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ABSTRACT 

Bottlebrush polymers represent a unique molecular architecture and a modular 

platform for materials design. However, the properties and self-assembly of bottlebrush 

polymers remain relatively unexplored, in large part due to the synthetic challenges imposed 

by the sterically demanding architecture. This thesis describes our work to close this gap, 

connecting (1) the synthesis of polymers with precisely tailored molecular architectures, (2) 

the study of fundamental structure-property relationships, and (3) the design of functional 

materials. 

Chapter 1 introduces key concepts related to polymer architecture and block polymer 

phase behavior. Recent developments in the synthesis and self-assembly of bottlebrush block 

polymers are highlighted in order to frame the work presented in Chapters 2–6. 

Chapter 2 introduces a versatile strategy to design polymer architectures with 

arbitrary side chain chemistry and connectivity. Simultaneous control over the molecular 

weight, grafting density, and graft distribution can be achieved via living ring-opening 

metathesis polymerization (ROMP). Copolymerizing a macromonomer and a small-

molecule co-monomer provides access to well-defined polymers spanning the linear, comb, 

and bottlebrush regimes. This design strategy creates new opportunities for molecular and 

materials design. 

Chapter 3 explores the physical consequences of varying the grafting density and 

graft distribution in two contexts: block polymer self-assembly and linear rheological 

properties. The molecular architecture strongly influences packing demands and therefore 

the conformations of the backbone and side chains. Collectively, these studies represent 

progress toward a universal model connecting the chemistry and conformations of graft 

polymers. 

Chapter 4 discusses the phase behavior of ABA' and ABC bottlebrush triblock 

terpolymers. Low-χ interactions between the end blocks promote organization into a unique 

mixed-domain lamellar morphology, LAMP. X-ray scattering experiments reveal an unusual 

trend: the domain spacing strongly decreases with increasing total molecular weight. Insights 
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into this behavior provide new opportunities for block polymer design with potential 

consequences spanning all self-assembling soft materials.  

Chapter 5 describes other physical consequences of low-χ block polymer design. The 

ternary phase diagrams for ABC, ACB, and BAC bottlebrush triblock terpolymers reveal the 

influences of low-χ A/C interactions, frustration, and the molecular architecture. Potential 

non-equilibrium effects and crystallization in these bottlebrush polymers will also be 

discussed. 

Chapter 6 describes applications of bottlebrush polymers as functional materials. 

Self-assembly enables mesoscale structural control over many materials properties, such as 

reflectivity, conductivity, and modulus. The synthetic methods (Chapter 2) and physical 

insights (Chapters 3−5) provided in previous chapters illustrate opportunities for materials 

design. We will discuss AB brush diblock polymers that self-assemble to photonic crystals 

and ABA brush triblock copolymers in solid polymer electrolytes.  
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