct range of frequencies where
the first singular value is an order of magnitude higher than the second singular
value. The range where all three singular values are the same order of magnitude
is also similar. There are some differences between the interpolated versus the
assimilated results in Figure 7.2. Panels (c) and (d) are magnified versions of (a)
and (b), respectively, which show a discrepancy with respect to the globally most
amplified frequency ωg. In the interpolated case, this maximum occurs around
ω = 11.9 while, in the data-assimilated case, ωg = 12.24. It will be seen, based on
the DMD eigenspectrum as well as the power spectra at various points in the wake,
that the data-assimilated mean predicts ωg more accurately.

There are other differences between Figure 7.2(a) and (b). The singular values are
generally higher for the data-assimilated case suggesting that the eigenvalues are
closer to the imaginary axis. While the separation between the singular values is
generally the same, the interpolated case predicts greater separation between the
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Figure 7.2: First three singular values of the NACA 0018 airfoil at α = 0◦ and Re =

10250 using the (a) interpolated experimental mean and the (b) data-assimilated
mean. (c) and (d) are zoomed in versions of (a) and (b), respectively. The vertical,
blue dashed line indicates the globally most amplified frequency ωg = 12.24.

singular values, particularly between σ1 and σ2 at very low frequencies (ω < 3)
and very high frequencies (ω > 30). The data-assimilated results, as will be seen
in Section 7.3, more accurately predict the range of frequencies where the recon-
struction is good using a single resolvent mode. In comparison to the interpolation,
the resolvent norm is slightly more jagged near the peak. One potential explanation
for this behavior is that the shedding frequency is not completely constant in time,
and this may be reflected in the broadening of the peak in the frequency range of
10.3 < ω < 12.3.

The resolvent forcing modes at ωg = 12.24 are plotted in Figure 7.3 for the ex-
perimental and data-assimilated profiles. Even though the resolvent forcing modes
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(a) (b)

(c) (d)

Figure 7.3: Comparison of φ̂1 for ωg = 12.24 of the NACA 0018 airfoil at α = 0◦

and Re = 10250. The modes computed from the interpolated experimental profile
are shown on the left while those from the data-assimilated profile are on the right.
The u-component of the mode is the top row while the v-component of the mode is
the bottom row. The modes have been normalized such that the maximum contours
are unity.

are similar, the structure is captured slightly better by the data-assimilated profile.
The resolvent response modes (which have not been plotted to avoid redundancy),
on the other hand, are nearly identical suggesting that the wake dictates the shape
of those modes. The PIV data are able to resolve well the wake behind the airfoil
hence a good prediction of the most amplified response mode. Due to the convec-
tive non-normality of this flow, the forcing modes are upstream and quite close to
the airfoil surface since the flow is attached. Because there are only two PIV vec-
tors in the cross stream direction, the interpolation onto the FreeFem mesh, which
has a resolution five times larger, is not likely to be very accurate. Furthermore,
the no-slip boundary condition has to be manually enforced since the interpolated
values are not zero. The data-assimilated profile, on the other hand, does not need
to interpolate between mesh points and yields a slightly improved prediction of the
forcing mode.

Even if there is a lack of experimental data near the airfoil surface, it is still im-
portant for the mesh, onto which the experimental data is interpolated or the data-
assimilation equations are solved, to be highly resolved. The spatial support of the
forcing mode is confined to a very narrow strip just above the airfoil. Consequently,
if the mesh resolution is too sparse, it affects the resolution of the forcing mode and
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Figure 7.4: DMD eigenvalues of the NACA 0018 airfoil at α = 0◦ and Re = 10250.
Only 29 have been plotted as crosses. The eigenvectors of the circled eigenvalues
are compared to their resolvent mode counterparts in subsequent figures. The red
and circled eigenvalue corresponds to ωg = 12.24.

eventually the resolvent response mode.

7.3 Comparison Between Resolvent and DMD Modes
Similar to the cylinder case in Chapter 4, the resolvent modes can be compared
to their DMD counterparts. As explained by Towne et al. (2018), the two should
match when the resolvent operator is low-rank and the forcing is unstructured. The
DMD eigenvalues are plotted in Figure 7.4 and the imaginary part of the closest
eigenvalue to the globally most amplified frequency is ωg = 12.24. Notably, this
DMD eigenvalue is closest to the imaginary axis. Both velocity components of the
resolvent and DMD mode are plotted in Figure 7.5. The agreement is relatively
good in terms of the spatial structure although the amplitude of the DMD mode is
highest nearest the trailing edge of the body, especially for the streamwise velocity
component. These results are reminiscent of those for the cylinder in Chapter 4.

In the interest of brevity, only the v-component of the resolvent and DMD modes
is plotted in Figure 7.6 for three other temporal frequencies: one in the vicinity of
the globally most amplified frequency (ω = 10.39), one which is (approximately)
the first harmonic of the globally most amplified frequency (ω = 24.49), and one
at a low temporal frequency (ω = 2.90) where the resolvent operator is not low-
rank. There is some separation between σ1 and σ2 for the first harmonic mode
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(a) (b)

(c) (d)

Figure 7.5: Comparison of ψ̂1 (left) and its DMD counterpart (right) for the globally
most amplified frequency of the NACA 0018 airfoil at α = 0◦ and Re = 10250. The
u-component of the mode is the top row while the v-component of the mode is the
bottom row. The modes have been normalized such that the maximum contours are
unity.

although it is only a factor of two whereas the separation for the globally most
amplified frequency is more than one order of magnitude. The ω = 10.39 mode is
of particular interest since the DMD spectrum shows that this mode is quite close
to the imaginary axis. It is hypothesized that this mode is physically significant and
accounts for the jittery behavior of σ1 observed in Figure 7.2.

There is agreement between the resolvent and DMD modes for ω = 10.39 only;
there are major discrepancies for the other frequencies. The mode predicted from
resolvent analysis for ω = 24.49 resembles the shedding mode which has been
compressed in the streamwise direction. DMD identifies an anti-symmetric mode
that mirrors the 2ωs mode observed in the cylinder wake (see Chapter 4). The DMD
mode at ω = 2.90 has a similar structure to the high frequency mode although it is a
far more stretched version in the streamwise direction. The resolvent mode, on the
other hand, still resembles the shedding mode, albeit a more compressed version.

It may not be possible to compare resolvent modes with DMD modes due to lack of
data or insufficient time resolution. In scenarios where DMD modes are not avail-
able, the degree of separation between σ1 and σ2 indicates whether it is appropriate
to use resolvent modes. If σ1/σ2 > 10, it suggests the influence of a strong linear
mechanism. The structure of the response, therefore, is insensitive to the structure
of the nonlinear forcing. This has been observed not only for the flows in this the-
sis, but also for wall-bounded turbulence (McKeon and Sharma, 2010), backward
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Figure 7.6: Resolvent (left) and DMD (right) mode comparison at ω = 10.39 (a-b),
ω = 24.49 (c-d), and ω = 2.90 (e-f) for the NACA 0018 airfoil where α = 0◦ and
Re = 10250. Only the v-component is plotted and the modes are normalized such
that the maximum contours are unity.

facing steps (Beneddine et al., 2016), and turbulent jets (Schmidt et al., 2017b). In
cases where this separation does not exist, the nonlinear forcing can be approxi-
mated. Even if the ‘true’ mode shape in the flow looks like ψ̂1, the forced resolvent
mode will match ψ̂1. This was observed for ωs in Chapter 4 when the resolvent
was forced by ψ̂1(−ωs) · ∇û(2ωs) + û(2ωs) · ∇ψ̂1(−ωs). There is nothing to lose,
therefore, by being conservative with the choice of the σ1/σ2 threshold.

