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ABSTRACT

Array signal processing focuses on an array of sensors receiving the incomingwave-
forms in the environment, from which source information, such as directions of ar-
rival (DOA), signal power, amplitude, polarization, and velocity, can be estimated.
This topic finds ubiquitous applications in radar, astronomy, tomography, imag-
ing, and communications. In these applications, sparse arrays have recently at-
tracted considerable attention, since they are capable of resolving O(N2) uncor-
related source directions withN physical sensors. This is unlike the uniform linear
arrays (ULA), which identify at most N − 1 uncorrelated sources with N sensors.
These sparse arrays include minimum redundancy arrays (MRA), nested arrays,
and coprime arrays. All these arrays have an O(N2)-long central ULA segment
in the difference coarray, which is defined as the set of differences between sensor
locations. This O(N2) property makes it possible to resolve O(N2) uncorrelated
sources, using only N physical sensors.

Themain contribution of this thesis is to provide a newdirection for array geometry
and performance analysis of sparse arrays in the presence of nonidealities. The first
part of this thesis focuses on designing novel array geometries that are robust to
effects of mutual coupling. It is known that, mutual coupling between sensors has
an adverse effect on the estimation of DOA. While there are methods to counteract
this through appropriate modeling and calibration, they are usually computation-
ally expensive, and sensitive to model mismatch. On the other hand, sparse arrays,
such as MRA, nested arrays, and coprime arrays, have reduced mutual coupling
compared to ULA, but all of these have their own disadvantages. This thesis intro-
duces a new array called the super nested array, which has many of the good prop-
erties of the nested array, and at the same time achieves reduced mutual coupling.
Many theoretical properties are proved and simulations are included to demon-
strate the superior performance of super nested arrays in the presence of mutual
coupling.

Two-dimensional planar sparse arrays with large difference coarrays have also been
known for a long time. These include billboard arrays, open box arrays (OBA), and
2D nested arrays. However, all of them have considerable mutual coupling. This
thesis proposes new planar sparse arrays with the same large difference coarrays as
the OBA, but with reduced mutual coupling. The new arrays include half open box
arrays (HOBA), half open box arrays with two layers (HOBA-2), and hourglass ar-
rays. Among these, simulations show that hourglass arrays have the best estimation
performance in presence of mutual coupling.

The second part of this thesis analyzes the performance of sparse arrays from a the-
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oretical perspective. We first study the Cramér-Rao bound (CRB) for sparse arrays,
which poses a lower bound on the variances of unbiased DOA estimators. While
there exist landmark papers on the study of the CRB in the context of array pro-
cessing, the closed-form expressions available in the literature are not applicable in
the context of sparse arrays for which the number of identifiable sources exceeds
the number of sensors. This thesis derives a new expression for the CRB to fill this
gap. Based on the proposed CRB expression, it is possible to prove the previously
known experimental observation that, when there are more sources than sensors,
the CRB stagnates to a constant value as the SNR tends to infinity. It is also possible
to precisely specify the relation between the number of sensors and the number of
uncorrelated sources such that these sources could be resolved.

Recently, it has been shown that correlation subspaces, which reveal the structure
of the covariance matrix, help to improve some existing DOA estimators. However,
the bases, the dimension, and other theoretical properties of correlation subspaces
remain to be investigated. This thesis proposes generalized correlation subspaces
in one and multiple dimensions. This leads to new insights into correlation sub-
spaces and DOA estimation with prior knowledge. First, it is shown that the bases
and the dimension of correlation subspaces are fundamentally related to difference
coarrays, which were previously found to be important in the study of sparse ar-
rays. Furthermore, generalized correlation subspaces can handle certain forms of
prior knowledge about source directions. These results allow one to derive a broad
class of DOA estimators with improved performance.

It is empirically known that the coarray structure is susceptible to sensor failures,
and the reliability of sparse arrays remains a significant but challenging topic for in-
vestigation. This thesis advances a general theory for quantifying such robustness,
by studying the effect of sensor failure on the difference coarray. We first present the
(k-)essentialness property, which characterizes the combinations of the faulty sen-
sors that shrink the difference coarray. Based on this, the notion of (k-)fragility is
proposed to quantify the reliability of sparse arrays with faulty sensors, along with
comprehensive studies of their properties. These novel concepts provide quite a
few insights into the interplay between the array geometry and its robustness. For
instance, for the same number of sensors, it can be proved that ULA is more robust
than the coprime array, and the coprime array is more robust than the nested ar-
ray. Rigorous development of these ideas leads to expressions for the probability
of coarray failure, as a function of the probability of sensor failure.

The thesis concludes with some remarks on future directions and open problems.
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C h a p t e r 1

INTRODUCTION

The heart of modern technology is the widespread use of sensors, which produce
sensor outputs to sense the surroundings. Studying these outputs finds enormous
andpotential applications in communications (5G,massiveMIMOsystems,mmWave
communications) [6], [80], [143], biomedical engineering (medical imaging, bioinfor-
matics, wearable technology) [170], remote sensing (satellite navigation, environmen-
tal sensing) [43], and so forth. Among all these applications, manipulating these
data under limited physical resources such as bandwidth, power, and the number
of sensors is a major challenge even today. Recently, due to inexpensive compu-
tation, this challenge has been addressed in the framework of sparse sensing. The
key idea of sparse sensing is that, by exploiting prior knowledge about signals, only
a small portion of high-dimensional big data is delivered to signal processing algo-
rithms to recover the low-dimensional information of interest. This paradigm makes
it possible to achieve the above-mentioned applications with limited physical re-
sources.

Sparse sampling and information inference are two main pillars of sparse sensing. Ac-
cording to the prior knowledge and the information of interest, the former collects
representative, low-dimensional, and sparse samples among big data while the latter
infers the information of interest from sparse samples efficiently. For instance, in ap-
plications depending on sparse representation, compressed sensing has been demon-
strated to be able to recover the original signal from sparse samples under certain
conditions [26], [42]. Other state-of-the-art sparse sensing schemes, such as nested
sampling [124], coprime sampling [186], power spectrum sensing [7], and quadratic
sampling [33], demonstrate ubiquitous applications in source localization, cognitive
radio, and optical imaging, with reduced data rate but performance comparable to
classical approaches. However, this is just the beginning of the field since various
forms of prior knowledge remain to be studied for diverse applications. Among
these, the following fundamental questions are frequently raised. First, how does
prior knowledge determine sparse sampling schemes (possibly nonuniform sam-
pling) that capture the information of interest efficiently? Second, for these sam-
pling patterns, how is the information of interest inferred from sparse samples, be-
tween theory and practice? Finally, what are the performance limits of these sam-
pling schemes?
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This thesis aims at answering the above fundamental and insightful questions, in
the context of source localization in array signal processing, since it plays a cen-
tral role in communication, radar, medical imaging, and radio astronomy [22], [82],
[157], [170], [188]. Here sparse sampling is equivalent to sparse sensor array config-
uration while the information inference corresponds to the estimation of direction-
of-arrival (DOA), signal power, amplitude, polarization, and velocity of the sources.
Furthermore, the estimation performance can be analyzed and explained through
the Cramér-Rao bounds, the generalized correlation subspace, and the essentialness prop-
erty. The main contributions of this thesis can be summarized as follows:

1. Sparse sampling (sparse array design): We proposed several one-dimensional
and two-dimensional sparse array configurations that take advantage of the
statistics of the source profile and the interference among sensors (mutual
coupling) [89], [92]–[95], [98]. For the proposed arrays, it is possible to resolve
more uncorrelated sources than sensorswith improved resolution, in the presence
of mutual coupling.

2. Information inference (Parameter estimationwith sparse arrays): We developed
new and practical algorithms that estimate more uncorrelated sources than
sensors from the sparse array [86]–[88], [104].

3. Theoretical analysis (Cramér-Rao bounds, generalized correlation subspace, and
robustness analysis): Herewe studied the expressions of the Cramér-Rao bounds
for sparse arrays, which are theoretical limits for the estimation performance
of unbiased estimators [91], [97]. The proposed expressions explainwhymore
uncorrelated sources than sensors can be identified using sparse arrays. We
also show that DOA estimators can be explained through the theory of the
generalized correlation subspace, which further provides insights to the optimal
estimators [96], [102]. Furthermore, we also propose a general theory of ana-
lyzing the robustness of the difference coarray with respect to sensor failures
[103].

The chapter outline is as follows. Section 1.1 reviews the data model commonly
used in array signal processing. Section 1.2 discusses the interplay between array
geometry and DOA estimation. Section 1.3 gives the outline and the scope of this
thesis while Section 1.4 defines the notation used in this thesis.

1.1 Review of Array Equation
This section reviews the one-dimensional array equation (1.5), which is the founda-
tion of sparse array design, DOA estimators, and theoretical analysis. The notations
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Array signal processing

Source information

Sensor
array x-axis

y-axis

θi

The ith source

Figure 1.1: A basic model for array signal processing.

and assumptions in (1.5) will be explained comprehensively in the following devel-
opment.

Fig. 1.1 illustrates a basic model of array signal processing. Here multiple sources
emit propagating waves, which are received by a sensor array. The output of the sen-
sor array is processed by array signal processing algorithms, which infer the source
information, such as the distance between the source and the array, the source di-
rections, the source powers, polarization of the incoming waves, or the velocity of
the moving sources. The sources are shown in green empty circles and the wave-
fronts of the propagating waves are shown in green curves. The physical sensors
are depicted in red solid circles. Fig. 1.1 assumes that the sensors are placed on the
x-axis and the sources reside in the first or the second quadrant of the xy-plane.

In this thesis, we are interested in the direction of arrival (DOA) of the source. It is
defined as the angle between the broadside of the array (the y-axis in Fig. 1.1) and
the line segment between the source and the center of the array (the dashed line in
Fig. 1.1). For example, in Fig. 1.1, the DOA of the ith source is denoted by θi. If the
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Figure 1.2: Conversion from the physical sensor locations to the normalized sensor
locations.

source resides in the first quadrant, namely, the x-coordinate and the y-coordinate
are both positive, then θi > 0. By definition, the DOA of the ith source satisfies

−π
2
≤ θi ≤

π

2
. (1.1)

We begin by deriving the expressions for the sensor output signals induced by the
sources. It is first assumed that all the sources are monochromatic and all the prop-
agating waves share the same frequency f , hence the same wavelength λ. Further-
more, each source is concentrated at a point in the far-field region [188]. Therefore,
the distances between the sources and the sensors are sufficiently large so that the
wavefronts can be approximated by plane waves. It is also assumed that the propa-
gating medium is homogeneous and lossless [68].

Next let us assume that the sensor locations belong to a uniform grid of step size d
on the x-axis. Namely, the sensor locations can be specified by nd, where n belongs
to an integer set S. The indices n are called normalized sensor locations, which
are represented by an integer set S. In this thesis, unless stated separately, the nor-
malized sensor locations, indicated by the set S, are used to characterize the array
geometry. As an example, Fig. 1.2 demonstrates the conversion from the sensor lo-
cations defined on the x-axis to those defined on the integer set S. Here the sensors
are depicted in red solid circles and the empty space is illustrated using crosses.
The physical sensors are located at 0d, 1d, 8d, 12d, 14d, and 17d on the x-axis. After
normalizing by d, we obtain the normalized sensor locations S = {0, 1, 8, 12, 14, 17}.

Based on the above-mentioned assumptions, the signal received by the sensor at nd
can be expressed as [68], [188]

D∑
i=1

Ai exp
[
2πθ̄in

]
+ w(n), (1.2)

where  ,
√
−1, w(n) is the noise term, Ai is the complex amplitude of the ith

source, and θ̄i is the normalized DOA of the ith source, defined as

θ̄i ,
d sin θi
λ

. (1.3)
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Themodel in (1.2) can be regarded as a linear combination of complex exponentials.
Furthermore, the index n can be regarded as spatial sample point while the normal-
ized DOA θ̄i can be interpreted as spatial frequency. Based on this interpretation, the
step size d cannot exceed λ/2, otherwise spatial ambiguity arises. Here spatial am-
biguity is analogous to aliasing in the sampling theorem [68], [188]. In particular, if
d > λ/2, then there exist multiple DOAs corresponding to the same array output,
so that these DOAs become indistinguishable from the array output. Due to these,
in this thesis, the step size d is set to be

d =
λ

2
. (1.4)

Finally, Eq. (1.2) can be expressed as the following vector model:

xS =

D∑
i=1

AivS(θ̄i) + nS, (1.5)

where the column vector xS ∈ C|S| denotes the output of the overall sensor array
and nS is the additive noise term. The steering vector vS(θ̄i) is defined as vS(θ̄i) =[
exp

(
2πθ̄in

)]
n∈S. In this thesis, the entries in xS, vS(θ̄i), and nS are sorted in the

ascending order of n ∈ S. That is, the first entry of xS corresponds to output of
the leftmost sensor in the array while the last entry of xS is associated with the
rightmost sensor.

Example 1.1.1. Let us consider the array geometry in Fig. 1.2. Due to (1.5), the
column vectors xS, vS(θ̄i), and nS can be expressed as

Output at n = 0

Output at n = 1

Output at n = 8

Output at n = 12

Output at n = 14

Output at n = 17


︸ ︷︷ ︸

xS

=

D∑
i=1

Ai



exp
[
2πθ̄i · 0

]
exp

[
2πθ̄i · 1

]
exp

[
2πθ̄i · 8

]
exp

[
2πθ̄i · 12

]
exp

[
2πθ̄i · 14

]
exp

[
2πθ̄i · 17

]


︸ ︷︷ ︸

vS(θ̄i)

+



Noise at n = 0

Noise at n = 1

Noise at n = 8

Noise at n = 12

Noise at n = 14

Noise at n = 17


︸ ︷︷ ︸

nS

. (1.6)

In practice, the array output (1.5) is repeated K times, denoted by xS(k) for k =

1, 2, . . . ,K, to reduce the variation of the estimates. These vectors xS(k) are called
snapshots of (1.5). In particular, xS(k) can be modeled as

xS(k) =
D∑
i=1

Ai(k)vS(θ̄i) + nS(k), k = 1, 2, . . . ,K. (1.7)

Here the notations Ai(k) and nS(k) indicate that the complex amplitude and the
noise term change with snapshots. The task of array signal processing algorithms
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is to infer the information of interest, such as the DOA, source power, and so forth,
based on the snapshots xS(k). More discussions on the snapshot model can be
found in Chapter 2, Chapter 6, [188, Chapter 5], [68, Section 4.9], and the references
therein.

As a remark, (1.5) assumes that the sources reside in the first and the second quad-
rant of the xy-plane and the sensors are located on the x-axis. This scenario will be
considered in most of the chapters, except for Chapter 5. Chapter 5 is based on two-
dimensional array processing, where the sources are in the first four octants (z > 0) in
the three-dimensional space and the sensors are restricted to the xy-plane. In this
case, the DOA of the source has two parameters: azimuth and elevation. All these
details will be discussed in Chapter 5.

1.2 The Role of Array Geometry in DOA Estimation
Based on the array equation in (1.5), DOA estimation has been a popular research
field in array processing formany decades and has found ubiquitous applications in
radio astronomy, radar, imaging, communications, and so forth [22], [58], [68], [77],
[157], [165], [188]. In particular, DOA estimation aims to infer the source directions,
i.e., θi for i = 1, 2, . . . , D, from the array output xS. This task can be divided into
two stages:

Stage 1 Array geometry: According to the prior knowledge of the received signal,
the goal here is to design an array geometry S (or sensor placement) that
captures the information of interest efficiently.

Stage 2 Estimation: Given the array geometry S, this stage developsDOA estimators
that infer the DOAs {θ1, θ2, . . . , θD} based on the array output xS.

Uniform Linear Arrays (ULA)
The diagram on the left of Fig. 1.3 considers uniform linear arrays (ULA), where the
sensors are placed along a straight line and sensors are uniformly placed with sep-
aration λ/2 (We shall come to the diagram on the right shortly). Then the DOA is
estimated based on the output ofULA. This scheme has been popular in array signal
processing for decades [58], [68], [188]. Furthermore, a great amount of literature
in this topic focuses on developing DOA estimators that resolve the sources with
high resolution and finite snapshots of array outputs [58], [68], [188]. DOA estima-
tors such as the Barlett beamformer [14], the Capon beamformer [28], the Pisarenko
harmonic decomposition [134], the minimum-norm method [78], MUltiple SIgnal
Classification (MUSIC) [17], [150], Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT) [147], maximum likelihood estimator [166], [167],
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λ/2

λ

Ai

θi

Coarray-based DOA Estimators

Estimated θi

Difference coarray

λ/2

Figure 1.3: DOA estimation using uniform linear arrays (left) and sparse arrays
(right). Here red dots denote physical sensors and crosses represent empty space.

Methods Of DOA Estimation (MODE) [162], and SParse Iterative Covariance-based
Estimation (SPICE) [161], to name a few, have been developed for this purpose.

Sparse Arrays
It is known that ULA can resolve at most N − 1 sources with N physical sensors,
regardless of the choice of algorithms [188]. However, recent development shows
that, under mild assumptions, it is possible to identify more sources than sensors
using sparse arrays. This result is possible because multiple time-domain snapshots
are involved, as we will elaborate in Chapter 2.

The diagram on the right of Fig. 1.3 depicts DOA estimation based on sparse arrays,
where the sensors do not have uniform spacing λ/2. Under mild assumptions, the
array output of sparse arrays can be converted to the samples on the difference coarray
(See Chapter 2 for more details). In particular, the difference coarray D for an array
S (regardless of ULA or sparse arrays) is defined as the set of differences between
sensor locations:

D , {n1 − n2 : n1, n2 ∈ S}, (1.8)

where the integer S denotes the normalized sensor locations of an array. Based on
the structure of the difference coarray, coarray-based DOA estimators have been de-
veloped in the past few decades, including the augmented covariance matrix [132],
[133], Toeplitz completion [1], [2], coarrayMUSIC or spatial smoothingMUSIC [87],
[124], [125], coarray interpolation [104], [137], [179], and Khatri-Rao methods [107],
[108], [127], [200]. Some of the above-mentioned algorithms are also applicable to
ULA, as long as the structure of the difference coarray satisfies the requirements of



8

0 6
(a) S1 :

−6 0 6
(b) D1 :

0 1 4 10 12 15 17
(c) S2 :

−17 0 17
(d) D2 :

0 1 11 16 19 23 25
(e) S3 :
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(f) D3 :

Figure 1.4: The physical arrays (a) S1, (c) S2, (e) S3, and their difference coarrays
(b) D1, (d) D2, (f) D3. In these figures, dots denote elements in a set while crosses
represent the empty space.

these algorithms. In particular, the details of coarray MUSIC will be elaborated in
Chapter 2.

The main advantage of sparse arrays over ULA is the ability to resolve more uncor-
related sources than sensors [1], [2], [113], [124], [186]. Furthermore, for sufficient
amount of data, sparse arrays typically enjoy better estimation performance and
resolution than ULA [1], [2], [124], [186]. These advantages are due to the structure
of the difference coarray, as described next.

The Difference Coarray

In what follows, the O(N2) property and the hole-free property on the difference
coarray will be demonstrated through examples. Formal definitions and compre-
hensive discussions can be found in Chapters 2 and 6.

Example 1.2.1. Fig. 1.4(a) shows the ULAwith 7 sensors, i.e., S1 = {0, 1, 2, 3, 4, 5, 6}.
It can be observed that these sensors are equally spaced with separation 1. As an-
other example, Fig. 1.4(c) depicts a sparse array whose normalized sensor locations
are 0, 1, 4, 10, 12, 15, 17. Therefore the differences between adjacent sensors, from
left to right, are 1, 3, 6, 2, 3, 2.

It can be observed that, for the same number of sensors, sparse arrays occupy larger
aperture (from 0 to 17 in Fig. 1.4(c)) than ULA (from 0 to 6 in Fig. 1.4(a)). Due to
this observation, if the sensor locations are designed properly, sparse arrays may be
able to capture the information of interest from large aperture using small number
of sensors [113], [188].
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Next we will review some useful properties of the array geometry and the differ-
ence coarray using several examples. These properties will be developed compre-
hensively later in Chapter 2. Fig. 1.4 illustrates three array geometries S1, S2, and S3,
whose difference coarrays are denoted by D1, D2, and D3, respectively. Specifically,
S1 is the ULA, S2 is the minimum redundancy array [113], and S3 is the minimum
hole array [177], where S2 and S3 are sparse arrays. All of these arrays have 7 phys-
ical sensors.

Example 1.2.2 (TheO(N2)property). It can be seen fromFigs. 1.4(b), (d), and (f) that
the sizes of the difference coarrays are given by |D1| = 13, |D2| = 35, and |D3| = 43,
where | · | denotes the cardinality of a set. Namely, the size of the difference coarray
for ULA (|D1|) is approximately twice of the number of sensors while the size of the
difference coarray for sparse arrays can be much larger than the number of sensors.
In particular, ULA has only |D| = O(N) [188], where O(·) denotes the order of a
function and N is the number of sensors. By contrast, it was shown in [59], [92],
[113], [124], [139], [177], [186] that, for some sparse arrays like minimum redun-
dancy arrays and minimum hole arrays, the size of the difference coarray achieves
|D| = O(N2).

Example 1.2.3 (Th hole-free property). Let us focus on the arrays S2 and S3 in Fig.
1.4. Even though S2 and S3 are both sparse arrays, the structures of their difference
coarraysD2 andD3 are quite different. D2 is composed of consecutive integers from
−17 to 17. On the other hand, D3 contains a central ULA segment from −12 to
12 but some numbers are missing in D3, such as 13, 17, 20, and so forth. These
missing numbers are also called holes in the difference coarray [186]. Based on this,
the difference coarrayD2 is called hole-free since there are no holes inD2 [186]. It can
be seen that D1 is also hole-free.

If a sparse array satisfies theO(N2) property and the hole-free property, then there
are several advantages in the DOA estimation stage (Stage 2), First, it can be shown
that such array is capable of resolving O(N2) uncorrelated sources [73], [97], [192],
implying that more sources than sensors can be identified. But the ULA can only
find fewer sources than sensors [188]. Second, there exist coarray-based DOA es-
timators, such as coarray MUSIC [87], [124], [125], [186], that successfully identify
more sources than sensors. These advantages will be elaborated in Chapters 2 and
6 later.

1.3 Scope and Outline of the Thesis
This thesis consists of two major parts. After presenting the implementation of the
coarray MUSIC algorithm (Chapter 2), the first part of the thesis (Chapters 3, 4,
and 5) proposes new sparse array geometries, including super nested arrays, half



10

open box arrays, half open box arrays with two layers, and hourglass arrays. These
arrays enjoys the O(N2) property and the hole-free property and they are robust
to mutual coupling effects. The second part of the thesis (Chapters 6, 7, 8, and
9) analyzes the performance of sparse arrays, from the viewpoint of Cramér-Rao
bounds, generalized correlation subspace, and robustness to sensor failures. In this
section, the scope of each chapter will be briefly introduced.

Coarray MUSIC (Chapter 2)
The first part of Chapter 2 reviews the basics of sparse arrays and the MUSIC al-
gorithm. The second part discusses the details of implementing the MUSIC algo-
rithm with the difference coarray. Previously, a technique called spatial smoothing
was utilized in order to successfully performMUSIC in the difference coarray [124],
[125]. Chapter 2 shows that the spatial smoothing step is not necessary in the sense
that the effect achieved by that step can be obtained more directly. In particular,
with R̃ss denoting the spatial smoothed matrix with finite snapshots, it is shown
here that the noise eigenspace of this matrix can be directly obtained from another
matrix R̃ which is much easier to compute from data.

Super Nested Arrays (Chapters 3 and 4)
In array processing, mutual coupling between sensors has an adverse effect on the
estimation of parameters (e.g., DOA). While there are methods to counteract this
through appropriate modeling and calibration, they are usually computationally
expensive, and sensitive tomodelmismatch. On the other hand, sparse arrays, such
as nested arrays, coprime arrays, and minimum redundancy arrays (MRAs), have
reduced mutual coupling compared to ULA. But these well-known sparse arrays
have disadvantages: MRAs do not have simple closed-form expressions for the ar-
ray geometry; coprime arrays have holes in the coarray; and nested arrays contain
a dense ULA in the physical array, resulting in significantly higher mutual cou-
pling than coprime arrays and MRAs. Chapter 3 introduces a new array called the
(second-order) super nested array, which has all the good properties of the nested
array, and at the same time achieves reduced mutual coupling. There is a system-
atic procedure to determine sensor locations. For a fixed number of sensors N , the
super nested array has the same physical aperture, and the same hole-free coarray
as does the nested array. But the number of sensor pairs with small separations
(λ/2, 2 × λ/2, etc.) is significantly reduced. In Chapter 4, a generalization of super
nested arrays is introduced, called the Qth-order super nested array. This has all
the properties of the second-order super nested array with the additional advan-
tage that mutual coupling effects are further reduced for Q > 2. Many theoretical
properties are proved and simulations are included to demonstrate the superior
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performance of these arrays.

Hourglass Arrays (Chapter 5)
Linear (1D) sparse arrays such as nested arrays and minimum redundancy arrays
have hole-free difference coarrays with O(N2) virtual sensor elements, where N is
the number of physical sensors. The hole-free property makes it easier to perform
beamforming and DOA estimation in the difference coarray domain which behaves
like an uniform linear array. The O(N2) property implies that O(N2) uncorrelated
sources can be identified. For the 2D case, planar sparse arrayswith hole-free differ-
ence coarrays havingO(N2) elements have also been known for a long time. These
include billboard arrays, open box arrays (OBA), and 2D nested arrays. Their merits
are similar to those of the 1D sparse arrays mentioned above, although identifiabil-
ity claims regardingO(N2) sources have to be handledwithmore care in 2D. Chap-
ter 5 introduces new planar sparse arrays with hole-free difference coarrays having
O(N2) elements just like the OBA, with the additional property that the number
of sensor pairs with small spacings such as λ/2 decreases, reducing the effect of
mutual coupling. The new arrays include half open box arrays (HOBA), half open
box arrays with two layers (HOBA-2), and hourglass arrays. Among these, simula-
tions show that hourglass arrays have the best estimation performance in presence
of mutual coupling.

Cramér-Rao Bounds for Sparse Arrays (Chapter 6)
The Cramér-Rao bound (CRB) offers a lower bound on the variances of unbiased es-
timates of parameters, e.g., directions of arrival (DOA) in array processing. While
there exist landmark papers on the study of the CRB in the context of array process-
ing, the closed-form expressions available in the literature are not easy to use in the
context of sparse arrays (such as minimum redundancy arrays (MRAs), nested ar-
rays, or coprime arrays) for which the number of identifiable sourcesD exceeds the
number of sensors N . Under such situations, the existing literature does not spell
out the conditions under which the Fisher informationmatrix is nonsingular, or the
condition under which specific closed-form expressions for the CRB remain valid.
Chapter 6 derives a new expression for the CRB to fill this gap. The conditions for
validity of this expression are expressed as the rank condition of a matrix called the
augmented coarray manifold matrix, which is defined based on the difference coar-
ray. The rank condition and the closed-form expression lead to a number of new
insights. For example, it is possible to prove the previously known experimental
observation that, when there are more sources than sensors, the CRB stagnates to
a constant value as the SNR tends to infinity. It is also possible to precisely specify
the relation between the number of sensors and the number of uncorrelated sources
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such that these conditions are valid. In particular, for nested arrays, coprime arrays,
andMRAs, the new expressions remain valid forD = O(N2), the precise detail de-
pending on the specific array geometry.

Generalized Correlation Subspace (Chapter 7)
Recently, it has been shown that correlation subspaces, which reveal the structure of
the covariance matrix, help to improve some existing DOA estimators. However,
the bases, the dimension, and other theoretical properties of correlation subspaces
were not investigated. Chapter 7 fills this gap by proposing generalized correlation
subspaces in one and multiple dimensions. This leads to new insights into correla-
tion subspaces andDOAestimationwith prior knowledge. First, it is shown that the
bases and the dimension of correlation subspaces are fundamentally related to dif-
ference coarrays, which were previously found to be important in the study of sparse
arrays. Furthermore, generalized correlation subspaces can handle certain forms of
prior knowledge about source directions. These results allow one to derive a broad
class of DOA estimators with improved performance. It is demonstrated through
examples that using sparse arrays and generalized correlation subspaces, DOA esti-
matorswith source priors exhibit better estimation performance than thosewithout
priors, in extreme cases like low SNR and limited snapshots.

Robustness of Sparse Arrays (Chapters 8 and 9)
It is empirically known that the coarray structure is susceptible to sensor failures,
and the reliability of sparse arrays remains a significant but challenging topic for
investigation. Broadly speaking, the ULA whose difference coarray only has O(N)

sensors, is more robust than sparse arrays with O(N2) coarray sizes. Chapter 8
advances a general theory for quantifying such robustness, by studying the effect
of sensor failure on the difference coarray. This is done by introducing the concepts
of essentialness and k-essentialness of sensors in the array. A related quantity, called
fragility is also developed systematically. The k-essential family characterizes the
patterns of k faulty sensors that shrink the difference coarray. This concept leads
to the notion of the k-fragility, which assesses the robustness of array geometries
quantitatively. However, the large size of the k-essential family usually complicates
the theory. It will be shown that the k-essential family can be compactly represented
by the so-called k-essential Sperner family, named after the mathematician Sperner
for reasons explained inChapter 8. Finally, the proposed framework is used to study
the probability of change of the difference coarray, as a function of the sensor failure
probability and array geometry. Chapter 9 derives closed-form characterizations of
the k-essential Sperner family for ULA, minimum redundancy arrays, minimum
holes arrays, Cantor arrays, nested arrays, and coprime arrays. These results lead
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to many insights into the relative importance of each sensor, the robustness of these
arrays, and the estimation performance in the presence of sensor failure.

1.4 Notations
The notations used in this thesis are defined in this section. Scalars are denoted
by lower-case letters (such as a). The ceiling function dxe is the least integer that is
greater than or equal to x, while the floor function bxc denotes the greatest integer
that is smaller than or equal to x. Two integersM andN are said to be coprime if and
only if the greatest common divisor ofM andN is 1. The nonnegative part of a real
number x is denoted by (x)+ = max{x, 0}. We use ex and exp(x) interchangeably to
represent the natural exponential function. The imaginary unit is given by  =

√
−1.

Sets are represented by blackboard boldface (such as A). The cardinality of a set A
is denoted by |A|. The intersection and the union of two sets A and B are denoted
by A ∩ B and A ∪ B, respectively. The relative complement of a set A with respect
to a set B is written as

B\A , {x ∈ B : x 6∈ A}. (1.9)

The notation A ⊆ B denotes that a set A is a subset of a set B. A set A is said to be
a proper subset, or a strict subset of B, denoted by A ⊂ B, if A ⊆ B and A 6= B. The
notations A ⊇ B and A ⊃ B represent that A is a superset, or a proper superset of
B, respectively. The nonnegtaive part of a set S of real-valued quantities is defined
as

S+ , {s ∈ S : s ≥ 0}. (1.10)

The empty set is denoted by ∅. The notations Z, R, and C represent the set of
integers, the set of real numbers, and the set of complex numbers. The notation
SM×N denotes the set of matrices of size M × N , where each entry in the matrix
belongs to the set S.

Two setsA andB are said to be disjoint ifA∩B = ∅. A family of sets {A1,A2, . . . ,AK}
is said to be a partition of a set B if 1) Ap and Aq are disjoint for all 1 ≤ p < q ≤ K

and 2) the union of A1,A2, . . . ,AK is B.

Vectors and matrices are denoted by lower-case letters in bold face (such as a) and
upper-case letters in bold face (such as A), respectively. [a]i denotes the ith coor-
dinate of a while [A]i,j indicates the (i, j)th entry of A. The complex conjugate,
the transpose, and the complex conjugate transpose of A are A∗, AT , and AH , re-
spectively. Letting A ∈ CM×N , the Kronecker product between A and B is defined
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as

A⊗B =


[A]1,1B [A]1,2B . . . [A]1,NB

[A]2,1B [A]2,2B . . . [A]2,NB
...

... . . . ...
[A]M,1B [A]M,2B . . . [A]M,NB

 . (1.11)

The Hadamard product between A and B of the same size is A�B such that [A�
B]i,j = [A]i,j [B]i,j . The Khatri-Rao matrix product between twomatrices is defined
as the column-wise Kronecker product:[

a1 a2 . . . aN

]
◦
[
b1 b2 . . . bN

]
=
[
a1 ⊗ b1 a2 ⊗ b2 . . . aN ⊗ bN

]
. (1.12)

For a full column rank matrix A, the matrices

ΠA = A(AHA)−1AH , (1.13)

Π⊥A = I−A(AHA)−1AH , (1.14)

denote the orthogonal projection onto the column space of A, and to the null space
of AH , respectively. diag(a1, . . . , an) is a diagonal matrix with diagonal entries
a1, . . . , an. For a real set A = {a1, . . . , an} such that a1 < · · · < an, diag(A) ,

diag(a1, . . . , an). The notation rank(A) is the rank of A. The notation tr(A) denotes
the trace of A, which is the sum of diagonal entries. The vectorization operation is
defined as

vec
([

a1 a2 . . . aN

])
=


a1

a2

...
aN

 . (1.15)

The notation Pr [A] represents the probability of the event A. The expectation op-
erator is denoted by E[·]. N (µ,C) is a multivariate real-valued normal distribution
with mean µ and covariance C. CN (m,Σ) is a circularly-symmetric complex nor-
mal distribution with mean m and covariance matrix Σ.

The Bracket Notation
Let S be an integer set and let the signal defined over S denoted by a column vector
xS. The square bracket notation [xS]i represents the ith component of xS. The tri-
angular bracket notation 〈xS〉n denotes the signal value on the support n ∈ S and is
very useful for nonuniform arrays. For instance, if S = {0, 2, 5} and xS = [−1, 1, 4]T ,
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then

[xS]1 = −1, [xS]2 = 1, [xS]3 = 4, (1.16)

〈xS〉0 = −1, 〈xS〉2 = 1, 〈xS〉5 = 4. (1.17)

The bracket notation also applies to matrices. If A = xSx
T
S , then [A]i,j = [xS]i[xS]j

and 〈A〉n1,n2 = 〈xS〉n1〈xS〉n2 .
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C h a p t e r 2

COARRAY MUSIC AND SPATIAL SMOOTHING

2.1 Introduction
Sparse arrays open a new approach to sensor array processing because of the high
degrees of freedom offered in the difference-coarray domain. Nested arrays [124]
and coprime arrays [186] are examples of sparse arrays obtained from a union of
two uniform linear arrays (ULAs) with different interelement spacings. The in-
creased freedom has been used to identify O(N2) sources (DOAs) from only N
sensors [124], [186]. Sparse arrays can be used in various applications, including
DOA estimation [124], [186], [200], [201], line spectrum estimation using MUSIC
algorithms [125], super resolution [175], [176], two dimensional array design [121],
[122], [183], beamforming, and coprime spatial filter bank design [3], [4], [85].

In DOA estimation using the MUSIC algorithm [125] or any gridless algorithm
[123], a technique called spatial smoothing [152] is sometimes used to construct
a positive definite matrix on which MUSIC operates. For sparse arrays which use
theMUSIC algorithm in the difference-coarray domain, it was proved in [124], [125]
that the spatially smoothed matrix Rss in the coarray domain is a perfect square of
a positive definite matrix R̂ which contains noise-subspace information. Using this
fact it was possible to separate the signal subspace and the noise subspace based on
the eigenvalues of Rss. This leads to a successful implementation of MUSIC in the
coarray domain. It should be mentioned herein that when DOA estimation based
on coarray domain is performed by formulating a dictionary based approach [119],
spatial smoothing is not necessary. It has been used in the past only when the MU-
SIC algorithm or other gridless algorithms [123] is to be employed in the coarray
domain.

In this chapter, wewill show that spatial smoothing is not needed even to implement
the MUSIC algorithm in the coarray domain. The performance reported in [124],
[125] can be achieved without it. This is done as follows: based on the snapshot-
based covariance estimate of the data, a new matrix R̃ is introduced which can be
directly used to find the noise eigenspace associated with R̃ss (the finite-snapshot
version of Rss of [124], [125]). Even with finite number of snapshots, these matrices
are related as R̃ss = R̃2/L, where L is a constant factor, unlike [124], [125] where
such a relation is proved only for the ideal infinite snapshot scenario. The MUSIC
spectrum which is usually computed based on R̃ss can therefore be directly com-
puted based on R̃. The construction of R̃ is much simpler than that of R̃sswhile the
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performance is guaranteed to be exactly the same for a fixed number of snapshots.
So the complexity of the algorithm is less than that of [124], [125]. It turns out that
the intermediate matrix R̃ is indefinite (although Hermitian), but we show that this
is of no consequence.

While computational reduction is an advantage, the insight provided by the simpli-
fication is perhaps more important, as it might lead to considerable theoretical sim-
plification in the case of multidimensional arrays [122], [183], multiple level nested
arrays [120], and other future developments of coarray applications.

The chapter outline is as follows: Basic ideas from sparse arrays are reviewed in Sec-
tion 2.2. Section 2.3 reviews the MUSIC algorithm and the spatial smoothing MU-
SIC algorithm. The new matrix R̃ is introduced in Section 2.4, and it is shown how
coarray MUSIC can be successfully performed from certain eigenspaces computed
from this matrix. The reduction in computational complexity is also discussed. In
Section 2.5, the results are further discussed, before Section 2.6 concludes the chap-
ter.

2.2 Review of Sparse Arrays
In this section, we will first review the difference coarray and its properties. Then
several sparse array geometries, such as minimum redundancy arrays [113], mini-
mum hole arrays [177], [190], nested arrays [124], and coprime arrays [186], will be
reviewed in detail.

We begin by defining the difference coarray of an array geometry:

Definition 2.2.1 (Difference coarray D). Let S be an integer set defining the sensor
locations. The difference coarray is defined as

D , {n1 − n2 : n1, n2 ∈ S}. (2.1)

The difference coarray is symmetric, i.e., ifm ∈ D, then −m ∈ D, so we often show
the nonnegative part only. It is also useful to characterize the central ULA segment
of the difference coarray, denoted as U, which is utilized in some coarray-based
DOA estimators [87], [125]:

Definition 2.2.2 (U, the central ULA segment). Let D be the difference coarray of S
and letm be the largest integer such that {0,±1, . . . ,±m} ⊆ D. ThenU , {0,±1, . . . ,±m}
is called the central ULA segment of D.

SomeDOA estimators utilize coarray interpolation to increase the number of usable
samples in the difference coarray [2], [104], [137], [179]. These algorithms depend
on the smallest ULA containing the difference coarray, denoted by V, and the holes,
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which are the missing elements in the difference coarray. These quantities are de-
fined as

Definition 2.2.3 (V, the smallest ULA containingD). LetD be the difference coarray
of a sensor array S. The smallest ULA containing D is defined as V , {m ∈ Z :

min(D) ≤ m ≤ max(D)}.

Definition 2.2.4 (H, the holes in the difference coarray). Let D be the difference
coarray of S. The number h is said to be a hole inD if h ∈ V but h /∈ D. Furthermore,
the set of holes is denoted by H , V\D = {h ∈ V : h /∈ D}.

According to D and U, we define the following terminologies:

Definition 2.2.5 (Degrees of freedom). The number of degrees of freedom (DOF)
of a sparse array S is the cardinality of its difference coarray D.

Definition 2.2.6 (Uniform DOF). Given an array S, let U denote the central ULA
segment of its difference coarray. The number of elements inU is called the number
of uniform degrees of freedom or “uniform DOF” of S.

If the uniform DOF is F, then the number of uncorrelated sources that can be iden-
tified by using coarray MUSIC is (F− 1)/2 [124], [125].

Definition 2.2.7 (Restricted arrays [113]). A restricted array is an array whose dif-
ference coarray D is a ULA with adjacent elements separated by 1, i.e., D = U. In
other words, there are no holes in the coarray domain (H = ∅). Thus the phrase
“restricted array” is equivalent to “array with hole-free difference coarray.”

Definition 2.2.8 (General arrays [113]). If the difference coarray D of a sparse array
S is not a ULA with inter-element spacing 1, i.e., S is not a restricted array, then S is
a general array.

Next, we will review the weight function, defined as

Definition 2.2.9 (w(m), theweight function). Let S be a sensor array andD be its dif-
ference coarray. The weight function is the number of sensor pairs with separation
m, defined as

w(m) = |M(m)| , (2.2)

M(m) =
{

(n1, n2) ∈ S2 : n1 − n2 = m
}
. (2.3)
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Coarray locationm

Figure 2.1: An illustration of the sets S,D,U,V, and theweight functionw(m). Here
we consider a coprime array withM = 3 and N = 5, as defined in (2.8).

Note that the weight function w(m) for any linear array withN sensors satisfies the
following properties:

w(0) = N,
∑
m∈D

w(m) = N2, w(m) = w(−m). (2.4)

Furthermore, according toDefinitions 2.2.1 and 2.2.9, the difference coarray can also
be expressed as the support of the weight function.

Example 2.2.1. Fig. 2.1 illustrates an example of the sensor array S, the difference
coarray D, the central ULA segment of the difference coarray U, the smallest ULA
containing D, denoted by V, and the weight function w(m). The size of the dif-
ference coarray is |D| = 43, which is larger than the number of physical sensors
|S| = 10. It can be observed that the difference coarray is symmetric to zero, and
contains a central ULA segment from −17 to 17. The set V is composed of con-
secutive integers from −25 to 25. Based on these, the set of holes is given by H =

{±18,±21,±23,±24}. The weight function w(m) is also given in Fig. 2.1. It can be
deduced that the weight function w(m) satisfies w(0) = 10, w(±1) = w(±2) = 2.
These results are consistent with (2.4).

Next we will review some existing sparse arrays, including minimum redundancy
arrays [113], minimum hole arrays [177], [190], nested arrays [124], and coprime ar-
rays [186]. Furthermore, Table 2.1 summarizes some commonly used terminologies
regarding these sparse arrays.
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(c)
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Nested
array S:
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Dense ULA
withN1 sensors
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(d)

−17 −15 −10 −5 0 5 10 15 17
0

3

6

Coarray locationm

w
(m

)

Coprime
array S:
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Sparse ULA
withN sensors
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Sparse ULA
with 2M − 1 sensors
and separationND:
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Figure 2.2: The array geometries S, the difference coarrays D, and the weight func-
tionsw(m) of (a) theMRAwith 6 sensors, (b) theMHAwith 6 sensors, (c) the nested
array withN1 = N2 = 3, and (d) the coprime array withM = 2, N = 3. All these ar-
rays have 6 physical sensors. In S andD, dots denote elements and crosses represent
empty locations.
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Table 2.1: Some terminologies related to sparse arrays

This thesis Alternative names
Restricted arrays[113] Fully augmentable arrays [1]
General arrays [113] Partially augmentable arrays [2]

Minimum redundancy
arrays (MRAs) Restricted MRAs [113]

Minimum hole arrays
(MHAs) Golomb arrays [177], Minimum-gap arrays [2]

Minimum redundancy arrays (MRA) [113] maximize the size of the difference coar-
ray under the constraint that the difference coarray is hole-free1. If the number of
sensors N is given, then the formal definition can be expressed as

Definition 2.2.10. The MRA with N physical elements can be defined as

SMRA , arg max
S

|D| subject to |S| = N, D = U. (2.5)

As a example, Fig. 2.2(a) illustrates a 6-sensor MRA, its difference coarrary D, and
the associated weight functions. It can be seen that these sensors are placed non-
uniformly along a straight line while the difference coarray contains consecutive
integers from −13 to 13. The size of the difference coarray is 27, which is much
larger than the number of sensors, 6. In particular, it was shown that the size of
the difference coarray achieves |D| = O(N2) [45], [81], [113], [145], [156]. The main
drawback of MRA is that the sensor locations cannot be expressed in closed forms
for largeN and can only be evaluated by searching algorithms [65], [81], [84], [149].

Minimum hole arrays (MHA) [177], [190], which are also named as Golomb arrays
or minimum gap arrays, minimize the number of holes, such that each nonzero
element in the difference coarray results from a unique sensor pair. Formally:

Definition 2.2.11. The MHA with N physical elements can be defined as [177]

SMHA , arg min
S
|H|

subject to |S| = N, w(m) = 1 form ∈ D\{0}, (2.6)

where the set of holes H is defined in Definition 2.2.4.

Note that w(m) = 1 means that the differencem occurs exactly once. Thus the con-
straint (2.6) ensures that no difference m occurs more than once. For instance, Fig.

1 This array configuration was denoted as restricted MRA in [113].



22

2.2(b) depicts the physical array and the difference coarray of a 6-sensorMHA. It can
be seen that in this case, S = {0, 1, 4, 10, 12, 17} and D is {0,±1, . . . ,±13,±16,±17}.
The set of holes is {±14,±15}. It can be verified that the weight function w(m) in
Fig. 2.2(b) satisfies the constraint (2.6). Due to Definition 2.2.11, it can be shown
that, for MHA, the size of the difference coarray is |D| = N2 − N + 1 [177]. Like
MRA, the main issue for the MHA is that, there are no closed-form expressions for
sensor locations [10], [40], [79], [146], [174], [177]. For further discussions, please
see [2] and the references therein.

Nested and coprime arrays [124], [186] are sparse arrays with simple geometries
having closed-form expressions. Both have O(N2) distinct elements in the differ-
ence coarray domain, although they do not optimize the parameters that MRA or
MHA seek to optimize. Nested arrays are composed of a dense ULA with sensor
separation 1, and a sparse ULA with sensor separation (N1 + 1). The closed-form
sensor locations are given by [124]:

Snested , {1, 2, . . . , N1, (N1 + 1), 2(N1 + 1), . . . , N2(N1 + 1)} , (2.7)

whereN1 andN2 are positive integers. Fig. 2.2(c) demonstrates a nested array with
N1 = N2 = 3. In this example, the number of physical sensors is 6 while the dif-
ference coarray consists of integers from −11 to 11. In particular, it was proved
in [124] that, if N1 is approximately N2, then with O(N) physical sensors, the size
of the difference coarray is O(N2), which has the same order as MRA and MHA
[113], [177]. One advantage of nested arrays is the simplicity of design equations
for large number of elements [124], which cannot be achieved in MRA or MHA.
Another advantage of nested arrays is that, the difference coarray consists of con-
tiguous integers from −N2(N1 + 1) + 1 to N2(N1 + 1) − 1 and there are no holes.
This property makes it possible to utilize the complete autocorrelation information
in spatial smoothing MUSIC [124].

Coprime arrays are another family of sparse arrays that enjoys long difference coar-
ray and closed-form sensor locations [186]. They are composed of two sparse ULAs
with sensor separationsM andN , respectively. The sensor locations for the coprime
array are defined as follows:

Scoprime , {0, M, 2M, . . . , (N − 1)M, N, 2N, . . . , (2M − 1)N} , (2.8)

where M and N are a coprime pair of integers and M < N . Fig. 2.2(d) shows a
coprime array withM = 2 and N = 3, as an example. The number of sensors is 6

and the difference coarray consists of consecutive integers from−7 to 7 but the lags
±8 are missing. It was shown in [125], [186] that the difference coarray of coprime
arrays, Dcoprime, contains consecutive integers from −MN to MN and there are
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holes outside this region. It was further proved in [139], [201] that the maximum
central contiguous ULA section of Dcoprime, is actually from −(MN + M − 1) to
MN +M −1. In other words, the size of the ULA segment in difference coarray for
coprime arrays is O(MN), given O(M + N) physical sensors. The advantages of
coprime arrays include, first, simple and closed-form sensor locations, as indicated
in (2.8). Second, it was shown in [92], [125], [186] that, compared to nested arrays,
coprime arrays reduce the mutual coupling effect, which originates from the non-
ideal interference between adjacent sensor outputs.

2.3 Review of MUSIC and Spatial Smoothing MUSIC
The MUSIC Algorithm
First let us review the covariance matrix of the array output, on which the MUSIC
algorithm operates. According to the details in Section 1.1, the received signal vec-
tor xS is modeled as xS =

∑D
i=1AivS(θ̄i) + nS, as in (1.5). Here the set S denotes

the array geometry, D is the number of monochromatic sources, θ̄i ∈ [−1/2, 1/2]

and Ai ∈ C are the normalized DOA and the complex amplitude of the ith source,
vS(θ̄i) ∈ C|S| is the steering vector, and nS is the additive noise term. In this thesis,
the following statistical assumptions are also considered:

(A1) The number of sources D is known and fixed.

(A2) The normalized DOAs {θ̄1, θ̄2, . . . , θ̄D} are unknown but fixed.

(A3) The complex amplitude Ai and the noise term nS are zero-mean and uncor-
related random variables/vectors. In particular, the power of the ith source
is denoted by pi and the noise power is pn at each sensor. These relations can
be expressed as

E [s] = 0, E
[
ssH

]
=



p1 0 . . . 0 0

0 p2 . . . 0 0
...

... . . . ...
...

0 0 . . . pD 0

0 0 . . . 0 pnI


, (2.9)

where s ,
[
A1, A2, . . . , AD, nTS

]T .
Next let us derive the expression of the covariance matrix of xS, denoted by RS.
Here the subscript S in RS indicates that the covariance matrix is with respect to S.
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Figure 2.3: A schematic diagram of the MUSIC algorithm.

Under assumptions (A1) to (A3), we obtain

RS = E
[
xSx

H
S
]

=
D∑
i=1

D∑
j=1

E
[
AiA

∗
j

]︸ ︷︷ ︸
piδi,j

vS(θ̄i)v
H
S (θ̄j) +

D∑
i=1

vS(θ̄i) E
[
Ain

H
S
]︸ ︷︷ ︸

0

+
D∑
j=1

E
[
nSA

∗
j

]︸ ︷︷ ︸
0

vHS (θ̄j) + E
[
nSn

H
S
]︸ ︷︷ ︸

pnI

=
D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI. (2.10)

Based on the covariance matrix of xS, the MUSIC algorithm aims to estimate the
source directions, i.e., the normalized DOAs {θ̄1, . . . , θ̄D} [150], [188]. In what fol-
lows, the details of the MUSIC algorithm will be reviewed using a schematic dia-
gram in Fig. 2.3. Note that the following development is based on the covariance
matrix RS. The extension of finite snapshots will be discussed in the last subsection
of Section 2.3.

We begin by decomposing the first term of (2.10), namely the signal term, into the
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eigenvalues µj and the eigenvectors uj :

D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) =

D∑
j=1

µjuju
H
j . (2.11)

It is assumed that the signal term has rank D < |S|, the eigenvalues satisfy µ1 ≥
µ2 ≥ · · · ≥ µD > 0, and the eigenvectors are orthonormal. Under these assump-
tions, the eigen-decomposition of the matrix RS can be expressed as

RS =
D∑
j=1

(µj + pn)uju
H
j +

|S|∑
j=D+1

pnuju
H
j , (2.12)

where u1,u2, . . . ,u|S| form a set of orthonormal basis vectors of C|S|. It can be ob-
served that the eigenvalues of RS, denoted by λj , are µj + pn if j ≤ D and are pn
otherwise. For instance, Fig. 2.3 shows a typical distribution of the eigenvalues λj .
Due to (2.12), the firstD eigenvalues are generally larger than the remaining eigen-
values, while the last |S| −D eigenvalues are fixed to be pn. Based on this property,
it is possible to split the space C|S| into the signal subspace, which corresponds to the
subspace due to the signal term in (2.11), and the noise subspace, which is associated
with the second term in (2.12). In particular, the bases of the signal subspace and
the noise subspace are denoted by

Us =
[
u1 u2 . . . uD

]
∈ C|S|×D for the signal subspace, (2.13)

Un =
[
uD+1 uD+2 . . . u|S|

]
∈ C|S|×(|S|−D) for the noise subspace. (2.14)

Furthermore, Eqs. (2.11) and (2.12) imply that the projection of the steering vectors cor-
responding to the true normalized DOAs onto the noise subspace is zero, i.e.,

UH
n vS(θ̄i) = 0, (2.15)

for i = 1, 2, . . . , D. Based on (2.15), we can define the MUSIC spectrum P (θ̄) as
follows:

P (θ̄) ,
1∥∥UH

n vS(θ̄)
∥∥2

2

, −1

2
≤ θ̄ ≤ 1

2
. (2.16)

It can be deduced from (2.15) and (2.16) that P (θ̄) becomes infinite as the normal-
ized DOA θ̄ matches the true normalized DOA θ̄i. For instance, Fig. 2.3 illustrates
an example of the MUSIC spectrum P (θ̄), where the true normalized DOAs are
shown in vertical lines. In practice, we first search the peak locations ̂̄θi in P (θ̄),
and then use the relation ̂̄θi = sin(θ̂i)/2 to estimate the DOAs θ̂i. Note that the
MUSIC spectrum P (θ̄) is related to the projection of vS(θ̄) onto the noise subspace,
which is conceptually different from the spatial power spectrum [14] and the source
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powers. Generally speaking, for the same array output, the MUSIC spectrum owns
sharper peaks and better estimation performance than the spatial power spectrum
[68], [150], [188].

One disadvantage of theMUSIC spectrum is the high complexity in the peak search
step of Fig. 2.3, which may require a dense grid search in θ̄. For some array geome-
tries like ULA, the peak search step can be avoided in some variants of the MUSIC
algorithm, such as root MUSIC [12], ESPRIT [147], and matrix-pencil methods [62].
In this thesis, unless stated separately, the MUSIC spectrum is computed based on
(2.16) and the maximum of P (θ̄) is normalized to 1. The numerical estimation error
is evaluated using the root MUSIC algorithm, to reduce the overall computational
complexity. For more details of the MUSIC algorithm, interested readers are re-
ferred to [68], [110], [165], [188] and the references therein.

The Spatial Smoothing MUSIC Algorithm
In this subsection, we will review the spatial smoothing MUSIC algorithm. This
algorithm performs the MUSIC algorithm on the spatially smoothed matrix Rss,
which is related to the difference coarray of sparse arrays, as we will elaborate next.

According to (2.10), the entry of RS associated with the n1, n2 ∈ S can be expressed
as

〈RS〉n1,n2
=

D∑
i=1

pi
〈
vS(θ̄i)

〉
n1

〈
vS(θ̄i)

〉∗
n2

+ pn 〈I〉n1,n2

=
D∑
i=1

pi exp
[
2πθ̄i(n1 − n2)

]
+ pnδn1−n2,0, (2.17)

where the delta function δp,q is 1 if p = q and is 0 otherwise. It can be observed
that the right-hand side of (2.17) depends purely on the differences between sensor
locations, i.e., n1 − n2. Therefore, (2.17) can be reshaped into the autocorrelation
vector defined on the difference coarray [87], [107], [108], [124], [125]

xD =

D∑
i=1

pivD(θ̄i) + pne0, (2.18)

where e0 is a column vector satisfying 〈e0〉m = δm,0. Based on the relations between
D and U, the autocorrelation vector over U is then constructed to be

xU =
D∑
i=1

pivU
(
θ̄i
)

+ pne
′
0, (2.19)

where 〈e′0〉m = δm,0 form ∈ U.

Note that (2.18) can be regarded as the output defined on the difference coarray,
instead of that on the physical array (1.5). If sensor locations are designed properly,
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like those in Section 2.2, the size of the difference coarray can be much larger than
the size of the physical array. In particular, |D| = O(|S|2). This property makes it
possible to develop coarray-based DOA estimators that resolve more source direc-
tions than sensors and achieve better spatial resolution [1], [87], [124], [186]. Fur-
thermore, after resolving the source directions, it is possible to estimate the source
powers pi and the noise power pn, as we will elaborate in Section 2.5.

In what follows, we will review the spatial smoothing MUSIC algorithm [124], [125].
To estimate the normalized DOAs

{
θ̄i
}D
i=1

, previous works perform (forward) spa-
tial smoothing on xU to obtain a spatial smoothed matrix Rss and then apply the
MUSIC algorithm [124], [125]. Rss is defined as

Rss ,
1

L

L−1∑
p=0

QpxUxHU QH
p , (2.20)

where Qp is a selection matrix defined as

Qp ,
[
0L×(L−1−p) IL×L 0L×p

]
∈ {0, 1}L×(2L−1) , (2.21)

and

L ,
|U|+ 1

2
. (2.22)

Rss is a positive semidefinite matrix [124], [125]. Hence, Rss is suitable for the
MUSIC algorithm, where we can separate signal/noise subspaces and then define
a valid MUSIC spectrum.

DOA Estimation with Finite Snapshots
In practice, the signal vector measured at sparse arrays is denoted by x̃S, where the
tilde notation, throughout this thesis, stands for observed or measured quantities.
These vectors can be measured K times, denote by x̃S(k) for k = 1, 2, . . . ,K. In
the literature, x̃S(k) are also called snapshots of x̃S. Note that, in this thesis, xS(k)

represent snapshots that follow from themodel in (1.7) while x̃S(k) can be regarded
as the realization of the snapshotmodel in (1.7). More details of the snapshotmodel
can be found in Chapter 6, [188, Chapter 5], [68, Section 4.9], and the references
therein. Based on theK snapshots x̃S(k), the covariance matrix of the array output
can be estimated as

R̃S ,
1

K

K∑
k=1

x̃S(k)x̃HS (k). (2.23)

Then, the estimated covariancematrix R̃S can be utilized inDOAestimators, such as
theMUSIC algorithm, as in Fig. 2.3. Furthermore, if we start from R̃S instead ofRS,
then the quantities xD,xU, and Rss are replaced with the finite snapshot versions
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R̃S =

n1 = 1

2

4

n2 = 1 2 4

〈R̃S〉1,1

〈R̃S〉2,2

〈R̃S〉4,4

〈R̃S〉2,1

〈R̃S〉1,2

〈R̃S〉4,2

〈R̃S〉2,4

〈R̃S〉4,1

〈R̃S〉1,4

x̃D =

m = −3

−2

−1

0

1

2

3

〈x̃D〉0 =
〈R̃S〉1,1+〈R̃S〉2,2+〈R̃S〉4,4

3

〈x̃D〉1 = 〈R̃S〉2,1

〈x̃D〉−1 = 〈R̃S〉1,2

〈x̃D〉2 = 〈R̃S〉4,2

〈x̃D〉−2 = 〈R̃S〉2,4

〈x̃D〉3 = 〈R̃S〉4,1

〈x̃D〉−3 = 〈R̃S〉1,4

Reshape and average

Figure 2.4: The conversion from the R̃S to the autocorrelation vector x̃D.

x̃D, x̃U, and R̃ss, which are used in the following developments. In particular, x̃D

can be determined from R̃S as follows [132]:

Definition 2.3.1. The measurement vector (or the autocorrelation vector) x̃D is de-
fined as

〈x̃D〉m ,
1

w(m)

∑
(n1,n2)∈M(m)

〈
R̃S

〉
n1,n2

, (2.24)

for allm ∈ D. The weight functionw(m) and the setM(m) are defined in Definition
2.2.9. Similarly, the measurement vector over U is

〈x̃U〉m ,
1

w(m)

∑
(n1,n2)∈M(m)

〈
R̃S

〉
n1,n2

, (2.25)

for allm ∈ U.

Note that the expressions in (2.24) and (2.25) are also called redundancy averaging in
the literature [1], [2], [132].

According to (2.20), the measured spatial smoothed matrix R̃ss is computed from
x̃U and then the MUSIC algorithm can be applied to obtain line spectrum or DOA
estimates.

Example 2.3.1. Fig. 2.4 shows an example of the conversion from R̃S to x̃D with S =

{1, 2, 4}. The entries in R̃S correspond to the normalized sensor locations n1 and
n2, as marked in Fig. 2.4. First, according to Definition 2.2.1, the difference coarray
becomes D = {−3,−2,−1, 0, 1, 2, 3}, and the autorrelation vector x̃D is depicted on
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the right of Fig. 2.4. Next, the autocorrelation vector x̃D is constructed according to
the mapping from S to D. For instance, the entry 〈x̃D〉0 is averaged from the entries
〈R̃S〉1,1, 〈R̃S〉2,2, and 〈R̃S〉4,4, since they are associated with n1 − n2 = 0.

2.4 Coarray MUSIC without Spatial Smoothing
In this section, we will propose a new matrix R̃ such that it produces exactly the
same MUSIC spectra as [124], [125] without implementing spatial smoothing.

Lemma 2.4.1. x̃D is Hermitian symmetric. That is, x̃D = Qx̃∗D, where Q is the anti-
identity matrix that has ones along its anti-diagonal entries and zeros elsewhere.

Proof. Hermitian symmetry is equivalent to 〈x̃D〉m = 〈x̃D〉∗−m for m ∈ D. Starting
with Definition 2.3.1, we obtain

〈x̃D〉m =
1

|M(−m)|
∑

(n2,n1)∈M(−m)

〈
R̃H

S

〉
n1,n2

,

which is based on these properties: |M(m)| = |M(−m)|, (n1, n2) ∈ M(m) if and
only if (n2, n1) ∈ M(−m), and R̃S is a Hermitian matrix. Pulling out the complex
conjugate yields

〈x̃D〉m =

 1

|M(−m)|
∑

(n2,n1)∈M(−m)

〈
R̃S

〉
n2,n1

∗ .
Therefore, we obtain 〈x̃D〉m = 〈x̃D〉∗−m, which completes the proof.

Theorem 2.4.1. Let R̃ be the following Toeplitz matrix,

R̃ =


[x̃U]L [x̃U]L−1 · · · [x̃U]1

[x̃U]L+1 [x̃U]L · · · [x̃U]2
...

... . . . ...
[x̃U]2L−1 [x̃U]2L−2 · · · [x̃U]L

 ,

where L is defined in (2.22). Then R̃ is Hermitian and R̃ss = R̃2/L.

Proof. It was proved in Lemma 2.4.1 that x̃D follows theHermitian symmetric prop-
erty. The same property also holds true for x̃U by replacing D with U in the proof.
The Hermitian of R̃ is, by definition,

R̃H =


[x̃U]∗L [x̃U]∗L+1 · · · [x̃U]∗2L−1

[x̃U]∗L−1 [x̃U]∗L · · · [x̃U]∗2L−2
...

... . . . ...
[x̃U]∗1 [x̃U]∗2 · · · [x̃U]∗L

 .



30

Since x̃U = Qx̃∗U, each entry in R̃H is replaced with one term in x̃U. We obtain
R̃H = R̃, implying R̃ is Hermitian.

The next part involves the expression of R̃ in terms ofQp, which is defined in (2.21).
Since x̃U is the ULA part in the coarray domain, Q0x̃U extracts the responses on
0, 1, . . . ,max (U). According to the definition of R̃, we obtain

R̃ =
[
Q0x̃U Q1x̃U . . . QL−1x̃U

]
.

The square of R̃ is then evaluated as

R̃2 = R̃R̃H

= Q0x̃U (Q0x̃U)H + Q1x̃U (Q1x̃U)H

+ · · ·+ QL−1x̃U (QL−1x̃U)H

= LR̃ss,

which is equivalent to R̃ss = R̃2/L.

The importance of Theorem 2.4.1 is that the MUSIC spectrum can be computed
directly from R̃, rather than the spatially smoothed matrix R̃ss. It is a direct conse-
quence of R̃ss = R̃2/L that (i) eigenvalues of R̃ss are proportional to the square of
eigenvalues of R̃, and (ii) R̃ss and R̃ share the same eigenspace. These claims lead
to the following corollary:

Corollary 2.4.1. MUSIC spectra based on either R̃ss or R̃ are identical if the signal
and noise subspaces of R̃ are determined by magnitudes of its eigenvalues.

Computational Complexity Analysis
Our proposed method reduces the complexity of the existing approaches [124],
[125]. Here, a more detailed comparison on the number of multipliers will be made
to demonstrate the computational savings. The DOA estimation over sparse arrays
can be divided into the following three stages:

1. Construct x̃U from x̃S. Once the sensor array collects K snapshots, R̃S is esti-
mated from (2.23), taking O

(
K |S|2

)
operations. Based on Definition 2.3.1,

|U|multipliers are involved. Using (2.22) and the fact thatO
(
|S|2
)

= O (|U|),
as proved in [124], [125], we see that the total complexity is O(KL).

2. Establish R̃ss or R̃. In [124], [125], R̃ss is implemented according to (2.20),
where JpxU is of size L. Since each term takesO(L2) multiplications, the cost
for R̃ss is O(L3)2. On the contrary, to evaluate R̃, no multiplication is needed,

2Note that there are some matrix multiplication algorithms with complexity O (Lα) , α < 3 [36],
[169] but it still takes some resources to do so.



31

since from Theorem 2.4.1, x̃U is reshaped into a Toeplitz matrix R̃ without
further arithmetic operations.

3. MUSIC spectra. This step is dominated by the eigen-decomposition of an L×
L Hermitian matrix, which can be either R̃ss or R̃. It is known that eigen-
decomposition requires around O(L3) operations [128].

Thus, the computational complexity for the two approaches are

Conventional (R̃ss) : O
(
KL+ L3 + L3

)
,

Proposed (R̃) : O
(
KL+ L3

)
.

As we can see, our proposed method savesO(L3) operations. However, the overall
complexity is still dominated by the eigen-decomposition in both methods, which
requires O(L3) computations.

Nevertheless, the computational reduction can become more prominent when we
go for multidimensional arrays [121], [183] or higher order statistics [120]. For in-
stance, in a 2q-level nested array [121], the ULA segment is of length O

(
|S|2q

)
=

O (Lq) so that the corresponding spatially smoothedmatrix has dimensionO (Lq)×
O (Lq). Following the same analysis as in this subsection, the complexity for 2q-
level nested array becomes O

(
KLq + L3q + L3q

)
while the proposed method has

complexityO
(
KLq + L3q

)
. It can be seen thatO

(
L3q
)
operations will be deducted

using the proposed method, which is not negligible especially for large q. But still,
eigen-decomposition (O

(
L3q
)
) governs the overall complexity.

2.5 Discussions
1. Note that R̃ is an indefinite square root of R̃ss. The finite snapshot square root

matrix implicitly appears in [126]. While it is not obvious, it can be shown that
this matrix in [126] is the same as the matrix R̃ in Theorem 1. This matrix has
been used in [126] for the convenience of analysis of root-MUSIC in coarray
domain. However, the fact that coarray MUSIC can be obtained directly from
an eigen computation of the data-based matrix R̃ has not been observed in
the past. Instead of this matrix, the spatially smoothed matrix R̃ss has been
used in all recent works [124] and [125] for obtaining MUSIC spectrum.

2. Our approach is applicable to any sparse array that has a central ULA section
in the coarray domain. For instance, the minimum-redundancy arrays [113]
satisfy such conditions. However, these arrays do not have a simple formula-
tion on the sensor locations, which can only be obtained from table look-up
[113], [177].
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3. In [2], the authors proposed to construct a positive-definite Toeplitz matrix T̂,
based on the estimated covariance matrices. The way that [2] establishes T̂ is
identical to Definition 2.3.1 in this chapter. However, in [2], T̂ is restricted to
positive-definite Toeplitz matrices, but here R̃ is an indefinite Toeplitz matrix.
In addition, the goal of [2] is to fill missing lags in T̂. Nevertheless, in our
work, all entries of R̃ are known.

4. Our results are derived for finite snapshots. However, in the proofs of [124],
[125], infinite snapshots are assumed in making the argument Rss = R̂2.
Hence the statements here are stronger than [124], [125]. For instance, The-
orem 2.4.1 serves as a finite-snapshot generalization of Theorem 2 in [124]
as well as Theorem 1 in [125]. To show that our proposed method is consis-
tent with [124], [125] under the infinite snapshot assumption, taking K →∞
yields limK→∞ R̃S = RS and limK→∞ x̃U = xU. According to Theorem 2.4.1,
the limit of R̃ becomes

lim
K→∞

R̃ = A11ΛAH
11 + σ2IL×L,

whereA11,Λ, and σ follow the definitions in [124], [125]. Note that limK→∞ R̃

is proportional to R̂ in [124], [125].

5. The source powers pi and the noise power pn can also be estimated from the
autocorrelation vector x̃D, after the estimation of source directions. The de-
tails will be elaborated in the following development.

Let ̂̄θi be the estimated normalized DOA for i = 1, 2, . . . , D. According (2.18),
the autocorrelation vector x̃D can be approximated by

x̃D ≈
[
vD(̂̄θ1) vD(̂̄θ2) . . . vD(̂̄θD) e0

]
︸ ︷︷ ︸

WD



p1

p2

...
pD

pn


. (2.26)

Note that the matrix WD has size |D| × (D+ 1). As long as ̂̄θi are known (i.e.,
WD is known), the estimation of the powers p1, p2, . . . , pD, pn can be regarded
as solving the linear system in (2.26).

Next we will present the following proposition:

Proposition 2.5.1. LetU be the central ULA segment of the difference coarray
D, as defined in Definition 2.2.2. Let the estimated normalized DOAs ̂̄θi for
i = 1, 2, . . . , D be distinct. If |U| ≥ 2D + 1, then WD has full column rank.
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Proof. Let αi = e2π
̂̄θi and the matrix S be

S ,



1 1 1 . . . 1 1

α1 α2 α3 . . . αD 0

α2
1 α2

2 α2
3 . . . α2

D 0
...

...
... . . . ...

...
αD1 αD2 αD3 . . . αDD 0


∈ C(D+1)×(D+1). (2.27)

Since |U| ≥ 2D + 1, the matrix S is a submatrix of WD. Next we will show
that S has full column rank. Assume that there exists a column vector c =

[c1, c2, . . . , cD+1]T 6= 0 such that Sc = 0. Due to (2.27), the equality Sc = 0

can be rewritten as

c1 + c2 + · · ·+ cD + cD+1 = 0, (2.28)
1 1 . . . 1

α1 α2 . . . αD
...

... . . . ...
αD−1

1 αD−1
2 . . . αD−1

D


︸ ︷︷ ︸

V


α1c1

α2c2

...
αDcD

 =


0

0
...
0

 . (2.29)

Since the estimated normalized DOAs ̂̄θi are distinct, the parameters αi are
distinct, implying that the Vandermonde matrix V is nonsingular. Therefore,
the solution to (2.29) becomes αici = 0, for all i = 1, 2, . . . , D, that is, ci = 0.
Substituting c1 = c2 = · · · = cD = 0 into (2.28) leads to cD+1 = 0, which
contradicts the assumption c 6= 0. Thus, S has full column rank, so does the
matrix WD.

The full rankness of WD implies the uniqueness of the solution of powers to
x̃D = WD[p1, p2, . . . , pD, pn]T , if such solution exists. As a result, the source
powers and the noise power may be simply estimated by W†

Dx̃D, where (·)†
denotes the pseudo-inverse of a matrix.

By definition, source powers pi and noise power pn are positive quantities.
However, in the finite snapshot scenario, the vectorW†

Dx̃D might contain neg-
ative entries. In the literature, this issue was mainly addressed by casting an
optimization problem based on (2.26) and the positiveness of the powers. In-
terested readers are referred to [1], [2] and the references therein.

As an example, consider a nested array withN1 = N2 = 8 and a coprime array with
M = 5 and N = 7. The total number of sensors is then 16, as defined in (2.7) and
(2.8). SNR is chosen to be 0dB and there are K = 500 snapshots. D = 35 sources
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RMSE = 0.00077674

Figure 2.5: The MUSIC spectrum based on anM = 5, N = 7 coprime array, 0 dB
SNR,K = 500 snapshots, and the Hermitian Toeplitz matrix R̃. D = 35 sources are
placed uniformly over θ̄ ∈ [−0.49, 0.49]. The number of sensors isN +2M −1 = 16.

are selected uniformly over θ̄ = [−0.49, 0.49] in our first experiment. As seen in Fig.
2.5, there are 35 distinguishable peaks even though D is greater than the number
of sensors, |S| = 16. These 35 peaks match with the ideal peaks, which are marked
by ticks on the θ̄ axis. The estimation error is quantified by the root-mean-squared
error, defined as

RMSE =

√√√√ 1

D

D∑
i=1

(
ˆ̄θi − θ̄i

)2
, (2.30)

where ˆ̄θi and θ̄i are the estimated/true normalized DOA of the ith source, respec-
tively. In this example, the RMSE is given by 0.00077674.