7.4 Nonlinear Interactions for Low and High Frequency Modes
There is a transition in the v-component of the DMD modes from symmetric to
anti-symmetric which the resolvent modes are failing to capture for modes outside
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Figure 7.7: Resolvent mode (left) obtained from forcing the resolvent operator with
the nonlinear interaction of two triadically consistent response modes at ω = 24.49.
The DMD counterpart is in (b). Only the v-component is plotted and the modes are
normalized such that the maximum contours are unity.

the rank-1 range. The structure of the first harmonic DMD mode is quite similar
to the cylinder case, so it is reasonable to suggest that the nonlinear forcing to this
harmonic can be approximated by the self-interaction of the globally most amplified
frequency. The nonlinear forcing is computed from

f̂ (ω = 24.49) ≈ ψ̂1(ω = 12.24) · ∇ψ̂1(ω = 12.24), (7.1)

where other triads which sum to the same ω have been neglected. The resulting
structure is compared to the DMD mode in Figure 7.7. There is much better agree-
ment between this resolvent mode compared to the one obtained from a singular
value decomposition of the resolvent operator. Notably the y antisymmetry is now
captured. There are some differences in Figure 7.7 such as the thickness in the
y-direction and the streamwise location of the mode. The resolvent mode is thin-
ner, concentrated closer to the centerline, and has non-negligible amplitude further
downstream than its DMD counterpart. These differences are likely symptoms of
the differences observed between the resolvent and DMD modes at the globally
most amplified frequency since they were used to compute the nonlinear forcing
which generated these modes. The results in Figure 4.18 substantiate this theory
since it was observed that the nonlinear forcing computed from the DMD modes
was almost an exact match to the nonlinear forcing obtained directly from the DNS.

Up until this point, sums of triads, or modes with ω1 + ω2 = ω3, have been con-
sidered to obtain the structure at very high frequencies relative to the dominant
instability mechanism. The same principle can be applied for very low frequency
modes by considering the differences of triads, or ω1 − ω2 = ω3. To obtain a
closer prediction of the structure at ω = 2.90, the nonlinear forcing f̂ (ω = 2.90) is
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(a) (b)

Figure 7.8: Resolvent mode (left) obtained from forcing the resolvent operator with
the nonlinear interaction of two triadically consistent response modes at ω = 2.90.
The DMD counterpart is in (b). Only the v-component is plotted and the modes are
normalized such that the maximum contours are unity.

proposed:

f̂ (ω = 2.90) ≈ ψ̂1(ω = 12.24)·∇ψ̂1(ω = −9.06)+ψ̂1(ω = −9.06)·∇ψ̂1(ω = 12.24).
(7.2)

The velocity response from the resolvent is compared with the DMD mode in Figure
7.8. Once again, there is qualitative agreement between the general spatial variation
of the structures obtained and the differences observed are similar to those for the
ω = 24.49 modes. More triads would need to be considered to recover the complete
nonlinear forcing and therefore the most accurate resolvent mode.

The question of how many triads are necessary to recover an acceptable approxi-
mation of the nonlinear forcing is beyond the scope of this thesis, as is the consider-
ation of recovering suboptimal resolvent response modes. The preliminary results
which are presented here rely on the rank-1 approximation for frequencies at which
σ1 is sufficiently larger than σ2. For frequencies where this assumption does not
hold, the nonlinear forcing is approximated using two response modes whose fre-
quencies lie in the range where rank-1 is acceptable. The addition of frequencies
recovers modes at the higher end while the differences cover the lower end. It can
be hypothesized that the structure of the modes at very high frequencies can be
approximated by considering a nonlinear forcing computed from

f̂ (ω3) ≈ ψ̂1(ω1) · ∇û(ω2) + û(ω2) · ∇ψ̂1(ω1), (7.3)

where ω1 + ω2 = ω3 and ω3 is the frequency of interest. In the above equation,
ω1 is in the rank-1 range and ω2 lies outside this range hence the use of the mode
shape û instead of ψ̂1.
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Figure 7.9: Probe points for NACA 0018 at α = 0◦ and Re = 10250 flow re-
construction. The points are numbered from left to right (i.e. the first point is the
furthest upstream) and the colors are used solely to avoid confusion for points which
happen to be close together such as P3 and P4.

Position Description
P1 (0.97,0.04) Above Airfoil
P2 (1.22,−0.22) Below Near Wake
P3 (1.27,−0.06) Near Wake Below Centerline
P4 (1.35,0) Near Wake on Centerline
P5 (1.47,0.09) Near Wake Above Centerline
P6 (1.98,0) Far Wake on Centerline
P7 (2.38,0) Far Wake on Centerline
P8 (2.49,0) Far Wake on Centerline

Table 7.1: Points used in the NACA0018 airfoil at α = 0◦ and Re = 10250 flow
reconstruction.

7.5 Probe Measurements for Velocity Fluctuations
In order to calibrate the complex amplitudes of the mode shapes computed using
either the singular value decomposition or forcing the resolvent operator, a time-
resolved probe point needs to be selected. Multiple locations may be chosen but
this thesis will consider knowledge at one point only. The performance using sev-
eral points, which are plotted in Figure 7.9 and tabulated in Table 7.1, is compared
in Section 7.6. The ordering of the points is determined by their streamwise lo-
cation. P1 corresponds to the point furthest upstream while P8 corresponds to the
point furthest downstream. Only the v-component of the velocity is used to inform
the amplitude and phase of the modes at each temporal frequency as the spectral
signature is clearer than the u-component.

The power spectrum for two of the candidate points in Table 7.1 is plotted in Figure
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Figure 7.10: Power spectrum at points P4 and P7 in the airfoil wake

7.10. Even though the streamwise separation between P4 and P7 exceeds one chord
length, the spectra are quite similar. It can be observed, perhaps more easily for P4,
that there exist two main peaks which occur at ω = 10.35 and ω = 12.27. The latter
corresponds toωg identified by the resolvent of the data-assimilated mean while the
former is within the range where σ1 is not smooth. It does not coincide with the
peak of σ2 which occurs at ω = 9.15. The presence of two distinct frequencies in
the flow leads to a beating effect which is explored in the next section. The main
dissimilarity to remark upon in Figure 7.10 is the amplitude of the two peaks which
decrease as one moves downstream from P4 to P7. There is a small peak for both
P4 and P7 at ω = 36, so the resolvent modes are computed for frequencies up to
ω = 39.

7.6 Unsteady Flow Reconstruction
In this section, the fluctuating velocity is reconstructed by computing the complex
weights of the resolvent mode at each temporal frequency. Doing so yields predic-
tions of the spectra at other points in the flow as shown by Beneddine et al. (2016)
and Thomareis (2017). The inverse Fourier-transform of the weighted modes yields
the unsteady velocity and pressure fields (Gómez et al., 2016a; Beneddine et al.,
2017). The results that are presented here focus on the flow reconstruction aspect
although it is possible to make predictions about the spectra at other points in the
flow. The quality of the reconstructed fluctuations is evaluated by comparing the
unsteady velocity fields with the PIV snapshots. Note that these PIV velocity fields
are not constrained to obey continuity, so exact agreement is not necessarily ex-
pected. Since pressure data are not available for comparison, the unsteady pressure
field results are omitted although the method is also capable of reconstructing the
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Figure 7.11: Time traces of the reconstructed v-component when the probe point is
located at P4. The solid black lines are the raw PIV data while the dashed-dotted
red lines are the reconstruction.

pressure fluctuations.

7.6.1 Selection of Probe Point and Point Reconstructions
The choice of the best probe point is examined here before comparing the flow
reconstruction to the original PIV snapshots. As will be seen below, it is not nec-
essary to introduce an error metric to make this judgment. The flow reconstruction
uses frequencies in the range 0.22 < ω < 38.83. The results for probe point 4
are summarized in Figure 7.11 and only the first ten seconds of the data are plotted
for greater clarity. Even though the calibrated amplitudes are based on the DFT of
Point P4, it can be concluded that Points P1 and P2 are not suitable choices for the
probe point since the fluctuation energy is very low in these regions (see Figures
7.5 and 7.6). P1 is too far upstream while P2 lies outside the wake region. The
probe point must lie inside the region where it can discern the velocity fluctuations
that arise from the vortex shedding. The agreement between the reconstruction and
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Figure 7.12: Time traces of the reconstructed v-component when the probe point is
located at P7. The solid black lines are the raw PIV data while the dashed-dotted
red lines are the reconstruction.

the data is good for Points P3-P5, particularly P4 since this is the reference point.
The reconstruction for Points P6-P8 is not good as the amplitudes are significantly
overestimated. This suggests that the choice of Points P3-P5, which all yield similar
results, does not result in very successful flow reconstruction.