The same configuration with 1000 runs is conducted for both R̃ss (spatial smooth-
ing) and R̃ (no spatial smoothing). On a Ubuntu 12.04 workstation with a Intel
CoreTM i7-2600 3.40GHz processor and 8GB RAM, conventional approaches take
417.59 seconds for nested arrays and 85.73 seconds for coprime arrays. Neverthe-
less, our newmethod spends 399.07 seconds (4.4% reduction) for nested arrays and
75.02 seconds (12.5% less) for coprime arrays. We see that the computational re-
duction is rather minor. This is because the computation time is dominated by the
eigenspace computation in the MUSIC stage. So, the computational advantage ob-
tained by replacing the spatial smoothing stepwith thematrix R̃ isminor. However,
the insight provided by the fact that spatial smoothing can be avoided is more fun-
damental, and might have theoretical impact in future developments. The matrix
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R̃ also makes the performance analysis more tractable (as compared to the use of
the spatial smoothing matrix), as seen from [126]. This is because R̃ss requires 4th
order statistics, whereas R̃ is in terms of 2nd order statistics (correlations).

2.6 Concluding Remarks
We have shown that coarray MUSIC, which is used for sparse arrays such as nested
and coprime arrays, can be performed without the use of spatial smoothing. While
there are some computational advantages, the insight provided by the simplifica-
tion is also important, as it might lead to theoretical simplification in future work.
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C h a p t e r 3

SUPER NESTED ARRAYS: LINEAR SPARSE ARRAYS WITH REDUCED
MUTUAL COUPLING: FUNDAMENTALS

3.1 Introduction
In array signal processing, electromagnetic characteristics causemutual coupling be-
tween sensors, making the sensor responses interfere with each other [11], [157].
This has an adverse effect on the estimation of parameters (e.g., DOA, source power,
amplitude, and so forth). Past methods in the literature aim to decouple (or “re-
move") the effect of mutual coupling from the received data by using propermutual
couplingmodels [38], [49], [63], [64], [83], [129], [151], [172], [173], [199]. Suchmeth-
ods are usually computationally expensive, and sensitive to model mismatch.

An altogether different approach to reduce the effect of mutual coupling is to use
sparse arrays, in which the number of sensor pairs with small separations (small
multiples of λ/2) is much fewer than in uniform linear arrays (ULAs). This chapter
is based on this theme. Sparse arrays such as nested arrays, coprime arrays [4], [124],
[139], [175], [186], minimum redundancy arrays (MRAs) [113] and minimum hole
arrays (MHAs) [177], [190] have reduced mutual coupling compared to ULAs. The
definitions and the properties of these array geometries are described in Section 2.2
comprehensively.

In practice, these well-known sparse arrays have some shortcomings: MRAs and
MHAs do not have simple closed-form expressions for the array geometry, and the
sensor locations are usually found from tabulated entries [81], [113], [177], [190].
Coprime arrays have holes in the coarray, so that the ULA part of the coarray is
smaller than those of the nested array and the MRA [186]. Finally nested arrays,
by definition, contain a dense ULA in the physical array, resulting in significantly
higher mutual coupling than coprime arrays and MRAs [124].

The main aim of this chapter is to introduce a new array configuration called the
super nested array, which has all the good properties of the nested array, and at the
same time achieves reduced mutual coupling by redistributing the elements of the
dense ULA part of the nested array. There is a systematic procedure to do this. We
will show how to determine the appropriate sensor locations for any N . For fixed
N (number of sensors), the super nested array has the same physical aperture as
the parent nested array. Furthermore, its difference coarray is exactly identical to
that of the nested array and is, in particular, free from holes. However, unlike the
nested array, the number of sensor pairs with small separations (λ/2, λ, 3λ/2, etc.)
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Figure 3.1: The concept of 2D representations of linear arrays. The top of this figure
shows the 1D representation of a nested array with N1 = N2 = 5, where bullets
denote sensors and crosses indicate empty locations. In the 1D representation of
this example, the array aperture is divided into N2 = 5 layers of size N1 + 1 = 6.
These layers are stacked into the associated 2D representation, asmarked by arrows.
Notice that in this chapter, 2D representations denote linear arrays, not planar arrays.
They are introduced to simplify the discussion in the future development.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N1 + 1 = 6 N1 + 1 = 6 N1 + 1 = 6 N1 + 1 = 6 N1 + 1 = 6

N2 = 5

N1 + 1 = 6

N2 = 5

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Figure 3.2: The 1D and 2D representations of a second-order super nested array
withN1 = N2 = 5. It will be proved in this chapter that super nested arrays possess
the same number of sensors, the same physical aperture, and the same hole-free
coarray as their parent nested arrays. Furthermore, super nested arrays alleviate
the mutual coupling effect. In this example, there is only one pair of sensors with
separation 1, located at 29 and 30. However, for the parent nested array in Fig.
3.1, locations 1 through 6 are crowded with sensors, leading to more severe mutual
coupling effect.
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is significantly reduced. More quantitative statements of these properties will be
given in this chapter based on the weight function w(m) of the sparse array, where
w(m) is the number of pairs of elements with element-spacing mλ/2, as defined
earlier in Definition 2.2.9. Several other properties of the new array geometry will
also be established.

To explain how the super nested array is obtained from a nested array, it is first con-
venient to develop a two-dimensional (2D) representation of linear arrays. This is
demonstrated in Fig. 3.1 which shows the traditional (1D) and the corresponding
2D representations of a nested array with N1 = N2 = 5 (N1 and N2 have the same
meaning as in [124]; also see Fig. 2.2(c)). The top of Fig. 3.1 depicts this array config-
uration along an 1D axis, where bullets are physical sensors and crosses stand for
empty space. Layer 1 is defined as the locations from 1 to N1 + 1 = 6 while Layer
2 begins with N1 + 2 = 7 and ends with 2(N1 + 1) = 12. The 2D representation
establishes a 2D topology by stacking all these layers, as illustrated in the bottom of
Fig. 3.1. Then, the dense ULA and the sparse ULA structure of a nested array can
be readily visualized. Note that in this chapter, 2D representations denote linear
arrays, not planar arrays.

Next, Fig. 3.2 provides a first glance at a second-order super nested array with pa-
rameters N1 = N2 = 5. These parameters are the same as those in Fig. 3.1. Hence,
the array in Fig. 3.1 is said to be the parent nested array of the array in Fig. 3.2. It can be
seen from this example that this super nested array is sparser than its parent nested
array (for the same physical aperture) in the sense that the number of element pairs
with small spacing (spacings of 1, 2, and 3) are reduced. In this super nested array,
there is only one pair of sensors with separation 1, but in its parent nested array, five
sensor pairs of separation 1 exist. We will see that such rearrangements will signif-
icantly reduce the adverse effects of mutual coupling in DOA estimation. Later on,
it will be shown in Fig. 3.7 that, with mutual coupling, the DOA estimation error
for the (third-order) super nested array is as small as 2% of that for its parent nested
array, which is truly remarkable.

Even though the 1D representation of super nested arrays seems irregular, their 2D
representation provides a geometrical point of view, as shown in Fig. 3.2. It can
be noticed that Fig. 3.2 resembles Fig. 3.1, except for few sensor locations. In this
example, we start with the parent nested array in Fig. 3.1 and then relocate some
sensors, from location 2 to 8, 4 to 10, and 6 to 29, yielding the super nested array in
Fig. 3.2. The systematic construction of super nested arrays from nested arrays for
arbitrary N1 and N2 will be described more rigorously in Section 3.4.
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Chapter outline
Section 3.2 reviews mutual coupling models. In Section 3.3, we present a motivat-
ing example which compares the performances of well-known sparse arrays in the
presence of mutual coupling. Super nested arrays are then introduced in Section
3.4, and some of their basic properties are proved (Lemma 3.4.1 and Lemma 3.4.2).
In Section 3.5, we study the difference coarray of the super nested array in detail.
It will be proved that super nested arrays have the same hole-free coarray as their
parent nested arrays (Theorem 3.5.1, and Corollary 3.5.1). Furthermore, a closed-
form expression for the weight function w(m) of the super nested array is provided
in Theorem 3.5.2. The first three weights (which dominate the effects of mutual
coupling) are shown to be always smaller for the super nested array, compared to
the parent nested array (w(1) and w(3) being significantly smaller). The improved
performance of super nested arrays under mutual coupling will be demonstrated
through examples in Section 3.6. Section 3.7 concludes this chapter.

A MATLAB code to generate the sensor locations of the super nested array can be
found in [90]. This code takes N1 and N2 (which are defined by the parent nested
array as in Fig. 2.2(c)) as the inputs and returns the sensor locations as the output.

The arrays introduced in this chapter will be called second-order super nested arrays,
for reasons that will become clear soon. In Chapter 4, a further extension called the
Qth-order super nested array is developed, which further reducesmutual coupling.

3.2 Review of Mutual Coupling
The array equation (1.5) assumes that the sensors do not interfere with each other.
In practice, any sensor output is influenced by its neighboring elements, which is
called mutual coupling. In this section, we will review mutual coupling models on
sensor arrays.

Mutual coupling can be incorporated into (1.5) as follows:

xS =

D∑
i=1

AiCvS(θ̄i) + nS, (3.1)

where C is a mutual coupling matrix that can be obtained from electromagnetics.
Closed-form expressions for C have been investigated for decades. If the sensor
array is a linear dipole array, C can be written as [70], [83], [171]–[173]

C = (ZA + ZL)(Z + ZLI)−1, (3.2)

where ZA and ZL are the element/load impedance, respectively. 〈Z〉n1,n2
is given



40

by 
η0
4π (0.5772 + ln(2βl)− Ci(2βl) + Si(2βl)) , if n1 = n2,

η0
4π

(
〈R〉n1,n2

+  〈X〉n1,n2

)
, if n1 6= n2.

Here η0 =
√
µ0/ε0 ≈ 120π is the intrinsic impedance. β = 2π/λ is the wavenumber,

where λ is the wavelength. l is the length of dipole antennas. R andX are

〈R〉n1,n2

= sin(βl) (−Si(u0) + Si(v0) + 2Si(u1)− 2Si(v1))

+ cos(βl)(Ci(u0) + Ci(v0)− 2Ci(u1)− 2Ci(v1)

+ 2Ci(βdn1,n2))− (2Ci(u1) + 2Ci(v1)− 4Ci(βdn1,n2)) ,

〈X〉n1,n2

= sin(βl) (−Ci(u0) + Ci(v0) + 2Ci(u1)− 2Ci(v1))

+ cos(βl)(−Si(u0)− Si(v0) + 2Si(u1) + 2Si(v1)

− 2Si(βdn1,n2)) + (2Si(u1) + 2Si(v1)− 4Si(βdn1,n2)) ,

where dn1,n2 = |n1 − n2|λ/2 is the distance between sensors. The parameters u0,
v0, u1, and v1 are

u0 = β
(√

d2
n1,n2

+ l2 − l
)
, v0 = β

(√
d2
n1,n2

+ l2 + l
)
,

u1 = β
(√

d2
n1,n2

+ 0.25l2 − 0.5l
)
,

v1 = β
(√

d2
n1,n2

+ 0.25l2 + 0.5l
)
.

Si(u) and Ci(u) are sine/cosine integrals, defined as

Si(u) =

∫ u

0

sin t

t
dt, Ci(u) =

∫ u

∞

cos t

t
dt.

Eq. (3.2) quantifies the mutual coupling effect of linear dipole antenna arrays. Note
that C relies on the dipole length l and the sensor element spacing dn1,n2 , which are
geometric parameters.

However, (3.2) is too complicated to anaylze. It is desirable to establish a simple
mutual coupling model. The mutual coupling matrix C can be approximated by a
B-banded symmetric Toeplitz matrix in the ULA configuration [49], [171], [173]. It
is empirically observed that the entries of C behave like functions of sensor separa-
tions only. In other words, we can write C as

〈C〉n1,n2 =

c|n1−n2|, if |n1 − n2| ≤ B,
0, otherwise,

(3.3)
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where n1, n2 ∈ S and coupling coefficients c0, c1, . . . , cB satisfy 1 = c0 > |c1| >
|c2| > · · · > |cB|. It is assumed that the magnitudes of coupling coefficients are
inversely proportional to their sensor separations [49], i.e. |ck/c`| = `/k.

The mutual coupling models such as (3.2) and (3.3) are based on certain assump-
tions [20], [49], [63], [64], [83], [105], [129], [151], [172], [173], [199]. The actual mu-
tual coupling matrix C is unknown to the user. If the mutual coupling effect is
completely omitted in our estimators, the performance degrades [48]. Another ap-
proach is to estimate mutual coupling and source profiles based on particular mu-
tual coupling models [20], [49], [83], [129], [151], [173], [199]. For instance, BouDa-
her et al. considered DOA estimation with coprime arrays in the presence of mutual
coupling [20]. Their algorithm jointly estimated the mutual coupling matrix C, the
source power, and the DOA under certain optimization criterion. At the expense
of some extra computations, this approach estimates the true DOA satisfactorily. In
principle, all of the above decouplingmethods are applicable with the super nested
arrays to be developed in this chapter, and can only improve the performance fur-
ther.

3.3 Mutual Coupling in Sparse Arrays: A Motivating Example
In this section, we provide an example of DOA estimation in the presence of mutual
coupling for several array configurations. It will be observed that uniform DOF
andweight functions of sensor arrays play a crucial role. This observation provides
some insights to design sensor arrays that reduce the mutual coupling effect.

In Fig. 3.3, we evaluate the performance of ULAs, MRAs [113], nested arrays [124],
and coprime arrays [125], [186] in the presence of mutual coupling. The number
of sensors is 6 for each array. Then, the sensor locations are given by (2.7) with
N1 = N2 = 3 for nested arrays and (2.8) with M = 2 and N = 3 for coprime
arrays. The sensor locations are listed on the first row of Fig. 3.3. The number of
sources D = 4 and the DOA profiles are θ̄1 = 0, θ̄2 = 0.1, θ̄3 = 0.2, and θ̄4 = 0.3.
The SNR is 0 dB and the number of snapshots K is 1000. The mutual coupling
matrix C is based on (3.3), where c0 = 1, c1 = 0.5 exp (π/4), c2 = 0.5 exp (0.7π) /2,
c3 = 0.5 exp (0.7π) /3, and B = 3. The measurement with mutual coupling can be
expressed as in Eq. (3.1). The DOAs are estimated from the measurement vectors
without any decoupling algorithms [20], [49], [83], [129], [151], [173], [199].

The second row of Fig. 3.3 shows weight functions of different array geometries.
The coarray of ULA has consecutive integers from −5 to 5, the coarray of MRA
ranges from −13 to 13, the nested array owns coarray aperture from −11 to 11, and
the coprime array has the maximum contiguous ULA section in its coarray domain
from−7 to 7. Then, the uniformDOF, as defined in Definition 2.2.6, for ULA,MRA,
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Figure 3.3: Comparison among ULAs, MRAs, nested arrays, coprime arrays and
their MUSIC spectra P (θ̄) in the presence of mutual coupling. It can be observed
that higher uniform DOF and smaller weight functions w(1), w(2), w(3) tend to
decrease the RMSE.
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the nested array, the coprime array are 11, 27, 23, and 15, respectively. Therefore, the
maximum number of detectable sources for ULA, MRA, nested array, and coprime
array is 5, 13, 11, and 7, respectively [124], [125]. TheMUSIC algorithm is performed
for ULA while the coarray MUSIC (SS MUSIC) is used in all the sparse arrays. In
addition, the weight functionsw(m) also exhibit different distributions for different
arrays. If we consider w(1) among all these arrays, we obtain w(1) = 5, 1, 3, 2 for
ULA, MRA, nested arrays, and coprime arrays, respectively. When w(1) becomes
smaller, there are fewer sensor pairs with separation 1 so, qualitatively, we obtain a
sparser array configuration.

The associated MUSIC spectra P (θ̄) and the root-mean-squared error (RMSE), are
shown on the third row and the fourth row of Fig. 3.3, respectively. The RMSE (E)
is defined as

E =

√√√√ 1

D

D∑
i=1

(
ˆ̄θi − θ̄i

)2
, (3.4)

where ˆ̄θi denotes the estimated normalized DOA of the ith source, according to the
root MUSIC algorithm, and θ̄i is the true normalized DOA. It can be observed that
ULA fails to identify four sources accurately in this example, while MRA has the
best estimation performance. In nested arrays and coprime arrays, four peaks can
be seen but they have more estimation error. These spectra conclude the estimation
performance: MRA is the best one, followed by nested arrays and then coprime
arrays. ULA has the worst performance. In the example of Section 3.6 (Fig. 3.7) we
will see that super nested arrays can achieve significantly smaller error than MRAs
in the presence of mutual coupling.

Fig. 3.3 provides some insightful qualitative statements. First, as the uniformDOF in-
creases, the corresponding RMSE decreases. The size of this virtual ULA, or equiv-
alently the uniform DOF, is 27 for MRA, 23 for the nested array, 15 for the coprime
array, and 11 for ULA. This explains why the RMSE is the least for the MRA, fol-
lowed by the nested array, coprime array and lastly the ULA.

Second, the RMSE also tends to decrease as the weight functions w(1), w(2), and
w(3) decrease. However, this qualitative argument cannot be concluded from Fig.
3.3 directly, since these examples have different uniform DOFs and weight func-
tions. For a meaningful comparison, let us look at the nested array and the super
nested array. As presented in Section 3.5, the uniform DOF of the super nested ar-
ray is identical to that of the nested array while the weight functions w(1), w(2),
and w(3) of the super nested array are smaller than those of the nested array. It
is observed from Fig. 3.7 to 3.10 that the RMSE of the super nested array are less
than those of the nested array. This phenomenon can be elaborated as follows: de-
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creasing these weights reduces the number of sensor pairs with significant mutual
coupling. Less mutual coupling implies the mutual coupling matrix C is closer to
the identity matrix, which makes the RMSE likely to decrease.

Based on these observations, the MRA seems to be the best array with minimum
mutual coupling since it owns themaximumDOF aswell as the smallestw(1),w(2),
and w(3). However, it is quite intricate to determine the MRA configuration. First,
the sensor locations of MRA can only be found using combinatorial search or table
lookup [65], [113]. This is neither scalable nor practical if our design budget is a
large number of sensors, say, 100 physical sensors. On the other hand, if our de-
sign budget is a fixed array aperture, which exists in applications such as airplane,
submarine, or mobile devices, MRA might not be optimal. For instance, provided
the available space being 11d, we cannot use the MRA in Fig. 3.3 since its total aper-
ture is 13d. If we apply MRA with 5 sensors, we obtain S = {0, 1, 4, 7, 9} but the
maximum number of distinguishable sources decreases to 9. The space is not fully
utilized.

Like MRA, nested and coprime arrays also have O(N2) uniform DOF given O(N)

sensors but they have closed-form expressions for sensor locations for anyN . Even
though their uniform DOF are less than those of MRA, they offer simple design
equations. These equations admit simple calculations and regular array geometries.
In some situations, the nested arrays can be superior to MRAs. For example, under
the constraint that the available aperture is 11d, the nested array with N1 = 3 and
N2 = 3 is an acceptable design, and it resolves 11 sources. The MRAwith 5 sensors
can only resolve 9 sources.

According to Fig. 3.3, it is tempting to conclude that nested arrays are superior to
coprime arrays but this is not always true. The estimation performance depends
heavily on the mutual coupling coefficients. If mutual coupling is negligible, the
performance is governed by the uniform DOF, implying nested arrays are supe-
rior [124], [186]. However, as mutual coupling becomes severe, the performance
of nested arrays worsens much more than that of coprime arrays, as we shall see
in Section 3.6 later. This is because nested arrays contain a dense ULA part, while
coprime arrays have only two pairs of sensors with separation one [186].

Presented with these issues, we are motivated to find a sparse array configuration
that satisfies the following three criteria:

1. The sensor locations should be describable using simple rules or closed forms as
in the case of nested and coprime arrays.
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(a)
1 3 5 7 8 10 13 15 17 20 22 33 44

N1 + 1 = 11 N1 + 1 = 11 N1 + 1 = 11 N1 + 1 = 11

N2 = 4

(b)
1 3 5 7 10 12 14 16 24 32 40 48 56

N1 + 1 = 8 N1 + 1 = 8 N1 + 1 = 8 N1 + 1 = 8 N1 + 1 = 8 N1 + 1 = 8 N1 + 1 = 8

N2 = 7

Figure 3.4: 1D representations of second-order super nested arrays with (a) N1 =
10, N2 = 4, and (b)N1 = N2 = 7. Bullets stand for physical sensors and crosses rep-
resent empty space. Both configurations consist of 14 physical sensors but (b) leads
to larger total aperture and a sparser pattern. It will be proved that the uniform
DOF of (a) and (b) are 2N2(N1 + 1)− 1, which are 87 and 111, respectively.

2. The coarray of the sparse array should have a large contiguous ULA section. In
fact we will aim for sparse arrays whose coarrays are ULAs (i.e., hole free) of
the same size as coarrays of nested arrays.

3. The weight functions w(1), w(2), and w(3) have to be small. It is preferable to
achieve w(1) ≤ wcoprime(1) = 2, so that mutual coupling can be mitigated in
the new array configuration.

3.4 Second-Order Super Nested Arrays
In this section, we develop second-order super nested arrays. For fixed number
of sensors, these have the same physical aperture and the same difference coarray
enjoyed by nested arrays (in particular there are no holes in coarray). But they have
reduced mutual coupling because of smaller values of the crucial weights w(1),
w(2), and w(3).

Nested arrays are parametrized by integersN1 andN2, which denote the number of
sensors in the dense ULA part and the sparse ULA part, respectively. To alleviate
mutual coupling, we need to remove some sensors in the first layer (dense ULA
part) and relocate them appropriately, keeping in mind the three criteria at the end
of the preceding section. Note that there are many rearrangements to nested arrays
that satisfy our design criteria. We will show that the following array geometry is
a valid solution:

Definition 3.4.1 (Second-order super nested arrays). Assume N1 and N2 are inte-
gers satisfying N1 ≥ 4 and N2 ≥ 3. Second-order super nested arrays are specified
by the integer set S(2), defined by

S(2) = X(2)
1 ∪ Y(2)

1 ∪ X(2)
2 ∪ Y(2)

2 ∪ Z(2)
1 ∪ Z(2)

2 ,
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where

X(2)
1 = {1 + 2` : 0 ≤ ` ≤ A1} ,

Y(2)
1 = {(N1 + 1)− (1 + 2`) : 0 ≤ ` ≤ B1} ,

X(2)
2 = {(N1 + 1) + (2 + 2`) : 0 ≤ ` ≤ A2} ,

Y(2)
2 = {2(N1 + 1)− (2 + 2`) : 0 ≤ ` ≤ B2} ,

Z(2)
1 = {`(N1 + 1) : 2 ≤ ` ≤ N2} ,

Z(2)
2 = {N2(N1 + 1)− 1} .

The parameters A1, B1, A2, and B2 are defined as

(A1, B1, A2, B2)=



(r, r−1, r−1, r−2), if N1 = 4r,

(r, r−1, r−1, r−1), if N1 = 4r + 1,

(r+1, r−1, r, r−2), if N1 = 4r + 2,

(r, r, r, r−1), if N1 = 4r + 3,

where r is an integer.

AMATLAB code for generating super nested arrays can be found in [90]. The func-
tion super_nested.m takes N1 and N2 as inputs and returns the set S(2). (The pa-
rameter Q should be set to 2; higher Q produces higher order super nested arrays
described in Chapter 4). In addition, interactive_interface.m offers an interac-
tive panelwhere users can design their array configurations over 2D representations
and visualize the associated weight functions easily.

Note that Definition 3.4.1 is applicable to N1 ≥ 4. In particular, if N1 = 4 or 6, then
the sets X(2)

1 , Y(2)
1 , and X(2)

2 are non-empty but the set Y(2)
2 becomes the empty set,

since the parameter B2 = −1. Otherwise, if N1 is 5, or greater than 6, the sets X(2)
1 ,

Y(2)
1 , X(2)

2 , and Y(2)
2 are non-empty.

As an example, let us consider second-order super nested arrays with various com-
binations of N1 and N2. In Fig. 3.4(a), N1 = 10 and N2 = 4 while in Fig. 3.4(b),
N1 = N2 = 7. It can be observed that there are N1 + N2 = 14 sensors in each con-
figuration. The total aperture becomes 43 and 55 in parts (a) and (b), respectively.
The difference coarray for (a) and (b) comprises consecutive integers from −43 to
43, and −55 to 55, respectively.

Next, the relationship between nested arrays and second-order super nested arrays
is elaborated in Fig. 3.5(a) and (b) forN1 = N2 = 13. These linear arrays are shown in
terms of their 2D representations, as defined in Fig. 3.1. The dashed rectanglesmark
the support of dense ULA, sparse ULA, X(2)

1 , Y(2)
1 , X(2)

2 , Y(2)
2 , Z(2)

1 , and Z(2)
2 , respec-

tively. It can be seen from Fig. 3.5(a) and (b) that second-order super nested arrays
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Dense
ULA

Sparse
ULA

(a)

X(2)
1

X(2)
2

Y(2)
1

Y(2)
2

Z(2)
1

Z(2)
2

(b)

Figure 3.5: 2D representations of (a) the parent nested array, and (b) the corre-
sponding second-order super nested array, S(2), where N1 = N2 = 13. Bullets
denote sensor locations while crosses indicate empty locations. Thin arrows illus-
trate how sensors migrate from nested arrays to second-order super nested arrays.
The dense ULA in nested arrays is split into four sets: X(2)

1 , Y(2)
1 , X(2)

2 , and Y(2)
2 in

second-order super nested arrays. The sensor located at N1 + 1, belonging to the
sparse ULA of nested arrays, is moved to location N2(N1 + 1) − 1 in second-order
super nested arrays.
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modify nested arrays in twoways. First, the sensors in the denseULApart of nested
arrays are broken into four ULA sections X(2)

1 , Y(2)
1 , X(2)

2 , and Y(2)
2 in second-order

super nested arrays. Each of them possesses inter-element spacing 2. In addition,
the sensor at locationN1 + 1 is moved toN2(N1 + 1)− 1. The weight function w(1)

for nested arrays and second-order super nested arrays are 13 and 1, respectively.
Second-order super nested arrays significantly decrease the number of sensor pairs
with separation 1. As a result, second-order super nested arrays are qualitatively
sparser than nested arrays and mutual coupling effect could alleviate.

In the following development, as a shorthand notation, the addition between a set
and a scalar is defined as

A± c = {a± c : ∀a ∈ A}.

Provided with two sets A and B, the difference set between A and B is given by

diff(A,B) = {a− b : a ∈ A, b ∈ B} .

It can be seen that diff(A,B) does not necessarily equal to diff(B,A). Next, some
simple properties of second-order super nested arrays are proved. More advanced
properties pertaining to the difference coarray will be proved in Section 3.5.

Lemma 3.4.1 (Relation to the dense ULA of the parent nested array). Let X(2)
1 , Y(2)

1 ,
X(2)

2 , and Y(2)
2 be given in Definition 3.4.1. Then

X(2)
1 ∪ Y(2)

1 ∪ (X(2)
2 − (N1 + 1)) ∪ (Y(2)

2 − (N1 + 1))

= {1, 2, . . . , N1} .

Proof. According to Definition 3.4.1, X(2)
1 collects all the odd numbers from 1 to

1 + 2A1 while X(2)
2 − (N1 + 1) includes all the even numbers ranging from 2 to

2 + 2A2. As a result, we have

X(2)
1 ∪ (X(2)

2 − (N1 + 1))

⊇ {1, 2, . . . ,min(1 + 2A1, 2 + 2A2) + 1}. (3.5)

Furthermore, it can be shown that |max(X(2)
1 )−max(X(2)

2 −(N1 +1))| = |(1+2A1)−
(2 + 2A2)| = 1. Therefore, we can replace the inclusion (⊇) in (3.5) with equality
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(=) and obtain

X(2)
1 ∪ (X(2)

2 − (N1 + 1))

= {1, 2, . . . ,min(1 + 2A1, 2 + 2A2) + 1}

=



{1, 2, . . . , 2r + 1}, if N1 = 4r,

{1, 2, . . . , 2r + 1}, if N1 = 4r + 1,

{1, 2, . . . , 2r + 3}, if N1 = 4r + 2,

{1, 2, . . . , 2r + 2}, if N1 = 4r + 3.

Similarly, Y(2)
1 and Y(2)

2 − (N1 + 1) give

Y(2)
1 ∪ (Y(2)

2 − (N1 + 1))

= {max(N1 − 2B1, N1 − 1− 2B2)− 1, . . . , N1}

=



{2r + 2, . . . , N1}, if N1 = 4r,

{2r + 2, . . . , N1}, if N1 = 4r + 1,

{2r + 4, . . . , N1}, if N1 = 4r + 2,

{2r + 3, . . . , N1}, if N1 = 4r + 3.

WhicheverN1 is, the union of these four sets covers all the integers from 1 toN1.

Lemma 3.4.2 (Total number of sensors). The number of elements in S(2) isN1 +N2.

Proof. Firstly, X(2)
1 , Y(2)

1 , X(2)
2 , Y(2)

2 , Z(2)
1 , and Z(2)

2 are disjoint, which can be easily
checked from Definition 3.4.1. Thus, the cardinality of S(2) is the same as the sum
of the cardinality of the individual set. We obtain

|S(2)| =

 2∑
q=1

|X(2)
q |+ |Y(2)

q |

+ |Z(2)
1 |+ |Z

(2)
2 |

=

 2∑
q=1

(Aq + 1)+ + (Bq + 1)+

+ (N2 − 1) + 1

= N1 +N2,

where (x)+ = max(x, 0) denotes the nonnegative part of x. Therefore, there are
N1 +N2 sensor in second-order super nested arrays.

3.5 Coarray of Second-Order Super Nested Arrays
In this section, we will show that super nested arrays are restricted arrays, that is,
the coarray does not have holes. This property enables us to apply algorithms such
as MUSIC in the coarray domain conveniently, as in the case of nested arrays and
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MRAs. We will also derive the expressions for the first few weight functions w(m)

of the super nested array.

Theorem 3.5.1. Second-order super nested arrays are restricted arrays, i.e., they
have hole-free difference coarrays.

Proof. The statement that a second-order super nested array is a restricted array, is
equivalent to the following argument: For everym ranging from−(N2(N1 +1)−1)

to N2(N1 + 1) − 1, there exists at least one pair of physical sensors with sensor
separation m. Nevertheless, we do not need to check all possible m’s according to
the following properties:

1. Ifm is in the coarray, −m also belongs to the same coarray.

2. m = 0 is included in any coarray.

Therefore, it suffices to check that for 1 ≤ m ≤ N2(N1 + 1) − 1, we can identify at
least one pair (n1, n2) ∈ (S(2))2 such that n1 − n2 = m.

Ifm = 1, the sensors on N2(N1 + 1)− 1 ∈ Z(2)
2 and N2(N1 + 1) ∈ Z(2)

1 contribute to
w(1).

When 2 ≤ m ≤ N1, we turn to evaluate the following sets:

diff({2(N1 + 1)} ,X(2)
2 ∪ Y(2)

2 )

= {N1 − 1− 2` : 0 ≤ ` ≤ A2} ∪ {2 + 2` : 0 ≤ ` ≤ B2} ,
diff({N1 + 3} ,X(2)

1 ∪ Y(2)
1 )

= {N1 + 2− 2` : 0 ≤ ` ≤ A1} ∪ {3 + 2` : 0 ≤ ` ≤ B1} .

It is clear that these sets are contained in the difference coarray since 2(N1+1) ∈ Z(2)
1

and N1 + 3 ∈ X(2)
2 . Note that the set {2 + 2` : 0 ≤ ` ≤ B2} includes all the even

numbers starting from 2 to 2 + 2B2 while {3 + 2` : 0 ≤ ` ≤ B1} collects all the odd
numbers from 3 to 3 + 2B1. This observation is summarized into

P1 = {m : 2 ≤ m ≤ min(3 + 2B1, 2 + 2B2) + 1}
⊆ {2 + 2` : 0 ≤ ` ≤ B2} ∪ {3 + 2` : 0 ≤ ` ≤ B1} ,

which indicates that the contiguous integers from 2 to min(3 + 2B1, 2 + 2B2) + 1,
denoted by P1, are contained in the coarray of second-order super nested arrays. A
similar result for {N1− 1− 2` : 0 ≤ ` ≤ A2} and {N1 + 2− 2` : 0 ≤ ` ≤ A1} is given
by the set P2:

P2 ={m : max(N1+2−2A1, N1−1−2A2)− 1 ≤ m ≤ N1}
⊆ {N1−1−2` : 0 ≤ ` ≤ A2}∪{N1+2−2` : 0 ≤ ` ≤ A1} .
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Table 3.1: Ranges of P1 and P2

N1 4r 4r + 1 4r + 2 4r + 3

3 + 2B1 2r + 1 2r + 1 2r + 1 2r + 3

2 + 2B2 2r − 2 2r 2r − 2 2r

max(P1) 2r − 1 2r + 1 2r − 1 2r + 1

N1 + 2− 2A1 2r + 2 2r + 3 2r + 2 2r + 5

N1 − 1− 2A2 2r + 1 2r + 2 2r + 1 2r + 2

min(P2) 2r + 1 2r + 2 2r + 1 2r + 4

Holes in P1 ∪ P2 2r − 2r 2r + 2, 2r + 3

It can be verified in Table 3.1 that P1 ∪ P2 contains all the differences within 2 ≤
m ≤ N1, except for N1 = 4r, 4r + 2, and 4r + 3. In the case of N1 = 4r, the coarray
index 2r can be found in the pair of sensors on 1 ∈ X(2)

1 and 1 + 2A1 ∈ X(2)
1 . When

N1 = 4r+2, the pair of sensors on (N1 +1)+2 ∈ X(2)
2 and (N1 +1)+(2+2A2) ∈ X(2)

2

leads to coarray index 2r. IfN1 = 4r+3, the differences 2r+2 and 2r+3 are exactly
N1 − 1− 2A2 and 3 + 2B1, respectively, as shown in Table 3.1. Thus, 2 ≤ m ≤ N1 is
included in the difference coarray.

For the coarray index q(N1 + 1) ≤ m ≤ (q + 1)(N1 + 1), where 1 ≤ q ≤ N2 − 2, we
consider the differences

diff({(q + 1)(N1 + 1)},X(2)
1 ∪ Y(2)

1 )

= diff({N1 + 1},X(2)
1 ∪ Y(2)

1 ) + q(N1 + 1),

diff({(q + 2)(N1 + 1)},X(2)
2 ∪ Y(2)

2 )

= diff({N1 + 1}, (X(2)
2 − (N1 + 1)) ∪ (Y(2)

2 − (N1 + 1)))

+ q(N1 + 1).

According to Lemma 3.4.1, the union of diff({N1 + 1},X(2)
1 ∪ Y(2)

1 ) and diff({N1 +

1}, (X(2)
2 − (N1 + 1)) ∪ (Y(2)

2 − (N1 + 1))) covers all the consecutive integers from 1

to N1. In other words, the coarray index q(N1 + 1) < m < (q + 1)(N1 + 1) can be
found in the difference sets among X(2)

1 , Y(2)
1 , X(2)

2 , Y(2)
2 , and Z(2)

1 . It is obvious that
the differences q(N1 + 1) are contained in the self-difference of Z(2)

1 .

The last part of the proof considers (N2 − 1)(N1 + 1) ≤ m ≤ N2(N1 + 1) − 1. In
this case, we take the following four sets: diff({N2(N1 + 1)},X(2)

1 ), diff({N2(N1 +
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Table 3.2: Ranges of X(2)
1 ∪ (X(2)

1 + 1) and Y(2)
1 ∪ (Y(2)

1 + 1)

N1 4r 4r + 1 4r + 2 4r + 3

max(X(2)
1 ∪ (X(2)

1 + 1)) = 2 + 2A1 2r + 2 2r + 2 2r + 4 2r + 2

min(Y(2)
1 ∪ (Y(2)

1 + 1)) =
(N1 + 1)− (1 + 2B1)

2r + 2 2r + 3 2r + 4 2r + 3

1)},Y(2)
1 ), and

diff({N2(N1+1)−1},X(2)
1 ) = diff({N2(N1+1)},X(2)

1 +1),

diff({N2(N1+1)−1},Y(2)
1 ) = diff({N2(N1+1)},Y(2)

1 +1).

To prove these difference sets cover (N2 − 1)(N1 + 1) ≤ m ≤ N2(N1 + 1) − 1, it
suffices to show thatX(2)

1 ∪Y
(2)
1 ∪ (X(2)

1 +1)∪ (Y(2)
1 +1) contains contiguous integers

from 1 toN1 + 1. Note that X(2)
1 ∪ (X(2)

1 + 1) is {1, . . . , 2 + 2A1} and Y(2)
1 ∪ (Y(2)

1 + 1)

is {(N1 + 1) − (1 + 2B1), . . . , N1 + 1}. Table 3.2 shows the maximum element in
X(2)

1 ∪ (X(2)
1 + 1) and the minimum element in Y(2)

1 ∪ (Y(2)
1 + 1). It is evident that

there are no holes in X(2)
1 ∪ Y(2)

1 ∪ (X(2)
1 + 1) ∪ (Y(2)

1 + 1). This completes the proof.

Corollary 3.5.1. Second-order super nested arrays have the same coarray as their
parent nested arrays.

Proof. According Definition 3.4.1, second-order super nested arrays share the same
boundary points, located at 1 and N2(N1 + 1), as their parent nested arrays. In
addition, both of them are restricted arrays (Theorem 3.5.1). Therefore, they possess
the same coarray.

Theorem 3.5.2. Let S(2) be a second-order super nested array with N1 ≥ 4, N2 ≥ 3.
Its weight function w(m) atm = 1, 2, 3 is

w(1) =

2, if N1 is even,

1, if N1 is odd,

w(2) =

N1 − 3, if N1 is even,

N1 − 1, if N1 is odd,

w(3) =


3, if N1 = 4, 6,

4, if N1 is even, N1 ≥ 8,

1, if N1 is odd.
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For comparison, the first three weight functions for nested arrays [124] and coprime
arrays [125], [186] are

Nested: w(1) = N1, w(2) = N1−1, w(3) = N1−2, (3.6)

Coprime: w(1) = w(2) = w(3) = 2, (3.7)

where N1, N2 for nested arrays andM,N for coprime arrays are sufficiently large.
As a result, w(1) and w(3) for second-order super nested arrays are notably smaller
than those for their parent nested array, and comparable to those for coprime arrays.
The proof of Theorem 3.5.2 is as follows:

Proof. First, we analyze the structure of the positive part of the difference coarray. It
is known that, if the array configuration S = A∪B, then the difference coarrayD can
be divided into self differences, like diff(A,A), diff(B,B), and cross differences, such as
diff(A,B),diff(B,A) [186]. We will use this approach to prove Theorem 3.5.2.

The self differences are discussed as follows: According to Definition 3.4.1, since
X(2)

1 , Y(2)
1 , X(2)

2 , and Y(2)
2 are ULAs with separation 2, their self differences contain

0,±2,±4,±6, and so on. We obtain

(A1)+ + (B1)+ + (A2)+ + (B2)+ (3.8)

pairs of sensors with separation 2, where (x)+ = max(x, 0) is the positive part of
a real number x. Next, it can be shown that the self differences of Z(2)

1 include
0,±(N1 +1),±2(N1 +1),±3(N1 +1), up to±(N2−2)(N1 +1). SinceN1 ≥ 4, the self
differences of Z(2)

1 do not contain 1, 2, and 3. The self difference of Z(2)
2 is exactly

zero because there is only one element in Z(2)
2 .

For the cross differences, it suffices to consider the sets of interest: diff(Y(2)
1 ,X(2)

1 ),
diff(X(2)

2 ,Y(2)
1 ), diff(Y(2)

2 ,X(2)
2 ), diff({2(N1 + 1)},Y(2)

2 ), and diff({N2(N1 + 1)},Z(2)
2 ),

since the remaining choices of cross differences, like diff(X(2)
2 ,X(2)

1 ), diff(Z(2)
1 ,X(2)

1 ),
and so on, do not include 1, 2, and 3. Evaluating the minimum elements of the sets
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of interest leads to

min diff(Y(2)
1 ,X(2)

1 ) = (N1 + 1)− (1 + 2B1)− (1 + 2A1)

=



4r − 1− 2(r − 1 + r), if N1 = 4r,

4r + 1− 1− 2(r − 1 + r), if N1 = 4r + 1,

4r + 2− 1− 2(r − 1 + r + 1), if N1 = 4r + 2,

4r + 3− 1− 2(r + r), if N1 = 4r + 3.

=

1, if N1 is even,

2, if N1 is odd,
(3.9)

min diff(X(2)
2 ,Y(2)

1 ) = (N1 + 3)− (N1) = 3, (3.10)

min diff(Y(2)
2 ,X(2)

2 )

= (2(N1 + 1)− (2 + 2B2))− ((N1 + 1) + (2 + 2A2))

=

3, if N1 is even,

2, if N1 is odd,
(3.11)

min diff({2(N1 + 1)},Y(2)
2 )

= 2(N1 + 1)− (2(N1 + 1)− 2) = 2, (3.12)

diff({N2(N1 + 1)},Z(2)
2 ) = 1. (3.13)

Furthermore, since the sets X(2)
1 , Y(2)

1 , X(2)
2 , and Y(2)

2 are ULAs with sensor sepa-
ration 2, their cross differences are also ULAs with separation 2. Applying this
property to (3.9) gives

The second smallest element of diff(Y(2)
1 ,X(2)

1 ), if exists,

=

3, if N1 is even,

4, if N1 is odd.
(3.14)

Now it is clear to determine the weight functions w(m) for m = 1, 2, 3, based on
(3.8) to (3.14). For m = 1, the sensor pairs of separation 1 only occur at (3.9) and
(3.13), while (3.8), (3.10), (3.11), (3.12), and (3.14) do not contribute to w(1). This
argument proves the w(1) part. When m = 2, the associated sensor pairs can be
found in (3.8), (3.9), (3.11), and (3.12). Therefore, w(2) can be expressed as

w(2) =

1 +
∑2

q=1 (Aq)+ + (Bq)+ if N1 is even,

3 +
∑2

q=1 (Aq)+ + (Bq)+ if N1 is odd.

=

N1 − 3, if N1 is even,

N1 − 1, if N1 is odd.
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If m = 3, we first consider the case when N1 is even. When N1 = 4, we obtain the
following sets

X(2)
1 = {1, 3} , Y(2)

1 = {4} , X(2)
2 = {7} , Y(2)

2 = ∅,

where∅denotes the empty set. Besides, theminimumelement inZ(2)
1 is 2(N1+1) =

10. Counting these differences directly gives w(3) = 3. When N1 = 6, these sets
become

X(2)
1 = {1, 3, 5} , Y(2)

1 = {6} , X(2)
2 = {9, 11} , Y(2)

2 = ∅,

and 2(N1 + 1) = 14 so w(3) = 3.

If N1 ≥ 8 and N1 is an even number, then X(2)
1 has at least three elements, Y(2)

1 has
at least two elements, and Y(2)

2 is non-empty. In this case, the sensor pairs with
separation 3 can be found in (3.10) and (3.11). Furthermore, the sensor pairs with
separation 3 in (3.14) are

Pair #1 : ((N1 + 1)− (1 + 2B1))− (1 + 2(A1 − 1)) = 3,

Pair #2 : ((N1 + 1)− (1 + 2(B1 − 1)))− (1 + 2A1) = 3.

Therefore w(3) = 4 if N1 ≥ 8 and N1 is even.

When N1 is odd, the only sensor pair leading to w(3) is shown in (3.10), which
completes the proof.

Summarizing this section, super nested arrays are generalizations of nested arrays.
First of all, there is a simple closed-form expression for sensor locations, as in the
case of nested and coprime arrays (and unlike MRAs). Second, for a fixed number
of sensors, the physical aperture and the difference coarray are exactly identical to
those of nested arrays, so that the DOF for DOA estimation remains unchanged.
In particular, there are no holes in the coarray unlike coprime arrays. Finally, as
in coprime arrays, the mutual coupling effects are much less severe than in nested
arrays, because the sensors in the denseULApart of the nested array have nowbeen
redistributed. In short, the super nested array combines the best features of nested
and coprime arrays.

3.6 Numerical Examples
In this section, we select six array configurations: ULA, MRA, nested arrays, co-
prime arrays, second-order super nested arrays, as well as third-order super nested
arrays1, and then compare their performance in the presence of mutual coupling.

1 Higher order super nested arrays will be introduced in Chapter 4, and have even better perfor-
mance. Here we include an example just for completeness of comparison.
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Figure 3.6: Comparison among ULA, nested array, coprime array, second-order
super nested array, and third-order super nested array in the presence of mutual
coupling. The coupling leakage L is defined as ‖C− diag(C)‖F / ‖C‖F , where
[diag(C)]i,j = [C]i,j δi,j .
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The number of sensors is fixed to be 14. The sensor locations for MRA are given by
[65]2

SMRA = {0, 1, 6, 14, 22, 30, 38, 46, 54, 56, 58, 61, 63, 65}.

For nested arrays and super nested arrays, we setN1 = N2 = 7. For coprime arrays,
we choose M = 4 and N = 7. The sensor locations are given by (2.7), (2.8) and
Definition 3.4.1 so that there are N1 + N2 = 14 sensors for nested arrays as well
as super nested arrays and N + 2M − 1 = 14 sensors for coprime arrays. If the
central ULA part of the difference coarray of an array has 2P + 1 elements, i.e., the
uniform DOF is 2P + 1, then P sources can be identified using the coarray MUSIC
(SS-MUSIC) algorithm [124], [125]. In our case the nested and super nested arrays
have a ULA for the coarray and the coprime array has a central ULA part and then
some holes. It is readily verified that the number of identifiable sources in each case
is as follows:

ULA: 13 sources. (3.15)

MRA: 65 sources. (3.16)

Coprime array: MN +M − 1 = 31 sources. (3.17)

(Super) Nested array: N2(N1 + 1)− 1 = 55 sources. (3.18)

It is well-known that the array aperture affects the estimation performance [30],
[166], [184]. Larger array aperture tends to have finer spatial resolution and smaller
estimation error. However, it suffices to consider the uniform DOF rather than the
array aperture, since the uniformDOF is approximately twice the array aperture for
restricted arrays. For instance, consider a physical array whose sensors are located
at 0, 1, 4, 6, in units of λ/2. Then, the array aperture is 6 and the difference coarray
D = {−6, . . . , 6}. The uniform DOF is 13 = 2× 6 + 1, which is about twice the array
aperture 6. Therefore, in what follows, we focus on the uniform DOF, rather than
the array aperture, to explain the overall estimation performance.

Weight Functions and Mutual Coupling Matrices
The first example compares weight functions and the associated mutual coupling
matrix (3.3). We choose c1 = 0.3 exp (π/3) and B = 100. The remaining coupling
coefficients are given by c` = c1 exp (−(`− 1)π/8) /` for 2 ≤ ` ≤ B. The first row of
Fig. 3.6 shows the weight functions w(m). In nested arrays, the associated weight
function possesses a triangular region in the center, due to the dense ULA part.
This triangular region breaks into smaller ones in the second-order super nested

2 Strictly speaking, this array only gets close to the minimum redundancy (or equivalently maxi-
mum uniform DOF), rather than achieving the optimal one. However, it is still called MRA in [65].
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array (w(1) = 1, w(2) = 6, w(3) = 1, as in Theorem 3.5.2) and the third-order super
nested array (w(1) = 1, w(2) = 3, w(3) = 2). Coprime arrays exhibit smaller weight
functions (w(1) = w(2) = w(3) = 2, as in (3.7)) than those of nested arrays (w(1) =

7, w(2) = 6, w(3) = 5, as in (3.6)).

The quantity |[C]i,j |2, where C is the mutual coupling matrix, is shown in log-scale
on the second row of Fig. 3.6. The darker region indicates less energy in the cor-
responding entry. It can be seen that all these C matrices are nearly-diagonal. In
particular, C is a symmetric Toeplitz matrix for ULA. Note that if C is a diagonal
matrix, sensor responses do not interfere with each other so it is free from mu-
tual coupling. Hence, the energy of the off-diagonal components characterizes the
amount of mutual coupling. We define the coupling leakage L as

L =
‖C− diag(C)‖F

‖C‖F
,

where [diag(C)]i,j = [C]i,j δi,j and ‖·‖F denotes the Frobenius norm of a matrix.
It is clear that 0 ≤ L ≤ 1. Conceptually speaking, the smaller L is, the less the
mutual coupling is. According to the third row of Fig. 3.6, the ULA suffers from the
most severe mutual coupling effect. The third-order super nested array possesses
the least L, suggesting it might have the least mutual coupling effect. In addition,
high-order super nested arrays reduce the mutual coupling effect of their parent
nested arrays, which can be inferred from the coupling leakage L among the nested
array, the second-order super nested array, and the third-order one.

MUSIC Spectra in the Presence of Mutual Coupling
The second part of the simulation investigates the associated MUSIC spectra under
various array configurations. The number of snapshots is 500while the SNR is 0 dB.
The measurement vector xS is contaminated by the mutual coupling matrix C and
theMUSIC spectrumP

(
θ̄
)
is evaluated directly fromxS without using any decoupling

algorithms. Note that these results can be further improved by a variety of decou-
pling algorithms [20], [49], [83], [151], [173]. Our setting provides a baseline per-
formance for different arrays. We will show that, even without decoupling, super
nested arrays are still able to perform DOA estimation within reasonable amount
of error.

Fig. 3.7 shows the MUSIC spectra when D = 10 sources are located at θ̄i = −0.1 +

0.2(i− 1)/9 for i = 1, 2, . . . , 10, as indicated by the ticks and the vertical lines. This
example examines the performance when the number of sources (D = 10) is less
than the number of sensors 14. It is deduced from Fig. 3.7 that the ULA and the
coprime array have false peaks, the nested array displays 11 peaks, while the MRA
and the super nested arrays can resolve 10 true peaks. In terms of the estimation
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(a) ULA,
D = 10, E = 0.17445.
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(b) MRA,
D = 10, E = 0.00060242.
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(c) Nested array,
D = 10, E = 0.01216.
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(d) Coprime array,
D = 10, E = 0.12509.
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(e) Second-order super nested,
D = 10, E = 0.00042112.
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(f) Third-order super nested,
D = 10, E = 0.00023647.

Figure 3.7: The MUSIC spectra P (θ̄) for ULA, MRA, nested arrays, coprime arrays,
second-order super nested arrays, and third-order super nested arrayswhenD = 10
sources are located at θ̄i = −0.1 + 0.2(i − 1)/9, i = 1, 2, . . . , 10, as depicted by
ticks and vertical lines. The SNR is 0 dB while the number of snapshots is K =
500. Note that the number of sources 10 is less than the number of sensors 14. The
mutual coupling is based on (3.3) with c1 = 0.3 exp (π/3), B = 100, and c` =
c1 exp (−(`− 1)π/8) /` for 2 ≤ ` ≤ B.
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(a) MRA,
D = 20, E = 0.00070437.
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D = 20, E = 0.015037.
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(c) Coprime array,
D = 20, E = 0.12749.
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(d) Second-order super nested,
D = 20, E = 0.00082022.
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(e) Third-order super nested,
D = 20, E = 0.00071101.

Figure 3.8: The MUSIC spectra P (θ̄) for MRA, nested arrays, coprime arrays,
second-order super nested arrays, and third-order super nested arrayswhenD = 20
sources are located at θ̄i = −0.2 + 0.4(i − 1)/19, i = 1, 2, . . . , 20, as depicted
by ticks and vertical lines. The SNR is 0 dB while the number of snapshots is
K = 500. Note that the number of sources 20 is greater than the number of sensors
14. The mutual coupling is based on (3.3) with c1 = 0.3 exp (π/3), B = 100, and
c` = c1 exp (−(`− 1)π/8) /` for 2 ≤ ` ≤ B.
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error E defined in (3.4), the best performance is exhibited by the third-order super
nested array (E = 0.00023647), followed by the second-order super nested array
(E = 0.00042112), then the MRA (E = 0.00060242), then the nested array (E =

0.01216), then the coprime array (E = 0.12509), and finally the ULA (E = 0.17445).
It is noteworthy that the estimation error for the second-order super nested array
is approximately 70% of that for the MRA, 3.5% of that for the nested array, and
0.3% of that for the coprime array. On the other hand, the RMSE for the third-order
super nested array is roughly 40% of that for theMRA, only 2% of that for the nested
array, and only 0.2% of that for the coprime array. To evaluate the RMSE, we use
the root MUSIC algorithm [188] on the noise subspace to estimate DOAs. In the
root MUSIC algorithm, suppose the roots on or inside the unit circle are denoted
by r1, r2, . . . , rD, rD+1, . . . , rP such that 1 ≥ |r1| ≥ |r2| ≥ · · · ≥ |rD| ≥ |rD+1| ≥
· · · ≥ |rP |. These DOAs are obtained from the phases of r1, r2, . . . , rD, which lead
to D DOAs.

Fig. 3.8 lists another experiment withD = 20 sources, whereD exceeds the number
of sensors 14. These sources are located at θ̄i = −0.2 + 0.4(i − 1)/19, where i =

1, 2, . . . , 20. The ULA fails to distinguish 20 sources due to (3.15). TheMRA and the
super nested arrays are capable of distinguishing 20 sources while the nested array
(21 peaks) and the coprime array (with false peaks) are not. Among those resolving
true DOAs, the best performance is exhibited by MRA (E = 0.00070437), followed
by the third-order super nested array (E = 0.00071101), and then the second-order
super nested array (E = 0.00082022).

The reason why the ranking is different for large D is this: when D is small, the
performance depends mostly on the mutual coupling, so the super nested arrays
perform better thanMRA. But asD gradually increases and gets closer to the upper
limit of super nested arrays (55, as in (3.18)), which is smaller than the upper limit
for MRA (65, as in (3.16)), this degrades the performance of super nested arrays
before it begins to affect MRA.

Fig. 3.9 plots the MUSIC spectra for D = 20 equal-power, uncorrelated sources.
These sources are more widely separated, compared to those in Fig. 3.8. The true
normalized DOAs are θ̄i = −0.4 + 0.8(i − 1)/19, i = 1, 2, . . . , 20. Hence, based on
Section 3.3, themutual coupling (or the weight functions) becomesmore significant
than the uniform DOF (or the spatial resolution). The least RMSE is now enjoyed
by the third-order super nested array (E = 0.00073657), followed by the second-
order super nested array (E = 0.0011955), then the MRA (E = 0.0012123), then
the coprime array (E = 0.027151), and finally the nested array (E = 0.04245). It
can be observed that the coprime array, in this example, is more satisfactory than
the nested array. There is only one spurious peak in the coprime array, as in Fig.
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(a) MRA,
D = 20, E = 0.0012123.

-0.5 -0.4 0.4 0.5
10−4

10−3

10−2

10−1

100

Normalized DOA θ̄

(b) Nested array,
D = 20, E = 0.04245.
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(c) Coprime array,
D = 20, E = 0.027151.
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(d) Second-order super nested,
D = 20, E = 0.0011955.
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(e) Third-order super nested,
D = 20, E = 0.00073657.

Figure 3.9: The MUSIC spectra P (θ̄) for MRA, nested arrays, coprime arrays,
second-order super nested arrays, and third-order super nested arrayswhenD = 20
sources are located at θ̄i = −0.4 + 0.8(i− 1)/19, i = 1, 2, . . . , 20, as depicted by ticks
and vertical lines. The SNR is 0 dB while the number of snapshots is K = 500.
The mutual coupling is based on (3.3) with c1 = 0.3 exp (π/3), B = 100, and
c` = c1 exp (−(`− 1)π/8) /` for 2 ≤ ` ≤ B.
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3.9(c), while many spurious peaks and missing targets exist in the nested array, as
shown in Fig. 3.9(b). It is because the coprime array has reduced mutual coupling
(w(1) = w(2) = w(3) = 2, as in (3.7)), in comparison of the nested array (w(1) =

7, w(2) = 6, w(3) = 5, as in (3.6)), even though the uniform DOF of the coprime
array is smaller than that of the nested array.

Fig. 3.10 considers the MUSIC spectra under the linear dipole model for mutual
coupling, (3.2), which is more practical than (3.3). For the mutual coupling model
(3.2), the parameters ZA and ZL are 50 ohms while the dipole length l = λ/2. The
source locations are identical to those in Fig. 3.9. In this scenario, the best estimation
performance is exhibited by the third-order super nested array (E = 0.00083662),
followed by the MRA (E = 0.00091204), then the second-order super nested array
(E = 0.0010173), then the coprime array (E = 0.0014204), and finally the nested
array (E = 0.0017399). It can be observed that all these sparse arrays are capable of
identifying 20 sources. This phenomenon is due to the following: First, the sources
are widely separated and D = 20 is less than the maximum number of identifiable
sources, as shown in (3.16) to (3.18). Second, the estimation peroformance depends
on the mutual coupling model and the choice of parameters. In this specific exam-
ple, the mutual coupling effect in Fig. 3.10 is less severe than that in Fig. 3.9 so that
all these sparse arrays are able to resolve the sources correctly.

3.7 Concluding Remarks
In this chapter, we introduced super nested arrays. These share many of the good
properties of nested arrays but at the same time, have reduced mutual coupling
effects. For a fixed number of sensors, the super nested array has the same aper-
ture and the same coarray as the parent nested array. Therefore, the DOF for DOA
estimation is unchanged, while at the same time the effects of mutual coupling are
reduced. One future direction for further improvementwould be to use these arrays
in conjunction with techniques which decouple or compensate the effect of mutual
coupling such as the ones in [20], [38], [49], [83], [129], [151], [172], [173], [199].

Notice from Theorem 3.5.2 that, while the weights w(1) and w(3) are significantly
smaller than that of the parent nested array, the weight w(2) is only slightly im-
proved. How can we modify the array configuration further so that w(2) is also
decreased significantly without noticeably penalizing w(1) and w(2)? The answer
lies in theQth-order super nested array which is introduced and studied in consid-
erable detail in Chapter 4.
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(a) MRA,
D = 20, E = 0.00091204.
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(b) Nested array,
D = 20, E = 0.0017399.
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(c) Coprime array,
D = 20, E = 0.0014204.
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(d) Second-order super nested,
D = 20, E = 0.0010173.
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(e) Third-order super nested,
D = 20, E = 0.00083662.

Figure 3.10: Based on the practicalmutual couplingmodel (3.2), theMUSIC spectra
P (θ̄) are listed for MRA, nested arrays, coprime arrays, second-order super nested
arrays, and third-order super nested arrays, where D = 20 sources are located at
θ̄i = −0.4 + 0.8(i − 1)/19, i = 1, 2, . . . , 20. The SNR is 0 dB while the number of
snapshots is K = 500. The parameters in (3.2) are given by ZA = ZL = 50 ohms
and l = λ/2.
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C h a p t e r 4

HIGH ORDER SUPER NESTED ARRAYS

4.1 Introduction
In Chapter 3, a sparse array configuration called the (second-order) super nested ar-
raywas introduced, which hasmany of the advantages of these sparse arrays, while
removing some of the disadvantages. Namely, the sensor locations are well-defined
and readily computed for any N (unlike MRAs), and the difference coarray is ex-
actly that of a nested array, and therefore hole-free. At the same time, the mutual
coupling is reduced compared to nested arrays. Super nested arrays were designed
by rearranging the dense ULA part of a nested array in such a way that the coarray
remains unchanged, but mutual coupling is reduced by reducing the number of el-
ements with small inter-element spacings. Quantitatively, this is described in terms
of the weight function w(m), which is equal to the number of sensor pairs whose
inter-element spacing ismλ/2. It was shown in Chapter 3 that the first three weight
functions of second-order super nested arrays are

w(1) =

2, if N1 is even,

1, if N1 is odd,
(4.1)

w(2) =

N1 − 3, if N1 is even,

N1 − 1, if N1 is odd,
(4.2)

w(3) =


3, if N1 = 4, 6,

4, if N1 is even, N1 ≥ 8,

1, if N1 is odd.

(4.3)

Contrast this with the nested array which hasw(1) = N1, w(2) = N1−1 andw(3) =

N1−2. Whilew(1) andw(3) are significantly better in (4.1) and (4.3), there is plenty
of room for improving w(2), and possibly w(m),m > 3.

In this chapter, a generalization of super nested arrays is introduced and called the
Qth-order super nested array. It has all the good properties of the second-order super
nested array with the additional advantage that mutual coupling effects are further
reduced for Q > 2. For a given number of physical array elements N , Qth-order
super nested arrays have the following properties: (a) the sensor locations can be
defined using a simple algorithm, (b) the physical array has the same aperture as the
nested array, (c) the difference coarray is exactly identical to that of the nested array
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(hence hole free), and (d) theweight functions are further improved, compared even
to second-order super nested arrays.

Like the parent nested array, the physical sensor locations ofQth-order super nested
arrays are related to two integersN1 andN2, as in Fig. 2.2(c). The detailed descrip-
tion of Qth-order super nested arrays depends on whether N1 is even or odd. For
odd N1, there is a simple closed-form expression for the sensor locations, but for
evenN1, the locations have to be defined recursively as we shall elaborate. A MAT-
LAB code to find the sensor locations of Qth-order super nested arrays is given in
[90]. The proof that Qth-order super nested arrays have a coarray identical to the
parent nested array is rather involved, and one of the main goals of this chapter is
to establish this very important result for both N1 odd and N1 even. We also an-
alyze the weight functions w(m) in great depth (again, quite involved in its detail
because of the intricate definition of the array geometry). The good news is that it
is possible to improve the crucial weights w(1), w(2), and w(3), compared to nested
arrays (see Theorem 4.3.2 and Theorem 4.4.2). In particular, w(2) is only about half
that of second-order super nested arrays.

Chapter Outline
Section 4.2 introduces Qth-order super nested arrays in terms of the parent nested
array. The construction is based on some recursive rules to rearrange the sensors
of nested arrays through successive systematic stages. In Section 4.3, we formally
define Qth-order super nested arrays for odd N1. Many properties of these arrays
are given, the highlights being (a) the result that the difference coarray is identi-
cal to that of the parent nested array (Theorem 4.3.1 and Corollary 4.3.1), and (b)
that the weight functions (hence mutual coupling effects) are significantly reduced
(Theorem 4.3.2). Since the details are considerably different for evenN1, Section 4.4
is dedicated to a presentation of this case. Detailed proofs of some of the claims of
Section 4.3 and 4.4 are relegated to Section 4.5 and 4.6, for ease of flow. Section 4.7
presents simulation results and detailed comparison of performances, demonstrat-
ing clearly that Qth-order super nested arrays with Q > 2 outperform other arrays
in the presence of mutual coupling.

4.2 General Guidelines for the Construction of Super Nested Arrays
Fig. 4.1 summarizes the hierarchy among nested arrays, as in (2.7), second-order
super nested arrays as in Definition 3.4.1, andQth-order super nested arrays. It has
been mentioned in Chapter 3 that the sets X(2)

1 , Y(2)
1 , X(2)

2 , and Y(2)
2 are obtained by

rearranging the dense ULA part of parent nested arrays, as in Lemma 3.4.1. The
sparse ULA part of parent nested arrays is reorganized into Z(2)

1 and Z(2)
2 of second-

order super nested arrays.
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Figure 4.1: Hierarchy of nested arrays, second-order super nested arrays S(2), and
Qth-order super nested arrays S(Q). Arrows indicate the origin of the given sets.
For instance, X(4)

2 originates from X(3)
2 while Y(3)

3 is split into Y(4)
3 and Y(4)

4 . It can
be observed that the sets X(Q)

q and Y(Q)
q result from the dense ULA part of nested

arrays. The sparse ULA portion of nested arrays is rearranged into the sets Z(Q)
1 and

Z(Q)
2 .

(a)

N1 + 1 = 14 N1 + 1 = 14 N1 + 1 = 14 N1 + 1 = 14 N1 + 1 = 14 N1 + 1 = 14

N2 = 6

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 84
(b)

N1 + 1 = 14 N1 + 1 = 14 N1 + 1 = 14 N1 + 1 = 14 N1 + 1 = 14 N1 + 1 = 14

N2 = 6

Figure 4.2: 1D representations of (a) second-order super nested arrays, S(2), and
(b) third-order super nested arrays, S(3), whereN1 = 13 andN2 = 6. Bullets denote
sensor locations while crosses indicate empty locations.
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The formal definition ofQth-order nested arrayswill be given in the next section. To
develop some feeling for it, first consider Q = 3. Third-order super nested arrays,
as specified by the integer set S(3), consist of eight sets as follows: X(3)

1 , Y(3)
1 , X(3)

2 ,
Y(3)

2 ,X(3)
3 ,Y(3)

3 , Z(3)
1 , and Z(3)

2 , which can be recursively generated from the setsX(2)
1 ,

Y(2)
1 , X(2)

2 , Y(2)
2 , Z(2)

1 , Z(2)
2 in second-order super nested arrays. For instance, X(3)

1 is
identical to X(2)

1 . X(2)
2 is split into two sets X(3)

2 and X(3)
3 . The same connections also

apply to Y(2)
1 , Y(2)

2 , Y(3)
1 , Y(3)

2 , and Y(3)
3 . Finally, the elements in Z(2)

1 and Z(2)
2 are

rearranged into Z(3)
1 and Z(3)

2 . Hence, it can be interpreted that the sets X(3)
q and

Y(3)
q for q = 1, 2, 3 originate from the dense ULA of parent nested arrays while Z(3)

1

and Z(3)
2 emanate from the sparse ULA of parent nested arrays.

Fourth-order super nested arrays (or super nested arrays with Q = 4) generalize
third-order super nested arrays further. It can be deduced from Fig. 4.1 that X(3)

3

and Y(3)
3 are divided into X(4)

3 , X(4)
4 and Y(4)

3 , Y(4)
4 , respectively. Similarly, Z(3)

1 and
Z(3)

2 are rearranged into Z(4)
1 and Z(4)

2 . The remaining sets of fourth-order super
nested arrays are the same as their correspondences in third-order super nested
arrays. To be more specific, the defining rules to go from (Q − 1)th-order super
nested arrays to Qth-order super nested arrays are

Rule 1: X(Q)
q and Y(Q)

q replicate X(Q−1)
q and Y(Q−1)

q , respectively, for 1 ≤ q ≤ Q− 2.
That is, we simply copy these portions from the (Q − 1)th-order super
nested array to the Qth-order super nested array.

Rule 2: X(Q−1)
Q−1 and Y(Q−1)

Q−1 are split into X(Q)
Q−1, X

(Q)
Q and Y(Q)

Q−1, Y
(Q)
Q , respectively,

according to rules to be specified in Sections 4.3 and 4.4.

Rule 3: Z(Q−1)
1 and Z(Q−1)

2 are reorganized into Z(Q)
1 and Z(Q)

2 , using appropriate
rules.

Next, we give a concrete example of how Qth-order super nested arrays are ob-
tained from (Q−1)th-order super nested arrays. Figs. 4.2 and 4.3 depict the 1D/2D
representations of the second-order super nested array (in parts (a)) and the third-
order one (in parts (b)), respectively, where the details of 2D representations can be
found in Fig. 3.1. In this example, it is obvious that X(2)

1 = X(3)
1 and Y(2)

1 = Y(3)
1 ,

which satisfy Rule 1. To explain Rule 2, we consider the following sets in Fig. 4.3:

X(2)
2 = {16, 18, 20}, X(3)

2 = {16, 20}, X(3)
3 = {32}. (4.4)

The middle element of X(2)
2 , which is the element 18 in this case, is selected and

relocated to the third layer of 2D representations. It becomes the element 32 inX(3)
3 .

The remaining elements in X(2)
2 , which correspond to sensor locations 16 and 20,
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Figure 4.3: 2D representations of (a) second-order super nested arrays, S(2), and
(b) third-order super nested arrays, S(3), where N1 = 13 and N2 = 6. Bullets de-
note sensor locations while crosses indicate empty locations. The dashed rectangles
mark the sets X(Q)

q , Y(Q)
q , Z(Q)

1 , and Z(Q)
2 for 1 ≤ q ≤ Q. Thin arrows illustrate how

sensors migrate from S(Q−1) to S(Q).

constitute X(3)
2 . Finally, Rule 3 can also be clarified using Fig. 4.3. In the second-

order super nested array, we consider the sensor located at 2(N1 + 1) = 28, which
is the leftmost element of Z(2)

1 . However, this sensor is removed from S(2) and in-
serted to S(3) at location 67, as indicated by a thin arrow in Fig. 4.3(b). This new
sensor location is included in Z(3)

2 = {67, 83}, which explains Rule 3. Furthermore,
after all these operations, the first layer in 2D representations does not changewhile
only some elements (18, 24, and 28 in Fig. 4.3) in the second layer are rearranged to
somewhere else.

Summarizing, Qth-order super nested arrays can be recursively generated from
(Q− 1)th-order super nested arrays, as elaborated in Fig. 4.1. In the following two
sections, based on the parameterN1, wewill give formal definitions for super nested
arrays, which are consistent with Rule 1, 2, and 3. These definitions also enable us
to determine the sensor locations explicitly.

4.3 Qth-Order Super Nested Arrays, N1 is Odd
Here is the formal definition ofQth-order super nested arrays ifN1 is an odd num-
ber:
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Definition 4.3.1 (Qth-order super nested arrays,N1 is odd). LetN1 be an odd num-
ber, N2 ≥ 2Q − 1, and Q ≥ 1. Qth-order super nested arrays are characterized by
the integer set S(Q), defined by

S(Q) =

 Q⋃
q=1

X(Q)
q ∪ Y(Q)

q

 ∪ Z(Q)
1 ∪ Z(Q)

2 .

For a positive integer q satisfying 1 ≤ q ≤ Q, X(Q)
q and Y(Q)

q are defined as

X(Q)
q =

{
(q − 1)(N1 + 1) + 2q−1 + d(Q)

q ` : 0 ≤ ` ≤ L(Q)
q

}
,

Y(Q)
q =

{
q(N1 + 1)− 2q−1 − d(Q)

q ` : 0 ≤ ` ≤ L(Q)
q

}
,

d(Q)
q =

2q, if q = 1, 2, . . . , Q− 1,

2Q−1, if q = Q,

L(Q)
q =


⌊

1
2

(
N1+1

2q − 1
)⌋
, if q = 1, 2, . . . , Q− 1,⌊

N1+1
2Q
− 1
⌋
, if q = Q,

where b·c is the floor function. Z(Q)
1 and Z(Q)

2 are given by

Z(Q)
1 = {`(N1 + 1) : Q ≤ ` ≤ N2} ,

Z(Q)
2 = {(N2 + 1− q)(N1 + 1)− 2q + 1 : 1 ≤ q ≤ Q− 1} .

For convenience of the reader, here is a MATLAB code for Qth-order super nested
arrays [90]. In particular, super_nested.m returns the set S(Q) given the array pa-
rameters N1, N2, and Q.

If Q = 1, the corresponding array configuration degenerates to nested arrays with
parameter N1 and N2. Putting Q = 2 in Definition 4.3.1 gives us Definition 3.4.11.
For any pair of N1, N2, and Q satisfying the assumption of Definition 4.3.1, super
nested arrays can be characterized in a closed-form and scalable fashion.

It can be inferred from Definition 4.3.1 that the inter-element spacing of X(Q)
q , Y(Q)

q ,
and Z(Q)

1 are d(Q)
q , d(Q)

q ,N1 +1, respectively. For instance, in Fig. 4.3(b), it can be seen
that X(3)

1 and Y(3)
1 are ULA with sensor separation 2. The sensor separation for X(3)

2

and Y(3)
2 is d(3)

2 = 4. Z(3)
1 is a ULA of sensor separation N1 + 1 = 14. This property

is very similar to second-order super nested arrays. Notice from Fig. 4.3(a) that S(2)

consists of a set of ULAs X(2)
1 , X(2)

2 , Y(2)
1 , and Y(2)

2 , each with sensor separation 2,
another ULA Z(2)

1 with sensor separation N1 + 1 = 14, and finally a singleton Z(2)
2 .

1 Here X(2)
q and Y(2)

q for q = 1, 2, could be slightly different across Definitions 3.4.1 and 4.3.1. In
Definition 3.4.1, these sets are disjoint while in Definition 4.3.1, they might not be disjoint. Even so,
both definitions lead to the same S(2) but the latter one possesses the symmetric property: |X(Q)

q | =

|Y(Q)
q |, which will be more useful in the following development.
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Now we show that if an array is constructed according to Definition 4.3.1, then it
satisfies Rule 1, 2, and 3 in Section 4.2. This statement is obviously true for Rule 1.
For Rule 2 and 3, the details can be clarified by the following two lemmas:

Lemma 4.3.1. LetN1 be an odd number and S(Q) be a super nested array with order
Q, as defined in Definition 4.3.1. Then X(Q)

Q−1 is composed of even terms (related to
even `) of X(Q−1)

Q−1 and X(Q)
Q − (N1 + 1) consists of odd terms (related to odd `) of

X(Q−1)
Q−1 . These properties also hold true for Y(Q−1)

Q−1 , Y(Q)
Q−1, and Y(Q)

Q .

Proof. According to Definition 4.3.1, any element in X(Q−1)
Q−1 can be written as (Q −

2)(N1 + 1) + 2Q−2 + 2Q−2` where 0 ≤ ` ≤ L
(Q−1)
Q−1 . If ` = 2k is an even number, we

obtain

(Q− 2)(N1 + 1) + 2Q−2 + 2Q−1k

= (Q− 2)(N1 + 1) + 2Q−2 + d
(Q)
Q−1k,

where 0 ≤ k ≤ 1
2L

(Q−1)
Q−1 . Since k is an integer and bxc ≤ 1

2 b2xc < bxc + 1, 0 ≤ k ≤
1
2L

(Q−1)
Q−1 is equivalent to 0 ≤ k ≤ L

(Q)
Q−1. That is, even terms of X(Q−1)

Q−1 are exactly
X(Q)
Q−1.

If ` = 2k + 1 is an odd number, the elements are

(Q− 2)(N1 + 1) + 2Q−2 + 2Q−2(2k + 1)

=
[
(Q− 1)(N1 + 1) + 2Q−1 + d

(Q)
Q k

]
− (N1 + 1),

where k is a nonnegative integer with 0 ≤ 2k + 1 ≤ L
(Q−1)
Q−1 . The range of k can be

rearranged to be 0 ≤ k ≤ L
(Q)
Q because bxc ≤ 1

2 b2xc < bxc + 1. It can be deduced
that odd terms in X(Q−1)

Q−1 are exactly X(Q)
Q − (N1 + 1). The proof for Y(Q−1)

Q−1 , Y(Q)
Q−1,

and Y(Q)
Q is similar.

Lemma 4.3.2. LetN1 be an odd number. Assume that Z(Q)
1 and Z(Q)

2 satisfy Defini-
tion 4.3.1. Then

Z(Q)
1 = Z(Q−1)

1 \{(Q−1)(N1+1)},
Z(Q)

2 = Z(Q−1)
2 ∪ {(N2+1−(Q−1))(N1+1)−2Q−1+1},

where A\B denotes the relative complement of B in A.

Proof. This proof follows from Definition 4.3.1 directly.

We now prove that the X(Q)
q and the Y(Q)

q parts of the super nested array, reduced
modulo N1 + 1 are exactly equal to the dense part of the parent nested array:
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Lemma 4.3.3 (Relation to dense ULA of nested array). Let X(Q)
q and Y(Q)

q for q =

1, 2, . . . , Q be defined inDefinition 4.3.1. Define the setsA(Q)
q = X(Q)

q −(q−1)(N1+1)

and B(Q)
q = Y(Q)

q − (q − 1)(N1 + 1). Then
Q⋃
q=1

A(Q)
q ∪ B(Q)

q = {1, 2, . . . , N1} .

Proof. This lemma is proved using induction on Q since when Q = 2, Lemma 3.4.1
holds true. Assuming Lemma 4.3.3 holds for Q− 1, the case of Q becomes

Q⋃
q=1

A(Q)
q ∪ B(Q)

q =

Q−2⋃
q=1

A(Q)
q ∪ B(Q)

q

∪
(

(X(Q)
Q−1 ∪ (X(Q)

Q − (N1 + 1)))− (Q− 2)(N1 + 1)
)

∪
(

(Y(Q)
Q−1 ∪ (Y(Q)

Q − (N1 + 1)))− (Q− 2)(N1 + 1)
)

=

Q−2⋃
q=1

A(Q−1)
q ∪ B(Q−1)

q

 ∪ (X(Q−1)
Q−1 − (Q− 2)(N1 + 1))

∪ (Y(Q−1)
Q−1 − (Q− 2)(N1 + 1))

=

Q−1⋃
q=1

A(Q−1)
q ∪ B(Q−1)

q = {1, 2, . . . , N1} . (4.5)

Here Rule 1 and Lemma 4.3.1 are utilized.

Lemma 4.3.4 (Total number of sensors). If N1 is an odd number, the number of
elements in S(Q), as defined in Definition 4.3.1, is N1 +N2.

Proof. The proof is given by induction on Q. According to Lemma 3.4.2, the cardi-
nality of S(2) isN1+N2. If S(Q−1) has cardinalityN1+N2, wewill show that S(Q) also
has cardinality N1 + N2. According to Rule 1, the number of elements in X(Q)

q and
Y(Q)
q for 1 ≤ q ≤ Q − 2 remains unchanged in S(Q−1) and S(Q). Lemma 4.3.1 does

not alter the total number of elements sinceX(Q)
Q−1 andX(Q)

Q −(N1 +1) correspond to
the even and odd terms in X(Q−1)

Q−1 , respectively. It is also evident that Lemma 4.3.2
preserves the total number of sensors. By induction,

∣∣S(Q)
∣∣ =

∣∣S(Q−1)
∣∣ = N1 + N2

for Q ≥ 2.

One of the most striking properties of the Qth-order super nested array is that the
coarray is exactly identical to that of the parent nested array. This is proved in the
following theorem and the corollary:

Theorem 4.3.1. If N1 ≥ 3 · 2Q − 1 is an odd number, N2 ≥ 3Q − 4, and Q ≥ 3,
then Qth-order super nested arrays are restricted arrays, i.e., the difference coarray
is hole-free.
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(a) N1 = 31, N2 = 7, Q = 5.

−237 −200 −150 −100−78 −50 0 50 78 100 150 200 237
0

0.5

1

1.5

2

Coarray locationm

1
(w

(m
)
>

0
)

(b) N1 = 33, N2 = 7, Q = 5.

Figure 4.4: An example to show that N1 ≥ 3 · 2Q − 1 is not necessary in order
to make the coarray of S(Q) hole free. Here we consider the indicator function of
w(m) > 0 for the super nested array with (a) N1 = 31, N2 = 7, Q = 5 and (b)
N1 = 33, N2 = 7, Q = 5. It can be inferred that (a) is a restricted array, because
w(m) > 0 for −223 ≤ m ≤ 223. However, (b) is not a restricted array since w(78) =
w(−78) = 0.

Proof. This proof is based on induction on Q. Beginning with Theorem 3.5.1, we
know S(2) are restricted arrays. If (Q− 1)th-order super nested arrays are restricted
arrays, it can be inferred thatQth-order super nested arrays are still restricted arrays.
The details are quite involved, and can be found in Section 4.5.

Corollary 4.3.1. IfN1 ≥ 3 · 2Q − 1 is an odd number, N2 ≥ 3Q− 4, and Q ≥ 3, then
Qth-order super nested arrays have the same coarray as their parent nested array.

Proof. Due to Theorem 4.3.1, applying the chain of arguments in Corollary 3.5.1
proves this corollary.

The sufficient conditions onN1,N2, andQ in Theorem4.3.1 guarantee that such array
configuration is a restricted array. However, these conditions are not necessary.
For instance, Fig. 4.4 examines the coarray of Qth-order super nested arrays if (a)
N1 = 31, N2 = 7, Q = 5 and (b) N1 = 33, N2 = 7, Q = 5, where the indicator
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function 1(P ) is 1 if the statementP is true and 0 ifP is false. Theorem 4.3.1 requires
N1 to be at least 3 · 2Q − 1 = 95. In Fig. 4.4(a) (N1 = 31 < 95), it can be inferred that
w(m) > 0 for −223 ≤ m ≤ 223 so this array configuration is a restricted array. On
the other hand, the array in Fig. 4.4(b) (N1 = 33 < 95) is not a restricted array since
w(78) = w(−78) = 0.

Recall that the weight function w(2) of the second-order super nested array was as
in Eq. (4.2). The next theorem shows that the super nested array for Q > 2 has sig-
nificantly improved weight function w(2), which is crucial to reducing the mutual
coupling effects.

Theorem 4.3.2. Assume that N1 ≥ 3 · 2Q − 1 is an odd number, N2 ≥ 3Q − 4, and
Q ≥ 3. The weight function w(m) of Qth-order super nested arrays satisfies

w(1) = 1, w(2) = 2

⌊
N1

4

⌋
+ 1, w(3) = 2.

Proof. Form = 1, the sensors located at N2(N1 + 1)− 1 and N2(N1 + 1) contribute
to w(1). We need to show other combinations do not result in w(1). It is obvious
that the self-differences among X(Q)

q , Y(Q)
q , Z(Q)

1 , and Z(Q)
2 have sensor separation

at least 2. Since these sets are defined in the increasing order, it suffices to show
that the difference between the maximum element in one set and the minimum
element in the succeeding set, is strictly greater than 1. Assume X(Q)

q and Y(Q)
q

satisfies min(Y(Q)
q ) − max(X(Q)

q ) = 1.We have L(Q)
q = (N1 − 2q)/(2d

(Q)
q ). This is a

contradiction since L(Q)
q is an integer but (N1 − 2q)/(2d

(Q)
q ) is not, if N1 is an odd

number. On the other hand, it is obvious that Y(Q)
q and X(Q)

q+1 do not cause w(1).

Next, w(2) results from the self difference in X(Q)
1 ∪Y(Q)

1 . First, we check the differ-
ence between min(Y(Q)

1 ) and max(X(Q)
1 ):

min(Y(Q)
1 )−max(X(Q)

1 ) =

0, if N1 = 4r + 1,

2, if N1 = 4r + 3.
(4.6)

Besides, consider the sensor pair located at (q − 1)(N1 + 1) + 2L
(Q)
1 ∈ X(Q)

q and
q(N1 + 1)− 2L

(Q)
1 ∈ Y(Q)

q for some 2 ≤ q ≤ Q. The exact value of q can be uniquely
solved from the definitions of X(Q)

q and Y(Q)
q . Their difference becomes

(q(N1 + 1)− 2L
(Q)
1 )− ((q − 1)(N1 + 1) + 2L

(Q)
1 )

=

2, if N1 = 4r + 1,

4, if N1 = 4r + 3.
(4.7)
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If N1 = 4r+ 1, there are L(Q)
1 pairs in X(Q)

1 and L(Q)
1 in Y(Q)

1 with separation 2. One
more pair can be found in (4.7). In this case, w(2) becomes

w(2) = 2L
(Q)
1 + 1 = 2r + 1 = 2

⌊
N1

4

⌋
+ 1.

On the other hand, according to (4.6), if N1 = 4r + 3, w(2) can be written as

w(2) = 2L
(Q)
1 + 1 = 2r + 1 = 2

⌊
N1

4

⌋
+ 1.

Whenm = 3, w(3) results from the following two pairs:

1. min(X(Q)
2 ) and max(Y(Q)

1 ). The difference is

[(N1 + 1) + 2]− [(N1 + 1)− 1] = 3.

2. Z(Q)
1 and Z(Q)

2 . We obtain

(N2 − 1)(N1 + 1)− [(N2 − 1)(N1 + 1)− 3] = 3,

which completes the proof.

4.4 Qth-Order Super-Nested Arrays, N1 is Even
For odd N1, we presented three recursive rules between S(Q) and S(Q−1), as de-
scribed in Fig. 4.3, Lemma 4.3.1, and Lemma 4.3.2. For even N1, the framework in
Fig. 4.1 still holds true but the details in Rule 2 are different from Lemma 4.3.1.

As an example, Fig. 4.5 displays 2D representations of super nested arrays with
N1 = 16 and N2 = 5. The recursive rules are depicted by thin arrows in Fig. 4.5(b).
First, the following sets are considered:

X(2)
2 ={19, 21, 23, 25}, X(3)

2 ={19, 23, 25}, X(3)
3 ={38}. (4.8)

It is clear that (4.8) justifies Rule 2 in Fig. 4.1. However, (4.8) does not satisfy Lemma
4.3.1 since X(3)

2 contains an odd term, which is the element 25 in this example. On
the other hand, Fig. 4.5 gives Z(2)

1 = {34, 51, 68, 85}, Z(2)
2 = {84}, Z(3)

1 = {51, 68, 85},
andZ(3)

2 = {65, 84}. It can be readily shown that these sets satisfy Rule 3 andLemma
4.3.2 precisely.

Hence, it can be inferred from Fig. 4.5 that for even N1, S(Q) can be still generated
from S(Q−1) using three recursive rules. Rule 1 and Rule 3 can be utilized directly
but Rule 2 needs further development. The formal definition of super nested arrays
when N1 is even is now given in a recursive manner as follows:
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X(2)
1

X(2)
2

Y(2)
1

Y(2)
2

Z(2)
1

Z(2)
2

(a)

X(3)
1

X(3)
2

X(3)
3

Y(3)
1

Y(3)
2

Y(3)
3

Z(3)
1

Z(3)
2

(b)

Figure 4.5: 2D representations of (a) the second-order super nested array S(2) and
(b) the third-order super nested array S(3), where N1 = 16 (even) and N2 = 5.
Bullets represent physical sensors while crosses denote empty space. Thin arrows
illustrate the recursive rules (Rule 2 and Rule 3) in Fig. 4.1.

Definition 4.4.1 (Qth-order super nested arrays, N1 is even). Let N1 be an even
number, N2 ≥ 2Q, and Q ≥ 3. A Qth-order super nested array is specified by the
integer set S(Q),

S(Q) =

 Q⋃
q=1

X(Q)
q ∪ Y(Q)

q

 ∪ Z(Q)
1 ∪ Z(Q)

2 .

These nonempty subsets X(Q)
q , Y(Q)

q , Z(Q)
1 , and Z(Q)

1 satisfy

1. (Rule 1) For 1 ≤ q ≤ Q− 2, X(Q)
q = X(Q−1)

q .

2. (Rule 2) X(Q)
Q−1 and X(Q)

Q can be obtained from X(Q−1)
Q−1 by

a) If the cardinality of X(Q−1)
Q−1 is odd, then

X(Q)
Q−1 = {Even terms of X(Q−1)

Q−1 },
X(Q)
Q = {(Odd terms of X(Q−1)

Q−1 ) + (N1 + 1)},

where the definition of even/odd terms are consistentwith Lemma 4.3.1.
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b) Otherwise, we call the last element in X(Q−1)
Q−1 as the extra term. Then

X(Q)
Q−1 = {Even terms of X(Q−1)

Q−1 } ∪ {the extra term},
X(Q)
Q = {(Odd terms of X(Q−1)

Q−1 , except the extra term)

+ (N1 + 1)}.

Y(Q)
q share similar properties as X(Q)

q in Rule 1 and 2.

3. (Rule 3) The sets Z(Q)
1 and Z(Q)

2 are given by

Z(Q)
1 = {`(N1+1) : Q≤`≤N2} ,

Z(Q)
2 = {(N2+1−q)(N1+1)−2q+1 : 1≤q≤Q− 1} ,

which is equivalent to the recursive formula in Lemma 4.3.2.

AMATLAB code for Definition 4.4.1 is included in super_nested.m [90], where the
input parameters are N1, N2, and Q and the sensor locations S(Q) are delivered as
output. This function first takes second-order super nested arrays S(2) as an initial
condition, then applies Definition 4.4.1multiple times to obtain S(3), S(4), up to S(Q).

Next, we will clarify Rule 2 in Definition 4.4.1 using Fig. 4.5. According to (4.8), the
cardinality of X(2)

2 is 4 so Rule 2b is applicable. For X(2)
2 , the extra term is 25, the

even terms are 19 and 23, and the odd terms are 21 and 25. Using the expressions
in Rule 2b of Definition 4.4.1, we obtain X(3)

2 and X(3)
3 , which are identical to (4.8).

On the other hand, if we consider Y(2)
2 = {28, 30, 32} in Fig. 4.5, then the cardinality

of Y(2)
2 becomes 3, implying Rule 2a is applicable. The even terms and odd terms

of Y(2)
2 are 28, 32 and 30, respectively. As a result, Y(3)

2 = {28, 32} and Y(3)
3 = {47},

which are consistent with Fig. 4.5.

In short, for evenN1, super nested arrays are defined in a recursive fashion (Defini-
tion 4.4.1). The only dissimilarity from the oddN1 case is that, sometimes the extra
terms need to be considered (Rule 2b of Definition 4.4.1).

Next we will prove some important properties which result from Definition 4.4.1 of
the super nested array.

Lemma 4.4.1 (Relation to dense ULA of nested array). Let S(Q) be a super nested
array, as defined in Definition 4.4.1, whenN1 is an even number. Let A(Q)

q = X(Q)
q −

(q − 1)(N1 + 1) and B(Q)
q = Y(Q)

q − (q − 1)(N1 + 1) for q = 1, 2, . . . , Q. Then

Q⋃
q=1

A(Q)
q ∪ B(Q)

q = {1, 2, . . . , N1} .
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Proof. First by Lemma 3.4.1, we know this lemma is true for Q = 2. Then we use
proof by induction. Based on Rule 2 of Definition 4.4.1, X(Q)

Q−1 ∪ (X(Q)
Q − (N1 + 1)) =

X(Q−1)
Q−1 andY(Q)

Q−1∪ (Y(Q)
Q − (N1 +1)) = Y(Q−1)

Q−1 Therefore, the argument in the proof
of Lemma 4.3.3 can be applied.

Lemma 4.4.2 (Total number of sensors). Let S(Q) be aQth-order super nested array
defined by Definition 4.4.1. Then

∣∣S(Q)
∣∣ = N1 +N2.

Proof. The proof is the same as that of Lemma 4.3.4.

The coarray of the Qth-order super nested array is identical to that of the parent
nested array. This was proved earlier for odd N1. The same is true for even N1, as
shown by the theorem and corollary below.

Theorem 4.4.1. IfN1 ≥ 2 · 2Q + 2 is an even number,N2 ≥ 3Q− 4,Q ≥ 3, thenQth-
order super nested arrays are restricted arrays. That is, their coarray is hole-free.

Proof. The proof is similar to that of Theorem 4.3.1. The details are quite involved,
and are presented in Section 4.6.

Corollary 4.4.1. If N1 ≥ 2 · 2Q + 2 is an even number, N2 ≥ 3Q − 4, Q ≥ 3, then
Qth-order super nested arrays have the same coarray as the parent nested arrays.

Proof. This proof is identical to that of Corollary 4.3.1.

The next theorem shows that the super nested array for Q > 2 has significantly
improved weight function w(2), which is crucial to reducing the mutual coupling
effects.

Theorem 4.4.2. Assume that N1 ≥ 2 · 2Q + 2 is an even number, N2 ≥ 3Q− 4, and
Q ≥ 3. Then, the weight function w(m) of Qth-order super nested arrays satisfies

w(1) = 2,

w(2) =


N1
2 + 1, if N1 = 8k − 2,

N1
2 − 1, if N1 = 8k + 2,

N1
2 , otherwise,

w(3) = 5,

where k is an integer.
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Proof. The proof is quite similar to that of Theorem 3.5.2 and Theorem 4.3.2. The
parametersA1, B1, A2, B2 follow Definition 3.4.1. Forw(1), the two sensor pairs are
identical to those in the second-order ones, which have been identified in the proof
of Theorem 3.5.2.

For the weight function w(2), there are some cases:

1. The self-differences ofX(Q)
1 andY(Q)

1 contribute to (A1)+ +(B1)+ pairs, which
is N1/2− 1.

2. If N1 = 4r, then A2 = r− 1 and B2 = r− 2. If A2 + 1 is even, there is an extra
term in X(Q)

2 . Note that the maximum ULA element in X(Q)
2 is less than the

extra term by 2, as indicated in Lemma 4.6.1-3. The similar conclusion applies
to Y(Q)

2 . Hence, depending on the even/odd properties of A2 and B2, there
is exactly one pair of sensors with sensor separation 2, in X(Q)

2 ∪ Y(Q)
2 when

N1 = 4r.

3. WhenN1 = 4r+ 2, A2 = r, B2 = r− 2. If r = 2k− 1 is an odd number, A2 + 1

and B2 + 1 are both even numbers. One extra term exists in X(Q)
2 and another

one can be found inY(Q)
2 . There are two pairs of sensor separation 2. If r = 2k

is an even number,A2 +1 andB2 +1 are odd numbers. There is no extra term
in X(Q)

2 and Y(Q)
2 .

Hence, w(2) is given by

w(2) =


N1
2 , if N1 = 4r,

N1
2 + 1, if N1 = 4(2k − 1) + 2,

N1
2 − 1, if N1 = 4(2k) + 2,

which proves the w(2) part.

w(3) can be found in these sensor pairs:

1. Four sensor pairs have been identified in the proof of Theorem 3.5.2. It is
applicable because X(Q)

1 = X(2)
1 , Y(Q)

1 = Y(2)
1 , min(X(Q)

2 ) = min(X(2)
2 ), and

max(Y(Q)
2 ) = max(Y(2)

2 ).

2. Onemore pair exists between Z(Q)
1 and Z(Q)

2 . They are (N2−1)(N1 +1) ∈ Z(Q)
1

and (N2 − 1)(N1 + 1)− 3 ∈ Z(Q)
2 .

Then the proof is complete.
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Remarks based on Theorem 4.3.2 and 4.4.2
It seems that the super nested arrays with oddN1 is superior to those with evenN1

in terms of the weight functions w(1), w(2), and w(3). However, in some scenarios,
the super nested arrays with even N1 is preferred. For instance, suppose that we
want to design super nested arrays with N = 41 physical sensors such that the
number of identifiable sources ismaximized. It was proved in [124] that the optimal
N1 is given by N1 = (N − 1)/2 = 20, which is an even number.

Another remark is that, w(1), w(2), and w(3) remain unchanged for Q ≥ 3. How-
ever, this phenomenon does not imply that super nested arrays for Q ≥ 3 have the
same performance in the presence of mutual coupling. Instead, super nested arrays
forQ > 3 could reduce the mutual coupling further. It is because the overall perfor-
mance depends on the mutual coupling models, which are functions of the array
geometry, as mentioned in (3.2) and (3.3). Super nested arrays with Q > 3 tend
to make array geometries more sparse, as discussed extensively in Section 4.3 and
4.4. It can be shown that the weight functions like w(4), w(5), and so on, decrease
as Q increases. Hence, qualititatively, mutual coupling could be reduced for super
nested arrays with Q > 3.

Furthermore, the judgement of the estimation error based on on the weight func-
tions w(1), w(2), and w(3), is qualitative and does not always lead to right conclu-
sions, as in Chapter 3. For example, Fig. 4.6 shows that for source spacing ∆θ̄ =

0.001, the super nested array with Q = 2, N1 = N2 = 17 (w(2) = 16) outperforms
the super nested array with Q = 3, N1 = N2 = 17 (w(2) = 9).

4.5 Proof of Theorem 4.3.1
According to Theorem 3.5.1, second-order super nested arrays are restricted arrays.
To prove the same forQth-order nested arrays withQ > 2, we use induction. Thus,
assume that S(Q−1) are restricted arrays. We need to show that S(Q) are also re-
stricted arrays under certain sufficient conditions. In the following development,
we use D(Q) to denote the difference set of Qth-order super nested arrays, S(Q).

The main concept of the proof works as follows. Let n1 ∈ S(Q−1)\S(Q) and n2 ∈
S(Q−1). It is obvious that n1 − n2 belongs to D(Q−1). We need to show that there
exist some n′1, n′2 ∈ S(Q) such that n′1 − n′2 = n1 − n2. If the above statement holds
true for every n1 ∈ S(Q−1)\S(Q) and n2 ∈ S(Q−1), it is equivalent to saying that S(Q)

is a restricted array.

Table 4.1 lists 27 combinations, where n1 ∈ S(Q−1)\S(Q) is divided into 3 subsets in
each column and n2 ∈ S(Q−1) is partitioned into 9 categories in each row. In every
case, given n1 and n2, we need to identify the associated n′1 and n′2 such that (a)
n′1, n

′
2 ∈ S(Q), which will be elaborated on in detail, and (b) n′1 − n′2 = n1 − n2,
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Table 4.1: 27 cases in the proof of Theorem 4.3.1

n2 \ n1 X(Q)
Q − (N1 + 1) Y(Q)

Q − (N1 + 1) (Q−1)(N1+1)

X(Q−1)
q ,

1 ≤ q ≤ Q− 2
Case 1 Case 10 Case 19

X(Q)
Q−1 Case 2 Case 11 Case 20

X(Q)
Q −(N1+1) Case 3 Case 12 Case 21

Y(Q−1)
q ,

1 ≤ q ≤ Q− 2
Case 4 Case 13 Case 22

Y(Q)
Q−1 Case 5 Case 14 Case 23

Y(Q)
Q −(N1+1) Case 6 Case 15 Case 24

Z(Q)
1 Case 7 Case 16 Case 25

(Q−1)(N1+1) Case 8 Case 17 Case 26

Z(Q−1)
2 Case 9 Case 18 Case 27

which is simple to check.

(Case 1) Any n1 and n2 in this case can be written asn1 = (Q− 2)(N1 + 1) + 2Q−1 + 2Q−1`1,

n2 = (q − 1)(N1 + 1) + 2q−1 + 2q`2,

where 0 ≤ `1 ≤ L(Q)
Q and 0 ≤ `2 ≤ L(Q)

q . According toDefinition 4.3.1,L(Q)
Q ≤ L(Q)

Q−1,
and we have these cases:

1. L(Q)
Q < L

(Q)
Q−1: The corresponding n′1 and n′2 can be expressed into two ways.

They are n′1 = (Q−2)(N1+1)+2Q−2+2Q−1`1,

n′2 = (q−1)(N1+1)+2q−1+2q(`2−2Q−q−2),
(4.9)

n′1 = (Q−2)(N1+1)+2Q−2+2Q−1(`1+1),

n′2 = (q − 1)(N1+1)+2q−1+2q(`2+2Q−q−2).
(4.10)

The membership of n′1 and n′2 can be derived as follows. Since L(Q)
Q < L

(Q)
Q−1,

we have n′1 ∈ X(Q)
Q−1 in (4.9) and (4.10). Next, n′2 in (4.9) belongs to X(Q)

q if
0 ≤ `2 − 2Q−q−2 ≤ L

(Q)
q . If 0 ≤ `2 + 2Q−q−2 ≤ L

(Q)
q , then n′2 in (4.10) belongs

to X(Q)
q . That is, if

2Q−q−2 ≤ L(Q)
q − 2Q−q−2, 1 ≤ q ≤ Q− 2, (4.11)
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then we can find n′1, n′2 ∈ S(Q) using either (4.9) or (4.10). Solving (4.11) leads
to another sufficient condition N1 ≥ 7

4 · 2Q − 1.

2. L(Q)
Q = L

(Q)
Q−1 and 0 ≤ `1 ≤ L(Q)

Q − 1: The argument is the same as Case 1-1.

3. L(Q)
Q = L

(Q)
Q−1 and `1 = L

(Q)
Q : Depending on `2, we obtain two more cases,

a) 2Q−q−2 ≤ `2 ≤ L
(Q)
q : Under this condition, (4.9) is still applicable. We

obtain `1 = L
(Q)
Q ≤ L

(Q)
Q−1, implying n′1 ∈ X(Q)

Q−1. In addition, the maxi-
mum value of `2 − 2Q−q−2 is L(Q)

q − 2Q−q−2, which is less than or equal
to L(Q)

q . This property proves n′2 ∈ X(Q)
q .

b) 0 ≤ `2 ≤ 2Q−q−2 − 1: The associated n′1 and n′2 aren′1 =(Q−1)(N1+1)+2Q−1+2Q−1(`1−1),

n′2 =q(N1+1)−2q−1−2q(2Q−q−1−`2−1).
(4.12)

It can be seen that n′1 ∈ X(Q)
Q , since `1 − 1 ≤ L

(Q)
Q . We need to show that

n′2 ∈ Y(Q)
q under some sufficient conditions. Since 0 ≤ `2 ≤ 2Q−q−2 − 1,

we obtain 2Q−q−2 ≤ 2Q−q−1 − `2 − 1 ≤ 2Q−q−1 − 1. If 2Q−q−1 − 1 ≤
L

(Q)
q , it can be inferred that n′2 belongs to Y(Q)

q . Therefore, the associated
sufficient condition becomes N1 ≥ 5

4 · 2Q − 1.

(Case 2, 5, 11, 14) In Case 2, n1, n2, n
′
1, n
′
2 aren1 = (Q− 2)(N1 + 1) + 2Q−1 + 2Q−1`1,

n2 = (Q− 2)(N1 + 1) + 2Q−2 + 2Q−1`2,
(4.13)

n′1 = 1 + 2(2Q−2 + 2Q−2`1 − 1),

n′2 = 1 + 2(2Q−3 + 2Q−2`2 − 1),
(4.14)

where 0 ≤ `1 ≤ L
(Q)
Q and 0 ≤ `2 ≤ L

(Q)
Q−1. It can be concluded that n′1, n′2 ∈ X(Q)

1

since

2Q−2 + 2Q−2`1 − 1

≤
⌊

2Q−2 + 2Q−2

(
N1 + 1

2Q
− 1

)
− 1

⌋
≤ L(Q)

1 ,

2Q−3 + 2Q−2`2 − 1

≤
⌊

2Q−3 +
2Q−2

2

(
N1 + 1

2Q−1
− 1

)
− 1

⌋
≤ L(Q)

1 .

Here we apply some properties of the floor function: b2xc ≥ 2bxc and bx + nc =

bxc+n for integer n. Note that in Case 5, 11, 14, we can relate n′1 and n′2 with either
X(Q)

1 or Y(Q)
1 .
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(Case 3, 6, 8, 12, 15, 17, 21, 24, 26) For any n1 and n2 in this combination, the
corresponding n′1 = n1 + (N1 + 1) and n′2 = n2 + (N1 + 1). We have

n′1, n
′
2 ∈ X(Q)

Q ∪ Y(Q)
Q ∪ {Q(N1 + 1)} ⊂ S(Q).

(Case 4, 10) Let us consider Case 4 first. The associated n1 and n2 are given byn1 = (Q− 2)(N1 + 1) + 2Q−1 + 2Q−1`1,

n2 = q(N1 + 1)− 2q−1 − 2q`2,

where 0 ≤ `1 ≤ L(Q)
Q and 0 ≤ `2 ≤ L(Q)

q . According to `1, we have

1. L(Q)
Q < L

(Q)
Q−1: n′1 and n′2 can be written asn′1 = (Q− 2)(N1 + 1) + 2Q−2 + 2Q−1`1,

n′2 = q(N1 + 1)− 2q−1 − 2q(`2 + 2Q−q−2),
(4.15)

n′1 = (Q−2)(N1+1)+2Q−2+2Q−1(`1+1),

n′2 = q(N1+1)−2q−1−2q(`2−2Q−q−2).
(4.16)

Following Case 1-1, ifN1 ≥ 7
4 · 2Q− 1, then n′1 ∈ X(Q)

Q−1 and n′2 ∈ Y(Q)
q in either

(4.15) or (4.16).

2. L(Q)
Q = L

(Q)
Q−1 and 0 ≤ `1 ≤ L(Q)

Q − 1: Case 4-1 applies.

3. L(Q)
Q = L

(Q)
Q−1 and `1 = L

(Q)
Q :

a) 0 ≤ `2 ≤ L
(Q)
q − 2Q−q−2: (4.15) can be applied to this case. It can be

shown that n′1 ∈ X(Q)
Q−1 and n′2 ∈ Y(Q)

q .

b) L(Q)
q − 2Q−q−2 + 1 ≤ `2 ≤ L

(Q)
q : To identify n′1 and n′2 in this case, we

first introduce the remainder R = (Q− q− 1)(N1 + 1)− n1 + n2, which is
rewritten as

R=(N1+1)−2Q−1−2Q−1L
(Q)
Q −2q−1−2q`2. (4.17)

Corollary 4.5.1. 1 ≤ R < 2Q−1.

Proof. If x is a real number, we obtain x − 1 < bxc ≤ x. This property
implies

N1+1

2
−2Q−1<2Q−1+2Q−1L

(Q)
Q ≤

N1+1

2
, (4.18)

N1+1

2
−2Q−2<2Q−1+2Q−1L

(Q)
Q−1≤

N1+1

2
+2Q−2, (4.19)

N1+1

2
−2Q−2<2q−1+2q`2≤

N1+1

2
. (4.20)
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Combining (4.18) to (4.20) and L(Q)
Q = L

(Q)
Q−1 gives 0 ≤ R < 2Q−1. How-

ever, if R = 0, both (4.18) and (4.20) achieve their upper bound. The
condition that (4.18) being equal isN1 + 1 is a multiple of 2Q, which con-
tradicts with the condition that (4.20) being the equal. Hence, 1 ≤ R <

2Q−1.

Next, according to R, we can identify n′1 and n′2. Let us consider the
binary expansion of R, which is

R =

Q−2∑
r=0

ar2
r, ar ∈ {0, 1} . (4.21)

Then we define P satisfying

a0 = a1 = · · · = aP−1 = 0, aP = 1. (4.22)

It can be deduced that (a)P is unique for a givenR, and (b) 0 ≤ P ≤ Q−2.
Herewe have threemore cases, where q is consistent with Case 4 in Table
4.1:

i. q = 1: In this case, the proof technique in (4.15) is applicable. n′1 ∈
X(Q)
Q−1 and n′2 is an odd number less than N1 + 1 so n′2 ∈ X(Q)

1 ∪ YQ)
1 .

ii. P ≤ q, q ≥ 2: Since q ≥ 2, R is an even number and P ≥ 1. n′1 and
n′2 become n′1 =(Q+P−q−1)(N1+1)+2Q+P−q−1,

n′2 =P (N1+1)+R+2Q+P−q−1.
(4.23)

It will be shown that n′1 ∈ X(Q)
Q−P−q and n′2 ∈ X(Q)

P+1 under some suf-
ficient conditions. It is obvious that n′1 is the minimum element in
X(Q)
Q−P−q. n′2 ∈ X(Q)

P+1 is equivalent to

R+ 2Q+P−q−1 = 2P + 2P+1`3, (4.24)

for some integer `3 satisfying 0 ≤ `3 ≤ L
(Q)
P+1. According to the def-

inition of P , in (4.22), the left-hand side of (4.24) is a multiple of 2P

and `3 is an integer.
Next, we need to show 2P < R+ 2Q+P−q−1 ≤ 2P + 2P+1L

(Q)
P+1 under

some sufficient conditions. According to (4.22) and the range of P
and q, we haveR ≥ 2P and 2Q+P−q−1 ≥ 1, yielding the lower bound.
A sufficient condition for the upper bound is given by

2Q−1 + 2Q+P−q−1 ≤ 2P + 2P+1L
(Q)
P+1. (4.25)

Using x − 1 < bxc, P ≤ q, and 1 ≤ q ≤ Q − 2, (4.25) becomes
N1 ≥ 3 · 2Q − 1.
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iii. P ≥ q + 1, q ≥ 2: n′1 and n′2 in this case aren′1 = (Q+ P − q − 1)(N1 + 1),

n′2 = P (N1 + 1) +R.
(4.26)

A sufficient condition for n′1 belonging to Z(Q)
1 is Q ≤ Q + P − q −

1 ≤ N2, implying N2 ≥ 2Q − 5. On the other hand, n′2 lives in
X(Q)
P+1 when there exists some `3 satisfying 0 ≤ `3 ≤ L

(Q)
P+1 and R =

2P + 2P+1`3. It suffices to solve 2Q−1 ≤ 2P + 2P+1L
(Q)
P+1, which gives

another sufficient condition N1 ≥ 2 · 2Q − 1.

The proof for Case 10 is similar to Case 4.

(Case 7, 16) First we consider Case 7, where n1 and n2 are given byn1 = (Q− 2)(N1 + 1) + 2Q−1 + 2Q−1`1,

n2 = `2(N1 + 1).
(4.27)

Here 0 ≤ `1 ≤ L(Q)
Q and Q ≤ `2 ≤ N2. According to `2, we obtain

1. Q ≤ `2 ≤ N2 − 1: n′1 and n′2 can be written asn′1 = (Q− 1)(N1 + 1) + 2Q−1 + 2Q−1`1,

n′2 = (`2 + 1)(N1 + 1).
(4.28)

It is trivial that n′1 ∈ X(Q)
Q and n′2 ∈ Z(Q)

1 .

2. `2 = N2: We obtain n′1 and n′2 to ben′1 = 1 + 2Q−1`1,

n′2 = (N2 + 2−Q)(N1 + 1)− 2Q−1 + 1.
(4.29)

It can be seen from (4.29) that n′1 ∈ X(Q)
1 and n′2 ∈ Z(Q)

2 .

The proof for Case 16 follows the same argument for Case 7.

(Case 9, 18) For Case 9, n1 and n2 are given byn1 = (Q− 2)(N1 + 1) + 2Q−1 + 2Q−1`1,

n2 = (N2 + 1− q)(N1 + 1)− 2q + 1.
(4.30)

where 0 ≤ `1 ≤ L(Q)
Q and 1 ≤ q ≤ Q− 2. Rewriting (4.30) gives n′1 and n′2n′1 = 2q − 1 + 2Q−1 + 2Q−1`1,

n′2 = (N2 + 3−Q− q)(N1 + 1).
(4.31)
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We need to show that n′1 ∈ X(Q)
1 ∪Y(Q)

1 and n′2 ∈ Z(Q)
1 . If Q ≤ N2 + 3−Q− q ≤ N2,

then n′2 ∈ Z(Q)
1 , which leads to a sufficient conditionN2 ≥ 3Q−5. The membership

of n′1 can be verified as follows. It is trivial that n′1 is an odd number. In addition,
n′1 ≤ 2Q−2 − 1 + 2Q−1 + 2Q−1L

(Q)
Q ≤ N1 + 1. We obtain n′1 ∈ X(Q)

1 ∪ Y(Q)
1 . Case 18

has the same proof as Case 9.

(Case 13) In this case, n1, n2 are given byn1 = (Q− 1)(N1 + 1)− 2Q−1 − 2Q−1`1,

n2 = q(N1 + 1)− 2q−1 − 2q`2,
(4.32)

where 0 ≤ `1 ≤ L(Q)
Q and 0 ≤ `2 ≤ L(Q)

q . According to `1, we have two sub-cases

1. L(Q)
Q < L

(Q)
Q−1: The pair n′1 and n′2 can be written asn′1 = (Q−1)(N1+1)−2Q−2−2Q−1`1,

n′2 = q(N1+1)−2q−1−2q(`2−2Q−q−2),
(4.33)

n′1 = (Q−1)(N1+1)−2Q−2−2Q−1(`1+1),

n′2 = q(N1+1)−2q−1−2q(`2+2Q−q−2).
(4.34)

Following the same discussion as Case 1-1, we obtain a sufficient condition
N1 ≥ 7

4 · 2Q − 1.

2. L(Q)
Q = L

(Q)
Q−1 and 0 ≤ `1 < L

(Q)
Q − 1: This case is the same as Case 13-1.

3. L(Q)
Q = L

(Q)
Q−1 and `1 = L

(Q)
Q :

a) 2Q−q−2 ≤ `2 ≤ L
(Q)
q : It can be shown that n′1 ∈ Y(Q)

Q−1 and n′2 ∈ Y(Q)
q due

to the same reason in Case 1-3a.

b) 0 ≤ `2 ≤ 2Q−q−2 − 1, q = Q − 2, and Q = 3: In this case n′1 and n′2 are
given by n′1 = N1 + 3,

n′2 = 1 + 4(L
(3)
3 + 1).

(4.35)

We know that n′1 ∈ X(3)
2 , which is trivial, and n′2 ∈ X(3)

1 ∪Y
(3)
1 , since n′2 is

an odd number less than N1 + 1.

c) 0 ≤ `2 ≤ 2Q−q−2 − 1, q = Q− 2, and Q ≥ 4: n′1 and n′2 can be written as
n′1 = (N1 + 2)− 2Q−1

−2Q−1L
(Q)
Q + 2Q−3 + 2Q−2`2,

n′2 = 1.

(4.36)
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It can be inferred that n′1 is an odd number less than N1 + 1. Therefore,
n′1, n

′
2 ∈ X(Q)

1 ∪ Y(Q)
1 .

d) 0 ≤ `2 ≤ 2Q−q−2 − 1 and 1 ≤ q ≤ Q− 3: We found that n′1 and n′2 can be
expressed as 

n′1 =(Q−2)(N1+1)−2Q−3−2Q−1L
(Q)
Q ,

n′2 =(q − 1)(N1 + 1) + 2q−1

+2q(2Q−q−2 + 2Q−q−3 − `2 − 1),

(4.37)

which satisfies n′1 ∈ Y(Q)
Q−2 and n′2 ∈ X(Q)

q under the sufficient conditions
2L

(Q)
Q ≤ L

(Q)
Q−2 and 0 ≤ 2Q−q−2 + 2Q−q−3 − `2 − 1 ≤ L

(Q)
q . We obtain a

sufficient condition N1 ≥ 7
8 · 2Q − 1.

(Case 19, 22) In Case 19, n1, n2, n′1, and n′2 can be written asn1 = (Q− 1)(N1 + 1),

n2 = (q − 1)(N1 + 1) + 2q−1 + 2q`2,
(4.38)

n′1 = (Q−1)(N1+1)+2Q−1,

n′2 = (q−1)(N1+1)+2q−1+2q(`2+2Q−q−1),
(4.39)

n′1 = (Q−1)(N1+1)−2Q−2,

n′2 = (q−1)(N1+1)+2q−1+2q(`2−2Q−q−2),
(4.40)

where 0 ≤ `2 ≤ L
(Q)
q . The next argument is similar to that in Case 1-1. A sufficient

condition for n′1 ∈ X(Q)
Q , n′2 ∈ X(Q)

q or n′1 ∈ Y(Q)
Q−1, n

′
2 ∈ X(Q)

q is that

2Q−q−2 ≤ L(Q)
q − 2Q−q−1,

which leads to another sufficient condition N1 ≥ 9
4 · 2Q − 1. Case 22 is the same as

Case 19.

(Case 20, 23) In Case 20, n1, n2, n′1, and n′2 becomen1 = (Q− 1)(N1 + 1),

n2 = (Q− 2)(N1 + 1) + 2Q−2 + 2Q−1`2,
(4.41)

n′1 = (N1 + 1)− 1,

n′2 = 1 + 2(−1 + 2Q−3 + 2Q−2`2),
(4.42)

where 0 ≤ `2 ≤ L(Q)
Q−1. It is trivial that n′1 ∈ Y(Q)

1 . Besides, n′2 ∈ X(Q)
1 since

− 1+2Q−3+2Q−2`1≤−1+2Q−3+2Q−2L
(Q)
Q−1≤L

(Q)
1 .
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(Case 25) We can write n1 and n2 asn1 = (Q− 1)(N1 + 1),

n2 = q(N1 + 1),
(4.43)

where Q ≤ q ≤ N2. Based on q, n′1 and n′2 are given by the following.

1. Q ≤ q ≤ N2 − 1: In this case n′1 = Q(N1 + 1) and n′2 = (q + 1)(N1 + 1). It is
evident that n′1, n′2 ∈ Z(Q)

1 .

2. q = N2: We obtainn′1 = (N1 + 1)− 1− 2(2Q−2 − 1),

n′2 = (N2 −Q+ 2)(N1 + 1)− 2Q−1 + 1.
(4.44)

It can be seen that n′2 is contained in Z(Q)
2 . The sufficient condition for n′1 in

Y(Q)
1 is 2Q−2 − 1 ≤ L(Q)

1 . We obtain N1 ≥ 2Q + 1.

(Case 27) In this case, we haven1 = (Q− 1)(N1 + 1),

n2 = (N2 + 1− q)(N1 + 1)− 2q + 1,
(4.45)

n′1 = 2q − 1,

n′2 = (N2 + 2−Q− q)(N1 + 1),
(4.46)

where 1 ≤ q ≤ Q − 2. If 2q − 1 ≤ N1 and Q ≤ N2 + 2 − Q − q ≤ N2, n′1 and n′2
belong to X(Q)

1 ∪Y(Q)
1 and Z(Q)

1 , respectively. Solving these inequalities leads to the
following sufficient conditions for Qth-order super nested arrays: N1 ≥ 1

4 · 2Q − 1

and N2 ≥ 3Q− 4.

The last step in the proof is to take the intersection of all these sufficient conditions.
We obtainN1 ≥ 3·2Q−1 andN2 ≥ 3Q−4. Then all the (n′1, n

′
2)pairs in those 27 cases

exist simultaneously, implying this array configuration is a restricted array.

4.6 Proof of Theorem 4.4.1
This proof follows the same strategy as that of Theorem 4.3.1, where induction on
Q is applied. First of all, it is essential to characterize some properties of X(Q)

q as
well as Y(Q)

q before the induction step.

Lemma 4.6.1 (Properties on X(Q)
q when N1 is even). Suppose that 2 ≤ q ≤ Q, N1

is an even number and S(Q) is defined as Definition 4.4.1. Then X(Q)
q possess the

following properties:
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1. X(Q)
Q is a ULA with inter-element spacing 2Q−1. The first element is (Q −

1)(N1 + 1) + 2Q−1.

2. For 2 ≤ q ≤ Q−1, X(Q)
q has a ULA portion with inter-element spacing 2q. The

minimum (or leftmost) element of ULA in X(Q)
q is (q − 1)(N1 + 1) + 2q−1.

3. If there is an extra term inX(Q)
q , it is themaximum (rightmost) element ofX(Q)

q

and it is 2q−1 larger than the maximum element in the ULA section of X(Q)
q .

4. If n ∈ X(Q)
Q , then n− (N1 + 1)± 2Q−2 ∈ X(Q)

Q−1.

Proof. 1. We can prove this property by induction. When Q = 2, the closed-
form expression is given by Definition 3.4.1, which satisfies Lemma 4.6.1-1.
SupposeX(Q−1)

Q−1 is an ULAwith sensor separation 2Q−2 and first element (Q−
2)(N1 +1)+2Q−2. According to Rule 2 of Definition 4.4.1,X(Q)

Q is derived from
odd terms in X(Q−1)

Q−1 . Therefore, the first element of X(Q)
Q is (Q− 1)(N1 + 1) +

2Q−1 and the inter-element spacing is 2Q−1.

2. According to Rule 1 of Definition 4.4.1, we have X(Q)
q = X(q+1)

q . Following
Rule 2, X(q+1)

q has at least all the the even terms of X(q)
q , which constitute the

ULA portion. Based on Lemma 4.6.1-1, X(q)
q is a ULA of separation 2q−1 and

its minimum element is (q − 1)(N1 + 1) + 2q−1. Therefore, the ULA part in
X(q+1)
q owns sensor separation 2q. Theminimum element inX(Q)

q is then given
by (q − 1)(N1 + 1) + 2q−1.

3. In this case, Rule 2b of Definition 4.4.1 indicates that the extra term is the
largest one of X(q)

q while the last term of the ULA section of X(Q)
q is the second

largest one in X(q)
q . Based on Lemma 4.6.1-1, their difference is 2q−1.

4. If n ∈ X(Q)
Q , then n − (N1 + 1) is an odd term of X(Q−1)

Q−1 . Based on Rule 2 of
Definition 4.4.1 and Lemma 4.6.1-1, n − (N1 + 1) ± 2Q−2 are even terms of
X(Q−1)
Q−1 , which is contained in X(Q)

Q−1.

This completes the proof.

Next, assuming S(Q−1) is a restricted array, we need to show that S(Q) is also a re-
stricted array. Similarly, there are 27 cases, as listed in Table 4.1.

(Case 1, 13) Given n1 and n2 in this case, we have

1. n2 belongs to the ULA portion ofX(Q)
q : This case is the same as Case 1-1 in the

proof of Theorem 4.3.1. n′1 and n′2 can be written in two ways:

n′1 = n1 − 2Q−2, n′2 = n2 − 2Q−2, (4.47)

n′1 = n1 + 2Q−2, n′2 = n2 + 2Q−2, (4.48)



90

where (4.47) and (4.48) resemble (4.9) and (4.10), respectively. According to
Lemma 4.6.1-4, n′1 lives in X(Q)

Q−1. In addition, at least one of the n′2 in (4.47)
or (4.48) belongs to X(Q)

q . If neither n2 + 2Q−2 nor n2 − 2Q−2 belongs to X(Q)
q ,

then the ULA part of X(Q)
q has aperture less than 2Q−1. On the other hand, n′1

in (4.47) and (4.48) implies X(Q)
Q−1 has aperture at least 2Q−1. This is a contra-

diction since X(Q)
q must have larger aperture than X(Q)

Q−1.

2. n2 is an extra term inX(Q)
q : In this case, we only need to consider 2 ≤ q ≤ Q−2

because when q = 1, there is no extra term, by definition. Based on (4.48) and
Lemma 4.6.1-4, we know that n1 + 2Q−2 belongs to X(Q)

Q−1 and n1 + 2Q−2 −
(N1 + 1) + 2Q−3 is contained in X(Q)

Q−2. Applying these rules multiple times
yields, n′1 = n1 − (q − 1)(N1 + 1) +

∑Q−2
p=Q−q−1 2p,

n′2 = n2 − (q − 1)(N1 + 1) +
∑Q−2

p=Q−q−1 2p.
(4.49)

It ensures that n′1 lives inX(Q)
Q−q. We need to show that n′2 ∈ Y(Q)

1 . According to
Rule 2 in Definition 4.4.1, n′2 is an even number. Its minimumvalue is attained
when all the sets X(Q)

1 ,X(Q)
2 , . . . ,X(Q)

q−1 own extra terms, implying

n2 − (q − 1)(N1 + 1) ≥ (1 + 2A1)−

1 +

q∑
p=2

2p

 ,

where A1 is given by Definition 3.4.1. Therefore, n′2 is lower-bounded by

(1 + 2A1)−

1 +

q∑
p=2

2p

+

Q−2∑
p=Q−q−1

2p > 1 + 2A1.

Thus, n′2 belongs to Y(Q)
1 .

(Case 4, 10) Let us consider Case 4. According to n2, we obtain two cases:

1. If n2 belongs to the ULA part of Y(Q)
q , it is the same as Case 1-1.

2. If n2 is an extra term in Y(Q)
q , following the idea of Case 1-2, we can writen′1 = n1 − (q − 1)(N1 + 1)−∑Q−2

p=Q−q−1 2p,

n′2 = n2 − (q − 1)(N1 + 1)−∑Q−2
p=Q−q−1 2p.

(4.50)
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Here n′1 belongs to X(Q)
Q−q and n′2 is an odd number. Next we will show that n′2

belongs to X(Q)
1 . Similar to Case 1-2, n2− (q−1)(N1 + 1) is upper-bounded by

n2 − (q − 1)(N1 + 1)

≤ (N1 + 1)− (1 + 2B1) +

1 +

q∑
p=2

2p

 .

Therefore, n′2 has an upper bound

(N1 + 1)− (1 + 2B1) +

1 +

q∑
p=2

2p

− Q−2∑
p=Q−q−1

2p

< (N1 + 1)− (1 + 2B1),

which proves that n′2 belongs to X(Q)
1 . The proof for Case 10 is similar to Case

4.

(Case 19, 22) Let n1 = (Q− 1)(N1 + 1) and n2 ∈ X(Q)
q . Based on n2, we have two

cases:

1. n2 belongs to the ULA portion of X(Q)
q : Following the steps of Case 19, 22 in

Section 4.5, we obtainn′1 = (Q− 1)(N1 + 1) + 2Q−1,

n′2 = n2 + 2Q−1,
(4.51)

n′1 = (Q− 1)(N1 + 1)− 2Q−2,

n′2 = n2 − 2Q−2.
(4.52)

Then, n′1 can be either inX(Q)
Q orY(Q)

Q−1, according to (4.51) or (4.52). It is trivial
that n′2 belongs to X(Q)

q .

2. n2 is an extra term in X(Q)
q : n′1 and n′2 are given byn′1 = (Q− q)(N1 + 1) + 2Q−q + 2Q−1,

n′2 = n2 − (q − 1)(N1 + 1) + 2Q−q + 2Q−1.
(4.53)
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It can be seen from (4.53) that n′1 belongs to X(Q)
Q−q+1 and n′2 is contained in

Y(Q)
1 . It can be proved by checking the lower bound of n′2, which is

n2 − (q − 1)(N1 + 1) + 2Q−q + 2Q−1

≥ (1 + 2A1)−

1 +

q∑
p=2

2p

+ 2Q−q + 2Q−1

= (1 + 2A1) + (2Q−1 − 2q+1) + (2Q−q + 3)

> 1 + 2A1.

for 1 ≤ q ≤ Q− 2.

(Other Cases) Proofs are the same as those in Section 4.5.

Next we discuss the sufficient conditions of S(Q) being a restricted array. According
to Definition 4.4.1, X(Q)

q and Y(Q)
q are not empty. Suppose there is only one element

in X(Q)
Q , Lemma 4.6.1-4 implies there are at least 2 elements in X(Q)

Q−1. Applying
this argument many times yields that X(Q)

q has at least 2Q−q elements. The same
property holds forY(Q)

q . In addition, ifN1 = 4r+2, the number of elements between
X(Q)

1 and Y(Q)
1 differs by 2. Hence, to guarantee this proof is valid, we need

N1 ≥ 2

Q∑
q=1

2Q−q + 4 = 2 · 2Q + 2.

Besides, the sufficient condition forN2 isN2 ≥ 3Q−4, following the same argument
in the proof of Theorem 4.3.1.

4.7 Numerical Examples
In this section, we make a comparison among ULA, MRA, nested arrays, coprime
arrays, and super nested arrays when the mutual coupling effect is present. The
total number of sensors is 34 for each array configuration. The sensor locations
for MRA cannot be found in the literature, so instead we select the approximate
MRA with n = 18 and p = 13 (Reference L, Table 6 of [65])2. The nested array
has parameter N1 = N2 = 17. We choose M = 9, N = 17 in coprime arrays. For
super nested arrays, there are three different cases: 1) the super nested array with
Q = 2, N1 = N2 = 17, 2) the super nested array with Q = 3, N1 = N2 = 17, and 3)
the super nested array withQ = 3, N1 = 16, N2 = 18. The sensor locations for these
arrays are given by (2.7) for the nested array, (2.8) for the coprime array, Definition
3.4.1 for the super nested array with Q = 2, Definition 4.3.1 for the super nested

2 The sensor locations for the approximate MRA are 0, 1, 14, 30, 46, 62, 78, 94, 110, 126, 142, 158,
174, 190, 206, 222, 238, 254, 270, 286, 302, 304, 306, 308, 310, 312, 314, 317, 319, 321, 323, 325, 327, and
329.
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Table 4.2: Array profiles for the example in Section 4.7

Array ULA MRA Nested array,
N1 = N2 = 17

Coprime
array,M =
9, N = 17

Aperture 33 329 305 289

DOF 67 659 611 451

Uniform
DOF 67 659 611 323

Restricted
arrays Yes Yes Yes No

Max.
sources 33 329 305 161

w(1) 33 1 17 2

w(2) 32 12 16 2

w(3) 31 1 15 2

Array S(2),
N1 = N2 = 17

S(3),
N1 = N2 = 17

S(3), N1 =
16, N2 = 18

Aperture 305 305 305

DOF 611 611 611

Uniform
DOF 611 611 611

Restricted
arrays Yes Yes Yes

Max.
sources 305 305 305

w(1) 1 1 2

w(2) 16 9 8

w(3) 1 2 5
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Figure 4.6: Estimation error as a function of source spacing ∆θ̄ between two
sources. The parameters are SNR = 0dB,K = 500. The sources have equal power
and their normalized DOA are θ̄1 = θ̄0 + ∆θ̄/2 and θ̄2 = θ̄0−∆θ̄/2, where θ̄0 = 0.2.
Each point is an average over 1000 runs.

array with Q = 3, N1 = N2 = 17, and Definition 4.4.1 for the super nested array
with Q = 3, N1 = 16, N2 = 18. More details on these arrays are listed in Table 4.2.

The experiments in this section are conducted as in Chapter 3. Sensor measure-
ments are generated from the model with mutual coupling, as in (3.1). Then, for
ULA, the MUSIC algorithm [150] is applied while for sparse arrays, the spatially
smoothed MUSIC algorithm [87], [124], [125] is utilized to estimate the source di-
rections. Note that no decoupling algorithms are involved. The parameters to be es-
timated are the normalized DOA: θ̄i = (d/λ) sin θi, where d = λ/2 is the minimum
sensor separation, λ is the wavelength, and −π/2 ≤ θi ≤ π/2 is the DOA for the ith
source. To compare the result quantitatively, the root-mean-squared error (RMSE)
is defined asE = (

∑D
i=1 (ˆ̄θi − θ̄i)2/D)1/2,where ˆ̄θi is the estimated normalizedDOA

of the ith source, calculated from the root MUSIC algorithm, and θ̄i is the true nor-
malized DOA.

Two Closely-Spaced Sources
In this example, two closely-spaced sources with equal power are presented. The
parameters are 0 dB SNR, and K = 500 snapshots. The mutual coupling matrix is
based on linear dipole antennas, as in (3.2). We choose the carrier frequency f =

2.4GHz so λ = 0.1249m. The dipole length l = λ/2. The impedance ZA = ZL = 50
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ohms. Two sources are located at θ̄1 = θ̄0+∆θ̄/2 and θ̄2 = θ̄0−∆θ̄/2, where θ̄0 = 0.2.
This experiment is repeated for 1000 runs, yielding 1000 instances of RMSE. In Fig.
4.6(a), the relationship between the source separation∆θ̄ and its RMSE,which is the
sample mean of 1000 RMSE instances, is plotted. Some observations can be made
from Fig. 4.6. First, all sparse arrays show a significant error reduction in almost all
∆θ̄, compared to ULA. It can also be deduced from Fig. 4.6(a) that, as ∆θ̄ increases,
the coprime array becomes slightly better than the second-order super nested array
and the third-order super nested array with evenN1. The third-order super nested
arrays with odd N1 shows the best performance over 0.002 ≤ ∆θ̄ ≤ 0.01 in Fig. 4.6,
among all these array configurations.

Performance Evaluation under Various Parameters
The next simulation considers the performance over various SNR, number of snap-
shots, number of sources, and themutual couplingmatrices. The default parameter
setting is 0 dB SNR,K = 500 snapshots, andD = 20 sources with equal power. The
sources are located at θ̄i = −0.45 + 0.9(i − 1)/(D − 1) for 1 ≤ i ≤ D. It will be
observed from the simulations that the coprime array outperforms the other array
configurations if the number of sources is small and the mutual coupling is small.
The super nested array withQ = 3 and oddN1 exhibits the best performance when
there are many sources and mutual coupling is severe.

In Fig. 4.7(a), the RMSE is plotted as a function of SNR.We see that the super nested
arrays with Q = 3 are the best and ULA is the worst. Fig. 4.7(b) shows the RMSE
versus the number of snapshots K, where the super nested arrays with Q = 3

demonstrate a significant reduction on RMSE. The coprime array becomes more
accurate as the number of snapshots increases, and it works better than the second-
order super nested array whenK is above 200.

The relationship between the RMSE and the number of sourcesD is plotted in Fig.
4.7(c). The coprime array works the best if the number of sources is small. As D
increases, the super nested arrays withQ = 3 own theminimumRMSE. The reason
is, coprime arrays might own the least mutual coupling effect while third-order su-
per nested arrays possess larger uniformDOF. IfD is small, mutual coupling might
be more important than uniformDOF. On the other hand, as the number of sources
gets closer to the theoretical limit, as shown in Table 4.2, the performance wors-
ens for any array. This phenomenon happens sooner in the coprime array (around
D = 30) than in the third-order super nested arrays (around D = 50), since the
coprime array detects at most 161 sources while the third-order super nested arrays
can resolve up to 305 sources.

Fig. 4.8 examines the RMSE of various arrays under various amount of mutual cou-
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Figure 4.7: Estimation error as a function of (a) SNR, (b) the number of snapshots
K, and (c) the number of sources D. The parameters are (a) K = 500, D = 20, (b)
SNR = 0dB, D = 20, and (c) SNR = 0dB,K = 500. The sources have equal power
and normalized DOA θ̄i = −0.45 + 0.9(i− 1)/(D − 1) for 1 ≤ i ≤ D. Each point is
an average over 1000 runs.
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Figure 4.8: Estimation error as a function of mutual coupling coefficient c1 (see Eq.
(3.3)). The parameters are SNR = 0dB,K = 500, and the number of sources (a)
D = 10, (b) D = 20, and (c) D = 40. The sources have equal power and are located
at θ̄i = −0.45 + 0.9(i− 1)/(D − 1) for 1 ≤ i ≤ D. The mutual coupling coefficients
satisfy |c`/ck| = k/`while the phases are randomly chosen from their domain. Each
point is an average over 1000 runs.
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pling effect and different number of sources D = 10, 20, and 40. Note that the
total number of sensors is 34, so D = 40 exceeds the resolution limit of ULA,
as listed in Table 4.2. Here Eq. (3.3) is selected to be our mutual coupling model
with B = 3. Notice that the larger the magnitudes of the mutual coupling coeffi-
cients c1, c2, . . . cB are, the more severe mutual coupling is. In this simulation, we
first parametrize |c1| and then |c2|, . . . , |cB| are obtained from the assumption that
the magnitude of mutual coupling coefficients is inversely proportional to the sen-
sor separation. In each run, the phases of c1, c2, . . . , cB are randomly drawn from
[−π, π), the rootMUSIC algorithm is used to estimate theDOAofD sources, located
at θ̄i = −0.45 + 0.9(i − 1)/(D − 1) for 1 ≤ i ≤ D. Finally the RMSE is evaluated.
Each data point in Fig. 4.8 is the sample mean of 1000 runs.

Some observations can be drawn from Fig. 4.8. First, for any array geometry, as
|c1| increases, the associated RMSE increases. This is reasonable since larger |c1|
introduces more severe mutual coupling effect. Second, array configurations seem
to have a direct impact on the robustness under mutual coupling. Most curves have
turning points, or thresholds, such that the performance starts to become much
worse. Hence larger thresholds imply the associated arrays are more tolerant to
severemutual coupling. Note that this threshold depends on the number of sources
D. For instance, in coprime arrays, the thresholds in |c1| are 0.8, 0.3, and 0.15 for
D = 10, D = 20, and D = 40, respectively. In the super nested array with Q = 2,
the threshold moves from 0.7, to 0.45, to 0.35, as D goes from 10, to 20, to 40. An
interesting observation is that, the super nested array with Q = 3 and odd N1 are
quite robust in the case of severe mutual coupling and many sources.

Another way to interpret Fig. 4.8 is to consider a fixed D and a fixed |c1|. In most
cases, the super nested array withQ = 3 and oddN1 give the minimumRMSE. The
exception occurs in Fig. 4.8(a) whenD = 10 and 0.1 < |c1| < 0.8, where coprime ar-
rays become the best. This result is consistent with that in Fig. 4.7(c), where coprime
arrays work slightly better if the number of sources is small.

4.8 Concluding Remarks
In this chapter, we presented an extension of super nested arrays, called the Qth-
order super nested arrays. These arrays preserve all the properties of nested arrays,
while significantly reducing the effects of mutual coupling between sensors, by de-
creasing the number of sensor pairs with small separation. In the future, it will be
of interest to apply to these arrays the decoupling algorithms developed in earlier
literature for mitigating mutual coupling effects [20], [38], [49], [83], [151], [172],
[199]. This will further improve the detection and estimation performance of these
arrays. Another direction is the extension of linear super nested arrays to the case
of planar arrays, as we will elaborate in Chapter 5.
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C h a p t e r 5

HOURGLASS ARRAYS, AND OTHER NOVEL 2D SPARSE ARRAYS
WITH REDUCEDMUTUAL COUPLING

5.1 Introduction
Planar (2D) arrays find useful applications in beamforming, radar, imaging, and
communications [58], [157], [188]. They can jointly estimate the azimuth and el-
evation of sources [188]. Some well-known 2D array geometries include uniform
rectangular arrays (URA), uniform circular arrays (UCA), and hexangonal arrays,
in which elements are placed uniformly on regular contours [188]. However, these
array configurations usually suffer from significant mutual coupling, resulting in
considerable interferences between sensor outputs [11], [49]. In Chapters 3 and 4,
we proposed the super nested array in 1D, which has many of the good properties
of the nested array, and at the same time achieves reduced mutual coupling. In
this chapter, we will propose several planar arrays with large hole-free difference
coarrays and reduced mutual coupling.

Planar arrays with hole-free difference coarrays (that is, coarrays that are URAs),
are important for several reasons. First, if the coarrays have O(N2) elements, then
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Figure 5.1: The array geometry of (a) open box arrays (OBA) and (b) hourglass
arrays, in units of half of the wavelength (λ/2). Definitions 5.2.3 and 5.6.1 give the
formal description. The parameters areNx = 13 andNy = 19. Red and blue bullets
represent physical sensors while crosses denote empty space.
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O(N2) uncorrelated DOAs can be identified under some restrictions on the DOA
locations [122]1. Second, there is evidence from the literature on 2D arrays [56],
[59] that sparse arrays with hole-free coarrays produce better responses in beam-
forming applications. Finally, when DOA estimation algorithms such as MUSIC
and ESPRIT are used directly on the sparse array, they do not work well, as they
create ambiguities [109], [184]. However, if these algorithms are used on the ULA
or URA part of the coarray domain (e.g., using spatial smoothing), they work very
well [122], [124], [125], [139], [153], [175], [186]. For these reasons, we focus on the
design of 2D sparse arrays with coarrays which are URAs with O(N2) elements.

For 2Darrays, it is desirable to have closed-form sensor locations, large andhole-free
difference coarrays, and less mutual coupling, like 1D super nested arrays. How-
ever, such 2D arrays are not fully explored in the literature. Some existing designs
enjoy closed-form sensor locations with hole-free coarrays, including billboard ar-
rays, 2D nested arrays, and open box arrays (OBA) [51], [56], [59], [121]. Hence,
inspired by [67], one can expect that these 2D sparse arrays could distinguish more
sources than sensors almost surely. Nevertheless, none of them takes the mutual
coupling issue into account.

In this chapter, we will develop some new 2D sparse arrays that decrease mutual
coupling effects inOBA. These novel array configurations include half open box arrays
(HOBA), half open box arrays with two layers (HOBA-2), and hourglass arrays. By redis-
tributing the sensors in OBA systematically, these arrays are guaranteed to have the
same number of sensors as OBA, and to possess hole-free coarrays with enhanced
degrees of freedom (Theorem 5.3.1, 5.4.1, 5.5.1, and 5.6.1), which makes it possible
to detect more sources than sensors. Moreover, it will be shown that the number
of sensor pairs with small spacing (λ/2 and

√
2λ/2) decreases considerably (Table

5.1), indicating that mutual coupling effect decreases significantly.

Fig. 5.1 offers a first glance of (a) OBA and (b) hourglass arrays. The array geometry
for OBA resembles the side view of a box with an open top. The sensor locations for
hourglass arrays resemble an hourglass with two pillars on both sides. The closed-
form sensor locations for these arrays will be shown in Definitions 5.2.3 and 5.6.1,
respectively.

In this example, it can be shown that both arrays have 49 physical sensors and hole-
free coarrays. However, in OBA, there are 12 sensor pairs with separation (λ/2, 0)

and 36 pairs with separation (0, λ/2). On the other hand, in hourglass arrays, there
are only 2 sensor pairs with separation (λ/2, 0) and 8 pairs with spacing (0, λ/2),
which are much smaller than those in OBA. This property makes hourglass arrays

1 For arbitrary source locations, the O(N2) result is not as strong as in the 1D case because iden-
tifiability in 2D can only be guaranteed in an almost sure sense [67].
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more robust to mutual coupling effects, as demonstrated in Section 5.8. All these
properties will be given in depth later.

The chapter outline is as follows. Section 5.2 reviews the data model and several
well-known 2D arrays, like URA, billboard arrays, 2D nested arrays, and OBA. In
Section 5.3, the horizontal segment in OBA is generalized into partially open box ar-
rays (POBA) and half open box arrays (HOBA). Section 5.4 extends POBA to POBA
with L layers (POBA-L) by designing the vertical segments in POBA properly. Sec-
tion 5.5 and 5.6 propose HOBA with two layers (HOBA-2), and hourglass arrays,
respectively, based on the theory developed in Section 5.4. For all these 2D arrays,
the expression for the weight functions with small separations are listed in Section
5.7 with detailed derivation. Section 5.8 demonstrates the superior performance of
the proposed arrays in the presence of mutual coupling while Section 5.9 concludes
this chapter.

For the reader’s convenience, [99] provides a MATLAB function POBA_L.m, which
takes some descriptive parameters of the array as inputs and returns the sensor
locations as outputs. Furthermore, interactive_interface.m offers an interac-
tive panel where users can readily design their array geometries and visualize the
weight functions.

5.2 Preliminaries
The Data Model
Suppose D uncorrelated sources impinge on a 2D array, whose sensors are located
at nd. Here n = (nx, ny) ∈ Z2 is an integer-valued vector and d = λ/2 is the
minimum separation between sensors. The sensor locations n form a set S. The ith
source has complex amplitudeAi ∈ C, azimuthφi ∈ [0, 2π], and elevation θi ∈ [0, π].
If mutual coupling is absent, the sensor output on S can be modeled as

xS =
D∑
i=1

AivS(θ̄i, φ̄i) + nS, (5.1)

where θ̄i = (d/λ) sin θi cosφi and φ̄i = (d/λ) sin θi sinφi are the normalized DOA.
The element of the steering vectorvS(θ̄i, φ̄i) corresponding to the sensor at (nx, ny) ∈
S is exp

[
2π(θ̄inx + φ̄iny)

]
. Signals and noise are assumed to be zero-mean and un-

correlated. That is, E[Ai]=0,E[nS]=0,E[AiA
∗
j ]=piδi,j ,E[nSn

H
S ]=pnI,E[Ain

H
S ]=0,

where pi and pn are the ith source power and the noise power, respectively. δp,q is
the Kronecker delta.