The results for probe point 7 are summarized in Figure 7.12. Once again, Points
P1 and P2 are in regions of the flow where the fluctuations are weak, so the flow
reconstruction ‘matches’ in the sense that it predicts no activity at these points.
The agreement for P6-P8 is very good in terms of both the amplitude and phase of
the reconstruction. On the other hand, the agreement at points P3-P5, which are
further upstream, suffers when calibrating from a probe point downstream. While
the phase of the reconstruction matches reasonably well with the original PIV data,
the amplitudes are underestimated by a factor of two in some cases. The overall
agreement, nevertheless, is far better for P7 than it is for P4 and so P7 will be
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(a) (b)

(c) (d)

Figure 7.13: Reconstructed flow (right) at t = 0 using rank-1 modes for the NACA
0018 airfoil at α = 0◦ and Re = 10250. The PIV snapshots without frequency
filtering are on the left for comparison. The u-component is the top row while the
v-component is the bottom row.

selected for the remainder of the chapter. Taking multiple points into account to
calibrate the amplitudes of the modes is not considered in this thesis although it
could lead to improved results (see Beneddine et al., 2017).

7.6.2 Full Field Approximation Using Rank-1 Frequencies Only
In this subsection, the flow is reconstructed using frequencies in the rank-1 range
only (3.1425 < ω < 20.2017). Recall that rank-1 validity as used here implies that
the first resolvent response mode matches the structure of its DMD counterpart. Due
to the dominance of the vortex shedding mode, the resolvent modes at less amplified
frequencies in the rank-1 range tend to be a stretched or shrunken version of the
globally most amplified mode in the streamwise direction. Both components of the
reconstructed velocity fluctuations are plotted in Figure 7.13 and are compared to
PIV snapshots at the same instant in time. The particular snapshot in Figure 7.13 is
the very first, or time t = 0. Note that no filtering has been applied to the PIV data,
i.e., all frequencies are included whereas the cutoff for the reconstruction is ω = 39.

One of the most striking differences between the PIV snapshots and the recon-
structed flow is the amount of noise. No effort has been made to mask it in or-
der to emphasize one of the primary benefits of the flow reconstruction procedure:
significantly less measurement noise. There is very good agreement between the
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amplitudes of the modes for both velocity components. Both the height and width
of the structures is also in good agreement. There are two main areas of disagree-
ment, nonetheless. First is that the intensity of the fluctuations is under predicted
immediately downstream of the airfoil. Second is that the shapes of the contours
are not exactly the same. The PIV contours tend to be more square in shape and
the maximum contour tilts in either the upstream or downstream direction. The
shape of the resolvent contours, on the other hand, is symmetric with respect to
the centerline. Adding more frequencies using the ‘forced’ resolvent modes results
in closer agreement in the shape as will be seen in the next subsection. Overall,
however, the bandwidth of frequencies included in the flow reconstruction, which
obeys the NSE, yields an acceptable and clean representation of the main features
of the instantaneous flow.

7.6.3 Adding ‘Forced’ Resolvent Modes
The flow reconstruction is now performed using all frequencies at which a resolvent
mode is computed (i.e. ω < 38.73). The motivation for choosing this cutoff stems
from the power spectrum of Point P7 as seen in Figure 7.10, which has small peaks
at harmonics of the globally most amplified frequency ωg. The objective, there-
fore, is to compute modes just beyond 3ωg to recover as much of the fluctuating
energy as possible. The flow can be reconstructed at every instant in time (only the
first snapshot was considered in Figure 7.13 but only three will be presented in the
interest of brevity.

The three snapshots correspond to T1 = 0, T2 = 10, and T3 = 20.4 which are
explicitly shown in Figure 7.14. T1 is chosen to compare the effect of adding all fre-
quencies versus just the rank-1 modes. T2 corresponds to an extreme event where
the flow changes considerably for a short amount of time. The amplitude of the
velocity signal in Figure 7.14 decreases dramatically around T2. This type of be-
havior is reminiscent of beating between frequencies. Whether the reconstruction
is capable of capturing this behavior will be answered shortly. Finally, T3 is chosen
as an instant where the phase of the velocity signal at P7 is opposite of the phase at
T1.

The reconstructed flows are plotted and compared to the PIV snapshots in Figure
7.15. Only the v-component is considered as there is a greater discussion of the
u-component results in Section 7.7. The T1 snapshot in Figure 7.15(a,b) can be
compared to the result in Figure 7.13(c,d). The qualitative agreement is notice-
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Figure 7.14: Fluctuating v-component at Point P7. The black solid line is the PIV
measurement while the dashed-dotted red line is the reconstruction using modes for
all frequencies considered. The dashed blue lines indicate the three instants in time
where the PIV snapshots are compared to the reconstructed flow.
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Figure 7.15: Reconstructed flow (right) for various times using all modes for the
NACA 0018 airfoil at α = 0◦ and Re = 10250 compared to the PIV snapshots
(left). The snapshots corresponds to T1 in (a,b), T2 in panels (c,d), and T3 in (e,f).
Only the v-component has been plotted.



154

ably better when all frequencies are used as opposed to just the rank-1 frequencies.
The shape of the contours in Figure 7.15(b) resemble their PIV counterparts more
closely as the negative contours tend to tilt downstream while the positive contours
tend to tilt upstream. Furthermore, there is less symmetry with respect to the cen-
terline. The agreement of the mode amplitude in the region 1 < x < 1.5 has not
improved after adding more frequencies as the reconstruction still underestimates
the strength of the fluctuations immediately behind the airfoil. The reconstruction
also does well for the T3 snapshot although it suffers from similar defects as the T1

snapshot.

The T2 snapshot was chosen intentionally to capture an extreme event in the flow
rather than its ‘average’ behavior as represented by T1 and T3. Remarkably, the
flow reconstruction is able to approximate the flow’s behavior at this point despite
its complexity. While the PIV data look somewhat disorganized and incoherent,
the position of each contour’s centroid matches approximately with the flow recon-
struction. There are fewer structures at T2 compared to the other snapshots (seven
versus nine) and this is captured by the flow reconstruction.

7.7 Discussion
Despite promising initial results, there are some drawbacks to this method which are
discussed in this section. To begin with, a global error metric is defined to compare
the effect of the probe location, the velocity component measured, and the number
of frequencies accounted for in the model. The second topic of discussion is the in-
fluence of mode position and amplitude. It has been remarked on several occasions
in this thesis that the resolvent response modes, forced or unforced, tend to have
higher amplitudes downstream of the airfoil and closer to the centerline when com-
pared to their DMD counterparts. These differences make it slightly more difficult
for the model to converge to the PIV snapshots. The third topic of discussion is the
reconstruction of the u-component using v measurements only. It is more difficult
to reconstruct u for reasons which will be explored in this section.

7.7.1 Error Metric
Quantitative comparisons between the raw PIV snapshots and the reconstructed
flow are based on the same error metrics as those outlined in Beneddine et al.
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Point Component Frequencies Eu Ev

P7 u rank-1 0.012 0.028
P7 u all 4.556 0.050
P4 v rank-1 0.034 0.018
P7 v rank-1 0.011 0.012
P7 v most 0.014 0.012
P7 v all 0.190 0.013

Table 7.2: Comparison of the global error for different input points, velocity com-
ponents, and range of frequencies.