For uncorrelated sources, the covariance matrix of xS can be expressed as

RS = E[xSx
H
S ] =

D∑
i=1

pivS(θ̄i, φ̄i)v
H
S (θ̄i, φ̄i) + pnI. (5.2)
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Vectorizing (5.2) and removing duplicated entries yield the signal on the difference
coarray [87], [108], [124], [125]:

xD =

D∑
i=1

pivD(θ̄i, φ̄i) + pne0, (5.3)

where e0 is a column vector with 〈e0〉(nx,ny) = δnx,0δny ,0. The bracket notation 〈xS〉n
[87] denotes the value of the signal at the support location n ∈ S. For instance, if
S = {(0, 0), (1, 0), (0, 1)} and xS = [4, 5, 6]T , then 〈xS〉(0,0) = 4, 〈xS〉(1,0) = 5, and
〈xS〉(0,1) = 6. D is the difference coarray, which is defined as

Definition 5.2.1 (Difference coarray). For a 2D array specified by S, its difference
coarray D is defined as the differences between sensor locations:

D = {n1 − n2 : n1,n2 ∈ S}.

For example, if S consists of (0, 0), (1, 0), (2, 0), (0, 1), (2, 1), (0, 2), (2, 2), then the dif-
ference coarrayD is composed of integer vectors (mx,my) such that−2 ≤ mx,my ≤
2. The uniform rectangular part of D is denoted by U. In this example, D = U, and
such array is said to have a hole-free coarray. More generally, if the coarray is the set
of all integer vectors within a parallelepiped, we can regard it as hole-free, but we
shall not consider this extension here.

If mutual coupling is present, the data model (5.1) becomes

xS =
D∑
i=1

AiCvS(θ̄i, φ̄i) + nS, (5.4)

where C is the mutual coupling matrix [21], [49], [172], [173]. In this chapter, we
assume that the entries of C can be characterized by [49]

〈C〉n1,n2 =

c(‖n1 − n2‖2), if ‖n1 − n2‖2 ≤ B,

0 otherwise,
(5.5)

where n1,n2 ∈ S denote the sensor locations. Here ‖ · ‖2 is the `2-norm of a vec-
tor and c(·) are the mutual coupling coefficients. It is assumed that c(0) = 1 and
|c(k)/c(`)| = `/k for k, ` > 0 [49], implying that the arrays with larger sensor sep-
arations, like sparse arrays, tend to reduce mutual coupling. To quantify mutual
coupling, we first define the weight function:

Definition 5.2.2 (Weight function). Let a 2D array be specified by S, and let its differ-
ence coarray beD. Theweight functionw(m) is the number of pairs with separation
m ∈ D, i.e.,

w(m) =
∣∣{(n1,n2) ∈ S2 : n1 − n2 = m}

∣∣ .
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The billboard array
Aperture: 12× 12 = 144
w(1, 0) = 12, w(0, 1) = 12,

w(1, 1) = 10, w(1,−1) = 1.
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The 2D nested array
Aperture: 11× 11 = 121
w(1, 0) = 18, w(0, 1) = 18,

w(1, 1) = 9, w(1,−1) = 9.
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The open box array
Aperture: 10× 15 = 150
w(1, 0) = 15, w(0, 1) = 20,

w(1, 1) = 1, w(1,−1) = 1.

(d)

Figure 5.2: Examples of 2D arrays with N = 36 elements. Bullets denote physi-
cal sensors and crosses represent empty space. The minimum separation between
sensors is λ/2.

We will use w(m) and w(mx,my) interchangeably, where m = (mx,my). It was
shown in [92] that, qualitatively, smaller weight functions at small sensor separa-
tions reduce the effect of mutual coupling significantly.

Known Closed-Form 2D Sparse Arrays
In this subsection, we will review some known 2D arrays on rectangular grids with
regular geometries, in Fig. 5.2.

TheURAplacesNxNy sensors on anNy-by-Nx rectangular grid, as demonstrated in
Fig. 5.2(a) for 36 sensors. The billboard array [51] consists of three ULA on a square
aperture (Nx = Ny) and the total number of sensors is 3(Nx − 1), as in Fig. 5.2(b).
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The 2D nested array [121] is depicted in Fig. 5.2(c). In this example, this array is
the cross product of two identical 1D nested arrays with N1 = N2 = 3 (notation
as in [124]) and the number of sensors is (N1 + N2)2. Finally, the open box array
[56] assigns Nx + 2Ny − 2 sensors on the boundaries of a rectangular aperture, as
illustrated in Fig. 5.2(d). The definition of OBA is also given by2

Definition 5.2.3 (Open box arrays, OBA). Let Nx and Ny be positive integers. An
open box array is characterized by the integer set SOBA, defined by

SOBA ={(0, 0), (Nx − 1, 0), (0, Ny − 1), (Nx − 1, Ny − 1)}
∪G1 ∪H1 ∪H2,

where G1 = {(nx, 0) : nx ∈ g1}, H1 = {(0, ny) : ny ∈ h1}, and H2 = {(Nx − 1, ny) :

ny ∈ h2}. Here g1 = {1, 2, . . . , Nx − 2} and h1 = h2 = {1, 2, . . . , Ny − 2}.

Fig. 5.2(d) marks the sets G1, H1, and H2 in rectangles on the bottom, on the left,
and on the right, respectively. Furthermore, the difference coarray of OBA is given
as

DOBA = {(mx,my) ∈ Z2 : −Nx + 1 ≤ mx ≤ Nx − 1,

−Ny + 1 ≤ my ≤ Ny − 1}, (5.6)

which is exactly a uniform rectangular region.

All of the arrays in Fig. 5.2 have 36 physical sensors and hole-free coarrays (D = U).
However, the sizes of difference coarrays are different. The largest |D| is exhibited
by the OBA (651), followed by the billboard array (625), the 2D nested array (529),
and finally the URA (121). Empirically, larger |D| is more likely to offer better spatial
resolution and more resolvable uncorrelated sources, so that in Fig. 5.2, the OBA is
preferred.

Weight functionswith small separations, such asw(1, 0),w(0, 1),w(1, 1), andw(1,−1),
are also listed in Fig. 5.2. Notice that for the arrays mentioned herein, these weights
are not small. For instance, the OBA has w(1, 0) = 15 and w(0, 1) = 20, due to the
dense ULA on the boundaries. It is desirable to reduce w(1, 0), w(0, 1), w(1, 1), and
w(1,−1) simultaneously, so that mutual coupling can be mitigated.

5.3 Generalization of G1 in OBA
In this section, we will develop generalizations of OBA. The reason why we start
with OBA is that, based on Fig. 5.2, they have the largest aperture for the same
number of sensors, leading to the best spatial resolution.

2 In this chapter, the sensor locations are defined formally, as in Definition 5.2.3. This helps to
develop novel array configurations systematically and to compute the sensor locations readily [99].
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Partially Open Box Arrays (POBA)
The main idea of partially open box arrays (POBA) is to redistribute the elements
in the dense ULA, so that the weight functions for small separations decrease. In
this section, we focus on the set G1 ∪ {(0, 0), (Nx − 1, 0)}, i.e., theNx sensors on the
bottom of Fig. 5.2(d). These sensors contribute to the weight function w(1, 0). If we
can relocate some of these sensors, it is possible to reduce w(1, 0).

However, ifwemove these sensors arbitrarily, the difference coarraywould no longer
be hole-free and the estimation performance is degraded. Before we explain how to
keep the difference coarray intact, we consider the following notations: Let SOBA be
an OBAwith sizesNx andNy, as in Definition 5.2.3, and let DOBA, as in (5.6), be the
difference coarray. Assume we select P distinct sensors, located at (np, 0) ∈ SOBA

for p = 1, 2, . . . , P and P < Nx, These sensors are relocated to P distinct locations,
(ap, bp) /∈ SOBA, yielding a new 2D array S′ and its coarray D′. Then we have the
following lemma:

Lemma 5.3.1. DOBA = D′ only if 1 ≤ ap ≤ Nx − 2 and 1 ≤ bp ≤ Ny − 1 for all
p = 1, 2, . . . , P , i.e., only if the new sensor locations are inside the original array
aperture.

Proof. See Appendix 5.A.

We can exculde ap = 0, Nx − 1 or bp = 0 in Lemma 5.3.1, since by assumption,
(ap, bp) /∈ SOBA.

Lemma 5.3.2. DOBA =D′ only if (0, 0) ∈ S′ and (Nx − 1, 0) ∈ S′, where all notations
are as stated before Lemma 5.3.1.

Proof. See Appendix 5.B.

Lemma 5.3.1 and 5.3.2 indicate that for the sensors located on the bottom of OBA,
only those at (n, 0), where 1 ≤ n ≤ Nx − 2, can be redistributed within the original
aperture. For simplicity, we assume all the new sensor locations have y coordinate
Ny − 1, i.e., bp = Ny − 1 for all p in Lemma 5.3.1, which leads to the definition of
POBA:

Definition 5.3.1 (Partially open box arrays, POBA). For two positive integers Nx

and Ny, a partially open box array has the sensor locations defined by the integer
set SPOBA,

SPOBA ={(0, 0), (Nx − 1, 0), (0, Ny − 1), (Nx − 1, Ny − 1)}
∪G1 ∪G2 ∪H1 ∪H2,
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Figure 5.3: Examples of POBA with Nx = 16 and Ny = 11. (a) g1 =
{1, 2, 3, 5, 6, 7, 9, 13}, g2 = {1, 3, 4, 5, 7, 11}, and (b) g1 = g2 = {1, 3, 5, 7, 9, 11, 13}.
In both cases, g2 satisfies Theorem 5.3.1.

where G1 = {(nx, 0) : nx ∈ g1}, G2 = {(nx, Ny − 1) : nx ∈ g2}, H1 = {(0, ny) : ny ∈
h1}, H2 = {(Nx − 1, ny) : ny ∈ h2}. Here g1, g2, h1, and h2 satisfy

1. g1 and g2 are subsets of {1, 2, . . . , Nx − 2}.

2. |g1|+ |g2| = Nx − 2.

3. h1 = h2 = {1, 2, . . . , Ny − 2}.

Note that sample MATLAB codes for POBA and all the proposed array geometries
can be found in [99]. To give some feeling for POBA, let us consider two examples
in Fig. 5.3, where Nx = 16, Ny = 11 and the sets G1, G2, H1, and H2 are marked in
rectangles. Fig. 5.3(a) illustrates the POBA with g1 = {1, 2, 3, 5, 6, 7, 9, 13} and g2 =

{1, 3, 4, 5, 7, 11}, which are subsets of {1, 2, . . . , 14}. Furthermore, |g1|+|g2| = 8+6 =

14 satisfies the second item in Definition 5.3.1. Fig. 5.3(b) also satisfies Definition
5.3.1. The missing elements (crosses) in G1 migrate to the elements (bullets) in G2.
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Next, wewill develop the difference coarray of POBA. The following theorem states
a necessary and sufficient condition under which OBA and POBA share the same
hole-free difference coarray:

Theorem 5.3.1. Consider an open box array and a partially open box array with
the same Nx and Ny, as defined in Definition 5.2.3 and 5.3.1, respectively. Then,
their difference coarrays are identical if and only if {g1, Nx − 1 − g2} is a partition
of {1, 2, . . . , Nx− 2}, i.e., if and only if 1) g1 ∪ (Nx− 1− g2) = {1, 2, . . . , Nx− 2} and
2) g1 and Nx − 1− g2 are disjoint. Here Nx − 1− g2 = {Nx − 1− g : ∀ g ∈ g2}.

Proof. See Appendix 5.C.

Let us consider some examples of Theorem 5.3.1. OBA are special cases of POBA
with g1 = {1, 2, . . . , Nx − 2} and g2 being the empty set, which satisfy Theorem
5.3.1. For POBA in Fig. 5.3, the corresponding g1 and g2 also satisfy Theorem 5.3.1,
so their difference coarrays are hole-free, and the same as DOBA.

Furthermore, Theorem 5.3.1 offers simple and straightforward design methods for
POBAwith hole-free difference coarrays. The first step is to choose g1 to be a subset
of {1, 2, . . . , Nx− 2}. Next, g2 can be uniquely determined since {g1, Nx− 1− g2} is
a partition of {1, 2, . . . , Nx − 2}. Finally, the closed-form sensor locations are given
in Definition 5.3.1. The freedom in the choice of such g1 can be exploited to reduce
mutual coupling effects as explained next.

Half Open Box Arrays (HOBA)
In this subsection, wewill study the half open box array (HOBA), which is a particular
instance of POBA with reduced mutual coupling. This is done by setting g1 and g2

to be ULA with separation 2, so that the weight function w(1, 0) is as small as 2.
HOBA are defined as:

Definition 5.3.2 (Half open box arrays, HOBA). The half open box array with pa-
rameters Nx and Ny is a partially open box array with

g1 = {1 + 2` : 0 ≤ ` ≤ b(Nx − 3)/2c}, (5.7)

g2 = {Nx − 1− 2` : 1 ≤ ` ≤ b(Nx − 2)/2c}. (5.8)

According to (5.7), g1 represents an ULA whose left-most element is 1 and the in-
terelement spacing is 2. It can be shown that (5.7) and (5.8) meet Theorem 5.3.1, so
that the difference coarray of HOBA is the same as that of OBA, and hence, hole-
free. The sensor positions for HOBA can also be obtained from Defintion 5.3.1 and
5.3.2 readily, even for large Nx and Ny.
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Figure 5.4: Examples of POBA-L. Nx = 16,Ny = 11, g1 = g2 = {1, 3, 5, 7, 9, 11, 13}.
(a) h1,1 = {1, 3, 5, 7, 9}, h1,2 = {2, 4, 6, 8}, L = 2, and (b) h1,1 = {1, 2, 4, 6, 8, 9},
h1,2 = {3, 7}, h1,3 = {5}, L = 3.

Fig. 5.3(b) illustrates the HOBA with Nx = 16 and Ny = 11. It can be seen that,
|g1| = |g2| = 7 and the weight functions for Fig. 5.3(b) are listed as follows:

w(1, 0)=2, w(0, 1)=20, w(1, 1)=1, w(1,−1)=1. (5.9)

Compared to the OBA in Fig. 5.2(d), w(1, 0) decreases from 15 to 2 while w(0, 1),
w(1, 1), and w(1,−1) remain the same. To be more precise, the weight functions
w(1, 0), w(0, 1), w(1, 1), w(1,−1) are listed in Table 5.1 and the associated derivation
can be found in Section 5.7. Therefore, the estimation performance forHOBAwould
be better than OBA in the presence of mutual coupling, since the weight function
w(1, 0) for HOBA is significantly smaller.

5.4 Reorganization of H1 and H2 in OBA
In Section 5.3, the set G1 was reorganized into G1 and G2, so that the weight func-
tion w(1, 0) decreases. However, the mutual coupling effect also depends on other
weight functions with small separations, such as w(0, 1), w(1, 1), and w(1,−1). In
this section, we will develop generalizations of H1 and H2 such that the new arrays
are guaranteed to have hole-free coarrays. These generalizations also provide some
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insights to achieve smaller w(0, 1), w(1, 1), and w(1,−1).

To begin with, let us consider HOBA, as shown in Fig. 5.3(b). If we redistribute
the sensors in H1 and H2, it is possible to reduce the weight function w(0, 1). Fig.
5.4 depicts some extensions of HOBA. In Fig. 5.4(a), H1 is split into two layers, H1,1

and H1,2. Such rearrangement eliminates some sensor pairs with separation (0, 1)

in HOBA, like the sensor pair of (0, 2) and (0, 1). Fig. 5.4(b) extends H1 and H2 into
three layers, H1,1, H1,2, H1,3, and H2,1, H2,2, H2,3, respectively. In particular, the
weight functions w(0, 1), w(1, 1), and w(1,−1) are listed as follows:

Fig. 5.3(b): w(0, 1) = 20, w(1, 1) = 1, w(1,−1) = 1,

Fig. 5.4(a): w(0, 1) = 4, w(1, 1) = 9, w(1,−1) = 9,

Fig. 5.4(b): w(0, 1) = 8, w(1, 1) = 5, w(1,−1) = 5.

It can be deduced that the arrays in Fig. 5.4 enjoy smaller w(0, 1) than that in Fig.
5.3(b). Note that smaller w(1, 0) and w(0, 1) are typically more important in mutual
coupling models [92]. Besides, it will be shown later that the arrays in Fig. 5.4 own
hole-free coarrays.

The arrays in Fig. 5.4 generalize the setH1 andH2 into multiple layersH1,` andH2,`.
This concept allows us to define partially open box arrays with L layers (POBA-L) as
follows:

Definition 5.4.1 (Partially open box arrays withL layers, POBA-L). For two positive
integersNx andNy and a positive integer L ≤ Nx/2, a partially open box array with
L layers has the sensor locations defined by the integer set SPOBA-L,

SPOBA-L={(0, 0), (Nx − 1, 0), (0, Ny − 1), (Nx − 1, Ny − 1)}

∪G1 ∪G2 ∪
(

L⋃
`=1

H1,` ∪H2,`

)
,

where G1 = {(nx, 0) : nx ∈ g1}, G2 = {(nx, Ny − 1) : nx ∈ g2}, H1,` = {(`− 1, ny) :

ny ∈ h1,`}, H2,` = {(Nx − `, ny) : ny ∈ h2,`}. Here g1, g2, h1,`, and h2,` satisfy

1. {g1, Nx − 1− g2} is a partition of {1, 2, . . . , Nx − 2}.

2. {h1,`}L`=1 is a partition of {1, 2, . . . , Ny − 2}.

3. h2,` = Ny − 1− h1,` for ` = 1, . . . , L.

The first constraint on g1, g2 is due to Theorem 5.3.1. The second requirement in-
dicates the sets H1,` originate from H1 in POBA. Furthermore, the third condition
enforces h1,` and h2,` to be symmetric to Ny − 1, which will play a crucial role in
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analyzing the difference coarray. Note that, by definition, the number of sensors in
POBA-L is identical to that in OBA.

Now it is clear that the arrays in Fig. 5.3 and Fig. 5.4 all satisfy Definition 5.4.1. They
are characterized by different parameters L, g1, and h1,`. For instance, the HOBA
in Fig. 5.3(b) corresponds to g1 = {1, 3, 5, 7, 9, 11, 13}, L = 1, and h1,1 = {1, . . . , 9}.
The parameters for the arrays in Fig. 5.4 are listed in the caption.

Our next theorem determines a necessary and sufficient condition in terms of h1,`

under which POBA-L have hole-free difference coarrays:

Theorem 5.4.1. Let Nx and Ny be positive integers. Let DPOBA-L be the difference
coarray of a partially open box array with parameters Nx, Ny, and L layers. Let
DOBA be the difference coarray of an open box array with parameters Nx and Ny.
Then DPOBA-L = DOBA if and only if

h1,` ⊆ P`′ and h1,` ⊆ P`′ − (Ny − 1), (5.10)

where P`′ = ∪p+q=`′h1,p ⊕ h1,q for all 2 ≤ `′ ≤ `. Here A⊕B = {a+ b : a ∈ A, b ∈ B}
is the direct sum of A and B.

Proof. See Appendix 5.D.

The importance of Theorem 5.4.1 resides in the following: Since the sets h1,` have
smaller sizes than the 2D array SPOBA-L, it is more tractable to verify (5.10) than to
calculate DPOBA-L directly. Furthermore, if (5.10) is not satisfied, then all the holes
in DPOBA-L can be identified from the 1D sets h1,`, based on the necessity proof of
Theorem 5.4.1. Another advantage is that, we can use (5.10) to design new array
configurations with reduced mutual coupling. By choosing h1,` appropriately, it is
possible to reduce the weight function w(0, 1), w(1, 1), and w(1,−1) systematically.

In Section 5.5 and 5.6, we will propose half open box arrays with two layers and
hourglass arrays, respectively. These arrays not only have simple, closed-form sen-
sor locations but also satisfy Theorem 5.4.1, so that their difference coarrays are
hole-free. The weight functions of these novel array configurations will be summa-
rized in Section 5.7.

5.5 Half Open Box Arrays with Two Layers (HOBA-2)
We now introduce the half open box array with two layers (HOBA-2). This array is
defined by choosing h1,2 to be ULA with separation 2, so that the weight function
w(0, 1) decreases. The formal definition is given as follows:
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Figure 5.5: Examples of HOBA-2. (a) Nx = 16, Ny = 11 and (b) Nx = 16, Ny = 12.

Definition 5.5.1 (Half open box arrayswith two layers, HOBA-2). The half open box
array with two layers is a partially open box array with L = 2 layers, and

g1 = {1 + 2` : 0 ≤ ` ≤ b(Nx − 3)/2c},
g2 = {Nx − 1− 2` : 1 ≤ ` ≤ b(Nx − 2)/2c},

h1,1 = {1 + 2` : 0 ≤ ` ≤ b(Ny − 3)/2c} ∪ {Ny − 2},
h1,2 = {2` : 1 ≤ ` ≤ b(Ny − 3)/2c}.

The sets h2,1 and h2,2 satisfy Definition 5.4.1.

Fig. 5.5 depicts the array geometry of HOBA-2 for (a)Ny = 11 (odd) and (b)Ny = 12

(even). It can be observed that the weight function w(0, 1) becomes smaller than
HOBA with the same Nx and Ny. For instance, for HOBA with Nx = 16 and Ny =

11, w(0, 1) is 20 while the weight function w(0, 1) for HOBA-2, Nx = 16, and Ny =

11, as shown in Fig. 5.5(a), is as small as 4.

The difference coarray for HOBA-2 possess the same difference coarray as OBA, as
indicated in the following theorem:
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Theorem 5.5.1. Half open box arrays with two layers have the same difference coar-
ray as open box arrays.

Proof. According to Theorem 5.4.1, it suffices to show that

h1,2 ⊆ P2 = h1,1 ⊕ h1,1, (5.11)

h1,2 ⊆ P2 − (Ny − 1) = h1,1 ⊕ h1,1 − (Ny − 1). (5.12)

Eq. (5.11) can be proved as follows. Since 1 ∈ h1,1, we have

h1,1 ⊕ h1,1 ⊇ h1,1 + 1 ⊇ {2 + 2` : 0 ≤ ` ≤ b(Nx − 3)/2c}.

Letting `′ = `+ 1 yields

h1,1 ⊕ h1,1 ⊇ {2`′ : 1 ≤ `′ ≤ b(Nx − 3)/2c+ 1} ⊃ h1,2.

Next we will prove (5.12). It can be observed thatNy− 2 ∈ h1,1 wheneverNy is odd
or even. Then we have

h1,1 ⊕ h1,1 − (Ny − 1) ⊇ h1,1 ⊕ {Ny − 2} − (Ny − 1)

⊇ {2` : 0 ≤ ` ≤ b(Ny − 3)/2c} ⊃ h1,2.

This completes the proof.

The mutual coupling effect depends not only on w(0, 1), but also on other weight
functions at small separations, such as w(1, 1) and w(1,−1). For HOBA-2, even
though the weight function w(0, 1) becomes smaller, w(1, 1) and w(1,−1) increase
significantly. For instance, the HOBA with Nx = 16, Ny = 11, as depicted in Fig.
5.3(b), enjoys w(1, 1) = w(1,−1) = 1 while the HOBA-2 and Nx = 16, Ny = 11, as
illustrated in Fig. 5.5(a), owns w(1, 1) = w(1,−1) = 9. Therefore, for HOBA-2, the
reduction in the mutual coupling effect is limited.

5.6 Hourglass Arrays
In this section, we will propose hourglass arrays, which look like hourglasses on the
2D plane. These novel array configurations have the same number of sensors and
the same difference coarray as those in OBA. Therefore, the difference coarrays of
hourglass arrays are hole-free. In addition, the sensor locations can be expressed
in closed form. Most importantly, they possess small weight functions w(1, 0) and
w(0, 1) as well as w(1, 1) and w(1,−1).

To develop some feeling for hourglass arrays, Fig. 5.4(b) demonstrates the hourglass
array withNx = 16 andNy = 11. The sets g1 and g2 are identical to those in HOBA.
There are L = 3 layers. The sensors inH1,1∪H1,2∪H1,3 can be viewed as the unions
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h1,` =



{2p, Ny − 1− 2p : 1 ≤ p ≤ b(Ny − 1)/4c} ∪ {1, Ny − 2} ,
if ` = 1,

{2`− 1, Ny − 2`} ,
if Ny is odd and 2 ≤ ` ≤ L,

{2`− 1, 2bNy/4c − 2`+ 3, 2dNy/4e+ 2`− 4, Ny − 2`},
if Ny is even and 2 ≤ ` ≤ L,

(5.13)

of three ULAs. The first ULA contains (0, 2), (0, 4), (0, 6), (0, 8), the second ULA
is composed of (0, 1), (1, 3), (2, 5), and the third ULA consists of (0, 9), (1, 7), (2, 5).
Notice that the sensor located at (2, 5) is relatively far away from other sensors, since
the distance from (2, 5) to its nearest sensor is

√
5.

The hourglass arrays are formally defined as

Definition 5.6.1 (Hourglass arrays). Let Nx and Ny be positive integers. An hour-
glass array is a partially open box array with L layers where the sets g1 and g2 are
given by

g1 = {1 + 2p : 0 ≤ p ≤ b(Nx − 3)/2c},
g2 = {Nx − 1− 2p : 1 ≤ p ≤ b(Nx − 2)/2c}.

Here the number of layers L is defined as

L =

b(Ny + 1)/4c , if Ny is odd,

bNy/8 + 1c , if Ny is even.
(5.14)

The sets h1,` are given in (5.13) and h2,` = Ny − 1− h1,`.

The MATLAB function POBA_L.m returns the sensor locations of hourglass arrays,
by specifying the parameter Nx, Ny, and the third parameter being ‘hourglass’

[99]. Fig. 5.6 elaborates the array geometry of hourglass arrays for (a) Nx = 15,
Ny = 27 and (b) Nx = 15, Ny = 26. It can be seen from Fig. 5.6(a) that, when Ny

is an odd number, The array configuration, indicated by the bullets as the sensors,
resembles an hourglass. The sets G1,G2,H1,`,H2,` for 2 ≤ ` ≤ L = 7, constitute the
two bulbs in an hourglass. The neck in this hourglass corresponds toH1,7 andH2,7.
The sets H1,1 and H2,1 can be regarded as two pillars. If Ny is an even number, as
shown in Fig. 5.6(b), the array geometry looks like an hourglass (G1,G2,H1,`,H2,`

for 2 ≤ ` ≤ L = 4) with two necks (H1,4,H2,4) and two pillars (H1,1,H2,1).

Note that the number of layers L depends on Ny. According to (5.14), L is approx-
imately Ny/4 if Ny is odd while L is around Ny/8 when Ny is even. Furthermore,
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Figure 5.6: Hourglass arrays with (a) Nx = 15, Ny = 27 and (b) Nx = 15, Ny = 26.
The total number of sensors for (a) and (b) are 67 and 65, respectively.
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L ≤ Nx/2 in the defintion of POBA-L (Defintion 5.4.1). It can be deduced that, for
large Nx and Ny, the aspect ratio Ny/Nx of hourglass arrays should be less than 2

for odd Ny and 4 for even Ny.

The next result characterizes the difference coarray of hourglass arrays:

Theorem 5.6.1. Hourglass arrays own the same difference coarray as open box ar-
rays.

Proof. See Appendix 5.E.

Summarizing, hourglass arrays own closed-form sensor locations and their coar-
rays are identical to those of OBA. Furthermore, it will be shown in the next section
that, the weight functions w(1, 0), w(0, 1), w(1, 1), and w(1,−1) for hourglass ar-
rays are sufficiently small, so that the mutual coupling effect can be significantly
reduced.

5.7 Weight Functions
It is known that the weight functions at small separations are more important for
mutual coupling effects [92]. It is desirable to have sufficiently smallw(1, 0),w(0, 1),
w(1, 1), and w(1,−1). Therefore, in this section, we will study these weight func-
tions for URA, billboard arrays, OBA, HOBA, HOBA-2, and hourglass arrays. A
summary is given in Table 5.1 for convenience. Note that some assumptions on
the first row of Table 5.1 (e.g., Nx ≥ 3 and Ny ≥ 2 for the OBA) are not parts of
the definitions for these arrays. They are introduced in order to have simple and
closed-form expressions for the weight functions.

Consider the weight function w(1, 0) for all these arrays. Asymptotically, w(1, 0)

grows linearly withNxNy for URA. For billboard arrays and OBA, w(1, 0) increases
linearlywithNx. It is noteworthy that, for the proposed array configurations (HOBA,
HOBA-2, and hourglass arrays), the weight function w(1, 0) is fixed to be 2, even if
Nx and Ny are huge.

However, mutual coupling effects also depend on w(0, 1), w(1, 1), and w(1,−1).
According to Table 5.1, hourglass arrays are the only class of arrays for which all
the weight functions, such as w(1, 0), w(0, 1), w(1, 1), and w(1,−1) are significantly
smaller when Nx and Ny are large. This property indicates that hourglass arrays
own the least mutual coupling among all the arrays listed in Table 5.1.

Next, we will justify the expressions for some of the weight functions given in Table
I.
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Table 5.1: Summary on the weight functions

Array URA Billboard OBA

Nx = Ny ≥ 4 Nx ≥ 3,Ny ≥ 2

w(1, 0) Ny(Nx − 1) Nx − 1 Nx − 1

w(0, 1) Nx(Ny − 1) Ny − 1 2(Ny − 1)

w(1, 1) (Nx − 1)(Ny − 1) Nx − 3 1

w(1,−1) (Nx − 1)(Ny − 1) 1 1

Array HOBA HOBA-2 Hourglass arrays

Nx ≥ 4,Ny ≥ 3 Nx ≥ 5,Ny ≥ 5
Nx ≥ 2L+ 1,Ny ≥ 7,
L is defined in (5.14).

w(1, 0) 2 2 2

w(0, 1) 2(Ny − 1)

{
4, ifNy is odd,
6, ifNy is even.

{
8, ifNy is odd,
10, ifNy is even.

w(1, 1) 1

{
Ny − 2, ifNy is odd,
Ny − 3, ifNy is even.


3, ifNy = 7, 8,

5, ifNy = 10 or 2r + 1, r ≥ 4,

7, ifNy = 4r, r ≥ 3,

9, ifNy = 4r + 2, r ≥ 3.

w(1,−1) 1

{
Ny − 2, ifNy is odd,
Ny − 3, ifNy is even.


3, ifNy = 7, 8,

5, ifNy = 10 or 2r + 1, r ≥ 4,

7, ifNy = 4r, r ≥ 3,

9, ifNy = 4r + 2, r ≥ 3.

Derivation to the weight function expressions in HOBA
To evaluate w(1, 0), it suffices to consider the elements whose y coordinates are ei-
ther 0 orNy − 1, due to Definition 5.3.1. SinceNx ≥ 4, g1 and g2 are not empty. It is
obvious that the sensor pair of (1, 0) and (0, 0) contributes to w(1, 0). First consider
Nx to be an odd number. According to (5.7),Nx−2 ∈ g1, so (Nx−1, 0) and (Nx−2, 0)

also contribute to w(1, 0). In this case, the smallest and the largest elements in g2

are 2 andNx − 3, respectively, implying there are no sensor pairs with separation 1

if the y coordinates areNy−1. On the other hand, ifNx is even, the only two sensor
pairs contributing to w(1, 0) are (1, 0), (0, 0) and (1, Ny − 1), (0, Ny − 1).

The weight function w(0, 1) is identical to that in OBA since they share the same
H1 and H2. The weight functions w(1, 1) and w(1,−1) can be calculated as follows:
If Nx is odd, the sensor pairs (Nx − 1, 1), (Nx − 2, 0) and (1, 0), (0, 1) contribute to
w(1, 1) andw(1,−1), respectively. IfNx is even,w(1, 1) andw(1,−1) result from the
sensor pairs (1, Ny−1), (0, Ny−2) and (1, 0), (0, 1), which completes the derivation.
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Derivation to the weight function expressions in HOBA-2
The weight function w(1, 0) is 2 because the sets g1 and g2 in HOBA-2. are exactly
the same as those in HOBA.

Next we will derive the expression for w(0, 1). If Ny is an odd number, it can be
deduced that 1 ∈ h1,1,Ny − 2 ∈ h1,1, andNy − 3 /∈ h1,1.Hence, the four sensor pairs
contributing tow(0, 1) are (0, 1), (0, 0); (0, Ny−1), (0, Ny−2); (Nx−1, 1), (Nx−1, 0);
(Nx − 1, Ny − 1), (Nx − 1, Ny − 2). If Ny is an even number, we have 1 ∈ h1,1,
Ny − 2 ∈ h1,1, and Ny − 3 ∈ h1,1. Apart from the four sensor pairs in the odd case,
the two more pairs are (0, Ny − 2), (0, Ny − 3) and (Nx − 1, 2), (Nx − 1, 1). The
remaining sensor pairs do not add to w(0, 1) since the separations are greater than
1.

The weight function w(1, 1) can be obtained as follows: For w(1, 1), it suffices to
consider the cross differences between H1,1 and H1,2, as well as H2,1 and H2,2. It
can be inferred that the sensor pairs of (1, 2`) ∈ H1,2 and (0, 2(` − 1) + 1) ∈ H1,1

contribute tow(1, 1). In this case, there are |h1,2|pairs. Similar arguments also apply
to the sets H2,1 and H2,2. Next, if Nx is odd, the sensor pair (Nx − 1, 1), (Nx − 2, 0)

also has separation (1, 1). On the other hand, if Nx is even, the sensor pair (1, Ny −
1), (0, Ny − 2) contributes to w(1, 1). Therefore, w(1, 1) becomes

w(1, 1) = 2|h1,2|+ 1 = 2b(Ny − 3)/2c+ 1

=

Ny − 2, if Ny is odd,

Ny − 3, if Ny is even.

The same technique can be used in finding the expression for w(1,−1).

Derivation to the weight function expressions in hourglass arrays
It can be deduced that the weight function w(1, 0) is also 2, since the sets g1 and g2

share the same expression as those in HOBA.

To derive expressions for w(0, 1), consider the following chain of arguments. Since
Ny ≥ 7, we have b(Ny − 1)/4c ≥ 1, so 2 ∈ h1,1 and Ny − 3 ∈ h1,1. As a result, there
exist eight sensor pairs:

(nx, ny + 1), (nx, ny), (5.15)

where nx = 0, Nx − 1, and ny = 0, 1, Ny − 3, Ny − 2, contributing to the weight
function w(0, 1).

For other sensor pairs, the self difference of h1,1 is first analyzed. Consider the fol-
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lowing two sets,

h+
1,1 = {Ny − 1− 2p : 1 ≤ p ≤ b(Ny − 1)/4c},

h−1,1 = {2p : 1 ≤ p ≤ b(Ny − 1)/4c},

which satisfy h1,1 = h+
1,1∪h−1,1∪{1, Ny−2}. The self difference of h1,1 can be decom-

posed into the self differences and the cross differences of h+
1,1, h

−
1,1, and {1, Ny−2}.

Since h+
1,1 and h−1,1 are ULA with spacing 2, for w(0, 1), it suffices to consider the

cross differences between h+
1,1 and h−1,1, defined as

diff(h+
1,1, h

−
1,1) = {a− b : ∀ a ∈ h+

1,1, ∀ b ∈ h−1,1}.

The minimum element in diff(h+
1,1, h

−
1,1) is given by

Ny − 1− 4b(Ny − 1)/4c =



0, if Ny = 4r + 1,

1, if Ny = 4r + 2,

2, if Ny = 4r + 3,

3, if Ny = 4r.

(5.16)

Therefore, ifNy = 4r+ 2, we have 1 ∈ diff(h1,1, h1,1). Similarly, it can be shown that
1 ∈ diff(h2,1, h2,1), since h2,1 = Ny − 1− h1,1.

Next we turn to the self differences of h1,` for 2 ≤ ` ≤ L. If Ny is odd, we will show
that the difference (0, 1) cannot be found in the self difference of h1,`. This statement
can be proved as follows. According to (5.13), the self difference of h1,` is

diff(h1,`, h1,`) = {0,±(Ny + 1− 4`)}.

SinceNy is odd, all the elements indiff(h1,`, h1,`) are evennumbers, so 1 /∈ diff(h1,`, h1,`).

If Ny is even, the self difference of h1,` becomes

diff(h1,`, h1,`) = {0,±(s2 − s1),±(s3 − s1),±(s4 − s1),

±(s3 − s2),±(s4 − s2),±(s4 − s3)},

where s1 = 2`−1, s2 = 2bNy/4c−2`+3, s3 = 2dNy/4e+2`−4, and s4 = Ny−2`, as
indicated in (5.13). It can be shown that s1 < s2 < s3 < s4. Therefore, for w(0, 1), it
suffices to consider the differences between adjacent elements, as discussed in the
following three cases:

1. s2 − s1 = 2bNy/4c − 4`+ 4 is an even number, which cannot be 1.

2. s3− s2 = 2(dNy/4e−bNy/4c) + (4`− 7) is an odd number. If s3− s2 = 1, then
we have

dNy/4e − bNy/4c = 4− 2`. (5.17)
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Table 5.2: Sensor pairs for w(1, 1) with odd Nx

Sensor pairs n1,n2;

Ny = 7
(1, 3), (0, 2); (Nx − 1, 1), (Nx − 2, 0);

(Nx − 1, 4), (Nx − 2, 3);

Ny = 8
(1, 3), (0, 2); (Nx − 1, 1), (Nx − 2, 0);

(Nx − 1, 5), (Nx − 2, 4);

Ny = 10
(1, 3), (0, 2); (1, 6), (0, 5); (Nx − 1, 1), (Nx − 2, 0);
(Nx − 1, 4), (Nx − 2, 3); (Nx − 1, 7), (Nx − 2, 6);

Ny = 2r + 1,
r ≥ 4

(1, 3), (0, 2); (1, Ny − 4), (0, Ny − 5);
(Nx − 1, 1), (Nx − 2, 0); (Nx − 1, 4), (Nx − 2, 3);

(Nx − 1, Ny − 3), (Nx − 2, Ny − 4);

Ny = 4r, r ≥ 3

(1, 3), (0, 2); (1, 2r − 1), (0, 2r − 2);
(1, Ny − 4), (0, Ny − 5); (Nx − 1, 1), (Nx − 2, 0);

(Nx − 1, 4), (Nx − 2, 3); (Nx − 1, 2r+ 1), (Nx − 2, 2r);
(Nx − 1, Ny − 3), (Nx − 2, Ny − 4);

Ny = 4r + 2,
r ≥ 3

(1, 3), (0, 2); (1, 2r − 1), (0, 2r − 2);
(1, 2r + 2), (0, 2r + 1); (1, Ny − 4), (0, Ny − 5);

(Nx − 1, 1), (Nx − 2, 0); (Nx − 1, 4), (Nx − 2, 3);
(Nx − 1, 2r), (Nx − 2, 2r − 1);

(Nx − 1, 2r + 3), (Nx − 2, 2r + 2);
(Nx − 1, Ny − 3), (Nx − 2, Ny − 4);

Since dxe − bxc is 0 if x is an integer and 1 otherwise, the solution to (5.17) is
` = 2 and Ny = 4r for some integer r. That is, if Ny is an integer multiple of
4, there exists a sensor pair in h1,2 with separation 1.

3. s4 − s3 = Ny − 2dNy/4e − 4`+ 4 is an even number.

Similar arguments can be applied to h2,`. The expressions for w(0, 1) in hourglass
arrays can be obtained by combining (5.15), (5.16), and (5.17).

For w(1, 1), we first consider the sensor pairs n1,n2 such that n1 − n2 = (1, 1) for
Ny = 7, 8, 10 and odd Nx, as listed in the first three rows of Table 5.2. Next we will
focus on the remaining cases in Table 5.2.

1. Ny = 2r+ 1 and Nx is an odd number, where r ≥ 4 is an integer: In this case,
L ≥ 2 and b(Ny − 1)/4c ≥ 2. Therefore, we have

{2, 4, Ny − 5, Ny − 3} ⊆ h1,1, (5.18)

{3, Ny − 4} ⊆ h1,2. (5.19)

Due to (5.18) and (5.19), the only five sensor pairs are listed in the fourth rowof
Table 5.2. It can be shown that there do not exist sensor pairs with separation
(1, 1) within H1,` and H2,` for 2 ≤ ` ≤ L.
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2. Ny = 4r and Nx is an odd number, where r ≥ 3 is an integer: In this case, we
know that

L = b4r/8 + 1c ≥ b12/8 + 1c = 2, (5.20)

b(Ny − 1)/4c = b(4r − 1)/4c = r − 1 ≥ 2. (5.21)

Using (5.20) and (5.21) in (5.13) leads to

{2, 4, 2r − 2, 2r + 1, Ny − 5, Ny − 3} ⊆ h1,1, (5.22)

{3, 2r − 1, 2r, Ny − 4} ⊆ h1,2. (5.23)

As a result, the seven sensor pairs contributing to the difference (1, 1) are
shown in the fifth row of Table 5.2.

3. Ny = 4r + 2 and Nx is an odd number, where r ≥ 3 is an integer. Similar to
(5.20) and (5.21), we have L ≥ 2 and b(Ny − 1)/4c = r ≥ 3, implying

{2, 4, 2r − 2, 2r, 2r + 1, 2r + 3,

Ny − 5, Ny − 3} ⊆ h1,1, (5.24)

{3, 2r − 1, 2r + 2, Ny − 4} ⊆ h1,2. (5.25)

Based on (5.24) and (5.25), the nine sensor pairs can be found to be those in
the last row of Table 5.2.

If Nx is an even number, it can be shown that Nx − 2 /∈ g1 and 1 ∈ g2. Therefore
the sensor pair (Nx − 1, 1), (Nx − 2, 0) does not exist. Instead, another sensor pair
(1, Ny−1), (0, Ny−2) contributes tow(1, 1) for evenNx. The remaining sensor pairs
are listed in Table 5.2.

For the weight function w(1,−1), the associated sensor pairs can also be identified
using Table 5.2. Let n1 and n2 be a sensor pair satisfying n1 − n2 = (1, 1). Based
on n1 and n2, we can uniquely construct another sensor pair n′1 and n′2 such that
n′1 − n′2 = (1,−1), as follows:

1. If n1 = (n1x, n1y) ∈ H1,1 and n2 = (n2x, n2y) ∈ H1,2 such that n1−n2 = (1, 1),
then it can be shown that the sensor pair

n′1 = (n1x, Ny − 1− n1y), n′2 = (n2x, Ny − 1− n2y),

satisfies n′1 ∈ H1,1, n′2 ∈ H1,2, and n′1−n′2 = (1,−1). This property holds true
since h1,` is symmetric. Similar arguments apply to n1 = (n1x, n1y) ∈ H2,1

and n2 = (n2x, n2y) ∈ H2,2.
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Figure 5.7: The normalized source directions, as shown in circles, for the examples
in Section 5.8. Here the number of sources D is assumed to be a perfect square,
i.e.,
√
D is an integer. The sources are uniformly located in the shaded region, over

which there are
√
D equally-spaced sources in one way and

√
D equally-spaced

sources in the other.

2. For odd Nx, if n1 = (Nx − 1, 1) and n2 = (Nx − 2, 0), it can be proved that
n′1 = (1, 0) ∈ G1, n′2 = (0, 1) ∈ H1,1, and n′1 − n′2 = (1,−1).

3. For even Nx, if n1 = (1, Ny − 1) and n2 = (0, Ny − 2), then the sensor pair
becomes n′1 = (1, 0) and n′2 = (0, 1).

Therefore, we have w(1,−1) = w(1, 1) in hourglass arrays.

5.8 Numerical Examples
In this section, we will study the DOA estimation performance in the presence of
mutual coupling, for URA, billboard arrays, 2D nested arrays, OBA, HOBA, HOBA-
2, and hourglass arrays. The parameters are chosen to be Nx = Ny = 9 for URA,
Nx = Ny = 28 for billboard arrays, N1 = 4, N2 = 5 for 2D nested arrays, Nx =

29, Ny = 27 for OBA, HOBA, HOBA-2, and hourglass arrays, where the notations
are given in Fig. 5.2 to 5.6. Therefore, the number of physical sensors is fixed to
be 81 for all these arrays. The aperture is 8 × 8 for URA, 27 × 27 for billboard
arrays, 24 × 24 for 2D nested arrays, and 26 × 28 for OBA, HOBA, HOBA-2, as
well as hourglass arrays. There are D, uncorrelated, equal-power sources with
0dB SNR. The number of snapshots K is 200, and the normalized DOAs are illus-
trated in Fig. 5.7, where the number of sources D is assumed to be a square num-
ber. The mutual coupling model is given in (5.5), where c(1) = 0.3, B = 5, and
c(`) = c(1) exp [π(`− 1)/4] /`. The measurements are generated based on (5.4) and
the DOAs are estimated using the 2D unitary ESPRIT algorithm [203] on the finite
snapshot version of the signal on the difference coarray. The root-mean-squared er-
ror is defined asRMSE = ((1/D)

∑D
i=1 (̂̄θi − θ̄i)2 + (̂̄φi − φ̄i)2)1/2, where (θ̄i, φ̄i) and
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(̂̄θi, ̂̄φi) are the true normalized DOA and the estimated normalized DOA of the ith
source, respectively. Note that mutual coupling is present in the measurements but
the 2D unitary ESPRIT algorithm does not take care of mutual coupling. This sce-
nario offers a baseline performance for DOA estimation in the presence of mutual
coupling. It will be shown that the proposed 2D sparse arrays (HOBA, HOBA-2,
and hourglass arrays) are capable of estimating the DOA satisfactorily when mu-
tual coupling is present, even if the DOA estimator does not take into account the
existence of this coupling.

Fig. 5.8(a) shows the estimation performance as a function of SNR. Here the num-
ber of sourcesD = 9. At 0dB SNR, the least RMSE is exhibited by hourglass arrays,
followed by HOBA-2, then HOBA, then billboard arrays, then OBA, then 2D nested
arrays, and finally URA. Note that this result is in accordance with the associated
weight functions, as listed in Table 5.1. Qualitatively, the smaller the weight func-
tions w(1, 0), w(0, 1), w(1, 1), w(1,−1) are, the less the mutual coupling effects are.
The dependence of the RMSE versus the number of snapshots K is plotted in Fig.
5.8(b). It is noteworthy that, in the presence of mutual coupling, hourglass arrays
demonstrate considerable reduction on RMSE using only 40 snapshots.

Fig. 5.9 shows the dependence of the RMSE on the parameter c1 in the mutual cou-
plingmodel. It can be observed that, for any array configuration, the RMSE is small
if c1 is close to 0 (less mutual coupling), and the error starts to increase significantly
above certain thresholds of c1. In Fig. 5.9(a), the number of sources is D = 9. It
can be deduced that the thresholds of c1 are approximately 0.4 for billboard arrays,
0.25 for 2D nested arrays, 0.35 for OBA, 0.3 for HOBA, 0.45 for HOBA-2, and 0.5

for hourglass arrays. This phenomenon indicates that hourglass arrays are more
robust to mutual coupling effects than the others. Fig. 5.9(b) plots the RMSE versus
c1 if the number of sources D = 36. The thresholds of c1 become 0.15 for billboard
arrays, 0.1 for 2D nested arrays, OBA, HOBA, and 0.2 for HOBA-2 and hourglass
arrays, since it is more difficult to resolve 36 sources simultaneously than to resolve
9 sources. Note that, even in the extreme case of D = 36 and c1 = 0.2, hourglass
arrays still enjoy the RMSE as small as 10−3, which is much smaller than those for
URA, billboard arrays, 2D nested arrays, OBA, and HOBA.

Note that the number of sources is much smaller than sensors (9, 36 � 81). It is
conjectured that, 2D sparse arrays might resolve more sources than sensors almost
surely, in the absence of mutual coupling. However, if mutual coupling is present,
this is more challenging, and it will be explored in greater detail in future.
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Figure 5.8: The RMSE as a function of (a) SNR and (b) the number of snapshots
K. The number of sensors is 81 for all arrays. The parameters are (a) K = 200,
the number of sources D = 9 and (b) 0dB SNR, D = 9. The sources directions are
depicted in Fig. 5.7. Each point is averaged from 1000 runs.



124

0 0.2 0.4 0.6 0.8 1

c(1)

10
-4

10
-3

10
-2

10
-1

10
0

R
M
S
E URA

Billboard
Nested
OBA
HOBA
HOBA-2
Hourglass

(a)

0 0.2 0.4 0.6 0.8 1

c(1)

10
-4

10
-3

10
-2

10
-1

10
0

R
M
S
E URA

Billboard
Nested
OBA
HOBA
HOBA-2
Hourglass

(b)
Figure 5.9: The RMSE as a function of the mutual coupling model for (a) the
number of sources D = 9 and (b) D = 36. The number of sensors is 81 for all
arrays. The parameters are 0dB SNR and K = 200. The sources directions are
depicted in Fig. 5.7. The mutual coupling model is characterized by B = 5 and
c(`) = c(1) exp [π(`− 1)/4] /`. Each point is averaged from 1000 runs.



125

5.9 Concluding Remarks
In this chapter, weproposed several generalizations ofOBA, includingPOBA,HOBA,
POBA-L, HOBA-2, and hourglass arrays. These arrays enjoy closed-form sensor lo-
cations, hole-free coarrays, and reduced mutual coupling effects. Our numerical
examples show that, hourglass arrays perform better than the others, in the pres-
ence of mutual coupling.

Note that the hourglass array is one of the array configurations that satisfy Theorem
5.4.1. In the future, it will be of considerable interest to study the array configura-
tions which not only satisfy Theorem 5.4.1 but also own even less mutual coupling
than hourglass arrays.

Appendices
5.A Proof of Lemma 5.3.1
The proof can be divided into four cases:

1. If ap < 0, consider the sensor pair in S′: (Nx − 1, Ny − 1) and (ap, bp). Their
difference is (Nx − 1 − ap, Ny − 1 − bp) /∈ DOBA, since the first coordinate
Nx − 1− ap > Nx − 1.

2. If ap > Nx − 1, for the sensor pair (ap, bp), (0, Ny − 1) ∈ S′, the difference
becomes (ap, bp −Ny + 1) /∈ DOBA because ap > Nx − 1.

3. If bp < 0, we can take the sensor pair of (0, Ny−1) and (ap, bp). The difference
is (−ap, Ny − 1− bp) /∈ DOBA.

4. If bp > Ny − 1, we have the following chain of arguments. Since P < Nx,
there must exist a element (n′, 0) ∈ S′. Then the difference between (ap, bp)

and (n′, 0) is (ap − n′, bp) /∈ DOBA, because bp > Ny − 1.

These arguments show that 0 ≤ ap ≤ Nx − 1 and 0 ≤ bp ≤ Ny − 1 are necessary for
DOBA = D′. Furthermore, since (ap, bp) /∈ SOBA, the necessary condition becomes
1 ≤ ap ≤ Nx − 2 and 1 ≤ bp ≤ Ny − 1, which proves this lemma.

5.B Proof of Lemma 5.3.2
Assume that DOBA = D′. We obtain (Nx − 1, Ny − 1) ∈ DOBA = D′. Due to Lemma
5.3.1, the only sensor pair with this separation is (Nx−1, Ny−1) and (0, 0), implying
(0, 0) ∈ S′. Similar arguments apply to the sensor pair of (Nx−1, 0) and (0, Ny−1),
which proves this lemma.
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5.C Proof of Theorem 5.3.1
Let SOBA and SPOBA be an open box array and a partially open box array, respec-
tively. Their difference coarrays are denoted by DOBA and DPOBA. It is clear that
DPOBA ⊆ DOBA, due to (5.6) and Lemma 5.3.1.

(Sufficiency)Wewill show that if {g1, Nx−1−g2} is a partition of {1, 2, . . . , Nx−2},
then DOBA ⊆ DPOBA. That is, for every m = (mx,my) ∈ DOBA, there exists at least
one sensor pair (n1,n2) ∈ S2

POBA such that n1 − n2 = m. Note that we only need
to check half of the elements in DOBA, since weight functions are symmetric, i.e.,
w(m) = w(−m) [124]. If {g1, Nx − 1 − g2} is a partition of {1, 2, . . . , Nx − 2}, then
{g2, Nx − 1 − g1} is also a partition of {1, 2, . . . , Nx − 2}. Due to this property, we
can identify at least one (n1,n2) pair for any given difference (mx,my), as listed in
Table 5.3, which proves the sufficiency.

(Necessity) If {g1, Nx−1−g2} is not a partition of {1, 2, . . . , Nx−2}, then g1∪ (Nx−
1 − g2) 6= {1, 2, . . . , Nx − 2} or g1 and Nx − 1 − g2 are not disjoint. Now there are
two possible cases: For the first case, if g1 ∪ (Nx− 1− g2) 6= {1, 2, . . . , Nx− 2}, there
must exist n0 ∈ {1, 2, . . . , Nx − 2} such that n0 /∈ g1 and n0 /∈ Nx − 1 − g2, since g1

and g2 are subsets of {1, 2, . . . , Nx − 2} (the first item in Definition 5.3.1). We will
show that, (Nx − 1− n0, 1) /∈ DPOBA.

Suppose there exist (n1,n2) ∈ S2
POBA such that n1 − n2 = (Nx − 1 − n0, 1). This

means the y coordinates of n1 and n2 must differ by 1. According to Definition 5.3.1,
there are only two cases of n1 and n2:

1. If n1 ∈ H2 and n2 ∈ G1, then the difference (Nx − 1 − n0, 1) is achieved only
when n1 = (Nx − 1, 1) and n2 = (n0, 0). We have n1 ∈ H2 but n2 /∈ G1, since
n0 /∈ g1.

2. If n1 ∈ G2 and n2 ∈ H1, then n1 = (Nx− 1−n0, Ny − 1) and n2 = (0, Ny − 2).
We obtain n1 /∈ G2 since n0 /∈ Nx − 1− g2.

For the second case, if g1 andNx−1−g2 are not disjoint, then the size of g1∪ (Nx−
1− g2) can be expressed as

|g1 ∪ (Nx − 1− g2)|
= |g1|+ |Nx − 1− g2| − |g1 ∩ (Nx − 1− g2)|
< |g1|+ |g2| = Nx − 2,

which implies g1 ∪ (Nx − 1 − g2) 6= {1, 2, . . . , Nx − 2}. These arguments complete
the proof.
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Table 5.3: 12 cases in the proof of Theorem 5.3.1

Case mx my

1 0

0
2 ∈ g1

3 ∈ Nx − 1− g2

4 Nx − 1

5 0

1 ≤ my ≤ Ny − 1
6 ∈ Nx − 1− g1

7 ∈ g2

8 Nx − 1

9 0

−Ny + 1 ≤ my ≤ −1
10 ∈ g1

11 ∈ Nx − 1− g2

12 Nx − 1

Case n1 n2

1 (0, 0) ∈ SPOBA (0, 0) ∈ SPOBA

2 (mx, 0) ∈ G1 (0, 0) ∈ SPOBA

3 (Nx − 1, Ny − 1) ∈ SPOBA (Nx − 1−mx, Ny − 1) ∈ G2

4 (Nx − 1, 0) ∈ SPOBA (0, 0) ∈ SPOBA

5 (0,my) ∈ SPOBA (0, 0) ∈ SPOBA

6 (Nx − 1,my) ∈ SPOBA (Nx − 1−mx, 0) ∈ G1

7 (mx, Ny − 1) ∈ G2 (0, Ny − 1−my) ∈ SPOBA

8 (Nx − 1,my) ∈ SPOBA (0, 0) ∈ SPOBA

9 (0, 0) ∈ SPOBA (0,−my) ∈ SPOBA

10 (mx, 0) ∈ G1 (0,−my) ∈ SPOBA

11 (Nx − 1, Ny − 1 +my) ∈ SPOBA (Nx − 1−mx, Ny − 1) ∈ G2

12 (Nx − 1, Ny − 1 +my) ∈ SPOBA (0, Ny − 1) ∈ SPOBA
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Table 5.4: 19 cases in the proof of Theorem 5.4.1

Case mx my n1 n2

1 0 0 (0, 0) ∈ SPOBA-L (0, 0) ∈ SPOBA-L

2 ∈ g1 0 (mx, 0) ∈ G1 (0, 0) ∈ SPOBA-L

3 ∈ Nx − 1− g2 0 (Nx − 1, Ny − 1) ∈ SPOBA-L (Nx−1−mx, Ny−1) ∈ G2

4 Nx − 1 0 (Nx − 1, 0) ∈ SPOBA-L (0, 0) ∈ SPOBA-L

5 −(Nx − 1) Ny − 1 (0, Ny − 1) ∈ SPOBA-L (Nx − 1, 0) ∈ SPOBA-L

6 ∈ −g1 Ny − 1 (0, Ny − 1) ∈ SPOBA-L (−mx, 0) ∈ G1

7 ∈ −(Nx − 1− g2) Ny − 1 (Nx−1+mx, Ny−1) ∈ G2 (Nx − 1, 0) ∈ SPOBA-L

8 0 Ny − 1 (0, Ny − 1) ∈ SPOBA-L (0, 0) ∈ SPOBA-L

9 ∈ Nx − 1− g1 Ny − 1 (Nx − 1, Ny − 1) ∈ SPOBA-L (Nx − 1−mx, 0) ∈ G1

10 ∈ g2 Ny − 1 (mx, Ny − 1) ∈ G2 (0, 0) ∈ SPOBA-L

11 Nx − 1 Ny − 1 (Nx − 1, Ny − 1) ∈ SPOBA-L (0, 0) ∈ SPOBA-L

12 0 < mx < (Nx−1)− (`−1) ∈ h2,` (Nx − `,my) ∈ H2,` (Nx − `−mx, 0) ∈ G1

13 0 < mx < (Nx−1)− (`−1) ∈ h2,` (mx + `− 1, Ny − 1) ∈ G2 (`− 1, Ny − 1−my) ∈ H1,`

14 Nx − ` ∈ h2,` (Nx − `,my) ∈ H2,` (0, 0) ∈ SPOBA-L

15 Nx − k for 1 ≤ k ≤ `− 1 ∈ h2,` (Nx − p,my + r) ∈ H2,p (k − p, r) ∈ H1,k−p+1

16 −(Nx−1)+(`−1) < mx < 0 ∈ h1,` (`− 1,my) ∈ H1,` (`− 1−mx, 0) ∈ G1

17 −(Nx−1)+(`−1) < mx < 0 ∈ h1,` (Nx−`+mx, Ny−1) ∈ G2 (Nx−`,Ny−1−my) ∈ H2,`

18 −(Nx − `) ∈ h1,` (`− 1,my) ∈ H1,` (Nx − 1, 0) ∈ SPOBA-L

19 −(Nx − k) for 1 ≤ k ≤ `− 1 ∈ h1,` (p− 1,my + r) ∈ H1,p
(Nx − (k − p+ 1), r) ∈

H2,k−p+1

For Cases 2, 3, 6, 7, 9, and 10, we assume that {g1, Nx − 1− g2} partitions {1, . . . , Nx − 2}.
For Cases 12 - 19, the parameter ` satisfies 1 ≤ ` ≤ L.
Case 12 assumes thatNx − `−mx ∈ g1.
Case 13 assumes thatmx + `− 1 ∈ g2.
Case 15 assumes that ∃ p ∈ {1, . . . , k} and ∃ r ∈ h1,k−p+1 such thatmy + r ∈ h2,p.
Case 16 assumes that `− 1−mx ∈ g1.
Case 17 assumes thatNx − `+mx ∈ g2.
Case 19 assumes that ∃ p ∈ {1, ..., k} and ∃ r ∈ h2,k−p+1 such thatmy + r ∈ h1,p.

5.D Proof of Theorem 5.4.1
(Sufficiency) The proof of this theorem is similar to that of Theorem 5.3.1. We need
to show that, if {h1,`}L`=1 satisfies (5.10), then for every m = (mx,my) ∈ DOBA, there
existn1,n2 ∈ SPOBA-L such thatn1−n2 = m. It suffices to consider 0 ≤ |mx| ≤ Nx−1

and 0 ≤ my ≤ Ny − 1 since the weight functions satisfy w(m) = w(−m).

For 0 ≤ |mx| ≤ Nx − 1 and 0 ≤ my ≤ Ny − 1, the associated n1 and n2 are summa-
rized into 19 cases in Table 5.4. In particular, some cases are elaborated as follows:

(Case 6, 7, 9, 10) In Case 6 and 7, since {g1, Nx−1−g2} is a partition of {1, . . . , Nx−2},
for −(Nx − 1) < mx < 0 andmy = Ny − 1, the pair (n1,n2) can be identified using
either Case 6 or 7. Similar arguments can be applied to Case 9 and 10.

(Case 12, 13, 16, 17) For 0 < mx < (Nx − 1) − (` − 1) and 0 < my < Ny − 1, it is
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guaranteed that either Case 12 or 13 can be exploited to identify the sensor pair n1

and n2. This is true because {g1, Nx − 1− g2} is a partition of {1, . . . , Nx − 2}, and
{h2,`}L`=1 is a partition of {1, . . . , Ny − 2}. Case 16 and 17 are similar to Case 12 and
13.

(Case 15) In this case, for some p ∈ {1, . . . , k}, if there exists r ∈ h1,k−p+1 such
that my + r ∈ h2,p, then, by definition, it can be deduced that n1 ∈ H2,p and n2 ∈
H1,k−p+1. This sufficient condition is equivalent to

∃ r ∈ h1,k−p+1, ∃ s ∈ h2,p, ∀my ∈ h2,`,

such thatmy + r = s.

Letting s̃ = Ny − 1− s and m̃y = Ny − 1−my yields

∃ r ∈ h1,k−p+1, ∃ s̃ ∈ h1,p, ∀ m̃y ∈ h1,`

such that m̃y = s̃+ r. (5.26)

Eq. (5.26) indicates that, any element in h1,` can be expressed as the sum of an ele-
ment in h1,p and an element in h1,k−p+1. Therefore, we obtain

h1,` ⊆ h1,p ⊕ h1,k−p+1 = (h1,p ⊕ h1,q)|p+q=k+1

⊆
⋃

p̃+q̃=k+1

h1,p̃ ⊕ h1,q̃ = Pk+1, (5.27)

where 2 ≤ k + 1 ≤ `. If (5.10) holds true, then (5.27) also holds true, and so does
(5.26). Therefore, there exist n1 ∈ H2,p and n2 ∈ H1,k−p+1 such that n1 − n2 = m.

(Case 19) The proof of this case is similar to that of Case 15. For some p ∈ {1, . . . , k},
the sufficient condition on the last row of Table 5.4 is equivalent to this statement:

∃ r ∈ h2,k−p+1, ∃ s ∈ h1,p, ∀my ∈ h1,`,

such thatmy + r = s.

Setting r̃ = Ny − 1− r gives

∃ r̃ ∈ h1,k−p+1, ∃ s ∈ h1,p, ∀my ∈ h1,`

such thatmy = s+ r̃ − (Ny − 1).

Similar to (5.27), we have h1,` ⊆ Pk+1 − (Ny − 1). Hence, if (5.10) is satisfied, then
n1 ∈ H1,p and n2 ∈ H2,k−p+1.

(Necessity) This part can be proved by contradiction. If there exists n ∈ h1,` such
that n /∈ P`′ for some `′ ≤ `, then m = (Nx + 1− `′, Ny − 1− n) is a hole in DPOBA-L.
We will show that there do not exist any sensor pairs (n1,n2) ∈ S2

POBA-L such that
n1 − n2 = (Nx + 1 − `′, Ny − 1 − n). Enumerating all possible combinations of
(n1,n2) leads to the following:
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1. If n2 = (0, 0), then n1 = (Nx − (`′ − 1), Ny − 1 − n). According to the x
coordinate of n1, n1 could belong to G1, H2,`′−1, or G2. However, based on
the y coordinate of n1, we have n ∈ h1,`, and Nx − 1− n ∈ h2,`. Furthermore,
since {h2,`}L`=1 is a partition of {1, . . . , Ny − 2}, we have n1 ∈ H2,`. This is a
contradiction.

2. n2 = (Nx − 1, 0), (0, Ny − 1), (Nx − 1, Ny − 1) or n2 ∈ G2. It is evident that
n1 = n2 + m /∈ SPOBA-L.

3. Ifn2 = (nx, 0) ∈ G1, thenn1 = (Nx−(`′−1−nx), Ny−1−n). The y coordinate
of n1 indicates that n1 belongs to H2,`. From the x coordinate of n1, we have
`′−1−nx = `. By definition, `′ ≤ ` and nx ≥ 1 suggest that `′−1−nx ≤ `−2,
causing a contradiction.

4. If n2 = (p − 1, r) ∈ H1,p, then n1 = (Nx − (`′ − p), Ny − 1 + r − n). The x
coordinate of n1 leads to three cases:

a) If n1 ∈ G1, then Ny − 1 + r − n = 0 so r = n − (Ny − 1). Since n ∈ h1,`,
we have 1 ≤ n ≤ Ny − 2 and then −Ny + 2 ≤ r ≤ −1. This statement
contradicts with r ∈ h1,p ⊆ {1, . . . , Ny − 2}.

b) If n1 ∈ G2, from the y coordinate of n1, we obtainNy−1+r−n = Ny−1

so r = n. Since {h1,`}L`=1 is a partition of {1, . . . , Ny−2}, the y coordinate
of n2 = (p − 1, n) implies n2 ∈ H1,`. We obtain p = `. However, the x
coordinate of n1 becomesNx− (`′− p) = Nx + `− `′ ≥ Nx + `− ` = Nx.
Therefore, n1 /∈ G2.

c) If n1 ∈ H2,`′−p, we obtainNy − 1 + r− n ∈ h2,`′−p, which is equivalent to
n− r ∈ h1,`′−p. Since r ∈ h1,p, it can be concluded that

n ∈ h1,`′−p ⊕ h1,p ⊆
⋃

p+q=`′

h1,p ⊕ h1,q = P`′ ,

which contradicts with the assumption n /∈ P`′ .

5. If n2 = (Nx − p, r) ∈ H2,p, then n1 = (2Nx + 1− `′ − p,Ny − 1− n+ r). Since
1 ≤ `′ ≤ ` ≤ L and 1 ≤ p ≤ L, the x coordinate of n1 ranges from 2Nx−2L+1

to 2Nx−1. According to Definition 5.4.1, we have L ≤ Nx/2, so the minimum
value of the x coordinate in n1 is Nx + 1, implying n1 /∈ SPOBA-L.

Second, assume that there exists n ∈ h1,` such that n /∈ P`′ − (Ny − 1) for some
`′ ≤ `. Following the same steps in the previous case, it can be shown that m =

(Nx + 1 − `′,−n) is a hole in the difference coarray D. As a result, the condition
(5.10) is also necessary.
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5.E Proof of Theorem 5.6.1
This theorem is a consequence of Theorem 5.4.1. We will first show that h1,` ⊆
h1,1 ⊕ h1,`′−1 ⊆ P`′ for every `′ and ` in 2 ≤ `′ ≤ ` ≤ L. That is, for every h ∈ h1,`, it
suffices to find n1 ∈ h1,1 and n2 ∈ h1,`′−1 such that h = n1 +n2. According to (5.13),
h can be divided into four cases as follows:

(Case 1) If h = 2`− 1, then n1 and n2 are given by

n1 = 2(`− `′ + 1), n2 = 2(`′ − 1)− 1.

It can be seen that n2 ∈ h1,`′−1. We need to show that n1 ∈ h1,1. Since 2 ≤ `′ ≤ ` ≤ L,
we have

1 ≤ `− `′ + 1 ≤ L− 1.

The upper bound L − 1 can be divided into two cases: If Ny is odd, then L − 1 =

b(Ny−3)/4c ≤ b(Ny−1)/4c. IfNy is even, we obtainL−1 = bNy/8c ≤ b(Ny−1)/4c.
In either cases, n1 ∈ h1,1.

(Case 2) If h = Ny − 2`, it is divided into two cases based on Ny:

1. If Ny is odd, n1 and n2 are given by

n1 = Ny − 1− 2(`+ `′ − 2), n2 = 2(`′ − 1)− 1. (5.28)

It is obvious that n1 is even and n2 ∈ h1,`′−1. Next wewill prove that n1 ∈ h1,1.
since 2 ≤ `′ ≤ ` ≤ L, we have 2 ≤ `+ `′ − 2 ≤ 2L− 2. There are two subcases
according to `+ `′ − 2:

a) If 2 ≤ `+ `′ − 2 ≤ b(Ny − 1)/4c, it can be shown that n1 ∈ h1,1.

b) If b(Ny−1)/4c+1 ≤ `+ `′−2 ≤ 2L−2, then the minimum of n1 is lower
bounded by

n1,min = Ny − 1− 2(2L− 2)

= 4

(
Ny + 1

4
−
⌊
Ny + 1

4

⌋)
+ 2 ≥ 2. (5.29)

The maximum of n1 becomes

n1,max = Ny − 1− 2(b(Ny − 1)/4c+ 1)

= 4× Ny − 1

4
− 2

⌊
Ny − 1

4

⌋
− 2.
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For odd Ny, it can be shown that (Ny − 1)/4 ≤ b(Ny − 1)/4c + 1/2. The
maximum of n1 is upper bounded by

n1,max ≤ 4

(⌊
Ny − 1

4

⌋
+

1

2

)
− 2

⌊
Ny − 1

4

⌋
− 2

= 2

⌊
Ny − 1

4

⌋
. (5.30)

Hence, n1 ∈ h1,1, due to (5.13), (5.29), and (5.30).

2. If Ny is even, the pair (n1, n2) can be written as

n1 = Ny − 2dNy/4e − 2(`+ `′ − 3),

n2 = 2dNy/4e+ 2(`′ − 1)− 4.

It is also true that n2 ∈ h1,`′−1. It suffices to show that n1 ∈ h1,1. Due to even
Ny, the qualtity n1 is even. For 2 ≤ `′ ≤ ` ≤ L, the maximum of n1 is upper
bounded by

n1,max = Ny − 2dNy/4e − 2 ≤ Ny − 2×Ny/4− 2

= 2

(
Ny − 1

4
− 3

4

)
≤ 2

⌊
Ny − 1

4

⌋
,

where the last inequality is due to (Ny − 1)/4 − 3/4 ≤ b(Ny − 1)/4c for even
Ny. On the other hand, the minimum of n1 is given by

n1,min = Ny − 2dNy/4e − 2(2L− 3)

= Ny − 2dNy/4e − 4bNy/8c+ 2.

Since Ny/2 = bNy/4c + dNy/4e and b2xc ≥ 2bxc, the quantity n1,min is lower
bounded by

n1,min = Ny − 2

(
Ny

2
−
⌊
Ny

4

⌋)
− 4

⌊
Ny

8

⌋
+ 2

≥ 2× 2

⌊
Ny

8

⌋
− 4

⌊
Ny

8

⌋
+ 2 ≥ 2.

Therefore, n1 ∈ h1,1 because n1 is an even number between 2 and 2b(Ny −
1)/4c.

(Case 3) If Ny is even and h = 2bNy/4c − 2`+ 3, the pair (n1, n2) becomes

n1 = 2bNy/4c − 2(`+ `′) + 6, n2 = 2(`′ − 1)− 1.

We will again show that n1 ∈ h1,1. Note that n1 is an even number. The maximum
of n1 is bounded by

n1,max = 2bNy/4c − 2 ≤ 2b(Ny − 1)/4c.
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The minimum of n1 is lower bounded by

n1,min = 2bNy/4c − 2L+ 6 = 2bNy/4c − 2bNy/8c+ 4

≥ 2bNy/4c − bNy/4c+ 4 ≥ 4.

The inequality is due to 2bxc ≤ b2xc. Therefore, n1 ∈ h1,1.