(2017). The instantaneous error Iv (t) is defined as

Iv (t) =

√√√
1

Np

Np∑
i=1

(vi (t) − vi
re f (t))2, (7.4)

where Np is the number of discrete points where the velocity is known, vi is the
ith discrete transverse velocity value of the reconstructed field, and vi

re f is the ith
discrete transverse velocity of the reference field. The global error E is obtained by
integrating I (t) in time:

Ev = (1/Tmax)
∫ Tmax

0
Iv (t)dt. (7.5)

If u had been measured instead of v, then it is possible to define Iu(t) and Eu by
making the necessary substitutions in Equations 7.4 and 7.5 In this study, Tmax =

3499, or the number of snapshots obtained for a single PIV run as mentioned in
Chapter 2.

The global error is computed for various cases, some of which have been presented
thus far, in Table 7.2. The domain where Eu and Ev are computed is x ∈ [1, 3]
and y ∈ [−0.3,0.3]. Choosing a larger domain in the y-direction would artificially
increase the quality’s reconstruction since there is no fluctuating activity outside
the wake region. The length of the domain in the streamwise direction is based on
where PIV measurements are available. A more sophisticated approach to minimize
the influence of noise might involve limiting the PIV domain to regions where the
velocity magnitude is greater than some threshold value. The model’s capability
with regard to predicting the downstream development of the flow outside the PIV
domain is discussed in the next subsection.

For now, the discussion will be limited to analyzing trends associated with Ev as the
u-component reconstruction is discussed in Section 7.7.3. The best performers from
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Table 7.2 are those corresponding to measuring v at P7. Measuring v at P4 does
50% worse while measuring u does at least a factor of two worse. The inclusion
of more frequencies has little impact on Ev. Using only rank-1 frequencies results
in Ev = 0.012. If most frequencies are used (2.0202 < ω < 38.8322), then Ev

remains constant even though the shape improves while adding frequencies below
ω = 2.0202 (the motivation for this cutoff is discussed in Section 7.7.3) results in a
slight uptick of Ev.

7.7.2 Influence of Mode Position and Amplitude
The reconstruction method is not able to match the PIV snapshots due to inaccura-
cies associated with the streamwise position and amplitude of the resolvent modes.
As seen in Figure 7.7, the spatial support of the resolvent mode is situated further
downstream than the DMD mode. The amplitude of the resolvent mode, moreover,
is small when it first appears in the airfoil and gradually increases until it reaches
its highest amplitude just before the edge of the domain. The DMD mode, on the
other hand, indicates that the fluctuations for ω = 24.2 begin further upstream im-
mediately behind the airfoil and decrease in amplitude as a function of streamwise
distance from the airfoil. From these observations, it becomes clear why a point fur-
ther downstream where the fluctuations are weaker yields better results than a point
further upstream. P7 compensates for the amplitude mismatch between the resol-
vent and DMD modes by calibrating the modes such that the upstream fluctuations
are weak. The downstream fluctuations will match the probe point. Calibrating
based on P4 would result in very large fluctuations downstream.

It is for this reason that the model does not predict with good fidelity the activity fur-
ther downstream in the wake where PIV data are not available. The data-assimilated
mean is computed on a much larger domain where x = 15, so it is possible to com-
pute resolvent modes which extend this far downstream as well. Since they do
not correctly predict the attenuation of fluctuations as one moves downstream, the
model in its present form is overestimates the intensity of fluctuations which occur
further downstream.

7.7.3 Influence of Velocity Component
Finally, the reconstruction of the u-component is discussed using various ranges
of frequencies. In Figure 7.16, the results from the P7 v-component calibration
are illustrated for t = 0. Similar to its v counterpart, the use of rank-1 modes
only in Figure 7.16 fares quite well as the agreement between the PIV and the
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(a) (b)

(c) (d)

Figure 7.16: u-component of the reconstructed flow (b-d) compared to the PIV
snapshot (a) using various amounts of frequencies. Only the rank-1 frequencies are
used in (b) while (d) uses all frequencies. (c) includes all ω > 2.0202.

reconstruction is quite good. There are discrepancies in the region immediately
behind the airfoil, however, as the model fails to reproduce the first set of structures
directly behind the trailing edge. The inclusion of more frequencies in panel (c)
does not visibly alter the quality of the reconstruction. According to Table 7.2,
there is a slight increase in Eu when including more modes, particularly at the lower
frequencies. The motivation for cutting off very low frequencies becomes clear in
panel (d) where the quality of the reconstructed flow has deteriorated significantly.
There is a small layer of high speed velocity along the centerline which does not
appear in the flow. This problem is not ameliorated when the resolvent modes
are calibrated based on a u measurement as seen in Table 7.2. In fact, both Eu

and Ev increase when measuring u and including either rank-1 frequencies or all
frequencies in the model.

7.8 Mean Pressure Reconstruction
One can now return to the left-hand side of the schematic in Figure 7.1 to obtain an
estimate for the mean pressure. The method relies on using the correctly weighted
resolvent response modes to obtain ∇ · f . Due to the difficulties associated with
reconstructing the flow immediately behind the airfoil, the amplitude of ∇ · f is
underestimated. Since the PIV data are time-resolved, the Reynolds stresses can
be computed and these are used to obtain an estimate of the mean pressure instead
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(a) (b)

Figure 7.17: The mean pressure p + ξ of the data-assimilated mean (a) compared to
the corrected mean pressure p using Reynolds stress information (b).

of the approximation from the resolvent reconstruction along with the results from
the data-assimilation which computes p + ξ. The objective here is to compute ξ by
solving

∇2ξ = −∇ · f , (7.6)

where ∇ · f is estimated from the Reynolds stresses. This differs from the recon-
struction procedure in Figure 7.1, which assumes knowledge of the mean velocity
profile only. If the Reynolds stresses are assumed to be unknown, then Equation
2.63 could be utilized to correct the mean pressure obtained from data-assimilation.
Since the quality of the PIV data is sufficiently good to compute gradients of the
Reynolds stresses, the mean pressure correction can be obtained for this flow.

The data-assimilated mean pressure, or p + ξ, is plotted in Figure 7.17(a) alongside
the mean pressure obtained from solving Equation 7.6 in panel (b). The prediction
from the data-assimilation is already quite accurate since the fluctuations are strong
in the wake region only. The only differences, therefore, are concentrated immedi-
ately behind the trailing edge where the gradients of the Reynolds stresses are quite
strong.

7.9 Convergence of the Method
As mentioned before, the singular values of the resolvent operator are a good indi-
cation of whether or not the predicted resolvent modes match DMD modes which
are computed directly from the data. The convergence of the method can still be
assessed without validating the resolvent modes against the DMD modes. One av-
enue, for example, is to compute the Reynolds stresses via the triadic interactions
of resolvent modes and their complex conjugate counterparts. The result can be
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compared with the Reynolds stress gradients obtained from the data-assimilation
although it is necessary to isolate the solenoidal component before doing so. The
benefit of this method is its simplicity although it has not been applied in this thesis
since the PIV snapshots are available and the Reynolds stresses are underestimated.

A second, more rigorous validation approach would be to solve the fully nonlin-
ear system using an optimization procedure analogous to the one developed by
Rosenberg (2018). The procedure is formulated on determining the correct com-
plex weights of all resolvent response modes and verifying that the nonlinear forc-
ing generated by their triadic interactions both supports the mean profile and drives
the velocity fluctuations at all frequencies. Due to the high degrees of freedom in
this system, this may not be practical compared to the first method. The weights
approximated using a single probe point, however, could dramatically speed up the
optimization process as it helps eliminate temporal frequencies where the fluctua-
tions are weak. The mode shapes computed by approximating the nonlinear forcing,
furthermore, are closer to the truth than the most highly amplified resolvent modes.
They suggest at which frequencies suboptimal modes should be computed as well
as which suboptimal modes are important based on how the estimated mode shape,
from the approximated nonlinear forcing, projects onto them.

7.10 Summary
Preliminary results have been presented for reconstructing the flow around a NACA
0018 airfoil at α = 0◦ and Re = 10250. The methodology outlined in Figure 7.1 is
followed quite closely with the exception of the mean pressure computation which
was performed using knowledge of the Reynolds stresses. Ideally, the reconstructed
fluctuations would be able to predict the Reynolds stresses but the amplitude dis-
agreement behind the airfoil when using point P7 meant that these predictions were
less accurate than using the Reynolds stresses computed from the time-resolved
PIV directly. It would require multiple points in the wake to obtain the correct
amplitudes for longer streamwise distances.

The flow reconstruction procedure relies on data-assimilating the PIV mean pro-
file to obtain u and p + ξ. As mentioned in the previous paragraph, the Reynolds
stresses were used to solve a Poisson equation for ξ, yielding a good approximation
of the mean pressure field even though no pressure measurements were made. A
resolvent analysis of the mean profile revealed low-rank behavior for a bandwidth
of frequencies where the first resolvent response mode matched the DMD mode. In
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the general case, access to DMD modes may not be possible so the rank-1 approx-
imation should be used when there is one order of magnitude separating σ1 and
σ2. At frequencies where this is not the case, the nonlinear forcing is approximated
from the interaction of two modes in the rank-1 region. The mode shape is then
obtained by forcing the resolvent operator with this nonlinear forcing. At very high
frequencies, it may be necessary to approximate the nonlinear forcing from a rank-1
mode and a ‘forced’ mode.

The unsteady velocity and pressure (not presented here) fluctuations are obtained by
calibrating the complex amplitude of the resolvent modes from the discrete Fourier
transform of a single point in the flow. The use of a single mode and a single point
in the wake is a significant simplification yet it is appropriate for this flow. With just
rank-1 modes, the reconstruction agrees reasonably well with the PIV snapshots at
various instances in time and is able to identify extreme events in the flow which
result from the beating of two distinct frequencies. The addition of modes outside
the rank-1 region results in qualitative improvement of v as the reconstruction is
able to capture some of the finer details of the structure such as the tilting of the
contours. The quality of u, however, declines as a high amplitude region near the
centerline appears. Even if the probe point measures u instead of v, the agreement
does not improve- in fact, it gets considerably worse. Two possible sources of this
problem are suggested. First, the mode shape at very low frequencies deviates from
the true structure. This is particularly a problem for u which has a more complicated
structure than v. The mode shapes at low frequencies tend to be symmetric and
the amplitude of the component along the centerline increases downstream when
it ought to decrease. Thus, when it is included in the reconstruction, this artifact
manifests itself as a high amplitude waviness along the centerline.



161

C h a p t e r 8

CONCLUSIONS AND FUTURE WORK

The objective of this thesis was to gain a better understanding of how resolvent
analysis selects amplification mechanisms based on the mean profile. It could then
be exploited to educe coherent structures in experimental flows and approximate the
fluctuating velocity fields at any instant in time using very limited measurements.
The final result is an estimate of the flow which obeys the NSE and reproduces the
main features observed in the experiment. The complete reconstruction method-
ology in Figure 7.1 can thus be interpreted as a tool to perfect incomplete and/or
noisy data from experiments.

The mean cylinder wake, computed from simulation data at low Reynolds num-
bers, was an ideal flow for developing the method due to the sparsity of temporal
frequencies active in the flow. There were challenges when dealing with experi-
mental data, namely a lack of resolution near walls or, in the case of flows around
airfoils, missing data near the airfoil surface. The data-assimilation algorithm first
developed by Foures et al. (2014) was extended to experimental data, yielding im-
proved predictions of the mean velocity near a body. The flow around a NACA
0018 airfoil was then reconstructed using a data-assimilated mean velocity profile
and resolvent analysis. A more detailed summary and the conclusions are presented
in the next section. The thesis draws to a close with a discussion of future work and
implications for estimating turbulent flows.

8.1 Summary and Conclusions
8.1.1 Fundamentals of Resolvent Analysis and Application to Flows Around

Bodies
In Chapter 3 stability and resolvent analyses were juxtaposed directly to under-
stand the linear amplification mechanisms identified. These mechanisms were cat-
egorized as resonant if they could be attributed to a single eigenvalue of the mean
eigenspectrum or pseudoresonant if the response is composed of several nonorthog-
onal eigenfunctions. A scalar measure of the non-normality of a mechanism, ini-
tially proposed by Chomaz (2005) as a local meausre, was computed globally from
|φ̂
∗

1ψ̂ |
−1. When it agreed with σ1 |iω − λ |, then mean stability analysis was capable

of identifying the linear mechanism; otherwise, it was pseudoresonant and resol-
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vent analysis was required to understand the origin of the structure. In the example
flows studied in Chapter 3, cylinder flow exhibited a strong resonant mechanism,
hence the equivalence of stability and resolvent modes, which exhibits convective-
type non-normality (Marquet et al., 2009) since the resolvent forcing modes are
upstream of the resolvent response modes. It was also possible to quantify non-
normality in two ways since |φ̂

∗

1ψ̂ |
−1 = σ1 |iω − λ |.

Turbulent channel flow was also studied using wavenumber combinations represen-
tative of known turbulent structures. The strength of mean shear often resulted in a
response dominated by the streamwise velocity component and highly non-normal
mechanisms as quantified by |φ̂

∗

1ψ̂ |
−1. Perhaps one of the most important contri-

butions from this chapter was observing when the resolvent operator was likely
to be low-rank. For resonant mechanisms, the resolvent operator was low-rank at
frequencies where the eigenvalue was sufficiently separated from the rest of the
spectrum as seen in cylinder flow. Pseudo-resonant mechanisms, on the other hand,
tend to be low-rank since the first resolvent mode projects onto many nonorthogonal
eigenvectors. Suboptimal modes are required to be orthogonal to the first mode. As
such, they are much less likely to project onto eigenvectors prone to amplification.

The mean cylinder wake was explored in much greater depth in Chapter 4. A rela-
tionship between the scaling of the dominant resolvent modes and the mean profile
was established through the shedding frequency. It was also shown that the length
of the recirculation bubble, which scales with the size of the wavemaker, can be
related to the shedding frequency. It can be concluded that highly amplified linear
mechanisms leave a significant footprint on the mean profile. Resolvent analysis is
therefore able to identify the coherent structures and their frequency by inspecting
the geometry of the mean profile. Only one linear mechanism, the vortex shed-
ding, is active in the low Reynolds number cylinder wake and manifests itself as a
marginally stable eigenvalue in the mean LNS operator. Its influence spans over a
range of temporal frequencies which coincide with where the resolvent operator is
low-rank. Outside of this range, there is no separation of singular values and the
first singular modes do not correspond to structures which appear in the flow. It was
surmised that the self-interaction of the resolvent mode at the shedding frequency
was the necessary nonlinear forcing of H (2ωs). After performing the computa-
tion, the ‘forced’ resolvent mode was a good match with the DMD mode at 2ωs,
reinforcing the notion that the structure of the nonlinear forcing must be taken into
account to back out the correct mode shape. A crude approximation of the nonlin-
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ear forcing for higher frequency modes, which can be considered parasitic in that
they are driven by the vortex shedding mode, yielded successful predictions of the
mode shapes when compared to the DMD modes.

8.1.2 Data-Assimilation of Time-Averaged Simulation and Experimental Data
Resolvent analysis was used to inform the measurement domain for data-assimilation
of the mean cylinder wake at low Reynolds numbers in Chapter 5. The most vital
part of the flow was the edge of the wavemaker region where the nonlinear forcing
f̂ (ωs) overlaps with the first resolvent forcing mode φ̂1(ωs). It was also deter-
mined that the input measurements must coincide with the spatial support of the
Reynolds stress gradients in the wake (x ∈ [1,4]) to successfully capture ∇ ·R. The
mean pressure from data-assimilation of velocity-only measurements can be cor-
rected by solving a Poisson equation which is forced by the divergence of the cor-
rectly weighted resolvent modes interacting nonlinearly with their complex conju-
gate counterparts. The advantage of this method is that it avoids having to compute
gradients of Reynolds stresses which amplify underlying noise in the experiment.
The weighting of measurement points to emphasize important flow physics was
also considered. Although it was concluded that doing so leads to a slightly faster
rate of convergence, there was non meaningful improvement in the final result.