(Case 4) If Ny is even and h = 2dNy/4e+ 2`− 4, n1 and n2 are given by

n1 = 2(`− `′ + 1), n2 = 2dNy/4e+ 2(`′ − 1)− 4.

The membership of n1 can be shown as follows: Since 2 ≤ `′ ≤ ` ≤ L, we have

1 ≤ `− `′ + 1 ≤ L− 1 = bNy/8c ≤ b(Ny − 1)/4c,

so that n1 ∈ h1,1. For n2, if `′ ≥ 3, it is clear that n2 ∈ h1,`′−1. If `′ = 2, then n2

becomes

n2 = 2dNy/4e − 2 = 2b(Ny − 1)/4c.

The last equality can be shown by considering two cases: Ny = 4r andNy = 4r+ 2,
where r is an integer. Therefore, n1 ∈ h1,1.

So far we have proved the statement that h1,` ⊆ P`′ for 2 ≤ `′ ≤ ` ≤ L. It is required
to prove h1,` ⊆ P`′ − (Ny − 1). Based on the definition of h1,`, it is evident that these
sets are symmetric. That is, for every h ∈ h1,`, there uniquely exists h′ ∈ h1,` such
that h = Ny − 1−h′. Since h′ ∈ h1,`, there must exist n′1 ∈ h1,1 and n′2 ∈ h1,`′−1 such
that h′ = n′1 + n′2. We obtain

h = Ny − 1− h′ = Ny − 1− n′1 − n′2
= (Ny − 1− n′1) + (Ny − 1− n′2)− (Ny − 1).

It can be deduced thatNy − 1− n′1 ∈ h1,1 andNy − 1− n′2 ∈ h1,`′−1, since these sets
are symmetric. We have h ∈ P`′ − (Ny − 1), which proves this theorem.
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C h a p t e r 6

CRAMÉR-RAO BOUNDS FOR SPARSE ARRAYS, WHICH FIND MORE
SOURCE DIRECTIONS THAN SENSORS

6.1 Introduction
The celebrated Cramér-Rao bound (CRB), which has influenced our thinking for
many decades of statistical signal processing, has found significant use in direction-
of-arrival (DOA) problems, among others [37], [69], [109], [142], [188]. The DOA
problem is of great importance in passive array processing [188], radar [52], [71],
[157], digital communications [50], radio astronomy [58], and other applications
[57], [77], [180]. The CRB offers a lower bound on the variances of unbiased es-
timates of the parameters (e.g., DOA). Closed-form expressions for the CRB offer
insights into the dependence of the array performance with respect to various pa-
rameters such as the number of sensorsN in the array, the array geometry, the num-
ber of sourcesD, the number of snapshots, signal to noise ratio (SNR), and so forth.

Two of the most influential papers in the DOA context are the papers by Stoica and
Nehorai [166] and [167]. These papers distinguish between the deterministic CRB
and the stochastic CRB (reviewed here in Section 6.3), and obtain closed-form ex-
pressions for these. In both cases, the expressions for CRB come from the inversion
of the Fisher information matrix (FIM), which contains information about all the
unknown parameters. An appropriate principal submatrix of this inverse reveals
the CRB of the DOAs, which we denote as CRB(θ̄). In this chapter, we will be espe-
cially interested in the stochastic CRB because the model assumptions used therein
are more appropriate in our context, namely sparse array processing using the dif-
ference coarray (Section 6.3).

The specific CRB expressions given in Eqs. (2.11) and (3.1) of [167] are valid only
when D < N (fewer sources than sensors). This is because the expressions are
based on the inverse of the matrix AHA (e.g., see the equation after (2.11) in [167]),
where A is the so-called array manifold matrix. The assumption D < N is however
not fundamental to the existence of CRB of the DOAparameters because evenwhen
D ≥ N , with proper prior information, the FIM can remain nonsingular (invertible)
under a much broader range of conditions, as we shall prove in this chapter. So it
is possible to get more useful expressions which do not involve (AHA)−1.

The closed-form expressions for CRB(θ̄) given in Eq. (3.1) of [167] assume an ar-
bitrary covariance matrix for the sources. For the case where it is known a priori
that the sources are uncorrelated, it has been shown in a very interesting paper by
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Jansson et al. [66] that the CRB is in general smaller than what one would get if
one substituted a diagonal covariance in the expression (3.1) given in [167]. Closed-
form expressions for CRB(θ̄) for the case of uncorrelated sources are also given in
[66]. The authors mention that it is possible to estimate more sources than sensors
in the case of certain array configurations [66], [130]. However, the detailed con-
ditions under which this is possible are not provided in [66]. Furthermore, all the
examples given in [66] are for the case of uniform linear arrays (ULAs), for which
the number of identifiable sources is less than the number of sensors. Finally, the
inverses of certain matrices are assumed to exist in the CRB expression (13) in [66]
although the conditions under which these inverses exist are not spelt out. In fact,
the appearance ofm− d (i.e.,N −D in our notation) in the denominator Eq. (14) of
[66] makes this expression invalid when N = D.

Most importantly, suppose we are interested in the question “Given an array con-
figuration, what is the upper limit on the number of sources D (in relation to the
number of sensors) such that the expression for CRB(θ̄) is valid?" This is not an-
swered in [66]. One of our contributions here is to give a precise theoretical answer
to such questions. The reason why this is possible is because there are multiple
ways to express the CRB in closed forms, and some of them are more revealing
than others.

The reason for the renewed interest in finding more useful closed-form expressions
for theCRB is the following. For a long time, sparse arrays, such as theminimum re-
dundancy arrays (MRAs) have been known to be able to identify more sources than
sensors (D ≥ N ) [113]. More recently, the development of sparse arrays such as the
nested arrays [124], the coprime arrays [125], [186], and their extensions [92]–[94],
[139], [140], have generated a new wave of interest in this topic. These new arrays
have simple closed-form expressions for array geometry (compared toMRAswhich
do not have this advantage), which makes them more practical than MRAs. The
most essential property of these successful sparse arrays is that, given N sensors,
the difference coarrays of these arrays have O(N2) elements, which allows them to
identify D = O(N2) sources using N sensors. In particular, therefore, D � N is
possible as demonstrated amply in [1], [4], [55], [59], [66], [113], [124], [132], [139],
[175], [177], [186].

It is therefore of great importance to study the performance limits of these sparse
arrays by using standard tools such as the CRB. If we try to do this using the existing
results in the literature, we run into a road block. Either the known closed-form
expressions are not valid whenD ≥ N , or the precise conditions under which they
are valid are not specified. In this context, it isworthmentioning that the pioneering
work by Abramovich et al. many years ago [1] discussed the performances ofMRAs
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by successfully plotting the CRB even for the case ofD ≥ N . The same can be done
today for nested and coprime arrays. However, the theoretical conditions under
which the CRB exists (for the case D ≥ N ) have not been spelt out in the past.

We now summarize the main contributions of this chapter. Starting from the Fisher
information matrix for the case of stochastic CRB with uncorrelated priors, as in
[66], we derive a new closed-form expression for the CRB, specifically for the case
of uncorrelated sources. The new CRB expressions are valid if and only if the FIM
is nonsingular. The condition for the validity of our CRB expression are here ex-
pressed explicitly in terms of the geometry of the difference coarray. Thus, with D
denoting the difference coarray of a linear array, letVD be the arraymanifoldmatrix
defined on this difference coarray. So VD is a |D|×Dmatrix. The number of rows is
the size of difference coarray (which could be O(N2)), and the number of columns
is the number of sources. Now consider the |D| × (2D + 1) matrix

Ac =
[
diag(D)VD VD e0

]
, (6.1)

where diag(D) is a diagonal matrix with D on its diagonals, and e0 is an all zero
vector except for one nonzero element, the location ofwhich depends on the coarray
geometry. We refer to the matrix (6.1) as the augmented coarray manifold matrix
or ACM matrix. The main result is that the FIM is nonsingular if and only if the
ACM matrix Ac has full column rank 2D + 1. We shall refer to this as the rank
condition. To the best of our knowledge, the invertibility of the FIM has not in the
past been characterized in terms of the difference coarray geometry. The proposed
CRB expression holds under this rank condition, and is given by our Eq. (6.40) (to
be proved in Theorem 6.4.2). Thus the specific CRB expression is valid whenever
the FIM is invertible.

The invertibility of FIM, expressed as a rank condition on the ACMmatrix, leads to
a number of further insights as we shall elaborate in this chapter. In short, the rank
condition depends explicitly only on the difference coarray and the DOAs, whereas
the CRB itself depends also on the physical array, the number of snapshots, and the
SNR (Propositions 6.5.1 and 6.5.2 of Section 6.5). We will also see that if the rank
condition on the ACM matrix is satisfied, then CRB(θ̄) converges to zero as the
number of snapshots increases. This is true even for the caseD ≥ N (more sources
than sensors).

Rather surprisingly, the same cannot be said for the SNR. Thus, when the array
manifold matrix VS has full row rank, implyingD ≥ N , we show that if the sources
have identical powers p, then for a fixed number of snapshots, the CRB stagnates
to a constant value as p/pn goes to infinity, where pn is the noise power (Theorem
6.5.2 in Section 6.5). When VS does not have full row rank, we will see that the CRB
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decays to zero for large SNR, under suitable assumptions (Theorem 6.5.1 in Section
6.5). Similar behavior for D ≥ N and D < N was first noticed by Abramovich
et al. in [1] experimentally. Here we elaborate the conditions and find these to be
provable consequences of the specific CRB expression we derive.

Another corollary of our results is that if the central ULA segment in the difference
coarray has length L, then the rank condition on the ACM matrix is indeed satis-
fied as long as D ≤ (L − 1)/2 (Theorem 6.6.1). This is very satisfying because ex-
perimentally it has indeed been observed repeatedly that, methods such as spatial-
smoothing based coarray MUSIC always succeed in identifying the sources in this
case [87], [124], [125], [186].

Yet another outcome of the rank condition is that it is possible to give a precise
bound on the number of sourcesD such that the proposed CRB expression is valid.
In particular, for nested arrays, coprime arrays, and MRAs, the FIM is provably
invertible forO(N2) uncorrelated sources (the exact number depending on the spe-
cific array used, the source locations, and so forth), and therefore the CRB expres-
sion is provably valid for this many sources. Needless to say, our results (the rank
condition and the proposed CRB expression) and the conclusions derived from
them are valid for any linear array, sparse or otherwise, including the redoubtable
ULA.

Chapter outline. In Section 6.2, we introduce the data model and provide a brief re-
view of sparse arrays (minimum redundancy arrays, minimum hole arrays, nested
arrays, coprime arrays, and so on). In Section 6.3, we review some known results on
the CRB, which are necessary for building up new results. The newCRB expression
and the rank condition for its validity are presented in Section 6.4. The implications
of this CRB expression are detailed in Section 6.5 and 6.6. Numerical examples are
given in Section 6.7 to demonstrate the implications of the new results. Details of
some of the proofs are given in Appendices 6.A to 6.D.

As a remark, it is noted that somewhat related results are also reported byKoochakzadeh
and Pal [73] and by Wang and Nehorai [192].

6.2 The Data Model and Sparse Arrays
Recall that the array equation is reviewed in (1.5). In this section, to analyze the
DOA estimation performance based on K independent and identically distributed
snapshots of (1.5), two probability models are commonly considered:

1. The conditional or deterministic model [166]: The complex amplitude [Ai]
D
i=1

is assumed to be unknown but non-random. The noise vector nS is a complex
Gaussian random vector with mean zero and covariance pnI.
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2. The unconditional or stochastic model [167]: [Ai]
D
i=1 is assumed to be a Gaus-

sian randomvectorwithmean zero and covarianceP such that [P]i,j = E[AiA
∗
j ].

nS is a complex Gaussian random vector with mean zero and covariance pnI.
nS and Ai are uncorrelated.

A more detailed description of these models can be found in [165]–[167].

Next, the details of coarray-based DOA estimators are developed as follows. It is
assumed that the sources are uncorrelated and the sensor output xS follows the
stochastic model and (1.5), with an additional constraint that the complex ampli-
tude [Ai]

D
i=1 and the noise term nS have the following distribution:

[A1, A2, . . . , AD]T ∼ CN (0, diag(p1, p2, . . . , pD)) , (6.2)

nS ∼ CN (0, pnI) , (6.3)

where p1, p2, . . . , pD > 0 are the source powers and pn > 0 is the noise power.
The theory of sparse arrays admits one to convert the covariance matrix RS into
the autocorrelation vector xD defined on the difference coarray D. Furthermore,
the concept of the central ULA segment U, the weight function w(m), and their
connections to DOA estimation are reviewed comprehensively in Sections 2.2 and
2.3.

It is known in Sections 2.2 and 2.3 that, in spatial smoothing MUSIC (SS MUSIC)
and coarray MUSIC, the size and the structure of the difference coarray are crucial
to the number of identifiable sources for nested arrays [124] and coprime arrays
[125]. Empirically, the number of identifiable sources can be characterized by the
following propositions:

Proposition 6.2.1 ([124], [125]). If the number of distinct sources D ≤ (|U| − 1)/2,
then SS MUSIC is able to identify these sources for larger number of snapshots.

Proposition 6.2.2 ([120]). If D > (|D| − 1)/2, then it is impossible to identify these
sources using SS MUSIC.

Propositions 6.2.1 and 6.2.2 indicate that the size of D and U plays a crucial role in
the number of identifiable sources. So it is motivating to design the sensor loca-
tions S such that |D| or |U| is large. Several well-known solutions include minimum
redundancy arrays (MRA) [113], minimum hole arrays (MHA) [177], [190], nested
arrays [124], coprime arrays [186], super nested arrays [92]–[94], and many other
variants [9], [15], [23], [25], [41], [61], [65], [84], [120], [139], [148], [149], [153], [154],
[197]. Furthermore, the details ofMRA,MHA, nested array, and coprime arrays can
be found in Section 2.2.
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6.3 Review of Cramér-Rao Bounds
Consider a real-valued random vector x with probability density function (pdf)
p(x;α), where α is a real-valued deterministic parameter vector. Assume that the
pdf p(x;α) satisfies the regularity condition Ex [(∂/∂α) log p(x;α)] = 0, where
Ex[·] indicates that the expectation is over x. The Fisher information matrix (FIM)
I(α) is defined as

[I(α)]i,j = −Ex

[
∂2

∂[α]i∂[α]j
log p(x;α)

]
. (6.4)

It can be shown that the FIM is positive semidefinite [69]. Furthermore, if the FIM
is positive definite, then the FIM is invertible and the Cramér-Rao bound (CRB) is
given by the inverse of the FIM:

CRB(α) = I−1(α), (6.5)

which is also positive definite. The significance of the CRB is that the covariance of
any unbiased estimator is lower bounded by the CRB. Namely, any unbiased estima-
tor α̂(x) for α, based on the observation x, satisfies the following:

Ex

[
α̂(x)α̂(x)T

]
� CRB(α), (6.6)

where A � B is equivalent to A−B being positive semidefinite for two Hermitian
matrices A and B. More details on the FIM and the CRB can be found in [69], [165],
[188].

For the deterministic or conditional CRB model, we useK snapshots of (1.5):

xS(k) =
D∑
i=1

Ai(k)vS(θ̄i) + nS(k), k = 1, 2, . . . ,K. (6.7)

It is assumed that the noise is both spatially and temporally uncorrelated, i.e.,

E[nS(k1)nHS (k2)] = pnIδk1,k2 , (6.8)

while the source amplitudes Ai(k) are deterministic. As a result, the probability
model for the deterministic model withK snapshots becomes

xS(1)

xS(2)
...

xS(K)

 ∼ CN


∑D

i=1Ai(1)vS(θ̄i)∑D
i=1Ai(2)vS(θ̄i)

...∑D
i=1Ai(K)vS(θ̄i)

 , pnI
 , (6.9)

and the parameters to be estimated contain normalized DOAs, source amplitudes
at K snapshots, and the noise power. In particular, the parameter vector αdet for
the deterministic model overK snapshots becomes

αdet = [θ̄i, Re{Ai(k)}, Im{Ai(k)}, pn]T , (6.10)
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where 1 ≤ i ≤ D, 1 ≤ k ≤ K, and the subscript “det” stands for the deterministic
model. The total number of real parameters isD+ 2DK+ 1. According to (6.9), the
deterministic CRB for θ̄ can be expressed as [165], [166]

CRBdet(θ̄) =
pn
2K

{
Re
[(

UH
S Π⊥VSUS

)
� P̂T

]}−1
, (6.11)

where

VS =
[
vS(θ̄1) vS(θ̄2) . . . vS(θ̄D)

]
, (6.12)

US =
[
∂vS(θ̄1)

∂θ̄1

∂vS(θ̄2)

∂θ̄2
. . . ∂vS(θ̄D)

∂θ̄D

]
, (6.13)

P̂ =
1

K

K∑
k=1


A1(k)

A2(k)
...

AD(k)



A1(k)

A2(k)
...

AD(k)


H

, (6.14)

and Π⊥A is as defined in (1.14). Thus VS is the array manifold matrix, and P̂ is the
sample covariance of [A1, A2, . . . , AD]T . Note that a nonsingular P̂ is required for
(6.11) being valid, which in turn requires thatK ≥ D.

The stochastic CRB model [167] also uses K snapshots as in (6.7). It is assumed
that the noise is spatially and temporally uncorrelated, and, in addition, the source
amplitudes are stochastic with mean zero and

E



A1(k1)

A2(k1)
...

AD(k1)



A1(k2)

A2(k2)
...

AD(k2)


H
 = Pδk1,k2 , (6.15)

where [P]i,j = E[AiA
∗
j ]. Thus the probability model for stochastic CRB forK snap-

shots is given by 
xS(1)

xS(2)
...

xS(K)

 ∼ CN
0,


Σ O . . . O

O Σ . . . O
...

... . . . ...
O O . . . Σ


 , (6.16)

where

Σ = VSPVH
S + pnI. (6.17)

In this scenario, the parameter vector αsto is

αsto = [θ̄i, [P]i,i, Re{[P]i,j}, Im{[P]i,j}, pn]T , (6.18)
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where 1 ≤ i ≤ D and i > j. The number of real scalar parameters becomes D +

D2 + 1. This does not depend on K (snapshots) unlike in the deterministic model.
Using (6.16) and (6.18) yields the stochastic CRB expression for θ̄:

CRBsto(θ̄) =
pn
2K

{
Re
[(

UH
S Π⊥VSUS

)
�
(
PVH

S Σ−1VSP
)T ]}−1

, (6.19)

whereVS, US, P, Σ are defined in (6.12), (6.13), (6.15), and (6.17), respectively. Note
that the CRB expression (6.19) does not assume any prior information on the source
covariance matrix P, except that P is nonsingular for the inverse in (6.19) to exist.

In DOA estimation literature, it is often assumed that the sources are uncorrelated
[13], [135], [150]. In such cases, a subtle distinction should bemade depending upon
whether we know apriori the fact that the sources are uncorrelated:

1. If the sources are uncorrelated but this information is not known a priori,
then the CRB can be evaluated from the expression (6.19) with a diagonal P.

2. Otherwise, if the sources are known a priori to be uncorrelated, then the off-
diagonal entries of P are known to be zero. This prior information modifies
the parameter vector α, the FIM I(α), and the CRB expression. Hence, the
CRB expression (6.19) cannot be applied. The closed-formCRB expression for
this scenario was proposed in [66], which will be reviewed next.

The probability model for the stochastic model with uncorrelated sources and K
snapshots (6.7) is given by

xS(1)

xS(2)
...

xS(K)

 ∼ CN
0,


RS O . . . O

O RS . . . O
...

... . . . ...
O O . . . RS


 , (6.20)

where RS is defined in (2.10). The parameters to be estimated are composed of
normalized DOAs θ̄i, source powers pi, and noise power pn, so that the parameter
vector αuncor becomes

αuncor =
[
θ̄i, pi, pn

]T
, (6.21)

where 1 ≤ i ≤ D. It can be seen that the number of real parameters is only 2D + 1

in this case. According to [66], the CRB for θ̄ can be expressed as

CRBuncor(θ̄) =
1

K

(
PDHG

(
GHC̃G

)−1
GHDP

)−1

, (6.22)
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Table 6.1: Summary of several related CRB expressions for DOA estimation1

Deterministic or
Conditional [166]

Stochastic or Unconditional
[167]

[66] and the CRB expression
proposed in this chapter

Number of
sources,D Known (D < |S|) Known (D < |S|)

Known (D < |S| in [66])
(D < |S| orD ≥ |S| in the
proposed CRB expression)

Normalized
DOAs,
{θ̄i}Di=1

Unknown, non-random Unknown, non-random Unknown, non-random

Complex
amplitude
{Ai}Di=1

Unknown, non-random
Unknown, random,

correlated,
[Ai]

D
i=1 ∼ CN (0,P)

Unknown, random,
uncorrelated, [Ai]

D
i=1 ∼

CN (0, diag(p1, . . . , pD))

Noise vector
nS

Unknown, random,
nS ∼ CN (0, pnI)

Unknown, random,
nS ∼ CN (0, pnI)

Unknown, random,
nS ∼ CN (0, pnI)

Distribution
of xS

CN
(∑D

i=1 AivS(θ̄i), pnI
)

CN
(
0,VSPVH

S + pnI
)

CN (0,RS)

Distribution
ofK

snapshots
(6.9) (6.16) (6.20)

Unknown
parameters (6.10) (6.18) (6.21)

Number of
unknown
parameters

D + 2DK + 1 D +D2 + 1 2D + 1

CRB(θ̄) (6.11) (6.19)
(6.22), or

the new expression
proposed in Theorem 6.4.2

1 θ̄=[θ̄1, . . . , θ̄D]T , [P]i,j=E[AiA
∗
j ], VS =[vS(θ̄1), . . . ,vS(θ̄D)], RS =

∑D
i=1 pivS(θ̄i)v

H
S (θ̄i) + pnI.

where

C̃ = (RT
S ⊗RS) +

p2
n

|S| −Dvec(ΠVS)vecH(ΠVS), (6.23)

D = (U∗S ◦VS) + (V∗S ◦US), (6.24)

G is any matrix whose columns span the null space of (V∗S ◦VS)H , and the source
covariance matrix is denoted by P = diag(p1, p2, . . . , pD). VS and US are given in
(6.12) and (6.13), respectively. Eq. (6.22) will be called Jansson et al.’s CRB expres-
sion in this chapter. However, if D = |S|, then the denominator in (6.23) becomes
zero, whichmakes (6.23) and Jansson et al.’s CRB expression (6.22) invalid. Further-
more, if D > |S|, then ΠVS is not well-defined.

Table 6.1 summarizes some CRB expressions along with their model assumptions,
as in [166], [167], and [66]. The deterministic CRB expression [166] and the stochas-
tic CRB expression [167] assume less sources than the number of sensors, namely
D < |S|, while Jansson et al.’s CRB expression [66] implicitly assumes D < |S| so
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that the expression for ΠVS is valid. For the complex amplitude Ai, the determin-
istic CRB expression [166] assumes unknown, non-random Ai, the stochastic CRB
expression [167] supposes unknown, randomAi with mean zero and covariance P,
while Jansson et al.’s CRB expression presumes unknown, random Ai with mean
zero and a diagonal covariance matrix.

The CRB for DOA estimationwith sparse arrays is gaining importance due to recent
developments in coarray-based DOA estimators and sparse array design. An early
work by Abramovich et al. [1] demonstrated numerically that the CRB exhibits two
different behaviors in the regimes D < |S| and D ≥ |S|. For D < |S|, the CRB at
high SNR decays to zero. For D ≥ |S| , the CRB at high SNR tends to saturate to a
non-zero value as SNR increases. Among other results, we will prove both of these
in this chapter (Theorems 6.5.1 and 6.5.2).

The connection between the CRB and the array geometry has been studied in pre-
vious literature. The CRB for single source with azimuth, elevation, and planar
arrays was investigated in [30]. It was observed that the CRB for DOAs is inversely
proportional to the array variance, under suitable assumptions. The CRB for two
sourceswith one-dimensionalDOAprofileswas considered in [184], [185], based on
the deterministic CRB expression, (6.11). It was noted empirically that larger array
aperture helps to reduce the CRB and the array geometry influences the maximum
number of identifiable sources.

Another interestingwork byKoochakzadeh and Pal formulates the DOA estimation
using a predefined DOA grid and sensor perturbation [75], [76]. The DOA grid is
denoted by ϑ1, ϑ2, . . . , ϑNϑ while the perturbation is characterized by δ ∈ R|S|. In
particular, the measurement y(k) originates from the following data model:

y(k) = Agridx(k) + w(k) ∈ C|S|, k = 1, 2, . . . ,K,

where x(k) ∈ CNϑ is the source amplitude on the grid with source powers γi =

E[|[x(k)]i|2]. w(k) is the noise term. Agrid ∈ C|S|×Nϑ is given by [vS(ϑ̄1),vS(ϑ̄2), . . . ,vS(ϑ̄Nϑ)].
In this setting, the parameters to be estimated are the source powers γi and the sen-
sor location perturbation δ. The FIMand theCRB for γiwere also analyzed in detail.

6.4 New Expressions for CRB, Applicable for Sparse Arrays withMore Sources
than Sensors

Remarks on the CRB expressions [66], [166], [167]
We now argue that, among the three CRB expressions: the deterministic CRB ex-
pression [166], the stochastic CRB expression [167], and Jansson et al.’s CRB expres-
sion [66], in Section 6.3, only Jansson et al.’s CRB expression is appropriate when
coarray-based methods are applicable for DOA estimation.
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The deterministic CRB expression [166] is not suitable for coarray-based DOA es-
timators since the assumptions do not match. It is assumed in the deterministic
model that the complex amplitude Ai is deterministic, as summarized in Table
6.1. Coarray-based DOA estimators operate under the condition that sources are
stochastic, as mentioned in (6.2).

The stochastic CRB expression in [167] is incompatible with coarray-based DOA
estimators due to the following:

1. The stochastic CRB expression in [167] is valid ifD < |S|. Hence, it is inappro-
priate to consider the stochastic CRB expression for the regimeD ≥ |S|where
coarray based DOA estimators are usually of interest.

2. The assumptions are different. The stochastic CRB expression in [167] consid-
ers the stochastic model with source covariance P. But it is not known apriori
that the sources are uncorrelated. On the other hand, for coarray-based DOA
estimators, it isknown apriori that sources are uncorrelated, as stated in (6.2).

Finally, Jansson et al.’s CRB expression [66] is applicable to coarray-based DOA esti-
mators. It is because the uncorrelated information is assumed to be known a priori,
which matches the assumptions of coarray-based DOA estimators.

To demonstrate howmuch the uncorrelated prior helps to reduce the CRB, consider
a sensor arraywith S = {0, 1, 4, 6}. Assume there are two equal-power, uncorrelated
sources with normalized DOAs θ̄ = [−0.25, 0.25]T . The number of snapshots K is
500 and the SNR is 0 dB. Substituting these parameters into (6.19) and (6.22) yields

The stochastic CRB expression [167] :

[CRB(θ̄)]1,1 = [CRB(θ̄)]2,2 = 1.809× 10−6, (6.25)

Jansson et al.’s CRB expression [66]:

[CRB(θ̄)]1,1 = [CRB(θ̄)]2,2 = 1.696× 10−6. (6.26)

Thus, Jansson et al.’s CRB (with uncorrelated prior) is less than the stochastic CRB
(without uncorrelated prior).

However, Jansson et al.’s CRB expression has some limitations. First of all, the pre-
cise conditions that Jansson et al.’s CRB expression is valid are not explicitly stated
in [66]. From Jansson et al.’s CRB expression, it is not so easy to study the behavior
of the CRB with respect to the number of snapshots K, the number of sources D,
and the SNR. Furthermore, [66] considers only the ULA and it is not clear from [66]
how sparse arrays, likeMRA, nested arrays, and coprime arrays, influence the CRB.
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Finally, for D = |S|, Jansson et al.’s CRB expression becomes undefined, due to the
appearance of |S| −D in the denominator of (6.23).

In Section 6.4, we will propose a CRB expression that addresses all these issues
raised in the previous paragraph. First, it will be shown that a rank condition on
the augmented coarray manifold (ACM) matrix is necessary and sufficient for the
nonsingular FIM, which leads to a closed-from CRB expression.

The proposed Cramér-Rao bound expression
Consider a random vector x with a complex normal distribution with mean zero
and covariance Σ(α), where α is a real-valued parameter vector. The (p, `)th entry
of the FIM I(α) is given by [164], [165], [167]

[I(α)]p,` = tr

(
Σ−1(α)

∂Σ(α)

∂[α]p
Σ−1(α)

∂Σ(α)

∂[α]`

)
. (6.27)

Setting the probability model to be (6.20) and the parameter vector to be (6.21) re-
sults in

[I(α)]p,` = Ktr

(
R−1

S
∂RS
∂[α]p

R−1
S

∂RS
∂[α]`

)
= K

[
vec

(
∂RS
∂[α]p

)]H (
R−TS ⊗R−1

S

)
vec

(
∂RS
∂[α]`

)
= K

[(
RT

S ⊗RS
)− 1

2
∂rS
∂[α]p

]H [(
RT

S ⊗RS
)− 1

2
∂rS
∂[α]`

]
, (6.28)

since tr(ABCD) = vec(BH)H(AT ⊗ C)vec(D), and (A ⊗ B)−1 = A−1 ⊗ B−1 for
nonsingular A and B [106]. The vector rS is defined as

rS = vec(RS). (6.29)

Eq. (6.28) leads to an expression for the FIM I(α) as follows:

I(α) = K

[
GH

∆H

] [
G ∆

]
(6.30)

=

D D + 1[ ]
D KGHG KGH∆

D + 1 K∆HG K∆H∆

, (6.31)
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where

G =
(
RT

S ⊗RS
)− 1

2

[
∂rS
∂θ̄1

. . . ∂rS
∂θ̄D

]
=
|S|2

D

, (6.32)

∆ =
(
RT

S ⊗RS
)− 1

2

[
∂rS
∂p1

. . . ∂rS
∂pD

∂rS
∂pn

]
= |S|2

D + 1

. (6.33)

It follows from (6.30) that the FIM is positive semidefinite. And ∆H∆ is obviously
positive semidefinite. If the FIM I(α) is nonsingular, then the CRB for the normal-
ized DOAs θ̄ = [θ̄1, . . . , θ̄D]T can be expressed as the inverse of the Schur comple-
ment of the block ∆H∆ of the FIM I(α) [164]

CRB(θ̄) =
1

K

(
GHΠ⊥∆G

)−1
, (6.34)

where Π⊥∆ = I−∆(∆H∆)−1∆H is defined as in (1.14).

An important observation here is that nonsingularity of the FIM is equivalent to
nonsingularity of ∆H∆ and GHΠ⊥∆G :

Lemma 6.4.1. Let F be a positive semidefinite matrix of the form

F =

[
A B

BH D

]
� 0,

where A and D are Hermitian matrices. Then F is nonsingular (invertible) if and
only if D and the Schur complement of D, namely, A−BD−1BH , are both nonsin-
gular.

Proof. The proof can be found in 6.A.

Lemma 6.4.1 can be applied to (6.31). Let F be the FIM I(α), which is positive
semidefinite. The submatrices A = KGHG, B = KGH∆, and D = K∆H∆ so
that the Schur complement of D becomes A − BD−1BH = KGHΠ⊥∆G. Lemma
6.4.1 indicates that the FIM I(α) is nonsingular if and only if ∆H∆ and GHΠ⊥∆G

are both nonsingular.

It is of great interest to simplify the condition that ∆H∆ and GHΠ⊥∆G are both
nonsingular. The following lemmas characterize the necessary and sufficient con-
ditions that ∆H∆ and GHΠ⊥∆G are positive definite, hence nonsingular. For the
following lemma, the reader should recall the triangular bracket notation from Sec-
tion 1.4.
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Lemma 6.4.2. LetVD be the arraymanifoldmatrix defined on the difference coarray
and WD = [VD, e0], where e0 is a column vector satisfying 〈e0〉m = δm,0 form ∈ D.
The triangular brackets 〈·〉 are defined in Section 1.4. Therefore, VD is a |D| × D

matrix while WD has size |D| × (D+ 1). Then ∆H∆ is positive definite if and only
if

rank(WD) = D + 1, (6.35)

i.e., if and only if WD has full column rank.

Proof. The proof can be found in 6.A.

Definition 6.4.1 (ACM matrix). The augmented coarray manifold (ACM) matrix is
defined as

Ac =
[
diag(D)VD WD

]
(6.36)

=

D D 1[ ]
|D|

diag(D)VD VD e0
, (6.37)

where diag(D) is a diagonalmatrixwithD on its diagonals,VD is the arraymanifold
matrix defined on D, and WD = [VD, e0], where e0 is a column vector satisfying
〈e0〉m = δm,0 form ∈ D. The triangular brackets 〈·〉 are defined in Section 1.4.

Lemma 6.4.3. Assume that rank(WD) = D+1 and letAc be the augmented coarray
manifold (ACM) matrix. Then GHΠ⊥∆G is positive definite if and only if

rank(Ac) = 2D + 1, (6.38)

i.e., if and only if the ACMmatrix Ac has full column rank.

Proof. The proof can be found in 6.A.

The significance of Lemma 6.4.2 and Lemma 6.4.3 is that the invertibility of ∆H∆

and GHΠ⊥∆G can be simply characterized by (6.35) and (6.38). Furthermore, these
conditions lead to a necessary and sufficient condition for nonsingular FIMs, as
summarized next:

Theorem 6.4.1. Let Ac be the ACMmatrix, as defined in Definition 6.4.1. Then the
FIM I(α), given in (6.27), is nonsingular if and only if Ac has full column rank, i.e.,
if and only if

rank(Ac) = 2D + 1. (6.39)
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Proof. It follows directly from Lemma 6.4.1, 6.4.2, and 6.4.3.

The next result is that, if the FIM is nonsingular, then the CRB exists and the closed-
form CRB expression is given by the following theorem. The quantity J in this
theorem is defined in Definition 6.B.1 in 6.B.

Theorem6.4.2. LetAc be theACMmatrix, as defined inDefinition 6.4.1. If rank(Ac) =

2D + 1, then the CRB for normalized DOAs θ̄ = [θ̄1, . . . , θ̄D]T can be expressed as

CRB(θ̄) =
1

4π2K

(
GH

0 Π⊥MWDG0

)−1
, (6.40)

where

G0 = M(diag(D))×VD × (diag(p1, p2, . . . , pD)), (6.41)

M =
(
JH(RT

S ⊗RS)−1J
) 1

2 , (6.42)

RS =
D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI, (6.43)

VD =
[
vD(θ̄1) vD(θ̄2) . . . vD(θ̄D)

]
, (6.44)

WD =
[
VD e0

]
. (6.45)

HereK is the number of snapshots,D is the number of sources, pi is the ith source
power, and pn is the noise power.

Recall that, D is the difference coarray, as defined in Definition 2.2.1, and J is given
in Definition 6.B.1 of 6.B. VD is the array manifold matrix on D. e0 is defined in
Lemma 6.4.2. The matrix Π⊥A = I−A(AHA)−1AH is defined in (1.14).

Proof. The proof of this Theorem follows from 6.A, 6.A, (6.76), and (6.34).

Comparison between [1], [66] and the proposed CRB expression
In this subsection, we will include more detailed discussions on the CRB expres-
sions [1], [66] and the proposed CRB expression (Theorem 6.4.2). These expressions
are equivalent under appropriate assumptions.

Abramovich et al. [1] plotted the CRB curves numerically based on the FIM of the
complex normal distribution (6.27) (or (11) in [1]). It is also known a priori that
sources are uncorrelated and there is no assumption on the number of sources. As
a result, their CRB plots should be identical to those from Theorem 6.4.2, for any
choice of parameters. However, Abramovich et al.’s CRB expressions make it diffi-
cult to explain the number of resolvable sources, the behavior of the CRB for large
SNR, and the conditions under which the FIM is nonsingular.
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Jansson et al.’s CRB expressions [66] were derived from (6.34) (or (38) in [66]). Then,
to simplify (6.34) into (6.22), the projection matrix ΠVS = VS(VH

S VS)−1VH
S was

introduced. Note that, if D > |S|, then VH
S VS is singular, so ΠVS and (6.22) are

undefined. However, for certain parameters, if (6.22) is well-defined, then it should
agree with (6.40) in Theorem 6.4.2, since they are both derived from (6.34).

The proposed CRB expressions overcome the limitations of [1], [66], as we shall see
in Section 6.5 and 6.6. Later on, all these CRB expressionswill be compared through
numerical examples in Section 6.7 and Fig. 6.6.

6.5 Conclusions which Follow from Theorem 6.4.2
Theorem 6.4.2 enables us to study various parameters that affect the CRB, such as
the array configuration, the normalized DOAs, the number of snapshots, and the
SNR, as explained next.

Proposition 6.5.1. The rank condition, (6.39), depends only on four factors: the
difference coarray D, the normalized DOAs θ̄, the number of sources D, and e0.
The following parameters are irrelevant to (6.39): The source powers p1, . . . , pD, the
noise power pn, and the number of snapshotsK.

Proposition 6.5.2. TheCRB for θ̄ is a function of the physical array S, the normalized
DOA θ̄, the number of sources D, the number of snapshots K, and the SNR of
sources p1/pn, . . . , pD/pn.

The fact that the CRB depends on the SNRs and not on individual powers can be
proved as follows: If we replace pi and pn with Cpi and Cpn, then RS, M, and G0

change to

R′S =

D∑
i=1

CpivS(θ̄i)v
H
S (θ̄i) + CpnI = CRS,

M′ = (JH((CRS)T ⊗ (CRS))−1J)
1
2 = C−1M,

G′0 = M′(diag(D))VD(diag(Cp1, Cp2, . . . , CpD)) = G0.

Therefore, G′H0 Π⊥M′WD
G′0 = GH

0 Π⊥MWD
G0, implying that the CRB is unchanged if

all the ratios pi/pn are unchanged.

Proposition 6.5.1 characterizes the parameters that affect the singularity of the FIM,
due to Theorem 6.4.1. If two distinct array configurations S1 and S2 have the same
difference coarray D, then for the same DOAs, the ACM matrices are exactly iden-
tical.

Example 1. For instance, consider the nested array with N1 = N2 = 5 and the
second-order super nested array with N1 = N2 = 5. The sensor locations are given
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by [92], [124]:

Snested = {1, 2, 3, 4, 5, 6, 12, 18, 24, 30}, (6.46)

Ssuper nested = {1, 3, 5, 8, 10, 12, 18, 24, 29, 30}. (6.47)

Itwas proved in [92] that their difference coarray are identical, i.e.,Dnested = Dsuper nested =

{−29, . . . , 29}. Hence,

(Ac)nested = (Ac)super nested.

The above equation indicates that for some normalized DOAs θ̄?, if the nested array
(6.46) leads to a singular FIM, then the super nested array (6.47) also results in a
singular FIM for the same θ̄?.

However, two distinct array configurations S1 and S2 with the same difference coar-
ray do not necessarily imply the same CRB. This is because, as in (6.42), the matrix
M = (JH(RT

S ⊗RS)−1J)
1
2 depends on S.

Example 2. To demonstrate, consider the nested array and the super nested array in
(6.46) and (6.47). Let θ̄ = [0.1, 0.2]T , p1 = p2 = pn = 1, and K = 500. Evaluating
(6.40) yields

Nested array:

[CRB(θ̄)]1,1 = [CRB(θ̄)]2,2 = 3.2648× 10−8,

Super nested array:

[CRB(θ̄)]1,1 = [CRB(θ̄)]2,2 = 2.9352× 10−8.

Therefore, theCRBs are indeed different even if the difference coarrays are identical.

Proposition 6.5.3. If rank(Ac) = 2D + 1, then as the number of snapshots K ap-
proaches infinity, CRB(θ̄) converges to zero.

Proof. This follows directly from the expression (6.40).

The following theorems investigate the asymptotic behavior of the CRB for large
SNR. Assume the sources have identical power. It was experimentally noticed in [1]
that for D < |S|, the CRB decays to zero for large SNR while for D ≥ |S|, the CRB
tends to converge to a non-zero value for large SNR. Here we find these phenomena
to be a provable consequence of the proposed CRB expression as given in Theorem
6.4.2.

However, in this chapter, we notice that the conditions D < |S| and D ≥ |S| are
not fundamental to the asymptotic behavior of the CRB for large SNR. Instead, the
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condition that the array manifold matrix VS has full row rank, i.e., rank(VS) = |S|,
is more critical. In the regimeD < |S|, VS does not have full row rank since VS is a
tall matrix. Thus, the asymptotic CRB expression can be specified by the following
theorem:

Theorem 6.5.1. If theD uncorrelated sources have equal SNR p/pn, rank(VS) < |S|,
and rank(Ac) = 2D + 1, then for sufficiently large SNR, the CRB has the following
asymptotic expression which converges to zero as SNR tends to infinity:

CRB(θ̄)
∣∣∣ large SNR
rank(VS)<|S|

=
pn

4π2Kp
S−1, (6.48)

where

S = GH
∞Π⊥M∞WDG∞ +

(GH
∞u)(GH

∞u)H

‖u‖2
, (6.49)

M∞ =
[
JH
[
(UsΛ

−1UH
s )T ⊗ (UnU

H
n ) + (UnU

H
n )T ⊗ (UsΛ

−1UH
s )
]
J
] 1
2 , (6.50)

G∞ = M∞(diag(D))VD, (6.51)

u = (M∞WD)
(
WH

D M2
∞WD

)−1
eD+1, (6.52)

eD+1 = [

D︷ ︸︸ ︷
0, . . . , 0, 1]T . (6.53)

WH
D M2

∞WD and S can be readily shown to be positive definite. The vector u can
be shown to be non-zero.

Here VSV
H
S has eigen-decomposition UsΛUH

s . Us has dimension |S| × rank(VS)

with normalized eigenvectors on its columns. Λ is a rank(VS) × rank(VS) diag-
onal matrix with eigenvalues on its diagonals. The eigen-decomposition of RS is
Us(pΛ + pnI)UH

s + pnUnU
H
n , where Un is orthonormal to Us.

Proof. The proof can be found in 6.C.

It is obvious from (6.48) that, as the SNR approaches infinity, the CRB decays to zero
for D < |S|, which is consistent with the observation in [1].

ForD ≥ |S| andVS being full row rank, the asymptotic CRB expression can be given
by

Theorem6.5.2. If theD uncorrelated sources have equal SNR p/pn,D ≥ |S|, rank(VS) =

|S|, and rank(Ac) = 2D+ 1, then for sufficiently large SNR, the CRB has an asymp-
totic expression which does not decay to zero as SNR tends to infinity. Thus,

CRB(θ̄)
∣∣∣ large SNR
rank(VS)=|S|

=
1

4π2K
S−1, (6.54)
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where

S = GH
∞Π⊥M∞WDG∞,

M∞ = (JH((VSV
H
S )−T ⊗ (VSV

H
S )−1)J)

1
2 ,

G∞ = M∞(diag(D))VD.

Here WH
D M2

∞WD and S can be shown to be positive definite.

Proof. The proof can be found in 6.C.

Theorem 6.5.2 also confirms what was empirically observed in [1], for D ≥ |S|. It
will be demonstrated in Section 6.7 that the proposed CRB expression (6.40) indeed
comes close to the asymptotic values (6.48) and (6.54).

6.6 Connection to the ULA Part of the Coarray
It was observed from Proposition 6.5.1 that the difference coarray D has a direct
impact on the singularity of the FIM. In this section, it will be shown that, if the
difference coarray has certain structure, then the rank condition (6.39) is guaranteed
for any choice of distinct DOAs. This can be regarded as a theoretical justification
of the identifiability observations empirically made in Propositions 6.2.1 and 6.2.2.

Theorem 6.6.1. Let U be the central ULA segment of the difference coarray D, as in
Definition 2.2.2. Let Ac be the ACM matrix. If D ≤ (|U| − 1)/2, then rank(Ac) =

2D + 1, for every θ̄ =
[
θ̄1, θ̄2, . . . , θ̄D

]T such that θ̄i 6= θ̄j for i 6= j.

Proof. The proof can be found in 6.D.

Theorem6.6.1 andProposition 6.5.3 indicate that ifD ≤ (|U|−1)/2, then theCRB ex-
pression approaches zero for large snapshots. This result is consistent with Propo-
sition 6.2.1.

Corollary 6.6.1. IfD > (|D|−1)/2, then for any choice ofD distinct DOAs, we have
rank(Ac) < 2D + 1, and the FIM is singular.

Proof. If D > (|D| − 1)/2, then for any choice of θ̄, the ACM matrix Ac becomes a
fat matrix. This proves the Corollary.

Note that Corollary 6.6.1 explains the observation given in Proposition 6.2.2. Finally,
when

(|U| − 1)/2 < D ≤ (|D| − 1)/2, (6.55)
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Figure 6.1: The dependence of the proposed CRB expression on snapshots for
various numbers of sources D. The array configuration is the nested array with
N1 = N2 = 2 so that the sensor locations are S = {1, 2, 3, 6}. The equal-power
sources are located at θ̄i = −0.49 + 0.9(i− 1)/D for i = 1, 2, . . . , D. SNR is 20 dB.

it is unclear whether the rank condition (6.39) holds true or not. For some choices
of the DOA values, the rank condition (6.39) holds and for some values it does not.
So in the regime (6.55), whether the FIM is nonsingular and whether the CRB exists
depends on the specific values of the DOA.

6.7 Numerical Examples
The proposed CRB expression versus snapshots and SNR
Our first numerical example examines Proposition 6.5.3, Theorem 6.5.1, and Theo-
rem 6.5.2. Consider a nested array with N1 = N2 = 2, so that the sensor locations
S = {1, 2, 3, 6} and the difference coarray becomes D = {−5, . . . , 5}. As a result, the
total number of sensors is 4 while the maximum number of identifiable sources is 5.
The equal-power sources are located at θ̄i = −0.49+0.9(i−1)/D for i = 1, 2, . . . , D.
It can be shown that these parameters indeed satisfy the rank condition (6.39), so
that, the proposed CRB expression is valid.

Fig. 6.1 plots the proposed CRB expression for θ̄1 as a function of snapshots, with
20 dB SNR. It can be observed that this expression is inversely proportional to the
number of snapshotsK, which verifies Proposition 6.5.3. These curves also depend
on the number of sources D. In this specific example, these CRBs increase with
D, which suggests that if there are more sources, it is more difficult to estimate θ̄1

accurately.
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Figure 6.2: The dependence of the proposed CRB expression on SNR for (a) D <
|S| = 4 and (b) D ≥ |S| = 4. The array configuration is the nested array with
N1 = N2 = 2 so that the sensor locations are S = {1, 2, 3, 6}. The equal-power
sources are located at θ̄i = −0.49 + 0.9(i− 1)/D for i = 1, 2, . . . , D. The number of
snapshotsK is 500.
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Fig. 6.2(a) and (b) display the relationship between the proposed CRB expression
and the SNR for 500 snapshots. Fig. 6.2(a) shows that if D < |S| = 4, the CRBs
decrease with the SNR. For D ≥ |S| = 4, the CRBs saturate when the SNR is over
20dB, as indicated in Fig. 6.2(b). These phenomena are consistent with what was
observed experimentally in [1]. Furthermore, the dashed lines in Fig. 6.2(a) and (b)
demonstrate that, for large SNR, the CRBs indeed converge to the asymptotic CRB
expressions, as presented in Theorem 6.5.1 and 6.5.2.

The proposed CRB expression for ULA,MRA, nested arrays, coprime arrays, and
super nested arrays
In the following simulations, consider the following five array configurations: uni-
form linear arrays (ULA) [188], minimum redundancy arrays (MRA) [113], as in
Definition 2.2.10, nested arrays with N1 = N2 = 5 [124], as in (2.7), coprime arrays
with M = 3, N = 5 [186], as in (2.8), and second-order super nested arrays with
N1 = N2 = 5 [92], as in Definition 3.4.1. The sensor locations for these arrays are
given by

SULA = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, (6.56)

SMRA = {0, 1, 3, 6, 13, 20, 27, 31, 35, 36}, (6.57)

Snested = {1, 2, 3, 4, 5, 6, 12, 18, 24, 30}, (6.58)

Scoprime = {0, 3, 5, 6, 9, 10, 12, 15, 20, 25}, (6.59)

Ssuper nested = {1, 3, 5, 8, 10, 12, 18, 24, 29, 30}. (6.60)

In each array, the total number of sensors is 10. The difference coarray is listed as
follows:

DULA = {0,±1, . . . ,±9}, (6.61)

DMRA = {0,±1, . . . ,±36}, (6.62)

Dnested = {0,±1, . . . ,±29}, (6.63)

Dcoprime = {0,±1, . . . ,±17,±19,±20,±22,±25}, (6.64)

Dsuper nested = {0,±1, . . . ,±29}. (6.65)

According to Propositions 6.2.1 and 6.2.2, the identifiability capabilities of coarray
MUSIC are summarized in Table 6.2.

Fig. 6.3 compares the CRB for DOA estimation over ULA, MRA, nested arrays, co-
prime arrays, and super nested arrays if there are fewer sources (D = 3) than sen-
sors (|S| = 10). The equal-power sources are located at θ̄i = −0.49 + 0.99(i− 1)/D

for i = 1, 2, . . . , D, where the number of sources D is 3. According to Table 6.2, all
of these arrays can identify such sources using coarray MUSIC because D < |S|.
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Figure 6.3: The dependence of the proposed CRB on (a) snapshots and (b) SNR
for ULA, MRA, nested arrays, coprime arrays, and super nested arrays. The total
number of sensors is 10 and the sensor locations are given in (6.56) to (6.59). The
number of sources isD = 3 (fewer sources than sensors) and the sources are located
at θ̄i = −0.49 + 0.99(i− 1)/D for i = 1, 2, . . . , D. For (a), the SNR is 20 dB while for
(b) the number of snapshotsK is 500.
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Figure 6.4: The dependence of the proposed CRB on (a) snapshots and (b) SNR
for MRA, nested arrays, coprime arrays, and super nested arrays. The total number
of sensors is 10 and the sensor locations are given in (6.56) to (6.59). The number
of sources is D = 17 (more sources than sensors) and the sources are located at
θ̄i = −0.49 + 0.99(i − 1)/D for i = 1, 2, . . . , D. For (a), the SNR is 20 dB while for
(b) the number of snapshotsK is 500.
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Table 6.2: Identifiable/non-identifiable regions for coarray MUSIC.

Identifiable Cannot judge Non-identifiable

ULA (6.56) 1≤D≤9 - 10≤D

MRA (6.57) 1≤D≤36 - 37≤D

Nested (6.58) 1≤D≤29 - 30≤D

Coprime (6.59) 1≤D≤17 18≤D≤21 22≤D

Super nested (6.60) 1≤D≤29 - 30≤D

Fig. 6.3(a) depicts the CRBs in terms of the number of snapshotsK with 20 dB SNR
while Fig. 6.3(b) shows the dependence of the CRBs on SNR for 500 snapshots. It
can be inferred that, for fixed K and SNR, the least CRB is exhibited by MRA, fol-
lowed by the super nested array, then the nested array, then the coprime array, and
finally ULA. This ranking is consistent with the empirical observation that the esti-
mation error decreases with the increasing size of the difference coarray [1], [113],
[124], [125], [184]. In particular, the size of the difference coarray is 73 for MRA, 59

for the super nested array and the nested array, 43 for the coprime array, and 19 for
ULA.

Fig. 6.4 illustrates theCRB forMRA, nested arrays, coprime arrays, and super nested
arrays if there are more sources (D = 17) than sensors (|S| = 10). The remaining
parameters are identical to those in Fig. 6.3. The least CRB is now enjoyed byMRA,
followed by the nested array, the super nested array, and finally the coprime array.
Note that the CRB for ULA is divergent since the number of sourcesD = 17 resides
in the non-identifiable regime, as indicated in Table 6.2. Another observation is that,
in this example, the coprime array has the largest CRB. It is because the number of
sources D = 17 is the upper limit of the identifiable region for the coprime array,
while the number of identifiable sources for the remaining three arrays is larger
than 17. Hence, the estimation performance for the coprime array is worst among
the others.

The proposed CRB expression versus the number of sources
Next, the maximum number of detectable sources for ULA, MRA, nested arrays,
coprime arrays, and super nested arrays is investigated. The sensor locations for
these arrays are listed from (6.56) to (6.60). The normalized DOAs for D equal-
power sources are θ̄i = −0.49 + 0.99(i− 1)/D for i = 1, 2, . . . , D. The SNR is 20dB
and the number of snapshots is 500. According to Propositions 6.2.1 and 6.2.2, the
identifiability capabilities of coarray MUSIC are summarized in Table 6.2.
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Figure 6.5: The dependence of the proposed CRB on the number of sources D for
various array configurations. The equal-power sources are located at θ̄i = −0.49 +
0.99(i − 1)/D for i = 1, 2, . . . , D. The number of snapshots K is 500 and SNR is 20
dB.

Fig. 6.5 evaluates the proposedCRB expressionwith respect to the number of sources
D for these array configurations. It can be observed that the identifiability, as shown
in Table 6.2, is actually consistent with the proposed CRB expression. Each CRB
curve diverges for D greater than a certain threshold, which can be inferred from
the non-identifiable regimes in Table 6.2. As an example, for the coprime arraywith
1 ≤ D ≤ 17, the associated CRB expressions are small, whichmatch the identifiabil-
ity of coarray MUSIC in Proposition 6.2.1. On the other hand, for D ≥ 22, the CRB
expressions become divergent, which is consistent with non-identifiability of coar-
rayMUSIC (Proposition 6.2.2). In the region 18 ≤ D ≤ 21 which corresponds to the
regime (6.55), the existence or otherwise of CRB is inconclusive. In this example,
the CRB is small but in an example in Section 6.7, we will see that it is divergent.

Fig. 6.5 also elaborates the discussion, given earlier in Section 6.5, on the associated
CRB expression for two sparse arrays S1 and S2 with the same difference coarray D.
Consider the CRBs for the nested array and the super nested array. It can be seen
that both CRBs are convergent for 1 ≤ D ≤ 29 and divergent forD ≥ 30, even if the
physical array configurations are different. This behavior is truly compatible with
the discussion in Section 6.5.



160

(a)

0 5 10 15 20 25 30

Number of sources D

10
-10

10
-5

10
0

10
5

10
10

10
15

C
R
B
(θ̄

1
)

(b)

0 5 10 15 20 25 30

Number of sources D

10
-10

10
-5

10
0

10
5

10
10

10
15

C
R
B
(θ̄

1
)

(c)

0 5 10 15 20 25 30

Number of sources D

10
-10

10
-5

10
0

10
5

10
10

10
15

C
R
B
(θ̄

1
)

(d)

0 5 10 15 20 25 30

Number of sources D

10
-10

10
-5

10
0

10
5

10
10

10
15

C
R
B
(θ̄

1
)

Figure 6.6: The CRB expressions versus the number of sources D for a coprime
array. (a) The stochastic CRB expression [167], (b) the CRB which is evaluated nu-
merically by Abramovich et al. [1], (c) Jansson et al.’s CRB expression [66], and
(d) the proposed CRB expression, as in Theorem 6.4.2. The coprime array with
M = 3, N = 5 has sensor locations as in (6.59) and the difference coarray as in
(6.64). The number of sensors |S| = 10. The equal-power sources are located at
θ̄i = −0.48 + (i − 1)/D for i = 1, 2, . . . , D. The number of snapshots K is 500 and
SNR is 20 dB.
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Comparison between the well-known CRB expressions and the proposed ex-
pression
In this subsection, the coprime array withM = 3, N = 5 is considered, where the
sensor locations are given in (6.59). The SNR is 20dB and the number of snapshots
is K = 500. The sources have normalized DOAs θ̄i = −0.48 + (i − 1)/D for i =

1, 2, . . . , D, which is different from those in Section 6.7.

Fig. 6.6 depicts several different CRB expressions: (a) the stochastic CRB expression
of [167], (b) the CRB which is evaluated numerically by Abramovich et al. [1], (c)
Jansson et al.’s CRB expression [66], and (d) the proposed CRB expression, as in
Theorem 6.4.2. First of all, the stochastic CRB expression of [167] is valid only when
D < |S|, as discussed in Section 6.4. Hence, it cannot be used to derive conclusions
about identifiability in the regime D ≥ |S|. This is indeed seen in Fig. 6.6(a) where
the CRB of [167] diverges for D ≥ |S| = 10, even though this is still an identifiable
regime according to Table 6.2.

Abramovich et al.’s CRB expression, in Fig. 6.6(b), is calculated numerically from
the FIM. Jansson et al.’s CRB expression, as shown in Fig. 6.6(c), is consistent with
the identifiable and non-identifiable regions in Table 6.2, except forD = |S| = 10. It
is because the appearance of |S| −D in the denominator of (6.23) makes the whole
expression invalid. Furthermore, if D > |S| = 10, even though ΠVS is undefined,
we still calculate Jansson et al.’s CRB expression (6.22) numerically and it resembles
the plot given in Fig. 6.6(b).

Finally, the newly proposed CRB expression (6.40), as plotted in Fig. 6.6(d), fully
agrees with Jansson et al.’s CRB expression for D < |S| = 10 and Abramovich
et al.’s for any D. Unlike Jansson et al.’s expression, the new expression can also
be evaluated for D = |S| = 10. Furthermore, the proposed CRB expression is in
agreement with the identifiablity results for everyD in Table 6.2. This example also
justifies the relations among Abramovich et al.’s, Jansson et al.’s, and the proposed
CRB expression, as discussion in Section 6.4.

Note that in the example, the proposed CRB expression becomes divergent at D =

18, as seen in Fig. 6.6(d). It is because the rank of the ACMmatrix is 35 < 2D+ 1 =

37, which violates the rank condition (6.39). Hence, these particular DOAs lead to
a singular FIM, as stated in Theorem 6.4.1. This example also shows that, in the
“unknown” region of Table 6.2, which is 18 ≤ D ≤ 21, the FIM could be singular or
nonsingular, depending on the DOAs.

6.8 Concluding Remarks
In this chapter, we derived a new expression for the CRB of DOA estimates us-
ing linear arrays. The expression is especially useful in the case of sparse arrays
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such as nested arrays, coprime arrays, or MRAs, which can identify many more
sources than the number of sensors. The conditions for validity of the expression
are expressed in terms of the rank of an augmented coarray manifold matrix. The
expression is valid for up toO(N2) sources whereN is the number of sensors. The
precise details depend on the array configuration. We found that considerable in-
sights regarding the behavior of sparse arrays can be gained from these expressions.
All results were derived for uncorrelated sources, and only the estimation of source
DOAs were considered, and not the source powers. In the future, it will be of in-
terest to extend the results of this chapter to the case where source powers are also
parameters of interest. Extension to correlated sources will be of future interest as
well.

Appendices
6.A Derivation to the Proposed CRB Expression
Connection to the difference coarray
To simplify the CRB, it can be inferred from (6.29) that

rS = vec

(
D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI

)

=
D∑
i=1

pivec
(
vS(θ̄i)v

H
S (θ̄i)

)
+ pnvec(I)

=
D∑
i=1

piv
∗
S(θ̄i)⊗ vS(θ̄i) + pnvec(I), (6.66)

since vec(abT ) = b ⊗ a [106]. It is useful to express v∗S(θ̄i) ⊗ vS(θ̄i) in terms of the
difference coarray manifold vector vD(θ̄i) using a matrix J as follows:

v∗S(θ̄i)⊗ vS(θ̄i) = JvD(θ̄i). (6.67)

The appropriate matrix J for this is given in 6.B. It is shown in 6.B that J has full
column rank, which leads to the following corollary:

Corollary 6.A.1. JH(RT
S ⊗RS)−1J is positive definite. Therefore, it has a positive

definite square root M =
(
JH(RT

S ⊗RS)−1J
) 1

2 .

Proof. Since p1, . . . , pD, pn > 0, RS and RT
S are both positive definite, implying

(RT
S ⊗ RS)−1 is also positive definite [106]. Hence, JH(RT

S ⊗ RS)−1J is positive
definite [60], [106].
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Proposition 6.B.2 and Corollary 6.B.1, both given later in 6.B, simplify (6.66) as

rS = JxD = J (VDp + pne0) = JWD

[
p

pn

]
, (6.68)

VD =
[
vD(θ̄1) vD(θ̄2) . . . vD(θ̄D)

]
= |D|

D

, (6.69)

WD =
[
VD e0

]
=
|D|

D + 1

, (6.70)

and p = [p1, p2, . . . , pD]T .

Proof of Lemma 6.4.1
(Sufficiency) If D is nonsingular, F can always be decomposed as [60], [106], [187]
[181, Problem A.18]

F =

[
A B

BH D

]
(6.71)

=

[
I BD−1

0 I

][
A−BD−1BH 0

0 D

][
I 0

D−1BH I

]
. (6.72)

Taking the determinant on both sides of (6.72) leads to

det(F) = det(A−BD−1BH) det(D). (6.73)

If A−BD−1BH is also nonsingular, then det(A−BD−1BH) 6= 0 and det(F) 6= 0.
Hence, F is nonsingular.

(Necessity) Suppose D is nonsingular and A−BD−1BH is singular. Then det(A−
BD−1BH) = 0. Eq. (6.73) becomes det(F) = 0 hence F is singular.

IfD is singular, then det(D) = 0. It iswell-known that aHermitianmatrix is positive
definite if and only if all the leading principal minors are positive [181, Fact A.6.3].
Since det(D) is a leading principal minor, it follows trivially that F is not positive
definite. This concludes the proof.

Proof of Lemma 6.4.2
(Sufficiency)According to (6.33) and (6.68),∆H∆ = WH

D JH(RT
S⊗RS)−1JWD. Since

rank(WD) = D + 1, it follows from Corollary 6.A.1 that ∆H∆ is positive definite.

(Necessity) If rank(WD) < D + 1, then there exists a non-zero vector u such that
WDu = 0. It can be deduced that

uH(∆H∆)u=(WDu)HJH(RT
S ⊗RS)−1J(WDu)=0,

implying that ∆H∆ is not positive definite.
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GHΠ⊥∆G

4π2

= PHVH
D (diag(D))H

×
[
JH(RT

S ⊗RS)−
1
2 Π⊥

(RT
S ⊗RS)−

1
2 JWD

(RT
S ⊗RS)−

1
2 J

]
(diag(D))VDP

= PHVH
D (diag(D))H

×
[
MHM−MH(MWD)

[
(MWD)H(MWD)

]−1
(MWD)HM

]
× (diag(D))VDP

= GH
0 Π⊥MWDG0, where G0 = M(diag(D))VDP. (6.76)

Proof of Lemma 6.4.3
(Sufficiency) Combining (6.68) and (6.32) yields

G = (RT
S ⊗RS)−

1
2 J
[
p1

∂vD(θ̄1)

∂θ̄1
. . . pD

∂vD(θ̄D)

∂θ̄D

]
= 2π(RT

S ⊗RS)−
1
2 Jdiag(D)

[
p1vD(θ̄1) . . . pDvD(θ̄D)

]
= 2π(RT

S ⊗RS)−
1
2 J(diag(D))VDP, (6.74)

where P = diag(p1, p2, . . . , pD). Similarly, (6.33) and (6.68) lead to

∆ = (RT
S ⊗RS)−

1
2 J
[
vD(θ̄1) . . . vD(θ̄D) e0

]
= (RT

S ⊗RS)−
1
2 JWD. (6.75)

Substituting (6.74) and (6.75) into GHΠ⊥∆G/(4π2) gives (6.76), where the matrix M

is defined in Corollary 6.A.1.

Let u ∈ CD. Since the projection matrix Π⊥MWD
is Hermitian and idempotent [60],

[106], it can be deduced from (6.76) that

uH
(

GHΠ⊥∆G

4π2

)
u =

∥∥∥Π⊥MWDG0u
∥∥∥2

2
≥ 0.

The equality holds only if Π⊥MWD
G0u = 0, i.e., only if there exits a vector v ∈ CD+1

such that

M(diag(D))VDPu = MWDv. (6.77)

Since M is positive definite, (6.77) can be expressed as

[
diag(D)VD WD

]
︸ ︷︷ ︸

Ac

[
Pu

−v

]
= 0,
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where Ac is the ACM matrix, as defined in Definition 6.4.1. If rank(Ac) = 2D + 1,
then Pu = 0, implying u = 0. As a result, GHΠ⊥∆G is positive definite.

(Necessity) If rank(Ac) < 2D + 1, then there exists a ∈ CD and b ∈ CD+1 such that
[aT ,bT ]T 6= 0 and

diag(D)VDa + WDb = 0. (6.78)

Left multiplying (6.78) by M leads to an expression similar to (6.77):

(M(diag(D))VDP)
(
P−1a

)
= (MWD) (−b) , (6.79)

where P = diag(p1, . . . , pD) is positive definite. If a 6= 0, then we have P−1a 6= 0,
Π⊥MWD

G0(P−1a) = 0, and GHΠ⊥∆G is not positive definite. On the other hand,
if a = 0 and b 6= 0, then (6.79) becomes WDb = 0, which contradicts with the
assumption that rank(WD) = D + 1. These arguments complete the proof.

6.B Definition of J

Definition 6.B.1. The binary matrix J has size |S|2-by-|D| such that the column of
J associated with the differencem is given by

〈J〉:,m = vec(I(m)), m ∈ D,

where the |S|-by-|S|matrix I(m) satisfies

〈I(m)〉n1,n2 =

1 if n1 − n2 = m,

0 otherwise.
n1, n2 ∈ S. (6.80)
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As an example of J, if S = {0, 1, 4}, then D = {−4,−3,−1, 0, 1, 3, 4}, and I(m) are

I(m = 0) =

n2 = 0 1 4
n1 = 0 1 0 0

1 0 1 0

4 0 0 1

,

I(m = 1) =

n2 = 0 1 4
n1 = 0 0 0 0

1 1 0 0

4 0 0 0

,

I(m = 3) =

n2 = 0 1 4
n1 = 0 0 0 0

1 0 0 0

4 0 1 0

,

I(m = 4) =

n2 = 0 1 4
n1 = 0 0 0 0

1 0 0 0

4 1 0 0

,

and I(−1) = I(1)T , I(−3) = I(3)T , and I(−4) = I(4)T . As a result, J is given by

J =

m = −4 −3 −1 0 1 3 4



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

.

The following propositions of J are useful:

Proposition 6.B.1. J has full column rank, i.e., rank(J) = |D|.

Proof. It suffices to prove that {I(m)}m∈D is a linearly independent set. Consider the
linear equation

∑
m∈D cmI(m) = 0. Suppose there exists P ∈ D such that cP 6= 0.
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For any n1, n2 ∈ S such that n1 − n2 = P , it can be deduced that

0 = 〈0〉n1,n2 = 〈
∑
m∈D

cmI(m)〉n1,n2

=
∑
m∈D

cm〈I(m)〉n1,n2 = cP ,

which contradicts cP 6= 0. Hence, the coefficients cm are all zero, implying J has
full column rank.

Proposition 6.B.2. With J as in Definition 6.B.1, we have v∗S(θ̄i)⊗vS(θ̄i) = JvD(θ̄i).

Proof. Letting αi = e2πθ̄i and startingwith the right-hand side of the equation yield

JvD(θ̄i) =
∑
m∈D

vec(I(m))αmi = vec

(∑
m∈D

I(m)αmi

)
.

The (n1, n2) entry of
∑

m∈D I(m)αmi is

〈
∑
m∈D

I(m)αmi 〉n1,n2 =
∑
m∈D
〈I(m)〉n1,n2α

m
i = αn1

i (αn2
i )∗,

so that
∑

m∈D I(m)αmi = vS(θ̄i)v
H
S (θ̄i). Therefore, JvD(θ̄i) = vec(vS(θ̄i)v

H
S (θ̄i)) =

v∗S(θ̄i)⊗ vS(θ̄i), which proves the proposition.

Corollary 6.B.1. vec(I) = Je0, where e0 ∈ {0, 1}|D| satisfying

〈e0〉m =

1, ifm = 0,

0, otherwise,
m ∈ D.

6.C Proof of the Asymptotic CRB Expression for Large SNR
Proof of Theorem 6.5.1
According to Proposition 6.5.2, the CRB expression depends on the SNR p/pn, so
without loss of generality, we set pn = 1. For sufficiently large SNR, p is much
greater than pn, so that RS can be approximated by pUsΛUH

s + UnU
H
n and R−1

S
approaches p−1UsΛ

−1UH
s + UnU

H
n asymptotically. The quantity R−TS ⊗R−1

S can
be expressed as

R−TS ⊗R−1
S = A + p−1B + p−2C,

where A, B, and C are defined as

A = (UnU
H
n )T ⊗ (UnU

H
n ), (6.81)

B =
[
(UsΛ

−1UH
s )T ⊗ (UnU

H
n ) + (UnU

H
n )T ⊗ (UsΛ

−1UH
s )
]
, (6.82)

C = (UsΛ
−1UH

s )T ⊗ (UsΛ
−1UH

s ). (6.83)
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For large p, R−TS ⊗R−1
S can be approximated by

R−TS ⊗R−1
S

large p−−−−→ A + p−1B. (6.84)

The following corollaries show two identities regarding A:

Corollary 6.C.1. AJ(diag(D))VD = 0, where A and J are given in (6.81) and Defi-
nition 6.B.1, respectively.

Proof. According to Definition 6.B.1, the ith column of AJ(diag(D))VD can be ex-
pressed as

AJ(diag(D))vD(θ̄i) = Avec

(∑
m∈D

I(m)mαmi

)
, (6.85)

where αi = e2πθ̄i . The matrix I(m) is defined in Definition 6.B.1. The (n1, n2) entry
of
∑

m∈D I(m)mαmi becomes

〈
∑
m∈D

I(m)mαmi 〉n1,n2 = n1α
n1
i (αn2

i )∗ − αn1
i (αn2

i )∗n2,

so that ∑
m∈D

I(m)mαmi

= diag(S)vS(θ̄i)v
H
S (θ̄i)− vS(θ̄i)v

H
S (θ̄i)(diag(S)). (6.86)

Substituting (6.86) into (6.85) yields

AJ(diag(D))vD(θ̄i)

=
[
(UnU

H
n )T ⊗ (UnU

H
n )
]

× vec
(
diag(S)vS(θ̄i)v

H
S (θ̄i)− vS(θ̄i)v

H
S (θ̄i)(diag(S))

)
= vec(UnU

H
n (diag(S))vS(θ̄i) vHS (θ̄i)Un︸ ︷︷ ︸

0

UH
n )

− vec(Un UH
n vS(θ̄i)︸ ︷︷ ︸

0

vHS (θ̄i)(diag(S))UnU
H
n ) = 0,

where the identity (CT ⊗ A)vec(B) = vec(ABC) is utilized. Hence we have the
relation AJ(diag(D))VD = 0.

Corollary 6.C.2. WH
D JHAJWD = (rank(Un))eD+1e

H
D+1, where eD+1 is defined in

(6.53).



169

Proof. For 1 ≤ i, j ≤ D, the (i, j)th entry of WH
D JHAJWD can be simplified as[

WH
D JHAJWD

]
i,j

= vHD (θ̄i)J
HAJvD(θ̄j)

=
[
vTS (θ̄i)⊗ vHS (θ̄i)

] [
(UnU

H
n )T ⊗ (UnU

H
n )
] [

v∗S(θ̄j)⊗ vS(θ̄j)
]

=
(
vHS (θ̄j)UnU

H
n vS(θ̄i)

)T ⊗ (vHS (θ̄i)UnU
H
n vS(θ̄j)

)
= 0.