The data-assimilation algorithm was adapted for experimental data in Chapter 6 us-
ing the smoothing procedure described in Chapter 2. The flow around an idealized
airfoil at Rechord = 13500 experiences flow separation near the leading edge so the
PIV field of view included the area above the airfoil where the Reynolds stresses
were likely to be strong as well as the wake. It was observed for the idealized airfoil
that the PIV resolution necessary to obtain a good reconstruction was 30 vectors per
chord length and the domain could be truncated to a region sufficiently small that
only one camera would be necessary for data acquisition. The largest residual dis-
crepancies were near the leading edge of the airfoil where the velocity gradients are
highest and the PIV has difficulties pinpointing the separation point.

The mean flows around a NACA 0018 airfoil at α = 0◦ and α = 10◦ were also data-
assimilated. The α = 0◦ case was more difficult to converge, particularly at higher
Reynolds numbers where the boundary layer and wake region are significantly thin-
ner in the y-direction. As such, the reconstructed Reynolds stress gradients were
less smooth than their experimental counterparts for Re = 20700 although the as-
similation procedure worked well for Re = 10250. The reconstruction results for
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α = 10◦ where the flow is separated were a significant improvement over the exper-
imental data since the algorithm was able to fill in missing data near the separation
point and obtain smoother Reynolds stress gradients.

8.1.3 Flow Reconstruction from Very Limited Measurements
The data-assimilated profile for α = 0◦ and Re = 10250 was used as an input to the
flow reconstruction procedure in Chapter 7. The α = 10◦ case is more complex and
is discussed in Appendix B. The first three singular values were computed across ω
to determine where σ1 � σ2. The sole linear mechanism active in the flow is a vor-
tex shedding mode which was most amplified at ω = 12.24. The frequency range
where there was separation in the singular values ranged from 3.14 < ω < 20.2.
The DFT of a single point in the wake where the fluctuations are energetic was
used to calibrate the amplitude and phase of the resolvent modes. Using only rank-
1 modes resulted in a satisfactory reconstruction of the u and v fluctuations when
compared to the PIV snapshots. They also contained significantly less noise. Modes
outside the rank-1 frequency range were calculated by approximating the nonlinear
forcing from the triadically consistent interactions of rank-1 modes and running this
through the resolvent operator at the frequency of interest. The addition of ‘forced’
resolvent modes to the reconstruction procedure led to discernible qualitative im-
provement of the v-fluctuations at the expense of the quality of the u reconstruction.
While these preliminary results are promising, they suggest several directions for
future work which are discussed in the next section.

8.2 Future Work
Some of the ways for improving the performance of the flow reconstruction were
mentioned briefly in Chapter 7 and are mentioned in greater detail here. The reason
why a probe point further downstream performed better than points further up-
stream was to compensate for the growing amplitude of the resolvent modes with
downstream distance. The DMD modes, on the other hand, tend to decay more
rapidly downstream. Such a correction may be provided by the suboptimal modes,
if the expansion coefficients are uncorrelated (Towne et al., 2018), which were not
considered in this thesis. On the other hand, it may be necessary to reconsider the
inner product which is currently defined as the kinetic energy in the entire domain in
order to obtain a more accurate mode shape. Other extensions to the reconstruction
procedure, which were not considered here, include incorporating multiple probe
points, using suboptimal modes in the reconstruction, and determining the optimal
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placement of flow sensors. The work of Beneddine et al. (2017) looked into the first
option yet obtained fairly minor improvement with the addition of probe points.

The flow reconstruction procedure was not performed for the α = 10◦ case. The re-
sults of the resolvent analysis are summarized in Appendix B where it is observed
that there are two peaks in the resolvent norm. The lower frequency peak corre-
sponds to a wake mode that resembles vortex shedding while the higher frequency
peak is associated with a shear layer instability near the leading edge. As proof that
this is not an artifact from the data-assimilation procedure, the power spectrum is
compared from a point in the shear layer to a point in the wake. The peak of the
former point is close to the higher frequency peak in the resolvent norm while the
peak of the latter point is closer to the lower frequency peak. This phenomenon
could be similar to the Kelvin-Helmholtz mechanism and vortex pairing observed
by Beneddine et al. (2017) for a round jet. Since the resolvent norm was not plot-
ted therein, it is not known if it displayed two distinct peaks. It is also not known
whether the spatial support of these modes were in close proximity and hence could
be calibrated with a single probe measurement. Future work would be to investigate
the minimum number of measurements necessary to recover an acceptable recon-
struction of the flow for the α = 10◦ case.

In its current form, the flow reconstruction method considered two-dimensional
flows only. This is similar to Beneddine et al. (2016) and Beneddine et al. (2017),
where the spanwise and azimuthal wavenumbers were set to zero, respectively. In
Gómez et al. (2016a), the flow was Fourier-transformed in the spanwise direction
giving insight into which spatial wavenumbers were important. The reconstructed
flow, therefore, contained resolvent modes computed for energetic frequencies and
spanwise wavenumbers. Since the flow around the airfoils is homogeneous in
the spanwise direction, the methodology could be extended to model the three-
dimensionality in the wake as the resolvent operator can easily accommodate a
spanwise wavenumber. A single point measurement would need to collect data at
various spanwise stations, however, to identify the spanwise wavenumber content
in the flow. At higher Reynolds numbers, however, the wake may be turbulent,
at which point there may be spatially uncorrelated fluctuations the resolvent fails
to identify (see Beneddine et al., 2017). The influence of the stall cells, further-
more, may disrupt the homogeneity in the spanwise direction in a manner which is
difficult to model with the current procedure.

One of the future considerations in terms of the data-assimilation framework is to
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account for the out-of-plane velocities which are not captured in the measurements
or the processed data. While the 2D incompressible RANS equations seem justified
for the flows in this thesis, an algorithm in the future could account for out-of-
plane velocity gradients by introducing an additional compliance parameter d =

−∂zw = ∂xu + ∂yv and replacing the divergence-related term in Equation 2.53 by〈
p†,∇ · u − d

〉
. For a 2D flow (d = 0) this expression reverts back to the previous

augmented Lagrangian given by Equation 2.53. A second would be to compare
the predictions of a RANS simulation with a turbulence model to the experiment
and assimilated results. The degree of success is dependent on the model chosen
so there is not a unique comparison between traditional RANS and the approach
outlined in this study. It would be worthwhile to apply data-assimilation to three-
dimensional mean profiles obtained from tomographic PIV (Elsinga et al., 2006),
but the ambiguity of the correct boundary conditions would make it difficult to
implement.

Finally, it would be interesting to consider the potential of resolvent-based modal
expansions for purposes of control, particularly in relation to the placement of sen-
sors and actuators. The resolvent response modes are outputs which are highly
amplified by the linear dynamics of the NSE, and so sensors could be placed where
these are likely to be strong. The resolvent forcing modes are the ‘trigger’ or input
which leads to high amplification, and so the actuators could be placed to manipu-
late the flow in such a way that suppresses these disturbances. In cases where there
is large spatial separation between resolvent forcing and response modes, it is pos-
sible that improved performance could be attained by sensing and actuating within
a wavemaker region (e.g. Giannetti and Luchini, 2007; Chen and Rowley, 2011),
which, as discussed in Chapter 3, may also be obtained from resolvent analysis.
While the resolvent decomposition shows potential for control applications (Luhar
et al., 2014), further refinements could seek to balance the observability and con-
trollability of the reduced-order model (Moore, 1981; Rowley, 2005; Barbagallo
et al., 2009), subject to known sensor and actuator locations, and information about
the nature of the nonlinear forcing (Gómez and Blackburn, 2017).

8.3 Implications for Estimating Turbulent Flows
While it is outside the scope of this thesis, one of the eventual goals is to design ef-
fective estimators of turbulent flows for closed-loop control. Hoepffner et al. (2005)
and Jones et al. (2011) have applied linear estimation to wall-bounded flows at lam-
inar Reynolds numbers while Chevalier et al. (2006) have done so for very low tur-
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bulent Reynolds numbers. The first work to apply similar tools to fully developed
turbulence at a relatively high Reynolds number (Reτ = 1000) was Illingworth et
al. (2018), who used time-resolved velocity measurements at a single wall-normal
location in turbulent channel flow to estimate the velocity field at other wall-normal
locations. They demonstrated that it was possible to estimate the largest scales with
reasonable accuracy using linear models with eddy viscosity. The ranges of spatial
wavenumbers and wall heights over which the estimator will perform well could
also be predicted by the linear models. The eddy viscosity model accounted for
the influence of the small-scale turbulent fluctuations on the large scales. Without
it, the linear estimator overpredicted the amplitude of velocity fluctuations, partic-
ularly for high aspect ratio structures (low kx , high kz).

The work in this thesis suggests that the resolvent operator in wall-bounded shear
flows is predisposed to selecting mechanisms which result in a strong streamwise
response. The high mean shear in the LNS operator couples many nonorthogonal
eigenfunctions leading to non-normal mechanisms exhibiting component-type non-
normality. The singular value decomposition of the resolvent operator attempts
to maximize non-normality of the linear mechanism since the resolvent norm is
inversely proportional to the inner product of the forcing and response modes. This
is particularly evident for streamwise constant disturbances (i.e. kx = 0) in which
the OS and SQ operators are normal but the full OS-SQ system is highly non-
normal due to the coupling operator ikzu′. Progress has been made by Rosenberg
and McKeon (2018) to improve the use of resolvent modes as a basis by isolating
the contributions from the OS and SQ modes. While it remains an open question
for whether an analogous procedure in the two-dimensional case is necessary, this
thesis has demonstrated two main points for the spatially-developing case. First,
a singular value decomposition of the resolvent operator identifies strong linear
mechanisms which leave a footprint on the mean profile. Second, the resolvent
operator is able to predict structure even when a linear mechanism is not important
by forcing it with the interaction of coherent structures. It is hoped that the closed-
loop nature of the resolvent framework (McKeon et al., 2013) can be exploited
further to identify the coherent structures in the flow.
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A p p e n d i x A

DERIVATION OF ADJOINT RANS EQUATIONS

To begin the derivation of the adjoint RANS equations and their boundary condi-
tions, the cost functional is restated below:

L = E (u)︸︷︷︸
1

−
〈
u†,u · ∇u + ∇p − Re−1∇2u − f

〉︸                                       ︷︷                                       ︸
2

−
〈
p†,∇ · u

〉︸      ︷︷      ︸
3

, (A.1)

where each term is labeled on the right-hand side so that they can be considered
separately. Taking the variation of L with respect to both u and p yields the adjoint
RANS equations.

The variation of term 1 with respect to u is

lim
s→0

E (u + sδu) − E (u)
s

=
δE

δu
. (A.2)

Term 2 is the most complicated:

lim
s→0
−

〈
u†, (u + sδu) · ∇(u + sδu) + ∇p − Re−1∇2(u + sδu) − f

〉
s

−

〈
u†,u · ∇u + ∇p − Re−1∇2u − f

〉
s

. (A.3)

Several terms will disappear and the nonlinear term can be expanded:

lim
s→0
−

〈
u†, su · ∇(δu) + sδu · ∇u + s2δu · ∇δu − sRe−1∇2(δu)

〉
s

. (A.4)

Now take the limit:

−
〈
u†,u · ∇(δu) + δu · ∇u − Re−1∇2(δu)

〉
. (A.5)

Term 3 is straightforward:

lim
s→0

〈
p†,∇ · (u + sδu)

〉
−

〈
p†,∇ · u

〉
s

= −
〈
p†,∇(δu)

〉
. (A.6)

Finally, combine all the terms:

δL

δu
=

δE

δu︸︷︷︸
1

−

〈
u†,u · ∇(δu)︸     ︷︷     ︸

2a

+ δu · ∇u︸   ︷︷   ︸
2b

− Re−1∇2(δu)︸         ︷︷         ︸
2c

〉
︸                                                 ︷︷                                                 ︸

2

−
〈
p†,∇(δu)

〉︸        ︷︷        ︸
3

. (A.7)
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The next step involves integrating by parts and obtaining the adjoint boundary con-
ditions. Once again, each term is considered separately. First, consider Term 3,
which includes the adjoint pressure. At this point, it is easier to switch to index
notation particularly when applying Gauss’s and Green’s Theorem of the first kind:

− < p†,∇(δu) >= −p†δu j,i, (A.8)

(p†δu j ),i = p,i
†δu j + p†δu j,i, (A.9)

−p†δu j,i = −(p†δu j ),i + p,i
†δu j = −p†ni + ∇p† . (A.10)

The boxed terms represent the final result. Only terms contributing to the boundary
conditions will be left in index notation. The next easiest term to consider is Term
2b since it does not involve integration by parts:

−
〈
u†, δu · ∇u

〉
= −u j

†δuiu j,i = −u j
†u j,i = −u j

†(u j,i)T = −u† · ∇uT . (A.11)

For Term 2a, the Divergence Theorem is applied:

− < u†,u · ∇(δu) >= −u j
†uiδu j,i, (A.12)

−(u j
†uiδu j ),i = −u j,i

†uiδu j − u j
†ui,iδu j,i − u j

†uiδu j,i, (A.13)

−u j
†uiδu j,i = −(u j

†uiδu j ),i + u j,i
†uiδu j , (A.14)

u j,i
†ui − u j

†uini = u · ∇u† − uiu j
†ni . (A.15)

The last term to consider is the Laplacian:

−
〈
u†,−Re−1∇2(δu)

〉
= Re−1ui

†δui,j j . (A.16)

Apply Green’s Theorem of the first kind to obtain:

Re−1ui
†δui,j j = Re−1

[
−ui,j

†δui,j + δui,jui
†n j

]
. (A.17)

The δu terms need to be gradient free so that they can be eliminated from the
equation. Once again, apply the Divergence Theorem:

(ui,j
†δui),j = ui,j j

†δui + ũ†i,jδui,j , (A.18)

−ui,j
†δui,j = ui,j j

†δui − ui,j
†δuin j . (A.19)

Putting all the terms together:

−
〈
u†,Re−1∇2(δu)

〉
= Re−1

[
δui,jui

†n j + ∇2u† − ui,j
†δuin j

]
. (A.20)



180

For now, the surface integral terms, or those which are dotted with a normal vec-
tor, are ignored (they will be dealt with subsequently to determine the appropriate
boundary conditions). The variation of L with respect to u becomes:

δL

δu
=
δE

δu
+ u · ∇u† − u† · ∇uT

+ ∇p† + Re−1∇2u. (A.21)

To minimize the cost functional Equation A.21 is set equal to zero to obtain the
adjoint RANS equations:

−u · ∇u† + u† · ∇uT
− ∇p† − Re−1∇2u =

δE

δu
. (A.22)

Next the variation of the cost function with respect to p̃ is considered. This is far
more straightforward since p̃ only appears in the second inner product, resulting in

−
〈
u†,∇(δp)

〉
= ui

†δp,i, (A.23)

(ui
†δp),i = −ui,i

† + ui
†δp,i, (A.24)

ui
†δp,i = −ui,i

† + ui
†δpni . (A.25)

One obtains the condition that the divergence of u† must be zero since the boundary
condition term will be needed to cancel other terms:

∇ · u† = 0 . (A.26)

The boundary conditions are derived from the surface integral terms from both the
variation with respect to u and p. These are collected below:

−Re−1δui,jui
†n j + u j

†n jδp + Re−1ui,j
†δuin j + p†δu jn j = −u jui

†δuin j . (A.27)

Begin with the inlet boundary:

Re−1 ∂(δui)
∂x

ui
†
− u†δp − Re−1 ∂ui

†

∂x
δui − p†δu = u ui

†δui . (A.28)