The (i,D + 1)th entry of WH
D JHAJWD becomes[

WH
D JHAJWD

]
i,D+1

= vHD (θ̄i)J
HAJe0

=
[
vTS (θ̄i)⊗ vHS (θ̄i)

] [
(UnU

H
n )T ⊗ (UnU

H
n )
]

vec(I)

= vec
(
vHS (θ̄i)UnU

H
n UnU

H
n vS(θ̄i)

)
= 0.

Similarly, the (D+1, j)th entry ofWH
D JHAJWD is also zero. Finally the (D+1, D+

1)th entry of WH
D JHAJWD is given by[

WH
D JHAJWD

]
D+1,D+1

= vec(I)H
[
(UnU

H
n )T ⊗ (UnU

H
n )
]

vec(I)

= tr
(
UnU

H
n IUnU

H
n I
)

= rank(Un),

since tr(ABCD) = vec(BH)H(AT ⊗C)vec(D) and tr(AB) = tr(BA).

To evaluate the asymptotic expression of the CRB, we first consider the inverse of
WH

D M2WD, based on (6.84) and Corollary 6.C.2:

(
WH

D M2WD
)−1

large p−−−−→
(
WH

D JHAJWD + p−1WH
D JHBJWD

)−1

=
(
p−1WH

D JHBJWD + rank(Un)eD+1e
H
D+1

)−1

= p
(
WH

D M2
∞WD + rank(Un)p× eD+1e

H
D+1

)−1
, (6.87)

where M∞ is the positive definite squared root of JHBJ, as defined in (6.50).

To be more rigorous, we need to show that JHBJ is positive semidefinite. Since
UsΛ

−1UH
s andUnU

H
n are both positive semidefinite, (UsΛ

−1UH
s )T ⊗(UnU

H
n ) and

(UnU
H
n )T ⊗ (UsΛ

−1UH
s ) are also positive semidefinite [106]. Then, according to

(6.82), B is a sum of two positive semidefinite matrices, implying B is also positive
semidefinite [106]. These arguments prove the existence of M∞.
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IfWH
D M2

∞WD has full rank, then applying thematrix inversion lemma [60] to (6.87)
leads to

(WH
D M2WD)−1

large p−−−−→ p

((
WH

D M2
∞WD

)−1 −
(
WH

D M2
∞WD

)−1
eD+1e

H
D+1

(
WH

D M2
∞WD

)−1

(rank(Un)p)−1 + eHD+1

(
WH

D M2
∞WD

)−1
eD+1

)
large p−−−−→ p

((
WH

D M2
∞WD

)−1 −
(
WH

D M2
∞WD

)−1
eD+1e

H
D+1

(
WH

D M2
∞WD

)−1

eHD+1

(
WH

D M2
∞WD

)−1
eD+1

)
,

(6.88)

where it is assumed that eHD+1

(
WH

D M2
∞WD

)−1
eD+1 is not zero. Next, we consider

the asymptotic expression of GH
0 G0 for large SNR,

GH
0 G0

large p−−−−→ p2VH
D (diag(D))JH(A + p−1B)J(diag(D))VD

= pVH
D (diag(D))JHBJ(diag(D))VD = pGH

∞G∞, (6.89)

due to Corollary 6.C.1. Here G∞ is defined in (6.51). Similarly, (MWD)HG0 has an
asymptotic expression,

(MWD)HG0
large p−−−−→WH

D JH(A + p−1B)J(diag(D))VD(pI)

= (M∞WD)HG∞. (6.90)

Substituting (6.88), (6.89), and (6.90) into (6.40) yields (6.48).

Proof of Theorem 6.5.2
Since VS has full row rank, VSV

H
S is nonsingular. It can be inferred from (6.43) that

R−1
S

large p−−−−→ (pVSV
H
S )−1,

M
large p−−−−→ (JH((pVSV

H
S )−T⊗(pVSV

H
S )−1)J)

1
2 =

M∞
p

,

G
large p−−−−→ M∞

p
(diag(D))VD(pI) = G∞.

Replacing M and G0 with their limits in (6.40) proves this theorem.

6.D Proof of Theorem 6.6.1
To prove that rank(Ac) = 2D + 1, it suffices to show that, there exists a (2D + 1)×
(2D + 1) full rank submatrix. Since D ≤ (|U| − 1)/2, the following matrix S0 is a
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submatrix of Ac,

S0 =



−Dα−D1 . . . −Dα−DD α−D1 . . . α−DD 0
... . . . ...

... . . . ...
...

−2α−2
1 . . . −2α−2

D α−2
D . . . α−2

D 0

−α−1
1 . . . −α−1

D α−1
1 . . . α−1

D 0

0 . . . 0 1 . . . 1 1

α1 . . . αD α1 . . . αD 0

2α2
1 . . . 2α2

D α2
1 . . . α2

D 0
... . . . ...

... . . . ...
...

DαD1 . . . DαDD αD1 . . . αDD 0



,

where αi = e2πθ̄i for i = 1, 2, . . . , D. It will be shown that rank(S0) = 2D + 1.
Consider another matrix S1, defined as

S1 = S0

L1,1 0 0

L2,1 L2,2 0

0T 0T 1


︸ ︷︷ ︸

L

, (6.91)

where the matrices L1,1, L2,1, and L2,2 are given by

L1,1 = diag(αD−1
1 , αD−1

2 , . . . , αD−1
D ),

L2,1 = diag(DαD−1
1 , DαD−1

2 , . . . , DαD−1
D ),

L2,2 = diag(αD1 , α
D
2 , . . . , α

D
D).

S0, S1, and L are square matrices of size 2D + 1. Expanding (6.91) results in

S1 =

0 . . . 0 1 . . . 1 0

1 . . . 1 α1 . . . αD 0

2α1 . . . 2αD α2
1 . . . α2

D 0
... . . . ...

... . . . ...
...

(D−1)αD−2
1 . . . (D−1)αD−2

D αD−1
1 . . . αD−1

D 0

DαD−1
1 . . . DαD−1

D αD1 . . . αDD 1

(D+1)αD1 . . . (D+1)αDD αD+1
1 . . . αD+1

D 0
... . . . ...

... . . . ...
...

2Dα2D−1
1 . . . 2Dα2D−1

D α2D
1 . . . α2D

D 0



.

It holds true that rank(S0) = rank(S1), since the lower triangular matrix L has non-
zero diagonal entries.
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Next, itwill be shown thatS1 has full rank. Leth = [h0, h1, . . . , h2D]T satisfyhTS1 =

0. Define a polynomial H(z) =
∑2D

n=0 hnz
n. Then hTS1 = 0 is equivalent to

H ′(α1) = · · · = H ′(αD) = 0, (6.92)

H(α1) = · · · = H(αD) = 0, (6.93)

hD = 0, (6.94)

where H ′(z) = (d/dz)H(z) =
∑2D

n=0 hn(nzn−1). Since the DOAs are distinct, (6.92)
and (6.93) indicate H(z) can be expressed as

H(z)=K
D∏
i=1

(z − αi)2 =K0z
D

D∏
i=1

(
αi
z
− 2 +

z

αi

)
︸ ︷︷ ︸

G(z)

, (6.95)

whereK0 = K
∏D
i=1 αi for some constantK. Eqs. (6.94) and (6.95) imply

0 = K0 × (Constant term of G(z))

= K0

∫ 1
2

− 1
2

G(e2πθ̄)dθ̄

= K0

∫ 1
2

− 1
2

D∏
i=1

(
e−2π(θ̄−θ̄i) − 2 + e2π(θ̄−θ̄i)

)
dθ̄, (6.96)

where the constant term is based on the inverse discrete-time Fourier transform of
G(e2πθ̄) [181]. (6.96) can be simplified as

0 = K0(−2)D

>0︷ ︸︸ ︷∫ 1
2

− 1
2

(
D∏
i=1

(1− cos 2π(θ̄ − θ̄i))
)

︸ ︷︷ ︸
≥0

dθ̄ .

Since the integrand is nonnegative, this integral is strictly positive, implying K0 =

K = 0 and h = 0. Hence, 2D + 1 = rank(S1) = rank(S0) = rank(Ac).
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C h a p t e r 7

CORRELATION SUBSPACES: GENERALIZATIONS AND CONNECTION
TO DIFFERENCE COARRAYS

7.1 Introduction
In Chapter 2, we discussed DOA estimation using sparse arrays. It was demon-
strated thatmore uncorrelated sources can be resolved for some sparse arrays. More
details of this property can be found in Chapter 2.

Recently, the elegant concept of correlation subspaceswas proposed by Rahmani and
Atia [141], to improve DOA estimation in a number of ways. For any given array ge-
ometry, the correlation subspace is uniquely determined, and imposes some implicit
constraints on the structure of the covariance, as we shall see. This subspace can be
utilized in denoising the sample covariance matrix. Then the source directions are
estimated from the denoised covariance matrix using off-the-shelf DOA estimators,
such as theMUSIC algorithm. Note that the correlation subspace depends on the ar-
ray configurations and prior knowledge about the sources but is independent of the
choice of DOA estimators. Hence, a broad class of DOA estimators are applicable
to the denoised covariance matrix. However, the explicit expressions for the corre-
lation subspace were not known, so its approximation was computed numerically
in [141]. Furthermore, the way in which the correlation subspace is influenced by
the array configuration, and by partial knowledge about sources, was not explored.

Inspired by the concept of correlation subspaces introduced in [141], this chapter
makes a number of new contributions. To analyze the correlation subspace for any
array configuration explicitly, we first generalize the definition in [141] to formulate
what we call the generalized correlation subspace. This makes it possible to incorpo-
rate some types of apriori information on source locations, leading to improvements
in DOA estimation. Furthermore, we show that the (generalized) correlation sub-
spaces can be uniquely characterized in terms of the difference coarray of the orig-
inal physical array. In fact we will show how to obtain simple and elegant closed
form expressions for the basis vectors of the correlation subspace, in terms of the
sensor geometry and the difference coarray geometry. Furthermore, if source di-
rections belong to apriori known intervals [22], [31], [74], [112], [157], then it is shown
that the generalized correlation subspace finds close connections to discrete prolate
spheroidal sequences [158] defined on the difference coarrays. Similar results can be
developed in multiple dimensions, and are useful in angle-Doppler estimation [8],
[86], angle-delay estimation [189], angle-range estimation [138], 2D DOA estima-
tion [188], and harmonic retrieval [53], [116]. These results not only facilitate the
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implementation of the denoising framework as in [141] but also offer better under-
standing of several DOA estimators with prior knowledge about sources.

The original work on correlation subspaces [141] did not emphasize any knowledge
about the sources except that they are uncorrelated1. In our work, we show how
to incorporate prior knowledge about source intervals with generalized correlation
subspaces. Furthermore, correlation subspaces for 1D and 2D arrays were analyzed
numerically in [141] while our work provides closed-form characterizations of gen-
eralized correlation subspaces for 1D and multidimensional arrays. Finally, in our
work, covariance matrix denoising using the generalized correlation subspace is
implemented more efficiently than that in [141].

The outline of this chapter is as follows: Section 7.2 reviews correlation subspaces.
Section 7.3 proposes the generalized correlation subspaces while Section 7.4 derives
their expressions for unknown and known source intervals. Section 7.5 discusses
the connectionswith existingmethodswhile Section 7.6 studies the generalized cor-
relation subspace for multidimensional arrays. Section 7.7 presents several exam-
ples and numerical simulations to demonstrate the advantages of the newmethods
while Section 7.8 concludes this chapter.

7.2 Review of Correlation Subspaces
We begin by considering the array output equation of xS in (1.5), where the as-
sumptions were stated in Section 1.1. Following the derivation in Section 2.3, the
covariance matrix of xS can be expressed as

RS = E[xSx
H
S ] =

D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI. (7.1)

Rearranging the elements in (7.1) leads to

vec(RS − pnI) =
D∑
i=1

pic(θ̄i), (7.2)

where the correlation vectors c(θ̄i) are defined as

c(θ̄i) , vec(vS(θ̄i)v
H
S (θ̄i)) ∈ C|S|

2
. (7.3)

The relation (7.2) implies

vec(RS − pnI) ∈ span{c(θ̄i) : i = 1, 2, . . . , D} (7.4)

⊆ CS , span{c(θ̄) : −1/2 ≤ θ̄ ≤ 1/2}, (7.5)

1 Anumerical simulationwith prior knowledge about source intervals was shown in [141, Section
IV-B2] but this idea was not developed further.
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where the linear span in (7.5) is defined as the set of allvectors of the form
∑P

p=1 apc(θ̄p)

where P ∈ N, ap ∈ C, and −1/2 ≤ θ̄p ≤ 1/2 [60]. This subspace is called the correla-
tion subspace, denoted by CS . Eq. (7.5) also indicates that vec(RS−pnI) is constrained
in a certain way by CS , and these constraints can be used in designing DOA estima-
tors for improved performance.

It is clear that CS is a finite-dimensional subspace ofC|S|2 , due to (7.3). However, the
definition of the correlation subspace in (7.5) is computationally intractable since it
involves infinitely many c(θ̄). The correlation subspace was originally computed by
the following definition [141]:

Definition 7.2.1. The correlation subspace CS satisfies

CS = col(S), (7.6)

where the correlation subspace matrix S is defined as

S ,
∫ π/2

−π/2
c(θ̄)cH(θ̄)dθ ∈ C|S|

2×|S|2 . (7.7)

In Appendix 7.A, we show that this definition is equivalent to our revised definition
given in (7.5). Note that this integral is carried out over the DOA, θ ∈ [−π/2, π/2]

and the relation θ̄ = (sin θ)/2 can be utilized to evaluate (7.7). According to (7.7),
it can be shown that the correlation subspace matrix S is Hermitian and positive
semidefinite.

It was shown in [141] that the right-hand side of (7.6) can be simplified further,
based on the eigenvectors of S associated with the nonzero eigenvalues. In partic-
ular, let the eigen-decomposition of S be

S =
[
QCS QCS⊥

]
︸ ︷︷ ︸

Q

[
Λ1 0

0 0

] [
QCS QCS⊥

]H
, (7.8)

where the diagonal matrix Λ1 contains the positive eigenvalues in the descending
order and the columns of Q consist of the orthonormal eigenvectors. Then, (7.6)
and (7.8) lead to CS = col(QCS). Namely, the correlation subspace CS is the column
space of the matrix QCS . Eqs. (7.6), (7.7), and (7.8) indicate that the matrix S, its
eigenvalues, its eigenvectors, and the correlation subspace depend purely on the array
configuration.

For any array geometry, the correlation subspace is uniquely determined, and im-
poses some implicit constraints on the structure of the covariance matrix, as indi-
cated in (7.5). This leads to a covariance-matrix denoising approach [141]. To begin
with, consider finite snapshot sensor measurements x̃S(k) for k = 1, . . . ,K. The
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sample covariancematrix R̃S can be estimated by R̃S = 1
K

∑K
k=1 x̃S(k)x̃HS (k), which

is defined in (2.23). The algorithm in [141] first denoises the sample covariance ma-
trix R̃S using the following convex program (P1):

(P1): R?
P1 , arg min

R
‖R̃S − pnI−R‖22 (7.9)

subject to (I−QCSQ
†
CS)vec(R) = 0, (7.10)

R � 0, (7.11)

where the noise power pn is estimated from the eigenvalues of R̃S and ‖ ·‖2 denotes
the spectral norm of a matrix (i.e., the largest singular value). The cost function
in (7.9) suggests that the matrix R?

P1 resembles
∑D

i=1 pivS(θ̄i)v
H
S (θ̄i) in (7.1). The

constraint (7.10) ensures that vec(R?
P1) belongs to the correlation subspace while

(7.11) indicates that R?
P1 is positive semidefinite.

The final stage is to perform DOA estimation on R?
P1. It was shown in [141] that the

MUSIC algorithm on R?
P1 can exhibit better estimation performance than that on

R̃S. It should be noted that the DOA estimators are not restricted to the MUSIC algo-
rithm. Other estimators, such as ESPRIT, MODE, and SPICE, can also be exploited.
This result shows that the structure of the covariance matrix, as specified by the
correlation subspace, helps to improve the estimation performance.

Summarizing, the DOA estimator associated with the correlation subspace is com-
posed of the following three steps [141]:

Step 1: Correlation subspace. For a given array geometry, numerically calculate
the correlation subspace matrix S and its eigen-decomposition, as in (7.7) and (7.8),
respectively. Save the matrix QCS for the correlation subspace.

Step 2: Denoising. Given the sensor measurements, evaluate the sample covari-
ance matrix R̃S, as in (2.23). Then solve the optimization problem (P1). Let the
optimal solution be R?

P1.

Step 3: DOA estimation. In the simulations of [141], the MUSIC algorithm is ap-
plied to R?

P1.

Remarks on Step 1: Note that this step needs to be done only once per array. Once
the matrix QCS is obtained, it can be used repeatedly in Step 2. To calculate QCS ,
the numerical integrationwas utilized in [141]. This step is typically done by choos-
ing a dense grid of the parameter θ, which only approximates the integral in (7.7).
Furthermore, the numerical eigen-decomposition in (7.8) introduces perturbations
on zero eigenvalues, making it challenging to determine the correlation subspace
precisely. It is desirable to mitigate the negative effects caused by numerical com-
putations. It will be shown in Theorem 7.4.1 that the correlation subspace can be
fully characterized by simple, elegant, and closed-form expressions.
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Remarks on Step 2: The convex optimization problem (P1) can be solved by numeri-
cal solvers. However, it requires several numerical iterations to obtain the optimal
solution, which could be an issue if real-time processing is needed. To avoid high
computational cost, (P1) is approximated by two sub-problems (P1a) and (P1b) in
[141]:

(P1a): R?
P1a , arg min

R
‖R̃S − pnI−R‖2F (7.12)

subject to (I−QCSQ
†
CS)vec(R) = 0, (7.13)

(P1b): R?
P1b , arg min

R
‖R−R?

P1a‖22 (7.14)

subject to R � 0. (7.15)

In particular, we first compute the solution to (P1a) using the orthogonal projection
onto the correlation subspace, vec(R?

P1a) = QCSQ
†
CSvec(R̃S − pnI). Then the solu-

tion R?
P1b can be obtained explicitly from the eigen-decomposition of R?

P1a. It was
demonstrated in [141] that this two-step approach can be readily implementedwith
a moderate degradation in the estimation performance.

It can be seen that we need to estimate the noise power pn first before solving ei-
ther (P1) or (P1a). This extra processing is not desirable if the source directions are
the only parameters of interest. In Section 7.5, we will present another optimiza-
tion problem that enjoys good DOA estimation performance without estimating
the noise power.

Remarks on Step 3: If R?
P1 ∈ C|S|×|S|, then the MUSIC algorithm on R?

P1 can resolve
at most |S| − 1 uncorrelated sources, regardless of array configurations [188]. How-
ever, sparse arrays can identify more uncorrelated sources than sensors by using
augmented covariance matrices [133], positive definite Toeplitz completion [1], [2],
and spatial smoothing MUSIC (SS MUSIC) [87], [124], [125], [186]. Furthermore,
these approaches usually provide better spatial resolution than the MUSIC algo-
rithm [1], [2], [87], [124], [125], [133], [186]. Hence, we will use sparse arrays and SS
MUSIC in the examples of Section 7.7.

Furthermore, it was demonstrated numerically in [141] that, prior knowledge about
source directions can be embedded into the correlation subspace by changing the
intervals of integration in (7.7). However, the influences of prior knowledge about
the correlation subspace and the optimization problem have not been studied in
detail. These above points will be addressed by generalized correlation subspaces,
as we will present next.
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Figure 7.1: The density function in (7.16) (red), and the constant density function
in Section 7.4 (blue).

7.3 Generalized Correlation Subspaces
Themain difficulty in deriving the closed-form expressions for CS using (7.6), (7.7),
and (7.8) is as follows. Eq. (7.7) implies that the entries of S are related to Bessel
functions, making it complicated to obtain analytical forms of (7.8). In order to
derive closed-form expressions for CS , we will first propose the generalized corre-
lation subspace GCS(ρ), which is parameterized by a nonnegative density function
ρ(θ̄). Then it will be shown that GCS(ρ) depends only on the support of ρ(θ̄), and
is invariant to its exact shape. Using this property, we can derive simple and closed
forms for CS by selecting some density functions ρ(θ̄) such that 1) CS = GCS(ρ) and
2) it is straightforward to derive closed-form expressions for GCS(ρ).

As a motivating example, let us consider the definition of S in (7.7). Since θ̄ =

0.5 sin θ, we have dθ = 2(1− (2θ̄)2)−1/2dθ̄. Hence, (7.7) can be rewritten as

S =

∫ 1/2

−1/2
c(θ̄)cH(θ̄)

(
2(1− (2θ̄)2)−1/2

)
︸ ︷︷ ︸

the density function

dθ̄. (7.16)

Note that (7.16) can be regarded as a weighted integral with the density function
2(1 − (2θ̄)2)−1/2 over θ̄ ∈ [−1/2, 1/2]. Hence, we can generalize the correlation
subspace matrix by varying the density function in (7.16). It is formally defined as

Definition 7.3.1. Let the correlation vector c(θ̄) be defined as in (7.3). Let ρ(θ̄) be a
nonnegative Lebesgue integrable function over the set [−1/2, 1/2]. The generalized
correlation subspace matrix associated with ρ(θ̄) is defined as

S(ρ) =

∫ 1/2

−1/2
c(θ̄)cH(θ̄)ρ(θ̄)dθ̄. (7.17)

It can be seen that (7.16) is a special case of Definition 7.3.1, with ρ(θ̄) = 2(1 −
(2θ̄)2)−1/21[−1/2,1/2](θ̄). The density function ρ(θ̄) quantifies the importance of the
term c(θ̄)cH(θ̄) in S(ρ), across different θ̄. This ρ(θ̄) is shown in the dashed curve
of Fig. 7.1. Note that ρ(θ̄) grows rapidly as θ̄ approaches ±0.5.
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Based on Definition 7.2.1, the generalized correlation subspace can be defined as
follows:

Definition 7.3.2. Let S(ρ) be the generalized correlation subspacematrix associated
with ρ(θ̄), as in (7.17). The generalized correlation subspace is defined as GCS(ρ) =

col(S(ρ)).

It can be seen from Definition 7.3.1 and 7.3.2 that the generalized correlation sub-
spaces are parameterized by the density function ρ(θ̄). For any given support of
ρ(θ̄), the generalized correlation subspace is invariant to the exact shape of ρ(θ̄) un-
der that support, as indicated by the following lemma:

Lemma 7.3.1. Let ρ1(θ̄) and ρ2(θ̄) be two nonnegative Lebesgue integrable functions
over the set [−1/2, 1/2]. If supp(ρ1) = supp(ρ2), then GCS(ρ1) = GCS(ρ2).

Proof. See Appendix 7.B.

Corollary 7.3.1. Let the density function in (7.16) be

ρ1(θ̄) = 2(1− (2θ̄)2)−1/21[−1/2,1/2](θ̄), (7.18)

and the constant density function be

ρ2(θ̄) = 1[−1/2,1/2](θ̄). (7.19)

Then CS = GCS(ρ1) = GCS(ρ2).

The density functions ρ1(θ̄) and ρ2(θ̄) are illustrated in Fig. 7.1. It can be observed
that these density functions share the same support [−1/2, 1/2]. Furthermore, Corol-
lary 7.3.1 also enables us to analyze the correlation subspace readily through the
generalized correlation subspace GCS(ρ2). The details will be developed in Section
7.4.

7.4 Properties of Generalized Correlation Subspaces
In this section, the generalized correlation subspaces for several density functions
will be investigated. It will be shown that the correlation subspace and the gen-
eralized correlation subspace depend on the difference coarray. Furthermore, we
will derive simple, explicit, and computationally tractable representations of the
correlation subspace and the generalized correlation subspace in certain cases.

First, it is known from [97] that the correlation vector (7.3) can be rewritten as:

c(θ̄i) = JvD(θ̄i), (7.20)
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where vD(θ̄i) = [e2πθ̄im]m∈D are the steering vectors on the difference coarray. Here
the difference coarrayD and thematrix J [97] are defined as in Definitions 2.2.1 and
6.B.1, respectively.

Example 7.4.1. Assume the sensor locations are characterized by an integer set S =

{0, 2}. According to Definition 2.18, the difference coarray becomes D = {−2, 0, 2}.
Next we will evaluate the matrix J, as in Definition 6.B.1. First we consider the
matrices I(m) form ∈ D as follows:

I(0) =

n2=0 2[ ]
n1=0 1 0

2 0 1
, I(2) =

n2=0 2[ ]
n1=0 0 0

2 1 0
,

where n1 and n2 aremarked in the corresponding rows and columns. Furthermore,
due to (6.80), it can be shown that I(−2) = (I(2))T . Hence, the matrix J can be
written as

J =

vec(I(−2)) vec(I(0)) vec(I(2))


0 1 0

0 0 1

1 0 0

0 1 0

, (7.21)

where the first, the second, and the third column of J correspond to the coarray in-
dexm = −2, 0, 2, respectively. Finally, we will verify (7.20) in this example. Starting
with (7.3), the correlation vector is given by

c(θ̄i) = vec

([
1

e2πθ̄i·2

] [
1 e−2πθ̄i·2

])
=


1

e4πθ̄i

e−4πθ̄i

1

 .
Similarly, the quantity JvD(θ̄i) can be calculated as

JvD(θ̄i) =


0 1 0

0 0 1

1 0 0

0 1 0


e

2πθ̄i·(−2)

1

e2πθ̄i·2

 =


1

e4πθ̄i

e−4πθ̄i

1

 .
This result verifies (7.20).

Using (7.20) and Definition 7.3.1, the generalized correlation subspace matrix can
be expressed in terms of the difference coarray as in Lemma 7.4.1:
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Lemma 7.4.1. The generalized correlation subspacematrix satisfiesS(ρ) = JSD(ρ)JH ,
where J is defined in Definition 6.B.1 and SD(ρ) is given by

SD(ρ) =

∫ 1/2

−1/2
vD(θ̄)vHD (θ̄)ρ(θ̄)dθ̄. (7.22)

Note that the matrix SD(ρ) depends on the difference coarray, rather than the physical
sensor locations. This property suggests that the generalized correlation subspace is
fundamentally related to the difference coarray. This is indeed true andwewill elaborate
this point later. Furthermore, Lemma 7.4.1 also allows us to readily analyze the
matrix S(ρ) of size |S|2-by-|S|2, by examining a smaller matrix SD(ρ) of size |D|-by-
|D|. Next, we will consider two simple examples of the density function as follows:

• The density function is a constant over θ̄ ∈ [−1/2, 1/2]. Namely, ρ(θ̄) =

1[−1/2,1/2](θ̄).

• The density function is a constant over some known intervals I. That is, ρ(θ̄) =

1I(θ̄). This case corresponds to known source intervals.

In both cases, we will present the closed-form expressions of SD(ρ) and S(ρ), from
which the generalized correlation subspaces can be analyzed systematically.

The constant density function
In this case, the entry ofSD(1[−1/2,1/2]) associatedwith coarray locationsm1,m2 ∈ D
becomes

〈SD(1[−1/2,1/2])〉m1,m2 =

∫ 1/2

−1/2
e2πθ̄(m1−m2)dθ̄ = δm1,m2 , (7.23)

sincem1 andm2 are integers. Substituting (7.23) into Lemma 7.4.1 gives

S(1[−1/2,1/2]) = JJH . (7.24)

In order to obtain the eigen-decomposition of S(1[−1/2,1/2]), we invoke a lemma re-
garding the matrix J:

Lemma 7.4.2. JHJ = W , diag(w(m))m∈D, where the weight function w(m) is
defined in Definition 2.2.9. Namely, J has orthogonal columns and the norm of the
column associated with the coarray indexm is

√
w(m).

Proof. It was proved in [97] that the columns of J are orthogonal. It suffices to con-
sider the norms of the individual columns of J. For the coarray locationm ∈ D, the
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norm of the associated column is

‖vec(I(m))‖22 =
∑

n1,n2∈S
|〈I(m)〉n1,n2 |2

= the number of ones in I(m) = w(m),

which proves this lemma.

Example 7.4.2. Assume the sensor locations are given by S = {0, 2}, as in Example
7.4.1. Then the weight functions w(m) are given by

w(−2) = |{(0, 2)}| = 1, w(0) = |{(0, 0), (2, 2)}| = 2, w(2) = |{(2, 0)}| = 1.

Hence the matrix W in Lemma 7.4.2 can be written as

W = diag(w(−2), w(0), w(2)) = diag(1, 2, 1). (7.25)

Then, Lemma 7.4.2 can be verified using (7.21) and W.

Due to Definition 2.2.9 and Lemma 7.4.2, the generalized correlation subspace ma-
trix S(1[−1/2,1/2]) can be expressed as

S(1[−1/2,1/2]) = (JW−1/2)W(JW−1/2)H , (7.26)

where the sizes of these terms are JW−1/2 ∈ C|S|2×|D| and W ∈ C|D|×|D|. Eq. (7.26)
also indicates that the matrix JW−1/2 corresponds to the orthonormal eigenvectors
while the diagonal matrix W is associated with the eigenvalues. In particular, the
positive eigenvalues and the associated eigenvectors of S(1[−1/2,1/2]) are given by

Positive eigenvalues of S(1[−1/2,1/2]) = w(m), (7.27)

Eigenvectors of S(1[−1/2,1/2]) =
vec(I(m))√

w(m)
, (7.28)

where m ∈ D. Note that (7.27) and (7.28) can be calculated readily from the ar-
ray geometry using Definitions 2.2.9 and 6.B.1, respectively. Namely, the eigen-
decomposition of S(1[−1/2,1/2]) can be evaluated without using the numerical inte-
gration in Definition 7.3.1 and the numerical eigen-decomposition on S(1[−1/2,1/2]).

Properties of S(1[−1/2,1/2]): The following list some properties regarding the eigen-
structure of S(1[−1/2,1/2]). Some items are direct consequences of the properties of
the weight function w(m), as in Lemma 7.C.1.

1. The eigenvalues of S(1[−1/2,1/2]) are nonnegative integers, due to (7.26), (7.27),
and Lemma 7.C.1.1.



183

2. The number of nonzero eigenvalues is |D|, which is the size of the difference
coarray. Here repeated eigenvalues are counted separately.

3. The largest eigenvalue ofS(1[−1/2,1/2]) isw(0) = |S|with algebraicmultiplicity
1. This is a direct consequence of Lemma 7.C.1.4.

4. For any nonzero eigenvalue that is not the largest, the associated algebraic
multiplicity is an even positive integer, due to Lemma 7.C.1.2.

5. The eigenvalue zero has algebraic multiplicity |S|2 − |D|.

6. The orthonormal eigenvectors associated with nonzero eigenvalues are given
in (7.28).

7. For all the eigenvalues of S(1[−1/2,1/2]), the geometric multiplicities achieve
the algebraic multiplicities.

Finally, based on (7.26), the generalized correlation subspace GCS(1[−1/2,1/2]) be-
comes

col(S(1[−1/2,1/2])) = col(JW−1/2) = col(J). (7.29)

The significance of (7.29) is that, the correlation subspace in (7.5) can be character-
ized in closed forms, as in the following theorem:

Theorem 7.4.1. Let the matrix J be defined as in Definition 6.B.1. Then the correla-
tion subspace satisfies

CS = col(J). (7.30)

Proof. Corollary 7.3.1 indicates that CS = GCS(ρ1) = GCS(ρ2). The relationGCS(ρ2) =

col(J) is due to (7.29).

This theorem indicates that the correlation subspace is fully characterized by the bi-
nary matrix J, which can be readily computed from sensor locations and the difference
coarray using Definition 6.B.1. Namely, to compute the correlation subspace, the
numerical integration (7.7) and the eigen-decomposition (7.8) can be avoided com-
pletely. Due to Theorem 7.4.1 and Lemma 7.4.2, the dimension of the correlation
subspace is given by

Corollary 7.4.1. The dimension of the correlation subspace is the size of the differ-
ence coarray, i.e., dim(CS) = |D|.
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Table 7.1: Generalized correlation subspaces with known source intervals

Input: Array configuration S, source intervals I, and error tolerance δ.

1) Evaluate the matrix J according to Definition 6.B.1.

2) Based on I, compute SD(1I) using either (7.32), (7.40), or (7.45).

3) Numerical eigen-decomposition: SD(1I) = ΨΛΨH .

a) Eigenvectors: Ψ = [ψ1,ψ2, . . . ,ψ|D|]; ΨHΨ = I.

b) Eigenvalues: Λ = diag(λ1, λ2, . . . , λ|D|); λ1 ≥ · · · ≥ λ|D| ≥ 0.

4) Determine a positive integer L using (7.47).

5) Construct ΨL = [ψ1,ψ2, . . . ,ψL].

Output: GCS(1I) is approximated by col(JΨL).

The constant density function with known source intervals
Here we will study the generalized correlation subspace with known source inter-
vals. This scenario arises in practical applications such as stationary radar and the
diagnosis of rotating machines in industrial environments [196].

Table 7.1 summarizes the procedure for the generalized correlation subspaces with
known source intervals. For a given array configuration S and source intervals I, we
can calculateSD(1I) explicitly using either (7.32), (7.40), or (7.45), aswe shall explain
later. The eigen-decomposition of SD(1I) suggests that SD(1I) can be approximated
byΨL ·diag(λ1, λ2, . . . , λL)·ΨH

L , where the related quantities are given in Table 7.1.2

This property leads to an approximation of the generalized correlation subspace
GCS(1I) ≈ col(JΨL). Note that Table 7.1 is applicable to a given array S and given
source intervals I. In the following development, we will study the generalized
correlation subspaces based on these factors.

Hole-free difference coarrays and I = [−α/2, α/2]

In this case, the density function is assumed to be

ρ(θ̄) = 1[−α/2,α/2](θ̄) =

1, if − α/2 ≤ θ̄ ≤ α/2,
0, otherwise,

(7.31)

where 0 < α < 1. Nowwe can derive the expression for the generalized correlation
subspace matrix. According to Lemma 7.4.1, the entry of SD(1[−α/2,α/2]) associated

2 The symbols ψk, ΨL, and Ψ are reserved for the eigenvectors of the matrix SD(1I) while the
notations vk and VL represent the discrete prolate spheroidal sequences.
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(a) ULA:
S:

0 1 2 3 4 5 6 7 8 9
D+:

0 1 2 3 4 5 6 7 8 9

(b) Nested array:
S:

1 2 3 4 5 6 12 18 24 30

D+:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

(c) Coprime array:
S:

0 3 5 6 9 10 12 15 20 25

D+:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 22 25

(d) Super nested array:
S:

1 3 5 8 10 12 18 24 29 30

D+:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Figure 7.2: The sensor locations S and the nonnegative part of the difference coar-
rays D+ for (a) ULA with 10 sensors, (b) the nested array with N1 = N2 = 5,
(c) the coprime array with M = 3, N = 5, and (d) the super nested array with
N1 = N2 = 5, Q = 2. Here bullets denote elements in S or D+ while crosses repre-
sent empty space.

with coarray locationsm1,m2 ∈ D is given by

〈SD(1[−α/2,α/2])〉m1,m2 =

∫ α/2

−α/2
e2πθ̄(m1−m2)dθ̄

= α · sinc(α(m1 −m2)), (7.32)

where the normalized sinc function sinc(x) is 1 for x = 0 and sin(πx)/(πx) other-
wise. The eigen-decomposition of SD(1[−α/2,α/2]) is assumed to be

SD(1[−α/2,α/2]) = ΨΛΨH , (7.33)

where the matrices Ψ and Λ are given by

Ψ = [ψ1,ψ2, . . . ,ψ|D|] (7.34)

Λ = diag(λ1, λ2, . . . , λ|D|). (7.35)

Here the eigenvalues satisfy λ1 ≥ λ2 ≥ · · · ≥ λ|D| ≥ 0 and ψ1,ψ2, . . . ,ψ|D| are the
associated orthonormal eigenvectors.

Note that thematrix SD(1[−α/2,α/2]) depends purely on the difference coarrayD and
the parameter α. Next we assume the difference coarray D is hole-free. Namely, D is
composed of consecutive integers. For instance, Fig. 7.2 depicts array configurations
like (a) ULA [188], (b) nested array [124], as in (2.7), (c) coprime array [186], as in
(2.8), and (d) super nested array [92], as in Definition 3.4.1. It can be observed from
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Figure 7.3: (a) The eigenvalues and (b) the first four eigenvectors of the general-
ized correlation subspacematrixS(1[−α/2,α/2]) in Example 7.4.3. Here the difference
coarray D = {−29, . . . , 29} and α is 0.1.

the nonnegative part of the difference coarray that (a), (b), and (d) have hole-free
difference coarrayswhile (c) does not. These array configurationswill be elaborated
in Section 7.7 later.

For arrays with hole-free difference coarrays, the eigenvectors ψk are known to be
discrete prolate spheroidal sequences (DPSS). That is, the matrix SD(1[−α/2,α/2]) owns

Eigenvalues of SD(1[−α/2,α/2]) = λk, (7.36)

Eigenvectors of SD(1[−α/2,α/2]) , ψk = vk, (7.37)

where v1,v1, . . . ,v|D| denote DPSS on the difference coarray D. Note that DPSS were
studied comprehensively in [131], [158] and they arise in various fields such as
multitapers [178], time-frequency analysis [39], eigenfilters [181], [182], and MIMO
radar [32]. Here several properties of the eigenvalues λk and the DPSS vk are re-
viewed briefly using the following example:

Example 7.4.3. Consider the super nested array with N1 = N2 = 5 as in Definition
3.4.1. The sensor locations are depicted in Fig. 7.2(d). The difference coarray be-
comes D = {−29, . . . , 29} (hole-free) and |D| = 59. We also choose the parameter
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α = 0.1. According to (7.36) and (7.37), the eigenvalues λk and the eigenvectors
are illustrated in Fig. 7.3. It was shown in [158] that the eigenvalues λk are distinct,
and the first bα|D|c eigenvalues are close to, but less than one, where b·c is the floor
function. As the index k exceeds bα|D|c, the magnitude of the eigenvalues decays
exponentially [158]. This property indicates that the matrix SD(1[−α/2,α/2]) can be
well-approximated by a matrix of rank L. Namely,

SD(1[−α/2,α/2]) ≈ VL · diag(λ1, λ2, . . . , λL) ·VH
L , (7.38)

where bα|D|c ≤ L ≤ |D| and VL = [v1,v2, . . . ,vL] consists of the first LDPSS. Note
that the exact value ofL depends on the approximation error of (7.38), whichwill be
elaborated in (7.47) later. In this example, bα|D|c = 5, This means that the first five
eigenvalues are close to one, as depicted in Fig. 7.3(a). The DPSS v1, v2, v3, and v4

are illustrated in Fig. 7.3(b). These DPSS can be proved to be orthogonal, real, and
unique up to scale [158]. Furthermore, these DPSS satisfy 〈vk〉−m = (−1)k+1〈vk〉m
form ∈ D. Namely, they are either even or odd symmetric.

Substituting (7.38) into Lemma 7.4.1, the generalized correlation subspace matrix
can be approximated by

S(1[−α/2,α/2]) ≈ JVL · diag(λ1, λ2, . . . , λL) · (JVL)H .

Since the matrix JVL has full column rank, the generalized correlation subspace
can be characterized by the following theorem:

Theorem 7.4.2. Let the density function be 1[−α/2,α/2] for 0 < α < 1. Assume the
difference coarray D is hole-free. Then we have

GCS(1[−α/2,α/2]) ≈ col(JVL), (7.39)

where the columns ofVL contain the firstLDPSS onD. The parameterL is obtained
by (7.47), for a given error tolerance δ.

The significance of Theorem 7.4.2 is that, the interval information α is embedded
in the matrix VL. The approximation VL is constructed by selecting the DPSS as-
sociated with the largest L eigenvalues of SD(1[−1/2,1/2]). The details in choosing
the parameter Lwill be developed in (7.46) further. Note that Theorem 7.4.2 can be
utilized to denoise the sample covariance matrix, as we shall present in Section 7.5.

Hole-free difference coarrays and I = [θ̄min, θ̄max]

Let us consider another scenario where the known interval is not centered around
the origin, such as [θ̄min, θ̄max] with −0.5 < θ̄min < θ̄max < 0.5. In this case, the
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density function can be

ρ(θ̄) = 1[θ̄min,θ̄max](θ̄) =

1, if θ̄min ≤ θ̄ ≤ θ̄max,

0, otherwise.

Then, due to Lemma 7.4.1, the entry of SD(1[θ̄min,θ̄max]) associated with the coarray
locationm1,m2 ∈ D becomes

〈SD(1[θ̄min,θ̄max])〉m1,m2

= e2πθ̄avgm1 · α · sinc(α(m1 −m2)) · e−2πθ̄avgm2 , (7.40)

where θ̄avg = (θ̄max + θ̄min)/2 and α = θ̄max − θ̄min are known. Using similar argu-
ments in Section 7.4, the matrix SD(1[θ̄min,θ̄max]) owns

Eigenvalues of SD(1[θ̄min,θ̄max]) = λk, (7.41)

Eigenvectors of SD(1[θ̄min,θ̄max]) = diag(e2πθ̄avgm)m∈D × vk, (7.42)

where λk are defined in (7.33) and vk are the DPSS. These eigenvectors can be re-
garded as the modulated version of DPSS. Hence, following similar arguments in
Example 7.4.3, the generalized correlation subspace can be approximated by

GCS(1[θ̄min,θ̄max]) ≈ col(J · diag(e2πθ̄avgm)m∈D ·VL), (7.43)

where the matrix J is defined in Definition 6.B.1. The matrix VL = [v1,v2, . . . ,vL]

includes the first L DPSS, where Lwill be chosen as in (7.47).

Hole-free difference coarrays and unions of multiple source intervals

In this case, the interval information I is given by

I ,
P⋃
p=1

[θ̄min, p, θ̄max, p], (7.44)

where [θ̄min, p, θ̄max, p] for p = 1, 2, . . . , P are non-overlapping intervals. The density
function is assumed to be 1I(θ̄). Using (7.40) across all intervals yields

〈SD(1I)〉m1,m2

=
P∑
p=1

αpe
2πθ̄avg, p(m1−m2)sinc(αp(m1 −m2)), (7.45)

where θ̄avg, p = (θ̄max, p + θ̄min, p)/2 is the centroid of the pth interval and αp =

θ̄max, p − θ̄min, p is the width of the pth interval. Here the indices m1,m2 ∈ D. Al-
though the entries of SD(1I) are sums of modulated sinc functions, the eigenvectors
of SD(1I) cannot be expressed in terms of DPSS in general. In this case, the gen-
eralized correlation subspace GCS(1I) has to be evaluated numerically using Table
7.1.
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Figure 7.4: The dependence of the relative error E(`) on the parameter `, where
E(`) is defined in (7.46) and the eigenvalues are shown in Fig. 7.3(a).

Difference coarrays with holes

The results in Section 7.4 hold true for 1D arrays, regardless of the difference coar-
rays. However, it is assumed in Section 7.4 to 7.4 that the difference coarrays are
hole-free. These arrays with hole-free difference coarrays include ULA [188], min-
imum redundancy arrays [113], nested arrays [124], and super nested arrays [92].
For such arrays, Eqs. (7.39) and (7.43) are applicable.

However, for arrays containing holes in the difference coarrays, such as minimum
hole arrays [177], coprime arrays [186], and some generalizations of coprime arrays
[139], Eqs. (7.39) and (7.43) are not applicable in general. It is because the hole-free
property of the difference coarray is used to derive (7.37) and (7.42). In this case,
SD(1I) can still be computed from (7.32), (7.40), and (7.45) accordingly. Then, the
generalized correlation subspaces need to be calculated numerically using Table 7.1.

The choice of the parameter L: Here we will present the details on the parameter L in
Section 7.4. Let Ψ`Λ`Ψ

H
` be the rank-` approximation of SD(1I), where the nota-

tions are consistent with those in Table 7.1. Let the matrix Λ` be diag(λ1, . . . , λ`).
Then the relative error E(`) is

E(`) ,
‖Ψ`Λ`Ψ

H
` − SD(1I)‖2F

‖SD(1I)‖2F
=

∑|D|
k=`+1 λ

2
k∑|D|

k=1 λ
2
k

. (7.46)

For a given error tolerance 0 ≤ δ � 1, L is the minimum ` such that E(`) < δ, i.e.,

L = min
`∈Z, 1≤`≤|D|

` subject to E(`) < δ. (7.47)

Then this L is used in computing the generalized correlation subspace.

In particular, the smaller δ is, the larger L is. For instance, Fig. 7.4 plots the relative
error E(`), where the eigenvalues are given in Fig. 7.3(a). It can be seen that, if the
error tolerance δ = 10−5, then the parameter L = 8. If δ = 10−10, then we have
L = 10.
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CS + I

Approximation of
GCS(1[−α/2,α/2]) + I

p?2

p?1

vec(R̃S)

Figure 7.5: The geometric interpretation of sample covariance matrix denoising
using generalized correlation subspaces (Problem (P2)). The sample covariance
matrix is denoted by R̃S. The vectors p?1 and p?2 are the orthogonal projections of
vec(R̃S) onto CS + I and onto a subspace that approximates GCS(1[−α/2,α/2]) + I,
respectively. Here I = span(vec(I)) and the sum between subspaces A and B is
defined as A+ B = {a+ b : a ∈ A, b ∈ B}.

7.5 Connections with Existing Methods
In this section, we will discuss a covariance matrix denoising framework associated
with the (generalized) correlation subspace. Thismethod, denoted by problem (P2),
can be regarded as a modified version of the optimization problem (P1). This prob-
lem (P2) can be solved by simple, closed-form, and computationally tractable ex-
pressions, unlike the problem (P1). We also relate it to redundancy averaging, which
is a well-known processing technique in coarray-based DOA estimators, as shown
in Example 7.5.1. This idea can be extended to the case of known source intervals,
as in Example 7.5.2.

To develop some feelings for this method, Fig. 7.5 demonstrates the main idea of
(P2), where the sample covariance matrix R̃S is defined in (2.23). For a given el-
ement vec(R̃S), we can calculate its orthogonal projection p?1 onto the subspace
CS + I, where I = span(vec(I)) and the sum of subspaces A and B is defined
as A + B = {a + b : a ∈ A, b ∈ B}. Furthermore, if the source interval is known to
be [−α/2, α/2], then the projection can be refined as p?2. These projections p?1 and
p?2 can be matricized as indefinite Hermitian matrices, to which some existing DOA
estimators can be applied.

The rationale for (P2) is based on the following chain of arguments. According
to (7.5), we have vec(RS − pnI) ∈ CS . This result implies that vec(RS) can be
decomposed as pnvec(I) plus a vector in CS . Namely, vec(RS) ∈ CS + I, where
I = span(vec(I)). Hence, in the finite snapshot scenario, we can find the vector p?

in CS + I that minimizes the Euclidean distance to vec(R̃S). More generally, if the
prior knowledge about sources is available, as embedded in the generalized corre-
lation subspace GCS(ρ), then we have vec(RS) ∈ GCS(ρ) + I. This idea leads to the
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following convex program:

(P2): p? , arg min
p

‖vec(R̃S)− p‖22 subject to (7.48)

(I−QGCS(ρ)+IQ
†
GCS(ρ)+I)p = 0, (7.49)

where the columns of QA are the bases for the subspace A. The solution to (P2) is
given by

p? = QGCS(ρ)+IQ
†
GCS(ρ)+Ivec(R̃S). (7.50)

Note that (7.50) can be evaluated directly, given the sample covariance matrix R̃S

and the generalized correlation subspace GCS(ρ). The computational complexity
of (7.50) is much less than solving (P2) numerically. It can be observed that (7.50)
shares similar expressions with the solution to (P1a). The main difference is that,
estimating the noise power pn is required in (P1a), but not in (7.50).

Next, wewill demonstrate some instances of (7.50) using the generalized correlation
subspaces in Section 7.4.

Example 7.5.1. First let us consider the correlation subspace. Recall that CS =

GCS(1[−1/2,1/2]) = col(J), as in Theorem 7.4.1. The subspace CS + I becomes

CS + I = col(J) + span(vec(I)) = col([J,Je0]) = col(J).

Here we use the property that vec(I) = Je0 [97]. The column vector e0 ∈ {0, 1}|D|
satisfies 〈e0〉m = δm,0 form ∈ D. Next, according to (7.50), the orthogonal projection
p?1, as shown in Fig. 7.5, can be written as

p?1 = Jx̃D ∈ C|S|
2
, x̃D , J†vec(R̃S) ∈ C|D|. (7.51)

Due to (7.51) and Lemma 7.4.2, the sample value of x̃D at the coarray locationm ∈ D
is given by

〈x̃D〉m =
1

w(m)

∑
n1−n2=m

〈R̃S〉n1,n2 , (7.52)

where n1, n2 ∈ S. Eq. (7.52) was previously known as redundancy averaging [1], [2],
[132] and (2.24). The vector x̃D is known to be the sample autocorrelation vector on
the difference coarray, which was used extensively in DOA estimators such as the
augmented covariance matrix [132] positive definite Toeplitz completion [1], [2],
and SS MUSIC [87], [124]. This example shows that redundancy averaging is closely
related to (7.50), which uses the concept of the correlation subspace.
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Example 7.5.2. Eq. (7.50) can be used to derive a large class of DOA estimators with
prior knowledge about source directions. According to Section 7.4, if the difference
coarray is hole-free and the known source interval is [−α/2, α/2], then the general-
ized correlation subspace GCS(ρ) can be approximated by col(JVL), as in Theorem
7.4.2. Hence the subspace GCS(ρ) + I is approximated by

col(JVL) + span(vec(I)) = col([JVL,Je0]) = col(JUL),

where UL , [VL, e0]. Then the associated orthogonal projection p?2, as illustrated
in Fig. 7.5, is given by

p?2 = (JUL)(JUL)†vec(R̃S). (7.53)

Eq. (7.53) shows that the orthogonal projection can be evaluated using the matrix
J and the DPSS VL. If the matrix JUL has full column rank, then Eq. (7.53) can
rewritten as

p?2 = JỹD, (7.54)

where

ỹD = UL((WUL)HUL)−1(WUL)H x̃D, (7.55)

and the matrix W is defined in Lemma 7.4.2. Here x̃D is given by (7.52). Note
that (7.54) shares the same formulation as the first equation of (7.51). Furthermore,
according to (7.55), the vector ỹD can be regarded as the denoised version of x̃D, as
characterized by the oblique projection operator UL((WUL)HUL)−1(WUL)H . Eq.
(7.55) can also be interpreted as redundancy averaging with prior knowledge about
sources. Most importantly, coarray-based DOA estimators such as the augmented
covariance matrix, positive definite Toeplitz completion, and SS MUSIC can work
on the denoised sample autocorrelation vector ỹD, without any modification.

For other cases in Section 7.4, (7.54) and (7.55) remains applicable, except that the
DPSS VL have to be replaced with the eigenvectors ΨL.

Covariance matrix denoising using the (generalized) correlation subspace is not
limited to the optimization problems presented in this chapter. The constraints im-
posed on the covariance matrices by the (generalized) correlation subspace can be
readily applied to state-of-the-art covariance matrix denoising methods and DOA
estimators such as SPICE [161], [163], [168], gridless SPICE [198], and atomic norm
denoising [16], [31], [74], [112]. This idea could lead to new DOA estimators that
enjoy improved performance, which could even approach the Cramér-Rao bounds
for sparse arrays [73], [97], [192].
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7.6 Generalized Correlation Subspaces in Multiple Dimensions
The results developed in [141] were not restricted to one dimension. Even though
our discussions in this chapterwere so far restricted to 1D arrays and 1DDOAs, they
can also be readily generalized to multiple dimensions as we shall elaborate next.
This is useful inmany practical scenarios such as angle-Doppler estimation [8], [86],
angle-delay estimation [189], angle-range estimation [138], 2D DOA (azimuth and
elevation) estimation [188], and harmonic retrieval [53], [116].

Let us consider the datamodel for theR-dimensional (R-D) case. TheR-D sampling
locations n = (n(1), n(2), . . . , n(R)) are collected by the set S ⊂ ZR and the harmonic
parameters to be estimated are denoted by

µ̄ = (µ̄(1), µ̄(2), . . . , µ̄(R)) ∈ [−1/2, 1/2]R. (7.56)

Then we have the following data model:

xS =
D∑
i=1

AivS(µ̄i) + nS, (7.57)

where the vectorsxS, vS(µ̄i), andnS represent themeasurement, the steering vector,
and the noise term, respectively. The entry of the steering vector associatedwith the
sample locationsn ∈ S is given by e2πµ̄Ti n. The source amplitudesAi and the noise
term nS are assumed to be uncorrelated, as in Section 7.2. Then we can define the
R-D difference coarray and the matrix J as follows:

Definition 7.6.1 (R-D difference coarray). Let S be a set of R-D sampling locations.
The difference coarray is defined as D = {n1 − n2 : ∀n1,n2 ∈ S}.

Definition 7.6.2 (The matrix J for R-D). Let S be a set of R-D sampling locations
andD be theR-D difference coarray. Thematrix J is an |S|2-by-|D|matrix satisfying
〈J〉:,m = vec(I(m)). The matrix I(m) is given by

〈I(m)〉n1,n2 =

1, if n1 − n2 = m,

0, otherwise,

wherem ∈ D and n1,n2 ∈ S.

Using Definitions 7.6.1 and 7.6.2, the correlation vector can be expressed as c(µ̄) ,

vec(vS(µ̄)vHS (µ̄)) = JvD(µ̄), where vD(µ̄) is the steering vector on the difference
coarray. A numerical example is demonstrated in Section 7.D for clarity. Then, the
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Figure 7.6: The visible region (shaded) of (a) angle-Doppler, (b) 2D DOA, (c) 2D
DOA with θmin ≤ θ ≤ θmax, and (d) 2D DOA with φmin ≤ φ ≤ φmax.

generalized correlation subspace matrix becomes

S(ρ) ,
∫

[−1/2,1/2]R
c(µ̄)cH(µ̄)ρ(µ̄)dµ̄ (7.58)

= J

(∫
[−1/2,1/2]R

vD(µ̄)vHD (µ̄)ρ(µ̄)dµ̄

)
︸ ︷︷ ︸

SD(ρ)

JH . (7.59)

Eq. (7.58) and (7.59) are analogous to Definition 7.3.1 and Lemma 7.4.1, respectively.
Finally, the generalized correlation subspace GCS(ρ) , col(S(ρ)), as in Definition
7.3.2. According to (7.59), the generalized correlation subspace for R-D depends on the
difference coarray, similar to Lemma 7.4.1.

Next we will consider some concrete examples in 2D. They are joint angle-Doppler
estimation and 2D DOA estimation.

Example 7.6.1 (Joint angle-Doppler estimation). The joint angle-Doppler estima-
tion [8], [86] corresponds to the data model (7.57) with R = 2. It aims to estimate
the angle and Doppler frequency from the spatiotemporal measurements xS. The
harmonic parameters µ̄ = (µ̄(1), µ̄(2)) are related to the DOA and the Doppler fre-
quency as follows:

µ̄(1) = (d/λ) sin θ, µ̄(2) = (T/λ)v, (7.60)

whereλ is thewavelength, d = λ/2 is theminimumsensor separation, θ ∈ [−π/2, π/2]

is the DOA, T is the sampling interval in the temporal domain, and v is the radial
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velocity of the source. µ̄(1) and µ̄(2) are called the normalized angle and normalized
Doppler, respectively. If the sampling interval T is chosen properly, the parameters
(µ̄(1), µ̄(2)) belongs to [−1/2, 1/2]2. This region is also depicted in Fig. 7.6(a) for clar-
ity.

Next, suppose we choose the density function ρ(µ̄) to be 1[−1/2,1/2]2(µ̄). The gener-
alized correlation subspace matrix becomes

S(1[−1/2,1/2]2) = JJH = (JW−1/2)W (JW−1/2)H ,

where W = diag(w(m))m∈D. Here w(m) = |{(n1,n2) ∈ S2 : n1 − n2 = m}|
denotes 2D weight function. This result is analogous to that in Section 7.4. It can be
inferred that the positive eigenvalues of S(1[−1/2,1/2]2) are w(m) and the associated
eigenvectors are vec(I(m))/

√
w(m). Note that the results in Example 7.6.1 can be

trivially extended to the R-D case if the parameters µ̄ ∈ [−1/2, 1/2]R.

Example 7.6.2 (2D DOA estimation). Another example of (7.57) with R = 2 is the
2D DOA estimation. The parameters of interest are the azimuth φ ∈ [0, 2π] and the
elevation θ ∈ [0, π/2]. The relation between the 2D DOA (θ, φ) and the harmonic
parameters µ̄ = (µ̄(1), µ̄(2)) is given by

µ̄(1) = (dx/λ) sin θ cosφ, µ̄(2) = (dy/λ) sin θ sinφ, (7.61)

where dx = dy = λ/2. According to (7.61), the visible region of µ̄ becomes a disc
with radius 1/2, i.e.,

K = {µ̄ : ‖µ̄‖2 ≤ 1/2}. (7.62)

The setK is also depicted in Fig. 7.6(b). Using (7.59), the generalized correlation sub-
space matrix with density function ρ(µ̄) = 1K(µ̄) becomes S(1K) = JSD(1K)JH .
Here the entry of SD(1K) associated with coarray locationm1,m2 ∈ D can be de-
rived as in Section 7.E:

〈SD(1K)〉m1,m2 = jinc(‖m1 −m2‖2), (7.63)

where the jinc function jinc(x) is π/4 for x = 0 and J1(πx)/(2x) otherwise [24].
Here J1(x) is the first-order Bessel function of the first kind [24]. Eq. (7.63) can be
regarded as an extension of (7.32) since the jinc function is analogous to the sinc
function in the 2D polar coordinate [24]. The eigenvectors of SD(1K) are 2D discrete
prolate spheroidal sequences (2DDPSS). Details about these sequences can be found in
[155] and the references therein. Finally the generalized correlation subspace can be
approximated by col(JΨL), whereΨL contains the firstL 2DDPSS andL is defined
in (7.47).
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If the prior knowledge about 2D DOA is available, then the visible region could be
an annulus or a circular sector. For instance, if we know a priori that the elevation
θmin ≤ θ ≤ θmax, then the visible region is depicted in Fig. 7.6(c). On the other hand,
if the the prior knowledge is φmin ≤ φ ≤ φmax, then the visible region becomes a
circular sector, as illustrated in Fig. 7.6(d).

7.7 Numerical Examples
Generalized Correlation Subspaces
In this section, we will consider the following four 1D array configurations: the
ULA with 10 sensors, the nested array with N1 = N2 = 5, as in (2.7), the coprime
array withM = 3, N = 5, as in (2.8), and the super nested array with N1 = N2 =

5, Q = 2, as in Definition 3.4.1. The number of sensors is 10 for each array. The
sensor locations and the nonnegative part of the difference coarrays for these arrays
are depicted in Fig. 7.2. Since the difference coarray is symmetric (Lemma 7.C.1.2),
the size of the difference coarray is 19 for ULA, 59 for the nested array, 43 for the
coprime array, and 59 for the super nested array.

The following example aims to demonstrate Theorem 7.4.1 and (7.27). The exper-
iment is conducted as follows. We first compute the numerical approximation of
S(ρ), as denoted by S̃(ρ), as follows:

S̃(ρ) =

(Npt−1)/2∑
`=−(Npt−1)/2

c(`∆)cH(`∆)ρ(`∆)×∆, (7.64)

where the number of discrete samples isNpt = 214+1 and the step size is∆ = 1/Npt.
Then the eigenvalues of S̃(ρ1) and S̃(ρ2) are plotted in Fig. 7.7(a), (c), (e), and (g),
where ρ1(θ̄) and ρ2(θ̄) are given in Theorem 7.4.1. As a comparison, the weight
functions for these arrays are plotted in Fig. 7.7(b), (d), (f), and (h).

The results in Fig. 7.7 show that, col(S̃(ρ1)) and col(S̃(ρ2)) have the same dimension
|D|, which is the size of the difference coarray. For example, the nested array (Fig.
7.7(c)) and the super nested array (Fig. 7.7(g)) share the same number of nonzero
eigenvalues, since they own the same difference coarray, as shown in Fig. 7.2(b) and
(d). Furthermore, the eigenvalues for S̃(ρ2) should be close to the weight functions,
as indicated in (7.27). This property can be verified, for instance, in Fig. 7.7(g) and
(h), where the eigenvalues λ2 = λ3 = 4 and theweight functionsw(2) = w(−2) = 4.

DOA Estimation with Nested Arrays and Prior Source Intervals
Fig. 7.8 shows the estimation performance as a function of SNR and the number
of snapshots. The equal-power and uncorrelated sources have normalized DOAs
−0.045, 0, and 0.045. The number of sources D is 3. The array configuration is the
nested array with N1 = N2 = 5 (10 sensors), as depicted in Fig. 7.2(b). Then the
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Figure 7.7: The eigenvalues of thematrix S̃(ρ) (left) and theweight functions (right)
for (a), (b) the ULA with 10 sensors (|D| = 19), (c), (d) the nested array with N1 =
N2 = 5 (10 sensors, |D| = 59), (e), (f) the coprime array with M = 3, N = 5 (10
sensors, |D| = 43), and (g), (h) the super nested array with N1 = N2 = 5, Q = 2 (10
sensors, |D| = 59). Here the matrices S̃(ρ) are given by (7.64) and the eigenvalues
of S̃(ρ) are obtained numerically. The red dashed curves in Figs. (a), (c), (e), and (g)
correspond to ρ1(θ̄) = 2(1 − (2θ̄)2)−1/21[−1/2,1/2](θ̄) while the blue curves in Figs.
(a), (c), (e), and (g) are associated with ρ2(θ̄) = 1[−1/2,1/2](θ̄).
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generalized correlation subspaces GCS(1[−α/2,α/2]) can be evaluated according to
Section 7.4. The error tolerance in (7.47) is δ = 10−10 so the parameter L becomes 10

and 17 forα = 0.1 and 0.2, respectively. In each run, the sensormeasurements x̃S(k)

for k = 1, . . . ,K are realized by (1.5), from which the sample covariance matrix R̃S

can be determined by (2.23). Then the covariance matrices are denoised according
to 1) Problem (P1) and the cvx package with perfect knowledge about the noise
power; 2) Problem (P2) and (7.50) without knowing the noise power. Finally the
source directions are estimated by the SS MUSIC algorithm [87], [124] on the de-
noised covariance matrices. The estimation performance is measured in terms of
root mean-squared errors (RMSE), defined as

RMSE =

√√√√ 1

D

D∑
i=1

(̂̄θi − θ̄i)2,

where ̂̄θi denotes the estimated normalized DOAs. Each sample point is averaged
from 1000 Monte-Carlo runs.

It can be seen from Fig. 7.8 that if the source interval [−α/2, α/2] is known, the
RMSEs decrease except at very low SNRs. In this example, we choose α = 1, 0.2,
and 0.1 in Fig. 7.8. The following discuss the performances of these estimators:

1. In most cases, the RMSE for (P1) and (P2) decrease with α, for the same SNR
and the same number of snapshots. The improvement is significant for low
SNRand limited snapshots. This is because smaller source intervals [−α/2, α/2]

help to improve the estimation performances.

2. (P1) requires much more time than (P2), provided that the generalized cor-
relation subspace is computed using the results in Section 7.4. For instance,
the computational time for (P1) and α = 0.1 in Fig. 7.8(a) is 9904.5 seconds
while that for (P2) and α = 0.1 in Fig. 7.8(a) is 53.7 seconds. The reason is that
(P1) is solved numerically using the cvx package but (P2) can be implemented
efficiently using (7.50).

3. As shown in Fig. 7.8(a), empirically, (P2) has better estimation performance
than (P1) for the same α in most cases. For instance, if α = 0.1 and SNR =

−10dB, then the RMSE for (P1) is 4.9× 10−3 while that for (P2) becomes 1.9×
10−3. If α = 0.1 and SNR = 10dB, then the RMSEs for (P1) and (P2) are about
8.8×10−4 and 6.9×10−4, respectively. These phenomena can also be observed
in Fig. 7.8(b).
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Figure 7.8: The dependence of root mean-squared errors (RMSE) on (a) SNR and
(b) the number of snapshots for the optimization problems (P1) and (P2) with gen-
eralized correlation subspaces GCS(1[−α/2,α/2]). There are D = 3 equal-power and
uncorrelated sources at normalized DOAs −0.045, 0, and 0.045. The array configu-
ration is the nested array with N1 = N2 = 5 (10 sensors), as depicted in Fig. 7.2(b).
The parameters are (a) 100 snapshots and (b) 0dB SNR. Each data point is averaged
from 1000 Monte-Carlo runs.
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Table 7.2: CPU time in seconds and RMSE for several cases

Case α
Step 1
(time)

Step 2
(time)

Total time
(including Step 3) RMSE

A 1
Numerical
(3.288s)

P1
(1.057s) 4.351s 0.000991

B 1
Numerical
(3.248s)

P2
(0.00008s) 3.255s 0.000918

C 1
Analytical
(0.0013s)

P1
(0.802s) 0.810s 0.000990

D 1
Analytical
(0.0013s)

P2
(0.00009s) 0.008s 0.000918

E 0.1
Numerical
(3.296s)

P1
(1.118s) 4.421s 0.000903

F 0.1
Numerical
(3.271s)

P2
(0.00008s) 3.278s 0.000718

G 0.1
Analytical
(0.0066s)

P1
(1.053s) 1.067s 0.000901

H 0.1
Analytical
(0.0066s)

P2
(0.00010s) 0.013s 0.000718

† “Analytical” is the new analytical method for Step 1, as in Section 7.4.
‡ P2 is the proposed method for Step 2, as in Section 7.5.
* Step 3 took between 0.0063 to 0.0068 seconds.

Computational Complexity
Table 7.2 investigates the interplay between the computational complexity and the
estimation performance by varying the parameter α and the implementation de-
tails. These cases are denoted by Cases A to H, respectively. Here Step 1, which
computes the (generalized) correlation subspace, can be realized in two ways. One
is the numerical integration (7.64), followed by numerical eigen-decompositions
[141]. The number of grids Npt in (7.64) is 214 + 1 while the density function ρ(θ̄)

is 2(1− (2θ̄)2)−1/21[−α/2,α/2](θ̄). The other is to use the proposed analytical expres-
sions, based onDefinition 6.B.1, Theorem 7.4.1, and Table 7.1. Then, in Step 2, either
(P1) or (P2) is solved. Finally, Step 3 uses SS MUSIC to estimate the source direc-
tions. We assume 100 snapshots and 5dB SNR. The CPU time and the RMSEs in
Table 7.2 are averaged from 1000 Monte-Carlo runs, on a Ubuntu 16.04 workstation
with a Intel Core i7-2600 3.40GHz processor and 8GB RAM. The remaining param-
eters are given in Section 7.7.

Some observations can be drawn from Table 7.2. First, the proposed analytical ex-
pressions lead to almost the same RMSE but much less CPU time than those with
numerical approximations. For instance, the CPU time for Step 1 in Case D is about
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0.04% of that for Step 1 in Case B. Second, in these examples, (P2) enjoys smaller
RMSE and much less computational time than (P1). As an example, the CPU time
of Step 2 in Case B costs only 0.007% of that of Step 2 in Case A, while the RMSE
is 0.000991 for Case A and 0.000918 for Case B, respectively. Finally, if α = 0.1,
the proposed analytical approach remains computationally tractable. It can be ob-
served that the CPU time for Step 1 in Case H is approximately 0.2% of that for Step
1 in Case F. These observations show that, for a given α, it is preferable to use the
proposed analytical expressions and problem (P2), since they lead to the least total
time and the smallest RMSE.

7.8 Concluding Remarks
In this chapter, we presented generalized correlation subspaceswith applications to
DOA estimation for uncorrelated sources and known source intervals. Generalized
correlation subspaces have closed-form characterizations in terms of array profiles
such as sensor locations and difference coarrays. Furthermore, our theory provides
insights to existing DOA estimators and multidimensional sparse arrays with prior
knowledge about sources.

In the future, it is of considerable interest to exploit generalized correlation sub-
spaces in other topics of array processing, like adaptive beamforming, source detec-
tion, and target tracking. Another future topic would be the performance analysis
for the proposed approach using generalized correlation subspaces.

Appendices
7.A Proof of the Equivalence of (7.5) and Definition 7.2.1
To begin with, we need the following lemmas:

Lemma 7.A.1. Let M ∈ CN×N be a Hermitian, positive semidefinite matrix. As-
sume u ∈ CN . Then uHMu = 0 if and only if u belongs to the null space of M.

Proof. If u belongs to the null space of M, then Mu = 0 and clearly uHMu = 0.
Conversely, if uHMu = 0, then (M1/2u)H(M1/2u) = 0, where the matrix square
root exists due to the positive semidefiniteness of M. Hence, M1/2u = 0, so Mu =

0.

Lemma 7.A.2. Let f(x) be a real-valued Lebesgue integrable function defined over
a measurable setA. Assume that f(x) ≥ 0 for x ∈ A almost everywhere (a.e.). Then∫
A f(x)dx = 0 if and only if f(x) = 0 a.e.

Proof. See [54, Chapter V] for details.
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Next it will be first shown that CS⊥ = null(SH), where CS⊥ denotes the orthogonal
complement of CS and null(A) represents the null space of A.

First consider any v ∈ null(SH). SinceS is a Hermitian positive semidefinitematrix,
Lemma 7.A.1 implies that v ∈ null(SH) is equivalent to vHSHv = 0. Substituting
the definition of S, (7.7), into vHSHv = 0 yields∫ π/2

−π/2

∣∣vHc(θ̄)
∣∣2 dθ = 0. (7.65)

Since the nonnegative function
∣∣vHc(θ̄)

∣∣2 is continuous in θ, Lemma 7.A.2 indicates
that (7.65) is equivalent to

∣∣vHc(θ̄)
∣∣2 = 0 for all θ ∈ [−π/2, π/2]. Namely, v ∈

CS⊥. Note that all the above arguments are both necessary and sufficient so we
have CS⊥ = null(SH).

Finally, the correlation subspace can be obtained by CS = CS⊥⊥ = null(SH)⊥ =

col(S), which proves this observation.

7.B Proof of Lemma 7.3.1
Let ρ1(θ̄) and ρ2(θ̄) be two nonnegative Lebesgue integrable functionswith the same
support. The support of ρ1(θ̄) and ρ2(θ̄) satisfies supp(ρ1) = supp(ρ2) = A ⊆
[−1/2, 1/2]. The corresponding generalized correlation subspace matrices are de-
noted by S(ρ1) and S(ρ2), respectively.

Consider a nonzero andfinite-valuedvectoru ∈ C|S|2 . Itwill be shown thatuHS(ρ1)u =

0 if and only if uHS(ρ2)u = 0. Based on Definition 7.3.1, the condition uHS(ρ1)u =

0 is equivalent to the following:

uH
(∫

A
c(θ̄)cH(θ̄)ρ1(θ̄)dθ̄

)
u = 0

if and only if
∫
A
|cH(θ̄)u|2ρ1(θ̄)dθ̄ = 0. (7.66)

Due to Lemma 7.A.2, Eq. (7.66) is equivalent to the statement that |cH(θ̄)u|2ρ1(θ̄) =

0 for θ̄ ∈ A a.e. Since θ̄ belongs to the support A, multiplying both sides with
ρ2(θ̄)/ρ1(θ̄) yields |cH(θ̄)u|2ρ2(θ̄) = 0 for θ̄ ∈ A a.e. Invoking Lemma 7.A.2 again
gives uHS(ρ2)u = 0. Combining the above arguments with Lemma 7.A.1 leads to
null(S(ρ1)) = null(S(ρ2)), where null(S) denotes the null space of S. Taking the
orthogonal complement on the null spaces gives col(S(ρ1)) = col(S(ρ2)), which
proves this theorem.

7.C Properties of Weight Functions
In this section, some useful properties of the weight function w(m) are listed in
Lemma 7.C.1, as follows:
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Lemma 7.C.1. Let S be an integer-valued sensor location set. Assume that the dif-
ference coarray D and the weight function w(m) are as defined in Definitions 2.18
and 2.2.9, respectively. Then the following properties are satisfied:

1. w(m) is a positive integer.

2. w(−m) = w(m) form ∈ D.

3. 1 ≤ w(m) ≤ |S| form ∈ D.

4. w(m) = |S| if and only ifm = 0.

5.
∑

m∈Dw(m) = |S|2.

Proof. 1)Based onDefinition 2.2.9, theweight functionw(m) is the number of sensor
pairs with separationm, which is a positive interger.

2) The quantity w(−m) can be simplified as

w(−m) =
∣∣{(n1, n2) ∈ S2 : n1 − n2 = −m}

∣∣
=
∣∣{(n2, n1) ∈ S2 : n2 − n1 = m}

∣∣ = w(m).

3) If w(m) = 0, then there does not exist (n1, n2) ∈ S2 such that n1 − n2 = m ∈ D,
which contradicts Definition 2.18.

Next we consider the case of w(m) > |S|. According to Definition 2.2.9, there
exist distinct sensor pairs (n1,p, n2,p) ∈ S2 such that n1,p − n2,p = m, where p =

1, 2, . . . , w(m). Since w(m) > |S| and all n1,p’s belong to S, there must exist at least
twon1,p’s that are identical. Without loss of generality, it is assumed thatn1,1 = n1,2.
Then n2,1 = n1,1−m = n1,2−m = n2,2 so these sensor pairs are not distinct, which
contradicts the assumption. Hence we have 1 ≤ w(m) ≤ |S|.

4) If w(m) = |S|, then the distinct sensor pairs (n1,p, n2,p) ∈ S2 must satisfy

{n1,1, n1,2, . . . , n1,|S|} = S, (7.67)

{n1,1 −m, n1,2 −m, . . . , n1,|S| −m} = S, (7.68)

where (7.68) is due to n2,p = n1,p−m for p = 1, 2, . . . , w(m). Ifm = 0, then (7.67) and
(7.68) hold true simultaneously. Ifm 6= 0, then (7.67) contradicts (7.68), which can be
shown as follows. Let n1,min = min{n1,1, n1,2, . . . , n1,|S|}. Therefore the minimum
of the left-hand side of (7.68) is n1,min−m. The right-hand sides of (7.67) and (7.68)
indicate that n1,min = n1,min −m, which contradicts the assumptionm 6= 0.

5) Using Definition 2.2.9, the left-hand side becomes∑
m∈D

w(m) =
∑
m∈D

∣∣{(n1, n2) ∈ S2 : n1 − n2 = m}
∣∣.
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Figure 7.9: (a) The physical array and (b) its difference coarray.

Reindexing the summation by (n1, n2) ∈ S2 leads to
∑

(n1,n2)∈S2 1 = |S|2, which
completes the proof.

7.D Numerical Examples for Section 7.6
Consider the array configuration in Fig. 7.9(a), which corresponds to the set

S = {(0, 0), (0, 1), (1, 0)}. (7.69)

The difference set D is depicted in Fig. 7.9(b). Here the elements in D are sorted in
the ascending order, based on the first coordinate. If two elements share the same
first coordinate, then they are sorted in the ascending order, based on the second
coordinate, and so on. Therefore, the elements in D are sorted as

D = {(−1, 0), (−1, 1), (0,−1), (0, 0),

(0, 1), (1,−1), (1, 0)}. (7.70)

In the following development, the rows or the columns in the steering vectors, the
matrix I(m), and the J are sorted according to the order in (7.69) and (7.70).

Next we will construct the matrix J , as in Definition 7.6.2. For the coarray locations
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m = (0, 0), (0, 1), (1,−1), (1, 0), the matrices I(m) are given by

I(m = (0, 0)) =

n2=(0,0) (0,1) (1,0)
n1=(0,0) 1 0 0

(0,1) 0 1 0

(1,0) 0 0 1

,

I(m = (0, 1)) =

n2=(0,0) (0,1) (1,0)
n1=(0,0) 0 0 0

(0,1) 1 0 0

(1,0) 0 0 0

,

I(m = (1,−1)) =

n2=(0,0) (0,1) (1,0)
n1=(0,0) 0 0 0

(0,1) 0 0 0

(1,0) 0 1 0

,

I(m = (1, 0)) =

n2=(0,0) (0,1) (1,0)
n1=(0,0) 0 0 0

(0,1) 0 0 0

(1,0) 1 0 0

.

It can be shown that I(−m) = IT (m), as in the 1D case. Therefore, the matrix J
can be expressed as

J =

m=

(−1,0) (−1,1) (0,−1) (0,0) (0,1) (1,−1) (1,0)



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

. (7.71)

According to Section 7.6, the 2D weight function can be computed as

w(m = (0, 0)) = 3, w(m = (0, 1)) = 1,

w(m = (1,−1)) = 1, w(m = (1, 0)) = 1.
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Given thematrix J and the weight function, nowwe can verify the property c(µ̄) =

JvD(µ̄). To beginwith, we first write the steering vector on the physical array vS(µ̄)

as

vS(µ̄) = [e2πµ̄
Tn]n∈S =

e
2π(µ̄(1)·0+µ̄(2)·0)

e2π(µ̄(1)·0+µ̄(2)·1)

e2π(µ̄(1)·1+µ̄(2)·0)

 =

1

β

α

 ,
where α = e2πµ̄

(1) , β = e2πµ̄
(2) , and µ̄ = (µ̄(1), µ̄(2)). Then the correlation vector

c(µ̄) can be expressed as

c(µ̄) , vec(vS(µ̄)vHS (µ̄))

= [1, β, α, β−1, 1, αβ−1, α−1, α−1β, 1]T . (7.72)

Similarly, the steering vector on the difference coarray vD(µ̄) becomes

vD(µ̄) = [e2πµ̄
Tm]m∈D

=
[
α−1, α−1β, β−1, 1, β, αβ−1, α

]T
. (7.73)

It can be verified from (7.71), (7.72), and (7.73) that c(µ̄) = JvD(µ̄).

7.E Derivation of (7.63)
Starting with (7.59), the entry associated with coarray locationsm1 = (m

(1)
1 ,m

(2)
1 )

andm2 = (m
(1)
2 ,m

(2)
2 ) is given by

〈SD〉m1,m2 =

∫
K
e2πµ̄

T (m1−m1)dµ̄.

Nextwe express µ̄ in terms of polar coordinates. Letting µ̄ = (µ̄(1), µ̄(2)) = (r cosφ, r sinφ)

where 0 ≤ r ≤ 1/2 and 0 ≤ φ ≤ 2π yields

〈SD〉m1,m2 =

∫ 1/2

0

∫ 2π

0
e2πr(p cosφ+q sinφ)rdφdr, (7.74)

where p = m
(1)
1 −m

(1)
2 and q = m

(2)
1 −m

(2)
2 . Based on the values of p and q, we have

the following cases:

If (p, q) = (0, 0), namelym1 = m2, then (7.74) becomes

〈SD〉m1,m2 =

∫ 1/2

0

∫ 2π

0
rdφdr =

π

4
.

If (p, q) 6= (0, 0), then (7.74) can be expressed as

〈SD〉m1,m2 =

∫ 1/2

0

∫ 2π

0
e2πr
√
p2+q2 cos(φ−φ′)dφ · rdr, (7.75)
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Figure 7.10: Plots for the sinc function sinc(x) and the jinc function jinc(x).

where the quantity φ′ satisfies

cosφ′ =
p√

p2 + q2
, sinφ′ =

q√
p2 + q2

.

The integral associated with φ can be written as the zeroth-order Bessel function of
the first kind J0(x), since

J0(x) =
1

2π

∫
2π
ex cosφdφ. (7.76)

Here
∫

2π denotes that the integration is carried over an interval of length 2π. Sub-
stituting (7.76) into (7.75) yields

〈SD〉m1,m2 =

∫ 1/2

0
2πJ0(2πr

√
p2 + q2)rdr. (7.77)

Note that the Bessel functions satisfy∫ R

0
J0(Kr)rdr =

R

K
J1(KR), (7.78)

where J1(x) is the first-order Bessel function of the first kind. K and R are positive
numbers. Due to (7.78), Eq. (7.77) becomes

〈SD〉m1,m2 =
J1(π

√
p2 + q2)

2
√
p2 + q2

=
J1(π‖m1 −m2‖2)

2‖m1 −m2‖2
, (7.79)

which is (7.63).
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Fig. 7.10 illustrates the sinc function and the jinc function, which are defined as

sinc(x) ,


sin(πx)
πx , if x 6= 0,

1, if x = 0,

jinc(x) ,


J1(πx)

2x , if x 6= 0,

π
4 , if x = 0.

It can be observed that both functions attain their maxima at x = 0. In particular,
sinc(0) = 1 and jinc(0) = π/4. Furthermore, these functions decay to zero asymp-
totically, as |x| increases.



209

C h a p t e r 8

ROBUSTNESS OF DIFFERENCE COARRAYS OF SPARSE ARRAYS TO
SENSOR FAILURES – A GENERAL THEORY

8.1 Introduction
In Chapters 2 and 6, it was shown that some sparse arrays are capable of identifying
O(N2) uncorrelated sources usingN physical sensors, making it possible to resolve
more uncorrelated source directions than sensors. More details of this result were
reviewed in Sections 2.2 and 2.3.

In practice, sensor failure could occur randomly and may lead to the breakdown of
the overall system [72], [115]. It can be empirically observed that, for some sparse
arrays, such as MRA, faulty sensors could shrink the O(N2)-long ULA segment
in the difference coarray significantly. Furthermore, small ULA segments in the
difference coarray typically lead to degraded performance [1], [87], [124], [192]. Due
to these observations, in the past, sparse arrays were considered not to be robust to
sensor failure. However, the impact of damaged sensors on sparse arrays remains
to be analyzed, since these observations assume specific array configurations.

The issue of sensor failure was addressed in the literature in two aspects, includ-
ing 1) developing new algorithms that are functional in the presence of sensor fail-
ure and 2) analyzing the robustness of array geometries. In the first part, various
approaches have been developed, including DOA estimators based on minimal re-
source allocation network [191], impaired array beamforming and DOA estimation
[202], array diagnosis based on Bayesian compressive sensing [117], and so on [114],
[193]. However, the interplay between the array configuration and the exact condi-
tion under which these algorithms are applicable, remains to be investigated. The
second aspect assesses the robustness of array configurations with faulty sensors
[5], [29]. For instance, Alexiou andManikas [5] proposed variousmeasures to quan-
tify the robustness of arrays while Carlin et al. [29] performed a statistical study on
the beampattern with a given sensor failure rate. Even so, the impact of damaged
sensors on the difference coarray has not yet been analyzed in a deterministic fash-
ion, which is crucial for sparse arrays.

In this chapter, we aim to investigate the influence of faulty sensors on the difference
coarray. The main focus of this chapter is not to develop new algorithms, but to an-
alyze the robustness of arrays. A sensor is said to be essential if its deletion changes
the difference coarray. Note that the essentialness property, which was originally
introduced to study the economy of sensors [100], depends purely on the array ge-
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0 1 2 4 6
S1:

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
D1:

Array #1

0 2 4 6
S2:

−6 −4 −2 0 2 4 6
D2:

Array #2

0 1 4 6
S3:

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
D3:

Array #3

1 is removed

2 is removed

Figure 8.1: An illustration of the essentialness property. Si and Di represent the
physical array and the difference coarray of the ith array, respectively. Elements are
marked by dots while empty space is depicted by crosses. It can be observed that
removing the sensor at 1 from Array #1 changes the difference coarray (D2 6= D1).
However, in Array #3, which is obtained by removing the sensor at 2 from Array
#1, the difference coarray remains the same (D3 = D1). We say that the sensor at 1
is essential with respect to Array #1 while the sensor at 2 is inessential with respect
to Array #1.

ometry, rather than the source parameters and the estimation algorithms. One of
the main contributions of this chapter is to show that the essentialness property
can be used to assess the robustness of the array geometry, in the sense of preserv-
ing the difference coarray. A generalization of this, called k-essentialness, is then
developed in order to study the effect of multiple sensor failures on the difference
coarray. The coarray robustness is quantified using the notion of k-fragility which
is introduced later in this chapter. This quantity ranges from 0 to 1; an array is more
robust if the fragility is closer to 0.

For an array withN sensors, the size of the k-essential family can be as large as
(
N
k

)
,

which makes it challenging to analyze and to store the complete information. To
address this issue, we introduce the k-essential Sperner family, which encodes the
information in the k-essential family with great economy.

These proposed quantities find applications in quantifying the susceptibility of the
difference coarray with respect to random sensor failures. Note that this topic is of
considerable interest in reliability engineering [72], [115]. Our study offers several
insights into the interplay between the overall reliability, the essentialness prop-
erty, and the fragility. For instance, under mild assumptions, the system reliability
decreases as the number of essential sensors increases.
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As an example, Fig. 8.1 demonstrates the main idea of the essentialness property.
Let us consider Array #1 and its difference coarray, as depicted on the top of Fig.
8.1. The sensor at 1 is essential since its removal from Array #1 alters the difference
coarray. However, the sensor at 2 is inessential, since D3 = D1. This example shows
that according to the sensor locations, some sensors aremore important than others,
as far as preserving the difference coarray is concerned. The essentialness property
and its connection to the robustness of the array geometry will be developed in
depth later.

Chapter outline: Section 8.2 proposes the k-essential family while Section 8.3 intro-
duces the k-fragility. Section 8.4 presents the k-essential Sperner family. Section
8.5 offers a number of insights into the system reliability for the difference coarray
while Section 8.6 concludes this chapter.

8.2 The Essentialness Property
In this section, we will present the essentialness property and the fragility, which
are useful in studying the robustness of sparse arrays. These concepts are related
to the difference coarray D, as in Definition 2.2.1, the weight function w(m), as in
Definition 2.2.9, and other quantities defined in Chapter 2.

It is well-known that coarray MUSIC is applicable to the autocorrelation vector on
U as long as |U| > 1 (e.g., see [87]). However, it will be demonstrated in Example
8.2.1 that U is susceptible to sensor failure. For certain array geometries, even one
damaged physical sensor could alter U significantly and coarray MUSIC may fail.

Example 8.2.1. In Fig. 8.1, Array #1 hasS1 = {0, 1, 2, 4, 6} andD1 = {0,±1, . . . ,±6} =

U1. In this case, the coarray MUSIC algorithm may be used, since |U1| = 13 >

1. Now suppose the sensor located at 1 fails. The new array configuration (Ar-
ray #2) and the associated difference coarray becomes S2 = {0, 2, 4, 6} and D2 =

{0,±2,±4,±6}, respectively. So the size of the ULA segment of D2 is 1 and the
coarray MUSIC algorithm is not applicable. On the other hand, if the sensor at 2

fails, we have Array #3, which has S3 = {0, 1, 4, 6} and D3 = {0,±1, . . . ,±6}. Since
|U3| = 13 > 1, the coarray MUSIC algorithm may still be implemented.

Example 8.2.1 shows that, the location of the faulty sensors could modify the differ-
ence coarray, which affects the applicability of coarrayMUSIC. Note that, even if the
difference coarray changes, there might exist other DOA estimators, such as com-
pressed sensing basedmethods [127], [200] and coarray interpolation [2], [137], that
work on the new difference coarray. However, these approaches are typically com-
putationally expensive and the exact conditions under which the method works,
remain to be explored. For this reason, we only focus on coarray MUSIC and the
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integrity of the difference coarray in Chapters 8 and 9. Other scenarios are left for
future work.

We begin with the following definition [100]:

Definition 8.2.1. The sensor located at n ∈ S is said to be essential with respect to
S if the difference coarray changes when sensor at n is deleted from the array. That
is, if S = S\{n}, then D 6= D. Here D and D are the difference coarrays for S and S,
respectively.

In this chapter, Definition 8.2.1 is equivalent to the statement that the element n
is essential with respect to S. The element n ∈ S is said to be inessential if it is
not essential. For instance, in Fig. 8.1, the sensor at 1 is essential with respect to
Array #1, since the difference coarray of Array #2 is distinct from that of Array #1
(D2 6= D1). However, the sensor at 2 is inessential, because Array #1 and Array #3
share the same difference coarray (D3 = D1).

The essentialness property was originally introduced in [100] to study symmetric
arrays and Cantor arrays. The main focus in [100] was the economy of sensors.

In this chapter, we focus on the fact that the removal of (or failure of) an essential
sensor makes it difficult to apply coarray MUSIC. The removal of an inessential
sensor, on the other hand, does not affect the applicability of coarray MUSIC at all.
Our focus in this chapter is a study of essentialness, and its generalization called
k-essentialness for arbitrary array geometries. One potential use of this knowledge
is that one can design essential sensors more carefully so they have smaller failure
probability, although this is not the focus here.

Given an array S, the essential sensors can be found by searching over all the sensors
in S, according to Definition 8.2.1. The knowledge of the weight function w(m) also
gives useful insights about this:

Lemma 8.2.1. Suppose that w(m) is the weight function of S. Let n1 and n2 belong
to S. If w(n1 − n2) = 1, then n1 and n2 are both essential [100].

Note that the condition that w(n1 − n2) = 1 is sufficient, but not necessary for the
essentialness of both n1 and n2. For instance, if S = {0, 1, 2}, then it can be shown
that n1 = 1 and n2 = 0 are both essential with respect to S, due to Definition 8.2.1.
However, the weight function satisfies w(n1 − n2)=w(1)=2.

Proof of Lemma 8.2.1. Ifw(n1−n2) = 1 for n1, n2 ∈ S, then (n1, n2) is the only sensor
pair with separation m = n1 − n2. If n1 is removed from S, then the element m is
also removed from the difference coarray. As a result, n1 is essential. Similarly, n2

is also essential since w(n2 − n1) = w(n1 − n2) = 1.
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(a)
0 1 4 6

Physical array

−6 0 6

Difference coarray

(b)
1 4 6 −5 0 5

(c)
0 4 6 −6 0 6

(d)
0 1 6 −6 0 6

(e)
0 1 4 −4 0 4

Figure 8.2: An example of MESA. (a) The original array and its difference coarray.
The array configurations and the difference coarrays after the deletion of (b) the
sensor at 0, (c) the sensor at 1, (d) the sensor at 4, or (e) the sensor at 6, from the
original array in (a). Here the sensors are denoted by dots while crosses denote
empty space.

Lemma 8.2.1 serves as a building block of many results in Chapters 8 and 9, as we
will develop later.

Due to Lemma 8.2.1 and the fact that w(max(S) − min(S)) = 1 for any S, we have
the following lemma:

Lemma 8.2.2. For any array S, the leftmost element (min(S)) and the rightmost ele-
ment (max(S)) are both essential.

As a result, when studying the essentialness property, it suffices to consider the
elements min(S) < n < max(S), which simplifies the discussion.

Next we will develop the concept of maximal economy, which was first presented
in [100]. It is formally defined as

Definition 8.2.2. A sensor array S is said to be maximally economic if all the sensors
in S are essential [100].

These arrays are also called maximally economic sparse arrays (MESA) [100]. By
definition, none of the sensors in MESA can be removed without changing the dif-
ference coarray.

Example 8.2.2. Consider the array S = {0, 1, 4, 6} in Fig. 8.2(a). This array has a
hole-free difference coarray {0,±1, . . . ,±6}. If the sensor at 0 is removed from (a),
it can be observed in Fig. 8.2(b) that the difference coarray changes. Hence 0 is
essential with respect to S. Similarly, from Fig. 8.2(c-e), the sensors at 1, 4, and 6 are
all essential. Due to Definition 8.2.2, the array S is maximally economic.
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(a)
0 1 2 3 4 5 6 7 8

Physical array

−8 0 8

Difference coarray

(b)
0 2 3 4 5 6 7 8 −8 0 8

(c)
0 1 3 4 5 6 7 8 −8 0 8

(d)
0 1 2 3 4 5 6 8 −8 0 8

(e)
0 3 4 5 6 7 8 −8 0 8

(f)
0 2 3 4 5 6 8 −8 −6 0 6 8

Figure 8.3: Array configurations and the difference coarrays for (a) the ULAwith 9
sensors, and the arrays after the removal of (b) 1, (c) 2, (d) 7, (e) {1, 2}, and (f) {1, 7}
from (a).

Note that maximal economy is a property of the entire array, in contrast to the es-
sentialness property, which is associated with sensors in an array, as in Definition
8.2.1. In this chapter, the general properties will be discussed while in Section 9.2,
it will be proved that MESA includes MRA, MHA, nested arrays with N1 ≥ 2, and
Cantor arrays.

The essentialness property and the maximal economy are distinct from the redun-
dancy R [113], which can be expressed as R = |S|(|S| − 1)/(|U| − 1), where |S| is
the number of sensors and U is the central ULA segment of the difference coarray.
The redundancy R serves as a criterion for the optimality of the difference coarray,
which is not explicitly related to the importance of each physical sensor. The essen-
tialness property and the maximal economy, on the other hand, describe the impor-
tance of each sensor with respect to the difference coarray. Furthermore, minimum
redundancy (MRA) is sufficient but not necessary for maximal economy (MESA),
as we will shown in Section 9.2 later.

The k-Essential Family
If there are multiple sensor failures, the influence of these faulty sensors on the dif-
ference coarray becomes more complicated. If two sensors are inessential, it means
that either one of them can be removedwithout changing the coarray. But if both sen-
sors are removed, the difference coarray may change. This case is demonstrated through
the following example:

Example 8.2.3. Let us consider the ULA with 9 sensors, as depicted in Fig. 8.3. As
seen from Figs. 8.3(b), (c), and (d), the sensors at 1, 2, and 7 are all inessential. Fig.
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8.3(e) shows that removing inessential sensors at 1 and 2 at the same time preserves
the difference coarray. However, removing both 1 and 7 modifies the difference
coarray, as illustrated in Fig. 8.3(f). This example shows that two elements, such as
1 and 7, could be individually inessential, but together the subarray, {1, 7}, could
change the difference coarray. Therefore, in general, multiple sensor failures have
to be examined separately.

In the following development, the essentialness property in Definition 8.2.1 will be
generalized into the k-essentialness property to handle multiple sensor failures. To
begin with, let us consider the following definition:

Definition 8.2.3. The family of all subarrays of size k over an integer set S is defined
as

Sk , {A ⊆ S : |A| = k}. (8.1)

Next, the k-essentialness property is defined as

Definition 8.2.4. A subarray A is said to be k-essential with respect to array S if 1)
A ∈ Sk, and 2) the difference coarray changes when A is removed from S. Namely,
D 6= D if S = S\A. Here D and D are the difference coarrays of S and S, respectively.

Note that essentialness, as defined inDefinition 8.2.1, is equivalent to 1-essentialness
(k = 1 in Definition 8.2.4). Namely, n ∈ S is essential if and only if {n} ⊆ S is 1-
essential. For brevity, we will use these terms interchangeably.

Following Definition 8.2.4, in Example 8.2.3 and Fig. 8.3, we have that {1} is not
1-essential, {2} is not 1-essential, {7} is not 1-essential, {1, 2} is not 2-essential, but
{1, 7} is 2-essential.

It is useful to enumerate all the k-essential subarrays because these are the subarrays
whose failure could make the coarrayMUSIC fail. The collection of these subarrays
is called the k-essential family:

Definition 8.2.5. The k-essential family Ek with respect to a sensor array S is defined
as

Ek , {A : A is k-essential with respect to S}. (8.2)

Here k ∈ {1, 2, . . . , |S|}.

Example 8.2.4. Consider the ULA with 6 sensors, S = {0, 1, . . . , 5}, as illustrated in
Fig. 8.4. Based on Definition 8.2.5, Fig. 8.2.4 depicts the k-essential family E1 and E2.
E1 just contains the end points of S. Note that the size of E2 (|E2| = 11) is greater
than the number of sensors (|S| = 6). If more than 2 sensors are removed from the
array (k ≥ 3), then it can be shown that Ek = Sk.
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0 1 2 3 4 5

E1 = {{0}, {5}},
E2 = {{0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {1, 5},

{2, 5}, {3, 5}, {4, 5}, {1, 4}, {2, 3}},
Ek = Sk, for all 3 ≤ k ≤ 6.

Essential Inessential

Figure 8.4: The ULA with 6 physical sensors, where the essential sensors and the
inessential sensors are denoted by diamonds and rectangles, respectively. The k-
essential subarrays are also listed.

The implication of the k-essential family is as follows. If an array S and its k-essential
family Ek are given, then for any subarray A of size k, it is possible to determine
whether S and S\A share the same difference coarray, without actually computing
the difference coarray. This can be done by searching for A in Ek. Furthermore, the
size of Ek (i.e., the number of k-essential subarrays) also quantifies the robustness
of the system, as we shall elaborate in Section 8.3.

In general, given an array configuration S, the k-essential family Ek can be uniquely
determined, by examining all possible

(|S|
k

)
subarrays, as in Definition 8.2.5. From

the computational perspective, this task becomes intractable for large number of
sensors. In addition, even if Ek can be enumerated, it remains difficult to retrieve
information from Ek, which might have size up to the order of

(|S|
k

)
.

These challenges will be addressed in two respects. First, the size of the k-essential
family, namely |Ek|, can be expressed or bounded in terms of simpler things like
the number of sensors, the weight function, and the number of essential sensors, as
presented in Theorem 8.2.1. These results lead to the robustness analysis of array
configurations, as we will develop in Section 8.3. Second, the retrieval of the infor-
mation in Ek could be accelerated by the k-essential Sperner family, which will be
discussed in Section 8.4 in detail.

Next, some properties of Ek are discussed in Theorem 8.2.1, whose proof can be
found in the next subsection.

Theorem 8.2.1. Let Ek be the k-essential family with respect to a nonempty integer
set S (set of sensors), and let the family Sk be as defined in (8.1). Let d·e and b·c be the
ceiling function and the floor function, respectively. Then the following properties
hold true:

1. (|S| − k)|Ek| ≤ (k + 1)|Ek+1| for all 1 ≤ k ≤ |S| − 1. The equality holds if and
only if Ek = Sk.
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Figure 8.5: The array geometries and the weight functions for (a) the ULA with 6
sensors, (b) the MRA with 6 sensors, and (c) the MHA with 6 sensors. The sensors
are depicted in dots while the empty space is shown in crosses. The definition of
Mq in Theorem 8.2.1.3 leads toM1 = 2,M2 = 2 for (a),M1 = 22,M2 = 4 for (b), and
M1 = 30,M2 = 0 for (c).

2. Ek = Sk for all Q ≤ k ≤ |S|, where Q = min{Q1, Q2}. The parameters Q1 and
Q2 are given by

Q1 = |S| − |E1|+ 1, (8.3)

Q2 =

⌈
|S| −

√
8|S| − 11 + 1

2

⌉
, for |S| ≥ 2. (8.4)

3. Let Mq = |{m ∈ D : w(m) = q}| be the number of elements in the difference
coarray such that the associated weight function is q. If |S| ≥ 2, then⌈√

4M1 + 1 + 1

2

⌉
≤ |E1| ≤ min

{
M1 +

⌊
M2

2

⌋
, |S|
}
. (8.5)

Example 8.2.5. Theorem 8.2.1 can be illustrated by the following concrete examples.
First, the ULA in Fig. 8.4 indicates that E1 6= S1, |E1| = 2, and |E2| = 11. If k = 1, then
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we have (|S| − 1)|E1| = 10 and (1 + 1)|E2| = 22, which illustrates Theorem 8.2.1.1.
Second, Fig. 8.4 shows that the ULA with 6 sensors has |E1| = 2 and Ek = Sk for
3 ≤ k ≤ 6. This is consistent with Theorem 8.2.1.2, since we have Q1 = 5, Q2 = 3,
and Q = 3 in (8.3) and (8.4). Finally, let us demonstrate Theorem 8.2.1.3 using the
ULA, the MRA, and the MHA. The array geometries and the weight functions for
these arrays are depicted in Fig. 8.5. Furthermore, the parametersM1 andM2 can
be found in the caption of Fig. 8.5. Substituting M1 and M2 into the lower bound
and the upper bound in (8.5) leads to

(a) ULA: Lower bound = 2, Upper bound = 3, (8.6)

(b) MRA: Lower bound = 6, Upper bound = 6, (8.7)

(c) MHA: Lower bound = 6, Upper bound = 6. (8.8)

Next let us consider the number of essential sensors (|E1|) for these arrays. Accord-
ing to Fig. 8.3, we have |E1| = 2 for the ULA with 6 sensors, which is in accordance
with (8.6). For MRA and MHA with 6 sensors, using Definition 8.2.4, it can be nu-
merically shown that they are maximally economic. This result is consistent with
(8.7) and (8.8). Note that the maximal economy of MRA and MHA will be proved
in Chapter 9.

Remarks on Theorem 8.2.1.1

Theorem 8.2.1.1 (i.e., part 1 of Theorem 8.2.1) shows that the size of Ek cannot be
arbitrary. In particular, if Ek becomes Sk, we have the following corollary:

Corollary 8.2.1. For any k in 1 ≤ k ≤ |S| − 1, if Ek = Sk, then Ek+1 = Sk+1.

Note that Corollary 8.2.1 can be utilized to accelerate the computation of Ek for all
k. Due to Definition 8.2.5, Ek can be evaluated numerically from k = 1, 2, and so
on. If Ek is Sk for some particular k, then the algorithm stops, since it is guaranteed
that E` = S` for k + 1 ≤ ` ≤ |S|. Another usage of Corollary 8.2.1 is to study the
k-essential family of MESA. Due to Definition 8.2.2 (E1 = S1) and Corollary 8.2.1,
we obtain

Corollary 8.2.2. If S is maximally economic, then Ek = Sk for all 1 ≤ k ≤ |S|.

Implications of Theorem 8.2.1.2

If the number of faulty sensors k is sufficiently large (≥ Q where Q is defined in
Theorem 8.2.1.2), then the difference coarray is guaranteed to change. For instance,
if k = |S|, then all the sensors fail so the difference coarray changes from a nonempty
set to the empty set. The parameterQ depends onQ1 andQ2, which can be readily
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computed given the array geometry. Q1 is the number of inessential sensors plus
one while Q2 is purely a function of the number of sensors. In particular, assume
that the number of sensors |S| is large enough. Based on (8.4), we have Q2 ≈ |S| −√

2|S|, implying that, if the number of operational sensors is smaller than
√

2|S|,
then Ek = Sk, that is, any subset of k sensors is k-essential.

Note that the condition thatQ ≤ k ≤ |S| is only sufficient but not necessary for Ek =

Sk. For instance, if S = {0, 1, . . . , 15}, then (8.3) and (8.4) result inQ1 = 15,Q2 = 11,
so Q = 11. However, in this case, it can be numerically shown that E10 = S10.

Theorem 8.2.1.2 can also be utilized to characterizeMESA, as in the following corol-
lary:

Corollary 8.2.3. Let S be a sensor array. If 1 ≤ |S| ≤ 3, then S ismaximally economic.

Proof. If |S| = 1, then due to Definition 8.2.1 and 8.2.2, S is maximally economic. If
2 ≤ |S| ≤ 3, thenQ2 = 1 in (8.4), so E1 = S1, implying S is maximally economic.

Remarks on Theorem 8.2.1.3

Eq. (8.5) is analogous toCheeger inequalities in graph theory [35], where theCheeger
constant is bounded by the expressions based on the topology of graphs. Here in
(8.5), the number of essential sensors is analogous to the Cheeger constant. The
bounds in (8.5) also depend on the weight functions, which depend on the array
geometry.

Proof of Theorem 8.2.1
The following results are useful in proving Theorem 8.2.1:

Proposition 8.2.1. Let D and D be the difference coarrays of S and S, respectively.
If S ⊆ S, then D ⊆ D.

Proof. Letm ∈ D. By definition, there exist n1, n2 ∈ S such that n1 − n2 = m. Since
S ⊆ S, we have n1, n2 ∈ S, implyingm ∈ D. This completes the proof.

Lemma 8.2.3. Assume that A and B are sets such that A ⊆ B ⊆ S. If A ∈ E|A|, then
B ∈ E|B|.

Proof. Assume that S1 , S\A and S2 , S\B. The difference coarrays of S, S1, and
S2 are denoted by D, D1, and D2, respectively. The notation X ⊂ Y denotes that X is
a subset of Y but X 6= Y. We will show that D2 ⊆ D1 ⊂ D. First, since A ⊆ B ⊆ S,
we have S2 ⊆ S1, implying D2 ⊆ D1 due to Proposition 8.2.1. Second, due to the
definition of the k-essential family, A ∈ E|A| is equivalent to D1 ⊂ D. Hence D2 ⊂ D,
which means B ∈ E|B|.
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Lemma 8.2.4. Assume that an array S has difference coarray D. Then D satisfies
2|S| − 1 ≤ |D| ≤ |S|2 − |S|+ 1.

Proof. Let S be {s1, s2, . . . , sN} such that s1 < s2 < · · · < sN , where N = |S| is
the number of sensors. If N = 1, then this lemma is trivially true. Next let us
considerN ≥ 2. Since the sensor locations s1, s2, . . . , sN are distinct, the differences
0,±(s2 − s1),±(s3 − s1), . . . ,±(sN − s1) are all distinct, which proves the lower
bound. For the upper bound, it is known that there are

(
N
2

)
ways to choose two

distinct numbers from N numbers and each choice leads to two differences. In
addition, the difference 0 is obtained by choosing the same number twice. Hence
|D| is at most 2

(
N
2

)
+ 1 = N2 −N + 1.

Now let us move on to the proof of Theorem 8.2.1:

Proof of Theorem 8.2.1.1

This proof technique can be found in [44]. Let us count the number of pairs (A,B) ∈
Ek ×Ek+1 such that A ⊂ B. Let L be the number of such pairs. For every n1 ∈ S but
n1 /∈ A, it can be shown that A ⊂ A ∪ {n1} ⊆ S and therefore A ∪ {n1} ∈ Ek+1, due
to Lemma 8.2.3. Since (A,A ∪ {n1}) has |Ek| × |S\A| choices, we have

L = (|S| − k)|Ek|. (8.9)

Similarly, it can be shown that B\{n2} ⊂ B ⊆ S, for all B ∈ Ek+1 and n2 ∈ B.
However, the statement that B\{n2} ∈ Ek, (the converse of Lemma 8.2.3), is not
necessarily true. Therefore, by counting the number of n2 and B, we have

L ≤ (k + 1)|Ek+1|, (8.10)

with equality if and only if B\{n2} ∈ Ek for all B ∈ Ek+1 and all n2 ∈ B. Com-
bining (8.9) and (8.10) proves the inequality. The equality holds if and only if (A ∪
{n1})\{n2} ∈ Ek. Therefore Ek = ∅ or Sk, where ∅ is the empty set. Since min(S)

and max(S) are both essential, Ek is not empty. This proves the condition for equal-
ity.

Example 8.2.6. For clarity, the proof of Theorem 8.2.1.1 is demonstrated using an
undirected graph in Fig. 8.6. We focus on the ULA with 6 sensors and k = 1. The
array geometry and the k-essential family E1 and E2 are depicted in Fig. 8.4. The
nodes in Fig. 8.6 are grouped into Layer #1 (elements in E1), Layer #2 (elements in
E2), andLayer #3 (elements inS1). The numbers in the nodes denote subarrays of the
ULA. We say that the node A in Layer #1 and the node B in Layer #2 are connected,
if and only if A is a subset of B. For instance, the node {0} in Layer #1 and the
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{0} {5}

{0, 1} {0, 2} {0, 3} {0, 4} {0, 5} {1, 5} {2, 5} {3, 5} {4, 5} {1, 4} {2, 3}

10 edges

{0} {1} {2} {3} {4} {5}

22 edges

Layer #1 (E1)

Layer #2 (E2)

Layer #3 (S1)

Figure 8.6: An illustration for the main idea of the proof of Theorem 8.2.1.1. Here
the array is the ULAwith 6 sensors and the k-essential family E1 and E2 are depicted
in Fig. 8.4.

node {0, 1} in Layer #2 are connected. By definition, the parameter L is exactly the
number of edges between Layer #1 and Layer #2. Since there are |E1| = 2 nodes in
Layer #1 and each node contributes to |S| − 1 = 5 edges, we have L = 2 × 5 = 10,
which is (8.9). Next, let us consider the number of edges between Layer #2 andLayer
#3. Let B in Layer #2 and C in Layer #3. We say that there exists an edge between
B and C if and only if C is a subset of B. For example, the node {3, 5} in Layer #2
is connected to both node {3} and node {5} in Layer #3. As a result, each node in
Layer #2 corresponds to k+ 1 = 2 edges. Then the number of edges between Layer
#2 and #3 becomes 11× 2 = 22, which is indeed greater than or equal to L = 10.

Proof of Theorem 8.2.1.2

Let us consider any subarray A ⊆ S such that |A| = k ≥ |S| − |E1| + 1 = Q1. The
cardinality of S\A becomes |S| − k ≤ |E1| − 1 < |E1|, implying that there is at least
one essential element in A. Due to Lemma 8.2.3, A is k-essential, which proves the
lower bound Q1.

The proof for the lower bound Q2 is as follows. Let the difference coarray of an
array S be denoted by D. Suppose that A ⊆ S and |A| = k. Assume that S , S\A
has difference coarray D. Due to Lemma 8.2.4, D and D satisfy

2|S| − 1 ≤ |D| ≤ |S|2 − |S|+ 1, (8.11)

2(|S| − k)− 1 ≤ |D| ≤ (|S| − k)2 − (|S| − k) + 1. (8.12)

It is guaranteed that D 6= D, if the range of |D| in (8.11) and that of |D| in (8.12) are
disjoint. Therefore, Ek = Sk if

(|S| − k)2 − (|S| − k) + 1 ≤ (2|S| − 1)− 1. (8.13)
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If |S| ≥ 2, then the sufficient condition (8.13) leads to |S|− (
√

8|S| − 11+1)/2 ≤ k ≤
|S|+ (

√
8|S| − 11− 1)/2. Since k is an integer, we have k ≥ Q2.

Proof of Theorem 8.2.1.3

Let Sq = {n1, n2 : w(n1 − n2) = q} ⊆ S be the sensors such that the associated
weight function is q. The set Gq collects the essential sensors in Sq but not in S` for
1 ≤ ` ≤ q − 1. Namely,

Gq = {n : {n} ∈ E1, n ∈ Sq,

n /∈ S`, 1 ≤ ` ≤ q − 1}. (8.14)

By definition, the number of essential sensors is given by |E1| =
∑|S|

q=1 |Gq|. Next, it
can be shown (see below) that the size of Gq satisfies:

(
√

4M1 + 1 + 1)/2 ≤ |G1| ≤M1, (8.15)

0 ≤ |G2| ≤M2/2, (8.16)

|Gq| = 0, q ≥ 3. (8.17)

Since |E1| is an integer, |E1| is lower bounded by d(√4M1 + 1 + 1)/2e and upper
bounded byM1 + bM2/2c, which proves this theorem.

Proof of (8.15). Consider a simple, directed graph G with vertices G1 and directed
edges from n1 to n2 if w(n1 − n2) = 1 for all distinct n1, n2 ∈ G1. Due to |S| ≥ 2

and Lemma 8.2.2, both of the distinct elements min(S) and max(S) belong to G1.
Therefore |G1| ≥ 2. By definition, M1 is the number of directed edges in G. Next
the range ofM1 is discussed. Due to (8.14), each vertex in G corresponds to at least
one directed edge and hence |G1| ≤M1. On the other hand, the maximum number
of edges in G is 2

(|G1|
2

)
= |G1|(|G1|−1) [18]. RearrangingM1 ≤ |G1|(|G1|−1) proves

the lower bound in (8.15).

Example 8.2.7. Let us consider the arrays in Fig. 8.5 to elaborate the proof of (8.15).
For instance, in Figs. 8.4 and 8.5(a), the ULA has E1 = {{0}, {5}} and w(5− 0) = 1.
In this case, we have G1 = {0, 5}, due to (8.14), and the number of directed edges
isM1 = 2, as in Fig. 8.7(a), which is in accordance with (8.15). For the MRA with 6

sensors, Example 8.2.5 and Fig. 8.5(b) show that all sensors are essential andw(13−
0) = w(11 − 1) = w(9 − 6) = 1. Therefore, we obtain G1 = {0, 1, 6, 9, 11, 13} and
M1 = 22, as depicted in Fig. 8.7(b). These quantities also confirm (8.15). Finally, as
in Example 8.2.5 and Fig. 8.5(c), theMHAwith 6 sensors has E1 = S1 andw(1−0) =

w(12−10) = w(17−4) = 1. HenceG1 = {0, 1, 4, 10, 12, 17} andM1 = 30, which are
consistent with (8.15). Note that, in this case, the associated graph G is a complete
directed graph, as illustrated in Fig. 8.7(c).
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0 5

(a)

0

1 6

9

1113

(b)

0

1 4

10

1217

(c)

Figure 8.7: The directed graph G in the proof of (8.15), for (a) the ULA with 6
sensors, (b) the MRA with 6 sensors, and (c) the MHAwith 6 sensors. The number
of directed edges is (a)M1 = 2, (b)M1 = 22, and (c)M1 = 30.

Proof of (8.16). First, it will be shown that, each case of w(m) = w(−m) = 2 corre-
sponds to at most one element inG2. Then the upper bound in (8.16) can be proved
since there are at mostM2/2 such cases.

Let (n1, n2), (n′1, n
′
2) ∈ S2 be the only two sensor pairs such that (n1, n2) 6= (n′1, n

′
2)

and n1 − n2 = n′1 − n′2. We have w(n1 − n2) = w(n2 − n1) = 2. Without loss
of generality, the pair (n1, n2) is considered in the following. If n1 ∈ G2, then the
sensor failure at n1 removes the pairs (n1, n2) and (n′1, n

′
2) at the same time. Since

n1 6= n′1, we have n′2 = n1 ∈ G2 and n2 + n′1 = 2n1. Similarly, if n2 ∈ G2, then n′1 =

n2 ∈ G2 and n1 +n′2 = 2n2. If both n1 and n2 belong toG2, then n1 = n2 = n′1 = n′2.
These arguments show that, among n1, n2, n′1, and n′2, there is at most one element
in G2. Therefore, each case of w(m) = w(−m) = 2 leads to at most one element in
G2.

Proof of (8.17). Let n1 ∈ Gq. Since 3 ≤ q ≤ |S|, there exist three distinct pairs
(n1, n2), (n′1, n

′
2), (n′′1, n

′′
2) ∈ S2 such that n1 − n2 = n′1 − n′2 = n′′1 − n′′2 . The essen-

tialness property of n1 indicates that, the sensor failure at n1 removes these three
pairs simultaneously. Since n1 6= n′1 and n1 6= n′′1 , we have n1 = n′2 = n′′2 so n′1 = n′′1 ,
which disagrees with the assumption of distinct pairs. Hence |Gq| = 0.

8.3 The k-Fragility
After studying the general properties of the k-essential family Ek, in this section, we
will focus on the size of the k-essential family. Larger the size, higher is the likeli-
hood that the difference coarray changes due to failure of k sensors. For instance, if
Ek = Sk, it means that any k faulty sensors shrink the difference coarray. The notion
of fragility is useful to capture this idea.
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Definition 8.3.1. The fragility or k-fragility of a sensor array S is defined as

Fk ,
|Ek|
|Sk|

=
|Ek|(|S|
k

) , (8.18)

where k = 1, 2, . . . , |S|.

Fk can also be regraded as the probability that the difference coarray changes, if all
failure patterns of size k are equiprobable. Larger Fk indicates that this array con-
figuration is less robust, or more fragile to sensor failure, in the sense of changing
the difference coarray.

With these physical interpretations, next we will move on to some properties of the
k-fragility Fk:

Theorem 8.3.1. Let S be an integer set denoting the sensor locations. The k-fragility
Fk with respect to S has the following properties:

1. Fk ≤ Fk+1 for all 1 ≤ k ≤ |S| − 1. The equality holds if and only if Fk = 1.

2. Fk = 1 for all k such that Q ≤ k ≤ |S|, where Q is defined in Theorem 8.2.1.2.

3. min{1, 2/|S|} ≤ Fk ≤ 1 for all 1 ≤ k ≤ |S|.

Proof. Theorem 8.3.1.1 and 8.3.1.2 follow from Theorem 8.2.1.1 and 8.2.1.2, respec-
tively. The lower bound in Theorem 8.3.1.3 is due to Definition 8.3.1, Lemma 8.2.2,
and Theorem 8.3.1.1.

Example 8.3.1. Fig. 8.8 demonstrates the k-fragility Fk for (a) the ULA with 16 sen-
sors, (b) the nested array with N1 = N2 = 8, as in (2.7), and (c) the coprime array
withM = 4 and N = 9, (2.8). All these arrays have 16 physical sensors. The array
geometries for these arrays are depicted on the top of Fig. 8.8. On the bottom of
Fig. 8.8, the data points of Fk are computed numerically using Definition 8.2.5 and
Definition 8.3.1. For all these arrays, the k-fragility Fk is increasing in k (Theorem
8.3.1.1) and Fk is bounded between 2/|S| = 0.125 and 1 (Theorem 8.3.1.3). As an
example, the ULA has |S| = 16, Q1 = 15, Q2 = 11, and Q = min{Q1, Q2} = 11.
Hence we obtain Fk = 1 for all 11 ≤ k ≤ 16 (Theorem 8.3.1.2), which is consistent
with Fig. 8.8.

Furthermore, smaller Fk indicates that the array configuration tends to be more
robust to sensor failures. Among the arrays considered in Fig. 8.8, the most robust
array in terms of F1, is the ULA, followed by the coprime array, and finally the
nested array.
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Figure 8.8: The array geometries (top) and the k-fragility Fk (bottom) for (a) the
ULA with 16 sensors, (b) the nested array with N1 = N2 = 8, and (c) the coprime
array withM = 4 and N = 9.

Next we will present the k-fragility for MESA. According to Definition 8.2.2, an
array S being a MESA is equivalent to F1 = 1, implying the following corollary due
to Theorem 8.3.1:

Corollary 8.3.1. If S is maximally economic, then Fk = 1 for all 1 ≤ k ≤ |S|.

For instance, for the nested array with N1 = N2 = 8, the k-fragility Fk = 1 for all k,
as shown in Fig. 8.8. This numerical result is consistent with the fact that the nested
array with N2 ≥ 2 is a MESA, as proved in Theorem 9.2.1.

8.4 The k-Essential Sperner Family
The concept of the k-essentialness property makes it possible to investigate the fail-
ure patterns that modify the difference coarray. However the k-essential family Ek
may contain as many as

(|S|
k

)
subarrays of size k. Hence, in general, it is challeng-

ing to retrieve information from Ek, for large number of sensors and k. It will be
demonstrated through the following example that there exist simple and compact
representations of the k-essential family:
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Figure 8.9: An example of the underlying structure of k-essential family Ek. Here
the ULA with 7 sensors, S = {0, 1, . . . , 6}, is considered while the numbers in each
small box denote a subarray. For instance, “0, 1, 2” represents the subarray {0, 1, 2}.
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Example 8.4.1. Herewe consider theULAwith 7physical sensors S = {0, 1, 2, 3, 4, 5, 6}.
All of the subarrays over S with size 1, 2, and 3 are depicted in small boxes in Fig.
8.9. The numbers in the small box denote the contents of the subarray. For instance,
“0, 1, 2” represent the subarray {0, 1, 2}. Among these, the subarrays in Ek are enu-
merated and shown in shaded boxes. For example, the boxes within S1 show that 0

and 6 are both essential while 1, 2, 3, 4, and 5 are all inessential. Next, let us focus
on the 12 subarrays in the family E2. It can be observed that E2 can be partitioned
into two parts:

1. Subarrays that contain essential sensors. For instance, the subarray {0, 1} ∈ E2

satisfies 0 ∈ {0, 1}, where 0 is essential. These subarrays are illustrated in light
red rectangles with sharp corners.

2. Subarrays that do not contain essential sensors. For example, {1, 5} ∈ E2 but 1

and 5 are both inessential. This subarray is depicted in a light blue rectangle
with rounded corners.

Furthermore, every subarray in Part 1 of E2 can be obtained by combining an es-
sential sensor and another sensor in S. For instance, {0, 1} is constructed from the
essential element 0 and the inessential element 1. As another example, the subarray
{0, 6} ∈ E2 is composed of two essential elements 0 and 6.

The above discussion indicates that E2 can be characterized by

1. {0}, {6} ∈ E1 (essential sensors), and

2. {1, 5} (those belonging to E2 but not containing essential sensors),

without listing all the 12 subarrays in E2. This decomposition results in a compact
representation of E2, where only 3 subarrays ({0}, {6}, {1, 5}) are recorded.

Similarly, in Fig. 8.9, the same technique can be utilized in E3, which is decomposed
into 1) subarrays that include the elements in E2, as depicted in light red rectangles
with sharp corners, and 2) those that do not, as illustrated in light blue rectangles
with rounded corners. In particular, the second part of E3 is grouped by a dashed
box and denoted by the family E ′3. This second part of Ek, called the k-essential
Sperner family, is formally defined next. The name comes from Sperner theory in
discrete mathematics [44], [160] as elaborated later.

Definition 8.4.1. Let Ek be the k-essential family with respect to the array S, where
the integer k satisfies 1 ≤ k ≤ |S|. The k-essential Sperner family E ′k is defined as



228

follows:

E ′k ,
{
E1, if k = 1, (8.19a)

{A ∈ Ek : ∀B ∈ Ek−1, B 6⊂ A}, otherwise, (8.19b)

where B 6⊂ A denotes that B is not a proper subset of A.

Note that the definition E ′1 = E1 is introduced such that E ′k is well-defined for all
1 ≤ k ≤ |S|.

As one of the advantages, the k-essential Sperner family E ′k could compress Ek sig-
nificantly, which would be quite useful especially when the size of Ek is huge. The
example in Fig. 8.9 displays the k-essential Sperner family E ′1, E ′2, and E ′3. It can
be deduced that the sizes of the k-essential Sperner family |E ′1| = 2, |E ′2| = 1, and
|E ′3| = 5 are much smaller than those of the k-essential family |E1| = 2, |E2| = 12,
and |E3| = 33.

Definition 9 shows that {E ′1, E ′2, . . . , E ′|S|} can be uniquely determined from {E1, E2, . . . , E|S|}.
Conversely, if {E ′1, E ′2, . . . , E ′|S|} is given, then {E1, E2, . . . , E|S|} can be perfectly recon-
structed due to the following Lemma:

Lemma 8.4.1. Let E ′k be the k-essential Sperner family of S with 1 ≤ k ≤ |S|. Then
the k-essential family Ek satisfies

Ek =


E ′1, if k = 1, (8.20a){
A ∪ B : A ∈ E ′`, 1 ≤ ` ≤ k,

B ⊆ S\A, |B| = k − `} , otherwise. (8.20b)

For instance, as in Fig. 8.9, the 3-essential subarray {1, 2, 5} can be decomposed into
A ∪ B, where A = {1, 5} ∈ E ′2 and B = {2} ⊆ S\A = {0, 2, 3, 4, 6}. Another
example is {0, 3, 6}, which corresponds to either A = {0} ∈ E ′1,B = {3, 6} ⊆ S\A or
A = {6} ∈ E ′1,B = {0, 3} ⊆ S\A.

Proof of Lemma 8.4.1. Eq. (8.20a) follows from (8.19a) directly, so it suffices to prove
(8.20b). Let C0 ∈ Ek. If C0 ∈ E ′k, then C0 is trivially included in (8.20b). If C0 6∈
E ′k, due to Definition 8.4.1, there exists C1 ∈ Ek−1 such that C1 ⊂ C0. The same
argument for C1 and Ek−1 shows that either C1 ∈ E ′k−1 or C1 is a superset of some
C2 ∈ Ek−2. Repeating these steps show that C0 is a superset of some element in
E ′`. Next, let us consider the right-hand side of (8.20b). Since A ⊆ A ∪ B ⊆ S and
A ∈ E ′` ⊆ E`, we have A ∪ B ∈ E|A∪B| = Ek, due to Lemma 8.2.3.

Another advantage of the k-essential Sperner family is that the k-essentialness prop-
erty of a given subarray A ⊆ S, can be readily determined from the k-essential
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Sperner family, without computing the difference coarray or searching within Ek.
This can be done by iterating over the elements in E ′k from k = 1 to k = |S|. The
subarray A is reported to be k-essential if there exists B ⊆ A for some B ∈ E ′` and
1 ≤ ` ≤ k. As an example, we know that {4, 5, 6} in Fig. 8.9 is 3-essential since
{0} 6⊆ {4, 5, 6} and {6} ⊆ {4, 5, 6}, where only two comparisons are needed. On
the other hand, if we search for {4, 5, 6} within the box of E3 from top to bottom
and then from left to right, then 28 comparisons are required. As another example,
{1, 3, 4} can be concluded not to be 3-essential with 8 comparisons using E ′1, E ′2, E ′3,
but with 33 comparisons using E3. Empirically, the reduction in the number of com-
parisons is huge especially for large number of sensors and large k. However, the
precise analysis of the complexity is beyond the scope of this chapter and is left for
future work.

The term Sperner originates from the Sperner theory in discrete mathematics [44],
[160]. A Sperner family is a family of sets in which none of the elements is a subset
of the other, which is formally defined as

Definition 8.4.2. A family of sets F is a Sperner family if A 6⊂ B for all A,B ∈ F
[44].

With Definition 8.4.2, we will show an explicit connection between the k-essential
Sperner family and the Sperner family, as indicated in Lemma 8.4.2:

Lemma 8.4.2. Theunion of any selection of the k-essential Sperner family {E ′1, E ′2, . . . , E ′|S|}
is a Sperner family. Namely,

⋃
k∈I E ′k is a Sperner family, where I ⊆ {1, 2, . . . , |S|}.

Proof. Let A,B ∈ ⋃k∈I E ′k such that A ⊂ B. Here A ⊂ B indicates that A is a subset
of B and A 6= B. If A,B ∈ E ′k for some k ∈ I, then |A| = |B| = k, violating A ⊂ B.
Assume that A ∈ E ′k1 and B ∈ E ′k2 for some k1, k2 ∈ I and k1 < k2. Let C be a subset
of B\Awith size |C| = k2− k1− 1. Since A ∈ E ′k1 ⊆ Ek1 and A ⊆ A∪C ⊆ S, Lemma
8.4.1 indicates that, A ∪ C ∈ Ek2−1 . However A ∪ C ⊂ B, contradicting (8.19b).

As an example of Lemma 8.4.2, if I = {2, 3} and E ′k is given in Fig. 8.9, then E ′2 ∪ E ′3
contains {1, 5}, {1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {2, 4, 5}, and {3, 4, 5}, where none of the
elements in E ′2 ∪ E ′3 is a superset of another. Hence E ′2 ∪ E ′3 is a Sperner family.

Furthermore, Lemma 8.4.2 connects the essentialness property, the fragility, and
the k-essential (Sperner) family, with the well-established results in Sperner theory,
such as Sperner’s theorem [160], and so on [44].

Similar to Corollary 8.2.1, the following show the relations between the equality
Ek = Sk and the emptiness of E ′k. These results will be quite useful in studying the
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Ek = Sk

Ek+1 = Sk+1
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Corollary 8.2.1 (a)

(b)

(c)

(d) (e)
Lemma 8.4.3

(f)

(g)

(h)

Figure 8.10: The relation between Ek = Sk and E ′k = ∅. Here solid arrows represent
logical implication while arrows with red crosses mean that one condition does not
necessarily imply the other.

probability that the difference coarray changes in Section 8.5 and the k-essentialness
property for several array configurations in Chapter 9.

Lemma 8.4.3. Let ∅ denote the empty set. Assume that the integer k satisfies 1 ≤
k ≤ |S| − 1. If Ek = Sk, then E ′k+1 = ∅.

Proof. LetA ∈ E ′k+1 and B be a subset ofAwith size |B| = k. Since Ek = Sk, we have
B ∈ Ek, which contradicts Definition 8.4.1.

Lemma 8.4.4. Let E ′k be the k-essential Sperner family of an array S. Then E ′k = ∅
for all Q+ 1 ≤ k ≤ |S|, where Q is defined in Theorem 8.2.1.2.

Proof. It follows from Theorem 8.2.1.2 and Lemma 8.4.3.

Fig. 8.10 summarizes the logical relation between Ek = Sk and E ′k = ∅ in detail.
Here Corollary 8.2.1 and Lemma 8.4.3 are denoted by solid arrows while dashed
arrows (Case (a) to (h)) indicate that one condition does not imply the other. The
counter examples for (a)-(h) are listed as follows. If S = {0, 1, 3, 4, 5, 6, 7, 8, 10}, then
the k-essential family and the k-essential Sperner family become

E1 6= S1, E ′1 = {{0}, {1}, {8}, {10}} 6= ∅, (8.21)

E2 6= S2, E ′2 = ∅, (8.22)

E3 6= S3, E ′3 = {{3, 5, 6}, {4, 6, 7}} 6= ∅, (8.23)

E4 = S4, E ′4 = {{3, 4, 5, 7}} 6= ∅, (8.24)

E5 = S5, E ′5 = ∅. (8.25)
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Counter examples for Cases (a) to (h) can be found in (8.21) to (8.25). For instance,
E4 = S4 but E3 6= S3, which contradicts (a). Furthermore, E4 and E ′4 contradicts (b);
E2 and E ′2 contradicts (c). The example of E ′1, E ′2, and E ′3 disapproves Case (d) and
(e) while E1, E ′2, and E3 contradict Case (f) and (g). Case (h) has a counter example
of E ′4 and E5. These examples confirm that Cases (a)-(h) are not necessarily true.

8.5 Robustness Analysis for Random Sensor Failures
In this section, we assume that the sensors in an array have a certain probability
of failure, and derive an expression for the probability that the difference coarray
will change due to this failure. We will show that the concepts introduced in this
chapter, such as k-essentialness and fragility, play a crucial role in this analysis.
As explained earlier, the importance of this analysis arises from the fact that the
robustness of the difference coarray (to sensor failures) is crucial for the success of
algorithms such as coarray MUSIC.

Assumptions

In this section, let a sensor array be S and the difference coarray be D. Assume
that each sensor fails independently with probability p. After the removal of faulty
sensors, the array and the difference coarray are denoted by S and D, respectively.
Then the probability that D 6= D is denoted by

Pc , Pr[D 6= D]. (8.26)

An array is more robust, as Pc is close to 0. This property can also be used in com-
paring the robustness among several array configurations.

Note that Pc is different from the k-fragility Fk, even though they both correspond
to the concept of probability. As presented in Section 8.3, if there are k faulty sen-
sors in the array and all possible failure patterns are equiprobable, the k-fragility
Fk can be interpreted as the probability that the difference coarray changes. On the
other hand, Pc denotes the probability that the difference coarray changes, due to
any possible sensor failure pattern. Furthermore, Fk depends purely on the array
geometry while Pc depends on the array geometry and the failure probability of
each sensor In practice, Pc is more useful since 1) it does not require the informa-
tion of the number of faulty sensors and 2) the parameter p, which determines the
quality and the cost of the sensing device, can be designed based on the budget.

Next, we will present a closed-form relation between Pc and Fk. Let A ⊆ S be the
set of faulty sensors. Assume that S , S\A and the associated difference coarray D.
Due to Definition 8.2.4, the difference coarray changes (D 6= D) if and only if there
exist 1 ≤ k ≤ |S| and A ∈ Ek such that 1) all the elements in A ∈ Ek fail and 2) all
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the elements in S are operational. Summing over all possible k and A leads to the
following expression of Pc:

Pc =

|S|∑
k=1

∑
A∈Ek

Pr

 ⋂
n1∈A

(n1 fails)

 ∩
 ⋂
n2∈S

(n2 fails)c


=

|S|∑
k=1

∑
A∈Ek

[ ∏
n1∈A

Pr [n1 fails]
][ ∏

n2∈S

(1− Pr [n2 fails])
]

=

|S|∑
k=1

|Ek|pk(1− p)|S|−k, (8.27)

where the second equation is due to the independence of sensor failures. The com-
plement of an event F is denoted by Fc. SubstitutingDefinition 8.3.1 into (8.27) leads
to

Pc =

|S|∑
k=1

Fk

(|S|
k

)
pk(1− p)|S|−k, (8.28)

where Fk is the k-fragility of S.

Note that (8.28) shows the explicit relation between Fk and Pc, which holds for
any array configuration S. Here each term in (8.28) has two contributions: Fk and(|S|
k

)
pk(1−p)|S|−k. Fk depends purely on the array geometry while

(|S|
k

)
pk(1−p)|S|−k

relies on k, the number of sensors |S|, and p. This observationmeans that, for a fixed
number of sensors and a fixed p, it is possible to reduce Pc by designing new array
geometries with reduced Fk. On the other hand, for a fixed array configuration, Fk
is uniquely determined. In this case, it can be shown that Pc decreases with p, as
p is sufficiently small. Namely, to reduce Pc, we can deploy sensing devices with
small p.

However, the right-hand side of (8.28) is not computationally tractable. For instance,
if k is approximately |S|/2, the complexity for evaluating Fk is around

( |S|
|S|/2

)
, which

becomes computationally expensive for large |S|. Even so, the behavior of Pc can
still be analyzed based on the following theorem:

Theorem8.5.1. Theprobability that the difference coarray changes satisfiesmax{L1, L2} ≤
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Pc ≤ min{U1, U2, 1}, where L1, U1, L2, and U2 are given by

L1 = 1− (1− p)|S| −
(

1− 2

|S|

)Q−1∑
k=1

(|S|
k

)
pk(1− p)|S|−k, (8.29)

U1 = 1− (1− p)|S|, (8.30)

L2 = 1− (1− p)|E1|, (8.31)

U2 = 1− (1− p)|E1| + (1− p)|E1|
Q∑
k=2

|E ′k|pk. (8.32)

Here the parameterQ is given in Theorem 8.2.1.2. The notation Ek and E ′k represent
the k-essential family and the k-essential Sperner family for the sensor array S.

Proof. First we will show that L1 ≤ Pc ≤ U1. Theorem 8.3.1.3 indicates that Pc is
upper bounded by

∑|S|
k=1

(|S|
k

)
pk(1− p)|S|−k = 1 − (1 − p)|S| = U1, which proves

the upper bound. For the lower bound, if |S| = 1, then it can be shown that Pc =

p = L1. If |S| ≥ 2, then Theorem 8.3.1.3 and 8.3.1.2 imply that Fk ≥ 2/|S| for
k = 1, 2, . . . , Q − 1 and Fk = 1 otherwise. Substituting these relations into (8.28)
proves L1.

The proof of Eqs. (8.31) and (8.32) is as follows. Let the sensor array be S and the
k-essential Sperner family be E ′k. Assume that each sensor fails independently with
probability p. LetB be the set of faulty sensors. Assume that S , S\B and difference
coarray is denoted byD. Since a subarrayB is k-essential if and only ifB is a superset
of some elements in E ′` for some 1 ≤ ` ≤ k, as in (8.20b), it suffices to consider all
elements in E ′1, E ′2, . . . , E ′|S| and the probability that D 6= D becomes

Pc = Pr
[
D 6= D

]
= Pr

 |S|⋃
k=1

⋃
Ak∈E ′k

F(Ak)


= Pr

[( ⋃
A1∈E ′1

F(A1)

)
︸ ︷︷ ︸

Event G1

∪
( |S|⋃
k=2

⋃
Ak∈E ′k

F(Ak)

)
︸ ︷︷ ︸

Event G2

]
, (8.33)

where F(Ak) , ∩n∈Ak(n fails) denotes the event in which all the elements in Ak
fail. Since the event G1 involves only the essential elements and G2 are associ-
ated with inessential sensors, G1 and G2 are independent. Namely, Pr[G1 ∩ G2] =

Pr[G1]Pr[G2]. Hence Pr[G1 ∪ G2] = 1 − Pr[Gc
1] + Pr[Gc

1]Pr[G2], where Gc
1 is the

complement of the event G1. The probability Pr[Gc
1] can be simplified as

Pr[Gc
1] = Pr

[ ⋂
A1∈E ′1

(F(A1))c

]
= (1− p)|E1|. (8.34)



234

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Probability of failure for each sensor, p

P
c
an

d
bo

un
ds

Pc, (8.28)
L1, (8.29)
U1, (8.30)
L2, (8.31)
U2, (8.32)

Pc

L1
L2

U1

U2

Figure 8.11: The probability that the difference coarray changes Pc and its lower
bounds and upper bounds for the ULA with 12 sensors.

Applying the union bound of Pr[G2] leads to

0 ≤ Pr[G2] ≤
|S|∑
k=2

∑
Ak∈E ′k

Pr[F(Ak)] =

|S|∑
k=2

|E ′k|pk. (8.35)

Substituting (8.34), (8.35), and Lemma 8.4.4 into Pc = 1 − Pr[Gc
1] + Pr[Gc

1]Pr[G2]

proves (8.31) and (8.32).

It can be observed that all these expressions (8.29) to (8.32) do not require the com-
plete knowledge of Fk. For instance, U1 depends only on the probability of single
sensor failure p and the number of sensors, while L2 requires p and the size of E1.
The boundsL1 andU2 are functions of the parameterQ, as given in Theorem 8.2.1.2.
IfQ ismuch smaller than the number of sensors, thenU2 can be evaluated efficiently
with the first few E ′k.

Example 8.5.1. Next we will demonstrate an example for the bounds in Theorem
8.5.1. Fig. 8.11 shows the curves of Pc, L1, U1, L2, and U2 for the ULA with N = 12

physical sensors, as a function of p. First it can be observed that the bounds L1 and
U1 are close to Pc for p ≥ 0.8 while for small p, the bounds L2 and U2 are tighter
than L1 and U1. Second, in this example, the bound U2 is greater than 1 for p ≥ 0.5,
which becomes a trivial upper bound for Pc. This is because the term

∑Q
k=2 |E ′k|pk

in (8.32) is derived from the union bound of the probability, which could be greater
than 1.

The bounds in Theorem 8.5.1 also makes it possible to derive asymptotic expres-
sions for Pc. For fixed number of sensors, if p � 1/|S|, then the high order terms
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k=2 |E ′k|pk in (8.32) become negligible, since |E ′k| ≤

(|S|
k

)
= O(|S|k). Then we have

L2 ≤ Pc ≤ U2 ≈ L2. Therefore, for any array geometry S and p� 1/|S|, the proba-
bility that the difference coarray changes can be approximated by

Pc ≈ L2 = 1− (1− p)|E1| ≈ |E1|p, (8.36)

since (1+x)N ≈ 1+Nx for |x| � 1. Eq. (8.36) shows that, for small p, the probability
Pc is approximately linear in p with slope |E1|. This result can be verified through
the curve of Pc in Fig. 8.11, where the ULA has |E1| = 2, as proved in (9.20).

Note that (8.36) holds for any array configuration S, which indicates that for the
same p� 1/|S|, smaller |E1| leads to smaller Pc. For instance, due to (9.20), the ULA
with N ≥ 4 physical sensors always has Pc ≈ 2p, even for large N . However this
does not hold for MESA, since MESA with N sensors own Pc ≈ Np, which grows
linearly with N . Eq. (8.36) can also be expressed as Pc ≈ (|S|p)F1. This indicates
that, if the number of sensors |S| and the sensor failure rate p are fixed, then Pc is
proportional to fragility F1, instead of Fk.

Example 8.5.2. Fig. 8.12 demonstrates a numerical example for Pc across various
array configurations with 12 sensors, such as the ULA with 12 sensors, the nested
arraywithN1 = N2 = 6, as in (2.7), and the coprime arraywithM = 4 andN = 5, as
in (2.8). The probability that the difference coarray changes is first evaluated based
on (8.28), as depicted in solid, dashed, and dotted curves on the bottom of Fig. 8.12.
Next, these probabilities are also averaged empirically from 107 Monte-Carlo runs
and each run corresponds to an independent realization of the array geometry with
sensor failure rate p. The results based on Monte-Carlo runs are marked in either
empty circles, crosses, and empty squares on the bottom of Fig. 8.12.

First, it can be deduced that the experimental results match (8.28) for all these array
configurations. For the same p and the same number of physical sensors, by com-
paring the values of Pc, the most robust array geometry is the ULA, followed by the
coprime array, and finally the nested array. Furthermore, for p� 1/|S| = 1/12, the
asymptotic expressions for Pc in Fig. 8.12 become Pc ≈ 2p for ULA, Pc ≈ 12p for the
nested array, and Pc ≈ 9p for the coprime array. These results are consistent with
the asymptotic expressions in (8.36).

8.6 Concluding Remarks
In this chapter, we presented a general theory to quantify the robustness of differ-
ence coarrayswith respect to sensor failures. Webegan bydefining the (k-)essentialness
property and the k-essential family. Based on these, the k-fragility characterizes the
likelihood that the difference coarray changes, while the k-essential Sperner family
offers a compact representation of the k-essential family. Under mild assumptions,
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Figure 8.12: The dependence of the probability that the difference coarray changes
Pc on the probability of single sensor failure p for (a) the ULA with 12 sensors, (b)
the nested array with N1 = N2 = 6, and (c) the coprime array with M = 4 and
N = 5. Here the essential sensors (diamonds) and the inessential sensors (squares)
are depicted on the top of this figure. Experimental data points (Exp.) are averaged
from 107 Monte-Carlo runs. The approximations of Pc are valid for p � 1/12 due
to (8.36).

it was shown that the probability that the difference coarray changes, which is cru-
cial for the functionality of coarray MUSIC, can be derived using the proposed the-
ory.

In Chapter 9, we will concentrate on the relation between the presented theory and
the array geometry. The closed-form expressions of the k-essential Sperner family
for ULA, MRA, MHA, Cantor arrays, nested arrays, and coprime arrays, will be
derived to provide insights into the importance of each sensor and the robustness
of arrays.

In the future, it is of considerable interest to investigate the interplay between the
DOA estimation performance and coarray robustness, which may find applications
in practical systems using sparse arrays. Another future topic is to quantify the ro-
bustness of sparse arrays with respect to the central ULA segment in the difference
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coarray, which affects the applicability of DOA estimators such as coarray MUSIC.

As a final remark, the essentialness property can be reformulated to study the ro-
bustness of sparse arrays in various problems. For instance, the performance of
MIMO radar [82] depends on the sum coarray while the 2qth-order difference coar-
ray [120] plays a critical role in DOA estimation with 2qth-order cumulants. Future
directions can be conducted towards the robustness of the coarray in these scenar-
ios.
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C h a p t e r 9

ROBUSTNESS OF DIFFERENCE COARRAYS OF SPARSE ARRAYS TO
SENSOR FAILURES – ARRAY GEOMETRIES

9.1 Introduction
In Chapter 8, the general theory of the k-essential family, the k-fragility, and the k-
essential Sperner family was proposed to assess the robustness of difference coar-
rays of sparse arrays to sensor failures. A subarray of size k is said to be k-essential
if its deletion changes the difference coarray. All these k-essential subarrays consti-
tute the k-essential family. With this tool, the robustness can be quantified by the
k-fragility, or simply fragility, which ranges from 0 to 1. An array is more robust
or less fragile if the fragility is closer to 0. However, from the computational per-
spective, the size of the k-essential family can be as large as

(
N
k

)
, where N is the

number of physical elements. This attribute makes it challenging to analyze and to
store the complete information of the k-essential family. It was shown in Chapter 8
that the k-essential family can be compactly represented by the k-essential Sperner
family. With these tools, the system reliability can be quantified by the probabil-
ity that the difference coarray changes, Pc, under the assumption of random sensor
failures. Many insights into the interplay between the proposed theory and Pcwere
also offered in Chapter 8.