Setting u† = 0; v† = 0 causes all boundary terms to disappear. These boundary
conditions are also applied to the surface of the airfoil. (Note: A velocity term
without a subscript refers to a specific component of the velocity vector, i.e., the
streamwise direction u† or vertical direction v†.) For the symmetry boundaries:

−Re−1 ∂(δui)
∂y

ui
† + v†δp + Re−1 ∂ui

†

∂y
δui + p†δu = −v ui

†δui . (A.29)
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Since v = 0 and ∂u
∂y = 0 from the forward boundary conditions, it is necessary

that ∂ũ†/∂y = 0 and ṽ† = 0 on the symmetry boundaries. Finally, for the outlet
boundary:

−Re−1 ∂(δui)
∂x

ui
† + u†δp + Re−1 ∂ui

†

∂x
δui + p†δu = −u ui

†δui . (A.30)

Setting i = 1, one obtains:

−Re−1 ∂(δu)
∂x

u† + u†δp + Re−1 ∂u†

∂x
δu + p†δu = −u u†δu. (A.31)

One of the forward boundary conditions is

Re−1 ∂u
∂x
− p = 0, (A.32)

so the first and second terms in Equation A.31 can be eliminated resulting in the
first boundary condition at the outlet:

Re−1 ∂u†

∂x
+ p† = −u u† . (A.33)

Finally, setting i = 2, one obtains:

−Re−1 ∂(δv)
∂x

v† + Re−1 ∂v
†

∂x
δv = −u v†δv. (A.34)

The first term drops out due to the forward boundary conditions and so what is
left becomes the second boundary condition at the outlet for the adjoint RANS
equations:

Re−1 ∂v
†

∂x
= −u v† . (A.35)
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A p p e n d i x B

NACA 0018 AIRFOIL WITH α = 10◦

Preliminary results from resolvent analysis of the data-assimilated mean profile are
presented for the flow around a NACA 0018 airfoil at α = 10◦ and Re = 10250. As
discussed in Chapter 8, an improved understanding of their implications is neces-
sary before attempting to apply the flow reconstruction methodology to this flow.

B.1 Resolvent Frequency Sweep
The resolvent norm is computed for various ω over a range similar to that of the
α = 0◦ case. The first two singular values are plotted in Figure B.1. Panel (a)
contains the results for the experimental mean interpolated onto the FreeFem mesh
while panel (b) is for the data-assimilated mean. Unlike the α = 0◦ case, the results
for the interpolated mean and the data-assimilated mean are significantly different.
The interpolated mean has a single peak at ω = 5.9 whereas the data-assimilated
mean has two peaks at ω = 7.3 and ω = 15.4. There is a very small peak in the
interpolated mean around ω = 15, but there is no separation of singular values.
Consequently the frequency range over which the resolvent is low-rank is larger for
the data-assimilated mean.

It was also observed by Beneddine et al. (2017) that the power spectrum for the
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Figure B.1: First two singular values of the NACA 0018 airfoil at α = 10◦ and
Re = 10250. The mean profile was obtained from interpolating the experimental
data onto the FreeFem mesh in (a) and data-assimilating the mean flow in (b).
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Figure B.2: Points where the power spectrum is computed for the α = 10◦ flow.
The upstream point is located in the shear layer while the downstream point is in
the wake region.

round jet displayed peaks at two distinct frequencies. The first was a Kelvin-
Helmholtz mechanism which dominated the power spectrum at locations further
upstream in the flow. The second peak, which was stronger further downstream,
was centered around St = 0.38 and corresponded to vortex pairing. It would be in-
teresting to see whether the resolvent norm in Beneddine et al. (2017) also exhibits
two peaks. The precise frequency at which the lower peak occurs for the α = 10◦

flow is difficult to determine from Figure B.1(b), so it is not clear if the upper peak
is a harmonic of the lower peak.

B.2 Power Spectrum of Shear Layer and Wake
The power spectrum of two points in the flow are considered to examine how the
frequency content in the shear layer differs from that in the wake. The locations are
specified in Figure B.2.

The power spectra are plotted in Figure B.3(a) and (b) for the shear layer and wake
points, respectively. The peak for the shear layer point occurs at ω = 14.2 while
the peak for the wake point occurs at ω = 7.1, which is a subharmonic of the shear
layer frequency. These observations are quite similar to those of Beneddine et al.
(2017) although it is unclear if vortex pairing occurs in this flow. It is possible that
the data-assimilated mean is not sufficiently accurate near the separation point to
correctly identify the true frequency in the shear layer. Recall that the interpolated
mean, which has practically no reliable data in this region, does not suggest a second
peak.

B.3 Resolvent Response Modes
The resolvent response modes for the two peak frequencies ω = 7.3 and ω = 15.4
are plotted in Figure B.4. The lower peak corresponds to a mode whose spatial
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(a) (b)

Figure B.3: PSD of a point in the shear layer (a) and wake (b) of the flow around a
NACA 0018 airfoil at α = 10◦ and Re = 10250.

(a) (b)

(c) (d)

(e) (f)

Figure B.4: Resolvent response modes computed for the flow around a NACA 0018
airfoil at α = 10◦ and Re = 10250. The u-component is plotted in the left-hand
column while the v-component is plotted in the right-hand column. The frequencies
which have been plotted include ω = 7.3 in (a-b), ω = 12.0 in (c-d), and ω = 15.4
in (e-f). The contours have normalized such that the maximum value is unity.
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(a) (b)

(c) (d)

Figure B.5: Resolvent forcing modes computed for the flow around a NACA 0018
airfoil at α = 10◦ and Re = 10250. The u-component is plotted in the left-hand
column while the v-component is plotted in the right-hand column. The frequencies
which have been plotted include ω = 7.3 in (a-b) and ω = 15.4 in (c-d). The
contours have normalized such that the maximum value is unity.

support is entirely behind the airfoil. It also looks remarkably similar to the shed-
ding modes observed for the cylinder wake and α = 0◦ case. The upper peak
corresponds to a mode whose spatial support is mostly confined to the shear layer
region. A mode at ω = 12 is also included in Figure B.4 since this frequency lies
in between the two peaks. The resolvent mode contains features of both modes
discussed earlier as there is energetic activity in both the shear region and the wake.

These results are encouraging since the Reynolds stresses for this flow are concen-
trated along the shear layer and the region behind the trailing edge of the airfoil
as seen in Figure 6.17. The resolvent is identifying linear mechanisms which are
responsible for the creation of Reynolds stresses needed to sustain the mean pro-
file. What is not clear at this point is whether the mixing of these mechanisms at
intermediate frequencies such as ω = 12 means a rank-1 model can successfully
reconstruct the flow. This is a subject of future work.

B.4 Resolving the Forcing Modes
The resolvent forcing modes are plotted for the two peaks identified in Figure B.1(b)
are presented in Figure B.5. The modes are concentrated in a very small portion
of the domain near the leading edge of the airfoil, similar to those computed by
Thomareis (2017), who did not observe such a wide separation of peaks in the
resolvent norm for different physical mechanisms. This location coincides with
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the beginning of the shear layer. There is almost no overlap between the forcing
modes in Figure B.5 and the response modes in Figure B.4 which is characteristic
of a convective instability mechanism. The only overlap which exists for ω = 15.4
occurs in the shear layer at x = 0.5. The u-component of the forcing is slightly
more smooth than its v-counterpart which suffers from a lack of resolution near the
airfoil surface. The modes for the α = 10◦ case are considerably more difficult to
resolve when compared to the α = 0◦ case due to how concentrated they are near
the airfoil surface. They do, however, lean against the mean shear which is similar
to the those observed in Chapter 7.

It is of interest to note that the structure for both frequencies is remarkably similar.
In fact, the forcing mode for ω = 15.4 looks like a compressed version of ω = 7.3
in the streamwise direction. Future work is required to understand how the effect
of ω and the mean profile results in stark differences between the spatial support of
the modes at each peak in the resolvent norm.