The main contribution of this chapter is to analyze the robustness of several com-
monly used array configurations, like ULA [188], MRA [113], minimum hole arrays
(MHA) [177], Cantor arrays [100], [136], nested arrays [124], and coprime arrays
[186], based on the general theory in Chapter 8. These arrays are widely used in
various topics of array signal processing, such as beamforming [4], [68], [124], [136],
[188] and DOA estimation [19], [124], [139], [186]. However the robustness of the
difference coarrays of these arrays to sensor failures remains an open but signifi-
cant topic in this field. It will be shown in this chapter that most arrays we consider
are maximally economic, namely, any sensor failure changes the difference coarray,
except for ULA and coprime arrays. It can be proved that the fragility and Pc for
maximally economic sparse arrays (MESA) are the largest among all arrays with a
fixed number of sensors. These theoretical results confirm the empirical observa-
tion that MRA are not robust to sensor failures, in terms of the preservation of the
difference coarray.

In this chapter, the closed-form expressions of the k-essential Sperner family for
ULA and coprime arrays are also established with detailed derivations. These ex-
pressions lead to a number of contributions. First, it can be proved that, for suf-
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ficiently large number of sensors, ULA are more robust than MESA and coprime
arrays (in terms of the fragility), which is in accordance with the observation that
sparse arrays are in general less robust than ULA. Furthermore, the explicit expres-
sions of the k-essential Sperner family for the coprime array allow one to construct
arrayswith fewer sensors but with the same difference coarray as the coprime array.
Note that this topic was previously addressed in the thinned coprime array [144],
where a specific selection of sensors is removed from the coprime array. Using the
proposed expressions, it can be shown that there exist other array geometries that
achieve the same number of sensors and the same difference coarray, as the thinned
coprime array.

It is also demonstrated through numerical examples that, the DOA estimation per-
formance of arrays is influenced by the trade-offs between the size and the robust-
ness of the difference coarray. It is assumed that each element in an array fails in-
dependently with probability p and the number of sensors is fixed for the ULA, the
MRA, the nested array, and the coprime array. It will be deduced in the examples
that, for small p, the MRA has the best DOA estimation performance, due to the
largest difference coarray, while for large p, the ULA owns the best performance
because of its robustness. An interesting observation is that, for moderate p, the
coprime array could outperform the ULA, the MRA, and the nested array, owing to
its striking a balance between the size and the robustness of the difference coarray.

Chapter outline: Section 9.2, 9.3, and 9.4 study the k-essential Sperner family for
MESA, ULA, and coprime arrays, respectively, along with examples, discussions,
and proofs. The performance of these arrays in the presence of sensor failure is
demonstrated in Section 9.5 while Section 9.6 concludes this chapter.

9.2 Maximally Economic Sparse Arrays
The definition of the maximally economic sparse arrays (MESA), as in Definition
8.2.2, is actually equivalent to E1 = S1. This result leads to the following lemma:

Lemma 9.2.1. Let S be a MESA, as defined in Definition 8.2.2. Then the k-essential
family Ek, the k-fragility Fk, and the k-essential Sperner family E ′k for S are given by

Ek = Sk, Fk = 1, k = 1, 2, . . . , |S|, (9.1)

E ′1 = S1, E ′k = ∅, k = 2, 3, . . . , |S|, (9.2)

where Sk is defined in Definition 8.2.3 and ∅ denotes the empty set.

Due to Lemma 9.2.1, MESA are the least robust arrays in terms of the k-fragility Fk,
since they own the largest k-fragility Fk among all array configurations. Further-
more, according to Lemma 9.2.1, the condition that E ′k = ∅ for all 2 ≤ k ≤ N is
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necessary, but not sufficient for S being maximally economic. As an example, the
array S = {0, 1, 2, 3, 4, 12, 14} has E ′k = ∅ for all 2 ≤ k ≤ 7. But E ′1 = S1\{{2}} and
S is not maximally economic.

The probability that the difference coarray changes Pc can also be characterized in
closed forms. Substituting Lemma 9.2.1 into (8.28) leads to

Pc = 1− (1− p)|S| for MESA. (9.3)

Eq. (9.3) depends only on the number of sensors in MESA, instead of the sensor
locations.

It can be deduced from (9.3) and Theorem 8.5.1 that, for a fixed number of sen-
sors, MESA has the largest Pc. This observation is in accordance with the statement
that MESA are the least robust or the most fragile arrays among all possible array
geometries, as seen from our earlier discussion on k-fragility.

The above discussions do not assume a specific array geometry. As one of the main
contributions of this chapter, the following theorem characterizes several instances
of MESA:

Theorem 9.2.1. The MESA family includes minimum redundancy arrays (MRA),
minimum hole arrays (MHA), nested arrays with N2 ≥ 2, and Cantor arrays.

Example 9.2.1. The definitions of these arrays and the proofs can be found later
in Section 9.2 to 9.2. Before presenting these details, for clarity, first let us review
the geometries (depicted in diamonds) and the weight functions (shown in dots) of
these arrayswith 8physical sensors through the example in Fig. 9.1. Due to the sym-
metry of the difference coarray, only the nonnegative portion of the weight func-
tion is depicted. By definition, the difference coarray is the support of the weight
function, as in Definitions 2.2.1 and 2.2.9. It can be observed that the size of the
nonnegative part of the difference coarray, as given by the number of m such that
w(m) ≥ 1 in Fig. 9.1, is 24 for the MRA, 29 for the MHA, 20 for the nested array, and
finally 14 for the Cantor array. This is because Cantor arrays only have O(|S|1.585)

elements in the difference coarray [100] while the remaining arrays haveO(|S|2) el-
ements in D [113], [124], [177]. Furthermore, the MHA has holes in the difference
coarray. Namely, there are some missing elements, such as 26, 27, and 29 in Fig.
9.1(b), which cannot be obtained from the pairwise differences of the sensor loca-
tions. The remaining arrays have hole-free difference coarrays, i.e., the difference
coarray is composed of consecutive integers (D = U). Theorem 9.2.1 indicates that
none of the physical elements (as the diamonds in Fig. 9.1) in these arrays can be
removed without changing the difference coarray.



241

(a)

0 5 10 15 20 25 30 35
0

4

8

Coarray locationm

w
(m

)

MRA S:
0 23

(b)

0 5 10 15 20 25 30 35
0

4

8

Coarray locationm

w
(m

)

MHA S:
0 34

Holes

(c)

0 5 10 15 20 25 30 35
0

4

8

Coarray locationm

w
(m

)

Nested S:
1 20

(d)

0 5 10 15 20 25 30 35
0

4

8

Coarray locationm

w
(m

)

S:Cantor
0 13

Figure 9.1: The array geometry (S, in diamonds) and the nonnegative part of the
weight function (w(m), in dots) for (a) the MRAwith 8 elements, (b) the MHAwith
8 elements, (c) the nested array with N1 = N2 = 4 (8 elements), and (d) the Cantor
array with 8 elements. Here crosses denote empty space.
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In Section 9.2 to 9.2, the details of Theorem 9.2.1 will be clarified, including the
definition of these arrays and the proof of their maximal economy.

Minimum Redundancy Arrays
Minimum redundancy arrays (MRA) were first proposed by Moffet [113]. These
minimize the so-call redundancy R, defined as

R ,

(|S|
2

)
(|U| − 1)/2

, (9.4)

subject to the hole-free constraint on the difference coarray. Next, the definition of
the MRA is given as follows (Definition 2.2.10):

Definition 9.2.1. The MRA with N physical elements can be defined as:

SMRA , arg max
S

|D| subject to |S| = N, D = U. (9.5)

For a fixed number of sensors, it can be shown that Moffet’s definition is equivalent
to Definition 2.2.10, or Definition 9.2.1. However, this chapter considers Definition
2.2.10 to facilitate the proof of Theorem 9.2.1, as presented below.

Proof of the maximal economy of MRA

Definition 2.2.10 implies that the MRA has the largest hole-free difference coarray
DMRA , {0,±1,±2, · · · ± (max(SMRA) −min(SMRA))}, among all array configura-
tions withN elements. Due to Corollary 8.2.3, the MRA is maximally economic for
1 ≤ N ≤ 3. If N ≥ 4, then we have the following chain of arguments. Assume that
n ∈ SMRA is inessential. It can be shown that 1) n 6= min(SMRA) as in Lemma 8.2.2,
and 2) the difference coarray of SMRA\{n} is also DMRA. Now we construct a new
array geometry

S , (SMRA\{n}) ∪ {max(SMRA) + 1}, (9.6)

which has difference coarray D. It can be shown that 1) |S| = N and 2) D = DMRA ∪
{±(max(SMRA)−min(SMRA)+1)}. HenceD is hole-free. However, |D| = |DMRA|+2,
which contradicts (2.5). Therefore all elements in SMRA are essential.

Minimum Hole Arrays
Minimumhole arrays (MHA) are also calledGolomb arrays orminimumgap arrays
[177], [190]. These arrays are defined to minimize the number of holes, such that
each nonzero element in the difference coarray results from a unique sensor pair,
as in Definition 2.2.11. More details on MHA can be found in [2] and the references
therein. In this chapter, the main focus of MHA is to prove their maximal economy,
as presented below:
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Proof of the maximal economy of MHA

Let SMHA = {s1, s2, . . . , sN} be a MHA with N elements such that s1 < s2 < · · · <
sN . Due to Corollary 8.2.3, it suffices to considerMHAwithN ≥ 4. Next, Definition
2.2.11 indicates that the weight function of SMHA satisfies w(s2− s1) = w(s3− s1) =

· · · = w(sN − s1) = 1, This relation proves the maximal economy of MHA owing to
Lemma 8.2.1 and Definition 8.2.2.

Example 9.2.2. Consider Fig. 9.1(b), where the MHA has sensor locations SMHA =

{0, 1, 4, 9, 15, 22, 32, 34}. It can be observed that the weight function satisfies w(1−
0) = w(4 − 0) = w(9 − 0) = w(15 − 0) = w(22 − 0) = w(32 − 0) = w(34 − 0) = 1.
As a result, the MHA with 8 sensors is maximally economic.

Nested Arrays with N2 ≥ 2

A downside for MRA and MHA is the lack of computationally efficient algorithms
or closed-form solutions for the sensor locations [113], [177]. By contrast, the sensor
locations of nested arrays are expressed in closed forms, as in [124], and (2.7):

Definition 9.2.2. Assume that N1 and N2 are positive integers. The nested array
with N1 and N2 is specified by the set Snested , T1 ∪ T2, where T1 and T2 are
defined as

T1 = {1, 2, . . . , N1}, (9.7)

T2 = {n(N1 + 1) : n = 1, 2, . . . , N2}. (9.8)

Here T1 denotes a dense ULA with interelement spacing 1 (in unit of half of the
wavelength) while T2 represents a sparse ULA with spacing N1 + 1. For instance,
in Fig. 9.1(c), the nested array has T1 = {1, 2, 3, 4} and T2 = {5, 10, 15, 20}.

Nested arrays possess hole-free difference coarrays [124]. Furthermore, ifN1 andN2

are approximately N/2, then the size of the difference coarray of the nested array
becomes O(N2), which is as many as that of MRA and MHA [113], [124], [177].
For brevity, other properties of the nested array are skipped in this chapter and
interested readers are referred to [124] and the references therein.

Next, as one of the contributions of this chapter, the maximal economy of nested
arrays withN2 ≥ 2 will be proved. As a remark, ifN2 = 1, then the nested array be-
comes the ULAwithN1 +1 elements, which is, in general, not maximally economic,
as we will shown in Theorem 9.3.1.

Proof of the maximal economy of nested arrays with N1 ≥ 2

First, the weight function for Snested is denoted by wnested(m). Then, we invoke the
following two lemmas, whose proofs can be found at the end of this subsection.
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Lemma 9.2.2. Assume thatN2 ≥ 2. Ifn1 = N2(N1+1) andn2 ∈ T1, thenwnested(n1−
n2) = 1.

Lemma 9.2.3. If n1 ∈ T2 and n2 = 1, then wnested(n1 − n2)=1.

Finally, combiningLemma8.2.1, 9.2.2, 9.2.3, andDefinition 8.2.2 proves themaximal
economy of the nested array with N2 ≥ 2.

Example 9.2.3. Let us verify Lemma 9.2.2 and 9.2.3 using the nested arraywithN1 =

N2 = 4 in Fig. 9.1(c). Assume that n1 = N2(N1 + 1) = 20 and n2 = 3 ∈ T1. Due to
Fig. 9.1(c), the weight function of the nested array satisfies w(n1−n2) = w(17) = 1,
which confirms Lemma 9.2.2. Next, suppose that n1 = 15 ∈ T2 and n2 = 1. We
obtain w(n1 − n2) = 14 based on Fig. 9.1(c). The above example is also consistent
with Lemma 9.2.3.

Finally, the proofs of Lemma 9.2.2 and 9.2.3 are given as follows:

Proof of Lemma 9.2.2. In this case, we have n1 − n2 ≥ N2(N1 + 1) − N1. Assume
that there exist n′1, n′2 ∈ Snested such that the pair (n′1, n

′
2) 6= (n1, n2) and n′1 − n′2 =

n1 − n2. If n′1 is not the rightmost element in Snested, namely, n′1 6= N2(N1 + 1),
then n′1 ≤ (N2 − 1)(N1 + 1), because N2 ≥ 2. Furthermore, since n′2 ≥ 1, we have
n′1 − n′2 ≤ (N2 − 1)(N1 + 1) − 1 = N2(N1 + 1) − N1 − 2, which disagrees with
n′1 − n′2 = n1 − n2 ≥ N2(N1 + 1) −N1. Therefore n′1 = n1 = N2(N1 + 1), n′2 = n2,
and wnested(n1 − n2) = 1.

Proof of Lemma 9.2.3. Since n1 ∈ T2 and n2 = 1, we have

n1 − n2 ≡ N1 mod (N1 + 1), (9.9)

n1 − n2 ≥ N1, (9.10)

where mod N denotes the modulo-N operation. Suppose that there exist n′1, n′2 ∈
Snested such that the pair (n1, n2) 6= (n′1, n

′
2) and n′1 − n′2 = n1 − n2. The parameters

n′1 and n′2 can be divided into four cases. If n′1, n′2 ∈ T1, then |n′1 − n′2| ≤ N1 − 1,
which contradicts (9.10). If n′1, n′2 ∈ T2, then n′1 − n′2 is divisible by N1 + 1, which
violates (9.9). If n′1 ∈ T1 and n′2 ∈ T2, then n′1 − n′2 ≤ −1, which disagrees with
(9.10). Finally, if n′1 ∈ T2 and n′2 ∈ T1, then we obtain

n′2 = n′1 − (n1 − n2) ≡ 1 mod (N1 + 1),

due to (9.9) and n′1 ∈ T2. Therefore n′2 = n2 = 1 and n′1 = n1, which proves this
lemma.
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Cantor Arrays
In this subsection, we will concentrate on Cantor arrays, which first appeared in
the context of fractal array design [136], [194], [195]. These arrays originated from
the Cantor set in fractal theory [27], [159]. Previous research on Cantor arrays was
mainly conducted towards the relationships between fractal geometries and the
beampatterns of the arrays [136], [194], [195]. A recent study focused on the dif-
ference coarray of Cantor arrays [100], including the weight function, the size and
the structure of the difference coarray, and its maximal economy, as we will present
next.

First, the definition of the Cantor array Sr is parameterized by a nonnegative integer
r. The translated array of Sr is defined as Tr , {n + Dr : ∀n ∈ Sr}, where Dr ,

2Ar + 1, withAr denoting the aperture of Sr, that is, Ar , max(Sr)−min(Sr). With
this, we are ready to define a Cantor array:

Definition 9.2.3. The Cantor array Sr is defined as

Sr ,

{0} if r = 0,

Sr−1 ∪ Tr−1, if r ≥ 1.
(9.11)

Notice that Sr has N = 2r sensors. So, Cantor arrays are defined only for the case
that the number of sensors is a power of two. Furthermore, it was shown in [100]
that Cantor arrays are symmetric arrays, i.e. n ∈ Sr if and only if Ar − n ∈ Sr.

For instance, let us consider the Cantor arrays for r = 0, 1, 2, 3. According to Defi-
nition 9.2.3, these arrays become

S0 = {0}, A0 = 0, D0 = 1, (9.12)

S1 = {0, 1}, A1 = 1, D1 = 3, (9.13)

S2 = {0, 1, 3, 4}, A2 = 4, D2 = 9 (9.14)

S3 = {0, 1, 3, 4, 9, 10, 12, 13}, A3 = 13, D3 = 27, (9.15)

where (9.15) is depicted in Fig. 9.1(d). It can also be deduced from Fig. 9.1(d) that
S3 is symmetric.

The arrays in Definition 9.2.3 are equivalent to the Cantor array proposed in [136],
[194], [195], with proper amount of translation and scaling. The Cantor arrays in
[136], [194], [195] are built upon the Cantor sets in fractal theory [46], [47]. But
here we start with a different definition (Definition 9.2.3), which will facilitate the
discussion on its coarray properties. We begin by proving:
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Lemma 9.2.4. For the Cantor array (9.11) with parameter r ≥ 1 in Definition 9.2.3,
the weight function wr(m) satisfies

wr(m) =


2wr−1(m), if |m| ≤ Ar−1,

wr−1(m±Dr−1), if |m±Dr−1| ≤ Ar−1,

0, otherwise,

(9.16)

where Ar and Dr are defined as in Definition 9.2.3.

Proof. The weight function wr(m) can be expressed as

wr(m) =
∣∣{(n1, n2) ∈ S2

r : n1 − n2 = m
}∣∣

=
∣∣{(n1, n2) ∈ S2

r−1 : n1 − n2 = m
}∣∣

+
∣∣{(n1, n2) ∈ T2

r−1 : n1 − n2 = m
}∣∣

+ |{(n1, n2) ∈ Sr−1 × Tr−1 : n1 − n2 = m}|
+ |{(n1, n2) ∈ Tr−1 × Sr−1 : n1 − n2 = m}| , (9.17)

which is due to Sr = Sr−1 ∪ Tr−1 for r ≥ 1 in Definition 9.2.3. Since every element
in Tr−1 can be expressed as n′ +Dr−1, where n′ ∈ Sr−1, (9.17) can be written as

wr(m) =
∣∣{(n1, n2) ∈ S2

r−1 : n1 − n2 = m
}∣∣

+
∣∣{(n′1, n

′
2) ∈ S2

r−1 : n′1 − n′2 = m
}∣∣

+
∣∣{(n1, n

′
2) ∈ S2

r−1 : n1 − n′2 = m+Dr−1

}∣∣
+
∣∣{(n′1, n2) ∈ S2

r−1 : n′1 − n2 = m−Dr−1

}∣∣
= 2wr−1(m) + wr−1(m+Dr−1)

+ wr−1(m−Dr−1). (9.18)

Since the aperture of the Cantor array with parameter r − 1 is Ar−1, we have, by
definition, wr−1(m) = 0 if |m| > Ar−1. Hence, (9.18) can be simplified as (9.16).

Lemma 9.2.4 shows that the weight function for the Cantor array Sr can be recur-
sively constructed from the weight function for Sr−1. To give some feelings for
Lemma 9.2.4, the following numerical example is considered. Due to Lemma 9.2.4
and (9.12) to (9.15), the weight function becomes w3(6) = w2(6 − D2) = w2(3) =

w1(3−D1) = 2w0(0) = 2, which is consistent with theweight function in Fig. 9.1(d).

Furthermore, based on Lemma 9.2.4, it can be proved that Cantor arrays have hole-
free difference coarrays of size O(|S|log2 3) ≈ O(|S|1.585). This result is distinct from
theMRA (hole-free difference coarray of sizeO(|S|2)) and the ULA (hole-free differ-
ence coarray of sizeO(|S|)). The detailed proofs are skipped here and can be found
in [100].
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Proof of the maximal economy of Cantor arrays

Finally the maximal economy of Cantor arrays will be proved at the end of this
subsection. First we prove:

Lemma 9.2.5. Let theCantor arraywith parameter r bedenoted by Sr = {s1, s2, . . . , sN},
where 0 = s1 < s2 < · · · < sN and N = 2r. Then the weight function of Sr satisfies
wr(sN+1−k − sk) = 1 for all k = 1, 2, . . . , N .

Proof. First, if r = 0, then S0 = {0} and w0(0) = 1, which holds trivially. Assume
wr(sN+1−k−sk) = 1 holds true for all k = 1, 2, . . . , N . Then the sensor locations for
Sr+1 are given by

Sr+1 = {s1, s2, . . . , sN , s1 +Dr, s2 +Dr, . . . , sN +Dr}.

It can be shown that sN < s1 +Dr < s2 +Dr < · · · < sN +Dr. Due to Lemma 9.2.4,
theweight function of Sr+1 satisfieswr+1((sN+1−k+Dr)−sk) = wr(sN+1−k−sk) = 1

for all k = 1, 2, . . . , N . Furthermore, the symmetry of the difference coarray shows
that wr+1(sk − (sN+1−k +Dr)) = 1. These arguments complete the proof.

Due to Lemma8.2.1 and 9.2.5, sk and sN+1−k are both essential for all k = 1, 2, . . . , N ,
which proves the maximal economy of Cantor arrays.

For clarity, Fig. 9.1(d) demonstrates the weight function of S3, where w(13 − 0) =

w(12 − 1) = w(10 − 3) = w(9 − 4) = 1. Due to Lemma 8.2.1, this result implies
that the sensors at 13, 0, 12, 1, 10, 3, 9, and 4 are all essential, which confirms the
maximal economy of S3.

9.3 Uniform Linear Arrays
In what follows, two commonly used array geometries, the ULA and the coprime
array, will be discussed in Section 9.3 and 9.4, respectively. Among the arrays con-
sidered in this chapter, it will be shown that the most robust arrays are ULA, fol-
lowed by coprime arrays, and finally MESA.

The ULA with N physical elements is defined as [188]:

SULA , {0, 1, . . . , N − 1}. (9.19)

It can be shown that the difference coarray of the ULA is {0,±1, . . . ,±(N − 1)},
whose size is 2N − 1. This property indicates that ULA resolve at most N − 1 un-
correlated sources, unlike sparse arrays such as MRA or nested arrays (O(N2) un-
correlated sources) [124]. However, in the past, ULA are regarded as more robust
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E ′1 = {{0}, {9}},
E ′2 = {{1, 8}},
E ′3 = {{1, 2, 7}, {2, 7, 8}}.

Essential
Inessential

Figure 9.2: The ULA with N = 10 elements and the k-essential Sperner family E ′1,
E ′2, and E ′3.

than sparse arrays. In this section, this observationwill be confirmed using the gen-
eral theory in Chapter 8. Using (9.19) and Definition 8.4.1, the k-essential Sperner
family of the ULA can be shown to have the following closed-form expressions:

Theorem 9.3.1. The k-essential Sperner family of SULA satisfies

E ′1 =

S1,ULA, if 1 ≤ N ≤ 3,

{{0}, {N − 1}}, if N ≥ 4,
(9.20)

E ′2 =



∅, if 1 ≤ N ≤ 3,

{{1, 2}}, if N = 4,

{{1, 2}, {1, 3}, {2, 3}}, if N = 5,

{{1, 4}, {2, 3}}, if N = 6,

{{1, N − 2}}, if N ≥ 7,

(9.21)

E ′3 =



∅, if N ≤ 6,

{{1, 2, 3}, {1, 2, 4}, {2, 3, 4},
{2, 4, 5}, {3, 4, 5}}, if N = 7,

{{1, 2, 5}, {2, 3, 4},
{2, 5, 6}, {3, 4, 5}}, if N = 8,

{{1, 2, 6}, {2, 6, 7}, {3, 4, 5}}, if N = 9,

{{1, 2, N − 3},
{2, N − 3, N − 2}}, if N ≥ 10.

(9.22)

Here S1,ULA , {{n} : n ∈ SULA} denotes all the subarrays of size 1 over SULA.

The derivation of the expressions in Theorem 9.3.1 is quite involved, and it can
be found in Section 9.3. Next the expressions in Theorem 9.3.1 are demonstrated
through the following numerical example:

Example 9.3.1. Consider the ULA with N = 10 elements. Fig. 9.2 depicts the k-
essential Sperner family E ′1, E ′2, and E ′3. Since N ≥ 3k + 1 for k = 1, 2, 3, the last
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equations in (9.20) to (9.22) are used. First, some of the subarrays in E ′k are mirror
images of each other, with respect to the center of SULA, like {1, 2, 7} and {2, 7, 8}.
This phenomenon is because the difference coarray is invariant to the reversal of
the array configuration [100]. Second, using Fig. 9.2, given any subarray of size
k ≤ 3, its k-essentialness property can be readily examined by the contents of E ′k, as
presented in Section 8.4. For instance, since {1, 2, 8} is a superset of {1, 8} ∈ E ′2, we
have {1, 2, 8} ∈ E3, so removing {1, 2, 8} from SULA alters the difference coarray, as
depicted later in Fig. 9.3(c) later. As another example, deleting {3, 5, 8} from SULA

preserves the difference coarray, as illustrated later in Fig. 9.3(d). This observation
is consistent with Fig. 9.2 since {3, 5, 8} is not a superset of any elements in E ′k for
k = 1, 2, 3 and hence {3, 5, 8} 6∈ E3.

Theorem 9.3.1 also shows that the elements at both ends of SULA are more impor-
tant than others. It was reported in [5] that for the ULA with 6 elements (SULA =

{0, 1, 2, 3, 4, 5}), the elements at 0 and 5 are the most important ones while the el-
ements 1, 2, 3, 4 are less important. On the other hand, as presented in Theorem
9.3.1, for SULA = {0, 1, 2, 3, 4, 5}, the elements 0 and 5 are essential while the elements
1, 2, 3, 4 are inessential, which is in accordance with [5]. Our contribution here is to
utilize the essentialness property as another notion of the importance of elements
in arrays. Unlike the previous work [5], our approach depends purely on the array
geometry, rather than other factors such as source directions and source powers.

Next, the closed-form expressions of the k-fragility for the ULA will be derived
based on Theorem 9.3.1. The main focus would be F1, F2, and F3, for N ≥ 4, N ≥
7, and N ≥ 10, respectively. If N ≥ 4, then |E ′1| = |E1| = 2 so F1 = 2/N . If
N ≥ 7, then due to Lemma 8.4.1, the cardinality of E2 can be computed as |E2| =

|{{0, n}, {n,N − 1}, {0, N − 1}, {1, N − 2} : 1 ≤ n ≤ N − 2}| = 2(N − 1). Hence
F2 = 2(N − 1)/

(
N
2

)
= 4/N . Finally, the 3-essential family for the ULA with N ≥ 10

is given by

E3 = {A ∈ S3,ULA : 0 ∈ A}︸ ︷︷ ︸
G1

∪ {A ∈ S3,ULA : N − 1 ∈ A}︸ ︷︷ ︸
G2

∪ {A ∈ S3,ULA : {1, N − 2} ⊂ A}︸ ︷︷ ︸
G3

∪ E ′3, (9.23)

where S3,ULA , {A ⊆ SULA : |A| = 3} represents all the subarrays of size 3 over
SULA. Substituting |G1| = |G2| =

(
N−1

2

)
, |G3| = |G1 ∩ G2| = N − 2, |G1 ∩ G3| =

|G2 ∩ G3| = 1, and |G1 ∩ E ′3| = |G2 ∩ E ′3| = |G3 ∩ E ′3| = 0, into (9.23) leads to |E3| =

(N − 1)(N − 2) so that fragility F3 = 6/N . Summarizing, the k-fragility Fk for the
ULA with N elements satisfies

ULA: F1 =
2

N
, F2 =

4

N
, F3 =

6

N
, (9.24)
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where these expressions are valid for N ≥ 4, N ≥ 7, and N ≥ 10, respectively. For
instance, for the ULA with N = 16 elements, (9.24) leads to F1 = 0.125, F2 = 0.25,
and F3 = 0.375, which are consistent with the numerical example in Fig. 8.8.

Failure probabilities. Finally, here are some remarks on the probability that the dif-
ference coarray changes, Pc, for ULA. Even though Pc has closed-form expressions
associated with the fragility Fk, as in (8.28), it remains challenging to derive closed-
form expressions of Pc for ULA, due to the lack of closed forms of E ′k and Fk, for all
k. Even so, Pc for the ULA can still be analyzed either numerically using (8.28), or
analytically using the bounds of Pc, as in Theorem 8.5.1. For instance, as discussed
in Section 8.5, if the probability of element failure p is sufficiently small, then Pc
is approximately |E1|p. This approximation indicates that, for ULA with N ≥ 4

elements, Pc has an asymptotic expression of 2p. Namely, the probability that the
difference coarray changes is around 2p. This is the smallest among all possible
array configurations with fixed N , due to Lemma 8.2.2.

Derivation of the Expressions in Theorem 9.3.1
Before deriving the expressions in Theorem 9.3.1, we first invoke Lemma 9.3.1 to
describe the difference coarray after removing k physical sensors.

Lemma 9.3.1. Let A ⊆ SULA satisfy |A| = k. Assume that S , SULA\A and its
difference coarray is denoted byD. IfN ≥ 3k+1, then {0,±1, . . . ,±(N−k−1)} ⊆ D.

Lemma 9.3.1 implies that, ifN is sufficiently large, then even though k elements are
removed from SULA, the difference coarray D still possesses a central ULA segment
of at least 2(N − k − 1) + 1 elements. The detailed proof of Lemma 9.3.1 will be
given after Example 9.3.2:

Example 9.3.2. Fig. 9.3 demonstrates an example of Lemma 9.3.1. We consider the
ULA with N = 10 elements and its difference coarray, as depicted in Fig. 9.3(a). In
Figs. 9.3(b), (c), and (d), we remove k = 3 physical elements from SULA and evaluate
their difference coarrays. Regardless of the locations of the removed elements, all
these difference coarrays possess a centralULA segment, whose size is at least 2(N−
k − 1) + 1 = 13, as claimed by Lemma 9.3.1.

Proof of Lemma 9.3.1. First let us consider several useful results for the proof [68]:

Definition 9.3.1. Let S be an integer set. The discrete sequence c(n) is defined as

c(n) =

1, if n ∈ S,

0, otherwise.
(9.25)
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(a)
Physical array

0 9

Difference coarray
−9 0 9

(b)
0 6

−6 0 6

(c)
0 3 7 9 −9 0 7 9−7

(d)
0 2 4 6 7 9 −9 0 9

13 elements

Figure 9.3: (a) The ULA with 10 physical elements SULA and its difference coar-
ray. The physical array (left) and the difference coarray (right) after removing (b)
{7, 8, 9}, (c) {1, 2, 8}, and (d) {3, 5, 8}, from SULA, respectively. Here bullets denote
elements and crosses represent empty space. It can be observed that the difference
coarrays of (b), (c), and (d) contain {0,±1, . . . ,±6}.

Proposition 9.3.1. Let c(n) and w(m) be the discrete sequence and the weight func-
tion for S, respectively. Then w(m) satisfies

w(m) =
∞∑

n=−∞
c(n+m)c(n), (9.26)

for any integerm.

Furthermore, the difference coarray can be expressed as the support of the weight
function. Namely, D = {m : w(m) 6= 0}.

Next it will be proved that {0,±1,±2, . . . ,±(N − k − 1)} ⊆ D. It suffices to con-
sider the nonnegative part of the set, due to the symmetry of the difference coarray.
Assume that there exists some m̂ ∈ {0, 1, 2, . . . , N − k − 1} such that m̂ /∈ D. The
discrete sequence and the weight function of S , SULA\A are denoted by c(n) and
w(m), respectively. Since m̂ /∈ D, we have w(m̂) = 0, implying that

c(n+ m̂)c(n) = 0, (9.27)

for all n = 0, 1, . . . , N − m̂ − 1, due to (9.25) and (9.26). Eq. (9.27) indicates that,
n+ m̂ ∈ A or n ∈ A. This condition implies

(A− m̂) ∪ A ⊇ O , {0, 1, . . . , N − m̂− 1}. (9.28)

Here the notation A± m̂ , {a± m̂ : a ∈ A}.

According to (9.28), the size of O satisfies

|O| = |((A− m̂) ∪ A) ∩O| = |((A− m̂) ∩O) ∪ (A ∩O)|
≤ |(A− m̂) ∩O|+ |A ∩O| = |A ∩ (O + m̂)|+ |A ∩O| , (9.29)
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where the inequality is due to the union bound between sets. In what follows,
(9.29) will be analyzed in detail. First, the set SULA is partitioned into three sub-
sets L1,L2,L3:

L1 = {0, 1, . . . , P − 1}, (9.30)

L2 = {P, P + 1, . . . , N − P − 1}, (9.31)

L3 = {N − P, N − P + 1, . . . , N − 1}, (9.32)

where P , min{m̂,N − m̂}. We also define A` , A∩L` and k` , |A`| for ` = 1, 2, 3.
It can be shown that

k = k1 + k2 + k3, 0 ≤ k` ≤ min{k, |L`|}, (9.33)

for ` = 1, 2, 3.

According to m̂, Eq. (9.29) can be analyzed in two cases:

1. If m̂ ≤ N/2, then we obtain P = m̂. The setsO andO+ m̂ can be expressed as
O = L1 ∪ L2 and O + m̂ = L2 ∪ L3, respectively. Combining (9.29) and (9.33)
leads to

N − m̂ ≤ (k2 + k3) + (k1 + k2) = k + k2. (9.34)

Now let us consider the upper bounds of k + k2 for two cases of m. First, if
0 ≤ m̂ ≤ N/3, then using (9.33) and N ≥ 3k + 1, we obtain k + k2 ≤ 2k <

2k + 2
3 ≤ 2

3N ≤ N − m̂. Therefore k + k2 < N − m̂, which contradicts (9.34).
On the other hand, if N/3 < m̂ ≤ N/2, then we have m̂ > N/3 ≥ k + 1

3 so
k − m̂ < 0. In addition, the size of L2 is given by N − 2P = N − 2m̂. In this
case, we have k+k2 ≤ k+ |L2| = k+(N −2m̂) = (N −m̂)+(k−m̂) < N −m̂,
disagreeing with (9.34).

2. If N/2 < m̂ ≤ N − k − 1, then P = N − m̂. In this case, we have O = L1 and
O + m̂ = L3. Hence (9.29) becomes

N − m̂ ≤ k3 + k1 = k − k2. (9.35)

However, the right-hand side of (9.35) satisfies k − k2 ≤ k ≤ N − m̂− 1, due
to (9.33) and m̂ ≤ N − k − 1. This result contradicts (9.35).

These arguments complete the proof of Lemma 9.3.1.

Next, the expressions in Theorem 9.3.1 will be derived. Here we will skip the ex-
pressions of E ′k for N ≤ 3k and k = 1, 2, 3, since they can be readily verified by
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enumerating all subarrays with size k. The main focus here would be the case
of N ≥ 3k + 1. In what follows, the sensor locations, the difference coarray, the
discrete sequence (Definition 9.3.1), and the weight function after the removal of
k elements will be denoted by S, D, c(n), and w(m), respectively. We will study
the circumstances under which the difference coarray changes, namely D 6= DULA,
where DULA is the difference coarray of SULA.

1. E ′1 forN ≥ 4: Due to Lemma9.3.1, the difference coarrayD contains {0,±1,±2, . . . ,±(N−
2)} for k = 1. If D 6= DULA, then w(N − 1) = 0. This implies

w(N − 1) = c(N − 1)c(0) = 0, (9.36)

due to Proposition 9.3.1. Eq. (9.36) shows that removing either 0 orN−1 leads
to D 6= DULA. Hence E ′1 = {{0}, {N − 1}} for N ≥ 4.

2. E ′2 for N ≥ 7: Lemma 9.3.1 indicates that it suffices to consider w(N − 1) = 0

and w(N − 2) = 0. Let A be a subarray of size 2 over SULA. First, assume
that w(N − 1) = 0. The argument of (9.36) shows that 0 ∈ A or N − 1 ∈ A.
Therefore A does not belong to E ′2. Second, if w(N − 2) = 0, then we obtain

w(N − 2) = c(N − 2)c(0) + c(N − 1)c(1) = 0. (9.37)

There are four choices of A satisfying (9.37): {0, 1}, {0, N −1}, {N −1, N −2},
and {1, N − 2}. Since the first three subarrays contain either 0 or N − 1, we
have E ′2 = {{1, N − 2}} for N ≥ 7.

3. E ′3 forN ≥ 10: The arguments in E ′2 indicates that, it suffices to considerw(N−
3) = 0 in this case. Hence we have

c(N − 3)c(0) + c(N − 2)c(1) + c(N − 1)c(2) = 0.

Since the the elements in E ′3 do not contain 0 orN−1, we have E ′3 = {{1, 2, N−
3}, {2, N − 3, N − 2}},which proves Theorem 9.3.1.

9.4 Coprime Arrays
In this section, we will move on to coprime arrays, which have recently attracted
considerable attention in sparse array signal processing [4], [19], [139], [186]. These
arrays are defined as:

Definition 9.4.1. Let M and N be a coprime pair of positive integers. A coprime
array Scoprime with parametersM and N can be defined as

Scoprime = {0} ∪ P1 ∪ P2 ∪ {MN} ∪ P3, (9.38)
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0 4 8 12 16

0 5 10 15 20 25 30 35

(a)

E ′2 = {5, 15} P1 P2 P3

0 5 10 15

0 4 8 12 16 20 24 28 32 36

(b)

E ′2 = {{4, 16}, {8, 12}}

Essential Inessential Empty

Figure 9.4: An illustration for the k-essential Sperner family of the coprime arrays
with (a)M = 4, N = 5 and (b)M = 5, N = 4. In these figures, the coprime arrays
are split into two sparse ULAs for clarity.

where the sets P1, P2, and P3 are given by

P1 = {p1M : 1 ≤ p1 ≤ N − 1}, (9.39)

P2 = {p2N : 1 ≤ p2 ≤M − 1}, (9.40)

P3 = {p3N : M + 1 ≤ p3 ≤ 2M − 1}. (9.41)

Note that Definition 9.4.1 is equivalent to (2.8). Herewe useDefinition 9.4.1 to facili-
tate the proof of Theorem 9.4.1. Coprime arrays are composed of two sparse ULAs.
The first sparse ULA ({0} ∪ P1) has N elements with interelement spacing M (in
unit of half of the wavelength) while the second sparse ULA ({0}∪P2∪{MN}∪P3)
owns 2M elements with separation N . It can be shown that the difference coarray
of Scoprime has a central ULA segment Ucoprime = {0,±1, . . . ,±(MN +M − 1)} and
a hole atMN +M [139], [186].

Example 9.4.1. Fig. 9.4(a) demonstrates the geometry of coprime arrays. For clarity,
the first ULAwith separationM is depicted on the topwhile on the bottom is shown
the second ULAwith separationN . The physical sensors are denoted by diamonds
or rectangles and the empty space is marked by crosses. IfM = 4 and N = 5, then
we have P1 = {4, 8, 12, 16}, P2 = {5, 10, 15}, and P3 = {25, 30, 35}, which are also
illustrated in Fig. 9.4(a).

In the following development, the robustness of coprime arrays will be investigated
based on the general theory in the next chapter. To begin with, the closed-form ex-
pressions of E ′k for coprime arrays will be presented in Theorem 9.4.1, whose proof
can be found in Section 9.4.
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Theorem 9.4.1. Let Scoprime be a coprime array with a coprime pair of integers M
and N , as defined in Definition 9.4.1. Assume thatM,N ≥ 2. Then the k-essential
Sperner family can be expressed as

E ′1 =

A ∪ B, ifM is odd,

A ∪ B ∪ {{MN/2}}, ifM is even,
(9.42)

E ′2 =


∅, ifM = 2,

{{N, 2N}, {2N, 3N}}, ifM = 3,

C, otherwise,

(9.43)

E ′k = ∅, 3 ≤ k ≤ |S|, (9.44)

where A, B, and C are given by

A , {{nM} : 0 ≤ n ≤ N − 1}, (9.45)

B , {{mN} : M + 1 ≤ m ≤ 2M − 1}, (9.46)

C , {{mN, (M −m)N} : 1 ≤ m ≤ b(M − 1)/2c}. (9.47)

Example 9.4.2. The implications of Theorem 9.4.1 are exemplified by Fig. 9.4, where
the essential sensors (diamonds in Fig. 9.4), the inessential sensors (rectangles in
Fig. 9.4), and E ′2, are enumerated. Here the coprime arrays have parameters (a)
M = 4, N = 5 and (b) M = 5, N = 4. In Fig. 9.4(a), the essential elements
0, 4, 8, 12, 16 are associated with A, as in (9.45), or {0} ∪ P1, as in (9.39), while the
elements 25, 30, 35 are related to B in (9.46), or equivalently P3 in (9.41). Further-
more, in Fig. 9.4(a), the element MN/2 = 10 is also essential, which is consistent
with (9.42). The sets in E ′2 are also depicted in Fig. 9.4. For instance, in Fig. 9.4(b),
both {8, 12} and {4, 16} belong to E ′2, as described in (9.43) and (9.47). Note that
the elements in these sets are symmetric with respect to the locationMN/2 = 10.
Another interesting observation is that, among the inessential sensors in Fig. 9.4(b),
some are related to E ′2, such as 4 and 8, but the inessential sensorMN = 20 does not
belong to any elements in E ′k for all k. In fact, ifM ≥ 4 and N ≥ 2, it can be shown
thatMN does not belong to the elements in E ′k for all k, due to Theorem 9.4.1.

Theorem 9.4.1 can be interpreted as a generalization of the thinned coprime array
[144]. For sufficiently large M and N , it was shown in [144] that removing the el-
ements at (bM/2c + 1)N, (bM/2c + 2)N, . . . ,MN in a coprime array preserves the
difference coarray and the new array geometry is called the thinned coprime array.
The above statement is equivalent to the condition that {(bM/2c + 1)N, (bM/2c +

2)N, . . . ,MN} is not dM/2e-essential with respect to Scoprime. For instance, in Fig.
9.4(a), removing {15, 20} from Scoprime does not alter the difference coarray, since
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{15, 20} is not 2-essential. Furthermore, Theorem 9.4.1 makes it possible to create other
arrays than thinned coprime arrays but with the same difference coarray. For example,
in Fig. 9.4(b), deleting either {8, 16, 20}, {4, 8, 20}, or {4, 12, 20} from Scoprime does
not alter the difference coarray, while none of them is identical to thinned coprime
arrays.

The k-Fragility of Coprime Arrays
In the following development, closed-from expressions for the k-fragility of the co-
prime arraywill be derived. It is first assumed thatM is an even number andM ≥ 4.
In this case, we have |E1| = |E ′1| = M+N so the fragilityF1 = (N+M)/(N+2M−1).
Next, due to Lemma 8.4.1, the 2-essential family E2 can be expressed as

E2 = {{n1, n2} : {n1} ∈ E ′1, {n2} 6∈ E ′1, n2 ∈ Scoprime}︸ ︷︷ ︸
H1

∪ {{n1, n2} : {n1}, {n2} ∈ E ′1}︸ ︷︷ ︸
H2

∪ E ′2.

SinceH1,H2, and E ′2 are disjoint, the size of E2 is given by |E2| = |H1|+ |H2|+ |E ′2| =
(N + M)(M − 1) +

(
N+M

2

)
+ (M/2 − 1) so that fragility F2 becomes F2 = (3M2 +

4MN − 2M + N2 − 3N − 2)/((N + 2M − 1)(N + 2M − 2)). Repeating similar
arguments for oddM leads to these expressions

F1 =


N+M−1
N+2M−1 , ifM is odd,

N+M
N+2M−1 , ifM is even,

(9.48)

F2 =


3M2+4MN−4M+N2−3N+1

(N+2M−1)(N+2M−2) , ifM is odd,

3M2+4MN−2M+N2−3N−2
(N+2M−1)(N+2M−2) , ifM is even,

(9.49)

whereM ≥ 4.

As k increases, the closed-form expressions of Fk can be derived but the details be-
come more involved. Here these expressions are omitted in this chapter. However,
if k is sufficiently large, then Fk can still be characterized by the following proposi-
tion:

Proposition 9.4.1. For the coprime array with a coprime pair of integersM ≥ 4 and
N ≥ 2, the k-fragility satisfies Fk = 1 for all dM/2e+ 1 ≤ k ≤ N + 2M − 1.

Proof. It follows from Item 3d in Section 9.4.

For example, letM = 4 andN = 9. Using (9.48), (9.49), and Proposition 9.4.1, it can
be shown that F1 = 0.8125, F2 = 0.9833, and Fk = 1 for all 3 ≤ k ≤ 16.
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The Probability that the Difference Coarray Changes
In this subsection, the closed-form expressions of Pc for the coprime array are char-
acterized by the following theorem:

Theorem 9.4.2. Let Scoprime be the coprime array with a coprime pair of integers
M,N , as in Definition 9.4.1. Assume thatM,N ≥ 2. Then the probability that the
difference coarray changes is

Pc =

1− (1− p)|E ′1|(1− 2p2 + p3), ifM = 3,

1− (1− p)|E ′1|(1− p2)|E
′
2|, otherwise.

(9.50)

Here E ′1 and E ′2 are the k-essential Sperner family of Scoprime, whose expressions are
given in Theorem 9.4.1.

Proof. According to the proof of Theorem 8.5.1, the probability Pc can be expressed
as 1− Pr(Gc

1) + Pr(Gc
1)Pr(G2), where Gc

1 denotes the complement of the event G1.
The events G1 and G2 are defined as

G1 ,
⋃

A1∈E ′1

F(A1), G2 ,
|S|⋃
k=2

⋃
Ak∈E ′k

F(Ak). (9.51)

Here F(Ak) , ∩n∈Ak(n fails) denotes the event in which all the elements in Ak fail.
It was proved in (8.34) that Pr(Gc

1) = (1 − p)|E1| for any array geometry. Next we
will simplify Pr(G2). If M = 2, then Pr(G2) = Pr(F(∅)) = 0. If M = 3, then we
obtain

Pr(G2) = Pr(F({N, 2N}) ∪ F({2N, 3N}))
= Pr(F({N, 2N})) + Pr(F({2N, 3N}))

− Pr(F({N, 2N, 3N}))
= 2p2 − p3. (9.52)

IfM ≥ 4, then Pr(G2) can be simplified as

Pr(G2) = 1− Pr(Gc
2) = 1− Pr

( ⋂
A2∈E ′2

(F(A2))c

)
. (9.53)

Due to (9.43), all the elements in E ′2 are disjoint, so all the events F(A2) are mutually
independent. Hence (9.53) becomes

Pr(G2) = 1−
∏

A2∈E ′2

Pr((F(A2))c) = 1−
∏

A2∈E ′2

(1− p2)

= 1− (1− p2)|E
′
2|. (9.54)

Substituting (9.52), (9.54), andPr(Gc
1) = (1−p)|E1|, intoPc = 1−Pr(Gc

1)+Pr(Gc
1)Pr(G2)

proves this theorem.
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The closed-form expressions of Pc for MESA (9.3) and coprime arrays (9.50) can be
validated by Monte-Carlo simulations, as in Fig. 8.12. It is also deduced from Fig.
8.12 that the smallest Pc is exhibited by the ULA, followed by the coprime array,
and finally the nested array. This observation is also consistent with the conclusion
drawn from the fragility Fk of these arrays.

Derivation of the Expressions in Theorem 9.4.1
Example 9.4.3. To beginwith, let us demonstrate themain concept of the derivation.
Fig. 9.5(a) shows the coprime array withM = 7, N = 8 and its nonnegative part of
the difference coarray. Here the elements are depicted in dots while empty space is
denoted by crosses. The elements 0, 7, 14, 21, 28, 35, 42, 49, 64, 72, 80, 88, 96, 104 can
be shown to be essential (Lemma 8.2.2 and 9.4.2). Therefore, for the elements in
E ′k and k ≥ 2, it suffices to consider the subarrays A ⊆ {8, 16, 24, 32, 40, 48, 56}, as
marked in Fig. 9.5(a). The remaining part of the derivation is to identify the con-
straints onA such thatD (the difference coarray after the removal ofA from Scoprime)
is distinct from D (the difference coarray of Scoprime). To identify these constraints,
we will state and prove three lemmas in this section (Lemmas 9.4.4 to 9.4.6). The
brief implications of these lemmas are as follows

Lemma 9.4.4: |A| ≤M − 2 ⇒ D1 = D1,

Lemma 9.4.5: A and AR are disjoint ⇔ D3 = D3,

Lemma 9.4.6: D1 = D1 and D3 = D3 ⇔ D = D,

where D1 D1, D3, D3, and AR will be defined shortly. These results can be applied
to Fig. 9.5(b), whereA = {16, 32, 56},AR = {0, 24, 40}, and |A| = 3. It can be readily
shown that D = D using Lemma 9.4.4 to 9.4.6 without actually computing D. As a
result, A does not belong to E ′3.

Next wewill proceed to the rigorous derivation of the expressions in Theorem 9.4.1.
In what follows, it is assumed that the coprime array, as defined in Definition 9.4.1,
satisfies M,N ≥ 2. The self difference of a set S is denoted by SD(S) , {n − n′ :

n, n′ ∈ S} and the cross difference between S1 and S2 are given by CD(S1,S2) ,

{±(n1 − n2) : n1 ∈ S1, n2 ∈ S2}. The following lemmas are useful in proving
Theorem 9.4.1:

Lemma 9.4.1. Assume that n1, n2 ∈ Scoprime and 1 ≤ u ≤ N − 1 and 1 ≤ v ≤
M − 1. Then n1 − n2 = uM − vN if and only if the pair (n1, n2) is (uM, vN) or
((M − v)N, (N − u)M).

Proof. The proof consists of four cases of n1 and n2:
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1. n1, n2 ∈ {0} ∪ P1: Let n1 = q1M and n2 = q2M for 0 ≤ q1, q2 ≤ N − 1. The
equation n1 − n2 = uM − vN can be rearranged as (u − q1 + q2)M = vN .
SinceM and N are coprime, v is an integer multiple ofM , which contradicts
1 ≤ v ≤M − 1.

2. n1, n2 ∈ P2∪{MN}∪P3: Assume that n1 = q1N and n2 = q2N for 1 ≤ q1, q2 ≤
2M − 1. Then n1 − n2 = uM − vN gives (v + q1 − q2)N = uM . Hence u is
divisible by N , which disagrees with 1 ≤ u ≤ N − 1.

3. n1 ∈ {0} ∪ P1 and n2 ∈ P2 ∪ {MN} ∪ P3: Suppose n1 = q1M and n2 = q2N

for 0 ≤ q1 ≤ N − 1 and 1 ≤ q2 ≤ 2M − 1. Rearranging n1 − n2 = uM − vN
leads to (u − q1)M = (v − q2)N . SinceM and N are coprime and −N + 2 ≤
u− q1 ≤ N − 1, we obtain q1 = u and q2 = v. Hence (n1, n2) = (uM, vN).

4. n1 ∈ P2 ∪ {MN} ∪ P3 and n2 ∈ {0} ∪ P1: Consider n1 = q1N and n2 = q2M

for 1 ≤ q1 ≤ 2M − 1 and 0 ≤ q2 ≤ N − 1. The equation n1 − n2 = uM − vN
can be rearranged as (u+ q2)M = (v+ q1)N . Then we obtain u+ q2 = N and
v+q1 = M becauseM andN are coprime and 1 ≤ u+q2 ≤ 2N−2. Therefore
(n1, n2) = ((M − v)N, (N − u)M).

Lemma 9.4.2. If n ∈ P1 or n ∈ P3, then n is essential with respect to Scoprime.

Proof. Due to Lemma 8.2.1, it suffices to show that, if n1 = p1M ∈ P1 and n3 =

p3N ∈ P3, then w(n1 − n3) = 1. Namely, (n1, n3) is the only sensor pair of Scoprime

with difference n1 − n3.

Assume that there exists another pair (s1, s2) ∈ S2
coprime such that (s1, s2) 6= (n1, n3),

and s1 − s2 = n1 − n3. According to (s1, s2), we have the following cases:

1. s1, s2 ∈ {0}∪P1: Assume that s1 = q1M and s2 = q2M for 0 ≤ q1, q2 ≤ N − 1.
The condition s1 − s2 = n1 − n3 can be rearranged as (p1 − q1 + q2)M = p3N .
Since M and N are coprime, the parameter p3 is an integer multiple of M ,
which contradicts (9.41).

2. s1, s2 ∈ P2 ∪ {MN} ∪ P3: Let s1 = q1N and s2 = q2N for 1 ≤ q1, q2 ≤ 2M − 1.
The condition s1 − s2 = n1 − n3 becomes (p3 + q1 − q2)N = p1M . Due to
the coprimeness of M and N , the parameter p1 is divisible by N , causing a
contradiction with (9.39).

3. s1 ∈ {0}∪P1 and s2 ∈ P2∪{MN}∪P3: Suppose that s1 = q1M and s2 = q2N

for 0 ≤ q1 ≤ N − 1 and 1 ≤ q2 ≤ 2M − 1. If s1 − s2 = n1 − n3, then
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(p1 − q1)M = (p3 − q2)N . The coprimeness of M and N indicates that N
divides p1 − q1. Since −N + 2 ≤ p1 − q1 ≤ N − 1, we have p1 = q1, s1 = n1,
and s2 = n3, which contradicts (s1, s2) 6= (n1, n3).

4. s1 ∈ P2∪{MN}∪P3 and s2 ∈ {0}∪P1: We assume that s1 = q1N and s2 = q2M

for 1 ≤ q1 ≤ 2M − 1 and 0 ≤ q2 ≤ N − 1. The condition s1 − s2 = n1 − n3

becomes (p3 + q1)N = (p1 + q2)M . We have p1 + q2 = N becauseM and N
are coprime and 1 ≤ p1 + q2 ≤ 2N − 2. Hence p3 + q1 = M , which contradicts
the range of p3 + q1 (M + 2 ≤ p3 + q1 ≤ 4M − 2).

Lemma 9.4.3. SD({0} ∪ P1) ∪ CD(P1, {MN}) = SD({0} ∪ P1).

Proof. The elements in CD(P1, {MN}) can be expressed as ±(MN − p1M) for 1 ≤
p1 ≤ N − 1, which is equivalent to ±((N − p1)M − 0). Since 1 ≤ N − p1 ≤ N − 1,
we have ±(MN − p1M) ∈ SD({0} ∪ P1).

Next we move on to the main argument. Due to Lemma 8.2.2 and 9.4.2, the family
E ′1 contains A and B. For the remaining elements in Scoprime, it is assumed that
A ⊆ P2 ∪ {MN} and |A| = k. Let S be Scoprime\A and D be the difference coarray of
S. The sets D1, D2, and D3 are defined as

D1 , SD(({0} ∪ P2 ∪ {MN} ∪ P3)\A), (9.55)

D2 , CD(P1, (P2 ∪ {MN})\A), (9.56)

D3 , CD(P1,P2\A). (9.57)

Furthermore, the sets D1 , SD({0} ∪ P2 ∪ {MN} ∪ P3), D2 , CD(P1,P2 ∪ {MN}),
and D3 , CD(P1,P2). Under these assumptions, D can be expressed as

D = SD({0} ∪ P1) ∪ SD(({0} ∪ P2 ∪ {MN} ∪ P3)\A)

∪ CD({0} ∪ P1, ({0} ∪ P2 ∪ {MN} ∪ P3)\A) (9.58)

= SD({0} ∪ P1) ∪ D1 ∪ D2 ∪ CD(P1,P3). (9.59)

The term {0} in the cross difference of (9.58) can be removed since CD(B, {0}) is a
subset of SD({0} ∪ B) for any set B. According to the relation betweenMN and A,
the set D2 can be expressed as

D2 =

D3, ifMN ∈ A,

CD(P1, {MN}) ∪ D3, ifMN 6∈ A,
(9.60)
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where D3 is given by (9.57). Substituting (9.60) into (9.59) and using Lemma 9.4.3
result in

D = SD({0} ∪ P1) ∪ D1 ∪ D3 ∪ CD(P1,P3). (9.61)

The following lemmas characterize the difference coarray D in terms of D1 and D3.
Here D is the difference coarray of the coprime array Scoprime.

Lemma 9.4.4. Assume that A ⊆ P2 ∪ {MN}. If |A| = k ≤M − 2, then D1 = D1.

Proof. First, it can be shown that SD({0}∪P3) = D1\{±(M−1)N,±MN}. It suffices
to show that (M − 1)N and MN belong to D1 if k ≤ M − 2. In this case, since
|(P2 ∪ {MN})\A| = M − k ≥ 2, there exists n = qN ∈ (P2 ∪ {MN})\A such that
2 ≤ q ≤ M , If q = M , then the differences (M − 1)N and MN reside in D1 since
(M − 1)N = (2M − 1)N −MN andMN = MN − 0. If 2 ≤ q ≤ M − 1, then the
differences (M−1)N andMN live inD1 since (M−1)N = (M−1+q)N−qN,MN =

(M + q)N − qN , and (M − 1 + q)N, (M + q)N ∈ P3.

Lemma 9.4.5. Let A ⊆ P2 ∪ {MN} and AR , {MN − a : a ∈ A}. Then D3 = D3 if
and only if A and AR are disjoint.

Proof. First, it is assumed thatMN does not belong toA. WehaveD3 = CD(P1,P2) =

CD(P1,P2\A) ∪ CD(P1,A). Therefore, the statement that D3 = D3 is equivalent to
CD(P1,A) ⊆ D3.

If A and AR are disjoint, then for every n ∈ A, the locationMN − n ∈ P2\A. There-
fore CD(P1,A) ⊆ CD(P1,P2\A) = D3. IfA andAR are not disjoint, then there exists
1 ≤ v ≤ M − 1 such that {vN, (M − v)N} ⊆ A. As a result, vN 6∈ P2\A and
(M − v)N 6∈ P2\A. Due to Lemma 9.4.1, for some 1 ≤ u ≤ N − 1, the difference
uM − vN ∈ D3 is related to the pair (uM, vN) or ((M − v)N, (N − u)M). These
pairs cannot be found in the cross difference between P1 and P2\A. HenceD3 6= D3.

Second, let us consider the case of MN ∈ A. The set B and BR are defined as
B , A\{MN} ⊆ P2 and BR , {MN − b : b ∈ B} ⊆ P2, respectively. Due to the first
part of the proof, we have D3 = D3 if and only if B and BR are disjoint. Since 0 6∈ B
and MN 6∈ BR, B and BR being disjoint is equivalent to A and AR being disjoint,
which completes the proof.

Lemma 9.4.6. D = D if and only if D1 = D1 and D3 = D3.

Proof. The sufficiency part of Lemma 9.4.6 is trivial using (9.61). The following
shows the necessity part.
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Let m ∈ D1 but m 6∈ D1. We denote m = rN for −(2M − 1) ≤ r ≤ 2M − 1. We
will show that the union of SD({0} ∪ P1), D3, and CD(P1,P3), does not contain m,
implying that D 6= D. Ifm ∈ SD({0} ∪ P1), then there exists −(N − 1) ≤ s ≤ N − 1

such that rN = sM . Due to the coprimeness of M and N , the parameter s is an
integer multiple of N , implying s = 0 and m = 0. But 0 ∈ D1, which contradicts
m 6∈ D1. If m ∈ D3, then there exists a sensor pair in {0} ∪ P2{MN} ∪ P3 (because
m ∈ D1) whose difference is uM − vN for 1 ≤ u ≤ N − 1 and 1 ≤ v ≤M − 1 (since
m ∈ D3 ⊆ D3). This result contradicts Lemma 9.4.1. If m ∈ CD(P1,P3), then there
exist 1 ≤ p1 ≤ N−1 andM+1 ≤ p3 ≤ 2M−1 such that rN = p1M−p3N , implying
(r + p3)N = p1M . SinceM and N are coprime, we have that p1 is divisible by N ,
which violates 1 ≤ p1 ≤ N − 1.

Ifm ∈ D3 butm 6∈ D3, thenm can be expressed as uM − vN for 1 ≤ u ≤ N − 1 and
1 ≤ v ≤ M − 1. Lemma 9.4.1 indicates that, such difference can only be found in
the cross difference between P1 and P2. Therefore, m does not belong to the union
of SD({0} ∪ P1), D1, and CD(P1,P3). These arguments complete the proof.

Now let us consider how the subarray A ⊆ P2 ∪ {MN} influences the difference
coarray D. Based on the parameterM , we have the following cases:

1. M = 2: In this case, we have A ⊆ P2 ∪ {MN} = {N, 2N}. Due to Theorem
9.3.1, Lemma 9.4.5, and 9.4.6, it can be shown that D 6= D for A = {N} and
D = D for A = {2N}. Therefore, N is essential but 2N is inessential. If
A = {N, 2N}, then A contains the essential element N , implying that A 6∈ E ′2.
These arguments prove (9.42) to (9.44) forM = 2.

2. M = 3: This case leads to A ⊆ P2∪{MN} = {N, 2N, 3N}. If A = {N}, {2N},
or {3N}, then it can be shown that D = D, due to Lemma 9.4.4 to 9.4.6. Hence
these elements are inessential. IfA = {N, 2N}, thenA = AR, soD 6= D, due to
Lemma 9.4.5 and 9.4.6. Similarly, it can be shown that {2N, 3N} is 2-essential,
due to D1 6= D1, while {N, 3N} is not 2-essential. If A = {N, 2N, 3N}, then it
is a superset of {N, 2N}, which is 2-essential. Therefore A 6∈ E ′3. As a result,
we prove (9.42) to (9.44) forM = 3.

3. M ≥ 4: According to the value of k, we have the following cases:

a) k = 1: Due to Lemma 9.4.4, we have D1 = D1. Hence, based on Lemma
9.4.5 and 9.4.6, we have D 6= D if and only if A and AR are not disjoint.
For the essential sensors, since |A| = 1, we have A = AR, implying that
n = MN − n for some n ∈ P2. IfM is an odd number, then n is not an
integer and n 6∈ P2. If M is an even number, then this essential sensor
becomes n = MN/2, which proves (9.42).
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Figure 9.6: The array configurations for (a) ULA with 10 elements, (b) the coprime
array withM = 3, N = 5, (c) the nested array with N1 = N2 = 5, and (d) the MRA
with 10 elements.

b) k = 2: Similar to the case of M ≥ 4 and k = 1, we have D 6= D if and
only if A and AR are not disjoint, due to Lemma 9.4.4 to 9.4.6. This result
means that, all the subarrays of the form {n,MN−n} for n ∈ P2 belongs
to E ′2, which proves (9.43).

c) 3 ≤ k ≤ dM/2e: In this case, we have k ≤ dM/2e ≤ M − 2, which
implies D1 = D1 due to Lemma 9.4.4. Next, according to the set A, we
have two cases. If A and AR are disjoint, then D3 = D3, due to Lemma
9.4.5. Therefore, D = D and A 6∈ E ′k. On the other hand, if A and AR are
not disjoint, then there exists {n,MN − n} ⊆ A for some n ∈ P2. Since
{n,MN − n} ∈ E ′2, we have A 6∈ E ′k. These arguments show that E ′k is
empty.

d) k ≥ dM/2e + 1: For any choice of A, it can be shown that there exists
n ∈ P2 such that {n,MN −n} is a subset of A. Hence A ∈ Ek but A 6∈ E ′k,
implying that E ′k is empty. All these arguments proves Theorem 9.4.1.

9.5 Numerical Examples
In what follows, we will study the estimation performance of arrays in the presence
of random sensor failure, through numerical examples. Fig. 9.6 depicts (a) the ULA,
(b) the coprime array withM = 3, N = 5, (c) the nested array with N1 = N2 = 5,
and (d) the MRA. All these arrays have 10 elements. Here the essential sensors and
the inessential sensors are denoted by diamonds and rectangles, respectively. It
can be further shown that the difference coarrays are {0,±1, . . . ,±9} for the ULA,
{0,±1, . . . ,±17,±19,±20,±22,±25} for the coprime array, {0,±1, . . . ,±29} for the
nested array, and {0,±1, . . . ,±36} for the MRA. Hence, the largest size of the dif-
ference coarray is exhibited by the MRA (|D| = 73), followed by the nested array
(|D| = 59), then the coprime array (|D| = 43), and finally the ULA (|D| = 19). On
the other hand, based on Definition 8.3.1, the smallest fragility F1 is given by the
ULA (F1 = 0.2, the most robust), followed by the coprime array (F1 = 0.7), and
finally the nested array and the MRA (F1 = 1, the least robust).
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Figure 9.7: The dependence of RMSE on the element failure p with respect to the
array configurations in Fig. 9.6. The number of snapshots is 100, SNR is 0dB, and
the only one source has θ̄1 = 0.25.

Fig. 9.7 plots the DOA estimation performance of these arrays as a function of the
sensor failure rate p. Here the number of snapshots is 100 and the signal-to-noise
ratio (SNR) is 0dB. There is one source (D = 1) at θ̄1 = 0.25. In each run, each sen-
sor fails independently with probability p and the array output is generated based
on (1.5), from which coarray MUSIC [87] computes the estimated source direction̂̄θi. For all 106 Monte-Carlo runs, we only collect the instances that coarray MUSIC
works, from which the root-mean-square error (RMSE = (

∑D
i=1 (θ̄i − ̂̄θi)/D)1/2) is

calculated and averaged.

According to the behavior of these arrays in terms of p, Fig. 9.7 can be divided into
three regions: (I), (II), and (III). In Region (I), the best performance is enjoyed by the
MRA, followed by the nested array, then the coprime array, and finally the ULA.
This is because for sufficiently small p, all the sensors tend to be operational and the
performance of coarray MUSIC is dominated by the size of the difference coarray
[192]. Note that, as p goes to zero, the RMSE does not approach zero due to finite
snapshots and 0dB SNR [192].

In Region (III), it can be deduced that the RMSE is in accordance with the robust-
ness of these arrays. This is since for large p, it is very likely to have multiple faulty
elements and the ULA has the least probability that the difference coarray changes.
Another observation is that, empirically, for large p, the nested array has smaller
RMSE than the MRA, even though they are both maximally economic. The is be-
cause the k-essentialness property only characterizes the integrity of the difference
coarray, instead of the central ULA segment of the difference coarray. It is known
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that the latter has significant influence on the applicability of coarray MUSIC [87],
[192].

The last remark is on Region (II). It is observed in Fig. 9.6 that the coprime array
does not have the largest difference coarray, nor does it have the smallest fragility
F1, but it has the least RMSE in Region (II) of Fig. 9.7. This result shows the existence
of sparse arrays that strike a balance between the size and the robustness of the
difference coarray. Future research can be directed towards designing such array
geometries, which work the best in Region (II).

9.6 Concluding Remarks
In this chapter, we studied the robustness of the difference coarrays forMRA,MHA,
nested arrays, Cantor arrays, ULA, and coprime arrays, with respect to sensor fail-
ures, through the general theory presented in Chapter 8. The proposed closed-form
expressions for the k-essential Sperner family not only indicate the importance of
elements in these arrays, but also provide many insights into the reliability and the
performance based on these arrays.

Future research will be directed towards designing novel sparse array geometries
that strike a balance between performance and robustness. For instance, it could
be possible to robustify a given array geometry by adding or redistributing the ele-
ments in the array.
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C h a p t e r 10

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we presented several novel sparse arrays, such as super nested arrays
(Chapters 3 and 4), half open box arrays, half open box arrays with two layers, and
hourglass arrays (Chapter 5). These arrays not only have large hole-free difference
coarrays, but also own reduced mutual coupling. Furthermore, we analyzed the
performance of sparse arrays in terms of Cramér-Rao bounds (Chapter 6), general-
ized correlation subspace (Chapter 7), and the robustness (Chapters 8 and 9). Our
theoretical analysis led to quite a few insights into the interplay between the sparse
array geometry and its estimation performance.

Note that the presented topics are special cases of sparse sensing, and our results
could be extended beyond array signal processing. For instance, similar concepts
could be generalized to other research fields, such as communications, medical imag-
ing, and remote sensing. In particular, the following list several future topics regard-
ing sparse sensing, sparse sampling, and information inference:

1. Sparse Arrays with Relaxed Assumptions: The theory of the difference coarray
assumes far-field, narrowband, uncorrelated, and point sources as well as un-
correlated, white, and equal-power noise. These assumptions are not neces-
sarily true in applications such as radar, remote sensing, and communications
[82]. Even so, this problem still falls into the category of sparse sensing with
of prior knowledge, and hence, based on assumptions appropriate to the ap-
plication, one may be able to devise novel sparse sampling and information
inference algorithms.

2. Non-Gaussian statistics: The assumption of symmetric Gaussian distributions
for the physical signals is known to be a poor fit for real data [118]. Non-
Gaussian statistics, such as high-order statics [111] and complex elliptically
symmetric distributions [118] have been studied to bridge the gap between
theory and practice. It is of considerable interest to study how sparse sensing,
sparse sampling, and information inference can be incorporated with non-
Gaussian statistics. Sparse sampling schemes should remain robust even if
the underlying distribution deviates from Gaussian distributions. Robust es-
timation of the information of interest in the face of such prior information is
still a major challenge even today.
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3. Sparser than Sparse Samples – One-bit quantization: By representing each sample
with one bit (0 or 1), this technique has recently gained momentum inmassive
MIMO systems, data converters, and array processing, since 1) it offers low cost
and low complexity in the implementation, 2) it reduces the overall volume of
data significantly, and 3) it incurs only amoderate performance loss compared
to the unquantized data. In this topic, we are interested in the interplay between
one-bit quantization and sparse sensing. For instance, in the context of sparse
arrays and DOA estimation, sparse arrays with one-bit quantizers are often
found to be as good as ULAs with unquantized data, and found to resolve
more sources than sensors [101], based on elegant theorems for the correlation
of Gaussian data. Much remains to be done in the context of the novel sparse
sampling patterns, information inference, and performance limits, for one-bit
quantization.

4. Other Forms of Nonlinearity: Our previous work uses linear sparse sampling to
acquire the data, from which the information of interest is inferred. For some
applications in optical imaging and communications, only the magnitude of
the samples is observable, due to physical limitations. It was demonstrated in
[33] that the information of interest sometimes remains recoverable under this
design constraint using quadratic sampling. In fact, this belongs to a broader
family of nonlinear sparse sampling. In principle, nonlinear sparse samplers
could handle other physical design constraints, achieve lower computational
complexity, acquire smaller volume of data, or even lead to better estimation
performance, compared to the linear case.

5. Sparse Sampling Off the Grid: The sparse sampling we have considered so far
assumes a regular and uniform grid. This assumption might not hold in ap-
plications such as Internet of things, geological data analysis, magnetic reso-
nance imaging, and remote sensing, where the data is collected irregularly. In
these cases, sparse sampling can be mathematically reformulated as choosing
sample points from a predefined set S. Wewill call this concept gridless sparse sam-
pling or continuous sparse sensing [34]. For instance, S = {0, 1, 2, 3, . . . , N−1}
corresponds to sparse sampling from a uniform grid while S = [0, 1] denotes
the samples can be taken anywhere between 0 and 1 (gridless). As a gener-
alization of the grid-based sparse sampling, gridless sparse sampling could
achieve better estimation performance in the sense that, for the same number
of samples, we have smaller estimation error. In the future, much remains
to be explored in the context of novel gridless sparse sampling schemes, new
information inference algorithms, and their performance analysis.
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